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Abstract 

Gene expression is fundamental to all biological processes. A majority of the biological 

processes are regulated at gene expression level. Two major bio-molecules, RNA and 

proteins are the products of gene expression. Broadly, gene expression is divided into two 

core processes, transcription and translation. Transcription leads to synthesis of RNA 

molecules and translation results in synthesis of protein molecules. Though broadly 

divided into these two steps, each step itself is a multistep reaction requiring a large 

number of protein and RNA factors. Interestingly, the machinery to synthesize RNA and 

protein is itself made up of RNA and protein components thus inherently having 

feedback control. Additionally, each of the steps in gene expression is tightly controlled 

by various regulators. Such a precise control and co-ordination between the steps of gene 

expression is required for synthesis of desired protein and RNA at specific times, 

concentrations and locations in a cell. The presence of feedback controls in gene 

expression confers interesting properties such as bistability, hysteresis, oscillations that 

have physiological implications in developmental decisions, biological time keeping etc. 

Though gene expression is extensively studied using both experimental and theoretical 

approaches, many details of gene expression and its regulation are still unknown. 

Investigation of regulators of gene expression and their properties is an active area of 

research. 

An important property of gene expression is stochasticity. Even a clonal population of 

cells shows phenotypic variation. The inherent random nature of reaction occurrence and 

small number of molecules of each component of the gene expression machinery result in 

cell-to-cell variation or noise in gene expression. Many experimental and theoretical 

studies have analysed various aspects of noise in gene expression such as types of noise, 

its origin, and effects on population. Genome wide single cell measurement studies have 

revealed the global structure of noise in the protein molecules. It has been observed that 

the noise in the protein concentration decreased with increase in protein abundance. 

However, the relationship was observed to be true only for low and intermediate-

abundance proteins. Highly expressed proteins showed a minimum constant low level of 
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noise. The observed noise floor has been attributed to slow varying extrinsic fluctuations. 

In addition to these studies, there are some studies investigating the important step in 

gene expression that maximally affects the noise in protein level. However, the 

conclusion reached by different studies is different. 

In the present study certain aspects of regulation and stochasticity in gene expression are 

studied. Regulation at transcriptional level has been studied using a mathematical model 

for auto-regulated synthesis of transcription factor TATA Binding Protein. Regulation at 

post-transcriptional level by microRNA has been studied through development and 

analysis of a comprehensive model. A detailed model of gene expression was developed 

and used to investigate sources of noise contributing to the observed noise floor. Global 

stochastic sensitivity analysis was performed to quantitatively estimate the relative 

contribution of major steps in gene expression to noise. 

Transcription factor TATA Binding Protein (TBP) is a general transcription factor 

required by all the three RNA polymerases for transcription initiation. Therefore, TBP in 

turn is required for its own synthesis as well. In addition to being a crucial transcription 

factor, TBP mutants having low DNA binding affinity have been identified in case of 

neurodegenerative disease spinocerebellar ataxia type 17 (SCA17). Another interesting 

property of TBP is its maternal inheritance. A mathematical model of TBP was 

developed to study its auto-regulated synthesis. Using the model, the effect of variation in 

initial conditions and parameters on the viability of cell was explored. The model 

predicted that the TBP system is bistable, with one stable steady state corresponding to 

zero-TBP state implying unviable cells, while other high-TBP state corresponding to 

normal physiological level of TBP. The model prediction of low DNA binding affinity 

leading to cell death has implication in understanding the role of TBP mutants in neuro-

degeneration. The model prediction of requirement of minimum amount of initial TBP 

for cell viability suggests an explanation for the observed maternal inheritance of TBP 

mRNA. The effect of presence of TBP dimer in buffering TBP from perturbation was 

explored using the model. It was observed that TBP dimer can help to buffer against free 

TBP perturbation only under certain condition and the relative concentration of TBP 

dimer to TBP-DNA complex is an important determinant of the buffering capability. 
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The next level of regulation studied is post-transcriptional regulation by microRNA. 

miRNAs are small, single stranded RNA molecules regulating gene expression at post-

transcriptional level. miRNA has been generally considered to repress the target protein. 

However, in recent years some studies have reported unexpected increase in target 

protein level in the presence of miRNA regulation. In this study a detailed model of 

miRNA mediated regulation was developed to explore possible effects of miRNA 

regulation on the target protein level. The twelve reaction rate parameters of the model 

were grouped into four dimensionless numbers that were observed to be sufficient to 

predict miRNA regulatory effects on the steady state of the target protein. Certain 

conditions were identified under which the presence of miRNA can result in higher target 

protein level. A majority of the experimental observations of increased target protein 

level were explained in terms of the model framework such that they are no more 

unexpected. The effect of miRNA regulation on a steady state distribution of target 

protein was explored. It was observed that miRNA mediated regulation did not change 

the nature of the steady state distribution of target protein. 

In addition to the study of miRNA effect on the steady state protein level, a simple 

method was developed to incorporate dynamic effects of intronic miRNA mediated 

regulation into existing mathematical models of cellular processes. The method was used 

to modify a widely used protein based mathematical model of cell cycle. Such 

incorporation of additional regulation was observed to improve the model performance as 

the predictions of the modified model were found to be closer to experimental 

observations. The universality of the method was tested by comparing miRNA mediated 

regulation with analogous protein mediated post-transcriptional regulation and the 

method was shown to be amenable for use in a wide range of conditions. 

A detailed generic model of eukaryotic gene expression process was developed to study 

the noise in protein molecules. Previously developed models of gene expression could 

not explain the observed saturation of noise without explicit additive noise term. The 

detailed model developed in this study was used to investigate whether the gene 

expression-extrinsic and cell-intrinsic sources of noise can explain the observed 

saturation of noise. It was observed that only the sources considered in the detailed model 
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did not explain the saturation. The time scale of regulator fluctuations was observed to be 

an important factor for saturation. It was observed that the fluctuations with time scale 

slower than that of the proteins of interest can show saturation of noise. 

Different studies investigating the important step determining the noise in protein have 

identified different steps in gene expression to be important and the knowledge about 

their relative contribution is ambiguous. In this study, a global stochastic sensitivity 

analysis was performed to estimate relative contribution of major steps in gene 

expression to noise in the steady state protein level. Two measures of noise, viz., 

coefficient of variation and Fano factor were used. Interestingly, it was observed that, the 

two measures showed differential sensitivity to parameters. Thus the study suggested that 

previous results regarding sensitivity are required to be reanalyzed using both the 

measures of noise. The study highlighted the fact that the obtained sensitivity should be 

attributed to the particular measure of noise and not to the generic variability or noise. 

In summary, the present study contributed to advance the knowledge about certain 

aspects of eukaryotic gene expression. In this study, mathematical models of process of 

gene expression and its regulation were developed. Through simulations and analyses, 

the study provided explanations for certain unintuitive observations. It also generated 

falsifiable hypotheses that can be experimentally tested to gain deeper insight into the 

processes. 
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Diverse biological processes ranging from bacterial movement towards a nutrient source 

to the development of a multi-cellular organism are all regulated at gene expression. 

Gene expression can be considered as a fundamental aspect of all biological processes. It 

is a highly regulated multistep process that leads to the synthesis of two major bio-

molecules, RNA and proteins. Gene expression is broadly divided into two core 

processes, transcription and translation. The first step (transcription) leads to synthesis of 

RNA molecules using DNA as the template, and the second step (translation) results in 

synthesis of protein molecules using RNA as the template. Precise control of the gene 

expression machinery and coordination of the processes in gene expression are required 

for the production of RNA and protein molecules at specific times, concentrations and 

locations in a cell. 

Initially gene expression was explained by the central dogma of molecular biology as 

residue by residue transfer of sequential information from DNA to RNA to protein (Crick 

1958). It was later revised to include some more routes of sequential information transfer 

such as from RNA to DNA and from RNA to RNA (Crick 1970). However, it is well 

known that gene expression is not only the residue by residue sequential information 

transfer but it is a highly regulated complex process. Protein molecules were initially 

considered as the key regulators of gene expression. However, with the discovery of 

small non-coding RNA (Fire, Xu et al. 1998) and long non coding RNA (lncRNA) 

molecules (Kapranov, Cawley et al. 2002; Carninci, Kasukawa et al. 2005), a new layer 

of RNA mediated regulation has emerged in the last couple of decades. The dynamic 

interactions of RNA and protein molecules form an intricate regulatory network which 

results in diverse but defined outcomes. Considering regulatory molecular interactions in 

addition to sequential information transfer, the information transfer in the gene 

expression process can be represented as Figure 1-1, where all the three components 

interact with each other. 
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Figure 1-1 – Residue by residue sequential information transfer routes and regulatory 
interactions in the gene expression process 
 

Though major processes of gene expression are similar in prokaryotes and eukaryotes, 

different locations of synthesis of mRNA (the nucleus) and protein (the cytoplasm), 

presence of multiple chromosomes, presence of introns in RNA are some of the factors 

that make gene expression more complex in eukaryotes. In addition, much larger number 

of regulatory protein and RNA molecules further increases the complexity due to 

combinatorial effects. 

Gene expression has been extensively studied using both experimental and theoretical 

approaches yet many qualitative and quantitative details are unknown. Investigation of 

regulators of gene expression and their properties is an active area of research. In the 

present study, some aspects of the gene expression process and its regulation are studied 

using mathematical modeling, simulation, and analysis. Regulation at transcriptional 

level has been studied by developing a mathematical model of auto-regulatory synthesis 

of transcription factor TATA binding protein (TBP). Post-transcriptional regulation by 

microRNA has been studied through the development of a detailed model. A 

comprehensive model for gene expression has been developed to identify sources of 

intrinsic and extrinsic noise that result in variability in protein at high abundance level. 
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Global stochastic sensitivity analysis was performed to estimate the relative contribution 

of major steps in gene expression to the noise at the steady state of protein. 

1.1 Overview of the gene expression process in eukaryotes 

All the processes from gene induction to protein degradation that result in a defined 

spatio-temporal expression of mRNA and protein molecules in a cell comprise gene 

expression. Broadly, it can be divided into seven major sub-processes viz., (1) chromatin 

remodeling, (2) transcription, (3) RNA processing, (4) transport of RNA from nucleus to 

cytoplasm, (5) translation, (6) degradation of mRNA, and (7) degradation of protein. 

These major sub-processes of gene expression are represented in Figure 1-2. 

 

 

Figure 1-2 – Diagrammatic representation of major sub-processes in gene expression in a 
eukaryotic cell 

The major sub-processes include chromatin remodeling, transcription, RNA processing, mRNA 
transport, translation, degradation of mRNA, and degradation of protein. 
 

Though, gene expression is broadly divided into these seven sub-processes, each sub-

process itself is a multistep reaction requiring a large number of RNA and protein factors. 

Interestingly, the machinery for RNA and protein synthesis itself consists of RNA and 

protein factors, thus inherently contains feedback control. Each of these sub-processes 
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has been studied in detail. Table 1-1 lists some representative experimental studies and 

reviews for each of the sub-process. 
 

Table 1-1 – Representative literature references for major sub-processes in eukaryotic gene 
expression process 

Process Literature reference 

Chromatin remodeling 
and Histone 
modification 

(Strahl and Allis 2000; Fry and Peterson 2001; Biran and 
Meshorer 2012) 

Transcription (Tjian 1996; Thomas and Chiang 2006; Venters and Pugh 
2009) 

RNA processing (Padgett, Grabowski et al. 1986; Hastings and Krainer 2001; 
Johnson and Vilardell 2012) 

mRNA transport (Stewart 2007; Noble and Wente 2010; Oeffinger and 
Zenklusen 2012) 

Translation (Pain 1996; Gebauer and Hentze 2004; Groppo and Richter 
2009) 

mRNA degradation (Beelman and Parker 1995; Houseley and Tollervey 2009; 
Balagopal, Fluch et al. 2012) 

protein degradation (Baumeister, Walz et al. 1998; Ravid and Hochstrasser 2008; 
Clague and Urbe 2010) 

 

1.1.1 Chromatin remodeling and histone modification 

Chromatin remodeling to unpack and expose the regulatory region of DNA to 

transcription factors and transcription machinery can be considered as a first step of gene 

expression. It starts with binding of gene specific regulator(s) to the regulatory region of 

a gene. The regulator then recruits chromatin remodeling protein complexes, and histone 

modifying enzymes to the site. During chromatin remodeling the highly organized 

structure of chromatin is unpacked by sliding or peeling off histone proteins from DNA 

with the help of chromatin remodeling complexes. These complexes are ATP dependent 
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helicases such as SWI/SNF, ACF, CHRAC (Peterson 2002). Histone modifying enzymes 

such as Histone acetyl transferase (HATS), deacetylase, lysine methyl transferase carry 

out post-translational modifications on specific amino acid residues of histone proteins 

(Kouzarides 2007). Such post-translational modifications result in changing the affinity 

of histone protein for DNA making it either dissociate from or tightly bind to DNA to 

either induce or repress transcription (Hirose 1998; Fry and Peterson 2001). The process 

of chromatin remodeling and histone modification makes the regulatory region of DNA 

competent for binding of transcription factors and RNA polymerase. 

1.1.2 Transcription 

Transcription results in synthesis of RNA molecules. It is divided into three phases, viz., 

initiation, elongation, and termination. Transcription initiation is comprised of assembly 

of transcription factors and subunits of RNA polymerase at the promoter site to form pre-

initiation complex (PIC). There are three types of RNA polymerase molecules that are 

required for transcription of different types of genes. RNA polymerase II is required for 

most protein coding genes which lead to synthesis of messenger RNA (mRNA). Once the 

PIC is formed RNA synthesis can take place. The process of transcription initiation is 

completed by local opening of double helix DNA strand at the promoter site (Tjian 1996; 

Thomas and Chiang 2006). The next phase of transcription is elongation. During 

elongation RNA polymerase slides along the DNA and synthesizes RNA molecule by 

polymerization reaction forming phosphodiester bonds between nucleotides (Kugel and 

Goodrich 2000; Saunders, Core et al. 2006). During elongation, RNA polymerase adds 

nucleotides to the growing RNA chain depending on the sequence complementarily. It 

can backtrack to remove the added incorrect nucleotide. Once the polymerization is 

complete transcription is terminated. During termination the transcript is released and the 

RNA polymerase subunits dissociate from the DNA (Kerppola and Kane 1991; 

Richardson and Roberts 1993). The process of transcription results in the synthesis of 

precursor messenger RNA (pre-mRNA). 

1.1.3 RNA processing 

The pre-mRNA synthesized during transcription has to be processed to form mature 

mRNA molecule. Generally RNA processing occurs co-transcriptionally. RNA 
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processing includes 5’-capping, splicing of introns, and 3’-polyadenylation. 5’ capping is 

carried out once around 20-30 nucleotide long transcript is synthesized. During capping a 

guanosine monophosphate (GMP) moiety is attached to the 5’ end of the transcript. GMP 

is then methylated at N7 position. The entire process of 5’ capping is carried out with the 

help of three enzymes; RNA 5’ triphosphatase (RTP), guanylyl transferase (GT) and, 

methyl transferase (MT). 

Splicing itself consists of multiple reactions in which two exon sequences are fused 

together and intron sequences in between the exons are removed. Splicing is catalysed by 

an enzyme complex which consists of five small nuclear ribonucleoprotein complexes 

(snRNPs) U1, U2, U4, U5 and U6 and many non-snRNP proteins mainly of SR family 

(Padgett, Grabowski et al. 1986; Hastings and Krainer 2001). 

During 3’ polyadenylation, around 200 adenosine residues are added at the 3’ end of the 

transcript. It is carried out by a protein complex that includes cleavage and 

polyadenylation specificity factor (CPSF), cleavage stimulatory factor (CstF), cleavage 

factor I and II (CF I and CF II), and poly(A) polymerase (Proudfoot, Furger et al. 2002). 

1.1.4 RNA transport 

Once the mature mRNA molecules are formed, they are transported from nucleus to 

cytoplasm. Multiple protein factors bind to mature mRNA to form transport competent 

ribonucleoprotein (mRNP) complex. The mRNP molecules travel in the nucleus through 

restricted chromatin-free zones. Such nuclear movement of mRNA is termed as 

channeled diffusion (Noble and Wente 2010). The mRNP molecules are transported to 

cytoplasm through nuclear pore complex (NPC) with the help of Mex67:Mtr2 protein 

heterodimer. Another protein Dbp5 remodels the mRNP by removing Mex67 to prevent 

its return to the nucleus (Stewart 2007). Transport of mRNA from nucleus to cytoplasm 

completes the nuclear portion of gene expression. 

1.1.5 Translation 

Similar to transcription, translation is also divided into three phases – initiation, 

elongation, and termination. In the initiation phase of translation small (40s) ribosomal 
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subunit, methionine-transfer RNA (Met-tRNA), and eukaryotic initiation factors (eIFs) 

assemble at 5’ end of mRNA forming a 43s initiation complex. The complex slides along 

mRNA to scan for the initiation codon. Once the initiation codon is located, 60s subunit 

of ribosome binds to the complex and can start polypeptide synthesis. Such cap 

dependent translation initiation is predominant in eukaryotes. However, cap-independent 

translation initiation can take place in case of certain mRNA molecules having internal 

ribosome entry sites (IRES) (Kelen, Beyaert et al. 2009). During elongation, mRNA 

slides through the ribosomal machinery. Eukaryotic elongation factors (eEFs) help to 

recruit amino acid loaded tRNA (changed tRNA) to the site of amino acid addition. A 

peptide bond is formed between successive amino acid residues using energy from GTP. 

Once the stop codon is encountered translation is terminated. Termination is mediated by 

eukaryotic release factors (eRF). During termination the ribosomal subunits and the 

polypeptide chain are released from the mRNA (Pain 1996; Groppo and Richter 2009). 

1.1.6 mRNA degradation 

mRNA degradation occurs mainly in the cytoplasm. However, a small fraction of mRNA 

molecules is degraded in the nucleus through non-sense mediated decay (NMD). The 

mRNA molecules containing non-sense codon are degraded through NMD (Chang, Imam 

et al. 2007). Cytoplasmic degradation of mRNA involves deadenylation, decapping and 

5’-3’ exonucleolytic cleavage. Generally mRNA degradation starts with shortening of 

polyA tail or deadenylation which is carried out by multiple enzymes for instance, 

poly(A) ribonuclease (PARN). After removal of polyA tail, 3’ exonucleolytic cleavage 

can also take place (Beelman and Parker 1995). 5’ cap of mRNA is removed with the 

help of decapping enzyme (Guhaniyogi and Brewer 2001). 5’-3’ exonucleolytic cleavage 

of mRNA is carried out by multiple enzymes mainly XRN1 (Houseley and Tollervey 

2009). 

1.1.7 Protein degradation 

Protein molecules which are to be degraded are tagged by ubiquitin. Ubiquitination is 

carried out with the help of three enzymes, viz., E1, Ub-activating enzyme, E2, Ub-

conjugating enzyme and E3, Ub-protein ligase. The tagged proteins are degraded via 

proteasomal degradation pathway. The Ub-tagged proteins associate with the proteasomal 
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complex where the protein is unfolded and translocated to the catalytic core of 

proteasome. Before translocation ubiquitin is removed with the help of deubiquitinylating 

enzymes. Inside the proteasomal core the protein is degraded into 7-9 mer peptides 

(Baumeister, Walz et al. 1998; Ravid and Hochstrasser 2008). 

1.2 Regulation of gene expression 

The sub-processes in gene expression can occur simultaneously and are highly 

interconnected and coordinated with the help of multiple protein and RNA regulators 

(Komili and Silver 2008). For instance, nuclear pore complex has been shown to have 

role in the regulation of transcription (Casolari, Brown et al. 2004). Splicing factors are 

involved in transport of mRNA to cytoplasm (Hieronymus, Michael et al. 2004). 

Proteasomal proteins have been shown to bind to chromatin and regulate transcription 

(Auld, Brown et al. 2006). In addition to regulation of expression of generic RNA or 

protein molecules, in certain cases these RNA and protein factors regulate their own 

expression at various stages of gene expression and form feedback loops. Some examples 

of the feedback regulatory motifs are summarized in Figure 1-3. 

 

Figure 1-3 – Examples of RNA and protein mediated auto-regulation at different stages of gene 
expression 



10 
 

 

Regulation of gene expression can broadly be divided as transcriptional regulation, post-

transcriptional regulation, and post-translational regulation. Transcriptional regulation 

includes regulation of all the processes that lead to synthesis of RNA molecules. Post-

transcriptional regulation includes regulation of processes downstream of transcription up 

to translation. Post-translational regulation includes regulation of the processes once the 

peptide chain is formed. Two classes of regulation viz., transcriptional regulation and 

post-transcriptional regulation are considered in the present study. The large class of 

post-translational regulation, which includes enzymatic modification of protein molecules 

such as methylation, phosphorylation etc (Seo and Lee 2004; Deribe, Pawson et al. 

2010), is not included in this study. 

1.2.1 Transcriptional regulation 

It includes regulation of gene activation, chromatin remodeling, histone modification and 

all the three phases of transcription. Protein molecules such as chromatin remodelers, 

transcription factors are widely known transcriptional regulators. In addition, small non-

coding and long non-coding RNA molecules are known to regulate gene expression at 

transcriptional level. For instance, Xist (X-inactive specific transcript) RNA recruits 

chromatin remodeling enzymes that help to inactivate X chromosome (Barrandon, 

Spiluttini et al. 2008).  FC RNA and B2 RNA competitively bind to RNA polymerase 

and repress transcription (Kwek, Murphy et al. 2002). Transcriptional regulation is 

considered as the key regulatory mechanism to determine differential gene expression. It 

is known to be responsible for major cellular decisions such as progression through cell 

cycle (Cho, Huang et al. 2001), development and differentiation (Fong, Cattoglio et al. 

2012; Park, Kim et al. 2013). Improper transcriptional regulation has been shown to 

result into diseases (Lee and Young 2013). It has been stated that in addition to the gene 

number, morphological and behavioural complexity can be related to protein complexes 

that regulate gene expression. For instance yeast codes for ~300 transcription factors 

while human codes for around 3000 transcription factors (Levine and Tjian 2003). These 

transcription factors interact among each other forming a complex interaction network 

(Lee, Rinaldi et al. 2002). The positive and negative regulatory interactions among the 
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regulators form regulatory motifs which have interesting properties such as bistability, 

oscillations, hysteresis (Cherry and Adler 2000; Angeli, Ferrell et al. 2004). These 

properties are responsible for the observed phenotypic effects in developmental cell fate 

decisions (Ferrell and Machleder 1998), circadian clocks (Reppert and Weaver 2001) etc. 

The transcriptional regulatory motifs having these properties have been studied 

experimentally and theoretically (Hasty, McMillen et al. 2001) and have been used to 

construct synthetic circuits (Gardner, Cantor et al. 2000; Shis and Bennett 2013) with 

desirable properties. 

1.2.2 Post-transcriptional regulation 

The next level of regulation is post-transcriptional regulation. It includes regulation of 

RNA processing, transport to the cytoplasm, and translation. A large number of RNA 

Binding Proteins (RBPs) are known to be post-transcriptional regulators (Glisovic, 

Bachorik et al. 2008). For instance, protein p32 have been shown to regulate splicing by 

inhibiting essential splicing factors ASF/SF2 (Petersen-Mahrt, Estmer et al. 1999). Many 

eukaryotic elongation factors (eEF) and release factors (RF) are known for regulation of 

translation (Gebauer and Hentze 2004; Kelen, Beyaert et al. 2009). In case of RNA 

regulators an important class of small RNA molecules called microRNA (miRNA) is 

known to regulate mRNA activity at post-transcriptional level by various mechanisms 

(Pillai, Bhattacharyya et al. 2007). Multiple long non-coding RNA molecules are also 

known to regulate gene expression at post-transcriptional level (Yazgan and Krebs 2007). 

Post-transcriptional regulation is mainly important for fine tuning of gene expression 

(Ying and Lin 2005; Sevignani, Calin et al. 2006). It is also advantageous when quick 

response is required. Similar to transcriptional regulation, post-transcriptional regulation 

has been shown to be important in cellular processes such as differentiation and 

development and in diseases  (Alvarez-Garcia and Miska 2005; Costa 2005). 

The two levels of regulation are not independent but are coordinated through interactions 

between transcriptional and post-transcriptional regulators (Martinez and Walhout 2009) 

forming a complex dynamic network. Identification and characterization of the motifs in 

such networks is an active area of research. 
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1.3 Gene expression at a single cell level 

The knowledge about the processes and regulation of gene expression is obtained from 

biochemical and genetic studies performed using a population of cells. With the advances 

in visualization and imaging technologies studies at microscopic level are possible 

(Larson, Singer et al. 2009). Using technique like Fluorescent-Activated Cell Sorting 

(FACS) protein levels in individual cells of a population can be quantified (Newman, 

Ghaemmaghami et al. 2006). MS2 system, single cell microarrays can be used to quantify 

mRNA (Holstege, Jennings et al. 1998; Golding, Paulsson et al. 2005). Kinetics of certain 

processes in single cells can be studied using technique like fluorescence recovery after 

photobleaching (FRAP) (Darzacq, Shav-Tal et al. 2007). Study of gene expression at 

single cell and single molecule level has revealed many interesting properties of 

dynamics of RNA and protein synthesis and their steady state distribution. It has been 

observed that synthesis of mRNA and protein is not a continuous phenomenon but occurs 

in bursts. Figure 1-4 represents mRNA and protein bursts of engineered luciferase under 

control of Bmal1a promoter observed in a single cell trace (Suter, Molina et al. 2011). 

 

 
Figure 1-4 – Bursts of mRNA and protein synthesis 

Luminescence trace (orange), protein copy number (red), mRNA copy number (green) and 
gene activity (blue). From Suter, D. M., N. Molina, et al. (2011). "Mammalian Genes Are 
Transcribed with Widely Different Bursting Kinetics." Science 332(6028): 472. Reprinted with 
permission from AAAS. 
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Quantitative measurements in single cells have shown that many of the mRNA and 

protein molecules are present in low numbers. For instance, it is reported that fission 

yeast cells contain 1-10 copies of most mRNA molecules (Marguerat, Schmidt et al. 

2012). The protein number in yeast cells ranges from lesser than 50 to more than 106 

(Ghaemmaghami, Huh et al. 2003). Median protein abundance in yeast cell was reported 

to be around 2500 (Milo, Jorgensen et al. 2010). It is suggested that many essential 

proteins and regulatory factors are present at low molecular abundance (Ghaemmaghami, 

Huh et al. 2003). Such low reactant numbers leads to fluctuations in reaction rates and 

molecule numbers. The resulting stochasticity in gene expression leads to phenotypic 

variability even within a clonal population of cells. For instance, a study by Novick and 

Weiner showed a highly variable and random production of β-galactosidase in individual 

cells of a population of E. coli (Novick and Weiner 1957). 

The variation in population or noise is classified into two types, intrinsic noise and 

extrinsic noise. Intrinsic noise is due to the inherent random nature of occurrence of 

reaction events, while extrinsic noise is due to the variation in the reactant numbers. In 

case of gene expression, variation in the abundance of molecules such as transcription 

factors, RNA polymerase, proteasomal degradation machinery contributes to extrinsic 

noise. 

The single cell measurement experiments such as those carried out using FACS on a 

population of cells result in a distribution of protein or mRNA numbers. It is illustrated in 

Figure 1-5. The nature of the distribution of a population is an important property and can 

sometimes reveal presence of a specific type of regulatory motif. 
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Figure 1-5 – Distribution of protein molecule number obtained by single cell measurement 
experiment 

Measurement of the protein content in individual cells of a cell population, using techniques 
such as FACS results in a histogram of frequency of cells having a particular number of protein 
molecules. It indicates the protein distribution with mean (μ) and standard deviation (σ). 
 

Using the distribution of protein number, noise can be expressed using different 

quantitative measures. Two measures of noise are commonly used viz., Coefficient of 

Variation (CV) and Fano factor. Coefficient of variation is the standard deviation of the 

population normalized to the mean (σ/μ). CV is a useful measure to compare noise 

between two populations when the mean is different. Fano factor is defined as the ratio of 

variance of the population to mean (σ2/μ). Fano factor is particularly useful when 

obtained distribution is Poisson, in which case the Fano factor is 1 as mean and variance 

are equal. In such cases deviation of Fano factor from 1 indicates deviation from Poisson 

distribution. 

The stochastic nature of gene expression results in population heterogeneity. Therefore, a 

bimodal or multimodal population can be observed in an isogenic population. 

Interestingly, stochasticity can result in bimodality even in the absence of deterministic 

bistability (To and Maheshri 2010). Population heterogeneity can have both 

advantageous and disadvantageous effects (Raj and van Oudenaarden 2008). 

Phenotypically different cells can perform different functions. The phenotype of cells can 

change stochastically and in fluctuating environment can confer fitness to the overall 

population (Thattai and Van Oudenaarden 2004; Kussell and Leibler 2005). However, 

FACS
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noise can also be disadvantageous under some conditions and is minimized in case of 

certain proteins that are part of a multi-protein complex or deletion of which is lethal to 

an organism (Fraser, Hirsh et al. 2004).  

Many experimental (Blake, Kærn et al. 2003; Raser and O'Shea 2004; Volfson, 

Marciniak et al. 2005) and theoretical (Paulsson 2004; Paulsson 2005) analyses have 

been carried out to study various aspects of noise in gene expression. Yet there are some 

uncertainties about certain factors such as contribution of various processes of gene 

expression to the noise at steady state protein level, regulation of noise by various 

regulators etc. These questions are required to be answered. In addition to the 

experimental studies, theoretical analysis is an effective approach to understand 

properties of noise. 

1.4 Mathematical modeling 

Mathematical modeling of biological processes involves representation of biological 

phenomena in a framework suitable for the processes to be studied and analysis using 

appropriate mathematical theory to address proposed questions. 

Advances in experimental techniques such as imaging, transcriptome and proteome 

measurements, single cell measurements, real time kinetic measurements, high 

throughput sequencing are generating enormous amount of data. To understand the 

underlying processes using these data quantitative approach is necessary. Using the 

knowledge obtained by studying various small parts of a cellular system, it has been 

realized that wiring of the parts forming the whole system confers very different 

emergent properties to the whole system. These properties cannot be understood by 

studying the parts but the entire circuit is required to be studied. Mathematical modeling 

helps to bridge the gap between the data and our knowledge at molecular level, and the 

observations of biological phenomena at macroscopic level. Firstly, clear representation 

of a process in a mathematical framework helps to resolve the ambiguities in our 

descriptive knowledge about the process. Mathematical modeling and analysis is useful 

for generating certain falsifiable hypotheses and guiding suitable experimental designs. 

The iterative process of mathematical analysis and experimental study leads to improved 
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understanding about a process. Predictive power of mathematical models can be used to 

reduce the experimental efforts. 

The present work aims to study the process of gene expression and its regulation using 

mathematical modeling, simulation, and analysis. Depending upon the system and the 

underlying question a suitable mathematical approach has been used. 

1.5 About the thesis 

The thesis describes the development of mathematical models, simulations and analyses 

of the processes and regulation of gene expression. The properties and the effect of 

transcriptional and post-transcriptional regulation are studied. Certain aspects of the noise 

in gene expression are explored in the present study. 

A general transcription factor called TATA Binding Protein (TBP) is required by all the 

three polymerases for transcription. TBP is therefore necessary for its own synthesis as 

well, forming a positive feedback loop. In addition to being a crucial transcription factor, 

it has been found to be important in a neurodegenerative disease where DNA binding 

affinity of TBP was observed to be affected. To understand the properties of the positive 

feedback regulation and the role of TBP in the disease, a mathematical model of auto-

regulatory synthesis of TBP was developed and analysed using deterministic approach. 

By studying the effect of variation of the model parameters on the viability of the cells, 

the model provided a possible explanation for the role of TBP in neuro-degeneration. The 

model provided an explanation for parental inheritance of TBP through the analysis the 

effect of initial conditions on cell viability. 

The next level of regulation analysed in the present study is post-transcriptional 

regulation by microRNA. These molecules are generally known to repress the target 

protein level. However, in the last few years some studies have reported ‘unexpected’ 

increase in the target protein level even in the presence of miRNA. A detailed 

mathematical model of miRNA mediated regulation was developed and analysed using 

deterministic approach. Using steady state analysis, certain conditions in terms of 

reaction rate parameters were identified under which miRNA can result in increased 
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target protein levels. A majority of experimental observations of increased target protein 

level were explained in terms of the model framework. The effect of miRNA mediated 

regulation on the steady state distribution of target protein was explored using stochastic 

simulations. 

In addition to the study of effect of miRNA on the steady state of target protein, the effect 

of miRNA on the dynamics of target protein was analysed. A simple method to 

incorporate the dynamic effects of intronic miRNA mediated regulation into existing 

mathematical models of cellular processes was developed. The method was used to 

modify existing mathematical model of cell cycle. The performance of the modified 

model was observed to be improved. 

Certain aspects of stochasticity in the gene expression processes were investigated in this 

study. It has been observed that noise in the steady state protein level decreases with 

increasing abundance. However, at high protein abundance the noise saturates to a level 

and all high-abundance proteins show a same low level of noise. The experimentally 

observed noise floor has been attributed to noise sources extrinsic to gene expression. A 

detailed model of gene expression process was developed to identify the sources of 

extrinsic noise contributing to the observed saturation of noise. Using stochastic 

simulations the effect of the timescale of fluctuations on saturation of noise was studied. 

The knowledge about the important step in gene expression, that maximally affects noise 

at steady state protein level is ambiguous. In this study, a global stochastic sensitivity 

analysis was carried out to quantitatively estimate the relative contribution of major steps 

in gene expression to the noise at steady state protein level. Global sensitivity analysis 

using different measures of noise demonstrated differential sensitivity of these measures 

to different parameters. 

The thesis is divided into five chapters. This chapter gives an overview of gene 

expression, its regulation, stochasticity in gene expression, and requirement of 

mathematical analysis. Chapter 2 describes the study of mathematical modeling and 

analysis of auto-regulatory synthesis of TBP. The third chapter is divided into two 

sections. Section 1 details the study of mathematical modeling of miRNA mediated 
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regulation to explore its effect on the steady state of target protein. Section 2 describes 

the method to incorporate dynamic effects of intronic miRNA mediated regulation into 

existing mathematical models. Chapter 4 summarizes the work related to the study of 

noise in gene expression. It is divided into two sections. First section describes the work 

of development of a detailed model of gene expression to investigate the sources of 

extrinsic noise resulting in the saturation of noise at high protein abundance. Second 

section describes the global stochastic sensitivity analysis to estimate the relative 

contribution of major steps in gene expression to the noise at steady state protein level. 

The overall conclusion and future directions are discussed in the fifth chapter. 

In summary, the present study explored certain properties of regulation and stochasticity 

in gene expression using mathematical modeling approach. By analyzing the developed 

models using appropriate mathematical framework such as deterministic and stochastic, 

the study provided explanations for certain unintuitive observations and generated some 

falsifiable hypotheses that can be experimentally tested. 
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2 Mathematical model of transcriptional regulation 
by the transcription factor TATA Binding Protein 
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2.1 Introduction 

TATA Binding Protein (TBP) is a ubiquitously expressed general transcription factor. It 

binds to a regulatory sequence in the promoter region called TATA box. The TATA box 

is a conserved sequence TATAAT that occurs at about 30 to 40 base pairs upstream of 

the transcription start site. Once bound, it recruits other transcription factors and subunits 

of RNA polymerase complex to start transcription initiation. In case of the other class of 

promoters called TATA-less promoters TBP is known to bind to regulatory region 

through interaction with other proteins called tethering factors (Pugh and Tjian 1991). 

The promoters of genes transcribed by RNA polymerase I are known to be TATA-less 

promoters. In such case TBP binds to regulatory region as a subunit of the selectivity 

factor 1 (SL1). The RNA polymerase II promoters resulting in synthesis of mRNA are 

both TATA-containing and TATA-less promoters. Transcription from both the promoters 

requires TBP as a subunit of TFIID. The other class of RNA polymerase II promoters is 

snRNA promoters, which are TATA-less promoters. TBP binds to the proximal sequence 

element (PSE) of these promoters as a part of snRNA activating protein complex, SNAPc 

(Hernandez 1993). The RNA polymerase III promoters are TATA-less promoters. TBP is 

known to be a part of the initiation complex at these promoters as a subunit of TFIIB 

(White, Jackson et al. 1992; Tjian 1996). Experimental study by Cormack and Struhl 

have shown that depletion or inactivation of TBP results in rapid decrease in transcription 

by all the three RNA polymerases in yeast (Cormack and Struhl 1992), indicating the 

requirement of TBP by all the three RNA polymerases for transcription initiation. The 

promoter for the gene of TBP protein, in diverse species of vertebrates, itself is a TATA-

less promoter (Chalut, Gallois et al. 1995; Ohbayashi, Schmidt et al. 1996). However, 

irrespective of presence of TATA box, TBP is crucial for transcription initiation. This 

suggests the requirement of TBP for its own transcription as well, implying an underlying 

positive auto-regulation of TBP for its own synthesis. 

X-ray crystallographic studies have shown that TBP is a saddle shaped molecule. 

Through its concave surface it interacts with the minor groove of DNA and through its 

convex surface it interacts with other protein molecules (Nikolov, Chen et al. 1996). It 

has been shown that free TBP monomers when not bound to DNA forms TBP dimers 
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(Coleman, Taggart et al. 1995). The interaction for dimerization occurs through the 

concave surface of TBP. Therefore, the dimer is incapable of binding to DNA. Dimeric 

form of TBP is quite stable having an equilibrium dissociation constant in the nanomolar 

range (Coleman and Pugh 1997). TBP dimerization competes with TBP-DNA binding. 

Additionally, slow dissociation of dimers could be a rate limiting step in availability of 

TBP monomers for DNA binding. Thus dimerization can be considered as a mechanism 

for negatively auto-regulating DNA binding activity to prevent unregulated gene 

expression by limiting access to DNA. TBP dimers have been shown to be more stable 

than monomers and thus dimerization of TBP is also suggested to prevent TBP from 

degradation (Jackson-Fisher, Chitikila et al. 1999). 

TBP has been found to play an important role in a neurodegenerative disorder 

spinocerebellar ataxia type 17 (SCA17). N-terminal domain of TBP contains a stretch of 

polyglutamine (polyQ) ranging in size from 29-42 residues. Increase in the length of the 

CAA/CAG composite repeat for glutamine beyond 42 has been shown to cause SCA17 

(van Roon-Mom, Reid et al. 2005). Experimental study by Freidman and Wang et al 

(Friedman, Wang et al. 2008) have reported that polyQ expansion reduced in-vitro DNA 

binding affinity of TBP indicating the role of altered affinity in neurodegenerative 

diseases. In addition to the role of TBP in diseases, another interesting property of TBP is 

its maternal inheritance. A study by Edelmann et al have shown that sea urchin oocytes 

contained high levels of TBP mRNA that were required for embryogenesis (Edelmann, 

Zheng et al. 1998). Such maternal contribution is crucial for cell viability in early events 

of development as the cells are transcriptionally inactive. 

In this study, these observed properties of TBP were investigated using mathematical 

modeling. The TBP-DNA binding has been previously modeled (Coleman and Pugh 

1997) but the auto-regulatory synthesis and effect of dimerization has not been studied. 

There are known transcription factors which dimerize and bind to DNA (Halvorsen, 

Nandabalan et al. 1990) or in some cases monomeric form binds to multiple sites in the 

regulatory region of a gene (Cranz, Berger et al. 2004). Mathematical model of these 

motifs of transcriptional regulation has been developed (Keller 1995; Verma, Rawool et 

al. 2006). The regulation of TBP differs from other known transcription factors as it binds 
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to DNA as a monomer at one site on the DNA, however free TBP can exists as a dimer. 

Thus study of the regulatory motif of TBP is important. In this study a mathematical 

model of TBP considering auto-regulatory synthesis of TBP and negative regulation by 

dimerization was developed. The effect of variation in the initial conditions, and the 

parameters on the steady state of TBP was analysed. The role of dimer in buffering the 

TBP system against perturbation was investigated. Using the model we could suggest 

some explanations for biological properties of maternal inheritance and the effect of 

reduced TBP-DNA binding affinity on cell viability. 

2.2 Methodology 

2.2.1 Model development 

The biological interactions of TBP considered in the model are represented in Figure 2-1.  

 

 

Figure 2-1 – A schematic representation of the biological interactions involved in auto-
regulation of TBP 

The arc shapes represent TBP molecules. TBP (T) can bind to DNA (D) to form TBP-DNA (TD) 
complex which initiates TBP synthesis. Free TBP can dimerize (T2). TBP dimers cannot bind to 
DNA. Monomeric TBP can undergo degradation. 
 

Binding of TBP to DNA was considered as a reversible reaction following mass action 

kinetics. Similarly, TBP dimerization was also considered as a reversible reaction having 

mass action kinetics. In the reaction of TBP synthesis details of mechanism of 
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transcription and translation were not included. It was considered as a single reaction by 

lumping transcription and translation into one step. Such approximation has been 

previously used in models of transcriptional regulation (Keller 1995; Isaacs, Hasty et al. 

2003). Transcription and translation are known to be non-linear processes. Therefore, the 

reaction of TBP synthesis was assumed to follow Hill kinetics (Becskei, Seraphin et al. 

2001). The use of Hill kinetics did not imply any particular mechanism of TBP synthesis 

but only represents a non-linear, saturating nature of protein synthesis. The rate of 

reaction was assumed to be dependent upon the concentration of TBP-DNA complex. It 

was assumed that TBP had the same affinity for all TBP binding sites. Therefore, the 

concentration of TBP-bound TBP-promoter was considered as a constant fraction of the 

total TBP bound DNA. A basal synthesis term (k0) was included in the rate expression for 

TBP synthesis. However, TBP being crucial for its own synthesis, analysis was 

performed by setting the value of k0 to zero. The reaction for degradation of TBP was 

assumed to be first order mass action kinetics. Knowing that TBP dimer is stable than 

monomeric TBP (Jackson-Fisher, Chitikila et al. 1999), degradation of TBP dimer was 

not considered in the model. The reactions used in the model are listed in Table 2-1. 

 

Table 2-1 – Reactions used in the mathematical model of TBP 

Reaction Rate equation 

T + T → T2 2
1 [ ]k T×  

T2 → T + T 2 2[ ]k T×  

T + D → TD 3 [ ] [ ]k T D× ×  

TD → T + D 4 [ ]k TD×  

Φ → T 6

6 6

5
0

7

[ ]
[ ]

k

k k

k TDk
k TD

×
+

+
 

T → Φ  8 [ ]k T×  
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The differential equations for the four components viz., free TBP (T), TBP dimer (T2), 

TBP-DNA complex (TD) and unbound DNA (D) were formulated considering the rates 

of synthesis, degradation and conversion. The mass balance equations are given as 

2
2

6

6 6

5
2 1 4 3 0 8

7

[ ][ ]
2 [ ] 2 [ ] [ ] [ ] [ ] [ ]

[ ]

k

k k
k TDd T

k T k T k TD k T D k k T
dt k TD

×
= × × − × × + × − × × + + − ×

+

 
 
    (2.1)

 

22
21 2

[ ]
[ ] [ ]

d T
k T k T

dt
= × − ×         (2.2) 

4 3
[ ]

[ ] [ ] [ ]
d D

k TD k T D
dt

= × − × ×        (2.3) 

3 4
[ ]

[ ] [ ] [ ]
d TD

k T D k TD
dt

= × × − ×        (2.4) 

The concentration of total TBP binding sites [D0] is given as 

0[D] [TD] [D ]+ =          (2.5) 

The reaction rate parameters for dimerization and TBP-DNA binding were obtained from 

model by Pugh et al (Coleman and Pugh 1997). Affinity of TBP for TATA-containing 

and TATA-less promoters was assumed to be the same. The molecular abundance for 

TBP reported for different cell types such as yeast, mammalian cell, and sea urchin egg 

cell covers a wide range of 2000 to 2*106 (Edelmann, Zheng et al. 1998; Borggrefe, 

Davis et al. 2001). Variation in cell sizes from 1 μm radius for yeast cell to around 50 μm 

radius for sea urchin egg cell resulted in cell volume range of 4.17*10-15 to 5.22*10-10 

litres assuming spherical cells. Thus the concentration range for TBP was calculated to be 

10-5 to 10-8 M. The number of genes expressed in a cell represents the minimum number 

of TBP binding sites. Studies have shown a large range for number of expressed genes in 

different cell types, from ~3000 (Velculescu, Zhang et al. 1997) in yeast cell to ~10000 in 

mammalian cells (Lewin, Krebs et al. 2009). In mammalian cells the maximum number 

of TBP binding sites was reported to be ~80,000 (Denissov, van Driel et al. 2007). Hence 

the physiological concentration range for TBP binding sites was calculated to be 10-5 to 
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10-9 M. The details of concentration ranges for TBP and DNA are given in Appendix Ia. 

In the model, a mammalian cell condition with ~25000 TBP molecules and ~25000 TBP 

binding sites was considered. Reaction rate parameter for TBP degradation was obtained 

from known half life of wild type TBP (Jackson-Fisher, Chitikila et al. 1999). Specific 

rate for TBP synthesis was set to a value to obtain the physiological concentration of 

TBP. The parameters are given in Table 2-2. 

 

Table 2-2 – Parameter values used in the mathematical model of TBP 

Parameter value Reference 

k1 = 1*105 M-1s-1 (Coleman and Pugh 1997) 

k2 = 1*10-3 s-1 (Coleman and Pugh 1997) 

k3 = 2*105 M-1s-1 (Coleman, Taggart et al. 1995; Coleman and Pugh 1997; 
Weideman, Netter et al. 1997) 

k4 = 4*10-4 s-1 (Weideman, Netter et al. 1997) 

k5 = 5*10-13 Ms-1 From (Schmidt and Schibler 1995) and k8 

k7 = 1.25*10-8M Half of D0 

k8 = 7.4*10-5 s-1 (Jackson-Fisher, Chitikila et al. 1999) 

k6 = 2 Assumed  

k0 = 5*10-15 Ms-1 Assumed (0.01*k5) 

[D0] = 2.5*10-8  M (Denissov, van Driel et al. 2007) 

 

The ordinary differential equations (2.1-2.5) were solved numerically using the stiff 

differential equation solver ode15s of Matlab version 7.6.0.324 (The Mathworks, 

Natick, USA). The effect of variation of initial molecular concentration was analysed. In 

addition, the effect of variation of specific reaction rates for TBP-DNA binding affinity 

(k3), TBP synthesis (k5), and Hill coefficient (k6) on the steady state of TBP was 

investigated. 
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2.2.2 Steady state solution 

The concentration of each component of the model remains constant at steady state. 

Thus, the equations (2.1-2.4) were equated to zero and solved to obtain a function in 

terms of free TBP (T). Further, the system of 4 equations (2.1-2.4) was reduced to a 

system with 3 equations (2.8-2.10) using the conservation for total TBP binding sites 

(equation 2.5). The equations were non-dimensionalized using [D0] as reference 

concentration and 1/k8 as reference time (equations 2.11-2.13). κi are corresponding 

dimensionless parameters. Analytical expressions for the steady state levels were 

obtained. For a condition of zero basal synthesis of TBP, k0 = 0 Ms-1, the expression for 

critical TBP-DNA binding affinity (κ3_c) and critical TBP-synthesis (κ5_c) was obtained. 

κ3_c and κ5_c represented the values below which there existed only one steady state for 

TBP system. The analysis was performed using Mathematica version 7.0.1.0 (Wolfram 

Research, Champaign, USA). 

2.2.3 Simulations for dimerization effect 

Two systems, one original system with dimerization reaction and other system without 

dimerization reaction, were compared to study the effect of presence of TBP dimer. A 

hypothetical system was considered in which the specific rate for dimerization reaction 

(k1) was set to zero. Removing the reaction for dimerization reduced the total TBP 

concentration by the amount equivalent to TBP dimer. The high-TBP steady state for the 

two systems was considered to be initial condition. The two systems were perturbed by 

decreasing the free TBP concentration by 10% of its steady state concentration. The 

response time, defined as the time required for a system to reach 99% of its steady state 

value was compared. 99% of the steady state level corresponds to 90% of recovery from 

the perturbation. The effect of presence of dimer was studied by varying reaction rate 

parameters, k5 and k7 and TBP binding sites D0 (in range of 10-5 to 10-9M), resulting in 

range of TBP concentration as that observed in different physiological conditions. In 

addition to the numerical analysis, perturbation analysis was performed using analytical 

method. 
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2.3 Results and discussion 

2.3.1 TBP system showed presence of multiple steady states 

At steady state, the concentration of all the components remains constant. The equations 

(2.1-2.4) were solved by equating each to zero. The non-linear function f in terms of 

single variable, free TBP (T) was obtained. 

The function f is given as, 

6 6

6 0 0
8 0 7 5

4 4

3 3

[ ] [ ] [ ] [ ]([ ]) ( [ ] ) 0
[ ] [ ]

k k

k T D T Df T k T k k kk kT T
k k

    
    × ×    = × − × + − × =    + +         

  (2.6) 

When basal TBP synthesis was set to zero, i.e. k0 = 0 Ms-1 the expression is given as, 

( )

6 6

6 0 0
8 7 5

4 4

3 3

[ ] [ ] [ ] [ ]([ ]) [ ] 0
[ ] [ ]

k k

k T D T Df T k T k kk kT T
k k

    
    × ×    = × × + − × =    + +         

   (2.7) 

The equations for steady state concentration of TBP (equations 2.6 and 2.7) were plotted 

against equivalent total TBP concentration to obtain the solutions of the function (f = 0). 

Figure 2-2 shows the graph of function value f against total TBP concentration for the 

two equations 2.6 and 2.7. 
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Figure 2-2 – Graphical solution for TBP steady states 

(a) The function of TBP concentration described by equations 2.6 and 2.7 was plotted against 
corresponding total TBP concentration. (b) Magnified view of the region enclosed in the 
square in 2a. 

 

In the presence of basal TBP synthesis (k0 > 0) only one steady state was observed. 

However, knowing the requirement of TBP for its own synthesis, it was assumed that no 

TBP synthesis occurs in the absence of TBP. Thus basal synthesis rate, k0 was set to zero 

to represent biologically relevant condition. In the absence of basal synthesis, presence of 

three steady states was observed. The concentration of total TBP corresponding to these 

steady states was observed to be 0 M, 2.41*10-9 M, 2.55*10-8 M. These states were 

referred to as a zero-TBP state, a low-TBP state and a high-TBP state respectively. The 

numerical values of non-zero steady states were observed to change with variation in 

parameter values. However, the highest concentration state was referred to as a high-TBP 

state while the other non-zero TBP state was referred to as low-TBP state. From the 

linear stability analysis, it was observed that the low-TBP state was unstable while the 

zero-TBP state and the high-TBP state were stable steady states. The TBP concentration 

for the single steady state observed in the system with basal TBP synthesis (k0 > 0) was 

equivalent to the high-TBP state. The critical value of basal synthesis, k0_c below which 

there were three steady states was found out to be 0.008*k5 i.e. 4*10-15 Ms-1. Conditions 

for multistability with respect to basal TBP synthesis (k0) and Hill co-operativity 
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coefficient (k6) were identified using analytical expression for steady state levels of TBP. 

To identify the conditions for multistability the TBP system was reduced to a system with 

three variables viz., TBP (T), TBP dimer (T2) and TBP-DNA complex (TD) using the 

conservation equation (2.5). 

The differential equations for three-variable system are, 

6

6 6

2 5
1 2 2 3 0 4 8

7

[ ][ ] 2 [ ] 2 [ ] [ ] ([ ] [ ]) [ ] [ ]
[ ]

k

k k
k TDd T k T k T k T D TD k TD k T

dt k TD
×

= − × × + × × − × × − + × + − ×
+

 (2.8)
 

22
1 2 2

[ ] [ ] [ ]d T k T k T
dt

= × − ×         (2.9) 

3 0 4
[ ] [ ] ([ ] [ ]) [ ]d TD k T D TD k TD
dt

= × × − − ×       (2.10) 

The system of three variables (equations 2.8-2.10) was non-dimensionalized using [D0] 

as reference concentration and 1/k8 as reference time. The dimensionless parameters (κ1 

to κ7) are given in Appendix Ib. The non-dimensionalized equations are as follows. 

6

6 6

2 5
1 2 2 3 4

7

[ ][ ] 2 [ ] 2 [ ] [ ] (1 [ ]) [ ] [ ]
[ ]

k

k k
TDd T T T T TD TD T

dt TD
κκ κ κ κ
κ

×
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1 2 2

[ ] [ ] [ ]d T T T
dt

κ κ= × − ×         (2.12) 

3 4
[ ] [ ] (1 [ ]) [ ]d TD T TD TD
dt

κ κ= × × − − ×       (2.13) 

Conditions for existence of multiple steady states were found out by analyzing the 

expression for steady state TBP level. Following conditions were considered for different 

κ0 and κ6 values. The conditions are summarized in Table 2-3. 
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Table 2-3 – Conditions for existence of multiple steady states 

 κ0 = 0 κ0 ≠ 0 

k6 = 2 3 real positive steady states 

(κ5 > 2κ7
2κ4/κ3 and κ7 < 1) 

1  real positive steady state 

(κ0 > κ0_c) 

3 real positive steady states 

(κ0 < κ0_c) 

k6 = 1 2 real positive steady states 

(κ5 > κ7κ4/κ3) 

1 real positive steady state 

(κ0 << κ and κ5 > κ7κ4/κ3) 

 

The details of these conditions are given as follows. 

1. κ0 = 0, k6 = 2 

Three steady states were observed. 

1

2 2 2 2 2
5 7 5 7 5 7

2 2
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+
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Where, κ = κ4/κ3 

It was evident that multiple real, non-negative steady states would exist when κ5> 

2κκ7
2. Simplification of expression for Tss2 led to  

2 2 2 2 2 2
5 7 5 7 7 7

2 2
7

2 ( 2 ) 4 (1 )
2(1 )ssT

κ κκ κ κκ κ κ κ
κ

− − − − −
=

+
 

It was observed that κ7 < 1, would lead to a non-negative steady state. Therefore, in 

this case 3 non-negative real steady states were observed. 
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2. κ0 ≠ 0, κ0 < κ0_c, k6 = 2 

Three steady states were observed. 

3. κ0 = 0, k6 =1 

Two steady states were observed. 

1

5 7
2

7
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1

ss

ss

T

T κ κκ
κ

=
−

=
+

 

The condition, κ5 > κκ7 would result in two real steady states. 

4. κ0 ≠0, k6 = 1 

Two steady states were observed. 

2
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For the conditions κ0 << κ and κ5 > κκ7, the term in the square root (κ0+κ5-κκ7+κ0κ7) 

results in positive term. Simplifying the expression for Tss1, 

2
0 5 7 0 7 0 5 7 0 7 0 7 7

1
7

( ) ( ) 4 (1 )
2(1 )ssT

κ κ κκ κ κ κ κ κκ κ κ κ κ κκ
κ

+ − + − + − + + +
=

+  

This indicated that Tss1 would be the negative steady state and Tss2 would be non-

negative steady state. 
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2.3.2 Minimum amount of initial TBP is required for cell viability 

It was observed that starting from different initial conditions the system reached one of 

the two stable steady states depending upon the initial condition. Figure 2-3 shows a 

phase plane plot of TBP-DNA and free TBP concentration. 

 

 

Figure 2-3 – Phase plane plot of TBP-DNA complex vs. free TBP 

Bistable nature of the system and the requirement of minimum amount of TBP is illustrated 
by the phase plane plot. Depending upon the initial conditions the system reached either of 
the stable steady states. 

 

It was evident that below a certain total TBP concentration all the trajectories led to the 

zero-TBP stable steady state, while above a certain total TBP level system reached to the 

high-TBP steady state. A physiological state resulting in low total TBP concentration of 

lesser than ~0.1 nanomolar will be in the zone of attraction of the zero-TBP state and 

would result in cell death. The model predicted that a certain minimum amount of TBP 

was needed to initially start its own synthesis. This property of positive auto-regulatory 

synthesis explained the reason for observed maternal inheritance of TBP (Edelmann, 
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Zheng et al. 1998) similar to other proteins involved in core processes of gene expression 

(Payer, Saitou et al. 2003; Farley and Ryder 2008).  

In the phase plane plot, the trajectories of TBP-DNA complex and free TBP were 

observed to merge into a line. Relatively fast reaction of TBP-DNA binding compared to 

slow reaction of TBP synthesis and degradation led to such nature of trajectories 

suggesting rapid equilibrium of TBP-DNA complex with free TBP. The line represented 

the pseudo-equilibrium concentrations of TBP-DNA and free TBP. The ratio of the 

concentrations of free TBP and free DNA to TBP-DNA complex ([T]*[D]/[TD]) for 

values corresponding to the straight line region of the trajectories was found to be equal 

to the equilibrium dissociation constant for TBP-DNA binding. 

2.3.3 High-TBP steady state was found to be sensitive to variation in reaction 
parameters 

To examine the sensitivity of steady states to variation in parameters, the steady state 

concentration of TBP was calculated at different values of reaction rate parameters. The 

sensitivity was determined qualitatively and quantitatively. To qualitatively test the 

sensitivity, change in the number of steady states and their stability was examined. For 

quantitative determination of sensitivity the relative change in the value of high-TBP 

steady state to a change in parameter value was calculated. Sensitivity to variation in the 

three parameters viz., specific rate of TBP-DNA binding (k3), TBP synthesis (k5), and the 

Hill coefficient (k6) was examined. 

2.3.3.1 Sensitivity to TBP-DNA binding affinity (k3) 

Figure 2-4 shows a plot of total TBP steady state concentration vs. the specific rate of 

TBP-DNA binding. 
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Figure 2-4 – Bifurcation plot for specific rate of TBP-DNA binding (k3) 

Parameter k3 was varied in simulations. Other parameters values were kept constant at values 
as reported in Table 2-2. 

 

It was observed that for a value of k3 greater than 9.556*104 M-1s-1 three steady states 

existed. However, below the bifurcation value (k3_c) only one stable steady state 

corresponding to zero-TBP state was observed, indicating unviable cells. Thus only for 

the values of k3 above the critical values, k3_c the system could reach either of the stable 

steady states depending upon the initial conditions. At the bifurcation value of k3, the 

high-TBP state and low-TBP state were observed to have the same value. Therefore, 

equating the expressions for the two steady states, analytical expression for the critical 

value of k3 (k3_c) was obtained. 
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Using the parameter values given in Table 2-2, numerical value for k3_c was calculated 

to be 9.58*104 M-1s-1, which was comparable to the value obtained from numerical 

simulations. 

A large variation in sensitivity of high-TBP state to variation in k3 was observed, for 

different conditions tested. Details are given in Appendix Ic. Overall, the high-TBP 

steady state was observed to be sensitive to variation k3. For the reference parameter set 

(Table 2-2), it was observed that for 50% decrease in k3 value there was ~47% reduction 

in the high-TBP steady state concentration. 

Several mutants of TBP with altered DNA binding affinity have been reported (Strubin 

and Struhl 1992). Naturally occurring such mutants are known to be associated with 

cancer and neurodegenerative diseases (van Roon-Mom, Reid et al. 2005; Friedman, 

Wang et al. 2008). The model predicted that the high-TBP steady state was sensitive to 

variation in the binding affinity of TBP to DNA. It indicated that with around 50% 

reduction in the affinity than the physiological value, the system moves to a regime 

where zero-TBP state is the only stable steady state. This suggested that at low affinity of 

TBP for DNA, the cell may not be able to survive irrespective of the initial TBP 

concentration. This prediction has an implication in understanding the role of low DNA 

affinity mutant of TBP in neurodegenerative disease. 

2.3.3.2 Sensitivity to specific rate of TBP synthesis (k5) 

Figure 2-5 shows a plot of total TBP steady state concentration vs. the specific rate of 

TBP synthesis. 
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Figure 2-5 – Bifurcation plot for specific rate of TBP synthesis (k5) 

(a) Parameter k5 was varied in the simulations. Other parameters values were kept constant at 
values as reported in Table 2-2. (b) Magnified view of the region enclosed in the square in 5a. 

 

Similar to the specific rate of TBP-DNA binding affinity, only one stable state 

corresponding to zero-TBP state was observed up to a critical value of TBP synthesis 

(k5_c) of 2.394*10-13 M/s. For the values above this critical value two stable steady states 

corresponding to high-TBP and zero-TBP and a low-TBP unstable steady state were 

observed. At the critical value of k5 the high-TBP and the low-TBP states were observed 

to have same value. Equating the expressions for these two steady states the analytical 

expression for k5_c was obtained. 

( )2 2 2 2 4
5 7 7 7_ 2cκ κκ κ κ κ κ= + +

       (2.15)
 

Using the parameters values the value of k5_c was found to be 2.39*10-13 M/s, same as 

that obtained from numerical simulations. 

The high-TBP steady state was observed to be slightly more sensitive to variation in k5 

than k3. For instance, for 50% reduction in k5 there was ~55% reduction in the high-TBP 

steady state concentration. 
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Both the specific rate of TBP-DNA binding affinity (k3) and TBP synthesis (k5) were 

simultaneously varied to test the effect on the steady states. Figure 2-6 shows the effect of 

variation of two parameters on the number of steady states. The two regions, one 

corresponding to monostable regime of zero-TBP steady state and the other 

corresponding to bistable regime of high-TBP state and zero-TBP state were observed. 

 

Figure 2-6 – Graph showing the effect of simultaneous variation of two reaction rate 
parameters k3 and k5 on the number of steady states of TBP system 

Parameter k3 and k5 was simultaneously varied in simulations. Other parameters values were 
kept constant at values as reported in Table 2-2. 

 

2.3.3.3 Sensitivity to the Hill co-operativity coefficient (k6) 

Similar to the other parameters, the two regimes of monostable state and bistable state 

were observed (Figure 2-7). 
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Figure 2-7 – Bifurcation plot for Hill co-operativity coefficient (k6) 

Parameter k6 was varied in simulations. Other parameters values were kept constant at values 
as reported in Table 2-2. 

 

However, for the value of k6 below 1 there were two steady states corresponding to zero-

TBP state and high-TBP state. In this case the steady state corresponding to high-TBP 

state was observed to be the stable steady state. In contrast to sensitivity to other 

parameters, the high-TBP steady state was observed to be less sensitive to variation in k6. 

For 50% reduction in k6 the value of high-TBP steady state concentration decreased only 

by ~9%. 

2.3.4 TBP dimer can help to buffer the system against perturbations only under 
certain conditions 

It is known that under physiological conditions free TBP exists in dimeric form. Using 

the developed model the role of TBP dimer in buffering the system against transient 

perturbations in TBP level for a range of physiological concentrations of TBP molecules 

and TBP binding sites was explored. From expression 2.6 it was clear that presence or 

absence of dimer does not change the number of steady state in the system. However, the 

total TBP concentration was changed by the amount equivalent to the level of dimer, [T2] 
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= (k1/k2)*[T]ss
2. To investigate the effect of presence of dimer, the original reaction 

system was compared with another system without dimerization reaction. The response 

time of the system with dimer was compared with the system without dimer after a 

transient perturbation of 10% decrease in free TBP level than the high-TBP state 

concentration. In addition to numerical simulations, perturbation analysis was performed 

using analytical method and the ratio of the response time obtained using both the 

methods was observed to be in agreement (correlation coefficient = 0.99). The details of 

analytical perturbation study are given in Appendix Id.  Figure 2-8 shows the graph of 

ratio of response time in the presence of dimer to that in the absence of dimer as a 

function of dimer concentration relative to TBP bound DNA concentration. 

 
Figure 2-8 – The graph of ratio of response time in the presence of dimer to that in the 
absence of dimer vs. the ratio of TBP dimer concentration to TBP-DNA complex concentration 

Unannotated points represent conditions that are not likely to be physiological either in yeast 
or mammalian cell. 
 

It was observed that for certain conditions the ratio was around one indicative of no effect 

of presence of the dimer, while under certain conditions the ratio was observed to be 

much lesser than 1 indicating that the presence of dimer reduced the response time. It was 

observed that for the typical yeast cell condition and a near mammalian physiological 
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condition, the presence of TBP-dimer reduced the ratio of response time. However, for 

typical mammalian physiological condition and near yeast physiological conditions 

presence of dimer did not significantly change the response time. This indicated that the 

dimer did not always help to buffer the system against perturbations. It was observed that 

the relative concentration of TBP dimer and TBP-DNA complex was an important factor 

to determine the response against perturbations. When the relative concentration of TBP-

dimer to TBP-DNA complex was higher, for instance, near physiological conditions for 

mammalian cells, dissociation of dimer helped the system to restore the free TBP steady 

state level. While when the TBP dimer concentration was less than TBP-DNA complex 

concentration, for instance, near physiological conditions for yeast, dissociation of TBP-

DNA complex would help to restore the free TBP steady state level. Hence, in such 

conditions the response time for both the two systems was observed to be almost same. 

From the graph it was observed that when the relative concentration of the dimer was 

high (TBP-dimer/TBP-DNA > 10), presence of dimer helped the system to restore the 

free TBP level. However, when the relative concentration was low (TBP-dimer/TBP-

DNA < 0.01) presence of dimer was not important for to buffer against perturbation. 

Under certain physiological conditions, where the relative concentration was similar, it 

was not observed to be good indicator to determine the response against transient TBP 

perturbation. The dissociation of TBP from DNA is important as it is related to 

deactivation of genes. 

2.4 Conclusion 

In this study, a deterministic kinetic model for auto-regulatory synthesis of TBP was 

developed. A non-linear regulation of TBP bound DNA for TBP synthesis and a negative 

regulation of TBP dimer to control accessibility of TBP to DNA was considered in the 

model. Thus the model contained both the positive and negative regulation of TBP. The 

effect of variation of initial conditions on the steady state of TBP was explored. It was 

observed that a certain minimum amount of TBP was required to reach a physiological 

TBP level. Additionally, the effect of variation of reaction rate parameters was explored. 

It was observed that high-TBP steady state was sensitive to variation in parameters. 

Reduction in specific rate of TBP-DNA binding moved the system from bistable regime 
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to a monostable regime with zero-TBP steady state. This indicated that at low values of 

TBP-DNA binding affinity the cell may not be able to survive irrespective of initial TBP 

level. Using the model, the effect of presence of dimer in buffering the system against 

perturbation was investigated. It was observed that the dimer may not always help to 

buffer against perturbations but the buffering ability was found to be dependent on the 

relative concentrations of TBP dimer and TBP-DNA complex. Using the mathematical 

model, the study provided explanations for certain biological observations and made 

testable predictions. 
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3 Mathematical modeling and analysis of post-
transcriptional regulation by microRNA 
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3.1 Introduction 

RNA molecules are now well known important regulatory factors. After the report by 

Fire, Xu et al (Fire, Xu et al. 1998), small RNA strands have emerged as important 

regulators of gene expression. There are various types of small RNA molecules such as 

small interfering RNA (siRNA), Piwi-interacting RNA (piRNA), and microRNA 

(miRNA), differentiated based on their biogenesis pathway (Ghildiyal and Zamore 2009). 

These different types of RNA molecules interact with their target mRNA to regulate 

protein expression.  

miRNA is one important class of non-coding RNA initially reported in C. elegans by 

Lee, Rhonda et al (Lee, Rhonda et al. 1993). miRNAs are around 21 nucleotide long, 

single stranded RNA molecules (Carthew 2006). Nearly half of the human genome is 

estimated to be regulated by miRNA (Sonenberg and Hinnebusch 2009). It was estimated 

that nearly 1% of the genes in vertebrates code for miRNA (Lim, Glasner et al. 2003). 

These molecules are synthesized either as independent transcripts from microRNA genes 

or from intronic region of protein coding genes. The microRNA molecules derived from 

intronic region are called intronic miRNA. Around 40% of the known miRNA are found 

in the intronic region of genes (Rodriguez, Griffiths-Jones et al. 2004). 

microRNA biogenesis is a multistep process. miRNA genes are generally transcribed by 

RNA polymerase II (Lee, Kim et al. 2004). However, RNA polymerase III is also known 

to transcribe certain miRNA genes (Borchert, Lanier et al. 2006). Transcription of 

miRNA genes results in the synthesis of primary-miRNA (pri-miRNA). The pri-miRNA 

is a double stranded structure containing a hairpin loop. In the nucleus, the pri-miRNA is 

cleaved by microprocessor complex Drosha-DGCR8/Pasha to form a precursor hairpin 

structure called pre-miRNA. The pre-miRNA is exported from the nucleus to the 

cytoplasm by Exportin-5. Once in the cytoplasm, pre-miRNA is cleaved by an RNase 

called Dicer which is in complex with the double stranded RNA binding protein TRBP, 

resulting in miRNA duplex without the loop. Out of the two strands, miRNA strand with 

less stable base pair at its 5’ end is selected while the other strand is degraded.  RNA-

induced silencing complex (RISC) is loaded onto the selected strand resulting in mature 
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functional miRNA (Carthew 2006; Ghildiyal and Zamore 2009; Winter, Jung et al. 

2009). 

The mature miRNA is generally known to bind to 3’ UTR of target mRNA to regulate 

protein synthesis. However, many studies have reported binding to 5’ UTR (Richter 

2008). Different mechanisms have been reported for post-transcriptional regulation by 

miRNA. By binding to the target mRNA, miRNA can repress protein synthesis by 

blocking translation at initiation phase or post-initiation phase by ribosome run-off. The 

miRNP complex can degrade nascent polypeptide resulting in decreased protein level. 

Another mechanism is translocation of mRNA to a translationally inactive cellular 

location called processing body or P-body. miRNA also leads to degradation of target 

mRNA and can catalyze multiple rounds of degradation (Hutvagner and Zamore 2002; 

Pillai, Bhattacharyya et al. 2007; Richter 2008). Due to these mechanisms of action 

miRNA is generally known as repressor of protein expression. However, recently some 

studies have reported unexpected increased target protein expression even in the presence 

of miRNA (Vasudevan, Tong et al. 2007; Ghosh, Soni et al. 2008; Ma, Liu et al. 2010). 

In this study of miRNA mediated post-transcriptional regulation, a comprehensive 

mathematical model of miRNA mediated regulation was developed in order to 

investigate whether the detailed model can explain unintuitive observations of increased 

target protein. Using the model, certain conditions were identified which can result in 

increased target protein level even in the presence of miRNA mediated regulation. In 

addition to the study of effects on the steady state of target protein, the effect of dynamic 

regulation on the target protein was explored. A new method to incorporate intronic 

miRNA mediated regulatory effects into existing mathematical models was developed. In 

addition to its specific application to cell cycle reaction network, universality of the 

method was also examined.  

This chapter is divided into two sections. In section 1, the study of the effect of miRNA 

regulation on steady state target protein is described. In section 2, development of simple 

method to incorporate intronic miRNA regulation into existing mathematical models is 

described. 
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3.2 Section 1: Analysis of the effects of microRNA mediated regulation 
suggested explanations for increased target protein level 

3.2.1 Introduction 

miRNA are generally known as repressors of protein expression. However, in last few 

years some studies have reported unexpected increase in target protein level in the 

presence of miRNA. For instance, miR369-3 was shown to up-regulate translation of 

TNF-α through association with an AU-rich element (Vasudevan, Tong et al. 2007). 

Another study by Ghosh, Soni et al have shown increased target protein expression due to 

binding of miR34 to 3’ UTR of its target actin transcript (Ghosh, Soni et al. 2008). Up-

regulation of IL-10 was reported in the presence of miR4661 due to inhibition of target 

mRNA degradation (Ma, Liu et al. 2010). miR10a was shown to enhance the translation 

of mRNA encoding ribosomal proteins by interacting with their 5’ UTR (Orom, Nielsen 

et al. 2008). The ‘unexpected’ increase in the level of target protein NFIA was attributed 

to the activity of miR223 (Lu, Buchan et al. 2010). These are some experimental studies 

that report increased protein level in the presence of miRNA regulation. However, these 

studies could not identify specific mechanism of the observed unintuitive activating 

effect of miRNA. Previously developed mathematical models of miRNA regulation 

focused on the repressive effect and hence did not include an analysis of activating effect 

of miRNA. In this study a detailed mathematical model of miRNA mediated regulation 

was developed and analysed to identify conditions for observed activating effect of 

miRNA. 

There are several mathematical models of miRNA mediated regulation that consider 

different levels of details of the mechanism. The summary of processes considered in 

different models is given in Table 3-1. mRNA-miRNA binding has been considered as 

either reversible (Khanin and Higham 2007; Levine, Ben Jacob et al. 2007) or 

irreversible (Zhdanov 2008; Vohradsky, Panek et al. 2010; Cuccato, Polynikis et al. 

2011). One of the mechanism of miRNA regulation is translocation of target mRNA into 

a translationally inactive cellular location called P-bodies. This process has been 

considered only in the model by Levine et al (Levine, Ben Jacob et al. 2007) by 

representing mRNA in processed state. Translocation of mRNA to P-bodies has been 
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shown to be reversible. The mRNA can again be brought to the cytoplasm where it can 

be translated actively (Bhattacharyya, Habermacher et al. 2006). However, to our 

knowledge return of mRNA to cytoplasm has not been considered in the previous 

models. Translation by the complex has been modeled as occurring with equal efficiency 

(Levine, Ben Jacob et al. 2007) or unequal efficiency (Khanin and Higham 2007) or zero 

(Zhdanov 2008; Cuccato, Polynikis et al. 2011). The degradation of mRNA has been 

modeled as either an implicit function of miRNA level (Khanin and Higham 2007; 

Levine, Ben Jacob et al. 2007); or explicitly as either a linear function (Zhdanov 2008) or 

hyperbolic function (Vohradsky, Panek et al. 2010) of the miRNA concentration. The 

model by Cuccato, Polynikis et al (Cuccato, Polynikis et al. 2011) considered four 

different mathematical expressions for mRNA degradation, viz., first order, higher order, 

hyperbolic and Hill kinetics. In addition to these generic models of miRNA regulation 

there are several other models that study miRNA regulation in the context of specific 

cellular process, for instance, (Tsang, Zhu et al. 2007; Xie, Yang et al. 2007; Nandi, Vaz 

et al. 2009). 

 
Table 3-1 – Summary of mathematical models of miRNA mediated regulation 

miRNA 
model 
reference 

(Levine, Ben 
Jacob et al. 
2007) 

(Khanin and 
Higham 
2007) 

(Zhdanov 
2008) 

(Vohradsky, 
Panek et al. 
2010) 

(Cuccato, 
Polynikis et 
al. 2011) 

This model 

mRNA 
synthesis 

Unregulated Unregulated Unregulated 
Unregulated 
as well as 
regulated 

Unregulated Unregulated 

miRNA 
synthesis 

Unregulated Unregulated 
Regulated 
by protein 

Unregulated Unregulated 

Unregulated 
as well as 
regulated by 
protein 

mRNA 
miRNA 
binding 

Reversible Reversible Irreversible 

Irreversible 

(Not 
explicitly 
considered) 

Irreversible Reversible 
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Role of P-
body 

By 
considering 
mRNA in 
processed 
state 

Not 
considered 

Not 
considered 

Not 
considered 

Not 
considered 

By 
considering 
complex 
which can 
return 
either mRNA 
or miRNA 

Translation 
by complex 

At the same 
rate as 
mRNA 
translation 

At lower 
rate than 
mRNA 
translation 

No 
translation 

Not 
considered 

Not 
considered 

At lower 
rate than 
mRNA 
translation 

Degradation 
of the 
complex 

At  a rate 
more than  
that of 
mRNA 

At a rate 
more than 
that of 
mRNA 

miRNA 
concentrati
on 
dependent 

miRNA 
concentratio
n dependent 

saturating 
mRNA 
degradation 

miRNA 
concentratio
n dependent 
4 different 
mechanisms 

At a rate 
more than  
that of 
mRNA 

Recovery of 
miRNA 

Not 
considered 

Considered 
Not 
considered 

Not 
considered 

Not 
considered 

Considered 

Recovery of 
mRNA 

Not 
considered 

Not 
considered 

Not 
considered 

Not 
considered 

Not 
considered 

Considered 

 

In this study a detailed model of miRNA regulation was developed to include several 

experimentally reported details of miRNA action. The model included four major steps, 

(1) reversible binding of miRNA and mRNA to form a complex, (2) different 

translational efficiency of free and miRNA bound mRNA (3) catalytic mode of miRNA 

regulation (4) selective (non-stoichiometric) return of mRNA from the complex. Steady 

state analysis was performed to explore the effect of miRNA regulation on the target 

protein level. From the analysis of the model four dimensionless numbers were identified 

by grouping twelve reaction rate parameters that were sufficient to determine the 

regulatory effect of miRNA on target protein. The ranges of the dimensionless numbers 

were identified such that under those conditions miRNA regulation could result in 

increased target protein level. Majority of the experimental findings of increased target 

protein could also be explained in the framework of the model. Stochastic simulations 
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were performed to explore the effect of miRNA regulation on the steady state distribution 

of the target protein. It was observed that the nature of the steady state distribution of 

target protein remained unchanged in the presence of miRNA. In addition to the 

regulatory effect of miRNA, the four dimensionless numbers were observed to be 

sufficient to determine the relative steady state noise in the target protein level. 

3.2.2 Methodology 

3.2.2.1 Model development 

The known biological interactions of mRNA and miRNA were represented as chemical 

reactions. The reaction system used in the model is summarized in Figure 3-1. 

 

 

Figure 3-1 – Reaction system for miRNA mediated post-transcriptional regulation 

Parameters k1 to k10 represent specific rates for reactions. Parameters q1 and q2 are the 
probabilities of free mRNA and free miRNA return from the complex. Solid arrows represent 
conversion reactions and dashed arrows represent catalytic reactions. 

 

Synthesis of mRNA (m) and miRNA (mi) was assumed to be zero order with rates k1 and 

k2 respectively. mRNA and miRNA were considered to bind reversibly to form mRNA-

miRNA complex (mmi). k3 and k4 were specific rates of binding and dissociation. Both 

mRNA and the complex were considered to undergo translation to form protein (p) with 

different efficiencies, k5 and k6 respectively. The complex could selectively return 

mRNA or miRNA with probabilities q1 and q2 respectively. All the four components 

were assumed to undergo first order degradation with specific rates of degradation k7, k8, 
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k9 and k10 for mRNA, miRNA, the complex and protein respectively. The reactions are 

summarized in Table 3-2. 

Reactions of synthesis, degradation and conversion were considered to write mass 

balance of each of the four components. From the reaction system, the mass balance for 

the rate of change of the four components was written as, 

1 3 4 7 1 9
( )d m k k m mi k mmi k m q k mmi
dt

= − × × + × − × + × ×     (3.1) 

2 3 4 8 2 9
( )d mi k k m mi k mmi k mi q k mmi
dt

= − × × + × − × + × ×     (3.2) 

3 4 9
( )d mmi k m mi k mmi k mmi

dt
= × × − × − ×       (3.3) 

5 6 10
( )d p k m k mmi k p
dt

= × + × − ×        (3.4)

The parameter values were taken from a previously developed model for sRNA 

regulation by Shimoni, Friedlander et al (Shimoni, Friedlander et al. 2007), except for k2, 

k6, q1, and q2. The reaction rate constant for miRNA synthesis (k2) was considered to be 5 

times faster than that for mRNA synthesis rather than 50 times as considered for sRNA 

model. The specific rate for translation by mRNA-miRNA complex (k6) was considered 

to be lower than translation by mRNA (k5), but the effect of variation of this parameter 

was studied by varying the value in wide range including higher values. The values of 

parameters q1 and q2 were assumed such that q1 + q2 ≤ 1. The reference parameter values 

are listed in Table 3-2. 

 

Table 3-2 – Reactions, corresponding rate expression and parameter values for the 
mathematical model of miRNA mediated regulation 

Reaction Rate equation Parameter Value 

mRNA synthesis φ → m k1 k1 = 0.02 (molecule/sec) 

miRNA synthesis φ → mi k2 k2 = 0.1 (molecule/sec) 
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mRNA-miRNA binding m + mi → mmi k3 ×m× mi k3 = 1 (molecule-1sec-1) 

complex dissociation mmi → m + mi k4 × mmi k4 = 0.02 (sec-1) 

Translation by mRNA φ → p k5 × m k5 = 0.01 (sec-1) 

Translation by the complex φ → p k6 × mmi k6 = 0.001 (sec-1) 

mRNA degradation m → φ k7 × m  k7 = 0.002 (sec-1) 

miRNA degradation mi → φ k8 × mi k8 = 0.0025 (sec-1) 

Complex degradation mmi → φ k9 × mmi k9 = 0.002 (sec-1) 

Protein degradation p → φ k10 × p k10 = 0.001 (sec-1) 

mRNA returning to cytoplasm mmi → m q1 ×k9 × mmi q1= 0.2 

miRNA returning to 
cytoplasm 

mmi → mi q2×k9 × mmi q2 = 0.4 

 

3.2.2.2 Steady state analysis 

The equations (equations 3.1-3.4) were non-dimensionalized using 1/k7 as reference time 

and k1/k7 as reference concentration. Parameters κi are corresponding non-dimensional 

parameters listed in Table 3-3. 

 

Table 3-3 – Non-dimensionalized parameters for the mathematical model of miRNA mediated 
regulation 

Parameter with dimension Dimensionless parameter 

mRNA synthesis 

 k1 (molecule/sec) 

1
1

1 7
7

1
1

k
k k

k

κ = × =  

miRNA synthesis 

 k2 (molecule/sec) 

2
2

1 7
7

1k
k k

k

κ = ×  

mRNA-miRNA binding 

 k3 (molecule-1sec-1) 
1

3 3
7 7

1kk
k k

κ = × ×  
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complex dissociation 

k4 (sec-1) 

4
4

7

k
k

κ =  

Translation by mRNA 

k5 (sec-1) 

5
5

7

k
k

κ =  

Translation by the complex 

k6 (sec-1) 

6
6

7

k
k

κ =  

mRNA degradation 

k7 (sec-1) 

7
7

7

1k
k

κ = =  

miRNA degradation 

k8 (sec-1) 

8
8

7

k
k

κ =  

Complex degradation 

k9 (sec-1) 

9
9

7

k
k

κ =  

Protein degradation 

k10 (sec-1) 

10
10

7

k
k

κ =  

 

At steady state as the rate of change of component level with respect to time is zero, the 

four equations (equations 3.1 to 3.4) were equated to zero. The expressions for steady 

state level of the four components were obtained by solving the set of non-linear 

equations. The steady state analysis was performed using Mathematica version 7.0.1.0 

(Wolfram Research, Champaign, USA). Through the steady state analysis four 

dimensionless numbers (a, b, c, and d) were obtained by grouping twelve reaction rate 

parameters. The ratio (r) of the steady state level of protein in the presence of miRNA to 

that in the absence of miRNA was obtained as a measure of regulatory effect of miRNA. 

The protein ratio values were calculated for ranges of the dimensionless numbers a, b, c, 

and d using Matlab version 7.6.0.324 (The Mathworks, Natick, USA). All the 

dimensionless numbers were varied in a wide range to include both higher and lower 

values than the typical reported physiological value. 
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3.2.2.3 Stochastic simulations 

To examine the effect of presence of miRNA on the steady state distribution of target 

protein exact stochastic simulations were performed using Gillespie algorithm (Gillespie 

1976). For the simulations reaction rate parameters were varied in combinations of k3-k8 

or k1-k2-k3 or k1-k2-k8 or k5-k6 in order to keep the values of the dimensionless number 

constant which in turn results in constant protein ratio (r).  One such set contains 23 

parameter combinations. Three to four such sets were simulated for each r value by 

varying dimensionless numbers and hence the reaction rate parameters, ensuring that 

each of the dimensionless number was varied. The details of the parameter combinations 

are given in Appendix IIa. Simulations were performed for 5 different ratio values for 

final time of 50000 seconds. Initial conditions were set to the corresponding deterministic 

steady state for each of the parameter combinations. Sample of 100000 simulation runs 

was generated to obtain statistics. Coefficient of variation (CV), referred here as noise, 

defined as ratio of standard deviation to mean of the population (σ/μ) was calculated for 

each parameter combination. 

3.2.3 Results and discussion 

3.2.3.1 Regulatory effect of miRNA can be determined using four dimensionless 
numbers 

At steady state the concentration of components remains constant. Thus each of the 

equations 3.1 – 3.4 was equated to zero and the set of non-linear equations was solved 

analytically to obtain the expressions for steady state levels of the four components.  

The steady state expression in terms of dimensionless parameters for free mRNA in the 

presence of miRNA is given as, 

2

2
1 1 2

ss mirm
χ χ δ

− =
+ + + +

        (3.5) 

Where, 3 9 2 1 2

8 4 9

( (1 ) 1(1 ))
( )

q qκ κ κχ
κ κ κ

− − −
=

+
and 3 9 2 1 2

8 4 9

( (1 ) 1(1 ))
( )

q qκ κ κδ
κ κ κ

− + −
=

+
  (3.6) 
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The reaction rate parameters were arranged into three dimensionless numbers. These 

numbers are given as, 

2 1(1 )a qκ= − , 2(1 )b q= − , 3 9

8 4 9( )
c κ κ

κ κ κ
=

+
      (3.7) 

From the model equation (3.3), the steady state expression for mmi was obtained, 

3

4 9
ss mir ss mir ss mirmmi m miκ

κ κ− − −

 
= × × + 

      (3.8) 

Using the expression for steady state of mmi and model equation (3.2), the expression for 

steady state of mi is given as, 

2

3 3
3 4 8 2 9

4 9 4 9

ss mir

ss mir ss mir ss mir

mi
m m q m

κ
κ κκ κ κ κ

κ κ κ κ

−

− − −

=
   

× − × + − ×   + +   

  (3.9) 

Using the expressions (3.8) and (3.9) and model equation (3.4), the expression for steady 

state target protein in the presence of miRNA is given as, 

3
5 6

4 9

10

ss mir ss mir ss mir

ss mir

m m mi
p

κκ κ
κ κ

κ

− − −

−

 
× + × × + =      (3.10) 

The expression was simplified to obtain the steady state expression for protein in terms of 

reaction rate parameters, 

2 3 6
5

3 9 2
8 4 9

10

22 2 (1 )( )
1

(1 )ss mir

q

P

κ κ κκ κ κκ κ κ
γ χ

κ γ χ−

+
−

+ +
+ +=

+ +
      (3.11) 

Where, 
2 2 2

3 9 2 1 2 2 3 9 2 1 2 2
2 2

8 4 9 8 4 9

( 1 ) 2 ( 1 )1
( ) ( )

q q q qκ κ κ κ κ κ κ κγ
κ κ κ κ κ κ

− − + + − −
= + +

+ +
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The parameters γ and χ can be expressed in terms of the three dimensionless numbers as, 

2 21 ( ) 2 ( )c a b c a bγ = + − + + and, ( )c a bχ = −      (3.12) 

The expression (3.11) was simplified using the dimensionless numbers and rearranged to 

give the simplified expression for steady state level of protein in the presence of miRNA, 

5 2 6

10 9 10

2 2  
(1 ) (2 1 )ss mir

cP
bc

κ κ κ
κ γ χ κ κ γ χ− = +

+ + + + +
     (3.13) 

In the absence of miRNA, the steady state protein level would depend upon the synthesis, 

degradation of protein and the steady state of mRNA. Therefore, the protein level in the 

absence of miRNA can be given as, 5 1

10 7

.k k
k k

, where the term 1

7

k
k represents the steady 

state level of mRNA. In terms of dimensionless parameters the steady state level of 

protein in the absence of miRNA is given as, 

5

10
ssP κ

κ
=           (3.14) 

The regulatory action of miRNA was defined as the ratio (r) of steady state level of 

protein in the presence of miRNA to that in the absence of miRNA. Therefore, from 

expression (3.13) and (3.14) the ratio is given as, 

2 6

9 5

22
1 (2 1 )

ss mir

ss

P cr
P bc

κ κ
γ χ κ κ γ χ

− ×
= = +

+ + + + +
      (3.15) 

The fourth dimensionless number was defined as, 

2 6

9 5

d κ κ
κ κ

=           (3.16) 

Thus the 12 reaction rate parameters were grouped into four dimensionless numbers a, b, 

c, and d. Therefore, the ratio was expressed in terms of these four dimensionless number 

as, 
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2 2
1 2 1

ss mir

ss

P cdr
P bcγ χ γ χ
−= = +

+ + + + +
      (3.17) 

From the expression for ratio (equation 3.17) it was evident that only the values of these 

four dimensionless numbers and not the individual reaction rate parameters were 

important in determining the relative change in the steady state level of target protein. 

Therefore, the four dimensionless numbers were found to be sufficient to determine the 

regulatory action of miRNA regulation. From equations (3.7) and (3.16), it was clear that 

different combinations of reaction rate parameters can result in the same values of the 

dimensionless numbers, and therefore lead to the same value of the ratio. Change in 

multiple reaction rate parameters thus may not always lead to change in the observed 

regulatory effect. A change in a parameter can compensate for change in other parameter 

resulting in the same protein ratio value. Additionally, similar regulatory effect can be 

obtained by controlling different reactions. The effect of simultaneous change in multiple 

parameters values can thus be predicted using the dimensionless numbers. 

All the four dimensionless numbers could not be explained in terms of the ratios of 

simple physical processes. The dimensionless number a can be interpreted as a measure 

of relative synthesis rate of miRNA and mRNA. b can be considered as a fraction of 

miRNA in P-body that is not returned. The dimensionless number d can be interpreted as 

a combined measure of relative translational efficiency and relative stability of the 

complex and free mRNA. 

3.2.3.2 Identification of conditions for ‘unexpected’ activating effects of miRNA 

From equation 3.17, it was clear that value of r lesser than 1 would indicate lesser level 

of target protein in the presence of miRNA than that observed in the absence of miRNA. 

Therefore, r < 1 indicated the commonly observed repressive effect of miRNA. The value 

of r equal to one would indicate equal level of target protein level, suggesting no effect of 

miRNA. The condition r > 1 indicated higher level of target protein in the presence of 

miRNA, which has been reported in some recent experimental studies. Therefore, the 

expression for the ratio of steady state protein levels (equation 3.17) was analysed for 

different limiting cases of the dimensionless numbers to find out conditions where r > 1, 
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i.e. the steady state level of protein in the presence of miRNA was higher than that in the 

absence of miRNA. These conditions are summarized in Table 3-4. 

1. c = 0, k9 ≠ 0 

The value of c can be zero when k3 is zero and/or k8 or k4 have very large value. 

Under these conditions, from equations (3.12) and (3.17), the ratio r reduced to 1 

indicating equal steady state level of protein even in the presence of miRNA. 

2. c = 0, k9 = 0 

Under the condition, d is undefined. Therefore the expression for steady state protein 

level in the presence of miRNA was obtained by using equation (3.11). 

9

5 2 3 6
0

10 8 4 10

|ss mirP κ
κ κ κ κ
κ κ κ κ− = = +

        (3.18) 

Using the above expression (equation 3.18) and equation (3.14) the expression for 

ratio was calculated. 

9

2 3 6
0

8 4 5

| 1r κ
κ κ κ
κ κ κ= = +

         (3.19) 

The expression indicated that under the condition of k9 = 0, the protein level in the 

presence of miRNA is higher than that in the absence of miRNA.  

3. a = 0 

This case would be valid at k2 ~ 0 or q1~1 which means very low miRNA synthesis or 

near complete return of mRNA. The expression for the ratio is given as 

0| 1
1a
dcr

c= = +
+          (3.20) 
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Under this condition the protein level in the presence of miRNA would be more than 

that in the absence of miRNA but it would reach to a certain maximum value (1+d). 

4. b = 0 

The ratio of proteins is given as 

( )0
1| 1

1br dc
ac=

 = + + 
 

The above condition would be valid when q2~1, implying complete return of miRNA. 

In this condition, the steady state protein level in the presence of miRNA can be 

lower, equal or higher than that in the absence of miRNA depending upon the values 

of k2 and c. 

 
Table 3-4 – Limiting conditions of dimensionless numbers resulting in lower, equal or higher 
target protein level 

c = 0 
a = 0 (b = 1) b = 0 (a = k2) 

k9 ≠ 0 k9 = 0 

1r =  

Equal protein 

2 3 6

8 4 5

1r κ κ κ
κ κ κ

= +  

Equal or higher protein 

1
1
dcr

c
= +

+  

Equal or higher protein 

( )1 1
1

r dc
ac

 = + + 
 

Lower, equal or higher protein 

In addition to the limiting conditions, the effect of variation of the values of the 

dimensionless numbers on the steady state of target protein was examined. Figure 3-2 

shows log10(r) value as a function of the dimensionless numbers. 
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Figure 3-2 – Regulatory effect of miRNA as a function of four dimensionless numbers 

(a) log10(r) is plotted as a function of a, b, and d at three different values of c. (b) log10(r) is 
plotted as a function of a, c, and d at three different values of b. Physiological normal 
condition (a = 4, b = 0.6, c = 363.64, and d = 0.5) are indicated by asterisks (*). 

 

The red region in the Figure 3-2 indicated a region where the ratio was lesser than 1. 

Yellow region indicated the parameter region where miRNA had no effect and the green 

region indicated parameter region, where the level of target protein is higher in the 

presence of miRNA. It was observed that the ratio was sensitive to variation in d over a 

wide range. The ratio was sensitive to variation in a and c in a low value range. It was not 

observed to be sensitive to variation in b. The values of the four dimensionless numbers 

a, b, c, and d for the typical set of parameter values (Table 3-2) were 4, 0.6, 363.54, and 

0.5 respectively. It was observed that for these values, the ratio was less than 1, consistent 

with the commonly observed repressive effect of miRNA on a target protein. From 

Figure 3-2, values of dimensionless numbers can be obtained that can result in a 

particular value of protein ratio. An iso-surface can be drawn which will predict the 

combinations of the dimensionless numbers corresponding to the selected ratio value.  
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For the conditions where the steady state level of target protein remained same or 

increased in the presence of miRNA, the dynamics of the systems was studied. For 

instance, under the condition, k9 equal to zero, the steady state protein level remained 

same in the presence of miRNA. Time course simulation was performed to find out the 

effect of miRNA mediated regulation on the dynamics of target protein. Figure 3-3 shows 

the time course profile of target protein in the presence and absence of miRNA. It was 

observed that, as predicted the same steady state was reached however the steady state 

was reached much later in the presence of miRNA (Figure 3-3). Such effect on dynamics 

of target protein could be important in the cellular context. 

 

 

Figure 3-3 – Effect of miRNA regulation on the transient of target protein resulting in the same 
steady state level 

Parameters – k9 = 0, k6 = 0, other parameter values as stated in Table 3.2; Initial condition – All 
components at zero level. 

 

Experimental observations of increased target protein level were analysed in the 

framework of the model. miRNA are known to bind to the 3’ UTR of the target mRNA. 

The 3’ UTR contains AU rich elements (ARE), which are generally known to be signals 

for mRNA degradation (Vasudevan, Tong et al. 2008; von Roretz and Gallouzi 2008). In 

certain cases miRNA can bind near to the ARE thereby masking the degradation signal in 
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turn protecting target mRNA from degradation (Vasudevan, Tong et al. 2008). In a study 

by Ma, Liu et al, it was observed that miR-4661 binds to ARE of IL-10 mRNA and 

prevents binding of RNA binding proteins required for degradation, resulting in 

protection of IL-10 mRNA (Ma, Liu et al. 2010). In case of the model, it can be 

interpreted as a decrease in the reaction rate parameter for mmi degradation, k9. The 

limiting case, k9 equal to zero was shown to be sufficient for equal or higher target 

protein level. Decrease in k9 results in increase in d and decrease in c, both of which have 

been shown in the model to lead to increase in the target protein level. Such information 

about the target site in 3’UTR and the regulatory effect of miRNA is useful for 

bioinformatics studies related to miRNA target site prediction to predict the potential 

effect of miRNA having a particular target site. 

Increased translational efficiency was another suggested mechanism of miRNA mediated 

up-regulation (Jopling, Yi et al. 2005; Ghosh, Soni et al. 2008; Orom, Nielsen et al. 2008; 

Jangra, Yi et al. 2010). In the model, this can be represented as increased translation by 

complex, k6. Increase in k6 leads to increase in d and hence the target protein 

concentration increases. In a study by Mortensen et al (Mortensen, Serra et al. 2011), 

activation of translation was observed in response to regulation by xlmiR16. The study 

also reported that the level of total mRNA remained unchanged. The authors stated that 

the probable mechanisms, such as increased mRNA stability or increased translation, 

could not be determined. The observed condition was analysed in the framework of the 

model. 

The condition of equal total mRNA both in the presence and absence of miRNA can be 

represented as, 

ss ss mir ss mirm m mmi− −= +         (3.21) 

Protein ratio is, 

5 6

5

ss mir ss mir ss mir

ss ss

P m mmir
P m

κ κ
κ

− − −× + ×
= =

×
      (3.22) 
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Substituting the value of mss from equation (3.21) in equation (3.22), 

5 6

5 5

ss mir ss mir ss mir

ss ss mir ss mir

P m mmir
P m mmi

κ κ
κ κ

− − −

− −

× + ×
= =

× + ×
      (3.23) 

Therefore, to satisfy the condition of translational activation with same total mRNA level, 

k6 must be greater than k5. Thus from the analysis, it was identified that increased 

translation by the complex, and not increased mRNA stability can justify the observation 

of increased target protein level. 

Thus, a majority of the experimental observations of increased target protein level were 

explained in terms of the model framework. The model developed in this study contained 

many of the known biological details of miRNA regulation such as different translational 

efficiency of mmi complex, selective return of mRNA, that are not considered in the 

previous mathematical models. However, there are certain limitations to the model. 

Though selective return from P-body was considered, a separate P-body compartment 

was not considered in the model. Additionally, separate intra P-body reactions of mRNA, 

miRNA and the complex were not included due to lack of knowledge about their 

interactions and state in the P-body. The rate of mRNA or miRNA return was linked to 

the rate of complex degradation in the model. However, this relationship did not allow 

return of either component in the absence of complex degradation. Some modifications 

are possible to improve the model. 

3.2.3.3 Relative noise can also be determined using four dimensionless numbers 

To examine the effect of miRNA mediated regulation on the steady state distribution of 

target protein stochastic simulations were performed. In the stochastic simulations, 

reaction rate parameters were varied by keeping the value of dimensionless numbers the 

same, as stated in the Methodology section. It ensured the same ratio (r) of protein levels. 

It was observed that the mean of the stochastic simulations remain unchanged for the 

same set of dimensionless numbers, irrespective of the values of reaction rate parameters. 

Interestingly, the relative noise was also observed to be unchanged for a particular set of 

dimensionless numbers, indicating that the four dimensionless numbers could determine 

the relative noise in the steady state protein level. Additionally, it was observed that the 



62 
 

parameter k10 did not appear in any dimensionless number. This indicated that changes in 

the stability of the protein will not affect either the relative mean or the relative noise 

level of the steady state target protein distribution. 

The mean of the means and the noise values calculated from the simulations is shown in 

Figure 3-4 as a graph of log10(noise ratio) vs. log10(protein ratio). A linear relationship of 

noise ratio (nr) and protein ratio (r) was observed. The relative noise was observed to 

decrease with increase in the protein ratio. The relation between the noise ratio (nr) and 

the ratio (r) can be given as nr = r-0.2 with correlation coefficient of 0.92. Such a result is 

expected from one-parameter distribution like Poisson distribution. However, in case of 

Poisson distribution, the log plot of the data would show a linear relationship with slope  

-0.5, as shown by dashed line in Figure 3-4. From the graph it was clear that the steady 

state distribution is not Poisson, though the exact nature could not be identified. 

 

 

Figure 3-4 – Variation of relative noise with relative mean 

The error bars show standard deviation. The solid red line shows a linear fit with slope -0.2. 
The dashed blue line has slope -0.5, an expected fit for a Poisson distribution. 

To identify whether miRNA regulation changed the nature of the steady state distribution 

of target protein, the steady state distributions of target protein in the presence and 

absence of miRNA were qualitatively compared using Quantile-quantile plot (Q-Q plot). 
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Figure 3-5 shows a Q-Q plot of steady state distribution of target protein in the absence of 

miRNA vs. that in the presence of miRNA. A comparison of the target protein 

distribution with and without miRNA regulation showed that the nature of the 

distribution remained unchanged. 

 

Figure 3-5 – Q-Q plot of the steady state protein distribution in the absence of miRNA vs. that 
in the presence of miRNA 

 

3.2.4 Conclusion 

The study illustrated development of detailed model of miRNA regulation. The 

previously developed mathematical models were extended to include known details of 

regulation such as different translational efficiencies of free and bound mRNA, selective 

return of mRNA or miRNA. Using the steady state analysis, quantitative criteria for 

regulatory effect of miRNA were identified in terms of four dimensionless numbers 

obtained from twelve reaction rate parameters, thus showing the utility of dimensionless 

numbers in the analysis of biological systems. It is possible to obtain another set of 

dimensionless numbers that can lead to same or better insights in the process. Using the 

developed model, the unexpected experimental observations of increased target protein 

level could be explained just on the basis of the known facts about the regulation without 
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incorporating additional regulatory processes. The effect of miRNA regulation on the 

steady state distribution of target protein was explored. The nature of distribution of 

target protein was observed to remain unchanged in the presence of miRNA. It was 

observed that the four dimensionless numbers were sufficient to determine the relative 

noise level in the target protein. Additionally, protein stability was not observed to affect 

either the relative steady state or the relative noise. 

Using the model certain falsifiable predictions about the exact mechanism for observed 

experimental increased protein level, the effect of protein degradation rate on the relative 

noise level, and steady state distribution of target protein were made. These predictions 

can be experimentally tested which will lead to better understanding of one of the 

important mode of regulation. 

3.3 Section 2 – Development of a simple method to incorporate intronic 
miRNA mediated regulatory effects into existing mathematical 
models 

3.3.1 Introduction 

In addition to the effects on the steady state level, the effects on the dynamics of target 

protein are important in all cellular processes. The discovery of the first miRNA lin-4 

was from the observation of C. elegans mutants that failed to show the ability to control 

the timing of specific post-embryonic developmental events (Lee, Rhonda et al. 1993). 

miRNA are now known as crucial regulatory players in majority of processes such as 

differentiation (Carrington and Ambros 2003),  development of organisms (Alvarez-

Garcia and Miska 2005), and cell cycle (Norbury and Nurse 1992; Vasudevan, Tong et 

al. 2008), where temporal regulation of reaction network is necessary.  For the processes 

where the molecular circuits have to be sequentially activated and deactivated, the 

regulation also needs to be dynamic. One class of miRNA called intronic miRNA, has a 

unique positional advantage for dynamic regulation. It has been experimentally shown 

that many of the intronic miRNA are expressed along with their host genes (Rodriguez, 

Griffiths-Jones et al. 2004; Baskerville and Bartel 2005; Liu, Papagiannakopoulos et al. 

2007). The synthesis of intronic miRNA is synchronized with that of the host gene. 

Therefore, the expression of the target protein can be fine tuned by simultaneously 
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turning down the expression of antagonistically functioning genes (Ying and Lin 2004; 

Barik 2008) as the host mRNA synthesis begins. Hence it is important to study intronic 

miRNA mediated regulatory effects on the dynamics of cellular processes. 

As described in the section 1, there are several mathematical models that study the effect 

of miRNA mediated regulation on target protein dynamics (Khanin and Vinciotti 2008; 

Zhdanov 2009). These models are generic models of miRNA regulation that are not 

specific for particular process, additionally these models do not specifically focus on 

intronic miRNA. In addition to the generic model there are some models that study the 

effect of miRNA in specific cellular processes (Xie, Yang et al. 2007; Aguda, Kim et al. 

2008; Nandi, Vaz et al. 2009; Wei, Yan et al. 2011). These models extend the existing 

models for the particular process by adding a minimum of one component (miRNA) and 

one reaction to incorporate miRNA effect. However, such addition results in changes in 

the network connectivity and stoichiometry. 

Knowing the co-expression of intronic miRNA with the host gene, it was hypothesized 

that the use of a host protein as a proxy for intronic miRNA might be an effective and 

simpler way to incorporate the dynamic regulatory effects. This method is easy to 

implement as the network connectivity remains unchanged. To test the efficacy of this 

method, regulatory effects of intronic miRNA were incorporated into a mathematical 

model of cell cycle reaction network. Cell cycle is one such process having several genes 

that are regulated by intronic miRNA or are host genes for intronic miRNA. Some 

examples of intronic miRNA active in cell cycle are listed in Table 3-5. 

 
Table 3-5 – Examples of intronic miRNA active in cell cycle 

miRNA Target System Studied Reference 

hsa-let-7f RAS In lung tumors (Johnson, Grosshans et al. 2005) 

hsa-let-7f MYC In lymphoma cells (Chang, Yu et al. 2007) 

hsa-miR-
106b-25 

E2F1-3 
Impair TGF beta-dependent cell 
cycle arrest and apoptosis in gastric 
cancer 

(Petrocca, Visone et al. 2008) 
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hsa-miR-
106b 

p21 
In human mammary epithelial cells 
controls cell cycle progression 

(Ivanovska, Ball et al. 2008) 

hsa-miR-133 RHOA controls cardiac hypertrophy (Carè, Catalucci et al. 2007) 

hsa-miR-214 PTEN in human ovarian cancer (Yang, Kong et al. 2008) 

hsa-miR-93 E2F1-3 
impair TGF beta-dependent cell 
cycle arrest and apoptosis in gastric 
cancer 

(Diaz, Silva et al. 2008) 

 

There are several mathematical models for cell cycle (Novak and Tyson 1997; 

Obeyesekere, Knudsen et al. 1997; Hamada, Tashima et al. 2009; Ferrell Jr, Tsai et al. 

2011). These models consider the major cyclin-CDK reaction network in cell cycle 

progression and focus on protein based regulation such as regulation by transcription 

factors and post-translational regulation. Therefore, addition of RNA mediated regulation 

can improve the model performance. In this study the generic model of cell cycle 

developed by Tyson group (Novak and Tyson 2004) was modified to include regulatory 

effect by intronic miRNA hsa-miR-25 using host protein as proxy for miRNA, on two 

target proteins. It was observed that such incorporation improved that model performance 

as the predictions of the modified model were closer to the experimental observations. 

To examine the universality of the method, miRNA mediated regulation was compared 

with analogous protein mediated post-transcriptional regulation. In addition to these 

regulatory motifs without feedback, the two types of regulation were compared in the 

presence of positive and negative feedback. It was observed that the target protein 

profiles were similar in majority of the conditions for the two types of regulation, 

indicating the generic nature of the method. 

3.3.2 Methodology 

3.3.2.1 Incorporation of hsa-miR-25 in cell cycle model 

The model for cell cycle developed by Tyson group (Novak and Tyson 2004) was used to 

incorporate the effects of intronic miRNA mediated regulation. The model contained a 

protein component called TFB. The gene of which is a host gene for intronic miRNA hsa-
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miR-25. The reaction network model also contained two protein targets of the intronic 

miRNA, viz., TFE and cdc14. The expression pattern of intronic miRNA hsa-miR-25 was 

reported to be similar to that of the host gene, MCM7 (Rodriguez, Griffiths-Jones et al. 

2004; Liu, Papagiannakopoulos et al. 2007; Petrocca, Visone et al. 2008), referred to as 

TFB in the model. Therefore, the protein product of the host gene TFB was used as a 

proxy for intronic miRNA levels. The regulation was modeled as host protein 

concentration dependent reduction in the target protein production rate. The rate 

expression for target protein synthesis was modified by using a term similar to 

competitive inhibition kinetics such that the rate would depend upon host protein level 

implying dependency on intronic miRNA levels. 

[ ]1 Host

Rate without miRNA effectRate with miRNA effect= Protein
km

+
    (3.24) 

Hence to represent the dynamic concentration dependent repressive action of the intronic 

miRNA, following multiplicative term was included in the rate expression. 

1
[ ]1 TFB

km
+

where, km is a constant representing repressive action. 

The rate expressions for synthesis of target proteins cdc14 and TFE in the basal model of 

cell cycle were modified to include the miRNA effect as follows. 

For target protein cdc14, 

1

[ ]1

Rate expression for cdc14 synthesis with miRNA effect
Rate expression for cdc14 used in Tyson model= TFB

km
+

    (3.25) 

For target protein TFE, 
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2

[ ]1

Rate expression for TFE synthesis with miRNA effect
Rate expression for TFE used in Tyson model= TFB

km
+

    (3.26) 

For large values of km1 compared to TFB, the expression for rate of cdc14 synthesis 

(equation 3.25) reduces to the form used in original Tyson model. Similarly for large 

values of km2 (km2 >> TFB), expression (3.26) reduces to the one used in Tyson model. 

The response of the system to the incorporated inhibitory effects of miRNA was 

evaluated by performing the time course simulations for varying values of km1 and km2 

in range of 10-3 to 103. All the other parameter values and initial conditions were used as 

given in the Tyson model. The time course profiles of the components in the original and 

modified model were compared to study the effects of miRNA regulation. Since 

quantitative data was available only for cyclins, the predictions of both the original and 

modified models were compared with experimental observations for cyclin A, B and E. 

For other components the predictions of the modified model and the unmodified model 

were compared only to each other. 

3.3.2.2 Model for incorporation of intronic miRNA regulation through host 
protein 

To compare the effect of miRNA mediated regulation and protein mediated regulation on 

the target protein dynamics, a miRNA system identical to that considered for sRNA 

(Shimoni, Friedlander et al. 2007) was considered. The model contained four components 

viz., mRNA (m), miRNA (mi), mRNA-miRNA complex (mmi), and protein (p). The 

model includes zero order synthesis of mRNA and miRNA with specific rates of 

synthesis k1 and k2 respectively. Binding of mRNA and miRNA was considered to be 

reversible with k3 as specific rate of binding and k4 as specific rate of dissociation. 

Protein synthesis (k5) was considered to be first order with the rate proportional to free 

mRNA. Degradation of all the four components was considered to be first order with 

specific rates of degradation k7, k8, k9 and k10 for mRNA, miRNA, mRNA-miRNA 

complex, and protein, respectively. Considering synthesis, degradation, and conversion 

reactions, the differential equations for the four components are, 
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1 3 4 7
( )d m k k m mi k mmi k m
dt

= − × × + × − ×       (3.27) 

2 3 4 8
( )d mi k k m mi k mmi k mi
dt

= − × × + × − ×       (3.28) 

3 4 9
( )d mmi k m mi k mmi k mmi

dt
= × × − × − ×       (3.29) 

5 10
( )d p k m k p
dt

= × − ×         (3.30) 

Parameter values same as that given in the Shimoni, Friedlander et al model; were used 

for simulations. The differential equations were solved numerically to obtain the target 

protein profiles. 

To compare the effect of intronic miRNA mediated regulation and host protein mediated 

regulation on the target protein dynamics in a generic reaction network, two reaction 

systems were formulated. Figure 3-6 shows the intronic miRNA mediated regulation 

(Figure 3-6a) and host protein mediated regulation (Figure 3-6b). 

 

Figure 3-6 – Intronic miRNA and host protein mediated regulatory motifs 

(a) Unregulated intronic miRNA mediated regulation (b) and host protein mediated inhibition. 
Inhibitory action of miRNA is modeled by equations 3.27-3.30 and corresponding protein 
mediated inhibition is modeled by equation 3.31. 

 

In case of intronic miRNA mediated regulation the value of specific rate of miRNA 

synthesis was considered to be the same as that of the host mRNA synthesis i.e. k1 = k2. 
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To incorporate host protein mediated inhibition, a terms similar to competitive inhibition 

was used in the rate expression for target protein. 

_ [ ]
[ ]1

Target

Host

i

k syntheis mRNA
Rate of Protein synthesis= Protein

k

×

+
    (3.31)

 

Where, ki is a constant representing the repressive action of the host protein. In this case 

the value of ki was set in order to get almost the same steady state value of target protein 

as that obtained by miRNA regulation.  Starting with different initial conditions, 

dynamics of the target protein in both the systems was compared. 

3.3.2.3 Model for miRNA mediated auto-regulatory loop 

In addition to comparison of simple miRNA and protein mediated regulation, these two 

types of regulatory modes were compared in the presence of positive and negative 

feedback loops (Figure 3-7). In this case, regulation by a general miRNA and analogous 

post-transcriptional regulation by a protein were compared. Figure 3-7a shows miRNA 

mediated positive and negative feedback regulation motifs. Target protein negatively 

regulating miRNA indicates miRNA mediated positive feedback regulation while, target 

protein positively regulating miRNA indicated negative feedback regulation. Figure 3-7b 

shows protein mediated positive and negative feedback regulation. 

 

Figure 3-7 – miRNA and protein mediated regulation in the presence of feedback regulation 

Comparison of (a) miRNA mediated (b) and protein mediated regulation as components of 
negative and positive feedback networks. Target protein effect on miRNA synthesis in (a) is 
modeled using equations 3.32 and 3.33; and on its own synthesis in (b) using equations 3.34 
and 3.35. 
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To represent the regulation by target protein, the rate expression for miRNA synthesis 

reaction was modified by incorporating target protein concentration dependent synthesis 

term. For negative auto-regulation where the target protein positively regulates miRNA 

synthesis the rate expression was modified as, 

( )2 _ max 2
[ ]

[ ]2
pRate of miRNA synthesis=k + k k

kp p
−

+
     (3.32) 

In this case the minimum (basal) rate of miRNA synthesis is k2 and the maximum rate at 

very large value of p is k2_max. 

In case of positive auto-regulation, where the target protein negatively regulates miRNA 

synthesis the rate expression was modified as, 

( )2 2 _ min

[ ]1
2_min

k k
Rate of miRNA synthesis=k + p

kp

−

+
     (3.33)

Therefore, in this case the maximum (basal) rate is k2 and the minimum rate at very large 

values of p is k2_min. 

3.3.2.4 Model for protein mediated auto-regulatory loop 

miRNA mediated regulation was compared to analogous protein mediated post-

transcriptional regulation. For protein mediated negative feedback loop (Figure 3.7b), the 

rate expression for protein synthesis was represented as, 

( )5 5_ min
5_ min [ ]

[ ]
k k kp

Rate of protein synthesis= k m
kp p

 −
 +
 + 

    (3.34)
 

In the presence of high protein level, k5_min*m was the minimum rate at which protein 

synthesis would take place. In the presence of very low protein level, protein synthesis 

would take place at basal rate k5*m. 

For protein mediated positive feedback loop the rate expression for protein synthesis was, 



72 
 

( )5 5_ max 5
[ ] [ ]

[ ]
pRate of protein synthesis= k k k m

kp p
 

+ − + 
    (3.35)

 

The maximum rate of protein synthesis is k5_max*m. 

The maximum reaction rate constant in case of positive feedback (k2_max-k2) and (k5_max-

k5) was set to five times the value of k2 and k5 respectively. The minimum reaction rate 

constant (k2_min and k5_min) was set to 1/5 times the values of k2 and k5 respectively. In 

each case the kp values were set in order to get 2 fold up or down regulation of steady 

state level of target protein. 2 fold up and down regulation was also tested for 10 fold 

higher and lower reaction rate constants. 

The two types of regulations were compared qualitatively by observing the target protein 

profiles. Quantitative comparison was done by measuring the rise time, defined as the 

time required by target protein to first reach 90% of the steady state value. 

Time course simulations were performed using stiff ode solver, ode15s, of Matlab 

version 7.6.0.324 (The Mathworks, Natick, USA) and SBtoolbox2 of Matlab. 

3.3.3 Results and Discussion 

3.3.3.1 Incorporation of concentration dependent inhibitory effects of intronic miRNA 
improved the model performance 

In addition to the protein mediated regulation, studies have revealed importance of 

miRNA mediated regulation in cellular systems. Therefore, it is necessary to modify the 

existing mathematical models of cellular processes to incorporate miRNA regulation to 

understand its effect on dynamics of cellular processes. However, incorporation of such 

additional regulation would imply reformulation of existing reaction network to include 

new components (regulator) and reaction (regulatory effect) which in turn leads to 

changes in stoichiometry and rates. Therefore a simpler method was developed to 

incorporate intronic miRNA mediated dynamic regulatory effects in cell cycle model. 

The widely used Tyson model of cell cycle was used to incorporate regulatory effects of 

intronic miRNA hsa-miR-25 on two targets TFE and cdc14. Figure 3-8 shows the 

reaction system used in the model. In addition to the reactions used in the original model, 
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the regulation by hsa-miR-25 on the two target proteins TFE and cdc14 is shown in the 

reaction network. 

 

Figure 3-8 – Regulation by intronic miRNA hsa-miR-25 in the reaction network model of cell 
cycle 

TFB gene is host gene for hsa-miR-25, which has two targets cdc14 and TFE. The cell cycle 
reaction network model is adapted from B. Novak and J. J. Tyson. 

 

The host gene for intronic miRNA is MCM7, referred to as TFB in the model. Both the 

host protein and the targets are known to be important components governing the cell 

cycle dynamics (Rodriguez, Griffiths-Jones et al. 2004; Liu, Papagiannakopoulos et al. 

2007; Petrocca, Visone et al. 2008). As intronic miRNA is co-expressed with the host 

gene, profiles of hsa-miR-25 and TFB were assumed to be similar. The effect of miRNA 

mediated inhibition was modeled as host protein concentration dependent decrease in the 

rate of synthesis of target proteins. The effect of varying the extent of inhibition by 

changing the inhibition constants km1 and km2 was studied. The effect of intronic 

miRNA mediated regulation was qualitatively analysed by observing the time course 

profiles of cyclin proteins. Figure 3-9 shows the time course profiles for cyclin A, B and 

E for different values of km1 and km2. 
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Figure 3-9 – Effect of changing inhibition parameters km1 and km2 on time course profiles for 
cyclins 

Time course profiles of (a) CycA, (b) CycB, and (c) CycE. In all the three figures km2 = 0.01 (red 
line), km2 = 0.1 (green line), km2 = 1 (blue line), and km2 = 10 (black line). 

 

For high values of parameters as expected the cyclin profiles were identical to the 

unmodified models. From Figure 3-9 it was observed that the model accuracy was more 

sensitive to changes in km1 than km2. The parameter values, km1 = 10 and km2 = 1 were 

observed to be resulting in sustained oscillations representing cell cycles of the same 

duration as that of unmodified model. These values were considered as the best set of 

parameters and were analysed further. 



75 
 

In addition to the proxy protein concentration dependent inhibition, the effect of constant 

average inhibition of target protein synthesis was examined. However, the time course 

profiles of the components were not in accordance with the experimental observations. 

This indicated that, concentration dependent inhibition was required to appropriately 

simulate miRNA regulatory effects. Details are given in Appendix IIb. 

Figure 3-10 shows the cyclin profiles for modified and unmodified model for the best set 

of parameters (km1 = 10 and km2 = 1). The concentration profiles of other 16 components 

remained almost unchanged and are given in Appendix IIc. 

 

 

Figure 3-10 – Comparison of time course profiles of cyclin proteins for original cell cycle model 
and model with hsa-miR-25 regulation 

Time course profiles of cyclin A, B, and E for 1 cell cycle duration. Parameter values used were, 
km1 = 10; km2 = 1. The arrows point to the observed improvements in the cyclin profiles. 

 

Experimental studies have stated that cyclin A binds to cdk2 and cdc2 resulting in two 

distinct peaks of cyclin A kinase activities one appearing in S phase and the other in G2 

phase. Cyclins A and B accumulate and reach a maximal level before mitosis at which 

they are degraded. Cyclin A is activated earlier than cyclin B and destroyed before the 
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peak of MFP (Norbury and Nurse 1992; Pagano, Pepperkok et al. 1992). Experiments 

have shown that cyclin A kinase activity appears at the start of S phase, continuous to 

increase throughout S phase and peaks in G2 phase (Koff, Giordano et al. 1992). In the 

simulations with the modified model, cyclin A was observed to increase after 40 min 

(late G1 phase) in all the simulations. It showed a slight decrease in S phase and again 

increased in G2 phase. Cyclin A decreased in M phase. Thus cyclin A profile simulated 

using the model with hsa-miR-25 effect was in agreement with experimental 

observations. 

In case of cyclin E, experimental studies have reported its requirement at G1/S transition. 

Cyclin E activity peaks at late G1 and early S. The maximum amount of activity was 4-8 

times greater than the minimum activity during the cell cycle (Koff, Giordano et al. 

1992). In the simulations with unmodified model, cyclin E showed a peak before 50 min 

(towards late G1 phase) and then reduced to approximately 1/5 of its peak level. In case 

of simulations with modified model, for approximately 8 times reduction in cyclin E 

values was observed. The simulated cyclin E profiles were observed to be in better 

agreement with the experimental studies. 

In this model, regulation by only one intronic miRNA was incorporated. Incorporation of 

regulation by other miRNA regulators would further improve the model performance. 

The simple function used in this case to represent regulatory effect of intronic miRNA 

considered only inhibitory effect. In order to incorporate activating effects, a different 

function and more parameters will be required. 

3.3.3.2 Host protein mediated inhibition adequately represents dynamics of intronic 
miRNA mediated regulation 

The method of using host protein as a proxy for incorporating regulatory effects of 

intronic miRNA was observed to be effective in case of cell cycle model. To examine the 

universality of this method, the effect of host protein mediated inhibition (equation 3.31) 

and intronic miRNA mediated regulation (equations 3.27-3.30) on target protein 

dynamics was compared for different initial conditions for a generic reaction network. 
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Figure 3-11 shows the time course profiles of target protein for five different initial 

conditions. 

 

Figure 3-11 – Time course profile of target protein with intronic miRNA regulation and with 
host protein mediated inhibition 

Initial conditions – (a) all components at zero level. (b) Target protein at unregulated steady 
state, all other components at zero level. (c) Target mRNA at unregulated steady state level, 
all other components at zero level. (d) Target mRNA and protein at unregulated steady state, 
all other components at zero level. (e) Regulator molecule (miRNA and host protein) at steady 
state, all other components at zero level. 

 

The target protein profiles in case of both accurate (with miRNA) and simplified (host 

protein as proxy) models were observed to be similar in four out of five initial conditions. 

For the conditions where all components start from zero level, the target protein profiles 

were observed to differ significantly. However, in biological systems such a situation 

when both the regulator and regulated components are at zero concentration is unlikely to 

occur. For conditions where the regulator molecules (Figure 3-11e) or the regulated 

protein (Figure 3-11b, c, d) were at their unregulated steady state level the target protein 

dynamics were similar in both types of regulations. For the two conditions (c) and (e) the 
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observed target protein profiles were similar in case of inhibition by host protein and 

miRNA mediated regulation. Under conditions (b) and (d) target mRNA, and target 

mRNA and protein were initially kept at respective unregulated steady states. For these 

conditions the target protein profiles for the two types of regulations were almost 

identical. This indicated that the host protein mediated inhibition affected the dynamics 

of target protein in a way similar to that of miRNA mediated regulation. Thus it was 

observed that intronic miRNA mediated effect can be incorporated by using the host 

protein mediated inhibition in generic unregulated networks. 

From the simulations it was observed that host protein mediated inhibition affected the 

dynamics of target protein in the similar way as that observed in case of miRNA 

regulation. Simulations were performed to explore the effect on the dynamics of target 

protein when the inhibition was removed. Under these conditions the target protein 

profiles were observed to be qualitatively similar. The details are given in Appendix IId. 

3.3.3.3 Protein mediated feedback can show similar dynamics to that with miRNA 
mediated feedback 

In the cellular systems, various layers of regulation are coordinated through interactions 

of regulatory molecules. Regulatory molecules such as transcription factors or miRNA do 

not work in isolations but form a complex interaction network. Under such conditions, 

protein regulators can regulate miRNA synthesis and miRNA can regulate the expression 

of transcription factors forming feedback loops. Therefore, in addition to the comparison 

of regulation by intronic miRNA and host protein without any feedback regulation; these 

two mechanisms of regulation were compared in the presence of feedback motifs. The 

dynamics of target protein was compared in the presence of miRNA and protein mediated 

positive and negative feedback loops. Two conditions were examined where, target 

protein positively (Aguda, Kim et al. 2008) or negatively (Stark, Brennecke et al. 2005) 

regulates miRNA synthesis. In each case analogous protein mediated post-transcriptional 

regulation was considered. The dynamics was quantitatively compared by considering 

rise time in the two types of regulations. 
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In case of negative auto-regulatory motif, two fold down regulation of steady state level 

of target was protein was considered. Two different initial conditions were considered 

(Figure 3-12 a and b). Qualitatively the target protein profiles were observed to be similar 

for the two types of regulations. For the initial conditions, where both the target and 

regulator molecule were set to zero initial level (Figure 3-12a), the rise time in case of 

miRNA mediated negative feedback was about 1.8 times lesser than that for protein 

mediated negative  feedback. However, as discussed the condition of all components 

starting at zero level is unlikely to occur. For the second initial condition, where the 

target mRNA was set to its unregulated steady state level and regulator was set to zero 

level (Figure 3-12b), the rise time in case of miRNA mediated feedback was about 1.25 

times lesser than protein mediated feedback. 

Similar to the condition of negative feedback, 2 fold up-regulation of steady state level of 

the target protein was considered for positive feedback. The same initial conditions were 

examined (Figure 3-12 c and d). For both the initial conditions, significant difference in 

the rise time was not observed for miRNA and protein mediated feedback regulation. The 

target protein profiles were observed to be qualitatively and quantitatively similar. 
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Figure 3-12 – Time course profiles of target protein with miRNA regulation and protein 
mediated regulation 

The level of target protein is normalized with respect the maximum value. (a) and (b) for 
negative auto-regulatory loop. (c) and (d) for positive auto-regulatory loop. Initial conditions – 
(a) and (c)  all components at zero level (b) and (d) Unregulated steady state level of target 
mRNA, other components at zero level. 

It was observed that protein mediated feedback can result in similar target protein profiles 

as that obtained by miRNA mediated feedback. It is known that negative feedback speeds 

up the response while positive feedback slows down the response (Rosenfeld, Elowitz et 

al. 2002; Alon 2007). In this study it was observed that, the negative feedback loop 

mediated through miRNA had lesser rise time than the protein mediated negative 

feedback. However, significant difference was not observed between the two types of 

regulations in case of positive feedback motif. Overall, protein mediated post-

transcriptional regulation was observed to have similar effects on the target protein 

dynamics as miRNA mediated regulation both without and with feedback loops. A 

similar study comparing sRNA and transcription factor based motifs in bacteria by 

Mitarai and Anderson et al showed that parameters can be adjusted to get same rise time 

(Mitarai, Andersson et al. 2007). The observations in the present study agree with this 

observation. However, the observation of similar rise time questions the advantage of 

having miRNA based regulation. A major advantage that has been suggested is metabolic 
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cost (Mitarai, Andersson et al. 2007). Depending upon the cellular environmental 

conditions and the fluctuations either of the motif is optimal in terms of energy cost, 

though both motifs produce similar response. Another advantage of miRNA mediated 

regulation is target prioritization. One miRNA can prioritize expression levels of various 

mRNA targets depending upon different binding specificities. Such prioritization has not 

been reported for protein mediated regulation, such as for RNA binding proteins. 

From the comparison of miRNA mediated and protein mediated regulation, the method 

of using protein proxy was observed to be generic and can be used in the existing 

mathematical models. Such incorporation would not represent any biological mechanism 

of regulation but would help to incorporate the observed regulatory effect. 

3.3.4 Conclusion 

In this study, a simpler method to incorporate miRNA mediated dynamic regulatory 

effects into existing mathematical models of cellular processes was developed. The 

predictions of the modified model were found to be in better agreement with the 

experimental observations. Concentration dependent inhibition was found to be better 

method than using a constant average inhibition. In this study, regulation by only one 

intronic miRNA was incorporated. Incorporation of regulation by other miRNA 

components would improve the predictive capability of the model. In this model, a 

simple function capable of capturing only the inhibitory effects of miRNA was used. 

Additionally, there are some reports of different expression patterns of intronic miRNA 

and the host gene (Aboobaker, Tomancak et al. 2005; Isik, Korswagen et al. 2010). To 

represent such cases certain modifications (and more parameters) will be required in the 

model. In addition, to incorporate regulation of non-intronic miRNA additional 

parameters would be required. The universality of the method was verified by comparing 

miRNA mediated regulation with analogous protein mediated post-transcriptional 

regulation. In addition, the two types of regulations were compared in presence of 

positive and negative feedback motifs. It was observed that protein mediated post-

transcriptional regulation can adequately represent miRNA mediated regulation in terms 

of target protein profiles, indicating that this method can be used to incorporate the 

observed regulatory effects of miRNA.  



82 
 

 
 

 

 

 

 

 

 

 

 

4 A comprehensive model of gene expression to 
explore the noise in the protein molecules 
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4.1 Introduction 

Gene expression is central to all biological processes. It consists of multiple steps such as 

gene activation, transcription, translation, and mRNA and protein degradation. Each of 

these steps itself is a multistep process. All the steps in gene expression are tightly 

regulated by various RNA and protein factors to produce diverse but defined outcomes. 

The coordinated action of several such factors governs the concentration of all the protein 

and mRNA components in a cell. The regulation of gene expression by the products of 

gene expression viz., RNA and protein components inherently imply presence of 

feedbacks. Presence of feedback loops can results in unintuitive behaviors such as multi-

stability, oscillations, hysteresis etc. Mathematical modeling, simulation and analysis is 

an effective approach to study such systems. 

There are various types of mathematical models of gene expression. A majority of them 

are specific to one of the processes such as transcription, mRNA transport and do not 

include details of multiple processes. It is very difficult to capture the vast amount of 

details of protein production process in a single mathematical model. As most 

mathematical models are developed for a specific purpose, for instance to analyze a 

particular sub-process, or to help suggest explanation for a particular experiment, this 

level of detail is usually not required. In addition, development of detailed generic model 

is challenging as there are multiple processes specific only for a certain set of genes. 

However, in order to understand the contribution of different sub-processes to the overall 

dynamics of gene expression, their inclusion in a comprehensive model is necessary. 

An important property of gene expression is stochasticity. Isogenic population of cells is 

known to show cell-to-cell phenotypic variation as shown by Spudich and Koshland Jr 

(Spudich and Koshland Jr 1976) in case of bacterial chemotaxis. Genome wide single cell 

measurement studies have shown that noise in the steady state protein level decreases as 

the protein abundance increases. However, this relationship was observed to be true only 

for low-abundance and intermediate-abundance proteins. Highly expressed proteins show 

a constant minimum level of noise. This noise floor has been attributed to slow varying 

extrinsic fluctuations such as fluctuations in the levels of ribosomes, polymerases etc. 
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Current simple models of gene expression cannot explain the noise saturation behavior 

without inclusion of an added noise term. 

In addition to this, the knowledge about the contribution of each step in gene expression 

to noise in steady state protein level is ambiguous. Different studies have suggested 

different steps such as translation or transcription to be important in determining the 

variability in protein number. Therefore, there is a need to quantitatively estimate the 

relative contribution of steps in gene expression to the noise in protein level.  

In this study, a detailed and generic model of gene expression was developed in order to 

examine whether, the sources of gene expression-extrinsic and cell-intrinsic noise 

considered in detailed model can explain saturation of noise. The effect of time scale of 

fluctuation on the saturation of noise was also studied. From the study the time scale of 

extrinsic fluctuation was found to be important. It was observed that extrinsic fluctuations 

having slowest time scale of fluctuation can contribute to the observed saturation of 

noise. Global sensitivity analysis was performed to quantitatively measure the relative 

contributions of steps of gene expression on the steady state noise in protein level using 3 

different models of gene expression and two measures of noise, CV and Fano factor. 

Interestingly, the two measures of noise were observed to be sensitive to different 

parameters. 

The chapter is divided into two sections. Section 1 describes the development of 

comprehensive model of gene expression and, stochastic simulations to understand the 

noise-protein abundance relationship. Section 2 describes the global stochastic sensitivity 

analysis of 3 different models of gene expression using two different measures of noise. 

4.2 Section 1 – Development of a comprehensive model of gene 
expression to investigate extrinsic noise sources contributing to 
noise saturation 

4.2.1 Introduction 

Gene expression being of key importance has been extensively studied using both 

experimental and theoretical approaches. A large number of mathematical models of gene 

expression of different types such as deterministic, stochastic, continuous, or discrete 
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have been developed. There are some reviews of mathematical models of gene 

expression (Smolen, Baxter et al. 2000; Hasty, McMillen et al. 2001) that discuss various 

approaches available and used for mathematical modeling of gene expression, gene 

regulation and gene networks. As a first step towards the development of a 

comprehensive model, we have reviewed previously developed mathematical models of 

processes in gene expression (Gokhale, Nyayanit et al. 2011). We have divided gene 

expression into five major sub-processes viz., chromatin remodeling and histone 

modification, transcription, post-transcriptional processing and RNA degradation, 

translation, and protein degradation. The review consists of brief description of these 

processes, their regulation by both protein and RNA regulators, with examples of each. It 

also includes feedback regulation of each process by protein and RNA regulators with 

known examples. Table 4-1 summarizes examples for processes in gene expression with 

their regulation. 

 

Table 4-1 – Literature references for processes in gene expression with regulation by protein 
and RNA regulators 

Regulator Process 

Chromatin 
remodeling 
and Histone 
modification 

Transcription 
(Initiation, 
Elongation 
and 
Termination) 

Post-
transcriptional 
processes 
(Capping, Poly-
adenylation, 
Splicing, 
Interference and 
RNA 
degradation) 

Translation 
(Initiation, 
Elongation and 
Termination) 

Post-
translational 
modification 
(ubiquitination 
and Protein 
degradation) 

Protein (Peterson 
2002; 
Kouzarides 
2007) 

(Kerppola and 
Kane 1991; 
Thomas and 
Chiang 2006) 

(McCracken, 
Fong et al. 1997; 
Petersen-Mahrt, 
Estmer et al. 
1999; Guhaniyogi 
and Brewer 
2001; 
Rozenblatt-
Rosen, Nagaike 
et al. 2009) 

(Monnier A., 
Belle R. et al. 
2001; Sans 
M.D., Xie Q. et 
al. 2004; Wang 
X. and Proud 
C.G. 2008) 

(Vervoorts J., 
Luscher-Firzlaff 
J. et al. 2006) 
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Protein 
Feedback 

(Yang X.O., 
Angkasekwin
ai P. et al. 
2009) 

(Cormack and 
Struhl 1992; 
Arigo, Carroll 
et al. 2006) 

(Cheng C., Yaffe 
M.B. et al. 2006) 

(Raney A., Law  
G. L. et al. 
2002; Onouchi 
H., Nagami Y. 
et al. 2005; 
Ivanova I. P., 
Loughrana G. 
et al. 2010) 

(Hutti J.E., Turk  
B. E. et al. 2007; 
Jessica E. Hutti 
2007; Noula 
Shembade1 
2010) 

RNA (Volpe, 
Kidner et al. 
2002; 
Barrandon, 
Spiluttini et 
al. 2008; 
Gonzalez, 
Pisano et al. 
2008) 

(Brantl and 
Wagner 2002; 
Kwek, Murphy 
et al. 2002; 
Mattick and 
Makunin 
2006) 

(Bartel 2004; 
Storz, Altuvia et 
al. 2005; 
Ghildiyal and 
Zamore 2009) 

(Wang, 
Iacoangeli et al. 
2002) 

None to our 
knowledge 

RNA 
Feedback 

 (Barrandon, 
Spiluttini et al. 
2008) 

(Xie, Kasschau et 
al. 2003) 

(Li, Vilardell et 
al. 1996; Ben-
Asouli, Banai et 
al. 2002) 

None to our 
knowledge 

 

It was observed that the reports of RNA mediated feedback regulation of individual steps 

of gene expression process were much fewer than reports of protein mediated feedback 

regulation. With more studies at transcriptome level, more such RNA mediated 

regulatory motifs will be revealed. Mathematical models for five major sub-processes 

with regulation by protein and RNA regulators are summarized in Table 4-2.  
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Table 4-2 – Literature references for mathematical models for gene expression and its 
regulation at each step by protein and RNA 

Regulator 

 

Process 

Chromatin 
remodeling 
and Histone 
modification 

Transcription 
(Initiation, 
Elongation 
and 
Termination) 

Post-
transcriptional 
processes 
(Capping, Poly-
adenylation, 
Splicing, 
Interference 
and RNA 
degradation) 

Translation 
(Initiation, 
Elongation 
and 
Termination) 

Post-
translational 
modification 
(Ubiquitination 
and Protein 
degradation) 

Protein (Kim H. D 
and O’Shea 
E.K 2008; 
Luca Mariani 
2010) 

(Kugel and 
Goodrich 
2000) 

(Cao and 
Parker 2001; 
Singh, Yang et 
al. 2007) 

(Nayak S. , 
Siddiqui J.K. 
et al. 2011) 

(Holzhütter 
and Kloetzel 
2000; Peters, 
Janek et al. 
2002; Luciani, 
Kesmir et al. 
2005) 

Protein 
Feedback 

(Sedighi M. 
and 
Sengupta A. 
M 2008; 
Narula J., 
Smith A. M. 
et al. 2010) 

(Bernard S., 
Cajavec B. et 
al. 2006; 
Rajala T., 
Hakkinen A. 
et al. 2010) 

Model needed (Bar N.S. 
2009; De 
Silvaa E., 
Krishnana J.  
et al. 2010) 

(Lee J., Choi K. 
et al. 2010) 

RNA Model 
needed 

Model 
needed 

(Levine, Ben 
Jacob et al. 
2007) 

Model 
needed 

Model needed 

RNA 
Feedback 

Model 
needed 

Model 
needed 

(Aguda, Kim et 
al. 2008) 

Model 
needed 

Model needed 

 

More examples of mathematical models with details of type of model, and main output of 

the model are given in Appendix IIIa. 

Some of the mathematical models consider the overall process of gene expression but at 

lesser detail while some models focus on a part of the whole process in great detail. 
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Majority of these models include one or more lumped parameter or reaction to represent 

sub-processes in gene expression. Depending upon the degree of details the models can 

be qualitatively classified. Figure 4-1 gives a visual representation of the sub-processes 

considered in different mathematical models and the degree of details considered. 

 

Figure 4-1 – Diagrammatic representation of the sub-processes considered in different 
mathematical models and the degree of details 

Some of models for the protein production process organized in terms of breadth and level of 
detail included. The intensity of the blue bar qualitatively indicates the relative level of details 
included in the model. 

 

It was observed that the number of mathematical models developed for transcription and 

translation were much higher in number than the models for RNA processing, 

degradation, and protein degradation. A detailed model for mRNA transport from nucleus 
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to cytoplasm has not yet been developed. These are some of the sub-processes where 

development of mathematical model and analysis is required. In addition, a 

comprehensive and generic model of gene expression is required to be developed in order 

to understand the relative contribution of sub-processes to the overall dynamics of gene 

expression. Having the models of sub-processes, a comprehensive model of gene 

expression can be developed by using modular approach. A mathematical model for each 

sub-process can be considered as a module with defined input and output. Different such 

modules can be linked together to develop a detailed model of entire pathway of gene 

expression from gene activation to protein degradation. In this study a detailed model of 

gene expression in eukaryotes was developed using reaction frameworks from previously 

developed mathematical models and experimental data. 

In addition to the interesting properties such as oscillations and switching observed at a 

population level, many other significant properties like bimodality are evident in single 

cell studies of a population. After the first report of fluctuations in autocatalytic reactions 

(Delbruck 1940), in last couple of decades there have been numerous experimental and 

theoretical studies focusing on different aspects of stochasticity in gene expression such 

as its origin, consequences (Raser and O'Shea 2005), types of noise (Volfson, Marciniak 

et al. 2005), and methodology to separately measure different sources of noise (Swain, 

Elowitz et al. 2002). In addition to these studies focusing on one or a few genes, 

development in single cell measurement technique led to some proteome wide single cell 

measurement studies in E. coli (Taniguchi, Choi et al. 2010) and yeast Saccharomyces 

cerevisiae (Bar-Even, Paulsson et al. 2006; Newman, Ghaemmaghami et al. 2006). These 

studies have revealed the global structure of noise in steady state protein level.  The 

studies have shown that the noise in protein steady state level has inverse relation with 

protein abundance. However, the inverse relation was observed only for proteins with 

low and intermediate abundance. In case of high-abundance proteins the noise did not 

decrease below a certain low value, an observation which could not be explained by 

previously developed simpler models. A theoretical study by Paulsson (Paulsson 2004; 

Paulsson 2005) has shown that at very high expression level, the intrinsic noise reduces 

to a level lower than the extrinsic noise. Therefore, the study has theoretically shown that 

such genes should have the same noise level dominated by extrinsic noise. The observed 
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noise floor has been attributed to slow varying fluctuations in the level of polymerases, 

ribosomes etc (Taniguchi, Choi et al. 2010), which are extrinsic to the developed models. 

In addition to the genome wide studies, early studies (Rosenfeld, Young et al. 2005; 

Volfson, Marciniak et al. 2005; Sigal, Milo et al. 2006) examined dynamics of 

fluctuations in certain protein expression. These studies examined the auto-correlation of 

fluctuation and suggested that fluctuation time scales larger than cell cycle duration are 

important for population variability, while fast varying fluctuations may average away 

and contribute little to cell-to-cell variation. A theoretical study by Shahrezaei et al 

(Shahrezaei, Ollivier et al. 2008) suggested that the extrinsic noise in gene expression is 

coloured and the correlation time equivalent to cell cycle is important for population 

variability. 

In this study a detailed model of gene expression was developed. The model considered 

certain sources of cell-intrinsic noise in gene expression such as gene activation due to 

binding of regulator protein, binding of RNA polymerase, and competition by other 

mRNA components for translation machinery. The detailed model was used to 

investigate whether the sources of noise considered in the model can explain saturation of 

noise. The effect of addition of extrinsic fluctuations of different time scales on the 

variability at high protein abundance was studied. The relationship between the time 

scale of extrinsic noise and that of effecter protein was identified. It was observed that 

extrinsic fluctuations added using slowest varying protein can show saturation of noise at 

high abundance. The time scale of simulation compared to that of the fluctuation was also 

observed to be an important factor that determined the observed saturation. 

4.2.2 Methodology 

4.2.2.1 Model development 

A detailed generic model of eukaryotic gene expression processes was developed to 

include possible details of the process. Some of the reactions were adapted from 

previously developed mathematical models and some were obtained from the 

experimental studies. The parameter values were obtained from mathematical models, 

experimental studies, and databases. The complete model contained 41 components and 

42 reactions. The details of each reaction are discussed in Results and Discussion section. 
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4.2.2.2 Parameter values and sampling 

The parameters for specific rate of mRNA synthesis, protein synthesis, mRNA and 

protein degradation were obtained from genome wide population level experimental 

study by Schwanhausser, Busse et al (Schwanhausser, Busse et al. 2011) for mouse 

fibroblast cells. It was observed that the ranges of these parameters cover a wider range 

than that observed for parameters in yeast. Four parameters, one each for mRNA 

synthesis, protein synthesis, mRNA degradation, and protein degradation, constitute one 

parameter set. One such parameter set comprising these four parameters corresponds to a 

particular value of mean protein abundance. The entire dataset contained 4247 proteins, 

and therefore 4247 such sets with all the four reported parameter values in one parameter 

set. The parameter sets were selected such that they represent the experimentally 

observed protein abundance proportion in the total data set. The data sets were grouped 

according to the protein abundance as shown in Table 4-3. Random sample from each 

abundance group was selected such that the proportion from each abundance group was 

identical to that observed in the experimental data. Total 500 parameter sets were 

selected. For a sample of total 1000 data points, two samples of 500 parameter sets were 

obtained ensuring unique parameter sets. 

 
Table 4-3 – Proportion of protein in each abundance range and corresponding number of data 
points selected to generate a sample of 500 data points (parameter sets) 

Protein abundance 

(molecules/cell) 

# data points 

(parameter sets) 
% data points 

# sample data points 
selected 

102 391 9.23 46 

103 1470 34.70 173 

104 1684 39.75 199 

105 617 14.56 73 

106 74 1.74 9 
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From the parameter sets, specific mRNA degradation rate for detailed model (k7 - 42-

reaction model) was obtained by minimizing the percent relative error between the steady 

state total mRNA level of 4-reaction model and 42-reaction model using Matlab function 

fmincon. The other parameters values are listed in Table 4-4 and the details are 

described in Results and Discussion section. 

4.2.2.3 Stochastic simulation 

Gillespie’s exact stochastic simulation algorithm (Gillespie 1976) was used for 

simulation. The detailed model of 42 reactions is a stiff system. From the reaction rate 

parameter values (Table 4-4) it was observed that the reactions such as, gene activation, 

inactivation, mRNA synthesis were slow, while the reactions such as binding of 

eukaryotic translation initiation factors (eIF) were sometimes two orders of magnitude 

faster. The molecular abundance of eIFs was also orders of magnitude higher than other 

low abundance components such as RNA polymerase, regulator molecules. Stochastic 

simulations of the entire model would require longer time, as faster reactions would lead 

to a smaller increment in time at each step. Therefore, to reduce the time required for 

simulation, the reactions were separated into two groups viz., slow reactions (Reactions, 

R1 to R7, R22, R23, R26, R27, R30, R31, R34, R35, R38, R40 and R42) and fast 

reactions (the remaining reactions) depending upon the reaction rate parameter value and 

the molecular abundance. As the fast reactions contained components with high 

abundance deterministic simulation would be an appropriate approximation. Therefore, 

the fast reactions were simulated numerically using deterministic kinetics in Matlab 

version 7.6.0.324 (The Mathworks, Natick, USA) using ode15s. The steady state output 

values of the two components c1 and eIF4G, which were involved in slow reactions, 

were given as input to the slow reactions. The slow reactions were simulated using in-

house developed Fortran codes for Gillespie’s exact stochastic simulation algorithm 

(Gillespie 1976). Parallel version of the codes was used to run parallel simulations. The 

simulations were performed for final time of 3*105 min, i.e. more than ten times the time 

scale obtained with slowest reaction rate parameter. A sample of 1000 runs was used to 

generate statistics. Coefficient of variation, (CV) defined as the ratio of standard 

deviation to mean (σ/μ), was used as a measure of noise. 
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4.2.2.4 Calculation of timescale of fluctuation 

To determine the timescale of fluctuation, autocorrelation function (ACF) for each run of 

the time course data for 500 proteins simulated using 4-reaction model was obtained. 

Autocorrelation function is defined as a set of autocorrelation coefficients arranged as a 

function of separation in time or time lags. The ACF was calculated using Matlab 

function obtained from Mathworks file exchange. The average ACF for each protein was 

calculated from the 1000 ACF values obtained for each run. Mixing time (τm), defined as 

the time required for ACF to reach half of its initial value, was calculated for the 500 

proteins.  Mean ACF and mixing time are illustrated in Figure 4-2. 

 

 

Figure 4-2 – Graph of autocorrelation values vs. time lags 

Each blue dotted line is an auto correlation function (ACF) for one run of one parameter set 
(or protein). Red solid line is mean ACF of all the 1000 runs for one parameter set (or protein). 
τm is the time at which ACF reduces to half of its initial value. 
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Mixing time was used as a measure of time scale of fluctuation. The effect of addition of 

fluctuations of different mixing time on the noise at steady state protein level was 

studied. 

4.2.2.5 Definition of a measure to quantify observed saturation of noise 

A quantitative measure was required to measure and compare the observed saturation. In 

the graph of steady state %CV2 vs. mean protein abundance, two abundance regions were 

defined one with range 102-105 and other > 105. A linear equation was fit to each of the 

abundance region, using least square fit method of Matlab. The ratio of the slopes, of 

region >105 to that of abundance region 102-105 was calculated. The ratio was used as 

measure to determine the extent of saturation. Figure 4-3 graphically represents the 

measure used to quantify saturation of noise. 

 

 

Figure 4-3 – Figure illustrating the calculation of ratio of slopes 

Black solid line represents a linear fit to the data points in the log10(Mean protein abundance) 
region of 2 – 5, with slope, Slope1. Red dashed line represents a linear fit to the data points in 
the log10(Mean protein abundance) region > 5, with slope, Slope 2. The ratio of two slopes, 
Slope2/Slope1 was used as measure of saturation. 
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For comparison with the experimental observation, the data of running median given in 

the Figure 2g (gated population) of the published study by Newman, Ghaemmaghami et 

al  (Newman, Ghaemmaghami et al. 2006) was extracted using Datathief software. The 

entire data from the experimental study could not be extracted using Datathief due to 

multiple overlapping data points. The obtained data of running median was used to 

calculate slopes. Slopes for regions 102 to 103 and 103 to 104 were calculated as there 

were no data points above abundance of 105. The ratio of the slopes was found 0.22. 

4.2.3 Results and Discussion 

4.2.3.1 A detailed mathematical model of eukaryotic gene expression 

Starting with the previously developed (Thattai and Van Oudenaarden 2001) widely used 

4-reaction model of gene expression a detailed model of gene expression process was 

developed. The 4-reaction model (Figure 4-4) contained zero order mRNA synthesis, first 

order synthesis of protein with the rate of reaction dependent upon mRNA level, and first 

order degradation of mRNA and protein with the rate of reactions dependent upon 

mRNA and protein levels respectively. 

 

 

Figure 4-4 – 4-reaction model of gene expression 

The model contains zero order mRNA synthesis, first order synthesis of protein catalysed by 
mRNA, and first order degradation of mRNA and protein.  

 

The 4-reaction model has been extended to a 6-reaction model, for instance in, (Raj, 

Peskin et al. 2006) to include reactions of gene activation and gene inactivation (Figure 

4-5). In this model, mRNA synthesis is considered to be a first order reaction with rate 

dependent on the level of active gene. 
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Figure 4-5 – 6-reaction model of gene expression 

In addition to the 4 reactions of mRNA and protein synthesis and degradation, the reactions 
for gene activation and deactivation are considered in the model. 

 

Modifications of these models have been carried out to include details of certain steps. 

For instance, the model by Blake et al (Blake, Kærn et al. 2003) considers two steps of 

gene activation to form a pre-initiation complex. Using such different models for sub-

processes in gene expression and experimental data, a detailed model of gene expression 

was developed. The model contained 6 major processes viz., gene activation, 

transcription, mRNA transport, translation, mRNA degradation and protein degradation. 

The detailed model contained 41 components and 42-reactions. The reaction rate 

expressions and parameter values are given in Table 4-4. 

Gene activation – Gene activation can be considered as the first step for gene expression. 

The process consists of action of chromatin remodelers and histone modifying enzymes 

which slide or peel off histones from chromatin making the regulatory region of gene 

accessible for transcription factors and RNA polymerase machinery. The process of gene 

activation is thus a multistep process. In addition, the modifications on histone and 

sliding of histone to specific position are different from gene to gene and also differ for 

different physiological conditions. In the model all the steps which make the promoter 

accessible to RNA polymerase machinery, were considered into one reaction. The 

reaction was represented as 

11: kR Gene Reg GeneActive+ →  

In this reaction a representative regulatory protein (Reg) was considered to bind to a 

gene, to make the gene compatible for RNA polymerase binding. In this case, Reg does 
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not imply any specific protein but is considered as a generic regulatory protein. 

Therefore, Reg could be replaced by the particular regulator for the study of any specific 

gene where that regulator is known to be required. The transcription factor, TATA-

binding protein (TBP) is known to be essential for transcription. Hence, in this study, to 

calculate abundance of Reg per gene, abundance of TBP was used. In case of yeast cell, 

there are ~20,000 TBP molecules per cell (Milo, Jorgensen et al. 2010). Considering the 

average number of genes expressed in yeast to be around 4500 (Milo, Jorgensen et al. 

2010), availability of Reg per gene was found to be 4.4 molecules. Therefore, total Reg 

abundance was considered to be 4 molecules per gene. However, depending upon the 

regulatory protein under study Reg parameter can be changed. 

The activated gene was modeled as getting deactivated upon dissociation of regulator. 

The reaction was represented as, 

22 : kR GeneActive Gene Reg+→  

A different deactivating protein was not considered in the reaction of gene deactivation. 

Addition of deactivating protein is possible with the corresponding change in the reaction 

rate parameter. 

In this model, total Reg amount was considered as constant. Thus binding of Reg to Gene 

would change the free Reg amount. The effect of addition of Reg distribution on the noise 

in steady state protein distribution was studied. The effect of addition of reactions of 

regulator protein synthesis and degradation on the steady state noise of effecter protein 

was also investigated in detail. 

In this case Gene was considered to have only one copy. However, diploid or multiple 

copies of genes can be considered. In a simple manner, parameter of Gene molecular 

abundance can be changed from one to the desired copy number and the reaction rate 

parameter can be adjusted to a value to obtain the same rate of gene activation. To 

account for the source of variability due to presence of alleles of a gene, different 

components such as Gene1, Gene2 can be considered, each leading to synthesis of the 

same type of mRNA. Such framework would be useful in order to separate the allele 

specific intrinsic noise contribution from the total noise at protein level. 



98 
 

Transcription – Pre-initiation complex formation was considered as the first step in 

transcription initiation process. There are two pathways of assembly of RNA polymerase 

machinery on the regulatory region of gene called the sequential assembly pathway and 

RNA polymerase holoenzyme pathway (Thomas and Chiang 2006). In this model 

subunits of RNA polymerase were not considered as separate components. RNA 

polymerase was considered as a single component binding to active gene. Such 

assumption was equivalent to RNA polymerase holoenzyme pathway, in which all the 

subunits assemble to form the polymerase holoenzyme which then binds to promoter of a 

gene. RNA polymerase was considered to bind reversibly to the activated gene to form a 

complex called GeneActive_RNApol. The complex was considered to catalyze mRNA 

synthesis. During transcription pre-mRNA is synthesized which is processed by splicing 

of introns, 3’ polyadenylation and 5’ capping to form mature mRNA. Splicing and 

capping is known to occur co-transcriptionally (Singh and Padgett 2009). Therefore, in 

this model, a single reaction of mRNA synthesis was assumed to result in mature mRNA 

synthesis. The reactions for transcription were represented as, 

33 : _kR GeneActive RNApol GeneActive RNApol+ →  

44 : _ kR GeneActive RNApol GeneActive RNApol+→  

55 : _ _ _kR GeneActive RNApol GeneActive RNApol cap mRNA AAAn+ +→  

In this case, once the mRNA was synthesized, RNA polymerase was considered to 

dissociate from the GeneActive_RNApol complex, as occurs in transcription termination. 

The gene was considered to remain in activated form after RNA polymerase dissociation 

to account for transcription re-initiation event. 

Similar to Reg abundance, it is known that there are ~30000 RNA polymerase molecules 

in yeast cell (Borggrefe, Davis et al. 2001). Hence, total RNApol abundance is considered 

to be 7 molecules per cell. In this model, non-specific binding of regulatory molecules or 

polymerase to DNA was not considered. 

There are mathematical models which consider nucleotide wise increase in length of 

mRNA, look-ahead and backtracking features of RNA polymerase (Bai, Shundrovsky et 

al. 2004; Voliotis, Cohen et al. 2008). These details are possible to incorporate if the 
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model is used for a certain known protein. In such case knowing the length of mRNA, 

reactions of type 
__ _ _ i

k elongationGeneActive RNApol GeneActive RNapol mRNA→  

where, i varies from 1 to n, can be incorporated. In such framework, termination can be 

considered once mRNA of length n nucleotides is formed. The reported speed of RNA 

polymerase for instance, ~2 kb/min (Ardehali and Lis 2009) can be used to obtain the 

value of elongation reaction rate parameter. In case of this generic model these details of 

nucleotide wise polymerization were not included. 

In this model, binding of multiple RNA polymerase molecules on one gene, promoter 

clearance, and RNA polymerase traffic on DNA were not considered. These parameters 

are dependent on the gene length and speed of RNA polymerase. Alternative splicing 

being gene and condition specific phenomenon was not considered in this model. 

mRNA Transport – After the splicing and other co-transcriptional or post-transcriptional 

modifications the mature mRNA is transported to cytoplasm. Certain protein factors such 

as Mex67 are required for the active transport of mRNP complex. However, some studies 

have shown that there is no accumulation of mRNP around nuclear pore (Mor and Shav-

Tal 2010). In experimental study by Audibert, Weil et al (Audibert, Weil et al. 2002) 

mRNA transport has been reported to be a first order reaction. Therefore, in this model 

mRNA transport was considered to be a first order reaction with rate of reaction 

dependent only upon the mature mRNA level in the nucleus. The reaction was 

represented as, 

66 : _ _ kR cap mRNA AAAn mRNA→  

mRNA degradation – mRNA degradation can take place through multiple pathways. 

Initially, 5’ cap and 3’ poly(A) tail are removed by decapping enzyme and deadenylase 

respectively. The remaining RNA strand is then degraded by endo- and exo- nucleases 

(Beelman and Parker 1995). The detailed model for mRNA degradation was developed 

by Cao and Parker (Cao and Parker 2001). The model considered 60-mer polyA tail 

which was deadenylated in units of 10-mer. The detailed mechanism of mRNA 
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degradation is important for the comprehensive model. As all the deadenylation and de-

capping reactions are catalysed by highly processive enzyme these were represented as 

irreversible reactions. Thus, in the context of the mathematical model the first 

deadenylation reaction would effectively remove the functional mRNA molecules. 

Therefore, the reaction of mRNA degradation was represented as a single first order 

degradation reaction in this model. 

77 : kR mRNA φ→  

The model accounts for competition and protection by ribosome as only free mRNA can 

undergo degradation reaction. Binding of other RNA binding proteins that protect mRNA 

from degradation can thus be easily incorporated in this model. To include degradation 

due to RNA binding proteins, additional component such as modified mRNA having 

higher degradation efficiency can be included. However, conversion to modified mRNA 

would be equivalent to effective removal of translationally active mRNA unless the 

reaction is reversible. 

In this model nuclear mRNA degradation was not considered. 

Translation – A detailed quantitative model of translation is developed by You, Coghill 

et al (You, Coghill et al. 2010) and Dimelow and Wilkinson (Dimelow and Wilkinson 

2009). The reactions and parameters from the model by Dimelow and Wilkinson were 

used in this model. However, the model by Dimelow and Wilkinson focused on protein 

synthesis by one type of mRNA and did not consider presence of other mRNA in a cell. 

Under physiological conditions, multiple mRNA molecules each coding for different 

proteins are present in a cell simultaneously. Therefore, the translation machinery is 

shared by all the mRNA molecules, reducing the effective concentration of translational 

apparatus available for each mRNA. Therefore, addition of multiple mRNA components 

would be an appropriate representation to account for low molecule number effect. Thus 

in this model, competition by other mRNA components (mRNAr) for translation 

machinery was considered. The reactions for mRNA translation were represented as 

follows. 

18 : 2 2 2 _ 2ftk
R eIF GDP eIF B eIF GDP eIF B+ →  
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19 : 2 _ 2 2 2rtkR eIF GDP eIF B eIF GDP eIF B+→  

210 : 2 _ 2 2 2ftk
R eIF GDP eIF B eIF GTP eIF B+→  

211: 2 2 2 _ 2rtkR eIF GTP eIF B eIF GDP eIF B+ →  

312 : 2 2 _ftk
R eIF GTP tRNA eIF GTP tRNA+ →  

313 : 2 _ 2rtkR eIF GTP tRNA eIF GTP tRNA+→  

41 4: 1 3 5 1_ 3 _ 5ftk
R eIF eIF eIF eIF eIF eIF+ + →  

41 5: 1_ 3 _ 5 1 3 5rtkR eIF eIF eIF eIF eIF eIF+ +→  

51 6: 2 _ 1_ 3 _ 5 ftk
R eIF GTP tRNA eIF eIF eIF MFC+ →  

51 7: 2 _ 1_ 3 _ 5rtkR MFC eIF GTP tRNA eIF eIF eIF+→  

618 : 1 40 1ftk
R MFC eIF A r s c+ + →  

619 : 1 1 40rtkR c MFC eIF A r s+ +→  

720 : 4 4 4 _ 4ftk
R eIF E eIF G eIF E eIF G+ →  

721: 4 _ 4 4 4rtkR eIF E eIF G eIF E eIF G+→  

82 2: 4 _ 4 4 _ 4 _ _ftk
R eIF E eIF G mRNA PABP eIF E eIF G mRNA PABP+ + →  

823 : 4 _ 4 _ _ 4 4rtkR eIF E eIf G mRNA PABP eIF E eIF G mRNA PABP+ + +→  

82 4: 4 _ 4 4 _ 4 _ _ftk
R eIF E eIF G mRNAr PABP eIF E eIF G mRNAr PABP+ + →  

825 : 4 _ 4rtkR eIF4E_eIF4G_mRNAr_PABP eIF E eIF G mRNAr PABP+ +→  

926 : 4 _ 4 _ _ 4 4 2ftk
R eIF E eIF G mRNA PABP eIF A eIF B c+ + →  

927 : 2 4 _ 4 _ _ 4 4rtkR c eIF E eIF G mRNA PABP eIF A eIF B+ +→  

928 : 4 _ 4 _ _ 4 4 2ftk
R eIF E eIF G mRNAr PABP eIF A eIF B c r+ + →  

929 : 2 4 _ 4 _ _ 4 4rtkR c r eIF E eIF G mRNAr PABP eIF A eIF B+ +→  

1030 : 3ftk
R c1+c2 c→  

31: 10rtkR c3 c1+c2→  

1032 : 3ftk
R c1+c2r c r→  
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33 : 10rtkR c3r c1+c2r→  

1134 : 3 5 3 _ 5ftk
R c eIF B c eIF B+ →  

1135 : 3 _ 5 3 5rtkR c eIF B c eIF B+→  

1136 : 3 5 3 _ 5ftk
R c r eIF B c r eIF B+ →  

1137 : 3 _ 5 3 5rtkR c r eIF B c r eIF B+→  

12ftk
R38:c3_eIF5B+r60s r40s_mRNA_r60s+eIF2GDP+tRNA+eIF1+eIF3+eIF5
                                            +eIF1A+eIF4E+eIF6G+PABP+eIF4A+eIF4B+eIF5B

→  

12ftk
R39:c3r_eIF5B+r60s r40s_mRNAr_r60s+eIF2GDP+tRNA+eIF1+eIF3+eIF5
                                            +eIF1A+eIF4E+eIF6G+PABP+eIF4A+eIF4B+eIF5B

→  

840 : 40 _ _ 60 40 60kR r s mRNA r s r s mRNA r s protein+ + +→  

941: 40 _ _ 60 40 60kR r s mRNAr r s r s mRNAr r s proteinr+ + +→  

To calculate mRNAr, total mRNA content of a cell was considered. There are different 

reports regarding the total mRNA content in yeast cell. The value ranges from ~12,000 to 

60,000 (Von Der Haar 2008; Zenklusen, Larson et al. 2008). The highest number of 

mRNA molecules of one type was observed to be ~3000 molecules/cell (Schwanhausser, 

Busse et al. 2011). We have considered 30000 molecules of other mRNA species 

(mRNAr) as a value near mean of the reported values. This ensured that even with 

addition of one more type of mRNA the total mRNA content would remain within the 

reported range. 

Similar to mRNA elongation, codon wise amino acid addition can be incorporated in case 

of a known protein. 

Protein degradation – Protein degradation is a highly regulated process. There are 

multiple post-translational mechanisms which mark the protein for degradation. 

Ubiquitination is one important post-translational modification associated with protein 

degradation. Once a protein molecule is committed for degradation, it is degraded by the 

26s proteasome complex into peptides. The process of tagging for degradation and 

degradation varies from protein to protein depending upon the external and internal 
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stimulus for degradation, and environmental and physiological conditions (Ravid and 

Hochstrasser 2008). Therefore, the effective half life of protein was considered to 

represent protein degradation reaction in the generic model. The reaction for protein 

degradation was represented as a first order reaction. 

1042 : kR protein φ→  

Thus, the complete model for eukaryotic gene expression comprised of 42 reactions and 

41 components was developed. Figure 4-6 diagrammatically represents the major 

processes considered in the model, source mathematical models and experimental data 

for reactions and parameter values1

                                                           
1 The parameter values for specific rate of mRNA and protein synthesis and degradation were obtained 
from experimental study by Schwanhausser, Busse et al. A corrigendum has been published in February, 
2013 Schwanhausser, B., D. Busse, et al. (2013). "Corrigendum: Global quantification of mammalian gene 
expression control." Nature 495(7439): 126-127., stating systematic underestimation of protein molecular 
abundance and derived specific translation rate due to erroneous scaling factor. For quantitative analysis 
the simulations are required to be performed with new parameter set. However, as the error is 
systematic, the relative timescale of fluctuation of regulators and effecter protein would remain same. 
Therefore, the qualitative nature of the results would remain similar. 

. 
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Figure 4-6 – Major steps considered in detailed model with the source mathematical models 
and experimental data for reactions and parameter values 

 

The rate expressions used for each of the 42 reactions and the parameter values are 

summarized in Table 4-4. 

 

Table 4-4 – The reaction rate expressions and parameter values used in the model 

Rate expressions and parameter and molecular abundance values for reactions R8 to R39 
were used from the model by Dimelow and Wilkinson. 

 Rate expression 
Reaction rate parameter values 
and Reference 

R1 1 Gene Regk × ×  k1, 0.025 – 0.0005 molecule-1min-

1 (Suter, Molina et al. 2011) 
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R2 2 GeneActivek ×  k2, 1 – 0.002 min-1 (Suter, Molina 
et al. 2011) 

R3 3 GeneActive RNApolk × ×  k3, 0.18 molecule-1min-1 (Blake, 
Kærn et al. 2003) 

R4 4 _GeneActive RNApolk ×  k4, 0.3420 min-1 (Blake, Kærn et 
al. 2003) 

R5 5 _GeneActive RNApolk ×  
k5, 0.0054 – 40.98 min-1 

(Schwanhausser, Busse et al. 
2011) 

R6 6 _ _cap mRNA AAAnk ×  k6, 12 min-1 (Cao and Parker 
2001) 

R7 7 mRNAk ×  
k7,7.2*10-3 – 2.85*10-4 min-1 

(Schwanhausser, Busse et al. 
2011) 

R8 1 2 2f eIF GDP eIF Btk × ×  tk1f, 0.0065 molecule-1min-1 

R9 1 2 _ 2r eIF GDP eIF Btk ×  tk1r, 7356 min-1 

R10 2 2 _ 2f eIF GDP eIF Btk ×  tk2f, 504 min-1 

R11 2 2 2r eIF GTP eIF Btk × ×  tk2r, 0.0830 molecule-1min-1 

R12 3 2f eIF GTP tRNAtk × ×  tk3f, 0.0219 molecule-1min-1 

R13 3 2 _r eIF GTP tRNAtk ×  tk3r, 4134 min-1 

R14 4 1 3 5f eIF eIF eIFtk × × ×  tk4f, 4.52*10-7 molecule-2min-1 

R15 4 1_ 3 _ 5r eIF eIF eIFtk ×  tk4r, 1158 min-1 

R16 5 2 _ 1_ 3 _ 5f eIF GTP tRNA eIF eIF eIFtk × ×  tk5f, 0.0374 molecule-1min-1 

R17 5r MFCtk ×  tk5r, 5220 min-1 

R18 6 1 40f MFC eIF A r stk × × ×  tk6f, 2.03*10-7 molecule-2min-1 

R19 6 1r ctk ×  tk6r, 438 min-1 
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R20 7 4 4f eIF E eIF Gtk × ×  tk7f, 0.0046 molecule-1min-1 

R21 7 4 _ 4r eIF E eIF Gtk ×  tk7r, 6552 min-1 

R22 8 4 _ 4f eIF E eIF G mRNA PABPtk × × ×  tk8f, 2.6337*10-7 molecule-2min-1 

R23 8 4 _ 4 _ _r eIF E eIF G mRNA PABPtk ×  tk8r, 4008 min-1 

R24 8 4 _ 4f eIF E eIF G mRNAr PABPtk × × ×  tk8f as above 

R25 8 4 _ 4 _ _r eIF E eIF G mRNAr PABPtk ×  tk8r as above 

R26 9 4 _ 4 _ _ 4 4f eIF E eIF G mRNA PABP eIF A eIF Btk × × ×  tk9f, 4.6934*10-7 molecule-2min-1 

R27 9 2r ctk ×  tk9r, 1398 min-1 

R28 9 4 _ 4 _ _ 4 4f eIF E eIF G mRNAr PABP eIF A eIF Btk × × ×  tk9f as above 

R29 9 2r c rtk ×  tk9r as above 

R30 10 1 2f c ctk × ×  tk10f, 0.0804 molecule-1min-1 

R31 10 3r ctk ×  tk10r, 522 min-1 

R32 10 1 2f c c rtk × ×  tk10f as above 

R33 10 3r c rtk ×  tk10r as above 

R34 11 3 5f c eIF Btk × ×  tk11f, 0.0643 molecule-1min-1 

R35 11 3 _ 5r c eIF Btk ×  tk11r, 456 min-1 

R36 11 3 5f c r eIF Btk × ×  tk11f as above 

R37 11 3 _ 5r c r eIF Btk ×  tk11r as above 

R38 12 3 _ 5 60f c eIF B r stk × ×  tk12f, 0.0808 molecule-1min-1 

R39 12 3 _ 5 60f c r eIF B r stk × ×  tk12f, as above 
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R40 8 40 _ _ 60r s mRNA r sk ×  
k8, 5*10-4 – 558.48 min-1 

(Schwanhausser, Busse et al. 
2011) 

R41 9 40 _ _ 60r s mRNAr r sk ×  k9, average k8 value, 279.24 min-1 

R42 10 proteink ×  
k10, 2.36*10-2-2.01*10-6 min-1 

(Schwanhausser, Busse et al. 
2011) 

 

4.2.3.2 Addition of the molecular mechanisms corresponding to extrinsic sources of 
noise considered in the detailed model did not explain noise saturation 

Previously developed simpler models of gene expression viz., 4-reaction and 6-reaction 

models showed a single decreasing trend of steady state protein noise and did not explain 

saturation of noise at high protein abundance. The noise floor was attributed to 

fluctuations extrinsic to these models. The detailed model developed in this study 

considered certain sources of extrinsic noise such as binding of regulator protein, RNA 

polymerase, and translational machinery. It also considered competition by other mRNA 

components in a cell. The detailed model was used to investigate whether these sources 

of noise explain the saturation of noise. Using the parameter values obtained from the 

study Schwanhausser, Busse et al, stochastic simulations of the detailed model were 

carried out as described in Methodology section. Figure 4-7 shows the graph of steady 

state %CV2 vs. mean protein abundance. However, in the graph only a single decreasing 

trend of noise with protein abundance was observed.  
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Figure 4-7 – Steady state %CV2 vs. mean protein abundance for the detailed model of gene 
expression 

Graph represents 890 data points. 

 

As compared to the 4-reaction model of gene expression the overall noise level at high 

protein abundance was observed to be higher in 42-reaction model. However, the sources 

of noise considered in the detailed model were not found to be responsible for the noise 

floor observed at high protein abundance. 

It has been theoretically shown that addition of distribution of parameters would lead to 

noise floor (Taniguchi, Choi et al. 2010). Stochastic simulations were performed using 4-

reaction model of gene expression using different types of distributions such as normal, 

exponential, and gamma, for specific rate of mRNA synthesis. To perform these 

simulations, a distribution with 1000 data points having the same mean as the value of 

parameter in the corresponding original parameter set, was generated. One parameter 

value from the distribution was used for one run of the simulation. Thus 1000 different 

parameter values were used for sample of 1000 runs. Figure 4-8 shows the graphs of 

steady state %CV2 vs. mean protein abundance for different types of distributions.  
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Figure 4-8 – Steady state %CV2 vs. mean protein abundance for the 4-reaction model of gene 
expression with distribution of specific rate of mRNA synthesis 

(a) normal distribution with standard deviation 0.1% of mean parameter value (1000 data 
points), (b) normal distribution with standard deviation 0.05% of mean parameter value (500 
data points), (c) exponential distribution (300 data points), (d) gamma distribution (500 data 
points) 

 

It was observed that the nature and the level of noise saturation were determined by the 

nature of parameter distribution. In case of normal distribution with standard deviation 

0.1% of the mean value (Figure 4-8a), %CV2 saturation was observed at 100. Similarly, 

in case of normal distribution with standard deviation 0.05% of the mean value (Figure 

4-8b), %CV2 saturation was observed at 25. In case of exponential distribution (Figure 
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4-8c), mean and standard deviation are equal, resulting in saturation at 104. In case of 

gamma distribution (Figure 4-8d), a saturating trend was not observed. In case of normal 

distribution with standard deviation of 0.1% and 0.05% of the mean value, noise trend 

was observed to be qualitatively similar to the experimentally observed data. As 

mentioned in the Methodology section, as a quantitative measure of saturation, ratio of 

the slopes was calculated. The ratio values were found out to be 0.5 and 0.77 for normal 

parameter distribution with standard deviation of 0.1% and 0.05% of the mean, 

respectively. 

In case of 42-reaction model, Reg (regulator protein considered in reaction R1) was 

considered as a parameter to add extrinsic noise. Reg being a regulator protein, a 4-

reaction model of gene expression was used to obtain a distribution with the same mean 

as the previously defined Reg value. The resultant steady state distribution of Reg with 

1000 abundance values was used in the detailed model to simulate a sample of 1000 runs. 

Similar to the simulations of 4-reaction model with parameter distribution, one Reg 

abundance value from Reg distribution was used for one run of simulation. The steady 

state distribution of protein obtained using 4-reaction model of gene expression was 

shown to be gamma distribution (Shahrezaei and Swain 2008). Thus using Reg 

distribution can be considered equivalent to using a gamma distribution of parameters. 

Figure 4-9 shows the graph of steady state %CV2 vs. mean protein abundance for detailed 

model with Reg distribution as extrinsic source of noise. In this case a saturating trend 

could not be observed. However, %CV2 did not decrease below 103, in contrast with the 

42-reaction model without parameter distribution (Figure 4-7). 
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Figure 4-9 – Steady state %CV2 vs. mean protein abundance for the detailed model of gene 
expression with distribution of Reg 

The distribution of Reg was obtained using 4-reaction model of gene expression. The graph 
shows 450 data points. 

 

In a cellular system, all the regulatory proteins are synthesized and degraded through the 

same gene expression process. Therefore, instead of the resultant steady state distribution, 

4-reactions of regulator mRNA and protein synthesis and degradation were incorporated 

in the detailed model.  It was thought that the complete 46 reaction model would show 

saturation of noise, due to addition of gene expression extrinsic noise. However, to our 

surprise, in this case a single decreasing trend of noise was observed. Figure 4-10 shows 

the graph of steady state %CV2 vs. mean protein abundance. 
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Figure 4-10 – Steady state %CV2 vs. mean protein abundance for the detailed model of gene 
expression with additional 4 reactions for Reg synthesis 

The graph shows 440 data points. 

 

In the condition, where steady state distribution of Reg was used as a source of extrinsic 

noise, different but constant value of regulator was used for each run for the entire time 

of the simulation. In this case the value of Reg changed during the time course of 

simulation for each run. It was clear that the fluctuations produced in the 4-reactions of 

regulator synthesis and degradation were fast compared to the fluctuations of high 

abundance protein and averaged away contributing insignificant to the total noise at 

high protein abundance, as suggested in previous studies. 

4.2.3.3 Slowest varying fluctuation could explain saturation of noise at high protein 
abundance 

It has been suggested that fluctuations of time scale comparable to cell cycle duration are 

important for population variability (Rosenfeld, Young et al. 2005). Therefore, to 

investigate the effect of time scale of fluctuation, proteins with different mixing time (τm) 

were used as Reg. Three different types of protein with τm equal to cell cycle duration, 

slightly greater than 2-cell cycle duration and around 30 times cell cycle duration were 

selected. The protein with 30-cell cycle duration was a slowest fluctuating protein in the 
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dataset. Figure 4-11 shows the time course profiles for the three proteins used as Reg, for 

visual comparison of time scale of mixing. In case of protein with τm equal to 30 cell 

cycle duration the protein levels were not observed to be mixing for a long time (Figure 

4-11c). 

 

 

Figure 4-11 – Time course profiles of regulator protein for 10 runs  

(a) Reg with τm equal to one cell cycle duration (b) Reg with τm greater than cell cycle duration 
(c) Reg with τm around 30 cell cycle duration 

 

Instead of detailed model, an 8-reaction model of gene expression was used (Figure 

4-12). In this reaction system 4-reaction model of gene expression was used for both the 

effecter protein and the regulator. Steady state distribution of each of the 4 components 

viz., regulator mRNA (Regm), regulator protein (Regp), effecter mRNA (m) and effecter 

protein (p) was used as initial condition, in order to investigate the effect of the added 

extrinsic noise on the final distribution of effecter protein. The reaction rate parameter of 

mRNA synthesis was changed such that the mean value of new pseudo-first order 

reaction rate <k’*Regp> was numerically equal to the previous zero order reaction rate 

parameter. This ensured same steady state mean values of effecter mRNA and protein. 
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Figure 4-12 – Reaction system considering 4-reaction model of gene expression each for Reg 
protein and effecter protein 

 

The simulations were initially carried out for 1 cell cycle duration (~1650 min) 

(Schwanhausser, Busse et al. 2011). However, a single decreasing trend of noise was 

observed in case of all the three types of Reg.  

It has been reported in experimental study that, even in the presence of cell division 

events, the protein level continues to increase or decrease to reach its steady state level, 

spanning multiple cell cycle durations (Kondo, Mori et al. 1997; Elowitz and Leibler 

2000). Considering cell division to be synchronized and deterministic event, its 

contribution was not considered in this study. In addition, even in synchronized gated 

population of cells, variability was observed, indicating cell-intrinsic source of 

variability. 

Simulations with 8-reaction model were performed for longer duration. It was observed 

that the noise increased as the duration of simulation was increased and the value reached 

almost a constant level after around 20 cell cycle duration. This indicated that though the 

mean value was the same, the distribution reached steady state after around 20 cell cycle 

duration. Figure 4-13 shows the graph of steady state %CV2 vs. mean protein abundance 

at the end of 30 cell cycle duration for three types of Reg.  
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Figure 4-13 – Steady state %CV2 vs. mean protein abundance for the 8-reaction system 

(a) Reg with τm equal to cell cycle duration (b) Reg with τm greater than two cell cycle duration 
(c) Reg with τm 30 cell cycle duration (500 data points for each Reg) 

 

A single degreasing trend was observed for Reg with τm equivalent to cell cycle and that 

greater than cell cycle (Figure 4-13 a and b). In case of slowest fluctuating protein as Reg, 

slightly lesser decrease in noise was observed at high protein abundance (Figure 4-13c). 

A clear saturating trend was not observed however, %CV2 did not decrease below 15. 

Hence, it was evident that fluctuation time scale compared to cell cycle duration or 

greater than cell cycle duration was not the source of variability at high expression level. 

Such fluctuations are faster compared to other slow varying effecter proteins and may 

average away during the time period of simulations, producing little variability. This also 

indicated that the time of measurement of noise as compared to the mixing time was also 

an important determinant of observed variability. The simulation with slowest varying 

protein as Reg, were continued for time duration of around 30 times that of mixing time. 

It was observed that the saturation was more clearly evident in the simulations for longer 

time (Figure 4-14). The ratio was found out to be 0.85 at the time duration of five times 

τm. The observed saturation was qualitatively similar to the experimental observation. 

However, the ratio was significantly greater than that for experimental data. Larger 

parameter sample set would lead to improvement in linear fit. The running median can 

also be calculated to clearly determine the trend and the ratio of slopes obtained from 

running median data can be compared with the experimental observation. 
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Figure 4-14 – Steady state %CV2 vs. protein abundance for the 8 reaction system with slowest 
fluctuating protein as Reg 

For the final time (a)5 times τm (b) 30 times τm (500 data points) 

 

The ratio value was observed to increase with longer simulation duration. The ratio was 

found out to be 0.92 at simulation time 30 times that of τm (Figure 4-14 b). As suggested 

in the previous studies, the slow fluctuations may average away during the time period 

required for slower varying proteins to reach the steady state. The time of measurement 

of noise was also an important factor determining the observed saturation as during the 

long time of simulation the slowest varying fluctuations could also average away 

resulting in no saturation. The ratio of slopes was measured for different time points.  

Figure 4-15 shows the value of ratio of slopes for different time points compared to τm. 
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Figure 4-15 – Graph showing ratio of slopes at different time duration as compared to the 
mixing time (τm) of Reg 

 
It was observed that the ratio decreased till the time period up to 5 times of τm after which 

the ratio was observed to increase. The minimum value of the ratio was observed at time 

5 times of τm. During the simulations, the slowest varying fluctuations were also observed 

to average to some extent. This indicated that, the time of measurement of the noise was 

also an important factor determining the observed noise floor. 

It was observed that the model with regulator as slowest varying protein could show 

noise floor. The results are qualitatively similar to the 4-reaction model with imposed 

extrinsic noise, using parameter distribution. The 4-reaction model with distribution of 

specific rate of mRNA synthesis showed saturation of noise. However the ratio of slopes 

was greater than that for experimental data (2.3 times the ratio of slopes of experimental 

data). It was observed that only the 8-reaction model with slowest varying extrinsic noise 

could show saturation of noise closer to that showed by 4-reaction model with parameter 

distribution (1.7 times the ratio for 4-reaction model). However, the ratio value was much 

higher than that observed for experimental data (4 times). Addition of multiple such types 

of regulation would increase the gene extrinsic noise leading to closer match to the 

observed extrinsic noise limit. Thus, the mixing time of Reg compared to that of the 
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effecter protein and not to the cell cycle duration was found to be important in 

determining saturation of noise. 

In this study, it was observed that extrinsic fluctuations having the slowest time scale of 

fluctuation can contribute to observed saturation of noise to some extent. As suggested in 

the previous studies the fluctuations in the concentrations of RNA polymerase, ribosomes 

can contribute to the observed saturation provided the time scale of fluctuations is slower 

than the high abundance effecter proteins. Multiple such gene expression-extrinsic but 

cell-intrinsic sources of noise can lead to saturation of noise with the noise floor at a 

value observed in single cell global protein measurement experiments. Some 

mathematical models have coupled deterministic gene expression with stochastic cell 

division event (Marathe, Bierbaum et al. 2012). Consideration of gene expression as 

deterministic would be a good approximation for high-abundance proteins. These 

mathematical models have shown variability in populations due to stochastic cell division 

and random partitioning of proteins (Thattai and Van Oudenaarden 2001; Marathe, 

Gomez et al. 2012), suggesting one source of noise contributing to the observed extrinsic 

noise limit. To explain variability in gated population of cells, cell-intrinsic sources such 

as the one studied in this model are required to be incorporated. 

In this study we have proposed one possible mechanism that can contribute to the 

extrinsic noise leading to saturation of noise at high abundance. Cell intrinsic noise of 

slowest time scale of fluctuation that is considered to be extrinsic to gene expression, can 

show saturation at high protein abundance level. 

4.2.4 Conclusion 

As a first step towards the development of a detailed model of gene expression, 

previously developed mathematical models of processes and regulation of gene 

expression were reviewed. Starting from a simple model of gene expression a detailed 

model of gene expression was developed using a modular approach. The entire model 

was divided into six modules each for one major sub-process. Such modular arrangement 

facilitates the use of a single module independent of other reactions. The model contains 

multiple simplifications of the processes and modifications to include details of reactions 
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are possible such as incorporation of details of mRNA transport, nuclear mRNA decay, 

and mRNA and protein degradation.  However, many processes in gene expression are 

gene specific and vary with environmental and physiological conditions. In order to make 

the model generic such details could not be included. For the use of the model to study a 

specific protein such details can easily be included in any of the modules of the model. 

As the detailed model considered certain cell-intrinsic sources of noise, it was used to 

investigate whether these sources can explain saturation at high protein abundance. It was 

observed that, though these noise sources contribute to total noise, these were not 

responsible for observed saturation. It was observed that, fluctuations slower than the 

effecter proteins in a cell could show saturation at high protein abundance. In this study 

we have proposed one possible source of gene-extrinsic but cell-intrinsic source of noise 

that can contribute to the extrinsic noise leading to saturation of noise at high protein 

abundance.  

4.3 Section 2 – Global sensitivity analysis of gene expression revealed 
differential sensitivity of steps in gene expression to different 
measures of noise 

4.3.1 Introduction 

There are multiple experimental and theoretical studies investigating various aspects of 

noise in gene expression. In order to explore the sources of noise in gene expression, 

some studies have focused on finding a step in gene expression that maximally influences 

the noise in protein level. However, the observations regarding most important step 

reported in these studies are ambiguous. 

One of the initial theoretical studies by Thattai and Oudenaardan (Thattai and Van 

Oudenaarden 2001) and supporting experimental study by Ozbudak, Thattai et al 

(Ozbudak, Thattai et al. 2002) using Bacillus subtilis compared transcription and 

translation and suggested that the noise in protein level was influence by translation much 

more than transcription. On the other hand the study using yeast cells by Blake et al 

(Blake, Kærn et al. 2003) stated that as opposed to prokaryotes, transcription with re-

initiation affects the noise in protein level in case of eukaryotic cells. In both the studies 
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Fano factor, defined as a ratio of variance to mean, was used as measure of noise. 

Another experimental study using yeast cells by Raser and O'Shea (Raser and O'Shea 

2004) investigated variability in population in terms of Fano factor by considering 

mRNA levels. The study compared gene activation and transcription under three different 

conditions of specific rates of gene activation, deactivation and transcription. Infrequent 

gene activation and high transcription was observed to produce larger variability in 

population in terms of mRNA level. In addition to these experimental studies, theoretical 

studies by Kierzek, Zaim et al (Kierzek, Zaim et al. 2001) on prokaryotic system 

compared transcription and translation and  showed that transcription initiation frequency 

affects noise in steady state protein level more than translation initiation frequency. In 

this study coefficient of variation was used as a measure of noise. Another study by 

Komorowski, Mi kisz et al (Komorowski, Mi kisz et al. 2009) examined the contributions 

of regulatory factor to gene expression noise and stated that repression at translational 

level results in more noise than repression at transcription. In contrast to the previous 

study, Fano factor was used as measure of noise. Table 4-5 summarises the major output 

of these studies. It is evident that these studies have compared different processes in gene 

expression and have also used two different measures of noise viz., coefficient of 

variation and Fano factor. Contradictory observations regarding an important step in gene 

expression have been reported in these studies. Due to the comparison of different 

processes in gene expression and use of different measures of noise theses studies cannot 

be compared. This suggests a need for systematic measurement of relative contributions 

of each step in gene expression for different measures of noise. 

 
Table 4-5 – Studies analysing gene expression to identify important step determining noise in 
protein 

Reference 
Process having more 
contribution to noise 

Organism Measure of noise 

(Thattai and Van Oudenaarden 
2001; Ozbudak, Thattai et al. 
2002) 

Translation Prokaryote Fano Factor 
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(Blake, Kærn et al. 2003) 
Transcription with re-
initiation 

Eukaryote Fano factor 

(Kierzek, Zaim et al. 2001) Transcription Prokaryote 
Coefficient of 
variation 

(Komorowski, Mi kisz et al. 2009) Translation Not specified Fano Factor 

 

Sensitivity analysis is a method to measure the effect of parameter variation on the output 

of a system. In the stochastic framework there are different methods for stochastic 

sensitivity analysis. These consider sensitivity analysis based on density function 

sensitivity using different approaches such as Fisher information matrix (Gunawan, Cao 

et al. 2005; Komorowski, Costa et al. 2011), spectral polynomial chaos expansion (Kim, 

Debusschere et al. 2007), and path-wise derivative approach (Sheppard, Rathinam et al. 

2012). All these studies consider sensitivity to infinitesimally small change or 

perturbation in parameter. Similar to control coefficients in deterministic systems, a 

mathematical framework for stochastic control analysis has been recently developed 

(Rocco 2009; Kim and Sauro 2010). It uses linear noise approximation to calculate 

sensitivity of infinitesimally small change in parameter value to noise to find out 

stochastic sensitivity coefficients for mean concentration, coefficient of variation and 

covariance. Thus almost all the studies considered local sensitivity except the study by 

Degasperi and Gilmore (Degasperi and Gilmore 2008) which considered Morris method 

and examined the sensitivity in wider parameter range using histogram distance measure. 

It is known that in case of gene expression, the parameter values for each of the major 

steps span 2 to 3 orders of magnitude range. Thus to examine sensitivity of these steps on 

the steady state noise in protein level global sensitivity analysis was thought to be 

appropriate in order to investigate relative contribution of each step over such a wide 

range of values. Multiple global sensitivity analysis methods such as multiple parameter 

sensitivity analysis (MPSA), partial rank correlation coefficient (PRCC), Morris method, 

weighted average of local sensitivities (WALS) are available (Zi 2011). Among these 

Multiple Parameter Sensitivity Analysis (MPSA) (Hornberger and Spear 1981) is one 

method widely used for biological systems (Cho, Shin et al. 2003; Zi, Cho et al. 2005). In 
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this study, MPSA was used to perform global sensitivity analysis. Three models of gene 

expression viz., 4-reaction model, 6-reaction model and a 42-reaction detailed model 

were used for sensitivity analysis. In case of 4-reaction model the relative contribution of 

transcription, translation, mRNA degradation, and protein degradation on steady state 

noise in protein was investigated. In case of 6-reaction model, additional reactions of 

gene activation and gene deactivation were use. The same six reactions were examined in 

case of the detailed model of gene expression. In this study the sensitivity to two 

measures of noise, viz., coefficient of variation, and Fano factor was calculated, in order 

to compare differential contribution of parameters to these measures.  

It was observed that the two measures of noise were indeed sensitive to different 

parameters. In addition, comparison of 4-reaction, 6-reaction and detailed model showed 

that addition of gene activation, gene deactivation reaction changed the relative 

contribution of reactions to noise in steady state protein level. Analysis of analytical 

expressions for local sensitivity of coefficient of variation and Fano factor for gene 

expression revealed the differential contribution of steps to these measures of noise. The 

numerically observed differential sensitivities could be explained from the analytical 

expression. 

4.3.2 Methodology 

4.3.2.1 Models and parameter ranges 

Global sensitivity analysis was performed using three models of gene expression viz., 4-

reaction model, 6-reaction model and 42-reaction model in order to explore whether 

addition of reactions leads to change in relative contribution of each step to noise at 

steady state protein level. As a representative parameter range of eukaryotic gene 

expression, the parameter ranges for specific rates of transcription, translation, mRNA 

degradation and protein degradation were obtained from Schwanhausser, Busse et al 

(Schwanhausser, Busse et al. 2011). The parameter range for gene activation and 

deactivation were obtained from experimental study by Suter, Molina et al (Suter, Molina 

et al. 2011). In the Schwanhausser, Busse et al dataset, majority of the parameter values 

were observed centered around a mean value and very few lie at the boundaries. 

Consideration of such outlier parameter values can result in altered sensitivity than what 
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is observed for a normal parameter range. Therefore, instead of considering the complete 

range for each parameter, log transformed mean ± 2 standard deviation range was 

considered. Log transformation was required as the parameter ranges covered two to 

three orders of magnitude. More than 95% of the data points were covered in the selected 

range. The parameter ranges are listed in Table 4-6. 

 

Table 4-6 – The parameter ranges used in gene expression models 

Parameter Range of parameter values 

Gene activation (min-1) 1*10-1 – 2*10-3 

Gene inactivation (min-1) 1 – 2*10-3 

Transcription reaction rate constant (min-1, for 4-reaction model) 4.33*10-3 – 2.16*10-1 

mRNA degradation reaction rate constant (min-1) 2.98*10-3 – 4.80*10-4 

Translation reaction rate constant (min-1) 3.97*10-2 – 7.86 

Protein degradation reaction rate constant (min-1) 1.83*10-3  – 3.82*10-5 

 

4.3.2.2 Multiple Parameter Sensitivity Analysis (MPSA) 

MPSA also called as regionalised sensitivity analysis was used to perform global 

sensitivity analysis. In MPSA, model output for randomly generated parameter data set is 

evaluated. The parameter sets are classified into two classes by comparing their output 

with the output of the reference parameter set. Parameter sensitivity is determined by 

comparing the cumulative distribution function curves for each parameter sets using 

Kolmogorov-Smirnov test. 

To perform MPSA, a parameter sample was obtained using Latin hypercube sampling 

method. It is more efficient method than random sampling. It has been suggested that 

random sample may require larger sample to cover entire range of data. To generate a 

sample of n data points within a certain range using Latin hypercube sampling, the range 

is divided into n intervals of equal size. One value is randomly selected from each 
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interval depending upon the probability density in the interval. This ensures that 

parameter ranges are evenly covered. Figure 4-16 shows plots of parameter sample 

generated using Latin hypercube sampling and random sampling. 

 

Figure 4-16 – Parameter samples generated using Latin hypercube sampling and random 
sampling 

A sample of parameters generated using (a) Latin hypercube sampling (b) random sampling. A 
more uniform sample of parameters can be generated using Latin hypercube sampling 
method. 

 

From Figure 4-16 it was evident that the parameter sample generated using Latin 

hypercube method (Figure 4-16a) was uniformly distributed over entire parameter range 

as compared to random sample (Figure 4-16b). 

Matlab function lhsdesign was used to generate parameter sample. Each parameter 

set contained 4 parameters (mRNA synthesis, protein synthesis, mRNA degradation and 

protein degradation) for 4-reaction model, and 6 parameters for 6-reaction and 42-

reaction model (gene activation and deactivation in addition to previously stated 4 

parameters), within the parameter ranges given in Table 4-6. For other parameters in the 

detailed model such as gene copy number, Reg abundance, reaction rate parameters for 

binding of translation factors, parameter ranges could not be obtained and hence not 

considered for sensitivity analysis. One sample of parameter sets contained 100 

parameter sets. Five such samples were generated ensuring different random seed for 
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each sample. Parameter sensitivity was obtained by considering the average sensitivity of 

5 samples. 

In case of specific reaction rate of mRNA synthesis for 6-reaction model, the parameter 

sample was generated in the same range as that for 4-reaction model. Knowing the 

corresponding values of gene activation and deactivation reaction rate parameters the 

steady state active gene level was calculated and used to set the specific rate of mRNA 

synthesis so as to obtain the same rate as that would be obtained in case of 4-reaction 

model. Thus the reaction rate parameter for mRNA synthesis in case of 6-reaction model 

was calculated as, 

4_
6_

geneActivation geneDeactivation( )

transcription reaction
transcription raction

geneActivation

k
k k

k k

=

+

 

In case of 42-reaction model, the sample of specific rate of mRNA synthesis was 

generated in the same range as that for 4-reaction model. An equilibrium level of 

GeneActive_RNApol was used to obtain the specific rate of mRNA synthesis. To obtain 

an equilibrium level of GeneActive_RNApol first four reactions (R1 to R4, Section 1) of 

were considered to be in equilibrium. Thus reaction rate parameter for mRNA synthesis 

in case of 42-reaction model was calculated as, 

_ 4
_ 42 [ ]

transcription reaction
transcription reaction GeneActive_RNApol

k
k =  

In case of specific rate of mRNA degradation for 42-reaction model, the range was 

obtained from previously generated sample of 1000 parameter sets (Section 1).  

The output was defined as the square of difference between %CV (or Fano factor) of 

reference parameter set and that of the sample parameter sets.  

2
ref(% CV % CV )iioutput −=  
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In case of each sample of 100 parameter sets, first parameter set was considered to be a 

reference set. A threshold value, defined as the ratio of summation of all output values to 

the number of parameter sets in the sample was obtained for each sample. 

ioutput
Threshold

sample size
= ∑  

Depending upon the value of output for a parameter set being greater or lesser than the 

threshold, the parameter sets were classified into two groups. For each parameter the 

cumulative distribution functions for the two groups were obtained. The cumulative 

distribution functions were compared using Kolmogorov-Smirnov (KS) test at 

significance level of 5%. KS test calculates the maximum vertical distance between the 

two cumulative distribution function curves. Sensitivity of an output is determined by the 

distance between the two distributions. Figure 4-17 illustrates the comparison of 

cumulative distribution function curves based on vertical distance. 

 

 

Figure 4-17 – Cumulative distribution function curves 

Cumulative distribution function curves for the two groups obtained by comparison of sample 
output values with the predefined threshold value, for two parameters, (a) Parameter 1 and 
(b) Parameter 2. Maximum vertical distance between the two curves is calculated using KS 
test.  The maximum vertical distance in case of parameter 2 is more compared to that of 
parameter 1 indicating significantly different distribution functions. The output is observed to 
be sensitive to Parameter 2. 
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To measure the sensitivity of each parameter a score was defined by considering the test 

statistics k weighted by the negative logarithm of p-value. The score is defined as, k*(-

log10(p)), where k is KS test statistics and p is p-value of the test. The sensitivity score 

was calculated for each sample and the average score of the 5 samples was used as a 

measure of sensitivity. 

4.3.2.3 Analytical expression for local sensitivity 

To understand the contribution of reaction rate parameter to sensitivity of steady state CV 

and Fano factor analytical expressions for local sensitivity were obtained. Local 

sensitivity can be defined as the change in the model output relative to infinitesimally 

small change in parameter value i.e. ioutput pδ δ . Using the 4-reaction model of gene 

expression analytical expression for steady state protein CV and Fano factor was obtained 

by following the framework by (Thattai and Van Oudenaarden 2001). Sensitivity 

coefficients were calculated by obtaining the partial derivatives of CV and Fano factor 

with respect to every parameter as, 
i

CV
p

δ
δ  and 

i

Fano Factor
p

δ
δ . Relative 

sensitivity coefficients .output p
p output

δ
δ

 were calculated to compare the sensitivity values 

at different parameter values. In the 4-reaction model, parameters k1, k2, k3 and k4 were 

defined as specific rates of mRNA synthesis, mRNA degradation, protein synthesis, and 

protein degradation, respectively. The expressions for sensitivity coefficients were 

obtained using Mathematica version 7.0.1.0 (Wolfram Research, Champaign, USA). 

4.3.3 Results and Discussion 

4.3.3.1 Sensitivity analysis using 4-reaction model showed maximum sensitivity of CV 
for transcription while that of Fano factor to translation 

For 4-reaction model of gene expression, MPSA was performed for %CV and Fano 

factor as measures of noise. Figure 4-18 shows cumulative distribution functions of %CV 

for 4 parameters, transcription, mRNA degradation, translation, and protein degradation.  
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Figure 4-18 – Cumulative density function of steady state protein %CV of two groups for one 
sample of parameter sets for 4-reaction model of gene expression 

(a) transcription, (b) mRNA degradation, (c) translation, and (d)protein degradation. 

 

It was observed that the maximum distance between the cumulative distribution functions 

for two parameters mRNA degradation (Figure 4-18b) and translation (Figure 4-18c) was 

much lesser as compared to that for transcription (Figure 4-18a) and protein degradation 

(Figure 4-18d). It indicated that, the cumulative distribution functions of two groups for 

transcription and protein degradation were significantly different. As sensitivity is 

reflected by the distance between the two distributions, %CV was observed to be 

sensitive to these two parameters. On the other hand %CV was not observed to be 

sensitive to mRNA degradation and translation. Sensitivity scores are summarized in 

Table 4-7. From the sensitivity scores it was evident that, transcription had highest 

sensitivity score, 4.22 and thus has maximum influence on steady state protein CV. 

Similar to MPSA for %CV, sensitivity was calculated for Fano factor. To our surprise, 

the sensitivity of Fano factor for the four parameters was different than that observed for 



129 
 

%CV. Figure 4-19 shows the cumulative distribution function of Fano factor for four 

parameters. 

 

 

Figure 4-19 – Cumulative density function of steady state protein Fano factor of two groups 
for one sample of parameter sets for 4-reaction model of gene expression 

(a) transcription, (b) mRNA degradation, (c) translation, and (d)protein degradation. 

 

In this case the cumulative distribution functions of transcription (Figure 4-19a) for the 

two groups were observed to be similar as opposed to that observed in case of %CV.  The 

cumulative distribution functions of translation for two groups were observed to be 

significantly different in this case (Figure 4-19c). Therefore, Fano factor was observed to 

be most sensitive to translation. The sensitivity score for Fano factor (Table 4-7), was 

observed to be around 10 times higher (8.67) than that for other parameters. These results 

are in agreement with the previously reported sensitivity of Fano factors for transcription 

and translation (Thattai and Van Oudenaarden 2001). 
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Table 4-7 – Average sensitivity score of steady state protein %CV and Fano factor for 4-
reaction model of gene expression 

Parameter 

% CV 

average score 

Fano factor 

average score 

Transcription 4.22 0.11 

mRNA degradation 0.10 0.81 

Translation 0.09 8.67 

Protein degradation 1.95 0.31 

 

Global sensitivity analysis of gene expression using 4-reaction model revealed that the 

two measures of noise were in fact sensitive to different parameters. It was observed that 

%CV was most sensitive to transcription while Fano factor was most sensitive to 

translation, indicating differential sensitivity of these measures of noise to different 

parameters.  

The sensitivity of these two measures of noise was calculated using Morris method to 

confirm the obtained sensitivity using MPSA. The details are given in Appendix IIIb. The 

sensitivity results obtained using Morris method were in agreement with the sensitivity 

results obtained using MPSA. 

4.3.3.2 Sensitivity analysis using 6-reaction model showed maximum sensitivity of CV 
for protein degradation and maximum sensitivity of Fano factor to translation 

To examine whether addition of reactions changes their relative contribution to noise, 

sensitivity was calculated using 6-reaction model of gene expression. The model contains 

reactions of gene activation and gene deactivation reactions in addition to the 4 reactions 

of mRNA and protein synthesis and degradation. It was observed that addition of gene 

activation and gene deactivation reaction indeed changed the relative sensitivity to 

variation in parameters. Figure 4-20 shows the cumulative distribution functions of %CV 

for six reaction rate parameters.  

 



131 
 

Figure 4-20 – Cumulative density function of steady state protein %CV of two groups for one 
sample of parameter sets for 6-reaction model of gene expression 

(a) gene activation, (b) gene deactivation, (c) transcription, (d) mRNA degradation, (e)  
translation, and (f) protein degradation. 

 

It was observed that the cumulative distribution functions for two groups were 

considerably different in case of gene activation (Figure 4-20a) and protein degradation 

(Figure 4-20f). However, in contrast to the 4-reaction model, the cumulative density 

functions were observed to be similar for transcription reaction rate parameter (Figure 

4-20c). From the sensitivity scores (Table 4-8) it was evident that, CV was maximally 

sensitive to protein degradation. Gene activation was also observed to affect CV at 

protein steady state level. The other parameters were observed to have much lesser 

influence of CV as compared to protein degradation and gene activation. 

Similar to 4-reaction model, sensitivity of Fano factors for the six parameters was 

calculated. In this case as well, Fano factor was observed to be sensitive to different 
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parameters than CV. Figure 4-21 shows graphs of cumulative distribution function of 

Fano factor for the six parameters. 

 

 

Figure 4-21 – Cumulative density function of steady state protein Fano factor of two groups 
for one sample of parameter sets for 6-reaction model of gene expression 

(a) gene activation, (b) gene deactivation, (c) transcription, (d) mRNA degradation, (e) 
translation, and (f) protein degradation. 

 

It was observed that the cumulative distribution functions for the two groups were 

different for gene activation (Figure 4-21a), transcription (Figure 4-21c), mRNA 

degradation (Figure 4-21d) and translation (Figure 4-21e). It was evident from the graphs 

that, in contrast to the similar cumulative distribution functions of CV for translation, the 

functions were different in case of Fano factor.  Table 4-8 summarized the sensitivity 

scores for %CV and Fano factor. 
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Table 4-8 – Average sensitivity score of steady state protein %CV and Fano factor for 6-
reaction model of gene expression 

Parameter 

% CV 

average score 

Fano factor 

 average score 

Gene activation 2.13 1.14 

Gene deactivation 0.08 0.16 

Transcription 0.25 1.38 

mRNA degradation 0.08 0.59 

Translation 0.06 2.02 

Protein degradation 3.75 0.10 

 

From the sensitivity scores, Fano factor was observed to be most sensitive to translation, 

similar to that observed for 4 reaction model. It was also observed to be sensitive to gene 

activation and transcription. With addition of two reactions of gene activation and 

deactivation, the relative contribution of reactions to CV and Fano factor was observed to 

be changed. However, translation remained as important step determining the Fano factor 

in case of both 4-reaction and 6-reaction models of gene expression. 

In a study by Raser and O’Shea (Raser and O'Shea 2004), influence of gene activation, 

deactivation, and mRNA synthesis on variability of mRNA was examined for three 

different conditions using Fano factor as a measure of noise. In this study, we have 

examined sensitivity of %CV and Fano factor at steady state level of mRNA for four 

parameters viz., gene activation, gene deactivation, mRNA synthesis and mRNA 

degradation. Figure 4-22 and Figure 4-23 show graphs of cumulative distribution 

function for %CV and Fano factor respectively. 
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Figure 4-22 – Cumulative density function of steady state mRNA %CV of two groups for one 
sample of parameter sets for 6-reaction model of gene expression 

(a) gene activation, (b) gene deactivation, (c) transcription, (d) mRNA degradation. 
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Figure 4-23 – Cumulative density function of steady state mRNA Fano factor of two groups for 
one sample of parameter sets for 6-reaction model of gene expression 

(a) gene activation, (b) gene deactivation, (c) transcription, (d) mRNA degradation. 

 

Similar to the previous cases, CV and Fano factor were observed to be sensitive to 

different parameters. It was observed that the cumulative distribution functions were 

different in case of gene activation for both CV and Fano factor (Figure 4-22a and Figure 

4-23a). On the other hand, cumulative distribution functions in case of transcription were 

observed to be similar for CV (Figure 4-22c) while those were different for Fano factor 

(Figure 4-23c). The cumulative distribution function curves for mRNA degradation were 

different for CV (Figure 4-22d) but similar in case of Fano factor (Figure 4-23d). 
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Table 4-9 – Average sensitivity score of steady state mRNA %CV and Fano factor for 6-reaction 
model of gene expression 

Parameter 

% CV 

average score 

Fano factor 

average score 

Gene activation 2.08 4.39 

Gene deactivation 0.09 0.46 

Transcription 0.23 4.52 

mRNA degradation 1.08 0.18 

 

From the sensitivity scores (Table 4-9) it was observed that gene activation was observed 

to be most important to determine CV while transcription was most important to 

determine Fano factor at steady state mRNA level. Gene activation was also found to be 

important for Fano factor. mRNA degradation was observed to have least influence on 

Fano factor in contrast to CV where it was observed to be an important parameter. 

In this study, sensitivity of noise to mRNA degradation was also explored in addition to 

the previously considered three parameters of gene activation, gene deactivation and 

transcription. From the study it was predicted that mRNA degradation was an important 

parameter to determine CV at steady state level of mRNA. 

4.3.3.3 Sensitivity analysis using 42-reaction model shows maximum sensitivity of CV 
for protein degradation and maximum sensitivity of Fano factor to gene 
activation 

MPSA was performed on previously developed detailed (42-reaction) model of gene 

expression. In the detailed model, additional reactions such as binding of regulator 

protein, RNA polymerase, mRNA transport, binding of translation machinery were 

considered. The parameter Reg abundance can also be changed and sensitivity of noise to 

the parameter can be examined. However, in this study, the six parameters same as those 

analysed in case of 6-reacttion model were used for sensitivity analysis. 
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Figure 4-24 and Figure 4-25 shows graphs of cumulative distribution functions for %CV 

and Fano factor at steady state protein level. 

 

 

Figure 4-24 – Cumulative density function of steady state protein %CV of two groups for one 
sample of parameter sets for 42-reaction model of gene expression 

(a) gene activation, (b) gene deactivation, (c) transcription, (d) mRNA degradation, (e) 
translation, and (f) protein degradation. 
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Figure 4-25 – Cumulative density function of steady state protein Fano factor of two groups 
for one sample of parameter sets for 42-reaction model of gene expression 

(a) gene activation, (b) gene deactivation, (c) transcription, (d) mRNA degradation, (e) 
translation, and (f) protein degradation. 

 

It was observed that in case of %CV, the cumulative distribution functions were 

significantly different in case of protein degradation (Figure 4-24f). The cumulative 

distribution function curves were observed to be different to some extent in case of gene 

activation (Figure 4-24a). In contrast to 6-reaction model where cumulative distribution 

functions of CV for translation were observed to be similar, in this case the functions 

were observed to be different to some extent (Figure 4-24e). In case of Fano factor, 

similar to 6-reaction model, the functions for gene activation were observed to be 

different (Figure 4-25a). However, in this case the functions for translation were observed 

to be similar (Figure 4-25e). Significant difference was observed in case of mRNA 

degradation (Figure 4-25d). Table 4-10 summarized the sensitivity scores of steady state 

protein %CV and Fano factor.  It was evident that CV was most sensitive to protein 

degradation, while Fano factor was observed to be most sensitive to gene activation.  
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Table 4-10 – Average sensitivity score of steady state protein %CV and Fano factor for 42-
reaction model of gene expression 

Parameter 

% CV 

average score 

Fano factor 

average score 

Gene activation 0.37 0.95 

Gene deactivation 0.28 0.19 

Transcription 0.30 0.47 

mRNA degradation 0.15 0.91 

Translation 0.34 0.33 

Protein degradation 0.73 0.37 

 

In contrast to both 4-reaction and 6-reaction models, Fano factor was not observed to be 

sensitive to translation. In case of detailed model of gene expression, the specific rate of 

mRNA degradation was affected by the specific rate of translation, as only free mRNA 

can undergo degradation. Thus observed sensitivity Fano factor to mRNA degradation 

can be due to the influence of translation reaction rate parameter in determining the 

mRNA degradation reaction rate parameter. Sensitivity of CV and Fano factor at steady 

state mRNA level was also calculated. Table 4-11 summarizes the average sensitivity 

scores. 

Table 4-11 – Average sensitivity score of steady state mRNA %CV and Fano factor for 42-
reaction model of gene expression 

Parameter 

% CV 

average Score 

Fano factor 

 average score 

Gene activation 0.19 0.16 

Gene deactivation 0.21 0.12 

Transcription 0.72 0.39 

mRNA degradation 3.03 2.39 
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It was observed that both CV and Fano factor at steady state mRNA level were most 

sensitive to mRNA degradation. In contrast to 6 reaction model, in which CV and Fano 

factor were observed to be sensitive to gene activation in this case transcription was 

observed to be important. In the detailed model, gene activation was considered to be 

dependent on the parameter of regulator protein (Reg) abundance. Thus, sensitivity to 

Reg abundance is also required to be studied.  

From the global sensitivity analysis for two measures of noise using three different 

models of gene expression, it was clear that CV and Fano factor were sensitive to 

different parameters. It was observed that addition of reactions changed the relative 

contribution of reactions to noise in steady state level of mRNA and protein. 

4.3.3.4 Analytical expressions for sensitivity of CV and Fano factor explain differential 
contribution of parameters to different measures of noise 

To understand the contribution of each reaction rate parameter to CV and Fano factor 

analytical expression for these two measures of noise was obtained using the 4-reaction 

model of gene expression. The expressions for CV and Fano factor at steady state level of 

protein in terms of reaction rate parameters were given as, 

2 4 2 3 4

1 3 2 4

(k k k )
(k k )

k kCV
k k

+ +
=

+
        (4.1) 

and 

2 3 4

2 4

k k kFano Factor=
k k
+ +
+

        (4.2) 

where, k1, k2, k3 and k4 are specific rates of mRNA synthesis, mRNA degradation, 

protein synthesis, and protein degradation respectively. From the analytical expressions 

for CV (equation 4.1) and Fano factor (equation 4.2) it was observed that all the four 

parameters contribute to steady state CV. However, specific rate for transcription did not 

appear in the analytical expression for Fano factor. Therefore, variation in transcription 
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reaction rate constant would not affect Fano factor at steady state protein level indicating 

no sensitivity of Fano factor to transcription. In the numerical simulations for global 

sensitivity, transcription was observed to have least influence on Fano Factor (Table 4-7). 

The observed sensitivity value can be due to simultaneous variation in parameters 

performed for global sensitivity.  

To examine the contribution of these parameters to sensitivity, analytical expression for 

local sensitivity was obtained. Though local sensitivity is useful to investigate the 

sensitivity in the vicinity of a particular parameter value, it is very informative in order in 

investigate the contribution of reaction rate parameters to the sensitivity. Analytical 

expressions for sensitivity of CV with respect to every parameter were obtained. The 

expressions are given as, 

2 4 2 3 4

21 2 4 2 3 4
1 3 2 4
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Comparing the expressions for sensitivity of CV to mRNA degradation (equation 4.4), 

translation (4.5) and protein degradation (4.6) it was observed that, the expressions for 

sensitivity to mRNA degradation and protein degradation contained additional positive 

terms 4 2 3 4

1 3 2 4

(k k k )
(k k )

k
k k

+ +

+
 and 2 2 3 4

1 3 2 4

(k k k )
(k k )

k
k k

+ +

+
in the numerator respectively. Therefore, the 

sensitivity of CV to mRNA degradation and protein degradation would be greater than 

that for transcription at given values of parameters. Numerical sensitivity results (Table 

4-7) were observed to be in qualitative agreement with the observed analytical local 

sensitivity. Generally mRNA molecules are known to be less stable than protein 

molecules, indicating higher numerical values of mRNA degradation reaction rate 

constant than protein degradation. Therefore, comparing the expression for sensitivity to 

mRNA degradation and protein degradation, it can be inferred that sensitivity of CV to 

mRNA degradation would be lesser than that for protein degradation for majority of the 

cases, as observed in numerical sensitivity analysis. However, only in case of a very 

stable mRNA and unstable protein it may not hold true. 

Analytical expressions for sensitivity of Fano factor to these four parameters were 

obtained. As evident from the expression of Fano factor, transcription did not contribute 

to Fano factor at steady state protein level. Therefore, sensitivity of Fano factor to 

transcription was observed to be zero. The analytical expressions for sensitivity of Fano 

factor to other three parameters was given as, 

2 3 4
2

2 2 4 2 4

1
( )

Sensitivity of Fano factor to mRNA degradation=
k k kFano factor

k k k k k
δ

δ
+ +

= −
+ +

 (4.7) 
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δ
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+
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2 3 4
2

4 2 4 2 4
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Sensitivity of Fano factor to protein degradation=
k k kFano factor

k k k k k
δ

δ
+ +

= −
+ +

 (4.9) 

The sensitivity of Fano factor to mRNA and protein degradation (expressions 4.7 and 

4.9) was observed to be same. Comparing these expressions with expression for 
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sensitivity of Fano factor to translation, it was observed that a negative term 2 3 4
2

2 4(k k )
k k k+ +

+
 

was present in sensitivity to mRNA and protein degradation. Therefore, qualitatively it 

can be inferred that sensitivity to translation would be greater than that for mRNA and 

protein degradation. Numerical simulations results (Table 4-7) were observed to be in 

agreement with the observed qualitative nature of relative sensitivity. From the 

expression for sensitivity of Fano factor to translation it was observed that, change in 

Fano factor values due to change in translation would depend only upon the value of 

mRNA and protein degradation and not on value of translation. 

As local sensitivity examines the behavior of model in the neighbourhood of a parameter 

value, the absolute values of change in output at different parameter values can differ. In 

addition, local sensitivity considers variation only in one parameter while other 

parameters are considered to be constant. Therefore, absolute value of local sensitivity 

can change depending upon the values of other parameters. To compare local sensitivity 

at different parameter values, relative sensitivity coefficient, .output p
p output

δ
δ

  was used. 

From expressions 4.1 and 4.3, the relative sensitivity coefficient of CV to transcription,

1

1

. kCV
k CV

δ
δ

  was calculated to be -0.5. This indicated that, at any parameter values ∆ 

increase in k1 would result in 0.5 ∆ decrease in CV. Therefore, the relative change in CV 

for change in transcription at any parameter values would be same, indicating that values 

of other parameters did not affect.  

The relative sensitivity coefficient of CV to translation was given as, 

2 4

2 3 4

3

3

( )
2( )

. k k
k k k

kCV
k CV

δ
δ

− +

+ +
=         (4.10) 

From the expression (4.10) it was observed that relative sensitivity coefficient of CV to 

translation did not depend upon transcription. The relative change in CV at a particular 

value of translation was observed to be dependent on values of mRNA and protein 
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degradation as well. It can be inferred that at very low translation compared to mRNA or 

protein degradation, for ∆ increase in mRNA or protein degradation there would be 0.5∆ 

decrease in CV. While at high translation, mRNA and protein degradation would not 

affect and the change in CV would depend upon translation. From the physiological 

parameter ranges it was observed that, the numerical values of translation reaction rate 

constant being order of magnitude greater than that of mRNA and protein degradation, 

these processes had little effect of relative change in sensitivity. Figure 4-26 shows the 

plot of relative sensitivity coefficient as a function of translation, mRNA degradation and 

protein degradation. 

 

 

Figure 4-26 – Plot of relative sensitivity coefficient of CV to translation as a function of 
translation, mRNA degradation, and protein degradation 

From the plot it was observed that, translation had maximum effect on relative sensitivity 

coefficient. Comparing mRNA degradation and protein degradation, mRNA degradation 

had more effect on relative sensitivity coefficient.  
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Similarly, to investigate the effect of other parameters on the sensitivity coefficient of 

Fano factor to translation the expression for the relative sensitivity coefficient was 

obtained. The expression is given as,  

3 3

3 2 3 4

. k kFano factor
k Fano factor k k k

δ
δ

=
+ +

      (4.11) 

The nature of the function (equation 4.11) was observed to be saturating. At high values 

of translation (k3) the relative sensitivity coefficient should approach one. Figure 4-27 

shows plot of relative sensitivity coefficient as a function of translation, mRNA 

degradation and protein degradation. 

 

 

Figure 4-27 – Plot of relative sensitivity coefficient of Fano factor to translation as a function 
of translation, mRNA degradation, and protein degradation 

 

It was evident that for translation reaction rate parameter values greater than 4.86*10-

1min-1, the relative sensitivity coefficient was not affected by mRNA degradation and 

protein degradation. The value was observed to reach 0.99 at higher values of specific 
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rate of translation. Comparing mRNA and protein degradation, mRNA degradation was 

observed to have more effect than protein degradation, similar to that observed in case of 

relative sensitivity coefficient of CV to translation.  

In summary, from the global and local sensitivity analysis using two different measures 

of noise it was observed that the two measures of noise were sensitive to different 

parameters. Additionally, the sensitivity to one parameter was observed to be affected by 

the values of other parameters as well. The observed differential sensitivity of CV and 

Fano factor to parameters could be explained from analytical expressions for sensitivity. 

4.3.4 Conclusion 

To examine the relative contribution of major steps in gene expression to noise in steady 

state protein level, global stochastic sensitivity analysis was performed using MPSA. In 

contrast to majority of the previous experimental and theoretical studies that consider 

only one measure of noise, in this study sensitivity was determined for both coefficient of 

variation and Fano factor. 3 models of gene expression with differing degree of details 

were used for the study. It was observed that addition of different reactions changed the 

relative contribution to the noise in steady state protein level. Thus the level of 

abstraction can affect the observed relative sensitivity. 

Previous theoretical study on first order reaction network has shown that the two 

measures lead to contrary conclusions about noise (Gadgil, Lee et al. 2005). Therefore, 

both the measures of noise are required to be examined. From the observed differential 

sensitivity of the two measures of noise it is clear that the sensitivity estimated using a 

particular measure of noise, should not be attributed to the generic variability or ‘noise’. 

Thus, the previous analyses determining sensitivity need to be reanalyzed to explore the 

sensitivity for other measure of noise. 

In summary, by comparing different measures of noise and models of gene expression 

considering different levels of abstractions, the study highlighted differential contribution 

of parameters to the two measures of noise and provided a comparative view of 

sensitivity of noise at steady state protein level over wide parameter ranges.  
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5 Overall conclusion and Future directions 
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The study of biological phenomena has changed from the investigation of one gene to 

exploring the emergent properties of a system as a whole. Development of new 

experimental techniques of growing cell cultures, visualization, and quantification has 

advanced the investigation of large systems at single molecule resolution. These 

experiments create enormous amount of data that needs to be analysed. Theoretical 

analysis is an effective approach to analyse large amount of data and study complex 

biological processes. Development of mathematical model marks an important step in the 

iterative process of experimental analysis and theoretical analysis. 

The present study involves investigation of some aspects of gene expression and its 

regulation. It includes the study of regulation of gene expression at transcriptional and 

post-transcriptional level and of stochasticity in gene expression. 

In the first part, a mathematical model of transcriptional regulation by transcription factor 

TBP was developed for auto-regulatory synthesis of TBP. The model prediction of 

requirement of minimal amount of TBP for cell viability has implication in understanding 

the observed maternal inheritance of TBP. The relationship between low DNA binding 

affinity of TBP and cell viability is useful to gain insight into the role of the observed low 

DNA binding affinity mutants of TBP in neurodegenerative diseases. 

A detailed mathematical model of miRNA mediated regulation was developed to study 

RNA mediated regulation at post-transcriptional level. With the known biological details 

of mechanism of regulation, the unintuitive observations of activating effect of miRNA 

were explained using the developed mathematical model such that these observations are 

no longer unexpected. In addition to the analysis of miRNA effect on the steady state of 

target protein, a simple method was developed to incorporate dynamic effects of intronic 

miRNA into existing mathematical models of cellular processes. Using the developed 

method a mathematical model of cell cycle was modified to include regulation by one 

intronic miRNA that resulted in improved model performance. 

Contributions of intrinsic and extrinsic sources of noise to the observed protein 

distribution were analysed in the present study. A detailed model of gene expression was 

developed to investigate sources of gene-expression extrinsic noise that contribute to the 

observed noise floor at high protein abundance. It was observed that time scale of 
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fluctuations of a parameter compared to that of the protein of interest determine the 

observed contribution of extrinsic noise to the observed noise floor. Global sensitivity 

analysis was performed to estimate the relative contribution of major steps in gene 

expression to the intrinsic noise at steady state protein level. Interestingly, different 

measures of noise were observed to be sensitive to different parameters. Thus the study 

suggested that the observed sensitivity should be attributed to the specific measure and 

not to the generic ‘noise’ or variability. 

In the present study the mathematical model of TBP was developed and analyzed using 

the deterministic approach. Analysis using stochastic approach would be important as the 

low copy number of TBP gene can result in significant fluctuations in TBP level. The 

mathematical model of miRNA mediated regulation can be extended to study the effect 

of multiple miRNA on multiple mRNA targets, as observed in cellular systems. The 

separate models of transcriptional and post-transcriptional regulation can be combined to 

study the properties of cross talk between regulatory layers. The model of gene 

expression though detailed, contained many assumptions and simplifications. Certain 

details were not included due to lack of experimental details. The model can be improved 

to incorporate biological details once experimental data is available. As the developed 

model of gene expression is modular, the modules of sub-processes can be used 

separately. Being a detailed model regulation at multiple levels can be incorporated in the 

single model. 

In summary, the present study contributed to advance the understanding of certain 

aspects of eukaryotic gene expression. It demonstrated the use of mathematical modeling 

to gain deeper insight into gene expression process. The study showed the utility of 

dimensionless numbers for predictions of outcome of biological processes. The 

sensitivity analysis highlighted the fact that a mathematical measure or representation is a 

proxy for a concept and the interpretation may not always be generalized. In this study 

certain falsifiable hypotheses were generated that can be experimentally tested to get 

improved understanding of the underlying biological process in eukaryotic gene 

expression. 
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Appendix Ia – Concentration range for total TBP and total TBP binding sites 
 

 Yeast Cell 

Radius: 1 μm (Misirli, Oner et 
al. 2007) and references 
therein 

Volume: 4.17*10-15 lit 

Mammalian Cell 

Radius: 7.5 μm (Ron Milo 
May 2007) 
(http://bionumbers.hms.
harvard.edu) 

Volume: 1.76*10-12 lit 

Sea urchin egg Cell 

Radius: 50 μm (Alberts, 
Bray et al. 2002) 

Volume: 5.22*10-10 lit 

TBP 
Concentration 

4800 molecules = 1.91*10-6M 

20,000 molecules = 7.96*10-

6M 

2*109 molecules = 0.7M 

4800 molecules = 4.5*10-

9M 

20,000 molecules = 
1.88*10-8M 

2*109 molecules = 
1.9*10-3M 

4800 molecules = 1.5*10-

11M 

20,000 molecules = 
6.3*10-11M 

2*109 molecules = 6.3*10-

6M 

TBP binding 
site 
concentration 

3000 sites = 1.19*10-6M 

10000 sites = 3.98*10-6M 

80000 sites  = 3.185*10-5M 

3000 sites = 2.8*10-9M 

10000 sites = 9.4*10-9M 

80000 sites = 7.5*10-8M 

3000 sites = 9.5*10-12M 

10000 sites = 3.2*10-11M 

80000 sites = 2.5*10-10M 

 

Appendix Ib – Dimensionless parameter for mathematical model of TBP 
 

Parameter with dimension Dimensionless parameter 

1 1
1  ( )k M s− −  0

1 1
8

Dk
k

κ =  

1
2  ( )k s−  2

2
8

k
k

κ =  

1 1
3  ( )k M s− −  0

3 3
8

Dk
k

κ =  

1
4  ( )k s−  4

4
8

k
k
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1
5  ( )k Ms−  5

5
0 8

k
D k
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D
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0 8
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Appendix Ic – Sensitivity for k3 and k5 for wide range of parameters 
 

Table states ranges of D0 concentration, k5, k7 and corresponding total TBP 

concentration, sensitivity to single parameter change, response time ratio, and the ratio of 

dimer concentration to TBP-DNA complex concentration. 

 

Sr. 
No. D0 (M) k5 (M/s) k7 (M) 

Total TBP 
(M) 

Decrease in high-TBP state 
concentration 

Ratio of 
response time 
by 
computational 
method [T2]/[TD] 

Sensitivity 
to k3 

Sensitivity 
to k6 

1 2.50E-05 5.00E-11 1.25E-08 0.000117 0.08% 0.08% 2.62E-04 1.83E+00 

2 2.50E-05 5.00E-12 1.25E-08 2.53E-05 2.69% 
Not 
detectable 6.57E-01 1.88E-02 

3 2.50E-05 5.00E-13 1.25E-05 1.72E-05 43.00% 6.53% 9.99E-01 1.14E-04 
4 2.50E-05 5.00E-13 1.25E-06 1.93E-05 18.00% 1.45% 9.98E-01 2.35E-04 
5 2.50E-05 5.00E-13 1.25E-07 1.93E-05 18.00% 0.10% 9.98E-01 2.37E-04 
6 2.50E-05 5.00E-13 1.25E-08 1.93E-05 18.00% 0.05% 9.98E-01 2.37E-04 

7 2.50E-05 5.00E-13 1.25E-09 1.93E-05 19.00% 
Not 
detectable 9.98E-01 2.37E-04 

8 2.50E-05 5.00E-14 1.25E-08 6.31E-06 42.00% 0.14% 1.00E+00 7.23E-06 
9 2.50E-06 5.00E-12 1.25E-08 3.41E-06 1.99% 0.29% 2.14E-03 1.88E-01 
10 2.50E-06 5.00E-13 1.25E-07 1.94E-06 18.00% 1.03% 9.76E-01 2.35E-03 
11 2.50E-06 5.00E-13 1.25E-08 1.94E-06 18.00% 0.15% 9.76E-01 2.37E-03 
12 2.50E-06 5.00E-14 1.25E-08 6.32E-07 42.00% 1.45% 9.99E-01 7.23E-05 
13 2.50E-07 5.00E-12 1.25E-08 1.22E-06 0.50% 7.06% 2.98E-03 1.87E+00 
14 2.50E-07 5.00E-13 1.25E-07 1.81E-07 43.93% 5.20% 8.37E-01 1.14E-02 
15 2.50E-07 5.00E-13 1.25E-08 2.09E-07 17.41% 1.96% 1.58E-02 2.35E-02 
16 2.50E-07 5.00E-13 1.25E-09 2.09E-07 17.24% 0.23% 1.65E-02 2.37E-02 
17 2.50E-07 5.00E-14 1.25E-08 6.20E-08 47.40% 12.11% 9.93E-01 6.87E-04 
18 2.50E-08 5.00E-12 1.25E-08 6.44E-07 3.00% 28.00% 4.07E-03 1.18E+01 
19 2.50E-08 5.00E-13 1.25E-08 2.56E-08 47.44% 9.15% 1.08E+00 1.14E-01 
20 2.50E-08 5.00E-13 1.25E-09 3.51E-08 10.41% 4.76% 1.19E+00 2.35E-01 

21 2.50E-09 5.00E-11 1.25E-08 1.21E-07 33.70% 
21 times 
increase 6.57E-02 2.11E+01 

22 2.50E-09 5.00E-13 1.25E-09 1.01E-08 52.02% 22.70% 1.43E+00 1.14E+00 
23 2.50E-09 5.00E-13 1.25E-10 1.77E-08 2.25% 10.15% 1.51E+00 2.35E+00 
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Appendix Id – Perturbation Study for TBP system by analytical method 
 

In the neighbourhood of a steady state, for the three variable system of TBP (equations2.8 

to 2.10, chapter 1),  the rate of change of perturbation (σi), where perturbation for 

variable i is defined as [i]-[i_steady state], can be given as (Heinrich, Rapoport et al. 1977), 

2 211 12 13
2

1 1 1
[ ] [ ] [ ]

T
T T TD T T TD

d f f f a a a
dt T T TD
σ σ σ σ σ σ σ∂ ∂ ∂

= + + = × + × + ×
∂ ∂ ∂

2

2 221 22 23
2

2 2 2
[ ] [ ] [ ]

T
T T TD T T TD

d f f f a a a
dt T T TD
σ

σ σ σ σ σ σ∂ ∂ ∂
= + + = × + × + ×
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2 231 32 33
2

3 3 3
[ ] [ ] [ ]

TD
T T TD T T TD

d f f f a a a
dt T T TD
σ σ σ σ σ σ σ∂ ∂ ∂

= + + = × + × + ×
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Where, ija are elements of Jacobian matrix J, 

( )
6 6

6 6

1
5 6 7

1 3 0 3 8 2 3 4 2

7

1 2

3 0 3 3 4

[ ]4 [ ] [ ] [ ] 2 [ ]
[ ]

2 [ ] 0
[ ] [ ] 0 [ ]

k k

k k

k k k TDk T k D k TD k k k T k
k TD

k T k
k D k TD k T k

− × × ×
− × × − × + × − × × + + 

+ 
 

× × − 
 × − × − × −
 
 
 

 

The general solution for the above system is given by, 
31 2

1 2 3( ) 1 2 3 tt tt c e v c e v c e vλλ λσ = × × + × × + × ×  

Where λ1, λ2 and λ3 are three eigenvalues and v1, v2 and v3 are corresponding 

eigenvectors of J. Analytical expression for eigenvectors was obtained in terms of 

eigenvalues and reaction rate constants. 

The eigenvectors are, 
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In the perturbation study, the initial perturbation for TBP is 10% of steady state free TBP 

concentration and zero for the other two species. From these initial conditions, analytical 

expressions for c1, c2 and c3 were obtained. 

From, the general solution and the above expression for eigenvectors, 
31 2

11 12 13( ) tt t
T t B e B e B eλλ λσ = × + × + ×   

Where, 2 1 2 0 3 8 1 3 2 3
11

1 2 1 3

( ( )( [ ] 4 [ ] [ ] ))
( )( )

x k k D k k k T k TDB λ λ λ
λ λ λ λ

− + + × + + × × − × + +
=

− −
,

2 2 2 0 3 8 1 3 1 3
12

1 2 2 3

( )( [ ] 4 [ ] [ ] )
( )( )

x k k D k k k T k TDB λ λ λ
λ λ λ λ

+ + × + + × × − × + +
=

− −
 and 

2 3 2 0 3 8 1 3 1 2
13

1 2 2 3

( ( )( [ ] 4 [ ] [ ] ))
( )( )

x k k D k k k T k TDB λ λ λ
λ λ λ λ

− + + × + + × × − × + +
=

− −
 

Here, x is initial perturbation in [T]. 
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In this case the response time is the time required to recover 90% of the perturbation. In 

this case, therefore, σT(t) is 10% of the initial perturbation. 

We compared the response time obtained for the two systems. The response time 

obtained with this method was found to be almost same to that obtained by computational 

method (Figure A1). The correlation coefficient between the results obtained by the two 

methods was 0.99.  

 

 

Figure A1 – Graph of ratio of response time by analytical method vs. ratio of response time by 

computational method. 
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Appendix IIa – Representative parameter scheme for calculation of relative noise 
 
For reported values of reaction rate parameter, the values of four dimensionless numbers 

a, b, c, and d are 4, 0.6, 363.64, and 0.5 respectively. 

For these values of dimensionless numbers following scheme of reaction rate parameters 

was used 

 
a c d 

k1 k2 k1 k3 k1 k8 k5 k6 

0.0002 0.001 0.0002 100 0.0002 0.000025 0.002 0.0002 

0.002 0.01 0.002 10 0.002 0.00025 0.0025 0.00025 

0.004 0.02 0.004 5 0.004 0.0005 0.003333 0.000333 

0.02 0.1 0.02 1 0.02 0.0025 0.005 0.0005 

0.1 0.5 0.1 0.2 0.1 0.0125 0.01 0.001 

0.2 1 0.2 0.1 0.2 0.025 0.02 0.002 

2 10 2 0.01 2 0.25 0.03 0.003 

      0.04 0.004 

      0.05 0.005 

 
Dimensionless number b was changed by changing parameter q2. 

Using such scheme for varying reaction rate parameters 23 sets of parameters were 

generated ensuring that all the dimensionless numbers are varied for each ratio value. 

 
 a b c d r 

set2 4.00 0.60 363.64 0.50 0.1257 
set8 4.00 0.40 363.64 0.50 0.1257 
set14 4.00 0.60 4.02095 0.25 0.1257 
set17 3.20 0.60 480.296 0.40 0.1257 

set22 4.00 0.60 363.64 1.00 0.2506 
set23 2.40 0.60 3.16339 0.30 0.2506 
set24 4.00 0.40 363.64 1.00 0.2506 

set11 4.00 0.60 363.64 2.00 0.5004 
set13 4.00 0.6 0.554175 1 0.5004 
set15 4.00 0.80 390.234 2.00 0.5004 
set18 3.20 0.60 0.465752 0.40 0.5004 

set3 4.00 0.60 363.64 5.00 1.2498 
set6 4.00 0.80 363.64 5.00 1.2498 
set9 4.00 0.40 363.64 5.00 1.2498 
set16 4.00 0.60 0.269821 6.00 1.2498 
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set19 3.20 0.60 480.296 4.00 1.2498 

set4 4.00 0.60 363.64 10.00 2.4988 
set20 3.20 0.60 480.296 8.00 2.4988 
set21 4.00 0.40 346.914 10.00 2.4988 

set10 4.00 0.40 363.64 10.00 2.4989 
set5 4.00 0.80 363.64 0.50 0.1258 
set12 4.00 0.60 363.64 7.00 1.7494 
set7 4.00 0.80 363.64 10.00 2.4987 

 

Appendix IIb – Incorporation of constant average inhibition 
 
The ratio of average expression in the presence of miRNA mediated regulation and that 

in the absence of miRNA regulation was considered as average inhibition. To incorporate 

average inhibition the original rate expression was modified as, 

 

14 (Rate expression for cdc14 used in Tyson model) _cdc average inhibition= ×  

(Rate expression for TFE used in Tyson model) _TFE average inhibition= ×  

 

The target protein synthesis rates in basic model were reduced by the average inhibition 

by miRNA dependent reduction for the respective targets. The average inhibition for 

cdc14 for all three km1 values was up to 10%. Repressing cdc14 to higher values results 

in perturbation in cell cycle. On the other hand, average inhibition observed for TFE for 

the two km2 values was up to 60%. Figure A1 shows the time course profiles of cyclin A, 

B and E for average inhibition. 
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Figure A1: Comparison of time course simulation profiles of cyclin proteins for cell cycle model 
and cell cycle with average inhibition 

Average inhibition of cdc14: cdc14 = cdc20A*0.9214 

Average inhibition of TFE: TFE = GK(Vatf,Vitf,Jatf,Jitf)*0.6779) 
 
 

Appendix IIc – Time course profiles for 16 species in cell cycle model 
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Figure A2 -Time course profiles of unmodified model and model with hsa-miR-25 regulation 
for all 16 species 

Blue line indicates profile of speceies in unmodified model; red line indicates profile of species 
in model with hsa-miR-25 regulation. 
 

Appendix IId – Time course profile of target protein with intronic miRNA regulation 
and with host protein mediated inhibition when the inhibitory effect is removed 
 
Time course profile of target protein with intronic miRNA regulation and with host 

protein mediated inhibition when the inhibitory effect is removed by setting the specific 

rate of synthesis (k2 and k5) to zero. Figure A3 shows the time course profiles of target 

protein for different initial conditions. 
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Figure A3: Time course profile of target protein with intronic miRNA regulation and with host 
protein mediated inhibition when the inhibitory effect is removed 

Initial conditions – (a) all components at zero level. (b) Target protein at unregulated steady 
state, all other components at zero level. (c) Target mRNA at unregulated steady state level, 
all other components at zero level. (d) Target mRNA and protein at unregulated steady state, 
all other components at zero level. (e) Regulator molecule (miRNA and host protein) at steady 
state, all other components at zero level. 
 
It was observed that the target protein profiles were qualitatively similar. The observed 

quantitative difference can be attributed to different half lives of miRNA and regulator 

protein. Therefore, the effect on the time course profiles was analysed by changing the 

degradation constant of miRNA and protein. Figure A4 shows time course profile of 

target protein with intronic miRNA regulation and with host protein mediated inhibition 

when the inhibitory effect is removed by blocking the synthesis of miRNA and regulator 

protein. The degradation reaction rate constant for regulator protein (k10) is set to the 

same value as the miRNA degradation reaction rate constant (ks). 
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Figure A4: Time course profile of target protein with intronic miRNA regulation and with host 
protein mediated inhibition when the inhibitory effect is removed for changed specific rate of 
degradation. 

Initial conditions are same as in FigureA3. 
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Appendix IIIa – Detailed list of mathematical models of gene expression 
 
Table contains some details of mathematical models of gene expression. Modeling 

approach states whether the model is deterministic or stochastic, discrete or continuous, 

and analyzed at steady state or the kinetics is studied. The output column lists the major 

finding of the study. 

 

Process Model Modeling 
approach Processes considered Output 

Chromatin 
remodeling and 

histone 
modification 

(Blossey and 
Schiessel 2008) 

Deterministic/ 
Continuous/ 
Steady state 

Histone tail modification A quantitative model to test the role of histone tail 
modification in kinetic proofreading of gene activation 

 
(Kuli and 

Schiessel 2003) 

Deterministic/ 
Discrete/ 

Equilibrium 
Nucleosome sliding Estimation of mobility of nucleosomes as function of 

thermal motion of DNA and underlying base pair sequence 

 (Chou 2007) 
Stochastic/ 
Discrete/  
Kinetic 

Histone sliding and 
unwrapping 

Calculation of mean histone detachment time and mean 
detachment distance as a function of remodeler motor speed 

 

(Boeger, 
Griesenbeck et 

al. 2008) 

Stochastic/ 
Discrete/ 
 Kinetic 

Nucleosome sliding Identification of nucleosome disassembly to be a rate 
limiting step, particularly for PHO5 promoter 

 
(Raj, Peskin et al. 

2006) 

Stochastic/ 
Discrete/  
Kinetic 

Gene activation and 
inactivation 

Statistical properties of transcriptional burst and effect of 
gene activation kinetics of burst size and frequency 

 

(Kim H. D and 
O’Shea E.K 

2008) 

Deterministic/ 
Continuous/ 

Kinetic 

Nucleosome association, 
dissociation and gene 
activation PHO5 gene 

Relationship between transcription factor affinity for DNA 
and gene expression 

 

(Mariani L., 
Schulz E.G et al. 

2010) 

Stochastic/ 
Discrete/  
Kinetic 

Gene opening and closing for 
il4 gene 

Study of cell to cell variability as a result of stochastic gene 
opening and closing events 

 
(Narula J., Smith 
A. M. et al. 2010) 

Deterministic/ 
Continuous/ 

Kinetic 

Enhancement in gene 
expression particularly for 

Scl-Gata2-Fli1 triad network 
module 

Study of steady state and transient of components in the 
triad, effect of mutation in the regulatory region on the 

components of this network module 

 

(Sedighi M. and 
Sengupta A. M 

2008) 

Stochastic/ 
Continuous/ 
Steady state 

Positive feedback by 
chromatin remodeling proteins 

Study of effect of change in chromatin silencing on stability 
of chromatin state 

Transcription (Young, Ramirez 
et al. 1997) 

Deterministic/ 
Continuous/ 

Kinetic 
mRNA synthesis Prediction of optimal conditions for in vitro mRNA 

synthesis, in terms of NTP and Mg ion concentration 

 
(Arnold, Siemann 

et al. 2001) 

Deterministic/ 
Continuous/ 

Kinetic 
Initiation and elongation Study of effect of RNA polymerase, promoter and nucleotide 

concentration on mRNA synthesis rate 

 

(Bai, 
Shundrovsky et 

al. 2004) 

Deterministic/ 
Discrete/ 

Equilibrium 
Elongation Prediction of back-tracking and pauses during transcription 

depending upon the sequence information 

 
(Höfer and Malte 

2005) 

Stochastic/ 
Discrete/ 

 Steady state 
Initiation Study of effect of kinetics of PIC assembly on mRNA noise 

 
(Yamada and 
Peskin 2009) 

Deterministic/ 
Discrete/ 
 Kinetic 

Elongation with look-ahead 
feature of polymerase Estimation of window size for RNA polymerase 

 
(Roussel and Zhu 

2006) 

Stochastic/ 
Discrete/ 
 Kinetic 

Elongation Identification of probability distribution of transcriptional 
delay and elongation rate 

 
(Voliotis, Cohen 

et al. 2008) 

Stochastic/ 
Discrete/  

Steady state 
Initiation and elongation Analytical expression for transcription time 

 
(Tripathi and 
Chowdhury 

Stochastic/ 
Discrete/ 

Elongation with RNA 
polymerase traffic 

Identification of mRNA synthesis rate and RNA polymerase 
average density 
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2008; Tripathi 
and Chowdhury 

2008) 

Kinetic 

 
(von Hippel and 

Yager 1991) 

Deterministic/ 
Continuous/ 
Equilibrium 

Elongation and termination Prediction of elongation and termination phases during 
transcription depending upon sequence information 

 
(von Hippel and 

Yager 1992) 

Deterministic/ 
Continuous/ 
Equilibrium 

Elongation and termination Prediction of elongation, back-tracking and termination 
efficiency 

 
(von Hippel 

1998) 

Deterministic/ 
Continuous/ 
Equilibrium 

Elongation, termination and 
editing Prediction of control at any template site and error correction 

 
(Guajardo and 
Sousa 1997) 

Deterministic/ 
Continuous/ 
Equilibrium 

Elongation 
Identification of force generation by polymerase 

translocation as a function of energy available from NTP 
binding 

 (Vasisht 2006) 
Stochastic/ 

Continuous/ 
Equilibrium 

Elongation Prediction of polymerase pause and back-tracking 

 (Konishi 2005) 
Deterministic/ 
Continuous/ 
Equilibrium 

mRNA synthesis and 
degradation 

General relation between transcript level produced by 
sequence specific interaction between DNA and protein 

factors 

 
(Kugel and 

Goodrich 2000) 

Deterministic/ 
Continuous/ 

Kinetic 
Initiation specific at AdMLP Identification of promoter escape to be a rate limiting step in 

transcription initiation 

 

(Bernard S., 
Cajavec B. et al. 

2006) 

Deterministic/ 
Continuous/ 

Kinetic 

Transcription regulation with 
feedback for Hes1 
transcription factor 

Mathematical model transcriptional regulation by feedback 
loop, which shows oscillations in Hes1 expression 

 

(Rajala T., 
Hakkinen A. et 

al. 2010) 

Stochastic/ 
Discrete/  
Kinetic 

Initiation, elongation with 
pausing, editing, termination 

Relation between RNA polymerase pausing and 
transcriptional dynamics in terms of interval between 

successive mRNA production 

RNA processing 
and degradation 

(Singh, Yang et 
al. 2007) 

Deterministic/ 
Continuous/ 

Kinetic 

Transcription, pre-mRNA 
splicing, pre-mRNA turnover 

and mRNA degradation 

Quantitative model with identification of reaction rate 
parameters for steps in RNA processing 

 

(Ciocchetta, 
Hillston et al. 

2008) 

Stochastic/ 
Discrete/  
Kinetic 

Co-transcriptional cleavage 
and alternate splicing 

Determination of relative frequency of alternate splicing 
pathways 

 
(Cao and Parker 

2001) 

Deterministic/ 
Continuous/ 

Kinetic 

mRNA synthesis and 
degradation 

Study of effect of degradation reaction rate parameters on 
mRNA level 

 
(Carrier and 

Keasling 1997) 

Stochastic/ 
Discrete/  
Kinetic 

Degradation by endonuclease 
and protection by ribosomes 

Study of effect of 3 different mechanisms of degradation in 
relation to ribosome loading and translation rate 

 
(Khanin and 

Higham 2007) 

Deterministic/ 
Continuous/ 
Steady state 

miRNA mediated post 
transcriptional regulation Study of effect of presence of miRNA on target mRNA level 

 
(Levine, Ben 

Jacob et al. 2007) 

Deterministic/ 
Continuous/ 
Steady state 

sRNA mediated post 
transcriptional regulation Study of effect of presence of sRNA on target protein level 

 
(Aguda, Kim et 

al. 2008) 

Deterministic/ 
Continuous/ 

Kinetic 

miRNA mediated post 
transcriptional regulation in 

feedback 

Occurrence of oscillations in target protein level due to 
presence of negative feedback 

Translation 
(von Heijne, 
Nilsson et al. 

1978) 

Deterministic/ 
Continuous/ 

Kinetic 

Initiation, Elongation and 
Termination 

Study of effect of the ribosome movement and RNA 
secondary structure on the elongation rate. 

 
(Bergmann and 
Lodish 1979) 

Deterministic/ 
Continuous/ 
Steady state 

Initiation, Elongation and 
Termination Relationship between polysome size and protein synthesis. 

 
(Heinrich and 

Rapoport 1980) 

Deterministic/ 
Continuous/ 

Kinetic 

Initiation, Elongation, 
Termination 

Identification of elongation to be an important regulatory 
step in translation; effect of ribosome concentration on 

mRNA 

 
(Dimelow and 

Wilkinson 2009) 

Deterministic/ 
Continuous/ 
Steady state 

Initiation Distribution of the rate parameters in initiation. 

 
(You, Coghill et 

al. 2010) 

Deterministic and 
stochastic/ 

Continuous/ 
Steady state 

Initiation Effect on initiation factor concentration on protein synthesis 
rate and variation of protein synthesis rate in population 
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(Skjondal-Bar 

and Morris 2007) 

Deterministic/ 
Continuous/ 

Kinetic 
Initiation and elongation Relationship between amino acids, tRNA and other factors. 

Ribosomal density on RNA. 

 
(Gilchrist and 
Wagner 2006) 

Stochastic/ 
Discrete and 
Continuous/ 

Kinetic 

Initiation, Elongation, 
Termination 

Study of effect of nonsense errors at any codon on capability 
of ribosome recycling 

 (Drew 2001) 
Stochastic/ 
Discrete/  

Steady state 

Initiation, elongation and 
termination 

Study of effect of binding of regulator to DNA on protein 
synthesis 

 
(Heyd and Drew 

2003) 

Stochastic/ 
Discrete/  

Steady state 
Elongation Study of effect of concentration of amino acids and 

elongation factors on elongation rate 

 

(Nayak S. , 
Siddiqui J.K. et 

al. 2011) 

Deterministic/ 
Continuous/ 

Kinetic 
Initiation Detailed model of translation initiation; effect of regulation 

at translation initiation on protein output 

 

(Zouridis and 
Hatzimanikatis 

2007) 

Deterministic/ 
Continuous/ 
Steady state 

Initiation ,Elongation(in 
detail),Termination 

Study of effect of polysome size and distribution of 
ribosome along mRNA on protein synthesis rate 

 (Bar N.S. 2009) 
Deterministic/ 
Continuous/ 

Dynamic 
Initiation Study of effect of regulation by eIF2 on translation initiation 

rate 

 

(De Silvaa E., 
Krishnana J.  et 

al. 2010) 

Deterministic/ 
Continuous/ 
Steady state 

Termination 
Mathematical model of feedback regulation of translation 
termination by termination factors; the effect of premature 

stop codon on termination regulation 

Protein 
degradation 

(Holzhütter and 
Kloetzel 2000) 

Deterministic/ 
Continuous/ 

Kinetic 
Protein degradation Protein fragment pattern by proteasomal cleavage 

 
(Peters, Janek et 

al. 2002) 

Deterministic/ 
Continuous/ 

Kinetic 

Proteasome mediated 
degradation Dynamics of protein fragment generation 

 
(Luciani, Kesmir 

et al. 2005) 

Deterministic/ 
Continuous/ 

Kinetic 

Proteasome mediated 
degradation 

Study of effect of proteasomal gate size on protein 
degradation. 

 
(Lee J., Choi K. 

et al. 2010) 

Deterministic/ 
Continuous/ 

Kinetic 
Ubiquitination of NF-κB Study of effect of ubiquitination of NF-kB activation; effect 

of mutant NF-kB on ubiquitination 

 
 

Appendix IIIb – Global stochastic sensitivity analysis using Morris method 
 
To verify the observed differential sensitivity of CV and Fano factor to parameters using 

MPSA, global sensitivity was performed using Morris method (Morris 1991) for 4-

reaction model of gene expression. The method is based on calculation of Elementary 

Effect (EE) for each parameter. The elementary effect was obtained by using a predefined 

sampling strategy in order to minimize the sample size. The elementary effect is 

represented as, 

1 2 i i 1 n(k , k ,..., k , k ,..., k ) (k)
i

f fEE ++ ∆ −
=

∆
 

where, the output f(k) is a deterministic function of parameters. 

To calculate elementary effect for each parameter, a design matrix was formed using the 

design strategy as given in (Morris 1991; Jin, Peng et al. 2008). The design matrix for n 
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parameters contained n rows and (n+1) columns. The matrix was designed such that 

value of only one parameter was changed between any two consecutive rows. Thus one 

elementary effect can be obtained by comparing two rows of the matrix. To form a design 

matrix, it was assumed that each ki scaled in [0.1] interval. To determine the values of 

each parameter, a p-level grid was formed. Therefore, each parameter can take values {0, 

1/(p-1), 2/(p-1), …, 1}. The design matrix was therefore an n-dimensional p-level grid. ∆ 

is a predetermined multiple of 1/(p-1). It is suggested that the value of p should be even. 

In this study the value of p was set to 10 and ∆ was equal to p/[2(p-1)] as used in previous 

other studies. In the original design matrix the input parameters were defined to be within 

an interval of [0, 1]. For the gene expression system where the parameters are out of the 

specified range, ∆ was rescaled as, (UB LB)scaled∆ = ∆× −  where, UB and LB are upper 

bound and lower bound respectively. Therefore, the range of parameter values would be 

{0, 1/(p-1), 2/(p-1), …, 1-∆}*(UBi- LBi)+LBi, for each parameter ki.  

In case of 4-reaction model of gene expression 100 design matrices were used to obtain 

100 elementary effects for each parameter. The average elementary effect was used as a 

measure of sensitivity of steady state CV and Fano factor to the parameters. 

The sensitivity results obtained using Morris method, were observed to be in agreement 

with MPSA. Figure A1 shows the bar graph of average EE for each parameter.  

 

 

Figure A1: Bar plots showing average EE for %CV and noise strength for transcription (k1), 
mRNA degradation (k2), translation (k3) and protein degradation (k4) 
 
The average values of elementary effect are summarized in Table A1.  
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Table A1: Average Elementary Effect values for 4-reaction model 

Parameter EE for %CV EE for noise strength 
Transcription (min-1) 20.18 96.06 
mRNA degradation (min-1) 3.39 1555.28 
Translation (min-1) 0.58 4110.62 
Protein degradation (min-1) 17.79 1139.99 

 

From the bar plots and the average EE values, it was observed that CV was most 

sensitive to transcription and least sensitive to translation. The converse was observed in 

case of Fano factor. It was observed to be most sensitive to translation. These results are 

in agreement with the qualitative and numerical sensitivity obtained using MPSA. 
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Appendix IV – Papers published 

 
A kinetic model of TBP auto-regulation exhibits bistability 
Sucheta A Gokhale, Reema Roshan, Vivek Khetan, Beena Pillai*, Chetan J Gadgil* 

 
Abstract 

 
Background: TATA Binding Protein (TBP) is required for transcription initiation by all 
three eukaryotic RNA polymerases. It participates in transcriptional initiation at the 
majority of eukaryotic gene promoters, either by direct association to the TATA box 
upstream of the transcription start site or by indirectly localizing to the promoter through 
other proteins. TBP exists in solution in a dimeric form but binds to DNA as a monomer. 
Here, we present the first mathematical model for auto-catalytic TBP expression and use 
it to study the role of dimerization in maintaining the steady state TBP level.  
 
Results: We show that the autogenous regulation of TBP results in a system that is 
capable of exhibiting three steady states: an unstable low TBP state, one stable state 
corresponding to a physiological TBP concentration, and another stable steady state 
corresponding to unviable cells where no TBP is expressed. Our model predicts that a 
basal level of TBP is required to establish the transcription of the TBP gene, and hence 
for cell viability. It also predicts that, for the condition corresponding to a typical 
mammalian cell, the high-TBP state and cell viability is sensitive to variation in DNA 
binding strength. We use the model to explore the effect of the dimer in buffering the 
response to changes in TBP levels, and show that for some physiological conditions the 
dimer is not important in buffering against perturbations. 
 
Conclusions: Results on the necessity of a minimum basal TBP level support the in vivo 
observations that TBP is maternally inherited, providing the small amount of TBP is 
required to establish its ubiquitous expression. The model shows that the system is 
sensitive to variations in parameters indicating that it is vulnerable to mutations in TBP. 
A reduction in TBP-DNA binding constant can lead the system to a regime where the 
unviable state is the only steady state. Contrary to the current hypotheses, we show that 
under some physiological conditions the dimer is not very important in restoring the 
system to steady state. This model demonstrates the use of mathematical modeling to 
investigate system behaviour and generate hypotheses governing the dynamics of such 
nonlinear biological systems. 

 
Biology Direct, 2010, 5(1): 50. 
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A systems view of the protein expression process 
Sucheta Gokhale, Dimpal Nyayanit, Chetan Gadgil* 
 

Abstract 
 

Many biological processes are regulated by changing the concentration and activity of 
proteins. The presence of a protein at a given sub-cellular location at a given time with a 
certain conformation is the result of an apparently sequential process. The rate of protein 
formation is influenced by chromatin state, and the rates of transcription, translation, and 
degradation. There is an exquisite control system where each stage of the process is 
controlled both by seemingly unregulated proteins as well as through feedbacks mediated 
by RNA and protein products. Here we review the biological facts and mathematical 
models for each stage of the protein production process. We conclude that advances in 
experimental techniques leading to a detailed description of the process have not been 
matched by mathematical models that represent the details of the process and facilitate 
analysis. Such an exercise is the first step towards development of a framework for a 
systems biology analysis of the protein production process. 
 

Systems and Synthetic Biology, 2011, 5.3-4: 139:150 
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Analysis of miRNA regulation suggests an explanation for ‘unexpected’ increase in 
target protein levels 
Sucheta A. Gokhale and Chetan J. Gadgil* 
 

Abstract 
 
MicroRNA (miRNA) has been mostly associated with decrease in target protein 
expression levels. Recently, ‘unexpected’ observations of increase in target protein 
expression attributed to microRNA regulation have been reported. We formulate a 
comprehensive model for regulation by miRNA that includes both reversible mRNA–
miRNA binding and selective return of RNA. We use this mathematical model 
incorporating multiple individual steps in the regulation process to study the 
simultaneous effects of these steps on the target protein level. We show that four 
dimensionless numbers obtained from 12 rate constants are sufficient to define the 
relative change in steady state target protein levels. We quantify the range of these 
numbers for which such pleiotropic increase in protein levels is possible, and interpret the 
experimental findings in the framework of our model such that the results are no longer 
unexpected. Finally, we show through stochastic simulation that the nature of the target 
protein distribution remains unchanged and the relative steady state noise levels are also 
completely defined by the values of these dimensionless numbers, irrespective of the 
individual reaction rate constants. 
 

Mol. BioSyst., 2012, 8(3): 760 - 765. 
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A simple method for incorporating dynamic effects of intronic miRNA mediated 
regulation 
Sucheta Gokhale, Manoj Hariharan, Samir K. Brahmachari* and Chetan Gadgil* 
 

Abstract 
 
The importance of microRNA (miRNA) in modulating gene expression at the 
posttranscriptional level is well known. Such regulation has been shown to influence the 
dynamics of several regulatory networks including the cell cycle. In this study we 
incorporated regulatory effects of intronic miRNA into an existing mathematical model 
of the cell cycle through the use of an existing ‘proxy’ protein – the host protein. It was 
observed that the incorporation of intronic miRNA mediated regulation improved the 
performance of the model resulting in a closer match to experimental results. To test the 
universality of this approach we compared the effects of intronic miRNA mediated 
regulation and host protein mediated regulation. Further, we compared miRNA mediated 
and protein mediated positive and negative feedback regulations of the target protein. We 
found that the target protein profiles were predominantly similar. These observations 
show the applicability of our method for incorporating intronic miRNA mediated 
dynamic effects in models for regulation of gene expression. 
 

Mol. BioSyst., 2012, 8(8): 2145-2152. 
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