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GENERAL INTRODUCTION




E R ION

Many industrial reactiors are cetelytic in nature
and ofter the catalyst used is a solid., The catalysts
are frequertly formed by compaction of powder particles
into pellets. If the particles of the nowder &sre porous,
compactior will create 2 bimodal pore distribution with
micropores lying inside the porous particles ard macropores
between single or agplomerated particles. If however the
powder varticles are norvorous the pellet will have orly
racropores. In both the cases diffusion es well &s
chemical reaction are involved, ard the relative importerce
of the rates of these would detormire the desipr es well

as the rerformance of the reactor.

Investipgation of the problem of reactior and
diffusion in chemicelly reacting systems started in the
early 1930's, In 1939 Thiele enalysed the interaction
between reaction ard diffusion in & porous catalyst by
studying 2 simple first order reactior in repgular geometries
like sleb, cylinder and sphere, ard a parareter 'Thiele
rodulus' represerting the relative rates of resction and
diffusior was introduced. The resvlts were presented in
the form of effectiveress factor versus Thiele modulus
plots, The effectiveress factor is defired as the ratio
of tre actmel rezction rate to its value when there is

no diffusioral limitatior.



Essentially reaction-diffusior nroblers lesd to
@ boundary velue situastion. The ronlirear rature of
these equations may ‘cause corsiderable complexities in
obtainirg solutions to these equations. The ronlinearity
can arise due to several reasors: (i) rorlinear resction
rete term, (ii) derivative term, e.¢. when volume charge
occursy, (11i) devendence of trarsvort coefficients on
variables such as temperature or concertration (vhich in
this case are deperdert or distance) or (iv) tre
boundary conditions., In such cases it is difficult to
solve it analytiecally ard rumerical analysis has to be
undertaken depending upor the rature of the problem,
Considerable trial and error is required to solve these
problems, specielly when bimedel vore distribution is
teken into corsideration., It pives rise to *wo second
order differerntial equations which are counled at the
bourdery conditions, It is this coupling which creates
problers thet carrnot be herdied easily,

Several methods have bear developed for the
solutior of nonlireer two poirt bourdary velue problems.
In shootirg methods ( Coste et al, 1961 ) the equations
were integrated by the merching technijue, The puesses
required for the initiel wvelues were improved during
computetion by appropriate irterpolation forrulae, A
ronlinear equation was corverted to a lipear equatior by

linearisetion of the nonlirvear terms, and ther differerce



schemes or marching techriques were used ( Carberry ard
Wedel, 19633 Lee, 1§68, 196¢€ ). Integratior or merching
techriques cause difficulty ir studying the stability of
the system, Quasi-liresrisation technigues are effective
even when a system has nonlinesrity nroblems associated
with the finite difference method,and stability difficul-

ties are also taken care of.

Weisz and Hicks' (1962) studied & first order
irreversible ronisotherral reactior in a cetalyst pellet.
A trensformation was foundé which by &n appropricte choice
of value of the deperdert variable at the outer boundary
and of two other varameters erables one to fird the value
of the ¢rird perareter., The resulting equations were
solved as initizl value problems, thus avoidirg trial and
error, In this case it may not be vossible to obtain

solutions for fixed values of parameters,

Stewart and Villedsen (1969) used collocatior
procedure for calculation of effectiveress factors for a
single reactior in particles of various shepes., Stewart
(1978) derived inverisnt solutiors for diffusior-reaction

rroblems in vermeable catalysts.

A metrod has been developed ( Wedel and Luss, 1980 )
for computing the approximate wvalue of the effectiveness
factor for any rate expression for which a vnique steady

state exists,



It is seen that ever though accurate numerical
methods ( Villadsen and Michelsen, 1978 ) have been
developed for computing effectiveness factors, very few
attermpts have been made to obtain fast and sufficiently
accurate approximations of the effectiveness factor,
Corsiderable attention has beer devoted to reduce the
numerical complexities ( Kubicek and Hlavacek, 1970, 1971 a,
b, c3 Hanna, 19803 Jayaramen et gl, 19833 Wendt et al,
1978 ), Analytical expressions for effectiveness factors
have been obtained by usirg the finite integral transform
technique by Do and Bailey (1982)., They bave obtained
asymptotic solutions for large and srall values of Thiele
modulus and Biot rurbers by usinrg perturbation techniques,

A transform iterative technique has been used ( Jerry,

1983 ) to obtain solutiors to ronlinear corcertration

boundary value problems.,

Effectiveness factors for a large variety of
reaction rate forms including the commonly encourtered
Langmuir-Hinshelwood (L-H) type of kiretic expressions
have been reported in the literature for different pellet
configurations. A comprehernsive accourt of the results
can be found in autrorative textss Aris, 19753
Satterfield, 19703 Doraiswamy and Sharma, 1983 , Sundaram
(1982) obtained expression for effectiveness factor for
L.H type of kineties. Analyticel expressions for & single



reaction with arbitrary kiretics and geometry have been

developed by Gottifredi et al (1980 a, b).

The thesis is divided into three sections. Section I
develops new sets of trarsformatiors that corvert an
original two point bourdary wvalue problem into an equivalenrt
initial value problem. Chaepter I irtroduces a method for
obtairing the transformatiors for a specific rete form.

In Chapter 2 use of the transforrations has beer illustrated
for certain knowr cases of reaction-diffusion problems in
morodispersed catalyst systems, to confirm the validity of
the method, which has then been applied to some new cases.
In addition to this, a case where external mass trensfer
resistance exists has been taken into account. Finally

it has beer extended to a case of CSTR where, in additior
to flow resistance, interphese and intraphase resistances
have also been taken cere of, Chapter 3 analyses the more
complex case of a bidispersed catalyst in which a simple
L-H type of reaction is considered ard it is shown that

trial and error cen be completely avoided.

Section II of the thesis has beer devoted to the
celculation of effectiveress factors for catalysts posse-
ssing bipore distribution. The analysis ircludes practicel
complications such as diffusivity variatiors within the
pellet, norisothermicity generated due to the reaction,
and catalyst deactivation, The first chapter of this
sectior, viz, Chapter 4 of the thesis, provides an introduction



to bidispersed catalysts., Chapter 5 deals with the case

of diffusivity variations., Several reactions of industrial
importarce are known to be carried out over catalysts (such
as the synthetic zeolites) where variations in the
transport properties cannot be ignored. The aralysis
assumes different forms of the varieation of these transvort
properties, such as the diffusivities, and in general
reports the influence of such variations orn the effective-

ness of the cetalyst,

Chapter 6 deals with the case of bipore catalysts
with norisothermicity due to the gereration of heat by the
reaction. The results, again evaluated in terms of thre
effectiveness of the cetalyst, indicate differert regiors

in parameter space where ronunique situations cen prevail,

Chapter 7 treats the case of catalyst deactivatior.
Both series ard parallel types of catalyst deactivation
are cornsidered and tre results are expressed in terms of

effectiveness factors.

In all cases where due to the bipore rature of
the catalyst, we end up with a set of coupled differential
equations for the micro and the macroparticle regiors, the
use of convertional numerical methods becomes cumbersome
requiring considerable trial and error. These problems

can be solved by using the methods of weighted residuals.,



Sections I ard II in the thesis have beer devoted
to the solution of problems of practical interest that
arise in bidispersed pellets. The reaction rate forms
considered in these sectiors vary from simple first order
reaction to nonlirnear rate forms of the L-H type and in
some of these sitvatiors multiplicity of events has been
roted. Section III of the thesis deals with a situation
where the reaction rate form is norlinear and exhibits
multiplicity of states urder certain sets of corditiors,
The essential intention in this section has been to find
wrether some of these states can coexist and the
eventuvality of wrat happens wrern an infinitesimaly small

disturbance persists in such a situation.

Chapter 8 (the only chapter of Section III)
introduces the problem highligrting its essential role in
explaining possible pattern formations, dissipative
structures, etc. The necessary corditions for the occurrence
of coexisting solutiors in reaction-diffusion systems have
been derived subsequently where & specific example of ar
autocatalytic reaction is discussed. Further the analysis
of the practically rore relevart cese of bimolecular L-H
kinetics and the corditiors of coexistence of the two stable
solutiors have been corsidered. The case when the diffusion

involved is norisotropie is also analysed in tris chapter.
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SECTION I

INITIAL VALUE APPROACH TO A CLASS OF
REACTION-DIFFUSION PROBLEMS




CHAPTER-1
INTRODUCTION




10
CHAPTZR 1

RODUCT IO,

Cremically reactirg systems involving heterogereous
catalysis have beer investigated both from the theoreticel
and experimental points of view ( Satterfield, 19703 Aris,
19753 Carberry, 19763 Doraiswamy end Sharma, 1983 )., The
class of problems referred to as reactior-diffusion
problems havé.been solved for a number of situwations and
their results have useful implicetions in the design of
reactors. The typical formulation of ary of these problems
leads to a differential equation of the type

2
U a =T (1.1)

vhere a 1s the dimensionless corcentration of the
reactant species and T the dimensionless reaction rate,
Tre bourdary conditions to this corservetion equation
describing the haprenirgs in a single particle are invari-
ably specified at two differert locations. Typically,

therefore, ore is confronted with & boundary value problem,

In the case where the reaction rate is lirearly
dependent upon the concentration of species this equation
can be sclved to obtain aralytiecal results, On the other

hand, in most of the cases one obtains ronlirear differential
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equatiors. The nonlinearities in these equatiors car
arise as described in the previous chapter (Generasl
Introduction)., It is possible in s giver situation to
have some or all of these norlirearities presert simulta-
neously., DNo arelytical solutiorn can be fournd in such

cases anrd recourse to numerical anelysis becomes necessary,

Over the past few years corsiderable attention has
beer focussed on developing numerical methods to obtain
solutions to these problems ( Villadser and Stewart, 1967
Kubicek and Hlavacek, 1970, 1971 a,b,cy Hanna, 19803
Villadgsen and Michelsen, 19783 Finlayson, 19743 Suzuki,
19793 Jayaraman gt al, 19833 Iberez, 1979 ). General
numerieal methods trat aveid trial ard error to obtain
solutions to similar complex ceses have beer proposed by
Wendt et al (1979), Hahn ard Wendt (1982) and Hann ard
Shadman (1983),

In most practical cases one has to deal with multi-
componert reacting and diffusing species which lead to
more than ore nonlinear differential equation. Deperdirg
upon the coupling involved amongst the phenomenological
equations describirg the system, suitable methods that
aveid trial and error have beer devised. Thus when the
coupling occurs ir the rate (reactior) terms, the general
method proposed by Wendt et zl (1979), Hahn and Wendt
(1982) and Hahrn and Shadman (1981) can be erployed, despite
the stiffress of the system, The case of bidispersed



e
catalyst also involves multiple species and in the simplest
case involves the solution of two second order differertial
equations. The equations, besides beirg nonlinear, are
coupled at the boundary corditions. It is this coupling of
two concentratiors at the boundaries that gererates problems
that carrnot be hardled easily and also differertiates the

present case from the one irvolving only multiple species,

Approximate methods leadirg to simple algebraic
expressions for the effectiveness factors have also been
provosed in the literature ( Churchill, 19773 Wedel and
Luss, 19803 Sundaram, 19823 Gottifredi et al, 1980 a,bs
Gonzo and Cottifredi, 1983 )., While reliable methods of
solution such as that of Weisz ard Hicks (1962) exist for
monoporous systems, their use in more complex cases such as
for systems with mass trarsfer limitatiors, bidispersed
cetalysts, catalysts urdergoing decey or gas-solid non-

catelytic systems, is fairly irvolved.

In this secticn we present a set of transformations
for different forms of the reaction rate that convert the
origiral two point boundary value problem into an equivalent
initial value probler. The iritial value formulation can
be solved more easily without ary nurerical complexities
such as trial and error required in the original two point
bourdary velue problem, The first intertior in this work
being to develop and test these trensformetiors, to start

with,their use is restricted to known cases for simple
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monoporous systems (Chapter 2) such as the simple Leargmuire
Hinshelwood kinetiecs and bimolecular Langmuir-Hinshelwood
kinetics and the results are compared with aveilable solu-
tions. A few urnresolved ceses such a&s the bimolecular
Lengmuir-Hinshelwood rate form of the type r = KCyCqp /
(1+K,C,+KpCp)  and the autocetalytic rate form are then

considered and the results obtained are discussed.

The method is subsequertly extended to irclude the
cases where interphase resistarce is presert ard then to
the case where all the three- flow, irterphese and irtraphase-
resistances - are present, Finally the applicability of the
method to more complex cases is corsidered in Chapter 3,
for a representative Langmuir-Hinshelwood kinetic form. The
analysis for this case provides some rew ard significant

reauvlts,

1.1 Method for Obtairing the Trensformations
Wy © and T_for Lengmuir-Hinshelwood (L-H)

Rate Yorm

The transformations w, ® and T that corvert the
original two point boundary velue problem into an equivalert
initial value problem have beer arrived at by a combination
of intuition and logic., No general metrod to construct
these transformations from fundamental prirciples can there-
fore be given, However, to assist in formulating these

transformations for rate forms other than those remorted here,



transformations for the case of simple Langmuir-Hinshelwood

rate form are developed.

The conservatiorn equatiors for LeH rate equatior

in dimensionless form are

2 2
Fa - —fa -
(1 + Kya )

a=1, x=1, da/dx =0, x =0

A X x =KC
vhere a = —Ezg y X = -F;', 2 = Kpls

Substituting a = 1 + Z , the above equetions are

corverted into

2 2 14
vx T ¢ 1(1 + 2Z)
(1 + K, (1+2) )

(1.3)

Z=0y x=13 dZ/dx =0, x =03 Z = Zyy X =0

To take care of tre second derivative in equation 1.3
one of the transformation variaebles, say w, should contair
a first order derivative terr. The ouvartity w is there-

fore defined as

v = X (dz dX) (1.’4‘)
1+K (1+2)
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With this definition, w, (dw/dT ) is obtaired as

. %}'—?E‘% (1.5)

where Z is assumed to be some functior of T to be defired,
The first term dw/ 2x in equation 1.5 can be obtaired by
differentiating the assumed furctioral relation for w
(piver by 1.4), Tre furctioral form of equation 1.5 would

therefore be

2
x Pz gx & .1 a2
1+KA'(1+Z) ax° g & 14K, (1+2) 97
1
-x 42 K 4z (1.6)
*oex Tugaezn? &
Now 2 2
.d...g - _LS_“_Z_)._ - 2 (1’K1:(1*Z) )
dx T+KA(1+2) x2
ard
d . x
az v(1+KA(1+z))

Equation 1.6 cen thus be written as

x°#>(1+2) Jaz ., az 1 az _ ', 42

w[1+K, (14z))3 4T 7 © 4T 14K, (142) er &



The defirition of @ is choser such that the first
term in equation 1.6 (i.e. first two terms in equation 1.7)
gives rise to a function of tre form (8/w = constant),
and defirition of T 18 crosen such that the third term ir

equation 1.7 is rendered corstant. Herce & arnd T will be

2 42
6 =« —X#°(1+2) s (1.8)
(B +x, (1+2)]
1*KA(1+Z)
T = 1n —5 (1.9)
1+KA(1 *Zo)

Once the definitions of w, 8 and T are fixed,
8 can be differerntiated to obtain

9 2
& - % s ’3{% (1.10)

Using these transformeticns w, ®, and the
origirel equation 1.2 1s corverted into two first order

differentizl equations as

A

de _ . St uk
A
o [1+K (1+2)] x
% . 1 |28, il "‘°]*-asx;
dat K . {JB + K (4 +2)] -1}

(1.12)

1b
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APPLICATION TO MONOPOROUS SYSTEMS
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along with the boundary conditions

w=8=0 at T=0 (1.13)

Thug it is seen that the transformetions convert
the original two point boundery value problem into an
equivalent initial wvalue problem,

TH-469



CHAPTER 2

APPLICATION TO MONOPOROUS_ SYSTEMS

In the presert chapter we shall dermonrstrate the
use of the transformations generally discussed in
Chapter 1 - for the case of a2 simple monodispersed pellet
both in the absence and pr-sence of interphase transport
resistance.

2.1 T P I

‘ Sradient.

The transformations for four different types of
rate forms commonly used to describe the kirnetiecs of
reacting systéns are develoned in this section, The

typical rate forms anslysed aret

1+« The simple L-H rate law
2. L<H rate form of arbitrery order
r

r = kC/(1 +K,C,)
3. L<H rate form of the type

r = kCyCp/(1 + K,C, + KCp)
4, The autocatalytic rate form

r = K0y

241.1 Ihe simple langmuir-Hinshelwood kinetics

15
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The conservation equatiors for species A for this

case along with the boundary corditiorns car be written as

D acC kC
—eA =
2 & ¥ 3 CD Aoy (2.1)

ac,
€A = Cas 9 X=0y ¥ = 0y X =rx,

(2,2)
The equations in dimensionless form become
2 2 -
VAR it S (2.3)
(1 + K, a)
a=1, x=1, .0, xao0 (2.4)

]
wvhere f# = ry \/k/DeA ard K, = KACAS
This probler has alreedy been solved by Krasuk and Smith
(1965) who have presented results in terms of the usual

effectiveness factor vs, Thiele modulus plots.

Substituting
3.1*2 (205)

vxz- ¢2(1#Z)
(1 + K (1+2))

(2.6)

Z=0, x=13 dZ/dx = 0, x = 0% Z-Zo,x-o
(2.7)



By using the following transformations,

4z
w = xdx

(1 + k(1 +2))

852 (1 + 1) (2.8)
(14K (1 v 2))2 :

e =

1+K' (1 +2)
1*KA(1+Z°)

T = 1n

the set of equations 2.6 = 2,7 1s corverted into

ga;.;(i_[g -1 -Kw | (2.9)
T ' ' O

§$-+ 2%* o«:[1+“1<!£(1+za)]rcA .2“1: .l
K [0+ 5 (v 2] af B

(2.10)

where w=8=20 at T = 0 (2.11)

The set of equations 2.9 = 2,11 however has a
singularity at T= O, The value of ©&/w asT— 0, by
L' Hospital's rule becomes 3 for thre case of sphere and 1
for the case of slab,

The Runge-Kutte method can now be employed to obtain

the solution to this problem. It is interesting to rote that

-
e

4

-



1,1

the newly defined irdevendent variable T appears also on

the rhs

of these equatiorsj however tris presents no

difficulty in the numerical integration. The results are

generated in terms of effectiveness factor plots. The

procedure for obtainirg the effectiveness factor for this

case is as follows?

1.
2.

3.

7

8.

]
Fix a value of the adsorption constant K, .

Assume a value of Zo’ l.e. the corcentration
at the certre of the pellet.

For the agsumed value of Z, in (2) obtain
T = Ty y the velue of Tat the surface
condition, which is simply equal to

1n B1*K Z/(1*K (1+2 ))] for this case.

Inteprate the set of equations 2.9 - 2,11
from T=Oto T = T; to obtain the values
of 8 and w at the surface,

Knowing the value of @ at the surface, obtain
B from the defirition of 8 as #7= 0 (14K,)2,

Obtain the effectiveness fact?r for this value
of # and the fixed velue of K, in (1) n =3w/s,

Change the value of Z, assumed in (2) to
obtein n - f# curve for fixed value of K/ .

Change the velue of KL and repeat the procedure,

The results generated for four differert values of

'
K, are shown in Figure 2.1 as n = f§ curves, The results of
Krasuk and Smith (1965) are also displayed.,

2.1.2 The Lapgmuir-Hinghelwood rate form of arbitrary order

.
(1+K,C,) 7
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Certain catalytic reactions, e.g. carbon monoxide

over platinum and other noble metals in excess of oxygen,

display a self-inhibited rate form represented by r = kCA/

(1*KACA)2 ( Cavendish end Oh, 19793 Pereira and Varma,

1978 ). Several hydrocarbons such as ethylene and propylere,

when oxidised over noble metals, also follow similar rate

laws ( Carberry, 1976 ). Extensive studies have beer made

of gelf=inhibited raete or bimolecular L-H rate form, parti-

cularly with regard to effectiveress factors ( Pereira and

Varma, 19783 Becker and Wei, 19763 E1 Nashaie ard Mahfouz,

1978 ). Becker and Wei (1976) first reported the existence

of three solutions for the catalyst pellet. Later Pereira

and Verma (1978) showed thet up to five distinct steady

state solutions exist for the sphere under both the iso-

thermal ard rnorisothermal conditiors while orly up to three

solutions are obtained for the slab. The pheromenon of

five steady states is shown to depend solely on the value

of the adsorption rate constant., It is not our objective

to reproduce all these results, However, tre simplified

metlod proposed here will be illustrated for a few ceses.

The conservation equation along with the boundary

corditions for the above case can be written as

D

..;% g.x [xé‘ g;é] - i/ (2.12)

n
(1 + K,Cp)

Cp= Cgy X=1r, , dC}/dy =0, X =0 (2.13)



The dimensiorless form of these equatiors can be
written as

2 2

\ & = ——L%—-h— (2.1%)
(1 + Ka)
3-1’ x-1’ da/dx-o’ x =0 (2.15)
Usin
° . a =1 + Z (2.16)

equations 2,14 = 2,15 can be written in the following form

2 g (1 +2)
Z =
K [+ X 1+ 2"

(2.17)

Z=0yx=1) dZ/dx =0, x =203 Z=2,x=0

(2.18)
After incorporating the transformetions
' 2«n
w = X ‘g% / [‘I*KA (1+Z)J
2.2
- ¢l (1+§l (2.19)

[+ K (1+2)] 2

(] Ne
1+KA(1+z)
T = i -1
1+xA(1 +z°)

the following equations are obtaineds




e
b4

11
dy [_1:&' (142 ) ] ’ [‘& ; (2-n)K_; v
at (n - 1)!(}t | [1¢K1(1+z°)]“'1(1+'r)
(2.20)
2 2-n "
B’K (1+Z ):I QKA(“’T) B 1"'K (1"'2 )_]
7
£ - (n1) K, *{(1”)1/(‘“'”[1*1( (142_)] -1}
28 K‘ (2.21)
(1+7) [1+K, (142)] r=1
@ = w = 0 at T= O {2.22)

The set of equations 2.20 « 2,22 has been integrated

usirg the semi-implicit Runge-Kutta method to obtain the

n -f# curve. The effectiveress factor n is calculated

usirg the following vrrocedure:

1.
2.

3.

5.

]
Fix a value of the adsorption corstant K, .

Assume a value of Z_ , i.e, the corcertraticrs
at the centre of the pellet.

For the assumed value of Z  in (2) obtain
T -Ti the value of at the surface, which is
T ' -

equal to (1*K1)/(1*KA(1*Z°)) r=1 .4 for

this case,

Integrate equations 2.20 = 2,22 from T = 0 to

Ta Tg to obtain the velues of wand 8 at

the surface.

Knowirg the value of & at the surfece, i.e.

84 » obtain f§ from the definrition of 0 as f =0,
12

(145, 0% .
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6. Cbtain the effectiveness factor for this value
]
of # and the fixed value of K, in (1) from
YI-BV/9 .

7. Change the values of Z_  assumed in (2) to
obtain the n - # curve for tre fixed values
]
of KA " '
8. Change the wvalue of K‘ ard repeat the procedure.

Typicel cases for KA = 8 and 15 for r = 2 have been
shown in Figure 2,2, It is seen from the figure that for
K; = 8 the effectiveregs factor exceeds unity but no multi-
plicity is evidert., The anralysis of Pereira =nd Varme (1978)
indicates that the multinlicity would exist for the values
of Ki>>1?.2. To check this point tre results for the cese
of KA = 15 have also been displayed in the figure showing
the validity of the proposed method.

2.1.3 langmuir-Hingshelwood rete form

kK C
-
1 ’KA%A’%B

Let us consider a resction scheme of the type
A + B —Products, with the rate form r = kCACB/(j*KACA*
KpCp) « Cetalytic reaction rate models based on multi-step
rate control frequently give rise to a2 rate form of this
type, the essential features of which have been commented
upon by Carberry (1976). This form is frequently irvoked
to explain the kinetic features of the alkylating reactions,
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e.g. disproportion of 2-propyl-benzere over Al -8102

203
( Berereck and Kraus, 1978 ). While the eralysis of a
catalyst pellet for similer rete forms, e.po r = kCA/
(1+KACA+KBCB), has been revorted eerlier ( Knudsen et al,
19663 Roberts and Satterfield, 19663 Hartran et 21, 1967 ),
this particular rate term does not seem tc have been

analysed.

The corservation equations along with the boundary

conditions for the species A are

D M ac xC,C
o X2 1 - AB (2.23)
x° g’t L —d—iA (1+ KyCy + KBCB) =

CA = CAS, X = ri ’ dCA/dx = O, X = 0 (2.2"")

8imilarly, for species B,

D ac v kC
..;.g a4 [x?—' _ggJ . o (2.25)

(1+ K,C, + KpCq)
Cp=Cpg 9y X=r,, dCp/dX =0, X =0 (2.26)

In dimensionless form, the above equations can be written
as
2 )
an = R T
1+ KAa* KBb

(2.27)



2 D
b = gy ad (2.28)

4 GB 1’KA8*KBb

a=qy, bP=m1eq, x =1, da/dx = db/dx =0, x = 0

(2.29)

Here CA and CB are rondimensionlised with respect to CT'

Equationrs 2.27 and 2.28 car be combined to elimirate

b in terms of aj thus we get the following relation:

D
vhere o= VR, g =q(+Y) -1, q=Cg/CT

eB
(2.31)
Substituting 2.30 in 2.27 we get
2
2 g VY, a - q
Ve = — 1 (2.32)
" (1- Ky ay )1 +pe)
Setting a/q = (1 +2) {2.33)
equation 2.32 can be written as
2 #2(1+42) [V,q(1 +2)=q
U, 2z = ) 1) (2.34)

(1-Kga,) (1+ pa (1+42))

29



' '
K, + Y
vhere p = ——A—-—ig——i- , #° =R —TfL- "

1= KB Q1 el
] 1
K, = KCp oy Kp = Kglp eond Cp = Cpg + Cpg

Applying the transformatiors

% (az/dax)
(1-Kg q1) (1+pq (1+2))

2.2
8 = . ¢ Z', (1"‘2) = (?.35«)
(1-Kg q1)‘ (1+pq(1+2)
T = 1n 1 + pq (1+2)

1 + pq (1+Z°)

equation 2.32 can be recast as

)

N . ({——1 (e (14pq (142 )) -1 -q} ® .
9 pal1-kgey) | L7 D ) )y

-1 «pg (1 - Ké ) w:} (2.36)

T
¢ . 28 * e [1+pq(1*za)] -26
¥V pq (1=Kgq,) e [(1 + v (192))]= 1
(2.37)

wW =66 =0 at T=0 (2.38)

D



The effectiveness factor in this case is obtained

by using the following procedure:

1.

2.

3e

5e

7

) '
Fix values of K, , Ky , q and ¥, ,

Assuming a value Zo’ i.e. corcertratior at
the centre of the pellet, obtein T= T, the

value of T at the surface,

7. = 1n —ttDpa ___
1+pq (1 +2 )
o
Integrate the set of equations 2,36 « 2,38

from T =0 to T= T. to obtain the value
of wend 8 at the surfece,

Obtain # from 8 at the surface as

¢2-Os (1 -Kaéq1)2 (1 *pq)2 .

Obtain the effectiveress factor correspornding

to this value of # and fixed values of other

parameters in (1) q, K".Ké from n = 3w/ 8(1-g) .

Change tre assumed value of Z, in (2) to obtain

n -# curve for fixed velues of pararmeters in

(1),

Chenge the values of parameters ore by ore and
repeat the procedure,

The results are preserted as n -« # vlots for the

following sets of parameter valuess

a1



RY:

1. K = Ky = 8 q = Ok, V, =1

2. K, = 8, Ky = 2, q = Ok, y =1
3. K, = B, Ky = 12, q = Ol , 4y, =1
b K, = Ky o= 8, g = Ok, Y = 0.5
5. K = Ky = 8, g = Ok, 9 = 1.5
6. Ky = Ky o= 8, q = 0.2, =1

Figure 2.3 shows the influence of varistion of Ké
for fixed valunes of other parameters. Increasirg the velue
of Ké is seen in gerneral to improve the overall effective-
ress of the prarticle., Figure 2,4 shows the influence of
variation of the irnut feed composition., Decreasing the
concentration of A in the feed results in a decrease in the
effectiveness foctor of the syster. The varistion with
respect to the stoichionetric coefficient or the ratio of
diffusivities of the species A and B, however, shows some
interesting beheviour., For fixed values of other parameters,
there exists a critical value of vy on either side of which

the effectiveress factor always decreases (Figure 2.5).
2.1+ Autocatalysis
r = kCACB

Let us consider a reaction scheme of the type
A+ B—> B +B, The corservatior equatiors for species

A and B along with the boundary conditions can be written as
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)
) aCy XC (2.39)
s & ¥ o3
L) 28

Cp =Cygy X=r,, dC)/aX =0, X =0 (2.40)

d?

D =Vk C,C (2.41)
eB dx2 AYB

Cp =Cpgy X=ry, dp/aX =0, X =0 (2.42)

In dimersionless form these equations become

e - fan (2.43)
dx
a%p 5

5 - 111 ¢ ab (?oh‘h)
ax

a=q, b=1~-q, x=1, da/dx = db/dx = O,

x =0

(245)

Expressing the concertration b in terms of the

corcentratior a by using 2,43 and 2.4, we pet
b=y a1 - q(1+ 3’1) (2.46)
Substituting this in equation 2.41, we get

a” a i 2
_:,;T = P a~{)/1a+ 1..q (1+.1/1)} (?.h?)



C C
2 2 AS

h = R a = =
where @ ;CI’ '6:' q E,;

Using a/q = (1+2Z), equation 2,47 car be written as

¢’z 2 ( (142) + (1=q (1+¥,))] (2.18)
dx2 = §° (1+2) {q Yy 1+Z) + (1=q (1 1 j 248

By using the following trensformetions

24
w = G4X
+ 2

-,

6 = #%x° (q g 42) ¢ 1 g1+ ) (219)

+

Z
Z
0

1
T= 1n 1

+

we obtain (for slab geometry)

g! = - + 9- (?.‘0)
aTt LRk W e
e (1 +2.) e
.g.o_ ™ 29_ 4 qv1 o N
g W [0 v4(142) ¥ + (1=q (1+ ¥, )]
(2.51)

w = 8 = T= 0 (2.5?)

a7



an

The solution to these equatiors has beer obtained in

terms of the n = # curve. The procedure for obteining n

is given below,

1.
2.

5

7

8.

Fix tre values of q and v1 .
Assure 2 value of Z,y i.e. corcertration at
the centre of tre pellet.

Obtain the velve of a% the surf-ce,

T = 1n 1/(142))

Integrete equations 2,50 = 2,52 from T= O to

T= T’ to obtain w and 8 at the surface.

From @ at the surface calenlate f as

2 e
p = 2
[avy + 1-q(1+3))]

From w and © at the surface calculate r for

that perticular value of # as 1 = 3w/ [(1-q)8],

Change the value of Z o 8nd repeat the procednure
fram (2) onwards to obtain the n - @ curve for
fixed valuves of marameter in (1),

Crange the values of parameters in (1) ard

repeat the whole nrocedure,

The n- # curves obtained for varyirg velues of input

concentration of A are preserted in Figure 2,6, It is clearly

seen that for certain sets of parameter values the effective-

ress factor exceeds unity., However, no multiplieity couid be
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gererated. It is difficult to obtain g priori information
on the stability and multiplicity of states in view of the

nonautonorous nature of these equations,

2.2 Apelysis of Systems with Interphase
Registance

In the aralysis of gystems nreserted shove it was
assumed that the interphase resistence waes absert., It is
possible to relax this essurntion and provide a more
complete aralysis of the systems with both irterphase and
intraphase gradients. To illustrate this let us consider

the cese of a gereral rth

crder reaction. The conservation
equation for the reactant species A alorng with thre

bourdary conditions can be writter as

D

ac ac,

10

_;!2. gx[x‘? i;;A]. KCy (2.52)

X=ry, 3¢ =Bi(Cg=C)yXun, b a0 (2.53)

Tre correspording dimersiorless equations are

,
Ve = g2al (2.5%)
X

£ = B0, x1, £ .o xau0 (2.55)

Defining the transformation

= = 5 (2.56)
. - R ’
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it is possible to rewrite the set of equatiors 2,54 « 2.55

as

2
2 pn-1 ¢
i; aq = f K1 29

da
ag =1, x=1, 5;1 =0, x=0

By using the trersformation
ay = K, (1+2)

equation 2.57 ecan be written as

2 D)
v Z = p? K (142)

Using the trarsforratiors

v = X (62/ax)

1 + 2

6 = #° K{‘“ (1+2)7=1 ¥

+ 2
T = lr”z
(o}

the set of equetions 2,57 = 2,58 are corverted into ar

equivalert initial wvalue problem as

dw

- = O e A=
a7 = w1

%% - 2% +(n=1)06

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)
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w =0 =0, T= O (2.64)

The method of obtaining n for several velues of )

and Bi 13 as follows:

14 Integrate equations 2,62 - 2,6+ to obtain v
and 8 at different values of Tj for thris
particular cese each value of w ard 8 can be
regarded as the value at the surfece.

e From the 8 velue at tle surface ard noting
tre defirition of &, obtein & = gk, ,

3. From the values of w at the surfece and go%iz}g(: y
1
tre defiritions of w anrd K., g Obtain v = .qu_l_

for a fixed value of Bi $ this fixes the value

of K1 N
L, Using this valve of K, in (2) to ebtain 7.

Se Repeat the procedure to produce n - ## variations
for difforert Biot nurbersj for this particular

cese the effectiveress factor is simnly obtained
as 1 = 3K$ (w/s) .

The results obteirad usire this method are nresented
in Figure 2,7 for n = 2, The simple exercise illustrates the
arplication of the mettod to systems with intervhase resistance.
No informetion on effectiveress factor variations with Biot

nurber for a general nth

order case exists. While a direct
comparison of the effectiveress factors for various values of
Biot nurber with the literature velues is not possible, the
velues obtained are compared with those for a first order
reaction ( Kulkarni and Karanth, 1978 ) ard seem to fall in the

right range.
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2.3 Applicrtion to Systems witbh Combined Influence
of Flow, Interphase and Intraphase Resistances

Let us consider the case of a CSTR containing the
catelyst in the presence of irterphase and intraphase
resistances, The conservetion equatiors for the syster can

be forrulated as

TCyp (2o = 1) = V ki (1 « as) (2.65)
2
Voa, = 21 (e) (2.66)
da
d-'x" b Bi (1‘8)' X = 1 ’
da (2.67)
-5;3 = 0, x =0
It is possible to vrite
kg By (1 -a) = nr (2.68)

vhere r revnresarts the rate corresrordirg to the surface
conditions of the marticle. The wvalue of n for several
difficult rate formg ean be ovteired using the method
preserted in earlier sections. For o typicel rate form of
the type f (aa) - a’/(1 + K;as)z, equation 2,68 can be
written as

d
—1 (1-a') =

m (2.69)

2
(1 + KAB")
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A simple graphical procedure of plotting the lhs and
rhs against concentration can then be used to locate the roots
of equation 2,69, The rhs of equatior 2.69 represerts the
rate function and shows a maximum, while the lhs is a straight
line with slope of (=<,/n ). Quelitative plots of these
functions are shown in Figure 2,8, It is seen that the
straight lire (lhs of equation 2,51) touches the rate curve
at two points. Irvoking the equality of the slopes for the
rate function (rhs) ard the straipht line (1lhs) at these points
gives the recessary cordition for the existence of multiple
roots and car be easily obtaired as K;) 8. The sufficiency
condition for the existence of multiplicity is that the slope
(-O‘:‘/rl ) should lie between (O‘i/n)+ and (ofl/q ) where

+
é-(}-L) - Al 5 1 (2.7)
n (14-1(A a 1 -a

31) 82

Fﬁt} . é _ (2.71)
) (v Ky a2 1 -ag

and ag1 and ag are the two values of ag where the straight
line touches the rate curve. For a given flow condition in
the reactor, equations 2,70 and 2.71 suggest that the effecti=-
veness of the particle decides the value of the slove (%/n )
and therefore the rersion of multiprlicity. It is possible to
have a systerm where a particle problem gives rise to three
different velues of n. Depending on the initial conditions
the particle effectiveress will apprcech either the higher
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(say ny) or the lower (say r,) velue. Since all particles
are subjected to the same ervirormert and initial conditior,
the same value of r (either n, or n,) exists in all the
particles., Corresvording to trese two values of n two
different regions of ( o11/r ) can exist for the reactor
problem, It is also possible for the two to overlap and
merge irto a sirgle extended region of multiplicity. It
therefore seems from the aralysis thet the presence of inter-
phase and intraphase gradients leads to further extension of
the region of multiplicity. From & knowledge of n - §§ for
2 given Bi s it is thus possible to obtain irformation about

reactor behaviour.

2.+ Copclusions

New sets of transformatiors that corvert an origiral
two point boundary value problem to an equivalert initial
value problem have been proposed. Four different types of
rate forms have been analysed by using these trarsformatiors
and the results preserted in terms of the usual effectiveness
factor vs. Thiele modulus curves. For the simple L-H and
bimolecular L-H rate forms, the results agree with the
established results, thus proving the validity of the method,

Two other rate forms, viz. (1) r = kC,Cp/(1+K,C, +
KgCp) and (i1) eutocatalytic r = kCyCp, not studied hitherto,
have also been analysed using appropriate transformations.

In the first case it is shown that increasing the value of

47
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the adsorption coefficient Ké gererally improves the
effectiveness of the systerm, Also, there exists a critical
value of the parameter mg on either side of which the
effectiveness factor of the syster always increases. In the
case of autocatalysis, it is srown that ar effectiveress
factor exceeding urity cen be obtaired for certain irnput

concentrationsy however, no multiplicity is seer to exist.

The proposed transformatiors car also be used for
the case witl interphase resistance, This is illustrated

by corsiderirg a gereral rth

order reaction, Firally, a
rore general application of the method is illustrated by
corsiderirg the case of a CSTR where, ir addition to flow
resistance, irterphase and intrarhase resistances are also

accounted for,



CHAPTER- 3
APPLICATION TO BIDISPERSED CATALYST




1Y
CEAPTER 3

APPLICATION TO BIDISPERSED CATALYSTS

The presert crapter is corncerred with problems
whick typically irvolve rorlinearity in the source term
and coupled bourdery conditiors. Such a physical
situation is encourtered in pas-solid catalytic reactiors
in pellets with bimodel pore structure. In gas-solid nor-
cetalytic reactiors this situatior arises when particle=-
pellet (grein) models are used to describe tre behaviour,
Besides, in meny biochemicel systems irvolvirg encapsulated

enzymes, such a situvation is fairly commor.

3.1 The C L -H K

The problem thus appears to be fairly general and
we presert below the methodology for solving such problems
by corsidering a specific examplet Calculation of effective-
ness factor for a catalyst pellet with bimodal pore distri-
bution when 2 reaction with simple L-H kineties is occurring.

Wrile analyses for linear kinetics ( Ors and Dogu, 1979 )
th

and general n"" order ronlinear kiretics ( Jayeraman et al,

1981, 1983 ) in a mecro-microrerticle system are available,

no inforrmation on L-H tyne of kinetics which is more rationzl

for cetalytic systems exists.

The conservation equatiors car be written as



D ac KC
A
=4 & PR - ot (341)
1 dCA
Cpb = Cy X=r; 3 ¢ =0, X=0 (3.2)
Mgcroparticles
g [y 7 am0) &%| Ly
¥2 ar - T ax
X-ri
ac,
CL=Cpgy Y=uRj3 =B a0, Yao (3.4)

Nondimensionlising C, and C; with respect to the
surface concentration C,q, and X and Y with respect to the
micro and macroparticle radii ry and R, respectively, we
get the following dimensionless equatiors:

Mjcroparticles
2 g2c
ac
Ci = Ca y X =13 a;i =0, x=0 (3.6)
Macroparticles
2 ac
V C = o EEL (3.7)
y x =1



ac
Co =1, y=13 -d—';--O,y-O (3.8)

The set of equations 3.5«3.8 are nonlirear in the
gsource term ard irnvolve the coupled boundary cordition given
by equation 3.6, The corvertioral metrod of solution
requires trial and error on both equations 3.5 and 3.7 such
that the bourdary conditions are satisfied. GCenerally a
large amount of computer time is required to obtain the
desired solution.

In this work we avoid trial and error completely
by corverting the boundary value problem given by equations
3.5 and 3.6 into an equivalent initial wvalue problem by
using suiteble transformatiors. The equivalent initial

velue problem is then solved to obtain 3;1- . required
xX=

ir equation 3,7 which is subsequertly integrated using

Weisz and Hicks' (1962) method. While in principle this
methodology cen be used to eliminate totel trial and error,
it is beset with certain problems, Thus it is difficult to
obtain Y - # wvariations for a given value of KL and &,
and the whole set of numerical data needs to be interpolated
to obtain arny meaningful information. Here we have avoided

this by employing an alternative procedure.

Substituting

c
& = (1+2) (3.9)
a



equation 3,5 can be written as

2
V 2 = 44Q?$1,+ Z)

% 1+ x Cy (1 +2)

(3.10)

Uging the transformations

v o= —x2/ex) o . f55P(1e2)

]
1.+ KC, (1+2) 1+ K,Cy (1 +2)
(3.11)
1+ ;C(1+Z)
T-l .'
1+ K,C, (1 + Z, )

equations 3.5 = 3.6 become

K,Cq
Ge” (14K,C. (142_)) K,C
48 + [2..2 + —.’u Q 8 8_ _ oK ]
A ke LY et (erC, (142))< 1] i
(3.13)
w = 0 = 0 at T= 0 (3.1%)

The initial value problem giver by equations 3,12 =

3.1% can be solved using tre following proceduret



<
(3 |

]
1. Fix the value of K, .
2. Assume a velue of 2 this fixes trevalue of T,
3. Agsume a value of C, 3§ this fixes the value of
K,C
A"a *

L, Integrate equations 3.12 = 3,1k from T= O to
T= T; to obtain w and © at the surface.

d
5« w at the surface gives 3;1

6, © at the surface gives ¢2 "

'
I o i vs(1*KACa).

The above procedure wes adopted with several values

of C_ and (1+Z ) (in steps 2 and 3) to generate -—J-*
a o ax | vuq

)
for differert values of K, end §. Represerntative calcula=
)
tions for K, = 5¢, 75 and 100 and # =5, 10, 13, 16 are
analysed further.

It is apparent from these calculations that 2

ac
definite relationship exists between 3;1 ; anrd C
xX=

and to elucidate this relationship further they are plotted

on a log=log scale in Figures 3.1, 3.2 ard 3.3 vhere

parallel lines for different values of K; and # indicate
that the slope of these lines is (almost) irdependert of

the parameters Ki and § « The intercept, however,depends

on the values of K; and ., The intercept is therefore
plotted for different values of Ki and corstart values of

# where agein a straight lire as shown in Figure 3.4 results.
The irtercept of this figure clearly shows a dependence on
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# which is plotted in Figure 3.5. Utilising the linear
relationships shown in Figures 3.1 to 3.5, the flux at the
pore mouth of a microparticle can be related (by
regression analysis) to the correspondirg macroparticle

'
concentration C‘ through the parameters KA and # as followss

ac ,
b - K1 g5 ot (3.15)

dx
x=1

It is irteresting to note that the regative slope
of the curves in Figure 3.4 is 2lmost always unity, It
is epparent therefore that the original Le<H kinetics now
tends to behave as nepative first order kireties. A
falsification of reactior kireties (or order) thus occurs
in the system with bimodal pore distribution, Farlier,
Jayaramen et 2l (1983) had observed a similar falsification
vhen a zero order reactiorn is carried out in a micro-macro-
particle system, This falsification of the reaction order
induced by the bipore distribution therefore gives rise to
certain additional features of the system. In the present
case the simple L-H kiretics tends to exhibit multiplicity
behaviour corresponding to that of negative first order
kiretics.

Equation 3.15 can now be substituted in 3.7 to obtain

)
7, % * g2 ¢! (3.16)
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L)
vhere @, represerts the modified Thiele modulus defined

as equal to (KX1 ﬂ1 SaL ), Equation 3.16 can be converted

into two Tirst order equations using the transformetions

u = _Y(dCa/dy)

(1 +2)
2
= f‘: fz)? (3.17)
T, - 1n-—}—{—§—o
as _% a §-1 - 5 (3.18)
"g!rj = 2 . ooy (3.19)
us= v = 0, Ty, =0 (3.20)

3.2 Results ard Discussion

Variations of u and v with '(1 are obtained and
are presented as a phase plare plot in Figure 3.6, This
figure clearly shows the eritical point to be a stable
focus with a range of v and herce ¢m values for which
multiplicity is possible. The correspordirg n - ¢m
curves can also be obtained from this figure using the
relation n = 3u/v ard are shown in Figure 3.7, The
striking advartage of Figure 3.7 is that the whole parameter
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]
space for KA' # and oo 1s condersed into a single curve
leading to & very compact representation of the variation

of effectiveress factor with the parameters of the system.

The results in Fipure 3.7 havecbeen obtained by
. da
maeking use of the relatiorship for —d-i-‘f given by
x=1

equation 3,16, It would be remembered that this relation-
ship was obtained using a graphical procedure that is
irherently liable to error. This is espeecially important
since it is used in the macroparticle eguation for
subsequent integratior. In order to show its validity the
macroparticle equation 3.7 has been integrated using the
Weisz-Hicks (1962) method.

The procedure is briefly as followss

ac
1. Obtain -a;i for ar assumed vaelue of C
x=1 [
(at x = 1, y = 0) for fixed values of K, and #.
ac
2. Use this point velue of —1 ’ in equation

dx
x
3.7 and integrate using Weisz ard Hicks' method

to obtain S and (dcafdy)y-‘l + The value of N
for known ¢|y # and K, 1is then obtained using
the relation
'
+ K C
9 (12 ) ) %_l
g T T ym

The velues of n thus obtained are a2lso merked in
Figure 3.7 as crosses. In view of the close agreement

between the n values obtained using the rigorous numerical

£



method and equation 3,15 it is appdront that the simple

method suggested can be cornveriently used.

3.3 Conclusions

The trensformetion used for LeH kineties in a
bidispersed catalyst shows that the cumbersome computatiors
required in the converntional method can be considerably
reduced. A particularly importanrt result of this work is
that a variant of the proposed method leads to a very
compact representation of the variation of n with the
parameters of the system., Thies has not been possible so
far. The analysis has brought out another significant
result - that falsificetion of the reaction kireties occurs
in the bidispersed catalyst. For a given kiretic law
certain new features which are rot present in monoporous
systems become evidert in bidispersed pellets. In view of
the considerable use of bidispersed pellets in industrial
systems, the present result has great pragmatic significance.



NOTAT ION

dimensiorless corcentration of species A

transformed concertration variable defired
by equation 2,56

dimensionless concentration of species A at
the catalyst surface

dimensionless irlet corncertration
gas=-so0lid interfacial area
dimersionless corcertration of species B

Biot rnumber defired as kgB/DeA
dimensionless corcertration in the macroparticle

dimersionless concertration in the microparticle
concertration of species A

concertration of species B

concentration of species A in the macroparticle

concertration of species A at the surface of
catalyst

concerntration of species B at the surface of
cataiyst

total concertratior in tre gas phase
concentration of species A in the inlet stream
effective diffusivity of A in the macroparticle
effective diffusivity of A

effective diffusivity of B

flow rate

rate function defined by equation 2,66

rate constant
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€

parameter defired in equation 2.56
adsorption equilibrium constant of species A

adsorption equilibriur constant of species B

dimensionless adscrption equilibrium corstant
for species A

dimensionless adsorption equilibrium constant
for species B

mass«transfer coefficient

order of reaction

rarameter defired by equation 2,34
parameter defired by equation 2,31
parameter defined by equation 2,31
gereral term for rate

radius of the pellet

dimensionless rate

general rotation for the radius
trarsformation defined by equation 2.61
transformation defined by equation 2.61
volume of the reactor

transforration

general notation used to define dirensionless
distance paraweter

dimensiorless distance specifically used in
the macropore

gereral notetion used to defire distance parameter

distance parameter specifically used in the macroe
pore

transformed corcentration as defined in the text
and table

value of Z at the center of the pellet
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Greek symbols
oL parameter defined as 3(1= €) gﬁA ﬁz
ah ry

d., parameter defired as kgava'
A intercept in Figures (3.1 « 3.3)
A intercept in Figure 3.4
n effectiveress factor
€ porosity of the pellet
T transformetion
T1 transforrmation
y stoichiometric coefficient
Yy parameter defired as ;’L V

eB
# general parameter used to define Thiele modulus
g, modified Thiele modnlus defired as KA¢1 5
A Laplacian operator
© transformation
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SECTION | '\l1

d EFFECTIVENESS FACTORS IN BIDISPERSED
CATALYSIS BY THE METHOD OF
WEIGHTED RESIDUALS




CHAPTER-4
INTRODUCTION




JNTRODUCT ION

Many supported catalysts, due to their method of
preparation viz. compactior of porous particles into
pellets, are characterised by bidispersed size distribution,
vith microparticles lying inside the porous particles ard
racroparticles between single or agglomerated particles.
Considerable work on diffusion and adsorption in bidispersed
catalysts has been reported in the literature ( Hashimoto
et aly 19763 Uyanik, 19773 Dogv and Smith, 19753 Hashimoto
and Smith, 197 ), and both tre micro- and macroperticle
diffusivities can be determired experimentally ( see, for
example, MacDonald and Habgood, 19723 Dogu and Smith, 19753
Ma and Lee, 19763 Ravi Kumar gt 81,1982 ). Studies on the
effectiveness of these catalysts have also been numerous.
Carberry (1962) evaluated the effectiveress factor for
reversible first order reaction ir =& biporous catalyst,
Mingle and Smith (1961) employed several pore distribution
functiors and obtained & nonisothermal effectiveress factor,
¥ekao and Smith (196:) studied the effective diffusivity for
diffusion in bidispersed porous pellets under reaction
conditions and showed the reed for information of particle
size distribution to predict the effectiveress factor. Thus
8ilveston & Hashimoto (1975) have incorporated particle size
distribution and evaluated the micro- macro particle effec-

tiveness factor,



In a devarture from these conventional studies, Ors
and Dogu (1979) defined an additioral parameter oL, the
ratio of diffusion times in the micro- and macroparticle
regiors, and presented an anelyticel equetion for effectie
veness factor for a simple first order reactior, The
anelysis has been subsequertly exterded to irclude ronlinear
rate forms involving power law kinetics ( Jayaraman et al,
1981, 1983 ),

In this section the effectiveness factors for these
types of catalysts with added complexities such as diffusion
coefficient variation with concentration (or distarce) has
been studied (Chapter 5). The subsequent two chapters
aralyse the role of nonisothermal effects ard catalyst
fouling, A1l these complications seem to be pertinert to
practicel situatiors and ro information regsrding the
behaviour of biporous pellets under these conditions exists.
A general sketch of the microe-macro particle system 18 shown
in Figure 4.1,

Inclusion of these effects in the aralysis of the
micro-macro effectiveness factor leads to a coupled two point
bourdary velue problem that requires trisl and error on the
microperticle equations for each irtegration step of the
macroparticle equatior, which itself reeds trial ard error
solution, This point hes been elucidated in Chapter 5 of
this section and it suffices to state here that the corven-

tioral finite difference methods become too curbersome snd

72



-3
(=

y- axis,R(for pellet,

x-axis, r; (for particle)
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almost impossible to use for obtaining solutions to these
problems. In the present work, we erploy the methods of
veighted residuals ( Villadsen and Stewart, 19673 Villadsen
erd Michelser, 1978 )= more svecifically, the Galerkir
rethod-~ and present comprehensive solutions to these problems
vith first order main reaction. The order of the method
employed is restricted to tuo to avoid excessive computation.
This, of course, restricts the applicability of the regults
to non=too=large variations in the varameter values. For
ropges of parameter values lying beyord those investipated

ir this work, it would be necesgsary to ermploy higher order
approximation; however, the results obtaired for the para-

rmeter ranges are essentially accurate,.

The details of the Galerkin method used in this

section are given below,

L.1 Ihe Galerkin Method

The method is 1llustrated for a first order reaction
occurring in a spherical catalyst pellet, The dimensionless

conservation equations for the above case will be

2
da“C
dxg’%':—z-ﬁac (4.1)

with the boundary corditions

C

x-o.%;-o’ 1.1. c-1 (‘+.2)

-3
-



By using the transformation u = x° equation 4,1 is converted

to
b € a . g% (4.3)
Now the concentration C is defired by the polynomial
N
Cut+(aw) )y an®™ [ 1a12,8 QM)
i=l
such that the bourndary conditions given by equation

4,2 are satisfied, The residusl BN is obtaired as

N
Bplay u) = Z ay [(11 P ul=? o 124117
i=1

- 7201 + (1ew) i a, ul™!] (4.5)

Now Ry is made orthogoral on g‘—gz 1 =1,2,...N

over the volume of the spherical particle, Thus, we get

1
[ By (ay) (1eu) wl*! W2 gy = 0, 1 =1,2...0

0
()'.' .6)

These N equations containing N coefficients are then
solved to obtain N coefficients.

Sometimes it is difficult to integrate these equations}

in such cases these are to be solved by quadrature methods.
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Equation 4.6 can be equivalently written as

1 M
Oj Fj(u) (1eu) u'/2 du = ; vgj(uk) =0 (4.7)

where Fj(u) = Ry (ayu) u"’", J =1,2.,.N, and M has
any value > N,The uk's are chosen to be zeros of the Jacobi
polynomial PN“ ¥V2) « Equation 4,7 is solved to obtain
the coefficients 849 89y eees By o
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STUDY OF DIFFUSIVITY VARIATIONS




CHAPIER 5

STUDY OF DIFFUSIVITY VARIATIONS

In mary systems of practical importarce such as the
ones using synthetic zeolites, it is krown that sharp
diffusivity variations occur within the pellet. The
effective diffusivity within the pellet canrot therefore be
treated as constant and some modificatiorn to account for
this variation should be included in the aralysis, In
general, the diffusivity verietion with concentration is
foirly complex ( Celbin and Fiedler, 1980 ), However, to
get a measure of the qualitative influence, it is customary
to agsume linear or simple exponential dependerce ( Lin,
1979 ). Inverse dependence on concentration has heen
reported by Ruthver ard Derrah (1975), while diffusivity
going through a minimum with sorbate concentration has bheen
observed by Ruthven and Doetsch (1976), It appears there-
fore that no gereral equation that can describe the diffu-
sivity varietions can be obtaired ard recourse to empiriecal
formulation of diffusivity veriatiors with corcentration is
necessary. An alternative method of accountirg for diffusie
vity variation with corcentration is to empiricelly relate
the diffusivity to the distance veriable in the pellet,
Such a forrulation has the adventage that diffusivity variae

tions due to porosity variations cen 2lso be included.
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In the vrresent study, we consider the irverse
denendence of diffusivity on concentration, as well as the
following empiricel variations of diffusivity with the
distances

Di = ]Ji° (p = qxy)
D, = D, (p = gqy) (5.1)

D, = D, (exp(qv))

where x and y refer to the distance coordinates in the
microe= and macroperticles,respectively, and Py @ 8nd n

are arbitrery constants, It is obvious from these relation-
ships that the first case assumes that the microparticle
diffusivity not orly varies within the microparticle but
also deperds on the location of the microparticle in the
overall pellet, Cases 2 and 3, or the other hand, assume
thet the diffusivity veries in relation to the distarce in

the macroparticle.

5.1 Diffusivity Variations with Digtance

5.1 Cage 1 ¢ Diffusivity wvariation with respect %o botd
micro= and mecroparticle distances

The conservation equations for the reactant specles A
in the micro-macroparticle system (sphere) subject to the

diffusivity variations gziven by the rate law
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D, = D, (p = qxy) (5.2)
can be written as
Microparticle:
o 4 [ | = (5.3)
x2 ) P - QXy ax 53
C = C, Xer, 3 £ =0, x=0 (5.1

Nondimersionalising X with respect to ry and C with

respect to C,q and solving, equetions 5.3 = 5.4 become

2 2
a%c ac #%c
g 2(p = gxy) = ]__i_._._i_
) * [ x (p = qu%ﬂ dx (p=qxy)
(5.5)
dac
Ci-Ca,x-‘!;a—xi-O,x-O (5.6)
Mecroparticles
Da [Y2 daCyp 3(1-€) p d€ ( )
F% 2 i dx 547

- x- ri

C,b=Cgy Y=Rj3 aC/dY = 0, Y =0 (5.8)

The dimensionless form of these equations can be written as



2
asc ac dc,
y x=1
ac
C‘-1,y-1;-j‘-§-0, y=0 (5.10)

where C, and C; refer to the dimensionless concentrationrs
in the micro- and macroparticles defired with respect to

the concentration at the surface of the pellet, It is
important to note that the macroparticle disterce variable y
appears in the microparticle equatior., A rigorous solution

of these equations would require the following procedure,

For fixed values of the other parameters, p,q and #§
(1) Agsume a value of C, at the center of the microparticle
ard pellet as C; = C,  (x=0, y=0). (ii) Integrate the
microparticle equation to reach the surface of the micro-
particle (x=1) and obtain C; = Cal (x=1, y=0), (1i1i) Use
this value of Cal in the macroparticle equation to obtain
the rext increment ‘in y (y=y;) and C_ = Ca2. (iv) Revert
to the microparticle equationy and for =4 and assuming a
value of Ci at x = 0 integrate till x=1 so as to obtain
C; (x=1, y-y1) = Ca.?. This requires trial and error solutior
of the microparticle equation. (v) Repeat the integration
procedure for the macroparticle to get the rext increment in
y and the corresponding Ca’ which is then used in the micro-
particle equation., Continue this procedure till y=1 is



Ql

reached. The specified boundary condition at the surface
of the pellet requires that at y=1, Ca should be equal to
one, At the end of the integration procedure, if this
condition is not satisfied, the whole set of operations
should be repeated so as to satisfy this condition., It is
obvious that considerable trial and error would be involved
with no certainty of obtaining a solution. It is desirable
therefore to devise 2 simpler method that would yield a
solution to this problem,

In order to avoid the curbersome trial and error,
the present work employs one of the methods of weighted
residuals, viz, the Galerkin method. It is assumed that
the concentration in the microparticle is described by the
polynomial

Cy =C, + e, (1=un) + a,u (1-u) (5.11)

vhere u-::2 and e, and 8, refer to the polynomial coeffi-
cients to be deterrired. Using equation 5.11 in 5.5,

ac 0 25 ¢2
d 2(n.qy \/\—1) - \/ﬁ] ..._1.. B e —
u———%*- + % [1 + o -o \/%— du (p=qy vu)

(5.12)

>
a%c
Substituting the values of dC,/du and -—-{}-

du
given by



]2

2
ac a“C
__l_--a1032-232u, % = - 22,
du du

the residval is obtained as

. —
R, = a, [:—.?u + 0,5 {10 2(p-qxA)-qy ﬁj (1-2u) - LaLd P

(p=qy va1) (p=qy V1)

—

>
o o [y Reptiomn Qo] ooy
17 (p-aqy va) (p=qy va) p-qy VA

(5.13)
To get the best apnroximation profile the residual
is minimised over the entire volume of the pellets
1
Of R, (ayu) (1=u) u/2 au = 0 (5.1%)
1

| By (ayu) (Gewdu u'/? au = 0 (5.15)
0

As described in Chapter 4, equations 5.13 and 5.14 can be
equivalertly written as

1
OJT.‘ (u) (1=u) u1/2 du =0 (5.16)

1
J F, (u) (1eu) u1/2 du =0 (5.17)
0
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vhere F,(u) = R,(a,u) and F,(u) = uR,(a,u) which are then
solved by quadrature

i F1(uk)wk =0 (5.18)
M
;i; F, (% )w, = 0 (5.19)

1
Here M = 2, W, s are chosern to be the roots of the Jacobi

(1 ,1/2).

polynomial Py The resulting algebraic equations

are then solved to get the polyromial coefficierts a4 and

12 as

ag =f, (W C , 8, =1, (0)C (5.20)

vhere the functions f1 and f2 are defined as

c..Bc)

C,+ (B
fow oAty __J___&S_.
1 B1 ’ (A2B1-A B

k=1 —(p.quﬁk) (p"qy \/‘_"k )

and
M+2 2
A1 = z 2%-005 [1 + 2(p-qy ‘/ﬂ).qy \/&b + : (1- )0.25¢
=1 (p-ay V5 ) (p-ay /i)
2 2( ) (11, )0,254°
ae T s o S e



q3

M+2 2
N sl B A o
(p=ay Viy,) (p-ay vy )

M+2

B e E)s {1 , 2(p-ay /iy )-ay @L] - (1-u)9%0.25
2 - Y (p=ay v ) (p-ay /4,)
M+2 " i
. 2
ge 2. 2L e Sy O
k=1 " k=1 (p=qy Vi)
(5.21)

It is seen from the definitiorsof parameters that the
parameters a4 and a, are functions of position in the macro-
perticles. The concerntration profile (equation 5.11) ecan

then be written as

@ |O

=141, (1-u) + réu(1-u) (5.22)

It is possible in this particular case to separate the
macroparticle concertration ard explicitly express C1 in
a form such as given by equation 5.22 , In most other
cases that follow, it mey not be possible to amalytically
pbtain a form similar to equation 5.22., It is recessary
in these cases to employ Newton-Rephson or other suitable
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techniques to obtain the polynomial coefficients.

Once the coefficients a4 and a,, and hernce the concen-
tration profile for C,, are known, we can proceed to calcu-
late (dC:l/dx)x -4 Tequired in the macroparticle equation
(equation 5.9)., The MWR methods are, however, krown to
give better estimates of the effectiveness factor using
the integral representations than from the calculations of
the flux ( Villadsen and Michelsen, 1978 ), To avoid any
error the rhs of equation 5.9 is written in
terms of the microparticle effectiveress factor (/3 (¢2YliCa)).
The microparticle effectiveness factor required is then
simply obtained as

1
Yy o= [ ocad (5.23)
a o
vhich can be analytically evaluated for the present case as

RIS EANCORE S XC2 (5.24)

Again, in most cases, equation 5.23 canrot be evaluated

analytically and may have to be solved using quadratures.

The analyticel nature of equation 5,24 facilitates
the further solution of equation 5.9 which for an assumed

polynomial

Cu =1 +by (1=t) +b, (1=t) t, t =3 (5.25)



becomes

2 ac 2
a°c, T S 0.254.0
5 4t

W ¢

"y (1+b1(1-t)*b2t(1-t))
at

(5.26)

The correspording residuval R2 caleculated is

Ry = b, ([2te(1-2t) 3+ t1etdpy] + b1{:%»*(1-t)p1] -py

(5.27)
0.25 ¢%xn1
3

vhere o

It is seen from equation 5.27 that the residual B2 involves
the microparticle effectiveness factor and depernds on the
value of t (or y). 4ﬂ1 therefore reeds to be evaluated for
each collocation point t) ir the macroparticle equation,

Once the function R, is icertified, we can calculate the
functiors FJ ard eveluate the integrel equations 5.16 -

5,17 vsing Gaussien quadrature. The points t, ere again
chosen to be the roots of the polyromial p2(1’1/2). The
solution to equations 5.16 = 5,17 for these functions gives

2 set of algebraic equations which have been solved to obtain

the roots b1 and b2 .

Once the coefficients by and b, are estimated, the

overall effectiveness can be obtained ag

[b
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r'. - [+]

3 (5.28)
o j Yli(ct )Ca-1 dy3

The effectiveness factor can be obtaired using the method

of quadratures.

The effectiveness factor Y| is obtained as a function
of f# for several values of d, To account for different
variations of diffusivities, the parameter q has a2lso been
varied. Both positive ard negative velues of q are aralysed.
The positive wvalues of q correspord to the case where the
microparticle diffusivity increeses towards the center of
the pellet, while negaetive values of q connote the reverse.
The results obtained are presented in Figure 5.1 and dis=-

cussed below,

Results grd discussion

For the value of q = 0, the particular form of
diffusivity veriations reduces to the case of constant
diffusivity, which has beer enalysed earlier by Ors ard
Dogu (1979), The results obtaired usirg the present method
mateh with those of Ors and Dogu (1979) for values of o and
# equal to or less than 10, At higher velues of cl or f#,
more terms would have to be ircluded in the profiles for

Ci and Cn .
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It is also seen from this figure that for a given
value of & the curves with positive values of q lie inside
tre curve q = 0, Likewise the curves with negative values
of q lie outside the curve q = 0, Also, for a given value
of g, the deviation from .the q = 0 curve is greater for
positive values than for negative values of q. This
deviation is smaller at lower values of # and increases
wvith increase in . On ircreasing the wvelue of o, for
given values of q (both +ve or -ve) and @ +these curves
move closer to the curve q = 0, Thig result in gereral
implies that incresse in the parameter & nullifjes any
effect of diffusivity veriation, At lower velues of o,
and especially for higher values of #§, however, the diffu=

sivity variations carnot in general be igrored.

5¢1.2 Case 2% Diffusivity weriation with respect to mecro-
perticle distance oply

We shall now consider diffusivity variation of the form
Dy = Diof(y)' where the function f(y) depiets lineer or
exponential variation with regard to the macroparticle distance

variable., The conservation equations for this case can be

written as

Microparticles

D a 2 4aC kC
—Jx-g x [:X X = -f—(—y-). (5.29)

C-CA' x-r1; axlo. X=0 (5.30)



Macroparticles:
ac (1- e) dac
G [P2gp] - ==L 5 § (5.31)
X-ri
ac
C, =Cyg9YT=Ry —% =0, Y=o (5.32)

The corresponding rondimensional equatiors are

2 2
.
vxci ) Cyq (5.33)
ac
Ci=mCyy x=13 =4 =0, x=0 (5434)
2 ac,
vyca = d'f(y)—a-x—- - (5.35)
X
ac
ca-1,y-1;-—a-§--o,y-o (5.36)

Equations 5.32 « 5.3% can be analyticelly solved to obtain

i [~y <)
sirh (—ﬁ"é(;y")—)

Substituting for Ci from equation 5.37 in 5.35 and again

] lﬂ’n

C =

(5.37)

employing a twoeparameter polynomial similer to equation
5.25, we get

90
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ac dca
u :!—Ea + % du - Q c. = 0 (5.38)
u

Ry =2, (2u « 1.5 + 3u + u(1-u) Q ) + 2, (1.5+(1-u)Q)+Q

(5.39)

vhere Q = 0,25 ol r(y)[&-%__)— coth 4 - 1“
= = -

Once R, is known, following a procedure similar to thet

for cese 1, the overell v is estimated as

18(b1*b2) 0 ki)
& = 2 540

The effectiveness factor calculated using equation (5.40)
is somewhat iraccurate due to the approximete nature of
the equation., However, for ranges of rarameter values
studied here, both the integral form and equation (5.40)
yield almost identieal result.

Several cases depictirg the variations in the
N =@ curves for different values ofcLhave been generated
for the functiors f(y) = (p=qy)” and f(y) = exp (qy),
with both positive and negative values of q and n, These
are shown in Figures 5.2 « 5,5 and the results are

sumarised below,
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Results and discussion

The general trend of the Y| < curves is that with
increase in the parameter oL, the curves for different
values of q (and fixed r ) moved closer together. Also,
for any velue of o4, a8 |r| increases, the deviation for
a given +ve and -ve value of q increases from the q = 0
curve, As in the previous cese for positive values of n,
the curves with positive velues of q lie inside the q=0
curve and outside for negative wvelues of q. This trend is
reversed when n tekes regetive velues (i.,e. curves for

q(+ve) lie outside ard g(-ve) lie irside the q = 0 curve).

In the case where the function f(y) takes en
exponential form (Figure 5.6), the general trerd of the
N~ curves observed suggests that the curves with positive
values of q lie outside the g = 0 curve ard inside for
negative values of q. The observed trend is opposite to
that for the 11near'case. The result is, however, in
conformity with tre fact that for cases where velues of
diffusivity increase towards the cernter the curves lie
inside the q = 0 curve and outside for the reverse case.

In other words, the effectiveness factor for the seme values
of other parameters (such as A, f, etc.) decreases when the
diffusivity variations are such that a2 minimum velue exists

at the surface with progressive increase towards the center.

It is seen from Figure 5.6 for this case that con-

siderable deviations in the effectiveness factor can exist
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depending on the values of the parameters ctand ##, The
figure typicelly shows the cese for g = + 3 and q = + 10
for different & values, As the parameter o increases the
relative deviations between the curves for q = 3 and 10
decrease, and at sufficiently high value of oL (c>10) the
twvo curves are indistirguishable from each other, This
result suggests that a severe diffusicnal limitation in
the micropore arnhilates anv effect due to diffusivity
variations for a catalytic system where the diffusivity
decreases towards the center, The same, however, cannot
be said for the reverse case, where substantial differe=-

nces in the effectiveness fector exist at high values of .

5.2 Diffusivity Veriation with Corcerntration

In several commercial catalysts, perticularly those
involving the use of synthetiec zeolites, it has been experi-
mentally observed ( Ruthven ard Derrah, 19753 Buthven and
Doetsch, 1976 ) that the diffusivity varies inversely with
the concentration of the sorbate and can be adequately
described by the relation Di = Dio/c where Dio represerts the
concentration irdependent diffusivity. Incorperating this
variation of microparticle diffusivity in the conservation
equations for the micro-macroparticles, the equations for

2 simple first order reaction can be written as

Microparticle:
D 1 dC .
;g gi [xe'é a! = kC (5 M1)



ac
C-CA’ X-»rig -~ =0,

ax s =0

the corresponding dimensionless form is

2
2 ac
‘”’i*aff_i_-l(_i) o 2
dx° x T&x T og \&x/ "
ac,
Ci-Ca, x =13 —5;-0, x =0

b

(5.42)

(5.3)

(54%)

Here the definition of ¢1 is modified suitably ard is given

as

Py = ’1@

io

Macroparticlet

D

ﬁ- 4 E{2 dC

3(1= € ) acC
. X

Cp=Cg sy Y=Ry 3 =0, Y=o

The dimensionlesgs forr is

, ,

a=c, . 2 f_cg_ ac

dy2 y dy ax _—
dac

-1.y-1;—d§-0. y=0

(5.45)

(5.46)

(5.47)

(5.48)
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where Ci and C‘ represert the dimensionless concentrations

with respect to the ipellet surface,

Following the method suggested in the earlier cases
the microparticle equation has beer solved using the
Gelerkin methed to obtain the flux (dC,/dx) 4 for different
values of C, and #. This information is then used in the
macroperticle equation(equation 5.M47) which is solved using
the Welsz-Hicks (1962) method to obtein the overall effec-

tiveness factor,
Results and discussion

The results are presented in Figure 5.7 2s N =&

curves for several values of # .

An interesting observation from this figure 1s that
at low values of # (#<1), the effectiveress factor exceeds
unity for <10, The curves then show a monotonic decrease
on further increase of &, In view of the inverse concene
tration dependence of diffusivity, such a case, viz. N> 1,
is expected, but no evidence of multiple solutionms could be

generated in the present work,

5.3 Conclusions

To summarise, in the present chapter four different
forms of diffusivity variations within the pellet have been
corsidered and analysed using the Galerkin method to obtain
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the variation of the effectiveress factor with system para-
meters such ag ctand f , While the individual cases are
discussed appropriately, the immortant general conclusions

ares

(1) Diffusivity variations can lead to significant
variations in the effectiveress factor values in

relation to those obtairned with constant diffusivity.

(2) In gereral, at ary value of the Thiele modulus,
increasing the diffusive resistarce in the microe
rerticle (incressing o ) leads to a lowerinrg of the

effectiveness factor.

(3) Higher values of the effectiveness factor than
those at constant diffusivity (fer given values of

o and § ) can be obtained for a cetalyst where the
diffusivity decreases towards the center from the
surface. This statement is valid for 21l the variation
forms studied here and suggeste an important finding,
since the catalyst can be tailor-made to meet this

requirement,

(4) Higher velues of M are realised for cases where
both ctand ## are small,
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CHAPTER ©

ROLE OF NONISOTHERMICITY

The problem of estimation of effectiveness factors
under nonisothermal conditions has beer studied over the
past few years, Texts like those of Aris (1975), Froment
and Bischoff (1979) and Dorsiswemy ard Sharma (1983) have
discussed first order reaction taking into account different
geometries in a catalyst particle under these conditions.

Weisz and Hicks (1962) used 2 simple method to
obtain effectiveness factors for a first order reaction in
2 nonisothermal catalyst pellet and plotted the results in
terms of effectiveness factor vs. Thiele modulus for various
values of other parameters., Subsequertly, orthogonal colloe
cation was used ( Pattersen and Creswell, 1971 ) for a none
isothermal reaction of arbitrary kinetics in a catalyst
pellet.

The phenorenon of multiplicity of steady states is
observed under nonisothermal conditions for some renges of
the parameters of the system, The existence of five steady
states has been noticed for bimolecular Lengmuir<Hinshelwood
kiretics in the gsimultaneous but independent works of
Elnaghaie and Mahfouz (1978) and Pereirs and Verme (1978),
Pereira ard Varme (1978) have shown thet even for isethermal

103
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and modestly nonisothermal bimolecular Langmuir-Hinshelwood
kinetics existence of five steady states is possible. The
multiplicity pattern is found to be 1=3<5<3-1,

Wong and Szepe (1982) studied the general noniso=-
thermal case of bimolecular Langmuir-Hinshelwood kinetics
for exothermic as well as endothermic reactions and
observed that even for endothermic reactions multiplicity
exists in a region wherem <1 .,

More complex cases of isothermal and nonisothermal
effectiveness factor such as for redox kineties have been

studied by Lakshman and Chanda (1984).

So far the study of effectiveness factors under
nonisothermal conditions has been restricted to monoporous
catalyst pellets (except that of Mingle and Smith, 1961 ).
Since the catalystsused in industry are mostly bidispersed
there is need to study nonisothermal effects in this type
of catalysts.

In the present work we have studied a simple first
order irreversible, exothermic reaction in a bidispersed
catalyst. Due to the bidispersed nature of the catalyst,
in addition to the usual parameters such as Y, 4, 3 4 & new
parameter *n has beern introduced which defines the ratio of
thermal conductivity time for heat in the microparticle to
that in the macroperticle, The inclusion of an additional
parameter is expected to enhance the complexities such as
multiplicity patterns further, Here even for a first order
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reaction five steady states can occur under conditions of

no external transport limitations, which is otherwise absent
in the monopore case. d".l‘ has an interesting influence on the
Nl = & curve ard an unusual multiplicity pattern 1e=3=5=3<5=3«1
is obtained with two regions of five steady states.

6.1 Apalysis of the Problem

The mass and heat balance equations for the microe

mecroparticle system can be written as

Microparticles
Mass balance
D
de 4 (g2 47
i 2 @ L]« (6.1)
c
C=Cp , x"i’g'i'o' X=0 (6.2)
Heat balance
24 ea (-2 B) KC (6.3)
2 X : '&'i] T ke 163
ar
T=TgyX=r; 3 5x =0, X=0 (6.4)
) 52?— (=7( ))
where k-koorp(-E/RgT ' Ty " -Tr(1- %i

(6.5)
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After proper nondimensionlisation, the equations take the

form
vzc =p2 exp (Y(1 =2-) ¢ (6.6)
e 1 ad P | .
ac
Cj=Cqyx=13 =220, x=0 (6.7)
2 - 1 -
V Ty = =8 e (YO- g ) e, (6.8)
Ty
Ti'Ta"'1*';;"°""° (6.9)
D, («/\H)C
where Ba o A2 .pd Ye (6.10)
kTS R_TS
e g g s
Macroparticles
Mass balance
% o [ g . )«
y « ¥ ry a5 X-ri
(6.11)
C,=Cyg9Y=Ry daC,/d¥ =0 , Y =0 (6.12)
Heat balance
k‘ d D dT' ] 3(1-€) k, 4T
Y —— = _—_——e. ——
2 [ = e ax (6.13)
Xy
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The corresponding dimensionless equations are

dCi

dx

2
{L Cq = a
x=1

Cg =1y y=1; dC/dy =0, y=0

dTﬂ.
Tg=1,y, vy=13 -y Cyy=0

o k R2
where r = 3 1 -¢) =2 ?—
i

C(6414)

(6.15)

(€.16)

(6.17)

(6.18)

(6.19)

Equations 6.6 and 6.8 can be combined by using the

bourdary conditions, (equatiors 6.7 and 6.9), to eliminate T,

in terms of Ci and the following relation is obtained ¢

Ti n T‘0 B(C.-Ci)

(6.20)
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Similarly, T. is eliminated in terms of C‘ by using equations

6. - 6.18 $
15 a

T
Tg=1*+—== 501 -¢)

(6.21)
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By using equations 6.20 and 6.21 in 6.6 the final
set of equations will be

S — )

o
== P(1-Cy )+ B(C,=C,)
(6.,22)
dcy
C;j=Cpy X=13 —==0, x=0 (6.23)

which has to be solved along with equations 6,15 « 6,16 .,

Here the concentration and temperature in the microe
and macroparticle system are nondimensionalised with respect
to corcertration ard temperature at the surface of the
pellet, & denotes the ratio of the diffusion times for mass
in the microparticle to that in the macroparticle region,
while Uy refers to the ratio of the thermal corductivity
times for heat., The ratio Di/nh appearing in d ig usually
less than unity, while the ratio ke/k‘ appearing in‘iT is
usually far greater than unity. The ratio %q/ @ is there-

fore always greater than unity in practiecal systems.

By applying polynomial approximation, C1 is given by
Cy = C, +ay (1eu) + agu(1en), u = x° (6.24)

The microparticle eguation can then be written as
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2

a“cC ac

u ; +1.5 ﬂ = 0.25¢%Cexp gY (1- ) 1 ;
du' + of"ﬂ“'ca)"ﬂ(ca"ci)

(6.25)

The correspording residusl is obtained as

M

R, = 6(ay-a,) -20a2u-¢26,exp {Y( = Ty : ) j

1+ .._[3(1 ~Cy ) 0/3(0 -G;)

(6.26)

Applying the Galerkin method we get the following

two equationst

1
[ Ry @ym) w2 au (6.27)
]
1
f R, (ayulu u'/2 au (6.28)
o

which are solved to get the values of a4 and 8y o Once

the Ci profile is krown —‘{ is calculated for several

values of C for a particular set of other parameter values

(Yypy &g /dy $). The tables of ?i—xi » vs. C, for
x

different setsof parameters are given in Tables 6.1 =

6.7 « It is seen that fog lower valuesoffifor other parameter
d
ax | 4y VS, Ca curves nass through

ranges (studied here),

maxima .
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To solve the macroparticle equation it is seen that

€y

= | » depends on C‘ « For that, a large volume of data
x

is collected and the results are irterpolated to obtain

ac 4

3;1‘ : for any value of Ca « For this purpose spline
X=

interpolation scheme has been used. The equation is inte=-

grated using Weisz and Hicks' (1962) method.

The effectiveness factor is finally obtaired as

dC‘

g
" —
d g

The results are plotted in terms of effectiveness fectors
vs, d for constant values of other parameters. It is seen
that the firal results are very sensitive to the number of
interpolation points. Here caution should be exercised in
obtaining sufficient number of interpolation points so that
the firal results are qualitatively correct.

6.2 Regults anrd Discussion

The effectiveress factors thus caleulated are
presented as Y} = d plots showing the influence of variations
in #, v, By and %p/d , Thus Figure 6.1 indicates the
influerce of @ on the N = d plot, The figure irdicates
the existence of a region of five steady states which extends
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with decrease in ), Thus for f§ = 0,01 the five steady
state region covers the d -parameter space from d = 600

to 1100, while for #§ = 0,05, it covers a narrower d - range,
30-3%., For @ = 0,1 the five steady state region hes
completely disappeared but multiplicitv (3 states) still
persists. For § = 1 multiplicity diseppears altogether.
Also, as evident from the figure, higher values of Y| are
realised for lower values of & , especially wher @ is also

smaller,

Two points may be noted at this stage:

(1) The values of 1 as caleulated are higher than
those reported for monoporous systems. Direct
comparison with the morovore case, however, is
not possible due to the presence of o and oLT

in the present case,

(2) The region where five steady states exist
appears to shift to higher velues of d when §
becomes smaller, The existence of five steady
states in monoporous systems is known, especially
vhen externel transport limitatiors are present
( Pereira and Varma, 19783 Elreshaie and Mahfouz,
1978 ). The present case reveals thet the
biporous nature of the catalyst can also induce
five steady states in certain regions of the

parameter space,

Figure 6,2 shows the influence of the ratio dp/ A on the

N=dcurve, The figure again reveals the existence of five
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steady states. The curve for dg/d= 50 is especially
irteresting ir that it reveals two differert regionsin the
parameter space where five steady states cen prevail. On
ircreasing d, the figure reveals the multiplicity pettern
1=3=5=3=5=3=1, Such 2 pattern is rather unusual and provides
perhaps the first instance of its occurrerce. The figure
also shows that higher values of are realised when g/
is larger, The five steady state regior occurs at lower
velues of for higher values of %n/ %, and the region in
general is marrower than et lower values of the Xq/ & ,
The intermediate states also lie closer to each other for
higher velues of ( d,r/ob),

Figure 6,3 shows the influence of /B on the Nedplot,
As expected, for & reacticn of higher ronisothermicity, thre
Nl =« plot shifts to the left. The five steady state, region
occurs at lower values of d , the intermediate states move
cloger to each other, and higher values of Y can be realised
at lower values of o , Figure 6,4 shows the influence of .
Increasing ¥ has the same effect as ircreasirg f3 and the
results indicated in Figures 6,3 and 6.4 are quelitatively in

accord with those known for a moroporous system,

6.3 Conclusions

The presert work reports effectiveness factors for &
micro-macroparticle system in the presence of an exothermic

first order reaction, The results irdicete thet in general
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higher values of 1 can be realised for such systems in
comparison with those for monoporous systems, especially
at lower values of d , The system can poscsess five
stationary states in a certain paremeter region even in the
absence of exterral transport limitations. The influence
of parameters such 2s iy # 4, Y and %m/% has been
investigated and the results suggest thet increase in the
value of any of these parameters would shift the T =dplot
to the left. The ratio *q/ % has an especially impartent
influence in that two separate regions of five steady
states can be identified., The influence of M and Y is
similar to that for the monoporous system and has been
quentified.
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TABLE 6,1

#=0.,01, B=0.2, Y=30, %/l =10

Ca Flux
0,001 8.99 E«03
0,005 0,04498
0.01 0,0899
0,02 0.17978
0,03 0.2696
0.05 04498
0,07 0,629
0.1 0.8982
0.15 1.3466
0.2 1.7936
0.25 02,2382
0.3 2,6788
0.35 3.1112
Ol 3.5278
0.Mk5 3.9192
0.5 4,229
0.55 14,3988
0.6 b 2k
0.62 %,0116
0,63 3.8546
0.6+ 3.646
0.65 34070
0,66 3,133
0.67 2,8312
0,68 2.5116
0.69 2,189
0.7 1.8712

0,72 1.30016



Table 6.1 contd

1Y

Ca Flux
0.75 0.6376
0.78 0.2712
0.79 0.2008
0.8 0.14852
0.82 0.07934
0.85 0.,02916
0.87 0,014 €1
0,875 0,011842
0.9 4,66 E«03
0.92 1.9244 E<03
0,94 7.8 E-O4
0.96 2.9536 E-Ok
c.oe 1.0357+ E-04
V.99 5.943 E-05
1.00 3.32 E<05




TABLE 6.2

$=0,01, (20,2,

Y=30, /=10

Ca Flux
0,001 8,99 E-03
0,005 0,04498
0.01 0.0899
0,03 0.,2696
0.07 0,629
0.09 0.818
0.1 0.8984
0.15 1.3496
0,2 1.7936
0.25 2,249
0.3 2.6986
0.35 3.1478
(R 3.5964
0M5 4 ,0492
0.55 4,936k
0.6 5.3478
0.65 5« 7204
0.7 5.9976
0.7% 5.9058
0.78 543302
0.79 L 9L
0.8 L.h112
0.31 3.7725
c.83 2.2458
0.8: 1.6478
0.85 1.173%
0.86 0.A72



Table €,2 contd.

_Ca Tlux
0.87 056

0.88 0,28794
0.89 0,18536

0.9 0.,1198

0.92 0.04:916
0493 0,03154
0.9% 0.01978
0.97 4 42 Eu03
0.98 2.5952 E.03
0.99 1.48776 E-03

1.00 8.34 E04




122

IABLE 6.3

=04, B=0,2, V=30, %= 10

Cea Flux
0,001 8.982 E-03
0,005 0,498
0,01 0.0899
0,02 0,17978
0.05 0.4%498
0,07 0,629
0.1 0.8984
0.15 1.3496
0.2 1.7936
0.25 2,249
0.3 2,6986
0.3 3.1478
0.k 3.5992
0.5 4,048
0.5 4 4964
0.55 49432
0.6 5.3862
0.65 5.819
C.7 6,223
0.7 6 5104
0.8 645436
0.82 6.278
0.83 6.0108
0.4 5.589
0.85 4 ,9268

0.86 3.952 ese



Table 6.3 contd.

Ca Flux
0.87 2.8456
0.88 1.9642
0,89 1.3316
0.9 047434
0.92 0,225
0,9 0.08306
0.95 0.05038
0.98 0,0104552
0499 549766 E-03
100 343444 E-03

125
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TABLE 6.\

”’1’ Y- 30 B- 002, %/dﬂo

Ca Flux
0,001 8.99 E-03
0,005 0,04498
0.01 0.0899
0,03 0,2696
0.05 04498
0,07 0.629
0.1 0,8982
0.15 1.3466
0.2 1.7936
0.25 2,248
0.3 2,699
0.35 3.1494
(VRS 3.5952
0.5 4 ,04928
0.5 4,499
0.55 4,949
0.6 5.3988
0.65 5.8486
0,7 6.298
0.75 6.74:66
0.8 7.192%
0.85 7.6268
0.9 8,0102
0,95 8.091
0.96 7.9636

0.97 7.68417 oo



Table 6.4+ contd,

Ca Flux
0.975 7.4316
0.98 7.0186
0.985 6.187%%
0.986 58842
0.987 546
0.988 4.8128
0,989 3.9726
0.9892 4,38228
0.9895 3.621
0,99 3.3402
0.995 2,0572
0,997 1.8088
0.999 1.6158
0.9995 1.5738
1.00 1.5338

125
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TABLE 6.5

%/A =50, (3= 0.2, Y= 30,8 =0.01

Ca Flux
0.001 9.98% E<03
0,005 0.04498
0,007 0.,06298
0,01 0,088
0.03 0.,2699
0.05 0.4498
0,07 0,62988
0.1 0,89984+
0.15 1.34976
0.2 1.7996+
0.25 2.24961
0.3 2,699
0.35 3,194
oM 345992
0M5 L, 0492
0.5 4 4692
0.55 4,949
0.6 5.3988
0.65 5.8488
0.7 6.2984
0.7% 6.7558
0.8 7.195
0.85 7.626
0.9 7.8022
0.91 7.6172
0.92 7.101%

0093 50759" esen



Table 6.5 contd.

Ca Flux
0.935 4,521k
0.9% 3.0482
0,942 2.5072
0,94k 2.,0268
0,946 1.6052
0,95 0.916
0,951 0.7812
0.952 0,664k
0,953 0.,56476
0.954 04812
0,955 0,4082
0. 956 0,3472
0,957 0,2954
0.958 0.251%
0,959 0.,2138
0.96 0.1816
0.97 0,0338
0.97%5 0,013208
0.98 4,863 E-03
0.985 1.645 E-03
0.99 5.04808 E-O4
0.9% 1.81056 E<O4
0.995 1.3853 E-O4
0.996 1,05266 E-04
0.998 5.99302 E-05
0,999 4. 4819 E-05
0.9992 4,226 E=05
0.999% 3,99402 E-05
0.9996 3,75516 E-05
0.9998 345384k E-05
0.9999 3434k E-05
1.0 3.333% E-05

121
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IABLE 6,6

= Ok, % /A= 10, § = 0,01,v=30

Ca Flux
0,001 8.998 E-03
0,705 0.04498
0,007 0,062988
0.01 0,08998
0.05 044988
0,07 0.62988
0.1 0.8998
0.15 1.3496
0.2 1.7996
0,25 2.2496
0.3 2.6992
0.35 3149,
(GRS 3.5986
oLy 4, 0492
0.5 4 .4970
0.55 4,9490
0.6 5.3908
0.65 5.83096
0.7 6.25490
0.75 6,6268
0.8 6.79368
0.85 561134
0.86 4 ,2250
0.87 2.,40890

0.872 2.27096 scee



Table 6,6 contd.

129

Ca Flux
0.8%% 2,0256
0.876 1.63402
0.88 107kl
0,885 1.1368
0.89 0.5718
0.895 0,29448
0,9 0,1960
0.92 0,0:668
0,95 4,7322 E-03
0.97 8,050 E-O4
0.98 3,01610 E-O4
0.99 1.04644 EOk
1.00 3,333% E-05




Y= “‘5’

1ed

TABLE 6.7

%/* =10, [=0,2, #=0,01

Ca Flux
0,001 8.9982 E-03
0.005 0.04498
0.007 0.062988
0.01 0.029982
0.05 0.44988
0.07 0.62988
0.1 0.89982
0.15 1.3498
0,2 1.7996
0.2% 2.2496
0.3 2.6992
0.3% 3140,
0.k 3.59872
045 4 ,0492
0.5 L 497k
0.55 4,9%90
0.6 5.398
0.65 5.8456
0.7 6,286
0.75 6,692
0.8 6.8938
N .81 6.0438
0.82 6.7124
0.83 6.1252
0.8+ 547652

0.5 3.68”6 eee



Table 6.7 contd.

Ce Flux
0.855 2.404%8
0.86 1.7116
0.87 1.01222
0.873 0,4390
0.877 0.286230
0.38 0,2248
0.39 0.11126
0.892 0,097392
0.895 0.07991%
0,897 0.07010
0.9 0.,057636
0,92 1.54836 E«02
0.93 7.8598 E-03
0.5 3.90846 E-03
0.55 1.39808 E<03
0.56 8.,9808 E04
0.97 4.,1316+ E<O4
0.98 1.6844528 B0k
0.99 7.97568 E=05
1.00 3.3334% E-05
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CHAPTER 7

EFFECT OF CATALYST DEACTIVATION

There are well known reasors why commercial catalysts
are liable to lose their activity during the course of resction.
The different types of deactivation are poisorirg, sintering,
fouling. The problem of catalyst deactivation has been
analysed theoretically and good revicws and treatises covering
this area are available ( Butt et al, 19783 Masamune and
Smith, 19663 Forzatti et al, 198+ ).

Different types of approaches have been employed in
the analysis of deactivation of catalyst pellet., In the
first time as ar explicit parameter is elirireted, whereas
in the second deactivetion is considered to be deperndent on
time.

The use of time dependent effectiveness factors has
been studied over the past few years. Kam et gl (1975) ard
Kulkarni and Bamachardrar (1980) obtained analytieal solutiors
for a single catalyst particle undergoing slow first order
self poisoning,.

Recently Do ard Weilard (1981 a,b) obtaired analytical
solutions for effectiveness factors for series ard parallel
fouling in slab, infinite cylinder and sphere geometries by
using singular perturbation and integral transform techniques



respectively the results compare very well with the numerieal

solutions of Masamune and Smith (1966).

Here we study parallel and series fouling in bie
dispersed catalysts using the Galerkin method of quadratures.

7.1 -Parallel Fouling

Let us consider catalyst particles of radius ry
which are agglomerated into pellets of radius R, In the
particles (micropores) for simplicity ve assume a single

first order, isothermal, irreversible reaction:

A ~————> Products (mein reaction)
A ———> Coke (parallel fouling)

At time 8 , the residual activity is expressed by the
frection 8 which is determined by

- 08(x, &)
___g.;.__.cis, 8 (6 =0)=1 (7.1)

The reaction rate for the main step is given by r, = ko S C
where C is the concentratiorn of A inside the micropore at
position X, Y,

By neglecting the accumulation of reactart in the
particles as well as in the pellet, we obtain the following

mass balance equation for species A in the particles

135



—
) }
Nl

Microparticles
D, d
io [2 dC]
—_—  (x & = k§C (7.2)
X2ax ax .
dac
C-CA,x-riga-x'-o, X=0 (703)

The dimensiornless equations can be written as

2
\fCieks8 Cy ri/ Dy, = #° 8 Cy (7.4)
ac
Ciuc"x-1.a§l-o (7.5)

In the same merrer we cen write the mass balance

equation for the pellet es

Macroparticle:
2
D a<c
...% a [12 el s (= ;A) at average Y
4 dy ay

1
= (1=€) x _fcisdx3 (7.6)
o

with the boundary conditions

4ac
CA-CAB’!-B'&.!A.O’ Y=0 (7,7)
where (1=€) is the volume of particles rer wnit volume of

pellet, In dimensionless form the equations can he written

as



v s )
C, = ™ (-1 average at Y
y * Dy -
2 1
R
= (o) = k J’C S dx3 (7.8)
D i
a o
Further, defining
i 3
N —3: fcismr (7.9)
o
R Dy
and de 3(1-€)>p =2 (7.10)
ry 2

equation 7.8 can be rewritten as

2 a daCy
x=1

with the boundary corditions

Cqc = 13 y=1 (7.42)

E.C_.'-. a 0 } v = 0 (7013)
dy

The activity parameter 8 cer be elirinasted from the

microparticle equatiors using the Legerdre trarsformeticen

e
Yy, = j c, ds (7.1%)
o}



provosed by Del Borghi gt al (1976) and Dudukovie and Lamba
(1978). Equation 7.1 on simplification gives

8 = exp (- \Pi) (7.15)

The microparticle equation car now be written es
2
Ve #7 (1= exp (=) ) (7.16)
x

With the trarsfoimed boundary conditions

-3
Yy (1,8) = j‘ Cad8 =y,

0 (72:47)
avy,
e (0,8) = o

Also, employing the transformation 7.14 eveluated at
the surface of the mieroparticle, the macrorarticle equation

7.11 can be rewritten as

2

4
Vg s 4 7.18)
y x=1
with the transformed boundary conditio_ns
€y
-———2 = o y = o (7.19)

dy ’
\I’/a-" y=1 (7.20)

o

<
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The derivative (d\yi/dx)x_.‘ required in equation 7,18 can
be obtained by solving equatiorns 7.16 « 7.,17. For this
purpose we employ & single point collocetion ard write the

equation in the fom

FOy) = 192 oy, ) +1«exp(ay)=o
(7.21)
F'(y) = 1555 + exp (=) (7.22)

where \V is the value of Y 4 2t the collocation point

x -\/3_/7 + It follows from these equations that ¢ = 0 ,
1/10.5 for Yg =200, Also
the derivative (dy,/dx),_, cen be obtaired as

for ¥, = C and Va =y

d
L 1 - ¢° {% [1eexp(= )| + ;g—B- exp(-xpa)]}

d x
X
(7.23)

Equations 7.21 =« 7,23 together give the values of
vy erd (dy,/ax) . for essumed values of y, which can be
gubsequently used in equation 7,16, This equation ecan neow
be solved using the conventioral numeriecal methods or even
by collocation, The overall zffectiveness factors computed
using this procedure are portrayed in Figures 7.2 end 7.3.

A particuler difficulty zssociated with the use of
this procedure is the fact that the resvlts obtaired are
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EFFECTIVENESS FACTOR AS A FUNCTION OF

FIG. 7-2:

DIFF - RENT VALUES OF © AND o
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accurate only for low velues of # . Also the final estimation
of the effectiveness factor is very sensitive to changes in
parameter values. To overcome this difficulty it was proposed
to simplify the problem by irvoking the approximetion concer-
ring the veriation of macroparticle concentration with time,
In view of the relatively weak deperdence of Ca on 8 , the
boundary condition given by equation 7,17 car be modified

as
o
Yy (140) = f Co 2 ® = Ca® = Yo
°
(7.24)

The set of equations 7,16 « 7,17 with the modified
condition 7.24% has now beern solved using the polynomial
approximation method,

To solve equation 7.16 we employ a polynorial appro=
ximetion for the Yy profile as

2

Yy =y ta, (1=u) + a,u (1=u), u = x (7.25)
1 "Ya'™ 2

and revwrite equation 7.16 &s

w

2 d
"y ¥4
bt S | ® 0,2502(1=exp(=
u ~> e 0,254 (1=exp(=y,))

(7.26)

and the residual as
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Ra = 6(a2-a1) - 20&12\x-¢2 {1-exp [-\pa-a1 (1-u)-a2u(1-u5_]}
(7.27)

Following the same treatment as described earlier, the

resultant equations can then be written as

1
(a,u) (1=wdu'/? au=0, 3=1 (7.28)
) o e

1
[Re @ (1ewud/? qu =0, § =2 (7.29)
o]

Equivalently equations 7.28 = 7.29 cen also be

written as

f 1/2 L
F (u) (1=u) du = F,(u,) =0 (7.30)
o glu ulu u ;'kj“k 743

where Fj(u) = Rz(g,u)ua'1, 31 ,42,,.8 (here 2) and M may
have any value =N, Again choosing v 's as the roots

of the Jacobi polyromial p2(1 s1/2), equation 7.30 is
solved using the Gaussiar quadratures to obtain the values
of a4 and 8,. These velues of 24 ard &, are utilised in
the estimation of ¢4 which in terms of trersformed varia-

bles cen be written es

dyy
Yli = -%: J‘ x° — exp (-\yi)dx (7.31)
L]



It should be roted that the values of a, ard a,
calculated using the procedure mentioned above are specific
to the values of 6, f and Ca . In view of the dependence
of a, and a5, on & , in the process of calculaticn of 14
we need to know the variations of 24 end a, with 8 at
corstant C, and f. These values of da1/d0 and da,/d6 have
been gererated by introducing an infinitesimal variation
in 6 keeping f# and Ca constant ard then used to obtain the
Ny=C, variation for one value of # ard several values of
8 . One such typical curve for three different values of
8 (= 0,2,1 and 3) for one value of # (@#=5) is shown in
Figure 7.,1. Similar calculations for different values of
# have been repeated and the data interpolated to obtain
Yli at any value of C, at constant @ and #. This irnforma-
tion has beer subsequently used in the macroparticle equation
which has beer solved usirg Weisz ard Hicks' method (1962).
The results are presented as '\ = d or "« & plots for
different velues of (8,8) or (d,4).

Results and_discussion

Figure 7.% shows a plot of - 8 for two values of
# (=1,5), each for two values of o (=1,10), It is seen
from this figure (curves for f=1,5 3 ol =1) that a crossover
of curves occurs for the two values of # for the same o,
This implies that at lower times @ catalyst with no signi-

ficant diffusional resistance fares well for higher @ values,

144
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Algo a catalyst with less significant diffusioral resistance
deactivates faster than one with higher diffusional resista-
nce. It is also seen from this figure that, in gereral, for
any value of # the catalyst has lower effectiveness and
deactivates faster with increase in o.. Also, the influence
of the parameter ¢, is less severe for a catalyst with low
diffusional resistance., That is, for low values of #

(say # = 1) the deactivetion manifested in the 1 values and
the final time of deactivation is less severely affected
with increase in o from 1 to 10. On the other hand, for a
catalyst with high diffusional resistance, the influence of
an increase in o is felt more severely and both the ") and
the final time of deactivation get affected corsiderably.

Ay alterrative representation of Y e d for different values

of © has already been showr in Figure 7.3 .

7.2 Series Fouling

The governing equations for the microemacroparticle
system vhere 8 reaction leading to series fouling proceeds

h ——— \)i B ——————> coke ) can be written as

Microparticles
D, d ,
io ac
X2ax ["2 ax | = k&€ (7.32)
dc - =
CaCyy X=ryj o5 0y X =0 (7.33)
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b 9—-[x2 Q-C-J..ksc
2 o ax
1 ac!
C-CB’x-ri‘——-O’x-o

aX

The corresponding dimensionless equations are

2
ey = g2¢c, 8

ac

3
Cg=Chy x=13 g =0y x=0

2
Ve = =v82¢y8

ac,y
Cip = C» x=13 -7‘;--0,!-0

S=1, 6=20

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

Corbiring equations 7.36 and 7.38, C;, can be elimirated

in terms of Ci as

cib = '))(Ca - Ci) + Cb

(7.42)
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Employing equation 7.42 in equation 7.40 and using the
definition of Y, (equation 7.14), ard on integration, we
obtain

8 mexp [ {C0+ Y(y,-y)}] (7.43)

Further, assuming a weak depenrderce of Cy on 8 , this

equation can be written as
8 =exp [~ (Cy+vC)0+Vy, | (7.44)
Employing this definition of S in equation 7.36 the micro-

pore equation cen be rewritten in terms of the transformed

variable as

2 dv
Vx\Pi = of ¢2 d: exp [—(C'b+ )Jca)o+\!\yi] das

By using single point collocation this equation car be

rewritten as

e
a
By * BC0 = J‘ 92 .d_\i_.,p [-(c,+ Ve, )0 +v\p]d0
o

(7.46)

Differentiating equation 7.46 and rearrarging we obtain
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2
& o, [a _g;; exp {~(Cp+ VC )8 +Vy] | (2.47)

which has to be integrated subject to condition y= 0 for

8 = 0y using the transformation

Z = e°(cb + VC)e & (7.48)
dz av
w " - (Cy +VC) Z+ V2Z T (7.49)

which on further simplification gives

Z
.. ( a \ az

L2 [Cb¢(cb+ Ve, )¢2/B1 22] Cp+(C v C, )¢2/B1 0z |

(7.50)
end on integration leads to

2
I (c, + ”Ca)"z/iz } { (Cy+ ¥C )P/By, Z }
L C, +(Cy+ c.)p2/13"2 C, +(Cy+ ”Ca”’%w z

o

2
1 . CbB12/ﬂ +C+ v ey

§  seaseevemm——— n
2
(Cu+ ¥ C) CyyByo/P+ (C ¢ VC_ )2

(7.51)

The derivative dvy/d® and 6 given by equations 7.47 and
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7.51 are required in the estimation of the microparticle

effectiveness factor which can be written as

1

d
Yli - _61 l =2 ._3.;1 exp [-(Cb-p v Ca) e #)J\y:]dx
a

(7.52)

or equivalently as

w, exp [ =(C,+ C_V)e+Vy |
gy = 3 L LI + wyexp(~C, 8 )
1+ ﬂ2/B12 exy -(cb+cav o+ VY

(7.53)

In these equations vy and v, refer to the weight factors ard
B12 the coefficient matrix. It is important to note that
Cb appearing in the equation for ﬂi is also dependent on
Ca' the corresponding concentration in the macroparticle.
Ag such this equatiorn will have to be simultanreously solved

along with the macroparticle equations.

We now turn to macrovarticle equations for species
A and B which can be written as

Macroparticles
D ac - € )D
Y d_-[xa B I R TR (7.5
2 ay ¥y ax
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C, =C y=R§ — =0 Y =0 e
A= A5 s p= . (7.55)
D. acC C
b d [ B (1-€) , 4
— —_— = = \a io -d-z (7.56)
dCy
CB'CBS'Y'R’E;"O’Y'O (7.57)

which in the dimensionless form can be written as

2 dCi

Ve o — - — 72 c, (7.58)
a dx x=1 3 *
Yy
dac
Cp =1y ys1§ — =0 ,y=0 (7.59)
dy
2 ) tdc
y dx x=1
Cb-C y-1;i(.:.§.0 v=20 (761)
BS ¢ dy . .
D
Here y’ = -l;-i-e ]Ji = and oL' = ad
b

Eliminating (1h in terms of Ca from these equations we obtain
the following relation between the concentration of species

B at the surface of the microparticle (Cb) and the concentra=-
tion at the surface of the pellet (Cpg)
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Cp = v(1 - Cn) + Cpg (7.62)

Note that Cy is required in equation 7.53 for estimation
of the microparticle effectiveness factor,

The macroparticle equation for the species A has
now been solved using the polynomial eapproximation method.
The profile for Ca is defined as

Cp =1 +by (1t) + byt (1et) 5 t = 5 (7.63)

Substituting equation 7.62 in 7.58 we obtain the residual

Rzas

0,250 #°
Rz s - 2b2t + 1.5 (.b1 ’bz"?b?t) - '_g_gg—g'- Ylicn
(7.64)

The residual Rz is minimised over the volume of the pellet
so as to get the best approximation profile. For N=2,this
leads to equations 7.28%~<"7:29% whepe-B, is now defined by
equation 7,6+, The Ny and C, required in equetion 7.64
are given by equations 7.53 and 7.63. Once by and b2 are
known the overall effectiveness factor is simply obtained
as Y = - 18 (b1+b2)/(¢2d' )o The results calculated in
terms of the overall effectiveness factor as a function
of time 8 for different vaelues of f§ and o are presented
in Figure 7.4.
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EFFECTIVENESS FACTOR AS A FUNCTION OF
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© FOR DIFFERENT VALUES OF QL AND @



Results and discussion

Typical variations of M as a function of time 6
for three differert values of # (f=1,3 and 5) for Ol = 1
and 10 are shown in Figure 7.4, It is seen that for a
given value of f# the differerce between the effectiveness
of the catalyst for d= 1 and 10 is highest for the
catalyst at shorter times. Also, this difference at any
time 8 is higher for higher velue of . As time ©
increases the difference in general decreases, This
decrease in the wvalue of N\for A={ a2rd 10 with @ is more
significant for low # than for high #.

The results of this investigation suggest that
vhere series type of fouling occurs, it is preferable to
have a catalyst with low diffusioral resistarce and also
low values of . Thus it is preferseble to operate with

as small a size of catalyst as possible at low terperatures.

7.3 Conclusiong

To summarise, in systems where catalyst deactivation
occurs, either due to parallel or series fouling, the

study leads to the following conclusionst

(1) For parallel fouling, & catalyst with low #
gives better performance at shorter times, while a catalyst
with high @ fares better at lorger times. This also implies
that a catalyst with low # deactivates faster than a catalyst



152

with high § at any value of o .

(2) The catalyst shows lower effectiveness and

deactivates faster with increase in o for any value of f.

(3) The parameter d affects the overall velue of
nand the time for complete deactivation of the catalyst
more severely for catalysts with high §# than for those with
low # . In other words, the effect of bimodal pore dis-

persion increases with increasing diffusioral resistance.

() In series foulirg, the greatest influence
of the parameter X is felt at shorter times, With increase
of time, the influence of A diminishes for the same value

of # . This is perticularly so for catelysts with low § .

(5) The paramcter o characterising the micro-
mecroparticle system has ir general a detrimental effect on
the effectiveness factor M . It is preferable therefore to
operate the system with as low velues of A as possible.
This clearly suggests the use of srall size catalyst partie-
cles/pellets.
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NOTAT ION

polynomial constants
defined by equation 5.21
defired by equation 5.21
polynomial constants
defined by equetion 5,21
defined by equation 5,21

coefficient matrix for single point
collocation

concentration of species A in the
microparticle

concertration of species B in the
macroparticle

dimensionless corcertration of species A
in the macroparticle

dimersionless concentration of srecies B
in the mecronarticle

concertration of species A in the
macroparticle

concentration of speecies B in the
macroparticle

dimensiorless concertration of species A
ir the microparticle

dimernsionless ccrecentration of species B
in the macroparticle

conecertration of species A in the bulk



corcertration of species B in the bulk
defired by equation 5.21
defired by equation 5.21

microparticle effective diffusivity
of species A

temperature dependent part of micro-
particle effective diffusivity of
species A

microparticle effective diffusivity
of species B

macroparticle effective diffusivity of
species A

macroparticle effective diffusivity of
species B

defired by equation 5.21
defired by equation 5,21
defined by equation 4.7
rate constant for main reaction

effective thermal conductivity of
macrovarticle

effective thermal conductivity of
microparticle

rate constant for fouling reaction
constant or general exporert
constant defined in equation 5.1

Jacobi polynomial
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constant defined in equation 5.1

average rate of the main reaction on a
verticle at position Y in the pellet

radius of the microparticle
radius of the macroparticle
gas constant

residual

activity of particle at position x and
at time 6 (x,8) = 1

defined as y°
temperature in the microparticle

dimensionless terperature in the micro-
particle

tenperature in the macroparticle

dimersionless temperature in the macro=-
particle

terperature at the surface of the catalyst
pellet

defined as x°
weights in the quadrature

dimersionless distance variable used in the
microperticle

dimensiorless distance variable used in the
macroparticle

redial coordinete In the microperticle



Y radial coordinrate in the catalyst pellet
Z defined by equation 7,48
Greek gymbols
D
ol parameter in general defired as 3(1-€) 51 Bf-
a 2
r
i
& defined by equation 6.19
& exothermicity factor defined as —
x T8
e g
s
Y paremeter defined es E/Rg,T8
ﬂi nmiecroparticle effectiveress factor
ﬂ macroparticle effectiveress factor
[+ dimensionless time defined as kfc‘st
371 stoichiometric coefficient
D
2% parameter defired as 51 ‘l&
a
Vi
1 parameter defined as (Dio/Db)'Ui
€ void fraction of the pellet
[ Thiele modulus in genersl defired as ry 4&7D1
g, modified Thiele modulus defined as ry 28’240
‘*i cumvlative gas concentration defined by
equation 744
b cumulative gas concertratior defired by
equation 7,17
N7

value eof 4 8t collocation point



155
LITERATURE CITED

Aris, R., '"The mathematical theory of diffusion and
reaction’ in permeable catalysis', Clarendon Press, Oxford,

Butty J.B.y and Billiroria, R.M,, 'Chemical reaction
engineering reviews', edited b B, Luss andV.W, Weekman,
Housten, American Cherical Socicty, Washington, 1978.

Carberry, J.J., Chem, Eng. Sei., 1962, 12, 675.

Del Borghi, M,, Durn, J., and Bischoff, K,B,, Chem., Eng,
Sei., 1976, 31, 1065.

Doguy C.y and Smith, J.M., AIChE J,, 1975, 21, 58.

Do,D .D,, and Weiland,R .H,, Ind. Eng. Chem. Fundam,
198%., 20, 48, ’ '

DoyD «Dey and Weiland,R ,H,, Ind.Eng, Cher, Fundam,
198Mm,20, k2, g ’ ’
lelkovj.c’ M.P.’ and anba, H.S., Chem. Eng. SCio’
1978, 33, 303.

El m!m’.e’ S.S.E.H.’ and hhfouz’ ‘OT., Chenm, Eng. SCi.’
1978, 33, 386.

Forzatti, P,, Bugzi-Ferraris, G., Morbidelli, M,, and

Froment, G,, and Bischoff, K., 'Chemical reactor eralysis
and dea{gn', Wiley, New York, 1979.

Gelbin’ Do, and Fiedler, Ko’ AIChE Jo, 1980' 26’ 510.

Hashimoto, N., and Smith, J.M,, Ind, Eng. Chem, Fundam,
197, 13, 115,

HaShimotO’ N.’ Moﬁ"at, A.Jo and Smith’ J.M., AIChE Jo'
1976, 22, Nk,



159

Jayaraman, V.K,, Kulkearri, B,D., 2nd Doraiswamy, L,K.
Chem, Eng. Sci., 1981, 36y 3. T

Jayaraman, V,K,, Kulkerni, B,D,, and Doraiswary, L.K,
s J’.,'1983.’ B 3 ’ .

Kulkarni, B.D,, and Ramachandrar, P,A,, Cher, Eng, J,
1980,

L;kshmnan, C.y and Chand:a, M,, Personal communication,
1984,

Lin, 8.H., Bull, Math, Biol., 1979, 41, 151.
Ph, Y.H.’ and LOO’ T.K., AICHE Jo’ 1976' 22’ 1""‘70

}thonald, wonn’ and HabEOOd, Howo. Caﬂ. ‘T. Chemo Eng.,
1972, 50, 462,

Masamune, 8., and Smith, J.M., AIChE J,, 1966, 12, 384,
Mingle, J.0,, ard Smith, J,M,, AIChE J,, 1971, 12, 5.
Ors, N.’ and Dogu, T.' AICh.E \T.' 1979’ 25’ 7230

Paterson, W.,R,, and Cresswell, D.L,, Chem, Eng., Sei.,
1971, 26, 605.

:’ar;ira, CJ.y and Varma, A,, Cher, Eng. Seci., 1978, 33,

Pereira, C.J., ard Varma, A., Chem., Eng. Sci., 1979, 334,
1187,

Ravikumar, Duncar, R.C,, and Ruthven, D,M,, Can, J, Cher,
Eng.y 1985’ 60, l"§3o

Ruthven, D,M,, and Derrah, R,I,, J. Chem, Soc, Faraday
Trens. 1. 1975, 21, 2031.

gghven, D,M,, and Doetsch, I,H,, AIChE J,, 1976, 22,



160

8ilveston, P,L.,, and Hashimoto, K., AIChE J., 1971,
12, A5.

Uyanik, O,, M,8, Thesis, Middle East Technical Univ.,
Ankara, Turkey, 1977.

Villadsen, J., and Michelser, M.L,, 'Solution of
differential equation models by polyromial approxime-
tion', Prentice Hall, Inc, 1978.

Villedsen, J., and Stewart, W.E,, Chem, Eng, Seci.,
1967, 22, 1483,

waho’ No' ahd Smith’ J.M.' Im' Ehg- Chem. me.,
1964, 3 , 123.

Wakao, N,, ard Smith, J.M,, Ind. Eng, Chem, Fundam,,
196“9 1’ 1230

w‘i’z’ P.B.’ and Hicks’ Joso' Chem, Ene. 801.. 1962,
12, 256.

Wg!alg, SoHo’ and Szepe, s.' Chem, Eng, SCio’ 1982, 3_2’
1629,






CHAPTER —8

A CASE STUDY OF BIMOLECULAR
LANGMUIR—HINSHLWOOD KINETICS




CHAPTER 8
A_CASE STUDY OF BIMO NGMUIR-

HINSHELWOOD KINET ICS

8.1 Inptroduction

The phenomenological description of several
chemically reactirg systems is often expressed in terms

of the reaction-diffusion equation as

o

a
t

- va. -r (a) (8.1)

o/

vhere V2 is the laplacian operator, a the concentration
of the reactant species, D the diffusicn coefficient and
r(a), in generel, some nonlinear function of the reactant
species. Equation 8.1 has been solved for a variety of
reaction functions r(a) with appropriate initial and
final boundary conditions appropriate to the physical
process under irvestigation. It is now well-accepted that
the physical system thus described can possess more than
one statiormary solution and the particular solution to
which the system evolves is determined by the set of
initial conditiors chosen for the problem, We begin with
the analysis in this chapter with the assumption that the
homogeneous systen [r(a) = 0] descrived in Equation 8.1



possesses three stationary solutions., We shall refer to
each one of these solutions as phases and note that tran-
sition from ore solution or phase to another solution or
phase is possible. Such transition can, for exarple, be
trigrered by local fluctwetions that are always present
in the physical system.

The existence of local diffusion gradiemts can
also bring about a change in the homogeneous solutions
of equation 8,1, In fact, in presence of diffusion,
under certain sets of operating conditions the two
homogeneous states of the system rav even coexist., In
a truly homogeneous system this phenomenon, of course,
cannot arise. We cen look at this problem as follows $
Let us suppose that we prepere two systems, ore in which
one steady state prevails, and another in which the second
stable state prevails, and bring them in contact with each
other at the bourdary designated 2z x = 0, It is
expected that the boundary separating the two phases will
move in one direction or the other depending on the
external constraints and one system would completely
annihilate the other. One could, however, think of a
situation where tre velocity of movement of the boundary

would be zero, implying coexistence of the two phases.

The necessery condition of the coexistence of
the phases is therefore the situation of zero velocity

for a given external constraint, An alternative approach



to the problem is to consider the process of nucleation

of one phase into the other ard their relative stabilities.
The problem has 2lso been looked at from a different view
point by Kobatake (1970) who showed for a particular case
the similarity between generalized entropy production
in transitions between two stable branches of steady states
ard the Gibbs free energy in equilibrium phase transitions.
Schlogl (1972) considered the reacticn-diffusion system
and treated coexisterce of phases using the aralogy of
Maxwellian construction, Nicolis et al (1977) considered
the onset of instability as a nucleatior process and
formulated a8 ronlinear master equation to describe the

gituation.

The basic models have been epplied to model

systems such as  Schlogl's reaction scheme

A+nX =——> (n+1)x

N Ay B

which, while simnle to analyse from the mathematical view-
point, are rarely found in nature. The intertion of the
present chapter is to apply some of the concepts illustra-
ted for simple systems to more realistic situations,
Towards this end we consider a langmuirefinshelwood bimo-
lecular reaction in a2 C8TR, Several reactions of practical

interest conform tc such situations and the exarmple

cy

e



considered also exhibits multistationary behaviour under
homogereous conditions., We are interested in demornstrating
the coexistence of two of these states for certain sets of
external parameters when a local diffusion gradient exists
in the system., We also irvestigate in the present chapter
the possible variatiors that canr arise if the diffusion
within the syster was rot isotropic.

The presentation in this section is arrarged as
follows. The general methodology and the Maxwellian
arelogy for construction of coexisting states are
given, The method is then applied to an importart case
of bimolecular lergmuir<Hinshelwood kinetics, which
analyses the situation in preserce of nonisotropic
diffusion.

8.2 Coexistence of Stable Solutions

The gereral conservation equation for reactione

diffusion systems ir the presence of external constraints

can be written as

2 e ? .
o Dy e ¥ (ay, 5) (8.2)

where a 1is the concentration of reactant species, D is

the diffusion coefficient, F 1is the function of veriations
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in concentration due to chemical reaction and A is the
external constraint, It is assumed that the funection F
is analytiec in a and )\,

It is possible in this cese that for a certain
range of values the system hes more than one stationary
solution, When the two stable statiorary states are
brought together at the boundery x = 0, the boundary between
the phases will move in one direction or enother depending
on the values of external parameters such as A\, For the
two phagses to coexist we require the velocity at the
boundary to be zero and can be obtained as follows (Nitzan
et al, 1975):

By defining 2 transformation
ﬂ 2 X e vt (8.3)

where v 1is a function of Xy equation 8,2 may be converted

into an ordirary differential equation

“a

Q2

. vi% + Flo, N) =0 (8.4)

Y

This is a nonlinear eigenvalue equation for v at
a given A, Hence coexistence of two states occurs when

v=0at A= Am,

The value of ’\m is obtained from
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+ Flagy A)D)=o0 (8.5)

If we consider the system of single species with

third order kinetics, equation 8.2 can be written as

2
.g-% = D i—xg- -q (a-e.') (ewa,) (a-a3) (8.6)

Homogerecus steady states fer this equation occur

at a =2a,,8,, 2y vhere 8498548, aTe arbitrary funce
tions of .,

For 84 8ré 2, to be the only stable states q > O
ard a, > 2y > 2y .

A new varisble y d1s defined as

8 =38
Y""__l

o R

Equation 8.6 is rearrarged as

P 2 (a, =a,)
T n-"—xg- - aa,ea,)? y(ye1) |ye B3 (5.
a (a, - a3)

which is identicel to a model studied by Montroll and the

solution is given as



a(g) = a +(ay-a,) (1+exp(t sg) ) . (8.8)
where 1/2
B = <§5 (8.2-&1 ) (8.9)

the velocity at the boundary is given as
1 1/2 (

Coexistence occurs at v = 0 41.e. 8y = 12- (a1+a2) at
A. Am .

Another approach for findirg the condition of
coexistence of phases is given by Schlogl (1972) using

Maxwellian construction,

The following reactior schemc was considered

A ¢ 2X =————3 13X

(8.,11)
B + X — c

the typical conservation equation for a reaction-diffusion

system is given a3

ﬁ- = D Vf a + rla) (8.12)



2
where D, a and ¥ have their usual meaning and the rate
function r(a) is given by

rla) = «a3 +32 . pp +1 (8.13)

It 1s observed that for certein values of B, Y

there exists more then one steady state solution 8y ,as,a3
for which @a/dt wvanishes.
At steady state equation 8.13 can be writter as
3 2
y = 27 «3° + pa = v(a) (8.14)
At steady stete equation 8.12 can be rearranged to form
rla) = —2— 3 (a) (8.15)
Ja
2 -
D - R .
e * e (a) (8.16)
wvhere R 1is potertial field,
For the two phases to coexist, the potentials of
the two phases must he the sare, Hence
R(ay) = R(e,) (8.17)

a
Ra) - R@ay) = [ r(a) as (8.18)
1

]

o

!
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Using equation 8,13 in 8,18 we got

R(a) - R(a,) = &a‘* + a3 __5@ 8® + Ya + corst. (8.19)
This exvrression has mexima for a equal to a, and 8y o Herce
R(a) - R(a,) = & (a-e )? (a-a,)? (8.20)

Comparing the cocefficients of equatiors 8.19 and 8.20
a, ta, =2 (8.21)

af ag = 4 R(e) (8,22)

On the other hand, corvering fre coefficients of equation

8.13 and
r(a) = (a-a1) (a-uz) (a-a3) (8.23)
we get
8y +a, +ay =3 (8.24)
a; 85 8y = Y = Y(a) (8.25)
Thm’
N 83 = 1 (8.26)

Using equation 8,26 in equation 8,14



\y(a3) - ‘f’(a2) = Ya,) = B-2 (2.27)

Comparing equations 8,25 ard 8,27

a2, = f3-2 (8.28)

Now ay and 8, are the roots of the equation

a2 e2a+ B-2 = 0 (8.29)

Hence

a1’2 =1+ A3-1 (8.30)

To obtain the initial conditions equation 8,16
is multiplied by da/ 3x and integreted with respect to
dx, to give

2
D <3‘ + R(a) = R(a,) (8.31)
2 \3x

From the above equation we get

1/2
oa 2
= - - [5 (R(a,) = R(a) )j (8.32)
which leads to
—22 . L @0)2 (aay) (apen) (8.33)
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8 « 8
x = - (/2 _1__ 3, 1

- a8, =&
8, = a, 2

(8.34)

Hence .

1/2
a=1«(1 -7)1/2 tarh C—;i% x (8.35)

Equation 8,35 represents the concertration profile
that one would realise in moving from the state at the
coexisting cordition to the lower stable state urder
statiorary conditions. It is possible to obtain a complete
transient solution to equation 8,12, Thus Magyari (1982),
Dehrmanr (1982) and Schlogl and Berry (1980) have developed
a technique to solve the equation exactly to obtain the
complete transiert solutior. The specific reesction funce
tion aralysed corresponds to that for Schlogl's reaction

scheme and travelling wave solutions are ohserved.

8.3 Application to Simple Bimolecular
Langmuir-Hinshelwood Kiretics

8.3.1 Homogeneous system

Here we analyse a practically more irteresting case
where the reaction rate is assured to obey bimolecular
Langmuir-Hinshelwood kineties. Several cherically reacting
systems are known to follow such a rete law and typical

cases come from a clags of hydrogeration and oxidation



reactions. It is supposed that a reaction is carried out

in a C8TR, the macroscopic equation describing the system
being given by

BCA kCA
o (1 + kc, )P

The dimensionless form of the above equation is written

as

= {1 «a-r = y(a) (8.37)

wvhere r = —_——, Da =

1
K = KC
’ A
(14, a) ?

&
®
"!Jlﬁ

Equation 8.37 can be rearranged and at steady

state becomes

2=K - Da
'<) <2K* a- —— =-r@@)=0
Kl2

(8.38)

'
2 -K 1=2K +Da a = Yia) (8.38)
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Equation 8.38 for certain sets of values of K'and Da
possesses three solutions. For an interval (Da,Da') there
exists a eritical value of K', K' >’K; for which r(a)=0
gives three solutionsj for k' <'K; only one solution is
obtained, Figure 8.1 shows a plot of r(a) vs. a for a
particular Da 4in (De' Da ) for three values of K',

K <K, , K'>K, K's= K. As interval (D' Da )
is changed K; is changed. The values of a for which
r(a)=0 as a function of De for two values of K are
plotted in Figure 8,2,

8.3.2 Spatial iphomoreneity in preserce of isotrovic
diffusion

The homogeneous system in presence of diffusion

gradients can be written as

2a Da a D 2
ot (1ekte 2 F % (8.39)

or at steady state &s
D 2 5
; Qx a = = —g; [R(a)_] = -r(a) (8,40)

where R can be indertified as a potential field. Following
the Maxwellian construction as discussed in the previous

sectiony, in the multiplicity region the recessary condition
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FIG.

8-1.

VARIATION OF RATE -FUNCTION r(a) WITH CONCENTRATION a
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for the two phases represerting the two solutiors (a1 and

a2) to coexist is obtained as
R (a1) = R(a2) (8.41)

with 5

R (a) «R (a1) - _/ r(a) da (8.42)
%

These relations can be utilised to relate the
parameter values (K' and Da) for the coexistence of phases.

From the definition of R(a) we get

R(a)-R(a1) - - .‘_u- <2'K) + <.:§§.':2‘7\0 % - 3—-2- + const.
]
K
(8.4+3)
L (a-ay)? (e-a,)? (8.4 )

Comparing the coefficients of 8.43 and 8.4k gives

(a4%2,) (x'<2) (
. 8.L45)
2 K
2 2
(a,25) + 3,87 ) - 1 (8.46)
2 2



On the other hand, comparison of coefficients in equation
8.38 and

r(a) = -(a-a1) (a-az) (a-eB) (8.47)

gives the following relationss

'
&g ta, ta, = L"_K_;?_)_ (8.48)
8oy =~ = (a) (8.49)
K

Thus we get, using equations 8,48 and 8.45,
K 2
8, = — (8.50)
3K

Using equation 8,50 in equation 8.38a

Yy (ey) = (3 '2) <2'K ) (:ﬁ +1>\ x 72) -;1-2_

(8.51)

It is evidert from equation 8.38 that the parsmeter
y(a) is constant and equal to (1/K'2).



\P(a1) - q./(nz) - \]/(33) = const = ';'1,'2—' (8.52)

Its value therefore should not depend on the particular
state of the system.

Equation 8.51 defires the relation between K' and Da
at the coexistence. The equation is cubic in K' and may
possess one or three real roots. The coexistence region
is plotted ir Figure 8.3, It is evident from this figure
thet one of the roots i.e. (K'), is always negative and
hence physically imappropriate. The second roots is nearly
always constant while the third root varies with Da es
indicated.

We shall now revert to the calculetion of the
roots. For this purpose substituting the wvalue of 83 from
equation 8,50 into 8.49 we obtain

313.2 - _'—%——- (8.53)
K(K «2)

and with equation 8,48

o 2 (Ko 3
T3 (?)“ rw -2 0 e

which gives the two roots 2y and a, as

17%
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a - -miﬁ-h-n
2

1’2 (8.55)

where m--§ -(-K—-'gzand n = 3

K' ' (k')

The methodology as outlined above gives, for the
values of K' and Da that correspond to the coexistence
region, the three roots of the system, For a system
initially prepared in such a state ccexisting with the
unstable state (52-0.30‘75 )y separating the two stable
phases we can solve equation 8.39. For this purpose
miltiplying equation 8,40 by 28/ dx and integrating once

we obtain

2
D /228) « R(a,) - R(a) (8.56)
2 Kax) * ¢ d

Utilizing equation 8,44 in 8.56 gives

da
ox

= - (202 (aay) (a,0)  (8.57)

vhich can be rearranged to obtain

. = 8,48, exp (p.‘)

(8.58)
(1 + exp p1)



181

where Pq = «x(2D)~1/2 (a,-a,)
1 21

Equation 8.57 provides the necessary relation for obtaining
the flux,

8.3.,3 Spatial irhomogeneity and rnonisotropie diffusion

The derivations detailed as above followed the
requirement that diffusion in the system was isotropic.
It is of interest to see the effect of variable diffusion.
For this purpose we arbitrarily choose a form of diffusie-
vity variation with distance :

D= D°[1 +C exp (-x2/12 )] (8.59)

vhere C 1is some arbitrary constart and 1 represents the
spatial correlation length which measures how for down the
influence of diffusivity variation prevails, The plots of
D vs. x for various values of the correlation length 1
obtained from Dung end Kozak (1981) are shown in Figure 8.4,
Substituting equation 8,59 in 8.40 and rearranging we

obtain

-x2/12) % 2Xx N g oxle)

(1 +Ce —5 -
(8.60)

The equation has to be solved subject to the following

conditions$
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2

a(x=0) = (K'2) / 31('; a(x—>») = (8.61)

The relations have been obtained earlier as equation
(8.55).

Equation 8,60 represents 2 boundary value problem
with conditions specified at two different locations. It
is feasible to convert it into an equivalent initial wvalue
problem by defining the flux et x = 0, In order to
eveluate the slope at the origin we take the asymptotic
ceses of 1 = 0 ard 1—o0 , In either of these cases
reference to equation 8.59 suggests that D takes a constant

value of D = Do and D = 2D agsuming that the constant

o ?
€ = 1. The slopes calculated using these values of D in
equation 8,57 then provide tre lower and upper bounds for
the initial slope. For any finite value of 1, further,
equation 8,59 suggests that the slope would alwaeys
correspond to 1—>c©, Thus, for a typicel case of 1=0,

the initial slope c2n be obtaired for (Do =5) asg

(=2,8361984 E<2), while for 1 > O the slope takes the

value of (-1.4180992 E-2), Equation 8.60 is then integrated
for several values of 1 with appropriate initial condie
tions of concentration end slope at the origin, The

typical concentraetion profiles for different values of 1
are shown in Figure 8.5. We shall now discuss the trends

observed in this figure.

183



$371408d NOILVHINIINOD AHVNOILVLS NO Y HLON3T NOILVIIHHOI 40 133443 'G-8 Ol4

-h
o0
-
X
02} 00} 08 09
T T I | | | 1
=1 ol
I~ 4
—s-0
L —~9-0
_.
|
R S _ L ! _ _ L _ I _ 10




185

8.+ Results and Discussion

The concentration profile for 1 = 0 smoothly starts
from the value at the origin (0,3075) and decreases corti-
ruously to firally reach the stable state correspondirg to
(a1-8.05 E=3), For ever en infinitesimelly smell value of
1 , the profile is no longer smooth but starts oscillating
even before it reaches the stable state., In fact, for
1 = 0,001 we observe that the profiles for 1 = 0,001 and
1 => oo completely coincide with each other. For values of
1 higher then 0,001 tre profiles are displaced towards
that correspording to 1 = 0 and for 1 = 0,03 in fact &
profile iderntical to that for 1 = 0 is realised. Increase
of 1 beyord this value leeds to profiles again moving
towerds the upper boundery (1— o ) which having reached
a certain velue of 1 , the sarme phenomenon of reversal
towerds 1 = 0 profile is realised. It appears thus that,
dependirg on the velue of 1, the actual profile lies any-
where between the profiles corresponding to 1 = 0 and 1 -wco,
In fact, there exist infinite values of 1 at which the
profiles for both 1 = 0 arnd 1> can be realised, Irfinite
values of 1 for which profiles lie within these bounds can
2lso be realised. It appears thus thet, deperding on the
specific value of 1, the transition from one stete to another
could be smooth as one would realise in the cese of 2 homo-
gereous diffusion gradient, or the system mey generzate a

spatial pattern leading to oscillatory behaviour, We conclude
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that the net effect of spatially inhomogeneous
diffusion within the system is the formation of
spetial patterns within the system.
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NOTAT IOK

dimensionless concertration of the species
steady states

value of &8 at v =0

censtant

concentration of species 1in the bulk
concentration of species in the inlet stream
isotropic diffusivity

varameter defined as D/F

nonisotropic diffusivity

parameter defired as kV/F

flow rate

function of variations in econcentration
rate constant

adsorption corstant

parameter defired as KCAO

correlation lergth

defined by equation 8,55

defired by equation 8,55

defined by equation 8,58

corstart defined in equation 8.6



18%

r rate funetion

r defined in equation 8,37

R defired in equwmtion 8,15

t time variable

v velocity at the boundary of two phases
v volume of the reactor

bq dimensionless distance variable

¥y variable defined in equation 8.7

Creek letters

IE constant

Y constant

A external parameter

A the value of Aat v =0

) perameter defined by equation 8,2

defined by equation 8,38a
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