EXPLOITING CHIRAL 7-AZABICYCLO[2.2.1]HEPTANE SKELETON AS A TEMPLATE FOR THE STEREOSELECTIVE SYNTHESIS OF BIOLOGICALLY ACTIVE ALKALOIDS

THESIS SUBMITTED TO THE

UNIVERSITY OF PUNE

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

(IN CHEMISTRY) BY DEBASIS DEY

RESEARCH SUPERVISOR DR. GANESH PANDEY

ORGANIC CHEMISTRY DIVISION
NATIONAL CHEMICAL LABORATORY
PUNE 411008
NOVEMBER 2013

DEDICATED TO...
"MY GUIDE, MY PARENTS AND COLY" (WHO NEVER STOPS BELIEVINGINME)

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "Exploiting chiral 7 azabicyclo[2.2.1]heptane skeleton as a template for the stereoselective synthesis of biologically active alkaloids" which is being submitted to the University of Pune for the award of Doctor of Philosophy in Chemistry by Mr. Debasis Dey was carried out by him under my supervision at the National Chemical Laboratory, Pune. A material that has been obtained from other sources has been duly acknowledged in the thesis.

Date:

Dr. Ganesh Pandey
(Research Guide)

DECLARATION

I hereby declare that the work presented in the thesis entitled "Exploiting chiral 7-azabicyclo[2.2.1]heptane skeleton as a template for the stereoselective synthesis of biologically active alkaloids" submitted for Ph. D. Degree to the University of Pune, has been carried out by me at the National Chemical Laboratory, Pune, under the supervision of Dr. Ganesh Pandey. The work is original and has not been submitted in part or full by me for any degree or diploma to this or any other University /Institute.

Date:
Debasis Dey

Acknowledgement

The completion of this long and eventful journey would not have been possible without the generous help and constant encouragement of a number of people. I would like to thank every one of them for the support they have rendered for the accomplishment of the work presented in this dissertation.
First of all, 1 would like to convey my feelings of gratítude to my supervisor Professor Ganesh Pandey for accepting me as a PhD student and for his invaluable guidance, endless patience and everything he taught me throughout my association with the GP Lab. It will be impossible for me to describe in words the contribution of him in my life.
I am thankful to Dr. (Mrs.) Gadre for her motherly love and concern always.
1 am thankful to Dr. P.K.Tripathi, Dr. Dethe, Dr. Biju, Dr. Reddy, Dr. Gumaste, Dr. S. Sengupta, Dr. R. Banerjee for their helpful suggestions....
NCL organic office staff Mrs. Catherine, Mrs. Puja, Mr. Pawar, Mr. Babus, Mr. Iyer for their kind help....
1 thank my present(Atishji, Bhawna madam, Deepak, Mantu, Navnath, Binoy, Animesh, Durga, Sahani, Jankiram, Alokji, Rajesh, Divya, Prachi, Pushpendra, Shiva, Ajay, Jagadish, Pulak, Pradeep, Akash, Sandeep, Rushil, Ramkrishna) and past lab members(Prabalda, Srinivasji, Kishor bhaiya, Balaji, Keshriji, Nishant bhaiya, Ravi bhaiya, Prasannaji, Amrut Gaikwad, Swaroop, Rajender jí\{roommate\}, Debashis ji, Sanjayji, Priyanka, Sujítda, Dharmendrají, Asha Madam, Tukaram, Nitesh, Gumasteji, Pawarjí) for making GP Lab, the most desirable place to work; a warm and very cheerful and cooperative atmosphere in the lab helped me a lot.
Help from the spectroscopy and CMC group is gratefully acknowledged. Special thanks are due to Dr. P. R. Rajmohanan, and Mrs, V. G. Puranik, Mr. Rupesh who went out of their way in helping me out whenever I needed an urgent analysis.
1 am also grateful to my teachers Mr. Dílip Pradhan, Mr. Shaktipada Pradhan, Mr. Chittaranjan Khanra, Dr. Tridib Tripathy, Dr. Mahadeb Maity for their excellent guidance and motivations..
1 thank CSIR New Delhi, for the award of Research Fellowship and Director, N.C. L., for the infra-structural facilities.

1 want to thank all my friends for their maximum possible support; 1 cannot even imagine myself wíthout them. Prabal da, Debu da, Kartík da, Prabhas da, soumítra da, senapoti da, Bibhas da, somnath da, Sujatadi and chotto Díya, Boudimoni, Susmita didi, Roopa dí, Anírbanda, Nímuda, Ramuda, Pradíp da, Choto Debuda, Anamítrada, Mukulda, Bhaskar da, Rahmanda, Alamda, Chinmay da, Ríta di, Dhananjayda, chaitali di, Majorda,.
I don't have any elder brother but Prabalda and Debuda never allowed me to feel like that.

Then comes, Debasis Pati, Sujitda, Sugatada, Mama, Kaushik, arijitda, rahulda, Maitridi, Kishor,Mrityunjay, rahul, Partha, sumantra, Anal Ganai, dos, aríjít, saumen, krisanu, ramkrishna, jagadish, animesh, shyam, chini, mishraji, sridhar, subhadeep, Príthvi, sankho, Ani, Anupam(Motu), Deepa, gouri, pinki, manu di, Manisha, shrikant ji(nmr), Mayur, achinta, saikat, Manna, Arup, Pítambar, Ashokda, Dhaka, Janada, sanjib...... and many more My college friends Chanchal, Rajkumar, Abhishek, Ladenda, palash, Asit, Rajada.......and many more
M.Sc friends Aka, Habu, neeladri, basab babu, Arindam, chandi, samad, N.Patida, sudiptada, saumenda, amit, ashok kuma, ved bhaiya, reshmi, puja, jayashri, shweta, rubel............. and many more

Among all Debasis pati,Rajkumar, Aka, Habu, Neelardri, Rahul, Kishor, Anal, prithvi, motu, Krisanu, sujítda, Pradipda.... are very very special......they are real jems....

1 lost three friends during my stay here...Agnimitra(Alizee crazy, messi crazy, cricket crazy, CPM crazy....), Srikantjí, Atanu and my elder brother shibsankarda.....hope god will be with them in heaven.

My parents and family members (chotodidi,jamaida,borodidi,borojamaida, chandanda, mam, mumu, trina, deep, mejomama, debuda...) for their infinite patience..........and lastly a special friend coly who.

CONTENTS

Exploiting chiral 7-azabicyclo[2.2.1] heptane skeleton as a template for the stereoselective synthesis of biologically active alkaloids

Abstract		Page No i-viii
Chapter 1	Introduction to 7-azabicyclo [2.2.1] heptane skeleton and approches towards total synthesis of pancratistatin	1
Section 1A. 1	An introduction to 7-azabicyclo[2.2.1]heptane skeleton ; synthetic routes and importance	2
Section 1A. 2	Various approaches for the construction of 7-azabicyclic system	5
Section 1A. 3	Our lab contribution	10
Section 1A. 4	References.	14
SECTION B	Synthetic studies towards pancratistatin and related natural products	16
Section 1B. 1a	Introduction.	16
Section 1B.1b	Synthetic approaches toward Pancratistatin	17
Section 1B. 1c	Approaches towards (+)-7-deoxypancratistatin	23
Section 1B.1d	Background and our group contribution:	27
Section 1B.1e	Intention of present study	29
Section 1B. 2	Retrosynthetic analysis	30
Section 1B. 3	Results and discussions	32
Section 1B. 4	Alternative approach	41
Section 1B. 5	Results and discussion	42
Section 1B. 6	Conclusion and outlook	52
Section 1B. 7	References	54
Section 1B. 8	Experimental	58
Section 1B. 9	Spectras	78
Chapter 2	Synthesis of exo-7-Azabicyclo[2.2.1]heptan-2-amine and cis-1,2 diamino cyclohexene	116
Section 2.1	Introduction, Concept, Results and Discussions	117
Section 2.2	Conclusion	126
Section 2.3	References	127
Section 2.4	Experimental Section	130
Section 2.5	Spectras	142
Chapter 3	Synthesis of aminocyclitols utilizing 7-azabicyclo [2.2.1]hepta-2one as a chiral template	174
Section 3.1	Introduction	175
Section 3.2.	Hypothesis	177
Section 3.3	Results and discussion	178
Section 3.4	Conclusion	184
Section 3.5	References	185
Section 3.6	Experimental Section	186
Section 3.7	Spectras	197
Erratum		

Abbreviations			
aq.	aqueous	NMR	Nuclear magnetic resonance
bp	boiling point	NOE	Nuclear Overhauser
Bn	Benzyl		effect/enhancement
Boc	t-Butoxycarbonyl	NOESY	Nuclear Overhauser
DCM	Dichloromethane		Enhancement Spectroscopy
DEPT	Distortionless enhancement by polarization transfer	ORTEP	Orthogonal thermal ellipsoid plots
DMF	N, N-dimethyl formamide	PDC	Pyridinium dichromate
DMSO	dimethylsulfoxide	p-TSA	p-Toluenesulfonic acid
COSY	correlated spectroscopy	py	Pyridine
g	gram	rt	Room temperature
GC	Gas Chromatography	TBS	t-Butyldimethylsilyl
h	hour	TEA	Triethyl amine
Hz	Hertz	TFA	Trifluoroacetic acid
Ki	Inhibition constant	THF	Tetrahydrofuran
M	Molarity (molar)	TLC	Thin layer chromatography
Mg	Milligram	TMS	Trimethylsilyl
Min	Minute(s)	α-Glu	α-Glucosidase
mL	Milliliter	β-Glu	β-Glucosidase
mmol	Millimole	α-Man	α-Mannosidase
mp	Melting Point	β-Man	β-Mannosidase
N	Normality		
MS	Mass Spectrum		
MsCl	Methanesulfonyl chloride		

General Remarks

- All the solvents were purified according to literature procedure. ${ }^{1}$
- Petroleum ether used in the experiments was of $60-80^{\circ} \mathrm{C}$ boiling range.
- Column chromatographic separations were carried out by gradient elution with suitable combination of two solvents and silica gel (60-120 mesh/ 100-200 mesh/ 230-400 mesh).
- Reaction progress was monitored by TLC. TLC was performed on Merck precoated $60 \mathrm{~F}_{254}$ plates and the spots were rendered visible by exposing to UV light, Iodine, phosphomolibdic acid, o-Anisol, KMNO_{4}, ninhydrin solutions.
- IR spectra were recorded on FTIR instrument, for solid either as nujol mull, neat in case of liquid compounds or their solution in chloroform.
- NMR spectra were recorded on Bruker AC $200\left(200 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ NMR and 50 $\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR), Bruker AV 400 ($400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR), Bruker DRX 500 ($500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}$) and Bruker ultra shield $800\left(800 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ NMR and $200 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $){ }^{13} \mathrm{C}$ peak multiplicity assignments were made based on DEPT data.
- Mass spectra were recorded on PE SCIEX API QSTAR pulser (LC-MS), Agilent Accurate mass and Thermofischer QEXACTIVE and Shimadzu QP 5000 GC/MS coupled to Shimadzu 17A GC using a DBI column.
- Microanalysis data were obtained using a Carlo-Erba CHNS-O EA 1108 Elemental Analyser. Elemental analyses observed for all the newly synthesized compounds were within the limit of accuracy ($\pm 0.4 \%$).
- All the melting points recorded are uncorrected and were recorded using electrothermal melting point apparatus(BUCHI, MODEL NO. B540)
- Starting materials were obtained from commercial sources.
- Numbering of compounds, schemes, tables, referencing and figures for each chapter and in abstract are independent.

1) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, $4^{\text {th }}$ ed., Butterworth Heinemann, 1999

Research student Debasis Dey
Research Guide Dr. Ganesh Pandey
Title of Thesis Exploiting chiral 7-azabicyclo[2.2.1] heptane skeleton as a template for the stereoselective synthesis of biologically active alkaloids

Registration no. EI/287/Ph.D/2008 JUNE 16, 2008
Date of 05.09.2007

Registration
Place of work Lab. No. 182, Division of Organic Chemistry, National Chemical Laboratory, Pune-411008, INDIA.

Thesis Abstract

The present dissertation is divided into three chapters.

Chapter 1: Introduction to 7-azabicyclo [2.2.1] heptane skeleton and approches towards total synthesis of pancratistatin

This chapter is divided into two sections.

Section A : An introduction to 7-azabicyclo[2.2.1]heptane skeleton: synthetic routes and importance

The 7 -azabicyclo[2.2.1]heptane system $(\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c})$ has been the subject of numerous synthetic studies which have resulted in the development of several methods for the construction of these novel structures initially for pure academic interest, which changed after the isolation of epibatidine (2) and many structurally related natural products by Prof. Daly. Epibatidine is a non opiod analgesic 1000 times more effective than morphine.

Figure 1.

We got interested in 7 -azabicyclo[2.2.1]heptanes skeleton by vizualizing immense potential of this structural framework for developing various important structural motifs like aminocyclitols, amarylidaceae alkaloids, substituted pyrrolidines, preussin and related natural products.

An overview of enantioselective synthetic routes towards this novel skeleton 1 is presented in a concise manner.

C5-C6 functionalization

aminocyclitols/ amaryllidaceae alkaloids

Figure 2.

SECTION B: Synthetic studies towards pancratistatin and related natural products

This chapter describes a brief overview of synthetic approaches developed towards pancratistatin and its congeners including our group contribution. In the later part of this section, a detailed account of our present efforts regarding achieving the synthesis of pancratistatins is depicted.

$\mathrm{R}=\mathrm{OH}(+)$ Pancratistatin 3
R=H (+) Deoxypancratistatin 4

$\mathrm{R}=\mathrm{OH}(+)$ Narciclasine 5
R=H (+) Lycoricidine 6

Figure 3.

(+)- Pancratistatin (3), was first isolated by Pettit and co-workers in 1984 from the plant Pancratum littorale. It showed most promising anti-cancer and antiviral activities. It was found to be active against murine P-5076 ovarian sarcoma as well as against P-388 lymphotic leukemia. Five years later, Ghosal and co-workers isolated 7-deoxypancratistatin (4) from the bulbs of Haemanthus kalbreyeri which also showed similar biological activities with better therapeutic index due to decreased toxicity. Although Narciclasine (5) and Lycoricidine (6) were isolated from Lycoris radiate by Okamoto and coworkers in 1968, their activity in inhibiting the binding of tRNA to the peptide transferase centre of ribosomal subunit and thereby disrupting the protein biosynthesis in eukaryotic cells, was unveiled much later.

Our initial plan towards its synthesis was based on conjugate addition of aryl Grignard reagent to a reconstructed enone 6, however undesired cisstereochemistry for B C ring fusion emerged.

Scheme 1.

Since trans B C ring fusion is a must for bio-activity of these molecules, it was decided to address this issue at the premature stage of the synthetic sequence itself. Therefore, it was envisioned that a basic unit $\mathbf{1 5}$ will be sufficient to fulfill the requirement of crucial trans- B C ring junction and also for the complete C ring functionalization.

Scheme 2.

The synthesis of $\mathbf{1 5}$ was achieved from 16 via 18 through anionic rearrangement followed by desulfonylation as shown in Scheme-3.

Scheme 3.

C-Ring functionalization was initiated with epoxidation of $\mathbf{1 5}$ followed by its conversion to 27. Modified Bischler -Napieralskii reaction from 27 provided 28 which after acetyl group deprotection furnished 7-deoxy pancratistatin. Detailed synthetic challenges and tactical nuances arere discussed in this section.

Scheme 4.

Chapter 2: Synthesis of exo-7-Azabicyclo[2.2.1]heptan-2-amine

 and $c i s-1,2$ diamino cyclohexene.Cyclohexane-1, 2-diamines have diverse application in many areas of organic chemistry such as ligands in metal-catalyzed asymmetric reaction and as an organocatalysts. This Chapter presents our efforts in achieving a scalable, practical synthesis of cis-1,2-diaminocyclohexane derivatives and 7-azabicyclo[2.2.1]hept-2-amines utilizing $\mathbf{1 4}$ as a synthetic precursor.

Scheme 5.

Chapter 3 : Synthesis of aminocyclitols utilizing 7-azabicyclo [2.2.1]hepta-

 2-one as a chiral template:Aminocyclitols/ conduramines are cyclic polyhydroxylated amines with wide variety of biological activities. These compounds can target pivotal RNA sites which make them candidates for drug discovery. Particularly, conduramines have been used as intermediates for the preparation of some alkaloids, azasugars and aminosugars. Since, we are actively involved in the synthesis of
aminocyclitols, two common basic intermediates $\mathbf{1 1}$ and $\mathbf{3 3}$ were envisioned. This chapter describes in detail the synthetic sequences pertaining to various conduramines utilizing $\mathbf{1 1}$ and $\mathbf{3 3}$ as precursors.

dihydroconduramineF-4 34

dihydroconduramine A1 35

ent-conduramine A-1 36

11
33

dihydroconduramine C 1 37

Scheme 6.

CHAPTER 1:
INTRODUCTION TO 7-AZABICYCLO [2.2.1] HEPTANE SKELETON AND APPROCHES TOWARDS TOTAL SYNTHESIS OF PANCRATISTATIN

Section A

1A.1 : An introduction to 7-azabicyclo[2.2.1]heptane skeleton; synthetic routes and importance

Three different types of structures are possible for 7-azabicyclo[2.2.1]heptane skeleton (1); the fully saturated (1a), partially unsaturated (1b) and fully unsaturated (1c). ${ }^{[1]}$ A large number of synthetic sequences are known in literature towards the construction of these skeletons. ${ }^{[2]}$ For sometimes, the interest in the synthesis of these systems were only a matter of academic interest since no naturally occurring compound was known at that time which contained these ring systems. From 1990 onwards the scenario started changing after the isolation of large number of naturally occurring alkaloids from amphibian toad skin by Daly et al. ${ }^{[3]}$ The most notable and celebrated among the hundreds of isolated alkaloids was epibatidine (2). (-)Epibatidine (2), a new alkaloid isolated from Ecuadorian poison frog, Epipedobates tricolor, featuring the 7 -azabicyclo[2.2.1]heptane ring system with an exo oriented 5-(2-chloropyridyl) moiety (Figure 1) displayed strong analgesic property though it was not a member of opioid class. Due to the novel biological activity associated with 2 and its paucity in nature (1 mg isolated from 750 frogs), the total synthesis of $\mathbf{2}$ had aroused huge interest amongst organic chemists around the world.

1a

1b
7-azabicyclo[2.2.1]heptane

2
Epibatidine

Figure 1.
The extraordinary pharmacology ${ }^{[4]}$ of $\mathbf{2}$ had indicated its potential for nicotinic acetylcholine receptor (nAChR) ligands for serving as a new therapeutic class of host of CNS disorders. Many of such ligands are natural products, or analogues thereof, which represent a significant challenge to the synthetic chemist.

The chance of $\mathbf{2}$ ever being used as a medicinal agent became quite low because of its high toxicity, however, in order to cope up with toxicity, several analogues of $\mathbf{2}$ have been deliberated and synthesized by altering the side chain as well as bicyclic skeleton. One of the interesting analogue is epiboxidine ${ }^{[5]}(\mathbf{3})$, a hybrid of epibatidine
and ABT-418 (4) which is an isosteric analogue of nicotine, where chloropyridine ring has been replaced by methylisoxazole (Figure 2). Although not as potent as epibatidine, epiboxidine (3) has higher affinity than nicotine and has been found 20 fold less toxic than 2.

3
Epiboxidine

4
ABT-418

Figure 2.
Another class of the epibatidine analogues such as homoepibatidine (5), bis homoepibatidine ${ }^{[6]}$ (6) and diazabicyclopyrazine DBO-83 ${ }^{[7]}$ (7) (Figure 3) in which the azabicycloheptane ring is altered has been synthesized and tested. However, none of these could be developed as a drug so far.

5
homoepibatidine

6
bis- homoepibatidine

DBO -83

Figure 3.

In search of better selectivity, conformationally restricted analogue $\mathbf{8}$ as well as fused analogue 9 has also been synthesized ${ }^{[8]}$ and screened (Figure 4). Although, these analogues show low affinity and do not encompass the ideal conformation for the high affinity, they surely provide valuable information concerning the pharmacophore studies.

8

9

Figure 4.

Despite significant progress in the research dealing with the chemistry of 7azabicyclo[2.2.1]heptane ring system, most of these important structures have been used in the synthesis of epibatidine and its analogues. We got interested in this particular ring system by visualizing its immense potential for the synthesis of various important structural motifs as shown in Fig. 5.

preussin, hyacinthin and related natural products

fully functionalized aminocyclitols

C2-C3 cleavage
cis-/trans- 2,5 disubstituted or 2,3,4,5 tetrasubstituted pyrrolidines

Figure 5.

Our previous experiences with 7-azabicyclo[2.2.1]heptane structural frameworks ${ }^{[9]}$ led us to understand well that C4-N7 cleavage of this skeleton will generate a cyclohexene skeleton from which depending on the nature and stereochemistry of R, various aminocyclitols, diaminocyclitols and Amaryllidaceae alkaloids could possibly be synthesized. Similarly, stereoselective C5-C6 functionalization followed by C4-N7 cleavage would in principle generate a fully substituted cyclohexene moiety; which can easily be manipulated to many all carbon substituted aminocyclitols. Synthesis of these aminocyclitols otherwise have proved to be difficult. Another important class of structures could be generated by first dihydroxylation of C5-C6 olefinic bond followed by cleavage leading to all substituted pyrrolidines skeleton; an essential requirement for the synthesis of Preussin and Hyacinthin class of compounds. Lastly another potential disconnection could be thought of between C2-C3 which could
generate cis- and/ trans- 2,5-dialkylated pyrrolidines; an ubiquitous structural features in many important naturally occurring alkaloids. Because of immense importance of 7-azabicyclic frame work, various groups have developed different approaches for its construction. Therefore, before dwelling upon our contribution in this field, it would be appropriate to describe some of the selected examples for the construction of 7azabicyclo[2.2.1]heptane frame work from literature.

1A.2. Various approaches for the construction of 7-azabicyclic system

1A.2a trans-Annular cyclization

Trost et al. ${ }^{[10]}$ reported the first asymmetric synthesis of (-)-epibatidine (2) using Pdcatalyzed desymmetrization of meso- $\mathbf{1 0}$ to produce $\mathbf{1 1}$ which was later converted into a key precursor 12. The intermediate $\mathbf{1 2}$ was subjected to trans-annular cyclization to construct 7 -azabicyclic system producing (-)-2 with 81% yield and $>95 \%$ ee as depicted in Scheme 1.

Scheme 1.
Lee et al. ${ }^{[11]}$ developed a short and concise procedure for gram-scale synthesis of $\mathbf{2}$ by intramolecular cyclization of $\mathbf{1 4}$ followed by the radical dehalogenation to provide $\mathbf{1 5}$ as a sole product which was further epimerized to (-)-2 as shown in Scheme 2.

Scheme 2.
Sanchez and co-workers reported ${ }^{[12]}$ the $\mathrm{NaH} / \mathrm{DMF}$-promoted heterocyclization reaction of N-(3-cis,4-trans-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamide (16) to afford 7 -azabicyclo [2.2.1] heptane derivative $\mathbf{1 7}$ in good yield (81%) which on basic hydrolysis followed by acetylation gave 18 in 72% yield (Scheme 3).

Scheme 3.
Another excellent example of transannular cyclization could be found in literature by Savoia et al. ${ }^{[13]}$ where synthesis of optically pure endo-7-azabicyclo[2.2.1]heptane 20 is reported by cyclization of $\mathbf{1 9}$ using Mitsunobu protocol. Subsequent removal of benzylic substituents by reductive hydrogenation in the presence of palladium hydroxide in methanol containing 2.5 eq. $\mathrm{HCl} / \mathrm{MeOH}$ produced endo-7-azabicyclo[2.2.1]heptan-2-amine (21) as a single isomer in 97% yield (Scheme 4).

Scheme 4.

1A.2b Intramolecular cyclization

Albertini et al. ${ }^{[14]}$ have reported conceptually attractive strategy for the enantioselective construction of 7-azabicyclo[2.2.1]heptanes skeleton 24 in high yield (92%), employing a facial and regio-selective intramolecular nucleophilic ring opening of a chiral cyclic sulfate $\mathbf{2 3}$ derived from D-(-)-quinic acid $\mathbf{2 2}$ as shown in Scheme 5. Intermediate salt $\mathbf{2 4}$ was further transformed to 7-azabicyclic ketone $\mathbf{2 6}$ for the synthesis of (+)-2.

Scheme 5.
Synthesis of 7 -azabicyclic ring system 28 is reported ${ }^{[15]}$ in excellent yield (96%) involving β-elimination of silyl ether of $\mathbf{2 7}$ followed by cyclization to afford $\mathbf{2 8}$. Intermediate 28 was further converted into 2-substituted 7-azabicyclo[2.2.1]heptane glutamic acid analogue 29 employing simple transformations (Scheme 6).

Scheme 6.
Asymmetric hetero Diels-Alder reaction as a key step have been utilized ${ }^{[16]}$ for the synthesis of (-)-epibatidine involving 32, obtained in high yield and selectivity from
an asymmetric Diels-Alder cycloadduct 30. The precursor $\mathbf{3 1}$ was further converted to (-)-2 by intramolecular cyclization as shown in Scheme 7.

Scheme 7.
Elena and co-workers ${ }^{[17]}$ developed a protocol for the synthesis of 7 -azabicyclic system $\mathbf{4 2}$ by intramolecular cyclization of a mixture of $\mathbf{4 0}$ and $\mathbf{4 1}$ which in turn was obtained by the cyclization of $\mathbf{3 5}$. The key intermediate $\mathbf{3 5}$ was obtained by DielsAlder reaction of (Z)-2-phenyl-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-ylmethylene]-5oxazolone 33 and Danishefsky's diene 34 (Scheme 8).

Scheme 8.

1A.2c Intramolecular iminium cyclization

Rapoport et al. ${ }^{[18]}$ have introduced a novel "Chiron" concept of decarbonylation/intramolecular iminium-ion cyclization of 43, for the construction of
enantiopure trans-2,3-disubstituted-7-azabicyclo[2.2.1]heptanes (-)-44 and (+)-44 in 1:3 ratio, those were further converted in to (+)-26 and (-)-26 respectively, via single chemical manipulation as shown in Scheme 9.

Scheme 9.
Karsten et al. ${ }^{[19]}$ developed a method for the construction of enantiopure 7azabicyclo[2.2.1]heptanes skeleton 46 in 75% yield by intramolecular N-acyliminium ion cyclization of the N, O-acetal 45 and ozonalysis of 46 to produce a key precursor $(-)-26$ for (+)-epibatidine (Scheme 10) synthesis.

Scheme 10.

1A.2d Asymmetric elimination

Simpkins et al. ${ }^{[20]}$ have reported an unique approach for the total synthesis of (-)epibatidine (2), utilizing asymmetric elimination of a sulfone group from a vicinal bis-sulfone having the 7-azabicyclo[2.2.1]heptanes skeleton 47 by the sodium alkoxide derivative of $(1 R, 2 S)$-ephedrine (50). Key precursor 49 was further converted in to (-)-2 by simple chemical transformation (Scheme 11).

Scheme 11.

1A.2e Asymmetric Diels-Alder cycloaddition

A very interesting approach has been adopted by Node and co-workers ${ }^{[21]}$ for the construction of enantiopure 7 -azabicyclo[2.2.1]heptanes system 53 (86%) as a sole product utilizing asymmetric Diels-Alder reaction of di-L-(2)-menthyl allene-1,3dicarboxylate (R) - $\mathbf{5 1}$ with N-Boc-pyrrole $\mathbf{5 2}$ in the presence of AlCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $78{ }^{\circ} \mathrm{C}$. Compound $\mathbf{5 3}$ was subsequently converted into a synthetic precursor $\mathbf{2 6}$ for the synthesis of (-)-epibatidine (Scheme 12).

Scheme 12.

1A. 3 Our lab contribution

Owing to its intriguing pharmacological activity, interesting structural features and scarcity in nature, our group also got attracted for synthesis of $\mathbf{2}$ and its analogues. The first racemic synthesis was reported by us using cycloaddtion of non stabilized azomethine ylide, generated by the sequential double desilylation of N -alkyl- α, α 'di(trimethylsilyl) cyclic amines using $\mathrm{Ag}(\mathrm{I}) \mathrm{F}$ as one electron oxidant, with a variety of dipolarophiles (Scheme 13). ${ }^{[22]}$

i) $\mathrm{Ag}(\mathrm{I}) \mathrm{F}, \mathrm{CH}_{3} \mathrm{CN}$ ii) $\mathrm{LiOH} / \mathrm{MeOH}, 95 \%$ iii) $(\mathrm{COCl})_{2}$,

Scheme 13.
Our group had also reported less toxic racemic epiboxidine(+/-)- $\mathbf{3}$ synthesis using a similar Diels-Aalder cycloaddition approach (Scheme 14). ${ }^{[23]}$

i) $\mathrm{Ag}(\mathrm{I}) \mathrm{F}, \mathrm{CH}_{3} \mathrm{CN}, 75 \%$ ii) $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{MeOH} / \mathrm{H}_{2}$ iii) $(\mathrm{Boc})_{2}, \mathrm{Et}_{3} \mathrm{~N}$, THF, 90% in two steps iv) nBuLi, THF, v) $11 \mathrm{M} \mathrm{HCl}, 80^{\circ} \mathrm{C}, 41 \%$ in two steps

Scheme 14.
A short enantioselective synthesis of $\mathbf{2}$ was also reported by us employing a chiral auxiliary guided $[3+2]$ cycloaddidition of non stabilized azomethine ylide ${ }^{[24]}$ (Scheme 15).

54

61

62

i) $\mathrm{Ag}(\mathrm{I}) \mathrm{F}, \mathrm{DCM}, 64 \%$ ii) $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 45^{\circ} \mathrm{C}$ iii) $\mathrm{MeOH}, \mathrm{SOCl}_{2}$

Scheme 15.
Although several different synthetic approaches have been described for the construction of 7-azabicyclic systems, the efficacy of desymmetrization of meso-7azanorbornene for the synthesis of these kinds of frame works remained unexplored for so many years. Visualizing the importance of 7 -azabicyclo[2.2.1]heptanes system, our continuing efforts directed towards the development of novel methodologies for the construction of enantiopure 7 -azanorbornene frame works. Our group has developed a conceptually new and efficient route via asymmetric desymmetrization of meso- 64 using chiral diolate of $\mathbf{6 5}$ to produce optically pure 7-azabicyclic frame $\mathbf{6 6}$ with excellent diastereoselectivity and yield $(99 \% \text { de, } 82 \% \text { yield })^{[9]}$ as outlined in Scheme 16. The enantiopure ketone $\mathbf{6 7}$ was exploited for the total synthesis of various conduramines and substituted cyclohexane derivatives.

Scheme 16.

Mechanistically, the formation of product requires nucleophilic attack of alcoholate anion onto the vinylic carbon atom of $\mathbf{6 4}$. The least encumbered trajectory is the one where phenyl group point upwards and alkyl to the side. The elimination of phenyl sulfinate anion generates vinylic sulfone moiety which is again being attacked by the second alcoholate anion to generate carbanion and finally protonation occurs according to exo-rule to give endo sulfone. However, this product seems to be a kinetic product as under basic condition it undergoes epimerization to give exclusively exo sulfone as a single diastereomer (Figure 5).

Figure 6. Mechanistic insight for desymmetrization.

1A.4. References.

[1] Trudell, M.L.; Chen, Z. Chem. Rev. 1996, 96, 1179-1193.
[2] Kricka, L. J.; Vernon, J. M. Adv. Heterocycl. Chem. 1974, 16, 87.
[3] Spand, T. F.; Garraffo, H. M.; Edwards, M. W.; Daly, J. W. J.Am. Chem. Soc. 1992, 114, 3475
[4] (a) Badio, B.; Daly, J. W. Mol. Pharmacol. 1994, 45, 563. (b) Qian, C.; Li, T.; Shen, T. Y. Eur. J. Pharm. 1993, 250, R13-R14. (c) Li, T.; Eckman, J.; Huang, D. F.; Shen, T. Y. Bio-Org. Med. Chem. Lett. 1993, 3, 2759.
[5] Badio, B.; Garraffo, H. M.; Plummer, C. V.; Padgett, W. L.; Daly, J. W. Eur. J. Pharm. 1997, 321, 189.
[6] (a)Xu, R.; Bai, D,; Chu, G.; Tao, J.; Zhu, X. Bioorg. Med. Chem. Lett. 1996, 6, 279. (b) Xu, R.; Chu, G.; Zhu, X. J. Org. Chem. 1996, 61, 4600. (c) Malpass, J. R.; Hemmings, D. A.; Wallis, A.L. Tetrahedron Lett. 1996, 37, 3911. (d) Zhang, C.; Gyermek, L.; Trudell, M. L. Tetrahedron Lett. 1997, 38, 5619.
[7] Barlocco, D.; Cignarella, G.; Tondi, D.; Vianello, P.; Villa, S.; Bartolini, A.; Ghelardini, C.; Galeotti, N.; Anderson, J.; Kuntzweiler, T. A.; Colombo,D.; Toma, L. J. Med. Chem. 1998, 41, 674. (b) Ghelardini, C.; Galeotti, N.; Barlocco, D.; Bartolini, A. Drug. Dev. Res. 1997, 40, 251.
[8] Brieaddy, L. E.; Mascarella, S. W.; Navarro, H. A.; Atkinson, R. N.; Damaj, M. I.; Martin, B. R.; Carroll, F. I. Tetrahedron Lett. 2001, 42, 3795.
[9] (a)Pandey, G.; Tiwari, K. N.; Puranik V. G. Org. Lett. 2008, 10, 3611. (b) Pandey, G. S. K. Tiwari. R. S. Singh, R. S. Mali, Tet. Lett. 2001, 42, 3947-3949.
[10] B. M. Trost, G. R. Cook, Tet. Lett. 1996, 37, 7485.
[11] C. K. Lee, T. P. Loh, Org. Lett. 2005, 7, 2965-2967.
[12] E. Gomez-Sanchez, E. Soriano, J. Marco-Contelles, J. Org. Chem. 2007, 72, 86568670.
[13] D. Savoia, S. Grilli, A. Gualandi, Org. Lett. 2010, 12, 4964-4967.
[14] (a)E. Albertini, A. Barco, S. Benetti, C. D. Risi, G. P. Pollini, V. Zanirato, Tet. Lett. 1997, 38, 681. (b) E. Albertini, A. Barco, S. Benetti, C. D. Risi, G. P. Pollini, V. Zanirato, Tetrahedron. 1997, 53, 17177.
[15] B. P. Hart, H. Rapoport, J. Org. Chem. 1999, 64, 2050-2056.
[16] D. A. Evans, K. A. Scheidt, C. W. Downey, Org. Lett. 2001, 3, 3009.
[17] E. Bunuel, A. M. Gil, M. D. Villegas, C. Cativiela, Tetrahedron, 2001, 57, 64176427.
[18] A. Hernandez, M. Marcos, H. Rapport, J. Org. Chem. 1995, 60, 2683.
[19] W. F. J. Karstens, M. J. Moolenaar, F. P. J. T. Rutjes, U. Grabowska, W. N. Speckamp, H. Hiemstra, Tet. Lett. 1999, 40, 8629.
[20] C. D. Jones, N. S. Simpkins, G. M. P. Giblin, Tet. Lett. 1998, 39, 1023.
[21] M. Node, K. Nishide, T. Fujiwara, S. Ichihashi, Chem. Commun., 1998, 2363-2364.
[22] (a) Pandey, G.; Bagul, T. D.; Lakshmaiah, G. Tetrahedron Lett. 1994, 35, 7439.(b) Pandey, G.; Lakshmaiah, G.; Ghatak, A. Tetrahedron Lett. 1993, 34, 7301. (c) Pandey, G.; Laha, J. K.; Mohanakrishnan, A. K. Tetrahedron Lett. 1999, 40, 6065.
(d) Pandey, G.; Bagul, T. D.; Sahoo, A. K. J. Org. Chem. 1998, 63, 760.
[23] Pandey, G.; Sahoo, A. K.; Gadre, S. R.; Bagul, T. D.; Phalgune, U. D. J. Org. Chem. 1999, 64, 4990.
[24] Pandey, G.; Laha, J. K.; Lakshmaiah, G. Tetrahedron, 2002 58, 3525-3534.

SECTION B: Synthetic studies towards pancratistatin and related natural products

1B. 1a Introduction.

Over the years, plants of the Amaryllidaceae family have long been known for their medicinal and toxic properties. ${ }^{[1]}$ These alkaloids have attracted considerable attention from the synthetic community because of their interesting structures and potent biological activities. ${ }^{[1]}$ Extremely low natural abundance, as well as practical complications in the separation of the desired compound from plant constituents had diminished the probability of reasonable supply by means of isolation. Therefore, significant efforts have been made in developing viable synthetic routes towards these important alkaloids (68-71).

$\mathrm{R}=\mathrm{OH}(+)$ Pancratistatin 68
R=H (+) Deoxypancratistatin 69

$\mathrm{R}=\mathrm{OH}(+)$ Narciclasine 70
$\mathrm{R}=\mathrm{H} \quad(+)$ Lycoricidine 71

Figure 7: Structure's of isocarbostyril alkaloids.

The task has been addressed by various research groups in two different dimensions over two decades, one of the two has been dealing with the quest for short, high yielding synthesis of the naturally occurring isocarbostyril's which promoted the screening and development of great number of existing and new methodologies ${ }^{[2-38]}$ for their capabilities. The other dimension is looking for the potential and more bioavailable derivatives to substitute them in all respects. This particular search resulted in the syntheses of various truncated and unnatural derivatives ${ }^{[39-46]}$ through which the scientific community has been enlightened with the substantial amount of this information regarding essential and variable pharmacophores of these molecules.

This section constitutes an update of the major developments in Amaryllidaceae isocarbostryls. Since the detailed discussion of all the literature reported syntheses have already been reviewed by many others ${ }^{[47]}$ and also it would be beyond the scope of this dissertation, the foregoing discussion would mainly focus on few of the important methodologies involved in the literature reported syntheses of Pancratistatin and related compounds (68-71).

1B.1b. Synthetic approaches toward Pancratistatin (68).

a) Danishefsky's approach

The first total synthesis ${ }^{[18]}$ of the racemic $\mathbf{6 8}$ was accomplished in 27 steps and in less than 1% overall yield by employing iodolactonization on aryl cyclohexadiene 70 to obtain $\mathrm{C}_{1}-\mathrm{C}_{10 \mathrm{~b}}$ cis-relationship in 71. The Overman rearrangement of $\mathbf{7 2}$ gave required $\mathrm{C}_{4 \mathrm{a}}$ amino group stereochemistry. Finally, vicinal cis oxygenation of $\mathrm{C}_{3}-\mathrm{C}_{4}$ double bond of $\mathbf{7 3}$ followed by lactamisation gave racemic 68 (Scheme-6).

Scheme 17
Reagents and Conditions: i) a) AllylMgBr, $E t_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; b) $\mathrm{MsCl}, \mathrm{TEA}, \mathrm{DBU}, \mathrm{DCM}$;
c) (E)-(2-nitrovinylsulfonyl) benzene, CHCl_{3}, reflux; d) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{PhCH}_{3}$,
reflux; ii) a) TBAF, THF, $O^{\circ} \mathrm{C}$; b) $\left(\mathrm{Bu}_{2} \mathrm{Sn}\right)_{2} \mathrm{O}, \mathrm{PhCH}_{3}, 2 h, \mathrm{I}_{2}$; iii) a) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{DMF}$, $\mathrm{BnBr}, \mathrm{rt}$; b) $\mathrm{OsO}_{4}, \mathrm{NMO}, \mathrm{DCM}, \mathrm{THF}$, rt; c) DBU, toluene, reflux, 1.5 h ; d) 2acetoxyisobutyryl bromide, $\mathrm{CH}_{3} \mathrm{CN}, 0{ }^{\circ} \mathrm{C}$, 5min; e) $\left.\mathrm{OsO}_{4}, \mathrm{NMO}, \mathrm{THF}, \mathrm{rt} ; \mathrm{f}\right)$ $\left(\mathrm{Bu}_{2} \mathrm{Sn}\right)_{2} \mathrm{O}, \mathrm{PMBBr}, \mathrm{PhCH}_{3} ; \mathrm{Ag}_{2} \mathrm{O}, \mathrm{BnCl}, \mathrm{DMF}$ g) $\left.\mathrm{DDQ}, \mathrm{DCM}, \mathrm{H}_{2} \mathrm{O} ; h\right) \mathrm{Zn}, \mathrm{HOAc}$; iv) $\mathrm{NaH}, \mathrm{CCl}_{3} \mathrm{CN}, \mathrm{THF}, 100{ }^{\circ} \mathrm{C}$; v) $\mathrm{OsO}_{4}, \mathrm{NMO}, \mathrm{THF}, \mathrm{rt}$; vi) a) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, DCM, reflux; b) $\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2}, 1 \mathrm{~atm}$.
b) Hudlicky's approach

A concise enantioselective total synthesis ${ }^{[19,20]}$ of $\mathbf{6 8}$ was accomplished in 14 steps and in 2% overall yield. This route involved the regioselective aziridine (derived form cyclohexadiene cis-diol 76) ring opening of $\mathbf{7 7}$ using higher order cyano cuprate 78 to afford 79. Finally, setreospecific opening of epoxide in $\mathbf{8 1}$ followed by lactamisation afforded 68 (Scheme-7).

Scheme 18
Reagents and Conditions: a) PhI=NTs, $\mathrm{Cu}(\mathrm{acac})_{2}, \mathrm{CH}_{3} \mathrm{CN}$; b) BuSnH, AIBN, THF, ii) a) s-BuLi, TMEDA, THF , $-90^{\circ} \mathrm{C}$; b) CuCN, -90 to $-20^{\circ} \mathrm{C}$; c) Tosyl azide, $-78^{\circ} \mathrm{C}$ to rt; iii) a) s- BuLi, THF; b) (Boc) ${ }_{2} \mathrm{O}$; c) Na/anthracene DME, $78{ }^{\circ} \mathrm{C}$; d) TBAF, THF; iv) a) SMEAH/Morpholine, $-45^{\circ} \mathrm{C}$, THF; b) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$; c) NaClO_{2}, $\mathrm{KH}_{2} \mathrm{PO}_{4}$, 2-methyl-2-butene, t - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O} ;$ d) $\mathrm{CH}_{2} \mathrm{~N}_{2}$; e) HOAc , THF, $\mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$; f) t-BuOOH, VO(acac) $)_{2}, \mathrm{PhH}, 60{ }^{\circ} \mathrm{C}$; v) a) $\mathrm{H}_{2} \mathrm{O}, \mathrm{BzONa}(\mathrm{cat}), 100{ }^{\circ} \mathrm{C}$; b) H_{2}, $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{EtOAc}$.
c) Trost's approach

An effective enantioselective total synthesis of $\mathbf{6 8}$ was developed ${ }^{[21]}$ in 19 steps and in 8% overall yield by combining the palladium-catalyzed desymmetrization protocol ${ }^{[21 b]}$ with a novel cyclization strategy (Scheme-8).

Scheme 19
Reagents and Conditions: i) $0.5 \mathrm{~mol} \%\left(\square-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{PdCl}\right)_{2}, a, 0.75 \mathrm{~mol} \%, \mathrm{TMSN}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$, (> 95\% ee), 83%; ii) 55, $\mathrm{CuCN}, \mathrm{THF}$, ether, $0^{\circ} \mathrm{C}$; iii) a) Cat, OsO_{4}, NMO. $\mathrm{H}_{2} \mathrm{O}, \mathrm{DCM}, \mathrm{rt}, 62$ \% (two steps); b) TESOTf, 2,6-Lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant; c) NBS, DMF, 75%; iv) a) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$; b) $\mathrm{COCl}_{2}, \mathrm{THF}, \mathrm{Et}_{3} \mathrm{~N}$; c) $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}$, ether, $-78{ }^{\circ} \mathrm{C}, 62 \%$ (three steps); v) a) TBAF, THF, $-78{ }^{\circ} \mathrm{C}$; b) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$; c) cat. $\mathrm{RuCl}_{3} . \mathrm{H}_{2} \mathrm{O}, \mathrm{NaIO}_{4}, \mathrm{CCl}_{4}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}, r t, 72 \%$; vi) $\mathrm{PhCO}_{2} \mathrm{Cs}, \mathrm{DMF}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$, cat. $\mathrm{H}_{2} \mathrm{SO}_{4}, 75 \%$; viii) a) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{rt}$; b) LiI, DMF, $80^{\circ} \mathrm{C}, 85 \%$.
d) Magnus's Approach.

An attractive synthesis of the antitumor alkaloid (+)-Pancratistatin was reported utilizing the β-azidonation reaction via prochiral 4-arylcyclohexanone (91). ${ }^{[23]}$

Scheme 20

Reagents and conditions: a) n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$; b) $\mathrm{POCl}_{3}, \mathrm{DBU}, \mathrm{Py}$; c) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$, EtOH; d) TsOH, MeOH; e) 48, LiCl, TIPSOTf, THF, $-78{ }^{\circ} \mathrm{C}$; f) $(\mathrm{PhIO})_{n}, \mathrm{TMSN}_{3}$, DCM, - $15{ }^{\circ} \mathrm{C}$; g) LAH, Et 2 O ; h) MeOCOCl, Py; i) MCPBA; j) $\mathrm{H}_{3} \mathrm{O}+$; k) KOtBu , HMPA; l) TMSOTf, TEA; m) $\mathrm{PhSeOCOCF} \mathrm{F}_{3}$ then $\mathrm{H}_{2} \mathrm{O}_{2}$; n) $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}$, MeOH; o) L-selectride, THF; p) $\mathrm{PhCO}_{2} \mathrm{Na}, \mathrm{H}_{2} \mathrm{O}$; q) $\left.\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py} ; ~ r\right) ~ \mathrm{Tf}_{2} \mathrm{O}, \mathrm{DMAP}$; s) $\mathrm{BBr}_{3} ;$ t) $\mathrm{NaOMe}, \mathrm{MeOH}$.
e) Rigby's Approach.

Authors reported a new synthetic Scheme using a hydrogen bond guided aryl enamide photocyclization strategy for the synthesis of (+)- pancratistatin and (+)-narciclasine , its natural congener. ${ }^{[12,13]}$ In this approach, chemoenzymatic resolution was employed for the synthesis of optically active syn-epoxy alcohol $\mathbf{1 0 0}$.

Scheme 21
Reagents and conditions: a) nBuLi, THF, $-70^{\circ} \mathrm{C}$; b) $\mathrm{NaH}, \mathrm{PMBBr}$; c) PPTS, MeOH ;
d) hv, PhH; e) NaH, MeI, THF; f) TBAF, THF; g) Dess-Martin; h) $\mathrm{NaBH}_{4},-20{ }^{\circ} \mathrm{C}$; i) $\mathrm{NaH}, \mathrm{BnBr} ; j)\left(\mathrm{PhSe}_{2}, \mathrm{NaBH}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}\right.$, reflux; k) $\left.\mathrm{OsO}_{4}, \mathrm{NMO}, \mathrm{t}-\mathrm{BuOH} ; ~ l\right) \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{H}_{2}$; m) $\mathrm{LiCl}, \mathrm{DMF}$.
f) Kim's approach.

A new total synthesis of pancratistatin (68) was accomplished in 21 steps and 4% overall yield by employing Claisen rearrangement of dihydropyranethylene $\mathbf{1 0 8}$ as a key step for the construction of A and C-ring in 110, followed by stereo- and regio controlled functional group interchange affording the final molecule (Scheme-9). ${ }^{[25]}$

Scheme 22
Reagents and Conditions: i) LHMDS, THF, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 22 \mathrm{~h}, 60 \%$; ii) Toluene, sealed tube, $250{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}, 78 \%$.
g) Li’s Approach.

A concise approach towards (+)-pancratistatin (68) was developed in 13 steps and 9 \% overall yield starting from pinitol by employing an ultrasound assisted arylcerium induced ring opening of cyclic sulfate 114 as a key step (Scheme-10). ${ }^{[26 a]}$

Scheme 23
Reagents and Conditions: i) $\mathrm{MgBr}_{2} \mathrm{OEt}_{2}, \mathrm{COCl}_{2}$, ether, $0^{\circ} \mathrm{C}, 64,64 \%$; ii) t - BuLi , CeCl_{3}, ultrasound, $\mathrm{THF},-78^{\circ} \mathrm{C}$ to rt, 72%.
h) Alonso's approach.

An organocatalytic approach for the synthesis of racemic as well as (+)-pancratistatin was reported using 2-methoxymethylpyrrolidine as a catalyst to control the enantioselective $[3+3]$ annulation of β-(hetero)aryl- α-nitro- α, β-enals with commercial 2,2-dimethyl-1,3-dioxan-5-one, a procedure that rendered highly oxygenated nitrocyclohexanes with five new stereocenters. ${ }^{[26 b]}$

Scheme 24
Reagents and conditions: $(a)(R)-2-($ methoxymethyl $)$-pyrrolidine (b) $H_{4} N C O O H, P d-C$,
MeOH (c) $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (d) Dowex 50WX, MeOH (e) $\mathrm{NaBH}(\mathrm{OAc})_{3}$, DCE/THF (f) $\mathrm{Ac}_{2} \mathrm{O}, ~ D M A P, E t_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (g) Tf $\mathrm{I}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}$ (h) HCl , Dioxane, r (i) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}, 50 \%$ (j) NaOMe, MeOH/THF, 86%

1B. 1c. Approaches towards (+)-7-deoxypancratistatin (69).

a) Paulsen's approach

The first chiral synthesis of (+)-7-deoxypancratistatin (69) was accomplished by conjugate addition of $\mathbf{1 2 1}$ to nitroolefin $\mathbf{1 2 2}$ (derived from D-glucose) followed by lactamization to afford the final molecule in total 9 steps and 6.5% overall yield (Scheme-11). ${ }^{[3]}$

Scheme 25
Reagents and Conditions: i) THF, $-78{ }^{\circ} \mathrm{C}$; ii) HOAc ; iii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH ; iv) $\mathrm{Pd} / \mathrm{H}_{2}$, $\mathrm{EtOH} ; ~ v) \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$.
b) Keck's approach

An efficient total synthesis of $\mathbf{6 9}$ was accomplished in 13 steps and 21% overall yield by employing a radical cascade strategy involving 6 -exo radical cyclization of phenyl radical 131 as the key step (Scheme-12). ${ }^{[7,8]}$

Scheme 26
Reagents and Conditions: i) a) $\mathrm{NaH}, \mathrm{Cl}_{3} \mathrm{CCN}, 0^{\circ} \mathrm{C}$; b) TfOH, THF, $0^{\circ} \mathrm{C}, 75 \%$ (two steps); ii) a) L-Selectride, DCM, -78 ${ }^{\circ}$ C; b) HCl. H_{2} NOBn, Pyridine 96 \%, (two steps); c) TBSOTf, 2,6-lutidine, DCM, $0{ }^{\circ} \mathrm{C}$; d) HF.Pyridine, THF; iii) a) TPAP, NMO, $4 A^{\circ} \mathrm{MS}$; b) 1-amino-2-phenylaziridine, EtOH, $0^{\circ} \mathrm{C} .83$ (two steps); iv) a) $\mathrm{Ph}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{PhH}, 78 \%$; v) $\mathrm{SmI}_{2}, \mathrm{TFAA}, 88 \%$; vi) a) PCC, 83%; b) $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$; b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 88 \%$ (two steps).
c) Plumet's approach.

Total synthesis of $\mathbf{6 9}$ was accomplished in 21 steps with 3% overall yield starting from readily available furan by following the sequence as shown in Scheme 13. ${ }^{[31]}$

Scheme 27
Reagents and Conditions: i) a) BuLi, THF/Tol, $-78^{\circ} \mathrm{C}$; ii) a) Bu ${ }^{t} \mathrm{OOH}, \mathrm{BuLi}, \mathrm{THF},-$ $78{ }^{\circ} \mathrm{C}, 84 \%$; b) Na- Hg , MeOH/THF, $-23{ }^{\circ} \mathrm{C}, 81 \%$; c) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{pyr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, ~ \mathrm{O}^{\circ} \mathrm{C} ;$ d) $\mathrm{Bu}_{4} \mathrm{NN}_{3}$, benzene, 82%; iii) a) $\mathrm{NaIO}_{4} / \mathrm{RuCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CCl}_{4} / \mathrm{H}_{2} \mathrm{O}$; iv) a) $\mathrm{H}_{2}, 40 \mathrm{psi}$, $\operatorname{Pd}(\mathrm{C}) 10 \%, \mathrm{MeOH}, 88 \%$; b) $\mathrm{CF}_{3} \mathrm{COOH}, 0^{\circ} \mathrm{C}$; c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, reflux, 82%.
d) Madsen's Approaches

Approach-1
The utility of olefin metathesis was explored in the elaboration of C-ring of 7deoxypancratistatin (69) by Madsen et al. in total 13 steps and 1.4% overall yield. (Scheme14). In their synthesis, the diene 142 was subjected to metathesis with Grubbs' first-generation catalyst to afford cyclohexene 143 which was oxygenated to complete the synthesis of the natural product. ${ }^{[32 a]}$

Scheme 28

Approach-2

In this strategy, reaction between ribofuranoside 144 (derived from D-Xylose) and 140 in the presence of zinc followed by ring-closing metathesis yielded 145:146 in 2:1 ratio. Subsequent Overman rearrangement ${ }^{[32 b]}$ of $\mathbf{1 4 5}$, dihydroxylation and deprotection afforded 69 in 23 steps with 4.3% overall yield (Scheme-15).

Scheme 29
Reagents and Conditions: i) a) Zn , THF, $\mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$, ultrasound, then H^{+}-resin, $\mathrm{MeOH}, 50{ }^{\circ} \mathrm{C}$, b) Grubbs $I^{s t}$ generation catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$; ii) $\mathrm{CCl}_{3} \mathrm{CN}, \mathrm{DBU}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-45^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, then 1 mmHg , neat, $120^{\circ} \mathrm{C}$; iii) $\mathrm{OsO}_{4}, \mathrm{NMO}$, THF; iv) a) $\left.\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 65^{\circ} \mathrm{C}, b\right) \mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{EtOAc}$.
e) Padwa's approach.

A racemic synthesis was reported by Padwa et al. in 23 steps and 3% overall yield. Key features of the synthetic strategy included 1) one-pot Stille/intramolecular DielsAlder cycloaddition cascade to construct the core skeleton 2) conversion of the initially formed Diels-Alder adduct into an aldehyde intermediate 153 which undergoes a stereospecific decarbonylation reaction mediated by Wilkinson's catalyst to set the trans-B-C ring junction of 69. ${ }^{[33]}$

Scheme 30
Reagents and Conditions: i) Pd (0), 150, 82%; ii) a) $\mathrm{NaH}, \mathrm{PhCH}_{2} \mathrm{Br}$, b) LiOH, THF; c) $\left(\mathrm{COCl}_{2}, \mathrm{ZnBH}_{4}\right.$; c) TPAP, NMO,70 \%; iii) a) $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, heat, 63%, b) $\mathrm{H}_{2}, \mathrm{Pd}$ $\left.(\mathrm{OH})_{2}, ~ c\right) ~ \mathrm{NaH}, \mathrm{CS}_{2}, \mathrm{MeI}$, heat, 85%; iv) a) $\mathrm{OsO}_{4} / \mathrm{NMO}, 68 \%$, b) $\left.\mathrm{SOCl}_{2}, ~ c\right)$ $\mathrm{NaIO}_{4} / \mathrm{RuCl}_{3}, 82 \%$, d) $\mathrm{PhCO}_{2} \mathrm{Cs}$, e) $\left.\left.\mathrm{H}^{+}, 75 \%, f\right) \mathrm{LiOH}, g\right) \mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}, 80 \%$.

1B.1d. Background and our group contribution:

In the last decade our group was actively involved in the synthesis of different kinds of amaryllidaceae classes of alkaloids. Among many of these important alkaloids, synthesis of pancratistatin and its natural congeners were also targeted through various synthetic designs. We had developed an attractive approach ${ }^{[48]}$ for generation of arene radical cation through photoinduced electron transfer processes and its intramolecular cyclization with tethered silyl enol ether as a nucleophile for benzannulation reaction. The reaction was initiated through single electron transfer processes from excited state of electron rich arenes to the ground state of electron deficient 1, 4-dicyanonaphthalene (DCN) as represented in the Fig-8.

Figure 8: Mechanistic insight for benzannulation.

This methodology was applied for a successful synthesis of model compound (+)160, 7-dideoxypancratistatin in a very concise manner ${ }^{[49]}$ as depicted in Scheme 31.

Reagents and conditions: (i) hv, $\mathrm{DCN}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H} 2 \mathrm{O}, 6 \mathrm{~h}, 68 \%$ (ii) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{O}^{\circ} \mathrm{C}-\mathrm{rt}, 100 \%$ (iii) $\mathrm{TBSCl}, \mathrm{Im}$, DMAP, DCM, 85% (iv) (a) $\mathrm{RuCl}_{3}, \mathrm{NaIO}_{4}$, $\mathrm{EtOAc}, \mathrm{H}_{2} \mathrm{O}, 90 \%$ (b) $\mathrm{NaOMe}, \mathrm{MeOH}$, reflux (v) TBAF, THF, 95%

Scheme 31

Excited over this result, we evaluated the possibility of total synthesis of pancratistatin as shown in Scheme 32. However, unfortunately the optimized reaction condition failed to produce any cyclized product.

Reagents and conditions: (i) nBuLi, HMPA, THF, $-78^{\circ} \mathrm{C}, \mathrm{TBSCI}, 88 \%$ (ii) hv, $\mathrm{DCN}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H} 2 \mathrm{O}, 6 \mathrm{~h}$

Scheme 32
Another interesting approach was also reported ${ }^{[50]}$ by us in recent past involving azaMichael reaction for the crucial cyclization, unfortunately, the resultant BC-ring junction was observed to be 'cis' instead of desired 'trans' (Scheme-33).

Scheme 33
Reagents and conditions:(i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 5 \mathrm{~mol} \%, 84 \%$ (ii) $n \mathrm{BuLi}, \mathrm{HMPA}, \mathrm{THF}, 83 \%$

1B.1e. Intention of present study

The ideal and/dream cancer drug is a molecule which would selectively eliminate the cancerous cell without affecting normal human cells. Such a magic drug, though very much desirable, is still anonymous. A recent study ${ }^{[51,52]}$ involving pancratistatin and some related compounds invoked a rare sense of hope among scientists in this regard,
where it was shown that pancratistatin causes preferential apoptosis of tumor cells without affecting much to the healthy cells. Such a discovery is indeed very encouraging but biological studies involving pancratistatin and its derivatives suffer from a number of road blocks. One primary issue is the availability of sufficient amount for such studies where as the other concern is poor water solubility. That's why a number of creative new approaches ${ }^{[53,54]}$ to the syntheses of Amaryllidaceae constituents (68-71) continue to appear despite the fact that almost thirty years elapsed since the first synthesis of pancratistatin (68). Several groups around the globe are still in search of an ideal/ near ideal synthetic sequence which will solve at least its availability concern. Our group is also involved in this area for over a decade. Our present intention is to find out a synthetically viable route which will provide good amount of compound for preclinical studies. The following section will elaborate our success as well as failures and disappointments.

1B.2. Retrosynthetic analysis:

We viewed our synthetic approach for 68 and 69 through retrosynthetic path as outlined in the Scheme-34. The key step envisaged in our approach was the conjugate addition of aryl Grignard reagent to the fully functionalized 167 in presence of $\mathrm{Cu}(\mathrm{I})$ salt. We imagined the addition would undergo in a trans fashion to the protected β amino group. The amino and aromatic group cyclization could be attained in later stage by employing Bischler-Napieralski reaction ${ }^{[55]}$. The requisite 167, crucial for this transformation could be obtained from 168 through Seagussa-Ito oxidation protocol. ${ }^{[56]}$ The 168 in turn could be synthesized from the acetonide protected 169 by simple oxidation which could arise from selective acetonide protection of $\mathbf{1 7 0}$ generated by regioselective opening of the epoxide 171. The required syn-epoxide 171 could possibly be assembled from trans-aminocyclohexenol 172 via chelation controlled stereoselective epoxidation of the double bond. The transaminocyclohexenol synthesis has been achieved earlier in our laboratory starting with enantiomerically pure 7 -azabicyclo[2.2.1]hept-2-one (67) via intermediacy of $\mathbf{1 7 4}$ through an anionic rearrangement involving C4-N7 bond rupture.

Scheme 34. Retrosynthesis of pancratistatin

1B.3. Results and discussions:

In order to test the feasibility of our hypothesis as depicted in above retrosynthetic analysis, we needed 172 in good amount. Therefore, we proceeded towards this molecule from 67 as described below:

1B.3a. Synthesis of 172:

After having required 67 in hand by following previously reported ${ }^{[57]}$ procedure by our group, we proceeded to reduce the carbonyl moiety in stereoselective manner. Interesting results were obtained when reduction with lithium borohydride was attempted at variable temperature. The results showed preference of exo- $\mathbf{1 7 5}$ at higher temperature and endo-174 at lower temperature. Fortunately, both diastereomers were easily separable by silica gel column chromatography. The results are summarized in Table 1.

Scheme 35. Reuction of 67
The relative configurations of both the alcohols were unambiguously deduced from their ${ }^{1} \mathrm{H}$ NMR spectrum. For illustration, the $\mathrm{H}-2$ proton in 174, appeared as a doublet of doublet ($J=9.3,4.4 \mathrm{~Hz}$) coupling with bridgehead $\mathrm{H}-1$ and $\mathrm{H}-3$ whereas $\mathrm{H}-3$ appeared as ddd ($J=9.6,9.3,4.6 \mathrm{~Hz}$) coupling with $\mathrm{H}-2$, bridgehead $\mathrm{H}-4$ and $\mathrm{O}-\mathrm{H}$ proton. The coupling with $\mathrm{O}-\mathrm{H}\left(\mathrm{d}, J=9.6 \mathrm{~Hz}\right.$) was confirmed by $\mathrm{D}_{2} \mathrm{O}$ exchange which simplified the coupling to dd $(J=9.3,4.6 \mathrm{~Hz})$. Similarly, in the case of $\mathbf{1 7 5}$, the $\mathrm{H}-2$ showed doublet ($J=6.5 \mathrm{~Hz}$) coupling only with $\mathrm{H}-3$ whereas $\mathrm{H}-3$ appeared as $\mathrm{dd}(J=9.7,6.5 \mathrm{~Hz})$ coupling with $\mathrm{H}-2$ as well as $\mathrm{O}-\mathrm{H}$ indicating the endoorientation of proton. This result is in complete agreement with the observation reported previously by our group ${ }^{[57]}$ and others ${ }^{[58]}$ where no coupling occurs between bridgehead and the endo-hydrogen in 7-azabicyclo[2.2.1]heptane system.

Table 1. Yields and ratio of $\mathbf{1 7 4}$ and 175 during reduction of ketone.

Entry	Temperature $\left({ }^{0} \mathrm{C}\right)$	Ratio $(174 / 175)$	Time	Yield(\%) (combined)
1	-78	$7: 3$	30 min.	75
2	-90	$7.5: 2.5$	45 min.	70
3	25	$1: 9$	12 h	78

1B.3b. Anionic fragmentation

The ring opening of $\mathbf{1 7 5}$ by the addition of excess of methyl magnesium bromide ${ }^{[57]}$ in a THF solution at room temperature produced 176 in 80% yield as a crystalline solid $\left\{[\alpha]^{25}{ }_{\mathrm{D}}-69.0\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right.\right.$), m.p. $\left.131^{\circ} \mathrm{C}\right\}$ (Scheme 36).

In the ${ }^{1} \mathrm{H}$ NMR of 176, the proton signal appearing at $\delta 7.19(\mathrm{dd}, J=4.9,2.5 \mathrm{~Hz}$, $1 \mathrm{H})$ was assigned to olefinic proton. The mass spectrum of $\mathbf{1 7 6}$ showed molecular ion peak at $354\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Scheme 36. Synthesis of 173
Reagents and Conditions : (i) MeMgBr (6equiv.), THF, rt, $3 \mathrm{~h}, 80 \%$ (ii) KHMDS, THF, $-78{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$ to rt, 70% (iii) MeMgBr (10 equiv.), THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 10 \mathrm{~h}, 88 \%$

However, a similar reaction of $\mathbf{1 7 4}$ with methyl magnesium bromide failed to give any product (Scheme 36). A close look at the structure of $\mathbf{1 7 4}$ indicated that in this molecule, the orientation of sulfone moiety is endo which possibly do not allow the fragmentation due to lack of antiperiplanarity between the bonds to be cleaved. Fortunately, the sulfone group of $\mathbf{1 7 4}$ could be successfully epimerized using KHMDS to 174a (70 \%) which on subjecting to ring opening reaction under identical experimental protocol as described above for 175, yielded 173 (Scheme 23) in 70% yield as a crystalline solid $\left\{\mathrm{mp} 125{ }^{\circ} \mathrm{C}[\alpha]^{25}{ }_{\mathrm{D}}+14.6\left(c 0.40, \mathrm{CHCl}_{3}\right)\right\}$

In the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7 3}$, the signal appearing at $\delta 7.19(\mathrm{dd}, J=4.9,2.5 \mathrm{~Hz}$, $1 \mathrm{H})$ was assigned to olefinic proton. The mass spectrum of $\mathbf{1 7 3}$ showed molecular ion peak at $354\left(M^{+}+H\right)$. Since we were interested to increase net yield of $\mathbf{1 7 3}$, reaction of 174 with 10 equivalent of MeMgBr at $0^{0} \mathrm{C}$ followed by stirring for additional 6-8 h at rt produced 173 in excellent yield (85%).The sulfone moiety was removed selectively using 6% sodium amalgam in presence of NaHPO_{4} as buffer in methanol to obtain $\mathbf{1 7 2}$ in over 83% isolated yield (Scheme 37).

Scheme 37. Synthesis of 172

1B.3c. Synthesis of 167:

The 167, central molecule in our synthetic planning, was achieved in multigram quantity by following the sequences as shown in Scheme-38

Reagents and conditions: (a) mCPBA, $\mathrm{DCM}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 3 \mathrm{~h}, 79 \%$; (b) $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, THF: $\mathrm{H}_{2} \mathrm{O}(1: 1), 1 \mathrm{~h}, 99 \%$; (c) 2,2-DMP, pTSA, dry DMF, rt, 1h, 95%; (d) IBX, DMSO, rt, 12h, 94%; (e) LiHMDS, TMSCI, $0^{\circ} \mathrm{C}$ to rt, 4 h then $\mathrm{Pd}(\mathrm{OAc})_{2}$, acetonitrile, rt, $24 \mathrm{~h}, 67 \%$;

Scheme 38. Synthesis of 167
Compound $\mathbf{1 7 2}$ upon epoxidation using m-CPBA in dichloromethane produced $\mathbf{1 7 1}$ in 79 \% yield as a single diastereomer. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 1}$ displayed two multiplets at $\delta 3.37$ and $\delta 3.34-3.31$, integrating for one proton each, which were assigned to two protons attached to epoxide ring. The coupling constant for the proton at $\delta 3.37(\mathrm{dd}, J=2.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$ indicated it to be a syn epoxide. The proton attached to the free hydroxyl group was assigned at $\delta 3.75(\mathrm{dd}, J=2.3,8.5 \mathrm{~Hz}, 1 \mathrm{H})$ and the proton attached to NHBoc group discerned at $\delta 3.59(\mathrm{dd}, J=0.8,8.8 \mathrm{~Hz}, 1$ H). The N-H proton appeared at $\delta 4.53$. The 9 proton of the tert- butyl carbamate group appeared at $\delta 1.46$ as a singlet. The remaining four protons accounting for two methylene groups appeared at $\delta 2.02-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.28$ (m, 1 H), respectively.

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 1}$ displayed nine carbon signals at $\delta 156.7,80.1,73.2$, 56.7, 54.6, 50.7, 28.3, 26.9 and 22.0. DEPT experiment revealed the presence of two quaternary carbon signals at $\delta 156.7$ and 80.1 which could be assigned to the carbonyl group of carbamate and quaternary carbon of tert butyl group, respectively. The molecular ion peak was found at $252\left(\mathrm{M}^{+}+\mathrm{Na}^{+}\right)$in the mass spectrum of 171 .

We attempted epoxide ring opening using different Lewis acid and alcohols but all efforts remained unsuccessful. When 171 was treated with aq. HCl , the resultant reaction mixture turned out to be an inseparable mixture of diastereomers. Finally, we
succeeded in opening the epoxide ring by treating with 1 M sulphuric acid solution in tetrahydrofuran at rt , which produced $\mathbf{1 7 0}$ in almost quantitative yield and in analytically pure form.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 0}$ in deuterium oxide displayed multiplets between δ 3.83- 3.60, integrating for four protons, assignable to the protons attached to three OH groups and one NHBoc group. The nine proton of Boc group appeared as a singlet at $\delta 1.37$ and the remaining four protons appeared in between $\delta 1.84-\delta 1.45$ as two sets of multiplets. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 0}$ displayed nine carbon signals at $\delta 157.9$, $81.0,72.5,71.1,69.3,50.4,27.6,25.9,24.3$.The molecular ion peak was found at 270 $\left(\mathrm{M}^{+}+\mathrm{Na}^{+}\right)$in the mass spectrum of $\mathbf{1 7 0}$.

The two syn hydroxyl group of $\mathbf{1 7 0}$ were preferentially protected as acetonide to get 169 (95% yield) by following literature procedure. ${ }^{[59]}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6 9}$ displayed four multiplets integrating for five protons in low field region between δ 4.77-3.80 which were assigned to four protons of the cyclohexane ring and the $\mathrm{N}-\mathrm{H}$ proton. The two methyl groups, characteristics of acetonide, appeared separately at δ $1.51(\mathrm{~s}, 3 \mathrm{H})$ and $\delta 1.36(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6 9}$ displayed twelve carbon signals at $\delta 155.3,108.9,79.6,78.8,77.34,69.3,49.8,28.3,28.0,26.4,26.1$, 24.0. In DEPT spectrum three quaternary carbon signals were visible at $\delta 155.3$, 108.9, 79.6 which corresponded to carbonyl group of Boc, quaternary carbon attached to acetonide and that of tert- butyl group of Boc. The four signals at $\delta 78.8,77.34$, 69.3, 49.8 were assigned to the cyclohexyl methine carbons attached to hetero atoms. The C5 and C6 methylenic carbon signals were observed at $\delta 26.1$ and 24.0. The three tert butyl carbamate methyl group carbons appeared together at $\delta 28.0$. The molecular ion peak was found at $310\left(\mathrm{M}^{+}+\mathrm{Na}^{+}\right)$in the mass spectrum of $\mathbf{1 6 9}$.

Compound 169 was oxidized to 168 (60\%) with IBX (2-iodoxybenzoic acid) initially by refluxing in ethyl acetate. However, yield was improved to 94% by stirring in DMSO at rt. The two hydrogens attached to the ' O ' atoms of acetonide group appeared together as multiplets at $\delta 4.51-4.38(\mathrm{~m}, 2 \mathrm{H})$. The proton attached to NHBoc was visible at $\delta 4.01-3.88(\mathrm{~m}, 1 \mathrm{H})$. The two protons α-to carbonyl moiety appeared at $\delta 2.56-2.42(\mathrm{~m}, 2 \mathrm{H})$ as multiplets. Remaining two cyclohexyl protons appeared separately at $\delta 2.34-2.12(\mathrm{~m}, 1 \mathrm{H})$ and $2.03-1.89(\mathrm{~m}, 1 \mathrm{H})$ as multiplets.

Twelve protons appeared between $\delta 1.50-1.41$ which was assigned to three methyl groups of Boc group and a methyl group of acetonide. The other methyl group protons of acetonide were visible at $\delta 1.38(\mathrm{~s}, 3 \mathrm{H})$ as a singlet. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6 8}$ displayed twelve carbon signals at $\delta 207.2,155.4,110.5,80.3,79.5$, $77.9,49.1,34.8,28.3,27.0,25.7,25.3$. In DEPT spectrum four quaternary carbon signals were easily detected at $\delta 207.2,155.4,110.5,80.3$ corresponding to carbonyl group attached to cyclohexane ring and Boc, quaternary carbon attached to acetonide and that of tert-butyl group of Boc. The molecular ion peak was found at 308 $\left(\mathrm{M}^{+}+\mathrm{Na}^{+}\right)$in the mass spectrum of $\mathbf{1 6 8}$.

The conversion of $\mathbf{1 6 8}$ to $\mathbf{1 6 7}$ proved to be troublesome initially. Direct method from ketone to enone as described ${ }^{[60]}$ by Nicolaou et al. proved unsuccessful as very miniscule amount of 167 was detected on TLC with no recovery of even starting material. Later, we explored the possibility of employing a two step protocol by first attaching the SePh group α to the ketone followed by oxidation using $\mathrm{H}_{2} \mathrm{O}_{2}$. Though this method led to successful isolation of crucial enone 167 but it suffered from low isolation yield (only 20\%). Disappointed by this, we attempted to perform SeagussaIto oxidation protocol ${ }^{[56]}$ of enol ethers. For this purpose, we first converted $\mathbf{1 6 8}$ to corresponding silyl enolether by reaction with LiHMDS and trimethylsilyl chloride at $0^{\circ} \mathrm{C}$ - rt. Usual work up followed by stirring of the crude with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in anhydrous DMSO in the presence of oxygen for 24 h gave $\mathbf{1 6 7}$ up to 55% yield. Later it was found out that use of p-benzoquinone as an additive in this reaction improved the yield up to 67%.

The characteristic olefinic protons were easily characterised at $\delta 6.80$ (tdd, $J=0.6$, $4.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.10(\mathrm{~m}, 1 \mathrm{H})$ which are in good agreement with the characteristics of α, β-unsaturated carbonyl compound. The three methyl group protons of Boc appeared at $\delta 1.46(\mathrm{~s}, 9 \mathrm{H})$ as a singlet and the two methyl groups of acetonide appeared separately at $\delta 1.41(\mathrm{~s}, 3 \mathrm{H})$ and $\delta 1.40(\mathrm{~s}, 3 \mathrm{H})$ as two singlets. The ${ }^{13} \mathrm{C}$ NMR of 167 revealed twelve signals at $\delta 194.4,154.9,146.0,128.9,110.1$, 80.7, 77.7, 74.4, 48.4, 28.3, 27.4, 25.9. From DEPT studies the presence of four quaternary carbons was confirmed. The signal at $\delta 194.4$ was assigned to the carbonyl of enone moiety. The signal at $\delta 154.9$ was assigned to carbonyl carbon of carbamate group and the signal at $\delta 110.1$ was assigned to quaternary carbon of acetonide. The
quaternary carbon of tert- butyl group of Boc was traced to 80.7. The mass spectrum of $\mathbf{1 6 7}$ showed $306\left(\mathrm{M}^{+}+\mathrm{Na}^{+}\right)$as molecular ion peak.

Reagents and conditions: (a) $\mathrm{Mg}, \mathrm{CuBr}^{\mathrm{SMe}}{ }_{2}, \mathrm{THF},-15^{\circ} \mathrm{C}, 2 \mathrm{~h}, 76 \%$
(b) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 97 \%$,

Scheme39. Conjugate addition

1B.3d. Conjugate addition.

With the required 167 in hand, we next explored the possibility of performing conjugate addition with Grignard reagent derived from 166 in the presence of copper (I) catalysts such as $\mathrm{CuCl}, \mathrm{CuCN}$ which ultimately proved futile. When we tried conjugate addition with freshly prepared Grignard reagent along with $\mathrm{CuBr} . \mathrm{SMe}_{2}$ the reaction proceeded smoothly at $-15^{\circ} \mathrm{C}$ giving rise to only one diastereomer.

The IR spectrum of 177 showed strong absorption band at $1716 \mathrm{~cm}^{-1}$ and $1695 \mathrm{~cm}^{-1}$, the characteristic bands of a cyclohexanone carbonyl and carbamate, respectively. In the ${ }^{1} \mathrm{H}$ NMR spectra, aromatic protons were easily detected appearing at $\delta 6.82-6.65$ $(\mathrm{m}, 3 \mathrm{H})$. The two protons of methylene dioxy group appeared as a doublet at $\delta 5.96$, 5.95. The benzylic proton (β proton with respect to the carbonyl group) was assigned to a multiplet at $\delta 2.86$. Three cyclohexane ring protons which are attached to hetero atoms appeared at $\delta 3.62,4.28,4.56$, respectively. Six protons of two methyl groups of acetonide moiety appeared as two singlets at $\delta 1.50$ and $\delta 1.43$. Nine protons of Boc group appeared relatively upfield at $\delta 1.25$ as compared to the starting enone. This shift can be explained considering the proximity of aromatic group deshielding the protons due to ring current. The observed splitting pattern in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, due to restricted rotation about NCO bond (rotamers), did not allow to establish relative stereochemistry beyond doubt at this stage.

After succeeding in carrying out conjugate addition, we decided to convert 177 to trans-dihydro lycoricidine (179) via 178, a known congener of pancratistatin. Dihydro congeners of pancratistatin are known to posses equally rich biological activities. ${ }^{[1]}$ Therefore, we needed to construct the crucial B ring with the hope that stereochemical assaignments could also be established precisely. In this direction, first $\mathbf{1 7 7}$ was reduced by NaBH_{4} to obtain $\mathbf{1 8 0}$. The proton spectra of $\mathbf{1 8 0}$ surprisingly got simplified after simple chromatographic purification. After scrutinizing carefully the 2D NMR (COSY, NOESY, HETCOR), relative strereochemistry of H-10b, H-4a in $\mathbf{1 8 0}$ as syn was unravelled. This unfortunate outcome was disappointing and thus forced us to abandon the pursuit of pancratistatin and/ its congeners through this route.

The syn relationship between $\mathrm{H}-10 \mathrm{~b}, \mathrm{H}-4 \mathrm{a}$ in 180 implied that conjugate addition of $\operatorname{ArMgX}(166)$ actually proceeded from the same face of the NHBoc group, which was contrary to general perception. ${ }^{[61]} \mathrm{We}$ could offer two imprecise/tentative explanations for this apparent anomaly. First, we reasoned that the alpha face of $\mathbf{1 6 7}$ is sterically congested due to the presence of acetonide group which completely covered it like an umbrella, which results a preferred beta face for the incoming nucleophile.

Figure 9.
Second alternative might be due to an internal delivery of the aryl group by virtue of a co-ordinating bond between NBoc and CuAr reagent as in 167a (Fig.). The actual cause might be any one of these two factors or a combination of both. Opportunity to unravel the complete ambiguity does exist and active research is being performed in our laboratory in that direction. As it was apparent that the stereochemical outcome of conjugate addition will largely depend on the nature of the enone, syntheses of variety of enones (181-184) were targeted. The work is in progress in our laboratory.
(

Figure 10.

1B.4. Alternative approach.

Since trans B C ring fusion is a must for bio-activity of these molecules ${ }^{[53,54]}$, it was decided to address this issue at the premature stage of the synthetic sequence. Furthermore, it was envisioned that only one double bond in the cyclohexane ring could be required to manipulate rest of the remaining four carbons with hydroxyl groups for the functionalization of C -ring of $\mathbf{6 8}, \mathbf{6 9}$ and related compounds. Based on these thoughts, we planned an imaginary basic skeleton as shown in Scheme 1.

SCHEME 1
Figure 11.

As soon as we finalized the identification of basic unit $\mathbf{1 8 5}$ as an advanced precursor, we searched for an amicable method to construct the complete molecular skeleton. Towards this end, it was thought that $\mathbf{1 8 5}$ might simply be synthesized from α, β unsaturated sulfone $(\mathbf{1 8 6}, \mathbf{1 8 7})$ via desulfonylation reaction. Now these structural frameworks $(\mathbf{1 8 6}, \mathbf{1 8 7})$, are well known to us barring the aromatic ring, where in place of aromatic group hydroxyl group was placed (173), a fact which prompted us to think a bicyclic structural framework (188, 189) as precursors.

Scheme 40. Our planned sequence towards 185
To obtain the correct trans geometry in $(\mathbf{1 8 6}, \mathbf{1 8 7})$, the aromatic group should be endo in $(\mathbf{1 8 8}, \mathbf{1 8 9})$. Therefore, it was envisioned that construction of this moiety could be achieved through simple hydrogenation of the olefinic bond between $\mathrm{SO}_{2} \mathrm{Ph}$ and Ar group of $\mathbf{1 9 0}, 191$. Since, the bicyclic ring in $\mathbf{1 8 8}, 189$ is locked in a boat like conformation, it was expected that the hydrogen atoms would come selectively from exo face resulting into the aromatic as well as sulfone group to the endo position. Synthesis of 190, 191 were proposed to be obtained from the meso-disulfone via aromatic Grignard reagent addition.

1B.5. Results and discussion:

1B.5a. Synthesis of 190

The synthesis of $\mathbf{1 9 0}$ began by a simple addition of aryl Grignard reagent to vinyl disulfone 192 which approached preferentially from beta position of the sulfone group. The resultant carbanion pushed out the other sulfone group forming 190 in 92% yields.

The characterization of $\mathbf{1 9 0}$ was done with the help of ${ }^{1} \mathrm{H}$ NMR spectrum in which three protons of electron rich aromatic group appeared at $\delta 6.78-\delta 7.11$ as a multiplet along with methylenedioxy protons at $\delta 5.99(\mathrm{~s}, 2 \mathrm{H})$. The bridge head protons of 190 were found shifted upfield at $\delta 4.88($ brs, 1 H$)$ and $\delta 4.95-4.93(\mathrm{~d}, 1 \mathrm{H})$, respectively.

Scheme 41. Synthesis of 188
The crucial hydrogenation reaction of $\mathbf{1 9 0}$ using $\mathbf{1 0 \%}$ Pd-C catalyst in methanol at room temperature produced analytically pure 188 in 99% yield, which was characterized by the chemical shift values of bridge head protons $\mathrm{H}_{1}, \mathrm{H}_{4}$ as well as H_{2} and H_{3}. For illustration, the bridge head proton H_{1} appeared at $\delta 4.27$ (br. s., 1 H) and H_{4} at $\delta 4.38(\mathrm{t}, J=4.28 \mathrm{~Hz}, 1 \mathrm{H})$ whereas H_{3} appeared at $\delta 3.64(\mathrm{dd}, J=11.46,3.65 \mathrm{~Hz}$, $1 \mathrm{H})$ and H_{2} at $\delta 3.94(\mathrm{~d}, J=9.82 \mathrm{~Hz}, 1 \mathrm{H})$, respectively.

Figure 12.
In COSY spectrum, correlation between $\mathrm{H}^{1}-\mathrm{H}^{2}-\mathrm{H}^{3}$ was visible indicating $\mathrm{H}-2$ to be in an exo proton. Similarly, the other sets of correlation between $H^{6 e x}-H^{1}-H^{2}, H^{5 e x}-H^{4}-$ $\mathrm{H}^{3}, \mathrm{H}^{4}-\mathrm{H}^{3}-\mathrm{H}^{2}$, suggested $\mathrm{H}-2$ and $\mathrm{H}-3$ to be exo i.e the aromatic ring and phenyl sulfonyl groups both to be in endo orientation. These observations were in complete agreement with the literature reports where couplings are seen between bridge head proton and exo proton ${ }^{[57,58]}$. The endo proton never coupled with the bridge head protons. This fact is further supported by NOESY where $\mathrm{H}^{5 \mathrm{en}}$ showed correlation with $\mathrm{H}^{\mathrm{ar} 1}$.

Figure 13.
With $\mathbf{1 8 8}$ in hand, we attempted anionic rearrangement utilizing strong base such as $n \mathrm{BuLi}, \mathrm{LiHMDS}, \mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$, however, desired product could not be obtained. Finally,
reaction with excess of methylmagnesiumbromide produced 186 (87\%) as a white crystalline solid (m.p. $135^{\circ} \mathrm{C}$).

Scheme 42. Synthesis of 186
The presence of beta proton of vinyl sulfone at $\delta 7.46-7.40(\mathrm{~m}, 1 \mathrm{H})$ along with five proton of phenyl sulfonyl group at $\delta 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, respectively, in ${ }^{1}$ HNMR spectrum confirmed the formation of 186. Further confirmation to the structure of $\mathbf{1 8 6}$ was indicated by observing molecular ion peak at $480\left(\mathrm{M}^{+}+\mathrm{Na}^{+}\right)$. Since 186 was crystalline solid, relative stereochemistry between $\mathrm{H}-$ 10 b and $\mathrm{H}-4 \mathrm{a}$ was determined by X-ray analysis which was found to be trans.

Figure 14: Crystal structure of 186.
Initially our attempt of desulfonylation of $\mathbf{1 8 6}$ using either sodium amalgam or Birch reduction condition unfortunately, produced mixture of 185 (41\%) and 185a (47\%). After a number of trials, fortunately reaction with sodium dithionite in a mixture of dimethyl formamide and water produced 185 in 78\% yields.

Scheme 43. Synthesis of 185
Presence of two characteristics olefinic protons appearing at $\delta 5.89-5.82(\mathrm{~m}, 1 \mathrm{H})$, $5.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$ confirmed the transformation.

1B.5b. Functionalization of Proposed C-ring:

Figure 15:
Successful synthesis of $\mathbf{1 8 5}$ having a) correct proposed trans-BC ring junction stereochemistry b) an olefinic bond between C1-C2 set the stage to initiate the C-ring functionalization for crucial installation of four hydroxyl groups along the periphery of C-ring (C1, C2, C3 and C4) stereoselectively. Towards achieving this goal, first epoxidation of $\mathbf{1 8 5}$ was carried out using mCPBA in dichloromethane which resulted mixture of two diastereomeric epoxides 193 (49%) and 194 (13\%), respectively. The ratios of these two epoxides $(\mathbf{1 9 3} / \mathbf{1 9 4})$ were found to be temperature dependent, e.g. at $0^{\circ} \mathrm{C}=4: 1,41^{\circ} \mathrm{C}=5: 2$ and at $-10^{\circ} \mathrm{C}$ it was $10: 1$ as measured by ${ }^{1} \mathrm{H}$ NMR.

epoxidation

Scheme 44. Synthesis of 193
Since it was known in the literature ${ }^{[25]}$ that direct transformation of 194 to 197 via 195 through epoxidation would be futile and would require longer reaction sequence involving dihydroxylation and subsequent opening of cyclic sulfate, an alternative pathway for the synthesis of 204 involving anti epoxide $\mathbf{1 9 3}$ was envisioned.

Literature precedence

Scheme 45. Our planned sequence towards 204
We envisaged that 193 after opening with PhSeLi and subsequent selenoxide elimination would provide $\mathbf{1 9 9}$, from which the C-2 stereochemistry of C-ring could be easily fixed by chelation controlled epoxidation using either mCPBA or $\mathrm{VO}(\mathrm{acac})_{2}$. The C-1 hydroxy stereochemistry could be re-tuned to syn with respect to aromatic group via an oxidation reduction sequence involving 201. Subsequent opening of epoxide 202 using PhSeLi followed by selenoxide elimination would
provide 204. Since it was known ${ }^{[12,13]}$ that a similar structure as 201a having ketone moiety at $\mathrm{C}-1$ undergoes epimerization on standing due to presence of trans -BC ring junction, it was decided to proceed further along the proposed synthetic steps with 201 itself.

Scheme 46. Our planned sequence towards 204

Therefore, reaction of $\mathbf{1 9 3}$ with PhSeLi gave $\mathbf{1 9 8}$ in 90% isolated yield. The presence of two sets of aromatic protons at $\delta 7.61$ (dd, $J=1.3,8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.41-7.25(\mathrm{~m}, 3$ H) confirmed the presence of SePh group in the product. Oxidation elimination of PhSe moiety

Scheme 47. Synthesis of 199
by treating with NaIO_{4} in the presence of DIPEA produced 199 (88 \%). The characteristic olefinic protons at $\delta 5.77$ (brs, 2 H) in the ${ }^{1} \mathrm{H}$ NMR confirmed its formation.

Chelation controlled epoxidation of $\mathbf{1 9 9}$ with mCPBA gave 200 (70% yield) which was characterized by the presence of two multiplets at $\delta 3.47-3.44(\mathrm{~m}, 1 \mathrm{H})$, $3.35(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Scheme 48. Synthesis of 201
The crucial oxidation of $\mathbf{2 0 0}$ using Dess-Martin reagent ${ }^{[62]}$ produced $\mathbf{2 0 1}$ in 90% yields. Compound 201 was found stable at room temperature for several days! Reduction of $\mathbf{2 0 1}$ by NaBH_{4} at $0^{\circ} \mathrm{C}$ produced mixture of two epoxy alcohol $\mathbf{2 0 0}$ and 202 (7:3). Although, it was possible to enrich 202 from 200 by the oxidation/reduction sequence, the efficacy of the synthetic route would have been compromised. Since the carbonyl moiety of epoxy ketones can selectively be reduced ${ }^{[63]}$ with $\mathrm{NaBH}_{4} / \mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}$ or with $\mathrm{ZnBH}_{4}{ }^{[64]}$, 201 was reduced by $\mathrm{NaBH}_{4} /$ $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}$ to obtain selectively only $202(85 \%)$. In the ${ }^{1} \mathrm{HNMR}$ spectrum, $\mathrm{H}-10 \mathrm{~b}$ which is now cis to H-1 and trans to H-4a appeared at $\delta 2.58(\mathrm{td}, J=5.2,15.4 \mathrm{~Hz}, 1$ H) indicating a cis-trans relationship with adjoining protons $\mathrm{H}-1$ and $\mathrm{H}-4 \mathrm{a}$.

Scheme 49. Synthesis of 200
Reaction of $\mathbf{2 0 2}$ with PhSeLi by following identical reaction condition as described earlier for $\mathbf{1 9 8}$ produced $\mathbf{2 0 3}$ in 90% yields. The presence of five aromatic protons of PhSe group at $\delta 7.62(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.19(\mathrm{~m}, 3 \mathrm{H})$ and $\mathrm{H}-2$ at $\delta 4.26(\mathrm{~m}, 1$ H) in ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the transformation. Oxidation of 203 with
aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ produced 204 in over 81% yield. The two characteristics olefinic protons $\mathrm{H}-3$ and $\mathrm{H}-4$ of this molecule were found merged with the two methylenedioxy protons at $\delta 6.00-5.84(\mathrm{~m}, 4 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Scheme 50. Synthesis of 204

1B.5c. The end game.

Towards completing the synthesis of pancratistatin, remaining two hydroxyl groups at C-4 and C-3 were needed to be installed stereoselctively. Our previous experiences in the area of aminocyclitol synthesis ${ }^{[57]}$, led us to proceed with dihydroxylation step from 204 directly to install hyroxyl moieties at C-4 and C-3 stetreoselectively, though, it was contrary to literature report ${ }^{[12,13,25]}$ where protection of hydroxyl group at C-1 and/C-2 was required. Dihydroxylation of 204 under standard reaction conditions produced 205 in 91% yield. The structure of $\mathbf{2 0 5}$ was suggested based on the observation of six multiplets appearing at $\delta 4.27(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.03$ (t, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01 (br. s., 1 H), 3.76 (br. s., 1 H), 3.76-3.73 (dd, $J=3.1,10.6$ $\mathrm{Hz}, 1 \mathrm{H})$, and at $3.11(\mathrm{dd}, J=1.6,12.1 \mathrm{~Hz}, 1 \mathrm{H})$ in ${ }^{1} \mathrm{H}$ NMR spectrum recorded in $\mathrm{CD}_{3} \mathrm{OD}$.

Successful synthesis of $\mathbf{2 0 5}$ having correct stereochemical dispositions of hydroxyl groups, set the stage for crucial B ring construction by modified ${ }^{[65]}$ BischlerNapieralski reaction. Towards this end, all four hydroxyl groups were protected as Oacetate (206 in 85\% yields),

Scheme 51.
before being treated with freshly distilled trifluoromethane sulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) and 2-chloropyridine in anhydrous dichloromethane at $-84^{\circ} \mathrm{C}$. The reaction occurred smoothly to deliver 207 in high yield (63\%) which was characterized by NMR spectral data and compared with reported values ${ }^{[20]}$. The details are presented in Table-2

Scheme 52. Synthesis of 7-deoxypancratistatin

Figure 16.

Table 2.

Proton number	Observed value	Literature reported value
H1	$5.24(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$	5.23 (t, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$
H2	5.48 (t, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$	5.47 (t, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$
H3	$5.60(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$	5.58 (m, 1H)
H4	$\begin{aligned} & 5.19(\mathrm{dd}, J=3.4,10.9 \mathrm{~Hz}, \\ & 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 5.20(\mathrm{dd}, J=3.5,10.8 \mathrm{~Hz}, \\ & 1 \mathrm{H}) \end{aligned}$
H4a	$\begin{aligned} & 4.31(\mathrm{dd}, J=10.9,12.9 \\ & \mathrm{Hz}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.30 \quad(\mathrm{dd}, \quad J=12.8,11.0 \\ & \mathrm{Hz}, 1 \mathrm{H}) \end{aligned}$
H5(N-H)	5.83 (s, 1 H)	6.56 (s, 1H)
H7	7.61 (s, 1 H)	7.56 (s, 1H),
H10	6.58 (s, 1 H)	6.59 (s, 1H)
H10b	$\begin{aligned} & 3.47(\mathrm{dd}, J=2.7,12.9 \mathrm{~Hz}, \\ & 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 3.46(\mathrm{dd}, J=13.0,2.7 \mathrm{~Hz}, \\ & 1 \mathrm{H}) \end{aligned}$
H11	$\begin{aligned} & 6.04(\mathrm{dd}, J=1.3,7.3 \mathrm{~Hz}, 2 \\ & \mathrm{H}) \end{aligned}$	6.03 (m, 2H)
Me1, Me2, Me3, Me4	$\begin{aligned} & 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~S}, 3 \\ & \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) 2.05(\mathrm{~s}, 3 \\ & \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), \\ & 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$

Lastly, four acetyl groups of $\mathbf{2 0 7}$ were deprotected by reacting with NaOMe in methanol ${ }^{[20]}$ which produced $\mathbf{6 9}$ in 72% isolated yield. The total synthesis of 7deoxypancratistatin (69) was achieved with only a single protecting group manipulation.

1B.6. Conclusion and outlook:

Two new approaches to pancratistatins utilizing racemic as well as enantiomerically pure 7 -azabicyclo[2.2.1]heptenes derived from Diels-Alder recation of pyrrole was discussed. The first generation approach was plagued with an unfortunate problem of undesired stereochemical outcome in crucial conjugate addition stage. Unfortunately, this step dismantled the need toward any further transformations. Active work is being persued towards right direction in our group to solve this hurdle. Taking cue
from the first approach, we have put effort to tune the BC ring junction stereochemistry in the beginning of the planned sequence, which resulted in a successful 15 steps synthesis of racemic 7-deoxy-pancratistatin. The simplicity of the planning and operational ease in carrying out the transformations makes our strategy attractive. Minimal involvement of protecting group increases its efficacy. Still there are unfinished tasks ahead to project it as an alternative to existing protocols. Foremost is the synthesis in enantiomerically pure form, a challenge is being pursued in our laboratory actively and hopefully will find light in near future. But none the less the 15 -step approach to 7 -deoxypancratistatin (overall yield 6%) described in this chapter represent a solid basis for solving the supply problem for pancratistatin and its congeners upon further optimization.

1B.7. References:

[1](a) Hartwell, J. L. Lloydia. 1967, 30, 379. (b) Fitzgerald, D. B.; Hartwell, J. L.; Leiter, J. J. Nat. Cancer Inst. 1958, 20, 763. (c) Pettit, G. R.; Gaddamidi, V.; Herald, D. L.; Singh, S. B.; Cragg, G. M.; Schmidt, J. M.; Boettner, F. E.; Williams, M.; Sagawa, Y. J. Nat. Prod. 1986, 49, 995. (d) Ceriotti, G. Nature. 1967, 213, 595. (e) Okamoto, T.; Torii, Y.; Isogai, Y. Chem. Pharm. Bull. 1968, 16, 1860.
[2](a) Ohta, S.; Kimoto, S. Tetrahedron Lett. 1975, 16, 2279. (b) Ohta, S.; Kimoto, S. Chem. Pharm. Bull. 1976, 24, 2969. (c) Ohta, S.; Kimoto, S. Chem. Pharm. Bull. 1976, 24, 2977
[3] (a) Paulsen, H.; Stubbe, M. Tetrahedron Lett. 1982, 23, 3171. (b) Paulsen, H.;
Stubbe, M. Liebigs Ann. Chem. 1983, 535.
[4] Ugarkar, B. G.; DaRe, J.; Schubert, E. M. Synthesis. 1987, 715.
[5] (a) Chida, N.; Ohtsuka, M.; Ogawa, S. Tetrahedron Lett. 1991, 32, 4525. (b) Chida, N.; Ohtsuka, M.; Ogawa, S. J. Org. Chem. 1993, 58, 4441. (c) Ferrier, R.J., J. Chem. Soc .Perkin. Trans. 1979, 1, 1455. d) Blather, R.; Ferrier, R.J.; Hains, S. R. Ibid. 1988, 2413.
Hudlicky, T.; Olivo, H. F. J. Am. Chem. Soc. 1992, 114, 9694. (b) Hudlicky, T.;
Olivo, H. F.; McKibben, B. J. Am. Chem. Soc. 1994, 116, 5108
[6]Martin, S. F.; Tso, H. H. Heterocycles. 1993, 35, 85.
[7]Keck, G. E.; Wager, T. T. J. Org. Chem. 1996, 61, 8366.
[8]Keck, G. E.; Wager, T. T.; Rodriquez, J. F. D. J. Am. Chem. Soc. 1999, 121, 5176.
[9] Elango, S.; Yan, T. H. Tetrahedron. 2002, 58, 7335.
[10]Zhang, H.; Padwa, A. Org. Lett. 2006, 8, 247.
[11]Padwa, A.; Zhang, H. J. Org. Chem. 2007, 72, 2570.
[12]Rigby, J. H.; Mateo, M. E. J. Am. Chem. Soc. 1997, 119, 12655.
[13]Rigby, J. H.; Maharoof, U. S. M.; Mateo, M. E. J. Am. Chem. Soc. 2000, 122, 6624.
[14]Hudlicky, T.; Rinner, U.; Gonzales, D.; Akgun, H.; Schilling, S.; Siengalewicz, P.; [15]Martinot, T. A.; Pettit, G. R. J. Org. Chem. 2002, 67, 8726.
[16]Gonzalez, D.; Martinot, T.; Hudlicky, T. Tetrahedron Lett. 1999, 40, 3077.
[17]Elango, S.; Yan, T.-H. J. Org. Chem. 2002, 67, 6954.
[18]Danishefsky, S.; Lee, J. Y. J. Am. Chem. Soc. 1989, 111, 4829.
[19]Tian, X.; Hudlicky, T.; Ko"nigsberger, K. J. Am. Chem. Soc. 1995, 117, 3643.
[20]Hudlicky, T.; Tian, X.; Ko"nigsberger, K.; Maurya, R.; Rouden, J.; Fan, B. J. Am. Chem. Soc. 1996, 118, 10752.
[21] (a) Trost, B. M.; Pulley, S. R. J. Am. Chem. Soc. 1995, 117, 10143. (b) Trost, B.
M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114, 9327.
[22] Doyle, T. J.; Hendrix, M.; VanDerveer, D.; Javanmard, S.; Haseltine, J. Tetrahedron. 1997, 53, 11153.
[23] (a) Magnus, P.; Sebhat, I. K. J. Am. Chem. Soc. 1998, 120, 5341. (b) Magnus, P.; Sebhat, I. K. Tetrahedron. 1998, 54, 15509.
[24]Pettit, G. R.; Melody, N.; Herald, D. L. J. Org. Chem. 2001, 66, 2583.
[25] (a) Kim, S.; Ko, H.; Kim, E.; Kim, D. Org. Lett. 2002, 44, 1343. (b) Ko, H.; Kim, E.; Park, J. E.; Kim, D.; Kim, S. J. Org. Chem. 2004, 69, 112.
[26](a)Li, M.; Wu, A.; Zhou, P. Tetrahedron Lett. 2006, 47, 3707. (b) Fernando, C.; Olaia, N.; Hugo, L.; Alonso, R. J. Org. Chem. 2012, 77, 11377-11382
[27] (a) Keck, G. E.; McHardy, S. F.; Murry, J. A. J. Am. Chem. Soc. 1995, 117, 7289. (b) Keck, G. E.; McHardy, S. F.; Murry, J. A. J. Org. Chem. 1999, 64, 4465.
(c)Tian, X.; Maurya, R.; Ko"nigsberger, K.; Hudlicky, T. Synlett. 1995, 1125.
[28]Chida, N.; Jitsuoka, M.; Yamamoto, Y.; Ohtsuka, M.; Ogawa, S. Heterocycles. 1996, 43, 1385.
[29]Keck, G. E.; Wager, T. T.; McHardy, S. F. J. Org. Chem. 1998, 63, 9164.
[30]Akgu"n, H.; Hudlicky, T. Tetrahedron Lett. 1999, 40, 3081.
[31]Acena, J. L.; Arjona, O.; León, M. L.; Plumet, J. Org. Lett. 2000, 2, 3683.
[32](a)Hakansson, A. E.; Palmelund, A.; Holm, H.; Madsen, R. Chem. Eur. J. 2006, 12, 3243 (b) Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc., 2003, 125, 1241212413
[33]Zhang, H.; Padwa, A. Tetrahedron Lett. 2006, 47, 3905.
[34]Shin, I.-J.; Choi, E.-S.; Cho, C.-G. Angew. Chem., Int. Ed. 2007, 46, 2303.
[35]Isobe, K.; Taga, J. I.; Tsuda, Y. Heterocycles. 1978, 9, 625.
[36]Fujimura, T.; Shibuya, M.; Ogasawara, K.; Iwabuchi, Y. Heterocycles. 2005, 66, 167.
[37]Pettit, G. R.; Melody, N.; O'Sullivan, M; Thompson, M. A.; Herald, D. L.; Coates, B. J. Chem. Soc., Chem. Commun. 1994, 2725.
[38]McNulty, J.; Mao, J.; Gibe, R.; Mo, R.; Wolf, S.; Pettit, G. R.; Herald, D. L.; Boyd
[39]M. R. Bioorg. Med. Chem. Lett. 2001, 11, 169.
[40]Rinner, U.; Siengalewicz, P.; Hudlicky, T. Org. Lett. 2002, 4, 115.
[41]Rinner, U.; Hudlicky, T.; Gordon, H.; Pettit, G. R. Angew. Chem., Int. Ed. 2004, 43, 5342.
[42]Rinner, U.; Hillebrenner, H. L.; Adams, D. R.; Hudlicky, T.; Pettit, G. R. Bioorg. Med. Chem. Lett. 2004, 14, 2911.
[43]Ibn-Ahmed, S.; Khaldi, M.; Chrétien, F.; Chapleur, Y. J. Org. Chem. 2004, 69, 6722.
[44]McNulty, J.; Laricheva, V.; Pandey, S. Bioorg. Med. Chem. Lett. 2005, 15, 5315.
[45]Pettit, G. R.; Melody, N.; Herald, D. L.; Knight, J. C.; Chapuis J. C. J. Nat. Prod. 2007, 70, 417.
[46]McNulty, J.; Nair, J. J.; Griffin, C.; Pandey, S. J. Nat. Prod. 2008, 71, 357.
[47] (a) Wildman, W. C. The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1968, Chapter 10, 307-406. (b) Fuganti, C. The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1975, 10, Chapter 3, 83-164. (c) Polt, R. Organic Synthesis: Theory and Applications; Hudlicky, T., Ed; JAI Press: Greenwich, CT, 1997, 3, 109. (d) Hoshino, O. The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1998, 51, 323-424. (e) Jin, Z. Nat. Prod. Rep. 2003, 20, 606. (f) Rinner, U.; Hudlicky, T. Synlett. 2005, 365. (g) Chapleur, Y.; Chretien, F.; Ahmed, S. I.; Khaldi, M. Curr. Org. Syn. 2006, 3, 341. (h) Kornienko, A.; Evidente, A. Chem. Rev. 2008, 108, 1982. (i). Manpadi, M.; Kornienko, A. Org. Prep. Proced. Int. 2008, 40, 107.
[48] (a) Pandey, G. Krishna, A.. Girija K and Karthikeyan, M. Tetrahedron Lett., 1993, 34, 6631; (b) G. Pandey, Karthikeyan M. and Murugan, A. J. Org. Chem., 1998, 63, 2867.
[49] Pandey, G. Murugan, A. Balakrishnan, M., Chem. Commun. , 2002, 624-625
[50] Pandey, G. Balakrishnan, M, Swaroop, P.S. Eur. J. Org. Chem. 2008, 58395847
[51] (a) N. Kekre, C. Griffin, J. McNulty and S. Pandey, Cancer Chemother Pharmacol., 56,29(2005). (b) A. McLachlan, N. Kekre, J. McNulty and S. Pandey, Apoptosis, 10,619 (2005).
[52] S. Pandey, N. Kekre, J. Naden and J. McNulty, Artif. Cells, Blood Substirues, Immobilization Biotechnol., 33,279 (2005).
[53] Manpadi, M.; Kornienko, A. Organic Preparations and Procedures Int., 40(20, 107-161,2008
[54] Kornienko, A.;Evidente, A. Chem. Rev. 2008, 108, 1982-2014
[55] Bischler, A; Napieralski, B. Berichte der Deutschen Chemischen Gesellschaft 26 (2): 1903
[56] Ito,Y; Hirao,T; Saegusa,T. J. Org. Chem. 1978,43 ,1011-1013
[57] (a)Pandey, G.; Tiwari, K. N.; Puranik V. G. Org. Lett. 2008, 10, 3611. (b)
Pandey, G. \quad S. K. Tiwari. R. S. Singh, R. S. Mali, Tet. Lett. 2001, 42, 3947-3949.
[58] Trudell, M.L.; Chen, Z. Chem. Rev. 1996, 96, 1179-1193.
[59] Pettit, G. R.; Eastham, S. A.; Melody, N.; Orr, B.; Herald, D.L.; McGregor, J.;
Knight,J. C.; Doubek, D. L.; Pettit III, G. R.; Garner, L. C.; Bell, J. A. J. Nat. Prod. 2006, 69, 7-13
[60] Nicolaou, K. C.;Montagnon, T.; Baran, P. S. Angew. Chem. Int. Ed. 2002, 41,993-996
[61] Modern Organocopper Chemistry 2002, Willey-VCH Verlag GmbH, ISBNs: 3-527-29773-1, page 188-223.
[62] Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
[63] Li, K.; Hamann, L. G.; Koreeda, M. Tet. Lett. 1992, 33, 6569-6570
[64] (a) Nakata, T.; Tanaka, T.; Oishi, T. Tet Lett. 1981,22,4723-4726. (b) Banfi. S.;
Colona, S.;Molinari, H.; Julia, S. Synth. Commun. 1983, 13, 901-904. (c) Yoon, N. M.; Kang, J. J. Korean Chem. Soc. 1975,19,355-359.
[65] M. Movassaghi, M. D. Hill, Org. Lett., 2008, 10, 3485-3488

1B.8. EXPERIMENTAL:

Preparation of tert-butyl ((1S,2S)-2-hydroxycyclohex-3-en-1-yl)carbamate(172)

tert-butyl ((1S,2S)-2-hydroxycyclohex-3-en-1-yl)carbamate

To a solution of tert-butyl (($1 S, 2 R$)-2-hydroxy-3-(phenylsulfonyl)cyclohex-3-en-1$\mathrm{yl})$ carbamate ($1.0 \mathrm{~g}, 2.83 \mathrm{mmol}, 1.0$ equiv.) in methanol: tetrahydrofuran ($1: 1,20.0 \mathrm{~mL}$) in a round-bottomed flask equipped with a magnetic stir bar was added $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(3.39 \mathrm{~g}, 28.29 \mathrm{mmol}, 10\right.$ equiv.). The flask was cooled to $0^{\circ} \mathrm{C}$ and stirred for 10 min under argon atmosphere, after which $\mathrm{Na}-\mathrm{Hg}(6.33 \mathrm{~g}, 28.29 \mathrm{mmol}, 10$ equiv.) was added in portions over 10 min . The reaction was allowed to stir for 60 min at $0^{\circ} \mathrm{C}$ and was quenched with saturated ammonium chloride (20.0 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 15.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation. The crude material was purified by silica gel chromatography (20% EtOAc in hexanes) to afford $\mathbf{1 7 2}(0.5 \mathrm{~g}, 83 \%)$ as a white crystalline solid (m.p. $\left.112-114^{\circ} \mathrm{C}\right)$.
$[\alpha]^{27.2}{ }_{\mathrm{D}} \quad: \quad-4.97\left(c 1.12, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\max } \mathrm{cm}^{-1}: \quad 3405,3301,1708,1682,1150$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \quad: \quad 5.81-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.69-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.65$
(d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09-4.03(m, 1 H), 3.67
(br. s., 1 H), 3.59-3.50 (m, 1 H), 2.22-2.10
(m, $\quad 2 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H})$, 1.46 (s, 9 H)
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \quad: \quad 157.0,128.9,128.1,80.1,72.5,54.0,28.3,26.7$, 24.3

Mass (ESI): m / z $: 214\left(\mathrm{M}^{+}+\mathrm{H}\right), 236\left(\mathrm{M}^{+}+\mathrm{Na}\right), 252\left(\mathrm{M}^{+}+\mathrm{K}\right)$

Preparation of tert-butyl ($(1 R, 2 R, 3 S, 6 S)$-2-hydroxy-7-oxabicyclo[4.1.0]heptan-3yl)carbamate (171)

To a solution of $\mathbf{1 7 2}$ ($1.0 \mathrm{~g}, 4.69 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane (30.0 mL) in a round-bottomed flask equipped with a magnetic stir bar, was added 3chlorobenzoperoxoic acid ($1.26 \mathrm{~g}, 5.63 \mathrm{mmol}, 1.2$ equiv.). The flask was cooled to $0^{\circ} \mathrm{C}$ and stirred for 3 h under argon atmosphere and was quenched with saturated sodium hydrogen carbonate solution (20.0 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation. The crude material was purified by silica gel chromatography (40% EtOAc in hexanes) to afford 171 (0.85 g , 79%) as a white crystalline solid.

$[\alpha]^{31} \mathrm{D}$	$:$	$-17.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\max } \mathrm{cm}^{-1}$	$:$	$3405,3301,1705,1150$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$	$:$	$4.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=2.3,8.5$
	$\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=0.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$	
	$(\mathrm{dd}, J=2.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 1 \mathrm{H})$,	
	$2.02-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.47-$	
	$1.42(\mathrm{~m}, 9 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 1 \mathrm{H})$	
	$:$	$156.7,128.3,80.1,73.2,56.7,54.6,50.7,28.3$,
	$26.9,22.3$	
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$		
	$:$	$230\left(\mathrm{M}^{+}+\mathrm{H}\right), 252\left(\mathrm{M}^{+}+\mathrm{Na}\right)$

Preparation of tert-butyl ((1S,2R,3S,4R)-2,3,4-trihydroxycyclohexyl)carbamate (170)

To a solution of $\mathbf{1 7 1}(0.7 \mathrm{~g}, 3.05 \mathrm{mmol}, 1.0$ equiv) in tetrahydrofuran: water (5:1, 30.0 mL) in a round-bottomed flask equipped with a magnetic stir bar was added 0.1 mL of conc. sulphuric acid. The flask was stirred for 0.5 h at ambient temperature and was quenched with saturated sodium hydrogen carbonate solution $(20.0 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 30.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation to afford $\mathbf{1 7 0}(0.75 \mathrm{~g}, 99 \%)$ as a white crystalline solid.
$[\alpha]^{31}{ }_{\mathrm{D}}$
: $\quad-9.0(c 1.2, \mathrm{MeOH})$

IR (neat) $v_{\text {max }} \mathrm{cm}^{-1}: \quad 3404,3301,1692$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \quad: \quad 3.83(\mathrm{dd}, J=2.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=6.0$
$\mathrm{Hz}, 2 \mathrm{H}$), 3.60 (dd, $J=3.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.84-$
1.67 (m, 3 H), $1.57-1.45$ (m, 2 H), 1.37 (s, 9 H)
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \quad: \quad 157.9,81.0,72.5,71.1,69.3,50.4,27.6,25.9$, 24.3

Mass (ESI): $m / z \quad: 270\left(\mathrm{M}^{+}+\mathrm{Na}\right)$

Preparation of tert-butyl ((3aR,4S,7R,7aS)-7-hydroxy-2,2-dimethylhexahydrobenzo[d][1,3]dioxol-4-yl)carbamate (169)

To a solution of $\mathbf{1 7 0}$ ($1.0 \mathrm{~g}, 4.04 \mathrm{mmol}, 1.0$ equiv.) in anhydrous DMF (30.0 mL) in a round-bottomed flask equipped with a magnetic stir bar was added 2,2 dimethoxypropane ($4.95 \mathrm{~mL}, 40.44 \mathrm{mmol}, 10$ equiv.) and pTSA ($0.766 \mathrm{~g}, 4.45 \mathrm{mmol}, 1.1$ equiv). The flask was stirred at ambient temperature until TLC monitoring showed complete conversion of starting compound. The reaction was quenched with water (150.0 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 30.0 \mathrm{~mL}$). The combined
organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation to $\mathbf{1 6 9}(1.1 \mathrm{~g}, 95 \%)$ as colorless liquid.

$[\alpha]^{25.2}$	$:$	$2.0\left(c 1.2, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\text {max }} \mathrm{cm}^{-1}$	$:$	$3405,2985,1705,1134$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$	$:$	4.77 (br. s., 1 H$), 4.03$ (br. s., 2 H$), 3.99$ (br. s.,
1	H), $3.80($ br. s., 1 H$), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.57$	
	$(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$	
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$	$:$	$155.3,108.9,79.6,78.8,69.1,71.1,69.3,49.8$,

Mass (ESI): $m / z \quad: 310\left(\mathrm{M}^{+}+\mathrm{Na}\right)$

Preparation of tert-butyl ((3aR,4S,7aR)-2,2-dimethyl-7-oxohexahydrobenzo [d][1,3]dioxol-4-yl)carbamate(168)

To a solution of $\mathbf{1 6 9}$ ($0.639 \mathrm{~g}, 2.22 \mathrm{mmol}, 1.0$ equiv.) in anhydrous toluene:DMSO (2:1) $(36.0 \mathrm{~mL})$ in a round-bottomed flask equipped with a magnetic stir bar was added IBX ($0.934 \mathrm{~g} 3.34 \mathrm{mmol}, 1.5$ equiv.). The flask was heated at $55^{\circ} \mathrm{C}$ temperature until TLC monitoring showed complete conversion of starting compound (6 h). The reaction was quenched with water (100.0 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 30.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporator. The crude material after column chromatography (EtOAc:Hexanes 1:5) afforded 168 ($0.6 \mathrm{~g}, 94.5 \%$) as amorphous solid.
$[\alpha]^{25.5}{ }_{\mathrm{D}} \quad: \quad-23.5\left(c 1.5, \mathrm{CHCl}_{3}\right)$
IR (DCM) $v_{\max } \mathrm{cm}^{-1} \quad: \quad 2988,1710,1683,1147$
$\begin{aligned}\left.{ }^{1} \mathrm{H} \text { NMR (200 MHz, } \mathrm{CDCl}_{3}\right) \delta: & 4.51-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.56- \\ & 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.89 \\ & (\mathrm{~m}, 1 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 12 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) \\ & \\ { }^{13} \mathrm{C} \text { NMR }\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: & 207.2,155.4,110.5,80.3,79.5,77.9,49.1,34.8, \\ & 28.3,27.0,25.7,25.3 \\ \text { Mass (ESI): } \mathrm{m} / \mathrm{z}: & 286\left(\mathrm{M}^{+}+\mathrm{H}\right), 308\left(\mathrm{M}^{+}+\mathrm{Na}\right)\end{aligned}$

Preparation of tert-butyl ((3aRR,4S,7aR)-2,2-dimethyl-7-oxo-3a,4,7,7a-tetrahydrobenzo[d][1,3]dioxol-4-yl)carbamate(167)

To a solution of $\mathbf{1 6 8}(0.06 \mathrm{~g}, 0.21 \mathrm{mmol}, 1$ equiv.) in anhydrous THF (1 mL) in a round-bottom flask equipped with a magnetic stir bar was added LiHMDS $(0.633 \mathrm{~mL}$, $0.631 \mathrm{mmol}, 3$ equiv. 1 M solution in THF) in $0^{\circ} \mathrm{C}$. After $30 \mathrm{~min} \mathrm{TMSCl}(0.032 \mathrm{~mL}$, $0.252 \mathrm{mmol}, 1.2$ equiv.) was added drop wise. The flask was allowed to warm to room temperature and stirred at that temperature until TLC monitoring showed complete conversion of starting compound (3 h). The reaction was quenched with water (1.0 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 5.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation to afford the enol ether as a yellow liquid, which was used as crude for the next reaction.

The crude enol ether was dissolved in anhydrous DMSO (1 mL) to which palladium (II)acetate ($0.007 \mathrm{~g}, 0.033 \mathrm{mmol}, 0.2$ equiv.) was added while stirring at ambient temperature in oxygen atmosphere until TLC showed complete conversion of enol ether (16h). The reaction was quenched with water (5.0 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 5.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, concentrated by rotary evaporation and chromatographed(EtOAc:Hexanes1:5) to afford $167(0.032 \mathrm{~g}, 67 \%)$ as a white solid.
$[\alpha]^{23.5}{ }_{\mathrm{D}} \quad: \quad 115\left(c 1.1, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\text {max }} \mathrm{cm}^{-1} \quad: \quad 1696,1682,1151$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: \quad 6.80(\mathrm{tdd}, J=0.6,4.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.10$ (m, 1 H), 4.91 (dd, $J=0.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.58 $4.39(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, 6 H)
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \quad: \quad 194.4,154.9,146.0,128.9,110.1,80.7,77.7$, $74.4,48.4,28.3,27.4,25.9$

Mass (ESI): $m / z \quad: 284\left(\mathrm{M}^{+}+\mathrm{H}\right), 306\left(\mathrm{M}^{+}+\mathrm{Na}\right)$
tert-butyl ((3aR,4S,7aR)-2,2-dimethyl-7-oxo-3a,4,5,6,7,7a-hexahydro-[5,5'-bibenzo[d][1,3]dioxol]-4-yl)carbamate(177)

To a stirred and cooled $\left(-15^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{CuBr} . \mathrm{SMe}_{2}(0.163 \mathrm{~g}, 0.794 \mathrm{mmol}, 4.5$ equiv.) in anhydrous THF (0.5 mL) was added freshly prepared $\mathrm{ArMgBr}(0.935 \mathrm{~mL}$, $0.617 \mathrm{mmol}, 3.5$ equiv.) and stirred for 0.5 h after which 167 ($0.05 \mathrm{~g}, 0.176 \mathrm{mmol}, 1.0$ equiv.) in THF (0.5 mL) was added very slowly. The reaction mixture was stirred at that temperature for 2 h and quenched with 10% aqueous ammonium chloride solution (2 mL) after which it was diluted with EtOAc (10 mL). The organic layer was separated and the aqueous layer was washed with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic layer was dried over anhydrous sodium sulphate and was concentrated in vacuo. It was purified via flash silica gel column chromatography (EtOAc:hexanes 3:17) to get $177(0.055 \mathrm{~g}, 76 \%)$ as light yellowish liquid.

IR (neat) $v_{\max } \mathrm{cm}^{-1} \quad: \quad 1716,1695,1145$
$\begin{aligned}\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400MHz}, \mathrm{CDCl}_{3}\right) \delta \quad: & 6.82-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 1 \mathrm{H}), \\ & 6.70-6.64(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=4.8 \mathrm{~Hz}, \\ & 2 \mathrm{H}), 4.62-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.25(\text { br. s., } 1 \\ & \text { H), } 3.58(\text { br. s., } 1 \mathrm{H}), 2.83(\text { br. s., } 1 \mathrm{H}), \\ & 2.61(\text { br. s., } 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \\ & \mathrm{H}), 1.33-1.16(\mathrm{~m}, 9 \mathrm{H})\end{aligned}$
HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{7} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 428.1680$, found: 428.1683
tert-butyl ((3aR,4S,5R,7S,7aS)-7-hydroxy-2,2-dimethyl-3a,4,5,6,7,7a-hexahydro-[5,5'-bibenzo[d][1,3]dioxol]-4-yl)carbamate(180)

To a stirred and ice cooled solution of $\mathbf{1 7 7}(0.05 \mathrm{~g}, 0.123 \mathrm{mmol}, 1.0$ equiv.) in distilled methanol (2 mL) was added $\mathrm{NaBH}_{4}(0.009 \mathrm{~g}, 0.246 \mathrm{mmol}, 2$ equiv.) and stirred at that temperature for 1 h after which the reaction was quenched with brine (2 mL) and diluted with EtOAc (10 mL). The layers were separated and the aqueous layer was washed with EtOAc ($3 \times 5 \mathrm{~mL}$) and the combined organic layer was dried over anhydrous sodium sulphate and was concentrated in vacuo. It was purified via flash silica gel column chromatography (EtOAc:hexanes 1:1) to get $\mathbf{1 8 0}$ ($0.049 \mathrm{~g}, 97 \%$) as white amorphous solid.
$[\alpha]^{23.5} \mathrm{D} \quad: \quad 65\left(c 1.1, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\text {max }} \mathrm{cm}^{-1} \quad: \quad 3408,1698,1152$
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.55(\mathrm{~m}, 2 \mathrm{H}), 5.95$ (d, $J=1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.37-4.18 (m, 4 H), $4.18-4.09$ (m, 1 H), 3.55 (br. s., 1 H), 2.31-2.18 (m, 1 H), 1.96 $1.84(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.41$ ($\mathrm{s}, 3 \mathrm{H}), 1.37$ ($\mathrm{s}, 9 \mathrm{H}$)

HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 430.1836$, found: 430.1831 .
tert-butyl-2-(benzo[d][1,3]dioxol-5-yl)-3-(phenylsulfonyl)-7-azabicyclo[2.2.1]hept-2-ene-7-carboxylate(190):

The Grignard reagent prepared from 1-bromo-3,4-(methylenedioxy)benzene(6.66 g , $33.12 \mathrm{mmol}, 1.05$ equiv.) in anhydrous THF (30 mL) was transferred via cannula to a solution of $\mathbf{1 9 2}\left(15.0 \mathrm{~g}, 31.54 \mathrm{mmol}\right.$, 1 equiv.) in dry THF (70 mL) maintained at $0^{\circ} \mathrm{C}$. After transfer was complete, the solution was stirred at $25^{\circ} \mathrm{C}$ until the reaction was complete as shown by TLC ($\sim 2 \mathrm{~h}$). The reaction mixture was again cooled to $0^{\circ} \mathrm{C}$ and quenched by addition of a saturated aqueous solution of ammonium chloride after which it was diluted with ethyl acetate and filtered. The organic layer was separated and the aqueous layer was washed with ethyl acetate (3 X 50 mL) and the combined organic layer was dried over anhydrous sodium sulphate and was concentrated in vacuo. It was purified via flash silica gel column chromatography (15:85 ethyl acetate:hexane) to give the compound $190(12.9 \mathrm{~g}, 89 \%)$ as a white, amorphous solid.

1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.01 (s, 2 H), 4.97 (br. s., 1 H), 4.91 (br. s., 1 H), 2.15-2.07(m, 2 H), 1.74-1.67(m, 1H), 1.40 (br. s., 1 H), 1.30 (br. s., 9 H)
${ }^{13}$ C NMR (101 MHz, CHLOROFORM- d) $\delta: 24.52$, 27.97, 28.31, 64.23, 67.58, 80.86, 101.51, 108.10, 109.85, 123.76, 124.29, 127.58, 129.02, 133.38, 140.93, 147.49,149.17,155.10

Mass (ESI): $m / z \quad: \quad 456\left(\mathrm{M}^{+}+\mathrm{H}\right), 478\left(\mathrm{M}^{+}+\mathrm{Na}\right)$
t-butyl-2-(benzo[d][1,3]dioxol-5-yl)-3-(phenylsulfonyl)-7-azabicyclo[2.2.1]heptane -7-carboxylate (188):

Compound 190 ($10.0 \mathrm{~g}, 21.95 \mathrm{mmol}, 1.0$ equiv.) was taken in methanol (100 mL) to which was added $10 \% \mathrm{Pd} / \mathrm{C}(1.04 \mathrm{~g}, 0.04$ equiv.) and stirred rapidly at ambient temperature under hydrogen at atmospheric pressure. The reaction was monitored periodically for completion by TLC ($\sim 12 \mathrm{~h}$). The reaction mixture was filtered through a pad of celite and concentrated in vacuo. The crude compound was recrystallized (ethylacetate:hexane 1:9) to get $\mathbf{1 8 8}(10.0 \mathrm{~g}, 99 \%)$.

1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.43(\mathrm{~s}, 9 \mathrm{H}) 1.72-1.84(\mathrm{~m}, 1 \mathrm{H}) 1.84-1.95(\mathrm{~m}, 1 \mathrm{H})$ 2.30-2.43 (m, 1 H) 2.92 (ddd, $J=12.84,8.81,4.28 \mathrm{~Hz}$, 1 H) 3.64 (dd, $J=11.46,3.65 \mathrm{~Hz}, 1 \mathrm{H}) 3.94$ (d, $J=9.82$ Hz, 1 H) 4.27 (br. s., 1 H) 4.38 (t, $J=4.28 \mathrm{~Hz}, 1 \mathrm{H}) 5.99$
(d, $J=5.54 \mathrm{~Hz}, 2 \mathrm{H}) 6.74$ (d, $J=8.06 \mathrm{~Hz}, 1 \mathrm{H}) 6.89$ (d, $J=7.55 \mathrm{~Hz}, 1 \mathrm{H}) 7.09$ (br. s., 1 H) 7.43 - 7.52 (m, 2 H) 7.55-7.70 (m, 3 H)

[^0]Mass (ESI): $m / z \quad: \quad 480.1\left(\mathrm{M}^{+}+\mathrm{Na}\right)$
tert-butyl (-2-(benzo[d][1,3]dioxol-5-yl)-3-(phenylsulfonyl)cyclohex-3-en-1yl)carbamate(186):

To a well stirred and ice cooled solution of $\mathbf{1 8 8}$ ($10.0 \mathrm{~g}, 21.86 \mathrm{mmol}, 1$ equiv.) in dry THF (30 mL) was added methylmagnesiumbromide solution (1.4 M solution in THF/toluene, $62.45 \mathrm{~mL}, 87.42 \mathrm{mmol}, 4$ equiv.) over a period of 30 min . The ice bath was removed and the reaction mixture was allowed to stir at ambient temperature for 6 h until TLC showed complete consumption of starting material. The reaction mixture was again cooled to $0^{\circ} \mathrm{C}$ and quenched by the careful addition of saturated aqueous ammonium chloride solution (100 mL). The reaction mixture was diluted with water $(100 \mathrm{~mL})$ and $\operatorname{DCM}(200 \mathrm{~mL})$ to ensure that all the precipitate dissolves. The two layers were separated and the aqueous layer was washed with DCM (2×100 $\mathrm{mL})$. The combined organic layer was dried over anhydrous sodium sulphate and concentrated in vacuo. The crude product was purified via silica gel chromatography (30:70 ethyl acetate:hexanes) to obtain $186(8.7 \mathrm{~g}, 87 \%)$ as a white crystalline solid.

IR (chloroform) $v_{\text {max }} \mathrm{cm}^{-1}$	2976, 1699, 1640, 1503, 1445
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 7.57-7.47$ (m, 3 H), 7.46-7.40 (m, 1 H), 7.37 (t, J	
=	$7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66$ (br. s., 1 H), 6.55-6.44 (m, 2
	H), 6.36 (br. s., 1 H), 5.83 (d, $J=16.1 \mathrm{~Hz}, 2 \mathrm{H}$),
	3.83 (br. s., 1 H), 3.66 (br. s., 1 H), 2.54 (br. s.,
2	H), 1.77 (br. s., 2 H), 1.39 (s, 9 H)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\delta: 155.0,147.3,146.3,140.3,140.1,140.1,139.8$,
	132.7, 128.5, 128.0, 122.0, 108.6, 107.9, 100.9, 79.6,
	51.5, 45.1, 28.3, 21.7, 19.6
Mass (ESI): m/z	: $480\left(\mathrm{M}^{+}+\mathrm{Na}\right)$

tert-butyl (-2-(benzo[d][1,3]dioxol-5-yl)cyclohex-3-en-1-yl)carbamate(185):

To a well stirred solution of $\mathbf{1 8 6}\left(2.0 \mathrm{~g}, 4.37 \mathrm{mmol}\right.$, lequiv.) in DMF/ $\mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{~mL}: 10$ mL) was added $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}\left(2.28 \mathrm{~g}, 13.11 \mathrm{mmol}, 3\right.$ equiv.) and $\mathrm{NaHCO}_{3}(1.39 \mathrm{~g}, 13.11$ mmol, 3 equiv.). The round-bottom flask was fitted with a condenser and heated in an oil bath at $105^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled and diluted with ethyl acetate (30 mL) and washed 3 times with an equal volume of water. The organic layer was dried over anhydrous sodium sulphate and concentrated. The product was purified via silica gel column chromatography (10% ethyl acetate in hexane) to obtain $185(1.08 \mathrm{~g}, 78 \%)$ as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.79-6.66(\mathrm{~m}, 13 \mathrm{H}), 5.95-5.81(\mathrm{~m}, 13 \mathrm{H}), 5.59(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$), 4.67 (br. s., 4 H), 3.68 (br. s., 4 H), 3.21 (br. s., 4 H), 2.28-2.06 (m, 9 H), 1.95-1.82 (m, 5 H), $1.65-1.51$ (m, 5 H), 1.38 ($\mathrm{s}, 39 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.2,147.5,146.1,136.7,128.2,127.8,121.5$, 108.7, 107.9, 100.7, 79.0, 52.4, 47.8, 28.3, 25.7, 23.1

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO} 4 \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 340.1519$, found: 340.1519
tert-butyl (2-(benzo[d][1,3]dioxol-5-yl)-7-oxabicyclo[4.1.0]heptan-3-
yl)carbamate(193):

To a stirred solution of $\mathbf{1 8 5}(0.5 \mathrm{~g}, 1.58 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane was added mCPBA ($0.882 \mathrm{~g}, 3.94 \mathrm{mmol}, 2.5$ equiv.) at $0^{\circ} \mathrm{C}$. After stirring at that temperature for 7 h , the reaction was quenched by the addition of saturated aqueous solution of NaHCO_{3}. This was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (hexane/ethyl acetate, 5:1) to obtain major isomer 193 ($0.35 \mathrm{~g}, 67 \%$) as a white solid along with minor isomer 194 also as a white solid. $R_{f} 0.5$ (hexane/EtOAc $4: 1$).

IR (chloroform) $v_{\max } \mathrm{cm}^{-1} \quad: \quad 2545,1686,1578,1415$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.82-6.66(\mathrm{~m}, 3 \mathrm{H}), 5.94(\mathrm{dd}, J=1.4,3.4 \mathrm{~Hz}, 2 \mathrm{H})$, 4.73 (br. s., 1 H), 3.55 (br. s., 1 H), 3.32 (br. s., 1 H), 3.21-3.06 (m, 1 H), 2.92-2.94 (d, $J=8.5 \mathrm{~Hz}, \mathrm{H}), 2.30-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.50$ - 1.40 (m, 1 H), 1.35 (br. s., 9H)
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 155.0,147.8,146.5,134.5,121.4,108.6,108.3$, 101.0, 79.2, 56.1, 52.4, 51.5, 47.2, 29.7, 28.3, 22.7

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 356.1468$, found: 356.1470
tert-butyl (-2-(benzo[d][1,3]dioxol-5-yl)-3-hydroxy-4-(phenylselanyl)cyclohexyl) carbamate(198):

To a stirred solution of DPDS ($0.56 \mathrm{~g}, 1.79 \mathrm{mmol}, 2.6$ equiv.) in tetrahydrofuran (10 mL) at ambient temperature was added n-butyllithium(0.985 mL solution in hexane, $1.86 \mathrm{mmol}, 2.7$ equiv.) slowly. The yellow colour of the solution became colourless. After 10 min 193 ($0.23 \mathrm{~g}, 0.69 \mathrm{mmol}, 1$ equiv.) in 20 mL tetrahydrofuran was added slowly. The reaction mixture was stirred at that temperature for 14 h and quenched by addition of 5 mL of saturated aqueous ammonium chloride solution. After extraction
with ethyl acetate, the crude mass was chromatographed (hexane/ ethylacetate 7:3) which produced $198(0.31 \mathrm{~g}, 91.6 \%)$ as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.61(\mathrm{dd}, J=1.3,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 3 \mathrm{H})$, 6.78 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.99-5.90(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.15(\mathrm{~m}, 1$ H), $3.55(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{t}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 1 \mathrm{H})$, 1.28 (s, 9 H)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.5,148.2,147.1,136.8,133.4,129.9,129.5$, 128.8, 126.6, 122.3, 108.7, 101.3, 79.6, 75.8, 57.8, 52.9, 50.7, 34.3, 30.7, 28.6 HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{SeNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 514.1103 , found: 514.1107
tert-butyl (-6-(benzo[d][1,3]dioxol-5-yl)-5-hydroxycyclohex-3-en-1yl)carbamate(199)

To a stirred and cooled ($0{ }^{\circ} \mathrm{C}$) solution of $198(0.5 \mathrm{~g}, 1.02 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane (20 mL) was added 30% aqueous hydrogen peroxide (1.05 mL , $10.2 \mathrm{mmol}, 10$ equiv.) and diisopropylethylamine ($0.74 \mathrm{~mL}, 3.06 \mathrm{mmol}, 3$ equiv.). After 1 h , the reaction mixture was concentrated under vacuo and toluene (25 mL) was added, and the mixture was heated again at $111{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was cooled to room temperature, evaporated in vacuo, and the residue was subjected to column chromatographic purification, using hexanes-ethyl acetate mixtures (2:3) to obtain 199 as a yellowish solid ($0.3 \mathrm{~g}, 88 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.82-6.64(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.77$
(s, 2 H), 4.48-4.29 (m, 2 H), 3.97 (br. s., 1H), 2.68-2.47 (m, 2 H), 2.15-1.98(m, 1 H), 1.31 (br. s., 9 H)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.7,148.4,147.2,133.3,130.1,127.2,122.6$, 108.7, 101.4, 79.7, 73.4, 55.6, 49.5, 33.6, 28.6

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 334.1649$, found: 334.1651
tert-butyl(-4-(benzo[d][1,3]dioxol-5-yl)-5-hydroxy-7-oxabicyclo[4.1.0]heptan-3yl)carbamate (200):

To a stirred and cooled ($0^{\circ} \mathrm{C}$) solution of $199(0.5 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane (50 mL) was added mCPBA ($1.18 \mathrm{~g}, 77 \%, 5.25 \mathrm{mmol}, 3.5$ equiv.). The reaction mixture was stirred at that temperature for 12 h . The reaction mixture was quenched with saturated aqueous NaHCO_{3} solution. The colour turned pink which after 2 h of stirring became colourless. The reaction mixture was extracted with DCM and the crude mass was purified with column chromatography using hexane:ethylacetate (1:1) mixture to obtain $\mathbf{2 0 0}(0.387 \mathrm{~g}, 73 \%)$ as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (br. s., 1 H$), 6.67(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.09(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (br. s., 1 H), $3.47-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (dd, $J=9.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56-2.50 (m, 1 H), $1.86-1.76$ (m, 2 H), 1.28 (br. s., 9 H)
${ }^{13} \mathrm{C}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.1,148.1,147.1,131.1,122.5,108.5,101.1$, 79.7, 73.2, 55.6, 52.0, 50.5, 48.6, 31.4, 28.2

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 372.1418$, found: 372.1418
tert-butyl (-4-(benzo[d][1,3]dioxol-5-yl)-5-hydroxy-7-oxabicyclo[4.1.0]heptan-3yl)carbamate 202):

Dess-Martin periodinane ($0.328 \mathrm{~g}, 0.773 \mathrm{mmol}, 3$ equiv.) was added to a solution of $\mathbf{2 0 0}(0.09 \mathrm{~g})$ in dry $\mathrm{DCM}(6 \mathrm{~mL})$ and the resulting heterogeneous reaction mixture was stirred under Ar atmosphere at ambient temperature for 1 h . The reaction mixture was diluted with 10 mL DCM and treated with 5 mL saturated aqueous solution of NaHCO_{3} and $5 \mathrm{~mL} \mathrm{5} \mathrm{\%}$ aqueous solution of sodium thiosulfate. The reaction mixture was stirred for 15 min , by which time both layers became clear. It was extracted with DCM and concentrated to get crude $201(0.089 \mathrm{~g})$ which was as such re-dissolved in 10 mL of distilled methanol and cooled to $0^{\circ} \mathrm{C} . \mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(0.105 \mathrm{~g}, 0.281 \mathrm{mmol}$, 1.1 equiv.) was added followed by $\mathrm{NaBH}_{4}(0.01 \mathrm{~g}, 0.269 \mathrm{mmol}, 1.05$ equiv.). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$, quenched with brine (2 mL) and stirred for 4 h . The crude mixture was extracted with EtOAc and collective organic layers were concentrated under vacuo. The residue was subjected to column chromatographic purification using hexane: ethylacetate ($3: 2$) to obtain $2 \mathbf{2 0 2}(0.076 \mathrm{~g}, 84 \%)$ as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.85-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (d, $J=3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.27 (br. s., 1 H), 4.20 (br. s., 2 H), 3.32 (br. s., 1 H), $3.31-3.25$ (m, 1 H), 2.89 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (td, $J=5.2,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.92 (d, $J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.79 (dd, $J=8.3,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.35$ (br. s., 9 H)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.3,148.0,146.8,131.8,122.2,109.5,108.5$, 101.0, 79.4, 69.9, 54.8, 52.1, 47.2, 42.6, 31.4, 28.3

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 372.1418$, found: 372.1422
tert-butyl(-2-(benzo[d][1,3]dioxol-5-yl)-3,4-dihydroxy-5-phenylselanyl)cyclohexyl) carbamate (203):

A solution of n-butyllithium in hexane ($0.69 \mathrm{~mL}, 1.89 \mathrm{M}, 1.3 \mathrm{mmol}, 4.55$ equiv) was added slowly to a stirred solution of diphenyl diselenide $(0.402 \mathrm{~g}, 1.29 \mathrm{mmol}, 4.5$ equiv.) in anhydrous THF (6 mL) under inert atmosphere till the yellow colour of the solution turned colourless. After 10 min , a solution of $202(0.1 \mathrm{~g}, 0.287 \mathrm{mmol})$ in THF (12 mL) was added drop wise and stirring continued for 12 h at room temperature. The reaction was quenched by the addition of saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was worked up as usual. The crude product was subjected to column chromatographic purification, using hexanes-ethyl acetate mixtures (7:3) to obtain 203 as a floppy solid ($0.131 \mathrm{~g}, 90 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.62(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.82$ ($\mathrm{s}, 1 \mathrm{H}$), $6.75-6.56$ (m, 2 H), 5.92 (s, 2 H), $4.56-4.34$ (m, 2 H), 4.26 (br. s., 1 H), 3.93 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (br. s., 1 H), 3.17 (br. s., 1 H), 2.90 (br. s., 1 H), 2.43 (br. s., 1 H), 2.29-2.15 (m, 2 H), 1.38 (br. s., 9 H)
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.3,147.7,146.4,134.7,132.5,129.1,127.8$, 122.1, 109.7, 108.2, 100.9, 79.4, 75.2, 71.7, 49.0, 46.2, 43.8, 33.9, 28.3

HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{SeNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 530.1052$, found: 530.1060
tert-butyl (-6-(benzo[d][1,3]dioxol-5-yl)-4,5-dihydroxycyclohex-2-en-1-yl)carbamate (204):

To a stirred and cooled ($0{ }^{\circ} \mathrm{C}$) solution of $203(0.110 \mathrm{~g}, 0.217 \mathrm{mmol}$, 1equiv.) in dichloromethane (6 mL) was added 30% aqueous hydrogen peroxide ($0.2 \mathrm{~mL}, 2.17$ $\mathrm{mmol}, 10$ equiv.) and diisopropylethylamine ($0.1 \mathrm{~mL}, 0.65 \mathrm{mmol}, 3$ equiv.). After 1 h , the reaction mixture was concentrated under vacuo and toluene (5 mL) was added, and the mixture was heated again at $111{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature, evaporated in vacuo, and the residue was subjected to column chromatographic purification, using hexanes-ethyl acetate mixtures (2:3) to obtain 204 as a yellowish solid ($0.062 \mathrm{~g}, 81 \%$ yield).

IR (chloroform) $v_{\max } \mathrm{cm}^{-1}: 3436,2919,2850,1680,1038$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 6.00-5.84(\mathrm{~m}, 4 \mathrm{H}), 4.67$

- 4.44 (m, 2 H), 4.02 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.91-3.85(\mathrm{~m}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (br. s., 1 H), 1.39 ($\mathrm{s}, 9 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 155.3,147.8,146.6,132.7,132.2,128.3,121.9$, 109.1, 108.3, 100.9, 79.7, 74.1, 68.7, 48.9, 47.1, 28.3

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 372.1418 , found: 372.1418
tert-butyl (-2-(benzo[d][1,3]dioxol-5-yl)-3,4,5,6-tetrahydroxycyclohexyl)carbamate (205) :

To a solution of $204(0.01 \mathrm{~g}, 0.028 \mathrm{mmol}, 1.0$ equiv) in THF $(0.8 \mathrm{~mL})$ in a round bottomed flask equipped with a magnetic stir bar were added a 0.5 M solution of NMO in $\mathrm{H}_{2} \mathrm{O}$ ($0.171 \mathrm{~mL}, 85.5 \mu \mathrm{~mol}, 3$ equiv) and a solution of OsO 4 in tBuOH ($0.116 \mathrm{~mL}, 0.005 \mathrm{mmol}, 0.2$ equiv.). The reaction mixture was stirred in dark at room temperature under an atmosphere of Ar for 15 h . The reaction mixture was quenched with saturated aqueous sodium thiosulfate $(5.0 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with EtOAc ($5 \times 5.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation. The crude material was purified by silica gel chromatography (3% MeOH in DCM) to afford 205 as a white solid ($0.01 \mathrm{~g}, 91 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=$ 7.1 Hz, 1 H), 4.65-4.42 (m, 2 H), 4.33-4.04 (m, 4 H), 3.94-3.78 (m, 3 H), 3.05 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.28 (br. s., 9 H)
${ }^{1} \mathrm{H}$ NMR ($\left.800 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=6.93(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.03(\mathrm{t}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01 (br. s., 1 H), 3.76 (br. s., 1 H), $3.76-3.73$ (dd, $J=3.1,10.6 \mathrm{~Hz}, 1$ H), 3.11 (dd, $J=1.6,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (201MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=159.0,148.7,147.6,135.2,124.0,111.3,108.6$, 102.1, 79.8, 77.5, 76.2, 73.5, 72.0, 50.8, 49.0, 28.8

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 384.1653$, found: 384.1651.

5-(benzo[d][1,3]dioxol-5-yl)-6-((tert-butoxycarbonyl)amino)cyclohexane-1,2,3,4tetrayl tetraacetate(206):

To a solution of $205(0.034 \mathrm{~g}, 0.088 \mathrm{mmol}, 1$ equiv.) and DMAP ($0.005 \mathrm{~g}, 0.044$ $\mathrm{mmol}, 0.5$ equiv.) in 5 mL of pyridine at $0^{\circ} \mathrm{C}$ was added acetic anhydride $(0.084 \mathrm{~mL}$, $0.88 \mathrm{mmol}, 10$ equiv.). The reaction mixture was stirred at that temperature for 1 h after which it was quenched with the addition of ice and extracted with ($3 \times 6 \mathrm{~mL}$) DCM. The crude material was purified with flash chromatography (EtOAc: Hexane 1:1) to get $206(0.042 \mathrm{~g}, 85 \%)$ as a white crystalline solid.

IR (neat) $v_{\max } \mathrm{cm}^{-1} 1704,1366,1177,1141,1007,968,868$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta: 6.78$ (s, 1 H), 6.73 (s, 2 H), 5.92 (d, $J=10.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.35 (br. s., 1 H), 5.18 (dd, $J=2.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.11 (t, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (br. s., 1 H), $4.71(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (s, 3 H), 2.17 (s, 3 H), 2.04 (s, 3 H), 1.99 (s, 3 H), 1.30 (br. s., 9 H)
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 169.4,168.9,168.3,155.4,147.7,146.9,129.7$, $122.3,109.2,108.1,101.0,79.5,72.1,71.1,68.8,68.1,47.5,47.1,28.1,20.9,20.7$, 20.6

HRMS (ESI): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{12}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 552.2076$, found: 552.2075.

6-oxo-1,2,3,4,4a,5,6,11b-octahydro-[1,3]dioxolo[4,5-j]phenanthridine-1,2,3,4-tetrayl tetraacetate(207):

To a solution of $\mathbf{2 0 6}(0.02 \mathrm{~g}, 0.036 \mathrm{mmol}, 1$ equiv.) and 2-chloropyridine (0.145 mL of 0.5 M solution in DCM, 2 equiv.) in anhydrous DCM (1.0 mL) was added freshly distilled triflic anhydride (0.218 mL of 0.5 M solution in DCM, 3 equiv.) at $-84^{\circ} \mathrm{C}$. After $20 \mathrm{~min} \mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.1 \mathrm{~mL})$ was added at the same temperature. The reaction mixture was allowed to come to ambient temperature in 4 h after which the reaction mixture was stirred at that temperature for another 8 h . It was diluted with 2 mL of DCM and quenched at $0^{\circ} \mathrm{C}$ by slow addition of saturated aqueous NaHCO_{3} solution (1 mL). The mixture was extracted with (3 x 5 mL) DCM concentrated and chromatographed using flash silica gel (EtOAc:Hexane 1:1) to get 207 ($0.011 \mathrm{~g}, 63 \%$) as a yellowish solid.

IR (chloroform) $v_{\max } \mathrm{cm}^{-1} 2934,1704,1697,1366,1177,1141,1007,965$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.61(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=1.3,7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.19 (dd, $J=3.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.31 (dd, $J=10.9,12.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.53-$ 3.43 (dd, $J=2.3,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$

HRMS (ESI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{11} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 500.1163$, found: 500.1163 .

1B.9. Spectras.

Sat2av400\#002.002.001.1r.esp

Z:IAV400IUUL_10_4001Sat2av400\#002|Sat2av400\#002.002.001.1r.esp

28-05-2011 Sat4av400\#\#13.006.001.1r.esp

28-05-2011 S9্ఘ4 4av400\#013.006.001.1r.espल్

28．06．201

${ }^{1} \mathrm{H}$ NMR（ $\left.500 \mathrm{MHz}, \mathrm{CHLOROFORM}-\mathrm{d}\right) \delta=6.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.68-6.59(\mathrm{~m}, 7 \mathrm{H}), 5.99-5.91(\mathrm{~m}, 8 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 3 \mathrm{H}), 4.31-4.27(\mathrm{~m}, 4 \mathrm{H}), 4.20(\mathrm{br}$ ． s．， 4 H ）， $4.16-4.11$（m， 4 H ）， 3.54 （br．s．， 4 H ）， 2.24 （br．s．， 3 H ）， $1.94-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~s}, 11 \mathrm{H}), 1.41$（s， 11 H$), 1.36$（s， 33 H$)$


```
路違書
```



```
N
```


Ar Reac Meso 20 APR13.004.001.1r.esp

RO-HYDRO-AR-23APR2013.004.001.1r.esp

$\overline{\mathrm{N}} \mathrm{HBoc}$

desulf Cove

COSY 193

Ar-syn-hydroxyepoxide24july2013.001.001.1r.esp CHLOROFORM-d

㽞

$\stackrel{\sim}{\sim}$

Ar-syn-hydroxyepoxide24july2013.003.001.1r.esp

Areexideproblooxidardilim 16iuly2013.011.001.1r.esp

Ardihydroxylation06aug2013.003.001.1r.esp

	$\stackrel{\text { ® }}{\substack{\text { ¢ }}}$		夺 ${ }^{\circ}$ F 20)	

CHAPTER 2

SYNTHESIS OF EXO-7-AZABICYCLO[2.2.1]HEPTAN-2AMINE AND CIS 1,2 DIAMINO CYCLOHEXE

2.1a. Introduction

1, 2-Diamines are important scaffolds in organic chemistry. These diamines are routinely used as ligands ${ }^{[1 a-e]}$ in metal-catalysed asymmetric organic transformations. For example, 1,2-diamines are extensively used in the synthesis of thiourea based organocatalysts, ${ }^{[2 a-b]}$ for many useful synthetic transformations. More importantly 1,2-diamines are also found in great abundance in large number of naturally occurring molecules ${ }^{[3]}$ which have great potential in therapeutic use.

In particular, cyclohexane-1, 2-diamines constitute altogether a distinct sub-class. These classes of compounds have diverse application in many areas of organic chemistry. For example, C_{2}-symmetric trans-1, 2-diaminocyclohexanes (5) have been used as ligands ${ }^{[1 \mathrm{c}-\mathrm{e}]}$ in metal-catalyzed asymmetric reactions and several important organocatalysts ${ }^{[4 a-m]}$ are based on this structural frameworks. On the other hand, cis-1, 2-diaminocyclohexanes (6) have shown great promise as therapeutic agents in medicinal chemistry. ${ }^{[5 a-1]}$ More recently Maruoka,s group have shown utility of cis-cyclohexyldiamine derivatives as an excellent pseudo-enantiomeric organocatalysts. This catalyst produced both enantiomers of product by just simple manipulations of protecting group. ${ }^{[6 a-b]}$ Traditionally, trans-diamine is obtained by resolution of its racemate either by using suitable chiral reagents or specific enzymes ${ }^{[7 \mathrm{a}-\mathrm{b}]}$ whereas corresponding cis-diamine is obtained either from trans-1, 2diaminocyclohexanol through multistep functional group manipulations ${ }^{[5 \mathrm{~b}, 5 \mathrm{i}, 5 \mathrm{k}]}$. There are few other methods also to access cis-cyclohexyldiamines such as acrylate cycloaddition with butadiene using D-pantolactone as a chiral auxiliary ${ }^{[8 a-b]}$ employing long reaction sequences and by desymmetrization of corresponding meso-vicinal cyclohexanediamine. ${ }^{[9 \mathrm{a}-\mathrm{b}]}$ Considering the importance of 1, 2-diamines in general and 1, 2-diaminocyclohexanes in particular, we visualized conformationally rigid 7-aza bicyclo[2.2.1]heptane-2-amines $(\mathbf{3}, \mathbf{4})$ as an ideal precursor for the synthesis of 1, 2-diaminocyclohexanes.

2.1b. Origin of the Concept:

This idea originated from our ongoing exploitation of $\mathbf{2}$ in the synthesis of a variety of natural products/ scaffolds ${ }^{[10-11]}$ and the presence of C3-phenylsulfonyl moiety as a handle to trigger C4-N7 bond cleavage. We have used 2 as a template in the syntheses of many important natural / synthetically useful compounds. Therefore, it occurred to us that exo-as well as endo-alcohols obtained by the reduction of 2 under specific reaction condition can be forced to undergo nucleophilic substitution in $\mathrm{S}_{\mathrm{N}} 2$ fashion if we can convert the hydroxy group to a suitable potential leaving group. In this manner, we could have acess to both exo- and endo-bicyclic diamine which after anionic rearrangement (C4-N7 cleavage) will produce cis- as well as trans-1,2 diamines in optically pure form. To test our hypothesis, we began synthesising bicyclic alcohols $\mathbf{7}$ and $\mathbf{8}$ as the first step.

Scheme 1. Proposed planning for the synthesis of 1, 2-cyclohexane diamines.

2.1c. Results and Discussion:

The bicyclicalcohols ($\mathbf{7}$ and $\mathbf{8}$) were obtained by reduction of enantiomerically pure 2 with LiBH_{4} under different reaction conditions. Reduction in THF at ambient temperature produced mixture of $\mathbf{7}$ and $\mathbf{8}$ (9:1) which were easily separable by simple column chromatography. However, reduction at $-78^{\circ} \mathrm{C}$ reversed the ratio ($7: 8$, 3:7). The ratio of the desired alcohol can further be improved by oxidising the undesired alcohol using IBX followed by reducing again with LiBH_{4}. This process can be used to obtain any one of these alcohols in $>90 \%$ yield after two cycle of oxidation/reduction processes.

The corresponding mesylates were obtained by reacting either $\mathbf{7}$ or $\mathbf{8}$ with mesylchloride in pyridine at rt . These mesylates ($\mathbf{9}$ and 10) were found to be very stable solid (m. p. $9: 172.4^{\circ} \mathrm{C}-174.9^{\circ} \mathrm{C}, 10: 177.3^{\circ} \mathrm{C}-181.6^{\circ} \mathrm{C}$). The presence of three mesyl group protons at $\delta 3.18(\mathrm{~s}, 3 \mathrm{H})$ in ${ }^{1} \mathrm{H}$ NMR and the methyl carbon at $\delta 37.6$ in ${ }^{13}$ CNMR confirmed the formation of 9 . Molecular ion peak at $\mathrm{m} / \mathrm{z} 449.1411$ in HRMS (ESI) \{cal. $\left.m / z \quad 449.1411\left[\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)\right]\right\}$also supported the formation of 9 .

The endo-10 was similarly characterised by observing three methyl protons of mesyl group at $\delta 3.20(\mathrm{~s}, 3 \mathrm{H})$ and the methyl carbon at $\delta 38.8$, by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, respectively.

After accumulating $\mathbf{9}$ and $\mathbf{1 0}$ in appreciable amount, we attempted nucleophilic substitution of these mesylates by different amines. Initially, refluxing 9 with allylamine for 30 min . surprisingly produced 11a in 95% yield. Identical reaction with 10 also gave the same 11a. To probe further this unexpected result, mixture of both 9 and 10 were refluxed with allylamine which produced 11a exclusively. Reaction with acetamide and pyrollidine too gave only corresponding 11b and 11c, respectively. The relative stereochemistry of the products were confirmed using detailed NMR studies. For illustration, in the 1H NMR spectrum of 11b, the characteristics $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ and H_{4} protons were assaigned to $\delta 4.09(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{1}\right), \delta 4.63-4.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \& \mathrm{H}_{4}\right)$ and $\delta 3.25\left(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, respectively. In COSY spectrum correlation between $\mathrm{H}_{4}-\mathrm{H}_{3}-\mathrm{H}_{2}$ were visible indicating H_{3} to be in
exo-orientation. Similarly absence of correlation between H_{1} and H_{2} suggested H_{2} to be in an endo orientation since it also correlated with H_{3} and $\mathrm{N}-\mathrm{H}$ proton. These observations were in complete agreement with the literature reports where couplings are seen between bridge head proton and exo proton ${ }^{[10,11,19]}$. The endo proton never couples with the bridge head protons in bicyclo[2.2.1] heptane skeleton .The NOESY also confirms the same structural postulation.

The molecular ion peak at $m / z 395.1632$ by HRMS (ESI) analysis was found in good agreement with the calculated value $\left\{m / z \quad 395.1635 \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right\}\right.$

Scheme 2. Preparation of exo-7-azabicyclo[2.2.1] heptadiamines

Based on this stereochemical revelation, the possibility of $\mathrm{S}_{\mathrm{N}} 2$ type displacement can, thus, be ruled out as in all these reactions the nucleophile positions itself to an exo-orientation. Furthermore, the possibility of a unimolecular $\mathrm{S}_{\mathrm{N}} 1$ type reaction would be energetically uphill task owing to the presence of α-phenylsulfone moiety. Therefore, it was postulated that this reaction might be proceeding by an elimination/addition (E1cB type) mechanism. The driving force for the elimination of mesyl group might be the formation of $\mathbf{1 2}$ on which exo-attack by the amines is a highly reasonable proposition. To confirm the involvement of $\mathbf{1 2}$ as an intermediate, both $\mathbf{9}$ and $\mathbf{1 0}$ were stirred with DBU in DCM at r.t. for 1 h and resultant $\mathbf{1 2}$ was heated with allylamine to obtain 11a exclusively.

Scheme 3. Support of 12 as an intermediate in amination reaction

To effect C4-N7 cleavage, 11b was stirred with 4.0 equiv. of $\mathrm{MeMgBr}(1.4 \mathrm{M}$ solution) in THF at room temperature for 1 h and usual work up followed by crystallization gave 13b in 80% yield (m.p. $>240^{\circ} \mathrm{C}$, decomposes). The presence of β proton (H-4) at $\delta 7.32(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$ along with five proton of phenyl sulfonyl group at $\delta \delta 7.92-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.50(\mathrm{~m}, 3 \mathrm{H})$ in ${ }^{1} \mathrm{HNMR}$ spectrum confirmed the formation of $\mathbf{1 3 b}$. Further confirmation to this structure was indicated by observing molecular ion peak in HRMS at m / z 395.1632; calculated value 395.1635 for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Removal of the phenylsulfonyl moitey by refluxing with Raney-Ni in absolute ethanol gave $\mathbf{1 4}\left([\alpha]^{27}{ }_{D} 5\{c 1\right.$, chloroform $\left.\}\right)$ quantitatively. Presence of H_{2} and H_{1} at $\delta 3.94(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H})$ and $3.81(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H})$, respectively, together with two $\mathrm{N}-\mathrm{H}$ protons at δ $6.42(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H})$ and $\delta 5.01(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H})$ indicated the formation of $\mathbf{1 4}$. Further support to the proposed structure of $\mathbf{1 4}$, was obtained by observing the molecular ion peak at m / z 257.1853. in HRMS(ESI); calculated for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 257.1860.

Scheme 4. Synthesis of 1, 2-cyclohexyl diamine

Apart from transforming 13b to 14, it was also transformed to $\mathbf{1 5}$ and $\mathbf{1 6}$ which are endowed with structural features required for further functionalizations by employing simple steps (Scheme-5). Reduction of 13b using $\mathrm{Na} / \mathrm{Hg}$ and Pd / C
produced $15\left([\alpha]^{24}{ }_{\mathrm{D}}-31.1\{c 0.9\right.$, chloroform $\left.\}\right)$ and 16, respectively, in good yields. The olifinic bond of $\mathbf{1 5}$ could be utilised for further functionalization whereas the presence of the phenylsulphonyl group at C3 in $\mathbf{1 6}$ provided a handle for further transformation of this structural framework.

Scheme 5. Exploration of methodology for other cyclohexyldiamine analogues

Since conformationally rigid diamines (CRDA) are well known compounds owing to their role in biology, catalysis, coordination and supramolecular chemistry, ${ }^{[13]}$ we got interested in synthesizing these molecules by broadening the scope of this reaction. Interestingly, exo- as well as endo-7-aza bicyclo[2.2.1]heptane-2-amines (18 and 21) are also known substructures of many pharmacologically important compounds. For example, N6-(endo-7-azabicyclo[2.2.1]heptan-2-yl)adenosines are shown to be highly potent A1AR agonists, ${ }^{[14,}{ }^{15]}$ whereas exo-7-aza bicyclo[2.2.1]heptane-2-amines derivatives act as inhibitors against the plasmepsins of malarial parasite Plasmodium falciparam ${ }^{16}$. Inspite of significant biological activities associated with these structural frameworks, their synthesis have mainly relied on the chiral resolution of racemic amines. ${ }^{[15,17]}$ Although 21 has recently been synthesized ${ }^{[18]}$ by intramolecular cyclization of optically active 3, 4diaminocyclohexanol under Mitsunobu condition, the strategy suffers from the requirement of purification of diastereomers in almost every steps. Therefore, we visualized the synthesis of $\mathbf{1 8}$ from 11b by simply removing the phenylsulphonyl moiety. In this context, 11b was refluxed with Raney-Ni in absolute ethanol for 12 h which produced $\mathbf{1 7}$ in 81% yield. The absence of five aromatic protons of PhSO_{2} group in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}$ was indicative of the transformation. The two bridge head protons were detected at $\delta 4.22,4.07$, $\mathrm{N}-\mathrm{H}$ proton at $\delta 5.93$, and the proton attached to NHAc at $\delta 3.97$. The structure of $\mathbf{1 7}$ was further established by HRMS (ESI) analysis, $m / z 255.1700\left\{\right.$ cal. $\left.m / z 255.1703\left[\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)\right]\right\}$.

Global deprotection of $\mathbf{1 7}$ by refluxing with 6 N HCl produced $\mathbf{1 8}\left([\alpha]^{27.5}{ }_{\mathrm{D}}-3\right.$ \{c 1.2 , methanol\}) quantitatively.

The characteristics $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{4} protons appeared at $\delta 4.40(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{dd}, J=4.4,8.9 \mathrm{~Hz}, 1 \mathrm{H})$ and at $\delta 4.34(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, respectively in the 1 H NMR spectrum of $\mathbf{1 8}$ in $\mathrm{D}_{2} \mathrm{O}$. In COSY spectrum, correlation between $\mathrm{H}_{3 \mathrm{en}}-\mathrm{H}_{2}-\mathrm{H}_{3 \mathrm{ex}}$ was noticed whereas absence of correlation with H_{1} was indicative of endo orientation of H_{2}. Molecular ion peak observed at $\mathrm{m} / \mathrm{z} \quad 113.1075$ in the HRMS (ESI) analysis $\left\{\right.$ cal. $\left.m / z \quad 113.1073 \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)\right\}$further confimed the formation of 18.

Though we could synthesize the exo-18, synthesis of endo-21 was not possible following this route. Therefore, we decided to proceed with 19, obtained easily from 2 through

Scheme 6. Synthesis of exo-7-Azabicyclo[2.2.1]heptan-2-amine

desulfonylation with sodium amalgam. Reductive amination of 19 with benzylamine in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}$ gave 20 in 90% yield. This observed diastereospecificity could be explained by considering the intermediacy of corresponding imine followed by hydride addition from more accessisible exo-face resulting $\mathbf{2 0}$ exclusively. The presence of five aromatic protons of benzyl group in the 1 H NMR spectrum of 20 at $\delta 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H})$ along with two benzyl protons at $\delta 3.59$ (s, 2H) indicated its formation. In COSY spectrum, existense of correlation between $\mathrm{H}_{1}-\mathrm{H}_{2}-\mathrm{H}_{3 \mathrm{ex}}$ and $\mathrm{H}_{1}-\mathrm{H}_{2}-\mathrm{H}_{3 \text { en }}$ indicated of

being H_{2} in exo-orientation. The molecular ion peak at $\mathrm{m} / \mathrm{z} 303.2079$ \{cal. m / z $\left.303.2079\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)\right]\right\}$further confirmed the structure of $\mathbf{2 0}$. Hydrogenolysis of $\mathbf{2 0}$ in methanolic HCl produced $21\left([\alpha]^{28}{ }_{\mathrm{D}}-2.6\left\{\mathrm{c} 1.5, \mathrm{H}_{2} \mathrm{O}\right\}\right)$ in 95% yield as its dihydrochloride salt. All spectra matched satisfactorily with the literature reported values. ${ }^{[18]}$

Scheme 7. Synthesis of endo-7-Azabicyclo[2.2.1]heptan-2-amine

2.2. Conclusion:

We have developed a scalable, novel, and relatively inexpensive strategy towards the syntheses of cis-1,2-diaminocyclohexane derivatives and 7-azabicyclo[2.2.1]hept-2amines. cis-1,2-diaminocyclohexane derivatives can be used as organocatalysts, a task currently underway in our laboratory.

2.3. References:

[1] (a) Trost, B. M.; Radinov, R.; Grenzer, E. M. J. Am. Chem. Soc. 1997, 119, 78797880. (b) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063-7064. (c) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395-422. (d) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97-102. (e) Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421-431.
[2] (a) Takemoto, Y. Chem. Pharm. Bull. 2010, 58, 593-601. (b) Zhang, L.; Luo, S. Synlett 2012, 1575-1589.
[3] Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem.Int. Ed. 1998, 37, 2580-2627.
[4] (a) Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tet. Lett. 2004, 45, 5589-5592. (b) Liu, K.; Cui, H.-F.; Nie, J.; Dong, K.-Y.; Li, X.-J.; Ma, J.-A. Org. Lett. 2007, 9, 923-925.(c)Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Org. Lett. 2006, 8, 2901-2904.(d) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-4902.(e)Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am.Chem. Soc. 2007, 129, 6686-6687.(f) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672-12673. (g) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, 1279-1281.(h) Li, X.-J.; Liu, K.; Ma, H.; Nie, J.; Ma, J.-A. Synlett 2008, 3242-3246. (i) Konishi, H.; Lam, T. Y.; Malerich, J. P.; Rawal, V. H. Org. Lett. 2010,12, 2028-2031. (j) Qian, Y.; Ma, G.; Lv, A.; Zhu, H.-L.; Zhao, J.; Rawal, V. H. Chem. Commun. 2010, 46, 3004-3006. (k) Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem. Int. Ed. 2010, 49, 153-156. (1) Wu, R.; Chang, X.; Lu, A.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. Chem. Commun., 2011, 47, 5034-5036. (m) Luo, S.; Xu, H.; Li, J.; Zhang, L.; Cheng, J.-P. J. Am. Chem. Soc., 2007, 129, 30743075.
[5] (a) Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. Science 2004, 303, 844-848.(b) Hirabayashi, A.; Mukaiyama, H.; Kobayashi, H.; Shiohara, H.; Nakayama, S.; Ozawa, M.; Miyazawa, K.; Misawa, K.; Ohnota, H.; Isaji, M. Bioorg. Med. Chem. 2008, 16, 7347-7357. (c) Nagata, T.; Yoshino, T.; Haginoya, N.; Yoshikawa, K.; Nagamochi, M.; Kobayashi, S.; Komoriya, S.; Yokomizo, A.; Muto, R.; Yamaguchi, M.; Osanai, K.; Suzuki, M.; Kanno, H. Bioorg. Med. Chem. 2009, 17, 1193-1206.(d) Okano, M.; Mito, J.; Maruyama, Y.; Masuda, H.; Niwa, T.;

Nakagawa, S.-i.; Nakamura, Y.; Matsuura, A. Bioorg. Med. Chem. 2009, 17, 119132.(e) Yoshikawa, K.; Yokomizo, A.; Naito, H.; Haginoya, N.; Kobayashi, S.; Yoshino, T.; Nagata, T.; Mochizuki, A.; Osanai, K.; Watanabe, K.; Kanno, H.; Ohta, T. Bioorg. Med. Chem. 2009, 17, 8206-8220.(f) Cherney, R. J.; Mo, R.; Meyer, D. T.; Voss, M. E.; Yang, M. G.; Santella III, J. B.; Duncia, J. V.; Lo, Y. C.; Yang, G.; Miller, P. B.; Scherle, P. A.; Zhao, Q.; Mandlekar, S.; Cvijic, M. E.; Barrish, J. C.; Decicco, C. P.; Carter, P. H. Bioorg. Med. Chem. Lett., 2010 20, 2425-2430.(g) Cherney, R. J.; Mo, R.; Meyer, D. T.; Nelson, D. J.; Lo, Y. C.; Yang, G.; Scherle, P. A.; Mandlekar, S.; Wasserman, Z. R.; Jezak, H.; Solomon, K. A.; Tebben, A. J.; Carter, P. H.; Decicco, C. P. J. Med. Chem. 2008, 51, 721-724. (h) De Costa, B. R.; Dominguez, C.; He, X. S.; Williams, W.; Radesca, L.; Bowen, W. J. Med. Chem. 1992, 35, 4334-4343.(i) Radesca, L.; Bowen, W. D.; Di Paolo, L.; De Costa, B. R. J. Med. Chem. 1991, 34, 3058-3065.(j) Caron, K.; Lachapelle, V.; Keillor, J. W. Org. Biomol. Chem., 9, 185-197.(k) Govindaraju, T.; Gonnade, R. G.; Bhadbhade, M. M.; Kumar, V. A.; Ganesh, K. N. Org. Lett. 2003, 5, 3013-3016.(1) Trapero, A.; Llebaria, A. ACS Med. Chem. Lett., 2011, 2, 614-619.
[6] (a) Moteki, S. A.; Han, J.; Arimitsu, S.; Akakura, M.; Nakayama, K.; Maruoka, K. Angew. Chem. Int. Ed., 2012, 51, 1187-1190.(b) Nakayama, K.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 17666-17667.
[7] (a) Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org. Chem. 1994, 59, 1939-1942. (b)Pikul, S.; Corey, E. J. Org. Synth. 1993, 71, 22.
(a) Poll, T.; Sobczak, A.; Hartmann, H.; Helmchen, G. Tet. Lett. 1985, 26, 3095-3098.(b) Yoshino, T.; Nagata, T.; Haginoya, N.; Yoshikawa, K.; Kanno, H.; Nagamochi, M. Ethylenediamine derivatives, PCT Int. Appl. WO2001074774, 2001
[9] (a) Berkessel, A.; Ong, M. -C.; Nachi, M.; Neudörfl, J. -M. ChemCatChem 2010, 2, 1215-1218. (b) Kitagawa, O.; Yotsumoto, K.; Kohriyama, M.; Dobashi, Y.; Taguchi, T. Org. Lett. 2004, 6, 3605-3607.
[10] Pandey, G.; Tiwari, K. N.; Puranik, V. G. Org. Lett. 2008, 10, 3611-3614.
[11] Pandey, G.; Rajender, S. Chem. Eur. J. 2011, 17, 6304-6308.
[12] Najera, C.; Yus, M. Tetrahedron 1999, 55, 10547-10658.
[13] Grygorenko, O. O.; Radchenko, D. S.; Volochnyuk, D. M.; Tolmachev, A. A.; Komarov, I. V. Chem. Rev. 2011, 111, 5506-5568.
[14] Walker, D. P.; Wishka, D. G.; Piotrowski, D. W.; Jia, S.; Reitz, S. C.; Yates, K. M.; Myers, J. K.; Vetman, T. N.; Margolis, B. J.; Jacobsen, E. J.; Acker, B. A.; Groppi, V. E.; Wolfe, M. L.; Thornburgh, B. A.; Tinholt, P. M.; Cortes-Burgos, L. A.; Walters, R. R.; Hester, M. R.; Seest, E. P.; Dolak, L. A.; Han, F.; Olson, B. A.; Fitzgerald, L.; Staton, B. A.; Raub, T. J.; Hajos, M.; Hoffmann, W. E.; Li, K. S.; Higdon, N. R.; Wall, T. M.; Hurst, R. S.; Wong, E. H. F.; Rogers, B. N. Bioorg. Med. Chem. 2006, 14, 8219-8248.
[15] Ashton, T. D.; Aumann, K. M.; Baker, S. P.; Schiesser, C. H.; Scammells, P. J. Bioorg. Med. Chem. Lett. 2007, 17, 6779-6784.
[16] Hof, F.; Schütz, A.; Fäh, C.; Meyer, S.; Bur, D.; Liu, J.; Goldberg, D. E.; Diederich, F. Angew. Chem. Int. Ed. 2006, 45, 2138-2141.
[17] Wishka, D. G.; Walker, D. P.; Corbett, J. W.; Reitz, S. C.; Rauckhorst, M. R.; Groppi, V. E., Jr. Substituted 7-aza[2.2.1]bicycloheptanes for the treatment of disease, EP 1425286 B1, 2004.
[18] Savoia, D.; Grilli, S.; Gualandi, A. Org. Lett. 2010, 12, 4964-4967.
[19] Trudell, M.L.; Chen, Z. Chem. Rev. 1996, 96, 1179-1193.

2.4. Experimental Section

Preparation of $(1 S, \quad 2 S, \quad 3 R, \quad 4 R)$-tert-butyl $2-(($ methylsulfonyl)oxy)-3-(phenylsulfonyl)-7-azabicyclo[2.2.1]heptane-7-carboxylate (9):

To a solution of $7(20.0 \mathrm{~g}, 56.59 \mathrm{mmol})$ in pyridine $(91.3 \mathrm{~mL}, 1.13 \mathrm{~mol})$ in a roundbottom flask was added methanesulfonyl chloride ($10.95 \mathrm{~mL}, 141.47 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and stirred for 24 h until TLC revealed no starting material. The reaction was quenched with water (500.0 mL). The reaction mixture was extracted with EtOAc (3 x 150.0 mL) and the combined organic layer was dried over anhydrous sodium sulphate, filtered, and concentrated by rotary evaporation. The crude material was dried in vacuo to give $9(24.4 \mathrm{~g}, 99.9 \%)$ as a white solid.
$[\alpha]^{27.5}{ }_{\mathrm{D}}+18.0\left(\mathrm{c} 0.525, \mathrm{CHCl}_{3}\right)$.
m.p. $172.4^{\circ} \mathrm{C}-174.9^{\circ} \mathrm{C}$.

IR (neat) $v_{\max } \mathrm{cm}^{-1} 1704,1366,1177,1141,1007,968,868$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 8.05-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.48(\mathrm{~m}, 3 \mathrm{H}), 4.92$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.18(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 11 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $_{6}, 25^{\circ} \mathrm{C}$) 8153.7, 139.7, 134.4, 129.5, 129.4, 80.2, 70.3, 61.6, 58, 37.6, 28.3, 28.2, 23.3.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 449.1411, found: 449.1411.

Preparation of $(1 S, \quad 2 R, \quad 3 S, \quad 4 R)$-tert-butyl $2-(($ methylsulfonyl)oxy)-3-(phenylsulfonyl)-7-azabicyclo[2.2.1]heptane-7-carboxylate (10):

By following the above mentioned procedure, the corresponding mesylate $\mathbf{1 0}$ was obtained in 99.5% yield as a white solid.
$[\alpha]^{27.6}{ }_{\mathrm{D}}-13.0\left(c 0.475, \mathrm{CHCl}_{3}\right)$.
m.p. $177.3^{\circ} \mathrm{C}-181.6^{\circ} \mathrm{C}$

IR. (neat) $v_{\max } \mathrm{cm}^{-1} 1706,1638,1364,1152,1029,863$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H})$, $7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{dd}, J=4.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{ddd}, J=1.5,4.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 1 \mathrm{H})$, 2.40-2.30(m, 1H), 1.85-1.71 (m, 2H), 1.39 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 154.0,139.8,134.3,129.6,128.0,81.5,73.9$, 64.0, 60.9, 58.5, 38.7, 28.1, 23.0, 21.9.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 449.1411, found: 449.1409.

Preparation of (1S, 2S, 3R, 4R)-tert-butyl 2-(allylamino)-3-(phenylsulfonyl)-7-azabicyclo[2.2.1]heptane-7-carboxylate (11a):

A solution of $9(10.0 \mathrm{~g}, 23.2 \mathrm{mmol})$ in allylamine ($34.7 \mathrm{~mL}, 463.5$ mmol) was heated to $55^{\circ} \mathrm{C}$ for 1 h . When TLC revealed no starting material, allylamine was evaporated off under reduced pressure to obtain 11a ($8.75 \mathrm{~g}, 96 \%$) as a colorless liquid.
$[\alpha]^{25}{ }_{\mathrm{D}}+29.3\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$.
IR (neat) $v_{\text {max }} \mathrm{cm}^{-1} 1699,1639,1368,1149$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 7.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 1 \mathrm{H})$, $7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 5.11-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{bs}, 1 \mathrm{H}), 4.17(\mathrm{bs}, 1 \mathrm{H})$, $3.41-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 2 \mathrm{H})$, 1.38 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta: 155.3,139.7,135.9,133.8,129.3,127.9$, 116.3, 80.4, 72.9, 63.7, 61.3, 57.3, 50.0, 28.1, 28.0, 26.0, 23.9.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 393.1843$, found: 393.1847.

Preparation of ($1 S, 2 S, 3 R, 4 R$)-tert-butyl 2-acetamido-3-(phenylsulfonyl)-7-azabicyclo[2.2.1]heptane-7-carboxylate (11b):

Acetamide ($13.7 \mathrm{~g}, 231.7 \mathrm{mmol}$) was added to $9(5.0 \mathrm{~g}, 11.6 \mathrm{mmol})$ in a round bottom flask and the mixture was heated until the acetamide melted $\left(\sim 90^{\circ} \mathrm{C}\right)$. Potassium carbonate ($0.320 \mathrm{~g}, 2.3 \mathrm{mmol}$) was added and the reaction mixture was stirred at that temperature for 2 h . The reaction was quenched by adding water $(200.0 \mathrm{~mL}$) extracted with EtOAc ($3 \times 100.0 \mathrm{~mL}$). The combined organic layer was dried over sodium sulphate and concentrated to give $\mathbf{1 1 b}(4.0 \mathrm{~g}, 87 \%)$ as a white solid. The reaction with a mixture of $\mathbf{9}$ and $\mathbf{1 0}(50.0 \mathrm{~g}, 115.9 \mathrm{mmol})$ gave 11b (40.0 $\mathrm{g}, 87 \%)$.
$[\alpha]^{27.2}{ }_{\mathrm{D}}+24.7\left(c\right.$ 2.1, $\left.\mathrm{CHCl}_{3}\right)$. m.p. $138.5^{\circ} \mathrm{C}-140^{\circ} \mathrm{C}$.
IR (neat) $v_{\text {max }} \mathrm{cm}^{-1} 1651,1371,1308,1151$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H})$, $7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 5.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=3.1,8.5,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.76(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 168.6,155.2,139.5,134.0,129.3,128.2,81.1$, 73.5, 64.2, 58.1, 54.8, 28.1, 26.0, 24.1, 22.9.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 395.1635$, found: 395.1632.

Preparation of (1R, 2S, 3S, 4S)-tert-butyl 2-(phenylsulfonyl)-3-(pyrrolidin-1-yl)-7-azabicyclo[2.2.1]heptane-7-carboxylate (11c):

To a stirring solution of pyrrolidine ($11.40 \mathrm{~mL}, 139.0 \mathrm{mmol}$), 9 ($6.0 \mathrm{~g}, 13.90 \mathrm{mmol}$) was added heating to $90^{\circ} \mathrm{C}$. After 1 h , the mixture was concentrated under reduced pressure to obtain 11c ($5.5 \mathrm{~g}, 97 \%$) as a pale yellow solid.
$[\alpha]^{25}{ }_{\mathrm{D}}+15.2\left(\mathrm{c} 2.3, \mathrm{CHCl}_{3}\right)$. m.p. $123^{\circ} \mathrm{C}-124^{\circ} \mathrm{C}$.

IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} \mathrm{cm}^{-1} 2972,2067,1637,1447,1367$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta=7.90(\mathrm{dd}, J=1.1,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}$, $1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~b} \mathrm{~s}$, $1 \mathrm{H}), 2.50-2.27(\mathrm{~m}, 5 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta=155.3,139.9,133.7,129.2,128.1,80.0,70.3$, 69.3, 61.5, 57.5, 51.4, 28.1, 26.2, 24.4, 23.2.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 407.1999, found: 407.2002.

Preparation of ($1 R, 4 S$)-tert-butyl 2-(phenylsulfonyl)-7-azabicyclo[2.2.1]hept-2-ene-7-carboxylate (12):

To a solution of $\mathbf{9}$ and $\mathbf{1 0}(1.0 \mathrm{~g}, 2.32 \mathrm{mmol})$ in dichloromethane was added DBU ($0.7 \mathrm{~mL}, 4.64 \mathrm{mmol}$) at room temperature and stirred for 1 h by which time TLC revealed no starting material. The reaction was quenched with 10.0 mL of water and extracted with of EtOAc (3 X 10.0 mL). The combined organic layer was concentrated and the crude material was dried in vacuo to give $12(0.77 \mathrm{~g}, 99 \%)$ as a white solid. $[\alpha]^{25.4}{ }_{\mathrm{D}}+6\left(c 2.5, \mathrm{CHCl}_{3}\right) 1.72 \mathrm{~mL}$ of allylamine $(23.0 \mathrm{mmol})$ was added and heated at $55^{\circ} \mathrm{C}$ for 1 h . When TLC revealed no starting material, the reaction
mixture was concentrated under reduced pressure. The crude material was dried in vacuo to obtain 11a ($0.860 \mathrm{~g}, 95 \%$) as a colorless liquid. The analytical data fully matched with the previously synthesized 11a.

Preparation of tert-butyl ((1S, 2S)-2-(allylamino)-3-(phenylsulfonyl)cyclohex-3-en1 -yl)carbamate (13a):

To a solution of $11 \mathbf{a}(2.0 \mathrm{~g}, 5.10 \mathrm{mmol})$ in 20 mL THF in a round-bottom flask equipped with a magnetic stir bar was added methyl magnesium bromide solution $(14.6 \mathrm{~mL}, 20.4 \mathrm{mmol})$ drop wise at room temperature. After some time, the solution changed from colourless to yellow. The reaction was quenched with saturated ammonium chloride solution (20 mL) after 4 h . The mixture was extracted with EtOAc ($3 \times 25.0 \mathrm{~mL}$) and the combined organic layer was dried over anhydrous sodium sulphate, filtered, and concentrated by rotary evaporation. The crude material was purified by column chromatography using petroleum ether and ethyl acetate (70:30) to obtain $\mathbf{1 3 a}(1.72 \mathrm{~g}, 86 \%)$ as a white crystalline solid.
$[\alpha]^{27}{ }_{\mathrm{D}}-52.4(c 0.35, \mathrm{MeOH})$. m.p. $137^{\circ} \mathrm{C}-138^{\circ} \mathrm{C}$.

IR (neat) $v_{\max } \mathrm{cm}^{-1} 2927,1637,1149$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 1 \mathrm{H})$, $7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=2.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.10$ (m, 2H), 5.05 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=6.0,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.37(\mathrm{~m}$, 1 H), 3.32 (b s, 1H), 3.22 (dd, $J=6.0,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.60$ (m, 2H), $1.41(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 155.1,142.0,141.0,139.6,136.5,133.4,129.3$, 127.8, 116.1, 79.3, 52.9, 52.4, 49.7, 28.3, 25.3, 23.0.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 393.1843$, found: 393.1847.

Preparation of tert-butyl (($1 S, 2 S$)-2-acetamido-3-(phenylsulfonyl)cyclohex-3-en-1yl)carbamate (13b):

To a solution of $\mathbf{1 1 b}(0.5 \mathrm{~g}, 1.27 \mathrm{mmol})$ in 5 mL THF in a round-bottomed flask equipped with a magnetic stir bar was added methyl magnesium bromide solution ($3.6 \mathrm{~mL}, 5.07 \mathrm{mmol}$) drop wise at room temperature. After some time the solution turned from colourless to yellow. The reaction was quenched with saturated ammonium chloride solution (10.0 mL) after 1 h . The reaction mixture was extracted with EtOAc ($3 \times 15.0 \mathrm{~mL}$) and the combined organic layer was dried over anhydrous sodium sulphate, filtered, and concentrated by rotary evaporation. The crude material was recrystallised using EtOAc/petroleum ether (90:10) to obtain 13b (0.4 g, 80%) as a white solid.
$[\alpha]^{27.5}{ }_{\mathrm{D}}-154(c 0.8, \mathrm{MeOH})$
m.p. $243^{\circ} \mathrm{C}-245^{\circ} \mathrm{C}$ (decomposes).

IR (neat) $v_{\text {max }} \mathrm{cm}^{-1} 1645,1306,1146,1025$.
${ }^{1} \mathrm{H}$ NMR (200MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 7.92-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.60-$ $3.40(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.89(\mathrm{~m}, 5 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125MHz, DMSO- $_{6}, 25^{\circ} \mathrm{C}$) δ 168.7, 154.7, 142.6, 140.1, 137.9, 133.3, 129.0, 127.6, 77.6, 49.6, 42.5, 28.3, 25.3, 22.4, 21.1.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 395.1635, found: 395.1632.

Preparation of tert-butyl ((1S, 2R)-2-acetamidocyclohexyl)carbamate (14):

To a stirred solution of $\mathbf{1 3 b}(0.1 \mathrm{~g}, 0.254 \mathrm{mmol})$ in absolute ethanol (5 mL) was added Raney-Ni ($0.038 \mathrm{~g}, 0.632 \mathrm{mmol}$) in one portion and the reaction mixture was refluxed for 12 h . The reaction mixture was cooled and passed through a Celite pad. The filtrate was concentrated by rotary evaporation to obtain $14(0.065 \mathrm{~g}, 100 \%)$ as a colourless liquid.

$$
[\alpha]_{\mathrm{D}}^{27}+5\left(c 1, \mathrm{CHCl}_{3}\right) .
$$

IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{v}_{\text {max }} \mathrm{cm}^{-1} 3333,2933,2859,1694,1645,1532,1455,1367,1335,1312$, 1249, 1172, 1050, 979, 755.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta=6.42(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H})$, 3.81 (b s, 1H), $1.95(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 13 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta=170.1,156.3,79.7,50.6,50.1,29.4,28.3$, 27.8, 23.4, 22.8, 21.2.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$257.1860, found: 257.1853.

Preparation of tert-butyl ((1S, 2R)-2-acetamidocyclohex-3-en-1-yl)carbamate (15):

To a stirred solution of $\mathbf{1 3 b}(0.2 \mathrm{~g}, 0.51 \mathrm{mmol})$ in methanol 10 mL at $-20^{\circ} \mathrm{C}$ was added 6% sodium amalgam ($0.58 \mathrm{~g}, 1.52 \mathrm{mmol}$) in one portion and the resultant reaction mixture was stirred for 24 h at that temperature. The reaction was quenched with a saturated aqueous solution of ammonium chloride (10.0 mL) and extracted with EtOAc ($3 \times 15.0 \mathrm{~mL}$). The combined organic layer was dried over anhydrous sodium sulphate, filtered, and concentrated by rotary evaporation. The crude
material was purified by column chromatography using EtOAc/petroleum ether ($70: 30$) as eluent to obtain $15(0.11 \mathrm{~g}, 85 \%)$ as a colorless liquid.
$[\alpha]^{24}{ }_{\mathrm{D}}-31.1\left(c 0.9, \mathrm{CHCl}_{3}\right)$.

IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } \mathrm{cm}^{-1} 3435,2094,1642,1369,1169,1048$.
${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 5.88-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 5.62-5.50$ $(\mathrm{m}, 1 \mathrm{H}), 5.03(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{tt}, J=4.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~b} \mathrm{~s}, 2 \mathrm{H})$, $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100MHz, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 170.4,155.9,130.4,126.2,79.5,48.8,47.2$, 28.3, 24.7, 23.5, 22.8.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$277.1523, found: 277.1517.

Preparation tert-butyl ((1S, 2S)-2-acetamido-3(phenylsulfonyl)cyclohexyl)carbamate (16):

To a solution of $\mathbf{1 3 b}(0.2 \mathrm{~g}, 0.507 \mathrm{mmol})$ in 20 mL methanol in a round-bottomed flask equipped with a magnetic stir bar was added $10 \% \mathrm{Pd} / \mathrm{C}(0.054 \mathrm{~g}, 0.05 \mathrm{mmol})$ at room temperature. A hydrogen balloon was attached and the reaction stirred vigorously for 24 h until TLC revealed no starting material. The reaction mixture was passed through a Celite pad and concentrated in vacuo to obtain $\mathbf{1 6}$ ($0.2 \mathrm{~g}, 99 \%$) as a colorless liquid.
$[\alpha]^{26}{ }_{\mathrm{D}+24.8}\left(c 1.3, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (200MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 7.89-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.51(\mathrm{~m}, 3 \mathrm{H}), 6.38$
(d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dt}, J=3.9$,
$10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.49(\mathrm{~m}$, $1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 397.1792, found: 397.1799.

Preparation of ($1 S, 2 R, 4 R$)-tert-butyl 2-acetamido-7-azabicyclo[2.2.1]heptane-7carboxylate(17):

To a solution of $\mathbf{1 1 b}(0.2 \mathrm{~g}, 0.507 \mathrm{mmol})$ in 10 mL absolute ethanol, freshly prepared Raney-Ni ($0.09 \mathrm{~g}, 1.5 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 12 h until TLC revealed no starting material. The mixture was cooled, passed through a Celite pad and concentrated in vacuo to obtain $17(0.105 \mathrm{~g}, 81 \%)$ as a colorless liquid.

$$
[\alpha]^{29.2}{ }_{\mathrm{D}}+71.6\left(c 2, \mathrm{CH}_{3} \mathrm{OH}\right) .
$$

IR (neat) $v_{\max } \mathrm{cm}^{-1} 2978,1648,1638,1368,1168,1138,1020$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta=5.93(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ $(\mathrm{d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dt}, J=3.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.61(\mathrm{~m}, 2 \mathrm{H})$, $1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{dd}, J=2.9,17.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right) \delta=169.4,156.4,80.1,61.3,55.9,53.0,40.4$, 28.3, 28.2, 25.9, 23.2.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 255.1703$, found: 255.1700 .

Preparation of (1S, 2R, 4R)-7-azabicyclo[2.2.1]heptan-2-amineHydrochloride (18) :

A solution of $17(0.1 \mathrm{~g}, 0.393 \mathrm{mmol})$ in $6 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ in a round-bottom flask equipped with a magnetic stir bar and a reflux condenser was refluxed for 12 h until TLC revealed no starting material. The reaction was concentrated by rotary evaporation and the crude material was dried in vacuo to give 18 ($0.071 \mathrm{~g}, 98 \%$) as brown solid.
$[\alpha]^{27.5}{ }_{\mathrm{D}}-3\left(\mathrm{c} 1.2, \mathrm{CH}_{3} \mathrm{OH}\right)$.

IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } \mathrm{cm}^{-1} 3437,1634,1227,1059$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right) \delta 4.40(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{dd}, J=4.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=8.9,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 3 \mathrm{H})$, 1.78-1.64 (m, 2H).
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right) \delta 61.4,58.5,51.0,34.4,24.9,24.2$.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 113.1073, Found 113.1075.

Preparation of (1S, 2S, 4R)-tert-butyl 2-(benzylamino)-7-azabicyclo[2.2.1]heptane-7-carboxylate (20):

To a solution of $19(0.20 \mathrm{~g}, 0.946 \mathrm{mmol})$ and anhydrous magnesium sulphate in dichloroethane (5.00 mL) in a round-bottomed flask equipped with a magnetic stir bar was added benzylamine ($0.16 \mathrm{~mL}, 1.42 \mathrm{mmol}$). The flask was stirred for 60 min under argon atmosphere, after which sodium triacetoxyborohydride $(0.30 \mathrm{~g}, 1.42$ mmol) was added. The reaction was allowed to stir for 24 h at rt until TLC showed
complete conversion of the starting material. The reaction was quenched with 2 N NaOH solution (5.00 mL). The layers were separated and the aqueous layer was extracted with DCM ($3 \times 10.0 \mathrm{~mL}$). The combined organic layer was dried over sodium sulphate, filtered, and concentrated by rotary evaporation. The crude material was purified by column chromatography with EtOAc/petroleum ether (60:40) as eluent to give $\mathbf{2 0}(0.27 \mathrm{~g}, 94 \%)$ as a colourless liquid.

$$
[\alpha]^{28.9}{ }_{\mathrm{D}}+12.2\left(c 0.5, \mathrm{CHCl}_{3}\right) .
$$

IR (neat) $v_{\max } \mathrm{cm}^{-1} 3087,3063,3006,2975,2871,2090,1698,1641,1496,1456$, 1366, 1165.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 4.19-$ 3.93 (m, 2H), 3.59 (s, 2H), 3.23-3.10 (m, 1H), 2.13-2.01 (m, 1H), 1.96 (ddd, $J=$ $4.5,9.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{dd}, J=4.6,12.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) δ 155.7, 140.0, 128.4, 128.2, 127.1, 79.5, 58.8, 58.5, 56.8, 52.9, 37.9, 30.1, 28.3, 21.4.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 303.2067$, found: 303.2079.

Preparation of ($1 S, 2 S, 4 R$)-7-azabicyclo[2.2.1]heptan-2-amine hydrochloride (21):

To a solution of $20(0.1 \mathrm{~g}, 0.33 \mathrm{mmol})$ in distilled methanol (5 mL) was added 5 mL 6 N HCl solution and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.046 \mathrm{~g}, 0.66 \mathrm{mmol})$ and the reaction mixture was put in the Parr Shaker and shaken at 60 psi hydrogen pressure for 4 h at rt . The solution was filtered and evaporated under reduced pressure to obtain $21(0.059 \mathrm{~g}$, 97%) as a colorless solid.
$[\alpha]^{28}+2.2\left(c 2, \mathrm{H}_{2} \mathrm{O}\right)$.

IR (neat) $v_{\max } \mathrm{cm}^{-1} 2068,1637,1422,1022$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right) \delta 4.43(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.89$ $(\mathrm{m}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=$ $4.4,14.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$) 59.4, 59.2, 48.2, 31.3, 26.3, 19.7.

HRMS(ESI): m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 113.1073$, found: 113.1044.

2.5. Spectras.

Shimadzu CLASS-VP V6.12 SP5	
Method Name:	C:ICLASS-VP\Data\Dr. CHAVAN S. P\PAPAL FH10 \% IPAPE
Data Name:	C:ICLASS-VP\DatalDr.Ganesh Pandeylgp-1739
User:	System
Acquired:	5/8/12 3:32:28 PM
Printed:	8/30/12 3:24:09 PM
Sample Name	RF-1-R

Detector A-1 (254nm)

Retention Time	C Area.	Area \%		
17.517	4062486	49.822		
18.967	4091435	50.178		
Totals				8153921

Project Leader : Dr.G. Pandey
Column :Chiralcel OD-H (250x4.6 mm)
Mobile Phase :IPA:Pet Ether (10:90)
Wavelength $\quad: 254 \mathrm{~nm}$
Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}$
conc. $\quad: 1 \mathrm{mg} / 1 \mathrm{~mL}$
Inj vol- :5 ul

Shimadzu CLASS-VP V6.12 SP5
Method Name: C:ICLASS-VP\DatalDr. CHAVAN S. PUPAPAL FH10 \% IPAPE
$\begin{array}{ll}\text { Method Name: } & \text { C:\CLASS-VP\DatalDr. CHAVAN S. PUPAPAL } \\ \text { Data Name: } & \text { C:ICLASS-VP\DataVDr.Ganesh Pandeylgp-1810 }\end{array}$
$\begin{array}{ll}\text { Data Name: } & \text { C:ICLA } \\ \text { User: } & \text { System }\end{array}$
$\begin{array}{lll}\text { User: } & & \text { System } \\ \text { Acquired: } & & \text { 8/24/12 5:18:20 PM }\end{array}$
$\begin{array}{lll}\text { Acquired: } & 8 / 24 / 12 \text { 5:18:20 PM } \\ \text { Printed: } & 8 / 24 / 12 \text { 5:46:37 PM }\end{array}$
Sample Name RF-C

Detector A-1 (254nm)

Retention Time	C Area	Area \%
18.767	266496	100.000
Totals	266496	100.000

Project Leader : Dr.G. Pandey
Column $\quad:$ Chiralcel OD-H (250x4.6 mm)
Mobile Phase :IPA:Pet Ether (10:90)
Wavelength $: 254 \mathrm{~nm}$
Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}$
conc. $\quad: 1 \mathrm{mg} / 1 \mathrm{~mL}$
Inj vol- $: 2 \mathrm{u}$

Debasis 1 H

Z:AV_5001Jun_12_500|Fri2av500\#0061Fri2av500\#006.001.001.1r.esp
endo mesylate
Frizav500\#006.003.001.1r.esp

endo mesylate

Z:IAV_5001.Jun_12_500|Fri2av500\#0061Fri2av500\#006.002.001.1r.esp

Z:IAV_500WUly_12_5001Sun4av500\#0011Sun4av500\#001.001.001.1r.esp

Z:AV_5001.July_12_5001Sun4av500\#0011Sun4av500\#001.002.001.1r.esp

Debasis 1 H
19.6. $\stackrel{\sim}{1}$

C:IAAMAR FILESISPECTRASIOSELTAMIVIR SCHEMElacetamidel1H 13C DEPT Wed5av400\#00111H 13 C DEPT Wed5av400\#001.001.001.1r.esp

 ijiNiN

C:IAAMAR FILESISPECTRASIOSELTAMIVIR SCHEMElacetamide ringopening102-03-2010 Tue1av2\#011102-03-2010 Tue1av2\#011.001.001.1r.esp

Z:IAV_500|Jun_12_5001Mon3av500\#0101Mon3av500\#010.003.001.1r.esp

Z:IAV_500|Jun_12_5001Mon3av500\#0101Mon3av500\#010.002.001.1r.esp

DEPT135

Z:IAV_500|Jun_12_5001Mon3av500\#0101Mon3av500\#010.002.001.1r.esp

Z:AV_5001July_12_500ISat4av500\#0011Sat4av500\#001.001.001.1r.esp

Z:IAV_5001Uuly_12_500|Sat4av500\#0011Sat4av500\#001.002.001.1r.esp

Thu4av2\#022.001.001. CriéDROFORM-d

Z:IAV200\JUL_12\#AV200|datalAdministrator
nmr|Thu4av2\#022|Thu4av2\#022.001.001.1r.esp
Maxav400\#006.001.001.1r.esp

Z:IAV4001Aug_12_400IMon3av400\#006IMon3av400\#006.001.001.1r.esp

Z:IAV4001Aug_12_4001Fri3av400\#007|Fri3av400\#007.001.001.1r.esp

Z:IAV4001Aug_12_400|Fri3av400\#007|Fri3av400\#007.003.001.1r.esp

Z:IAV4001Aug_12_4001Fri3av400\#007|Fri3av400\#007.002.001.1r.esp

Fri3av400\#007.002.001.1r.esp

Z:IAV4001Aug_12_4001Fri3av400\#0071Fri3av400\#007.002.001.1r.esp

Z:IAV400| Wuly_12_400IWed1av400\#016IWed 1av400\#016.001.001.1r.esp Z:IAV4001July_12_400IWed1av40
Weehalav400\#016.003..0p1.1r.esp
.8

Z:IAV4001July_12_4001Wed1av400\#0161Wed1av400\#016.003.001.1r.esp

Z:IAV4001 July_12_400iWed1av400\#016iWed1av400\#016.002.001.1r.esp
DEPT

Z:IAV4001July_12_4001Wed1av400\#016iWed1av400\#016.002.001.1r.esp

1H Debasis

Z:IAV4001Aug_12_400|Frilav400\#009|Fri1av400\#009.001.001.1r.esp

13C

Z:IAV4001Aug_12_400|Fri1av400\#009|Fri1av400\#009.007.001.1r.esp

Z:IAV4001Aug_12_400|Fri1av400\#0091Fri1av400\#009.003.001.1r.esp

Debasis 1 H

D:IDATA|reductive aminationl23.05.2011.Mon4av400\#014123.05.2011.Mon4av400\#014.007.001.1r.esp

D:IDATAlreductive aminationl23.05.2011.Mon4av400\#014123.05.2011.Mon4av400\#014.006.001.1r.esp

Z:IAV400Wuly_12_400ISat3av400\#0111Sat3av400\#011.001.001.1r.esp

Z:IAV400IJuly_12_400ISat3av400\#0111Sat3av400\#011.002.001.1r.esp

Sat3av400\#4 (90)03.001.1r.esp
-48.19
$\mathrm{NH}_{2} \mathrm{HCl}$

CHAPTER 3:
SYNTHESIS OF AMINOCYCLITOLS UTILIZING 7AZABICYCLO [2.2.1]HEPTA-2-ONE AS A CHIRAL TEMPLATE:

3.1. Introduction:

Cyclic polyhydroxylated amines, more prevalently known as aminocyclitols, are saccharide-like compounds with varied biological activities ${ }^{1}$. For example, aminoglycoside antibiotics, representing a clinically important group of drugs that have aminocyclitol core, have achieved extensive therapeutic use throughout the humanity. Because of their close structural relationship with sugars, aminocyclitols are also regarded as aminocarbasugars ${ }^{2}$.

Biochemically, carbasugars and cylitols themselves are recognized as the pseudo-sugars in a living system, and they show interesting biological activities based on the structural similarity to sugars. The most interesting and significant points for the synthesis of glycosidase inhibitors possessing cyclitols are how one can form the frameworks of the cyclitols and how can the functional groups essential to generate their specific and interesting biological activities be introduced.

Natural aminocyclitols are secondary metabolites found as structural subunits in some complex natural products, such as validamycins, a family of antibiotics isolated from the fermentation broth of Streptomyces hygroscopius ${ }^{3}$. A validamycin 2 is composed of one valienamine unit, together with an additional unit of validamine, valiolamine or hydroxyvalidamine. The α-amylase inhibitor acarbose $\mathbf{1}$ is another complex natural product containing an aminocyclitol unit valienamine linked with a trisaccharide (Figure 1).

Figure 1. Acarbose and validamycin

Owing to the protonation of their amino group at physiological pH , aminocyclitols are believed to mimic the transition state in the enzymatic glycoside hydrolysis. In parallel, hundreds of analogs have been synthesized and tested as inhibitors of glycosidase enzymes besides being used as biosynthetic building blocks in many antibiotics.

Compounds with obvious structural similarity to a carbohydrate skeleton are a new class of inhibitors and the elucidation of their mechanism of action may add new insights in the search for new therapeutic agents. Conduramines as well as aminocarbasugars, due to their structural similarity, are a family of carbohydrate mimics which have attracted a great deal of attention among organic and medicinal chemists due to their profound biological activities towards glycosidases. The polyhydroxy glycosidase inhibitors are a widely diverse class of compounds often isolated from plants and microorganisms and they have significant therapeutic use or potential. Current interest in these compounds has been extended to a diverse range of diseases including lysosomal storage disorders and cancer, and special attention has been given to those compounds with anti-HIV activity. Isolation of suitable glucosidase inhibitors from natural sources or their chemical synthesis provides biochemical tools for the elucidation of the mechanistic activity of enzyme through the use of kinetic data combined with variations in potential inhibitor structural information. Such knowledge is fundamental to the discovery of lead compounds, because of their promising therapeutic potential.

Aminocyclitols and diaminocyclitols, derived from conduramines and their analogues, comprise parts of aminoglycoside antibiotics which are among the oldest known antibiotics. These compounds possess arrays of hydroxyl and amino groups and are potentially interesting systems, as they can target pivotal RNA sites, and are thus candidates for drug discovery ${ }^{4}$. Apart from, due to their glycosidase inhibitory activities, they can act as potential anticancer or antiviral agents ${ }^{5}$. Apart from clinical use, aminocylitols such as conduramines have also been used as building blocks for the syntheses of many important natural products. Therefore, it is not surprising that a large number of reports related to their synthesis have appeared in literature.

3.2. Hypothesis.

Owing to our sustained interest in the field of glycosidase inhibitors ${ }^{6}$, sometime back we had disclosed a successful pathway for the synthesis of conduramines in optically pure form employing 7 -aza bicyclo[2.2.1]hept 2-one as a template. In continuation, we envisioned that the entire class of aminocyclitols can be classified into two categories based on the stereochemistry of hydroxyl moiety vicinal to the amino group. The cis series where the adjacent OH group is cis/syn to the amine functionality and the trans series where the hydroxy group is trans/anti to the amino group (figure 1). The same classification will also hold true with other higher order aminocyclitols such as hygromycin or streptomycin core. Based on the above classification, precursors $\mathbf{1 0}$ and $\mathbf{1 1}$ can be drawn to serve as a general template for the purpose of synthesizing all the aminocylitols. The suitably placed olefin in these precursors would serve the purpose for installing desired hydroxyl moieties as well as other functionalities in desired stereochemistry on the periphery of the cyclohexane ring in an enviable mode.

The trans series:

conduramine A-1(3)

conduramine B -1(4)

conduramine $\mathrm{F}-4(5)$

The cis series:

conduramine $\mathrm{E}-1(8) \quad$ conduramine $\mathrm{F}-1$ (9)
all-purpose intermediate:

Figure 2. Various conduramines and proposed synthetic intermediate

3.3. Results and discussion.

In first chapter we have revealed the synthesis of these two important intermediates (10\&11). Our laboratory has previously synthesized ${ }^{6 a}$ ent-conduramine F-1 as well as dihydroconduramine E-1 by utilizing the cis-aminocyclohexenol 11. In this chapter, we wish to disclose the details of synthesis of other important conduramines from $\mathbf{1 0}$ as well as from 11.

Reagents and conditions: (a) LiBH_{4}, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (b) $1.4 \mathrm{M} \mathrm{MeMgBr}(10$ equiv.), THF, $10 \mathrm{~h}, 82 \%$; (c) $\mathrm{Na}-\mathrm{Hg}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 87 \%$; (d) $\mathrm{LiBH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 5 \mathrm{~h}, 91 \%$; (e) $1.4 \mathrm{M} \mathrm{MeMgBr}(6$ equiv.), THF, 2h, 75\%

Scheme 1. Synthesis of aminohexenol $10 \& 11$.

3.3a. Dihydroconduramine F-4

Towards synthesizing dihydroconduramine F-4, we first converted $\mathbf{1 0}$ to dihydroconduramine F-4 (18) in two steps. Dihydroxylation of 10, using catalytic amount of OsO_{4} and NMO as reoxidant, produced 17 in 95% yield as a single diastereomer. The stereochemistry of $\mathbf{1 7}$ was quite predictable as dihydroxylation of free allylic cyclohexenols has been shown to be dependent on the conformation of hydroxyl group and according to Donohae ${ }^{7}$, diastereoselective anti attack to the OH group is usually achieved under standard conditions. The carbamate deprotection with dil. HCl produced dihydroconduramine $\mathrm{F}-4\left[18,[\alpha]^{23}\right.$ D: -28 (c $\left.\left.0.5, \mathrm{H}_{2} \mathrm{O}\right)\right]$ in 90% yield (Scheme 5).

Scheme 2. Synthesis of Dihydroconduramine F-4
Reagents and Conditions : (a) $\mathrm{OsO}_{4}, \mathrm{NMO}, \mathrm{NaHCO}_{3}, t-\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), 12 h , rt, 95% (b) $3 N \mathrm{HCl}, 1,4$-dioxane, $6 \mathrm{~h}, 100^{\circ} \mathrm{C}, 90 \%$
${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 8}$ displayed three sets of multiplets at $\delta 4.03-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{t}, J$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H})$ and $3.42(\mathrm{dd}, J=3.0,9.4 \mathrm{~Hz}, 1 \mathrm{H})$ each integrating for one proton which were assigned to three protons attached to hydroxyl group. A multiplet at δ 3.04, integrating for one proton, was assigned to proton attached with amine group and the multiplet between $\delta 1.84-1.54$, integrating for four protons, were assigned as two methylene protons. The mass spectrum of $\mathbf{1 8}$ showed molecular ion peak at 148 $\left(\mathrm{M}^{+}+\mathrm{H}\right)$. The confirmation of stereochemistry was done by carrying out COSY and NOESY experiments.

3.3b. Dihydroconduramine A-1

Towards transforming $\mathbf{1 0}$ to dihydroconduramine A1, epoxidation of the olefinic bond followed by stereoselective opening provided 20 in 84% yield as described in chapter one. The carbamate group of $\mathbf{2 0}$ was subsequently deprotected using aqueous HCl to obtain dihydroconduramine A1 hydrochloride salt 21 in quantitative yield. Presence of $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} at $\delta 3.87$ (br. s., 1 H), 3.70 (br. s., 1 H), 3.52 (br. s., 1 H), respectively, together with H_{4} at $\delta 3.18$ (br. s., 1 H) indicated the formation of 21. Further support to the proposed structure of 21, was obtained by observing the molecular ion peak at m / z 170.0786. in HRMS(ESI); calculated for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} \quad 170.0788$.

Reagents and conditions: (a) mCPBA, DCM, $0^{\circ} \mathrm{C}$ to rt, $3 \mathrm{~h}, 85 \%$; (b) $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, THF: $\mathrm{H}_{2} \mathrm{O}$ (1:1), 1h, 99\%; (c) 1 M HCl , dioxane, reflux, 1h, 99\%;

Scheme 3: Synthesis of dihydroconduramine A1

3.3c. ent-Conduramine A-1

To expand the synthetic utility of $\mathbf{1 1}$, synthesis of conduramine A1 was planned from 25 , synthesis already described chapter one. Luche reduction of $\mathbf{2 5}$, unfortunately produced an inseparable diastereomeric mixture (2:1) of 26. The ratio was determined by ${ }^{1} \mathrm{H}$ NMR. Fortunately only one diastereomer got protected upon reaction with $(\mathrm{Boc})_{2}$ at $-78{ }^{\circ} \mathrm{C}$. The presence of 18 H at $\delta 1.25-1.4$ indicated the formation of 27. Further support to the proposed structure of 27, was obtained by observing the molecular ion peak at 508.2516. in HRMS(ESI); calculated for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NO} 9 \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z}$ 508.2517.

The carbamate, carbonate and acetonide group were deprotected all together with trifluoro acetic acid, to obtain ent-conduramine A-1 in 90% yields. The spectral data matched well with the reported value ${ }^{8}$.

Reagents and conditions: (a) 2,2-DMP, pTSA, dry DMF, rt, 1h, 95\%; (b) IBX, DMSO, rt, 12h, 90\%; (c) LiHMDS, TMSCl, $0^{\circ} \mathrm{C}$ to rt, 4 h then $\mathrm{Pd}(\mathrm{OAc})_{2}$, acetonitrile, rt, $24 \mathrm{~h}, 67 \%$; (d) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to rt, $20 \mathrm{~h}, 75 \%$;(e) LiHMDS, (Boc) ${ }_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 56 \%$; (f) TFA, DCM, 8 h then 1 M HCl, THF , 4h, 97\%;

Scheme 4: Synthesis of ent-conduramine A1

3.3d. Dihydroconduramine -C1

The synthesis of conduramine C 1 commenced with syn selective epoxidation of $\mathbf{1 1}$ by mCPBA in DCM which produced $\mathbf{2 8}$ in 75% yields. The reaction was diastereoselective as evident from NMR analysis of the reaction mixture. The characteristic two protons, attached to epoxide ring ($\mathrm{H}-1, \mathrm{H}-2$) were assigned to δ 3.38 (s, 2 H). Further support to the proposed structure of 28, was obtained by observing the molecular ion peak at 230.1389. in HRMS(ESI); calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO} 4\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / z \quad 230.1387$.

Regioselective epoxide ring opening using aqueous sulphuric acid in tetrahydrofuran produced 29 in 92% yields which was characterised by the chemical shift values of the protons $\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3$ and H 4 . For illustration H 1 and H 2 appeared at $\delta 3.36(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$ and $\delta 3.46(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$ respectively. Large coupling constant value ($\mathrm{J}>10 \mathrm{~Hz}$) suggested a trans relationship.

The carbamate group of $\mathbf{2 9}$ was removed using aqueous HCl to obtain hydrochloride salt of dihydroconduramine $\mathrm{C}-1 \mathbf{3 0}$ in quantitative yield. The spectral data and specific optical rotation $\left[[\alpha]^{27}{ }_{\mathrm{D}}\right.$: $\left.+20\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)\right]$ matched satisfactorily with the reported values.

Reagents and conditions: (a) mCPBA, DCM, $0^{\circ} \mathrm{C}$ to rt, $3 \mathrm{~h}, 85 \%$; (b) $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, THF: $\mathrm{H}_{2} \mathrm{O}$ (1:1), 1h, 99%; (c) 1 M HCl , dioxane, reflux, $1 \mathrm{~h}, 99 \%$

Scheme 5: Synthesis of dihydroconduramine C1

3.3e. Conduramine D-1

After completion of the synthesis of dihydroconduramine C-1, we next turned our attention towards another important aminocyclitol conduramine D-1.

The two syn hydroxyl group of 29 were preferentially protected with pentanonide to obtain 31 (95% yield) by reaction with 3,3-dimethoxy pentane. The two methyl groups, characteristics of pentanonide, appeared at $\delta 1.03-0.78(\mathrm{~m}, 6 \mathrm{H})$. Further support to the structure of $\mathbf{3 1}$ was obtained from DEPT studies where four methylene group protons appeared at $\delta 30.2,28.4,28.3$ and 25.0. Additional support to the proposed structure of $\mathbf{3 1}$, was obtained by observing the molecular ion peak at 338.1938. in HRMS(ESI); calculated for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO} 5 \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} 338.1938$.

Compound 31 was oxidised to 32 (81%) with IBX (2-iodoxybenzoic acid) by refluxing in ethyl acetate. The characteristics carbonyl group peak in ${ }^{13} \mathrm{C}$ NMR at δ 206.9 was indicative of its formation, supported by observing the molecular ion peak at 336.1780. in $\mathrm{HRMS}(\mathrm{ESI})$; calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} 336.1781$.

The crucial conversion of $\mathbf{3 2}$ to $\mathbf{3 3}$ was performed using Seagussa-Ito oxidation protocol ${ }^{[9]}$ of enol ethers. For this purpose, 32 was first converted to corresponding silyl enolether by reaction with LiHMDS and trimethylsilyl chloride at $0^{\circ} \mathrm{C}$ - rt. Usual work up followed by stirring of the crude with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in anhydrous acetonitrile for 24 h in the presence of oxygen gave 33 in 67% yield.

The characteristic olefinic protons could easily be characterized at $\delta 6.72$ (d, J $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=2.6,10.4 \mathrm{~Hz}, 1 \mathrm{H})$ which are in good agreement with the characteristics of α, β-unsaturated carbonyl compound. Luche reduction of $\mathbf{3 3}$ produced $\mathbf{3 4}$ as a single diastereomer in 75% yield.

Global deprotection of $\mathbf{3 4}$ using aq. HCl provided hydrochloride salt of conduramine D-1 in 90% yield. The specific optical rotation matched satisfactorily with that of literature reported value. ${ }^{[8]}$

Reagents and conditions: (a) 3,3-DMP, pTSA, dry DMF, rt, 1h, 95\%; (b) IBX, EtOAc, reflux, $10 \mathrm{~h}, 81 \%$; (c) LiHMDS, $\mathrm{TMSCl}, 0^{\circ} \mathrm{C}$ to rt, 4 h then $\mathrm{Pd}(\mathrm{OAc})_{2}$, acetonitrile, $\mathrm{rt}, 24 \mathrm{~h}, 67 \%$; (d) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 20 \mathrm{~h}, 75 \%$; (e) 1 M HCl , dioxane, reflux, $3 \mathrm{~h}, 99 \%$;

Scheme 5: Synthesis of conduramine D-1

3.4. Conclusion:

We have shown that from 12, two very important intermediates $\mathbf{1 0}$ and $\mathbf{1 1}$ can be synthesized easily which could be used in the synthesis of many conduramines in straight forward manner. Synthesis of some other important aminocyclitols is in progress in our laboratory.

3.5. References.

1. (a) Ferrier, R. J.; Blattner, R.; Clinch, K.; Furneaux, R. H.; Gardiner, J. M.; Tyler, P. C.; Wightman, R. H.; Williams, N. R. Carbohydr. Chem. 1996, 28, 251. (b) Ashry, E. S.; Rashed, N.; Shobier, A. H. Pharmazie 2000, 55, 403. (c) Chapleur, Y. Carbohydrate Mimics - Concepts and Methods, Wiley-VCH, Weinheim, 1998.
2. Arjona, O.; Gomez, A. M.; Lopez, J. C.; plummet, J. Chem. Rev. 2007, 107, 1919.
3. Chen, X.; Fan, Y.; Zheng, Y.; Shen, Y. Chem. Rev. 2003, 103, 1955.
4. Wang, H.; Tor, Y. Angew. Chem. Int. Ed., 1998, 37, 109.
5. (a) Vartesy, L.; Fehlhaber, H. W.; Schulz, A. Angew. Chem. Int. Ed., 1994, 33, 1844. (b) Ogawa, S.; Ashiura, M.; Uchida, C.; Wantabe, S.; Yamazaki, C.; Yamagishi, K.; Inokuchi, J. Bioorg. Med. Chem. Lett. 1996, 6, 929. (c) Lew, W.; Williams, M. A.; Mendel, D. B.; Escarpe, P. A.; Kim, C. U. Bioorg. Med. Chem. Lett. 1997, 7, 1843. (d) Sears, P.; Wong, C. H. J. Chem. Soc. Chem. Comm. 1998, 1161 and references cited therein.
6. (a) Pandey, G.; Tiwari, K. N.; Puranik, V. G. Org. Lett. 2008, 10, 3611-3614. (b) Pandey, G.; Rajender, S. Chem. Eur. J. 2011, 17, 6304-6308. (c) (c) G. Pandey, M. Kapur, Synthesis 2001, 1263;(d) G. Pandey, M. Kapur, Org. Lett. 2002, 4, 3883.
(e) G. Pandey, M. Kapur, M. Islam Khan, S. M. Gaikwad, Org. Biomol. Chem. 2003, 1, 3321. (f) G. Pandey, S. G. Dumbre, M. I. Khan, M. Shabab, J. Org. Chem. 2006, 71, 8481.(g) G. Pandey, S. G. Dumbre, M. I. Khan, M. Shabab, V. G. Puranik, Tetrahedron Lett. 2006, 47, 7923. (h) G. Pandey, S. G. Dumbre, S. Pal, M. I. Khan, M. Shabab, Tetrahedron 2007, 63, 4756. (i) G. Pandey, K. C. Bharadwaj, M. I. Khan, K. S. Shashidhara, V. G. Puranik, Org. Biomol. Chem. 2008, 6, 2587. (j) G. Pandey, D. Grahacharya, K. S. Shashidhara, M. I. Khan, V. G. Puranik, Org. Biomol. Chem. 2009, 7, 3300. (k) G. Pandey, D. Dey, S. R. Gadre, Chimia. 2013, 67, 30-38.
7. Donohoe, T. J.; Moore, P. R.; Beddoes, R. L. J. Chem. Soc. Perkin Trans. 1 1997, 43.
8. R. L.Toung, Y. Liu, J. M. Muchowski, Y. Wu J. Org. Chem. 1998, 63, 3235-3250
9. Ito,Y; Hirao,T; Saegusa,T. J. Org. Chem. 1978,43 ,1011-1013

3.6. EXPERIMENTAL.

Preparation of tert-butyl ((1S,2R,3R,4R)-2,3,4-trihydroxycyclohexyl)carbamate (17):

To a solution of $\mathbf{1 0}(0.050 \mathrm{~g}, 0.234 \mathrm{mmol})$ in THF (2 mL), N-methylmorpholine- N oxide $(0.041 \mathrm{~g}, 0.352 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(0.1 \mathrm{~mL}, 2.5 \mathrm{wt} \%$ solution in tert-butyl alcohol) was added in succession to a stirred solution of sodium bicarbonate $(0.019 \mathrm{~g}$, 0.234 mmol) in tert-butyl alcohol (3 mL) and water $(0.75 \mathrm{~mL})$. The reaction was stirred at room temperature for 15 h and excess $10 \% \mathrm{NaHSO}_{3}$ solution was added. The reaction mixture was diluted with EtOAc and worked up in the usual manner. The column chromatograhy purification provided $17(0.055 \mathrm{~g}, 55 \%)$ as a crystalline solid.

mp	$: 135-139{ }^{\circ} \mathrm{C}$	
$[\alpha]^{30} \mathrm{D}_{\mathrm{D}}$	$:-17.0(c 1.2, \mathrm{MeOH})$	
$\mathrm{IR} \mathrm{v}_{\mathrm{max}} \mathrm{cm}^{-1} \mathrm{in} \mathrm{CHCl}_{3}$	$: 3400,3300,1687$	
${ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$	$:$	$4.07(\mathrm{~s}, 1 \mathrm{H}) 3.71(\mathrm{~m}, 1 \mathrm{H}) 3.36-3.61(\mathrm{~m}, 3 \mathrm{H})$
		$1.58-1.95(\mathrm{~m}, 4 \mathrm{H}) 1.44(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$	$:$	$71.3,68.9,66.6,48.6,24.6,21.8$
$\mathrm{MS}(\mathrm{ESI}): \mathrm{m} / z$	$:$	$148\left(\mathrm{M}^{+}+\mathrm{H}\right), 170\left(\mathrm{M}^{+}+\mathrm{Na}\right)$

Preparation of $(1 R, 2 R, 3 R, 4 S)$-4-aminocyclohexane-1,2,3-triol hydrochloride (18):

To a solution of $17(0.050 \mathrm{~g}, 0.234 \mathrm{mmol})$ in dioxane (2 mL), 2 mL of aqueous hydrochloric acid (6 M solution) was added. The reaction was refluxed for 1.5 h and concentrated in vacuo which produced $\mathbf{1 8}(0.037 \mathrm{~g}, 99 \%)$ as pale yellow solid.

$\alpha]^{23}{ }_{\mathrm{D}}$	$:$	$-28\left(c \quad 0.5, \mathrm{H}_{2} \mathrm{O}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$	$:$	$4.03-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$,
3.42		$(\mathrm{dd}, J=3.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-3.01(\mathrm{~m}$,
$1 \mathrm{H})$,	$1.84-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{dt}, J=4.2$,	
$13.2 \mathrm{~Hz}, 1$	$\mathrm{H}), 1.58-1.54(\mathrm{~m}, 1 \mathrm{H})$	
${ }^{13} \mathrm{C} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$	$:$	$74.1,70.7,68.9,53.7,26.9,22.3$
MS (ESI): m / z	$:$	$148\left(\mathrm{M}^{+}+\mathrm{H}\right), 170\left(\mathrm{M}^{+}+\mathrm{Na}\right)$

Preparation of (1R,2S,3R,4S)-4-aminocyclohexane-1,2,3-triol hydrochloride (21):

A solution of $\mathbf{2 0}(0.060 \mathrm{~g}, 0.242 \mathrm{mmol})$ in $6 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ in a round-bottom flask equipped with a magnetic stir bar and a reflux condenser was refluxed for 12 h until TLC revealed no starting material. The reaction was concentrated by rotary evaporation and the crude material was dried in vacuo to give 21 ($0.04 \mathrm{~g}, 89 \%$) as brown solid.
$[\alpha]^{26}{ }_{\mathrm{D}} \quad: \quad-70.0(c 1.0, \mathrm{MeOH})$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 3.87$ (br. s., 1 H), 3.70 (br. s., 1 H), 3.52 (br. s., 1 H), 3.18 (br. s., 1 H), 1.84-1.44 (m, 4 H)
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \quad: \quad 71.9,69.3,68.8,50.8,24.8,22.8$
MS (ESI): $m / z \quad: \quad 148\left(\mathrm{M}^{+}+\mathrm{H}\right), 170\left(\mathrm{M}^{+}+\mathrm{Na}\right)$
tert-butyl((3aR,4S,7aS)-7-hydroxy-2,2-dimethyl-3a,4,7,7a-
tetrahydrobenzo[d][1,3]dioxol-4-yl)carbamate(26):

To a stirred and ice cooled solution of $25(0.05 \mathrm{~g}, 0.18 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(0.066 \mathrm{~g}, 0.19 \mathrm{mmol}, 1.1$ equiv.) in distilled methanol $(1 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.007 \mathrm{~g}, 0.19 \mathrm{mmol}, 1.1$ equiv. $)$ in one portion. The reaction mixture was stirred at that temperature for 1 h after which it was quenched with brine $(2 \mathrm{~mL})$ and extracted with $\operatorname{EtOAc}(3 \times 5 \mathrm{~mL})$. The combined organic layers were concentrated and the crude material was chromatographed (EtOAc: Hexanes 1:1) to obtain $26(0.038 \mathrm{~g}$, 75%) as colourless liquid.

HRMS(ESI): Cal. For $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 308.1468$, found: 308.1468.

Preparation of 27:

To a stirred and cooled ($-78^{\circ} \mathrm{C}$) solution of $26(0.03 \mathrm{~g}, 0.105 \mathrm{mmol}, 1.0$ equiv.) in THF was added LiHMDS ($0.53 \mathrm{~mL}, 0.53 \mathrm{mmol}, 5$ equiv.). After 1h (Boc) $)_{2} \mathrm{O}(0.09$ $\mathrm{mL}, 0.42 \mathrm{mmol}, 4$ equiv.) was added and the reaction mixture was allowed to come to room temperature. The reaction was quenched with saturated aqueous solution of ammonium chloride and extracted with $\operatorname{EtOAc}(3 \times 5 \mathrm{~mL})$. The combined organic layers were concentrated and the crude material was chromatographed (EtOAc: Hexanes 1:9) to obtain 27(0.029 g, 57\%) as colourless liquid.
$[\alpha]^{25}{ }_{\mathrm{D}}: \quad-37.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.96-5.80(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-$ $5.03(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=4.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=4.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}$, 3 H), 1.50 ($\mathrm{s}, 18 \mathrm{H}$), 1.48 ($\mathrm{s}, 9 \mathrm{H}$), 1.36 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 153.4,152.5,133.3,123.8,109.5,83.0,82.1,73.9$, 68.4, 57.2, 28.0, 27.8, 26.8, 25.3

HRMS(ESI); calculated for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NO} 9 \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z}$ 508.2517, found : 508.2516

Preparation of ent-conduramine A-1 hydrochloride (ent-3):

To a stirred and ice cooled solution of $27(0.011 \mathrm{~g}, 0.023 \mathrm{mmol}, 1.0$ equiv.) in DCM was added TFA($0.035 \mathrm{~mL}, 0.45 \mathrm{mmol}, 20$ equiv.) and stirred for 8 h after which the reaction mixture was concentrated and 1 mL 1 M HCl was added and stirred for another 4 h . the reaction mixture was evaporated to get ent-conduramine A1(ent-3) hydrochloride ($0.004 \mathrm{~g}, 97 \%$) as yellowish solid.
$[\alpha]^{23}{ }_{\mathrm{D}} \quad: \quad-57.0\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta \quad: 5.66(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1$
H), 4.27
(br. s., 1 H), 3.99 (br. s., 1 H), 3.81-3.73
(m, 1 H), 3.71

- 3.64 (m, 1 H)

MS (ESI): $m / z \quad: \quad 146\left(\mathrm{M}^{+}+\mathrm{H}\right), 168\left(\mathrm{M}^{+}+\mathrm{Na}\right)$

Preparation of tert-butyl ((1S,2R)-2-hydroxycyclohex-3-en-1-yl)carbamate(11)

To a solution of t-butyl ((1S,2S)-2-hydroxy-3-(phenylsulfonyl)cyclohex-3-en-1yl)carbamate ($1.1 \mathrm{~g}, 3.11 \mathrm{mmol}, 1.0$ equiv) in methanol: tetrahydrofuran $(30.0 \mathrm{~mL}$, 5:1) in a round-bottomed flask equipped with a magnetic stir bar was added $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(3.73 \mathrm{~g}, 31.12 \mathrm{mmol}, 10$ equiv $)$. The flask was cooled to $0{ }^{\circ} \mathrm{C}$ and stirred for 10 min under argon atmosphere, after which $\mathrm{Na}-\mathrm{Hg}(6.96 \mathrm{~g}, 31.11 \mathrm{mmol}$, 10 equiv) was added in portions over 10 min . The reaction was allowed to stir for 60 min at $0^{\circ} \mathrm{C}$ and was quenched with saturated ammonium chloride $(20.0 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation. The crude material was purified by silica gel chromatography (30% EtOAc in hexanes) to afford 11 ($0.6 \mathrm{~g}, 90 \%$) as colorless liquid.
$[\alpha]^{25}{ }_{\mathrm{D}} \quad: \quad-76.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\max } \mathrm{cm}^{-1} \quad: \quad 3405,3301,1708,1682,1150$
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.96-5.73(\mathrm{~m}, 2 \mathrm{H}), 5.08$ (br. s., 1 H$), 4.12(\mathrm{~d}, J=$ 7.1 Hz , $1 \mathrm{H}), 3.71$ (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ (d,
$J=9.6 \mathrm{~Hz}, 2$
H), 1.80-1.68(m, 2 H), $1.46(\mathrm{~s}, 10 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \quad: \quad 155.6,131.6,127.3,79.3,65.3,50.0,28.4$, 24.7, 23.56

Mass (ESI): $m / z \quad: \quad 214\left(\mathrm{M}^{+}+\mathrm{H}\right), 236\left(\mathrm{M}^{+}+\mathrm{Na}\right), 252\left(\mathrm{M}^{+}+\mathrm{K}\right)$
Preparation of tert-butyl ($(1 S, 2 S, 3 S, 6 R)$-2-hydroxy-7-oxabicyclo[4.1.0]heptan-3yl)carbamate(28)

To a solution of $\mathbf{1 1}(0.5 \mathrm{~g}, 2.34 \mathrm{mmol}, 1.0$ equiv) in dichloromethane $(30.0 \mathrm{~mL})$ in a round-bottomed flask equipped with a magnetic stir bar was added 3chlorobenzoperoxoic acid ($1.05 \mathrm{~g}, 4.69 \mathrm{mmol}, 2.0$ equiv). The flask was cooled to 0 ${ }^{\circ} \mathrm{C}$ and stirred for 3 h under argon atmosphere and was quenched with saturated sodium hydrogen carbonate solution (20.0 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation. The crude material was purified by silica gel chromatography ($50 \% \mathrm{EtOAc}$ in hexanes) to afford $28(0.38 \mathrm{~g}, 70 \%)$ as a white crystalline solid.
$[\alpha]^{24}{ }_{\mathrm{D}} \quad: \quad-27.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\max } \mathrm{cm}^{-1}: \quad 3405,3301,1711,1682,1152$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (br. s., 1 H), 3.63 -
3.54
(m, 1 H), 3.37 (s, 2 H), 2.15 (s, 1 H), 1.97-1.88
(m, 1
H), 1.52 (br. s., 1 H), 1.43 (s, 9 H)
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta: 155.7,79.4,65.4,55.1,54.7,49.6,28.3,22.4,21.1$
Mass (ESI): m/z

$$
\text { : } 230(\mathrm{M}++\mathrm{H}), 252(\mathrm{M}++\mathrm{Na})
$$

Preparation of tert-butyl ((1S,2S,3R,4S)-2,3,4-trihydroxycyclohexyl)carbamate(29)

To a stirred solution of $\mathbf{2 8}(0.2 \mathrm{~g}, 0.8 \mathrm{mmol}, 1$ equiv.) in 20 mL THF was added 5 mL of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. The reaction is stirred for 1.5 h after which the reaction was quenched with saturated sodium bicarbonate solution. The layers were separated and the aqueous layer was washed with ($3 \times 15 \mathrm{~mL}$) of ethyl acetate. The combined organic layer was dried with anhydrous sodium sulfate and concentrated under reduced pressure to 29 ($0.21 \mathrm{~g}, 97 \%$) as a white amorphous solid.
$[\alpha]^{31}{ }_{\mathrm{D}} \quad: \quad-1.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\text {max }} \mathrm{cm}^{-1} \quad: \quad 3405,3301,1708,1682,1150$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta: 3.93$ (br. s., 1 H), 3.66-3.59 (m, 1 H), 3.46 (d, $J=$
10.7 Hz ,
s., 1 H), 1.63 -
(d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta: 157.3,81.1,74.7,71.8,69.0,51.0,29.1,27.6,23.8$
Mass (ESI) :m/z:270 (M++Na)

Preparation of ($1 S, 2 R, 3 S, 4 S$)-4-aminocyclohexane-1,2,3-triol hydrochloride (30):

To a solution of $29(0.050 \mathrm{~g}, 0.234 \mathrm{mmol})$ in dioxane (2 mL), aqueous hydrochloric acid ($2 \mathrm{~mL}, 6 \mathrm{M}$ solution) was added. The reaction mixture was refluxed for 1.5 h and concentrated in vacuo which produced $30(0.033 \mathrm{~g}, 89 \%)$ as a white solid.
$[\alpha]^{27}{ }_{D} \quad: \quad+20\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)$
1 H NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta: 4.05$ (br. s., 1 H), 3.67 (dt, $J=4.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.40-$ $3.29(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.73$
(m, 1
H), 1.73-1.61 (m, 1 H), 1.35-1.21 (m, 1 H)
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta: 74.2,69.5,68.4,50.8,28.1,22.1$
MS (ESI): $m / z \quad: \quad 148\left(\mathrm{M}^{+}+\mathrm{H}\right), 170\left(\mathrm{M}^{+}+\mathrm{Na}\right)$

Preparation of tert-butyl ((3aS,4S,7S,7aR)-2,2-diethyl-
7hydroxyhexahydrobenzo[d][1,3]dioxol-4-yl)carbamate(31)

To a solution of $29(0.21 \mathrm{~g}, 0.85 \mathrm{mmol}, 1.0$ equiv) in anhydrous DMF (10.0 mL) in a round-bottomed flask equipped with a magnetic stir bar was added 3,3-dimethoxy pentane ($0.561 \mathrm{~g}, 4.25 \mathrm{mmol}, 5$ equiv.) and ($0.146 \mathrm{~g}, 0.85 \mathrm{mmol}, 1$ equiv) paratoluene sulfonic acid. The flask was stirred at ambient temperature until TLC monitoring showed complete conversion of starting compound (12 h). The reaction was quenched with water (50.0 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 10.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation to afford $\mathbf{3 1}$ $(0.25 \mathrm{~g}, 93 \%)$ as a light yellow liquid.
$[\alpha]^{28.1}{ }_{\mathrm{D}} \quad: \quad-2.87\left(c 1.04, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\text {max }} \mathrm{cm}^{-1}: \quad 3409,2877,1685,1150$
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.97(\mathrm{dd}, J=0.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.23(\mathrm{~m}, 1 \mathrm{H})$, 3.88 (dd, $J=5.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.76-3.61 (m, 1 H), 2.18 (s, 1 H), 1.95-1.55 (m, 7 H), 1.46 (s, 9 H), 1.03-0.78 (m, 6 H)
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 155.2,113.2,81.0,79.5,75.2,72.2,48.8,30.2,28.4$, 28.3, 25.0, 8.5

Preparation of tert-butyl ((3aS,4S,7aS)-2,2-diethyl-7-oxohexahydrobenzo[d][1,3]dioxol-4-yl)carbamate (32)

To a solution of $\mathbf{3 1}(0.5 \mathrm{~g}, 1.59 \mathrm{mmol}, 1.0$ equiv) in ethyl acetate (30.0 mL) in a roundbottomed flask equipped with a magnetic stir bar was added iodoxy benzoic acid $(0.665 \mathrm{~g}, 2.38 \mathrm{mmol}, 1.5$ equiv.). The flask was heated to reflux until TLC monitoring showed complete conversion of starting compound (8 h). The reaction mixture was cooled and passed through celite and then concentrated in vacuo. The crude was purified by column chromatography (20% ethyl acetate in petroleum ether) to obtain $32(0.45 \mathrm{~g}, 90 \%)$ as an amorphous solid.

$$
\begin{array}{lc}
{[\alpha]_{\mathrm{D}}^{28.3}} & :-9\left(c 0.55, \mathrm{CHCl}_{3}\right) \\
\text { IR (neat) } v_{\max } \mathrm{cm}^{-1} & : \quad 1711,1687,1145 \\
{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.06-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J \\
=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.07(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), \\
2.03(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 9 \\
\mathrm{H}), 0.89(\mathrm{dt}, J=1.8,7.5 \mathrm{~Hz}, 6 \mathrm{H})
\end{array}
$$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 206.9,155.1,114.4,79.9,78.0,77.6,48.6,37.4,29.5$, 28.7, 28.3, 25.1, 8.4, 8.2
tert-butyl ((3aS,4S,7aS)-2,2-diethyl-7-oxo-3a,4,7,7a-tetrahydrobenzo[d][1,3]dioxol-4yl)carbamate (33)

To a solution of $\mathbf{3 2}(0.1 \mathrm{~g}, 0.32 \mathrm{mmol}, 1$ equiv.) in anhydrous $\mathrm{THF}(4 \mathrm{~mL})$ in a roundbottom flask equipped with a magnetic stir bar was added 0.96 mL of LiHMDS ($0.957 \mathrm{mmol}, 3$ equiv. 1 M solution in THF) in $0^{\circ} \mathrm{C}$. After $30 \mathrm{~min}, 0.86 \mathrm{~mL}$ of TMSCl ($0.382 \mathrm{mmol}, 1.2$ equiv.) was added drop wise. The reaction mixture was allowed to warm to room temperature and stirred until TLC showed complete conversion of starting compound (4h). The reaction was quenched with ice cooled water (5.0 mL) and was extracted with EtOAc ($3 \times 5.0 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered, and concentrated by rotary evaporation to afford corresponding enol ether as a yellow liquid, which was used as suchfor the next reaction.

The crude enol ether was dissolved in anhydrous DMSO (3 mL), palladium (II)acetate $(0.020 \mathrm{~g}, 0.062 \mathrm{mmol}, 0.2$ equiv.) was added and stirred at ambient temperature in oxygen atmosphere until TLC showed complete conversion of enol ether (24 h). The reaction mixture was passed through a pad of celite and concentrated by rotary
evaporation. The residue was subjected to chromatographic purification to yield $\mathbf{3 3}$ ($0.065 \mathrm{~g}, 67 \%$) as a colorless liquid.
$[\alpha]^{25.5}{ }_{\mathrm{D}} \quad: \quad-33.5\left(c 1.5, \mathrm{CHCl}_{3}\right)$
IR (neat) $v_{\text {max }} \mathrm{cm}^{-1}: \quad$ 1700, 1692, 1150
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72(\mathrm{td}, J=1.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=2.6,10.4$
$\mathrm{Hz}, 1 \mathrm{H}$), $5.30(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=4.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dt}, J=2.1$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.50$ (s, 9 H$), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$

Mass (ESI): $m / z \quad: \quad 312\left(\mathrm{M}^{+}+\mathrm{H}\right), 334\left(\mathrm{M}^{+}+\mathrm{Na}\right)$
tert-butyl
((3aS,4S,7R,7aR)-2,2-diethyl-7-hydroxy-3a,4,7,7a-
tetrahydrobenzo[d][1,3]dioxol-4-yl)carbamate (34)

To a stirred and ice cooled solution of $33(0.05 \mathrm{~g}, 0.16 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(0.066 \mathrm{~g}, 0.177 \mathrm{mmol}$, 1.1 equiv.) in distilled methanol(1 mL) was added $\mathrm{NaBH}_{4}(0.007 \mathrm{~g}, 0.177 \mathrm{mmol}, 1.1$ equiv.) in one portion. The reaction mixture was stirred at that temperature for 1 h after which it was quenched with brine $(2 \mathrm{~mL})$ and extracted with $\operatorname{EtOAc}(3 \times 5 \mathrm{~mL})$. The combined organic layers were concentrated and the crude material was chromatographed (EtOAc: Hexanes 1:1) to obtain 34(0.038 g, 75%) as colourless liquid.

$$
\begin{array}{lc}
{[\alpha]^{23}{ }_{\mathrm{D}}} & : \quad-100\left(c 0.5, \mathrm{CHCl}_{3}\right) \\
{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: & 5.76(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=1.5,10.1 \mathrm{~Hz}, \\
1 \mathrm{H}), & 5.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.14- \\
3.98(\mathrm{~m}, 2 & \mathrm{H}), 1.68-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{td}, \\
J=7.6,19.4 & \mathrm{~Hz}, 6 \mathrm{H})
\end{array}
$$

HRMS(ESI): Cal. For $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 314.1962$, found: 314.1961.
(1S,2R,3R,6S)-6-aminocyclohex-4-ene-1,2,3-triol hydrochloride(35)

To a solution of $34(0.020 \mathrm{~g}, 0.063 \mathrm{mmol}, 1$ equiv.) in dioxane (2 mL), aqueous hydrochloric acid ($2 \mathrm{~mL}, 6 \mathrm{M}$ solution) was added. The reaction was refluxed for 3 h and concentrated in vacuo which produced $35(0.011 \mathrm{~g}, 99 \%)$ as a yellowish solid.
$[\alpha]^{24}{ }_{D}$
: - $117(c 1.0, \mathrm{MeOH})$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta \quad: 5.98(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.82(\mathrm{~m}, 1 \mathrm{H})$,
4.34 (br. s., 1 H), 4.12 (br. s., 1 H), 4.03 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (br. s., 1 H)

HRMS(ESI): Cal. For $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 146.0812$, found: 146.0813

3.7. Spectras.

1H_standardization_pulse_sequence

$|\mid$. $|$ mm \mid

80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	ppm

\circ
+
∞
$\dot{\infty}$
$\stackrel{n}{1}$
i

.

ONdiboc10oct2013

$\stackrel{\stackrel{\rightharpoonup}{p}}{\square}$
轷 影

8

C:IAAMAR FILESISPECTRASIMISClring open exo alc desulfonylationIMon3av2\#045IMon3av2\#045.001.001.1r.esp

exo alc epoxidation Mon4av500\#003.002.001.1r.esp

exo alc epoxidation Mon4av500\#003.002.001.1r.esp

C:IAAMAR FILESISPECTRASlexo alclexo alc epoxidation Mon4av500\#003lexo alc epoxidation Mon4av500\#003.002.001.1r.esp

C:IAAMAR FILESISPECTRASlexo alcIEPOXIDE RING OPENINGITue4av500\#004ITue4av500\#004.001.001.1r.esp

```
    Tu420500#004.003.001.1r.esp
```

$\stackrel{8}{\square}$

epoxide opening

155	150	145	140	135	130	125	120	115	110	105	100	95

C:IAAMAR FILESISPECTRASlexo alcIEPOXIDE RING OPENINGITue4av500\#004ITue4av500\#004.002.001.1r.esp

C:IAAMAR FILESISPECTRASIexo alcIEPOXIDE RING OPENINGITue4av500\#\#041Tue4av500\#004.002.001.1r.esp

Temperature (degree C) 27.000

C:IAAMAR FILESISPECTRASIexo alcIACETAL PROTECTIONMMonGav2\#040IMon6av2\#040.001.001.1r.esp

Z:IAV4001Nov_11_4001dataleplnmriTue1av400\#0081Tue1av400\#008.003.001.1r.esp

acetal protection of epoxide opening
 epoxide opening

11/5/2011 10:16:41 PM
dd ${ }_{\text {dd }}^{\text {DEPT }}$
Tue1av400\#008.002.001.1r.esp

Z:IAV400iNov_11_4001datalepinmrlTue1av400\#0081Tue1av400\#008.002.001.1r.esp

C:IAAMAR FILESISPECTRASlexo alclibx oxidation|Fri1av400\#016|Fri1av400\#016.001.001.1r.esp
ketone
05-11-2011 22:49:25
dd
Dept/CDCl3
Frilav400\#016.002.001.1r.esp

C:IAAMAR FLLESISPECTRASlexo alclibx oxidation|Fri1av400\#0161Fri1av400\#016.002.001.1r.esp

C:AAMAR FILESISPECTRASlexo alclibx oxidation|Frilav400\#016|Frilav400\#016.002.001.1r.esp

All-cis Aminocyclitol 310CT13 For DD.001.001.1r.esp

DEUTERIUM OXIDE

[^0]: ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 154.4,147.2,146.8,140.4,133.3,128.9,127.6$, $127.5,124.4,111.3,107.6,100.9,80.5,67.0,63.5,59.6$, 49.6, 28.0, 23.7, 23.6

