Enantioselective Synthesis of Bioactive Molecules via Proline Catalyzed α-Functionalization, Asymmetric Epoxidation and Synthetic Methodologies Involving Pd-Catalyzed Reductive Cyclization, Selective Hydrosilylation of Carbonyl Compounds

A THESIS
SUBMITTED TO THE UNIVERSITY OF PUNE

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
(IN CHEMISTRY) BY

Varun Rawat

UNDER THE GUIDANCE OF

Dr. A. Sudalai

Chemical Engineering and Process Development Division, National Chemical Laboratory

Pune-411008, INDIA

September 2012

DEDICATED TO

MY BELOVED PARENTS

The two greatest people I have ever known
You have been everything as parents that a son could ever want or need

Dr. A. Sudalai
Scientist
Chemical Engineering \&
Process Development Division

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "Enantioselective Synthesis of Bioactive Molecules via Proline Catalyzed a-Functionalization, Asymmetric Epoxidation and Synthetic Methodologies Involving Pd-Catalyzed Reductive Cyclization, Selective Hydrosilylation of Carbonyl Compounds" which is being submitted to the University of Pune for the award of Doctor of Philosophy in Chemistry by Mr. Varun Rawat was carried out by him under my supervision at the National Chemical Laboratory, Pune. Such material as has been obtained from other sources has been duly acknowledged in the thesis.

September 2012
Dr. A. Sudalai
Pune

DECLARATION

I hereby declare that the thesis entitled "Enantioselective Synthesis of Bioactive Molecules via Proline Catalyzed α-Functionalization, Asymmetric Epoxidation and Synthetic Methodologies Involving Pd-Catalyzed Reductive Cyclization, Selective Hydrosilylation of Carbonyl Compounds" submitted for the degree of Doctor of Philosophy in Chemistry to the University of Pune, has not been submitted by me to any other university or institution. This work was carried out at the National Chemical Laboratory, Pune, India.

September 2012
Pune

Varun Rawat
CE \& PD Division
National Chemical Laboratory
Pune - 411008 INDIA.

CONTENTS

Section I	Asymmetric synthesis of (-)-Aspinolide A
2.1.1	Introduction and Pharmacology 71
2.1.2	Review of Literature 71
2.1.3	Present Work 73
2.1.3.1	Objective 73
2.1.3.2	Results and Discussion 74
2.1.4	Conclusion 86
2.1.5	Experimental Section 86
Section II	A facile enantioselective synthesis of (S)-N-(5-Chlorothiophene-2-sulfonyl)- β, β-diethylalaniol (7.b.2) via proline catalyzed asymmetric α-aminooxylation and $\boldsymbol{\alpha}$-amination of aldehyde
2.2.1	Introduction and Pharmacology 96
2.2.2	Review of Literature 97
2.2.3.	Present Work 98
2.2.3.1	Objective 98
2.2.3.2	Results and Discussion 99
2.2.4	Conclusion 110
2.2.5	Experimental Section 110
Section III	A concise enantioselective synthesis of (+)-Decarestrictine L via proline-catalyzed sequential α-aminooxylation and Horner-Wadsworth-Emmons olefination
2.3.1	Introduction and Pharmacology 118
2.3.2	Review of Literature 118
2.3.3	Present Work 122
2.3.3.1	Objective 122
2.3.3.2	Results and Discussion 123
2.3.4	Conclusion 138
2.3.5	Experimental Section 139
2.3.6	References 150
Chapter III	A New Concise Method for the Synthesis of Chiral Tetrahydroquinolin-3-ols, (-)-Sumanirole (PNU-95666E) and 1-[(S)-3-(Dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)yl]propanone, (S)-903

Section I	Organocatalytic sequential α-aminooxylation/reductive cyclization of o-nitrohydrocinnamaldehydes: A high yield synthesis of chiral Tetrahydroquinolin-3-ols
3.1.1	Introduction 153
3.1.2	Review of Literature 154
3.1.3	Present Work 161
3.1.3.1	Objective 161
3.1.3.2	Results and Discussion 163
3.1.4	Conclusion 171
3.1.5	Experimental Section 171
Section II	Asymmetric synthesis of (-)-Sumanirole (PNU-95666E) and 1-[(S)-3-(Dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl] propanone [(S)-903]
3.2.1	Introduction and Pharmacology 179
3.2.2	Review of Literature 180
3.2.3	Present Work 185
3.2.3.1	Objective 185
3.2.3.2	Results and Discussion 185
3.2.4	Conclusion 200
3.2.5	Experimental Section 201
3.2.6	References 208
Chapter IV	Pd-catalyzed Hydrosilylation of Aryl Aldehydes and Chemoselective Reduction of aryl $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Carbonyls
Section I	Pd-catalyzed hydrosilylation of aryl aldehydes with triethylsilane
4.1.1	Introduction 211
4.1.2	Review of Literature 211
4.1.3	Present Work 217
4.1.3.1	Objective 217
4.1.3.2	Results and Discussion 218
4.1.3.3	Mechanism 227
4.1.4	Conclusion 227
4.1.5	Experimental Section 227

Section II Pd-catalyzed chemoselective reduction of aryl α, β-unsaturated

	carbonyls with triethylsilane	233
4.2 .1	Introduction	233
4.2 .2	Review of Literature	240
4.2 .3	Present Work	240
4.2 .3 .1	Objective	240
4.2 .3 .2	Results and Discussions	248
4.2 .4	Conclusion	248
4.2 .5	Experimental Section	252
4.2 .6	References	

ACKNOWLEDGEMENTS

After three degrees, at two universities, in the last ten years, I have learned one thing - I could never have done any of this, particularly the research and writing that went into this dissertation, without the support and encouragement of a lot of people. I wouldn't be doing justice by merely naming everybody who helped me but at the same time it will be too difficult for me to express my sincere thanks in the form of words, I will nonetheless try to make a sincere effort ...

First, I wish to express my heartfelt gratitude towards my research supervisor, Dr. A. Sudalai. I owe him so much. I appreciate all his contributions of time, ideas and funding to make my Ph.D. experience productive and stimulating. His discipline, principles, simplicity, caring attitude and provision of fearless work environment will be cherished in all walks of my life. I am very much grateful for his valuable guidance and everlasting encouragement throughout my course. I am certain that the ethics and moral values which I learnt from him will go a long way in making me a better human being. I could not have asked for a finer mentor. If I do take the academic path, I only hope that I can be half the advisor that he have been to me. Whatever path I do take, I will be prepared because of him.

I thank Dr. V. V. Ranade, Deputy Director and Head, CE-PD division, for his help and support. My special thanks go to Dr. B. D. Kulkarni, Dr. Anil Kumar, Dr. S. A. R. Mulla and Dr. Gurunath for their constant encouragement and moral support. It's my privilege to thank the Director, NCL for giving me this opportunity and providing all necessary infrastructure and facilities.

I've been very lucky throughout my tenure as a Ph.D research fellow, in that I've been able to concentrate mostly on my research. This is due in a large part to the gracious support of CSIR, New Delhi, in Research (JRF-SRF) funding program. I thank NMR group and CMC group for their help in obtaining the analytical data. I sincerely thank Dr. P. R. Rajmohanan for helpful NMR discussions and Dr. V. B. Chavane for his help in the HPLC analysis. Help of DIRC, chemical stores and purchase, glass blowing section and library staff members has been also acknowledged. I thank PD office staff Mr.

Bhosale, and Mr. Kakade for their cooperation. I also thank Student academic section in NCL and PG section of Pune University for their help. I specially thank Professor's. Kusurkar and M.G. Kulkarni for helpful discussions related to this work.

I thank Professor's D. S. Rawat, University of Delhi and K. R. J. Thomas, IIT-Roorkee for thier useful advices and igniting the spark of research in me.

It is hard to find a lab better well-knit as a unit than the one I was blessed with an opportunity to work in. I would like to express my thanks to my seniors, Drs. Arun, Victor, Shyla, Tanveer, Pandurang and Santosh for useful training in the initial phase of my career which made me what I am today. I have learned so much from all of them, from figuring out what research is, to choosing a research agenda, to learning how to present my work. It's my pleasure to thank all my lab mates Dayanand, Prathibha, Senthil, Chaithanya, Datta, Birju, Soumen, Anil, Aparna, Rana, Hari, Rambabu, Pragati, Pushpa, Madhuri, Sunita, Komal, Venkat and Ravi in every aspect throughout this research. Their support have been exemplary, to say the least, and I cherished their company throughout. If there was never a dull moment when I was in the lab it was due to the amazing atmosphere filled with humour \& harmony that prevailed there. I also thank Suresh Kaka for his assistance in maintaining the lab spic \& span. I would specially like to thank Soumen (Bonapart) and Anil (Don); they have been great in putting up with a lot of my gibberish and for helping me in this work.

My stay here was made livelier by GJ hostel, a hostel unique in ways more than one. It provided the perfect atmosphere to spend leisure time and I thoroughly enjoyed all the sports \& cultural activities that abounded in the hostel. It was a pleasure to share room with Satish Yadav (Sattu). I owe a big "thanks" to all my friends who made GJH such a wonderful place to stay in.

I've been fortunate to have a great group of friends: Kishor, Lokesh, Abhishek, Jay, Mandeep, Birju, Alok, Narashima, Sangram, Krunal, Asif, Krishanu, Vijay, Ravi, Prashant, Satish, Seema, Pradeep, Sakru and thank them for their support, camaraderie, entertainment, and care during all these years. This work would not have been possible without the support of my friend, Mandeep Singh. He has been always there for me, when

I need help with my research and when I need moral support. He was instrumental in helping me get past all the self-doubting that inevitably crops up in the course of a Ph.D. He is the first person I turn to in good times and in bad. For all of this, I thank him. When it comes to Asif, Alok, Krunal, Sangram and Brij I am lost for words to describe them as individuals and it should suffice to say that I am simply blessed to have them ever by my side; I've spent the best of times with them around, the care and emotional support of these people has been no less than that of my family and for all that they have done for me I don't want to thank them simply because I don't need to. This, I believe, is the key to getting through a Ph.D. program - having good friends to have fun with and complain to.

My parents, my best friends, the core of my being, Forever I am grateful to you. Being a parent must be one of the most difficult responsibilities any person could ever have. Being an outstanding parent must be an even bigger challenge. I would like you to know that I appreciate everything you've done for me. Thank you even more for raising me right, for teaching me right from wrong, for leading by example and providing a caring loving home. Without your unending support I never would have made it through this process or any of the tough times in my life. You have made countless sacrifice for me, and have provided me with steady guidance and encouragement. Thank you, Mom and Dad. This dissertation is dedicated to You.

No word would suffice to express my gratitude and love to my Sister, for her continuous showering of boundless affection on me and supporting me in whatever I choose or did.

I also wish to thank the great scientific community whose achievements are constant source of inspiration for me.

I wish to express my gratitude towards "God-almighty", who gave me the strength and courage to fulfil my dreams and has showered upon me his choicest blessings.

Though, many have not been mentioned, none is forgotten.

Varun Rawat

September 2012

ABBREVATIONS	
Ac	Acetyl
Ar	Aryl
Bn	Benzyl
Boc	N-tert-Butoxycarbonyl
(Boc) ${ }_{2} \mathrm{O}$	Ditert-butyl dicarbonate
$\mathrm{n}-\mathrm{Bu}$	n-Butyl
n-BuLi	n-Butyl Lithium
CAN	Cerric ammonium nitrate
Cbz	Benzyloxy carbonyl
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Methylene chloride
CHCl_{3}	Chloroform
$\mathrm{CH}_{3} \mathrm{CN}$	Acetonitrile
CuSO_{4}	Copper(II) sulfate
DBU	1,8-Diazabicyclo[5.4.0]undecene-7
DIBAL-H	Diisobutyl alulinum hydride
DET	Diethyl Tartarate
DMF	Dimethyl formamide
DMSO	Dimethyl sulphoxide
DMAP	N, N-dimethyl-4-aminopyridine
DBAD	Dibenzyl azodicarboxylate
ee	Enantiomeric excess
Et	Ethyl
$\mathrm{Et}_{3} \mathrm{~N}$	Triethylamine
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
EtOAc	Ethyl acetate
EtOH	Ethyl alcohol
g	Grams
h	Hours
HCl	Hydrochloric acid
HPLC	High pressure liquid chromatography
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid
HNO_{3}	Nitric acid
IR	Infra red
IBX	2-Iodoxybenzoic acid
$\mathrm{K}_{2} \mathrm{CO}_{3}$	Potassium carbonate
KOH	Potassium hydroxide

LiAlH_{4}	Lithium aluminum hydride
M+	Molecular ion
Me	Methyl
MeOH	Methyl alcohol
MOM	Methoxymethyl
min	Minutes
mL	Milliliter
mp	Melting point
MS	Mass spectrum
Ms	Mesyl
NaBH_{4}	Sodium borohydride
NaHCO_{3}	Sodium bicarbonate
NaOH	Sodium hydroxide
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sodium sulfate
$\mathrm{NH}_{4} \mathrm{Cl}$	Ammonium chloride
$\mathrm{NH}_{4} \mathrm{OH}$	Ammonium hydroxide
NBS	N-Bromosuccinimide
NMR	Nuclear Magnetic Resonance
NMO	N-Methyl morpholine N -oxide
Pd/C	Palladium on activated charcoal
Ph	Phenyl
p-TSA	p-Toluene sulfonic acid
PhNO	Nitrosobenzene
Py	Pyridine
TBS	tert-Butyldimethylsilyl
TBHP	tert-Butyl hydroperoxide
TEMPO	2,2,6,6-tetramethyl-1-piperidinyloxy
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TBAF	Tetrabutylammonium fluoride
TBDMSCI	tert-Butyldimethylsilyl chloride
TBDPSCI	tert-Butyldiphenylsilyl chloride
TFA	Trifluoroacetic acid
Ts	Tosyl

GENERAL REMARKS

1. All solvents were distilled and dried before use.
2. Petroleum ether refers to the fraction collected in the boiling range $60-80^{\circ} \mathrm{C}$.
3. Organic layers after every extraction were dried over anhydrous sodium sulfate.
4. Column Chromatography was performed over silica gel (230-400 mesh).
5. TLC analyses were performed over aluminum plates coated with silica gel (5-25 m) containing UV active G-254 additive.
6. IR spectra were recorded on a Perkin-Elmer model 683 B or 1605 FT-IR and absorptions were expressed in cm^{-1}.
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Brucker FT AC-200 MHz instruments using TMS as an internal standard. The following abbreviations were used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, brs = broad singlet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{dt}=$ doublet of triplet and ddd = doublet of doublet of doublet.
8. Mass spectra (MS) were recorded on an automated finnigan MAT 1020C mass spectrometer using ionization energy of 70 eV .
9. Optical rotations were carried out on JASCO-181 digital polarimeter at $25^{\circ} \mathrm{C}$ using sodium D light.
10. All melting points and boiling points are uncorrected and the temperatures are in centigrade scale.
11. Elemental analysis was done on Carlo ERBA EA 110B instrument.
12. The compounds, scheme and reference numbers given in each chapter refers to that particular chapter only.

Abstract

The thesis entitled "Enantioselective Synthesis of Bioactive Molecules via Proline Catalyzed α-Functionalization, Asymmetric Epoxidation and Synthetic Methodologies Involving Pd-Catalyzed Reductive Cyclization, Selective Hydrosilylation of Carbonyl Compounds" is divided into four chapters.

The title of the thesis clearly reflects the objective, which is to synthesize enantiomerically pure bioactive molecules and to develop useful synthetic methodologies. Chapter 1 presents the total synthesis of the anti-influenza agent oseltamivir, methyl 3-epi-shikimate and anti-cancer agent 3-epi-jaspine B. Chapter 2 describes the enantioselective synthesis of (-)-aspinolide A, anti-Alzheimer's agent (S)-N-(5-chlorothiophene-2-sulfonyl)- β, β-diethylalaniol (7.b.2) and fungal metabolite (+)decarestrictine L via proline-catalyzed α-functionalization. Chapter 3 deals with a new protocol involving sequential proline-catalyzed α-aminooxylation and Pd-catalyzed reductive cyclization of o-nitrohydrocinnamaldehydes that leads to facile synthesis of chiral tetrahydroquinolin-3-ols and its application in the enantioselective synthesis of anti-parkinson's agent PNU-95666E and inotropic agent 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl]propanone (S-903). Chapter 4 presents synthetic transformations involving a Pd-catalyzed hydrosilylation of aryl aldehydes and chemoselective reduction of aryl α, β-unsaturated carbonyls.

CHAPTER 1

Total Synthesis of (-)-Oseltamivir Free Base, (-)-Methyl 3-epi-shikimate and 3-epi-Jaspine B

Chapter I is divided into two sections. Section I presents the enantioselective synthesis of anti-influenza agent oseltamivir 22 and methyl 3-epi-shikimate 24 while Section II describes the asymmetric synthesis of anti-cancer agent 3-epi-jaspine B 29 via Sharpless asymmetric epoxidation.
SECTION I: Synthesis of the anti-influenza agent (-)-Oseltamivir free base and (-)-Methyl 3-epi-shikimate ${ }^{1}$

Oseltamivir 22 (Tamiflu) is an orally effective neuraminidase inhibitor, ${ }^{2}$ widely used for the treatment and prevention of human influenza (H1N1) and avian influenza (H5N1) infections. ${ }^{3}$ The key steps in the synthesis of 22 include Sharpless asymmetric epoxidation (AE), disatereoselective Barbier allylation and ring closing metathesis (RCM).

Scheme 1: (i) TBSCl, imid., dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 73 \%$; (ii) (-)-DET, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, anhydrous TBHP (5-6 M in decane), $4 \AA$ molecular sieves, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-10{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$; (iii) TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1$ h, 95%; (iv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 92 \%$; (v) NaN_{3}, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{DMF} / \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (4:4:1), $0-25{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 85 \%$; (vi) (a) $\mathrm{Ph}_{3} \mathrm{P}$, PhMe , reflux, 3 h ; (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}^{2} \mathrm{Et}_{3} \mathrm{~N}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}, 81 \%$ (over two steps); (vii) 3-pentanol, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2},-10{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 75 \%$; (viii) TBAF, THF, $0^{\circ} \mathrm{C}$, 2 h .

Initially, epoxy aldehyde (-)-4 was prepared from cis-2-butene-1,4-diol 1 in three steps: (i) monosilylation of diol 1 (TBSCl, imid., 73\%), (ii) AE of allylic alcohol 2 [$\mathrm{Ti}(\mathrm{OiPr})_{4}$, (-)-DET, anhydrous TBHP, 93\%], (iii) oxidation of epoxy alcohol (+)-3 (TEMPO, BAIB, 95%). Wittig olefination of (-)-4 with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ gave α, β-unsaturated
epoxy ester (-)-5 in 92\% yield. Regioselective ring opening of 5 with azide ion was accomplished in 85% yield to give azido alcohol 6. Staudinger reaction ($\mathrm{Ph}_{3} \mathrm{P}$, toluene) followed by N-acetylation ($\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}$) afforded protected aziridine 7 in 81% yield (over two steps). Regioselective ring opening of 7 with 3 -pentanol in presence of 1.5 equivalent of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ furnished α, β-unsaturated ester $\mathbf{8}$ as the exclusive product in 75% yield. On desilylation with TBAF, unsaturated ester 8 unexpectedly gave the furan derivative 9, a Michael adduct, as the major product (65\%) along with the desired alcohol 10 in minor amounts (17% yield) (Scheme 1). Since the yield of 10 was miserably low, an alternate route to 22 was undertaken as shown in Scheme 2.

Scheme 2: (i) TEMPO, $\operatorname{PhI}(\mathrm{OAc})_{2}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (ii) ethyl 2(bromomethyl)acrylate, Zn dust, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(4: 1), 0-25{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 64 \%$ (for syn-selectivity); (iii) MOMCl, DIPEA, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 90 \%$; (iv) TBAF, THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88 \%$; (v) IBX, dry DMSO, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (vi) n - BuLi , $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}$, dry THF, $-10{ }^{\circ} \mathrm{C}$ to $25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (vii) diethyl 1-diazo-2oxopropylphosphonate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 82 \%$ (over two steps); (viii) H_{2}, Lindlar's catalyst, pyridine/1-octene/EtOAc (1:1:10), $6 \mathrm{~h}, 95 \%$ yield of 17.

Alternatively, antipode epoxy alcohol (-)-3 was readily prepared in two steps as described above: (i) monosilylation, (ii) AE using (+)-DET as chiral source. Oxidation of (-)-3 (TEMPO, BAIB) gave the aldehyde (+)-4, which was subjected to Barbier allylation with
ethyl 2-(bromomethyl)acrylate to afford the homoallylic alcohol 11 in 64% yield ($\mathrm{dr}=4: 1$). The hydroxyl group in 11 was then protected (MOMCl, DIPEA, 90\%) and TBS group in 12 deprotected (TBAF, THF) to produce 13, which was then subjected to oxidation (IBX/DMSO) to give the labile aldehyde 14. Several attempts to perform Wittig olefination ($n-\mathrm{BuLi}, \mathrm{PPh}_{3}{ }^{+} \mathrm{CH}_{3} \mathrm{I}^{-}$, THF) of 14 to produce diene 15 were quite unsuccessful, due to its rapid decomposition under the strongly basic condition. Alternately, the crude aldehyde 14 was subjected to Seyferth-Gilbert homologation using Bestman-Ohira reagent in presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and MeOH , which gave the terminal alkyne 16 in 82% yield with completely transesterified methyl ester in 2 h. Selective catalytic hydrogenation [H_{2} (1 atm), Lindlar's catalyst, pyridine/1-octene, EtOAc] of alkyne 16 gave alkene 17 (Scheme 2).

Scheme 3: (i) Grubbs-II (10 mol\%), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $14 \mathrm{~h}, 90 \%$; (ii) $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{DMF} / \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(4: 4: 1), 0-25{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 83 \%$; (iii) (a) $\mathrm{Ph}_{3} \mathrm{P}$, PhMe, reflux, 3 h ; (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 45 \mathrm{~min}$, 81% (over two steps); (iv) (a) 3-pentanol, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2},-10^{\circ} \mathrm{C}$, 30 min , (b) 2 N $\mathrm{HCl}, \mathrm{EtOH}, 25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 64 \%$ (over two steps); (v) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) H_{2}, Lindlar's cat, EtOH, 72\% (over three steps).

The RCM of $\mathbf{1 7}$ using Grubbs II catalyst gave the cyclohexene core 18. Conversion of $\mathbf{1 8}$ to aziridine 20 was achieved in three steps as before (see Scheme 1) with an overall yield of 67\%: (i) epoxide opening with azide, (ii) formation of aziridine and (iii) its N acetylation. Regioselective ring opening of aziridine 20 with 3-pentanol followed by simultaneous MOM deprotection and transesterification using 2 N HCl in EtOH afforded
the key amino alcohol 21. Amino alcohol 21 was then converted to oseltamivir free base 22 in three steps by following the reported procedures: ${ }^{4}$ (i) mesylation of alcohol 21, (ii) displacement of mesylate with azide ion, (iii) reduction of azide with Lindlar's catalyst (Scheme 3).

The cyclic epoxide 18 was also considered as an important precursor for the synthesis of (-)-methyl 3-epi-shikimate 24. Thus, 18 was readily converted into the desired triol 24 through a two step reaction sequence: (i) epoxide opening $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right)$; (ii) MOM deprotection of $\mathbf{2 3}(2 \mathrm{~N} \mathrm{HCl}, \mathrm{MeOH})$ (Scheme 4). The comparison of spectral data of 24 with the reported values ${ }^{5}$ further establishes the absolute configuration of cyclic epoxide 18.

Scheme 4: (i) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (3:1), $0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 96 \%$; (ii) 2 N HCl , MeOH, $25{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 74 \%$.

SECTION II: A tandem desilylation-oxa Michael addition reaction for the synthesis

 of 3-epi-Jaspine B3-epi-Jaspine B 29 and its stereoisomers have been found to have excellent anti-cancer activity. ${ }^{6}$ Initially, α, β-unsaturated epoxy ester (+)-5 was prepared in 59.3% yield from commercially available cis-2-butene-1,4-diol 1 in four steps; (i) monosilylation of diol 1 (TBSCl, imid., 73\%), (ii) AE of allylic alcohol 2 [Ti(OiPr)4, (+)-DET, anhydrous TBHP, 93\%], (iii) oxidation of epoxy alcohol (-)-3 (TEMPO, BAIB, 95\%), (iv) Wittig olefination of $(+)-4$ with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ (Scheme 1). The THF core 25 was then constructed smoothly in 93\% yield via a diastereoselective tandem desilylation-oxa Michael addition reaction of (+)-5 mediated by TBAF. Regioselective epoxide opening of 25, with azide ion in presence of $\mathrm{NH}_{4} \mathrm{Cl}$ was accomplished in 91% yield to give azido alcohol 26. The hydroxyl group in 26 was then protected ($\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{O}, 95 \%$) and ester group in 27 selectively reduced (DIBAL-H, toluene, $-78{ }^{\circ} \mathrm{C}$) to produce the corresponding aldehyde, which was then subjected to Wittig olefination (n - BuLi , $\mathrm{PPh}_{3}{ }^{+} \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}^{-}$, THF) to give the olefin 28. Global reduction was afforded under
catalytic hydrogenation condition [10\% Pd/C, H_{2} (1 atm.)] which gave 3-epi-jaspine B 29 with an overall yield of 34.7\% (Scheme 5).

Scheme 5: (i) TBSCl, imid., dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 73 \%$; (ii) (+)-DET, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, anhydrous TBHP (5-6 M in decane), $4 \AA$ molecular sieves, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2},-10{ }^{\circ} \mathrm{C}$, $12 \mathrm{~h}, 93 \%$; (iii) TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 1$ h, 95\%; (iv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 92 \%$; (v) TBAF, THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 93 \%$, de $>99 \%$; (vi) $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(4: 1), 8{ }^{\circ} \mathrm{C}$, $12 \mathrm{~h}, 91 \%$; (vii) $\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{O}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 95 \%$; (viii) (a) DIBAL-H, toluene, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) n - $\mathrm{BuLi}, \mathrm{PPh}_{3}{ }^{+} \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}^{-}$, THF, $-78-0{ }^{\circ} \mathrm{C}$, $3 \mathrm{~h}, 75 \%$; (ix) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 97 \%$.

CHAPTER 2

Enantioselective Synthesis of (-)-Aspinolide A, anti-Alzheimer's Agent

 (S)- N-(5-Chlorothiophene-2-sulfonyl) $-\beta, \beta$-diethylalaninol and Cholesterol Biosynthesis Inhibitor Metabolite, (+)-Decarestrictine L Asymmetric organocatalysis in organic chemistry has provided several new methods for obtaining chiral compounds in an environmentally benign manner. In this connection, proline, an abundant, inexpensive aminoacid available in both enantiomeric forms has emerged as a practical and versatile organocatalyst. Proline is equally efficient for α functionalization of aldehydes and ketones. This chapter is divided into three sections. Section I deals with the asymmetric synthesis of (-)-aspinolide A 41 while Section II describes an organocatalytic route to anti-Alzheimer's agent (S)- N -(5-chlorothiophene-2-sulfonyl)- β, β-diethylalaniol 51; Section III presents the enantioselective synthesis of (+)decarestrictine L 66 using proline-catalyzed sequential reactions.

SECTION I: Asymmetric synthesis of (-)-Aspinolide A

Aspinolide A 41, isolated from cultures of Aspergillus ochraceus has attracted considerable attention due to its interesting biological properties and scare availability. ${ }^{7}$ Based on retrosynthetic analysis, we visualized homoallylic alcohol 40 and carboxylic acid 36 as key intermediates for the synthesis of 41 . Fragment 40 can be obtained by Brown allylation. ${ }^{8}$ The carboxylic acid fragment 36 can be obtained via two routes: (i) Jorgensen's asymmetric epoxidation ${ }^{9}$ of unsaturated aldehdye 30; (ii) asymmetric α aminooxylation ${ }^{10}$ of aldehyde 37.

Scheme 6: (i) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (S)- α, α-bis[3,5-bis(trifluoromethyl)phenyl]-2pyrrolidinemethanol tri-methylsilyl ether (A), $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$ then $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 43 \%$; (ii) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, imid., $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3: 1), 0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$; (iii) Zn, NaI, MeOH, reflux, $3 \mathrm{~h}, 90 \%$; (iv) TBSCl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 6$ h, 86\%; (v) (+)-camphor-10-sulfonic acid, MeOH, $25{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}, 63 \%$; (vi) TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1), 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 80 \%$.

Scheme 6 shows the synthetic route to (-)-aspinolide A 41, which employs Jorgensen's asymmetric epoxidation as the key chiral inducing step. Thus, α-epoxidation of α, β unsaturated aldehyde $\mathbf{3 0}$ was carried out using $\mathrm{H}_{2} \mathrm{O}_{2}$ as the oxygen source in the presence of $10 \mathrm{~mol} \%$ of (S)-prolinol-based catalyst \mathbf{A}^{9} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$ followed by its reduction with NaBH_{4} in MeOH to give the crude α-epoxy alcohol 41 in situ. A two-step conversion of 31 to allylic alcohol 33 was then achieved by: (i) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, imid., $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ (3:1), $0-25{ }^{\circ} \mathrm{C}$; (ii) Zn , NaI, MeOH, reflux, 3 h . Conversion of allylic
alcohol 33 to carboxylic acid 36 was then accomplished in three simple steps as described below: (i) silylation of secondary alcohol functionality in 33; (ii) chemoselective desilylation of primary alcohol 34 [camphor sulphonic acid (CSA), $\mathrm{MeOH}, 63 \%$]; (iii) Complete oxidation of 35 to carboxylic acid 36 [TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}$, $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(4: 1)\right]$.

Our second approach for the synthesis of carboxylic acid fragment $\mathbf{3 6}$ commences from aldehyde 37, which was subjected to L-Proline Catalyzed α-aminooxylation in a two step reaction sequence: (i) reaction of aldehyde 37 with nitrosobenzene as the oxygen source in the presence of $20 \mathrm{~mol} \%$ L-Proline in $\mathrm{CH}_{3} \mathrm{CN}$ at $-20^{\circ} \mathrm{C}$ followed by its treatment with NaBH_{4} in MeOH gave the crude α-aminoxy alcohol in-situ and (ii) subsequent reduction of the crude α-aminoxy alcohol using $10 \% \mathrm{Pd} / \mathrm{C}$ over H_{2} (1 atm) furnished chiral diol 38 in 77\% yield over two steps (Scheme 7).

Scheme 7: (i) (a) PhNO (1 equiv.), L-proline (20 mol \%), $\mathrm{CH}_{3} \mathrm{CN},-20^{\circ} \mathrm{C}$, 24 h then $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (b) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, 24 \mathrm{~h}$, 77% (over two steps); (ii) (a) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Bu}_{2} \mathrm{SnO}$, DMAP; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, 30 \mathrm{~min} ., 92 \%$ (over two steps); (iii) $\mathrm{S}^{+} \mathrm{Me}_{3} \mathrm{I}^{-}$, $\mathrm{NaH}, \mathrm{DMSO}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 89\%.

Selective tosylation of diol $38\left(\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Bu}_{2} \mathrm{SnO}\right)$ followed by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH gave the optically pure terminal epoxide 39 in 92% yield. Regioselective opening of epoxide 39 into the corresponding allylic alcohol 33 was readily achieved by using Corey-Chaykovsky reagent ($\mathrm{SMe}_{3} \mathrm{I}, \mathrm{NaH}, \mathrm{DMSO}$) in 89% yield. Conversion of 33 to carboxylic acid 36 was achieved in three steps with an overall yield of 27.3% and 98% ee as described before (see Scheme 6).

With both the fragments readily available, we carried out the coupling of the two fragments using stiglich esterification ($\mathrm{EDCI}, \mathrm{Et}_{3} \mathrm{~N}$) followed by desilylation (TBAF,

THF) and RCM (Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Scheme 8).

Scheme 8: (a) EDCI $\mathrm{HCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (b) TBAF, THF, $0^{\circ} \mathrm{C}, 2$ h ; (c) Grubbs-II ($10 \mathrm{~mol} \%$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $24 \mathrm{~h}, 53.3 \%$ (over three steps).

SECTION II: A facile enantioselective synthesis of (S)- N-(5-chlorothiophene-2-sulfonyl)- β, β-diethylalaniol via proline catalyzed asymmetric α-aminooxylation and α-amination of aldehyde ${ }^{11}$
(S)- N-(5-Chlorothiophene-2-sulfonyl)- β, β-diethylalaninol 51 (7.b.2), a Notch-1-sparing γ-secretase inhibitor (with $\mathrm{EC}_{50}=28 \mathrm{nM}$), has been found to be effective in the treatment of Alzheimer's desease. ${ }^{12}$ Our synthesis of 51 commenced from 3-pentanone 42, which on Horner-Wardworth-Emmons olefination (triethyl phosphonoacetate, NaH, THF), gave the corresponding α, β-unsaturated ester 43 in 93\% yield. Its hydrogenation [10\% Pd/C, $\left.\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}\right]$ and reduction with LiAlH_{4} in THF at $25{ }^{\circ} \mathrm{C}$ afforded the saturated primary alcohol 44 in 83% yield (over two steps). Oxidation of primary alcohol 44 with IBX/DMSO mixture gave the key precursor aldehyde 45, which was immediately subjected to proline-catalyzed α-aminooxylation ${ }^{10}$ and α-amination ${ }^{13}$ respectively (Schemes 9 and 10).

Firstly, the L-proline-catalyzed α-aminooxylation of aldehyde 45 was carried out in a two-step reaction sequence: (i) reaction of aldehyde 45 with nitrosobenzene as the oxygen source in the presence of $20 \mathrm{~mol} \%$ L-proline followed by its treatment with NaBH_{4} in MeOH gave the crude α-aminooxy alcohol in situ and (ii) subsequent reduction of the crude α-aminooxy alcohol with $10 \% \mathrm{Pd} / \mathrm{C}$ over H_{2} (1 atm) furnished chiral diol 46 in 77% yield over two steps. Selective protection of primary hydroxyl group in diol 46 followed by mesylation of the secondary alcohol 47 and displacement of mesylate with sodium azide gave the corresponding azide 48 in 78% yield. The LiAlH_{4} reduction of TBS azide 48 in THF at $50^{\circ} \mathrm{C}$ afforded the key intermediate (S)-2-amino-3-ethylpentan-1-ol 49 in 75% yield with 99% ee that was accomplished with the
simultaneous removal of TBS group (Scheme 9). Since the number of steps involved in the α-aminooxylation process are relatively too many thereby limiting the overall yield (25.5\%), we have explored alternative chemistry that involved a direct α-amination approach.

Scheme 9: (i) triethyl phosphonoacetate, NaH , dry THF, $0-25{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}, 93 \%$; (ii) (a) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 12 \mathrm{~h}, 25^{\circ} \mathrm{C}$; (b) LiAlH_{4}, dry THF, 0-25 ${ }^{\circ} \mathrm{C}$, $12 \mathrm{~h}, 83 \%$ (over two steps); (iii) IBX, dry DMSO, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iv) (a) PhNO, L-proline ($20 \mathrm{~mol} \%$), $\mathrm{CH}_{3} \mathrm{CN},-20^{\circ} \mathrm{C}, 24 \mathrm{~h}$ then $\mathrm{MeOH}, \mathrm{NaBH}_{4}, 10$ min; (b) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 12 \mathrm{~h}, 25^{\circ} \mathrm{C}, 77 \%$ (over two steps); (v) TBSCl, imid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 81 \%$; (vi) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, 45 min ; (b) NaN_{3}, dry DMF, $60^{\circ} \mathrm{C}$, 30 h , 78\%; (vii) LiAlH_{4}, dry THF, $50^{\circ} \mathrm{C}, 12 \mathrm{~h}, 75 \%$.

Accordingly, aldehyde 45 was subjected to α-amination with dibenzyl azodicarboxylate in the presence of D-proline ($10 \mathrm{~mol} \%$) to produce the α-amino aldehyde, which upon in situ reduction with NaBH_{4} afforded the protected amino alcohol 50 in 92% yield and 98\% ee (determined by chiral HPLC). The amino alcohol 50 was then hydrogenated [Raney Ni, H_{2} (11.8 atm), MeOH, AcOH (5 drops)] to give (S)-2-amino-3-ethylpentan-1ol 49 in 70\% yield (Scheme 10). Finally, the amino alcohol 49 was condensed with 5-chlorothiophene-2-sulfonyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to afford the target molecule 51 in 91\% yield and 98\% ee.

Scheme 10: (i) dibenzyl azodicarboxylate, D-proline (10 mol\%), $\mathrm{CH}_{3} \mathrm{CN}, 0-$ $25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$ then $\mathrm{MeOH}, \mathrm{NaBH}_{4}, 92 \%$; (ii) H_{2} (11.8 atm), Raney $\mathrm{Ni}, \mathrm{MeOH}$, $\mathrm{AcOH}, 70 \%$; (iii) 5-chlorothiophene-2-sulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0-25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 91 \%$.
SECTION III: A concise enantioselective synthesis of (+)-decarestrictine L via proline-catalyzed sequential α-aminooxylation and Horner-Wadsworth-Emmons olefination ${ }^{14}$

The decarestrictines are secondary metabolites that were isolated from various Penicillium strains. ${ }^{15}$ In this section we have described the synthesis of (+)-decarestrictine L. Scheme 11 presents the synthesis of intermediate aldehyde 59 which commences with 5-hexene-1-ol 52, protected as its benzyl ether 53. The olefinic function in 53 was epoxidized smoothly $\left\{m \mathrm{CPBA}, \mathrm{CHCl}_{3}\right\}$ to give racemic epoxide (\pm)-54, which was subjected to Jacobsen's $\operatorname{HKR}\left\{(S, S) \text {-cobalt salen, } \mathrm{H}_{2} \mathrm{O}\right\}^{17}$ to give the corresponding enantiomerically pure epoxide (-)-54 in 43\% yield and 99\% ee. The chiral epoxide (-)-54, was then subjected to regioselective reductive ring opening with LiAlH_{4} in THF at $0{ }^{\circ} \mathrm{C}$ to afford the secondary alcohol 56. The alcohol 56 was protected as its TBS ether and the benzyl ether 57 was subsequently deprotected under hydrogenolysis condition to give the primary alcohol 58 in 97% yield. The oxidation of alcohol 58 (IBX, DMSO) produced the key intermediate aldehyde 59 in 98% yield. Since the overall yield for intermediate aldehyde 59 that could be realized in HKR route was considerably lower (30\%), we envisioned an alternate route for its synthesis (Scheme 11).

Scheme 11: (i) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{THF}, 0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 97 \%$; (ii) $\mathrm{mCPBA}, \mathrm{CHCl}_{3}, 25$ ${ }^{\circ} \mathrm{C}, \quad 6 \mathrm{~h}, \quad 85 \%$; (iii) (S,S)-(-)-N,N-bis(3,5-di-tert-butylsalicylidene)-1,2-
cyclohexanediaminocobalt ($0.5 \mathrm{~mol} \%$), $\mathrm{H}_{2} \mathrm{O}$ (0.55 equiv), $24 \mathrm{~h}, 43 \%$, 99% ee; (iv) LiAlH_{4}, THF, $0^{\circ} \mathrm{C}$, $30 \mathrm{~min}, 92 \%$, 99% ee; (v) TBSCl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 98 \%$; (vi) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, 12 \mathrm{~h}, 25^{\circ} \mathrm{C}$, 97%; (vii) IBX, DMSO, $25^{\circ} \mathrm{C} 2 \mathrm{~h}, 98 \%$.
Our second approach towards the synthesis of intermediate aldehyde 59 involves Rucatalyzed asymmetric reduction ${ }^{18}\left\{\left[(R)-\mathrm{Ru}(\mathrm{BINAP}) \mathrm{Cl}_{2}\right]_{2} \cdot \mathrm{NEt}_{3}, 2 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2}(100 \mathrm{psi})\right\}$ of ethylacetoacetate 60 that produced (R)-ethyl 3-hydroxybutyrate 61 in 95\% yield with high enantiopurity (98% ee, Mosher ester). After protecting as its TBS ether, the resulting ester 62 was subjected to selective reduction with DIBAL-H at $-78^{\circ} \mathrm{C}$ that afforded the corresponding aldehyde 63 in 85% yield which was immediately reacted with stabilized Wittig salt to give α, β-unsaturated ester $\mathbf{6 4}$ in 93% yield. Exposure of the ester $\mathbf{6 4}$ to 10% Pd / C under H_{2} (1 atm.) followed by its selective reduction with DIBAL-H at $-78{ }^{\circ} \mathrm{C}$ furnished aldehyde 59 in 60\% overall yield (Scheme 12).

Scheme 12: (i) $\left[(\mathrm{R})-\mathrm{Ru}(\mathrm{BINAP}) \mathrm{Cl}_{2}\right]_{2} \cdot \mathrm{NEt}_{3}$ ($0.1 \mathrm{~mol} \%$), 2 N HCl (0.1 mol\%), MeOH, $\mathrm{H}_{2}(100 \mathrm{psig}), 50^{\circ} \mathrm{C}, 16 \mathrm{~h}, 95 \%, 98 \%$ ee; (ii) TBSCl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 97 \%$; (iii) DIBAL-H, toluene, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (iv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$; (v) a) $\mathrm{H}_{2}(1 \mathrm{~atm}), 10 \% \mathrm{Pd}^{2} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{MeOH}, 12 \mathrm{~h} ; \mathrm{b}$) DIBAL-H, toluene, $-78^{\circ} \mathrm{C}$, $1 \mathrm{~h}, 82 \%$ (over two steps).

With the intermediate aldehyde 59 made available, we carried out the sequential aminoxylation-olefination on aldehyde 59 catalyzed by D-proline at $-20^{\circ} \mathrm{C}$, that resulted in the formation of the precursor aminooxy olefinic ketone 65 in 60% yield (Scheme 13). The removal of anilinoxy group in $\mathbf{6 5},\left\{\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{EtOH}\right\}$, followed by desilylation of
the crude product induced an instantaneous intramolecular 1,4-conjugate addition to afford (+)-decarestrictine L 66 in 98\% ee and with de > 99\%.

$\left(^{+}\right.$)-decarestrictine L 66
Scheme 13: (i) PhNO, D-proline ($20 \mathrm{~mol} \%$), $-20^{\circ} \mathrm{C}$, 24 h then diethyl(2oxopropyl)phosphonate, $\mathrm{Cs}_{2} \mathrm{CO}_{3},-20-0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 60 \%$; (ii) (a) $\mathrm{Cu}(\mathrm{OAc})_{2}$, EtOH, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (b) TBAF, THF, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 60 \%$ (over two steps).

Chapter III

A New Concise Method for the Synthesis of Chiral Tetrahydroquinolin-3-ols, (-)-Sumanirole (PNU 95666-E) and 1-((S)-3-(Dimethylamino)-

3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl)propan-1-one, (S)-903

SECTION I: Organocatalytic sequential α-aminooxylation/reductive cyclization of

 o-nitrohydrocinnamaldehydes: A high yield synthesis of chiral tetrahydroquinolin-
3-ols

The 1,2,3,4-tetrahydroquinoline (THQ) is a very common structural motiff found in numerous biologically active natural products and pharmacologically relevant therapeutic agents. ${ }^{19}$ Only a few methods exist in the literature for the asymmetric synthesis of tetrahydroquinilin-3-ols, most of which are based on chiral pool resources. In this regard, an organocatalytic protocol that provides for the efficient synthesis of chiral 3-substituted THQs is highly desirable. ${ }^{20}$

In this section, we wish to disclose, for the first time, a sequential protocol involving α aminooxylation of o-nitrohydrocinnamaldehydes 67a-e and Pd-catalyzed intramolecular reductive cyclization that provides easy access to chiral 3-hydroxy THQs 69a-e in high yields (Scheme 14).

Scheme 14: (i) L-proline (20 mol\%), PhNO (1 equiv), DMSO, 15 min ; (ii) 10% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (1 atm), $25^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

When subjected to L-proline catalyzed α-aminooxylation with 1 equiv of PhNO followed by Pd-catalyzed reductive cyclization several o-nitrohydrocinnamaldehydes 67a-e gave the corresponding (R)-3-hydroxytetrahydroquinoline 69a-e (70-76\%) derivatives respectively with excellent enantioselectivities (upto 99\% ee).

SECTION II: Asymmetric synthesis of (-)-Sumanirole (PNU-95666-E) and 1-[(S)-3-(Dimethyl-amino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]propanone [(S)-903]

Among the various applications of this sequential protocol, an enantioselective synthesis of (-)-sumanirole 77 and (S)-903 (81) seemed attractive to us due to their pharmacological importance. ${ }^{21,22}$
A) Synthesis of (-)-sumanirole 77: (-)-Sumanirole 77 (PNU-95666E) is a selective and high affinity agonist at the dopamine D_{2} receptor subtype and has proven as a potential agent for the treatment of Parkinson's disease and restless leg syndrome. ${ }^{21}$ For the synthesis of (-)-sumanirole 77, intermediate 72 was prepared readily in three steps by following the present protocol starting from α, β-unsaturated ester 70: (i) Co-catalyzed chemoselective reduction of 70 gave hydrocinnamyl alcohol $71\left(\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{iPr}_{2} \mathrm{NH}\right.$, $\mathrm{NaBH}_{4}, 85 \%$); (ii) PCC mediated oxidation of 71 smoothly afforded 67a in 85\%; (iii) sequential protocol involving D-proline catalyzed α-aminooxylation of o-nitrohydrocinnamaldehyde 67a followed by Pd/C catalyzed reductive cyclization under H_{2} (1 atm) gave the corresponding annulated (3S)-hydroxy THQ 72. Amine functionality in 72 was then converted to its carbamate $73\left(\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{K}_{2} \mathrm{CO}_{3}, 98 \%\right) .73$ was readily transformed to the corresponding azide 74 in two steps: mesylation ($\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$) and treatment of mesylate with azide anion (NaN_{3}, DMF, 93\%). Regioselective nitration of 74 at C-8 position was carried out successfully in two steps: (i) bromination $\left(\mathrm{Br}_{2}, \mathrm{AcOH}\right.$, 95%) of azido carbamate 74; (ii) subsequent regiospecific nitration of $75\left(\mathrm{NaNO}_{3}, \mathrm{TFA}\right.$, 95\%) gave the key intermediate 76 with an overall yield of 42.2% and 96% ee (Scheme 15). ${ }^{23}$

Scheme 15: (i) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O},{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{NaBH}_{4}$, $\mathrm{EtOH}, 25-60{ }^{\circ} \mathrm{C}$, 85%; (ii) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 85 \%$; (iii) (a) PhNO, D-proline, DMSO, $25^{\circ} \mathrm{C}$, 15 min ; (b) H_{2} (1 atm), 10% $\mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 71 \%$; (iv) $\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(4: 1), 0-25{ }^{\circ} \mathrm{C}, 6$ h, 98%; (v) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 45 min ; (b) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 4 \mathrm{~h}, 93 \%$ (over two steps); (vi) $\mathrm{Br}_{2}, \mathrm{AcOH}, \mathrm{NaOAc}, 25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (vii) $\mathrm{NaNO}_{3}, \mathrm{TFA}, 2{ }^{\circ} \mathrm{C}$, $30 \mathrm{~min}, 95 \%$.

B) Synthesis of (S)-903:

1-[(S)-3-(Dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]propanone
[(S)-903] has recently been identified as a potentially interesting positive inotropic agent. ${ }^{22}$ Asymmetric synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl]propan-1-one 81, is described in this section.

Thus, the synthesis of 81 commenced with THQ 69b (Scheme 16), which was prepared in 98% ee using L-proline as catalyst and PhNO as oxygen source by following the optimized condition described in Section I. Tetrahydroquinolinol 69b, was treated with propionic anhydride to give amido alcohol 78 in 98% yield. Alcohol 78 on mesylation ($\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) followed by its displacement with azide ion $\left(\mathrm{NaN}_{3}\right.$ in DMF) gave azide 79 in 94\% yield. Finally, azide 79 was reduced to amine [H_{2} (1 atm), 10\% $\mathrm{Pd} / \mathrm{C}]$. The N, N '- dimethylation of amine $\mathbf{8 0}$ was achieved by treating it with formic acid and formaldehyde solution under reflux condition to afford $\mathbf{8 1}$ in 71.6% yield.

Scheme 16: (i) (EtCO) $)_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(4: 1), 25^{\circ} \mathrm{C}$, 98%; (ii) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (b) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 94 \%$ (over two steps); (iii) H_{2} (1atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 96 \%$; (iv) $\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 91 \%$.

CHAPTER IV

Pd-catalyzed Hydrosilylation of Aryl Aldehydes and Chemoselective Reduction of aryl $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Carbonyls ${ }^{24}$

Chapter IV is divided into two sections. Section 1 deals with Pd-catalyzed hydrosilylation of aryl aldehydes using triethylsilane while Section 2 describes an chemoselective reduction of aryl α, β-Unsaturated Carbonyls.

Section: 1 Palladium catalyzed hydrosilylation of aryl aldehydes with triethylsilane

 In recent years hydrosilylation of various organic carbonyl compounds has made considerable progress and became a major tool of synthetic organic chemistry and organosilicon chemistry as well as providing efficient and versatile access to new organo silicon compounds. ${ }^{25}$ There are many methods available in the literature for hydrosilylation of carbonyl compounds using a variety of metal catalysts and hydrosilanes. Moreover, metals such as palladium have not been studied extensively for the hydrosilylation of aldehydes. ${ }^{26}$ In this section, we describe an efficient and selective method for the hydrosilylation of various aryl aldehydes catalyzed by palladium using triethylsilane as hydride source. We found that palladium catalysts were more effective for hydrosilylation of aldehydes $\mathbf{8 2}$ in DMF at room temperature using triethylsilane as ahydride source to produce silyl ethers 83 in 51-96\% yield (Scheme 17). All the palladium catalysts gave excellent yield of hydrosilylated products 83. The maximum yield of silylether obtained was with $\mathrm{Pd}(\mathrm{OAc})_{2}$ (98\%) whereas $\mathrm{Pd}(\mathrm{dba})_{2}$ (60\%) gave the lowest yield.

Scheme 17: aryl aldehyde (1 mmol), 10\% $\mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{SiH}(1.2 \mathrm{mmol})$, DMF (2 ml), $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

A noteworthy feature of this protocol is that when the reaction was carried out in DMFwater (4:1) solvent system, the corresponding alcohols were produced in high yields. Thus, both hydrosilylation and deprotection of the silyl ether were achieved in a single step by using a simple modification of solvent systems.

Section II

Pd-catalyzed chemoselective reduction of aryl α, β-unsaturated carbonyls with triethylsilane

The hydrogenation of α, β-unsaturated carbonyl compounds is a useful but challenging transformation. As both 1,2- and 1,4-conjugate reductions readily occur, low selectivity for either of the two pathways is common. Further, catalytic hydrogenations of α, β unsaturated carbonyls are possible, yet the chemoselectivity is often found to be low. ${ }^{27}$ Further, additional functional groups that are sensitive to hydrogenation conditions such as the benzyloxy, nitro, and nitrile groups are usually not tolerated. ${ }^{28}$ Undoubtedly, an ecofriendly, safe and economically viable protocol would be a welcome addition to the repertoire of existing methodologies.
In this section we describe a efficient chemoselective method for the 1,4-reduction of aryl α, β-unsaturated carbonyls 84 . The best yields of saturated product $\mathbf{8 5}$ was obtained with 1 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ and 2 equiv of $\mathrm{Et}_{3} \mathrm{SiH}$ in DMF as Solvent (yield upto 89\%) (Scheme 18).

Scheme 18: (i) aryl α, β-unsaturated carbonyls (1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($1 \mathrm{~mol} \%$) $\mathrm{Et}_{3} \mathrm{SiH}(2 \mathrm{mmol})$, DMF (2 mL), 25 ${ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$

References:

1 Rawat, V.; Dey, S.; Sudalai, A. Org. Bio. Chem. 2012, 10, 3988.
2 (a) Cheam, A. L.; Barr, I. G.; Hampson, A. W.; Mosse, J.; Hurt, A. C. Antiviral Res. 2004, 63, 177; (b) Smith, B. J.; McKimm-Breshkin, J. L.; McDonald, M.; Fernley, R. T.; Varghese, J. N.; Colman, P. M. J. Med.Chem. 2002, 45, 2207; (c) Kim, C. U.; Lew, W.; Williams, M. A.; Wu, H.; Zhang, L.; Chen, X.; Escarpe, P. A.; Mendel, D. B.; Laver, W. G.; Stevens, R. C. J. Med. Chem. 1998, 41, 2451.

3 (a) Hurt, A. C.; Selleck, P.; Komadina, N.; Shaw, R.; Brown, L.; Barr, I. G. Antiviral Res. 2007, 73, 228; (b) Werner, L.; Machara, A.; Sullivan, B.; Carrera, I.; Moser, M.; Adams, D.R.; Hudlicky, T. J. Org. Chem. 2011, 76, 10050; (c) Abbott, A. Nature 2005, 435, 407.

4 Kim, H.-K.; Park, K.-J.J. Tetrahedron Lett. 2012, 53, 1561.
5 (a) Abella, L. S., Fernández, S.; Armesto, N.; Ferrero, M.; Gotor, V. J. Org. Chem., 2006, 71, 5396;
(b) Brettle, R.; Cross, R.; Frederickson, M.; Haslam, E.; MacBeath, F. S.; Davies, G. M. Tetrahedron 1996, 52, 10547.

6 (a) Hofman, K. J. Am. Chem. Soc. 1945, 67, 1459; (b) Potter, R. L.; Elvehjem, C. A. J. Biol. Chem. 1950, 183, 587; (c) Ohrui, H.; Kuzuhara, H.; Emoto, S. Agric. Biol. Chem. 1971, 35, 752; (d) Jayachitra, G.; Sudhakar, N.; Anchoori, R. K.; Rao, B.; Roy, V. S.; Banerjee, R. Synthesis 2010, 115.

7 (a) Shiina, I. Chem. Rev. 2007, 107, 239; (b) Back, T. G. Tetrahedron 1977, 33, 3041; (c) Roxburgh, C. J. Tetrahedron 1993, 49, 10749.

8 (a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092; (b) Reddy, M. V. R.; Yucel, A. J.; Ramachandran, P. V. J. Org. Chem. 2001, 66, 2512.

9 Marigo, M.; Franzen, J.; Poulsen, T. B.; Zhuang, W.; Jorgensen, K. A. J. Am. Chem. Soc., 2005, 127, 6964.

10 (a) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44, 8293; (b) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem. Int. Ed. 2003, 43, 1112.

11 Rawat, V.; Chouthaiwale, P. V.; Chavan, V. B.; Suryavanshi, G.; Sudalai, A. Tetrahedron Lett. 2010, 51, 6565

12 Cole, D. C.; Stock, J. R.; Kreft, A. F.; Antane, M.; Aschmies, S. H.; Atchison, K. P.; Casebier, D. S.;

Comery, T. A.; Diamantidis, G.; Ellingboe, J. W.; Harrison, B. L.; Hu, Y.; Jin, M.; Kubrak, D. M.; Lu, P.; Mann, C. W.; Martone, R. L.; Moore, W. J.; Oganesian, A.; Riddell, D. R.; Reines, J. S.; Sun, S. C.; Wagner, E.; Wang, Z.; Woller, K. R.; Xu, Z.; Zhou, H.; Jacobsen, J. S. Bioorg. Med. Chem. Lett. 2009, 19, 926.
(a) List, B. J. Am. Chem. Soc. 2002, 124, 5656; (b) Bøgevig, A.; Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Jørgensen, K. A. Angew. Chem. Int. Ed. Engl. 2002, 41, 1790.

4 Rawat, V.; Chouthaiwale, P. V.; Suryavanshi, G.; Sudalai, A. Tetrahedron: Asymmetry 2009, 20, 2173.

5 Grabley, S.; Hammann, P.; Hutter, K.; Kirsch, R.; Kluge, H.; Thiericke, R.; Mayer, M.; Zeeck, A. J. Antibiot. 1992, 45, 1176.

6 a) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183; (b) Mangion, I. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3696.
17 Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen. E. N. Science, 1997, 277, 936.
18 (a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345; (b) King, S. A.; Thompson, A. S.; King, A. O.; Verhoeven, T. R. J. Org. Chem. 1992, 57, 6689.
(a) Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J. A. Chem. Rev. 1997, 97, 787; (b) Katritzky, A.R.; Rachwal, S.; Rachwal B. Tetrahedron 1996, 52, 15031.
For a review on various synthetic strategies towards Tetrahydroquinolines see: Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157.

Heier, R. F.; Dolak, L. A.; Duncan, J. N.; Hyslop, D. K.; Lipton, M. F.; Martin, I. J.; Mauragis, M. A.; Piercey, M. F.; Nichols, N. F.; Schreur, P. J. K. D.; Smith, M. W.; Moon, M. W. J. Med. Chem. 1997, 40, 639.

Ito, Y.; Ishida, K.; Okada, S. Murakami, M. Tetrahedron 2004, 60, 9075.
Gerard, L. J.; Mace, F.; Ngo, A. N.; Pauvert, M.; Dentel, H.; Evain, M.; Collect, S.; Guingant, A. Eur. J. Chem. 2012, 4240 and references cited therein.

Chouthaiwale, P. V.; Rawat, V.; Sudalai, A. Tetrahedron Lett. 2012, 53, 148.
(a) Ojima, I. "The Chemistry of Organic Silicon Compounds", Vol. 2, Patai, S.; Rappoport, Z. Wiley/Interscience, New York, 1989; (b) I. Ojima, Z. Li and J. Zhu, "Recent Advances in the Hydrosilylation Reaction: Chemisty of Organic Silicon Compounds", Vol. 2, Rappoport, Z.; Apeloig, Y.; John Wiley \& Sons, Ltd, New York, 1998.
(a) Diez-Gondlez, S.; Nolan, S. P. Organic Preparations and Procedures Int. 2007, 39, 523; (b) Marciniec, B. in Hydrosilylation: A Comprehensive Review on Recent Advances (Eds.: B. Marciniec), Springer, Netherlands, 2009, chap. 9.

Horiuti, J.; Polanyi, M. Trans. Faraday Soc. 1934, 30, 1164.
(a) Hudlický, M. "Reductions in Organic Chemistry" Washington, D.C.: American Chemical Society, 1996; (b) Johnstone, R. A. W.; Wilby, A. H.; Entwistle, E. D. Chem. Rev. 1985, 85, 129.

Chapter I

TotalSynthesis of (-)-Oseltamivir Free Base, (-)-Methy[3-epishißimate and 3-epi-Jaspine \mathfrak{B}

"Synthesis of the anti-influenza agent (-)-oseltamivir free base and (-)-methyl 3-epishikimate" Varun Rawat, Soumen Dey, Arumugam Sudalai Org. Biomol. Chem., 2012, 10, 3988. \{This work is highlighted in Synfacts 2012, 8, 0001; DOI: 10.1055/s-00321316977\}

Section I

Synthesis of the anti-influenza agent (-)-Oseltamivir free base and (-)-Methyl 3-epi-shikimate

1.1.1 Introduction and Pharmacology

Oseltamivir phosphate, marketed as Tamiflu $\left(1 \cdot \mathrm{H}_{3} \mathrm{PO}_{4}\right.$, Figure 1) is an orally effective neuraminidase inhibitor, ${ }^{1}$ widely used for the treatment and prevention of human influenza (H1N1) and avian influenza (H5N1) infections. ${ }^{2}$ The Neuraminidase inhibitors interact with a unique target in the viral replicative cycle, which is the release of the progeny virus particles from the cells. ${ }^{3}$ Release of the virus particles from the cells requires the action of the virusassociated neuraminidase which cleaves off the terminal sialic acid (linked with galactose in the influenza H1N1 and H5N1 receptor). This cleavage is needed for the virus particles to be released from the infected cells and allows the virus to spread to other cells. Neuraminidase inhibitors prevent this release and thus 'trap"' the newly formed virus particles at the cell surface, thereby inhibiting further virus spread. ${ }^{4}$ The anti-influenza drug $1 \cdot \mathrm{H}_{3} \mathrm{PO}_{4}$ was initially discovered by Gilead Sciences and subsequently licensed to Roche for production. Roche's manufacturing process of tamiflu employs (-)-shikimic acid. Shikimic acid and several of its epimers (e.g. methyl 3-epi-shikimate 2) form the constituents of various natural products of biological importance and their syntheses have thus attracted considerable attention. ${ }^{5}$

1

2

Figure 1: Structures of oseltamivir (1) and methyl 3-epi-shikimate (2)

1.1.2 Review of Literature

Various syntheses of (-)-oseltamivir 1 are known in literature by several routes, which include chiral pool and asymmetric induction. Since the syntheses have been excessively reviewed before ${ }^{6}$ only the latest developments will be documented in the following section.

Table 1 summarizes some of the key approaches in the synthesis of (-)-oseltamivir 1. The academic or industrial group, the year of publication, starting material(s), number of steps and overall yield of the synthetic route are highlighted. ${ }^{\text {6a,b }}$

Table 1: Summary of synthetic approaches to (-)-oseltamivir 1

Sources	Starting material	Steps	Overall yield $(\%)$
Gilead Sciences (1997)	(-)-shikimic acid	14	15
F. Hoffmann-La Roche Ltd. (1999)	$(-)$-quinic acid	8	35
F. Hoffmann-La Roche Ltd. (2004)	furan and ethyl acrylate	9	3.2
F. Hoffmann-La Roche Ltd. (2004)	1,6-dimethoxy phenol	14	28
Corey (2006)	$1,3-b u t a d i e n e ~ a n d ~$ 2,2,2-trifluoroethyl acrylate	11	27
Shibasaki (2006)	N-3,5-dinitrobenzoylaziridine	17	1.4
Yao (2006)	L-serine	25	8
Shibasaki (2007)	N-3,5-dinitrobenzoylaziridine	20	16
Shibasaki (2007)	tert-butyl (1S,6S)-6-azidocyclohex-3- enylcarbamate	12	7.4
Fukuyama (2007)	pyridine	14	5.6
Fang (2007)	D-xylose	16	14
Kann (2007)	ethyl ester and cyclohexadienoic acid	14	5

Okamura (2008)	N-nosyl-3-hydroxy-2-pyridone and ethyl acrylate	7	11
Shibasaki (2009)	1-(trimethylsiloxy)-1,3-butadiene and dimethyl fumarate	12	16
Hayashi (2009)	(E)-tert-butyl 3-nitroacrylate and 2-(pentan-3-yloxy)acetaldehyde	9	57
Shi (2009)	(-)-shikimic acid	13	40
Shi (2009)	(-)-shikimic acid	9	47
Mandai (2009)	D-mannitol	18	7.5
Mandai (2009)	L-methionine	18	8
Hudlicky (2010)	ethyl benzoate	13	7
Liu (2010)	D-glucal	22	2.6
Chai (2010)	D-ribose	12	9
Kongkathip (2010)	D-ribose	14	5
Ko (2010)	D-mannitol	16	7
Ma (2010)	(E)-N-(2-nitrovinyl)acetamide and 2-(pentan-3-yloxy) -acetaldehyde	5	46
Lu (2010)	diethyl D-tartrate	11	21
Kamimura (2010)	tert-butyl 1H-pyrrole-1-carboxylate and ethyl 3-bromopropiolate	16	2
Raghavan (2011)	(R)-3-Cyclohexene carboxylic acid	16	4.3
Trost (2011)	6-Oxabicyclo[3.2.1]oct-3-en-7-one	8	30
Hayashi (2011)	1,2-epoxycyclohex-4-ene	21	0.05

Hayashi's approach (2011) ${ }^{7}$

Hayashi et al. have used a microflow reaction of the Curtius rearrangement as a key step. In a
one-pot reaction sequence starting from aldehdye $\mathbf{3}$ and nitroalkene $\mathbf{4}$ functionalized cyclohexane 5 was prepared. By using trimethylsilyl azide as an azide source, $\mathbf{5}$ was converted to $\mathbf{6}$ followed by Curtius rearrangement and in situ trapping of the generated isocyanate with a nucleophile to give acetamide 7. Purification of 7 by recystallization followed by another one-pot reaction sequence furnished tamiflu. This synthesis requires nine reactions, a total of three separate onepot operations, and one recrystalization. The total yield of (-)-oseltamivir phosphate from nitroalkene 4 is 57% (Scheme 1).

Scheme 1: (i) TMSN_{3}, py, toluene, 20 min ; (ii) $\mathrm{AcOH}, \mathrm{Ac}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$.

Saicic's approach (2011) ${ }^{8}$

In Saicic's approach, formation of all carbon-carbon bonds and stereocenters, was achieved using two aldol reactions: three stereocenters in the acyclic intermediate $\mathbf{1 0}$ were installed in the reaction of the Evans oxazolidinone derived boron enolate of $\mathbf{8}$ with glutaraldehyde 9, while the cyclization was achieved via enamine catalyzed intramolecular condensation of 11. Enal $\mathbf{1 2}$ was then converted to known intermediate 13, thus constituting a formal synthesis of oseltamivir free base 1 (Scheme 2).

Scheme 2: (i) (a) $n-\mathrm{Bu}_{2} \mathrm{BOTf}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, 30 min then $\mathbf{1 0}$; (b) $\mathrm{H}_{2} \mathrm{O}_{2}$, MeOH , 45%; (ii) $\mathrm{Bn}_{2} \mathrm{NH} \cdot \mathrm{TFA}$, toluene, $25^{\circ} \mathrm{C}$, 3 h .

Lu's approach (2011) ${ }^{9}$

Lu et al. have described asymmetric synthesis of oseltamivir 1 from (-)-shikimic acid 14. Esterification of $\mathbf{1 4}$ gave ethyl shikimate 15, which was then converted into cyclic sulfite $\mathbf{1 6}$. The characteristic step of the synthesis is the regio- and stereospecific nucleophilic substitution with sodium azide at the allylic ($\mathrm{C}-3$) position of 3,4 -cyclic sulfite $\mathbf{1 6}$. Target compound $\mathbf{1}$ was obtained from 17 in 39\% overall yield from a six-step reaction sequence (Scheme 3).

Scheme 3: (i) EtOH, SOCl_{2}, reflux, $3 \mathrm{~h}, 97 \%$; (ii) SOCl_{2} (2.5 equiv), $\mathrm{Et}_{3} \mathrm{~N}, 5$
${ }^{\circ} \mathrm{C}$, 2 h then $25^{\circ} \mathrm{C}$ for $12 \mathrm{~h}, 98 \%$; (iii) NaN_{3}, EtOH, reflux, $12 \mathrm{~h}, 93 \%$.

Park's approach (2012) ${ }^{10}$

Park et al. have reported the synthesis of oseltamivir $\mathbf{1}$ in 9 steps with a 27% overall yield from commercially available (-)-shikimic acid 14. Selective ring opening reaction of ketal 18 and azide Mitsunobu reaction for facile replacement of a hydroxyl group by the N_{3} group at the C-3 position of 19 and at the C-4 position of alcohol 21 successfully served as the key steps giving cyclic azides 20 and 22 respectively (Scheme 4).

Scheme 4: (i) $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}, 70 \%$; (ii) $\mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{HN}_{3}$, THF, 82\%; (iii) PPh_{3}, DEAD, HN_{3}, THF, 84%.

1.1.3 Present Work

1.1.3.1 Objective

The present commercial manufacturing process of Tamiflu $1 \cdot \mathrm{H}_{3} \mathrm{PO}_{4}$ employs (-)-shikimic acid 14, ${ }^{11}$ a natural product isolated from the Chinese star anise plant, as the raw material. The production of (-)-shikimic acid 14 with consistent purity, however, requires a lot of time and is costly. Therefore, there is an urgent demand for the development of alternative practical synthesis of Tamiflu $1 \cdot \mathrm{H}_{3} \mathrm{PO}_{4}$, starting from readily available and less expensive starting materials. This section describes an efficient synthesis of (-)-oseltamivir free base 1 and (-)methyl 3-epi-shikimate 2, a unnatural methyl ester of shikimic acid 14, starting from cis-2-
butene-1,4-diol 27 by employing Sharpless asymmetric epoxidation (AE), diastereoselective Barbier allylation and Ring Closing Metathesis (RCM) as the key reactions.

1.1.3.2 Sharpless asymmetric epoxidation (AE) ${ }^{12}$

Asymmetric epoxidation of allylic alcohols is one of the leading areas of investigation in synthetic organic chemistry, mainly due to the fact that very high enantioselective induction for a wide range of substrates is possible using several classes of reagents. The Sharpless epoxidation is a popular laboratory and industrial process due to its both enantioselective and catalytic nature. The reaction mixture includes a titanium tetraalkoxide, a chiral tartrate diester, an allylic alcohol substrate, and an alkyl hydroperoxide as the oxidant. The consistency of the reaction is remarkable, excellent enantiofacial selectivity is realized for allylic alcohol substrates of widely varying structure. In addition to being able to asymmetrically oxidize prochiral substrates to products of predictable absolute configuration, the reaction is extremely sensitive to pre-existing chirality in selected positions of the allylic alcohols. For example, kinetic resolution of racemic secondary allylic alcohols is very efficient since it can be used for generating chiral allylic alcohols as well as anti-epoxyalcohols in high enantiomeric excess. Selection of the proper chirality in the starting tartrate esters and proper geometry of the allylic alcohols allows one to establish both the chirality and relative configuration of the product (Scheme 5). Since its discovery in 1980, the Sharpless epoxidation of allylic alcohols has become a benchmark classic method in asymmetric synthesis. One factor that simplifies the standard epoxidation reaction is that the active chiral catalyst is generated in situ, which means that the pre-preparation of the active catalyst is not required. It is believed that the species containing equal moles of Ti and tartrate is the most active catalyst. It promotes the reaction much faster than $\mathrm{Ti}(\mathrm{IV})$ tetraalkoxide alone and exhibits selective ligand-accelerated reaction. ${ }^{13}$

Scheme 5: The Sharpless epoxidation reaction
Sharpless suggested that epoxidation was catalyzed by a single Ti center in a dimeric complex with a C_{2} symmetric axis (Figure 2). ${ }^{14}$

Figure 2: Structure of dinuclear Ti-tartrate complex

1.1.3.3 Results and Discussion

Our initial retrosynthetic scheme for the construction of functionalized cyclohexene core 21, the key intermediate in the synthesis of oseltamivir 1, is depicted in Scheme 6. It was envisioned that cyclic alcohol 21 could be obtained via an intramolecular Morita-Bayllis-Hillman cyclization of epoxide $23 .{ }^{15}$ The epoxide 23 could in turn be obtained by a sequence of reactions such as oxidation, olefination and diastereoselective epoxidation of alcohol 24. Ester 24 was envisaged from acetamidate 25 by the regioselective aziridine opening with 3-pentanol. Protected aziridine $\mathbf{2 5}$ could in turn be obtained from epoxy aldehyde (-)-26.

Scheme 6: Initial attempt towards the synthesis of oseltamivir 1
To start with, epoxy aldehyde (-)-26 was prepared in 64.5% yield from commercially available cis-2-butene-1,4-diol 27 in three steps: (i) monosilylation of diol 27 (TBSCl, imid., 73\%); (ii) AE of allylic alcohol $28\left[\mathrm{Ti}(\mathrm{OiPr})_{4},(-)-\mathrm{DET}\right.$, anhydrous TBHP, 93\%]; (iii) oxidation of epoxy alcohol (+)-29 (TEMPO, BAIB, 95\%) (Scheme 7). The ${ }^{1} \mathrm{H}$ NMR spectrum of (-)-26 showed a characteristic signal for aldehydic proton at $\delta 9.47$. Other signals at $\delta 3.34-3.44(\mathrm{~m}, 2 \mathrm{H})$ and 3.96-4.00 ($\mathrm{m}, 2 \mathrm{H}$) were due to methine (- $\mathbf{C H}-\mathrm{O}-\mathbf{C H}-$) and methylene ($-\mathbf{C H}_{2}$-OTBS) protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical signal at $\delta 197.2$ due to aldehyde carbon while other carbon signals at $\delta 57.3$, 59.6 and 59.7 were indicative of carbons attached to oxygen atom (Figure 3).

Carbon tetrachloride

Figure 3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of epoxy aldehyde (-)-26

Scheme 7: (i) TBSCl, imid., dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$, 73\%; (ii) (-)-DET, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, anhydrous TBHP (5-6 M in decane), $4 \AA$ molecular sieves, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-10{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$; (iii) TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1$ h, 95%; (iv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 92 \%$; (v) NaN_{3}, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{DMF} / \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (4:4:1), $25{ }^{\circ} \mathrm{C}$, $10 \mathrm{~h}, 85 \%$; (vi) (a) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{PhMe}$, reflux, 3 h ; (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}$, $45 \mathrm{~min}, 81 \%$ (over two steps); (vii) 3-pentanol, $\mathrm{BF}_{3}{ }^{\cdot} \mathrm{OEt}_{2},-10{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 75 \%$; (viii) TBAF, THF, $0^{\circ} \mathrm{C}$, 2 h .

Wittig olefination of (-)-26 with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ gave the α, β-unsaturated epoxy ester (-)-30 in 92% yield. Regioselective ring opening of (-)-30 at the allylic position with azide ion in presence of $\mathrm{NH}_{4} \mathrm{Cl}$ was accomplished in 85% yield to give azido alcohol 31. Staudinger reaction $\left(\mathrm{Ph}_{3} \mathrm{P}\right.$, toluene) followed by N-acetylation $\left(\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}\right)$ afforded protected aziridine $\mathbf{2 5}$; $[\alpha]_{\mathrm{D}}{ }^{25}$ $+60\left(c\right.$ 2.0, $\left.\mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 25 showed multiplets at $\delta 2.82-2.91$ and 3.15-3.22 for methine protons attached to aziridine nitrogen. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical carbon signals at $\delta 39.8$ and 44.2 corresponding to methine carbons of the aziridine ring (Figure 4).

Figure 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of aziridine 25

Regioselective ring opening of $\mathbf{2 5}$ with 3 -pentanol in presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ proceeded smoothly to furnish α, β-unsaturated ester 32 as the exclusive product in 75% yield. The formation of $\mathbf{3 2}$ was confirmed from its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, which displayed multiplets at δ 3.96-4.04 \& 4.34-4.37 for methine protons and $\delta 80.6 \& 73.2$ for methine carbons attached to oxygen (Figure 5). The proton signals at $\delta 0.06 \& 0.85$ in its ${ }^{1} \mathrm{H}$ NMR spectrum and carbon signals at $\delta-5.5$, $-5.3,18.1 \& 25.8$ in its ${ }^{13} \mathrm{C}$ NMR spectrum were attributed to the TBS ether functionality.

Figure 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ester 32

On desilylation with TBAF, 32 unexpectedly gave the furan derivative 33, a Michael adduct, as the major product (65% yield) along with the desired alcohol 24 in minor amounts (17% yield). The formation of the desired alcohol 24 was confirmed from its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, which showed the disappearance of typical signals for TBS ether. The multiplets at δ 5.98-6.06 (1H) and 6.77-6.88 $(1 \mathrm{H})$ were attributed to the olefinic protons. The carbon signals at $\delta 170.5$ and 165.7 were due to amide and ester carbonyl functionalities, while the carbon signal at $\delta 145.8$ and 123.1 accounted for olefinic function (Figure 6).

Figure 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of alcohol 24

The formation of intramolecular Michael addition product 33 was confirmed by its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral analysis, which showed the disappearance of typical signals for olefin functionality. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed multiplets at $\delta 3.36-3.52(1 \mathrm{H}), 3.81-3.92(3 \mathrm{H})$ and 4.12-4.29 $(3 \mathrm{H})$ which were due to protons of methine and methylene group attached to oxygen. The singlet at $\delta 2.0(3 \mathrm{H})$ was attributed to methyl protons of acetyl group. The signals at $\delta 169.4$ and 171.0 in its ${ }^{13} \mathrm{C}$ NMR spectrum accounted for the amide and ester carbonyls (Figure 7).

Figure 7: ${ }^{1} \mathrm{H}$ NMR spectrum of tetrahydrofuran 33
Since the yield of $\mathbf{2 4}$ was miserably low, an alternate route to oseltamivir $\mathbf{1}$ was undertaken. Based on retrosynthetic analysis, we visualized that epoxide 34 can be considered as the key precursor in the synthesis of (-)-oseltamivir free base 1 and (-)-methyl 3-epi-shikimate 2 (Scheme 8). Cyclic epoxide 34 was envisaged from ring closing metathesis (RCM) of diene 35. Epoxy alcohol 35 was in turn obtained from diastereoselective Barbier allylation of chiral epoxy aldehyde (+)-26. Sharpless asymmetric epoxidation of allylic alcohol 28 was employed for the introduction of chirality.

Scheme 8: Retrosynthetic analysis of oseltamivir free base (1) and methyl 3-epi-shikimate (2)

Accordingly, in the second approach, antipode epoxy alcohol (-)-29 was readily prepared (97\% ee confirmed by HPLC analysis of the corresponding 3,5-dinitro benzoate \mathbf{A}) in two steps as described earlier in Scheme 7: (i) monosilylation, (ii) AE with (+)-DET as chiral source. The ${ }^{1} \mathrm{H}$ NMR spectrum of the 3,5-dinitro benzoate derivative of alcohol (-)-29 (A) showed signals at δ $9.19(\mathrm{~s}, 2 \mathrm{H})$ and $9.24(\mathrm{~s}, 1 \mathrm{H})$ which accounted for the three aromatic protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed carbon signal at $\delta 162.2$ which was attributed to ester carbonyl, while other peaks at $\delta 122.5,129.5,133.3$ and 148.7 were indicative of the aromatic carbons. Its IR spectrum showed a typical carbonyl stretching frequency band at $v_{\max } 1737 \mathrm{~cm}^{-1}$ (Figure 8). The multiplets at δ 3.26-3.29 $(1 \mathrm{H})$ and $3.24-3.44(1 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of epoxide protons. Methine and methylene carbons attached to the oxygen atom gave signals at $\delta 53.2$, 56.3 , 61.0 and 66.2 in its ${ }^{13} \mathrm{C}$ NMR spectrum. Its chiral HPLC gave an enantiomeric
excess of 97\% (Column: Chiracel OD-H retention time: 46.24 min (-)-isomer, 58.29 min (+)isomer).

Retention Time	Area	Area \%	Height	Height \%

46.243	1792753436	98.31	11156727	98.56
58.290	30806312	1.69	162754	1.44
Totals	1823559748	100.00	11319481	100.00

Figure 8: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra and chiral HPLC chromatogram of benzoate \mathbf{A}
Oxidation of (-)-29 (TEMPO, BAIB) gave the aldehyde (+)-26, which upon purification was subjected to Barbier allylation with ethyl 2-(bromomethyl)acrylate to afford the homoallylic alcohol 36 in 64\% yield ($\mathrm{dr}=4: 1$) (Scheme 9).

Scheme 9: (i) TEMPO, $\operatorname{PhI}(\mathrm{OAc})_{2}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (ii) ethyl 2(bromomethyl)acrylate, Zn dust, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(4: 1), 0-25{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 64 \%$ (for syn-selectivity); (iii) MOMCl, DIPEA, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 90 \%$; (iv) TBAF, THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88 \%$; (v) IBX, dry DMSO, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (vi) n-BuLi, $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}$, dry THF, $-10{ }^{\circ} \mathrm{C}$ to $25{ }^{\circ} \mathrm{C}$, 3 h ; (vii) diethyl 1-diazo-2oxopropylphosphonate, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 82 \%$ (over two steps); (viii) H_{2}, Lindlar's catalyst, pyridine/1-octene/EtOAc (1:1:10), $6 \mathrm{~h}, 95 \%$ yield of 35.

The ${ }^{1} \mathrm{H}$ NMR spectrum of syn-epoxy alcohol 36 showed singlets at $\delta 5.76(1 \mathrm{H})$ and $6.29(1 \mathrm{H})$ which accounted for the two olefinic protons. The other signals at $\delta 3.78$ (dd, $J=5.8,11.8 \mathrm{~Hz}$, 1 H) and 3.90 (dd, $J=5.8,11.5 \mathrm{~Hz}, 1 \mathrm{H}$) were attributed to methylene attached to silyl ether group. The multiplet at $\delta 3.61$ was due to the methine attached to hydroxyl group. Its ${ }^{13} \mathrm{C}$ NMR
spectrum showed a characteristic carbonyl ester resonance at $\delta 167.6$. The two olefinic carbons displayed signal at $\delta 136.5$ and 127.9, while the other signals at $56.1,58.2,60.9,61.9$ and 68.9 were indicative of the carbons attached to oxygen atom. A significant COSY and NOESY correlation was observed between H_{4} and H_{3} in 36 (Figure 9).

Figure 9: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ \& COSY NMR spectra and HPLC chromatogram of epoxy alcohol 36

The hydroxyl group in 36 was then protected as its MOM ether (MOMCl, DIPEA, 90\%) and TBS group in 37 deprotected with 1 M TBAF solution in THF to produce alcohol 38; $[\alpha]_{\mathrm{D}}{ }^{25}+4.1$ (c $0.6, \mathrm{CHCl}_{3}$). This transformation was confirmed by analyzing the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 38. The disappearance of signals corresponding to TBS ether confirmed the deprotection. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed typical signals at $\delta 5.59(\mathrm{~s}, 1 \mathrm{H})$ and $6.16(\mathrm{~s}, 1 \mathrm{H})$ corresponding to olefinic protons, while the carbon signals at $\delta 96.0$ and 72.7 in its ${ }^{13} \mathrm{C}$ NMR spectrum accounted for the MOM ether group (Figure 10).

Carbon tetrachloride

Primary alcohol 38 was then subjected to oxidation (IBX/DMSO) to give the labile aldehyde 39. Several attempts to perform Wittig olefination (n-BuLi, $\mathrm{PPh}_{3}{ }^{+} \mathrm{CH}_{3} \mathrm{I}^{-}$, THF) of 39 to produce diene 40 were quite unsuccessful, due to its rapid decomposition under the strongly basic condition. Alternately, the crude aldehyde 39 was subjected to Seyferth-Gilbert homologation using Bestman-Ohira reagent ${ }^{16}$ in presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and MeOH , which gave the terminal alkyne 41 in 82% yield with completely transesterified methyl ester in 2 h . To prevent the transesterification process, the Seyferth-Gilbert homologation was carried out in EtOH; however no reaction took place even after 6 h . The acetylenic functionality in $\mathbf{4 1}$ was confirmed from its IR spectrum which showed a characteristic strong absorption band at $v_{\max } 2226 \mathrm{~cm}^{-1}$. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed a signal at $\delta 2.45(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$ indicative of acetylenic proton and at $\delta 75.1$ and 78.2 corresponding to acetylenic carbons (Figure 11). A singlet at $\delta 3.76$ (s, $3 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR confirmed the presence of methyl ester.

Chloroform-d

41

Figure 11: ${ }^{1} \mathrm{H}$ NMR and IR spectra of alkyne 41

Next, a systematic study of selective catalytic hydrogenation [H_{2} (1 atm), Lindlar's catalyst, additives, solvents] of alkyne $\mathbf{4 1}$ to alkene $\mathbf{3 5}$ was undertaken and the results are summarized in

Table 2. As can be seen, ethyl acetate and pyridine combination gave good yields (64\%) of diene 35; $[\alpha]_{D}{ }^{25}-5.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$, while the lowest yield was realized when 1,10-phenanthroline was used as additive with DMF as solvent; however higher selectivity (95\%) to $\mathbf{3 5}$ could be achieved when pyridine/1-octene was used in combination with EtOAc as solvent.

Table 2: Optimization studies for selective catalytic | hydrogenation of alkyne | 41: role of additives ${ }^{\text {a }}$ | | |
| :--- | :--- | :--- | :--- |
| Entry | Solvent | Additives $^{\text {b }}$ | Yield of $29(\%)^{\text {d }}$ |

Entry	Solvent	Additives $^{\text {b }}$	Yield of 29 (\%) $^{\text {d }}$
1	MeOH	Quinoline $^{\text {c }}$	26
2		Quinoline	23
3		Pyridine	34
4	DMF	Quinoline	22
5		Pyridine	16
6		1,10-phenanthroline	14
7	EtOAc	Quinoline	57
8		Pyridine	64
9^{e}		Pyridine/1-octene	95
10	Benzene	Pyridine	33

${ }^{\mathrm{a}} \mathrm{H}_{2}$ (1 atm), Lindlar’s catalyst (5 wt\%), dry solvent, $25{ }^{\circ} \mathrm{C}, 6 \mathrm{~h} ;{ }^{\mathrm{b}} 1.2$ equiv; ${ }^{\mathrm{c}} 10 \mathrm{~mol} \%$; ${ }^{\mathrm{d}}$ isolated yield; ${ }^{\mathrm{e}} \mathrm{py} / 1$-octene/EtOAc (1:1:10).

The formation of diene $\mathbf{3 5}$ was confirmed by the appearance of signals in its ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 5.33(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$ and $5.67-5.71(\mathrm{~m}, 2 \mathrm{H})$ corresponding to the olefinic protons. This was further substantiated by its ${ }^{13} \mathrm{C}$ NMR spectrum analysis which showed the presence of typical carbon signals at $\delta 120.5,127.7,132.1$ and 136.4 due to olefin functionality. The cyclohexene core 34 was then constructed smoothly in 90% yield via a RCM strategy using Grubbs II catalyst under high dilution (Scheme 10).

Scheme 10: (i) Grubbs-II (10 mol\%), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 14 h , 90%; (ii) $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$, DMF/EtOH $/ \mathrm{H}_{2} \mathrm{O}$ (4:4:1), $0-25{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 83 \%$; (iii) (a) $\mathrm{Ph}_{3} \mathrm{P}$, PhMe, reflux, 3 h ; (b) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, $\mathrm{Et}_{3} \mathrm{~N}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}$, $45 \mathrm{~min}, 81 \%$ (over two steps); (iv) (a) 3-pentanol, $\mathrm{BF}_{3} . \mathrm{OEt}_{2},-10^{\circ} \mathrm{C}, 30 \mathrm{~min}$, (b) $2 \mathrm{~N} \mathrm{HCl}, \mathrm{EtOH}, 25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 64 \%$ (over two steps); (v) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 1 h ; (b) NaN_{3}, DMF, $80^{\circ} \mathrm{C}$, 3 h ; (c) H_{2}, Lindlar's cat, EtOH, 72\% (over three steps).

The formation of desired cyclohexene core 34 was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum which showed a characteristic olefinic proton at $\delta 6.98$ (t, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$), thus confirming the annulation. This was further evidenced by the appearence of carbon signals at $\delta 128.3$ and 131.1 of the olefinic carbons in its ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 12). A significant COSY and NOESY correlation was observed between H_{4} and H_{3} in cyclic epoxide 34 .

Figure 12: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and NOESY NMR spectra of cyclic epoxide 34
The Conversion of $\mathbf{3 4}$ to aziridine $\mathbf{4 3}$ was achieved using a sequence of reactions similar to the one described in Scheme 7. Consequently, the regioselective epoxide opening of 34 was achieved in 83% yield with azide anion $\left[\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{DMF} / \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(4: 4: 1)\right]$. The structure of azido alcohol 42 was confirmed by its IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as shown in Figure 13: Its ${ }^{1} \mathrm{H}$ NMR showed a triplet at $\delta 6.59(J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$ which indicated the presence of olefinic
proton, while a singlet at $\delta 3.77(3 \mathrm{H})$ accounted for methyl ester. Its IR spectrum showed an intense absorption band at $v_{\max } 2099 \mathrm{~cm}^{-1}$ typical for azide bond stretching vibrations.

Figure 13: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR and IR spectra of azido alcohol 42

Compound 42 was treated with 1 equiv of triphenylphosphine and the resulting mixture refluxed in toluene to afford the corresponding aziridine. It was found that aziridine was hard to separate by chromatography from the triphenylphosphine oxide, formed during the reaction. Fortunately, the unprotected aziridine could be purified by washing the reaction mixture with cold diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. The precipitated triphenylphosphine oxide was removed by filtration and the filtrate evaporated. Aziridine was then immediately exposed to 2 equiv of acetic anhydride and 3 equiv of triethylamine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to produce N-acetyl aziridine $\mathbf{4 3}$ in 81% yield; $[\alpha]_{\mathrm{D}}{ }^{25}-57.8$ (c $0.5, \mathrm{CHCl}_{3}$). The formation of acetamide 43 was confirmed by the appearance of a typical singlet at $\delta 2.10(3 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum, which indicated the presence of methyl protons of acetyl group. This was acertained by its ${ }^{13} \mathrm{C}$ NMR spectrum which showed the presence of acetamide carbonyl at δ 184.9. Its IR spectrum showed an intense absorption band at $v_{\text {max }} 1732$ cm^{-1} typical for ester carbonyl stretching vibrations. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed singlets at δ 3.34 and 3.76 which was attributed to the methyl protons of MOM ether and ester group respectively.

Regioselective ring opening of aziridine 43 with 3 -pentanol in presence of 1.5 equiv $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ followed by simultaneous MOM deprotection and transesterification using 2 N HCl in EtOH afforded the key amino alcohol 21, whose spectral data were in complete agreement with reported values. ${ }^{10}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 21 showed a singlet at $\delta 6.84(1 \mathrm{H})$ indicating the presence of olefinic proton. The multiplet at $\delta 4.41(1 \mathrm{H})$, were due to methine proton attached to oxygen of 3-pentyl ether. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic signals at $\delta 166.8$ and 171.8 indicating the presence of carbonyl of ester and acetamide respectively. The signals at δ $0.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$ and $1.42(\mathrm{~m}, 4 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum accounted for methylene and
methyl protons of 3-pentyl ether. Its IR spectrum showed a strong absorption band at $v_{\text {max }} 3396$ cm^{-1} attributed to the hydroxyl stretching vibrations (Figure 14).

Figure 14: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of alcohol 21

Amino alcohol 21 was then converted to oseltamivir free base in three steps; by following the reported procedures: ${ }^{10}$ (i) mesylation of alcohol 21, (ii) displacement of mesylate with azide ion, (iii) reduction of azide with Lindlar's catalyst. The sample of (-)-oseltamivir free base $\mathbf{1}$ obtained from the synthesis described herein has been found to be identical in all respects with the values reported in the literature. ${ }^{10}$

Additionally, a concise enantioselective synthesis of 3-epi-shikimate 2 was undertaken to demonstrate the direct application of cyclic epoxide 34, an important precursor for the synthesis of 3 -epi-shikimate 2 . Thus, cyclic epoxide 34 was readily converted into the desired triol 2 through a two step reaction sequence: (i) epoxide opening in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ as solvent combination; (ii) MOM deprotection of 44 with 2 N HCl in MeOH (Scheme 11). The comparison of spectral data of 2 with the reported values ${ }^{5 b, c}$ further establishes the absolute configuration of cyclic epoxide 34.

Scheme 11: (i) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3: 1), 0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 96 \%$; (ii) 2 N HCl , $\mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 74 \%$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 44 showed a characteristic olefinic proton signal at $\delta 6.82$ (s). A singlet at $\delta 4.70$ accounted for methylene protons of MOM ether, while the singlets at $\delta 3.74$ and 3.41 were due to methyl protons of ester and MOM ether respectively. The multiplets at $\delta 3.56$ 3.59, 4.03-4.04 and 4.37-4.39 were attributed to the methine attached to oxygen atom. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 127.9$ and 137.9 corresponding to olefinic carbons, while a resonance peak appearing at $\delta 166.6$ accounted for ester carbonyl. The signal at $\delta 97.1$ indicated the presence of methylene carbon of MOM ether. The other carbon signals at $\delta 70.2,73.9$ and
77.6 were due to carbons attached to oxygen atom. The 2D NMR studies of compound 44 showed anti-relationship between proton H_{3} and H_{4} (Figure 15). The disappearance of signals due to MOM ether in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of triol 2 confirmed the deprotection reaction.

Figure 15: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT, COSY, NOESY, HSQC and HMBC NMR spectra of anti-diol 44

1.1.4 Conclusion

In conclusion, we have described a new enantioselective synthesis of the anti-influenza agent (-)oseltamivir 1 (7.1\% overall yield; 98\% ee) and (-)-methyl 3-epi-shikimate 2 (16\% overall yield; 98% ee) starting from cheap and readily available cis-1,4-butene diol 27. The key steps employed in the synthesis are the Sharpless asymmetric epoxidation, diastereoselective Barbier allylation and Ring Closing Metathesis. This method comprises of operationally simple yet efficient reactions with the use of inexpensive and non-toxic reagents, amenable for commercial exploitation.

1.1.5 Experimental section

(Z)-4-(tert-Butyldimethylsilyloxy)but-2-en-1-ol (28)

To a solution of alcohol $27(20 \mathrm{~g}, 227.27 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added imidazole ($23.21 \mathrm{~g}, 340.91 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($37.68 \mathrm{~g}, 250 \mathrm{mmol}$). The reaction mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 6 h . After completion of reaction (monitored by TLC), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave the crude product which was then purified by column chromatography with petroleum ether/EtOAc (9:1 v/v) to give $28(33.57 \mathrm{~g})$ as a colorless liquid.

Yield: 73%; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 777,837,1033,1088,1255,1471,2857,2929,3354 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 2.9(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 4 \mathrm{H}), 5.57-$ 5.61 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.3,18.3,25.9,58.6,59.5,130.1,131.1$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{2}$ Si requires C, 59.35; H, 10.96; Found: C, 59.38; H, 10.99\%.

((2R,3S)-3-((tert-Butyldimethylsilyloxy)methyl) oxiran-2-yl)methanol

[(+)-29]: To a stirred suspension of powdered $4 \AA$ molecular sieves (10.0
g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mathrm{~mL}$), titanium tetraisopropoxide ($5.68 \mathrm{~g}, 20$ $\mathrm{mol} \%$) was added under nitrogen atmosphere. The reaction mixture was cooled to $-10^{\circ} \mathrm{C}$ and (-)diethyl tartrate ($6.11 \mathrm{~g}, 30 \mathrm{~mol} \%$) added and stirred for 10 min . To the above solution, tert-butyl hydroperoxide 5-6 M solution in decane (39.5 mL , 2 equiv) was added and stirred at $-10^{\circ} \mathrm{C}$ for further 30 min , after which allylic alcohol $28(20 \mathrm{~g}, 98.83 \mathrm{mmol})$ dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150$ mL) was added and stirred at $-10{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction (monitored by TLC), it was quenched with $1 \mathrm{M} \mathrm{NaOH}(25 \mathrm{~mL})$ with further stirring for 1 h at $-10{ }^{\circ} \mathrm{C}$. The organic layer was then separated, washed with brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude compound was purified by column
chromatography using petroleum ether/EtOAc (7:3 v/v) to afford the allylic alcohol (+)-29 $(20.07 \mathrm{~g})$ as a colorless liquid.

Yield: 93\%; $[\alpha]_{\mathrm{D}}{ }^{25}+11.7\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 777,837,1047,1257,1472,2858$, 2955, $3441 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 2.9(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.13-$ $3.20(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.73(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.4,-5.3,18.3,25.8,56.2$, 56.5, 60.6, 61.6; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{3}$ Si requires C, 55.00 ; H, 10.15; Found: C, 55.07; H, 10.18\%.
(2S,3S)-3-((tert-Butyldimethylsilyloxy)methyl)oxirane-2-carbaldehyde [(-)-26]
To a solution of alcohol (+)-29 (15.02 g, 69.44 mmol$)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added in one portion (diacetoxyiodo)benzene (24.34, 75.62 mmol) and TEMPO ($1.08 \mathrm{~g}, 6.91 \mathrm{mmol}$). The reaction mixture was then allowed to stir at $25{ }^{\circ} \mathrm{C}$ for 1 h . After completion of reaction (monitored by TLC), it was quenched by addition of saturated solution of aq. sodium thiosulphate. The organic layer was separated, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and the residue subjected to column chromatographic purification with petroleum ether/EtOAc (9:1 v/v) to afford the epoxy aldehyde (-)-26 (14.27 g) as yellow colored liquid.

Yield: $95 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-41.7\left(c 3.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 778,838,1099,1256,1472,1720$, 2858, $2930 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 3.34-3.44(\mathrm{~m}, 2 \mathrm{H})$, 3.96-4.00 (m, 2H), $9.47(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.7,18.0,25.5$, 57.3, 59.6, 59.7, 197.2; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3}$ Si requires C, 55.52; H, 9.32; Found: C, 55.60; H, 9.43\%.
(E)-Ethyl-(2R,3S)-3-((tert-butyl dimethyl silyloxy)methyl(oxiran-2-yl)acrylate [(-)-30]

To a stirred solution of aldehyde (-)-26 (10.0 g, 46.22 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(24.0$ g, 70.0 mmol) and the reaction mixture was stirred for 2 h . After completion of reaction (monitored by TLC), solvent was distilled off under reduced pressure and the crude mass on column chromatographic purification with petroleum ether/EtOAc (9:1 v/v) gave the α, β-unsaturated ester (-)-30 (12.18 g) as a slightly yellow colored liquid.

Yield: $92 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-13.7\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 778,838,1035,1260,1722,2858$, $2930 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.32-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.75(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.11(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.4,-5.3,14.1$, 18.2, 25.8, 54.6, 59.1, 60.5, 60.8, 125.3, 141.2, 165.1; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4}$ Si requires C, 58.70; H, 9.15; Found: C, 58.78; H, 9.13\%.
(4S,5R,E)-Ethyl 4-azido-6-(tert-butyldimethylsilyloxy)-5-hydroxyhex-2-enoate (31)
To a solution of epoxy ester (-)-30 (9 g, 31.44 mmol$)$ in DMF/EtOH/ $\mathrm{H}_{2} \mathrm{O}(80: 80: 20 \mathrm{~mL})$ were added $\mathrm{NH}_{4} \mathrm{Cl}(10.2 \mathrm{~g}, 189 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(12.6 \mathrm{~g}, 189 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was then stirred at 25 ${ }^{\circ} \mathrm{C}$ for 10 h . After completion of reaction (monitored by TLC), EtOH was removed by rotary evaporation. The remaining solution was extracted with EtOAc (100 mL x 3). The combined organic layers were washed with brine ($20 \mathrm{~mL} x \mathrm{3}$) and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After evaporation of the solvent, the residue was purified using coulumn chromatography with petroleum ether/EtOAc (7:3 v/v) to give the azido alcohol $31(8.79 \mathrm{~g})$ as yellow colored liquid.

Yield: $85 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+15.1\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 668,765,835,1110,1250,1515$, 1585, 1610, 1740, 2106, 2955, $3320 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.09$ (s, 6H), 0.91 (s,

9H), $1.31(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.60-3.73(\mathrm{~m}, 3 \mathrm{H}), 4.17-4.28(\mathrm{~m}, 3 \mathrm{H}), 6.07(\mathrm{~d}, \mathrm{~J}=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.82-6.93 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.4,14.2,18.2,25.8,60.7$, 63.2, 64.2, 73.3, 124.8, 141.2, 165.4; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ Si requires C, 51.04; H, 8.26; N, 12.75; Found: C, 51.10; H, 8.23, N, 12.89\%.
(E)-Ethyl 3-((2S,3S)-1-acetyl-3-((tert-butyl di-methyl silyloxy)methyl)aziridin-2-yl)acrylate (25)

To a solution of azido alcohol $31(5 \mathrm{~g}, 15.18 \mathrm{mmol})$ in toluene (30 mL) was added triphenyl phosphine ($4.38 \mathrm{~g}, 16.70 \mathrm{mmol}$) and the reaction mixture was refluxed for 3 h . After removal of the solvent under reduced pressure, diethylether (10 mL) was added, and the mixture cooled with ice-bath. The precipitated triphenylphosphine oxide was removed by filtration and the filtrate evaporated. This procedure was repeated to remove any traces of triphenylphosphine oxide. The residue obtained was then dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cooled at $0{ }^{\circ} \mathrm{C}$. To this solution was added $\mathrm{Et}_{3} \mathrm{~N}(3.10$ g, 30.36 mmol), DMAP (5 mg) and acetic anhydride ($2.32,22.77 \mathrm{mmol}$) and the mixture stirred at $25{ }^{\circ} \mathrm{C}$ for further 45 minutes. After completion of reaction (monitored by TLC), the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and subjected to column chromatographic purification with petroleum ether/EtOAc (7:3 v/v) to afford the acetamide $25(4.02 \mathrm{~g})$ as a yellow liquid.

Yield: 81%; $[\alpha]_{\mathrm{D}}{ }^{25}+60.0\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 973,1187,1256,1356,1472,1643$, 1715, 2858, $2930 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.80(\mathrm{~m}, 2 \mathrm{H})$, $4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta-5.4,14.2,18.2,23.1,25.8,39.8,44.2,60.5,60.9,125.2,141.0,165.3,182.0$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{4}$ Si requires C, 58.68; H, 8.93; N, 4.28; Found: C, 58.73 ; H, 8.86, N, 4.35\%. (4R,5R,E)-Ethyl 5-acetamido-6-(tert-butyldimethylsilyloxy)-4-(pentan-3-yloxy)hex-2-enoate (32)

To a well stirred solution of acetamide 25 ($4 \mathrm{~g}, 12.21 \mathrm{mmol}$) in 3pentanol (30 mL), a solution of 1.5 equiv $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in 3-pentanol was added at $-10{ }^{\circ} \mathrm{C}$, followed by stirring at this temperature for additional 30 minutes. After the completion of reaction (monitored by TLC), it was quenched with a saturated aq. solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The organic layer is then washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude product which on chromatographic separation with petroleum ether/EtOAc $(6: 4 \mathrm{v} / \mathrm{v})$ gave the title compound $32(3.81 \mathrm{~g})$ as a light yellow colored liquid.

Yield: $75 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+23.6\left(c 2.0, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $v_{\text {max }} 768,838,1199,1345,1472,1645$, 1720, 2959, 2930, $3320 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.06$ (s, 3H), 0.08 (s, 3H), 0.850.92 (m, 15H), 1.30 (t, J = 7.2 Hz, 3H), 1.46-1.56 (m, 4H), 1.98 (s, 3H), 3.25-3.30 (m, 1H), 3.47-3.56 (m, 1H), 3.67-3.74 (m, 1H), 3.96-4.04 (m, 1H), 4.14 (q, J = 7.1 Hz, 2H), 4.34-4.37 (m, 1H), 5.77 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-5.5,-5.3,9.2,9.7,14.3,18.1,23.3,25.2,25.8,26.1,53.6,60.3,73.2,80.6,122.4$, 146.8, 165.8, 169.6; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{NO}_{5}$ Si requires C, 60.68; H, 9.94; N, 3.37; Found: C, 60.76; H, 10.06, N, 3.35\%.

Ethyl 2-((2R,3S,4R)-4-acetamido-3-(pentan-3-yloxy)tetrahydrofuran-2-yl)acetate (33) and (4R,5R,E)-Ethyl 5-acetamido-6-hydroxy-4-(pentan-3-yloxy)hex-2-enoate (24)

To a well stirred solution of silyl ether 32 ($200 \mathrm{mg}, 0.48 \mathrm{mmol}$) was added 1 M solution of tetrabutylammonium fluoride $(1 \mathrm{~mL}, 1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 2 h after which the solvent was removed under reduced pressure and the residue was subjected to column chromatography with petroleum ether/EtOAc ($5: 5 \mathrm{v} / \mathrm{v}$) to afford furan derivative 33 (94 mg) as major product (65%) and free alcohol $24(25 \mathrm{mg})$ as minor product (17\%).

Compound 33: Yield: 65\%; viscous liquid; $[\alpha]_{\mathrm{D}}{ }^{25}+41.7$ (с 2.0, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 1085,1218,1231,1346,1373,1545$, 1643, 1710, 2978, 3320, $3416 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.82-0.97 (m, 6H), 1.29 (t, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.52(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.78$ (m, 2H), 3.36-3.52 (m, 1H), 3.81-3.92 (m, 3H), 4.12-4.29 (m, 3H), $6.55(\mathrm{~d}, J=6.5, \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 9.0,9.9,14.0,23.0,25.4,26.2,37.4,56.3,60.6,72.3,80.5,81.3,85.5$, 169.4, 171.0; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{5}$ requires C, 59.78; H, 9.03; N, 4.65; Found: C, 59.83; H, 9.08, N, 4.70\%.

Compound 24: Yield: 17%; viscous liquid; $[\alpha]_{D}{ }^{25}+34.8$ (с 2.0, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 1165,1274,1266,1306,1455,1485,1659$, 1710, 2968, 3311, $3377 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.89(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.57(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{~s}$, 3H), 3.25-3.34 (m, 1H), 3.64-3.73 (m, 2H), 3.94-4.04 (m, 1H), 4.18 (q, J=7.2, Hz, 2H), 4.32$4.36(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.14(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 9.0,9.7$, 14.2, 23.2, 24.9, 26.1, 54.4, 60.5, 62.2, 74.7, 80.5, 123.1, 145.8, 165.7, 170.5; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{5}$ requires C, 59.78 ; H, 9.03; N, 4.65; Found: C, 59.91 ; H, $9.16, \mathrm{~N}, 4.79 \%$. ((2S,3R)-3-((tert-Butyldimethylsilyloxy)methyl)oxiran-2-yl)methanol [(-)-29]

To a stirred suspension of powdered $4 \AA$ molecular sieves (10.0 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (700 mL), titanium tetraisopropoxide ($5.68 \mathrm{~g}, 20 \mathrm{~mol} \%$) was added under nitrogen atmosphere. The reaction mixture was cooled to -10 ${ }^{\circ} \mathrm{C}$ and $(+)$-diethyl tartrate $(6.11 \mathrm{~g}, 30 \mathrm{~mol} \%)$ added and stirred for 10 min . To the above solution, tert-butyl hydroperoxide 5-6 M solution in decane (39.5 mL , 2 equiv.) was added and stirred at $-10^{\circ} \mathrm{C}$ for further 30 min , after which allylic alcohol $28(20 \mathrm{~g}, 98.83 \mathrm{mmol})$ dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added and stirred at $-10{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction (monitored by TLC), the reaction mixture was quenched with $1 \mathrm{M} \mathrm{NaOH}(25 \mathrm{~mL}$) with further stirring at $-10^{\circ} \mathrm{C}$ for 1 h . The organic layer was then separated, washed with brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude compound was purified by column chromatography using petroleum ether/EtOAc (7:3 v/v) to afford the allylic alcohol (-)-29 as a colorless liquid. $[\alpha]_{\mathrm{D}}{ }^{25}-11.1$ (c 2.0, $\left.\mathrm{CHCl}_{3}\right)$.

3,5-Dinitrobenzoate of alcohol (-)-29 (A)

To a stirred solution of 3,5-dinitro benzoylchloride (230 mg , 1 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($303 \mathrm{mg}, 3 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. To the cooled solution was added epoxy alcohol (-)29 (218.4 mg, 1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMAP (2 mg). The reaction is then stirred at $25^{\circ} \mathrm{C}$ for further 2 h . After completion of the reaction (monitored by TLC), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer is further washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated under reduced pressure. The crude product is then purified by column chromatography using petroleum ether/EtOAc (7:3 v/v) to afford the title compound $\mathbf{A}(395 \mathrm{mg})$ as a pale yellow liquid.

Yield: 96%; $[\alpha]_{\mathrm{D}}{ }^{25}-8.8\left(c 3.0, \mathrm{CHCl}_{3}\right)$; Optical purity 97% ee from HPLC analysis: Column: Chiracel OD-H (4.6 X 250 nm), mobile phase: hexane/isopropyl alcohol (80/20), flow rate: 0.5 $\mathrm{mL} / \mathrm{min}$, retention time: $46.24 \min (-)$-isomer, $58.29 \min (+)$-isomer; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max } 721$, 888, 1099, 1276, 1462, 1737, 2857, 2929, $3103 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}$, 3H), $0.12(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 3.26-3.29,(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.92(\mathrm{~m}, 2 \mathrm{H}), 4.46-$ $4.51(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.78(\mathrm{~m}, 1 \mathrm{H}), 9.19(\mathrm{~s}, 2 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-5.3$, 18.3, 25.8, 53.2, $56.3,61.0,65.2,122.5,129.5,133.3,148.7,162.2$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}$ Si requires C, 49.50; H, 5.86; N, 6.79; Found: C, 49.53; H, 5.88; N, 6.80%.

(2R,3R)-3-((tert-Butyldimethylsilyloxy)methyl)oxirane-2-carbaldehyde [(+)-26]

To a solution of alcohol (-)-29 (15.02 g, 69.44) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added in one portion (diacetoxyiodo)benzene (24.34, 75.62 mmol) and TEMPO $(1.08 \mathrm{~g}, 6.91 \mathrm{mmol})$. The reaction mixture was then allowed to stir at $25^{\circ} \mathrm{C}$ for 1 h . After completion of reaction (monitored by TLC), the reaction mixture was quenched by addition of saturated solution of aq. sodium thiosulphate. The organic layer was separated, washed with brine and subjected to column chromatographic purification with petroleum ether/EtOAc (9:1 v/v) to afford the epoxy aldehyde (+)-26. $[\alpha]_{\mathrm{D}}{ }^{25}+43.0\left(c 3.0, \mathrm{CHCl}_{3}\right)$.
(R)-Ethyl 4-((2S,3R)-3-((tert-butyldimethylsilyloxy)methyl) oxiran-2-yl)-4-hydroxyl-2-methylenebutanoate (36): To a precooled ($0{ }^{\circ} \mathrm{C}$), well stirred mixture of (+)-26 (4 g, 18.51 mmol$), \mathrm{Zn}$ dust ($3.02 \mathrm{~g}, 45 \mathrm{mmol}$) and ethyl 2-(bromomethyl)acrylate ($8.10 \mathrm{~g}, 41 \mathrm{mmol}$) in 80 mL of THF was added a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$. The mixture was stirred for 10 h at ambient temperature until the aldehyde was totally consumed (monitored by TLC). The mixture was filtered and the precipitate was thoroughly washed with THF ($3 \times 10 \mathrm{~mL}$). THF was then
removed under vaccum and the remaining solution extracted with EtOAc. The organic layer is then washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude product which on chromatographic separation with petroleum ether/EtOAc (7:3 v/v) gave title compound syn-epoxy alcohol 36 (3.91 g) along with minor amount of its corresponding diastereomer (977 mg) as a yellow colored liquid in 4:1 ratio.

Yield: $64 \% ;[\alpha]_{\mathrm{D}}{ }^{25}$-19.2 (c 2.0, CHCl_{3}); Optical purity 98% ee from HPLC analysis: Column: Chiracel OJ-H (4.6 X 250 nm), mobile phase: hexane/isopropyl alcohol (90/10), flow rate: 0.5 $\mathrm{mL} / \mathrm{min}$, retention time: $15.747 \mathrm{~min}(+)$-isomer, 17.517 min (-)-isomer; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max } 778$, 838, 1097, 1256, 1472, 1715, 2857, 2956, $3471 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.10$ (s, 3H), $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.58(\mathrm{dd}, J=7.8,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}$, $J=3.8,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.94(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.63-3.65(\mathrm{~m}, 1 \mathrm{H})$, 3.78 (dd, $J=5.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=5.8,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}$, 1H), 6.29 (s, 1H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.4,-5.3,14.1,18.2,25.8,37.8,56.1,58.2$, 60.9, 62.0, 69.0, 128.0, 136.6, 167.6; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}$: C, 58.15 ; H, 9.15; Found: C, 58.20; H, 9.12\%.

Yield: 16%; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.08(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.54-2.60(\mathrm{~m}, 2 \mathrm{H})$, 2.99 (dd, $J=4.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (dd, $J=4.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68-3.81 (m, 2H), 4.20 (q, $J=7.1,14.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta-5.3,-5.2,14.2,18.3,25.9,37.1,57.7,59.8,60.9,61.7,68.7,128.1,136.2,166.9$.
(R)-Ethyl 4-((2S,3R)-3-((tert-butyldimethylsilyloxy)methyl)oxiran-2-yl)-4-methoxymethoxy) -2-methylenebutanoate (37)

To a solution of compound $36(3 \mathrm{~g}, 9.09 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added N, N diisopropylethylamine (DIPEA) (1.3 g, 29.7 mmol), followed by addition of MOMCl (1 mL, $19.8 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 10 h and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added to quench the reaction. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} x 3)$. The combined organic layers were washed with brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified by chromatography (petroleum ether/ EtOAc $=9 / 1$) to give MOM protected compound $37(3.39 \mathrm{~g})$ as a colorless oil.

Yield: $90 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+2.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 778,838,1150,1257,1716,2857$, $2955 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl ${ }_{3}$): $\delta 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.53-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.96-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.87(\mathrm{~m}, 3 \mathrm{H}), 4.16$ (q, $J=$ 7.2 Hz, 2 H), $4.56(\mathrm{dd}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta-5.4,-5.2,14.2,18.3,25.9,35.4,55.5,55.6,59.1,60.7,61.8,73.3$, 95.3, 127.7, 136.2, 166.4; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 57.72$; H, 9.15; Found: C, 57.78; H, 9.12\%.
(R)-Ethyl 4-((2S,3R)-3-(hydroxymethyl)oxiran-2-yl)-4-(methoxy methoxy)-2-methylene butanoate (38): To a well stirred solution of silyl ether 37 ($1.1 \mathrm{~g}, 2.94 \mathrm{mmol}$) was added 1 M solution of tetrabutylammonium fluoride ($6.2 \mathrm{~mL}, 5.87 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 2 h after which the solvent was removed under reduced pressure and the residue was subjected to column chromatography with petroleum ether/EtOAc (6:4 v/v) to afford free alcohol 38 (673 mg) oily liquid.

Yield: $88 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+4.1\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 919,1048,1305,1410,1632,1716$, 2983.3, $3453 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), 2.51 (dd, $J=9.0,14.0$

Hz, 1H), 2.68 (dd, $J=3.4,13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83-2.89 (m, 1H), 3.11-3.17 (m, 1H), 3.24 (br s, 1H), $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.77-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, 1H), $4.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.3$, 36.6, 55.5, 56.2, 57.9, 60.0, 60.8, 72.8, 96.0, 127.8, 136.5, 166.9; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6}$ requires C, 55.37; H, 7.74; Found: C, 55.43; H, 7.90\%.

(R)-Methyl 4-((2S,3R)-3-ethynyloxiran-2-yl)-4-(methoxymethoxy)-2-methylenebutanoate

 (41)To a solution of epoxy alcohol 38 ($1.4 \mathrm{~g}, 5.34 \mathrm{mmol}$) in DMSO (5 mL) in a round-bottomed flask was added IBX ($1.68 \mathrm{~g}, 6 \mathrm{mmol}$) in one portion and the reaction mixture was stirred for 1 h at ambient temperature. The reaction mixture was quenched with diethylether $(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and filtered through a pad of celite. The residue was repeatedly washed with diethyl ether. The filtrate was then washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude aldehyde 39, which was pure enough and used in the next step without further purification. To a solution of crude aldehyde 39 and $\mathrm{K}_{2} \mathrm{CO}_{3}(900 \mathrm{mg}, 8 \mathrm{mmol})$ in 20 mL dry MeOH are added diethyl-1-diazo-2-oxopropylphosphonate ($1.26 \mathrm{~g}, 6 \mathrm{mmol}$) and stirring is continued until the reaction is complete as indicated by TLC (2 h). The reaction mixture is diluted with diethylether (100 mL), washed with an aq. solution of NaHCO_{3} and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent yielded analytically pure terminal alkyne $\mathbf{4 1}(1.05 \mathrm{~g})$ as a colorless liquid.

Yield: $82 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-9.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 757,1171,1289,1441,1409,1715$, 2226, $2953 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.44(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (dd, $J=7.4,14.3$ Hz, 1H), 2.78 (dd, $J=5.4,15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, $J=3.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (s, 3H), 3.48-3.50
(m, 1H), 3.76 (s, 3H), 3.79-3.87 (m, 1H), 4.61 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.26(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.4,45.2,51.8$, 55.7, 58.5, 73.6, 75.1, 78.2, 95.7, 127.7, 136.2, 167.4; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C, 59.99; H, 6.71; Found: C, 60.02; H, 6.78\%.

(R)-Methyl 4-(methoxymethoxy)-2-methylene-4-((2S,3R)-3-vinyl oxiran-2-yl)butanoate (35)

 To a solution of 41 (240 mg , 1 mmol) in 5 mL of ethyl acetate/pyridine/1-octene (10:1:1) was added Lindlar's catalyst (12 mg). The reaction mixture was stirred for 6 h under a balloon of H_{2} at room temperature and filtered through a celite pad. The filtrate was concentrated and the residue was purified by silica gel column chromatography using petroleum ether/EtOAc (7:3 v/v) as eluent to give olefin $35(230 \mathrm{mg})$ as colorless liquid.Yield: 95\%; $[\alpha]_{\mathrm{D}}{ }^{25}-5.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 878,1169,1204,1341,1514,1711$, 2924, $3034 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.05-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.34$ (s, 3H), 3.38-3.41 (m, 1H), 3.67-3.74 (m, 1H), 3.76 (s, 3H), 4.58 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (m, 1H), 5.52 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.71(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13}$ C NMR (50 MHz, CDCl_{3}): $\delta 36.1,51.8,55.3,57.4,59.3,71.1,94.9,120.5,127.7,132.1$, 136.4, 167.1; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}$ requires C, 59.49; H, 7.49; Found: C, 59.71 ; H, 7.61\%.

(1R,5R,6S)-Methyl 5-(methoxymethoxy)-7-oxabicyclo[4.1.0]hept-2-ene-3-carboxylate (34): A mixture of diene 35 ($400 \mathrm{mg}, 1.65$ mmol) and Grubbs' second-generation catalyst ($70 \mathrm{mg}, 5 \mathrm{~mol} \%$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was stirred under reflux for 14 h . The reaction mixture was evaporated and the residue purified on silica gel chromatography by eluting with petroleum ether/ EtOAc (7:3 $\mathrm{v} / \mathrm{v})$ to afford $34(318 \mathrm{mg})$ as gum.

Yield: $90 \% ;[\alpha]_{D}{ }^{25}-32.7\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 1091,1139,1235,1387,1497,1579$, 1719, $2986 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.17-2.27 (m, 1H), 2.81-2.86 (m, 1H), 3.43 (s, $3 H), 3.45-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.98-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{t}$, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.5,46.5,51.9,55.0,55.4,69.3,95.9,128.3$, 131.1, 167.5; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C, 56.07 ; H, 6.59; Found: C, 56.01 ; H, 6.53%. (3S,4R,5R)-Methyl 3- azido-4-hydroxy-5-(methoxymethoxy)cyclo hex-1-enecarboxylate (42)

To a solution of cyclic epoxy ester $\mathbf{3 4}$ ($107 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF/EtOH/ $\mathrm{H}_{2} \mathrm{O}(4: 4: 1 \mathrm{~mL})$ were added $\mathrm{NH}_{4} \mathrm{Cl}(160 \mathrm{mg}, 3 \mathrm{mmol})$ and NaN_{3} ($197 \mathrm{mg}, 3 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was then stirred at $25^{\circ} \mathrm{C}$ for 10 h . After completion of reaction (monitored by TLC), EtOH was removed by rotary evaporation. The remaining solution was extracted with EtOAc (100 mL x 3). The combined organic layers were washed with, brine ($20 \mathrm{~mL} \times 6$) and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After evaporation of the solvent, the residue was purified by chromatography (petroleum ether/ EtOAc (6/4 v/v).

Yield: 83\% (106 mg); yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{25}+17.3\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 1073,1176$, 1235, 1365, 1448, 1489, 1561, 1714, 2106, 2994, $3345 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): 2.19$2.33(\mathrm{~m}, 1 \mathrm{H}), 2.87-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.19(\mathrm{~m}$, 1H), $4.76(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.6,52.2,55.9,63.4$, 74.6, 77.9, 96.8, 129.9, 134.4, 165.7; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, 46.69; H, 5.88; N,
16.33; Found: C, 46.61; H, 5.85; N, 16.38\%.
(1S,5R,6S)-Methyl 7-acetyl-5-(methoxymethoxy)-7-azabicyclo[4.1.0]hept-2-ene-3carboxylate (43)

To a solution of azido alcohol 42 ($150 \mathrm{mg}, 0.58 \mathrm{mmol}$) in toluene (5 mL) was added triphenylphosphine ($152 \mathrm{mg}, 0.58 \mathrm{mmol}$) and the reaction mixture was refluxed for 3 h . After removal of the solvent under reduced pressure, diethylether (1 mL) was added, and the mixture cooled with ice-bath. The precipitated triphenylphosphine oxide was removed by filtration and the filtrate evaporated. This procedure was repeated to remove any trace of triphenylphosphine oxide. The residue obtained was then dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cooled at $0{ }^{\circ} \mathrm{C}$. To this solution was added $\mathrm{Et}_{3} \mathrm{~N}(175.74 \mathrm{mg}, 1.74 \mathrm{mmol})$, DMAP $(5 \mathrm{mg})$ and acetic anhydride ($118.32 \mathrm{mg}, 1.16$ mmol) and the mixture stirred at $25{ }^{\circ} \mathrm{C}$ for further 45 min . After completion of reaction (monitored by TLC), it was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and subjected to column chromatographic purification with petroleum ether/ EtOAc (7:3 v/v) to afford the cyclic acetamide $43(120 \mathrm{mg})$ as colorless viscous liquid.

Yield: 81\%; $[\alpha]_{\mathrm{D}}{ }^{25}-57.8\left(c 0.5, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max } 1073,1195,1255,1324,1369,1448$, 1708, 1732, 2987, $3115 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.10 (s, 3H), 2.20-2.27 (m, 1H), 2.86-2.96 (m, 2H), $3.16(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.41-4.46(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.73(\mathrm{~m}$, $2 \mathrm{H}), 7.11(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,23.8,46.4,51.9,55.0,55.4$, 69.3, 95.9, 133.2, 148.3, 166.2, 184.9; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires C, 56.46; H, 6.71; N, 5.49; Found: C, 56.51; H, 6.85; N, 5.48\%.
(3R,4R,5R)-Ethyl 4-acetamido-5-hydroxy-3-(pentan-3-yloxy)cyclohex-1-enecarboxylate (21):

To a well stirred solution of cyclic acetamide 43 ($160 \mathrm{mg}, 0.64 \mathrm{mmol}$) in 3-pentanol (10 mL), a solution of 1.5 equiv. of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.96 \mathrm{mmol})$ in 3-pentanol (2 mL) was added at $-10^{\circ} \mathrm{C}$, followed by stirring at this
temperature for additional 30 min. After the completion of reaction (monitored by TLC), it was quenched with a saturated aq. solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The organic layer was then washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude amino alcohol product of sufficient purity as a gum, which was used for further reaction. To a well stirred solution of crude amino alcohol in $\mathrm{EtOH}(10 \mathrm{~mL})$, a 2 N solution of $\mathrm{HCl}(2 \mathrm{~mL})$ was added. The reaction was stirred for an additional 12 h at $25^{\circ} \mathrm{C}$. After the completion of reaction (monitored by TLC), it was quenched by adding aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$. The reaction mixture was then partitioned between EtOAc and brine. The organic layer was further washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude product which on chromatographic purification with petroleum ether/ EtOAc (3:7 v/v) gave title compound 21 (128 mg) as colorless solid.

Yield: 64%; m.p. $129-131{ }^{\circ} \mathrm{C}$ \{lit. ${ }^{10}$ m.p. $\left.131.9-132.2^{\circ} \mathrm{C}\right\} ;[\alpha]_{\mathrm{D}}{ }^{25}-84.8$ (c 1.0, EtOAc) \{lit. ${ }^{10}$ $\left.[\alpha]_{\mathrm{D}}{ }^{25}-104(c 3, \mathrm{EtOAc})\right\} ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 1085,1274,1266,1306,1373,1455,1585,1649$, 1707, 2963, 3311, $3396 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=$ $7.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 4 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H})$, $3.91(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 3 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 9.7,9.8,14.2,23.8,26.1,26.7,31.9,55.2,61.1,67.4,72.9,82.3,129.4,136.4$, 166.8, 171.8; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{5}$ requires $\mathrm{C}, 59.46$ requires $\mathrm{C}, 61.32 ; \mathrm{H}, 8.68$; $\mathrm{N}, 4.47$; Found: C, 61.47; H, 8.71; N, 4.56\%.

(-)-Oseltamivir free base (1)

Compound 21 ($312 \mathrm{mg}, 1 \mathrm{mmol}$) and triethylamine ($303 \mathrm{mg}, 3 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and the solution cooled to 0 ${ }^{\circ} \mathrm{C}$. Methanesulfonyl chloride ($229.2 \mathrm{mg}, 2 \mathrm{mmol}$) was added, and then the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After TLC showed that the reaction was complete, excess $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added. The organic phase was washed with brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the solvent was removed under vaccum, the crude product was dissolved in DMF and NaN_{3} ($390 \mathrm{mg}, 6 \mathrm{mmol}$) was added. The reaction mixture was then stirred at $80^{\circ} \mathrm{C}$ for 3 h . After the completion of reaction (monitored by TLC), it was then partitioned between EtOAc and brine. The organic layer was further washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude product which on chromatographic purification with petroleum ether/EtOAc (4:6 v/v) gave the corresponding cyclic azide. The cyclic azide was then dissolved in EtOH and Lindlar's catalyst (20 mg) added. The reaction mixture was stirred for 6 h under a balloon of H_{2} at room temperature and filtered through a celite pad. The filtrate was concentrated and the residue was purified by silica gel column chromatography using $\mathrm{MeOH} / E t O A c(5: 5 \mathrm{v} / \mathrm{v}$) as eluent to give (-)oseltamivir free base $\mathbf{1}$ (224 mg).

Yield: 72%; $[\alpha]_{\mathrm{D}}{ }^{25}-37.8$ (c 1, EtOH) $\left\{\mathrm{lit.}^{10}[\alpha]_{\mathrm{D}}{ }^{25}-49.2\right.$ (c 9.33, EtOH) $\}$; IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\max }$ 1068, 1127, 1255, 1374, 1456, 1568, 1644, 1714, 2977, $3289 \mathrm{~cm}-1 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): 0.90(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.76$ $(\mathrm{m}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.1,10.2,14.8,24.5,26.3,26.7,34.3,49.8,59.5,61.3,75.7,82.3,129.9$, 138.0, 167.1, 171.8; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 61.51; H, 9.03; N, 8.97; Found: C, 61.47; H, 8.98; N,
8.88\%.
(3R,4S,5R)-Methyl 3,4-dihydroxy-5-(methoxymethoxy)cyclohex-1-enecarboxylate (44)
To a well stirred solution of epoxide 34 ($107 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF/ $\mathrm{H}_{2} \mathrm{O}$ (3:1), concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (5 drops) was added. The reaction was stirred for an additional 2 h at $25^{\circ} \mathrm{C}$. After the completion of reaction (monitored by TLC), it was diluted with excess of EtOAc. The organic layer is further washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude product which on chromatographic purification with petroleum ether/EtOAc (2:8 v/v) gave diol $44(111 \mathrm{mg})$ as viscous liquid.

Yield: $96 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-45.1(c 0.5, \mathrm{EtOH})$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 1088,1300,1373,1717,2878,2967$, 3387, $3468 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.56-2.71 (m, 2H), 3.41 ($\mathrm{s}, 3 \mathrm{H}$), 3.56-3.59 (m, 1H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 4.02-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 30.9,51.9,55.8,70.2,73.9,77.6,97.1,127.9,137.8,166.6$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{6}$ requires C, 51.72; H, 6.94; Found C, 51.82; H, 6.98.

Methyl 3-epi shikimate (2)

To a well stirred solution of diol $44(95 \mathrm{mg}, 0.41 \mathrm{mmol})$ in MeOH was
added 2N solution of HCL. The reaction was stirred for an additional 6 h at $25^{\circ} \mathrm{C}$. After the completion of reaction (monitored by TLC), it was diluted with excess of EtOAc. The organic layer is further washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude product which on chromatographic purification with $\mathrm{MeOH} / E t O A c(3: 7 \mathrm{v} / \mathrm{v}$) gave title compound 2 (57 mg) in 74% yield as colorless solid.

Yield: 74%; m.p. $131-133{ }^{\circ} \mathrm{C}\left\{\right.$ lit. ${ }^{5}$ m.p. $\left.132{ }^{\circ} \mathrm{C}\right\} ;[\alpha]_{\mathrm{D}}{ }^{25}-13.1$ (c 0.5, MeOH) $\left\{\right.$ lit. ${ }^{5}[\alpha]_{\mathrm{D}}{ }^{25}-13.4(c$
$0.5, \mathrm{MeOH})\} ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 1089,1176,1245,1378,1489,1661,1714,2106,2994,3456$ cm^{-1}; ${ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathrm{D}_{2} \mathrm{O}$): $2.23(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=8.5,10 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~m}, 1 \mathrm{H}){ }^{\text {13 }}{ }^{\mathbf{3}} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): 168.6, 138.4, 127.2, 76.4, 71.9, 68.6, 52.8, 31.7; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 51.06$; $\mathrm{H}, 6.43$; O , 42.51; Found C, 51.11; H, 6.54.

Section II

A tandem desilylation-oxa Michael addition reaction for the synthesis of

3-epi- Jaspine B

1.2.1 Introduction and Pharmacology

Poly-substituted tetrahydrofurans (THFs) represents an important class of five-membered heterocycles that can be found as structural elements of many natural products and pharmaceutically important substances. ${ }^{17}$ Tri-substituted THFs like 3-epi-jaspine B 45 (Figure 16) and its stereoisomers have shown remarkable cytotoxic activity against A549 human lung carcinoma cell lines $\left(\mathrm{LD}_{50}=1.50 \pm 0.03 \mu \mathrm{M}\right)$ and MCF7 primary breast cancer cells $\left(\mathrm{IC}_{50}=1.50 \pm 0.03 \mu \mathrm{M}\right) .{ }^{18}$ It was initially believed that 3-epi-jaspine B 45 and its stereoisomers inhibit sphingomyelin synthase and thus increases the intracellular ceramide level, inducing apoptotic cell death by a caspase dependent pathway. ${ }^{18}$ Toxic effects of 45 were investigated by flow cytometry analysis after double labelling with annexin V (AV) and propidium iodide (PI). The results on A549 cells cultured in the presence of 45 at different concentrations as well as control experiments indicated that the percentage of AV-stained cells (2\%) was not significantly increased. Finally, a concentration-dependent increase in the percentage of PI positive cells were observed in all cases. ${ }^{18,19}$ These results demonstrate that apoptosis only accounts for a minor percentage of cell death and, therefore, a different cell death mechanism must be implicated. ${ }^{19}$

45

Figure 16: Structure of 3-epi-jaspine B (45)

1.2.2 Review of literature

Various syntheses of 3-epi jaspine B 45 have been documented in the literature, most of which are based on chiral pool strategies. Some of the interesting and important synthetic routes are described below.

Yoshimitsu's approach (2009) ${ }^{20}$

Yoshimitsu et al. have employed a stereoselective synthesis of 3-epi jaspine B 45 by use of regio- and stereospecific ring-opening reaction of the oxazolidin-2-one 48 assisted by a Boc group. This key step gave syn-diol 49. Reaction of 47 with $\mathrm{MeC}(\mathrm{OMe})_{3}$ in the presence of a catalytic amount of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ directly afforded the desired oxazolidinone 48 in excellent yield, via orthoester formation, followed by regioselective nucleophilic attack of the Boc oxygen toward C-3. The three stereogenic centers were constructed starting from Garner's aldehyde 46 as the sole chiral source; the title compound 45 was obtained in 11 steps with an overall yield of 23.4\% (Scheme 12).

Scheme 12: (i) $\mathrm{MeC}(\mathrm{OMe})_{3}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 96 \%$; (ii) (a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (b) NaOMe, $\mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}, 75 \%$ (over two steps); (iii) (a) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (b) TBAF, THF, 25 ${ }^{\circ} \mathrm{C}, 70 \%$ (over two steps).

Basha's approach (2010) ${ }^{21}$

Basha et al. have described a stereoselective synthesis of 3-epi jaspine B 45 from D-(-)-
isoascorbic acid 51 as the starting material. The key reaction of the synthesis is the base catalyzed intramolecular oxa-Michael addition of diol 53, which afforded the tetrahydrofuran derivative 54 in $\mathrm{dr}=10: 1$. Conversion of alcohol 54 to 55 was done in two steps: (i) Mesylation and (ii) Azidation. The seven-step conversion from isoascorbic acid 51 to intermediate 55 was achieved with an overall yield of 55.5% (Scheme 13).

Scheme 13: (i) 80% aq. $\mathrm{AcOH}, 0^{\circ} \mathrm{C}, 8 \mathrm{~h}, 98 \%$; (ii) NaH , THF, 0.5 h , $-40{ }^{\circ} \mathrm{C}, 96 \%$; (iii) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) NaN_{3}, DMF, $120^{\circ} \mathrm{C}, 8 \mathrm{~h}, 90 \%$ (over two steps).

Castillon's approach (2011) ${ }^{22}$

In Castillon's approach, butadiene monoepoxide 56 was treated with phthalimide in the presence of $\mathrm{Pd} /(S, S)$-DACH-naphthyl to afford 2-N-phthalimido-3-buten-1-ol 57 via a Pd-catalyzed DYKAT process. Compound 57 was treated with an excess amount of 1hexadecene in the presence of the second generation Grubbs catalyst to afford compound 58. Substrate-controlled dihydroxylation of olefine 58 by using osmium catalysis provided diol 59. Diol 59 was converted to cyclic sulfite 60 by a series of known reactions. Compound 60 was treated with TBAF in THF at room temperature to afford protected tetrahydrofuran 61 via desilylative cyclization and sulfate
hydrolysis in 93\% yield over two steps. Finally, removal of the phthalimido group with methylamine afforded 45 with an overall yield of 24% (Scheme 14).

Scheme 14: (i) $\mathrm{Pd} /(S, S)$-DACH-naphthyl, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 8 \mathrm{~h}$, 94\%, 98\%ee; (ii) Grubbs' II,1-hexadecene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}$, reflux, 99\%; (iii) $\mathrm{K}_{2} \mathrm{OsO}_{4}, \quad(\mathrm{DHQD})_{2}-\mathrm{PYR}, \quad \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \quad \mathrm{~K}_{2} \mathrm{CO}_{3}, \quad \mathrm{MeSO}_{2} \mathrm{NH}_{2}$, tert$\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), $25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 98 \%$;(iv) (a) TBAF, THF, $25^{\circ} \mathrm{C}$, 2 h ; (b) $\mathrm{H}_{2} \mathrm{SO}_{4}$, THF, $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 93 \%$ (over two steps); (v) $\mathrm{MeNH}_{2}, 1 \mathrm{~h}, 50$ ${ }^{\circ} \mathrm{C}, 85 \%$.

Koskinen's approach (2011) ${ }^{23}$

This route consists of nine steps from the commercially available Garner’s aldehyde 46. Iodide 62, prepared from propargyl alcohol, was coupled with Garner’s aldehyde 46 using n-BuLi as base and ZnCl_{2} as additive giving alcohol 63 (syn/anti = 5.7:1). The furan framework 65 was obtained from alcohol 64 via an η^{3}-allylpalladium intermediate using $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as catalyst. Cross metathesis between 65 and 1-tetradecene using Grubbs' second generation catalyst was used for the introduction of aliphatic side chain. The final hydrogenation and global deprotection was performed on olefine 66. Firstly, the double bond and benzyl ether were hydrogenated over Pd / C at an atmospheric pressure of
H_{2} gas. Next the t-butyl carbamatewas cleaved off with HCl in MeOH at $0{ }^{\circ} \mathrm{C}$ and after basic work up 45 was obtained in an overall yield of 2\% only (Scheme 15).

Scheme 15: (i) n - $\mathrm{BuLi}, \mathrm{ZnCl}_{2}$, toluene/ $\mathrm{Et}_{2} \mathrm{O},-95{ }^{\circ} \mathrm{C}, 72 \%$; (ii) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, PPh_{3}, THF, 1h, $55^{\circ} \mathrm{C}, 8 \%$; (iii) Grubbs' 2nd gen., 1-tetradecene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $45^{\circ} \mathrm{C}, 78 \%$; (iv) (a) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (1 atm .), $\mathrm{MeOH}, 25^{\circ} \mathrm{C}$; (b) $\mathrm{HCl}, \mathrm{MeOH}$, $0{ }^{\circ} \mathrm{C}$

1.2.3 Present Work

1.2.3.1 Objective

As can be seen from the review section, several methods of synthesis for 3-epi jaspine B 45 have been reported. However, many of them suffer from one or more disadvantages, which include use of chiral pool strategy and low yields. With a view to elucidate the effect of stereochemistry and substitution on the biological activity as well as study of mode of action of various jaspines, a useful synthetic route with high flexibility in yields and stereoselectivity is required. During our initial attempt at the synthesis of (-)-oseltamivir 1, we came across unexpectedly a one-pot tandem desilylation-oxa Michael addition reaction for the facile construction of optically and diastereomerically pure tetrahydrofurans (see Section I). This section describes the application of the desilylation-oxa Michael addition strategy in the synthesis of 3-epi jaspine B 45.

Based on retrosynthetic analysis, we visualized that 3-epi jaspine B 45 could be obtained from benzyl ether 55, which in turn could be envisaged from epoxide 67 (Scheme 16). Cyclic epoxide 67 was envisioned via a one-pot tandem desilylation-oxa Michael addition reaction of epoxy ester (+)-30. α, β-Unsaturated ester (+)-30 was envisaged from chiral epoxide (+)-26.

Scheme 16: Retrosynthetic analysis of 3-epi jaspine B 45

1.2.3.2 Results and Discussion

The present synthetic route to 3-epi jaspine B 45 is shown in Scheme 17.

Scheme 17: (i) TBSCl, imid., dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}, 73 \%$; (ii) (+)-DET,
$\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, anhydrous TBHP (5-6 M in decane), $4 \AA$ molecular sieves, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2},-10{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$; (iii) TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 1$ h, 95\%; (iv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 92 \%$; (v) TBAF, THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 93 \%$, de > 99\%; (vi) $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (4:1), $80^{\circ} \mathrm{C}$, $12 \mathrm{~h}, 91 \%$; (vii) $\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{O}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 95 \%$; (viii) (a) DIBAL-H, toluene, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) n - $\mathrm{BuLi}, \mathrm{PPh}_{3}{ }^{+} \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}^{-}$, THF, $-78-0{ }^{\circ} \mathrm{C}$, $3 \mathrm{~h}, 75 \%$; (ix) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 97 \%$.
Initially, α, β-unsaturated epoxy ester (+)-30 was prepared in an overall yield of 59.3% from commercially available cis-2-butene-1,4-diol 27 in four steps by following the procedure described in Section I: (i) selective monosilylation of diol 27 (TBSCl, imid, 73%); (ii) Sharpless asymmetric epoxidation of allylic alcohol $28\left[\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4},(+)-\mathrm{DET}\right.$, anhydrous TBHP, 93\%]; (iii) oxidation of epoxy alcohol (-)-29 (TEMPO, BAIB, 95\%); (iv) Wittig olefination of (+)-26 with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$. The formation of α, β-unsaturated ester (-)-30 was confirmed by its ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectral analysis. Its ${ }^{1} \mathrm{H}$ NMR spectrum of (+)-30 showed signals at $\delta 3.32-3.35(\mathrm{~m})$ and 3.56-3.58 (m) due to methine protons attached to epoxide group. The signals at $\delta 3.72-3.75(\mathrm{~m})$ and $4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H})$ were attributed to methylene protons attached to silyl ether ($-\mathbf{C H}_{2}-\mathrm{OTBS}$) and ester $\left(-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right)$ groups respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at δ 54.6 and 59.1 due to epoxide carbons, while the signals appearing at $\delta 60.5$ and 60.8 were due to methylene carbons attached to oxygen (Figure 17). The characteristic carbon signal at $\delta 165.1$ accounted for ester carbonyl function. The IR spectrum of epoxy ester $(+)-30$ showed a strong absorption band at $v_{\max } 1722 \mathrm{~cm}^{-1}$ for ester carbonyl frequency.

127 9 0

 $\underbrace{\dot{\sim}} \dot{\sim}$
TMS

(\#)-30

Figure 17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of epoxy ester (+)-30

The THF core 67 was then constructed as a single diastereomer in 93% yield via a diastereoselective tandem desilylation-oxa Michael addition reaction of silyl ether (+)-30 mediated by tetrabutylammonium fluoride (TBAF). The stereoselectivity and diastereoslectivity ($\mathrm{dr}>99$) of cyclic epoxide 67 was confirmed by ${ }^{1} \mathrm{H}$ NMR and 2D NMR spectra analysis. The disappearance of signals corresponding to olefinic functionality from its ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra provided evidence for a successful Michael addition reaction. The ${ }^{1} \mathrm{H}$ NMR spectrum of 67 showed a triplet at $\delta 4.46$ for
methine proton attached to furanyl oxygen. This indicated anti-relationship between the two adjacent methine protons attached to oxygen of furan $\left(\mathbf{H}_{\mathbf{a}}\right)$ and epoxide $\left(\mathbf{H}_{\mathbf{b}}\right)$. This was further confirmed by its 2D NMR studies, which did not show any correlation between the two adjacent protons $\left(\mathbf{H}_{\mathbf{a}}\right.$ and $\left.\mathbf{H}_{\mathbf{b}}\right)$. The proton signals at δ 3.72-3.78 (m , $3 \mathrm{H}), 3.96(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.18(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$ were indicative of methine and methylene groups attached to oxygen atom. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical signal at $\delta 74.0$ corresponding to methine carbon attached to furanyl oxygen, while a peak at $\delta 169$ was due to ester carbonyl function (Figure 18).

Figure 18: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT, COSY, NOESY, HSQC and HMBC NMR spectra of epoxy THF 67

Regioselective opening of epoxide 67 with NaN_{3} in presence of $\mathrm{NH}_{4} \mathrm{Cl}$ was accomplished
smoothly in a solvent mixture of $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (4:1) giving the azido alcohol 68 in 91% yield; $[\alpha]_{\mathrm{D}}{ }^{25}+10.2\left(c 0.4, \mathrm{CHCl}_{3}\right)$. The formation of azido alcohol 68 was proved by its IR spectrum analysis, which showed the appearance of absorption peaks at $v_{\text {max }} 2105$ and $3439 \mathrm{~cm}^{-1}$ corresponding to azide and alcohol functionalities. The multiplet at δ 3.88-4.03 $(\mathrm{m}, 5 \mathrm{H})$ was indicative of methine and methylene protons attached to furanyl oxygen while a broad singlet at $\delta 3.38(1 \mathrm{H})$ was due to alcohol functionality, thus confirming the presence of hydroxyl group. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at $\delta 61.2$, $67.5,70.5,81.2$ and 81.5 which was attributed to the presence of carbons attached to oxygen atom (Figure 19).

The hydroxyl group in 68 was then protected $\left(\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{O}\right)$ to give the benzyl ether 55 in 95\% yield. Benzyl protection was confirmed by the presence of a multiplet at δ 7.29-7.40 corresponding to five aromatic protons. The benzylic protons appeared at $\delta 4.61$ (s, 2H) in its ${ }^{1} \mathrm{H}$ NMR spectrum. Its ${ }^{13} \mathrm{C}$ NMR showed the characteristic ester carbonyl signal at δ 170.3 while the other resonance absorptions at $\delta 14.2$ and 38.2 were due to methyl (- $\mathrm{CO}_{2} \mathbf{C H}_{2} \mathrm{CH}_{3}$) and methylene (- $\mathbf{C H}_{2} \mathrm{CO}_{2} \mathrm{Et}$) carbons respectively (Figure 20).

Figure 20: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of benzyl ether 55

The ester functionality in 55 was selectively reduced with DIBAL-H in dry toluene at -78 ${ }^{\circ} \mathrm{C}$ to produce the corresponding aldehyde, which was used as such without purification due to its instability on silica gel column. Thus, the crude aldehyde upon Wittig olefination (n-BuLi, $\mathrm{PPh}_{3}{ }^{+} \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}^{-}$, THF) gave olefin 69 in 75% yield $[\alpha]_{\mathrm{D}}{ }^{25}+7.4$ (c $1.0, \mathrm{CHCl}_{3}$). The formation of olefin $\mathbf{6 9}$ was confirmed by the presence of multiplets at δ 5.33-5.35 (1H) and 5.42-5.45 (1H) corresponding to olefinic protons. This was further substantiated by the appearance of carbon signals at $\delta 127.9$ and 133.0 in its ${ }^{13} \mathrm{C}$ NMR spectrum. The final step in the synthesis was the global reduction which included the reduction of azide and olefin functions along with benzyl deprotection. Accordingly, compound 69 was subjected to reduction under catalytic hydrogenation condition [10\% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (1 atm.), 97\%] which gave the title compound 3-epi jaspine B 45 with an overall yield of 34.7%. The formation of 45 was confirmed by the appearance of broad absorption band at $v_{\max } 3359 \mathrm{~cm}^{-1}$ and the disappearance of sharp absorption band for azide functionality in its IR spectrum. This was further evidenced by the disappearance of signals corresponding to benzyl and olefin functionality from its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR
spectra. The spectroscopic data along with physical properties like specific rotation and melting point of the final product thus obtained were in agreement with the literature values. ${ }^{23}$

1.2.4 Conclusion

In conclusion, we have described an elegant and concise synthetic route to 3-epi jaspine B 45 (10 steps, 34.7% overall yield). Our strategy is based on two key reactions i.e. Sharpless asymmetric epoxidation and diastereoselective tandem desilylation-oxa Michael addition. The protocol is facile, flexible and hence can be applied to the synthesis of other THF based bioactive molecules as well.

1.2.5 Experimental section

(2S,3S)-3-((tert-Butyldimethylsilyloxy)methyl)oxirane-2-carbaldehyde [(+)-26]
To a solution of alcohol (-)-29 (15.02 g, 69.44 mmol$)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added in one portion (diacetoxyiodo)benzene (24.34, 75.62 mmol) and TEMPO ($1.07 \mathrm{~g}, 6.91 \mathrm{mmol}$). The reaction mixture was then allowed to stir at $25^{\circ} \mathrm{C}$ for 1 h . After completion of reaction (monitored by TLC), the reaction mixture was quenched by the addition of saturated solution of aq. sodium thiosulphate. The organic layer was separated, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified using coulumn chromatography with petroleum ether/EtOAc (9:1 v/v) as eluent to afford the epoxy aldehyde (+)-26 (14.27 g) as yellow colored liquid.

Yield: Yield: 95\%; $[\alpha]_{\mathrm{D}}{ }^{25}+41.9\left(c 3.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 778,838,1099,1256$, 1472, 1720, 2858, $2930 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, 3.34-3.44 (m, 2H), 3.96-4.00 (m, 2H), $9.47(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz ,
CDCl_{3}): $\delta-5.7,18.0,25.5,57.3,59.6,59.7,197.2$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Si}$ requires C, 55.52; H, 9.32; Found: C, 55.60; H, 9.43\%.
(E)-Ethyl ((2R,3S)-3-((tert-butyldimethylsilyloxy)methyl)oxiran-2-yl)acrylate [(+)30]

To a stirred solution of aldehyde (+)-26 (10.0 g, 46.22
mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ was added
$\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(24.0 \mathrm{~g}, 70.0 \mathrm{mmol})$ and the reaction mixture was stirred for 2 h . After completion of reaction (monitored by TLC), solvent was distilled off under reduced pressure and the crude mass on column chromatographic purification with petroleum ether/EtOAc (9:1 v/v) gave the α, β-unsaturated ester (+)-30 $(12.18 \mathrm{~g})$ as a slightly yellow colored liquid.

Yield: 92\%; $[\alpha]_{\mathrm{D}}{ }^{25}+13.5\left(c 2.0, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 778,838,1035,1260,1722$, 2858, $2930 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, 1.30 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), 3.33-3.35 (m, 1H), 3.56-3.58 (m, 1H), 3.72-3.75 (m, 2H), 4.19 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta-5.4,-5.3,14.1,18.2,25.8,54.6,59.1,60.5,60.8,125.3,141.2,165.1$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4}$ Si requires C, 58.70; H, 9.15; Found: C, 58.78; H, 9.13\%.

Ethyl 2-((1S,2S,5R)-3,6-dioxabicyclo[3.1.0]hexan-2-yl)acetate (67)

To a well stirred solution of silyl ether (+)-30 (200 mg, 0.5 mmol) was added 1 M solution of tetrabutylammonium fluoride (1 mL, 1 mmol) at $25{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 2 h after which the solvent was removed under reduced pressure and the residue was subjected to column chromatography purification with petroleum ether/EtOAc ($5: 5 \mathrm{v} / \mathrm{v}$) to afford furan derivative $67(80 \mathrm{mg})$ as a single diastereomer.

Yield: 93\%; colorless liquid; $[\alpha]_{\mathrm{D}}{ }^{25}+5.4\left(c 0.4, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 838,1256$, 1719, $2876 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H})$, $3.72-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.2,36.5,55.9,58.5,60.8,66.4,74.0,169.9$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$ requires C, 55.81; H, 7.02; Found: C, 55.85; H, 6.94\%.

Ethyl 2-((2S,3R,4S)-4-azido-3-hydroxytetrahydrofuran-2-yl)acetate (68)

To a solution of epoxide 67 ($3 \mathrm{~g}, 17.43 \mathrm{mmol}$) in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ ($80: 20 \mathrm{~mL}$) was added $\mathrm{NaN}_{3}(6.83 \mathrm{~g}, 104.59 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}$ ($5.6,104.59 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The mixture was then stirred at $80^{\circ} \mathrm{C}$ for 12 h . After completion of reaction (monitored by TLC), EtOH was removed by rotary evaporation. The reaction mixture was extracted with EtOAc ($100 \mathrm{~mL} x \mathrm{3}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$, brine ($20 \mathrm{~mL} \times 3$) and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After evaporation of the solvent, the residue was purified using coulumn chromatography with petroleum ether/EtOAc (6:4 v/v) to give the azido alcohol $68(3.41 \mathrm{~g})$ as yellow colored liquid.

Yield: $91 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+10.2\left(c 0.4, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 1073,1725,2105,3439 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.29(\mathrm{t}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.65(\mathrm{dd}, J=8.9,16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84(\mathrm{dd}, J=5.3,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.88-4.03$ (m, 5H), 4.18 (q, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 14.1,37.9,61.2,67.5,70.5,81.2,81.5,172.0$;

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 44.65; H, 6.09; N, 19.53; Found: C, 44.71; H, 6.19; N, 19.59\%.

Ethyl 2-((2S,3R,4S)-4-azido-3-(benzyloxy)tetrahydrofuran-2-yl)acetate (55)

To a solution of azido alcohol $68(2.1 \mathrm{~g}, 9.76 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added $\mathrm{Ag}_{2} \mathrm{O}(3.39 \mathrm{~g}, 14.64 \mathrm{mmol})$ followed by $\mathrm{BnBr}(2.0 \mathrm{~g}, 11.71 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h at $25^{\circ} \mathrm{C}$ and then filtered through a pad of Celite. The filtrate was evaporated to dryness and the residue was purified by column chromatography with petroleum ether/EtOAc (8:2 v/v) to give $5 \mathbf{5}(2.82 \mathrm{~g})$ as yellow colored liquid.

Yield: $95 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+15.8\left(c 1.0, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit.}^{21}[\alpha]_{\mathrm{D}}{ }^{25}+15.4\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right)\right\}$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 747,1020,1171,1436,1497,1737,2105,3031 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): δ 1.26 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.59$ (dd, $J=1.9,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-$ 4.27 (m, 6H), 4.61 (s, 2H), 7.29-7.40(m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.2,38.2$, 60.7, 65.8, 70.8, 72.3, 80.2, 86.9, 127.8, 128.1, 128.6, 137.2, 170.3; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 59.01; H, 6.27; N, 13.76; Found: C, 59.21; H, 6.31; N, 13.8\%. (2S,3R,4S)-4-Azido-3-(benzyloxy)-2-((Z)-tetradec-2-enyl)tetrahydrofuran (69)

To a stirred solution of ester 55 ($1.0 \mathrm{~g}, 3.27 \mathrm{mmol}$) in dry toluene (50 mL), a solution of diisobutylaluminium hydride ($3.6 \mathrm{~mL}, 3.6 \mathrm{mmol}, 1 \mathrm{M}$ in cyclohexane) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 1 h . After completion of reaction (monitored by TLC), it was diluted with a saturated solution of potassium sodium tartrate (Rochelle salt) and stirred for further 3 h . The organic phase was separated and the aqueous phase extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was then washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude aldehyde which was used as such for the next reaction.

To a stirred solution of dodecyl triphenylphosphonium bromide ($2.05 \mathrm{~g}, 4.0 \mathrm{mmol}$) in 20 mL of dry THF at $-78{ }^{\circ} \mathrm{C}$ was added n-BuLi (1.6 M solution in hexane $2.5 \mathrm{~mL}, 3.8 \mathrm{mmol}$)
dropwise and the resulting solution was stirred for 30 min. The crude aldehyde obtained above was dissolved in dry THF (5 mL) and added dropwise with stirring to the ylide solution at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was then brought to $0^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction was quenched with 6 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $0{ }^{\circ} \mathrm{C}$, the solvent was evaporated under reduced pressure; the residue was extracted with EtOAc (2 x15 mL), and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of ethyl acetate the residue was chromatographed (silica gel, 230-400 mesh, petroleum ether/EtOAc (9.5:0.5 v/v) to obtain $69(1.02 \mathrm{~g})$ as viscous liquid.

Yield: $75 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+7.4\left(c 1.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.^{21}[\alpha]_{\mathrm{D}}{ }^{25}+6.7\left(\mathrm{c} 2.8, \mathrm{CHCl}_{3}\right)\right\}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 747,1081,1460,1729,2853,2937 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.34(\mathrm{~m}, 18 \mathrm{H}), 2.01-2.02$ (m, 2H), 2.45-2.47 (m, 2H), 3.63 (dd, $J=3.2$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.97-4.01(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=5.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.45(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.33 (m, 5H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 14.8,22.7,27.3,29.3,29.5,29.6$, 30.9, 31.9, 65.9, 70.6, 72.2, 84.0, 87.1, 123.9, 127.7, 127.9, 128.4, 133.0, 137.2; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 72.60; H, 9.50; N, 10.16; Found C, C, 72.56; H, 9.47; N, 10.21\%.

3-epi Jaspine B (45)

To a stirred ethanolic solution of olefin $69(50 \mathrm{mg}, 0.12 \mathrm{mmol}, 5$ mL) was added $\mathrm{Pd} / \mathrm{C}(10 \%$ on carbon, 5 mg) and the reaction mixture stirred under an H_{2} atmosphere at room temperature for about 12 h . After the completion of reaction it was filtered over celite plug (EtOH eluent)
and solvent evaporated under reduced pressure to give 3-epi jaspine B 45 (35 mg) as colorless solid.

Yield: 97\%; m.p. $75-77{ }^{\circ} \mathrm{C}\left\{\right.$ lit. 20 m.p. $\left.75-76{ }^{\circ} \mathrm{C}\right\} ;[\alpha]_{\mathrm{D}}{ }^{25}-3.7\left(c 0.5, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $^{20}[\alpha]_{\mathrm{D}}{ }^{25}$ -1.8 (c 0.8, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 3359,2924,2857,1637,1435 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (200 MHz, CDCl_{3}): $\delta 0.88(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 24 \mathrm{H}), 1.55-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{br}$ s, 3 H), 3.32 (dd, $J=4.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{dd}, J=4.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.64(\mathrm{~m}, 2 \mathrm{H})$, 4.01 (dd, $J=5.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,22.7,26.0,29.3$, 29.57, 29.60, 29.65, 29.67, 31.9, 34.0, 60.5, 73.6, 84.1, 85.2; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{NO}_{2}$ requires C, 72.19; H, 12.45; N, 4.68; Found: C, 72.34; H, 12.52; N, 4.71\%.

1.2.6 References

1 (a) Cheam, A. L.; Barr, I. G.; Hampson, A. W.; Mosse, J.; Hurt, A. C. Antiviral Res. 2004, 63, 177; (b) Smith, B. J.; McKimm-Breshkin, J. L.; McDonald, M.; Fernley, R. T.; Varghese, J. N.; Colman, P. M. J. Med.Chem. 2002, 45, 2207; (c) Kim, C. U.; Lew, W.; Williams, M. A.; Wu, H.; Zhang, L.; Chen, X.; Escarpe, P. A.; Mendel, D. B.; Laver, W. G.; Stevens, R. C. J. Med. Chem. 1998, 41, 2451; (d) Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681.

2 (a) Hurt, A. C.; Selleck, P.; Komadina, N.; Shaw, R.; Brown, L.; Barr, I. G. Antiviral Res. 2007, 73, 228; (b) Werner, L.; Machara, A.; Sullivan, B.; Carrera, I.; Moser, M.; Adams, D.R.; Hudlicky, T. J. Org. Chem. 2011, 76, 10050; (c) Abbott, A. Nature 2005, 435, 407; (d) Laver, G.; Garman, E. Science 2001, 293, 1776; (e) Bloom, J. D.; Gong, L. I.; Baltimore, D. Science 2010, 328, 1272.

3 Moscona, A. N Engl J Med 2005, 353, 1363.
4 Lagoja, I. M.; Clercq, E. D. Med. Res. Rev. 2008, 28, 1
5 (a) Abella, L. S., Fernández, S.; Armesto, N.; Ferrero, M.; Gotor, V. J. Org. Chem., 2006, 71, 5396;
(b) Brettle, R.; Cross, R.; Frederickson, M.; Haslam, E.; MacBeath, F. S.; Davies, G. M. Tetrahedron 1996, 52, 10547; (c) Armesto, N.; Ferrero, M.; Fernández, S.; Gotor, V. Tetrahedron Lett. 2000, 41, 8759.

6 For review articles on synthetic strategies to oseltamivir, see: (a) Magano, J. Tetrahedron. 2011, 67, 7875; (b) Magano, J. Chem. Rev. 2009, 109, 4398; (c) Shibasaki, M.; Kanai, M. Eur. J. Org. Chem. 2008, 1839; (d) Farina, V.; Brown, J. D. Angew. Chem., Int. Ed. 2006, 45, 7330.

7 Ishikawa, H.; Bondzic, B.B.; Hayashi, Y. Eur. J. Org. Chem. 2011, 6020.
8 Trajkovic, M.; Ferjancic, Z.; Saicic, R. N. Org. Biomol. Chem. 2011, 9, 6927.
(a) Rohloff, J. C.; Kent, K. M.; Postich, M. J.; Becker, M.W.; Chapman, H. H.; Kelly, D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.; Schultze, L. M.; Yu, R. H.; Zhang, L. J. Org. Chem. 1998, 63, 4545; (b) Federspiel, M.; Fischer, R.; Hennig, M.; Mair, H.-J.; Oberhauser, T.; Rimmler, G.; Albiez, T.; Bruhin, J.; Estermann, H.; Gandert, C.; Gockel, V.; Gotzo, S.; Hoffmann, U.; Huber, G.; Janatsch, G.; Lauper, S.; Rockel-Stabler, O.; Trussardi, R.; Zwahlen, A. G. Org. Process Res. Dev. 1999, 3, 266; (c) Karpf, M.; Trussardi, R. J. Org. Chem. 2001, 66, 2044 and references therein; (d) Harrington, P. J.; Brown, J. D.; Foderaro, T.; Hughes, R. C. Org. Process Res. Dev. 2004, 8, 86.

12 (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974; (b) Martin, V. S.; Woodward, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am.Chem. Soc. 1981, 103, 6237.

13 Woodward, S. S.; Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 106.
(a) Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 113; (b) Potvin, P. G.; Bianchet, S. J. J. Org. Chem. 1992, 57, 6629.
15 (a) Krafft, M. E.; Haxell, T. F. N.; Seibert, K. A.; Abboud, K. A. J. Am. Chem. Soc. 2006, 128, 4174;
(b) Krafft, M. E.; Wright, J. A. Chem. Commun. 2006, 2977.
(a) Kuroda, I.; Musman, M.; Ohtani, I. I.; Ichiba, T.; Tanaka, J.; Cravalos, D. C.; Higa, T. J. Nat. Prod. 2002, 65, 1505; (b) Ledroit, V.; Debitus, C.; Lavaud, C.; Massiot, G. Tetrahedron Lett. 2003, 44, 225; (c) Canals, D.; Mormeneo, D.; Fabriàs, G.; Llebaria, A.; Casas, J.; Delgado, A. Bio. Med. Chem. 2009, 17, 235.
19 (a) Hofman, K. J. Am. Chem. Soc. 1945, 67, 1459; (b) Potter, R. L.; Elvehjem, C. A. J. Biol. Chem. 1950, 183, 587; (c) Ohrui, H.; Kuzuhara, H.; Emoto, S. Agric. Biol. Chem. 1971, 35, 752; (d) Jayachitra, G.; Sudhakar, N.; Anchoori, R. K.; Rao, B.; Roy, V. S.; Banerjee, R. Synthesis 2010, 115. Yoshimitsu, Y.; Shinsuke, I.; Shinya, O.; Nobutaka, F.; Hiroaki, O. J. Org. Chem. 2010, 75, 3843. Rao, G. S.; Neela, S.; Rao, B. V.; Basha, S. J. Tetrahedron: Asymmetry 2010, 21, 1963. Llaveria, J.; Díaz, Y.; Matheu, M. I.; Castillón, S. Eur. J. Org. Chem. 2011, 1514. Mikko, P.; Koskinen, M. P. A. Org. Biomol. Chem. 2011, 9, 1774.

Chapter II

Enantioselective Synthesis of (-)-Aspinofide \mathcal{A}, (S)- \mathcal{N}-(5-ChForothiophene-2-suffony) $)$ - 1 , β-diethylafaninol and (+) Decarestrictine \mathcal{L}

1. "A concise enantioselective synthesis of (+)-decarestrictine L via proline-catalyzed sequential alpha-aminooxylation and Horner-Wadsworth-Emmons olefination" Varun Rawat, Pandurang V. Chouthaiwale, Gurunath Suryavanshi, Arumugam Sudalai; Tetrahedron Asymmetry 2009, 20, 2173.
2. "A facile enantioselective synthesis of (S)- N-(5-chlorothiophene-2-sulfonyl)- β, β diethylalaninol via proline-catalyzed asymmetric α-aminooxylation and α-amination of aldehyde" Varun Rawat, Pandurang V. Chouthaiwale, Vilas B. Chavan, Gurunath Suryavanshi, Arumugam Sudalai Tetrahedron Letters 2010, 51, 6565.

Section I

Asymmetric synthesis of (-)-Aspinolide A

2.1.1 Introduction and Pharmacology

Macrolides, isolated from various fungal metabolites have attracted considerable attention due to their interesting biological properties and scarce availability. ${ }^{1}$ (-)Aspinolide A 1, a decanolide, was isolated in 1997 from the cultures of Aspergillus ochraceus along with other members of aspinolide family (Figure 1). ${ }^{2}$ Various aspinolides have been tested for their antibacterial and antifungal activity and it was observed that most aspinolides show potent activity against all the tested bacterial and fungal strains. Evaluation of their biosynthesis revealed a carbon-skeleton rearrangement leading to branched pentaketides. Surprisingly, the pathways could be directed by using increased dissolved oxygen concentrations during fermentation. The analysis of the extracts of Aspergillus ochruceus grown under different culture conditions by chemical screening method resulted in the isolation of seven new pentaketide metabolites. ${ }^{2}$

1
Figure 1: Structure of (-)-aspinolide A (1)
On account of their interesting biological properties and scare availability, they have attracted considerable attention from organic and medicinal chemistry community alike.

2.1.2 Review of Literature

Till date two synthetic routes have been documented in the literature which are described below.

Kumar's approach (2009) ${ }^{3}$

The total synthesis of (-)-aspinolide A 1 described by Kumar et al. is based on hydrolytic kinetic resolution of terminal epoxides (2 and 5) for the introduction of chirality. (R)Propylene oxide 3 was treated with vinylmagnesium bromide in the presence of cuprous iodide to give the required homoallylic alcohol 4 in 88% yield. The synthesis of acid fragment 6 involves a Jacobsen’s hydrolytic kinetic resolution of racemic terminal epoxide 5 using (R, R)-salen-Co-OAc catalyst. Alcohol fragment 4 and carboxylic acid fragment 6 were coupled using 3-(ethyliminomethyleneamino)- N, N-dimethyl-propan-1amine (EDCI) followed by desilylation and Ring Closing Metathesis (RCM) (Scheme 1).

Scheme 1: (i) (R, R)-salen-Co-(OAc) ($0.5 \mathrm{~mol} \%$), $\mathrm{H}_{2} \mathrm{O}$ (0.55 equiv), $0^{\circ} \mathrm{C}$, $45 \%, 14 \mathrm{~h}$; (ii) vinylmagnesium bromide, THF, CuI, $-20^{\circ} \mathrm{C}, 88 \%, 12 \mathrm{~h}$; (iii)
(a) EDClHCl, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 5 \mathrm{~h}, 86 \%$; (b) TBAF, THF, $7 \mathrm{~h}, 80 \%$;
(c) $\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Ru}(\mathrm{Cl})_{2}=\mathrm{CH}-\mathrm{Ph}(20 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $42 \mathrm{~h}, 60 \%$.

Yadav's approach (2011) ${ }^{4}$

Yadav et al. have achieved the synthesis of (-)-aspinolide A 1 by an iterative acetyleneepoxide coupling strategy. The epoxy alcohol 7 was converted to the corresponding epoxy chloride $\mathbf{8}$ using Appel reaction condition. Compound $\mathbf{8}$ was treated with LiNH_{2} in liquid NH_{3} to furnish the corresponding terminal acetylene, which was subsequently coupled in situ with (2R)-2-methyloxirane to get the chiral propargyl alcohol 9. The triple bond in 9 was reduced with LiAlH_{4} in THF providing alcohol 10 (Scheme 2). The
completion of synthesis was achieved in five steps: (i) TBS protection of allylic alcohol 10; (ii) PMB deprotection (DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$); (iii) pinnick oxidation of primary alcohol; (iv) Yamaguchi laconization and (v) silyl deprotection.

Scheme 2: (i) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{NaHCO}_{3}$, reflux, $\mathrm{CCl}_{4}, 4 \mathrm{~h}$; 87\%; (ii) (R)-methyl oxirane, Li, liq. $\mathrm{NH}_{3}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$, dry THF, $8 \mathrm{~h}, 80 \%$; (iii) LiAlH_{4}, dry THF, 4 h; 85\%.

2.1.3. Present Work

2.1.3.1 Objective

As can be seen from the above discussion, the reported methods for the synthesis of (-)aspinolide A 1, either employ chiral starting materials or use kinetic resolution protocol for the induction of chirality, apart from employing expensive reagents and longer reaction sequences. As part of our continuing interest aimed at developing enantioselective synthesis of biologically active natural product based on asymmetric organocatalysis, ${ }^{5}$ we became interested in devising a simple concise and flexible route for the synthesis of (-)-aspinolide A 1. This section describes an enantioselective synthesis of (-)-aspinolide A 1, using organocatalytic asymmetric α-epoxidation and -aminooxylation as the key steps for the introduction of chirality in the molecule.

Based on retrosynthetic analysis, we visualized homoallylic alcohol 4 and carboxylic acid 6 as key intermediates for the synthesis of 1. Fragment 4 can be obtained by Brown
allylation. ${ }^{6}$ The carboxylic acid fragment $\mathbf{6}$ was in turn envisioned via two routes: (i) Jorgensen's asymmetric epoxidation ${ }^{7}$ of unsaturated aldehdye $\mathbf{1 3}$ and (ii) asymmetric α aminooxylation ${ }^{8}$ of aldehyde 15 (Scheme 3).

Scheme 3: Retrosynthetic analysis of (-)-aspinolide A 1

2.1.3.2 Results and Discussion

The synthesis of homoallylic alcohol 4 began with a known protocol involving Brown allylation of acetaldehyde 11, which gave the homoallylic alcohol 4 in 77\% yield. The optical purity of 4 was determined as 95% enantiomeric excess (ee) by comparing its optical rotation with the reported values $[\alpha]_{\mathrm{D}}{ }^{25}-9.67$ (c 3.0, $\mathrm{Et}_{2} \mathrm{O}$) $\left\{\mathrm{lit} .{ }^{3,6}[\alpha]_{\mathrm{D}}{ }^{25}-9.84\right.$ (c 3.1, $\mathrm{Et}_{2} \mathrm{O}$) $\}$ (Scheme 4).

Scheme 4: (i) (-)-B-allyldiisopinocamphenylborane, $\mathrm{Et}_{2} \mathrm{O}$-pentane, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathrm{NaOH}$, aq. $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$, 77\%.

The synthesis of intermediate carboxylic acid fragment 6 commences with (S)- α, α -bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol trimethylsilyl ether (A) catalyzed epoxidation ${ }^{7}$ of α, β-unsaturated aldehyde 13 in a "one-pot" reaction sequence: thus, treatment of aldehyde $\mathbf{1 3}$ with $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ as the oxygen source in the presence of $10 \mathrm{~mol} \%$ pyrrolidine catalyst \mathbf{A} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent at $25^{\circ} \mathrm{C}$ followed by its reduction with NaBH_{4} in MeOH gave the crude α-epoxy alcohol 12 in situ (Scheme 5). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ showed characteristic epoxy proton signals at δ 2.89-2.97 (m, 2H). The signals at $\delta 55.9,58.5,61.7$ and 62.8 in its ${ }^{13} \mathrm{C}$ NMR spectrum were due to carbons attached to oxygen atom (Figure 2).

Scheme 5: (i) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (S)- α, α-bis[3,5-bis(trifluoromethyl)phenyl]-2pyrrolidinemethanol tri-methylsilyl ether (A), $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$ then $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, $0{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}, 43 \%$; (ii) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, imid., $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3: 1), 0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 90\%; (iii) Zn , NaI, MeOH, reflux, 3 h , 90\%; (iv) TBSCl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25$ ${ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 86 \%$; (v) (+)-camphor-10-sulfonic acid, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 5 \mathrm{~min}, 63 \%$; (vi) TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (4:1), $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 80 \%$.

Conversion of epoxy alcohol 12 to epoxy iodide 16 was achieved using Appel reaction condition: $\mathrm{I}_{2}, \mathrm{PPh}_{3}$ and imid.; $[\alpha]_{\mathrm{D}}{ }^{25}+8.0\left(c 2.0, \mathrm{CHCl}_{3}\right)$. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed multiplets at δ 2.76-2.79 (1H), 2.94-3.04 (m, 2 H) and 3.21-3.32 (1H) corresponding to - $\mathbf{C H}_{2} \mathrm{I}$ and - $\mathbf{C H}-\mathrm{O}-\mathbf{C H}$ - protons. The typical carbon signals at $\delta 58.4,62.3$ and 62.7 in its ${ }^{13} \mathrm{C}$-NMR spectrum were attributed to carbons attached to oxygen atom (Figure 3).

Figure 3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of epoxy iodide 16

Next step in the synthesis of carboxylic acid $\mathbf{6}$ was the reductive ring opening of epoxide 16 in the presence of Zn powder, which was accomplished smoothly to give allylic alcohol $\mathbf{1 7}$ in 90% yield. The formation of $\mathbf{1 7}$ was confirmed by the analysis of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The multiplets at $\delta 5.06-5.26(2 \mathrm{H})$ and $5.77-5.94(1 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the formation of olefinic protons. The presence of olefin functionality in $\mathbf{1 7}$ was further substantiated by the presence of carbon signals at $\delta 114.5$ and 141.3 in its ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4).

Figure 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of allylic alcohol 17
Conversion of allylic alcohol $\mathbf{1 7}$ to carboxylic acid $\mathbf{6}$ was achieved in three steps as described here: (i) silylation of secondary alcohol functionality in 17, (ii) chemoselective desilylation in 18 with (+)-camphor-10-sulfonic acid (CSA, MeOH, 63\%), (iii) oxidation of $\mathbf{1 9}$ to carboxylic acid $\mathbf{6}$ using TEMPO/BAIB mixture in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (3:1) solvent combination. Carboxylic acid fragment $\mathbf{6}$ was obtained with an overall yield of 15.1% in 98% ee, determined by comparing its optical rotation with the reported values $[\alpha]_{\mathrm{D}}{ }^{25}-6.5$ (c 1.0, CHCl_{3}) $\left\{\right.$ lit. $\left.^{3}[\alpha]_{\mathrm{D}}{ }^{25}-6.6\left(c 1.15, \mathrm{CHCl}_{3}\right)\right\}$ (Scheme 5). The formation of primary alcohol 19 was confirmed by its IR spectrum which showed a strong absorbtion band at $v_{\max } 3441 \mathrm{~cm}^{-1}$ corresponding to alcohol functionality. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed signals at $\delta 3.60(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$ and $4.05(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$ indicative of methylene $\left(-\mathbf{C H}_{2}-\mathrm{OH}\right)$ and methine (-CH-OTBS) protons respectively. The signals at $\delta-4.7,-4.3$, 18.3 and 25.9 in its ${ }^{13} \mathrm{C}$ NMR spectrum were attributed to carbons of TBS ether functionality, while the resonance peaks at $\delta 62.8$ and 73.8 accounted for methylene ($\mathbf{C H}_{2}-\mathrm{OH}$) and methine (-CH-OTBS) carbons respectively (Figure 5).

Figure 5: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR and IR spectra of alcohol 19

Our second approach for the synthesis of acid fragment 6 commenced from aldehyde 15, which was subjected to L-proline catalyzed α-aminooxylation in a two-step reaction sequence: (i) reaction of aldehyde 15 with nitrosobenzene as the oxygen source in the presence of $20 \mathrm{~mol} \%$ L-proline in $\mathrm{CH}_{3} \mathrm{CN}$ at $-20{ }^{\circ} \mathrm{C}$ followed by its reduction with NaBH_{4} in MeOH gave the crude α-aminoxy alcohol in-situ; (ii) subsequent reduction of the crude α-aminoxy alcohol using $10 \% \mathrm{Pd} / \mathrm{C}$ over H_{2} (1 atm) furnished chiral diol 20 in 77\% yield over two steps (Scheme 6).

Scheme 6: (i) (a) PhNO (1 equiv.), L-proline ($20 \mathrm{~mol} \%$), $\mathrm{CH}_{3} \mathrm{CN},-20^{\circ} \mathrm{C}$, 24 h then $\mathrm{NaBH}_{4}, \mathrm{MeOH},{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (b) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, 24 \mathrm{~h}$, 77% (over two steps); (ii) (a) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Bu}_{2} \mathrm{SnO}$, DMAP; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH, 30 min., 92% (over two steps); (iii) $\mathrm{S}^{+} \mathrm{Me}_{3} \mathrm{I}^{\prime}$, NaH, DMSO, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 89\%.

The formation of diol 20 was confirmed by the presence of a broad singlet (br s) at $\delta 2.92$ in its ${ }^{1} \mathrm{H}$ NMR spectrum, corresponding to hydroxyl protons. The multilplets at $\delta 3.35-$ $3.44(1 \mathrm{H})$ and $3.58-3.69(4 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum was assigned to methine (-CH$\mathrm{OH})$ and methylene ($\left.-\mathbf{C H}_{2}-\mathrm{OH},-\mathbf{C H}_{2}-\mathrm{OTBS}\right)$ protons attached to oxygen atoms. Another multiplet at δ 1.42-1.57 was due to the six internal methylene protons (- $\mathbf{C H}_{2}-\mathbf{C H}_{2}-\mathbf{C H}_{2}{ }^{-}$). Its ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 63.0,66.6$ and 72.1 corresponding to methylene and methine carbons attached to oxygen atoms respectively (Figure 6).

Selective tosylation of primary hydroxyl group in diol $20\left(\mathrm{TsCl}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Bu}_{2} \mathrm{SnO}\right)$ followed by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH gave the optically pure terminal epoxide 14 in 92% yield over two steps. The formation of epoxide 14 was confirmed by the presence of multiplets at $\delta 2.42-2.46,2.71-2.75$ and 2.87-2.90 which were attributed to the protons of the epoxide group. Its ${ }^{13} \mathrm{C}$ NMR displayed signals at $\delta 46.8,52.1$ and 62.8 which were due to carbons attached to oxygen (Figure 7).

Regioselective opening of epoxide 14 into the corresponding allylic alcohol 17 was readily achieved by using Corey-Chaykovsky reagent ($\mathrm{S}^{+} \mathrm{Me}_{3} \mathrm{I}^{-}$, $\mathrm{NaH}, \mathrm{DMSO}$) in 70% yield. Conversion of alcohol $\mathbf{1 7}$ to carboxylic acid $\mathbf{6}$ was achieved in three steps with an overall yield of 27.3% and 98% ee as described before (see Scheme 5). The formation of carboxylic acid 6 was confirmed by the presence of a broad singlet (brs) at $\delta 10.67$ in its ${ }^{1} \mathrm{H}$ NMR spectrum. This was further substantiated by the appearance of a typical signal at $\delta 179.9$ in its ${ }^{13} \mathrm{C}$ NMR spectrum. The disappearance of signals corresponding to
methylene $\left(-\mathbf{C H}_{2} \mathrm{OH}\right)$ in its ${ }^{1} \mathrm{H}$ NMR spectrum further confirmed the completion of this oxidation reaction (Figure 8).

With both the fragments $\mathbf{4}$ and $\mathbf{6}$ now in hand, we then carried out the coupling of these two fragments using Steglich esterification (EDCI, $\mathrm{Et}_{3} \mathrm{~N}, 88 \%$). The coupled product 21 was confirmed by the presence of a typical multiplet at $\delta 4.03-4.13$ corresponding to methine proton (-CH-OCO) attached to ester linkage. This was further substantiated by
the presence of carbon signals at $\delta 113.8,117.7,133.6$ and 141.4 in its ${ }^{13} \mathrm{C}$ NMR spectrum which were attributed to four olefinic carbons (Figure 9).

21

Figure 9: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of coupled product 21

Finally, the TBS group was removed (TBAF, THF) and cyclic core was then constructed smoothly in 69\% yield via a RCM strategy using Grubbs second generation catalyst, thus affording the final compound (-)-aspinolide A 1 in 11.2% overall yield and 98% ee. Its optical purity was based on comparison of its optical rotation with the reported values $[\alpha]_{\mathrm{D}}{ }^{25}-40.7(c 0.3, \mathrm{MeOH})\left\{\right.$ lit. $\left.{ }^{3}[\alpha]_{\mathrm{D}}{ }^{25}-41.6(c 0.25, \mathrm{MeOH})\right\}$ (Scheme 7).

(-)-aspinolide A 1
Scheme 7: (i) EDCI•HCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 86 \%$; (ii) (a) TBAF, THF, $0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) Grubbs-II ($10 \mathrm{~mol} \%$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $24 \mathrm{~h}, 62 \%$ (over two steps).

The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 showed typical signals at $\delta 5.23(\mathrm{~m}, 1 \mathrm{H})$ and 5.59-5.72 (m, $1 \mathrm{H})$ corresponding to the two olefinic protons, which was further ascertained by the appearance of carbon signals at $\delta 131.7$ and 137.4 in its ${ }^{13} \mathrm{C}$ NMR spectrum. The characteristic multiplets at $\delta 3.97-4.06(1 \mathrm{H})$ and $5.02-5.10(1 \mathrm{H})$ accounted for the methine protons (-CH-O-) attached to oxygen atom (Figure 10).

Figure 10: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (-)-aspinolide A 1

2.1.4 Conclusion

In conclusion, we have demonstrated the use of organocatalytic α-aminooxylation and asymmetric epoxidation strategy for the concise synthesis of (-)-aspinolide A $\mathbf{1}$ with an enantiomeric excess of 98%. Simple procedures, easy to use reagents, cheap, readily available starting materials and flexible synthetic scheme are some of the salient features of this approach. The synthetic strategy described herein has significant potential for further extension to other decanolides-based bioactive molecules.

2.1.5 Experimental section

(R)-Pent-4-en-2-ol (4)

To a stirred solution of (-)-Ipc ${ }_{2} \mathrm{~B}($ allyl $)$ borane (150 mmol) in dry $\mathrm{Et}_{2} \mathrm{O}$ (200 mL) at -78 ${ }^{\circ} \mathrm{C}$ was added a solution of acetaldehyde $\mathbf{1 1}(6 \mathrm{~g}, 136.37$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , after which $3 \mathrm{~N} \mathrm{NaOH}(111 \mathrm{~mL}, 330 \mathrm{mmol})$ and $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(45 \mathrm{~mL})$ was added to this reaction mixture and the contents stirred at $25{ }^{\circ} \mathrm{C}$ for additional 2 h . After the completion of
reaction (monitored by TLC), the organic layer was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the removal of solvent the residue was distilled (bp $115{ }^{\circ} \mathrm{C}$) giving (R)-(-)-4-penten-2-ol 4 (9.04 g) as a colorless liquid.

Yield: $77 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-9.67\left(c 3.0, \mathrm{Et}_{2} \mathrm{O}\right)\left\{\mathrm{lit}^{3,6}[\alpha]_{\mathrm{D}}{ }^{25}-9.84\left(c 3.1, \mathrm{Et}_{2} \mathrm{O}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 914,1071,1243,1432,1457,1562,2975,2931,3078,3409 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.14-2.26(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.84$ $(\mathrm{m}, 1 \mathrm{H}), 5.10-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.76-5.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 22.7$, 43.7, 66.8, 117.9, 134.8; Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ requires C, 69.72; $\mathrm{H}, 11.70$; found C , 69.63; H, 11.78\%.
((2R,3R)-3-(2-(tert-Butyldimethylsilyloxy)ethyl)oxiran-2-yl)methanol (12)

The catalyst (S)- α, α-bis[3,5-bis(trifluoromethyl)phenyl]-2pyrrolidinemethanol tri-methylsilyl ether ($1.2 \mathrm{~g}, 10 \mathrm{~mol} \%$) was added at ambient temperature to a solution of the α, β-unsaturated aldehyde $\mathbf{1 3}$ ($5 \mathrm{~g}, 20.6$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) followed by the addition of $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (aq.) ($2.6 \mathrm{~mL}, 26.8$ mmol). After the completion of reaction (monitored by TLC), it was diluted with MeOH (50 mL) and cooled to $0{ }^{\circ} \mathrm{C}$ followed by the addition of $\mathrm{NaBH}_{4}(1.72 \mathrm{~g}, 30.9 \mathrm{mmol})$. The mixture was then stirred for 10 min, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography with petroleum ether/EtOAc (8:2 v/v) to give epoxy alcohol 12 (2.3 g) as yellow colored liquid.

Yield: $43 \% ;[\alpha]_{D}{ }^{25}-16.5\left(c 1.7, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 746,878,1099,1454,1717$,

2862, 2936, 3063, $3414 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, 1.53-1.63 (m, 6H), 2.04 (br s, 1H), 2.89-2.97 (m, 2H), 3.58-3.63 (m, 3H), 3.86-3.93 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.3,18.3,22.3,25.9,31.3,32.4,55.8,58.5,61.6$, 62.7; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires C, 59.95 ; $\mathrm{H}, 10.84$; found $\mathrm{C}, 60.03$; H , 10.91\%.
tert-Butyl(2-((2R,3S)-3-(iodomethyl)oxiran-2-yl)ethoxy)dimethylsilane (16)

To a stirred solution of epoxy alcohol $12(1.3 \mathrm{~g}, 5 \mathrm{mmol})$ in dry ether-acetonitrile mixture $(3: 1,40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere were added imidazole ($570 \mathrm{mg}, 7.5 \mathrm{mmol}$), triphenylphosphine ($1.96 \mathrm{~g}, 7.5$ $\mathrm{mmol})$, and iodine ($1.91 \mathrm{~g}, 7.5 \mathrm{mmol}$) successively. The mixture was stirred for 1 h at the same temperature followed by stirring at $25{ }^{\circ} \mathrm{C}$ for additional 1 h . After the completion of reaction (monitored by TLC) diluted with cold ether (20 mL), and filtered through a sintered funnel. The residue was washed with ether ($3 \times 50 \mathrm{~mL}$) and concentrated under reduced pressure. The crude compound was purified by column chromatography using petroleum ether/EtOAc (9:1 v/v) to afford epoxy iodide $16(1.72 \mathrm{~g})$ as yellow colored liquid.

Yield: $90 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+8.0\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 669,767,1216,2854,2927$, $3018 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.53-1.56(\mathrm{~m}, 6 \mathrm{H})$, 2.76-2.79 (m, 1H), 2.98-3.04 (m, 2H), 3.21-3.32 (m, 1H), 3.58-3.61 (m, 2H) ; ${ }^{13}$ C NMR (50 MHz, CDCl_{3}): $\delta-5.3,4.8,18.3,22.3,25.9,31.4,32.4,58.1,62.2,62.7$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{IO}_{2} \mathrm{Si}$ requires $\mathrm{C}, 42.16 ; \mathrm{H}, 7.35$; found $\mathrm{C}, 42.21 ; \mathrm{H}, 7.40 \%$.

(R)-5-(tert-Butyldimethylsilyloxy)pent-1-en-3-ol (17)

A mixture of epoxy iodide 16 ($1.3 \mathrm{~g}, 3.5 \mathrm{mmol}$), $\mathrm{NaI}(1.1 \mathrm{~g}, 7.0$
mmol) and freshly activated zinc powder ($50 \mathrm{mg}, 20 \mathrm{~mol} \%$) in dry MeOH (50 mL) was refluxed for 3 h under nitrogen atmosphere. After the completion of reaction (monitored by TLC), the solution was filtered and the residue washed with $\mathrm{MeOH}(2 \times 25 \mathrm{~mL})$. The combined filtrates were concentrated and the residue was purified by column chromatography using petroleum ether/EtOAc (8:2 v/v) to afford the allylic alcohol $\mathbf{1 7}$ (770 mg) as a colorless liquid.

Yield: $90 \% ;[\alpha]_{D}{ }^{25}+7.1\left(c 2.4, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 993,1018,1217,1458,1465$, 2864, 2926, 3018, 3307, $3427 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.04$ (s, 6H), 0.89 (s, 9H), 1.38-1.65 (m, 7H), 3.58-3.64 (t, J = $5.9 \mathrm{~Hz}, 2 \mathrm{H}), ~ 4.04-4.13(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.26$ ($\mathrm{m}, 2 \mathrm{H}$), 5.77-5.94 (m, 1H) ; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.3,18.3,21.6,25.9,32.6$, 36.6, 62.9, 73.0, 114.0, 141.2; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2}$ Si requires C, 63.87; H, 11.55; found C, 63.94; H, 11.59\%.
(R)-2,2,3,3,9,9,10,10-octamethyl-5-vinyl-4,8-dioxa-3,9-disilaundecane (18) TBSO $\mathrm{mg}, 4.9 \mathrm{mmol}$) under nitrogen over 5 min at $0^{\circ} \mathrm{C}$, and the mixture was allowed to warm to room temperature and stirred for 6 h . After the completion of reaction (monitored by TLC), it was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with water ($3 \times 50 \mathrm{~mL}$) and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Silica gel column chromatographic purification of the crude product using petroleum ether gave TBS ether $18(1.3 \mathrm{~g})$ as a colorless liquid.

Yield: $86 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+6.0\left(c 2.0, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 929,1033,1216,2854,2927$, $3018 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.02$ (s, 12H), 0.89 ($\mathrm{s}, 18 \mathrm{H}$), 1.25-1.57 (m, $6 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.97-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.69-5.86(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): δ-5.2, - 4.7, - 4.2, 18.2, 21.5, 26.0, 32.8, 37.9, 63.1, 73.8, 113.5, 141.8 ; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires C, 63.62; H, 11.80; found C, 63.69; H, 11.74\%.

(R)-3-(tert-Butyldimethylsilyloxy)pent-4-en-1-ol (19)

To a stirred solution of $\mathbf{1 8}(900 \mathrm{mg}, 2.72 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added (+)-camphor-10-sulfonic acid ($6 \mathrm{mg}, 1 \mathrm{~mol} \%$) and the reaction mixture stirred for 5 min . After the completion of reaction (monitored by TLC), $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and extraction was done with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with water ($3 \times 50 \mathrm{~mL}$) and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Column chromatographic purification of the crude product using petroleum ether/EtOAc (8:2 v/v) gave alcohol 19 (371 mg) as a colorless liquid.

Yield: 63\%; $[\alpha]_{\mathrm{D}}{ }^{25}-9.2\left(c 1.3, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 775,836,1078,1215,1255$, 2957, $3441 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.01$ (s, 3H), 0.03 (s, 3H), 0.87 (s, 9H), 1.36-1.57 (m, 7H), $3.60(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{q}, ~ J=6.1 \mathrm{~Hz}$, 1H), 4.99-5.12 (m, 2H), 5.72-5.79 (m, 1H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta-4.7,-4.2,18.3,21.3,25.9,32.7,37.8$, 62.8, 73.8, 113.7, 141.7; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2}$ Si requires C, 63.87; H, 11.55; found C, 63.81; H, 11.47\%.
(R)-3-(tert-Butyldimethylsilyloxy)pent-4-enoic acid (6)

Chapter II

To a solution of alcohol $19(450 \mathrm{mg}, 1.85 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(4: 1)$ were added in one portion (diacetoxyiodo)benzene ($1.2 \mathrm{~g}, 3.7 \mathrm{mmol}$) and TEMPO ($86.3 \mathrm{mg}, 0.55 \mathrm{mmol}$). The reaction mixture was then allowed to stir at $25^{\circ} \mathrm{C}$ for 4 h . After completion of reaction (monitored by TLC), it was quenched by the addition of saturated solution of aq. sodium thiosulfate. The organic layer was separated, washed with brine and subjected to column chromatographic purification with petroleum ether/EtOAc (7:3 v/v) to afford the carboxylic acid $6(384 \mathrm{mg})$ as a colorless liquid.

Yield: 80\%; $[\alpha]_{\mathrm{D}}{ }^{25}-6.4\left(c 1.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.^{3}[\alpha]_{\mathrm{D}}{ }^{25}-6.56\left(c 1.15, \mathrm{CHCl}_{3}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 1109,1257,1425,1462,1707,2858,2931,3070,3444, \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.76(\mathrm{~m}, 4 \mathrm{H}), 2.32-2.39(\mathrm{t}, \mathrm{J}=$ 6.1 Hz, 2H), 4.09-4.15 (m, 1H), 5.02-5.19 (m, 2H), 5.69-5.86 (m, 1H), 10.67 (br s, 1H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta-4.9,-4.4,18.2,20.2,25.8,33.9,37.1,73.3,113.9,141.2$, 179.9 ; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$ requires C, 60.42; H, 10.14; found C, 60.47; H, 10.23\%.
(R)-4-(tert-Butyldimethylsilyloxy)butane-1,2-diol (20)

To a stirred pre-cooled $\left(-20^{\circ} \mathrm{C}\right)$ acetonitrile $(100 \mathrm{~mL})$ solution of aldehyde $\mathbf{1 5}$ ($6.1 \mathrm{~g}, 26.5 \mathrm{mmol}$) and nitrosobenzene ($2.8 \mathrm{~g}, 26.5$ mmol) was added L-proline ($608 \mathrm{mg}, 20 \mathrm{~mol} \%$). The reaction mixture was allowed to stir at the same temperature for 24 h followed by the addition of $\mathrm{MeOH}(60 \mathrm{~mL})$ and NaBH_{4} ($1.94 \mathrm{~g}, 51 \mathrm{mmol}$) to the reaction mixture, which was stirred for 10 min . After the completion of reaction (monitored by TLC), the resulting mixture was extracted with EtOAc $(3 \times 60 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude aminooxy alcohol which was directly taken up for the
next step without purification. To a well stirred solution of crude aminooxy alcohol in methanol was added $10 \% \mathrm{Pd} / \mathrm{C}$ and the reaction mixture stirred overnight at $25^{\circ} \mathrm{C}$ under H_{2} atmosphere. After completion of reaction (monitored by TLC), it was filtered through celite (MeOH eluent) and solvent evaporated under reduced pressure to afford the crude diol. Purification by column chromatography with petroleum ether/ethyl acetate ($5: 5 \mathrm{v} / \mathrm{v}$) gave the diol $20(5.1 \mathrm{~g})$ as a colorless liquid.

Yield: 77%; $[\alpha]_{D}{ }^{25}-7.0\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 1376,1466,2872,2969,3381$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.57(\mathrm{~m}, 6 \mathrm{H}), 2.92$ (br s , 2H), 3.35-3.44 (m, 1H), 3.58-3.69 (m, 4H); ${ }^{13}$ C NMR (50 MHz, CDCl_{3}): $\delta-5.3$, 18.3, 21.9, 25.9, 32.6, 32.7, 62.97, 66.65, 72.13; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{O}_{3}$ Si requires C, 58.01; H, 11.36; found C, 58.09; H, 11.43\%.

(R)-tert-Butyldimethyl(2-(oxiran-2-yl)ethoxy)silane (14)

A solution of diol $20(2.94 \mathrm{~g}, 11.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was treated with $\mathrm{TsCl}(2.25 \mathrm{~g}, 11.8 \mathrm{mmol}), \mathrm{Bu}_{2} \mathrm{SnO}$ ($883.8 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{~N}(4.21 \mathrm{~mL}, 30 \mathrm{mmol})$ and DMAP (cat.) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 1 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, washed with water and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude tosylate. To a solution of crude tosylate in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.79 \mathrm{~g}, 13$ mmol) and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . After the reaction was complete (monitored by TLC), solvent was evaporated and the residue was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product which was then purified by column chromatography using petroleum ether/EtOAc (8:2 v/v) to give epoxide $\mathbf{1 4}(2.5 \mathrm{~g})$ as a
colorless oil.
Yield: 92\%; $[\alpha]_{\mathrm{D}}{ }^{25}-5.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 877,985,1216,1387,1452$, 1607, $3018 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.04$ (s, 6H), 0.89 (s, 9H), 1.53-1.60 (m, 6H), 2.42-2.45 (m, 1H), 2.71-2.75 (m, 1H), 2.85-2.90 (m, 1H), 3.61 (t, $J=6.1 \mathrm{~Hz}$, 2H); ${ }^{13}$ C NMR (50 MHz, CDCl_{3}): $\delta-5.3,18.3,22.3,25.9,32.2,32.5,46.8,52.1,62.8 ;$

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2}$ Si requires C, 62.55; H, 11.37; found C, 62.41; H, 11.02\%.
(R)-5-(tert-Butyldimethylsilyloxy)pent-1-en-3-ol (17)

To a stirred suspension of trimethylsulfonium iodide (2 equiv, $11 \mathrm{mmol}, 2.24 \mathrm{~g}$) in dry THF (50 mL) was added $n-B u L i$ (2 equiv, $11 \mathrm{mmol}, 6.8 \mathrm{~mL}$ of 2 M hexane solution) at $-10^{\circ} \mathrm{C}$. After 30 min , epoxide $\mathbf{1 4}(1.2 \mathrm{~g}, 5.2$ mmol) in dry THF (30 mL) was introduced dropwise and the reaction mixture was slowly warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h . After completion of reaction (monitored by TLC), the reaction mixture was quenched with water and extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was then purified by column chromatography using petroleum ether/EtOAc (8:2 v/v) to give allyl alcohol 17 (1.12 g). Yield: 89\%; $[\alpha]_{D}{ }^{25}+7.5\left(c\right.$ 2.4, $\left.\mathrm{CHCl}_{3}\right)$
(R)-((R)-Pent-4-en-2-yl) 3-(tert-butyldimethylsilyloxy)pent-4-enoate (21)

To a stirred solution of acid 6 ($200 \mathrm{mg}, 0.8 \mathrm{mmol}$), EDCIHCl (176.4 mg, 0.9 mmol$)$ and $\mathrm{Et}_{3} \mathrm{~N}(242.2 \mathrm{mg}, 2.4 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added alcohol $4(67 \mathrm{mg}, 0.8 \mathrm{mmol})$ and the reaction mixture stirred for 6 h at $25^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), it was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50)$. The combined
organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was then purified by column chromatography with petroleum ether/EtOAc (8:2 v/v) to give dienic ester $21(225 \mathrm{mg})$ as colorless liquid. Yield: $88 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-18.3\left(c 1.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.^{3}[\alpha]_{\mathrm{D}}{ }^{25}-14.9\left(c 0.5, \mathrm{CHCl}_{3}\right)\right\}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 1425,1462,1642,1735,2855,2926 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.02(\mathrm{~s}$, $3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.71(\mathrm{~m}, 6 \mathrm{H}), 2.23-2.33(\mathrm{~m}$, 2H), 4.03-4.13 (m, 1H), 4.94-5.18 (m, 5H), 5.69-5.83 (m, 2H); ${ }^{13}$ C NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-4.9,-4.4,18.2,20.7,25.9,31.9,34.4,37.2,40.3,69.6,73.4,113.8,117.7$, 133.6, 141.4, 172.8; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3}$ Si requires C, 66.21 ; $\mathrm{H}, 10.49$; found C , 66.34; H, 10.55\%.

(-)-Aspinolide A (1)

To a well stirred solution of silyl ether 21 ($200 \mathrm{mg}, 0.48 \mathrm{mmol}$) in dry THF (5 mL) was added 1 M solution of tetrabutylammonium fluoride ($1 \mathrm{~mL}, 1 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for additional 2 h . After the completion of reaction (monitored by TLC), it was quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and the reaction mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 20$ mL). then washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the removal of solvent, the crude product was dissolved in freshly distilled degassed anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL). The reaction mixture was treated with Grubb's II catalyst ($82 \mathrm{mg}, 20 \mathrm{~mol} \%$) and heated at reflux for 24 h under inert atmosphere. After the completion of reaction (monitored by TLC), the solvent was then distilled off and the residue was purified by column chromatography with petroleum ether/EtOAc (9:1 v/v) to afford $\mathbf{1}(54 \mathrm{mg})$ as viscous yellow liquid.

Yield: 69\%; $[\alpha]_{\mathrm{D}}{ }^{25}-40.7$ (c 0.3, MeOH) $\left\{\right.$ lit. $^{3}[\alpha]_{\mathrm{D}}{ }^{25}-41.6$ (с 0.25 , MeOH) \}; IR $\left(\mathrm{CHCl}_{3},\right): v_{\max } 1275,1460,970,1730,2852,2920,3436 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.29(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.89(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-$ 2.42 (m, 2H), 3.97-4.06 (m, 1H), 5.02-5.07 (m, 1H), 5.23 (d, J = 7.6 Hz, 1H), 5.59-5.72 (m, 1H); ${ }^{13}$ C NMR (50 MHz, CDCl_{3}): $\delta 19.8,22.3,35.5,38.6,42.1,71.8,74.6,131.7$, 137.4, 176.5; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 65.19$; $\mathrm{H}, 8.75$; found $\mathrm{C}, 65.11$; H , 8.86\%.

Section II

A facile enantioselective synthesis of (S)- N -(5-Chlorothiophene-2-sulfonyl)- β, β-diethylalaniol (7.b.2) via proline-catalyzed asymmetric α-aminooxylation and α-amination of aldehyde

2.2.1 Introduction and Pharmacology

Alzheimer's disease (AD) is a chronic, neurodegenerative disorder, which is characterized by a loss of cognitive ability, severe behavioral abnormalities and ultimately death. ${ }^{9}$ A key event in the pathogenesis of $A D$ is now believed to be the deposition of β-amyloid $(A \beta)$ plaques on the outside of the nerve cells in areas of the brain that are produced by the proteolytic cleavage of amyloid precursor protein (APP) by β and γ-secretase. ${ }^{10}$ A " β amyloid cascade" hypothesis has emerged to account for various experimental facts including genetic variations related to the production and elimination of $A \beta{ }^{9 a, 11 a}$ Recent studies have further shown that neuritic plaques and neurofibriliary tangles are accepted pathological hallmarks of AD as confirmed at autopsy. ${ }^{11} \gamma$-Secretase inhibitors like BMS299897, LY-450139 and MK-0752 have entered clinical trials. Recently (S)-N-(5-chlorothiophene-2-sulfonyl)- β, β-diethylalaninol 22 (7.b.2), a Notch-1-sparing γ-secretase inhibitor (with $\mathrm{EC}_{50}=28 \mathrm{nM}$), has been found to be effective in reduction of $\mathrm{A} \beta$ production in vivo (Figure 11). ${ }^{12}$

Figure 11: Structure of (S)- N-(5-chlorothiophene-2-sulfonyl)β, β-diethylalaninol (22)

2.2.2 Review of Literature

Literature search revealed that there are only two reports available on the synthesis of (S)-N-(5-chlorothiophene-2-sulfonyl)- β, β-diethylalaninol 22, which are described below.

Mayer's approach (2008) ${ }^{13}$

Mayer et al. have reported the synthesis of (S)-N-(5-chlorothiophene-2-sulfonyl)- β, β diethylalaninol 22 starting from 3-ethylpentanoic acid 23 which was coupled with (S)-4-benzyl-2-oxazolidinone to give the alkenoyloxazolidin-2-one 24. Chiral α-azidination of 24 with KHMDS as base and 2,4,6-triisopropylbenzenesulfonyl azide as azide source gave 25. Azide 25 was converted to amino alcohol 28 by employing a three step reaction sequence: (i) hydrolysis of $\mathbf{2 5}$ with LiOH ; (ii) catalytic reduction of 26 with $10 \% \mathrm{Pd} / \mathrm{C}$ and (iii) reduction of acid functionality in 27 by its treatment with lithium aluminum hydride. Amino alcohols 28 were reacted with 5-chlorothiophene-2-sulfonyl chloride to give the desired 5-chlorothiophene-2-sulfonyl amino alcohols 22 with an overall yield of

16.1\% (Scheme 8).

Scheme 8: (i) (S)-4-benzyl-2-oxazolidinone, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCl}, \mathrm{Et}_{3} \mathrm{~N}$, THF, (ii) (a) KHMDS, THF, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (b) 2,4,6triisopropylbenzenesulfonyl azide, THF $-78{ }^{\circ} \mathrm{C}$; (iii) $\mathrm{LiOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (3:1), $25{ }^{\circ} \mathrm{C}$; (iv) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (40 psig), $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}$; (v) LiAlH_{4}, THF, $60^{\circ} \mathrm{C}$, 55.3% (over three step); (vi) 5-chlorothiophene-2-sulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 85 \%$.

Cole's approach (2009) ${ }^{14}$

Cole et al. have reported the synthesis of (S)-N-(5-chlorothiophene-2-sulfonyl)- β, β diethylalaninol 22 starting from 2-pentenoic acid 29 which was coupled with (R)-4-benzyl-2-oxazolidinone to give the alkenoyloxazolidin-2-one products 30. Cuprate reagents prepared in situ by the addition of Grignard reagent to CuBr'DMS under carefully controlled temperature conditions, underwent Michael addition and the anion was trapped with N -bromosuccinimide (NBS) to give the α-bromo derivatives 31. Displacement of the bromide in $\mathbf{3 1}$ with $\mathrm{N}, \mathrm{N}, \mathrm{N}$ ', N '-tetramethylguanidinium azide yielded the corresponding azide 32. Simultaneous reduction of amide and azide moieties on treatment with lithium aluminum hydride yielded the corresponding amino alcohols 28, which were reacted with 5-chlorothiophene-2-sulfonyl chloride to give the desired 5-chlorothiophene-2-sulfonyl amino alcohols 22 (Scheme 9).

Scheme 9: (i) (R)-4-benzyl-2-oxazolidinone, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCl}, \mathrm{Et}_{3} \mathrm{~N}$, THF, (ii) n-BuLi, THF; (iii) (a) EtMgBr, CuBr-DMS, THF - 40 to $-15^{\circ} \mathrm{C}$; (b) NBS, $-78{ }^{\circ} \mathrm{C}$; (c) N, N, N^{\prime}, N '-tetramethylguanidinium azide, $\mathrm{CH}_{3} \mathrm{CN}$, $25{ }^{\circ} \mathrm{C}$; (iv) LiAlH_{4}, THF, $60{ }^{\circ} \mathrm{C}$; (iv) 5-chlorothiophene-2-sulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, THF.

2.2.3 Present Work

2.2.3.1 Objective

Reported methods for the synthesis of (S)- N-(5-chlorothiophene-2-sulfonyl)- β, β diethylalaninol 22, employ the use of stoichiometric amount of chiral auxillary for the generation of chirality and are not atom-economical. Organocatalytic asymmetric synthesis has provided several new methods for obtaining chiral compounds. ${ }^{15}$ In particular, proline, an abundant, inexpensive amino acid available in both enantiomeric forms has emerged arguably as the most practical and versatile organocatalyst. ${ }^{16}$ In continuation of our work on proline-catalyzed synthesis of bioactive molecules, in this section, a facile synthesis of 22, whose activity makes it an attractive synthetic target is described. The retrosynthetic analysis of 22, wherein proline-catalyzed α-aminooxylation ${ }^{8}$ and α-amination ${ }^{17}$ reactions constitute the key steps for the introduction of chirality, is presented in Schemes 10. Evidently, amino alcohol 28 has emerged as the key intermediate in the synthesis of $\mathbf{2 2}$.

Scheme 10: The retrosynthesis of 7.b. 2 (22)

2.2.3.2. Results and Discussion

Our synthesis of anti-Alzheimer's agent 7.b. 2 (22) commenced from 3-pentanone 36, which on Horner-Wardsworth-Emmons olefination (triethyl phosphonoacetate, NaH, THF), gave the corresponding α, β-unsaturated ester 37 in 93% yield. The formation of 37
was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum which showed the presence of a typical singlet at $\delta 5.59$ corresponding to olefinic proton; this was further ascertained by its ${ }^{13} \mathrm{C}$ NMR spectrum which showed typical carbon signals at $\delta 113.0$ and 166.5 due to olefinic carbons (Figure 12).

Hydrogenation [10\% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}$] of the unsaturated ester 37 produced the crude saturated ester, which was directly subjected to reduction with LiAlH_{4} in THF affording the saturated primary alcohol $\mathbf{3 8}$ in 83% yield over two steps. The disappearance of resonance signals corresponding to olefinic and ester functionality in its ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra and the appearance of a broad singlet at $\delta 2.35$ in its ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the formation of alcohol 38. This was further substantiated by its IR spectrum analysis, which showed a broad absorption band at $v_{\max } 3355 \mathrm{~cm}^{-1}$ due to -OH stretching frequency (Figure 13).

Figure 13: ${ }^{1} \mathrm{H}$ NMR and IR spectra of alcohol 38

Oxidation of primary alcohol 38 with IBX/DMSO mixture gave the key precursor aldehyde 35, which was found to be highly labile and volatile. Hence, upon solvent extraction, it was immediately (without purification) subjected to proline-catalyzed α aminooxylation and α-amination reactions respectively (Schemes 11 and 12).

Scheme 11: (i) triethyl phosphonoacetate, NaH , dry THF, $0-25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 93 \%$; (ii) (a) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 12 \mathrm{~h}, 25^{\circ} \mathrm{C}$; (b) LiAlH_{4}, dry THF, 0-25 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 83 \%$ (over two steps); (iii) IBX, dry DMSO, $25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iv) (a) PhNO, L-proline ($20 \mathrm{~mol} \%$), $\mathrm{CH}_{3} \mathrm{CN},-20^{\circ} \mathrm{C}, 24 \mathrm{~h}$ then $\mathrm{MeOH}, \mathrm{NaBH}_{4}, 10$ min; (b) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 12 \mathrm{~h}, 25^{\circ} \mathrm{C}, 77 \%$ (over two steps); (v) TBSCl, imid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 81 \%$. (vi) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, 45 \mathrm{~min}$; (b) NaN_{3}, dry DMF, $60^{\circ} \mathrm{C}, 30 \mathrm{~h}, 78 \%$; (vii) LiAlH_{4}, dry THF, $50^{\circ} \mathrm{C}, 12 \mathrm{~h}, 75 \%$.

Firstly, the L-proline-catalyzed α-aminooxylation of aldehyde 35 was carried out in a two-step reaction sequence: (i) reaction of aldehyde 35 with nitrosobenzene as the oxygen source in the presence of $20 \mathrm{~mol} \% \mathrm{~L}$-proline in $\mathrm{CH}_{3} \mathrm{CN}$ at $-20^{\circ} \mathrm{C}$ followed by its reduction with NaBH_{4} in MeOH gave the crude α-aminooxy alcohol in situ and (ii) subsequent reduction of the crude α-aminooxy alcohol with $10 \% \mathrm{Pd} / \mathrm{C}$ over H_{2} (1 atm) furnished chiral diol 33 in 77% yield over two steps. The formation of diol 33 was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum, which showed a multiplet at δ 3.49-3.66 (3H) corresponding to methylene ($-\mathbf{C H}_{2}-\mathrm{OH}$) and methine ($-\mathbf{C H}-\mathrm{OH}$) protons respectively. This was further ascertained by its ${ }^{13} \mathrm{C}$ NMR spectrum, which displayed characteristic
carbon signals at $\delta 64.9$ and 73.6 corresponding to methylene $\left(-\mathbf{C H}_{2}-\mathrm{OH}\right)$ and methine ($\mathbf{C H}-\mathrm{OH}$) carbons attached to the oxygen atom (Figure 14).

Figure 14: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of diol 33

Selective protection of primary hydroxyl group in diol 33 (TBSCl , imid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was achieved to produce the TBS ether 39 in 81% yield. The formation of silyl ether 39 was confirmed by the appearance of characteristic singlets in its ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 0.08$ and 0.91 due to protons corresponding to TBS ether group. This was substantiated by analyzing its ${ }^{13} \mathrm{C}$ NMR spectrum, which showed typical carbon signals at $\delta-5.3\left(\mathbf{C H}_{3^{-}}\right.$

Si), $-5.2\left(\mathbf{C H}_{3}-\mathrm{Si}\right), 18.3\left[-\mathrm{Si}-\mathbf{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $25.9\left[-\mathrm{Si}-\mathrm{C}\left(\mathbf{C H}_{3}\right)_{3}\right]$ for carbons of the TBS group. Mesylation $\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the secondary alcohol functionality present in 39 gave the corresponding mesylate. However, attempts to purify the mesylate via column chromatography proved problematic due to its instability. This crude mesylate was therefore treated immediately with sodium azide (DMF, $60^{\circ} \mathrm{C}$) to afford the azido derivative 40 in 78% yield $\left\{[\alpha]_{\mathrm{D}}{ }^{25}\right.$-21.3 (c 1.6, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. The formation of azido derivative 40 was confirmed by its IR spectrum, which showed a strong absorption band at $v_{\max } 2097 \mathrm{~cm}^{-1}$ typical for azide functionality. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 0}$ showed the appearance of a multiplet at $\delta 3.41-3.46(1 \mathrm{H})$ corresponding to methine proton (-CHN_{3}). This was further confirmed by its ${ }^{13} \mathrm{C}$ NMR spectrum, which showed the methine carbon (-CH-N N_{3}) appearing at $\delta 65.0$ (Figure 15).

Carbon tetrachloride	Chloroform-d	
1	1	
-1	0	0
0	0	0
0	1	0
1	1	0

$$
\stackrel{\hat{n}}{\stackrel{i}{n}}
$$

Figure 15: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR and IR spectra of azide 40
The LiAlH_{4} reduction of TBS azide 40 in THF at $50^{\circ} \mathrm{C}$ afforded the key intermediate (S)-2-amino-3-ethylpentan-1-ol 28 in 75% yield with 99% ee accompanied with the simultaneous removal of TBS group (Scheme 11). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 8}$ showed a characteristic broad singlet at $\delta 2.36$ corresponding to amine and hydroxyl protons (- $\mathbf{N H}_{2}$ and $\mathbf{- O H}$). Its ${ }^{13} \mathrm{C}$ NMR spectrum showed carbon signals at $\delta 64.3$ and 54.9 corresponding to methylene $\left(-\mathbf{C H}_{2}-\mathrm{OH}\right)$ and methine ($-\mathbf{C H}-\mathrm{NH}_{2}$) carbons. The
disappearance of signals corresponding to TBS ether group in its ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra gave further evidence of this transformation. Its IR spectrum showed a broad absorption band at $v_{\max } 3441 \mathrm{~cm}^{-1}$ due to -NH and -OH groups (Figure 16).

Figure 16: ${ }^{1} \mathrm{H}$ NMR and IR spectra of amino alcohol 28
Since the number of steps involved in the α-aminooxylation process is relatively too many thereby limiting the overall yield (25.5\%), we have explored alternative chemistry that involved a direct α-amination approach.

Asymmetric α-amination of aldehydes using proline as the catalyst represents a burgeoning field of synthetic efforts toward synthesizing chiral building blocks, such as α-amino acids and alcohols. ${ }^{17}$ Thus, α-amination of aldehyde 35 was carried out using List's protocol. ${ }^{17 \mathrm{a}}$ Accordingly, aldehyde 35 was subjected to α-amination with dibenzyl azodicarboxylate in the presence of D-proline ($10 \mathrm{~mol} \%$) to produce the α-amino aldehyde, which upon in situ reduction with NaBH_{4} afforded the protected amino alcohol 34 in 92% yield and 98% ee (determined by chiral HPLC); $[\alpha]_{\mathrm{D}}{ }^{25}+20.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The formation of aminated alcohol was established by the analysis of its ${ }^{1} \mathrm{H}$ NMR spectrum, which showed a typical multiplet at δ 7.26-7.36 corresponding to ten aromatic protons of Cbz groups. Further evidence was provided by its ${ }^{13} \mathrm{C}$ NMR spectrum which exhibited characteristic carbon signals at $\delta 127.8,128.1,128.3,128.4,128.5,128.7,135.0$ and 135.7 indicative of the aromatic carbons. The enantiomeric purity of 34 was determined as 98\% ee from its chiral HPLC analysis (Figure 17).

Scheme 12: (i) dibenzyl azodicarboxylate, D-proline (10 mol\%), $\mathrm{CH}_{3} \mathrm{CN}, 0-25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$ then $\mathrm{MeOH}, \mathrm{NaBH}_{4}, 92 \%$; (ii) H_{2} (11.8 atm), Raney $\mathrm{Ni}, \mathrm{MeOH}, \mathrm{AcOH}, 70 \%$; (iii) 5-chlorothiophene-2-sulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 30 \mathrm{~min} ., 91 \%$.

The aminated alcohol 34 was then hydrogenated [Raney Ni, H_{2} (11.8 atm), MeOH, AcOH (5 drops)] to give (S)-2-amino-3-ethylpentan-1-ol 28 in 70% yield. ${ }^{18}$ Finally, the amino alcohol 28 was condensed with 5-chlorothiophene-2-sulfonyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to afford the target molecule 22 in 91% yield and 98% ee (determined by chiral HPLC) (Scheme 12). The formation of title compound 22 was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum which showed typical signals at $\delta 6.91(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$ and 7.41 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$) due to aromatic protons. This was further demonstrated by analysis of its ${ }^{13} \mathrm{C}$ NMR spectrum, which displayed characteristic carbon signals at $\delta 126.5,131.5$, 137.2 and 140.1 corresponding to aromatic carbons (Figure 18).

Figure 18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7.b.2 (22)

2.2.4 Conclusion

In conclusion, we have described a short synthetic route to anti-Alzheimer's agent 22 incorporating a successful application of D-proline-catalyzed asymmetric α-amination of aldehyde 35 to give the corresponding amino alcohol 34 in 98% ee with an overall yield of 45.2%. The operationally simple reactions with less number of steps, high overall yields requiring a relatively low amount of inexpensive and non-toxic proline as catalyst make this approach an attractive and useful process.

2.2.5 Experimental Section

Ethyl 3-ethylpent-2-enoate (37)

To a stirred suspension of activated $\mathrm{NaH}(3.34 \mathrm{~g}, 139.32 \mathrm{mmol})$ in dry THF (150 mL) a solution of triethyl phosphonoacetate ($39.04 \mathrm{~g}, 174.16$ $\mathrm{mmol})$ in dry THF (150 mL) was added dropwise at $0^{\circ} \mathrm{C}$ followed by the addition of a solution of 3-pentanone $36(10.0 \mathrm{~g}, 116.10 \mathrm{mmol})$ in dry THF (100 mL). The reaction mixture was then stirred at $25{ }^{\circ} \mathrm{C}$ for 8 h . After completion of reaction
(monitored by TLC), it was quenched with saturated solution of ammonium chloride and the product extracted with diethyl ether. The combined organic layer was then washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure and column chromatographic purification with petroleum ether/EtOAc (9:1 v/v) gave the α, β-unsaturated ester $37(16.86 \mathrm{~g})$ as a colorless liquid.

Yield: 93\%; IR (CHCl_{3}): $\mathbf{v}_{\max } 867,1147,1273,1444,1634,1719,2877,2972 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.07$ (t, $\left.J=7.8 \mathrm{~Hz}, 6 \mathrm{H}\right), 1.28$ (t, $\left.J=7.7 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.17(\mathrm{q}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{q}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, CDCl_{3}): $\delta 11.9,12.9,14.2,25.3,30.7,59.3,113.6,166.5,167.2 ;$ Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ required C, 69.19; $\mathrm{H}, 10.32$; found $\mathrm{C}, 69.29$; $\mathrm{H}, 10.37 \%$.

3-Ethyl pentan-1-ol (38)

A mixture of α, β-unsaturated ester $37(15 \mathrm{~g}, 96.02 \mathrm{mmol})$ and 10% Pd / C was stirred under H_{2} (1 atm .) at $25{ }^{\circ} \mathrm{C}$. After completion of reaction (monitored by TLC), it was filtered through celite (MeOH eluent) and solvent evaporated under reduced pressure to afford the saturated ester. The saturated ester obtained was pure enough to be used in next reaction. To a suspension of $\mathrm{LiAlH}_{4}(5.47 \mathrm{~g}$, $144.03 \mathrm{mmol})$ in dry THF (100 mL), a solution of saturated ester in THF (100 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 12 h . After completion of reaction (monitored by TLC), it was quenched with aq. 20% solution of sodium hydroxide (2 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was filtered through sintered funnel, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by column chromatography with petroleum ether/ethyl acetate ($7: 3 \mathrm{v} / \mathrm{v}$) gave the alcohol 38 (9.26 g) as a colorless liquid.

Yield: 83\%; IR (CHCl_{3}): $\mathrm{v}_{\max } 1018,2875,2931,2964,3355 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, CDCl_{3}): $\delta 0.86(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.36(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.55(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, 1$ H), $3.62\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.9,25.7,38.3,41.3,64.7$;

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}$ required C, 72.35 ; $\mathrm{H}, 13.88$; found $\mathrm{C}, 72.42$; $\mathrm{H}, 13.85 \%$.

3-Ethylpentane-1,2-diol (33)

To a well stirred solution of alcohol 38 ($8.0 \mathrm{~g}, 68.84 \mathrm{mmol}$) in DMSO (100 mL), 2-iodoxybenzoic acid ($23.13 \mathrm{~g}, 82.61 \mathrm{mmol}$) was added in one portion. The reaction mixture was then stirred for 1 h at $25^{\circ} \mathrm{C}$. After the completion of reaction (monitored by TLC), it was diluted with water and diethyl ether. Subsequent filtration (diethyl ether eluent) and washing the filtrate with water, brine followed by drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent under reduced pressure gave crude aldehyde 35 which was pure enough to be directly used for next reaction. To a stirred solution of nitrosobenzene ($7.37 \mathrm{~g}, 68.84 \mathrm{mmol}$) and D-proline ($1.58 \mathrm{~g}, 20 \mathrm{~mol} \%$) in $\mathrm{CH}_{3} \mathrm{CN}(200 \mathrm{~mL})$ was added precursor aldehyde at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 24 h followed by the addition of $\mathrm{MeOH}(100 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(10.42,275.36 \mathrm{mmol})$ and stirring for another 10 min . After completion of reaction (checked by TLC) the reaction mixture was quenched with saturated aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The removal of solvent under vaccum followed by extraction with EtOAc gave the crude product. Purification of the crude product by column chromatography with petroleum ether/ EtOAc (7:3 v/v) gave the corresponding aminooxy alcohol as a yellow colored liquid.
$[\alpha]_{\mathrm{D}}{ }^{25}+12.2\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\max } 1039,1072,1127,1461,1502,1600,2960$, $3405 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.95(\mathrm{t}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.60(\mathrm{~m}, 5 \mathrm{H})$,
3.78-3.88 (m, 2 H), 3.91-3.97 (m, 1 H), 6.93-6.98 (m, 3 H), 7.20-7.28 (m, 2 H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 11.8,11.9,21.8,21.9,44.3,65.0,73.9,123,126,130,153$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2}$ required C, 69.92; H, 9.48; $\mathrm{N}, 6.27$; found $\mathrm{C}, 69.99$; $\mathrm{H}, 9.56$; N, 6.21\%.

To a well stirred solution of aminooxy alcohol in methanol was added $10 \% \mathrm{Pd} / \mathrm{C}$ and the reaction mixture stirred overnight at $25{ }^{\circ} \mathrm{C}$ under H_{2} atmosphere. After completion of reaction (monitored by TLC), it was filtered through celite (MeOH eluent) and solvent evaporated under reduced pressure to afford the crude diol. Purification by column chromatography with petroleum ether/EtOAc (5:5 v/v) gave the diol $33(7.0 \mathrm{~g})$ as a colorless liquid.

Yield: $77 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-4.9\left(c 1.0, \mathrm{CHCl}_{3}\right.$); IR (neat): $v_{\max } 1073,1124,1379,1461,2875$, 2961, $3387 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.90(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}$), 1.29-1.48 (m, 5 H), 2.04 (br s, 2 H), 3.49-3.66 (m, 3 H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.2,11.3$, 21.2, 21.6, 43.7, 64.9, 73.6. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2}$ required C, 63.60; H, 12.20; found C C, 63.66; H, 12.25\%.

(R)-1-(tert-Butyldimethylsilyloxy)-3-ethylpentan-2-ol (39)

To a solution of diol $33(2 \mathrm{~g}, 15.14 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added imidazole ($1.54 \mathrm{~g}, 22.7 \mathrm{mmol}$) and tertbutyldimethylsilyl chloride ($2.51 \mathrm{~g}, 16.65 \mathrm{mmol}$). The reaction mixture was then stirred at $25{ }^{\circ} \mathrm{C}$ for 2 h . After completion of reaction (monitored by TLC), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave the crude product, which was then purified by
column chromatography with petroleum ether/ EtOAc (8:2 v/v) to give $39(3.02 \mathrm{~g})$ as a colorless
liquid.
Yield: 81%; $[\alpha]_{\mathrm{D}}{ }^{25}-5.0\left(c 1.6, \mathrm{CHCl}_{3}\right.$); IR (neat): $\mathrm{v}_{\max }$ 1164, 1259, 1447, 2097, 2858, $2937 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.86-0.98(\mathrm{~m}, 15 \mathrm{H}), 1.33-1.53$ (m, 6 H), 2.37 (br.s, 1H), 3.46-3.69 (m, 3 H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.3,-5.2$, 11.2, 11.4, 18.3, 21.1, 21.6, 25.9, 43.2, 65.5, 72.9; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{O}_{2}$ Si required C, 63.35 ; H, 12.27 found C, 63.43 ; H, 12.21\%.

((S)-2-Azido-3-ethylpentyloxy)(tert-butyl)dimethylsilane (40)

To a stirred solution of alcohol 39 ($312 \mathrm{mg}, 1 \mathrm{mmol}$) and triethylamine ($303 \mathrm{mg}, 3 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$, methanesulfonyl chloride ($229.2 \mathrm{mg}, 2 \mathrm{mmol}$) was added, and then the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min . After TLC showed that the reaction was complete, excess $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was added. The organic phase was washed with brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the solvent was removed under vaccum, the crude product was dissolved in DMF and NaN_{3} ($390 \mathrm{mg}, 6 \mathrm{mmol}$) was added. The reaction mixture was then stirred at $60{ }^{\circ} \mathrm{C}$ for 30 h . After the completion of reaction (monitored by TLC), it was then partitioned between EtOAc and brine. The organic layer was further washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave crude product which on chromatographic purification with petroleum ether/EtOAc (4:6 v/v) gave the corresponding azide 40 (212 mg) as yellow oil.

Yield: $78 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-21.3\left(c\right.$ 1.6, $\left.\mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 1164,1259,1447,2097$, 2858, $2937 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.09$ ($\mathrm{s}, 6 \mathrm{H}$), $0.85-0.91(\mathrm{~m}, 15 \mathrm{H}), 1.29-$ $1.37(\mathrm{~m}, 5 \mathrm{H}), 3.41-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.6$, 11.3, 18.2, 21.8, 22.6, 25.8, 41.8, 65.0, 66.2; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{OSi}$ requires C , 57.52; H, 10.77; N, 15.48; found C, 57.67; H, 10.83; N, 15.41\%.
(S)-2-Amino-3-ethylpentan-1-ol (28)

To a suspension of $\mathrm{LiAlH}_{4}(250 \mathrm{mg}, 6.4 \mathrm{mmol})$ in dry THF (15 mL), a solution of azide $40(1.25 \mathrm{~g}, 6.06 \mathrm{mmol})$ in THF (10 mL) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was then stirred at 50 ${ }^{\circ} \mathrm{C}$ for 12 h . After completion of reaction (monitored by TLC), it was quenched with aq. 20% solution of sodium hydroxide (2 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was filtered through sintered funnel, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by column chromatography with petroleum ether/EtOAc/Et ${ }_{3} \mathrm{~N}$ (60: 38:2) gave the amino alcohol $28(600 \mathrm{mg})$ as a yellow oily liquid.

Yield: 75%; $[\alpha]_{\mathrm{D}}{ }^{25}-12.3\left(c 1.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. ${ }^{13}[\alpha]_{\mathrm{D}}{ }^{25}-3.7$ (1\% solution, DMSO) $\}$;; IR (neat): $v_{\max } 1010,1043,1161,2313,2364,2923,3441 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, CDCl_{3}): 0.85-0.94 (m, 6H), 1.25-1.47 (m, 5H), $2.36(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.37$ $(\mathrm{m}, 1 \mathrm{H}), 3.59-3.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.4,11.5,21.4,21.8,44.8$, 54.9, 64.3; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{NO}$ required C, 64.07; H, 13.06; N, 10.67; found C, 64.12; H, 13.10; N, 10.75\%.
(S)-Dibenzyl 1-(3-ethyl-1-hydroxypentan-2-yl)hydrazine-1,2-dicarboxylate (34)

added aldehyde 35 ($600 \mathrm{mg}, 5.26 \mathrm{mmol}$) and the reaction mixture was allowed to stir at the same temperature for 2 h and then warmed to $25^{\circ} \mathrm{C}$ within 1 h . After the reaction mixture became colorless, it was cooled to $0{ }^{\circ} \mathrm{C}$ again and then treated with EtOH (50 $\mathrm{mL})$ and $\mathrm{NaBH}_{4}(1.0 \mathrm{~g})$ for 10 min at $0^{\circ} \mathrm{C}$. After completion of reaction, it was quenched by adding half-concentrated aq. ammonium chloride solution and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with petroleum ether/EtOAc (8:2 v/v) to give 34 (2.0 g) as colorless crystalline solid.

Yield: 92\%; m.p. $121{ }^{\circ} \mathrm{C}$ (crystallized from ethanol); $[\alpha]_{\mathrm{D}}{ }^{25}+20.0$ (c 1.0, CHCl_{3}); Optical purity 98\% ee from HPLC analysis: Column: ODH, mobile phase: hexane/isopropyl alcohol (9/1), flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: $12.59 \mathrm{~min}(-)$-isomer, $15.59 \mathrm{~min}(+)-$ isomer. IR (CHCl_{3}): $v_{\max } 1267,1380,1455,1537,1681,1721,2878,2959,3258,3510$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): δ 0.69-0.87 (m, 6H), 1.22-1.40 (m, 5H), 3.42-3.74
 (m, 10H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 9.8,10.1,20.5,21.3,38.9,60.4,62.9,68.2$, 68.5, 127.8, 128.1, 128.3, 128.4, 128.5, 128.6, 135.1, 135.7, 157.3; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 66.65; H, 7.30; N, 6.76; found C, 66.53; H, 7.10; N, 6.89\%.

(S)-2-Amino-3-ethylpentan-1-ol (28)

Aminated alcohol 34 (1.8 g, 4.34 mmol) was dissolved in MeOH (20 mL), AcOH (10 drops) and treated with Raney nickel (2.0 g , excess) for 24 h under 11.8 atm pressure of hydrogen atmosphere. The
reaction mixture was filtered over celite and concentrated to give the corresponding amino alcohol $28(398 \mathrm{mg})$ as a colorless liquid.

Yield: 70%; $[\alpha]_{\mathrm{D}}{ }^{25}-12.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

(S)- N-(5-Chlorothiophene-2-sulfonyl)- β, β-diethylalaninol (22)

To a solution of amino alcohol $28(50 \mathrm{mg}, 0.4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(121 \mathrm{mg}, 1.2 \mathrm{mmol})$. After stirring for 10 min ., 5-chlorothiophene-2-sulfonyl chloride ($87 \mathrm{mg}, 0.4$ mmol) was added and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 30 min. After completion of reaction (monitored by TLC), solvent was removed under reduced pressure and the crude product purified by column chromatography using petroleum ether/EtOAc (7:3) to give 22 (113 mg) as a colorless crystalline solid.

Yield: 91\%; m.p. $115-117{ }^{\circ} \mathrm{C}$ (crystallized from heptane:ethylacetate 4:1) \{lit. ${ }^{13}$ m.p. $\left.115-117.6{ }^{\circ} \mathrm{C}\right\} ;[\alpha]_{\mathrm{D}}{ }^{25}+10.3(c 0.3, \mathrm{MeOH})\left\{\right.$ lit. ${ }^{13}[\alpha]_{\mathrm{D}}{ }^{25}+10.81(1 \%$ solution, MeOH$\left.)\right\} ;$ Optical purity 98% ee from HPLC analysis: Column: ODH, mobile phase: hexane/isopropyl alcohol (9/1), flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$,: retention time: $13.01 \mathrm{~min}(+)$ isomer, 13.56 min (-)-isomer). IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 1090,1130,1337,1456,1615,2881$, 2957, 3034, 3068, 3301, 3519, $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.82-0.88(\mathrm{~m}, 6 \mathrm{H})$, $1.23-1.37(\mathrm{~m}, 5 \mathrm{H}), 1.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.31-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.91$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.4,11.6$, 21.9, 22.7, 42.8, 57.7, 62.6, 126.5, 131.5, 137.2, 140.1; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClNO}_{3} \mathrm{~S}_{2}$ requires C, 42.37; H, 5.82; N, 4.49; found C, 42.26; H, 5.76; N, 4.50\%.

Section III

A concise enantioselective synthesis of (+)-Decarestrictine L via prolinecatalyzed sequential α-aminooxylation and Horner-Wadsworth-
 Emmons olefination

2.3.1 Introduction and Pharmacology

The decarestrictines consist of a family of thirteen secondary metabolites that were isolated from various Penicillium strains. These metabolites exhibit an inhibitory effect on cholesterol biosynthesis. ${ }^{19}$ This beneficial effect is corroborated by in vivo studies with normolipidemic rats where it is found that cholesterol biosynthesis in HEP-G2 liver cells was significantly inhibited. ${ }^{20}$ Additionally, it appears that the decarestrictines are highly selective in that they exhibit no significant antibacterial, antifungal, anti-protozoal, or antiviral activity. ${ }^{21}$ While the majority of the decarestrictines contain a 10 -membered lactone ring in their structure, decarestrictine L 41 is unique in possessing a tetrahydropyranyl nucleus (Figure 19). ${ }^{22}$ The interesting biological property of this molecule, coupled with the extreme scarcity of the natural material make it an appealing synthetic target.

Figure 19: Structure of (+)-decarestrictine L (41)

2.3.2 Review of literature

Various syntheses of (+)-decarestrictine L 41 have been documented in the literature. Some of the interesting and important synthetic routes to (+)-decarestrictine L $\mathbf{4 1}$ are described below.

Kibayashi's approach (1993) ${ }^{23}$

Kibayashi et al. have achieved the synthesis of (+)-decarestrictine L 41 starting from C_{2} symmetrical diepoxide chiral synthon 42. Reductive epoxide opening in 42 with vitride followed by silyl protection gave 43. Regioselective ring opening of epoxide 43 with 2(phenylthio)acetic acid and subsequent elimination with mCPBA afforded 44. Subsequent oxa-Michael addition of 45 under thermodynamically equilibrated conditions $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, THF, reflux, 12 h) gave pyran 46 in exclusive trans (with respect to C-2 and se1ectivity. Compound 46 was then converted into (+)-decarestrictine L 41 in an overall yield of 10.6% (Scheme 13).

Scheme 13: (i) Vitride, THF, 73\%; (ii) TBDPSCl, DMAP, 84\%; (iii) PhSCH ${ }_{2} \mathrm{CO}_{2} \mathrm{H}$, LDA, THF then $\mathrm{CH}_{2} \mathrm{~N}_{2}, 64 \%$; (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF, reflux, 12 h, 60\%.

Carreno's approach (1998) ${ }^{24}$

Carreno et al. have described a convergent enantioselective synthesis of (+)-41, which commences with the coupling of phosphonate 47 with (R)-2-(benzyloxy)propanal (A) under basic condition. The coupling partners 47 and \mathbf{A} were obtained from commercially available (S)-malic acid and (R)-isobutyl lactate respectively. The third chiral centre was created by stereoselective reduction of (R)-hydroxy ketone 48 with Lselectride, and an intramolecular $\mathrm{S}_{\mathrm{N}} 2$-type reaction, which allowed the stereocontrolled
formation of the tetrahydropyranyl ring 51. Title compound 41 was then obtained in an overall yield of 28\% (Scheme 14).

Scheme 14: (i) (R)-2-(benzyloxy)propanal (A), NaH, THF, -40 ${ }^{\circ} \mathrm{C}, 90 \%$; (ii) L-selectride, THF, $-78{ }^{\circ} \mathrm{C}$, 95%; (iii) NaH, DMSO, toluene, reflux, 90%.

Lukesh's approach (2003) ${ }^{25}$

Lukesh et al. have described the synthesis of (+)-decarestrictine L 41 beginning from commercially available tri-O-acetyl-D-glucal 52. Alkylation with trimethylaluminum introduced the axial methyl group at C-2 in a stereoselective fashion giving 53 in 94% yield. Chain extension in 54 at the C-6 carbon was accomplished by generation of the primary tosylate, followed by displacement with cyanide anion. The synthesis of $\mathbf{4 1}$ was completed in 13 steps with 6.3\% overall yield (Scheme 15).

Scheme 15: (i) $\mathrm{Me}_{3} \mathrm{Al}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$; (ii) (a) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{NaI}, \mathrm{NaCN}, \mathrm{DMF}, 80{ }^{\circ} \mathrm{C}, 84 \%$.

Garcia approach (2006) ${ }^{\mathbf{2 6}}$

Garcia et al. have described a 12-step enantioselective synthesis of (+)-decarestrictine L 41 from commercially available chiral hydroxyester 56 using a methodology based on the oxidation of a furan ring with singlet oxygen, which gave lactone 58 . This was followed by an intramolecular hetero Michael addition furnishing bicyclic lactone
59. The synthesis of (+)-decarestrictine L 41 was completed in 17 steps with an overall yield of 14.3\% (Scheme 16).

Scheme 16: (i) (a) ${ }^{1} \mathrm{O}_{2}, \mathrm{MeOH}$, rose bengal; (b) $\mathrm{Ac}_{2} \mathrm{O}$, py, DMAP, 96% (over two steps); (ii) TBAF, THF, $25^{\circ} \mathrm{C}, 72 \%$.

Clark's approach (2006) ${ }^{27}$

Clark et al. have described a stereoselective synthesis of the fungal metabolite decarestrictine L 41, which commenced from commercially available ethyl (R)-3hydroxybutyrate 56. The treatment of 56 with allyl 2,2,2-trichloroacetimidate and a substoichiometric amount of triflic acid afforded the allyl ether $\mathbf{6 0}$ in 82% yield. The key reaction in the synthesis is a Cu (II) trifluoroacetylacetonate catalyzed tandem oxonium ylide formation and the rearrangement of diazo ketone $\mathbf{6 1}$ for the diastereoselctive construction of the tetrahydropyranyl core 62 of the natural product. The total synthesis of $(+)$-decarestrictine L 41 was accomplished in a 10 step synthetic sequence with an
overall yield of 9\% (Scheme 17).

Scheme 17: (i) $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OC}(\mathrm{NH}) \mathrm{CCl}_{3}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{14}, 25{ }^{\circ} \mathrm{C}$ 82%; (ii) $\mathrm{Cu}(\mathrm{tfacac})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $60 \%(\mathrm{dr}=91: 9)$.

2.3.3 Present work

2.3.3.1 Objective

As can be seen from the above discussion, several syntheses of decarestrictine L 41 have been reported but many suffer from one or more disadvantages, which include use of chiral building blocks, long reaction sequences and low yields. In continuation of our work on the application of proline-catalyzed sequential reactions in the synthesis of bioactive molecules, ${ }^{28}$ we describe in this section an efficient synthesis of (+)decarestrictine L 41 from readily available raw materials via a D-proline catalyzed sequential aminooxylation-olefination ${ }^{29}$ reaction followed by intramolecular conjugate 1,4 -addition as the key reactions. The retrosynthetic approach of (+)-decarestrictine L 41 is outlined in Scheme 18 in which decarestrictine L 41 is envisioned to be obtained via intramolecular cyclization involving 1,4-conjugate addition of enone 63. We, thus, envisaged a D-proline catalyzed sequential aminooxylation-olefination of aldehyde 64 for the efficient construction of enone moiety 63. Aldehyde 64, a suitable intermediate, could be obtained by two routes: i) Jacobsen's hydrolytic kinetic resolution (HKR) ${ }^{30}$ of terminal epoxide (\pm)-65 and ii) Noyori’s asymmetric reduction ${ }^{31}$ of β-ketoester $\mathbf{6 8}$.

Scheme 18: Retrosynthetic analysis of (+)-decarestrictine L (41)

2.3.3.2 Results and Discussion

Scheme 19 presents the synthetic scheme for obtaining intermediate aldehyde 64.

Scheme 19: (i) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{THF}, 0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 97 \%$; (ii) mCPBA, $\mathrm{CHCl}_{3}, 25$ ${ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, \quad 85 \%$; (iii) (S,S)-(-)-N,N-bis(3,5-di-tert-butylsalicylidene)-1,2cyclohexanediaminocobalt ($0.5 \mathrm{~mol} \%$), $\mathrm{H}_{2} \mathrm{O}$ (0.55 equiv), $24 \mathrm{~h}, 43 \%$, 99% ee; (iv) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 92 \%, 99 \%$ ee; (v) TBSCl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 98 \%$; (vi) $\mathrm{H}_{2}(1 \mathrm{~atm}), 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, 12 \mathrm{~h}, 25^{\circ} \mathrm{C}$, 97\%; (vii) IBX, DMSO, $25^{\circ} \mathrm{C} 2 \mathrm{~h}, 98 \%$.

The synthesis of $\mathbf{6 4}$ commences with commercially available 5-hexene-1-ol 66, protected as its benzyl ether 69. The olefinic function in 69 was epoxidized smoothly \{mCPBA, $\left.\mathrm{CHCl}_{3}\right\}$ to give racemic epoxide (\pm)-65, which was subjected to Jacobsen's $\operatorname{HKR}\{(S, S)$ cobalt salen, $\left.\mathrm{H}_{2} \mathrm{O}\right\}$ to give the corresponding enantiomerically pure epoxide (-)-65 in 43% yield and 99% ee (HPLC analysis), $\left\{[\alpha]_{\mathrm{D}}{ }^{25}-5.1\right.$ (c 2.0, CHCl_{3}) $\}$ along with the separable diol 70 in 47\% yield (Scheme 19). The formation of epoxide (-)-65 was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum, which showed resonance signals at $\delta 2.43$ (dd, $J=$ 2.8, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=4.0,5.1 \mathrm{~Hz}, 1 \mathrm{H})$ and $2.87-2.89(\mathrm{~m}, 1 \mathrm{H})$ corresponding to epoxide protons. This was substantiated by its ${ }^{13} \mathrm{C}$ NMR spectrum, which showed carbon signals at $\delta 46.8$ and 52.0 due to carbons attached to epoxide oxygen. The other carbon signals at $\delta 127.3,127.4,128.2$ and 138.5 were due to aromatic carbons (Figure 20). The signals at $\delta 3.46(\mathrm{t}, J=6.0 \mathrm{~Hz})$ and $4.48(\mathrm{~s})$ integrating for two protons each accounted for methylene group of $-\mathbf{C H}_{2}-\mathrm{OBn}$ and $-\mathrm{O}-\mathbf{C H}_{2}-\mathrm{Ph}$ respectively.

Figure 20: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra and chiral HPLC chromatogram of epoxide (-)-65
The chiral epoxide (-)-65, readily purified by column chromatography, was subjected to regioselective reductive ring opening with LiAlH_{4} in THF at $0^{\circ} \mathrm{C}$ to afford the secondary alcohol 71 as the exclusive product in 92% yield and 99% ee (HPLC analysis). The formation of $\mathbf{7 1}$ was confirmed by the appearance of a typical broad absorption band at $v_{\max } 3354 \mathrm{~cm}^{-1}$ for hydroxyl group. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a multiplet at δ 3.69$3.80(1 \mathrm{H})$ corresponding to methine protons $(-\mathbf{C H}-\mathrm{OH})$. Further, its ${ }^{13} \mathrm{C}$ NMR spectrum showed a characteristic signal at $\delta 67.4$ for methine carbon (-CH-OH) (Figure 21).

Figure 21: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR and IR spectra of alcohol 71
Alcohol 71 was protected as its TBS ether (TBSCl, imid.) and the benzyl ether 72 was subsequently deprotected under hydrogenolysis condition $\left\{10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right.$ (1 atm.), $\left.\mathrm{Et}_{3} \mathrm{~N}\right\}$ to give the primary alcohol 73 in 97% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of 73 displayed a signal at $\delta 3.62(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$ corresponding to protons of the methylene group (- $\mathbf{C H}_{2}-\mathrm{OH}$). Its ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 62.6$ and 68.5 corresponding to methylene (- $\left.\mathbf{C H}_{2}-\mathrm{OH}\right)$ and methine (-CH-OTBS) carbons respectively (Figure 22).

Figure 22: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of alcohol 73

The oxidation of alcohol 73 (IBX, DMSO) produced the key intermediate aldehyde 64 in 98% yield $\left\{[\alpha]_{\mathrm{D}}{ }^{25}-12.0\left(c 3.0, \mathrm{CHCl}_{3}\right)\right.$. The formation of aldehyde $\mathbf{6 4}$ was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum, which showed a typical signal for aldehydic proton at $\delta 9.76$ (s, 1H). This was further ascertained by the appearance of a typical carbon signal at δ 201.4 in its ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 23). The multiplet at $\delta 3.73-3.88$ in its ${ }^{1} \mathrm{H}$ NMR spectrum accounted for the methine protons (-CH-OTBS), while its ${ }^{13} \mathrm{C}$ NMR spectrum showed a carbon signal at $\delta 67.3$ for methine carbon (-CH-OTBS).

Figure 23: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ and DEPT NMR spectra of aldehyde 64

Since the overall yield that could be realized for intermediate aldehyde 64 in HKR route (Scheme 19) was considerably lower (30\%), we envisioned an alternate route for its synthesis.

Noyori’s discovery of rhodium (I) and ruthenium (II) complexes of BINAP enantiomers have revolutionized stereoselective organic synthesis. ${ }^{31 a}$ In particular, stereo- and chemoselective reduction of β-ketoesters to the corresponding β-hydroxyesters can be achieved in high yields and excellent enantioselectivity. ${ }^{31 \mathrm{~b}}$ Our second approach towards the synthesis of intermediate aldehyde $\mathbf{6 4}$ involved Ru-catalyzed asymmetric reduction ${ }^{31 \mathrm{c}}$ $\left\{\left[(R)-\mathrm{Ru}(\mathrm{BINAP}) \mathrm{Cl}_{2}\right]_{2} \cdot \mathrm{NEt}_{3}, 2 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2}(100 \mathrm{psi})\right\}$ of ethyl acetoacetate 68 that produced (R)-ethyl 3-hydroxybutyrate 56 in 95\% yield with high enantiopurity (98\% ee, Mosher ester); $[\alpha]_{\mathrm{D}}{ }^{25}-46.0$ (c 1.0, CHCl_{3}) (Scheme 20).

Scheme 20: (i) $\left[(\mathrm{R})-\mathrm{Ru}(\mathrm{BINAP}) \mathrm{Cl}_{2}\right]_{2} \cdot \mathrm{NEt}_{3}$ ($0.1 \mathrm{~mol} \%$), $2 \mathrm{~N} \mathrm{HCl}(0.1$ mol\%), MeOH, $\mathrm{H}_{2}(100 \mathrm{psig}), 50^{\circ} \mathrm{C}, 16 \mathrm{~h}, 95 \%, 98 \%$ ee; (ii) TBSCl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 97 \%$; (iii) DIBAL-H, toluene, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (iv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$; (v) a) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{MeOH}, 12 \mathrm{~h} ; \mathrm{b}$) DIBAL-H, toluene, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 82 \%$ (over two steps).

The formation of alcohol 56 was confirmed by its IR spectrum which showed a strong and broad absorption band at $v_{\max } 3441 \mathrm{~cm}^{-1}$ due to the hydroxyl functionality. It was further ascertained by its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral analysis which showed resonance signals at $\delta 3.20(1 \mathrm{H})$ for hydoxy proton and at $\delta 60.5$ for methine carbon (-CH-OH)
respectively (Figure 24).

Figure 24: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ \& Mosher ester NMR and Mass spectra of alcohol 56
After protecting as its TBS ether, the resulting ester 74 was subjected to selective reduction with DIBAL-H at $-78{ }^{\circ} \mathrm{C}$ that afforded the corresponding aldehyde 75 in 85% yield. The formation of aldehyde 75 was confirmed by the appearance of an aldehydic proton signal at $\delta 9.79(\mathrm{t}, J=2.1,1 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum. Further evidence was provided by its ${ }^{13} \mathrm{C}$ NMR spectrum which showed a characteristic carbon signal at δ 201.9 due to the aldehydic carbon (Figure 25).

Figure 25: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of aldehyde 75
Aldehyde 75 was immediately reacted with stabilized Wittig salt to give α, β-unsaturated ester 67 in 93% yield, $\left\{[\alpha]_{\mathrm{D}}{ }^{25}-15.8\left(c 2.4, \mathrm{CHCl}_{3}\right)\right\}$. The formation of olefinic ester $\mathbf{6 7}$ was confirmed by its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra which showed the appearance of proton signals at $\delta 5.84(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}) \& 6.85-7.01(\mathrm{~m}, 1 \mathrm{H})$ and carbon signals at $\delta 145.8$ \& 123.2 corresponding to the presence of olefinic function respectively. A quartet at δ $4.20(J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum and a carbon signal at $\delta 166.2$ in its ${ }^{13} \mathrm{C}$ NMR spectrum further indicated the presence of ester functionality in 67 (Figure 26).

Figure 26: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ester 67
Exposure of the ester 67 to $10 \% \mathrm{Pd} / \mathrm{C}$ under H_{2} (1 atm) followed by its selective reduction with DIBAL-H at $-78{ }^{\circ} \mathrm{C}$ furnished the key aldehyde 64 in 60% overall yield. With the intermediate aldehyde $\mathbf{6 4}$ now available in plenty, we carried out the sequential aminoxylation-olefination on aldehyde $\mathbf{6 4}$ catalyzed by D-proline at $-20^{\circ} \mathrm{C}$, followed by anilinoxy deprotection $\left\{\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{EtOH}\right\}$ that resulted in the formation of the γ-hydroxy olefinic ester 76 in 57\% yield (Scheme 21).

Scheme 21: (i) (a) PhNO, D-proline ($20 \mathrm{~mol} \%$), $-20^{\circ} \mathrm{C}, 24 \mathrm{~h}$ then triethylphosphonoacetate, DBU, $\mathrm{LiCl},-20-0^{\circ} \mathrm{C}, 2 \mathrm{~h}$;; (b) $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{EtOH}$, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 57 \%$ (over two steps); (ii) TBAF, THF, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 65 \%$.

The formation of 76 was confirmed by the appearance of a quartet at $\delta 4.19(J=7.2 \mathrm{~Hz}$, $2 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum, corresponding to methylene protons $\left(-\mathrm{CO}_{2}-\mathrm{CH}_{2}-\right)$ of ester groups. The presence of double doublets at $\delta 6.02(J=1.8,15.7 \mathrm{~Hz}, 1 \mathrm{H})$ and $6.89(J=$ $4.5,15.7 \mathrm{~Hz}, 1 \mathrm{H})$ accounted for the olefin functionality in 76 . Further evidence to this
was provided by its ${ }^{13} \mathrm{C}$ NMR spectrum which showed typical carbon signals at δ 120.1, 150.4 and 166.6 for the olefin and ester groups respectively (Figure 27).

Figure 27: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ester 76

The next step was the TBAF mediated deprotection of TBS ether in 76, which resulted in simultaneous cyclization to produce tetrahydropyranyl skeleton 77 . The pyran 77 can be converted into the natural product 41 by following a known sequence of reaction. ${ }^{23}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of pyran 77 showed multiplets at $\delta 3.48$ and 3.97-4.03 for methine (-CH-O) protons. The disappearance of proton signals corresponding to olefin function
confirmed the formation of 77. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 60.7,67.3$, 69.0 and 72.8 corresponding to carbons attached to oxygen atom (Figure 28).

Figure 28: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of pyran 77

With the tandem desilylation-oxa Michael reaction condition optimized, we thought of a shorter and higher yielding route to 41 by directly incorporating the enone moiety 63. Thus, the intermediate aldehyde 64 underwent sequential aminoxylation-olefination catalyzed by D-proline at $-20^{\circ} \mathrm{C}$ with diethyl(2-oxopropyl)phosphonate, that resulted in the formation of the precursor aminooxy enone 63 in 60\% yield (Scheme 22).

$\left(^{+}\right)$-decarestrictine L 41

Scheme 22: (i) PhNO, D-proline ($20 \mathrm{~mol} \%$), $-20^{\circ} \mathrm{C}, 24 \mathrm{~h}$ then diethyl(2oxopropyl)phosphonate, $\mathrm{Cs}_{2} \mathrm{CO}_{3},-20-0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 60 \%$; (ii) (a) $\mathrm{Cu}(\mathrm{OAc})_{2}$, EtOH, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (b) TBAF, THF, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 60 \%$ (over two steps).

The formation of $\mathbf{6 3}$ was confirmed by the analysis of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a doublet at $\delta 6.20(J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$ and a double doublet at δ $6.68(J=6.6,16.2 \mathrm{~Hz}, 1 \mathrm{H})$ for the olefinic protons. Further, the multiplets at $\delta 6.87-6.98$ $(3 \mathrm{H})$ and $7.21-7.29(2 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum were due to aromatic protons. A proton singlet at $\delta 2.29(3 \mathrm{H})$ was attributed to methyl group attached to carbonyl carbon. This was further substantiated by its ${ }^{13} \mathrm{C}$ NMR spectrum which showed typical carbon signals at $\delta 114.2,122.0,128.8,131.5,145.8$ and 148.3 for olefinic and aromatic carbons. The signals at $\delta 68.0$ and 83.0 in its ${ }^{13} \mathrm{C}$ NMR spectrum were indicative of the methine carbons; -CH-OTBS and -CH-ONHPh respectively. The carbonyl signal for enone functionality resonated at $\delta 197.8$ (Figure 29).

Figure 29: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of enone 63
With 63 made available sucessfully in hand, we thought to postpone the anilinoxy deprotection to a last stage, since the anilioxy deprotection under catalytic reduction condition $\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right)$ should provide higher yield of the corresponding free alcohol. Consequently, the next step was the TBAF mediated deprotection of TBS ether in 63, which should result in simultaneous cyclization to produce tetrahydropyranyl skeleton 41. Unfortunately, the desired 1,4- conjugate addition did not proceed to give the desired product even after the use of several Lewis acids (eg. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Cu}(\mathrm{OTf})_{2}$, CuI of AuCl_{3}). In turn, the reaction produced complex mixtures, which were difficult to separate. However, the removal of anilinoxy group in $\mathbf{6 3},\left\{\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{EtOH}\right\}$ followed by desilylation (TBAF, THF) of the crude product induced an instantaneous intramolecular 1,4-conjugate addition to afford (+)-decarestrictine L 41 in 60\% yield over two steps. The synthetic (+)-decarestrictine L 41 was identical in all respects to the natural product. ${ }^{23}$

The formation of (+)-decarestrictine L 41 was confirmed by the disappearance of olefinic signals from its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The multiplets at δ 3.39-3.43 (1H), 3.94-3.97 $(1 \mathrm{H})$ and $4.00-4.04(1 \mathrm{H})$ were due to methine $(-\mathbf{C H}-\mathrm{O})$ protons. This was further ascertained by the appearance of signals at $\delta 67.4,69.4$ and 72.0 for methine (-CH-O) carbons (Figure 30).

2.3.4 Conclusion

In conclusion, we have demonstrated the use of D-proline catalyzed sequential α -aminooxylation-olefination strategy for the concise synthesis of (+)-decarestrictine L 41 with an overall yield of 22% (route 2). Simple procedures, easy to use reagents, cheap and readily available starting materials are some of the salient features of this approach.

2.3.5 Experimental section

1-Benzyloxy-hex-5-ene (69)

To a stirred suspension of activated $\mathrm{NaH}(2.88 \mathrm{~g}, 119.81 \mathrm{mmol})$ in dry THF (100 mL) a solution of 5-hexen-1-ol $66(10.0 \mathrm{~g}, 99.84 \mathrm{mmol})$ in dry THF (100 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$ followed by the addition of benzyl bromide ($20.49 \mathrm{~g}, 119.81 \mathrm{mmol}$). The reaction mixture was then stirred at $25^{\circ} \mathrm{C}$ for 6 h . After completion of reaction (monitored by TLC), it was quenched with saturated solution of ammonium chloride and the product extracted with diethyl ether. The combined organic layer was then washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure and column chromatographic purification with petroleum ether/ethyl acetate ($49: 1 \mathrm{v} / \mathrm{v}$) gave the benzyl ether 69 $(18.43 \mathrm{~g})$ as a colorless liquid.

Yield: 97% yield; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 1454,1496,1640,2857,2976,3030,3065 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.38-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.2$ Hz, 2 H), 4.54 (s, 2 H), 4.97-5.10 (m, 2 H), 5.78-5.86 (m, 1 H), 7.29-7.32 (m, 5 H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 25.6,29.4,33.7,70.3,72.9,114.7,127.5,127.6,128.4,138.6$, 138.8; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}$ required C, 82.06; H, 9.53; found C, 82.08; H, 9.55\%.

2-[4-(Benzyloxy)butyl]oxirane [(\pm)-65]

To a stirred solution of olefin $69(18.0 \mathrm{~g}, 94.60 \mathrm{mmol})$ in dry
$\mathrm{CHCl}_{3}(350 \mathrm{~mL})$ was added m-chloroperbenzoic acid $(48.97 \mathrm{~g}$, 283.80 mmol) and the mixture stirred at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ for 6 h . After completion of reaction (monitored by TLC), solvent was removed under reduced pressure and the residue extracted with ethylacetate. The organic layer was washed with saturated NaHCO_{3} solution, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to afford the crude product which was subjected to column chromatographic purification with petroleum ether/ethyl acetate (19:1 v / v) to give the racemic epoxide (\pm)-65 (16.59 g) as a colorless liquid.

Yield: 85\%; IR (CHCl_{3}): $v_{\max } 1362,1410,1454,1496,1637,2859,3032 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.52-1.66$ (m, 6 H), 2.43 (dd, $J=2.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (dd, $J=$ 4.0, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.34$ (m, 5 H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 22.7,29.4,32.2,46.8,52.0,69.9,72.8,127.3$, 127.4, 128.2, 138.5; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ required C, 75.69 ; $\mathrm{H}, 8.80$; found C , 75.67; H, 8.80\%.

(S)-2-[4-(Benzyloxy)butyl]oxirane [(-)-65]

To a suspension of (S,S)-(-)-N,N-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane- diaminocobalt (190 mg, $0.5 \mathrm{~mol} \%$) in toluene (2 mL) was added acetic acid ($0.026 \mathrm{~mL}, 0.1 \mathrm{~mol} \%$) and the mixture stirred while open to air for 1 h at $25^{\circ} \mathrm{C}$. The solvent was then removed under reduced pressure and the brown residue dried under vacuum. The racemic epoxide (\pm)-65 $(13.0 \mathrm{~g}, 63.10 \mathrm{mmol})$ was added in one portion and the reaction mixture was then cooled in an ice bath. Water (0.55 equiv. 0.64 mL) was added slowly, followed by stirring at
$25{ }^{\circ} \mathrm{C}$ for 24 h . After completion of reaction (monitored by TLC), the reaction mixture was subjected to column chromatographic purification with petroleum ether/EtOAc (9:1 v / v) to afford the (S)-epoxide (-)-65 in 43% yield $(5.60 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}-5.1$ (c 2.0, CHCl_{3}); Optical purity 99% ee from HPLC analysis: Column: Lichrocart ${ }^{\mathrm{R}}$ ($250 \times 4.6 \mathrm{~mm}$), Merck $5 \mu \mathrm{~m}$, mobile phase: isopropylalcohol/n-hexane (2/98), wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $2.65 \mathrm{~min}(-)$-isomer, $3.23 \mathrm{~min}(+)$-isomer.

(R)-6-(Benzyloxy)hexan-2-ol (71)

To a suspension of $\mathrm{LiAlH}_{4}(1.01 \mathrm{~g}, 26.66 \mathrm{mmol})$ in dry THF $(30 \mathrm{~mL})$, a solution of epoxide (-)-65 (5.0 g, 24.24 mmol$)$ in THF (50 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 30 min . After completion of reaction (monitored by TLC), it was quenched with aq. 20% solution of sodium hydroxide (2 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was filtered through sintered funnel, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by column chromatography with petroleum ether/EtOAc (9:1 v / v) gave the secondary alcohol $71(4.65 \mathrm{~g})$ as a colorless liquid.

Yield: $92 \% ;[\alpha]_{D}{ }^{25}-7.9$ (c 2.0, CHCl_{3}); Optical purity 99% ee from HPLC analysis: Column: Lichrocart ${ }^{\mathrm{R}}(250 \times 4.6 \mathrm{~mm})$, Merck $5 \mu \mathrm{~m}$, mobile phase: isopropylalcohol/ nhexane (1/99), wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $2.94 \mathrm{~min}(+)-$ isomer, 5.63 min (-)-isomer; IR (neat,): $v_{\max } 1300,1375,1416,1460,1657,2935,3354$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.14(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.92$ (br s, 1H), 3.46 (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.69-3.80 (m, 1 H), 4.48 (s, 2 H), 7.24-7.33 (m, 5 H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 22.2,23.4,29.5,39.8,67.4,70.1,72.7,127.3,127.4$,
128.1, 138.3; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ required C, 74.96; $\mathrm{H}, 9.68$; found $\mathrm{C}, 75.75$; H , 9.66\%.

(R)-[6-(Benzyloxy)hexan-2-yloxy] - tert-butyldimethylsilane
(72): To a solution of alcohol $71(4.50 \mathrm{~g}, 21.60 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added imidazole ($2.94 \mathrm{~g}, 43.20 \mathrm{mmol}$) and tertbutyldimethylsilyl chloride $(4.88 \mathrm{~g}, 32.40 \mathrm{mmol})$. The reaction mixture was then stirred at $25{ }^{\circ} \mathrm{C}$ for 2 h . After completion of reaction (monitored by TLC), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure gave the crude product which was then purified by column chromatography with pure petroleum ether to give $72(6.83 \mathrm{~g})$ as a colorless liquid.

Yield: 98\%; $[\alpha]_{\mathrm{D}}{ }^{25}-10.0\left(c 1.0, \mathrm{CHCl}_{3}\right.$); IR (neat): $v_{\max } 1361,1373,1455,1462,1471$, 2856, $2929 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.04$ (s, 6H), 0.88 (s, 9H), 1.12 (d, $J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.33-1.63 (m, 6 H), 3.45 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.72-3.81 (m, 1 H), 4.48 (s, 2 H), 7.31-7.33 (m, 5 H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-4.7,-4.4,18.1,22.4,23.8,25.9$, 29.8, 39.5, 68.4, 70.3, 72.8, 127.3, 127.5, 128.2, 138.7; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}$ required $\mathrm{C}, 70.75$; H, 10.62 found $\mathrm{C}, 70.78$; $\mathrm{H}, 10.77 \%$.
(R)-5-(tert-Butyldimethylsilyloxy)hexan-1-ol (73)

A mixture of benzyl ether 72 ($6 \mathrm{~g}, 18.60 \mathrm{mmol}$), 10\% Pd/C and catalytic amount of triethylamine (2 drops) was stirred under H_{2} (1 atm.) at $25{ }^{\circ} \mathrm{C}$. After completion of reaction (monitored by TLC), it was filtered through celite (MeOH eluent) and solvent evaporated under reduced pressure to afford the title compound $73(4.19 \mathrm{~g})$ as a slightly yellow colored oil.

Yield: $97 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-13.8$ (c 1.6, CHCl_{3}); IR (neat): $v_{\max }$ 1050.13, 1099.5, 1225.6, 2857.9, 2930.4, $3438.4 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.04$ (s, 6H), 0.84 (s, 9H), 1.11 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.36-1.59 (m, 6 H), 1.84 (br s, 1 H), 3.59 (t, $J=6.3,2 \mathrm{H}$), 3.74-3.83 (m, 1 H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-4.7,-4.4,18.1,21.9,23.7,25.9$, 32.7, 39.4, 62.6, 68.5; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$ required $\mathrm{C}, 62.01 ; \mathrm{H}, 12.14$; found C, 62.07; H, 12.14\%.
(R)-5-(tert-Butyldimethylsilyloxy)hexanal (64)

To a well stirred solution of alcohol $73(4.00 \mathrm{~g}, 17.21 \mathrm{mmol})$ in DMSO (30 mL), 2-iodoxybenzoic acid ($9.64 \mathrm{~g}, 34.42 \mathrm{mmol}$) was added in one portion. The reaction mixture was then stirred for 1 h at $25^{\circ} \mathrm{C}$. After the completion of reaction (monitored by TLC), it was diluted with water and diethyl ether. Subsequent filtration (diethyl ether eluent) and washing the filtrate with water, brine followed by drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent under reduced pressure gave crude product which on chromatographic separation with petroleum ether/EtOAc (9:1 v/v) gave the intermediate aldehyde $64(3.89 \mathrm{~g})$ as a light yellow colored liquid.

Yield: 98\%; $[\alpha]_{D}{ }^{25}-12.0\left(c 3.0, \mathrm{CHCl}_{3}\right)$; IR (neat,): $v_{\max } 1215,1472,1572,1722,2857$, 2930, $3020 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.05$ (s, 6H), 0.88 (s, 9H), 1.14 (d, $J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.46(\mathrm{dt}, J=7.1,8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.73-3.88 (m, 1H), $9.76(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.5,-5.1$, 17.5, 25.1, 38.1, 43.1, 67.3, 201.4; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2}$ Si required C, 62.55; H , 11.37; found C, 62.65; H, 11.77\%.

(R)-Ethyl (-)-3-hydroxybutyrate (56)

Ois
Ethyl acetoacetate $68(7.50 \mathrm{~g}, 57.69 \mathrm{mmol})$ and dry methanol (25 mL) were mixed and deoxygenated with flowing nitrogen for five minutes. The catalyst $\left[(R)-\mathrm{Ru}(\mathrm{BINAP}) \mathrm{Cl}_{2}\right]_{2} \cdot \mathrm{NEt}_{3}(50 \mathrm{mg}, 0.1 \mathrm{~mol} \%)$ was added along with $2 \mathrm{~N} \mathrm{HCl}(0.05 \mathrm{~mL}, 0.1 \mathrm{~mol} \%)$. The mixture was transferred to a standard Parr reactor apparatus and flushed by evacuating and refilling with hydrogen several times. The apparatus was heated at $50^{\circ} \mathrm{C}$ with stirring under 100 psi of hydrogen for 16 h . After completion of reaction (monitored by TLC) he reaction was cooled and concentrated under reduced pressure. The residue was subjected to column chromatographic purification with petroleum ether/EtOAc (8:2 v/v) to get pure (R)-alcohol $56(7.23 \mathrm{~g})$ as a colorless liquid.

Yield: 95\%; $[\alpha]_{\mathrm{D}}{ }^{25}-46.0\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $^{32}[\alpha]_{\mathrm{D}}{ }^{25}-46.0\left(c\right.$ 1.0, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$; Optical purity 98% ee from Mosher ester analysis; IR $\left(\mathrm{CHCl}_{3}\right.$, $)$: $v_{\max } 1458.1,1636.1,1734.0$, 2935.7, 2978.6, $3441.7 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21-1.31(\mathrm{~m}, 6 \mathrm{H})$, 2.42$2.46(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 14.1,22.6,43.2,60.5,64.2,172.5$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C , 54.53; H, 9.15; found C, 54.56; H, 9.35\%.

(R)-(-)-Ethyl (tert-butyldimethyl silyloxy)butyrate (74)

To a solution of ethyl (R)-(-)-3-hydroxybutyrate 56 (7.0 g, 52.97 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added imidazole (7.21 g, 105.94 mmol) and tert-butyldimethylsilyl chloride ($11.98 \mathrm{~g}, 79.46 \mathrm{mmol}$). The reaction mixture was then stirred at $25{ }^{\circ} \mathrm{C}$ for 2 h . After completion of reaction (monitored by TLC), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine and dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, Concentration and purification by column chromatography with petroleum ether/EtOAc ($49: 1 \mathrm{v} / \mathrm{v}$) gave aldehyde $74(12.66 \mathrm{~g})$ as a colorless liquid.

Yield: 97%; $[\alpha]_{\mathrm{D}}{ }^{25}-26.0\left(c\right.$ 1.0, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }$ 2958, 2931, 2897, 2857, 1739, 1473, $1447 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.04$ (s, 3H), 0.05 (s, 3H), 0.82 (s, 9H), 1.17 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.32(\mathrm{dd}, J=5.4,14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{dd}, \mathrm{J}=7.4,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19-4.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, CDCl_{3}): $\delta-5.0,-4.5,14.2,17.9,23.9,25.7,44.8,59.9,65.8,171.2$;

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{3}$ Si requires C, 58.49; H, 10.63 found C, 58.54 ; H, 10.56%.

(R)-(-)-Ethyl (tert-butyldimethylsilyloxy)butanal (75)

To a stirred solution of ester 74 ($11.50 \mathrm{~g}, 46.69 \mathrm{mmol})$ in dry toluene (250 mL), a solution of diisobutylaluminium hydride ($46.8 \mathrm{~mL}, 1 \mathrm{M}$ in cyclohexane) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 1 h . After completion of reaction (monitored by TLC), it was diluted with a saturated solution of Rochelle salt and stirred for further 3 h . The organic phase was separated and the aqueous phase extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was then washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure and column chromatographic purification with petroleum ether/EtOAc (9:1 v/v) gave aldehyde $75(8.03 \mathrm{~g})$ as a colorless liquid.

Yield: 85\%; $[\alpha]_{\mathrm{D}}{ }^{25}-13.6\left(c ~ 1.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; lit. ${ }^{32}[\alpha]_{\mathrm{D}}{ }^{25}-11.3$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 1362,1377,1463,1473,1729,2858,2896,2930,2957 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz , CDCl_{3}): $\delta 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.48-2.55(\mathrm{~m}$, 2H), 4.32-4.41 (m, 1H), $9.79(\mathrm{t}, J=2.71 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.1,-4.5$,
17.8, 24.1, 25.6, 52.9, 64.4, 201.9; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{2}$ Si requires $\mathrm{C}, 59.35$; H , 10.96; found C, 59.38 ; H, 10.97\%.

(R)-(-)-Ethyl 5-tert-butyldimethylsiloxyl Fx-2-enoate (67)

To a solution of aldehyde 75 ($7.00 \mathrm{~g}, 34.59 \mathrm{mmol}$) in dry THF $(200 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}(18.08 \mathrm{~g}, 51.89$ mmol) and the reaction mixture was stirred for 12 h . After completion of reaction (monitored by TLC), solvent was distilled off under reduced pressure and the crude mass on column chromatographic purification with petroleum ether/ EtOAc (9:1 v/v) gave the α, β - unsaturated ester 67 (8.76 g) as a slightly yellow colored liquid.

Yield: 93\%; $[\alpha]_{\mathrm{D}}{ }^{25}-15.8\left(c 2.4, \mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 1376,1463,1655,1724$, 2857, $2930 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.04$ (s, 6H), 0.88 (s, 9H), 1.18 (d, $\mathrm{J}=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.27-2.34(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.2(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-7.01(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta-4.8,-4.5,14.3,18.1,23.8,25.8,42.5,60.0,67.6,123.2,145.8,166.2$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires C, 61.72; $\mathrm{H}, 10.36$; found C, $61.90 ; \mathrm{H}, 11.86 \%$.

(R)-(-)-Ethyl (tert-butyldimethylsilyloxy)hexanal (64)

A mixture of α, β-unsaturated ester 67 ($8 \mathrm{~g}, 29.36 \mathrm{mmol}$), 10% Pd / C and catalytic amount of triethylamine (2 drops) in MeOH (40 mL) was stirred under $\mathrm{H}_{2}(1 \mathrm{~atm}$.$) at 25{ }^{\circ} \mathrm{C}$ for 12 h . After completion of reaction (monitored by TLC), it was filtered over celite plug (MeOH eluent) and solvent evaporated under reduced pressure to give the corresponding saturated ester. To a stirred solution of the saturated ester in dry toluene (150 mL), a solution of diisobutylaluminium hydride ($29.4 \mathrm{~mL}, 1 \mathrm{M}$ in cyclohexane) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ and stirred at this
temperature for 1 h . After completion of reaction (monitored by TLC) the reaction mixture was diluted with a saturated solution of Rochelle salt and stirred for further 3 h . The organic phase was separated and the aqueous phase extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was then washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure and column chromatographic purification with petroleum ether/ EtOAc (9:1 v/v) gave aldehyde 64 $(5.55 \mathrm{~g})$ as a colorless liquid.

Yield: 82\% (over two steps); $[\alpha]_{\mathrm{D}}{ }^{25}-12.0\left(c 3.0, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right.$,): $v_{\max } 1439,1472$, 1572, 1722, 2857, 2956, 2930, $3019 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.76$ (t, $J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.41(\mathrm{dt}, \mathrm{J}=7.1,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.35-$ 1.43 (m, 2H), 1.10 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}): $\delta 202.0,67.6,43.4,38.5,25.4,23.3,17.8,17.6,-4.84 .-5.23$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2}$ Si required C, 62.55 ; $\mathrm{H}, 11.37$; found C, $62.65 ; \mathrm{H}, 11.38 \%$.
(4S,7R,E)-Ethyl 7-(tert-butyldimethylsilyloxy)-4-hydroxyoct-2-enoate (76)

To a stirred solution of nitrosobenzene ($419 \mathrm{mg}, 3.91$ mmol) and D-proline ($90 \mathrm{mg}, 20 \mathrm{~mol} \%$) in $\mathrm{CH}_{3} \mathrm{CN}(20$ mL) was added precursor aldehyde $\mathbf{6 4}(1 \mathrm{~g}, 4.35 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 24 h followed by the addition of triethylphosphonoacetate ($1.32 \mathrm{~g}, 5.86 \mathrm{mmol}$), $\mathrm{LiCl}(246 \mathrm{~g}, 5.86 \mathrm{mmol})$ and DBU (594 mg, 3.91 mmol) sequentially. After stirring for 2 h at $0^{\circ} \mathrm{C}$, reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethylacetate ($3 \times 20 \mathrm{~mL}$). The Combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was dissolved in EtOH and $\mathrm{Cu}(\mathrm{OAc})_{2}$ ($30 \mathrm{~mol} \%$)
was added. The reaction mixture was then stirred at $25^{\circ} \mathrm{C}$ for 24 h . Removal of solvent and purification by column chromatography with petroleum ether/ EtOAc (8:2 v/v) afforded hydroxy olefinic ester $76(730 \mathrm{mg})$ as a yellow oily liquid.

Yield: 57%; $[\alpha]^{25}{ }_{\mathrm{D}}-12.5$ (c 4.0, CHCl_{3}); IR (neat): $v_{\text {max }}$ 1377, 1472, 1677, 2857, 2930, 2956, $3155 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.07$ (s, 6H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 1.14$ (d, $J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.75(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.93(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.32-4.37(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.99(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3})): $\delta-4.8,-4.5,14.1,18.0,23.2,25.8,31.9,34.3,60.3,68.2,70.6$, 120.1, 150.4, 166.6; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4}$ Si requires C, 60.72 ; H, 10.19; Found C, 60.75; H, 10.23\%.

Ethyl 2-((2R,3S,6R)-3-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)acetate (77)

To a well stirred solution of hydroxy olefinic ester 76 ($100 \mathrm{mg}, 0.3$ mmol) in dry THF was added a solution of 1 M tetrabutylammonium fluoride (0.6 mL , 2 equiv) was added at $25{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 4 h after which solvent was removed under reduced pressure and the residue subjected to column chromatography with petroleum ether/ethyl acetate ($7: 3 \mathrm{v} / \mathrm{v}$) to afford pyran $77(42 \mathrm{mg})$ as an oily liquid.

Yield: 65\%; $[\alpha]^{25}{ }_{\mathrm{D}}+20.0\left(c\right.$ 0.1, CHCl_{3}); IR (neat): $v_{\text {max }}$ 1275, 1462, 2859, 2959, 3430 cm^{-1}; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.54-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.91(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.60(\mathrm{dd}, \mathrm{J}=$ 8.0, 14.9 Hz, 1H), 2.67 (dd, $J=5.2,14.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.48(\mathrm{~m}, 1 \mathrm{H}), 3.97-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.18$ $(\mathrm{q}, J=6.9,14.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.2,18.7,26.9,28.1,37.4$,
60.7, 67.3, 69.0, 72.8, 171.6,; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, 59.39; H, 8.97; Found C, 59.43; H, 8.94\%.
(5S,8R,E)-8-(tert-Butyldimethylsilyloxy)-5-(phenylaminooxy)non-3-en-2-one (63)

To a stirred solution of nitrosobenzene ($800 \mathrm{mg}, 8.20 \mathrm{mmol}$) and D-proline ($210 \mathrm{mg}, 20 \mathrm{~mol} \%$) in $\mathrm{CH}_{3} \mathrm{CN}(80 \mathrm{~mL}$) was added precursor aldehyde $64(2.11 \mathrm{~g}, 9.11 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 24 h followed by the addition of diethyl(2-oxopropyl)phosphonate ($2.65 \mathrm{~g}, 13.67 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(4.45 \mathrm{~g}$, 13.67 mmol). After stirring for 2 h at $0^{\circ} \mathrm{C}$, reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc $(3 \times 60 \mathrm{~mL})$. The Combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate (9:1 v/v) afforded aminooxy olefinic ketone $63(2.06 \mathrm{~g})$ as a yellow oily liquid.

Yield: 60\%; $[\alpha]^{25}{ }_{\mathrm{D}}-5.5\left(c 4.0, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\max } 1370,1499,1657,1721,2856$, 2928, $3437 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.05$ (s, 6H), 0.89 (s, 9 H), 1.13 (d, $J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.91(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.40(\mathrm{~m}, 1 \mathrm{H}), 6.20$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ (dd, $J=1.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}$ 6.87-6.98 (m, 3H), 7.21-7.29 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-4.8,-4.3,18.0,23.7,25.8,27.1,29.2,34.7,68.0$, 83.0, 114.2, 122.0, 128.8, 131.5, 145.8, 148.3, 197.8; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}$ requires C, 66.80; H, 9.34; N, 3.71; Found C, 66.85; H, 9.38; N, 3.91\%.

Decarestrictine L (41)

Chapter II
To a well stirred solution of aminooxy olefinic ketone 63 (500 mg , 1.23 mmol) in ethanol was added copper acetate ($750 \mathrm{mg}, 30 \mathrm{~mol} \%$).

The reaction mixture was then stirred overnight at $25{ }^{\circ} \mathrm{C}$. After completion of reaction (monitored by TLC), the solvent was removed under reduced pressure and the residue dissolved in dry THF. To this, a solution of 1M tetrabutylammonium fluoride ($2.55 \mathrm{~mL}, 2$ equiv.) was added at $25{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 6 h after which solvent was removed under reduced pressure and the residue subjected to column chromatography with petroleum ether/ethyl acetate (17:3 v/v) to afford decarestrictine L $\mathbf{4 1}(127 \mathrm{mg})$ as an oily liquid.

Yield: $60 \% ;[\alpha]^{25}{ }_{\mathrm{D}}+28.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$ lit. $^{23}[\alpha]_{\mathrm{D}}{ }^{25}+28.8\left(c 0.49, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\max } 1440,1598,1712,2853,2965,3415 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.22(\mathrm{~d}, \mathrm{~J}$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.90(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.39-3.43 (m, 1H), 3.94-3.97 (m, 1H), $4.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 18.4, 27.0, 28.2, 30.5, 46.3, 67.4, 69.4, 72.0, 207.7; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, 62.77; H, 9.36; Found C, 62.68; H, 9.38\%.

2.3.6 References

1 (a) Shiina, I. Chem. Rev. 2007, 107, 239; (b) Back, T. G. Tetrahedron 1977, 33, 3041; (c) Roxburgh, C. J. Tetrahedron 1993, 49, 10749.

2 (a) Yuzikhin, O.; Mitina, G.; Berestetskiy, A. J. Agric. Food Chem. 2007, 55, 7707; (b) Fuchser, J.; Zeeck, A. Liebigs Ann. Recl. 1997, 87.
3 Chowdhury, P. S.; Gupta, P.; Kumar, P. Tetrahedron Lett. 2009, 50, 7018.
4 Sabitha, G.; Reddy, T. R.; Srinivas, C.; Yadav, J. S. Hel. Chim. Acta 2011, 94, 224.
5 (a) Kotkar, S. P.; Sudalai, A. Tetrahedron: Asymmetry 2006, 17, 1738; (b) George, S.; Sudalai, A. Tetrahedron: Asymmetry, 2007, 18, 975; (c) Kotkar, S. P.; Sudalai, A. Tetrahedron Lett. 2006, 47, 6813; (d) George, S.; Sudalai, A. Tetrahedron Lett. 2007, 48, 8544.
6 (a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092; (b) Reddy, M. V. R.; Yucel, A. J.; Ramachandran, P. V. J. Org. Chem. 2001, 66, 2512.
7 Marigo, M.; Franzen, J.; Poulsen, T. B.; Zhuang, W.; Jorgensen, K. A. J. Am. Chem. Soc., 2005, 127, 6964.

8 (a) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44, 8293; (b) Hayashi,
Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem. Int. Ed. 2003, 43, 1112.
(a) Hardy, J. A.; Higgins, G. A. Science 1992, 256, 184; (b) Schenk, D. B.; Rydel, R. E.; May, P.; Little, S.; Panetta, J.; Lieberburg, I.; Sinha, S. J. Med. Chem. 1995, 38, 4141; (c) Katzman, R. N. Engl. J. Med. 1986, 314, 964.
(a) Cai, L.; Liow, J. S.; Zoghbi, S. S.; Cuevas, J.; Baetas, C.; Hong, J.; Shetty, H. U.; Seneca, N. M.; Brown, A. K.; Gladding, R.; Temme, S. S.; Herman, M. M.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2008, 51, 148; (b) Walsh, D. M.; Klyubin, I.; Fadeeva, J. V.; Cullen, W. K.; Anwyl, R.; Wolfe, M. S.; Rowan, M. J.; Selkoe, D. J. Nature 2002, 416, 535.
12 (a) Barten, D. M.; Guss, V. L.; Corsa, J. A.; Loo, A.; Hansel, S. B.; Zheng, M.; Munoz, B.; Srinivasan, K.; Wang, B.; Robertson, B. J.; Polson, C. T.; Wang, J.; Roberts, S. B.; Hendrick, J. P.; Anderson, J. J.; Loy, J. K.; Denton, R.; Verdoorn, T. A.; Smith, D. W.; Felsenstein, K. M. J. Pharmacol. Exp. Ther. 2005, 312, 635; (b) Siemers, E.; Skinner, M.; Dean, R. A.; Gonzales, C.; Satterwhite, J.; Farlow, M.; Ness, D.; May, P. C. Clin. Neuropharmacol. 2005, 28, 126.
13 Mayer, S. C.; Kreft, A. F.; Harrison, B.; Gharbia, M. A.; Antane, M.; Aschmies, S.; Atchison, K.; Chlenov, M.; Cole, D. C., Comery, T.; Diamantidis, G.; Ellingboe, J.; Fan, K.; Galante, R.; Gonzales, C.; Ho, D. M.; Hoke, M. E.; Hu, Y.; Huryn, D.; Jain, U.; Jin, M.; Kremer, K.; Kubrak, D.; Lin, M.; Lu, P.; Magolda, R.; Martone, R.; Moore, W.; Oganesian, A.; Pangalos, M. N.; Porte, A.; Reinhart, P.; Resnick, L.; Riddell, D. R.; Reines, J. S.; Stock, J. R.; Sun, S. C.; Wagner, E.; Wang, T.; Woller, K.; Xu, Z.; Zaleska, M. M.; Zeldis, J.; Zhang, M.; Zhou, H.; Jacobsen J. S. J. Med. Chem. 2008, 51, 7348. Cole, D. C.; Stock, J. R.; Kreft, A. F.; Antane, M.; Aschmies, S. H.; Atchison, K. P.; Casebier, D. S.; Comery, T. A.; Diamantidis, G.; Ellingboe, J. W.; Harrison, B. L.; Hu, Y.; Jin, M.; Kubrak, D. M.; Lu, P.; Mann, C. W.; Martone, R. L.; Moore, W. J.; Oganesian, A.; Riddell, D. R.; Reines, J. S.; Sun, S. C.; Wagner, E.; Wang, Z.; Woller, K. R.; Xu, Z.; Zhou, H.; Jacobsen, J. S. Bioorg. Med. Chem. Lett. 2009, 19, 926.
(a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726; (b) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138; (c) List, B. Seayad, J. Org. Biomol. Chem. 2005, 3, 719; (d) Enders, D.; Wang, C.; Liebich, J. X. Chem. Eur. J. 2009, 15, 11058; (f) Liu, X.; Lin, L.; Feng, X. Chem. Commun. 2009, 6145.

For a review of proline-catalyzed asymmetric reactions see: List, B. Tetrahedron 2002, 58, 5573.
(a) List, B. J. Am. Chem. Soc. 2002, 124, 5656; (b) Bøgevig, A.; Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Jørgensen, K. A. Angew. Chem. Int. Ed. Engl. 2002, 41, 1790; (c) Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Bøgevig, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2002, 124, 6254; (d) Vogt, H.; Vanderheiden, S.; Brase, S. Chem. Commun. 2003, 2448; (e) Iwamura, H.; Mathew, S. P.; Blackmond, D. G. J. Am. Chem. Soc. 2004, 126, 11770.

18 Udodong, U. E.; Fraser-Reid, B. J. Org. Chem. 1989, 54, 2103.
9 Grabley, S.; Hammann, P.; Hutter, K.; Kirsch, R.; Kluge, H.; Thiericke, R.; Mayer, M.; Zeeck, A. J.

Antibiot. 1992, 45, 1176.

Grabley, S.; Granzer, E.; Hutter, K.; Ludwig, D.; Mayer, M.; Thiericke, R.; Till, G.; Wink, J.; Philipps, S.; Zeeck, A. J. Antibiot. 1992, 45, 56.

Gohrt, A.; Zeeck, A.; Hutter, K.; Kirsch, R.; Kluge, H.; Thiericke, R. J. Antibiot. 1992, 45, 66.
(a) Riatto, V.B.; Pilli, R.A.; Victor, M.M. Tetrahedron 2008, 10, 2279; (b) Nokami, J.; Taniguchi, T.; Ogawa, Y. Chem. Lett. 1995, 43; (c) Clark, J. S.; Whitlock, G. A. Tetrahedron Lett. 1994, 35, 6381; (d) Esumi, T.; Kimura, R.; Mori, M.; Iwabuchi, Y.; Irie, H.; Hatakeyama, S. Heterocycles 2000, 52, 525.

Machinaga, N.; Kibayashi, C. Tetrahedron Lett. 1993, 34, 5739.
solladie, G.; Arce, E.; Bauder, C.; Carreno, M. C. J. Org. Chem. 1998, 63, 2332.
Lukesh, J. M.; Donaldson, W. A. Tetrahedron: Asymmetry 2003, 14, 757.
Garcia, I.; Gomez, G.; Teijeira, M.; Teran, C.; Fall, Y. Tetrahedron Lett. 2006, 47, 1333.
Clark, J. S.; Fessard, T. C.; Whitlock, G. A. Tetrahedron 2006, 62, 73.
(a) Kotkar, S. P.; Suryavanshi, G.; Sudalai, A. Tetrahedron: Asymmetry 2007, 18, 1795; (b) Chouthaiwale, P. V.; Kotkar, S. P.; Sudalai, A. Arkivoc 2009, 88.
(a) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183; (b) Mangion, I. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3696.
Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen. E. N. Science, 1997, 277, 936.
(a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345; (b) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Organic syntheses 1993, Coll. Vol. 9, 589; (c) King, S. A.; Thompson, A. S.; King, A. O.; Verhoeven, T. R. J. Org. Chem. 1992, 57, 6689.

32 Turcu, M.C.; Kiljunen, E.; Kanerva, L.T. Tetrahedron: Asymmetry 2007, 18, 1682.

Chapter III

$\mathcal{A} \mathcal{V}$ ew Concise Method for the Synthesis of Chiral Tetrahydroquinofin-3-oLs, (-)-Sumanirole (PNV 95666-E) and 1-[(S)-3-(Dimethylamino)-3,4-difydro-6,7-dimethoxyquinofin-1($2 \mathcal{H}$)-yl]propan-1-one, (S)-903

Section I

Organocatalytic sequential α-aminooxylation/reductive cyclization of \boldsymbol{o} nitrohydrocinnamaldehydes: A high yield synthesis of chiral tetrahydroquinolin-3-ols

3.1.1 Introduction

The 1,2,3,4-tetrahydroquinoline (THQ) is a very common structural motiff found in numerous biologically active natural products and pharmacologically relevant therapeutic agents. ${ }^{1,2}$ For example, (-)-sumanirole $\mathbf{1}$ (PNU-95666E) is a selective and high affinity agonist at the dopamine D_{2} receptor subtype and has proven as a potential agent for the treatment of Parkinson's disease and restless leg syndrome. ${ }^{3}$ Also, 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]propanone [(S)-903] 2 has recently been identified as a potentially interesting positive inotropic agent, ${ }^{4}$ while (+)duocarmycin D1 3 has exhibited potent antitumor activity (Figure 1).

(S) ${ }^{-903(\mathbf{2})}$
$\left(^{+}\right)^{-D u o c a r m y c i n ~} \mathrm{D}_{1}(\mathbf{3})$

Figure 1: Structures of some THQ containing bioactive molecules
Moreover, besides pharmaceutical applications, tetrahydroquinoline derivatives are useful as pesticides, ${ }^{5}$ antioxidants, ${ }^{6}$ and corrosion inhibitors, ${ }^{7}$ Also tetrahydroquinolines are widely used as active components of dyes 8 and photosensitizers in photography. ${ }^{9}$ Due to the significance of these scaffolds in drug discovery and medicinal chemistry, ${ }^{10}$
the development of new methodologies for the synthesis of 3-substituted THQs derivatives continue to be very active field of research in recent years. ${ }^{11}$

3.1.2 Review of literature

Literature search revealed that there are various reports available for the synthesis of tetrahydroquinoline derivatives; some of which are described below.

Murahashi's approach (1987) ${ }^{12}$

Murahashi et al. have used hexarhodiumhexadecacarbonyl complex for the synthesis of tetrahydroquinolines 4a-d from quinolines 5a-d using carbon monoxide and water as efficient reducing agent (Scheme 1).

Scheme 1: (i) Catalytic $\mathrm{Rh}_{6}(\mathrm{CO})_{16}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$.

Gracheva's approach (1988) ${ }^{13}$

Gracheva et al. reported the use of Ni-Al alloy for the reduction of quinolinecarboxylic acid 6a-c to obtain tetrahydroquinolinecarboxylic acid 7a-c (Scheme 2).

Scheme 2: (i) Ni-Al, aq. $\mathrm{NaOH}, 50^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Schaus's approach (1990) ${ }^{14}$

Schaus et al. have reported the synthesis of (\pm)-quinpirole 11 using hydrogenation [catalytic $\mathrm{PtO}_{2}, \mathrm{H}_{2}$ (60 psig)] of 6-methoxyquinoline $\mathbf{8}$ which afforded 6-methoxy-l,2,3,4tetrahydroquinoline 9. Reductive alkylation of 9 [propanaldehyde, $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (60
psig)] furnished tetrahydroquinoline $\mathbf{1 0}$ in 36 \% yield over two steps. Further $\mathbf{1 0}$ was converted into (\pm)-quinpirole 11 by employing a sequence of reactions (Scheme 3).

Scheme 3: (i) PtO_{2} ($10 \mathrm{wt} \%$), $\mathrm{H}_{2}(60 \mathrm{psig}), 50^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{MeOH}, 66 \%$; (ii) $10 \% \mathrm{Pd} / \mathrm{C}$, H_{2} (60 psig), EtCHO, EtOH, $50^{\circ} \mathrm{C}, 12 \mathrm{~h}, 54 \%$.

Bouyssou's approach (1992) ${ }^{15}$

Bouyssou et al. have employed transfer hydrogenation ($10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{H} / \mathrm{Et}_{3} \mathrm{~N}$) as a method for reducing quinoline $\mathbf{4 d}$ to afford the corresponding tetrahydroquinoline $\mathbf{5 d}$ in 85 \% yield (Scheme 4).

Scheme 4: (i) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCOOH}, \mathrm{Et}_{3} \mathrm{~N}, 50^{\circ} \mathrm{C}, 12 \mathrm{~h}, 85 \%$.

Katritzky's approach (1995) ${ }^{16}$

Katritzky et al. have reported acid catalyzed Diels-Alder reaction of N-methylaniline derivative 12 with ethyl vinyl ether to give reactive intermediate 4-ethoxy-1,2,3,4tetrahydroquinoline $\mathbf{1 3}$ which underwent in situ substitution by benzotriazol to provide 4-(benzotriazolyl)-1,2,3,4-tetrahydroquinoline 14 in 48% yield. At elevated temperatures, ionization of $\mathbf{1 4}$ gives immonium cation which can be trapped in situ by Grignard reagent to provide 4-substituted tetrahydroquinolines 15 in good yields (Scheme 5).

Scheme 5: (i) 12, ethyl vinyl ether, PTSA, $22^{\circ} \mathrm{C}, 30 \mathrm{~min}$. then $120^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (ii) $\mathrm{RMgX}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 1 h .

Kobayashi's approach (1996) ${ }^{17}$

Kobayashi et al. have used asymmetric Aza Diels-Alder reactions of imine 16a-b and cyclopentadiene 17 catalysed by a $\mathrm{Yb}(\mathrm{OTf})_{3} \cdot(R)$-BINOL catalyst to provide tetrahydroquinoline derivatives 18a-b in 69-92\% yields and 71\% ee (Scheme 6).

Scheme 6: (i) $\mathrm{Yb}(\mathrm{OTf})_{3}:(R)$-BINOL:DBU (20 mol\%), 2,6-Di-butylpyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~A}^{\mathrm{o}} \mathrm{MS},-15-0^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

Boger's approach (1997) ${ }^{18}$

Boger et al. have used asymmetric dihydroxylation as a key step for the synthesis of duocarmycin-A 3. Asymmetric dihydroxylation of olefin 19 gave diol 20 in 95% yield. Tosylation of primary alcohol and protection of secondary alcohol as silyl ether in 20 gave 21. Intramolecular nucleophilic displacement of tosylate 21 with amide anion provided key intermediate 22, which on hydrolysis $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right.$, sealed tube, $\left.140{ }^{\circ} \mathrm{C}\right)$ gave
diamine 23. By sequential transformations, 23 was further converted to duocarmycin A 3 (Scheme 7).

Scheme 7: (i) OsO_{4}, (DHQD) ${ }_{2}$-PHAL, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}$, THF: $\mathrm{H}_{2} \mathrm{O}$ (4:1), $0-25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 92 \%$; (ii) (a) $\mathrm{Bu}_{2} \mathrm{SnO}$, toluene-THF (10:1), reflux, 6 h ; (b) TsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 89 \%$; (c) TBDMS-OTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 67 \%$; (iii) NaH, THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 92 \%$; (iv) $\mathrm{NH}_{2} \mathrm{NH}_{2}$, EtOH, $140^{\circ} \mathrm{C}, 12 \mathrm{~h}$, sealed tube, 85%.

Rajan Babu's approach (2001) ${ }^{19}$

Rajan Babu et al. have used Rh-catalyzed asymmetric hydrogenation as a key reaction for the synthesis of aminotetrahydroquinoline 31. Rh-catalyzed asymmetric hydrogenation of α-acetamido-2 nitrocinnamate ester 26 gave α-acetamido ester 27 in 96% yield and 98% ee. Further reduction of ester functionality with super hydride afforded the corresponding alcohol 28 which was subsequently transformed into its mesylate 29. Reduction ($\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$) of nitro in 29 to amine followed by cyclization provided 3-aminotetrahydroquinoline 30 which was transformed $\left(\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}\right)$ as its tosylamide 31 (Scheme 8).

Scheme 8: (i) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{NaHCO}_{3}$, sealed tube, $80^{\circ} \mathrm{C}, 24 \mathrm{~h}, 80 \%$; (ii) Rh catalyst, H_{2} (40 psig.), THF, 96%, 98% ee; (iii) super hydride, $0^{\circ} \mathrm{C}$; (iv) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (v) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, 1 \mathrm{~h}, 25^{\circ} \mathrm{C}$; (vi) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.

In another approach, 2-nitrocinnamate 32 was reduced to the corresponding allyl alcohol 33 using DIBAL-H. Sharplesss asymmetric epoxidation of allyl alcohol 33 gave the chiral epoxy alcohol 34, which was transformed into its tosylate $35\left(\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}\right)$. Reductive opening of epoxide 35 over PtO_{2} furnished alcohol 36 in 70 \% yield. Finally reduction ($\mathrm{Fe} / \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ and DMF) of nitro functionality to amine gave 3-hydroxy tetrahydoquinoline, which on tosylation gave tosylamide 37 in 66\% yield (Scheme 9).

Scheme 9: (a) DIBAL-H, toluene, $0{ }^{\circ} \mathrm{C}$, 75%; (b) $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, (+)-diethyl tartrate, ${ }^{\top} \mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}$, 6 days, 60%, $>90 \%$ ee; (c) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMAP, $0^{\circ} \mathrm{C}$, 80%; (d) MgI_{2}, Toluene, $-55^{\circ} \mathrm{C}$; (e) $\mathrm{PtO}_{2}, \mathrm{H}_{2}(40 \mathrm{psig}), \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 70 \%$ over two steps; (f) $\mathrm{Fe}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{DMF}, 7{ }^{\circ} \mathrm{C}$; (g) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 66 \%$ (over two steps).

Fujita's approach (2002) ${ }^{20}$

Fujita et al. have employed $\left[\mathrm{CpIrCl}_{2}\right]_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}$ catalyzed cyclization of 3-(2aminophenyl)propanol (38) to give tetrahydroquinoline (5a, 5d and 39) in high yields (Scheme 10).

Scheme 10: (i) $\left[\mathrm{CpIrCl}_{2}\right]_{2}$ ($5.0 \mathrm{~mol} \% \mathrm{Ir}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($10 \mathrm{~mol} \%$), toluene, $111^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

Fujita's approach (2004) ${ }^{21}$

Fujita et al. have used Ir-catalyzed transfer hydrogenation of quinoline 4a and dihydroquinoline 40 to provide tetrahydroquinoline $5 \mathbf{a}$ in high yields. Addition of acid $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ or $\left.\mathrm{HClO}_{4}\right)$ considerably accelerates the rate of the reaction whereas addition of water minimizes the formation of byproducts (Scheme 11).

Scheme 11: (i) $\left[\mathrm{CpIrCl}_{2}\right]_{2}$ (1mol \%), aq. $\mathrm{HClO} 4,2-$ propanol, $\mathrm{H}_{2} \mathrm{O}$, reflux, 17 h .

Nishida's approach (2005) ${ }^{22}$

This approach utilized Ru-catalyzed ring closing metathesis (RCM) to construct dihydroquinoline core. Wittig olefination of o-nitrobenzaldehyde 41 gave nitrostyrene 42, which was subjected to reduction of nitro group $(\mathrm{Zn} / \mathrm{AcOH})$ to give the corresponding o aminostyrene 43. Protection of amine in 43 as tosymide $44\left(\mathrm{TsCl}, \mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, followed by Mitsunobu reaction with (R)-oct-1-en-3-ol (99\% ee) [DEAD and PPh_{3}] provided the
desired diene 45 in 78% yield. The diene 45 was subjected to ring closing metathesis (RCM) with Grubbs’ II catalyst to give the corresponding 1,2-dihydroquinoline in 92% yield which was subsequently hydrogenated over Adam's catalyst in MeOH to provide tetrahydroquinoline 46 in 94% yield and 99.7% ee. Finally detosylation of 46 to free amine 47 and subsequent methylation of the free nitrogen gave (+)-(S)-angustureine 48 in 80\% yield (Scheme 12).

Scheme 12: (i) $\mathrm{Ph}_{3} \mathrm{PMeBr}, \mathrm{KN}(\mathrm{TMS})_{2}$, THF, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$; (ii) Zn powder, AcOH , $25{ }^{\circ} \mathrm{C}$, overnight, 72%; (iii) TsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 86 \%$; (iv) DEAD, PPh_{3}, THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$; (v) Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.01 M), $50^{\circ} \mathrm{C}, 1 \mathrm{~h}, 92 \%$; (vi) $\mathrm{PtO}_{2}, \mathrm{H}_{2}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 94 \%$; (vii) anthracene sodium, DME, $-65^{\circ} \mathrm{C}, 10 \mathrm{~min}$, 99\%; (viii) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF, reflux, 10 h , 80%.

Yang's approach (2006) ${ }^{23}$

Yang et al. have reported reductive cyclization of $\mathbf{5 1}$ using H_{2} over Pd / C to give 3-aryl tetrahydroquinoline 52a-c. Condensation of 2-nitrobenzaldehyde 41 with aryl propionitrile 49 and subsequent reduction of double bond with NaBH_{4} provided 50, which was subjected to reduction with H_{2} over $30 \% \mathrm{Pd} / \mathrm{C}$ followed by reductive cyclization with cyano group afforded 3-aryltetrahydroquinoline 52a-c in 57-73\% yields (Scheme 13).

Scheme 13: (i) $\mathrm{Na}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, 5 \mathrm{~h}$; (ii) NaBH_{4}, THF, $\mathrm{CH}_{3} \mathrm{OH}$; (iii) $\mathrm{H}_{2}, 30 \% \mathrm{Pd} / \mathrm{C}$, THF, $\mathrm{CH}_{3} \mathrm{OH}$.

Sudalai's approach (2009) ${ }^{24}$

Sudalai's approach describes a new method for the construction of chiral 3-substituted tetrahydroquinoline derivatives 54 based on asymmetric dihydroxylation and $\mathrm{CoCl}_{2}{ }^{-}$ catalyzed reductive cyclization of nitro cyclic sulfites 53 with NaBH_{4} (Scheme 14).

Scheme 14: (a) $1 \mathrm{~mol} \% \mathrm{CoCl}_{2}, 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}, \mathrm{EtOH}, 0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

3.1.3 Present Work

3.1.3.1 Objective

As can be seen only a few methods exist in the literature for the asymmetric synthesis of tetrahydroquinilin-3-ols, most of which are based on chiral pool resources. The use of expensive chiral reagents, lengthy reaction sequence, use of protection and deprotection of various functional groups along with low overall yield are some of the drawbacks of the existing routes. In this regard, an organocatalytic protocol that provides for the
efficient synthesis of chiral 3-substituted THQs is highly desirable. Proline catalyzed α functionalization and its sequential reactions are arguably one of the most extensively studied and developed asymmetric catalytic reaction. ${ }^{25,26}$ Yet the full synthetic potential of the use α-functionalized aldehydes that are readily available by this route in excellent enantioselectivity, remains to be further exploited. In proline-catalyzed direct α aminooxylation of aldehydes, the reactive intermediate 55, generated in situ can be transformed into several functionalized organic derivatives: for instance it can be reduced to 1,2 -aminooxy alcohol $\mathbf{5 6},{ }^{26 f}$ cyclized to γ-butyrolactone 57 with Stille-Gennari olefination, ${ }^{26 i}$ it can also undergo diastereoselective In-mediated allylation to give diol 58, ${ }^{26 m}$ or can be converted to γ-aminooxy α, β-unsaturated esters and ketones 59 (Scheme 15). ${ }^{26 n}$ In this connection, it is of interest to design experiments in trapping the intermediate 55 with other reagents.

59
yield $=50-80 \%$
ee upto 99\%
Scheme 15: Sequential trapping of α-aminooxy aldehyde 55

In this section, we wish to disclose, for the first time, a sequential protocol involving α aminooxylation of o-nitrohydrocinnamaldehydes and Pd-catalyzed intramolecular reductive cyclization that provides easy access to chiral 3-hydroxy THQs in high yields.

3.1.3.2 Results and Discussion

In continuation of our work on the utilization and application of enantiomericallyenriched α-functionalized aldehydes, ${ }^{26 i, 27}$ we envisaged that sequential trapping of α aminooxylated o-nitrohydrocinnamaldehydes 60a-e with Pd-catalyzed reductive cyclization should provide enantiomerically pure 3-hydroxy THQs 54a-e via the intermediate 61a-e (Scheme 16).

Scheme 16: (i) L-proline (20 mol\%), PhNO (1 equiv), DMSO, 15 min ; (ii) Pd/C, H_{2} (1 atm), $25^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

In a preliminary study, the α-aminooxylation reaction between o nitrohydrocinnamaldehyde 60a with nitrosobenzene as oxygen source was carried out in the presence of L -proline ($20 \mathrm{~mol} \%$) in $\mathrm{CH}_{3} \mathrm{CN}$ at $-20^{\circ} \mathrm{C}$ for 24 h to obtain α-aminooxy aldehydes 61a in situ. Since these α-aminooxy aldehydes like 61a are prone to racemization, it was immediately subjected to catalytic hydrogenation [10\% Pd/C, (1 atm) H_{2}] by distilling out $\mathrm{CH}_{3} \mathrm{CN}$ under reduced pressure and adding MeOH to it, which gave 3-hydroxy THQ 54a in 62% yield with moderate enantioselectivity (82% ee). The low enantioselectivity could possibly be due to the racemization occurring during the removal of $\mathrm{CH}_{3} \mathrm{CN}$ at slightly elevated temperature ($45{ }^{\circ} \mathrm{C}$). Optimizing the reaction
parameters, therefore, was essential in order to obtain high enantioselectivity. Thus, when a mixed solvent system of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{MeOH}(1: 3)$ was used, 54 a was obtained in higher enantioselectivity (96% ee) with low yield (52\%). In order to improve the yield, we performed several experiments to identify the most effective and suitable reaction conditions by conducting experiments in several solvent systems $\left(\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and THF). However, there was no significant improvement in yields observed in each case. Finally, the best result (71% yield, 96% ee, entry 7, Table 1) for 54a was obtained when aminooxylation was carried out in DMSO and the intramolecular reductive cyclization done in MeOH in a sequential manner at ambient temperature. The results of the optimization study are summarized in Table 1.

Table 1: Optimization studies for L-proline-catalyzed α aminooxylation/reductive cyclization of o-nitrohydrocinnamaldehyde (60a)

	 60a	Condition ${ }^{\text {a }}$, S1 followed by $\mathrm{H}_{2}(1 \mathrm{~atm})$, 10\% Pd/C, $25^{\circ} \mathrm{C}, \mathrm{S} 2,6 \mathrm{~h}$		
Entry	S1	S2	Yield (\%) ${ }^{\text {b }}$	ee (\%) ${ }^{\text {c }}$
1	$\mathrm{CH}_{3} \mathrm{CN}$	MeOH	62	82
$2^{\text {d }}$	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{MeOH}$	52	96
$3^{\text {d }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$	35	nd
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	MeOH	39	75
5	THF	MeOH	15	nd
6	CHCl_{3}	MeOH	30	nd
$7{ }^{\text {e }}$	DMSO	MeOH	71	96

[^0]With the optimized condition, we then turned our attention to briefly investigate the scope of reaction by subjecting several o-nitrohydrocinnamaldehydes 60a-e to sequential α-aminooxylation/reductive cyclization protocol. When subjected to L-proline catalyzed α-aminooxylation with 1 equiv of PhNO, several o-nitrohydrocinnamaldehydes 60a-e gave the corresponding (R)-3-hydroxy THQ 54a-e (70-76\%) derivatives with excellent enantiomeric excess (94-99\% ee). The results of such studies are presented in Table 2.

Table 2. L-proline-catalyzed sequential α-aminooxylation/reductive cyclization of o-nitrohydrocinnamaldehydes (60a-e) ${ }^{\text {a }}$

		products (54a-e)	
Entry	Substrates (60a-e)	Yield (\%)	ee (\%) ${ }^{\mathrm{C}}$
\mathbf{a}	$\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$	71	96
\mathbf{b}	$\mathrm{R}=\mathrm{R}_{1}=\mathrm{OMe}$	76	98
c	$\mathrm{R}, \mathrm{R}_{1}=-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-$	75	94
d	$\mathrm{R}=\mathrm{O}-$ pentyl $; \mathrm{R}_{1}=\mathrm{OMe}$	72	96
e	$\mathrm{R}=$ OTBDPS ; $\mathrm{R}_{1}=\mathrm{OMe}$	70	99

${ }^{\text {a }}$ L-Proline (20 mol\%), o-nitro hydrocinnamaldehyde (5 mmol), nitroso benzene (5 mmol), DMSO (20 mL); ether extraction followed by H_{2} (1 atm), 10\% Pd/C (5 $\mathrm{wt} \%$), $\mathrm{MeOH}(20 \mathrm{~mL})$; ${ }^{\text {b }}$ isolated yieds of THQ-3-ol; ${ }^{\text {c }}$ ee determined by chiral HPLC analysis.
o-Nitrohydrocinnamaldehydes 60b-e, the starting materials were efficiently prepared from the corresponding hydrocinnamyl alcohols 62b-e in two steps. Regiospecific aromatic nitration of $\mathbf{6 2 b} \mathbf{- e}$ with conc. HNO_{3} gave nitro compounds 63b-e in 80-95\% yield (Scheme 17).

Scheme 17: (i) $\mathrm{HNO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 80-95 \%$; (ii) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 80-85 \%$.

The formation of o-nitrohydrocinnamyl alcohols 63c was confirmed from its ${ }^{1} \mathrm{H}$ NMR spectrum, which showed a triplet at $\delta 3.70(J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$ corresponding to methylene $\left(-\mathbf{C H}_{2}-\mathrm{OH}\right)$ protons. Two singlets at $\delta 6.8(1 \mathrm{H})$ and $7.5(1 \mathrm{H})$ indicated the presence of aromatic protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed signal at $\delta 102.7$ indicative of the methylene carbon having dioxo linkage (-O-CH2-O) (Figure 2).

Figure 2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of o-nitrohydrocinnamyl alcohols 63c

Subsequent oxidation of nitro alcohols 63b-e with PCC gave 60b-e in $80-85 \%$ yield. The
${ }^{1} \mathrm{H}$ NMR spectrum of o-nitrohydrocinnamaldehyde 60c showed a characteristic proton
signal at $\delta 9.82$ for aldehydic proton. This was further evidenced by its ${ }^{13} \mathrm{C}$ NMR spectrum, which showed the appearance of carbon signal at $\delta 200.1$ corresponding to aldehydic carbon (Figure 3).

Carbon tetrachloride

Figure 3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of o-nitrohydrocinnamaldehyde 60c

The formation of all intermediates along with the final products (THQs 54a-e) was established unambiguously from their corresponding ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR, IR and HRMS spectral data. Their optical purity was established from their chiral HPLC analyses. Example 1: The ${ }^{1} \mathrm{H}$ NMR spectrum of THQ 54c showed a multiplet at δ 4.17-4.25
corresponding to methine $(-\mathbf{C H}-\mathrm{OH})$ proton, while the multiplet at δ 3.21-3.23 indicated the presence of methylene ($-\mathrm{CH}_{2}-\mathrm{NH}-$) protons. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 4 c}$ showed typical signals at $\delta 100.1,109.5,110.6,137.9,139.9$ and 146.1 corresponding to aromatic carbons, while the carbon signals at $\delta 63.1$ and 96.4 were indicative of methine (- $\mathbf{C H}-\mathrm{OH}$) and methylene ($-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$) carbons respectively (Figure 4).

Retention Time	Area	Area $\%$	Height	Height $\%$
27.200	6026001	2.94	85701	3.19
30.607	198857225	97.06	2598245	96.81
Totals	204883226	100.00	2683946	100.00

Figure 4: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra and HPLC chromatogram of THQ 54c
Example 2: The formation of THQ 54c was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum which showed a multiplet at $\delta 4.16-4.23$ and 4.59-4.65 corresponding to methine (-CH-O-) proton, while a multiplet at $\delta 3.21-3.23$ indicated the presence of methylene (- $\mathbf{C H}_{2}-\mathrm{NH}-$) protons. The multiplets at $\delta 1.55-1.83$ were due to methylene protons of cyclopentyl group. The ${ }^{13} \mathrm{C}$ NMR spectrum of 54 c showed resonance signals at $\delta 99.7,110.4,119.1$, 137.7, 139.7 and 149.5 corresponding to aromatic carbons, while the carbon signals at δ 63.3 and 81.4 were indicative of methine carbons (-CH-OH) and (-CH-O) respectively (Figure 5).

Figure 5: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra and HPLC chromatogram of THQ 54c

3.1.4 Conclusion

In conclusion, we have developed a new sequential strategy for the construction of chiral 3-substituted THQs in high yields. Although two different catalysts were used for the reaction, the operation is convenient to carry out under milder conditions with a sequential operation and the enantioselectivity is excellent. We believe that this strategy will find applications in the synthesis of optically pure terahydroquinoline-3-ols owing to the flexible nature of synthesis of substituted o-nitrohydrocinnamaldehydes and the ready availability of both enantiomers of proline.

3.1.5 Experimental Section:

A general experimental procedure for the preparation of o-nitrohydrocinnamyl alcohol (63b-e)

To a stirred solution of alcohol 62b-e (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, conc. $\mathrm{HNO}_{3}(2 \mathrm{~mL}$, $d=1.4$) was added dropwise at $0^{\circ} \mathrm{C}$. Reaction mixture was stirred for 30 min and the progress of reaction was monitored by TLC. After completion of reaction, 50 mL of
water was added. Organic layer was separated and aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 50 mL). Combined organic layers were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then passed through a thick pad of silica gel (230-400 mesh) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The organic layer was concentrated under reduced pressure to give 63b-e in pure form.

3-(4,5-Dimethoxy-2-nitrophenyl)propan-1-ol (63b)

Yield: 95\% (2.3 g); gum, IR (CHCl_{3}): $v_{\text {max }} 745,945,1120$, 1378, $3412 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.87-1.95 (m, 2H), 2.97-3.05 (m, 2H), 3.71 (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ (s, $3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.1,33.5$, 56.2, 61.9, 108.2, 113.4, 132.4, 141.2, 147.2, 153.0; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires C, 54.77; H, 6.27; N, 5.81; found C, 54.86; H, 6.33; N, 5.87\%.

3-(6-Nitrobenzo[1,3]dioxol-5-yl)propan-1-ol (63c)

Yield: 93\% (2.1 g); gum, IR (CHCl_{3}): $v_{\max } 857,968,1060$, 1460, $3498 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.82-1.96$ (m, 3H), 2.91-2.99 (m, 2H), 3.73 (t, J = $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{~s}$, 2H), $6.76(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.1,33.4,61.8,102.7$, 105.7, 110.6, 134.4, 142.8, 146.3, 151.6; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5}$ requires C, 53.33 ; H, 4.92; N, 6.22; found C, 53.43; H, 4.98; N, 6.27\%.

3-(4-(Cyclopentyloxy)-5-methoxy-2-nitrophenyl)propan-1-ol (63d)

Yield: 87\% (2.6 g); gum, IR (CHCl_{3}): $v_{\max } 754,1129,1324$, 1460, $3467 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.58$ (br s, $1 \mathrm{H}), 1.82-2.03(\mathrm{~m}, 10 \mathrm{H}), 3.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=$
$6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.78-4.82(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\mathrm{MHz} \mathrm{CDCl}_{3}$): 23.9, 30.0, 32.5, 33.3, 56.0, 61.7, 80.6, 110.7, 113.5, 131.9, 140.8, 145.6, 153.8; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{5}$ requires C, 61.00; H, 7.17; N, 4.74; found C, 61.08; H, 7.23; N, 4.75\%.

3-(4-(tert-Butyldiphenylsilyloxy) - 5 -methoxy-2-nitrophenyl) propan-1-ol (63e)

Yield: $80 \%(3.7 \mathrm{~g})$; gum, $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 907,1172$, 1068, 1531, $3367 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.13(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.61-1.71(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.44(\mathrm{~m}, 8 \mathrm{H}), 7.64-$ 7.69 (m, 4H); ${ }^{13} \mathbf{C}$ NMR (50 MHz CDCl 3): δ 19.9, 26.7, 30.1, 33.5, 55.3, 62.0, 113.7, 117.2, 127.7, 130.0, 132.5, 132.8, 135.3, 141.1, 143.2, 154.6 ; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{5}$ Si requires C, 67.07; H, 6.71; N, 3.01; found C, 67.12; H, 6.73; N, 3.09\%.

A general experimental procedure for the oxidation of alcohols (60b-e)

To a stirred solution of alcohol 63a-e (5 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, PCC (10 mmol) was added slowly at $25^{\circ} \mathrm{C}$. It was then stirred for further 6 h . After completion of the reaction (monitored by TLC), it was passed through a short pad of silica gel (230-400 mesh) using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The combined organic layers were concentrated under reduced pressure to give the aldehyde 60a-e which was pure enough to be used in the next step.

3-(2-Nitrophenyl)propanal (60a)

Yield: $85 \%(761 \mathrm{mg})$; gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 765,1166,1225$, 1235, 1454, 1712, 2989, 3123; NMR (200 MHz, CDCl_{3}): $\delta 2.89$ (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.92$
(d, $J=7.9,1 \mathrm{H}$), $9.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 25.6, 44.4, 124.9, 127.5, 132.3, 133.1, 135.7, 199.9; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires: $\mathrm{C}, 60.33$; H, 5.06; N, 7.82; found: C, 60.45; H, 5.13; N, 7.91\%.

3-(4,5-Dimethoxy-2-nitrophenyl)propanal (60b)

Yield: $85 \%(1.07 \mathrm{~g})$; gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 1155,1215,1278$, 1371, 1720, 2935, $2983 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, 3.97 (s, 3H), $6.82(\mathrm{~s}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 9.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.4$, 44.4, 56.2, 108.1, 113.8, 131.0, 140.8, 147.4, 153.1, 200.4; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5}$ requires: C, 55.23; H, 5.48; N, 5.86; found: C, 55.29 ; H, 5.57 ; N, 5.90\%.

3-(6-Nitrobenzo[d][1,3]dioxol-5-yl)propanal (60c)

Yield: $85 \%(948 \mathrm{mg})$; gum; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 1253,1348$, 1496, 1608, 1718, $2987 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $2.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H})$, $6.80(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 9.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.4,44.4,102.8$, 105.7, 110.7, 133.0, 146.6, 151.7, 200.1; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{5}$ requires: C, 53.82; H, 4.06; N, 6.28; found: C, 53.72; H, 3.93; N, 6.21\%.

3-(4-(Cyclopentyloxy)-5-methoxy-2-nitrophenyl)propanal (60d)

Yield: $82 \%(1.20 \mathrm{~g})$; gum; IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 1233,1312$, 1608, 1718, 2913, $3018 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl} 3$): 1.64-2.02 (m, 8H), $2.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.76-4.84(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 9.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 23.9,26.3,32.5,44.4,56.0,80.6,110.6,113.9,127.2,130.0,130.4$,
137.2, 140.6, 145.9, 153.9, 200.2; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires: C, 61.42; H , 6.53; N, 4.78; found: C, 61.46; H, 6.48; N, 4.87\%.

3-(4-(tert-Butyl diphenyl silyloxy)-5-methoxy- 2 - nitrophenyl) propanal (60e)

Yield: $80 \%(1.85 \mathrm{~g})$; gum; IR $\left(\mathrm{CHCl}_{3}\right)$: IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}$ 1155, 1215, 1357, 1718, $2984 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.12$ (s, 9H), $2.82(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.64-7.68(\mathrm{~m}, 4 \mathrm{H}), 9.78(\mathrm{~s}$, 1H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): δ 19.8, 26.5, 26.7, 44.6, 55.4, 114.2, 117.2, 127.7, 130.0, 131.4, 132.6, 135.3, 143.5, 154.8, 200.6; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{5}$ Si requires: C, 67.36; H, 6.31; N, 3.02; found: C, 67.43; H, 6.41; N, 3.09\%.

A general experimental procedure for the preparation of (R)-1,2,3,4-tetrahydro-6,7-

 dialkyloxyquinolin-3-ol (54a-e)To the stirred solution of o-nitrohydrocinnamaldehyde 60a-e (6 mmol) and PhNO (6 mmol) in DMSO (20 mL), L-proline (20 mol\%) was added at $25^{\circ} \mathrm{C}$ and allowed to stir for 20 min . After completion of reaction, as indicated by the change in color from green to yellow, large excess (200 mL) of diethyl ether was poured into the reaction mixture and stirred for additional 10 min . The combined organic mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ (5 x 20 mL). The organic layer was separated and aqueous layer was extracted with diethyl ether (2 x 50 mL). Combined organic layers were washed with brine ($5 \times 50 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. The crude α-aminooxylated aldehyde 61a-e was dissolved in MeOH (20 mL) and to this mixture $10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{wt} \%)$ was added. The reaction mixture was then stirred at $25{ }^{\circ} \mathrm{C}$ for additional 6 h . After the completion of reaction (monitored by TLC), it was
filtered through celite (MeOH eluent) and the solvent evaporated under reduced pressure. Chromatographic purification of the crude product [flash silica gel (230-400 mesh) and petroleum ether:EtOAc: $\mathrm{Et}_{3} \mathrm{~N}$ (60:38:2)] gave the pure (R)-tetrahydroquinolin-3-ol derivatives 54a-e.

(R)-1,2,3,4-Tetrahydroquinolin-3-ol (54a)

Yield: 71% (635 mg); Gum; $[\alpha]^{\mathrm{D}} 25+12.3$ (c 1, CHCl_{3}); Optical purity 96\% ee from HPLC analysis; Column: Chiracel OD-H (250 x 4.6 mm), mobile phase: isopropylalcohol/n-hexane (10/90), wavelength: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, conc.: $1.5 \mathrm{mg} / \mathrm{mL}$, injection vol.: 10uL, retention time: 30.073 min (-)-isomer, $33.890 \min (+)$-isomer; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 753$, 1312, 1500, 1604, 3370, $3413 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35$ (br s, 1H), 2.76 (dd, $J=3.7,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=4.3,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.38(\mathrm{~m}, 2 \mathrm{H}), 4.21-$ 4.29 (m, 1H), 6.53 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ (dt, $J=1.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.05(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.3,47.5,63.2,114.1,117.9,118.7,126.9,130.4,143.5 ;$ ESIMS (m / z) $150[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$150.0919; found 150.0910.
(R)-1,2,3,4-Tetrahydro-6,7-dimethoxyquinolin-3-ol (54b)

Yield: 76% (954 mg); Gum; [$\alpha]^{\mathrm{D}} 25$ +27.1 (с 1.26, CHCl_{3}); Optical purity 98\% ee from HPLC analysis; Column: Chiracel

OD-H ($250 \times 4.6 \mathrm{~mm}$), mobile phase: isopropylalcohol/nhexane (20/80), wavelength: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, conc.: $1.5 \mathrm{mg} / \mathrm{mL}$, injection vol.: $10 u \mathrm{uL}$, retention time: $34.543 \mathrm{~min}(-)$-isomer, $40.990 \mathrm{~min}(+)$-isomer; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 756,1217,1464,1519,3456 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.71(\mathrm{dd}, J=3.9$,
$16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.15-4.23$ (m, 1H), $6.12(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.7,47.6,55.6,56.4$, 63.3, 99.8, 110.5, 114.2, 136.7, 142.2, 148.0; ESIMS (m/z) $210[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$210.1130; found 210.1108.

(R)-5,6,7,8-Tetrahydro-[1,3]dioxolo[4,5-g]quinolin-7-ol (54c)

Yield: 75% (869 mg); Gum; $[\alpha]^{\mathrm{D}} 25$ +28.2 (c $1, \mathrm{CHCl}_{3}$); Optical purity 94\% ee from HPLC analysis; Column: Chiracel OD-H (250 x 4.6 mm), mobile phase: isopropylalcohol/ n-hexane (20/80), wavelength: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, conc.: $1.5 \mathrm{mg} / \mathrm{mL}$, injection vol.: 10uL, retention time: 27.200 min (-)-isomer, 30.607 min (+)-isomer; IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}$ 1037, 1215, 1484, 2853, 2924, $3355 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.16$ (br s, 2H), 2.65(dd, $J=3.5,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (dd, $J=4.2,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.23(\mathrm{~m}, 2 \mathrm{H})$, 4.17-4.25 (m, 1H), $5.82(\mathrm{~s}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 35.1, 47.5, 63.1, 96.4, 100.1, 109.5, 110.6, 137.9, 139.9, 146.1; ESIMS (m/z) 194 $[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires C, 62.17; H, 5.74; N, 7.25; found C, 62.11; H, 5.81; N, 7.30\%.
(R)-7-(Cyclopentyloxy)- 6-methoxy-1,2,3,4-tetrahydroquinolin-3-ol (54d)

Yield: 72% (1.14g); Gum; $[\alpha]^{\mathrm{D}} 25+25.7$ (c 1, CHCl_{3}); Optical purity 96\% ee from HPLC analysis; Column: Chiracel OD-H (250 x 4.6 mm), mobile phase: isopropylalcohol/ n-hexane (50/50), wavelength: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, conc.: $1.5 \mathrm{mg} / \mathrm{mL}$, injection vol.: 10uL, retention time: 10.233 min (-)-isomer, 11.197 min (+)-isomer; IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}$

769, 1217, 1456, 1504, 2927, $3402 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.55-1.83(\mathrm{~m}$, 8H), 2.72 (dd, $J=3.5,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.99(\mathrm{~m}, 3 \mathrm{H}), 3.21-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 4.16-4.23 (m, 1H), 4.59-4.65 (m, 1H), $6.11(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 23.5,32.4,34.7,47.6,55.5,63.3,81.4,99.7,110.4,119.1,137.7,139.7,149.5 ;$ ESIMS (m / z) $264[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires: C, 68.42; H, 8.04; N, 5.32; found: C, 68.38; H, 8.10; N, 5.39\%.
(R)-7-(tert-Butyldiphenylsilyloxy)-6-methoxy-1,2,3,4-tetrahydroquinolin-3-ol (54e)

isopropylalcohol/ n-hexane (2.5/97.5), wavelength: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, conc.: $1.5 \mathrm{mg} / \mathrm{mL}$, injection vol.: 10 uL , retention time: $17.103 \mathrm{~min}(-)$-isomer, 19.443 min (+)-isomer; IR (CHCl_{3}): $v_{\max } 758,1226,1517,2856,2929,3392 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.10(\mathrm{~s}, 9 \mathrm{H}), 2.59(\mathrm{dd}, J=3.9,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=3.7,14.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.08-4.16(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.31-$ 7.39 (m, 6H), 7.69-7.73 (m, 4 H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.8,26.7,29.7,35.1$, 47.6, 56.7, 63.5, 107.0, 116.0, 127.5, 129.6, 133.7, 135.4, 137.3, 143.7, 144.5; ESIMS $(\mathrm{m} / \mathrm{z}) 434[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{3}$ Si requires C, 72.02; H, 7.21; N, 3.23; found C, 72.09; H, 7.18; N, 3.27\%.

Section II

Asymmetric synthesis of (-)-Sumanirole (PNU-95666E) and 1-[(S)-3-(Dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl] propanone [(S)-903]

3.2.1 Introduction and Pharmacology

Parkinson's disease, a neurodegenetive disease characterized by deteriorating motor function, is brought about by the loss of cells in the brain responsible for synthesizing the neurotransmitter dopamine. ${ }^{28}$ Sumanirole 1 (PNU-95666E) (Figure 6) is a potent dopamine receptor agonist with high in vitro and in vivo selectivity for the D2 receptor subtype and possesses potential as a treatment for Parkinson's disease with greatly diminished side-effect liability. It has greater than 200-fold selectivity for the D2 receptor subtype versus the other dopamine receptor subtypes in radioligand binding assays and thus shows better efficiency for the treatment of Parkinson's disease in the early stages. ${ }^{3}$

1

2

Figure 6: Structures of (-)-sumanirole (1) and (S)-903 (2)
Although excellent diuretics and ACE inhibitors are available for the treatment of congestive heart failures, the only current approach that relies on the stimulation of cardiac contractility is the use of cardiac glycosides with a variety of therapeutic limitations. 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]propa -none 2 [(S)-903] have recently been identified as potentially interesting positive
inotropic agents. ${ }^{4}$

3.2.2 Review of literature

Literature search has revealed that there are only few reports available for the synthesis of Sumanirole 1 and 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)yl]propanone 2 [(S)-903] which are described below.

Moon's approach (1992) ${ }^{29}$

The synthesis by Moon et al. commenced from 3-amino quinoline 64; its N-formylation gave amide 65. Catalytic hydrogenation $\left(\mathrm{PtO}_{2}\right)$ of 3-amidoquinoline 65 followed by its amine protection provided diamidotetrahydroquinoline 66. Amine 67 from 66 was converted to sumanirole derivative 68 by its treatment with 1,1 '-carbonyldiimidazole, which provided racemic 68 in 83\% yield (Scheme 18).

Scheme 18: (i) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{Ac}_{2} \mathrm{O}$, THF, $0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 84 \%$; (ii) PtO_{2} ($10 \mathrm{~mol} \%$), H_{2} (50 lb), AcOH, $25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 69 \%$; (iii) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 84 \%$; (iv) $1,1^{\prime}$ - carbonyldiimidazole, DMF, $100^{\circ} \mathrm{C}, 1 \mathrm{~h}, 83 \%$.

Vecchietti's approach (1994) ${ }^{30}$

Vecchietti et al. have reported racemic synthesis of $2(S)$-903 starting from aniline 69.
Diethyl 2-[(3,4-dimethoxyphenylamino)methylene]malonate 70, obtained by the condensation of ethoxymethylene malonate with 3,4-dimethoxyaniline $\mathbf{6 9}$, was cyclized
$\left(\mathrm{POCl}_{3}\right.$ and DMF) to give chloro tetrahydroquinoline derivative 71. Hydrazine amide 72 obtained from 71 was converted to 73 via Curtius rearrangement. Subsequently, reductive amination of $73\left(\mathrm{HCHO}\right.$ and $\left.\mathrm{HCO}_{2} \mathrm{H}\right)$ followed by catalytic hydrogenation $(10 \% \mathrm{Pd} / \mathrm{C}$, H_{2} and AcOH) and acylation (propionyl chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) furnished amide 2 (Scheme 19).

Scheme 19: (i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}=\mathrm{C}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$, heat; (ii) $\mathrm{POCl}_{3} / \mathrm{PCl}_{5}$; (iii) NaNO_{2}; (iv) (a) $\mathrm{HCHO} / \mathrm{HCO}_{2} \mathrm{H}$; (b) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, acetic acid, 80%; (c) propionyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

In another approach, the same authors have described the asymmetric synthesis of 2 (S)903 starting from chiral pool resources. N-Cbz protected L-DOPA derivative 74 was esterified to give methyl ester 75, which was regioselectively nitrated (conc. HNO_{3}, AcOH) to give nitro derivative 76. Nitro ester 76 was reduced $\left[10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right.$ (4 atm) and AcOH$]$ to give (S)-3-amino-3,4-dihydro-6,7-dimethoxyquinolin-2(1H)-one 77, which on reductive amination ($10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCHO}$ and MeOH) gave N, N-dimethylamino quinolin-2-one 78. Finally, Compound 78 was then converted to $\mathbf{2}$ via a known sequence of reactions which include: (i) LiAlH_{4} mediated reduction and; (ii) protection of amine functionality with propionyl chloride and $\mathrm{Et}_{3} \mathrm{~N}$ (Scheme 20).

Scheme 20: (i) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{K}_{2}, \mathrm{CO}_{3}$, acetone, $60^{\circ} \mathrm{C}$, $6 \mathrm{~h}, 73 \%$; (ii) $\mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 15$ ${ }^{\circ} \mathrm{C}$, 3 h 76\%; (iii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (4 atm), $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 91 \%$; (iv) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCHO}, 2 \mathrm{~N}$ $\mathrm{HCl}, \mathrm{Et}_{2} \mathrm{O}, 40-50{ }^{\circ} \mathrm{C}$, 90%; (v) (a) $\mathrm{LiAlH}_{4}, \mathrm{DME}$, reflux, $24 \mathrm{~h}, 28 \%$; (b) propionyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Romero's approach (1997) ${ }^{31}$

Romero et al. have reported the synthesis of (-)-sumanirole $\mathbf{1}$ by making use of D phenylalanine 79 as chiral starting material. Protection of amine as its carbamate in 79 followed by amidation of acid moiety provided $\mathbf{8 0}$ in 61% yield. Bis(trifluoroacetoxy)iodobenzene/TFA mediated oxidative cyclization of $\mathbf{8 0}$ afforded lactam 81 in 85% yield. $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ reduction of lactam 81 gave 3-methylaminotetrahydroquinoline 82, which was then subjected to selective protection of methyl amine to its benzyl carbamate $\mathbf{8 3}$ in 65% yield. Free amine group in $\mathbf{8 3}$ was converted to methoxyamine urea derivative $84\left(\mathrm{COCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeONH}_{2}\right.$ in THF). The subsequent oxidative cyclization of 84 provided benzo-fused urea 85 in 78% yields. Finally, deprotection of benzyl carbamate and simultaneous hydrogenolysis of $\mathrm{N}-\mathrm{OMe}\left[\mathrm{H}_{2}(50\right.$ psig), $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$] gave (-)-sumanirole 1 in 84% (Scheme 21).

85

Scheme 21: (i) $\mathrm{ClCO}_{2} \mathrm{OMe}$, aq. NaOH , THF, $-15-25^{\circ} \mathrm{C}$, 2 h ; (ii) $\mathrm{NH}_{2} \mathrm{OMe}$, EDC, $25{ }^{\circ} \mathrm{C}, 22 \mathrm{~h}, 61 \%$ (over two steps); (iii) $\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1$ h, 85\%; (iv) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, THF, $80{ }^{\circ} \mathrm{C}, 22 \mathrm{~h}$; (v) N (benzyloxycarbonyloxy)succinimide, Toluene, $-40^{\circ} \mathrm{C}$, $30 \mathrm{~min} .65 \%$ over two steps; (vi) $\mathrm{COCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{MeONH}_{2}, \mathrm{Et}_{3} \mathrm{~N}, 25{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$; (vii) $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}, \mathrm{CHCl}_{3}, 0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$ over two steps; (viii) H_{2} (50 psig), 20% $\mathrm{Pd}(\mathrm{OH})_{2}$, $\mathrm{EtOH}, 19 \mathrm{~h}, 84 \%$.

Sudalai's approach (2009) ${ }^{24,32}$

Sudalai et al. have used a novel CoCl_{2}-catalyzed reductive cyclization of nitro cyclic sulfites with NaBH_{4} for the formal synthesis of PNU-95666E. Unsaturated nitroesters $\mathbf{8 6}$ prepared from Wittig-Horner olefination of the corresponding nitrobenzaldehyde was converted to the corresponding diol 87 in 82% yield via Os-catalyzed asymmetric dihydroxylation using $(\mathrm{DHQD})_{2}$-PHAL as chiral ligand. The diol 87 was readily converted into the corresponding nitro cyclic sulphite $85\left(\mathrm{SOCl}_{2}\right.$ and $\mathrm{Et}_{3} \mathrm{~N}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in 95% yield. Catalytic one-pot reduction of cyclic sulphite $\mathbf{8 8}$ using CoCl_{2} ($1 \mathrm{~mol} \%$) and NaBH_{4} gave the 3-hydroxy tetrahydroquinoline 89 in 81% yield. Synthesis of
(-)-sumanirole $\mathbf{1}$ from amide 90 has been reported in the literature (Scheme 22). ${ }^{29}$

Scheme 22: (i) $\mathrm{K}_{2} \mathrm{OsO}_{4}$ ($0.2 \mathrm{~mol} \%$), (DHQD) ${ }_{2}$ - PHAL ($1 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1 equiv.), tert- $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$, 82%; (ii) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (iii) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1 mol\%), NaBH_{4}, EtOH, $0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 81 \%$;

The same author's extended their chemistry for the construction of chiral 3-substituted tetrahydroquinoline derivatives 54b based on asymmetric dihydroxylation (ADH) and CoCl_{2}-catalyzed reductive cyclization of nitro cyclic sulfites $\mathbf{9 4}$ with NaBH_{4} (Scheme 23). $\mathbf{5 4 b}$ was then converted into the title compound $\mathbf{2}$ in five additional steps.

Scheme 23: (i) $1 \mathrm{~mol} \% \mathrm{CoCl}_{2}, 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}$, $\mathrm{EtOH}, 0-25^{\circ} \mathrm{C}$, 12 h .

Gerards's approach (2009, 2012) ${ }^{33}$

In gerards’s approach quinoline $\mathbf{9 2}$ was first treated with DIBAL-H followed by addition of (S)-4-benzyl-2-oxooxazolidine-3-carbonyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which gave oxazolidine 93 . The key reaction in the synthesis was the treatment of $\mathbf{9 3}$ with $m \mathrm{CPBA}$
which gave a diatereomeric mixture of epoxides $\mathbf{9 4}$ in $\mathrm{dr}=9: 1$. Epoxide $\mathbf{9 4}$ was then converted to (-)-sumanirole $\mathbf{1}$ in further 10 steps with an overall yield of 3.7% (Scheme 24).

Scheme 24: (i) (a) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) (S)-4-benzyl-2-oxooxazolidine-3-carbonyl chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-20{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 60 \%$; (ii) mCPBA, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 18 \mathrm{~h}$.

3.2.3 Present work

3.2.3.1 Objective

Literature search reveals that only few strategies are available for the synthesis of antiParkinson’s agent (-)-sumanirole 1 and positive inotropic agent 2 (S)-903. However, use of chiral pool resources, the dependence on metal catalyst for introduction of chirality, as well as the need to have several protecting groups in the synthesis make the existing routes uneconomical. In Section I of this chapter, a new sequential organocatalytic method for the synthesis of chiral 3-hydroxytetrahydroquinoline derivatives (THQs, 54a-e) [yield upto 76\%, ee upto 99\%] based on α-aminooxylation followed by reductive cyclization of o-nitrohydrocinnamaldehydes 60a-e has been described. Among the various applications of this sequential protocol, an enantioselective synthesis of (-)sumanirole 1 and (S)-903 2 seemed attractive to us due to their pharmacological importance. ${ }^{3,4}$

3.2.3.2 Results and Discussion

A) Synthesis of (-)-sumanirole 1:

Retrosynthetic analysis reveals that, for the synthesis of (-)-sumanirole 1, 6-bromo-8-nitro-THQ 95 was envisaged to be the key intermediate, which could be easily prepared from (S)-tetrahydroquinolin-3-ol 89. We further visualized that amino alcohol $\mathbf{8 9}$ could be prepared from D-proline-catalyzed sequential α-aminooxylation/ reductive cyclization of o-nitrohydrocinnamaldehyde 60a. The precursor aldehyde 60a could be obtained from nitro cinnamate ester 86 (Scheme 25).

Scheme 25: Retrosynthetic analysis of (-)-sumanirole 1
The present synthetic route employed for the synthesis of (-)-sumanirole $\mathbf{1}$ is shown in Scheme 26. Our synthesis of $\mathbf{1}$ started from unsaturated ester 86, which was readily prepared from the corresponding aldehyde followed by its Wittig olefination with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$. The $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} / \mathrm{iPr}_{2} \mathrm{NH}$-catalyzed chemoselective reduction of ester 86 with NaBH_{4} afforded the saturated alcohol 63a. The formation of onitrohydrocinnamyl alcohol 63a was confirmed from its ${ }^{1} \mathrm{H}$ NMR and other spectral analysis. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the appearance of a broad singlet at $\delta 2.14$, characteristic proton signal for hydroxyl functionality. The triplet at $\delta 3.70(J=6.2 \mathrm{~Hz}$, $2 \mathrm{H})$ and $2.98(\mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$ were attributed to methylene $\left(-\mathbf{C H}_{2}-\mathrm{OH}\right)$ and benzylic
protons respectively. The formation of alcohol 63a was further ascertained by the appearence of a broad absorption band at $v_{\max } 3430 \mathrm{~cm}^{-1}$ in its IR spectrum (Figure 7).

Figure 7: ${ }^{1} \mathrm{H}$ NMR spectrum of o-nitrohydrocinnamyl alcohol 63a
Oxidation of alcohol 63a with PCC gave o-nitrohydrocinnamaldehyde 60a, the starting material for the proline-catalyzed sequential α-aminooxylation/ reductive cyclization reaction.

96, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$

Scheme 26: (i) $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O},{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{NaBH}_{4}, \mathrm{EtOH}, 25-60{ }^{\circ} \mathrm{C}, 85 \%$; (ii) PCC,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$, 85%; (iii) (a) PhNO, D-proline, DMSO, $25^{\circ} \mathrm{C}$, 15 min ; (b) $\mathrm{H}_{2}(1$ atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 2{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 71 \%$; (iv) $\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ (4:1), $0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 98 \%$; (v) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (b) NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 4 \mathrm{~h}, 93 \%$ (over two steps); (vi) Br_{2}, $\mathrm{AcOH}, \mathrm{NaOAc}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (vii) $\mathrm{NaNO}_{3}, \mathrm{TFA}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 95 \%$.

The formation of aldehyde 60a was established by its ${ }^{1} \mathrm{H}$ NMR spectrum which showed a singlet at $\delta 9.82$ characteristic of aldehydic proton, while the triplets at $\delta 2.89(J=7.3 \mathrm{~Hz}$, $2 \mathrm{H})$ and $3.20(J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$ were due to methylene protons. This was further substantiated by the appearance of typical signal at $\delta 199.9$ for aldehydic carbon in its ${ }^{13} \mathrm{C}$ NMR spectrum, while the signals at $\delta 25.6$ and 44.4 were due to methylene carbons. Its IR spectrum showed a sharp absorption band at $v_{\max } 1712 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=\mathrm{O}$ stretching vibrations (Figure 8).

Figure 8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of o-nitrohydrocinnamaldehyde 60a o-Nitrohydrocinnamaldehyde 60a was readily converted into the corresponding THQ 89 in 71% yield via sequential reaction involving D-proline catalyzed α-aminooxylation followed by Pd/C catalyzed reductive cyclization under H_{2} pressure (1 atm). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 9}$ showed characteristic signals at $\delta 2.76(\mathrm{dd}, J=3.7,16.5 \mathrm{~Hz}, 1 \mathrm{H})$ and 3.03 (dd, $J=4.3,16.9 \mathrm{~Hz}, 1 \mathrm{H}$) due to benzylic methylene protons. Also multiplets at $\delta 3.26-3.38$ and 4.21-4.29 accounted for methylene $\left(N-\mathrm{CH}_{2}\right)$ and methine (-CH-OH) protons respectively. Its ${ }^{13} \mathrm{C}$ NMR showed two methylene and one methine (- $\mathrm{CH}-\mathrm{OH}$) carbon signals typically at $\delta 35.3,47.5$ and 63.2 respectively (Figure 9).
TMS

89

Totals	1379938884	100.00	18744842	100.00

Figure 9: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectrum and chiral HPLC chromatogram of THQ 89 The amine functionality in 3-hydroxy quinoline $\mathbf{8 9}$ was then converted into its carbamate $\mathbf{9 6}$ by reacting with methyl chloroformate. The formation of carbamate $\mathbf{9 6}\left\{[\alpha]^{\mathrm{D}}{ }_{25}+21.9\right.$ (c $1, \mathrm{CHCl}_{3}$)\} was confirmed by its spectral data. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a typical singlet at $\delta 3.77$ due to the methyl carbamate protons $\left(-\mathrm{CO}_{2} \mathbf{C H}_{3}\right)$, while a multiplet at δ 4.21 was due to methine protons (- $\mathbf{C H}-\mathrm{OH}$). Its ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic carbonyl carbon signals at $\delta 155.7$ (Figure 10).

Figure 10: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of carbamate 96

Alcohol functionality in $\mathbf{9 6}$ was then mesylated and the crude mesylate subjected to nucleophilic displacement with N_{3} anion to give azide 97 in 93 \% yield with complete inversion. The presence of azide functionality was confirmed from its IR spectroscopy, which showed a strong absorption band at $2104 \mathrm{~cm}^{-1}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a typical signals at $\delta 3.69(\mathrm{~m})$ due to the methine proton $\left(-\mathbf{C H}-\mathrm{N}_{3}\right)$. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed methine $\left(-\mathbf{C H}-\mathrm{N}_{3}\right)$ and carbonyl carbon signals at $\delta 47.6$ and 155.0 respectively (Figure 11).

Chloroform-d

97

Next, installation of a NH_{2} group at C8 was envisaged via reduction of $-\mathrm{N}_{3}$. Hence 97 was treated with sec-butyllithium to generate the anion at the C-8 position followed by quenching with tosyl azide. Unfortunately, a complex mixture was obtained, which did not contain the desired product. Alternately, nitration was attempted to place a nitro group at C-8 position. Since C-6 position was expected to be more electrophilic, the latter had to be protected with a removable group. We thus examined a bromination-nitration sequence as a means of introducing a NH_{2} group at C-8. Gratifyingly bromination of azido carbamate $\mathbf{9 7}$ proceeded smoothly to give its expected 6-bromo derivative $\mathbf{9 8}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed signals at $\delta 7.24-7.30(\mathrm{~m}, 2 \mathrm{H})$ and $7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$ which indicated the presence of three aromatic protons. A multiplet at $\delta 4.01-4.04(\mathrm{~m}, 1$ H) was due to the methine proton $\left(-\mathbf{C H}-\mathrm{N}_{3}\right)$, while the signal at $\delta 3.88(\mathrm{~s}, 3 \mathrm{H})$ was indicative of methyl of carbamate group. Its IR spectrum showed two strong absoption bands at $v_{\max } 1716$ and $2103 \mathrm{~cm}^{-1}$ corresponding to carbonyl and azide functionalities respectively (Figure 12).

98

$\mathrm{O}_{2} \mathrm{Me}$

Figure 12: ${ }^{1} \mathrm{H}$ NMR and IR spectra of 6-bromo carbamate 98

Subsequently, regioselective nitration of $\mathbf{9 8}$ was effected by the action of NaNO_{3} in TFA to give compound 95 with an overall yield of 42.2% and 96% ee. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical carbon signals at $\delta 47.5,53.3$ and 55.5 corresponding to the methine $\left(-\mathbf{C H}-\mathrm{N}_{3}\right)$, methylene $\left(-\mathbf{C H}_{2}-\mathrm{N}\right)$ and methyl $\left(\mathbf{C H}_{3}-\mathrm{O}-\right)$ carbons respectively. The signals at $\delta 7.51(1 \mathrm{H})$ and $7.92(1 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum were due to the aromatic protons
(Figure 13). As the conversion of 95 to 1 has been reported previously in four steps, this work thus constitutes a formal synthesis of $\mathbf{1} .^{33}$

Figure 13: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6-bromo-8-nitro carbamate 95
B) Synthesis of (S)-903: Additionally, a concise enantioselective synthesis of 2 (S)-903 was undertaken to demonstrate another application of α-aminooxylation-reductive cyclization protocol in synthesis of biologically active molecules. Thus, the synthesis of $\mathbf{2}$ commenced with THQ 54b (Scheme 27), which was prepared using L-proline as catalyst and PhNO as oxygen source by following the optimized condition described in Section I.

Scheme 27: (i) (EtCO) ${ }_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(4: 1), 2{ }^{\circ} \mathrm{C}$, $3 \mathrm{~h}, 98 \%$; (ii) (a) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (b) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 94 \%$ (over two steps); (iii) H_{2} (1atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 96 \%$; (iv) HCHO, $\mathrm{HCO}_{2} \mathrm{H}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 91 \%$.

The formation of THQ 54b was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum which showed typical multiplets at δ 3.19-3.22 (m) and 4.15-4.23 (m) corresponding to methylene (N CH_{2}) and methine (-CH-OH) protons respectively, while singlets at $\delta 3.78$ and 3.79 were due to methyl protons $\left(\mathbf{C H}_{3}-\mathrm{OH}\right)$. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed two methylene and one methine (- $\mathbf{C H}-\mathrm{OH})$ carbons typically at $\delta 34.7,47.6$ and 63.3 respectively, while the signals at $\delta 55.6$ and 56.4 were due to methyl carbons attached to oxygen (Figure 14).

Figure 14: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra and HPLC chromatogram of THQ 54b

Amine function in 54b was protected as its amide 99 [(EtCO) $)_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ (4:1)] in 98% yields; $[\alpha]^{\mathrm{D}}{ }_{25}+8.9$ (c 1.0, CHCl_{3}). Its ${ }^{1} \mathrm{H}$ NMR spectrum showed typical proton signals at $\delta 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ and $2.34(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$ corresponding to the methyl $\left(-\mathrm{COCH}_{2} \mathbf{C H}_{3}\right)$ and methylene $\left(-\mathrm{COCH}_{2} \mathrm{CH}_{3}\right)$ protons respectively. A multiplet at $\delta 4.30-4.37(\mathrm{~m}, 1 \mathrm{H})$ was due to methine (-CHOH) protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a carbonyl signal at $\delta 174.4$ thus confirming the formation of amide carbonyl group (Figure 15).

Figure 15: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of amido alcohol 99

Free hydroxyl functionality in $\mathbf{9 9}$ was then protected as its mesylate ($\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) followed by its displacement with azide anion (NaN_{3}, DMF) to give azido quinolines $100\left\{[\alpha]^{\mathrm{D}}{ }_{25}+40.7\right.$ (c 2, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$ in 94% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of azide $\mathbf{1 0 0}$ showed a multiplet at $\delta 3.77$ due to methine (- $\mathbf{C H}-\mathrm{N}_{3}$) proton. Its ${ }^{13} \mathrm{C}$ NMR spectrum also showed a downfield shift at $\delta 55.7$ for methine ($-\mathbf{C H}-\mathrm{N}_{3}$) carbon. Its IR spectrum showed a characteristic strong absorption band at $2110 \mathrm{~cm}^{-1}$ for azide group confirming the formation of azide product (Figure 16).

Figure 16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of azide 100

Catalytic hydrogenation of azide function in $\mathbf{1 0 0}$ was carried out to give the corresponding amine $\mathbf{1 0 1}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of amine $\mathbf{1 0 1}$ are presented in Figure 17. A multiplet at $\delta 4.04-4.18(2 \mathrm{H})$ was due to the overlapping of methine (-CHNH_{2}) and amine protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed a carbon signal at $\delta 49.7$ indicating the presence of methine carbon (-CH-NH2) (Figure 17).

Figure 17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of amine 101

With the free amine $\mathbf{1 0 1}$ in hand, the next step towards its completion was the reductive cylization reaction under the Eschweiler-Clarke reaction conditions ($\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}$),
which produced 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)yl]propanone 2 with an overall yield of 71.6% and 98% ee. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 showed a typical singlet at $\delta 2.35$ due to methyl amine protons $\left[-\mathrm{N}\left(\mathbf{C H}_{3}\right)_{2}\right]$. The other signals at $\delta 41.33$ and 41.46 in its ${ }^{13} \mathrm{C}$ NMR spectrum were due to methyl amine carbons (Figure 18).

Figure 18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $2(S)$-903

3.2.4 Conclusion

In conclusion, we have achieved the formal synthesis of (-)-sumanirole 1 (42.2% overall
yield till known intermediate 95 with 96% ee) and 1-[(S)-3-(dimethylamino)-6,7dimethoxytetrahydroquinoline propanone 2 (71.6% overall yield from THQ 54b with 98% ee). We have successfully applied a novel sequential protocol based on α aminooxylation followed by reductive cyclization of o-nitrohydrocinnamaldehydes as key steps for the synthesis of (-)-sumanirole 1 and 2 [(S)-903].

3.2.5 Experimental section

2-(2-Nitrophenyl)ethanol (63a)

To a stirred solution of ester $86(7.0 \mathrm{~g}, 31.7 \mathrm{mmol}), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($377 \mathrm{mg}, 5 \mathrm{~mol} \%$) and diisopropyl amine ($320 \mathrm{mg}, 10 \mathrm{~mol} \%$) in 95% ethanol (100 mL) was added $\mathrm{NaBH}_{4}(4.8 \mathrm{~g}, 126.8 \mathrm{mmol})$ slowly at $25^{\circ} \mathrm{C}$. It was then stirred for 24 h at $50-60^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), it was quenched with addition of water (20 mL) and ethyl acetate (100 mL). The organic layer was separated and the aqueous layer extracted with ethyl acetate (2 x 50 mL). The combined organic layers were washed with brine ($2 \times 20 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of crude product with petroleum ether/ethyl acetate (7:3 v / v) afforded alcohol 63a (5.74 g) as gum.

Yield: 85\%; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 857,968,1029,1060,1245,1440,1507,3430 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.85-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.70(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 29.1,33.2,61.6,124.4,126.8,131.8,132.8,136.7,149.1$; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires C, 59.66; H, 6.12; N, 7.73; found C, 59.71 ; H, 6.15; N, 7.79\%. 3-(2-Nitrophenyl)propanal (60a)

To a stirred solution of alcohol 63a (5 g, 27.60 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, PCC (11.9 g, 55.20 mmol$)$ was added slowly at $25^{\circ} \mathrm{C}$. It was then stirred for further 6 h . After completion of the reaction (monitored by TLC), it was passed through a short pad of silica gel (230-400 mesh) using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The combined organic layers were concentrated under reduced pressure to give aldehyde 60a (4.2 g) which was pure enough to be used for the next step.

Yield: 85\%; gum; IR (CHCl_{3}): $v_{\max } 667,756,850,1155,1215,1253,1278,1345,1476$, 1712, 2989, $3123 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{~d}, J=7.9,2 \mathrm{H}), 9.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): 25.6, 44.4, 124.9, 127.5, 132.3, 133.1, 135.7, 199.9; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires: C, 60.33; H, 5.06; N, 7.82; found: C, 60.38; H, 5.11; N, 7.76\%.

(S)-1,2,3,4-Tetrahydroquinolin-3-ol (89)

Yield: 71\%; gum, $[\alpha]^{\mathrm{D}} 25-20.9$ (c 1, CHCl_{3}); 96\% ee (HPLC). (For experimental procedure and spectral data see Section 1)

(S)-Methyl 3-hydroxy-3,4-dihydroquinoline-1(2H)-carboxylate (96)

To a stirred solution of tetrahydroquinolin-3-ol 89 (200 mg, 1.34 mmol) and methyl chloroformate ($1 \mathrm{~mL}, 13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ (4:1), was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.8 \mathrm{~g}, 13 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was further allowed to stir for 6 h at $25^{\circ} \mathrm{C}$. Progress of reaction was monitored by TLC and after completion of reaction, a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added. The organic layer was separated; the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2
x 50 mL). Combined organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude products. Chromatographic purification of crude product with petroleum ether/ethyl acetate (6: 4 v / v) as eluent gave 96 (291 mg) as oily liquid.

Yield: 98%; $[\alpha]^{\mathrm{D}}{ }_{25}+21.9\left(с 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 1469,1589,1608,1704,3419$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.71-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{dd}, J=5.3,16.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.70-3.84(m, 5H), 4.21(m, 1H), 7.01-7.19(m, 3H), $7.58(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 35.9,50.4,53.0,64.7,123.8,124.3,126.1,126.8,129.4,137.4$, 155.7; ESIMS (m/z) $208[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$ 208.0974; found 208.0969.
(R)-Methyl 3-azido-3,4-dihydroquinoline-1(2H)-carboxylate (97)

To a stirred solution of alcohol $96(170 \mathrm{mg}, 0.84 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ kept at $0{ }^{\circ} \mathrm{C}$ under nitrogen were successively added freshly distilled $\mathrm{Et}_{3} \mathrm{~N}$ ($0.4 \mathrm{~mL}, 2.5 \mathrm{mmol}$) and mesyl chloride (0.1 $\mathrm{mL}, 1.26 \mathrm{mmol})$. After stirring was continued for $45 \mathrm{~min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ was added to the reaction mixture, which was then washed sequentially with saturated aqueous sodium hydrogen carbonate and brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. To a solution of this crude mesylate in anhydrous DMF (10 mL) kept at $80^{\circ} \mathrm{C}$ under nitrogen was added sodium azide ($0.199 \mathrm{~g}, 3.1 \mathrm{mmol}$). The resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 4 h . Progress of the reaction was monitored by TLC and after completion of reaction, it was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. The crude product was purified by column chromatography with petroleum ether/EtOAc (9:1 v/v) to give azide
$97(181 \mathrm{mg})$ as yellow liquid.
Yield: 93\%; $[\alpha]^{\mathrm{D}}{ }_{25}$-28.2 ($с 1, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max } 1493,1708,2104,2953 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.80$ (dd, $J=6.2,16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, $J=6.3,17.0$ Hz, 1 H), 3.68-3.82 (m, 4H), 3.92-4.03 (m, 2H), 7.04-7.20 (m, 3H), 7.62 (d, J = $8.1 \mathrm{~Hz}, 1$ H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 32.8,47.6,53.2,55.3,123.9,124.4,125.6,126.7$, 129.0, 137.4, 155.0; ESIMS (m/z) $255[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ 255.0858; found 255.0889.
(R)-Methyl 3-azido-6-bromo-3,4-dihydroquinoline-1(2H)-carboxylate (98)

To a solution of alcohol $97(120 \mathrm{mg}, 0.52 \mathrm{mmol})$ in acetic acid were successively added anhydrous AcONa (212 mg, 1.9 $\mathrm{mmol})$ and $\mathrm{Br}_{2}(0.3 \mathrm{~mL}, 0.52 \mathrm{mmol})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and then quenched with water (30 mL). The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 30 mL). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified over column chromatography with petroleum ether/EtOAc (9:1 v/v) to give bromo azide 98 (153 mg) as thick liquid.

Yield: 95\%; $[\alpha]^{\mathrm{D}}{ }_{25}-14.2\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 910,1264,1458,1716,2103$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.78$ (dd, $\left.J=5.9,16.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.08(\mathrm{dd}, J=5.7$, $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.96(\mathrm{~m}, 5 \mathrm{H}), 4.01-4.04(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.7,50.32,53.3,64.4,117.0,130.0,124.5$, 125.7, 128.9, 129.6, 132.3, 136.4, 155.1; ESIMS (m/z) 332 [M+Na] ${ }^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}_{2}$ 332.9963; found 332.9998.
(R)-Methyl 3-azido-6-bromo-8-nitro-3,4-dihydroquinoline-1(2H)-carboxylate (95)

To a solution of sodium nitrate ($30 \mathrm{mg}, 0.40 \mathrm{mmol}$) in trifluoroacetic acid (5 mL) was added bromo azide 98 (100 mg , 0.32 mmol). The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 30 min and then concentrated under reduced pressure. The crude product was then dissolved in EtOAc (50 mL) and the organic portion washed sequentially with saturated aqueous sodium hydrogen carbonate (10 mL), NaOH (1 M solution, 10 mL), and water (10 mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. It was purified by column chromatography with petroleum ether/EtOAc (6:4 v/v) to give nitro compound $95(108 \mathrm{mg})$ as a thick liquid.

Yield: 95\%; $[\alpha]^{\mathrm{D}} 25+59.3$ (с 1, CHCl_{3}) $\left\{\right.$ lit. $^{33}[\alpha]^{\mathrm{D}} 25 \quad+58.4$ (с 0.51, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 1265,1456,1717,2105 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.86$ (dd, J $=5.4,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=5.1,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.80(\mathrm{~m}, 5 \mathrm{H}), 4.09-4.16(\mathrm{~m}$, 1H), $7.51(\mathrm{~s}, 1 \mathrm{H}) ; 7.91(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 32.7,47.5$, 53.2, 55.5, 117.4, 123.0, 126.5, 134.8, 135.8, 144.3, 153.4; ESIMS (m/z) $393[\mathrm{M}+\mathrm{K}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrN}_{5} \mathrm{O}_{4}$ 393.9553; found 393.9513.
(R)-1-(3-Hydroxy-6,7-dimethoxy-3,4-dihydroquinolin-1(2H)-yl)propan-1-one (99)

To a stirred solution of tetrahydroquinolin-3-ol 54b (740 mg, 5 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.07 \mathrm{~g}, 15 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ (4:1), propionic anhydride (1.95 g, 15 mmol) was added at $25{ }^{\circ} \mathrm{C}$. Reaction mixture was stirred for 3 h . Progress of the reaction was monitored by TLC and after the completion of reaction, a saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added. The organic layer was separated; the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$),
dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product with petroleum ether/EtOAc $(6: 4 \mathrm{v} / \mathrm{v})$ gave 1.3 g of pure amide 99.

Yield: $98 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+8.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v_{\max } 761,1051,1245,1755,2358$, $3463 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.54(\mathrm{q}, J=7.4 \mathrm{~Hz}$, 2H), 2.58-2.70 (m, 1H), 2.76 (dd, $J=4.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=5.7,16.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.81-3.93 (m, 8H), 4.30-4.37 (m, 1H), 6.63 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.7$, 26.9, 35.0, 49.5, 55.6, 65.5, 108.0, 111.1, 122.4, 130.7, 146.4, 174.4; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, 63.38; H, 7.22; N, 5.28; found C, $63.45 ; \mathrm{H}, 7.27$; $\mathrm{N}, 5.34 \%$.
(S)-1-(3-Azido-6,7-dimethoxy-3,4-dihydroquinolin-1(2H)-yl)propan-1-one (100)

To a stirred solution of amide 99 ($531 \mathrm{mg}, 2 \mathrm{mmol}$) and triethyl amine ($0.7 \mathrm{~mL}, 5 \mathrm{mmol}$) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, mesyl chloride ($2.5 \mathrm{mmol}, 0.25 \mathrm{~mL}$) was added at $0^{\circ} \mathrm{C}$. It was then stirred for 45 min . After completion of the reaction (monitored by TLC), a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude mesylate product. To the stirred solution of this crude mesylate in dry DMF (10 mL), was added $\mathrm{NaN}_{3}(650 \mathrm{mg}, 10 \mathrm{mmol})$. It was then stirred for 12 h at 80 ${ }^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), it was poured into 50 mL of ice cold water and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product. Chromatographic purification of crude
product with petroleum ether/EtOAc (7:30 v/v) gave azide $100(546 \mathrm{mg})$ in pure form.
Yield: 94\%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+39.7\left(c\right.$ 2, $\left.\mathrm{CHCl}_{3}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right)$: 757, 1043, 1217, 1514, 1650, 1735, 2110, $3018 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.73$ (dd, $J=5.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (dd, $J=5.4,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-$ $3.76(\mathrm{~m}, 1 \mathrm{H}) 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.94-4.05(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(50$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.6,27.5,31.8,46.6,55.7,56.2,108.2,110.9,130.9,146.7,150.0,173.4 ;$

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, 57.92; H, 6.25; N, 19.30; found C, 57.88; H , 6.20; N, 19.33\%.

(S)-1-(3-Amino-6,7-dimethoxy-3,4-dihydroquinolin-1(2H)-yl)propan-1-one (101)

To a stirred solution of azide ($290 \mathrm{mg}, 1 \mathrm{mmol}$) in methanol (10 mL), was added $10 \% \mathrm{Pd} / \mathrm{C}$. It was stirred under H_{2} atmosphere (balloon pressure) for 12 h . After the completion of reaction (monitored by TLC), it was passed through the celite and concentrated under reduced pressure that afforded amine $101(253 \mathrm{mg})$ pure enough for the next reaction.

Yield: 96\%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}-15.7$ ($с 0.5, \mathrm{CHCl}_{3}$); $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 1277,1534,1615,1731$, 2987. $3418 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.12-1.25(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.28(\mathrm{~m}, 2 \mathrm{H})$, 2.62 (dd, $J=5.1,16.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (dd, $J=5.4,16.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.47-3.54(\mathrm{~m}, 2 \mathrm{H}) 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.04-4.18(\mathrm{~m}, 2 \mathrm{H}), 6.54-6.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 10.0,28.0,30.0,43.2,49.7,56.3,56.6,106.6,112.2,120.1,122.3,148.6$, 149.9, 175.0; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 63.62; H, 7.63; N, 10.60; found C, 63.73; H, 7.69; N, 10.66\%.

1-[(R)-3-(Dimethylamino)-3,4-dihydro - 6,7-dimethoxy quinolin-1(2H)-yl]propan-1-one (2): To a stirred solution
of crude amine 40% aq. solution $\mathrm{HCHO}(1 \mathrm{~mL})$ and $\mathrm{HCO}_{2} \mathrm{H}(2 \mathrm{~mL})$ was added, resulting reaction mixture was refluxed for 3 h . After completion of reaction saturated NaHCO_{3} solution (10 mL) was added and extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (2 x 20 mL), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: triethyl amine (60:38:2) as eluent] gave pure $2(237 \mathrm{mg})$ as colorless solid.

Yield: 91\%; m.p. $137^{\circ} \mathrm{C}\left[\right.$ lit. $\left.{ }^{30} 135-137{ }^{\circ} \mathrm{C}\right] ; \quad[\alpha]^{\mathrm{D}} 25-3.7$ (c 1, EtOH) $\left\{\right.$ lit. ${ }^{30}[\alpha]^{\mathrm{D}}{ }_{25}-3.3$ (c 1, EtOH) $\}^{5}$; IR $\left(\mathrm{CHCl}_{3}\right): 760,1049,1211,1511,1647,1743,3018,3450 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl ${ }^{2}$): $\delta 1.12$ (t, $\left.J=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.46(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 H$), 2.80-2.91 (m, 2H), 3.23-3.54 (m, 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.64(\mathrm{bs}, 2 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 9.8,27.5,29.5,41.3,41.4,55.9,55.9,61.4,61.8,108.2$, 111.1, 128.6, 131.8, 146.9, 173.0; Analysis for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 64.96; H, 7.63;

N, 10.10; found C, 64.82; H, 7.60; N, 10.27\%.

3.2.6 References

1 For reviews see: (a) Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J. A. Chem. Rev. 1997, 97, 787; (b) Katritzky, A.R.; Rachwal, S.; Rachwal B. Tetrahedron 1996, 52, 15031.

2 Yasuzawa, T.; Muroi, K.; Ichimura, M.; Takahashi, I.; Ogawa, T.; Takahashi, K.; Sano, H.; Saitoh, Y. Chem. Pharm. Bull. 1995, 43, 378 and references cited therein.

3 Heier, R. F.; Dolak, L. A.; Duncan, J. N.; Hyslop, D. K.; Lipton, M. F.; Martin, I. J.; Mauragis, M. A.; Piercey, M. F.; Nichols, N. F.; Schreur, P. J. K. D.; Smith, M. W.; Moon, M. W. J. Med. Chem. 1997, 40, 639.

4 Ito, Y.; Ishida, K.; Okada, S. Murakami, M. Tetrahedron 2004, 60, 9075
5 Walter, H. Eur. Pat. 1993, 555, 183; Chem. Abstr. 1994, 120,54551v.

6 Meier, H. R.; Evans, S. Eur. Pat. EP 1988, 273.868; Chem Abstr. 1989, 11098598p.
7 Chem. Abstr. 1990, 112,216659a.

8 Hahn, E.; Kraeh, C.; Mayer, U. Ger. Pat. 1993, DE 42,15,39l. Chem. Abstr. 1994, 120,301123f.
(a) Kokwaro, G. O; Taylor, G. Drug Chem. Toxicol. 1990, 13, 347; (b) Prankerd R. J.; Ahmed, S. M. J. Pharm. Pharmacol. 1992, 44, 261; (c) Prankerd, R. J.; Ahmed, S. M. J. Pharm. Pharmacol. 1992, 44, 259; (d) Grimwood, S.; Moseby, A. M.; Carling, R. W.; Leeson. P. D.; Foster, A. C. Mol. Pharmacol. 1992, 41, 923; (e) Yoneda, Y.; Suzuki, T.; Ogita, K.; Han, D. J. Neurochem. 1993, 60, 634; (f) Van Voorhis, W. C.; Rivas, K. L.; Bendale, P.; Nallan, L.; Hornéy, C.; Barrett, L. K.; Bauer, K. D.; Smart, B. P.; Ankala, S.; Hucke, O.; Verlinde, C. L. M. J.; Chakrabarti, D.; Strickland, C.; Yokoyama, K.; Buckner, F. K.; Hamilton, A. D.; Williams, D. K.; Lombardo, L. J.; Floyd, D.; Gelb, M. H. Antimicrob. Agents Chemother. 2007, 3659.

11 For a review on various synthetic strategies towards Tetrahydroquinolines see: Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157.

Murahashi, S.-I.; Imada, Y.; Hirai Y. Tetrahedron Lett. 1987, 28, 77.
Gracheva, I. N.; Tochilkin, A. I. Chem. Heterocycl. Comp.(Eng. Trans.) 1988, 65.
Schaus, J. M.;. Huser, D. L.; Titus R. D. Synth. Commun. 1990, 20, 3553.
Bouyssou, P.; Le Goff, C.; Chenault, J. J. Heterocycl. Chem. 1992, 29, 895.
(a) Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem. 1995, 60, 2588; (b) Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem. 1995, 60, 7631.
Ishitani H.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 7357.
Boger,D. L.;. McKie, J. A.; Nishi, T.; Ogiku, T. J. Am. Chem. Soc. 1997, 119, 311.
Gallou-Dagommer, I.;Gastaud, P.; RajanBabu, T. V. Org. Lett. 2002, 4, 2691.
(a) Fujita, K.; Yamamoto, K.; Yamaguchi, R. Org. Lett. 2001, 3, 2053; (b) Fujita, K.; Yamamoto, K.; Yamaguchi, R. Org. Lett. 2002, 4, 2691.
Fujita, K.; Kitatsuji, C.; Furukawa S.; Yamaguchi, R. Tetrahedron Lett. 2004, 45, 3215.
Theeraladanon, C.; Arisawa, M.; Nakagawa, M.; Nishida, A. Tetrahedron Asymmetry 2005, 16, 827.
Chen, W.; Liu, B.; Yang, C.; Xie, Y. Tetrahedron Lett. 2006, 47, 7191.
Jagdale, A. R.; Reddy, R. S.; Sudalai, A. Org. Lett. 2009, 11, 803
For a review of proline-catalyzed asymmetric reactions, see: List, B. Tetrahedron 2002, 58, 5573.
(a) List, B. J. Am. Chem. Soc. 2002, 125, 5656; (b) Oelke, A. J.; Kumarn, S.; Longbottom, D. A.; Ley, S. V. Synlett 2006, 2548; (c) Chowdari, N. S.; Ramachary, D. B.; Barbas, C. F. III Org. Lett. 2003, 5, 1685; (d) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44, 8293; (e) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem., Int. Ed. 2003, 43, 1112; (f) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808; (g) Cordova, A.; Sunden, H.; Bøgevig, A.; Johansson, M.; Himo, F. Chem. Eur. J. 2004, 10, 3673; (h) Chowdari, N. S.; Ramachary, D. B.; Barbas, C. F. III Org. Lett. 2003, 5, 1685; (i) Devalankar, D.; Chouthaiwale, P. V.; Sudalai, A. Tetrahedron: Asymmetry, 2012, 23, 240; (j) Zhao, G. -L.; Liao, W, W.; Cordova, A. Tetrahedron Lett 2006, 47, 4929; (k) Liao, W. -W.; Ibrahem I.; Cordova A. Chem.

Commun. 2006, 674; (l) Zhong, G.; Yu, Y. Org. Lett. 2004, 6, 1637; (m) Zhong, G. Chem. Commun. 2004, 606; (n) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247.
27 (a) Kotkar, S. P.; Chavan, V. B.; Sudalai, A. Org. Lett. 2007, 9, 1001; (b) Kumar, B. S.; Venkataramasubramanian, V.; Sudalai, A. Org. Lett. 2012, 14, 2468.
28 Jankovic, J. J. Neurol. Neurosurg. Psychiatr. 2008, 79, 368.
29 Moon, M. W.; Morris, J.K. Heier, R. F.; Chidester, C.G.; Hoffmann, W. E.; Piercey, M. F.; Althaus, J.S.; VonVoigtlander, P.F.; Evans, D. L. Figur, L. M. Lahtis R. A. J. Med. Chem. 1992, 35, 1076.

30 Santangelo, F.; Casagrande, C.; Miragoli, G.; Vecchietti, V. Eur. J. Med. Chem. 1994, 29, 877-882.
31 A. G. Romero, W. H. Darlington, M. W. McMillan; J. Org. Chem. 1997, 62, 6582.
32 Jagdale, A. R.; Reddy, R. S.; Sudalai, A. Tetrahedron: Asymmetry, 2009, 20, 335.
33 Gerard, L. J.; Mace, F.; Ngo, A. N.; Pauvert, M.; Dentel, H.; Evain, M.; Collect, S.; Guingant, A. Eur. J. Chem. 2012, 4240 and references cited therein.

Chapter IV

Pd-catalyzed $\mathcal{H} y d r o s i f y l a t i o n ~ o f ~ A r y l \mathcal{A d d e h y d e s ~ a n d ~ C h e m o s e l e c t i v e ~}$ Reduction of ary $[\alpha, \beta$-Unsaturated Carbonyls

"Palladium-Catalyzed Hydrosilylation of Aryl ketones and Aldehyde" Pandurang V. Chouthaiwale, Varun Rawat, Gurunath Suryavanshi, Arumugam Sudalai Tetrahedron Letters 2012, 53, 148.

Section I

Pd-catalyzed hydrosilylation of aryl aldehydes with triethylsilane

4.1.1 Introduction

Reduction of carbonyl and pseudo-carbonyl functions represents a ubiquitous protocol in organic synthesis. Transition-metal catalysis has been successfully applied to the reduction of olefins, alkynes and many carbonyl compounds via hydrogenation or hydrosilylation. ${ }^{1}$ Hydrogenation reactions often proceed in good yields but only under high pressure or elevated temperature. In contrast, since the first report of metal-catalyzed hydrosilylation of ketones in the presence of Wilkinson's catalyst, ${ }^{2}$ smooth reaction conditions have been devised and in consequence over-reduced products are rarely detected. Recently, hydrosilylation reactions using various metals such as $\mathrm{Zn}, \mathrm{Fe}, \mathrm{Rh}, \mathrm{Cu}$, Re, etc have been reported. Furthermore, asymmetric hydrosilylations with high enantioselectivities have also been well-documented. ${ }^{3}$ In industry, hydrosilylation has become an appropriate method to produce organosilicon compounds, in particular with respect to the functionalization of polymers. ${ }^{4}$ A general sequence involving hydrosilylation of carbonyl compounds followed by hydrolysis leads to the formation of alcohols, but the silyl group may also be retained as a protecting group, a process that can be of great interest in organic synthesis. ${ }^{5}$ Moreover, a great majority of hydrosilanes employed in this reaction are easy to handle and are economical.

4.1.2 Review of Literature

In literature a wide variety of catalytic systems in combination with different hydrosilanes have been employed to selective reduction of carbonyl functional groups attached to aliphatic and aromatic structures. The discovery of more active catalysts and
its asymmetric version has made this process more popular. Some of the recent developments on this reaction are discussed below.

Ojima's approach (1972) ${ }^{6}$

Ojima et al. have reported hydrosilylation of aldehydes and ketones $\mathbf{1}$ with various hydrosilane and rhodium(I) complex to give silyl ethers 2 in very high yields (Scheme 1). In case of α, β-unsaturated ketones and aldehydes the corresponding saturated silyl ether derivatives were obtained in fairly high yields.

Scheme 1: (i) hydrosilane, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(1 \mathrm{~mol}$ \%), n-hexane, $25^{\circ} \mathrm{C}$, 93-98\%.

Pregosin's approach (1988) ${ }^{7}$

In this approach, the catalyst $\mathrm{PtCl}_{2}\left(\mathrm{PhCH}=\mathrm{CH}_{2}\right)_{2}$ was shown to catalyze the hydrosilylation of various methyl ketones $\mathbf{3}$ with dichloromethylsilane in the presence of pyridine or aniline as co-catalyst to give silyl ethers 4 in 51-98\% yield (Scheme 2). The authors have observed that the completion of this reaction required more than 24 h .

Scheme 2: (i) $\mathrm{PtCl}_{2}\left(\mathrm{PhCH}=\mathrm{CH}_{2}\right)\left(\mathrm{PhNH}_{2}\right)$, $\mathrm{MeCl}_{2} \mathrm{SiH}, 2{ }^{\circ} \mathrm{C}, 24-41 \mathrm{~h}, 51-98 \%$.

Samuel's approach (1999) ${ }^{8}$

Samuel et al. have reported bis (benzene) chromium as a pre-catalyst for the hydrosilylation of α-aryl carbonyl compounds to give the corresponding silyl ethers in 39-50\% yield (Scheme 3).

Scheme 3: (i) Bis(benzene)chromium (0.06 mmol), $\mathrm{Me}_{2} \mathrm{OEtSiH}, \mathrm{PhH}, 45^{\circ} \mathrm{C}, 3 \mathrm{~h}, 39-50 \%$.

Lee's approach (2002) ${ }^{9}$

Lee et al. have described a catalytic method for the synthesis of silyl ether $\mathbf{8}$ using Grubbs' $I^{\text {st }}$ generation catalyst $\left(\mathrm{Cl}_{2}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}\right)$. Silyl ether $\mathbf{8}$ is thus obtained from the reaction of a variety of silanes by the hydrosilylation of carbonyl compound 7 under neat conditions (Scheme 4).

Scheme 4: (i) $\mathrm{Cl}_{2}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}(0.5$ $\mathrm{mol} \%$), $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$, neat, $50-80{ }^{\circ} \mathrm{C}$, 80%.

Dioumaev's approach (2003) ${ }^{10}$

Dioumaev et al. have reported tungsten and molybdenum N -heterocyclic carbene complexes $\mathbf{1 1}$ for the hydrosilylation of carbonyl compounds $\mathbf{9}$ under mild condition accompanied by precipitation of catalysts at the end of reaction. The reaction exhibits
good rates, high conversion and excellent selectivity for hydrosilylation (Scheme 5).

Scheme 5: (i) ketone, cat, 11 ($0.2 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$, neat, $23{ }^{\circ} \mathrm{C}$, 77-98\%.

Lipshutz's approach (2003) ${ }^{11}$

Lipshutz et al. have developed a simple protocol for the single-flask conversion of dialkyl ketones $\mathbf{1 2}$ to the corresponding TES or TBS ethers $\mathbf{1 3}$ based on in situ generated catalyst i.e. hydrido copper complex (Scheme 6).

Scheme 6: (i) CuCl ($0.5 \mathrm{~mol} \%$), NaOMe , DM-SEGPHOS, (1 $\mathrm{mol} \%), \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 95 \%$.

Yun's approach (2004) ${ }^{12}$

Yun et al. have used air and moisture stable copper(II) salts to catalyze the hydrosilylation of aromatic ketones 15. The combination of catalytic amounts of copper(II) acetate or copper(II) acetate monohydrate and BINAP in the presence of organosilanes as the stoichiometric reducing agent generates an active catalyst for the asymmetric hydrosilylation of ketones (Scheme 7).

Scheme 7: (i) (i) $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.3 mol\%), (S)-BINAP (1.3 mol \%), PMHS, toluene, $0^{\circ} \mathrm{C}$; (ii) TBAF work up, 8196\%.

Gade's approach (2004) ${ }^{13}$

Gade et al. have described Rh-catalyzed asymmetric hydrosilylation of methyl ketones 3 by using chiral N-heterocyclic carbene as a ligand to give the corresponding alcohol $\mathbf{1 7}$ up to 96% ee (Scheme 8).

3

$$
\mathrm{R}=\mathrm{alkyl}, \text { aryl } \quad \text { ee }=53-96 \%
$$

18

Scheme 8: (i) Rh-cat. 18 (1 mol\%), AgBF $_{4}$ (1.2 mol\%), $\mathrm{Ph}_{2} \mathrm{SiH}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-60^{\circ} \mathrm{C}$ then $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, 77-91 \%$.

Andrus's approach (2005) ${ }^{14}$

Andrus et al. have reported new chiral bis-paracyclophane N-heterocyclic carbene (NHC) ligands for ruthenium catalyzed asymmetric hydrosilylation of ketones 19 using diphenyl silane to give enantioenriched alcohols 20. These ligands provide for efficient asymmetric reduction in the presence of silver(I) triflate ($1 \mathrm{~mol} \%$) at room temperature with high reactivity and selectivity. Acetophenone was reduced with $1 \mathrm{~mol} \%$ catalyst in 96\% isolated yield, 97\% ee (Scheme 9).

Scheme 9: (i) $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ ($0.5 \mathrm{~mol} \%$), ligand-21 (1.2 mol \%), $\mathrm{AgBF}_{4}, \mathrm{Ph}_{2} \mathrm{SiH}_{2}$, THF, $25{ }^{\circ} \mathrm{C}$ then $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, 81-98 \%$

Beller's approach (2008) ${ }^{15}$

Beller et al. have reported Fe-catalyzed enantioselective hydrosilylation of ketones 22 with various phosphine ligands. Good to excellent enantioselectivities were obtained for electronically rich and sterically hindered aryl ketones. For example, diaryl and dialkyl ketones were converted into the corresponding alcohols 23 in good to excellent enantioselectivities (up to 99\% ee) (Scheme 10).

Scheme 10: (i) $\mathrm{Fe}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$), chiral phosphenes (10 mol \%), PMHS, THF, 25-100 ${ }^{\circ} \mathrm{C}$. then $\mathrm{NaOH}, \mathrm{MeOH}, 45-$ 99\%.

Berke's approach (2009) ${ }^{16}$

Berke et al. have reported the easily available $\left[\operatorname{Re}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{Br}_{2}(\mathrm{NO})\right]$ rhenium (I) complex that catalyzes the homogeneous hydrosilylation of a great variety of organic carbonyl compounds (ketones and aldehydes). Various aliphatic and aromatic silanes were tested as hydride source. Excellent yields were achieved at $85^{\circ} \mathrm{C}$ in chlorobenzene
using triethylsilane. The reaction proceeded with TOF values of up to $495 \mathrm{~h}^{-1}$ (Scheme
11).

Scheme 11: (i) $\left[\mathrm{Re}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{Br}_{2}(\mathrm{NO})\right]$ (1 mol\%), $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85{ }^{\circ} \mathrm{C}, 71-99 \%$.

Nishiyama's approach (2009) ${ }^{17}$
Nishiyama et al. have reported zinc acetate as an efficient catalyst for hydrosilylation of ketones and aldehydes in combination with $(\mathrm{EtO})_{2} \mathrm{MeSiH}$ to give the corresponding alcohols in 91-99\% yield (Scheme 12).

Scheme 12: (i) $\mathrm{Zn}(\mathrm{OAc})_{2} \quad$ (5 mol\%), $(\mathrm{EtO})_{2} \mathrm{MeSiH}, \mathrm{THF}, 65{ }^{\circ} \mathrm{C}$ then $\mathrm{H}_{3} \mathrm{O}^{+}, 91-99 \%$.

4.1.3 Present Work

4.1.3.1 Objective

In recent years, considerable progress has been made in hydrosilylation of various organic carbonyl compounds. It has become a major tool of synthetic organic chemistry and organosilicon chemistry, thus providing an efficient and versatile access to new organo silicon compounds. There are many methods available in the literature for hydrosilylation of carbonyl compounds using a variety of metal catalysts and hydrosilanes. Moreover, metals such as palladium have not been studied extensively for
the hydrosilylation of aldehydes. ${ }^{18}$ In this section, we describe an efficient and selective method for the hydrosilylation of various aryl aldehydes catalyzed by palladium using triethylsilane as the hydride source.

4.1.3.2 Results and Discussion

It has been reported in the literature that the reaction of aryl carbonyl compounds with PdCl_{2} as catalyst and triethylsilane in ethanol led to the formation of reduction product namely alkyl arenes. ${ }^{19}$ We found however, that when the same reaction was carried out on benzaldehyde 28a in the presence of PdCl_{2} as catalyst using DMF as solvent, it took a different course to give the triethylsilyl protected alcohol 29a in good yield (Scheme 13).

Scheme 13: (i) benzaldehyde (1 equiv), PdCl_{2} (0.5 $\mathrm{mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (1.2 equiv.), DMF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$

In order to study this catalytic reaction in a systematic manner, several Pd-catalysts have been screened with benzaldehyde 28a as a model substrate and the results of such a study are shown in Table 1.

Table 1: Pd-catalyzed hydrosilylation of benzaldehyde 28a: effect of catalysts ${ }^{\text {a }}$

Entry	Catalyst	Yield of 29a (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	93
2	PdCl_{2}	78
3	$\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$	80
4	${\mathrm{Pd}(\mathrm{dba})_{2}}^{\mathrm{Pd}_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}}$	60
5	Sulfimine palladacycle (30)	76
6	Saccharine complex (31)	78
7	$10 \% \mathrm{Pd} / \mathrm{C}$	67
8		82

```
Reaction conditions: 'benzaldeyhde (1 mmol), Pd-catalyst (0.5 mol%), \(\mathrm{Et}_{3} \mathrm{SiH}(1.2 \mathrm{mmol}), \mathrm{DMF}(2 \mathrm{ml}), 25^{\circ} \mathrm{C}, 1 \mathrm{~h}\).
```

All the palladium catalysts screened gave excellent yields of hydrosilylated product 29a. The maximum yield of silyl ether was obtained with $\operatorname{Pd}(\mathrm{OAc})_{2}(93 \%)$, whereas $\operatorname{Pd}(\mathrm{dba})_{2}$ (60\%) gave the lowest yield. Sulfilimine palladacycle ${ }^{20} 30$ and water soluble palladium saccharine compex ${ }^{21} 31$ (Fig. 1) also gave good yields of silyl ether 29a.

30

31

Figure 1: Structures of palladium catalysts 30 and 31
The results from Table 2 have shown that out of a variety of solvents screened, DMF was found to be more suitable for Pd-catalyzed hydrosilylation of benzaldehyde. However, when DMF-water (4: 1) or water was employed as solvent, ${ }^{22}$ the corresponding benzyl alcohol was obtained as the only product in good yields.

Table 2: $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed hydrosilylation of benzaldehyde
28a: effect of solvents ${ }^{\text {a }}$

Entry	Solvent	Time (h)	Yield of 29a (\%) ${ }^{\mathbf{b}}$
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	0
2	$\mathrm{CH}_{3} \mathrm{CN}$	6	60
3	toluene	20	0
4	water	6	40^{c}
5	DMF- water (4:1)	1	75^{c}
6	DMF	1	93
7	DMF	20^{d}	0
8	DMF	20^{e}	0

Reaction condition: ${ }^{\text {ab }}$ benzaldehyde (1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($0.5 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (1.2 mmol), solvent (2 ml), $25^{\circ} \mathrm{C}$, 1 h ; ${ }^{\text {b }}$ isolated yield; ${ }^{\mathrm{c}}$ benzyl alcohol was obtained; ${ }^{\mathrm{d}}$ PMHS is used as as hydride source; ${ }^{\mathrm{e}}$ diphenyl silane is used.

When other hydrosilanes such as $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$, PMHS etc were used as a hydride source with

DMF as solvent, we observed that the reaction failed to give any product.
In order to understand the scope and generality of the reaction, a wide range of functionalized aromatic aldehydes including indole-3-carboxaldehyde $\mathbf{2 8 1}$ were subjected to the optimized conditions. Indeed, this protocol gave excellent yields of the respective hydrosilylated products (Table 3). The method has shown high tolerance for other sensitive functional groups such as ester, fluoro, hydroxyl, amine, imine, olefin and alkyne present either on aromatic nucleus or aliphatic system. In case of chloro substituted aryl aldehydes, the corresponding dehaloganated silyl ether was obtained in 51-54\% yield along with 10% of dechlorinated benzaldehyde (entry f). For bromobenzaldehydes, the exclusive product obtained was the debrominated benzaldehyde (entry g). On the other hand, p-fluorobenzaldehyde underwent the reaction smoothly to give the corresponding hydrosilylated product without the fluoro group being affected (entry h).

Table 3: $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed hydrosilylation of aryl aldehydes ${ }^{\text {a }}$

Entry	Substrates (28)	Product (29)	Yield (\%)
a	benzaldehyde	benzyloxytriethylsilane	93
b	4-methylbenzaldehyde	4-methylbenzyloxy- triethylsilane	
c	4-methoxy- benzaldehyde	4-methoxybenzyloxy- triethylsilane	93

d 4-(methylthio)-
benzaldehyde
e 3,4-(methylenedioxy)benzaldehyde
f
2-, 3- or 4-chlorobenzaldehyde
g 2- , 3- or 4-bromo- benzaldehyde benzaldehyde
h 4-fluorobenzaldehyde 4-fluorobenzyloxytriethylsilane
i 4-(trifluoromethyl)benzaldehyde
j methyl 2-formyl 3,5dimethoxybenzoate
k 4-hydroxy-3-methoxybenzaldehyde
l indole-3-carboxaldehyde
3-(((triethylsilyl)oxy)-methyl)-indole
methyl 3-(4-(((triethylsilyl)-
86 oxy)methyl)phenyl)acrylate
n methyl 3-(4-formylphenyl)propanoate methyl 3-(4-(((triethylsilyl)oxy) 85 methyl)phenyl)propanoate

Reaction condition: ${ }^{\text {a aryl aldehyde (} 1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{SiH}(1.2 \mathrm{mmol}) \text {, dry DMF (} 2 ~}$ ml), $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ${ }^{\mathrm{b}}$ isolated yield ${ }^{\mathrm{c}} \sim 10 \%$ of the corresponding unsubstituted benzaldehyde was obtained.

However, the reaction failed in the case of aliphatic aldehydes, which is a limitation of this protocol. This catalytic system can be unique in selectively hydrosilylating aromatic aldehydes in presence of aliphatic aldehydes. This has been demonstrated by carrying out the competitive experiments involving 1:1 molar equivalents of aliphatic ketones / aldehydes and aromatic ketones / aldehydes, results of which are presented in Table 4. As can be seen from Table 4, acetylene and imine groups were not affected in the presence of aromatic aldehyde.

Table 4: $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed hydrosilylation of carbonyl compounds: competitive experiments ${ }^{\text {a }}$

Entry	Substrates	Product	Yield (\%) ${ }^{\text {b }}$
a	$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}+\mathrm{PhCOCH}_{3}$	$\mathrm{PhCH}\left(\mathrm{OSiEt}_{3}\right) \mathrm{CH}_{3}$	96
b	$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}+\mathrm{PhCHO}$	$\mathrm{PhCH}_{2} \mathrm{OSiEt}_{3}$	91
c	$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}+\mathrm{PhCOCH}_{3}$	$\mathrm{PhCH}\left(\mathrm{OSiEt}_{3}\right) \mathrm{CH}_{3}$	94
d	$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{PhCHO}$	$\mathrm{PhCH}_{2} \mathrm{OSiEt}_{3}$	88
e	$\mathrm{PhCHO}+\mathrm{PhCOCH}_{3}$	$\mathrm{PhCH}_{2} \mathrm{OSiEt}_{3}$	84
f	$4-\mathrm{CF}_{3} \mathrm{PhCHO}+4-\mathrm{CH}_{3} \mathrm{PhCHO}$	4- $\mathrm{CF}_{3} \mathrm{PhCH}_{2} \mathrm{OSiEt}_{3}+$ $4-\mathrm{CH}_{3} \mathrm{PhCH}_{2} \mathrm{OSiEt}_{3}$	$\begin{gathered} 90 \\ (2.5: 1) \end{gathered}$
g	$\mathrm{Ph}=+\mathrm{PhCHO}$	$\mathrm{PhCH}_{2} \mathrm{OSiEt}_{3}$	91
h	$\mathrm{Ph} \overbrace{\mathrm{N}}$ - $\mathrm{PMP}+\mathrm{Ph}-\mathrm{CHO}$	$\mathrm{PhCH}_{2} \mathrm{OSiEt}_{3}$	83
Reaction mol\%),	condition: ${ }^{\text {a }}$ 1:1 molar equivalents $\mathrm{t}_{3} \mathrm{SiH}(6 \mathrm{mmol})$, dry DMF (10 ml), 25	substrates (5 mmol each) , 1 h ; ${ }^{\text {b }}$ isolated yield	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5$

A noteworthy feature of this protocol is that when reaction was carried out in DMF-water (4:1) solvent system, the corresponding benzylic alcohols 32a-c were produced in high yields (Table 5). Thus, both hydrosilylation and deprotection of the silyl ether were achieved in a single step by using a simple modification of the solvent system.

Table 5: $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed hydrosilylation using DMF: $\mathrm{H}_{2} \mathrm{O}$ as solvent system. ${ }^{\text {a }}$

Entry	Substrate	Product (32)	Yield (\%)	
		Pd(OAc) ${ }_{2}$	Saccharine- Pd complex	
b	benzaldehyde	benzyl alcohol	87	76
c	4-methoxy- benzaldehyde	4-methoxy- benzyl alcohol	90	75
	3,4- (methylenedioxy)- benzaldehyde	(methylenedioxy)- benzyl alcohol	90	77

Reaction condition: ${ }^{\text {a }}$ aromatic aldehydes (1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed ($0.5 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (1.2 mmol), DMF: water ($1.5: 0.5 \mathrm{ml}$), $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; isolated yield.

The formation of silyl ethers 29a-n was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectroscopy. Example 1: The ${ }^{1} \mathrm{H}$ NMR spectrum of 29b showed signal at $\delta 4.68$ (s) for methylene (Ph- $\mathbf{C H}_{2}$-OSi) protons. Its ${ }^{13} \mathrm{C}$-NMR spectrum showed a typical signal at $\delta 64.65$ due to carbon attached to silyloxy group (Figure 2).

Figure 2: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ and DEPT NMR spectra of 29b
Example 2: The ${ }^{1} \mathrm{H}$ NMR spectrum of hydrosilylation reaction of a mixture containing p methyl benzaldehyde and p-trifluromethyl benzaldehyde (1:1) displayed signals at $\delta 4.68$ (s) and 4.77 (s) for methylene ($\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{OSi}$) protons. Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed typical carbon signals at $\delta 64.6$ and 64.0 due to carbon attached to silyloxy group

(Figure 3).

Example 3: The ${ }^{1} \mathrm{H}$ NMR spectrum of 32c showed a typical singlet at $\delta 4.55$ for benzylic ($\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{OH}$) protons. Its ${ }^{13} \mathrm{C}$-NMR spectrum showed a typical signal at $\delta 64.74$ due to carbon attached to hydroxy group (Figure 4).

Figure 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra $\mathbf{3 2 c}$

4.1.3.3 Mechanism

The catalytic cycle for the oxidative process is shown in Scheme 14. The first step corresponds to the reaction of palladium acetate with $\mathrm{Et}_{3} \mathrm{SiH}$ leading to the formation of active metallic $\operatorname{Pd}(0)$ entity in the catalyzed reaction. ${ }^{23}$ Oxidative addition of $\mathrm{Et}_{3} \mathrm{SiH}$ to $\operatorname{Pd}(0)$ leads to the formation of $\mathrm{Et}_{3} \mathrm{SiPdH}$ complex, which is co-ordinating with aryl aldehyde. Then hydride transfer to aryl aldehyde followed by reductive elimination generates the desired silylated product with liberation of $\operatorname{Pd}(0)$.

$$
2 \mathrm{Et}_{3} \mathrm{SiH}+\mathrm{Pd}(\mathrm{OAC})_{2}
$$

$$
\downarrow \quad 2 \mathrm{Et}_{3} \mathrm{Si}(\mathrm{OAC})+\mathrm{H}_{2}
$$

Scheme 14: Proposed mechanism for Pd-catalyzed hydrosilylation of aryl aldehyde

4.1.4 Conclusion

In conclusion, we have demonstrated, for the first time, that Pd is a highly effective catalyst for selective hydrosilylation of aryl aldehydes in DMF at room temperature using triethylsilane as a hydride source. Also we found that benzyl alcohol was obtained in excellent yields, when reaction was performed in DMF: $\mathrm{H}_{2} \mathrm{O}(4: 1)$ as solvent system in a single step.

4.1.5 Experimental Section

General experimental procedure for the hydrosilylation of aromatic aldehydes

To a 10 mL two-neck round-bottomed flask with a magnetic stir bar was added palladium catalyst ($0.5 \mathrm{~mol} \%$) in DMF (2.0 mL). To this was added aromatic aldehyde 28a-n (1.0 mmol) followed by triethylsilane (1.2 mmol). The resulting solution was stirred for 1 h . After completion of the reaction, it was subsequently loaded directly onto the column (silica gel 60-120 mesh) for purification using petroleum ether as eluent to afford pure 29a-n.

Benzyloxytriethylsilane (29a)

Yield: 93\% (207 mg); colorless liquid; IR $\left(\mathrm{CHCl}_{3}\right)$: $\mathrm{v}_{\max } 1256$, 1335, 1445, 1517, $2898 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.58$ (q, $J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 7.20-$
7.32 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.5,6.8,64.7,126.1,126.9,128.2,141.2$;

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{OSi}$ requires C, 70.21; H, 9.97; found C, 70.19 ; H, 10.1\%.

4-Methylbenzyloxytriethylsilane (29b)

Yield: 93\% (220 mg); colorless liquid; IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\text {max }}$ 1315, 1415, 1432, 2997, $3109 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.57(\mathrm{q}, ~ J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.97(\mathrm{t}, J=8.2 \mathrm{~Hz}, 9 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H})$, 7.09-7.22 (m, 4H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 4.6,6.9,21.2,64.6,126.3,128.9$, 136.4, 138.3; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi}$ requires C, 71.12; H, 10.23; found C, 71.18 ; H , 10.35\%.

4-Methoxybenzyloxytriethylsilane (29c)

Yield: $96 \%(242 \mathrm{mg})$; colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}$ 1245, 1365, 1414, $1624 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.57(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=8.2 \mathrm{~Hz}, 9 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H})$,
$6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 4.4$, 6.7, 54.9, 64.3, 113.5, 127.5, 133.3, 158.6; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$ Si requires C , 66.61; H, 9.58; found C, 66.53; H, 9.60\%.

4-(Methylthio)benzyloxytriethylsilane (29d)

Mes

Yield: 75% (201 mg); colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}$ 1113, 1238, 1424, $2876 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.61(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.5,6.8,16.2$, 64.3, 126.8, 128.0, 136.7, 136.8; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSSi}$ requires C, 62.63; H, 9.01; found C, 62.61; H, 9.09\%.

3,4-(Methylenedioxy)benzyloxytriethylsilane (29e)

Yield: 96% (255 mg); colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $v_{\text {max }}$ 1213, 1465, 1514, $1123 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $0.61(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=8.3 \mathrm{~Hz}, 9 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.4,6.7,64.5,100.6,107.1$, 107.8, 119.3, 135.2, 146.4, 147.5; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}$ requires C, 63.12; H, 8.32; O; found C, 63.38; H, 8.40\%.

4-(Trifluoromethyl)benzyloxytriethylsilane (29i)

Yield: 90% (261 mg); colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $v_{\text {max }}$ 1375, 1609, 2908, $3091 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.68(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=8.3 \mathrm{~Hz}, 9 \mathrm{H}), 4.78(\mathrm{~s}$,
$2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 4.5, 6.7, 64.0, 125.1, 125.22, 125.24, 126.0, 145.5; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{OSi}$ requires

C, 57.90; H, 7.29; found C, 58.10; H, 7.35\%.
Methyl 3,5-dimethoxy-2-((triethylsilyloxy)methyl)benzoate (29j)

Yield: 92\% (313 mg); colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $\mathrm{v}_{\text {max }}$ 1234, 1514, 1564, 1724, $2997 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.59(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=8.2 \mathrm{~Hz}$, 9H), 3.81 (s, 6H), 3.87 (s, 3H), 4.89 (s, 2H), 6.53 (d, $J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.4,6.7,52.0$, 55.3, 55.4, 55.7, 101.4, 105.1, 122.2, 133.6, 158.6, 159.5, 168.8; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}$ Si requires C, 59.97 ; $\mathrm{H}, 8.29$; found C, $59.87 ; \mathrm{H}, 8.26 \%$.

4-Hydroxy-3-methoxy benzyloxytriethylsilane (29k)

Yield: 81\% (217 mg); colorless liquid; IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}$ 1345, 1514, 2897, $3340 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.53(\mathrm{q}, J=8.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=8.2 \mathrm{~Hz}, 9 \mathrm{H}), 3.89(\mathrm{~s}$, 3H), 4.64 (s, 2H), 5.56 (br s, 1H), 6.74-6.88 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.7$, 6.6, 55.6, 64.7, 109.3, 114.2, 119.3, 133.1, 144.7, 146.5; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}$ requires C, 62.64; H, 9.01; found C, 62.58; H, 8.97\%.

3-(((Triethylsilyl)oxy)methyl)-indole (291)

Yield: 87\% (227 mg); colorless liquid; IR (CHCl_{3}): $\mathrm{v}_{\max } 1345$, 1387, 1514, $3332 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.58$ (q, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.93$ (t, $J=8.2 \mathrm{~Hz}, 9 \mathrm{H}$), 4.92 (s, 2H), 7.0-
$7.44(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=7.4,1 \mathrm{H}), 8.19$ (brs, 1 H$) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.4,6.8,57.6,111.0,116.1,119.1,119.3,121.9,122.2,126.5,136.4 ;$

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NOSi}$ requires C, 68.91; H, 8.87; N, 5.36; found C, 68.87; H, 8.94; N, 5.42\%.

Methyl 3-(4-(((triethylsilyl)oxy)methyl)phenyl)acrylate (29m)

Yield: 86\% (263 mg); colorless liquid; IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\text {max }} 987,1345,1469,1517,1714 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.56$ (q, $\left.J=7.9 \mathrm{~Hz}, 6 \mathrm{H}\right), 0.93$
(t, $J=8.2 \mathrm{~Hz}, 9 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 4.5,6.7,64.2,64.5,117.1,126.4,128.0,133.1,143.9,144.8,167.4$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 66.62$; $\mathrm{H}, 8.55$; found $\mathrm{C}, 66.56$; $\mathrm{H}, 8.45 \%$.

Methyl 3-(4-(((triethylsilyl)oxy)methyl)phenyl)propanoate (29n)

Yield: 85\% (262 mg); colorless liquid; IR (CHCl_{3}): $v_{\max } 987,1129,1394,1481,1722 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.53(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.93$
(t, $J=8.2 \mathrm{~Hz}, 9 \mathrm{H}), 2.57(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.68$ (s, 2H), 7.16 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 4.4, 6.7, 30.5, 35.7, 51.4, 64.4, 126.4, 128.0, 139.0, 139.1, 173.1; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3}$ Si requires C, 66.19; H, 9.15; found C, $66.21 ; \mathrm{H}, 9.20 \%$.

General experimental procedure for the hydrosilylation of aryl aldehyde in DMFwater:

To a 10 mL two-neck round-bottomed flask with a magnetic stir bar was added palladium catalyst ($0.5 \mathrm{~mol} \%$) in DMF: water (1.5: 0.5 mL). To this was added aryl aldehyde (1.0 mmol) followed by triethylsilane (1.2 mmol). The resulting solution was stirred for 2 h . It was subsequently quenched with water, extracted with EtOAc ($3 x 10 \mathrm{~mL}$) and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated under reduced pressure to give the crude product, which was purified by column chromatography (petroleum ether/EtOAc as eluent) to afford the pure alcohols 32a-c.

Benzyl alcohol 32a

Yield: 87\% (94 mg); colorless liquid; IR (CHCl_{3}): $v_{\text {max }} 1229,1354$, 1456, 2908, $3398 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.78 (br s, $1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 7.31-7.42(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 65.0,126.9,127.4$, 128.4, 140.8; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ requires $\mathrm{C}, 77.75$; $\mathrm{H}, 7.46$; found $\mathrm{C}, 77.77$; H , 7.49\%.
p-Methoxybenzyl alcohol 32b

Yield: $90 \%(124 \mathrm{mg})$; colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 1116$, 1254, 1459, 2967, $3378 \mathrm{~cm}^{-1}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.82$ (br s, 1H), 3.79 (s, 3H), 4.57 (s, 2H), 6.84 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 55.1, 64.5, 113.7, 128.5, 133.1, 158.9; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ requires C, 69.54; H, 7.30; found C, 69.34; $\mathrm{H}, 7.38 \%$.

3,4-(methylenedioxy)benzyl alcohol 32c

Yield: $90 \%(137 \mathrm{mg})$; yellow solid; m.p. $52-54{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 1226,1323,1489,2887,3405 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz , CDCl_{3}): $\delta 1.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}$
(50 MHz, CDCl_{3}): $\delta 64.7,100.8,107.7,108.0,120.3,134.8,146.8,147.6$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$ requires C, 63.15; $\mathrm{H}, 5.30$; found C, 63.14 ; $\mathrm{H}, 5.34 \%$.

Section II

Pd-catalyzed chemoselective reduction of aryl α, β-unsaturated carbonyls with triethylsilane

4.2.1 Introduction

Transition-metal catalyzed hydrogenation methods have been successfully applied to a number of chemical transformation of functional groups. ${ }^{24}$ Chemoselective hydrogenation amomg some reducible functionalities has been one of the most desirable transformation in the field of synthetic chemistry. Although Pd/C is known as the most universal catalyst for hydrogenation and its reaction often proceed in good yields but the use of high pressure or elevated temperature along with the poor selectivity due to its efficient catalytic activity makes this approach highly undesirable. ${ }^{25}$ In contrast, several other metal-catalyzed reductions with smooth reaction conditions have been devised for the chemoselective reduction of aromatic α, β-unsaturated carbonyls. Most of the procedures reported for the selective reduction of activated (conjugated) olefins involve a pyrophoric hydride source or an expensive catalyst. The metals and metallic hydrides include metals such as iron, tin, zinc, nickel, copper, sodium, boron and aluminium. The expensive catalytic systems include rhodium, molybdenum, cobalt and platinum. However, the highly hydridic nature of most of these metals (primarily sodium, boron and aluminium and their metal hydrides, but also the platinum or rhodium catalysts (used for hydrogenation) limits their usefulness when high chemoselectivity is required. Despite the fact that a plethora of reducing reagents is available for this operation, new reagents, especially the catalytic chemoselective versions, are still highly desirable.

4.2.2 Review of Literature

In literature a wide variety of catalytic systems are known for selective reduction of α, β -
unsaturated carbonyl functional groups attached to aliphatic and aromatic structures. The discovery of more active catalysts and its asymmetric version has made this process more popular. Since a number of monograms and reviews are available in literature ${ }^{26}$ only the latest developments will be presented below.

Magnus's approach (2000) ${ }^{27}$
Magnus et al. have reported the synthesis of various saturated ketones from a variety of α, β-unsaturated ketones, by treatment with 2 equiv. of PhSiH_{3} in the presence of $\mathrm{Mn}(\mathrm{dpm})_{3}$ (3 mol\%) as catalyst in isopropyl alcohol as solvent. The saturated ketones were obtained in moderate to good yields (Scheme 15).

Scheme 15: (i) $\mathrm{Mn}(\mathrm{dpm})_{3}(3 \mathrm{~mol} \%), \mathrm{PhSiH}_{3}(2$ equiv), $25^{\circ} \mathrm{C}, 50 \%$.

Buchwald's approach (2003) ${ }^{28}$

In this approach, N -heterocyclic carbene copper chloride ($\mathrm{NHC}-\mathrm{CuCl}$) complex 5 has been prepared and used to catalyze the conjugate $\mathrm{C}=\mathrm{C}$ reduction of α, β-unsaturated carbonyl compounds. The combination of catalytic amounts of 37 and NaOt -Bu with poly(methylhydrosiloxane) (PMHS) as the stoichiometric reductant generates an active catalyst for the 1,4 -reduction of tri- and tetrasubstituted α, β-unsaturated esters and cyclic enones (Scheme 16).

Scheme 16: (i) 37, NaOt-Bu, PMHS (4 equiv), t-BuOH (4 equiv), toluene, $25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 91-97 \%$.

Lover's approach (2004) ${ }^{29}$

Lover et al. have reported that the reagent combination of copper hydride (1 mol\%) ligated by a nonracemic SEGPHOS ligand leads in situ to an extremely reactive species capable of effecting asymmetric hydrosilylations of conjugated cyclic enones in very high enantioselectivity. An unprecedented substrate to-ligand ratio as high as 275 000:1 for this transformation has been reported (Scheme 17).

Scheme 17: (i) 40 (0.1 mol\%), $\mathrm{Ph}_{3} \mathrm{PCuH}$ (1 mol\%), PMHS (2 equiv), benzene, $-78{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 80-90 \%$.

Taft's approach (2004) ${ }^{30}$
Taft et al. have described a new catalytic method for the $\mathrm{C}=\mathrm{C}$ reduction of α, β -
unsaturated esters. The authors have used catalytic amounts of CuH with a nonracemic SEGPHOS ligand, together with stoichiometric PMHS which leads to exceedingly efficient and highly enantioselective 1,4-reductions of β, β-disubstituted enoates and lactones (Scheme 18).

Scheme 18: (i) 37 ($1 \mathrm{~mol} \%$), $\mathrm{Ph}_{3} \mathrm{PCuH}$ (5
$\mathrm{mol} \%$), PMHS (2 equiv), $t-\mathrm{BuOH}$, benzene, 0
${ }^{\circ} \mathrm{C}, 10-20 \mathrm{~h}, 70-85 \%$.

Alonso's approach (2006) ${ }^{31}$

Alonso et al. have developed a catalytic system comprising of nickel(II) chloride, lithium metal and ethanol, which has been efficiently applied to the conjugate reduction of a variety of α, β-unsaturated carbonyl compounds (ketones and carboxylic acid derivatives) under very mild reaction conditions (Scheme 19).

Scheme 19: (i) NiCl_{2} (1 equiv), Li (4 equiv), EtOH (2.2 equiv), THF, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 72-98 \%$.

List's approach (2006) ${ }^{32}$

List et al. have describe an efficient and highly enantioselective conjugate transfer hydrogenation of α, β-unsaturated ketones and aldehydes that is catalyzed by a salt made from tert-butyl valinate and chiral phosphoric acid catalyst (TRIP). This salt 47 can function as highly enantioselective iminium catalysts in the conjugate reduction of α, β -
unsaturated ketones and aldehydes with Hantzsch ester (Scheme 20).

Scheme 20: (i) 47 (20 mol\%), Hantzsch ester, 1,4-dioaxane, $60^{\circ} \mathrm{C}, 48 \mathrm{~h}$, 68-99\%.

Nishiyama's approach (2006) ${ }^{33}$

In this approach, α, β-unsaturated aldehydes were selectively reduced using rhodium(bisoxazolinylphenyl) complexes to give exclusive 1,4-selectivity in the combination of alkoxyhydrosilanes (Scheme 21).

Scheme 21: (i) Rh (Phebox) (1 mol\%), (EtO) ${ }_{2} \mathrm{MeSiH}$ (1.5 equiv), toluene, $60^{\circ} \mathrm{C}$ then TBAF, KF.

Chandrasekhar's approach (2006) ${ }^{34}$

Chandrasekhar et al. have described a highly chemoselective conjugate reduction of electron deficient Michael acceptors, including α, β-unsaturated ketones, carboxylic esters, nitriles and nitro compounds with PMHS as hydride source in the presence of catalytic $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Scheme 22).

Scheme 22: (i) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($0.5 \mathrm{~mol} \%$), PMHS (2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 71-89 \%$.

Baker's approach (2008) ${ }^{35}$

In this approach a new, economically attractive, storable, and yet highly kinetically reactive source of catalytic copper hydride has been developed based on a readily available bisphosphine ligand (BDP). This species, (BDP)CuH, is especially useful in 1,4-reductions of a variety of activated alkenes and alkynes, including hindered substrates (Scheme 23).

Scheme 23: (i) $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{~mol} \%$), BDP ($0.1 \mathrm{~mol} \%$), PMHS (3 equiv), ${ }^{t} \mathrm{BuOH}$ (3 equiv), toluene, $25{ }^{\circ} \mathrm{C}, 19 \mathrm{~h}, 82-96 \%$.

Koskinen's approach (2009) ${ }^{36}$

Koskinen et al. have developed a highly chemoselective non racemizing conjugate reduction of easily epimerizable unsaturated α-aminoketones using triisopropyl phosphite ligated copper hydride as the catalyst. The method shows very good substrate compatibility (Scheme 24).

Scheme 24: (i) $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} \quad(1 \mathrm{~mol} \%), \mathrm{P}(\mathrm{i}-\mathrm{OPr})_{3}$ ($2 \mathrm{~mol} \%$), $\mathrm{Me}(\mathrm{EtO})_{2} \mathrm{SiH}$, toluene, $25^{\circ} \mathrm{C}, 81 \%$.

Zheng's approach (2009) ${ }^{37}$

In this report a series of chiral alkylphosphonates bearing β-stereogenic center were synthesized in good enantioselectivities (up to 95% ee) via the CuH -catalyzed asymmetric conjugate reduction of β-substituted α, β-unsaturated phosphonates under optimal conditions using $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as the catalyst, (R)-SEGPHOS as the ligand, PMHS as the hydride source and t-BuOH as the additive (Scheme 25).

Scheme 25: (i) $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (5 mol\%), (R)SEGPHOS ($6 \mathrm{~mol} \%$), PMHS, t-BuOH, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$ (4/1), $25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 90-95 \%$.

Dengs's approach (2008) ${ }^{38}$

Deng et al. have demonstrated that chemoselectivity can be switched from $\mathrm{C}=\mathrm{O}$ to $\mathrm{C}=\mathrm{C}$ bonds in the transfer hydrogenation of α, β-unsaturated ketones, even in the absence of other electron-withdrawing functional groups, which is catalyzed by the in situ prepared amido-rhodium complex with sodium formate as hydride source in aqueous media. This methodology has been applied to a variety of α, β-unsaturated ketones, where in $93-100 \%$ chemoselectivity has been achieved (Scheme 26).

Scheme 26: (i) $\left[\mathrm{RhCl}_{2} \mathrm{Cp}\right]_{2}, \mathrm{TsEN}, \mathrm{HCO}_{2} \mathrm{Na}$ (1.5 equiv), $\mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$.

4.2.3 Present Work

4.2.3.1 Objective

The hydrogenation of α, β-unsaturated carbonyl compounds is a useful but challenging transformation. As both 1,2- and 1,4-conjugate reductions readily occur, low selectivity for either of the two pathways is common. Further, catalytic hydrogenations of α, β unsaturated carbonyls are possible, yet the chemoselectivity is often found to be low. Further, additional functional groups that are sensitive to hydrogenation conditions such as the benzyloxy, nitro, and nitrile groups are usually not tolerated. Undoubtedly, an ecofriendly, safe and economically viable protocol would be a welcome addition to the repertoire of existing methodologies.

4.2.3.2 Results and Discussion

In the previous section of this chapter we had described a new reagent system $\left[\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{Et}_{3} \mathrm{SiH}-\mathrm{DMF}\right]$ for the chemoselective hydrosilylation of aromatic aldehydes. During the experimentation involving hydrosilylation of aromatic aldehydes, we found that the addition of excess (2 equiv) of $\mathrm{Et}_{3} \mathrm{SiH}$ during the reduction of methyl 3-(4-formylphenyl)acrylate 28m, resulted in the formation of methyl 3-(4-(((triethylsilyl)oxy)methyl)phenyl) propanoate 29m in 20% yield. In this section, we have described a variant of the above mentioned reducing system and its application to the selective conjugate reduction of a variety of aromatic α, β-unsaturated carbonyl compounds. We observed, that when the same reaction was carried out on cinnamaldehyde 60a using DMF as solvent, in the presence of $\operatorname{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{~mol} \%$) as catalyst with $\mathrm{Et}_{3} \mathrm{SiH}$ (1.2 equiv) as hydride source, the desired product, hydrocinnamaldehyde 61a was obtained in good yield (69\%) (Scheme 27).

Scheme 27: (i) cinnamaldehyde (1 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.5 $\mathrm{mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (1.2 equiv), DMF, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 69 \%$

In order to improve the yield, we performed several experiments to identify the most effective and suitable conditions, such as variation of catalyst, solvents etc. In this regard, several Pd-catalysts have been screened with cinnamaldehyde 60a as a model substrate and the results of such a study are shown in Table 6.

Table 6: Pd-catalyzed reduction of cinnamaldehyde 60a: effect of catalysts ${ }^{\text {a }}$

Entry	Catalyst	Yield of 61a (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	69
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	73^{b}
3	PdCl_{2}	56
4	$\mathrm{Pd}\left(\mathrm{PhCN}_{2} \mathrm{Cl}_{2}\right.$	64
5	$\mathrm{Pd}(\mathrm{dba})_{2}$	34
6	$\mathrm{Pd}_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$	20
7	$10 \% \mathrm{Pd} / \mathrm{C}$	67
8	$\operatorname{Pd}[(R, R)-\mathrm{BINAP}] \mathrm{Cl}_{2}$	15^{c}
9	$\operatorname{Pd}[(-)-$ sparteine $](\mathrm{OAc})_{2}$	16^{c}

Reaction conditions: ${ }^{\text {a }}$ cinammaldehyde (1 mmol), Pd-catalyst ($0.5 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}(1.2 \mathrm{mmol})$, DMF (2 ml), $25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ${ }^{\mathrm{b}}$ Pd-catalyst ($1 \mathrm{~mol} \%$); ${ }^{\mathrm{c}}$ no chiral induction with 60b and 601 as starting material.

The maximum yield of 61a was obtained with $1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ (73\%) whereas $\operatorname{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$ (20\%) gave the lowest yield (entry 2 and 6). We also attempted to induce chirality in substrate 60b and 601 with chiral Pd-catalyst (entry 8 and 9) but no asymmetric induction was observed.

Next, the optimization for solvent system and time was done, the results of which are presented in Table 7. During the screening of variety of solvents, it was found that DMF when used with $1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ and 2 equiv. of $\mathrm{Et}_{3} \mathrm{SiH}$ gave the best yield of the saturated product 61a (85\%) in 4 h . When other hydrosilanes such as $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$ was used as a hydride source with DMF as solvent, we observed that the yield of the product was miserably low (27\%).

Table 7: $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed reduction of cinnamaldehyde 60a:
effect of solvents ${ }^{\text {a }}$

Entry	Solvent	Time (h)	Yield of 61a (\%) $^{\mathbf{b}}$
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10	0
2	$\mathrm{CH}_{3} \mathrm{CN}$	5	24
3	Toluene	10	0
6	DMF	1	73
7	DMF	4	74
7	DMF	4	$85^{\text {c }}$
8	DMF	10	$85^{\text {c }}$

Reaction condition: ${ }^{\text {a }}$ cinnamaldehyde (1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($1 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (1.2 mmol), solvent (2 ml), $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$; ${ }^{\mathrm{b}}$ isolated yield; ${ }^{\mathrm{c}} \mathrm{Et}_{3} \mathrm{SiH}(2 \mathrm{mmol})$.

At this point, we reasoned that reduction of aromatic α, β-unsaturated ketone and esters could provide a direct access to saturated carbonyls compounds under the optimized conditions. For example, when reduction of 4-phenylbut-3-en-2-one 60d was carried out in the presence of $\operatorname{Pd}(\mathrm{OAc})_{2}$ ($1 \mathrm{~mol} \%$) as catalyst with $\mathrm{Et}_{3} \mathrm{SiH}$ (2 equiv) as hydride source and DMF as solvent, the desired saturated ketone 61d was obtained in 87% yield. Similarly, when the optimized condition was tested for the reduction of aromatic $\alpha, \beta-$ unsaturated ester 60h, to our delight this protocol gave the saturated ester $\mathbf{6 1 h}$ in
excellent yield (83\%).
In order to understand the generality of the reaction, we turned our attention to briefly investigate the scope of the reaction by subjecting a wide range of functionalized aromatic α, β-unsaturated aldehydes, ketones and esters (Table 8). Indeed, the protocol gave excellent yields of the respective reduced products in moderate to excellent yields. The method has shown high tolerance for other sensitive functional groups such as ester, hydroxyl and ether present either on aromatic nucleus or aliphatic side chain. In case of chloro substituted α, β-unsaturated carbonyl compounds, the corresponding dehaloganated α, β-unsaturated carbonyl compound obtained exclusively in 74\% yield (entry f).

Table 8: Pd-catalyzed reduction of aryl α, β-unsaturated carbonyls ${ }^{\text {a }}$

Entry	Substrates (60)	Product (61)	Yield (\%)
a	cinnamaldehyde	hydrocinnamaldehyde	85
b	(E)-3-phenylbut-2-enal	3-phenylbutanal	78
c	(E)-4,5-dimethoxy-2-(3- oxoprop-1-enyl)benzonitrile	4,5-dimethoxy-2-(3- oxopropyl)benzonitrile	76
d	(E)-4-phenylbut-3-en-2-one	4-phenylbutan-2-one	87
e	(E)-chalcone 1,3-diphenylpropan-1-one	83	
f	(E)-3-(4-chlorophenyl)-1- phenylprop-2-en-1-one	(E)-chalcone	74
h	(2E,4E)-1,5-diphenylpenta-2,4- dien-1-one	1,5-diphenylpentan-1-one	54
i	ethyl cinnamate (E)-ethyl 3-(2-hydroxyphenyl) acrylate	ethyl 3-(2-hydroxyphenyl) propanoate	81

j
k
m
n
o

1 (E)-ethyl 3-phenylbut-2-enoate
(E)-ethyl 3-p-tolylacrylate
(E)-ethyl 3-(4-hydroxy-3methoxyphenyl)acrylate
(E)-ethyl 3-(4-((triethylsilyloxy) methyl)phenyl)acrylate
(E)-3-(benzo[d][1,3]dioxol-5yl)acrylaldehyde
ethyl 3-p-tolylpropanoate 77
ethyl 3-(4-hydroxy-3- 79
methoxyphenyl)propanoate
ethyl 3-phenylbutanoate 83
ethyl 3-(4-((triethylsilyloxy) 89
methyl)phenyl)propanoate
3-(benzo[d][1,3]dioxol-5-
89
yl)propanal
(E)-ethyl hex-2-enoate
no reaction
Reaction condition: ${ }^{\text {a }} \alpha, \beta$-unsaturated carbonyls (1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(1 \mathrm{~mol}^{2}\right), \mathrm{Et}_{3} \mathrm{SiH}(2 \mathrm{mmol})$, dry DMF (2 ml), $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$; ${ }^{\mathrm{b}}$ isolated yield

However, the reaction failed in the case of aliphatic α, β-unsaturated carbonyl compounds (entry o), thus this catalytic system can be unique in selectively reducing aromatic α, β unsaturated carbonyl compounds in preference to aliphatic ones.

The formation of aryl saturated carbonyl compounds 61a-o was confirmed by their IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectral analysis.

Example 1: The formation of reduced product 61c was confirmed by the disappearance of signals corresponding to olefinic functionality from its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Further proof was provided by the appearance of triplets at $\delta 2.81(J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$ and $3.04(J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$ for methylene protons in its ${ }^{1} \mathrm{H}$ NMR spectrum. Its ${ }^{1} \mathrm{H}$ NMR spectrum also showed a signal at $\delta 9.76(\mathrm{~s}, 1 \mathrm{H})$ corresponding to aldehydic proton, while singlets at $\delta 6.77$ and 6.95 were due to aromatic protons. Its ${ }^{13} \mathrm{C}$-NMR spectrum showed a typical signal at $\delta 199.7$ due to carbonyl carbon. The other carbon signals at $\delta 55.9$ and 56.1 were due to methoxyl carbons ($-\mathrm{O}-\mathbf{C H}_{3}$) (Figure 5).

Example 2: The formation of 61d was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum which showed the disappearance of olefinic protons. A singlet at $\delta 2.12(3 \mathrm{H})$ in its ${ }^{1} \mathrm{H}$ NMR spectrum was due to methyl protons. The appearance of a multiplet at $\delta 2.69-2.92$ in its
${ }^{1} \mathrm{H}$ NMR spectrum due to the four methylene protons further confirmed the reduction. Its
${ }^{13} \mathrm{C}$-NMR spectrum showed a typical signal at $\delta 207.2$ due to carbonyl carbon (Figure 6).

Example 3: The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 1 k}$ showed a characteristic singlet at $\delta 3.83$ for methoxyl (-O-CH3) protons. A broad singlet at $\delta 5.76$ in its ${ }^{1} \mathrm{H}$ NMR spectrum assigned to phenolic proton. The appearance of two triplets at $\delta 2.56(J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$ and $2.84(J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}$) further substantiated the formation of reduced product. ${ }^{1 t s}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum showed typical carbon resonances at $\delta 30.6,36.2$ and 60.3 due to methylene carbons (Figure 7).

Figure 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ester of $\mathbf{6 1 k}$

4.2.4 Conclusion

In conclusion, we have demonstrated that $\mathrm{Pd}_{-\mathrm{Et}_{3} \mathrm{SiH}-\mathrm{DMF} \text { is a highly effective catalytic }}^{\text {a }}$ system for the chemoselective $\mathrm{C}=\mathrm{C}$ reduction of aryl α, β-unsaturated carbonyl compounds. While displaying great reactivity, a high level of functional group tolerance was also observed.

4.2.5 Experimental Section

General experimental procedure for the 1,4 -reduction of aryl α, β-unsaturated

 carbonyl To a 10 mL two-neck round-bottomed flask with a magnetic stir bar was added palladium catalyst ($1 \mathrm{~mol} \%$) in DMF (2.0 mL). To this was added aromatic α, β unsaturated carbonyl compound (1.0 mmol) followed by triethylsilane (2 mmol). The resulting solution was stirred for 4 h . After completion of the reaction, it was quenched by the addition of water and the mixture extracted with EtOAc. The organic layer was further washed with brine ($5 \times 10 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated under reduced pressure to give the crude product, which was purified by column chromatography (petroleum ether/EtOAc as eluent) to afford the pure carbonyl compounds 61a-0.
Hydrocinnamaldehyde (61a)

Yield: $85 \%(114 \mathrm{mg})$; colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\max } 1345$, 1465, 1514, $1724 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 2.67-2.81 (m, 2H), 2.91-2.99 (m, 2H), 7.16-7.32 (m, 5H), $9.81(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 28.1,30.6,35.5,45.3,126.3,128.2,128.4,140.2,178.3$, 201.1; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$ requires $\mathrm{C}, 80.56 ; \mathrm{H}, 7.51$; found $\mathrm{C}, 80.63 ; \mathrm{H}, 7.56 \%$.

3-Phenylbutanal (61b)

Yield: $78 \%(116 \mathrm{mg})$; colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 1198$, 1245, 1434, $1721 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.32(\mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.66-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.83(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.40$ (m, 1 H), 7.18-7.23 (m, 3H), 7.28-7.34 (m, 2H), $9.72(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.31,34.39,51.76,126.3,126.5,128.4,145.1,201.3$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 81.04 ; \mathrm{H}, 8.16$; found $\mathrm{C}, 81.09 ; \mathrm{H}, 8.24 \%$.

4,5-Dimethoxy-2-(3-oxopropyl)benzonitrile (61c)

Yield: $76 \%(167 \mathrm{mg})$; gum; IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\text {max }} 998,1019$, 1564, 1723, $2218 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $2.81(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, 3H), 3.87 (s, 3H), $6.77(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 26.4, 44.4, 56.0, 103.1, 112.4, 114.1, 117.9, 138.8, 147.6, 152.6, 199.7; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires C, 65.74; H, 5.98; N, 6.39; found C, 65.80; H, 6.06; N, 6.47\%.

4-Phenylbutan-2-one (61d)

Yield: $87 \%(129 \mathrm{mg})$; colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }} 876$, 985, 1113, 1264, $1727 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): 2.12 (s, 3H), 2.69-2.92 (m, 4H), 7.13-7.25 (m, 5H); ${ }^{13}$ C NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 29.2, 29.4, 44.5, 125.6, 127.8, 128.0, 140.6, 206.7; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 81.04 ; \mathrm{H}, 8.16$; found $\mathrm{C}, 81.09 ; \mathrm{H}, 8.23 \%$.

1,3-Diphenylpropan-1-one (61e)

Yield: 83\% (174 mg); colorless solid; mp 72-75 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right)$:
$v_{\max } 1245,1279,1329,1435,1718 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.08(\mathrm{t}, \mathrm{J}=7.5$ Hz, 2H), 3.32 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 1H), 7.96 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 30.1, 40.4, 126.1, 128.0, 128.4, 128.5, 128.6, 133.0, 136.9, 141.3, 199.2; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}$ requires C, 85.68; H, 6.71; found: C, 85.74; H, 6.66; \%.

1,5-Diphenylpentan-1-one (61g)

Yield: 54\% (129 mg); yellow liquid; IR $\left(\mathrm{CHCl}_{3}\right)$: $\mathrm{v}_{\text {max }}$ 1443, 1523, 1718, $2918 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.68-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.98$ (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{~ N M R ~ (5 0 \mathrm { MHz } ,}$ CDCl_{3}): $\delta 24.1,31.1,35.8,38.4,125.7,125.8,128.0,128.3,128.4,128.5,132.9,137.0$, 142.2, 199.7; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}$ requires $\mathrm{C}, 85.67$; $\mathrm{H}, 7.61$; found $\mathrm{C}, 85.75$; H , 7.67\%.

Ethyl 3-phenylpropanoate (61h)

Yield: 83\% (148 mg); colorless liquid; IR (CHCl_{3}): $v_{\text {max }} 1298$, 1465, 1567, 1623, 1716, $3013 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.05(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.29(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,30.9,35.8,60.1,126.1,128.2,128.3,140.4,172.5 ;$ Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 74.13; H, 7.92; found C, 74.19; H, 7.99\%.

Ethyl 3-(2-hydroxyphenyl)propanoate (61i)

Yield: 81\% (156 mg); colorless liquid; IR (CHCl_{3}): $v_{\text {max }} 1345$, 1474, 1717, 2989, $3356 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.68(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=$ 7.1 Hz, 2H), 6.77-6.84 (m, 2H), 7.02-7.09 (m, 2H), 7.45 (br s, 1H); ${ }^{13}$ C NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 14.1,25.2,34.9,61.1,116.6,120.5,127.1,127.8,130.0,154.4,175.2$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 68.02$; $\mathrm{H}, 7.27$; found $\mathrm{C}, 68.06$; $\mathrm{H}, 7.34 \%$.

Ethyl 3-p-tolylpropanoate (61j)

Yield: $77 \%(148 \mathrm{mg})$; colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}$ 876, 982, 1087, 1123, 1458, $1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.23(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.54$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 14.3,19.2,28.3,34.7,60.3,126.1,126.4,128.5,130.3,135.8$, 138.6, 172.8; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, 74.97; $\mathrm{H}, 8.39$; found $\mathrm{C}, 75.04$; H , 8.49\%.

Ethyl 3-(4-hydroxy-3-methoxyphenyl)propanoate (61k)

Yield: 79\% (177 mg); gum; IR (CHCl_{3}): $v_{\text {max }} 1237,1385$, 1456, 1712, $3412 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.25 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J$
$=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.62-6.81(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 14.1,30.6,36.2,55.6,60.2,110.8,114.4,120.7,132.2$, 144.0, 146.3, 172.7; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, 64.27; $\mathrm{H}, 7.19$; found C , 64.31; H, 7.23\%.

Ethyl 3-phenylbutanoate (611)

Yield: $83 \%(160 \mathrm{mg})$; colorless liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $v_{\text {max }} 1381$, 1654, 1717, $3012 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.16(\mathrm{t}$,
$J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2H), 7.15-7.30 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.2,21.9,36.5,43.0,60.1$, 126.4, 126.7, 128.5, 145.7, 172.1; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.97$; H, 8.39; found C, 74.89; H, 8.41\%.

Methyl 3-(4-(((triethylsilyl)oxy)methyl)phenyl)propanoate (61m)

Yield: 89\% (274 mg); colorless liquid; IR (CHCl_{3}): $v_{\text {max }} 987,1129,1394,1481,1722 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR
(200 MHz, CDCl_{3}): $\delta 0.53(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.93$
(t, $J=8.2 \mathrm{~Hz}, 9 \mathrm{H}), 2.57(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.68$ (s, 2H), 7.16 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=4.4,6.7,30.5,35.7,51.4,64.4,126.4,128.0,139.0,139.1,173.1$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires C, 66.19; H, 9.15; found C, $66.21 ; \mathrm{H}, 9.20 \%$.

Ethyl 3-(benzo[d][1,3]dioxol-5-yl)propanoate (61n)

Yield: $89 \%(198 \mathrm{mg})$; gum; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $v_{\max } 1205,1381$, 1420, $1716 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.24(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2H), $4.10\left(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$), 5.91 (s, 2H), 6.61-6.72 (m, 3H); ${ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 14.2,30.7,36.2,60.3,100.7,108.4,108.8,121.1,134.3,145.9,147.6,172.7 ;$

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C, 64.85; H, 6.35; found C, 64.93; H, 6.38 \%.

4.2.6 References

1 (a) Ojima, I. "The Chemistry of Organic Silicon Compounds", Vol. 2, Patai, S.; Rappoport, Z. Wiley/Interscience, New York, 1989; (b) I. Ojima, Z. Li and J. Zhu, "Recent Advances in the Hydrosilylation Reaction: Chemisty of Organic Silicon Compounds", Vol. 2, Rappoport, Z.; Apeloig, Y.; John Wiley \& Sons, Ltd, New York, 1998.

2 Ojima, I.; Nihonyanagi, M.; Nagai, Y. J. Chem. Soc., Chem. Commun.1972, 938.
(a) Han, J. W.; Tokunaga, N.; Hayashi, T. J. Am. Chem. Soc. 2001, 123, 12915; (b) Jensen, J. F.; Svendsen, B. Y.; Cour, T. V.; Pedersen, H. L.; Johannsen, M. J. Am. Chem. Soc. 2002, 124, 4558; (c) Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Sanchez, F. Angew. Chem. Int. Ed. 2007, 46, 7820; (d) Shaikh, N. S.; Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2008, 47, 2497.
4 Sprengers, J. W.; de Greef, M.; Duin, M. A.; Elsevier, C. J. Eur. J. Inorg. Chem. 2003, 3811.
(a) Carpentier, J.-F.; Bette, V. Curr. Org. Chem. 2002, 6, 913; (b) Riant, O. Mostefa, N.; Courmarcel, J. Synthesis 2004, 2943.

6 Ojima, I.; Kogure, T.; Nihonyanagi, M.; Nagai, Y. Bull. Chem. Soc. Jpn. 1972, 45, 3506.
7 Caseri, W.; Pregosin, P. S. Organometallics, 1988, 7, 1373.
8 Bideau, F. L.; Henique, J.; Samuel, E.; Elschenbroich, C. Chem. Commun. 1999, 1397.
9 Maifeld, S. V.; Miller, R. L.; Lee, D. Tetrahedron Lett. 2002, 43, 6363.
10 Dioumaev, V. K.; Bullock, R. M. Nature, 2003, 424, 530.
Lipshutz, B. H.; Caires, C. C.; Kuipers, P.; Chrisman, W. Org. Lett. 2003, 5, 3085.
Lee, D.-W.; Yun, J. Tetrahedron Lett. 2004, 45, 54 I5.
Gade, L. H.; Cesar, V.; Bellemin-Laponnaz, S. Angew. Chem. Int. Ed. 2004, 43, 1014.
Song, C.; Ma, C.; Ma, Y.; Feng, W.; Ma, S.; Chai, Q.; Andrus, M. B. Tetrahedron Lett. 2005, 46, 3241.
Shaikh, N. S.; Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2008, 47, 2497.
Dong, H.; Berke, H. Adv. Synth. Catal. 2009, 351, 1783.
Inagaki, T.; Yamada, Y.; Phong, L. T.; Furuta, A.; Ito, J-I.; Nishiyama, H. Synlett. 2009, 253.
(a) Diez-Gondlez, S.; Nolan, S. P. Organic Preparations and Procedures Int. 2007, 39, 523;
(b) Marciniec, B. in Hydrosilylation: A Comprehensive Review on Recent Advances (Eds.:
B. Marciniec), Springer, Netherlands, 2009, chap. 9.
(a) Mirza-Aghayan, M.; Boukherroub, R.; Rahimifard, M. J. Organomet. Chem. 2008, 693, 3567.

Thakur, V. V.; Ramesh Kumar, N. S. C.; Sudalai, A. Tetrahedron Lett. 2004, 45, 2915.
Ramesh Kumar, N. S. C.; Victor Paul Raj, I.; Sudalai, A. J. Mol. Cat. A: Chemical, 2007, 269, 218.

Mirza-Aghayan, M.; Boukherroub, R.; Bolourtchian, M. J. Organomet. Chem. 2005, 690, 2372.
(a) Kunai, A.; Sakurai, T.; Toyoda, E.; Ishikawa, M.; Yamamoto, Y. Organometallics 1994, 13, 3233; (b) Ferreri, C.; Costantino, C.; Chatgilialoglu, C.; Boukherroub, R.; Manuel, G. J. Organomet. Chem. 1998, 554, 135.
(a) Gallezot, P. "Hydrogenation - Heterogeneous" in Encyclopedia of Catalysis, Volume 4, ed. Horvath, I.T., John Wiley \& Sons, 2003; (b) Johannes G. de Vries, Cornelis J. Elsevier, eds. "The Handbook of Homogeneous Hydrogenation" Wiley-VCH, Weinheim, 2007.

25 Horiuti, J.; Polanyi, M. Trans. Faraday Soc. 1934, 30, 1164.
26 (a) Hudlický, M. "Reductions in Organic Chemistry" Washington, D.C.: American Chemical Society, 1996; (b) Johnstone, R. A. W.; Wilby, A. H.; Entwistle, E. D. Chem. Rev. 1985, 85, 129; (c) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.

27 Magnus, P.; Waring, M. J.; Scott D. A. Tetrahedron Lett. 2000, 41, 9731.
28 Jurkauskas, V.; Sadighi, J. P.; Buchwald, S. L. Org. Lett. 2003, 5, 2417.
29 Lipshutz, B. H.;_Servesko, J. F.; Petersen, T. B.; Papa, P. P.; Lover, A. A. Org. Lett. 2004, 6, 1273.

30 Lipshutz, B.H.; Servesko, J. M.; Taft, B. R. J. Am. Chem. Soc.2004, 126, 8352.
31 Alonso, F.; Osante, I.; Yus, M. Synlett 2006, 3017.
32 Martin, N. J. A.;List, B. J. Am. Chem. Soc. 2006, 128, 13368.
33 Kanazawa, Y.; Nishiyama, H. Synlett 2006, 3343.
34 Chandrasekhar, S.; Chandrashekar, G.; Reddy, M. S.; Srihari, P. Org. Bio. Chem. 2006, 4, 1650.

35 Baker, B. A.; Bokovi, A. V.; Lipshutz, B. H. Org. Lett. 2008, 10, 289.
36 Pelss, A.; Kumpulainen, E. T. T.; Koskinen, A. R. M. J. Org. Chem. 2009, 74, 7598.
37 Duan, Z. C.; Hu, X. P.; Wang, D. Y.; Yu, S. B.; Zheng, Z. Tetrahedron Lett. 2009, 50, 6720.
38 Li, X.; Li, L.; Tang, Y.; Zhong, L.; Cun, L.; Zhu, J.; Liao, J.; Deng J. J. Org. Chem. 2010, 75, 2981.

LIST OF PUBLICATIONS

1. "A concise enantioselective synthesis of (+)-decarestrictine L via proline-catalyzed sequential alpha-aminooxylation and Horner-Wadsworth-Emmons olefination" Varun Rawat, Pandurang V. Chouthaiwale, Gurunath Suryavanshi, Arumugam Sudalai Tetrahedron Asymmetry 2009, 20, 2173.
2. "A Novel Synthesis and Characterization of Titanium Superoxide and its Application in Organic Oxidative Processes" R. Santosh Reddy, Tanveer M. Shaikh, Varun Rawat, Pratibha Karabal, Gurunath Suryavanshi, Arumugam Sudalai Cat. Surv. Asia 2010, 14, 21.
3. "A facile enantioselective synthesis of (S)- N-(5-chlorothiophene-2-sulfonyl)- β, β diethylalaninol via proline-catalyzed asymmetric α-aminooxylation and α-amination of aldehyde" Varun Rawat, Pandurang V. Chouthaiwale, Vilas B. Chavan, Gurunath Suryavanshi, Arumugam Sudalai Tetrahedron Letters 2010, 51, 6565.
4. "Palladium-Catalyzed Hydrosilylation of Aryl ketones and Aldehyde" Pandurang V. Chouthaiwale, Varun Rawat, Gurunath Suryavanshi, Arumugam Sudalai Tetrahedron Letters 2012, 53, 148.
5. "Synthesis of the anti-influenza agent (-)-oseltamivir free base and (-)-methyl 3-epishikimate" Varun Rawat, Soumen Dey, Arumugam Sudalai Org. Biomol. Chem., 2012, 10, 3988. \{This work is highlighted in Synfacts 2012, 8, 0001; DOI: 10.1055/s-00321316977\}
6. "Organocatalytic sequential α-aminooxylation or -amination/reductive cyclization of onitrohydrocinnamaldehyde: A high yield synthesis of chiral 3-substituted tetrahydroquinolines" Varun Rawat, B. Senthil Kumar, Arumugam Sudalai (Manuscript communicated).
7. "A diastereoselective tandem desilylation-oxy Michael addition reaction for the asymmetric synthesis of 3-epi-jaspine B and (+)-oxybiotin" Varun Rawat, Anil M. Shelke, Arumugam Sudalai (Manuscript communicated).
8. "Asymmetric synthesis of (+)-stagonolide C and (-)-aspinolide A via organocatalysis" Anil M. Shelke, Varun Rawat, Gurunath Suryavanshi, Arumugam Sudalai (Manuscript communicated).

[^0]: ${ }^{\text {a }}$ Condition: L-proline ($20 \mathrm{~mol} \%$), o-nitrohydrocinnamaldehyde (5 mmol), PhNO (5 $\mathrm{mmol}),-20^{\circ} \mathrm{C}, 24 \mathrm{~h}$; ${ }^{\mathrm{b}}$ isolated yield after column chromatography; ${ }^{\mathrm{c}}$ ee determined by chiral HPLC analysis; ${ }^{\text {d }}$ solvent ratio (1:3); ${ }^{\mathrm{e}}$ reaction was carried out at $25^{\circ} \mathrm{C}$ for 15 \min followed by ether extraction. $\mathrm{S} 1=$ solvent for α-aminooxylation, $\mathrm{S} 2=$ solvent for reductive cyclization.

