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ABSTRACT

Various genome projects are producing large amounts of DNA data sequences that
need automated analysis for their characterization. Interpretation of nucleotide sequences by
in-computo experiments with a view to providing some insght into the location, structure and
function of particular gene is thus clearly very important. The consequent increase in the

number of approaches, algorithms and software to solve the problem is sdlf-evident.

There have been a number of approaches, both experimental and theoretical, that
have been directed towards understanding genome organization and functions. Theoretica
approaches include datistica analysis, spectral anaysis, linguistic anaysis, Monte-Carlo
methods and molecular dynamics approaches. Further, there is also a growing need to
develop faster and newer methods for understanding biological processes. It is of paramount
importance to develop techniques to unscramble the words in the sequences and read the
hidden message. The encryption of messages in biologica sequences is complex. The
aforementioned methods while are useful in understanding a variety of biological phenomena;
there still remain certain processes, which can not be analyzed using these techniques.
Biologica systems being very complex, it is often difficult to identify individua components of
the systems and establish the way in which they interact with each other. The inherent
complexity of biologica systems makes it very difficult to understand them as well as to
model them phenomenologicaly.

Artificial Neural Networks (ANNSs) provide a unique computing architecture whose
potential has attracted interest from researchers across different disciplines. One can smply
view a neural network as a large set of interconnections with variable strengths (weights), in
which the learned information is stored [1]. Recent advances in neura network theory and
technology have made them powerful tool that helps to identify complex processes in the
presence of noisy or incomplete information, colinearity of data, and time delays. It can aso
be used on incomplete data without assumed models or postulated formulas. Further, severd
features of neural network have encouraged their application to the analysis of protein and
nucleic acids sequences. Neural networks have severa unique characteristics and
advantages as tools for the molecular sequence analysis problem. A very important feature of
these networks is their adaptive nature, where “learning by example’ replaces conventional
“programming” in solving problems. This feature makes such computational models very
appealing in application domains where one has little or incomplete understanding of the

problem to be solved, but where training data are readily available.



A neural network consists of a bBrge number of smple processing elements called
neurons. The arrangement of neurons into layers and the connection patterns within and
between layers is called the network architecture. In feedforward (FF) nets, the signals flow
from the input units to the output units, in a forward direction: the input units receive signals
from the outside world; the output units present the response of the net. The perceptron is the
simplest form of a neural network used for the classification of the specid type of patterns
characterized as linearly separable. A perceptron has only two layers- input and output
layers. It computes a linear combination of the network inputs and applies the net input to
produce the output using a threshold output function. Multilayer perceptrons (MLPs) are
generalized perceptrons with one or more hidden layers. A three-layer FF neura network is
an MLP with one hidden layer and two layers of adaptive weights. An MLP has severa
distinctive characterigtics. (a) it uses neurons with a differentiable non-linear activation
function. (b) It has one or more layers of hidden neurons, which enables the network to learn
complex tasks by extracting progressively more meaningful features from the input patterns;
and (c) it exhibits a high degree of connectivity.

The neural network learning agorithms may be supervised or unsupervised. The
back-propagation agorithm is an example of the supervised training. Examples of
unsupervised training include the Kohonen self-organizing maps and the adaptive resonance
theory (ART). ANNs have been applied to several problems in nucleic acid sequence
andysis, viz. gene identification, intron/exon discrimination, prediction and analyss of

promoters, terminators, ribosome binding sites, phylogenetic classification etc.

In recent years, a class of robust algorithms - known as “Genetic Algorithms’ (GAS)
- have been used with great success in solving optimization problems involving very large
search spaces [2]. GAs were originaly developed as genetic engineering models mimicking
the population evolution in natura systems. Given a functional form, genetic algorithm
searches its solution space so as to maximize (or minimize) the prespecified objective
function. A smple GA has the following components: (i) representation/encoding scheme, (i)
initidization, (iii) fitness evaluation, (iv) selection policy: @ roulette whedl sdlection, b)
tournament selection, (v) genetic operators- crossover and mutation. The thesis attempts at
modeling the various sequence dependent features of DNA and their biologica roles using
ANNs and GAs.

Chapter 1 of the thesis introduces the subject and reviews the earlier work. In
chapter 2 of the thesis, ANNSs have been utilized for the prediction of DNA curvature in
terms of Retardation Anomaly. The ANN model has been developed and illustrated using the



example and data of Bolshoy et a. [3]. The modd captures the role of phasing, increased
helix flexibility, run of polyA tracts, and flanking base pair effects in determining the extent of
DNA curvature.

Chapter 3 describes two new encoding strategies, namely, Wedgeand twist codes that
are introduced to represent DNA sequences in ANN-based modeling of biologica systems.
Wedge and twist codes are devised based on the direction of deflection argle, wedge angle
and twist angle [4]. These codes have been evaluated by performing various case studies.
The proposed coding schemes have been compared rigoroudly and shown to outperform the
exiging coding Strategies especialy in situations wherein limited data are available for building
the ANN models.

In chapter 4, a hybrid technique involving two artificia intelligence (Al) toals viz.,
ANN and GA has been proposed for peforming modeliing and optimization of complex
biologica systems. In this methodology, first an ANN approximates (models) the non-linear
relationship(s) existing between its input and output example data sets. Next, the GA, which
is a stochastic optimization technique, searches the input space of the ANN with a view to
optimize the ANN output. The efficacy of this formalism has been tested by conducting a
case study involving optimization of DNA curvature characterized in terms of the R, value.
Using the ANN-GA methodology, a number of sequences possessing high R values have
been obtained and analyzed to verify the existence of features known to be responsible for
the occurrence of curvature. The methodology is a generad one and can be suitably employed
for optimizing any other biological feature.

In chapter 5, using an ANN and GA based hybrid strategy the effects of multiple base
subgtitutions with particular emphasis on those that can cause maximum gene expression of
b-globin gene are studied. The study revedls that multiple base substitutions in the conserved
as well as non-conserved regions can cause substantial enhancements in relative transcription
level (RTL). We identify positions in the nucleotide sequences, which preferably should not
be dtered, as well as those positions where mutations can lead to increased RTL. The
various trends observed are rationalized. The ANN-GA strategy can help in experimental
planning and reducing the search space.

In chapter 6, we have compiled 125 mycobacterial promoter sequences. Mycobacterial
promoters have been analyzed for various features like: i) TSS, ii) -35 and —10 regions, iii) S
factor, iv) spacer length, v) upstream region of —35 box, and vi) % G+C content. These
features are compared to similar features known for E. coli promoters. Further, the study

suggests a broad classification of these promoters into three main typesviz., i) E. coli type, ii)



Mycobacterial (Non-E. coli) type, and iii) Extended —10 promoters. The results throw some
light on the mycobacteria transcription machinery and structure of mycobacterial promoters,
which is a important step to understand the low level of its transcription, and the possible
mechanisms of regulation of gene expression.

In chapter 7 of the thesis, a multilayered feed-forward ANN architecture has been
used to predict the mycobacterial promoter sequences. The trained network has been used to
determine the dtructuraly/functionaly important regions with the help of calliper
randomization approach. Results obtained thereby indicate that the upstream region of —35
box, —35 region, spacer region, and -10 box are important for mycobacterial promoters.

Mycobacterid promoters have large variation in transcription mechanism. One of the
important controlling factors in transcription initiation is DNA conformation of the promoter
sequence. In chapter 8 of the thesis, we have analyzed our own compilation of mycobacteria
promoters for DNA curvature distribution. This analysis has been performed using severa di-
and tri- nucleotide dependent models of DNA curvature. The results of curvature distribution

are compared and contrasted with E. coli promoters.
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Generd Introduction



1.1 BACKGROUND

Vaious genomes are currently being intendvely “spdled” (sequenced) and
characterized by detecting in the sequences a few familiar features (protein-coding regions,
transcription signals, Au repeats), and deposited in sequence libraries, where they are
further annotated and “ shelved”. The mogt interesting part of the sequence processing - the
“reading,” depends on prior degp studies on the nature of the various codes carried by the
sequences, of which we know only too little. The deciphering is not a smple task and
bottlenecks exigt in the development of our understanding of genome organization and
functions.

While sequencing is progressing on a darming pace, data analysis will certainly
become a rate-limiting step. The succeeding phases of the project would then depend
largely on interpreting nucleotide sequences by in computo experiments with a view to
providing some indght into the location, structure and function of particular gene. It is
needless to emphasize the importance of the problem and the consequent increase in the
number of gpproaches, agorithms and software to solve the problem is sdf-evident. This
will dlow biological and medica researchers to focus ther atention on promisng and
managesble subsets of the data

There have been a number of approaches, both experimenta and theoreticd, that
have been directed towards understanding genome organization and functions. Theoretica
gpproaches include datigtical andyss, spectrd andyss, linguisic andyss, Monte-Carlo
methods and molecular dynamics gpproaches. Further, there is aso a growing need to
develop faster and newer methods in understanding biological processes. It is of paramount
importance to develop techniques to unscramble the words in the sequence and read the
hidden message. The encryption of messages in biologica sequences is complex. It is now
being established that sequences no longer carry a single message (e.g., the triplet code
which are ingructions for protein synthesis) but, in fact, carry overlapping messages like the
DNA shape code and the chromatin code. Other signds, which are responsible for vita
cdl activities like transcription, are dso encoded in different regions. While the
aforementioned methods are useful in understanding a variety of biologica phenomena,
there till remain certain processes, which can not be analyzed using these techniques.



Thus, biologicd systems being very complex, it is often difficult to identify individua
components of the systems and establish the way in which they interact with each other.
The inherent complexity of biologicd systems makes it very difficult to understand them as
well as to modd them phenomenologicdly. First principle modes quantitatively articulate
the cause and-effect relationships. These models contain a number of system parameters,
and take on the form of agebraic or differentia equations. Given the numerica vaues of
the parameters, the phenomenologicad models permit the caculation of system outputs for a
given st of inputs. Thus, it is important to use an dternative gpproach that can be gpplied
to systemns about which only partid information is known.

1.2 ARTIFICIAL NEURAL NETWORKS

Artificid Neura Networks (ANNSs) provide a unique computing architecture
whose potentia has attracted interest from researchers across different disciplines. The NN
technique has its origin in efforts to produce a computer model of the information
processing that tekes place in the nervous system [1]. One can smply view a neurd
network as a large set of interconnections with varigble strengths (weights), in which the
learned information is stored.

ANNs appear to be one of the most suited dternative tools. ANNs are
mathematica gpproximatiors of the biologica synapses and were initidly developed as
models for understanding the brain mechanisms involved in perception. The abilities of the
ANNSs to perform nonlinear mapping and their powerful internd representation capability
has led neura retworks to be used as a tool for modeling rather than understanding the
brain functions per se. Recent advances in neura network theory and technology have
made them powerful tool that helps to identify complex processes in the presence of noisy
or incomplete information, colinearity of data, and time delays. It can dso be used on
incomplete data without assumed modds or postulated formulas. Further, severd features
of neurd network have encouraged their application to the andysis of protein and nucleic
acids sequences. ANNSs can incorporate both positive and negative information, that is
both sequences with the feature of interest and without the feature are used to impart
knowledge to the network. They are adso able to detect second- and higher- order



correlations in patterns, and thus, are more useful in determining complex correlations than
the conventional methods based ssimply on the frequency of occurrence of resdues a
certain postions. An ANN based on the knowledge it acquires a the time of traning
makes its own interna representation of the system being modded and then automaticaly
determines which resdues and which postions are important. Neurd networks are thus
idedlly suited for parald sequence processing and are increasingly gpplied to the study of
biologicad macromolecules. They am a mapping nucleic acid/protein sequences on to
gpatid Sructure/functiondity.

1.2.1 Neural Network Characteristics

Neural networks have severa unique characteristics and advantages as tools for
the molecular sequence analysis problem. A very important feature of these networks is
their adaptive nature, where “learning by example’ replaces conventiond “programming” in
solving problems. This feature makes such computationa models very appeding in
goplication domains where one has little or incomplete understanding of the problem to be
solved, but where training data are readily available. Owing to the large number of
interconnections between their basic processing units, neural networks are error tolerart,
and can ded with noisy data Neural network architecture encodes information in a
digtributed fashion. This inherent pardldism makes it easy to optimize the network to ded
with alarge volume of data and to andyze numerous input parameters. Flexible encoding
schemes can be used to combine heterogeneous sequence features for network input.
Findly, amultilayer network is capable of capturing and discovering high-order correlations
and rdaionshipsin input data.

1.2.2 Neural Network Architecture

A neurd network condgts of a large number of smple processing dements cdled
neurons. The arrangement of neurons into layers and the connection patterns within and
between layers is cdled the network architecture. In feedforward (FF) nets, the Sgnds
flow from the input units to the output units, in a forward direction: the input units receive
sgnasfrom the outside world; the output units present the response of the net.



(1) Perceptrons

The perceptron [2] is the smplest form of a neurd network used for the
classfication of the specid type of patterns characterized as linearly separable. A
perceptron has only two layers input and output layers. It computes a linear combination
of the network inputs and applies the net input to produce the output using a threshold
output function. An dementary perceptron conssts of a single output neuron with
adjustable synaptic weights and a threshold. The threshold can be trested as a synaptic
weight connected to a fixed input of vaue 1. Such a fixed input unit is @led a bias unit.
One can use the dementary perceptron to solve a paitern classfication problem with only
two classes. To perform classification with more than two classes requires the use of more

output neurons.

The weights of the perceptron can be adgpted on an iteration-by-iteration bas's,
using an error-correction rule known as the perceptron convergence theorem [3]. The
theorem guarantees that if a solution exigts, the perceptron learning rule will in a finite
number of steps, converge to correct weights that produce correct output vaues for dl
training patterns. The convergence agorithm is non-parametric in the sense that it makes no
assumptions concerning the form of the underlying distributions. It may thus be more robust

than classicd techniques.

(2) Multilayer Perceptron

Multilayer perceptrons (MLPs) are generdized perceptrons with one or more
hidden layers. A three-layer FF neurd network is an MLP with one hidden layer and two
layers of adgptive weights. While simple perceptrons can perform dassfication only on
linearly separable patterns, MLPs are generd-purpose, flexible, nortlinear models thet,
given enough hidden neurons and enough data, can approximate virtudly any function to
any desired degree of accuracy [4]. MLPs have been applied successfully to solve some
difficult and diverse problems by training them in a supervised manner with a highly popular
agorithm known as the error- back- propagation agorithm.

An MLP has severd digtinctive characteristics:

(1) It uses neurons with a diff erentiable non-linear activation function.



(2 1t has one or more layers of hidden neurons, which enables the network to learn
complex tasks by extracting progressvely more meaningful festures from the input
patterns, and

(3) It exhibitsahigh degree of connectivity.

The presence of a digtributed form of nonlinearity and the high connectivity of the
network make the theoretical andysis of an MLP difficult to undertake. The use of hidden
neurons makes the learning process harder to visudize. The learning process is more
difficult because the search has to be conducted in a much larger space of possble
functions in order to decide how input festures should be represented by the hidden

neurons.

1.2.3 Neural Network L earning Paradigm

The neurd network learning dgorithms may be supervised or unsupervised. The
supervised training is accomplished by presenting a sequence of training vectors; each with
an associated target output vector. An essentid ingredient of the supervised learning is the
avalahility of an externa teacher. The back-propagetion dgorithm is an example of the
supervised training.

In unsupervised or sdf-organized learning there is no externa teacher to oversee
the learning process. The learning normdly is driven by a samilarity measure without
specifying target vectors. The sdf-organizing net modifies the weights so thet the most
smilar vectors are assigned to the same output (cluster) unit, which is represented by an
examplar vector. Examples of unsupervised training include the Kohonen saf-organizing
maps [5] and the adaptive resonance theory (ART) [6].

A. Back propagation

The back-propagation (BP) learning rule is centra to much current work on
learning in NNs [7]. The generdized ddta rule is Smply a gradient-descent method to
minimize the error sgnd [8]. The dgorithm provides a conceptudly efficient method for
changing the weights in a feedforward network, with differentiable activation function units,
to lean a training sat of input-output examples. BP can be used with a variety of
architectures. The dementary BP network is a multilayer perceptron.



The BP training involves three stages the feedforward of the input training pettern;
the calculation and back-propagation of the associated error, and the adjustment of the
weights. In e feedforward phase, the weights remain unatered throughout the network,
and the function sgnals of the network are computed on a neuron-by-neuron basis. In the
back- propagation phase, error signa's are computed recursively for each neuron starting at
the output layer, and passed backward through the network, layer by layer (hence, the
name *“back- propagation”), to derive the error of hidden units. Weights are then adjusted
to decrease the difference between the network’s output and the target output. Since
learning here is supervised (i.e, target outputs are available), an error function may be
defined to measure the degree of approximetion for any setting of the network weights.
After training, application of the note involves only the computations of the feedforward
phase. Even if training is dow, atrained net can produce its output very rapidly.

Many enhancements and variations have been proposed for the BP dgorithm.
These are mogtly heuristic modifications with gods of increased speed of convergence,
avoidance of locd minima, and/or improvement in the network’s ability to generdize. A
theoretical framework for studying BP was described by Le Cun [9], whose formdism is
well suited to the description of many different variations of BP. In the context of NN,
Bayesian methods offer a number of important feetures [10]. A Bayesan framework was
formulated [11] to provide objective criteria for comparing solutions using dternative
network architectures, parameter settings, and aternative learning ard interpolation models.
The relative importance of different inputs can dso be determined using a Bayesan
technique[12].

B. Kohonen’sself-organizing map

The sdf-organizing map has the specid property of effectively cregting a spatidly
organized internd representation of various features of input Sgnals and their abstractions.
The feature map is a two-layered network that can organize a topologica map of cluster
units from a random gtarting point. The network combines an input layer with a competitive
layer of processing units. During the sdf-organization process, the cluster unit, whose
weight vector metches the input pattern most closdy (typicaly based on minimum
Euclidean distance), is chosen as the winner. The winning unit and its neighboring units (in



terms of the topology of the cluster units) update their weights. After training is complete,
pattern relationships and groups are observed from the competitive layer. This yields the
grephical organization of pattern relationships. These maps result from an information

compression that retains only the most relevant common features of the set of input Sgnds.

C. Counter Propagation

The counter- propagation (CP) network [13] is an example in which layers from
supervised and unsupervised learning paradigms are combined to congtruct a new type of
network. A CP net is closely related to the nearest-neighbor classifier. Nearest-neighbor
classfiers require a unit for every learned example in atraining set. They are impracticd as
online classfiers because of the large number of computations required in classfying anew
input. Thus, one needs to have a compact presentation of training data and use far fewer
than one unit for every training sample. The CP gpproximates its training input vector pars
by adaptively congtructing a look-up table. In this manner, a large number of training data
points can be compressed to a more manageable number of look-up table entries. The
accuracy of the gpproximation is determined by the number of entries in the look-up table,
which equas the number of unitsin the cluster layer of the net.

The forward-only CP network has three layers an input layer; a Kohonen
clustering layer; and a Grossberg conditioning layer. As a pattern classifier, a CP network
uses the Kohonen layer to determine winning units for the input paiterns, and uses the
Grossherg layer to map these winnersinto classes. The Kohonen layer isan LVQ (learning
vector quantizer) network [14], which performs nearest-neighbor dassfication. The
cdugtersmay be formed based on ether the dot (inner) product or the Euclidean distance.
In the Grossberg layer, the weights from the cluster units to the output units are adapted to
produce the desired response. Counter propagation is considered a faster dternative to
BP, dthough questions remain abouit his performance.

1.2.4 Applicationsfor DNA/RNA sequence analysis

ANNs have been applied to severd problems in nucleic acid sequence analyss,

viz. gene identification, intron/exon discrimination, prediction and analysis of promoters,



terminators, ribosome binding sites, phylogenetic classfication etc. The brief summary of al
such gpplicationsislised in Tablel.

Neural Network architectures:

2L ,FF =twolayer, feedforward network (i.e., perceptron)
3L or 4L, FF =three-or-four layer, feedforward network (i.e., multiHayer perceptron)

Neural Network | earning Algorithms:

BP = back-propagation

Delta= Ddtarule

QP = Quick-propagation

RP = Rprop

ART = Adaptive resonance theory

CP = Counter-propagation

[nput sequence encoding methods:

BINnN = binary-numbered direct encoding of residue identity, where n is the number of input units representing
each resdue

REALN = red-numbered direct encoding of residue features, where n is the number of units representing each
resdue

FEATN =indirect encoding of sequence residue frequency

FREQ = indirect encoding of sequence residue frequency

SVD = dsingular value decomposition

Output sequence encoding methods

n(CODES) where nisthe number of output units.

CODEs are: Y = Yes (postive); N = No (negative); | = Intron, E = Exon; O = Other (counter-example); RTL =

relative transcription level.



Tablel: Applicationsfor DNA/RNA sequence analysis

Application ANN Architecture Input/Output Encoding Ref.
INTRON/EXON (I/E) DISCRIMINATION AND GENE IDENTIFICATION
Coding region recognition 4L FF.BP FEAT7/1(Y,N) [15]
Coding region recognition 3L,FFBP FEAT13/1(Y,N) [16]
I/E feature weighting 2L, FF, Delta FEAT6/1(Inequality) [17]
I/E feature weighting 2,3L, FF, Delta, BP FEAT6/1(Inequality) [18]
Splicing donor/acceptor site prediction 3L, FF, BP BIN4/1(Y,N) [19]
Splicing donor/acceptor site prediction 3L, FF, BP BIN4/1(Y,N) [20]
Splicing donor/acceptor site prediction 34L, FF, BP BIN4/1(Y,N) [21]
I/E discrimination 2L, FF, BP BIN4,FREQ/1(Y,N) [22]
I/E compositiond constraints 3L,FFBP BIN4/3(1,E,O) [23]
Parallel implementation for I/E discrimination 3L,FF,BP,QP,RP BIN4/1(1,E) [24]
PREDICTION & ANALYSISOF RIBOSOME-BINDIN G SITES, PROMOTERS AND OTHER SITES
Ribosomebinding site predi ction Perceptron BIN4/1(Y,N) [25]
Ribosomebinding site prediction 3L,FFBP BIN4/1(Y,N) [26]
Ribosomebinding site prediction 3L,FFBP BIN4/1(Y,N) [27]
E. coli promoter prediction 2" 3L,FFBP BIN2/1(Y,N) [28]
E. coli promoter prediction Perceptron ? [29]
E. coli promoter prediction 3L,FFBP BIN4/1(Y,N) [30]
E. coli promoter prediction 3L,FF.BP BIN2,BIN4/1(Y,N) [31]
E. coli promoter prediction 3L,FF.BP BIN4/1(Y,N) [3233]
E. coli promoter prediction 3L,FF.BP BIN4 +3 + FREQ/1(Y,N) [34]
E. coli promoter prediction 2" 3L,FFBP BIN4/1(Y,N) [35]
Transcription start site and festure detection 3L,FFBP BIN4/1(Y,N) [36]
Eukaryotic promoter prediction 3L,FFBP BIN4/1(Y,N) [37]
RNA polymerase || binding site prediction 4L FF.BP FEAT13/1(Y,N) [38]
Prediction of transcriptional terminator 3L,FFBP BIN4, REALV/1(Y,N) [39]
Prediction of transcription control signal 3L,FFBP BIN4/1(RTL) [40]
DNA/RNA SEQUENCE ANALYSIS, PHYLOGENETIC CLASSIFICATION AND C ODE MAPPING
Clustering and functional region identification 2L ,Kohonen REAL 1/Map(30) [41]
Clustering and functiond region identification 2L ,Kohonen REAL1/Map [42]
Phylogenetic classification 2L ART BIN4/19(Class) [43]
Ribosomal RNA classification 2 3L,FFBPCP FREQ,SVD/220,15 (Class) [44]
Transfer RNA gene recognition 3L,FFBP BIN4/10(Class) [45]
Genetic code mapping 3L,FFBP BIN4/20(Class) [46]




Asatechnique for computationd anayss, neurd network technology is very well
suited for the andyss of molecular sequence data. The perceptron learning agorithm
developed by Rosenblatt [2] was adapted to sequence pattern analysis by Stormo et a.,
[25] in an atempt to disinguish ribosomd binding Stes from nonbinding Stes. The
conceptud basis of the back- propagation learning agorithm was first preserted by Werbos
[47]. Later, Rumdhart and his colleagues introduced the broad potentia of the NN
approach and presented the back-propagation agorithm to a wider readership [1, 48].
Back- propagation soon became the most popular NN paradigm. It has been successfully
used to perform a variety of input-output mapping tasks for recognition, generdization, and
classfication [49], induding many molecular sequence andlysis problems. As the fidd
continues to develop, researchers have broadened the choices of NN architectures and

learning paradigms to solve awider range of problems.

1.3 GENETIC ALGORITHMS

Genetic Algorithms (GAS) are sochastic methods, which enforce the surviva of the
fittest paradigm of evolution aong with the genetic propagation of characteristics. A smple
GA has the following components.

1. Representation/Encoding scheme

2. Initidization
3. Htness Evdudion
4. Sdection Policy
5. Genetic Operators

1.3.1 Representation
Most problems in GA literature use the binary encoding scheme where each locus
of the string is drawn from a binary a phabet of zero or one.

1.3.2 Initialization

Initidizetion refers to the generation of the initid population of solutions as well as

the choice of some parameters of the population, such as its size. The preferred
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characterigtics of an initid population are diversity and reasonable levels of fitness values.
However, in practice, depending upon the agpplication, generating an initid population
varies from random generation to careful choosing of candidates based on the user’s
experience. Sometimes choosing few digtinct and diverse solutions and assigning copies
based on their fitness values could provide a good starting population. Optimal choice of
the population sze tends to depend upon the nature of the domain, the representation, the
evauation scheme and the genetic operators used. In this agorithm, the population is
continuoudy augmented by the newly crested products of recombination. However, the
agorithm has a measure of the age or lifetime of an individud beyond which individud
‘dies or is removed from the population. This lifetime, indtead of the sdlection probahility,
is sat proportiond to the fitness of the individud. This means that fitter individuds live
longer than the rest and the population is controlled by the desth rate of individuas.

1.3.3 Fitness Evaluation

Once a population of candidate solutions has been created, they need to be
evaduaed to determine their fitness in the environment. For an optimization problem, the
environment is the objective function. Depending on how low (for minimization problems)
or how high (for maximization problems) the objective function vaue for an individud is, its
fitness should have a proportionaly high vaue. In some problems one does not have a
single objective but severd to be optimized smultaneoudy as well as congraints to be
satisfied by the solutions. One way of handling multiple objectives is to define a new
objective function that is a weighted sum of dl the objectives. Here, the choice of the
weights can reflect the relative importance of optimizing the different objectives. To handle
condraints in genetic dgorithms, the objective function is usudly augmented with a pendty
term that weights in the feagibility of the solution.

Fitness Scaling:

Scding the solutions within the population ensures that individua s with fitness equa
to the average of the population contribute one expected offspring to the next generation
[50]. Also, later during the run, scaling overcomes lack of differentiation between average
and the best members of the population. The most widdly used scaing method is linear
scding.

11



1.3.4 Selection Scheme

The sdection scheme has to make sure that the fitter individuas in the population
are dlotted more opportunities to reproduce and recombine to produce offspring. To this
end, two different selection schemes are normaly used.
Roulette Wheel Selection

In this scheme, once the fitness evauation is completed, the population is sorted in
ascending order of fitness and a running sum of the fitness is calculated for each member
garting from the first one in the sorted lig. The firs member of the sorted ligt (beginning
with the member with the lowest fitness) whose cumuldive fitness is greater than the
random number, is slected. The Roulette Whedl Selection procedure can be thought of as
adynamic sdection scheme with a variable probability of selection across generations.
Tournament Selection

In this scheme, a specified number, cdled the tournament sze, of members are
chosen from the parent population and enter a competition. The winner is decided based
on the best fitness and alowed to enter the reproductive phase. This process is repeated
aufficiently, dong with recombination and mutation, to produce the offspring population.
This method dightly offsets the effects of a few large fitness solutions in the population by
biasing the selection scheme towards above average solutions in genera [50]. As opposed
to the roulette whed sdection procedure, this is a Static sdection scheme where the

probability of selection of a candidate remains fairly constant across generations.

1.3.5 Genetic Operators

Genetic operators provide the means by which the genetic components or the
building blocks of the current population (the parents) are altered to produce the next
population (the offgpring). Genetic operations typicdly fal under two categories. i)

crossover and ii) mutation.

Crossover
Chromosomal crossover refers to the random recombination of parts of two

chromosomes (the parents) to produce two new chromosomes (the offspring). Thisis a

12



large-scale operator in the sense that it significantly perturbs the genotype of the parents.
From an optimization viewpoint, the recombination operaior tends to improve the
combinatorid diversty by using the building blocks present in the population.
Mutation

To be effective, the GA needs an influx of characteristics extraneous to the
population. This is provided by the mutation operator. For a smple GA using binary
encoding, mutation is normaly applied after crossover and with a low probability (around
1%). Thisis because, with high probabilities, mutation tends continualy to destroy the good
features (schema) brought forth by recombination and sdection.

1.3.6 Applications of Genetic Algorithms

Conformationa analyss involves the search for the structure or conformation that
gives the globd minimum in tota potentid energy or minimum deviation from a st of
condraints derived from experiments. A conformation is normally characterized by a set of
bonds and torson angles that are constrained to satisfy these structurd and molecular
congraints. The earliest gpplication of GAs to this problem was by Lucasius et d. [51-52]
usng the DENISE program to generate plausble DNA fragments to fit condraints
obtained from NMR. This gpproach actudly uses a two-tier GA to optimize firs the
components and then the entire Structure. A similar problem in protein folding has been
solved using GAs by Dandekar and Argos [53]. Here, the protein is modeled as fragments
of amino acids each of which can assume different conformations from a predefined set and
the ideais to locate the best combination, so as to minimize a defined fitness function. This
function is a sum of severd terms relating to the secondary and tertiary structure of the
protein. In related work, hybrid GA based methods in conformationd analysis have been
ingrumented in the eucidation of the sructure of G, (buckminsterfullerene) [54]. A new
modeling technique for arriving a the three dimensiond (3-D) structure of an RNA stemt
loop has been developed based on a conformational search by a genetic dgorithm and
following refinement by energy minimization [55].

Comparison of the secondary structure of the 5 non-coding regionof poliovirus 3
RNA derived from the genetic dgorithm with the modd of Skinner et d. [56] demongtrates
many of the confirmed structural dements. The GA generates a population of dl possble
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gems, then mixes, combines and recombines these ems in multiple iterations on a
massvely pardle computer, ultimately selecting a most fit sructure based on its energy
[57]. The secondary structure of the region containing the determinants of neurovirulence
was better predicted using the genetic agorithm, whereas the dynamic programming
agorithm [58] required phylogenetic comparative sequence analysisto arrive at the correct
condusion.

1.4 GENESISAND SCOPE OF THE PRESENT WORK

Biologica systems are complex in nature and severad known and unknown factors
govern ther functioning. It is difficult most of the times to interpret underlying rdaionship(s)
between several experimental conditions and corresponding System  output(s).
Phenomenological modeling of such sysemsis dso difficult due to the inherent complexity
of biologicd sysems and inadequate information about them. Thus, it is important to
develop and use dternate methods that can be agpplied to systems with inadequate
information. Artificid Inteligence (Al) tools viz. ANN and GA can uncover the underlying
relationship(s) of such biologicd systems.

Detalled understanding of the biosystems require carrying out experiments that are
often costly and time consuming. Most of the experiments are dso difficult to perform. Due
to multileve interactions, a smdl change in input parameter of the sysem may result in
changes in large number of festures of sysem. Thus, to have a predictive mode that
captures the cause and effect relationship is certainly adifficult task. Al toolslike ANN and
GA can hdp in building up predictive modes and use quditaive and quantitative
information about the sysem. Thus, such modding can help us in having better
understanding of intricate biosystems. Therefore, the primary objective of thisthessis i) to
built up quantitative predictive rdationship between inputs and outputs of biosystems
wherever possible, and ii) in instances where such predictive quantitative relationship can
not be built due to gross inadequacy of input-output data. It is hoped that they would at
leest provide quditetive guiddines for narrowing the choice of experiments to be
performed.

It is with this view that in chapter 2, we develop an ANN modd to establish a

correlation between a nucleotide sequence of DNA and its effective curvature,
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characterized in terms of retardation anomaly (R ) vaue. In chapter 3 for ANN — based
modeling of DNA seguences, two new input coding strategies namely, the wedge and the
twist code have been suggested. The performance of the proposed strategies has been
tested by performing various case studies. Chapter 4, presents a hybrid Strategy involving
an ANN and a GA for the optimization of a biologicaly important festure or property. This
drategy is generd and is illustrated using an example of optimization of DNA curvature.
Chapter 5 illustrates a hybrid non-linear drategy involving an ANN and GA for
optimization of transcription efficiency in eukaryotic sysems using b-globin gene asacase
example. The study helps to obtain an ingght into the structura aspectsof p-globin gene
leading to high transcription efficiency.

Chapter 6 of the thesis provides a compilation of different mycobacteria promoters
and andlysis of their DNA sequences for various features. In chapter 7, an ANN modd is
developed for classfying mycobacterid promoter sequences from non-promoter
sequences. Cdliper randomization approach has been suggested for determining
gructurdly and functiondly important regions within the mycobacterid promoter
sequences. Chapter 8 presents theoretical andysis of DNA curvature for mycobacterid
promoters using severad di- and trinucleotide dependent models of DNA curvature.

In essence, the thesis ams at building predictive relationships using Al tools for
complex biologicad systems with a view to model and analyze DNA sequences for their
properties and biologica roles. This continues to be a poorly understood area and it is
hoped that the approach adopted in the thesis takes a step forward in resolving the issues.
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CHAPTER

I 2 I

Analysis of DNA curvature using
artificial neural networks



In this chapter, we develop an Artificid Neura Network (ANN) for the prediction of DNA
curvature in terms of Retardation Anomaly. An ANN capturing the role of phasing, increased
helix flexibility, run of polyA tracts, and flanking base pair effects in determining the extent of
DNA curvaure has been developed. The network predictions vaidate the experimentally
known results and aso explain how the base pairs other than ApA affect the curvature. The
results suggest that ANN can be used as a modd-free tool for studying the DNA curvature,




2.1INTRODUCTION

The concept of sequence-dependent DNA structure was proposed more than a
decade ago [1-3]. It is important in packaging, recombination, and transcription. In
polyacrylamide ge DNA molecules are believed to migrate by a head-on reptation mechanism
[4-5]. Rdative dectrophoretic mobility of most curved DNA fragments monotonoudy
decreases with the fragment length. This is usudly characterized as an increasing ratio of
goparent to actud DNA length (known as “Ry. factor”) with increase in the fragment length.
The R- factor is a measure of eectrophoretic anomay of the curved DNA and reflects the
additiona friction of the DNA in the gd due to curvature [6]. For most curved DNA
fragments, therefore, longer the length, greater is the frictional drag and the R-factor is a
monotonoudy increasing function of the fragment length [7]. The principa sequence feature
respongble for intrindc DNA curvature is generdly assumed to be the runs of adenines.
However, according to the wedge modd of DNA curvature, each dinucleotide step is
associated with a characterigtic deflection of the loca helix axis[8]. It isto be noted, however,
that the firgt principle models for predicting the curvature are themselves being debated for their
generdity [9]. The objective of this chapter is to utilize artificia neura networks (ANN) for
edablishing a correlation between a nucleotide sequence of DNA and its effective curvature
wherein the curvature is characterized in terms of the R. vaue. Additiondly, adetailed study of
the effect of base substitutions as well as effect of different factors on the DNA bend has been
conducted.

ANNs are massively connected parale sructures containing processng eements
cdled neurons. The neurons communicate via a st of interconnections with variable strengths
(weights). The phenomend abilities of ANNS, to perform nonlinear mapping from input to
output space, and classification, has led them to be used as a powerful tool for modeling rather
than understanding the brain functions per se. In order that a network learns the input-output
mapping, or classfication, it needs to be trained with the help of available examples. Training
procedure involves adjustment of the connection weights until the network learns the
mapping/classfication. ANNSs trained with the error-back-propagation (EBP) dgorithm [10-



11] represent the most widdly used network paradigm. An EBP network is a multilayered
feedforward sructure that undergoes supervised learning; i.e, for training, it requires an
example data set comprising pairs of input and the corresponding desired output patterns
(vectors). Once adequatdly trained, the network can make predictions corresponding to the
new input data. In biologicad sciences, the EBP networks have been successfully used for
promoter recognition, terminator recognition, nortcoding regions of DNA, capturing
transcription control signass, phylogenetic analys's, etc. (see review [12)).

2.2SYSTEM AND METHODS

The dmulation programs were written in FORTRAN-77 and compiled using the
Microsoft FORTRAN 5.0 compiler for the IBM PC and compatibles.

2.2.1 Data

The EBP network was trained using the experimental data by Bolshoy et d. [8]
comprising the R vaues of circular and curved, and straight synthetic fragments extrapol ated
to 90 base pair length (columns 1-3 of Table I). These data were chosen since they are sdif-
consgtent wherein al the experiments are carried out under *standard’ gel conditions [13]. The
data set comprising atotal of 54 sequences and their corresponding R values was divided into
training (40 patterns) and test (14 patterns) sets. The test set is used to evduate the
generdization capability of the EBP network in predicting the R vaues corresponding to the
st of fragments not used during training.

2.2.2 Data Representation

Two possible ways to code nucleotide sequences, namely, GODE-2 and CODE-4
have been generally used for data representation. In these drategies, each nucleotide is
represented by a unique two (CODE-2) or afour (CODE-4) digit binary string. Consequently,



as many (two or 4) input neurons are required to code a sngle nucleotide. Nair et a. [14]
devised a nove coding strategy known as Electron lon Interaction Potential (EIlP) code
wherein each nuclectide is represented by its EIIP vaue; thus a sngle input neuron is sufficient
for the nucleotide representation. In an event when the available datais limited, it is preferable
to use ElIP coding since it results in smaler (as compared to CODE-2 and CODE-4
grategies) network. In EIIP grategy, the four nucleotides are coded as. A,0.1260; T,0.1335;
G,0.0806; and C0.1340. In the present study, these vaues have been used to represent the
DNA sequences.

As can be seen from Table |, the nucleotide sequences are of different Szes, i.e, 10,
21, 31 and 42 base pair long. For training, the input vectors (coded fragmerts) need to be of
the same size. Thus, the shorter fragments were uniformly padded with 0.01 until each fragment
is 42 base pair long. The resulting data can be viewed as a matrix of sze (54" 42). Each
column of this matrix was normdized, so tha upon normdizaion, each matrix dement lies
between 0.05 and 0.95. It is to be noted that the DNA sequences considered in this study are
of two types, namely, circular (sequence nos. 1-3) and linear (sequence nos. 4-54). In order to
differentiate them, two additiona inputs were consdered at the end positions of each input
vector. Accordingly, the circular and linear fragments were coded as (0.05, 0.90) and (0.90,
0.05), respectively. The experimenta R. values were aso normalized so asto lie between 0.05
and 0.95 and taken as the target output for the network training.

2.2.3 Neural Network Simulation

The neurd network smulations were performed on a 486 AT equipped with a math
coprocessor. The network consists of three layers viz. input, hidden and output (Figure 2-
1). The neurons in the input layer are ample distribution nodes, which pass ther input as the
output. The number of neurons (44) in the input layer is equa to the dimensiondity of the input
vector and the number of output layer neurons (1) is same as the dimensiondity of the output

vector. However, there is no easy way to assgn the number of neurons in the hidden layer



responsible for the nonlinear representationa ability of the EBP networks and, thus, the number
is fixed heuridicdly. In this sudy, logistic Sgmoid transfer function is used at the hidden and
output nodes to represent the non-linearity. The network training is an eror minimization
procedure involving adjustment of the network weights until the error (the difference between
the desired and network-predicted outputs) with respect to the test set is minimized. For
weight updation the generdized delta rule with the momentum term [10] has been used. The
error function, namely, the root mean squared error (RMSE), isdefined as:

s _, g 8 2
a Ep a_a-(tpi' 0pi)
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p n pn

where index p ranges over the number of input patterns (P); i ranges over the number (n) of

output units, E, represents the error on pattern p and, t, and o, are the target and actua
output vaues of the ith output unit when pth pattern is presented to the network. The detailed
dgorithmic steps for EBP network training can be found in severd references [15-16] and
briefly summarized in Appendix 1. In order to get optima network weights three parameters,
namdy, momentum coefficient, learning rate and number of neurons in the hidden layer need to
be heurigticaly optimized. These were found to be 0.1, 0.15 and 1, respectively. The RMSE
profiles corresponding to the training and the test sets for the optimized network are shown in
Figure 2-2. The weights after 4690 training iterations correspond to the minimum RMSE with
respect to the test set and, hence, were taken as optimal.

2.3 RESULTSAND DISCUSSION

Table | shows a comparison of the network predicted and experimenta retardation
anomdy (R.) values for the sequences in training and test sets (also see Figure 23). The
correlation coefficient for the network predicted and experimental R. vaues has been found to
be 0.954 and suggests that the EBP network has satisfactorily captured the relationship
between a DNA sequence and its R vaue. In addition, the trained EBPN is capable of
predicting correctly low as well as high R values (refer Figure 2-3). Some midfit in the higher
R. vaues may be because of alimited sequence ensemble available for training the network.



The optimized net was subsequently used to evauae the effect of sngle base
subgtitutions on the R. values. Towards this end, each nucleotide from a sequence was
subdtituted with the remaining three on one-at-a-time basis and the network was used to
predict the R. vaue of the resulting sequence. The subgtitutions, which caused sgnificant
changes in the RL vaues, are listed in Table I1. For conciseness, the results for sequence nos.
8, 10, 14, 16, 17, 31, 52 only are listed. In Figure 24, the graphicd representation of the
results for sequence nos. 8, 52, 17 and 16 is provided. These sequences are representative of
the base par lengths 10, 21, 31 and 42, respectively. The network predicted R vaues
indicate that the mutations related to curvature are of three types: (i) the ones resulting in
ggnificant change in curvature with possible explanation from previous studies, (ii) those
causing dight or no change in curvature, and (iii) those with no gpparent explanation from the
previous studies.

It is noticed that A tract of length 3 to 6 base pairs causes dgnificant bending (see
sequence 10, 14, 17). The R. vaues obtained by mutating polyA tract validate the observation
made by Milton and Gesteland [17] that each adenine residue in the A tract does not
contribute equdly. 1t can be seen from the plots of al possble sngle base subdtitutions in the
polyA tract for sequence 8, 16, and 17 that subgtitutions with either T, G or C cause dissmilar
effects. For ingtance, in the plot for sequence 17 in Figure 2-4, the R. vadues resulting from the
subgtitutions in the polyA tracts by T, G or C (postions 5 to 9 and 14 to 17) exhibit varying
sengtivities towards single base subgtitutions. Mutations in the non-AA fragments indicate thet
some mutations dter the DNA bend even when they do not lead to formation of polyA tract.
For example, if sequence 52 is mutated by G at position 14, the R. changes from 1.05 to 1.16,
and if pogition 19 is mutated by G, the resultant R is 0.79. This can be interpreted as base
steps other than ApA are involved in sequence directed DNA bends.

The Guanine resdues in a nearest neighbor contact with the A tracts are known to
modify the bend [18]. This observation has been confirmed for al the sequences containing the
A tracts. For instance, when sequence 31 (R. = 1.14) is mutated at 17th position by G, i.e,
next to the A tract, the R. obtained is 1.12.



It can dso be noted from Table Il that if mutation of G by A results in a Sgnificant
change in R then similar effect (increase or decrease) is observed if G isreplaced by T and,
sometimes, by C. This has been verified as follows. The R for sequence 16 is 1.06; if
position 27 is replaced by A or T or C, the resultant R vaues are 0.92, 0.90 and 0.89,
respectively. As can be seen, these are consistently lower than 1.06. Thisis a new observation
and not reported in the earlier studies.

With the help o the trained network it is possible to study the effect of different factors
that influence the DNA curvature. For this purpose, sequences listed in Table 111 have been
consdered and their R vaues were estimated. The role of phasng has been evduated by
examining a set of sequences described as (AsNk)n ; k = 4, 5, 6, 10. Each one of these
sequences contains the As tract flanked by C at 3 and 5', with atotal of k basesintervening in
the G+C - rich segment between the As tracts. The series (AsNs)n has 10 - bp phasing that
nearly matches the expected hdix screw of about 10.3 bp per turn which is the average of
10.5 for B-DNA and 10.1 for poly(dA).poly(dT) in solution. It can be verified from Table 111
that the series (AsNs)n possesses largest R as compared to (AsNe)n and (AsN4)n. Thusit can
be inferred that the bending dements must be repesated in phase with the helix screw to add
coherently.

To differentiate between the bending due to increased flexibility and systematic bending
wherein the direction of the helix axis is dtered in a definite way, the series (AsN10)n may be
examined. The R. vaue of 0.932 for the series suggests norma gd mobility due to the
formation of azigzag structure wherein systematic bends are nearly exactly out of phase.

The importance of continuous run of A residues in determining the extent of curvature
was investigated by interrupting the A tract with another nuclectide N (referred to as IAN in
Table 11) at the centrd base. It is noticed that subgtitution by ether T or C does not affect the
R. vaue. However, subgtitution by G causes decrease in the curvature (R. vaue changes from
1.091 to 1.089). To check whether Guanines aso contribute to the curvature, sequence
(GsNs) was examined. The network predicted R for GINs (= 0.989) indicates normal gel
mobility and suggests that in this particular case the purines A and G are not equivalen.



To examinetherole of phasing of 5 and 3' junctions in influencing a bend, sequences
Asg and Ass have been considered. It has been found that As.s is more anomalous (R. = 1.18)
and, hence, more strongly bent than Ass (R. = 0.92). The greater anomay in Ags implies
greater bending a the 3 thanat 5’ junction.

The role of flanking base pairs was investigated by studying the retardation behavior of
FCT and FGG sequences. The greatest degree of bending is withessed when the 5’ - flanking
baseis C, and the 3’ - baseis T (R = 1.09). However, if Gispresentat 3 and 5’ ends, the
effect is less pronounced (R. = 0.975). Thesefindings are well supported by the experimental
studies by Koo et al. [13].

To summarize, in this chapter, an error-back-propagation neurd network has been
employed for predicting the retardation anomaies of DNA sequences. The trained network is
able to evauate the role of phasing, incressed hdix flexibility, run of polyA tracts, and flanking
base pair effectsin determining the curvature. It can dso be used to examine the additive effect
of multiple base subdtitutions. The results of this study indicate that ANNS can be successfully
used as the feature detectors to study the bending characteristics of DNA sequences. In view
of the excdlent performance of the ANNSs in capturing the local and global festures, it is
possible to use them as a model-free technique for the purpose of curvature predictions thus,

avoiding Sdetracks in designing costly experiments.



24 APPENDIX |I: IMPLEMENTATION OF EBP
ALGORITHM

The detalled numerica stepsfor training atwo-layer EBP network having a bias neuron eechiin
its input and hidden layers are given below. The numerical procedure assumes the pattern
mode of weight- updation and the logistic Sgmoid nonlinearity at the hidden and output nodes.

Step 1. Initidize the hidden and output layer connection weights to smal random vaues
(say between —1 and +1).

Step 2. Apply the k™ input pattern X, = (Xko, Xig s ooy an) from the training set containing

p patterns to the input layer nodes.
Step 3. Compuite the weighted-sum of inputs (ectivetion leve) for the individud

neurons in the hidden layer according to
nety =8 wj X ;j=1m
i=0
where netL‘j denotes the weighted-sum for the hidden layer node j when k™ input pattern is

applied, V\ITI represents the connection weight between the input neuron i and hidden layer

neuron j, n refersto the number of input units, and mis the number of hidden nodes.
Step 4. Trandform the weighted-sum using the logistic Sgmoid transfer function to get
the outputs of the hidden layer nodes according to:

h_ 1 i
" 1repl net! ) J=tm

Step 5: Compute the weighted-sum of inputs (net activation) for the individuad nodes in the
output-layer as

vv,j’g/,'; =18

Qos

net, =
j=0



where \/\4? IS the connection weight between node | in the output layer and nodej in the hidden

layer. As before, 920 =1

Sep 6: Transform the net activations of the output layer units usng the logistic sgmoid function
to get the respective output as

o_ 1 g
g/k' _1+exp(- netlj) | =ks

Step 7: Compute the scaled-error for the output-layer units as

dy =(ve- 97)90 (- 97) =15
where Y, refers to the desired output neuron | when the input vector X, , is applied to the
input nodes.
Step 8: Compute the scaled-error for neurons in the hidden layer according to

ay =350 Y2) & diwi sj=om
Step 9: Update the weights between the output and hidden layer nodes as

W (t+)=wpt)+hdg d +alwi (1) wie- 1) s =0mi=1s
where the training iteration number is represented by t, and hand a denote the learning
coefficient (0 < h < 1) and the momentum parameter (0 £ a < 1), respectively.

Step 10: Update the hidden-layer weights as given below, and implement steps (2-10)
with another input pattern.

w) (£ +1)=w) (t)+hdx, +a [WTI (t)- wht 1) si=on;j=1m
In this procedure, steps (2-6) correspond to the forward pass and steps (7-10), to the reverse
pass. The procedure (barring step 1) is repested for dl the input patternsin the training set until

the network satisfies a prescribed convergence criterion based on a suitable measure of error.
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Tablel: Network predicted R, in comparison with Experimental R, of various sequence units

Seouence Unit Experimentel Network
No. Predicted
Cirdes
01 TCTCTAAAAAATATATAAAAA 0.59 (0.06) 054
02 TCAAATTGGGGGAAAGATCCC 0.51 (0.05) 0.55*
03 GGGCAAAAAACGGCAAAAAAC 0.52(0.05) 0.56
A A-containing and control fragments
04 CTTTTAAAAG 1.01(0.03) 102
05 GTTTTAAAAC 1.01(0.03) 101
06 GGGTCGACCC 1.00 (0.02) 1.05*
07 GGCAACAACG 1.01(0.02) 1.09*
08 GGCAAGAACG 1.04 (0.04) 1.09*
09 GGCAATAACG 1.06 (0.04) 1.09
10 GGCCAAACCG 1.14 (0.06) 109
11 GGGCAAAAAACGGCAAAAAAC 1.43(0.03) 120
12 GGCTGGGCAAAAAACGGGCAAAAAACGGCAAAAAACGGCT 1.26 (0.03) 116*
ccC
13 GGCTGGGCAAAAAACGGCAAAAAACGGCTCC 119 (0.03) 118
14 GGCTGGGCAAAAAACGGCTCC 1.14(0.03) 117
15 GGCAGGGTCGGGCAAAAAACGGCTGGATCCC 1.07 (0.03) 1.03*
16 GGCAGGGCGGTCGACGGGCAAAAAACGGCGTCGGGCGGATC | 1.06(0.03) 1.06
C
17 GGGCAAAAACGCCAAAATTTTGCCGCGGGCC 111(0.03) 112*
18 GGGCAAAAACGGGCGGCCAAAATTTTGCCGC 1.01(0.02) 1.00
19 AAAAAAATTTTTTTTTTAAA 1.00(0.02) 097*
20 AAAAAAAAAAAAAAAAAAAA 0.98(0.03) 1.02
21 TCTCCTTCTTGGTTCTCTTCTC 1.00 (0.02) 1.00
2 CCCCCGGGGG 1.05(0.06) 104
23 GACAGGACTC 1.01 (0.03) 1.00
24 CCATCGATGG 0.98(0.03) 0.98
25 CGGGATCCCG 1.00(0.02) 0.99




26 GCGGGTAGTTTTTTCCTACAC 113(0.02) 112

27 GCGCGATTTTTACGAAAAAAA 1.25(0.02) 118

28 GGCTGGGCAAAAAACGGCTCC 114 (0.02) 117

29 ACCTGGGCAAAAAACGGCTCC 114 (0.02) 114

30 GGCTCACCAAAAAACGGCTCC 112(0.02) 118*
Tablel continued ...

Sequence Unit Experimental Network
No. Predicted
31 TCACTTATATAAAAAATATAT 113(0.02) 114
32 TCGCTTATATAAAAAATATAT 113(0.02) 113
3 GCCCCTAAAAAGCCCCTTTTA 1.12 (0.02) 114
A GTGGGACAAAGTGCCCACAAA 1.06 (0.02) 1.06
35 CTGTGAAAAAACACACTTTTT 1.13(0.02) 113*
36 AAAAACACACAAAAAACACAC 1.29(0.02) 114
37 | TTTTAAAAAC 0.99 (0.04) 098
38 GGCCTTTTTAAAAACCGGGCC 1.03(0.03) 103
39 GGCCTTTTTAAAAAAACCGCC 1.07(0.03) 1.06
40 GGCCTTTTTAAAAAAAAACCC 1.15(0.03) 118
41 GGCCTTTTTTTAAAAAAACCC 1.21 (0.03) 118
42 CGGAGCCGTTTTTTGCCCAGC 115(0.03) 113
43 CCGGCCAAAAAAAACGCGCGC 1.09 (0.03) 107
44 CCGGCCAAAAAAAAAACGCGC 1.04(0.03) 104
45 CCGGCCAAAAAAAAAAAACGC 1.01(0.03) 102
46 CCGCCAAAAAAAAAAAAAACG 1.05(0.03) 103
47 CCGCAAAAAAAAAAAAAAAAC 1.07(0.03) 112

Non-AA fragments
48 CATGTCACCGACGCATCACCG 1.07 (0.02) 109
49 TCCCCAGACGTCCCCAGCACG 1.02(0.02) 1.00
50 GCGAGAGGGTACGGACATCTC 110 (0.02) 121
51 TGTGAGAGGGGCATGAGATCA 111(0.02) 110
52 TACGGATCTCGCATGACTCTC 1.06 (0.02) 105
53 CGGAGCTATCCGGAGCCTATC 1.07 (0.02) 120




GGAGAGCTCACACGACTAGTC 1.03(0.02) 111*
Tablell: Smulated R, valuesfor effective single base substitution.
Seg. | Effective mutetion Retardation S | Efective mutetion Retardation
no. anomaly no. anomay
8 GA*2 105 17 GA*11 116
GT*2 105 GA*27 102
AG*4 103 GT*11 116
AG*8 113 GT*27 1.00
GC*2 104 AG*14 118
10 GA*2 105 CG*30 0.90
GT*2 105 GC* 11 116
CG*4 103 GC*27 1.00
CG*8 113 31 AG*14 119
GC*2 105 TG*19 0.95
14 TG*19 104 52 GA*11 111
16 GA*27 092 CA*19 102
GA*30 117 GT*11 112
GT*27 0.90 GT*15 102
GT*30 118 TG*14 116
AG*14 115 CG*19 0.79
CG*19 0.80 GC*11 112
GC*27 0.89 GC*15 102
GC*30 118 i




Tablelll: Smulated R, valuesfor specific sequence patterns.

Name Seguence (5 t03) Network
Predicted R,
AN, CAAAAACGG 1.049
AgNg GGCAAAAACG 1091
AcNg GGCCAAAAACG 1.065
AN, CCGGCAAAAACGGGC 0.932
IAC GGCAACAACG 1091
IAG GGCAAGAACG 1.089
IAT GGCAATAACG 1.091
GsN; TCGTGGGGGC 0.989
Acgg CCAAAAACGGGCAAAAAAAA 0.915
Ags CCAAAAAAAACGGGCAAAAA 1181
FCT GGCAAAAATG 1.090
FGG CCGAAAAAGG 0.975

GA* 20 means that the guanineis replaced by adenine at position 20.
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Figure 21: Network Architecture used in the simulation: 44 neurons in the input
layer, one hidden layer consisting of one neuron, and one neuron in the output layer.
The trained network approximates y = f(x), where x and y represent the input (DNA

sequence) and the output (R. value).
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ANN modeling of DNA sequences. new
strategies using DNA shape code



. Two new encoding strategies, namely, wedge and twist codes, which are based on the |
DNA helicd parameters, are introduced to represent DNA sequences in atificia neura
network (ANN)-based modding of biologica sysems. The performance of the new
coding Strategies has been evauated by conducting three case studies involving mapping
(modding) and classfication gpplications of ANNs. The proposed coding schemes have
been compared rigoroudy and shown to outperform the existing coding drategies
epecidly in Stuaions wherein limited data are available for building the ANN models.




3.1INTRODUCTION
In the last decade, artificia neura networks (ANNS) have been extensively used in

the andysis of nudleic acid sequences (see review [1]); the main reason being their gbility of
recognizing and cdassfying patterns not only from the quantitetive data but aso from the
qualitative data such as DNA sequences. These ANN abilities have been used in various
classfication gpplications in biologica sciences eg., andyssof E. coli promoter structures
[2], prokaryotic transcription terminetor prediction [3], and identification of E. coli
ribosome binding sites [4]. ANNSs have aso been used in mapping (modeling) applications,
for indance, in the andyds of transcription control sigrals [5] and DNA curvature [6],
where the objective was to identify the functiona relationship(s) between a DNA sequence
and itsproperty.

Of dl the different ANN architectures, the one with a multilayered feedforward
structure and trained using the error-back- propagation (EBP) dgorithm [7] represents the
most widdy used network paradigm. The EBP network (EBPN) mostly comprises three
layers (input, hidden and output) of interconnected neurons (also termed as “processing
dements’ or “nodes’) and learns the relationship between its inputs and outputs via a
procedure caled “network training”. The peculiarity of the EBP dgorithm is thet it trains
nonlinear multilayered networks wherein a nonlinear activation function is used for the
computation of the outputs of the hidden and/or output nodes. The nonlinear neura
networks are preferred over the linear ones for modding high dimensiona systems since the
input-output relationships in such systems are often nonlinear. In a typicd ANN-based
mapping (classfication) application, the network input-output is an appropriately coded
DNA sequence and its property (class), respectively. The EBPN training involves
minimization of an eror function usng a steepest descent drategy [7-9] such as the
generalized delta rule (GDR) wherein the network output is compared with its desired
(terget) vaue and the difference (error) is used to iteratively modify the strengths (weights)
of the interneuron connections. Network training, following convergence, produces weights
thet can be considered to be the parameters of the converged ANN model. These weights
can then be used to make predictions corresponding to the new DNA sequences, which
were not part of the data employed during the development of the network mode!.



In ANN-based DNA sequence studies, an individua nucleotide of a sequence is
represented using three main coding Strategies viz.,, CODE-2, CODE-4 and the EIIP. The
first two of these mononucleotide-based coding schemes use binary representation and,
therefore, possess purely empirical character. The EllP-code [3] on the other hand uses a
nucleotide specific physica property, namely, the Electron lon Interaction Potentid (EINIP)
for input coding and, therefore, has a sound theoretica basis. In CODE-2 and CODE-4
approaches, each nucleotide is represented by two (00=A, 01=T, 10=G, and 11=C) and
four (0001=C, 0010=G, 0100=A, and 1000=T) binary digits, respectively, whereas in
EllP-code nuclectides are characterized by their unique EIIP vaues (0.1260=A,
0.1335=T, 0.0806=G, 0.1340=C). Thus, CODE-2, CODE-4 and EIIP strategies require
two, four and one neurons, respectively, to represent a nucleotide. Since the data
requirement to train an ANN increases as the number of neurons in the network increases,
the CODE-4 drategy needs maximum number of data points as compared to the CODE-2
and EIlIP drategies with the EllP-code needing minimum number of data points. According
to a thumb rule, the number of data points required for network training equals the number
of network comection weights although reasonably satisfactory results have been obtained
with lesser data points. This may be due to the intringc dimensondity of the sysem being
much lower than its apparent dimensiondity. More often than not, the available training data
is insufficient and, hence, schemes requiring fewer neurons to code a nucleotide sequence
are desrable. With this objective, we introduce here two coding strategies, namely, the
wedge code and the twist code requiring just one vaue for the represmtation of a
dinuclectide, in the ANN-based modeling of DNA sequences. The performance of the
proposed dtrategies has been tested by conducting three case studies: (i) prediction of
DNA curvature, (ii) prediction of the promoter strength of various promoters transcribed
by E. coli RNA polymerase, and (iii) prokaryatic transcription terminator prediction. While
the first two case studies are the mapping applications of ANNS, the third one involves an
ANN-based dassfication.



3.1.1 Philosophy of wedge and twist codes

There exist severd helica parameters describing the DNA structure [10] that are
based on trandation and rotation. In this study, we shdl consider the parameters based on
the wedge mode, which are estimated from the experimentd gel retardation data of
Bolshoy et d. [11]. The DNA hdicd parameters characterizing the wedge (deflection)
angle €), twist angle (W) and the direction of deflection angle (d) are known as DNA
shape code These Eulerian angles are functions of the dinucleotides i.e., adjacent base
pairsin a DNA molecule. The dinuclectides AA (5 -AA-3 on onestrand) and TT (on the
opposing strand) together form two stacked A- T base pairs so that the wedge and twist
angle vaues are equd for the AA and TT dinuclectides. Smilarly, dinucleotide pairs AC &
GT, AG & CT, CA & TG, CC & GG, and GA & TC have equa magnitudes for the
wedge and twist angles. For a detailed discussion of the specific features of these angles,
the reader is directed to Kabsch et a. [12], Bolshoy et d. [11], and Shpigeman et d. [13].
To have a unique dinucleotide-specific vaue for the wedge and twist codes, the sign of the
direction of deflection angle can be ascribed to the values of the wedge and twist angles,
since the direction angle d changes its sgn for the complementary dinucleotides. The wedge
and twist code values obtained thereby are listed in Table |. Since these codes incorporate
the structurdl and physica properties of dinucleotides, they have a sound theoretica basis
and, therefore, can be employed to replace the arbitrary coding strategies such as the
CODE-2 and CODE-4. As compared to the EIIP-code, which among the exiging
drategies requires least (one) number of input neurons to represent a nucleotide, the use of
wedge and twist codes reduce the input space of an ANN by hdf thereby leading to a
gmdler network and, consequently, requiring a smaller data set for training the network.
This chapter is organized as follows. Firgt, procedura details of the ANN-based modeling
dong with the drategies for optimizing the network architecture and weights are outlined.
Next, the results of three ANN-based case studies wherein the proposed codes have been
utilized for the dinucleotide representation are presented. Specificaly, the results obtained
by using the wedge and twist codes are compared with those obtained using the CODE-4
and ElIP coding strategies. The CODE-2 scheme has not been considered for comparison
since the CODE-4 strategy has been found to outperform the CODE-2 strategy [14]. The
performance of the two new codes is dso compared with a dinucleotide-based random



dtrategy wherein the 16 possible dinucleotide combinations are coded by equaly spaced
real numbersin [0,1] range as given by: 0.0625=AA, 0.125=AC, 0.1875=AG, 0.25=AT,
0.3125=CA, 0.375=CC, 0.4375=CG, 0.50=CT, 0.5625=GA, 0.625=GC, 0.6875=GG,
0.75=GT, 0.8125=TA, 0.875=TC, 0.9375=TG and 1.00 = TT. In dl the case studies, the
network training and smulation procedures for the random dinucleotide coding gpproach
are same asthat for the wedge and twist codes.

3.2 MATERIALSAND METHODS

The neura networks considered are three-layered feed-forward type trained using
the EBP dgorithm. The logistic Ssgmoid transfer function has been employed a the hidden
and aso a the output nodes of dl the networks. In aSituation where sufficient training data
are available for network training, al the coding schemes are likdly to perform equaly well.
The efficiency of the proposed codes, therefore, has been tested using limited training data
(case studies | and 11).

A generdized EBPN architecture for the mapping and classfication gpplications of
DNA sequences is shown in Figure 3-1. The computer code for training such an EBPN
was written in FORTRAN-77 and compiled using the Microsoft FORTRAN compiler for
the IBM PC and compatibles.

3.2.1 Neural Network Simulation

The neura network smulations were performed on a 486 (66MHz) PC. The error
function used during the network training was RM SE (refer chapter 2, section 2.2.3).

Although the objective of network training is to minimize the RM SE with respect to
the training s&t, it does not guarantee that the trained network possesses satisfactory
generdization ability. Such an ability ensures that the network is capable of predicting
accurately the outputs when new inputs, which do not belong to the training s&t, are
presented to the network. Since the weights resulting in the minimum RMSE for a
representative test set ensure satisfactory generdization performance, these are considered
to be the optima weights in practice.



In generd, network training (more specificdly the RMSEs with respect to the
training and test sets) shows sengitivity towards the number of network hidden nodes (N )
and the GDR parameters, namely, the momentum coefficient (a), and learning rate (h). To
obtain the overdl optima weights resulting in the leest RMSE for the test s, severd
independent training runs were performed by systematicaly varying the number of hidden
nodes and the magnitudes of the GDR parameters (a and h). For each combination of the
sated parameters, additiondly, the effect of the random number generator seed was
examined. Thisis necessary for studying the effect of the randomly initidized weights whose
sequence depends on the seed value of the random number generator. By changing the
seed vaue, a different sequence of random numbers is generated and, consequently, the
darting point in the weight pace of an ANN gets shifted. This helpsin rigorous exploration
of the nonlinear error surface possessed by the EBP networks.

3.2.2 Case Study |: Prediction of DNA curvature

According to the junction mode, the principal sequence festure respongible for the
intringc DNA curvature is generaly assumed to be the runs of adenines. On the other hand,
the wedge model of DNA curvature consders that each dinucleotide step is associated
with a characteristic deflection of the loca helix axis[11]. It may however be noted that the
generdity of such firg principle modeds for predicting the curvature is gtill being debated
[15]. Thus, apractica and smpler approach is to develop an empirical modd corrdating a
nucleotide sequence of DNA and its effective curvature. The use of ANNS for developing
such models has an advantage in that they can ggproximate nonlinear relationships even
between qudlitative and quantitative data. Accordingly, this case study ams a developing
an ANN modd for predicting the curvature of a DNA in terms of its retardation anomay
vaue, which is a measure of the dectrophoretic anomaly of the curved DNA reflecting the
additiona friction of the DNA in the gel dueto curvature [16]. The relative eectrophoretic
mohility of most curved DNA fragments monotonoudly decreases with the fragment length.
Thisis usudly characterized as the retio of the gpparent to actua DNA length, and the ratio
termed as the “R_ factor” is found to increase with increasing fragment length. In an earlier

study [6], an ANN-based prediction of the R factor using the EllP-code was successfully



conducted and the results obtained thereby have been utilized here for comparison
purposes.

The data (54 sequences) comprising circular and curved, and straight synthetic
fragments and their experimentd R values were taken from the study by Bolshoy et d.
[11]. The choice of such data was based on the consideration that the data set pertains to
the most exhaustive experimental gdl retardation study of DNA sequences. The respective
experiments were carried under standard gel conditions and hence the data b ided for
EBPN training. The sequences are of uneven length that varies between 10 and 42 base
pairs. Each sequence forming the network input was coded separately using the
dinudectide-specific  wedge, twisg and random code vaues. Snce a sngle
wedge/twist/random code value describes a dinucleotide, a sequence say 21 base-pair
long, can be coded using ten vaues. To complete the coding of the entire sequence, the
21% nuclectide was paired with the first one and coded accordingly. All the sequences with
odd lengths were andlogoudly coded. For CODE-4 strategy, the sequences were coded
using four digit binary numbers as described earlier. It is necessary for the network training
that dl the input patterns are of the same length. Since the nucleotide sequences are of
vaiable length, the shorter ones (length smdler than 42 bp) represented using the
wedge/twist/random codes were uniformly padded with a smal dummy number (0.01) until
each short sequence becomes 21 (=42/2) units long. For CODE-4, smilar padding was
applied till each fragment was 168 (=42" 4) unitslong. Thisis an indirect way of informing
the network that the sequence position valued 0.01 does not belong to either A, T, G or C.
The resulting data can be viewed as a matrix of sze (54 21) for the wedge/twist/random
codes, and of size (54 168) for the CODE-4. Next, each column of the (54 21) matrix
was normalized so that each column eement upon normdization lies between 0.05 and
0.95. While performing normdization, the padded dements of a ®quence were not
processed. In order to differentiate between the circular and linear sequences, two
additional inputs were considered at the end position of each coded sequence. Specificdly,
the circular fragments were described as (0.05,0.90) and the linear ones by (0.90,0.05).
Such an addition of two inputs at the end position of each coded sequence resulted in the
data matrix of size (54 23) for the three dinucleotide based codes and a matrix of size
(54" 170) for the CODE-4. The experimentd R vaues that formed the target output for



each input pattern (coded sequence) were aso normaized to lie in the [0.05, 0.95] range.
Upon normdization, the data set of 54 coded sequences (inputs) and their R vaues
(outputs) was divided into the training (40 paterns) and test (14 patterns) sets, respectively
(see Table | from reference [6]). During network training, the training set is used for
adjusting the network weights while the test set is used to evduate the generdization
performance of the network.

The optima values of the EBPN’ s structura parameters, GDR parameters, and the
RM SE vaues corresponding to the training and test sets for dl the five coding Srategies are
liged in Table II-A. A rigorous datigtical andlysis has been additiondly performed for
comparing: (i) the predictions of the five ANN models with the experimenta R, vaues, and
(i) the predictions of a combination of ANN modeds, wherein dl possble modd
combinations have been congdered. In here, gpat from computing the correation
coefficient (r,) vaues, we have performed the Z-tet (for large sample size i.e., the number
of points, n > 30) and the F-test. The procedures for the Z- and F-testsare described in
the Appendix. The purpose of performing these tests, in essence, is to answer the query
"How ggnificant are the differences between the means and variances of the R, predictions
mede by two coding strategies, namely, x and y?' The 1, vaues dong with the results
corresponding to the Z- and F-tests are tabulated in Table 11-B.

3.2.3 Case Study I1: Prediction of promoter strength

A promoter isadtart Sgnd at the beginning of a gene or a gene cluster that directs
RNA polymerase to initiate RNA synthess. RNA polymerase measures the efficiency of
transcription in terms of the promoter strength that refers to the rlative rate of synthesis of
the full-length RNA product from a given promoter. The transcription efficiency of a given
promoter sequence is regulated by many factors such as: (i) nucleotide sequence of the -35
region, (i) nucleotide sequence of the -10 region, (iii) spacing between the -35 and - 10
regions, and (iv) nucleotide sequence especidly A+T content in the 5 -flanking region
upstream from the -35 region [17]. The additive rule States that the individual contributions
of nuclectide sequence spacer length, deoxyribonucleic acid (DNA) conformation, and
electrogatic binding within a promoter, collectively establish the tota promoter strength. It
can thus be noticed that a number of factors influence the strength of a promoter. Owing to



the difficulties in the experimentd evauation of the dated contributing fectors, it is
advantageous to build a promoter strength prediction model that does not require explicit
knowledge of the various factors influencing the transcription efficiency. With this objective,
we have examined the efficacy of the wedge and twist codes vis-a-vis CODE-4, ElIP and
random dinucleotide codes for the ANN-based prediction of the promoter strength.

For this study, an EBPN was trained using the experimenta data by Deuschle et d.
[18], where in vivo promoter strengths of the various promoters transcribed by E. coli
RNA polymerase have been determined. The data set comprising 14 promoter sequences
and their corresponding strengths was dvided into training (10 patterns) and test (4
patterns) sets, respectively (refer Table [11). In these data, al but one promoter sequences
are 70 nucleotides long; the remaining one is 69 nuclectides long. For ANN modeling, the
sequences were coded using the wedge, twist and random code vaues specified earlier.
For coding the 69-nucleotide long promoter sequence, the last nucleotide was paired with
the last- but- one nucleotide, i.e.,, from the group of three nuclectides (AAG) at the sequence
end, two dinuclectide pairs (AA and AG) were formed, and coded accordingly. To make
al the input vectors of same sze, the 69 base pair long sequence was uniformly padded
with 0.1 till it was 280 (=70 4) units long for the CODE-4 scheme and 70 (=70 1) units
long for the EllP-code. The resulting data can be viewed as a matrix of sze (14 35) for
the wedge, twist and random dinucleotide codes and, matrices of sizes (14 280) and
(14" 70) for the CODE-4 and ElIP-code, respectively. Each column dement of the
(14” 35) and (14 70) matrices was normdized such that it lies between 0.05 and 0.95
upon normalization. The values of the experimenta promoter strength thet formed the target
output for each input pattern were dso normalized to lie in the [0.05, 0.95] range.

The five retworks utilizing different coding schemes were rigoroudy trained and
optimized as described earlier. The detals of the optimized network architectures and the
GDR parameters are lised in Table 11-A. The teble dso gives the RMSE vadues
corresponding to the training and test sets for the five coding schemes.

Asin case sudy |, arigorous etigtical andys's has been conducted by employing
the Student's t test (for smal sample sz, i.e., when the number of data pointsn < 30) and
the F-test. The procedure for Student'st test has been described in the Appendix.



3.24 Case Study Ill: Prokaryotic transcription terminator
prediction

Terminators are sequences that primarily regulate the gene expression by providing
stop sgnds a the end of transcription units and, thus, dlowing adjacent genes and/or
operons to be transcribed and regulated independently [20]. Studies have shown that the
factor-independent terminators shared features like G/C-rich dyad symmetry followed by a
dretch of 4-8 adjacent thymine resdues immediately upstream of the last nucleotide
incorporated into the RNA chain. It has been witnessed that many independent terminators
do not comply with the consensus pattern of the dyad symmetry and T-stretch [21] and,
therefore, conditions for termination are not well defined. It is thus important to develop
methods for identifying (classfying) the terminators comprisng inconsstent consensus
patterns. ANNSs utilizing the CODE-4 and EIIP formaisms have been dready found to be
successtul in this task [3]. Our objective in the present case study is to examine the
cassfication efficiency of the wedge and twist codes vis-a-vis CODE-4, EIIP and the
random dinuclectide coding schemes. Towards this objective, three network modds
utilizing wedge, twist and random codes have been developed and their classfication
performance is compared with the CODE-4 and EIIP code results obtained by Nair et d.
(3.

The terminator sequences for the ANN smulations were teken from the
compilation by Brendd et d. [22]. From a totd of 128 terminators of length 51
nucleotides, 88 were chosen for training the network and the remaining 40 were used as
the test data A pseudo-random number generator was used for congtructing the random
sequences with equal compostions of A, T, G and C. These random sequences were
combined with the terminator sequences in 1:3 ratio. The resulting 352 patterns formed the
training set inputs; the test set inputs (160 patterns) were constructed analogoudy. Since
the length of terminator sequences is an odd number (51 nucleotides), the last nucleotide
was paired with the last-but-one nucleotide of the same sequence and coded accordingly.
Subsequently, the column dements of the resulting mairices of sze (512 26) were
normdized to lie between 0.05 and 0.95. In this case study, the target output equal to one
represents a terminator sequence, and the target output of zero refers to a random (non

terminator) sequence.



The three networks utilizing the wedge, twist and random dinucleotide input coding
schemes were rigoroudy optimized following the procedure described earlier. The details
of the optimized network structures and the GDR parameters dong with the percentage
classfication accuracy for dl the coding schemes can be found in Table 11-A.

3.3RESULTSAND DISCUSSION

3.3.1 Case Study |

The datidticd Z-test checks whether or not the mean vaues of two large samples
drawn from respective populatiions are daidicaly different. In the present context, a
sample refers to a set of the R vaues ether determined experimentaly or those predicted
by each of the five ANN models. In essence, the Z-tedt verifies the vdidity of the null
hypothess (Hy) that the difference in the means (m and m) of two populations is
datidicdly indgnificant. It can be noted (see Table 1I-B) from the zZ-datigtic vaues (Z.)
corresponding to the fifteen different combinations of x and y samples that the absolute
vaue of Z: islessthan both Zgg; (=2.33) and Zo s (=1.64). Thus, we may accept the null
hypothesis, Hy (with 1% and 5% levels of sSgnificance), that the differences in the
respective ny and my, values are insgnificant.

The F-test is meant for tesing whether there exidts a dSatidicaly sgnificant
difference between the variance values (s,” and s,?) of two populations. When the F- test
is used on the samples consgting of variance vaues of the experimentd and CODE-4
predicted R, values, it is seen (see Table I1-B, row 1, column 9) that the absolute value of
Fc (1.40) is less than Fszs300; (1.60), but grester than Fszs3005 (=1.39). Hence, we
may accept: (i) the null hypothesis (Hy), that s,” isequa to s, a 1% leve of significance
and, (i) an dternative hypothess (Hy), that s,? is greater than s,?, a 5% leve of
sgnificance. For the rest fourteen combinations of samples x and y, the absolute vaues of
the F. are smdler than both Fy35500; aNd Fss53005 @0d, therefore, we may accept H, at
both 1% and 5% levels of sgnificance.

From Tables II-A and 11-B, it can be noticed that the RMSE and r,, values for the
wedge, twist, random dinucleotide and EIIP codes are comparable, dthough the last one
fares margindly better than the two new coding strategies. On the other hand, the RMSE



vaues (0.32, 0.098) corresponding to the training and the test set of CODE-4 are the
highest among five coding schemes. Also, the magnitude of the coefficient of correlation
(ry=0.87) between the experimental and CODE-4 based network predicted R vaueis
the lowest among dl coding schemes. These trends suggest that the CODE-4 is the least
efficient of the five input coding srategies for the ANN-based prediction of R. Thisis
congstent with the F-test results where it was observed that the variances in respect of the
experimenta and CODE-4 based network predicted R vaues are different at 5% leve of
ggnificance. The result indicates that the CODE-4 based model has not captured the
vaiations in the experimentd R vaues with datisticaly sgnificant accuracy. It can be dso
noticed fromthe r, vaues listed in Table 11-B (column 7, entries 3, 4 and 5) that the wedge
and twist codes perform better, albeit margindly, than the random dinuclectide code. These
wedge and twist code results essentially indicate that the codes possess good potentid as
sequence coding schemes since both the strategies resulted in relatively high r, values @

0.92) and low RMSE vaues (£ 0.069) for the test set. Also, the mean (1.06) and variance
(0.016) vaues associated with the R- predictions of the ANNSs using these codes are
datisticaly consstent with the mean (1.05) and variance vaues (0.021) of the experimenta

R vdues.

While coding the DNA sequences in this case study, the effect of overlapping
dinucleotides was not taken into account though it is well known that the curvature of a
Seguence depends on the overlgpping dinucleotides. Such a smplified coding approach
though leaves out hdf of the rdevant information contained in a sequence, was used ill
with a view of keeping the complexity of the coding procedure to a bare minimum. To
check whether this smplification has any effect on the prediction accuracy of the trained
network, we performed a control study for the networks utilizing the wedge and twist
codes. In here, the first nucleotide was removed from each DNA sequence (Table | from
chapter 2, and the remaining portion of the sequence was coded using wedge and twist
codes. The resultant input patterns are different from those wherein the first nucleotide was
retained during sequence coding. These input patterns were then used to re predict the R.
values for which the optima weights obtained origindly were utilized. It was observed that
the re-predicted R, vadues maich ther desred (experimenta) vadues with the sare
accuracy as obtained when first nucleotide was considered for the input coding. The



correlaion coefficient for the experimental and repredicted R vaues for the wedge and
twist codes were found to be 0.93 and 0.924, respectively, which dmost maich those
liged in Table 11-B (0.931 and 0.92). It can thus be inferred from the results of control

gmulations thet it is not essentiad in ANN-based R, - prediction studies to account explicitly
for the overlapping dinucleotides.

While patitioning the available data (54 patterns), a care was exercised that the 14
examplesin the test set are the true representatives of the 40 examplesin the training set. It
is however essentid to verify whether the available data was adequate at dl for effecting the
said partition. Accordingly, "cross vdidation" smulaions were performed using the |eave-
k-out methodology. In this approach, the entire set of available data is randomly divided
into N subsets each comprising k patterns. Next, the network istrained N times usng each
subset in turn as the test set with the remaining (N-1) subsets collectively representing the
training set. Upon completing this exercise, the RMS errors corresponding to the training
and test sets are averaged; the mean RMSE in respect of the test set gives an estimate of
the overal network performance that could be achieved if more data were available for the
network training.

For performing the above- described cross-vaidation Smulations, the available deta
of 54 DNA sequences and their corresponding R values were partitioned into Sx subsets
(N =6, k =9). The results of the cross-vaidation smulationsin repect of the five coding
schemes are presented in Table 11-C. A comparison of the test set RMSE vaueslisted in
Tables 11-A and I1-C indicates that the cross vdidation results are better only in the case of
CODE-4 scheme. This result suggests that the available data of 54 patterns was adequate
for dl the network modes except the one using the CODE-4 coding scheme. Theresult is
a natural conseguence of the CODE-4 scheme producing largest (as compared to other
codes) sized networks, thus needing more training data.

3.3.2 Case Study I1

In this case study dso, a rigorous detigicd andyss was performed on the
promoter strengths predicted by the five ANN models. The results of the Student’s t and
F- tests conducted thereby on the sample sets comprising experimental and ANN-
predicted promoter strengths are tabulated in Table IV. It is noted from the various Table



IV entries that for dl the fifteen different combinations of x and y samples, the absolute
values of t; are less than t,, (=1.315) and tz, (=1.706), which correspond to 1% (a=0.01)
and 5% (a=0.05) levels of dgnificance, respectively. Thus, we may accept the null
hypothesis (Ho) that the mean values (m and my) of the respective populations are
datigicaly equd in dl the fifteen combinations of xy sample sats a 1% and 5% levels of
ggnificance.

The F-gatigtic (F.) vaues (see column 9) corresponding to the two combinations
of x and y involving experimental promoter strengths and those predicted by the CODE-4
and ElIP based networks indicate that the respective F, magnitudes (4.96 and 8.52) are
greater than both Fi313001 (52.42) and Fi31300s (=3.59). This result in essence suggests
that the variance value (534.99) in respect of the experimental promoter strengthsis greater
(& 1% and 5% dgnificance levels) than the variance vaues, 107.78 and 62.78,
corresponding to the predictions of the CODE-4 and the ElI P code based networks. Since
the absolute values of F for the remaining thirteen combinations of x and y samples are
dwayslessthan Fi31300; (2.42) and F13130,05 (=3.59), we may accept the null hypothesis
(Hy) that the respective variances are equd at both 1% and 5% leves of significance.

As can be noticed from Table 11-A, the RMSE vaues for the test sets of the wedge
and twist coded networks are the lowest and the second lowest, respectively. Also, the r,,
magnitudes (refer Table IV, column 7, entries 3 and 4) for the predictions made by the
wedge and twist code based networks are very high (@l). These results suggest that the
networks utilizing the two codes have near-accurately approximated the relationship
between a DNA sequence and its promoter strength. In comparison, the prediction
performance of CODE-4 (r,,= 0.63) and EIIP (r,=0.75) strategies is very poor. This
concluson is consgent with the F-test results where it was observed that the sample
variances of the experimental, and CODE-4 and ElI P based network predicted promoter
grength vaues are different a both 1% and 5% levels of sgnificance. The result indicates
that the CODE-4 and EIIP based models have not captured the variations in the
experimenta promoter strength vaues with datidticaly significant accuracy. Among the
three dinucleotide coding schemes, the random dinucleotide coding approach (r,,=0.96)
performs only marginaly worse than the other two (wedge and twist) schemes. A plausible
explanation for such a behavior is. dnce therandom code - unlike wedge and twist codes -



does not explicitly take into account any DNA sequence dependent property or
characterigtic (such as the curvature), it fails to predict with comparable accuracies.

A graphica comparison of the experimental and the network-predicted promoter
strengths (Py 1, Units) for the training and test sets of the wedge code is shown in Figures. 3-
2(a) and 3-2(b), respectively, wherein for clarity the promoter strengths are arranged in the
descending order of their magnitudes. A smilar comparison for the twist code is depicted in
Hgures. 3-2(c) and 3-2(d).

The cross-vdidation test was performed for this case sudy aso wherein the
available data of 14 patterns was partitioned into seven (N = 7) subsets each comprising
two (k = 2) patterns. The results of the cross-vdidaion smulations usng the "leave-2-out"
scheme are given in Table 11-C. A comparison of the cross vdidation results with thosein
Table 11-A for the test set indicates that the RMSE vaues corresponding to the cross
vdidation smulations are lower for dl the codes. This suggests that the prediction
performance of dl the five networks can improve further if more data are available for
training the networks. It can however be inferred from the appraximaey equa RMSE
values for the wedge (0.036 and 0.033) and twist (0.05 and 0.045) codes (see Tables I1-
A and I1-C) that such an improvement, though possible, can only be margind. In essence,
the results of this case study indicate that the dinuclectide coding schemes fare better than
the mononucleotide based schemes (CODE-4 and EIIP). The results corresponding to the
wedge and twist codes are important in the sense that even under extreme paucity of the
training data, the two new coding drategies have performed significantly better than the
exising ones.

3.3.3 Case Study |11

In this case study, which examines the performance of wedge and twist codes for
classfication applications, the accuracy of classfication is defined as the percentage of
correctly classfied input patterns, for a given input sequence, the network output in
[0.5,1.0] range Sgnifies a terminator, otherwise it is regarded as a random sequence. The
network utilizing the random dinucleotide code was found to possess poorest classification
accuracy as it could correctly classify only 120 (75%) of the 160 test patterns and 270
(76.7%) of the 352 training patterns. On the other hand, the wedge and twist code based
networks could correctly classify 148 (92.5%) and 140 (90%) test patterrs, and 335



(95.17%) and 336 (95.45%) training patterns, respectively. Although the classification
accuracy of the wedge and twist codes for the test patterns is reasonably good, it is lower
than that obtained using the EIIP (95.62%) and CODE-4 (98.12%) schemes. In the
classfication study by Nair et d. (1994), a smilar observation has been made where it was
found that the CODE-4 dtrategy fares better than the EllP-code. The higher classfication
accuracy of CODE-4 was éttributed to the larger EBP network sze, which means larger
parameter space as compared to the EIIP-code. This explanation dso holds when the
classfication accuracies corresponding to the CODE-4 and EIIP schemes are compared
with those of the wedge and twist codes. It can thus be observed from Teble 11-A that as
the size of the network’s input space decreases (CODE-4 > EIlIP-code > wedge / twist
codes), the classification accuracy for the test patterns decreases accordingly (98.12% >
95.62% > 92.5%/90%). Notwithstanding this observation, it is important to note that the
performance of the wedge and twist coding schemes is till acceptable since on an average
91.25% of the test patterns have been correctly classified.

3.4 CONCLUDING REMARKS

In this chapter, two input coding drategies namely, wedge code and twist code
have been introduced for representing dinucleotides in the ANN-based modeling of DNA
sequences. These codes make use of the helica parameters namely, the wedge angle, twist
angle, and the direction of deflection angle of a DNA. The principa advantage of the new
coding gtrategies over the commonly used mononucleotide-based coding schemes such as
CODE-4 and EIIP, is that they reduce the network's input dimensiondity to one-eighth as
compared to the CODE-4 drategy, and to one-haf as compared to the EIIP scheme.
Consequently, a smdler network that can be trained faster results. Such a network i.e,
possessing less adaptable parameters (weights), in general possesses better generalization
cgpability than the network with more parameters. The efficiency of the proposed strategies
Vis-a&Vis other input coding schemes namdy, CODE-4, EIIP and random dinuclectide
code, has been evauated by conducting three case studies involving ANN-based mapping
and classfication applications. In al the case sudies, both the proposed coding strategies
have been found to perform equaly well. Also, the proposed codes have been found to
perform better than the conventiond srategies epecidly when the training data was limited



(case studies | and I1). In these studies, athough the CODE-4 scheme thet resultsinto large
input dimengondity did not peform wdl, the proposed codes with smaler input
dimengondity have lead to some significant results. This feature of the proposed schemesiis
impoartant since for many red systems the available deta are often limited and generation of
additional data can be an involved and cogtly task. It has been dso observed that the
networks using the wedge and twist codes fare better (i.e, yidd higher corrdation
coefficient magnitudes and classfication accuracy) than the networks using the random
dinucleotide code. Such a superior performance may be attributed to the DNA shape
related property i.e., the helica parameters of a DNA used by the wedge and twist codes.
Since the proposed codes are sufficiently genera, they can also be used for representing
DNA sequences in “non-rANN-based” mapping and cdlassfication applications. The
present work has also opened up a new gateway for tri- and tetra- nucleotide based DNA
coding strategies.



3.5 APPENDIX-II

In the following, the computationa procedures for evduaing z, F and the Student's t
statistics are described.

(A) Z-test (for large sample, i.e. when the number of data points, n, exceeds 30)

This test, also known as the Normal test, checks whether the difference between two
population means is daidicaly sgnificant. In this test, Z statistic (Z) is computed to test
the null hypothes's (Ho): the means ng and ny of two populaions are equal (i.e., m= m),
againg an dternative hypothess, Hi: m > my. TheZcisevauated as:

- Y 0)

S| X

I3
|
2|
+
wn

s

ny
where X and Y are the means of population samples x and y, respectively; s7and s
refer to the variances of x and y, respectively, and n,, n, denote the respective sample
Szes The decison rule for the Z-test a a % leve of Sgnificanceisgiven as
If |Z,] 2 Z, . then reject Hy; otherwise accept Hy.
(B) F-test
Smilar to the Z-test for two means, the F-test is peformed to check the validity of
hypothesis involving two population variances (sfand 532,). The F gatigic (F) is
computed as given below to vaidate the null hypothesis (Ho): s = s?, agang an
dternative hypothesis (H,): s2,> s?,.

2
E = Szx/“x 0
s/n,

The decision rule for the F-test at a % level of significance and for (n,-1), (n,-1) degrees

of freedom is

If |Fc| *F , then reject Hy; otherwi se accept H,.

(n-1).(n,-1).a

(C) Student'st test (for smal samplesizei.e, n £ 30)



In an event when the sample sze is smdl (n £30), Student'st test is performed to check
the vaidity of the null hypothess (Ho): m = my, againgt an dternative hypothesis (H1): mx >
my. The corresponding t-statistic (t;) is evauated as:

X-Y
= an
11
s [—+ —
n, n

2 2
o= |MSCHNy Sy
ne+ny -2

where

(V)

Note that the test gatistic t. follows Student's t distribution with (n,+n,-2) degrees of

freedom. The decison rulefor the t- test at a % levd of sgnificanceis

If |t

C

3t ., then reject Ho, otherwise accept H,.
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Output layer

Hidden layer

Input layer

Figure 3-1: Genera architecture of EBPN consisting of N, Ny and No neurons in
the input, hidden and output layers, respectively. Each neuron in the input and hidden
layers is connected to al the neurons in the next layer by means of “weighted” links.
In the present study, the input to an EBPN is an appropriately coded DNA sequence
and the network outpuit is either a functional property or the class (type) of the input

sequence.
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Figure 3-2: Graphica comparison of experimental and network predicted strength

(Poia units) values using: (a) wedge code for the training data set, (b) wedge code for

the test data set, (c) twist code for the training data set, and (d) twist code for the test

data set.



Tablel: Wedge and twist code valuesfor different dinucleotides

Dinucleotide Wedge Code Twigt Code
AA -7.2 -35.62
AC 1.1 34.40
AG 8.4 27.70
AT 2.6 31.50
CA -3.5 -34.50
CcC 2.1 -33.67
CG 6.7 29.80
CT -8.4 -27.70

5.3 36.90
GC 5.0 40.00
GG 2.1 33.67
GT -1.1 -34.40
TA 0.9 36.00
TC -5.3 -36.90
TG 35 34.50
T 7.2 35.62




Tablell-A: Details of optimal EBPN ar chitectures and RM SE values cor responding to three case studies

Coding Case study I: DNA curvature Case study I1: Promoter strength Case study I11: Prokaryotic transcription
Strategy prediction prediction terminator prediction
h=0.15, a=0.10 h=0.3,a=0.15 h=0.5,a=0.9

N;:N,:Ng RMSE N:N,:Ng RMSE N:N,:No | Classification Accuracy
Training set Test set Training set Test set Training set Test set
CODE-4 170:1:1 0.320 0.098 280:1:1 0.244 0.147 204:7:1 99.43 98.12
ElIP 44:1:1 0.055 0.051 70:1:1 0.237 0.146 51:7:1 96.59 95.62
Wedge 2311 0.072 0.064 3H1ll 0.032 0.036 2611 95.17 92.50
Twig 2311 0.074 0.069 3Bl 0.006 0.050 26:1:1 95.45 90.00
rnd-di” 2311 0.071 0.072 3B11 0.016 0.138 26:1:1 76.70 75.00

" N,: number of input neurons, N,;: number of hidden neurons, N: number of output neurons, h: learning rate, a: momentum coefficient
~ Percentage of correctly classified sequences



# rd di denotes Random dinucleotide coding scheme.



Tablel1-B: Statistical analysis of different combinations of sample setscomprising
experimental and network predicted R, values

No. | Sample set X Y Z, Fo
of RL

values

3 g My

1| x=expt 1.05 1.06 0.021 0.015 0.877 -0.386 1.40
y=coded

2 | x=expt | 105 1.05 | 0.021 | 0019 | 0954 | -0.111  1.09
y=diip

3| x=expt 1.05 1.06 0.021 0.016 0.931 -0.209 1.30
y=wedge

4 | x=expt 1.05 1.06 0.021 | 0.016 0.920 | -0.305 131

y=twist

5 | x=expt 1.05 1.05 0.021 0.016 0.890 -0.167 1.28
y=rd di

6 | x=coded | 1.06 1.05 0.015 0.019 0.901 0.274 0.78
y=elip

7 | x=coded | 1.06 1.06 0.015 0.016 0.892 0.186 0.93
y=wedge

8 | x=code4 | 1.06 1.06 0.015 0.016 0.890 0.081 0.94
y=twist

9 | x=code4 | 1.06 1.05 0.015 0.016 0.867 0.230 0.91
y=rnd di

10| x=dip 1.05 1.06 0.019 0.016 0.920 -0.095 1.20
y=wedge

11| x=dip 1.05 1.06 0.019 0.016 0.911 -0.193 121
y=twist

12| x=dip | 105 105 | 0019 | 0016 | 0906 | -0.052 1.18
y=rnd di

13 [ x=wedge | 1.06 1.06 0.016 | 0.016 0989 | -0.103 1.00
y=twist

14 | x=wedge | 1.06 1.05 0.016 0.016 0.968 0.044 0.98
y=rnd di

15| x=twit | 1.06 105 | 0016 | 0016 | 0963 | 0147 0.98
y=rnd di

Z,=233aa=001,adZ =164aa=005

" Fssss001 = 1.60for n,=n,=54 at a = 0.01, and Fs3s3005 = 1.39 ata =0.05




Table I1-C: Comparison of different coding strategies using leave-k-out cross

validation method

Coding Case Study | Case Study 11

Strategy k=9, h=0.15, 2=0.10 k=2, h=0.3, 2=0.15

NNy Ng Average RMSE NNy Ng Average RMSE

Traning Test Traning Test

CODE-4 17011 0.161 0.046 28011 0.148 0.107

EllP 4411 0.137 0.094 7011 0.112 0.081
Wedge 2311 0.112 0.091 3B11 0.013 0.033
Twig 2311 0.102 0.074 3H11 0.006 0.045

rnd di 2311 0.159 0.098 kK1l 0.124 0.055




Tablelll: Ligting of various promoterstranscribed by E.coli RNA polymerase and

their in vivo promoter strengths expressed in Py, units.

No. Promoter Promoter Strength
01 Proor 55 (4)
02 Pojezo 56 (8)
03 Puas 30 (5)
04 Psos 19 (2)
05 Pe 9(1)
06 P, 76 (9)
07 P., 20 (4)
08 P, 22 (3
09 PA 53(8) *
10 P.. 5.7 (0.5)
11 Pocuvs 3.3(0.3)"
12 P 17 (2"
13 P, 4(02)
14 Poia 1

" Promoter sequences that were part of the test set.
A Promoter strength taken from Knaus and Bujard [19].



Table 1V: Statistical analysis of different combinations of sample sets comprising
experimental and network predicted promoter strength values

No. | Sample set X Y 2 2 t. Fe
of promoter S Sy By ¢ ¢
strength
values

1| x=expt 26.50 26.20 534.991| 107.783 | 0.631 0.043 4.96
y=code4

2 | x=expt 26.50 26.21 534.991| 62.779 | 0.753 0.042 8.52
y=dip

3 | x=expt 26.50 27.12 534.991| 475569 0.994 | -0.070 112
y=wedge

4 | x=expt 26.50 26.61 534.991| 521.070 | 0.995 | -0.012 1.03
y=twist

5 | x=expt 26.50 29.23 534.991| 509.097 | 0.969 | -0.304 1.05
y=rnd di

6 | x=code4 | 26.20 26.21 107.783| 62.779 | 0.326 | -0.004 172
y=dip

7 | x=code4 | 26.20 27.12 107.783 | 475569 | 0.604 | -0.138 0.23
y=wedge

8 | x=code4 | 26.20 26.61 107.783| 521.069 | 0.588 | -0.059 021
y=twist

9 | x=code4 | 26.20 29.23 107.783| 509.098 | 0.590 | -0.440 021
y=rnd di

10 [ x=dip 26.21 27.12 62.779 | 475569 | 0.772 | -0.141 0.13
y=wedge

n | x=dip 26.21 26.61 62.779 | 521.069 | 0.759 | -0.058 0.12
y=twist

122 | x=dip 26.21 29.23 62.779 | 509.098 | 0.703 | -0.4~4 0.12
y=rnd di

13 | x=wedge | 27.12 26.61 475.569 | 521.069 | 0.992 0.058 0.91
y=twist

14 | x=wedge | 27.12 29.23 475.569 | 509.098 | 0.978 | -0.242 0.93
y=rnd di

15 | x=twist 26.60 29.23 521.069 | 509.098 | 0.972 | -0.294 1.02
y=rnd di

“t,a=1315ata =0.01, t, =1.706 ata =0.05




CHAPTER

N T B

Optimum DNA curvature using a
hybrid approach involving an Artificia
Neural Network and Genetic Algorithm



. In the present chapter, a hybrid technique involving artificial neural network (ANN) and |
genetic dgorithm (GA) has been proposed for performing modeling and optimization of
complex biologicd systems. In this approach, firs an ANN gpproximates (models) the
non-linear relationship(s) existing between its input and output example data sets. Next, the
GA, which is a stochadtic optimization technique, searches the input space of the ANN
with aview to optimize the ANN output. The efficacy of this formaism has been tested by
conducting a case study involving optimization of DNA curvature characterized in terms of
the R_value. Using the ANN-GA methodology, a number of sequences possessing high R
values have been obtained and andyzed to verify the existence of features known to be
responsible for the occurrence of curvature. A couple of sequences have aso been tested
experimentaly. The experimenta results validate quditetively and dso near- quantitetively,
the solutions obtained using the hybrid formaism. The ANN-GA technique is a ussful tool
to obtain, ahead of experimentation, sequences that yield high R, vaues The methodology
isagenerd one and can be suitably employed for optimizing any other biologica feature.

4.1 INTRODUCTION



A gtuation is often encountered in biologica sciences wherein development of a
“firg principles’ (i.e,, phenomenologicad) nodd becomes impossible owing to the lack of
aufficient understanding of the involved biochemica phenomenon. In such Stuaions
Artificid Neura Networks (ANNS) are widdy utilized for model development. The main
reason behind the extensive use of ANNSs being their gbility of recognizing and dlassfying
patterns not only from the quantitative data but aso from the qualitative data, such as DNA
sequences [1]. ANNs trained with the error-back-propagation (EBP) dgorithm [2-3]
represent the most commonly utilized network paradigm. An EBP-based network (EBPN)
is amulti-layered feedforward structure that undergoes supervised learning, i.e., for training
it requires an example data set comprising pairs of input and the corresponding output
patterns. Once trained adequatdly, the network can make predictions for the new input
data In essence, ANNs serve as an empiricadl modeing technique to approximate
relationships (especialy nonlinear) between two sets of data. For example, an ANN model
can be developed to corelate DNA sequences and a sequence-dependent property
wherein the sequence and the corresponding property would form the network input and
the output, respectively.

In addition to modeling, often an experimenter is interested in knowing the optimal
vaues of the modd parameters and / or varigbles that e@ther maximize or minimize the
mode output. Such a problem fdls in the domain of optimization and suitable optimization
schemes need to be devised for optimizing the ANN modd. Conventionaly, gradient
based methods are used for performing function optimization. Their usage presupposes that
the objective function to be minimized/maximized is smooth, continuous and differentiable.
The vdidity of these assumptions in the case of ANNSs cannot be guaranteed since the
modd represented by an ANN cannot be conveniently written as a closed-form
expresson. Therefore, an dternate optimization formaism, which is lenient towards the
form of the objective function, must be devised for optimizing ANN models.

In recent years, a class of robust agorithms - known as “Genetic Algorithms’
(GAS) - has been usad with great success in solving optimization problems involving very
large search spaces [4-6]. GAs were originaly developed as genetic engineering models
mimicking the population evolution in naturd systems. Given a functiond form, genetic

agorithm searches its solution space so as to maximize (or minimize) the prespecified



objective function. In GA procedure, possible solutions to an optimization problem are
randomly initidized using binary or rea vaued srings. The GA begins its search for the
optima solution from this random population of candidate solutions. The candidate solution
represented by each string in the population is tested using an objective function, following
which dl the population strings are ranked. Specifically, when optimization god involves
maximization (minimization) of the objective function, adl the population srings are ranked in
the decreasing (increasing) order of their objective function scores. Such a ranking, in
essence, arranges the candidate solutionsin the descending order of their “fitness’, which is
an indicator of “how wdl the solution peforms a fulfilling the optimization god”.
Subsequently, GA operations namely, reproduction, crossover and mutation are performed
on the fitter solutions in the population and the operations are repeated until convergence is
achieved.

The traditionaly employed gradient-based optimization methods are determinigtic
whereas GAs are stochastic optimization techniques. GAS possess severad advantages over
the gradient-based methods, the principa one being they do not impose preconditions such
as smoothness, continuity and differentiability on the form of the objective function. This
GA characterigtic assumes specid sgnificance in the case of ANN modds for which the
fulfillment of the above-stated conditions cannot be guaranteed. In essence, GA is one
paradigm that can be fruitfully employed for performing optimization of ANN modds. The
objective of this chapter, therefore, isto present ahybrid strategy involving an EBPN and a
GA for the optimization of a biologicaly important feature or a property. The Strategy isa
gened one and has been exemplified by addressng a specific problem involving
optimization of DNA curvature that is expressed in terms of the retardation anomay vaue.
Retardation anomaly is a measure of dectrophoretic anomaly of the curved DNA and
reflects the additiond friction of the DNA in the gd due to curvature [7]. Redive
electrophoretic mobility of most curved DNA fragments monotonoudy decreases with the
fragment length. This is usudly characterized as the ratio of the gpparent to actua DNA

length and the ratio termed as R, factor” is found to increase with the increase in the

fragment length.

4.2 SYSTEM AND METHODS



4.2.1 Implementation of ANN-GA methodology
Implementation of the ANN-GA methodology isatwo-part procedure. In the first,

an EBPN istrained to modd the input- output example data. An EBPN usudly comprises

three layers (input, hidden, and output) of processing dements (termed as “nodes’). The
nodes in successive layers are connected using weighted connections. During training, the
inputs and the outputs of the example data st are used as the network input and the
desired output, repectively. Network training involves minimization of an error function

[e.g., root-mean-squared-error (RMSE)] using a steepest descent strategy, such as the

generdized ddta rule (GDR), wherein the network outputs are compared with their desired

vaues and the difference (error) is used to update the inter-layer connection weights. The
weights are updated till a convergence criterion is satisfied a which point the network is

assumed to be trained. The detailed description of EBPN training can be found a

numerous places [8-9].

In the second part of the ANN-GA procedure, a GA is used to optimize the output
of the ANN model by rigoroudy searching the input space of the trained network. This
way, the EBPN plays the role of an objective function in the GA implementation wherein
the converged weights corresponding to the trained EBPN are used to compute the value
(score) of the objective function. The objective function score known dso as “fithess
score’ is essentially the EBPN output when a GA- searched solution string is applied as an
input to the trained EBPN. A smple five-step GA for maximizing the objective function can
now be summarized as (for details see [4-5, 10]):

Step 1 (Initidization): Cregte an initid population (size=N) of candidate solution strings
(chromosomes) whose dements (binary digits or red numbers) are chosen
randomly. Each chromasome in the population is of same length, |. Evauate each
chromasome in the population using the trained EBPN as the objective function
and rank the chromosomes as described earlier. Set the initia population as the
current population.

Step 2 (Sdection): Choose two parent chromosomes from the current population; the
seection procedure is carried out using the weighted Roulette-Whed agorithm [5].
In this strategy, the fittest string on a priority bass chooses its partner a random
from among the remaining sirings where the probability of sdlecting a particular



mateis proportiond to its fitness. Thisway only fitter chromosomes are selected as
parents for offspring production.

Step 3 (Crossover): Crossover is the most important step of GA. It is responsible for
passing sgnificant genetic information to the next generation grings. It is performed
as fdlows choose randomly a crossover point dong the lengths of the parent
chromosomes and cut each parent string at that point to generate two subsirings.
Exchange the substrings between the parent strings to obtain two offspring.

Step 4: Repeat steps 2 and 3 until the totd number of offspring generated equals N
following which the offspring populaion is merged with the parent population; the
post-merger population has 2N chromosomes.

Sep 5 (Mutation): Mutate dements of each of the 2N srings randomly where the
probability of mutation (Pmy) IS kept smdl. During mutetion, exclude the top
ranking string in the parent population so as not to lose it. Next, evauate each of
the 2N chromosomes using the objective function and rank them. Discard the
lower hdf of the 2N-szed population and set the resulting population of size N to
the new population (generation).

The above described procedure is repeated till a preselected convergence criterion, such

asthe GA has evolved afixed number of generations (Nge), Or successve generations have

produced smilar chromosomes, is satisfied. The best (i.e. firgt ranked) chromosome in the
converged population represents the fina result of the genetic agorithmic search. The
esence of GA-implementation is that an initid populaion of randomly generated
chromosomes with low objective function scores improves as parents are replaced by
better (fitter) offoring. As the steps involved in the GA implementation are stochadtic, the
fina solution depends upon the series of random numbers generated during the search.

Thus, to get an overal optimd solution, it may be necessary to repesat the search procedure

giving each time a different seed to the random number generator. In the following, results

of the case study wherein the proposed hybrid technique has been used to optimize the R,

factor are presented.

4.2.2 Optimization of R, factor



In a recent study [11], the authors have addressed the problem of modeling DNA
curvature wherein based on the experimentd data of Bolshoy et d. [12], an EBPN was
trained to predict the R, factor of a given DNA sequence. The data comprised the R,
vaues of circular, curved, and straight synthetic fragments extrapolated to 90 base-pair
length. The trained EBPN architecture has 44 neurons in the input layer for representing the
DNA sequence, one neuron in the hidden layer, and one neuron in the output layer to
represent the R, factor. The optimal values of the EBPN training parameters, namely, the
learning rate and momentum coefficient were 0.15 and 0.1, respectively. The EBP based
mode! could predict the R vaue of a given sequence with sSgnificant accuracy as suggested
by the high magnitude (=0.954) for the corrdation coefficient between the network-
predicted and experimental R vaues. Although the DNA sequences considered for the
network training were of variable lengths (i.e,, 10, 21, 31, and 42 base-pair long), asngle
EBPN could predict the R factors of dl the four sequence-types. The GA-based
optimization, however, has been performed separately for the four types with the objective
of obtaining sequences possessing high R vaue. The GA procedure for optimizing R, was
implemented as follows.

The flow-chart corresponding to the five GA steps of the ANN-GA methodology
is depicted in Figure 4-1. A pseudo-random number generator was used for creating (step
1) an initid random population of 100 (= N) DNA strings with equal composition of A, T,
G and C. The encoding of these four nucleotides was performed using their Electron lon
Interaction Potentiad values (0.1260=A, 0.1335=T, 0.0806=G, 0.1340=C). This
nucleotide-encoding scheme, known as the “EIIP code’ [13], is the same as used to
represent the DNA sequences during the EBPN training [see 11]. The ElIP coding strategy
has an advantage over other binary schemes, such as CODE-2 and CODE-4, that it
requires just one rea number to code a nuclectide. As a result, the input space of the
EBPN and, consequently, the chromosome length, |, get Sgnificantly reduced. The
chromosomes that are shorter than 42 base pairs were uniformly padded with a dummy
number (0.01). Each chromosome in the population was 44 eements long (I=44) wherein
two more dummy numbers (0.05 and 0.90) were assigned to 43" and 44" |ocations to
diginguish linear fragments from the dircular ones. The steps in the flow chart concerning



the R_factor evauation were implemented using the optima EBPN weights obtained by
Parbhane et d. [11].

After sdecting the parent pairs as described in step 2, the crossover operation
(step 3) was performed on each par separately as illugrated in Figure 4 2. Performing
crossover on N/2 pairs of parent strings produced N number of offpring. This offspring
popul ation was then added to the parent population to obtain atota of 2N strings.

The mutation (step 5) operation Smply interchanges the eements of the population
grings in arandom manner. That is, agring dement representing the ElP value of ether A,
T, G or Cisreplaced by the ElIP value of any one of the four nucleotides. Whether a string
element undergoes mutation or not was determined using a smal vaue (P=0.01) of the
mutation probability.

Each EIIP coded DNA sequence in the post-mutation population was evauated
for its R vaue following which the strings were arranged in the decreasing order of their R,
magnitudes. The lower haf of the population so arranged was discarded and the resulting
population (Sze=N) was set as the new generation. The procedure barring step 1 was
repested till the convergence criterion that GA has evolved over 100 generations was
satisfied. The best-ranked string in the converged population representing the solution of a
GA search, possesses highest R magnitude as compared to the remaining srings in the
population.

4.3 RESULTSAND DISCUSSION

Usng different random seeds for initiaizing the chromosome population (Step 1),
and following the methodology outlined above, we have obtained severd 10, 21, 31 and
42 base-pair long DNA sequences possessing R values greater than 1.10. The R, values
exceeding 1.10 can be congdered "high" in view of the R range [0.54-1.21] represented
by the trained EBPN. It may be noted that R > 1.0 signifiesa curved DNA sequence [7].
In Table 1, a sample of DNA sequences possessing high R values is provided. For
brevity, only five examples of DNA sequences belonging to each of the four types (10, 21,
31 and 42 bp) have been shown, athough the ANN-GA methodology is capable of
generating a large number of sequences meeting the sdlection criterion. Examination of



these sequences from the viewpoint of extracting curvature-inducing features is now in
order.

From sequence numbers 1-3, it can be noticed that each A, T,, tract (n+m?3 3)
produces asmall bend in the DNA helix axis; repetition of these dementsin phase with the
helix screw results in their coherent addition to form a large overdl bend. Thus, these
sequences are the examples of the role of AT, tract and influence of phasing (junction
modd) in determining the extent of curveature [14].

It can be observed from sequence nos. 4 and 5 that non-AA fragments can dso
induce curvature. The high R for these sequences can be explained in terms of the
dinuclectide (wedge) modd representing the smplest form of the nearest-neighbor
interactions [12]. According to this modd, the base pair steps other than AA/TT introduce
proper wedge angles phased with each other that add coherently.

Sequences 4 and 5 have GGCC as a sequence eement repeated in phase with
each other. Also, the eement appears in the absence of A/T tracts in the sequence context.
This festure seems to be responsible for the high R, values and is in good agreement with
the recent X-ray data showing that the GGCC eement is intrindgcally curved towards the
major groove [15].

Sequences 10, 11, 14, 17, 18 and 20 dso contain GGCC dement, but in the A/T
tracts as a sequence context. The corresponding high R, vaues can be explained using the
trends exhibited by another DNA bending related quantity, namely "In(p)". It iswell known
that bovine pancreatic deoxyribonuclease | (DNase I) digestion profiles are used to obtain
In(p) vaues, which are redistic DNA bending propensity parameters of trinucleotides. High
In(p) valuesfor trinucleotides signify that these base sequences owing to the introduction of
a postive roll [16] are flexible or inherently bent towards the mgor groove. By invoking
this andogy, the high R values for sequences 10, 11, 14, 17, 18 and 20 can be attributed
to the additive effects of GCC/GGC trinucleotides and other combinations of trinucleotides
possessing high In(p) values. Such an explanation also holds for sequences 6-9, 12, 13, 15,
16 and 19 thet possess various combinations of trinucleotides with high In(p) valuesviz.,
TCA/TGA, ATA/TAT, CAG/CTG, ATG/CAT, GCC/GGC, CTA/TAG and GCA/TGC.
It is quite clear from above discussion that the features responsible for high curvature (R))



and contained in the DNA sequences in Table I, could be explained using other
approaches aswell; for instance, by andyzing then(p) values.

A few of the oligonucleotides (sequence number 11 [31-mer] and 20 [42-mer]
from Table 1) were synthesized for experimentaly vdidating the results provided by the
ANN-GA grategy. The overdl framework of the experimental andyss was the same as
reported earlier [12, 14] but with minor variations. The oligonucleotides were synthesized
chemicdly (Gibco BRL) with unique two base overhangs to dlow heed-to-tal
polymerization. The oligonucleotides were resolved in 15% denaturing polyacrylamide ges
and duted in TE (10 mM Tris-HCI [pH 8], 1 mM EDTA [pH 8]), purified using a NAP-5
column (Amersham Pharmacia Biotech) dried under vacuum and quantified. 100 pmoles of
the oligonucleotide was radioactively labeled with 5 nCi of [g?-P] ATP (DuPont/NEN, >
6000 Ci/nmal) using 10 U of T4 polynucleatide kinase (PNK, Gibco BRL) at 37°C. After
10 minutes, the reaction was supplemented with 200 pmoles of the complementary strand,
1000 pmoles of cold ATP and 10 U of PNK. After an hour, the reaction mixture was
heated to 70°C, held there for 10 minutes and then alowed to cool dowly to room
temperature. The reaction mixture was passed through a Sephadex G50 (Amersham
Pharmacia Biotech) spun column and dried to 5 nd. The ligation was set up with T4 DNA
ligase (Gibco BRL) a 16°C for 24 hours. The reaction products were subjected to
electrophoresis on a 40 cm 8% native polyacrylamide gd (mono: bisacrylamide 29:1) in 90
mM Tris-borate (pH 8.3), 25 mM EDTA (pH 8) with an applied voltage of 7 V/cm a
room temperature (30°C). The mobility of the ligation products was measured relative to
the migration of a 10 base pair BanHI linker ladder (which is known to have norma
mobility). The R valuesfor 90 base-pair DNA were interpolated from plots of apparent to
actud length in base pair units.

The experimentaly determined R_values for sequences 11 and 20 are in the range
1.08 (+0.03) as againgt the respective ANN-GA predicted values of 1.23 and 1.22 (refer
Tablel). It is important to note that the ANN-GA mode used the data on eectrophoresis
measurements carried out a 20-22°C while the above-described experiments were
conducted at 30°C. The effect of temperature on the mobility of curved DNA is well
documented [7, 14, 17] and it is observed that higher temperatures enhance mobility and,
hence, lower the R, magnitudes. This feature may be responsible for the approximately 9%



difference observed between the ANN-GA predicted and the experimentd R values of
sequences 11 and 20. It can thus be inferred that the experimentd results quaitatively ard
near- quantitatively vaidate the trends in the optima sequences provided by the ANN-GA
methodology.

The debate on the generdity of the firs-principles models for predicting the
curvature continues in the literature [18]. Extenson of the dinucleotide mode to tri- and
tetranucleotide levels is clearly desrable since such modes would then include more
sequence context information. 1t however requires rigorous experimentation on 32
independent trinucleotides and 136 tetranucleotides. This clearly is a difficult proposition
athough some efforts have aready been made [16]. The results presented here suggest that
the ANN-GA methodology possess the potentid of providing DNA sequences having
desired R values ahead of experimentation. Thus, trid and errar approach may be avoided
while performing experiments. Another positive feature of the ANN-GA drategy isthat the
entire ‘modding-optimization’ exercise can be performed using representative experimenta
data Since the observed data contain information about the underlying biochemica
phenomena, no explicit knowledge of these detals ae necessary (unlike in
phenomenologica modding).

It is important to redlize that the hybrid formalism is not intended to replace the
laboratory work, but should be used as a guide in designing experiments. The proposed
drategy is aufficiently generd and, therefore, can be exploited for optimizing other
biologicdly important features or properties.
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Table 1: Optimized retardation anomaly (R,) values along with their DNA sequences
obtained using ANN-GA methodology

No. Sequence Unit R
1 GGGTATTGCG 113
2 GGGTTAAGTG 113
3 GGTTACGGAG 113
4 GGCCCGTGGG 112
5 GGCCGTCGGG 112
6 GGGCTCTGCGTTGGTGTGCAA 123
7 GGCATGAGCGCGGGTCTACTT 123
8 GGAACCTGACTAGGCGTGTTA 122
9 TTATGCAGATTGGGGGATCTT 122
10 | GGCCCATGTGCGGTAGTTTCC 122
11 | CGGAATTGCTTGGGCATATTCGAGCGGGGCC 123
12 | GGAACCAGATCGGGGCCTATAGCGAGGGTAG 123
13 | CGTTGTTGCAATGGCTGCACTGAGAGGAGCG 123
14 | GGGCGTAACACCGGCCACTATGATTGGCATC 123
15 | GGGCATATTATCGGCTGACATGTGCAGCGTT 122
16 | GGCAGTTGTCACAGTTCTCCCTGGAGGTCACTGTCAGGCGC 123
G

17 | AGACAGTCAAACGGAGATCGTGGCAGGCCTTCGATAGGTG 123
TC

18 | GGTCCGTGATATTGTGCGACAGAGTAGGCCGTACCGCGCG 123
AG

19 | GCAATGTGGACAGGGGTGCTCATGAGGCAACGCTAATATG 123
AT

20 | AGGCCCATCCACAGTGACCTCGAGATGCCTTGAACGGCCG 122
GG
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Figure 4-1: Flow chart for the implementation of ANN-GA strategy for the optimization of
retardation anomaly values of DNA sequences.



G G G T A T T G (o G
| 0.0806 | 0.0806 | 0.0806 | 0.1335 | 0.1260 | 0.1335 | 0.1335 | 0.0806 | 0.1340 | 0.0806 |
Parent 1

A T G T T A A G T G
| 0.1260 | 0.1335 | 0.0806 | 0.1335 | 0.1335 | 0.1260 | 0.1260 | 0.0806 | 0.1335 | 0.0806 |
Parent 2

Crossover

A T G T A T T G C G
| 0.1260 | 0.1335 | 0.0806 |0.1335 |0.1260 |0.1335 |0.1335 | 0.0806 | 0.1340 | 0.0806 |
Offspring 1

G G G T T A A G T G
| 0.0806 | 0.0806 | 0.0806 |0.1335 |0.1335 |0.1260 |0.1260 | 0.0806 | 0.1335 | 0.0806 |
Offspring 2

Figure 4-2: Basic crossover of EIlP coded DNA strings (for simplicity crossover between 10-mers

is shown).
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Optimum transcription efficiency in
eukaryotic systems using a hybrid
approach involving an Artificial Neura
Network and Genetic Algorithm: a case

study of b-globin gene



Effects of single base substitutions in the upstream egion of the b-globin gene are
known to alter the relative transcription level (RTL). Information with regard to
multiple base substitutions leading to higher RTL is however very scanty. The
motivation of this work is to obtain maximum gene expression using multiple base
substitutions. Using an Artificial Neural Network (ANN) and Genetic Algorithm
(GA) based hybrid strategy we study the effects of multiple base mutations with
particular emphasis on those that can cause enhanced RTL. The study reveals that
multiple base substitutions in the conserved as well as non-conserved regions can
cause substantial enhancements in RTL. We identify positions in the nucleotide
sequences, which preferably should not be altered, as well as those positions whereé
mutations can lead to increased RTL. The various trends observed are rationalized.
The ANN-GA strategy can help in experimental planning and reducing the search

space.




5.1 Introduction

The mechanism of the level of gene expression governing the fate of a cell,
cell proliferation, and survival of the organism continues to be one of the intriguing
guestions to molecular biologists. Even more interesting is the mechanism
underlying the switching on and off of a particular gene according to development
programs. Failure to follow these programs accurately may result in gross
abnormalities in the gene structure. Most control mechanisms in the regulation of
gene expression occur at the level of transcription and trandation. The efficiencies of
these critical processes are determined by the nucleotide sequences of the promoter
and the ribosome binding sites (RBS) on the encoded mRNA. Although the
nucleotide sequences of many promoters and the RBS are known, the specific
features determining the efficiency of transcription and translation are not well
understood. The very first step of gene expression i.e. transcription is an intricate,
highly regulated process and its role in eukaryotes is still not clear. The biochemical
events in transcription involve a series of highly specific interactions between
regulatory sequences in DNA and the cdlular enzyme RNA polymerase that
catalyzes the transcription reaction.

The eukaryotic promoters that have been most thoroughly studied by the
molecular genetic approach are: (i) the herpesvirus thymidine kinase (tk) [1-3], (ii)
the SV40 T-antigen [4], and (iii) mammalian b-globin genes [5]. These studies have
focused on the DNA sequences immediately upstream from the messenger RNA
(mRNA) initiation sites and provided an evidence for the establishment of
transcription efficiency via signals contained within the eukaryotic genes. However,
the problem of prediction of the mutations in the upstream region that may lead to
maximum expression of a gene has so far remained unresolved. The problem
essentialy is that of an optimization where the nucleotide content of a promoter
sequence needs to be rigorously searched such that the corresponding transcription
efficiency represented in terms of relative transcription level (RTL) is maximized.
The general objective in optimization is to obtain a set of values of the variables
and/or parameters subject to various constraints (if applicable) that will produce the
desired optimum response for the chosen objective function [6]. For performing such
an optimization, the conventional methods such as gradient-based algorithms require:

(i) a mathematical model described by a smooth, continuous closed functional form,



and (ii) derivatives of the function to be optimized. Biological systems often being
non-linear and complex, are difficult to be modeled phenomenonlogicaly, or even
empiricaly. Consequently, such systems are not amenable to representation in an
exact mathematical form and, therefore, to optimization using gradientbased
methods. In view of these difficulties, it becomes necessary to explore newer tools
for solving problems such as the optimization of transcription efficiency aluded to
above. The objective of this chapter is twofold: (i) to present a hybrid nortlinear
strategy involving an artificial neural network (ANN) and genetic algorithm (GA) for
the optimization of transcription efficiency, and (ii) to obtain an insight - from the
results of the ANN-GA based optimization simulations - about the structural aspects
of b-globin gene leading to high transcription efficiency.

5.1.1 Philosophy of ANN-GA optimization technique

In the last decade, ANNSs have been extensively used for modeling biological
systems; the main reason being their ability of modeling not only quantitative data
but aso qualitative data, such as DNA sequences [7]. ANNSs trained with the error-
back-propagation (EBP) algorithm [89] represent the most widely used neura
network paradigm. An EBP-based network (EBPN) possesses a multi-layered feed
forward structure that undergoes supervised learning, i.e. for training it requires an
example data set comprising pairs of input and the corresponding output patterns.
Once trained adequately, an EBPN is capable of making output predictions for new
input data. In essence, an EBPN serves as a non-phenomenological modeling
technique for approximating (particularly nonlinear) relationships existing between
two sets of data. For instance, an ANN model has been developed to correlate a DNA
sequence and the sequence dependent property, namely, transcription efficiency [10].
ANNSs though a powerful modeling technique possess an undesirable characteristic
that they essentially lead to "black box™" models. It means that an ANN model cannot
be easily expressed as a closed form equation relating its inputs and outputs.
Consequently, utilization of the gradient descent-based optimization methodologies
becomes cumbersome. A novel technique known as "genetic algorithms (GAS)" that
helps in overcoming the said difficulty is described below.



5.1.2 Genetic Algorithms
GAs are nonlinear optimization techniques based on the mechanisms of

natural selection and genetics [11-13]. They combine the "surviva of the fittest”
principle of natural selection with a randomized information exchange procedure
known as crossover to arrive at a robust search and optimization technique. A
prerequisite to optimization using the GA methodology is a functional form (model)
whose parameters/variables are to be optimized. Given such a functional form, a GA
searches its solution (parameter) space so as to maximize a pre-specified objective
criterion (function). In GA parlance, the objective function is referred to as fitness
function. The salient features of GAs are [14-15]:

GAs perform globa search as against the local one performed by the gradient-

based methods. Thus, GAs are most likely to arrive at the global optimum of the

objective function.

During optimization, search is conducted from a population of probable

candidate solutions to the problem under study.

GA search procedure is stochastic requiring only values of the function to be

optimized and it does not impose preconditions such as smoothness, derivability,

and continuity, on the form of the function.

GAs can easily handle functions that are highly non-linear, complex, and noisy;

in such cases the traditional gradient -based methods are found to be inefficient.
It may be noted that owing to GA's leniency towards the form of the function to be
optimized, it is possible to use an ANN model in place of a closed form function. In
the resulting ANN-GA optimization approach, a trained ANN serves as an input-
output model whose inputs are optimized using the GA methodology. The GA in
essence finds the optimal values of the network inputs such that the corresponding

values of the network outputs are maximized.

5.1.3 ANN-GA based optimization of eukaryotic transcription
efficiency

In order to address the optimization problem of maximizing the eukaryotic
transcription efficiency, we have chosen the globin gene as a test case. The mouse

globin gene family is an ideal candidate for the study of gene expression since
differentiation of these genes exhibits both the temporal and coordinate regulation.



Thus, the globin gene has been extensively studied for its expression, function, and
abnormalities. It has been observed that the mutations in the b-globin gene and its

upstream regions can cause many genetic disorders [16].

5.2 SYSTEM AND METHODS

5.2.1 Implementation of ANN-GA methodology

Implementation of the ANN-GA methodology is a twoe part procedure; the
first part consists of training an EBPN with a view to model the input-output
example data. An EBPN architecture in general possesses three layers (input, hidden,
and output) of neurons (also termed as “nodes’). The nodes in the successive layers
are connected using weighted links. The two sets of example data to be modeled
(correlated) by training an EBPN form the network input and the desired output,
respectively. In the present study, DNA sequences of the b-globin gene and the
corresponding trarscription efficiency values form the EBPN input and output,
respectively. Training of EBPN involves minimization of an error function such as
the sumsquared-error (SSE) using a strategy known as the generalized delta rule
(GDR). While minimization, the network outputs are compared with their desired
values and the corresponding SSE is used to update the values of the inter-layer
connection weights. The weight-updation continues till a convergence criterion is
satisfied. At this point the network is assumedto be trained. The detailed description
of EBPN training can be found at numerous places (see e.g., [17-18]).

In the second part of the ANN-GA hybrid methodology, a GA rigorously
searches the input space of the trained EBPN so as to maximize its output. In
essence, the GA searches the sequence space with a view to maximize the magnitude
of the transcription efficiency. GA begins by randomly encoding a set (population) of
possible solutions to the optimization problem in the form of “chromosome strings”.
A pre-specified objective function returns the fitness value (score) of each
chromosome string in a population that serves as a measure of the goodness of the
solution searched by the GA. In the ANN-GA methodology, the trained EBPN acts
as an objective function wherein the network output also represents the fitness score
of the GA-searched solution string (a DNA sequence). For computing the fitness
value, the DNA solution string is applied as an input to the trained EBPN and the

network output is evaluated. Since a nonlinear activation function such as the logistic



sigmoid is used to compute the output of EBPN's output nodes, the fitness value is

always constrained between zero and one. With this background, a smple five -step

GA has been described in the following:

Step 1 (Initialization): Create a random initial population of N chromosome strings
where each string contains | elements. A string element characterizing a
nucleotide is chosen randomly with equal probability of selecting either A, T,
G, or C. Evaluate each chromosome in the initial population using ANN as
the objective function. Set the initial population as the current population.

Step 2 (Selection): Select chromosome strings from the current population with a
view to form a mating pool to be used subsequently for the offspring
production. The selection procedure is stochastic in nature and carried out
using the weighted Roulette-wheel algorithm wherein fitter chromosome
strings on a priority basis select their partner from among the remaining
drings. The probability of selecting of a particular partner string is directly
proportional to its fitness score. Such a selection procedure gives rise to a
mating pool comprising N/2 number of parent pairs.

Step 3 (Crossover): The action of this most important GA operator results in creating
two offspring chromosomes from each parent-pair. Typically, the two parent
chromosomes are cut at the same randomly selected crossover point to obtain
two sub-strings per parent string. The second sub-strings are then mutually
exchanged between the parent chromosomes and combined with the
respective first sub-strings to generate two offspring chromosomes (see
Figure 51). The probability of crossover (Pcros9) is kept high. The crossover
operator essentially generates new solution strings (DNA sequences) thereby
searching hitherto unexplored regions in the solution space. Repeating
crossover operation on N/2 parent pairs generates N number of offspring
strings following which the offspring population is merged with the parent
population; the post-merger population has 2N strings.

Step 4 (Mutation): Randomly change (mutate) elements of the offspring strings
where the probability (Pmx) an element undergoing mutation is kept small.
The objective of mutation is to create new solutions in the neighborhood of
the region represented by the 2N number of chromosome strings and thereby
perform a local search around the region. Subsequently, evaluate fitness of

each chromosome using EBPN as the objective function and rank the 2N



number of strings in the descending order of their fitness scores. Next,
discard the lower haf of the 2N-sized population and set the resulting
population of size N to the new population (generation).

The above-described procedure is repeated till a pre-selected convergence criterion
such as, the GA has evolved a fixed number of generations or the fitness of the best
solution does not improve in successive generations, gets satisfied. The best
chromosome as judged by the highest fitness score following convergence,
represents the fina solution of the genetic search. The essence of GA-
implementation can be stated as. better solutions in the current population are
selected for the reproduction and their offspring generated via crossover and
mutation operations replace the sub-optimal solutions. The population of candidate
solutions, owing to the repetitive actions of the crossover and mutation operators,
improves itself from one generation to the next till convergence is achieved.

As most seps involved in the GA implementation are performed
stochastically, the fina solution depends upon the series of random numbers used
during the search. Thus, it may be necessary - for securing an overall optimal
solution - to repeat the search procedure giving each time a different seed to the
random number generator. This way GA begins with different initial populations,

which help in the exploration of widely different solution space.

5.2.2 Optimization of transcription efficiency
In an earlier study [10], the problem of modeling transcription efficiency was
addressed using EBPN as the modeling tool. The data for modeling was taken from
the mutation studies carried out by Myers et a. [19-20] wherein saturation
mutagenesis has been used to introduce random single base subgtitutions into the
mouse b-globin promoter region. The effects of single base substitutions in the b-
globin promoter have been determined by comparing the levels of correctly initiated
RNA derived from the test and reference plasmids co-transfected into HeL a cells and
expressed as the relative transcription level (RTL) of each mutant. The expression
used for computing the RTL value has been:
_M/R
WT/ R,

RTL (1)

where M refersto signal of the mutant test gene; WT is the signal from the wild-type



test gene; R. represents the signal from the reference gene cotransfected with the
mutant test gene, and R denotes the signa from the reference gene co-transfected
with the wild-type test gene.

The data used by Nair et al. [10] consisted of the b-globin promoter and its
mutant sequences (network input) and their corresponding RTL values (network
output). In the present work we used the available data on single base substitution in
the upstream region of b-globin and its effects on the RTL vaue It is important to
note that the data on effects of multiple base substitutions is practically nonexistent.
It is expected, however, that a properly trained neural network would capture the
intrinsic patterns. For EBPN training, the sequences with mutations were coded using
the CODE-4 srategy [21], wherein A, T, G and C were represented by four binary
digits: 0001 = C, 0010 = G, 0100 = A, and 1000 = T. The desired (target) output of
each sequence was the experimentally determined RTL values normalized by
dividing with ten so that they lie between zero and one. The EBPN architecture had
484 neurons in the input layer for representing the DNA sequences each of length
121 bp, eight neurons in a single hidden layer, and one neuron in the output layer to
represent the RTL value (refer Figure 5-2). The values of the GDR parameters,
namely, the learning rate and momentum coefficient that resulted in the optimal
values of the EBPN weights were 0.6 and 0.9, respectively.

The flow-chart of the ANN-GA hybrid methodology as applied to the RTL
optimization problem is depicted in Figure 5-3. The steps in flow-chart concerning
the objective function (RTL) evaluation were executed using the optimal EBPN
weights obtained by Nair and coworkers [10]. This essentially involves operating
the trained EBPN in the prediction mode and multiplying the output by ten. The
specific stepsin the flow-chart relating to GA were implemented as given below.
Instead of creating the initial population (step 1) of candidate solutions representing
the DNA sequences randomly, we used the promoter sequence of the mouse b-globin
gene and its mutants as the initial population for the GA analysis. Specifically, 130
patterns of DNA promoter sequences and their mutants whose experimental RTL
values are known, were used as the strings in the initial population. This was done
purposely so that the GA search begins directly from the most plausible solution
space. The values of the GA parameters used for simulation are: population size (N)
= 130, probability of crossover (Peoss) = 1.0, probability of mutation (Pmy) = 0.01,



total number of generations over which the GA evolves (Ngen) = 100, and the length

of each chromosome string (l) = 121.

5.3 RESULTSAND DISCUSSION

In this study, we have specifically analyzed the transcriptional control signals
of a eukaryotic protein-coding gene for establishing a relationship between the site of
mutation and increased level of the process of eukaryotic gene transcription.
Experimentally, Myers and coworkers [20] could obtain only one single base
substitution pattern of upstream region of b-globin gene whose transcription
efficiency was 3.5. However, using the ANN-GA methodology, it was possible using
multiple base substitution to obtain alarge number of sequences having transcription
efficiency greater than 3.5. This was achieved by repeating the ANN-GA procedure
severa times while utilizing every time a different seed value for initiaizing the
random number generator. In the ensuing paragraphs we discuss the significance of
the results obtained using the ANN-GA optimization approach. For brevity, the
discussion is limited to only ten sequences possessing RTL magnitudes in excess of
3.5. These sequences and their corresponding RTL values are listed in Table I.

Myers and co-workers [20] have shown that single base substitutions in three
conserved regions of the promoter resulted in a significant decrease in the level of
transcription in: (i) CACCC box, (i) CCAAT box, and (iii) the TATA box. It was
also shown that a promoter containing two base substitutions, one a -75 and the
other at -74 results in a 40 to 50-fold decrease in the RTL. In contrast, two different
mutations in nucleotides immediately upstream from the CCAAT box caused a 3 to
3.5 fold increase in transcription. Thus, positions -78 and -79 were termed "up
mutations'. With these two minor exceptions, single base substitutions in all other
regions of the promoter were shown to have no effect on transcription. The ANN-GA
approach, on the other hand, could arrive a multiple base substitutions that
synergistically shows a significant increase in the transcription efficiency.

A comparison of sequences in the upstream region of b-globin gene (glo,
RTL=1.00) with the ANN-GA predicted sequences from the samer egion (R1 to R10,
RTL > 3.5) has been made using FASTA package [22]. Such a comparison helps to
understand the role of nucleotide variation leading to high transcription efficiency of

ANN-GA smulated patterns vis-a-vis origina sequence of upstream region of b-



globin gene. The results of comparison, shown in Table Il, indicate that sequences
from the upstream region of b-globin gene possessing maximum transcription
efficiency show 74.495.8% sequence homology with the upstream region having
transcription efficiency value of one. The nucleotide positions in the sequences
predicted by the ANN-GA method that are not similar to the upstream region of b-
globin gene can be considered as effective mutation points (listed in Table I11) for
sequences indexed as R1 to R10. These points are most probably responsible for
enhancing the transcription efficiency of b-globin gene.

The ANN-GA simulation results show that not al mutations in three
conserved regions decrease the RTL as is generally believed based upon the
available experimental results [20]. In order to interpret the results and better
understand the role of mutations in enhancing the transcription efficiency, a close
look at the sequences R1 to R10 reved the following: (i) mutations in conserved
regions can enhance RTL (sequences R1, R3, R4, R7, R8, and R9), and (ii)
mutations in non-conserved regions can also enhance RTL (sequences R2, R5, R6
and R10). In what follows we shal analyze these cases separately. Also, to
understand the role of individua positions of mutations and their surroundings we
further subdivide the sequence into seven different segments consisting of : (i)
upstream region of CACCC box (i.e., -101 to -96 position), (ii) CACCC box (located
between -95to -87 position), (iii) region between CACCC box and CCAAT box (i.e.,
-86 to -78 position), (iv) CCAAT box (present between -77 to -72 position), (V)
region between CCAAT box and TATA box (-71to -31 position), (vi) TATA box
(lying between -30to -26 position), and (vii) region between -25 to cap site and the
region below cap site.

I. Mutationsin conserved regionsleading to higher RTL

CACCC box (located between 95 to -87 position):
The optimal sequences having value of RTL in excess of 3.5 searched by the
genetic agorithm, including the representative examples of sequences shown
here (R1 to R10), reveal that the positions -87, -90, -91, -92 and -93 remain
unaltered. This feature is therefore relevant for obtaining sequences with higher
RTL.
Mutations at positions other than those listed above can cause enhancement in

RTL. We show one example of each such ateration. Thus mutation at position -



88 (sequence R9), -89 (sequence R8), along with the changes at few other
positions (see sequences R8 and R9 for details) cause several fold increase in
RTL. It is important to note that these sequences aso include the mutations at
the 'up-mutation points. Sequences R4 and R7 show case examples when
mutation occurs at the other remaining positions viz. -94 and -95 and cause
enhancement. These examples also show that mutation at these positions is aso
accompanied by change at few other locations, but this time the mutations at the
'up-mutation points is not involved.

CCAAT box (present between -77 and -72 positions):
Sequences R1 to R10, show that the nuclectide positions -73, -75, -76 and - 77,
remain unchanged. No ateration in these positions seem to be important for
high transcription efficiency. Other positions viz. -72 and -74 within this region
can undergo mutations to cause increased RTL. We show ane example of each.
Sequence R3 indicates that if mutation at -74 position is accompanied by
mutation at the "up mutation points" (positions -78 and -79), then an increase in
RTL vaue is witnessed. Note that -74 position is responsible for lowering the
RTL magnitude, whereas -78 and -79 position causes increase. The
simultaneous mutations has an synergistic effect-causing enhancement more
than known for the up mutation point.
Upon examining sequence R8 it can be noted that if nucleotide position -72 is
mutated in combination with "up mutation point” (position -78), and other
favorable mutation points (especialy in the region -71 to -31 and -25 to cap
site), then it causes high magnitude of RTL.

TATA box (lying between -30 and -26 positions):
For sequences R1 and R8, mutations at -27 and -30 positions effect increase in
RTL value if they possess mutation at -78 position and, additionally, at other
favorable mutation points such as -47 and -66 positions. These results once
again underline the importance of up mutation point, such as position -78.
At -26 and -29 positions of sequence R4, transition (AL Gi.e. R 0 R) mutations
are witnessed. In here, despite presence of mutations in the TATA box, high
RTL value has been obtained. This can be interpreted as: if specific mutations
(positions -26 and -29) in the TATA box are supported by drastic variation in

the nucleotide content of the region surrounding TATA box (i.e, region



between -71 and - 31, and -25 and cap site), then they result in increased RTL.
The % identity (homology) of sequence R4 with original b-globin gene
promoter is 74.4. This value despite being the lowest among the ten ANN-GA
predicted patterns (refer Table I1), the corresponding RTL value (=4.8404) is
high.

II. Mutationsin non-conserved regions leading to higher RTL

Upstream region of CACCC box (positions-101 t0-96):
If mutations in this region are in favorable agreement with other mutation
points, especialy in the region -71to -31, they cause increase in the magnitude
of RTL. This is evidenced from the sequence entries R2, R4 and, R7-R10 listed
in Table I11. The sequences aso indicate that G at -97, -84 and -78 positions is
aways mutated by A, T and C respectively.
For the ten patterns in Table 111, positions -99 and -100 are aways corserved
thus indicating their importance in maintaining high transcription efficiency.

Region between CACCC box and CCAAT box (positions -86 to -78):
The region is of prime importance since it includes the most important positions
i.e, -78 and -79. These two "up mutation points' are primarily responsible for
increased transcription efficiency (see sequences R1, R3, R6, R8 and R9).
Sequences RE:R10 do not exhibit any effective mutation at -77 position.
Moreover, as verified experimentally [20], the mutation at -77 position, which is
in the nearest-neighbor position of up mutation points (i.e, -78 and -79
position), does not seem to help in increasing transcription efficiency.
At position -78 of sequences R1 and R3, and at position -84 of sequences R5
and R9, transversion type of mutation (84and -78GU Cor Ti.e, R O Y) can
be observed. It can therefore be inferred that the transversion mutation at these
positions can cause increased magnitude of RTL.

Region between CCAAT box and TATA box (positions -71 to -31):
Table Il lists various combinations of multiple base substitutions for sequences
R1-R10 in the region between CCAAT box and TATA box, which result in the
increased RTL value. However, the average trend in the ten sequences suggests
that nucleotide positions -71, -70, -68, -67, -65, -55, -48 and -43, despite
remaining unchanged, till cause high RTL. Thus these positions seem to be

important in obtaining high RTL.



Transversion type of mutations (-60 GUT, -59and -57A 0 TorCi.ee ROY)
seen a position -60 (sequences R4, R5 and R6), at position -59 (sequences R2,
R4 and R8), and at position -57 (sequences R4, R7 and R8) appear to cause high
transcription efficiency.

Region between-25 to cap site and in the region below the cap site:
In most of the cases, the mutations in these regions have favorably supported the
multiple base substitutions in the upstream region of gene. It is aso of interest to
study the role of this region, in causing increased transcription efficiency for
sequences where % identity between the origina b-globin promoter sequence
and the ANN-GA simulated promoter patterns is greater than 90% (refer Table
[1). Although R6, R9, and R10 meet the stated criterion, we will concentrate
only on sequence R10 since sequences R6 and R9 show presence of up mutation
points. The % identity of sequence R10 with b-globin promoter is 94.2 and its
RTL is 3.6896. Interesting feature of this sequence is that al the three conserved
regions i.e, CACCC, CCAAT and TATA box, are not subjected to any
mutational changes; the sequence shows variation only in regions -101to -96, -
71to -31, and below the cap site (position +14). Since R10 possesses maximum
homology with the origina b-globin gene, only eight effective mutation points
that can lead to higher RTL are possible. Thus mutations at positions-101, -98, -
97, -56, -51, -46, -41 and +14 can cause increased RTL.
Among the ten sequences, R8 possesses highest RTL magnitude (=6.7307). This
pattern includes mutation at position -78 (up mutation point) and has % identity
value of 79.3. Hence, sequence R10 gives us an idea about the effective multiple
mutation points, in regions -71 to -31, -25 to the cap site, and below the cap site,
that eventually lead to the highest RTL vaue. This is an example of how the
ANN-GA optimization methodology could be exploited for a priori estimation
of multiple base substitutions before conducting the mutation experiments.

5.3.1 Roleof curvaturein gene expression

Sequence dependent DNA structure is important in packaging, recombination
and transcription. Therefore it is of interest to study the role of sequence-dependent
DNA structure in governing the extent of transcription efficiency. For this purpose,
CURVATURE program [23] can be used. This program is useful for plotting the



sequence- dependent spatial tragjectory of the DNA double helix and/or distribution of
curvature along the DNA molecule. The routine calculates the overall DNA path
using experimentally determined local helix parameters, namely, hdlix twist angle,
wedge (deflection) angle, and direction (of deflection) angle [24]. The
CURVATURE software can thus be used to investigate possible role of curvature in
modulation of gene expression and to locate curved portions of DNA that may play
an important role in sequence specific DNA-protein interactions.

For conducting the above-mentioned investigation, the DNA sequence of
upstream region of b-globin gene (glo, RTL=1.00) and ANN-GA predicted patterns
of b-globin gene were used as inputs to the CURVATURE program and the likely
degree of curvature at each point along the molecule was computed. The graphical
comparison of the curvature map of promoter sequence of b-globin gene and the
ANN-GA predicted promoter sequences is depicted in Figure 54. The results
suggest that sequences having maximum transcription efficiency show the sequence-
dependant bendability or deformability of duplex DNA. This can be justified on the
fact that certain nucleic acid sequences take up a particular structure required for
binding to a protein at lower free energy than other sequences. The comparison also
reveals that a change in the superstructure results in the ateration of transcriptional
activity. These results in essence indicate that the ANN-GA methodology is able to
capture the relationship between DNA superstructures and transcriptional activity.

Figure 55 shows the comparison of spatia trgectories of the DNA double
helix of upstream region of b-globin gene (glo, RTL=1.0) and the promoter sequence
(R8) having highest RTL (=6.7307). In both the cases, the projections are chosen
such that the most curved regions of the fragments are seen best. This is done by
placing the plane - where the axis is curved - perpendicular to the viewing direction.
Any other orientation would result in false impression of excessive curvature. It can
be seen in Figure 55 that the promoter pattern R8 is more curved at the center than

the promoter sequence of b-globin gene (glo). This structural variation that changes

the signature of b-globin gene is responsible for RNA polymerase to recognize and

thus facilitate the transcription.

5.4 CONCLUSION



Highly intricate process like transcription can be well captured using the
hybrid approach of two novel intelligent tools. This approach helps us to study the
effect of multiple base substitutions causing the increase in transcription efficiency.
These simulation results can be used as a guide in designing mutation experiments
since a priori estimate of the possible outcome of multiple mutations can be obtained.
This methodology has aso captured the role of DNA superstructures in gene
expression. Such a hybrid approach, involving an ANN that maps the given inputs
onto the outputs, and a genetic algorithm (GA) that maximizes the output by
searching the input space of ANN can be used for optimizing any biological
property.
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G | G | G [ T | A [ T [ [ G | ¢ | G
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1 121
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Parent 2

Crossover

1 121
| A | 1 | 6 | T A T | | ¢ | c¢c | ¢
Offspring 1

1 121
6 | 6 [ 6 [ T [ T [ A J.... [ G | T | G
Offspring 2

Figure 5-1: Basic crossover of the nucleotide sequence of the two parent strings.
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Figure 5-3: Flow chart for the implementation of ANN-GA strategy for the

optimization of transcription efficiency (in terms of its RTL value) of b-globin gene.
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Figure 54: Comparison of the curvature map of the upstream region of b-globin gene
(glo, RTL=1.0) and ANN-GA predicted promoter patterns of p-globin gene (R1 to R10,
RTL > 35). Curvature is given in DNA airvature units [25] which is the mean DNA

curvaureinthe crystaline nucleosome (1/42.8 R ).



Figure 5-5a DNA path of b-globin gene (glo, RTL=1.0) calculated using
CURVATURE software.

Figure 5-5b: DNA path of the ANN-GA predicted promoter sequence (R8, RTL=6.73)
calculated using CURVATURE software.



Table I: Sequence (simulated patterns of upstream region of b-globin gene)
details along with their ANN-GA predicted Relative Transcription Level (RTL)

value.
No. Relative
Transcription
Level (RTL)
R1 3.8690
R2 3.6919
R3 3.8870
R4 4.8404
R5 3.8465
R6 3.5799
R7 3.5703
R8 6.7307
R9 3.7589
R10 3.6896




Table I1:
promoter patternsfor sequence homology using FASTA package.

The best scores are: initn initl opt
R6, 121 bases, 34DF602C checksum 555 555 555
R10, 121 bases, 1203C265 checksum 535 535 537
R9, 121 bases, EA1BF176 checksum 492 492 492
R7, 121 bases, BC9B2289 checksum 453 453 470
R3, 121 bases, 492F8031 checksum 461 461 461
R1, 121 bases, ACDO8F2C checksum 450 450 452
R2, 121 bases, C5BA8B94 checksum 417 417 438
R5, 121 bases, A7CC5C50 checksum 363 363 401
R8, 121 bases, F8B2CAAC checksum 365 365 380
R4, 121 bases, A6543FA4 checksum 286 286 326
>>R6, 121 bases, 34DF602C checksum (121 nt)
initn: 555 initl: 555 opt: 555

95.8% identity in 120 nt overlap

10 20 30 40 50 60
gl o, CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCT CACACAGGATAGAGAGGGCAGGAGCC
) N A Troriiiiiii
R6, CGTAGAGCCACACCCTGGTAAGCGCCAATCTGCTCACACT GT ATAGAGAGGGCAGAAGCC

10 20 30 40 50 60
70 80 90 100 110 120
gl o, AGGGCAGAGCATATAAGGT GAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG
S S A A A D
R6, AGGACAGAGCATATAAGGT GAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG
70 80 90 100 110 120
gl o, T
R6, G
>>R10, 121 bases, 1203C265 checksum (121 nt)
initn: 535 initl: 535 opt: 537

94.2% identity in 120 nt overlap

gl o,

R10,

gl o,

R10,

gl o,

R10,

Comparison of upstream region of b-globin gene with ANN-GA predicted

10 20 30 40 50 60
CGTAGAGCCACACCCT GGTAAGGGCCAATCTGCT CACACAGGATAGAGAG(ECAGGAGCC

AGT TAAGCCACACCCT GGTAAGGGCCAATCTGCT! CACACAGGATACAGAGT GCAGAAGCC
10 20 30 40 50 60

70 80 90 100 110 120
AGGGCAGAGCATATAAGGT GAGGTAGGATCAGT TGCTCCTCACATTTCCTTCTGACATAG

GGGGCAGAGCATATAAGGT GAGGTAGGATCAGT TGCTCCTCACATTTGCTTCTGT CATAG
70 80 90 100 110 120

— X




>>R9, 121 bases, EA1BF176 checksum (121 nt)
initn: 492 initl: 492 opt: 492
90. 0% identity in 120 nt overlap

10 20 30 40 50 60
gl o, CGT. AGAGCCACAOCCT GGT AAGGGCCAATCT GCTCACACAGGATAGAGAGGGCAGGAGCC
Xoooor i S S
R9, TGT AGAGGCACACGCGGT GAAGAGCCAATCT GCTCACACAGGATAGAGAGCGCAGGAGCC
10 20 30 40 50 60
70 80 90 100 110 120
gl o, AGGGCAGAGCATATAAGGT GAGGTAGGATCAGT TGCTCCTCACATTTGCTTCTGACATAG
RO, ATGOCAGAGCATATAAGGTGOGGTAGGATTAGITGCTCCTCACATTAGCTTCT GACATAG
70 80 90 100 110 120
gl o, T
X
R9, T
>>R7, 121 bases, BC9B2289 checksum (121 nt)

initn: 453 initl: 453 opt: 470
87.6% identity in 121 nt overlap

10 20 30 40 50 60
gl o, CGT AGAGCCACACCCT GGTAAGGGCCAATCTGCT CACACAGGATAGAGAGGGCAGGAGCC
D A
R7, CGT TGACCCACACCCT GGTAGCGGCCAATCT GCTCACAGAGGATCGAGT GGGGAGT AGCC
10 20 30 40 50 60
70 80 90 100 110 120
gl o, AGGGCAGAGCATATAAGGT GAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG
R7, TGGGT AGATCGT ATAAGGT GAGGTAGGCTCAGTTCCTCCTCACATTTGCTTCTGACATAG
70 80 90 100 110 120
gl o, T
X
R7, T
>>R3, 121 bases, 492F8031 checksum (121 nt)

initn: 461 initl: 461 opt: 461
86.8% identity in 121 nt overlap

10 20 30 40 50 60
glo,  OGTAGAGCCACACCCTGGTAAGGGOCAATCTGCTCACACAGGATAGAGAGGECAGGAGCC
D e
R3, CGTAGAGCCACACCCT GGTAAGACCCACT CTGCT CACACAGGAT AGAGAGGGCAGGAGCC
10 20 30 40 50 60
70 80 90 100 110 120
glo,  AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG
R3, AT CAGCAT AT AT GG CEOtT CACAT GOT CT T CAAAT T COT COCCACATAG
70 80 90 100 110 120

gl o,

— X

R3,




>>R1, 121 bases, ACDO08F2C checksum (121 nt)
initn: 450 initl: 450 opt: 452
86.0% identity in 121 nt overlap

10 20 30 40 50 60
gl o, CGTAGAGCCACACCCTGGTAAGGGCCAATCT! GCT CACACAGGATAGAGAGGGCAGGAGCC
) -
R1, CGT AGAGCCACACCCT GGTAAGGCCCAATCT GATCCCACAGGATAGAGAGCﬁAATGAGCA
10 20 30 40 50 60
70 80 90 100 110 120
gl o, AGGGCAGAGCATATAAGGT GAGGT AGGATCAGT TGCT CCTCACATTTGCTTCTGACATAG
Siriiiiioa lriiiiiii DiiioniiiiiiiiiiiXo
R1, GACGCAGAGCATATTAGATGAGGT AGGATCGGGT GCCCCT CACTTTTGCTTCTGACAGAT
70 80 90 100 110 120
gl o, T
R1, T
>>R2, 121 bases, C5BA8B94 checksum (121 nt)

initn: 417 initl: 417 opt: 438
85.0% identity in 120 nt overlap

10 20 30 40 50 60
gl o, CGTAGAGCCACACCCT GGT AAGGGCCAATCT GCT CACACAGGATAGAGAGGGCAGGAGCC
D G riiiiiiiiiiiiii S
R2, CGT, AGCGCCACACCCAGGT ATGGGCCAATCT GCTCACACCGGT TAGAGCGGGCAGGAGCC
10 20 30 40 50 60
70 80 90 100 110 120
gl o, AGGGCAGAGCATATAAGGT GAGGT AGGATCAGT TGCTCCTCACATTTGCTTCTGACATAG
i Tl T i D ¢
R2, AGGGCATAGCCT ATAAGGTGT CGCAGGATTAATGGCT CCTCAGCGTTGCTTCGGACATAG
70 80 90 100 110 120
gl o, T
R2, G
>>R5, 121 bases, A7CC5C50 checksum (121 nt)

initn: 363 initl: 363 opt: 401
82.2% identity in 118 nt overlap

10 20 30 40 50 60
gl o, CGTAGAGCCACACCCTGGTAAGGGCCAATCT GCT CACACAGGATAGAGL\GGGCAGGAGCC
) A L il
R5, CGTAGAGCCACACCCTGTTAAGGGCCAATCT GATCACCCATTATAGAGAGGAAACGGGCC
10 20 30 40 50 60
70 80 90 100 110 120
gl o, AGGGCAGAGCATATAAGGT GAGGT AGGATCAGT TGCTCCT CACATTTGCT TCT GACATAG
R N SN S G
R5, AGGGCGCACCT TATAACGT GGT GAAGGT TCAGTTGCTCCTCACATCT! GT TTCCGACATGC
70 80 90 100 110 120
gl o, T

R5, T




>>R8, 121 bases, F8B2CAAC checksum (121 nt)
initn: 365 initl: 365 opt: 380
79.3% identity in 121 nt overlap

10 20 30 40 50 60
gl o, CGT AGAGCCACACCCTGGT AAGGGCCAATCT GCTCACACAGGATAGAGAGGGCAGGAGCC
) e -
R8, CGT GGAGCCACATCCTGGT GAGGCCCAATATGCT CTCACAGGT CCGAGAGGGCAAGAGCC
10 20 30 40 50 60
70 80 90 100 110 120
gl o, AGGGCAGAGCATATAAGGT GAGGT AGGATCAGT TGCT CCT CACATTTGCTTCT GACATAG
Dl I i X
R8, AGGGCAGAGGGCATAAACT GAGGT CGGT TGAGT TTCT CT GCACATTTGCTTCTTCT ATTG
70 80 90 100 110 120
gl o, T
R8, T
>>R4, 121 bases, A6543FA4 checksum (121 nt)

initn: 286 initl: 286 opt: 326
74. 4% identity in 121 nt overlap

10 20 30 40 50 60
gl o, CGT AGAGCCACACCCT GGTAAGGGCCAATCT GCT CACACAGGATAGAGAGGGCAGGAGCC
D A
R4, CGT AAAGACACACCCT TGTAAGGGCCAATCTGT TCT CAAGCT TTCGATATAGCAGAAACA
10 20 30 40 50 60
70 80 90 100 110 120
gl o, AGGGCAGAGCATATAAGGT GAGGT AGGATCAGT TGCTCCTCACATTTGCT TCTGACATAG
i CrliiiiinotiiiiiiiiiiiiXon
R4, AGGGCATCGCATGT AGT CT GACT CAGAATCAGT TGCTTCTCACATTTCGCT TCAGGAATAG
70 80 90 100 110 120
gl o, T
R4, T

Li brary scan: 0:00:00 total CPU tine: 0:00:00




Table 111: Effective mutation points for ANN-GA predicted promoter patterns in

accor dancewith various sub-regions.

No. -10lto- -95to- -86to - -77to - -71to - -30to- -25t0 Below
96 region 87 78 region 72 31 region 26 cap Ste  cap site
(CACCC (CCAAT (TATA
box) box) box)
R1 _ _ -78GC _ -69CA 2TAT -24GA +3AT
-66AC -11AG +17TG
-49CA -9TG +19GT
-47GT -5TC
-41AG
-40GA
-39GC
R2 -96AC _ -86TA _ -62AC _ -21AT +2CG
-81AT -50AT -20GC +3AC
-53AC -18TC +4TG
-35GT -12CT +12TG
-31AC -10GA
-8TG
R3 _ -78GC -74AC -40GA -21AG +2CA
-79GA -37CG -17AG +10TG
-36AT -15GC +12TG
-14AC
-10GC
-9TA
-3CT
R4 97GA -%ACA -85GT _ -69CT -20AG -25GT +12TA
-66AT -26AG -24GC +14AG
-63CA -20GC +15CA
-62AG -19GT
-61GC -18TC
-60GT -15GA
-50AT -4CT
-57AC
-54GT
-52GT
-51GA
-46GA
-44GA
-42CA
-35GT
-HAAC

" -78GC indicates that G at -78 position is mutated by C.



Tablelll continued...

No. -10lto -
96 region

R5 _

R6 _

R7 -9BAT

R8 -98AG

R9 -101CT

R10 -101CA
-9BAT
97GA

-95t0 -
87
(CACCC
box)

-95GC

-89CT

-%ACG
-88CG

-86to -
78 region

-84GT

-79GC

-81AG
-80GC

-82AG
-78GC

-86TG
-84GT
-83TG
-79GA

-77to -
72
(CCAAT
box)

-72CA

-71to -
31 region

-50AT
-58TC
-57AC
-47GA
-32CG
-31AG

-51GC

-56GC
-51GT
-46GA
-41AG

-30to- -25t0
26 cap site
(TATA
box)

-25GC
-21AG
-20GT
-18TA
-14AT

-14AC
-7GC

-30TC  -25GA
-24GC
-17AC
-14AT
-12CG
-7GT
-3CT

-2TG

-21AC
-12CT

Below
cap site

+5TC

+8CT
+12TC
+18AG
+19GC

+20TG

+13GT
+14AC
+15CT
+18AT

+6TA
+14AG

+14AT




CHAPTER

N BN A

Compilation and analysis of
mycobacterial promoters



In this chapter, we have compiled 125 mycobacterial promoter sequences, out of
which 80 promoters have their transcription start-site (TSS) mapped while the other
45 are the putative promoters. Mycobacterial promoters have been analyzed for
various features like: i) TSS, ii) -35and —10 regions, iii) s factor, iv) spacer length,
V) upstream region of —35 box, and vi) % G+C content. These features are compared
to similar features known for E. coli promoters. Further, the study suggests a broad
éclassification of these promoters into three main types viz.,, i) E. coli type, ii)
Mycobacterial (Non-E. coli) type, and iii) Extended —10 promoters. The results throw
some light on the mycobacteria transcription machinery and structure of
mycobacterial promoters, which is an important step to understand the low level of

its transcription, and the possible mechanisms of regulation of gene expression.




6.1 INTRODUCTION

The genus Mycobacterium is of immense importance to human hedth
because pathogenic species like Mycobacterium tuberculosis Mycobacterium leprae
eic. belong to this group. The avirulent strain of Mycobacterium bovis, which has
been extensively used as a tuberculosis vaccine, BCG (bacille Calmette-Guerin), is
aso a very attractive vector for the construction of live recombinant vaccines
particularly because of its strong immunogenicity. Thus, it is necessary to understand
the essential features of transcription machinery for clear understanding of gene
expression in these organisms.

Transcription is the very first and critical step in the process of gene
expression. Transcription initiation involves interplay between RNA polymerase
(RNAP) and promoter region. RNAP occupies the central role in transcription
process. In prokaryotes, structure and function of enzyme RNAP seems to be
conserved during evolution. The size, composition and function of different subunits
of core polymerase do not vary much in different bacteria. On the other hand,
promoter structures vary significantly from species to species and even within
species depending on the kind of sigma factor (protein that binds to core enzyme and
direct correct initiation) bound to the polymerase. Further, different trans-factors
influence promoter recognition by the holoenzyme. In short, transcription only
occurs from defined sites and in a specific direction, and the nature of the promoter
will influence the affinity of the RNAP for that site, and hence determine the
efficiency of transcription. Transcription efficiency is ultimately the major
determinant of the level of gene expression.

Mycobacteriad genome has high G+C content. Since the G+C content of
genome affects codon usage and promoter recognition sites in an organism, it is
reasonable to predict that transcription and other regulatory processes in
Mycobacteria may differ from E. coli and many other bacteria. For expression of
mycobacterial genes, Streptomyces is shown to be preferred host compared to E. coli.
Thisis mainly because Streptomyces also has a high G+C content and they appear to
be less stringent than E. coli in their promoter specificity [1]. Mycobacteria and
Sreptomyces belong to the same bacterial order i.e.,, Actinomycetales hence, they

may share some similarities in their transcriptional signals.



A significant finding that Mycobacteria have a low transcription rate and a
low RNA content per unit DNA was reported in late seventies by Harshey and
Ramkrishnan [2]. Understanding the reasors for this low level of transcription, and
the possible mechanisms of regulation of gene expression, requires examination of
the mycobacterial transcription machinery and the structure of mycobacterial
promoters. With this objective, we have compiled different mycobacterial promoters
and analyzed their DNA sequences for various features in this chapter.

Transcription iswell studied in E. coli as compared to Mycobacteria. E. coli
promoter paradigm forms the basis to analyze promoters in other systems. In E. cali,
alarge number of the genes that are expressed during normal vegetative growth have
recognizably similar sequences at —35 and —10 positions (TTGACA and TATAAT,
respectively) with respect to the transcription start site (TSS). The spacer-length
between these two conserved regions is usualy 1520 bases. A combination of
conserved —10 and —35 elements along with optimal spacer length (17+1 bp) is
referred to as the typical E. coli consensus promoter. More precisely, E. coli
consensus promoter is recognized by RNAP when the enzyme is combined with one
specific sigma factor, sigma 70. Under certain circumstances, sigma 70 is replaced
by other sigma factors, and the promoter specificity of the RNAP is altered so that a
different group of genes is expressed A majority of promoters using sigma factor 70
have at least two of the three most highly conserved bases in the —10 (TA...T)
region, and at least one of the most highly conserved residues in the —35 (TTG...)
region [3]. The majority of E. coli promoters fall into two basic categories: (i) those
recognized by Es ™, the activities of which are modulated by negative and positive
regulators that must ‘ communicate directly’ with the RNAP; and (ii) those promoters
recognized by Es**, which are mainly regulated by activation, where the location of
activator binding site could be remote from the binding of the RNAP [4].

6.2 COMPILATION AND ANALYSIS OF VARIOUS
FEATURESOFTHE MYCOBACTERIAL PROMOTERS

To define the DNA sequence features associated with mycobacterial RNAP,
we have compiled 125 mycobacterial promoter sequences. Out of these 125
promoters, TSS is mapped for the 80 promoters and the remaining 45 promoters are

the putative promoters based on the location of their consensus sequence. In this



analysis, we have considered a long stretch of nucleotides in the promoter region for
the following reasons: i) RNAP from E. coli protects a large region in the promoter;
Dnasel footprinting experiments show that this coverage extends up to region 50 to
70 nucleotides including regions upstream and downstream of —35 and —10 sequence.
Considering that the mycobacterial RNAP architecture is similar to that of E. coli [5],
it is reasonable to expect larger area of occupancy by mycobacteria RNAP as well;
and ii) in many promoters, regions upstream and downstream play important role in
influencing promoter efficiency. Hence, we have considered the sequence stretches
between —50 and +10 bp with respect to the TSS for the promoters where TSS is
mapped. The promoter sequence length varies based on the availability of the
nucleotide sequence upstream of the —35 region and downstream of the —10 region.
For the putative promoters, we have documented the sequence stretch between 15 bp
upstream region of —35 box and 20 bp downstream of the —10 region. In few cases,
for the same gene two or more different sequence frames are considered based on the
alternate consensus probability. The compilation is presented in Tablel.

From the extensive studies on transcription in E. cali, it is clear that several
factors can affect the strength of the promoter. Mgjor factors which influence
promoter strength are: (i) nucleotide sequence of the —35 region, (ii) nucleotide
sequence of the —10 region, (iii) spacing between the —35 and —10 regions, (iv)
nucleotide sequence (especially A+T content) in the 5 flanking region upstream
from the —35 regions [46]. In order to make a meaningful comparison, for the
mycobacterial promoters, we have listed i) total length of the promoter region, ii) -35
region, iii) spacer length, iv) occurrence of TG motif,v) -10 region, vi) distance
between the —10 region and TSS, vii) TSS, viii) % A+T content within individual
promoter, and ix) % G+C content within individual promoter. A compilation of this
information on 125 promotersis listed in Table I1. In sections 21 to 2.7, we compare
and contrast several features of mycobacterial promoter to those known for E. coli
promoter sequences. Based on features discussed in these sections and choice of
expression host, mycobacterial promoters can be broadly classified into three main
types. Such classification may help us to better understand the mechanisms behind
their expression. These classes are discussed in the sections 3.1 to 3.3. Later in
sections 4.0 and 5.0, we have briefly documented stable RNA expression and
influence of DNA topology and curvature on transcription.



6.2.1 Transcription Start Site

E. coli s™ dependent promoters generally initiate transcription at a purine,
adenine being more frequently utilized than guanine [47]. The selection of this
nuclectide is influenced by the sequence around —35 and by the composition of the—
2t0 -5 positions [48-49]. We have anadyzed the promoter compilation of the 80
sequences where TSS is mapped for occurrence of nucleotide type at TSS. The
results of this analysis are shown in Figure 6-1. Occurrence of G at TSS among the
four different nucleotides is about 49% and that of A is 28%. Thus, it appears that the
purines (especiadly G) seems to be preferred first nucleotide of RNA.

GTG is often used as a start codon in Mycobacteria as opposed to ATG in E.
coli. Mycobacterial genes show arelatively high degree of codon bias, reflected by a
predominance of G or C at position 3, especialy in M. tuberculosis[50].

In E. coli s ° dependent promoters the spacing between the first nucleotide of
the —10 region and the TSS is usualy six or seven nucleotides, although functional
examples between 4 and 10 nucleotides have been reported [47]. For our compilation
of mycobacterial promoters, this distance also varies between 4 and 10 nucleotides.
However, 92% of them show 5 to 8 nucleotides as a spacing distance between first
nucleotide of the —10 element and TSS (see Tablell).

6.2.2—35and 10 region
The importance of the —10 and —35 promoter sequences lies in their

interaction with the s factor bound to the RNAP for the initiation of transcription.

Theregions of s factors responsible for binding to the —10 sequences are designated
as 2.3 and 2.4, and for —35 sequences are specified as 4.2 [51].

Some mycobacterial promoters contain —35 and —10 regions, which resemble
to E. coli s™ type promoters. As can be seen from Table |1, M. tuberculosis rrnA
PCL1, 16S rRNA, ahpC, 10kDa (one with spacer length 17), metA, rpsL; M. bovis
BCG rRNA, ahpC, rpsL; M. leprae groE1, rpsL; M. smegmatis acetamidase, rrnB,
rrnA P2, rrnA P3, rrnA PCL1, rpsL (one with spacer length 18); M. fortuitum rrnA
PCL1, rrnA P2a, rrnA P2b; M. phlel rrnA PCL1, rrnA P2 ; Mycobacteriophage L5
71P2; M. necaurum rrnA PCL1, rrnA P1, rrnA P3, rrnA P2 ; M. abscessus rrnA P4,
rrnA PCL1, rrnA P2, rrnA P3; and M. chelonae rrnA PCL1, rrnA P4 promoters

resembleE. coli s ® type promoter.



M. smegmatis rpsL promoter has two potentid —10 hexamers, i) five bp
upstream of the TSS, which has 50% nucleotides matching with the typical E. coli
s region, and ii) eight bp upstream of TSS, which has 66% matched nucleotides.
There are also two potential —35 regions, with spacer length 17 and 18 bp which has
33 and 50% matching nucleotides, respectively. By oligonucleotide directed
mutagenesis, Kenny and Churchward [23] have shown that mutations in the rpsL
promoter region, which result in deviation from the consensus E. coli sequences,
abolished promoter activity. They have aso demonstrated that —10 region present
eight bp upstream of the TSSis recognized invivo and the—35 region is not essential
for promoter activity of M. smegmatis.

Dellagostin et a. [52] have demonstrated that in M. smegmatis, the M. leprae
18 Kda gene utilizes a single TSS located 66 bp upstream of the start codon.
Immediately upstream of the TSS of M. leprae 18 kDa, putative -10 and —35
hexamers are present. They are similar to E. coli s™ consensus promoter sequences.
The region of the 18kDa gene promoter (CTATATC) containing the putative —10
sequence, when compared to the E. coli —10 consensus sequence (TATAAT), shows
amismatch at either thefirst or the last T residue, both of which are highly conserved
in E. coli. An alternative interpretation by the authors is that the functional 18 kDa —
10 sequence is a pentamer (TATAT).

Timm et a [53] have shown the importance of —10 region in promoter
efficiency in Mycobacteria by point mutations in M. fortuitum blaF gene, and M.
smegmatis alrA gene. Essentially these mutants map to the putative —10 hexamer,
and increase the overall A+T content of the —10 hexamer, consequently resulting in
increase in transcription efficiency.

Mycobacteriophage 13 promoters when compared to E. coli s™ type
promoters, showed greater sequence homology in the—35 region, ranging from 33 to
83% and compar atively weaker sequence homology in their —10 region, ranging
from 17 to 50%. Not surprisingly these promoters are shown to be active in E. coli
[42].

M. tuberculosis 85A has two putative —35 regions. One of these is positioned
a 17 bp from the —10 region, showing 50% identity with the E. coli consensus
promoter, and the other positioned at 22 bp from the —10 region, showing 83%

identity with the E. coli consensus sequence. The second —35 region is identica to



the —35 region of the M. lepraeand M. tuberaulosis 16S rRNA promoter region.
Interestingly, the —10 hexamer of the 85A promoter shows some similarities to
several Sreptomycete promoters, such as the kgmB-p, strpB-, aacC9 , afsAp, and
vph2 promoters. Moreover, like the 85A promoter, these Sireptomycete promoters
are not typically expressed in E. coli [4].

Kremer et al [11] observed that deletion of 4 bp or insertion of 64 bp between
the —10 and —35 regions of the M. tuberculosis 85A antigen promoter abolished only
50% of the promoter activity. Based on this finding the authors have suggested that
although the sequence at the —35 position is essentia for transcription, its location
may not be critical, a feature similar to Sreptomyces, and dissimilar to E. coli
promoters.

Hoopes and McClure [54] have shown that during isomerization step of
promoter-polymerase interactions, the DNA sequence around —10 region of the
promoter opens up along with a conformational change in RNAP. In aimost al the
cases including eukaryotic systems, the AT rich region is perhaps crucia for the
formation of open complex. In sharp contrast, many (30%) mycobacterial promoters
have high GC content, instead of AT in their —10 region (Table Il). Mycobacterial
promoters having high GC content ¢ 50%) in their —10 region are M. tuberculosis
gyrA, cpn60, gyrB P1, 85A, gyrB P2, katG P, T6, T80, gyrB P3, KatG Pa, purC,
metA; M. bovis BCG 18K, mpb70; M. smegmatis S65, ask, rpsL (one with spacer
length 17), ahpC; M. paratuberculosis pAJB303, pAJB86, pAJB300, pAJB304,
pAJB73, pAIB301 pAJB125, pAIB305; M. fortuitum rrnA P1, rrnA P3; and M. phlei
rrnA P1, rrnA P3; Mycobacteriophage 13 ORF1 ; M. avium pLR7 ; M. abscessus rrnA
P4, rrnA P2, rrnA P3; and M. chelonae rrnA P2, rrnA P3, rrnA P4. This raises the
guestion, how DNA melting (isomerization step of promoter-polymerase interaction)
is occurring in these mycobacterial promoters having high GC rich —10 region? One
possibility is that this step might be controlled by specific sigma factors or some
additional transcriptional activators may perform the task. Out of these promoters, M.
tuberculosis cpn60, 85A, M. bovis BCG mpb70, M. smegmatis ask are shown to be
non-functional in E. coli and hence they might be typical mycobacterial promoters.
This observation encourages to say that promoters rich in GC at —10 region are a
different class (and perhaps genuine) mycobacterial promoters.



It is interesting to note that although promoters M. tuberculosis metA; M.
abscessus rrnA P4, rrnA P2, rrnA P3; M. chelonae rrnA P4 have high GC content
(=50%) in their —10 region, they also have E. coli s’ type —10 region. The reason for
such a pattern is G and C nucleotides are present at the third, fourth, and fifth
position of —10 hexamer, keeping TA---T requirement of E. coli s type —10 region
undisturbed

Interestingly, eight out of nine M. paratuberculosis promoters listed here
showed high GC content in their —10 region. Thus, there is absence of E. coli s ™
type conserved —10 region in this species of Mycobacteria. M. paratuberculosis
promoters show presence of at least one residue out of TTG... a —35 region, a
feature typical of mgjority of E. coli s™ type promoters. M. paratuberculosis
promoters thus seem to be very different from the E. coli s type consensus
promoters. It will be interesting to study mutational analysis at the presumptive —10
and - 35 region to assess the promoter strength and to carry out foot printing analysis
with the RNAP to address the contact points. Such studies would ultimately reveal
the characteristics features of “typical” Mycobacteria like promoters.

M. smegmatisand M. tuberculosis promoter analysis by Bashyam et al [6]
showed that their —10 regions are highly similar to those of E. coli s” promoters, in
contrast to their —35 regions, which can tolerate a greater variety of sequences. This
could presumably be due to the presence of multiple sigma factors with different or
overlapping specificities for —35 regions, like Streptomyces promoter. In case of
promoters where nonfunctional —35 region is seen, occurrence of extended TG motif
near —10 region is functionaly significant. There are many promoters, which do
contain TG motif next to —10 region. This is discussed in more details in the
extended —10 promoter types (section 3.3).

Thus, the more genera trend is, -10 consensus sequence of E. coli appears to
be conserved in one group of mycobacterial promoters. A large variety of sequences
can be accommodated in the —35 region [6, 55-56] as absence of a conserved —35
region is adistinctive feature of a class of mycobacterial promoters.

It iswell-established fact that elements in the —35 and —10 regions are crucial
in the transcription initiation process as s © RNAP holoenzyme makes direct contact
in these two regions. Hence, to get an insight into transcription initiation mechanism

among different mycobacterial species, it will be important to study the role of



consensus sequences and their percentage occurrence for particular nucleotide at
each position in these conserved hexamers. We have carried out the analyses for
available promoter sequences from different species of Mycobacteria with an idea to
evaluate species specific differences, if any, which may reflect differential gene
expression. Upon inspection of promoters of each species separately, we have
calculated the percentage conserved homology for —35and —10 regions for different
mycobacteria species and listed them in Table I1l. For each position in the hexamer,
we have considered the predominantly occurring nuclectide and its percentage
homology in maintaining conserved sequence. Thus, percentage conserved
homology obtained for entire mycobacterial promoter compilation is as follows: -35:
T (87%), T (60%), G (66%), A (46%), C (56%), T (39%); and —10: T (70%), A
(74%), T (34%), A (35%) / G (33%), C (34%) / G (27%), T (74%). For inter-species
variation of the —35 and —10 consensus occurrence, readers are advised to refer Table
Il. This analysis reflects the large variations among the mycobacterial promoters
characterized thus far, and suggests that the consensus sequences are representative
of only a fraction of mycobacterial promoters. The variation in promoter structure
may reflect the presence of larger number of s factors in the genus Mycobacteria
(see section 2.3).

6.2.3s factors

Sigma factors are essential components for promoter recognition and
transcription initiation. All known s factors belong to two different families: i) those
evolutionary related to the E. coli housekeeping factor s °, and ii) those related to the
alternative factor s> [57]. Each family of s factors shows different promoter
recognition, isomerization, and regulation properties [58]. Es™ does not show
formation of stable closed promoter complexes, and therefore transcription can be
initiated spontaneously in the absence of activator proteins [59]. However, B>
forms physically detectable closed-promoter complexes and is unable to initiate
transcription spontaneously as it requires additional transcriptional factors
(denominated enhancer-binding proteins) to initiate RNA synthesis [60].

The principal sigma factors of M. smegmatis, M. tuberculosis and M. leprae
are nearly identical to the principal sigma factors of Streptomyces auerofaciens They

are also nearly identical to the principal sigma factor of E. coli (RpoD) in the region



responsible for binding to the —10 box, and differ substantially in the region involved
in binding to the—35 box [6].

The genome sequence analysis of M. tuberculosis (genome size 4.1 Mb) has
revealed presence of 14 sigma factors in the DNA of virulent strain [61]. Thus,
organisms like M. smegmatis are larger than M. tuberculosis in their genome size, so
it is obvious to have substantial number of sigma factors in them. The presence of a
large number of sigma factors is a characteristic feature very similar to Streptomyces
species and allows for greater transcriptiona initiation flexibility as also for
providing an efficient means of gene regulation in these organisms. The presence of
many s factors with different consensus sequence requirements may also be the
reason for the large variations or heterogeneity in the —10 and —35 sequences of
mycobacterial promoters as aready discussed in section 2.2. The features viz.,
promoter sequence heterogeneity and plethora of s factors seem to be a more general
phenomenon of regulating transcription initiation specificity in the members of the

Actinomycetales.

6.2.4 Spacer length

In E. coli s™ type promoters, the optimal spacing between the —35 and —10
elements is 14 1 nucleotides, although, functional promoters with spacing ranging
between 15 and 20 non-conserved nucleotides have also been reported [47, 62].
These s ™ class of promoters are the strongest when they have consensus —10 and —35
region along with optimal spacing of 17 bp separating the two conserved elements.
Spacing less than 16 or more than 18 often results in conserved contact points lying
on the opposite face of the DNA helix [3]. Mycobacterial promoters identified to
date, show spacing between —10 and —35 regions as 7 to 24 bp (see Table II). As
genus Mycobacteria seems to comprise of many sigma factors, it is expected that
each type of sigma factor will require different spacing length, and thus explain to
some extent the larger variation in the spacer length. We have analyzed the promoter
compilation for percentage occurrence of each spacer length type. From Figure 6-2,
it can be inferred that although, spacer length varies over a wide range (7 to 24 bp),
occurrence of 17 (27%) and 18 bp (35%) as a spacer length is predominant. Thus, the
major sigma factor recagnition pattern in Mycobacteria appears to be similar to that

of E. coli s ™ type.



6.2.5 Upstream region of the—35 box

Studies on E. coli promoter sequences have shown that the upstream element
enhances the initial association of RNAP with the DNA. This association is
independent of the presence of s factor. Inspection of far-upstream region of —35
box, may provide insight into promoter architecture which can be compared to that
of E. coli. Similarities, if any, might suggest common mechanisms of regulation
between the Mycobacteria and E. coli. In most of the promoters in our compilation,
such analysis did not reveal any special features. However, M. tuberculosis gInA (the
one with spacer length 10), KatG P, purC, ahpC, 65kDa; M. bovis BCG ahpC, 18K,
mpb70, alpha; M. leprae 18kDa, 28kDa, 65kd; M. smegmatis gyrB, rrnA P1, rpsL
(the one with spacer length 17), ahpC, M. paratuberculosis pAJB86; M. fortuitum
rrnA P1; M. phlei rrnA P2; Mycobacteriophage 13 ORF2 ; Mycobacteriophage L5 71
Pieit, 71 P1; M. neoaurum rrnA P1; M. abscessus rrnA P4, rrnA P2, rrnA P3; M.
chelonae rrnA P2, rrnA P3, rrnA P4 contain occurrence of AnTm (n+m?3 3) stretch in
the immediate upstream of —35 region. Out of these promoters ahpC from M.
smegmatis, M. tuberculosis and M. bovis BCG; M. leprae 18kDa, 28kDa;
Mycobacteriophage 13 ORF2; Mycobacteriophage L5 71 P1; and M. abscessus rrnA
P3 have more than 50% of A+T content. Hence, occurrence of AnTm (n+m 3 3) in the
upstream region of —35 element is not surprising, but it is certainly remarkable for
others where G+C content of the promoter is more than 50%. For these promoters, to
accommodate high GC content, occurrence of GC intrusions might be somewhere
other than upstream region. The ahpC promoter from M. tuberculosis and M. bovis
BCG, M. smegmatis rpsL, M. phlei rrnA P2, M. neoaurum rrnA P1, M. abscessus
rrnA P4, rrnA P2, rrnA P3 contain E. coli s ® type conserved hexamers along with
the AnTm (n+m 3 3) tract in the upstream region of —35 box. Perhaps these might be
the strongest promoter s among Mycobacteria. All the promoters having AnTm (n+m
3 3) tract in the immediate upstream of —35 region are not repeated in phase with
each other. But M. tuberculosis KatG R: (the one with spacer length 22), purC,
ahpC; M. bovis BCG ahpC, alpha; M. leprae 65KD; M. smegmatis ahpC; M.
abscessus rrnA P4, rrnA P2, rrnA P3; M. chelonae rrnA P3, rrnA P4 promoters have
AnTm (ntm?3 3) tract repeated in phase with each other.

The recA gene of M. tuberculosisand M. smegmatis is regulated in a similar
manner. In both the species, this gene contains upstream region, which has a



sequence motif with homology to Cheo box LexA regulatory site of B. subtilis, while
there is no similarity to the SOS box of E. coli. The region of DNA 300 bp upstream
of the recA gene wasshown not to contain a promoter, suggesting that it functions as
an upstream activator sequence [56]. The upstream region of M. leprae 18kDa

promoter has also been shown to be essential for expression [52].

6.2.6 % G+C content

There is dramatic variation in the percentage of G+C content in the typical E.
coli and mycobacterial promoters. Hence, we have evaluated the average value of
percentage A+T and G+C content for each mycobacterial species. In genera,
occurrence of GC is high compared to AT, for mycobacterial promoters on species
level (refer Table I11). The mycobacterial promoters show a high G+C content than
the corresponding E. coli promoters. There are few exceptions to this observation
like M. leprae 18kDa, M. smegmatis 6, S12, S18, S21, S30, S35, and S119, whose
G+C content is less than or equal to 40% (refer Table I1).

M. tuberculosis 85A promoter region with spacer length 17 bp has 58% G+C
content and that with the spacer length 22 bp has 61% G+C content (see Table I1). In
this respect, it is interesting to note that mycobacteria promoters having high GC
content are usually better -expressed in Streptomycetesthan E. coli [1].

M. tuberculosis promoters have a higher G+C content (58%) than the M.
smegmatis promoters (50%) which may have a bearing on the differences in the gene
expression between these two species.

It is clearly observed that overall G+C content (56%) for mycobacterial
promoter compilation is high compared to G+C content (40%) of E. coli promoters
listed by Harley and Reynolds [3]. It appears that upstream region of mycobacteria
promoters is relatively more susceptible to GC intrusions to accommodate the higher
GC content of its promoter region.

6.2.7 Comparison of Mycobacterial promoters with E. coli

promoters
Despite the fact that mycobacterial promoters function inefficiently in E. coli,
both the mycobacterial transcription machinery and the structure of mycobacterial

promoters show marked conservation with those of E. coli. Diversity among the



mycobacterial promoters and s factors however is greater. It is interesting to note
that the promoters of gram-positive organisms show tighter consensus sequence
requirements than those of E. coli, which in turn are more conserved than those of
the Mycobacteria.

There is a great deal of heterogeneity in the consensus sequences of
mycobacterial promoters. Such variations perhaps reflect diversity required in
transcription regulation in Mycobacteria. Thus it is not surprising that Mycobacteria
has two house keeping sigma genes compared to one in E. coli.

The presence of large number of sigma factors with different consensus
requirements may also be the reason for the large variation in —10 and —35 sequences
of mycobacterial promoters. The —10 region of a class of mycobacterial promoters
and the corresponding binding domain in the major sigma factor are highly similar to
E. coli counterparts. In contrast, the sequences in —35 regions of mycobacterial
promoters and corresponding binding domain in the major sigma factor are vastly
different than their E. coli counterparts. E. coli RNAP have seven types of sigma
factors and hence seven classes of promoters. Mycobacteria genome analyses have
shown that they contain at least 14 sigma factors, so minimum number of promoter
classes may be 14 in Mycobacteria.

Spacer length between —35 and —10 hexamer is not critical in Mycobacteria.
The upstream region of mycobacterial promotersis relatively more susceptible to GC

intrusions to accommodate the higher GC content of its promoter.

6.3 CLASSIFICATION
6.3.1 E coli type promoters

A significant minority of mycobacterial promoters such as M. tuberculosis 65
kDa [63], M. bovis BCG 64 kDa [64], and M. leprae 65kD [65], the biotin carrier
protein of severa species [66] has been shown to be expressed in E. coli. These
organisms might share some similarities in their transcription initiation signals with
E. coli.

Mycobacterial promoters controlling the expression of heat shock proteins are
among the rare ones that have been shown to be active in E. coli [29]. There are
sequence similarities between the mycobacterial heat shock promoters and consensus

promoters recognized by s® ands® of E. coli. M. paratuberculosis Pay [41], M



fortuitum blaF [53], M. leprae 18kDa [52] were aso found to contain well conserved
—10and —35 regions and active in E. coli. Expression was however less efficient than
the natural hosts in al the cases.

Recently, M. tuberculosis KatG [15] promoter has been characterized and
shown to be active in E. coli. However, expression in E. coli was less efficient than
its natural host. The analysis of this particular promoter has shown that there is only
a partial sequence homology with E. coli s 0 type sequence, which may be one of the
reasons for sub-optimal expressionin E. coli.

Suzuki et al [26] have shown that M. bovis BCG 16S rRNA promoter can be
expressed in vivo and in vitro using E. coli RNAP. This promoter showed sequence
similarity to E. coli promoters. They have also shown that the strengths of E. coli and
M. bovis BCG rrn are identicd in E. coli. The E. coli RNAP did not utilize another
putative promoter of the BCG rrn, which suggests that the second promoter may be
recognized by a specific sigma factor not present in E. coli.

M. tuberculosis 38 kD gene can be expressed in E. coli from a lambda gtl1l
recombinant, independently of IPTG addition. This indicates that transcription can be
initiated from within the mycobacterial insert, presumably (but not conclusively)
from the natural promoter of the gene. However, analysis of the sequence does not
reveal any regions upstream from the putative trandation start position that
resembles a consensus prokaryotic promoter [67].

Gene coding for the 28kD antigen of M. lepraerevealed one region with a
considerable degree of homology to the Fur-binding site of iron-regulated promoters.
Although the 28 kD gene is not known to be ironregulated in M. leprae (and indeed
such studies are not easy for non-cultivable bacteria), this sequence comparison
indicates that it is likely to be repressed by the presence of iron. This carries a further
implication that in M. leprae(and presumably other bacteria) iron regulation of gene
expression is mediated by a protein homologous to the Fur protein of E. coli.

In short, M. tuberculosis 38kD and M. leprae 28kD antigen genes are
associated with DNA sequences that suggest the possibility of specific regulatory
mechanisms, without such control having been demonstrated directly [19].

The putative promoter region of the 16S ribosomal RNA-encoding gene
(rRNA) of M. leprae exhibits promoter activity in Gram™ (E. coli) and Gram’

(Bacillus subtilis) bacteria [31]. Analysis of sequence revealed a promoter —like



sequence, which is close to the canonical —10 and —35 regions found in many
bacteria [3]. It is interesting to note that —35 region and spacer length of this
promoter is identical to the —35 region and spacer length of E. coli rrnP2 promoter.
The rpsL promoter resembles E. coli s ™ type promoter in almost all-major
mycobacteria species like M. tuberculosis, M. bovis BCG, M. leprae, and M.
smegmatis. Since rpsL is highly conserved gene, the transcriptional regulatory
features also seem to be conserved. Kenny and Churchward [23] have reported that
the TG motif present upstream of the —10 hexamer can play arole in the activity of

the rpsL promoter of M. smegmatis (see section 3.3).

6.3.2 Mycobacterial (Non-E. coli) type promoters

M. tuberculosis 85A promoter was one of the first promoters to be studied in
some detail [11]. A surprising observation was that the promoter is not functiona in
E. coli. These results raise the possibility of the occurrence of an entirely different set
of promoters in Mycobacteria, which are not recognized by E. coli transcriptional
apparatus. With the characterization of many promoters now it is clear that a larger
number of mycobacterial promoters fail to function in E. coli, constituting a different
class.

The M. tuberculosis 85A promoter has —35 region showing significant
resemblanceto E. coli s™like —35 region, unconventional —10 region and/or the 22
bp spacer between the —10 and the —35 regions. However, it is shown that spacer
position may not be critical for promoter activity in Mycobacteria, like Streptomyces
promoter [68]. In spite of having significant resemblance to —35 region of E. coli s
like promoters, this raises the intriguing question of why these promoters are not
expressed in E. coli. Clearly, additional facet of regulation has to be understood
including the details about the transcriptional machinery.

M. tuberculosis recA promoter contain TCTAGT and TTGTCA as-10 and —
35 consensus sequences resembling to E. coli s ™® type promoters. However, spacing
(9 bp) between these two elements is very different from that found in E. coli. The
M. tuberculosis recA gene is not expressed in E. coli from its own promoter. Hence,
it is possible that either mycobacterial RNA polymerase recognizes the same motifs
as does E. coli polymerase but at a different spacing or it binds to a different

sequence in the —35 region [56].



M. paratuberculo sis promoters listed by Bannantine et a. [40] showed some
conservation at —35 regions with E. coli s’° type promoters and high GC content in
the —10 region, dissimilar feature with E. coli s™ type promoters. Hence these
promoters belong to the Non-E. coli or Mycobacteria type promoters.

M. tuberculosis ppgk promoter has high G+C content (61%) and the absence
of an E. coli like promoter consensus with other mycobacterial promoters [24]. M.
tuberculosis cpn60, M. bovis BCG hsp60, mpb70 and M. smegmatis ask promoters
showed absence of E. coli s” like consensus regions. M. tuberculosis cpn60, M.
bovis BCG mpb70 and M. smegmatis ask promoters have high GC content in their —
10 region as well as in the entire promoter stretch (—50 to +10 bp), too. One of the
possible reasons for mycobacterial promoters to be nonfunctiona in E. coli, might
be the poor interaction between the 4.2 region of the E. coli sigma factor and the—35
regions of mycobacterial promoters. The promoters, which are non-functional in E.

coli, may be more typical for Mycobacteria.

6.3.3 Extended —10 promoters

A large number of mycobacterial promoters seem to have —10 conserved
element without apparent conservation at —35 region. Amongst them, many possess
extended —10 region characterized by dinucleotide element TG in the immediate
upstream of —10 hexamer. The TG motif along with the functional —10 region is an
important determinant of transcriptional strength in Mycobacteria. The influence of
the TG element on transcriptional strength is also modulated by the sequences in the
—35 region. It was aso shown that the thermal energy requirement for open complex
formation in an extended —10 promoter was less than that for a conventional —10/-35
promoter [69].

As can be seen from Table Il, M. tuberculosis T101, T129, groE, M bovis
BCG hsp60 P2, M. leprae 16SrRNA, 18kDa, 65 kD, M. smegmatis b, S6, S16, S19,
1, S119, recA, rpsk, M. fortuitum repA Mycobacteriophage 13 ORF2, M.
abscessus rrnA P4, rrnA PCL1, rrnA P2, rrnA P3, M. chelonaerrnA P2, rrnAPCL1,
rrnA P3, and rrnA P4 promoter contains the TG element immediately upstream of
the —10 region.

Thus, based on a sample size of 125 promoters, 20% of mycobacterial

promoters contain TG motif. Analysis of 183 promoters from various species of



gram-positive bacteria [70-72] reveals that frequency of occurrence of the TG motif
in these promoters is around 60%. In E. coli promoters, the TG motif occurs with a
frequency of about 16% [73].

Bashyam and Tyagi [25] have suggested three possible roles of the extended
—10 promoters, viz. i) in particular regions of the bacterial chromosome having
sequence constraints, where it may be difficult to maintain two specific hexameric
sequences, ii) to maintain a basal level of transcription in the case of promoters that
contain aweak —35 region and are regulated by protein-DNA interactions in the —35
region, and iii) to facilitate transcription initiation at cold temperatures or when the
sigma factor is proteolyticaly cleaved. According to Burns and Minchin [69] TG
motif results in an atered DNA conformation which could either directly facilitate
strand separation or alow additional DNA-protein contacts which would then

promote open complex formation.

6.4 STABLE RNA EXPRESSION

In our compilation, rRNA promoters from dfferent species of Mycobacteria
are listed. Anaysis of these promoters (see previous sections) revea that they
resemble to—10 and —35 consensus sequences of E. coli s ™ promoters along with the
upstream A dtretch, a putative up-element. These characteristics are very similar to
rRNA promoters found in E. coil and many other bacteria, underlying the importance
of evolutionary conservation of stable RNA expression. However, there are
differencesin rRNA copy numbers in different mycobacterial species suggesting the
linkage between growth rate and ribosome synthesis to gene dosage.

Fast growing Mycobacteria (e.g. M. smegmatis) were shown to contain two
sets of rRNA genes whereas slow -growing Mycobacteria contain only one set [74].
M. tuberculosis, M. leprae and M. bovis BCG contain only a single set of rRNA
genes, and hence fit into the slow -growers group. However, among the slow -growing
Mycobacteria there is a large variability in the growth rates of different species.
Also, the possession of more than one operon per genome is not essential for rapid
growth as each of the fast growers M. chelonaeand M. abscessus has a single rrn
operon per genome [75]. Gonzalezy-Merchand et a [12] have shown that these

species appear to have acquired additional promoters by a process of sequence



duplication. Thus, Mycobacteria have at least two levels at which rRNA synthesis is
regulated.

6.5 INFLUENCE OF DNA TOPOLOGY AND
CURVATURE ON TRANSCRIPTION

The topological state of DNA is an important determinant of its biological
activity. In prokaryotes, DNA supercoiling is known to affect the transcription of
severa genes [76]. With the same supercoiling change, some genes are activated,
others are inhibited and others are unaffected. Thus, different mechanisms appear to
operate in different systems with the same supercoiling change [77-82]. The reason
behind such complexity is that supercoiling can affect the DNA helix in various ways
by modifying its energy (torsional strain) and structure (helical pitch and axia
writhing) [83-84]. Any of these factors can influence promoter reactivity either
directly or indirectly through effects on bending and wrapping of the DNA around
proteins in chromatin-like structures [85-87].

M. smegmatis RNAP has a strong dependence on supercoiling & the DNA
substrate for transcription from mycobacterial promoters [88]. Hence, the differences
in the expression noted by Stover et al [89] may be because of the differences in the
superhelica state of the DNA, which may play a direct role in the regulation of gene
expression [90]. Thus, conformation of promoter DNA may play an important role
for some of the mycobacteria promoters. However, the regulation of gyr operon
expression of M. smegmatis provides certain contrasting and unique features. A
single promoter located upstream of gyrB is responsive to changes in DNA
supercoiling in a contrasting manner. The phenomenon of “relaxation stimulated
transcription” (RST) observed for gyr promoter has certain interesting features and
the mechanism appears to be different than that of E. coli [91].

In our study, we have analyzed the promoter sequences for distribution of
intrinsic curvature. For this purpose, we have used CURVATURE software [92],
which is based on the nearest-neighbor interactions between the two adjacent
dinucleotides [93]. This analysis revealed that 62 promoters showed presence of
curvature. Mycobacterial promoter sequences having their curvature maxima equal
to or greater than 0.3 curvature units are listed in Table IV. These entries are sub

grouped based on where the curvature maxima is present within a sequence. The



graphical distribution of location of curvature maxima for mycobacterial promoters
is shown in Figure 6-3. Out of 62 curved promoters, 29 promoters (47%) show their
curvature maxima lying between the region —30 and —40 (Figure 63). They are M.
tuberculosis 85A rrnA PCL1, 16S rRNA, 65 kDa, rpsL, 38 kDa; M. bovis BCG 64K,
rpsL; M. leprae rpsL, M. smegmatis $4, S19, 21, rrnB, rrnA P1; M.
paratuberculosis pAJB 305; M. fortuitum rrnAPCL1, rrnA P3; M. phlei rrnA PCL1,
rrnA P2, rrnA P3; Mycobacteriophage L5 71 Re; M. abscessus rrnA P4, rrnA
PCL1, rrnA P2, rrnA P3; and M. chelonae rrnA P2, rrnA PCL1, rrnA P3, rrnA P4.
Many other promoters viz., M. tuberculosis T150, mpt64, metA; M. bovis BCG 23K,
mpb64, 18K, mpb70; M. leprae 18Kda, 28 kDa, 65 Kda; M. fortuitum rrnA P2a;
Mycobacteriophage L5 71 P2; and M. neoaurum rrnA P2 show their curvature
maxima lying between —1 and —10 region. The presence of some conserved features
in DNA curvature at the promoter region might suggest some common mechanism

controlling transcription initiation.

6.6 CONCLUSION

It will be interesting to see which sigma recognize which sequence during
RNAP-promoter interactions. Mutational analyses, would reveal the critical residues
in different classes of promoters affecting promoter strength. Foot printing anaysis
with RNAP would be necessary towards identifying the contact points in —10 and —
35 regions. Elucidation of mechanism of isomerization step of GC rich -10 region
would be a challenging task. During promoter-RNAP interaction different events like
DNA binding, DNA melting (isomerization step), Phosphodiester bond formation,
and promoter clearance also need to be addressed. Thus, additiona regulatory
mechanism has to be unraveled to understand regulation of gene expression.

The number of rRNA genes is not solely responsible for growth rates
observed in Mycobacteria because the organisms have at least two levels of rRNA
synthesis regulation. Study of these different levels in details is required.
Conformation of DNA is also important in mycobacterial regulation. Hence, it will
be interesting to study what role does DNA structure plays in determining
transcription efficiency of mycobacterial promoters.

Detailed analysis of promoter structure and function becomes important from

entirely different perspective. Once sufficient number of promoters are studied, it is



important to determine their promoter strength. It will also help to identify
regulatable promoters to engineer appropriate control circuits to function efficiently
in Mycobacteria. Weak promoters will serve as a modd system for transcription
activation mechanism. Strong promoters can be used to exploit expression

technology.
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Figure 61: Nucleotide preference at transcription start site (tss) for mycobacterial

promoter compilation.
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Figure6-2: Spacer length variation in mycobacterial promoters
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Figure 6-3: Position of curvature maxima of the mycobacterial promoter sequences

according, to their sequence number in the compilation list. Mycobacterial promoter

sequences having curvature maxima greater than or equal to 0.3 DNA curvature units

are considered as curved sequences. (One DNA curvature unit [94] corresponds to

the mean DNA in the crystalline nucleosome [1/42.8 A ]).



Tablel: Compilation of Mycobacterial promoters’

Ref.

M. tuberculosis

T3  ATCGACGGCCACGGCTGGTCTAGGACGAGGTACCCGG(TAACAT)GCTGGGG] 6]
T6 CCGTCCAGTCTGGCAGGCCGGAAACATCGGTCAGCAGA(TAGGCT)TTACCA[G] [6]
T26  CTGCGAGCATCATATGCCGCGTGCGTGGTGATGCGGCAG(GATGTT)GGACCIA] [6]

TI80  GATCACTCCGAGCATGCGCCCATTGTTGTGCATAGGG(CAGGAT)GCCCTGIG] [6]

TI0l  AGCGATCGCAGCCGACGTGATACCTGACCGTTGTTGA(TAGTGT)CGGCGGCIA] 6]

T119  CCCCGTGCTCGTAGTAGGCGTCCAGCCGACCCGCCGC(TACCAT)GCACAAGIT] [6]

T125  CCGAGGTAAGGACTGAGCATGGGCCCGATAAAGTGAC(TATTAT)GGATTTC[T] [6]

T129  ACTCGCGGCAGATTACGCCGACGGTTCCTGGCGTGG(TTCAAT)ATTCGCCGIA] [6]

T130  ACTCCAACAGGTCGATAACCTCCTGCGCCTGCTCGTC(TATGCT)GCGATCCG] 6]

TI50  GACCCCCGCCACGTATTGACACTTTGCGACACGCTTT(TATCAT)TTTCCGA[C] [6]
recA  TTCGGAGCAGCCGAC(TTGTCA)GTGGCTGTC(TCTAGT)GTCACGGCC]AJACCGACCGAT (7]

* Consensus regions are shown in bold letters and transcription start sites are shown in a square bracket.



rrnAP1
gyrA
cpn60
gyrBP1
gyrBP3
85A
85A
gyrBP2
rrnA PCL1
16SrRNA
glnA
glnA
katG P,
katG P,
katG Pg
katG Pg

katG P¢

GAGAACCTGGTGAGT(CTCGGT )GCCGAGATCGAACGGG(TATGCT)GTTAGGC[GJACGGTCACCT
GATGGGCGAGGACGT(CGACGC JGCGGCGCAGCTTTATCA(CCCGCA)ACGCCAA[G|GATGTTCGGT
CCCOGGOGATCOOCG( TGCTCA)CCACGGGTGATTTCCGHGGCGGC)ATGCGTT[A]GCGGACTAGC
GATGTCCGACGCACG( GCGCGG)TTAGATGGGTAAAAACG(AGGCCA)GAAGATCIG]GCCCTGGCGC
CAAGGGGCCTCGCCA(TATTGC JCGGTAGGGGTCOGCGCG(ACACCT)ACGGATA[A]CACGTCGATC
GAAGTTGTGGTTGAC(TACACG)AGCACTGCCGGGCCCAG(CGCCTG)CAGICTG[A]CCTAATTCAG
CGCCCGAAGTTGTGG( TTGACT)ACACGAGCACTGCCGGGCCCAG( CGCCTG)CAGTCTG[A]CCTAATTCAG
AGCGGTTGGCAACGA(TGTGGT)GCGATCGCTAAAGATCACCGGGCC)GGCACCIA] TCGTGGCGCA
TGACCGAACCTGGTC(TTGACT)CCATTGCCGGATTTGTAT(TAGACT )GGCAGH G] TTGCCCGAAA
TGACCGAACCTGGTC(TTGACT)CCATTGCCGGATTTGTAT(TAGACT )GGCAGG|GI TTGCCCCGAA
TCGGCATGCCACCGG( TTACGA ) TCTTGCCGACCATGGCCC(CACAAT )AGGGCCGGGGA]GACCCGGCGT
CCACCGGTTACGATC(TTGCCG)ACCATGGCCC(CACAAT )AGGGCCGGGGIA]GACCCGGCGT
GGTCATCTACTGGGG( TCTATG)TCCTGATTGTTCGATATCC(GACACT)TCGCGATC[A]CATCCGTGAT
ATCTACTGGGGTCTA(TGTCCT)GATTGTTCGATATCC(GACACT)TCGCGATC]A]JCATCCGTGAT
GAGGCGGAGGTCATC(TACTGG)GGTCTATGTCCTGATTGTTC(GATATC)CGACACTITCGCGATCAC
ACGAGGCGGAGGTCA(TCTACT)GGGGTCTATGTCCTGATTGTTC(GATATC)CGACACITITCGCGATCAC

CCTGATTGTTCGATA(TCCGAC)ACTTCGCGATCACATCCGTGAT(CACAGC)CCGATAA[CIACCAACTCCT

(8]

[10]
[9]
[9]

[11]

[11]
[9]

[12]

[13]

[14]

[14]

[15]

[15]

[15]

[15]

[13]



katG P¢
purL
purC
groE
grok
ahpC
32 kDa
10kDa
10kDa
10kDa
65 kDa

mpt64

rpsL
38 kDa

ppgk

TTCGATATCCGACAC(TTCGCG)ATCACATCCGTGAT(CACAGC)CCGATAA[CJACCAACTCCT
CGGCTTGTCCGTTTC(CACGCGEGCCGCAGCGCGATGGGGCCTAGC(TAGACT)GCCTCC[GITGATGTCTCC
ATCTCATACCAGAGA(TACCAGCACAGGGCGCCGTCGTGCGGCGGA(TAGGCT)GGCGTGIA] TGCGCCCCGC
CAGGAAGCAAGGGGGCG(CCCTTG)AGTGCTAGCACTCTCA IGT(ATAGAG)TGCTAGATGGCAATCGGCTA
CAGGAAGCAAGGGGG(CGCCCTTGAGTGCTAGCAC(TCTCATGTATAGAG TGCTAGATGGCAATCGGCTA
TGTGATATATCACCT(TTGCCT )GACAGCGACTTCACGG(TACGAT)GGAATGTCGTAACCAAATGC
ACATGCATGGATGCG(TTGAGA ) TGAGGATGAGGGAAGCAAGAAT)GCAGCTTGTTGACAGGGTTC
AAGCAAGGGGCGCCC(TTGAGT)GTCAGCACTCTCATGTA(TAGAGT ) GCTAGATGGCAATCGGCTAA
AAGCAAGGGGCGCCC(TTGAGT)GTCAGCACTCTCATG(TATAGA)GTGCTAGATGGCAATCGGCT
AAGCAAGGGGCGCCC(TTGAGT ) GTCAGCAC(TCTCAT )GTATAGAGTGCTAGATGGCA
GCGTAAGTAGCGGGG( TTGCCG)TCA CCCGGTGACCCCCG(TTTCAT)CCCCGATCCGGAGGAATCAC
GAGTCTGGTCAGGCA(TCGTCG)TCAGCAGCGCGATGCCC(TATGTT)TGTCGTCGACTCAGATATCG
TCCGGCCCCCGCGAT(TTGGCGAGCTTCGTGCGTGTTCGG(TAGCCT)GGCATTTACCGACGCGGGGT
GCCGCAACGCCCGCT(TTGACC)TGCCAGACTGGCGGCAIH TATTGT )GGTTGCTCGTGCCTGGCGGC
CGTCGCCGGACTGTCGGGGGACGTCAAGGACGCCAAGCGCG(GAAATT)GAAGAGCACAGAAAGGTATG
CGGGCCGCAGTTTAAGGTGAGGGTCATCCACGTCTCGCCGAGGAGATTCGATGACCAGCAC

M. bovis BCG

(18]
[16]
[16]
(17]
(17]
(18]
[19]
[20]
[20]
[20]
[19]
[21]
[22]
[23]
[19]

[24]



hsp60 P2
rRNA
ahpC
23K
mpb64
18K
64K
rpsL
mpb70

alpha

16SrRNA
18 Kda
18 Kda
28-kba
groEl

65 kd

CGGTGCGGGGCTTCTTGCACTCGGCATAGGCGAGIGC(TAAGAA)TAACGTT[G]
TGACCGAACCTGGTC(TTGACT)CCATTGCCGGATTTG(TATTAGACTGGCAGGGTTGCCCCGAA
TGTGATATATCACCT(TTGCCT )GACAGCGACTTCACGG(TACGAT)GGAATGTCGCAACCAAATGC
GAGTCTGGTCAGGCA(TCGTCG)TCAGCAGCGCGATGCCC(TATGTT)TGTCGTCGACTCAGATATCG
GAGTCTGGTCAGGCA(TCGTCG)TCAGCAGCGCGATGCCC(TATGTT)TGTCGTCGACTCAGATATCG
TGGCGTCCGAAACAC(TTGAGG)TGCGGCCCAGCAAGGGGC(TACAGG)TTTTTTCCTTCACCTACGGA
GCGTAAGTAGCGGGG(TTGCCG)TCACCCGGTGACCCCCGG( TTTCAT)CCCCGATCCGGAGGAATCAC
GCCGCAACGCCCGCT(TTGACC)TGCCAGACTGGCGGCGGH TATTGT)GGTTGCTCGTGCCTGGCGGC
TGGCGTCCGAAACAC(TTGAGG)TGCGGCCCAGCAAGGGGC(TACAGG)TTTTTTCCTTCACCTACGGA
CGACTTTCGCCCGAA(TCGACA)TTTGGCCTCCACACACGG(TATGTT)CTGGCCCGAGCACACGACGA
M. leprae

TAGTCAACCCGGGAC(TTGACT )CCTCTGCTGGATCIGI(ATTAAT)CTGGCTG[G]GTTGCCGAAG
CTTGTCTATCACAAC(TTGCAT)CAATATATCGACCAGTG(CTATAT)CAAATCTA[T]GTAGTCAGGA
CTTGTCTATCACAAC(TTGCAT)CAATATATCGACCAGGC(TATATC)AAATCTA[T]GTAGTCAGGA
TCAATATAACCACTC(TGGTCA)CACTAACCATACTCG(TACCAT)CAACCGTGTGGGGCTAATCC
AGCAGCGGGCCGGCC(TTGAGT)GCTAGCACTCGCGTGTA(TAGAGT)GCTAGATGGCAGTCGGCCAG

GAATTCCGGAA(TTGCAC)TCGCCTTAGGGGAGTGC(TAAAAA TGATCCTGGCACTCGCGATC

(23]
[26]
(18]
[27]
(19]
(28]
[29]
(23]
(30]

[19]

[31]
(19]
[19]
[19]
(32]

(19]



36k

rpsL

alrA

S12
S14
S16
S18
S19
S21
S30
S33

S35

GTTGGE TTTCCT )CTCGGAGGGCGCACCGC(TACGTT)AGCGGGATG

GETGGGCG)CGATCATGGCGCAGCGTT(GATTAT)GCTAGTCG

CGCCGTTGGGTCGCT({I TGACC) TGCCCGAGCAGGGACGGG(TATTGT)GTTTCTCGTTCCTGACGGCT

M. smegmatis

GTCTGCGGCCTCTGG(GACAAT)GGGCGCC[G]GAGATTATGA
AAGCCGAATCCAGACCTTTTGGGTTCGTACACACTTGCTT(TATAAG)CCTC[G]
AACAAGATTCCGTTAATCGTGTCTGGTGGAGCTGGIGGTAAGCT)TGATCC[G]
CATCGATTTTAAATTTTIGA(TAGAGT)GCAAATA[A]
ACCTCGTTATGCTTCTGGCTATTTTTGATCAACTTT(TATACA)TGGGCGGTIT]
TCAAGCACCCAAGCCAACATGGT TGTAGTAGTCGTTT(TACCAT)GTGTACCIT]
TCCACGCGAACCGCTTCGGCGTGCCCCGTTTTCCCIGI(TATAAT)ATCGGC[G]
GATCATTGTCTTCTGTTGTCTTTCGTA(TAAAGT)TGTTACT[G]
TTTGATGTAGCCAAAGGCTCTCACCACCTGAGCCATIGA(TAGTAT)CCATCCIC]
ACATGGCATTTTTCATTTAAAACAGGACTCAGGTGG(TATGGT)TGACATCGIA]
GATCAGCTATGTTCTTCAGTAAAATTTCGGC(TATATG)TTGGT[G]
GATCCGCTCTTCTTATGATGCCAGTTATGGTATC(TATGGT)TATC[G]

AACTAAAGTATGTGCCGTAATTGACAGTGTTCTAGAT(TATGAT)GCTGCATI[C]

(19]
[19]

(23]

[33]

(6]

(23]

(6]

(6]
(6]
(6]

(6]
(6]
(6]



S65
S69
S119
gyrB
recA
ask
acetamidas
e
rrnB
rrnAP1
rrnAP2
rrnAP3
rrnA PCL1
rpsL
rpsL

ahpC

GGCACAGCTCGAAGTTCTACTACATGGCTTGCT GAA(TCCAGT)CACATTACIT]
ATCACGATGTCTTCATGCTTGGCTTCAATGCTCCGGTC(TACAAT)CAGTTCIA]
GATCAAGAAGCCAATGATTIGI(TAAACG)CAATTAATIG]
CAGAATCGGTGCTGT(CGCTAT)CTCGCGG(TAGACT)GGACGAC[G]GATCTCAGGC
AGAGTTCGACCGGAC(TTGTCG)GTGGTCIGC (TCTAAC)GTCACGGCC]A]JACCGATCGGA
GT(TTGCCC)GOCGOGGOGCCO(CACGAT )GAACCGC]A]CGGGCTGACG

GGCCGGCGTTCACCC(TTGACT)TTTATTTTCATCTGGA(TATATT)TCGGGT[GJAATGGAAAGG

CTCTGACCTGGGGAT(TTGACT)CCCAGTTTCCAAGGACG(TAACTT)ATTCCAG[G]TCAGAGCGAC
GAAAACCTGGTCAGC(CTCGGA)GCCGAGATCGAGAGAG(TAAGCT)CGTAGIGJAAGCAAGACC
CTCTGACCAGGCGAT(TTGCAA)TCGCGACGAACCTCGTAT(TATCTT)TATGAA[G| TCGCCGCGGA
CCGGGCCAGAGCGAC(TTGACA)AGCCAGCCGAGATCGTAC(TAAGCT)GGCGAG[GI TTGCCTCAGA
CCGGTCCAGAGCGAC(TTGACA)AGCCAGACAAAGCAGTAT(TAAGCT )GGCAGG]G] TTGCCCCAAA
CCGCCGTGCACGAGT(TTGTTT)CGTCGCGGTCGCCCCIGG(TATTGT)GGTGGATC[GI TGCCTGGCCC
CGTGCACGAGTTTGT(TTCGTC)GCGGTCGCCCCTGGTAT(TGTGGT)GGATC G TGCCTGGCCCGAAA
TGTGATATATCACCT(TTGCCT)GACAGCGACTTCACGG(CACGAT)GGAATGTCGCAACCAAATGC

M. paratuberculosis

(6]

(6]
[34]
[33]
[36]

[37]

(38]
[12]
[12]
(12]
(12]
[23]
(23]

[39]



pAJB303
pAJB86
pAIB125
pAJB300
pJB305
pAJIB304
PAN
pAJB73

pAJB301

repA
rrnA PCL1
rrnAP1
rrnA P2a
rrnA P2b

rrnAP3

GACGACGAGGGCGG(TGGCGT)CGCCGGTGTAGCCGAALCGGCAC)GTGCGCG[TIAGGCCCAGAT
CCACCTTACTCCCGA(TGACGT )TGCACGGCTGGGATTAA(CGGTCC)GCGTGC[T]CCAGGAGACA
GCAACGAGCGCATCA(TTAAAGATCGANGGCGCCGGGNT(CATGTC)CCTTCAC[C]CCGCCCAGCT
TCGAGTTCAAGACCC(TGACGC )TGGCCGACCTCGGCGCG(CAGCCGACCGCGC[A]GCGGTGCACG
ATCCGGACGGGCAGT(TGTTGG)AGTTTCTGTCGGACGGT(TGGTTGGCGGCAT[T]TCCGGCGAGG
CACCAGGTACACGCC(AAGGAC)AACGGCCGTATCCGGTA(CCAACG)GGTGTGC|GIAGCTGGACGG
CTGGTGAAGGGTGAA(TCGACA)GGTACACACAGCCGCCA(TACACT)TCGCTTC[A]TGCCCTTACG
GATCGGTG(TGCCGC)TTGAACCGGCCCAGCTCCCG(CTCCAGGGTGACG[T]GCTCGAGCTC
GATCTGGCGGGCGS(TCCAGT)ACACCGCGAGTTCGCGCACG(CTGGCC)GGCAGCGTCTTGGACGCCCG
M. fortuitum

GAGCTCGTGTCGGACCATACACCGGTGATTAATCGIGHTCTACT)ACCAAG[C]
CCAGGATGATGCAAC(TTGACT)TGCCGGCAAGATTCGAAT(TAAGCT)GGCGGG[G|TTGCCCCAAA
GAAAACCTGTTGAGC (CTCGGA)GCCGAGATCGAAAGAG(TAGGGT)CGTAAACAGCAGTCCGGGCC
CGCTGACCAGCCGAT(TTGACC)TTGTAGGCAGGCCCGCGC(TAATCT)TTTGAAGTCGCGCGGAGCGG
CCGGGCCAGAGCGAC(TTGACA)AGCCAGCCGAGATCGTAC(TAAGCT)GGCGAGGTTGCCTCAGACCG
CAGGATGATGCAACT(TGACTT)GCCGGCAAGATTCGAATTAAGCT G)GCGGGGTTGCCCCAAAACAG

M. phlei

[40]
[40]
[40]
[40]
[40]
[40]
[41]
[40]

[40]

[25]
(12]
(12]
[12]
[12]

(12]



rrnAPCL1
rrnAPL
rrnAP2

rrnAP3

pPKGR25

pKGR9

pKGR38
ORF1
ORF2

pKGRL

71 P2
71 Piest

71P1

ACTGGGGACGAGGTC(TTGACG)CCCCTGATCAGATCGGTA(TAGACT)GGCAGG[G|TTGCCCGAAA
GAGAACCTCCGCAGT(CTCGGC )GCCGAGATCGAGAGGG(TCGCCT)GAAACATGCCGTTTACCTGC
AGGGGACCCCCCTTT(TTGACT )CCGCTCAGACGTGGGC(TATTCT)TCTAACCACAAGCCCAACGC
CTGGGGACGAGGTCT(TGACGC)CCCTGATCAGATCGGTAT(AGACTG)GCAGGGTTGCCCGAAAGCAA
Mycobacteriophage |3

CCTGTACACCCTCGC(TGCACT )CGCCGAGGACAAG(CACTAT)CGCCCCGACGTCCCGGCCTGG
ACCACGAGCACCCGG(TCGTCA)GGACTGCGACACTCGA(TGTTGT)AGACGCACTGGTGCAGCATG
ATCTGGTCGACCTGC(TCGACG)AGGTCGATCATCTTCT(TCATCT)CGCCGAACGGGATGCCCTGG
ACCTCATGGAGCACT(TCGAGG)TCACTGAGCACGCCCA(CGAACT)ACGAGAGGCCGTGGGACTGG
TACTTTTTGTACCGT(TCGACA)CCAGCGGTTTCCGCTTCCT IGC(CAATCT)CCTGCAAACAAACCACAATG
ACACAGACCAGGAGC(TCGACA)TGACCGCCACCGCCCCCTACAGCG(TCATCT)GGTTCGAAGGCACCCCGGAT
Mycobacteriophage L5

TACCTGTCACAAGGT(TTGCTA)CCGAGTGGGGCAGGCCGC(TACATT )TACGACC[G]CGTAACGCCA
TTTGCGATTAGGGC(TTGACA)GCCACCCGGCCAGTAGTG(CATTCT)TGTGTC[A]CCGCAGCAGC
ACAACTGAATATGGT(TCCGCA)GACGCAACTAAATTAGGGG(TATCCT)TGACA[G]GCACCAACAT

M. avium

(12]
[12]
[12]

(12]

[42]
[42]
[42]
[42]
[42]

[42]

[43]
[43]

[43]



Avi-3

pLR7

rrnAPCL1
rrnAPL
rrnAP3

rrnAP2

rrnAP4
rrnAP1
rrnA PCL1
rrnAP2

rrnAP3

rrnAP2
rrnAP1L

rrnAPCL1

GCCGGCGATCGTGGG(CTGATA)AGTCTTATCGGGCATAC(TATAAGQTGTAGTGGGAAATATCA CCT
AGCCTTGTTGGCGGC(CAACT G )CCGGACGATCGCGGCGGC(CATCGT )CCTCGAGCTCGGCCCCGTGC
M. neoaurum
GCGAGACAGAGAAGC(TTGACT)CGCCAGACAAGATAGTT(TAAGCT)GGCAGG[GITTGCCCCGAA
GAAAACCTGGTCAGC(TTGGGC)GCCGGGATCGAGCGAG(TACACT)CGTAAGAGA CCGGTCGAGTG
GCGAGACAGAGAAGC(TTGACT)CGCCAGACAAGATAGTT(TAAGCT)GGCAGGGTTGCCCCGAAACG
CTCTGACCAGCGGAT(TTGACT)TCCGAAGGCACAAAGTTC(TAATCT)TTTGAAGTCGCCGCGGGGAG
M. abscessus

GCCAAAACCGGGAAT(TTGACT)CAGGTTCACGAACT IGATACGGT)TTCCGA[G]JCGCCCGAAAG
GGCGGGTCTAGTGGC(GGACGG)CGTCACAGAGGTATACGA(TGTGTT)TCATATCG[A]CCGCGGTTAC
GCCCCCGACCCGAAG(TTGACT)CAAGTTCATTGGACT IGKTACAGT)GGTCGG[G|TTGCCCTGAA
GCCAAAACCGGGAAT(TTGACT)CAAGTTCACCGAACTIGA(TACGGT)TTCC[A]JAGTCGCTCGG
GCCAAAACCGGGAAT(TTGACT)CAAGTTCACCGAACTIGA(TACGGT)TTCCAA[G]TCGCTCGGAA
M. chelonae

CCAAAACCCGGAGTT(TGACTC)AAGTTCACCGAACT IGATCGGTT)CCCGG[G]CCGCTTACAA
GGCGGGGTTAGTGGC(GGATGG)CGTCACCGAGGTATACGA(TGTGTT)TCATATC[GJACCGCGGTTA

CCCCAGAACCCGAAG(TTGACT)CAAGTTCATTGGACTIGG(TACAGT)GGTCGGGITTGCCCTGAA

[44]

[45]

(12]
(12]
[12]

[12]

(12]
[12]
[12]
(12]

(12]

[12]
(12]

(12]



rrAP3  GCCAAAACCGGGAAT(TTGACT)CAAGTTCACCGAACTIGA(TCGGTT)TCCCA[G]CCGCCCGAAA [12]

rMAP4  GCCAAAACCGGGAAT(TTGACT)CAAGTTCACCGAACTIGA(TACGGT)TTOCGA[G]CCGCCCGAAA [12]



Tablell: Analysisof different features of each mycobacterial promoter

Gene

T3
T6
T26
T80
T101
T119
T125
T129
T130
T150
recA
rrnAP1
gyrA
cpn60
gyrBP1
gyrBP3

85A

gyrBP2
rrnA PCL1
16SrRNA

glnA

katGP a

bp

51
51
51
50
51
51
51
51
51
51
56
61
62
62
62
62
62
67
62
62
62
66
58

65

-35

M. tuberculosis

TTGTCA

CTCGGT

CGACGC

TGCTCA

GOGCGG

TATTGC

TACACG

TTGACT

TGTGGT

TTGACT

TTGACT

TTACGA

TTGCCG

TCTATG

pac

er

16

17

17

17

17

17

22

18

18

18

18

10

19

TG

-10

TAACAT

TAGGCT

GATGTT

CAGGAT

TAGTGT

TACCAT

TATTAT

TTCAAT

TATGCT

TATCAT

TCTAGT

TATGCT

CCCGCA

GGEOGEC

AGGCCA

ACACCT

CGCCTG

CGCCTG

OGGGCC

TAGACT

TAGACT

CACAAT

CACAAT

GACACT

leng TSS

th

10

10

%

(A+T)

353
41.18
39.22

40.0
41.18
33.34
52.94
41.18
41.18
49.02
41.07
40.98
35.48
30.64
37.09
37.10
41.94

38.8

371
48.39
46.77
33.33
32.76

50.77

%

(G+C)

64.7
58.82
60.78

60.0
58.82
66.67
47.06
58.82
58.82
50.98
58.93
59.02
64.51
69.35
62.91
62.91
58.06

61.2

62.9
51.61
53.23
66.67
67.24

49.23




katGPg

katGP¢

purL
purC
grokE

groE

ahpC
32KDa

10 KDa

65 KDa

mpt 64
metA
rpsL

38 KDa

PPgK

hsp60 P2
rRNA
ahpC
23K
mpb 64
18K

64 K

61 TGTCCT
64  TACTGG
66 TCTACT
67 TCCGAC
59 TTCGCG
67 CACGCG
68  TACCAG
68 CCCTTG
68 CGCCCTTG
63 TTGCCT
63  TTGAGA
64  TTGAGT
62 TTGAGT
55 TTGAGT
64 TTGCCG
64 TCGTCG
65 TTGGCG
65 TTGACC
67 -
61 -
.bovisBCG
51 -
62 TTGACT
63 TTGCCT
64 TCGTCG
64 TCGTCG
65 TTGAGG
65 TTGCCG

15

20

22

22

14

23

24

19

11

16

16

17

15

17

17

18

18

15

16

17

17

18

18

TG

TG

GACACT

GATATC

GATATC

CACAGC

CACAGC

TAGACT

TAGGCT

ATAGAG

TCTCATGT

-ATAGAG

TACGAT

AAGAAT

TAGAGT

TATAGA

TCTCAT

TTTCAT

TATGTT

TAGCCT

TATTGT

GAAATT

TAAGAA

TATTAG

TACGAT

TATGTT

TATGTT

TACAGG

TTTCAT

52.46

46.87

46.97

49.25

49.15

32.84

33.83

4559

45.59

53.96

50.79

48.44

46.77

47.27

35.94

4375

33.85

30.77

40.3

3934

43.14

46.77

52.38

4375

43.75

43.08

35.08

4754

53.12

53.03

50.75

50.85

67.16

66.17

5441

54.41

46.03

49.21

51.57

53.23

52.73

64.07

56.25

66.15

69.23

59.7

60.66

58.86

53.23

47.62

56.25

56.25

56.92

64.62




rpsL
mpb70

alpha

16SrRNA

18 KDa

28 KDa
groEl
65 KD

36K

rpsL

alrA

S12
S14
S16
S18
S19
S21
S30
S33
S35

S65

65 TTGACC
65 TTGAGG
65  TCGACA
M. leprae
61 TTGACT
63 TTGCAT
63 TTGCAT
62 TGGTCA
64  TTGAGT
60 TTGCAC
44 TTTCCT
40 TGGGCG
65 TTGACC
. Smegmatis
39 -
51 -
51 -
34 -
51 -
51 -
51 -
41 -
51 -
51 -
43 -
45 -
51 -
51 -

18

18

18

16

17

18

15

17

17

17

18

18

TG

TG

TG

TG

TG

TG

TG

TATTGT

TACAGG

TATGTT

ATTAAT

CTATAT

TATATC

TACCAT

TAGAGT

TAAAAA

TACGTT

GATTAT

TATTGT

GACAAT

TATAAG

TAAGCT

TAGAGT

TATACA

TACCAT

TATAAT

TAAAGT

TAGTAT

TATGGT

TATATG

TATGGT

TATGAT

TCCAGT

30.77

43.08

4154

4754

63.5

63.5

53.22

375

48.33

36.36

40.0

38.46

38.46

52.94

50.98

76.48

60.79

54.90

41.18

65.85

50.98

60.78

62.79

57.78

62.74

52.94

69.23

56.92

58.46

52.46

36.51

36.51

46.78

62.5

51.66

63.64

60.0

6154

61.54

47.06

49.02

2553

39.22

45.10

58.82

34.14

49.02

39.22

37.21

4222

37.26

47.06




S69
S119
ogyrB
recA
ask
acetamidase
rrnB
rrnAP1
rrnAP2
rrnAP3
rrnA PCL1

rpsL

ahpC

51

37

52

56

44

60

62

59

62

62

62

64

64

63

CGCTAT

TTGTCG

TTGCCC

TTGACT

TTGACT

CTCGGA

TTGCAA

TTGA CA

TTGACA

TTGTTT

TTCGTC

TTGCCT

M. paratuberculosis

pAJB303
pAJB86
pAJB125
pAJB300
pAJB305
pAJB304
PAN
pAJB73

pAJB301

repA
rrnA PCL1

rrnAP1

60 TGGCGT
61 TGACGT
62 TTAAAG
62 TGACGC
62 TGTTGG
62 AAGGAC
62  TCGACA
58 TGCOGC
66 TCCAGT
M. fortuitum

51 -

62 TTGACT
65 CTCGGA

12

16

17

18

18

18

18

18

17

16

16

17

17

17

17

17

17

20

20

18

16

TG

TG

TG

TACAAT

TAAACG

TAGACT

TCTAAC

CACGAT

TATATT

TAACTT

TAAGCT

TATCTT

TAAGCT

TAAGCT

TATTGT

TGTGGT

CACGAT

CGGCAC

CGGTCC

CATGTC

CAGCCG

TGGTTG

CCAACG

TACACT

CTCCAG

CTGGCC

TCTACT

TAAGCT

TAGGGT

54.9

67.57

40.38

41.07

250

55.0

48.39

44.26

48.39

38.71

45.16

34.37

39.06

50.79

2834

39.34

37.1

2742

38.71

35.48

45.16

31.04

271.27

47.06

46.78

43.07

451

3243

59.61

58.93

75.0

450

51.61

55.74

51.61

61.29

54.84

65.63

65.63

49.2

71.66

60.66

59.67

72.58

61.29

64.52

54.84

68.97

72.73

52.94

5322

56.93




rrnA P2a 65 TTGACC
rrnA P2b 65 TTGACA
rrnAP3 65 TGACTT
M. phlei
rrnA PCL1 62 TTGACG
rrnAP1 65 CTCGGC
rrnAP2 63 TTGACT
rrnAP3 65 TGACGC

Mycobacteriophage | 3

pKGR25 61  TGCACT
pKGR9 63  TCGTCA
pKGR38 63  TCGACG
ORF1 63  TCGAGG
ORF2 69  TCGACA
pKGR1 71  TCGACA

Mycobacteriophage L5

71P2 63 TTGCTA

71 Piegt 61  TTGACA

71P1 62 TCCGCA

M. avium

avi-3 64 CTGATA

PLR7 65 CAACTG
M. necaurum

rrnA PCL1 61 TTGACT

rrnAP1 65 TTGGGC

rrnAP3 64 TTGACT

rrnAP2 65 TTGACT

M. abscessus

18

18

18

18

16

16

18

13

16

16

16

22

24

18

18

19

17

18

17

16

17

18

TG

TAATCT

TAAGCT

AAGCTG

TAGACT

TCGCCT

TATTCT

AGACTG

CACTAT

TGITGT

TCATCT

CGAACT

CAATCT

TCATCT

TACATT

CATTCT

TATCCT

TATAAG

CATCGT

TAAGCT

TACACT

TAAGCT

TAATCT

38.46

36.93

47.96

41.93

38.46

42.85

4154

3114

39.68

41.27

381

52.18

36.62

42.85

42.62

54.84

51.56

27.69

459

40.0

4531

47.70

61.64

63.08

52.31

58.06

61.54

57.14

58.47

68.85

60.32

58.73

61.91

47.82

63.38

57.14

57.38

45.16

48.44

72.31

54.1

60.0

54.69

52.31




rrnAP4

rrnAP1

rrnAPCL1

rrnAP2

rrnAP3

rrnAP2

rrnAP1

rmnAPCL1

rrnAP3

rrnAP4

61 TTGACT
64 GGACGG
62 TTGACT
60 TTGACT
62 TTGACT
M. chelonae
60 TGACTC
63 GGATGG
62 TTGACT
61 TTGACT
62 TTGACT

17

18

18

18

18

17

18

18

18

18

TG

TG

TG

TG

TG

TG

TG

TG

TACGGT

TGTGTT

TACAGT

TACGGT

TACGGT

TCGGTT

TGTGTT

TACAGT

TCGGTT

TACGGT

4754

42.19

4354

50.0

51.61

46.67

42.86

46.77

4754

48.38

52.46

57.82

56.45

50.0

48.39

53.34

57.15

53.23

52.46

51.61




Tablelll: Percentage conserved homology of —35 and —10 regions for different mycobacterial species

% % -35region and % conserved homology | -10region and % conserved homology
(A+T) (G+C)

M. tuberculosis 41.72 58.27 T T G A C G T A Y A C T
84. | 52. | 48. | 36. | 52. | 39. | 52 71. | 31. | 40. | 33. 71.

M. bovis BCG 42.29 57.71 T T G A C G T A T G A T
100. | 67. | 100. [ 56. 78. | 56. | 100. | 90. 60. [ 50. [ 40. 60.

M. leprae 47.94 52.07 T T G C C T T A T A A T
100 | 78. | 89. | 44. | 56. [ 56. 67. 78. | 44. | 44. | 56. 78.

M. smegmatis 49.90 50.11 T T G A C T T A T A A T

83. | 92. | 75. | 33. | 58. | 42. | 89. | 89. | 44. | 46. | 37. | 82

M. paratuberculosis 34.42 65.22 T T R C G Y C R G C C CIG
89. | 56. | 33. | 44. | 67. | 33. | 78. | 33. | 56. | 33. | 56. | 44.

M. fortuitum 43.16 56.83 T T G A C | TIA T A A G C T
80. | 80. 60. 60. 60. | 40. | 83. | 83. | 50. | 50. 67. | 83.
M. phlei 40.73 58.82 T T G A CIG C T A G C C T

75. 75. 50. 50. 50. 50. 75. 50. 50. 50. 75. 75.

Mycobacteriophage |3 40.0 60.0 T C G A C A TIA | AIC| A T C T
100. | 83. [ 83. | 83. | 83 | 50. | 50. | /G 67. | 83. | 67. | 100.
33.

Mycobacteriophage L5 | 46.77 53.23 T T G AlC C A T A T | TIA/I| C T
100. | 67. | 67. | /G 67. | 100. | 67. | 100. | 67. C 67. | 100.

33. 33.
M. avium 39.54 60.46 C TIA R A/C T R Y A T A/C R TIG
100. | 50. 50. 50. | 100. | 50. 50. | 100. | 100. | 50. 50. 50.
M. neoaurum 44.70 55.19 T T G A C T T A A G C T
100. | 100. | 100. | 75. 75. 75. | 100. | 100. | 75. 50. | 100. | 100.
M. abscessus 46.92 53.08 T T G A C T T A C G G T
80. 80. 80. 80. 80. 80. | 100. | 80. 80. 80. 80. | 100.
M. chelonae 46.43 53.57 T T G A C T T A/C | G/IC G T T
80. 60. 60. 60. 60. 60. | 100. | 40. 40. 80. 60. | 100.
Overal 43.70 56.28 T T G A C T T A T A C T
87. 60. 65. 46. 56. 39. 70. 74. 34. 35. 33. 74.
G A
33. 27.
E. coli 59.54 40.46 T T G A C A T A T A A T




Table1V: Position of curvature maxima lying between region —50 and +10 for curved mycobacterial promoters

—50to0-41

—40to0-31

-30to-21

—20to-11

-10to-1

+1to+10

M. tuberculosis 85A,
rrnA PCL1, 16S rRNA,

65 kDa, rpsL, 38 kDa

M. tuberculosis T125

M. tuberculosis T101,

gyrB P1

M. tuberculosis T150,

mpt64, metA

M. tuberculosis 32 kDa

M. bovis BCG 64 K,

rpsL

M. bovis BCG rRNA,

apha

M. bovis BCG 23 K,

mpb64, 18 K, mpb70

M. lepraerpsL

M. leprae 18 KDa,

28Kda, 65 Kda

M. smegmatis $4, S19,

S21, rrnB, rrnA P1

M. smegmatis S12, S14,

S16, S35, S69

M. smegmatis S30, S18,

S9]

M. paratuberculosis

pAJB 305

M. fortuitum rrnA

PCL1, rrnA P3

M. fortuitum rrnA P1

M. fortuitum rrnA P2a

M. phlei rrnA PCL1,

rrnA P2, rrnA P3




Table |V continued:

—50to-41

—40to-31

-30to-21

—20to-11

-10to-1

+1to+10

Mycobacteriophage |13

ORF2

Mycobacteriophage L5

71 Pt

Mycobacteriophage L5

71P1

Mycobacteriophage L5

71 P2

M. neoaurumrrnA P1

M. neocaurum rrnA

PCL1, rrnA P3

M. necaurum rrnA P2

M. abscessus rrnA P4,
rrnA PCL1, rrmmA P2,
rrA P3

M. chelonae rrmA P2,
rrnA PCL1, rrmmA P3,

rrnA P4




CHAPTER

S A S

Application of artificial neural
networks for prediction of
mycobacterial promoter sequences



: A multilayered feed-forward artificid neurd network (ANN) architecture trained using the :
error-back- propagation (EBP) agorithm has been developed for predicting whether a
given nucleotide sequence is a mycobacteria promoter sequence. Owing to the excdlent
prediction capability (@7%) of the developed network modd, it has been further used in
conjunction with the cdliper randomization (CR) gpproach for determining the
sructuraly/functionaly important regions in the promoter sequences. The results obtained
thereby indicate that: (i) upstream region of —35 box, (i) —35 region, (iii) spacer region and,
(iv) -10 box, are important for mycobacteriad promoters. The CR gpproach aso suggests
that the —38 to —29 region plays a Sgnificant role in determining whether a given sequence
is amycobacteria promoter. In essence, the present study establishes ANNSs as a tool for
predicting mycobacterid promoter sequences and determining  structuraly/functionaly
important sub- regions therein.




7.1 INTRODUCTION

Mycobacteria while have alow transcription rate and alow RNA content per unit
DNA [1], their genomes are rich in the G+C content. Since the G+C content of a genome
affects the codon usage and the promoter recognition Sites in an organism [23], it 5
expected that the transcription and trandation signals in Mycobacteria may be different
from those in other bacteria such as, E. coli. Understanding the factors responsible for the
low leve of transcription and the possible mechanisms of regulation of gene expressonin
Mycobacteria necessitates examination of the structure of mycobacteria promoters and
their transcription machinery.

Mulder et d. [4], have lised —35 and —10 regions of a few mycobacterid
promoters. Some promoters from their compilation contan —35 and —10 regions
ressmbling E. coli s ™ type promoters. Although Mycobacteriophage 13 [5] and M.
paratuberculosis [6] promoters exhibit good sequence similarity with the E. coli
promoters at the —35 consensus, they display sgnificant variation in the —10 region. For
promoters like M. tuberculosis 85A [7], sequences at the —35 position are essentid for
transcription dthough their exact location may not be criticd. Some mycobacterid
promoters, for instance, M. paratuberculosis [6], have a high GC content in their —10
region as compared to the AT rich —10 region of E. coli s ™ type. Possibly, promoters
having a high GC content a& —10 region are the true representatives of the mycobacterial
type. An andlysis of M. smegmatis and M. tuber cul osis promoters by Bashyam et d. [8]
showed that the respective —10 regions are highly similar to those of E. coli s ™° promoters;
however their —35 regions exhibit greater sequence variability. The Stated feature
contrasting the one observed by Ramesh and Gopinathan [5] is however in agreement with
that noticed by Kremer et d. [7] for mycobacteriad promoters, and by Strohl [9] for
Streptomyces promoters. Streptomyces promoters contain diverse sequences in their —35
regions and do not function in E. coli [9] For mycobacteria promoters, where apparent
consarvation in -35 region is aisent, many of them possess TG dinuclectide in the
immediate upstream of the —10 region, and thus they are termed “extended —10
promoters’. The large variations among the mycobacteria promoters characterized thus far

suggest that the consensus sequences are not representative of al mycobacteria promoters.



Consequently, a number of conflicting opinions regarding the presence and characteristics
of consensus promoter sequences in the Mycobacteria have been ared in the literature
[4].

An important objective in molecular biology is andyzing the DNA sequences for
their structurd and functiond motifs. Macromolecular binding to specific Stes of DNA
involves recognition of a specific sequence pattern. In some cases, this pattern may be very
diginct while in others it may be diffused. During examination of the molecular binding Stes
in a DNA, conventionaly a consensus is derived by digning an ensemble of sequences
recognized by a common macromolecule. It is often found that the sequence pattern is
never completely conserved. Efforts have aso been made to develop Satigtica agorithms
for the sequence analysis and moatif prediction by searching for homologous regions or by
comparing the sequence information with a consensus sequence [10]. This gpproach may
fal or yidd insufficiently accurate results when consensus sequences are difficult to define
[10-11]. Wide variaions exising within individud promoter sequences are primarily
responsible for the unsatisfactory results yielded by the promoter- Ste-searching dgorithms
that in essence perform datistical analysis [12-13]. It can thus be inferred that recognition
of mycobacteria promoter sequences and the important regions therein, require a powerful
technique that is cagpable of unraveling those hidden pattern(s) in the promoter regions,
which ae difficut to identify manudly. An atifidd intdligence (Al) based
modeling/classification paradigm known as ‘atificid neurd networks (ANNS) possessing
significant nonlinear pattern recognition and generdization capabilities has become available
in the last decade. Accordingly, our objective in this chapter is to demondtrate: (i) the utility
of ANNSs for differentiating (classfying) mycobacterid promoter sequences from random
(non-promoter) sequences, and (ii) an ANN-based cdliper randomization (CR) approach
[14-15] for determining the gructurdly and functiondly important regions within the

mycobacteria promoter sequences.

7.1.1 Overview of ANNs

ANNSs are smplified counterparts of biologica neurd networks and based on the
concept that a highly interconnected system of smple processng units (dso cdled



“neurons’ or “nodes’) can learn and generaize complex inter-rel ati orships existing between
independent (ANN input) and dependent (ANN output) variables to an arbitrary degree of
accuracy [16]. ANNSs possess severa unique characteristics and advantages as tools for
molecular sequence andysis [17-18]. An important feature d ANNS is their adaptive
nature where “learning by example’ replaces the explicit “programming” agpproach
conventiondly followed in seeking solutions to modding/classfication problems. This
feature makes ANNSs very appedling in gpplication domains where athough the system to
be modeled is only partly understood, there exists an example data set, which can be used
in empirica (or “black-box”) modd development. In such instances, a network is made to
capture (learn) the nonlinear interrdationships in the example input-output data via a
procedure caled “network training”. In modeling applications, the network input-output
may be representing a DNA sequence and its sequence-dependent festure (viz. DNA
curvature, [19]), respectively, while in an ANN-based classfication application, the
network input-output is an appropriately coded DNA sequence and its class (viz. E. coli
promoter prediction, [20]), respectively.

A typica ANN architecture used in modding/classification tasks comprises multiple
(usudly tree) layers housing a number of processng units in eech layer. Units in the two
successve layers are fully connected by means of “weighted” links. A commonly utilized
multilayer network gructure is the feedforward network wherein information flow occurs
only in the forward direction i.e. from the input layer to the output layer. Such an ANN
architecture is aso amenable to parald processng since the mathematica computations
performed by a processing unit are independent of the computations done by ather unitsin
the same layer. A large number of interconnections comprised by an ANN makes it error-
tolerant and thus can easily ded with even noise-corrupted data. A trained neural network
encodes information about interrdationships existing between its inputs and outputs in a
digributed fashion. That is, the captured information is spread over network’s entire
weight-space. This ANN feature makes it easy to optimize the network to deal with alarge
volume of data and to anayze its numerous input parareters.

Training of an ANN essentidly consigts of finding a set of connection weights such
that the network accurately predicts the outputs corresponding to the input data in the
example set. The error-back- propagation (EBP) method [21-22] currently represents the



most popular dgorithm for training feedforward networks. Neura networks using the EBP
training dgorithm (hereafter referred to as EBPN) have been successfully used for various
goplications in biology involving nonlinear input-output modding and classfication (eg.,
[23-25]). In fact, the overriding success of EBPNs in solving computational problems in
biology and other sciences exceeds their biologica significance [26]. In the present study, a
three layered feedforward network trained using the EBP agorithm has been developed
for predicting the mycobacterid promoter sequences.

7.2SYSTEM AND METHODS

The smulation programs for network training and promoter prediction were written
in FORTRAN -77 and compiled using the Microsoft FORTRAN 5.0 compiler for the IBM
PC and competibles.

7.2.1 Data

The daia for EBPN traning was taken from our own compilaion of the
mycobacteria promoters (refer Table I, from chapter 6). The compiled promoter data set
contains a total of 125 mycobacteria promoters out of which 80 have their transcription
gart dte (TSS) mapped while the remaining 45 sequences are putative promoters. The
promoters with the mapped TSS contain sequence stretches between —50 and +10 bp with
respect to the TSS; the sequence stretch for the putative promoters lies between 15 bp
upstream region of —35 box and 20 bp downstream of the —10 region. Length-wise, the
compiled promoter sequences show variaions owing to: (i) non-uniform availability of the
nucleotide sequence upstream of the —35 region and downstream of the —10 region in the
origina reference, and (i) variations in the spacer length. The shortest and the longest of the
compiled sequences are 34 and 71 nucleotides long, respectively. In a few cases, two or
more different sequence frames are considered for the same gene on the badis of dternate
consensus probability. Thus, an overal st comprisng 135 mycobacterial promoter

sequences has been employed in this study.



7.2.2 Datarepresentation for ANN-based classification

In ANN-based molecular sequence andyses, flexible sequence (network input)
encoding schemes can be used for grasping the heterogeneous sequence festures.
Specificaly, an individual nucleotide of a sequence can be represented using various coding
strategies, such as CODE-2, CODE-4 [27], ElIP code [14], and wedge and twist codes
[28]. In classfication studies by Nair et d. (1994) and Parbhane et d. (2000), it is
observed that the CODE-4 dtrategy fares better than the other input coding approaches. In
the CODE-4 scheme, each nucleotide is represented using a st of four binary digits as
given by: C=0001; G=0010; A=0100; and T=1000. On the other hand, the above- stated
other coding schemes utilize smdler number of bits or red numbers. For indance,
mononucleotide representation schemes such as CODE-2 and EIIP respectively use two
binary digits and a single eectron ion interaction potentia vaue for describing a nucleotide.
Dinucleotide based wedge and twist codes use a single non-binary value to represent a
nucleotide pair. Since CODE-4 requires maximum number (i.e,, four) of input nodes to
represent a single nucleotide, it produces a large-sized network as compared to other
coding schemes. A large-sized network consequently incresses the number of network
weights (adjustable network parameters), which in turn helps in improving the classification
accuracy of CODE-4 based EBPNs. Hence, in the present classfication study, the
CODE-4 scheme has been preferred for mononucl eotide representation.

For E. coli promoter sequences, Mahadevan and Ghosh [20] employed a three-
module gpproach with 98% dassficaion accuracy. In their methodology, the first neurd
net module predicts the consensus boxes; the second module aigns the promoters to a
length of 65 bases, and the third neurd net module classifies the entire sequence of 65
bases while taking care of the possble interdependencies among the bases in the
promoters. It is important to note that in the present study, the perfectly aigned promoter
sequences are not being used as the network input. Consequently, the input sequence data
do not require introduction of gaps for perfect dignment. The advantage of this gpproach is
thet it dlows andyss of sequences where dignment is difficult or impossible to define.

7.2.3 Neural Network Simulation



The EBP network architecture used in this study is shown in Figure 7-1. As can be
seen, a bias neuron each with the fixed output of +1 is added to network’s input and
hidden layers. Usage of bias neurons increases network’s weight- space thus providing
more adjustable parameters for performing the classfication task. Analogues to other
nodes in the same layer, the bias nodes are fully connected using weighted links to dl the
nodes in the next layer. Nodes in the input byer do not perform any numerica processng
and thus act as “fan-out” units; al numerica processing is done by the hidden and output
layer nodes and thus they are termed “active’ nodes.

Training smulaions for the network shown in Figure 7-1 were performed on a 486
AT equipped with the math co-processor. The EBPN training comprises: (i) presenting the
network with an input paitern (sequence) from the example s, (i) calculaing the network
output by propagating the input pattern through the hidden and output layers, (iii)
computation of prediction error [difference between the desired (target) output and the
actud network output], and (iv) utilization of the prediction error vaue to update the
network weights with a view of minimizing the prespecified error function. Steps (i) and (ii)
of this procedure are termed “forward pass’ and steps (iii) and (iv) are termed the “reverse
pass’ through the network architecture. The error function to be minimized during network
training is usudly the root-mean-squared-error (RMSE). For details of RMSE function,
please refer to chapter 2, section 2.2.3.

During training of an EBPN, the task of RMSE minimization is accomplished by
adjugting the network weights using a gradient descent technique namely the generali zed
delta rule (GDR) [21]. In actud practice, however, it is not sufficient that the trained
network accuratdly classifies sequences in the available example sst. What is essentid is
that the network aso correctly classfies new sequences, which are notpart of the example
set utilized for training the network. The network ability of correctly classfying new input
petterns is known as “generdization ability” and the phenomenon, which adversdly affects
network’s ability to generdize is known as “overfitting”. Network overfitting occurs when:
(1) network architecture contains more hidden nodes than necessary (known as “over-
parameterization”), and (ii) network training continues over excessively large number of
training epochs. If overfitting occurs, the network attempts to fit even the noise in the

example data sat a the cost of learning the smooth trends therein. In other words, an



overfitted network learns (memorizes) every minute detail thereby failing to capture the true
information content within he example input-output data set. To prevent occurrence of

overfitting, the available data is partitioned into two sets namely, the training set and the
test set. While the former is used for training the network (i.e., for computing the prediction
error and subsequent weight-updetion), the latter (test set) is used to sSimultaneoudy
evauae network’s generdization ability. For testing how wdl the network is generdizing,
its classification performance is checked at the end of each training epoch by computing the
RMSE with respect to the test set; the network weights that result into smallest RMSE for
the test st are taken to be optima since such a weight set exhibits best classfication

performance. Since ‘more-thannecessary’ hidden neurons aso result in overtraining, the
above-described training procedure is repeated by assuming varying number of hidden

nodes in the network architecture. The optima network architecture is the one, which

houses just adequate number of hidden neurons and whose weight set (termed “optimal

weight st”) results in the least RM SE magnitude for the test set. The detailed description of
obtaining an optima network structure and associated weight set can be found, eg., in

Freeman and Skapura [29], and Tambe et a. [30]. For training an EBPN, the GDR

dgorithm for weight-updation makes use of two adjustable parameters namely, the learning
rate (h) and momentum coefficient @). Addition of the momentum term in the weight

updation expression heps in accd erating the weight convergence and avoiding loca minima
on the eror surface. In practice, vaues of both the GDR parameters are selected
heurigtically so asto obtain anetwork possessing good generdization ability.

Towards developing an optimal EBPN, the compiled promoter data set (135
sequences) was partitioned into training and test sets comprising 95 and 40 sequences,
respectively. In order that the EBPN differentiates promoter sequences from the non
promoter ones, the training and test sets must adso include nonpromoter sequences.
Accordingly, nonpromoter sequences of length equa to 71 nucleotides were randomly
generated wherein probability of occurrence of either A, T, G or C was equal to 0.25. The
random sequences thus created were added to the promoter sequences in the training and
test sets in 1:3 ratio. Thus the training and test sets comprised 380 and 160 sequences,
respectively. For network training, the input data vectors (fragments coded in CODE-4)
need to be of same size. Thus, the shorter fragments (i.e., <71 bp) were uniformly padded



with 0.01 till each fragment was 284 (=71" 4) dements long. The resulting training and test
Sets can be viewed as matrices of size (380" 284) and (160° 284), respectively.

The EBPN architecture (Figure 7#1) used for dassfying the promoter sequences
condsts of 284 nodes in the input layer, and a single node in the output layer for
representing whether the input sequence is a mycobacterid promoter. Accordingly, the
target output for a promoter sequence was chosen to be unity ard for a non promoter, the
target output was zero. For a given input sequence if the network output lies between 0.5
and 1.0 then the sequence is assumed to be a promoter, otherwise (i.e., network output <

0.5) it isanon-promoter.

7.3 RESULTSAND DISCUSIION

The training and test sets each comprising promoter and random sequences were
utilized for obtaining an optima network architecture - and the optimized weight set thereof
- by following the network optimization procedure described earlier. The optima network
S0 developed, contains a single neuron in its hidden layer; increasing the number of hidden
neurons beyond one did not increase the classification accuracy of the trained network. The
RMSE profiles corresponding to the training and test sets for the optimized network are
shown in Figure 7-2. It was observed that the weights a the 318" training gpoch (h=0.6,
a=0.4) correspond to the minimum RM SE (highest classification accuracy) with respect to
the test set; thus these weights were taken as optima. The optima EBPN could correctly
dassify dl the 380 sequences in the training st (100% classfication accuracy). That is, the
network could indeed differentiate between 95 promoter sequences and 285 random
sequences. Moreover, the network correctly classfied 155 sequences in the test st
comprising 160 sequences (96.9% classification accuracy). It was aso witnessed that the
network did not predict any fdse postive i.e, none of the random sequences in the
traning/test sets were classfied as mycobacteria promoter sequences.

7.3.1 Analysis using Calliper Randomization strategy
The above-described classfication results in essence indicate that the optimized
EBPN mode possesses excdlent capability of differentiating between a mycobacteria

promoter sequence and a random sequence. In other words, the network mode has



satisfactorily captured the hidden features that impart mycobacteria promoter characterigtic
to a given nucleotide sequence. It can be inferred further that the network mode could now
be utilized to identify important sub-regions in a promoter sequence. Towards this god, we
employ the cdiper randomization (CR) approach wherein a mycobacterid promoter
sequence is randomized in parts and gpplied to the trained network to examine whether the
sequence 4ill retains its promoter characteridtic. If the network classfies the partly
randomized sequence to be a nonpromoter, then it can be concluded that the randomized
region of the origina promoter sequence governs its promoter functioning. For testing this
hypothesis, the trained network was presented with mycobacterial promoter sequences
randomized at fixed cdliper lengths. Specificdly, a fixed-szed cdliper window of 10
nucleotides (gpproximately one turn of the hdix) is chosen for randomization, which is
moved from one end of the sequence to the other, in an overlapping fashion (refer Figure
7-3). Thus from a promoter sequence of 71 nucleotides, 62 sequences each containing a
different randomized sub-region (window) could be formed. Upon randomizing dl the
promoter sequences in the training and test setsin this manner, the resulting sequences were
goplied to the optimized EBPN for predicting whether they maintain their promoter
characterigtic. In here, we present results pertaining only to the mycobacterid promoters
whose TSS is mapped experimentaly. The other type of compiled promoter sequences,
namely “putative’ promoters are caled so since they comprise possible consensus boxes.
However, the fact that their TSS is not mapped experimentaly may lead to erroneous
conclusions about mycobacterid transcription machinery. For this reason, the putetive
promoters are excluded from anaysis via CR approach.

The classfication results in respect of the partialy randomized mycobacerid
promoter sequences - whose TSSisknown - are portrayed in Figure 7-4. In thefigure, it
is obsarved that depending upon the gtarting location of the randomized window, the
resulting sequences are classified as non-promotersto varying extent. It canthus be opined
that the starting location of the randomized window plays an important role while classifying
a randomized promoter sequence. More importantly, it is noticed that when the starting
position for the randomized caliper window lies in the—42 to =35 region, then the resulting
sequences are predominantly classfied as nontpromoters. This observation suggests that

the nucleotide content and its arrangement in the calipers located in the —42 to —35 region



are critical for mycobacterid promoters. When the calliper windows covering the spacer
region and the —10 box are randomized, the original mycobacterial promoter sequences
loose their promoter features. However, in this case the percentage of randomized
sequences classfied as non-promoters is not as high as that when calliper windows located
in the —42 to —35 region are randomized. Thus, it is possble to infer that: (i) the —35 box
and its upsiream region play a critica role in mycobacteria promoter functioning, (i) —10
box and spacer region aso contribute towards mycobacteria promoter characteristics, and
(i) for promoter recognition the —10 region is not as important as—35 region.

In Figure 7-4, it is clearly noticed that the caliper window starting at location —38,
when randomized, results in the highest percentage (i.e, 37%) for nonpromoters. This
observation suggests that the —38 to —29 region is mogt influentid in determining whether a
given compiled sequence is a mycobacteria promoter or not. For an in-depth scrutiny of
the —38 to —29 region, it was divided into two sub-regionsviz., -38 to —34 and —33 to —
29, falowing which each of the two sub-regions was separately randomized. Upon
randomizing al the promoter sequences in this manner, they were subjected to classfication
using the optimal EBPN. The results of such an andysis show that 57% of the sequences
require randomization of the entire —38 to —29 region to dter their dasdfication from
promoters to norpromoters. It was also noticed that randomization of the —38 to —34
region and —33 to —29 region changes 36% and 7% of the origind promoter sequences,
respectively, to non-promoters.

Since the —38 to —29 region of the mycobacterial promoter sequences seems more
influentid in imparting them the promoter characteridtics, it is of interest to sudy the nature
of consensus nuclectide pattern for this sequence stretch. Towards this objective, dl the
mycobacteriad promoters from the compilation (refer Table I, from chapter 6), were digned
with respect to their TSS ard examined carefully to identify the consensus pettern in the—
38 to —29 region. Thus, the consensus nucleotide pattern observed in the —38 to —29
regionis Az Csg Tas Tag Gas Go7 Cz4 C37 Ta7 Cgo. Hereit isseenthat whilethe —38to—
34 region comprises asingle ‘A’ and two ‘T's, the —33 to —29 region is GC-rich. This
obsarvation suggests that the comparatively higher AT content in the —38 to —34 region
assumes specid sgnificance for mycobacterid promoters. The —38 to —29 region is also



andyzed for puring/pyrimidine consensus pattern. Thus, purine (R) and pyrimidine (Y)
consensus for =38 t0 —29 region is. Rs7 Ysa Yes Yes Rso Rsy Yo Yoo Y Yiss.

Using the results of the CR andlyss it is possble to get an indgght into the sub-
regions of the pomoter sequences, which upon randomization were classfied as non
promoters. Accordingly, a detailed examination of the randomized promoters was
undertaken. It revealed that the mycobacterid promoters that were subjected to
randomization (and were subsequently classified as non-promoters) in: (i) upstream region
of =35 box, (ii) —35 region, (iii) spacer region, and (iv) —10 region, show resemblanceto E.
coli s ™ type promoters. More specificaly, it is noticed that 32 mycobacteria promoters
ae sndtive to randomization within —38 to —29 region. Among these, 20 (64%)
promoters exhibit resemblance to typica E. coli s ® type; the remaining 12 (36%) belong
to atypica mycobacterid type (GC rich —10 region) for their consensus sequence pattern.

7.4 CONCLUSION

To conclude, the results presented in this study suggest that ANNS can be gainfully
employed for mycobacterid promoter sequence prediction. In view of the excdlent
performance of the optimized ANN in capturing the loca and globa features in the
promoter sequences, it is possible to use them as feature detectors for locating the
functionaly important regions. The results of the CR drategy indicate that the network is
indeed capable of acquiring the knowledge of regions that are structurally and functionally
important. Additiondly, the CR analysis results show that the method can be exploited in
deriving consensus for other functiondly important regions wherein week consensus

sequence pattern is observed.
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CHAPTER

N LN I

Analysis of DNA curvature distribution
INn mycobacterial promoters using
theoretical models



In this chapter, 125 mycobacterial promoters are analyzed for their DNA curvature
distribution using several di- and tri-nucleotide dependent models of DNA curvature.
Different models give similar behavior and therefore qualitative validation of the
results. Mycobacterial promoters resembling to E. coli s™ type have nearly 81%
(85%) sequences having medium and high curvature profiles using dinucleotide
dependent models. Non-E. coli s " type mycobacterial promoters have comparatively
higher percent of low curvature profiles. Very few of extended —10 promoters have
low curvature profiles. Mycobacterial promoters having AnTm (n+m 3 3) tract in the
éupstream region of —35 box and repeated in phase with each other have highé
curvature profiles. M. smegmatis promoters have high curvature profiles compared to
M. tuberculosis promoters. i



8.1 INTRODUCTION

Transcription process in Mycobacteria may differ from E. coli and many
other bacteria as mycobacterial genome has high G+C content which affects codon
usage and promoter recognition sites in an organism. Mycobacteria promoters like
M. tuberculosis 65 kDa[1], M. bovis BCG 64 kDa [2], and M. leprae 65 kD [3] are
known to function in E. coli. However, mycobacterial promoters like M. tuberculosis
85A [4], recA [5] are known to be nonfunctional in E. coli. Thus depending on the
choice of expression host, mycobacterial promoters are classified as E. coli type and
NonE. coli type promoters. M. smegmatis and M. tuberculosis promoter analysis by
Bashyam et a. [6] showed that occurrence of TG motif near —10 region is
functionally significant for those having nonfunctional —35 region. These pranoters
form a different class of promoters known as ‘Extended —10 promoters’. The type of
expression host, and the variation of the nucleotide sequence composition at —35 and
—10 region of mycobacteria promoters [7] indicates that there exists immense
variation in transcription initiation mechanism of mycobacterial promoters.

Transcription initiation is a multi-step, sequential process involving: a)
binding of RNA polymerase to the promoter leading to formation of a relatively
weak closed initiation complex; b) its isomerization to the more stable open complex
that is accompanied by the separation of the DNA strands upstream and around the
start site of the transcription; and ¢) RNA polymerase escapes from the promoter
after cycles of abortive initiation forming the stable elongation complex [8].
Promoter DNA undergoes drastic conformational changes during initiation of
transcription. The necessary condition for open complex formation is that RNA
polymerase must bind and bend the promoter DNA. This bending and subsequent
torquing is responsible for melting the DNA and the formation of open complex [9
10].

The role of DNA curvature has been studied extensively in E. coli [11-17].
The conformation of DNA is afunction of its nucleotide sequence [18-19]. The three
dimensiona structure of DNA is the effect caused largely by interactions between
neighboring base pairs [20-29]. Generally, periodic repetitions of curved DNA in
phase with the helical pitch cause the DNA to assume a macroscopically curved
structure. Several theoretical models for estimating DNA curvature from di- or

trinucleotides have been devised, and require various types of experimental data [23,



25, 28-31]. It is to be noted, however, that these models are being debated for their
generality [32]. The importance of DNA conformation in transcription initiation is,
however, clear and it would be interesting to study the DNA curvature distribution
within the mycobacterial promoters especialy in view of the large variation in their
transcription mechanism. The objective of this chapter is to use six different di- and
trinucleotide dependent models of curvature prediction for analysis of mycobacterial

promoters.

82 SYSTEM AND METHODS
8.2.1 Data

The data for curvature analysis was taken from compilation of mycobacterial
promoters (refer Table |, chapter 6). This data set contain 125 different
mycobacterial promoters, out of which 80 promoters have their transcription start site
(TSS) mapped while the other 45 are the putative promoters. In the listed
compilation, we have considered the sequence stretches between —50 and +10 bp
with respect to the TSS for the promoters whose TSS is mapped. For the putative
promoters, we have documented the sequence stretch between 15-bp upstream region
of =35 box and 20 bp downstream of the -10 box. The promoter sequence length
varies from 34 to 71 nucleotides based on the availability of the nucleotide sequence
upstream of the —35 region and downstream of the —10 region. In few cases, for the
same gene two or more diffeent sequence frames are considered based on the
alternate consensus probability. Thus, 135 mycobacterial promoter sequences are
used in this study.

8.2.2 Curvature Analysis

For the purpose of analyzing curvature distribution within mycobacterial promoter
sequences, we have used the following dinucleotide models based on i)
experimentally determined wedge angles [25]; ii) energy minimized values of roll
and tilt angles [31, 33]; iii) X-ray crystallography of DNA oligomers [30]; and iv)
Calladine-Dickerson rules [34-35]. The trinucleotide models used include: i) the
model based on tabulation of preferred sequence locations on nucleosomes [23, 28];
and ii) DNase | cutting frequencies[29].



1. CURVATURE [36]: To obtain curvature map of each mycobacterial promoter, a
window size of 21 bp nucleotide sequence is given as an input to the program and
the curvature is obtained as an output. The results of this study are listed in Table
| for each mycobacterial promoter. Various sub-groups of mycobacteria
promoters are analyzed for nature of curvature profile and results are listed in
Tablell.

2. P. De Santis [33]: The curvature vector C (n,v) representing, in the complex
plane (in modulus and phase), the directional change of the double helix axis
between sequence number n and n+v is calculated for each mycobacterial
promoter sequence in the compilation. For this calculation, roll and tilt angle
values (in degrees) for the sixteen different dinucleotide steps in DNA are taken
from Anselmi et a., [31]. In our analysis, we have used integration step value as
31 (~ three turns of B-DNA) in order to minimize the signal to noise ratio. The
results of this study are also listed in Table | for each mycobacterial promoter.
Various sub-groups of mycobacteria promoters are anadyzed for the nature of
curvature profile and these results are presented in Table |1. Curvature dispersion
s? quantifies the central dispersion of the local helical axes with respect to the
average direction of the double helix. The s? plot of cyclicaly permuted DNA
sequence allows an easy alternative to experimental permutation assay for DNA
tracts up to 700 bp long. Hence, s? plots of cyclically permuted mycobacterial
promoters are prepared to see exact position of molecular bend locus. For
smplicity, of anaysis mycobacterial promoter region is divided into the
following five sub-regions: i) region above —35 box, ii) —35 region, iii) spacer
region, iv) —10 region, and v) region below —10 box. The position of molecular
bend locus, for each mycobacterial promoter, with respect to the sub-regions
specified above, is mentioned in Table 1.

3. Cdladine-Dickerson Rule [34-35]: Calladine proposed four rules to understand
the sequence dependent departures from classical BDNA due to simple steric
hindrance of nearest neighbor purines on opposite strands. He suggested that the
DNA chains may overcome these steric clashes in four possible ways: i) the helix
twist angle may be reduced, ii) the base pairs can rotate along their long axes, iii)
the DNA backbone can shift sideways towards the pyrimidines, and iv) the
propeller twist can be suppressed. Dickerson quantified this by constructing four



sum functions S1t0 S4), by means of which the base sequence can be used to
caculate the expected loca variation in hdix twig (S1), base plane roll §2),
torsion angle difference at the two ends of the base pair (Ss), and flattening of
propeller twist (S4). DNA hdlical structure variation at the molecular bend locus
is studied here for mycobacteria promoters using Calladine-Dickerson rules. For
this analysis, we have taken 11-bp long sequence stretch obtained by taking five
nucleotides on either side of the molecular bend locus of each mycobacterial
promoter. For brevity, only S; function plots for the promoters whose TSS is
mapped are shown in Figure 8 1.

Propeller Twist [30]: It is known that different types of dinuclectide step have
different levels of conformational flexibility, which is very closely related to the
Propeller-Twist. Propeller Twist values are obtained from X-ray crystallography
of DNA oligomers. Dinucleotides with a large propeller-twist have a tendency to
be more rigid than dinucleotides with low propeller twist. Higher (less negative)
values correspond to higher flexibility. Flexibility profile was plotted using the
propeller twist values from X-ray crystalography of DNA oligomers for
overlapping dinucleotides.

DNase | derived bendability parameters [29]: The productive binding of Bovine
pancreatic deoxyribonuclease | (DNase 1) requires DNA to be bent toward the
major groove (positive roll). Base sequences that are flexible or inherently bent
towards the major groove should therefore be more accessible to DNase |
cleavage. DNase | cutting frequencies on naked DNA can be used as a
guantitative measure of anisotropic bendability (maor groove compressihility).
Bendability profile was calculated using DNase | derived bendability parameters
for overlapping trinucleotides of each mycobacterial promoter sequence.

Location Preference [23]: From experimental investigations of the positioning of
DNA in nucleosomes, it has been found that certain trinucleotides have strong
preference for having minor grooves facing either towards or away from the
nucleosome core. Based on the premise that flexible sequences can occupy any
rotationa position on nucleosoma DNA, while rigid sequences will be restricted
in rotationa location. We have calculated DNA flexibility profile using these
location preference values for mycobacterial promoters at each position

considering overlapping trinucleotides.



8.3 RESULTSAND DISCUSSION

The curvature distribution for various mycobacterial promoters as calculated
using different models show similar trends. In order to aid the analysis the results
obtained using: i) experimentally determined wedge angles and ii) energy minimized
values of roll and tilt angles, have been compared. The extent of curvature obtained
using these models has been classified in terms of low, medium or high curvature
and the results of the two models corroborate each other for most of the promoters
barring afew promoter entries (e.g. M. tuberculosis T3, T6, T101, T129, T130, recA,
rrA P1, gyrA, cpn60, rrnA PCL1, 16SrRNA, metA, rpsL etc.) where the prediction
of the two models differ.

In order to obtain a better insight for the results obtained by these two
models, mycobacterial promoters are sub-divided into various groups. These groups
are as follows: i) Class |: mycobacterial promoters resembling to E. coli s ® type
promoters, ii) Class I1: mycobacterial promoters wtich are different from E. coli s™
type promoters, and constituting a class known as typical mycobacterial promoters,
iii) Class I11: Extended —10 promoters, iv) mycobacterial promoters having optimum
(17£1 bp) spacer length, v) mycobacterial promoters having high (3 50%) AT
content, vi) mycobacteria promoters having AT (n+n# 3) tract repeated in phase
with each other and present at the upstream of —35 box, vii) M. tuberculosis
promoters, viii) M. smegmatis promoters, and ix) entire mycobacterial promoter
compilation. The curvature analysis of promoters classified in these groups is listed
in Table 1l. From Table Il, it can be seen that E. coli s’ type mycobacterial
promoters have 15% (19%), 60% (67%), and 25% (14%) of low, medium, and high
curvature profiles using curvature models of Shpigelman et a., [36] (P.De Santis et
al., [33]). This distribution indicates that mycobacterial promoters resembling to E.
coli s ™ type (Class 1) have nearly 81% (85%) sequences having medium and high
curvature profiles. Very few i.e, 19% (15%) promoter sequences are having low
curvature profiles. Considering percent distribution of curvature existing among E.
coli s™ type mycobacterial promoters, we can say that these promoters might be
having good promoter activity. The analysis also indicates that the Non-E. coli s”
type mycobacteria (Class 11) promoters have 22% (27%), 56% (54%), and 22%
(19%) of low, medium, and high curvature profiles (using both curvature models).

This group of mycobacterial promoters has comparatively higher percent of low



curvature profiles indicating that Non - E. coli s™ type mycobacterial promoters
might be expressed poorly compared to E. coli s’ type mycobacterial promoters.
The curvature models applied to the extended —10 (Class I11) pranoters show 17%
(4%), 25%(58%), and 58% (38%) of low, medium, and high curvature profiles. The
percent distribution of these promoters indicates that very few of these promoters
have low curvature profiles. Extended —10 promoters might therefore have
reasonably high promoter activity. M. tuberculosis T101, M. smegmatis S6, S16, and
S19 promoters are extended —10 promoters, which are strongly curved. For such
mycobacterial promoters sequence of the —35 region seems to be less important due
to presence of extended TG motif in the immediate neighborhood of —10 box aong
with the high curvature existing within it. Mycobacterial promoters lacking
consensus sequence at —35 and are curved are M. tuberculosis T150, M. smegmatis
S12, S14, S30, and S35. Here curvature along with —10 region might be useful for
promoter activity although they do not possess TG motif in the immediate
neighborhood of —10 box. The mycobacterial promoters having optimum (171 bp)
spacer length have 9% (11%) of sequences having low curvature profiles by both the
models. Mgjority of sequences from this class has curved structure. The favorable
flexibility and/or curvature of DNA may compensate somewhat for a sub optimal
spacing of 16 or 18 base pairs between —35 and —10 regions during transcription
initiation. The mycobacteria promoters with high % of AT have 12% (15%), 54%
(58%) and 35% (27%) of sequences possess low, medium and high curvature
profiles, respectively. The occurrence of curvature is obvious for majority of
sequences from this class due to their high percentage of AT content. Among
mycobacterial promoters with AT, (n+m 23 3) tract repeated in phase with each
other and present at the upstream of —35 box, 58% (50%) of sequences have high
curvature trends. These promoters having upstream sequences, which can be
expected to produce curvature in the DNA helical axis might be transcriptionally
active promoters. M. tuberculosis promoters have 14% (9%), and M. smegmatis
promoters have 29% (25%) of high curvature profiles. Such a percent distribution
may be one of the causative factors for M. smegmatis to express better than M.
tuberculosis For the analysis performed in the Table I1, it is important to realize that
the % vaue of curvature predictions by both the models sometimes differ
significantly due to different conditions defined for low, medium, and high curvature



profiles; and in few cases predictions by two models lie on the boundary conditions
of low and medium, or medium and high curvature profiles. The sample size
considered n this analysis is adso small, and can affect large difference in the
predictions by two models. Results listed in Table Il should therefore be used to see
only qualitative and semi-quantitative trends.

According to CURVATURE software, curvature maxima for M. tuberculosis
gyrB P1, M. bovis BCG alpha, M. fortuitumrrnA P1, Mycobacteriophage L5 71P1,
M. neoaurum rrnA PCL 1, and rrnA P3 promoters lies above 0.3 DNA curvature units
and it is present between —35 and —10 regions. It will be interesting to study the
transcription initiation mechanism in these promoters because in E. coli it is shown
that curvature between —35 and —10 regions seems to correlate significantly with
promoter activity. In such cases the curved structure of promoter DNA enhances the
binding of E. coli RNA polymerase to the promoter, when the curve is oriented
correctly relative to the potential —10 and —35 regions, and it adso facilitate
unwinding of the —10 region by therma motion, as the DNA vibrates back and forth
in solution betweentwisted and curved forms [11].

s? plots of cyclicaly permuted mycobacterial promoters should alow an
aternative to the experimental permutation assay for determining molecular bend
locus of a mycobacterial promoter sequence. The model has been successful in
predicting the experimental results for other systems [33, 38-39], while promoters
analyzed here have not been subjected to any such experimental investigations and
hence the theoretical predictions could not be tested. In Table 111, we have evaluated
the percent occurrence of position of molecular bend locus in i) region above —35
box, ii) -35 region, iii) spacer region, iv) -10 region, and v) region below —10 box.
For this analysis, we have separated entire promoter compilation into two groups i)
promoters whose TSS is mapped (true promoters) and ii) putative promoters.
According to percent distribution for true promoters, molecular bend locus lies
predominantly in the spacer region and region below —10 box. The 16%, 16%, 30%,
6% and 32% of true mycobacterial promoter sequences show that their molecular
bend locus lies in the region above —35 box, -35 region, spacer region, -10 region,
and region below —10 box, respectively. For putative promoters 8%, 23%, 15%, 6%
and 48% of sequences show their molecular bend locus in region above —35 box, -35

region, spacer region, -10 region, and region below —10 box, respectively. Thus, for



true as well as putative mycobacterial promoters spacer region and region below—10
box seems to be of frequent occurrence for the location of molecular bend locus.
Similar studies by Nair and Kulkarni [40] on E. coli promoter sequences showed that
60% of these promoters have their minima (molecular bend locus) lying in the spacer
region. However, for mycobacterial promoters position of molecular bend locus can
occur with varying percent distribution at region above —35 box, -35 region, spacer
region and region below —10 box. Thus, mycobacterial promoters have variation
towards position of molecular bend locus compared to E. coli promoters.

Calladine and Dickerson rule (S1-S4) gives a way of revealing possible
structural homology between regions of DNA, when the similarity is not obvious by
direct comparison of sequence alone. The helical structure variation at the molecular
bend locus for the true mycobacteria promoters is sub-grouped according to the
position of molecular bend locus. Thus, Figure 81 is subdivided into five plots. The
helical structure variation obtained using S; function at the molecular bend locus
lying in i) region above-35 box, ii) —35 region, iii) spacer region, iv) —10 box, and v)
region below —10 box shows that each sub-group has structural similarity within that
particular sub-group. The other sum functions also uphold the structural similarities
(results not shown). The analysis of the sequence at the minima reveads that there
exists homology among these sequences irrespective of the exact position of minima.
The regions that are localized for mycobacterial promoters show significant
commonality in structure, which is evident from the S1 function plot. There seems to
exist some structural commonalties among the each sub-group of mycobacteria
promoters. We can therefore group the promoters based on the common structural
features and advocate the notion of “consensus structure” suggesting their common
biological significance. The variation from these consensus structures can account
for varying strength of the promoters. Such an analysis might help us in designing
experiments to define the exact location and function of a promoter.

Although the entire mycobacterial promoter compilation has been analyzed
using other curvature models [23, 29, 30], the results obtained using only three
models are presented.

Mycobacterial promoters that are strongly curved are M. tuberculosis T150,
and gyrB P1; M. Leprae65KD; M. smegmatis S6, S12, S14, S30, S35, and rrnB; M.
Phlei rrnA P2; M. abscessusrrnA P4, rrnA P2, and rrnA P3; M. chelonae rrnA P2,



rrA P3, and rrnA P4. Figure 8-2 shows the curvature map expressed in DNA
curvature units of these promoters using CURVATURE software. The curvature
maxima of these curvature maps correspond to region having more curved structure.
Figure 83- a & b presents the curvature analysis using energy-minimized values of
roll and tilt angles. The curvature vector is a complex function of the sequence with
the modulus representing the deviation and the phase indicating the relative
direction. The curvature diagrams for these mycobacteria promoters clearly show a
DNA tract characterized by both a high curvature modulus (see Figure 83-a) and a
constant phase (Figure 83-b). Figure 84 shows flexibility profiles based on
propeller twist values from X-ray crystallography of DNA oligomers. Dinucleotides
with a large propeller-twist have a tendency to be more rigid than dinucleotides with
low propeller -twist. Thus, sequence positions corresponding to higher (less negative)
values represent regions of higher flexibility for mycobacterial promoter. Figure 85
presents flexibility profile calculated using trinucleotide model based on preferred
sequence location on nucleosomes. Sequence positions corresponding to lower
values of location preference represent more flexible region of mycobacteria
promoter, which have less preference for being positioned specifically. Figure 86
shows bendability profile in the mycobacterial promoters calculated using DNase |
derived bendability parameters. Sequence position corresponding to higher
bendability parameters represent to higher propensity for maor groove
compressibility of mycobacterial promoter. Essentially all the models predict similar
behavior for these promoters. Thus nucleotide sequence position corresponding to
high (low) curvature is showing high (low) curvature trend with all the other models.
Mycobacteria promoters M. abscessusrnA P4, rrnA P2, and rrnA P3; M. chelonae
rrnA P2, rrnA P3, and rrnA P4 have similarity in their curvature trends as their
nucleotide sequence shows maximum homology with each other. The similar
curvature trends suggest common mechanism of transcription initiation.

Regions with high DNA curvature would be expected to exhibit anomalous
mobility by the gel electrophoresis assay. It will be of interest to examine fragments
containing these regions for the structural feature of DNA curvature, and the
corresponding functional feature of transcriptional activation. Plasmids containing
stiff, flexible or curved DNA structure near the cleavage site of commonly used
restriction enzymes can be helpful for studying the role of DNA dructure in

transcription mechanism of mycobacterial promoters.



Thus, analysis of DNA curvature distribution for mycobacterial promoters
reveals the following important features. i) The curvature distribution for various
mycobacterial promoters calculated using different models show similar trends. ii)
Mycobacterial promoters resembling to E. coli s™ type have nearly 81% (85%)
sequences having medium and high curvature profiles. iii) Non E. coli s™ type
mycobacterial promoters have comparatively higher percent of low curvature
profiles. iv) Very few of extended —10 promoters have low curvature profiles. v)
Mycobacteria promoters having AT, (n+m 3 3) tract in the upstream region of —35
box and repeated in phase with each other have high curvature profiles. vi) M.
smegmatis promoters have high curvature profiles compared to M. tuberculosis
promoters.

Experimental studies based on curvature distribution and its role in
transcription mechanism for particular mycobacterial promoter(s) or representative
examples from various groups of mycobacterial promoters showing some distinct
features will throw light on our understanding of transcription mechanism of

Mycobacteria.
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Figure 8-2: Curvature map obtained using experimentally determined wedge angles
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Table I: Nature of curvature profile for mycobacterial promoters using dinucleotide models based on- i)
and ii) energy minimized values of roll and tilt angles

experimentally deter mined wedge angles,

Promoter analyzed Shipgelman et Santisetal.[33] | Promoter analyzed | Shipgelman et al. Santiset al. [33]
al [36]° [36]
M. tuberculosis M. tuberculosis

T3 Medium Low glnA (sp=10) Medium Medium

T6 Medium High KatG P, (5p=19) Low Low

T26 Low Low KatG P, (5p=15) Low Low
T80 Medium Medium KatG Ps (5p=20) Medium Medium
T101 High Medium KaG P; (sp=22) Medium Medium

T119 Low Low KaG P (sp=22) Low Low

T125 Medium Medium KaG P (sp=14) Low Low
T129 Low Medium purL Medium Medium

T130 Low Medium purC Low Low
T150 High very high groE (sp=19) Medium Medium
recA Medium Low groE (sp=11) Medium Medium
rrA P1 Medium Low ahpC Medium Medium
gyrA Low Medium 32KDa Medium Medium
cpn60 Low Medium 10 Kda(sp=17) Medium Medium
gyrB P1 very high very high 10 Kda(sp=15) Medium Medium
gyrB P3 Medium Medium 10 Kda(sp=8) Medium Medium
85A (sp'=17) Medium Medium 65 KDa Medium Medium
85A (sp=22) Medium Medium mpt 64 Medium Medium

gyrB P2 Medium Medium metA Medium High
rmA PCL1 High Medium rpsL High Medium
16SrRNA High Medium 38KDa Medium Medium
glnA (sp=18) Medium Medium ppgK Medium Medium




Tablel continued....

Promoter analyzed | Shipgelman et al. Santiset al. [33] Promoter analyzed | Shipgelmanetal. Santiset al. [33]
[36] (36]
M. bovis BCG M. smegmatis
hsp60 P2 Medium Low A Medium Medium
rRNA High Medium 5 Low Medium
ahpC Medium Medium %6 High High'
23K Medium Medium S12 very high High
mpb 64 Medium Medium Sl4 High High
18K High Medium S16 High Medium
64K Medium High S18 Medium Medium
rpsL High Medium S19 High Medium
mpb70 High Medium 1 Medium Medium
alpha High Medium S30 High High
M. leprae S33 Medium Low
16SrRNA Medium Medium S35 High High
18 Kda(sp=17) High Medium 65 Medium Medium
18 Kda(sp=18) High Medium 69 Medium Low
28KDa Medium Medium S119 Low Low
groEl Low Low agyr B Low Low
65 KD very high High recA Medium Medium
36K Medium Low ask Low Low
SOD Medium Low acetamidase Medium Medium
rpsL High Medium rmB High High
M. smegmatis rrmA P1 Medium Medium
arA Low Low rrnA P2 Medium Low




Tablel continued....

Promoter analyzed | Shipgelman et al. Santiset al. [33] Promoter analyzed | Shipgelmanetal. Santiset al. [33]
[36] (36]
M. smegmatis M. phlei
rrA P3 Low Medium rrA PCL1 Medium Medium
rrmA PCL1 Medium High rmA P1 Medium Medium
rpsL (sp=18) Medium Medium rrA P2 very high High
rpsL (sp=17) Medium Medium rrA P3 Medium Medium
ahpC Medium Medium Mycobacteriophage |3
M. paratuberculosis pKGR25 Medium Medium
pAJB303 Low Low pKGR9 Medium Medium
pAJB86 Medium Medium pKGR38 Medium Medium
pAJB125 Medium Medium ORF1 Medium Low
pAJB300 Medium Low ORR2 Medium High
pAJB305 Medium Medium pKGR1 Medium Medium
pAJIB304 Low Medium Mycobacteriophage L5
Pan Low Medium 71P2 Medium Medium
pAJB73 Low Low 71 Pt Medium Medium
pAJB301 Medium Low 71P1 High Medium
M. fortuitum M. avium
repA Low Medium avi-3 Medium Medium
rrmA PCL1 Medium Medium pLR7 Medium Low
rmA P1 Medium Medium M. neoaurum
rrmA P2a High Medium rrmA PCL1 Medium Medium
rrA P2b Medium Medium rrnA P1 Medium Medium
rrA P3 Medium Medium rrnA P3 Medium Medium




Tablel continued.....

Promoter analyzed | Shipgelman et al. Santiset a. [33] Promoter analyzed | Shipgelmanetal. Santiset al. [33]
[36] (36]
M. neoaurum M. chelonae
rrA P2 High Medium A P2 High very high
M. abscessus rrmA P1 Medium Medium
rrA P4 High very high rrmA PCL1 High Medium
rmA P1 Medium Medium rmA P3 High very high
rrnA PCL1 High Medium rrmA P4 High very high
rrA P2 High very high - - -
rrA P3 High very high - - -

$ Curvature maxima lying in the range [0.0-0.2], [0.2,0.4], [0.4,0.6]; and [0.6 and above] DNA curvature units is

referred to as low, medium, high and very high curvature map, respectively.

* Curvature maxima lying in the range [0-5], [5-10], [10-15]; and [15 and above] unit is refereed to as low, medium,

high and very high curvature profile, respectively.

" sp denotes spacer length in bp.

" For M. smegmatis S6 promoter grid value used is 21 bp while cal culating curvature vector (in phase and modul us)

by Santiset al. [33]




Table Il: Percentage of low, medium and high curvature profiles for various sub-groups of mycobacterial promoters using: i)

experimentally determined wedge angles[36]; and ii) energy minimized values of roll and tilt angles [33]

Low Medium High
Mycobacterial promoters Shipgelman | P. De Santis | Shipgelman | P. De Santis | Shipgelman | P. De Santis
et a. [36] et al. [33] etd. [36] et al. [33] etd. [36] et al. [33]
Class|: E. coli s " type (sample size=69) 15 19 60 67 25 14
Class II: Non-E. coli s° type (sample size=36) 22 27 56 54 22 19
Class |I: Extended —10 type (sample size=24) 17 4 25 58 58 38
Having optimum (17+1 bp) spacer length (sample 9 11 61 72 30 17
Size=79)
With high (¢ 50%) AT content (sample siz=26) 12 15 54 58 35 27
Having AyTn (n+m 3 3) tract repeated in phase 17 17 25 33 58 50
with each other and present at the upstream of —
35 box (sample size=12)




Tablell continued...

Mycobacterial promoters L ow Medium High
Shipgelman | P. De Santis | Shipgelman | P. De Santis | Shipgelman | P. De Santis
etd. [36] et al. [33] etd. [36] et al. [33] etd. [36] et al. [33]
M. tuberculosis (sample size=44) 25 23 61 68 14 9
M. smegmatis (sample size=28) 21 25 50 50 29 25
Entire compilation (sample size =135) 17 20 57 64 26 16




Table I11: Location of molecular bend locus with reference to following sub-regionsin the

mycobacterial promoter® sequence: i) region above —35 box, ii) —35 region, iii) spacer region,

iv) =10 region; and v) region below —10 box

Region above —35 -35region Spacer region -10region Region below —10
box box
Promoters whose transcription start site is determined
MT T180 MT T119 MT T130 MT T101 MT T3
MT recA MT T125 MT cpn60 MS S14 MT T6
MT 85A (sp =17) MT T129 MT gyrB P1 MS rpsL (sp=17) MT T26
MT KatG Pc(sp=22) | MT 85A (sp=22) MT gyrB P2 MP pAJB86 MT T150
MT purC MT purL MT katG Pa (Sp=19) MY 71P2 MT rrnA P1
ML 16S rRNA MSS4 MT katG Pa (sp=15) - MT gyrA
MS S69 MS S5 MT katG Pg (sp=20) - MT gyrB P3
MSgyrB MSS19 MT katG Pg (sp=22) - MT rrnA PCL1
MS ask MS S21 MB hsp60 P2 - MT 16S rRNA
MSrrnA P1 MSS119 MS S6 - MT gInA (sp=18)
MS rrnA P2 MSrrnB MS S12 - MT gInA (sp=10)
MP pAJB300 MA rrnA P4 MS S16 - MT KatG Pc (sp=14)
MF rrnA PCL1 MC rrnA P2 MS S18 - ML 18 kDa (sp=17)
MH rrnAPCL1 MC rrnA P3 MS S30 - ML 18 kDa (sp=18)
- - MS S33 - MSalrA
- - MS S35 - MS S65
- - MP pAJB303 - MSrecA
- - MP Pan - M S acetamidase
R - MF repA - MS rrnA P3
- - MY 71P1 - MSrrnA PCL1
- - MA rrnA P1 - MS rpsL (sp=18)




Tablelll continued...

Region above —35 -35region Spacer region -10region Region below —-10
box box
- - MA rrnAPCL1 - MP pAJB125
- - MA rrnA P2 - MP pAJB305
- - MA rrnA P3 - MP pAJB304
- - MC rrnA P1 - MPpAJB73
- - MC rrnA PCL1 - MY 71Bgt
- - - - MN rrnAPCL1
- - - - MC rrnA P4
16% 16% 30% 6% 32%
Putative Promoters
MT 32 kDa MT ahpC MT 10 kDa ML SOD MT groE
ML 28 kDa MT metA MT 38 kDa MI pKGR25 MT groE
MF rrnA P1 MT rpsL MT ppgK MN rrnA P2 MT 10kDa
MN rrnA P1 MB ahpC MB apha - MT 10kDa
- MB rpsL M1 pKGR38 - MT 65kDa
- ML 65 kDa M| ORF2 - MT mpt64
- ML 36K MV pLR7 - MB rRNA
- ML rpsL - - MB 23K
- MS ahpC - - MB mpb64
- MH rrnA P2 - - MB 18K
- MI pKGR9 - - MB 64K
- - - - MB mpb70
- - - - ML groEl
- - - - MP pAJB301

MF rrnA P2a




Tablelll continued ...

Region above —35

box

-35region

Spacer region

-10region

Region below —-10

box

MF rrnA P2b

MF rrnA P3

MH rrnA P1

MH rrnA P3

MI ORF1

M1 pKGR1

MV Avi-3

MN rrnA P3

8%

23%

15%

6%

48%

$ MT: M. tuberculosis; MB: M. Bovis BCG; ML: M. leprae; MS: M. smegmatis; MP: M.
MI: Mycobacteriophage 13; MY:
Mycobacteriophage L5; MV: M. aviunt MN: M. neoaurunt MA: M. abscessus; MC: M. chelonae

" §p denotes spacer length in bp.

paratuberculosis; MF. M. fortuitumr MH: M. phlei;




Biologicd systems are complex in nature and several known and unknown factors
govern their functioning. It is difficult most of the times to interpret underlying rdaionship(s)
between severd experimentd conditions and corresponding  system  output(s).
Phenomenologica modeling of such systems is dso difficult due to the inherent complexity
of biologicd sysems and inadequate information about them. Thus it is important to
develop and use dternate methods that can be gpplied to systems with inadequate
information. Artificid Intelligence (Al) tools viz. ANN and GA can uncover the underlying
relationship(s) of such biologica systems.

Detalled understanding of the biosystems require carrying out experiments that are
often cogtly and time consuming. Most of the experiments are d<o difficult to perform. Due
to multilevd interactions, a smdl change in input parameter of the system may result in
changes in large number of festures of sysem. Thus, to have a predictive mode that
captures the cause and effect relationship is certainly adifficult task. Al toolslike ANN and
GA can hdp in building up predictive modds and use quditaive and quantitative
information about the sysem. Thus, such modding can help us in having better
understanding of intricate biosystems. Therefore, the primary objective of thisthessis i) to
built up quantitative predictive rdaionship between inputs and outputs of biosystems
wherever possible, and ii) in instances where such predictive quantitative relationship can
not be built due to gross inadequacy of input-output data, it is hoped that they would at
leest provide quditetive guiddines for narrowing the choice of experiments to be
performed.

It is with this view that in chapter 2, we develop an ANN modd to establish a
corrdaion between a nucleotide sequence of DNA and its effective curvature,
characterized in terms of retardation anomay (R ) vaue. An ANN capturing the role of
phasing, increased helix flexibility, run of polyA tracts, and flanking base pair effectsin
determining the extent of curvature has been developed. The results suggest that ANN can
be used as a model-free tool for studying DNA curvature. In chapter 3 for ANN — based
modding of DNA sequences, two new input coding strategies namely, the wedge and the



twist code have been suggested. The performance of the proposed strategies has been
tested by performing various case studies. The proposed coding schemes have been shown
to outperform the existing coding srategies especidly in Stuaions wherein limited deta are
available for building the ANN models. Chapter 4, presents a hybrid strategy involving an
ANN and a GA for the optimization of a biologicaly important feature or property. This
drategy is generd and is illusrated usng an example of optimization of DNA curvature.
The ANN-GA technique is a useful tool to obtain, ahead of experimentation, sequences
that yield high R vaues. Chapter 5 illustrates a hybrid nontlinear strategy involving an
ANN and GA for optimization of transcription efficiency in eukaryotic sysems using b-
globin gene as a case example. The study reveds that multiple base subgtitutions in the
conserved as well as non-conserved regions can cause substantia enhancements in the
RTL. We identify postions in the nucleotide sequences, which preferable should not be
dtered, as well as those positions where mutations can lead to increased RTL. The study
helps to obtain an ingght into the Sructurd aspects of b-globin gene leading to high
transcription efficiency.

Chapter 6 of the thesis provides a compilation of different mycobacteria promoters
and analysis of their DNA sequences for various features. Further, the study suggests show
abroad classfication of these promoters into three main typesviz., i) E. coli type, Non-E.
coli type, and iii) Extended —10 promoters. In chapter 7, an ANN model is developed for
classfying mycobacteriad promoter sequences from non-promoter sequences. Cadliper
randomization approach has been suggested for determining structurdly and funciondly
important regions within the mycobacteriad promoter sequences. Chapter 8 presents
theoretical analyss of DNA curvature for mycobacterid promoters usng severd di- and
trinuclectide dependent models of DNA curvature. Various theoreticd sudies on
mycobacterid promoters throw some light on the mycobacteria transcription machinery
and structure of mycobacterial promotes. Such studies are an important step towards
understanding low levels of transcription and the possible mechanisms of regulation of gene

expresson.



In essence, the thesis ams a building predictive relaionships using Al tools for
complex biologica systems with a view to model and anadyze DNA sequences for their
properties and biologicd roles. This continues to be a poorly understood area and it is
hoped that the approach adopted in the thess takes a step forward in resolving the issues.
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