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ABSTRACT 

 Various genome projects are producing large amounts of DNA data sequences that 

need automated analysis for their characterization. Interpretation of nucleotide sequences by 

in-computo experiments with a view to providing some insight into the location, structure and 

function of particular gene is thus clearly very important. The consequent increase in the 

number of approaches, algorithms and software to solve the problem is self-evident. 

 There have been a number of approaches, both experimental and theoretical, that 

have been directed towards understanding genome organization and functions. Theoretical 

approaches include statistical analysis, spectral analysis, linguistic analysis, Monte-Carlo 

methods and molecular dynamics approaches. Further, there is also a growing need to 

develop faster and newer methods for understanding biological processes. It is of paramount 

importance to develop techniques to unscramble the words in the sequences and read the 

hidden message. The encryption of messages in biological sequences is complex. The 

aforementioned methods while are useful in understanding a variety of biological phenomena; 

there still remain certain processes, which can not be analyzed using these techniques. 

Biological systems being very complex, it is often difficult to identify individual components of 

the systems and establish the way in which they interact with each other. The inherent 

complexity of biological systems makes it very difficult to understand them as well as to 

model them phenomenologically.  

 Artificial Neural Networks (ANNs) provide a unique computing architecture whose 

potential has attracted interest from researchers across different disciplines. One can simply 

view a neural network as a large set of interconnections with variable strengths (weights), in 

which the learned information is stored [1]. Recent advances in neural network theory and 

technology have made them powerful tool that helps to identify complex processes in the 

presence of noisy or incomplete information, colinearity of data, and time delays. It can also 

be used on incomplete data without assumed models or postulated formulas. Further, several 

features of neural network have encouraged their application to the analysis of protein and 

nucleic acids sequences. Neural networks have several unique characteristics and 

advantages as tools for the molecular sequence analysis problem. A very important feature of 

these networks is their adaptive nature, where “learning by example” replaces conventional 

“programming” in solving problems. This feature makes such computational models very 

appealing in application domains where one has little or incomplete understanding of the 

problem to be solved, but where training data are readily available.  



 A neural network consists of a large number of simple processing elements called 

neurons. The arrangement of neurons into layers and the connection patterns within and 

between layers is called the network architecture. In feedforward (FF) nets, the signals flow 

from the input units to the output units, in a forward direction: the input units receive signals 

from the outside world; the output units present the response of the net. The perceptron is the 

simplest form of a neural network used for the classification of the special type of patterns 

characterized as linearly separable. A perceptron has only two layers- input and output 

layers. It computes a linear combination of the network inputs and applies the net input to 

produce the output using a threshold output function. Multilayer perceptrons (MLPs) are 

generalized perceptrons with one or more hidden layers. A three-layer FF neural network is 

an MLP with one hidden layer and two layers of adaptive weights. An MLP has several 

distinctive characteristics: (a) it uses neurons with a differentiable non-linear activation 

function. (b) It has one or more layers of hidden neurons, which enables the network to learn 

complex tasks by extracting progressively more meaningful features from the input patterns; 

and (c) it exhibits a high degree of connectivity. 

 The neural network learning algorithms may be supervised or unsupervised. The 

back-propagation algorithm is an example of the supervised training. Examples of 

unsupervised training include the Kohonen self-organizing maps and the adaptive resonance 

theory (ART). ANNs have been applied to several problems in nucleic acid sequence 

analysis, viz. gene identification, intron/exon discrimination, prediction and analysis of 

promoters, terminators, ribosome binding sites, phylogenetic classification etc.  

In recent years, a class of robust algorithms - known as “Genetic Algorithms” (GAs) 

- have been used with great success in solving optimization problems involving very large 

search spaces [2]. GAs were originally developed as genetic engineering models mimicking 

the population evolution in natural systems. Given a functional form, genetic algorithm 

searches its solution space so as to maximize (or minimize) the prespecified objective 

function. A simple GA has the following components: (i) representation/encoding scheme, (ii) 

initialization, (iii) fitness evaluation, (iv) selection policy: a) roulette wheel selection, b) 

tournament selection, (v) genetic operators- crossover and mutation. The thesis attempts at 

modeling the various sequence dependent features of DNA and their biological roles using 

ANNs and GAs.  

Chapter 1 of the thesis introduces the subject and reviews the earlier work. In 

chapter 2 of the thesis, ANNs have been utilized for the prediction of DNA curvature in 

terms of Retardation Anomaly. The ANN model has been developed and illustrated using the 



example and data of Bolshoy et al. [3]. The model captures the role of phasing, increased 

helix flexibility, run of polyA tracts, and flanking base pair effects in determining the extent of 

DNA curvature.  

 Chapter 3 describes two new encoding strategies, namely, wedge and twist codes that 

are introduced to represent DNA sequences in ANN-based modeling of biological systems. 

Wedge and twist codes are devised based on the direction of deflection angle, wedge angle 

and twist angle [4]. These codes have been evaluated by performing various case studies. 

The proposed coding schemes have been compared rigorously and shown to outperform the 

existing coding strategies especially in situations wherein limited data are available for building 

the ANN models. 

 In chapter 4, a hybrid technique involving two artificial intelligence (AI) tools viz., 

ANN and GA has been proposed for performing modeling and optimization of complex 

biological systems. In this methodology, first an ANN approximates (models) the non-linear 

relationship(s) existing between its input and output example data sets. Next, the GA, which 

is a stochastic optimization technique, searches the input space of the ANN with a view to 

optimize the ANN output. The efficacy of this formalism has been tested by conducting a 

case study involving optimization of DNA curvature characterized in terms of the RL value. 

Using the ANN-GA methodology, a number of sequences possessing high RL values have 

been obtained and analyzed to verify the existence of features known to be responsible for 

the occurrence of curvature. The methodology is a general one and can be suitably employed 

for optimizing any other biological feature. 

In chapter 5, using an ANN and GA based hybrid strategy the effects of multiple base 

substitutions with particular emphasis on those that can cause maximum gene expression of 

β-globin gene are studied. The study reveals that multiple base substitutions in the conserved 

as well as non-conserved regions can cause substantial enhancements in relative transcription 

level (RTL). We identify positions in the nucleotide sequences, which preferably should not 

be altered, as well as those positions where mutations can lead to increased RTL. The 

various trends observed are rationalized. The ANN-GA strategy can help in experimental 

planning and reducing the search space. 

In chapter 6, we have compiled 125 mycobacterial promoter sequences. Mycobacterial 

promoters have been analyzed for various features like: i) TSS, ii) -35 and –10 regions, iii) σ  

factor, iv) spacer length, v) upstream region of –35 box, and vi) % G+C content. These 

features are compared to similar features known for E. coli promoters. Further, the study 

suggests a broad classification of these promoters into three main types viz., i) E. coli type, ii) 



Mycobacterial (Non-E. coli) type, and iii) Extended –10 promoters. The results throw some 

light on the mycobacterial transcription machinery and structure of mycobacterial promoters, 

which is an important step to understand the low level of its transcription, and the possible 

mechanisms of regulation of gene expression.  

 In chapter 7 of the thesis, a multilayered feed-forward ANN architecture has been 

used to predict the mycobacterial promoter sequences. The trained network has been used to 

determine the structurally/functionally important regions with the help of calliper 

randomization approach. Results obtained thereby indicate that the upstream region of –35 

box, –35 region, spacer region, and -10 box are important for mycobacterial promoters. 

Mycobacterial promoters have large variation in transcription mechanism. One of the 

important controlling factors in transcription initiation is DNA conformation of the promoter 

sequence. In chapter 8 of the thesis, we have analyzed our own compilation of mycobacterial 

promoters for DNA curvature distribution. This analysis has been performed using several di- 

and tri- nucleotide dependent models of DNA curvature. The results of curvature distribution 

are compared and contrasted with E. coli promoters. 
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1.1 BACKGROUND 

 Various genomes are currently being intensively “spelled” (sequenced) and 

characterized by detecting in the sequences a few familiar features (protein-coding regions, 

transcription signals, Alu repeats), and deposited in sequence libraries, where they are 

further annotated and “shelved”. The most interesting part of the sequence processing - the 

“reading," depends on prior deep studies on the nature of the various codes carried by the 

sequences, of which we know only too little. The deciphering is not a simple task and 

bottlenecks exist in the development of our understanding of genome organization and 

functions. 

 While sequencing is progressing on at alarming pace, data analysis will certainly 

become a rate-limiting step. The succeeding phases of the project would then depend 

largely on interpreting nucleotide sequences by in computo experiments with a view to 

providing some insight into the location, structure and function of particular gene. It is 

needless to emphasize the importance of the problem and the consequent increase in the 

number of approaches, algorithms and software to solve the problem is self-evident. This 

will allow biological and medical researchers to focus their attention on promising and 

manageable subsets of the data. 

 There have been a number of approaches, both experimental and theoretical, that 

have been directed towards understanding genome organization and functions. Theoretical 

approaches include statistical analysis, spectral analysis, linguistic analysis, Monte-Carlo 

methods and molecular dynamics approaches. Further, there is also a growing need to 

develop faster and newer methods in understanding biological processes. It is of paramount 

importance to develop techniques to unscramble the words in the sequence and read the 

hidden message. The encryption of messages in biological sequences is complex. It is now 

being established that sequences no longer carry a single message (e.g., the triplet code 

which are instructions for protein synthesis) but, in fact, carry overlapping messages like the 

DNA shape code and the chromatin code. Other signals, which are responsible for vital 

cell activities like transcription, are also encoded in different regions. While the 

aforementioned methods are useful in understanding a variety of biological phenomena, 

there still remain certain processes, which can not be analyzed using these techniques. 
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 Thus, biological systems being very complex, it is often difficult to identify individual 

components of the systems and establish the way in which they interact with each other. 

The inherent complexity of biological systems makes it very difficult to understand them as 

well as to model them phenomenologically. First principle models quantitatively articulate 

the cause-and-effect relationships. These models contain a number of system parameters, 

and take on the form of algebraic or differential equations. Given the numerical values of 

the parameters, the phenomenological models permit the calculation of system outputs for a 

given set of inputs. Thus, it is important to use an alternative approach that can be applied 

to systems about which only partial information is known. 

 

1.2 ARTIFICIAL NEURAL NETWORKS  

 Artificial Neural Networks (ANNs) provide a unique computing architecture 

whose potential has attracted interest from researchers across different disciplines. The NN 

technique has its origin in efforts to produce a computer model of the information 

processing that takes place in the nervous system [1]. One can simply view a neural 

network as a large set of interconnections with variable strengths (weights), in which the 

learned information is stored.  

 ANNs appear to be one of the most suited alternative tools. ANNs are 

mathematical approximations of the biological synapses and were initially developed as 

models for understanding the brain mechanisms involved in perception. The abilities of the 

ANNs to perform nonlinear mapping and their powerful internal representation capability 

has led neural networks to be used as a tool for modeling rather than understanding the 

brain functions per se. Recent advances in neural network theory and technology have 

made them powerful tool that helps to identify complex processes in the presence of noisy 

or incomplete information, colinearity of data, and time delays. It can also be used on 

incomplete data without assumed models or postulated formulas. Further, several features 

of neural network have encouraged their application to the analysis of protein and nucleic 

acids sequences. ANNs can incorporate both positive and negative information, that is 

both sequences with the feature of interest and without the feature are used to impart 

knowledge to the network. They are also able to detect second- and higher- order 
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correlations in patterns, and thus, are more useful in determining complex correlations than 

the conventional methods based simply on the frequency of occurrence of residues at 

certain positions. An ANN based on the knowledge it acquires at the time of training 

makes its own internal representation of the system being modeled and then automatically 

determines which residues and which positions are important. Neural networks are thus 

ideally suited for parallel sequence processing and are increasingly applied to the study of 

biological macromolecules. They aim at mapping nucleic acid/protein sequences on to 

spatial structure/functionality. 

 

1.2.1  Neural Network Characteristics 

Neural networks have several unique characteristics and advantages as tools for 

the molecular sequence analysis problem. A very important feature of these networks is 

their adaptive nature, where “learning by example” replaces conventional “programming” in 

solving problems. This feature makes such computational models very appealing in 

application domains where one has little or incomplete understanding of the problem to be 

solved, but where training data are readily available. Owing to the large number of 

interconnections between their basic processing units, neural networks are error tolerant, 

and can deal with noisy data. Neural network architecture encodes information in a 

distributed fashion. This inherent parallelism makes it easy to optimize the network to deal 

with a large volume of data and to analyze numerous input parameters. Flexible encoding 

schemes can be used to combine heterogeneous sequence features for network input. 

Finally, a multilayer network is capable of capturing and discovering high-order correlations 

and relationships in input data. 

 

1.2.2  Neural Network Architecture 

 A neural network consists of a large number of simple processing elements called 

neurons. The arrangement of neurons into layers and the connection patterns within and 

between layers is called the network architecture. In feedforward (FF) nets, the signals 

flow from the input units to the output units, in a forward direction: the input units receive 

signals from the outside world; the output units present the response of the net.  
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(1) Perceptrons 

 The perceptron [2] is the simplest form of a neural network used for the 

classification of the special type of patterns characterized as linearly separable. A 

perceptron has only two layers- input and output layers. It computes a linear combination 

of the network inputs and applies the net input to produce the output using a threshold 

output function. An elementary perceptron consists of a single output neuron with 

adjustable synaptic weights and a threshold. The threshold can be treated as a synaptic 

weight connected to a fixed input of value 1. Such a fixed input unit is called a bias unit. 

One can use the elementary perceptron to solve a pattern classification problem with only 

two classes. To perform classification with more than two classes requires the use of more 

output neurons. 

 The weights of the perceptron can be adapted on an iteration-by-iteration basis, 

using an error-correction rule known as the perceptron convergence theorem [3]. The 

theorem guarantees that if a solution exists, the perceptron learning rule will in a finite 

number of steps, converge to correct weights that produce correct output values for all 

training patterns. The convergence algorithm is non-parametric in the sense that it makes no 

assumptions concerning the form of the underlying distributions. It may thus be more robust 

than classical techniques. 

(2) Multilayer Perceptron 

 Multilayer perceptrons (MLPs) are generalized perceptrons with one or more 

hidden layers. A three-layer FF neural network is an MLP with one hidden layer and two 

layers of adaptive weights. While simple perceptrons can perform classification only on 

linearly separable patterns, MLPs are general-purpose, flexible, non-linear models that, 

given enough hidden neurons and enough data, can approximate virtually any function to 

any desired degree of accuracy [4]. MLPs have been applied successfully to solve some 

difficult and diverse problems by training them in a supervised manner with a highly popular 

algorithm known as the error-back-propagation algorithm. 

 An MLP has several distinctive characteristics:  

(1) It uses neurons with a differentiable non-linear activation function. 
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(2) It has one or more layers of hidden neurons, which enables the network to learn 

complex tasks by extracting progressively more meaningful features from the input 

patterns; and 

(3) It exhibits a high degree of connectivity. 

 The presence of a distributed form of non-linearity and the high connectivity of the 

network make the theoretical analysis of an MLP difficult to undertake. The use of hidden 

neurons makes the learning process harder to visualize. The learning process is more 

difficult because the search has to be conducted in a much larger space of possible 

functions in order to decide how input features should be represented by the hidden 

neurons. 

 

1.2.3  Neural Network Learning Paradigm 

 The neural network learning algorithms may be supervised or unsupervised. The 

supervised training is accomplished by presenting a sequence of training vectors; each with 

an associated target output vector. An essential ingredient of the supervised learning is the 

availability of an external teacher. The back-propagation algorithm is an example of the 

supervised training. 

 In unsupervised or self-organized learning there is no external teacher to oversee 

the learning process. The learning normally is driven by a similarity measure without 

specifying target vectors. The self-organizing net modifies the weights so that the most 

similar vectors are assigned to the same output (cluster) unit, which is represented by an 

examplar vector. Examples of unsupervised training include the Kohonen self-organizing 

maps [5] and the adaptive resonance theory (ART) [6]. 

A. Back propagation 

 The back-propagation (BP) learning rule is central to much current work on 

learning in NNs [7]. The generalized delta rule is simply a gradient-descent method to 

minimize the error signal [8]. The algorithm provides a conceptually efficient method for 

changing the weights in a feedforward network, with differentiable activation function units, 

to learn a training set of input-output examples. BP can be used with a variety of 

architectures. The elementary BP network is a multilayer perceptron. 
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 The BP training involves three stages: the feedforward of the input training pattern; 

the calculation and back-propagation of the associated error, and the adjustment of the 

weights. In the feedforward phase, the weights remain unaltered throughout the network, 

and the function signals of the network are computed on a neuron-by-neuron basis. In the 

back-propagation phase, error signals are computed recursively for each neuron starting at 

the output layer, and passed backward through the network, layer by layer (hence, the 

name “back-propagation”), to derive the error of hidden units. Weights are then adjusted 

to decrease the difference between the network’s output and the target output. Since 

learning here is supervised (i.e., target outputs are available), an error function may be 

defined to measure the degree of approximation for any setting of the network weights. 

After training, application of the note involves only the computations of the feedforward 

phase. Even if training is slow, a trained net can produce its output very rapidly.  

 Many enhancements and variations have been proposed for the BP algorithm. 

These are mostly heuristic modifications with goals of increased speed of convergence, 

avoidance of local minima, and/or improvement in the network’s ability to generalize. A 

theoretical framework for studying BP was described by Le Cun [9], whose formalism is 

well suited to the description of many different variations of BP. In the context of NN, 

Bayesian methods offer a number of important features [10]. A Bayesian framework was 

formulated [11] to provide objective criteria for comparing solutions using alternative 

network architectures, parameter settings, and alternative learning and interpolation models. 

The relative importance of different inputs can also be determined using a Bayesian 

technique [12]. 

B. Kohonen’s self-organizing map  

 The self-organizing map has the special property of effectively creating a spatially 

organized internal representation of various features of input signals and their abstractions. 

The feature map is a two-layered network that can organize a topological map of cluster 

units from a random starting point. The network combines an input layer with a competitive 

layer of processing units. During the self-organization process, the cluster unit, whose 

weight vector matches the input pattern most closely (typically based on minimum 

Euclidean distance), is chosen as the winner. The winning unit and its neighboring units (in 
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terms of the topology of the cluster units) update their weights. After training is complete, 

pattern relationships and groups are observed from the competitive layer. This yields the 

graphical organization of pattern relationships. These maps result from an information 

compression that retains only the most relevant common features of the set of input signals. 

C. Counter Propagation 

 The counter-propagation (CP) network [13] is an example in which layers from 

supervised and unsupervised learning paradigms are combined to construct a new type of 

network. A CP net is closely related to the nearest-neighbor classifier. Nearest-neighbor 

classifiers require a unit for every learned example in a training set. They are impractical as 

on-line classifiers because of the large number of computations required in classifying a new 

input. Thus, one needs to have a compact presentation of training data and use far fewer 

than one unit for every training sample. The CP approximates its training input vector pairs 

by adaptively constructing a look-up table. In this manner, a large number of training data 

points can be compressed to a more manageable number of look-up table entries. The 

accuracy of the approximation is determined by the number of entries in the look-up table, 

which equals the number of units in the cluster layer of the net.  

 The forward-only CP network has three layers: an input layer; a Kohonen 

clustering layer; and a Grossberg conditioning layer. As a pattern classifier, a CP network 

uses the Kohonen layer to determine winning units for the input patterns, and uses the 

Grossberg layer to map these winners into classes. The Kohonen layer is an LVQ (learning 

vector quantizer) network [14], which performs nearest-neighbor classification. The 

clusters may be formed based on either the dot (inner) product or the Euclidean distance. 

In the Grossberg layer, the weights from the cluster units to the output units are adapted to 

produce the desired response. Counter propagation is considered a faster alternative to 

BP, although questions remain about his performance. 

 

 

1.2.4 Applications for DNA/RNA sequence analysis 

 ANNs have been applied to several problems in nucleic acid sequence analysis, 

viz. gene identification, intron/exon discrimination, prediction and analysis of promoters, 
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terminators, ribosome binding sites, phylogenetic classification etc. The brief summary of all 

such applications is listed in Table I. 

 

Neural Network architectures: 

2L,FF = two-layer, feedforward network (i.e., perceptron) 

3L or 4L, FF = three-or-four layer, feedforward network (i.e., multi-layer perceptron) 

Neural Network Learning Algorithms: 

BP = back-propagation 

Delta = Delta rule 

QP = Quick-propagation 

RP = Rprop 

ART = Adaptive resonance theory 

CP = Counter-propagation 

Input sequence encoding methods: 

BINn = binary-numbered direct encoding of residue identity, where n is the number of input units representing 

each residue 

REALn = real-numbered direct encoding of residue features, where n is the number of units representing each 

residue 

FEATn = indirect encoding of sequence residue frequency 

FREQ = indirect encoding of sequence residue frequency  

SVD = singular value decomposition 

Output sequence encoding methods 

n(CODEs) where n is the number of output units. 

CODEs are: Y = Yes (positive); N = No (negative); I = Intron, E = Exon; O = Other (counter-example); RTL = 

relative transcription level. 
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Table I: Applications for DNA/RNA sequence analysis 

Application ANN Architecture Input/Output Encoding Ref. 

INTRON/EXON (I/E) DISCRIMINATION AND GENE IDENTIFICATION 

Coding region recognition 4L,FF,BP FEAT7/1(Y,N) [15] 

Coding region recognition 3L,FF,BP FEAT13/1(Y,N) [16] 

I/E feature weighting 2L, FF, Delta FEAT6/1(Inequality) [17] 

I/E feature weighting 2,3L, FF, Delta, BP FEAT6/1(Inequality) [18] 

Splicing donor/acceptor site prediction 3L, FF, BP BIN4/1(Y,N) [19] 

Splicing donor/acceptor site prediction 3L, FF, BP BIN4/1(Y,N) [20] 

Splicing donor/acceptor site prediction 3,4L, FF, BP BIN4/1(Y,N) [21] 

I/E discrimination 2L, FF, BP BIN4,FREQ /1(Y,N) [22] 

I/E compositional constraints 3L,FF,BP BIN4/3(I,E,O) [23] 

Parallel implementation for I/E discrimination 3L,FF,BP,QP,RP BIN4/1(I,E) [24] 

PREDICTION & ANALYSIS OF RIBOSOME-BINDIN G SITES, PROMOTERS AND OTHER SITES 

Ribosome-binding site prediction Perceptron BIN4/1(Y,N) [25] 

Ribosome-binding site prediction 3L,FF,BP BIN4/1(Y,N) [26] 

Ribosome-binding site prediction 3L,FF,BP BIN4/1(Y,N) [27] 

E. coli promoter prediction  2×3L,FF,BP  BIN2/1(Y,N) [28] 

E. coli promoter prediction  Perceptron ? [29] 

E. coli promoter prediction 3L,FF,BP BIN4/1(Y,N) [30] 

E. coli promoter prediction 3L,FF,BP BIN2,BIN4/1(Y,N) [31] 

E. coli promoter prediction 3L,FF,BP BIN4/1(Y,N) [32-33] 

E. coli promoter prediction 3L,FF,BP BIN4 +3 + FREQ/1(Y,N) [34] 

E. coli promoter prediction 2×3L,FF,BP  BIN4/1(Y,N) [35] 

Transcription start site and feature detection 3L,FF,BP BIN4/1(Y,N) [36] 

Eukaryotic promoter prediction 3L,FF,BP BIN4/1(Y,N) [37] 

RNA polymerase II binding site prediction 4L,FF,BP FEAT13/1(Y,N) [38] 

Prediction of transcriptional terminator 3L,FF,BP BIN4, REAL1/1(Y,N) [39] 

Prediction of transcription control signal 3L,FF,BP BIN4/1(RTL) [40] 

DNA/RNA SEQUENCE ANALYSIS, PHYLOGENETIC CLASSIFICATION AND C ODE MAPPING 

Clustering and functional region identification 2L,Kohonen REAL1/Map(30) [41] 

Clustering and functional region identification 2L,Kohonen REAL1/Map [42] 

Phylogenetic classification 2L,ART  BIN4/19(Class) [43] 

Ribosomal RNA classification 2×3L,FF,BP,CP  FREQ,SVD/220,15 (Class) [44] 

Transfer RNA gene recognition 3L,FF,BP BIN4/10(Class) [45] 

Genetic code mapping 3L,FF,BP BIN4/20(Class) [46] 
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As a technique  for computational analysis, neural network technology is very well 

suited for the analysis of molecular sequence data. The perceptron learning algorithm 

developed by Rosenblatt [2] was adapted to sequence pattern analysis by Stormo et al., 

[25] in an attempt to distinguish ribosomal binding sites from non-binding sites. The 

conceptual basis of the back-propagation learning algorithm was first presented by Werbos 

[47]. Later, Rumelhart and his colleagues introduced the broad potential of the NN 

approach and presented the back-propagation algorithm to a wider readership [1, 48]. 

Back-propagation soon became the most popular NN paradigm. It has been successfully 

used to perform a variety of input-output mapping tasks for recognition, generalization, and 

classification [49], including many molecular sequence analysis problems. As the field 

continues to develop, researchers have broadened the choices of NN architectures and 

learning paradigms to solve a wider range of problems.  

 

1.3 GENETIC ALGORITHMS 

Genetic Algorithms (GAs) are stochastic methods, which enforce the survival of the 

fittest paradigm of evolution along with the genetic propagation of characteristics. A simple 

GA has the following components: 

1. Representation/Encoding scheme 

2. Initialization 

3. Fitness Evaluation 

4. Selection Policy 

5. Genetic Operators 

 

1.3.1 Representation 

Most problems in GA literature use the binary encoding scheme where each locus 

of the string is drawn from a binary alphabet of zero or one. 

 

1.3.2 Initialization 

Initialization refers to the generation of the initial population of solutions as well as 

the choice of some parameters of the population, such as its size. The preferred 
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characteristics of an initial population are diversity and reasonable levels of fitness values. 

However, in practice, depending upon the application, generating an initial population 

varies from random generation to careful choosing of candidates based on the user’s 

experience. Sometimes choosing few distinct and diverse solutions and assigning copies 

based on their fitness values could provide a good starting population. Optimal choice of 

the population size tends to depend upon the nature of the domain, the representation, the 

evaluation scheme and the genetic operators used. In this algorithm, the population is 

continuously augmented by the newly created products of recombination. However, the 

algorithm has a measure of the age or lifetime of an individual beyond which individual 

‘dies’ or is removed from the population. This lifetime, instead of the selection probability, 

is set proportional to the fitness of the individual. This means that fitter individuals live 

longer than the rest and the population is controlled by the death rate of individuals. 

 

1.3.3 Fitness Evaluation 

Once a population of candidate solutions has been created, they need to be 

evaluated to determine their fitness in the environment. For an optimization problem, the 

environment is the objective function. Depending on how low (for minimization problems) 

or how high (for maximization problems) the objective function value for an individual is, its 

fitness should have a proportionally high value. In some problems one does not have a 

single objective but several to be optimized simultaneously as well as constraints to be 

satisfied by the solutions. One way of handling multiple objectives is to define a new 

objective function that is a weighted sum of all the objectives. Here, the choice of the 

weights can reflect the relative importance of optimizing the different objectives. To handle 

constraints in genetic algorithms, the objective function is usually augmented with a penalty 

term that weights in the feasibility of the solution. 

Fitness Scaling: 

Scaling the solutions within the population ensures that individuals with fitness equal 

to the average of the population contribute one expected offspring to the next generation 

[50]. Also, later during the run, scaling overcomes lack of differentiation between average 

and the best members of the population. The most widely used scaling method is linear 

scaling.  
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1.3.4 Selection Scheme 

The selection scheme has to make sure that the fitter individuals in the population 

are allotted more opportunities to reproduce and recombine to produce offspring. To this 

end, two different selection schemes are normally used. 

Roulette Wheel Selection 

In this scheme, once the fitness evaluation is completed, the population is sorted in 

ascending order of fitness and a running sum of the fitness is calculated for each member 

starting from the first one in the sorted list. The first member of the sorted list (beginning 

with the member with the lowest fitness) whose cumulative fitness is greater than the 

random number, is selected. The Roulette Wheel Selection procedure can be thought of as 

a dynamic selection scheme with a variable probability of selection across generations.  

Tournament Selection 

In this scheme, a specified number, called the tournament size, of members are 

chosen from the parent population and enter a competition. The winner is decided based 

on the best fitness and allowed to enter the reproductive phase. This process is repeated 

sufficiently, along with recombination and mutation, to produce the offspring population. 

This method slightly offsets the effects of a few large fitness solutions in the population by 

biasing the selection scheme towards above average solutions in general [50]. As opposed 

to the roulette wheel selection procedure, this is a static selection scheme where the 

probability of selection of a candidate remains fairly constant across generations. 

 

1.3.5 Genetic Operators  

Genetic operators provide the means by which the genetic components or the 

building blocks of the current population (the parents) are altered to produce the next 

population (the offspring). Genetic operations typically fall under two categories: i) 

crossover and ii) mutation.  

 

Crossover 

Chromosomal crossover refers to the random recombination of parts of two 

chromosomes (the parents) to produce two new chromosomes (the offspring). This is a 
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large-scale operator in the sense that it significantly perturbs the genotype of the parents. 

From an optimization viewpoint, the recombination operator tends to improve the 

combinatorial diversity by using the building blocks present in the population. 

Mutation 

To be effective, the GA needs an influx of characteristics extraneous to the 

population. This is provided by the mutation operator. For a simple GA using binary 

encoding, mutation is normally applied after crossover and with a low probability (around 

1%). This is because, with high probabilities, mutation tends continually to destroy the good 

features (schema) brought forth by recombination and selection.  

 

1.3.6 Applications of Genetic Algorithms 

Conformational analysis involves the search for the structure or conformation that 

gives the global minimum in total potential energy or minimum deviation from a set of 

constraints derived from experiments. A conformation is normally characterized by a set of 

bonds and torsion angles that are constrained to satisfy these structural and molecular 

constraints. The earliest application of GAs to this problem was by Lucasius et al. [51-52] 

using the DENISE program to generate plausible DNA fragments to fit constraints 

obtained from NMR. This approach actually uses a two-tier GA to optimize first the 

components and then the entire structure. A similar problem in protein folding has been 

solved using GAs by Dandekar and Argos [53]. Here, the protein is modeled as fragments 

of amino acids each of which can assume different conformations from a predefined set and 

the idea is to locate the best combination, so as to minimize a defined fitness function. This 

function is a sum of several terms relating to the secondary and tertiary structure of the 

protein. In related work, hybrid GA based methods in conformational analysis have been 

instrumented in the elucidation of the structure of C60 (buckminsterfullerene) [54]. A new 

modeling technique for arriving at the three dimensional (3-D) structure of an RNA stem-

loop has been developed based on a conformational search by a genetic algorithm and 

following refinement by energy minimization [55]. 

Comparison of the secondary structure of the 5’ non-coding region of poliovirus 3 

RNA derived from the genetic algorithm with the model of Skinner et al. [56] demonstrates 

many of the confirmed structural elements. The GA generates a population of all possible 
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stems, then mixes, combines and recombines these stems in multiple iterations on a 

massively parallel computer, ultimately selecting a most fit structure based on its energy 

[57]. The secondary structure of the region containing the determinants of neurovirulence 

was better predicted using the genetic algorithm, whereas the dynamic programming 

algorithm [58] required phylogenetic comparative sequence analysis to arrive at the correct 

conclusion. 

 

1.4 GENESIS AND SCOPE OF THE PRESENT WORK 

Biological systems are complex in nature and several known and unknown factors 

govern their functioning. It is difficult most of the times to interpret underlying relationship(s) 

between several experimental conditions and corresponding system output(s). 

Phenomenological modeling of such systems is also difficult due to the inherent complexity 

of biological systems and inadequate information about them. Thus, it is important to 

develop and use alternate methods that can be applied to systems with inadequate 

information. Artificial Intelligence (AI) tools viz. ANN and GA can uncover the underlying 

relationship(s) of such biological systems. 

Detailed understanding of the biosystems require carrying out experiments that are 

often costly and time consuming. Most of the experiments are also difficult to perform. Due 

to multilevel interactions, a small change in input parameter of the system may result in 

changes in  large number of features of system. Thus, to have a predictive model that 

captures the cause and effect relationship is certainly a difficult task. AI tools like ANN and 

GA can help in building up predictive models and use qualitative and quantitative 

information about the system. Thus, such modeling can help us in having better 

understanding of intricate biosystems. Therefore, the primary objective of this thesis is: i) to 

built up quantitative predictive relationship between inputs and outputs of biosystems 

wherever possible, and ii) in instances where such predictive quantitative relationship can 

not be built due to gross inadequacy of input-output data. It is hoped that they would at 

least provide qualitative guidelines for narrowing the choice of experiments to be 

performed. 

It is with this view that in chapter 2, we develop an ANN model to establish a 

correlation between a nucleotide sequence of DNA and its effective curvature, 
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characterized in terms of retardation anomaly (RL) value. In chapter 3 for ANN – based 

modeling of DNA sequences, two new input coding strategies namely, the wedge and the 

twist code have been suggested. The performance of the proposed strategies has been 

tested by performing various case studies. Chapter 4, presents a hybrid strategy involving 

an ANN and a GA for the optimization of a biologically important feature or property. This 

strategy is general and is illustrated using an example of optimization of DNA curvature. 

Chapter 5 illustrates a hybrid non-linear strategy involving an ANN and GA for 

optimization of transcription efficiency in eukaryotic systems using β-globin gene as a case 

example. The study helps to obtain an insight into the structural aspects of β-globin gene 

leading to high transcription efficiency.  

Chapter 6 of the thesis provides a compilation of different mycobacterial promoters 

and analysis of their DNA sequences for various features. In chapter 7, an ANN model is 

developed for classifying mycobacterial promoter sequences from non-promoter 

sequences. Calliper randomization approach has been suggested for determining 

structurally and functionally important regions within the mycobacterial promoter 

sequences. Chapter 8 presents theoretical analysis of DNA curvature for mycobacterial 

promoters using several di- and trinucleotide dependent models of DNA curvature. 

In essence, the thesis aims at building predictive relationships using AI tools for 

complex biological systems with a view to model and analyze DNA sequences for their 

properties and biological roles. This continues to be a poorly understood area and it is 

hoped that the approach adopted in the thesis takes a step forward in resolving the issues. 
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In this chapter, we develop an Artificial Neural Network (ANN) for the prediction of DNA 

curvature in terms of Retardation Anomaly. An ANN capturing the role of phasing, increased 

helix flexibility, run of polyA tracts, and flanking base pair effects in determining the extent of 

DNA curvature has been developed. The network predictions validate the experimentally 

known results and also explain how the base pairs other than ApA affect the curvature. The 

results suggest that ANN can be used as a model-free tool for studying the DNA curvature. 

 

 

 

 

 

 

 

 

 

 

 



   

2.1 INTRODUCTION 

            The concept of sequence-dependent DNA structure was proposed more than a 

decade ago [1-3]. It is important in packaging, recombination, and transcription. In 

polyacrylamide gel DNA molecules are believed to migrate by a head-on reptation mechanism 

[4-5]. Relative  electrophoretic mobility of most curved DNA fragments monotonously 

decreases with the fragment length. This is usually characterized as an increasing ratio of 

apparent to actual DNA length (known as “RL factor”) with increase in the fragment length. 

The RL- factor is a measure of electrophoretic anomaly of the curved DNA and reflects the 

additional friction of the DNA in the gel due to curvature [6]. For most curved DNA 

fragments, therefore, longer the length, greater is the frictional drag and the RL-factor is a 

monotonously increasing function of the fragment length [7]. The principal sequence feature 

responsible for intrinsic DNA curvature is generally assumed to be the runs of adenines. 

However, according to the wedge model of DNA curvature, each dinucleotide step is 

associated with a characteristic deflection of the local helix axis [8]. It is to be noted, however, 

that the first principle models for predicting the curvature are themselves being debated for their 

generality [9]. The objective of this chapter is to utilize artificial neural networks (ANN) for 

establishing a correlation between a nucleotide sequence of DNA and its effective curvature 

wherein the curvature is characterized in terms of the RL value. Additionally, a detailed study of 

the effect of base substitutions as well as effect of different factors on the DNA bend has been 

conducted. 

 ANNs are massively connected parallel structures containing processing elements 

called neurons. The neurons communicate via a set of interconnections with variable strengths 

(weights). The phenomenal abilities of ANNs; to perform nonlinear mapping from input to 

output space, and classification, has led them to be used as a powerful tool for modeling rather 

than understanding the brain functions per se. In order that a network learns the input-output 

mapping, or classification, it needs to be trained with the help of available examples. Training 

procedure involves adjustment of the connection weights until the network learns the 

mapping/classification. ANNs trained with the error-back-propagation (EBP) algorithm [10-



   

11] represent the most widely used network paradigm. An EBP network is a multilayered 

feedforward structure that undergoes supervised learning; i.e., for training, it requires an 

example data set comprising pairs of input and the corresponding desired output patterns 

(vectors). Once adequately trained, the network can make predictions corresponding to the 

new input data. In biological sciences, the EBP networks have been successfully used for 

promoter recognition, terminator recognition, non-coding regions of DNA, capturing 

transcription control signals, phylogenetic analysis, etc. (see review [12]).   

 

2.2 SYSTEM AND METHODS 

 The simulation programs were written in FORTRAN-77 and compiled using the 

Microsoft FORTRAN 5.0 compiler for the IBM PC and compatibles. 

 

2.2.1 Data 

 The EBP network was trained using the experimental data by Bolshoy et al. [8] 

comprising the RL values of circular and curved, and straight synthetic fragments extrapolated 

to 90 base pair length (columns 1-3 of Table I). These data were chosen since they are self-

consistent wherein all the experiments are carried out under ‘standard’ gel conditions [13]. The 

data set comprising a total of 54 sequences and their corresponding RL values was divided into 

training (40 patterns) and test (14 patterns) sets. The test set is used to evaluate the 

generalization capability of the EBP network in predicting the RL values corresponding to the 

set of fragments not used during training. 

 

2.2.2 Data Representation 

 Two possible ways to code nucleotide sequences, namely, CODE-2 and CODE-4 

have been generally used for data representation. In  these strategies, each nucleotide is 

represented by a unique two (CODE-2) or a four (CODE-4) digit binary string. Consequently, 



   

as many (two or 4) input neurons are required to code a single nucleotide. Nair et al. [14] 

devised a novel coding strategy known as Electron Ion Interaction Potential (EIIP) code 

wherein each nucleotide is represented by its EIIP value; thus a single input neuron is sufficient 

for the nucleotide representation. In an event when the available data is limited, it is preferable 

to use EIIP coding since it results in smaller (as compared to CODE-2 and CODE-4 

strategies) network. In EIIP strategy, the four nucleotides are coded as: A,0.1260; T,0.1335; 

G,0.0806; and C,0.1340. In the present study, these values have been used to represent the 

DNA sequences. 

 As can be seen from Table I, the nucleotide sequences are of different sizes, i.e., 10, 

21, 31 and 42 base pair long. For training, the input vectors (coded fragments) need to be of 

the same size. Thus, the shorter fragments were uniformly padded with 0.01 until each fragment 

is 42 base pair long. The resulting data can be viewed as a matrix of size (54×42). Each 

column of this matrix was normalized, so that upon normalization, each matrix element lies 

between 0.05 and 0.95. It is to be noted that the DNA sequences considered in this study are 

of two types, namely, circular (sequence nos. 1-3) and linear (sequence nos. 4-54). In order to 

differentiate them, two additional inputs were considered at the end positions of each input 

vector. Accordingly, the circular and linear fragments were coded as (0.05, 0.90) and (0.90, 

0.05), respectively. The experimental RL values were also normalized so as to lie between 0.05 

and 0.95 and taken as the target output for the network training. 

 

2.2.3 Neural Network Simulation 

 The neural network simulations were performed on a 486 AT equipped with a math 

coprocessor. The network consists of three layers viz. input, hidden  and output (Figure 2-

1). The neurons in the input layer are simple distribution nodes, which pass their input as the 

output. The number of neurons (44) in the input layer is equal to the dimensionality of the input 

vector and the number of output layer neurons (1) is same as the dimensionality of the output 

vector. However, there is no easy way to assign the number of neurons in the hidden layer 



   

responsible for the nonlinear representational ability of the EBP networks and, thus, the number 

is fixed heuristically. In this study, logistic sigmoid transfer function is used at the hidden and 

output nodes to represent the non-linearity. The network training is an error minimization 

procedure involving adjustment of the network weights until the error  (the difference between 

the desired and network-predicted outputs) with respect to the test set is minimized. For 

weight updation the generalized delta rule with the momentum term [10] has been used. The 

error function, namely, the root mean squared error (RMSE), is defined  as: 
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where index p ranges over the number of input patterns (P); i ranges over the number (n) of 

output units; Ep  represents the error on pattern p and, tpi and opi are the target and actual  

output values of the ith output unit when pth pattern is presented to the network. The detailed 

algorithmic steps for EBP network training can be found in several references [15-16] and 

briefly summarized in Appendix I. In order to get optimal network weights three parameters, 

namely, momentum coefficient, learning rate and number of neurons in the hidden layer need to 

be heuristically optimized. These were found to be 0.1, 0.15 and 1, respectively. The RMSE 

profiles corresponding to the training and the test sets for the optimized network are shown in 

Figure 2-2. The weights after 4690 training iterations correspond to the minimum RMSE with 

respect to the test set and, hence, were taken as optimal.  

2.3 RESULTS AND DISCUSSION 
 Table I shows a comparison of the network predicted and experimental retardation 

anomaly (RL) values for the sequences in training and test sets (also see Figure 2-3). The 

correlation coefficient for the network predicted and experimental RL  values has been found to 

be 0.954 and suggests that the EBP network has satisfactorily captured the relationship 

between a DNA sequence and its RL value. In addition, the trained EBPN is capable of 

predicting correctly low as well as high RL values (refer Figure 2-3). Some misfit in the higher 

RL  values may be because of a limited sequence ensemble available for training the network. 



   

 The optimized net was subsequently used to evaluate the effect of single base 

substitutions on the RL values. Towards this end, each nucleotide from a sequence was 

substituted with the remaining three on one-at-a-time basis and the network was used to 

predict the RL value of the resulting sequence. The substitutions, which caused significant 

changes in the RL values, are listed in Table II. For conciseness, the results for sequence nos. 

8, 10, 14, 16, 17, 31, 52 only are listed. In Figure 2-4, the graphical representation of the 

results for sequence nos. 8, 52, 17 and 16 is provided. These sequences are representative of 

the base pair lengths 10, 21, 31 and 42, respectively. The network predicted RL values 

indicate that the mutations related to curvature are of three types: (i) the ones resulting in 

significant change in curvature with possible explanation from previous studies, (ii) those 

causing slight or no change in curvature, and (iii) those with no apparent explanation from the 

previous studies. 

  It is noticed that A tract of length 3 to 6 base pairs causes significant bending (see 

sequence 10, 14, 17). The RL values obtained by mutating polyA tract validate the observation 

made by Milton and Gesteland [17] that each adenine residue in the A tract does not 

contribute equally. It can be seen from the plots of all possible single base substitutions in the 

polyA tract for sequence 8, 16, and 17 that substitutions with either T, G or C cause dissimilar 

effects. For instance, in the plot for sequence 17 in Figure 2-4, the RL values resulting from the 

substitutions in the polyA tracts by T, G or C (positions 5 to 9 and 14 to 17) exhibit varying 

sensitivities towards single base substitutions. Mutations in the non-AA fragments indicate that 

some mutations alter the DNA bend even when they do not lead to formation of polyA tract.  

For example, if sequence 52 is mutated by G at position 14, the RL changes from 1.05 to 1.16, 

and if position 19  is mutated by G, the resultant RL  is  0.79. This can be interpreted as base 

steps other than ApA are involved in sequence directed DNA bends. 

 The Guanine residues in a nearest neighbor contact with the A tracts are known to 

modify the bend [18]. This observation has been confirmed for all the sequences containing the 

A tracts. For instance, when sequence 31 (RL = 1.14) is mutated at 17th  position by G, i.e., 

next  to the A tract, the RL obtained is 1.12.  



   

 It can also be noted  from Table II that if mutation of G by A results in a significant 

change in RL then similar effect (increase or decrease) is observed if G is replaced by T and, 

sometimes, by C. This has been verified as follows. The RL  for  sequence 16 is 1.06; if 

position 27 is replaced by A or T or C, the resultant RL values are 0.92, 0.90 and 0.89, 

respectively. As can be seen, these are consistently lower than 1.06. This is a new observation 

and  not reported in the earlier studies. 

 With the help of the trained network it is possible to study the effect of different factors 

that influence the DNA curvature. For this purpose, sequences listed in Table III have been 

considered and their RL values were estimated. The role of phasing has been evaluated by 

examining a set of sequences described as (A5Nk)n ;  k = 4, 5, 6, 10. Each one of these 

sequences contains the A5  tract flanked by C at 3’ and 5’, with a total of k bases intervening in 

the G+C - rich segment between the A5 tracts. The series (A5N5)n has 10 - bp phasing that 

nearly matches the expected helix screw of about 10.3 bp per turn which is the average of 

10.5 for B-DNA and 10.1 for poly(dA).poly(dT) in solution. It can be verified from Table III 

that the series (A5N5)n possesses largest RL as compared to (A5N6)n and (A5N4)n . Thus it can 

be inferred that the bending elements must be repeated in phase with the helix screw to add 

coherently.  

 To differentiate between the bending due to increased flexibility and systematic bending 

wherein the direction of the helix axis is altered in a definite way, the series (A5N10)n may be 

examined. The RL value of 0.932 for the series suggests normal gel mobility due to the 

formation of a zigzag structure wherein systematic bends are nearly exactly out of phase. 

  The importance of continuous run of A residues in determining the extent of curvature 

was investigated by interrupting the A5 tract with another nucleotide N (referred to as IAN in 

Table III) at the central base. It is noticed that substitution by either T or C does not affect the 

RL value. However, substitution by G causes decrease in the curvature (RL value changes from 

1.091 to 1.089). To check whether Guanines also contribute to the curvature, sequence 

(G5N5) was examined. The network predicted RL  for G5N5 (= 0.989) indicates normal gel 

mobility and suggests that in this particular case the purines A and G are not equivalent. 



   

  To examine the role of phasing of 5’ and 3’ junctions in influencing a bend, sequences 

A5-8 and A8-5 have been considered. It has been found that A8-5 is more anomalous (RL = 1.18)  

and, hence, more strongly bent than A5-8  (RL = 0.92). The greater anomaly in A8-5 implies 

greater bending at  the 3’ than at  5’ junction. 

 The role of flanking base pairs was investigated by studying the retardation behavior of 

FCT and FGG sequences. The greatest degree of bending is witnessed when the  5’ - flanking 

base is C, and the 3 ’  - base is T (RL = 1.09). However, if G is present at 3’ and 5’ ends, the 

effect is less pronounced  (RL  = 0.975). These findings are well supported by the experimental 

studies by Koo et al. [13]. 

 To summarize, in this chapter, an error-back-propagation neural network has been 

employed for predicting the retardation anomalies of DNA sequences. The trained network is 

able to evaluate the role of phasing, increased helix flexibility, run of polyA tracts, and flanking 

base pair effects in determining the curvature. It can also be used to examine the additive effect 

of multiple base substitutions. The results of this study indicate that ANNs can be successfully 

used as the feature detectors to study the bending characteristics of DNA sequences. In view 

of the excellent performance of the ANNs in capturing the local and global features, it is 

possible to use them as a model-free technique for the purpose of curvature predictions thus, 

avoiding sidetracks in designing costly experiments. 



   

2.4 APPENDIX I: IMPLEMENTATION OF EBP 

ALGORITHM 

The detailed numerical steps for training a two-layer EBP network having a bias neuron each in 

its input and hidden layers are given below. The numerical procedure assumes the pattern-

mode of weight-updation and the logistic sigmoid nonlinearity at the hidden and output nodes. 

Step 1. Initialize the hidden and output layer connection weights to small random values 

(say between –1 and +1). 

Step 2. Apply the k th input pattern ( )knkkk xxxx ...,,, 10=  from the training set containing 

p patterns to the input layer nodes. 

Step 3. Compute the weighted-sum of inputs (activation level) for the individual 

neurons in the hidden layer according to 
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where 
h
kjnet denotes the weighted-sum for the hidden layer node j when k th input pattern is 

applied, 
h
jiw represents the connection weight between the input neuron i and hidden layer 

neuron j, n refers to the number of input units, and m is the number of hidden nodes. 

Step 4. Transform the weighted-sum using the logistic sigmoid transfer function to get 

the outputs of the hidden layer nodes according to: 
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Step 5: Compute the weighted-sum of inputs (net activation) for the individual nodes in the 

output-layer as 
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where 
o
ljw is the connection weight between node l in the output layer and node j in the hidden 

layer. As before, 1=h
koŷ  

Step 6: Transform the net activations of the output layer units using the logistic sigmoid function 

to get the respective output as 
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Step 7: Compute the scaled-error for the output-layer units as 
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where kly refers to the desired output neuron l when the input vector kx , is applied to the 

input nodes. 

Step 8: Compute the scaled-error for neurons in the hidden layer according to  
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Step 9: Update the weights between the output and hidden layer nodes as 
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where the training iteration number is represented by t, and ηand α denote the learning 

coefficient (0 < η < 1) and the momentum parameter (0 ≤ α < 1), respectively. 

Step 10: Update the hidden-layer weights as given below, and implement steps (2-10) 

with another input pattern. 
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In this procedure, steps (2-6) correspond to the forward pass and steps (7-10), to the reverse 

pass. The procedure (barring step 1) is repeated for all the input patterns in the training set until 

the network satisfies a prescribed convergence criterion based on a suitable measure of error.  
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Table I: Network predicted RL in comparison with Experimental RL of various sequence units 

Sequence 

No. 

Unit Experimental Network 

Predicted 

 Circles   

01 TCTCTAAAAAATATATAAAAA 0.59 (0.06) 0.54 

02 TCAAATTGGGGGAAAGATCCC 0.51 (0.05) 0.55* 

03 GGGCAAAAAACGGCAAAAAAC 0.52 (0.05) 0.56 

 AA-containing and control fragments   

04 CTTTTAAAAG 1.01 (0.03) 1.02 

05 GTTTTAAAAC 1.01 (0.03) 1.01 

06 GGGTCGACCC 1.00 (0.02) 1.05* 

07 GGCAACAACG 1.01 (0.02) 1.09* 

08 GGCAAGAACG 1.04 (0.04) 1.09* 

09 GGCAATAACG 1.06 (0.04) 1.09 

10 GGCCAAACCG 1.14 (0.06) 1.09 

11 GGGCAAAAAACGGCAAAAAAC 1.43 (0.03) 1.20 

12 GGCTGGGCAAAAAACGGGCAAAAAACGGCAAAAAACGGCT

CC 

1.26 (0.03) 1.16* 

13 GGCTGGGCAAAAAACGGCAAAAAACGGCTCC 1.19 (0.03) 1.18 

14 GGCTGGGCAAAAAACGGCTCC 1.14 (0.03) 1.17 

15 GGCAGGGTCGGGCAAAAAACGGCTGGATCCC 1.07 (0.03) 1.03* 

16 GGCAGGGCGGTCGACGGGCAAAAAACGGCGTCGGGCGGATC

C 

1.06 (0.03) 1.06 

17 GGGCAAAAACGCCAAAATTTTGCCGCGGGCC 1.11 (0.03) 1.12* 

18 GGGCAAAAACGGGCGGCCAAAATTTTGCCGC 1.01 (0.02) 1.00 

19 AAAAAAATTTTTTTTTTAAA 1.00 (0.02) 0.97* 

20 AAAAAAAAAAAAAAAAAAAA 0.98 (0.03) 1.02 

21 TCTCCTTCTTGGTTCTCTTCTC 1.00 (0.02) 1.00 

22 CCCCCGGGGG 1.05 (0.06) 1.04 

23 GACAGGACTC 1.01 (0.03) 1.00 

24 CCATCGATGG 0.98 (0.03) 0.98 

25 CGGGATCCCG 1.00 (0.02) 0.99 



   

26 GCGGGTAGTTTTTTCCTACAC 1.13 (0.02) 1.12 

27 GCGCGATTTTTACGAAAAAAA 1.25 (0.02) 1.18 

28 GGCTGGGCAAAAAACGGCTCC 1.14 (0.02) 1.17 

29 ACCTGGGCAAAAAACGGCTCC 1.14 (0.02) 1.14 

30 GGCTCACCAAAAAACGGCTCC 1.12 (0.02) 1.18* 

       Table I continued ... 

Sequence 

No. 

Unit Experimental Network 

Predicted 

31 TCACTTATATAAAAAATATAT 1.13 (0.02) 1.14 

32 TCGCTTATATAAAAAATATAT 1.13 (0.02) 1.13 

33 GCCCCTAAAAAGCCCCTTTTA 1.12 (0.02) 1.14 

34 GTGGGACAAAGTGCCCACAAA 1.06 (0.02) 1.06 

35 CTGTGAAAAAACACACTTTTT 1.13 (0.02) 1.13* 

36 AAAAACACACAAAAAACACAC 1.29 (0.02) 1.14 

37 TTTTAAAAAC 0.99 (0.04) 0.98 

38 GGCCTTTTTAAAAACCGGGCC 1.03 (0.03) 1.03 

39 GGCCTTTTTAAAAAAACCGCC 1.07 (0.03) 1.06 

40 GGCCTTTTTAAAAAAAAACCC 1.15 (0.03) 1.18 

41 GGCCTTTTTTTAAAAAAACCC 1.21 (0.03) 1.18 

42 CGGAGCCGTTTTTTGCCCAGC 1.15 (0.03) 1.13 

43 CCGGCCAAAAAAAACGCGCGC 1.09 (0.03) 1.07* 

44 CCGGCCAAAAAAAAAACGCGC 1.04 (0.03) 1.04 

45 CCGGCCAAAAAAAAAAAACGC 1.01 (0.03) 1.02 

46 CCGCCAAAAAAAAAAAAAACG 1.05 (0.03) 1.03 

47 CCGCAAAAAAAAAAAAAAAAC 1.07 (0.03) 1.12 

 Non-AA fragments   

48 CATGTCACCGACGCATCACCG 1.07 (0.02) 1.09* 

49 TCCCCAGACGTCCCCAGCACG 1.02 (0.02) 1.00 

50 GCGAGAGGGTACGGACATCTC 1.10 (0.02) 1.21 

51 TGTGAGAGGGGCATGAGATCA 1.11 (0.02) 1.10 

52 TACGGATCTCGCATGACTCTC 1.06 (0.02) 1.05 

53 CGGAGCTATCCGGAGCCTATC 1.07 (0.02) 1.20 



   

54 GGAGAGCTCACACGACTAGTC 1.03 (0.02) 1.11* 

 

 

 

 

 

 

         

Table II: Simulated RL values for effective single base substitution. 

Seq. 

no. 

Effective mutation Retardation 

anomaly 

Seq. 

no. 

Effective mutation Retardation 

anomaly 

8 GA*2 1.05 17 GA*11 1.16 

 GT*2 1.05  GA*27 1.02 

 AG*4 1.03  GT*11 1.16 

 AG*8 1.13  GT*27 1.00 

 GC*2 1.04  AG*14 1.18 

10 GA*2 1.05  CG*30 0.90 

 GT*2 1.05  GC*11 1.16 

 CG*4 1.03  GC*27 1.00 

 CG*8 1.13 31 AG*14 1.19 

 GC*2 1.05  TG*19 0.95 

14 TG*19 1.04 52 GA*11 1.11 

16 GA*27 0.92  CA*19 1.02 

 GA*30 1.17  GT*11 1.12 

 GT*27 0.90  GT*15 1.02 

 GT*30 1.18  TG*14 1.16 

 AG*14 1.15  CG*19 0.79 

 CG*19 0.80  GC*11 1.12 

 GC*27 0.89  GC*15 1.02 

 GC*30 1.18   i 

 



   

Table III: Simulated RL values for specific sequence patterns. 

  Name Sequence ( 5’ to 3’ ) Network 

Predicted RL 

A5N4 CAAAAACGG 1.049 

A5N5 GGCAAAAACG 1.091 

A5N6 GGCCAAAAACG 1.065 

A5N10 CCGGCAAAAACGGGC 0.932 

IAC GGCAACAACG 1.091 

IAG GGCAAGAACG 1.089 

IAT GGCAATAACG 1.091 

G5N5 TCGTGGGGGC 0.989 

A5-8 CCAAAAACGGGCAAAAAAAA 0.915 

A8-5 CCAAAAAAAACGGGCAAAAA 1.181  

FCT GGCAAAAATG 1.090 

FGG CCGAAAAAGG 0.975 

 

                                                          
GA*20 means that the guanine is replaced by adenine at position 20. 



 

Figure 2-1: Network Architecture used in the simulation: 44 neurons in the input 

layer, one hidden layer consisting of one neuron, and one neuron in the output layer. 

The trained network approximates y = f(x), where x and y represent the input (DNA 

seque nce) and the output (RL value). 

 



  

Figure 2-2: RMSE profiles corresponding to the training and test data sets.  



  

 

Figure 2-3: Graphical comparison of experimental and network predicted retardation 

anomalies. Sequence numbers are arranged in descending order of experimental RL 

values. Experimental R L shown with their error bars. 

 

 



  

 

Figure 2-4: Graphical representation of the RL values for all possible single base 

substitutions for sequence numbers. 8, 52, 17 and 16 having base pairs of length 10, 

21, 31 and 42, respectively.  
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Two new encoding strategies, namely, wedge and twist codes, which are based on the 

DNA helical parameters, are introduced to represent DNA sequences in artificial neural 

network (ANN)-based modeling of biological systems. The performance of the new 

coding strategies has been evaluated by conducting three case studies involving mapping 

(modeling) and classification applications of ANNs. The proposed coding schemes have 

been compared rigorously and shown to outperform the existing coding strategies 

especially in situations wherein limited data are available for building the ANN models.  

 

 



 
 
 

 

3.1 INTRODUCTION 

 In the last decade, artificial neural networks (ANNs) have been extensively used in 

the analysis of nucleic acid sequences (see review [1]); the main reason being their ability of 

recognizing and classifying patterns not only from the quantitative data but also from the 

qualitative data such as DNA sequences. These ANN abilities have been used in various 

classification applications in biological sciences e.g., analysis of E. coli promoter structures 

[2], prokaryotic transcription terminator prediction [3], and identification of E. coli 

ribosome binding sites [4]. ANNs have also been used in mapping (modeling) applications, 

for instance, in the analysis of transcription control signals [5] and DNA curvature [6], 

where the objective was to identify the functional relationship(s) between a DNA sequence 

and its property.  

 Of all the different ANN architectures, the one with a multilayered feedforward 

structure and trained using the error-back-propagation (EBP) algorithm [7] represents the 

most widely used network paradigm. The EBP network (EBPN) mostly comprises three 

layers (input, hidden and output) of interconnected neurons (also termed as “processing 

elements” or “nodes”) and learns the relationship between its inputs and outputs via a 

procedure called “network training”. The peculiarity of the EBP algorithm is that it trains 

nonlinear multilayered networks wherein a nonlinear activation function is used for the 

computation of the outputs of the hidden and/or output nodes. The nonlinear neural 

networks are preferred over the linear ones for modeling high dimensional systems since the 

input-output relationships in such systems are often nonlinear. In a typical ANN-based 

mapping (classification) application, the network input-output is an appropriately coded 

DNA sequence and its property (class), respectively. The EBPN training involves 

minimization of an error function using a steepest descent strategy [7-9] such as the 

generalized delta  rule  (GDR) wherein the network output is compared with its desired 

(target) value and the difference (error) is used to iteratively modify the strengths (weights) 

of the interneuron connections. Network training, following convergence, produces weights 

that can be considered to be the parameters of the converged ANN model. These weights 

can then be used to make predictions corresponding to the new DNA sequences, which 

were not part of the data employed during the development of the network model. 



 
 
 

 

 In ANN-based DNA sequence studies, an individual nucleotide of a sequence is 

represented using three main coding strategies viz., CODE-2, CODE-4 and the EIIP. The 

first two of these mononucleotide-based coding schemes use binary representation and, 

therefore, possess purely empirical character. The EIIP-code [3] on the other hand uses a 

nucleotide-specific physical property, namely, the Electron Ion Interaction Potential (EIIP) 

for input coding and, therefore, has a sound theoretical basis. In CODE-2 and CODE-4 

approaches, each nucleotide is represented by two (00=A, 01=T, 10=G, and 11=C) and 

four (0001=C, 0010=G, 0100=A, and 1000=T) binary digits, respectively, whereas in 

EIIP-code nucleotides are characterized by their unique EIIP values (0.1260=A, 

0.1335=T, 0.0806=G, 0.1340=C). Thus, CODE-2, CODE-4 and EIIP strategies require 

two, four and one neurons, respectively, to represent a nucleotide. Since the data 

requirement to train an ANN increases as the number of neurons in the network increases, 

the CODE-4 strategy needs maximum number of data points as compared to the CODE-2 

and EIIP strategies with the EIIP-code needing minimum number of data points. According 

to a thumb rule, the number of data points required for network training equals the number 

of network connection weights although reasonably satisfactory results have been obtained 

with lesser data points. This may be due to the intrinsic dimensionality of the system being 

much lower than its apparent dimensionality. More often than not, the available training data 

is insufficient and, hence, schemes requiring fewer neurons to code a nucleotide sequence 

are desirable. With this objective, we introduce here two coding strategies, namely, the 

wedge code and the twist code requiring just one value for the representation of a 

dinucleotide, in the ANN-based modeling of DNA sequences. The performance of the 

proposed strategies has been tested by conducting three case studies: (i) prediction of 

DNA curvature, (ii) prediction of the promoter strength of various promoters transcribed 

by E. coli RNA polymerase, and (iii) prokaryotic transcription terminator prediction. While 

the first two case studies are the mapping applications of ANNs, the third one involves an 

ANN-based classification.  

 

 

 



 
 
 

 

3.1.1 Philosophy of wedge and twist codes 

 There exist several helical parameters describing the DNA structure [10] that are 

based on translation and rotation. In this study, we shall consider the parameters based on 

the wedge model, which are estimated from the experimental gel retardation data of 

Bolshoy et al. [11]. The DNA helical parameters characterizing the wedge (deflection) 

angle (σ), twist angle (Ω) and the direction of deflection angle (δ) are known as DNA 

shape code. These Eulerian angles are functions of the dinucleotides i.e., adjacent base 

pairs in a DNA molecule. The dinucleotides AA (5’ -AA-3’ on one strand) and TT (on the 

opposing strand) together form two stacked A•T base pairs so that the wedge and twist 

angle values are equal for the AA and TT dinucleotides. Similarly, dinucleotide pairs AC & 

GT, AG & CT, CA & TG, CC & GG, and GA & TC have equal magnitudes for the 

wedge and twist angles. For a detailed discussion of the specific features of these angles, 

the reader is directed to Kabsch et al. [12], Bolshoy et al. [11], and Shpigelman et al. [13]. 

To have a unique dinucleotide-specific value for the wedge and twist codes, the sign of the 

direction of deflection angle can be ascribed to the values of the wedge and twist angles, 

since the direction angle δ changes its sign for the complementary dinucleotides. The wedge 

and twist code values obtained thereby are listed in Table I. Since these codes incorporate 

the structural and physical properties of dinucleotides, they have a sound theoretical basis 

and, therefore, can be employed to replace the arbitrary coding strategies such as the 

CODE-2 and CODE-4. As compared to the EIIP-code, which among the existing 

strategies requires least (one) number of input neurons to represent a nucleotide, the use of 

wedge and twist codes reduce the input space of an ANN by half thereby leading to a 

smaller network and, consequently, requiring a smaller data set for training the network. 

This chapter is organized as follows. First, procedural details of the ANN-based modeling 

along with the strategies for optimizing the network architecture and weights are outlined. 

Next, the results of three ANN-based case studies wherein the proposed codes have been 

utilized for the dinucleotide representation are presented. Specifically, the results obtained 

by using the wedge and twist codes are compared with those obtained using the CODE-4 

and EIIP coding strategies. The CODE-2 scheme has not been considered for comparison 

since the CODE-4 strategy has been found to outperform the CODE-2 strategy [14]. The 

performance of the two new codes is also compared with a dinucleotide-based random 



 
 
 

 

strategy wherein the 16 possible dinucleotide combinations are coded by equally spaced 

real numbers in [0,1] range as given by: 0.0625=AA, 0.125=AC, 0.1875=AG, 0.25=AT, 

0.3125=CA, 0.375=CC, 0.4375=CG, 0.50=CT, 0.5625=GA, 0.625=GC, 0.6875=GG, 

0.75=GT, 0.8125=TA, 0.875=TC, 0.9375=TG and 1.00 = TT. In all the case studies, the 

network training and simulation procedures for the random dinucleotide coding approach 

are same as that for the wedge and twist codes.  

 

3.2 MATERIALS AND METHODS 

 The neural networks considered are three-layered feed-forward type trained using 

the EBP algorithm. The logistic sigmoid transfer function has been employed at the hidden 

and also at the output nodes of all the networks. In a situation where sufficient training data 

are available for network training, all the coding schemes are likely to perform equally well. 

The efficiency of the proposed codes, therefore, has been tested using limited training data 

(case studies I and II). 

 A generalized EBPN architecture for the mapping and classification applications of 

DNA sequences is shown in Figure 3-1. The computer code for training such an EBPN 

was written in FORTRAN-77 and compiled using the Microsoft FORTRAN compiler for 

the IBM PC and compatibles.  

 

3.2.1 Neural Network Simulation 

 The neural network simulations were performed on a 486 (66MHz) PC. The error 

function used during the network training was RMSE (refer chapter 2, section 2.2.3). 

 Although the objective of network training is to minimize the RMSE with respect to 

the training set, it does not guarantee that the trained network possesses satisfactory 

generalization ability. Such an ability ensures that the network is capable of predicting 

accurately the outputs when new inputs, which do not belong to the training set, are 

presented to the network. Since the weights resulting in the minimum RMSE for a 

representative test set ensure satisfactory generalization performance, these are considered 

to be the optimal weights in practice. 



 
 
 

 

 In general, network training (more specifically the RMSEs with respect to the 

training and test sets) shows sensitivity towards the number of network hidden nodes (NH) 

and the GDR parameters, namely, the momentum coefficient (α), and learning rate (η). To 

obtain the overall optimal weights resulting in the least RMSE for the test set, several 

independent training runs were performed by systematically varying the number of hidden 

nodes and the magnitudes of the GDR parameters (α  and η). For each combination of the 

stated parameters, additionally, the effect of the random number generator seed was 

examined. This is necessary for studying the effect of the randomly initialized weights whose 

sequence depends on the seed va lue of the random number generator. By changing the 

seed value, a different sequence of random numbers is generated and, consequently, the 

starting point in the weight space of an ANN gets shifted. This helps in rigorous exploration 

of the nonlinear error surface possessed by the EBP networks. 

 

3.2.2 Case Study I: Prediction of DNA curvature  

 According to the junction model, the principal sequence feature responsible for the 

intrinsic DNA curvature is generally assumed to be the runs of adenines. On the other hand, 

the wedge model of DNA curvature considers that each dinucleotide step is associated 

with a characteristic deflection of the local helix axis [11]. It may however be noted that the 

generality of such first principle models for predicting the curvature is still being debated 

[15]. Thus, a practical and simpler approach is to develop an empirical model correlating a 

nucleotide sequence of DNA and its effective curvature. The use of ANNs for developing 

such models has an advantage in that they can approximate nonlinear relationships even 

between qualitative and quantitative data. Accordingly, this case study aims at developing 

an ANN model for predicting the curvature of a DNA in terms of its retardation anomaly 

value, which is a measure of the electrophoretic anomaly of the curved DNA reflecting the 

additional friction of the DNA in the gel due to curvature [16]. The relative electrophoretic 

mobility of most curved DNA fragments monotonously decreases with the fragment length. 

This is usually characterized as the ratio of the apparent to actual DNA length, and the ratio 

termed as the “RL factor” is found to increase with increasing fragment length. In an earlier 

study [6], an ANN-based prediction of the RL factor using the EIIP-code was successfully 



 
 
 

 

conducted and the results obtained thereby have been utilized here for comparison 

purposes.  

 The data (54 sequences) comprising circular and curved, and straight synthetic 

fragments and their experimental RL values were taken from the study by Bolshoy et al. 

[11]. The choice of such data was based on the consideration that the data set pertains to 

the most exhaustive experimental gel retardation study of DNA sequences. The respective 

experiments were carried under standard gel conditions and hence the data is ideal for 

EBPN training. The sequences are of uneven length that varies between 10 and 42 base 

pairs. Each sequence forming the network input was coded separately using the 

dinucleotide-specific wedge, twist and random code values. Since a single 

wedge/twist/random code value describes a dinucleotide, a sequence say 21 base-pair 

long, can be coded using ten values. To complete the coding of the entire sequence, the 

21st nucleotide was paired with the first one and coded accordingly. All the sequences with 

odd lengths were analogously coded. For CODE-4 strategy, the sequences were coded 

using four digit binary numbers as described earlier. It is necessary for the network training 

that all the input patterns are of the same length. Since the nucleotide sequences are of 

variable length, the shorter ones (length smaller than 42 bp) represented using the 

wedge/twist/random codes were uniformly padded with a small dummy number (0.01) until 

each short sequence becomes 21 (=42/2) units long. For CODE-4, similar padding was 

applied till each fragment was 168 (=42×4) units long. This is an indirect way of informing 

the network that the sequence position valued 0.01 does not belong to either A, T, G or C. 

The resulting data can be viewed as a matrix of size (54×21) for the wedge/twist/random 

codes, and of size (54×168) for the CODE-4. Next, each column of the (54×21) matrix 

was normalized so that each column element upon normalization lies between 0.05 and 

0.95. While performing normalization, the padded elements of a sequence were not 

processed. In order to differentiate between the circular and linear sequences, two 

additional inputs were considered at the end position of each coded sequence. Specifically, 

the circular fragments were described as (0.05,0.90) and the linear ones by (0.90,0.05). 

Such an addition of two inputs at the end position of each coded sequence resulted in the 

data matrix of size (54×23) for the three dinucleotide-based codes and a matrix of size 

(54×170) for the CODE-4. The experimental RL values that formed the target output for 



 
 
 

 

each input pattern  (coded sequence) were also normalized to lie in the [0.05, 0.95] range. 

Upon normalization, the data set of 54 coded sequences (inputs) and their RL values 

(outputs) was divided into the training (40 patterns) and test (14 patterns) sets, respectively 

(see Table I from reference [6]). During network training, the training set is used for 

adjusting the network weights while the test set is used to evaluate the generalization 

performance of the network. 

 The optimal values of the EBPN’s structural parameters, GDR parameters, and the 

RMSE values corresponding to the training and test sets for all the five coding strategies are 

listed in Table II-A. A rigorous statistical analysis has been additionally performed for 

comparing: (i) the predictions of the five ANN models with the experimental RL values, and 

(ii) the predictions of a combination of ANN models, wherein all possible model 

combinations have been considered. In here, apart from computing the correlation 

coefficient (rxy) values, we have performed the Z-test (for large sample size i.e., the number 

of points, n  > 30) and the F-test. The procedures for the Z- and F-tests are described in 

the Appendix. The purpose of performing these tests, in essence, is to answer the query 

"How significant are the differences between the means and variances of the RL predictions 

made by two coding strategies, namely, x and y?" The rxy values along with the results 

corresponding to the Z- and F-tests are tabulated in Table II-B. 

 

3.2.3 Case Study II: Prediction of promoter strength 

 A promoter is a start signal at the beginning of a gene or a gene cluster that directs 

RNA polymerase to initiate RNA synthesis. RNA polymerase measures the efficiency of 

transcription in terms of the promoter strength that refers to the relative rate of synthesis of 

the full-length RNA product from a given promoter. The transcription efficiency of a given 

promoter sequence is regulated by many factors such as: (i) nucleotide sequence of the -35 

region, (ii) nucleotide sequence of the -10 region, (iii) spacing between the -35 and -10 

regions, and (iv) nucleotide sequence especially A+T content in the 5’-flanking region 

upstream from the -35 region [17]. The additive rule states that the individual contributions 

of nucleotide sequence spacer length, deoxyribonucleic acid (DNA) conformation, and 

electrostatic binding within a promoter, collectively establish the total promoter strength. It 

can thus be noticed that a number of factors influence the strength of a promoter. Owing to 



 
 
 

 

the difficulties in the experimental evaluation of the stated contributing factors, it is 

advantageous to build a promoter strength prediction model that does not require explicit 

knowledge of the various factors influencing the transcription efficiency. With this objective, 

we have examined the efficacy of the wedge and twist codes vis-à-vis CODE-4, EIIP and 

random dinucleotide codes for the ANN-based prediction of the promoter strength. 

 For this study, an EBPN was trained using the experimental data by Deuschle et al. 

[18], where in vivo promoter strengths of the various promoters transcribed by E. coli 

RNA polymerase have been determined. The data set comprising 14 promoter sequences 

and their corresponding strengths was divided into training (10 patterns) and test (4 

patterns) sets, respectively (refer Table III). In these data, all but one promoter sequences 

are 70 nucleotides long; the remaining one is 69 nucleotides long. For ANN modeling, the 

sequences were coded using the wedge, twist and random code values specified earlier. 

For coding the 69-nucleotide long promoter sequence, the last nucleotide was paired with 

the last-but-one nucleotide, i.e., from the group of three nucleotides (AAG) at the sequence 

end, two dinucleotide pairs (AA and AG) were formed, and coded accordingly. To make 

all the input vectors of same size, the 69 base-pair long sequence was uniformly padded 

with 0.1 till it was 280 (=70×4) units long for the CODE-4 scheme and 70 (=70×1) units 

long for the EIIP-code. The resulting data can be viewed as a matrix of size (14×35) for 

the wedge, twist and random dinucleotide codes and, matrices of sizes (14×280) and 

(14×70) for the CODE-4 and EIIP-code, respectively. Each column element of the 

(14×35) and (14×70) matrices was normalized such that it lies between 0.05 and 0.95 

upon normalization. The values of the experimental promoter strength that formed the target 

output for each input pattern were also normalized to lie in the [0.05, 0.95] range. 

 The five networks utilizing different coding schemes were rigorously trained and 

optimized as described earlier. The details of the optimized network architectures and the 

GDR parameters are listed in Table II-A. The table also gives the RMSE values 

corresponding to the training and test sets for the five coding schemes. 

 As in case study I, a rigorous statistical analysis has been conducted by employing 

the Student's t test (for small sample size, i.e., when the number of data points n  < 30) and 

the F-test. The procedure for Student's t test has been described in the Appendix. 

 



 
 
 

 

3.2.4 Case Study III: Prokaryotic transcription terminator 

prediction  

 Terminators are sequences that primarily regulate the gene expression by providing 

stop signals at the end of transcription units and, thus, allowing adjacent genes and/or 

operons to be transcribed and regulated independently [20]. Studies have shown that the 

factor-independent terminators shared features like G/C-rich dyad symmetry followed by a 

stretch of 4-8 adjacent thymine residues immediately upstream of the last nucleotide 

incorporated into the RNA chain. It has been witnessed that many independent terminators 

do not comply with the consensus pattern of the dyad symmetry and T-stretch [21] and, 

therefore, conditions for termination are not well defined. It is thus important to develop 

methods for identifying (classifying) the terminators comprising inconsistent consensus 

patterns. ANNs utilizing the CODE-4 and EIIP formalisms have been already found to be 

successful in this task [3]. Our objective in the present case study is to examine the 

classification efficiency of the wedge and twist codes vis-à-vis CODE-4, EIIP and the 

random dinucleotide coding schemes. Towards this objective, three network models 

utilizing wedge, twist and random codes have been developed and their classification 

performance is compared with the CODE-4 and EIIP code results obtained by Nair et al. 

[3]. 

 The terminator sequences for the ANN simulations were taken from the 

compilation by Brendel et al. [22]. From a total of 128 terminators of length 51 

nucleotides, 88 were chosen for training the network and the remaining 40 were used as 

the test data. A pseudo-random number generator was used for constructing the random 

sequences with equal compositions of A, T, G and C. These random sequences were 

combined with the terminator sequences in 1:3 ratio. The resulting 352 patterns formed the 

training set inputs; the test set inputs (160 patterns) were constructed analogously. Since 

the length of terminator sequences is an odd number (51 nucleotides), the last nucleotide 

was paired with the last-but-one nucleotide of the same sequence and coded accordingly. 

Subsequently, the column elements of the resulting matrices of size (512×26) were 

normalized to lie between 0.05 and 0.95. In this case study, the target output equal to one 

represents a terminator sequence, and the target output of zero refers to a random (non-

terminator) sequence. 



 
 
 

 

 The three networks utilizing the wedge, twist and random dinucleotide input coding 

schemes were rigorously optimized following the procedure described earlier. The details 

of the optimized network structures and the GDR parameters along with the percentage 

classification accuracy for all the coding schemes can be found in Table II-A.  

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Case Study I 

 The statistical Z-test checks whether or not the mean values of two large samples 

drawn from respective populations are statistically different. In the present context, a 

sample refers to a set of the RL values either determined experimentally or those predicted 

by each of the five ANN models. In essence, the Z-test verifies the validity of the null 

hypothesis (H0) that the difference in the means (µx and µy) of two populations is 

statistically insignificant. It can be noted (see Table II-B) from the Z-statistic values (Zc) 

corresponding to the fifteen different combinations of x and y samples that the absolute 

value of Zc is less than both Z0.01 (=2.33) and Z0.05 (=1.64). Thus, we may accept the null 

hypothesis, H0 (with 1% and 5% levels of significance), that the differences in the 

respective µx and µy values are insignificant. 

 The F-test is meant for testing whether there exists a statistically significant 

difference between the variance values (σx
2 and σy

2) of two populations. When the F- test 

is used on the samples consisting of variance values of the experimental and CODE-4 

predicted RL values, it is seen (see Table II-B, row 1, column 9) that the absolute value of 

Fc (=1.40) is less than F53,53,0.01 (=1.60), but greater than F53,53,0.05 (=1.39). Hence, we 

may accept: (i) the null hypothesis (H0), that σx
2 is equal to σy

2 at 1% level of significance 

and, (ii) an alternative hypothesis (H1), that σx
2 is greater than σy

2, at 5% level of 

significance. For the rest fourteen combinations of samples x and y, the absolute values of 

the Fc are smaller than both F53,53,0.01 and F53,53,0.05 and, therefore, we may accept H0 at 

both 1% and 5% levels of significance. 

 From Tables II-A and II-B, it can be noticed that the RMSE and rxy values for the 

wedge, twist, random dinucleotide and EIIP codes are comparable, although the last one 

fares marginally better than the two new coding strategies. On the other hand, the RMSE 



 
 
 

 

values (0.32, 0.098) corresponding to the training and the test set of CODE-4 are the 

highest among five coding schemes. Also, the magnitude of the coefficient of correlation 

(rxy=0.87) between the experimental and CODE-4 based network predicted RL value is 

the lowest among all coding schemes. These trends suggest that the CODE-4 is the least 

efficient of the five input coding strategies for the ANN-based prediction of RL. This is 

consistent with the F-test results where it was observed that the variances in respect of the 

experimental and CODE-4 based network predicted RL values are different at 5% level of 

significance. The result indicates that the CODE-4 based model has not captured the 

variations in the experimental RL values with statistically significant accuracy. It can be also 

noticed from the rxy values listed in Table II-B (column 7, entries 3, 4 and 5) that the wedge 

and twist codes perform better, albeit marginally, than the random dinucleotide code. These 

wedge and twist code results essentially indicate that the codes possess good potential as 

sequence coding schemes since both the strategies resulted in relatively high rxy values (≥ 

0.92) and low RMSE values (≤  0.069) for the test set. Also, the mean (1.06) and variance 

(0.016) values associated with the RL- predictions of the ANNs using these codes are 

statistically consistent with the mean (1.05) and variance values (0.021) of the experimental 

RL values. 

 While coding the DNA sequences in this case study, the effect of overlapping 

dinucleotides was not taken into account though it is well known that the curvature of a 

sequence depends on the overlapping dinucleotides. Such a simplified coding approach 

though leaves out half of the relevant information contained in a sequence, was used still 

with a view of keeping the complexity of the coding procedure to a bare minimum. To 

check whether this simplification has any effect on the prediction accuracy of the trained 

network, we performed a control study for the networks utilizing the wedge and twist 

codes. In here, the first nucleotide was removed from each DNA sequence (Table I from 

chapter 2), and the remaining portion of the sequence was coded using wedge and twist 

codes. The resultant input patterns are different from those wherein the first nucleotide was 

retained during sequence coding. These input patterns were then used to re-predict the RL 

values for which the optimal weights obtained originally were utilized. It was observed that 

the re-predicted RL values match their desired (experimental) values with the same 

accuracy as obtained when first nucleotide was considered for the input coding. The 



 
 
 

 

correlation coefficient for the experimental and repredicted RL values for the wedge and 

twist codes were found to be 0.93 and 0.924, respectively, which almost match those 

listed in Table II-B (0.931 and 0.92). It can thus be inferred from the results of control 

simulations that it is not essential in ANN-based RL-prediction studies to account explicitly 

for the overlapping dinucleotides. 

 While partitioning the available data (54 patterns), a care was exercised that the 14 

examples in the test set are the true representatives of the 40 examples in the training set. It 

is however essential to verify whether the available data was adequate at all for effecting the 

said partition. Accordingly, "cross-validation" simulations were performed using the leave-

k -out methodology. In this approach, the entire set of available data is randomly divided 

into N subsets each comprising k  patterns. Next, the network is trained N times using each 

subset in turn as the test set with the remaining (N-1) subsets collectively representing the 

training set. Upon completing this exercise, the RMS errors corresponding to the training 

and test sets are averaged; the mean RMSE in respect of the test set gives an estimate of 

the overall network performance that could be achieved if more data were available for the 

network training. 

 For performing the above-described cross-validation simulations, the available data 

of 54 DNA sequences and their corresponding RL values were partitioned into six subsets 

(N = 6, k = 9). The results of the cross-validation simulations in respect of the five coding 

schemes are presented in Table II-C. A comparison of the test set RMSE values listed in 

Tables II-A and II-C indicates that the cross-validation results are better only in the case of 

CODE-4 scheme. This result suggests that the available data of 54 patterns was adequate 

for all the network models except the one using the CODE-4 coding scheme. The result is 

a natural consequence of the CODE-4 scheme producing largest (as compared to other 

codes) sized networks, thus needing more training data. 

 

3.3.2 Case Study II 

 In this case study also, a rigorous statistical analysis was performed on the 

promoter strengths predicted by the five ANN models. The results of the Student’s t and 

F- tests conducted thereby on the sample sets comprising experimental and ANN-

predicted promoter strengths are tabulated in Table IV. It is noted from the various Table 



 
 
 

 

IV entries that for all the fifteen different combinations of x and y samples, the absolute 

values of tc are less than t2α (=1.315) and t2α (=1.706), which correspond to 1% (α=0.01) 

and 5% (α=0.05) levels of significance, respectively. Thus, we may accept the null 

hypothesis (H0) that the mean values (µx and µy) of the respective populations are 

statistically equal in all the fifteen combinations of x-y sample sets at 1% and 5% levels of 

significance. 

 The F-statistic (Fc) values (see column 9) corresponding to the two combinations 

of x and y involving experimental promoter strengths and those predicted by the CODE-4 

and EIIP based networks indicate that the respective Fc magnitudes (4.96 and 8.52) are 

greater than both F13,13,0.01 (=2.42) and F13,13,0.05 (=3.59). This result in essence suggests 

that the variance value (534.99) in respect of the experimental promoter strengths is greater 

(at 1% and 5% significance levels) than the variance values, 107.78 and 62.78, 

corresponding to the predictions of the CODE-4 and the EIIP code based networks. Since 

the absolute values of Fc for the remaining thirteen combinations of x and y samples are 

always less than F13,13,0.01 (=2.42) and F13,13,0.05 (=3.59), we may accept the null hypothesis 

(H0) that the respective variances are equal at both 1% and 5% levels of significance. 

 As can be noticed from Table II-A, the RMSE values for the test sets of the wedge 

and twist coded networks are the lowest and the second lowest, respectively. Also, the rxy 

magnitudes (refer Table IV, column 7, entries 3 and 4) for the predictions made by the 

wedge and twist code based networks are very high (≅1). These results suggest that the 

networks utilizing the two codes have near-accurately approximated the relationship 

between a DNA sequence and its promoter strength. In comparison, the prediction 

performance of CODE-4 (rxy= 0.63) and EIIP (rxy=0.75) strategies is very poor. This 

conclusion is consistent with the F-test results where it was observed that the sample 

variances of the experimental, and CODE-4 and EIIP based network predicted promoter 

strength values are different at both 1% and 5% levels of significance. The result indicates 

that the CODE-4 and EIIP based models have not captured the variations in the 

experimental promoter strength values with statistically significant accuracy. Among the 

three dinucleotide coding schemes, the random dinucleotide coding approach (rxy=0.96) 

performs only marginally worse than the other two (wedge and twist) schemes. A plausible 

explanation for such a behavior is: since the random code - unlike wedge and twist codes - 



 
 
 

 

does not explicitly take into account any DNA sequence dependent property or 

characteristic (such as the curvature), it fails to predict with comparable accuracies.  

 A graphical comparison of the experimental and the network-predicted promoter 

strengths (Pbla units) for the training and test sets of the wedge code is shown in Figures. 3-

2(a) and 3-2(b), respectively, wherein for clarity the promoter strengths are arranged in the 

descending order of their magnitudes. A similar comparison for the twist code is depicted in 

Figures. 3-2(c) and 3-2(d). 

 The cross-validation test was performed for this case study also wherein the 

available data of 14 patterns was partitioned into seven (N = 7) subsets each comprising 

two (k  = 2) patterns. The results of the cross-validation simulations using the "leave-2-out" 

scheme are given in Table II-C. A comparison of the cross-validation results with those in 

Table II-A for the test set indicates that the RMSE values corresponding to the cross-

validation simulations are lower for all the codes. This suggests that the prediction 

performance of all the five networks can improve further if more data are available for 

training the networks. It can however be inferred from the approximately equal RMSE 

values for the wedge (0.036 and 0.033) and twist (0.05 and 0.045) codes (see Tables II-

A and II-C) that such an improvement, though possible, can only be marginal. In essence, 

the results of this case study indicate that the dinucleotide coding schemes fare better than 

the mononucleotide based schemes (CODE-4 and EIIP).  The results corresponding to the 

wedge and twist codes are important in the sense that even under extreme paucity of the 

training data, the two new coding strategies have performed significantly better than the 

existing ones. 

3.3.3 Case Study III 

 In this case study, which examines the performance of wedge and twist codes for 

classification applications, the accuracy of classification is defined as the percentage of 

correctly classified input patterns; for a given input sequence, the network output in 

[0.5,1.0] range signifies a terminator, otherwise it is regarded as a random sequence. The 

network utilizing the random dinucleotide code was found to possess poorest classification 

accuracy as it could correctly classify only 120 (75%) of the 160 test patterns and 270 

(76.7%) of the 352 training patterns. On the other hand, the wedge and twist code based 

networks could correctly classify 148 (92.5%) and 140 (90%) test patterns, and 335 



 
 
 

 

(95.17%) and 336 (95.45%) training patterns, respectively.  Although the classification 

accuracy of the wedge and twist codes for the test patterns is reasonably good, it is lower 

than that obtained using the EIIP (95.62%) and CODE-4 (98.12%) schemes. In the 

classification study by Nair et al. (1994), a similar observation has been made where it was 

found that the CODE-4 strategy fares better than the EIIP-code. The higher classification 

accuracy of CODE-4 was attributed to the larger EBP network size, which means larger 

parameter space as compared to the EIIP-code. This explanation also holds when the 

classification accuracies corresponding to the CODE-4 and EIIP schemes are compared 

with those of the wedge and twist codes. It can thus be observed from Table II-A that as 

the size of the network’s input space decreases (CODE-4 > EIIP-code > wedge / twist 

codes), the classification accuracy for the test patterns decreases accordingly (98.12% > 

95.62% > 92.5%/90%). Notwithstanding this observation, it is important to note that the 

performance of the wedge and twist coding schemes is still acceptable since on an average 

91.25% of the test patterns have been correctly classified.  

 

3.4 CONCLUDING REMARKS 

 In this chapter, two input coding strategies namely, wedge code and twist code 

have been introduced for representing dinucleotides in the ANN-based modeling of DNA 

sequences. These codes make use of the helical parameters namely, the wedge angle, twist 

angle, and the direction of deflection angle of a DNA. The principal advantage of the new 

coding strategies over the commonly used mononucleotide-based coding schemes such as 

CODE-4 and EIIP, is that they reduce the network's input dimensionality to one-eighth as 

compared to the CODE-4 strategy, and to one-half as compared to the EIIP scheme. 

Consequently, a smaller network that can be trained faster results. Such a network i.e., 

possessing less adaptable parameters (weights), in general possesses better generalization 

capability than the network with more parameters. The efficiency of the proposed strategies 

vis-à-vis other input coding schemes namely, CODE-4, EIIP and random dinucleotide 

code, has been evaluated by conducting three case studies involving ANN-based mapping 

and classification applications. In all the case studies, both the proposed coding strategies 

have been found to perform equally well. Also, the proposed codes have been found to 

perform better than the conventional strategies especially when the training data was limited 



 
 
 

 

(case studies I and II). In these studies, although the CODE-4 scheme that results into large 

input dimensionality did not perform well, the proposed codes with smaller input 

dimensionality have lead to some significant results. This feature of the proposed schemes is 

important since for many real systems the available data are often limited and generation of 

additional data can be an involved and costly task. It has been also observed that the 

networks using the wedge and twist codes fare better (i.e., yield higher correlation 

coefficient magnitudes and classification accuracy) than the networks using the random 

dinucleotide code. Such a superior performance may be attributed to the DNA shape 

related property i.e., the helical parameters of a DNA used by the wedge and twist codes. 

Since the proposed codes are sufficiently general, they can also be used for representing 

DNA sequences in “non-ANN-based” mapping and classification applications. The 

present work has also opened up a new gateway for tri- and tetra-nucleotide based DNA 

coding strategies.  



 
 
 

 

3.5 APPENDIX-II 

In the following, the computational procedures for evaluating Z, F and the Student's t 

statistics are described. 

(A) Z- test (for large sample, i.e. when the number of data points, n, exceeds 30) 

This test, also known as the Normal test, checks whether the difference between two 

population means is statistically significant. In this test, Z statistic (Zc) is computed to test 

the null hypothesis (H0): the means µx and µy of two populations are equal (i.e., µx = µy), 

against an alternative hypothesis, H1: µx > µy. The Zc is evaluated as: 
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where X and Y are the means of population samples x and y, respectively; 2
xs and 2

ys  

refer to the variances of x and y, respectively, and nx, n y denote the respective sample 

sizes. The decision rule for the Z-test at α% level of significance is given as: 

If α≥ZZ c , then reject H0; otherwise accept H0. 

(B) F- test 

Similar to the Z-test for two means, the F-test is performed to check the validity of 

hypothesis involving two population variances ( 2
xσ and 2

yσ ). The F statistic (Fc) is 

computed as given below to validate the null hypothesis (H0): σ2
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The decision rule for the F-test at α% level of significance and for (nx-1), (n y-1) degrees 

of freedom  is: 

If α−−≥ ),(),( 11 yx nnc FF , then reject H0; otherwise accept H0.  

(C) Student's t test (for small sample size i.e., n ≤  30) 



 
 
 

 

In an event when the sample size is small (n ≤30), Student's t test is performed to check 

the validity of the null hypothesis (H0): µx = µy, against an alternative hypothesis (H1): µx > 

µy. The corresponding t-statistic (tc) is evaluated as: 

                         

yx

c

nn
s

YX
t

11 +

−
=                                                                      (III) 

where                  
2

22

−+

+
=

yx

yyxx

nn

snsn
s                                                 (IV) 

Note that the test statistic tc follows Student's t distribution with (nx+n y-2) degrees of 

freedom. The decision rule for the t- test at α% level of significance is: 

If α≥ 2ttc , then reject H0; otherwise accept H0. 
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Figure 3-1: General architecture of EBPN consisting of NI, NH and NO neurons in 

the input, hidden and output layers, respectively. Each neuron in the input and hidden 

layers is connected to all the neurons in the next layer by means of “weighted” links. 

In the present study, the input to an EBPN is an appropriately coded DNA sequence 

and the network output is either a functional property or the class (type) of the input 

sequence. 

 



  

 

Figure 3-2: Graphical comparison of experimental and network predicted strength 

(Pbla units) values using: (a) wedge code for the training data set, (b) wedge code for 

the test data set, (c) twist code for the training data set, and (d) twist code for the test 

data set. 



   
 

 
 

 

       Table I: Wedge and twist code values for different dinucleotides 

Dinucleotide  Wedge Code Twist Code 

AA -7.2 -35.62 

AC 1.1 34.40 

AG 8.4 27.70 

AT 2.6 31.50 

CA -3.5 -34.50 

CC -2.1 -33.67 

CG 6.7 29.80 

CT -8.4 -27.70 

GA 5.3 36.90 

GC 5.0 40.00 

GG 2.1 33.67 

GT -1.1 -34.40 

TA 0.9 36.00 

TC -5.3 -36.90 

TG 3.5 34.50 

TT 7.2 35.62 

 

 

 



  
 

Table II-A: Details of optimal EBPN architectures and RMSE values corresponding to three case studies     

       

Coding 

Strategy 

Case study I: DNA curvature 

prediction 

η=0.15 , α=0.10 

Case study II: Promoter strength 

prediction 

η=0.3 , α=0.15 

Case study III: Prokaryotic transcription 

terminator prediction 

η=0.5 , α=0.9 

 N I:NH:NO

∗  

RMSE N I:NH:NO RMSE N I:NH:NO Classification Accuracy♦  

  Training set Test set   Training set Test set   Training set Test set 

CODE-4 170:1:1 0.320 0.098 280:1:1 0.244 0.147 204:7:1 99.43 98.12 

EIIP 44:1:1 0.055 0.051 70:1:1 0.237 0.146 51:7:1 96.59 95.62 

Wedge 23:1:1 0.072 0.064 35:1:1 0.032 0.036 26:1:1 95.17 92.50 

Twist 23:1:1 0.074 0.069 35:1:1 0.006 0.050 26:1:1 95.45 90.00 

rnd-di#  23:1:1 0.071 0.072 35:1:1 0.016 0.138 26:1:1 76.70 75.00 

                     
∗ N I: number of input neurons, NH: number of hidden neurons, NO: number of output neurons, η: learning rate, α: momentum coefficient 
♦ Percentage of correctly classified sequences 



  
 

 

                                                                                              
#  rnd di denotes Random dinucleotide coding scheme. 



 
 

Table II-B: Statistical analysis of different combinations of sample sets comprising 
experimental and network predicted RL values 
  

No. Sample set 
of RL 

values 

X  Y   2
xs  2

ys  rxy Zc
♦  Fc

•  

1 x=expt 
y=code4 

1.05 1.06 0.021 0.015 0.877 -0.386 1.40 

2 x=expt 
y=eiip 

1.05 1.05 0.021 0.019 0.954 -0.111 1.09 

3 x=expt 
y=wedge 

1.05 1.06 0.021 0.016 0.931 -0.209 1.30 

4 x=expt 
y=twist 

1.05 1.06 0.021 0.016 0.920 -0.305 1.31 

5 x=expt 
y=rnd di 

1.05 1.05 0.021 0.016 0.890 -0.167 1.28 

6 x=code4 
y=eiip 

1.06 1.05 0.015 0.019 0.901 0.274 0.78 

7 x=code4 
y=wedge 

1.06 1.06 0.015 0.016 0.892 0.186 0.93 

8 x=code4 
y=twist 

1.06 1.06 0.015 0.016 0.890 0.081 0.94 

9 x=code4 
y=rnd di 

1.06 1.05 0.015 0.016 0.867 0.230 0.91 

10 x=eiip 
y=wedge 

1.05 1.06 0.019 0.016 0.920 -0.095 1.20 

11 x=eiip 
y=twist 

1.05 1.06 0.019 0.016 0.911 -0.193 1.21 

12 x=eiip 
y=rnd di 

1.05 1.05 0.019 0.016 0.906 -0.052 1.18 

13 x=wedge 
y=twist 

1.06 1.06 0.016 0.016 0.989 -0.103 1.00 

14 x=wedge 
y=rnd di 

1.06 1.05 0.016 0.016 0.968 0.044 0.98 

15 x=twist 
y=rnd di 

1.06 1.05 0.016 0.016 0.963 0.147 0.98 

 
  

                     
♦ Zα = 2.33 at α = 0.01, and Zα = 1.64 at α = 0.05 
  
• F53,53,0.01 = 1.60 for nx=ny=54 at α = 0.01, and F53,53,0.05 = 1.39 at α  = 0.05 



  
 

Table II-C: Comparison of different coding strategies using leave-k-out cross-

validation method  

Coding 

Strategy 

Case Study I 

k=9, η=0.15 , α=0.10 

Case Study II  

k=2, η=0.3 , α=0.15 

 NI:NH:NO Average RMSE NI:NH:NO Average RMSE 

  Training Test  Training Test 

CODE-4 170:1:1 0.161 0.046 280:1:1 0.148 0.107 

EIIP 44:1:1  0.137 0.094 70:1:1  0.112 0.081 

Wedge 23:1:1  0.112 0.091 35:1:1  0.013 0.033 

Twist 23:1:1  0.102 0.074 35:1:1  0.006 0.045 

rnd di  23:1:1  0.159 0.098 35:1:1  0.124 0.055 

 

 



 
 

Table III: Listing of various promoters transcribed by E.coli RNA polymerase and 

their in vivo promoter strengths expressed in Pbla units. 

No. Promoter Promoter Strength 

01 PH207 55 (4) 

02 PD/E20 56 (8) 

03 PN25 30 (5) 

04 PG25 19 (2) 

05 PJ5 9 (1) 

06 PA1 76 (9) 

07 PA2 20 (4) 

08 PA3 22 (3)∗  

09 PL
⊕ 53(8) ∗  

10 Plac 5.7 (0.5) 

11 PlacUV5 3.3(0.3) ∗  

12 PtacI 17 (2) ∗  

13 Pcon 4 (0.2) 

14 Pbla 1 

 

 

                     
∗  Promoter sequences that were part of the test set. 
⊕ Promoter strength taken from Knaus and Bujard [19]. 

 
 
 
 



  
 

Table IV: Statistical analysis of different combinations of sample sets comprising 
experimental and network predicted promoter strength values 
 

No. Sample  set 
of promoter 

strength 
values 

X  Y   2
xs  2

ys  rxy  tc
♠ Fc

♥ 

1 x=expt 
y=code4 

26.50 26.20 534.991 107.783 0.631 0.043 4.96 

2 x =expt 
y=eiip 

26.50 26.21 534.991 62.779 0.753 0.042 8.52 

3 x =expt 
y=wedge 

26.50 27.12 534.991 475.569 0.994 -0.070 1.12 

4 x =expt 
y=twist 

26.50 26.61 534.991 521.070 0.995 -0.012 1.03 

5 x =expt 
y=rnd di 

26.50 29.23 534.991 509.097 0.969 -0.304 1.05 

6 x=code4 
y=eiip 

26.20 26.21 107.783 62.779 0.326 -0.004 1.72 

7 x=code4 
y=wedge 

26.20 27.12 107.783 475.569 0.604 -0.138 0.23 

8 x=code4 
y=twist 

26.20 26.61 107.783 521.069 0.588 -0.059 0.21 

9 x=code4 
y=rnd di 

26.20 29.23 107.783 509.098 0.590 -0.440 0.21 

10 x=eiip 
y=wedge 

26.21 27.12 62.779 475.569 0.772 -0.141 0.13 

11 x=eiip 
y=twist 

26.21 26.61 62.779 521.069 0.759 -0.058 0.12 

12 x=eiip 
y=rnd di 

26.21 29.23 62.779 509.098 0.703 -0.454 0.12 

13 x=wedge 
y=twist 

27.12 26.61 475.569 521.069 0.992 0.058 0.91 

14 x=wedge 
y=rnd di 

27.12 29.23 475.569 509.098 0.978 -0.242 0.93 

15 x=twist 
y=rnd di 

26.60 29.23 521.069 509.098 0.972 -0.294 1.02 

 

                     
♠ t2α = 1.315 at α = 0.01, t2α = 1.706 at α  = 0.05 
♥ F13,13,0.01= 2.42 for nx=ny=14 at α = 0.01, F13,13,0.05= 3.59 at α = 0.05 
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In the present chapter, a hybrid technique involving artificial neural network (ANN) and 

genetic algorithm (GA) has been proposed for performing modeling and optimization of 

complex biological systems. In this approach, first an ANN approximates (models) the 

non-linear relationship(s) existing between its input and output example data sets. Next, the 

GA, which is a stochastic optimization technique, searches the input space of the ANN 

with a view to optimize the ANN output. The efficacy of this formalism has been tested by 

conducting a case study involving optimization of DNA curvature characterized in terms of 

the RL value. Using the ANN-GA methodology, a number of sequences possessing high RL 

values have been obtained and analyzed to verify the existence of features known to be 

responsible for the occurrence of curvature. A couple of sequences have also been tested 

experimentally. The experimental results validate qualitatively and also near-quantitatively, 

the solutions obtained using the hybrid formalism. The ANN-GA technique is a useful tool 

to obtain, ahead of experimentation, sequences that yield high RL values. The methodology 

is a general one and can be suitably employed for optimizing any other biological feature. 

 

 

 

 

 

 

 

 

 

4.1 INTRODUCTION 



  

 A situation is often encountered in biological sciences wherein development of a 

“first principles” (i.e., phenomenological) model becomes impossible owing to the lack of 

sufficient understanding of the involved biochemical phenomenon. In such situations, 

Artificial Neural Networks (ANNs) are widely utilized for model development. The main 

reason behind the extensive use of ANNs being their ability of recognizing and classifying 

patterns not only from the quantitative data but also from the qualitative data, such as DNA 

sequences [1]. ANNs trained with the error-back-propagation (EBP) algorithm [2-3] 

represent the most commonly utilized network paradigm. An EBP-based network (EBPN) 

is a multi-layered feedforward structure that undergoes supervised learning, i.e., for training 

it requires an example data set comprising pairs of input and the corresponding output 

patterns. Once trained adequately, the network can make predictions for the new input 

data. In essence, ANNs serve as an empirical modeling technique to approximate 

relationships (especially nonlinear) between two sets of data. For example, an ANN model 

can be developed to correlate DNA sequences and a sequence-dependent property 

wherein the sequence and the corresponding property would form the network input and 

the output, respectively.  

In addition to modeling, often an experimenter is interested in knowing the optimal 

values of the model parameters and / or variables that either maximize or minimize the 

model output. Such a problem falls in the domain of optimization and suitable optimization 

schemes need to be devised for optimizing the ANN model. Conventionally, gradient 

based methods are used for performing function optimization. Their usage presupposes that 

the objective function to be minimized/maximized is smooth, continuous and differentiable. 

The validity of these assumptions in the case of ANNs cannot be guaranteed since the 

model represented by an ANN cannot be conveniently written as a closed-form 

expression. Therefore, an alternate optimization formalism, which is lenient towards the 

form of the objective function, must be devised for optimizing ANN models. 

In recent years, a class of robust algorithms - known as “Genetic Algorithms” 

(GAs) - has been used with great success in solving optimization problems involving very 

large search spaces [4-6]. GAs were originally developed as genetic engineering models 

mimicking the population evolution in natural systems. Given a functional form, genetic 

algorithm searches its solution space so as to maximize (or minimize) the prespecified 



  

objective function. In GA procedure, possible solutions to an optimization problem are 

randomly initialized using binary or real valued strings. The GA begins its search for the 

optimal solution from this random population of candidate solutions. The candidate solution 

represented by each string in the population is tested using an objective function, following 

which all the population strings are ranked. Specifically, when optimization goal involves 

maximization (minimization) of the objective function, all the population strings are ranked in 

the decreasing (increasing) order of their objective function scores. Such a ranking, in 

essence, arranges the candidate solutions in the descending order of their “fitness”, which is 

an indicator of “how well the solution performs at fulfilling the optimization goal”. 

Subsequently, GA operations namely, reproduction, crossover and mutation are performed 

on the fitter solutions in the population and the operations are repeated until convergence is 

achieved. 

The traditionally employed gradient-based optimization methods are deterministic 

whereas GAs are stochastic optimization techniques. GAs possess several advantages over 

the gradient-based methods, the principal one being they do not impose preconditions such 

as smoothness, continuity and differentiability on the form of the objective function. This 

GA characteristic assumes special significance in the case of ANN models for which the 

fulfillment of the above-stated conditions cannot be guaranteed. In essence, GA is one 

paradigm that can be fruitfully employed for performing optimization of ANN models. The 

objective of this chapter, therefore, is to present a hybrid strategy involving an EBPN and a 

GA for the optimization of a biologically important feature or a property. The strategy is a 

general one and has been exemplified by addressing a specific problem involving 

optimization of DNA curvature that is expressed in terms of the retardation anomaly value. 

Retardation anomaly is a measure of electrophoretic anomaly of the curved DNA and 

reflects the additional friction of the DNA in the gel due to curvature [7]. Relative 

electrophoretic mobility of most curved DNA fragments monotonously decreases with the 

fragment length. This is usually characterized as the ratio of the apparent to actual DNA 

length and the ratio termed as “RL factor” is found to increase with the increase in the 

fragment length. 

 

4.2 SYSTEM AND METHODS 



  

4.2.1 Implementation of ANN-GA methodology 

 Implementation of the ANN-GA methodology is a two-part procedure. In the first, 

an EBPN is trained to model the input-output example data. An EBPN usually comprises 

three layers (input, hidden, and output) of processing elements (termed as “nodes”). The 

nodes in successive layers are connected using weighted connections. During training, the 

inputs and the outputs of the example data set are used as the network input and the 

desired output, respectively. Network training involves minimization of an error function 

[e.g., root-mean-squared-error (RMSE)] using a steepest descent strategy, such as the 

generalized delta rule (GDR), wherein the network outputs are compared with their desired 

values and the difference (error) is used to update the inter-layer connection weights. The 

weights are updated till a convergence criterion is satisfied at which point the network is 

assumed to be trained. The detailed description of EBPN training can be found at 

numerous places [8-9]. 

In the second part of the ANN-GA procedure, a GA is used to optimize the output 

of the ANN model by rigorously searching the input space of the trained network. This 

way, the EBPN plays the role of an objective function in the GA implementation wherein 

the converged weights corresponding to the trained EBPN are used to compute the value 

(score) of the objective function. The objective function score known also as “fitness 

score” is essentially the EBPN output when a GA-searched solution string is applied as an 

input to the trained EBPN. A simple five-step GA for maximizing the objective function can 

now be summarized as (for details see [4-5, 10]):  

Step 1 (Initialization): Create an initial population (size=N) of candidate solution strings 

(chromosomes) whose elements (binary digits or real numbers) are chosen 

randomly. Each chromosome in the population is of same length, l. Evaluate each 

chromosome in the population using the trained EBPN as the objective function 

and rank the chromosomes as described earlier. Set the initial population as the 

current population.  

Step 2 (Selection): Choose two parent chromosomes from the current population; the 

selection procedure is carried out using the weighted Roulette-Wheel algorithm [5]. 

In this strategy, the fittest string on a priority basis chooses its partner at random 

from among the remaining strings where the probability of selecting a particular 



  

mate is proportional to its fitness. This way only fitter chromosomes are selected as 

parents for offspring production.  

Step 3 (Crossover): Crossover is the most important step of GA. It is responsible for 

passing significant genetic information to the next generation strings. It is performed 

as follows: choose randomly a crossover point along the lengths of the parent 

chromosomes and cut each parent string at that point to generate two substrings. 

Exchange the substrings between the parent strings to obtain two offspring.  

Step 4: Repeat steps 2 and 3 until the total number of offspring generated equals N 

following which the offspring population is merged with the parent population; the 

post-merger population has 2N chromosomes. 

Step 5 (Mutation): Mutate elements of each of the 2N strings randomly where the 

probability of mutation (Pmut) is kept small. During mutation, exclude the top 

ranking string in the parent population so as not to lose it. Next, evaluate each of 

the 2N chromosomes using the objective function and rank them. Discard the 

lower half of the 2N-sized population and set the resulting population of size N to 

the new population (generation). 

The above described procedure is repeated till a preselected convergence criterion, such 

as the GA has evolved a fixed number of generations (Ngen), or successive generations have 

produced similar chromosomes, is satisfied. The best (i.e. first ranked) chromosome in the 

converged population represents the final result of the genetic algorithmic search. The 

essence of GA-implementation is that an initial population of randomly generated 

chromosomes with low objective function scores improves as parents are replaced by 

better (fitter) offspring. As the steps involved in the GA implementation are stochastic, the 

final solution depends upon the series of random numbers generated during the search. 

Thus, to get an overall optimal solution, it may be necessary to repeat the search procedure 

giving each time a different seed to the random number generator. In the following, results 

of the case study wherein the proposed hybrid technique has been used to optimize the RL 

factor are presented. 

 

4.2.2 Optimization of RL factor 



  

In a recent study [11], the authors have addressed the problem of modeling DNA 

curvature wherein based on the experimental data of Bolshoy et al. [12], an EBPN was 

trained to predict the RL factor of a given DNA sequence. The data comprised the RL 

values of circular, curved, and straight synthetic fragments extrapolated to 90 base-pair 

length. The trained EBPN architecture has 44 neurons in the input layer for representing the 

DNA sequence, one neuron in the hidden layer, and one neuron in the output layer to 

represent the RL factor. The optimal values of the EBPN training parameters, namely, the 

learning rate and momentum coefficient were 0.15 and 0.1, respectively. The EBP based 

model could predict the RL value of a given sequence with significant accuracy as suggested 

by the high magnitude (=0.954) for the correlation coefficient between the network-

predicted and experimental RL values. Although the DNA sequences considered for the 

network training were of variable lengths (i.e., 10, 21, 31, and 42 base-pair long), a single 

EBPN could predict the RL factors of all the four sequence-types. The GA-based 

optimization, however, has been performed separately for the four types with the objective 

of obtaining sequences possessing high RL value. The GA procedure for optimizing RL was 

implemented as follows. 

The flow-chart corresponding to the five GA steps of the ANN-GA methodology 

is depicted in Figure 4-1. A pseudo-random number generator was used for creating (step 

1) an initial random population of 100 (= N) DNA strings with equal composition of A, T, 

G and C. The encoding of these four nucleotides was performed using their Electron Ion 

Interaction Potential values (0.1260=A, 0.1335=T, 0.0806=G, 0.1340=C). This 

nucleotide-encoding scheme, known as the “EIIP code” [13], is the same as used to 

represent the DNA sequences during the EBPN training [see 11]. The EIIP coding strategy 

has an advantage over other binary schemes, such as CODE-2 and CODE-4, that it 

requires just one real number to code a nucleotide. As a result, the input space of the 

EBPN and, consequently, the chromosome length, l, get significantly reduced. The 

chromosomes that are shorter than 42 base pairs were uniformly padded with a dummy 

number (0.01). Each chromosome in the population was 44 elements long (l=44) wherein 

two more dummy numbers (0.05 and 0.90) were assigned to 43rd and 44th locations to 

distinguish linear fragments from the circular ones. The steps in the flow chart concerning 



  

the RL factor evaluation were implemented using the optimal EBPN weights obtained by 

Parbhane et al. [11].   

 After selecting the parent pairs as described in step 2, the crossover operation 

(step 3) was performed on each pair separately as illustrated in Figure 4-2. Performing 

crossover on N/2 pairs of parent strings produced N number of offspring. This offspring 

population was then added to the parent population to obtain a total of 2N strings. 

 The mutation (step 5) operation simply interchanges the elements of the population 

strings in a random manner. That is, a string element representing the EIIP value of either A, 

T, G or C is replaced by the EIIP value of any one of the four nucleotides. Whether a string 

element undergoes mutation or not was determined using a small value (Pmut=0.01) of the 

mutation probability. 

Each EIIP coded DNA sequence in the post-mutation population was evaluated 

for its RL value following which the strings were arranged in the decreasing order of their RL 

magnitudes. The lower half of the population so arranged was discarded and the resulting 

population (size=N) was set as the new generation. The procedure barring step 1 was 

repeated till the convergence criterion that GA has evolved over 100 generations was 

satisfied. The best-ranked string in the converged population representing the solution of a 

GA search, possesses highest RL magnitude as compared to the remaining strings in the 

population.  

 

4.3 RESULTS AND DISCUSSION 

 Using different random seeds for initializing the chromosome population (step 1), 

and following the methodology outlined above, we have obtained several 10, 21, 31 and 

42 base-pair long DNA sequences possessing RL values greater than 1.10. The RL values 

exceeding 1.10 can be considered "high" in view of the RL range [0.54-1.21] represented 

by the trained EBPN. It may be noted that RL > 1.0 signifies a curved DNA sequence [7].  

In Table 1, a sample of DNA sequences possessing high RL values is provided. For 

brevity, only five examples of DNA sequences belonging to each of the four types (10, 21, 

31 and 42 bp) have been shown, although the ANN-GA methodology is capable of 

generating a large number of sequences meeting the selection criterion. Examination of 



  

these sequences from the viewpoint of extracting curvature-inducing features is now in 

order. 

 From sequence numbers 1-3, it can be noticed that each AnTm tract (n+m ≥ 3) 

produces a small bend in the DNA helix axis; repetition of these elements in phase with the 

helix screw results in their coherent addition to form a large overall bend. Thus, these 

sequences are the examples of the role of AnTm tract and influence of phasing (junction 

model) in determining the extent of curvature [14]. 

 It can be observed from sequence nos. 4 and 5 that non-AA fragments can also 

induce curvature. The high RL for these sequences can be explained in terms of the 

dinucleotide (wedge) model representing the simplest form of the nearest-neighbor 

interactions [12]. According to this model, the base pair steps other than AA/TT introduce 

proper wedge angles phased with each other that add coherently.  

Sequences 4 and 5 have GGCC as a sequence element repeated in phase with 

each other. Also, the element appears in the absence of A/T tracts in the sequence context. 

This feature seems to be responsible for the high RL values and is in good agreement with 

the recent X-ray data showing that the GGCC element is intrinsically curved towards the 

major groove [15].  

Sequences 10, 11, 14, 17, 18 and 20 also contain GGCC element, but in the A/T 

tracts as a sequence context. The corresponding high RL values can be explained using the 

trends exhibited by another DNA bending related quantity, namely "ln(p )". It is well known 

that bovine pancreatic deoxyribonuclease I (DNase I) digestion profiles are used to obtain 

ln(p ) values, which are realistic DNA bending propensity parameters of trinucleotides. High 

ln(p ) values for trinucleotides signify that these base sequences owing to the introduction of 

a positive roll [16] are flexible or inherently bent towards the major groove. By invoking 

this analogy, the high RL values for sequences 10, 11, 14, 17, 18 and 20 can be attributed 

to the additive effects of GCC/GGC trinucleotides and other combinations of trinucleotides 

possessing high ln(p ) values. Such an explanation also holds for sequences 6-9, 12, 13, 15, 

16 and 19 that possess various combinations of trinucleotides with high ln(p ) values viz., 

TCA/TGA, ATA/TAT, CAG/CTG, ATG/CAT, GCC/GGC, CTA/TAG and GCA/TGC. 

It is quite clear from above discussion that the features responsible for high curvature (RL) 



  

and contained in the DNA sequences in Table I, could be explained using other 

approaches as well; for instance, by analyzing the ln(p ) values.  

 A few of the oligonucleotides (sequence number 11 [31-mer] and 20 [42-mer] 

from Table I) were synthesized for experimentally validating the results provided by the 

ANN-GA strategy. The overall framework of the experimental analysis was the same as 

reported earlier [12, 14] but with minor variations. The oligonucleotides were synthesized 

chemically (Gibco BRL) with unique two base overhangs to allow head-to-tail 

polymerization. The oligonucleotides were resolved in 15% denaturing polyacrylamide gels 

and eluted in TE (10 mM Tris-HCl [pH 8], 1 mM EDTA [pH 8]), purified using a NAP-5 

column (Amersham Pharmacia Biotech) dried under vacuum and quantified. 100 pmoles of 

the oligonucleotide was radioactively labeled with 5 µCi of [γ32-P] ATP (DuPont/NEN, > 

6000 Ci/nmol) using 10 U of T4 polynucleotide kinase (PNK, Gibco BRL) at 370C. After 

10 minutes, the reaction was supplemented with 200 pmoles of the complementary strand, 

1000 pmoles of cold ATP and 10 U of PNK. After an hour, the reaction mixture was 

heated to 700C, held there for 10 minutes and then allowed to cool slowly to room 

temperature. The reaction mixture was passed through a Sephadex G-50 (Amersham 

Pharmacia Biotech) spun column and dried to 5 µl. The ligation was set up with T4 DNA 

ligase (Gibco BRL) at 160C for 24 hours. The reaction products were subjected to 

electrophoresis on a 40 cm 8% native polyacrylamide gel (mono: bisacrylamide 29:1) in 90 

mM Tris-borate (pH 8.3), 2.5 mM EDTA (pH 8) with an applied voltage of 7 V/cm at 

room temperature (300C). The mobility of the ligation products was measured relative to 

the migration of a 10 base pair BamHI linker ladder (which is known to have normal 

mobility). The RL values for 90 base-pair DNA were interpolated from plots of apparent to 

actual length in base pair units. 

The experimentally determined RL values for sequences 11 and 20 are in the range 

1.08 (±0.03) as against the respective ANN-GA predicted values of 1.23 and 1.22 (refer 

Table I). It is important to note that the ANN-GA model used the data on electrophoresis 

measurements carried out at 20-22oC while the above-described experiments were 

conducted at 30oC. The effect of temperature on the mobility of curved DNA is well 

documented [7, 14, 17] and it is observed that higher temperatures enhance mobility and, 

hence, lower the RL magnitudes. This feature may be responsible for the approximately 9% 



  

difference observed between the ANN-GA predicted and the experimental RL values of 

sequences 11 and 20. It can thus be inferred that the experimental results qualitatively and 

near-quantitatively validate the trends in the optimal sequences provided by the ANN-GA 

methodology. 

The debate on the generality of the first-principles models for predicting the 

curvature continues in the literature [18]. Extension of the dinucleotide model to tri- and 

tetranucleotide levels is clearly desirable since such models would then include more 

sequence context information. It however requires rigorous experimentation on 32 

independent trinucleotides and 136 tetranucleotides. This clearly is a difficult proposition 

although some efforts have already been made [16]. The results presented here suggest that 

the ANN-GA methodology possess the potential of providing DNA sequences having 

desired RL values ahead of experimentation. Thus, trial and error approach may be avoided 

while performing experiments. Another positive feature of the ANN-GA strategy is that the 

entire ‘modeling-optimization’ exercise can be performed using representative experimental 

data. Since the observed data contain information about the underlying biochemical 

phenomena, no explicit knowledge of these details are necessary (unlike in 

phenomenological modeling). 

It is important to realize that the hybrid formalism is not intended to replace the 

laboratory work, but should be used as a guide in designing experiments. The proposed 

strategy is sufficiently general and, therefore, can be exploited for optimizing other 

biologically important features or properties. 
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Table 1: Optimized retardation anomaly (RL) values along with their DNA sequences  

obtained using ANN-GA methodology 

No. Sequence Unit RL 

1 GGGTATTGCG 1.13 

2 GGGTTAAGTG 1.13 

3 GGTTACGGAG 1.13 

4 GGCCCGTGGG 1.12 

5 GGCCGTCGGG 1.12 

6 GGGCTCTGCGTTGGTGTGCAA  1.23 

7 GGCATGAGCGCGGGTCTACTT  1.23 

8 GGAACCTGACTAGGCGTGTTA  1.22 

9 TTATGCAGATTGGGGGATCTT  1.22 

10 GGCCCATGTGCGGTAGTTTCC  1.22 

11 CGGAATTGCTTGGGCATATTCGAGCGGGGCC  1.23 

12 GGAACCAGATCGGGGCCTATAGCGAGGGTAG 1.23 

13 CGTTGTTGCAATGGCTGCACTGAGAGGAGCG  1.23 

14 GGGCGTAACACCGGCCACTATGATTGGCATC 1.23 

15 GGGCATATTATCGGCTGACATGTGCAGCGTT  1.22 

16 GGCAGTTGTCACAGTTCTCCCTGGAGGTCACTGTCAGGCGC

G 

1.23 

17 AGACAGTCAAACGGAGATCGTGGCAGGCCTTCGATAGGTG

T C 

1.23 

18 GGTCCGTGATATTGTGCGACAGAGTAGGCCGTACCGCGCG

AG 

1.23 

19 GCAATGTGGACAGGGGTGCTCATGAGGCAACGCTAATATG

AT 

1.23 

20 AGGCCCATCCACAGTGACCTCGAGATGCCTTGAACGGCCG

GG 

1.22 

 

 



Figure 4-1: Flow chart for the implementation of ANN-GA strategy for the optimization of 
retardation anomaly values of DNA sequences. 

Create initial population of N individual
(DNA) strings of length l, randomly.

Select N/2 pairs of parent strings using the
 Roulette Wheel method.

Evaluate RL values of strings in initial
population using ANN as an objective

function.

Perform crossover between each parent pair 
to obtain N/2 pair of offspring.

Perform single gene mutation with small
probability over entire population.

Merge N offspring strings with the parent
population to obtain 2*N number of strings.

• Evaluate RL values of 2*N strings.
• Rank them in decreasing order of their RLvalues.
• Discard the lower half of the entire

population.

Is Ngen=Ngenlim?
     (Ngenlim= limit for

    no. of generations.)

STOP
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No
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Ngen=Ngen+1

Ngen=0



 
 
 
 
 
 
 
 
 
 
 
 
 
      G            G                 G                 T                 A                 T                 T                 G                 C                 G 
0.0806 0.0806 0.0806 0.1335 0.1260 0.1335 0.1335 0.0806 0.1340 0.0806 
Parent 1 
 
 
     A             T             G             T              T              A             A             G             T             G 
0.1260 0.1335 0.0806 0.1335 0.1335 0.1260 0.1260 0.0806 0.1335 0.0806 
Parent 2 
 
 
 

                                   Crossover 
 
 
 
 
 
       A                 T                 G                 T                 A                 T                 T                 G                 C                 G  
0.1260 0.1335 0.0806 0.1335 0.1260 0.1335 0.1335 0.0806 0.1340 0.0806 
Offspring 1 
 
 
     G             G            G             T              T             A             A             G             T              G 
0.0806 0.0806 0.0806 0.1335 0.1335 0.1260 0.1260 0.0806 0.1335 0.0806 
Offspring 2 
 
 
 
 
 
 
 
 
 
Figure 4-2: Basic crossover of EIIP coded DNA strings (for simplicity crossover between 10-mers 

is shown). 
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Effects of single base substitutions in the upstream region of the β-globin gene are 

known to alter the relative transcription level (RTL). Information with regard to 

multiple base substitutions leading to higher RTL is however very scanty. The 

motivation of this work is to obtain maximum gene expression using multiple base 

substitutions. Using an Artificial Neural Network (ANN) and Genetic Algorithm 

(GA) based hybrid strategy we study the effects of multiple base mutations with 

particular emphasis on those that can cause enhanced RTL. The study reveals that 

multiple base substitutions in the conserved as well as non-conserved regions can 

cause substantial enhancements in RTL. We identify positions in the nucleotide 

sequences, which preferably should not be altered, as well as those positions where 

mutations can lead to increased RTL. The various trends observed are rationalized. 

The ANN-GA strategy can help in experimental planning and reducing the search 

space. 

 



5.1 Introduction 

The mechanism of the level of gene expression governing the fate of a cell, 

cell proliferation, and survival of the organism continues to be one of the intriguing 

questions to molecular biologists. Even more interesting is the mechanism 

underlying the switching on and off of a particular gene according to development 

programs. Failure to follow these programs accurately may result in gross 

abnormalities in the gene structure. Most control mechanisms in the regulation of 

gene expression occur at the level of transcription and translation. The efficiencies of 

these critical processes are determined by the nucleotide sequences of the promoter 

and the ribosome binding sites (RBS) on the encoded mRNA. Although the 

nucleotide sequences of many promoters and the RBS are known, the specific 

features determining the efficiency of transcription and translation are not well 

understood. The very first step of gene expression i.e. transcription is an intricate, 

highly regulated process and its role in eukaryotes is still not clear. The biochemical 

events in transcription involve a series of highly specific interactions between 

regulatory sequences in DNA and the cellular enzyme RNA polymerase that 

catalyzes the transcription reaction.  

The eukaryotic promoters that have been most thoroughly studied by the 

molecular genetic approach are: (i) the herpesvirus thymidine kinase (tk) [1-3], (ii) 

the SV40 T-antigen [4], and (iii) mammalian β-globin genes [5]. These studies have 

focused on the DNA sequences immediately upstream from the messenger RNA 

(mRNA) initiation sites and provided an evidence for the establishment of 

transcription efficiency via signals contained within the eukaryotic genes. However, 

the problem of prediction of the mutations in the upstream region that may lead to 

maximum expression of a gene has so far remained unresolved. The problem 

essentially is that of an optimization where the nucleotide content of a promoter 

sequence needs to be rigorously searched such that the corresponding transcription 

efficiency represented in terms of relative transcription level (RTL) is maximized. 

The general objective in optimization is to obtain a set of values of the variables 

and/or parameters subject to various constraints (if applicable) that will produce the 

desired optimum response for the chosen objective function [6]. For performing such 

an optimization, the conventional methods such as gradient-based algorithms require: 

(i) a mathematical model described by a smooth, continuous closed functional form, 



and (ii) derivatives of the function to be optimized. Biological systems often being 

non-linear and complex, are difficult to be modeled phenomenonlogically, or even 

empirically. Consequently, such systems are not amenable to representation in an 

exact mathematical form and, therefore, to optimization using gradient-based 

methods. In view of these difficulties, it becomes necessary to explore newer tools 

for solving problems such as the optimization of transcription efficiency alluded to 

above. The objective of this chapter is two-fold: (i) to present a hybrid non-linear 

strategy involving an artificial neural network (ANN) and genetic algorithm (GA) for 

the optimization of transcription efficiency, and (ii) to obtain an insight - from the 

results of the ANN-GA based optimization simulations - about the structural aspects 

of β-globin gene leading to high transcription efficiency. 

 

5.1.1 Philosophy of ANN-GA optimization technique 
In the last decade, ANNs have been extensively used for modeling biological 

systems; the main reason being their ability of modeling not only quantitative data 

but also qualitative data, such as DNA sequences [7]. ANNs trained with the error-

back-propagation (EBP) algorithm [8-9] represent the most widely used neural 

network paradigm. An EBP -based network (EBPN) possesses a multi-layered feed-

forward structure that undergoes supervised learning, i.e. for training it requires an 

example data set comprising pairs of input and the corresponding output patterns. 

Once trained adequately, an EBPN is capable of making output predictions for new 

input data. In essence, an EBPN serves as a non-phenomenological modeling 

technique for approximating (particularly nonlinear) relationships existing between 

two sets of data. For instance, an ANN model has been developed to correlate a DNA 

sequence and the sequence-dependent property, namely, transcription efficiency [10]. 

ANNs though a powerful modeling technique possess an undesirable characteristic 

that they essentially lead to "black-box" models. It means that an ANN model cannot 

be easily expressed as a closed form equation relating its inputs and outputs. 

Consequently, utilization of the gradient descent-based optimization methodologies 

becomes cumbersome. A novel technique known as "genetic algorithms (GAs)" that 

helps in overcoming the said difficulty is described below. 

 

 



5.1.2 Genetic Algorithms 
 GAs are nonlinear optimization techniques based on the mechanisms of 

natural selection and genetics [11-13]. They combine the "survival of the fittest" 

principle of natural selection with a randomized information exchange procedure 

known as crossover to arrive at a robust search and optimization technique. A 

prerequisite to optimization using the GA methodology is a functional form (model) 

whose parameters/variables are to be optimized. Given such a functional form, a GA 

searches its solution (parameter) space so as to maximize a pre-specified objective 

criterion (function). In GA parlance, the objective function is referred to as fitness 

function. The salient features of GAs are [14-15]: 

• GAs perform global search as against the local one performed by the gradient-

based methods. Thus, GAs are most likely to arrive at the global optimum of the 

objective function.  

• During optimization, search is conducted from a population of probable 

candidate solutions to the problem under study. 

• GA search procedure is stochastic requiring only values of the function to be 

optimized and it does not impose preconditions such as smoothness, derivability, 

and continuity, on the form of the function. 

• GAs can easily handle functions that are highly non-linear, complex, and noisy; 

in such cases the traditional gradient -based methods are found to be inefficient. 

It may be noted that owing to GA's leniency towards the form of the function to be 

optimized, it is possible to use an ANN model in place of a closed form function. In 

the resulting ANN-GA optimization approach, a trained ANN serves as an input-

output model whose inputs are optimized using the GA methodology. The GA in 

essence finds the optimal values of the network inputs such that the corresponding 

values of the network outputs are maximized.  

 

5.1.3 ANN-GA based optimization of eukaryotic transcription 

efficiency 
In order to address the optimization problem of maximizing the eukaryotic 

transcription efficiency, we have chosen the globin gene as a test case. The mouse 

globin gene family is an ideal candidate for the study of gene expression since 

differentiation of these genes exhibits both the temporal and coordinate regulation. 



Thus, the globin gene has been extensively studied for its expression, function, and 

abnormalities. It has been observed that the mutations in the β-globin gene and its 

upstream regions can cause many genetic disorders [16]. 

 

5.2 SYSTEM AND METHODS 

5.2.1 Implementation of ANN-GA methodology 
Implementation of the ANN-GA methodology is a two-part procedure; the 

first part consists of training an EBPN with a view to model the input-output 

example data. An EBPN architecture in general possesses three layers (input, hidden, 

and output) of neurons (also termed as “nodes”). The nodes in the successive layers 

are connected using weighted links. The two sets of example data to be modeled 

(correlated) by training an EBPN form the network input and the desired output, 

respectively. In the present study, DNA sequences of the β-globin gene and the 

corresponding transcription efficiency values form the EBPN input and output, 

respectively. Training of EBPN involves minimization of an error function such as 

the sum-squared-error (SSE) using a strategy known as the generalized delta rule 

(GDR). While minimization, the network outputs are compared with their desired 

values and the corresponding SSE is used to update the values of the inter-layer 

connection weights. The weight -updation continues till a convergence criterion is 

satisfied. At this point the network is assumed to be trained. The detailed description 

of EBPN training can be found at numerous places (see e.g., [17-18]).  

In the second part of the ANN-GA hybrid methodology, a GA rigorously 

searches the input space of the trained EBPN so as to maximize its output. In 

essence, the GA searches the sequence space with a view to maximize the magnitude 

of the transcription efficiency. GA begins by randomly encoding a set (population) of 

possible solutions to the optimization problem in the form of “chromosome strings”. 

A pre-specified objective function returns the fitness value (score) of each 

chromosome string in a population that serves as a measure of the goodness of the 

solution searched by the GA. In the ANN-GA methodology, the trained EBPN acts 

as an objective func tion wherein the network output also represents the fitness score 

of the GA-searched solution string (a DNA sequence). For computing the fitness 

value, the DNA solution string is applied as an input to the trained EBPN and the 

network output is evaluated. Since a nonlinear activation function such as the logistic 



sigmoid is used to compute the output of EBPN's output nodes, the fitness value is 

always constrained between zero and one. With this background, a simple five -step 

GA has been described in the following: 

Step 1 (Initialization): Create a random initial population of N chromosome strings 

where each string contains l elements. A string element characterizing a 

nucleotide is chosen randomly with equal probability of selecting either A, T, 

G, or C. Eva luate each chromosome in the initial population using ANN as 

the objective function. Set the initial population as the current population. 

Step 2 (Selection): Select chromosome strings from the current population with a 

view to form a mating pool to be used subsequently for the offspring 

production. The selection procedure is stochastic in nature and carried out 

using the weighted Roulette -wheel algorithm wherein fitter chromosome 

strings on a priority basis select their partner from among the remaining 

strings. The probability of selecting of a particular partner string is directly 

proportional to its fitness score. Such a selection procedure gives rise to a 

mating pool comprising N/2  number of parent pairs. 

Step 3 (Crossover): The action of this most important GA operator results in creating 

two offspring chromosomes from each parent-pair. Typically, the two parent 

chromosomes are cut at the same randomly selected crossover point to obtain 

two sub-strings per parent string. The second sub-strings are then mutually 

exchanged between the parent chromosomes and combined with the 

respective first sub-strings to generate two offspring chromosomes (see 

Figure 5-1). The probability of crossover (Pcross) is kept high. The crossover 

operator essentially generates new solution strings (DNA sequences) thereby 

searching hitherto unexplored regions in the solution space. Repeating 

crossover operation on N/2  parent pairs generates N number of offspring 

strings following which the offspring population is merged with the parent 

population; the post-merger population has 2N strings. 

Step 4 (Mutation): Randomly change (mutate) elements of the offspring strings 

where the probability (Pmut)  an element undergoing mutation is kept small. 

The objective of mutation is to create new solutions in the neighborhood of 

the region represented by the 2N number of chromosome strings and thereby 

perform a local search around the region. Subsequently, evaluate fitness of 

each chromosome using EBPN as the objective function and rank the 2N 



number of strings in the descending order of their fitness scores. Next, 

discard the lower half of the 2N-sized population and set the resulting 

population of size N to the new population (generation). 

The above-described procedure is repeated till a pre-selected convergence criterion 

such as, the GA has evolved a fixed number of generations or the fitness of the best 

solution does not improve in successive generations, gets satisfied. The best 

chromosome as judged by the highest fitness score following convergence, 

represents the final solution of the genetic search. The essence of GA-

implementation can be stated as: better solutions in the current population are 

selected for the reproduction and their offspring generated via crossover and 

mutation operations replace the sub-optimal solutions. The population of candidate 

solutions, owing to the repetitive actions of the crossover and mutation operators, 

improves itself from one generation to the next till convergence is achieved.  

As most steps involved in the GA implementation are performed 

stochastically, the final solution depends upon the series of random numbers used 

during the search. Thus, it may be necessary - for securing an overall optimal 

solution - to repeat the search procedure giving each time a different seed to the 

random number generator. This way GA begins with different initial populations, 

which help in the exploration of widely different solution space.  

 

5.2.2 Optimization of transcription efficiency 
In an earlier study [10], the problem of modeling transcription efficiency was 

addressed using EBPN as the modeling tool. The data for modeling was taken from 

the mutation studies carried out by Myers et al. [19-20] wherein saturation 

mutagenesis has been used to introduce random single base substitutions into the 

mouse β-globin promoter region. The effects of single base substitutions in the β-

globin promoter have been determined by comparing the levels of correctly initiated 

RNA derived from the test and reference plasmids co-transfected into HeLa cells and 

expressed as the relative transcription level (RTL) of each mutant. The expression 

used for computing the RTL value has been: 
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where M refers to signal of the mutant test gene; WT is the signal from the wild-type 



test gene; R1  represents the signal from the reference gene co-transfected with the 

mutant test gene, and R2 denotes the signal from the reference gene co-transfected 

with the wild-type test gene. 

The data used by Nair et al. [10] consisted of the β-globin promoter and its 

mutant sequences (network input) and their corresponding RTL values (network 

output). In the present work we used the available data on single base substitution in 

the upstream region of β-globin and its effects on the RTL value. It is important to 

note that the data on effects of multiple base substitutions is practically nonexistent. 

It is expected, however, that a properly trained neural network would capture the 

intrinsic patterns. For EBPN training, the sequences with mutations were coded using 

the CODE-4 strategy [21], wherein A , T, G and C were represented by four binary 

digits: 0001 = C, 0010 = G, 0100 = A, and 1000 = T. The desired (target) output  of 

each sequence was the experimentally determined RTL values normalized by 

dividing with ten so that they lie between zero and one. The EBPN architecture had 

484 neurons in the input layer for representing the DNA sequences each of length 

121 bp, eight neurons in a single hidden layer, and one neuron in the output layer to 

represent the RTL value (refer Figure 5-2). The values of the GDR parameters, 

namely, the learning rate and momentum coefficient that resulted in the optimal 

values of the EBPN weights were 0.6 and 0.9, respectively.  

The flow-chart of the ANN-GA hybrid methodology as applied to the RTL 

optimization problem is depicted in Figure 5-3. The steps in flow-chart concerning 

the objective function (RTL) evaluation were executed using the optimal EBPN 

weights obtained by Nair and co-workers [10]. This essentially involves operating 

the trained EBPN in the prediction mode and multiplying the output by ten. The 

specific steps in the flow-chart relating to GA were implemented as given below. 

Instead of creating the initial population (step 1) of candidate solutions representing 

the DNA sequences randomly, we used the promoter sequence of the mouse β-globin 

gene and its mutants as the initial population for the GA analysis. Specifically, 130 

patterns of DNA promoter sequences and their mutants whose experimental RTL 

values are known, were used as the strings in the initial population. This was done 

purposely so that the GA search begins directly from the most plausible solution 

space. The values of the GA parameters used for simulation are: population size (N) 

= 130, probability of crossover (Pcross) = 1.0, probability of mutation (Pmut) = 0.01, 



total number of generations over which the GA evolves (Ngen) = 100, and the length 

of each chromosome string (l) = 121.  

 

5.3 RESULTS AND DISCUSSION 

In this study, we have specifically analyzed the transcriptional control signals 

of a eukaryotic protein-coding gene for establishing a relationship between the site of 

mutation and increased level of the process of eukaryotic gene transcription. 

Experimentally, Myers and co-workers [20] could obtain only one single base 

substitution pattern of upstream region of β-globin gene whose transcription 

efficiency was 3.5. However, using the ANN-GA methodology, it was possible using 

multiple base substitution to obtain a large number of sequences having transcription 

efficiency greater than 3.5. This was achieved by repeating the ANN-GA procedure 

several times while utilizing every time a different seed value for initializing the 

random number generator. In the ensuing paragraphs we discuss the significance of 

the results obtained using the ANN-GA optimization approach. For brevity, the 

discussion is limited to only ten sequences possessing RTL magnitudes in excess of 

3.5. These sequences and their corresponding RTL values are listed in Table I. 

Myers and co-workers [20] have shown that single base substitutions in three 

conserved regions of the promoter resulted in a significant decrease in the level of 

transcription in: (i) CACCC box, (ii) CCAAT box, and (iii) the TATA box. It was 

also shown that a promoter containing two base substitutions, one at -75 and the 

other at -74 results in a 40 to 50-fold decrease in the RTL.  In contrast, two different 

mutations in nucleotides immediately upstream from the CCAAT box caused a 3- to 

3.5- fold increase in transcription. Thus, positions -78 and -79 were termed "up 

mutations". With these two minor exceptions, single base substitutions in all other 

regions of the promoter were shown to have no effect on transcription. The ANN-GA 

approach, on the other hand, could arrive at multiple base substitutions that 

synergistically shows a significant increase in the transcription efficiency. 

A comparison of sequences in the upstream region of β-globin gene (glo, 

RTL=1.00) with the ANN-GA predicted sequences from the same r egion (R1 to R10, 

RTL > 3.5) has been made using FASTA package [22]. Such a comparison helps to 

understand the role of nucleotide variation leading to high transcription efficiency of 

ANN-GA simulated patterns vis -a-vis original sequence of upstream region of β-



globin gene. The results of comparison, shown in Table II, indicate that sequences 

from the upstream region of β-globin gene possessing maximum transcription 

efficiency show 74.4-95.8% sequence homology with the upstream region having 

transcription efficiency value of one. The nucleotide positions in the sequences 

predicted by the ANN-GA method that are not similar to the upstream region of β-

globin gene can be considered as effective mutation points (listed in Table III) for 

sequences indexed as R1 to R10. These points are most probably responsible for 

enhancing the transcription efficiency of  β-globin gene. 

The ANN-GA simulation results show that not all mutations in three 

conserved regions decrease the RTL as is generally believed based upon the 

available experimental results [20]. In order to interpret the results and better 

understand the role of mutations in enhancing the transcription efficiency, a close 

look at the sequences R1 to R10 reveal the following: (i) mutations in conserved 

regions can enhance RTL (sequences R1, R3, R4, R7, R8, and R9), and (ii) 

mutations in non-conserved regions can also enhance RTL (sequences R2, R5, R6 

and R10). In what follows we shall analyze these cases separately. Also, to 

understand the role of individual positions of mutations and their surroundings we 

further subdivide the sequence into seven different segments consisting of : (i) 

upstream region of CACCC box (i.e., -101 to -96 position), (ii) CACCC box (located 

between -95 to -87 position), (iii) region between CACCC box and CCAAT box (i.e., 

-86 to -78 position), (iv) CCAAT box (present between -77 to -72 position), (v) 

region between CCAAT box and TATA box (-71 to -31 position), (vi) TATA box 

(lying between -30 to -26 position), and (vii) region between -25 to cap site and the 

region below cap site. 

I. Mutations in conserved regions leading to higher RTL 

CACCC box (located between -95 to -87 position):  

• The optimal sequences having value of RTL in excess of 3.5 searched by the 

genetic algorithm, including the repr esentative examples of sequences shown 

here (R1 to R10), reveal that the positions -87, -90, -91, -92 and -93 remain 

unaltered. This feature is therefore relevant for obtaining sequences with higher 

RTL. 

• Mutations at positions other than those listed above  can cause enhancement in 

RTL. We show one example of each such alteration. Thus mutation at position -



88 (sequence R9), -89 (sequence R8), along with the changes at few other 

positions (see sequences R8 and R9 for details) cause several fold increase in 

RTL. It is important to note that these sequences also include the mutations at 

the 'up-mutation points'. Sequences R4 and R7 show case examples when 

mutation occurs at the other remaining positions viz. -94 and -95 and cause 

enhancement. These examples als o show that mutation at these positions is also 

accompanied by change at few other locations, but this time the mutations at the 

'up-mutation points' is not involved.  

CCAAT box (present between -77 and -72 positions):  

• Sequences R1 to R10, show that the nucleotide positions -73, -75, -76 and -77, 

remain unchanged. No alteration in these positions seem to be important for 

high transcription efficiency. Other positions viz. -72 and -74 within this region 

can undergo mutations to cause increased RTL. We show one example of each. 

• Sequence R3 indicates that if mutation at -74 position is accompanied by 

mutation at the "up mutation points" (positions -78 and -79), then an increase in 

RTL value is witnessed. Note that -74 position is responsible for lowering the 

RTL magnitude, whereas -78 and -79 position causes increase. The 

simultaneous mutations has an synergistic effect-causing enhancement more 

than known for the up mutation point. 

• Upon examining sequence R8 it can be noted that if nucleotide position -72 is 

mutated in combination with "up mutation point" (position -78), and other 

favorable mutation points (especially in the region -71 to -31 and -25 to cap 

site), then it causes high magnitude of RTL.  

TATA box (lying between -30 and -26 positions):  

• For sequences R1 and R8, mutations at -27 and -30 positions effect increase in 

RTL value if they possess mutation at -78 position and, additionally, at other 

favorable mutation points such as -47 and -66 positions. These results once 

again underline the importance of up mutation point, such as position -78.  

• At -26 and -29 positions of sequence R4, transition (AÕ G i.e. R Ö R) mutations 

are witnessed. In here, despite presence of mutations in the TATA box, high 

RTL value has been obtained. This can be interpreted as: if specific mutations 

(positions -26 and -29) in the TATA box are supported by drastic variation in 

the nucleotide content of the region surrounding TATA box (i.e., region 



between -71 and -31, and -25 and cap site), then they result in increased RTL.  

• The % identity (homology) of sequence R4 with original β-globin gene 

promoter is 74.4. This value despite being the lowest among the ten ANN-GA 

predicted patterns (refer Table II), the corresponding RTL value (=4.8404) is 

high. 

II. Mutations in non-conserved regions leading to higher RTL 

Upstream region of CACCC box (positions -101 to -96):  

• If mutations in this region are in favorable agreement with other mutation 

points, especially in the region -71 to -31, they cause increase in the magnitude 

of RTL. This is evidenced from the sequence entries R2, R4 and, R7-R10 listed 

in Table III. The sequences also indicate that G at -97, -84 and -78 positions is 

always mutated by A, T and C respectively.  

• For the ten patterns in Table III, positions -99 and -100 are always conserved 

thus indicating their importance in maintaining high transcription efficiency. 

Region between CACCC box and CCAAT box (positions -86 to -78):  

• The region is of prime importance since it includes the most important positions 

i.e., -78 and -79. These two "up mutation points" are primarily responsible for 

increased transcription efficiency (see sequences R1, R3, R6, R8 and R9). 

• Sequences R1-R10 do not exhibit any effective mutation at -77 position. 

Moreover, as verified experimentally [20], the mutation at -77 position, which is 

in the nearest-neighbor position of up mutation points (i.e., -78 and -79 

position), does not seem to help in increasing transcription efficiency.  

• At position -78 of sequences R1 and R3, and at position -84 of sequences R5 

and R9, transversion type of mutation (-84 and -78 G Õ C or T i.e., R Ö Y) can 

be observed. It can therefore be inferred that the transversion mutation at these 

positions can cause increased magnitude of RTL. 

Region between CCAAT box and TATA box (positions -71 to -31):  

• Table III lists various combinations of multiple base substitutions for sequences 

R1-R10 in the region between CCAAT box and TATA box, which result in the 

increased RTL value. However, the average trend in the ten sequences suggests 

that nucleotide positions -71, -70, -68, -67, -65, -55, -48 and -43, despite 

remaining unchanged, still cause high RTL. Thus these positions seem to be 

important in obtaining high RTL.  



• Transversion type of mutations (-60 GÕT, -59 and -57 A Õ T or C i.e. R Ö Y) 

seen at position -60 (sequences R4, R5 and R6), at position -59 (sequences R2, 

R4 and R8), and at position -57 (sequences R4, R7 and R8) appear to cause high 

transcription efficiency. 

Region between -25 to cap site and in the region below the cap site:  

• In most of the cases, the mutations in these regions have favorably supported the 

multiple base substitutions in the upstream region of gene. It is also of interest to 

study the role of this region, in causing increased transcription efficiency for 

sequences where % identity between the original β-globin promoter sequence 

and the ANN-GA simulated promoter patterns is greater than 90% (refer Table 

II). Although R6, R9, and R10 meet the stated criterion, we will concentrate 

only on sequence R10 since sequences R6 and R9 show presence of up mutation 

points. The % identity of sequence R10 with β-globin promoter is 94.2 and its 

RTL is 3.6896. Interesting feature of this sequence is that all the three conserved 

regions i.e., CACCC, CCAAT and TATA box, are not subjected to any 

mutational changes; the sequence shows variation only in regions -101 to -96, -

71 to -31, and below the cap site (position +14). Since R10 possesses maximum 

homology with the original β-globin gene, only eight effective mutation points 

that can lead to higher RTL are possible. Thus mutations at positions -101, -98, -

97, -56, -51, -46, -41 and +14 can cause increased RTL.  

• Among the ten sequences, R8 possesses highest RTL magnitude (=6.7307). This 

pattern includes mutation at position -78 (up mutation point) and has % identity 

value of 79.3. Hence, sequence R10 gives us an idea about the effective multiple 

mutation points, in regions -71 to -31, -25 to the cap site, and below the cap site, 

that eventually lead to the highest RTL value. This is an example of how the 

ANN-GA optimization methodology could be exploited for a priori estimation 

of multiple base substitutions before conducting the mutation experiments. 

 

5.3.1 Role of curvature in gene expression 
 Sequence dependent DNA structure is important in packaging, recombination 

and transcription. Therefore it is of interest to study the role of sequence-dependent 

DNA structure in governing the extent of transcription efficiency. For this purpose, 

CURVATURE program [23] can be used. This program is useful for plotting the 



sequence-dependent spatial trajectory of the DNA double helix and/or distribution of 

curvature along the DNA molecule. The routine calculates the overall DNA path 

using experimentally determined local helix parameters, namely, helix twist angle, 

wedge (deflection) angle, and direction (of deflection) angle [24]. The 

CURVATURE software can thus be used to investigate possible role of curvature in 

modulation of gene expression and to locate curved portions of DNA that may play 

an important role in sequence specific DNA-protein interactions. 

 For conducting the above-mentioned investigation, the DNA sequence of 

upstream region of β-globin gene (glo, RTL=1.00) and ANN-GA predicted patterns 

of β-globin gene were used as inputs to the CURVATURE program and the likely 

degree of curvature at each point along the molecule was computed. The graphical 

comparison of the curvature map of promoter sequence of β-globin gene and the 

ANN-GA predicted promoter sequences is depicted in Figure 5-4. The results 

suggest that sequences having maximum transcription efficiency show the sequence-

dependant bendability or deformability of duplex DNA. This can be justified on the 

fact that certain nucleic acid sequences take up a particular structure required for 

binding to a protein at lower free energy than other sequences. The comparison also 

reveals that a change in the superstructure results in the alteration of transcriptional 

activity. These results in essence indicate that the ANN-GA methodology is able to 

capture the relationship between DNA superstructures and transcriptional activity. 

Figure 5-5 shows the comparison of spatial trajectories of the DNA double 

helix of upstream region of β-globin gene (glo, RTL=1.0) and the promoter sequence 

(R8) having highest RTL (=6.7307). In both the cases, the projections are chosen 

such that the most curved regions of the fragments are seen best. This is done by 

placing the plane - where the axis is curved - perpendicular to the viewing direction. 

Any other orientation would result in false impression of excessive curvature. It can 

be seen in Figure 5-5 that the promoter pattern R8 is more curved at the center than 

the promoter sequence of β-globin gene (glo). This structural variation that changes 

the signature of β-globin gene  is responsible for RNA polymerase to recognize and 

thus facilitate the transcription. 

 

 

5.4 CONCLUSION 



 Highly intricate process like transcription can be well captured using the 

hybrid approach of two novel intelligent tools. This approach helps us to study the 

effect of multiple base substitutions causing the increase in transcription efficiency. 

These simulation results can be used as a guide in designing mutation experiments 

since a priori estimate of the possible outcome of multiple mutations can be obtained. 

This methodology has also captured the role of DNA superstructures in gene 

expression. Such a hybrid approach, involving an ANN that maps the given inputs 

onto the outputs, and a genetic algorithm (GA) that maximizes the output by 

searching the input space of ANN can be used for optimizing any biological 

property.  
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Figure  5-1: Basic crossover of the nucleotide sequence of the two parent strings. 
 
 



 Figure 5-3: Flow chart for the implementation of ANN-GA strategy for the 

optimization of transcription efficiency (in terms of its RTL value) of β-globin gene. 

Use promoter sequence of β-globin gene and its 
mutant DNA sequences as initial population of
 N (=130) individual strings of length l (=121).

Select N/2 pairs of parent strings using the
 roulette wheel method.

Evaluate RTL values of strings in initial
population using ANN as the objective

function.

Perform crossover between each pair of parent 
to give N/2 pair of offspring.

Perform single gene mutation with small
probability over entire population.

Add N offspring strings to the parent
population to obtain 2*N number of strings.

• Evaluate RTL values of 2*N strings.
• Rank them in decreasing order of their RTL

values.
• Discard the lower half of the entire

population.

Is Ngen=Ngenlim?
(Ngenlim= limit for
no. of generations.)

STOP
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Figure 5-4: Comparison of the curvature map of the upstream region of β-globin gene 

(glo, RTL=1.0) and ANN-GA predicted promoter patterns of β-globin gene (R1 to R10, 

RTL > 3.5). Curvature is given in DNA curvature units [25] which is the  mean DNA 

curvature in the crystalline nucleosome (1/42.8 
O

A ). 

 



 
 
 
 
 

 
Figure 5-5a: DNA path of β-globin gene (glo, RTL=1.0) calculated using 
CURVATURE software. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5-5b: DNA path of the ANN-GA predicted promoter sequence (R8, RTL=6.73) 
calculated using CURVATURE software. 

 



 

Table I: Sequence (simulated patterns of upstream region of β -globin gene) 

details along with their ANN-GA predicted Relative Transcription Level (RTL) 

value.  

No. Relative 
Transcription 
Level (RTL) 

R1 3.8690 
R2 3.6919 
R3 3.8870 
R4 4.8404 
R5 3.8465 
R6 3.5799 
R7 3.5703 
R8 6.7307 
R9 3.7589 
R10 3.6896 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



Table II: Comparison of upstream region of β-globin gene with ANN-GA predicted 

promoter patterns for sequence homology using FASTA package.  

1210 residues in    10 sequences 
 results sorted and z-values calculated from opt score 
   10 scores better than 1 saved, ktup: 6, fact: 6 
 DNA matrix, gap penalties: -16,-4 
 joining threshold: 46, optimization threshold: 31, width: 16 
  scan time:  0:00:00 
The best scores are:                             initn init1 opt 
R6, 121 bases, 34DF602C checksum.                  555 555  555 
R10, 121 bases, 1203C265 checksum.                 535 535  537 
R9, 121 bases, EA1BF176 checksum.                  492 492  492 
R7, 121 bases, BC9B2289 checksum.                  453 453  470 
R3, 121 bases, 492F8031 checksum.                  461 461  461 
R1, 121 bases, ACD08F2C checksum.                  450 450  452 
R2, 121 bases, C5BA8B94 checksum.                  417 417  438 
R5, 121 bases, A7CC5C50 checksum.                  363 363  401 
R8, 121 bases, F8B2CAAC checksum.                  365 365  380 
R4, 121 bases, A6543FA4 checksum.                  286 286  326 
>>R6, 121 bases, 34DF602C checksum.                  (121 nt) 
initn:  555  init1:  555  opt:  555 
  95.8% identity in 120 nt overlap 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
       X::::::::::::::::::::: :::::::::::::::: : ::::::::::::: :::: 
R6,    CGTAGAGCCACACCCTGGTAAGCGCCAATCTGCTCACACTGTATAGAGAGGGCAGAAGCC 
               10        20        30        40        50        60 
                              
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
       ::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::X 
R6,    AGGACAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
               70        80        90       100       110       120 
                    
glo,   T 
         
R6,    G 
         
>>R10, 121 bases, 1203C265 checksum.                 (121 nt) 
initn:  535  init1:  535  opt:  537 
  94.2% identity in 120 nt overlap 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
        ::  X::::::::::::::::::::::::::::::::::::::: :::: :::: :::: 
R10,   AGTTAAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATACAGAGTGCAGAAGCC 
               10        20        30        40        50        60 
 
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
        ::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::: 
R10,   GGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGTCATAG 
               70        80        90       100       110       120 
       
glo,   T 
       X 
R10,   T 
         



 
>>R9, 121 bases, EA1BF176 checksum.                  (121 nt) 
initn:  492  init1:  492  opt:  492 
  90.0% identity in 120 nt overlap 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
        X::::: ::::: : :  ::: ::::::::::::::::::::::::::: ::::::::: 
R9,    TGTAGAGGCACACGCGGTGAAGAGCCAATCTGCTCACACAGGATAGAGAGCGCAGGAGCC 
               10        20        30        40        50        60 
 
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
       : :::::::::::::::::: :::::::: :::::::::::::::: ::::::: ::::: 
R9,    ATGGCAGAGCATATAAGGTGCGGTAGGATTAGTTGCTCCTCACATTAGCTTCTGGCATAG 
               70        80        90       100       110       120 
       
glo,   T 
       X 
R9,    T 
         
>>R7, 121 bases, BC9B2289 checksum.                  (121 nt) 
initn:  453  init1:  453  opt:  470 
  87.6% identity in 121 nt overlap 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
       ::: :: X::::::::::::  :::::::::::::::: ::::: ::: ::: :: :::: 
R7,    CGTTGACCCACACCCTGGTAGCGGCCAATCTGCTCACAGAGGATCGAGTGGGGAGTAGCC 
               10        20        30        40        50        60 
 
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
        ::: ::: : :::::::::::::::: :::::: ::::::::::::::::::::::::: 
R7,    TGGGTAGATCGTATAAGGTGAGGTAGGCTCAGTTCCTCCTCACATTTGCTTCTGACATAG 
               70        80        90       100       110       120 
       
glo,   T 
       X 
R7,    T 
         
>>R3, 121 bases, 492F8031 checksum.                  (121 nt) 
initn:  461  init1:  461  opt:  461 
  86.8% identity in 121 nt overlap 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
       X:::::::::::::::::::::  ::: :::::::::::::::::::::::::::::::: 
R3,    CGTAGAGCCACACCCTGGTAAGACCCACTCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
               10        20        30        40        50        60 
 
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
       : ::  :::::::::::::: ::: :  :::  ::::: ::: ::::::: : ::::::: 
R3,    AAGGGTGAGCATATAAGGTGGGGTGGCCTCACATGCTCTTCAAATTTGCTGCGGACATAG 
               70        80        90       100       110       120 
     
glo,   T 
       X 
R3,    T 
         



 
>>R1, 121 bases, ACD08F2C checksum.                  (121 nt) 
initn:  450  init1:  450  opt:  452 
  86.0% identity in 121 nt overlap 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
       X:::::::::::::::::::::: :::::::: :: :::::::::::::::: : ::::  
R1,    CGTAGAGCCACACCCTGGTAAGGCCCAATCTGATCCCACAGGATAGAGAGGGAATGAGCA 
               10        20        30        40        50        60 
 
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
          ::::::::::: :: :::::::::::: : ::: :::::: ::::::::::::X :  
R1,    GACGCAGAGCATATTAGATGAGGTAGGATCGGGTGCCCCTCACTTTTGCTTCTGACAGAT 
               70        80        90       100       110       120 
                         
glo,   T 
       : 
R1,    T 
         
>>R2, 121 bases, C5BA8B94 checksum.                  (121 nt) 
initn:  417  init1:  417  opt:  438 
  85.0% identity in 120 nt overlap 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
       ::::: X:::::::: :::: :::::::::::::::::: :: ::::: ::::::::::: 
R2,    CGTAGCGCCACACCCAGGTATGGGCCAATCTGCTCACACCGGTTAGAGCGGGCAGGAGCC 
               10        20        30        40        50        60 
 
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
       :::::: ::: :::::::::  : ::::: : : ::::::::   ::::::: ::::::X 
R2,    AGGGCATAGCCTATAAGGTGTCGCAGGATTAATGGCTCCTCAGCGTTGCTTCGGACATAG 
               70        80        90       100       110       120 
        
glo,   T 
         
R2,    G 
         
>>R5, 121 bases, A7CC5C50 checksum.                  (121 nt) 
initn:  363  init1:  363  opt:  401 
  82.2% identity in 118 nt overlap 
 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
       X:::::::::::::::: :::::::::::::: :::: ::  :::::::::  : : ::: 
R5,    CGTAGAGCCACACCCTGTTAAGGGCCAATCTGATCACCCATTATAGAGAGGAAACGGGCC 
               10        20        30        40        50        60 
 
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
       :::::  : : ::::: :::  : ::: ::::::::::::::::X :: ::: :::::   
R5,    AGGGCGCACCTTATAACGTGGTGAAGGTTCAGTTGCTCCTCACATCTGTTTCCGACATGC 
               70        80        90       100       110       120 
         
glo,   T 
         
R5,    T 



         
>>R8, 121 bases, F8B2CAAC checksum.                  (121 nt) 
initn:  365  init1:  365  opt:  380 
  79.3% identity in 121 nt overlap 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
       ::: X::::::: :::::: ::: ::::: ::::: ::::::   ::::::::: ::::: 
R8,    CGTGGAGCCACATCCTGGTGAGGCCCAATATGCTCTCACAGGTCCGAGAGGGCAAGAGCC 
               10        20        30        40        50        60 
 
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
       :::::::::   ::::  :::::: :: : :::: :::  ::::::::::::X   :: : 
R8,    AGGGCAGAGGGCATAAACTGAGGTCGGTTGAGTTTCTCTGCACATTTGCTTCTTCTATTG 
               70        80        90       100       110       120 
         
glo,   T 
       : 
R8,    T 
         
>>R4, 121 bases, A6543FA4 checksum.                  (121 nt) 
initn:  286  init1:  286  opt:  326 
  74.4% identity in 121 nt overlap 
 
               10        20        30        40        50        60 
glo,   CGTAGAGCCACACCCTGGTAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCC 
       :::: :: X::::::: ::::::::::::::: :: ::     : :: :  :::: : :  
R4,    CGTAAAGACACACCCTTGTAAGGGCCAATCTGTTCTCAAGCTTTCGATATAGCAGAAACA 
               10        20        30        40        50        60 
 
               70        80        90       100       110       120 
glo,   AGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG 
       ::::::  :::: ::   :::   :: :::::::::: :::::::::::::X :  :::: 
R4,    AGGGCATCGCATGTAGTCTGACTCAGAATCAGTTGCTTCTCACATTTGCTTCAGGAATAG 
               70        80        90       100       110       120 
        
glo,   T 
       : 
R4,    T  
Library scan:  0:00:00  total CPU time:  0:00:00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table III: Effective mutation points for ANN-GA predicted promoter patterns in 

accordance with various sub-regions. 

No. -101 to -
96 region 

-95 to -
87 

(CACCC 
box) 

-86 to -
78 region 

-77 to -
72 

(CCAAT 
box) 

-71 to -
31 region 

-30 to -
26 

(TATA 
box) 

-25 to 
cap site 

Below 
cap site 

         
R1 _ _ -78GC∗ _ -69CA 

-66AC 
-49CA 
-47GT 
-41AG 
-40GA 
-39GC 

-27AT -24GA 
-11AG 
-9TG 
-5TC 

+3AT 
+17TG 
+19GT 

         
R2 -96AC _ -86TA 

-81AT 
_ -62AC 

-59AT 
-53AC 
-35GT 
-31AC 

_ -21AT  
-20GC 
-18TC 
-12CT 
-10GA 
-8TG 

+2CG 
+3AC 
+4TG 

+12TG 

         
R3 _ _ -78GC 

-79GA 
-74AC -40GA 

-37CG 
-36AT 

_ -21AG 
-17AG 
-15GC 
-14AC 
-10GC 
-9TA 
-3CT 

+2CA 
+10TG 
+12TG 

         
R4 -97GA -94CA -85GT _ -69CT 

-66AT 
-63CA 
-62AG 
-61GC 
-60GT 
-59AT 
-57AC 
-54GT 
-52GT 
-51GA 
-46GA 
-44GA 
-42CA 
-35GT 
-34AC 

-29AG 
-26AG 

-25GT 
-24GC 
-20GC 
-19GT 
-18TC 
-15GA 
-4CT 

+12TA 
+14AG 
+15CA 

         

                                                                 
∗ -78GC indicates that G at -78 position is mutated by C. 



Table III continued…  
 
No. -101 to -

96 region 
-95 to -

87 
(CACCC 

box) 

-86 to -
78 region 

-77 to -
72 

(CCAAT 
box) 

-71 to -
31 region 

-30 to -
26 

(TATA 
box) 

-25 to 
cap site 

Below 
cap site 

         
R5 _ _ -84GT _ -69CA 

-64AC 
-61GT 
-60GT 
-50GA 
-49CA 
-47GC 
-45AG 
-36AG 
-35GC 
-33GC 
-31AT 

 

_ -25GC 
-21AG 
-20GT 
-18TA 
-14AT  

+5TC 
+8CT 

+12TC 
+18AG 
+19GC 

         
R6 _ _ -79GC _ -62AT 

-60GT 
-46GA 
-38GA 

_ _ +20TG 

         
R7 -98AT -95GC -81AG 

-80GC 
_ -63CG 

-57AC 
-53AT 
-49CG 
-46GT 
-41AT 
-37CT 
-33GT 
-31AG 

_ -14AC 
-7GC 

_ 

         
R8 -98AG -89CT -82AG 

-78GC 
-72CA -66AT 

-59AT 
-58TC 
-57AC 
-47GA 
-32CG 
-31AG 

-30TC -25GA 
-24GC 
-17AC 
-14AT  
-12CG 
-7GT 
-3CT 
-2TG 

+13GT 
+14AC 
+15CT 
+18AT 

         
R9 -101CT -94CG 

-88CG 
-86TG 
-84GT 
-83TG 
-79GA 

_ -51GC 
-40GT 

_ -21AC 
-12CT 

+6TA 
+14AG 

         
R10 -101CA 

-98AT 
-97GA 

_ _ _ -56GC 
-51GT 
-46GA 
-41AG 

_ _ +14AT 
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In this chapter, we have compiled 125 mycobacterial promoter sequences, out of 

which 80 promoters have their transcription start-site (TSS) mapped while the other 

45 are the putative promoters. Mycobacterial promoters have been analyzed for 

various features like: i) TSS, ii) -35 and –10 regions, iii) σ factor, iv) spacer length, 

v) upstream region of –35 box, and vi) % G+C content. These features are compared 

to similar features known for E. coli  promoters. Further, the study suggests a broad 

classification of these promoters into three main types viz., i) E. coli type, ii) 

Mycobacterial (Non-E. coli) type, and iii) Extended –10 promoters. The results throw 

some light on the mycobacterial transcription machinery and structure of 

mycobacterial promoters, which is an important step to understand the low level of 

its transcription, and the possible mechanisms of regulation of gene expression.  

 

 

 

 

 

 

 

 

 

 



  
 

6.1 INTRODUCTION 

The genus Mycobacterium is of immense importance to human health 

because pathogenic species like Mycobacterium tuberculosis, Mycobacterium leprae 

etc . belong to this group. The avirulent strain of Mycobacterium bovis, which has 

been extensively used as a tuberculosis vaccine, BCG (bacille Calmette-Guerin), is 

also a very attractive vector for the construction of live recombinant vaccines 

particularly because of its strong immunogenicity. Thus, it is necessary to understand 

the essential features of transcription machinery for clear understanding of gene 

expression in these organisms. 

Transcription is the very first and critical step in the process of gene 

expression. Transcription initiation involves interplay between RNA polymerase 

(RNAP) and promoter region. RNAP occupies the central role in transcription 

process. In prokaryotes, structure and function of enzyme RNAP seems to be 

conserved during evolution. The size, composition and function of different subunits 

of core polymerase do not vary much in different bacteria. On the other hand, 

promoter structures vary significantly from species to species and even within 

species depending on the kind of sigma factor (protein that binds to core enzyme and 

direct correct initiation) bound to the polymerase. Further, different trans -factors 

influence promoter recognition by the holoenzyme. In short, transcription only 

occurs from defined sites and in a specific direction, and the nature of the promoter 

will influence the affinity of the RNAP for that site, and hence dete rmine the 

efficiency of transcription. Transcription efficiency is ultimately the major 

determinant of the level of gene expression. 

Mycobacterial genome has high G+C content. Since the G+C content of 

genome affects codon usage and promoter recognition sites in an organism, it is 

reasonable to predict that transcription and other regulatory processes in 

Mycobacteria may differ from E. coli and many other bacteria. For expression of 

mycobacterial genes, Streptomyces is shown to be preferred host compared to E. coli.  

This is mainly because Streptomyces also has a high G+C content and they appear to 

be less stringent than E. coli in their promoter specificity [1]. Mycobacteria  and 

Streptomyces belong to the same bacterial order i.e., Actinomycetales; hence, they 

may share some similarities in their transcriptional signals. 



  
 

A significant finding that Mycobacteria  have a low transcription rate and a 

low RNA content per unit DNA was reported in late seventies by Harshey and 

Ramkrishnan [2]. Understanding the reasons for this low level of transcription, and 

the possible mechanisms of regulation of gene expression, requires examination of 

the mycobacterial transcription machinery and the structure of mycobacterial 

promoters. With this objective, we have compiled diffe rent mycobacterial promoters 

and analyzed their DNA sequences for various features in this chapter. 

Transcription is well studied in E. coli as compared to Mycobacteria. E. coli 

promoter paradigm forms the basis to analyze promoters in other systems. In E. coli, 

a large number of the genes that are expressed during normal vegetative growth have 

recognizably similar sequences at –35 and –10 positions (TTGACA and TATAAT, 

respectively) with respect to the transcription start site (TSS). The spacer-length 

between these two conserved regions is usually 15-20 bases. A combination of 

conserved –10 and –35 elements along with optimal spacer length (17±1 bp) is 

referred to as the typical E. coli consensus promoter. More precisely, E. coli 

consensus promoter is recognized by RNAP when the enzyme is combined with one 

specific sigma factor, sigma 70. Under certain circumstances, sigma 70 is replaced 

by other sigma factors, and the promoter specificity of the RNAP is altered so that a 

different group of genes is expressed. A majority of promoters using sigma factor 70 

have at least two of the three most highly conserved bases in the –10 (TA…T) 

region, and at least one of the most highly conserved residues in the –35 (TTG…) 

region [3]. The majority of E. coli promoters fall into two basic categories: (i) those 

recognized by Eσ70, the activities of which are modulated by negative and positive 

regulators that must ‘communicate directly’ with the RNAP; and (ii) those promoters 

recognized by Eσ54, which are mainly regulated by activation, where the location of 

activator binding site could be remote from the binding of the RNAP [4]. 

 

6.2 COMPILATION AND ANALYSIS OF VARIOUS 

FEATURES OF THE MYCOBACTERIAL PROMOTERS 

To define the DNA sequence features associated with mycobacterial RNAP, 

we have compiled 125 mycobacterial promoter sequences. Out of these 125 

promoters, TSS is mapped for the 80 promoters and the remaining 45 promoters are 

the putative promoters based on the location of their consensus sequence.  In this 



  
 

analysis, we have considered a long stretch of nucleotides in the promoter region for 

the following reasons: i) RNAP from E. coli protects a large region in the promoter; 

DnaseI footprinting experiments show that this coverage extends up to region 50 to 

70 nucleotides including regions upstream and downstream of –35 and –10 sequence. 

Considering that the mycobacterial RNAP architecture is similar to that of E. coli [5], 

it is reasonable to expect larger area of occupancy by mycobacterial RNAP as well; 

and ii) in many promoters, regions upstream and downstream play important role in 

influencing promoter efficiency. Hence, we have considered the sequence stretches 

between –50 and +10 bp with respect to the TSS for the promoters where TSS is 

mapped. The promoter sequence length varies based on the availability of the 

nucleotide sequence upstream of the –35 region and downstream of the –10 region. 

For the putative promoters, we have documented the sequence stretch between 15 bp 

upstream region of –35 box and 20 bp downstream of the –10 region. In few cases, 

for the same gene two or more different sequence frames are considered based on the 

alternate consensus probability. The compilation is presented in Table I. 

From the extensive studies on transcription in E. coli, it is clear that several 

factors can affect the strength of the promoter. Major factors which influence 

promoter strength are: (i) nucleotide sequence of the –35 region, (ii) nucleotide 

sequence of the –10 region, (iii) spacing between the –35 and –10 regions, (iv) 

nucleotide sequence (especially A+T content) in the 5’ flanking region upstream 

from the –35 regions [46]. In order to make a meaningful comparison, for the 

mycobacterial promoters, we have listed i) total length of the promoter region, ii) -35 

region, iii) spacer length, iv) occurrence of TG motif, v) -10 region, vi) distance 

between the –10 region and TSS, vii) TSS, viii) % A+T content within individual 

promoter, and ix) % G+C content within individual promoter. A compilation of this 

information on 125 promoters is listed in Table II. In sections 2.1 to 2.7, we compare 

and contrast several features of mycobacterial promoter to those known for E. coli 

promoter sequences. Based on features discussed in these sections and choice of 

expression host, mycobacterial promoters can be broadly classified into three main 

types. Such classification may help us to better understand the mechanisms behind 

their expression. These classes are discussed in the sections 3.1 to 3.3. Later in 

sections 4.0 and 5.0, we have briefly documented stable RNA expression and 

influence of DNA topology and curvature on transcription. 



  
 

6.2.1 Transcription Start Site 
E. coli σ70 dependent promoters generally initiate transcription at a purine, 

adenine being more frequently utilized than guanine [47]. The selection of this 

nucleotide is influenced by the sequence around –35 and by the composition of the –

2 to –5 positions [48-49]. We have analyzed the promoter compilation of the 80 

sequences where TSS is mapped for occurrence of nucleotide type at TSS. The 

results of this analysis are shown in Figure 6-1. Occurrence of G at TSS among the 

four different nucleotides is about 49% and that of A is 28%. Thus, it appears that the 

purines (especially G) seems to be preferred first nucleotide of RNA.  

GTG is often used as a start codon in Mycobacteria as opposed to ATG in E. 

coli. Mycobacterial genes show a relatively high degree of codon bias, reflected by a 

predominance of G or C at position 3, especially in M. tuberculosis [50]. 

In E. coli σ70 dependent promoters the spacing between the first nucleotide of 

the –10 region and the TSS is usually six or seven nucleotides, although functional 

examples between 4 and 10 nucleotides have been reported [47]. For our compilation 

of mycobacterial promoters, this distance also varies between 4 and 10 nucle otides. 

However, 92% of them show 5 to 8 nucleotides as a spacing distance between first 

nucleotide of the –10 element and TSS (see Table II). 

 

6.2.2 –35 and –10 region 
The importance of the –10 and –35 promoter sequences lies in their 

interaction with the σ factor bound to the RNAP for the initiation of transcription. 

The regions of σ factors responsible for binding to the –10 sequences are designated 

as 2.3 and 2.4, and for –35 sequences are specified as 4.2 [51].  

Some mycobacterial promoters contain –35 and –10 regions, which resemble 

to E. coli σ70 type promoters. As can be seen from Table II, M. tuberculosis rrnA 

PCL1 , 16S rRNA, ahpC, 10kDa  (one with spacer length 17), metA, rpsL; M. bovis 

BCG rRNA, ahpC, rpsL; M. leprae groE1 , rpsL; M. smegmatis acetamidase, rrnB, 

rrnA P2 , rrnA P3 , rrnA PCL1 , rpsL (one with spacer length 18); M. fortuitum rrnA 

PCL1 , rrnA P2a, rrnA P2b ; M. phlei rrnA PCL1 , rrnA P2 ; Mycobacteriophage L5 

71P2 ; M. neoaurum rrnA PCL1, rrnA P1, rrnA P3, rrnA P2 ; M. abscessus rrnA P4, 

rrnA PCL1, rrnA P2, rrnA P3; and M. chelonae rrnA PCL1, rrnA P4 promoters 

resemble E. coli σ70 type promoter.  



  
 

M. smegmatis rpsL promoter has two potential –10 hexamers, i) five bp 

upstream of the TSS, which has 50% nucleotides matching with the typical E. coli 

σ70 region, and ii) eight bp upstream of TSS, which has 66% matched nucleotides. 

There are also two potential –35 regions, with spacer length 17 and 18 bp which has 

33 and 50% matching nucleotides, respectively. By oligonucleotide directed 

mutagenesis, Kenny and Churchward [23] have shown that mutations in the rpsL 

promoter region, which result in deviation from the consensus E. coli sequences, 

abolished promoter activity. They have also demonstrated that –10 region present 

eight bp upstream of the TSS is recognized in vivo  and the –35 region is not essential 

for promoter activity of M. smegmatis. 

Dellagostin et al. [52] have demonstrated that in M. smegmatis, the M. leprae 

18 Kda  gene utilizes a single TSS located 66 bp upstream of the start codon. 

Immediately upstream of the TSS of M. leprae 18 kDa , putative -10 and –35 

hexamers are present. They are similar to E. coli σ70 consensus promoter sequences. 

The region of the 18kDa  gene promoter (CTATATC) containing the putative –10 

sequence, when compared to the E. coli –10 consensus sequence (TATAAT), shows 

a mismatch at either the first or the last T residue, both of which are highly conserved 

in E. coli. An alternative interpretation by the authors is that the functional 18 kDa  –

10 sequence is a pentamer (TATAT). 

Timm et al [53] have shown the importance of –10 region in promoter 

efficiency in Mycobacteria  by point mutations in M. fortuitum blaF gene, and M. 

smegmatis alrA  gene. Essentially these mutants map to the putative –10 hexamer, 

and increase the overall A+T content of the –10 hexamer, consequently resulting in 

increase in transcription efficiency.  

Mycobacteriophage I3  promoters when compared to E. coli σ70 type 

promoters, showed greater sequence homology in the –35 region, ranging from 33 to 

83% and comparatively weaker sequence homology in their –10 region, ranging 

from 17 to 50%. Not surprisingly these promoters are shown to be active in E. coli 

[42]. 

M. tuberculosis 85A has two putative –35 regions. One of these is positioned 

at 17 bp from the –10 region, showing 50% identity with the E. coli consensus 

promoter, and the other positioned at 22 bp from the –10 region, showing 83% 

identity with the E. coli consensus sequence. The second –35 region is identical to 



  
 

the –35 region of the M. leprae and M. tuberculosis 16S rRNA promoter region. 

Interestingly, the –10 hexamer of the 85A promoter shows some similarities to 

several Streptomycete promoters, such as the kgmB-p, strpB-p, aacC9 -p, afsA -p, and 

vph-p2 promoters. Moreover, like the 85A promoter, these Strep tomycete promoters 

are not typically expressed in E. coli [4]. 

Kremer et al [11] observed that deletion of 4 bp or insertion of 64 bp between 

the –10 and –35 regions of the M. tuberculosis 85A antigen promoter abolished only 

50% of the promoter activity. Based on this finding the authors have suggested that 

although the sequence at the –35 position is essential for transcription, its location 

may not be critical, a feature similar to Streptomyces, and dissimilar to E. coli 

promoters. 

Hoopes and McClure [54] have shown that during isomerization step of 

promoter-polymerase interactions, the DNA sequence around –10 region of the 

promoter opens up along with a conformational change in RNAP. In almost all the 

cases including eukaryotic systems, the AT rich region is perhaps crucial for the 

formation of open complex. In sharp contrast, many (30%) mycobacterial promoters 

have high GC content, instead of AT in their –10 region (Table II). Mycobacterial 

promoters having high GC content (≥ 50%) in their –10 region are M. tuberculosis 

gyrA, cpn60, gyrB P1, 85A, gyrB P2 , katG PC, T6, T80 , gyrB P3 , KatG PA, purC, 

metA; M. bovis BCG 18K, mpb70 ; M. smegmatis S65 , ask , rpsL (one with spacer 

length 17), ahpC; M. paratuberculosis pAJB303, pAJB86, pAJB300 , pAJB304, 

pAJB73 , pAJB301 pAJB125 , pAJB305; M. fortuitum rrnA P1, rrnA P3 ; and M. phlei 

rrnA P1, rrnA P3; Mycobacteriophage I3 ORF1 ; M. avium pLR7 ; M. abscessus rrnA 

P4 , rrnA P2, rrnA P3; and M. chelonae rrnA P2 , rrnA P3, rrnA P4. This raises the 

question, how DNA melting (isomerization step of promoter-polymerase interaction) 

is occurring in these mycobacterial promoters having high GC rich –10 region? One 

possibility is that this step might be controlled by specific sigma factors or some 

additional transcriptional activators may perform the task. Out of these promoters, M. 

tuberculosis cpn60, 85A, M. bovis BCG mpb70 , M. smegmatis ask  are shown to be 

non-functional in E. coli and hence they might be typical mycobacterial promoters. 

This observation encourages to say that promoters rich in GC at –10 region are a 

different class (and perhaps genuine) mycobacterial promoters. 



  
 

It is interesting to note that although promoters M. tuberculosis metA; M. 

abscessus rrnA P4, rrnA P2, rrnA P3; M. chelonae rrnA P4 have high GC content 

(=50%) in their –10 region, they also have E. coli σ70 type –10 region. The reason for 

such a pattern is G and C nucleotides are present at the third, fourth, and fifth 

position of –10 hexamer, keeping TA---T requirement of E. coli σ70 type –10 region 

undisturbed. 

Interestingly, eight out of nine M. paratuberculosis promoters listed here 

showed high GC content in their –10 region. Thus, there is absence of E. coli σ70 

type conserved –10 region in this species of Mycobacteria . M. paratuberculosis 

promoters show presence of at least one residue out of TTG… at –35 region, a 

feature typical of majority of E. coli σ70 type promoters. M. paratuberculosis 

promoters thus seem to be very different from the E. coli σ70 type consensus 

promoters. It will be interesting to study mutational analysis at the presumptive –10 

and -35 region to assess the promoter strength and to carry out foot printing analysis 

with the RNAP to address the contact points. Such studies would ultimately reveal 

the characteristics features of “typical” Mycobacteria  like promoters. 

M. smegmatis and M. tuberculosis promoter analysis by Bashyam et al [6] 

showed that their –10 regions are highly similar to those of E. coli σ70 promoters, in 

contrast to their –35 regions, which can tolerate a greater variety of sequences. This 

could presumably be due to the presence of multiple sigma factors with different or 

overlapping specificities for –35 regions, like Streptomyces promoter. In case of 

promoters where nonfunctional –35 region is seen, occurrence of extended TG motif 

near –10 region is functionally significant. There are many promoters, which do 

contain TG motif next to –10 region. This is discussed in more details in the 

extended –10 promoter types (section 3.3).  

Thus, the more general trend is, -10 consensus sequence of E. coli appears to 

be conserved in one group of mycobacterial promoters. A large variety of sequences 

can be accommodated in the –35 region [6, 55-56] as absence of a conserved –35 

region is a distinctive feature of a class of mycobacterial promoters. 

It is well-established fact that elements in the –35 and –10 regions are crucial 

in the transcription initiation process as σ70 RNAP holoenzyme makes direct contact 

in these two regions. Hence, to get an insight into transcription initiation mechanism 

among different mycobacterial species, it will be important to study the role of 



  
 

consensus sequences and their percentage occurrence for particular nucleotide at 

each position in these conserved hexamers. We have carried out the analyses for 

available promoter sequences from different species of Mycobacteria with an idea to 

evaluate species specific differences, if any, which may reflect differential gene 

expression. Upon inspection of promoters of each species separately, we have 

calculated the percentage conserved homology for –35 and –10 regions for different 

mycobacterial species and listed them in Table III. For each position in the hexamer, 

we have considered the predominantly occurring nucleotide and its percentage 

homology in maintaining conserved sequence. Thus, percentage conserved 

homology obtained for entire mycobacterial promoter compilation is as follows: -35: 

T (87%), T (60%), G (66%), A (46%), C (56%), T (39%); and –10: T (70%), A 

(74%), T (34%), A (35%) / G (33%), C (34%) / G (27%), T (74%). For inter-species 

variation of the –35 and –10 consensus occurrence, readers are advised to refer Table 

II. This analysis reflects the large variations among the mycobacterial promoters 

characterized thus far, and suggests that the consensus sequences are representative 

of only a fraction of mycobacterial promoters. The variation in promoter structure 

may reflect the presence of larger number of σ factors in the genus Mycobacteria  

(see section 2.3).  

 

6.2.3 σ factors 
Sigma factors are essential components for promoter recognition and 

transcription initiation. All known σ factors belong to two different families: i) those 

evolutionary related to the E. coli housekeeping factor σ70, and ii) those related to the 

alternative factor σ54 [57]. Each family of σ factors shows different promoter 

recognition, isomerization, and regulation properties [58]. Eσ70 does not show 

formation of stable closed-promoter complexes, and therefore transcription can be 

initiated spontaneously in the absence of activator proteins [59]. However, Eσ54 

forms physically detectable closed-promoter complexes and is unable to initiate 

transcription spontaneously as it requires additional transcriptional factors 

(denominated enhancer-binding proteins) to initiate RNA synthesis [60]. 

The principal sigma factors of M. smegmatis, M. tuberculosis and M. leprae 

are nearly identical to the principal sigma factors of Streptomyces auerofaciens. They 

are also nearly identical to the principal sigma factor of E. coli (RpoD) in the region 



  
 

responsible for binding to the –10 box, and differ substantially in the region involved 

in binding to the –35 box [6]. 

The genome sequence analysis of M. tuberculosis (genome size 4.1 Mb) has 

revealed presence of 14 sigma factors in the DNA of virulent strain [61]. Thus, 

organisms like M. smegmatis are larger than M. tuberculosis in their genome size, so 

it is obvious to have substantial number of sigma factors in them. The presence of a 

large number of sigma factors is a characteristic feature very similar to Streptomyces 

species and allows for greater transcriptional initiation flexibility as also for 

providing an efficient means of gene regulation in these organisms. The presence of 

many σ factors with different consensus sequence requirements may also be the 

reason for the large variations or heterogeneity in the –10 and –35 sequences of 

mycobacterial promoters as already discussed in section 2.2. The features viz., 

promoter sequence heterogeneity and plethora of σ  factors seem to be a more general 

phenomenon of regulating transcription initiation specificity in the members of the 

Actinomycetales. 

 

6.2.4 Spacer length  

In E. coli σ70 type promoters, the optimal spacing between the –35 and –10 

elements is 17±1 nucleotides, although, functional promoters with spacing ranging 

between 15 and 20 non-conserved nucleotides have also been reported [47, 62]. 

These σ70 class of promoters are the strongest when they have consensus –10 and –35 

region along with optimal spacing of 17 bp separating the two conserved elements. 

Spacing less than 16 or more than 18 often results in conserved contact points lying 

on the opposite face of the DNA helix [3]. Mycobacterial promoters identified to 

date, show spacing between –10 and –35 regions as 7 to 24 bp (see Table II). As 

genus Mycobacte ria  seems to comprise of many sigma factors, it is expected that 

each type of sigma factor will require different spacing length, and thus explain to 

some extent the larger variation in the spacer length. We have analyzed the promoter 

compilation for percentage occurrence of each spacer length type. From Figure 6-2, 

it can be inferred that although, spacer length varies over a wide range (7 to 24 bp), 

occurrence of 17 (27%) and 18 bp (35%) as a spacer length is predominant. Thus, the 

major sigma factor recognition pattern in Mycobacteria appears to be similar to that 

of E. coli σ70 type. 



  
 

6.2.5 Upstream region of the –35 box 
 Studies on E. coli promoter sequences have shown that the upstream element 

enhances the initial association of RNAP with the DNA. This association is 

independent of the presence of σ factor. Inspection of far-upstream region of –35 

box, may provide insight into promoter architecture which can be compared to that 

of E. coli. Similarities, if any, might suggest common mechanisms of regulation 

between the Mycobacteria and E. coli. In most of the promoters in our compilation, 

such analysis did not reveal any special features. However, M. tuberculosis glnA (the 

one with spacer length 10), KatG P C, purC , ahpC, 65kDa ; M. bovis BCG ahpC, 18K, 

mpb70, alpha; M. leprae 18kDa , 28kDa, 65kd; M. smegmatis gyrB, rrnA P1, rpsL 

(the one with spacer length 17), ahpC, M. paratuberculosis pAJB86 ; M. fortuitum 

rrnA P1 ; M. phlei rrnA P2; Mycobacteriophage I3 ORF2 ; Mycobacteriophage L5 71 

Pleft, 71 P1 ; M. neoaurum rrnA P1 ; M. abscessus rrnA P4 , rrnA P2 , rrnA P3 ; M. 

chelonae rrnA P2 , rrnA P3 , rrnA P4 contain occurrence of A nTm (n+m ≥ 3) stretch in 

the immediate upstream of –35 region. Out of these promoters ahpC from M. 

smegmatis , M. tuberculosis, and M. bovis BCG; M. leprae 18kDa , 28kDa; 

Mycobacteriophage I3 ORF2; Mycobacteriophage L5 71 P1 ; and M. abscessus rrnA 

P3 have more than 50% of A+T content. Hence, occurrence of AnTm (n+m ≥ 3) in the 

upstream region of –35 element is not surprising, but it is certainly remarkable for 

others where G+C content of the promoter is more than 50%. For these promoters, to 

accommodate high GC content, occurrence of GC intrusions might be somewhere 

other than upstream region. The ahpC promoter from M. tuberculosis and M. bovis 

BCG, M. smegmatis rpsL, M. phlei rrnA P2 , M. neoaurum rrnA P1 , M. abscessus 

rrnA P4 , rrnA P2 , rrnA P3  contain E. coli σ70 type conserved hexamers along with 

the AnTm (n+m ≥ 3) tract in the upstream region of –35 box. Perhaps these might be 

the strongest promoter s among Mycobacteria . All the promoters having AnTm (n+m 

≥ 3) tract in the immediate upstream of –35 region are not repeated in phase with 

each other. But M. tuberculosis KatG PC (the one with spacer length 22) , purC, 

ahpC; M. bovis BCG ahpC, alpha; M. leprae 65KD; M. smegmatis ahpC; M. 

abscessus rrnA P4, rrnA P2, rrnA P3; M. chelonae rrnA P3, rrnA P4 promoters have 

AnTm (n+m ≥ 3) tract repeated in phase with each other. 

 The recA gene of M. tuberculosis and M. smegmatis is regulated in a similar 

manner. In both the species, this gene contains upstream region, which has a 



  
 

sequence motif with homology to Cheo box LexA regulatory site of B. subtilis, while 

there is no similarity to the SOS box of E. coli. The region of DNA 300 bp upstream 

of the recA gene was shown not to contain a promoter, suggesting that it functions as 

an upstream activator sequence [56]. The upstream region of M. leprae 18kDa 

promoter has also been shown to be essential for expression [52].  

 

6.2.6 % G+C content 
There is dramatic variation in the percentage of G+C content in the typical E. 

coli and mycobacterial promoters. Hence, we have evaluated the average value of 

percentage A+T and G+C content for each mycobacterial species. In general, 

occurrence of GC is high compared to AT, for mycobacterial promoters on species 

level (refer Table III). The mycobacterial promoters show a high G+C content than 

the corresponding E. coli promoters. There are few exceptions to this observation 

like M. leprae 18kDa, M. smegmatis S6, S12 , S18 , S21, S30, S35, and S119 , whose 

G+C content is less than or equal to 40% (refer Table II).  

M. tuberculosis 85A promoter region with spacer length 17 bp has 58% G+C 

content and that with the spacer length 22 bp has 61% G+C content (see Table II). In 

this respect, it is interesting to note that mycobacterial promoters having high GC 

content are usually better -expressed in Streptomycetes than E. coli  [1]. 

M. tuberculosis promoters have a higher G+C content (58%) than the M. 

smegmatis promoters (50%) which may have a bearing on the differences in the gene 

expression between these two species.  

It is clearly observed that overall G+C content (56%) for mycobacterial 

promoter compilation is high compared to G+C content (40%) of E. coli promoters 

listed by Harley and Reynolds [3]. It appears that upstream region of mycobacterial 

promoters is relatively more susceptible to GC intrusions to accommodate the higher 

GC content of its promoter region.  

 

6.2.7 Comparison of Mycobacterial promoters with E. coli 

promoters 
Despite the fact that mycobacterial promoters function inefficiently in E. coli , 

both the mycobacterial transcription machinery and the structure of mycobacterial 

promoters show marked conservation with those of E. coli. Diversity among the 



  
 

mycobacterial promoters and σ factors however is greater. It is interesting to note 

that the promoters of gram-positive organisms show tighter consensus sequence 

requirements than those of E. coli, which in turn are more conserved than those of 

the Mycobacteria. 

There is a great deal of  heterogeneity in the consensus sequences of 

mycobacterial promoters. Such variations perhaps reflect diversity required in 

transcription regulation in Mycobacteria . Thus it is not surprising that Mycobacteria  

has two house-keeping sigma genes compared to one in E. coli. 

The presence of large number of sigma factors with different consensus 

requirements may also be the reason for the large variation in –10 and –35 sequences 

of mycobacterial promoters. The –10 region of a class of mycobacterial promoters 

and the corresponding binding domain in the major sigma factor are highly similar to 

E. coli counterparts. In contrast, the sequences in –35 regions of mycobacterial 

promoters and corresponding binding domain in the major sigma factor are vastly 

different than their E. coli counterparts. E. coli RNAP have seven types of  sigma 

factors and hence seven classes of promoters. Mycobacteria genome analyses have 

shown that they contain at least 14 sigma factors, so minimum number of promoter 

classes may be 14 in Mycobacteria. 

Spacer length between –35 and –10 hexamer is not critical in Mycobacteria. 

The upstream region of mycobacterial promoters is relatively more susceptible to GC 

intrusions to accommodate the higher GC content of its promoter.  

 

6.3 CLASSIFICATION 

6.3.1 E coli type promoters 

A significant minority of mycobacterial promoters such as M. tuberculosis 65 

kDa  [63], M. bovis BCG  64 kDa [64], and M. leprae 65kD [65], the biotin carrier 

protein of several species [66] has been shown to be expressed in E. coli. These 

organisms might share some similarities in their transcription initiation signals with 

E. coli. 

Mycobacterial promoters controlling the expression of heat shock proteins are 

among the rare ones that have been shown to be active in E. coli [29]. There are 

sequence similarities between the mycobacterial heat shock promoters and consensus 

promoters recognized by σ60  and σ32 of E. coli. M. paratuberculosis PAN [41], M 



  
 

fortuitum blaF [53], M. leprae 18kDa [52] were also found to contain well conserved 

–10 and –35 regions and active in E. coli. Expression was however less efficient than 

the natural hosts in all the cases.  

Recently, M. tuberculosis KatG [15] promoter has been characterized and 

shown to be active in E. coli. However, expression in E. coli was less efficient than 

its natural host. The analysis of this particular promoter has shown that there is only 

a partial sequence homology with E. coli σ70 type sequence, which may be one of the 

reasons for sub-optimal expression in E. coli.  

Suzuki et al [26] have shown that M. bovis BCG 16S rRNA promoter can be 

expressed in vivo and in vitro using E. coli RNAP. This promoter showed sequence 

similarity to E. coli promoters. They have also shown that the strengths of E. coli and 

M. bovis BCG rrn are identical in E. coli. The E. coli RNAP did not utilize another 

putative promoter of the BCG rrn, which suggests that the second promoter may be 

recognized by a specific sigma factor not present in E. coli. 

M. tuberculosis 38 kD gene can be expressed in E. coli from a lambda gt11 

recombinant, independently of IPTG addition. This indicates that transcription can be 

initiated from within the mycobacterial insert, presumably (but not conclusively) 

from the natural promoter of the gene. However, analysis of the sequence does not 

reveal any regions upstream from the putative translation start position that 

resembles a consensus prokaryotic promoter [67]. 

Gene coding for the 28kD antigen of M. leprae revealed one region with a 

considerable degree of homology to the Fur-binding site of iron-regulated promoters. 

Although the 28 kD gene is not known to be iron-regulated in M. leprae (and indeed 

such studies are not easy for non-cultivable bacteria), this sequence comparison 

indicates that it is likely to be repressed by the presence of iron. This carries a further 

implication that in M. leprae (and presumably other bacteria) iron regulation of gene 

expression is mediated by a protein homologous to the Fur protein of E. coli. 

In short, M. tuberculosis 38kD and M. leprae 28kD antigen genes are 

associated with DNA sequences that suggest the possibility of specific regulatory 

mechanisms, without such control having been demonstrated directly [19]. 

The putative promoter region of the 16S ribosomal RNA-encoding gene 

(rRNA) of M. leprae exhibits promoter activity in Gram- (E. coli) and Gram+  

(Bacillus subtilis) bacteria [31]. Analysis of sequence revealed a promoter –like 



  
 

sequence, which is close to the canonical –10 and –35 regions found in many 

bacteria [3]. It is interesting to note that –35 region and spacer length of this 

promoter is identical to the –35 region and spacer length of E. coli rrnP2 promoter. 

The rpsL promoter resembles E. coli σ70 type promoter in almost all-major 

mycobacterial species like M . tuberculosis, M. bovis BCG, M. leprae, and M. 

smegmatis. Since rpsL is highly conserved gene, the transcriptional regulatory 

features also seem to be conserved. Kenny and Churchward [23] have reported that 

the TG motif present upstream of the –10 hexamer can play a role in the activity of 

the rpsL promoter of M. smegmatis (see section 3.3). 

 

6.3.2 Mycobacterial (Non-E. coli) type promoters 

M. tuberculosis 85A promoter was one of the first promoters to be studied in 

some detail [11]. A surprising observation was that the promoter is not functional in 

E. coli. These results raise the possibility of the occurrence of an entirely different set 

of promoters in Mycobacteria , which are not recognized by E. coli transcriptional 

apparatus. With the characterization of many promoters now it is clear that a larger 

number of mycobacterial promoters fail to function in E. coli, constituting a different 

class. 

The M. tuberculosis 85A promoter has –35 region showing significant 

resemblance to E. coli σ70 like –35 region, unconventional –10 region and/or the 22-

bp spacer between the –10 and the –35 regions. However, it is shown that spacer 

position may not be critical for promoter activity in Mycobacteria, like Streptomyces 

promoter [68]. In spite of having significant resemblance to –35 region of E. coli σ70 

like promoters, this raises the intriguing question of why these promoters are not 

expressed in E. coli. Clearly, additional facet of regulation has to be understood 

including the details about the transcriptional machinery. 

M. tuberculosis recA promoter contain TCTAGT and TTGTCA as –10 and –

35 consensus sequences resembling to E. coli σ70 type promoters. However, spacing 

(9 bp) between these two elements is very different from that found in E. coli. The 

M. tuberculosis recA gene is not expressed in E. coli from its own promoter. Hence, 

it is possible that either mycobacterial RNA polymerase recognizes the same motifs 

as does E. coli polymerase but at a different spacing or it binds to a different 

sequence in the –35 region [56]. 



  
 

M. paratuberculo sis promoters listed by Bannantine et al. [40] showed some 

conservation at –35 regions with E. coli σ70 type promoters and high GC content in 

the –10 region, dissimilar feature with E. coli σ70 type promoters. Hence these 

promoters belong to the Non -E. coli or Mycobacteria  type promoters. 

M. tuberculosis ppgk  promoter has high G+C content (61%) and the absence 

of an E. coli like promoter consensus with other mycobacterial promoters [24]. M. 

tuberculosis cpn60, M. bovis BCG hsp60, mpb70  and M. smegmatis ask promoters 

showed absence of E. coli σ70 like consensus regions. M. tuberculosis cpn60 , M. 

bovis BCG mpb70  and M. smegmatis ask promoters have high GC content in their –

10 region as well as in the entire promoter stretch (–50 to +10 bp), too. One of the 

possible reasons for mycobacterial promoters to be non-functional in E. coli, might 

be the poor interaction between the 4.2 region of the E. coli sigma factor and the –35 

regions of mycobacterial promoters. The promoters, which are non-functional in E. 

coli, may be more typical for Mycobacteria . 

 

6.3.3 Extended –10 promoters 

A large number of mycobacterial promoters seem to have –10 conserved 

element without apparent conservation at –35 region. Amongst them, many possess 

extended –10 region characterized by dinucleotide element TG in the immediate 

upstream of –10 hexamer. The TG motif along with the functional –10 region is an 

important determinant of transcriptional strength in Mycobacteria. The influence of 

the TG element on transcriptional strength is also modulated by the sequences in the 

–35 region. It was also shown that the thermal energy requirement for open complex 

formation in an extended –10 promoter was less than that for a conventional –10/-35 

promoter [69].  

As can be seen from Table II, M. tuberculosis T101, T129, groE, M bovis 

BCG hsp60 P2, M. leprae 16S rRNA, 18kDa, 65 kD, M. smegmatis S5, S6, S16, S19, 

S21 , S119 , recA, rpsL, M. fortuitum repA, Mycobacteriophage I3 ORF2 , M. 

abscessus rrnA P4 , rrnA PCL1 , rrnA P2 , rrnA P3, M. chelonae rrnA P2, rrnA PCL1, 

rrnA P3 , and rrnA P4  promoter contains the TG element immediately upstream of 

the –10 region.  

Thus, based on a sample size of 125 promoters, 20% of mycobacterial 

promoters contain TG motif. Analysis of 183 promoters from various species of 



  
 

gram-positive bacteria [70-72] reveals that frequency of occurrence of the TG motif 

in these promoters is around 60%. In E. coli promoters, the TG motif occurs with a 

frequency of about 16% [73]. 

Bashyam and Tyagi [25] have suggested three possible roles of the extended 

–10 promoters, viz. i) in particular regions of the bacterial chromosome having 

sequence constraints, where it may be difficult to maintain two specific hexameric 

sequences, ii) to maintain a basal level of transcription in the case of promoters that 

contain a weak –35 region and are regulated by protein-DNA interactions in the –35 

region, and iii) to facilitate transcription initiation at cold temperatures or when the 

sigma factor is proteolytically cleaved. According to Burns and Minchin [69] TG 

motif results in an altered DNA conformation which could either directly facilitate 

strand separation or allow additional DNA-protein contacts which would then 

promote open complex formation. 

 

6.4 STABLE RNA EXPRESSION 

In our compilation, rRNA promoters from different species of Mycobacteria  

are listed. Analysis of these promoters (see previous sections) reveal that they 

resemble to –10 and –35 consensus sequences of E. coli σ70 promoters along with the 

upstream A stretch, a putative up-element. These character istics are very similar to 

rRNA promoters found in E. coil and many other bacteria, underlying the importance 

of evolutionary conservation of stable RNA expression. However, there are 

differences in rRNA copy numbers in different mycobacterial species suggesting the 

linkage between growth rate and ribosome synthesis to gene dosage. 

Fast growing Mycobacteria  (e.g. M. smegmatis) were shown to contain two 

sets of rRNA genes whereas slow-growing Mycobacteria  contain only one set [74]. 

M. tuberculosis, M. leprae and M. bovis BCG contain only a single set of rRNA 

genes, and hence fit into the slow -growers group. However, among the slow -growing 

Mycobacteria there is a large variability in the growth rates of different species. 

Also, the possession of more than one operon per genome is not essential for rapid 

growth as each of the fast growers M. chelonae and M. abscessus has a single rrn  

operon per genome [75]. Gonzalez-y-Merchand et al [12] have shown that these 

species appear to have acquired additional promoters by a process of sequence 



  
 

duplication. Thus, Mycobacteria  have at least two levels at which rRNA synthesis is 

regulated.  

 

6.5 INFLUENCE OF DNA TOPOLOGY AND 

CURVATURE ON TRANSCRIPTION 

The topological state of DNA is an important determinant of its biological 

activity. In prokaryotes, DNA supercoiling is known to affect the transcription of 

several genes [76]. With the same supercoiling change, some genes are activated, 

others are inhibited and others are unaffected. Thus, different mechanisms appear to 

operate in different systems with the same supercoiling change [77-82]. The reason 

behind such complexity is that supercoiling can affect the DNA helix in various ways 

by modifying its energy (torsional strain) and structure (helical pitch and axial 

writhing) [83-84]. Any of these factors can influence promoter reactivity either 

directly or indirectly through effects on bending and wrapping of the DNA around 

proteins in chromatin-like structures [85-87]. 

M. smegmatis RNAP has a strong dependence on supercoiling of the DNA 

substrate for transcription from mycobacterial promoters [88]. Hence, the differences 

in the expression noted by Stover et al [89] may be because of the differences in the 

superhelical state of the DNA, which may play a direct role in the regulation of gene 

expression [90]. Thus, conformation of promoter DNA may play an important role 

for some of the mycobacterial promoters. However, the regulation of gyr operon 

expression of M. smegmatis provides certain contrasting and unique features. A 

single promoter located upstream of gyrB  is responsive to changes in DNA 

supercoiling in a contrasting manner. The phenomenon of “relaxation stimulated 

transcription” (RST) observed for gyr promoter has certain interesting features and 

the mechanism appears to be different than that of E. coli [91]. 

In our study, we have analyzed the promoter sequences for distribution of 

intrinsic curvature. For this purpose, we have used CURVATURE software [92], 

which is based on the nearest-neighbor interactions between the two adjacent 

dinucleotides [93]. This analysis revealed that 62 promoters showed presence of 

curvature. Mycobacterial promoter sequences having their curvature maxima equal 

to or greater than 0.3 curvature units are listed in Table IV. These entries are sub-

grouped based on where the curvature maxima is present within a sequence. The 



  
 

graphical distribution of location of curvature maxima for mycobacterial promoters 

is shown in Figure 6-3. Out of 62 curved promoters, 29 promoters (47%) show their 

curvature maxima lying between the region –30 and –40 (Figure 6-3). They are M. 

tuberculosis 85A, rrnA PCL1, 16S rRNA, 65 kDa, rpsL, 38 kDa; M. bovis BCG 64K, 

rpsL; M. leprae rpsL, M. smegmatis S4, S19, S21 , rrnB, rrnA P1; M. 

paratuberculosis pAJB 305; M. fortuitum rrnA PCL1, rrnA P3 ; M. phlei rrnA PCL1, 

rrnA P2 , rrnA P3; Mycobacteriophage L5 71 Pleft; M. abscessus rrnA P4 , rrnA 

PCL1 , rrnA P2 , rrnA P3 ; and M. chelonae rrnA P2 , rrnA PCL1 , rrnA P3 , rrnA P4. 

Many other promoters viz., M. tuberculosis T150, mpt64, metA; M. bovis BCG 23K, 

mpb64, 18K, mpb70 ; M. leprae 18Kda , 28 kDa, 65 Kda; M. fortuitum rrnA P2a; 

Mycobacteriophage L5 71 P2; and M. neoaurum rrnA P2 show their curvature 

maxima lying between –1 and –10 region. The presence of some conserved features 

in DNA curvature at the promoter region might suggest some common mechanism 

controlling transcription initiation. 

 

6.6 CONCLUSION 

It will be interesting to see which sigma recognize which sequence during 

RNAP-promoter interactions. Mutational analyses, would reveal the critical residues 

in different classes of promoters affecting promoter strength. Foot printing analysis 

with RNAP would be necessary towards identifying the contact points in –10 and –

35 regions. Elucidation of mechanism of isomerization step of GC rich -10 region 

would be a challenging task. During promoter-RNAP interaction different events like 

DNA binding, DNA melting (isomerization step), Phosphodiester bond formation, 

and promoter clearance also need to be addressed. Thus, additional regulatory 

mechanism has to be unraveled to understand regulation of gene expression. 

The number of rRNA genes is not solely responsible for growth rates 

observed in Mycobacteria because the organisms have at least two levels of rRNA 

synthesis regulation. Study of these different levels in details is required. 

Conformation of DNA is also important in mycobacterial regulation. Hence, it will 

be interesting to study what role does DNA structure plays in determining 

transcription efficiency of mycobacterial promoters. 

Detailed analysis of promoter structure and function becomes important from 

entirely different perspective. Once sufficient number of promoters are studied, it is 



  
 

important to determine their promoter strength. It will also help to identify 

regulatable promoters to engineer appropriate control circuits to function efficiently 

in Mycobacteria. Weak promoters will serve as a model system for transcription 

activation mechanism. Strong promoters can be used to exploit expression 

technology.  
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Figure 6-1: Nucleotide preference at transcription start site (tss) for mycobacterial 

promoter compilation. 
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Figure 6-2: Spacer length variation in mycobacterial promoters 
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Figure 6-3: Position of curvature maxima of the mycobacterial promoter sequences 

according, to their sequence number in the compilation list. Mycobacterial promoter 

sequences having curvature maxima greater than or equal to 0.3 DNA curvature units 

are considered as curved sequences. (One DNA curvature unit [94] corresponds to 

the mean DNA in the crystalline nucleosome [1/42.8 
O

A ]). 



 

Table I: Compilation of Mycobacterial promoters∗  

  Ref. 

 M. tuberculosis  

T3  ???????????   ATCGACGGCCACGGCTGGTCTAGGACGAGGTACCCGG(TAACAT)GCTGGGC[G] [6] 

T6 CCGTCCAGTCTGGCAGGCCGGAAACATCGGTCAGCAGA(TAGGCT)TTACCA[G]  [6] 

T26 CTGCGAGCATCATATGCCGCGTGCGTGGTGATGCGGCAG(GATGTT)GGACC[A] [6] 

T180 GATCACTCCGAGCATGCGCCCATTGTTGTGCATAGGG(CAGGAT)GCCCTG[G]  [6] 

T101 AGCGATCGCAGCCGACGTGATACCTGACCGTTGTTGA(TAGTGT)CGGCGGC[A] [6] 

T119 CCCCGTGCTCGTAGTAGGCGTCCAGCCGACCCGCCGC(TACCAT)GCACAAG[T] [6] 

T125 CCGAGGTAAGGACTGAGCATGGGCCCGATAAAGTGAC(TATTAT)GGATTTC[T] [6] 

T129 ACTCGCGGCAGATTACGCCGACGGTTCCTGGCGTGG(TTCAAT)ATTCGCCG[A] [6] 

T130 ACTCCAACAGGTCGATAACCTCCTGCGCCTGCTCGTC(TATGCT)GCGATCC[G] [6] 

T150 GACCCCCGCCACGTATTGACACTTTGCGACACGCTTT(TATCAT)TTTCCGA[C] [6] 

recA TTCGGAGCAGCCGAC(TTGTCA)GTGGCTGTC(TCTAGT)GTCACGGCC[A]ACCGACCGAT [7] 

                                                                 
∗ Consensus regions are shown in bold letters and transcription start sites are shown in a square bracket.  

 



 

rrnA P1 GAGAACCTGGTGAGT(CTCGGT)GCCGAGATCGAACGGG(TATGCT)GTTAGGC[G]ACGGTCACCT  [8] 

gyrA GATGGGCGAGGACGT(CGACGC)GCGGCGCAGCTTTATCA(CCCGCA)ACGCCAA[G]GATGTTCGGT [9] 

cpn60 CCCCGGCGATCCCCG(TGCTCA)CCACGGGTGATTTCCGG(GGCGGC)ATGCGTT[A]GCGGACTAGC [10] 

gyrB P1 GATGTCCGACGCACG(GCGCGG)TTAGATGGGTAAAAACG(AGGCCA)GAAGATC[G]GCCCTGGCGC [9] 

gyrB P3 CAAGGGGCCTCGCCA(TATTGC)CGGTAGGGGTCCGCGCG(ACACCT)ACGGATA[A]CACGTCGATC [9] 

85A GAAGTTGTGGTTGAC(TACACG)AGCACTGCCGGGCCCAG(CGCCTG)CAGTCTG[A]CCTAATTCAG [11] 

85A CGCCCGAAGTTGTGG(TTGACT)ACACGAGCACTGCCGGGCCCAG(CGCCTG)CAGTCTG[A]CCTAATTCAG [11] 

gyrB P2 AGCGGTTGGCAACGA(TGTGGT)GCGATCGCTAAAGATCAC(CGGGCC)GGCACC[A]TCGTGGCGCA [9] 

rrnA PCL1  TGACCGAACCTGGTC(TTGACT)CCATTGCCGGATTTGTAT(TAGACT)GGCAGG[G]TTGCCCGAAA [12] 

16S rRNA TGACCGAACCTGGTC(TTGACT)CCATTGCCGGATTTGTAT(TAGACT)GGCAGG[G]TTGCCCCGAA [13] 

glnA TCGGCATGCCACCGG(TTACGA)TCTTGCCGACCATGGCCC(CACAAT)AGGGCCGGGG[A]GACCCGGCGT [14] 

glnA CCACCGGTTACGATC(TTGCCG)ACCATGGCCC(CACAAT)AGGGCCGGGG[A]GACCCGGCGT [14] 

katG PA GGTCATCTACTGGGG(TCTATG)TCCTGATTGTTCGATATCC(GACACT)TCGCGATC[A]CATCCGTGAT [15] 

katG PA ATCTACTGGGGTCTA(TGTCCT)GATTGTTCGATATCC(GACACT)TCGCGATC[A]CATCCGTGAT [15] 

katG PB GAGGCGGAGGTCATC(TACTGG)GGTCTATGTCCTGATTGTTC(GATATC)CGACAC[T]TCGCGATCAC [15] 

katG PB ACGAGGCGGAGGTCA(TCTACT)GGGGTCTATGTCCTGATTGTTC(GATATC)CGACAC[T]TCGCGATCAC [15] 

katG PC CCTGATTGTTCGATA(TCCGAC)ACTTCGCGATCACATCCGTGAT(CACAGC)CCGATAA[C]ACCAACTCCT  [15] 



 

katG PC TTCGATATCCGACAC(TTCGCG)ATCACATCCGTGAT(CACAGC)CCGATAA[C]ACCAACTCCT  [15] 

purL CGGCTTGTCCGTTTC(CACGCG)GCCGCAGCGCGATGGGGCCTAGC(TAGACT)GCCTCC[G]TGATGTCTCC  [16] 

purC ATCTCATACCAGAGA(TACCAG)CACAGGGCGCCGTCGTGCGGCGGA(TAGGCT)GGCGTG[A]TGCGCCCCGC [16] 

groE CAGGAAGCAAGGGGGCG(CCCTTG)AGTGCTAGCACTCTCA TGT(ATAGAG)TGCTAGATGGCAATCGGCTA  [17] 

groE CAGGAAGCAAGGGGG(CGCCCTTG)AGTGCTAGCAC(TCTCATGTATAGAG)TGCTAGATGGCAATCGGCTA  [17] 

ahpC TGTGATATATCACCT(TTGCCT)GACAGCGACTTCACGG(TACGAT)GGAATGTCGTAACCAAATGC [18] 

32 kDa  ACATGCATGGATGCG(TTGAGA)TGAGGATGAGGGAAGC(AAGAAT)GCAGCTTGTTGACAGGGTTC [19] 

10kDa  AAGCAAGGGGCGCCC(TTGAGT)GTCAGCACTCTCATGTA(TAGAGT)GCTAGATGGCAATCGGCTAA [20] 

10kDa  AAGCAAGGGGCGCCC(TTGAGT)GTCAGCACTCTCATG(TATAGA)GTGCTAGATGGCAATCGGCT [20] 

10kDa  AAGCAAGGGGCGCCC(TTGAGT)GTCAGCAC(TCTCAT)GTATAGAGTGCTAGATGGCA  [20] 

65 kDa  GCGTAAGTAGCGGGG(TTGCCG)TCACCCGGTGACCCCCG(TTTCAT)CCCCGATCCGGAGGAATCAC [19] 

mpt64 GAGTCTGGTCAGGCA(TCGTCG)TCAGCAGCGCGATGCCC(TATGTT)TGTCGTCGACTCAGATATCG [21] 

metA TCCGGCCCCCGCGAT(TTGGCG)AGCTTCGTGCGTGTTCGG(TAGCCT)GGCATTTACCGACGCGGGGT  [22] 

rpsL GCCGCAACGCCCGCT(TTGACC)TGCCAGACTGGCGGCGGG(TATTGT)GGTTGCTCGTGCCTGGCGGC  [23] 

38 kDa  CGTCGCCGGACTGTCGGGGGACGTCAAGGACGCCAAGCGCG(GAAATT)GAAGAGCACAGAAAGGTATG [19] 

ppgk  CGGGCCGCAGTTTAAGGTGAGGGTCATCCACGTCTCGCCGAGGAGATTCGATGACCAGCAC  [24] 

 M. bovis BCG  



 

hsp60 P2 CGGTGCGGGGCTTCTTGCACTCGGCATAGGCGAGTGC(TAAGAA)TAACGTT[G] [25] 

rRNA TGACCGAACCTGGTC(TTGACT)CCATTGCCGGATTTG(TATTAG)ACTGGCAGGGTTGCCCCGAA [26] 

ahpC TGTGATATATCACCT(TTGCCT)GACAGCGACTTCACGG(TACGAT)GGAATGTCGCAACCAAATGC [18] 

23K GAGTCTGGTCAGGCA(TCGTCG)TCAGCAGCGCGATGCCC(TATGTT)TGTCGTCGACTCAGATATCG  [27] 

mpb64 GAGTCTGGTCAGGCA(TCGTCG)TCAGCAGCGCGATGCCC(TATGTT)TGTCGTCGACTCAGATATCG  [19] 

18K TGGCGTCCGAAACAC(TTGAGG)TGCGGCCCAGCAAGGGGC(TACAGG)TTTTTTCCTTCACCTACGGA  [28] 

64K GCGTAAGTAGCGGGG(TTGCCG)TCACCCGGTGACCCCCGG(TTTCAT)CCCCGATCCGGAGGAATCAC [29] 

rpsL GCCGCAACGCCCGCT(TTGACC)TGCCAGACTGGCGGCGGG(TATTGT)GGTTGCTCGTGCCTGGCGGC [23] 

mpb70 TGGCGTCCGAAACAC(TTGAGG)TGCGGCCCAGCAAGGGGC(TACAGG)TTTTTTCCTTCACCTACGGA  [30] 

alpha CGACTTTCGCCCGAA(TCGACA)TTTGGCCTCCACACACGG(TATGTT)CTGGCCCGAGCACACGACGA  [19] 

 M. leprae    

16S rRNA TAGTCAACCCGGGAC(TTGACT)CCTCTGCTGGATCTGT(ATTAAT)CTGGCTG[G]GTTGCCGAAG [31] 

18 Kda CTTGTCTATCACAAC(TTGCAT)CAATATATCGACCAGTG( CTATAT)CAAATCTA[T]GTAGTCAGGA  [19] 

18 Kda CTTGTCTATCACAAC(TTGCAT)CAATATATCGACCAGTGC (TATATC)AAATCTA[T]GTAGTCAGGA  [19] 

28-kDa  TCAATATAACCACTC(TGGTCA)CACTAACCATACTCG(TACCAT)CAACCGTGTGGGGCTAATCC [19] 

groE1 AGCAGCGGGCCGGCC(TTGAGT)GCTAGCACTCGCGTGTA(TAGAGT)GCTAGATGGCAGTCGGCCAG [32] 

65 kd GAATTCCGGAA(TTGCAC)TCGCCTTAGGGGAGTGC (TAAAAA)TGATCCTGGCACTCGCGATC [19] 



 

36k GTTGGG(TTTCCT)CTCGGAGGGCGCACCGC(TACGTT)AGCGGGATG [19] 

SOD GG(TGGGCG)CGATCATGGCGCAGCGTT(GATTAT)GCTAGTCG  [19] 

rpsL CGCCGTTGGGTCGCT(TTGACC)TGCCCGAGCAGGGACGGG(TATTGT)GTTTCTCGTTCCTGACGGCT  [23] 

 M. smegmatis  

alrA GTCTGCGGCCTCTGG(GACAAT)GGGCGCC[G]GAGATTATGA  [33] 

S4 AAGCCGAATCGAGACCTTTTGGGTTCGTACACACTTGCTT(TATAAG)CCTC[G]  [6] 

S5 AACAAGATTCCGTTAATCGTGTCTGGTGGAGCTGGTGG(TAAGCT)TGATCC[G]  [6] 

S6 CATCGATTTTAAATTTTTGA(TAGAGT)GCAAATA[A] [25] 

S12 ACCTCGTTATGCTTCTGGCTATTTTTGATCAACTTT(TATACA)TGGGCGGT[T]  [6] 

S14 TCAAGCACCCAAGCCAACATGGT TGTAGTAGTCGTTT(TACCAT)GTGTACC[T]  [6] 

S16 TCCACGCGAACCGCTTCGGCGTGCCCCGTTTTCCCTGT(TATAAT)ATCGGC[G]  [6] 

S18 GATCATTGTCTTCTGTTGTCTTTCGTA(TAAAGT)TGTTACT[G]  [6] 

S19 TTTGATGTAGCCAAAGGCTCTCACCACCTGAGCCATGA(TAGTAT)CCATCC[C]  [6] 

S21 ACATGGCATTTTTCATTTAAAACAGGACTCAGGTGG(TATGGT)TGACATCG[A]  [6] 

S30 GATCAGCTATGTTCTTCAGTAAAATTTCGGC(TATATG)TTGGT[G]  [6] 

S33 GATCCGCTCTTCTTATGATGCCAGTTATGGTATC(TATGGT)TATC[G] [6] 

S35 AACTAAAGTATGTGCCGTAATTGACAGTGTTCTAGAT(TATGAT)GCTGCAT[C] [6] 



 

S65 GGCACAGCTCGAAGTTCTACTACATGGCTTGCT GAA(TCCAGT)CACATTAC[T] [6] 

S69 ATCACGATGTCTTCATGCTTGGCTTCAATGCTCCGGTC(TACAAT)CAGTTC[A] [6] 

S119 GATCAAGAAGCCAATGATTTGT(TAAACG)CAATTAAT[G]  [6] 

gyrB CAGAATCGGTGCTGT(CGCTAT)CTCGCGG(TAGACT)GGACGAC[G]GATCTCAGGC [34] 

recA AGAGTTCGACCGGAC(TTGTCG)GTGGTCTGC (TCTAAC)GTCACGGCC[A]ACCGATCGGA [35] 

ask GT(TTGCCC)GCCGCGGCGCCC(CACGAT)GAACCGC[A]CGGGCTGACG   [36] 

acetamidas

e 

GGCCGGCGTTCACCC(TTGACT)TTTATTTTCATCTGGA(TATATT)TCGGGT[G]AATGGAAAGG [37] 

rrnB CTCTGACCTGGGGAT(TTGACT)CCCAGTTTCCAAGGACG(TAACTT)ATTCCAG[G]TCAGAGCGAC [38] 

rrnA P1 GAAAACCTGGTCAGC(CTCGGA)GCCGAGATCGAGAGAG(TAAGCT)CGTAG[G]AAGCAAGACC [12] 

rrnA P2 CTCTGACCAGGCGAT(TTGCAA)TCGCGACGAACCTCGTAT(TATCTT)TATGAA[G]TCGCCGCGGA  [12] 

rrnA P3 CCGGGCCAGAGCGAC(TTGACA)AGCCAGCCGAGATCGTAC(TAAGCT)GGCGAG[G]TTGCCTCAGA  [12] 

rrnA PCL1  CCGGTCCAGAGCGAC(TTGACA)AGCCAGACAAAGCAGTAT(TAAGCT)GGCAGG[G]TTGCCCCAAA [12] 

rpsL CCGCCGTGCACGAGT(TTGTTT)CGTCGCGGTCGCCCCTGG(TATTGT)GGTGGATC[G]TGCCTGGCCC [23] 

rpsL CGTGCACGAGTTTGT(TTCGTC)GCGGTCGCCCCTGGTAT(TGTGGT)GGATC[G]TGCCTGGCCCGAAA [23] 

ahpC TGTGATATATCACCT(TTGCCT)GACAGCGACTTCACGG(CACGAT)GGAATGTCGCAACCAAATGC [39] 

 M. paratuberculosis  



 

pAJB303 GACGACGAGGGCGG(TGGCGT)CGCCGGTGTAGCCGAA(CGGCAC)GTGCGCG[T]AGGCCCAGAT  [40] 

pAJB86 CCACCTTACTCCCGA(TGACGT)TGCACGGCTGGGATTAA(CGGTCC)GCGTGC[T]CCAGGAGACA  [40] 

pAJB125 GCAACGAGCGCATCA(TTAAAG)ATCGANGGCGCCGGGNT(CATGTC)CCTTCAC[C]CCGCCCAGCT  [40] 

pAJB300 TCGAGTTCAAGACCC(TGACGC)TGGCCGACCTCGGCGCG(CAGCCG)ACCGCGC[A]GCGGTGCACG  [40] 

pJB305 ATCCGGACGGGCAGT(TGTTGG)AGTTTCTGTCGGACGGT(TGGTTG)GCGGCAT[T]TCCGGCGAGG  [40] 

pAJB304 CACCAGGTACACGCC(AAGGAC)AACGGCCGTATCCGGTA(CCAACG)GGTGTGC[G]AGCTGGACGG  [40] 

PAN CTGGTGAAGGGTGAA(TCGACA)GGTACACACAGCCGCCA(TACACT)TCGCTTC[A]TGCCCTTACG [41] 

pAJB73 GATCGGTG(TGCCGC)TTGAACCGGCCCAGCTCCCG(CTCCAG)GGTGACG[T]GCTCGAGCTC  [40] 

pAJB301 GATCTGGCGGGCGG(TCCAGT)ACACCGCGAGTTCGCGCACG(CTGGCC)GGCAGCGTCTTGGACGCCCG  [40] 

 M. fortuitum  

repA GAGCTCGTGTCGGACCATACACCGGTGATTAATCGTGG(TCTACT)ACCAAG[C] [25] 

rrnA PCL1  CCAGGATGATGCAAC(TTGACT)TGCCGGCAAGATTCGAAT(TAAGCT)GGCGGG[G]TTGCCCCAAA [12] 

rrnA P1 GAAAACCTGTTGAGC (CTCGGA)GCCGAGATCGAAAGAG( TAGGGT)CGTAAACAGCAGTCCGGGCC [12] 

rrnA P2a CGCTGACCAGCCGAT(TTGACC)TTGTAGGCAGGCCCGCGC(TAATCT)TTTGAAGTCGCGCGGAGCGG [12] 

rrnA P2b CCGGGCCAGAGCGAC(TTGACA)AGCCAGCCGAGATCGTAC(TAAGCT)GGCGAGGTTGCCTCAGACCG [12] 

rrnA P3 CAGGATGATGCAACT(TGACTT)GCCGGCAAGATTCGAATT(AAGCTG)GCGGGGTTGCCCCAAAACAG  [12] 

 M. phlei  



 

rrnA PCL1  ACTGGGGACGAGGTC(TTGACG)CCCCTGATCAGATCGGTA(TAGACT)GGCAGG[G]TTGCCCGAAA [12] 

rrnA P1 GAGAACCTCCGCAGT(CTCGGC)GCCGAGATCGAGAGGG(TCGCCT)GAAACATGCCGTTTACCTGC   [12] 

rrnA P2 AGGGGACCCCCCTTT(TTGACT)CCGCTCAGACGTGGGC(TATTCT)TCTAACCACAAGCCCAACGC  [12] 

rrnA P3 CTGGGGACGAGGTCT(TGACGC)CCCTGATCAGATCGGTAT(AGACTG)GCAGGGTTGCCCGAAAGCAA [12] 

 Mycobacteriophage I3  

pKGR25 CCTGTACACCCTCGC(TGCACT)CGCCGAGGACAAG(CACTAT)CGCCCCGACGTCCCGGCCTGG  [42] 

pKGR9 ACCACGAGCACCCGG(TCGTCA)GGACTGCGACACTCGA(TGTTGT)AGACGCACTGGTGCAGCATG   [42] 

pKGR38 ATCTGGTCGACCTGC(TCGACG)AGGTCGATCATCTTCT(TCATCT)CGCCGAACGGGATGCCCTGG  [42] 

ORF1 ACCTCATGGAGCACT(TCGAGG)TCACTGAGCACGCCCA(CGAACT)ACGAGAGGCCGTGGGACTGG [42] 

ORF2 TACTTTTTGTACCGT(TCGACA)CCAGCGGTTTCCGCTTCCTTGC(CAATCT)CCTGCAAACAAACCACAATG [42] 

pKGR1 ACACAGACCAGGAGC(TCGACA)TGACCGCCACCGCCCCCTACAGCG(TCATCT)GGTTCGAAGGCACCCCGGAT  [42] 

 Mycobacteriophage L5  

71 P2 TACCTGTCACAAGGT(TTGCTA)CCGAGTGGGGCAGGCCGC(TACATT)TACGACC[G]CGTAACGCCA [43] 

71 Pleft  TTTGCGATTAGGGC(TTGACA)GCCACCCGGCCAGTAGTG(CATTCT)TGTGTC[A]CCGCAGCAGC [43] 

71 P1 ACAACTGAATATGGT(TCCGCA)GACGCAACTAAATTAGGGG(TATCCT)TGACA[G]GCACCAACAT [43] 

 M. avium  



 

Avi-3 GCCGGCGATCGTGGG(CTGATA)AGTCTTATCGGGCATAC(TATAAG)TGTAGTGGGAAATATCA CCT [44] 

pLR7 AGCCTTGTTGGCGGC(CAACTG)CCGGACGATCGCGGCGGC(CATCGT)CCTCGAGCTCGGCCCCGTGC  [45] 

 M. neoaurum  

rrnA PCL1  GCGAGACAGAGAAGC(TTGACT)CGCCAGACAAGATAGTT(TAAGCT)GGCAGG[G]TTGCCCCGAA  [12] 

rrnA P1 GAAAACCTGGTCAGC(TTGGGC)GCCGGGATCGAGCGAG(TACACT)CGTAAGAGACCGGTCGAGTG [12] 

rrnA P3 GCGAGACAGAGAAGC(TTGACT)CGCCAGACAAGATAGTT(TAAGCT)GGCAGGGTTGCCCCGAAACG [12] 

rrnA P2 CTCTGACCAGCGGAT(TTGACT)TCCGAAGGCACAAAGTTC(TAATCT)TTTGAAGTCGCCGCGGGGAG [12] 

 M. abscessus  

rrnA P4 GCCAAAACCGGGAAT(TTGACT)CAGGTTCACGAACT TGA(TACGGT)TTCCGA[G]CGCCCGAAAG [12] 

rrnA P1 GGCGGGTCTAGTGGC(GGACGG)CGTCACAGAGGTATACGA(TGTGTT)TCATATCG[A]CCGCGGTTAC [12] 

rrnA PCL1  GCCCCCGACCCGAAG(TTGACT)CAAGTTCATTGGACT TGG(TACAGT)GGTCGG[G]TTGCCCTGAA [12] 

rrnA P2 GCCAAAACCGGGAAT(TTGACT)CAAGTTCACCGAACTTGA(TACGGT)TTCC[A]AGTCGCTCGG [12] 

rrnA P3 GCCAAAACCGGGAAT(TTGACT)CAAGTTCACCGAACTTGA(TACGGT)TTCCAA[G]TCGCTCGGAA [12] 

 M. chelonae  

rrnA P2 CCAAAACCCGGAGTT(TGACTC)AAGTTCACCGAACT TGA(TCGGTT)CCCGG[G]CCGCTTACAA [12] 

rrnA P1 GGCGGGGTTAGTGGC(GGATGG)CGTCACCGAGGTATACGA(TGTGTT)TCATATC[G]ACCGCGGTTA [12] 

rrnA PCL1  CCCCAGAACCCGAAG(TTGACT)CAAGTTCATTGGACTTGG(TACAGT)GGTCGG[G]TTGCCCTGAA [12] 



 

rrnA P3 GCCAAAACCGGGAAT(TTGACT)CAAGTTCACCGAACTTGA(TCGGTT)TCCCA[G]CCGCCCGAAA [12] 

rrnA P4 GCCAAAACCGGGAAT(TTGACT)CAAGTTCACCGAACTTGA(TACGGT)TTCCGA[G]CCGCCCGAAA [12] 

 



  

Table II: Analysis of different features of each mycobacterial promoter 

Gene bp -35 spac

er 

TG -10 leng

th 

TSS %  

(A+T) 

%  

(G+C) 

M. tuberculosis       

T3 51 - - - TAACAT 7 G 35.3 64.7 

T6 51 - - - TAGGCT   6 G 41.18 58.82 

T26 51 -   - - GATGTT 5 A 39.22 60.78 

T80 50 - - ---   CAGGAT 6 G 40.0 60.0 

T101 51 - - TG TAGTGT   7 A 41.18 58.82 

T119 51 - - - TACCAT 7 T 33.34 66.67 

T125 51 - - - TATTAT 7 T 52.94 47.06 

T129 51 - - TG TTCAAT 8 A 41.18 58.82 

T130 51 - - - TATGCT 7 G 41.18 58.82 

T150 51 - - - TATCAT 7 C 49.02 50.98 

recA 56 TTGTCA 9 - TCTAGT 9 A 41.07 58.93 

rrnA P1 61 CTCGGT 16 - TATGCT 7 G 40.98 59.02 

gyrA 62 CGACGC 17 - CCCGCA 7 G 35.48 64.51 

cpn60 62 TGCTCA 17 - GGCGGC 7 A 30.64 69.35 

gyrB P1 62 GCGCGG 17 - AGGCCA 7 G 37.09 62.91 

gyrB P3 62 TATTGC 17 - ACACCT  7 A 37.10 62.91 

85A 62 TACACG 17 - CGCCTG 7 A 41.94 58.06 

 67 TTGACT 22 - CGCCTG 7 A 38.8 61.2 

gyrB P2 62 TGTGGT 18 - CGGGCC 6 A 37.1 62.9 

rrnA PCL1  62 TTGACT 18 - TAGACT  6 G 48.39 51.61 

16S rRNA 62 TTGACT 18 - TAGACT  6 G 46.77 53.23 

glnA 66 TTACGA  18 - CACAAT 10 A 33.33 66.67 

 58 TTGCCG 10 - CACAAT 10 A 32.76 67.24 

katG P A 65 TCTATG 19 - GACACT 8 A 50.77 49.23 



  

 61 TGTCCT 15 - GACACT 8 A 52.46 47.54 

katG P B 64 TACTGG 20 - GATATC 6 T 46.87 53.12 

 66 TCTACT  22 - GATATC 6 T 46.97 53.03 

katG P C 67 TCCGAC 22 - CACAGC 7 C 49.25 50.75 

 59 TTCGCG 14 - CACAGC 7 C 49.15 50.85 

purL 67 CACGCG 23  TAGACT  6 G 32.84 67.16 

purC 68 TACCAG 24  TAGGCT 6 A 33.83 66.17 

groE 68 CCCTTG 19 TG ATAGAG - - 45.59 54.41 

groE 68 CGCCCTTG 11  TCTCATGT

-ATAGAG 

- - 45.59 54.41 

ahpC 63 TTGCCT 16 - TACGAT - - 53.96 46.03 

32 KDa  63 TTGAGA  16 - AAGAAT - - 50.79 49.21 

10 KDa  64 TTGAGT 17 - TAGAGT - - 48.44 51.57 

 62 TTGAGT 15 - TATAGA  - - 46.77 53.23 

 55 TTGAGT 8 - TCTCAT - - 47.27 52.73 

65 KDa  64 TTGCCG 17 - TTTCAT - - 35.94 64.07 

mpt 64 64 TCGTCG 17 - TATGTT - - 43.75 56.25 

metA 65 TTGGCG 18 - TAGCCT - - 33.85 66.15 

rpsL 65 TTGACC 18 - TATTGT  - - 30.77 69.23 

38 KDa  67 - - - GAAATT - - 40.3 59.7 

ppgK 61 - - - - - - 39.34 60.66 

M. bovis BCG       

hsp60 P2 51 - - TG TAAGAA 7 G 43.14 58.86 

rRNA 62 TTGACT 15 - TATTAG - - 46.77 53.23 

ahpC 63 TTGCCT 16 - TACGAT - - 52.38 47.62 

23 K 64 TCGTCG 17 - TATGTT - - 43.75 56.25 

mpb 64 64 TCGTCG 17 - TATGTT - - 43.75 56.25 

18 K 65 TTGAGG 18 - TACAGG - - 43.08 56.92 

64 K 65 TTGCCG 18 - TTTCAT - - 35.08 64.62 



  

rpsL 65 TTGACC 18 - TATTGT  - - 30.77 69.23 

mpb70 65 TTGAGG 18 - TACAGG - - 43.08 56.92 

alpha 65 TCGACA 18 - TATGTT - - 41.54 58.46 

M. leprae       

16S rRNA 61 TTGACT 16 TG ATTAAT 7 G 47.54 52.46 

18 KDa  63 TTGCAT 17 - CTATAT 8 T 63.5 36.51 

 63 TTGCAT 18 TG TATATC 7 T 63.5 36.51 

28 KDa  62 TGGTCA 15 - TACCAT - - 53.22 46.78 

groE1 64 TTGAGT 17 - TAGAGT - - 37.5 62.5 

65 KD 60 TTGCAC 17 TG TAAAAA - - 48.33 51.66 

36 K 44 TTTCCT 17 - TACGTT - - 36.36 63.64 

SOD 40 TGGGCG 18 - GATTAT - - 40.0 60.0 

rpsL 65 TTGACC 18 - TATTGT  - - 38.46 61.54 

M. smegmatis       

alrA 39 - - - GACAAT 7 G 38.46 61.54 

S4 51 - - - TATAAG 4 G 52.94 47.06 

S5 51 - - TG TAAGCT  6 G 50.98 49.02 

S6 34 - - TG TAGAGT 7 A 76.48 25.53 

S12 51 - - - TATACA 8 T 60.79 39.22 

S14 51 - - - TACCAT 7 T 54.90 45.10 

S16 51 - - TG TATAAT 6 G 41.18 58.82 

S18 41 - - - TAAAGT 7 G 65.85 34.14 

S19 51 - - TG TAGTAT 6 C 50.98 49.02 

S21 51 - - TG TATGGT 8 A 60.78 39.22 

S30 43 - - - TATATG 5 G 62.79 37.21 

S33 45 - - - TATGGT 4 G 57.78 42.22 

S35 51 - - - TATGAT 7 C 62.74 37.26 

S65 51 - - - TCCAGT 8 T 52.94 47.06 



  

S69 51 - - - TACAAT 6 A 54.9 45.1 

S119 37 - - TG TAAACG 8 G 67.57 32.43 

gyr B  52 CGCTAT 7 - TAGACT  7 G 40.38 59.61 

recA 56 TTGTCG 9 TG TCTAAC 9 A 41.07 58.93 

ask 44 TTGCCC 12 - CACGAT 7 A 25.0 75.0 

acetamidase 60 TTGACT 16 - TATATT 6 G 55.0 45.0 

rrn B  62 TTGACT 17 - TAACTT 7 G 48.39 51.61 

rrnA P1 59 CTCGGA  18 - TAAGCT  5 G 44.26 55.74 

rrnA P2 62 TTGCAA 18 - TATCTT 6 G 48.39 51.61 

rrnA P3 62 TTGA CA 18 - TAAGCT  6 G 38.71 61.29 

rrnA PCL1  62 TTGACA  18 - TAAGCT  6 G 45.16 54.84 

rpsL 64 TTGTTT 18 TG TATTGT  8 G 34.37 65.63 

 64 TTCGTC 17 - TGTGGT 5 G 39.06 65.63 

ahpC 63 TTGCCT 16 - CACGAT - - 50.79 49.2 

M. paratuberculosis       

pAJB303 60 TGGCGT 16 - CGGCAC 7 T 28.34 71.66 

pAJB86 61 TGACGT 17 - CGGTCC 6 T 39.34 60.66 

pAJB125 62 TTAAAG 17 - CATGTC 7 C 37.1 59.67 

pAJB300 62 TGACGC 17 - CAGCCG 7 A 27.42 72.58 

pAJB305 62 TGTTGG 17 - TGGTTG 7 T 38.71 61.29 

pAJB304 62 AAGGAC 17 - CCAACG 7 G 35.48 64.52 

PAN 62 TCGACA 17 - TACACT  7 A 45.16 54.84 

pAJB73 58 TGCCGC 20 - CTCCAG 7 T 31.04 68.97 

pAJB301 66 TCCAGT 20 - CTGGCC - - 27.27 72.73 

M. fortuitum       

repA 51 - - TG TCTACT  6 C 47.06 52.94 

rrnA PCL1  62 TTGACT 18 - TAAGCT  6 G 46.78 53.22 

rrnA P1 65 CTCGGA  16 - TAGGGT - - 43.07 56.93 



  

rrnA P2a 65 TTGACC 18 - TAATCT  - - 38.46 61.64 

rrnA P2b 65 TTGACA  18 - TAAGCT  - - 36.93 63.08 

rrnA P3 65 TGACTT 18 - AAGCTG - - 47.96 52.31 

M. phlei       

rrnA PCL1  62 TTGACG 18 - TAGACT  6 G 41.93 58.06 

rrnA P1 65 CTCGGC 16 - TCGCCT - - 38.46 61.54 

rrnA P2 63 TTGACT 16 - TATTCT  - - 42.85 57.14 

rrnA P3 65 TGACGC 18 - AGACTG   41.54 58.47 

Mycobacteriophage I3       

pKGR25 61 TGCACT 13 - CACTAT - - 31.14 68.85 

pKGR9 63 TCGTCA 16 - TGTTGT - - 39.68 60.32 

pKGR38 63 TCGACG 16 - TCATCT  - - 41.27 58.73 

ORF1 63 TCGAGG 16 - CGAACT - - 38.1 61.91 

ORF2 69 TCGACA 22 TG CAATCT  - - 52.18 47.82 

pKGR1 71 TCGACA 24 - TCATCT  - - 36.62 63.38 

Mycobacteriophage L5        

71 P2 63 TTGCTA 18 - TACATT 7 G 42.85 57.14 

71 Pleft  61 TTGACA  18 - CATTCT  6 A 42.62 57.38 

71 P1 62 TCCGCA 19 - TATCCT  5 G 54.84 45.16 

M. avium       

avi-3 64 CTGATA  17 - TATAAG - - 51.56 48.44 

PLR7 65 CAACTG 18 - CATCGT - - 27.69 72.31 

M. neoaurum       

rrnA PCL1  61 TTGACT 17 - TAAGCT  6 G 45.9 54.1 

rrnA P1 65 TTGGGC 16 - TACACT  - - 40.0 60.0 

rrnA P3 64 TTGACT 17 - TAAGCT  - - 45.31 54.69 

rrnA P2 65 TTGACT 18 - TAATCT  - - 47.70 52.31 

M. abscessus        



  

rrnA P4 61 TTGACT 17 TG TACGGT 6 G 47.54 52.46 

rrnA P1 64 GGACGG 18 - TGTGTT 8 A 42.19 57.82 

rrnA PCL1  62 TTGACT 18 TG TACAGT  6 G 43.54 56.45 

rrnA P2 60 TTGACT 18 TG TACGGT 4 A 50.0 50.0 

rrnA P3 62 TTGACT 18 TG TACGGT 6 G 51.61 48.39 

M. chelonae        

rrnA P2 60 TGACTC 17 TG TCGGTT 5 G 46.67 53.34 

rrnA P1 63 GGATGG 18 - TGTGTT 7 G 42.86 57.15 

rrnA PCL1  62 TTGACT 18 TG TACAGT  6 G 46.77 53.23 

rrnA P3 61 TTGACT 18 TG TCGGTT 5 G 47.54 52.46 

rrnA P4 62 TTGACT 18 TG TACGGT 6 G 48.38 51.61 

       



  

Table III: Percentage conserved homology of –35 and –10 regions for different mycobacterial species 

 %  
(A+T) 

%   
(G+C) 

-35 region and % conserved homology -10 region and % conserved homology 

M. tuberculosis 41.72 58.27 T 
84. 

T 
52. 

G 
48. 

A 
36. 

C 
52. 

G 
39. 

T 
52. 

A 
71. 

Y 
31. 

A 
40. 

C 
33. 

T 
71. 

M. bovis BCG 42.29 57.71 T 
100. 

T 
67. 

G 
100. 

A 
56. 

C 
78. 

G 
56. 

T 
100. 

A 
90. 

T 
60. 

G 
50. 

A 
40. 

T 
60. 

M. leprae 47.94 52.07 T 
100 

T 
78. 

G 
89. 

C 
44. 

C 
56. 

T 
56. 

T 
67. 

A 
78. 

T 
44. 

A 
44. 

A 
56. 

T 
78. 

M. smegmatis 49.90 50.11 T 
83. 

T 
92. 

G 
75. 

A 
33. 

C 
58. 

T 
42. 

T 
89. 

A 
89. 

T 
44. 

A 
46. 

A 
37. 

T 
82. 

M. paratuberculosis 34.42 65.22 T 
89. 

T 
56. 

R 
33. 

C 
44. 

G 
67. 

Y 
33. 

C 
78. 

R 
33. 

G 
56. 

C 
33. 

C 
56. 

C/G 
44. 

M. fortuitum 43.16 56.83 T 
80. 

T 
80. 

G 
60. 

A 
60. 

C 
60. 

T/A 
40. 

T 
83. 

A 
83. 

A 
50. 

G 
50. 

C 
67. 

T 
83. 

M. phlei 40.73 58.82 T 
75. 

T 
75. 

G 
50. 

A 
50. 

C/G 
50. 

C 
50. 

T 
75. 

A 
50. 

G 
50. 

C 
50. 

C 
75. 

T 
75. 

Mycobacteriophage I3 40.0 60.0 T 
100. 

C 
83. 

G 
83. 

A 
83. 

C 
83. 

A 
50. 

T/A 
50. 

A/C
/G 
33. 

A 
67. 

T 
83. 

C 
67. 

T 
100. 

Mycobacteriophage L5 46.77 53.23 T 
100. 

T 
67. 

G 
67. 

A/C
/G 
33. 

C 
67. 

A 
100. 

T 
67. 

A 
100. 

T 
67. 

T/A/
C 

33. 

C 
67. 

T 
100. 

M. avium 39.54 60.46 C 
100. 

T/A 
50. 

R 
50. 

A/C 
50. 

T 
100. 

R 
50. 

Y 
50. 

A 
100. 

T 
100. 

A/C 
50. 

R 
50. 

T/G 
50. 

M. neoaurum 44.70 55.19 T 
100. 

T 
100. 

G 
100. 

A 
75. 

C 
75. 

T 
75. 

T 
100. 

A 
100. 

A 
75. 

G 
50. 

C 
100. 

T 
100. 

M. abscessus 46.92 53.08 T 
80. 

T 
80. 

G 
80. 

A 
80. 

C 
80. 

T 
80. 

T 
100. 

A 
80. 

C 
80. 

 G 
80. 

G 
80. 

T 
100. 

M. chelonae 46.43 53.57 T 
80. 

T 
60. 

G 
60. 

A 
60. 

C 
60. 

T 
60. 

T 
100. 

A/C 
40. 

G/C 
40. 

G 
80. 

T 
60. 

T 
100. 

Overall 43.70 56.28 T 
87. 

T 
60. 

G 
65. 

A 
46. 

C 
56. 

T 
39. 

T 
70. 

A 
74. 

T 
34. 

A 
35. 
G 
33. 

C 
33. 
A 
27. 

T 
74. 

E. coli 59.54 40.46 T 
82. 

T 
84. 

G 
78. 

A 
65. 

C 
54. 

A 
45. 

T 
80. 

A 
95. 

T 
45. 

A 
60. 

A 
50. 

T 
96. 

 
 



  

Table IV: Position of curvature maxima lying between region –50 and +10 for curved mycobacterial promoters 
 

–50 to -41 –40 to -31 –30 to -21 –20 to –11 -10 to –1 +1 to +10 

- M. tuberculosis 85A, 

rrnA PCL1, 16S rRNA, 

65 kDa, rpsL, 38 kDa 

M. tuberculosis T125 M. tuberculosis T101, 

gyrB P1 

M. tuberculosis T150, 

mpt64, metA 

M. tuberculosis 32 kDa 

- M. bovis BCG 64 K, 

rpsL 

M. bovis BCG rRNA, 

alpha  

- M. bovis BCG 23 K, 

mpb64, 18 K, mpb70 

- 

- M. leprae rpsL - - M. leprae 18 KDa, 

28Kda, 65 Kda 

- 

- M. smegmatis S4, S19, 

S21, rrnB, rrnA P1 

M. smegmatis S12, S14, 

S16, S35, S69 

M. smegmatis S30, S18, 

S6 

- - 

- M. paratuberculosis 

pAJB 305 

- - - - 

- M. fortuitum rrnA 

PCL1, rrnA P3 

- M. fortuitum rrnA P1 M. fortuitum rrnA P2a - 

- M. phlei rrnA PCL1, 

rrnA P2, rrnA P3 

- - - - 

 



  

 
Table IV continued: 
 

–50 to –41 –40 to -31 –30 to -21 –20 to -11 -10 to –1 +1 to +10 

Mycobacteriophage I3  

ORF2 

- - - - - 

- Mycobacteriophage L5  

71 Pleft 

- Mycobacteriophage L5  

71 P1 

Mycobacteriophage L5  

71 P2 

- 

M. neoaurum rrnA P1 - - M. neoaurum rrnA 

PCL1, rrnA P3 

M. neoaurum rrnA P2 - 

- M. abscessus rrnA P4, 

rrnA PCL1, rrnA P2, 

rrnA P3 

- - - - 

- M. chelonae rrnA P2, 

rrnA PCL1, rrnA P3, 

rrnA P4 

- - - - 
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A multilayered feed-forward artificial neural network (ANN) architecture trained using the 

error-back-propagation (EBP) algorithm has been developed for predicting whether a 

given nucleotide sequence is a mycobacterial promoter sequence. Owing to the excellent 

prediction capability (≅97%) of the developed network model, it has been further used in 

conjunction with the calliper randomization (CR) approach for determining the 

structurally/functionally important regions in the promoter sequences. The results obtained 

thereby indicate that: (i) upstream region of –35 box, (ii) –35 region, (iii) spacer region and, 

(iv) -10 box, are important for mycobacterial promoters. The CR approach also suggests 

that the –38 to –29 region plays a significant role in determining whether a given sequence 

is a mycobacterial promoter. In essence, the present study establishes ANNs as a tool for 

predicting mycobacterial promoter sequences and determining structurally/functionally 

important sub-regions therein. 



   

7.1 INTRODUCTION 

Mycobacteria  while have a low transcription rate and a low RNA content per unit 

DNA [1], their genomes are rich in the G+C content. Since the G+C content of a genome 

affects the codon usage and the promoter recognition sites in an organism [2-3], it is 

expected that the transcription and translation signals in Mycobacteria  may be different 

from those in other bacteria such as, E. coli. Understanding the factors responsible for the 

low level of transcription and the possible mechanisms of regulation of gene expression in 

Mycobacteria  necessitates examination of the structure of mycobacterial promoters and 

their transcription machinery. 

Mulder et al. [4], have listed –35 and –10 regions of a few mycobacterial 

promoters. Some promoters from their compilation contain –35 and –10 regions 

resembling E. coli σ70 type promoters. Although Mycobacteriophage I3  [5] and M. 

paratuberculosis  [6] promoters exhibit good sequence similarity with the E. coli 

promoters at the –35 consensus, they display significant variation in the –10 region. For 

promoters like M. tuberculosis 85A [7], sequences at the –35 position are essential for 

transcription although their exact location may not be critical. Some mycobacterial 

promoters, for instance, M. paratuberculosis  [6], have a high GC content in their  –10 

region as compared to the AT rich –10 region of E. coli σ70 type. Possibly, promoters 

having a high GC content at –10 region are the true representatives of the mycobacterial 

type. An analysis of M. smegmatis and M. tuberculosis promoters by Bashyam et al. [8] 

showed that the respective –10 regions are highly similar to those of E. coli σ70 promoters; 

however their –35 regions exhibit greater sequence variability. The stated feature 

contrasting the one observed by Ramesh and Gopinathan [5] is however in agreement with 

that noticed by Kremer et al. [7] for mycobacterial promoters, and by Strohl [9] for 

Streptomyces promoters. Streptomyces promoters contain diverse sequences in their –35 

regions and do not function in E. coli [9] For mycobacterial promoters, where apparent 

conservation in -35 region is absent, many of them possess TG dinucleotide in the 

immediate upstream of the –10 region, and thus they are termed “extended –10 

promoters”. The large variations among the mycobacterial promoters characterized thus far 

suggest that the consensus sequences are not representative of all mycobacterial promoters. 



   

Consequently, a number of conflicting opinions regarding the presence and characteristics 

of consensus promoter sequences in the Mycobacteria have been aired in the literature 

[4].  

 An important objective in molecular biology is analyzing the DNA sequences for 

their structural and functional motifs. Macromolecular binding to specific sites of DNA 

involves recognition of a specific sequence pattern. In some cases, this pattern may be very 

distinct while in others it may be diffused. During examination of the molecular binding sites 

in a DNA, conventionally a consensus is derived by aligning an ensemble of sequences 

recognized by a common macromolecule. It is often found that the sequence pattern is 

never completely conserved. Efforts have also been made to develop statistical algorithms 

for the sequence analysis and motif prediction by searching for homologous regions or by 

comparing the sequence information with a consensus sequence [10]. This approach may 

fail or yield insufficiently accurate results when consensus sequences are difficult to define 

[10-11]. Wide variations existing within individual promoter sequences are primarily 

responsible for the unsatisfactory results yielded by the promoter-site-searching algorithms 

that in essence perform statistical analysis [12-13]. It can thus be inferred that recognition 

of mycobacterial promoter sequences and the important regions therein, require a powerful 

technique that is capable of unraveling those hidden pattern(s) in the promoter regions, 

which are difficult to identify manually. An artificial intelligence (AI) based 

modeling/classification paradigm known as ‘artificial neural networks’ (ANNs) possessing 

significant nonlinear pattern recognition and generalization capabilities has become available 

in the last decade. Accordingly, our objective in this chapter is to demonstrate: (i) the utility 

of ANNs for differentiating (classifying) mycobacterial promoter sequences from random 

(non-promoter) sequences, and (ii) an ANN-based calliper randomization (CR) approach 

[14-15] for determining the structurally and functionally important regions within the 

mycobacterial promoter sequences. 

 

7.1.1 Overview of ANNs 

 ANNs are simplified counterparts of biological neural networks and based on the 

concept that a highly interconnected system of simple processing units (also called 



   

“neurons” or “nodes”) can learn and generalize complex inter-relationships existing between 

independent (ANN input) and dependent (ANN output) variables to an arbitrary degree of 

accuracy [16]. ANNs possess several unique characteristics and advantages as tools for 

molecular sequence analysis [17-18]. An important feature of ANNs is their adaptive 

nature where “learning by example” replaces the explicit “programming” approach 

conventionally followed in seeking solutions to modeling/classification problems. This 

feature makes ANNs very appealing in application domains where although the system to 

be modeled is only partly understood, there exists an example data set, which can be used 

in empirical (or “black-box”) model development. In such instances, a network is made to 

capture (learn) the nonlinear interrelationships in the example input-output data via a 

procedure called “network training”. In modeling applications, the network input-output 

may be representing a DNA sequence and its sequence-dependent feature (viz. DNA 

curvature, [19]), respectively, while in an ANN-based classification application, the 

network input-output is an appropriately coded DNA sequence and its class (viz. E. coli 

promoter prediction, [20]), respectively.  

 A typical ANN architecture used in modeling/classification tasks comprises multiple 

(usually three) layers housing a number of processing units in each layer. Units in the two 

successive layers are fully connected by means of “weighted” links. A commonly utilized 

multilayer network structure is the feedforward network wherein information flow occurs 

only in the forward direction i.e. from the input layer to the output layer. Such an ANN 

architecture is also amenable to parallel processing since the mathematical computations 

performed by a processing unit are independent of the computations done by other units in 

the same layer. A large number of interconnections comprised by an ANN makes it error-

tolerant and thus can easily deal with even noise-corrupted data. A trained neural network 

encodes information about interrelationships existing between its inputs and outputs in a 

distributed fashion. That is, the captured information is spread over network’s entire 

weight-space. This ANN feature makes it easy to optimize the network to deal with a large 

volume of data and to analyze its numerous input parameters.  

 Training of an ANN essentially consists of finding a set of connection weights such 

that the network accurately predicts the outputs corresponding to the input data in the 

example set. The error-back-propagation (EBP) method [21-22] currently represents the 



   

most popular algorithm for training feedforward networks. Neural networks using the EBP 

training algorithm (hereafter referred to as EBPN) have been successfully used for various 

applications in biology involving nonlinear input-output modeling and classification (e.g., 

[23-25]). In fact, the overriding success of EBPNs in solving computational problems in 

biology and other sciences exceeds their biological significance [26]. In the present study, a 

three-layered feedforward network trained using the EBP algorithm has been developed 

for predicting the mycobacterial promoter sequences.  

 

7.2 SYSTEM AND METHODS 

 The simulation programs for network training and promoter prediction were written 

in FORTRAN-77 and compiled using the Microsoft FORTRAN 5.0 compiler for the IBM 

PC and compatibles. 

 

7.2.1 Data  

 The data for EBPN training was taken from our own compilation of the 

mycobacterial promoters (refer Table I, from chapter 6). The compiled promoter data set 

contains a total of 125 mycobacterial promoters out of which 80 have their transcription 

start site (TSS) mapped while the remaining 45 sequences are putative promoters. The 

promoters with the mapped TSS contain sequence stretches between –50 and +10 bp with 

respect to the TSS; the sequence stretch for the putative promoters lies between 15 bp 

upstream region of –35 box and 20 bp downstream of the –10 region. Length-wise, the 

compiled promoter sequences show variations owing to: (i) non-uniform availability of the 

nucleotide sequence upstream of the –35 region and downstream of the –10 region in the 

original reference, and (ii) variations in the spacer length. The shortest and the longest of the 

compiled sequences are 34 and 71 nucleotides long, respectively. In a few cases, two or 

more different sequence frames are considered for the same gene on the basis of alternate 

consensus probability. Thus, an overall set comprising 135 mycobacterial promoter 

sequences has been employed in this study.  

 



   

7.2.2 Data representation for ANN-based classification 

 In ANN-based molecular sequence analyses, flexible sequence (network input) 

encoding schemes can be used for grasping the heterogeneous sequence features. 

Specifically, an individual nucleotide of a sequence can be represented using various coding 

strategies, such as CODE-2, CODE-4 [27], EIIP  code [14], and wedge and twist codes 

[28]. In classification studies by Nair et al. (1994) and Parbhane et al. (2000), it is 

observed that the CODE-4 strategy fares better than the other input coding approaches. In 

the CODE-4 scheme, each nucleotide is represented using a set of four binary digits as 

given by: C=0001; G=0010; A=0100; and T=1000. On the other hand, the above-stated 

other coding schemes utilize smaller number of bits or real numbers. For instance, 

mononucleotide representation schemes such as CODE-2 and EIIP respectively use two 

binary digits and a single electron ion interaction potential value for describing a nucleotide. 

Dinucleotide based wedge and twist codes use a single non-binary value to represent a 

nucleotide pair. Since CODE-4 requires maximum number (i.e., four) of input nodes to 

represent a single nucleotide, it produces a large-sized network as compared to other 

coding schemes. A large-sized network consequently increases the number of network 

weights (adjustable network parameters), which in turn helps in improving the classification 

accuracy of CODE-4 based EBPNs. Hence, in the present classification study, the 

CODE-4 scheme has been preferred for mononucleotide representation.  

 For E. coli promoter sequences, Mahadevan and Ghosh [20] employed a three-

module approach with 98% classification accuracy. In their methodology, the first neural 

net module predicts the consensus boxes; the second module aligns the promoters to a 

length of 65 bases, and the third neural net module classifies the entire sequence of 65 

bases while taking care of the possible interdependencies among the bases in the 

promoters. It is important to note that in the present study, the perfectly aligned promoter 

sequences are not being used as the network input. Consequently, the input sequence data 

do not require introduction of gaps for perfect alignment. The advantage of this approach is 

that it allows analysis of sequences where alignment is difficult or impossible to define. 

7.2.3 Neural Network Simulation 



   

 The EBP network architecture used in this study is shown in Figure 7-1. As can be 

seen, a bias neuron each with the fixed output of +1 is added to network’s input and 

hidden layers. Usage of bias neurons increases network’s weight-space thus providing 

more adjustable parameters for performing the classification task. Analogues to other 

nodes in the same layer, the bias nodes are fully connected using weighted links to all the 

nodes in the next layer. Nodes in the input layer do not perform any numerical processing 

and thus act as “fan-out” units; all numerical processing is done by the hidden and output 

layer nodes and thus they are termed “active” nodes.  

 Training simulations for the network shown in Figure 7-1 were performed on a 486 

AT equipped with the math co-processor. The EBPN training comprises: (i) presenting the 

network with an input pattern (sequence) from the example set, (ii) calculating the network 

output by propagating the input pattern through the hidden and output layers, (iii) 

computation of prediction error [difference between the desired (target) output and the 

actual network output], and (iv) utilization of the prediction error value to update the 

network weights with a view of minimizing the prespecified error function. Steps (i) and (ii) 

of this procedure are termed “forward pass” and steps (iii) and (iv) are termed the “reverse 

pass” through the network architecture. The error function to be minimized during network 

training is usually the root-mean-squared -error (RMSE). For details of RMSE function, 

please refer to chapter 2, section 2.2.3. 

 During training of an EBPN, the task of RMSE minimization is accomplished by 

adjusting the network weights using a gradient descent technique namely the generalized 

delta rule  (GDR) [21]. In actual practice, however, it is not sufficient that the trained 

network accurately classifies sequences in the available example set. What is essential is 

that the network also correctly classifies new sequences, which are not part of the example 

set utilized for training the network. The network ability of correctly classifying new input 

patterns is known as “generalization ability” and the phenomenon, which adversely affects 

network’s ability to generalize is known as “overfitting”. Network overfitting occurs when: 

(i) network architecture contains more hidden nodes than necessary (known as “over-

parameterization”), and (ii) network training continues over excessively large number of 

training epochs. If overfitting occurs, the network attempts to fit even the noise in the 

example data set at the cost of learning the smooth trends therein. In other words, an 



   

overfitted network learns (memorizes) every minute detail thereby failing to capture the true 

information content within the example input-output data set. To prevent occurrence of 

overfitting, the available data is partitioned into two sets namely, the training set and the 

test set. While the former is used for training the network (i.e., for computing the prediction 

error and subsequent weight-updation), the latter (test set) is used to simultaneously 

evaluate network’s generalization ability. For testing how well the network is generalizing, 

its classification performance is checked at the end of each training epoch by computing the 

RMSE with respect to the test set; the network weights that result into smallest RMSE for 

the test set are taken to be optimal since such a weight set exhibits best classification 

performance. Since ‘more-than-necessary’ hidden neurons also result in overtraining, the 

above-described training procedure is repeated by assuming varying number of hidden 

nodes in the network architecture. The optimal network architecture is the one, which 

houses just adequate number of hidden neurons and whose weight set (termed “optimal 

weight set”) results in the least RMSE magnitude for the test set. The detailed description of 

obtaining an optimal network structure and associated weight set can be found, e.g., in 

Freeman and Skapura [29], and Tambe et al. [30]. For training an EBPN, the GDR 

algorithm for weight-updation makes use of two adjustable parameters namely, the learning 

rate (η) and momentum coefficient (α). Addition of the momentum term in the weight 

updation expression helps in accelerating the weight convergence and avoiding local minima 

on the error surface. In practice, values of both the GDR parameters are selected 

heuristically so as to obtain a network possessing good generalization ability. 

 Towards developing an optimal EBPN, the compiled promoter data set (135 

sequences) was partitioned into training and test sets comprising 95 and 40 sequences, 

respectively. In order that the EBPN differentiates promoter sequences from the non-

promoter ones, the training and test sets must also include non-promoter sequences. 

Accordingly, non-promoter sequences of length equal to 71 nucleotides were randomly 

generated wherein probability of occurrence of either A, T, G or C was equal to 0.25. The 

random sequences thus created were added to the promoter sequences in the training and 

test sets in 1:3 ratio. Thus the training and test sets comprised 380 and 160 sequences, 

respectively. For network training, the input data vectors (fragments coded in CODE-4) 

need to be of same size. Thus, the shorter fragments (i.e., < 71 bp) were uniformly padded 



   

with 0.01 till each fragment was 284 (=71×4) elements long. The resulting training and test 

sets can be viewed as matrices of size (380×284) and (160×284), respectively.  

 The EBPN architecture (Figure 7-1) used for classifying the promoter sequences 

consists of 284 nodes in the input layer, and a single node in the output layer for 

representing whether the input sequence is a mycobacterial promoter. Accordingly, the 

target output for a promoter sequence was chosen to be unity and for a non-promoter, the 

target output was zero. For a given input sequence if the network output lies between 0.5 

and 1.0 then the sequence is assumed to be a promoter, otherwise (i.e., network output < 

0.5) it is a non-promoter.  

 

7.3 RESULTS AND DISCUSIION 

 The training and test sets each comprising promoter and random sequences were 

utilized for obtaining an optimal network architecture - and the optimized weight set thereof 

- by following the network optimization procedure described earlier. The optimal network 

so developed, contains a single neuron in its hidden layer; increasing the number of hidden 

neurons beyond one did not increase the classification accuracy of the trained network. The 

RMSE profiles corresponding to the training and test sets for the optimized network are 

shown in Figure 7-2. It was observed that the weights at the 318th training epoch (η=0.6, 

α=0.4) correspond to the minimum RMSE (highest classification accuracy) with respect to 

the test set; thus these weights were taken as optimal. The optimal EBPN could correctly 

classify all the 380 sequences in the training set (100% classification accuracy). That is, the 

network could indeed differentiate between 95 promoter sequences and 285 random 

sequences. Moreover, the network correctly classified 155 sequences in the test set 

comprising 160 sequences (96.9% classification accuracy). It was also witnessed that the 

network did not predict any false positive i.e., none of the random sequences in the 

training/test sets were classified as mycobacterial promoter sequences. 

7.3.1 Analysis using Calliper Randomization strategy 

 The above-described classification results in essence indicate that the optimized 

EBPN model possesses excellent capability of differentiating between a mycobacterial 

promoter sequence and a random sequence. In other words, the network model has 



   

satisfactorily captured the hidden features that impart mycobacterial promoter characteristic 

to a given nucleotide sequence. It can be inferred further that the network model could now 

be utilized to identify important sub-regions in a promoter sequence. Towards this goal, we 

employ the caliper randomization (CR) approach wherein a mycobacterial promoter 

sequence is randomized in parts and applied to the trained network to examine whether the 

sequence still retains its promoter characteristic. If the network classifies the partly 

randomized sequence to be a non-promoter, then it can be concluded that the randomized 

region of the original promoter sequence governs its promoter functioning. For testing this 

hypothesis, the trained network was presented with mycobacterial promoter sequences 

randomized at fixed calliper lengths. Specifically, a fixed-sized calliper window of 10 

nucleotides (approximately one turn of the helix) is chosen for randomization, which is 

moved from one end of the sequence to the other, in an overlapping fashion (refer Figure 

7-3). Thus from a promoter sequence of 71 nucleotides, 62 sequences each containing a 

different randomized sub-region (window) could be formed. Upon randomizing all the 

promoter sequences in the training and test sets in this manner, the resulting sequences were 

applied to the optimized EBPN for predicting whether they maintain their promoter 

characteristic. In here, we present results pertaining only to the mycobacterial promoters 

whose TSS is mapped experimentally. The other type of compiled promoter sequences, 

namely “putative” promoters are called so since they comprise possible consensus boxes. 

However, the fact that their TSS is not mapped experimentally may lead to erroneous 

conclusions about mycobacterial transcription machinery. For this reason, the putative 

promoters are excluded from analysis via CR approach.  

 The classification results in respect of the partially randomized mycobacterial 

promoter sequences - whose TSS is known - are portrayed in Figure 7-4. In the figure, it 

is observed that depending upon the starting location of the randomized window, the 

resulting sequences are classified as non-promoters to varying extent. It can thus be opined 

that the starting location of the randomized window plays an important role while classifying 

a randomized promoter sequence. More importantly, it is noticed that when the starting 

position for the randomized calliper window lies in the –42 to –35 region, then the resulting 

sequences are predominantly classified as non-promoters. This observation suggests that 

the nucleotide content and its arrangement in the callipers located in the –42 to –35 region 



   

are critical for mycobacterial promoters. When the calliper windows covering the spacer 

region and the –10 box are randomized, the original mycobacterial promoter sequences 

loose their promoter features. However, in this case the percentage of randomized 

sequences classified as non-promoters is not as high as that when calliper windows located 

in the –42 to –35 region are randomized. Thus, it is possible to infer that: (i) the –35 box 

and its upstream region play a critical role in mycobacterial promoter functioning, (ii) –10 

box and spacer region also contribute towards mycobacterial promoter characteristics, and 

(iii) for promoter recognition the –10 region is not as important as –35 region.  

 In Figure 7-4, it is clearly noticed that the calliper window starting at location –38, 

when randomized, results in the highest percentage (i.e., 37%) for non-promoters. This 

observation suggests that the –38 to –29 region is most influential in determining whether a 

given compiled sequence is a mycobacterial promoter or not. For an in-depth scrutiny of 

the –38 to –29 region, it was divided into two sub-regions viz., -38 to –34 and –33 to –

29, following which each of the two sub-regions was separately randomized. Upon 

randomizing all the promoter sequences in this manner, they were subjected to classification 

using the optimal EBPN. The results of such an analysis show that 57% of the sequences 

require randomization of the entire –38 to –29 region to alter their classification from 

promoters to non-promoters. It was also noticed that randomization of the –38 to –34 

region and  –33 to –29 region changes 36% and 7% of the original promoter sequences, 

respectively, to non-promoters. 

 Since the –38 to –29 region of the mycobacterial promoter sequences seems more 

influential in imparting them the promoter characteristics, it is of interest to study the nature 

of consensus nucleotide pattern for this sequence stretch. Towards this objective, all the 

mycobacterial promoters from the compilation (refer Table I, from chapter 6), were aligned 

with respect to their TSS and examined carefully to identify the consensus pattern in the –

38 to –29 region. Thus, the consensus nucleotide pattern observed in the –38 to –29 

region is: A31 C30 T43 T49 G44 G27 C34 C37 T37 C40.  Here it is seen that while the   –38 to –

34 region comprises a single ‘A’ and two ‘T’s, the –33 to –29 region is GC-rich. This 

observation suggests that the comparatively higher AT content in the –38 to –34 region 

assumes special significance for mycobacterial promoters. The  –38 to –29 region is also 



   

analyzed for purine/pyrimidine consensus pattern. Thus, purine (R) and pyrimidine (Y) 

consensus for –38 to –29 region is: R57 Y54 Y65 Y65 R52 R51 Y52 Y62 Y56 Y58.  

 Using the results of the CR analysis, it is possible to get an insight into the sub-

regions of the promoter sequences, which upon randomization were classified as non-

promoters. Accordingly, a detailed examination of the randomized promoters was 

undertaken. It revealed that the mycobacterial promoters that were subjected to 

randomization (and were subsequently classified as non-promoters) in: (i) upstream region 

of –35 box, (ii) –35 region, (iii) spacer region, and (iv) –10 region, show resemblance to E. 

coli σ70 type promoters. More specifically, it is noticed that 32 mycobacterial promoters 

are sensitive to randomization within –38 to –29 region. Among these, 20 (64%) 

promoters exhibit resemblance to typical E. coli σ70 type; the remaining 12 (36%) belong 

to a typical mycobacterial type (GC rich –10 region) for their consensus sequence pattern.  

 

7.4 CONCLUSION 

 To conclude, the results presented in this study suggest that ANNs can be gainfully 

employed for mycobacterial promoter sequence prediction. In view of the excellent 

performance of the optimized ANN in capturing the local and global features in the 

promoter sequences, it is possible to use them as feature detectors for locating the 

functionally important regions. The results of the CR strategy indicate that the network is 

indeed capable of acquiring the knowledge of regions that are structurally and functionally 

important. Additionally, the CR analysis results show that the method can be exploited in 

deriving consensus for other functionally important regions wherein weak consensus 

sequence pattern is observed.  
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Figure 7-1: Schematic of the optimized EBP neural network used in the study 

(containing 284 neurons in the input layer and a single neuron each in the hidden and 

output layers). 

 

 

 



  

 

Figure 7 -2: RMSE profiles corresponding to the training and test data sets. 



  

 

 

 

 

 

 

 

 

Figure 7-3: Calliper randomization scheme; CR-i refers to ith calliper window. 

 



 

Figure 7-4: Classification results in respect of partially randomized mycobacterial 

promoter sequences. The X-axis refers to the location of 10 nucleotide -sized calliper 

window and Y-axis refers to the percentage of randomized promoters classified as 

non-promoters. 
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CHAPTER 
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Analysis of DNA curvature distribution 

in mycobacterial promoters using 
theoretical models 

 



  
 

 

 

 

 

 

 

 

 

 

In this chapter, 125 mycobacterial promoters are analyzed for their DNA curvature 

distribution using several di- and tri-nucleotide dependent models of DNA curvature. 

Different models give similar behavior and therefore qualitative validation of the 

results. Mycobacterial promoters resembling to E. coli σ70 type have nearly 81% 

(85%) sequences having medium and high curvature profiles using dinucleotide 

dependent models. Non -E. coli σ70 type mycobacterial promoters have comparatively 

higher percent of low curvature profiles. Very few of extended –10 promoters have 

low curvature profiles. Mycobacterial promoters having AnTm (n+m ≥ 3) tract in the 

upstream region of –35 box and repeated in phase with each other have high 

curvature profiles. M. smegmatis promoters have high curvature profiles compared to 

M. tuberculosis promoters.  

 

 

 

 

 



  
 

8.1 INTRODUCTION 

Transcription process in Mycobacteria may differ from E. coli and many 

other bacteria as mycobacterial genome has high G+C content which affects codon 

usage and promoter recognition sites in an organism. Mycobacterial promoters like 

M. tuberculosis 65 kDa [1], M. bovis BCG 64 kDa [2], and M. leprae 65 kD [3] are 

known to function in E. coli. However, mycobacterial promoters like M. tuberculosis 

85A [4], recA [5] are known to be non-functional in E. coli. Thus depending on the 

choice of expression host, mycobacterial promoters are classif ied as E. coli type and 

Non-E. coli type promoters. M. smegmatis and M. tuberculosis promoter analysis by 

Bashyam et al. [6] showed that occurrence of TG motif near –10 region is 

functionally significant for those having nonfunctional –35 region. These promoters 

form a different class of promoters known as ‘Extended –10 promoters’. The type of 

expression host, and the variation of the nucleotide sequence composition at –35 and 

–10 region of mycobacterial promoters [7] indicates that there exists immense 

variation in transcription initiation mechanism of mycobacterial promoters.  

Transcription initiation is a multi-step, sequential process involving: a) 

binding of RNA polymerase to the promoter leading to formation of a relatively 

weak closed initiation complex; b) its isomerization to the more stable open complex 

that is accompanied by the separation of the DNA strands upstream and around the 

start site of the transcription; and c) RNA polymerase escapes from the promoter 

after cycles of abortive initiation forming the stable elongation complex [8]. 

Promoter DNA undergoes drastic conformational changes during initiation of 

transcription. The necessary condition for open complex formation is that RNA 

polymerase must bind and bend the promoter DNA. This bending and subsequent 

torquing is responsible for melting the DNA and the formation of open complex [9-

10].  

The role of DNA curvature has been studied extensively in E. coli [11-17]. 

The conformation of DNA is a function of its nucleotide sequence [18-19]. The three 

dimensional structure of DNA is the effect caused largely by interactions between 

neighboring base-pairs [20-29]. Generally, periodic repetitions of curved DNA in 

phase with the helical pitch cause the DNA to assume a macroscopically curved 

structure. Several theoretical models for estimating DNA curvature from di- or 

trinucleotides have been devised, and require various types of experimental data [23, 



  
 

25, 28-31]. It is to be noted, however, that these models are being debated for their 

generality [32] . The importance of DNA conformation in transcription initiation is, 

however, clear and it would be interesting to study the DNA curvature distribution 

within the mycobacterial promoters especially in view of the large variation in their 

transcription mechanism. The objective of this chapter is to use six different di- and 

trinucleotide dependent models of curvature prediction for analysis of mycobacterial 

promoters. 

 

8.2 SYSTEM AND METHODS 

8.2.1 Data 

 The data for curvature analysis was taken from compilation of mycobacterial 

promoters (refer Table I, chapter 6). This data set contain 125 different 

mycobacterial promoters, out of which 80 promoters have their transcription start site 

(TSS) mapped while the other 45 are the putative promoters. In the listed 

compilation, we have considered the sequence stretches between –50 and +10 bp 

with respect to the TSS for the promoters whose TSS is mapped. For the putative 

promoters, we have documented the sequence stretch between 15-bp upstream region 

of –35 box and 20 bp downstream of the -10 box. The promoter sequence length 

varies from 34 to 71 nucleotides based on the availability of the nucleotide sequence 

upstream of the –35 region and downstream of the –10 region. In few cases, for the 

same gene two or more different sequence frames are considered based on the 

alternate consensus probability. Thus, 135 mycobacterial promoter sequences are 

used in this study.  

 

8.2.2 Curvature Analysis 

For the purpose of analyzing curvature distribution within mycobacterial promoter 

sequences, we have used the following dinucleotide models based on i) 

experimentally determined wedge angles [25]; ii) energy minimized values of roll 

and tilt angles [31, 33]; iii) X-ray crystallography of DNA oligomers [30]; and iv) 

Calladine-Dickerson rules [34-35]. The trinucleotide models used include: i) the 

model based on tabulation of preferred sequence locations on nucleosomes [23, 28]; 

and ii) DNase I cutting frequencies [29]. 



  
 

1. CURVATURE [36]: To obtain curvature map of each mycobacterial promoter, a 

window size of 21 bp nucleotide sequence is given as an input to the program and 

the curvature is obtained as an output. The results of this study are listed in Table 

I for each mycobacterial promoter. Various sub-groups of mycobacterial 

promoters are analyzed for nature of curvature profile and results are listed in 

Table II. 

2. P. De Santis [33]: The curvature vector C (n,v) representing, in the complex 

plane (in modulus and phase), the directional change of the double helix axis 

between sequence number n and n+v is calculated for each mycobacterial 

promoter sequence in the compilation. For this calculation, roll and tilt angle 

values (in degrees) for the sixteen different dinucleotide steps in DNA are taken 

from Anselmi et al., [31]. In our analysis, we have used integration step value as 

31 (~ three turns of B-DNA) in order to minimize the signal to noise ratio. The 

results of this study are also listed in Table I for each mycobacterial promoter. 

Various sub-groups of mycobacterial promoters are analyzed for the nature of 

curvature profile and these results are presented in Table II. Curvature dispersion 

σ2
 quantifies the central dispersion of the local helical axes with respect to the 

average direction of the double helix. The σ2 plot of cyclically permuted DNA 

sequence allows an easy alternative to experimental permutation assay for DNA 

tracts up to 700 bp long. Hence, σ2 plots of cyclically permuted mycobacterial 

promoters are prepared to see exact position of molecular bend locus. For 

simplicity, of analysis mycobacterial promoter region is divided into the 

following five sub-regions: i) region above –35 box, ii) –35 region, iii) spacer 

region, iv) –10 region, and v) region below –10 box. The position of molecular 

bend locus, for each mycobacterial promoter, with respect to the sub-regions 

specified above, is mentioned in Table III. 

3. Calladine -D ickerson Rule [34-35]: Calladine proposed four rules to understand 

the sequence-dependent departures from classical B-DNA due to simple steric 

hindrance of neares t neighbor purines on opposite strands. He suggested that the 

DNA chains may overcome these steric clashes in four possible ways: i) the helix 

twist angle may be reduced, ii) the base pairs can rotate along their long axes, iii) 

the DNA backbone can shift sideways towards the pyrimidines, and iv) the 

propeller twist can be suppressed. Dickerson quantified this by constructing four 



  
 

sum functions (Σ 1 to Σ4), by means of which the base sequence can be used to 

calculate the expected local variation in helix twist (Σ 1), base plane roll (Σ 2), 

torsion angle difference at the two ends of the base pair (Σ3), and flattening of 

propeller twist (Σ4). DNA helical structure variation at the molecular bend locus 

is studied here for mycobacterial promoters using Calladine-Dickerson rules. For 

this analysis, we have taken 11-bp long sequence stretch obtained by taking five 

nucleotides on either side of the molecular bend locus of each mycobacterial 

promoter. For brevity, only Σ1 function plots for the promoters whose TSS is 

mapped are shown in Figure 8-1. 

4. Propeller Twist [30]: It is known that different types of dinucleotide step have 

different levels of conformational flexibility, which is very closely related to the 

Propeller-Twist. Propeller Twist values are obtained from X-ray crystallography 

of DNA oligomers. Dinucleotides with a large propeller-twist have a tendency to 

be more rigid than dinucleotides with low propeller twist. Higher (less negative) 

values correspond to higher flexibility. Flexibility profile was plotted using the 

propeller twist values from X-ray crystallography of DNA oligomers for 

overlapping dinucleotides. 

5. DNase I derived bendability parameters [29]: The productive binding of Bovine 

pancreatic deoxyribonuclease I (DNase I) requires DNA to be bent towar d the 

major groove (positive roll). Base sequences that are flexible or inherently bent 

towards the major groove should therefore be more accessible to DNase I 

cleavage. DNase I cutting frequencies on naked DNA can be used as a 

quantitative measure of anisotropic bendability (major groove compressibility). 

Bendability profile was calculated using DNase I derived bendability parameters 

for overlapping trinucleotides of each mycobacterial promoter sequence. 

6. Location Preference [23]: From experimental investigations of the positioning of 

DNA in nucleosomes, it has been found that certain trinucleotides have strong 

preference for having minor grooves facing either towards or away from the 

nucleosome core. Based on the premise that flexible sequences can occupy any 

rotational position on nucleosomal DNA, while rigid sequences will be restricted 

in rotational location. We have calculated DNA flexibility profile using these 

location preference values for mycobacterial promoters at each position 

considering overlapping trinucleotides. 



  
 

8.3 RESULTS AND DISCUSSION 

The curvature distribution for various mycobacterial promoters as calculated 

using different models show similar trends. In order to aid the analysis the results 

obtained using: i) experimentally determined wedge angles and ii) energy minimized 

values of roll and tilt angles, have been compared. The extent of curvature obtained 

using these models has been classified in terms of low, medium or high curvature 

and the results of the two models corroborate each other for most of the promoters 

barring a few promoter entries (e.g. M. tuberculosis T3, T6, T101, T129, T130, recA, 

rrnA P1, gyrA, cpn60, rrnA PCL1, 16S rRNA, metA, rpsL etc.) where the prediction 

of the two models differ.  

 In order to obtain a better insight for the results obtained by these two 

models, mycobacterial promoters are sub-divided into various groups. These groups 

are as follows: i) Class I: mycobacterial promoters resembling to E. coli σ70 type 

promoters, ii) Class II: mycobacterial promoters which are different from E. coli σ70 

type promoters, and constituting a class known as typical mycobacterial promoters, 

iii) Class III: Extended –10 promoters, iv) mycobacterial promoters having optimum 

(17±1 bp) spacer length, v) mycobacterial promoters having high (≥50%) AT 

content, vi) mycobacterial promoters having AnTm (n+m≥3) tract repeated in phase 

with each other and present at the upstream of –35 box, vii) M. tuberculosis 

promoters, viii) M. smegmatis promoters, and ix) entire mycobacterial promoter 

compilation.  The curvature analysis of promoters classified in these groups is listed 

in Table II. From Table II, it can be seen that E. coli σ70 type mycobacterial 

promoters have 15% (19%), 60% (67%), and 25% (14%) of low, medium, and high 

curvature profiles using curvature models of Shpigelman et al., [36] (P.De Santis et 

al., [33]). This distribution indicates that mycobacterial promoters resembling to E. 

coli σ70 type (Class I) have nearly 81% (85%) sequences having medium and high 

curvature profiles. Very few i.e., 19% (15%) promoter sequences are having low 

curvature profiles. Considering percent distribution of curvature existing among E. 

coli σ70 type mycobacterial promoters, we can say that these promoters might be 

having good promoter activity. The analysis also indicates that the Non-E. coli σ70 

type mycobacterial (Class II) promoters have 22% (27%), 56% (54%), and 22% 

(19%) of low, medium, and high curvature profiles (using both curvature models). 

This group of mycobacterial promoters has compara tively higher percent of low 



  
 

curvature profiles indicating that Non - E. coli σ70 type mycobacterial promoters 

might be expressed poorly compared to E. coli σ70 type mycobacterial promoters.  

The curvature models applied to the extended –10 (Class III) promoters  show 17% 

(4%), 25%(58%), and 58% (38%) of low, medium, and high curvature profiles. The 

percent distribution of these promoters indicates that very few of these promoters 

have low curvature profiles. Extended –10 promoters might therefore have 

reasonably high promoter activity. M. tuberculosis T101, M. smegmatis S6, S16, and 

S19 promoters are extended –10 promoters, which are strongly curved. For such 

mycobacterial promoters sequence of the   –35 region seems to be less important due 

to presence of extended TG motif in the immediate neighborhood of –10 box along 

with the high curvature existing within it. Mycobacterial promoters lacking 

consensus sequence at –35 and are curved are M. tuberculosis T150, M. smegmatis 

S12, S14, S30, and S35. Here curvature along with –10 region might be useful for 

promoter activity although they do not possess TG motif in the immediate 

neighborhood of –10 box. The mycobacterial promoters having optimum (17±1 bp) 

spacer length have 9% (11%) of sequences having low curvature profiles by both the 

models. Majority of sequences from this class has curved structure. The favorable 

flexibility and/or curvature of DNA may compensate somewhat for a sub optimal 

spacing of 16 or 18 base pairs between –35 and –10 regions during transcription 

initiation. The mycobacterial promoters with high % of AT have 12% (15%), 54% 

(58%) and 35% (27%) of sequences possess low, medium and high curvature 

profiles, respectively. The occurrence of curvature is obvious for majority of 

sequences from this class due to their high percentage of AT content. Among 

mycobacterial promoters with AnTm (n+m ≥ 3) tract repeated in phase with each 

other and present at the upstream of –35 box, 58% (50%) of sequences have high 

curvature trends. These promoters having upstream sequences, which can be 

expected to produce curvature in the DNA helical axis might be transcriptionally 

active promoters. M. tuberculosis promoters have 14% (9%), and M. smegmatis 

promoters have 29% (25%) of high curvature profiles. Such a percent  distribution 

may be one of the causative factors for M. smegmatis to express better than M. 

tuberculosis. For the analysis performed in the Table II, it is important to realize that 

the % value of curvature predictions by both the models sometimes differ 

significantly due to different conditions defined for low, medium, and high curvature 



  
 

profiles; and in few cases predictions by two models lie on the boundary conditions 

of low and medium, or medium and high curvature profiles. The sample size 

considered in this analysis is also small, and can affect large difference in the 

predictions by two models. Results listed in Table II should therefore be used to see 

only qualitative and semi-quantitative trends. 

 According to CURVATURE software, curvature maxima for M. tuberculosis 

gyrB P1, M. bovis BCG alpha, M. fortuitum rrnA P1, Mycobacteriophage L5 71P1, 

M. neoaurum rrnA PCL1, and rrnA P3 promoters lies above 0.3 DNA curvature units 

and it is present between –35 and –10 regions.  It will be interesting to study the 

transcription initiation mechanism in these promoters because in E. coli it is shown 

that curvature between –35 and –10 regions seems to correlate significantly with 

promoter activity. In such cases the curved structure of promoter DNA enhances the 

binding of E. coli RNA polymerase to the promoter, when the curve is oriented 

correctly relative to the potential –10 and –35 regions, and it also facilitate 

unwinding of the –10 region by thermal motion, as the DNA vibrates back and forth 

in solution between twisted and curved forms [11].  

 σ2 plots of cyclically permuted mycobacterial promoters should allow an 

alternative to the experimental permutation assay for determining molecular bend 

locus of a mycobacterial promoter sequence. The model has been successful in 

predicting the experimental results for other systems [33, 38-39], while promoters 

analyzed here have not been subjected to any such experimental investigations and 

hence the theoretical predictions could not be tested. In Table III, we have evaluated 

the percent occurrence of position of molecular bend locus in i) region above –35 

box, ii) -35 region, iii) spacer region, iv) -10 region, and v) region below –10 box.  

For this analysis, we have separated entire promoter compilation into two groups i)  

promoters whose TSS is mapped (true promoters) and ii) putative promoters.  

According to percent distribution for true promoters, molecular bend locus lies 

predominantly in the spacer region and region below –10 box. The 16%, 16%, 30%, 

6% and 32% of true mycobacterial promoter sequences show that their molecular 

bend locus lies in the region above –35 box, -35 region, spacer region, -10 region, 

and region below –10 box, respectively. For putative promoters 8%, 23%, 15%, 6% 

and 48% of sequences show their m olecular bend locus in region above –35 box, -35 

region, spacer region, -10 region, and region below –10 box, respectively. Thus, for 



  
 

true as well as putative mycobacterial promoters spacer region and region below –10 

box seems to be of frequent occurrence for the location of molecular bend locus. 

Similar studies by Nair and Kulkarni [40] on E. coli promoter sequences showed that 

60% of these promoters have their minima (molecular bend locus) lying in the spacer 

region. However, for mycobacterial promoters position of molecular bend locus can 

occur with varying percent distribution at region above –35 box, -35 region, spacer 

region and region below –10 box. Thus, mycobacterial promoters have variation 

towards position of molecular bend locus compared to E. coli promoters. 

 Calladine and Dickerson rule (Σ1-Σ 4) gives a way of revealing possible 

structural homology between regions of DNA, when the similarity is not obvious by 

direct comparison of sequence alone. The helical structure variation at the molecular 

bend locus for the true mycobacterial promoters is sub-grouped according to the 

position of molecular bend locus. Thus, Figure 8-1 is subdivided into five plots. The 

helical structure variation obtained using Σ1 function at the molecular bend locus 

lying in i) region above -35 box, ii) –35 region, iii) spacer region, iv) –10 box, and v) 

region below –10 box shows that each sub-group has structural similarity within that 

particular sub-group. The other sum functions also uphold the structural similarities 

(results not shown). The analysis of the sequence at the minima reveals that there 

exists homology among these sequences irrespective of the exact position of minima. 

The regions that are localized for mycobacterial promoters show significant 

commonality in structure, which is evident from the Σ1 function plot. There seems to 

exist some structural commonalties among the each sub-group of mycobacterial 

promoters. We can therefore group the promoters based on the common structural 

features and advocate the notion of “consensus structure” suggesting their common 

biological significance. The variation from these consensus structures can account 

for varying strength of the promoters. Such an analysis might help us in designing 

experiments to define the exact location and function of a promoter. 

 Although the entire mycobacterial promoter compilation has been analyzed 

using other curvature models [23, 29, 30], the results obtained using only three 

models are presented. 

Mycobacterial promoters that are strongly curved are M. tuberculosis T150, 

and gyrB P1; M. Leprae 65KD; M. smegmatis S6, S12, S14, S30, S35, and rrnB; M. 

Phlei rrnA P2; M. abscessus rrnA P4, rrnA P2, and rrnA P3; M. chelonae rrnA P2, 



  
 

rrnA P3, and rrnA P4. Figure 8-2 shows the curvature map expressed in DNA 

curvature units of these promoters using CURVATURE software. The curvature 

maxima of these curvature maps correspond to region having more curved structure. 

Figure 8-3- a & b presents the curvature analysis using energy-minimized values of 

roll and tilt angles. The curvature vector is a complex function of the sequence with 

the modulus representing the deviation and the phase indicating the relative 

direction. The curvature diagrams for these mycobacterial promoters clearly show a 

DNA tract characterized by both a high curvature modulus (see Figure 8-3-a) and a 

constant phase (Figure 8-3-b). Figure 8-4 shows flexibility profiles based on 

propeller twist values from X-ray crystallography of DNA oligomers. Dinucleotides 

with a large propeller-twist have a tendency to be more rigid than dinucleotides with 

low propeller -twist. Thus, sequence positions corresponding to higher (less negative) 

values represent regions of higher flexibility for mycobacterial promoter. Figure 8-5 

presents flexibility profile calculated using trinucleotide model based on preferred 

sequence location on nucleosomes. Sequence positions corresponding to lower 

values of location preference represent more flexible region of mycobacterial 

promoter, which have less preference for being posit ioned specifically. Figure 8-6 

shows bendability profile in the mycobacterial promoters calculated using DNase I 

derived bendability parameters. Sequence position corresponding to higher 

bendability parameters represent to higher propensity for major groove 

compressibility of mycobacterial promoter. Essentially all the models predict similar 

behavior for these promoters. Thus nucleotide sequence position corresponding to 

high (low) curvature is showing high (low) curvature trend with all the other models. 

Mycobacterial promoters M. abscessus rrnA P4, rrnA P2, and rrnA P3; M. chelonae 

rrnA P2, rrnA P3, and rrnA P4 have similarity in their curvature trends as their 

nucleotide sequence shows maximum homology with each other. The similar 

curvature trends suggest common mechanism of transcription initiation. 

Regions with high DNA curvature would be expected to exhibit anomalous 

mobility by the gel electrophoresis assay. It will be of interest to examine fragments 

containing these regions for the structural feature of DNA curvature, and the 

corresponding functional feature of transcriptional activation. Plasmids containing 

stiff, flexible or curved DNA structure near the cleavage site of commonly used 

restriction enzymes can be helpful for studying the role of DNA structure in 

transcription mechanism of mycobacterial promoters. 



  
 

 Thus, analysis of DNA curvature distribution for mycobacterial promoters 

reveals the following important features. i) The curvature distribution for various 

mycobacterial promoters calculated using different models show similar trends. ii) 

Mycobacterial promoters resembling to E. coli σ70 type have nearly 81% (85%) 

sequences having medium and high curvature profiles. iii) Non- E. coli σ70 type 

mycobacterial promoters have comparatively higher percent of low curvature 

profiles. iv) Very few of extended –10 promoters have low curvature profiles. v) 

Mycobacterial promoters having AnTm (n+m ≥ 3) tract in the upstream region of –35 

box and repeated in phase with each other have high curvature profiles. vi) M. 

smegmatis promoters have high curvature profiles compared to M. tuberculosis 

promoters.  

Experimental studies based on curvature distribution and its role in 

transcription mechanism for particular mycobacterial promoter(s) or representative 

examples from various groups of mycobacterial promoters showing some distinct 

features will throw light on our understanding of transcription mechanism of 

Mycobacteria. 
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Figure 8-1: Σ1 function plots for the true mycobacterial promoters, sub-grouped 

depending upon the location of the molecular bend locus. 
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Figure 8-2: Curvature map obtained using experimentally determined wedge angles 

for mycobacterial promoters. Curvature is expressed in DNA curvature units [37] 

where one curvature unit corresponds to the mean DNA curvature in the crystalline 

nucleosome (1/42.8 
O

A ).  



  

Figure 8-3a: Curvature profiles obtained using energy minimized values of roll and 

tilt angles for mycobacterial promoters. The curvature is reported as C, the 

curvature modulus averaged over 31 bp (M. smegmatis S6 is excluded from this plot 

as grid size used for it is 21 bp). 



  

 

Figure 8-3b: Relative phase profiles of the mycobacterial promoters. 



  

 

Figure 8-4: Flexibility profile calculated using propeller -twist values obtained from 

X-ray crystallography of DNA oligomers for mycobacterial promoters. 



  

 

Figure 8-5: Flexibility profile calculated using trinucleotide model based on 

preferred sequence location on nucleosomes for mycobacterial promoters. 



  

Figure 8-6: Bendability profile calculated using DNase I derived bendability 

parameters for the mycobacterial promoters. 



  

Table I: Nature of curvature profile for mycobacterial promoters using dinucleotide models based on- i) 
experimentally determined wedge angles, and ii) energy minimized values of roll and tilt angles  
Promoter analyzed Shipgelman et 

al.[36]♣ 

 Santis et al. [33]♦ Promoter analyzed Shipgelman et al. 

[36] 

 Santis et al. [33] 

M. tuberculosis   M. tuberculosis   

T3 Medium Low glnA (sp=10) Medium Medium 

T6 Medium High KatG PA (sp=19) Low Low 

T26 Low Low KatG PA (sp=15) Low Low 

T80 Medium Medium KatG PB (sp=20) Medium Medium 

T101 High Medium KatG PB (sp=22) Medium Medium 

T119 Low Low KatG PC (sp=22) Low Low 

T125 Medium Medium KatG PC (sp=14) Low Low 

T129 Low Medium purL Medium Medium 

T130 Low Medium purC Low Low 

T150 High very high groE (sp=19) Medium Medium 

recA Medium Low groE (sp=11) Medium Medium 

rrnA P1 Medium Low ahpC Medium Medium 

gyrA Low Medium 32 KDa Medium Medium 

cpn60 Low Medium 10 Kda (sp=17) Medium Medium 

gyrB P1 very high very high 10 Kda (sp=15) Medium Medium 

gyrB P3 Medium Medium 10 Kda (sp=8) Medium Medium 

85A (sp•=17) Medium Medium 65 KDa Medium Medium 

85A (sp=22) Medium Medium mpt 64 Medium Medium 

gyrB P2 Medium Medium metA Medium High 

rrnA PCL1 High Medium rpsL High Medium 

16S rRNA High Medium 38 KDa Medium Medium 

glnA (sp=18) Medium Medium ppgK Medium Medium 



  

Table I continued…. 
 
Promoter analyzed Shipgelman et al. 

[36] 

 Santis et al. [33] Promoter analyzed Shipgelman et al. 

[36] 

 Santis et al. [33] 

M. bovis BCG   M. smegmatis   

hsp60 P2 Medium Low S4 Medium Medium 

rRNA High Medium S5 Low Medium 

ahpC Medium Medium S6 High High∗ 

23 K Medium Medium S12 very high High 

mpb 64 Medium Medium S14 High High 

18 K High Medium S16 High Medium 

64 K Medium High S18 Medium Medium 

rpsL High Medium S19 High Medium 

mpb70 High Medium S21 Medium Medium 

alpha High Medium S30 High High 

M. leprae   S33 Medium Low 

16S rRNA Medium Medium S35 High High 

18 Kda (sp=17) High Medium S65 Medium Medium 

18 Kda (sp=18) High Medium S69 Medium Low 

28 KDa Medium Medium S119 Low Low 

groE1 Low Low gyr B Low Low 

65 KD very high High recA Medium Medium 

36 K Medium Low ask Low Low 

SOD Medium Low acetamidase Medium Medium 

rpsL High Medium rrn B High High 

M. smegmatis   rrnA P1 Medium Medium 

alrA Low Low rrnA P2 Medium Low 



  

Table I continued….. 
 
Promoter analyzed Shipgelman et al. 

[36] 

 Santis et al. [33]  

 

Promoter analyzed Shipgelman et al. 

[36] 

 Santis et al. [33]  

 

M. smegmatis   M. phlei   

rrnA P3 Low Medium rrnA PCL1 Medium Medium 

rrnA PCL1 Medium High rrnA P1 Medium Medium 

rpsL (sp=18) Medium Medium rrnA P2 very high High 

rpsL (sp=17) Medium Medium rrnA P3 Medium Medium 

ahpC Medium Medium Mycobacteriophage I3  

M. paratuberculosis  pKGR25 Medium Medium 

pAJB303 Low Low pKGR9 Medium Medium 

pAJB86 Medium Medium pKGR38 Medium Medium 

pAJB125 Medium Medium ORF1 Medium Low 

pAJB300 Medium Low ORF2 Medium High 

pAJB305 Medium Medium pKGR1 Medium Medium 

pAJB304 Low Medium Mycobacteriophage L5  

PAN Low Medium 71 P2 Medium Medium 

pAJB73 Low Low 71 Pleft  Medium Medium 

pAJB301 Medium Low 71 P1 High Medium 

M. fortuitum   M. avium   

repA Low Medium avi-3 Medium Medium 

rrnA PCL1 Medium Medium pLR7 Medium Low 

rrnA P1 Medium Medium M. neoaurum   

rrnA P2a High Medium rrnA PCL1 Medium Medium 

rrnA P2b Medium Medium rrnA P1 Medium Medium 

rrnA P3 Medium Medium rrnA P3 Medium Medium 



  

Table I continued….. 
 
Promoter analyzed Shipgelman et al. 

[36] 

 Santis et al. [33]  

 

Promoter analyzed Shipgelman et al. 

[36]  

 Santis et al. [33]  

 

M. neoaurum   M. chelonae   

rrnA P2 High Medium rrnA P2 High very high 

M. abscessus   rrnA P1 Medium Medium 

rrnA P4 High very high rrnA PCL1 High Medium 

rrnA P1 Medium Medium rrnA P3 High very high 

rrnA PCL1 High Medium rrnA P4 High very high 

rrnA P2 High very high - - - 

rrnA P3 High very high - - - 

 
                                                                 
♣ Curvature maxima lying in the range [0.0-0.2], [0.2,0.4], [0.4,0.6]; and [0.6 and above] DNA curvature units is 

referred to as low, medium, high and very high curvature map, respectively. 
♦ Curvature maxima lying in the range [0-5], [5-10], [10-15]; and [15 and above] unit is refereed to as low, medium, 

high and very high curvature profile, respectively. 
• sp denotes spacer length in bp. 
∗ For M. smegmatis S6 promoter grid value used is 21 bp while calculating curvature vector (in phase and modulus) 

by Santis et al. [33] 



Table II: Percentage of low, medium and high curvature profiles for various sub-groups of mycobacterial promoters using: i) 

experimentally determined wedge angles [36]; and ii) energy minimized values of roll and tilt angles [33] 

Low Medium High  

Mycobacterial promoters  Shipgelman 

et al. [36] 

P. De Santis 

et al. [33] 

Shipgelman 

et al. [36] 

P. De Santis 

et al. [33] 

Shipgelman 

et al. [36] 

P. De Santis 

et al. [33] 

Class I: E. coli σ70 type (sample size=69) 15 19 60 67 25 14 

Class II: Non-E. coli σ70 type (sample size=36) 22 27 56 54 22 19 

Class II: Extended –10 type (sample size=24) 17 4 25 58 58 38 

Having optimum (17±1 bp) spacer length (sample 

size=79) 

9 11 61 72 30 17 

With high (≥50%) AT content (sample siz=26) 12 15 54 58 35 27 

Having AnTm (n+m ≥ 3) tract repeated in phase 

with each other and present at the upstream of –

35 box (sample size=12) 

17 17 25 33 58 50 

 



  
 

Table II continued… 
 

Mycobacterial promoters  Low Medium High 

 Shipgelman 

et al. [36] 

P. De Santis 

et al. [33] 

Shipgelman 

et al. [36] 

P. De Santis 

et al. [33] 

Shipgelman 

et al. [36] 

P. De Santis 

et al. [33] 

M. tuberculosis (sample size=44) 25 23 61 68 14 9 

M. smegmatis (sample size=28) 21 25 50 50 29 25 

Entire compilation (sample size =135) 17 20 57 64 26 16 

 



Table III: Location of molecular bend locus with reference to following sub-regions in the 

mycobacterial promoter♣ sequence: i) region above –35 box, ii) –35 region, iii) spacer region, 

iv) –10 region; and v) region below –10 box 

Region above –35 

box 

-35 region Spacer region -10 region Region below –10 

box 

Promoters whose transcription start site is determined 

MT T180 MT T119 MT T130 MT T101 MT T3 

MT recA MT T125 MT cpn60 MS S14 MT T6 

MT 85A (sp•=17) MT T129 MT gyrB P1 MS rpsL (sp=17) MT T26 

MT KatG PC (sp=22) MT 85A  (sp=22) MT gyrB P2 MP pAJB86 MT T150 

MT purC MT purL MT katG PA (sp=19) MY 71P2 MT rrnA P1 

ML 16S rRNA MS S4 MT katG PA (sp=15) - MT gyrA 

MS S69 MS S5 MT katG PB (sp=20) - MT gyrB P3 

MS gyrB MS S19 MT katG PB (sp=22) - MT rrnA PCL1 

MS ask MS S21 MB hsp60 P2 - MT 16S rRNA 

MS rrnA P1 MS S119 MS S6 - MT glnA (sp=18) 

MS rrnA P2 MS rrnB MS S12 - MT glnA (sp=10) 

MP pAJB300 MA rrnA P4 MS S16 - MT KatG PC (sp=14) 

MF rrnA PCL1 MC rrnA P2 MS S18 - ML 18 kDa (sp=17) 

MH rrnAPCL1 MC rrnA P3 MS S30 - ML 18 kDa (sp=18) 

- - MS S33 - MS alrA 

- - MS S35 - MS S65 

- - MP pAJB303 - MS recA 

- - MP PAN - MS acetamidase 

- - MF repA - MS rrnA P3 

- - MY 71P1 - MS rrnA PCL1 

- - MA rrnA P1 - MS rpsL (sp=18) 



  
 

Table III continued… 
 

Region above –35 

box 

-35 region Spacer region -10 region Region below –10 

box 

- - MA rrnAPCL1 - MP pAJB125 

- - MA rrnA P2 - MP pAJB305 

- - MA rrnA P3 - MP pAJB304 

- - MC rrnA P1 - MP pAJB73 

- - MC rrnA PCL1 - MY 71Pleft 

- - - - MN rrnAPCL1 

- - - - MC rrnA P4 

16%  16%  30%  6%  32%  

Putative Promoters 

MT 32 kDa MT ahpC MT 10 kDa ML SOD MT groE 

ML 28 kDa MT metA MT 38 kDa MI pKGR25 MT groE 

MF rrnA P1 MT rpsL MT ppgK MN rrnA P2 MT 10kDa 

MN rrnA P1 MB ahpC MB alpha - MT 10kDa 

- MB rpsL MI pKGR38 - MT 65kDa 

- ML 65 kDa MI ORF2 - MT mpt64 

- ML 36K MV pLR7 - MB rRNA 

- ML rpsL - - MB 23K 

- MS ahpC - - MB mpb64 

- MH rrnA P2 - - MB 18K 

- MI pKGR9 - - MB 64K 

- - - - MB mpb70 

- - - - ML groE1 

- - - - MP pAJB301 

- - - - MF rrnA P2a 



  
 

Table III continued … 
 

Region above –35 

box 

-35 region Spacer region -10 region Region below –10 

box 

- - - - MF rrnA P2b 

- - - - MF rrnA P3 

- - - - MH rrnA P1 

- - - - MH rrnA P3 

- - - - MI ORF1 

- - - - MI pKGR1 

- - - - MV Avi-3 

- - - - MN rrnA P3 

8%  23%  15%  6%  48%  

 

                                                 
♣ MT: M. tuberculosis; MB: M. Bovis BCG; ML: M. leprae; MS: M. smegmatis; MP: M. 
paratuberculosis; MF: M. fortuitum; MH: M. phlei; MI: Mycobacteriophage I3; MY: 
Mycobacteriophage L5; MV: M. avium; MN: M. neoaurum; MA: M. abscessus; MC: M. chelonae 
• sp denotes spacer length in bp. 



 

Biological systems are complex in nature and several known and unknown factors 

govern their functioning. It is difficult most of the times to interpret underlying relationship(s) 

between several experimental conditions and corresponding system output(s). 

Phenomenological modeling of such systems is also difficult due to the inherent complexity 

of biological systems and inadequate information about them. Thus, it is important to 

develop and use alternate methods that can be applied to systems with inadequate  

information. Artificial Intelligence (AI) tools viz. ANN and GA can uncover the underlying 

relationship(s) of such biological systems. 

 

Detailed understanding of the biosystems require carrying out experiments that are 

often costly and time consuming. Most of the experiments are also difficult to perform. Due 

to multilevel interactions, a small change in input parameter of the system may result in 

changes in  large number of features of system. Thus, to have a predictive model that 

captures the cause and effect relationship is certainly a difficult task. AI tools like ANN and 

GA can help in building up predictive models and use qualitative and quantitative 

information about the system. Thus, such modeling can help us in having better 

understanding of intricate biosystems. Therefore, the primary objective of this thesis is: i) to 

built up quantitative predictive relationship between inputs and outputs of biosystems 

wherever possible, and ii) in instances where such predictive quantitative relationship can 

not be built due to gross inadequacy of input-output data, it is hoped that they would at 

least provide qualitative guidelines for narrowing the choice of experiments to be 

performed. 

 

It is with this view that in chapter 2, we develop an ANN model to establish a 

correlation between a nucleotide sequence of DNA and its effective curvature, 

characterized in terms of retardation anomaly (RL) value.  An ANN capturing the role of 

phasing, increased helix flexibility, run of polyA tracts, and flanking base pair effects in 

determining the extent of curvature has been developed. The results suggest that ANN can 

be used as a model-free tool for studying DNA curvature. In chapter 3 for ANN – based 

modeling of DNA sequences, two new input coding strategies namely, the wedge and the 



   

twist  code have been suggested. The performance of the proposed strategies has been 

tested by performing various case studies. The proposed coding schemes have been shown 

to outperform the existing coding strategies especially in situations wherein limited data are 

available for building the ANN models. Chapter 4, presents a hybrid strategy involving an 

ANN and a GA for the optimization of a biologically important feature or property. This 

strategy is general and is illustrated using an example of optimization of DNA curvature. 

The ANN-GA technique is a useful tool to obtain, ahead of experimentation, sequences 

that yield high RL values. Chapter 5 illustrates a hybrid non-linear strategy involving an 

ANN and GA for optimization of transcription efficiency in eukaryotic systems using β-

globin gene as a case example. The study reveals that multiple base substitutions in the 

conserved as well as non-conserved regions can cause substantial enhancements in the 

RTL. We identify positions in the nucleotide sequences, which preferable should not be 

altered, as well as those positions where mutations can lead to increased RTL. The study 

helps to obtain an insight into the structural aspects of β-globin gene leading to high 

transcription efficiency.  

 

Chapter 6 of the thesis provides a compilation of different mycobacterial promoters 

and analysis of their DNA sequences for various features. Further, the study suggests show 

a broad classification of these promoters into three main types viz., i) E. coli type, Non-E. 

coli type, and  iii) Extended –10 promoters. In chapter 7, an ANN model is developed for 

classifying mycobacterial promoter sequences from non-promoter sequences. Calliper 

randomization approach has been suggested for determining structurally and functionally 

important regions within the mycobacterial promoter sequences. Chapter 8 presents 

theoretical analysis of DNA curvature for mycobacterial promoters using several di- and 

trinucleotide dependent models of DNA curvature. Various theoretical studies on 

mycobacterial promoters throw some light on the mycobacterial transcription machinery 

and structure of mycobacterial promotes. Such studies are an important step towards 

understanding low levels of transcription and the possible mechanisms of regulation of gene 

expression.  

 



   

In essence, the thesis aims at building predictive relationships using AI tools for 

complex biological systems with a view to model and analyze DNA sequences for their 

properties and biological roles. This continues to be a poorly understood area and it is 

hoped that the approach adopted in the thesis takes a step forward in resolving the issues. 
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