# Enantioselective Synthesis of Bioactive Molecules via Hydrolytic Kinetic Resolution of Alkoxy Epoxides, Dihydroxylation of Alkenes and CuCN-Mediated Annulations in C-C, C-O Bond Formation 

## A THESIS

SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY)

## To <br> UNIVERSITY OF PUNE

By
R. Santhosh Reddy

UNDER THE GUIDANCE OF
Dr. A. Sudalai

Chemical Engineering and Process Development Division National Chemical Laboratory

Pune- 411008, INDIA
July 2012


DEDICATED TO $\mathcal{M Y} \mathfrak{B E L O V E D}$ FAMILY

MEMMBERS



## NATIONAL CHEMICAL LABOATORY

Dr. A. Sudalai
Scientist
Chemical Engineering \& Process Development Division,
Pune - 411 008, India
Phone (O) : 0091-20-25902174, Fax: 0091-20-25902676, e-mail: a.sudalai@ncl.res.in

## CERTIFICATE

Certified that the work incorporated in the thesis entitled
"Enantioselective Synthesis of Bioactive Molecules via Hydrolytic
Kinetic Resolution of Alkoxy Epoxides, Dihydroxylation of Alkenes and CuCN-Mediated Annulations in C-C, C-O Bond

Formation" was carried out by the candidate under my supervision.
Such material as had been obtained from other sources has been duly acknowledged in the thesis.

July 2012
Pune
(Dr. A. Sudalai)
Research Supervisor


## NATIONAL CHEMICAL LABORATORY

## DECLARATION

I here by declare that the thesis entitled "Enantioselective Synthesis of Bioactive Molecules via Hydrolytic Kinetic Resolution of Alkoxy Epoxides, Dihydroxylation of Alkenes and CuCNMediated Annulations in C-C, C-O Bond Formation" submitted for the degree of Doctor of Philosophy in Chemistry to the University of Pune, has not been submitted by me to any other university or institution. This work was carried out at the National Chemical Laboratory, Pune, India.

July 2012
Pune
R. Santhosh Reddy

CE \& PD Division
National Chemical Laboratory
Pune - 411008

## CONTENTS



2.2.3.1 Objective ..... 146
2.2.4 Results and Discussion ..... 147
2.2 .5 Conclusion ..... 153
2.2.6 Experimental Section ..... 153
Section III Asymmetric Synthesis of 1-[(S)-3-(dimethylamino)-3,4- dihydro-6,7-dimethoxyquinolin-1-(2H)-yl]propan-1-one
2.3.1 Introduction ..... 157
2.3.2 Review of Literature ..... 157
2.3.3. Present Work ..... 159
2.3.3.1 Objective ..... 159
2.3.4 Results and Discussion ..... 160
2.3.5 Conclusion ..... 163
2.3.6 Experimental Section ..... 164
2.3.7 References ..... 169
Chapter III CN-Assisted Oxidative Cyclization of Cyano Cinnamates and Styrene Derivatives: A Facile Entry to 3-substituted Chiral Phthalides and its Application to the Synthesis of (-)- Matteucen C, Isocoumarins and Alkylidenephthalides
Section I CN-Assisted Oxidative Cyclization of Cyano Cinnamates andStyrene Derivatives: A Facile Entry to 3-Substituted ChiralPhthalides
3.1.1 Introduction ..... 172
3.1.2 Review of Literature ..... 173
3.1.3 Present Work ..... 180
3.1.3.1 Objective ..... 180
3.1.4 Results and Discussion ..... 181
3.1.5 Conclusion ..... 194
3.1.6 Experimental Section ..... 195
Section II First Enantioselective Synthesis of (-)-Matteucen C
3.2.1 Introduction ..... 219
3.2.2 Review of Literature ..... 219
3.2.3 Present Work ..... 219
3.2.3.1 Objective ..... 219
3.2.4 Results and Discussion ..... 220
3.2.5 Conclusion ..... 225
3.2.6 Experimental Section ..... 225
Section III A Novel Approach to Isocoumarins and Alkylidenephthalides
3.3.1 Introduction ..... 229
3.3.2 Review of Literature ..... 230
3.3.3 Present Work ..... 235
3.3.3.1 Objective ..... 235
3.3.4 Results and Discussion ..... 236
3.3.5 Mechanism ..... 241
3.3.6 Conclusion ..... 242
3.3.7 Experimental Section ..... 243
3.3.8 References ..... 248
Chapter IV CuCN-Mediated "One-pot" Route to 1-Amino-2-naphthalenecarboxylic acid Derivatives and 3-SubstitutedPhthalides: Enantioslective Synthesis of Colletotrialide
Section I CuCN-Mediated "One-pot" Cascade Route to 1-Amino-2-naphthalenecarboxylic Acid Derivatives
4.1.1 Introduction ..... 252
4.1.2 Review of Literature ..... 252
4.1.3 Present Work ..... 253
4.1.3.1 Objective ..... 254
4.1.4 Results and Discussion ..... 254
4.1.5 Conclusion ..... 261
4.1.6 Experimental Section ..... 262
Section II CuCN-Mediated "One-pot" Synthesis of 3-Substituted Phthalides
4.2.1 Introduction ..... 272
4.2.2 Review of Literature ..... 272
4.2.3 Present Work ..... 274
4.2.3.1 Objective ..... 274
4.2.4 Results and Discussions ..... 274
4.2.5 Conclusion ..... 278
4.2.6 Experimental Section ..... 279
Section III Enantioselective Synthesis of Colletotrialide
4.3.1 Introduction ..... 289
4.3.2 Review of Literature ..... 289
4.3.3 Present Work ..... 289
4.3.3.1 Objective ..... 289
4.3.4 Results and Discussions ..... 290
4.3.5 Conclusion ..... 297
4.3.6 Experimental Section ..... 297
4.3.7 References ..... 304
List of Publications ..... 306

## ACKNOWLEDGEMENT

I would like to sincerely thank everybody who has, in one way or the other, contributed in the successful completion of my thesis. I wouldn't be doing justice by merely naming everybody who helped me but at the same time it will be too difficult for me to express my sincere thanks in the form of words, I will nonetheless try to make a sincere effort ...

I wish to express my heartfelt gratitude towards my research supervisor Dr. A. Sudalai, whose knowledge and vast experience has inspired me at every stage of my tenure and helped me to achieve this target. His suggestions, criticisms and constant encouragement helped me immensely to grow as a chemist. His constant effort to instill us with several most essential habits, like weekly seminars and group meetings, weekly reports and daily planning, made me confident to start an independent scientific career. My sincere regards and reverence are for him, forever.

I thank Dr. B. D. Kulkarni sir and Dr. V. V. Ranade, Deputy Director and Head, CE-PD division, for his help and support. My special thanks go to Dr. S. Gurunath for his constant encouragement and moral support. I also want to thank Dr. Mulla, Dr. Srinivas Reddy, Dr. Ramana and Dr. Srinivas Hotha for their help and encouragement. It's my privilege to thank the Director, NCL for giving me this opportunity and providing all necessary infrastructure and facilities.

I am immensely thankful to my seniors Drs. Abhimanyu, Siva, Srinu, Shriram, Ramesh, Arun, Victor, Emmanuvel, Shyla, Pandu, Tanveer for useful training in the initial phase of my career. I would like thank all my school teachers and also my MSc teachers from School of Chemical Sciences especially Prof. H. Suryaprakah Rao for teaching me discipline in life along with science.

I thank NMR group and elemental analysis group for their help in obtaining the analytical data. I am very thankful to Mr. V. B. Chavan for his help in the HPLC analysis. I thank library staff, chemical stores \& purchase staff and glass blowing section staff of NCL for their cooperation. I thank PD office staff Mr. Bhosale, Mrs. Puranik, Mr. Kakade and Mr. Suresh for their cooperation. I also thank PG section of Pune University for their cooperation and help. Financial assistance from UGCCSIR, New Delhi is greatly acknowledged.

It's my pleasure to thank all my lab mates Pratibha, Varun, Dayanand, Chaithanya, Senthil, Dattatraya, Venkat, Brij, Rambabu, Souman, Sunita, Ravindra,

Anil, Komal, Ravi, Pragati, Maduri, Pushpa, Hari, Satish, Santosh, Nagesh, Rana, Baba, Sandeep, Kaleshweran, Muthuraja, Ashwini, Deepa, Manjunath and pramod for providing a cheerful atmosphere in the lab and in every aspect through out this research. I am very thankful to Dr. Arun R Jagdale and Mr. I. N. Chaithanya Kiran for their useful suggestions in each stage of my research career.

I wish to thank all my telugu friends in NCL especially Raman-Sriprya, Swaroop, Sridhar-Kavitha, Rajendar-Yogitha, Bhargav, Venkatesh, Srinu B, Satyanarayana, Ragupathi, Srinivasrao, Ramesh, Abhijit, Vilas-Sunitha, Yadhu, Narsima, Ravi, Saty (Manoj), Venu, Ajay, Babu, Sunil, Durga, Siva, Janakiram, Bhogesh, Narsima k, Ramreddy, Narendra, Suresh, SReddy,, Trinadh etc. for their support and care during all these years.

My special thanks to other friends in Pune Manu, Srinu and all GJ hostelites for their help and support.

I thank all my MSc classmates especially Kiran, Jithu, Bunny, Ramreddy, Ramarao, Michael, Malli, Nagaraju, DCnaidu, Srinu, Ramesh, Anji, Dhamu, MHLN, Ashok, Ranjit, Ravikanth for their help and care.

The love and affection showered by my parents and grandparents on me is magnanimous. Without understanding what I am doing, my beloved parents grandparents have supported me throughout my career with lots of patience. I always love my brother R. Sridhar Reddy for their belief in my abilities and constant encouragement. I also thank my uncles, aunts, brothers, sisters, brother in laws, for their support and best wishes. I am indeed very thankful to all my relatives for their love, care and support.

I wish to thank Uma Sai, my wife, for her love, affection and support extended to me during this work.

I wish to thank great scientific community whose achievements are constant source of inspiration for me.

Above all, I thank God Almighty for His enormous blessings.
Though, many have not been mentioned, none is forgotten.
R. Santhosh Reddy

## ABBREVATIONS

| Ac | Acetyl |
| :---: | :---: |
| Ar | Aryl |
| Bn | Benzyl |
| Boc | N-tert-Butoxycarbonyl |
| $(\mathrm{Boc})_{2} \mathrm{O}$ | Ditert-butyl dicarbonate |
| $\mathrm{n}-\mathrm{Bu}$ | $n$-Butyl |
| n-BuLi | $n$-Butyl Lithium |
| CAN | Cerric ammonium nitrate |
| Cbz | Benzyloxy carbonyl |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | Methylene chloride |
| $\mathrm{CHCl}_{3}$ | Chloroform |
| $\mathrm{CH}_{3} \mathrm{CN}$ | Acetonitrile |
| $\mathrm{CuSO}_{4}$ | Copper(II) sulfate |
| DBU | 1,8-Diazabicyclo[5.4.0]undecene-7 |
| DIBAL-H | Diisobutyl alulinum hydride |
| DET | Diethyl Tartarate |
| DMF | Dimethyl formamide |
| DMSO | Dimethyl sulphoxide |
| DMAP | $\mathrm{N}, \mathrm{N}$-dimethyl-4-aminopyridine |
| ee | Enantiomeric excess |
| Et | Ethyl |
| $\mathrm{Et}_{3} \mathrm{~N}$ | Triethylamine |
| $\mathrm{Et}_{2} \mathrm{O}$ | Diethyl ether |
| EtOAc | Ethyl acetate |
| EtOH | Ethyl alcohol |
| g | Grams |
| h | Hours |
| HCl | Hydrochloric acid |
| HPLC | High pressure liquid chromatography |
| $\mathrm{H}_{2} \mathrm{SO}_{4}$ | Sulfuric acid |
| IR | Infra red |
| IBX | 2-Iodoxybenzoic acid |
| KHMDS | potassium hexamethyl disilazide |
| $\mathrm{K}_{2} \mathrm{CO}_{3}$ | Potassium carbonate |
| KOH | Potassium hydroxide |
| $\mathrm{LiAlH}_{4}$ | Lithium aluminum hydride |
| LDA | Lithium diisopropyl amide |
| LiHMDS | Lithium hexamethyl disilazide |
| M+ | Molecular ion |
| Me | Methyl |
| MeOH | Methyl alcohol |
| MOM | Methoxymethyl |
| min | Minutes |
| mL | Milliliter |
| mp | Melting point |
| MS | Mass spectrum |
| Ms | Mesyl |
| $\mathrm{NaBH}_{4}$ | Sodium borohydride |


| $\mathrm{NaHCO}_{3}$ | Sodium bicarbonate |
| :--- | :--- |
| NaOH | Sodium hydroxide |
| $\mathrm{Na}_{2} \mathrm{SO}_{4}$ | Sodium sulfate |
| $\mathrm{NH}_{4} \mathrm{Cl}$ | Ammonium chloride |
| $\mathrm{NH} \mathrm{H}_{4} \mathrm{OH}$ | Ammonium hydroxide |
| NBS | N-Bromosuccinimide |
| NMR | Nuclear Magnetic Resonance |
| NMO | N-Methyl morpholine $N$-oxide |
| $\mathrm{Pd} / \mathrm{C}$ | Palladium on activated charcoal |
| Pet. ether | Petroleum ether |
| Ph | Phenyl |
| $p-\mathrm{TSA}$ | p-Toluene sulfonic acid |
| PhNO | Nitrosobenzene |
| Py | Pyridine |
| Red-Al | Bis(2-methoxyethoxy)aluminum |
|  | hydride |
| TBS | tert-Butyldimethylsilyl |
| TBHP | tert-Butyl hydroperoxide |
| TEMPO | $2,2,6,6$-tetramethyl-1-piperidinyloxy |
| THF | Tetrahydrofuran |
| TLC | Thin layer chromatography |
| TBAF | Tetrabutylammonium fluoride |
| TBDMSCl | tert-Butyldimethylsilyl chloride |
| TBDPSCl | tert-Butyldiphenylsilyl chloride |
| TFA | Trifluoroacetic acid |
| TMSCN | Trimethylsilyl cyanide |
| Ts | Tosyl |

## GENERAL REMARKS

1. All solvents were distilled and dried before use.
2. Petroleum ether refers to the fraction collected in the boiling range $60-80^{\circ} \mathrm{C}$.
3. Organic layers after every extraction were dried over anhydrous sodium sulfate.
4. Column Chromatography was performed over silica gel (60-120 and 230-400 mesh).
5. TLC analyses were performed over aluminum plates coated with silica gel ( $5-25 \mathrm{~m}$ ) containing UV active G-254 additive.
6. IR spectra were recorded on a Perkin-Elmer model 683 B or 1605 FT-IR and absorptions were expressed in $\mathrm{cm}^{-1}$.
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker FT AV-200, AV-400 and AV500 MHz instruments using TMS as an internal standard. The following abbreviations were used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{td}=$ triplet of doublet and $\mathrm{dd}=$ doublet of doublet.
8. Mass spectra (MS) were recorded on an automated finnigan MAT 1020C mass spectrometer using ionization energy of 70 eV .
9. Optical rotations were carried out on JASCO-181 digital polarimeter at $25^{\circ} \mathrm{C}$ using sodium D light.
10. All melting points and boiling points are uncorrected and the temperatures are in centigrade scale.
11. Elemental analysis was done on Carlo ERBA EA 110B instrument.
12. The compounds, scheme and reference numbers given in each chapter refers to that particular chapter only.
13. The ligands (DHQD) $2_{2}$-PHAL, (DHQ) $)_{2}$-PHAL, (DHQD) $)_{2}$-AQN were purchased from Aldrich.


#### Abstract

The thesis entitiled "Enantioselective Synthesis of Bioactive Molecules via Hydrolytic Kinetic Resolution of Alkoxy Epoxides, Dihydroxylation of Alkenes and CuCNMediated Annulations in C-C, C-O Bond Formation" is divided into four chapters.

The title of the thesis clearly reflects the objective, which is to synthesize enantiomerically pure bioactive molecules and to develop useful synthetic methodologies. Chapter 1 describes the cobalt-catalyzed hydrolytic kinetic resolution of alkoxy epoxides and their application in the asymmetric synthesis of ( $S, S$ )-reboxetine, (-)chloramphenicol and $(+)$-thiamphenicol. Chapter 2 deals with the $\mathrm{CoCl}_{2}$-catalyzed reductive cyclization of nitro cyclic sulphites using $\mathrm{NaBH}_{4}$ to give the corresponding tetrahydroquinolin-3-ol and its application in the asymmetric synthesis of anachelin H chromophore and 1-[(S)-3-(dimethylamino)-3,4- dihydro-6,7-dimethoxyquinolin-1-(2H)-yl]propan-1-one ( $S$-903). Chapter 3 presents the synthesis of 3 -substituted chiral phthalides using CN -assisted oxidative cyclization of cyano cinnamates and styrene derivatives and its application in the synthesis of (-)-Matteucen C, isocoumarins and alkylidenephthalides. Chapter 4 describes the CuCN -mediated "one-pot" route to 1 -amino-2-naphthalenecarboxylic acid derivatives, 3-substituted phthalides and its application in the enantioslective synthesis of Colletotrialide.

\section*{CHAPTER 1}

Cobalt-catalyzed Hydrolytic Kinetic Resolution of Alkoxy Epoxides: A Short Enantioselective Synthesis of (S,S)-Reboxetine, (-)-Chloramphenicol and (+)Thiamphenicol Jacobsen's Hydrolytic Kinetic Resolution (HKR) has emerged as an effective method for obtaining chiral epoxides and 1,2-diols in a highly enantioenriched forms. ${ }^{1}$ These compounds are important intermediates in the synthesis of various bioactive molecules. ${ }^{2}$ In view of easy availability of chiral ligands and the simplicity of the reaction conditions with water being used as the nucleophile, HKR is being used extensively for providing several chiral building blocks in the synthesis of biologically active compounds. ${ }^{3}$ This chapter deals with the development of a novel method in which HKR of two stereocenters in alkoxy epoxides catalyzed by chiral Co(III)(salen)OAc complex can


produce chiral alkoxy epoxides and alkoxy diols. This method is also applied in the asymmetric synthesis of (S,S)-Reboxetine, (-)-Chloramphenicol and (+)-Thiamphenicol. This chapter is divided into three sections.

## Section I: Cobalt-catalyzed Hydrolytic Kinetic Resolution of Alkoxy Epoxides

For the first time, HKR of racemic syn- or anti- alkoxy epoxide derivatives was carried out. In this strategy, the relative stereochemistry between the alkoxy and the epoxide functions is established prior to the HKR step and thus a single asymmetric reaction is employed to form compounds with two asymmetric centres. ${ }^{4}$

Table 1: Co-catalyzed HKR of syn-alkoxy epoxides


| Sr.No | Alkoxy epoxide ( $\pm$ )-1a-k |  | Alkoxy Epoxide 2a-k |  | $\begin{gathered} \text { Alkoxy Diol } \\ 3 a-k \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | R | X | yield (\%) ${ }^{\text {a }}$ | ee (\%) ${ }^{\text {b }}$ | yield (\%) ${ }^{\text {a }}$ | ee (\%) ${ }^{\text {b,c }}$ |
| a | H | OMe | 48 | 97 | 47 | 98 |
| b | OMe | OMe | 47 | 98 | 46 | 97 |
| c | Me | OMe | 44 | 97 | 45 | 98 |
| d | Br | OMe | 45 | 97 | 42 | 98 |
| e | SMe | OMe | 47 | 98 | 46 | 97 |
| f | H | OBn | 45 | 98 | 44 | 98 |
| g | OMe | OBn | 49 | 96 | 47 | 98 |
| h | Me | OBn | 48 | 96 | 45 | 96 |
| 1 | Cl | OBn | 45 | 95 | 42 | 98 |
| j | Br | OBn | 44 | 98 | 47 | 98 |
| k | SMe | OBn | 48 | 96 | 47 | 97 |

${ }^{a}$ Isolated yield after column chromatographic purification. ${ }^{b}$ ee determined by chiral HPLC ${ }^{c}$ ee determined by Mosher's ester analysis.

The racemic syn- and anti- alkoxy epoxides, the substrates for HKR, were efficiently prepared in highly diastereoselective manner ${ }^{5}$ from the corresponding $(E)$ - and ( $Z$ )allylic alcohols respectively, involving essentially a two-step reaction sequence of NBS-
bromination in the presence of MeOH or BnOH , as the case may be, followed by treatment with base to form the corresponding racemic epoxides. In this section, we have described a flexible, novel method that employs HKR of racemic alkoxy epoxides to generate two stereocentres of high optical purities in a single step. Thus, when HKR of racemic syn-alkoxy epoxides 1a-k was performed with $(R, R)$-Co(III)(salen)OAc complex ( $0.5 \mathrm{~mol} \%$ ) and $\mathrm{H}_{2} \mathrm{O}$ ( 0.48 equiv.), the corresponding chiral epoxides 2a-k and diols 3a-k were isolated in high yields and optical purity (Table 1).

Similarly, anti-alkoxy epoxides 4a-b when subjected to ( $S, S$ )-Co(III)(salen)OAccatalyzed HKR, produced chiral anti-alkoxy epoxides $\mathbf{5 a} \mathbf{a} \mathbf{b}$ and corresponding diols $\mathbf{6 a - b}$ with high enantio purity (Table 2).

Table 2: Co-catalyzed HKR of anti-alkoxy epoxides

${ }^{\bar{a}}$ Isolated yield after column chromatographic purification; ${ }^{b}$ ee determined by Mosher's ester analysis; ${ }^{c}$ ee determined by chiral HPLC analysis.

## Section II: Enantioselective Synthesis of (S, S)-Reboxetine

Reboxetine, 2-[ $\alpha$-(2-ethoxyphenoxy) phenylmethyl]morpholine 7 is a specific norepinephrine reuptake inhibitor (NRI) widely studied for its pharmacological properties. ${ }^{5}$ In this section, we describe a concise enantioselective synthesis of $(S, S)$ reboxetine 7 using two stereocentered HKR of alkoxy epoxide. Our synthesis of $(S, S)$ reboxetine 7 started with the benzyloxy bromination of cinnamyl alcohol 8 using NBS and BnOH to give benzyloxy bromoalcohol 9 in $85 \%$ yield. Benzyloxy bromoalcohol 9 on treatment with NaOH powder, in THF afforded racemic syn-benzyloxy epoxide 1a in
$88 \%$ yield, which was then subjected to HKR using ( $R, R$ )-Co(III)(salen)OAc to furnish the chiral benzyloxy epoxide 2 a in $45 \%$ chemical yield and $98 \%$ ee along with the corresponding benzyloxy diol 3a in 44\% yield and 98\% ee.


Scheme 1: (i) NBS, $\mathrm{BnOH}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 85 \%$; (ii) NaOH powder, THF, $25^{\circ} \mathrm{C}, 2$ $\mathrm{h}, 88 \%$; (iii) $(R, R)-\mathrm{Co}(\mathrm{III})($ salen $) \mathrm{OAc}\left(1 \mathrm{~mol} \%\right.$ ), THF, $\mathrm{H}_{2} \mathrm{O}$ ( 0.48 equiv.), $0^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iv) $30 \% \mathrm{NH}_{4} \mathrm{OH}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 83 \%$; (v) (a) $\mathrm{ClCH}_{2} \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}$; (b) $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$, t-BuOH, 3 h , , $72 \%$; (vi) (a) Red-Al, dry toluene, $25^{\circ} \mathrm{C}$, then 2 N NaOH ; (b) (Boc) $)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (vii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ ( 1 atm ), $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$, $92 \%$; (viii) (a) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) 2-ethoxyphenol, NaH , DMF, 3 h, $72 \%$; (ix) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$.

Both chiral benzyloxy epoxide 2a and azido diol 3a could be readily separated by column chromatographic purification. Regiospecific opening of epoxide 2a with $30 \% \mathrm{NH}_{4} \mathrm{OH}$ gave amino alcohol 10 in $83 \%$ yield, which was condensed with chloroacetyl chloride under basic conditions to afford imide 11 in $72 \%$ yield. Imide 11 was reduced to the morpholine derivative in situ which was protected as carbamate 12 in $85 \%$ yield using $(\mathrm{Boc})_{2} \mathrm{O}$. Deprotection of benzyl group in 12 gave the alcohol 13 in $88 \%$ yield. The transformation of 13 to ( $S, S$ )-reboxetine 7 in $98 \%$ ee was achieved in 2 -steps (i) conversion of alcohol to bromo derivative followed by nucleophilic displacement with sodium salt of $o$-ethoxy phenol affording N -Boc protected reboxetine 14 (ii) deprotection of N -Boc with trifluoroacetic acid (Scheme 1).

## Section III: Enantioselective Synthesis of (-)-Chloramphenicol and (+)Thiamphenicol

(-)-Chloramphenicol 15 and (+)-thiamphenicol 20 are broad-spectrum antibiotics with a range of biological activities. ${ }^{6}$ While chloramphenicol 15 is active only in its D-threo configuration and is especially effective in the treatment of typhus, dysentery and ocular bacterial infections, ${ }^{7}(+)$-thiamphenicol 20, a synthetic analogue of chloramphenicol 15, is bacteriostatic for both gram-positive and gram-negative aerobes and for some anaerobes. ${ }^{8}$ In this section, we describe the application of two stereocentered HKR for the stereoselective synthesis of (-)-chloramphenicol 15 and (+)-thiamphenicol 20. Racemic syn-benzyloxy epoxide 1a was subjected to HKR using ( $R, R$ )-Co(III)(salen)OAc to furnish the required chiral benzyloxy diol 3a in $44 \%$ chemical yield and $98 \%$ ee. Selective protection of primary alcohol in diol 3a was achieved using $\mathrm{Bu}_{2} \mathrm{SnO}$ and benzyl bromide in $82 \%$ yield. Alcohol 16 was then subjected to Appel reaction condition to give anti-benzyloxybromo compound 17, nucleophilic displacement of bromide in 17 to azide 18 was achieved in $80 \%$ yield. Deprotection of benzyl ethers and reduction of azide proceeded smoothly under catalytic hydrogenation of $\mathbf{1 8}$ followed by acylation with $\mathrm{Ac}_{2} \mathrm{O}$ gave triacetate 19. The synthesis of (-)-chloramphenicol (15) was completed by sequences of reactions such as nitration, acid mediated hydrolysis and N -acylation with $76 \%$ yield over three steps with $98 \%$ ee (Scheme 2).

( $\mathbf{\pm}$ )-1a (2SR, 3SR)


18


2a
$45 \%$ yield 98\% ee


17
$+$


32 $44 \%$ yield 98\% ee ii


16


19
15

Scheme 2: (i) ( $R, R$ ) $-\mathrm{Co}(\mathrm{IIII})($ salen $) \mathrm{OAc}(1 \mathrm{~mol} \%)$, THF, $\mathrm{H}_{2} \mathrm{O}$ ( 0.48 equiv.), $0^{\circ} \mathrm{C}$, 12 h ; (ii) $\mathrm{Bu}_{2} \mathrm{SnO}$, toluene, reflux, 12 h . then $\mathrm{BnBr}, \mathrm{TBAB}$, reflux, 20h, $82 \%$; (iii) $\mathrm{CBr}_{4}$, imid., $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 76 \%$; (iv) $\mathrm{NaN}_{3}$, DMF, $60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 80 \%$; (v) (a) $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{MeOH}, \mathrm{H}_{2}(1 \mathrm{~atm}), 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine, $94 \%$ (for 2 steps); (vi) (a) conc. $\mathrm{HNO}_{3}$-conc. $\mathrm{H}_{2} \mathrm{SO}_{4},-20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$; 1.5 h ; (b) aq. $5 \% \mathrm{HCl}, 90^{\circ} \mathrm{C}$; (c) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, 90^{\circ} \mathrm{C}, 1 \mathrm{~h}, 76 \%$ (for 3 steps).

The same strategy was extended to the synthesis of $(+)$-thiamphenicol 20. Our synthesis started with the benzyloxy bromination of 4-(methythio)cinnamyl alcohol 21 using NBS and BnOH to give benzyloxy bromoalcohol 22 in $84 \%$ yield. Racemic syn-benzyloxy epoxide 1f was obtained in $86 \%$ yield by subjecting benzyloxy bromoalcohol 22 with NaOH powder in THF, which was then subjected to HKR using $(R, R)$-Co(III)(salen)OAc to furnish the chiral benzyloxy epoxide 2 f in $48 \%$ chemical yield and $96 \%$ ee along with the corresponding benzyloxy diol 3 f in $47 \%$ yield and $97 \%$ ee. Selective protection of primary alcohol in diol 3 f was achieved using $\mathrm{Bu}_{2} \mathrm{SnO}$ and benzyl bromide in $82 \%$. Alcohol 23 was then subjected to Appel reaction condition to give anti-benzyloxybromo compound 24, nucleophilic displacement of bromo in 24 to azide 25 was achieved with $78 \%$ yield. Deprotection of benzyl ethers and reduction of azide proceeded smoothly under catalytic hydrogenation of 25 , followed by acylation with $\mathrm{AC}_{2} \mathrm{O}$ gave triacetate 19 .

Oxidation of 26 with mCPBA converted the methylsulfanyl group into methyl sulfonyl group which was then subjected to the known reaction sequences such as acid mediated hydrolysis and N -acylation with 78\% yield over three steps with 97\%ee (Scheme 3).


Scheme 3: (i) NBS, $\mathrm{BnOH}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 84 \%$; (ii) NaOH powder, THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$, $86 \%$; (iii) ( $R, R$ )-Co(III)(salen)OAc ( $1 \mathrm{~mol} \%$ ), THF, $\mathrm{H}_{2} \mathrm{O}$ ( 0.48 equiv.), $0^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iv) $\mathrm{Bu}_{2} \mathrm{SnO}$, toluene, reflux, 12 h . then BnBr , TBAB, reflux, $18 \mathrm{~h}, 84 \%$; (v) $\mathrm{CBr}_{4}$, imidazole, $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 76 \%$; (vi) $\mathrm{NaN}_{3}$, DMF, $60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 78 \%$; (vii) (a) $10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{MeOH}, \mathrm{H}_{2}$ (1atm), $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine, $94 \%$; (viii) (a) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) aq. $5 \% \mathrm{HCl}, 90^{\circ} \mathrm{C}$; (c) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, 9{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 78 \%$ (for 3 steps).

## CHAPTER 2

Asymmetric Synthesis of Tetrahydroquinolin-3-ols, Anachelin H Chromophore and
1-((S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-yl)propan-1-one
$\mathrm{CoCl}_{2}-\mathrm{NaBH}_{4}$ combination is one of the most effective reducing systems, capable of selectively reducing a variety of functional groups including alkene, $\mathrm{N}_{3}, \mathrm{CN}$, etc. when
present alone. This chapter deals with development of a novel method for the synthesis of tetrahydroquinolin-3-ols 31a-e via $\mathrm{CoCl}_{2}$-catalyzed reductive cyclization of cyclic sulphites followed by its application in the synthesis of anachelin H chromophore and 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl]propan-1-one ( $S$ 903). This chapter is divided into three sections.

## Section I: A New Route to the Synthesis of ( R )-Tetrahydroquinolin-3-ols via $\mathbf{C o C l}_{2^{-}}$ catalyzed Reductive Cyclization of Cyclic Sulphites with $\mathbf{N a B H}_{\mathbf{4}}$

Substituted tetrahydroquinolines display a wide range of physiological activities ${ }^{9}$ such as analgesic, antiarrhythmic, cardiovascular, immuno-suppresent, antitumor, antiallergenic, anticonvulsant antifertility and NMDA antagonist activities. ${ }^{10}$ This section describes a novel methodology for the synthesis of substituted tetrahydroquinolin-3-ols 31a-f via $\mathrm{CoCl}_{2}$-catalyzed one-pot reduction of cyclic sulphites 30a-f using $\mathrm{NaBH}_{4}$ as reducing agent.



Scheme 4: (i) $\mathrm{OsO}_{4}(0.5 \mathrm{~mol} \%)$, ( DHQ$)_{2}$-PHAL ( $1 \mathrm{~mol} \%$ ), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1 equiv.), tert- $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 80-$ $95 \%$; (ii) conc. $\mathrm{HNO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}, 25^{\circ} \mathrm{C}, 70-81 \%$; (iii) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ ${ }^{\circ} \mathrm{C}, 91-95 \%$; (iv) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ( $1 \mathrm{~mol} \%$ ), $\mathrm{NaBH}_{4}$ (4 equiv.), $\mathrm{EtOH}, 0-25^{\circ} \mathrm{C}$.
$\alpha, \beta$-Unsaturated esters 27b-f, prepared readily from Wittig olefination of the corresponding benzaldehydes, were subjected to Os-catalyzed asymmetric dihydroxylation $(\mathrm{ADH})$ using $(\mathrm{DHQ})_{2}$-PHAL as ligand to give the corresponding $\alpha$-diols

28b-f, which on nitration using conc. $\mathrm{HNO}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ gave the nitro derivatives 29b-f in high yields. Nitrodiols 29a-f were then smoothly converted into the corresponding cyclic sulphites $\mathbf{3 0 b}-\mathbf{f}\left(\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in excellent yields. These cyclic sulphites 30a-f, when subjected to $\mathrm{CoCl}_{2}$-catalyzed reduction with $\mathrm{NaBH}_{4}$, the corresponding tetrahydroquinoline derivatives 31a-f were obtained in $78-83 \%$ yields. In this reaction, we observed the reduction of multifunctional groups and cyclization, all occurring in a single step (Scheme 4).

## Section II: Asymmetric Formal Synthesis of Anachelin H Chromophore

Anachelin H intermediate 32, a secondary metabolite recently isolated from cyanobacterium Anabaena cylindrica, which serves as a ligand for iron (siderophores) mediating iron uptake. ${ }^{11 a, b}$ In this section, we describe a short formal synthesis of anachelin H chromophore 32 , by employing $\mathrm{CoCl}_{2}$-catalyzed one-pot reductive cyclization of the corresponding cyclic sulphite 30b as the key step (Scheme 5).


Scheme 5: (i) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ( $1 \mathrm{~mol} \%$ ), $\mathrm{NaBH}_{4}$ (4 equiv.), $\mathrm{EtOH}, 0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 78 \%$; (ii) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 82 \%$; (iii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (iv) $\mathrm{NaN}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$; (v) $\mathrm{Na}(\mathrm{Hg}), \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 76 \%$.
Catalytic one-pot reduction of cyclic sulphite 30b using $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ( $1 \mathrm{~mol} \%$ ) and $\mathrm{NaBH}_{4}$ (5 equiv.), gave the tetrahydroquinoline derivative 31b in $78 \%$ yield and $95 \%$ ee. Selective amine protection in 31b was achieved with TsCl to give amide 33 in $82 \%$ yield. Chiral amido alcohol 33 was then mesylated $\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 34 and
subsequent displacement of the mesylate with azide anion ( $\mathrm{NaN}_{3}$, DMF) gave azide 35 . Finally, azide 35 was subjected to reduction with sodium amalgam in $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ whereby reduction of both azide and tosylate functions took place efficiently to afford the known intermediate (S)-3-aminotetrahydroquinoline 36 in $76 \%$ yield and $95 \%$ ee. The conversion of (S)-3-aminotetrahydroquinoline 36 to anachelin H chromophore $32^{11 \mathrm{c}}$ has been reported in the literature.

## Section III: Asymmetric Synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl]propan-1-one

Asymmetric synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-$1-(2 H)$-yl] propan-1-one (37), a positive inotropic agent, ${ }^{12}$ is described in this section.


Scheme 6: (i) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1 mol\%), $\mathrm{NaBH}_{4}$, EtOH, 0-25 ${ }^{\circ} \mathrm{C}, 78 \%$; (ii) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 91 \%$; (iii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$, 10 min ; (iv) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$; (v) $\mathrm{H}_{2}$ (1 atm) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (vi) HCHO ( $40 \%$ aq. solution), $\mathrm{HCO}_{2} \mathrm{H}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 73 \%$.

Tetrahydroquinolinol 31b, prepared by the $\mathrm{CoCl}_{2}$-catalyzed reduction of the corresponding cyclic sulphite 30b, was treated with propionic anhydride to give amido alcohol 38 in $93 \%$ yield and $95.5 \%$ ee. Alcohol 38 on mesylation ( $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) followed by its displacement with azide ( $\mathrm{NaN}_{3}$ in DMF) gave azide 40 in $91 \%$ yield.

Finally, azide 40 was reduced to amine $41\left[\mathrm{H}_{2}(1 \mathrm{~atm}), 10 \% \mathrm{Pd} / \mathrm{C}\right]$. The $N, N^{\prime}-$ dimethylation of amine 41 was achieved by its treatment with formic acid and formaldehyde solution under reflux condition to afford 37 in $73 \%$ yield and $94 \%$ ee (Scheme 6).

## CHAPTER 3

CN-Assisted Oxidative Cyclization of Cyano Cinnamates and Styrene Derivatives:
A Facile Entry to 3-substituted Chiral Phthalides and its Application to the Synthesis of (-)-Matteucen C, Isocoumarins and Alkylidenephthalides

Sharpless asymmetric dihydroxylation (ADH) is one of the most effective methods for the preparation of chiral diols, which are important intermediates for the synthesis of various bioactive compounds. This chapter deals with development of a novel method for the synthesis of chiral phthalides (43a-z) via CN -assisted oxidative cyclization of cyano cinnamates followed by its application to the synthesis of (-)-matteucen C , isocoumarins and alkylidenephthalides. This chapter is divided into three sections.

## Section I: CN-Assisted Oxidative Cyclization of Cyano Cinnamates and Styrene Derivatives: A Facile Entry to 3-Substituted Chiral Phthalides

Chiral phthalides [isobenzofuran-1 $(3 H)$-ones] comprising of 5 -membered lactones are found in a large number of plant products displaying broad and potent biological activities such as anticonvulsant, anesthesia, antiischemic, antiHIV, anticancer and antibiotics. ${ }^{13}$ The Sharpless' asymmetric dihydroxylation (AD) of alkenes has emerged as a most reliable method for the preparation of chiral 1,2-diols, widely found in bioactive compounds and pharmaceuticals. Ligand acceleration is central to the efficiency and selectivity of AD catalytic process. ${ }^{14}$ In this section, we describe a single-step oxidative cyclization of cyanocinnamates and styrene substrates that affords 3-substituted phthalides in high yields via synergetic acceleration of CN and osmate ester groups present in proximity positions. From the course of our study on the construction of 3substituted tetrahydroquinolin-3-ols via AD process and Co-catalyzed "one-pot" reductive cyclization $\left(\mathrm{CoCl}_{2}-\mathrm{NaBH}_{4}\right)$ of nitro cyclic sulfites, we reasoned that subjecting cyano cyclic sulfites to the same reaction conditions should afford synthetically useful benzazepines. To our surprise, when ethyl 2-cyanocinnamate 42a was subjected to a typical AD-mix- $\beta$ process for 7 h , with THF as co-solvent for better solubility, the
corresponding chiral phthalide 43a was obtained exclusively in 99\%ee. Encouraged by this result, we examined the scope of the reaction with other cyano cinnamate esters and styrene derivatives 42b-z. In every case, the reaction proceeded rapidly in 3 to 7 h giving the desired phthalides 43b-z in excellent yields and ees (up to $99 \%$ ). For instance, substrates having halogen, highly electron-rich or electron-deficient substituents on the aromatic ring including 2-naphthyl nuclear system underwent this oxidative cyclization smoothly affording the corresponding phthalides in excellent yields (Scheme 7).


Scheme 7: (i) AD-mix- $\beta, \mathrm{MeSO}_{2} \mathrm{NH}_{2}$, t-BuOH:THF: $\mathrm{H}_{2} \mathrm{O}(0.5: 0.5: 1), 25^{\circ} \mathrm{C}, 3$ to 7 h .

## Section II: First Enantioselective Synthesis of (-)-Matteucen C

Matteucen C (44), isolated from Chinese medicinal herb, is used in the treatment of hemostatics and relieving ostalgia. ${ }^{15}$ This section illustrates a practical, first enantioselective synthesis of (-)-matteucen C 44, by employing CN-assisted oxidative cyclization of the corresponding o-cyano styrene derivative 47 as the key step. Our approach to the synthesis of (-)-matteucen C 47 commenced with 2-bromo-3,5dimethoxybenzaldehyde 45, which was subjected to Wittig reaction to afford transstilbene 46 in $82 \%$ yield. Rosenmund-von Braun reaction was carried out for conversion of bromo stilbene 46 to cyano stilbene 47 using CuCN under reflux condition in DMF. Cyano stilbene 47 was then subjected to AD-mix- $\beta$ process to give chiral phthalide 48 in $93 \%$ yield and $99 \%$ ee via CN -assisted "one-pot" oxidative cyclization. Finally, demethylation of chiral phthalide 48 with $\mathrm{BBr}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave (-)-matteucen C in $69 \%$ yield and $99 \%$ ee (Scheme 8). Thus, an efficient enantioselective synthesis of (-)matteucen C has been achieved for the first time, confirming its structural and stereochemical assignments using CN -assisted one-pot oxidative cyclization.



Scheme 8: (i) $\mathrm{PhCH}_{2} \mathrm{PPh}_{3}{ }^{+} \mathrm{I}^{-}, n \mathrm{BuLi}$, THF, $0-25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 82 \%$; (ii) CuCN (3.5 equiv.), DMF, reflux, $14 \mathrm{~h}, 83 \%$; (iii) AD-mix- $\beta$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$, $t$ - BuOH :THF: $\mathrm{H}_{2} \mathrm{O}$ (0.5:0.5:1), $25^{\circ} \mathrm{C}, 7 \mathrm{~h}, 93 \%$; (iv) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 69 \%$.

## SECTION III: A Novel Approach to Isocoumarins and Alkylidenephthalides

Isocoumarins are important secondary metabolities obtained from various fungi and possess a wide range of biological activities. ${ }^{16}$ The alkylidenephthalides have antispasmodic, herbicidal, and insecticidal activities. ${ }^{17}$ In view of the biological activity and synthetic utility as intermediates, we have developed a novel route to synthesize these compounds at ambient conditions using $\mathrm{PPh}_{3}$ and DEAD. We observed that hydroxyphthalides 49, on treatment with DEAD (1.5 equiv.) and $\mathrm{PPh}_{3}$ ( 1.5 equiv.) gave isocoumarins 50 in $84-95 \%$ yields. In the case of both electron-donating as well as electron withdrawing substituents on aromatic ring of hydroxyphthalides gave the corresponding isocoumarins in one-pot with excellent yields (Scheme 9).


$$
\begin{array}{cc}
R=H, O R, \text { aryl, } & \text { up to } 95 \% \text { yield } \\
F, \text { etc. } & 8 \text { examples }
\end{array}
$$

Scheme 9: (i) $\mathrm{PPh}_{3}$ ( 1.5 equiv.), DEAD (1.5 equiv.), THF, $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

During the course of our investigation on synthesis of isocoumarins, we observed that simple variation in hydroxyl phthalides 51, led to the formation of biologically active alkylidenephthalides 52 in one-pot up to $92 \%$ yield. This transformation holds good for both electron-donating as well as electron withdrawing substituents on aromatic ring of hydroxyphthalides 51 (Scheme 10).


Scheme 10: (i) $\mathrm{PPh}_{3}$ (1.5 equiv.), DEAD (1.5 equiv.), THF, $25^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

## CHAPTER 4

CuCN-Mediated "One-pot" Route to 1-Amino-2-naphthalenecarboxylic acid Derivatives and 3-Substituted Phthalides: Enantioslective Synthesis of Colletotrialide
Copper(I) cyanide $(\mathrm{CuCN})$ is a versatile reagent employed in many organic transformations. For example (i) aryl nitriles can be prepared by the cyanation of aryl halides with an excess of CuCN in polar high-boiling solvent such as DMF, nitrobenzene, or pyridine at reflux temperature (Rosenmund-von Braun Reaction) (ii) in the regioselective and stereoselective allylation and conjugate additions (iii) in the palladium coupling of $\alpha$-lithio amines and aryl iodides. This chapter deals with development of a novel "one-pot" route to 1-amino-2-naphthalenecarboxylic acid derivatives 54 from the corresponding bromo derivatives 53 and 3-substituted phthalides 56 from the corresponding bromo alcohols 55 via CuCN -mediated cascade and tandem reactions respectively. Also included is its application to the enantioselective synthesis of colletotrialide. This chapter is divided into three sections.

## Section I: CuCN-Mediated "One-pot" Cascade Route to 1-Amino-2naphthalenecarboxylic Acid Derivatives

1-Amino-2-naphthalenecarboxylic acid derivatives 54 are the key intermediates of dyes and pigments useful in peptide synthesis. ${ }^{18}$ There are very few methods available in the literature for the direct synthesis of 1-amino-2-naphthalenecarboxylic acid derivatives. Moreover, known methods involve multiple-step sequences and also the process requires consumption of large quantities of hazardous chemicals with longer reaction time constituting less efficiency and narrow substrate scope. During the course of our investigation on Rosenmund-von Braun Reaction ( $\mathrm{Br}-\mathrm{CN}$ exchange) of 53 with CuCN , we observed an annulation strategy to 1-amino-2-naphthalenecarboxylic acid derivatives 54. This prompted us to explore the effectiveness of this "cascade" reaction using CuCN . We thus found that several 1-(2-bromo-phenyl) but-2-ene derivatives 53 when treated with CuCN ( 3.5 equiv.) in DMF at reflux condition, produced the corresponding 1-amino-2-naphthalenecarboxylic acid derivatives 54 in 78-86\% yields (Scheme 11).


Scheme 11: (i) CuCN ( 3.5 equiv.), DMF, $150^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

## SECTION II: CuCN-Mediated "One-pot" Synthesis of 3-Substituted Phthalides

Phthalides are versatile building blocks for the synthesis of biologically active compounds and have been proven to be useful in the treatment of circulatory and heart diseases. ${ }^{16}$ In particular, 3-substituted phthalides are useful intermediates for the synthesis of tri- and tetracyclic natural products, such as anthracycline antibiotics. ${ }^{17}$ Therefore, significant effort has been focused on synthesizing these organic frameworks. However, known methods involve multiple step sequences and require consumption of large quantities of costly chemicals with narrow substrate scope. During the course of our
investigation on Rosenmund-von Braun Reaction using CuCN , we observed that one-pot conversion of o-bromobenzyl alcohol derivatives 55 to 3 -substituted phthalides 56 (CuCN ( 3.5 equiv.), DMF, reflux) (Scheme 12) took place. Thus, several o-bromobenzyl alcohol derivatives 55 with electron-donating as well as electron withdrawing substituents on aromatic ring underwent "one-pot" tandem cyclization and 3-substituted phthalides 56 were produced in high yields.

$\begin{array}{lr}R=H, \text { alkoxy, halo, etc. } & \text { up to } 88 \% \text { yield } \\ R^{\prime}=\text { alkyl, allyl } & 13 \text { examples }\end{array}$
Scheme 12: (i) CuCN ( 3.5 equiv.), DMF, $150^{\circ} \mathrm{C}, 10 \mathrm{~h}$.

## Section III: Enantioselective Synthesis of Colletotrialide

Recently a new phthalide, colletotrialide 57 was isolated from the endophytic fungus Colletotrichum sp. 2 which exhibited cytotoxic activity toward the HepG2 cell line. ${ }^{19}$ This section describes the enantioselective synthesis of colletotrialide 57 via "one-pot" tandem cyclization of o-bromobenzyl alcohol derivatives 65.
Our complete synthetic sequence for colletotrialide 57, commencing from the precursor aldehyde 58, is shown in Scheme 14. Aldehyde 58 was subjected to Brown allylation using $(+)-\mathrm{Ipc}_{2} \mathrm{~B}$ (allyl)borane at $-78^{\circ} \mathrm{C}$ to afford homoallylic alcohol 59 in $89 \%$ yield and $95 \%$ ee, which was protected as its silyl ether 60 in $96 \%$ yield. Regioselective hydroboration and oxidation of olefin $\mathbf{6 0}$ resulted in primary alcohol $\mathbf{6 1}$ in $84 \%$ yield. Aromatic electrophilic bromination of alcohol $61\left(\mathrm{NBS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ provided brominated alcohol 62 in 94\% yield, which was further converted to the desired ketone 64 in threestep sequence: (i) the primary alcohol function in 62 was oxidized (IBX, DMSO) to provide the corresponding aldehyde 63; (ii) subsequent n-propyl Grignard addition yielded the corresponding secondary alcohol; (iii) secondary alcohol was oxidized to give ketone 64 using Swern oxidation $\left((\mathrm{COCl})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Deprotection of the silyl group in 64 (TBAF, THF) provided alcohol 65 with $88 \%$ yield. Alcohol 65 was subjected
to one-pot tandem cyclization to afford chiral phthalide 66 in $86 \%$ yield. Finally selective deprotection of mono methyl ether $\left(\mathrm{AlCl}_{3}\right)$ furnished colletotrialide 57 in $74 \%$ yield (Scheme 14).


Scheme 13: (i) (+)- $\mathrm{Ipc}_{2} \mathrm{~B}$ (allyl)borane, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $1 \mathrm{~N} \mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, $89 \%, 95 \%$ ee; (ii) TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 96 \%$; (iii) $\mathrm{BH}_{3}$.DMS, THF, 25 ${ }^{\circ} \mathrm{C}$, 2 h then $1 \mathrm{~N} \mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 84 \%$; (iv) NBS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 94 \%$; (v) IBX, DMSO, $25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 93 \%$; (vi) (a) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{MgI}, \mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (b) ( $\mathrm{COCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 92 \%$; (vii) TBAF, THF, $25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 88 \%$; (viii) $\mathrm{CuCN}(3.5$ equiv.), DMF, reflux, $12 \mathrm{~h}, 86 \%$; (ix) $\mathrm{AlCl}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 74 \%$.

## References:

1 Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.
2 (a) Yu, Q.; Wu, Y.; Xia, L. J.; Tang, M. H.; Wu, Y. L. J. Chem. Soc. Chem. Commun., 1999, 129; (b) Kumar, P.; Naidu, S. V.; Gupta, P. Tetrahedron, 2007, 63, 2745.

3 (a) Kumar, P.; Naidu S. V.; Gupta, P. Tetrahedron, 2007, 63, 2745. (b) Kumar, P.; Gupta, P. Synlett, 2009, 9, 1367.
4 Kim, Y.-J.; Tae, J. Synlett 2006, 61.
5 (a) Willaman, J. J.; Schubert, B. G.; Alkaloid-Bearing Plants and their Contained Alkaloids. U.S. Department of Agriculture Technical Bulletin, 1961, p 1234. (b) Melloni, P.; Torre, A. D.; Lazzari, E.; Mazzini G.; Meroni, M. Tetrahedron 1985, 41, 1393. (c) Raggi, M. A.; Bugamelli, F.; Sabbioni, C.; Ferranti, A.; Fanali S.; Volterra, V. J. Pharm. Biomed. Anal., 2002, 27, 209.

6 Ehrlich, J.; Bartz, Q. R.; Smith, R. M.; Josylyn, D. A.; Burkholder, P. R. Science 1947, 106, 417.

7 Gillet, A. D.; Abdel-Monem, M. M. J. Med. Chem., 1973, 16, 992 and the references cited therein.
8 Cutler, R. A.; Stenger, R. J.; Suter, C. M. J. Am. Chem. Soc. 1952, 74, 5475.
9 Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031.
10 (a) Gademann, K.; Bethuel, Y. Angew. Chem. Int. Ed. 2004, 43, 3327; (b) GallouDagommer, I.; Gastaud, P.; Rajan Babu, T. V. Org. Lett. 2001, 3, 2053.
11 (a) Ito, Y.; Ishida, K.; Okada, S. Murakami, M. Tetrahedron 2004, 60, 9075. (b) Gademann, K.; Budzikiewicz, H. Chimia 2004, 58, 212. (c) Bethuel, Y.; Gademann, K. J. Org. Chem. 2005, 70, 6258.

12 Santangelo, F.; Casagrande, C.; Miragoli, G.; Vecchietti, V. Eur. J. Med. Chem. 1994, 29, 877.
13 For recent reviews of synthesis and biological applications of phthalides, see: (a) Lin, G.; Chan, S. S. -K.; Chung, H. -S.; Li, S. L. Stud. Nat. Prod. Chem. 2005, 611. (b) Beck, J. J.; Chou, S. C. J. Nat. Prod. 2007, 70, 891. (c) Liu, J.; Li, F.; Kim, E. L .; Li, J. L.; Hong, J.; Bae,K. S.; Chung, H. Y.; Kim, H. S.; Jung, J. H. J. Nat. Prod. 2011, 74, 1826.

14 Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
15 Shao, P.; Zhang, W.; Li, B.; Jiao, W. H.; Wu, L. J.; Yao, X. S. Chem. Pharm. Bull. 2010, 58, 1650.
16 (a) Barry, R. D. Chem. Rev. 1964, 64, 229. (b) Hiroyuki, K.; Masahide, A.; Hiroshi, N.; Sawa, T.; Masaaki, I.; Takeuchi, T. J. Antibiot. 1994, 47, 440.
17 (a) Ogawa, Y.; Maruno, M.; Wakamatsu, T. Heterocycles 1995, 41, 2587. (b) Li, S.; Wang, Z.; Xiaoping, F.; Yating, Y.; Li, Y. Synth. Commun. 1997, 27, 1783.

18 Gilcgrist, T. L. In The Chemistry of Triple-Bonded Functional Groups; Patai, S., Rappoport, Z., Eds.; J. Wiley \& Sons: New York, 1983; p 383.

19 Tianpanich, K.; Prachya, S.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. J. Nat. Prod. 2011, 74, 79.
20 Jadulco, R.; Brauers, G.; Edrada, R. A.; Ebel, R.; Wray, V.; Sudarsono; Proksch, P. J. Nat. Prod. 2002, 65, 730.

## CHAPTER I

Cobalt-catalyzed Hydrolytic Kinetic Resolution of Alkoxy Epoxides: A Short Enantioselective Synthesis of (S,S)-Reboxetine,
(-)-Chloramphenicol and (+)-Thiamphenicol

## Section I:

## Cobalt-catalyzed hydrolytic kinetic resolution of alkoxy epoxides

### 1.1.1 Introduction

The enantiomerically pure syn- or anti-alkoxy epoxides and the corresponding diols are valuable 'building blocks' for asymmetric synthesis of bioactive pharmaceuticals and ligands. ${ }^{1}$ In principle, access to these building blocks may be provided by several routes including Sharpless' methods of epoxidation and dihydroxylation, and other tedious methods. However, they generally lead to multi-step reaction sequences including protection/deprotection of various functional groups, thereby limiting the overall yield and the enantioselectivity of the process particularly unsuitable for atom economic synthesis. Jacobsen's Hydrolytic Kinetic Resolution (HKR) that uses readily accessible Co-based chiral salen complexes as catalyst and water as the only reagent to afford chiral epoxides and diols of high ee in excellent yields, has been comprehensively studied in recent years to reveal its mechanistic and synthetic aspects. ${ }^{2}$ In the present section, we have described a flexible, novel method that employs HKR of racemic alkoxy epoxides to generate two stereocentres of high optical purities in a single step for the first time.

### 1.1.2 Hydrolytic kinetic resolution (HKR)

The importance of epoxides in organic synthesis arises partly from the occurrence of the strained three-membered ring unit in a number of interesting natural products ${ }^{3}$ but more so because the ring opening of epoxides allows straightforward elaboration to useful new functionality, often with generation of new carbon-carbon bonds. Indeed, reactions of epoxides with nucleophiles, Lewis acids, radicals, reducing agents, oxidizing agents, acids, and bases have all been well documented and utilized in synthesis. ${ }^{4}$ Thus epoxides
are versatile building blocks for organic synthesis. However, terminal epoxides are arguably the most important subclass of these compounds, and no general and practical method exists for their production in enantiomerically pure form. Terminal epoxides are available very inexpensively as racemic mixtures, and kinetic resolution is an attractive strategy for the production of optically active epoxides, given an economical and operationally simple method. Readily accessible synthetic catalysts (for example: chiral cobalt-salen complexes, $\mathbf{1})^{5}$ have been used for the efficient asymmetric hydrolysis of terminal epoxides. This process uses water as the only reagent, no added solvent, and low loadings of a recyclable catalyst ( $0.5 \mathrm{~mol} \%$ ), and it affords highly valuable terminal epoxides and 1,2-diols in high yields with high enantiomeric enrichment. One of the most attractive features of kinetic resolution processes in general is the fact that the enantiomeric composition of unreacted substrate can be controlled by adjusting the degree of conversion, and virtually enantiopure material can be obtained at appropriately high conversions. This is an important consideration in the present case, since lowmolecular weight terminal epoxides are typically liquids at room temperature and are not readily derivatized as salts, and therefore it is not a straightforward matter to upgrade their enantiomeric composition by crystallization. However, in the absence of straightforward substrate racemization protocols, kinetic resolutions have the significant disadvantage of a $50 \%$ maximum yield of substrate recovery. With a specific interest in devising a practical method for obtaining highly enantioenriched terminal epoxides, the following criteria must be met in order for a kinetic resolution approach to be viable ${ }^{6}$ : (1) The racemic epoxides must be inexpensive or easily accessible from inexpensive commercial starting materials. (2) The catalyst for the resolution must be readily
available in both enantiomeric forms. In the optimal case, the catalyst would be used in small quantities in the resolution and would be recyclable. (3) The nucleophile used for the ring opening should be inexpensive and easily handled. (4) The resolved epoxides must be obtained in good yield and very high enantiopurity and must be easily separated from the ring-opened products. (5) Ideally, although not necessarily, the ring-opened byproducts should also be valuable chiral building blocks and be obtainable in high enantiomeric excess.

1, M = Co


Scheme 1: Jacobsen's Hydrolytic Kinetic Resolution (HKR) of racemic epoxide ( $\pm$ )-2

The (salen)Co complex $\mathbf{1}$ has been well-established to catalyze the efficient hydrolytic kinetic resolution (HKR) of a variety of terminal epoxides (Scheme 1). ${ }^{7}$ This new method appeared to hold considerable promise with regard to meeting all of the criteria outlined above. First, racemic 1,2-epoxides are generally available directly from commercial suppliers at low cost or are obtainable in one step from inexpensive olefins or aldehydes.

In fact, certain racemic epoxides, such as propylene oxide, epichlorohydrin, styrene oxide, and butadiene monoepoxide, are commodity chemicals and are no more expensive than common organic solvents. Second, the ligands for catalyst $\mathbf{1}$ had previously been commercialized and manufactured on a ton scale in the context of (salen)Mn epoxidation catalysts. ${ }^{8}$ The cobalt analogues $(R, R) \mathbf{- 1}$ and $(S, S) \mathbf{- 1}$ proved equally accessible, and these are also now available in bulk. Third, water is perhaps the ideal reagent for effecting the resolution reaction: it is inexpensive and safe, and the rate of the ring-opening reaction can be controlled simply by modulating the rate of addition of water to the epoxidecatalyst mixture. Fourth, for those examples that were described in the preliminary report, highly enantioenriched epoxides were recovered from the HKR. Finally, the HKR provided useful enantioenriched 1,2-diols, including many that are otherwise not readily accessible using existing asymmetric dihydroxylation methods. ${ }^{9}$ Two useful methods for the generation of complex 1.OAc have been developed. Method A involves isolation of 1. OAc as a crude solid prior to the HKR. The Co(II) complex $\mathbf{1}$ is dissolved in toluene to generate $\sim 1 \mathrm{M}$ solution, and acetic acid (2 equiv.) is added. The resulting solution is stirred open to air at room temperature for 30 min , during which time the color of the mixture changes from orange to dark brown. All volatile materials are removed in vacuo, affording 1.OAc as a brown solid residue that can be used without further purification. Method B involves in situ generation of 1.OAc under HKR conditions by suspension of the $\mathrm{Co}(\mathrm{II})$ complex 1 in epoxide or epoxide/solvent and addition of HOAc under an aerobic atmosphere.

### 1.1.3 Review of Literature

Several syntheses of enantiomerically pure syn- or anti-alkoxy epoxides and the corresponding diols have been reported in the literature by two important routes: Sharpless' methods of epoxidation and dihydroxylation; which are described below.

## Smith's approach (1995) ${ }^{10}$

Smith et al. have synthesized syn-methoxy diol 5a and anti-methoxy diol $\mathbf{4 b}$ by employing Sharpless asymmetric dihydroxylation as the key reaction. Thus, methyl protected allyl alcohol $\mathbf{6}$ was subjected to $A D-m i x-\beta$ to give anti methoxy diol $\mathbf{4 b}$ and syn methoxy diol 5a in $81 \%$ overall yield with dr $=5: 1$. Similarly, when allyl alcohol 6 was subjected to $A D$-mix- $\alpha$ anti-methoxy diol $\mathbf{4 b}$ and syn-methoxy diol $5 \mathbf{a}$ were obtained in $87 \%$ yield with $\mathrm{dr}=1.4: 1$ (Scheme 2).


Scheme 2: (i) AD-mix- $\beta, t$ - $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}, 81 \%, \mathrm{dr}=5: 1$; (ii) $\mathrm{AD}-$ mix- $\alpha, t-\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}, 87 \%, \mathrm{dr}=1.4: 1$.

## Reddy's approach (2005) ${ }^{11}$

Reddy et al. have reported synthesis of chiral epoxy alcohol 7 starting from anisaldehyde 9; the treatment of which with vinyl magnesium bromide gave allyl alcohol 8 .


Scheme 3: (i) 1 M vinyl magnesium bromide in THF, dry ether, $0^{\circ} \mathrm{C}, 4 \mathrm{~h}$, $96 \%$; (ii) (+)-DIPT, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, t \mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 14 \mathrm{~h}, 46 \%$.

The enantioselective epoxidation of the racemic allyl alcohol 8 in the presence of Ldiisopropyl tartarate gave epoxy alcohol 7 in $46 \%$ yield with $98 \%$ ee (Scheme 3).

## Henegar's approach (2007) ${ }^{12}$

Henegar et al. have described the synthesis of chiral anti-aryloxy diol 13 and syn-aryloxy epoxide 10, starting from commercially available cinnamyl alcohol 11a, which was subjected to Sharpless asymmetric epoxidation to furnish epoxide 12 with $>99 \%$ ee. The regioselective ring opening of epoxide 12 with 2-ethoxy phenol gave a single regioisomer anti-aryloxy diol 13 in $52 \%$ yield. In order to establish the desired syn-configuration, these authors have performed a three-step reaction sequence: (i) chemoselective TMS protection of primary alcohol in diol 13; (ii) mesylation of secondary hydroxyl function using MsCl ; (iii) treatment of crude mesylate with NaOH in THF to furnish the appropriately oriented syn-aryloxy epoxide 10 in 95\% yield (Scheme 4).


Scheme 4: (i) (-)-DIPT, $\mathrm{Ti}\left(\mathrm{O}^{i}{ }^{\mathrm{Pr}}\right)_{4}, t \mathrm{BuOOH}$ in toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20-25{ }^{\circ} \mathrm{C}$; (ii) 2-ethoxyphenol, $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 52 \%$ (for 2 steps); (iii) (a) TMSCI, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; iv) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) 2 N NaOH , THF, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 95 \%$.

## Panda's approach (2010) ${ }^{13}$

Panda et al. have synthesized syn-epoxy alcohol 14 by employing Sharpless asymmetric dihydroxylation as the key reaction. Thus, unsaturated ester 15 was subjected to asymmetric dihydroxylation to give the diol 16 in $98 \%$ yield, which was protected as its acetonide $\mathbf{1 7}$ in almost quantitative yield (97\%). Further, acetonide-protected ester 17 was subjected to $\mathrm{LiAlH}_{4}$-mediated reduction in dry THF to furnish alcohol 18 in $94 \%$ yield; which was then protected as its mesylate by treatment with $\mathrm{MsCl} / \mathrm{Et}_{3} \mathrm{~N}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. Further, acetonide cleavage of mesylate was achieved with $p \mathrm{TSA}$ and $\mathrm{CH}_{3} \mathrm{OH}$ to give diol, which on treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave epoxy alcohol 14 in $93 \%$ yield (Scheme 5).


Scheme 5: (i) AD-mix- $\beta, \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~h}, 91 \%$; (ii) 2,2-dimethoxy propane, dry acetone, $\mathrm{BF}_{3} . \mathrm{OEt}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$., $97 \%$; (iii) $\mathrm{LiAlH}_{4}$, dry THF, $0^{\circ} \mathrm{C}, 30$ min., $94 \%$; (iv) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min}$., $96 \%$; (b) cat. pTSA, $\mathrm{CH}_{3} \mathrm{OH}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$. quant.; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}$, dry $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 93 \%$.

### 1.1.4 Present Work

### 1.1.4.1 Objective

As can be seen from the above discussion, the literature methods for the synthesis of enantiomerically pure syn- or anti-alkoxy epoxides 20a-k and the corresponding diols 5ak employ either chiral starting materials, or involve multi-step reaction sequences
including protection/deprotection of various functional groups, thereby limiting the overall yield and the enantioselectivity of the process. This is particularly unsuitable for atom economic synthesis. Despite achievements, HKR has only been applied to the resolution of simple terminal epoxides with one stereocentre. ${ }^{14}$ To the best our knowledge, study related to HKR of functionalized epoxides (at 3-position) with two stereocentres is rare. ${ }^{15}$

### 1.1.5 Results and Discussion

In the present work, we have extended the scope of substrates for HKR in order to obtain multi-functionalized molecules with two stereocentres. The aim of such an investigation is to access enantiomerically enriched alkoxy epoxides 20a-k and diols 5a-k by a direct and simple method from the racemic materials; thus complementing the other tedious routes. Due to their importance as 'building-blocks' for the synthesis of highly functionalized molecules, racemic alkoxy epoxides $( \pm)-20 a-k$ are chosen for the study of HKR with chiral Co-catalysts. In this section, we have described a flexible, novel method that employs HKR of racemic alkoxy epoxides $( \pm)$-20a-k to generate alkoxy diols $\mathbf{5 a} \mathbf{a} \mathbf{k}$ and alkoxy epoxides 20a-k with two stereocentres of high optical purities in a single step (Table 1).

### 1.1.5.1 Synthesis of racemic alkoxy epoxides

The racemic syn-alkoxy epoxides $( \pm)$-20a-k, the substrates for HKR, were efficiently prepared in two step sequence, in a highly diastereoselective manner starting from the corresponding (E)-allylic alcohols 11a-k. Thus, cinnamyl alcohols 11a-k were subjected to methoxy or benzyloxy bromination in presence of NBS and MeOH or BnOH , as the case may be, to give anti-methoxy or benzyloxy bromides 19a-k, which were then
subjected to alkali treatment $[\mathrm{NaOH}$ powder, THF] that gave the syn-methoxy or benzyloxy epoxides, ( $\pm$ )-20a-k in 80-86\% yield (Schemes 6).


Scheme 6: (i) NBS (1.2 equiv), MeOH or BnOH (1 equiv), $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$, $2-3 \mathrm{~h} ; 80-82 \%$ (b) NaOH powder ( 1.2 equiv), THF, $2-3 \mathrm{~h}, 80-86 \%$.

The formation of anti-methoxy or benzyloxy bromides 19a-k was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C-NMR spectroscopy. For example, compound $( \pm)-19 b$ showed a doublet at $\delta 4.41(J=$ 7.4 Hz ) for the benzylic proton attached to oxygen atom in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum which was further confirmed by the corresponding methine carbon signal appearing at $\delta 85.3$ in its ${ }^{13} \mathrm{C}$-NMR spectrum (Fig. 1).



Fig. 1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of anti-methoxy bromide ( $\pm$ )-19b

The formation of syn-methoxy epoxides, ( $\pm$ )-20a-e was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy. For example, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $s y n$-methoxy epoxide, $( \pm)$-20a showed typical signals at $\delta 2.56-2.69(\mathrm{~m}, 2 \mathrm{H})$ and $\delta 3.13-3.17(\mathrm{~m}, 1 \mathrm{H})$ corresponding to methylene and methine protons respectively. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed characteristic signals at $\delta 43.8$ and 55.0 due to carbons of the epoxide moiety (Fig. 2).



Fig. 2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of syn-methoxy epoxide ( $\pm$ )-20a

Similarly, the formation of syn-benzyloxy epoxides, ( $\pm$ )-20f-k was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of syn-benzyloxy epoxide, $( \pm)-\mathbf{2 0 g}$ showed typical signals at $\delta 2.54-2.75(\mathrm{~m}, 2 \mathrm{H})$ and $\delta 3.17-3.23(\mathrm{~m}, 1 \mathrm{H})$ corresponding to methylene and methine protons respectively. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ showed characteristic signals at $\delta 43.9$ and 55.0 due to carbons of the epoxide ring (Fig. 3).



Fig. 3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of syn-benzyloxy epoxide ( $\mathbf{\pm}$ )-20g

In a similar fashion, anti-benzyloxy epoxide, $( \pm)$-23a was readily prepared from cis- 1,4butenediol 21 in two steps. Thus, diol 21 was subjected to benzyloxybromination in presence of NBS and BnOH to give benzyloxy bromide, $( \pm)$ - 22 in $82 \%$ yield (Scheme 7).


Scheme 7: (i) NBS ( 1.2 equiv), BnOH (1 equiv), $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$, $82 \%$; (ii) (a) NaOH powder ( 1.2 equiv), THF, 2 h ; (b) TBSCl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 84 \%$.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $( \pm)$ - 22 showed a typical signal at $\delta 4.69(\mathrm{~s}, 2 \mathrm{H})$ for methylene (-O-CH2-) protons. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ showed a typical carbon signal at $\delta 72.93$ corresponding to benzylic carbon attached to oxygen group (Fig. 4).


Fig. 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of benzyloxy bromo diol ( $\pm$ )-22

Benzyloxy bromide ( $\pm$ )-22 was then subjected to alkali treatment ( $\mathrm{NaOH}, \mathrm{THF}$ ) to give epoxide, which was followed by the protection of primary alcohol with TBS to give TBSprotected anti-benzyloxy epoxide, $( \pm)$ - 23 a in $84 \%$ yield. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $( \pm)$ 23a showed signals at $\delta 2.69-2.74(\mathrm{~m}, 2 \mathrm{H})$ and $\delta 3.03-3.08(\mathrm{~m}, 1 \mathrm{H})$ corresponding to methylene and methine protons respectively. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ showed typical signals at $\delta$ 44.9 and 51.4 due to carbons of the epoxide ring (Fig. 5).


Fig. 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of anti-benzyloxy epoxide ( $\pm$ )-23a

The synthesis of anti-methoxy epoxide, ( $\pm$ )-23b was achieved following a reported procedure from racemic epoxy alcohol. ${ }^{12} \mathbf{1 2}$, which involved selective ring opening with MeOH followed by its mesylation and treatment with base. Thus, in this strategy, the relative stereochemistry between the alkoxy and epoxide groups is established prior to the HKR step itself and in this way a simple asymmetric reaction can be carried out to form the key enantiomerically pure alkoxy epoxides 20a-k with two stereocentres.

### 1.1.5.2 HKR of racemic alkoxy epoxides, ( $\pm$ )-20a-k \& ( $\pm$ )-23a-b

Initially, when HKR of racemic syn-benzyloxy epoxide (20a) was performed with $(R, R)$ salen $\mathrm{Co}(\mathrm{OAc})$ complex (1) ( $0.5 \mathrm{~mol} \%$ ) and $\mathrm{H}_{2} \mathrm{O}$ ( 0.5 equiv), the corresponding chiral syn-epoxide 20a (48\%, 97\% ee) and syn-diol (5a) (47\%, 98\% ee) were isolated in high yields and optical purity (Table 1).

Table 1: Co-catalyzed HKR of syn-alkoxy epoxides

|  <br> 20a-k (2SR, 3SR) |  | I\%) <br> quiv.) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 20a-k (2S,3S) |  | 5a-k |  |
| Sr No | Alkoxy epoxide ( $\pm$ )-20a-k |  | Alkoxy Epoxide 20a-k |  | Alkoxy Diol 5a-k |  |
| Sr.No | R | X | yield (\%) ${ }^{\text {a }}$ | ee (\%) ${ }^{\text {b }}$ | yield (\%) ${ }^{\text {a }}$ | ee (\%) ${ }^{\text {b,c }}$ |
| a | H | OMe | 48 | 97 | 47 | 98 |
| b | OMe | OMe | 47 | 98 | 46 | 97 |
| c | Me | OMe | 44 | 97 | 45 | 98 |
| d | Br | OMe | 45 | 97 | 42 | 98 |
| e | SMe | OMe | 47 | 98 | 46 | 97 |
| f | H | OBn | 45 | 98 | 44 | 98 |
| g | OMe | OBn | 49 | 96 | 47 | 98 |
| h | Me | OBn | 48 | 96 | 45 | 96 |
| 1 | Cl | OBn | 45 | 95 | 42 | 98 |
| j | Br | OBn | 44 | 98 | 47 | 98 |
| k | SMe | OBn | 48 | 96 | 47 | 97 |

${ }^{a}$ Isolated yield after column chromatographic purification. ${ }^{b}$ ee determined by chiral HPLC ${ }^{c}$ ee determined by Mosher's ester analysis.


Fig. 6: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and mass spectra of syn-methoxy diol $\mathbf{5 a}$

Encouraged by the observation of high enantioselectivity in this reaction, we examined its scope by subjecting several racemic syn-alkoxy epoxides (20a-k) to HKR, which indeed proceeded smoothly, with complete regiocontrol, to give the respective enantiopure epoxides (20a-k) and diols (5a-k) in excellent yields and ees. Table $\mathbf{1}$ shows the results of such a study. The reaction exhibited extraordinary generality with respect to the degree of functionalization of epoxides. The configuration of both chiral alkoxy epoxides (20a-k) and -diols (5a-k) was ascertained by comparing their optical rotations with those reported in the literature. ${ }^{10-13}$


Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of diol $5 \mathbf{g}$

The formation of syn-alkoxy diols $\mathbf{5 a - k}$ was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectroscopy. Example 1: The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 5 a showed typical signal at $\delta$ 3.29$3.40(\mathrm{~m}, 2 \mathrm{H})$ corresponding to methylene $\left(-\mathrm{CH}_{2}-\mathrm{OH}\right)$ protons. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed characteristic signals at $\delta 62.2$ and 75.6 due to the methine and methylene carbons attached to hydroxyl groups respectively (Fig. 6).

Example 2: The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of benzyloxy diol 5 g has shown signals at $\delta 3.25$ (dd, $J=12.7,2.2 \mathrm{~Hz}, 1 \mathrm{H})$ and $3.53(\mathrm{dd}, J=12.6,2.2 \mathrm{~Hz}, 1 \mathrm{H})$ due to methylene $\left(-\mathrm{CH}_{2}-\mathrm{OH}\right)$ protons. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed characteristic signals at $\delta 62.1$ and 75.4 corresponding to the methine $(-\mathrm{CH}-\mathrm{OH})$ and methylene $\left(-\mathrm{CH}_{2}-\mathrm{OH}\right)$ carbons attached to hydroxyl groups respectively (Fig. 7). The enantiomeric excess of syn-benzyloxy diol $5 \mathbf{f}$ was determined by chiral HPLC analysis: Chiralpak OD-H (Fig.8).

Similarly, anti-alkoxy epoxides ( $\pm$ )-23a-b, when subjected to $(S, S)-\mathrm{Co}$ (salen)OAccatalyzed HKR, produced chiral anti-alkoxy epoxides (+)-23a-b (47\%, 96\% ee) and the corresponding diols $\mathbf{4 a - b}(49 \%, 97 \%$ ee $)$ with excellent isolated yields and enantio purity (Table 2).



| No | Ret. Time <br> min | Height <br> $\boldsymbol{\mu} \mathbf{~ U U}$ | Area <br> $\boldsymbol{\mu} \mathbf{A U}^{*} \boldsymbol{\operatorname { m i n }}$ | Rel. Area <br> $\mathbf{\%}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 12.35 | 349.879 | 130.443 | 1.08 |
| 2 | 13.60 | 15012.384 | 11932.889 | 98.92 |

Fig. 8: HPLC chromatogram of diol $5 \mathbf{f}$

Table 2: Co-catalyzed HKR of anti-alkoxy epoxides

$25^{\circ} \mathrm{C}, 14 \mathrm{~h}$

| 23a-b (2SR, 3RS) |  |  | 23a-b (2S, 3R) |  |  | 4a-b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | ( $\pm$ )-23a-b |  | 23a-b | $\begin{aligned} & \text { poxide } \\ & \text { b } \end{aligned}$ | Alkoxy 4a |  |
|  | R | X | yield (\%) ${ }^{\text {a }}$ | ee (\%) ${ }^{\text {b }}$ | yield (\%) ${ }^{\text {a }}$ | ee (\%) ${ }^{\text {b }}$ |
| a | $\mathrm{CH}_{2} \mathrm{OTBS}$ | OBn | 47 | 96 | 49 | 97 |
| b | Ph | OMe | 48 | $96^{\text {c }}$ | 47 | $98^{\text {c }}$ |

${ }^{a}$ Isolated yield after column chromatographic purification; ${ }^{b}$ ee determined by Mosher's ester analysis; ${ }^{c}$ ee determined by chiral HPLC analysis.

The formation of anti-alkoxy diols 4a-b was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy. Example 1: The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of anti-benzyloxy diol 4a showed a
typical signal at $\delta 3.70-3.88(\mathrm{~m}, 2 \mathrm{H})$ for methylene $\left(-\mathrm{CH}_{2}-\mathrm{OH}\right)$ protons. Its ${ }^{13} \mathrm{C}$-NMR spectrum showed a characteristic signal at $\delta 72.6$ due to the methine carbons $(\mathbf{C H}-\mathrm{OH})$ attached to hydroxyl group (Fig. 9).


Fig. 9: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of diol $\mathbf{4 a}$

Example 2: The ${ }^{1} \mathrm{H}$-NMR spectrum of anti-methoxy diol $\mathbf{4 b}$ showed characteristic signals at $\delta 3.30-3.73(\mathrm{~m}, 2 \mathrm{H})$ for methylene $\left(-\mathrm{CH}_{2}-\mathrm{OH}\right)$ protons. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed characteristic signals at $\delta 62.9$ and 74.5 due to the methine and methylene carbons attached to hydroxyl groups respectively (Fig. 10).
テ্ল্লুল্প

4b



Fig. 10: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of anti-methoxy diol $\mathbf{4 b}$

### 1.1.6 Conclusion

In conclusion, (salen) $\mathrm{Co}(\mathrm{III})$-catalyzed HKR of racemic alkoxy epoxides provides a highly practical route to enantiopure syn- or anti-alkoxy epoxides, as the case may be, and the corresponding 1,2-diols in a single step. The reaction is convenient to carry out under mild conditions. We believe that this HKR strategy will find applications in the field of asymmetric synthesis of bioactive molecules owing to the flexible nature of synthesis of racemic alkoxy epoxides and the ready availability of cobalt salen catalysts in both enantiomeric forms.

### 1.1.7 Experimental section

## General experimental procedure for the preparation of racemic syn-alkoxy epoxides

 (( $\pm$ )-20a-k):A mixture of allyl alcohol ( 13 mmol ), BnOH or $\mathrm{MeOH}(1.4 \mathrm{~g}, 13 \mathrm{mmol})$ was taken in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ and NBS $(2.3 \mathrm{~g}, 15.6 \mathrm{mmol})$ was added slowly via solid addition funnel, with stirring at $25{ }^{\circ} \mathrm{C}$ and the progress of reaction was monitored by TLC. After completion of the reaction, it was diluted with EtOAc ( 30 ml ) and washed with water and brine. The organic layer was separated and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product, which was purified by column chromatography [silica gel (60-120 mesh) and petroleum ether:EtOAc (80:20) as an eluent] to afford pure product alkoxy bromides ( $\pm$ )-19a-k.

## 2-Bromo-3-methoxy-3-phenylpropan-1-ol (19a)

Yield: $82 \%$; Colorless viscous liquid; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 740,1109,1265,1380$, 1471, 2931, 3390; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.67(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H})$, 3.87-4.01 (m, 2H), 4.13-4.22 (m, 1H), $4.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.41(\mathrm{~m}, 5 \mathrm{H})$;

Analysis: $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrO}_{2}$ requires: C, 49.00 ; H, 5.35 ; found: C, 48.89 ; H, $5.23 \%$.

## 2-Bromo-3-methoxy-3-(4-methoxyphenyl)propan-1-ol (19b)

Yield: $80 \%$; Colorless viscous liquid; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 760,1135,1285,1365$, 1460, 2925, 3386; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.67(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.93-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.24 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ ); Analysis: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{3}$ requires: C, 48.02; H, 5.50; found: C, 48.13; H, 5.61 \%.

2-Bromo-3-methoxy-3-p-tolylpropan-1-ol (19c)

Yield: $80 \%$; gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 820,1090,1275,1324,1472,2918,3390 ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.85-$ $4.01(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 4 \mathrm{H})$; Analysis: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{2}$ requires: C, $50.98 ; \mathrm{H}, 5.83$; found: C, $50.88 ; \mathrm{H}, 5.69 \%$.

## 2-Bromo-3-(4-bromophenyl)-3-methoxypropan-1-ol (19d)

Yield: $80 \%$; Colorless viscous liquid; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 780,1129,1265,1360$, 1478, 2930, 3382; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 2.53$ (br s, 3 H ), $3.26(\mathrm{~s}, 3 \mathrm{H}), 3.88-$ $3.99(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.52$ (m, 2H); Analysis: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{2}$ requires: C, 50.98 ; H, 5.83; found: C, $50.88 ; \mathrm{H}, 5.69 \%$.

2-Bromo-3-methoxy-3-(4-(methylthio)phenyl)propan-1-ol (19e)
Yield: $82 \%$; Colorless viscous liquid; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 815,1030,1268,1355$, 1445, 2918, 3390; ${ }^{1}$ H-NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.50(\mathrm{~s}, 3 \mathrm{H}) ; 2.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26(\mathrm{~s}, 3 \mathrm{H}), 3.84-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 4 \mathrm{H})$; Analysis: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{2} \mathrm{~S}$ requires: C, 45.37 ; H, $5.19 ; \mathrm{S}, 11.01$ found: $\mathrm{C}, 45.26 ; \mathrm{H}, 5.09$; S, $10.88 \%$.

## 3-(Benzyloxy)-2-bromo-3-phenylpropan-1-ol (19f)

Yield: $81 \%$; gum; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 740,1109,1265,1380,1471,2931,3390 ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.59(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.23(\mathrm{~m}$, $1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=10.1,11.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 10 \mathrm{H})$; Analysis: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrO}_{2}$ requires: $\mathrm{C}, 59.83$; H, 5.33; found: C, 59.76 ; H, $5.22 \%$.

## 3-(Benzyloxy)-2-bromo-3-(4-methoxyphenyl)propan-1-ol (19g)

Yield: $82 \%$; gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 765,954,1106,1263,1473,2931,3393 ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.61$ (br s, 1 H ), $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.94-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.19$
$(\mathrm{m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.67(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.36$ $(\mathrm{m}, 7 \mathrm{H}), 7.62(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$; Analysis: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{3}$ requires: C, $58.13 ; \mathrm{H}, 5.45$; found: C, $58.03 ; \mathrm{H}, 5.34 \%$.

## 3-(Benzyloxy)-2-bromo-3-p-tolylpropan-1-ol (19h)

Yield: $80 \%$; gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 720,930,1115,1245,1480,2928,3390 ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.88-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.24$ $(\mathrm{m}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=10.12,11.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 9 \mathrm{H})$; Analysis: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{2}$ requires: C, 60.91 ; H, 5.71; found: C, $60.84 ; \mathrm{H}, 5.63 \%$.

## 3-(Benzyloxy)-2-bromo-3-(4-chlorophenyl)propan-1-ol (19i)

Yield: $82 \%$; gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 780,1060,1120,1250,1464,2930,3395 ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.90-4.02(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.47$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 9 \mathrm{H})$; Analysis: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrClO}_{2}$ requires: C, 54.03 ; H, 4.53; found: 54.16 ; H, 4.67 \%.

## 3-(Benzyloxy)-2-bromo-3-(4-bromophenyl)propan-1-ol (19j)

Yield: $81 \%$; Colorless viscous liquid; $\operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 750,942,1074,1118,1264$, 1480, 2924, 3390; ${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.21$ (br s, 1 H ), 3.85-4.05 (m, 2H), 4.08-4.18 (m, 1H), $4.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.59(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ $7.30(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 2 \mathrm{H})$; Analysis: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}$ requires: C, 48.03; H, 4.03; found: 48.16; H, $4.24 \%$.

3-(Benzyloxy)-2-bromo-3-(4-(methylthio)phenyl)propan-1-ol (19k)
Yield: $81 \%$; gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 768,1068,1120,1270,1460,2930,3395 ;{ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.51(\mathrm{~s}, 3 \mathrm{H}), 3.97-4.01(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 7.28-$
7.37 (m, 9H); Analysis: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{~S}$ requires: $\mathrm{C}, 55.59$; H, 5.21 ; S, 8.73 ; found: C, 55.68; H, 5.09; S, 8.62 \%.

Alkoxy bromides 19a-k was taken in THF ( 20 mL ) and NaOH powder ( $624 \mathrm{mg}, 15.6$ mmol ) was added slowly with stirring at $0^{\circ} \mathrm{C}$ for 2 h (monitored by TLC). The reaction mixture was diluted with EtOAc ( 25 mL ) and water ( 30 mL ). The organic layer separated and the aqueous layer was extracted with EtOAc ( $2 \times 20 \mathrm{~mL}$ ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products which were purified by column chromatography [silica gel (60-120 mesh) and petroleum ether:EtOAc (90:10) as an eluent] to afford pure products ( $\pm$ )-20a-k.

General experimental procedure for the preparation of racemic anti-alkoxy epoxide (23a):

Alkoxy bromide 22 was prepared in $82 \%$ yield from cis-butene diol 21 by following the above procedure. Alkoxy bromide $22(10 \mathrm{mmol})$ was taken in THF $(20 \mathrm{~mL})$ and NaOH powder ( $0.4 \mathrm{~g}, 10 \mathrm{mmol}$ ) was added slowly with stirring at $0^{\circ} \mathrm{C}$ for 2 h (monitored by TLC). The reaction mixture was diluted with EtOAc $(25 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$. The organic layer was separated and the aq. layer extracted with EtOAc ( $2 \times 20 \mathrm{~mL}$ ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product. This was subjected to TBS protection without purification [dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, imidazole ( 10 mmol ) and TBSCl $(10 \mathrm{mmol})]$. It was stirred for 0.5 h and quenched with aq. $\mathrm{NaHCO}_{3}$ solution $(20 \mathrm{~mL})$. The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the crude product, which was purified by column
chromatography [silica gel (60-120 mesh) and petroleum ether:EtOAc (90:10) as an eluent] to give 23a in $84 \%$ yield.

General experimental procedure for the Hydrolytic Kinetic Resolution (HKR) of racemic alkoxy epoxides, ( $\pm$ )-20a-k or ( $\pm$ )-23a-b

To a solution of $(R, R) \mathbf{- 1}$ or $(\mathrm{S}, \mathrm{S}) \mathbf{- 1}(0.043 \mathrm{~g}, 0.07 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$ was added gl. acetic acid ( $0.04 \mathrm{~g}, 7.3 \mathrm{mmol})$. It was allowed to stir at $25^{\circ} \mathrm{C}$ in open air for 30 min . over which time the color was changed from orange-red to a dark-brown. It was then concentrated in vaccuo to get the Co-salen complex as brown colored solid.

To a stirred solution of $(R, R)$-salen $\mathrm{Co}(\mathrm{OAc})$ complex (1) ( $0.004 \mathrm{~g}, 0.5 \mathrm{~mol} \%)$ and alkoxy epoxide ( 1.41 mmol ) in THF $(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{H}_{2} \mathrm{O}(0.012 \mathrm{~g}, 0.5 \mathrm{mmol})$ dropwise over 5 min . The reaction was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 14 h . After completion of reaction (monitored by TLC), solvent was removed in vaccuo. The crude product was purified by column chromatography over silica gel to give chiral alkoxy epoxides 20a-k, (solvent system; pet ether: $\mathrm{EtOAc}=80: 20$ ) and chiral alkoxy diols $5 \mathbf{a - k}$ (solvent system; pet ether: $\mathrm{EtOAc}=60: 40$ ) in pure form.
(S)-2-((S)-Methoxy(phenyl)methyl)oxirane (20a)

Yield: $48 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}+59.68\left(c 0.8, \mathrm{CHCl}_{3}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 685,757,1035,1215,1620,2978,3018,3069 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.57$ (dd, $J=2.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.85$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 43.8,55.0,55.8$, 85.0, 126.8, 128.1, 128.4, 137.8; ESI-MS: m/z $187.08[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ requires: $\mathrm{C}, 73.15$; $\mathrm{H}, 7.37$; found: $\mathrm{C}, 73.08 ; \mathrm{H}, 7.21 \%$.

## (S)-2-((S)-Methoxy(4-methoxyphenyl)methyl)oxirane (20b)

Yield: $47 \%$; gum; $[\alpha]^{\mathrm{D}}{ }_{25}+58.72\left(c 1.2, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 735,845,1065$, $1120,1215,1620,2980,3010,3098 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.57(\mathrm{dd}, J=2.5$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 43.8,54.8,56.0,56.9,83.7$, 111.7, 126.9, 131.4, 131.7, 155.7; Analysis: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ requires: C, 68.02; $\mathrm{H}, 7.27$; found: C, 67.94; H, 7.19\%.

## (S)-2-((S)-Methoxy(p-tolyl)methyl)oxirane (20c)

Yield: $44 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}+59.21\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max }$ 635, 764, 865, 1075, 1125, 1253, 1358, 1624, 2998, 3018, 3089; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dd}, J=2.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.22$ (m, 1H), $3.35(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.26(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 20.9,43.9,55.0,56.7,84.9,126.7,129.1,134.7$, 137.8; Analysis: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ requires: $\mathrm{C}, 74.13 ; \mathrm{H}, 7.92$; found: $\mathrm{C}, 74.09 ; \mathrm{H}, 7.84 \%$.
(S)-2-((S)-(4-Bromophenyl)(methoxy)methyl)oxirane (20d)

Yield: $45 \%$; gum; $[\alpha]^{\mathrm{D}}{ }_{25}+58.43\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 668,750,850$, 1055, 1235, 1275, 1480, 1635, 2988, 3018, 3098; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.56$ (dd, $J=2.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.87$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 43.7,54.7,57.0,84.1,122.1,128.5,131.6,136.9$; Analysis: $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$ requires: C, 49.41; H, 4.56; found: C, 49.39; H, 4.38\%.

## (S)-2-((S)-Methoxy(4-(methylthio)phenyl)methyl)oxirane (20e)

Yield: $47 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}+57.85\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max }$ 680, 785, 850, 1055, 1130, 1260, 1496, 1634, 2918, 2998, 3018, 3080; ${ }^{\mathbf{1}} \mathbf{H}$-NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{dd}, J=2.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.10-3.17 (m, 1H), $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7 . .24(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13}$ C-NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.5,43.8,54.9,56.8,84.5,126.4,127.3,134.5,138.6$; Analysis: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires: $\mathrm{C}, 62.83 ; \mathrm{H}, 6.71 ; \mathrm{S}, 15.25$; found: C, $62.56 ; \mathrm{H}, 6.59 ; \mathrm{S}, 15.19 \%$.
(S)-2-((S)-(Benzyloxy)(phenyl)methyl)oxirane (20f)

Yield: $45 \%$; gum; $[\alpha]^{\mathrm{D}}{ }_{25}+59.72\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 628,757,1043$, 1242, 1654, 2989, 3094; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.58(\mathrm{dd}, J=2.5,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.73(\mathrm{dd}, J=0.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.27(\mathrm{~m}, 1 \mathrm{H}), 4.8(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=$ $10.0,11.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.30-7.38(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 43.6,54.9,70.3$, 82.2, 126.7, 127.2, 127.3, 128.0, 128.3, 137.9; ESI-MS: $m / z 263.2[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$ requires: $\mathrm{C}, 79.97 ; \mathrm{H}, 6.71$; found: $\mathrm{C}, 79.58 ; \mathrm{H}, 6.63 \%$.
(S)-2-((S)-(Benzyloxy)(4-methoxyphenyl)methyl)oxirane (20g)

Yield: $49 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}+57.25\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 667,756,1155,1215,1278,1371,1496,1608,2980,2999,3018 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.55(\mathrm{dd}, J=2.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.23(\mathrm{~m}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.0,11.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.53(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $43.9,55.0,56.0,70.5,81.0,111.7,127.1,127.5,127.6,128.2,131.5,131.8,137.6,155.7 ;$

Analysis: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires: $\mathrm{C}, 75.53$; $\mathrm{H}, 6.71$; found: $\mathrm{C}, 75.45 ; \mathrm{H}, 6.57 \%$.
(S)-2-((S)-(Benzyloxy)(p-tolyl)methyl)oxirane (20h)

Yield: 48\%; gum; $[\alpha]^{\mathrm{D}}{ }_{25}+58 . .28\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 756,850,1155$, $1208,1273,1329,1453,1614,2985,3018,3085 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.37(\mathrm{~s}$, $3 \mathrm{H}), 2.59(\mathrm{dd}, J=2.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.29(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.1,11.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13}$ C-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 21.1, 44.1, 55.2, 70.4, 82.3, 126.8, 127.0, 127.4, 127.6, 128.2, 128.6, 129.2, 134.9, 138.0; Analysis: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ requires: C, 80.28; H, 7.13; found: C, 80.19; H, 7.05\%.

## (S)-2-((S)-(Benzyloxy)(4-chlorophenyl)methyl)oxirane (20i)

Yield: $45 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}+58.48\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max }$ 721, 848, 1124, 1210, 1278, 1496, 1630, 2988, 3018, 3089; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.54-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.22(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55$ (dd, $J=9.1,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.45$ (m, 9H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 43.9,55.0,70.8,81.4,127.7,128.4,128.4,128.8,129.0,129.2,134.2,136.5$, 137.7; Analysis: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2}$ requires: $\mathrm{C}, 69.95 ; \mathrm{H}, 5.50 ; \mathrm{Cl}, 12.90$; found: $\mathrm{C}, 69.86 ; \mathrm{H}$, $5.35 ; \mathrm{Cl}, 12.79 \%$.

## (S)-2-((S)-(Benzyloxy)(4-bromophenyl)methyl)oxirane (20j)

Yield: $44 \%$; gum; $[\alpha]^{\mathrm{D}}{ }_{25}+58.02\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 667,756,850$, $\left.1125,1215,1253,1325,1608,2950,2998,3018,3051 ;{ }^{1} \mathbf{H} \mathbf{~ N M R ~ ( 2 0 0 ~ M H z}, \mathrm{CDCl}_{3}\right): \delta$ $2.56(\mathrm{dd}, J=2.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.22(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47-4.63(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 43.9,54.9,70.8,81.4,122.3,127.7,128.4,128.7,131.7$, 137.0, 137.6; Analysis: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{2}$ requires: $\mathrm{C}, 60.21$; $\mathrm{H}, 4.74, \mathrm{Br}, 25.03$; found: C , 49.39; H, 4.38; Br, 24.98\%.

## (S)-2-((S)-(Benzyloxy)(4-(methylthio)phenyl)methyl)oxirane (20k)

Yield: $48 \%$; gum; $[\alpha]^{\mathrm{D}}{ }_{25}+58.84\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 628,765,848$, 1015, 1150, 1263, 1357, 1640, 2946, 2998, 3018, 3068; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $2.49(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=2.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.24(\mathrm{~m}, 1 \mathrm{H})$, $4.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=10.7,12.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.34$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.2,43.6,54.8,70.2,81.6,126.2,127.2,127.3$, 128.0, 134.5, 137.7, 138.4; Analysis: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ S requires: $\mathrm{C}, 71.30 ; \mathrm{H}, 6.34 ; \mathrm{S}, 11.20$; found: C, $71.26 ; \mathrm{H}, 6.29 ; \mathrm{S}, 11.12 \%$.

## (2R,3R)-3-Methoxy-3-phenylpropane-1,2-diol (5a)

Yield: $47 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}-89.68$ (c 1.2, $\mathrm{CHCl}_{3}$ ); $98 \%$ ee by chiral HPLC analysis (Chiralpak OD-H, $n$-hexane $/ i \mathrm{PrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $11.168(0.99 \%)$ and $11.963(99.01 \%) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 675,745,865,1045,1145$, 1278, 1371, 1485, 1608, 2960, 3018, 3085, 3458; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.50$ (br s, 1H), 3.26(s, 3H), 3.29-3.40(m, 2H), 3.52-3.61(m, 1H), 3.71-3.75 (m, 1H), $4.20(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 56.6,62.2,75.6$, 84.4, 127.4, 128.1, 128.4, 137.8; ESI-MS: m/z $205.09[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$ requires: $\mathrm{C}, 65.91$; $\mathrm{H}, 7.74$; found: $\mathrm{C}, 65.88 ; \mathrm{H}, 7.35 \%$.

## (2R,3R)-3-Methoxy-3-(4-methoxyphenyl)propane-1,2-diol (5b)

Yield: 46\%; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}-89.58\left(c \quad 0.8, \mathrm{CHCl}_{3}\right) ; 97 \%$ ee by chiral HPLC analysis (Chiralpak OD-H, $n$-hexane $/ i \operatorname{PrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time 16.629 (1.88\%) and 18.290 (98.90\%); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 670,748,840,1075,1275$, 1278, 1385, 1494, 1644, 2920, 3018, 3088, 3458; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.18$ (br s, 1H), $3.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 4 \mathrm{H}), 3.51-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~d}, J=7.8$
$\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 56.3,56.8,62.3,75.6,83.4,111.9,127.9,131.4,132.2,155.9 ;$

Analysis: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$ requires: C, $62.25 ; \mathrm{H}, 7.60$; found: C, $62.18 ; \mathrm{H}, 7.45 \%$.
(2R,3R)-3-Methoxy-3-p-tolylpropane-1,2-diol (5c)
Yield: $45 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}-89.25$ (c 1.2, $\mathrm{CHCl}_{3}$ ); $98 \%$ ee by chiral HPLC analysis (Chiralpak OD-H, $n$-hexane $/ i \mathrm{PrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $12.572(1.06 \%)$ and $13.690(98.94 \%) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 650,785,850,1055,1215$, 1371, 1496, 1645, 2925, 3018, 3098, 3450; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.27$ (br s, $1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 4 \mathrm{H}), 3.30-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.74(\mathrm{~m}, 1 \mathrm{H})$, $4.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.1,56.4$, 62.2, 75.6, 84.3, 127.4, 129.1, 134.8, 137.8; Analysis: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$ requires: $\mathrm{C}, 67.32$; H , 8.22; found: C, $67.25 ; \mathrm{H}, 8.17 \%$.

## (2R,3R)-3-(4-Bromophenyl)-3-methoxypropane-1,2-diol (5d)

Yield: $42 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}} 25-89.44\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 620,750,850,1040,1275,1375,1494,1645,2910,3018,3440 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.68(\mathrm{~m}$, $2 \mathrm{H}), 4.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 56.8,62.1,75.5,83.8,122.3,129.2,131.7,136.9$; Analysis: $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrO}_{3}$ requires: $\mathrm{C}, 46.00 ; \mathrm{H}, 5.02$; $\mathrm{Br}, 30.60$; found: $\mathrm{C}, 45.85 ; \mathrm{H}, 4.95 ; \mathrm{Br}, 30.54 \%$. (2R,3R)-3-Methoxy-3-(4-(methylthio)phenyl)propane-1,2-diol (5e)

Yield: 46\%; Colorless viscous liquid; $[\alpha]^{\mathrm{D}} 25-89.32\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $\mathrm{v}_{\max }$ 650, 765, 850, 1055, 1260, 1275, 1374, 1496, 1645, 2950, 3018, 3098, 3446; ${ }^{\mathbf{1}} \mathbf{H}$-NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{brs}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{brs}, 1 \mathrm{H}), 3.52-3.71$
(m, 2H), $4.17(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 15.6, 56.7, 62.2, 75.6, 84.0, 126.5, 128.0, 134.4, 138.8; Analysis: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ requires: C , 57.87; H, 7.06; found: C, 57.78; H, 6.95\%.

## (2R,3R)-3-(Benzyloxy)-3-phenylpropane-1,2-diol (5f)

Yield: $44 \%$; gum; $[\alpha]^{\mathrm{D}}{ }_{25}-89.65$ ( c $1, \mathrm{CHCl}_{3}$ ); 98\% ee by chiral HPLC analysis (Chiralpak OD-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time 12.351 (1.08\%) and 13.599 (98.92\%); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 720,845,1045,1125,1654,2985,3085,3465 ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.13$ (br s, 1H), $3.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=4.3,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{dd}, J=2.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.83(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-$ $4.52(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 62.2,70.6,75.6,82.0$, 127.6, 127.9, 128.4, 128.6, 137.6, 137.9; ESI-MS: $m / z 281.13[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$ requires: $\mathrm{C}, 74.39 ; \mathrm{H}, 7.02$; found: C, $74.28 ; \mathrm{H}, 6.97 \%$.
(2R,3R)-3-(Benzyloxy)-3-(4-methoxyphenyl)propane-1,2-diol (5g)
Yield: 47\%; gum; $[\alpha]^{\mathrm{D}}{ }_{25}-89.45$ (c 1.2, $\mathrm{CHCl}_{3}$ ); 98\% ee by chiral HPLC analysis (Chiralpak OD-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time 17.624 (1.05\%) and 19.298 (98.89\%); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 635,765,840,1045,1215,1353,1371$, 1496, 1634, 2980, 3068, 3446; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.03(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.25(\mathrm{dd}, J=12.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=12.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.70(\mathrm{~m}, 1 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 4.21-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.35(\mathrm{~m}, 7 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 56.1,62.1,70.6$, $75.4,80.9,111.7,127.8,127.9,128.4,131.4,132.2,137.3,155.8$; Analysis: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$ requires: $\mathrm{C}, 70.81 ; \mathrm{H}, 6.99$; found: $\mathrm{C}, 70.57 ; \mathrm{H}, 6.78 \%$.
(2R,3R)-3-(Benzyloxy)-3-p-tolylpropane-1,2-diol (5h)

Yield: $45 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}} 25-89 . .2$ (c 1.2, $\mathrm{CHCl}_{3}$ ); $96 \%$ ee by chiral HPLC analysis (Chiralpak OD-H, $n$-hexane $/ i \mathrm{PrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $12.570(2.10 \%)$ and 13.692 (98.24\%); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 650,756,850,1055,1230$, 1360, 1485, 1644, 2958, 3058, 3425; ${ }^{\mathbf{1}} \mathbf{H}$-NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.18$ (br s, 1H), $2.36(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.55-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=3.43$, $5.54 \mathrm{~Hz}, 1 \mathrm{H})$, 4.18-4.31 (m, 1H), 4.35-4.47 (m, 2H), 7.28-7.36 (m, 9H); ${ }^{13}$ C-NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.0,62.1,69.9,75.5,84.5,127.4,127.5,127.6,128.3,128.4,128.6$, 137.5, 137.8, 138.2; Analysis: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$ requires: $\mathrm{C}, 74.97$; $\mathrm{H}, 7.40$; found: $\mathrm{C}, 74.89$; H , 7.31\%.

## (2R,3R)-3-(Benzyloxy)-3-(4-chlorophenyl)propane-1,2-diol (5i)

Yield: 42\%; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}-89.25\left(c \quad 0.8, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 665,720,850,1044,1215,1253,1371,1498,1638,2990,3078,3454 ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.16$ (br s, 1H), 3.12 (br s, 1H), 3.29 (dd, $J=4.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.54 $(\mathrm{dd}, J=3.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.48(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.38 (m, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 62.2,70.9,75.5,81.3,128.0,128.6$, 129.0, 134.4, 136.5, 137.3; Analysis: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{3}$ requires: C, $65.64 ; \mathrm{H}, 5.85 ; \mathrm{Cl}, 12.11$; found: C, 65.56 ; $\mathrm{H}, 5.77$; Cl, 12.05\%.
(2R,3R)-3-(Benzyloxy)-3-(4-bromophenyl)propane-1,2-diol (5j)
Yield: 47\%; gum; $[\alpha]^{\mathrm{D}}{ }_{25}-89.08\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 658,780,810$, $1055,1155,1278,1371,1496,1638,2998,3018,3450 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 2.72 (br s, 1H), 3.24-3.27 (m, 2H), 3.49-3.52 (m, 2H), 3.67-3.69 (m, 2H), $4.24(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38-4.46(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 62.1,70.8,75.4,81.3,122.4,128.0,128.5,129.3,131.8,137.0,137.3 ;$

Analysis: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrO}_{3}$ requires: C, 56.99 ; $\mathrm{H}, 5.08$; Br, 23.70; found: C, 56.79 ; H, 4.99; $\mathrm{Br}, 23.62 \%$.
(2R,3R)-3-(Benzyloxy)-3-(4-(methylthio)phenyl)propane-1,2-diol (5k)
Yield: 47\%; Colorless viscous liquid; $[\alpha]^{\mathrm{D}} 25-88.92$ (c 1.2, $\mathrm{CHCl}_{3}$ ); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 685,780,885,1065,1075,1265,1371,1485,1638,2940,3018,3089,3456 ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.24-3.36(\mathrm{~m}$, $1 \mathrm{H}), 3.49-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.75(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.51(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.38 (m, 9H); ${ }^{13} \mathbf{C}$-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 15.5,62.2,70.6,75.5,81.6,126.5$, 127.8, 127.9, 128.1, 128.4, 134.6, 137.5, 138.8; Analysis: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~S}$ requires: C, 67.08; H, 6.62; S, 10.53; found: C, 66.98; H, 6.58; S, 10.45\%.

## 2-(Benzyloxy)-3-bromobutane-1,4-diol (22)

Yield: $82 \%$; Colorless viscous liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 760,860,1065,1085$, 1270, 1378, 1468, 1625, 2940, 3393; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.73-3.94(\mathrm{~m}, 5 \mathrm{H}), 4.23-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 55.5,61.3,63.3,72.9,79.5,126.1,126.2,128.6,137.5$; Analysis: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{3}$ requires: C, 48.02 ; $\mathrm{H}, 5.50$; found: C, 47.98 ; H, $5.43 \%$.
((R)-2-(Benzyloxy)-2-((S)-oxiran-2-yl)ethoxy)(tert-butyl)dimethylsilane (23a)
Yield: $47 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}+28.25\left(c 1.2, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 645,785,828,1085,1145,1253,1496,1608,2925,2996,3016,3088 ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 2.72-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.07(\mathrm{~m}, 1 \mathrm{H})$, 3.39-3.41 (m, 1H), 3.74-3.76 (m, 2H), 4.62-4.67 (m, 2H), 7.29-7.32 (m, 5H); ${ }^{13}$ C-NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta-5.2,18.0,25.7,44.9,51.4,64.0,64.9,72.7,78.2,127.6,128.3$, 138.4; Analysis: $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires: C, 66.19 ; H, 9.15; found: $\mathrm{C}, 66.09$; $\mathrm{H}, 8.98 \%$.

## 2-(Methoxy(phenyl)methyl)oxirane (23b)

Yield: $47 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}} 25-58.25\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 685,757,1035,1215,1620,2978,3018,3069 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.57$ (dd, $J=2.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.85$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 43.8,55.0,55.8$, 85.0, 126.7, 128.1, 128.4, 137.8; Analysis: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ requires: $\mathrm{C}, 73.15$; $\mathrm{H}, 7.37$; found: C, $73.08 ; \mathrm{H}, 7.21 \%$.

## (2R,3S)-3-(Benzyloxy)-4-tert-butyl) dimethylsilyloxybutane-1,2-diol (4a)

Yield: 49\%; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}-29.24\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max }$ 640, 750, 850, 1040, 1075, 1238, 1375, 1485, 1640, 2980, 3018, 3089, 3445; ${ }^{1} \mathbf{H}$-NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 2.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.69-2.81$ $(\mathrm{m}, 1 \mathrm{H}), 3.37-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.88(\mathrm{~m}, 3 \mathrm{H}), 4.04-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.73(\mathrm{~m}, 2 \mathrm{H})$, $7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.3,18.2,25.9,63.1,71.2,72.2,72.6$, 78.6, 127.9, 128.5, 137.9; Analysis: $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4}$ Si requires: C, 62.54 ; $\mathrm{H}, 9.26$; found: C, 62.38; H, 9.12\%.

## (2S, 3R)-3-Methoxy-3-phenylpropane-1, 2-diol (4b)

Yield: $47 \%$; Colorless viscous liquid; $[\alpha]^{\mathrm{D}}{ }_{25}+113.95$ (c $1.16, \mathrm{CHCl}_{3}$ ); $98 \%$ ee by chiral HPLC analysis (Chiralcel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 86: 14,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $24.15(98.92 \%)$ and $25.50(1.08 \%)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 720,845,1065,1125,1654$, 2985, 3085, 3465; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.78$ $(\mathrm{m}, 3 \mathrm{H}), 4.32(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 57.1, 62.9, 74.5, 85.2, 127.3, 128.1, 128.5, 137.1; Analysis: $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$ requires: $\mathrm{C}, 65.91$; H, 7.74; found: C, 65.89; H, 7.37\%.

## Section II:

## Enantioselective Synthesis of (S,S)-Reboxetine

### 1.2.1 Depression

Depression is a common and disabling disorder. The World Health Organization has ranked depression fourth in a list of the most urgent health problems world wide. ${ }^{16}$ Depression has major effects on economic productivity, individual well-being and social functioning around the globe. It is a huge burden on individuals, families and society. The lifetime risk for major depression has been estimated to be $7-12 \%$ for men and 20 $25 \%$ for women. ${ }^{16}$ Medical treatment for depression favors prescription of antidepressant drugs that work by increasing neurotransmission for one or more of the monoaminesserotonin, norepinephrine, or dopamine. Before 1980, antidepressant treatment consisted primarily of the tricyclics antidepressants (TCADs), monoamine oxidase inhibitors (MAOI) and lithium. The antidepressant properties of these medications are attributed to modulation of noradrenergic and serotonergic function, but they also have many side effects due to binding to multiple unrelated receptors. The tricyclics antagonize muscarinic, H1 histaminic, and A1 adrenergic receptors causing constipation, urinary retention, dry mouth, sedation, and postural hypotension. ${ }^{17}$ In addition to these, the monoamine oxidase inhibitors have the added risk of potentially severe hypertensive crisis due to pressor effects of dietary tyramine, which requires dietary restrictions. Both the tricyclics and the monoamine oxidase inhibitors can be lethal in overdose; the monoamine oxidase inhibitors interact dangerously with several over the counter and prescription drugs. In the late 1980's, an important class of antidepressant was introduced, the selective serotonin reuptake inhibitors (SSRIs), which includes sertraline
(24), fluoxetine (25), paroxetine (26) and citalopram (27) (Fig. 11). This class has become a mainstay of antidepressant treatment because of substantial advantages over the tricyclics and monoamine oxidase inhibitors in safety, tolerability and ease of dosing.


Sertraline (24)


Paroxetine (26)


Fluoxetine (25)


Citalopram (27)

Fig. 11: Selective serotonin reuptake inhibitors (SSRIs)

The SSRIs also have limitations, especially response failure in many of those most severely affected. Many patients experience side effects like gastrointestinal complaints, nervousness and agitation, sexual dysfunction and weight gain with long term use. ${ }^{17}$ All these lead to difficulty in long term treatment and non compliance. Hence, one of the most important goals in the pharmacological treatment of depression is to provide the patients with highly efficacious drugs that have few side effects, low or no toxicity and a high level of tolerability.

### 1.2.2 Reboxetine and pharmacology

Reboxetine (29) is a selective noradrenaline reuptake inhibitor (NaRI), the first drug of new antidepressant class introduced in 1997 (Fig. 12). It is $\alpha$ - aryloxybenzyl derivative of morpholine and its mesylate (i.e. methanesulfonate) salt is sold under trade names such as Edronax ${ }^{\circledR}$, Norebox ${ }^{\circledR}$, Prolift ${ }^{\circledR}$, Solvex ${ }^{\circledR}$ or Vestra ${ }^{\circledR}$. Reboxetine (29) is a selective inhibitor of noradrenaline reuptake. It inhibits noradrenaline reuptake in vitro to a similar extent to the tricyclic antidepressant desmethylimipramine. Reboxetine (29) does not affect dopamine or serotonin reuptake and has low in vivo and in vitro affinity for adrenergic, cholinergic, histaminergic, dopaminergic and serotonergic receptors. ${ }^{18}$

( $\pm$ - 28

(S,S)-29

( $R, R$ )-30

Fig. 12: Structures of reboxetine

Due to selectivity of reboxetine (29) for norepinephrine, it is generally well tolerated with a benign side effect profile. ${ }^{16,17}$ Against comparator antidepressants, reboxetine is at least as effective in the treatment of patients with major depressive disorder in the adult and the elderly population and offers a significant advantage over imipramine in the treatment of melancholic patients. It has a significantly improved adverse event profile compared with TCADs. In severely depressed patients, reboxetine (29) was significantly more effective than fluoxetine (25). Reboxetine (29), the first selective NaRI, with its selective
mechanism of action, offering even better efficacy in certain patient groups and acceptable tolerability profile is a valuable addition to the existing armamentarium of drugs used for the treatment of depression.

### 1.2.3 Review of Literature

Owing to its high biological importance, the synthesis of reboxetine in its optically pure form was reported by many groups world wide as described below.

## Melloni's approach (1985) ${ }^{19}$

In this approach, cinnamyl alcohol (11a) was subjected to diastereoselective epoxidation to give the $(2 R S, 3 R S)$ epoxide ( $\pm$ )-12. The epoxide $( \pm) \mathbf{- 1 2}$ was then opened selectively at the benzylic position to give the diol $( \pm) \mathbf{- 1 3}$ which was converted to epoxide $( \pm) \mathbf{- 1 0}$ (Scheme 8).


Scheme 8: (i) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 94 \%$; (ii) 2ethoxyphenol, $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 7{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 83 \%$; (iii) (a) 4-nitrobenzoyl chloride, pyridine, $-10^{\circ} \mathrm{C}, 2 \mathrm{~h}, 61 \%$; (b) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 84 \%$; (c) 2 N NaOH , dioxane, $25{ }^{\circ} \mathrm{C}$, $100 \%$; (iv) $32 \% \mathrm{NH}_{4} \mathrm{OH}, \mathrm{MeOH}, 6 \mathrm{~h}, 75 \%$; (v) (a) $\mathrm{ClCH}_{2} \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 98 \%$; (b) $t$-BuOK, $t$-BuOH, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$, $86 \%$; (vi) (a) Red-Al, toluene, 4 h, $72 \%$; (b) L-(+)-mandelic acid, EtOH.

The epoxide $( \pm) \mathbf{- 1 0}$ was opened at the primary position by $\mathrm{NH}_{4} \mathrm{OH}$ to give the corresponding amino alcohol $( \pm) \mathbf{- 3 1}$. The amino alcohol $( \pm) \mathbf{- 3 1}$ was treated first with chloroacetyl chloride and then with base to give the corresponding lactam ( $\pm$ )-32. Lactam $( \pm)-\mathbf{3 2}$ was reduced to the corresponding morpholine derivative using Red-Al and the $(S, S)$-isomer was separated by resolution that involves recrystallizing with L-(+)mandelic acid in ethanol to give ( $S, S$ )-reboxetine (29). Melloni et al. also carried out the synthesis of $(S, S)$-reboxetine (29) using chiral $(2 R, 3 R)$-epoxide 12 obtained from chiral glycidic acid 33 (Scheme 9).


Scheme 9: (i) ethyl chlorocarbonate, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}$, then $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, then $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 31 \%$.

## Raggi's approach (2002) ${ }^{\mathbf{2 0}}$

In this approach, Raggi et al. have made use of capillary electrophoresis method to separate the enantiomers of racemic mixture of $(R, R)$-reboxetine $\mathbf{3 0}$ and $(S, S)$-reboxetine 29. Sulfobutyl ether- $\beta$-cyclodextrin was chosen as the chiral selector using an uncoated fused silica capillary (Scheme 10).


Scheme 10: (i) fused silica capillary (internal diameter $50 \mu \mathrm{~m}$, total length 48.5 cm , effective length 40.0 cm ), electrolyte $\mathrm{pH} 3.0,100 \mathrm{mM}$ phosphate buffer, 1.25 mM Sulfobutyl ether- $\beta$-cyclodextrin, 20 kV .

## Öhman's approach (2002) ${ }^{21}$

In this approach, the separation of the racemic mixture of reboxetine $( \pm)$ - $\mathbf{2 8}$ was done by reverse-phase high-performance liquid chromatography using three different chiral columns (Chiral-AGP, Chiral Grom 2 and Chiral-CBH) (Scheme 4).


Scheme 11: (i) separation via chiral HPLC

## Kumar's approach (2004) ${ }^{22}$

This approach is very much similar to the one repoted by Melloni et al. involving the epoxidation of cinnamyl alcohol (11a) and opening the epoxide ( $\pm$ )-12 at benzylic position with mono MOM-protected catechol (Scheme 12).



Scheme 12: (i) $m$-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 80 \%$; (ii) 2-methoxy methyl phenol, aq. $\mathrm{NaOH}, 64 \%$; (iii) (a) 4-nitrobenzoyl chloride, pyridine, $65 \%$; (b) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, ~ 90 \%$; (c) 2 N $\mathrm{NaOH}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 95 \%$; (iv) (a) $30 \% \mathrm{NH}_{4} \mathrm{OH}, \mathrm{MeOH}, 88 \%$; (b) $\mathrm{ClCH}_{2} \mathrm{COCl}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (c) $t$-BuOK, $t$-BuOH, 64\%; (v) (a) Red-Al, toluene, $88 \%$; (b) L-(+)-Mandelic acid, EtOH.

Lactam 35 was reduced to the corresponding secondary amine, which was resolved with $(+)$-mandelic acid and protected to give the corresponding chiral morpholine 36. Morpholine 36 was converted to ( $S, S$ )-reboxetine (29) using simple transformations.

## Tamagnan's approach (2005) ${ }^{23}$

Tamagnan's aim was to build the chiral morpholine moiety first before introducing the phenyl and aryloxy groups.


Scheme 13: (i) $\mathrm{ClCH}_{2} \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{MeOH},-10^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 94 \%$; (ii) $t$-BuOK, $t$-AmOH, $25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 92 \%$; (iii) Red-Al, THF, $0{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$, $85 \%$; (iv) (a) (Boc) $)_{2} \mathrm{O}, \mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 83 \%$, (b) TEMPO, TCIA, $\mathrm{NaHCO}_{3}$, EtOAc, $-5^{\circ} \mathrm{C}, 2 \mathrm{~h}, 89 \%$; (v) $\mathrm{Ph}_{2} \mathrm{Zn}$, THF, $-10^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$, 42 (60 \%), 43 (19\%); (vi) (a) 44, NaH, DMF, $25^{\circ} \mathrm{C}$, 2h, (b) $\mathrm{I}_{2}$ in THF, $0^{\circ} \mathrm{C}$ to 25 ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (c) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 98 \%$.

Chiral aminoalcohol 37 was thus converted to morpholine 40 using simple transformations. Aldehyde 41 was obtained from morpholine 40 in 2 steps: (i) protection of amine with $(\mathrm{Boc})_{2} \mathrm{O}$ and (ii) oxidation of alcohol with trichloroisocyanuric acid (TCIA) and TEMPO in EtOAc. Aldehyde 41 was treated with excess $\mathrm{Ph}_{2} \mathrm{Zn}$ to give the diastereomers $(2 S, 3 S)-\mathbf{4 2}$ and $(2 S, 3 R)-\mathbf{4 3}$ in 60 and $19 \%$ yields respectively. Sodium
alkoxide of $\mathbf{4 2}$ was reacted with arylchromium $\mathbf{4 4}$ to provide two chromium complexes, which led to phenol moiety in $95 \%$ yields after oxidative dechromination with iodine. Finally, treatment of phenol moiety with excess TFA provided ( $S, S$ )-reboxetine (29) in 98\% yield (Scheme 13).

## Srinivasan's approach (2006) ${ }^{\mathbf{2 4}}$

Srinivasan et al. have made use of Sharpless asymmetric dihydroxylation approach for the asymmetric synthesis of (S,S)-29. trans-Cinnamyl bromide (45) on asymmetric dihydroxylation afforded diol. Nucleophilic displacement of the bromo group with sodium azide furnished the azido alcohol, which was converted to amine 46 using $10 \%$ $\mathrm{Pd} / \mathrm{C}$ and $\mathrm{H}_{2}$. The free amine 46 was then treated with chloroacetyl chloride to furnish amide, which was readily cyclized to lactam 47 . lactam 47 was converted to $(S, S)$ reboxetine (29) using simple transformations (Scheme 14).


Scheme 14: (i) (a) ( DHQ$)_{2}$ - $\mathrm{PHAL}^{2}, \mathrm{OsO}_{4}, \mathrm{~K}{ }_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O}: t-\mathrm{BuOH}(1: 1), 0^{\circ} \mathrm{C}, 24 \mathrm{~h}, 84 \%$; (b) $\mathrm{NaN}_{3}$, DMF, $68^{\circ} \mathrm{C}, 16 \mathrm{~h}$, $80 \%$, (c) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm}), 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 90 \%$; (iii) (a) $\mathrm{ClCOCH}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-10^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 70 \%$; (b) $t$-BuOK, $t$ - $\mathrm{BuOH}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 80 \%$.

## Henegar's approach (2007) ${ }^{12}$

Henegar et al. have described the synthesis of $(S, S)$ reboxetine 29 via Sharpless asymmetric epoxidation as the key step Thus, Sharpless asymmetric epoxidation of commercially available cinnamyl alcohol 11a furnished epoxide 12 with $>99 \%$ ee. The regioselective ring opening of epoxide 12 with 2-ethoxyphenol gave a single regioisomer anti-aryloxy diol 13 in good yield. In order to establish the desired syn configuration,
authors had carries out a three-step reaction sequence: (i) chemoselective TMS protection of diol 13; (ii) mesylation of secondary hydroxyl using MsCl ; (iii) final treatment of crude mesylate with NaOH in THF to furnish the appropriately oriented syn aryloxy epoxide $\mathbf{1 0}$ in $95 \%$ yield. Epoxide 10 was converted to ( $S, S$ )-reboxetine (29) using simple transformations (Scheme 15).


Scheme 15: (i) (-)-DIPT, $\mathrm{Ti}(\mathrm{OiPr})_{4}, t \mathrm{BuOOH}$ in toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20-25{ }^{\circ} \mathrm{C}$; (ii) 2-ethoxyphenol, $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 52 \%$ (for 2 steps); (iii) (a) TMSCI, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (b) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) 2 N NaOH , THF, $25^{\circ} \mathrm{C}, 4$ h, $95 \%$; (iv) $30 \% \mathrm{NH}_{4} \mathrm{OH}, \mathrm{MeOH}, 88 \%$; (v) (a) $\mathrm{ClCOCH}_{2} \mathrm{Cl}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -10 ${ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 70 \%$; (b) $t$-BuOK, $t$-BuOH, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 80 \%$.

## Pardo's approach (2007) ${ }^{\mathbf{2 5}}$

Pardo's et al. have made use of rearrangement of $N, N$-dialkyl- $\alpha$-amino alcohols 49 in the presence of a catalytic amount of TFAA as the key step. Commercially available (-)$(1 R, 2 R)$-2-amino-1-phenyl-1,3-propanediol 48 was converted to the corresponding tertiary amine 49 by $\mathrm{N}, \mathrm{N}$-dibenzylation, which was the precursor for the key step. Then 49 was treated with $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ (0.4 equiv) in refluxing toluene for 5 h followed by a NaOH treatment to furnish the rearranged amino alcohol 50. Amino alcohol $\mathbf{5 0}$ was converted to ( $S, S$ )-reboxetine (29) using reactions reported in the literature (Scheme 16).


Scheme 16: (i) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, MeCN , reflux, $8 \mathrm{~h}, 98 \%$; (ii) (a) $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, toluene, reflux, 5 h ; (b) $\mathrm{NaOH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$; (iii) (a) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}$ (1 atm), $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 26 \mathrm{~h}, 71 \%$; (b) $\mathrm{ClCOCH}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}(9: 1), 2{ }^{\circ} \mathrm{C}$, $45 \mathrm{~min}, 89 \%$; (iv) $t$-BuOK, $i \mathrm{PrOH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 62 \%$.

In their second approach, chiral aminodiol 48 was protected as benzoylated amino alcohol, which was then converted to aryloxy amino alcohol $\mathbf{5 3}$ via Mitsunobu reaction on the benzylic alcohol with 2-ethoxyphenol.


Scheme 17: (i) (a) $\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 96 \%$; (b) $\mathrm{PPh}_{3}$, 2Ethoxyphenol, DIAD, THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 76 \%$; (ii) (a) $\mathrm{BH}_{3}$.THF, THF, reflux, 3 h , $92 \%$; (b) $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $25^{\circ} \mathrm{C}$, 7days; (c) $\mathrm{LiAlH}_{4}$, THF, $25^{\circ} \mathrm{C}, 2$ h, $70 \%$; (iii) $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, THF, $120^{\circ} \mathrm{C}, 18 \mathrm{~h}, \mathrm{MW}, 36 \%$.

Further, $N, N$-dialkylamino alcohol $\mathbf{5 4}$ was obtained from amino alcohol $\mathbf{5 3}$ in three steps: (i) reduction of $\mathrm{N} / \mathrm{O}$ benzoyl moiety with $\mathrm{BH}_{3}$.THF (ii) N -alkylation using methyl bromoacetate (iii) reduction of the crude material by $\mathrm{LiAlH}_{4}$. The $N, N$-dialkylamino alcohol 54 was then subjected to rearrangement by treatment with $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ (under microwave irradiation) that afforded the rearranged aminodiol 55 in a modest yield of $36 \%$. Amino diol 55 was finally converted to ( $S, S$ )-reboxetine (29) by following the known sequence of reactions (Scheme 17).

## Assaf's approach (2010) ${ }^{26}$

In this approach, Assaf's et al. were able to convert a four-step morpholine synthesis into a more efficient two-step process. In this approach synthesis of (S,S)-reboxetine (29) was achieved starting from aryloxy epoxide $\mathbf{1 0}$ using a two-step reaction process: (i) opening of epoxide with (2-amino ethyl hydrogen sulfate) 2-AEHS to afford amino alcohol 56; (ii) base-mediated ring-closure using a typical solid $\mathrm{NaOH} / \mathrm{THF} / \mathrm{EtOH}$ system. The combined transformations delivered (S,S)-reboxetine in more than $60 \%$ overall yield (Scheme 18).


Scheme 18: (i) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OSO}_{3} \mathrm{H}$, DBU , PhMe, $\mathrm{EtOH}, 86 \%$; (ii) $\mathrm{NaOH}, \mathrm{THF}, \mathrm{EtOH}, 78 \%$.

### 1.2.4 Present Work

### 1.2.4.1 Objective

(S,S)-Reboxetine (29) exhibits the best affinity and selectivity for norepinephrine transporter. The methods described so far in the literature for the synthesis of $(S, S)$ reboxetine (29) suffer from the following: they involve separation of reboxetine enantiomers by classical resolution, capillary electrophoresis, or chiral HPLC and are specific to the reboxetine structure. In this section, we describe a new approach to the asymmetric synthesis of ( $S, S$ )-reboxetine (29 using two stereocentred HKR of racemic benzyloxy epoxide $20 f$.

The retrosynthesis of $(S, S)$-reboxetine (29) is presented in Scheme 19. Where in $(S, S)$ reboxetine (29) can be obtained from morpholine 42 which can be realized through the lactam 57. The lactam 57 can be obtained from the corresponding key intermediate, aminoalcohol 65, which in turn can be obtained from chiral benzyloxy epoxide 20f. The benzyloxy epoxide $20 f$ could be prepared from racemic benzyloxy epoxide ( $\pm$ )-20f employing by the two-stereocentred cobalt-catalyzed HKR.


Scheme 19: Retrosynthetic analysis of ( $S, S$ )-reboxetine (29)

### 1.2.5 Results and Discussion

Our synthesis of $(S, S)$-reboxetine 29 has started from cinnamyl alcohol 11a, which was transformed into syn-benzyloxy epoxide ( $\pm$ )-20f in two steps: (i) benzyloxybromination to give bromo derivative 59 (ii) the formation of epoxide to give syn-benzyloxy epoxide $( \pm)$-20b in $84 \%$ yield, which was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectroscopy.


Fig. 13: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ NMR spectra of benzyloxy epoxide $( \pm)$-20f

The ${ }^{1} \mathrm{H}$-NMR spectrum of syn-benzyloxy epoxide, ( $\pm$ )-20f showed typical signals at $\delta$ 2.57-2.75 $(\mathrm{m}, 2 \mathrm{H})$ and $\delta 3.24-3.27(\mathrm{~m}, 1 \mathrm{H})$ for methylene and methine protons respectively. Its ${ }^{13} \mathrm{C}$-NMR showed characteristic signals at $\delta 43.62$ and 54.96 due to carbons of the epoxide ring (Fig. 13). The syn-benzyloxy epoxide ( $\pm$ )-20f was then subjected to HKR using $(R, R)-\mathrm{Co}($ salen $) \mathrm{OAc}(\mathbf{1})$ to give chiral syn-benzyloxy diol $\mathbf{5 f}$ in $44 \%$ yield with $98 \%$ ee along with chiral syn-benzyloxy epoxide 20 f in $45 \%$ yield with 98\% ee (Scheme 20). The compounds $\mathbf{2 0 f}$ and $\mathbf{5 f}$ were then readily separated by column chromatographic purification. The enantiomeric excess of syn-benzyloxy epoxide $\mathbf{2 0 f}$ was determined by chiral HPLC analysis; (Chirapalk OD-H, Fig. 14).


Fig. 14: HPLC chromatogram of epoxide $\mathbf{5 f}$




$\left.\begin{array}{l}61 R=B o c \\ 29 R=H\end{array}\right) i x$

Scheme 20: (i) NBS, $\mathrm{BnOH}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 85 \%$; (ii) NaOH powder, THF, $25^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 88 \%$; (iii) ( $R, R$ )-Co(III)(salen)OAc ( $1 \mathrm{~mol} \%$ ), THF, $\mathrm{H}_{2} \mathrm{O}$ ( 0.48 equiv.), $0{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iv) $30 \% \mathrm{NH}_{4} \mathrm{OH}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 83 \%$; (v) (a) $\mathrm{ClCH}_{2} \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10{ }^{\circ} \mathrm{C}$; (b) $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}, \mathrm{t}-\mathrm{BuOH}, 3 \mathrm{~h}, ~ 72 \%$; (vi) (a) Red-Al, dry toluene, $25^{\circ} \mathrm{C}$, then 2 N NaOH ; (b) (Boc) ${ }_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (vii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ ( 1 atm ), $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$, $92 \%$; (viii) (a) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) 2-ethoxy phenol, NaH, DMF, 3 h, $72 \%$; (ix) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$.

The chiral epoxide $\mathbf{2 0 f}$ was then subjected to regioselective ring opening at the terminal position with aqueous $30 \% \mathrm{NH}_{4} \mathrm{OH}$ to give the corresponding aminoalcohol 58 in $83 \%$
yield; $[\alpha]_{\mathrm{D}}^{25}:+48.99\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the aminoalcohol 58 showed signals at $\delta 2.53-2.69(\mathrm{~m}, 2 \mathrm{H})$ and $3.86-3.96(\mathrm{~m}, 1 \mathrm{H})$ corresponding to the methylene and methine protons attached to $\mathrm{CH}-\mathrm{OH}$ and $\mathrm{CH}-\mathrm{NH}_{2}$ protons respectively. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed peaks at $\delta 70.61$ and 70.88 corresponding to the methylene $\left(-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ph}\right)$ and methine $(-\mathrm{CH}-\mathrm{OH})$ carbons respectively. The other carbon signals at 41.64 and 82.48 correspond to methylene $\left(-\mathrm{CH}_{2} \mathrm{NH}_{2}\right)$ and methine $(-\mathrm{CH}-\mathrm{OBn})$ carbons respectively (Fig. 15).


Fig. 15: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ NMR spectra of amino alcohol 58

The amino alcohol 58 was reacted with chloroacetyl choride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ as base at $-10^{\circ} \mathrm{C}$ to give the corresponding amide in situ, which was readily converted to the corresponding lactam 57 using $t$-BuOK as the base; $[\alpha]_{\mathrm{D}}^{25}:+36.34\left(c 1.0, \mathrm{CHCl}_{3}\right)$.



Fig. 16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of lactam 57
The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of lactam 57 showed typical signals at $\delta 2.79(\mathrm{td}, J=3.6,12.0$
$\mathrm{Hz}, 1 \mathrm{H}) ; 3.20(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.88-3.98(\mathrm{~m}, 1 \mathrm{H})\left(-\mathrm{CHCH}_{2} \mathrm{NHC}=\mathrm{O}-\right)$, and 4.19-4.27
$(\mathrm{m}, 2 \mathrm{H})\left(-\mathrm{OCH}_{2} \mathrm{C}=\mathrm{ONH}-\right)$ corresponding to the diastereotopic methylene protons present
in the lactam moiety. Its ${ }^{13} \mathrm{C}$-NMR spectrum showed characteristic carbon signals at $\delta$ $42.90\left(-\mathrm{CHCH}_{2} \mathrm{NHC}=\mathrm{O}-\right)$ and $67.43\left(-\mathrm{OCH}_{2} \mathrm{C}=\mathrm{ONH}-\right)$ corresponding to methylene carbons present in the lactam moiety. The amide carbonyl in the lactam moiety showed a characteristic peak at $\delta 169.26$ (Fig. 16). Its IR spectrum showed a characteristic strong band at $1686 \mathrm{~cm}^{-1}$ indicating the presence of amide carbonyl function.


Fig. 17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of morpholine $\mathbf{6 0}$

The lactam carbonyl group in 57 was then reduced with Red-Al in toluene to give the corresponding amine in situ, which was subsequently protected as its carbamate using
$(\mathrm{Boc})_{2} \mathrm{O}$ to give morpholine 60 in $85 \%$ yield; $[\alpha]^{25} \mathrm{D}:+36.34\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}-$ NMR spectrum of the morpholine $\mathbf{6 0}$ showed signals at $\delta 2.58-2.94(\mathrm{~m}, 2 \mathrm{H})$ and 3.49$3.94(\mathrm{~m}, 5 \mathrm{H})$ corresponding to the methylene and methine protons present in the morpholine moiety. The signals at $\delta 4.24-4.31(\mathrm{~m}, 2 \mathrm{H})$ and $4.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$ are due to the benzylic methylene $\left(-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ph}\right)$ and the benzylic methine $(-\mathrm{CH}-\mathrm{OBn})$ protons respectively. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed characteristic carbon signals at $\delta 43.37$ ($\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Boc})-\right), \quad 44.87\left(-\mathrm{CHCH}_{2} \mathrm{~N}(\mathrm{Boc})-\right)$ and $66.49 \quad\left(-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Boc})-\right)$, corresponding to the three methylene carbons present in the morpholine moiety (Fig. 17).


Fig. 18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $N$-Boc amide 61

The Benzyl group in morpholine $\mathbf{6 0}$ was deprotected under catalytic hydrogenation (10\% $\mathrm{Pd} / \mathrm{C}$ in MeOH$)$ to give the corresponding secondary alcohol 42 in $93 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}$ : $+33.62\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right) ;\left\{\right.$ lit. $\left.^{23}[\alpha]^{20}{ }_{\mathrm{D}}:+34.0\left(c 1.24, \mathrm{CHCl}_{3}\right)\right\}$. Alcohol 42 was then converted to $N$-Boc protected reboxetine 61 in two steps ( $72 \%$ overall yield): (i) conversion of alcohol 42 to its bromo derivative; (ii) followed by nucleophilic displacement of bromo derivative with sodium salt of $o$-ethoxyphenol. This afforded N Boc protected reboxetine 61; $[\alpha]^{25}{ }_{\mathrm{D}}:+50.4\left(c 1, \mathrm{CHCl}_{3}\right) ;\left\{\mathrm{lit}^{23}{ }^{2}[\alpha]^{20}{ }_{\mathrm{D}}:+51.0(c\right.$ 1.01, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. The ${ }^{1} \mathrm{H}$-NMR spectrum of the $N$-Boc protected reboxetine $\mathbf{6 1}$ showed signals at $\delta 1.48(\mathrm{~m}, 12 \mathrm{H})$ and $5.15(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}))$ corresponding to methyl, and benzylic (-O-$\mathrm{CH}_{2}$-) protons respectively. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum displayed characteristic broad signals at $43.85\left(\mathrm{br}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 45.75\left(\mathrm{br}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$ and 82.16 (br, $\left.-\mathrm{O}-\mathrm{CH}-\right)$ corresponding to the methylene and the methine carbons present in the morpholine moiety (Fig. 18).

Finally, treatment of N -Boc reboxetine (61) with excess $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $(S, S)$-reboxetine (29) in $98 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}$ : $+12.6(c 1.1, \mathrm{MeOH}) ;\left\{\right.$ lit. ${ }^{23}[\alpha]^{20}{ }_{\mathrm{D}}:+13.0(c$ $1.03, \mathrm{MeOH})\}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(S, S)$-reboxetine (29) showed signals at $\delta 1.44$ $(\mathrm{t}, J=7.5 \mathrm{~Hz} 3 \mathrm{H})$ and $5.13(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$ corresponding to the methyl protons in the ethoxyl moiety and the benzylic proton respectively. Its ${ }^{13} \mathrm{C}$-NMR spectrum displayed carbon signals at $\delta 45.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$ and $46.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$ corresponding to the methylene groups in the morpholine moiety (Fig. 19). Thus, the spectral data obtained for $(S, S)$-reboxetine (29) were in full agreement with the values reported in the literature. ${ }^{12}$


Fig．19：${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$－NMR spectrum of $(S, S)$－reboxetine（29）

## 1．2．6 Conclusion

In conclusion，we have achieved the asymmetric synthesis of（ $S, S$ ）－reboxetine（29） （overall yield $11 \%, 98 \%$ ee）via two stereocentred HKR of racemic benzyloxy epoxide as the key step．The high enantiomeric excess obtained in this method render our approach a good alternative to the known methods．

### 1.2.7 Experimental Section

For the preparation of $\mathbf{2 0 f}$ and $\mathbf{5 f}$ see Section I of this Chapter.
(1S,2S)-3-Amino-1-(benzyloxy)-1-phenylpropan-2-ol (58)
To a stirred solution of epoxide $\mathbf{2 0 f}(793 \mathrm{mg}, 3 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $30 \%$ $\mathrm{NH}_{4} \mathrm{OH}(15 \mathrm{~mL})$ and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, solvent was distilled off under reduced pressure and the crude product was purified by column chromatography over silica gel using EtOAc/Pet. ether as eluent (70:30) to give amino alcohol 58 in $83 \%$ yield.

Yield: $83 \%$; gum; $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}+48.99\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 735,837,910$, 1097, 1256, 1389, 1472, 1605, 1655, 2929, 3371, 3410, 3426; ${ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.53-2.69(\mathrm{~m}, 2 \mathrm{H}), 3.86-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, 1H) 7.24-7.28 (m, 10H); ${ }^{13}$ C-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 41.6,70.6,70.8,82.4$, 127.7, 127.9, 128.3, 128.5, 137.5, 137.7; Analysis: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires C, $74.68 ; \mathrm{H}, 7.44 ; \mathrm{N}$, 5.44; found C, 74.58 ; H, 7.39; N, 5.35\%.

## (S)-6-((S)-(Benzyloxy)(phenyl)methyl)morpholin-3-one (57)

To a stirred solution of amine $\mathbf{5 8}(1.47 \mathrm{~g}, 5.24 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.60 \mathrm{~mL}, 11.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, was added drop-wise at $-10^{\circ} \mathrm{C}$, a solution of chloroacetylchloride ( 0.45 $\mathrm{mL}, 5.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After stirring for 0.5 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed with water followed by saturated brine. The combined organic phase was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent distilled off under reduced pressure to give the crude product which was dissolved in $t-\mathrm{BuOH}(20 \mathrm{~mL})$ and added to a stirred solution of $\mathrm{KO}^{t} \mathrm{Bu}(1.18 \mathrm{~g}, 10.44 \mathrm{mmol})$ in $t$ - $\mathrm{BuOH}(6 \mathrm{~mL})$. The reaction mixture was stirred for 3 h at $25^{\circ} \mathrm{C}$ and quenched by the addition of water. The
organic phase was separated and the aqueous phase extracted with EtOAc ( $3 \times 30 \mathrm{~mL}$ ). The combined organic phase was washed with water and brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using EtOAc/Pet. ether as eluent (25:75) to give the lactam 57 in $72 \%$ yield.

Yield: $72 \%$ for 2 steps; gum; $[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}+36.34\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 669$, $700,777,860,1029,1105,1251,1362,1462,1541,1667,2856,2885,2927,2954,3440$;
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.79(\mathrm{td}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.88-3.98(m, 1H), 4.19-4.27 (m, 2H), 4.33-4.41 (m, 2H), 4.77 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (br s, 1H), 7.28-7.40(m, 10H); ${ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 42.9,67.4,70.5,75.8$, 80.8, 127.5, 127.8, 128.3, 128.6, 137.0, 137.5, 169.2; Analysis: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires C, $72.71 ; \mathrm{H}, 6.44 ; \mathrm{N}, 4.71$; found $\mathrm{C}, 72.59 ; \mathrm{H}, 6.39$; N, 4.62\%.
(S)-tert-Butyl 2-((S)-(benzyloxy)(phenyl)methyl)morpholine-4-carboxylate (60)

A solution of $\operatorname{Red} \mathrm{Al}(3.5 \mathrm{~mL}, 10.48 \mathrm{mmol})$ in dry toluene $(10 \mathrm{~mL})$ was slowly added to a stirred solution of amide $57(964 \mathrm{mg}, 3 \mathrm{mmol})$ in dry toluene $(40 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h and the excess Red Al was quenched by the addition of $2 \mathrm{~N} \mathrm{NaOH}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc ( $3 \times 30 \mathrm{~mL}$ ). The combined organic layer was washed with water, brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent distilled off under reduced pressure and the crude product obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(460 \mu \mathrm{~L}, 3 \mathrm{mmol})$ and $(\mathrm{Boc})_{2} \mathrm{O}(654 \mathrm{mg}, 3 \mathrm{mmol})$ were added to it. After 1 h the reaction mixture was quenched by the addition of aqueous $\mathrm{NaHCO}_{3}(10 \%)$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$.

The combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using Pet. Ether/EtOAc as eluent (85:15) to give morpholine derivative $\mathbf{6 0}$ in $\mathbf{7 5 \%}$ yield.

Yield: $92 \%$; $[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}:+35.45\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 669,721,862,1068$, 1114, 1181, 1241, 1323, 1456, 1610, 1699, 2861, 3014; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.39(\mathrm{~s}, 9 \mathrm{H}), 2.58-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.62(\mathrm{~m}, 3 \mathrm{H}), 3.87-3.94(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.32(\mathrm{~m}$, 2H), $4.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.3$, $43.3,44.8,66.4,70.5,78.2,79.5,81.0,127.5,127.7,128.2,128.4,137.8,154.33$; Analysis: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires $\mathrm{C}, 72.04 ; \mathrm{H}, 7.62 ; \mathrm{N}, 3.65 \%$; found $\mathrm{C}, 71.98 ; \mathrm{H}, 7.56$; N , 3.61\%.

## (S)-tert-Butyl 2-((S)-hydroxy(phenyl)methyl)morpholine-4-carboxylate (42)

To a stirred solution of morpholine derivative $\mathbf{6 0}(0.53 \mathrm{~g}, 2 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added catalytic amount of $10 \% \mathrm{Pd} / \mathrm{C}$ and the resulting heterogeneous mixture was stirred for 12 h at $25^{\circ} \mathrm{C}$. The reaction mixture was then filtered through a pad of celite and the solvent was removed under reduced pressure to give the crude product, which was then purified by column chromatography over silica gel using petroleum ether/EtOAc (80:20) to give 42.

Yield: $88 \%$; mp: $105-106{ }^{\circ} \mathrm{C} ; \mathbf{[ \alpha} \mathbf{]}^{\mathbf{2 5}} \mathbf{D}:+33.62\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;\left\{\right.$ lit. $^{23}\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 0}}{ }_{\mathbf{D}}:+34.0(c 1.24\right.$, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 669,721,862,1068,1114,1181,1241,1323,1456$, 1610, 1701, 2861, 3214; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{~s}, 9 \mathrm{H}), 2.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 2.87-2.99 (m, 2H), 3.37-3.61 (m, 3H), 3.79 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=12.19 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 28.3$,
43.9, 44.6, 66.4, $75.0,79.4,79.8,126.9,128.3,128.4,139.3,154.3$; Analysis: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires $\mathrm{C}, 65.51 ; \mathrm{H}, 7.90 ; \mathrm{N}, 4.77 \%$; found $\mathrm{C}, 65.46 ; \mathrm{H}, 7.79 ; \mathrm{N}, 4.72 \%$.
(S)-2-((S)-(2-Ethoxyphenoxy)(phenyl)methyl)morpholine (61)

To a stirred solution of morpholine $42(300 \mathrm{mg}, 1.13 \mathrm{mmol}), \mathrm{PPh}_{3}(449 \mathrm{mg}, 1.356 \mathrm{mmol})$ and imidazole ( $355 \mathrm{mg}, 1.356 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{CBr}_{4}(449 \mathrm{mg}, 1.356 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched by the addition of $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and the organic phase was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using Pet. ether/EtOAc as eluent $(90: 10)$ to give bromo derivative as colorless solid in $81 \%$ yield.

To a stirred suspension of sodium hydride ( $60 \%$ oil dispersion, $60 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) and 2ethoxyphenol ( $50.5 \mathrm{mg}, 0.356 \mathrm{mmol})$ in DMF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, the above bromo derivative $(100 \mathrm{mg}, 0.305 \mathrm{mmol})$ in DMF $(4 \mathrm{~mL})$ was added drop-wise and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h under nitrogen atmosphere. The reaction mixture was quenched by the addition of water and the organic phase was separated. The aqueous layer was extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ) and the combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using Pet. ether/EtOAc as eluent (90:10) to provide $N$-Boc amide 61 as colorless oil.

Yield: $72 \%$; gum; $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}:+50.4\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right) ;\left\{\right.$ lit. $^{23}[\alpha]^{20}{ }_{\mathrm{D}}:+51.0\left(c\right.$ 1.01, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 761,986,1123,1134,1251,1456,1499,1543,1690,2915,2923$;
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 12 \mathrm{H}), 2.79-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.56(\mathrm{~m}, 1 \mathrm{H})$,
3.70-3.90 (m, 4H), 4.01-4.12 (m, 2H), $5.16(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.87(\mathrm{~m}, 4 \mathrm{H}), 7.29-$ $7.43(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.0,28.3,43.8,45.7,64.5,66.8,74.9,79.9$, 82.1, 114.1, 118.6, 120.7, 122.4, 127.3, 128.2, 137.5, 147.8, 150.0, 154.7; Analysis: $\mathbf{C}_{\mathbf{2 4}} \mathbf{H}_{\mathbf{3 1}} \mathbf{N O}_{\mathbf{5}}$ requires C, 69.71; H, 7.56; N, 3.39 found C, $69.64 ; \mathrm{H}, 7.61 ; \mathrm{N}, 3.34 \%$.

## (S,S)-Reboxetine (29)

To a stirred solution of $N$-Boc amide $46(100 \mathrm{mg}, 0.242 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, trifluoroacetic acid $(0.74 \mathrm{~mL}, 3.6 \mathrm{mmol})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach $25^{\circ} \mathrm{C}$ and stirred for 1.5 h . It was then cooled to $0^{\circ} \mathrm{C}$ and quenched by the addition of 1 M NaOH solution ( 15 mL ). The organic phase was separated and the aqueous phase extracted with $\mathrm{EtOAc} / \mathrm{MeOH}(95: 5,3 \times 30 \mathrm{~mL})$. The combined organic phase was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent evaporated under reduced pressure and the crude product purified by column chromatography over silica gel using $\mathrm{MeOH} / \mathrm{CHCl}_{3}(10: 90)$ as eluent to provide $(S, S)$-reboxetine 29 as colorless oil. Yield: 98\%; gum; $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}:+12.59(c$ 1.1, MeOH$) ;\left\{\mathrm{lit}^{23}[\alpha]^{20}{ }_{\mathrm{D}}:+13.0(c 1.03, \mathrm{MeOH})\right\}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 750,997,1119,1154,1251,1453,1499,1593,2915,3031 ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.98-2.80(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.68(\mathrm{~m}$, $1 \mathrm{H}), 4.13-3.97(\mathrm{~m}, 4 \mathrm{H}), 5.26(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.97(\mathrm{~m}, 2 \mathrm{H})$, 7.27-7.43 (m, 5H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.3,45.1,46.8,65.7,67.0,78.8$, 83.4, 115.5, 118.9, 121.9, 123.5, 128.6, 129.3, 138.6, 148.7, 150.9; Analysis: $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 3}} \mathbf{N O}_{\mathbf{3}}$ requires $\mathrm{C}, 72.82 ; \mathrm{H}, 7.40 ; \mathrm{N}, 4.47$; found $\mathrm{C}, 72.69 ; \mathrm{H}, 7.37 ; \mathrm{N}, 4.44 \%$.

## Section III:

## Enantioselective synthesis of (-)-chloramphenicol and (+)thiamphenicol

### 1.3.1 Introduction

Optically active amino alcohols with vicinal stereocenters are important as drugs and natural products such as amino sugars, ${ }^{27}$ peptides and peptide analogs, ${ }^{28}$ enzyme inhibitors, such as glycosphingolipids, antibiotics and alkaloids. (-)-Chloramphenicol (62) and (+)-thiamphenicol (63) (Fig. 20) are broad-spectrum antibiotics with a range of biological activities. ${ }^{29}$ The antibiotic chloramphenicol is active only in its D-threo configuration and is effective in the treatment of typhus, dysentery and ocular bacterial infections. ${ }^{30}$ Thiamphenicol (63), a synthetic analogue of chloramphenicol (62), is bacteriostatic for both gram-positive and gram-negative aerobes and for some anaerobes as well. ${ }^{31}$


62


63

Fig. 20: Structures of (-)-chloramphenicol (62) and (+)-thiamphenicol (63)

### 1.3.2 Pharmacology of (-)-chloramphenicol and (+)-thiamphenicol

Chloramphenicol (62) is a lipid-soluble compound consisting of an aromatic nitro moiety and an aliphatic side chain $\{(1 R, 2 R)$-2-(dichloroacetamido)-1-[(4-nitro)phenyl]-1,3propanediol $\}$. Considerable modification can be performed at the para position without a
marked loss in its antimicrobial activity. For example, the nitro group can be substituted by a methyl sulfonyl (which is thiamphenicol). In the parent compound, substitution at the 3-hydroxy position causes total loss of biological activity and the $\mathrm{L}(+)$ isomer lacks antibacterial activity. The simple structure and inherent stability of the intramolecular bonds in chloramphenicol yield a compound that is remarkably resistant to acid or alkaline degradation, autoclaving, oxidation by light, and decomposition by extremes of temperature. Chloramphenicol works by binding to the 50 S subunit of the bacterial ribosome. It then prevents attachment of amino acyl tRNA to the ribosome. At this time, it is not known if it prevents attachment of the tRNA to the A-site or the P-site. It prevents peptide formation and elongation, and is therefore bacteriostatic. An important aspect of chloramphenicol's distribution is that it is able to penetrate the CSF, lymph, and ganglions, making it a treatment option for paratyphoid, typhoid fever, and meningitis. Thiamphenicol (63) possesses high in vivo activity for having a good property of unbinding with glucuronic acid in liver and has been used clinically.

### 1.3.3 Review of Literature

Literature search revealed that there are several reports available for the synthesis of (-)chloramphenicol (62) and (+)-thiamphenicol (63) involving chiral pool, chemo-enzymatic approach or enantioselective syntheses, which are described below.

## Datta's approach (1998) ${ }^{32}$

Datta et al. have achieved the synthesis of (-)-chloramphenicol (62) using a chiral pool approach starting with D-serine 64, which was converted into the amino diol derivative 65 in four steps. Swern oxidation of the alcohol 65 followed by Grignard addition with phenyl magnesium bromide afforded the syn-amino alcohol 66 with diastereoselectivity $>19: 1$. A stepwise deprotection, acylation sequence of 67 gave the desired product
triacetate, which on nitration with con. $\mathrm{HNO}_{3}-$ con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1:1) followed by treatment with methyl dichloroacetate gave (-)-chloramphenicol (62) in 73\% yield (Scheme 21).



Scheme 21: (i) (a) $\mathrm{MeOH}, \mathrm{HCl}$; (b) $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, THF; (c) TBSCl , imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{LiBH}_{4}$, THF, $80 \%$; (ii) $(\mathrm{COCl})_{2}, \mathrm{DMSO},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ then $\mathrm{PhMgBr}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 69 \%$; (iii) (a) $\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$; (b) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine, $92 \%$; (c) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 0{ }^{\circ} \mathrm{C}$; (d) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine, $85 \%$; (iv) (a) con. $\mathrm{HNO}_{3}$-con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1:1), $-20^{\circ} \mathrm{C}$ to 25 ${ }^{\circ} \mathrm{C}$; (b) aq. $5 \% \mathrm{HCl}, 9{ }^{\circ} \mathrm{C}, 66 \%$; (c) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, 90^{\circ} \mathrm{C}, 73 \%$.

## Ko's approach (2000) ${ }^{33}$

Ko et al. have synthesized (-)-chloramphenicol (62) by employing Sharpless asymmetric dihydroxylation as the key reaction. Thus, ester 68 was subjected to asymmetric dihydroxylation to give the diol 69 in $98 \%$ yield, which was successively treated with $\mathrm{Bu}_{2} \mathrm{SnO}, \mathrm{BzNCS}$ and $\mathrm{Bu}_{4} \mathrm{NBr}$ to give the protected syn amino alcohol 70. Debenzoylation of $\mathbf{7 0}$ with $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$ and ethanol afforded amine 71, which was then treated with $\mathrm{NaBH}_{4}$ to give the alcohol 72 in $92 \%$ yield. Hydrolysis of 72 with 1 N NaOH followed by amidation with methyl dichloroacetate gave (-)-chloramphenicol (62) in 74\% yield (Scheme 22).





62

Scheme 22: (i) AD-mix- $\beta$, $t$ - $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), $25^{\circ} \mathrm{C}, 98 \%,>99 \%$ ee; (ii) (a) $\mathrm{Bu}_{2} \mathrm{SnO}$; (b) BzNCS ; (c) $\mathrm{Bu}_{4} \mathrm{NBr}$; (iii) $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, ethanol, $81 \%$; (iv) $\mathrm{NaBH}_{4}$, $92 \%$; (v) (a) $1 \mathrm{~N} \mathrm{NaOH}, 92 \%$; (b) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, 74 \%$.

## Corey's approach (2000) ${ }^{34}$

(-)-Chloramphenicol (62) was also synthesized by Corey et al. via aldol reaction of pnitrobenzaldehyde and $t$-butyl bromoacetate 74 in the presence of $(S, S)$-bromoborane $\mathbf{7 3}$ to give the bromohydrin 75 in 99\% yield and 93\%ee (Scheme 23).



Scheme 23: (i) (a) toluene, $-78{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$; (b) p-nitrobenzaldehyde, $-78{ }^{\circ} \mathrm{C}$, $99 \%$, d.r. $=96: 4,93 \%$ ee; (ii) (a) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$; (b) $\mathrm{NaN}_{3}, \mathrm{DMF}, 40{ }^{\circ} \mathrm{C}, 73 \%$; (iii) (a) $\mathrm{LiBH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 80 \%$; (b) $\mathrm{PPh}_{3}$, THF$\mathrm{H}_{2} \mathrm{O}, 80 \%$; (iv) (a) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (b) $\mathrm{Bu}_{4} \mathrm{NF}$, THF.

Protection of the hydroxyl group in $\mathbf{7 5}$ as its silyl ether followed by reaction with sodium azide gave 76. Reduction of the azido ester 76 was performed in two steps: $\mathrm{LiBH}_{4}$ reduction followed by triphenylphosphine in THF- $\mathrm{H}_{2} \mathrm{O}$ to form the alcohol 77. N Acylation of 77 and subsequent desilyaltion with $\mathrm{Bu}_{4} \mathrm{NF}$ in THF afforded (-)chloramphenicol (62).

## Wulff's approach (2001) ${ }^{35}$

Wulff et al. have synthesized (-)-chloramphenicol (62) via catalytic aziridination of $p$ nitrobenzaldimine 79 in presence of $10 \mathrm{~mol} \%$ of a catalyst prepared from triphenylborate and (S)-VAPOL to give aziridine $\mathbf{8 0}$ in $80 \%$ yield and $96 \%$ ee. Treatment of aziridine $\mathbf{8 0}$ with 10 equivalent of dichloroacetic acid gave the hydroxyl acetamide $\mathbf{8 1}$ which on subsequent reduction with $\mathrm{NaBH}_{4}$ in MeOH afforded (-)-chloramphenicol (62) in 74\% yield (Scheme 24).


Scheme 24: (i) $\mathrm{Ph}_{2} \mathrm{CHNH}_{2}, \mathrm{MgSO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 80 \%$; (ii) $\mathrm{N}_{2} \mathrm{CHCO}_{2} \mathrm{Et}$, triphenylborate and (S)-VAPOL ( $10 \mathrm{~mol} \%$ ), toluene, $0^{\circ} \mathrm{C}, 20 \mathrm{~h}$, $80 \%$, cis : trans $=30: 1,96 \%$ ee; (iii) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}, 1,2-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$, reflux, 1 h , $80 \%$; (iv) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 74 \%$.

## Rao's approach (2004) ${ }^{36}$

Rao et al. have achieved the synthesis of (-)-chloramphenicol (62) by employing Sharpless asymmetric epoxidation of the allylic alcohol $\mathbf{8 2}$ using (-)-DIPT to afford the chiral epoxyalcohol 83 with $95 \%$ ee. Epoxyalcohol 83 was then converted into (-)chloramphenicol (62) by treatment with dichloroacetonitrile in the presence of NaH followed by an in situ opening of the product 85 with $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ (Scheme 25).


Scheme 25: (i) Divinyl zinc, THF, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 72 \%$; (ii) (-)-DIPT, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, \mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{0} \mathrm{C}, 14 \mathrm{~h}, 45 \%$; (iii) NaH , dichloroacetonitrile, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{0} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{BF}_{3} . \mathrm{OEt}_{2},-78{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 71 \%$.

The same group has also synthesized (+)-thiamphenicol (63) by following a similar set of reaction sequences: Sharpless asymmetric epoxidation of allylic alcohol $\mathbf{8 8}$ followed by opening of the corresponding chiral epoxyalcohol 89 with Lewis acid (Scheme 26).




Scheme 26: (i) Vinyl magnesium bromide, THF, $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88 \%$; (ii) Oxone, THF/MeOH/ $\mathrm{H}_{2} \mathrm{O}(1: 1: 2), 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 6 \mathrm{~min}, 87 \%$; (iii) (-)DIPT, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, \mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 42 \%$; (iv) NaH , dichloroacetonitrile, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{BF}_{3} . \mathrm{OEt}_{2},-78{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 64 \%$.

## Barua's approach (2005) ${ }^{37}$

(-)-Chloramphenicol (62) was also synthesized by Barua et al. using regioselective ring opening of epoxide 94 , which was prepared from methyl cinnamate 92 by Sharpless asymmetric dihydroxylation. The epoxide 94 was exposed to $\mathrm{NaNO}_{2}$ and acetic acid in water followed by treatment with diphenyl phosphorylazide (DPPA), DEAD and $\mathrm{PPh}_{3}$ to afford the azide 95 . Catalytic hydrogenation of $95\left[10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{H}_{2}(1 \mathrm{~atm})\right]$ followed by acylation with $\mathrm{Ac}_{2} \mathrm{O}$ gave the desired product 96. The synthesis of (-)chloramphenicol (62) was completed by following the three-step reaction sequence: nitration, hydrolysis and $N$-acylation (Scheme 27).




Scheme 27: (i) $\mathrm{OsO}_{4}$ (cat.), NMO , $\mathrm{DHQ}-p \mathrm{ClBz}$, acetone, $\mathrm{H}_{2} \mathrm{O}, 98 \%$ ee; (ii) (a) TsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$, DMF, $86 \%$; (iii) (a) $\mathrm{NaNO}_{2}, \mathrm{AcOH}$, $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 89 \%$; (b) DPPA, DEAD, $\mathrm{PPh}_{3}$, THF, $0{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, $1.5 \mathrm{~h}, 82 \%$; (iv) (a) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{H}_{2}$ ( 1 atm ), $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 97 \%$; (b) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine; (v) (a) Con. $\mathrm{HNO}_{3}$-con. $\mathrm{H}_{2} \mathrm{SO}_{4},-20^{\circ} \mathrm{C}$ to $25{ }^{\circ} \mathrm{C}$; (b) aq. $5 \% \mathrm{HCI}, 90^{\circ} \mathrm{C}, 69 \%$; (c) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, 90^{\circ} \mathrm{C}, 1 \mathrm{~h}, 80 \%$.

## Hajra's approach (2006) ${ }^{38}$

Hajra et al. have synthesized (-)-chloramphenicol (62) using silver(I)-promoted asymmetric bromomethoxylation.


Scheme 28: (i) $\mathrm{AgNO}_{3}, \mathrm{Br}_{2}, \mathrm{MeOH}, 0{ }^{0} \mathrm{C}, 30 \mathrm{~min}, 72 \%$, d.r. $=3: 1$; (ii) $\mathrm{NaN}_{3}$, DMF, $60{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 92 \%$; (iii) (a) $\mathrm{LiBH}_{4}$, THF, MeOH; (b) $\mathrm{PPh}_{3}$, THF$\mathrm{H}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 82 \%$; (iv) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, 9{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 87 \%$; (v) $\mathrm{BBr}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{0} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 10 \mathrm{~h}, 80 \%$.
$\mathrm{AgNO}_{3}$-promoted bromomethoxylation of $\alpha, \beta$-unsaturated carboxamide 97 provided the desired product 98 in $72 \%$ yield. Reaction of $\mathbf{9 8}$ with $\mathrm{NaN}_{3}$ in DMF gave the azido product 99 , which was subjected to a two-step reduction process with $\mathrm{LiBH}_{4}$ followed by $\mathrm{PPh}_{3}$ in THF- $\mathrm{H}_{2} \mathrm{O}$ to furnish the amino alcohol, $N$-acylation of amino alcohol gave $\mathbf{1 0 0}$ which on subsequent demethylation with $\mathrm{BBr}_{3}$ gave the target molecule $\mathbf{6 2}$ in $80 \%$ yield (Scheme 28).
$(+)$-Thiamphenicol (63) was also synthesized by the same group following the same synthetic strategy applied for (-)-chloramphenicol (62) (Scheme 29).



Scheme 29: (i) $\mathrm{AgNO}_{3}, \mathrm{Br}_{2}, \mathrm{MeOH}, 0{ }^{0} \mathrm{C}, 30 \mathrm{~min}, 68 \%$, d.r. $=2.5: 1$; (ii) $\mathrm{NaN}_{3}$, DMF, $60{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 92 \%$; (iii) (a) $\mathrm{LiBH}_{4}$, THF, MeOH ; (b) $\mathrm{PPh}_{3}$, THF$\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 82 \%$; (iv) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, 90^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (v) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{0} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 10 \mathrm{~h}, 84 \%$.

## Sudalai's approach (2006) ${ }^{39}$

Sudalai et al. have developed a simple method for the enantioselective synthesis of (-)chloramphenicol (62) and (+)-thiamphenicol (63) using Sharpless asymmetric epoxidation and tethered aminohydroxylation as the key steps. For (-)-chloramphenicol (62), the reaction of 4-nitrobenzaldehyde 78 with divinylzinc was carried out to give allyl alcohol 82, which was then subjected to Sharpless asymmetric epoxidation under kinetic
resolution conditions to furnish the corresponding chiral allylic alcohol $\mathbf{8 2}$ in $44 \%$ yield and $98 \%$ ee along with the corresponding epoxide $\mathbf{8 3}$ in $49 \%$ yield. Alcohol $\mathbf{8 2}$ was then treated with trichloroacetyl isocyanate to give the corresponding isocyanate, which on treatment with base gave the carbamate $\mathbf{1 0 5}$ in $90 \%$ yield. The carbamate $\mathbf{1 0 5}$ thus obtained was converted into the oxazolidinone $\mathbf{1 0 6}$ by a tethered aminohydroxylation protocol to furnish the protected aminoalcohol 106 as a single isomer with complete regiocontrol and excellent syn selectivity (syn:anti $>20: 1$ ) giving $69 \%$ yield. The oxazolidinone 106 was then hydrolyzed and amine was protected with methyl dichloroacetate to give (-)-chloramphenicol 62 in 78\% yield (Scheme 30).


Scheme 30: (i) Divinyl zinc, THF, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 68 \%$; (ii) (+)-DIPT, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, \mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-2{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}, 44 \%$; (iii) (a) trichloroacetyl isocyanate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ ${ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 90 \%$; (iv) $\mathrm{K}_{2} \mathrm{Os}(\mathrm{OH})_{4} \mathrm{O}_{2}, t-$ $\mathrm{BuOCl}, \mathrm{NaOH}, \mathrm{EtN}-i-\mathrm{Pr}_{2}, n \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 69 \%$; (v) (a) $1 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH}$, $25^{\circ} \mathrm{C}$, overnight; (b) methyl dichloroacetate, $90^{\circ} \mathrm{C}, 3 \mathrm{~h}, 78 \%, 98 \%$ ee.

The same group has also synthesized (+)-thiamphenicol (63) by following a similar set of reaction sequences: Sharpless asymmetric kinetic resolution of allylic alcohol $\mathbf{8 8}$ followed by tethered aminohydroxylation of the corresponding carbamate 107 (Scheme 31).


Scheme 31: (i) Vinyl magnesium bromide, THF, $0{ }^{\circ} \mathrm{C}$ to $25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 96 \%$; (ii) Oxone, THF/MeOH/ $\mathrm{H}_{2} \mathrm{O}(1: 1: 1), 0{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, 30 min ., $95 \%$; (iii) (+)-DIPT, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, \mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}, 14$ to $24 \mathrm{~h}, 43 \%$; (iv) (a) trichloroacetyl isocyanate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$, $86 \%$; (v) $\mathrm{K}_{2} \mathrm{Os}(\mathrm{OH})_{4} \mathrm{O}_{2}, t-\mathrm{BuOCl}, \mathrm{NaOH}, \mathrm{EtN}-i-\mathrm{Pr}_{2}, n-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C}, 3$ $\mathrm{h}, 65 \%$; (vi) (a) $1 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$, overnight; (b) methyl dichloroacetate, $90^{\circ} \mathrm{C}, 3 \mathrm{~h}, 77 \%, 98 \%$ ee.

## Lin's approach (2008) ${ }^{\mathbf{4 0}}$

Lin et al. have achieved the synthesis of (-)-chloramphenicol (62) by means of a chemoenzymatic approach. 4-(Thiomethyl)benzaldehyde 86 was treated with ( $R$ )-hydroxynitrile lyase (HNL) in isopropyl ether to give product cyanohydrin 109 in $98 \%$ yield and $99 \%$ ee. Protection of alcohol 110 followed by DIBALH reduction, benzylamine addition and hydrocyanation of imine generated the second chiral centre with diastereomeric ratio $>20: 1$. Treatment of $\mathbf{1 1 1}$ with carbonyldiimidazole provided the corresponding oxazolidine derivative which when reacted with $\mathrm{K}_{2} \mathrm{CO}_{3}$ followed by $\mathrm{NaBH}_{4}$ afforded the alcohol 112. Oxidation of $\mathbf{1 1 2}$ with mCPBA converted the methylsulfanyl group into methylsulfonyl group which was then converted into (+)-thiamphenicol (63) by the known sequences of reactions such as hydrolysis with aq. KOH , catalytic debenzylation and acylation (Scheme 32).



Scheme 32: (i) HCN/HNL, $98 \%$, $99 \%$ ee; (ii) 2-methoxypropene, $\mathrm{POCl}_{3}, 95 \%$; (iii) (a) DIBALH; (b) $\mathrm{BnNH}_{2}$; (c) $\mathrm{NH}_{4} \mathrm{Br}, \mathrm{NaCN}$; (d) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, ethanol, $75 \%$; (iv) (a) (im) $)_{2} \mathrm{CO}, \mathrm{Et}_{3} \mathrm{~N}, 82 \%$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, ethanol; then $1 \mathrm{~N} \mathrm{HCl}, 91 \%$; (c) $\mathrm{NaBH}_{4}$, methanol, $85 \%$; (v) (a) $m \mathrm{CPBA}, 90 \%$; (b) 2 N NaOH , reflux, $85 \%$; (c) $10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}, 90 \%, \mathrm{CHCl}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}, 100 \%$.

### 1.3.4 Present Work:

### 1.3.4.1 Objective

Even though several methods are reported for the synthesis of (-)-chloramphenicol (62) and (+)-thiamphenicol (63), most of these methods suffer from the fact that they make use of chiral starting materials, expensive and hazardous reagents, low overall yields, low diastereomeric ratios and also the use of unnatural ligands for the introduction of chirality. In this context, a more practical method for the synthesis of (-)-chloramphenicol (62) and (+)-thiamphenicol (63) is highly desirable. In this section, we describe a concise enantioselective synthesis of (-)-chloramphenicol (62) and (+)-thiamphenicol (63) using HKR of benzyloxy epoxides.

Retrosynthetic analysis of (-)-chloramphenicol (62) and (+)-thiamphenicol (63) reveals that syn-amino alcohols $\mathbf{7 5} \boldsymbol{\&} \mathbf{1 2 3}$ could be visualized as the key intermediates respectively (Scheme 33).


Scheme 33: Retrosynthetic analysis of (-)-chloramphenicol (62) and (+)-thiamphenicol (63)

### 1.3.5 Results and Discussion

### 1.3.5.1 Enantioselective synthesis of (-)-chloramphenicol

Our synthesis of (-)-chloramphenicol (62) has started from cinnamyl alcohol 15b, which was transformed into syn-benzyloxy epoxide ( $\pm$ )-20f in two steps:


Scheme 34: (i) (R,R)-Co(III)(salen)OAc (1mol\%), THF, $\mathrm{H}_{2} \mathrm{O}$ ( 0.48 equiv.), $0^{\circ} \mathrm{C}$, 12 h ; (ii) $\mathrm{Bu}_{2} \mathrm{SnO}$, toluene, reflux, 12 h . then $\mathrm{BnBr}, \mathrm{TBAB}$, reflux, $20 \mathrm{~h}, 82 \%$; (iii) $\mathrm{CBr}_{4}$, imid., $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 76 \%$; (iv) $\mathrm{NaN}_{3}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 80 \%$; (v) (a) $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{MeOH}, \mathrm{H}_{2}(1 \mathrm{~atm}), 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine, $94 \%$ (for 2 steps); (vi) (a) conc. $\mathrm{HNO}_{3}$-conc. $\mathrm{H}_{2} \mathrm{SO}_{4},-20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$; 1.5 h ; (b) aq. $5 \% \mathrm{HCl}, 90^{\circ} \mathrm{C}$; (c) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, 90^{\circ} \mathrm{C}, 1 \mathrm{~h}, 76 \%$ (for 3 steps).
(i) benzyloxybromination; (ii) the formation of epoxide to give syn-benzyloxy epoxide $( \pm) \mathbf{- 2 0 f}$ in $84 \%$ yield (see Section-I). The syn-benzyloxy epoxide ( $\pm$ )-20f was then subjected to HKR using $(R, R)-\mathrm{Co}($ salen $) \mathrm{OAc}(\mathbf{1})$ to give chiral syn-benzyloxy diol $\mathbf{5 f}$ in $44 \%$ yield with $98 \%$ ee along with chiral syn-benzyloxy epoxide $20 f$ in $45 \%$ yield with $98 \%$ ee (Scheme 34). The compounds $20 f$ and $\mathbf{5 f}$ were then readily separated by column chromatographic purification. The enantiomeric excess of syn-azido diol in $\mathbf{5 f}$ was determined from chiral HPLC analysis; (Chirapalk OD-H, see Section I).


Fig. 21: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of diol $\mathbf{5 f}$

The formation of chiral syn-benzyloxy diol $\mathbf{5 f}$ was confirmed by the appearance of multiplets at $\delta$ 3.30-3.51 integrating for two protons and $\delta$ 3.73-3.79 integrating for one proton in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Further, its ${ }^{13} \mathrm{C}$-NMR spectrum showed characteristic signals at $\delta 62.27$ and 70.67 corresponding to carbons of the hydroxyl groups (Fig. 21). The enantiomeric excess of syn-alkoxy diol $\mathbf{5 f}$ was determined from chiral HPLC analysis; (Chirapak OD-H, see Section I).

Chiral diol $\mathbf{5 f}$ was then subjected to selective benzyl protection $\left[\mathrm{Bu}_{2} \mathrm{SnO}, \mathrm{BnBr}\right.$ and TBAB in toluene ${ }^{41}$ to give mono benzylated alcohol 114 in $82 \%$ yield. The alcohol $\mathbf{1 1 4}$ thus obtained was converted into anti-benzyloxybromo derivative 115 by Appel reaction condition ${ }^{42}\left(\mathrm{CBr}_{4}\right.$ and $\mathrm{PPh}_{3}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Compound 115 was then subjected to nucleophilic displacement with azide that proceeded smoothly to furnish the syn-azide $\mathbf{1 1 6}$ in $80 \%$ yield. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of azide 116 showed a typical signal at $\delta 3.74-$ $3.78(\mathrm{~m}, 1 \mathrm{H})$ for methine $\left(-\mathbf{C H}-\mathrm{N}_{3}\right)$ proton. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed a typical peak at $\delta 51.9$ corresponding to methine $\left(-\mathbf{C H}-\mathrm{N}_{3}\right)$ carbon (Fig. 22). Its IR spectrum showed a characteristic strong band at $2101 \mathrm{~cm}^{-1}$ confirming the presence of azide functional group (Fig. 22).

The azide 116 was then subjected to catalytic hydrogenation $\left[10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm})\right.$ and $\left.\mathrm{Ac}_{2} \mathrm{O}\right]$ that produced triacetate $\mathbf{6 7}(94 \%$ yield $)$ in a single step. Three signals at $\delta 1.95$ (s, $3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$ and $2.04(\mathrm{~s}, 3 \mathrm{H})$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{6 7}$ were attributed to the three acetate methyl protons. It was further substantiated by the appearance of the corresponding carbon signals at $\delta 20.3$ and 22.5 in its ${ }^{13} \mathrm{C}$-NMR spectrum (Fig. 23).


Fig. 22: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and IR spectra of azide 116
Finally, triacetate 67 was converted to (-)-chloramphenicol (62) in three steps using known reaction sequence: ${ }^{33}$ (i) nitration of triacetate 67 using mixed acids (ii) hydrolysis of triacetate using $5 \% \mathrm{HCl}$ and (iii) protection of amine with dichloroacetate; that afforded (-)-chloramphenicol 62 in $76 \%$ yield and $98 \%$ ee. The ee of (-)-chloramphenicol (62) was found to be $98 \%$ based on comparison of its optical rotation with the reported value $\left\{[\alpha]^{25}{ }_{\mathrm{D}}-25.4\right.$ (c 1, EtOAc); $\left[\right.$ lit. ${ }^{43}[\alpha]^{23}{ }_{\mathrm{D}}-25.5$ (c 1, EtOAc) $\left.]\right\}$.



TMS

| 8 |
| :--- |
| 1 |



67


Fig. 23: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of triacetate 67
A singlet at $\delta 6.48$ integrating for one proton indicated the presence of CH proton $\left(\mathrm{NHCOCHCl}_{2}\right)$ in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, which was further ascertained by the presence of typical carbon signals at $\delta 56.92(-\mathrm{CHNH}-), 61.60\left(-\mathrm{CH}_{2} \mathrm{OH}\right), 66.64\left(-\mathrm{COCHCl}_{2}\right)$, $70.63(-\mathbf{C H O H}-)$ and $164.37\left(\mathrm{NHCOCHCl}_{2}\right)$ in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (Fig. 24). The IR spectrum of 62 displayed characteristic strong broad band at $3000 \mathrm{~cm}^{-1}$ indicating the presence of - OH and - NH groups.


Fig. 24: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (-)-chloramphenicol (62)

### 1.3.5.2 Enantioselective synthesis of (+)-thiamphenicol

By following a similar strategy, the synthesis of (+)-thiamphenicol (63) has been achieved starting from 4-thiomethyl cinnamyl alcohol $\mathbf{1 5 k}$.


120
63
Scheme 35: (i) ( $R, R$ ) $-\mathrm{Co}(\mathrm{III})($ salen $) \mathrm{OAc}\left(1 \mathrm{~mol} \%\right.$ ), THF, $\mathrm{H}_{2} \mathrm{O}$ ( 0.48 equiv.), $0^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (ii) $\mathrm{Bu}_{2} \mathrm{SnO}$, toluene, reflux, 12 h . then BnBr , TBAB, reflux, $18 \mathrm{~h}, 84 \%$; (iii) $\mathrm{CBr}_{4}$, imidazole, $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 76 \%$; (iv) $\mathrm{NaN}_{3}, \mathrm{DMF}, 6{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 78 \%$; (v) (a) $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, $\mathrm{MeOH}, \mathrm{H}_{2}$ (1 atm), $25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine, $94 \%$ (for 2 steps); (vi) (a) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) aq. $5 \% \mathrm{HCl}, 9{ }^{\circ} \mathrm{C}$; (c) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{Me}, 9{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 78 \%$ (for 3 steps).

The 4-thiomethyl cinnamyl alcohol 15k was transformed into syn-benzyloxy epoxide ( $\pm$ )20k in two steps: (i) benzyloxybromination; (ii) the formation of epoxide to give synbenzyloxy epoxide ( $\pm$ )-20k ( $84 \%$ yield), which was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy (see Section-I). The syn-benzyloxy epoxide ( $\pm$ )-20k was then subjected to HKR using ( $R, R$ )-Co(salen)OAc (1) to give chiral syn-benzyloxy diol 5k (47\% yield with 97\% ee) along with chiral epoxide 20k (48\% yield with 96\% ee) (Scheme 35).


Fig. 25: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and HPLC chromatogram of diol $\mathbf{5 k}$

The compounds $\mathbf{2 0 k}$ and $\mathbf{5 k}$ were then readily separated by column chromatographic purification. The enantiomeric excess of syn-benzyloxy diol $\mathbf{5} \mathbf{k}$ was determined by chiral HPLC analysis; Chirapalk OD-H (Fig.25). The formation of syn-benzyloxy diol 5k was confirmed by the appearance of peaks at $\delta 3.30-3.33(\mathrm{~m}, 1 \mathrm{H})$ and $3.49-3.56(\mathrm{~m}, 1 \mathrm{H})$ in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Further, its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed characteristic signals at $\delta$ 62.2 and 75.5, which correspond to carbons attached to oxygen atoms (Fig. 25).

Chiral diol $\mathbf{5 k}$ was then subjected to selective benzyl protection $\left[\mathrm{Bu}_{2} \mathrm{SnO}, \mathrm{BnBr}\right.$ and TBAB in toluene $]^{41}$ to give mono dibenzyl ether $\mathbf{1 1 7}$ in $82 \%$ yield. The alcohol $\mathbf{1 1 7}$ thus obtained was converted into anti-benzyloxybromo compound $\mathbf{1 1 8}$ by Appel reaction condition ${ }^{42}\left(\mathrm{CBr}_{4}\right.$ and $\mathrm{PPh}_{3}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, which was then subjected to nucleophilic displacement with azide that furnished azide 119 in $60 \%$ yield. The formation of azide 119 was confirmed by the appearance of multiplets at $\delta 3.71-3.79$ integrating for one proton $\left(-\mathbf{C H}-\mathrm{N}_{3}\right)$ in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and a typical signal corresponding to the methine carbon (-CH-N $\mathrm{N}_{3}$ ) appearing at $\delta 63.2$ in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (Fig. 26). The IR spectrum of 119 showed a characteristic strong stretching vibration at $2115 \mathrm{~cm}^{-1}$ confirming the presence of azide functional group.



Fig. 26: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of azide 119

Azide 119 was then subjected to catalytic hydrogenation [ $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (1atm) and $\left.\mathrm{Ac}_{2} \mathrm{O}\right]$ to give triacetate $\mathbf{1 2 0}$ ( $94 \%$ yield) in a single step. Finally, the thioether moiety in triacetate $\mathbf{1 2 0}$ was oxidized with $m \mathrm{CPBA}$, and hydrolyzed using aq. $5 \% \mathrm{HCl}$ followed by its treatment with methyl dichloroacetate ${ }^{6,18}$ gave the final product thiamphenicol (63) in $78 \%$ yield and $98 \%$ ee. The ee of (+)-thiamphenicol (63) was found to be $98 \%$ based on comparison of its optical rotation with the reported value $\left\{[\alpha]^{25}{ }_{\mathrm{D}}+12.7\left(c\right.\right.$ 1, EtOH) $\left[\right.$ lit. ${ }^{31}$ $[\alpha]^{25}{ }_{\mathrm{D}}+12.9(c$ 1, EtOH $\left.)\right\}$. The ${ }^{1} \mathrm{HNMR}$ spectrum showed a typical singlet at $\delta 6.41$ corresponding to CH of $\mathrm{NHCOCHCl}_{2}$, which was further ascertained by the appearance of signals at $\delta 57.9(-\mathrm{CHNH}-), 61.6\left(-\mathrm{CH}_{2} \mathrm{OH}\right), 67.5\left(-\mathrm{COCHCl}_{2}\right), 71.1(-\mathrm{CHOH}-)$ and $164.3\left(\mathrm{NHCOCHCl}_{2}\right)$ in its ${ }^{13} \mathrm{C}$-NMR spectrum (Fig. 27). The IR spectrum of 63 displayed a strong absorption band above $3000 \mathrm{~cm}^{-1}$ indicating the presence of -OH and NH groups.


Fig. 27: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (+)-thiamphenicol (63)

### 1.3.6 Conclusion

The enantioselective syntheses of (-)-chloramphenicol (62) (15\% overall yield and 98\% ee) and (+)-thiamphenicol (63) (14\% overall yield and $97 \%$ ee) have been achieved, starting from the respective racemic benzyloxy epoxides $20 f$ and 20 k . Both the synthesis involved a cobalt-catalyzed two-stereocentred hydrolytic kinetic resolution of benzyloxy epoxides as the key chiral inducing reaction.

### 1.3.7 Experimental Section

For the preparation of compounds $\mathbf{2 0 f}, \mathbf{2 0 k}, \mathbf{5 f}$ and $\mathbf{5 k}$, see Section I of this Chapter

## (1R, 2R)-1,3-bis(Benzyloxy)-1-phenylpropan-2-ol (114)

A mixture of chiral diol $\mathbf{5 f}(1.8 \mathrm{~g}, 7 \mathrm{mmol})$ and $\mathrm{Bu}_{2} \mathrm{SnO}(2.09 \mathrm{~g}, 8.4 \mathrm{mmol})$ in toluene ( 50 mL ) was refluxed for 12 h with azeotropic removal of water. Then TBAB (1.13 g, 3.5 $\mathrm{mmol})$ and $\mathrm{BnBr}(0.83 \mathrm{~mL}, 7 \mathrm{mmol})$ were added and the mixture was refluxed for 20 h . After the completion of the reaction as monitored by TLC, it was concentrated under reduced pressure and the crude compound was purified by column chromatography using petroleum ether/EtOAc (7:3) to afford the benzyloxy ether $114(1.99 \mathrm{~g})$ as a gum. Yield: $82 \%$; $[\boldsymbol{\alpha}]^{\mathbf{D}}{ }_{25}$ : $-67.58\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 720,845,1045,1220$, 1315, 1654, 2985, 3085, 3350; ${ }^{1} \mathbf{H - N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.97-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.43-$ $3.49(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.54(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 69.9,70.7,73.4,74.7,81.8,127.5,127.7,127.9,128.2,128.3,137.7$, 137.9, 138.3; Analysis: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3}$ requires C, 79.28 ; $\mathrm{H}, 6.94$; found: $\mathrm{C}, 69.98 ; \mathrm{H}, 6.75 \%$.

## 1-(((1R,2S)-3-(Benzyloxy)-2-bromo-1-phenylpropoxy)methyl)benzene (115)

To a stirred solution of chiral dibenzyloxyalcohol 114 (1.4 g, $4 \mathrm{mmol}^{2}$ ), $\mathrm{PPh}_{3}(1.3 \mathrm{~g}, 4.8$ mmol ) and imidazole ( $324 \mathrm{mg}, 4.8 \mathrm{mmol}$ ) in dichloromethane $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{CBr}_{4}(1.6 \mathrm{~g}, 4.8 \mathrm{mmol})$. The resulting solution was stirred at $25{ }^{\circ} \mathrm{C}$ for 6 h and then concentrated in vacuo. The crude compound was purified by column chromatography using petroleum ether/EtOAc (9:1) to afford the bromo benzyloxy ether $\mathbf{1 1 5}(1.25 \mathrm{~g})$ as a yellow liquid.

Yield: $76 \% ;[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}$ : $-58.56\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 765,870,1150,1245$, 1340, 1645, 2980, 3075; ${ }^{1} \mathbf{H - N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.86-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.95$
$(\mathrm{m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.59(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 70.3,72.8,73.5,75.6,81.5,127.3,127.7,127.9,128.4,128.8,137.8$, 137.9, 138.5; Analysis: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrO}_{2}$ requires C, 67.16 ; $\mathrm{H}, 5.64$; found: $\mathrm{C}, 66.95$; H , 5.48\%.

## 1-(((1R,2R)-2-Azido-3-(benzyloxy)-1-phenylpropoxy)methyl)benzene (116)

To a stirred solution of bromo benzyloxy ether $115(1.0 \mathrm{~g}, 2.43 \mathrm{mmol})$ in DMF ( 5 mL ) was added sodium azide ( $455 \mathrm{mg}, 7 \mathrm{mmol}$ ) and the reaction mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 12 h . After the completion of the reaction as monitored by TLC, it was extracted with $\operatorname{EtOAc}\left(3 x 50 \mathrm{~mL}\right.$ ), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure and the residue was purified by column chromatography using petroleum ether: ethyl acetate (8:2) to obtain pure dibenzyloxy azide $116(0.72 \mathrm{~g})$ as colorless oil.

Yield: $80 \%$; $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}$ : $-84.08\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 699,733,789,910$, 1264, 1450, 1496, 2101, 3029, ${ }^{1}$ H-NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.15-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.42-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.79(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.64(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.39$ $(\mathrm{m}, 15 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 51.9,70.8,74.0,81.7,81.8,127.5,127.6$, 127.8, 128.1, 128.2, 128.5, 137.9, 138.1; Analysis: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 73.97; H, 6.21; N, 11.25; found: C, 73.78; H, 6.08; N, 11.09\%.

## (1R,2R)-2-Acetamido-1-phenylpropane-1,3-diyl diacetate (67)

To a stirred solution of azide $116(600 \mathrm{mg}, 1.6 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was added $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(265 \mathrm{mg}, 50 \mathrm{wt} \%)$ carefully at room temperature and a hydrogen balloon was kept to provide hydrogen atmosphere. After the completion of the reaction as monitored by TLC, it was filtered over celite and the filtrate was concentrated under
reduced pressure to provide the aminodiol, which was directly taken for the next step. To a stirred solution of amino diol in pyridine $(10 \mathrm{~mL})$ was added acetic anhydride $(0.83$ $\mathrm{mL}, 8.8 \mathrm{mmol})$, DMAP ( $97 \mathrm{mg}, 0.8 \mathrm{mmol}$ ) and the mixture was stirred for 4 h . After the completion of the reaction as monitored by TLC, the solvent was evaporated, reaction mixture was diluted with water $(10 \mathrm{~mL})$, extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude material it was then purified by column chromatography on silica gel using petroleum ether/EtOAc (5:5) to give triacetate $67(443 \mathrm{mg})$ as a colorless liquid.

Yield: $94 \%$; $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}$ : -32.18 (c 0.5, $\mathrm{CHCl}_{3}$ ); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 675,780,950,1250$, 1365, 1475, 1720, 2815, 3029, 3325; ${ }^{1} \mathbf{H - N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.01$ $(\mathrm{s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 4.0-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.33(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.41(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.26-7.33 (m, 5H); ${ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 20.3,22.5,52.8,62.5$, 72.1, 127.2, 127.5, 128.1, 137.7, 169.7, 170.2; ESI-MS: m/z $316.115[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires C, $61.42 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.78$; found: C, $61.28 ; \mathrm{H}, 6.28 ; \mathrm{N}, 4.66 \%$.

## (1R,2R)-2-(Dichloroacetamido)-1-[(4-nitro)phenyl)-1,3-propanediol (62)

To a stirred solution of conc. $\mathrm{HNO}_{3}$ : conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1: 1)(2 \mathrm{~mL})$ was added triacetate $\mathbf{6 7}$ $(150 \mathrm{mg}, 1.02 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$, the resulting solution was stirred for 1.5 h at $25^{\circ} \mathrm{C}$. After the completion of the reaction as monitored by TLC, it was poured into water ( 5 mL ) and extracted with diethyl ether ( 3 x 10 mL ), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give nitro triacetate, which was directly taken up for the next step. A solution of aq 5\% HCl was prepared in methanol, 2 mL of the above solution was added to nitro triacetate
$(0.95 \mathrm{~g}, 0.4 \mathrm{mmol})$ and stirred overnight at $90^{\circ} \mathrm{C}$. The reaction mixture was poured into 2 N NaOH solution and extracted with diethyl ether (3x 5 mL ), washed with water, brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give crude p-nitrophenyl substituted aminodiol. The p-nitrophenyl substituted aminodiol was taken in methyl dichloroacetate $(1 \mathrm{~mL})$ and heated at $90^{\circ} \mathrm{C}$ for 1h. The excess ester was removed under reduced pressure and the crude compound was purified by column chromatography using petroleum ether/ EtOAc (3:7) to give the product $\mathbf{6 2}(125 \mathrm{mg})$ as a colorless amorphous solid.

Yield: $76 \%$; mp: $151-152{ }^{\circ} \mathrm{C}\left[\mathrm{lit} .{ }^{43} \mathbf{m p}: 149.7-150.7^{\circ} \mathrm{C}\right] ;[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}$ : $-24.9\left(c\right.$ 1, EtOAc) $\left[\right.$ lit. ${ }^{43}$ $\left.[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}:-25.5(c 1, \mathrm{EtOAc})\right]$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 3420,3020,2929,1686,1604,1523$, 1454, 1403, 1348, 1216, 1049, 850; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 3.34-3.38$ (m, $1 \mathrm{H}), 3.57-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.84-5.06(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.48(\mathrm{~s}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR (100 MHz, acetone- $d_{6}$ ): $\delta 56.9,61.6,66.6,70.6,123.2,127.3,147.3,150.1,164.3$; Analysis: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, $40.89 ; \mathrm{H}, 3.74 ; \mathrm{N}, 8.68$; found: $\mathrm{C}, 40.98 ; \mathrm{H}, 3.65$; N, 8.34\%.

## (1R,2R)-1,3-bis(Benzyloxy)-1-(4-(methylthio)phenyl)propan-2-ol (117)

A mixture of chiral diol $\mathbf{5 k}(2.7 \mathrm{~g}, 10.5 \mathrm{mmol})$ and $\mathrm{Bu}_{2} \mathrm{SnO}(3.13 \mathrm{~g}, 12.8 \mathrm{mmol})$ in toluene ( 70 mL ) was refluxed for 12 h with azeotropic removal of water. Then tetra butyl ammonium bromide TBAB ( $1.68 \mathrm{~g}, 7.8 \mathrm{mmol}$ ) and $\mathrm{BnBr}(1.23 \mathrm{~mL}, 10.5 \mathrm{mmol})$ were added and the mixture was refluxed for 18 h . After the completion of the reaction as monitored by TLC, it was concentrated under reduced pressure and the crude compound
was purified by column chromatography using petroleum ether/EtOAc (6:4) to afford the benzyloxy ether $\mathbf{1 1 7}(3.0 \mathrm{~g})$ as a gum.

Yield: $84 \% ;[\boldsymbol{\alpha}]^{\mathbf{D}}{ }_{25}$ : $-74.15\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 765,830,1020,1280$, 1360, 1635, 2990, 3070, 3350; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.0(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.24-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.94(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.44-$ $4.55(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 15.9,70.5,72.4,74.5$, 75.5, 82.1, 126.4, 127.7, 127.9, 128.1, 128.4, 134.7, 137.5, 137.7, 138.6; Analysis: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$ requires C, $73.06 ; \mathrm{H}, 6.64$; S, 8.13; found: C, $72.86 ; \mathrm{H}, 6.53 ; \mathrm{S}, 8.03 \%$.

## (4-((1R,2S)-1,3-bis(Benzyloxy)-2-bromopropyl)phenyl)(methyl)sulfane (118)

To a stirred solution of chiral dibenzyloxy alcohol 117 ( $2.1 \mathrm{~g}, 6 \mathrm{mmol}$ ), $\mathrm{PPh}_{3}(2.0 \mathrm{~g}, 7.2$ mmol ) and imidazole ( $486 \mathrm{mg}, 7.2 \mathrm{mmol}$ ) in dichloromethane $\left(80 \mathrm{~mL}\right.$ ) at $0^{\circ} \mathrm{C}$ was added $\mathrm{CBr}_{4}(2.4 \mathrm{~g}, 7.2 \mathrm{mmol})$. The resulting solution was stirred for 4 h at $25^{\circ} \mathrm{C}$ and then concentrated in vacuo. The crude compound was purified by column chromatography using petroleum ether/EtOAc (9:1) to afford the bromo benzyloxy ether $\mathbf{1 1 8}(1.85 \mathrm{~g})$ as a yellow liquid.

Yield: $76 \% ;[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}$ : -66.12 (c 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 765,870,1125,1260$, 1340, 1420, 2980, 3018; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.62-2.84(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.58$ $(\mathrm{m}, 1 \mathrm{H}), 3.82-3.89(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.59(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.40(\mathrm{~m}$, 15H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.6,68.3,71.5,74.5,75.8,81.2,127.4,127.7$, 127.8, 128.5, 128.6, 134.78, 137.8, 137.9, 138.3; Analysis: $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrO}_{2} \mathrm{~S}$ requires C, 63.02; H, 5.51; S, 7.01; found: C, 66.92; H, 5.38; S, 6.89\%.
(4-((1R,2R)-2-Azido-1,3-bis(benzyloxy)propyl)phenyl)(methyl)sulfane (119)

To a stirred solution of bromo benzyloxy ether 118 ( $1.5 \mathrm{~g}, 3.6 \mathrm{mmol}$ ) in DMF ( 7.5 mL ) was added sodium azide ( $682 \mathrm{mg}, 10.5 \mathrm{mmol}$ ) and the reaction mixture was heated at 60 ${ }^{\circ} \mathrm{C}$ for 12 h . After the completion of the reaction as monitored by TLC, it was extracted with EtOAc ( $3 \times 50 \mathrm{~mL}$ ), washed with water, brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure and the residue was purified by column chromatography using petroleum ether: ethyl acetate (7:3) to obtain pure dibenzyloxy azide $\mathbf{1 1 9}(1.05 \mathrm{~g})$ as yellow liquid.

Yield: $78 \% ;[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}:-96.24\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 699,733,789,910$, 1264, 1450, 1496, 2185, 3015; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.5(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.20(\mathrm{~m}$, $1 \mathrm{H}), 3.42-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.79(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.65(\mathrm{~m}, 4 \mathrm{H})$, 7.19-7.42 (m, 14H); ${ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 15.6,63.2,71.1,74.0,81.5,82.0$, 127.6, 127.7, 127.9, 128.1, 128.3, 128.5, 134.8, 137.8, 137.9, 138.2; Analysis: $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.71 ; \mathrm{H}, 6.01 ; \mathrm{N}, 10.02$; $\mathrm{S}, 7.64$; found: $\mathrm{C}, 68.58 ; \mathrm{H}, 5.88 ; \mathrm{N}$, 9.94; S, 7.72\%.

## (1R,2R)-2-Acetamido-1-(4-(methylthio)phenyl)propane-1,3-diyl diacetate (120)

To a stirred solution of azide $\mathbf{1 1 9}(900 \mathrm{mg}, 2.4 \mathrm{mmol})$ in methanol $(15 \mathrm{~mL})$ was added $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(398 \mathrm{mg}, 50 \mathrm{wt} \%)$ carefully at room temperature and a hydrogen balloon was kept to provide hydrogen atmosphere. After the completion of the reaction as monitored by TLC, it was filtered over celite and the filtrate was concentrated under reduced pressure to provide aminodiol, which was directly taken up for the next step. To a stirred solution of amino diol in pyridine ( 10 mL ) was added acetic anhydride ( 0.3 mL , 2.9 mmol ), DMAP ( $32 \mathrm{mg}, 0.26 \mathrm{mmol}$ ) and the mixture was stirred for 4 h . After the completion of the reaction as monitored by TLC, the solvent was evaporated, reaction
mixture was diluted with water $(10 \mathrm{~mL})$, extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude material which was then purified by column chromatography on silica gel using petroleum ether/EtOAc (5:5) to give triacetate $\mathbf{1 2 0}$ $(664 \mathrm{mg})$ as a colorless liquid.

Yield: $94 \% ;[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}$ : $-38.25\left(с 1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 675,760,985,1265$, 1380, 1475, 1724, 2890, 3015, 3330, ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.05$ $(\mathrm{s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.9-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.35(\mathrm{~m}, 1 \mathrm{H}), 5.228-5.40(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.6,21.5,22.4,52.8$, $62.4,72.5,127.4,127.6,128.5,134.8,137.6,169.5,170.4 ;$ ESI-MS: m/z 362.101 $[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$ requires C, $56.62 ; \mathrm{H}, 6.24 ; \mathrm{N}, 4.13 ; \mathrm{S}, 9.45$; found: C, 56.54; H, 6.13; N, 3.98; S, 9.34\%.
(1R,2R)-2-(Dichloroacetamido)-1-[(4-methylsulfonyl)phenyl)-1,3-propanediol (63)
To a stirred solution of triacetate $\mathbf{1 2 0}(350 \mathrm{mg}, 1.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), m C P B A$ $(356 \mathrm{mg}, 2.06 \mathrm{mmol})$ was added at room temperature. After the completion of the reaction as monitored by TLC, it was poured into $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give sulfone, which was directly taken for the next step. A solution of aq $5 \% \mathrm{HCl}$ was prepared in methanol, 2 mL of the above solution was added to sulfone triacetate and stirred overnight at $90^{\circ} \mathrm{C}$. The reaction mixture was poured into 2 N NaOH solution, and extracted with diethyl ether ( 3 x 5 mL ), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give crude p-methylsulfonyl substituted
aminodiol. The crude compound was taken up further in methyl dichloroacetate ( 2 mL ) and heated at $90^{\circ} \mathrm{C}$ for 3 h . The excess ester was removed under reduced pressure and the crude compound was purified by column chromatography using petroleum ether/ EtOAc (1:9) to give the product $\mathbf{6 3}(280 \mathrm{mg})$ as a colorless amorphous solid.

Yield: $77 \%$; mp: $164-165{ }^{\circ} \mathrm{C}\left[\mathrm{lit} .{ }^{31} \mathbf{~ m p}: 164.3-166.3^{\circ} \mathrm{C}\right] ;[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}:+12.5$ (c 1, EtOH) $\left[\mathrm{lit} .{ }^{5}\right.$ $[\boldsymbol{\alpha}]^{\mathbf{2 3}}{ }_{\mathbf{D}}:+12.9(c$ 1, EtOH)$] ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 3481,3407,3242,3082,3020,2925$, $1699,1562,1406,1282,1215,1145,1033,906,806,767,{ }^{1} \mathbf{H}-$ NMR $(200 \mathrm{MHz}$, acetone$\left.d_{6}\right): \delta 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(100 \mathrm{MHz}$, acetone- $d_{6}$ ): $\delta 44.3,57.9,58.3,61.6,61.9,67.5,71.1,127.7,127.8,140.9,141.1,149.3$, 149.5, 164.4, 206.2; Analysis: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}$ requires C, $40.46 ; \mathrm{H}, 4.24 ; \mathrm{N}, 3.93, \mathrm{~S}, 9.0$; found: C, 40.59; H, 4.35; N, 4.05, S, 8.86\%.

### 1.3.8 References

1. (a) X.-P. Fang, J. E. Anderson, C.-J. Chang, P. E. Fanwick and J. L. McLaughlin, J. Chem. Soc., Perkin Trans. 1, 1990, 1655; (b) X.-P. Fang, J. E. Anderson, C.-J. Chang, J. L. McLaughlin and P. E. Fanwick, J. Nat. Prod., 1991, 54, 1034.

2 Tokunaga, M.; larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science, 1997, 277, 936.
3 (a) Wilkinson, R. G.; Shepherd, R. G.; Thomas, J. P.; Baughn, C. J. Am. Chem. Soc. 1961, 83, 2212;
(b) Shepherd, R. G.; Wilkinson, R. G. J. Med. Chem. 1962, 5, 823; (c) Wilkinson, R. G.; Cantrall, M. B.; Shepherd, R. G. J. Med. Chem. 1962, 5, 835.

4 Some, among many, notable examples: (a) Fumagillin: Tarbell, D. S.; Carman, R. M.; Chapman, D. D.; Cremer, S. E.; Cross, A. D.; Huffman, K. R.; Kuntsmann, M.; McCorkindale, N. J.; McNally, J. G.; Rosowsky, A.; Varino, F. H. L.; West, R. L. J. Am. Chem. Soc. 1961, 83, 3096. (b) Ovalicin: Sigg, H. P.; Weber, H. P. Helv. Chim. Acta 1968, 51, 1395. (c) Coriolin: Takeuchi, T.; Inuma, H.; Iwanaga, J.; Takahashi, S.; Takita, T.; Umezawa, H. J. Antibiot. 1969, 22, 215. (d) Disparlure: Bierl, B. A.; Beroza, M.; Collier, C. W. Science 1970, 170, 87.

5 For reviews and lead references, see: (a) Winstein, S.; Henderson, R. B. Heterocyclic Compounds,

Vol. 1; Elderfield, R. C., Ed.; Wiley: New York, 1950; Chapter 1; (b) Parker, R. E.; Isaacs, N. S. Chem. Rev. 1959, 59, 737; (c) Barto'k, M.; La'ng, K. L. Small Ring Heterocycles In The Chemistry of Heterocyclic Compounds, Vol. 42, Part 3; Hassner, A., Ed.; Wiley: New York, 1985; Chapter 1.

7 For an in depth discussion of practical considerations in kinetic resolution reactions, see: Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth., Catal. 2001, 343, 5.

8 a) Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org. Chem. 1994, 59, 1939; (b) Larrow, J. F.; Jacobsen, E. N. Org. Synth. 1997, 75, 1.

9 For the most effective catalyst developed thus far for the asymmetric dihydroxylation of terminal olefins, see: (a) Becker, H.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 448. For a general review of the AD reaction, see: (b) Kolb, H. C.; Vannieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.

10 M. Iwashima, T. Kinsho and A. B. Smith, Tetrahedron Lett., 1995, 36, 2199.
11 Smitha, G.; C. Reddy, S. Synth. Commn. 2006, 36, 1795.
12 Henegar, K. E.; Cebula, M. Org. Process Res. Dev., 2007, 11, 354.
13 Das, S. K.; Das, S. K.; Panda G. Eur. J. Org. Chem. 2010, 5100.
14 (a) Kumar, P.; Naidu, S. V.; Gupta, P. Tetrahedron, 2007, 63, 2745; (b) Kumar, P.; Gupta, P. Synlett, 2009, 9, 1367; (c) Yu, Q.; Wu, Y.; Xia, L. J.; Tang M. H.; Wu, Y. L. J. Chem. Soc. Chem. Commun., 1999, 129.

15 Kim, Y. J.; Tae, J. Synlett, 2006, 61.
16 (a) Akisal, H. S.; Blazer, D. G.; Kelsoe, M. E. Mood Disorders in Kaplan and Sadock's Comprehensive Textbook of Psychiatry, 7th ed.; Sadock, B. J., Sadock, V. A., Eds., Lippincott Williams \& Wilkins, 2000, p 1284; (b) De Battista, C.; Schatzberg A. F. Other Biological and Pharmacological therapies in Kaplan and Sadock's Comprehensive Textbook of Psychiatry, 7th ed.; Sadock, B. J., Sadock, V. A., Eds., Lippincott Williams \& Wilkins, 2000, p 2527; (c) Zydus Neurosciences, Narebox, Product Monograph; (d) Delgado, P. L.; Moreno, F. A. J. Clin. Psychiatry, 2000, 61, 5.
17 Kent, J. M. SNaRIs, NaSSAs and NaRIs: new agents for the treatment of depression. Lancet, 2000, 355, 911.
18 Holm, K. J.; Spencer C. M. CNS Drugs, 1999, 12, 65.
19 Melloni, p.; Torre, A. D.; Lazzari, E.; Mazzini, G.; Meroni, M. Tetrahedron, 1985, 41, 1393.
20 Raggi, M. A.; Bugamelli, F.; Sabbioni, C.; Ferranti, A.; Fanali, S.; Volterra, V. Journal of Pharmaceutical and Biomedical Analysis 2002, 27, 209.

21 Öhman, D.; Norlander, B.; Peterson, C.; Bengtsson, F. Journal of Chromatography 2002, 947, 247.
22 Prabhakaran, J.; Majo, V. J.; Mann, J. J.; Kumar, J. S. D. Chirality, 2004, 16, 168.
23 Brenner, E.; Baldwin, R. M.; Tamagnan, G. Org. Lett. 2005, 7, 937.
24 Siddiqui, S. A.; Narkhede, U. C.; Lahoti, R. J.; Srinivasan, K. V. Synlett 2006, 1771.

25 Metro, T. X.; Pardo, D. G.; Cossy, J. J. Org. Chem., 2008, 73, 707.
26 Hayes, S. T.; Assaf, G.; Checksfield, G.; Cheung, C.; Critcher, D.; Harris, L.; Howard, R.; Mathew, S.; Regius, C.; Scotney, G.; Scott A. Org. Process Res. Dev., 2011, 15, 1305.

27 (a) Nakanishi, K.; Goto, T.; Ito, S.; Natoro, S.; Nozoe, S. Natural Products Chemistry; Oxford University Press: Oxford, 1983; Vol. 3; (b) Fuganti, G.; Grasselli, P.; Pedrocchi-Fantoni, G. J. Org. Chem. 1983, 48, 909; (c) Garner, P.; Ramkanth, S. J. Org. Chem. 1986, 51, 2609; (d) Boutin, R. H.; Rapoport, H. J. Org. Chem. 1986, 51, 5320. (e) Jacobsen, S. Acta Chem. Scand. 1988, B42, 605.

28 (a) Groth, U.; Schöllkopf, U.; Tiller, T. Tetrahedron 1991, 47, 2835 and references cited therein; (b) Merck Index; 10th ed.; Merck and Co.: Rahway, NJ, 1983; p. 289; (c) Bennett, R. B.; Choi, J. R.; Montgomery, W. D.; Cha, J. K. J. Am. Chem. Soc. 1989, 111, 2580.
29 (a) Ehrlich, J.; Bartz, Q. R.; Smith, R. M.; Josylyn, D. A.; Burkholder, P. R. Science 1947, 106, 417; (b) Al-Badr, A. A.; El-Obeid, H. A. Chloramphenicol. In Analytical Profiles of Drug Substances; Florey, K., Ed.; Academic: Orlando, 1986; Vol. 15, p 701.
30 Gillet, A. D.; Abdel-Monem, M. M. J. Med. Chem. 1973, 16, 992 and the references cited therein.
31 Cutler, R. A.; Stenger, R. J.; Suter, C. M. J. Am. Chem. Soc. 1952, 74, 5475.
32 Veeresa, G.; Datta, A. Tetrahedron Lett. 1998, 39, 8503.
33 Park, J. N.; Ko, S. Y.; Koh, H. Y. Tetrahedron Lett. 2000, 41, 5553.
34 Corey, E. J.; Choi, S. Tetrahedron Lett. 2000, 41, 2765.
35 Loncaric, C.; Wulff, W. D. Org. Lett. 2001, 3, 3675.
36 Bhaskar, G.; Kumar, V. S.; Rao, B. V. Tetrahedron: Asymmetry 2004, 15, 1279.
37 Boruwa, J.; Borah, J. C.; Gogoi, S.; Barua, N. C. Tetrahedron Lett. 2005, 46, 1743.
38 Hajra, S.; Karmakar, A.; Maji, T.; Medda, A. K. Tetrahedron 2006, 62, 8959.
39 George, S.; Narina, S. V.; Sudalai, A.; Tetrahedron, 2006, 62, 10202.
40 Lu, W.; Chen, P.; Lin, G. Tetrahedron 2008, 64, 7822.
41 Liu, K. G.; Zhou, H. B.; Wu, Y. L.; Yao, Z, J. J. Org. Chem. 2003, 68, 9528.
42 Kilonda, A.; Compernolle, F.; Hoornaert, G. J. J. Org. Chem. 1995, 60, 5820.
43 Bartz, Q. R. J. Biol. Chem. 1948, 172, 445.

## CHAPTER II

Asymmetric Synthesis of Tetrahydroquinolin-3ols, Anachelin H Chromophore and 1-((S)-3-
(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl)propan-1-one

## Section I:

## A New Route to the Synthesis of (R)-Tetrahydroquinolin-3-ols via $\mathrm{CoCl}_{2}$-catalyzed Reductive Cyclization of Cyclic Sulfites with $\mathrm{NaBH}_{4}$

### 2.1.1 Introduction

Substituted tetrahydroquinoline derivatives (THQs) bearing various simple and complex substituents are of medicinal and industrial importance due to their pronounced activity in many physiological processes. ${ }^{1}$ These heterocycles along with their core structures are present in numerous pharmacological agents. For example, (-)-Angustureine (1) is used in folk medicine as a bitter tonic in dyspepsia, dysentery, chronic diarrhoea and for the treatment of fever and also been reported to exhibit anti-malarial and cytotoxic activities. ${ }^{2}$ Others include L-689560 (2) which is one of the most potent NMDA antagonists; ${ }^{3}$ Virantmycin (3) showing antibiotic activity. ${ }^{4}$


1, (-)-Angustureine


4, (+)-Duocarmycin $D_{1}$
2, L-689560




3, Virantmycin


5, PNU 95666-E

Fig. 1 Some of the examples of tetrahydroquinoline derivatives

Further, (+)-Duocarmycin $\mathrm{D}_{1}$ (4), having chiral 3-hydroxytetrahydroquinoline system in its structure shows potential cytotoxic activity. ${ }^{5}$ Also, sumanirole maleate (PNU9566 E) (5) ${ }^{6}$ is a selective and high affinity agonist at the dopamine $D_{2}$ receptor subtype and a potential agent for the treatment of Parkinson's disease (Fig. 1). Many relatively simple 1,2,3,4-tetrahydroquinolines are already proven as potential drugs. ${ }^{7}$ Moreover, besides pharmaceutical applications, tetrahydroquinoline derivatives are useful as pesticides, ${ }^{8}$ antioxidants, ${ }^{9}$ and corrosion inhibitors. ${ }^{10}$ Additionally, tetrahydroquinolines are widely used as active components of dyes ${ }^{11}$ and photosensitizers in photography. ${ }^{12}$ Tetrahydroquinoline based inhibitors are also shown as one of the most potent protein farnesyl transferase inhibitors.

### 2.1.2 Review of literature

Literature search revealed that there are various reports available for the synthesis of tetrahydroquinoline derivatives which are described below.

## Murahashi's Approach (1987) ${ }^{13}$

Murahashi et al. have described the synthesis of tetrahydroquinolines 7a-d via hexarhodiumhexadecacarbonyl complex catalyzed selective reduction of pyridine nucleus in quinolines 6a-d using carbon monoxide and water as efficient reducing agent (Scheme 1).


Scheme 1: (i) Catalytic $\mathrm{Rh}_{6}(\mathrm{CO})_{16}, \mathrm{CO}(1 \mathrm{~atm}), \mathrm{H}_{2} \mathrm{O}$.

## Gracheva's Approach (1988) ${ }^{14}$

Gracheva et al. have reported the use of $\mathrm{Ni}-\mathrm{Al}$ alloy for the reduction of quinolinecarboxylic acid 8a-c to obtain tetrahydroquinoline carboxylic acid 9a-c in high yields (Scheme 2).


Scheme 2: (i) Ni-Al, aq. $\mathrm{NaOH}, 50^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

## Schaus's Approach (1990) ${ }^{15}$

Schaus et al. have reported the synthesis of ( $\pm$ )-quinpirole (13) using hydrogenation [catalytic $\mathrm{PtO}_{2}, \mathrm{H}_{2}(60 \mathrm{psig})$ ] of 6-methoxyquinoline (10), which afforded 6-methoxy-1,2,3,4-tetrahydroquinoline (11). Reductive alkylation of $\mathbf{1 1}$ [propanaldehyde, $15 \% \mathrm{Pd} / \mathrm{C}$, $\left.\mathrm{H}_{2}(60 \mathrm{psig})\right]$ furnished tetrahydroquinoline 12 in 36 \% yield over two steps. Further, 12 was converted into ( $\pm$ )-quinpirole (13) by employing a sequence of reactions (Scheme 3).


Scheme 3: (i) $\mathrm{PtO}_{2}(10 \mathrm{wt} \%), \mathrm{H}_{2}(60 \mathrm{psig}), \quad 50{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{MeOH}$, $65 \%$; (ii) $15 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\left(60 \mathrm{psig}\right.$ ), EtCHO, $\mathrm{EtOH}, 50^{\circ} \mathrm{C}, 12 \mathrm{~h}, 54 \%$.

## Bouyssou's Approach (1992) ${ }^{16}$

Bouyssou et al. had employed transfer hydrogenation ( $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{H} / \mathrm{Et}_{3} \mathrm{~N}$ ) as a method for reducing quinoline $\mathbf{6 d}$ to afford the corresponding tetrahydroquinoline $\mathbf{7 d}$ in 85 \% yield (Scheme 4).


Scheme 4: (i) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{H}$ (5 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv.), $50^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

## Szilagyi's approach (1992) ${ }^{17}$

Szilagyi et al. have reported an intramolecular Michael addition of amine functionality onto a $\alpha, \beta$-unsaturated ketone 14 catalyzed by phosphoric acid to give 2 -aryl-4-oxo-1,2,3,4-tetrahydroquinoline 15 in $85 \%$ yield (Scheme 5).


Scheme 5: (i) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{AcOH}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$.

## Katritzky's approach (1995) ${ }^{18}$

Katritzky et al. have reported acid catalyzed Diels-Alder reaction of N -methylaniline derivative 16 with ethyl vinyl ether to give reactive intermediate 4-ethoxy-1,2,3,4tetrahydroquinoline, which underwent in situ substitution by benzotriazol to provide 4-(benzotriazolyl)-1,2,3,4-tetrahydroquinoline (17) in 48\% yield. At elevated temperatures,
ionization of $\mathbf{1 7}$ gives immonium cation which can be trapped in situ by Grignard reagent to provide 4 -substituted tetrahydroquinolines $\mathbf{1 8}$ in good yields (Scheme 6).


Scheme 6: (i) ethyl vinyl ether ( $1.2 \mathrm{~mL}, 12 \mathrm{mmol}$ ), p-toluenesulfonic acid monohydrate $(10 \mathrm{mg}), 22{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$. then $120^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (ii) $\mathrm{RMgX}\left(25 \mathrm{mmol}, \mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})\right.$ reflux, 1 h .

## Kobayashi'Approach (1996) ${ }^{19}$

Kobayashi et al. have used asymmetric Aza Diels-Alder reactions of imine 19a-b with cyclopentadiene (20) catalysed by $\mathrm{Yb}(\mathrm{OTf})_{3} \cdot(R)$ - BINOL (22) complex that provided tetrahydroquinoline derivatives 21a-b in 69-92\% yields and 71\% ee (Scheme 7).


Yb complex (22)
Scheme 7: (i) $\mathrm{Yb}(\mathrm{OTf})_{3}:(R)$-BINOL:DBU ( $20 \mathrm{~mol} \%$ ) 22, 2,6-di-
${ }^{t}$ butylpyridine ( 1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, MS $4 \mathrm{~A}^{\circ},-15-0^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

## Boger's approach (1997) ${ }^{20}$

Boger et al. have used asymmetric dihydroxylation as the key step for the synthesis of duocarmycin- $D_{1}$ (4). Asymmetric dihydroxylation of olefin 23 gave diol 24 in $95 \%$ yield. Tosylation of primary alcohol and protection of secondary alcohol as silyl ether in 24 gave 25. Intramolecular nucleophilic displacement of tosylate 25 with amide anion provided key intermediate 26 which on hydrolysis $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right.$, sealed tube, $\left.140{ }^{\circ} \mathrm{C}\right)$ gave diamine 27. By sequential transformations, 27 was further converted to duocarmycin A

## (4) (Scheme 8).



## Corey's approach (1999) ${ }^{21}$

Corey et al. have reported the synthesis of ( $\pm$ )-virantmycin (3) via intramolecular DielsAlder reaction of $o$-azaxylylene 29 which was prepared by elimination reaction of chloro carbamate 28. Compound 29 underwent intramolecular [4+2] cycloaddition reaction in
high stereoselectivity to furnish tetrahydroquinoline derivative 30 in $90 \%$ yield. Further ( $\pm$ )-virantmycin (3) was synthesized by sequential reactions (Scheme 9).


## Rajan Babu's approach (2001) ${ }^{22}$

Rajan Babu et al. have used Rh-catalyzed asymmetric hydrogenation as a key reaction for the synthesis of aminotetrahydroquinoline 38. Rh-catalyzed asymmetric hydrogenation of $\alpha$-acetamido-2 nitrocinnamate ester (33) gave $\alpha$-acetamido ester 34 in $96 \%$ yield and $98 \%$ ee. Further reduction of ester functionality with super hydride afforded the corresponding alcohol 35 which was subsequently transformed into its mesylate 36. Reduction $\left(\mathrm{H}_{2}, 10 \%\right.$ $\mathrm{Pd} / \mathrm{C}$ ) of nitro in 36 to amine followed by cyclization provided 3aminotetrahydroquinoline 37 which was transformed $\left(\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}\right)$ as its tosylamide 38 (Scheme 10).





$$
\begin{gathered}
\text { 39, } \mathrm{Ar}=3,5 \text { dimethylphenyl } \\
\text { Rh complex }
\end{gathered}
$$

Scheme 10: (i) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{NaHCO}_{3}$, sealed tube, $80^{\circ} \mathrm{C}, 24$ h, $80 \%$; (ii) Rh catalyst 39, $\mathrm{H}_{2}$ ( 40 psig.), THF, $96 \%$, $98 \%$ ee; (iii) super hydride, $0{ }^{\circ} \mathrm{C}$; (iv) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (v) $\mathrm{H}_{2}$, $\mathrm{Pd} / \mathrm{C}, 1 \mathrm{~h}, 25^{\circ} \mathrm{C}$; (vi) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.

In another approach, 2-nitrocinnamate 40 was reduced to the corresponding allyl alcohol 41 using DIBAL-H. Sharplesss asymmetric epoxidation of allyl alcohol 41 gave the chiral epoxy alcohol 42, which was further transformed into tosylate 43. Reductive opening of epoxide 43 over $\mathrm{PtO}_{2}$ furnished secondary alcohol 44 in $70 \%$ yield. Finally reduction ( $\mathrm{Fe} / \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ and DMF ) of nitro functionality to amine which displaces tosylate to afford 3-hydroxy tetrahydoquinoline followed by its protection as tosylamide gave 45 in 66\% yield (Scheme 11).


Scheme 11: (i) DIBAL-H, toluene, $0^{\circ} \mathrm{C}, 75 \%$; (ii) $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right){ }_{4}$ ( $10 \mathrm{~mol} \%$ ), (+)DIPT ( $14 \mathrm{~mol} \%$ ), ${ }^{t} \mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}, 6$ days, $60 \%$, $>90 \%$ ee; (iii) TsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMAP, $0{ }^{\circ} \mathrm{C}, 80 \%$; (iv) (a) $\mathrm{MgI}_{2}$, toluene, $-55^{\circ} \mathrm{C}$; (b) $\mathrm{PtO}_{2}, \mathrm{H}_{2}$ (40 psig), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 70 \%$ over two steps; (v) (a) $\mathrm{Fe}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{DMF}, 70^{\circ} \mathrm{C}$; (b) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 66 \%$ over two steps.

## Fujita's approach (2002) ${ }^{23}$

Fujita et al. had employed $\left[\mathrm{CpIrCl}_{2}\right]_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}$ catalyzed cyclization of 3-(2aminophenyl)propanol (46a,d) to give tetrahydroquinoline (7a,d) in high yields (Scheme 12).


Scheme 12: (i) $\left[\mathrm{CpIrCl}_{2}\right]_{2}(5.0 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ ( $10 \mathrm{~mol} \%$ ), toluene, $111^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

## Fujita's approach (2004) ${ }^{24}$

Fujita et al. have used Ir-catalyzed transfer hydrogenation of quinoline $\mathbf{6 a}$ and dihydroquinoline 47 to provide tetrahydroquinoline 7 a in high yields. Addition of acid $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ or $\left.\mathrm{HClO}_{4}\right)$ considerably accelerates the rate of the reaction, whereas addition of water minimizes the formation of byproducts (Scheme 13).


6a


47


i 87\%

Scheme 13: (i) $\left[\mathrm{CpIrCl}_{2}\right]_{2}(1 \mathrm{~mol} \%)$, aq. $\mathrm{HClO}_{4}$ ( 0.20 mmol) 2-propanol ( 9.5 mL ), $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, reflux, 17 h .

## Nishida's approach (2005) ${ }^{25}$

This approach utilized Ru-catalyzed ring closing metathesis (RCM) to construct dihydroquinoline core (Scheme 14).





1, Angustureine


55, Catalyst

Scheme 14: (i) (a) $\mathrm{Ph}_{3} \mathrm{PMeBr}, \mathrm{KN}(\mathrm{TMS})_{2}$, THF, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$; (ii) Zn powder, $\mathrm{AcOH}, 25{ }^{\circ} \mathrm{C}$, overnight, $72 \%$; (iii) TsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 86 \%$; (iv) DEAD, $\mathrm{PPh}_{3}$, THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$; (v) (a) Ru catalyst $55, \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.01 \mathrm{M}), 50^{\circ} \mathrm{C}, 1 \mathrm{~h}, 92 \%$; (b) $\mathrm{PtO}_{2}, \mathrm{H}_{2}$, $\mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 94 \%$; (vi) anthracene sodium, DME, $-65^{\circ} \mathrm{C}, 10$ $\min , 99 \%$; (vii) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF, reflux, $10 \mathrm{~h}, 80 \%$.

Wittig olefination of o-nitro benzaldehyde (48) gave nitrostyrene (49), which was subjected to reduction $(\mathrm{Zn} / \mathrm{AcOH})$ to give the corresponding o-aminostyrene $\mathbf{5 0}$. Protection of amine in $\mathbf{5 0}$ as tosamide $51\left(\mathrm{TsCl}, \mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, followed by Mitsunobu reaction with $(R)$-oct-1-en-3-ol $\left(99 \%\right.$ ee) [DEAD and $\mathrm{PPh}_{3}$ ] provided the desired $\alpha, \omega$ diene 52 in $78 \%$ yield. The diene was subjected to ring closing metathesis (RCM) with Grubbs' catalyst 55 gave the corresponding 1,2-dihydroquinoline in $92 \%$ yield, which was subsequently hydrogenated over Adam's catalyst in MeOH to provide tetrahydroquinoline 53 in $94 \%$ yield and $99.7 \%$ ee. Finally detosylation of 53 to free amine 54 and subsequent methylation of the free nitrogen gave $(+)-(S)$-angustureine (1) in $80 \%$ yield.

## Yang's approach (2006) ${ }^{26}$

Yang et al. have reported the reductive cyclization of 59 using $\mathrm{H}_{2}$ over $\mathrm{Pd} / \mathrm{C}$ to give 3aryl tetrahydroquinoline 60a-c (Scheme 15).


Scheme 15: (i) $\mathrm{Na}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, 5 \mathrm{~h}$; (ii) $\mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{CH}_{3} \mathrm{OH}$; (iii) $\mathrm{H}_{2}(1 \mathrm{~atm}), 30 \% \mathrm{Pd} / \mathrm{C}, \mathrm{THF}, \mathrm{CH}_{3} \mathrm{OH}$.

Condensation of 2-nitrobenzaldehyde (56) with aryl propionitrile 57 and subsequent reduction of double bond with $\mathrm{NaBH}_{4}$ provided 59, which was subjected to reduction
with $\mathrm{H}_{2}$ over $20 \% \mathrm{Pd} / \mathrm{C}$ followed by reductive cyclization with cyano group afforded 3aryltetrahydroquinoline 60a-c in 57-73\% yields.

## Akiyama's approach (2006) ${ }^{27}$

Akiyama's et al. have described inverse electron-demand aza Diels-Alder reaction of aldimines 61a-e with electron-rich alkene enol ethers 62a-e catalyzed by a chiral Brønsted acid 64 to provide tetrahydroquinoline derivatives 63a-e in $74-89 \%$ yields and upto $97 \%$ ee (Scheme 16).


Scheme 16: (i) catalyst (R)-64 (10 mol\%), toluene, $10-55 \mathrm{~h}, 25^{\circ} \mathrm{C}$

## Zhu's approach (2009) ${ }^{28}$

This approach utilized the first catalytic three-component Povarov reaction of aldehydes 67a-e, aniline 65 and benzyl N -vinylcarbamate 66 in the presence of 0.1 equiv of chiral phosphoric acid 69 afforded cis-2,4-disubstituted tetrahydroquinolines 68a-e in good yields and enantiomeric excesses (upto 99\% ee) (Scheme 17).


65


68a-e

68a, $\mathrm{Ph}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, 74 \%$
68b, $\mathrm{Ph}=p-\mathrm{PhC}_{6} \mathrm{H}_{4}, 89 \%$
68c, $\mathrm{Ph}=p-\mathrm{FC}_{6} \mathrm{H}_{4}, 72 \%$
68d, $\mathrm{Ph}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, 64 \%$
68e, $\mathrm{Ph}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}, 72 \%$
upto 99\% ee $>99 \% \mathrm{dr}$

(R)-69; $\mathrm{Ar}=p-\mathrm{ClPh}$

Scheme 17: (i) catalyst ( $R$ )-69 ( 0.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}, 0^{\circ} \mathrm{C}$.

## Gong's approach (2009) ${ }^{29}$

Gong et al. have developed a new protocol which directly transformed 2-(2propynyl)aniline 70a-e derivatives into tetrahydroquinolines 72a-e in one operation with excellent enantioselectivity under the relay catalysis of an achiral Au complex and a chiral phosphoric acid 73 (Scheme 18).


Scheme 18: (i) catalyst ( $R$ )-73 ( $15 \mathrm{~mol} \%$.), $\mathrm{Ph}_{3} \mathrm{PAuCH}_{3}$ (5 $\mathrm{mol} \%$ ), toluene, $25^{\circ} \mathrm{C} 16 \mathrm{~h}$

This reaction was considered a consecutive catalytic process consisting of Au-catalyzed intramolecular hydroamination of a $\mathrm{C}-\mathrm{C}$ triple bond and a Brønsted acid catalyzed enantioselective transfer hydrogenation to provide tetrahydroquinolines 72a-d in 99\% yield with $99 \%$ ee.

Kim's approach (2010) ${ }^{30}$
Kim et al. have reported the first enantioselective intramolecular 1,5-hydride transfer/ring closure reaction cascade. In this organocatalytic redox neutral reaction, $o$ dialkylaminosubstituted cinnamaldehydes 74a-c were reacted in the presence of prolinol derivative 76 (30 mol\%) as an organocatalyst and (-)-CSA (30 mol $\%$ ) as an additive in TCE provided tetrahydroquinolines 75a-c in high enantioselectivities with moderate yield.
(Scheme 19).


74a-c


75a-c
upto $99 \%$ ee $>99 \% \mathrm{dr}$

$$
\begin{aligned}
& \text { 75a, } R=H, 57 \% \\
& 75 b, R=C F_{3}, 40 \% \\
& 75 c, R=B r, 62 \%
\end{aligned}
$$


cat-76

Scheme 19: (i) cat-76 (30 mol\%), (-)-CSA (30 mol\%), TCE, 5-9 d, $25^{\circ} \mathrm{C}$.

## Xu's approach (2011) ${ }^{31}$

Xu et al. have described a novel synthetic method for polysubstituted tetrahydroquinoline derivatives 78a-d via organocatalytic asymmetric tandem Michael addition and the aza-

Henry reaction, in which chalcone 77a-d and nitromethane were employed as the starting materials. The reaction yields were high (94\%-98\%), and highly diastereo- and enantioenriched tetrahydroquinoline derivatives 78a-d with a substantial substitution diversity were smoothly delivered (up to $>99 \%$ ee, dr up to 20:1) (Scheme 20).


Scheme 20: (i) cat-79 (20 mol\%), $\mathrm{Ph}_{3} \mathrm{PAuCH}_{3}(5 \mathrm{~mol} \%)$, toluene, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

### 2.1.3 Present Work

### 2.1.3.1 Objective

As can be seen from the above discussion, the reported methods for the synthesis of tetrahydroquinoline core mainly deal with racemic synthesis. Other disadvantages include use of chiral starting materials, lengthy reaction sequences, need of protection and deprotection of functional groups, low overall yield and use of expensive reagents. In this context, a more practical and efficient synthesis of functionalized tetrahydroquinoline derivatives is highly desirable. In this section, we describe a novel method for efficient synthesis of tetrahydroquinoline derivatives which make use of cobalt catalyzed reduction of cyclic sulfites. Since this chapter deals with two potentially important
reactions [asymmetric dihydroxylation (AD) and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ catalyzed reduction with $\mathrm{NaBH}_{4}$ ], a brief account of both of them below.

### 2.1.3.2 Asymmetric Dihydroxylation (AD)

In recent years, much attention has been focused on the catalytic asymmetric synthesis. It often has significant economic advantages over stoichiometric asymmetric synthesis for industrial-scale production of enantiomerically pure compounds. All these asymmetric reactions crucially depend on ligand acceleration effect (LAE). ${ }^{32}$ Among all these reactions, Sharpless catalytic Asymmetric Dihydroxylation (AD) is one of the most important practical and widely used reaction in organic synthesis. It has become the most general method for the preparation of optically active vicinal-syn-diols from activated as well as unactivated olefins. ${ }^{33}$



$$
\text { Ligand Acceleration }=\frac{\text { Saturation rate with ligand }}{\text { Rate without ligand }}
$$

Scheme 21: Mechanism of $\mathrm{OsO}_{4}$-catalyzed dihydroxylation of olefin
In 1936, Criegee et al. ${ }^{34}$ have found that addition of pyridine or any other tertiary amine to osmylation of olefins, accelerates the rate of reaction considerably. A major breakthrough has occurred in the field of asymmetric oxidation when Sharpless et al. ${ }^{33 \mathrm{~b}}$ demonstrated that asymmetric induction could be achieved when chiral amines were added to $\mathrm{OsO}_{4}$-mediated asymmetric oxidation of olefins. Among the various ligands
screened best results were obtained with ligands which were representatives of the cinchona alkaloid family, namely dihydroquinidine (DHQD) and dihydroquinine (DHQ) (Scheme 21). ${ }^{35}$


Fig. 2: Catalytic cycle for AD using $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ as co-oxidant

To improve the \%ee of the chiral diol, the second catalytic cycle of AD should be avoided and this was achieved by employing the $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ as reoxidant and using biphasic conditions (Fig. 2). These conditions helped in protecting the organic osmate(VI) monoglycolate ester from inopportune oxidation prior to hydrolysis and thereby releasing the diol and ligand to the organic phase and osmium-(VI) to the aqueous phase. Subsequently, osmium-(VI) obtains reoxidized and recycled into the catalytic cycle. Further improvement in the AD was realized by the addition of methyl sulfonamide
$\left(\mathrm{MeSO}_{2} \mathrm{NH}_{2}\right)$ to the reaction mixture. It also helps to accelerate the hydrolysis, thus facilitating the dihydroxylation smoothly. Addition of methyl sulfonamide also allowed carrying out the reactions of 1,2 -di- tri- and tetra- substituted olefins at $0^{\circ} \mathrm{C}$, which improved the selectivity as well as enantiomeric excess. In order to develop the asymmetric version of the Os-catalyzed AD reaction, Sharpless and coworkers have screened various chiral ligands and found out that the derivatives of cinchona alkaloids gave excellent results. Among all the 250 derivatives of cinchona alkaloid ligands screened, the bis-DHQ or DHQD ethers of phthalazine-1, 4-diol have proven to be the best for obtaining high enantioselective diols ${ }^{36}$ (Fig. 3).

$(\mathrm{DHQ})_{2}-\mathrm{PHAL}$

$(\mathrm{DHQD})_{2}-\mathrm{PHAL}$

Fig. 3: Ligands for asymmetric dihydroxylation reaction

Studies have demonstrated the importance of enzyme-like binding pocket of the dimeric cinchona alkaloid for high enantioselectivity of the chiral diols. ${ }^{37}$ Sharpless et al. ${ }^{33}$ have shown that the facial selectivity for both ligands (DHQ) ${ }_{2} \mathrm{PHAL}$ and (DHQD) $)_{2} \mathrm{PHAL}$ is different, based on their ability to induce the ee into the diols. This observation has led to the development of mnemonic model (Fig. 4) in which olefin with the constraints will be attacked either from the top (i.e. $\beta$ ) face in the presence of dihydroquinidine (DHQD)
derivatives or from the bottom (i.e. $\alpha$ ) face in the presence of dihydroquinine (DHQ) derived ligand.


Fig. 4: Enantioselectivity mnemonic scheme

### 2.1.3.3 Transition metal boride catalyzed reduction

Since the pioneering discovery of nickel-catalyzed hydrogenation by Paul Sabatier, organic chemists have been fascinated with transition metals and their compounds as promoters for other synthetically important reductions. In the last 40 years, metal hydrides, particularly sodium borohydride and lithium aluminum hydride, have emerged as preeminent reducing agents in modern organic chemistry. ${ }^{38}$ These are extraordinarily versatile reagents capable of reducing most functional groups. Moreover by attaching organic ligands at boron or aluminum or changing the metal counter ion, one can modulate the scope, regio and stereoselectivity of such reductions. Literally hundreds of substituted boron and aluminum hydrides have been described in the chemical literature and dozens are now commercially available. ${ }^{39}$

More recently, transition metal salts have been used as catalysts or additives in combination with $\mathrm{NaBH}_{4}$ and $\mathrm{LiAlH}_{4}$, to modify or enhance the properties of these reagents. Nearly every conceivable combination of salt and hydride has been investigated
with the concomitant development of many useful new synthetic methods. ${ }^{40}$ The resulting systems are complex, however, and in most cases virtually nothing is known about mechanism or reactive intermediates. Boron and aluminum hydrides may combine with metal halides in several different ways: (1) simple metathesis (e.g., $\mathrm{LiCl}+\mathrm{NaBH}_{4}$, $\mathrm{LiBH}_{4},+\mathrm{NaCl}$ ), (2) reduction of the metal halide to the metal, (3) conversion of metal halide to metal hydride: (4) some combination of (2) and (3), viz., $\mathrm{FeCl}_{3}$, $+\mathrm{LiBH}_{4}=$ $\mathrm{Fe}\left(\mathrm{BH}_{4}\right)_{2}$, or (5) formation of a boride or aluminide. ${ }^{41}$ Furthermore, it is often unclear whether the metal salt serves a true catalytic function or whether some transient, metalloidal complex formed in situ is the actual reducing agent.

Historically, borides were first produced by the combination of boron with metallic or metalloidal elements less electronegative than itself. For the most part, borides are very hard, high-melting, refractory substances whose structures and stoichiometries do not conform to the ordinary concepts of valence. H. I. Schlessinger discovered a much simpler synthesis in his pioneering work on borohydrides. Combinations of cobalt or nickel (or other metal salts) with aqueous $\mathrm{NaBH}_{4}$ deposit finely divided black precipitates of $\mathrm{Co}_{2} \mathrm{~B}$ and $\mathrm{Ni}_{2} \mathrm{~B}$ (eq 1).
$4 \mathrm{NaBH}_{4}+2 \mathrm{CoCl}_{2}+9 \mathrm{H}_{2} \mathrm{O}=\mathrm{Co}_{2} \mathrm{~B}+3 \mathrm{H}_{3} \mathrm{BO}_{3}+4 \mathrm{NaCl}+12.5 \mathrm{H}_{2}$
Because they actively catalyzed the decomposition of borohydride, these borides have been commonly used as a practical, controlled source of hydrogen (eq 2).
$\mathrm{NaBH}_{4}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{NaBO}_{2}+4 \mathrm{H}_{2}$
The actual composition of borides prepared from inorganic salts depends to a great extent on the specific mode of preparation. Maybury, Mitchell, and Hawthorne analyzed nickel
and cobalt borides prepared in ethanol under $\mathrm{N}_{2}$ using excess $\mathrm{NaBH}_{4}$, and concluded that the stoichiometries $\mathrm{Ni}_{2} \mathrm{~B}$ and $\mathrm{Co}_{2} \mathrm{~B}$ inadequately represented their constitution. ${ }^{42}$

In dimethylformamide (DMF) reduction of $\mathrm{CoCl}_{2}$ or $\mathrm{NiC1}_{2}$ with $\mathrm{NaBH}_{4}$, produced dark brown/black solutions ${ }^{43}$ which comprised quite efficient systems for hydrogenation of alkenes, alkynes, azides, nitriles, alkyl halides, nitro compounds, amides, oximes, etc. ${ }^{44}$ Simple reaction procedures and excellent yields of products coupled with high catalytic efficiency makes this method much more impressive and practical.

### 2.1.3.2 Results and Discussion

We envisaged to provide a new synthetic route to ( $S$ )-indoline-2-carboxylic acid (80), a key intermediate in the synthesis of perindopril 81, which is an orally active pharmaceutical used for the treatment of hypertension ${ }^{45}$ (Fig. 5).


80, (S)-Indole-2-carboxylic acid


81, Perindopril

Fig. 5: Structures of ( $S$ )-indoline-2-carboxylic acid and perindopril

In order to synthesize $(S)$-indoline-2-carboxylic acid (80), we visualized a strategy in which simultaneous reduction ${ }^{46}$ of nitro cyclic sulfite $\mathbf{8 4}$ could probably lead to the cyclized product 80. Thus, o-nitrocinnamate 82, prepared from Wittig olefination of $o$ nitrobenzaldehyde, was converted to the corresponding nitro diol 83 in $82 \%$ yield via Oscatalyzed asymmetric dihydroxylation $(\mathrm{AD})$ using $(\mathrm{DHQ})_{2}-\mathrm{PHAL}$ as the chiral ligand. Its
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed methine protons $(\mathrm{CHOH})$ for the carbons attached to hydroxyl group as doublets, each resonating at $\delta 4.48(J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$ and $5.67(J=2.1$ $\mathrm{Hz}, 1 \mathrm{H})$. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed the corresponding methine carbon signals at $\delta$ 69.7 and 73.4 (Fig. 6).


Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of diol $\mathbf{8 3}$


Scheme 21: (a) $\mathrm{K}_{2} \mathrm{OsO}_{4}(0.2 \mathrm{~mol} \%)$, ( DHQ$)_{2}$ - $\mathrm{PHAL}(1 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1 equiv), tert-BuOH: $\mathrm{H}_{2} \mathrm{O}$ (1:1), $25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 82 \%$; (b) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$.

The nitro diol 83 was then readily transformed into the corresponding precursor nitro cyclic sulfite $84\left(\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in $95 \%$ yield (Scheme 21). Two doublets at $\delta$ $4.97(J=4.7 \mathrm{~Hz})$ and $6.93(J=4.7 \mathrm{~Hz})$ integrating for one proton each accounted for the methine protons of the cyclic sulfite in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Methine carbons of the cyclic sulfite gave signals at $\delta 83.21$ and 83.11 in its ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 7).


Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of cyclic sulfite $\mathbf{8 4}$

In order to validate our hypothesis, nitro cyclic sulfite $\mathbf{8 4}$ was then subjected to reduction with 4 equivalents of $\mathrm{NaBH}_{4}$ catalyzed by $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Surprisingly, the reaction took
altogether a different course to give the cyclized 3-hydroxytetrahydroquinoline 86, in a single step, as the only product in $81 \%$ isolated yield, instead of the expected cyclized ester 85. Under the reaction conditions, it was thus observed that a simultaneous reduction of multifunctional groups took place, all occurring in a single step (Scheme 22). However, when nitro diol 83 was subjected to reduction under identical conditions, nitro group was unaffected. It was further observed that, nitro functionality was reduced only when nitro diol 83 was converted into its cyclic sulfite $\mathbf{8 4}$.


Scheme 22: (a) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%), \mathrm{NaBH}_{4}$ (4 equiv.), EtOH, $0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

The formation of the tetrahydroquinolin-3-ol 86 was confirmed by their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, which showed characteristic signals at $\delta 2.73-2.83(\mathrm{dd}, J=3.5,16.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99-3.09 (dd, $J=3.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.36(\mathrm{~m}, 2 \mathrm{H})$ in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum corresponding to the benzylic methylene $\left(\mathrm{Bn}-\mathrm{CH}_{2}\right)$ and methylene attached to nitrogen $\left(\mathrm{CH}_{2} \mathrm{~N}\right)$ protons respectively. Also signal at $\delta 4.19-4.27(\mathrm{~m})$ due to methine proton $(\mathrm{CHOH})$ confirms the formation of 3-hydroxytetrahydroquinoline. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at $\delta 35.3$ and 47.6 and 63.2 for two methylene carbons $\left(\mathrm{ArCH}_{2}\right.$, $\mathrm{NCH}_{2}$ ) and one methine carbon $(\mathrm{CHOH})$ respectively. Disappearance of carbonyl
frequency in its IR and ${ }^{13} \mathrm{C}$-NMR signal establishes the structure of 3-hydroxyquinoline 86 (Fig. 8).


Fig. 8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3-hydroxyquinoline 86
Encouraged by the result, we became interested in carrying out the reduction of several nitro cyclic sulfites 90a-e. To start with, the precursors (90a-e) were readily prepared in three steps starting from the corresponding $\alpha, \beta$-unsaturated esters 87a-e. Firstly, 3,4disubstituted cinnamates 87a-e were prepared in high yields by Wittig olefination of the corresponding benzaldehydes. The Os-catalyzed asymmetric dihydroxylation (AD) of the $\alpha, \beta$-unsaturated esters 87a-e using $(\mathrm{DHQ})_{2}-\mathrm{PHAL}$ as the chiral ligand gave the corresponding chiral diols, 88a-e in 80-95\% yields. Then initially, nitration of diol 88a-e
in acetic acid was carried out to afford nitrodiols 89a-e in low yields, as considerable amount of byproducts were formed. However, when direct aromatic nitration of 88a-e was carried out in biphasic medium $\left(\mathrm{HNO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the corresponding nitro diols 89a-e were obtained in good yields with excellent regioselectivity. Nitro diols 89a-e were then readily transformed to the corresponding nitro cyclic sulfites 90a-e $\left(\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}\right.$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) in quantitative yields (Scheme 23).


Scheme 23: (i) $\mathrm{K}_{2} \mathrm{OsO}_{4}(0.1 \mathrm{~mol} \%)$, ( DHQ$)_{2}$ - $\mathrm{PHAL}(0.5 \mathrm{~mol} \%$ ), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 3 equiv.), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ ( 1 equiv.), tertBuOH: $\mathrm{H}_{2} \mathrm{O}$ (1:1), $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (ii) conc. $\mathrm{HNO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 30$ min.; (iii) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

When subjected to the $\mathrm{CoCl}_{2}$-catalyzed reduction ${ }^{15}$ with 4 equiv. of $\mathrm{NaBH}_{4}$, chiral nitro cyclic sulfites 90a-e gave the corresponding ( $R$ )-3-hydroxytetrahydroquinoline derivatives 91a-e in $78-85 \%$ yields with excellent enantioselectivities. Results of such studies are presented in Table 1. As can be seen, various cyclic sulfites underwent reductive cyclization smoothly, at ambient conditions, to provide 91a-e in a one-pot reaction, which comprises several transformations taking place in a single step with a variety of substituted nitro cyclic sulfites 90a-e using cheaply available reagents. The formation of $(R)$-3-hydroxytetrahydroquinoline derivatives 91a-e was confirmed by the
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy (see the experimental section) and also the mass spectra of 91a-e (Fig. 9).

Table 1: Co-Catalyzed Reductive Cyclization of Nitro Cyclic Sulfites with $\mathrm{NaBH}_{4}$


|  |  | Products 91a-f |  |
| :---: | :---: | :---: | :---: |
| Entry | Substrates $($ 90a-f) | Yield $(\%)^{\mathrm{a}}$ | ee $(\%)^{\mathrm{b}}$ |
| $\mathbf{a}$ | $\mathrm{R}=\mathrm{R}^{1}=$ OMe | 78 | 96 |

b $\mathrm{R}=\mathrm{R}^{1}=\mathrm{OBn} \quad 85 \quad 96$
c $\mathrm{R}=\mathrm{OBn} ; \mathrm{R}^{1}=\mathrm{OMe} \quad 83 \quad 95$
d $\quad \mathrm{R}, \mathrm{R}^{1}=-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-\quad 81 \quad 96$
e $\quad \mathrm{R}=$ O-pentyl $; \mathrm{R}^{1}=\mathrm{OMe} \quad 82 \quad 94$
a isolated yield after column chromatographic purification ${ }^{\text {b }}$ determined from chiral HPLC or Mosher's ester analysis


Fig. 9: Mass spectrum of tetrahydroquinoline 91a

The optimization showed that a mixture of products were obtained with lower equiv of $\mathrm{NaBH}_{4}$, thus requiring a minimum of 4 equiv. of $\mathrm{NaBH}_{4}$ to achieve excellent yields; ethanol or a combination of EtOH and DMF could be used as solvent. However, other metal catalysts such as $\mathrm{NiCl}_{2}$ and $\mathrm{MnO}_{2}$ were indeed found to show catalytic activity under the reduction conditions although in poor yields ( $33 \%$ and $21 \%$ respectively).


91a-f


Scheme 24: (i) (EtCO) $)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Since the optical purities of the tetrahydroquinol-3-ol derivatives $\mathbf{8 6}$ and 91a-e could not be established by HPLC due to their difficulty in separation, the protection of amine function in 86 and 91a-e as propyl amides (propionic anhydride, $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) was carried out to give the respective amido alcohols 92a-f in high yields (Scheme 24), which facilitated their easy characterization by HPLC analysis. For example, chiral HPLC chromatogram of 92b showed 95.5\% ee (Fig. 10).

Enantiomeric excess of $\mathbf{8 6}$ and 91a-e was also determined by recording ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of their Mosher's ester analysis. Thus, free hydroxyl moiety in amido alcohols 92a-e was subjected to esterification (catalytic DMAP, DCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) with Mosher's acid $[(R)$ -3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid] and the resulting Mosher's esters 100a-e were analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra to determine their \%ee. For example, ${ }^{1} \mathrm{H}$

NMR spectrum of 100a showed methyl proton signals at $\delta 3.38(2.95 \mathrm{H})$ for $R$ isomer ( $d r$ $=32: 1,94 \%$ ee $)($ Fig. 11).


Fig. 10: HPLC Chromatogram of tetrahydroquinoline 92a


Fig. 11: ${ }^{1} \mathrm{H}$ NMR spectrum of Mosher's ester of $\mathbf{8 6}$

## Mechanism:

To have a better understanding of the reaction mechanism, we have subjected diols $\mathbf{9 3}$ and 83 to Co-catalyzed reduction that proceeded to give high yields of the corresponding triols 94 and 95 respectively (Scheme 25).


Scheme 25: (i) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ( $1 \mathrm{~mol} \%$ ), $\mathrm{NaBH}_{4}$ (4 equiv.), $\mathrm{EtOH}, 0-25^{\circ} \mathrm{C}, 12$ h; (ii) (a) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (b) $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (cat), $\mathrm{NaIO}_{4}$, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CCl}_{4}: \mathrm{H}_{2} \mathrm{O}(1: 1: 1), 1 \mathrm{~h}, 88 \%$.

Also, when nitro cyclic sulfate 97 , obtained from 83 in two steps, was subjected to reduction, a mixture of $\mathbf{8 6}$ (36\%) and 98 (41\%) was obtained. However, cyclic sulfite 96, under the reduction condition, gave only triol 94 in $55 \%$ yield. This indicates that both nitro and cyclic sulfite moieties are required in the Co-catalyzed reductions of $\mathbf{8 4}$ and 91a-e. Thus, we believe that simultaneous reduction of both nitro and cyclic sulfite groups takes place to give the unstable species $\mathbf{A}$, which underwent cyclization to afford hydroxylactam 99. Compound 99 was indeed isolated and characterized when the reaction was terminated before completion.





Scheme 26: Mechanistic Pathway for the Co-catalyzed Reduction of Nitro Cyclic Sulfite

The ${ }^{1} \mathrm{H}$ NMR spectrum of hydroxyl amide 99 showed two typical signals at $\delta$ 2.85-3.15 $(\mathrm{m}, 2 \mathrm{H}))$ and $4.24(\mathrm{dd}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$ due to methylene $\left(-\mathrm{CH}_{2} \mathrm{CHOH}-\right)$ and methine protons ( $-\mathrm{CH}_{2} \mathrm{CHOH}-$ ) respectively (Fig. 12). Finally, the reduction of the lactam carbonyl in 99, assisted by the $\alpha$-hydroxyl group, resulted in the formation of THQs (86

## \& 92a-e) (Scheme 26).



Fig. 12: ${ }^{1} \mathrm{H}$ NMR spectrum of hydroxy amide $\mathbf{8 5 b}$

### 2.1.4 Conclusion

In conclusion, we have developed a simple methodology involving a single-step multifunctional reduction of cyclic sulfites $\mathbf{8 4} \& \mathbf{9 0 a} \mathbf{- e}$, which gave the corresponding 3hydroxytetrahydroquinolines $\mathbf{8 6} \&$ 91a-e in high yields. Use of inexpensive, yet powerful reducing agent $\mathrm{NaBH}_{4}$ in combination with catalytic amount of $\mathrm{CoCl}_{2}$ makes our synthesis more attractive. This method has been found very effective in the asymmetric synthesis of several bioactive compounds having tetrahydrquinoline core.

### 2.1.5 Experimental Section:

Typical experimental procedure for the preparation of (E)-ethyl 3-(2nitrophenyl)acrylate (82)

To a stirred solution of 2-nitrobenzaldehyde ( $7.55 \mathrm{~g}, 50 \mathrm{mmol}$ ) in benzene ( 100 mL ), $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(19.25 \mathrm{~g}, 55 \mathrm{mmol})$ was added. It was then refluxed for 4 h under $\mathrm{N}_{2}$ atmosphere. After the completion of reaction, benzene was distilled out to give the crude product. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petrolium ether: Ethyl acetate $(90: 10)$ as eluent] afforded nitro cinnamate $82(10.5 \mathrm{~g})$. Yield: $95 \%$, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 756,857,974,1037,1095,1184,1202,1216$, $1251,1275,1291,1319,1347,1368,1393,1444,1477,1573,1607,1640,1716,2984$, 3023, 3415; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.35(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.66(\mathrm{~m}, 3 \mathrm{H}), 8.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=16$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,60.7,123.3,124.8,129.0,130.1,133.3$, 139.7, 148.3, 165.4; Analysis: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires C 59.63, H 5.01, N 6.33 , found C 59.50, H 4.91, N 6.34\%.

Typical experimental procedure for the preparation of (2R,3S)-ethyl 2,3-dihydroxy-3-(2-nitrophenyl)propanoate (83)

To a stirred solution of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(39.48 \mathrm{~g}, 120 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(16.56 \mathrm{~g}, 120 \mathrm{mmol})$, and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(3.8 \mathrm{~g}, 40 \mathrm{mmol})$ in tert- $\mathrm{BuOH}(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL}),(\mathrm{DHQ})_{2^{-}}$ PHAL ( $354 \mathrm{mg}, 1 \mathrm{~mol} \%$ ) and $\mathrm{K}_{2} \mathrm{OsO}_{4}(19 \mathrm{mg}, 0.2 \mathrm{~mol} \%)$ were added and stirred for 30 min. Then, (E)-ethyl 3-(2-nitrophenyl)acrylate (82) ( $8.84 \mathrm{~g}, 40 \mathrm{mmol}$ ) was added to the reaction mixture and allowed to stir for 24 h at $25^{\circ} \mathrm{C}$. After completion of the reaction, sodium bisulfite ( 10 g ) was added slowly at $0^{\circ} \mathrm{C}$. The organic layer was separated and aqueous layer extracted with ethyl acetate ( $3 \times 300 \mathrm{ml}$ ); the combined organic layers were washed with brine ( $2 \times 400 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification using silica gel (230-400 mesh) and petroleum ether: ethyl acetate (60:40) as an eluent afforded pure 83 ( 8.37 g ).

Yield: $82 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+126.0\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; yellow solid, mp: $86^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 668,757,860,1055,1108,1216,1263,1347,1527,1733,3020,3485 ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.22(\mathrm{bs}, 1 \mathrm{H}), 3.38(\mathrm{bs}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}$,$) ,$ $7.67(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(50$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 14.1,62.3,69.7,73.4,124.3,128.4,129.7,133.2,136.2,147.6,172.6$;

Analysis for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{6}$ requires C 51.77 , H 5.13, N 5.49 ; found C 51.65 , H 5.33 , N 5.54\%.

## Typical experimental procedure for the preparation of nitro cyclic sulfite (84)

To a stirred solution of diol $83(2.55 \mathrm{~g}, 10 \mathrm{mmol})$ and triethylamine ( $4.2 \mathrm{ml}, 30 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, freshly distilled $\mathrm{SOCl}_{2}(1.0 \mathrm{ml}, 12 \mathrm{mmol})$ was added drop-wise under nitrogen atmosphere. It was further stirred at $0^{\circ} \mathrm{C}$ for 30 min (progress of the
reaction was monitored by TLC). The reaction mixture was quenched by the addition of cold water $(20 \mathrm{~mL})$ and a saturated solution of aq. $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification using silica gel (230-400 mesh) and petroleum ether: ethyl acetate (70:30) as an eluent afforded pure $\mathbf{8 4}$. Yield: $95 \%$; Gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 667,757,962,1045,1217,1350,1531$, 1610,1747, 2985, 3022, 3519; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $4.36(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.80(\mathrm{~m}$, $3 \mathrm{H}), 8.13-8.18(\mathrm{dd}, J=1.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.8,62.7,83.1$, 83.2, 124.9, 129.9, 130.9, 131.1, 134.5, 147.6, 165.7.

Typical experimental procedure for the preparation (R)-1,2,3,4-tetrahydroquinolin-

## 3-ol (86)

To a stirred solution of nitro cyclic sulfite $84(10 \mathrm{mmol})$ and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(23.8 \mathrm{mg}, 1$ $\mathrm{mol} \%)$ in $95 \%$ ethanol $(30 \mathrm{~mL}), \mathrm{NaBH}_{4}(24 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After the completion of reaction, it was poured into ice cold water that formed black precipitate. To the aqueous layer, ethyl acetate ( 100 mL ) was added and combined mixture was passed through celite. The organic layer was separated and the aqueous layer extracted with ethyl acetate ( $2 \times 50$ $\mathrm{mL})$. The combined organic layers were washed with brine ( $2 \times 50 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product using silica gel (230-400 mesh) and petroleum ether: ethyl acetate: $\mathrm{Et}_{3} \mathrm{~N}$ (60: 40:2) gave pure 86 (1.22g).

Yield: $82 \%$; gum, $[\alpha]^{\mathrm{D}}{ }_{25}+11.2\left(c 1, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 667,756,850,1155$, $1215,1253,1278,1371,1496,1608,1735,2935,2983,3018,3446 ;{ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 2.73-2.83(\mathrm{dd}, J=3.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.09(\mathrm{dd}, J=3.5,16.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.19-3.36 (m, 2H), 4.19-4.27 (m, 1H), $6.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dt}, J=1.1,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), ~ 6.95-7.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 35.3,47.6,63.2,114.1,118.0$, 118.6, 126.9, 130.4, 143.5; Analysis for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$ requires C, 72.46; H, 7.43; N, 9.39; found C, 72.22; H, 7.21; N, 9.49\%.

General experimental procedure for the preparation of (2R,3S)-ethyl 2,3-dihydroxy-3-(3,4-dialkyloxyphenyl)propanoate (88a-e)

A 500 mL RB flask was charged with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(45 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(45 \mathrm{mmol})$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(15 \mathrm{mmol})$, tert- $\mathrm{BuOH}(75 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$. This combined reaction mixture was stirred for 10 min and $(\mathrm{DHQ})_{2}$-PHAL ( $1 \mathrm{~mol} \%$ ) and $\mathrm{K}_{2} \mathrm{OsO}_{4}(0.2 \mathrm{~mol} \%)$ were added and stirred for additional 30 min . To the reaction mixture 87a-e unsaturated esters were added separately was added and allowed to stir for 24 h at $25^{\circ} \mathrm{C}$. After completion of reaction, sodium bisulfite ( 5 g ) was added slowly at $0^{\circ} \mathrm{C}$. Organic layer was separated and aqueous layer was extracted with ethyl acetate ( 3 x 100 ml ). The combined organic layer was washed with brine ( 200 mL ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield the crude products, Flash column chromatographic purification [silica gel (230-400 mesh) and petroleum ether : EtOAc (60:40) as an eluent] afforded diols 88a-e in pure form.

## (2R,3S)-Ethyl 2,3-dihydroxy-3-(3,4-dimethoxyphenyl)propanoate (88a)

Yield: $95 \%$; colorless solid; mp: $78{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+3.533\left(c\right.$ 1.5, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 848,939,1047,1240,1373,1446,1517,1737,2983,3500 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.35(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.98(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.8,55.6,55.7,61.7,74.2,74.8,109.4,110.6,118.4,132.4,148.4$, 148.6, 172.6; Analysis for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C, 57.77; H, 6.71; found C, 57.47; H, $6.63 \%$.

## (2R,3S)-Ethyl 3-(benzo[d][1,3]dioxol-6-yl)-2,3-dihydroxypropanoate (88b)

Yield: $92 \%$; colorless solid; mp: $62^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+1.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 846,937,1047,1244,1373,1246,1745,2983,3519 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.91(\mathrm{bs}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.89(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.87(\mathrm{dd}, J$ $=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.9,61.8$, 74.32, 74.9, 100.9, 106.9, 107.8, 119.6, 133.8, 147.1, 147.5, 172.5; Analysis for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$ requires C, $56.69 ; \mathrm{H}, 5.55$; found C, $56.73 ; \mathrm{H}, 5.53 \%$.
(2R,3S)-Ethyl 3-(4-(benzyloxy)-3-methoxyphenyl)-2,3-dihydroxypropanoate (88c) Yield: $80 \%$; colorless solid; mp: $77^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+1.2\left(c 1, \mathrm{CHCl}_{3}\right)$ : IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 846,837,1049,1244,1361,1479,1751,2985,3519 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.48(\mathrm{bs}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J$ $=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.43(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.8,55.7,61.7,70.7,74.7,74.8$, 110.0, 113.4, 118.4, 127.0, 127.6, 128.3, 132.9, 136.8, 147.5, 147.3, 172.5; Analysis for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$ requires C, 65.88; H, 6.40; found , 65.84; H, 6.37\%.
(2R,3S)-Ethyl 3-(3,4-bis(benzyloxy)phenyl)-2,3-dihydroxypropanoate (88d)

Yield: $85 \%$; colorless solid; mp: $101{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+0.84\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 848,1045,1245,1373,1514,1593,1745,2981,3465 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.48(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.9,61.8,71.1,71.1,74.2,74.7,113.3,114.6,119.3$, 127.1, 127.3, 127.6, 127.6, 128.3, 133.2, 137.0, 137.1, 148.5, 148.7, 172.5; Analysis for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{6}$ requires $\mathrm{C}, 71.07 ; \mathrm{H}, 6.20$; found $\mathrm{C}, 71.01 ; \mathrm{H}, 6.17 \%$.
(2R,3S)-Ethyl-3-[4-(cyclopentyloxy)-3-methoxyphenyl]-2,3-dihydroxypropanoate (88e)

Yield: $81 \%$; colorless solid; mp: $105{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+1.50\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 848,1045,1245,1373,1514,1593,1745,2981,3465 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.94(\mathrm{~m}, 8 \mathrm{H}), 2.62(\mathrm{bs}, 1 \mathrm{H}), 3.07(\mathrm{bs}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.74-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.98(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 13.9,23.9,32.6,55.8,61.7,74.3,74.9,80.1,111.4,113.2$, 118.5, 132.3, 147.3, 149.59, 172.6; Analysis for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{6}$ requires C, 62.95; H, 7.46; found C, $62.90 ; \mathrm{H}, 7.44 \%$.

General experimental procedure for the preparation of (2R,3S)-ethyl 2,3-dihydroxy-3-(4,5-dialkyloxy-2-nitrophenyl) propanoate (89a-e)

To a stirred solution of diol 88a-e (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, conc. $\mathrm{HNO}_{3}(2 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. Reaction mixture was stirred for 30 min and progress of the reaction was monitored by TLC. After completion of reaction, 50 mL of water was added. Organic layer was separated and aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50$ $\mathrm{mL})$. Combined organic layers were washed with brine $(50 \mathrm{~mL})$, dried over anhyd.
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: $\operatorname{EtOAc}(60: 40)$ as an eluent] to give pure 89a-e in pure form.
(2R,3S)-Ethyl-2,3-dihydroxy-3-(4,5-dimethoxy-2-nitrophenyl)propanoate (89a)
Yield: $70 \%$; yellow solid; mp: $131^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+105.23\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 787,848,937,1049,1240,1371,1747,2985,3460,3640 ;{ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.51(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 13.3,55.1,55.3,60.1,69.0,72.7,106.1,111.0,132.3,138.3,146.6$, 152.1, 171.6; Analysis for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{8}$ requires C, 49.52; H, 5.43; N, 4.44; found C, 49.65; H, 5.23; N, 4.55\%.

## (2R,3S)-Ethyl-2,3-dihydroxy-3-(5-nitrobenzo[d][1,3]dioxol-6-yl)propanoate (89b)

Yield: $81 \%$; yellow solid; mp: $138{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+138.5\left(c 1, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 786,846,937,1049,1240,1373,1747,2985,3463,3643 ;{ }^{1} \mathbf{H}-$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.14(\mathrm{dd}, J=1.1,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.2,60.0,68.8,72.7,101.9,103.3,108.4,134.8,140.0$, 145.9, 150.8, 171.3; Analysis for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{8}$ requires $\mathrm{C}, 48.17 ; \mathrm{H}, 4.38$; $\mathrm{N}, 4.68$; found C, 48.01; H, 4.23; N, 4.76\%.
(2R,3S)-Ethyl-3-(4,5-bis(benzyloxy)-2-nitrophenyl)-2,3-dihydroxypropanoate (89c)
Yield: $73 \%$, yellow solid; mp: $141^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+105.34\left(c 0.8, \mathrm{CHCl}_{3}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 763,1132,1215,1683,3388 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 2.84(\mathrm{bs}, 1 \mathrm{H}), 3.19(\mathrm{bs}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$
$(\mathrm{s}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.47(\mathrm{~m}, 11 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$ ) : $\delta 12.5,58.9,68.0,68.9,69.1,71.9,108.0,112.7$, $125.7,126.0,126.3,126.4,126.8,131.9,134.4,134.6,137.7,145.1,150.9,170.6$;

Analysis for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{8}$ requires C, 64.23 ; H, 5.39 ; N, 3.00; found $\mathrm{C}, 64.02 ; \mathrm{H}, 5.49$; N, 2.87\%.
(2R,3S)-Ethyl-3-(4-(benzyloxy)-5-methoxy-2-nitrophenyl)-2,3-dihydroxypropanoate (89d)

Yield: $75 \%$; yellow solid; mp: $138^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+102.25\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 757,1215,1620,2780,3400 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.65(\mathrm{bs}, 1 \mathrm{H}), 2.97(\mathrm{bs}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.7,55.9,61.0,69.5,70.6,73.2,108.9,111.4$, 127.0, 127.7, 128.1, 132.8, 135.3, 138.7; Analysis for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{8}$ requires $\mathrm{C}, 58.31$; H , 5.41 ; N, 3.58 ; found C, 58.16 ; H, 5.28 ; N, $3.51 \%$.
(2R,3S)-Ethyl-3-(4-(cyclopentyloxy)-5-methoxy-2-nitrophenyl)-2,3-dihydroxypropanoate (81e)

Yield: $81 \%$; yellow solid; mp: $142{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}} 25+99.72\left(c 0.8, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 757,1215,1620,3465 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.58-2.08(\mathrm{~m}, 10 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-$ $4.99(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\mathrm{CDCl}_{3}+$ DMSO- $\left.d_{6}\right): \delta 13.3,23.0,31.6,31.7,55.1,60.2,69.0,72.8,79.7,106.5,113.1$, 132.0, 137.8, 147.3, 151.1, 171.7; Analysis for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{8}$ requires C, $55.28 ; \mathrm{H}, 6.28 ; \mathrm{N}$, 3.79; found C, 55.12; H, 6.13; N, 3.83\%.

## General experimental procedure for the preparation of nitro cyclic sulfite (90a-e)

To a stirred solution of nitro diol 89a-e $(6.0 \mathrm{mmol})$ and triethylamine $(3.00 \mathrm{ml}, 18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, was added freshly distilled thionyl chloride ( $0.5 \mathrm{ml}, 7 \mathrm{mmol}$ ) dropwise under nitrogen atmosphere at $0{ }^{\circ} \mathrm{C}$ and allowed to stir at $0{ }^{\circ} \mathrm{C}$ for $30-45 \mathrm{~min}$ (monitored by TLC). The reaction mixture was quenched by the addition of cold water $(20 \mathrm{~mL})$ and a saturated solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products, which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether:EtOAc (70:30) as an eluent] to give pure 90a-e in pure form.

## Nitro cyclic sulfite (90a)

Yield: $92 \%$; Gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 648,771,914,1066,1278,1340,1525$, 1585,1748, 2976, 3028; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.09(\mathrm{~s}$, $6 \mathrm{H}), 4.30-3.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 13.5,56.0,56.2,62.5,83.5$, 105.9, 109.6, 125.9, 139.3, 148.6, 153.7, 166.1; Analysis for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{9} \mathrm{~S}$ requires C, 43.21; H, 4.18; N, 3.88; found C, 43.14; H, 4.09; N, 3.81\%.

## Nitro cyclic sulfite (90b)

Yield: 97\%; Gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 696,737,1062,1211,1281,1336,1522$, 1578,1749, 2979, 3011; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.27-$ $4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 4 \mathrm{H}), 6.44(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.47(\mathrm{~m}, 10 \mathrm{H}), 7.60$ (s, 1H), $7.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.8,62.9,71.0,71.2,83.6,83.8$,
$110.4,113.3,126.2,127.2,127.6,128.3,128.5,135.2,135.4,139.6,148.3,153.7,166.2$;
Analysis for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{9} \mathrm{~S}$ requires C, 41.74; H, 3.21; N, 4.06; found C, 41.68; H, 3.14; N, 3.98\%.

## Nitro cyclic sulfite (90c)

Yield: 91\%; Gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 630,733,10431217,1324,1464,1525,1575$, 1673,1748, 2983; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.0(\mathrm{~s}, 3 \mathrm{H})$, 4.29-4.40 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.7$, $56.4,62.8,71.0,83.1,109.5,111.6,126.4,127.3,128.2,128.5,135.1,139.3,147.8$, 154.5, 166.2; Analysis for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{9} \mathrm{~S}$ requires $\mathrm{C}, 58.47 ; \mathrm{H}, 4.51 ; \mathrm{N}, 2.73$; found C , 58.39; H, 4.43; N, 2.66\%.

## Nitro cyclic sulfite (90d)

Yield: 92\%; Gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 662,756,947,1036,1202,1269,1336,1526$, 1616,1752, 2917, 2981; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.35(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, 1H), $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.7,62.9,82.9,83.6$, 103.5, 105.4, 108.9, 128.0, 142.0, 148.5, 153.0, 165.8; Analysis for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{9} \mathrm{~S}$ requires C, 52.17 ; H, 4.38; N, 3.20; found C, 52.09; H, 4.29; N, 3.12\%.

## Nitro cyclic sulfite (90e)

Yield: $94 \%$; Gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 659,746,975,1068,1215,1370,1575$, 1674,1748, 2978, 3010; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-$ $2.13(\mathrm{~m}, 8 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 4.30-4.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.94(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=$
6.1 Hz, 1H), $6.49(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 13.6,23.7,23.9,32.3,32.4,55.9,62.4,81.2,83.4,83.6,107.6,112.9,125.7$, 138.8, 149.2, 152.9, 165.9; Analysis for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{9} \mathrm{~S}$ requires $\mathrm{C}, 49.15 ; \mathrm{H}, 5.10 ; \mathrm{N}, 3.37$; found C, 49.08; H, 5.01; N, 3.29\%.

General experimental procedure for the preparation of (R)-1,2,3,4-tetrahydro-6,7-dialkyloxyquinolin-3-ol (91a-e)

To the stirred solution of nitro cyclic sulfite 90a-e ( 6 mmol ) and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%)$ in $95 \%$ ethanol $(30 \mathrm{~mL}), \mathrm{NaBH}_{4}(24 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After completion of reaction, it was poured into ice cold water to form black precipitate. To the aqueous layer, 100 mL of ethyl acetate was added and combined mixture was passed through celite. The organic layer was separated and aqueous layer was extracted with ethyl acetate ( $2 \times 50 \mathrm{~mL}$ ). Combined organic layers were washed with brine ( $2 \times 50 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product [flash silica gel (230-400 mesh) and petroleum ether:ethyl acetate: $\mathrm{Et}_{3} \mathrm{~N}$ (60: 38:2)] gave pure tetrahydroquinolin-3-ol (91a-e) .

## (R)-1,2,3,4-Tetrahydro-6,7-dimethoxyquinolin-3-ol (91a)

Yield: $78 \%$; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+25.4$ (c 1.26, $\mathrm{CHCl}_{3}$ ); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 769,1215,1423$, 1647, 3456; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 2.63-2.73(\mathrm{dd}, J=3.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (bs, 2H), 2.92-3.02 (dd, $J=4.3,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 4.15-4.23(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.2$, 47.6, 55.5, 56.3, 63.3, 99.3, 110.1, 113.9, 137.2, 141.6, 148.0; MS: m/z (\% rel. Intensity): $209\left(\mathrm{M}^{+}, 20\right), 194$ (100), 176 (10), 166 (12), 148 (8), 133 (7), 120 (4), 103 (2), 91 (4);

Analysis for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $\mathrm{C}, 63.14 ; \mathrm{H}, 7.23 ; \mathrm{N}, 6.69$; found $\mathrm{C}, 63.09 ; \mathrm{H}, 7.17$; N , 6.61\%.

## (R)-5,6,7,8-Tetrahydro-[1,3]dioxolo[4,5-g]quinolin-7-ol (91b):

Yield: $81 \%$; Gum, $[\alpha]^{\mathrm{D}}{ }_{25}+28.2\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 765,1045,1247$, 1456, 2985, 3450; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 2.18$ (bs, 2H), 2.63-2.73 (dd, $J=3.5$, $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.03(\mathrm{dd}, J=3.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.23(\mathrm{dd}, J=1.4,4.3 \mathrm{~Hz}, 2 \mathrm{H})$, 4.17-4.25 (m, 1H), $5.82(\mathrm{~s}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 35.1,47.5,63.1,96.4,100.1,109.5,110.1,137.9,139.9$, 146.1; Analysis for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires $\mathrm{C}, 62.17 ; \mathrm{H}, 5.74 ; \mathrm{N}, 7.25$; found $\mathrm{C}, 62.11 ; \mathrm{H}, 5.76 ; \mathrm{N}, 7.21 \%$.

## (R)-6,7-Bis(benzyloxy)-1,2,3,4-tetrahydroquinolin-3-ol (91c)

Yield: $83 \%$; Gum, $[\alpha]^{\mathrm{D}}{ }_{25}+30.5\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 767,1217,1504$, 2927, 3016, 3402; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 1.74$ (bs, 2H), 2.60-2.70 (dd, $J=3.4$, $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.99(\mathrm{dd}, J=4.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.24(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.24(\mathrm{~m}, 1 \mathrm{H})$, $5.03(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.9$, $47.5,63.4,71.2,73.0,102.2,111.1,119.3,127.2,127.5,127.6,127.6,128.3,128.4$, 137.3, 138.4, 141.7, 148.7; Analysis for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires C, 76.43; H, 6.41; $\mathrm{N}, 3.88$; found C, 76.38; H, 6.37; N, 3.82\%.
(R)-7-(Benzyloxy)-1,2,3,4-tetrahydro-6-methoxyquinolin-3-ol (91d)

Yield: $85 \%$; Gum, $[\alpha]^{\mathrm{D}}{ }_{25}+25.2\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 765,1217,1404$, 2927, 3405; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.64(\mathrm{dd}, J=3.8,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.02$ (dd, $J=4.2,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.18(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.24(\mathrm{~m}, 1 \mathrm{H})$, $5.07(\mathrm{~s}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.44(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 34.7,47.4,56.7,63.2,70.2,101.8,110.8,114.9,126.9,127.4,128.2,137.3,142.3$,
147.3; Analysis for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires C, $71.56 ; \mathrm{H}, 6.71$; $\mathrm{N}, 4.91$; found $\mathrm{C}, 71.52$; H , 6.75; N, 4.88\%.

## (R)-7-(Cyclopentyloxy)-1,2,3,4-tetrahydro-6-methoxyquinolin-3-ol (91e):

Yield: $82 \%$; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+22.2\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 767,1217,1504$, 2927, 3016, 3402; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.55-1.83(\mathrm{~m}, 8 \mathrm{H}), 2.62-2.72(\mathrm{dd}, \mathrm{J}=$ $4.1,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-3.01(\mathrm{dd}, J=3.7,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.23(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.65(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 23.5,32.3,34.6,47.6,55.5,63.2,81.4,99.7,110.3,119.1,137.7$, 139.7, 149.5; Analysis for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, $68.42 ; \mathrm{H}, 8.04 ; \mathrm{N}, 5.32$; found C , 68.38; H, 8.01; N, 5.37\%.

## General experimental procedure for the preparation of amido alcohol (92a-e)

To the stirred solution of tetrahydroquinolin-3-ol (91a-e) (4 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10$ mmol ) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, propionic anhydride ( $6.5 \mathrm{~mL}, 5 \mathrm{mmol}$ ) was added at $25^{\circ} \mathrm{C}$. Reaction mixture was stirred for 3 h . Progress of reaction was monitored by TLC and after completion of reaction, saturated aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added. Organic layer was separated; aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. Combined organic layers were washed with brine ( $2 \times 25 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products. Chromatographic purification [silica gel (230-400 mesh) and petroleum ether:ethyl acetate: (60:40:)] gave amide 92a-e in pure form.

## 1-[(R)-3,4-Dihydro-3-hydroxy-6,7-dimethoxyquinolin-1(2H)-yl]propan-1-one (92a)

Yield: $82 \%$; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+8.69\left(c\right.$ 1.15, $\left.\mathrm{CHCl}_{3}\right)$; Chiral Column: Cromasil 5-CelluCoat column, Length 250 mm , i.d. 4.6 mm , wavelength: 220 nm , flow rate 0.8 mL per min.

Mobile phase10\% IPA in hexane. Retention time 27.608 (97.7\%) and 30.850 (2.2\%). ee $=95.5 \%$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 846,937,1240,1388,1514,1660,1751,2983,3529$;
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.56(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-$ $2.78(\mathrm{dd}, J=4.6,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-3.09(\mathrm{dd}, J=5.4,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.74-$ $3.95(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.6,27.4,35.0$, 49.7, $55.6,65.0,108.0,111.1,122.4,130.7,146.3,174.3 ;$ MS: MS: m/z (\% rel. Intensity): $265\left(\mathrm{M}^{+}, 20\right), 209(100), 194$ (14), 176 (18), 166 (10), 148 (10), 133(8), 120 (6), 104 (8), 91 (8), 77 (6), 57 (4); Analysis for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, $63.38 ; \mathrm{H}, 7.22$; N , 5.28; found C, 63.43; H, 7.19; N, 5.22\%.

1-[(R)-7,8-Dihydro-7-hydroxy-[1,3]dioxolo[4,5-g]quinolin-5(6H)-yl]propan-1-one (92b)

Yield: $85 \%$; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+12.7$ ( c 1, $\left.\mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 847,1242,1515$, 1650, 1753, 2983, 3530, ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.77(\mathrm{dd}, J=4.6,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.02(\mathrm{dd}, J=6.4,15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75-4.09(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.9,27.3,35.5,49.1,65.9,98.0,108.2,111.5,122.1,131.7,145.2,174.1 ;$ Analysis $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C, 62.64; H, 6.07 ; N, 5.62 ; found $\mathrm{C}, 62.61 ; \mathrm{H}, 6.01$; N, 5.55\%.

## 1-[(R)-6,7-Bis(benzyloxy)-3,4-dihydro-3-hydroxyquinolin-1(2H)-yl]propan-1-one

 (92c)Yield: 77\%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+15.1\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 847,1242,1515$, 1650, 1753, 2983, 3530; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2,18$ (bs, 1H), $2.46(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.69(\mathrm{dd}, J=4.9,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-3.00(\mathrm{dd}, J=$
$5.6,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.88(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{bs}$, 2H), 7.30-7.45 (m, 10H); ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.5,27.1,35.1,49.2,65.8,71.2$, $73.0,102.2,111.1,119.3,127.2,127.5,127.6,127.6,128.3,128.4,137.3,138.4,141.7$, 148.7, 173.2; Analysis for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$ requires C, $74.80 ; \mathrm{H}, 6.52$; N, 3.35; found C, 74.82; H, 6.57; N, 3.31\%.

1-[(R)-6-(Cyclopentyloxy)-3,4-dihydro-3-hydroxy-7-methoxyquinolin-1(2H)-yl]propan-1-one (92e)

Yield: $73 \%$; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+15.1\left(c 1, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 849,1243,1515$, 1650, 1753, 2983, 3530; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-$ $1.88(\mathrm{~m}, 8 \mathrm{H}), 2.54(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.74(\mathrm{dd}, J=5.0,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.06$ (dd, $J=5.3,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.90(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H})$, 6.60 (bs, 2H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 10.1,23.5,27.5,32.1,35.1,47.1,55.4$, 63.1, 81.3, $99.8,110.1,119.5,137.4,139.2,149.5 ; 172.9$; Analysis for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4}$ requires C, $67.69 ; \mathrm{H}, 7.89 ; \mathrm{N}, 4.39$; found $\mathrm{C}, 67.62 ; \mathrm{H}, 7.82 ; \mathrm{N}, 4.32 \%$.

General experimental procedure for the preparation of Mosher's ester (100b-e)
To the stirred solution of alcohol ( 0.1 mmol ), $N, N^{\prime}$-Dicyclohexylcarbodiimide (DCC) (41 $\mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ Mosher's acid ( $26 \mathrm{mg}, 0.11 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After the completion of reaction (monitored by TLC), solvent was distilled under reduced pressure and crude product was purified by column chromatography to give pure 100b-e.

Yield: $35 \mathrm{mg}, 75 \%$; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.70(\mathrm{dd}, J=5.0,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.02(\mathrm{dd}, J=5.3,16.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.48(\mathrm{~s}, 3 \mathrm{H}), 3.88-4.10(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H})$, 7.35-7.46 (m, 5H).
(2R)-(R)-6,7-Bis(benzyloxy)-1,2,3,4-tetrahydro-1-propionylquinolin-3-yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (100c)

Yield: $42 \mathrm{mg}, 66 \% ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.69(\mathrm{dd}, J=4.9,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-3.00(\mathrm{dd}, J=5.6,16.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.47 (s, 2.90 H$), 3.54(\mathrm{~s}, 0.1 \mathrm{H}) 3.69-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}$, $2 \mathrm{H}), 6.68(\mathrm{bs}, 2 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 10 \mathrm{H})$.
(2R)-(R)-6-(Cyclopentyloxy)-1,2,3,4-tetrahydro-7-methoxy-1-propionylquinolin-3-yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (100e)

Yield: $39 \mathrm{mg}, 73 \%$; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.94$ $(\mathrm{m}, 8 \mathrm{H}), 2.42(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.94(\mathrm{dd}, J=3.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H})$, $3.43(\mathrm{~s}, 2.91 \mathrm{H}), 3.47(\mathrm{~s}, 0.09 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.46(\mathrm{~m}, 5 \mathrm{H})$.
(1S, 2S)-1-phenylpropane-1,2,3-triol (94)
Yield: $55 \%$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\text {max }} 695,1125,1220,1511,2983,3518 ;{ }^{1} \mathbf{H}-$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}\right): \delta 3.48-5.01(\mathrm{~m}, 4 \mathrm{H}), 7.3-7.50(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 63.11,65.19,75.78,127.62,128.05,128.13,128.54,128.66,140.58$.

## 1-(2-Nitrophenyl)propane-1,2,3-triol (95)

Yield: $81 \%$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $\mathrm{v}_{\text {max }} 895,1243,1518,1628,2983,3480 ;{ }^{1} \mathbf{H}$-NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.69(\mathrm{bs}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}) 3.87-3.94(\mathrm{~m}$,
$1 \mathrm{H}), 5.40(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.50(\mathrm{dt}, J=1.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dt}, J=1.0,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=1.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 64.9,69.6,73.8,124.6,128.4,129.1,133.4,136.5,148.6$.

## General experimental procedure for the preparation of cyclic sulfate (97)

A solution of nitro cyclic sulfite (84) was cooled with an ice-water bath and diluted with $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ and $\mathrm{CCl}_{4}(8 \mathrm{~mL}) . \mathrm{RuCl}_{3} . \mathrm{H}_{2} \mathrm{O}(3.9 \mathrm{mg}, 0.013 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(1.6 \mathrm{~g}, 7.2$ $\mathrm{mmol})$ were added followed by water $(8 \mathrm{~mL})$. The resulting orange mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was then diluted with ether ( 15 mL ) and the two phases separated. The organic layer was washed with water $(10 \mathrm{~mL})$, saturated aq. $\mathrm{NaHCO}_{3}(10$ mL ), brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Silica gel column chromatography of the crude product using petroleum ether/EtOAc (8:2) as eluent gave 97 as a colorless liquid $(0.6 \mathrm{~g})$.

Yield: 88\%; liquid, IR (neat, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\max } 713,1204,1261,1529,1628,1678,1740,2938$, 3015; ${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.37$ (t, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 4.4(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.15(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.7(\mathrm{t}, J=8.4,1.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.7(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{~d}, J=8.4 \mathrm{H}), 8.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}),{ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 13.8, 63.6, 80.7, 82.3, 125.7, 128.16, 129.7, 131.05, 135.2, 146.5, 163.8; Analysis: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{8} \mathrm{~S}$ requires: $\mathrm{C}, 41.64 ; \mathrm{H}, 3.49 ; \mathrm{N}, 4.41$ found $\mathrm{C}, 41.42 ; \mathrm{H}, 3.28 ; \mathrm{N}, 4.37 \%$.

## Section II:

## Asymmetric Formal Synthesis of Anachelin H Chromophore

### 2.2.1. Introduction:

Cyanobacteria (or blue-green algae) are considered to be among the oldest life forms still present on earth, populating this planet since 3.5 billion years. ${ }^{47}$ These species are thought to have modified the atmosphere of earth by performing oxygenic photosynthesis. ${ }^{48}$ The release of oxygen caused a dramatic threat for all life forms present, and those unable to cope became extinct. In addition, the oxidative atmosphere resulted in the conversion of soluble $\mathrm{Fe}(\mathrm{II})$ ions to Fe (III) salts, of which the dominant iron oxide hydrates are insoluble at physiological pH (poor bioavailability). ${ }^{49}$ Therefore, iron acquisition became crucial for every organism, and many sophisticated strategies were developed by evolution. It is interesting to note that although cyanobacteria probably caused this shortage of iron by performing oxygenic photosynthesis, ${ }^{50}$ little was known concerning their mechanism of iron uptake.


Fig. 13: Structures of anachelins 100-102

In particular, no complex siderophores, that is, small molecules secreted for iron binding, transport, and uptake, have been isolated from cyanobacteria until recently. In 2000, the first complex metabolites postulated to serve as siderophores from the freshwater bacterium Anabaena cylindrica were isolated: Budzikiewicz, Walsby, and co-workers ${ }^{51 \mathrm{a}}$ have isolated mixtures of anachelin $H(100)$ and anachelin-1 (101) and determined the constitution of the former. Later, Murakami and co-workers reported the isolation and constitution of anachelin-1 and anachelin-2 (102) together with two related esters (Fig. 13). ${ }^{51}$ In these isolation reports, the absolute and relative configuration of four stereogenic centers could not be determined; however, tetrahydroquinolin-3-ol a common (anachelin H chromophore) moiety is present in anachelins (100-102). ${ }^{52}$

### 2.2.2 Review of literature

Literature search revealed that there is only one report available for the synthesis of Anachelin H chromophore (100a) which is described below.

## Gademann's approach (2004) ${ }^{53}$

Gademann et al. have described oxidative aza-annulation of amine 107 using dianisyltellurium oxide as the key step(Scheme 27). $N$-Boc-protection followed by amidation of amino acid $\mathbf{1 0 3}$ gave amide $\mathbf{1 0 4}$ in $\mathbf{6 1 \%}$ yields. Further protection of phenol as its benzyl ether 105 and followed by its reduction $\left(\mathrm{BH}_{3} \cdot \mathrm{THF}\right)$ gave amine 106. Deprotection of benzyl ether and subsequent oxidative cyclization with dianisyltellurium oxide provided the key intermediate 108 in the synthesis of Anachelin H chromophore (100a).


Scheme 27: (i) (a) $\mathrm{Boc}_{2} \mathrm{O}$, aq. NaOH , dioxane; (b) BuOCOCl , THF; (c) $\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{2}$; (ii) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, BnBr , acetone, reflux; (iii) $\mathrm{BH}_{3} \cdot \mathrm{THF}$; ( $16 \%$ over three steps); (iv) $\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2}$ (1 atm), $\mathrm{MeOH}, \mathrm{AcOH}, 99 \%$; (v) dianisyltellurium oxide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 69 \%$.

The second approach has started from protected nitro-DOPA derivative 109. The nitro group in 109 was reduced using iron powder in acetic acid to give the resulting lactam 110 in $90 \%$ yield. The Alloc group in lactam 110 was first removed using catalytic amount of $\operatorname{Pd}(0)$ to give the amino lactam 111. The key intermediate, tetrahydroquinoline derivative 112, was then obtained after subsequent reduction with $\mathrm{BH}_{3}$. THF complex in 95\% yield (Scheme 28).


Scheme 28: (i) Fe (s), $\mathrm{AcOH}, 90 \%$; (ii) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, barbituric acid, $78 \%$; (iii) $\mathrm{BH}_{3} \cdot \mathrm{THF}, \mathrm{THF}, 95 \%$.

### 2.2.3 Present work

### 2.2.3.1 Objective

Literature search reveals that only strategys relating to chiral pool approach is available for the synthesis of Anachelin H chromophore (100a). In section I of this Chapter, we have described a short and efficient synthesis of tetrahydroquinolin-3-ol (91a). In continuation of the work on Co-catalyzed reduction of nitro cyclic sulphite, a formal synthesis of Anachelin H chromophore (100a) is described in this section.

Retrosynthetic analysis of 100a reveals that, diamine (112) turns out to be the key intermediate, which could be easily prepared from ( $R$ )- tetrahydroquinolin-3-ol (91a). We further visualized that amino alcohol 91a could be prepared from Co-catalyzed reduction of the precursor nitro cyclic sulphite 90a, which in turn could be obtained from nitro diol 89a. Compound 89a can be prepared from 87a via nitration and asymmetric dihydroxylation (AD) (Scheme 29).



Scheme 29: Retrosynthetic analysis of Anachelin H chromophore (100a)

### 2.2.4 Results and Discussion

The present synthetic route employed for the synthesis of Anachelin H chromophore (100a) is shown in Scheme 30. $\alpha, \beta$-Unsaturated ester 87a, prepared from Wittig olefination of the corresponding benzaldehyde was converted to the corresponding diol 88a in 95\% yield via Os-catalyzed asymmetric dihydroxylation using (DHQD) $)_{2}$-PHAL as the chiral ligand. Then, nitration of diol 88a was carried out in biphasic medium $\left(\mathrm{HNO}_{3}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to obtain the corresponding nitro diol 89a was formed in good yields with excellent regioselectivity. The diol 89a which was readily transformed into the corresponding nitro cyclic sulfite $90 \mathrm{a}\left(\mathrm{SOCl}_{2}\right.$ and $\mathrm{Et}_{3} \mathrm{~N}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in $95 \%$ yield.





Scheme 30: (i) $\mathrm{K}_{2} \mathrm{OsO}_{4}$ ( $0.1 \mathrm{~mol} \%$ ), ( DHQ$)_{2}-\operatorname{PHAL}(0.5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1 equiv.), tert- $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), $25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 95 \%$; (ii) conc. $\mathrm{HNO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 70 \%$; (iii) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$, $92 \%$; (iv) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ( $1 \mathrm{~mol} \%$ ), $\mathrm{NaBH}_{4}$ (4 equiv.), $\mathrm{EtOH}, 0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 78 \%$; (v) TsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 82 \%$; (vi) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}, 88 \%$; (vii) $\mathrm{NaN}_{3}$, DMF, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$; (viii) $\mathrm{Na}(\mathrm{Hg}), \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 76 \%$.

Nitro cyclic sulfite 90a was then subjected to one-pot reduction using $\mathrm{CoCl}_{2}$ ( $1 \mathrm{~mol} \%$ ) and 4 equivalents of $\mathrm{NaBH}_{4}$ to give tetrahydroquinolin-3-ol 91a, in $81 \%$ yield. The formation of 91a was confirmed by spectral data. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 91a showed typical signals at $\delta 2.63-2.73(\mathrm{dd}, J=3.9,16.5 \mathrm{~Hz}, 1 \mathrm{H})$ and $2.92-3.02(\mathrm{dd}, J=4.3,16.5$ $\mathrm{Hz}, 1 \mathrm{H})$ corresponding to benzylic methylene protons. Also signals at $\delta$ 3.19-3.29 (m) and 4.15-4.23 (m) correspond to methylene $\left(N-\mathrm{CH}_{2}\right)$ and methine $(\mathrm{CHOH})$ protons respectively. Its ${ }^{13} \mathrm{C}$-NMR showed two methylene and one methine $(\mathrm{CHOH})$ carbon signals at $\delta 34.7,47.6$ and 63.3 respectively (Fig. 14).


Fig. 14: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of amino alcohol 91a

Initially, amine function in 91a was protected as tert-butyl carbamate [(tert-BuOCO) $)_{2} \mathrm{O}$, $\mathrm{Et}_{3} \mathrm{~N}$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$, followed by protection of the free hydroxyl group as its mesylate ( $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). However, nucleophilic displacement of mesylate with azide anion under various conditions failed to give the required azido product probably due to interference shown by the bulky nature of tert-butyl group. We observed that protection of amine 91a as its amide 113 [ $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$ was found to be useful in subsequent steps, as described below.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 1 3}$ confirmed the tosyl protection while a doublet of doublet integrating for one proton each has appeared at $\delta 2.34(J=7.91,10.5 \mathrm{~Hz})$ and $2.6(J$ $=6.8,10.25 \mathrm{~Hz})$ in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum corresponding to the benzylic methylene protons (- $\mathrm{CH}_{2} \mathrm{CH}-$ ). This was further ascertained by the typical signals at $\delta 35.4,52.1$ and 63.8 corresponding to the two methylene and one methine $(\mathbf{C H O H})$ carbons in its ${ }^{13} \mathrm{C}$-NMR spectrum (Fig. 15).



Fig. 15: ${ }^{1} \mathrm{H}$ NMR spectrum of tosylalcohol 113

At this stage, enantiomeric excess of $\mathbf{1 1 3}$ was determined by Mosher's ester analysis. Thus, free hydroxyl moiety in N-tosyl alcohol 113 was esterified (catalytic DMAP, DCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) with Mosher's acid [(R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid] and the resulting Mosher's ester 116 was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. The enantiomeric excess of 116 was found to be $95 \%$ (Fig. 16).


Fig. 16: ${ }^{1} \mathrm{H}$ NMR spectrum of Mosher's ester 116


Fig. 17: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra of azide 115

Alcohol 113 was then mesylated readily, which was subjected to nucleophilic displacement with azide anion giving azide 115 in $93 \%$ yield. Presence of azide functionality was confirmed from IR spectroscopy, which showed a strong absorption band at $2109 \mathrm{~cm}^{-1}$. Its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed typical signals at $\delta 4.15-4.28(\mathrm{~m})$ due to the methine proton $\left(\mathrm{CHN}_{3}\right)$ confirming the formation of azide 115 . Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a characteristic methine $\left(\mathrm{CHN}_{3}\right)$ carbon signal at $\delta 53.6$ ( $\mathbf{F i g}$. 17).

N -Tosyl azide 115 was then subjected to reduction with sodium amalgam in $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ whereby reduction of both azide and tosylate functions took place efficiently to afford (S)-3-aminotetrahydroquinoline 112 in $76 \%$ yield and $95 \%$ ee. ${ }^{18 \mathrm{c}}$ Its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed typical signals at $\delta 2.64-2.72(\mathrm{~m}, 1 \mathrm{H})$ and 2.93-3.03 $(\mathrm{m}, 1 \mathrm{H})$ corresponding to benzylic methylene protons. Also signals at $\delta 3.24-3.37(\mathrm{~m}, 3 \mathrm{H})$ correspond to methylene $\left(\mathrm{N}-\mathrm{CH}_{2}\right)$ and methine $(\mathrm{CHOH})$ protons (Fig. 18). Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed typical carbon signals at $\delta 34.6,45.4$ and 47.6 corresponding to the methylene $\left(-\mathrm{CH}_{2}-\mathrm{CH}\right)$, methine $\left(-\mathrm{CH}-\mathrm{NH}_{2}\right)$ and methylene $\left(\mathrm{N}-\mathrm{CH}_{2}\right)$ carbons respectively. Further, synthesis of Anachelin H chromophore (100a) from 112 has been reported in the literature. ${ }^{53}$



Fig. 18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra of diamine 112

### 2.2.5 Conclusion

In conclusion, we have achieved the formal synthesis of Anachelin $H$ chromophore (100a), which was obtained in $24 \%$ overall yield and $95 \%$ ee. We have successfully applied asymmetric dihydroxylation and Co-catalyzed multifunctional reduction as key steps to achieve the formal synthesis of Anachelin H chromophore (100a).

### 2.2.6 Experimental section

For the preparation of (88a, 89a, 90a, 91a) see Section I of this chapter

## (R)-6,7-Dimethoxy-1-tosyl-1,2,3,4-tetrahydroquinolin-3-ol (113)

To a stirred solution of tetrahydroquinolin-3-ol (91a) ( $0.63 \mathrm{~g}, 3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL}$, $3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathrm{TsCl}(0.55 \mathrm{~g}, 3 \mathrm{mmol})$ was added at $25^{\circ} \mathrm{C}$. The mixture was stirred for 3 h . Progress of the reaction was monitored by TLC and after completion of reaction, saturated aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added. Organic layer was separated; aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. Combined organic layers were washed with brine ( 2 x 25 mL ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude tosamide product. Chromatographic purification [silica
gel (230-400 mesh) and petroleum ether:ethyl acetate: (60:40:)] gave 0.9 g of 113 in pure form.

Yield: $82 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+74\left(c 2, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 567,754,862,1055,1108$, 1216, 1268, 1347, 1598, 1707, 3020, 3504; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.17$ (br s, $1 \mathrm{H}), 2.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}), 2.6(\mathrm{dd}, J=6.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=$ $5.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 7 \mathrm{H}), 4.04(\mathrm{dd}, J=4.2,9.3 \mathrm{~Hz}), 6.46(\mathrm{~s}, 1 \mathrm{H}),, 7.20(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.5$, $35.4,52.1,55.9,63.6,96.0,108.3,111.5,120.1,127.1,128.7,129.5,136.3,143.6,146.8$, 147.4; ESI-MS: m/z $386.115[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5}$ S requires: C 59.49, H 5.82, N 3.85 found: C 59.65, H 5.98, N 3.92\%.

## (S)-3-Azido-6,7-dimethoxy-1-tosyl-1,2,3,4-tetrahydroquinoline (115)

To a stirred solution of alcohol $113(0.6 \mathrm{~g}, 1.6 \mathrm{mmol})$ and triethylamine $(0.5 \mathrm{~mL}, 2$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, was added mesyl chloride $(2 \mathrm{mmol}, 0.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. It was then stirred for 15 min . After completion of the reaction (monitored by TLC), a saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with ( $2 \times 20 \mathrm{mLCH} \mathrm{Cl}_{2}$ ). The combined organic layers were washed with brine ( $2 \times 10 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product 114.

To the stirred solution of mesylate $114(0.7 \mathrm{~g}, 1.6 \mathrm{mmol})$ in dry DMF $(8 \mathrm{~mL}), \mathrm{NaN}_{3}(400$ $\mathrm{mg}, 6 \mathrm{mmol}$ ) was added. The reaction mixture was stirred for 16 h at $80^{\circ} \mathrm{C}$. After completion of reaction (monitored by TLC), it was poured into 50 mL of ice cold water and extracted with ethyl acetate ( $3 \times 30 \mathrm{~mL}$ ). The combined organic layers were washed with brine ( $2 \times 15 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced
pressure to give the crude product 115. Chromatographic purification of crude product using flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate: (70:30) gave pure of azide $115(544 \mathrm{mg})$.

Yield: $91 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+5.5\left(c 0.36, \mathrm{CHCl}_{3}\right)$; gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 566,755,861$, 1275, 1598, 1723, 2103; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (s, 3H), 2.59-2.70 (dd, $J=5.5,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.91(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 6 \mathrm{H}), 4.15-4.28(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.51(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.2,32.0,49.3,53.9,55.9,108.7,111.0$, 119.3, 127.1, 128.5, 129.8, 135.9, 147.1, 147.7; Analysis: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ requires: C 55.66; H 5.19;
(2R)-(R)-1,2,3,4-Tetrahydro-6,7-dimethoxy-1-tosylquinolin-3-yl
3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (116)

To a stirred solution of alcohol $113(0.1 \mathrm{mmol})$, $\mathrm{DCC}(41 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\mathrm{mL})$ Mosher's acid ( $26 \mathrm{mg}, 0.11 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After the completion of reaction (monitored by TLC), solvent was distilled under reduced pressure and crude product was purified by column chromatography to give pure Mosher's ester of amido alcohol 116.

Yield: $33 \mathrm{mg}, 77 \%$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.21-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.52$ $(\mathrm{dd}, J=6.3,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.80$ (s, 3H), $3.86(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{dd}, J=6.3,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-5.08$ $(\mathrm{m}, 3 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.49(\mathrm{~m}, 6 \mathrm{H})$.

N 14.42 found: C 55.92; H 5.67; N 14.81\%.

## (S)-6,7-Dimethoxy-1,2,3,4-tetrahydroquinolin-3-amine (112)

To a solution of azide $115(0.4 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(1.148 \mathrm{~g}, 8.3 \mathrm{mmol})$ in dry $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{Na}(\mathrm{Hg})(6 \%, 3 \mathrm{~g})$ at $25^{\circ} \mathrm{C}$ and the mixture was allowed to stir for 4 h . After completion of reaction (monitored by TLC), filtered through celite and the filter cake rinsed with ethyl acetate, and the combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product using flash silica gel (230-400 mesh) and chloroform: methanol: (90:10) gave the pure diamine $112(160 \mathrm{mg})$.

Yield: 76\%; colorless solid, mp: $120-122{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+20.0\left(c \quad 0.2, \mathrm{CHCl}_{3}\right)$; Lit: ${ }^{18 \mathrm{c}}[\alpha]^{\mathrm{D}}{ }_{25}$ $+20.6\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 666,754,1225,1519,1620,2933,3016$, 3407, 3661; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.65(\mathrm{dd}, J=6.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J$ $=4.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.2-3.5(\mathrm{~m}, 3 \mathrm{H}), 3.7(\mathrm{~s}, 6 \mathrm{H}), 6.1(\mathrm{~s}, 1 \mathrm{H}), 6.5(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.5,45.4,47.6,55.8,56.5,99.7,109.9,113.9,129.2,142.1,148.3 ;$ Analysis: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires: C 63.44 ; H 7.74 ; N 13.45 found: C 63.92 ; H 7.87 ; N 13.81\%.

## Section III:

## Asymmetric synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones

### 2.3.1 Introduction

Although excellent diuretics and ACE inhibitors are available for the treatment of congestive heart failures, the only current approach that relies on the stimulation of cardiac contractility is the use of cardiac glycosides with a variety of therapeutic limitations. 1-[(S)-3-(Dimethylamino)-6,7-dimethoxytetrahydroquinoline alkanones (117 and 118) have recently been identified as potentially interesting positive inotropic agents (Fig 19). ${ }^{54}$


Fig. 19: Positive inotropic agents 117 and 118

### 2.3.2 Review of literature

Literature search revealed that there is only one report available for the synthesis of 1-[(S)-3-(dimethylamino)-6,7-dimethoxytetrahydroquinoline derivatives (117 and 118), which is described below.

## Vecchietti's Approach (1994) ${ }^{54}$

Vecchietti et al. have reported racemic synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones (117 and 118). Diethyl 2-[(3,4dimethoxyphenylamino)methylene]malonate 120, obtained by the condensation of ethoxymethylene malonate with 3,4-dimethoxyaniline (119), was cyclized $\left(\mathrm{POCl}_{3}\right.$ and

DMF) to give chloro tetrahydroquinoline derivative 121. Subsequent dechlorination (10\% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ and AcOH ) was achieved to give quinoline derivative 122. This was subjected to Curtius rearrangement via hydrazine amide 123 to provide 3-aminoquionoline 124 in good yields. Subsequently, its reductive amination $\left(\mathrm{HCHO}\right.$ and $\left.\mathrm{HCO}_{2} \mathrm{H}\right)$ gave 125, which was subjected to ionic hydrogenation under high pressure $\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right.$ and AcOH$)$ to give $N, N$-dimethyl amino tetrahydroquinoline 126. Finally, acylation of amine 127 (acid chloride and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished amides 117 and 118 in good yields (Scheme 31).




Scheme 31: (i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}=\mathrm{C}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$, heat; (ii) $\mathrm{POCl}_{3} / \mathrm{PCl}_{5}$; (iii) $\mathrm{H}_{2}, 10 \%$ $\mathrm{Pd} / \mathrm{C}$, acetic acid; (iv) $\mathrm{NH}, \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$; (v) $\mathrm{NaNO}_{2}$; (vi) $\mathrm{HCHO} / \mathrm{HCOOH}$; (vii) $\mathrm{H}_{2}$, $10 \% \mathrm{Pd} / \mathrm{C}$, acetic acid, $80 \%$; (viii) acyl chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

In another approach, the same authors have described the asymmetric synthesis of diamine intermediate 126 starting from chiral starting material. $N$-Cbz protected LDOPA derivative 127 was esterified to give methyl ester, which was regioselectively
nitrated (conc. $\mathrm{HNO}_{3}$ and AcOH ) to give nitro derivative 128. Nitro ester 128 was reduced $\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(4 \mathrm{~atm})\right.$ and AcOH$)$ to give $(\mathrm{S})$-3-amino-3,4-dihydro-6,7-dimethoxyquinolin-2(1H)-one, on reductive amination ( $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCHO}$ and MeOH ) gave $N, N$-dimethylaminoquinolin-2-one 129. Finally, $\mathrm{LiAlH}_{4}$ reduction of $\mathbf{1 2 9}$ gave very low yield of 3-( $N$, $N$-dimethylamino)quinoline 126 in 28\% (Scheme 32).


Scheme 32: (i) (a) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{K}_{2}, \mathrm{CO}_{3}$, acetone, $60^{\circ} \mathrm{C}, 6 \mathrm{~h}, 73 \%$; (b) $\mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, $15{ }^{\circ} \mathrm{C}, 3 \mathrm{~h} 76 \%$; (ii) (a) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (4 atm), $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 91 \%$; (b) $10 \% \mathrm{Pd} / \mathrm{C}$, HCHO, $2 \mathrm{~N} \mathrm{HCl}, \mathrm{Et}_{2} \mathrm{O}, 40-50^{\circ} \mathrm{C}, 90 \%$; (iii) $\mathrm{LiAlH}_{4}, \mathrm{DME}$, reflux, $24 \mathrm{~h}, 28 \%$.

### 2.3.3 Present work

### 2.3.3.1 Objective

Review of literature reveals that only one report is available for the synthesis of 1-[(S)-3-(dimethylamino)3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones (117 and 118). However, use of chiral starting material as well as the need of several protecting groups in the synthesis, make the existing method uneconomical. In section I of this Chapter, we have described an elegant method for the synthesis of 3-hydroxy tetrahydroquinoline derivatives 91a-e. As an another application on Co-catalyzed reduction of nitro cyclic
sulphites, we describe a short synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones (117 and 118) in this section.

### 2.3.4 Results and Discussion

A general synthetic scheme for the synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]alkanones (117 and 118) is shown in Scheme 33. The synthetic route for the tetrahydroquinolin-3-ol 91a has been described in Section I. Amine function in 91a was protected as its amides $\mathbf{1 3 0}$ and $\mathbf{1 3 1}\left[\mathrm{RCOCl}\right.$ or $(\mathrm{RCO})_{2} \mathrm{O}$, $\mathrm{Et}_{3} \mathrm{~N}$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$ in $>90 \%$ yields.



Scheme 33: (i) ( RCO$)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 91 \%$; (ii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 10 min ; (iii) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$ over two steps; (iv) $\mathrm{H}_{2}$ ( 1 atm ) $10 \%$ $\mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (v) $\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 73 \%$ over two steps.
The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 3 1}$ showed two typical proton signals at $\delta 1.13$ (dd) and 2.38$2.52(\mathrm{~m})$ corresponding to the methyl $\left(\mathrm{CH}_{3}\right)$ and methine $(\mathbf{C H})$ protons present in isopropyl unit respectively. Also proton signals for benzylic methylene $\left(\mathrm{ArCH}_{2}\right)$, aminomethylene $\left(N-\mathrm{CH}_{2}\right)$ and methine $(\mathrm{CHOH})$ protons have appeared at $\delta 2.76$ (dd), 3.09 (dd), 3.74-4.11 (m) and 5.22-5.31 (m) respectively. Its ${ }^{13} \mathrm{C}$-NMR spectrum showed
characteristic carbon signals at $\delta 19.7,19.9$ and 30.8 due to the methyl $\left(\mathrm{CH}_{3}\right)$ and methine carbons $(\mathbf{C H})$ of isopropyl group. Also its carbonyl signal at $\delta 178.0$ confirms the formation of amide carbonyl group (Fig. 20).


Fig. 20: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of alcohol 131
Enantiomeric excess of chiral alcohol 130 and 131 was determined by chiral HPLC and found to be $95 \%$. Free hydroxyl moiety in 130 and 131 was then protected as their mesylates 132 and $133\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ followed by their displacement with azide anion $\left(\mathrm{NaN}_{3}, \mathrm{DMF}\right)$ to give azido quinolines 134 and 135 in $90-91 \%$ yields. The
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of azide 135 showed a characteristic signal at $\delta 4.0-4.09$ (m) due to methine $\left(\mathrm{CHN}_{3}\right)$ proton. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum also showed a downfield shift for methine $\left(\mathrm{CHN}_{3}\right)$ carbon signal at $\delta$ 56.7. Its IR spectrum showed a characteristic absorption band at $2110 \mathrm{~cm}^{-1}$ for azide group confirming the formation of azide (Fig. 21).


Catalytic hydrogenation of azide function in 134 and 135 was carried out to give the corresponding amines followed by their reductive aminations $\left(\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}\right)$ produced 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones
and 118). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 1 7}$ showed a typical singlet at $\delta 2.35$ corresponding
 spectrum due to methyl amine carbons confirmed the formation of 117 (Fig. 22).


Fig. 22: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $\mathbf{1 1 7}$

### 2.3.5 Conclusion

In conclusion, synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]alkanones (117 and 118) have been achieved in 9 steps with $94 \%$ ee. We have utilized asymmetric dihydroxylation and Co-catalyzed multifunctional
reduction, as the key steps in the asymmetric synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]alkanones (117 and 118).

### 2.3.6 Experimental Section

## General experimental procedure for the preparation of amide 130 and 131

To a stirred solution of tetrahydroquinolin-3-ol 91a ( $0.83 \mathrm{~g}, 4 \mathrm{mmol}$ ) and triethylamine ( $1.4 \mathrm{~mL}, 10 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, was added the respective anhydride or acid chloride ( 5 mmol ) at $25^{\circ} \mathrm{C}$. Reaction mixture was stirred for 3 h . Progress of the reaction was monitored by TLC. After the reaction was complete, a saturated solution of $\mathrm{NaHCO}_{3}$ ( 30 mL ) was added. The organic layer was separated; the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine ( $2 \times 25$ mL ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give a crude mass. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: (60:40) as eluent] gave amide $\mathbf{1 3 0}$ and $\mathbf{1 3 1}$ in pure form.

## 1-[(R)-3,4-Dihydro-3-hydroxy-6,7-dimethoxyquinolin-1(2H)-yl]propan-1-one (130)

Yield: $82 \%$; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+8.69$ (c 1.15, $\mathrm{CHCl}_{3}$ ); Chiral Column: Cromasil 5-CelluCoat column, Length 250 mm , i.d. 4.6 mm , wavelength: 220 nm , flow rate 0.8 mL per min. Mobile phase10\% IPA in hexane. Retention time 27.608 (97.7\%) and 30.850 (2.2\%). ee $=95.5 \% ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 846,1047,1240,1392,1514,1747,2983,3514 ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.56(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.78$ (dd, $J=4.6,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-3.09(\mathrm{dd}, J=5.4,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.74-3.95$ (m, 2H), 4.32 (m, 1H), 6.63 (br s, 2H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.6,27.4,35.0$, 49.7, 55.6, 65.0, 108.0, 111.1, 122.4, 130.7, 146.3, 174.3; Analysis: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, 63.38; H, 7.22; N, 5.28; found C, 63.53; H, 7.19; N, 5.22\%.

## 1-[(S)-3,4-Dihydro-3-hydroxy-6,7-dimethoxyquinolin-1(2H)-yl]-2-methylpropan-1one (131)

Yield: 91\%; Gum; $[\alpha]^{\mathrm{D}} 25+9.5$ (c 1, $\mathrm{CHCl}_{3}$ ); Chiral Column: Cromasil 5-CelluCoat column, Length 250 mm , i.d. 4.6 mm , wavelength: 220 nm , flow rate 0.8 mL per min. Mobile phase10\% IPA in hexane. Retention time 25.560 ( $97.5 \%$ ) and 28.732 (2.5\%). ee $=95 \% ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 846,1049,1238,1514,1660,1737,2979,3463 ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.10-1.15(\mathrm{dd}, J=2.8,7.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.41-2.63(\mathrm{~m}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71-2.82(\mathrm{dd}, J=4.8,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-3.12(\mathrm{dd}, J=5.3,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (br s, 1H), 3.74-3.83 (dd, $J=5.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 5.22-$ $5.32(\mathrm{~m}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{br} \mathrm{s}, 2 \mathrm{H}),{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.7,19.9,30.8$, $35.3,49.9,55.9,66.1,108.0,111.5,131.2,146.7,146.9,178.0$; ESI-MS: m/z 302.135 $[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires C, 64.50; H, 7.58; N, 5.01; found C, 64.37; H, 7.41; N, 5.08\%.

General experimental procedure for the preparation of mesylate 132 and 133
To a stirred solution of amides $\mathbf{1 3 0}$ and $\mathbf{1 3 1}(4 \mathrm{mmol})$ and triethyl amine $(1.4 \mathrm{~mL}, 10$ mmol ) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, mesyl chloride ( $5 \mathrm{mmol}, 0.5 \mathrm{~mL}$ ) was added at $0^{\circ} \mathrm{C}$. It was then stirred for 15 min . After completion of the reaction (monitored by TLC), a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added, organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine ( $2 \times 25 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude mesylate. Attempts to purify mesylates were unsuccessful as they undergo elimination readily. Since the mesylates were difficult to purify, it was converted to the
respective azides without purification. The formation of mesylates was confirmed by ${ }^{1} \mathrm{H}$ NMR analysis of crude mesylates 132 and 133.
(R)-1,2,3,4-Tetrahydro-6,7-dimethoxy-1-propionylquinolin-3-yl
methanesulfonate (132)

Yield: 83\%; gum; ${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.52(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.95-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.82(\mathrm{~m}, 1 \mathrm{H}) 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.81-3.92$ $(\mathrm{m}, 1 \mathrm{H}), 4.06-4.33(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $9.6,27.4,33.0,38.3,46.4,55.8,74.3,108.2,111.0,128.5,130.9,147.1,173.6$.
(R)-1,2,3,4-Tetrahydro-1-(isobutyryl)-6,7-dimethoxyquinolin-3-yl methanesulfonate (133)

Yield: $84 \%$; gum; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.97-3.23$ $(\mathrm{m}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.82(\mathrm{~m}, 1 \mathrm{H}) 3.87(\mathrm{~s}, 6 \mathrm{H}), 4.07-4.31(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H})$, 6.67 (br s, 2H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 19.5,20.0,30.8,33.2,38.5,46.8,75.9$, $108.1,111.3,120.17,131.3,147.4,177.5$.

General procedure for the preparation of 1-[(S)-3-azido-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]alkanones 134 and 135

To the stirred solution of mesylate $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$ in dry DMF ( 10 mL ), was added $\mathrm{NaN}_{3}$ $(1.30 \mathrm{~g}, 20 \mathrm{mmol})$. It was then stirred for 16 h at $80^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), it was poured into 50 mL of ice cold water and extracted with ethyl acetate ( $3 \times 50 \mathrm{~mL}$ ). The combined organic layers were washed with brine ( $2 \times 25 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product. Chromatographic purification of crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: (70:30)] gave azide 134 and 135 in pure form.

## 1-[(R)-3-Azido-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]propan-1-one (134)

Yield: 91\%; gum; $[\alpha]^{\mathrm{D}}{ }_{25}+38.2\left(c 2, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 757,1043,1217$, $1514,1650,1735,2110,3018 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 2.57(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.88(\mathrm{dd}, J=5.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-3.15(\mathrm{dd}, J=5.4$, $16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.82(\mathrm{~m}, 1 \mathrm{H}) 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.99-4.13(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}$, 2H); ${ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.5,27.4,31.7,46.5,55.7,55.7,56.1,108.1,110.9$, 119.8, 130.8, 146.8,146.9, 173.3; Analysis for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, 57.92; H, 6.25; N, 19.30; found C, $57.88 ; H, 6.20 ; \mathrm{N}, 19.33 \%$.

## 1-[(R)-3-Azido-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]-2-methylpropan-1-one

 (135)Yield: 91\%; gum; $[\alpha]^{\mathrm{D}}{ }_{25}+39.4\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 759,1047,1218$, $1510,1647,1745,2106,3018 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, 2.73-2.84 (dd, $J=4.9,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.09(\mathrm{dd}, J=4.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.20(\mathrm{q}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.80(\mathrm{~m}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.09(\mathrm{~m}$, 2H), 6.67 (br s, 2H); ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 19.6,19.8,30.9,32.0,46.7,55.9$, 56.7, 108.1, 111.1, 131.2, 147.0, 147.3, 177.3; Analysis: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, 59.20; H, 6.62; N, 18.41; found C, 59.14; H, 6.69; N, 18.44.

General procedure for the synthesis of 1-[(S)-3-(Dimethylamino)-6,7dimethoxytetrahydroquinoline alkanones 117 and 118

To a solution of azide 134 and $135(2 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$, was added $10 \% \mathrm{Pd} / \mathrm{C}$ ( 40 mg ). It was stirred under $\mathrm{H}_{2}$ atmosphere ( 1 atm ; balloon pressure) for 12 h . After the completion of reaction (monitored by TLC), it was passed through celite and concentrated under reduced pressure that afforded crude amine. To the crude amine $40 \%$
aq. solution $\mathrm{HCHO}(1 \mathrm{~mL})$ and $\mathrm{HCO}_{2} \mathrm{H}(2 \mathrm{~mL})$ was added, and the resulting mixture was refluxed for 3 h . After completion of reaction, saturated aq. $\mathrm{NaHCO}_{3}$ solution ( 10 mL ) was added and extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine ( $2 \times 20 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: triethyl amine (60:38:2) as eluent] gave pure 117 and 118.

1-[(R)-3-(Dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]propan-1one (117)

Yield: $91 \%$; Colorless soild; mp $136{ }^{\circ} \mathrm{C}$, $\left[\mathrm{lit} .{ }^{54} 135-137{ }^{\circ} \mathrm{C}\right] ;[\alpha]^{\mathrm{D}}{ }_{25}-3.2$ (c 1, EtOH) $\left\{\text { lit. }{ }^{54}[\alpha]^{\mathrm{D}}{ }_{25}-3.3(c \mathrm{c}, \mathrm{EtOH})\right\}^{54} ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\text {max }} 760,1049,1211,1511,1647$, 1743, 3018, 3450; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.12(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H})$, $2.46(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-2.91(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 6.64 (bs, 2H); ${ }^{\mathbf{1 3}} \mathbf{C - N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 9.8,27.5,29.5,41.3,41.4,55.9,55.9,61.4$, 61.8, 108.2, 111.1, 128.6, 131.8, 146.9, 173.0; Analysis for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 64.96; H, 7.63; N, 10.10; found C, 64.82; H, 7.60; N, 10.27\%.

1-[(R)-3-(Dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]-2-methylpropan-1-one (118)

Yield: 91\%; Colorless soild; mp $119-120{ }^{\circ} \mathrm{C}$; $\left[\mathrm{lit} .^{54} 120-122{ }^{\circ} \mathrm{C}\right] ; \quad[\alpha]^{\mathrm{D}}{ }_{25}-2.2$ (c 1 , EtOH); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 759,1047,1215,1510,1640,1747,3010,3459 ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H}), 2.90-3.12(\mathrm{~m}, 1 \mathrm{H}) 3.10-3.18$ $(\mathrm{m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}$, 1H); ${ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 19.9,26.5,32.5,41.9,42.1,56.1,56.9,61.1,107.2$,
111.1, 126.6, 131.4, 146.0, 175.1; Analysis for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 66.64; H, 8.55;

N, 9.14; Found C, 66.61; H, 8.40; N, 9.02\%.

### 2.3.7 References

1 For review see, Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron Vol. 52, No. 1996, 48, 15031.

2 (a) Jacquemond-Collet, I.; Hannedouche, S.; Fabre, N.; Fourastk, I.; Moulis. C. Phytochemistry 1999, 51, 1167; (b) Jacquemond-Collet, I.; Benoit-Vical, F.; V.dentin, M. A.; Stanislas, E.; Mallie, M.; Fouraste, I. Planta Med. 2002, 68, 68.

Leeson, P. D.; Carling, R. W.; Moore, K. W.; Moseley, A. M.; Smith, J. D.; Stevenson, G.; Chan, T.; Baker, R.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall, G. R.; Hoogsteen, K. J. Med. Chem. 1992, 35, 1954.

Omura, S.; Nakagawa, A. Tetrahedron Lett. 1981, 22, 2199.
Yamamoto, K.; Sugiyama, H.; Kawanishi, S. Biochemistry 1993, 32, 1059.
(a) Cowart, M.; Latshaw, S. P.; Bhatia, P.; Daanen, J. F.; Rohde, J.; Nelson, S. L.; Patel, M.; Kolasa, T.; Nakane, M.; Uchic, M. E.; Miller, L. N.; Terranova, M. A.; Chang, R.; Donnelly-Roberts, D. L.; Namovic, M. T.; Hollingsworth, P. R.; Martino, B. R.; Lynch III, J. J.; Sullivan, J. P.; Hsieh, G. C.; Moreland, R. B.; Brioni, J. D.; Stewart, A. O. J. Med. Chem. 2004, 47, 3853. (b) Alberts, G. L.; Pregenzer, J. F.; Im, W. B. British Journal of Pharmacology, 2000, 131, 514.
7 (a) Kokwaro, G. O; Taylor, G. Drug Chem. Toxicol. 1990, 13, 347; (b) Prankerd R. J.; Ahmed, S. M. J. Pharm. Pharmacol. 1992, 44, 261; (c) Prankerd, R. J.; Ahmed, S. M. J. Pharm. Pharmacol. 1992, 44, 259; (d) Prankerd R. J.; Ahmed, S. M. J. Pharm. Pharmacol. 1992, 44, 261; (e) Grimwood, S.; Moseby, A. M.; Carling, R. W.; Leeson, P. D.; Foster, A. C. Mol. Pharmacol. 1992, 41, 923;

19 (a) Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem. 1995, 60, 2588; (b) Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem. 1995, 60, 7631.
H. Justus Liegs. Ann. Chem. 1942, 550, 99; (c) Sharpless, K. B.; Teranishi, A. Y.; Backwall, J. E. J. Am. Chem. Soc. 1977, 99, 3120; (d) Jorgensen, K. A.; Schioett, B. Chem. Rev. 1990, 90, 1483.
Boger, D. L.; McKie, J. A.; Nishi, T.; Ogiku, T. J. Am. Chem. Soc. 1997, 119, 311.
Steinhagen, H.; Corey, E. J. Org. Lett. 1999, 1, 823.
Gallou-Dagommer, I.; Gastaud, P.; RajanBabu, T. V. Org. Lett. 2002, 4, 2691.
Fujita, K.; Yamamoto, K.; Yamaguchi, R. Org. Lett. 2001, 3, 2053.
Fujita, K.; Kitatsuji, C.; Furukawa S.; Yamaguchi, R. Tetrahedron Lett. 2004, 45, 3215.
Theeraladanon, C.; Arisawa, M.; Nakagawa, M.; Nishida, A. Tetrahedron Asymmetry 2005, 16, 827.
Chen, W.; Liu, B.; Yang, C.; Xie, Y. Tetrahedron Lett. 2006, 47, 7191.
Akiyama, T.; Morita, H.; Fuchibe K. J. Am. Chem. Soc. 2006, 128, 13070.
Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. 2009, 131, 4598.
Han, Z.; Xiao, H.; Chen, X.; Gong, L. J. Am. Chem. Soc. 2009, 131, 9182.
Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847.
Jia, Z-X.; Luo, Y-C.; Xu, P-F. Org. Lett. 2011, 13, 832.
(a) Jacobsen, E. N.; Marko, I.; France, M. B.; Svendsen, J. S.; Sharpless, K. B. J. Am. Chem. Soc. 1989, 111, 737; (b) Kolb, H. C.; Anderson, P. G.; Bennani, Y. L.; Crispino, G. A.; Jeong, K. S.; Kwong, H. L.; Sharpless, K. B. J. Am. Chem. Soc. 1993, 115, 12226.

Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263.
(a) Criegee, R. Justus Liebigs Ann. Chem. 1996, 522, 75; (b) Criegee, R.; Marchand, B.; Wannowias,

Gawley, R. A.; Aube, J. Principles of Asymmetric Synthesis Elesevier Science (Oxford), 1996, Vol. 14, (Chap. 8), pp 314.
Sharpless, K. B.; Amerg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu. D.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768.

Amerg, W.; Bennani, Y. L.; Chadha, R. K.; Crispino, G. A.; Davis, W. D.; Hartung, J.; Jeong, K. S.; Ogino, Y.; Shibata, T.; Sharpless K. B. J. Org. Chem. 1993, 58, 844.
(a) Schlesinger, H. I.; Brown, H. C. U.S. Patents 2,461,661 1949; Chem. Abstr. 1949, 43, 4684e; U S. Patent 2,534,533 1950; Chem. Abstr. 1955, 49, 6991a. (b) Schlesinger, H. I.; Brown, H. C.; Hoekstra, H. R.; Rapp, L. R. J. Am. Chem. Soc. 1953, 75, 199. (c) Finholt, A. E.; Bond, A. C. Jr.; Schlesinger, H. I. J. Am. Chem. Soc. 1947, 69, 1199.
(a) Sodium Borohydride; 1979 Product Bulletin; Thiokol/Ventron: Danvers, MA; (b) Brown, H. C. Chem. Eng. News 1979 (March 5), 24; (c) Brown, H. C. Boranes in Organic Chemistry; Cornell University: Ithaca, NY, 1972; pp 209; (d) House, H. O. Modern Synthetic Reactions, $2{ }^{\text {nd }}$ ed.; Benjamin: Menlo Park, CA, 1972, pp 45; (e) Wig-field, D. C. Tetrahedron 1979, 35, 449; (f) Chen, S. C. Synthesis 1974, 691; (g) Lithium Aluminum Hydride: Properties, Handling, Applications; Metallgesellschaft AG: Frankfurt, 1979.
40 Wade, R. C. J. Mol. Catal. 1983, 18, 273.

41
(a) Schlesinger, H. I.; Brown, H. C.; Hyde, E. K. J. Am. Chem. Soc. 1953, 75, 209; (b) James, B. D.; Wallbridge, M. G. H. Prog. Inorg. Chem. 1970, 11, 99; (c) Ashby, E. C.; Korenowski, T. F.; Schwartz, R. D. J. Chem. Soc., Chem. Commun. 1974, 157; (d) Masamune, S.; Bates, G. S.; Georghiou, P. E. J. Am. Chem. Soc. 1974, 91, 3688; (e) Semmelhack, M. F.; Stauffer, R. D.; Yamashita, A. J. Org. Chem. 1977, 42, 3180; (f) Schaeffer, G. W.; Roscoe, J. S.; Stewart, A. C. J. Am. Chem. Soc. 1956, 78, 729; (g) Schlesinger, H. I.; Brown, H. C.; Finholt, A. E.; Galbreath, J. R.; Hoekstra, H. R.; Hyde, E. K. J. Am. Chem. Soc. 1953, 75, 215.

Maybury, P. C.; Mitchell, R. W.; Hawthorne, M. F. J. Chem. Soc., Chem. Commun. 1974, 534.
(a) Fleet, G. W. J.; Harding, P. J. C. Tetrahedron Lett. 1981, 22, 675. (b) Entwhistle, E. D.; Boehm, P.; Johnstone, R. A. W.; Telford, R. P. J. Chem. Soc., Perkin Trans 1 1980, 27.
(a) Strohmeier, W.; Steigerwald, H. Naturforsch. B. Anorg. Chem. Org. Chem., Biochem. Biophys. Biol. 1977, 32b, 111. (b) Chung, S.-K. J. Org. Chem. 1979, 44, 1014. (c) Satyanarayana, N.; Periasamy, M. Tetrahedron Lett. 1984, 25, 2501. (d) Russell, T. W.; Hoy, R. C.; Cornelius, J. E. J. Org. Chem. 1972, 37, 3552. (e) Russell, T. W.; Hoy, R. C. J. Org. Chem. 1971, 36, 2018. (f) Nishio, T.; Omote, Y. Chem. Lett. 1979, 1223. (g) Kashima, C.; Yamamoto, Y. Chem. Lett. 1978, 1285. (h) Anwer, M. K.; Spatola, A. F. Tetrahedron Lett. 1985, 26, 1381.

Vincent, M.; Remond, G.; Portevin, B.; Laubie S. M. Tetrahedron Lett. 1882, 23, 1677. Gao, Y.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 7538. Schopf, J. W. Science 1993, 260, 640.
(a) Alexander, M. Annu. Rev. Microbiol. 1971, 25, 361-392. (b) Howard, D. H. Clin. Microbiol. Rev. 1999, 12, 394.
Bergeron, R. J.; McManis, J. S.; Phanstiel, O.; Vinson, J. R. J. Org. Chem. 1995, 60, 109. Hoehler, T. M.; Bebout, B. M.; Marais, D. J. Nature 2001, 412, 324.
(a) Beiderbeck, H.; Taraz, K.; Budzikiewicz, H.; Walsby, A. E. Z. Naturforsch. C 2000, 55, 681. (b) Beiderbeck, H. Dissertation, Universita"t Ko"ln, Germany, 2000. (c) Itou, Y.; Okada, S.; Murakami, M. Tetrahedron 2001, 57, 9093.

Ito, Y.; Ishida, K.; Okada, S.; Murakami, M. Tetrahedron 2004, 60, 9075.
(a) Gademann, K.; Bethuel, Y. Org. Lett. 2004, 6, 4707; (b) Bethuel, Y.; Gademann K. J. Org. Chem. 2005, 70, 6258; (c) Gademann, K.; Bethuel, Y.; Locher, H.H.; Hubschwerlen, C. J. Org. Chem. 2007, 72, 8361.
4 Santangelo, F.; Casagrande, C.; Miragoli, G.; Vecchietti, V. Eur. J. Med. Chem. 1994, 29, 877.

## CHAPTER III

## CN-Assisted Oxidative Cyclization of Cyano Cinnamates and Styrene Derivatives: A Facile Entry to 3-substituted Chiral Phthalides and its Application to the Synthesis of (-)-Matteucen C, Isocoumarins and Alkylidenephthalides

## Section I:

## CN-Assisted Oxidative Cyclization of Cyano Cinnamates and Styrene Derivatives: A Facile Entry to 3-Substituted Chiral Phthalides

### 3.1.1 Introduction

Chiral phthalides [isobenzofuran-1(3H)-ones] comprising of 5-membered lactones are found in a large number of plant products displaying broad and potent biological activities. ${ }^{1}$ Some representative examples are shown in Fig. 1. 3-Butylphthalide (1), a component in the Chinese folk medicine extracted from celery seed oil, ${ }^{2 a}$ is in phase II clinical trials in China and potentially can be used for the treatment of stroke. ${ }^{2 b}$ Moreover, it is employed for seasoning and flavoring purposes, shows anticonvulsant action, ${ }^{2 \mathrm{c}}$ increases the duration of anesthesia, ${ }^{2 \mathrm{~d}}$ and exhibits cerebral antiischemic action. ${ }^{2 e}$


1, 3-Butylphthalide


4, Virgatolide A
2, Fuscinarin


3, (-)-Hydrastine


5, (-)-Alcyopterosin E

Fig. 1: Some of the examples of chiral phthalides

Fuscinarin (2) is a potent human CCR5 antagonist, used effectively for blocking HIV entry into host cells. ${ }^{3}$ (-)-Hydrastine (3) is active at the opioid receptor. ${ }^{4}$ In addition, it possesses antipaclitaxel-resistant human ovarian cancer activity through c-Jun kinasemediated apoptosis and is in phase I clinical trials. ${ }^{5}$ Virgatolide A (4) and (-)Alcyopterosin E (5) which show cytotoxic activity against HeLa cells. ${ }^{6}$ Due to the biological importance of 3-substituted phthalides 1-5 (Fig. 1), their molecular architectures have become a platform for new synthetic methodology development. ${ }^{7}$

### 3.1.2 Review of literature

Literature search revealed that there are various methods available for the synthesis of 3substituted phthalide derivatives which are described below.

## Noyori's approach (1990) ${ }^{8}$

Noyori et al. have described the synthesis of chiral phthalide ((S)-3-methylisobenzofuran$1(3 \mathrm{H})$-one) 7 via asymmetric hydrogenation of ethyl o-acetylbenzoate (6) in ethanol with $0.4 \mathrm{~mol} \%$ of the (S)-BINAP-Ru catalyst at 100 atm in $97 \%$ ee and $97 \%$ yield (Scheme 1).


Scheme 1: (i) $\mathrm{Ru}\left(\mathrm{OCOCH}_{3}\right)_{2}[(S)$-BINAP] ( $0.4 \mathrm{~mol} \%$ ), $\mathrm{H}_{2}(100 \mathrm{~atm}), \mathrm{EtOH}, 0.5 \mathrm{~N} \mathrm{HCl}, 35^{\circ} \mathrm{C}, 165 \mathrm{~h}, 97 \%$.

## Butsugan's approach (1992) ${ }^{9}$

Butsugan et al. have reported the synthesis of optically active 3-ethyl- and 3-nbutylphthalides using enantioselective addition of dialkylzinc reagents. Thus, ophthalaldehyde (8) is subjected to asymmetric addition of dialkyl reagents, catalyzed by
chiral 1,2-disubstituted ferrocenyl amino alcohol 11, followed by oxidation of the resulting lactols 9a-b to provide phthalides 10a-b in 88-89\%ee (Scheme 2).

(-)-DFPE (11)
Scheme 2: (i) (-)-DFPE ( $5 \mathrm{~mol} \%$ ), $25^{\circ} \mathrm{C}, 1-3 \mathrm{~h}$, (ii) 1 N $\mathrm{HCl}, 0^{\circ} \mathrm{C}$.

## Lin's approach (2002) ${ }^{10}$

Nickel-catalyzed tandem homo addition of o-bromoaldehydes 12a-b via in situ cyclization was developed in presence of $(S)$-BINAP and zinc that provided optically active phthalides 13a-b in good yields with moderate enantiomeric excess (Scheme 3).


Scheme 3: (i) $\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ( 0.2 equiv). ( $S$ )-BINAP, zinc, toluene, $90^{\circ} \mathrm{C}$.

## Mori's approach (2003) ${ }^{11}$

Mori et al. have used Sharpless asymmetric dihydroxylation as the key reaction. Thus, commercially available methyl 3,4,5-trihydroxybenzoate (14) was benzylated and subsequently subjected to bromination to afford bromo compound 15 in $96 \%$ yield. The bromo compound 15 was subjected to Miyaura-Suzuki coupling with (E)-1octeneboronic acid to give olefin 16. Asymmetric dihydroxylation of olefin 16 with AD-mix- $\beta$ proceeded to furnish phthalide 17 in $54 \%$ yield with $45 \%$ ee (Scheme 4 ).



Scheme 4: (i) (a) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, 96 \%$; (b) NBS, DMF, $96 \%$; (ii) (E)$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CHB}(\mathrm{OH})_{2}, \quad \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \quad \mathrm{~K}_{2} \mathrm{CO}_{3}, \quad \mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{EtOH} \quad$ (5:1) $71 \%$; (iii) AD-mix- $\beta, \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), $54 \%$.

## Tanaka's Approach (2004) ${ }^{12}$

Tanaka et al. have described the enantioselective synthesis of axially chiral phthalides by the cationic $\left[\mathrm{Rh}^{\mathrm{I}}\left(\mathrm{H}_{8}\right.\right.$-binap $\left.)\right]$ complex catalyzed alkyne cyclotrimerization. The reaction of aryl-substituted 1,6-diyne 18a-d with terminal monoynes 19 in the presence of the cationic complex $\left[\mathrm{Rh}^{\mathrm{I}}\left(\mathrm{H}_{8}\right.\right.$-binap $\left.)\right]$ provided axially chiral phthalides 20a-d in high yields with moderate enantioselectivity (Scheme 5).


Scheme 5: (i) $5 \%\left[\mathrm{Rh}\left\{(S)-\mathrm{H}_{8}-\mathrm{BINAP}\right\}\right] \mathrm{BF}_{4}(1 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

Same authors have developed a cationic rhodium(I)/Solphos complex-catalyzed asymmetric one-pot transesterification and [2+2+2] cycloaddition of 1,6-diyne esters 21a-f with tertiary propargylic alcohols 22a-f leading to enantioenriched tricyclic 3,3disubstituted phthalides 23a-f in good yields (66-87\%) with moderate enantioselectivity (Scheme 6).

21a-f
$+$


22a-f


23a-f
upto $93 \%$ ee

23a, $Z=O ; R^{1}=P h ; R^{2}=\mathrm{Me} ; 82 \%$
23b, $Z=O ; R^{1}=M e ; R^{2}=M e ; 67 \%$
23c, $Z=O ; R^{1}=H ; R^{2}=M e ; 66 \%$
23d, $Z=O ; R^{1}=P h ; R^{2}=E t ; 66 \%$
23e, $Z=N T s ; R^{1}=P h ; R^{2}=\mathrm{Me} ; 85 \%$
23f, $Z=N T s ; R^{1}=M e R^{2}=M e ; 87 \%$

Scheme 6: (i) $5 \%\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4} /(\mathrm{R})-$ Solphos $(1 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1-3 \mathrm{~h}$.

## Vaccher's approach (2005) ${ }^{13}$

Vaccher et al. have reported the synthesis of 3-benzoyloxy methylisobenzofuranone (29) using Sharpless asymmetric dihydroxylation as the key step. Thus, phthalaldehyde 24 was firstly protected using propane-1,3-diol to give the benzaldehyde derivative $\mathbf{2 5}$, which was subjected to Witting reaction to afford the styrene derivative, 26. Asymmetric dihydroxylation using AD-mix $-\beta$ gave diol, which was protected with benzoyl chloride to
afford compound 27 with a free secondary hydroxyl group. Removal of the acetal from 27 in acidic medium gave benzo[c]furan 28, which was converted to phthalide 29 in $50 \%$ yield using $\mathrm{RuCl}_{3}-\mathrm{NaIO}_{4}$ (Scheme 7).




Scheme 7: (i) PTSA, propan-1,3-diol, toluene, $5 \mathrm{~h}, 82 \%$; (ii) $t$-BuOK, $\mathrm{CH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PBr}$, toluene, $3 \mathrm{~h}, 78 \%$; (iii) (a) AD-mix- $\beta, t$ - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$; $12 \mathrm{~h}, 72 \%$; (b) $\mathrm{BzCl},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$, toluene, $5 \mathrm{~h}, 78 \%$; (iv) PTSA, acetone, $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~h}, 82 \%$; (v) $\mathrm{NaIO}_{4}, \mathrm{RuCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{EtOAc}, \mathrm{H}_{2} \mathrm{O}, 50 \%$.

## Cheng's approach (2007) ${ }^{14}$

Cheng et al. have reported Cobalt bidentate phosphine complex catalyzed synthesis of phthalides 32a-f. Thus, methyl 2-iodobenzoates $\mathbf{3 0}$ underwent cyclization reactions with various aromatic aldehydes 31a-f in the presence of $\left[\mathrm{CoI}_{2}(\mathrm{dppe})\right](5 \mathrm{~mol} \%)$ and Zn powder in dry THF at $75^{\circ} \mathrm{C}$ for 24 h to give the corresponding phthalide derivatives 32af in $89-94 \%$ yields with $70-98 \%$ ee (Scheme 8).


Scheme 8: (i) $\left[\mathrm{CoI}_{2}\right.$ (dppe) $]$ ( $5 \mathrm{~mol} \%$ ), $\mathrm{Zn}, \mathrm{THF}, 75^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

## Xu's approach (2009) ${ }^{15}$

Xu et al. have reported a new diamine ligand $\mathbf{3 5}$ for asymmetric transfer hydrogenation (ATH) to synthesize 3 -substituted phthalides. The reductive cyclization of 2acylarylcarboxylates 33a-f via the new $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2} / \mathbf{3 5}$-catalyzed ATH and subsequent in situ lactonization under aqueous conditions proceeded to give a variety of 3-substituted phthalides 34a-f in high yields (93-97\%) with high ee (98-99\%) (Scheme 9).


Scheme 9: (i) $\left[\mathrm{RuCl}_{2} \text { ( } p \text {-cymene) }\right]_{2} / 35$ ( $1 \mathrm{~mol} \%$ ), $\mathrm{HCO}_{2} \mathrm{Na}, 4 \%$ CTAB, $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

## Dong's approach (2009) ${ }^{16}$

Dong et al. have employed $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$-catalyzed hydroacylation of ketones 36a-f in presence of duanphos $38(10 \mathrm{~mol} \%)$, and $\mathrm{AgNO}_{3}$ ( $10 \mathrm{~mol} \%$ ) to give chiral phthalides 37a-f in $81-94 \%$ yields with $92-98 \%$ ee (Scheme 10).


37a, $R=H ; R_{1}=E t ; 94 \%$
37b, $\mathrm{R}=\mathrm{H} ; \mathrm{R}_{1}=i-\mathrm{Pr} ; 83 \%$
$37 c, R=H ; R_{1}=C_{6} H_{5} ; 81 \%$
37d, $\mathrm{R}=\mathrm{H} ; \mathrm{R}_{1}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} ; 48 \%$
37e, $R=M e ; R_{1}=M e ; 91 \%$
37f, $\mathrm{R}=t-\mathrm{Bu} ; \mathrm{R}_{1}=\mathrm{Me} ; 84 \%$

(S,S,R,R)-Duanphos (38)

Scheme 10: (i) $\left[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)\right.$, duanphos (42) ( $10 \mathrm{~mol} \%$ ), $\mathrm{AgNO}_{3}(10 \mathrm{~mol} \%)$, toluene, $90^{\circ} \mathrm{C}$, 3-3.5 h .

## Wang's approach (2010) ${ }^{17}$

Wang et al. have described the synthesis of chiral phthalides 41a-e by employing organocatalytic asymmetric aldol-lactonization as the key reaction. Thus, 2formylbenzoic esters 39a-e and ketone 40 were subjected to aldol reaction using Lprolinamide alcohol 42 as catalyst and $\mathrm{PhCO}_{2} \mathrm{H}$ as an additive to give 3-substituted phthalides 41a-e in 77-91\% yield with 74-97\%ee (Scheme 11).


Scheme 11: (i) (a) 42 ( $2.5 \mathrm{~mol} \%$ ), $\mathrm{PhCO}_{2} \mathrm{H}\left(2.5 \mathrm{~mol} \%\right.$ ), $-40{ }^{\circ} \mathrm{C}, 12-24 \mathrm{~h}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone/methanol (10:1), 15 min

## Gotor's approach (2012) ${ }^{18}$

Gotor et al. have described Baker's yeast-catalyzed bioreduction of 2-acetylbenzonitriles 43a-e followed by aqueous HCl that provided access to enantiopure (S)-3methylphthalides 44a-e in moderate to excellent yields (42-99\%) with $>98 \%$ ee (Scheme 12).


Scheme 12: (i) (a) Baker's yeast, glucose, $\mathrm{H}_{2} \mathrm{O}$ (IPA), $25^{\circ} \mathrm{C}, 16-72 \mathrm{~h}$; (b) $\mathrm{HCl} 1 \mathrm{M}, 25^{\circ} \mathrm{C}, 48 \mathrm{~h}, 50->97 \%$ conversion.

### 3.1.3 Present Work

### 3.1.3.1 Objective

As can be seen from the above discussion, the reported methods for the synthesis of 3substituted phthalides employ either chiral auxiliaries or expensive organometallic reagents in stoichiometric amounts and often lack in broad substrate scope and higher reaction stereoselectivity; only a few are atom economical. In this context, a more practical and efficient synthesis of functionalized 3-substituted phthalide derivatives is highly desirable. In this section, we present a single-step oxidative cyclization of cyanocinnamates and styrenic substrates that affords 3 -substituted phthalides in high yields via synergetic acceleration of CN and osmate ester groups present in proximity positions.

### 3.1.4 Results and Discussion

In Chapter 2, we have presented a novel protocol of AD process and Co-catalyzed "onepot" reductive cyclization $\left(\mathrm{CoCl}_{2}-\mathrm{NaBH}_{4}\right)$ of nitro cyclic sulfites that led to the construction of 3 -substituted tetrahydroquinolin-3-ols. ${ }^{19}$ In analogy with this, we reasoned that subjecting cyano cyclic sulfites to the same reaction conditions should afford synthetically useful benzazepines. ${ }^{20}$ In order to synthesize cyano cyclic sulfite, we visualized a strategy in which cyano diol 48 could probably lead to the cyano cyclic sulfite. Thus, o-cyano benzaldehyde 45 was subjected to Wittig olefination to afford ( $E$ )$\alpha, \beta$-unsaturated ester 46a in $88 \%$ yield (Scheme 13). Two doublets at $\delta 6.60$ (d, $J=16$ $\mathrm{Hz}, 1 \mathrm{H})$ and $7.96(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H})$ integrating for one proton each in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 46a accounted for olefinic protons in 46a. It was further supported by typical carbon signals at $\delta 122.9$ and 139.0 in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (Fig. 2).


Fig. 2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of o-cyano cinnamate 46a

In order to validate our hypothesis, ethyl 2-cyanocinnamate 46a was subjected to Sharpless asymmetric dihydroxylation using (DHQD) $)_{2}-\mathrm{PHAL}$ as the chiral ligand for 7 h , with THF as co-solvent for better solubility. Surprisingly, the reaction took altogether a different course to give the cyclized chiral phthalide 47a exclusively with $99 \%$ ee in a single step, instead of the expected cyano diol 48 (Scheme 13). This unexpected transformation is characterized by high rate, excellent yield and enantioselectivity which
is attributed to coordination assistance provided by the neighboring CN group to osmate ester, leading to faster hydrolysis of osmate ester in the catalytic cycle. Incidentally, the rate of AD process for electron-deficient $o$-substituted cinnamates is generally reported to be sluggish (48 h to 7 days) giving products invariably with moderate enantioselectivity $(88 \%$ ee $) .{ }^{21}$


Scheme 13: (i) $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, reflux, $12 \mathrm{~h}, 88 \%$; (ii) $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OH})_{4}\right]$ ( $0.1 \mathrm{~mol} \%$ ), ( DHQD$)_{2}$-PHAL ( $0.5 \mathrm{~mol} \%$ ), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ ( 3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 3 equiv.), tert-BuOH:THF: $\mathrm{H}_{2} \mathrm{O}(1: 1: 2), 25^{\circ} \mathrm{C}, 7 \mathrm{~h}$.

The formation of chiral phthalide 47a was confirmed by the presence of a doublet of doublet at $\delta 4.66(\mathrm{dd}, J=2.1,5.8 \mathrm{~Hz})$ integrating for one proton $(-\mathrm{CH}-\mathrm{OH})$ and also a doublet at $\delta 5.79(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$ integrating for one proton (-CH-O-CO-) in its ${ }^{1} \mathrm{H}$ NMR spectrum. It was further substantiated by the signals at $\delta 70.3$ and 80.3 in ${ }^{13} \mathrm{C}-\mathrm{NMR}$ which correspond to carbons attached to oxygen atoms of hydroxyl and carbonyl group respectively (Fig. 3). The IR spectrum of phthalide 47a displayed a strong absorption bands at 1720 and $1768 \mathrm{~cm}^{-1}$ confirming the presence of ester and $\gamma$-lactone carbonyl groups respectively.

$$
\mathscr{N O N O N}
$$





Fig. 3: ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$-NMR spectra of phthalide 47a

Further, the formation of chiral phthalide 47a was confirmed by COSY and mass spectrum (Fig. 4)


Fig. 4: COSY and mass spectra of phthalide 47a

The enantiomeric excess of chiral phthalide 47a was determined as $99 \%$ by chiral HPLC analysis (Chiracel OJ-H, Fig. 5).


Fig. 5: HPLC chromatogram of 47b

Encouraged by the result, we became interested in the scope of the reaction by subjecting other o-cyano alkenes 46b-z. o-Cyano alkenes 46b-z were prepared in a single step, starting from the corresponding o-bromo alkene derivatives 49b-z via Rosenmund-von Braun reaction using CuCN (3 equiv) and DMF as solvent at $150{ }^{\circ} \mathrm{C}$ in $76-84 \%$ yield (Scheme 14). o-Bromo alkene derivatives 49b-z were prepared in high yields using

Wittig or Julia olefination of the respective benzaldehydes by following the literature procedures. ${ }^{22}$


49b-z


46b-z

$$
\begin{gathered}
R^{1}=\mathrm{H}, \mathrm{OR}, \text { alkyl, aryl, } \\
\mathrm{F}, \mathrm{NO}_{2} \text {, etc. } \\
\mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{OMe} \text {, etc } \\
\mathrm{R}^{4}=\mathrm{H}, \text { alkyl, Ph, } \mathrm{CO}_{2} \mathrm{Et}
\end{gathered}
$$

Scheme 14: (i) CuCN (3 equiv), DMF, reflux, 18 h .

When subjected to Os-catalyzed asymmetric dihydroxylation (AD) using (DHQD) $2^{-}$ PHAL as the chiral ligand, o-cyano $\alpha, \beta$-unsaturated esters 46b-l gave the corresponding chiral phthalide derivatives 47b-l in 92-95\% yields with excellent enantioselectivities (98-99\%). Results of such studies are presented in Table 1. As can be seen, in every case, the reaction proceeded rapidly with in 7 h giving the desired phthalides 46b-l in excellent yields and ees (up to $99 \%$ ) at ambient conditions. For instance, substrates having halogen (entry i), highly electron-rich (entry f) or electron-deficient (entry j) groups on the aromatic nucleus including 2-naphthyl system (entry l) underwent this oxidative cyclization smoothly affording the corresponding phthalides 46b-l with excellent yields in single step.

Subsequently, we extended our study to include other styrene derivatives $\mathbf{4 6 m} \mathbf{- z}$ bearing different functionalities on the aromatic nucleus as well as on the $\beta$-position of the styrene derivative side chain $\left(\mathrm{R}^{4}\right)$ (Table 2). It was again found that this AD process displayed a wide substrate scope tolerating alkyl, aryl, alkoxy, fluoro or tosyl groups. Excellent yields of phthalide derivatives 47m-z (93-95\%) and enantioselectivities (97-
$99 \%$ ee) were indeed realized in all the cases studied. The stereochemistry of the cyclized products was assigned according to the previously established absolute configuration of phthalides as well as in accordance with AD rules. ${ }^{23}$

Table 1: CN-assisted Os-catalyzed Oxidative Cyclization of Cyano Ethyl Cinnamates


| Entry | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | Yield (\%) ${ }^{\text {a }}$ | ee (\%) ${ }^{\text {b,c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | H | H | H | 94 | 99 |
| b | OMe | H | H | 95 | 99 |
| c | OMe | OMe | H | 94 | 99 |
| d | H | OMe | OMe | 94 | 99 |
| e | OMe | H | OMe | 94 | 99 |
| f | OMe | OMe | OMe | 92 | 99 |
| g | OTs | OMe | H | 93 | 99 |
| h | OBn | OMe | H | 94 | 99 |
| i | F | H | H | 94 | 99 |
| j | $\mathrm{NO}_{2}$ | H | H | 93 | 99 |
| k | -O-CH2-O- |  | H | 95 | 98 |
| 1 | $\text { (E)-ethyl } 3$ | crylate | halen- | 94 | 98 |

[^0]Table 2: CN-assisted Os-catalyzed Oxidative Cyclization of Cyano Styrene Derivatives

|  |  |  | $\xrightarrow[\substack{\left.t_{\mathrm{BuOH}} \\ 0.5: 1\right), 25^{\circ} \mathrm{C}, 3 \mathrm{H}, 7 \mathrm{~h}-\mathrm{H}_{2} \mathrm{O}}]{\mathrm{AD}-\mathrm{mix}-\beta,}$ |  |  <br> 47m-z |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | $\mathrm{R}^{4}$ | Yield (\%) ${ }^{\text {a }}$ | ee (\%) ${ }^{\text {b,c,d }}$ |
| m | H | H | H | H | 95 | 99 |
| n | OMe | H | H | H | 95 | 99 |
| o | OMe | OMe | H | H | 93 | 99 |
| p | H | OMe | OMe | H | 94 | 99 |
| q | OMe | H | OMe | H | 94 | 99 |
| r | OMe | OMe | OMe | H | 92 | 99 |
| s | OTs | OMe | H | H | 93 | 99 |
| t | OBn | OMe | H | H | 94 | 99 |
| u | F | H | H | H | 94 | 99 |
| v | -O-C | $\mathrm{H}_{2}$-O- | H | H | 93 | 99 |
| w | H | H | H | $\mathrm{C}_{3} \mathrm{H}_{7}$ | 93 | 97 |
| x | OMe | OMe | H | $\mathrm{CH}_{2} \mathrm{OTBS}$ | 94 | 97 |
| y | OMe | OMe | H | Ph | 94 | 97 |
| z | OMe | OMe | H | $n-\mathrm{C}_{6} \mathrm{H}_{13}$ | 92 | 98 |

${ }^{\text {a }}$ Isolated yield after column chromatographic purification. ${ }^{\mathrm{b}}$ ee determined by chiral HPLC analysis.


The formation of phthalide derivatives $47 \mathrm{~m}-\mathrm{z}$ were confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy. For example: The formation of phthalide 47 m was confirmed by the appearance of peaks at $\delta 3.90(\mathrm{~d}, J=11.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=11.80 \mathrm{~Hz}, 1 \mathrm{H})$ and $5.54-$ $5.59(\mathrm{~m}, 1 \mathrm{H})$ in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Further, its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed signals at
$\delta 61.7,81.5$ and 170.6, which correspond to carbons attached to oxygen atoms and carbonyl carbon of lactone respectively (Fig. 6). Its IR spectrum displayed characteristic IR absorption $1756 \mathrm{~cm}^{-1}$ indicating the presence of carbonyl group in lactone.


Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of phthalide 47 m
The enantiomeric excess of chiral phthalides $47 \mathrm{~m}-\mathrm{z}$ was determined by chiral HPLC analysis and also by Mosher's ester analysis. For example: The enantiomeric excess of
chiral phthalide 47n was determined as $99 \%$ by chiral HPLC analysis (Chiracel OJ-H,
Fig. 7).



Fig. 7: HPLC chromatogram of 47n

The higher reactivity of cyano substituted cinnamates and styrenes 46a-z were substantiated by carrying out several competitive experiments involving 1:1 molar equivalents of aromatic substrates with and without cyano substitution; the results of which are presented in Table 3. The results clearly show that cyano substituted substrates
react almost 10-12 times faster than the one without cyano substitution, giving excellent yields of phthalides (92-94\%).

Table 3: Competitive experiments ${ }^{\text {a }}$

| Entry | Substrates | Product | Yield (\%) ${ }^{\text {b,c }}$ |
| :---: | :---: | :---: | :---: |
| 1 | $\mathbf{4 6 a}+$ ethyl cinnamate | 47 a | 92 |
| 2 | $\mathbf{4 6 e}+3,5$ dimethoxy ethyl cinnamate | 47 e | 93 |
| 3 | $\mathbf{4 6 m}+$ styrene | 47 m | 94 |
| 4 | $\mathbf{4 6 0}+3,5$ dimethoxystyrene | 47 o | 92 |
| 5 | $\mathbf{4 6 r}+\mathbf{3 , 4 , 5}$ trimethoxystyrene | 47 r | 92 |

${ }^{\text {a }} 1: 1$ Molar equivalents of aromatics substrates with and without cyano substitution ( 1 mmol each) AD-mix- $\beta$ ( $0.5 \mathrm{~mol} \%$ ), $t \mathrm{BuOH}: \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}(0.5: 0.5: 1), 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$ for entries $3-5$ and 7 h for entries 1 and 2. ${ }^{\text {b }}$ Isolated yields after column chromatographic purification. ${ }^{\text {c }} 5-8 \%$ of 1, 2-diol from the corresponding substrates without cyano substitution was indeed isolated.


Scheme 15: (i) $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OH})_{4}\right](0.1 \mathrm{~mol} \%)$, ( DHQD$)_{2}-\mathrm{PHAL}(0.5 \mathrm{~mol} \%)$, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), tert-BuOH:THF: $\mathrm{H}_{2} \mathrm{O}$ ( $1: 1: 2$ ), 36 h, $25{ }^{\circ} \mathrm{C}, 94-95 \%$; (ii) $\mathrm{BnOCONH}_{2}$, aq. $\mathrm{NaOH}, \mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OH})_{4}\right]$, $(\mathrm{DHQD})_{2} \mathrm{PHAL}, t-\mathrm{BuOCl}, \mathrm{n}-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}, 3 \mathrm{~h}, 64 \%, \mathrm{dr}=6: 1$.

In order to account for the mechanistic course of the reaction, the following experiments (Scheme 15) were conducted: (i) AD-mix- $\beta$ of substrates $50 \& 51$ for 36 h gave the corresponding cyanodiols $52 \& 53$ respectively, indicating that both CN and $\mathrm{C}=\mathrm{C}$ groups must be positioned in proximity for CN coordination assistance to take place; (ii) asymmetric aminohydroxylation ${ }^{24}$ of 46a gave the expected amino alcohol 54 (64\%) with no phthalide formation, suggesting that coordination of CN onto imino osmate ester is thermodynamically less favorable, due to its reduced Lewis acid character; ${ }^{25}$ (iii) in addition, imino intermediates 55a-b were indeed isolated in $20 \%$ yield during the AD-mix- $\beta$ of substrates 46a and 46w. This study clearly excludes the hydrolysis of CN to $\mathrm{CO}_{2} \mathrm{H}$ followed by cyclization route, (iv) addition of benzonitrile as an external source of CN -assistance resulted in no rate enhancement for the AD process. On the basis of these results, a mechanistic model is presented in species $\mathbf{A}$ in which a synergism involving coordination of CN to $\mathrm{Os}(\mathrm{VI})$ and concurrent attack of osmate ester onto electropositive carbon of CN is shown that probably helps to accelerate the hydrolysis of osmate ester. These results indicate the 5-exo-dig type cyclization ${ }^{26}$ to afford iminoesters 55a-b, which finally lead to the formation of phthalides 47a or 47w (Scheme 16).


Scheme 16: Mechanism of CN -assisted Os-catalyzed oxidative cyclization

This formation of iminoester 55b was clearly demonstrated by IR data of the nonsubstituted imidate $\mathrm{C}=\mathrm{NH}$ band (around $1687 \mathrm{~cm}^{-1}$ ) and the phthalide (47w) $\mathrm{C}=\mathrm{O}$ band (around $1752 \mathrm{~cm}^{-1}$ ) (Fig. 8).


55b

$\underbrace{604.41}_{728.56}$



Fig. 8: IR spectra of phthalides 55b and 47w

### 3.1.5 Conclusion

We have demonstrated a novel CN -assisted oxidative cyclization for the synthesis of a wide variety of 3-substituted phthalides and their structural analogues via AD process of cyano cinnamates and styrene derivatives. This reaction is highly practical in the sense that the products were obtained in excellent yields and optical purities (97-99\%ee) and
shows broad substrate scope and good functional group tolerance. The synergism shown by CN and osmate groups in proximity helps to enhance the rate of this reaction. We believe that this oxidative intramolecular cyclization AD strategy should find wide applications in the total synthesis of other bioactive phthalide frameworks.

### 3.1.6 Experimental Section

Typical experimental procedure for the preparation of (E)-Ethyl 3-(2cyanophenyl)acrylate (46a)

To a stirred solution of 2-cyanobenzaldehyde $45(2 \mathrm{~g}, 7.9 \mathrm{mmol})$ in benzene ( 40 mL ), $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(3.1 \mathrm{~g}, 8.6 \mathrm{mmol})$ was added. It was then refluxed for 12 h under $\mathrm{N}_{2}$ atmosphere. After the completion of reaction, benzene was distilled out to give the crude product. Chromatographic purification of crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate $(90: 10)$ as eluent] afforded the cyano cinnamate 46 ( 1.4 g yield).

Yield: $88 \%$, colorless solid; $\mathbf{m p} 60-62{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 765,784,1031,1184$, $1318,1447,1480,1594,1640,1712,2225,2938,2983 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.31(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=$ $1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=16 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,60.7,112.5,116.8,122.9,126.8,129.9,132.8$, 133.3, 137.1, 139.1, 165.4; Analysis: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires C 71.63, H 5.51, N 6.96 found C 71.59, H 5.56, N 6.93\%.

Typical experimental procedure for the preparation of (S)-Ethyl-2-((R)-1,3-dihydro-1-oxoisobenzofuran-3-yl)-2-hydroxyacetate (47a)

A 50 mL RB flask was charged with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(1 \mathrm{~g}, 3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(414 \mathrm{mg}, 3$ $\mathrm{mmol})$, tert- $\mathrm{BuOH}(2.5 \mathrm{~mL})$, THF $(2.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and stirred for 10 min . Subsequently, (DHQD) ${ }_{2}$ PHAL ( $8 \mathrm{mg}, 1 \mathrm{~mol} \%$ ) and $\mathrm{K}_{2} \mathrm{OsO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{mg}, 0.5 \mathrm{~mol} \%)$ were added and the stirring continued for additional 30 min . To this reaction mixture, (E)-ethyl 3-(2-cyanophenyl)acrylate (46a) (200 mg, 1 mmol ) was added and allowed to stir for 7 h at $25{ }^{\circ} \mathrm{C}$. After completion of reaction (as monitored by TLC), sodium bisulphite ( 1 g ) was added slowly at $0^{\circ} \mathrm{C}$. The organic layer was separated, aqueous layer extracted with ethyl acetate ( $3 \times 10 \mathrm{ml}$ ) and the combined organic layers washed with brine ( 15 mL ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield the crude product. Flash column chromatographic purification [silica gel (230-400 mesh) and petroleum ether/EtOAc (7:3) as an eluent] gave 47a (221 mg).

Yield: $94 \%$; colorless solid; mp $146-148^{\circ} \mathrm{C}$; $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{PrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time 12.16 (99.65\%) and 13.80 $(0.35 \%) ;[\alpha]^{\mathrm{D}}{ }_{25}-95.65\left(c 1.24, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 762,856,968,1027$, $1068,1078,1210,1298,1349,1467,1611,1652,1720,1768,2924,3014,3440 ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{dd}, J=2.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.93(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.7,62.3$, $70.3,80.3,122.0,125.3,126.4,129.3,134.0,145.7,169.8,170.7$; ESI-MS: $m / z 259.1352$ $[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$ requires C 61.01, H 5.12 found C 60.96, H 5.07\%.

General experimental procedure for the preparation of o-cyano alkenes (46b-z) $o$-Bromo alkenes 49b-z ( 1 mmol ) were taken in dry DMF $(10 \mathrm{~mL})$ and $\mathrm{CuCN}(3 \mathrm{mmol})$ was added and refluxed under $\mathrm{N}_{2}$ for 18 h (monitored by TLC). The reaction mixture was
then cooled to room temperature, and then diluted with water ( 30 mL ) and EtOAc (25 mL ). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 20 mL ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products which were purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: $\operatorname{EtOAc}(7: 3)$ as an eluent] to give $o$-cyanoalkenes $\mathbf{4 6 b}-\mathbf{z}$ in $76-84 \%$ yield.
(E)-Ethyl 3-(2-cyano-5-methoxyphenyl)acrylate (46b)

Yield: $86 \%$, colorless solid; mp $130-132{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 728,868,1026$, 1256, 1490, 1594, 1607, 1640, 1712, 2228, 2853, 2923 3023; ${ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.36(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=16 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{dd}, J=2.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,55.6,60.8,104.6,112.1$, 116.0, 117.3, 123.1, 135.0, 139.4, 162.7, 165.5; Analysis: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires C 67.52, H 5.67, N 6.06 found C 67.49, H $5.61, \mathrm{~N} 6.01 \%$.
(E)-Ethyl 3-(2-cyano-4,5-dimethoxyphenyl)acrylate (46c)

Yield: $87 \%$, colorless solid; $\mathrm{mp} 159-161^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 761,848,1094$, 1149, 1204, 1326, 1462, 1571, 1594, 1709, 2222, 2984, 3018; ${ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.47(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,55.9,56.2,60.7,105.2,108.2,114.2,117.1,120.7,131.5,139.2$, 150.5, 152.6, 165.8; Analysis: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C 64.36 , H 5.79 , N 5.36 found C 64.32, H 5.71, N 5.34\%.

## (E)-Ethyl 3-(2-cyano-3,4-dimethoxyphenyl)acrylate (46d)

Yield: $88 \%$, colorless solid; $\mathbf{m p} 145-147{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 758,894,1078$, $1138,1208,1318,1326,1462,1571,1594,1608,1710,2222,2984,3018 ;{ }^{1} \mathbf{H}-\mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.48(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J$ $=16 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.3,56.1,60.6,61.6,107.9,114.1,116.4$, 120.7, 122.9, 129.7, 139.2, 152.1, 153.5, 165.9; Analysis: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C 64.36, H 5.79, N 5.36 found C 64.34, H 5.71, N 5.32\%.
(E)-Ethyl 3-(2-cyano-3,5-dimethoxyphenyl)acrylate (46e)

Yield: $87 \%$, colorless solid; mp $119-122{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 734,876,1069$, $1128,1208,1326,1326,1478,1568,1594,1608,1712,2228,2958,3082,{ }^{1} \mathbf{H}-\mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J$ $=16 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.3,55.7,56.1,60.8,94.9,96.1$ 99.4, 103.4, 114.8, 123.3, 139.6, 140.1, 163.4, 163.9, 165.6; Analysis: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C 64.36, H 5.79, N 5.36 found C 64.32, H 5.71, N 5.34\%.
(E)-Ethyl 3-(2-cyano-3,4,5-trimethoxyphenyl)acrylate (46f)

Yield: $88 \%$, colorless solid; $\mathbf{m p} 150-152^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 669,703,749,940$, $1260,1311,1573,1607,1640,1708,2210,2979,3016 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.50(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 14.3,55.8,60.3,109.1,115.4,117.0,118.5,126.2,142.5,148.5,151.1,161.2 ;$ Analysis: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires $\mathrm{C} 61.85, \mathrm{H} 5.88, \mathrm{~N} 4.81$ found C 61.82 , H 5.79, N $4.75 \%$.

## 5-((E)-2-(Ethoxycarbonyl)vinyl)-4-cyano-2-methoxyphenyl 4-methylbenzene sulfonate (46g)

Yield: $87 \%$, colorless solid; $\mathbf{m p} 150-151^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 742,865,1030$, 1128, 1232, 1318, 1329, 1478, 1571, 1594, 1608, 1708, 2225, 2982, 3025; ${ }^{1} \mathbf{H}-\mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.54(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,21.7,56.0$, $61.0,104.5,110.3,116.0,123.8,128.3,129.7,132.6,137.9,138.4,139.1,145.8,155.6$, 165.2; Analysis: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}$ requires C 59.84, H 4.77, N 3.49 found C 59.78, H 4.69, N $3.42 \%$.

## (E)-Ethyl 3-(5-(benzyloxy)-2-cyano-4-methoxyphenyl)acrylate (46h)

Yield: $86 \%$, colorless solid; mp $146-148{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 738,825,1031$, 1098, 1234, 1334, 1380, 1467, 1568, 1575, 1608, 1710, 2228, 2982, 3034; ${ }^{1} \mathbf{H}$-NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~s}$, $2 \mathrm{H}), 6.34(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.84(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.3,56.2,60.8,71.0,105.5,110.5,114.7,117.2,120.9$, 127.3, 128.8, 131.5, 135.4, 139.3, 151.1, 151.8, 165.9; Analysis: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C 71.20, H 5.68, N 4.15 found C 71.14, H 5.61, N 4.09\%.

## (E)-Ethyl 3-(2-cyano-5-fluorophenyl)acrylate (46i)

Yield: $85 \%$, colorless solid; $\mathbf{m p} 72-74{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 756,828,866,981$, $1030,1186,1226,1276,1325,1370,1480,1574,1603,1640,1693,2984,3012 ;{ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19((\mathrm{td}, J=2.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=2.6,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J$
$=5.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,60.9$, $108.8,133.9(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 116.0,117.6(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 124.2,135.7(\mathrm{~d}, J=9.8 \mathrm{~Hz})$, $140.2(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 164.5(\mathrm{~d}, J=257.7 \mathrm{~Hz}), 164.9$; Analysis: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FNO}_{2}$ requires C 65.75, H 4.60, N 6.39 found C 65.68, H 4.56, N 6.36\%.

## (E)-Ethyl 3-(2-cyano-5-nitrophenyl)acrylate (46j)

Yield: $87 \%$, colorless solid; mp $105-107{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 739,830,968$, 1032, 1106, 1346, 1540, 1708, 2233, 2980, 3087, ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.38(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.33(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}) 8.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,61.3,115.2,117.8,121.7,124.1,125.9,134.7$, 136.9, 139.5, 150.2, 164.8; Analysis: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N} 2 \mathrm{O}_{4}$ requires C 58.54, H 4.09, N 11.38 found C 58.48, H 4.02, N $11.31 \%$.

## (E)-Ethyl 3-(5-cyanobenzo[d][1,3]dioxol-6-yl)acrylate (46k)

Yield: $86 \%$, colorless solid; mp $148-149{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 728,878,1042$, 1134, 1256, 1366, 1382, 1478, 1568, 1594, 1608, 1712, 2218, 2958, 3082; ${ }^{1} \mathbf{H}$-NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 4.28(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 14.3,60.8,102.8,105.9,106.8,111.8,116.9,121.4,133.9,138.9,149.2,151.9$, 165.7; Analysis: $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4}$ requires C 63.67, H 4.52, N 5.71 found C $63.59, \mathrm{H} 4.48, \mathrm{~N}$ 5.65\%.

## (E)-Ethyl 3-(1-cyanonaphthalen-2-yl)acrylate (461)

Yield: $88 \%$, colorless solid; mp $118-119{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 784,865,989$, $1030,1106,1210,1275,1291,1319,1368,1573,1607,1712,2218,2978,3084 ;{ }^{1} \mathbf{H}-$

NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.32(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J$ $=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ $(\mathrm{d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,60.8$, $110.8,115.5,122.1,123.5,125.8,128.3,129.1,132.5,132.9,137.0,139.5,165.5 ;$

Analysis: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires C $76.48, \mathrm{H} 5.21, \mathrm{~N} 5.57$ found C 76.42 , $\mathrm{H} 5.19, \mathrm{~N} 5.52 \%$.

## 2-Vinylbenzonitrile (46m)

Yield: $86 \%$, gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 752,839,962,1014,1072,1118,1202,1308$, $1347,1368,1444,1573,1607,1625,1675,2215,2889,2923,3012 ;{ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 5.54(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=10.6,17.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=1.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.70(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 111.0,117.4,118.7,125.2,127.8,132.5,132.7,140.4$; Analysis: $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$ requires C 83.69, H 5.46, N 10.84 found C 83.62, H 5.41, N 10.78\%.

## 4-Methoxy-2-vinylbenzonitrile (46n)

Yield: $84 \%$, gum, IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 752,839,1030,1083,1119,1256,1308,1347$, 1368, 1456, 1573, 1607, 1625, 1668, 2208, 2923, 3081; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $3.88(\mathrm{~s}, 3 \mathrm{H}), 5.53(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=2.3,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=11.1,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 55.4,103.2,110.4,114.1,117.9,118.7,132.9,134.4,142.5$, 162.7; Analysis: $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}$ requires C $75.45, \mathrm{H} 5.70, \mathrm{~N} 8.80$ found C 75.41 , H $5.67, \mathrm{~N}$ 8.73\%.

## 4,5-Dimethoxy-2-vinylbenzonitrile (46o)

Yield: $88 \%$, colorless solid; mp $106-107{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 752,839,936$, 1031, 1086, 1119, 1256, 1308, 1378, 1389, 1456, 1575, 1612, 1628, 1656, 2210, 2923,

3052; ${ }^{1} \mathbf{H}$-NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 3.91$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $3.97(\mathrm{~s}, 3 \mathrm{H}), 5.45(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.80(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-7.08(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 55.7$, $55.9,102.7,106.9,113.5,116.5,117.7,132.5,134.9,148.7,152.5$; Analysis: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires C 69.83 , H 5.86, N 7.40 found C 69.75 , H 5.75, N $7.39 \%$.

## 2,3-Dimethoxy-6-vinylbenzonitrile (46p)

Yield: $86 \%$, colorless solid; mp $108-110{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 748,840,936$, $1028,1086,1119,1256,1308,1378,1389,1456,1575,1612,1628,1656,2202,2981$, 3029; ${ }^{1} \mathbf{H}$-NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 5.53(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.90(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (dd, $J=10.9,17.3 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 56.1,61.5,106.7,114.7$, 116.7, 120.8, 132.4, 133.4, 151.5, 151.7; Analysis: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires C 69.83, H 5.86, N 7.40 found C 69.73, H 5.78, N 7.39\%.

## 2,4-Dimethoxy-6-vinylbenzonitrile (46q)

Yield: $83 \%$, colorless solid; mp $76-79{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): v_{\max } 724,867,968,1030$, $1086,1119,1259,1308,1386,1389,1456,1578,1612,1636,1656,2212,2985,3029$;
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 5.40(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79$ $(\mathrm{d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=10.8,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 55.5,55.9,93.6,97.5,101.7,115.5,118.9$, 133.1, 143.4, 163.0, 163.8; Analysis: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires C 69.83 , H 5.86, N 7.40 found C 69.79, H 5.78, N 7.39\%.

## 2,3,4-Trimethoxy-6-vinylbenzonitrile (46r)

Yield: $87 \%$, colorless solid; $\mathbf{m p} 102-103{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 771,867,1051$, 1105, 1204, 1238, 1257, 1580, 1609, 1753, 2228, 2979, 3013; ${ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 5.48(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=$ 17.3 Hz, 1H), $6.85(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=11.2,17.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 55.9,60.8,61.5,98.7,103.4,114.8,117.8,132.6,137.2,141.1,155.4,157.2 ;$

Analysis: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires C 65.74, H 5.98, N 6.39 found C 65.72, H 5.91, N 6.37\%.

## 4-Cyano-2-methoxy-5-vinylphenyl 4-methylbenzenesulfonate (46s)

Yield: $82 \%$, colorless solid; mp $149-150{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 746,845,938$, 1034, 1086, 1119, 1256, 1308, 1378, 1389, 1456, 1575, 1612, 1628, 1656, 2220, 2978, 3075; ${ }^{1} \mathbf{H}$-NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.57(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.86(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.7,55.8,102.9,108.9,116.6$, 119.7, 127.7, 128.5, 129.6, 132.3, 132.7, 137.7, 141.4, 145.6, 155.5; Analysis: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ requires C 61.99, H 4.59, N 4.25 found $\mathrm{C} 61.89, \mathrm{H} 4.53, \mathrm{~N} 4.23 \%$.

## 4-(Benzyloxy)-5-methoxy-2-vinylbenzonitrile (46t):

Yield: $84 \%$, colorless solid; $\mathbf{m p} 111-113{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 747,858,934$, $1028,1065,1119,1232,1308,1394,1389,1456,1574,1612,1631,1656,2220,2988$, 3086; ${ }^{1} \mathbf{H}$-NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.90(\mathrm{~s}, 3 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.66(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.47(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 56.0,70.8,103.1,109.2,114.0,116.6,117.8,127.2,128.2$, 128.6, 132.6, 134.9, 135.7, 149.3, 151.8; Analysis: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C 76.96, H 5.70, N 5.28 found C 76.91, H 5.67, N 5.27\%.

## 4-Fluoro-2-vinylbenzonitrile (46u):

Yield: $86 \%$, colorless solid; mp $105-107{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 752,839,962$, 1014, 1072, 1118, 1202, 1308, 1347, 1368, 1444, 1573, 1607, 1625, 1675, 2853, 2923,

3012; ${ }^{1} \mathbf{H}$-NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.62(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=17.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=2.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=5.5,8.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13}$ C-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 107.6,112.6(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=23.7 \mathrm{~Hz})$, 116.8, 120.2, 132.2, $143.8(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 165.1(\mathrm{~d}, J=243.8 \mathrm{~Hz})$; Analysis: $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{FN}$ requires C 73.46, H 4.11, N 9.52 found C 73.44, H 4.08, N 9.49\%.

6-Vinylbenzo[d][1,3]dioxole-5-carbonitrile (46v)
Yield: $88 \%$, colorless solid; $\mathbf{m p} 88-91{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 756,868,930,1038$, 1162, 1263, 1359, 1486, 1505, 1604, 1615, 2219, 2916, 3018; ${ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 5.44(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H}), 6.95-7.04$ (m, 2H), $7.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 102.3,104.0,104.8,110.9,117.2$, 117.7, 132.5, 137.5, 147.4, 151.8; Analysis: $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2}$ requires C 69.36, H 4.07, N 8.09 found C 69.34, H 4.02, N 7.99\%.

## 2-((E)-Pent-1-enyl)benzonitrile (46w)

Yield: $87 \%$, colorless solid; mp $126-128{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 756,857,974$, $1037,1095,1184,1202,1216,1251,1275,1291,1319,1347,1368,1393,1444,1477$, 1573, 1607, 1640, 1716, 2984, 3023; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.45-1.63(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.33(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{dt}, J=15.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=15.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.62(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 13.7,22.2,35.2,110.5,117.9,125.2,126.0,126.8,132.5,132.7,136.4,141.1 ;$

Analysis: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}$ requires C 84.17, H 7.65, N 8.18 found C 84.14, H 7.61, N 8.15\%. 4,5-Dimethoxy-2-((E)-3-tert-butyldimethylsilyloxyprop-1-enyl)benzonitrile (46x) Yield: $85 \%$, Gum; $\operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 748,876,932,1032,1098,1276,1339,1486$, 1505, 1604, 1615, 2220, 2989, 3054; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.94$
(s, 9H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{dd}, J=1.7,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.27-6.39(\mathrm{~m}, 1 \mathrm{H}), 6.89$ $(\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.3,18.3$, $25.9,55.8,55.9,63.3,102.6,107.4,113.7,117.9,124.9,132.4,134.8,148.4,152.5$; Analysis: $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}$ Si requires C 64.83 , H 8.16, N 4.20 found C 64.79 , H 8.09, N 4.13\%.

## 4,5-Dimethoxy-2-styrylbenzonitrile (46y)

Yield: $83 \%$, colorless solid; mp $158-159{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 696,761,1149$, 1204, 1326, 1462, 1571, 1594, 2215, 2984, 3023; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.91$ (s, $3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 7.01-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 55.9,102.9,106.8,113.6,118.0,123.8,126.7,128.7,128.6$, 131.2, 134.9, 136.1, 148.5, 152.6; Analysis: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C 76.96, H 5.70, N 5.28 found C 76.89, H 5.57, N 5.19\%.

## 2,3,4-Trimethoxy-6-((E)-oct-1-enyl)benzonitrile (46z)

Yield: $86 \%$, colorless solid; $\mathbf{m p} 172-174{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 694,755,878,969$, 989, 1097, 1216, 1271, 1452, 1464, 1513, 1600, 2220, 2970, 3025, 3059; ${ }^{1} \mathbf{H}$-NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87-0.93(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.46(\mathrm{~m}, 8 \mathrm{H}), 2.21-2.31(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 6.23-6.36(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 14.1,22.6,28.9,29.0,31.6,33.1,56.0,61.1,61.6,98.3$, 103.3, 115.4, 125.8, 135.9, 138.1, 140.5, 155.6, 157.2; Analysis: $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires C 71.26, H 8.31, N 4.62 found C 71.22, H 8.28, N 4.58\%.

## (E)-Ethyl 3-(3-cyanophenyl)acrylate (50)

Yield: $93 \%$; colorless solid; mp $62-65^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 710,765,977,1032$, 1185, 1278, 1318, 1447, 1480, 1640, 1712, 2225, 2938, 2983; ${ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 4.28(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-$
$7.80(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 14.1,60.5,113.2,117.8,120.8,129.6$, 131.1, 131.6, 132.8, 135.5, 141.5, 165.7; Analysis: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires C 71.63, H 5.51, N 6.96 found C 71.59, H 5.45, N 6.85\%.

## (E)-Ethyl 3-(4-cyanophenyl)acrylate (51)

Yield: $93 \%$; colorless solid; $\mathbf{m p} 68-70{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 730,795,955,1065$, 1194, 1268, 1375, 1445, 1495, 1652, 1721, 2226, 2983; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.71$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.1,60.6,113.2,117.9,121.6,128.2,132.4,138.5$, 141.8, 165.7; Analysis: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires C 71.63, H 5.51, N 6.96 found $\mathrm{C} 71.58, \mathrm{H}$ 5.48, N 6.88\%.

General experimental procedure for the preparation of chiral phthalides (47b-z)
A 50 mL RB flask was charged with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{mmol})$, tert- BuOH ( 2.5 mL ), THF ( 2.5 mL ) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and stirred for 10 min . Subsequently, (DHQD) $2_{2} \mathrm{PHAL}(1 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{OsO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mol} \%)$ were added and the stirring continued for additional 30 min . To this reaction mixture, o-cyanoalkene(s) 46b-z (1 mmol ) was added and allowed to stir for $3-7 \mathrm{~h}$ at $25^{\circ} \mathrm{C}$. After completion of reaction (as monitored by TLC), sodium bisulphite ( 1 g ) was added slowly at $0^{\circ} \mathrm{C}$. The organic layer was separated, aqueous layer extracted with ethyl acetate ( $3 \times 10 \mathrm{ml}$ ) and the combined organic layers washed with brine ( 15 mL ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield the crude product. Flash column chromatographic purification [silica gel (230-400 mesh) and petroleum ether/EtOAc (7:3) as an eluent] gave phthalides 47b-z in 92-95\% yield.
(S)-Ethyl 2-((R)-1,3-dihydro-5-methoxy-1-oxoisobenzofuran-3-yl)-2-hydroxyacetate (47b)

Yield: $95 \%$; colorless solid; mp $121-122{ }^{\circ} \mathrm{C} ; 99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,1 \mathrm{~mL} / \mathrm{min}$ ) retention time $25.80 \mathrm{~min}(99.55 \%)$ and 30.33 $\min (0.45 \%) ;[\alpha]^{\mathrm{D}}{ }_{25}-94.49\left(c 1.15, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 724,876,1031$, 1084, 1191, 1212, 1278, 1295, 1357, 1398, 1445, 1486, 1578, 1607, 1721, 1765, 2984, 3023, 3415; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.14(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.91$ $(\mathrm{s}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ $(\mathrm{d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=2.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 14.0,55.7,62.6,70.5,79.6,106.0,116.9,118.9,127.0,148.5,164.7$, 169.5, 170.8; ESI-MS: $m / z 266.04[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}$ requires C 58.64, H 5.30 found C 58.62, H 5.19\%.

## (S)-Ethyl-2-((R)-1,3-dihydro-5,6-dimethoxy-1-oxoisobenzofuran-3-yl)-2-

 hydroxyacetate (47c)Yield: $94 \%$; colorless solid; mp $144-146^{\circ} \mathrm{C}$; $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $23.18 \mathrm{~min}(99.36 \%$ ) and 27.60 $\min (0.64 \%) ;[\alpha]^{\mathrm{D}}{ }_{25}-95.12\left(c 1.12, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 758,945,1125,1297$, 1507, 1722, 1764, 2925, 3010, 3341; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.62$ $(\mathrm{dd}, J=2.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (50 MHz, DMSO-d ${ }_{6}$ ): $\delta 14.3,56.1,56.3,61.1,70.1,81.1,105.2,105.7,118.2,141.6$, 150.4, 154.7, 170.2, 171.3; ESI-MS: $m / z 296.15[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{7}$ requires C 64.36, H 5.79, N 5.36 found C 64.32, H 5.71, N 5.34\%.

## (S)-Ethyl-2-((R)-1,3-dihydro-6,7-dimethoxy-1-oxoisobenzofuran-3-yl)-2-

## hydroxyacetate (47d)

Yield: $94 \%$, colorless solid; mp $110-112{ }^{\circ} \mathrm{C}$; $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $23.90 \mathrm{~min}(99.44 \%)$ and 27.87 $\min (0.56 \%) ;[\alpha]^{\mathrm{D}}{ }_{25}-95.28\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 762,946,1132,1298$, $1518,1728,1764,2985,3034,3425$; ${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 3.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H})$, $5.65(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 14.0,56.6,62.2,62.6,70.7,79.0,116.4,118.7,119.2,138.5,148.3$, 152.9, 167.2, 170.9; Analysis: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{7}$ requires C 64.36, H 5.79 found $\mathrm{C} 64.34, \mathrm{H}$ 5.71\%.
(S)-Ethyl 2-((R)-1,3-dihydro-5,7-dimethoxy-1-oxoisobenzofuran-3-yl)-2hydroxyacetate (47e)

Yield: $94 \%$, colorless solid; mp $154-156^{\circ} \mathrm{C}$; $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $18.37 \mathrm{~min}(99.60 \%)$ and 21.74 $\min (0.40 \%) ;[\alpha]^{\mathrm{D}}{ }_{25}-96.29\left(c 1.15, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 746,985,1130$, 1287, 1514, 1723, 1762, 2954, 3085, 3414, ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.32(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}$, $1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 14.5,56.5$, 56.8, 62.9, 71.9, 82.1, 99.8, 100.2, 108.0, 153.0, 160.9, 168.9, 170.6, 172.4; Analysis: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{7}$ requires C 64.36, H 5.79 found C 64.34, H 5.76\%.
(S)-Ethyl 2-((R)-1,3-dihydro-5,6,7-trimethoxy-1-oxoisobenzofuran-3-yl)-2hydroxyacetate (47f)

Yield: $92 \%$, colorless solid; mp $111-112{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-94.65\left(c 1.23, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 1012,1094,1140,1254,1350,1475,1602,1765,2954,3085,3408 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.9,56.3,61.1,62.0,62.4,79.1,99.5$, 111.0, 141.9, 143.5, 152.1, 159.6, 167.3, 176.7; ESI-MS: m/z $326.21[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{8}$ requires C 55.21 , H 5.56 found C 55.18 , H 5.53\%.
(S)-Ethyl 2-((R)-5-(p-toluenesulfonoyloxy)-1,3-dihydro-6-methoxy-1-
oxoisobenzofuran-3-yl)-2-hydroxyacetate (47g)
Yield: $93 \%$, colorless solid; mp $107-108{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-94.89\left(c\right.$ 1.15, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 768,819,1025,1050,1120,1180,1190,1330,1374,1494,1614,1767,2924$, 3012, 3371; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.07$ $(\mathrm{s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.76$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR ( 50 MHz, DMSO- $d_{6}$ ): $\delta 14.4,21.7,56.6,61.4,70.3,71.6,81.3,107.3,118.6$, 119.7, 128.6, 130.0, 132.5, 139.5, 145.9, 147.9, 156.9, 168.8, 170.9; Analysis: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{9} \mathrm{~S}$ requires C 55.04, H 4.62 found C $55.01, \mathrm{H} 4.59 \%$.
(S)-Ethyl 2-((R)-5-(benzyloxy)-1,3-dihydro-6-methoxy-1-oxoisobenzofuran-3-yl)-2-

## hydroxyacetate (47h)

Yield: $94 \%$, colorless solid; mp $138-140{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-96.04\left(c \quad 1.21, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 738,856,1025,1078,1130,1184,1195,1336,1395,1494,1645,1765,2942$,

3035, 3413; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=2.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.45(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (50 MHz, DMSO- $d_{6}$ ): $\delta 13.7,55.7,61.4,70.3,70.6,79.9,105.2,105.8,118.5,127.0$, 127.8, 128.2, 135.3, 139.9, 150.7, 153.5, 169.6, 170.4; Analysis: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7}$ requires C 64.51, H 5.41 found C 64.39, H 5.36\%.

## (S)-Ethyl-2-((R)-5-fluoro-1,3-dihydro-1-oxoisobenzofuran-3-yl)-2-hydroxyacetate

Yield: $94 \%$, colorless solid; mp $108-109{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-95.41$ (c $\left.1.15, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 756,891,1052,1097,1130,1190,1325,1374,1485,1629,1765,2928,3015$, $3351 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=2.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{dd}, J=5.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.9$, $62.2,70.2,79.7,109.5(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 122.7,127.7,148.6(\mathrm{~d}, J$ $=10.3 \mathrm{~Hz}), 166.3(\mathrm{~d}, J=256.3 \mathrm{~Hz}), 168.5,170.5$; Analysis: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FO}_{5}$ requires C 56.70, H 4.36 found C 56.67, H 4.33\%.
(S)-Ethyl 2-((R)-1,3-dihydro-5-nitro-1-oxoisobenzofuran-3-yl)-2-hydroxyacetate (47j)

Yield: $93 \%$, colorless solid; mp $146-148{ }^{\circ} \mathrm{C}$; $[\alpha]^{\mathrm{D}}{ }_{25}-95.28\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 738,829,967,1037,1106,1346,1540,1740,1779,2853,2918,3009,3444 ;$ ${ }^{1} \mathbf{H}$-NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.42-8.46$ (m, 2H); ${ }^{13} \mathbf{C}$-NMR (125 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 14.1,63.2,70.1,80.1,117.8,125.3,127.0$,
131.8, 146.8, 151.7, 167.3, 170.2; Analysis: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{7}$ requires C 51.25, H 3.94, N 4.98 found C 51.24, H 3.85, N 4.93\%.
(S)-Ethyl 2-((R)-5-1,3-dihydro-5, 6-dioxomethyl-1-oxoisobenzofuran-3-yl)-2hydroxyacetate (47k)

Yield: $95 \%$, colorless solid; $\mathbf{m p} 150-153{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-95.74\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 786,891,1015,1054,1122,1183,1196,1356,1395,1489,1618,1755,2942$, 3021, 3410; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30$ $(\mathrm{qd}, J=1.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=1.4,4.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0,62.6,70.4,79.6$, 101.8, 102.7, 104.2, 120.4, 142.2, 149.6, 153.7, 169.2, 170.8; Analysis: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{7}$ requires C 55.72 , H 4.32 found C 55.65 , H $4.29 \%$.
(S)-Ethyl 2-((R)-1,3-dihydro-1-oxonaphtho[2,1-c]furan-3-yl)-2-hydroxyacetate (47l)

Yield: $94 \%$, colorless solid; mp $107-109{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}$-95.69 (c 1.15, $\mathrm{CHCl}_{3}$ ); IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 784,865,989,1010,1106,1210,1275,1291,1319,1368,1573,1607,1750$, 2978, 3084, 3457; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=2.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}) 8.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right): \delta 13.2$, $61.4,69.8,80.3,118.1,118.6,120.2,122.4,126.7,128.0,128.3,133.0,135.2,147.6$, 170.3; Analysis: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C 67.13, H 4.93 found C 67.11, H 4.89\%.
(R)-3-(Hydroxymethyl)isobenzofuran-1(3H)-one (47m)

Yield: $95 \%$, colorless solid; mp $101-104{ }^{\circ} \mathrm{C}$; $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{PrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time 8.03 (99.36\%) and 9.24
(0.64\%); $[\alpha]^{\mathrm{D}}{ }_{25}-78.12\left(c 1.23, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 744,847,968,1025$, 1067, 1089, 1211, 1288, 1349, 1467, 1607, 1640, 1756, 2924, 3012, 3440; ${ }^{1} \mathbf{H}-\mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.61(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-$ $5.59(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{td}, J=1.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ ): $\delta$ 61.7, 81.5, 121.6, 124.2, 125.6, 128.4, 133.3, 146.7, 170.6; Analysis: $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3}$ requires C 65.85, H 4.91 found C 65.83, H 4.85\%.

## (R)-3-(Hydroxymethyl)-5-methoxyisobenzofuran-1(3H)-one (47n)

Yield: $95 \%$, colorless solid; mp $137-140^{\circ} \mathrm{C}$; $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,1 \mathrm{~mL} / \mathrm{min}$ ) retention time $27.19 \mathrm{~min}(99.36 \%)$ and 39.72 $\min (0.64 \%) ;[\alpha]^{\mathrm{D}}{ }_{25}-78.36\left(c 1.12, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 728,868,1026,1256$, 1490, 1607, 1640, 1749, 2853, 2923, 3440; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.31$ (br s, $1 \mathrm{H}), 3.84-3.91(\mathrm{~m}, 4 \mathrm{H}), 4.06-4.14(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{dd}, J=2.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right): \delta 54.8,62.1,81.0,105.5,116.3,117.7,126.0,149.8,164.5,170.8 ;$ Analysis: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C 61.85, H 5.19 found C 61.79, H 5.12\%.
(R)-3-(Hydroxymethyl)-5,6-dimethoxyisobenzofuran-1(3H)-one (47o)

Yield: $93 \%$, colorless solid; $\mathbf{m p} 165-167^{\circ} \mathrm{C}$; $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $23.18 \mathrm{~min}(99.36 \%)$ and 27.60 $\min (0.64 \%) ;[\alpha]^{\mathrm{D}}{ }_{25}-77.89\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 698,828,956,1027$, 1056, 1225, 1266, 1309, 1335, 1474, 1508, 1612, 1752, 2922, 3023, 3358; ${ }^{1} \mathbf{H}$-NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.71(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}$, $3 \mathrm{H}), 4.04-4.15(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.47(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13}$ C-NMR (50
$\mathrm{MHz}, \mathrm{DMSO}_{6}$ ): $\delta 56.1,56.3,62.4,81.6,105.0,105.8,117.9,142.4,150.3,154.6$, 170.5; Analysis: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$ requires C 58.93, H 5.39 found C C 58.85 , H 5.37\%.
(R)-3-(Hydroxymethyl)-6,7-dimethoxyisobenzofuran-1(3H)-one (47p)

Yield: $94 \%$, colorless solid; mp $85-88^{\circ} \mathrm{C}$; $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $18.35 \mathrm{~min}(99.35 \%$ ) and 20.85 $\min (0.56 \%) ;[\alpha]^{\mathrm{D}}{ }_{25}-78.21\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 698,798,956,1030$, 1067, 1220, 1328, 1339, 1458, 1605, 1745, 2976, 3012, 3457; ${ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.24(\mathrm{brs}, 1 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.03-4.09(\mathrm{~m}$, $1 \mathrm{H}), 5.35-5.39(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 56.6$, 62.0, 63.7, 80.7, 116.8, 118.4, 119.4, 139.6, 148.0, 152.5, 168.2; Analysis: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$ requires C 58.93 , H 5.39 found C 58.83 , H 5.36\%.

## (R)-3-(Hydroxymethyl)-5,7-dimethoxyisobenzofuran-1(3H)-one (47q)

Yield: $94 \%$, colorless solid; mp $152-153{ }^{\circ} \mathrm{C}$; $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $18.27 \mathrm{~min}(99.36 \%)$ and 20.40 $\left.\min (0.64 \%) ;[\alpha]^{\mathrm{D}}{ }_{25}-78.1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 695,765,950,1030,1058$, 1232, 1331, 1365, 1463, 1615, 1751, 2982, 3010, 3443; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $2.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.77-3.88(\mathrm{~m}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.99-4.04(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 5.40-$ $5.45(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 54.6,54.9,62.2,80.4,97.6,98.2,105.8,151.7,158.9,166.6,168.9$; Analysis: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$ requires C 58.93, H 5.39 found C C 58.89, H 5.37\%.
(R)-3-(Hydroxymethyl)-5,6,7-trimethoxyisobenzofuran-1(3H)-one (47r)

Yield: $93 \%$, colorless solid; mp $178-180{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-78.05\left(c \quad 1.15, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\mathrm{cm}^{-1}$ ): $v_{\max } 1014,1097,1254,1345,1483,1600,1754,2947,3017,3444 ;{ }^{1} \mathbf{H}-\mathbf{N M R}(200$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.84-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.03-4.09(\mathrm{~m}, 1 \mathrm{H})$, 4.13(s, 3H), 5.35-5.39 (m, 1H), $6.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 56.3, 61.1, 62.0, 63.7, 80.6, 99.9, 110.6, 141.8, 144.8, 152.1, 159.7, 168.3; Analysis: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$ requires C 56.09 , H 5.55 found C 56.05 , H 5.53\%.
(R)-1,3-Dihydro-1-(hydroxymethyl)-5-methoxy-3-oxoisobenzofuran-6-yl 4methylbenzenesulfonate (47s)

Yield: $95 \%$, colorless solid; $\mathbf{m p} 152-154{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-77.79\left(c\right.$ 1.18, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 734,849,973,103,1053,1178,1345,1372,1494,1614,1755,2919,3018$, $3437 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{dd}$, $J=4.6,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=4.7,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right): \delta 20.0,55.0,61.4,80.9,105.3,117.4,119.3,127.6,128.8,131.9,138.9$, 145.1, 147.7, 156.6, 169.5; Analysis: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{7} \mathrm{~S}$ requires C 56.04, H 4.43 found C 55.97, H 4.37\%.
(R)-5-(Benzyloxy)-3-(hydroxymethyl)-6-methoxyisobenzofuran-1(3H)-one (47t)

Yield: $94 \%$, colorless solid; mp $126-128^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-78.22\left(c 1.10, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 689,825,975,1025,1076,1223,1268,1312,1334,1494,1528,1621,1752$, 2924, 3032, 3385; ${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.31$ (br s, 1H), 3.75-3.85 (m, 1H), $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.98-4.06(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 5.36-5.41(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}$, 1H), 7.32-7.45 (m, 5H); ${ }^{13}$ C-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 56.2,64.1,71.1,81.0,105.4$, 106.6, 118.6, 127.3, 128.3, 128.7, 135.6, 140.9, 151.2, 154.0, 170.5; Analysis: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C 67.99 , H 5.37 found C 67.91 , H 5.35\%.
(R)-5-Fluoro-3-(hydroxymethyl)isobenzofuran-1(3H)-one (47u)

Yield: 93\%, Gum; $[\alpha]^{\mathrm{D}}{ }_{25}-77.21\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 689,825,975$, $1025,1076,1223,1268,1312,1334,1494,1528,1621,1752,2924,3032,3385 ;{ }^{1} \mathbf{H}-$ NMR (500 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=4.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=$ $4.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.53(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.91(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13}$ C-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 63.4,80.9,109.7(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 117.7(\mathrm{~d}, J=24.6 \mathrm{~Hz})$, 122.6, $128.2(\mathrm{~d}, ~ J=9.4 \mathrm{~Hz}), 149.7(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 167.3(\mathrm{~d}, J=398.5 \mathrm{~Hz}), 167.9$;

Analysis: $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{FO}_{3}$ requires C 59.35, H 3.87 found C 73.44, H 4.08\%.
(R)-3-(Hydroxymethyl)-5, 6-dioxomethylisobenzofuran-1(3H)-one (47v)

Yield: $94 \%$, colorless solid; mp $144-145{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-78.11\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 698,852,957,1024,1067,1232,1286,1319,1343,1484,1582,1612,1766$, 2942, 3054, 3389; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 2.40$ (br s, 1 H ), 3.84 (dd, $J=4.0,12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=4.0,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}$, 1H), $7.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 62.1,81.3,102.8,103.3,119.7$, 144.5, 149.0, 153.2, 169.6; Analysis: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{5}$ requires C 57.70, H 3.87 found C 57.68, H 3.85\%.

## (R)-3-((R)-1-Hydroxybutyl)isobenzofuran-1(3H)-one (47w)

Yield: $93 \%$; colorless solid; mp $103-109{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-76.89\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right): v_{\max } 694,728,1080,1212,1287,1467,1618,1752,2873,2959,3433 ;{ }^{1} \mathbf{H}-\mathbf{N M R}(200$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.40(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.92(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.9,18.8,34.9,71.9,83.2,122.4,125.6,126.6,129.2$, 134.0, 147.2, 170.5; Analysis: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C} 69.88, \mathrm{H} 6.84$ found $\mathrm{C} 69.82, \mathrm{H}$ 6.81\%.

## (R)-3-((R)-1-Hydroxy-2-tertiarybutyldimethylsilylethyl)-5,6-dimethoxy

## isobenzofuran-1(3H)-one (47x)

Yield: $94 \%$, colorless solid; mp $166-168{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-79.24\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\max } 775,837,1060,1137,1471,1503,1740,2855,2926,3406,{ }^{1} \mathbf{H}-\mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.08(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 2.30(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-$ $3.82(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.12(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (s, 1H), $7.28(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.0,-4.5,17.8,25.5,56.2,63.1$, 73.3, 80.1, 104.2, 106.0, 118.9, 141.5, 150.6, 154.6, 170.6; Analysis: $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{6}$ Si requires C 58.67, H 7.66 found C 58.65, H 7.56\%.
(R)-3-((R)-Hydroxy(phenyl)methyl)-5,6-dimethoxyisobenzofuran-1(3H)-one (47y)

Yield: $94 \%$, colorless solid; mp $113-115^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-79.23\left(c 1.15, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 756,857,974,1026,1064,1158,1216,1334,1604,1743,2858,2928,3430$; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right): \delta 54.7,74.3,83.0,104.3,117.4,126.6,127.4,138.1$, 140.6, 149.8, 153.5, 170.6; Analysis: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C 67.99 , H 5.37 found C 67.92, H 5.29\%.
(R)-3-((R)-1-Hydroxyheptyl)-5,6,7-trimethoxyisobenzofuran-1(3H)-one (47z)

Yield: $92 \%$, colorless solid; mp $113-115{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-78.36\left(c \quad 1.08, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 796,1089,1130,1254,1326,1465,1543,1749,2898,2974,3988 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 0.87-0.93 (m, 3H), 1.26-1.37 (m, 8H), 1.64-1.78 (m, 2 H ), $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.94-3.96(\mathrm{~m}, 4 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 5.23(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 14.0,22.5,25.7,29.1,31.7,32.8,56.3,61.2,62.1,72.1,81.7$,
99.8, 111.1, 141.8, 145.3, 152.2, 159.6, 168.1; Analysis: $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}$ requires C 63.89, H 7.74 found C 63.81, H $7.68 \%$.
(2S,3R)-Ethyl 3-(3-cyanophenyl)-2,3-dihydroxypropanoate (52)
Yield: 93\%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}-36.06\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 680,725,954$, 1057, 1118, 1214, 1291, 1734, 2229, 2985, 3443; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.30(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.34(\mathrm{~m}, 3 \mathrm{H})$, $5.02(\mathrm{dd}, J=2.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 14.1,62.3,73.5,74.5,112.2,118.6,129.0,130.2,130.9$, 131.3, 141.9, 172.3; Analysis: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires C 61.27, H 5.57 , N 5.95 found C 61.26, H 5.54, N 5.89.
(2S,3R)-Ethyl 3-(4-cyanophenyl)-2,3-dihydroxypropanoate (53)
Yield: 93\%; colorless solid; mp $102-103{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-36.42\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): v_{\max } 685,765,1017,1050,1105,1204,1257,1752,2228,2978,3332 ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24-4.35(\mathrm{~m}, 3 \mathrm{H}), 5.05(\mathrm{dd}, J=2.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-$ $7.67(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right): \delta 12.9,60.6,73.2$, 74.2, 110.0, 117.9, 126.7, 131.0, 146.2, 171.4; Analysis: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires C 61.27, H 5.57, N 5.95 found C 61.23, H 5.52, N 5.84\%.

Benzyl(1R,2S)-2-(ethoxycarbonyl)-1-(2-cyanophenyl)-2-hydroxyethylcarbamate (54)
Sodium hydroxide ( $60 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) was dissolved in water ( 4 mL ), and 0.5 mL of this NaOH solution was transferred to a small vial containing $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(0.02 \mathrm{mmol}$ for 4 $\mathrm{mol} \%$ ) for later use. To the remainder of the NaOH solution were added the carbamate $(1.55 \mathrm{mmol})$ and $n-\mathrm{PrOH}(2 \mathrm{~mL})$. The mixture was stirred for $2-3 \mathrm{~min}$ and placed in a
water bath before tert-butylhypochlorite $16(175 \mu \mathrm{~L}, 1.52 \mathrm{mmol})$ was slowly added with vigorous stirring. Then, the resulting solution was sequentially treated with a solution of (DHQD) $)_{2} \mathrm{PHAL}(0.025 \mathrm{mmol}$ for $5 \mathrm{~mol} \%$ ) in $n-\mathrm{PrOH}(1 \mathrm{~mL})$, the o-cyano ethylcinnamate ( 0.50 mmol ), the previously prepared solution of $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}$, and $n$ $\operatorname{PrOH}(1 \mathrm{~mL})$. The reaction mixture was monitored by TLC to establish completion, quenched by the addition of saturated aqueous sodium sulfite $(4 \mathrm{~mL})$ while being cooled in an ice-water bath, and stirred for an additional 30 min . The separated aqueous phase was extracted with EtOAc ( 3 X 5 mL ), and the combined organic extracts were washed with water ( 3 mL ) followed by brine ( 5 mL ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give the crude products which were purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: EtOAc (60:40) as an eluent] to give product 54 in $64 \%$ yield with dr 6:1.

Gum; $[\alpha]^{\mathrm{D}}{ }_{25}-36.06\left(c 1.1, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 756,857,974,1037,1095$, 1184, 1202, 1275, 1291, 1319, 1347, 1368, 1393, 1477, 1573, 1607, 1640, 1716, 2219, 2984, 3023, 3415; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=2.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.66-$ $7.77(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,55.3,60.3,62.8,72.5,111.1,117.0$, 122.0, 128.4, 132.8, 133.2, 142.9, 145.8, 155.3, 172.0; Analysis: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires C 61.27, H 5.57, N 5.95 found C 61.26, H 5.54, N 5.89.

## Section II:

## First Enantioselective Synthesis of (-)-Matteucen C

### 3.2.1 Introduction

Matteuccia orientalis (HOOK.) TREV (Onocleaceae), mainly distributed in Southern China, is a Chinese medicinal herb used for the treatment of hemostatics and reliving ostalgia. ${ }^{27}$ A new bioactive constituents from the rhizomes of this plant led to the isolation of three new isocourmarin derivatives, Matteucen A (56), racemic-Matteucen B (57) and two new phthalide derivatives, (-)-Matteucen C (58). ${ }^{28}$


56, Matteucen A


57, (土)-Matteucen B


58, (-)-Matteucen C

Fig. 9: Structures of Matteucen A-C (56-58)

### 3.2.2 Review of Literature

Literature search revealed that there is no report available for the synthesis of (-)Matteucen C (58).

### 3.2.3 Present Work

### 3.2.3.1 Objective

In section I of this Chapter, we have described an elegant method for the synthesis of 3substituted chiral phthalide derivatives 47a-z. In continuation of the work on Oscatalyzed oxidative cyclization of o-cyano alkenes, we describe in this section a short and first synthesis of (-)-Matteucen C (58). ${ }^{29}$

Retrosynthetic analysis of 58 (Fig. 10) reveals that o-cyanostilbene (59) could be the key intermediate for the oxidative cyclization leading to the synthesis of (-)-Matteucen C (58). o-cyanostilbene (59) can in turn be obtained from o-bromobenzaldehyde 60.


Fig. 10: Retrosynthetic analysis of (-)-Matteucen C (58)

### 3.2.4 Results and Discussion

The complete synthetic sequence for (-)-Matteucen C (58), wherein Os-catalyzed CN assisted oxidative cyclization of o-cyano stilbene (59) constitutes a key step for the introduction of chirality, is presented in Scheme 17.


Scheme 17: (i) $\mathrm{PhCH}_{2} \mathrm{PPh}_{3}{ }^{+} \mathrm{I}^{-}$, nBuLi, THF, $0-25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 82 \%$; (ii) $\mathrm{CuCN}(3.5$ equiv), DMF, reflux, $14 \mathrm{~h}, 83 \%$; (iii) AD-mix- $\beta$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, t$ - $\mathrm{BuOH}:$ THF: $\mathrm{H}_{2} \mathrm{O}$ (0.5:0.5:1), $25^{\circ} \mathrm{C}, 7 \mathrm{~h}, 93 \%$; (iv) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 69 \%$.

Accordingly, the synthesis of (-)-Matteucen C, 58 was undertaken starting from obromobenzaldehyde 60, which on subjecting to Wittig olefination $\left[\mathrm{PhCH}_{2} \mathrm{PPh}_{3}{ }^{+} \mathrm{I}^{-}, \mathrm{nBuLi}\right.$, THF] gave $o$-bromostilbene $\mathbf{6 1}$ in $82 \%$ yield. Two doublets at $\delta 6.99(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$ and $7.52(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$ integrating for one proton each in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 61 accounted for olefinic protons, which was further supported by the typical carbon signals at $\delta 127.9$ and 128.0 in its ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 11).


Fig. 11: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of o-bromostilbene 61
o-Bromo stilbene 61 was then converted to o-cyanostilbene 59 using Rosenmund-von Braun reaction [CuCN, DMF and reflux] in $83 \%$. The formation of the o-cyano stilbene 59 was confirmed by the appearance of CN carbon at $\delta 115.7$ in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (Fig. 12). The IR spectrum of 59 displayed a characteristic CN stretching vibration at $2216 \mathrm{~cm}^{-1}$.


Fig. 12: ${ }^{13} \mathrm{C}$ NMR and IR spectra of o-cyanostilbene 59

Cyanostilbene 59 was then subjected to CN -assisted one-pot oxidative cyclization using AD-mix $-\beta$ process to give chiral phthalide 62 in $93 \%$ yield and $99 \%$ ee.


Fig. 13: ${ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ NMR spectrum and HPLC chromatogram of phthalide 62

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and IR spectra of 62 confirmed the formation of phthalide (Fig. 13). The methine protons attached to lactone and hydroxyl group resonated at $\delta 4.77(\mathrm{~d}, \mathrm{~J}=$ $6.41 \mathrm{~Hz}, 1 \mathrm{H})$ and $5.45(\mathrm{~d}, J=6.41 \mathrm{~Hz}, 1 \mathrm{H})$ respectively in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, which was further substantiated by the appearance of carbonyl carbon $[-(\mathbf{C}=\mathrm{O})-\mathrm{O}-]$ signal at $\delta$ 169.8 in its ${ }^{13} \mathrm{C}$-NMR spectrum. Its IR spectrum exhibited a characteristic $\gamma$-lactone carbonyl absorption band at $1752 \mathrm{~cm}^{-1}$. The enantiomeric excess of chiral phthalide $\mathbf{6 2}$ was determined to be $99 \%$ by chiral HPLC analysis (Chiracel OJ-H, Fig. 13).

Finally, demethylation of chiral phthalide $\mathbf{6 2}$ with $\mathrm{BBr}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave (-)-Matteucen C (58) in $69 \%$ yield with $99 \%$ ee and the optical rotation of the target molecule was found to be $[\alpha]^{\mathrm{D}}{ }_{25}-54.16(c 1.0, \mathrm{MeOH})$. The formation of (-)-Matteucen C (58) was confirmed by the appearance of two doublets at $\delta 5.45(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $5.73(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, 1H) corresponding to the homobenzylic and benzylic protons respectively in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. The corresponding methine carbons resonated at $\delta 72.6$ and 81.7 in its ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 14).


Fig. 14: ${ }^{1} \mathrm{H}$ NMR spectrum of (-)-matteucen C (58)

### 3.2.5 Conclusion

A short and an efficient enantioselective synthesis of (-)-Matteucen C (58) has been achieved in four linear steps with $44 \%$ overall yield and $99 \%$ ee for the first time, confirming its structural and stereochemical assignments. The CN -assisted one-pot oxidative cyclization of o-cyanostilbene 59 is used as the key reaction, which proceeded to give high enantioselectivity.

### 3.2.6 Experimental Section

## 2-Bromo-1,5-dimethoxy-3-styrylbenzene (61)

To a stirred solution of benzyltriphenylphosphonium iodide ( $2.1 \mathrm{~g}, 4.5 \mathrm{mmol}$ ) in THF was added $n$-butyllithium in hexane ( $2.8 \mathrm{~mL}, 4.5 \mathrm{mmol}$ ). The solution was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 2-bromobenzaldehyde (60) (1 g, 4.1 mmol$)$ in THF was added dropwise via syringe at the same temperature and the reaction mixture was allowed to stir for 90 min at room temperature (monitored by TLC). It was then cooled to $0^{\circ} \mathrm{C}$, diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and $\mathrm{EtOAc}(25 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with EtOAc ( $2 \times 20 \mathrm{~mL}$ ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products, which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether:EtOAc (90:10) as an eluent] affording the 2-bromostyrene 61 $(1.12 \mathrm{~g})$ as a gum.

Yield: $86 \%$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 669,769,1216,1384,1468,1580,2098,3020 ;{ }^{\mathbf{1}} \mathbf{H}$-NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 6.42(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 55.3,56.1,98.9,102.4,105.1,126.8,127.9,128.0,128.6,131.5$,
136.9, 138.5, 156.7, 159.4; Analysis: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{2}$ requires C, 60.21 ; $\mathrm{H}, 4.74$; found: C , 60.08; H, 4.59\%.

## 2, 4-Dimethoxy-6-styrylbenzonitrile (59)

o-Bromostilbene $61(1 \mathrm{~g}, 3.1 \mathrm{mmol})$ was taken in dry DMF ( 10 mL ) and $\mathrm{CuCN}(0.83 \mathrm{~g}$, 9.3 mmol ) was added and refluxed under $\mathrm{N}_{2}$ for 18 h (monitored by TLC). The reaction mixture was then cooled to room temperature, and then diluted with water ( 30 mL ) and EtOAc ( 25 mL ). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 20 mL ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products, which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: EtOAc (7:3) as an eluent] to give o-cyanostilbene 590.7 g .

Yield: $83 \%$; colorless solid; mp $147-148{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 694,831,953$, $1045,1073,1150,1203,1326,1460,1570,1595,2216 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $3.90(\mathrm{~s}, 6 \mathrm{H}), 6.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.30 (m, 1H), 7.32-7.38 ( m, 3H), $7.55(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13}$ C-NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 55.6,56.0,94.1,97.4,101.4,115.7,124.4,127.2,128.8,133.5,136.1,143.4$, 163.2, 163.9; Analysis: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C 76.96, H 5.70, N 5.28 found $\mathrm{C} 76.92, \mathrm{H}$ 5.68, N 5.24\%.

## (R)-3-((R)-Hydroxy(phenyl)methyl)-5,7-dimethoxyisobenzofuran-1-(3H)-one (62)

A 50 mL RB flask was charged with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(1 \mathrm{~g}, 3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(414 \mathrm{mg}, 3$ $\mathrm{mmol})$, tert- $\mathrm{BuOH}(2.5 \mathrm{~mL})$, THF ( 2.5 mL ) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and stirred for 10 min . Subsequently, (DHQD) $)_{2}$ PHAL ( $8 \mathrm{mg}, 1 \mathrm{~mol} \%$ ) and $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{mg}, 0.5 \mathrm{~mol} \%)$ were added and the stirring continued for additional 30 min . To this reaction mixture, $o$ -
cyanostilbene 59 ( $265 \mathrm{mg}, 1 \mathrm{mmol}$ ) was added and allowed to stir for 7 h at $25^{\circ} \mathrm{C}$. After completion of reaction (as monitored by TLC), sodium bisulphite ( 1 g ) was added slowly at $0^{\circ} \mathrm{C}$. The organic layer was separated, aqueous layer extracted with ethyl acetate ( 3 x $10 \mathrm{ml})$ and the combined organic layers washed with brine ( 15 mL ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield the crude product. Flash column chromatographic purification [silica gel (230-400 mesh) and petroleum ether/EtOAc (7:3) as an eluent] gave $\mathbf{6 2}(221 \mathrm{mg})$.

Yield: $93 \%$; colorless solid; $\mathbf{m p} 170-172{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}-77.56$ (c $1.15, \mathrm{CHCl}_{3}$ ); $99 \%$ ee by chiral HPLC analysis (Chiracel OJ-H, $n$-hexane $/ \mathrm{iPrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}$ ) retention time $18.27 \min (99.36 \%)$ and $20.40 \min (0.64 \%) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 698,759,947$, 1041, 1077, 1204, 1336, 1461, 1625, 1754, 2981, 3018, 3444; ${ }^{1} \mathbf{H}-\mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.77(\mathrm{~d}, J=6.41 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=6.41 \mathrm{~Hz}$, $1 \mathrm{H}), 5.78(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right): \delta 56.1,76.0,83.9,99.9,102.9,107.6,128.2,128.8,129.0,139.2$, 152.0, 159.9, 167.1, 169.8; ESI-MS: m/z $323.085[\mathrm{M}+\mathrm{Na}]^{+}$;Analysis: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C 67.99, H 5.37, found C 67.85, H 5.29\%.

## (-) Matteucen C (58)

To a solution of phthalide $62(0.17 \mathrm{mmol}, 50 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-7{ }^{\circ} \mathrm{C}$ was added $\mathrm{BBr}_{3}\left(1.36 \mathrm{~mL}, 1.36 \mathrm{mmol}, 1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) over 10 min . The reaction mixure was allowed to warm to room temperature and then stirred for 24 h . It was quenched with sat. aq. sodium bicarbonate ( 5 mL ). The aqueous layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with ethyl acetate ( $3 \times 10 \mathrm{~mL}$ ). The combined organic layers were washed with brine (10
mL ) and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the crude product was purified by silica gel column chromatography to give 58 in 31 mg .

Yield: $68 \%$; colorless powder; $[\alpha]^{\mathrm{D}}{ }_{25}-54.16(c 1.0, \mathrm{MeOH})$; IR $\left(\mathrm{CHCl}_{3}\right): 691,710$, $1169,1615,1684,1725,3364 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right): \delta 4.94(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}), 10.30(\mathrm{~s}, 1 \mathrm{H}), 10.33(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}\right):$ $\delta 72.6,81.7,101.1,102.3,104.2,126.9,127.3,127.6,140.7,151.5,157.6,163.9,167.7 ;$

Analysis: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5}$ requires C 66.17, H 4.44, found C 66.09, H 4.39\%.

## Section III:

## A Novel Approach to Isocoumarins and Alkylidenephthalides

### 3.3.1 Introduction

A number of 3-substituted isocoumarins(63-64) and 3-alkylidenephthalides(65) have been isolated from natural sources. ${ }^{30,31}$ The 3-substituted isocoumarins, natural structures found in many natural products, exhibit a broad range of biological activities such as antiallergic and antimicrobial, ${ }^{32,33}$ immunomodulatory, ${ }^{34}$ cytotoxic, ${ }^{35}$ antifungal, ${ }^{36}$ antiinflammatory, ${ }^{37}$ antiangiogenic ${ }^{38}$ and antimalarial. ${ }^{39}$ The alkylidenephthalides have antispasmodic, herbicidal, and insecticidal activities, ${ }^{40}$ and are also attractive intermediates ${ }^{41}$ for the synthesis of a variety of heterocyclic and carbocyclic compounds including some aromatic 1,4-dicarbonyl compounds.


63
Bergenin


64
$\gamma$-Rubromycin


65
(Z)-3-Butylidne-5,7dimethoxyphthalide

Fig. 15 Some of the examples of isocoumarins and alkylidenephthalides

The alkylidenephthalides are also useful intermediates ${ }^{42}$ for the synthesis of various natural products such as Bergenin (63), $\gamma$-Rubromycin (64), (Z)-3-Butylidne-5-7dimethoxyphthalide (65), cytogenin etc. (Fig. 15) including some isoquinoline alkaloids. ${ }^{43}$

### 3.3.2 Review of literature

Literature search revealed that there are various routes available for the synthesis of isocoumarins and alkylidenephthalide derivatives which are described below.

## Mali's approach (1998) ${ }^{44}$

Mali et al have described acid-catalyzed dehydration method for the synthesis of both (Z)-3-butylidenephthalides 67 and 3-alkyl-8-hydroxy/methoxyisocoumarins 68 from phthalides 66 (Scheme 19).


Scheme 19: (i) $p$ - TsOH , dry toluene, reflux; (ii) 1 N HCl , $0{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{H}_{3} \mathrm{PO}_{4}, 80^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

## Behar's approach (2000) ${ }^{45}$

In this approach, readily accessible phthaldehydic acid 69 was subjected to a slight excess of NaH in DMPU, followed by addition of diethyl bromomalonate gave a $90 \%$ yield of cyclized intermediate 70. The excess sodium hydride presumably facilitates a basecatalyzed aldol closure to $\mathbf{6 9}$ via malonate ester of 70. Decarboxylative elimination afforded acid, which on Fischer esterification gave ester 71 in $85 \%$ yield (Scheme 20).


Scheme 20: (i) NaH , DMPU, then diethyl bromomalonate, $25^{\circ} \mathrm{C}, 90 \%$; (ii) (a) conc $\mathrm{HCl} / \mathrm{gl} . \mathrm{AcOH}$, reflux; (b) cat. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, reflux, $85 \%$.

## Kozlowski's approach (2001) ${ }^{46}$

Kozlowski et al have synthesized isocoumarin fragment 76 as part of their rubramycin synthesis. The synthesis was started from regioselective saponification of less hindered methyl ester (meta to the iodide) of 72 using LiOH to generate acid 73. This on chemoselective reduction gave the corresponding alcohol which was protected as its silyl ether 74 in $87 \%$ yield. The Heck coupling of 74 with $\alpha$-methoxy methyl pyruvate gave the coupled product 75 in $71 \%$ yield. Acid catalyzed intramolecular condensation of 74 in $5 \% \mathrm{HCl} / \mathrm{MeOH}$ resulted in the formation of isocoumarin along with concomitant removal of silyl ether to provide isocoumarin precursor 76 directly in $83 \%$ yield (Scheme 21).


Scheme 21: (i) $\mathrm{LiOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$; (ii) (a) $\mathrm{BH}_{3}$.THF, THF; (b) TBSCl , imid., $87 \%$; (iii) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathbf{2 1}, 71 \%$ (iv) $5 \% \mathrm{HCl} / \mathrm{MeOH}, 83 \%$.

## Danishefsky's approach (2001) ${ }^{47}$

Danishefsky et al have described an elegant synthesis of isocoumarin fragment 79 as part of their rubramycin synthesis, which commenced with commercially available opianic acid 77. Subjecting 77 with modified Horner-Emmons reaction using phosphonate ester afforded 78 as a mixture of stereoisomers ( $98 \%, 1: 1$ ). Cyclization under acidic conditions afforded isocoumarin derivative 79 in 83\% yield (Scheme 22).


Scheme 22: (i) $(\mathrm{OMe})_{2} \mathrm{POCH}(\mathrm{OMe}) \mathrm{CO}_{2} \mathrm{Me}, \mathrm{NaH}$, THF, $0{ }^{\circ} \mathrm{C}, 98 \%(1: 1)$; (ii) $3 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, reflux, $83 \%$.

## Bellina's approach (2003) ${ }^{48}$

Bellina et al. have found $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} / \mathrm{CuI} / \mathrm{Et}_{3} \mathrm{~N}$ combination as an efficient reagent system for the reaction of o-iodobenzoic acids 80 with alkynes 81 to produce (Z)-3butylidenephthalides $\mathbf{8 2}$ as the major and 3-alkylisocoumarins $\mathbf{8 3}$ as the minor products (Scheme 23).


Scheme 23: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 61-82 \%$.

## Pal's approach (2005) ${ }^{49}$

In this approach the coupling reaction of o-iodobenzoic acids $\mathbf{8 4}$ with terminal alkynes $\mathbf{8 5}$ by using a catalyst system of $10 \% \mathrm{Pd} / \mathrm{C}^{2}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{CuI}-\mathrm{PPh}_{3}$ in EtOH provided 3-substituted isocoumarins 86 in 40-75\% yield (Scheme 24).


Scheme 24: (i) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{PPh}_{3}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 16 \mathrm{~h}$

## Brasholz's approach (2005) ${ }^{50}$

Brasholz et al also have described synthesis of isocoumarin fragment $\mathbf{9 0}$ as part of their rubramycin synthesis. Thus, Iodination of $\mathbf{8 7}$ with tetramethylammonium dichloroiodate gave iodinated aldehyde 88. Which was subjected to Horner-Wadsworth-Emmons reaction with phosphonate ester to give enol ether 89 as a mixture of diastereoisomers $(E / Z=35: 65)$ in $82 \%$ yield. Subsequently, intramolecular condensation of $\mathbf{8 9}$ in the presence of aq. HBr solution provided isocoumarin 90 in $68 \%$ yield (Scheme 25).


Scheme 25: (i) $\mathrm{Me}_{4} \mathrm{NICl}_{2}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 91 \%$; (ii)Phosphonate ester, NaHMDS, THF, -78 to $25^{\circ} \mathrm{C}, 82 \%$; (iii) HBr ( $47 \%$, aq) $-\mathrm{MeOH}, 1: 1$, reflux, $12 \mathrm{~h}, 68 \%$.

## Terada's approach (2007) ${ }^{51}$

In this approach, the authors have employed organic-base such as DBU in catalytic amount for effecting 5-exo intramolecular cyclization in o-alkynylbenzoic acids 91, which produced the corresponding phthalides 92 regioselectively in $57-99 \%$ yields (Scheme 26).


Scheme 26: (i) DBU (5 mol\%), MeCN, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

## Youn's approach (2011) ${ }^{52}$

Youn et al. have developed an NHC-catalyzed oxidative cyclization of oalkynylbenzaldehydes $\mathbf{9 3}$ bearing an unactivated alkyne moiety as an internal electrophile to afford O-heterocycles $\mathbf{9 4} \& \mathbf{9 5}$ in 32-96\% yield. The duality of DBU renders its ability to generate the active NHC catalytic species and concomitantly, to activate the alkyne moiety. In this strategy, molecular oxygen in air is utilized as a source of an oxygen for the oxidation of various benzaldehydes to the corresponding benzoic acids (Scheme 27).


Scheme 27: (i) NHC ( $20 \mathrm{~mol} \%$ ), DBU ( $40 \mathrm{~mol} \%$ ), MeCN, air, $80^{\circ} \mathrm{C}, 2-24 \mathrm{~h}$.

## Xi's approach (2012) ${ }^{53}$

Xi et al. have prepared 3-substituted isocoumarin derivatives 98 from o-halobenzoic acids 96 and 1,3-diketones $\mathbf{9 7}$ via a copper(I)-catalyzed domino reaction in DMF under the action of $\mathrm{K}_{3} \mathrm{PO}_{4}$ at $90-120{ }^{\circ} \mathrm{C}$ without a ligand in $43-85 \%$ yields (Scheme 28).


Scheme 28: (i) $\mathrm{CuI}(10 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{DMF}, 90-120^{\circ} \mathrm{C}, 24-36 \mathrm{~h}$.
Yao's approach (2012) ${ }^{54}$

Vaccher et al. have reported the synthesis of isocoumarins $\mathbf{1 0 1}$ by employing coppercatalyzed tandem $\mathrm{C}-\mathrm{C} / \mathrm{C}-\mathrm{O}$ coupling transformation as the key step. Thus, 2 -iodo- $\mathrm{N}-$ phenylbenzamides $\mathbf{9 9}$ were subjected to reaction with various 1,3 -diketones $\mathbf{1 0 0}$ via copper (I)-catalyzed tandem reaction in DMSO under the action of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ at $100^{\circ} \mathrm{C}$ to afford isocoumarins 101 in 69-74\% yield (Scheme 29).


Scheme 29: (i) $\mathrm{CuI}(10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 10{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 5-60 \mathrm{~h}$.

### 3.3.3 Present Work

### 3.3.3.1 Objective

As can be seen from the above discussion, the reported methods for the synthesis of 3substituted isocoumarins and alkylidenephthalides employ either acid medium or expensive organometallic reagents involving longer reaction sequences and often lack in broad substrate scope and higher reaction stereoselectivity. In this context, a more practical and efficient synthesis of functionalized 3 -substituted isocoumarins and 3alkylidenephthalides is highly desirable. In this section, we present a single-step strategy in which $\mathrm{PPh}_{3}$ DEAD promote the ring expansion or elimination of 3 -substituted phthalides that affords 3 -substituted isocoumarins or 3-alkylidenephthalides in high yields (Scheme 30).

### 3.3.4 Results and Discussion

In Section-I, we have presented a novel protocol of CN -assisted oxidative cyclization for the synthesis of a wide variety of 3-substituted phthalides and their structural analogues via AD process of cyano cinnamates and styrene derivatives. In continuation of this methodology, we have planned to synthesize the bioactive tetrahydroisoquinoline 104 directly from 3-substituted phthalide 102a via a two-step sequence: (i) Mitsunobu reaction of phthalide 102a $\left[\mathrm{PPh}_{3}\right.$, diethyl azodicarboxylate (DEAD) and diphenylphosphoryl azide (DPPA)] and (ii) the reduction of the corresponding azide 103 with $\mathrm{LiAlH}_{4}$. To our surprise, when 3-substituted phthalide 102a was subjected to a typical Mitsunobu reaction using $\mathrm{PPh}_{3}$ and DEAD (with DPPA or without DPPA), the corresponding ring expansion product, i.e. isocoumarin derivative 105a was obtained exclusively in $94 \%$ yield.


Scheme 30: (i) $\mathrm{PPh}_{3}$ (1.5equiv.), DEAD ( 1.5 equiv.), THF, $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
The formation of isocoumarin derivative 105a was confirmed by the presence of olefinic proton at $\delta 7.48$ as singlet in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. The carbonyl signal and olefinic carbons showed signals at $\delta 160.4,111.9$ and 143.5 respectively in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum
(Fig. 16). Its IR spectrum displayed strong absorption bands at 1718 and $1737 \mathrm{~cm}^{-1}$ indicating the presence of ester and lactone carbonyl groups repectively.


Fig. 16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of isocoumarin derivative $\mathbf{1 0 5 a}$

Encouraged by this result, we examined the scope of the reaction with other 3-substituted phthalides 102a-h (Table 1). In every case, the reaction proceeded rapidly in 30 min giving the desired isocoumarin derivatives 105a-h in excellent yields. For instance, substrates having halogen (entry f), methoxy (entry d ) or substituents on the aromatic ring including 2-naphthyl nuclear system (entry h) underwent this ring expansion smoothly
affording the corresponding isocoumarin derivatives 105a-h in excellent yields (90-95\%) in a single step.

Table 1: $\mathrm{PPh}_{3}$-DEAD Promoted Synthesis of Isocoumarins


[^1]During the course of our investigation on synthesis of isocoumarins, we observed that simple variation of $R^{4}$ in phthalides 106a-i, led to the formation of biologically active alkylidenephthalides 107a-i in yields up to $92 \%$ yield (Table 2). It was again found that this novel method displayed a wide substrate scope tolerating both alkyl and alkoxy groups. The confirmation of alkylidenephthalides 107a-h and configuaration of (Z)-3-
ethylidne-5-7-dimethoxyphthalide (107i) was ascertained by comparing their spectral data with those reported in the literature. ${ }^{44,48,52}$

Table 2: $\mathrm{PPh}_{3}$-DEAD Promoted Synthesis of Alkylidenephthalides


[^2]Further, the formation of alkylidenephthalide derivatives 107a-i were confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy. Example 1: Two doublets have appeared at $\delta 5.16(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H})$ and $5.19(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$ accounting for olefinic protons of $\mathbf{1 0 7 b}$ in its ${ }^{1} \mathrm{H}-$ NMR spectrum which was further ascertained by the appearence of carbonyl and olefinic carbons at $\delta 166.2,90.7$ and 117.7 respectively in the ${ }^{13} \mathrm{C}$-NMR spectrum (Fig. 17). The

IR spectrum of $\mathbf{1 0 7 b}$ displayed a characteristic strong band at $1774 \mathrm{~cm}^{-1}$ indicating the presence of carbonyl group in lactone.


Fig. 17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of methylidenephthalides 107b
Example 2: The formation of (Z)-3-ethylidene-5-7-dimethoxyphthalide $\mathbf{1 0 7 h}$ is confirmed by the appearance of characteristic signals at $\delta 1.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $\delta$ $5.57(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$ for the methyl $\left(=\mathrm{CH}-\mathrm{CH}_{3}\right)$ and olefinic $\left(=\mathrm{CH}-\mathrm{CH}_{3}\right)$ protons respectively in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Further it is supported by the signals at $\delta$ 11.2, 94.4
and 164.5 which corresponds to the methyl $\left(=\mathrm{CH}-\mathrm{CH}_{3}\right)$, olefinic $\left(=\mathrm{CH}-\mathrm{CH}_{3}\right)$ and carbonyl carbons respectively in the ${ }^{13} \mathrm{C}$-NMR spectrum (Fig. 18).


Fig. 18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ethylidenephthalide $\mathbf{1 0 7 h}$

### 3.3.5 Mechanism

A probable mechanistic pathway for the formation of isocoumarin derivative is shown in Scheme 31, which is similar to the Mitsunobu reaction mechanism. ${ }^{55}$ Firstly, $\mathrm{PPh}_{3}$ adds onto DEAD to generate a phosphonium betaine intermediate, which readily deprotonates alcoholic proton in $\alpha$-hydroxy ester 102a to provide the ion pair A. Further, alkoxide
oxygen in A binds to the phosphonium intermediate, activating it as a better leaving group to form phosphoxonium intermediate $\mathbf{B}$, which undergoes Wagner-Meerwein-type rearrangement resulting in ring expansion, thereby providing a more stable benzylic carbocation C. Aromatization of C produces isocoumarin derivatives 105a (Scheme 31).


Scheme 31: Possible reaction pathway

### 3.3.6 Conclusion

In summary, we have developed a novel one-pot procedure for the preparation of 3substituted isocoumarins 105a-h and 3-substituted alkylidenephthalides 107a-i from 3substituted phthalides via $\mathrm{PPh}_{3}$-DEAD promoted ring expansion and elimination processes. This reaction is highly practical in the sense that the products were obtained in excellent yields and shows broad substrate scope and good functional group tolerance. This methodology also can be performed in the presence of acid sensitive groups. A remarkable feature of this novel method is that neither an acid medium nor a metal complex is required.

### 3.3.7 Experimental Section

## General experimental procedure for the preparation of 3-substituted isocoumarins (105a-h) and alkylidenephthalides (107a-i)

To a stirred solution of 3-substituted phthalide derivatives 102a-h or 106a-i ( 1 mmol ) in THF ( 10 mL ) was added diethyl azodicarboxylate $(1.5 \mathrm{mmol}), \mathrm{PPh}_{3}(1.5 \mathrm{mmol})$ and allowed to stir for $0.5-5 \mathrm{~h}$ at $25^{\circ} \mathrm{C}$. After the completion of reaction (as monitored by TLC), THF was distilled out to give crude product. Chromatographic purification of crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate (70:30) as eluent] afforded 3-substituted isocoumarins (105a-h) or 3-substituted alkylidenephthalides (107a-i) in high yields.

## Ethyl 1-oxo-1H-isochromene-3-carboxylate (105a)

Yield: $94 \%$, gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 684,751,815,1070,1237,1482,1509,1626$, 1718, 1737, 3068, 2919; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.42(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,62.1,111.9,122.7,127.4,130.0$, 130.6, 135.0, 143.5, 160.0, 160.4; ESI-MS: m/z $241.036[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C 66.05 , H 4.62 found C 65.89 , H $4.49 \%$.

## Ethyl 6-methoxy-1-oxo-1H-isochromene-3-carboxylate (105b)

Yield: $93 \%$, gum, IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 669,749,785,827,1072,1257,1510,1601$, 1720, 1736, 2934, 3067, ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.42(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.4$ $(\mathrm{s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.3,55.7,62.2,109.7$,
$112.0,115.8,118.6,132.3,137.4,144.2,160.2,164.9$; ESI-MS: m/z $271.045[\mathrm{M}+\mathrm{Na}]^{+}$;
Analysis: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5}$ requires C, $62.90 ; \mathrm{H}, 4.87$. Found: C, $63.04 ; \mathrm{H}, 5.01 \%$.

## Ethyl 5,6-dimethoxy-1-oxo-1H-isochromene-3-carboxylate (105c)

Yield: $92 \%$, gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 686,785,835,1056,1278,1545,1634,1718$, 1728, 2928, 3025; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, $3.97(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.6,55.4,61.2,62.6,105.3,110.8,127.7,133.4$, 134.5, 144.8, 154.3, 157.6, 159.7, 161.5; Analysis: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}$ requires C, $60.43 ; \mathrm{H}, 5.07$. Found: C, 60.34; H, 4.96\%.

## Ethyl 6,7,8-trimethoxy-1-oxo-1H-isochromene-3-carboxylate (105d)

Yield: $90 \%$, brown solid; $\mathbf{m p} 122-123{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 695,721,997,1018$, 1119, 1194, 1261, 1360, 1437, 1473, 1592, 1655, 1719, 1728, 2943; ${ }^{1} \mathbf{H}-$ NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,55.9$, $61.2,62.1,105.0,110.2,127.6,133.6,134.5,144.6,154.8,157.3,159.3,161.2$; Analysis: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}$ requires C, 59.55; H, 3.84 Found: C, 59.48; H, 3.72\%.

## Ethyl 6-(benzyloxy)-7-methoxy-1-oxo-1H-isochromene-3-carboxylate (105e)

Yield: $92 \%$, gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 689,765,844,1062,1234,1341,1485,1643$, 1718, 1731, 2959, 3068; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.42(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.01(\mathrm{~s}$, $3 \mathrm{H}), 4.40(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 14.3,56.3,62.0,71.1,108.0,111.7,112.0,116.5,127.7$, 128.4, 128.8, 130.5, 135.6, 142.7, 150.8, 155.6, 160.5; Analysis: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C, 67.79; H, 5.12. Found: C, 67.91; H, 5.27\%.

## Ethyl 6-fluoro-1-oxo-1H-isochromene-3-carboxylate (105f)

Yield: 95\%, amorphous white solid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 892,1026,1256,1371,1439$, $1573,1640,1715,1726,2930,3048 ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 4.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.42(\mathrm{dd}, J=5.3,8.5$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,62.3,111.0(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}), 113.2(\mathrm{~d}, J=$ $22.5 \mathrm{~Hz}), 118.6(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 119.0(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 137.6(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}), 144.5,159.5,159.8,166.5(\mathrm{~d}, J=256.3 \mathrm{~Hz})$; Analysis: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C, 67.79; H, 5.12. Found: C, 67.91; H, 5.27\%.

## Ethyl 5-oxo-5H-[1,3]dioxolo[4,5-g]isochromene-7-carboxylate (105g)

Yield: $95 \%$, colorless solid; $\mathbf{m p} 162-163{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 765,832,895,955$, 1065, 1160, 1341, 1482, 1643, 1718, 1724, 2928, 3054; ${ }^{\mathbf{1}} \mathbf{H}$-NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $1.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H})$, $7.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,62.0,102.7,105.7,108.1,111.9$, 118.2, 132.3, 142.6, 150.3, 153.7, 160.1; Analysis: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}$ requires C, 59.55; H, 3.84. Found: C, 59.68; H, 3.98\%.

## Ethyl 1-oxo-1H-benzo[h]isochromene-3-carboxylate (105h)

Yield: $93 \%$, colorless solid; $\mathbf{m p} 164-165{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 680,748,819,852$, 1065, 1185, 1368, 1488, 1632, 1718, 1732, 2935, 3054; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.45(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dt}, J=7.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.79(\mathrm{dt}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 8.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $9.74(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.3,62.3,112.4,117.3,124.3$, 127.1, 128.0, 128.8, 129.9, 131.5, 134.1, 136.7, 137.5, 144.8, 159.8, 160.0; Analysis: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$ requires C, $71.64 ; \mathrm{H}, 4.51$. Found: C, $71.56 ; \mathrm{H}, 4.39 \%$.

## 3-Methyleneisobenzofuran-1(3H)-one (107a)

Yield: $95 \%$, brown solid; $\mathbf{m p} 57-58^{\circ} \mathrm{C}\left\{\right.$ lit. $\left.^{52} 57^{\circ} \mathrm{C}\right\}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 956,1018$, $1278,1478,1665,1784,2930,{ }^{1} \mathbf{H}-N M R\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.24$ (dd, $J=3.0,6.2 \mathrm{~Hz}$, 2H), 7.57-7.62 (m, 1H), $7.72(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$-NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 91.2,120.6,125.1,125.2,130.4,134.4,139.0,151.8,166.8$. ESI-MS: m/z $169.015[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2}$ requires C, 73.97 ; H, 4.14. Found: C, 74.09; H, 4.06\%.

## 5-Methyl-3-methyleneisobenzofuran-1(3H)-one (107b)

Yield: $95 \%$, yellow solid; $\mathbf{m p} 87-88^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 756,1026,1100,1180$, 1240, 1303, 1346, 1456, 1491, 1606, 1660, 1774, 2943, 3018; ${ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 3.94(\mathrm{~s}, 3 \mathrm{H}), 5.15(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.09(\mathrm{~m}$, $2 \mathrm{H}), 7.79(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 55.9,90.8,103.7$, 117.8, 118.5, 126.8, 141.6, 151.8, 165.0, 166.2; ESI-MS: m/z $199.035[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{3}$ requires C, 68.18 ; H, 4.58 Found: C, $68.04 ; \mathrm{H}, 4.48 \%$. 5,6-Dimethoxy-3-methyleneisobenzofuran-1(3H)-one (107c)

Yield: 93\%, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 1022,1104,1229,1278,1321,1369,1466$, 1504, 1764, 2919; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 56.2,56.7,89.5,101.3,105.3,117.8,133.4,151.8,151.9,155.1,166.7 ;$

Analysis: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C, 64.07; H, 4.89 Found: C, 64.18 ; H, 4.78\%.

## 6,7-Dimethoxy-3-methyleneisobenzofuran-1(3H)-one (107d)

Yield: $94 \%$, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 1024,1275,1458,1499,1719,1773,2943 ;{ }^{1} \mathbf{H}-$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 5.03(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}$
$=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 56.4,89.5,101.5,105.4,118.0,133.5,151.9,152.0,155.1,166.7$; Analysis: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C, 64.07; H, 4.89 Found: C, 64.16 ; $\mathrm{H}, 4.81 \%$.

## 5,7-Dimethoxy-3-methyleneisobenzofuran-1(3H)-one (107e)

Yield: $94 \%$, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 779,856,1025,1104,1222,1254,1323,1499$, 1663, 1762, 2919; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.05(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 56.4,89.5,101.5$, 105.4, 118.0, 133.5, 151.9, 152.0, 155.1, 166.7; Analysis: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 64.07 ; \mathrm{H}$, 4.89 Found: C, 64.18; H, 4.78\%.

## 5,6,7-Trimethoxy-3-methyleneisobenzofuran-1(3H)-one (107f)

Yield: 92\%, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 1019,1112,1199,1262,1345,1418,1480$, 1597, 1771, 2853, 2942; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.16$ $(\mathrm{s}, 3 \mathrm{H}), 5.06(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 56.4,61.4,62.2,89.6,97.7,109.9,136.3,151.5,151.9,159.8$; Analysis: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$ requires C, 61.01; H, 5.12 Found: C, $60.92 ; \mathrm{H}, 5.03 \%$.

## 5-(Benzyloxy)-6-methoxy-3-methyleneisobenzofuran-1(3H)-one (107g)

Yield: $94 \%$, yellow solid; $\mathbf{m p} 232-233{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 980,1035,1136,1182$, 1273, 1352, 1415, 1482, 1588, 1775, 2953, 3040; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.01(\mathrm{~s}$, $3 \mathrm{H}), 5.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.1(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}) 7.1(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.5(\mathrm{~m}$, 7H); ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 56.3,71.0,89.5,101.8,107.2,117.8,127.4,128.3$, 128.7, 133.7, 135.6, 151.0, 151.8, 155.6, 166.6; Analysis: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{4}$ requires C, 64.07; H , 4.89 Found: C, 72.07; H, 5.34\%.

## 7-Methyleneisobenzofuro[5,6-d][1,3]dioxol-5(7H)-one (107h)

Yield: 93\%, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 765,956,1024,1168,1192,1278,1370,1460$, 1490, 1590, 1772, 2934, 3026; ${ }^{1} \mathbf{H}-N M R\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.02(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.2(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 90.1,99.9,102.4,103.4,119.7,135.6,150.5,151.6,153.9,166.1$; Analysis: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{4}$ requires C, 63.16; H, 3.18 Found: C, 63.08 ; H, 3.09\%.

## (Z)-3-ethylidene-5,7-dimethoxyisobenzofuran-1(3H)-one (107i)

Yield: $94 \%$, colorless solid; $\mathbf{m p} 147-148{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 668,756,1032$, 1052, 1160, 1215, 1342, 1496, 1691, 1763, 3020; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.98$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 5.56(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.58$ ( $\mathrm{s}, 1 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 11.2,55.7,55.8,94.4,99.5,103.6,105.7,143.7$, 146.1, 159.1, 164.6, 166.8; Analysis: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$ requires C, 65.45 ; H, 5.49. Found: C, 65.32; H, $5.35 \%$.

### 3.3.8 References

1 For recent reviews of synthesis and biological applications of phthalides, see: (a) Lin, G.; Chan, S. S. -K.; Chung, H. -S.; Li, S. L. Stud. Nat. Prod. Chem. 2005, 611. (b) Beck, J. J.; Chou, S. C. J. Nat. Prod. 2007, 70, 891. (c) Xioang, M. J.; Li, Z. H. Curr. Org. Chem. 2007, 11, 833. (d) Liu, J.; Li, F.; Kim, E. L .; Li, J. L.; Hong, J.; Bae,K. S.; Chung, H. Y.; Kim, H. S.; Jung, J. H. J. Nat. Prod. 2011, 74, 1826.

2 (a) Barton, D. H. R.; de Vries, J. X. J. Chem. Soc. 1963, 1916. (b) Xu, Z.; Hu, G. Y.; Tan, G. S. Chin. J. Modern Med. 2004, 93. (c) Sato, H.; Yorozu, H.;Yamaoka, S. Biomed. Res. 1993, 14, 385. (d) Wang, X. W. Drugs Future 2000, 25, 16.

3 Yoganathan, K.; Rossant, C.; Ng, S.; Huang, Y.; Butler, M. S.; Buss, A. D. J. Nat. Prod. 2003, 66, 1116.

4 Chatterjee, P.; Franklin, M. R. Drug Metab. Dispos. 2003, 31, 1391.
5 Zhou, J.; Gupta, K.; Yao, J.; Ye, K.; Panda, D.; Giannakakaou, P.; Joshi, H. C. J. Biol. Chem. 2002, 277, 39777.

6 (a) Palermo, J. A.; Rodriguez, B.; Maria, F.; Spagnuolo, C.; Seldes, A. M. J. Org. Chem. 2000, 65, 4482. (b) Li, J.; Li, L.; Si, Y.; Jiang, X.; Guo, L.; Che, Y. Org. Lett. 2011, 13, 2670.
(a) Barton, D. H. R.; de vries, J. H. J. Chem. Soc. 1963, 1916. (b) Xu, Z.; Hu, G. Y.; Tan, G. S. Chin. J. Modern Med. 2004, 93. (c) Yu, S.; You, S.; Chen, H. Yaoxue Xuebao 1984, 101, 486. (d) Sato, H.; Yorozu, H.; Yamaoka, S. Biomed. Res. 1993, 14, 385. (e) Wang, X. Drugs Future 2000, 25, 16. (f) Xu, Z.; Hu, G. Y.; Tan, G. S. Chin. J. Modern Med. 2004, 93. (g) Ramachandran. P. V.; Guang-ming C.; Brown. H. C. Tetrahedron Lett. 1996, 37, 2205.

Ohkuma, T.; Kitamura, M.; Noyori, R. Tetrahedron Lett. 1990, 31, 5509.
Watanabe, M.; Hashimoto, N.; Araki, S.; Butsugan, Y. J. Org. Chem. 1992, 57, 742.
Lei, J.-G.; Hong, R.; Yuan, S.-G.; Lin, G.-Q. Synlett 2002, 927.
Ohezeki, T.; Mori. K. Biosci. Biotechnol. Biochem. 2003, 67, 2584.
(a) Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Angew. Chem., Int. Ed. 2004, 43, 6510. (b)

Tanaka, K.; Osaka, T.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9, 1307
Lipka, E.; Vacher, M-P.; Vaccher, C.; Len, C. Bioorg. Med. Chem. Lett. 2005, 15, 501.
Chang, H. T.; Jaganmohan, M.; Cheng, C. H. Chem. Eur. J. 2007, 13, 4356
Zhang, B.; Xu, M. H.; Lin, G. Q. Org. Lett. 2009, 11, 4712.
Phan, D. H. T.; Kim, B.; Dong V. M. J. Am. Chem. Soc. 2009, 131, 15608.
Zhang, H.; Zhang, S.; Liu, L.; Luo, G.; Duan, W.; Wang. W. J. Org. Chem. 2010, 75, 368.
Mangas-Sánchez, J.; Busto, E.; Gotor-Fernández, V.; Gotor, V. Org. Lett. 2012, 14, 1444.
(a) Jagdale, A. R.; Reddy, R. S.; Sudalai, A. Org. Lett. 2009, 11, 803. (b) Jagdale, A. R.; Reddy, R. S.; Sudalai, A. Tetrahedron: Asymmetry 2009, 20, 335.
(a) Bower, J. F.; Szeto, P.; Gallagher, T. Chem Commun. 2005, 5793. (b) Zhai, H.; Luo, S.; Ye, C.; Ma, Y. J. Org. Chem. 2003, 68, 8268. (c) Fuchs, J. R.; Funk, R. L. Org. Lett. 2001, 3, 3923. (d) Katoh, M.; Inoue, H.; Suzuki, A.; Honda, T. Synlett 2005, 18, 2820. (e) Bower, J. F.; Szeto, P.; Gallagher, T. J. Org. Biomol. Chem. 2007, 5, 143.
Uchida, K.; Watanabe, H.; Usui, T.; Osada, H.; Kitahara, T. Heterocycles 1998, 48, 2049.
(a) Gensler, W. J. Chem. Rev., 1957, 57, 191; (b) Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 14, 4833.
(a) Dupau, P.; Epple, R.; Thomas, A. A.; Fokin, V. V.; Sharpless, K. B. Adv. Synth. Catal. 2002, 344, 421. (b) Fujita, M.; Yoshida, Y.; Miyata, K.; Wakisaka, A.; Sudimura, T. Angew. Chem. Int. Ed. 2010, 49, 7068.
(a) Li, G.; Chang, H.-T.; Sharpless, K. B. Angew. Chem. Int. Ed. 1996, 35, 451. (b) Sharpless, K. B.; Rudolph, J.; Sennhenn, P. C.; Vlaar, C. P. Angew. Chem. Int. Ed. 1996, 35, 2810.
Deubel, D. V.; Muniz, K. Chem. Eur. J. 2004, 10, 2475.
Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
(a) Flora of China Editorial Committee, "Flora Reipublicate Popularis Sinicae," Vol. 4, Science Press, Beijing, 2006, pp. 159; (b) Jiangsu Institute of Botany, "Xinhua Herbal Schem," Shanghai Scientific and Technologic Press, Shanghai, 1990, pp. 684.
Shao, P.; Zhang, W.; Li, B.; Jiao, W. H.; Wu, L. J.; Yao, X. S. Chem. Pharm. Bull. 2010, 58, 1650.

Reddy R. S.; Kiran, I. N. C.; Sudalai A. Org. Biomol. Chem. 2012, 10, 3655.
(a) Barry, R. D. Chem. Rev. 1964, 64, 229; (b) Deangelis, J. D.; Hodges, J. D.; Nebeker, T. E. Can. J. Bot. 1986, 64, 151; (c) Ayer, W. A.; Browne, L. M.; Feng, M. C.; Orszanska, H.; Saeedi-Ghomi, H. Can. J. Chem. 1986, 64, 904; (d) Ayer, W. A.; Attah-Poku, S. K.; Browne, L. M.; Orzanska, H. Can. J. Chem. 1987, 65, 765; (e) Hegde, V. R.; Wittreich, H.; Patel, M. G.; Horan, A. C.; Hart, R. F.; Troyanvich, J. J.; Puar, M. S.; Gullo, V. P. J. Ind. Microbiol. 1989, 4, 209. (f) Gremaud, G.; Tabacchi, R. Nat. Prod. Lett. 1994, 5, 95. (g) Lin, J. Y.; Yoshida, S.; Takahashi, N. Agric. Biol. Chem. 1971, 35, 363.
(a) Wang, P.; Gao. X.; Wang, Y.; Fukuyama, Y.; Miyura, I.; Sugawara, M. Phytochemistry 1984, 23, 2033. (b) Kobayashi, M.; Fujita, M.; Mitsuhashi, H. Chem. Pharm. Bull. 1984, 32, 3770. (c) Kaouadji, K.; Pauget, C. J. Nat. Prod. 1986, 49, 184. (d) Kobayashi, M.; Fujita, M.; Mitsuhashi, H. Chem. Pharm. Bull. 1987, 35, 1427.

Matsuda H.; Shimoda H.; Yoshikawa M., Bioorg. Med. Chem., 1999, 7, 1445.
Yoshikawa M.; Harada E.; Naitoh Y.; Inoue K.; Matsuda H.; Shimoda H.; Yamahara J.; Murakami N., Chem. Pharm. Bull., 1994, 42, 2225.

Matsuda H.; Shimoda H.; Yamahara J.; Yoshikawa M.; Bioorg. Med. Chem. Lett., 1998, 8, 215. Whyte A.C.; Gloer J.B.; Scoot J.A.; Mallock D.; J. Nat. Prod., 1996, 59, 765.
Nozawa K.; Yamada M.; Tsuda Y.; Kawai K.; Nakajima S., Chem. Pharm. Bull., 1981, 29, 2689. Furuta T.; Fukuyama Y.; Asakawa Y., Phytochemistry, 1986, 25, 517.

Lee J. H., Park Y.J., Kim H.S., Hong Y.S., Kim K.W., Lee J.J., Antibiot. 2001, 54, 463.
Chinworungsee M.; Kittakoop P.; Isaka M.; Chanphen R.; Tanticharoen M.; Thebtaranonth Y.J., J. Chem. Soc. Perkin Trans. 1, 2002, 2473.
(a) Lacova, M.; Paulov, S.; Paulovova, J. Czech. Cs. 190,783, 1981; Chem. Abstr. 1982, 97, 67833v.
(b) Lacova, M.; Brondos, M. Chem. Zvesti 1982, 36, 245; Chem. Abstr. 1982, 97, 92054z.
(a) Ciufolini, M. A.; Browne, M. E. Tetrahedron Lett. 1987, 27, 171. (b) Aidhen, I. S.; Narasimhan, N. S. Tetrahedron Lett. 1989, 30, 5323. (c) Gore, V. G.; Chordia, M. D.; Narasimhan, N. S. Tetrahedron 1990, 46, 2483. (d) Chordia, M. D.; Narasimhan, N. S. J. Chem. Soc., Perkin Trans. 1 1991, 371. (e) Ciattini, P. G.; Mastropietro, G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1993, 34, 3763.
(a) Beugelmans, R.; Ginsburg, H.; Bois-Choussy, M. J. Chem. Soc., Perkin Trans. 1 1982, 1149. (b) Lewis, C. N.; Staunton, J.; Sunter, D. C. J. Chem. Soc., Perkin Trans. 1 1988, 747. (c) Minami, T.; Nishimoto, A.; Nakamura, Y.; Hanaoka, H. Chem. Pharm. Bull. 1994, 42, 1700.
(a) Kanevskaya, S. I.; Malinina, S. I. J. Gen. Chem. (USSR) 1956, 25, 727. (b) Jones, J. B.; Pinder, A. R. J. Chem. Soc. 1958, 2612. (c) Tirodkar, R. B.; Usgaonkar, R. N. Indian J. Chem. 1972, 10, 1060.

Mali, R. S.; Babu, K. N. J. Org. Chem. 1998, 63, 2488.
Thrash, T. P.; Welton, T. D.; Behar, V. Tetrahedron Lett. 2000, 41, 29.
Waters, S. P.; Kozlowski, M. C. Tetrahedron Lett. 2001, 42, 3567.

47 Qin, D.; Ren, R. X.; Siu, T.; Zheng, C.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2001, 40, 4709.
48 Bellina, F.; Ciucci, D.; Vergamini, P.; Rossi, R. Tetrahedron 2001, 56, 2533.
49 Subramanian, V; Batchu, V. R.; Barange, D.; Pal, M. J. Org. Chem. 2005, 70, 4778.
50 Brasholz.; Luan, X.; Reissig, H.-U. Synthesis 2005, 3571.
51 Kanazawa, C.; Terada, M. Tetrahedron Lett. 2007, 48, 933.
52 Park, J. H.; Bhilare, S. V.; Youn, S. W. Org. Lett. 2011, 13, 2228.
53 Cai, S.; Wang, F.; Xi, C. J. Org. Chem. 2012, 77, 2331.
54 Kavala, V.; Wang, C.-C.; Barange, D. K.; Kuo, C.-W.; Lei, P.-M.; Yao C.-F. J. Org. Chem. 2012, 77, 5022.

55 Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar K. V. P. P. Chem. Rev. 2009, 109, 2551.

## CHAPTER IV

## CuCN-Mediated "One-pot" Route to 1-Amino-2naphthalenecarboxylic acid Derivatives and <br> 3-Substituted Phthalides: Enantioslective Synthesis of Colletotrialide

## Section I:

## CuCN-Mediated "One-pot" Cascade Route to Ethyl 1-Amino-2Naphthalenecarboxylate Derivatives

### 4.1.1 Introduction

Highly substituted bicyclic and polycyclic aromatic compounds are common structural motifs present in natural products and pharmaceuticals. ${ }^{1}$ In recent years such aromatic systems have attracted considerable attention for the construction of organic light emiting diodes, organic semiconductors and luminescent materials. ${ }^{2}$ Particularly, 2-aminobenzoic acids are important precursors for the generation of benzynes, which are efficient intermediates for the synthesis of a variety of polycyclic compounds. ${ }^{3}$ 2-Aminobenzoic acid derivatives are also known as useful starting materials for the synthesis of heterocyclic compounds. ${ }^{3}$ The synthetic utility of 1(or 3)-amino-2-naphthalenecarboxylic acid derivatives, which are the benzoanalogues of 2 -aminobenzoic acid derivatives, is also well documented. ${ }^{4}$ Therefore, the development of efficient methods for constructing polycyclic aromatic compounds have been a longstanding objective of synthetic organic chemist.

### 4.1.2 Review of literature

Literature search revealed that there are only two reports available for the synthesis of 1-amino-2-naphthalenecarboxylic acid derivatives, which are described below.

## Kobayashi's Approach (1997) ${ }^{5,6}$

Kobayashi et al. have described the synthesis of 1-amino-2-naphthalenecarboxylic acid derivatives 3 via a sequential Michael addition/enolate-nitrile coupling route. Thus, the reaction of 2-( $\alpha$-lithioalkyl)benzonitriles, generated in situ by treatment of 2alkylbenzonitriles $\mathbf{1}$ with LDA in diglyme, with $\alpha, \beta$-unsaturated carboxylates and nitriles
produced 1-amino-3,4-dihydro-2-naphthalenecarboxylates and carbonitriles 2 in 54-98\% yields. This reaction proceeds through Michael addition of lithio nitriles to $\alpha, \beta$ unsaturated carboxylic acid derivatives, followed by zinc iodide-promoted intramolecular enolate-nitrile coupling of the resulting enolate intermediates. The dihydronaphthalenecarboxylic acid derivatives 2 were converted to the corresponding 1-amino-2-naphthalenecarboxylic acid derivatives 3 in 43-99\% yields on dehydrogenation with $\mathrm{Pd} / \mathrm{C}$ in refluxing $p$-cymene (Scheme 1).


Scheme 1: (i) (a) LDA, diglyme, $-78^{\circ} \mathrm{C}$; (b) $\mathrm{R}^{4} \mathrm{CH}=\mathrm{CHY},-78^{\circ} \mathrm{C}$; (ii) (a) $\mathrm{ZnI}_{2},-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 54-98 \%$; (b) $10 \% \mathrm{Pd} / \mathrm{C}$, $p$-cymene, reflux.

The same group has also synthesized 1-amino-2-naphthalenecarboxylic acid derivatives 5 by treating (2-cyano-phenyl)butenoic acid derivatives 4 with NaH in DMF at $0^{\circ} \mathrm{C}$ in 75 88\% yield (Scheme 2).


Scheme 2: (i) $\mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

### 4.1.3 Present Work

### 4.1.3.1 Objective

There are only two methods available in the literature for the synthesis of 1-amino-2naphthalenecarboxylic acid derivatives. However, these known methods involve multistep reaction sequences and also the process requires consumption of large quantities of hazardous chemicals with longer reaction time, thus constituting less efficiency and narrow substrate scope. In this context, a more practical and efficient synthesis of functionalized 1-amino-2-naphthalenecarboxylate derivatives is highly desirable. In this section, we describe a novel CuCN -mediated "one-pot" cascade route to 1 -amino-2naphthalenecarboxylic acid derivatives 7a directly from 4-(2-bromo-phenyl)-2butenoates 6a (Scheme 3).

### 4.1.4 Results and Discussion

It has been well-documented in the literature that the reaction of bromobenzene derivatives with CuCN (3 equiv) in DMF at reflux temperature (Rosenmund-von Braun reaction) leads to the formation of the corresponding cyanobenzene derivatives namely benzonitriles. ${ }^{7}$ We found however, that when the same reaction was carried out under identical conditions with ethyl 4-(2-bromophenyl)-2-butenoate $\mathbf{6 a}$ as the substrate in the presence of CuCN (3 equiv) under reflux conditions, it took a different course altogether to give an annulated product, namely ethyl 1-amino-2-naphthalenecarboxylate 7a in excellent yield (Scheme 3).


Scheme 3: (i) CuCN (3 equiv), DMF, $150^{\circ} \mathrm{C}, 12 \mathrm{~h}, 85 \%$.

The formation of ethyl 1－amino－2－naphthalenecarboxylate $7 \mathbf{a}$ was confirmed by the presence of two doublets at $\delta 7.05(J=8.8 \mathrm{~Hz})$ and $7.87(J=8.8 \mathrm{~Hz})$ corresponding to the newly formed aromatic ring protons integrating for one proton each in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum．It is further substantiated by the typical aromatic carbon signals at $\delta$ 104．2， 115．7， 125.1 and 148.9 in the down field region of ${ }^{13} \mathrm{C}$－NMR corresponding to carbons of newly formed aromatic ring（Fig．1）．The IR spectrum of 7a displayed strong N－H stretching frequencies at 3335 and $3346 \mathrm{~cm}^{-1}$ indicating the presence of primary aminefunctional group．
(2)


$$
\begin{aligned}
& \text { 思足只思多夺等 }
\end{aligned}
$$

Fig．1：${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of naphthylamine derivative $7 \mathbf{a}$

Encouraged by the result, we became interested in its scope by subjecting other ethyl 4-(2-bromophenyl)-2-butenoate derivatives 6a-i. Compounds 6a-i were prepared in three steps starting from the corresponding o-bromobenzaldehydes 8a-i using reported procedures. ${ }^{8}$ Accordingly, Wittig olefination of $o$-bromobenzaldehydes 8a-i using $\mathrm{MeOCH}_{2} \mathrm{PPh}_{3} \mathrm{Cl}$ and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ in THF gave the corresponding methylethers $9 \mathbf{a - i}$ in $84-92 \%$ yield with mixtures of $\mathrm{E} / \mathrm{Z}$ isomers (1:1). However, acid hydrolysis of methyl ethers 9a-i afforded the corresponding phenylacetaldehydes in good yields, which was then immediately subjected to Horner-Wadsworth-Emmons reaction using triethylphosphinoacetate and NaH in THF that afforded ethyl 4-(2-bromophenyl)-2butenoate derivatives 6a-i in 84-93\% yield (Scheme 4).


Scheme 4: (i) $\mathrm{MeOCH}_{2} \mathrm{PPh}_{3} \mathrm{Cl}, \mathrm{KO}^{t} \mathrm{Bu}, \mathrm{THF}, 0-25^{\circ} \mathrm{C}, 0.5$ $\mathrm{h}, ~ 84-92 \%$; (ii) (a) $2 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}$, reflux, 3 h ; (b) $(\mathrm{OEt})_{2} \mathrm{POCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 82-89 \%$.

The formation of compounds 6a-i was confirmed by ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}-\mathrm{NMR}$ and IR spectroscopy. For example, compound $\mathbf{6 d}$ showed a triplet of doublet and a multiplet at $\delta$ $5.76(J=1.5,15.7 \mathrm{~Hz})$ and $7.02-7.13$ respectively integrating for one proton each in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, which accounts for the olefinic protons. It was further supported by the typical carbon signals at $\delta 120.3$ and 145.8 in its ${ }^{13} \mathrm{C}-$ NMR spectrum (Fig. 2).


Fig. 2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ethyl 4-(2-bromophenyl)-2-butenoate $\mathbf{6 d}$

When subjected to CuCN -mediated one-pot cascade reaction with 3 equiv of CuCN , several ethyl 4-(2-bromo-phenyl)-2-butenoate derivatives 6a-i gave the corresponding annulated napthalene derivatives 7a-i in 73-91\% yields. Results of such studies are presented in Table 1. As can be seen, this cascade cyclization took place smoothly to provide 7a-i in a "one-pot" reaction, which comprises several transformations taking place, all occurring in a single step, with a variety of substituted ethyl 4-(2-bromo-phenyl)-2-butenoates $\mathbf{6 a - i}$ and cheaply available reagent, CuCN . For instance, substrates
having halogen (entry g), methyl (entry f), highly electron rich (entry $\mathrm{c} \& \mathrm{~d}$ ) or electron defficient (entry h) substrates on the aromatic ring underwent this cascade cyclization smoothly affording the corresponding cyclized products 7a-i with excellent yield in a single step. Interestingly, electron-deficient substrates gave relatively higher yields of products as compared to electron-rich substrates. This may be ascribed to the mesomeric effect, which probably increases electropositive character of carbon in cyano, thereby resulting in high yields of the cyclized product.

Table 1: CuCN-Promoted Synthesis of Ethyl 1-Amino-2-Naphthalenecarboxylates


[^3]Fig. 3. shows the mass and IR spectra of $\mathbf{7 g}$. During the optimization studies, we found that, a mixture of products was obtained with lower equiv of CuCN , thus requiring a minimum of 3 equiv of CuCN to achieve excellent conversion.


Fig. 3: Mass and IR spectra of ethyl 1-amino-2-naphthalenecarboxylate $7 \mathbf{g}$

To have a better understanding of the reaction mechanism, we have subjected both alkenes 10 and $\mathbf{6 a}$ in the absence of CuCN , in DMF under reflux conditions that
proceeded to give the corresponding isomerised alkenes $\mathbf{1 1}$ and $\mathbf{1 2}$ respectively as the major isomers (Scheme 5). Also, when the corresponding CN-derivative 13 was subjected to the present reaction condition (with or without CuCN ) the isomerised alkene 14 was formed as the major product.



Scheme 5: (i) DMF, reflux, $12 \mathrm{~h}, 84-92 \%$; (ii) CuCN (3 equiv), DMF, reflux $12 \mathrm{~h}, 76 \%$.



Scheme 6: Probable reaction pathway
This indicates that the reaction proceeds through 1,5-hydrogen transfer pathway to give species $\mathbf{A}$, which is believed to be in equilibrium with species $\mathbf{B} \& \mathbf{C}$ under thermal
conditions. ${ }^{9}$ We strongly believe that both isomerization and C-C bond formation take place simultaneously to give the cyclized unstable species 15, which undergoes tautomerization ${ }^{5}$ to form ethyl1-amino-2-naphthalenecarboxylate (7c) (Scheme 6). Protonated species $\mathbf{C}$ (compound 14) was indeed isolated and characterized when the reaction was terminated before completion. The ${ }^{1} \mathrm{H}$ NMR spectrum of cyano alkene $\mathbf{1 4}$ showed a typical signal at $\delta 3.30-3.34(\mathrm{~m}, 2 \mathrm{H})$ corresponding to methylene $\left(=\mathrm{CH}-\mathrm{CH}_{2}-\right)$ (Fig. 4). The IR spectrum of isomerized cyano alkene 14 displayed a strong absorption band at $2226 \mathrm{~cm}^{-1}$ indicating the presence of cyano group.


Fig. 4: ${ }^{1} \mathrm{H}$ NMR spectrum of cyano alkene 14

### 4.1.5 Conclusion

In conclusion, we have developed a simple annulation strategy for the synthesis of ethyl1-amino-2-naphthalene carboxylate derivatives 7a-i from the corresponding ethyl 4-(2-bromo-phenyl)-2-butenoate derivatives 6a-i in high yields via CuCN -mediated
cyclizations. Use of inexpensive CuCN and the high purity of the annulated products make our synthesis more attractive. This method has been found very effective in the asymmetric synthesis of bioactive compounds possessing 1-amino-2-naphthalene core.

### 4.1.6 Experimental Section

General experimental procedure for the preparation methyl vinyl ethers 9a-i
To a stirred solution of (methoxymethyl)triphenylphosphonium chloride ( 6.5 mmol ) in THF ( 25 mL ) was added $n-\operatorname{BuLi}(3.7 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, 5.75 mmol$)$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature for 1 h . A solution of 2-bromo aldehydes 8a-i $(5.0 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added to the reaction mixture, and the resulting mixture stirred at room temperature. After 30 min , it was quenched with water, and diluted with EtOAc. The organic layer was separated and aqueous layer extracted with ethyl acetate ( $3 \times 20 \mathrm{ml}$ ); the combined organic layers were washed with brine ( 2 x 20 mL ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification using flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate $(90: 10)$ as an eluent afforded methyl vinyl ethers 9a-i as the pure product.

## 1-Bromo-2-(2-methoxyvinyl)benzene (9a)

Yield: $89 \%$, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 758,875,924,1056,1135,1255,1330,1476$, 1502, 1645, 2928, 3010; ${ }^{1} \mathbf{H}$-NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) E-isomer: $\delta 3.72$ (s, 3 H ), 6.06 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.34(\mathrm{~m}, 4 \mathrm{H})$; Z-isomer: $\delta 3.75(\mathrm{~s}, 3 \mathrm{H})$, $5.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 4 \mathrm{H})$; Analysis: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}$ requires $\mathrm{C}, 50.73$; H, 4.26 found $\mathrm{C}, 50.67$; H, $4.19 \%$.

## 1-Bromo-4-fluoro-2-(2-methoxyvinyl)benzene (9g)

Yield: $89 \%$, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 875,960,1034,1180,1269,1358,1483,1574$, 1636, 2916, 3018; ${ }^{1} \mathbf{H}$-NMR (200 MHz, $\mathrm{CDCl}_{3}$ ) E-isomer: $\delta 3.73$ (s, 3 H ), 6.01 (d, $J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 2 \mathrm{H}) ;$ Z-isomer: $\delta$ $3.82(\mathrm{~s}, 3 \mathrm{H}), 5.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 1 \mathrm{H}), 7.44-$ 7.83 (m, 2H); Analysis: $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrFO}$ requires C, 46.78 ; H, 3.49 found C , 46.71 ; H 3.49 \%.

## 1-Bromo-2-(2-methoxyvinyl)-4-nitrobenzene (9h)

Yield: $92 \%$, gum, IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 788,865,897,968,1056,1087,1133,1262$, 1334, 1426, 1475, 1514, 1652, 2928, 3012; ${ }^{\mathbf{1}} \mathbf{H}$-NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) E-isomer: $\delta$ $3.90(\mathrm{~s}, 3 \mathrm{H}), 5.62(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.82(\mathrm{~m}, 2 \mathrm{H})$, $8.95(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$; Z-isomer: $\delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.86(\mathrm{~m}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$; Analysis: $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{3}$ requires C, 41.89; H, 3.12 found C, 41.78; H $3.08 \%$.

## 5-Bromo-6-(2-methoxyvinyl)benzo[d][1,3]dioxole (9i)

Yield: $92 \%$, gum, IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 758,839,869,933,1039,1090,1121,1231$, $1289,1324,1418,1476,1502,1647,2897,2935,3006 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{Z}$ isomer: $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.51(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 6.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \mathrm{CDCl} 3): \delta 56.5,101.5,103.9,109.7$, 112.4, 113.4, 128.6, 146.1, 147.0, 148.0; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ E-isomer: $\delta 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 60.7,101.6,104.6,105.2,112.7,113.3$, 129.5, 146.6, 147.6, 149.5; Analysis: $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{3}$ requires C, 46.72; H, 3.53; found C, 46.66; H, 3.48 \%.

General experimental procedure for the preparation of ethyl 4-(2-bromophenyl)-2butenoate derivatives, 6a-i

To a stirred solution of crude methyl vinyl ether derivatives 9a-i ( 5.0 mmol ) in THF (10 $\mathrm{mL})$ was added an aqueous solution of 1 N aq. $\mathrm{HCl}(10 \mathrm{~mL})$ at room temperature. The resulting solution was refluxed for 3 h . After evaporation of the organic solvent in vacuo, water was added to the mixture, and the resulting slurry was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The obtained crude aldehydes were immediately used for the next reaction without purification because of their instability to air and moisture.

To a stirred solution of the above crude aldehydes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature was added a Wittig reagent ( 5.5 mmol ), and the resulting mixture was stirred for 2 h at the same temperature. After the completion of reaction, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled out to give the crude product. Chromatographic purification of crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate (80:20) as eluent] afforded the unsaturated esters $\mathbf{6 a - i}$ in pure form.

## (E)-Ethyl 4-(2-bromophenyl)but-2-enoate (6a)

Yield: $86 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 750,981,1024,1155,1194,1266$, 1653, 1713, 2980; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), $3.66(\mathrm{dd}, J=$ $1.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{td}, J=1.6,15.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{dd}, J=$ $1.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,38.5,60.3,122.8,124.5,127.7$, 128.4, 130.7, 132.9, 137.3, 145.4, 166.3; Analysis: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{2}$ requires $\mathrm{C}, 53.55$; H , 4.87; Br, 29.69 Found: C, 53.46; H, 4.79; Br, 29.61\%.
(E)-Ethyl 4-(2-bromo-5-methoxyphenyl)but-2-enoate (6b)

Yield: $89 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 803,983,1016,1040,1131,1199$, 1239, 1267, 1472, 1713, 2979; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $3.56(\mathrm{dd}, J=1.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.1(\mathrm{~s}, 2 \mathrm{H}), 5.75$ $(\mathrm{td}, J=1.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 7.02-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.44(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 14.2,38.7,55.4,60.3,113.9,114.9,116.4,122.9,133.4,138.2$, 145.2, 159.1, 166.3; Analysis: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{3}$ requires C, 52.19; H, 5.05; Br, 26.71 Found: C, $52.25 ; \mathrm{H}, 5.14 ; \mathrm{Br}, 26.82 \%$.
(E)-Ethyl 4-(2-bromo-4,5-dimethoxyphenyl)but-2-enoate (6c)

Yield: 82\%; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 895,978,1024,1050,1142,1188$, 1245, 1276, 1477, 1714, 2965; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $3.27(\mathrm{dd}, J=1.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.13$ $(\mathrm{td}, J=7.1,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{td}, J=1.5,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 14.1,38.1,55.8,60.0,113.0,114.2,115.5,122.4,128.9$, 146.7, 145.5, 148.4, 148.5, 166.0; Analysis: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{4}$ requires C, $51.08 ; \mathrm{H}, 5.21$; Br , 24.27 Found: C, 50.98; H, 5.14; Br, 24.32\%.

## (E)-Ethyl 4-(2-bromo-3,4-dimethoxyphenyl)but-2-enoate (6d)

Yield: $84 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 780,936,1032,1071,1156,1176$, 1239, 1280, 1468, 1712, 2978; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $3.61(\mathrm{dd}, J=1.6,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.76$ $(\mathrm{td}, J=1.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-7.13(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,38.1$, 56.0, 60.1, 111.3, 120.3, 125.2, 130.2, 145.8, 146.7, 152.3, 166.2; Analysis: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{4}$ requires C, 51.08; H, 5.21; Br, 24.27 Found: C, 50.95; H, 5.13; Br, 24.34\%.
(E)-Ethyl 4-(5-(benzyloxy)-2-bromo-4-methoxyphenyl)but-2-enoate (6e)

Yield: $84 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 780,882,1035,1072,1151,1190$, 1278, 1292, 1456, 1712, 2974; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $3.27(\mathrm{dd}, J=1.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.14($ $\mathrm{td}, J=7.2,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.32-7.44(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 14.1,38.1,55.8,60.0,113.0,114.2,115.5,122.4,128.8,145.5,148.4,166.0$; Analysis: $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrO}_{4}$ requires C, 59.27; H, 5.22; Br, 19.72 Found: C, $59.34 ; \mathrm{H}, 5.28 ; \mathrm{Br}, 19.65 \%$. (E)-Ethyl 4-(2-bromo-4-methylphenyl)but-2-enoate (6f)

Yield: $86 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 768,874,1028,1098,1180,1195$, 1265, 1245, 1465, 1716, 2965; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $2.52(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=1.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{td}, \mathrm{J}=3.5$, $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.4,22.1$, $60.5,113.3,114.6,115.7,122.4,128.8,136.6,138.2,148.4,167.2$; Analysis: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{2}$ requires C, 55.14; H, 5.34; Br, 28.22 Found: C, 55.05 ; H, 5.28; Br, 28.16\%.

## (E)-Ethyl 4-(2-bromo-5-fluorophenyl)but-2-enoate (6g)

Yield: $88 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 806,1024,1161,1240,1295,1473$, 1573, 1719, 2036; ${ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=$ $1.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{td}, J=1.5,15.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.80-7.08 (m, 3H), $7.51(\mathrm{dd}, J=5.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2$, $38.5,60.4,115.6(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 118.6(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 123.4$, $134.1(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 139.4(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 144.3,162.0(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 166.1$;

Analysis: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrFO}_{2}$ requires C, 50.20; H, 4.21; Br, 27.83; F, 6.62; Found: C, 50.13; H, 4.12; Br, 27.76; F, 6.53\%.
(E)-Ethyl 4-(2-bromo-4-nitrophenyl)but-2-enoate (6h)

Yield: $84 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 768,878,1018,1085,1178,1285$, 1298, 1455, 1716, 2960; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.33$ (dd, $J=1.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{td}, \mathrm{J}=3.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.5$ $(\mathrm{m}, 1 \mathrm{H}), 7.70(\mathrm{td}, \mathrm{J}=3.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 14.2,38.1,60.2,113.3,114.6,115.8,122.4,127.6,129.6,148.4,166.0$; Analysis: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}_{4}$ requires C, 45.88; H, 3.85; Br, 25.44; N, 4.46; Found: C, 45.76; H, 3.76; Br, 25.36; N, 4.39\%.
(E)-Ethyl 4-(5-bromobenzo[d][1,3]dioxol-6-yl)but-2-enoate (6i)

Yield: $86 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 858,929,982,1034,1113,1157$, $1228,1268,1475,1712,2980 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.4,38.4,60.2,101.7,110.2$, 112.9, 114.7, 122.7, 130.1, 145.5, 147.4, 147.6, 166.2; Analysis: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{4}$ requires C, 49.86; H, 4.18; Br, 25.52 Found: C, 49.78; H, 4.09; Br, 25.44\%.

General experimental procedure for the preparation of ethyl1-amino-2-naphthalene carboxylate derivatives (7a-i)

The alkenes 6a-i ( 1 mmol ) was taken in dry DMF ( 10 mL ) and $\mathrm{CuCN}(3 \mathrm{mmol})$ was added to it and the entire solution refluxed under $\mathrm{N}_{2}$ for 12 h (monitored by TLC). The reaction mixture was then cooled to room temperature, and diluted with water ( 30 mL ) and EtOAc $(25 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products which was purified by column chromatography [silica gel (230-400 mesh)
and petroleum ether: $\operatorname{EtOAc}(7: 3)$ as an eluent] to give ethyl1-amino-2-naphthalene carboxylate derivatives ( $7 \mathbf{a - i}$ ) in 73-91\% yield.

## Ethyl 1-aminonaphthalene-2-carboxylate (7a)

Yield: $85 \%$; gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 798,865,964,1015,1135,1157,1232,1264$, 1471, 1665, 2965, 3335, 3346; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.4,60.1,104.2,115.7$, 121.4, 123.1, 125.0, 126.6, 128.2, 128.4, 136.4, 148.8, 168.8; Analysis: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\mathrm{C}, 72.54 ; \mathrm{H}, 6.09$; N, 6.51 ; found: C, $73.08 ; \mathrm{H}, 6.34 ; \mathrm{N}, 6.67 \%$.

## Ethyl 1-amino-6-methoxynaphthalene-2-carboxylate (7b)

Yield: 78\%; gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 870,1076,1245,1340,1599,1672,3346$, $3457 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.41(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.35(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.05(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 14.5,55.2,60.0,103.1,107.0,115.0,118.0,123.2$, 127.5, 138.3, 148.9, 159.5, 168.8; HRMS (ESI+, $m / z$ ): calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}\right)^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$ 268.0944; found: 268.0938; Analysis: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires C, 68.56 ; $\mathrm{H}, 6.16 ; \mathrm{N}, 5.71$; found: C, 68.18; H, 5.99; N, $5.45 \%$.

## Ethyl 1-amino-6,7-dimethoxynaphthalene-2-carboxylate (7c)

Yield: 74\%; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 798,865,964,1015,1135,1157$, 1232, 1264, 1471, 1665, 2965, 3335, 3346; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.42(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.36(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.05(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.72$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.4,60.1$,
104.2, 115.7, 121.4, 123.1, 125.0, 126.6, 128.2, 128.4, 136.4, 148.8, 168.8; Analysis: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires C, $65.44 ; \mathrm{H}, 6.22$; N, 5.09 found: C, $65.69 ; \mathrm{H}, 6.18 ; \mathrm{N}, 5.11 \%$.

## Ethyl 1-amino-7,8-dimethoxynaphthalene-2-carboxylate (7d)

Yield: $73 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 779,826,956,1018,1267,1579$, $1672,3334,3464 ;{ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 6 \mathrm{H})$, $4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,56.6,59.6,61.2$, $102.5,113.8,116.6,117.8,124.2,125.1,132.9,146.8,148.4,150.9,168.6$; Analysis: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires C, $65.44 ; \mathrm{H}, 6.22$; N, 5.09 found: C, $65.34 ; \mathrm{H}, 6.31 ; \mathrm{N}, 5.12 \%$.

## Ethyl 1-amino-6-(benzyloxy)-7-methoxynaphthalene-2-carboxylate (7e)

Yield: $76 \%$; Colorless solid; mp: $144-145{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 1247,1483,1619$, $1676,3434,3452 ;{ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $4.35(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H})$, 7.30-7.51 (m, 6H), $7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.5,55.8$, $60.1,71.3,104.3,107.6,115.2,117.9,125.5,127.4,128.1,128.7,132.9,1136.7,147.5$, 147.9, 151.8, 168.9; Analysis: $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires C, $71.68 ; \mathrm{H}, 6.02 ; \mathrm{N}, 3.99$; found: C, 71.63; H, 5.95; N, 3.89\%.

## Ethyl 1-amino-6-methylnaphthalene-2-carboxylate (7f)

Yield: $81 \%$; Colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 1078,1222,1239,12571605,1663$, 3352, 3453; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 4.37$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), $7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.5,22.0,60.2,104.9$, 116.1, 120.9, 123.4, 125.7, 128.4, 130.4, 134.6, 134.9, 147.9, 168.9; HRMS (ESI+, $m / z$ ):
calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}\right)^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$252.0995; found: 252.0989; Analysis: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 73.34 ; \mathrm{H}, 6.59 ; \mathrm{N}, 6.11$; found: $\mathrm{C}, 73.26 ; \mathrm{H}, 6.52 ; \mathrm{N}, 6.01 \%$.

## Ethyl 1-amino-6-fluoronaphthalene-2-carboxylate (7g)

Yield: $88 \%$; gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\max } 767,1249,1604,1673,2987,3347,3447 ;{ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=2.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 14.5,62.3,104.1,111.9,114.9,120.0,124.3,128.1,138.1$, 148.8, 161.1, 163.6, 168.7; HRMS (ESI+, $m / z$ ): calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FNO}_{2}\right)^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$ 256.0744; found: 256.0730; Analysis: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FNO}_{2}$ requires $\mathrm{C}, 66.94 ; \mathrm{H}, 5.19 ; \mathrm{N}, 6.01$; found: C, 67.03; H, 5.13; N, 5.89\%.

## Ethyl 1-amino-6-nitronaphthalene-2-carboxylate (7h)

Yield: $91 \%$; Red solid; mp: $176-177^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 1243,1345,1602,1674$, 3352, 3446; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.41(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=2.26 \mathrm{~Hz}$, $1 \mathrm{H}), 8.20(\mathrm{~d}, J=2.26,1 \mathrm{H}), 8.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 14.4, 60.7, 107.1, 116.8, 118.2, 123.4, 124.4, 125.6, 129.0, 135.6, 147.0, 148.2, 168.2; HRMS (ESI+, $m / z$ ): calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)^{+}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$283.0689; found: 283.0682; Analysis: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 60.00 ; \mathrm{H}, 4.65 ; \mathrm{N}, 10.76$; found: $\mathrm{C}, 59.95 ; \mathrm{H}, 4.51$; N , 10.65\%.

## Ethyl 5-aminonaphtho[2,3-d][1,3]dioxole-6-carboxylate (7i)

Yield: $82 \%$; gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 1243,1345,1602,1674,3352,3446 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50$
$\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 14.4,60.0,98.7,101.3,104.5,104.9,115.6,119.0,125.5,134.0,147.4$, 147.8, 149.2, 168.8; Analysis: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 64.86 ; \mathrm{H}, 5.05$; $\mathrm{N}, 5.40$; found: C , 64.79; H, 5.12; N, 5.46\%.
(E)-Ethyl 4-(2-cyano-4,5-dimethoxyphenyl)but-3-enoate (14)

Yield: $67 \%$; gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 780,884,1028,1243,1345,1545,1626,1720$, 2226, 2980, 3010; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.31(\mathrm{t}, J=7.0,3 \mathrm{H}), 3.31(\mathrm{dd}, J=1.26$, $6.95 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.30-6.45(\mathrm{~m}, 1 \mathrm{H}), 6.78$ $(\mathrm{d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$; Analysis: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires C, 65.44; H, 6.22; N, 5.09; found: C, 65.36; H, 6.16; N, 4.98 \%.

## Section II:

## CuCN-Mediated "One-pot" Synthesis of 3-Substituted Phthalides

### 4.2.1 Introduction

Phthalide (1(3H)-isobenzofuranone) frameworks (Fig. 5) are not only present in a large number of natural products and biologically active compounds, ${ }^{10}$ but also are useful intermediates for the synthesis of tri- and tetracyclic natural products. ${ }^{11}$ Thus, significant efforts have been focused on synthesizing phthalides in the past few decades. ${ }^{12}$ The ability of a single reagent to promote a desired cascade of reaction events in a single reaction flask with high yields represents an efficient strategy for assembling complex synthetic targets, such as phthalides. ${ }^{13}$ However, the development of a simple and efficient method to access 3-substituted phthalides still remains a highly desirable goal in synthetic chemistry.

Fig. 5: Some of the examples of chiral phthalides

### 4.2.2 Review of literature

Literature search revealed that there are two reports available for the synthesis of 3substituted phthalide derivatives from 2-bromobenzyl alcohol derivatives, which are described below.

## Trost's approach (2007) ${ }^{14}$

Trost et al. have described the synthesis of phthalide fragment as part of their spirolaxine methyl ether synthesis. Thus, bromo alcohol 19 is treated with $n \mathrm{BuLi}$ (2.2 equiv) at -78 ${ }^{\circ} \mathrm{C}$ for one min, then rapidly flushing the reaction with $\mathrm{CO}_{2}$ gas to trap the aryl lithium species to provide phthalide 20 in 90\% yield (Scheme 7).

Scheme 7: (i) $n B u L i, T H F,-78{ }^{\circ} \mathrm{C}$ then $\mathrm{CO}_{2}, \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}, 90 \%$.
Brimble's approach (2005) ${ }^{15,16}$
Brimbles et al. have reported the synthesis of phthalide 23 in two steps starting from bromo alcohol 21, which was converted to diethyl carbamate 22. This on with subsequent lithium-halogen exchange followed by intramolecular acylation and lactonization provided phthalide 23 in 76\% yield (Scheme 8).

Scheme 8: (i) $\mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ then $\mathrm{N}, \mathrm{N}$-diethylcarbamoylchloride, $82 \%$; (ii) $t$-BuLi, THF, $-7{ }^{\circ} \mathrm{C}$, 45 min then PTSA, $20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 76 \%$.

In another approach, same authors have described the synthesis of phthalide fragment as as part of their herbaric acid synthesis. Thus, bromo alcohol 24 was treated with 1,10 carbonyldiimidazole and diethylamine to furnish carbamate 25 in $90 \%$ yield, which upon
treatment with $n$-BuLi led to intramolecular acylation and subsequent acid-mediated lactonization to deliver vinylphthalide 26 in 74\% yield (Scheme 9).

Scheme 9: (i) Carbonyl diimidazole, $\mathrm{HNEt}_{2}$, 90\%; (ii) (a) n-BuLi, THF (b) HCl, dioxane, 74\% (2 steps).

### 4.2.3 Present Work

### 4.2.3.1 Objective

As can be seen from the above discussion, the reported methods for the synthesis of 3substituted phthalides employ either lithiation followed by carboxylation or carbamate formation followed by lithiation. This limits the broad substrate scope and higher reaction stereoselectivity. The great challenges are remaining since the cyano group is inert to the insertion of metal species in comparison with $\mathrm{C}=\mathrm{O}$, partly due to its low polarity. ${ }^{17}$ Moreover, the aromatic nitriles may also have good affinity to transition-metals, resulting in the deactivation of the catalyst. ${ }^{18}$ In this context, a more practical and efficient synthesis of functionalized 3-substituted phthalide derivatives is highly desirable using less number of reagents via CN activation. In this section, we present a CuCN- mediated single-step cyclization of 2-bromo benzyl alcohol derivatives that afford 3-substituted phthalides in high yields via in situ formation of nitriles.

### 4.2.4 Results and Discussion

In continuation of our interest on development of new methodologies for the synthesis of bioactive intermediates, we were interested to carry out a "one-pot" cost-effective
procedure for the synthesis of 3-substituted phthalides 28a-m from the corresponding obromobenzylalcohol derivatives 27a-m. When, o-bromobenzylalcohol 27c, readily derived from 2-bromo-3,5-dimethoxybenzaldehyde via Barbier allylation, was subjected to Rosenmund-von Braun reaction in the presence of CuCN (3 equiv) in DMF under reflux condition, the corresponding phthalide 28c was formed in $86 \%$ yield (Scheme 10).

Scheme 10: (i) CuCN (3.0 equiv.), DMF, $150{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 86 \%$.

Encouraged by the result, we became interested in the scope of the reaction by subjecting other o-bromobenzyl alcohols 27a-m. 2-Bromobenzyl alcohols 27a-m were prepared in one step, starting from the corresponding o-bromoaldehydes via Barbier allylation or Grignard reaction using allylbromide or alkyl halides in 79-88\% yield (see experimental section). When subjected to CuCN- mediated "one-pot" cyclization with CuCN (3 equiv) in DMF at $150{ }^{\circ} \mathrm{C}$, o-bromobenzyl alcohols 27a-m gave the corresponding phthalide derivatives 28a-m in 82-88\% yields. Results of such studies are presented in Table 2. As can be seen, in every case, the reaction proceeded smoothly within $10-12 \mathrm{~h}$ giving the desired phthalides 28a-m in excellent yields. For instance, substrates having halogen (entry g), highly electron-rich groups (entry d) and different alkyl groups at $\mathrm{R}_{4}$ (entries im ) underwent this cyclization smoothly affording the corresponding phthalides 28a-m in excellent yields.

Table 2: CuCN-Mediated One-pot Synthesis of 3-Substituted Phthalides

| Entry | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | $\mathrm{R}^{4}$ | Yield (\%) $^{\mathrm{a}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | H | H | H | H | 88 |
| b | OMe | H | H | H | 86 |
| c | OMe | H | OMe | H | 86 |
| d | OMe | OMe | OMe | H | 85 |
| e | OTs | OMe | H | H | 88 |
| f | OBn | OMe | H | H | 82 |
| g | F | H | H | H | 88 |
| h |  | $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-$ | H | H | 84 |
| i | H | H | H | $\mathrm{Me}^{2}$ | 88 |
| j | H | H | H | $n-\mathrm{C}_{2} \mathrm{H}_{5}$ | 88 |
| k | H | H | H | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | 86 |
| l | H | H | H | $n-\mathrm{C}_{4} \mathrm{H}_{9}$ | 85 |
| m | H | H | H | $n-\mathrm{C}_{7} \mathrm{H}_{15}$ | 86 |

[^4]The formation of phthalide derivatives 28a-m was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and IR spectroscopy. Example 1: The formation of allylphthalide 28c was confirmed by the presence of a triplet at $\delta 5.32(J=5.8 \mathrm{~Hz})$ integrating for one proton (-CH-O-CO-) and also multiplets at $\delta 5.13,5.20$ and 5.77 integrating for one proton each, which corresponds to olefinic proton in its ${ }^{1} \mathrm{H}$-NMR spectrum. This is further substantiated by the signals at $\delta 78.5$ and 167.9 corresponding to carbon attached to oxygen atom and carbonyl group of lactone respectively in its ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 6). Its IR spectrum
displayed a strong stretching frequency at $1752 \mathrm{~cm}^{-1}$, indicating the presence of $\gamma$-lactone group (Fig. 6).


Fig. 6: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra of phthalide 28c

Example 2: The formation of butylphthalide 281 was confirmed by the presence of a doublet of doublet at $\delta 5.46$ integrating for one proton (-CH-O-) in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and further substantiated by the carbonyl signal at $\delta 170.0$ its ${ }^{13} \mathrm{C}$-NMR spectrum. Its IR spectrum displayed a strong absorption band at $1759 \mathrm{~cm}^{-1}$ indicating the presence of $\gamma$ lactone function (Fig. 7).


Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of phthalide 281

### 4.2.5 Conclusion

We have developed a novel one-pot tandem route for the synthesis of a wide variety of 3substituted phthalides and their structural analogues via Rosenmund-von Braun reaction.

This reaction is highly practical in the sense that the products were obtained in excellent yields. It also shows broad substrate scope and good functional group tolerance. We believe that this intramolecular cyclization strategy should find wide applications in the total synthesis of bioactive phthalide frameworks.

### 4.2.6 Experimental Section

General experimental procedure for the preparation of allyl alcohols (27a-m)
To a pre-cooled ( $0{ }^{\circ} \mathrm{C}$ ), well stirred mixture of 2-bromo aldehydes ( 1 mmol ), Zn dust (2 mmol ) and allyl bromide ( 1.8 mmol ) in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. The mixture was stirred for 10 h at ambient temperature until the aldehyde was totally consumed (monitored by TLC). The mixture was filtered and the precipitate was washed thoroughly with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The organic layer is then washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude product which on chromatographic separation with petroleum ether/EtOAc ( $7: 3 \mathrm{v} / \mathrm{v}$ ) gave 3substituted phthalides 27a-m in pure form.

## 1-(2-Bromophenyl)but-3-en-1-ol (27a)

Yield: $88 \%$, colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 792,865,985,1015,1134,1323,1386$, 1432, 1476, 1565, 2934, 3425; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.14$ (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.25-2.41 (m, 1H), 2.63-2.70 (m, 1H), 5.05-5.14 (m, 2H), 5.22-5.25(m, 1H), 5.77-5.98(m, $1 \mathrm{H})$, 7.07-7.16 (m, 1H), 7.28-7.36 (m, 1H), 7.48-7.57 (m, 2H); ${ }^{13}$ C-NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 42.0,71.7,118.5,121.7,127.3,127.6,128.7,132.5,134.2,142.7$; Analysis: $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{1}$ requires C, 52.89; H, 4.88 Found: C, 52.76 ; H, 4.72\%.

## 1-(2-Bromo-5-methoxyphenyl)but-3-en-1-ol (27b)

Yield: $80 \%$, colorless oil; $\operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 680,858,976,1025,1148,1350,1386$, 1472, 1488, 1575, 2928, 3414; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta$ 2.37-2.39 (m, 2H), 2.62-
$2.68(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 5.04-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.84-5.97(\mathrm{~m}, 1 \mathrm{H}), 7.71$ (dd, $J=3.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.14 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) .7 .27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 42.0,55.5,71.9,112.0,114.9,118.5,133.2,134.3,143.9,145.1$, 159.2; Analysis: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}$ requires C, 51.38; H, 5.10 Found: C, 51.29; H, 5.01\%.

## 1-(2-Bromo-3,5-dimethoxyphenyl)but-3-en-1-ol (27c)

Yield: 82\%, yellow oil; IR ( $\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$ ): $v_{\text {max }} 723,798,846,9751056,1345,1392$, 1476, 1492, 1568, 2945, 3014, 3398; ${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.14$ (br s, 1H), 2.22-2.37(m, 1H), 2.57-2.70(m, 1H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 5.09-5.24(\mathrm{~m}, 3 \mathrm{H}), 5.22$ 5.79-6.0 (m, 1H), $6.39(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 41.7,55.3,56.0,71.9,102.8,108.1,134.4,144.9,156.0,159.7$; Analysis: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{3}$ requires C, 50.19; H, 5.27 Found: C, 50.12 ; H, $5.20 \%$.

## 1-(2-Bromo-3,4,5-trimethoxyphenyl)but-3-en-1-ol (27d)

Yield: $79 \%$, gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 1009,1105,1162,1195,1324,1394,1426$, 1481, 1569, 2938, 3435; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.17(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-$ $2.35(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 5.02-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.18$ (s 1H), 5.21-5.27 (m, 1H), 5.79-6.00 (m, 1H), $6.95(\mathrm{~s}, 1 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 42.2,56.1,61.0,61.1,71.8,105.8,107.8,118.9,134.5,138.5,142.1,150.4,153.0 ;$

Analysis: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{4}$ requires C, 59.23; H, 5.40 Found: C, 59.13 ; H, $5.29 \%$.
4-Bromo-5-(1-hydroxybut-3-enyl)-2-methoxyphenyl-4-methylbenzenesulfonate (27e)
Yield: $84 \%$, yellow oil; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 790,826,888,986,1185,1278,1384$, 1436, 1545, 2927, 3419; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.16-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$, 2.57-2.68(m, 1H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 4.95-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.17(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.24(\mathrm{~m}$, 1H), 5.76-5.97 (m, 1H), 7.09 (s, 1H), 7.29-7.33 (m, 3H), 7.77 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$ );

Analysis: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrO}_{5} \mathrm{~S}$ requires C, 50. 59; H, 4.48; S, 7.50 Found: C, 50. 43; H, 4.40; S, 7.42\%.

1-(2-Bromo-4-methoxy-5-phenoxyphenyl)but-3-en-1-ol (27f)
Yield: $86 \%$, yellow oil; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 694,756,852,894,974,1085,1124$, 1267, 1358, 1457, 1542, 2934, 3032, 3424, ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 2.09$ (brs, $1 \mathrm{H}), 2.22-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.96-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H})$, 5.12-5.14 (m, 1H), 5.18-5.23 (m, 1H), 5.77-5.98 (m, 1H), $7.00(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.34-$ 7.45 (m, 5H); ${ }^{13}$ C-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 42.4,56.2,71.2 .9,71.7,110.3,111.2$, 118.5, 127.4, 128.0, 128.6, 134.4, 135.5, 136.4, 147.8,149.4; Analysis: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{3}$ requires C, 58.47; H, 4.91 Found: C, 58.36; H, 4.82\%.

## 1-(2-Bromo-5-fluorophenyl)but-3-en-1-ol (27g)

Yield: $82 \%$, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 774,826,878,989,1167,1265,1376,1435$, 1564, 2985, 3420; ${ }^{\mathbf{1}} \mathbf{H}$-NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.20$ (br s, 1 H ), 2.25-2.36 (m, 1H), 2.58-2.71 (m, 1H), 4.99-5.05 (m, 1H), 5.16-5.18 (m, 1H), 5.23-5.27 (m, 1H), 5.77-5.97 (m, 1H), 6.81-6.91 (m, 1H), $7.30(\mathrm{dd}, J=4.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=4,4.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 41.9,71.6,114.6(\mathrm{~d}, \mathrm{~J}=26 \mathrm{~Hz}$ ), 115.3, $115.8(\mathrm{~d}, \mathrm{~J}=26$ $\mathrm{Hz})$, 119.1, 133.7, 133.8, 145.9, 162.8 (d, $J=250 \mathrm{~Hz}$ ); Analysis: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrFO}$ requires C, 49.01; H, 4.11 Found: C, 48.96; H, 4.01\%.

## 1-(6-Bromobenzo[d][1,3]dioxol-5-yl)but-3-en-1-ol (27h)

Yield: $85 \%$, gum; $\operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 678,760,874,899,965,1084,1167,1278$, 1339, 1465, 1564, 2928, 3016, 3418; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.22-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.49-2.61 (m, 1H), 5.01-5.06 (m, 1H), 5.12-5.15 (m, 1H), 5.75-5.87 (m, 1H), 5.96(s, 2H), $6.95(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 42.2,71.7,101.6,107.2,111.8$,
118.5, 134.2, 136.2, 147.5; Analysis: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{3}$ requires C, 48.73; H, 4.09 Found: C, 48.62; H, 4.01\%.

1-(2-Bromophenyl)ethanol (27i)
Yield: $82 \%$, yellow oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 775,798,874,974,1072,1189,1458$, 2916, 3025, 3424; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.40(\mathrm{~d}, J=6.79 \mathrm{~Hz}, 3 \mathrm{H}), 3.19(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.16(\mathrm{q}, ~ J=6.04,6.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.54(\mathrm{~m}$, 2H); ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 23.5,68.9,121.5,126.6,127.7,128.5,132.4,144.5$;

Analysis: $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}$ requires C, 47.79; H, 4.51 Found: C, 47.69; H, 4.43\%.

## 1-(2-Bromophenyl)-1-propanol (27j)

Yield: $84 \%$, colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 741,894,1020,1466,2967,3385 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.0(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-1.59(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.35-7.52 (m, 2H), 5.0 (dd, $J=4.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dt}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (t, $J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}) 7.42-7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.1,30.5,74.2,122.1$, 127.3, 127.6, 128.7, 132.6, 143.5; Analysis: $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}$ requires C, 50.26 ; H, 5.15 Found: C, 50.36; H, 5.09\%.

## 1-(2-Bromophenyl)butan-1-ol (27k)

Yield: 79\%, colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 723,876,1054,1485,2956,3012$, 3340; ${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.9(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.94-$ 2.0 (m, 2H), 2.07 (br s, 1H), 7.35-7.52 (m, 2H), 5.0 (dd, $J=4.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dt, $J=$ 1.5, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.29(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 10.1,30.5,74.2,122.1,127.3,127.6,128.7,132.6,143.5$; Analysis: $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrO}$ requires C, 52.42; H, 5.72 Found: C, 50.36; H, $5.12 \%$.

1-(2-Bromophenyl)pentan-1-ol (27l)

Yield: $79 \%$, light yellow oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\text {max }} 698,834,1037,1123,1468,2918$, 3018, 3323; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~m}, 3 \mathrm{H}), 1.51$ (m, 1H), $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (td, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.34(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.55 (dd, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,22.7,28.2,37.6$, 73.1, 122.2, 127.5, 128.9, 132.8, 144.1; Analysis: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}$ requires C, 54.34; H, 6.22 Found: C, 54.26; H, 6.16\%.

## 1-(2-Bromophenyl)octan-1-ol (27m)

Yield: $84 \%$, yellow oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\text {max }} 686,785,876,1056,1278,1443,2927$, 3025, 3345; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 0.84-0.90(\mathrm{~m}, 3 \mathrm{H}), 1.24-1.34(\mathrm{~m}, 10 \mathrm{H}), 1.62-$ $1.78(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 1 \mathrm{H}), 5.01-5.08(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}$, 1H), 7.47-7.56 (m, 2H); ${ }^{13}$ C-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 14.1,22.6,25.7,29.2,29.4,31.8$, 37.7, 72.6, 121.8, 127.3, 127.4, 128.3, 132.3, 144.1; Analysis: $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BrO}$ requires C, 58.95; H, 7.42 Found: C, 58.88; H, 7.36\%.

General experimental procedure for the preparation of 3 -substituted phthalides (28a-m)

Bromo alcohols 27a-m (1 mmol) were taken in dry DMF ( 10 mL ) and CuCN ( 3 mmol ) was added to it and the entire solution refluxed under $\mathrm{N}_{2}$ for 12 h (monitored by TLC). The reaction mixture was then cooled to $25{ }^{\circ} \mathrm{C}$, and diluted with water ( 30 mL ) and EtOAc (25 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 20 mL ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude products, which were purified by column chromatography [silica gel (230-400 mesh) and
petroleum ether: EtOAc (7:3) as an eluent] to give 3-substituted phthalide derivatives 28a-m in 82-88\% yield.

## 3-Allylisobenzofuran-1-one (28a)

Yield: 88\%, yellow oil; $\operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\text {max }} 739,999,1060,1282,1460,1597,1616$, 1764, 2982, 3058; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 2.60-2.81(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.24(\mathrm{~m}, 2 \mathrm{H})$, $5.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.65-5.86(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.87-$ 7.91 (m, 1H); ${ }^{13}$ C-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 38.8, 80.3, 119.8, 122.1, 125.8, 126.4, 129.3, 131.3, 134.1, 149.5, 170.4; ESI-MS: m/z $197.0491[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}$ requires C, 75.84; H, 5.79 Found: C, 75.72; H, 5.68.

3-Allyl-5-methoxyisobenzofuran-1-one (28b)
Yield: $86 \%$, yellow oil; $\operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 785,835,886,1064,1282,1340,1562$, 1645, 1759, 2968, 3032; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.55-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, 5.12-5.16 (m, 1H), 5.17-5.25 (m, 1H), $5.41(\mathrm{t}, \mathrm{J}=5.92 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.88(\mathrm{~m}, 1 \mathrm{H}), 6.86-$ $6.88(\mathrm{~m}, 1 \mathrm{H}), 6.99-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.81(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 38.8,55.7,79.4,106.1,116.3,118.7,127.2,131.3,152.0,164.5,169.8$; ESIMS: m/z $227.0614[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C, 70.57; H, 5.92. Found: C, 70.50; H, 5.84\%.

## 3-Allyl-5,7-dimethoxyisobenzofuran-1-one (28c)

Yield: $86 \%$, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 684,740,835,890,1027,1255,1266,1335$, 1474, 1508, 1752, 2922, 3015; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.53-2.75$ (m, 2H), 3.89 (s, 3H), 3.95 (s, 3H), 5.12-5.17 (m, 1H), 5.16-5.22 (m, 1H), 5.31 (t, J = 5.8 Hz, 1H), 5.61$5.85(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 38.4,55.7,78.6,98.5$,
106.5, 119.0, 131.2, 154.1, 159.3, 166.5, 167.9; Analysis: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C, 66.66; H , 6.02. Found: C, 66.58; H, 5.96\%.

## 3-Allyl-4,5,6-trimethoxyisobenzofuran-1-one (28d)

Yield: 85\%, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 686,788,852,1028,1278,1345,1566,1634$, 1758, 2928, 3025; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.54-2.69(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.93$ (s, 3H), 4.13 (s, 3H), 5.13-5.24 (m, 2H), $5.30(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.89(\mathrm{~m}, 1 \mathrm{H}), 6.60$ (s, 1H); ${ }^{13}$ C-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 38.9, 56.3, 61.2, 62.2, 78.7, 99.3, 110.7, 119.4, 131.4, 141.8, 147.1, 152.3, 159.4, 167.5; Analysis: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$ requires $\mathrm{C}, 63.63$; H , 6.10Found: C, 63.52.76; H, 6.01\%.

1-Allyl-1,3-dihydro-5-methoxy-3-oxoisobenzofuran-6-yl4-methylbenzenesulfonate (28e)

Yield: $78 \%$, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 764,835,873,925,1038,1136,1265,1340$, 1565, 1628, 1758, 2948, 3016; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 2.47$ (s, 3H), 2.61-2.72 (m, 2H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.21-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.87$ (m, 1H), 6.88 (s, 1H), 7.34 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.47 (s, 1H), 7.77 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ); ${ }^{13} \mathbf{C}-$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 21.6,38.4,56.2,79.4,105.2,118.1,119.7,120.3,128.3$, 129.6, 131.0, 132.8, 139.6, 145.5, 149.8, 157.2, 168.8; Analysis: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}$ requires C, 60.95; H, 4.85; S, 8.56 Found: C, 60.83; H, 4.76; S, 8.42\%.

## 3-Allyl-6-methoxy-5-phenoxyisobenzofuran-1-one (28f)

Yield: $82 \%$, yellow oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 690,785,824,855,982,1023,1109$, 1268, 1348, 1538, 1628, 1756, 2928, 3045; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 2.54-2.69$ (m, 2H), 3.86 (s, 3H), 3.93 (s, 3H), 4.13 ( $\mathrm{s}, 3 \mathrm{H}), 5.13-5.24(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.68-5.89 (m, 1H), $6.60(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 38.9,56.3,61.2,62.2$,
78.7, 99.3, 110.7, 119.4, 131.4, 141.8, 147.1, 152.3, 159.4, 167.5; Analysis: $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, 72.96; H, 5.44 Found: C, 72.83; H, 5.36\%.

## 3-Allyl-5-fluoroisobenzofuran-1(3H)-one (28g)

Yield: 88\%, yellow oil; IR ( $\left.\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 665,774,836,992,1034,1128,1269$, 1568, 1628, 1762, 2980, 3014; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.62-2.78(\mathrm{~m}, 2 \mathrm{H})$, 5.15(brs, 1H), 5.21-5.25 (m, 1H), $5.48(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.65-5.86(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.28$ (m, 2H), 7.89 (dd, $J=4.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 38.2,79.2,109.3$ $(\mathrm{d}, J=25 \mathrm{~Hz}), 117.2(\mathrm{~d}, J=25 \mathrm{~Hz}), 119.8,122.2,127.7(\mathrm{~d}, J=11 \mathrm{~Hz}), 130.6,151.9$, 165.2 (d, $J=251 \mathrm{~Hz}$ ) ; Analysis: $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FO}_{2}$ requires C, 68.74; H, 4.72 Found: C, 68.63; H, 4.66\%.

## 7-Allylisobenzofuro[5,6-d][1,3]dioxol-5(7H)-one (28h)

Yield: 84\%, gum; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 742,785,839,1056,1278,1578,1629,1762$, 2935, 3035; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 2.59-2.68(\mathrm{~m}, 2 \mathrm{H}), 5.11-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.17-$ 5.22(m, 1H), $5.35(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}$ ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 38.7,79.3,102.5,104.3,120.0,131.1,145.8,149.2,153.4,169.5$;

Analysis: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C, 66.05; H, 4.62 Found: C, 65.92 ; H, 4.51\%.
3-Methyl-3H-isobenzofuran-1-one (28i)
Yield: 88\%, colorless oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\text {max }} 739,755,967,1060,1282,1460,1597$, 1597, 1615, 1759, 2932, 2982; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.65(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $5.58(\mathrm{q}, ~ J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.73(\mathrm{~m}$, 1H), 7.89 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 20.3,77.7,121.5,125.6$, 125.7, 129.0, 134.0, 151.1, 170.4; ESI-MS: m/z $171.039[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$ requires C, 72.96; H, 5.44 Found: C, 72.83; H, 5.36\%.

## 3-Ethyl-3H-isobenzofuran-1-one (28j)

Yield: 88\%, yellow oil; IR ( $\left.\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\text {max }} 737,754,965,1062,1285,1460,1761$, 2880, 2940, 2970; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.88(\mathrm{~m}$, $1 \mathrm{H}), 2.09-2.18(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=5.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.7,27.5,82.2,121.7,125.4,126.1,128.9,133.9,149.6,170.6$; Analysis: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$ requires C, 74.06; H, 6.21 Found: C, 73.98; H, $6.16 \%$.

## 3-Propyl-3H-isobenzofuran-1-one (28k):

Yield: $86 \%$, yellow oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 678,764,828,988,1078,1125,1275$, 1562, 1628, 1765, 2935, 3060; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.9(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.56-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 13.9,18.4,34.0,81.4,121.9,125.9,126.3$, 129.2, 133.1, 150.3, 170.8; Analysis: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$ requires C, 74.98 ; $\mathrm{H}, 6.86$ Found: C, 74.89; H, 6.75\%.

## 3-Butylisobenzofuran-1(3H)-one (281)

Yield: 92\%, yellow oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max } 679,753,888,935,1068,1145,1276$, 1320, 1545, 1615, 1773, 2928, 3033; ${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.87-0.94$ (m, 3H), $1.26-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.12(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.48(\mathrm{dd}, \mathrm{J}=4,8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.50 (m, 2H), 7.61-7.69 (m, 1H), $7.88(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 13.5,22.1,26.5,34.1,80.9,121.1,125.8,128.6,133.6,149.7,170.0 ;$ ESI-MS: m/z 213.0813 $[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 75.76; H, 7.42. Found: C, 75.70; H, 7.34\%.

## 3-Heptylisobenzofuran-1(3H)-one (28m)

Yield: $86 \%$, yellow oil; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ : $v_{\max }$ 694, 767, 828, 1056, 932, 1130, 1275, 1534, 1625, 1768, 2938, 3018; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 0.83-0.90(\mathrm{~m}, 3 \mathrm{H}), 1.26-$ $1.38(\mathrm{~m}, 10 \mathrm{H}), 1.73-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.09(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.48(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.54(\mathrm{~m}$, 2H), 7.61-7.69 (m, 1H), 7.88 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13}$ C-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 13.9$, $22.4,24.7,28.9,31.5,34.6,81.1,121.6,125.4,126.0,128.8,133.7,149.9,170.2 ;$

Analysis: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$ requires C, 77.55 ; H, 8.68. Found: C, $77.48 ; \mathrm{H}, 8.59 \%$.

## Section III:

## Enantioselective Synthesis of Colletotrialide

### 4.3.1 Introduction

Endophytic fungi are a rich source of bioactive compounds. ${ }^{19}$ A particular endophytic fungi can produce pharmaceutically important substances; for example, paclitaxel (Taxol), ${ }^{20}$ podophyllotoxin, ${ }^{21}$ camptothecin, ${ }^{22}$ and hypericin. ${ }^{23}$ Recently Kittakoop et al have isolated and identified a new phthalide namely colletotrialide (29) from the endophytic fungus Colletotrichum sp. CRI535-02, which exihibited cytotoxic, radical scavenging, and antioxidant activities. ${ }^{24}$

Fig. 9: Structure of colletotrialide (29)

### 4.3.2 Review of Literature

Literature search revealed that there is no report available for the synthesis of colletotrialide (29).

### 4.3.3 Present Work

### 4.3.3.1 Objective

In section II of this Chapter, we have described an elegant method for the synthesis of 3substituted phthalide derivatives 28a-m. In continuation of the work on CuCN-promoted
one-pot cyclization of o-bromobenzyl alcohol derivatives 27a-m, we describe a short and first synthesis of colletotrialide (29) in this section.

Retrosynthetic analysis for colletotrialide (29) is outlined in Fig. 10. Evidently, obromoketone 30, the key intermediate, can be visualized to obtain from the corresponding bromoaldehyde 31. The alcohol 32 can be prepared from homoallylic alcohol 33 via hydroboration and oxidation. The key chiral inducing step in the synthesis involves the asymmetric Brown allylation of commercially available 3,4,5-trimethoxybenzaldehyde (34).

Fig. 10: Retrosynthetic analysis of colletotrialide (29)

### 4.3.4 Results and Discussion

The complete synthetic sequence for colletotrialide methyl ether (29), wherein CuCNmediated "one-pot" synthesis of 3-substituted phthalide and asymmetric Brown allylation reaction constitute key steps, is presented in Scheme 11.

Scheme 11: (i) (+)- $\mathrm{Ipc}_{2} \mathrm{~B}$ (allyl)borane, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $1 \mathrm{~N} \mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, 89\%, $95 \%$ ee; (ii) TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 2{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}, 96 \%$; (iii) $\mathrm{BH}_{3} . \mathrm{DMS}, \mathrm{THF}, 25$ ${ }^{\circ} \mathrm{C}$, 2 h then $1 \mathrm{~N} \mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, $84 \%$; (iv) NBS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 94 \%$; (v) IBX, DMSO, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 93 \%$; (vi) (a) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{MgI}, \mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (b) $(\mathrm{COCl})_{2}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 92 \%$; (vii) TBAF, THF, $25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 88 \%$; (viii) CuCN (3.5 equiv.), DMF, reflux, $12 \mathrm{~h}, 86 \%$; (ix) $\mathrm{AlCl}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 74 \%$.

Our synthesis of colletotrialide (29) has started with the asymmetric allylation of commercially available 3,4,5-trimethoxybenzaldehyde (34) using Brown’s protocol. Accordingly, 3,4,5-trimethoxybenzaldehyde (34) was subjected to asymmetric allylation ${ }^{25}$ with $(+)-\mathrm{Ipc}_{2} \mathrm{~B}($ allyl $)$ borane, followed by oxidation to produce homoallylic alcohol 33 in $89 \%$ yield $\left\{[\alpha]^{\mathrm{D}}{ }_{25}+35.11\left(c 1.0, \mathrm{CHCl}_{3}\right)\right.$; lit. ${ }^{26}[\alpha]^{\mathrm{D}}{ }_{25}+32.2\left(\right.$ c $\left.2.9, \mathrm{CHCl}_{3}\right)$ for $87 \% \mathrm{ee}\}$. The enantiomeric purity of $\mathbf{3 3}$ was determined as $95 \%$ by comparing its optical rotation with the reported value. ${ }^{26}$ Three multiplets shown at $\delta 5.14,5.20$ and 5.84 integrating for one proton each and a multiplet at $\delta 4.85$ integrating for one proton in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum were attributed to the olefinic and benzylic methine protons respectively. It was further substantiated by the appearance of the corresponding carbon
signals at $\delta 117.9,134.3$ and 71.8 in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (Fig. 11). Its IR spectrum displayed a characteristic strong band at $3468 \mathrm{~cm}^{-1}$ indicating the presence of -OH group.


Fig. 11: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of homo allylalcohol 33

The homoallylic alcohol 33 was protected as its TBDPS ether $\mathbf{3 5}$ (TBDPSCl and $\mathrm{Et}_{3} \mathrm{~N}$ in DMF). The regioselective hydroboration and oxidation of olefin 35 was achieved with $\mathrm{BH}_{3}$.DMS in THF to afford primary alcohol 32 in $84 \%$ yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of 32 confirmed the disappearance of olefinic function while a multiplet, and a
triplet integrating for two protons each has appeared at $\delta 1.45\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$, and 3.50 $(J=6.4 \mathrm{~Hz})\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$ in its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum corresponding to the methylene protons. This was further ascertained by the typical carbon signals at $\delta 28.0$ and 62.6 corresponding to the methylene $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$ and methylene $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$ carbons in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (Fig. 12). Its IR spectrum displayed a characteristic strong absorption band at $3375 \mathrm{~cm}^{-1}$ indicating the presence of -OH group.


Fig. 12: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of alcohol 32

Aromatic electrophilic bromination of alcohol 32 was achieved with NBS in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the brominated alcohol 36 in $94 \%$ yield. The primary alcohol function in 36 was then oxidized under IBX in DMSO to provide the corresponding precursor aldehyde 31. Further, aldehyde 31 was subjected to Grignard addition with $n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$ and Mg in $\mathrm{Et}_{2} \mathrm{O}$ which gave the corresponding secondary alcohol, which was subsequently oxidized under Swern oxidation condition $(\mathrm{COCl})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to give ketone 37 in $92 \%$ yield $\left\{[\alpha]^{\mathrm{D}}{ }_{25}+18.5\left(c\right.\right.$ 1.0, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$.



Fig. 13: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ketone (58)

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra have confirmed the disappearance of hydroxyl functionality and the other special features displayed are follows: $\delta 0.86$ (t, $J=7.5 \mathrm{~Hz}$, $3 H), 1.45-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.88-2.0(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.41(\mathrm{~m}, 2 \mathrm{H})$. The carbonyl peak of 37 has appeared at $\delta 209.9$ in its ${ }^{13} \mathrm{C}$-NMR spectrum (Fig. 13). Its IR spectrum exhibited a characteristic ketone carbonyl absorption at $1718 \mathrm{~cm}^{-1}$.

The TBDPS group in 37 was deprotected (TBAF in THF) to give alcohol $\mathbf{3 0}$ in $88 \%$ yield. Finally, alcohol 30 underwent "one-pot" tandem cyclization with CuCN (3 equiv) in DMF to afford colletotrialide methyl ether (38) in $86 \%$ yield with $\left\{[\alpha]^{\mathrm{D}}{ }_{25}+14.68\right.$ (c 1.0, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$; The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 38 displayed signals typical of its structural pattern such as $\delta 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.35-$ $2.46(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.59-2.82(\mathrm{~m}, 1 \mathrm{H})$ and $5.26-5.32(\mathrm{dd}, J=2.8,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, whereas its ${ }^{13} \mathrm{C}$-NMR spectrum showed typical peaks at $\delta 78.6$ and 209.4 for the carbons attached to oxygen atom and ketone carbonyl respectively (Fig. 14). Its IR spectrum exhibited characteristic ketone and lactone carbonyl absorptions at 1713 and $1756 \mathrm{~cm}^{-1}$ respectively.

Finally, the selective deprotection of mono methyl ether of $38\left(\mathrm{AlCl}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}\right)$ provided colletotrialide 29 in $74 \%$ yield. Its ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectral values and optical rotation were in complete agreement with the reported values. ${ }^{24}$






Fig. 14: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra of colletotrialide methyl ether (38)

### 4.3.5 Conclusion

A short and first synthetic route to colletotrialide (29) with an overall yield of $33 \%$ has been described, which includes a successful application of our methodology of CuCNmediated "one-pot" synthesis of 3-substituted phthalides. The protocol also demonstrates the asymmetric brown allylation as the key feature in the synthesis of colletotrialide 29.

### 4.3.6 Experimental Section

## (R)-1-(3,4,5-Trimethoxyphenyl)but-3-en-1-ol (33)

To a stirred solution of (+)-B-allyl diisopinocamphenyl borane ( $6 \mathrm{~g}, 18.3 \mathrm{mmol}$ ) in ether ( 35 mL ) at $-78{ }^{\circ} \mathrm{C}$ was slowly added a solution of benzaldehyde $34(3 \mathrm{~g}, 15 \mathrm{mmol})$ in ether ( 30 mL ). After 1 h of stirring at $-78^{\circ} \mathrm{C}$, the reaction mixture was quenched with methanol ( 2 mL ). The resulting mixture was then allowed to warm to room temperature and diluted with $30 \% \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$ and EtOAc ( 25 mL ). The organic layer was separated and the aqueous layer extracted with EtOAc (2 x 20 mL ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether:EtOAc (9:1) as an eluent] to afforded homoallyl alcohol $33(3.2 \mathrm{~g})$ as gum.

Yield: 89\%; $[\alpha]^{\mathrm{D}}{ }_{25}+35.11\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 756,852,892,974$, 1083, 1129, 1267, 1358, 1457, 1542, 2934, 3032, 3424; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $2.01(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) 2.41-2.52(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 4.61-4.69(\mathrm{~m}, 1 \mathrm{H})$, 5.12-5.15 (m, 1H), 5.19-5.23 (m, 1H), 5.72-5.92 (m, 1H), $6.57(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13}$ C-NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 41.9,55.8,60.7,71.6,105.6,107.5,117.9,134.3,138.6,141.7,150.0$, 152.6; Analysis: $\mathbf{C}_{\mathbf{1 3}} \mathbf{H}_{\mathbf{1 8}} \mathbf{O}_{\mathbf{4}}$ requires C, 65.53; H, 7.61 found: C, 65.42 ; $\mathrm{H}, 7.49 \%$.

## ((R)-1-(3,4,5-Trimethoxyphenyl)but-3-enyloxy)(tert-butyl)diphenylsilane (35)

To a stirred solution of alcohol $33(3.0 \mathrm{~g}, 12.6 \mathrm{mmol})$ in DMF was added $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~g}$, 13.9 mmol ) followed by $t$-butyldiphenyl silyl chloride ( $3.8 \mathrm{~g}, 13.9 \mathrm{mmol}$ ) and the mixture stirred for 8 h at $25{ }^{\circ} \mathrm{C}$. After completion of the reaction it was diluted with water and EtOAc ( 20 mL ). The organic layer was separated and the aqueous layer extracted with EtOAc (2 x 20 mL ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether:EtOAc (9:1) as an eluent] that afforded silyl ether $35(5.7 \mathrm{~g})$ as colourless liquid. Yield: $96 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+24.06\left(c\right.$ 2, $\left.\mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 826,888,986,1168$, 1274, 1384, 1436, 1545, 2927, 3034; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.06$ (s, 9H), 2.38$2.53(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.96(\mathrm{~m}, 2 \mathrm{H}), 5.52-$ $5.73(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 2 \mathrm{H}), 7.18-5.22(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 19.3,26.8,41.8,55.8,60.7,60.8,75.5,103.8,107.5,117.8$, $127.1,127.3,128.9,129.4,133.9,134.2,135.6,136.8,139.5,141.5,150.2,152.5 ;$ Analysis: $\mathbf{C}_{29} \mathbf{H}_{36} \mathbf{O}_{4} \mathbf{S i}$ requires C, 73.07; H, 7.61 found: C, 72.93; H, 7.52\%.

## (R)-4-(tert-Butyldiphenylsilyloxy)-4-(3,4,5-trimethoxyphenyl)butan-1-ol (32)

To a stirred solution of homoallyl alcohol 35 ( $4.5 \mathrm{~g}, 9.4 \mathrm{mmol}$ ) in THF at $0^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3} . \mathrm{SMe}_{2}$ ( $5.8 \mathrm{~mL}, 4.5 \mathrm{mmol}$ ) and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 2 h . After dilution with THF/MeOH (14 mL, 1:1) and addition of 3 M solution of NaOH (4 $\mathrm{mL})$ and an aq. solution $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(4 \mathrm{~mL})$, the reaction was stirred for 1 h and quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$. The reaction mixture was then cooled to 0 ${ }^{\circ} \mathrm{C}$, diluted with sat. $\mathrm{NaHCO}_{3}(35 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(35 \mathrm{~mL})$. The organic layer was
separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product, which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether:EtOAc (7:3) as an eluent] that afforded alcohol $32(3.94 \mathrm{~g})$ as gum.

Yield: $84 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+58.5\left(c 0.48, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 689,765,834,1075$, 1178, 1254, 1365,1480, 1529, 3015, 3416; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.06(\mathrm{~s}, 9 \mathrm{H})$, 1.37-1.52 (m, 2H), 1.67-1.85 (m, 2H), 3.50 (t, J = $6.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.73 (s, 6H), 3.80 (s, 3H), $4.63(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 2 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.62-7.66$ (m, 2H); ${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 19.3,26.9,28.0,36.1,55.7,60.5,62.6,75.7$, 103.1, 127.2, 127.4, 129.3, 129.5, 133.5, 133.9, 135.7, 136.6, 139.9, 152.6; Analysis: $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 70.41 ; \mathrm{H}, 7.74$ found: $\mathrm{C}, 70.53 ; \mathrm{H}, 7.63 \%$.
(R)-4-(2-Bromo-3,4,5-trimethoxyphenyl)-4-(tert-butyldiphenylsilyloxy)butan-1-ol (36)

To a solution of alcohol $32(3.5 \mathrm{~g}, 7.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added NBS (1.4 g, 7.8 mmol ) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . After the reaction was complete (monitored by TLC), it was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 25 mL ), washed with water and combined organic phases were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude bromo compound, which was then purified by column chromatography over silica gel (230-400 mesh) using petroleum ether:EtOAc (7:3) to give the brominated alcohol 36 ( 3.8 g ) as a colorless oil.

Yield: $94 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+23.82\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 669,769,1038,1156$, 1216, 1384,1468, 1580, 3020, 3412; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.52-$
$1.62(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.79(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.8$ (s, 3H), $5.18(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.46-$ 7.51 (m, 2H), 7.59-7.64 (m, 2H); ${ }^{13}$ C-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 19.3,27.0,28.8,34.7$, 55.7, 60.6, 60.8, 62.6, 73.7, 106.9, 107.6, 127.3, 127.4, 129.4, 129.6, 133.3, 135.7, 139.1, 141.6, 149.7, 152.4; Analysis: $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{BrO}_{5} \mathrm{Si}$ requires C, 60.72 ; $\mathrm{H}, 6.50$ found: $\mathrm{C}, 60.59$; H, 6.43\%.

## (R)-4-(2-Bromo-3,4,5-trimethoxyphenyl)-4-(tert-butyldiphenylsilyloxy)butanal (31)

To a solution of alcohol $36(3.5 \mathrm{~g}, 6.1 \mathrm{mmol})$ in DMSO ( 30 mL ) was slowly added IBX $(2.05 \mathrm{~g}, 39.6 \mathrm{mmol})$. The reaction mixture was stirred for 2 h at $25^{\circ} \mathrm{C}$ followed by quenching with cold water. The reaction mixture was filtered and the filtrate then extracted with diethyl ether ( $3 \times 30 \mathrm{~mL}$ ) and the combined organic layers were washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude aldehyde which was then purified by column chromatography over silica gel using petroleum ether/EtOAc (9:1) to give aldehyde 31 (3.2 g) as colorless oil.

Yield: $93 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+22.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 768,859,1089,1124$, 1256, 1367, 1484, 1512, 1715, 2812, 2954, 3012; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.08$ (s, 9H), 1.97-2.08 (m, 2H), 2.34-2.42 (m, 2H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $5.22(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.49$ (m, 2H), 7.57-7.61 (m, 2H), $9.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.3,27.0$, 30.5, 39.1, 55.8, 60.7, 60.9, 73.1, 107.1, 107.7, 127.4, 127.6, 129.6, 129.8, 133.1, 135.7, 138.1, 141.9, 150.0, 152.5; Analysis: $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{BrO}_{5} \mathrm{Si}$ requires C, 60.94; H, 6.17; Br, 13.98 found: C, 60.82 ; H, 6.09 ; $\mathrm{Br}, 13.89 \%$.

## (R)-1-(2-Bromo-3,4,5-trimethoxyphenyl)-1-(tert-butyldiphenylsilyloxy)heptan-4-one

 (37)To a stirred suspension of magnesium ( $0.386 \mathrm{~g}, 15.9 \mathrm{mmol}$ ) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, n propyliodide ( $2.7 \mathrm{~g}, 15.9 \mathrm{mmol}$ ) was added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere over a period of 15 min and continued stirring at room temperature for a further 15 min . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and aldehyde $31(3.0 \mathrm{~g}, 5.3 \mathrm{mmol})$ dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ added over a period of 10 min . After the addition was complete, the reaction mixture was allowed to return to room temperature and the stirring continued for another 2 h . The reaction mixture was quenched by the addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate ( $3 \times 25 \mathrm{~mL}$ ). The combined organic fractions were collected and washed with water and brine solution, then dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude mixture of alcohol.

To a stirred solution of oxalyl chloride ( $0.9 \mathrm{~mL}, 9.4 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, was added a solution of dry DMSO ( $1.3 \mathrm{~mL}, 18.8 \mathrm{mmol}$ ). The reaction mixture was stirred for 20 min followed by the addition of crude alcohol solution ( $2.9 \mathrm{~g}, 4.7 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. After stirring for 1 h at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ ( $2.6 \mathrm{~mL}, 18.8 \mathrm{mmol}$ ). It was then stirred for 30 min followed by the addition of water (20 mL ). The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 20 mL ). The combined organic layer was washed with water ( $3 \times 20 \mathrm{~mL}$ ), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the corresponding ketone $37(2.7 \mathrm{~g})$ as colorless oil.

Yield: 92\%; $[\alpha]^{\mathrm{D}}{ }_{25}+18.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 680,798,844,1046$, 1128, 1298, 1323, 1475, 1538, 1718, 2936, 3024; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{t}$,
$J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.88-2.0(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.27(\mathrm{~m}, 2 \mathrm{H})$, 2.30-2.41 (m, 2H), 3.77 (s, 3H), 3.78 (s, 3H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 5.16(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (s, 1H), 7.19-7.23 (m, 2H), 7.29-7.41 (m, 4H), 7.44-7.49 (m, 2H), 7.58-7.63 (m, 2H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 13.7,17.1,19.4,27.0,32.4,38.0,44.4,55.7,60.7,60.8$, 73.3, 106.9, 107.9, 127.3, 127.5, 129.7, 133.3, 135.6, 138.8, 141.8, 149.8, 152.5, 209.9; ESI-MS: m/z $635.176[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{BrO}_{5} \mathrm{Si}$ requires C, 62.63; H, 6.73; Br, 13.02; found: C, 62.54; H, 6.66; Br, 12.93\%.

## (R)-1-(2-Bromo-3,4,5-trimethoxyphenyl)-1-hydroxyheptan-4-one (30)

To a stirred solution of TBS ether 37 ( $2 \mathrm{~g}, 3.3 \mathrm{mmol}$ ) in THF was added a solution of tetrabutylammonium fluoride (TBAF) ( $0.9 \mathrm{~g}, 1 \mathrm{M}$ in THF, 3.3 mmol ) at $0^{\circ} \mathrm{C}$ and the mixture stirred for 10 h . It was quenched by the addition of water and the organic phase was separated. The aqueous layer was extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ) and the combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using pet. ether:EtOAc (7:3) as eluent to give alcohol $\mathbf{3 0}(1.0 \mathrm{~g})$ as gum.

Yield: $88 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+38.52\left(c 1.0, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 695,764,896,1023$, 1186, 1272, 1368, 1446, 1580, 1715, 2928, 3018, 3435; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 0.93 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.59-2.67 (m, 2H), $3.20(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.97-5.04(\mathrm{~m}, 1 \mathrm{H})$, 6.95 (s, 1H); ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 13.7,17.2,31.2,39.4,44.6,55.9,60.8,72.3$, 105.8, 107.7, 139.1, 142.0, 150.3, 152.9, 212.0; Analysis: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{5}$ requires C, 51.21; H, 6.18; Br, 21.29; found: C, 51.13; H, 6.09; Br, 21.18\%.
(R)-5,6,7-Trimethoxy-3-(3-oxohexyl)isobenzofuran-1-one (38)

Bromo alcohol 30 ( $0.7 \mathrm{~g}, 1.8 \mathrm{mmol}$ ) was taken in dry DMF ( 10 mL ) and CuCN ( 3 mmol ) was added to it. The entire solution was refluxed under $\mathrm{N}_{2}$ for 12 h (monitored by TLC). The reaction mixture was then cooled to room temperature, and diluted with water (30 mL ) and EtOAc ( 25 mL ). The organic layer was separated and the aqueous layer was extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: EtOAc (7:3) as an eluent] to give phthalide $38(0.6 \mathrm{~g})$ as yellow oil.

Yield: $86 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+14.68\left(с 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\text {max }} 780,853,1016,1098$, 1198, 1254, 1344, 1483, 1600, 1713, 1756, 2937, 3020; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.65$ (m, 2H), 1.73-1.89 (m, 1H), 2.35-2.46 (m, 3H), 2.51$2.59(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 5.26-5.32(\mathrm{dd}, \mathrm{J}=2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.6,17.2,28.6,37.2,44.8,56.4,61.2,62.2$, 78.6, 99.3, 110.4, 141.8, 147.3, 152.3, 159.6, 167.5, 209.4; ESI-MS: m/z 345.1281 $[\mathrm{M}+\mathrm{Na}]^{+}$; Analysis: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$ requires C, 63.34; H, 6.88; found: C, 63.24; H, 6.79\%.

## Colletotrialide (29)

To a mixture of dry ethanethiol ( 2 mL ) and dichloromethane ( 2 mL ) was added aluminum chloride ( $0.40 \mathrm{~g}, 1.0 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. The resulting solution was warmed to room temperature and trimethoxyphthalide $38(0.322 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added with stirring. After being stirred for 1.5 h , the reaction mixture was poured into water, acidified with dilute HC1, and extracted with dichloromethane (3 x 10 mL ). The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product which was purified by column
chromatography [silica gel (230-400 mesh) and petroleum ether: EtOAc (6:4) as an eluent] to give mono deprotected phthalide $29(0.28 \mathrm{~g})$ as yellow colored oil.

Yield: $74 \% ;[\alpha]^{\mathrm{D}} 25+16.5$ (c 1.0, MeOH) $\left\{\right.$ lit. ${ }^{24}[\alpha]^{\mathrm{D}} 28+16.8$ (c 0.47, MeOH) $\}$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): v_{\max } 826,930,1007,1098,1133,1258,1316,1364,1465,1607,1711$, 1730, 2935, 3406; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.64$ (m, 2H), 1.83 (m, 1H), 2.39 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.68-$ $2.73(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 5.41(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 13.7,17.3,28.5,37.2,45.0,56.6,60.9,80.9,97.0,105.4,136.2$, 145.5, 148.9, 159.9, 171.0, 209.8; Analysis: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{6}$ requires C, 62.33; H, 6.54; found: C, 62.24; H, 6.62\%.

### 4.3.6 References

1 (a) Eich, E.; Pertz, H.; Kaloga, M.; Schulz, J.; Fesen, M. R.; Mazumder, A.; Pommier, Y. J. Med. Chem. 1996, 39, 86. (b) Ward, R. S. Nat. Prod. Rep. 1995, 12, 183. (c) Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamoto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T. J. Med. Chem. 1999, 42, 1293. (d) Tyrala, A.; Makosza, M. Synthesis 1994, 264.
2 (a) Anthony, J. E. Angew. Chem., Int. Ed., 2008, 47, 452. (b) de Koning, C. B.; Rousseau, A. L.; van Otterlo, W. A. L. Tetrahedron, 2003, 59, 7. (c) Watson, M. D.; Fechtenkotter, A.; Müllen, K. Chem. Rev., 2001, 101, 1267.
3 (a) For a review, see: Gilcgrist, T. L. In The Chemistry of Triple-Bonded Functional Groups; Patai, S., Rappoport, Z., Eds.; J. Wiley \& Sons: New York, 1983; p 383. (b) Besson, T.; Emayan, K.; Rees, C. W. J. Chem. Soc., Chem. Commun., 1995, 1419 and references therein.

4 (a) Petridou-Fischer, J.; Papadopoulos, E. P. J. Heterocycl. Chem. 1984, 21, 1333. (b) Reddy, M. S.; Rathan, C. V. Bull. Chem. Soc. Jpn. 1985, 58, 2449. (c) Zhang,W.; Koehler, K. F.; Harris, B.; Skolnik, P.; Cook, J. M. J. Med. Chem. 1994, 37, 745 and references therein. See also: (d) Saupe, T.; Kast, J.; Misslitz, U.; Hagen, H.; Nilz, G.; Pfister, J. Eur. Pat. Appl. EP 456,090; Chem. Abstr. 1992, 116, 193941c.

5 (a) Kobayashi, K.; Uneda, T.; Takada, K.; Tanaka, H.; Kitamura, T.; Morikawa, O.; Konishi, H. J. Org. Chem., 1997, 62, 664. (b) Kobayashi, K.; Takada, K.; Tanaka, H.; Uneda, T.; Kitamura, T.; Morikawa, O.; Konishi, H. Chem Lett., 1996, 25.

6 Kobayashi, K.; Tanaka, H.; Takabatake, H.; Kitamura, T.; Nakahashi, R.; Morikawa, O.; Konishi, H. Bull. Chem. Soc. Jpn., 1999, 72, 1071.
7 Koelsch, C. F.; Whitney, A. G. J. Org. Chem. 1941, 6, 795.
8 (a) Metay, E.; Leonel, E.; Sulpice-Gaillet, C.; Nedelec, J.-Y. Synthesis, 2005, 1682. (b) Suzuki, Y.; Nemoto, T.; Kakgawa, K.; Hamajima, A.; Hamada, Y. Org Lett. 2012, 14, 2350.
9 McGreer, D. E.; Chiu, N. W. K. Can. J. Chem. 1968, 46, 2225.
10 (a) Devon, T. K.; Scott, A. I. Handbook of Naturally Occurring Compounds; Academic Press: New York, 1975; Vol. 1, pp 249. (b) Knepper, K.; Ziegert, R. E.; Brase, S. T. Tetrahedron 2004, 60, 8591. and references therein.

11 (a) Patil, L.; Borate, H. B.; Ponde, D. E.; Deshpande, V. H. Tetrahedron 2002, 58, 6615. (b) Mal, D.; Pahari, P. Chem. Rev. 2007, 107, 1893.

12 (a) Witulski, B.; Zimmermann, A. Synlett 2002, 1855. (b) Ye, Z.; Lv, G.; Wang, W.; Zhang, M.; Cheng, J. Angew. Chem. Int. Ed., 2010, 49, 3671. (c) Singh, M.; Argade, N. P. J. Org. Chem. 2010, 75, 3121. (d) Lv, G.; Huang, G.; Zhang, G.; Pan, C.; Chen, F.; Cheng, J. Tetrahedron 2011, 67, 4879.
13 Gerbino, D. C.; Augner, D.; Slavov, N.; Schmalz, H.-G. Org. Lett. 2012, 14, 2338.
14 Trost B. M.; Weiss, A. H. Angew. Chem., Int. Ed. 2007, 46, 7664.
15 Robinson J. E.; Brimble, M. A. Chem. Commun., 2005, 1560.
16 Choi, P. J.; Sperry, J.; Brimble, M. A. J. Org. Chem. 2010, 75, 368.
17 Lv, G.; Huang, G.; Zhang, G.; Pan, C.; Chen, F.; Cheng, J. Tetrahedron, 2011, 67, 4879.
18 (a) Zhou, C.; Larock, R. C. J. Am. Chem. Soc., 2004, 126, 2302. (b) Zhou, C.; Larock, R. C. J. Org. Chem. 2006, 71, 3551. (c) Tian, Q.; Pletnev, A. A.; Larock, R. C. J. Org. Chem. 2003, 68, 339; (d) Pletnev, A. A.; Tian, Q.; Larock, R. C. J. Org. Chem. 2002, 67, 9276; (e) Pletnev, A. A.; Larock, R. C. Tetrahedron Lett. 2002, 43, 2133; (f) Pletnev, A. A.; Tian, Q.; Larock, R. C. J. Org. Chem. 2002, 67, 9428; (g) Larock, R. C.; Tian, Q.; Pletnev, A. A. J. Am. Chem. Soc. 1999, 121, 3238.

19 (a) Gunatilaka, A. A. L. J. Nat. Prod. 2006, 69, 509. (b) Tan, R. X.; Zou, W. X. Nat. Prod. Rep. 2001, 18, 448.

20 (a) Stierle, A.; Strobel, G.; Stierle, D.; Grothaus, P.; Bignami, G. J. Nat. Prod. 1995, 58, 1315. (b) Shrestha, K.; Strobel, G. A.; Shrivastava, S. P.; Gewali, M. B. Planta Med. 2001, 67, 374.

21 Eyberger, A. L.; Dondapati, R.; Porter, J. R. J. Nat. Prod. 2006, 69, 1121.
22 Puri, S. C.; Verma, V.; Amna, T.; Qazi, G. N.; Spiteller, M. J. Nat. Prod. 2005, 68, 1717.
23 Kusari, S.; Lamsho"ft, M.; Zu"hlke, S.; Spiteller, M. J. Nat. Prod. 2008, 71, 159.
24 Tianpanich, K.; Prachya, S.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. J. Nat. Prod. 2011, 74, 79.

25 (a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092. (b) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.
26 Oh, Y. S.; Kotani, S.; Sugiura, M.; Nakajima, M. Tetrahedron: Asymmetry 2010, 21, 1833.

## PUBLICATIONS

Asymmetric synthesis of tetrahydroquinolin-3-ols via $\mathrm{CoCl}_{2}$-catalyzed reductive cyclization of nitro cyclic sulfites with $\mathrm{NaBH}_{4}$. Jagdale A. R.; Reddy, R. S.; Sudalai, A. Org. Lett., 2009, 4, 803. \{This work has been Highlighted in Synfacts 2009, 09, 530\}

A concise enantioselective synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]propan-1-one, S-903 Jagdale A. R.; Reddy, R. S.; Sudalai, A. Tetrahedron: Asymmetry 2009, 20, 335

Co(III)(salen)-catalyzed HKR of two stereocentered alkoxy- and azido epoxides: a concise enantioselective synthesis of (S,S)-reboxetine and (+)-epi-cytoxazone. Reddy, R. S.; Chouthaiwale, P. V.; Suryavanshi, G.; Chavan, V. B.; Sudalai, A. Chem. Commun. 2010, 46, 5012. \{This work has been Highlighted in Synfacts 2010, 10, 1146\}

A Novel Synthesis and Characterization of Titanium Superoxide and its Application in Organic Oxidative Processes. Reddy, R. S.; Shaikh, T. M.; Rawat, V.; Suryavanshi, G.; Pratibha U. K.; Gajanan D.; Sudalai, A. Catal. Surv. Asia 2010, 14, 21.

A concise enantioselective synthesis of (+)-goniodiol and (+)-8-methoxygoniodiol via Cocatalyzed HKR of anti-(2SR, 3RS)-3-methoxy-3-phenyl-1,2-epoxypropane. Kiran, I. N. C.; Reddy, R. S.; Suryavanshi, G.; Sudalai, A. Tetrahedron Lett. 2011, 52, 438.

Efficient, rapid synthesis of bis(indolyl)methane using ethyl ammonium nitrate as an ionic liquid. Mulla, S. A. R.; Sudalai, A.; Pathan, M. Y.; Siddique, S. A.; Inamdar, S. M.; Chavan S. C.; Reddy, R. S. RSC Adv. 2012, 2, 3525.

CN-Assisted Oxidative Cyclization of Cyano Cinnamates and Styrene Derivatives: A Facile Entry to 3-Substituted Chiral Phthalides: Reddy, R. S.; Kiran, I. N. C.; Sudalai, A. Org. Biomol. Chem., 2012, 10, 3655.

Enantioselective synthesis of HIV protease inhibitor Amprenavir via Co-catalyzed HKR of 2-(1-azido-2-phenylethyl)oxirane. Sunitha, G.; Reddy R. S.; Sudalai, A. Tetrahedron Asymmetry, 2012, in press.

Cu-exchanged montmorillonite K10-catalyzed direct carboxylation of terminal alkynes with carbon dioxide Aher, R.D.; Gade, M. H.; Reddy, R. S.; Sudalai A. Ind. J. Chem. Sect. A, 2012 in press.

CuCN-Mediated One-pot Cascade Route to 1-Amino-2-naphthalenecarboxylic Acid Derivatives. Reddy, R. S.; Prasad, K. P.; Ahuja, B. B.; Sudalai, A. Org. Lett. (Communicated)

CuCN-Mediated one-pot Synthesis of 3-Substituted Phthalides: First Enantioselective Synthesis of Colletotrialide Reddy, R. S.; Prasad, K. P.; Kiran, I. N. C.; Sudalai, A. Communicated to J. Org. Chem. 2012.

A Consice, Novel Approach to Isocoumarins and Alkylidenephthalides Reddy, R. S.; Sudalai, A. Eur. J. Org. Chem. 2012 (manuscript under preparation).

Enantioselective synthesis of (-)-chloramphenicol and (+)-thiamphenicol. Reddy, R. S.; Kiran, I. N. C.; Sudalai, A. Tetrahedron: Asymmetry 2012 (manuscript under preparation).


[^0]:    ${ }^{\text {a }}$ Isolated yield after column chromatographic purification. ${ }^{\text {b }}$ ee determined by chiral HPLC analysis. 'ce determined by Mosher's ester analysis for entries h, i\& 1 .

[^1]:    ${ }^{\text {a }}$ Isolated yield after column chromatographic purification

[^2]:    ${ }^{a}$ Isolated yield after column chromatographic purification

[^3]:    ${ }^{a}$ Isolated yield after column chromatographic purification.

[^4]:    ${ }^{\text {a }}$ Isolated yield after column chromatographic purification.

