Studies toward the total synthesis of Didemniserinolipid B, Notoryne and Kumausallene

A THESIS
SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY)

TO
SAVITRIBAI PHULE PUNE UNIVERSITY

BY
Shyamsundar Das

Dr. C. V. Ramana
(Research Guide)

ORGANIC CHEMISTRY DIVISION
NATIONAL CHEMICAL LABORATORY PUNE-411008

NOVEMBER-2014

DECLARATION

The research work embodied in this thesis has been carried out at National Chemical Laboratory, Pune under the supervision of Dr. C. V. Ramana, Organic Chemistry Division, National Chemical Laboratory, Pune - 411008. This work is original and has not been submitted in part or full, for any degree or diploma of this or any other university.

Organic Chemistry Division
National Chemical Laboratory
Pune - 411008
November -2014

Dr. C. V. Ramana
Phone: +91-20-25902577
+91-20-25902455
E-mail: vr.chepuri@ncl.res.in

CERTIFICATE

The research work presented in thesis entitled "Studies toward the total synthesis of Didemniserinolipid B, Notoryne and Kumausallene" has been carried out under my supervision and is a bonafide work of Mr. Shyamsundar Das. This work is original and has not been submitted for any other degree or diploma of this or any other University.

Pune - 411008
Dr. C. V. Ramana
November - 2014

Acknowledgements

I owe the fulfillment of this endeavor to my esteemed supervisor Dr. C.V. Ramana for his erudite and meticulous supervision and never failing patience, which gave me constant encouragement and guidance. His painstaking efforts, immense insight, inspiring attitude, evolutionary ideas and enthusiasm enabled me to complete this research work. His thought provoking critical comments and keen insight in identifying various facets of problems have been a source of enduring patience to me without which this work could neither gather substance nor assume the present form. His scholarship, humanity made my task a joy. His efficacy led to broadcasting and deepening of my understanding of research problem. It is a great pleasure and privilege for me for being associated with him. I shall always remain beholden to him. I am grateful to have been part of his group where I learned the tricks of carbohydrate chemistry as well as of life.

I gratefully acknowledge the valuable suggestions and timely help of Dr. Ganesh Pandey, Dr. S.P. Chavan, Dr. Srinivas Hotha, Dr. Thulsiram, Dr. Borate, Dr A sen, Dr, Sayam sengupta. Dr. Rahul banerjee, Dr. R. A. Joshi, Dr. (Mrs.) R. R. Joshi and Dr. Pradeep Kumar, Dr. Prasad, Dr. Vanka Kumar, Dr. Maske, Dr. Santosh babu, Dr. Mandar Bodas (Ranbaxy), Dr. Anjan Chakrabarti (AMRI). Suggestions offered during assessments and other presentations, by scientists namely, Dr. S.P. Chavan, Prof. D. D. Dhavale, Dr. MGK and Dr. Pradeep Kumar, Dr. Reddy, are also gratefully acknowledged.

I gratefully acknowledge the training and support extended by my senior colleagues in carbohydrate chemistry Lab Dr. Kulbhushan, Dr. Sharad, Dr. Giri, Dr. Pandey, Dr. Rahul, Dr. Pitambar, Dr. Mondal, Dr. Rosy, Dr. Sahoo, Dr. Indu, Dr. N. Reddy, Dr. Mangesh, Dr. Yadagiri, Dr. Sumanth, Dr. Anuj, Dr. N. Raghupathi, Dr. Srinivas, Dr. Sachin, and Dr. Vilas, who taught me various techniques and encouraged me at several point of time during the tenure as a Ph. D. student. I would like to thank all my colleagues for always maintaining cheerful and healthy work environment inside as well as outside the lab. I thank my colleagues, Yogesh (goru), Senthil, Paresh (paru), Suneel, Naidu, Jitu (sir), Atul, Ravindra, Ketan, Dinesh, Narendra, Srinu, Sridhar, Ajay, Tejas, and Venkat, Anand, Anuradha ji, Sravani,

Ketan W, Mahesh, Vivek, Fredi with whom I shared my most precious moments during my PhD.

Help from the spectroscopy groups of NCL is gratefully acknowledged. I sincerely thank Dr. Rajmohanan, Ganesh, Shrikant, Mayur and Snehal, Dinesh, athira, anjali for their timely help with NMR spectra recording and helpful discussions and Mrs. Santakumari, Mr. Gumaste, Mr. Kalal, Mrs. Kunte, Mr. Sonawane and Mrs. Damse, Mr. Gajbhiye for their kind cooperation.

I also consider myself blessed in that I got to spend a major chunk of my time at NCL with Sujit da, Pati da, Dedu da (dd), Pushpesh ji, Maityda (PKM), Gorai da, Partha da, Anal da, Himadrida, Roopa di \& Bibhas da, Gouri di, Rita di, Rahaman da, Basabda, Tuka, Amol, Joyasish (ese), Anupam \& Deepa, Krishanu (montosh), Animesh, Jagdish, Late. Agni, Ramakrishna, Binoyda, Avik, Achintya, Anirudhha, Arya, Subhodeep S, Prithvi, Pravat, Kanak, Kheru, Manna, Chini, Saikat, Saibal, Soumen, Santu, Chandan (Jr), Firoz, Souvik, Sujit, Arunava, Hridesh, Subhodeep (Dos), Arijit, Prasenjit, Jhumur, Munmun, Tanaya, Subha, Atreyee, Chayanika, Debarati, Niveditadi, Monalisa, Himadri, Brijesh, Anand H(motu), Chandan D, Negi, Tamas, Shantigopal, Anup, Koushik, Ashis, Saibal (Jr), Manjur, Som, Bidhan, Indra, Mahitosh, Sayantan (Jr), Gourav, Sayan, Ananta, Sayantan. They have always been and will continue to be an inspiration to me. We were of one mind in many things and therefore shared a special relationship. I am at a loss for words to describe them and it should suffice to say that I am simply blessed to have them ever by my side. I've spent the best of times with them. They have always been patient with me and form an indispensable part of my life. The care and emotional support of these people has been tremendous and they have been a family to me away from home.

I don't have any words to express my feelings towards my mother who has constantly encouraged me for going for higher studies, waited long enough for my return but couldn't wait anymore and left this world at the beginning of my degree. May her soul rest in peace. I can never forget her dedicated efforts and pains in making my life so comfortable. "I love you Ma from the bottom of my heart.........forever." It is impossible to express my sense of gratitude for my family, BABA (Big Boss), Kaku, Kakima, Dida, Bordi \& Prakash da, kochi di \& Kalpa da, Dada (Big B), Bonn \& Mamon in mere words. Whatever I am and whatever I will be in future is because of their enormous blessings, hard work, commitments to my ambitions, and their selfless sacrifices. It was their single minded pursuit of the cause
of my education that gave me the strength and will continue to guide my future. Although this eulogy is insufficient, I preserve an everlasting gratitude for them. I also want to thank my niece and nephew Lucky (mama), Saru (masi), for their love and affection and also for maintaining cheering atmosphere in my home.

Finally, I thank Dr. Saurav pal, Director, NCL, Pune for providing the infrastructural facilities to complete my work successfully. I am also thankful to CSIR, New Delhi for the financial assistance.

DEFINATIONS AND ABREVIATIONS

Ac	-	Acetyl
$\mathrm{Ac}_{2} \mathrm{O}$	-	Acetic anhydride
AcOH	-	Acetic acid
AMP	-	1,3-diamino propane
Bu	-	Butyl
BnBr	-	Benzyl bromide
BzCl	-	Benzoyl chloride
$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$	-	Boron trifluoride diethyl ether
$n-\mathrm{BuLi}$	-	n-Butyl lithium
$n-\mathrm{Bu}_{2} \mathrm{SnO}$	-	n-Dibutyltin oxide
${ }^{\text {t }} \mathrm{BuOH}$	-	Tertiary butyl alcohol
Cat.	-	Catalytic/catalyst
$\mathrm{CH}_{3} \mathrm{CN}$	-	Acetonitrile
DCM	-	Dichloromethane
Conc.	-	Concentrated
COESY	-	Correlation spectroscopy
2,2'-DMP	-	2,2'-Dimethoxypropane
DMP	-	Dess-Martin periodinane
DMF	-	N, N-Dimethylformamide
DMAP	-	N, N '-Dimethylaminopyridine
DMSO	-	Dimethyl sulfoxide
Et	-	Ethyl
EtOAc	-	Ethyl acetate
HRMS	-	High Resolution Mass Spectroscopy
IBX	-	2-Iodobenzoic acid
Liq.	-	Liquid
Me	-	Methyl
MsCl	-	Methane sulphonyl chloride
NMR	-	Nuclear Magnetic Resonance
NOESY	-	Nuclear Overhauser effect spectroscopy
piv	-	Pivoloyl
Py	-	Pyridine
p-TSA	-	para-Toluenesulfonic acid
Ph	-	Phenyl
i-PrOH	-	iso-Propanol
rt	-	Room temperature
Sat.	-	Saturated
TBAF	-	Tetra-n-butylammonium fluoride
THF	-	Tetrahydrofuran
TBS	-	tert-Butyldimethylsilyl
TPP	-	Triphenylphosphine

TMSCl	-	Trimethylsilyl chloride
TIPSCl	-	Triisopropylsilyl chloride
TMSOTf	-	Trimethylsilyl trifluromethanesulfonate

Abbreviations used for NMR spectral informations:

br	Broad	q	Quartet
d	Doublet	s	Singlet
m	Multiplet	t	Triplet

GENERAL REMARKS

- ${ }^{1} \mathrm{H}$ NMR spectra were recorded on AV-200 MHz, AV-400 MHz, JEOL AL400 (400 MHz) and DRX-500 MHz spectrometer using tetramethylsilane (TMS) as an internal standard. Chemical shifts have been expressed in ppm units downfield from TMS.
- ${ }^{13} \mathrm{C}$ NMR spectra were recorded on AV-50 MHz, AV-100 MHz, JEOL AL$100(100 \mathrm{MHz})$ and DRX-125 MHz spectrometer.
- Mass spectroscopy was carried out on PI QStar Pulsar (Hybrid QuadrupoleTOF LC/MS/MS) and High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump and also EI Mass spectra were recorded on Finngan MAT-1020 spectrometer at 70 eV using a direct inlet system.
- Infrared spectra were scanned on Shimadzu IR 470 and Perkin-Elmer 683 or 1310 spectrometers with sodium chloride optics and are measured in cm^{-1}.
- Optical rotations were measured with a JASCO DIP 370 digital polarimeter.
- All reactions are monitored by Thin Layer Chromatography (TLC) carried out on 0.25 mm E-Merck silica gel plates (60F-254) with UV light, I_{2}, and anisaldehyde in ethanol as developing agents.
- All reactions were carried out under nitrogen or argon atmosphere with dry, freshly distilled solvents under anhydrous conditions unless otherwise specified. Yields refer to chromatographically and spectroscopically homogeneous materials unless otherwise stated.
- All evaporations were carried out under reduced pressure on Buchi rotary evaporator below $45^{\circ} \mathrm{C}$ unless otherwise specified.
- Silica gel (60-120), (100-200), and (230-400) mesh were used for column chromatography.

CONTENTS

1. Abstract i-xv2. Chapter I : The regioselectivity issues of the palladium mediatedcycloisomerization of acyclic alkynols and formal total synthesis ofDidemniserinolipid B
Introduction 1-20
Present Work 21-42
Experimental and Data 43-66
Spectra 67-102
References 103-106
2. Chapter-II; Section A: The total synthesis of proposed structure of Notoryne
Introduction 107-127
Present Work 128-141
Experimental and Data 142-160
Spectra 161-196
3. Chapter-II; Section B: Studies toward the total synthesis of Kumausallene 197-204
Experimental and Data 205-212
Spectra 213-226
References 227-231
4. List of Publications 232
5. Erratum 233-236

ABSTRACT

Abstract

The thesis entitled "Studies toward the total synthesis of Didemniserinolipid B, Notoryne and Kumausallene" consists of two chapters. Each chapter was further divided into five parts Introduction; Results; Discussion; Experimental; Spectra and References. Coming to the original contributions, which have been included in these two chapters; in the first chapter, the regioselectivity issues of the palladium mediated cycloisomerization of acyclic alkynols followed by the formal total synthesis of Didemniserinolipid B, have been presented. In the second chapter, the total synthesis of the proposed structure of Notoryne and the attempts towards the total synthesis of Kumausallene are described.

Chapter I:

Section A: Model studies on Pd-mediated cycloisomerization of acyclic alkynols

Didemniserinolipid B was isolated in 1999 by Gonzalez et al. The initially proposed structure has been revised as $\mathbf{1}$ by Steven Ley's group, who reported the first total synthesis of Didemniserinolipid B (1). Later, Burke and co-workers reported the second total synthesis of $\mathbf{1}$ by employing ketalization and ring closing metathesis as the key strategy for constructing the central bridged bicyclic core. Figures 1 saliently describes the key retro synthetic disconnections in the context of planned total synthesis of Didemniserinolipid B and the projected alkynol cycloisomerization as the key reaction to construct the central bridged bicyclic ketal core. The synthesis of key the alkynol 4 was planned from the coupling of epoxide 5 and the serinol coupled long-chain alkynol 6 .

Figure 1. Retrosynthetic strategy for Didemniserinolipid B
Abstract
After the stereochemical comparisons, epoxide 5 synthesis has been planned from the known D-mannitol diacetonide 7. Considering Williamson's etherification, the serinol $\mathbf{8}$ and the mesylate C_{17} alkynol 9-Ms have been identified as first stage coupling partners. The synthesis of the corresponding C_{17} alkynol $\mathbf{9}$ has been envisioned from propargyl alcohol via alkylation with the requisite C_{14}-alkyl halide and a subsequent acetylenic Zipper reaction. The synthesis of the serinol derivative $\mathbf{8}$ has been already reported from D-serine.
The key issue of the cycloisomerization reactions is the mode of cyclization i.e.exodig vs. endo-dig. In this context, as a first step towards the total synthesis of didemniserinolipid B, an investigation on the substituent effect or the acyclic stereocontrol over the Pd-mediated alkynol cycloisomerization reactions has been undertaken and the compounds $\mathbf{1 1} \mathbf{- 1 4}$ were designed as the model substrates (Figure 2).

11

5

13

14
! $\sqrt{\square}$

10

Figure 2. Model Substrates for understanding the substituent \& stereo chemical control over the $\mathrm{Pd}(\mathrm{II})$-mediated cycloisomerization reactions \& the retrosynthetic analysis

Synthesis of Model Substrates 11 -14:

Synthesis of key epoxide 5 started with the Wittig reaction of the arabinose diacetonide (prepared in 3 steps from D-mannitol) and 4-carbon ylide generated from the known phosphonium salt $\mathbf{1 7}$ (Scheme 1) to afford the E / Z mixture of $\mathbf{1 8}$. The hydrogenation of $\mathbf{1 8}$ with Raney Ni followed by acetonide hydrolysis using p-TSA in MeOH resulted in diol 20. The diol 20 was transformed into oxirane 5 by selective primary OH tosylation using $p-\mathrm{TsCl}, n-\mathrm{Bu}_{2} \mathrm{SnO}$, and triethylamine in dichloromethane followed by cyclization using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol. Next, the epoxide was opened with the easily available 1-heptyne under Yamaguchi conditions to

Abstract

procure the alkynol 22, which, upon acetonide deprotection, gave the parent model compound 11. Protection of the free - OH in 22 as its benzoate 23 followed by acetonide hydrolysis gave the model substrate 12.

Scheme 1. Synthesis of key epoxide 5 and of model substrates 11, 12

Scheme 3. Synthesis of 10 and of model substrates 13, 14
The synthesis of the model substrates $\mathbf{1 3}$ and its benzoate $\mathbf{1 4}$ was started with the diol $\mathbf{2 0}$, the selective benzoylation of $\mathbf{2 0}$ followed by mesylation and LiOH treatment led to the obtaining of epoxide 10. Opening of the epoxide 10 with lithiated 1-butyne gave $\mathbf{2 8}$ which, upon acetonide hydrolysis, provided the model substrate 13 . The model compound 14 was prepared by the benzoylation of $\mathbf{2 8}$ and the acetonide hydrolysis.
Abstract
The cycloisomerization of model compounds 11-14 was carried out under the optimized conditions $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right]$. The results are given in Table 1. In all the cases, the reactions proceeded in a 6 -endo-dig mode of cyclization and the corresponding [3,2,1]-bicyclic ketals were obtained in good yields. These results indicate that the stereochemistry of the substituent at the β-position to the alkyne seems to be not having much influence over the cycloisomerization, which is quite interesting.

Entry	Reactants	Products	Yield (\%)
1	$\mathbf{1 1}$	$\mathbf{2 4}$	67
2	$\mathbf{1 2}$	$\mathbf{2 5}$	80
3	$\mathbf{1 3}$	$\mathbf{3 0}$	81
4	$\mathbf{1 4}$	$\mathbf{3 1}$	73
5	$\mathbf{2 2}$	$\mathbf{2 4}$	65
6	$\mathbf{2 3}$	-	-
7	$\mathbf{2 8}$	$\mathbf{3 0}$	71
8		-	-

Table 1. Pd-mediated cycloisomerization model substrates

Section B: Formal synthesis of Didemniserinolipid B

Next, we proceeded further to extend this strategy towards the synthesis of didemniserinolipid B(1). The synthesis of the key alkynol $\mathbf{4}$ was planned via the coupling of the epoxide $\mathbf{5}$ with the alkyne $\mathbf{6}$. As mentioned previously, the key alkyne fragment $\mathbf{6}$ was planned by the coupling of protected serinol derivative $\mathbf{8}$ and the mesilyte of the C_{17}-alkynol $\mathbf{9}$. The synthesis of alkyne $\mathbf{9}$ was started with the alkylation of commercially available propargyl alcohol THP ether with n-tetradecyl bromide to afford internal alkyne (Scheme 4). Subsequently, the

Abstract

deprotection of THP group gave the substituted propargyl alcohol 33, which upon the acetylenic zipper reaction employing Li rod in 1,3-diaminopropane as solvent at rt gave the C_{17}-alkynol 9 . Now, the alkynol 9 was mesylated to obtain the fragment 9 -Ms. Serinol derivative 8 was prepared according to the literature procedure and the key coupling reaction of $9-\mathrm{MS}$ and $\mathbf{8}$ was carried out successfully by the slow addition of $\mathbf{9}$-Ms to a solution of serinol $\mathbf{8}$ and NaH in DMSO, maintaining the internal temperature strictly below $0{ }^{\circ} \mathrm{C}$ for 4 h , and afterwards, allowing the reaction to stir at rt for an additional 12 h to give compound 6 .

Scheme 4. Synthesis of C_{17}-alkyne fragment $\mathbf{6}$
After having an easy access to alkyne 6, we next proceeded for the synthesis of the key cycloisomerization substrate $\mathbf{4}$. The coupling of epoxide $\mathbf{5}$ with lithiated alkyne $\mathbf{6}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ delivered alkynol 4 in excellent yields (Scheme 5). The cycloisomerization of $\mathbf{4}$ needed substantial catalyst optimization. Under the standard conditions using the $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ complex, a complex mixture resulting from the formation of the requisite bicyclic ketal, the corresponding ketone, along with the deprotection of the acetonide group present in the serinol unit was observed. $\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$ was found to be ineffective for this transformation. Next, various electrophilic [Au]-complexes were screened for the cycloisomerization of 4 . To this end, the use of $\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\left(5 \mathrm{~mol} \%\right.$) and $\mathrm{AgSbF}_{6}(5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to the isolation of compound 34 resulting from the requisite cycloisomerization and the insitu the deprotection of serinol acetonide. Initially, to provide alternative final events in the total synthesis, we converted the compound 34 to the corresponding diacetate and subsequently carried out the debenzylation of $\mathbf{3 5}$ followed by the oxidation of the resulting alcohol 36 and Wittig homologation to obtain 37. However, the deacetylation and Boc-deprotection of compound 37 has turned out to be a difficult proposition. A similar sequence has been carried out in parallel with the alkynol 39 (prepared by opening the epoxide $\mathbf{1 0}$ with alkyne 6) in order to synthesize the epi-Didemniserinolipid B.

Scheme 5. Synthesis of requisite bicyclic ketal
Having met with difficulties in the deacetylation of the advanced intermediate 37 to arrive at the penultimate compound 38, we revised our strategy to obtain the originally planned Burke's intermediate 2. In this context, the intermediate ketal 34 obtained from the Au-catalyzed cycloisomerization was subjected for the acetonide protection by using dimethoxy propane and p-TSA (cat.) in acetone to obtain compound 44, which subsequently transformed to 2 following the established 3 steps sequence - i. debenzylation ii. Oxidation and iii. Wittig homologation.

Scheme 6. Formal synthesis of Didemniserinolipid B
To conclude, a formal total synthesis of didemniserinolipid B was developed by employing a regioselective gold-mediated 6 -endo-dig cycloisomerization. The interesting feature

Abstract

of our approach is the [Au]-mediated cycloisomerization of an acetonide protected alkynediol unit that we executed. This has avoided several late stage protection deprotection events. Independent routes for the synthesis of both Ley's and Burke's intermediates have been explored from the resulting bicyclic ketal. The attempted synthesis of Ley's intermediate was not successful as the final deprotection turned out to be problematic. However, the Burke's intermediate has been successfully synthesized, thus conclusively ending this exercise as a formal total synthesis of didemniserinolipid B.

Chapter 2:

Section A: Studies toward the Total Synthesis of Notoryne:

A large number of halogenated C_{15} nonterpenoid ethers with a different kind of ring system were isolated from red algae of the genus Larencia. They contained a conjugated enyne or bromoallene moiety at the end of the molecule. The (3Z)-laurefucin (49), Notoryne (46) and Kumausallene (47) are some representative natural products isolated from the red algae of genus Laurencia nipponica yamada obtained from different sources. Considering, that all the natural products were comparable in terms of stereochemistry as well as the side chain enyne part, we endeavored to develop a common synthetic route for these three targets (fig 3). The key features of our retro synthesis are depicted in Fig 5. The two epimeric alkenediols 50 and 51 have been identified as the precursors for the synthesis of (3Z)-laurefucin (49), and Notoryne (46) employing a bromo etherification as the key skeletal construct albeit with a complementary regioselectivity. The synthesis of Kumausallene is a direct proposition from $\mathbf{5 1}$ via the known Tang’s intermediate 48. The synthesis of these two building blocks $\mathbf{5 0}$ and $\mathbf{5 1}$ was planned respectively from the epoxides 52 and 53, which in turn were planned from the diol 54.

Abstract

Figure 3. Structures of (3Z)-Laurefucin (49), Notoryne (46) and (-)-Kumausallene (47) and the proposed retro synthetic routes

Synthesis of Alkenediol 50:

The synthesis of this building block was started from the preparation of 54 from Dglucose according to the literature procedure. The $1^{\circ}-\mathrm{OH}$ of the diol 54 was selectively tosylated by using TsCl and $n \mathrm{Bu}_{2} \mathrm{SnO}$ (cat.) and subjected for base treatment to give the epoxide 52 which was converted to the homo-propargylic alcohol 55 by using lithium acetylide in the presence of $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$. Now the compound 55 was protected as its TBS ether and the alkylation reaction was carried out by using ethyl iodide in the presence of n-BuLi in HMPA to obtain 57 in moderate yields. The TBS group in compound 57 was selectively deprotected by using TBAF in THF to obtain the alkynol 58.

Scheme 7. Synthesis of model substrate alkynol 58

Abstract

Considering the lengthy reaction sequence and moderate yields in the preparation of $\mathbf{5 8}$, an alternative route for its synthesis has been developed. The compound 58 was synthesized alternatively by using expensive 1-butyne gas in place of acetylene to open the epoxide $\mathbf{5 2}$ under Yamaguchi conditions to obtain the intermediate alkynol 58. The Birch reduction of the alkynol 58 employing Na or Li , in liquid NH_{3} and THF at $-78{ }^{\circ} \mathrm{C}$ gave the required trans alkene 59 in good yields. Finally, the 1,2 acetonide group in 59 was deprotected in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH and obtained the methyl glycosides $\mathbf{5 0 \alpha} \alpha$ and $\mathbf{5 0} \beta$.

Scheme 8. Synthesis of the key precursor $\mathbf{5 0} \boldsymbol{\beta}$ for bromo etherification

To check the mode of cyclization, the bromo etherification of major $\mathbf{5 0} \boldsymbol{\beta}$ was examined with NBS. Two products cis-60 and trans-60, the latter being the major product, were obtained. The structural analysis of the corresponding acetates with the help of COSY and NOESY revealed that both these compounds possess a bis-furanyl skeleton present in Notoryne.

Since the relative stereochemistry of the newly generated furanyl unit in compound trans-60 is matching with one of the natural products Notoryne 46, its C-allylation was examined employing allyl trimethylsilane in the presence of TMSOTf and allyl product $\mathbf{6 1}$ was obtained in good yields as a single diastereomer.

$\left\lvert\, \begin{aligned} & \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N} \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { rt, } 6 \mathrm{~h} \\ & 90 \%\end{aligned}\right.$

Scheme 9. Synthesis of 2, 2'-bifuranyl skeleton 60

Synthesis of required homoallyl alcohol for Notoryne:

Having this initial promising result, we next proceeded for the synthesis of Notoryne 46 employing the sequence that has been established for 61 . This started with the conversion of diol 54 to the epoxide 53 following a sequence of the selective protection of 1^{0} hydroxy group as its TBS ether, mesylation, TBS-deprotection and base treatment. The epoxide 53 was opened with lithiated 1-butyne and the resulting alkynol 64 was subjected for Birch reduction to afford compound 65. The acid catalyzed methanoloysis of 65 gave a mixture of methyl glycosides 51α and 51β. The bromo etherification of the major compound $\mathbf{5 1} \boldsymbol{\beta}$ using NBS in dichloromethane gave the corresponding bis-furan 66 and the acetate $\mathbf{6 6 - A c}$, which was subjected for extensive 2D NMR analysis to establish the stereochemistry of the newly generated stereo centers. The C glycosidation of 66 under optimized conditions provided a mixture of 67α and 67β, which were acylated to establish their anomeric configurations. The desired α-C-glycoside $67 \boldsymbol{\alpha}$ was obtained as a major product.

Scheme 10. Synthesis of required 2, 2'-bifuranyl skeleton 67α of notoryne
After having the key C-glycoside 67α in hand, the remaining work is to install the cisenyne moiety and replacing the free -OH with a chloro group. Our initial plan was to introduce the chloro group first and then the cross-metathesis to install the enyne moiety. The treatment of the $67 \boldsymbol{\alpha}$ with TMSOTf and $\mathrm{Et}_{3} \mathrm{~N}$ in dichloromethane followed by the displacement of -OTf with Cl employing n-tetrabutyl ammonium chloride (TBACl) in toluene at reflux gave the penultimate chloro derivative 71. The attempted cross metathesis reaction of 71 and dienyne 70 in the presence of Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst resulted in an inseparable mixture of compounds which were subjected directly for the desilylation. The ${ }^{1} \mathrm{H}$ NMR of the resulting crude product revealed the presence of the characteristic peaks corresponding to the natural product Notoryne. However, the isolation of pure product was found to be a difficult task despite the sequence being repeated several times.

Scheme 11: Synthesis of chloroallyl compound 71.

Abstract

Considering this difficulties, the cross metathesis of intermediate $\mathbf{6 7 \alpha}$ and 70 has been carried out first to prepare the conjugated cis-enyne 72, which was then subjected for the desilylation to obtain the penultimate intermediate 73. Finally, the crucial chloro group introduction has been carried out by subjecting 73 for trifloylation and subsequent $\mathrm{S}_{\mathrm{N}} 2$ displacement of the OTf with TBACl. The reaction was not clean and provided 46 in poor yields. Although, the spectral data is comparable, however, they were not exactly matched with the reported data revealing that the relative stereochemistry of chlorine bearing tetrahydrofuran in Notroyne has been wrongly assigned. Work in the direction of synthesizing the other possible diastereomers to determine the structure of Notoryne is under progress.

Scheme 12. Total synthesis of proposed structure of Notoryne

Section B: Studies toward the Total Synthesis of (-)-Kumausallene:

(-)-Kumausallene was isolated by Kurosawa et al. in 1983 from the coast of Hokkaido in Japan, and belongs to a family with a unique bromoallene moiety. The key retrosynthetic disconnections for the Kumausallene are provided in Figure 4.

Figure 4. Retrosynthetic analysis for (-) Kumausallene 47
Two options have been selected in this context, either the total synthesis or the synthesis of Tang's bromoenyne intermediate 48. To have an alternative route that avoids the intermediate 48, initially, we planned the bromoetherification of diol 77 followed by the Appel reaction (to introduce the bromine) as the final event in our total synthesis of Kumausallene. The synthesis of 77 was planned from the triol 78 which, in turn can be prepared from the alkynol 64 that we have synthesized as a part of the Notoryne synthesis.

Synthesis of Alkenetriol 78

Our synthetic journey for Kumausallene was started from compound $\mathbf{6 4}$ where the free hydroxyl group was benzylated by using BnBr and NaH in DMF. Acid treatment of 79 with AcOH gave the mixture of lactols $\mathbf{8 0}$ which ware transformed to lactone $\mathbf{8 1}$ by using meldrum acid in moderate yields. Next, the selective reduction of the internal triple bond to trans-alkene as well as debenzylation was examined under Birch reduction conditions employing Li and liq. NH_{3} at $-78{ }^{\circ} \mathrm{C}$. To our surprise, in addition to the expected transformations, the lactone carbonyl was also reduced and the alkene triol 78 was obtained in 27% yield. This indicated the possible Bouveault-Blanc type reduction of lactone taking place in the present case.

Abstract

Scheme 13. Synthesis of required alkenetriol 78
As the synthesis of key triol 78 on large scales turned out to difficult due to the poor yields at two stages, we revised our strategy for the synthesis of 78 via α - C-allyl glycoside. Consequently, the synthesis of $\mathbf{7 8}$ started with the deprotection of the 1,2 acetonide of alkynol $\mathbf{6 4}$ in the presence of MeOH in $\mathrm{H}_{2} \mathrm{SO}_{4}$ that led to a mixture of O-methyl glycosides. Now the mixture of O-glycosides was transformed to C-glycosides $\mathbf{8 2 \alpha}$ and $\mathbf{8 2 \beta}$ by using allyl trimethylsilane and TMSOTf, in a 12:1 ratio in favor of the α - glycoside $\mathbf{8 2 \alpha}$. The acetates of both the C-glycosides were prepared and are characterized with the help of 2D NMR spectra analysis. The alkene group of $\mathbf{8 2} \alpha$ was chopped by using the modified Lemieux-Johnson oxidation protocol employing OsO_{4} and NaIO_{4} in the presence of 2,6-lutidine and the resulting aldehyde was reduced immediately using NaBH_{4} in MeOH to procure the alkynetriol 83. The Birch reduction of $\mathbf{8 3}$ proceeded smoothly to arrive at the key triol $\mathbf{7 8}$.

Initially, the triol 78 was converted to the corresponding enyne diol 77 to avoid the Tang's intermediate in the planned total synthesis. However, key bromonium ion induced bromo etherification of 77 by employing NBS turned out to be a difficult proposition despite the fact that various conditions have been explored. The presence of two free hydroxyl groups in the substrate 77 was reasoned to be one of the primary causes for the problems associated with this key cycloetherification. We had to go back to our original proposal of placing the homo-allylic bromine group prior to conducting the key complexity building transform i.e - the synthesis of Tang's intermediate 48. For that, the alken-triol 78 was converted to the corresponding acetonide by using DMP in the presence of p-TSA and the resulting $\mathbf{8 6}$ was subjected for the Appel reaction employing CBr_{4}, TPP and 2,6-di-tertbutylpyridine to obtain bromo-compound $\mathbf{8 7}$ in

Abstract

moderate yield. Finally, the acetonide deprotection followed by selective $1^{\circ}-\mathrm{OH}$ oxidation and subsequent Witting homologation and the deprotection of alkynyl TMS has been attempted to arrive at Tang's bromoenyne intermediate or (+)-trans-Deacetylkumausyne 48. Discouragingly, the reaction gave a complex mixture. Although the peaks corresponding to 48 could be seen on HRMS, efforts to obtain the pure samples of $\mathbf{4 8}$ for characterization met with failure. Currently, the optimization of the construction of the trans-enyne moiety and the total synthesis of Kumausallene is under progress.

Scheme 14. An attempted to synthesis of Tang’s intermediate 48
To conclude, efforts towards developing a unified approach for the synthesis of (3Z)-laurefucin (49), Notoryne (46) and Kumausallene (47) met with a partial success. The synthesis of the proposed structure of Notoryne has been completed and a penultimate intermediate for the synthesis of Tang’s bromoenyne intermediate or (+)-trans-Deacetylkumausyne 48 has been accomplished.

CHAPTER I

The regioselectivity issues of the palladium mediated cycloisomerization of acyclic alkynols and formal total synthesis of Didemniserinolipid B

INTRODUCTION

The molecular complexity associated with the natural products manifest nature's ingenuity and the diverse biological activities that these natural products display reveals its foresight for the well being of all living organisms. Despite that fact that a few millions of natural products have been isolated and characterized, and millions of millions have yet to be traced, Nature has its own uniqueness in grouping these huge collections broadly into a few classes such as alkaloids, terpenoids, steroids, carbohydrates etc. These broadly categorised classes are further subdivided by the presence of some important sub-structural units and their integration in combination. The organization of these sub-structural units and the nature of the substituents that they hold, and their spacial relationships, vary extensively from species to species, and what also varies is the associated biological activity. Arguably, these substructural units have inspired the synthetic chemists to develop new methods for their assembly and the overall complexity of natural product, inspiring the design of innovative strategies for forging many such substructural units in consonance.

Attenol B

Tirandamycin A

Saliniketals

Pectenotoxin

Pinnatoxin A

Cyclodidemniserinol ($\mathrm{R}=\mathrm{H}$)
Cyclodidemniserinol trisulfate ($\mathrm{R}=\mathrm{SO}_{3} \mathrm{Na}$)

Figure 1: Natural products with the dioxa-bicyclo [3,2,1]octane core
The dioxa-bicyclo[3.2.1] octane core ${ }^{1}$ (F2. 1) is an interesting structural unit that has been identified in the middle of last century, two decades before the isolation of a natural
product with this skeleton. Trivially known as bridged bicyclic ketal, the dioxabicyclo[3.2.1] octane core is characterized by the presence of ketal formed intramolecularly from a suitably positioned 1,2-diol unit. Whetstone patented the related bicyclicketal compound F2.2 in 1950. ${ }^{2}$ It has been reported that the heating of the Diels-Alder adduct 3,4-dihydro-1,2-pyran-2-carboxylic acid either at about $200{ }^{\circ} \mathrm{C}$ or at $70{ }^{\circ} \mathrm{C}$ in the presence of mineral acid gave F2.2 with an unprecedented skeleton.

[3,2,1]-bridged bicylicketal F2.1

F2.2

(1947, Whetstone)

Figure 2: The dioxa-bicyclo [3,2,1] octane core F2.1 and some early reported synthesis
The relatively simple derivatives of this family such as Frontalin and Brevicomin are the first ones to be characterized having this dioxa-bicyclo[3.2.1]octane core. These two compounds have been initially characterized as the aggregation pheromones of beetles and later it has been revealed that they are also secreted by elephants. Quite interestingly, the Frontalin or Brevicomin samples from the beetles are found to be the single enantiomers. However, when it comes to the elephant, the varying ratio of enantiomers change their sexual behaviour and their aggression is also affected. Figure 1 shows the structures of some selected natural products that have been isolated afterwards that possess this key dioxabicyclo[3.2.1] octane core either as main or as one of the substructural units present. ${ }^{3}$ Also listed in Figure 1 are the diverse biological activities documented for these selected natural products. Cyclodidemniserinol trisulfate, the total synthesis of which is the objective of the present work, was isolated in 2000, by Faulkner and co-workers and showed promising HIV integrase inhibition with an IC_{50} of $60 \mu \mathrm{~g} / \mathrm{mL}$ and also MCV topoisomerase inhibition with an IC_{50} value of $72 \mu \mathrm{~g} / \mathrm{mL} .{ }^{4}$ Cyclodidemniserinol trisulfate is characterized by the presence of a 6,8-dioxa-bicyclo[3.2.1]octane moiety having functionalized long chain alkanes as substituents at C 5 and C 7 . Given the objective of its total synthesis with a keen interest on developing new methods for the construction of the central bridged bicyclic ketal core, the following discussion will focus mainly on the various methods reported for constructing this core, taking the simple derivatives such as from the Frontalin and Brevicomin syntheses, which are further subdivided into three parts i. Acid Catalyzed Intramolecular Ketalization; ii. C-H Oxidative Transformations and iii. Metal-Catalyzed Transformations - depending upon how the key bicyclic core has been constructed. Subsequently discussed will be the salient features of the reported total synthesis of didemniserinolipid B.

I. Dioxa-bicyclo[3.2.1]octane synthesis involing intramolecular ketalization:

As mentioned above, in the majority of the cases, an intramolecularacetal formation from a suitable keto-diol is a commonly employed method used for the construction of the bicyclic ketal core. In 1967, Naya's group reported the isolation of bicyclicketals S1.1 and S1.2 as the new constituents of hop oil and confirmed their structure by synthesis. ${ }^{5}$ Quite interestingly, though these are the first ones of this family to be isolated, Naya has not given any name to these natural products. The synthesis of these two bicyclicketals involves a [4+2] cycloaddition of acryl aldehyde and MVK in the presence of silver oxide followed by Grignard reaction and acidic work up.

Scheme 1: Synthesis of naturally occurring S1.1 and S1.2 having dioxa-bicyclo [3,2,1]-octane core

In 1968, Silverstein's group documented the isolation of Brevicomin as the principal component of the sex attractant of the western pine beetle dendroctonusbrevicomis. ${ }^{6}$ This is the simplest bicyclic ketal containing natural product that has been named first and its constitution was confirmed by the total synthesis. The total synthesis started from 6-bromohexan-2-one and the epoxide was made in normal reaction sequence i) protection of keto group ii) Witting homologation and iii) epoxidation by m-CPBA, leaded to the mixture of cis and trans epoxides. They separated both the epoxides by GC and the cis-epoxide was treated with aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ to procure the first bicyclic ketal, exo-brevicomin.

Scheme 2: Total synthesis of exo-brevicomin by Silverstein

In the next year, Barber's group documented a carbonyl epoxide rearrangement for synthesizing the [3.2.1]-bicyclic core of Brevicomin and related systems. ${ }^{7}$ The cis-6,7-epoxynonan-2-one cis-S3.2 predominately gives the exo-Brevicomin in 90% yield along with endo isomer and vice versa. Mechanistic studies revealed that during the thermolysis of the δ, ε-epoxy ketones, the epoxide ring undergoes opening predominantly with the inversion of configuration. The endo-brevomin is also a natural pheromone inhibitor produced by dendroctonus bark beetles.

Scheme 3: Barber's synthesis of exo- and endo-brevicomins
A large scale and stereospecific total synthesis of both exo-/endo-brevicomins was reported by Kocienski's group in 1975 and has its own origins from Silverstein's synthesis. ${ }^{8}$ The key feature of this synthesis includes the selective synthesis of cis-/trans-olefin $\mathbf{S 4 . 2}$ by manipulating the reduction of the intermediate alkyne $\mathbf{S 4 . 1}$ in a stereoselective manner. The key cyclization of cis- and trans-epoxides $\mathbf{S} 4.3$ has been accomplished by employing perchloric acid as a catalyst to obtain exo-/endo-brevicomins selectively. The total synthesis of (\pm)-endo-brevicomin has also been documented by Kenji Mori's featuring an alternative approach for the synthesis of the key epoxide trans-S4.3. ${ }^{9}$

Scheme 4: Kocienski’s stereospecific total synthesis of exo-/endo-brevicomins
The first enantiospecific total synthesis of (S)-Frontalin has been documented by Emoto and co-workers. ${ }^{10}$ D-glucose was used as the chiral-pool starting material and the key ketoacetonide S5.2 was synthesized following a relatively lengthy sequence from the known

1,2:5,6-di-O-cyclohexylidene- α-D-gluco-hexofuranose $\mathbf{S 5 . 1}$ and the key cyclization was performed by using p-TSA of S5.3.

Scheme 5: Total synthesis of (S)-Frontalin by Emoto
In 1976, Mori and co-workers reported the total synthesis of optically active α Multistriatin starting from D-mannitol. ${ }^{11}$ The α-Multistriatin is one of essential components of an aggregation pheromone for the European elm bark beetle Scolytusmultistriatus. The key iodide $\mathbf{S 6 . 2}$ was synthesised from the known mannitol diacetonide S6.1. The alkylation of the 3-pentanone enamine with $\mathbf{S 6 . 2}$ in the presence of EtMgBr , followed by in situ enamine hydrolysis and cyclization leads to the natural product.

Scheme 6: Synthesis of α-Multistriatin by Kenji Mori et al
In the same year, Coke reported a new methodology for the synthesis of acetylenic ketone from 1,3 diketone $\mathbf{S 7 . 1}$ through a β-halo- α, β-unsaturated ketone followed by thermal cleavage and has applied this methodology to the synthesis of exo-brevicomin. ${ }^{12}$ The triple bond was reduced to the cis double bond followed by epoxidation, which gave the required epoxide S7.4 which was transformed into exo-brevicomin through thermolysis. Coke's group has also applied this methodology to the synthesis of exo-brevicomin, the pheromone from Dendroctonus breuicomis.

Scheme 7: Synthesis of exo-brevicomin by Coke and co-workers
In 1982, Fraser-Reid and co-workers documented the total synthesis of (+)-exobrevicomin involving the preparation of the key intermediate S8.1 from D-Glucose. ${ }^{13}$ The key intramolecular ketalization was instantaneous when the benzyl ether deprotection occurred during the Pd-catalyzed hydrogenolysis.

Scheme 8: Synthesis of (+)-exo-brevicomin by Bert Fraser-Reid et al
In 1985, Mundy and co-workers synthesized the (E / Z)-6-heneicosene-11-one S9.4/ S9.5 the sex pheromone of the tussock moth. ${ }^{14}$ The interesting feature of this synthesis was, that unlike with brevicomin and related bicyclic ketals, the synthesis where a keto-olefin was converted to the bicyclic ketal via an epoxide, in this a bicyclic ketal S9.3 has been used as an intermediate to construct the ω-enone system through the acid catalyzed fragmentation. The active pheromone constituent has been identified as the (Z)-isomer S9.5. However, in the field tests, the (E)-isomer $\mathbf{S 9 . 4}$ has also shown equivalent bioactivity. But the separate bioassay has revealed that the mixture of $(E):(Z)(60: 40)$ was considerably more active as a pheromone than the pure material isolated from the female tussock moth.

Scheme 9: Synthesis of 6-heneicosene-11-one by Mundy et al

In 1987, Larcheveque and co-workers documented the synthesis of (+)-exobrevicomin from (-) glutamic acid S10.1. ${ }^{15}$ The key-step of this synthesis was the selective reduction of ketone $\mathbf{S 1 0 . 2}$ with L-selectride which gave the syn-product S10.3, with the subsequent acetonide deprotection of S10.4 and in situ the ketalization happening in the presence of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Scheme 10: Synthesis of (+)-exo-brevicomin by Larcheveque's group

Monneret and co-workers reported a chiral pool synthesis of (-)-Frontalin from α-D-isosaccharino-lactone S11.1 that can be synthesized from D-lactose. ${ }^{16}$ The key cyclization step of S11.2 was performed by using the Amberlyst-15 ion-exchange resin followed by reduction of neopentyltosylate $\mathbf{S 1 1 . 3}$ with lithium triethylborohydride which gave the aggregation pheromone of the southern pine beetle (-)-Frontalin.

Scheme 11: Synthesis of (-)-Frontalin by Claude Monneret et al
In 1989, Yadav and co-workers documented a stereoselective synthesis of $(1 S, 5 R, 7 R)$ (-)-endo-brevicomin by employing the acid catalysed cyclization of diol S12.4 which was prepared by the Sharpless Kinetic Resolution ${ }^{18}$ of a suitable allylic alcohol S12.3 followed by its subsequent reduction with LAH. ${ }^{17}$ The allyl alcohol S12.2 was prepared from the Grignard reagent derived from the chloride $\mathbf{S 1 2 . 1}$ with the croton aldehyde.

Scheme 12: Synthesis of (-)-endo-brevicomin by J S Yadav et al
In 1991, Whitesides and co-workers described the total synthesis of naturally occurring $(+)$-exo-brevicomin by a strategy combining chemical and enzymatic steps. ${ }^{19}$ The enzyme Transketolase (TK) was used for the condensation between β-hydroxypyruvic acid S13.1 and 2-hydroxybutyraldehyde S13.2 to furnish the vicinal diol S13.3 possessing the Dthreo configuration. The advanced acetonide S13.4 was synthesized from S13.3 following a sequence of reactions: i) acetonide protection of diol; ii) reduction of the keto group and NaIO_{4} cleavage; iii) Witting homologation and iv) hydrogenation. Finally, the acetonide hydrolysis using p-TSA completed the total synthesis of (+)-exo-brevicomin.

Scheme 13: Synthesis of (+)-exo-brevicomin by G. M. Whitesides et al
Prasad and co-workers documented the enantioselective synthesis of α-benzyloxy aldehyde S14.1 containing a terminal alkene. ${ }^{20}$ The reaction was carried out from a chiral pool L-(+)-tartaric acid and this common intermediate was used for the synthesis of pine beetle pheromones (+)-exo-brevicomin, (+)-iso-exo-brevicomin. The aldehyde S14.1 was treated with ethylmagnesium bromide to yield the corresponding threo alcohol followed by oxidation of alkene with $\mathrm{PdCl}_{2} / \mathrm{CuCl}$ which produced the ketone $\mathbf{S 1 4 . 2}$ and was subjected for hydrogenolysis in methanolic HCl to obtain the $(+)$-exo-brevicomin. Similarly, for the synthesis of (+)-iso-exo-brevicomin, MeMgBr was added to the same aldehyde $\mathbf{S 1 4 . 1}$ to furnish the threo alcohol which was converted to its benzyl ether S14.3. The ozonolysis of alkene followed by the treatment with ethylmagnesium bromide produce S14.3 and the
oxidation of the alcohol procure the ketone S14.4, which was transformed into (+)-iso-exobrevicomin under hydrogenation in acidic medium.

Scheme 14: Synthesis of (+)-exo-brevicomin \& (+)-iso-exo-brevicomin by K.R. Prasad et al

In 2009, Long and co-workers reported the synthesis of the core structure of the natural product Cyclodidemniserinol trisulfate, a natural HIV-1 integrate inhibitor starting from butane diol. ${ }^{21}$ From butane diol, they prepared advanced intermediate $\mathbf{S 1 5 . 1}$ by using Dtartaric acid as a chiral source. The resulting thioketal $\mathbf{S 1 5 . 1}$ was subjected for I_{2}-mediated thioketal and acetonide deprotection and intramolecular ketal S15.2 formation in one pot.

Scheme 15: Synthesis of cyclic core of Cyclodidemniserinol trisulfate
In 2012, Crimmins and co-workers reported the first total synthesis of the proposed structure of Aldingenin B from thiazolidinethione S16.1. ${ }^{22}$ The key cyclohexene S16.4 has been synthesized following the Evans aldol and RCM as the key reactions. Subsequently, the bicyclicketal unit S16.6 has been prepared from the advanced intermediate S16.5 by using HClO_{4} under ultrasonic irradiation to ensure the proper mixing of the biphase on larger scales along with the deprotection of silyl ether. Following simple chemical transformations Aldingenin B with the proposed structure was synthesized from S16.6 and a revision has been suggested.

Scheme 16: Total synthesis of putative structure of Aldingenin by Crimmins'group
In 2013, Hiroya and co-workers reported the first total synthesis of Trichodermatide A starting from L-tartaric acid. ${ }^{23}$ The aldehyde $\mathbf{S 1 7 . 1}$ synthesized from L-tartaric acid was treated with 1,3-cyclohexanedione in the presence of piperidine in ethanol to provide the symmetric compound S17.2. The diastereoselective intramolecular ketal formation reaction and dehydrative pyran formation in the presence of aqueous acetic acid in methanol followed by treatment of the resulting intermediate with PPTS in benzene furnished the pentacyclic core S17.3 which was subsequently transformed to Trichodermatide A.

Scheme17: Synthesis of Trichodermatide A by Kou Hiroya et al
In 2014, Brandt and co-workers reported the synthesis of Ertugliflozin, a glucosederived C-glycoside which contained a novel bridged bicyclic ketal motif and acted as a sodium-dependent glucose co-transporter (SGLT)2 inhibitor for the treatment of diabetes. ${ }^{24}$ The nucleophillic addition of the appropriate organo-lithium reagent to the Weinreb amide S18.1 in THF produced the equilibrium mixture of the corresponding cyclic lactol and acyclic ketone S18.2. The acid-promoted one-pot PMB removal followed by stereoselective intramolecular trapping of the putative oxonium ion intermediate provided the desired dioxabicyclo[3.2.1]octane S18.3 ring system of Ertugliflozin.

Scheme 18: Synthesis of Ertugliflozin by T. A. Brandt et al
Kitching and co-workers documented the model studies toward the total synthesis of Pinnatoxin D. ${ }^{25}$ Both the two compounds S19.4 and S19.5 having the bicyclic core of Pinnatoxin D have been synthesized from R-(+)-Pulegone. Both the model substrates were derived from the protected enone S19.2 which was acquired from S19.1. Enone S19.1 was treated with AD-mix- α, bezyl protection of which followed by ketone release yielded the advanced intermediate S19.2. The SAMP derivative ((S)-1-amino-2methoxymethylpyrrolidine) of the ketone $\mathbf{S 1 9 . 2}$ was deprotonated and was added to ethyl crotonate, followed by ozonolysis and the removal of hydrazones to yield the benzyl protected keto ester S19.3 which was exposed to hydrogen in presence of palladium leading to the bicyclic ketal S19.4.

Scheme 19: Synthesis of bicyclic part of Pinnatoxin D by Kitching et al

II. Oxidative Photochemical Transformations:

In 1977, Kossanyi and co-workers reported a novel photochemical approach for the total synthesis of exo-brevicomin. ${ }^{26}$ The irradiation of the 2-propionyl-6-methyl-2,3-dihydro-4H-pyran S20.1 provided the intermediate dehydro-exo-brevicomin S20.2 that has been subjected for hydrogenation to provide a straightforward synthesis of the natural product.

Scheme 20: Kossanyi's photochemical synthesis of exo-brevicomin
Yamada and co-workers reported a novel synthesis of the 6,8-dioxabicyclo[3.2.1] octane derivatives S21.2 by the reaction of the citronellal S21.1 with thallium perchlorate. ${ }^{27}$

Scheme 21: Synthesis of dioxa-bicyclo [3,2,1] octane by Yamada et al
In 1996, Halcomb and co-workers ${ }^{28}$ reported the synthesis of the dioxabicyclo[3.2.1]octane core of Zaragozic acids (a promising lead compound for the development of a new cholesterol-lowering drug) through a Norrish Type II ${ }^{29}$ photochemical reaction. The synthesis started with the addition of allylmagnesium bromide to the ketone S22.1 and subsequent protection of the diol unit as its acetal and then ozonolysis of the alkene to afford S22.2. Upon irradiation the aldehyde S22.3 in benzene through a quartz filter provides bicyclic ketal S22.5. It has been proposed that this reaction proceeds through an unusual 1,6-hydrogen abstraction to generate a 1,5-biradical S22.4 with subsequent cyclization.

Scheme 22: Synthesis of dioxa-bicyclo [3,2,1] octane by Halcomb et al

Suárez and co-workers described the synthesis of [2.2.1]- as well as [3.2.1] bicyclic ketals through an intramolecular hydrogen abstraction (IHA) reaction triggered by alkoxy radicals. ${ }^{30}$ The compound S23.3 was generated in situ by the reaction of alcohol with (diacetoxyiodo) benzene (DIB) or iodosyl benzene in the presence of iodine and O-radical to C-radical S23.4 transformation was triggered by the IHA followed by oxidation, which yielded an oxycarbenium S23.5 ion which was internally trapped by the nucleophillic alcohol and gave the [2.2.1] bicyclic system in case of tetrahydrofuran derivatives and the [3.2.1] bicyclic system S23.2 from the tetrahydropyran moiety S23.1.

Scheme 23: Synthesis of dioxa-bicyclo [2.2.1] heptane and dioxa-bicyclo [3,2,1] octane by E. Suárez et al

In 2011, Vassilikogiannakis and co-workers reported that photo oxygenation of 2(α, β-dihydroxyalkyl)furan $\mathbf{S 2 4 . 1}$ followed by in situ reduction and ketalization in presence of acid rapidly provides the 6,8 -dioxa-bicyclo[3.2.1]oct-3-en-2-one S24.3 framework through the intermediate S24.2. ${ }^{31}$ Compound S24.3 has been successfully converted to the 2-hydroxy-exo-brevicomin by simply reducing the keto group followed by hydrogenation.

Scheme 24: Synthesis of 2-hydroxy-exo-brevicomin by Vassilikogiannakis

III. Metal-Catalyzed transformations of central bicyclic core

Broadly, the metalized reactions in the context of constructing the bicyclic ketal core can be categorized depending upon the nature of the newly formed bonds i. $\mathrm{C}-\mathrm{O}$ bond or ii.
$\mathrm{C}-\mathrm{C}$ bond. The former one mainly involves either the Pd-catalyzed Wacker oxidation ${ }^{32}$ of olefin diol or the metal-mediated alkynediol cycloisomerization. ${ }^{33}$ There are examples where the vinyl ethers have been functionalized intramolecularly to form the bicyclic ketals by employing metal-complexes. Indeed, as discussed earlier, the corresponding acid-catalyzed trapping of the glycals is one of the early approaches reported for the synthesis of the bicyclic ketal core.

In 1971, Mundy and co-workers reported a common approach for the total synthesis of diastereomers of Frontalin and Brevicomin. ${ }^{34}$ The synthesis is similar to the one that has been reported by Naya's group. ${ }^{5}$ The hetero Diels-Alder reaction between the methyl vinyl ketone and methacrolein or acrolein gave the corresponding intermediates S25.1/S25.2. ${ }^{35}$ The pendant aldehyde in S25.1/S25.2 has been subjected for reduction/Grignard addition gave S25.3/S25.4. The key ketalization step was performed by $\mathrm{Hg}(\mathrm{OAc})_{2}$ in the presence of NaBH_{4} and KOH .

Scheme 25: Mundy's total synthesis of Frontalin and Brevicomin
In 1976, Grigg reported a short total synthesis of racemic endo-brevicomin by employing the ethyl nona-3,8-dienoate S26.1 that was prepared by the Pd-catalyzed dimerization of butadiene with concomitant carbonylation with ethanol. ${ }^{36}$ This intermediate has been converted to S26.2 by simple transformations and then subjected for the key Wacker-oxidation to provide the racemic endo-brevicomin. ${ }^{32}$

Scheme 26: Grigg's total synthesis of endo-brevicomin by employing Wacker-oxidation
In 1984, Danishefsky and co-workers described a diastereo facial cyclocondensation reaction of aldehydes with activated dienes S27.1 to procure the advance intermediate S27.2
which was employed for the synthesis of exo-brevicomin. ${ }^{37}$ The bridged ketal was prepared by intramolecular oxymercuration in the presence of NaBH_{4}.

Scheme 27: Synthesis of exo-brevicomin by Danishefsky
The intrinsic nature of acetylenes as a carbonyl synthon was exploited by Katsuki's group (in 1991) wherein acetylene S28.1 derived from L-ascorbic acid was subjected for alkynediol cycloisomerization with a catalytic amount of mercury(II) oxide and p-TSA to afford the bicyclic ketal S28.2. ${ }^{38}$

Scheme 28: Synthesis of bicyclic ketal via cycloisomerization by Katsuki
In 2002, Faber and co-workers demonstrated a short chemo enzymatic cascadereaction route for the synthesis of the epoxide S29.1 and demonstrated its application in the total synthesis of the constituent of Jamaican rum S29.3. ${ }^{39}$ The enantio pure epoxide S29.1 was opened by 3-butenylmagnesium bromide, with the removal of the TBS group giving the advance intermediate alkene diol S29.2 that was subjected for Wacker oxidation by using PdCl_{2} to procure the natural product $\mathbf{S} 29.3$. ${ }^{32}$

Scheme 29: Synthesis of Jamaican rum constituent by Faber
Yadav and co-workers reported the stereoselective synthesis of hydroxy-exobrevicomin S30.3 from D-glucono- δ-lactone S30.1 as a chiral precursor. ${ }^{40}$ The Wacker oxidation of S30.2 followed by intra molecular ketalization led to the bicyclic ketal S30.3.

Scheme 30: Synthesis of 1-hydroxy-exo-brevicomin by J S Yadav et al
In 2009, there were three reports on the metal-catalyzed intra molecular ketalization of alkynediols for the construction of the [3.2.1]-bicyclic ketal core. ${ }^{41}$ Hee-Yoon Lee and coworkers reported a facile total synthesis of (-)-endo-brevicomin, (-)-exo-brevicomin and (-)Frontalin, through PtCl_{4} catalyzed cycloisomerization or hydroalkoxylation reaction of suitable alkyne diols, S31.2, S31.3, S31.4 respectively which were prepared from 5-hexynol S31.1.

Scheme 31: Synthesis of (-)-Frontalin, (-)-endo-brevicomin and (-)-exo-brevicomin by Lee
Brabander and co-workers documented the total synthesis of Saliniketal B, employing the $\mathrm{Pt}(\mathrm{II})$-catalyzed cycloisomerization of the suitable alkynol S32.2 to construct the bicyclic ketal S32.3 of Saliniketal B. ${ }^{3 \mathrm{~d}}$

Scheme 32: Total synthesis of Saliniketal B by Brabander

Our group has documented a Pd-mediated intra molecular ketalization of alkynediols S33.1 for the construction of the central [3.2.1]-bicyclic ketal core S33.2 of Cyclodidemniserinol trisulfate. ${ }^{33 f}$

Scheme 33: Synthesis of Cyclodidemniserinol trisulfate by Ramana et al

IV. RCM based approaches for the synthesis of bicyclic ketals

In 1999, Burke and co-workers documented a new route for the synthesis of (+)-exoand endo-brevicomins using Ring Closing Metathesis (RCM) for the construction of the central 6,8-dioxa-bicyclo[3.2.1]octane. ${ }^{42}$ For example, the synthesis of exo-brevicomin was started with the C_{2}-symmetric diol S34.1 which was protected as ketal S34.2 followed by elimination of the halide group, giving the advanced triene S34.3. Finally, triene S34.3 was subjected for RCM followed by hydrogenation to complete the synthesis of exo-brevicomin.

Scheme 34: Synthesis of (+)-exo-brevicomin by Steven D. Burke et al
A similar approach has been reported by Grubbs and co-workers ${ }^{43}$ for the total synthesis of the natural product (-)-Frontalin.

Scheme 35: Synthesis of (-)-frontalin by Grubbs

V. Salient features of the reported total syntheses of didemniserinolipid B

In 2002, Steven V. Ley and co-workers documented the first total synthesis, structure revision, and absolute configuration of (+)-Didemniserinolipid B 1. ${ }^{44}$ The synthesis started from the known butanediacetal (BDA)-protected aldehyde S36.1, from where they prepared the advanced intermediate S36.2 which was exposed to 1 N HCl to give the bicyclic ketal S36.3 along with deprotection of all the protecting group (acetonide, Boc, BDA, and MOM).

Scheme 36: Ley's protocol for Didemniserinolipid B synthesis
Burke and co-workers reported the modular synthesis of didemniserinolipid B $\mathbf{1}$ with the help of ketalization/ring-closing metathesis $(\mathrm{K} / \mathrm{RCM})$ strategy to establish the 6,8 -dioxabicyclo[3.2.1]octane core S37.4 from a suitable ketal S37.3 which was prepared from ketone S37.1 and the C_{2}-symmetric (R, R)-dienediol S37.2. ${ }^{45}$ The C10 axial alcohol was established via a substrate-controlled epoxidation of the endo-cyclicalkene, followed by reductive transdiaxial epoxide opening and the serinol and C1-C7 side chains could be appended in a modular fashion through a Williamson etherification and cross metathesis respectively procure the Burke's intermediate 2.

Scheme 37: Burke's protocol for Didemniserinolipid B synthesis

Chandrasekhar and co-workers documented the formal synthesis of Didemniserinolipid B 1 in a complete stereo controlled manner using the D-ribose as the chiral pool material. ${ }^{46}$ The synthesis is modular and employs an addition alkynyl anion to Weinreb amide as the key skeletal construct. The key propargyl alcohol derivative S38.1 has been prepared from D-ribose, and coupled with the Weinreb amide S38.2 that was derived from D-serine. The resulting keto alkyne $\mathbf{S 3 8 . 3}$ was subjected for hydrogenolysis to remove the benzyl as well as the triple bond reduction. The resulting terminal alcohol has been subjected for oxidation and two-carbon Witting homologation to prepare the key intermediate S38.3 which upon acid catalysed hydrolysis afforded the S38.4 from which the synthesis of 1 has been earlier reported by Ley's group. ${ }^{44}$

Scheme 38: S. Chandrasekhar's protocol for formal total synthesis of Didemniserinolipid B
Prasad and co-workers documented the formal total synthesis of (+)Didemniserinolipid B, which was accomplished starting from L-(+)-tartaric acid. ${ }^{47}$ The key transformations in the synthesis include the elaboration of a γ-hydroxy-amide S39.2 readily obtained by desymmetrization of the tartaric acid bis-amide S39.1 via the controlled addition of a Grignard reagent followed by stereo selective reduction of the resulting ketone. The core bicyclic ketal was prepared from a suitable ketone $\mathbf{S 3 9 . 3}$ by using FeCl_{3} where deprotection ${ }^{48}$ of the acetonide with concomitant intra molecular ketalization furnished the bicyclic acetal S39.4 in 93\% yield.

Scheme 39: Prasad's protocol for the formal synthesis of the Didemniserinolipid B

PRESENT WORK

The giant marine environment is still a largely unexploited resource in terms of new biologically active compounds. Hundreds of new compounds have been reported every year from marine organisms by different groups. In recent decades, marine tunicates have been subjected to very close scrutiny and consequently, a large number of bioactive nitrogenous as well as non-nitrogenous metabolites with novel and complex structures showing significant biological activity have been described. Marine tunicates which belong to the genus Didemnum (Phylum Chordata, class Ascidiacea) have been identified as rich sources of complex molecules. Mainly, all metabolites are nitrogen-containing compounds which are derived from amino acids, and classified into two major categories: (1) cyclic and acyclic peptides (2) and aromatic alkaloids. Mollamide and cyclodidemnamide are the cytotoxic cyclic heptapeptides which have been isolated from Didemnummolle. Minalemines D-F are the first sulfamicacid containing acyclic peptide isolated from Didemnumrodriguesi. Aromatic alkaloids like didemnolines A-D isolated from the caribbean mangrove ascidian Didemnumconchyliatum, HIV protease inhibitors - didemnaketals A and B and the macrocycle containing HIV-integrase inhibitor cyclodidemniserinol trisulfate isolated from Palauan ascidian Didemnumguttatumas reveal the structural diversity and wide range of biological activities of natural products isolated from the genus Didemnum. ${ }^{4}$

Didemniserinolipid B (1)

Cyclodidemniserinol trisulfate

Figure 3. Structures of Didemniserniolipid B and of Cyclodidemniserinol trisulfate
As part of a continuing search for biologically active secondary metabolites from ascidians, the tunicate Didemnum sp., was collected from the coast of Sulawesi Island (Indonesia) with the aim of finding new cytotoxic agents against P388, A549, and HT29 tumor cell lines. While the initial methanolic extracts of these molecules show potent cytotoxic activity against several tumor cells, after further purification and isolation, none of the individual didemniserinolipids were found to be cytotoxic in the same assays. Though individual didemniserinolipids do not show any known biological activity, it has been reported that natural product containing 6,8-dioxa-bicyclo[3.2.1]octane moiety is biologically active.

The dioxa-bicyclic ketal, a common structural unit which is present in many natural products, has received substantial synthetic attention in recent years, due to the isolation of several new natural products having a bicyclic ketal unit as an integral part of their structures and the diverse biological activities reported, such as anti-fungal, anti-cancer, and anti-HIV. ${ }^{4}$ The availabilty of the dioxa bicyclic ketal moiety in the large number of natural products suggest that development of a modular and efficient route for general structures of this type could be valuable in the context of diversity-oriented synthesis. As has been revealed in the Introduction, the intra-molecular acetal formation from a suitable keto-diol is a commonly employed method used for the construction of the bicyclic ketal core. The Wacker oxidation ${ }^{32}$ of a suitably position alkenediol is another important reaction that has used in the synthesis of these bicyclic ketals. However, the prior protection of this diol unit and the deprotection of the same after oxidation is one of the draw-backs when one considers the number of transformations involved.

Quite interestingly, when an alkyne is placed in place of olefin, the corresponding sequential addition of heteroatoms is one of the most interesting and important reactions in organic chemistry. The intermolecular version of this reaction converting the alkynes to ketones has been known for a long time. Various metal complexes or Lewis acids have been employed either in catalytic or stoichiometric amounts. The intramolecular version of this reaction falls under the broad category of cycloisomerization reactions which are characterized by their complete atom economy and as well as recognized as an attractive tool for delivering complex molecular diversity. In 1983, Utimoto first reported the synthesis of a bicyclic ketal through cycloisomerization of ω-alkyne diols by using Pd-complexes. ${ }^{49}$ After a long span, only during the last decade, this reaction has been examined by several groups and employing various transition metals like palladium, silver, gold, platinum, iridium, and mercury as catalysts. ${ }^{33}$ Despite the fact that, this reaction occurs at rt and is tolerant towards many functional groups, there has been no report on the utilization of this metal-mediated alkynediol cycloisomerization in the synthesis of natural products having a bridged bicyclic ketal. Indeed, there was only a single report that employed the alkynediol cycloisomerization for the total synthesis of a natural product having a spiro bicyclic ketal. ${ }^{33 \mathrm{~h}}$

One of the key issues of this alkynol cycloisomerization is the mode of cyclization i.e. exo-dig versus endo-dig. With a keen interest to extend the application of this approach in the synthesis of natural products, a systematic investigation dealing with the influence of electronic and steric factors on competitive 5 -exo-dig versus 6 -endo-dig and over the 6 -exodig versus 7 -endo-dig and also 5 -endo vs 6 -exo-dig mode of cyclizations employing
$\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ complex as a catalyst has been carried out by our group. ${ }^{33 e, f, h, r}$ It has been shown that in case of competitive 5 -exo-dig versus 6 -endo-dig cyclization, the regioselectivity was influenced by the electronic nature of the substituents on the alkyne unit. In general, the presence of alkyl or aryl groups with +M groups as a substituents lead exclusively to 6 -endo products. On the other hand, the 5-exo-cyclization is preferred over 6endo when the substituents are electron with drawing in nature. When it comes to 5-exo-dig versus 6-endo-dig cyclization, the electronic factors have no influence and 6-exo-dig cyclization is favored over the 7 -endo-dig cyclization.

Scheme 40: The regioselectivity of alkynol cycloisomerization in the synthesis of Didemniserinolipid B

Based on these results, we have recently documented the total synthesis of Cephalosporolides E/F executing the proposed 5-exo-dig cyclization successfully. ${ }^{33 \mathrm{~h}, \mathrm{r}}$ Quite interestingly, when such an analogy has been extended in designing the substrate for the central 6,8-dioxa-bicyclo[3,2,1]octane core of Cyclodidemniserinol trisufate (featuring 6-endo-dig), the result was unexpected. The 5-exo product was obtained exclusively. In our revised strategy, we need to move the alkyne one carbon further and as expected the 6-exo is predominant and provides the requisite 6,8-dioxa-bicyclo[3,2,1]octane core of Cyclodidemniserinol trisufate. ${ }^{33 f}$ Intrigued by this observation, we have taken up a preliminary investigation to understand the acyclic stereocontrol over the regioselectivity of the alkynol cycloisomerization, with a keen interest to developing a second generation synthesis for Didemniserinolipid B.

Present work:

Didemniserinolipids A-C were isolated in 1999 by Gonzalez et al.. ${ }^{3 \mathrm{f}}$ Didemniseriniolipids are characterized by their unusual serinolipid structure, which has been proposed with the help of extensive NMR analysis. In 2002, Steven Ley's group reported the synthesis of Didemniserinolipid B and revised its structure as $\mathbf{1}$ by amending the
stereochemistry of the serinol fragment. They proposed the position of the O-sulfate at C31. ${ }^{44}$ Later, Burke and co-workers reported the second total synthesis of $\mathbf{1}$ by employing ketalization and ring closing metathesis as the key strategy for constructing the central bridged bicyclic core. ${ }^{45}$

Figure 4. Proposed (1999) and revised (2002) structures of Didemniserinolipd B
Our basic idea behind this program is to provide sufficient scope for the library synthesis by functionalizing the alkyne end with a suitable functional group. Further, we want to check the stereochemical effect of the hydroxy group as well as the bulkiness of the substituent at the β-position to the alkyne for the Pd mediated cycloisomerization in acyclic systems. During this period, we have documented a formal total synthesis of Didemniserinolipid B (6-endo-dig). ${ }^{33 e}$ In the following section, we provide the complete details of our basic investigations related to the acyclic stereocontrol over the regiochemistry of these cyclizations, which has ultimately led us to arrive at the designing of the above key alkyne triol that has served as the key intermediate in our formal total synthesis of Didemniserinolipid B(1). The key features of our total synthesis program are depicted in the following retrosynthetic scheme.

Retrosynthesis of didemniserinolipid B (1):

The target molecule has been visualized from 2, a key protected derivative of $\mathbf{1}$ that has been synthesized by Burke and co-workers. ${ }^{45}$ The selective oxidation of the $1^{\circ}-\mathrm{OH}$ in diol 3 and subsequent two-carbon Wittig homologation has been planned as the final event in the synthesis of $\mathbf{2}$. The key bicyclic ketal intermediate $\mathbf{3}$ was planned by the cycloisomerization of the alkynol 4. Keeping the knowledge that we acquired with the model cycloisomerization reactions of sugar alkynols in mind, the alkyne group has been positioned favorably for 6-endo-dig cyclization. The alkynol 4 was planned from the opening of the epoxide 5 with the alkyne 6.

Figure 5. Key retrosynthetic disconnections for the total synthesis of Didemniserinolipid B (1) projecting a 6-endo-dig alkynol cycloisomerization for constructing the bicyclic ketal and a Yamaguchi protocol for building the key carbon framework.

After the stereochemical comparisons, epoxide 5 synthesis has been planned from known D-mannitol diacetonide 7. The next disconnection is the ether link that combines the central lipid carbon framework and the serinol unit. Considering Williamson's etherification, the serinol 8 and the mesylate C_{17} alkynol 9-Ms have been identified as first stage coupling partners. The synthesis of corresponding C_{17}-alkynol 9 has been envisioned from propargyl alcohol via alkylation with the requisite C_{14}-alkyl halide and a subsequent acetylenic Zipper reaction. ${ }^{50}$ The synthesis of the serinol derivative $\mathbf{8}$ has been already reported from D-serine. ${ }^{51}$

Figure 6. Planning for the synthesis of key building blocks 5 and 6
Considering our observations in the synthesis of the central bicyclic core of Cyclodidemniserinol trisulfate, where we noticed an exclusive 5-exo-dig over the 6-endo-dig cyclization, ${ }^{33 f}$ we have initially designed the epimeric alkynols $\mathbf{1 1}, 13$ and their benzoates $\mathbf{1 2}$, 14 as model substrates in the context of the present total synthesis to learn about the possible acyclic stereocontrol over the regioselectivity of the alkynol-cycloisomerization. The synthesis of $\mathbf{1 3}$ and its benzoate $\mathbf{1 4}$ has planned from the epoxide $\mathbf{1 0}$, which, in turn, can be
made from the penultimate intermediate that has been planned for preparing the original epoxide 5.

Figure 7. Model substrates designed for understanding possible acyclic stereocontrol over the regioselectivity of the alkynol-cycloisomerization.

Synthesis and cycloisomerization of model substrates:

> Synthesis of Wittig Salt 17:

Our program in this context started with the idea of developing a route for the epimeric epoxides 5 and $\mathbf{1 0}$ from the known diacetonide 7. The plan was to extend the right hand side following a sequence of diol cleavage and subsequent four-carbon Wittig homologation and hydrogenation of the resulting internal olefin. Then, selective terminal acetonide hydrolysis and conversion of either terminal or the internal - OH groups selectively to corresponding sulphonate followed by base mediated displacement should install the epoxide with either original or inverted configuration at the internal carbon of the epoxide unit. According to this plan, first we prepared the known four carbon Wittig salt 17 following the reported procedure. ${ }^{53}$ The preparation of 17 involves the selective mono-benzylation of 1,4-butane diol and subsequent conversion of the free - OH group in the resulting 15 to the corresponding iodide 16 using triphenylphosphine, imidazole and iodine. Finally, the iodide 16 and triphenylphosphine were refluxed in benzene for 4 h to obtain 17 as a white powder. The spectral data of compound $\mathbf{1 7}$ was comparable with the data reported earlier.

Scheme 41: Preparation of Wittig Salt 17

The diacetonide 7 was made from D-Mannitol following the reported two step ${ }^{52}$ sequence - the preparation of triacetonide and selective hydrolysis of one of the terminal acetonides by employing 60% acetic acid. The oxidative cleavage of the diol in 7 was carried out using NaIO_{4} and the intermediate aldehyde was immediately subjected for the Wittig reaction without purification. The requisite ylide was generated from the phosphonium salt 17 by using $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ as the base (Scheme 42) in THF. This solution was added slowly to a cooled solution of the above prepared aldehyde in ether at $0{ }^{\circ} \mathrm{C}$ to obtain the olefin 18 as a 9:1 Z / E mixture. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 18, the signal corresponding to olefinic protons of the major isomer resonated at $\delta 5.42$ and 5.64 with a relatively small coupling constant of 10.7 Hz which indicated a cis-geometry for the major isomer. Five additional protons in the downfield region corresponding to the benzyl group were observed as multiplet at $\delta 7.27$ 7.35. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 8}$ showed two doublets of the olefinic carbons at 127.4 and 134.9 ppm . All other analytical data were in accordance with the assigned structure. Hydrogenation of the olefin 18 using Raney-Ni gave the saturated diacetonide 19. The disappearance of the two olefinic protons in the downfield region and the upfield shift of the two protons to δ 1.41-1.74 in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 9}$ confirmed the reduction of the double bond. Further, in the ${ }^{13} \mathrm{C}$ NMR spectrum, two new triplets at 26.3 and 33.7 ppm corresponding to the newly formed methylene groups have been noticed.

Scheme 42: Four-carbon homologation of diacetonde 7
The selective deprotection of the terminal acetonide in compound 19 was carried out using p-TSA in MeOH to obtain the diol 20. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 20, the disappearance of the two singlets at $\delta 1.32$ corresponding to the isopropylidene group and the corresponding quartets at 25.4 and 26.8 ppm and a singlet at 109.5 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the removal of the acetonide group. Next, the key epoxide 5 was prepared from the diol $\mathbf{2 0}$ by following a sequence of selective monotosylation and base
treatment. The selective tosylation $1^{\circ}-\mathrm{OH}$ of the diol 20 was carried out by using tosyl chloride, dibutyltinoxide and triethylamine as the base to afford 21. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 21, the appearance of a singlet integrating for three protons at $\delta 2.45$ corresponded to the methyl of the tosyl group. In addition, the protons of CH_{2}-OTs appeared at down filed at δ 4.01 and 4.25 as doublet of doublets, when compared to that in the starting diol [3.57-3.78 $(\mathrm{m}, 2 \mathrm{H})$], which clearly indicated the site of tosylation. The ${ }^{13} \mathrm{C}$ NMR spectrum showed a quartet at 21.7 ppm corresponding to the methyl of the tosyl group and two doublets at 127.6 and 129.9 ppm , each integrating for two carbons corresponding to the tosyl group along with that the carbon of CH_{2}-OTs is coming at 72.8 ppm as a triplet where as in diol it was came at 63.8 ppm . After confirming the structure of tosylate 21, next it was subjected for the epoxide formation by employing $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH to afford the key epoxide 5 through a $\mathrm{S}_{\mathrm{N}} 2$ displacement of the tosyl group. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 5 , the characteristic oxirane protons resonated at upfield $\delta 2.63$ (dd), 2.80 (dd), 2.94 (ddd), while a triplet and doublet at 45.1 and 51.5 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum suggesting the formation of the epoxide (Scheme 43).

Scheme 43: Synthesis of the epoxide fragment 5
After having established the route for the synthesis of the key coupling partner epoxide 5, we next proceeded to open the epoxide through the Yamaguchi protocol ${ }^{54}$ and the preparation of model substrates $\mathbf{1 1}$ and $\mathbf{1 2}$. Thus, the opening of epoxide 5 with the lithiated 1-heptyne under Yamaguchi conditions gave the homopropargylic alcohol 22. The ${ }^{1} \mathrm{H}$ NMR spectrum of 22 showed the propargylic protons as multiplets at $\delta 2.11-2.16$ and 2.46-2.50 (each integrating for two protons). The three protons of the CH_{3} group have resonated at $\delta 0.9$ as triplet. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the presence of two singlets at 74.9 and 84.0 ppm corresponding to the acetylenic carbon and one quartet at 14.0 ppm for the CH_{3} group. The IR spectrum showed the $\mathrm{C} \equiv \mathrm{C}$ stretching at $2100 \mathrm{~cm}^{-1}$. The alkynol 22 was protected as its
benzoate 23 by using benzoyl chloride and triethyl amine. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of five additional protons in the down field region corresponding to the benzoyl group and the proton of CHOBz was seen to resonate at $\delta 5.23$ as a doublet of doublet. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the presence of the carbonyl carbon at 165.6 ppm as a singlet as well as the carbon of $C \mathrm{HOBz}$ appeared at 72.9 as a doublet along with four peaks at aromatic region clearly indicate the presence of benzoyl group. The IR spectrum showed the $\mathrm{C}=\mathrm{O}$ stretching at $1725 \mathrm{~cm}^{-1}$ corresponding to the carbonyl carbon of the benzoyl group (Scheme 44).

Scheme 44. Synthesis of model alkynol substrates 11 and 12
The homopropargyl alcohol 22 was hydrolyzed by using 60% acetic acid in water to afford the triol 11. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 11, the isopropylidene group CH_{3} peaks at δ 1.35 and 1.38 were seen to disappear. In the ${ }^{13} \mathrm{C}$ NMR spectrum, quartets at 27.1 and 27.5 ppm and a singlet at 108.6 ppm corresponding to the isopropylidene group were seen to disappear. Similarly the benzoate 23 also hydrolysed by using 60% acetic acid in water to obtain the alkynediol 12. The constitution of compound 12 was established with the help of spectral and analytical data. In the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra of 12 , peaks corresponding to the isopropylidene group were seen to disappear and that of the benzoate group are intact. The IR spectrum showed the $\mathrm{O}-\mathrm{H}$ stretching at $3443 \mathrm{~cm}^{-1}$ and a $\mathrm{C}=\mathrm{O}$ stretching at $1721 \mathrm{~cm}^{-1}$, confirming the structure.

> Mode of cyclization of model substrates 11-14:

After having the key alkynols $\mathbf{1 1}$ and 12, the stage was set for their cyclization by employing $\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ as the catalyst. When employing $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ as the catalyst in acetonitrile, the cyclization of substrate $\mathbf{1 1}$ advanced smoothly with the disappearance of
the starting compound within 2 h and afforded the single product 24 exclusively. The constitution of the bicyclic ketal unit present in 24 was investigated with the help of spectral data analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 24 , the three characteristic methine protons of the ketal are present at $\delta 3.90,3.93$ and 4.19. The $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ unit present in the bicyclic ketal was resonated separately from the rest of the alkane-H as multiplets at down field. The presence of the characteristic ketal carbon at 108.5 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum (Scheme 45) of compound 24 and two CH_{2} s as triplets separately in the down field at 35.2 and 36.7 ppm indicated the presence of a [3.2.1] bicyclic ketal. The IR spectrum showed the $\mathrm{O}-\mathrm{H}$ stretching at $3444 \mathrm{~cm}^{-1}$, confirming the structure. Similarly, we performed the palladium mediated cyclization reaction for the benzoate protected alkynol 12.

11

12

$\mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 2 \mathrm{~h}, 67 \%$

24

Scheme 45: Pd(II)-Catalyzed cycloisomerization of the alkynols 11 and 12
In case of the benzoyl protected alkynediol 12, the reaction advanced smoothly with the disappearance of the starting compound within 4 h and provided the [3.2.1]-bicyclic ketal unit. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5}$, the three characteristic methine protons of the ketal are present at $\delta 3.76,4.66$ and 5.08 . As expected, the $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ unit of the bicyclic ketal ring was seen to resonate separately (as multiplets at $\delta 1.8-1.85$ and $1.86-1.90$) from the rest of the pendant alkane- CH_{2} groups. Coming to the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 25 , the presence of the characteristic ketal carbon at 110.7 ppm in the (Scheme 45) and of two well separated CH_{2} triplets in the down field at 34.5 and 32.0 ppm , clearly indicated the presence of a [3.2.1] bicyclic ketal.

Scheme 46: $\mathrm{Pd}(\mathrm{II})$-Catalyzed cycloisomerization of the acetonides 22 and 23

Considering our previous experience on the cycloisomerization of sugar derived alkynols, where we noticed the participation of acetonide protected diols in the cycloisomerization, for curiosity, the acetonides 22 and 23 were subjected for the cycloisomerization under standard conditions. Quite interestingly, in case of 22, the cycloisomerization was facile and the bicyclic ketal 24 was obtained in good yields. Interestingly, under these conditions, the benzoate $\mathbf{2 3}$ was intact even after the contents were kept for 24 hours.

Next, we proceeded for the synthesis of the other set of model substrates $\mathbf{1 3}$ and $\mathbf{1 4}$ that we have designed to understand the acyclic stereocontrol over the cycloisomerization. The key epimeric epoxide $\mathbf{1 0}$ was prepared from $\mathbf{2 0}$ following a three-step sequence. The selective $1^{\circ}-\mathrm{OH}$ benzoylation was performed by using benzoylchloride, dibutyltinoxide and triethylamine as the base in dichloromethane to afford 26. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26, the newly added benzoate protons resonated at $\delta 7.34-7.79(\mathrm{~m}, 5 \mathrm{H})$. In addition, the peaks corresponding to the $\mathrm{CH}_{2}-\mathrm{OBz}$ were appeared at down filed at $\delta 4.39$ and 4.58 as doublet of doublets, when compared to that in the compound 20 [3.57-3.78(m, 2H)], which clearly indicated the site of benzoylation. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the presence of a singlet at 167.0 ppm corresponding to the carbonyl carbon of the Bz group and the carbon of $\mathrm{CH}_{2}-\mathrm{OBz}$ is coming at 66.8 ppm as a triplet (Scheme 47).

Next, the mesylation of compound 26 was carried out by using methanesulfonyl chloride and triethylamine as base to procure compound 27. Subsequnetly, compound 27 was subjected for the hydrolysis of the benzoate group employing lithium hydroxide to obtain the epoxide $\mathbf{1 0}$ in very good yields. As expected, the oxirane protons resonated at up field as multiplets at $\delta 2.69$ (dd), 2.79 (dd), 2.99 (ddd) in the ${ }^{1} \mathrm{H}$ NMR spectrum and also the corresponding carbons appeared shifted to up field (as triplet and doublet at 43.9 and 51.4 ppm respectively) in the ${ }^{13} \mathrm{C}$ NMR spectrum (Scheme 47).

Scheme 47: Synthesis of epoxide 10

We followed a similar sequence that was employed in the preparation of model substrates $\mathbf{1 1}$ and $\mathbf{1 2}$ in order to prepare the other two model alkynols $\mathbf{1 3}$ and $\mathbf{1 4}$ from the epoxide 10. First, the epoxide was opened with the lithiated 1-heptyne to obtain the homopropargylic alcohol 28.

14
Scheme 48: Synthesis of model alkynols 13 and 14.
The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 8}$ showed the propargylic protons as triplet of triplet and multiplets at $\delta 2.14$ and 2.38-2.50 (each integrating for two protons) respectively. The three protons of the CH_{3} group were seen to resonate at $\delta 0.9$ as triplet. In the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 28, the presence of two singlets at 75.5 and 83.0 ppm corresponding to the acetylenic carbons and one quartet at 14.0 ppm for CH_{3} group are in support of the constitution of the product. The free - OH group in alkynol 28 was protected as its benzoate 29 by using benzoyl chloride and triethyl amine. The structure of the compound 29 was established with the help of spectral and analytical data. Next, the acetonide group present in the compound 28 was hydrolyzed by using 60% acetic acid in water to afford the alkyne triol 13. Under similar conditions, the hydrolysis of compound 29 proceeded smoothly and provided the alkynediol 14.

Next, the cycloisomerization of the alkynols 13 and 14, and also of their starting acetonides 28 and 29 respectively, was examined under the established conditions employing $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ as the catalyst. With both model alkynols 13 and 14 , the reactions advanced smoothly with the disappearance of the starting compound within $2-4 \mathrm{~h}$ and afforded the corresponding [3.2.1]-bicyclicketals $\mathbf{3 0}$ and $\mathbf{3 1}$ respectively as single products in very good yields. As we had noticed earlier, the cyclization of acetonide $\mathbf{2 8}$ was also facile and provided 30 in good yield. Table 1 shows the comparative ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemicals shifts selected protons of the ketals 24/25 and 30/31.

Scheme 49: Pd(II)-catalyzed cycloisomerization of the alkynol 28 and alkyne diols 13, 14.
Thus, the model studies employing the model substrates $\mathbf{1 1}$ - $\mathbf{1 4}$ clearly indicated that the cycloisomerization proceeded with a complete 6 -endo-dig mode of selectivity indicating that the stereochemistry as well as bulkiness of the substituent at the β-position to the alkyne seems to not be having much influence over the regioselectivity of the cycloisomerization. The facile cyclization of acetonides $\mathbf{2 2}$ and $\mathbf{2 8}$ having the free alcohol β-to the alkyne and no reaction of the benzoates 23 and 29 under similar reaction conditions indicates that the acetonide hydrolysis might be facilitated by the presence of an adjacent free-OH.

Compound	$\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}$	$\mathrm{C}_{1}-\mathrm{C}_{4}$
 24	$\begin{aligned} & 3.90(\mathrm{ddd}, J=5.5,9.6,18.2 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 4.19(\mathrm{dd}, J=5.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 3.93(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 66.5(\mathrm{~d}), \\ & 80.8(\mathrm{~d}), \\ & 75.7(\mathrm{~d}), \\ & 108.5(\mathrm{~s}) \end{aligned}$
	$\begin{aligned} & 5.08(\mathrm{ddd}, J=5.5,7.3,12.8 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 4.66(\mathrm{~d}, J=4.6,1 \mathrm{H}), \\ & 3.76(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 74.3(\mathrm{~d}), \\ & 81.4(\mathrm{~d}), \\ & 77.2(\mathrm{~d}), \\ & 110.7 \text { (s) } \end{aligned}$
	$\begin{aligned} & 3.90(\mathrm{~m}, 1 \mathrm{H}), \\ & 4.20(\mathrm{dd}, J=5.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 3.94(\mathrm{dd}, J=4.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), \end{aligned}$	$\begin{aligned} & 66.6 \text { (d), } \\ & 80.8 \text { (d), } \\ & 75.7 \text { (d), } \\ & 108.5(\mathrm{~s}) \end{aligned}$
	$\begin{aligned} & 5.08(\mathrm{dt}, J=5.6,7.1,11.5 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 4.66(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 3.76(\mathrm{~d}, J=5.3, \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 74.3 \text { (d), } \\ & 81.4 \text { (d), } \\ & 77.2 \text { (d), } \\ & 110.7 \text { (s) } \end{aligned}$

Table 1: Comparative ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemicals shift of cyclized ketal.

After having examined the regioselectivity of the key cycloisomerization reaction that was planned in our retrosynthetic scheme for the didemniserinolipid B, this information has been used in our group to arrive at the Burke's intermediate ${ }^{45}$ by simply replacing the heptyne with a C_{17}-alkynol and adding the serinol unit at the final stages. However, one of the bottlenecks in this approach was the timing of this serinol coupling in the sequence as well as the difficulties that we faced for the optimization of this coupling. This has taken a substantial time as it needed repeated scale-up of a quite lengthy linear sequence. Considering this, in order to make the synthetic scheme more convergent, to provide the step-economy and to demonstrate the substrate flexibility, we have devised an alternate strategy (Fig. 5), featuring the serinol coupling with the C_{17}-alkynol followed by alkyne addition to the epoxide 5 and subsequent cycloisomerization of the resulting acetonide 4. This approach thus should avoid the several intermediate protection and deprotection events. However, the cycloisomerization of 4 will be a challenging proposition as the hydrolysis of the other acetonide (of aminol unit) is going to be a potential side reaction that can possibly poison the electrophilic Pd-complex.

$>$ Synthesis of C17-alkynol fragment 9:

Our efforts in this direction started with the preparation of the C_{17}-alkynol 9 and its coupling with the serinol unit 8. We have established Zipper reaction ${ }^{50}$ as the reliable tool for the synthesis of $\mathbf{9}$. The synthesis of $\mathbf{9}$ started with the alkylation of commercially available THP ether of propargyl alcohol, tetradecyl bromide using n-butyl lithium as a base to afford the substituted alkyne 32. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32 , the propargylic protons of the aliphatic end resonated at $\delta 2.11-2.22$ as multiplet while those on the THP end resonated at $\delta 4.14$ and 4.25 as doublet of triplet. The acetylenic carbons resonated at 75.8 and 86.6 ppm as singlets in the ${ }^{13} \mathrm{C}$ NMR spectrum. The $\mathrm{C} \equiv \mathrm{C}$ stretching was observed at $2100 \mathrm{~cm}^{-1}$ in the IR spectrum. The deprotection of the THP ether in 32 was effected using p TSA and methanol to afford the alkylated propargyl alcohol 33. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 33, the absence of triplet at $\delta 4.79$ and of eight methylene protons in the up-field region of $\delta 1.46-1.58$ corresponding to the THP ring confirmed the deprotection at the same time one triplet of triplet resonating at $\delta 2.18$ for two protons, corresponds to $\mathrm{CH}_{2} \mathrm{OH}$. Also in the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33 , the absence of doublet at 96.4 ppm corresponding to the hemiacetal carbon of THP ring supported this and the carbon of $\mathrm{CH}_{2} \mathrm{OH}$ appeared at upfield as a triplet at 51.32 ppm when compared to that in the compound 32 (54.55 ppm). The IR spectrum of 33 showed the $\mathrm{O}-\mathrm{H}$ stretching at $3539 \mathrm{~cm}^{-1}$ (Scheme 50).

Scheme 50: Synthesis of Heptadec-2-yn-1-ol

> Zipper reaction of Heptadec-2-yn-1-ol (33):

The isomerization of an internal alkyne to a terminal alkyne in the presence of a base is long known as the acetylenic zipper reaction. ${ }^{50}$ After exploring a variety of bases and reaction conditions (Table 2), we concluded that the isomerization of alcohol 33 could be conducted successfully by employing lithium metal in combination with potassium butoxide in aminopropylamine as the solvent/base. The key alkynol 9 was obtained in 79% yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9}$ evidenced the presence of terminal acetylene. For example, in the ${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{9}$, the acetylenic- H resonated as a triplet at $\delta 1.88$ and the proapargylic protons resonated as dt at $\delta 2.16 \mathrm{ppm}$. The acetylenic carbons resonated as a doublet and a singlet at 68.2 and 84.6 ppm respectively in the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 9 . The IR spectrum of compound $\mathbf{9}$ showed the $\mathrm{O}-\mathrm{H}$ stretching at $3308 \mathrm{~cm}^{-1}$.

33 9

S. No.	Reaction conditions	Results obtained
1	$\mathrm{KO}{ }^{\prime} \mathrm{Bu}, \mathrm{DMSO}, \mathrm{rt}$	Starting material recovered
2	Na, liq. $\mathrm{NH}_{3},-78^{\circ} \mathrm{C}$	Starting material recovered
3	Li, liq. $\mathrm{NH}_{3},-78^{\circ} \mathrm{C}$	Starting material recovered
4	$\mathrm{KO}{ }^{\prime} \mathrm{Bu}$, DMSO, $80^{\circ} \mathrm{C}$	Starting material recovered
5	$\mathrm{KH}, 1,3$ diamino-propane. $0^{\circ} \mathrm{C}$ - rt	$<5 \%$ conversion
6	$\mathrm{Li}, \mathrm{KO} \mathrm{BO}^{\prime} \mathrm{Bu}, 1,3$-diamino-propane, rt	Isomerization with 79% yield

Table 2. Conditions explored for the zipper reaction

> Execution of the Serinol Coupling Event:

After establishing the zipper reaction, our attention turned on the execution of the coupling of the appropriately protected serinol derivative $\mathbf{8}$ with alkynol. The known serinol derivative 8 required for the etherification was prepared from D-serine in 4 steps according to the literature procedures (Scheme 51). ${ }^{51}$ The etherification of the serinol with the C_{17}-alkynol $\mathbf{9}$ was attempted in a number of ways. Initially, the etherification of the alkynol 9 was
attempted with the mesylate of the serinol 8, but it did not result in the desired product. During this period, Burke's group ${ }^{45}$ reported their synthesis of Didemniserinolipid B where it was shown that the coupling is effective with the mesylate of the alkynol and the serinol $\mathbf{8}$ using sodium hydride as the base, and importantly DMSO as solvent at $0^{\circ} \mathrm{C}$. Encouraged by this finding, we prepared the alkynol mesylated $9-\mathrm{Ms}$ and examined its coupling with serinol 8 following Burke's procedure. It needed substantial optimization to provide reproducible yields. The key to success was the slow addition of mesylate $\mathbf{9}-\mathrm{Ms}$ to a solution of serinol $\mathbf{8}$ in DMSO at $0^{\circ} \mathrm{C}$ or a little below during 4 h and afterwards, allowing the reaction to stir at rt for an additional 12 h . Under these conditions, the requisite building block $\mathbf{6}$ was obtained in 71% yield.

Scheme 51: Coupling of serinol with the mesylate of C_{17} alkynol.
In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6 , the characteristic peaks of both the units the alkyne triplet at $\delta 1.92$ with coupling constant 2.7 Hz and the ${ }^{\mathrm{t}} \mathrm{Bu}$ unit of the Boc group at $\delta 1.45$ integrating for nine protons, two methyl singlets of acetonide at $\delta 1.50$ and 1.55 have been seen to resonate at the expected positions. As expected, many of the singlets in the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6 are doubled due to the restricted rotation of the N -Boc group. The appearance of two triplets at $65.4,65.7(2 t, 1 \mathrm{C}), 69.3,70.1(2 \mathrm{t}, 1 \mathrm{C}) \mathrm{ppm}$ and one doublet at $56.3,56.5(2 \mathrm{~d}, 1 \mathrm{C}) \mathrm{ppm}$ of the serinol part and of the carbonyl carbon of the Boc group as a singlet at $151.7,152.2(2 \mathrm{~s}, 1 \mathrm{C}) \mathrm{ppm}$, and of acetylenic carbons as doublet and singlet at 68.1 and 84.5 ppm respectively, in the ${ }^{13} \mathrm{C}$ NMR spectrum of 6 confirmed the etherification. Further, the IR spectrum showed the $\mathrm{C}=\mathrm{O}$ stretching at $1694 \mathrm{~cm}^{-1}$. All other analytical data were in total agreement with the assigned structure (Scheme 51).

> Coupling of key fragments 5 and 6 and cycloisomerization:

Having the key building block 6 in hand, the stage was now set for its coupling with the previously synthesized epoxide 5 and the cycloisomerization of the resulting alkynol 4. The Yamaguchi coupling of the oxirane 5 with the alkyne-ether $\mathbf{6}$ proceeded smoothly under the previously optimized conditions and gave the key intermediate 4 in very good yields. The
constitution of the compound 4 was established with the help of spectral and analytical data. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4, two sets of propargylic protons appeared as triplet of triplet and multiplets at $\delta 2.14$ and 2.43-2.48 (each integrating for two protons) respectively. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the presence of two singlets at 74.9 and 83.9 ppm corresponding to the acetylene carbons.

Scheme 52: Key coupling event under Yamaguchi conditions
After having the key alkynol, 4 now the stage was set for executing the key complexity transform to build the requiste [3.2.1]-bicyclic ketal unit by employing the Pdmediated alkynol cycloisomerization reaction. This alkynol cycloisomerization needs a special mention and also needed substantial catalyst optimization. When we employed $\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ as the catalyst in acetonitrile, the reaction advanced smoothly with the disappearance of the starting compound within 2 h and provided a mixture of products. The LCMS analysis of the resulting complex mixture revealed the formation of the requisite bicyclicketals 2, the corresponding ketone -the product resulting from the deprotection of the acetonide group present in the serinol unit. Even the freshly prepared catalyst and properly dried acetonitrile could not affect the yield. $\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$ was found to be ineffective for this transformation.

Scheme 53: The key cycloisomerization of the alkynol 4

Having encountered failures in the Pd-catalyzed cycloisomerization, we assumed that the presence of the nitrogen group of serine part might be creating the problem in the cyclization reaction. The catalytic activity of palladium decreases as soon as nitrogen coordinates to the [Pd] complex. Hence, we oriented to the other electrophilic metal catalysts like Au which have very less affinity to form a complex with nitrogen compared to oxygen or the triple bond. Various electrophilic [Au]-complexes such as $\mathrm{AuCl}_{3}, \mathrm{AuBr}_{3}$, and $\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}$ have been screened for the cycloisomerization of $4 .{ }^{55}$ To this end, the best results were obtained when $\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(5 \mathrm{~mol} \%)$ was employed in combination with $\mathrm{AgSbSF}_{6}(5 \mathrm{~mol}$ $\%$) in dichloromethane. With this catalyst combination, the cycloisomerization of 4 gave exclusively one compound 34 in 85% yields. The analysis of its spectral and analytical data revealed that the compound 34 does not possess any acetonide group ${ }^{55 \mathrm{c}}$ and is resulting from the requisite cycloisomerization followed by the deprotection of serinol acetonide. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of 34 , the three characteristic methine protons of the ketal are present at $\delta 3.53,3.65$ and 3.85 . The $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ unit present in the bicyclic ketal was seen to resonate separately from the rest of the alkane-H as multiplets at down field. Two singlet peaks at $\delta 1.51$ and 1.55 due to the isopropylidene group disappeared and in the ${ }^{13} \mathrm{C}$ NMR spectrum, quartets at 23.0 and 27.1 ppm and a singlet at $93.3,93.7$ ($2 \mathrm{~s}, 1 \mathrm{C}$) ppm corresponding to the isopropylidene group were absent. The presence of the characteristic ketal carbon at 109.5 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum and two $\mathrm{CH}_{2} \mathrm{~s}$ as triplets separately in the down field at 35.2 and 37.5 ppm indicated the presence of a [3.2.1] bicyclic ketal.

Having successfully demonstrated the feasibility of the key cycloisomerization on the originally planned substrate 4 with the desired regioselectivity, we next proceeded for the two carbon extension on the other side of the ketal. Our initial plan was to synthesize the penultimate intermediate 38 that has been reported by Ley in their total synthesis. This exercise was started with the protection of the free hydroxyl groups in compound 34 as their acetates by using acetic anhydride and triethyl amine in dichloromethane to obtain the diacetate $\mathbf{3 5}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5}$, the singlets of two acetyl groups resonated at δ 2.03 and 2.09 (each integrating for three protons) respectively, at the same time the proton of ring CHOAc resonating at $\delta 4.66$ as a triplet and the two protons of remaining CHOAc are coming at 4.15 as a doublet of doublet. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the presence of two singlets at 170.8 ppm corresponding to the two acetyl groups as well as two carbons of CHOAc coming at 63.7 (t) and 68.3 (d) respectively. Next, the compound 35 was subjected to debenzylation by using $10 \% \mathrm{Pd}-\mathrm{C}$ in ethyl acetate to afford the alcohol 36. The absence of 5 aromatic protons and the characteristic benzylic protons at $\delta 4.47$ in the ${ }^{1} \mathrm{H}$ NMR spectrum
of 36 and the absence of four doublets and a singlet in the range of $127-138 \mathrm{ppm}$ in its ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the debenzylation.

Scheme 54: Synthesis of requisite alcohol

> Wittig homologation of compound 36 and 40:

The resulting primary alcohol in compound 36 was oxidized to aldehyde by using DMP as the oxidizing agent. ${ }^{56}$ The aldehyde was used as such for the next step without further purification. The Wittig olefination of the aldehyde using the stable ylide $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ in refluxing benzene afforded the desired α, β-unsaturated ester 37. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 37, the two olefinic protons resonated at $\delta 5.80$ (d) and 6.93 (dt) with a coupling constant of 15.6 Hz which clearly indicated the presence of a trans double bond. Also, the characteristic quartet corresponding methylene group of the ethyl ester was seen to appear at $\delta 4.17$. In the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 37 , the peaks corresponding to the olefinic carbons resonated as doublets at 121.5 and 148.9 ppm and of the ester carbonyl resonated at 166.7 ppm .

36

(Penultimated intermediate
in the Ley's total synthesis of didemniserinolipid

Scheme 55: Wittig homologation of compound 36 and attempted synthesis of
Ley's intermediate 38
Next we examined the deprotection of the acetate and Boc groups present in the compound 37 by employing various Lewis acids to arrive at the hydrochloride 38 that has
been used as the penultimate intermediate in the total synthesis of didemniserinolipid B by Ley and co-workers. However, the deacetylation of the compound 37 has turned out to be a difficult proposition.

As a part of this program, the synthesis of the epi-Didemniserinolipid B has been attempted in parallel by employing the epimeric epoxide $\mathbf{1 0}$ that we have prepared during our model studies. As shown in Scheme 56, the coupling of epoxide 10 with $\mathbf{6}$ proceeded smoothly under the established conditions and provided the alkynol 39. The cycloisomerization of alkynol 39 was carried out with the Au-complex to obtain the bicyclic ketal 40 resulting from cyclization/serinol acetonide hydrolysis and was obtained in very good yields. Compound 40 was converted to the corresponding diacetate 41 by treating it with acetic anhydride in pyridine.

Scheme 56: Towards the synthesis of epi-Didemniserinolipid B
The resulting compound 41 was subjected to debenzylation by using $\mathrm{Pd}-\mathrm{C}$ in methanol to afford the alcohol 42. Subsequently, the two carbon homologation of 42 was carried out following a sequence of oxidation of the primary alcohol by using DMP and treatment of the resulting aldehyde with stable ylide $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ in refluxing benzene to obtain the desired α, β-unsaturated ester 43. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of the olefinic protons at $\delta 5.80(\mathrm{~d})$ and 6.93 (dt) with a coupling constant of 15.7 Hz , indicative of a trans double bond. Also, the quartet at $\delta 4.17$ was suggestive of the methylene group of the ethyl ester. The ${ }^{13} \mathrm{C}$ NMR spectrum showed doublets at 121.5 and 148.9 ppm corresponding to the olefinic carbons and the ester carbonyl resonated at 166.7 ppm . The IR
spectrum showed the $\mathrm{C}=\mathrm{O}$ stretching at $1742 \mathrm{~cm}^{-1}$ for the ester. As it was noticed with 37 , even in case of $\mathbf{4 3}$, the deacetylation was turned out to be a difficult proposition.

Having met with difficulties in the deacetylation of the advanced intermediates 37 and 43, to arrive at the penultimate compound that was reported in the total synthesis of didemniserinolipid B by Ley's group, we revised our strategy to obtain the originally planned Burke's intermediate 2. In this context, the intermediate ketal 34 obtained from the Aucatalyzed cycloisomerization was subjected for the acetonide protection by using dimethoxy propane and p-TSA (cat.) in acetone to obtain compound 44 . The ${ }^{1} \mathrm{H}$ NMR spectrum of 44 showed singlet peaks at $\delta 1.51$ and 1.55 integrating for three protons each indicative of the acetonide unit of the serine part. In the ${ }^{13} \mathrm{C}$ NMR spectrum the acetonide the quaternary carbon resonated as a singlet at $93.2,93.7(2 \mathrm{~s}, 1 \mathrm{C})$ and two methyl groups were identified at 23.1, $24.4(2 q, 1 \mathrm{C})$ and 26.7, $27.5(2 \mathrm{q}, 1 \mathrm{C}) \mathrm{ppm}$ respectively and confirmed the acetonide protection.

Scheme 57: Acetonide protection of compound 34
The compound 44 was subjected to debenzylation by using $\mathrm{Pd}(\mathrm{OH})_{2}$ in methanol to afford the alcohol 45. The absence of five aromatic protons and the characteristic benzylic protons at $\delta 4.49$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 45, and of five aromatic carbon doublets and a singlet in the range of $127.5-138.8 \mathrm{ppm}$ in its ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the debenzylation. The primary alcohol was oxidized to the aldehyde by using DMP as the oxidizing agent. The aldehyde was used as such for the next step without further purification. The Wittig olefination of the aldehyde using the stable ylide $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ in refluxing benzene afforded the desired α, β-unsaturated ester 2 - Burke's intermediate. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of the olefinic protons at $\delta 5.80$ (d) and 6.93 (dt) with a coupling constant of 15.7 Hz indicative of a trans double bond. Also, the quartet at $\delta 4.17$ was suggestive of the methylene group of the ethyl ester. The ${ }^{13} \mathrm{C}$ NMR spectrum showed doublets at 121.5 and 148.9 ppm corresponding to the olefinic carbons and the ester carbonyl resonated at 166.7 ppm . The IR spectrum showed the $\mathrm{C}=\mathrm{O}$ stretching at $1732 \mathrm{~cm}^{-1}$ for the ester. All other data was in total agreement with the reported values by the Burke group. The
specific rotation of the synthetic sample was found to be $[\alpha]_{\mathrm{D}}{ }^{25}$: +26.6 (c $\left.0.4, \mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}{ }^{25}$: $+24.6\left(c 0.5, \mathrm{CHCl}_{3}\right),{ }^{33 \mathrm{f}}[\alpha]_{\mathrm{D}}{ }^{25}:+37.6\left(c 0.98, \mathrm{CHCl}_{3}\right) .{ }^{45}$

45

2 (Burke's intermediate)
i) $\mathrm{DMP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 6 \mathrm{~h}$
ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$
benzene
reflux, 1h, 78\%

Scheme 58: Formal synthesis of Didemniserinolipid B (1)
To conclude, a formal total synthesis of didemniserinolipid B was developed by employing a regioselective gold-mediated 6-endo-dig cycloisomerization. The route we developed for the key alkyne diol (containing 30 out of 32 carbons of the complete framework) is synthesized in a highly modular fashion, featuring the risky serinol coupling event with the easily accessible C_{17}-alkynol and followed by coupling with the epoxide that has been synthesized in parallel from D-mannitol. The interesting feature of our approach is the [Au]-mediated cycloisomerization of an acetonide protected alkynediol unit that we executed. This has avoided several late stage protection deprotection events. Independent routes for the synthesis of both Ley's and Burke's intermediates have been explored from the resulting bicyclic ketal. The attempted synthesis of Ley's intermediate was not successful as the final deprotection turned out to be problematic. However, the Burke's intermediate has been successfully synthesized thus conclusively ending this exercise as a formal total synthesis of didemniserinolipid B.
(4S,4'R,5R)-5-((Z)-5-(Benzyloxy)pent-1-enyl)-2,2,2',2'-tetramethyl-4,4'-bi(1,3-dioxolane) (18)

At $0^{\circ} \mathrm{C}$, a solution of the aldehyde ($4.0 \mathrm{~g}, 17.4 \mathrm{mmol}$) in ether (20 mL) was treated with a solution of the ylide $\mathbf{1 7}$ [generated from $\mathrm{BnO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{I}^{-}(28.8 \mathrm{~g}, 52.2 \mathrm{mmol})$ using $\mathrm{KO}^{t} \mathrm{Bu}(4.9 \mathrm{~g}, 43.5 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $\left.0^{\circ} \mathrm{C}\right]$ and stirred for 30 min. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$
 (25 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (2 x 25 mL). The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the crude product by column chromatography (90:10 petroleum ether/EtOAc) gave 18 ($4.4 \mathrm{~g}, 67 \%$) as colorless syrup: R_{f} ($10 \% \mathrm{EtOAc} /$ petroleum ether) 0.5; $[\alpha]^{25}$ D $+10.7\left(c\right.$ 1.3, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 2986,1448,1243,1048,847,634,467 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.75(\mathrm{~m}, 2 \mathrm{H})$, 2.22-2.31 (m, 2H), 3.48 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.70 (dd, $J=6.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89-3.95 (m, 1H), 4.01-4.10 (m, 2H), $4.50(\mathrm{~s}, 2 \mathrm{H}), 4.68$ (ddd, $J=0.7,7.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{tt}, J=1.5,10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.64(\mathrm{tt}, J=7.7,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 24.4(\mathrm{t})$, 25.2 (q), 26.6 (q), 26.9 (q), 27.2 (q), 29.3 (t), 66.8 (t), 69.5 (t), 72.8 (t), 74.9 (d), 76.3 (d), 81.1 (d), 109.2 (s), 109.4 (s), 127.4 (d, 2C), 127.5 (d, 2C), 128.3 (d, 2C), 134.9 (d), 138.5 (s) ppm; MS $(E S I) \mathrm{m} / \mathrm{z}=399[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$399.2147, found 399.2148.
(4S,4'R,5R)-5-(5-(Benzyloxy)pentyl)-2,2,2',2'-tetramethyl-4,4'-bi(1,3-dioxolane) (19)

A suspension of the diacetonide 18 ($2.1 \mathrm{~g}, 5.6 \mathrm{mmol}$), Raney-Ni (50 mg) in ethanol (20 mL) was flushed with hydrogen gas and stirred under hydrogen (20 psi) atmosphere for 30 min . The reaction mixture was filtered through celite, concentrated and the crude product was purified by column chromatography (90:10
 petroleum ether/EtOAc) to procure 19 ($2.0 \mathrm{~g}, 95 \%$) as colorless syrup: R_{f} ($10 \% \mathrm{EtOAc}$ /petroleum ether) $0.52 ;[\alpha]^{25}{ }_{\mathrm{D}}:+18.7\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3018,1496,1372,1216,1064,758,668$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.72(\mathrm{~m}, 8 \mathrm{H})$,
$3.45(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-4.12(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.32(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 25.4(\mathrm{q}), 26.0(\mathrm{t}), 26.3(\mathrm{t}), 26.8(\mathrm{q}), 27.1$ (q), 27.4 (q), $29.7(\mathrm{t})$, 33.7 (t), 67.7 (t), 70.3 (t), 72.8 (t), 77.3 (d), 80.5 (d), 81.2 (d), 108.7 (s), 109.5 (s), 127.4 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.6 (s) ppm; MS (ESI) m/z $=401[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$401.2304, found 401.2271.

(R)-1-((4R,5R)-5-(5-(Benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethane-1,2-diol (20)

To a solution of the diacetonide $19(1.4 \mathrm{~g}, 3.7 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$, catalytic p-TSA ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was quenched by the addition of few drops of
 triethylamine and the solvent was evaporated. The crude residue was purified by column chromatography ($65: 35$ petroleum ether/EtOAc) to obtain $20\left(1.0 \mathrm{~g}, 80 \%\right.$) as a colorless oil: R_{f} (50\% EtOAc/petroleum ether) $0.3 ;[\alpha]^{25}{ }_{\mathrm{D}}:+30.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3433,2936,1415$, 1373, 1216, 1069, 759, $669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.40-$ $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.56-1.69(\mathrm{~m}, 5 \mathrm{H}), 2.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{dt}, J=3.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.33(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 25.9(\mathrm{t}), 26.0(\mathrm{t}), 27.0(\mathrm{q}), 27.3(\mathrm{q}), 29.5(\mathrm{t}), 33.9(\mathrm{t}), 63.8(\mathrm{t})$, 70.2 (t), 72.7 (d), 72.7 (t), 79.3 (d), 80.8 (d), 108.6 (s), 127.4 (d), 127.5 (d, 2C), 128.2 (d, 2C), 138.4 (s) ppm; MS (ESI) m/z = $361[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 361.1991, found 361.1972 .
(R)-2-((4R,5R)-5-(5-(Benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-hydroxyethyl 4-methyl-benzenesulfonate (21)

To an ice cooled solution of the diol 20 ($500 \mathrm{mg}, 1.48$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, were added $\mathrm{Bu}_{2} \mathrm{SnO}(10 \mathrm{mg})$, DMAP $(10 \mathrm{mg})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.31 \mathrm{~mL}, 2.22 \mathrm{mmol})$ and stirred for 0.5 h at rt. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and treated with p -
 $\mathrm{TsCl}(280 \mathrm{mg}, 1.48 \mathrm{mmol})$ and stirring was continued for 4 h at rt. Solvent was evaporated under reduced pressure, and the residue was purified by column chromatography ($80: 20$ petroleum ether/EtOAc) to yield 21 (655 mg, 90\%) as colorless syrup: R_{f} (30\% EtOAc/petroleum ether)
$0.46 ;[\alpha]^{25}{ }_{\mathrm{D}}:+33.0\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3434,2984,1560,1375,1247,1047,757,668$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.69(\mathrm{~m}$, 5H), 2.45 (s, 3H), 2.47 (br s, 1H), 3.45 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.48 (t, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72-3.83 (m, 1 H), 3.91 (dd, $J=3.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01 (dd, $J=6.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (dd, $J=2.8,10.5 \mathrm{~Hz}$, 1H), 4.48 (s, 2H), 7.23-7.32 (m, 5H), 7.34 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 21.7(\mathrm{q}), 25.9(\mathrm{t}), 26.1(\mathrm{t}), 27.0(\mathrm{q}), 27.4(\mathrm{q}), 29.6(\mathrm{t}), 34.0(\mathrm{t}), 70.3(\mathrm{t}), 71.5$ (d), 72.1 (t), 72.8 (t), 79.4 (d), 80.1 (d), 109.9 (s), 127.5 (d), 127.6 (d, 2C), 128.1 (d, 2C), 128.3 (d, 2C), 129.9 (d, 2C), 132.7 (s), 138.6 (s), 144.9 (s) ppm; MS (ESI) $m / z=515[\mathrm{M}+\mathrm{Na}]^{+}$; CHN calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 63.39 ; \mathrm{H}, 7.37$; S, 6.51%, found $\mathrm{C}, 63.28 ; \mathrm{H}, 7.20 ; \mathrm{S}, 6.12 \%$.

(4R,5S)-4-(5-(Benzyloxy)pentyl)-2,2-dimethyl-5-((R)-oxiran-2-yl)-1,3-dioxolane (5)

A suspension of the tosylate $21(500 \mathrm{mg}, 1.02 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(210 \mathrm{mg}, 1.52 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ under argon atmosphere for 1 h . The reaction mixture was filtered, concentrated and the residue was purified by silica gel
 chromatography ($80: 20$ petroleum ether/EtOAc) to obtain 5 ($300 \mathrm{mg}, 92 \%$) as colorless oil: R_{f} (30\% EtOAc/petroleum ether) 0.5; $[\alpha]^{25}{ }_{\mathrm{D}}:+4.5\left(c\right.$ 1.2, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v: 2937,2861,1455$, 1371, 1217, 1099, 876, 756, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.40(\mathrm{~s}, 6 \mathrm{H}), 1.42-1.53(\mathrm{~m}, ~}$ 3H), 1.57-1.71 (m, 5H), 2.64 (dd, $J=2.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dd, $J=3.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (ddd, J $=2.5,3.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (dd, $J=6.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.96 (dt, $J=4.7$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 25.6(\mathrm{t}), 26.1(\mathrm{t})$, 26.6 (q), 27.1 (q), 29.5 (t), 33.1 (t), 45.1 (t), 51.5 (d), 70.2 (t), 72.7 (t), 79.5 (d), 81.1 (d), 109.0 (s), 127.4 (d), 127.5 (d, 2C), 128.2 (d, 2C), 138.6 (s) ppm; MS (ESI) m/z $=343[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 343.1886$, found 343.1860.

General procedure for epoxide opening (A): At $-78{ }^{\circ} \mathrm{C}$, to a solution of 1-alkyne (4 mmol) in THF (15 mL) were added $n-\mathrm{BuLi}(4 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(4 \mathrm{mmol})$ followed by a solution of the epoxide (1 mmol) in THF (8 mL) with a 15 minutes interval. The stirring was continued for another 30 min at $-78{ }^{\circ} \mathrm{C}$ and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The reaction mixture was allowed to reach rt and partitioned between ethyl acetate (25 mL) and water (25 mL). The aqueous layer was extracted with ethyl acetate ($2 \times 25 \mathrm{~mL}$) and the combined organic layer was washed
with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the crude alkynol product was carried out by column chromatography.

(R)-1-((4R,5R)-5-(5-(Benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)non-3-yn-1-ol (22)

1-Heptyne ($594 \mathrm{mg}, 6.2 \mathrm{mmol}$), n-BuLi (3.9 mL, 6.2 mmol, 1.6 M in hexane), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.77 \mathrm{~mL}, 6.2 \mathrm{mmol})$ and epoxide 5 ($0.5 \mathrm{~g}, 1.6 \mathrm{mmol}$) were subjected to general procedure A. The crude product was purified by silica gel chromatography (85:15 petroleum ether/EtOAc) to afford 22 ($530 \mathrm{mg}, 82 \%$) as a
 colorless syrup: $\mathrm{R}_{f}\left(10 \% \mathrm{EtOAc} /\right.$ petroleum ether) 0.57 ; $[\alpha]^{25}{ }_{\mathrm{D}}:+37.3\left(c 2.5, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $v: 3546,2934,2861,2401,1455,1370,1217,1101,878,769,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta 0.90(\mathrm{t}, 3 \mathrm{H}), 1.27-1.33$ (m, 4H), 1.35 (s, 3H), 1.38 (s, 3H), 1.40-1.70 (m, 10H), 2.112.16 (m, 2H), 2.16 (br s, 1H), 2.45-2.50 (m, 2H), 3.46 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.60-3.77 (m, 2H), $3.98(\mathrm{dt}, J=3.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 14.0$
 (t), 70.4 (t), 70.9 (d), 72.9 (t), 74.9 (s), 78.9 (d), 81.9 (d), 84.0 (s), 108.6 (s$), 127.5$ (d), 127.7 (d, 2C), 128.4(d, 2C), 138.7 (s) ppm; MS (ESI) m/z $=439[M+N a]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+} 439.2825$, found 439.2826.
(R)-1-((4S,5R)-5-(5-(Benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)non-3-ynyl benzoate (23)

To an ice cooled solution of $22(500 \mathrm{mg}, 1.2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ (0.5 $\mathrm{mL}, 3.60 \mathrm{mmol}$) and DMAP (20 mg) $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added benzoyl chloride ($0.21 \mathrm{~mL}, 1.8 \mathrm{mmol}$) and stirred for 2 h at rt . The reaction mixture was poured into water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layer was washed with
 brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under the reduced pressure. the resulting crude product was purified by column chromatography ($90: 10$ petroleum ether/EtOAc) to afford the benzoate 23 ($560 \mathrm{mg}, 89 \%$) as colorless syrup: $\mathrm{R}_{f}\left(10 \% \mathrm{EtOAc} /\right.$ petroleum ether) 0.5 ; $[\alpha]^{25}{ }_{\mathrm{D}}$: +51.2 (c 1.1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3019,1717,1214,1111,757,711,669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 0.82$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.19-1.34 (m, 8H), 1.36 (s, 3H), 1.41 (s, 3H), 1.46-1.70 (m, 6H),
$2.09(\mathrm{tt}, J=2.1,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.96-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.45$ (s, 2H), 5.23 (dd, $J=5.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 13.9(\mathrm{q}), 18.6(\mathrm{t}), 21.6(\mathrm{t}), 22.1(\mathrm{t}), 25.9$ (t), 26.1 (t), 27.0 (q), 27.5 (q), 28.5 (t), $29.5(t), 30.9(t), 34.2(t), 70.2(t), 72.8(t), 72.9(d), 74.6$ (s), 78.8 (d), 80.3 (d), 82.9 (s), 109.2 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 128.4 (d, 2C), 129.7 (d, 2C), 129.9 (s), 133.1 (d), 138.6 (s), 165.6 (s) ppm; MS (ESI) m/z $=543[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$543.3087, found 543.3043.

General procedure for acetonide deprotection (B): A solution of acetonide (1 mmol) in 60% AcOH in water $(5 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for $2-4 \mathrm{~h}$. The reaction mixture was evaporated. The crude residue wed with toluene $(10 \mathrm{ml})$ three times. Then it was purified by column chromatography
(6R,7S,8R)-1-(Benzyloxy)tetradec-10-yne-6,7,8-triol (11)

Acetonide 22 ($150 \mathrm{mg}, 0.36 \mathrm{mmol}$) was subjected to general procedure \mathbf{B} and the crude product was purified by silica gel chromatography (15:85 petroleum ether/EtOAc) to obtain 11 (120 $\mathrm{mg}, 88 \%)$ as a white solid: $\mathrm{R}_{f}(80 \% \mathrm{EtOAc} /$ petroleum ether) 0.35 ;
 Mp: $51-52{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{31}:+3.1\left(c\right.$ 2.9, $\left.\mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) v: 3400$, 2933, 2859, 1603, 1495, 1455, 1216, 1098, 756, 697, $666 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}^{\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.9 ~}$ $(\mathrm{t}, J=7.0,3 \mathrm{H}), 1.28-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.65(\mathrm{~m}, 3 \mathrm{H})$, $2.14(\mathrm{tt}, J=2.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.96-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.81(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 13.9(\mathrm{q}), 18.6(\mathrm{t}), 22.1(\mathrm{t}), 23.9(\mathrm{t}), 25.5(\mathrm{t}), 26.1(\mathrm{t}), 28.6(\mathrm{t}), 29.6(\mathrm{t}), 31.0$ (t), 33.5 (t), 70.3 (d), 70.4 (t), 71.8 (d), 72.8 (t), 73.9 (d), 75.4 (s), 83.6 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.5 (s) ppm; MS (ESI) m/z = $399[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}$399.2513, found 399.2512.
(6R,7S,8R)-1-(Benzyloxy)-6,7-dihydroxyhexadec-10-yn-8-yl benzoate (12)

Acetonide 23 ($200 \mathrm{mg}, 0.38 \mathrm{mmol}$) was subjected to general procedure B. The crude product was purified by silica gel chromatography (40:60 petroleum ether/EtOAc) to obtain 12
(152 mg, 82\%) as a colorless thick syrup: $\mathrm{R}_{f}(50 \% \mathrm{EtOAc} /$ petroleum ether) $0.5 ;[\alpha]^{25}{ }_{\mathrm{D}}:+20.2\left(c 7.1, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v: 3443,2932$, 1721, 1452, 1272, 1113, 757, 712, 640, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.67(\mathrm{~m}, 14 \mathrm{H}), 2.03(\mathrm{~m}$,
 2 H), 2.55 (br d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74-2.82 (m, 2H), 2.9 (br s, 1H), $3.43(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.553.65 (m, 2H), 4.46 (s, 2H), 5.08 (ddd, $J=4.6,6.1,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.43$ (dd, $J=$ $1.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=1.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{tt}, J=2.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{tt}, J=1.6,7.2$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 13.9(\mathrm{q}), 18.6(\mathrm{t}), 21.7(\mathrm{t}), 22.1(\mathrm{t}), 25.7(\mathrm{t}), 26.2(\mathrm{t}), 28.5$ (t), 29.6 (t), 30.9 (t), 33.0 (t), 69.3 (d), 70.2 (t), 72.8 (t), 73.2 (d), 73.5 (d), 75.1 (s), 82.7 (s), 127.4 (d), 127.6 (d, 2C), 128.3 (d, 2C), 128.4 (d, 2C), 129.5 (s), 129.9 (d, 2C), 133.4 (d), 138.6 (s), 167.1 (s) ppm; MS (ESI) m/z = $481[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 503.2773$, found 503.2799 .

General procedure for cycloisomerization (Procedure C): A solution of the alkynol (1 mmol) and $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(0.1 \mathrm{mmol})$ in acetonitrile $(30 \mathrm{~mL})$ was stirred at rt under argon atmosphere for 3-6 h. The reaction mixture was filtered through celite and the filtrate was concentrate under reduce pressure and the residue obtained was purified by silica gel chromatography

(1R,2R,5S,7R)-7-(5-(Benzyloxy)pentyl)-5-pentyl-6,8-dioxabicyclo[3.2.1]octan-2-ol (24)

Triol 11 (200 mg, 0.53 mmol$)$ and $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(7 \mathrm{mg}$, 0.03 mmol) were subjected to general procedure \mathbf{C}. The crude product was purified by silica gel chromatography (80:20 petroleum ether/EtOAc) to obtain 24 ($134 \mathrm{mg}, 67 \%$) as colorless syrup: $\mathrm{R}_{f}(15 \%$ EtOAc/petroleum ether) 0.4 ; $[\alpha]^{25}{ }_{\mathrm{D}}$: $+25.0\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ $v: 3444,2930,2857,1722,1455,1216,1100,892,753,669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 0.87(\mathrm{t}, J=6.7,3 \mathrm{H}), 1.24-1.34(\mathrm{~m}, 5 \mathrm{H}), 1.36-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.61-1.65(\mathrm{~m}, 9 \mathrm{H}), 1.90(\mathrm{br}$ s, 1H), 3.46 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.90 (ddd, $J=5.5,9.6,18.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (m, 1H), 4.19 (dd, $J=$ $5.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.0(\mathrm{q}), 22.6$ (t), $22.9(t), 25.4(t), 26.0(t), 26.6(t), 29.6(t), 31.9(t), 33.7(t), 35.2(t), 36.7(t), 66.5(d), 70.3(t)$, 72.8 (t), 75.7 (d), 80.8 (d), 108.5 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.6 (s) ppm; MS $(E S I) \mathrm{m} / \mathrm{z}=399[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$399.2513, found 399.2495.
(1R,2R,5S,7R)-7-(5-(Benzyloxy)pentyl)-5-pentyl-6,8-dioxabicyclo[3.2.1]octan-2-ol (25)

Diol 12 ($200 \mathrm{mg}, 0.42 \mathrm{mmol}$) and $\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{mg}$, 0.02 mmol) were subjected to general procedure \mathbf{C}. The crude product was purified by silica gel chromatography (78:22 petroleum ether/EtOAc) to procure 25 (161 mg, 80\%) as colorless syrup: R_{f}
 (15\% EtOAc/ petroleum ether) $0.43 ;[\alpha]^{25}{ }_{\mathrm{D}}:+32.9\left(c 1.7, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3448,2929,1717,1274,1273,1113,712,617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.32(\mathrm{~m}, 5 \mathrm{H}), 1.35-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.5(\mathrm{~m}, 2 \mathrm{H}), 1.56-$ $1.65(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.8-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.9(\mathrm{dd}, J=6.9,9.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=$ 6.5 Hz, 2H), 3.76 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (s, 2H), 4.66 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 (ddd, $J=5.5$, 7.3, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.42$ (dd, $J=1.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{tt}, J=1.5,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.05(\mathrm{tt}, J=1.6,6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 14.0(\mathrm{q}), 22.5(\mathrm{t}), 23.8(\mathrm{t}), 25.4(\mathrm{t})$, 26.1 (t), 28.8 (t), 29.6 (t), 30.2 (t), 32.0 (t, 2C), 34.5 (t), 70.3 (t), 72.9 (t), 74.3 (d), 77.2 (d), 81.4 (d), 110.7 (s), 127.5 (d), 127.6 (d, 2C), 128.2 (d, 2C), 128.32 (d, 2C), 129.7 (d, 2C), 130.5 (s), 132.7 (d), 138.6 (s), 166.3 (s) ppm; MS (ESI) m/z $=481[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{Na}]^{+}$503.2773, found 503.2774.

(R)-2-((4R,5R)-5-(5-(Benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-hydroxyethyl benzoate (26)

At $0^{\circ} \mathrm{C}$, to a cooled solution of the diol $20(4 \mathrm{~g}, 11.8$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}), \mathrm{Bu}_{2} \mathrm{SnO}(50 \mathrm{mg})$, DMAP (50 mg), and $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{~mL}, 35.5 \mathrm{mmol})$ were added and stirred for 30 min at the same temperature. To this, benzoyl chloride ($1.51 \mathrm{ml}, 13.0$
 mmol) was added drop-wise and the reaction mixture was further stirred for 8 h while warming to rt. Reaction mixture was poured into water (25 ml) and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 25 \mathrm{~mL}\right.$). Combined organic layer was washed with brine dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduce pressure. The residue was purified by column chromatography (85:15 petroleum ethe /EtOAc) to obtain 26 ($4.6 \mathrm{~g}, 88 \%$) as colorless syrup: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) 0.46; $[\alpha]^{25}{ }_{\mathrm{D}}:+36.0\left(c 3.1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3444,3019,1719,1372,1276,1215$, 1047, 758, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.4(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.79(\mathrm{~m}, 8 \mathrm{H})$,
2.93 (brs, 1H), $3.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-4.1(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=6.6$, $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ (s, 2H), 4.58 (dd, $J=3.2,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.34$ (d, $J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57$ (tt, $J=1.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 25.9$ (t), 26.1 (t), 27.0 (q), 27.4 (q), 29.5 (t), 34.1 (t), 66.8 ($), 70.3$ (t), 71.6 (d), 72.8 (t), 79.3 (d), 80.3 (d), 108.9 (s), 127.4 (d), 127.6 (d, 2C), 128.3 (d, 2C), 128.4 (d, 2C), 129.6 (s), 129.7 (d, 2C), 133.2 (d), 138.5 (s), 167.0 (s); MS (ESI) m/z = $465[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{Na}]^{+} 465.2253$, found 465.2258
(R)-2-((4S,5R)-5-(5-(Benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2(methylsulfonyloxy)ethyl benzoate (27)

To an ice cooled solution of benzoate $26(1.5 \mathrm{~g}, 3.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.43 \mathrm{~mL}, 10.2 \mathrm{mmol})$ was MsCl $(0.4 \mathrm{~mL}, 5.1 \mathrm{mmol})$ and it was further stirred for 4 hrt . Reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and washed with water,
 brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the Solvent was evaporated under reduced pressure. The resulting residue was purified by column chromatography ($75: 25$ petroleum ether/EtOAc) to yield 27 (1.6 g , 90%) as colorless solid: R_{f} (20% EtOAc/petroleum ether) 0.5 ; $[\alpha]^{25}$ D: +28.4 (c 8.8, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v: 2934,1723,1560,1366,1274,1177,925,758,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.45-1.77(\mathrm{~m}, 8 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12$ (ddd, $J=2.9,8.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=$ 12.5 Hz 1 H), $5.01(\mathrm{t}, J=6.6 \mathrm{~Hz} 1 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54$ (d, $J=1.4$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 25.6(\mathrm{t}), 25.8(\mathrm{t}), 26.6(\mathrm{q})$, 27.1 (q), 29.3 (t), 33.6 (t), 38.6 (q), 63.2 (t), 69.9 (t), 72.5 (t), 78.4 (d), 78.5 (d), 78.9 (d), 109.4 ($)$, 127.2 (d), 127.3 (d, 2C), 128.0 (d, 2C), 128.3 (d, 2C), 129.1 (s), 129.4 (d, 2C), 133.2 (d), 138.4 (s), 165.7 (s) ppm; MS (ESI) m/z = $543[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 543.2029, found 543.2015.

(4R,5S)-4-(5-(Benzyloxy)pentyl)-2,2-dimethyl-5-((S)-oxiran-2-yl)-1,3-dioxolane (10)

A solution of the mesylate 27 ($2 \mathrm{~g}, 3.8 \mathrm{mmol}$), $\mathrm{LiOH}_{2} \mathrm{O}$ ($483 \mathrm{mg}, 11.5 \mathrm{mmol}$) in MeOH:THF (2:3, 10 mL) was stirred at r.t. for 4 h . The reaction mixture was concentrated and
dissolved in ethyl acetate (25 mL), washed with brine, dried and concentrated under reduce pressure. The crude residue thus obtained was purified by silica gel chromatography (85:15 petroleum ether/EtOAc) to obtain $10(1.1 \mathrm{~g}, 89 \%)$ as colorless oil:
 $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ petroleum ether $) 0.53 ;[\alpha]^{25}{ }_{\mathrm{D}}:+6.2\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 2935,2859,1455,1370,1216,1101,878,737,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 1.38(\mathrm{~s}, 6 \mathrm{H}), 1.42-1.66(\mathrm{~m}, 8 \mathrm{H}), 2.69(\mathrm{dd}, J=2.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (dd, $J=4.4,5.2 \mathrm{~Hz}$, 1 H), 2.99 (ddd, $J=2.7,4.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (m, 3H), 3.95 (dt, $J=4.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49 (s, 2H), 7.22-7.34 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 25.8(\mathrm{t}), 26.2(\mathrm{t}), 26.6(\mathrm{q}), 27.2(\mathrm{q}), 29.6(\mathrm{t})$, 33.0 (t), 43.9 (t), 51.4 (d), 70.2 (t), 72.9 (t), 77.8 (d), 81.2 (d), 109.2 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.6 (s) ppm; MS (ESI) m/z = $343[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}$343.1886, found 343.1821.

(R)-1-((4R,5R)-5-(5-(Benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)non-3-yn-1-ol (28)

Epoxide 10 ($400 \mathrm{mg}, 1.25 \mathrm{mmol}$), 1-heptyne ($480 \mathrm{mg}, 5.0$ $\mathrm{mmol}), \mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(0.63 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and $n-\mathrm{BuLi}(3.1 \mathrm{~mL}, 5.0$ mmol, 1.6 M in hexane), were subjected to general procedure \mathbf{A}. The crude product was purified by silica gel chromatography (85:15 petroleum ether/EtOAc) to obtain alkynol 28 ($410 \mathrm{mg}, 78 \%$)
 as a colorless syrup: $\mathrm{R}_{f}\left(10 \% \mathrm{EtOAc} /\right.$ petroleum ether) 0.58 ; $[\alpha]^{25}{ }_{\mathrm{D}}$: +55.8 (c 1.6, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v: 3431,2935,1453,1380,1276,1068,879,714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta 0.90$ (t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 1.22-1.33 (m, 4H), 1.39 (s, 3H), 1.40 (s, 3H), 1.44-1.70 (m, 10 H), 2.14 (tt, $J=2.2,4.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.53(\mathrm{~m}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.61$ (br s 1 H), 3.75 (dd, $J=2.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (dt, $J=3.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49 (s, 2H), 7.24-7.33 (m, 5H); ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 14.0(\mathrm{q}), 18.7(\mathrm{t}), 22.2(\mathrm{t}), 25.3(\mathrm{t}), 25.9(\mathrm{t}), 26.3(\mathrm{t}), 26.9(\mathrm{q}), 27.5$
 (s), 108.8 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.6 (s) ppm; MS (ESI) m/z = 439 $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$439.2824, found 439.2810.
(S)-1-((4S,5R)-5-(5-(Benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)non-3-ynyl benzoate (29)

To a solution of $28(600 \mathrm{mg}, 1.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added triethylamine ($0.6 \mathrm{~mL}, 4.3 \mathrm{mmol}$), DMAP (10 mg) and stirred for 15 min . Benzoyl chloride ($0.25 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred further for 2 h . Usual workup followed by purification of the crude product by column
 chromatography (90:10 petroleum ether/EtOAc) gave the benzoate 29 ($665 \mathrm{mg}, 89 \%$) as colorless syrup: $\mathrm{R}_{f}(7 \% \mathrm{EtOAc} /$ petroleum ether $) 0.5 ;[\alpha]^{25}{ }_{\mathrm{D}}: 50.8\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3448,2933$, $1717,1453,1271,1111,877,758,666 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.83(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H), 1.21-1.3 (m, 6H), 1.40 (s, 3H), 1.42 (s, 3H), 1.48-1.7 (m, 8H), 2.09 (tt, $J=2.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.67 (ddd, $J=2.3,6.8,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84$ (dt, $J=3.8,8.1,11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01 (dd, $J=2.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.48 (s, 2H), 5.23 (dt, $J=2.7,6.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.33$ (m, 5H), 7.43 (tt, $J=1.5,7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (tt, $J=2.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{tt}, J=1.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.0(\mathrm{q}), 18.6(\mathrm{t}), 22.0(\mathrm{t}), 22.2(\mathrm{t}), 25.9(\mathrm{t}), 26.3(\mathrm{t}), 26.8(\mathrm{q}), 27.5(\mathrm{q}), 28.5$ (t), 29.6 (t), 30.9 (t), 33.0 (t), 70.3 (t), 70.6 (d), 72.8 (t), 74.8 (s$), 77.2$ (d), 80.5 (d), 83.0 (s$), 108.8$ (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 128.4 (d, 2C), 129.8 (d, 2C), 129.9 (s$), 133.2$ (d), 138.7 (s), 165.9 (s) ppm; MS (ESI) m/z $=543[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 543.3086, found 543.3096

(6R,7S,8S)-1-(Benzyloxy)tetradec-10-yne-6,7,8-triol (13)

Acetonide 28 ($140 \mathrm{mg}, 0.34 \mathrm{mmol}$) was subjected to general procedure B. The crude product was purified by silica gel chromatography (15:85 petroleum ether/EtOAc) to obtain 13 (105 $\mathrm{mg}, 83 \%)$ as a white solid: $\mathrm{R}_{f}(80 \%$ EtOAc/petroleum ether) 0.36 ;
 Mp: $40-42{ }^{\circ} \mathrm{C} ;[\alpha]^{31}{ }_{\mathrm{D}}:+8.1\left(c\right.$ 2.8, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3422,2932,2859,1719,1602,1453$, 1275, 1070, 755, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.9(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.34(\mathrm{~m}$, 4H), 1.35-1.42 (m, 3H), 1.44-1.49 (m, 3H), 1.51-1.58 (m, 2H), 1.59-1.65 (m, 2H), 2.13 (tt, $J=$ 2.3, 7.1 Hz, 2H), 2.42-2.5 (m, 2H), 2.89 (br s, 2H), 3.4 (br s, 1H), 3.46 (t, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 3.69 (br s, 1H), 3.79 (br s, 1H), 4.48 (s, 2H), 7.24-7.34 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 13.9$ (q),
 72.8 (t), 73.2 (d), 73.4 (d), 75.6 (s), 83.3 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.5 (s) ppm; MS (ESI) m/z = $399[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$399.2512. found 399.2516.

(6R,7S,8S)-1-(Benzyloxy)-6,7-dihydroxyhexadec-10-yn-8-yl benzoate (14)

Acetonide 29 ($200 \mathrm{mg}, 0.38 \mathrm{mmol}$) was subjected to general procedure B. The crude product was purified by silica gel chromatography ($30: 70$ petroleum ether/EtOAc) to obtain 14 (155 $\mathrm{mg}, 84 \%)$ as a white syrup: $\mathrm{R}_{f}(60 \% \mathrm{EtOAc} /$ petroleum ether) 0.43 ;
 $[\alpha]^{25}{ }_{\mathrm{D}}:+4.7\left(c 2.7, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) v: 3448,2932,1718,1451,1273,1114,758,668,617$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.9(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.49(\mathrm{~m}$, 6H), 1.59-1.62 (m, 2H), 1.80-1.83 (m, 2H), 2.12 (tt, $J=2.2,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.50 (m, 3H), 2.74 (br s, 1H), 3.44 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77(br s, 2H), 4.47 (s, 2H), 5.26 (ddd, $J=4.4,6.1,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.34$ (m, 5H), 7.43 (tt, $J=1.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (tt, $J=2.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.06 (tt, $J=1.5,7.1$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 13.9(\mathrm{q}), 18.6(\mathrm{t}), 22.1(\mathrm{t}), 24.5(\mathrm{t}), 25.2(\mathrm{t}), 26.0(\mathrm{t}), 28.6$ (t), 29.5 (t), 30.7 (t), 31.1 (t), 70.0 (d), 70.2 (t), 72.8 (t), 73.6 (d), 75.2 (s$), 75.3$ (d), 83.7 (s$), 127.4$ (d), 127.6 (d, 2C), 128.3 (d, 2C), 128.4 (d, 2C), 129.7 (d, 2C), 130.1 (s), 133.1 (d), 138.6 (s), 166.6 (s) ppm; MS (ESI) m/z = $481[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$503.2773. found 503.2781
(1R,2R,5S,7R)-7-(5-(Benzyloxy)pentyl)-5-pentyl-6,8-dioxabicyclo[3.2.1]octan-2-ol (30)

Triol 13 ($150 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(5.0 \mathrm{mg}$, 0.02 mmol) were subjected to general procedure \mathbf{C}. The crude product was purified by silica gel chromatography (80:20 petroleum ether/EtOAc) to obtain 30 ($125 \mathrm{mg}, 81 \%$) as colorless syrup: $\mathrm{R}_{f}(15 \%$
 EtOAc/petroleum ether) 0.42; $[\alpha]^{28}$ D: +71.8 (c 0. 4, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v: 3421,2932,1602$, 1456, 1029, 697, $617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.34(\mathrm{~m}$, 6H), 1.37-1.44 (m, 7H), 1.59-1.70 (m, 7H), 1.80-1.92 (m, 1H), 3.46 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.90 (m, 1H), 3.94 (dd, $J=4.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20 (dd, $J=5.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49 (br s, 2H), 7.25-7.35 (m,
$5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 14.0(\mathrm{q}), 22.6(\mathrm{t}), 22.9(\mathrm{t}), 25.4(\mathrm{t}), 26.1(\mathrm{t}), 26.7(\mathrm{t}), 29.7(\mathrm{t})$, 32.0 (t), 33.8 (t), 35.2 (t), 36.7 (t), 66.6 (d), 70.4 (t), 72.9 (t), 75.7 (d), 80.8 (d), 108.5 (s$), 127.5$ (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.7(s) ppm; MS (ESI) m/z = $399[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$399.2512, found 399.2498.
(1S,2S,5S,7R)-7-(5-(Benzyloxy)pentyl)-5-pentyl-6,8- dioxabicyclo[3.2.1]octan-2-yl benzoate (31)

Diol 14 ($150 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(4 \mathrm{mg}, 0.02$ mmol) were subjected to general procedure \mathbf{C}. The crude product was purified by silica gel chromatography (80:20 petroleum ether/EtOAc) gave 31 ($110 \mathrm{mg}, 73 \%$) as colorless syrup: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum
 ether) $0.45 ;[\alpha]^{25}$ D: $+36.8\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3418,2930,1716,1602,1274,1112,990$, $712,617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.35-$ $1.42(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.79-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 2 \mathrm{H}), 3.42$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.76(\mathrm{~d}, J=5.3, \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dt}, J=$ $5.6,7.1,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{tt}, J=1.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{tt}, J=1.5,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.05(\mathrm{dt}, J=1.6,6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.0(\mathrm{q}), 22.5(\mathrm{t}), 23.8(\mathrm{t}), 25.4$
 81.4 (d), 110.7 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 128.3 (d, 2C), 129.7 (d, 2C), 130.5 (s), 132.8 (d), 138.6 (s), 166.3 (s) ppm; MS (ESI) m/z = 503 [M+Na] ${ }^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 503.2773$, found 503.2628.

2-(Heptadec-2-ynyloxy)tetrahydro-2H-pyran (32)

At $-10^{\circ} \mathrm{C}$, a solution of the THP protected alkyne ($1 \mathrm{~g}, 7.1 \mathrm{mmol}$) in THF (10 mL) was treated with n-BuLi ($3.66 \mathrm{~mL}, 8.6 \mathrm{mmol}$) (2.34 M in hexane)] and stirred for 30 min . HMPA ($1.53 \mathrm{~mL}, 8.6 \mathrm{mmol}$) was added and
 the reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for another 30 min . Myristyl bromide ($2.37 \mathrm{~g}, 8.6$ mmol) was dissolved in THF (20 mL) and stirred at $-10^{\circ} \mathrm{C}$ to which the solution of alkynyl lithium in THF was added and stirred for further 30 min . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was washed with ethyl
acetate, the combined organic layers were washed with ethyl acetate, brine, dried and concentrated. Purification of the crude product by column chromatography ($90: 10$ petroleum ether/EtOAc) afforded 32 ($2.1 \mathrm{~g}, 87 \%$) as colorless oil: R_{f} ($7 \% \mathrm{EtOAc} /$ petroleum ether) 0.6 ; IR $\left(\mathrm{CHCl}_{3}\right) v: 2926,1466,1345,1216,1118,1022,903,759,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta 0.88$ (t, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.24-1.34 (m, 24H), 1.46-1.88 (m, 6H), 2.11-2.23 (m, 2H), $3.44-3.55$ (m, 1H), 3.81 (ddd, $J=3.3,8.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (dt, $J=2.1,15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (dt, J $=2.1,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 14.2(\mathrm{q}), 18.4(\mathrm{t}), 18.9$

 $[\mathrm{M}+\mathrm{Na}]^{+}$; CHN calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2}$: C, $78.51 ; \mathrm{H}, 11.98 \%$, found $\mathrm{C}, 78.40 ; \mathrm{H}, 12.13 \%$.

Heptadec-2-yn-1-ol (33)

To a solution of 32 ($400 \mathrm{mg}, 1.1 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$, p-TSA (7 mg) was added and the reaction mixture was stirred at rt for 30 min . The reaction mixture was quenched by the addition of few drops of triethylamine
 and the solvent was evaporated. The crude residue was purified by column chromatography (80:20 petroleum ether/EtOAc) to obtain 33 ($275 \mathrm{mg}, 91 \%$) as a white solid: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) 0.4 ; Mp: 48 - 49; IR $\left(\mathrm{CHCl}_{3}\right)$ v: 3539, 2944, 2254, 1631, 1444, 1376, 1040, 918, $759 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.42(\mathrm{~m}, 24 \mathrm{H}), 2.18(\mathrm{tt}, J=2.1,6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 14.2(\mathrm{q}), 18.8(\mathrm{t}), 22.7(\mathrm{t}), 28.6$
 (ESI) $\mathrm{m} / \mathrm{z}=275[\mathrm{M}+\mathrm{Na}]^{+}$; CHN calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}: \mathrm{C}, 80.88 ; \mathrm{H}, 12.78 \%$, found $\mathrm{C}, 80.60 ; \mathrm{H}$, 12.73\%.

Heptadec-16-yn-1-ol (9)

Lithium ($3.3 \mathrm{~g}, 475.4 \mathrm{mmol}$) was added to freshly distilled 1,3diaminopropane (250 mL) and stirred at rt till the reaction mixture turns into a deep purple suspension. The suspension was heated at $80^{\circ} \mathrm{C}$ till the blue color
 disappears. The reaction mixture was cooled to rt and $\mathrm{KO}^{t} \mathrm{Bu}$ ($35.6 \mathrm{~g}, 316.9 \mathrm{mmol}$) was added and stirred for 30 min . Alkynol 33 ($20 \mathrm{~g}, 79.2 \mathrm{mmol}$) was added to the reaction mixture and stirred at rt for 1 h . The reaction mixture was poured slowly on ice and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water.

The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Purification of the residue by column chromatography (80:20 petroleum ether/EtOAc) afforded 9 ($15.8 \mathrm{~g}, 79 \%$) as white solid: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) 0.45 ; Mp: $50-51$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3308,2928,1603,1466,1216,1049,758,669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 1.25-1.41(\mathrm{~m}, 22 \mathrm{H}), 1.48-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J$ $=2.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 18.4(\mathrm{t}), 25.8(\mathrm{t}), 28.5$
 ppm; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+} 275.2350$, found 275.2305.

(S)-Tert-butyl 4-((heptadec-16-ynyloxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (6)

At $0{ }^{\circ} \mathrm{C}$, triethylamine ($6.7 \mathrm{~mL}, 47.5 \mathrm{mmol}$) was added to a solution of the $9(4 \mathrm{~g}, 15.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 30 min . $\mathrm{MsCl}(1.9 \mathrm{~mL}, 23.8 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and stirred for 30 min .
 The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the resulting crude mesylate $9-\mathrm{Ms}(4.8 \mathrm{~g}, 92 \%)$ was used as such for the next step without purification.

Serinol derivative 8 ($2.8 \mathrm{~g}, 12.1 \mathrm{mmol}$) was dissolved in dry DMSO (30 mL) and treated with NaH ($581 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 14.5 mmol) and mesylate $9-\mathrm{Ms}(4.8 \mathrm{~g}, 14.5$ mmol) was added sequentially. The reaction immediately changed color from nearly colorless to oranges' red. The reaction was stirred at room temperature for 16 h , and was then quenched by the ice and diluted with ethyl acetate. The two layers were separated and the aqueous layer extracted with ethyl acetate ($5 \times 15 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography (85:15 petroleum ether/EtOAc) yielded the serinol ether $6(4 \mathrm{~g}, 71 \%)$ as colorless oil: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) 0.4; $[\alpha]^{25}{ }_{\mathrm{D}}:+20.9\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) v: 3311,2928,2856,1694,1466,1392,1260$, 1090, 847, 758, $629 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta 1.23$ (s, 24H), 1.45 (s, 9H), 1.43-1.49 (m, 2H), 1.50 (s, 3H), 1.55 (s, 3H), 1.92 (t, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15 (dt, $J=2.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.22$3.36(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=6.4,12.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.86-4.07(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 18.4$ (t), 23.1, 24.4 (2q, 1C), 26.1 (t), 26.8, 27.5 (2q, 1C), 28.5 (2q, 3C), 28.5

1C), 68.1 (d), 69.3, 70.1 (2t, 1C), 71.4 (t), 79.7, 80.2 (2s, 1C), 84.8 (s), 93.3, 93.7 (2s, 1C), 151.7, $152.2(2 \mathrm{~s}, 1 \mathrm{C}) \mathrm{ppm}$; MS (ESI) m/z = $488[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 488.3716, found 488.3706.
(S)-Tert-butyl 4-(((R)-19-((4R,5R)-5-(5-(benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-19-hydroxynonadec-16-ynyloxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (4)

Alkyne 6 ($3.2 \mathrm{~g}, 6.9 \mathrm{mmol}$), n BuLi ($4.6 \mathrm{~mL}, 6.9 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane), $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$ ($0.9 \mathrm{~mL}, 6.9 \mathrm{mmol}$), epoxide 5 ($0.55 \mathrm{~g}, 1.7 \mathrm{mmol}$) were subjected to general procedure A. The
 crude product was purified by silica gel chromatography (80:20 petroleum ether/EtOAc) to obtain 4 ($960 \mathrm{mg}, 71 \%$) as a colorless syrup: $\mathrm{R}_{f}\left(15 \% \mathrm{EtOAc} /\right.$ petroleum ether) 0.46 ; $[\alpha]^{25}{ }_{\mathrm{D}}:+91.7$ (c 0.9, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v: 3019,2930,1691,1456,1393,1216,1173,759,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.23$ (s, 24H), 1.34 (s, 3H), 1.38 (s, 3H), 1.40-1.44 (m, 6H), 1.46 (s, 9H), 1.51 (s, 3H), 1.55 (s, 3H), $1.58-1.62$ (m, 4H), 2.14 (tt, $J=2.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.23 (d, $J=4.2 \mathrm{~Hz}$, 1H), 2.43-2.48 (m, 2H), 3.25-3.38 (m, 1H), 3.41-3.48 (m, 4H), 3.54-3.76 (m, 3H), 3.86-4.03 (m, 4 H), $4.48(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 18.7(\mathrm{t}), 23.0,24.3(\mathrm{q}, 2 \mathrm{C})$, 24.3 (t), 26.0 (t, 3C), 26.2 (t), 27.1, 27.4 ($\mathrm{q}, 2 \mathrm{C}$), 28.4 ($\mathrm{q}, 3 \mathrm{C}$), 28.9 ($\mathrm{t}, 3 \mathrm{C}$), 29.1 (t$), 29.4$ (t , 29.6 (t, 7C), 34.4 (t), 56.3, 56.4 (2d, 1C), 65.4, 65.6 (2t, 1C), 69.2, 70.0 (2t, 1C), 70.3 (t), 70.8 (d), 71.3 (t), 72.8 (t), 74.9 (s), 78.8 (d), 79.7, 80.2 ($2 \mathrm{~s}, 1 \mathrm{C}$), 81.8 (d), 83.9 (s$), 93.2,93.6$ ($2 \mathrm{~s}, 1 \mathrm{C}$), 108.6 (s$),$ 127.4 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.6 (s), 151.7, 152.2 (2s, 1C) ppm; MS (ESI) m/z = 808 $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{79} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 808.5704$, found 808.5649

Tert-butyl(R)-1-(15-((1R,2R,5S,7R)-7-(5-(benzyloxy)pentyl)-2-hydroxy-6,8-dioxabicyclo[3.2.1]octan-5-yl)pentadecyloxy)-3-hydroxypropan-2-ylcarbamate(34)

A solution of the acetonide $4(120 \mathrm{mg}$, 0.15 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was degassed properly. Then $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PAuCl}(4 \mathrm{mg}, 0.008$ mmol) followed by AgSbF_{6} ($3 \mathrm{mg}, 0.008$

mmol) were added at $0{ }^{\circ} \mathrm{C}$ and stirred at rt under argon atmosphere for 3 h . The reaction mixture was concentrate under reduce pressure and the obtained residue was purified by silica gel chromatography ($40: 60$ petroleum ether/EtOAc) to obtain 34 ($92 \mathrm{mg}, 85 \%$) as colorless syrup: R_{f} (40% EtOAc/petroleum ether) $0.4 ;[\alpha]^{25}{ }_{\mathrm{D}}:+20.8\left(c 3.6, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3444,2927,2856$, 1695, 1455, 1366, 1246, 1172, 1092, 755, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.23(\mathrm{~s}, 24 \mathrm{H})$, 1.35-1.41 (m, 4H), 1.43 (s, 9H), 1.48 -1.55 (m, 4H), $1.60-1.67$ (m, 6H), 3.53 (dt, $J=5.6,18.7$ Hz, 1H), $1.91-2.00$ (m, 1H), 2.59 (br s, 1H), 3.40 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.44 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53 (dd, $J=3.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (dd, $J=3.6,9.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.65 (dd, $J=3.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.75-3.78$ (m, 2H), 3.85 (dd, $J=5.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 (br s, 1H), 3.92 (br s, 1H), 4.47 (s, 2H), 5.19 (d, $J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 22.9(\mathrm{t}), 25.0(\mathrm{t}), 25.3(\mathrm{t}), 26.0$
 (d), 64.2 (t$), 66.2$ (d), 70.2 (t$), 71.4$ (t$), 71.7$ (t), 72.8 (t$), 77.8$ (d), 79.6 (s$), 82.3$ (d), 109.5 (s$)$, 127.4 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.5 (s), 156.0 (s) ppm; MS (ESI) m/z $=728[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{71} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 728.5078$, found 728.5030 .
(1S,2R,5S,7R)-5-(15-((S)-3-Acetoxy-2-(tert-butoxycarbonylamino)propoxy)pentadecyl)-7-(5-(benzyloxy)pentyl)-6,8-dioxabicyclo[3.2.1]octan-2-yl acetate (35)

To a solution of $34(80 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($0.1 \mathrm{~mL}, 0.7 \mathrm{mmol}$), DMAP (2 mg) and stirred for 15 min . To this, acetic anhydride ($0.03 \mathrm{~mL}, 0.34 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and
 stirred further for 2 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The resulting crude product was purified by column chromatography (60:40 petroleum ether/EtOAc) to afford the diaceate 35 (87 $\mathrm{mg}, 97 \%$) as colorless syrup: R_{f} (30% EtOAc/petroleum ether) 0.43 ; $[\alpha]^{25}$ D: 19.6 (c $5.5, \mathrm{CHCl}_{3}$); IR (CHCl_{3}) $v: 3447,2928,2855,1739,1497,1366,1244,1114,925,756,666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.23(\mathrm{~s}, 24 \mathrm{H}), 1.35-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.48-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.57-$ 1.62 (m, 3H), $1.64-1.71$ (m, 3H), 1.77 (dt, $J=5.6,18.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.03(s, 3H), 2.09(s, 3H), 3.38 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=4.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (br s, 1H), 4.09 (dd, $J=5.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=6.2,11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.66$ (t, $J=$
$2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 20.8$ (q), $21.3(\mathrm{q}), 22.5(\mathrm{t}), 22.7(\mathrm{t}), 25.3(\mathrm{t}), 26.0(\mathrm{t}), 26.0(\mathrm{t}), 28.3(2 \mathrm{q}, 3 \mathrm{C}), 29.4(\mathrm{t}), 29.5(\mathrm{t}), 29.6(\mathrm{t}$,
 (t), 70.2 (t), 71.5 (t , 72.8 (t$), 77.8$ (d), 79.5 (s$), 79.6$ (d), 109.2 (s$), 127.4$ (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.6 (s), 155.3 (s), 170.8 (s) ppm; MS (ESI) m/z = $812[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{75} \mathrm{NO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}$812.5289, found 812.5244.
(1S,2R,5S,7R)-5-(15-((S)-3-Acetoxy-2-(tert-butoxycarbonylamino)propoxy)pentadecyl)-7-(5-hydroxypentyl)-6,8-dioxabicyclo[3.2.1]octan-2-yl acetate (36)

A suspension of 35 ($200 \mathrm{mg}, 0.3$ mmol), $\mathrm{Pd}-\mathrm{C}(5 \mathrm{mg})$ in ethyl acetate (5 mL) was flushed with hydrogen gas and stirred under hydrogen (20 psi) atmosphere for 30
 min . The reaction mixture was filtered through celite, concentrated and the crude product by was purified column chromatography (50:50 petroleum ether/EtOAc) to yield 36 ($175 \mathrm{mg}, 88 \%$) as colorless oil: $\mathrm{R}_{f}(30 \% \mathrm{EtOAc} /$ petroleum ether) 0.4; $[\alpha]^{25}{ }_{\mathrm{D}}$: $-47.4\left(c\right.$ 1.3, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v: 3448,2928,2855,1735,1499,1366$, 1244,1043, 756, $665 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.23$ (s, 22H), $1.35-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.43$ (s, 9H), 1.51-1.58 (m, 6H), 1.61-1.72 (m, 5H), 1.78 (dt, $J=5.6,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.10$ (s, 3H), $3.38(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=5.5 \mathrm{~Hz}$, 1 H), 3.97 (br s, 1H), 4.10 (dd, $J=5.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.18$ (m, 2H), 4.67 (br s, 1H), 4.88 (d, J $=7.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 20.8(\mathrm{q}), 21.3(\mathrm{q}), 22.5(\mathrm{t}), 22.7(\mathrm{t}), 25.3(\mathrm{t}), 25.5$

 109.3 (s), 155.4 (s), 170.9 (s) ppm; MS (ESI) m/z = 722 [M+Na] ${ }^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{69} \mathrm{NO}_{10}[\mathrm{M}+\mathrm{Na}]^{+} 722.4819$, found 722.4765. (37)

To an ice-cooled solution of the alcohol 36 ($50 \mathrm{mg}, 0.07 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, DMP ($0.36 \mathrm{~g}, 0.08$ mmol) was added in small portions and
 stirred for 6 h . The reaction mixture was quenched with ice, partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, water and the organic layer was separated, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford the aldehyde ($40 \mathrm{mg}, 80 \%$) as colorless syrup. The crude aldehyde was used for the next step without purification.

To a solution of the aldehyde ($35 \mathrm{mg}, 0.05 \mathrm{mmol}$) in benzene (2 mL), the ylide ((carbethoxymethylene) triphenyl phosphorane) ($52 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added and refluxed for 1 h. Solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography (80:20 petroleum ether/EtOAc) to yield 37 ($29 \mathrm{mg}, 75 \%$) as colorless oil: $\mathrm{R}_{f}(10 \%$ EtOAc/petroleum ether) $0.4 ;[\alpha]^{25}{ }_{\mathrm{D}}$: $-83.4\left(c 0.98, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3367,2927,2854,1720$, $1500,1465,1244,1042,971,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.23(\mathrm{~s}, 24 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.41$ (m, 4H), 1.43 (s, 9H), $1.47-1.56$ (m, 6H), $1.65-1.72$ (m, 3H), 1.79 (dt, J $=5.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.19$ (dd, $J=6.8,13.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.39(\mathrm{t}, J=6.7 \mathrm{~Hz}$, 2H), $3.42-3.50$ (m, 2H), 3.89 (dd, $J=5.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (br s, 1H), 4.09 (dd, $J=5.6,11.1 \mathrm{~Hz}$, 1H), $4.14-4.18$ (m, 2H), 4.17 (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dt}, J=7.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$
 (t), 29.5, (t), 29.6 (t, 3C), 29.6 (t, 2C), 29.7 (t, 5C), 29.7 (t), 30.6 (t), 32.1 (t), 34.9 (t), 37.4 (t), 60.1 (t), 63.7 (t), 68.3 (d), 69.3 (t), 71.6 (t), 77.7 (d), 79.7 (d), 109.4 (s), 121.5 (d), 148.9 (d), 152.7 (s), 166.7 (s), 170.9 (s, 2C) ppm; MS (ESI) m/z = $790[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{73} \mathrm{NO}_{11}$ $[\mathrm{M}+\mathrm{Na}]^{+} 790.5082$, found 790.5037 .
(S)-Tert-butyl 4-((S)-19-((4R,5R)-5-(5-(Benzyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-19-hydroxynonadec-16-ynyloxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (39)

To a solution of alkyne 6 (0.58 g , 1.25 mmol) in THF (15 mL) at $-78^{\circ} \mathrm{C}$, n-BuLi ($0.8 \mathrm{~mL}, 1.25 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) was added at $-78^{\circ} \mathrm{C}$ and stirred
 for an additional 15 min . To this, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.16 \mathrm{~mL}, 1.25 \mathrm{mmol})$ was added and stirred again for 15 min . A solution of the epoxide $\mathbf{1 0}(0.1 \mathrm{~g}, 0.31 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ was added at $-78{ }^{\circ} \mathrm{C}$ and stirred further at the same temperature for another 30 min . The reaction mixture was quenched with THF- $\mathrm{H}_{2} \mathrm{O}(1: 1)$ at $-78^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was washed with ethyl acetate. The combined organic layers were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. Purification of the residue by column chromatography (15% ethyl acetate in petroleum ether) afforded $39(180 \mathrm{mg}, 73 \%)$ as a colorless syrup. $[\alpha]^{25} \mathrm{D}:+23.1(c 6.9$, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v: 3445,2927,2855,1701,1456,1388,1257,1174,1103,848,767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.23$ (s, 24H), 1.38 (s, 3H), 1.39 (s, 3H), 1.40-1.44 (m, 6H), 1.45 (s, 9 H), 1.50 (s, 3H), 1.55 (s, 3H), $1.58-1.65$ (m, 4H), 2.13 (tt, $J=2.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.35 (d, $J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.38-2.45 (m, 2H), 3.22-3.38 (m, 1H), 3.40-3.48 (m, 4H), 3.51-3.65 (m, 2H), 3.75 (dd, $J=2.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-4.04(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50\right.$ MHz): $\delta 18.7$ (t), 23.1, 24.4 (2q, 2C), 25.2 (t), 25.9 (t , 26.1 (t$), 26.2$ (t$), 26.9,27.5(2 \mathrm{q}, 2 \mathrm{C}), 28.4$
 65.34, 65.6 (2t, 1C), 69.1 (d), 69.2, 70.0 (2t, 1C), 70.2 (t), 71.3 (t), 72.8 (t), 75.5 ($s), 77.2$ (d), 79.6, 80.1 (2s, 1C), 81.8 (d), 83.0 (s), 93.2, 93.6 (2s, 1C), 108.7 (s), 127.4 (d), 127.5 (d, 2C), 128.3 (d, 2C), 138.6 (s), 151.7, 152.1 (2s, 1C), ppm; HRMS (ESI ${ }^{+}$): Calculated for $\left[\mathrm{C}_{47} \mathrm{H}_{79} \mathrm{NO}_{8} \mathrm{Na}\right]^{+}$: 808.5704; found: 808.5649.

Tert-butyl

(R)-1-(15-((1R,2S,5S,7R)-7-(5-(benzyloxy)pentyl)-2-hydroxy-6,8-
dioxabicyclo[3.2.1]octan-5-yl)pentadecyloxy)-3-hydroxypropan-2-ylcarbamate (40)

A solution of the acetonide 39 (100 $\mathrm{mg}, 0.127 \mathrm{mmol}$) in dry dichloromehane was degassed properly. Then $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PAuCl}$
 ($3 \mathrm{mg}, 0.006 \mathrm{mmol}$) followed by AgSbF6 (2 $\mathrm{mg}, 0.05 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$ and keep stirring at rt under argon atmosphere for 3 h . The reaction mixture was concentrate under reduce pressure and the obtained residue was purified by silica gel chromatography (60% ethyl acetate in petroleum ether) to obtain 40 ($74 \mathrm{mg}, 82 \%$) as colorless syrup. $[\alpha]^{25}{ }_{\mathrm{D}}:+14.2\left(c 2.9, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3444,2928,2855,1700,1499,1367$, 1216, 1170, 756, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.23(\mathrm{~s}, 24 \mathrm{H}), 1.34-1.40(\mathrm{~m}, 4 \mathrm{H})$, 1.44 (s, 9H), $1.51-1.55$ (m, 4H), $1.60-1.67$ (m, 6H), 1.72 (br s, 1H), 1.83-1.91 (m, 2H), 2.83 (br s, 1H), 3.41 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.46(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.53(\mathrm{dd}, J=3.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (dd, $J=3.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65-3.67 (m, 1H), 3.74-3.79 (m, 2H), 3.88 (br s, 1H), 3.92 (br s, 1H), 4.18 (t, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.48 (s, 2H), 5.18 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24-7.33 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 23.3(\mathrm{t}), 25.4(\mathrm{t}), 26.0(\mathrm{t}), 26.1(\mathrm{t}), 26.6(\mathrm{t}), 28.4(\mathrm{q}, 3 \mathrm{C}), 29.4(\mathrm{t}), 29.5(\mathrm{t}$, 2C), 29.6 (t, 8C), 29.8 (t), 33.8 (t), 35.2 (t), 36.8 (t), 51.4 (d), 64.4 (t), 66.5 (d), 70.3 (t), 71.7 (t), 71.8 (t), 72.9 (t), 75.7 (d), 79.7 (s), 80.8 (d), 108.5 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.6 (s), 156.1 (s) ppm; HRMS (ESI ${ }^{+}$) : Calculated for $\left[\mathrm{C}_{41} \mathrm{H}_{71} \mathrm{NO}_{8} \mathrm{Na}\right]^{+}: 728.5078$; found: 728.5027 .
(1S,2S,5S,7R)-5-(15-((S)-3-Acetoxy-2-(tert-butoxycarbonylamino)propoxy)pentadecyl)-7-(5-(benzyloxy)pentyl)-6,8-dioxabicyclo[3.2.1]octan-2-yl acetate (41)

To a solution of $\mathbf{4 0}(100 \mathrm{mg}, 0.141$ $\mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added triethylamine ($0.12 \mathrm{~mL}, 0.85 \mathrm{mmol}$), DMAP (2 mg) and stirred for 15 min .

41

Acetic anhydryde ($0.04 \mathrm{~mL}, 0.425 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred further for 2 h . The reaction mixture was extracted with DCM. The combined organic extracts were washed with
brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the resulting crude product was purified by column chromatography (40% ethyl acetate in petroleum ether) to afford the acylate 41 ($105 \mathrm{mg}, 97 \%$) as colorless syrup. $[\alpha]^{25}{ }_{\mathrm{D}}:+50.8\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3450,2927,1741,1498,1366$, 1236, 1171, 1040, 942, 756, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.23(\mathrm{~s}, 24 \mathrm{H}), 1.36-1.41$ (m, 6H), 1.42 (s, 9H), $1.48-1.54$ (m, 3H), $1.57-1.69$ (m, 6H), 1.77 (dt, $J=6.5,18.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01(s, 3H), 2.03 (s, 3H), 3.38 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.45 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.38-3.49$ (m, 2H), 3.97 (brs, 1H), 4.02 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=5.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.15-4.18 (m, 1H), $4.48(\mathrm{~s}, 2 \mathrm{H}), 4.85-4.90(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 20.8$ (q), $21.0(\mathrm{q}), 23.1$ (t), 23.2 (t), 25.3 (t), 26.0 (t), 26.0 (t), 28.3 (q, 3C), 29.4 (t), 29.5 (t), $29.5(t), 29.5(t), 29.6(t), 29.6(t), 29.6(t, 4 C), 29.7(t), 29.7(t), 33.6(t), 34.9(t), 36.7(t)$, 49.0 (d), 63.7 (t), 68.6 (d), 69.3 (t), 70.2 (t), 71.5 (t), 72.8 (t), 76.4 (d), 78.0 (d), 79.5 (s$), 108.9$ (s), 127.4 (d), 127.5 (d, 2C), 128.3 (d, 2C), 138.6 (s), 155.3 (s), 170.1 (s), 170.8 (s); HRMS $\left(\mathrm{ESI}^{+}\right)$: Calculated for $\left[\mathrm{C}_{45} \mathrm{H}_{75} \mathrm{NO}_{10} \mathrm{Na}\right]^{+}$: 812.5289; found: 812.5241.

(E)-Ethyl

7-((1S,2S,5S,7R)-2-acetoxy-5-(15-((S)-3-acetoxy-2-(tert-butoxycarbonylamino)propoxy)pentadecyl)-6,8-dioxabicyclo[3.2.1]octan-7-yl)hept-2-enoate (43)

A suspension of 41 ($200 \mathrm{mg}, 0.283$ mmol), $\mathrm{Pd}-\mathrm{C}(5 \mathrm{mg})$ in ethyl acetate (5 mL) was flushed with hydrogen gas and stirred under hydrogen (20 psi)
 atmosphere for 30 min . The reaction mixture was filtered through celite, concentrated and the crude product by was purified column chromatography (30% ethyl acetate in petroleum ether) to yield 42 ($175 \mathrm{mg}, 88 \%$) as colorless oil.

To an ice-cooled solution of the alcohol 42 ($40 \mathrm{mg}, 0.06 \mathrm{mmol}$) in DCM (2 mL), DMP (0.29 g , 0.07 mmol) was added in small portions and stirred for 6 h . The reaction mixture was quenched with ice, partitioned between DCM, water and the organic layer was separated, washed with DCM, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford the aldehyde ($31 \mathrm{mg}, 78 \%$) as colorless syrup. The crude aldehyde was used for the next step without purification.

To a solution of the aldehyde ($30 \mathrm{mg}, 0.04 \mathrm{mmol}$) in benzene (2 mL), the ylide ((carbethoxymethylene) triphenyl phosphorane) ($45 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added and refluxed for 1 h . Solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography (20% ethyl acetate in petroleum ether) to yield 43 ($27 \mathrm{mg}, 82 \%$) as colorless oil. $[\alpha]^{25}{ }_{\mathrm{D}}:-83.4\left(c .98, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3449,2927,2855,1742,1500,1463$, $1367,1235,1040,855,776,720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.23(\mathrm{~s}, 24 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.47-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.63-1.68$ (m, 3H), 1.76 (dt, J $=6.5,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=6.8,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=6.7$ Hz, 2H), $3.42-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.97$ (br s, 1H), 4.02 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (dd, $J=5.5,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.86-4.91(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93 (dt, $J=7.0,15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.3$ (q), 20.9 (q), 21.1 (q), 23.1
 29.7 (t, 4C), $29.8(t), 32.1(t), 33.5(t), 34.8(t), 36.7(t), 49.1(d), 60.2(t), 63.7(t), 68.6(d), 69.3$ (t), 71.6 (t), 76.3 (d), 78.1 (d), 79.6 (s), 109.1 (s), 121.5 (d), 148.9 (d), 155.4 (s), 166.7 (s), 170.2 (s), 170.9 (s), ppm; HRMS (ESI ${ }^{+}$): Calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{73} \mathrm{NO}_{11} \mathrm{Na}\right]^{+}: 790.5082$; found: 790.5034.
(4S)-Tert-butyl
4-((15-((1R,2R,5S)-7-(5-(benzyloxy)pentyl)-2-hydroxy-6,8-dioxabicyclo[3.2.1]octan-5-yl)pentadecyloxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (44)

To a solution of diol $34(100 \mathrm{mg}, 0.14$ $\mathrm{mmol})$ in acetone, were added DMP $(0.07 \mathrm{~mL}$, 0.6 mmol) and p-TSA (5 mg) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 2.5 h when
 TLC analysis indicates the reaction was complete then was treated with few drops of triethylamine and the solvent was removed under reduced pressure and the resulting crude product was purified by column chromatography ($70: 30$ petroleum ether/EtOAc) to obtain 44 (87 mg, 82%) as a colorless thick syrup: $\mathrm{R}_{f}\left(35 \% \mathrm{EtOAc} /\right.$ petroleum ether) $0.4 ;[\alpha]^{25}{ }_{\mathrm{D}}:+28.7$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3404,2925,2854,1702,1459,1388,1103,847,770,732,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.24(\mathrm{~s}, 24 \mathrm{H}), 1.38-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.46$ (s, 9 H$), 1.51$ (s, 3H), 1.55 (s, 3H), $1.53-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.76$ (dt, $J=5.6,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 1 \mathrm{H})$, 2.37 (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=9.5,21.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=6.4$

Hz, 2H), 3.37-3.49 (m, 1H), $3.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.85-3.92(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.49 (s, 2H), 7.24-7.35 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 23.0(\mathrm{t}), 23.1,24.4(2 \mathrm{q}, 1 \mathrm{C})$, 25.1 (t), 25.4 (t), 26.0 (t), 26.1 (t), 26.7, 27.5 ($2 \mathrm{q}, 1 \mathrm{C}$), 28.4, 28.5 (2q, 3C), 29.5(t), 29.6 (t,5C), , 29.7(t, 4C), , 29.8 (t), 30.1 (t), 35.2 (t), 37.5 (t), 56.3, 56.5 (2q, 1C), 65.4, 65.7 (2t, 1C), 66.3 (d), 69.3, 70.0 (2t, 1C), 70.3 (t), 71.4 (t), 72.9 (t), 77.9 (d), 79.7, 80.2, (2s, 1C), 82.3 (d), 93.2, 93.7 (2s, 1C), 109.5 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.6 (s), 151.7, 152.2 (2s, 1C) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=768[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{44} \mathrm{H}_{75} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 768.5391$. found 768.5352 .

(4S)-Tert-butyl

4-((15-((1R,2R,5S)-2-hydroxy-7-(5-hydroxypentyl)-6,8-

 dioxabicyclo[3.2.1]octan-5-yl)pentadecyloxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (45)A suspension of $44(50 \mathrm{mg}, 0.07 \mathrm{mmol})$, $\operatorname{Pd}(\mathrm{OH})_{2}(5 \mathrm{mg})$ in ethyl acetate (5 mL) was flushed with hydrogen gas and stirred under hydrogen (20 psi) atmosphere for 30 min . The
 reaction mixture was filtered through celite, concentrated and the crude product by was purified column chromatography (60:40 petroleum ether/EtOAc) to yield 45 (40 mg, 91\%) as colorless oil: R_{f} (40\% EtOAc/petroleum ether) 0.4; $[\alpha]^{25}{ }_{\mathrm{D}}:+36.3\left(c\right.$ 0.2, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3436,2928,1690,1406,1394,1216,758,668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.24-1.35(\mathrm{~m}, 24 \mathrm{H}), 1.37-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.59$ $(\mathrm{m}, 11 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{dt}, J=5.5,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.26-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{dd}, J=2.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=2.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-$ $3.66(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.97-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 22.7$ (t), 22.9 (t), 23.1, 24.4 (2q, 1C), $25.0(\mathrm{t}), 25.3$ (t), 25.6 (t), 26.1 (t), 26.7, 27.5 (2q, 1C), 28.4, 28.5 (2q, 3C), 29.1 (t), 29.3 (t), 29.4 (t), 29.6 (t, 2C), 29.6 (t, 3C), 29.8 (t), 30.1 (t), 31.9 (t), 32.6 (t), 35.2 (t), 37.5 (t), 56.3, 56.5 (2d, 1C), 62.8 (t), 65.4, 65.7 (2t, 1C), 66.3 (d), 69.3, 70.0 (2t, 1C), 71.4 (t), 77.8 (d), 79.7, 80.2 (2s, 1C), 82.4 (d), 93.3, 93.7 (2s, 1C), 109.6 (s), 151.7, 152.2 (2s, 1C) ppm; MS (ESI) m/z $=678[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{69} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 678.4921$, found 678.4874.
(4S)-Tert-butyl
4-((15-((1R,2R,5S)-7-((E)-7-ethoxy-7-oxohept-5-enyl)-2-hydroxy-6,8-dioxabicyclo[3.2.1]octan-5-yl)pentadecyloxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (2)

To an ice-cooled solution of the diol 45 ($35 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL), DMP ($27 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added in small portions and stirred for 6 h . The reaction mixture was quenched with ice,
 partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, water and the organic layer was separated, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford the aldehyde ($30 \mathrm{mg}, 85 \%$) as colorless syrup. The crude aldehyde was used for the next step without purification.

To a solution of the aldehyde ($30 \mathrm{mg}, 0.05 \mathrm{mmol}$) in benzene (2 mL), the ylide ((carbethoxymethylene) triphenyl phosphorane) ($56 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added and refluxed for 1 h. Solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography (80:20 petroleum ether/EtOAc) to yield 2 ($26 \mathrm{mg}, 78 \%$) as colorless oil: R_{f} (15% EtOAc/petroleum ether) 0.45; $[\alpha]^{25}{ }_{\mathrm{D}}:+26.6\left(c 0.4, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v: 3451,2928,1732,1693$, $1465,1393,1247,1046,758,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.26(\mathrm{~s}, 24 \mathrm{H}), 1.29(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.46(\mathrm{~m}, 7 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.47-1.56(\mathrm{~m}, 8 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{td}, J=$ 5.5, 12.5 Hz, 1H), $1.95-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=7.3,14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.40-$ 3.50 (m, 3H), 3.62 (br s, 1H), 3.89 (dd, $J=5.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.91-3.94$ (m, 2H), $3.99-4.01$ (m, $1 \mathrm{H}), 4.06$ (br s, 1H), 4.19 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.82 (dt, $J=1.5,15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.96 (dt, $J=7.0$,
 (t), 26.1 (t), 26.7, $27.5(2 q, 1 C), 27.8(t), 28.4,28.5(2 q, 3 C), 29.4(t), 29.6(t), 29.6(t, 9 C), 29.8$ (t$)$, 30.1 (t), 32.1 (t$), 35.1$ (t$), 37.5(\mathrm{t}), 56.3,56.5(2 \mathrm{~d}, 1 \mathrm{C}), 60.2(\mathrm{t}), 65.4,65.7(2 \mathrm{t}, 1 \mathrm{C}), 66.3(\mathrm{~d})$, 69.3, 70.1 (2t, 1C), 71.4 (t), 77.7 (d), 79.7, 80.2 ($2 \mathrm{~s}, 1 \mathrm{C}$), 82.4 (d), 93.3, 93.7 (2s, 1C), 109.7 (s), 121.5 (d), 148.9 (d), 166.7 (s) ppm; MS (ESI) m/z = $746[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{73} \mathrm{NO}_{9}[\mathrm{M}+\mathrm{Na}]^{+} 746.5183$. found 746.5129.

SPECTRA

${ }^{1} \mathrm{H}$ NMR Spectrum of 18 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 18 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 19 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 20 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 20 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 21 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 21 in CDCl_{3}
SD-A-169.ESP
${ }^{1} \mathbf{H}$ NMR Spectrum of 5 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 5 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 22 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 22 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 23 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 23 in CDCl_{3}

	ตigig

${ }^{1} \mathrm{H}$ NMR Spectrum of 11 in CDCl_{3}
NHEPTRICESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 11 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 12 in CDCl_{3}
NSDD4C.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 12 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 24 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 24 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 25 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 25 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 26 in CDCl_{3}
SDB-217C.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 26 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 27 in CDCl_{3}
OBZ-OMSC.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 27 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 10 in CDCl_{3}
SDB227C.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 10 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 28 in CDCl_{3}
SD-B237.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 28 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 29 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 29 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 13 in CDCl_{3}
RHEPTRIC.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 14 in CDCl_{3}
SDDA9H.ESP
${ }^{1} \mathrm{H}$ NMR Spectrum of 14 in CDCl_{3}
SDD9C.ESP

${ }^{13} \mathrm{C}$ NMR Spectrum of 14 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 30 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 30 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 31 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 31 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 32 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 32 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 33 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 33 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 9 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 6 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 6 in CDCl_{3}
serinor.esp
${ }^{1} \mathrm{H}$ NMR Spectrum of 4 in CDCl_{3}
SD-C-51C.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 4 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 34 in CDCl_{3}

C.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 34 in CDCl_{3}
SDD125H.ESP Chloroform
${ }^{1} \mathrm{H}$ NMR Spectrum of 35 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 35 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 36 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 36 in CDCl_{3}
HA.ESP
${ }^{1} \mathrm{H}$ NMR Spectrum of 37 in CDCl_{3}
C.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 37 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 39 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 39 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 40 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 40 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 41 in CDCl_{3}
RSDB7C.ESP
${ }^{13} \mathrm{C}$ NMR Spectrum of 41 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 43 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 43 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 44 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 44 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 45 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 45 in CDCl_{3}
NACEWITH.ESEhlorofm-d
${ }^{1} \mathrm{H}$ NMR Spectrum of 2 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 in CDCl_{3}

REFERENCES

1. (a) Kiyota, H. Top. Heterocycl. Chem. 2006, 5, 65-95, (b) Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2008, 25, 35-94; (c) Mori, K. Tetrahedron 1989, 45, 3233-3298; (d) Jun, J. G. Synlett 2003, 12, 1759-1777; (e) Zhao, W. Chem. Rev. 2010, 110, 1706-1745; (f) Morris, J. C.; Phillips, A. J. Nat. Prod. Rep. 2011, 28, 269-289.
2. Whetstone, R. R.; Google Patents, 1950, 2, 511, 890.
3. Milroy, L.-G.; Zinzalla, G.; Prencipe, G.; Michel, P.; Ley, S. V.; Gunaratnam, M.; Beltran, M.; Neidle, S. Angew. Chem. Int. Ed. 2007, 46, 2493-2496; (b) Ramana, C. V.; Salian, S. R.; Gonnade, R. G. Eur. J. Org. Chem. 2007, 5483-5486; (c) Fananas, F. J.; Fernandez, A.; Cevic, D.; Rodriguez, F. J. Org. Chem. 2009, 74, 932-934; (d) Liu, J.; De Brabander, J. K. J. Am. Chem. Soc. 2009, 131, 1256212563; (e) Suenaga, K.; Araki, K.; Sengoku, T.; Uemura, D. Org. Lett. 2001, 3, 527-529; (f) Gonzalez, N.; Rodriguez, J.; Jimenez, C. J. Org. Chem. 1999, 64, 5705-5707.
4. Mitchell, S. S.; Rhodes, D.; Bushman, F. D.; Faulkner, D. J. Org. Lett. 2000, 2, 1605-1607.
5. Naya, Y.; Kotake, M. Tetrahedron Lett. 1967, 2459-2460.
6. Silverst.Rm; Brownlee, R. G.; Bellas, T. E.; Wood, D. L.; Browne, L. E. Science 1968, 159, 889-891.
7. Wasserma.Hh; Barber, E. H. J. Am. Chem. Soc. 1969, 91, 3674-3675.
8. Cernigliaro, G. J.; Kocienski, P. J. J. Org. Chem. 1977, 42, 3622-3624.
9. Mori, K. Agr. Biol. Chem. 1976, 40, 2499-2500.
10. Ohrui, H.; Emoto, S. Agr. Biol. Chem. 1976, 40, 2267-2270.
11. Mori, K. Tetrahedron 1976, 32, 1979-1981.
12. Coke, J. L.; Williams, H. J.; Natarajan, S. J. Org. Chem. 1977, 42, $2380-2382$.
13. Sherk, A. E.; Fraserreid, B. J. Org. Chem. 1982, 47, 932-935.
14. Mundy, B. P.; Bjorklund, M. Tetrahedron Lett. 1985, 26, 3899-3902.
15. Larcheveque, M.; Lalande, J. Chem. Commun. 1985, 83-84.
16. Trinh, M.-C.; Florent, J.-C.; Monneret, C. Chem. Commun. 1987, 615-616.
17. Yadav, J. S.; Vidyasagar, V.; Rao, E. S. Synthetic Commun. 1989, 19, 605-611.
18. Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237-6240.
19. Myles, D. C.; Andrulis, P. J.; Whitesides, G. M. Tetrahedron Lett. 1991, 32, 48354838.
20. Prasad, K. R.; Anbarasan, P. Tetrahedron: Asymm. 2007, 18, 1419-1427.
21. Liu, J.-H.; Long, Y.-Q. Tetrahedron Lett. 2009, 50, 4592-4594.
22. Crimmins, M. T.; Hughes, C. O. Org. Lett., 14, 2168-2171.
23. Shigehisa, H.; Suwa, Y.; Furiya, N.; Nakaya, Y.; Fukushima, M.; Ichihashi, Y.; Hiroya, K. Angew. Chem. Int. Ed. 2013, 52, 3646-3649.
24. Bernhardson, D.; Brandt, T. A.; Hulford, C. A.; Lehner, R. S.; Preston, B. R.; Price, K.; Sagal, J. F.; St Pierre, M. J.; Thompson, P. H.; Thuma, B. Org. Process Res. Dev. 2014, 18, 57-65.
25. Suthers, B. D.; Jacobs, M. F.; Kitching, W. Tetrahedron Lett. 1998, 39, 2621-2624.
26. Chaquin, P.; Morizur, J. P.; Kossanyi, J. J. Am. Chem. Soc. 1977, 99, 903-905.
27. Yamada, Y.; Sanjoh, H.; Iguchi, K. Tetrahedron Lett. 1979, 20, 423-424.
28. Freeman-Cook, K. D.; Halcomb, R. L. Tetrahedron Lett. 1996, 37, 4883-4886.
29. Norrish, R. G. W.; Bamford, C. H. Nature 1937, 140, 195-196.
30. Francisco, C. G.; Herrera, A. J.; Suarez, E. J. Am. Chem. Soc. 2002, 67, 7439-7445.
31. Noutsias, D.; Kouridaki, A.; Vassilikogiannakis, G. Org. Lett. 13, 1166-1169.
32. Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Rüttinger, R.; Kojer, H. Angew. Chem. 1959, 71, 176-182.
33. (a) Trost, B. M.; Horne, D. B.; Woltering, M. J. Angew. Chem. Int. Ed. 2003, 42, 5987-5990; (b) Miyakoshi, N.; Aburano, D.; Mukai, C. J. Org. Chem. 2005, 70, 6045-6052; (c) Trost, B. M.; Weiss, A. H. Angew. Chem. Int. Ed. 2007, 46, 76647666; (d) Zhang, Y.; Xue, J.; Xin, Z.; Xie, Z.; Li, Y. Synlett 2008, 940-944; (e) Ramana, C. V.; Induvadana, B. Tetrahedron Lett. 2009, 50, 271-273; (f) Ramana, C. V.; Mallik, R.; Sahoo, G. Tetrahedron Lett. 2009, 50, 4844-4847; (g) Liu, J.; De Brabander, J. K. J. Am. Chem. Soc. 2009, 131, 12562-12563; (h) Ramana, C. V.; Suryawanshi, S. B.; Gonnade, R. G. J. Org. Chem. 2009, 74, 2842-2845; (i) Trost, B. M.; O'Boyle, B. M.; Hund, D. J. Am. Chem. Soc. 2009, 131, 15061-15074; (j) Lee, H.-Y.; Jung, Y.; Moon, H. Bull. Korean Chem. Soc. 2009, 30, 771-772; (k) fortner, K. C.; Kato, D.; Tanaka, Y.; Shair, M. D. J. Am. Chem. Soc. 2009, 132, 275-280; (l) Ravindar, K.; Reddy, M. S.; Lindqvist, L.; Pelletier, J.; Deslongchamps, P. Org. Lett. 2010, 12, 4420-4423; (m) Fang, C.; Pang, Y.; forsyth, C. J. Org. Lett. 2010, 12, 4528-4531; (n) Tlais, S. F.; Dudley, G. B. Org. Lett. 2010, 12, 4698-4701; (o) Benson, S.; Collin, M.-P.; Arlt, A.; Gabor, B.; Goddard, R.; Füerstner, A. Angew. Chem. Int. Ed. 2011, 50, 8739-8744; (p) Yang, J.; Tummatorn, J.; Slegeris, R.; Tlais, S. F.; Dudley, G. B. Org. Lett. 2011, 13,

2065-2067; (q) Wang, X.; Paxton, T. J.; Li, N.; Smith, A. B., III. Org. Lett. 2012, 14, 3998-4001; (r) Kona, C. N.; Ramana, C. V. Tetrahedron 2014, 70, 3653-3656.
34. Mundy, B. P.; Otzenberger, R. D.; DeBernardis, A. R. J. Org. Chem. 1971, 36, 2390-2390.
35. Gresham, T. L.; Steadman, T. R. J. Am. Chem. Soc. 1949, 71, 737-738.
36. Byrom, N. T.; Grigg, R.; Kongkathip, B. Chem.Commun. 1976, 216-217.
37. Danishefsky, S. J.; Pearson, W. H.; Harvey, D. F. J. Am. Chem. Soc. 1984, 106, 2455-2456.
38. Kotsuki, H. Synlett 1992, 1992, 97-106.
39. Mayer, S. F.; Steinreiber, A.; Goriup, M.; Saf, R.; Faber, K. Tetrahedron: Asymmetry 2002, 13, 523-528.
40. Yadav, J. S.; Rao, K. S.; Reddy, B. V. S. Lett. Org. Chem. 2009, 6, 4-7.
41. Lee, H.-Y.; Jung, Y.; Moon, H. Bull. Korean Chem. Soc. 2009, 30, 771-772.
42. Burke, S. D.; Muller, N.; Beaudry, C. M. Org. Lett. 1999, 1, 1827-1829.
43. Scholl, M.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 1425-1428.
44. Kiyota, H.; Dixon, D. J.; Luscombe, C. K.; Hettstedt, S.; Ley, S. V. Org. Lett. 2002, 4, 3223-3226.
45. Marvin, C. C.; Voight, E. A.; Burke, S. D. Org. Lett. 2007, 9, 5357-5359.
46. Mahipal, B.; Mallikarjun, K.; Chandrasekhar, S. Tetrahedron Lett. 2012, 53, 45-47.
47. Prasad, K. R.; Gandi, V. R. Synlett 2009, 2593-2596.
48. (a) Sen, S. E.; Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magrath, J. J. Org. Chem. 1997, 62, 6684-6686; (b) Prasad, K. R.; Chandrakumar, A. Tetrahedron: Asymm. 2005, 16, 1897
49. Utimoto, K. Pure Appl. Chem. 1983, 55, 1845-1852.
50. Brown, C. A.; Yamashita, A. J. Am. Chem. Soc. 1975, 97, 891-892.
51. (a) Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361-2364; (b) Dondoni, A.; Perrone, D. Org. Synth. 2004, 10, 320.
52. English, J.; Griswold, P. H. J. Am. Chem. Soc. 1948, 70, 1390-1392.
53. Arndt, S.; Emde, U.; Bäurle, S.; Friedrich, T.; Grubert, L.; Koert, U. Chem. Eur. J. 2001, 7, 993-1005.
54. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391-394.
55. (a) Barluenga, J.; Fernandez, A.; Satrustegui, A.; Dieguez, A.; Rodriguez, F.; Fananas, F. J. Chem. Eur. J. 2008, 14, 4153-4156; (b) Dai, L.-Z.; Shi, M. Chem. Eur. J. 2008, 14, 7011-7018; (c) Alcaide, B.; Almendros, P.; Carrascosa, R.;

Torres, M. R. Adv. Synth. Catal. 2010, 352, 1277-1283; (d) Volchkov, I.; Sharma, K.; Cho, E. J.; Lee, D. Chem. Asian J. 2011, 6, 1961-1966; (e) Alcaide, B.; Almendros, P.; Carrascosa, R. Chem. Eur. J. 2011, 17, 4968-4971. 56. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.

CHAPTER II; SECTION A

The total synthesis of proposed structure of Notoryne

INTRODUCTION

The tetrahydrofuran (THF) ring is a commonly encountered ring in various natural products. ${ }^{1}$ Quite interestingly there are several natural products which display two or more THF rings being arranged in various orientations. ${ }^{2}$ Annonaceous acetogenins, polyether antibiotics, and macrodiolides are some of important classes which are characterized by the presence of multiple THF rings. For example, ionomycine, mucoxin, Jimenezin, NSC695222, Kumausallene and Notoryne are some representative natural products having the different types of relative arrangement of these furan rings across the complete molecular skeleton (Figure 8). This diversity in their arrangement and diverse biological activities that have been noticed and, most importantly, very limited supply of these natural products for further biological studies has attracted the attention of the synthetic organic chemists. There are many elegant approaches that have been developed to equip the molecular skeletons having the THF ring with the desired relative arrangement, yet the opportunities for the development of new methodologies with increased skeletal and stereo chemical flexibility continues. As this part of the thesis will be describing our efforts towards the synthesis of a couple of molecules belonging to the class of bis-furans, the following introductory part will be reserved mainly for providing the literature examples that deal with the synthesis of scaffolds which are similar to the ones that these two natural products possess.

Mucoxine

Micrandilactone A

Lancifodilactone G

Figure 8: Structural diversity of in the natural products having multiple furan rings

Apart from the molecules of nature, there are several drugs which are identified with the presence of THF rings. 3^{\prime}-Azido- 3^{\prime}-deoxythymidine (AZT) is one of the early drugs approved by FDA for the treatment of Acquired Immuno Deficiency Syndrome (AIDS) and has inspired the development a wide range of nucleoside analogues as potential retro viral. ${ }^{3}$ In particular more emphasis has been placed on designing the conformationally restricted nucleoside derivatives as it has been understood that only one conformation of nucleosides binds to the target enzyme. Various nucleoside analogues containing the bicyclic carbohydrate moiety have been synthesized to lock the puckering of the furanose ring and study their biological activity. Darunavir, a conceptually new HIV-1 protease inhibitor having a bis-furan core, is one of the successful candidates that have been identified in this context. ${ }^{4}$ It was proved that this bicyclic compound has shown anti-HIV activity through the inhibition of HIV reverse transcriptase. It has been shown that this bicyclic unit is involved in a network of hydrogen bonding interactions with the protein-backbone of the HIV-1 protease and that because of this Darunavir displays a superior resistance profile. ${ }^{5}$

Figure 9: The structures of AZT and Darunavir
The molecules having multiple furan rings can be divided broadly into two classes as bis-furans and fused furan systems. The bis-furan systems can be further divided into two families as adjacent bis-furans, i.e. attached ring and non-adjacent 2,5 disubstituted (i.e. two furan rings are connected with a hydrocarbon chain). There are four types of fused furan rings possible according to their connection or fusion irrespective of stereochemistry. These are i) syn-furo[2,3-b]furan; ii) anti-furo[2,3-b]furan; iii) furo[2,3-c]furan; and iv) furo[3,4-c]furan. Considering the structures of Notoryne (46) and Kumausallene (47), the following discussion will be mainly on the synthesis of related systems in case of Notoryne and on the early total synthesis of Kumausllene.

Figure 10: The classification of multiple furan arrangement and the structures of Notoryne and Kumausallene

1. Synthesis of adjacent bis-furan skeleton and of related natural products:

The complex chemistry and potent biological activity of the bis-furan unit containing molecules like Mucoxin, (+)-Parviflorin, ionomycine, Pamamycin-607, Uvaricin, Sylvaticin and $(+)$-Gigantecinan has created widespread interest. Sometime they act as an ionophore for transporting cations across the lipid barrier or sometimes they show multi drug-resistant power through the complexation with ubiquinone-linked NADH oxidase present in the plasma membrane of tumor cells. Plants of the family Annonaceaeuse produce significantly bioactive $\mathrm{C}_{35}-\mathrm{C}_{37}$ fatty acid metabolites which contained mainly monoTHF, adjacent bisTHF, and nonadjacent bis-THF subunits. Mucoxin, ${ }^{19}$ an adjacent bis-THFacetogenin, has shown the in vitro cytotoxicity assays against a panel of six human tumor cell lines and more potent and selective against MCF-7 (breast carcinoma) cell lines than adriamycin. Parviflorin, ${ }^{15 b}$ is an adjacent bis-THF acetogenin, was isolated from Asiminapar Viflora Duanl and from Annonabullata Rich, and shows significant selectivity in its cytotoxicity against certain human solid tumor cell lines. Squamocin D is a typical member of bis-THF acetogenins, which are known to be among the most potent annonaceous acetogenins in cytotoxicity tests. ${ }^{2 \mathrm{~h}}$ Annonaceous acetogenins help to reduce ATP levels via inhibition of complex I (NADH, ubiquinone oxidoreductase) of the mitochondrial transport systems of insects and mammals. As a result it disrupts the ATP-driven resistance mechanisms and builds up activity against multi drug-resistant tumor types. It also inhibits the NADH oxidase of the plasma membranes of tumor cells.

Figure 11: Selected natural products with adjacent bis-THF subunits

Considering the different approaches that have been employed in the context of installing the THF rings, the following discussion is subdivided into four parts depending upon the key reaction that has been employed. Each part will present a representative total synthesis stressing mainly on this particular transform and some of the other total syntheses wherein a similar approach employed will be mentioned.

The key transformations that have been employed in this context are:
1.1. Oxidative transformations of olefins.
1.2. Intramolecular additions of alcohols to epoxides.
1.3. Intramolecular $\mathrm{S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} 1$ reactions of hydroxyl nucleophiles with alkyl halides.
1.4. Halo etherification of multiple bonds.
1.5. Metal mediated cyclization.

1.1. Oxidative transformations of olefins:

One of the early methods reported in the context of synthesis of the bis-THF core was the one-pot or sequential oxidation of polyenes. In 1965, Klein and Rojahn first demonstrated that a simple treatment of neryl acetate $\mathbf{S 5 9 . 1}$ with KMnO_{4} leads to a cis-2,5disubstitutedfuran in a stereo specific way. ${ }^{6}$ In 1980, Walba and co-workers used this potential methodology and synthesized the B and C ring of Monensine from neryl acetate

S59.1. ${ }^{7}$ The advanced intermediate (Z, Z)-1,5-diene S59.2 prepared from neryl acetate had been subjected for oxidation in the presence of KMnO_{4} to procure the cis-2,5-substituted furan unit S59.3 which was further exposed to acid to give S59.4 having the BC ring of Monensine.

Scheme 59: Synthesis of Monensine by Walba et al
In 1995, McDonald and co-workers reported an acyl perrhenate-induced tandem [3 +2] syn-oxidative cyclization for the synthesis of bis-furan moiety from acid sensitive hydroxydienes S60.1. ${ }^{8}$ A one-pot approach to generate the bis-furan moiety $\mathbf{S 6 0 . 3}$ did not work because of coordinative interaction between the Lewis acidic rhenium atom and the tetrahydrofuran oxygen. Omission of base as well as addition of trifluoroacetic anhydride to regenerate the active trifluoroacetyl perrhenate catalyst led to the trans, transtetrahydrofurfuryl moiety S60.3.

Scheme 60: Synthesis of bis-THF core by McDonald's group
In 1997, Sinha and co-workers reported a tandem oxidative cyclization reaction of a trienol using the $\operatorname{Re}(I V)$ reagent to install three adjacent THF rings with the creation of six new chiral centers aided by a single stereogenic centre present in the starting substrate. ${ }^{9}$ The trans-4,8,12-trienol S61.1 was transformed into the epoxy alcohol S61.2 through asymmetric epoxidation followed by reductive cleavage of the epoxide ring using Red-Al and protection of $1^{\circ}-\mathrm{OH}$ as its TBDPS ether S61.3. The treatment of trienol $\mathbf{S 6 1 . 3}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$ in the presence of TFAA provided the tris-THF derivative S61.4 as a single diastereomer which has been advanced further to synthesize the 17,18-bisepi-goniocin.

Scheme 61: A one-pot installation of tris-THF core of 17,18-bisepi-goniocin
In 1999, Wang and co-workers documented a simple method for the construction of the bis-THF S62.2 unit from a suitable diol S62.1 employing a Co-catalyzed oxidative cyclization of a dienediol employing the oxygen atmosphere. ${ }^{10}$ The diol S62.1 was prepared from trans-1,5,9-decatriene by using sharpless AD reactions.

Scheme 62: Synthesis of bis-THF core by Wang's group
In 2002, Brown and co-workers documented the synthesis of the 2,2 -bifuranyl compound S63.2 through a permanganate oxidation of E,E-methyl farnesoate $\mathbf{S} 63.1$ with control of relative stereochemistry at four new stereocenters. ${ }^{11}$

Scheme 63: Synthesis of bis-THF core by Brown et al

1.2. Intramolecular additions of alcohols to epoxides:

In 1978, Kishi and co-workers reported the first total synthesis of Lasalocid A which is produced by Streptomyces lasaliensis, and a member of the class of naturally occurring ionophores known as polyether antibiotics. ${ }^{12}$ They have followed the epoxy-cyclization to build up trans 2,5 disubstituted furan $\mathbf{S 6 4 . 3}$ from γ, δ-alkenol $\mathbf{S 6 4 . 1}$ by using t-BuOOH in the presence of $\mathrm{VO}(\mathrm{acac})_{2}$ followed by acid treatment. The same reaction sequence was repeated for the synthesis of the second furan ring in S64.4

Scheme 64: Synthesis of Lasalocid A by Kishi et al
In 1989, Paterson and co-workers reported a controlled bisepoxide cyclization leads to bisfuran $\mathbf{S 6 5 . 3}$ core by using suitable β-diketone $\mathbf{S 6 5 . 2}$ which was prepared from 1,5 diene S65.1. ${ }^{13}$ When TBS protected bis epoxide S65.2 was treated with HF desilylation followed by cascade cyclization leads to bis-THFcore S65.3.

Scheme 65: Synthesis of bistetrahydrofuran core by Paterson et al
In 1991, Evans and co-workers documented a convergent asymmetric synthesis of polyether antibiotics Ferensimycin B. ${ }^{14}$ For the preparation of THF ring they performed vanadium catalyzed epoxidation of bis-homoallylic alcohol S66.2 followed by acid catalyzed ring opening of the intermediate epoxide, which afforded the diastereomeric tetrahydrofuran S66.3. The second THF ring was prepared by alkylation of the enamine S66.4 to an activated epoxide S66.6 followed by cyclization which led to the bis-furan S66.5 core part of Ferensimycin B.

Scheme 66: Synthesis of Ferensimycin B by D. A. Evans et al

In the same year, Hoye and co-workers documented the synthesis of (+)-uvaricin by performing a cascade reaction of bis epoxide $\mathbf{S 6 7 . 2}$ that was prepared by a two directional chain elongation of tartarate. ${ }^{15 \mathrm{a}}$ The diiodide $\mathbf{S} 67.1$ was converted into the C_{2}-symmetric diol S67.2 through the Weiler dianion alkylation ${ }^{16}$ and Sharpless asymmetric epoxidation. ${ }^{17}$ Now, the diol S67.2 was selectively mono-tosylated and then subjected for acid catalyzed acetonidede protection to afford the bis-THF core S67.3 of (+)-Uvaricin. A similar approach for the $(+)$-Parviflorin has been reported by Hoye and co-workers in 1996. ${ }^{15 b}$

Scheme 67: Synthesis of (+)-Uvaricin by Hoye's Group

In 1994, Koert and co-workers described the first total synthesis of the naturally occurring acetogenin (+)-Rolliniastatin. ${ }^{18}$ The advanced epoxy alcohol $\mathbf{S 6 8 . 2}$ which was prepared from the L-glutamic acid S68.1 and treated with AcOH to procure the desired bisfuran $\mathbf{S 6 8 . 3}$ core of (+)-Rolliniastatin.

Scheme 68: Synthesis of (+)-Rolliniastatin by Koert's group
In 2005, Borhan and co-workers described an enantio selective total synthesis of the proposed structure of mucoxin via regio- and stereoselective THF ring-forming strategies. ${ }^{19}$ Mucoxin is a highly potent and specific antitumor agent against MCF-7 (breast carcinoma) cell lines $\left(\mathrm{ED}_{50}=3.7 \times 10^{-3} \mu \mathrm{~g} / \mathrm{mL}\right)$. The treatment of the bis-TES protected epoxydiol $\mathbf{S 6 9 . 2}$ (prepared from 3-butynol S69.1) gave the THF-diol S69.3 through a neighboring-groupassisted cyclization process. Subsequently, the THF-diol S69.3 was employed for the synthesis of the advanced intermediate $\mathbf{S 6 9 . 4}$ which was treated with trimethyl orthoacetate in
the presence of PPTS to afford the bis-THF S69.5 part of Mucoxin through an exo-cyclization of the reactive acetoxonium intermediate S69.6.

Scheme 69: Synthesis of Mucoxin by B. Borhan et al

1.3. Intramolecular $S_{N} 2$ and $S_{N} 2$, reactions of hydroxyl nucleophiles with alkyl halides:

In 1999, Zhao and co-workers documented the synthesis of the bis-THF core of acetogenins through double intramolecular $\mathrm{S}_{\mathrm{N}} 2$, O-cyclization reactions from a suitable protected diene-diol S70.2 that was prepared from commercially available 1,5-cyclooctadiene S70.1. ${ }^{20}$ The treatment of $\mathbf{S 7 0 . 2}$ with HF followed by NaHCO_{3} gave the desired trans, trans-bis-THF derivative S70.3 as the major product along with the minor product S70.4.

Scheme 70: Intramolecular $\mathrm{S}_{\mathrm{N}} 2$ 'for synthesis of bis-THFcore
In 2004, Tanaka and co-workers documented the stereo divergent and reiterative synthesis of bis-THF ring core S71.5 through an asymmetric alkynylation of the aldehyde S71.1 with alkyne S71.2 followed by hydrogenolysis and an intramolecular $\mathrm{S}_{\mathrm{N}} 2$ displacement of diol S71.4 in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ leading to the bis-THF moiety S71.5. ${ }^{21}$

Scheme 71: Synthesis of bis-THF core by intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction
In 2012, Burton's group reported the first total synthesis and structural conformation of Elatenyne, a brominated natural product which was isolated from Laurencia elata. ${ }^{22}$ The Sharpless asymmetric epoxidation/dihydroxylations (SAD) have been used to synthesize the key epoxide S72.1 with the requisite stereochemically defined hydroxyl epoxide groups that were subjected for the acid catalyzed epoxide opening and a finally for an intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction. The journey started with the asymmetric epoxidation of readily available 1,5-hexadien-3-ol followed by cross metathesis and asymmetric dihydroxylation of the resulting internal trans-alkene S72.4. Now, the diol epoxide S72.5 was forwarded for the acid catalyzed mono THF ring S72.6 formation followed by $\mathrm{S}_{\mathrm{N}} 2$ displacement to procure the bisTHF moiety S72.7 of elatenyne.

Scheme 72: Total synthesis of elatenyne

In 2013, Britton and co-workers documented the total synthesis and structural revision of Laurefurenynes A / B which were isolated from various Laurencia $s p$. red algae. ${ }^{23}$ Stereochemically rich tetrahydrofuran S73.4 was prepared through the AgI-promoted cyclization of a chlorodiol $\mathbf{S 7 3 . 3}$ which was derived from the butanal via an aldol reaction ${ }^{24}$ with the lithium enolate of 3-methyl-3-penten-2-one in presence of S73.1 followed by 1,3-anti-selective reduction of the carbonyl group of S73.2. A similar strategy (α-chloroaldehyde, aldol, carbonyl reduction, and cyclization) was repeated for installing the next furan ring in S73.6.

Scheme 73: Total synthesis of Laurefurenynes A/B by Britton's group

1.4. Halo etherification of multiple bonds:

In 1979, Kishi and co-workers documented the synthesis of the right half of Monensin in a stereo controlled manner. ${ }^{25}$ NBS mediated bromo etherification was performed to get the bis-THF core $\mathbf{S 7 4 . 2}$ from the advanced intermediate S74.1.

Scheme 74: Synthesis of Monensine by Kishi et al

In 1980, Clark Still and co-workers documented the synthesis of the polyether antibiotic Monensin. ${ }^{26}$ One pot deketalization and halo etherification of $\mathbf{S 7 5 . 1}$ gave the advanced intermediate $\mathbf{S 7 5 . 2}$ which was mesylated selectively at the C13 position followed by solvolysis in buffered trifluoroethanol, resulting in the tetracyclic core S75.3 of Monensin.

Scheme 75: Halo-etherification and Intramolecular $\mathrm{S}_{\mathrm{N}} 2$ in synthesis of Monensine
In 1995, Brimble and co-workers documented the synthesis of bis-2,5-linked tetrahydrofuran through an iodo-etherification. ${ }^{27}$ Iodoetherification of alcohol S76.1 in the presence of I_{2} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ afforded the mixture of bis-tetrahydrofurans S76.2/S76.3. The ratio of S76.2/S76.3 depended on the nature of the ether substituent, S76.2 being the major product for $\mathrm{R}=\mathrm{H}$, TMS, and TBS whereas $\mathbf{S 7 6 . 3}$ was favoured when $\mathrm{R}=4$-bromobenzyl (BBN) or 2,6-dichlorobenzyl (DCB) due to 1,2-non bonded interactions.

Scheme 76: Protecting group dependent diastereoselectivity in halo-etherification
In 2000, Mootoo and co-workers documented a modular synthesis of the bis-THF core of rolliniastatin through an iodo-etherification of $\mathbf{S 7 7 . 1}$ by using iodonium dicollidine perchlorate (IDCP) as a source of iodine. ${ }^{28}$ The resulting iodo aldehyde S77.2 was treated with methylene triphenylphosphorane followed by acid hydrolysis of the glycoside bond giving lactol which was directly employed for Witting olefination leading to the pseudosymmetrical bis-THF diene S77.3. ${ }^{29}$

Scheme 77: Synthesis of Rolliniastatin by Mootoo's Group

1.5. Metal mediated cyclization:

In 1981, Chastrett and co-workers documented a highly stereoselective route for the synthesis of a substituted bis-furan moiety $\mathbf{S 7 8 . 2}$ from 1,5-diene. ${ }^{30}$ Cyclization of S78.1 was carried out with mercuric acetate in a mixture of water and THF (1:1) followed by demercuration with NaBH_{4} which led to the bis-furan moiety S78.2.

Scheme 78: Synthesis of bis-furan core by the oxymercuration reaction
In 1990, Evan and co-workers made the 2,2-bisfuryl moiety S79.2 of Ionomycine from a suitable substituted furan $\mathbf{S 7 9 . 1}$ by employing $\mathrm{Hg}(\mathrm{OAc})_{2}$, followed by NaBH_{4} reduction with a good diastereoselectivity. ${ }^{31}$

Scheme 79: Synthesis of Ionomycine by D. A. Evans et al
In 2007, Mohapatra and co-workers reported the synthesis of the C10-C34 fragment of Asimitrin by using a double stereoselective intramolecular oxymercuration reaction sequence. ${ }^{32}$ The bis-homoallylic derivative $\mathbf{S 8 0 . 1}$ prepared from commercially available GDA, was subjected to cyclization in the presence of $\mathrm{Hg}(\mathrm{OAc})_{2}$ to give a mixture of cyclized products $\mathbf{S 8 0 . 2}$ /cis-isomer. The same sequence has been repeated once to construct the second THF ring and arrive at the preparation of S80.4 that served as an advanced intermediate in the total synthesis of asimitrin.

Scheme 80: Key steps in the synthesis of Asimitrin by Mahapatra's group
In 2001, Burke and co-workers documented the formal synthesis of Uvaricin through a palladium-mediated ligand controlled double cyclization from a suitable C_{2}-symmetric diene S81.2. ${ }^{33}$ The bis-furan core S81.3 was prepared from the double cyclization of S81.2 which could potentially be derived from the commercially available diethyl D-tartrate S81.1.

Scheme 81: Pd-catalyzed $\mathrm{S}_{\mathrm{N}}{ }^{\prime}$ for synthesis of bis-furan core of Uvaricin
In 2010, Hou and co-workers documented the synthesis of bis-THF cores of annonaceous acetogenins from $(3 R, 4 R)$-1,5-hexadiene-3,4-diol S82.1 as the sole source of carbon atoms. ${ }^{34}$ The C_{2} diene-diol $\mathbf{S 8 2 . 1}$ was transformed to the corresponding methylene acetal S82.2 which could act as a linker/tether to facilitate the ring-closing metathesis. Two of the terminal alkenes out of six, were selectively transformed into the corresponding bisepoxide and RCM was performed on remaining four double bonds, followed by hydrogenation which gave the advanced intermediate S82.3. Following this the bis-epoxide S82.3 was converted into dimesylate $\mathbf{S 8 2 . 4}$ by a known reaction sequence and finally acetonide deprotection and base treatment gave the bis-furan moiety S82.5.

Scheme 82: A metathesis and intramolecular $\mathrm{S}_{\mathrm{N}} 2$ approach for bis-furan core by Hou et al

2. Natural products with anti-furo[2,3-b]furan core and some selected synthetic approaches:

Among the four possible arrangements of fused furofurans, the anti-furo[2,3-b]furan moiety takes a special role and is present in many biologically active natural products. For example, Aplysiallene ${ }^{35}$ functions as a $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase inhibitor with $\mathrm{IC}_{50}=0.7 \mu \mathrm{M}$. The natural product Furanodictine A , is unambiguously known to possess the ability to cause neuronal differentiation of rat pheochromocytoma (PC-12) cells, as well as act as an antitumor agent. ${ }^{36}$ Manzamenone O shows antimicrobial activity against micrococcusluteus (MIC $4 \mu \mathrm{~g} / \mathrm{mL}$), aspergillisniger ($\mathrm{IC}_{50} 8 \mu \mathrm{~g} / \mathrm{mL}$), and trichophytonmentagrophytes (IC_{50} $8 \mu \mathrm{~g} / \mathrm{mL})^{37}$. Neovibsanins A and B are the drugs for the treatment of neuro degenerative diseases such as Alzheimer's disease because they significantly promote the neuritis outgrowth of NGF mediated PC12 cells. ${ }^{38}$ In the following pages, general methods that have been documented for the synthesis of this anti-furofuran core and also the details of the available total synthesis of this class of natural products will be described.

(-)-Aplysiallene

Furanodictin A

Hagen's gland

(-)-Panacene

(+)- Neovibsanin B

Figure 12: Anti-furo[2,3-b]furan subunit containing molecules

2.1. Synthesis of anti-furo[2,3-b]furan system:

In 2002, T. Katsuki and co-workers reported that aerobic oxidative cyclization of $2,2^{\prime}-$ dihydroxy stilbenes $\mathbf{S 8 3 . 1}$ in the presence of (nitrosyl)Ru(salen) as a catalyst, leads to the formation of the anti-furo[2,3-b]furan unit S83.2. ${ }^{39}$ Here, solvent polarity plays a crucial role, in the case of a mixture of toluene and t-butanol giving good yields compared to only isopropylether or toluene, t-butanol.

Scheme 83: Synthesis of anti-furo[2,3-b]furan unit by Katsuki et al
Martin and co-workers reported the synthesis of the anti-furo[2,3-b]furan unit S84.3/S84.4 through an acid catalyzed double exo-cyclization of enantiomeric bis-epoxydiols S84.2 in a regio and stereoselective manner where all its six stereocenters could be controlled by Sharpless asymmetric epoxidation/dihydroxylation reactions of the appropriate bis-allylic alcohol which was prepared from S84.1. ${ }^{40}$

Scheme 84: Intramolecular bis-epoxide opening for the synthesis of anti-furo[2,3-b]furan unit by Martin and co-workers

In 1986, Wood and co-workers documented a concise biomimetic asymmetric total synthesis of Syringolides 1 and 2 from S85.1 (prepared from 2,3-O-isopropylidene-Lthreitol), following an acylation with a suitable cesium carboxylated in DMF and intramolecular Claisen condensation and subsequent acetonide hydrolysis, cyclization resulted in the synthesis of naturally occurring butenolides syringolides. ${ }^{41}$

Scheme 85: Total synthesis of Syringolides 1 and 2 by Wood' group
In 2001, Knapp and co-workers synthesized Griseolicacid B through a radical cyclization of a suitably functionalized vinyl iodide $\mathbf{S 8 6 . 1}$ which was derived from glucose
diacetonide (GDA), and found that it affords the mixture of bicyclic vinyl ethers S86.2/S86.3 with the required stereochemistry. ${ }^{42}$

Scheme 86: Synthesis of Griseolic acid B by S. Knapp et al
In 2002, D. Dhavale and co-workers synthesized Griseolic acid analogues by a metalcarbenoide insertion across the $\mathrm{C}-\mathrm{H}$ bond. ${ }^{43}$ Thus, the α-diazo- β-ketoester S87.1 was prepared from the glucose diacetonide which, when treated with rhodium acetate in benzene at reflux temperature led to obtain the furofuran $\mathbf{S 8 7 . 2}$ with a complete α-facial selectivity in a [1,2]-migration leading eventually to the fused core S87.1 that was converted subsequently to the analogue of Griseolic acid B.

Griseolic acid analogues
Scheme 87: Synthesis of Griseolic acid analogues by Dhavale et al
In 2004, Yoda and co-workers reported the total synthesis of Furanodictine A featuring the construction of the central furofuran unit through an intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction. ${ }^{36}$ The key substrate $\mathbf{S 8 8 . 3}$ for this transformation was synthesized from D-arabinose through a sequence of simple operations and then subjected for the $\mathrm{S}_{\mathrm{N}} 2$ reaction using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol. The resulting furan S88.4 upon acetonide hydrolysis and diol cleavage by periodates provided the lactol S88.5 which was converted to the natural product by simple deprotection and acylation.

Scheme 88: Total synthesis of Furanodictine A by Yoda et al
In 2006, Boukouvalas and co-workers reported the total synthesis of Panacene from commercially available 2-methoxy-6-methylbenzoic acid. ${ }^{44 \mathrm{a}} \mathrm{A} \mathrm{Pd}$ (II)-mediated tandem intramolecular alkoxy carbonylation-lactonization has been used as the key skeletal construct to address the synthesis of the benzannulated furofuran S89.3 unit. Later in 2008, Canesi and coworkers reported the synthesis of Panacene where the fused ring S89.6 was derived from oxidative $[2+3]$ cycloaddition between a substituted phenol $\mathbf{S 8 9 . 5}$ which was derived from S89.4 and furan by using PIFA. ${ }^{44 \mathrm{~b}}$

Scheme 89: Total syntheses of Panacene by Boukouvalas \& Canesi groups
In 2007, Pagenkopf and co-workers documented the first total synthesis of (-)Aplysiallene and reassigned the stereochemistry. ${ }^{35}$ The repeated Mukaiyama aerobic oxidative cyclization of a suitably positioned enol has been used as the key step in the construction of the central furofuran core. ${ }^{45}$ The synthesis began with the reaction of (S, S) diepoxybutane $\mathbf{S 9 0 . 1}$ with vinyl magnesium bromide in the presence of CuBr followed by selective mono acetylation to give the substrates $\mathbf{S 9 0 . 2}$ that was subjected for the Cocatalyzed aerobic oxidative cyclization to construct the first furan ring S90.3. Simple manipulations and the second Mukaiyama oxidation gave the C_{2}-symmetric furofuran S90.4 that was subsequently converted into the natural product by following simple synthetic transformations.

Scheme 90: Synthesis of (-)-Aplysiallene by B. L. Pagenkopf et al
In 1993, Overman's group reported the first total synthesis of (\pm)-Kumausallene through a ring-enlarging tetrahydrofuran annulation of cyclic, allylic diols as the central step. ${ }^{46}$ A stereoselective, Lewis acid-catalyzed condensation of 1-vinylcyclopentane diol S91.1 and α-(benzoyloxy) acetaldehyde gave the key intermediate, hydrobenzofuranone S91.2 which was oxidized with m-chloroperbenzoic acid to procure a mixture of lactone S91.3/ regioisomer. Then, the desired lactone S91.3 was dehydrogenated by performing a selenation/selenoxide elimination procedure and lastly, methanolysis of lactone followed by tandem cyclization of the resulting hydroxy ester gave the cis-fused dioxabicyclo[3.3.0]octane $\mathbf{S 9 1 . 4}$ with high stereoselectivity. The (E)-pentenyl appendage was installed by employing the Sakurai reaction followed by one carbon degradation, which led to the compound $\mathbf{S 9 1 . 5}$ which was further employed for acetylide addition through Felkin-Anh stereo control. ${ }^{49}$ Now, the derivative of propargyl alcohol S91.6/S91.7 was transformed into bromoallene S91.8/S91.9 through an anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement of a sulfonate by using a bromocuprate reagent. Finally, deprotection of TBS group followed by the Appel reaction lead to (\pm)-Kumausallene.

Scheme 91: Total synthesis of (\pm)-Kumausallene by Overman

In 1998, Pradilla and co-workers developed a sulfoxide-directed concise formal synthesis of enantiopure (+)-Kumausallene. ${ }^{47}$ The key furofuran intermediate $\mathbf{S 9 2 . 4}$ was constructed by a terminal-selective Wacker oxidation of S92.3 (which was prepared from dienol S92.1 through the construction of epoxy-THF S92.2 through sequential epoxidation) followed by the two-carbon Witting homologation of the resulting lactol S92.4 with concomitant THF ring S92.5 formation via intramolecular1,4-nucliophilic addition to this α, β-unsaturated ester.

Scheme 92: Formal total synthesis of (+)-Kumausallene by Pradilla et al
In 1999, Evans and co-workers documented the enantioselective synthesis of the (-)Kumausallene. ${ }^{48}$ The 2,5-cis-substituted furan unit $\mathbf{S 9 3 . 2}$ was prepared through a radical cyclization of acyl selenide $\mathbf{S 9 3 . 1}$ and then converted into lactol $\mathbf{S 9 3 . 3}$ by simple synthetic manipulations. The treatment of this lactol with Witting reagent followed by TMS deprotection leads to trans-enyne S93.4. A biomimetic electrophilic-type, intramolecular 1,4addition of C-3 hydroxy of S93.4 to an enyne in the presence of TBCD provided the bromoallenes S93.5/S93.6. The (E)-pentenyl appendage was introduced by employing the Sakurai reaction followed by the Appel reaction for converting the free hydroxyl into the bromo which completed the total synthesis of (-)-Kumausallene.

Scheme 93: Total synthesis of (-)-Kumausallene by Evans's Group

In 2011, Tang and co-workers documented the next approach for the total synthesis of $(-)$-Kumausallene. ${ }^{50}$ The hidden symmetry present in (-)-Kumausallene has inspired this group to synthesize furanolactone $\mathbf{S 9 4 . 2}$ by desymmetrizing a C_{2}-symmetric diol $\mathbf{S 9 4 . 1}$ via a palladium catalyzed cascade reaction. This lactone $\mathbf{S 9 4 . 2}$ was transformed into the derivative of homoallyl alcohol $\mathbf{S 9 4 . 3}$ following simple synthetic manipulations. Finally performed Appel reaction on S94.3 followed by witting reaction and TMS deprotection led to the Tang's bromoenyne intermediate 48. Unlike the Evans's approach, here, the biomimetic cyclization to construct the fused furan unit with pendant bromoallene moiety was performed as the final step by employing NBS in DMF.

Scheme 94: Tang's total synthesis of (-)-Kumausallene

PRESENT WORK

The complexity of polyether Annonaceous acetogenins, Ionomycine, Mucoxin, and Jimenezin, Kumausallene and Notoryne has motivated more and more synthetic organic chemists in the research of new methods to introduce functionalities. The development of new methods for the stereo-controlled synthesis of biologically interesting compounds containing a number of hydroxy groups, contiguous stereogenic centres, a halo-ether unit or an enyne moiety continues to receive significant attention. Most challenging things for the synthetic chemist are the creation of contiguous stereogenic centres in both rigid and flexible systems and simultaneously controlling of regio- and stereochemistry. A rational insight into these factors has allowed improvement in the area of organic synthesis, particularly in planning synthetic strategies.

A large number of halogenated C_{15} nonterpenoid ethers with a different kind of ring system were isolated from red algae of the genus Larencia. This type of ethers mainly contained a conjugated enyne or bromoallene moiety at the end of the molecule. In 1991, Suzuki et al. reported that the specimen which was collected from the warm current region in Hokkaido at Noroto point contained (3Z)-laurefucin (49) as the major metabolite and a minor one named Notoryne (46). ${ }^{51}$ Earlier, in 1983, Kurosawa et al. documented that a specimen which was collected at Kumausu, near Otaru, Hokkaido, contained five new bromo ethers and the major component named as Kumausallene (47). ${ }^{52}$ All these three natural products were isolated from the same red algae of genus Laurencia nipponica yamada and it has been found that biosynthesis of nonterpenoids to be dependent upon the growth localities.

A careful examination of the structures of all these natural products indicates the fact that all the three natural products have a similar stereochemistry directly at two centers and indirectly $(\mathrm{Br}$ or Cl in place of -OH$)$ at another two centres. Considering this, we reasoned that there is scope to develop a synthetic route where synthesis of these three natural products could be addressed from a common intermediate and it should be sufficiently flexible to permit late stage access for cis, trans enyne formation. In case of Notoryne and Laurefucin, controlling the mode of bromo-etherification i.e 5 -endo-trig vs 8 -endo trig should address the bis-furan moiety or bicyclic core present in these natural products respectively. The key features of our retro synthesis are depicted in Figure 13. The enyne part of all three natural products was planned from the C-glycoside by performing either cross metathesis ${ }^{53,22}$ or Witting homologation. ${ }^{29}$ As shown in Figure 13, the synthesis of Notoryne (46)and Kumausellene (47) were planned from the common intermediate 51 whereas that of Laurefucin (49) was from the intermediate $\mathbf{5 0}$ which is epimeric at $\mathrm{C} 5-\mathrm{OH}$. The epimeric
epoxides 52 and 53 that are planned from diol 54 should serve as the precursors respectively for 50 and 51.

Figure13. Structures of Notoryne (46) and (-)-Kumausallene (47), (3Z)-Laurefucin (49) and the proposed retro synthetic route

Studies toward the total synthesis of Notoryne/Laurefucin

Our studies in this context were started with the preparation of the key furan intermediate 50 and checking its bromo etherification. The diol 54 was prepared in 4 steps according to the literature procedure from GDA (Scheme 95). ${ }^{32}$ The diol 54 was advanced for the synthesis of epoxide 52 through the selective mono tosylation of $1^{\circ}-\mathrm{OH}$ by using 1 eq . of TsCl and cat. $n-\mathrm{Bu}_{2} \mathrm{SnO}$ followed by base $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$ in MeOH$)$ treatment. The structure of the epoxide was confirmed with the help of spectral and analytical data. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 52, the characteristic protons of the oxirane were resonated at up field $\delta 2.57$ (dd), 2.81 (dd) and 3.35 (ddd) and in the ${ }^{13} \mathrm{C}$ NMR the corresponding carbons are seen to resonate at 44.13 and 53.35 ppm as triplet and doublet. Next, the opening of the epoxide 52 with lithium acetylide in the presence of $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$ gave the homopropargylic alcohol 55. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5}$, the terminal alkyne-H resonated as a triplet at $\delta 2.99$ $(J=2.7 \mathrm{~Hz})$ and the propargylic- CH_{2} as multiplets in the up field region of $\delta 2.39-2.51$. The acetylenic carbons were resonated at 70.7 and 80.2 ppm as doublet and singlet respectively in the ${ }^{13} \mathrm{C}$ NMR spectrum.

In order to introduce the pendant ethyl group on the alkyne unit, the free homopropargylic alcohol was protected as its TBS ether by using TBSCl and imidazole in DMF. The key alkylation reaction was carried out by using ethyl iodide in the presence of n BuLi in HMPA to obtain compound 57 in moderate yields. Using freshly distilled EtI or EtBr and dried HMPA did not affect the yields. The ${ }^{1} \mathrm{H}$ NMR spectrum of 57 showed the new propargylic protons as multiplets at $\delta 1.93-2.23$. Protons of the CH_{3} group resonated at $\delta 1.07$ integrating for three and the ${ }^{13} \mathrm{C}$ NMR spectrum showed the presence of two singlets at 76.04 and 83.25 ppm corresponding to the acetylenic carbons and one quartet at 14.06 ppm corresponding to the CH_{3} group.

Scheme 95: Synthesis of 57

We proceeded next to synthesizing the key homoallyl alcohol 59. The TBS group was selectively deprotected by using TBAF in THF to obtain the alkynol 58. As the yield of alkylation of the terminal alkyne was moderate, an alternate route using expensive 1-butyne gas in place of acetylene has been executed to open the epoxide 52 under Yamaguchi conditions to obtain the intermediate alkynol 58 directly. ${ }^{54}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 58, the propargylic protons resonated as multiplets at $\delta 2.08-2.26$ and 2.39-2.45 (each integrating for two protons) and the CH_{3} group resonated at $\delta 1.1$ as a triplet. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the two internal acetylenic carbon singlets appeared at 74.88 and 84.11 ppm and one quartet at 14.07 ppm corresponding to the homo propargylic CH_{3}.

The selective trans-reduction of the internal alkyne in compound 58 has been examined employing various reducing agents under different reaction condition (Table 3). To this end, we could conclude that this reduction can be carried out by Birch reduction ${ }^{55}$ employing either Na or Li in liquid NH_{3} and THF at $-78{ }^{\circ} \mathrm{C}$ giving the required trans alkene 59 in good yields. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9}$, the two olefinic protons at δ 5.48 and 5.57 with the coupling constant of 15.4 Hz indicated the presence of a trans double bond. In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 9}$, two doublets of the olefinic carbons appeared at
124.44 and 135.03 ppm . All other analytical data were in accordance with the assigned structure.

S. No.	Reaction conditions	Results obtained
1	$\mathrm{LiAlH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	Starting material recovered
2	$\mathrm{LiAlH}_{4}, \mathrm{THF}, 65^{\circ} \mathrm{C}$	Starting material recovered
3	LiAlH_{4}, toluene, $110^{\circ} \mathrm{C}$	Starting material recovered
4	$\mathrm{LiAlH}_{4}, \mathrm{THF}$, Diglyme, $65^{\circ} \mathrm{C}$	Starting material recovered
5	$\mathrm{Na}, \mathrm{NH}_{3}(1),{ }^{t} \mathrm{BuOH}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$	90% yields
6	$\mathrm{Li}, \mathrm{NH}_{3}(\mathrm{l}),{ }^{t} \mathrm{BuOH}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}$	92% yields

Table 3: Synthesis of homoallyl alcohol 59 by employing Birch reduction

Next, the hydrolysis of the 1,2-acetonide group in alkenol 59 using cat. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH provided a mixture of glycosides $\mathbf{5 0} \alpha$ and $\mathbf{5 0} \beta$, the latter being obtained as the major product. The major product of glycoside $\mathbf{5 0 \beta}$ was confirmed by NMR study. The anomeric proton of the major product β-glycoside showed a singlet at $\delta 4.85$ and in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 0} \boldsymbol{\beta}$, the anomeric carbon resonated at 106.12 ppm .

Scheme 96: Synthesis of O-methyl glycosides

> Regioselectivity in NBS mediated bromo-etherification:

After having the key akenol $\mathbf{5 0} \boldsymbol{\beta}$, the stage was set for examining the regioselectivity of the bromo-etherification reaction leading to either the [5.2.1]-bicyclic core of Laurefucin 49 or the 2,2-bisfuranyl unit for Notoryne $\mathbf{4 6}$. ${ }^{56}$ When employing freshly crystallised NBS in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the reaction advanced smoothly with the disappearance of the starting compound within 3 h and afforded the products cis-60 and trans-60 the latter being obtained as the major product. The presence of a bicyclic bis-furan core present in the trans-60 and cis-60 was established with the help of spectral data analysis.

Scheme 97: NBS mediated halo etherification of diol $\mathbf{5 0} \boldsymbol{\beta}$

In the ${ }^{1} \mathrm{H}$ NMR spectrum of trans-60, the three characteristic methine protons of the new furan ring are present at $\delta 3.81,3.91$, and 4.02 . The two carbons of the newly generated furan ring CHBr and CHBrCHEt are seen to resonate at 46.7 and 86.9 and also the presence of characteristic ether carbons at 78.1, 78.8 (C 4 and C5), $(>75 \mathrm{ppm})^{57} \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum (Scheme 97) and the carbon attached to bromine atom appeared as a doublet separately in the up field (46.7 ppm), indicating the presence of a 2 , 2^{\prime}-bisfuranyl unit. Coming to the minor isomer cis-60, three characteristic methine protons of the newly formed furan ring were seen to resonate at $\delta 3.97-4.03,4.09-4.14,4.20-4.23$ as multiples in the ${ }^{1} \mathrm{H}$ NMR spectrum and the two carbons of the newly generated furan ring CHBr and CHBrCHEt at 49.0 and 89.1 and characteristic ether carbons at $77.80,79.33$ (C 4 and C 5), ($>75 \mathrm{ppm}$) ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum indicated its constitution as a 2,2 '-bisfuranyl unit.

Next, in order to fix the stereochemistry of the newly generated centers, the free hydroxyl group at C 2 of both the regiomers was converted to the corresponding acetate by treating with $\mathrm{Ac}_{2} \mathrm{O}$ in presence of $\mathrm{Et}_{3} \mathrm{~N}$ and the resulting trans-60-Ac and cis-60-Ac have been characterized with the help of the 1D and 2D spectral studies.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of trans-60-Ac, the three characteristic methine protons of the new furan ring are present at $\delta 3.9,4.01$, and 4.08 and a singlet at 2.06 for three protons for the acyl group. Along with that, the proton, of CHOAc was seen to resonate at 5.03 as doublet of doublets. In the ${ }^{13} \mathrm{C}$ NMR spectrum of trans-60-Ac, the characteristic ether carbons resonated at $79.4,79.9$ (C 4 and C 5), ($>75 \mathrm{ppm}$) ppm and one singlet at 170.3 ppm
for acyl group (Scheme 97). In the NOESY of the trans-60-Ac, a strong nOe interaction between the $\mathrm{C} 2-\mathrm{H}^{2}, \mathrm{C} 4-\mathrm{H}^{4}$ and $\mathrm{C} 8-\mathrm{H}^{8}$ and also between $\mathrm{C} 5-\mathrm{H}^{5}$ and $\mathrm{C} 7-\mathrm{H}^{7}$ was observed.

Figure 14: $\mathrm{n} O \mathrm{e}$ interactions of the bromoether trans-60-Ac.
In case of cis-60-Ac, in the ${ }^{1} \mathrm{H}$ NMR spectrum, the three characteristic methine protons of the new furan ring are present at $\delta 4.02(\mathrm{dt}), 4.07-4.13(\mathrm{~m}), 4.22(\mathrm{q})$ and a singlet at 2.05 for three protons for the acyl group along with that the proton of CHOAc was seen to resonate at 5.02 as doublet of doublet. The presences of the characteristic ether carbons resonated at $79.36,79.75$ (C 4 and C 5), ($>75 \mathrm{ppm}$) ppm and one singlet at 170.3 for acyl group in the ${ }^{13} \mathrm{C}$ NMR spectrum (Scheme 97). The bromo carbon came as doublet separately in the up field at 48.88 ppm , indicated the presence of a $2,2^{\prime}$ - bisfuranyl unit. The strong nOe interactions between the $\mathrm{C} 2-\mathrm{H}^{2}, \mathrm{C} 4-\mathrm{H}^{4}$ and $\mathrm{C} 7-\mathrm{H}^{7}, \mathrm{C} 9-\mathrm{H}^{999}$ and between $\mathrm{C} 5-\mathrm{H}^{5}$ and $\mathrm{C} 8-\mathrm{H}^{8}$ noticed in the NOESY of compound cis-60-Ac are in support of its assigned structure.

Figure 15: n O e interactions of the bromoether cis-60-Ac.

Although the key cyclization occurred in favour of the bis-furan formation, the stereochemistry of the free hydroxyl group that participates in cyclo etherification reaction needs to be inverted to get the natural product Notoryne. The initial attempt of inverting this centre under Mitsunobu conditions ${ }^{58}$ resulted in the undesired product diene as a major product which revealed that we have to revise our strategy where the stereochemistry of hydroxyl group is inverted prior to the installation of the pendant olefin group. However, to examine the stereoselectivity of the key $\mathrm{C}-\mathrm{C}$ bond formation, i.e from O -glycoside to C -
glycoside, the C-glycosidation of the major product trans- $\mathbf{6 0}$ was performed employing allylTMS along with TMSOTf in acetonitrile to give the allyl product $\mathbf{6 1}$ in good yields as a single diastereomer. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting compound 61, the three olefinic protons resonated at $\delta 5.05$ and 5.12 as doublet of doublet (dd) and one proton came as multiplet at 5.81-5.90, indicating the presence of an allyl double bond. The ${ }^{13} \mathrm{C}$ NMR spectrum of 58 showed one doublet and one triplet of the olefinic carbons at 135.1 and 116.78 ppm.

trans-60

8 h, 69 \%

61

Scheme 98: Synthesis of C-glycoside 61

> Synthesis of requisite 2,2' bisfuranyl unit of Notoryne:

In order to start in the direction of employing the above protocol for Notoryne, the epi-epoxide 53 was prepared from diol 54 with a simple manipulation of both the hydroxyl groups. The $1^{\circ}-\mathrm{OH}$ of diol 54 was selectively protected by TBSCl in the presence of cat. n $\mathrm{Bu}_{2} \mathrm{SnO}$ and $\mathrm{Et}_{3} \mathrm{~N}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 62 , the peaks corresponding to the TBS group resonated at $\delta 0.07$ and 0.09 corresponding to the methyl and the tertiary butyl groups. In addition, the protons of CH_{2}-OTBS appeared at $\delta 3.64$ and 3.71 as doublet of doublets, when compared to that in the starting diol [3.55(dd) and 3.74(dd)], which clearly indicated the site of silylation. The remaining free $2^{\circ}-\mathrm{OH}$ was mesylated by using methanesulfonyl chloride and triethylamine and subjected for the TBS ether deprotection by using TBAF. The examination of the ${ }^{1} \mathrm{H}$ NMR of the resulting spectrum of resulting compound $\mathbf{6 3}$ (a singlet integrating for three protons at $\delta 3.20$ corresponding to the CH_{3} of mesyl group) revealed that only the TBS ether got deprotected. However, the anticipated epoxide formation had not occurred. Subsequently, the treatment of this mesylate 63 with NaH in THF yielded the epoxide 53. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 53 , the oxirane protons resonated at δ 2.67 (dd), 2.87 (dd), 3.31 (ddd) and a triplet and doublet at 47.3 and 53.1 ppm in its ${ }^{13} \mathrm{C}$ NMR spectrum which confirmed the formation of the epoxide (Scheme 99).

Scheme 99: Synthesis of epi-epoxide 53

The homoallylic alcohol 65 was prepared from epoxide 53 following a procedure that we used for the preparation of compound 59 . Thus the opening of the epoxide 53 with lithiated 1-butyne in the presence of $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$ gave the substituted propargyl alcohol 64 . The triple bond was reduced under Birch reduction conditions employing Li and liq. NH_{3} at -50 ${ }^{\circ} \mathrm{C}$ to obtain 65. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 65 , the presence of two olefinic protons at $\delta 5.48$ and 5.57 with the coupling constant of 15.4 Hz was indicative of a trans double bond and in its ${ }^{13} \mathrm{C}$ NMR spectrum, the two doublets of the olefinic carbons appeared at 124.44 and 135.03 ppm . All other analytical data were in accordance with the assigned structure.

Scheme 100: Synthesis of homoallyl alcohol 65
Now, the 1,2 acetonide of compound 65 was deprotected by using conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH to procure an anomeric mixture of methyl glycosides 51 which were separated. The anomeric-H of the major isomer showed a singlet at $\delta 4.82$ (C 1 at 109.1 ppm) whereas that of the minor isomer appeared as a doublet at $\delta 4.74$ (C 1 at 102.3 ppm). Next, the NBS mediated bromo etherification reaction of the major isomer $\mathbf{5 1} \boldsymbol{\beta}$ was carried out with freshly crystallised NBS in dichloromethane. The reaction advanced smoothly with the disappearance of the starting compound within 3 h and afforded exclusively compound $\mathbf{6 6}$. The constitution of the bisfuranyl unit present in $\mathbf{6 6}$ was investigated with the help of spectral data analysis. In
the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 6}$, the three characteristic methine protons of the newly formed furan ring were seen to resonate at $\delta 3.90,3.94$, and 3.98 . On the other hand, the two carbons of the newly generated furan ring CHBr and CHBrCHEt resonated at 46.2 and 88.09 along with the characteristic ether carbons at $78.49,79.71(>75 \mathrm{ppm})^{57} \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum (Scheme 101) which clearly indicated the presence of a 2,2 '-bisfuranyl unit.

Scheme 101: NBS mediated halo etherification of 51β and acylation.

In order to fix the stereochemistry of the newly constructed furan ring and also that of the glycosidic linkage, the acetate $\mathbf{6 6}$-Ac was prepared by treating 66 with $\mathrm{Ac}_{2} \mathrm{O}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 66-Ac, the three characteristic methine protons of the new furan ring are present at $\delta 3.90,3.95$, and 4.00 . In the NOESY of compound 66-Ac, the strong $\mathrm{n} O$ e interactions between the $\mathrm{C} 1-\mathrm{H}^{1}, \mathrm{C} 5-\mathrm{H}^{5}$ and that between $\mathrm{C} 2-\mathrm{H}^{2}, \mathrm{C} 4-\mathrm{H}^{4}$ and $\mathrm{C} 8-\mathrm{H}^{8}$ reaveled the trans-1,4 configuration of both the furan rings(fig. 16).

Figure 16: $\mathrm{n} O \mathrm{e}$ interactions of the bromo etherproduct 66-Ac.

> Synthesis of C-glycosidation from O-glycoside 66

After having the key cyclized product, the stage was then set for executing the key transformation from O-glycoside to the required C-glycoside. The C-glycosidation of $\mathbf{6 6}$ was performed in our optimized condition where allyl-TMS along with TMSOTf in acetonitrile at $-40{ }^{\circ} \mathrm{C}$ gave the mixture of α and β allylglycosides 67. Both the allyl glycosides were
separated by column chromatography and characterized as their acetates 67α-Ac and 67β-Ac, the former being the major product.

Scheme 102: Synthesis of C-glycosides and their acetate

In the ${ }^{1} \mathrm{H}$ NMR spectrum of the major compound $\mathbf{6 7} \boldsymbol{\alpha}$-Ac, a singlet at $\delta 2.07$ for three protons along with the proton of CHOAc was seen to resonate at down field at $\delta 5.27$ (br t) and the anomeric proton came at $\delta 3.81$ (ddd), when compared to that in the starting alcohol $67 \boldsymbol{\alpha}\left[\delta 4.01-4.06(\mathrm{~m})\right.$ and $\delta 3.67$ (ddd) respectively]. In the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 67α-Ac the carbonyl singlet at 178.78 ppm , the CHOAc and anomeric doublets at 74.27 (d) and 81.27 ppm were noticed. The NOESY studies of $\mathbf{6 7} \boldsymbol{\alpha}$ revealed strong nOe interactions between the $\mathrm{C} 4-\mathrm{H}^{4}, \mathrm{C} 5-\mathrm{H}^{5}$ and $\mathrm{C} 7-\mathrm{H}^{7}$ and also between $\mathrm{C} 8-\mathrm{H}^{8}$ and $\mathrm{C} 10-\mathrm{H}^{10}$ which suggested a 1,4-cis configuration in case of newly constructed furan ring (fig. 17).

Figure 17: nOe interactions of the allyl product $67 \boldsymbol{\alpha}$
Similarly in case of $\mathbf{6 7 \beta - A c}$ (minor), the ${ }^{1} \mathrm{H}$ NMR spectrum, showed the presence of a singlet at for three protons at $\delta 2.06$, along with that the proton of CHOAc and anomeric proton were seen to resonate at down field at $\delta 5.02$ (ddd) and 4.08 (ddd) when compared to the starting $67 \beta\left[\delta 4.05-4.09(\mathrm{~m})\right.$ and 3.99 (ddd) respectively]. The ${ }^{13} \mathrm{C}$ NMR spectrum of $67 \boldsymbol{\beta}$-Ac showed the one singlet carbonyl, CHOAc and anomeric carbons at $170.6,77.51$ and 83.07 ppm respectively. All other analytical data were in total agreement with the assigned structure. Furthermore stereo chemistry of the C-glycoside was confirmed by 2D spectra. The NOESY studies of $\mathbf{6 7} \boldsymbol{\beta}$-Ac revealed strong $\mathrm{n} O$ e interactions between the $\mathrm{C} 3-\mathrm{H}^{3}, \mathrm{C} 5-\mathrm{H}^{5}$ and
$\mathrm{C} 7-\mathrm{H}^{7}$ and that between $\mathrm{C} 8-\mathrm{H}^{8}$ and $\mathrm{C} 10-\mathrm{H}^{10}$ revealed the trans-1,4 configuration in case of newly constructed furan ring (fig. 18).

Figure 18: $\mathrm{n} O \mathrm{e}$ interactions of the allyl product $\mathbf{6 7} \beta$-Ac.

After having the key C-glycoside 67α in hand, the remaining work is to install the cisenyne moiety and replacing the free -OH with a chloro group. As mentioned in the introduction, the cis-enyne moiety can be introduced by subjecting a C-glycoside for the cross metathesis ${ }^{53}$ with the enyne ether $\mathbf{7 0}$. On the other hand, the -Cl group could be introduced by displacing the corresponding -OTf with $\mathrm{Bu}_{4} \mathrm{NCl}$. Our initial plan was the installation of chloro group first and then subjecting it for the cross-metathesis.

Accordingly, the enyne ether 70 was synthesised by following the known procedure ${ }^{53 \mathrm{a}}$ - the selective allylation of cis-but-2-en-1,4-diol (68) followed by the oxidation of remaining -OH and subsequent alkynylation with TMS-diazomethane followed by in situ exchange of TMS with TIPS group. The spectral data of the compound 70 is in agreement with the data reported earlier. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 0}$, the olefinic-H next to the triple bond appeared as doublet of triplet at $\delta 5.79$ and 6.24 respectively (the large $J=16.02 \mathrm{~Hz}$).

Scheme 103: Synthesis of TIPS enyne ether 70

The key penultimate bis-furan building block 71 was synthesized from 67α by following a two step-sequence for installing the chloride group - the conversion of the free hydroxyl group in 67α to OTf by using TMSOTf and $\mathrm{Et}_{3} \mathrm{~N}$ in dichloromethane followed by the
displacement of -OTf with Cl employing n-tetrabutyl ammonium chloride (TBACl) in toluene at reflux. ${ }^{57}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of 71 a characteristic proton came as doublet of doublets at $\delta 3.88$ indicative of a CHCl bond when compared to that in the starting alcohol $[4.04$ (ddd, $1 \mathrm{H})$], and in the ${ }^{13} \mathrm{C}$ NMR spectrum of 71 showing one carbon coming at the up field region as doublet at 62.35 ppm . All other analytical data were in accordance with the assigned structure.

67α

42\% (2 steps)

71

Scheme 104: Synthesis of chloroallyl compound 71.

The attempted cross metathesis reaction of 71 and dienyne 70 employed in the presence of Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst ${ }^{59}$ resulted in an inseparable mixture of compounds which were subjected directly for the desilylation. The ${ }^{1} \mathrm{H}$ NMR of resulting crude product revealed the presence of the requisite peaks corresponding to the natural product Notoryne. However, the isolation of pure product was found to be a difficult task despite the sequence being repeated several times.

$>$ Execution of the cross metathesis event for the installation of cis-enyne part:

Having met with failures at the final stage, we revised our strategy by planning the cross metathesis of intermediate 67α to prepare the conjugated cis-enyne part and postponed the Appel reaction ${ }^{60}$ for the installation of chloro group as the final event. The crucial cross metathesis was performed with the allyl compound $\mathbf{6 7 \alpha}$ and the TIPS enyne ether 70 in the presence of Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst. This cis enyne 72 was characterized on the basis of NMR studies. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 72, the presence of two olefinic protons at $\delta 5.63$ and 6.08 as br. doublet and doublet of triplet respectively, with the coupling constant of 10.8 Hz indicated the presence of a cis double bond. Furthermore, one singlet resonated at 1.09 ppm integrating for eighteen protons were indicative of a TIPS group. In the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 72, the two doublets corresponding to the olefinic carbons resonated at 111.4 and 140.8 ppm and two singlets at $95.8,103.4$ indicated the presence of an internal alkyne unit.

Scheme 105: Synthesis of cis-enyne 72 through cross metathesis

Next, the deprotection of the TIPS group in 72 by using TBAF in THF afforded the penultimate cis-enyne 73. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 73, peaks corresponding to the TIPS group at $\delta 1.09$ were absent and a doublet at 3.11 (d) with a coupling constant 1.96 Hz representing the terminal alkyne-H was present. All other analytical data of compound 73 were in accordance with the assigned structure (Scheme 106). Finally, the crucial chloro group introduction has been carried out by subjecting 73 for triflurylation and subsequent $\mathrm{S}_{\mathrm{N}} 2$ displacement of the OTf with TBACl. The reaction was not clean and provided 46 in poor yields. Table 4 and 5 provides a comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of synthetic 46 with the reported data for Notoryne. Although, the peaks are comparable, however, were not exactly matched with the reported data revealing that the relative stereochemistry of chlorine bearing tetrahydrofuran has been wrongly assigned. Work in the direction of synthesising the other possible diastereomers to determine the structure of Notoryne is under progress.

Scheme 106: Synthesis of originally proposed Notoryne
Table 4. Comparative ${ }^{1}$ H NMR data of natural and synthetic Notoryne

proton	Isolation $\left({ }^{1} \mathrm{H}\right.$ NMR $)$	Synthetic $\left({ }^{1} \mathrm{H} H \mathrm{HR}\right)$
H1	$3.13(\mathrm{dd}, J=0.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$	$3.13(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$
H3	$5.60(\mathrm{dddd}, J=1.3,1.3,2.4,10.8 \mathrm{~Hz}, 1 \mathrm{H})$	$5.61(\mathrm{dt}, J=0.98,10.76 \mathrm{~Hz}, 1 \mathrm{H})$
H4	$6.08(\mathrm{dddd}, J=0.8,7.3,7.3,10.76 \mathrm{~Hz}, 1 \mathrm{H})$	$6.07(\mathrm{dt}, J=7.34,10.76 \mathrm{~Hz}, 1 \mathrm{H})$
H5	$2.59(\mathrm{dddd}, J=1.3,7.0,7.3,14.8 \mathrm{~Hz}, 1 \mathrm{H})$	$2.23-2.27(\mathrm{~m}, 1 \mathrm{H})$
H5	$2.67(\mathrm{~m}, 1 \mathrm{H})$	$1.78(\mathrm{dd}, J=7.4,14.3 \mathrm{~Hz}, 1 \mathrm{H})$
H6	$4.1(\mathrm{~m}, 1 \mathrm{H})$	$4.48(\mathrm{t}, J=3.67 \mathrm{~Hz}, 1 \mathrm{H})$
H7	$4.1(\mathrm{~m}, 1 \mathrm{H})$	$4.31(\mathrm{dt}, J=5.6,9.12 \mathrm{~Hz}, 1 \mathrm{H})$
H8	$2.3(\mathrm{~m}, 1 \mathrm{H})$	$2.32(\mathrm{dd}, J=4.89,9.05 \mathrm{~Hz}, 1 \mathrm{H})$
H8	$2.3(\mathrm{~m}, 1 \mathrm{H})$	$2.40(\mathrm{dd}, J=6.1,13.69 \mathrm{~Hz}, 1 \mathrm{H})$
H9	$4.26(\mathrm{ddd}, J=5.5,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H})$	$4.20-4.25(\mathrm{~m}, 1 \mathrm{H})$

H10	$3.98(\mathrm{ddd}, J=5.5,6.8,8.3 \mathrm{~Hz}, 1 \mathrm{H})$	$4.09-4.12(\mathrm{~m}, 1 \mathrm{H})$
H11	$2.66(\mathrm{ddd}, J=6.8,6.8,13.2 \mathrm{~Hz}, 1 \mathrm{H})$	$2.63(\mathrm{dt}, J=6.85,14.18 \mathrm{~Hz}, 1 \mathrm{H})$
H11	$2.17(\mathrm{ddd}, J=8.3,8.3,13.2 \mathrm{~Hz}, 1 \mathrm{H})$	$2.23-2.27(\mathrm{~m}, 1 \mathrm{H})$
H12	$3.88(\mathrm{ddd}, J=6.8,7.3,8.3 \mathrm{~Hz}, 1 \mathrm{H})$	$4.09-4.12(\mathrm{~m}, 1 \mathrm{H})$
H13	$3.91(\mathrm{ddd}, J=3.9,7.2,7.3 \mathrm{~Hz}, 1 \mathrm{H})$	$3.91(\mathrm{ddd}, J=2.93,6.85,9.54 \mathrm{~Hz}, 1 \mathrm{H})$
H14	$1.49(\mathrm{dqd}, J=7.2,7.3,14.3 \mathrm{~Hz}, 1 \mathrm{H})$	$1.45-1.49(\mathrm{~m}, 1 \mathrm{H})$
H14	$1.76(\mathrm{dqd}, J=3.9,7.3,14.3 \mathrm{~Hz}, 1 \mathrm{H})$	$1.70(\mathrm{dd}, J=6.7,14.2 \mathrm{~Hz}, 1 \mathrm{H})$
H15	$1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$	$0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$

Table 5. Comparative ${ }^{13} \mathrm{C}$ NMR data of natural and synthetic Notoryne

	Isolation	Synthetic
C1	$82.1(\mathrm{~d})$	$82.3(\mathrm{~d})$
C 2	$79.8(\mathrm{~s})$	$80.1(\mathrm{~s})$
C 3	$110.8(\mathrm{~d})$	$111.1(\mathrm{~d})$
C 4	$139.5(\mathrm{~d})$	$139.8(\mathrm{~d})$
C 5	$34.3(\mathrm{t})$	$34.6(\mathrm{t})$
C 6	$79.9(\mathrm{~d})$	$80.2(\mathrm{~d})$
C 7	$59.1(\mathrm{~d})$	$59.4(\mathrm{~d})$
C 8	$39.3(\mathrm{t})$	$39.4(\mathrm{t})$
C 9	$85.9(\mathrm{~d})$	$84.2(\mathrm{~d})$
C 10	$87.0(\mathrm{~d})$	$86.2(\mathrm{~d})$
C 11	$38.0(\mathrm{t})$	$38.4(\mathrm{t})$
C 12	$47.2(\mathrm{~d})$	$47.4(\mathrm{~d})$
C 13	$78.8(\mathrm{~d})$	$78.6(\mathrm{~d})$
C 14	$25.4(\mathrm{t})$	$24.3(\mathrm{t})$
C 15	$10.0(\mathrm{q})$	$10.0(\mathrm{q})$

(3aR,5R,6aR)-2,2-dimethyl-5-((R)-oxiran-2-yl)tetrahydrofuro[2,3-d][1,3]dioxole (52)

To an ice cooled solution of the diol $54(16 \mathrm{~g}, 78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, were added $\mathrm{Bu}_{2} \mathrm{SnO}(10 \mathrm{mg})$, DMAP (10 mg), and $\mathrm{Et}_{3} \mathrm{~N}(333 \mathrm{~mL}, 235 \mathrm{mmol})$ and stirred for 0.5 h at rt . The reaction
 mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $p-\mathrm{TsCl}(16.4 \mathrm{~g}, 86 \mathrm{mmol})$ and stirring was continued for 4 h at rt . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the resulting crude tosylate ($25.5 \mathrm{~g}, 91 \%$) was used as such for the next step without purification.

At $0{ }^{\circ} \mathrm{C}$, a solution of the tosylate ($25.5 \mathrm{~g}, 71 \mathrm{mmol}$), in dry THF (200 mL) was added $\mathrm{NaH}(4.1 \mathrm{~g}, 85 \mathrm{mmol})$ and stirred for 1 h allowing the mixture to warm to room temperature. The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched with water $(50 \mathrm{~mL})$ very slowly. The organic layer was extracted with brine (5 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The resulting crude product was purified by column chromatography ($85: 15$ petroleum ether/EtOAc) to afford epoxide $52(9 \mathrm{~g}, 68 \%)$ as a colorless oil: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ petroleum ether) $0.6 ;[\alpha]^{25}{ }_{\mathrm{D}}:-21.7\left(c 3.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}$, 3 H), 2.05-2.14 (m, 1H), 2.18-2.32 (m, 1H), 2.57 (dd, $J=2.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=4.2$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (ddd, $J=2.7,4.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (ddd, $J=3.1,7.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (ddd, $J=1.3,3.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 25.6$ (q), 26.7 (q), 33.8 (t), 44.1 (t), 53.4 (d), 80.1 (d), 82.3 (d), 106.4 (d), 111.9 (s) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=209.79[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}$ (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$209.0790, found 209.0781.
(R)-1-((3aR,5R,6aR)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)but-3-yn-1-ol (55)

At $-78^{\circ} \mathrm{C}$, acetylene gas was bubbled for 15 minutes. in THF (50 mL), after that were added n-BuLi ($28.6 \mathrm{~mL}, 43 \mathrm{mmol}, 1.5 \mathrm{M}$ in THF) and $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(5.3 \mathrm{~mL}, 43 \mathrm{mmol})$ followed by a solution of the epoxide 52 ($2 \mathrm{~g}, 10.7 \mathrm{mmol}$) in THF (10 mL) with a 15 minutes interval. The
 stirring was continued for another 1.5 h at $-78^{\circ} \mathrm{C}$ and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The reaction mixture was allowed to reach rt and partitioned between ethyl acetate $(25 \mathrm{~mL})$ and water (25 mL). The aqueous layer was extracted with ethyl acetate ($2 \times 35 \mathrm{~mL}$) and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the crude product was carried out by column chromatography (80:20 petroleum ether/EtOAc) to afford the pure alkynol $55(1.7 \mathrm{~g}, 74 \%)$ as a colorless oil: $\mathrm{R}_{f}(30 \%$

EtOAc/petroleum ether) $0.47 ;[\alpha]^{25}$ D: -25.6 (c $6.1, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=2.7,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{ddd}, J$ $=6.3,8.3,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{ddd}, J=2.8,6.5$, $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{ddd}, J=3.3,7.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{ddd}, J=1.3,4.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 23.4(\mathrm{t}), 25.8(\mathrm{q}), 26.7(\mathrm{q}), 33.4(\mathrm{t}), 70.5(\mathrm{~d})$, 70.7 (d), 80.2 (s), 80.6 (d), 83.0 (d), 106.1 (d), 112.5 (s), ppm MS (ESI) m/z $=235.16[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 235.0947$, found 235.0939.

Tert-butyl(((R)-1-((3aR,5R,6aR)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)but-3-yn-1-yl)oxy)dimethylsilane (56)

To a solution of $55(7 \mathrm{~g}, 33 \mathrm{mmol})$ in DMF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added imidazole ($11.23 \mathrm{~g}, 165 \mathrm{mmol}$), DMAP (20 mg) and stirred for 15 min . To this, $\mathrm{TBSCl}(9.94 \mathrm{~g}, 66 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$ and stirred further for 5 h . The reaction mixture was diluted with
 EtOAc (50 mL) and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude product was purified by column chromatography (95:5 petroleum ether/EtOAc) to afford $56(10.3 \mathrm{~g}, 96 \%)$ as colourless syrup: $\mathrm{R}_{f}(10 \%$ EtOAc/petroleum ether) 0.7 ; $[\alpha]^{25}{ }_{\mathrm{D}}$: -26.9 (c 6.8, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): δ $0.12(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-2.23(\mathrm{~m}$, 2H), 2.33 (ddd, $J=2.7,5.7,16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (ddd, $J=2.7,5.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (dd, $J=$ $5.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=6.4,7.5,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{ddd}, J=2.7,4.0,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.71(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta-4.7(\mathrm{q}),-4.4(\mathrm{q}), 18.1(\mathrm{~s}), 24.2(\mathrm{t})$, 25.8 (q, 3C), 26.6 (q), 27.6 (q), 33.2 (t), 70.1 (d), 72.1 (d), 80.9 (d), 81.1 (s), 82.0 (d), 105.9 (d), $112.9(\mathrm{~s})$, ppm MS (ESI) $\mathrm{m} / \mathrm{z}=349.23[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$ 349.1811, found 349.1804 .

Tert-butyl(((R)-1-((3aR,5R,6aR)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)hex-3-yn-1-yl)oxy)dimethylsilane (57)

At $-10{ }^{\circ} \mathrm{C}$, a solution of the alkyne $56(2 \mathrm{~g}, 6.13 \mathrm{mmol})$ in THF (50 mL) was treated with $n-\mathrm{BuLi}$ [$(4.9 \mathrm{~mL}, 7.35 \mathrm{mmol})(1.5 \mathrm{M}$ in hexane)] and stirred for 30 min . HMPA ($1.23 \mathrm{~mL}, 7.35 \mathrm{mmol}$) was added and the reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for another 30

min. Ethyl bromide ($0.9 \mathrm{~mL}, 12.2 \mathrm{mmol}$) was added to it at $-10^{\circ} \mathrm{C}$ and stirred for further 6 hours. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was washed with ethyl acetate, the combined organic layers were washed with ethyl acetate, brine, dried and concentrated. Purification of the crude product by column chromatography ($90: 10$ petroleum ether/EtOAc) afforded 57 ($1.1 \mathrm{~g}, 51 \%$) as colorless oil: $\mathrm{R}_{f}(7 \% \mathrm{EtOAc} /$ petroleum ether $) 0.6 ;[\alpha]_{\mathrm{D}}^{25}$: -14.1 (c 5.5, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}$, 3 H), 1.93-2.23 (m, 4H), 2.29 (dt, $J=2.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37-2.50 (m, 1H), 3.87 (dd, $J=5.7$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=6.6,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{ddd}, J=2.9,4.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta-4.7(\mathrm{q}),-4.4(\mathrm{q}), 12.4$ (t), 14.1 (q), 18.1 (s), 24.4 (t), 25.9 ($\mathrm{q}, 3 \mathrm{C}$), 26.7 (q), 27.7 (q), 33.4 (t), 72.8 (d), 76.0 (s$), 81.0$ (d), 82.1 (d), 83.3 (s), 105.9 (d), 112.9 (s), ppm MS (ESI) m/z $=377.28[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+} 377.2124$, found 377.2115 .

(R)-1-((3aR,5R,6aR)-2,2-Dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)hex-3-yn-1-ol (58)

At $-78{ }^{\circ} \mathrm{C}$, to a solution of 1-butyne ($26.8 \mathrm{~mL}, 188 \mathrm{mmol}, 7 \mathrm{M}$ in THF) in THF (250 mL) were added $n-\operatorname{BuLi}(100.2 \mathrm{~mL}, 150 \mathrm{mmol}$, 1.5 M in THF) and $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(18.5 \mathrm{~mL}, 150 \mathrm{mmol})$ followed by a solution of the epoxide $52(7 \mathrm{~g}, 37.6 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ with a 15 minutes interval. The stirring was continued for another 1.5 h at -78
 ${ }^{\circ} \mathrm{C}$ and then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The reaction mixture was allowed to reach rt and partitioned between ethyl acetate (25 mL) and water (25 mL). The aqueous layer was extracted with ethyl acetate (2 x 50 mL) and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the crude product was carried out by column chromatography ($85: 15$ petroleum ether/EtOAc) to afford the pure alkynol 58 (7 g , 77%) as a colorless oil: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ petroleum ether $) 0.5 ;[\alpha]^{25}$ D: -34.9 (c 2.6, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.1$ (t, $\left.J=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.26(\mathrm{~m}$, 4 H), 2.39-2.45 (m, 2H), $2.89(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.94(\mathrm{~m}, 1 \mathrm{H}), 4.23$ (ddd, $J=3.7,7.5$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{ddd}, J=1.6,4.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $50 \mathrm{MHz}): \delta 12.4(\mathrm{t}), 14.1$ (q), $23.9(\mathrm{t}), 26.0(\mathrm{q}), 27.0(\mathrm{q}), 33.7$ (t), 71.2 (d), 74.9 (s$), 80.8(\mathrm{~d})$, 83.2 (d), 84.1 (s), 106.1 (d), 112.5 (s), ppm MS (ESI) m/z = $262.93[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 263.1260$, found 263.1254 .

(R,E)-1-((3aR,5R,6aR)-2,2-Dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)hex-3-en-1-ol (59)

At $-78{ }^{\circ} \mathrm{C}$, ammonia (300 mL) was condensed into two neck flask that was fitted with a dry ice condenser and the other neck was fitted with a gas delivery-tube running to the bottom of the flask. The gas delivery-tube was removed, and 390 mg (0.06 g -atoms) of lithium
 was added in small portions with vigorous stirring for 30 min . Then a solution of alkyne 58 ($2.7 \mathrm{gm}, 11.24 \mathrm{mmol}$) in THF (10 mL), followed by tert-butanol (4.3 mL , 45 mmol) were added to it very slowly. After the addition was complete, the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 8 h . Then it was quenched by solid $\mathrm{NH}_{4} \mathrm{Cl}(\sim 2 \mathrm{gm})$, after that cooling bath was removed, and the ammonia was allowed to evaporate overnight. The reaction mixture was partitioned between ethyl acetate (50 mL) and water (50 mL). The aqueous layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$) and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the crude product was carried out by column chromatography ($80: 20$ petroleum ether/EtOAc) to afford the pure alkenol $59(2.5 \mathrm{~g}, 92 \%)$ as a colorless oil: $\mathrm{R}_{f}\left(25 \% \mathrm{EtOAc} /\right.$ petroleum ether) $0.5 ;[\alpha]^{25} \mathrm{D}:-9.7$ (c 2.1, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 0.98(\mathrm{t}, J=7.45 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}$, 3H), 1.97-2.08 (m, 3H), 2.10-2.30 (m, 3H), 3.81 (td, $J=4.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.00(\mathrm{td}, J=3.7$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{ddd}, J=1.5,3.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dt}, J=6.1,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dt}, J=$ $5.3,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 13.7(\mathrm{q}), 25.6(\mathrm{t})$, 26.1 (q), 27.1 (q), 33.6 (t), 36.6 (t), 72.6 (d), 80.8 (d), 83.9 (d), 106.1 (d), 112.5 (s), 124.4 (d), 135.0 (d), ppm; MS (ESI) m/z = $264.92[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 265.1416, found 265.1410.

(2R,3R,5R)-5-((R,E)-1-Hydroxyhex-3-en-1-yl)-2-methoxytetrahydrofuran-3-ol (50ß)

To an ice cooled solution of the acetonide 59 ($1.5 \mathrm{gm}, 6.19$ mmol) in $\mathrm{MeOH}(25 \mathrm{~mL}), 4-5$ drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc) were added and stirred for overnight at rt . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with $\mathrm{Et}_{3} \mathrm{~N}$. Solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (75:25
 petroleum ether/EtOAc) to yield the methyl glycoside $\mathbf{5 0 \beta}(1.25 \mathrm{~g}, 93 \%)$ as colorless syrup: R_{f} (40% EtOAc/petroleum ether) $0.6 ;[\alpha]^{25}$ D: -12.6 (c 4.3, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$

MHz): $\delta 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{dd}, J=2.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dt}, J=7.3,14.3 \mathrm{~Hz}$, 2 H), 2.21 (br s, 1H), 2.34-2.41 (m, 2H), 2.46 (ddd, $J=5.5,9.8,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, $3.56(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dt}, J=2.0,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{dt}, J=7.5,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dt}, J=6.6,15.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100 MHz): $\delta 13.6$ (q), 25.6 (t), 34.7 (t), 37.3 (t), 54.3 (q), 72.2 (d), 73.9 (d), 79.2 (d), 109.5 (d), 124.5 (d), 137.1 (d) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=255.03[\mathrm{M}+\mathrm{K}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}$239.126, found 239.1252.
(2R,2'R,4R,4'S,5R,5'R)-4'-Bromo-5'-ethyl-5-methoxyoctahydro-[2,2'-bifuran]-4-ol (cis60) and (2R,2'R,4R,4'R,5R,5'S)-4'-Bromo-5'-ethyl-5-methoxyoctahydro-[2,2'-bifuran]-4ol (trans-60)

To a solution of the methylglycoside $\mathbf{5 0 \beta}(150 \mathrm{mg}, 0.69 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$, NBS ($160 \mathrm{mg}, 0.90 \mathrm{mmol}$) was added and stirred for 4 h at rt . The reaction mixture was concentrated under reduced pressure. Purification of the crude product by column chromatography ($85: 15$ petroleum ether/EtOAc) gave cis-60 as a minor diastereomer (20 mg , $10 \%) \mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ petroleum ether $) 0.42$ and further elution afforded the major diastereomer ($135 \mathrm{mg}, 66 \%$) trans-60 as colorless syrups: $\mathrm{R}_{f}(22 \%$ EtOAc/petroleum ether) 0.4 .

Characterization data of compound cis-60: $[\alpha]^{25}$ D: -52.6 (c1.4, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.52(\mathrm{dd}, J=7.1,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=$
 $1.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (ddd, $J=5.3,7.0,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (ddd, $J=5.5,10.3,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=6.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.97-4.03(\mathrm{~m}$, $1 \mathrm{H}), 4.04-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 10.3$ (q), 26.4 (t), 34.4 (t), 38.2 (t), 49.0 (d), 54.6 (q), 73.7 (d), 77.8 (d), 79.3 (d), 89.1 (d), 110.0 (d) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=317.03[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 317.0365,319.0365$ found 317.0357 and 319.0335 .

Characterization data of compound trans-60: $[\alpha]^{25}$ D: -102.9 (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.01(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{dd}, J=7.3,14.3 \mathrm{~Hz}$,
 $1 \mathrm{H}), 1.80(\mathrm{dd}, J=2.3,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=3.3,7.814 .3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{q}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$,
3.91 (dd, $J=3.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=5.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=8.5 \mathrm{~Hz} 1 \mathrm{H}), 4.19(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 10.1$ (q), 25.0 (t , 34.6 (t$), 38.2$ (t$), 46.7$ (d), 54.6 (q), 73.6 (d), 78.1 (d), 78.8 (d), 86.9 (d), 109.8 (d) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=316.67,318.74[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{BrO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+} 317.0365,319.0365$ found 317.0356 and 319.0334 .

(2R,2'R,4R,4'S,5R,5'R)-4'-Bromo-5'-ethyl-5-methoxyoctahydro-[2,2'-bifuran]-4-yl

 acetate (cis-60-Ac)To a solution of cis-60 ($20 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.06 \mathrm{~mL}, 0.6 \mathrm{mmol})$, DMAP (2 mg) and stirred for 15 min . To this, acetic anhydride $(0.02 \mathrm{~mL}, 0.3$ mmol) was added at $0^{\circ} \mathrm{C}$ and stirred further for 2 h . The reaction

cis-60-Ac mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The resulting crude product was purified by column chromatography (90:10 petroleum ether/EtOAc) to afford the aceate cis-60-Ac ($22 \mathrm{mg}, 96 \%$) as colorless syrup: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ petroleum ether $) 0.6 ;[\alpha]^{25}$ D: $-35.8\left(c \quad 1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.71(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.33(\mathrm{~m}$, 2H), 2.46 (ddd, $J=7.0,8.3,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{dt}, J=5.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-$ $4.13(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=2.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 9.9(\mathrm{q}), 21.0(\mathrm{q}), 26.6$ (t), 32.3 (t), 39.0 (t), 48.9 (d), 54.8 (q), 77.5 (d), 79.4 (d), 79.8 (d), 89.0 (d), 107.2 (d), 170.4 (s) ppm; MS (ESI) m/z $=359.00,360.89[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 359.047$, 361.047, found 359.0461 and 361.0439.

(2R,2'R,4R,4'R,5R,5'S)-4'-Bromo-5'-ethyl-5-methoxyoctahydro-[2,2'-bifuran]-4-yl acetate (trans-60-Ac)

To a solution of trans-60 $(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.09 \mathrm{~mL}, 0.6 \mathrm{mmol})$, DMAP (2 mg) and stirred for 15 min . To this, acetic anhydride ($0.03 \mathrm{~mL}, 0.3 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred further for 2 h . The reaction mixture
 was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The resulting crude product was purified by column chromatography (90:10 petroleum ether/EtOAc) to afford the aceate cis-60-Ac (31 mg, 90\%) as colorless syrup: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ petroleum ether $) 0.6 ;[\alpha]^{25}$ D: $-77.0\left(c 0.76, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$,
$400 \mathrm{MHz}): \delta 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.82(\mathrm{~m}$, $1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{dt}, J=8.3,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=6.8,8.5,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (dt, $J=7.1,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{dt}, J=7.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{td}, J=4.5,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=7.3,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (ddd, $J=5.5,7.7,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H})$, 5.04 (dd, $J=1.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 9.7(\mathrm{q}), 21.0(\mathrm{q}), 25.1(\mathrm{t}), 32.0$ (t), 39.1 (t), 46.9 (d), 54.8 (q), 77.4 (d), 79.4 (d), 80.0 (d), 86.7 (d), 107.1 (d), 170.3 (s) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=359.14,361.30[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ $359.047,361.047$, found 359.0460 and 361.0440 .

(2R,2'R,4R,4'R,5'S)-5-Allyl-4'-bromo-5'-ethyloctahydro-[2,2'-bifuran]-4ol(61)

To a solution of methylglycoside trans-60 ($80 \mathrm{mg}, 0.27$ $\mathrm{mmol})$ and allyltrimethylsilane $(0.2 \mathrm{~mL}, 1.36 \mathrm{mmol})$ in acetonitrile (10 mL) was added drop wise an equimolar amount of trimethylsilyl triflate $(0.05 \mathrm{~mL}, 0.27 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$. The
 solution was allowed to warm to $0^{\circ} \mathrm{C}$ over 8 h . As soon as it reached to $0^{\circ} \mathrm{C}$, a saturated aqueous solutions of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added. Reaction mixture was concentrate under reduced pressure to removed acetonitrile then the aqueous layer was extracted with EtOAc (4x 25 ml). The combined organic layers were dried over NaSO_{4}, filtrated, concentrated in vacuo and purified by column chromatography (petroleum ether:EtOAc, 90:10) to yield C-glycoside $61(57 \mathrm{mg}, 69 \%)$ as a colourless oil $\mathrm{R}_{f}\left(10 \% \mathrm{EtOAc} /\right.$ petroleum ether) $0.6 ;[\alpha]^{25}{ }_{\mathrm{D}}:-4.4$ (c 0.5 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.77$ (m, 1H), 2.00 (dd, $J=2.5,14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21 (ddd, $J=5.2,7.1,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.44$ (m, 2 H), $2.61(\mathrm{dt}, J=6.7,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.7(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.02-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.08$ (ddd, $J=1.4,2.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}) 4.14$ (ddd, $J=1.0,7.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (dd, $J=1.83,10.07$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=1.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ MHz): $\delta 10.4$ (q), 26.6 (t), 33.9 (t), 37.8 (t), 38.2 (t), 49.3 (d), 71.2 (d), 76.9 (d), 80.0 (d), 84.0 (d), 89.2 (d), 116.8 (t), 135.1 (d) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=327.14,328.88[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 305.0754,307.0754$ and found 305.0745 and 307.0715 .
(R)-2-((Tert-butyldimethylsilyl)oxy)-1-((3aR,5R,6aR)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)ethan-1-ol (62)

To a solution of Diol $54(6 \mathrm{~g}, 29.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) at $0{ }^{\circ} \mathrm{C}$ was added imidazole ($6 \mathrm{~g}, 88.1 \mathrm{mmol}$), cat. DMAP $(10 \mathrm{mg})$, cat. $n-\mathrm{Bu}_{2} \mathrm{SnO}(10 \mathrm{mg})$ and stirred for 15 min . TBSCl
 ($4.4 \mathrm{~g}, 29.4 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and stirred further for 4 h .

The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude product was purified by column chromatography (80:20 petroleum ether/EtOAc) to afford silyl ether $\mathbf{6 2}$ ($8 \mathrm{~g}, 85 \%$) as a colorless oil: $\mathrm{R}_{f}(30 \%$ EtOAc/petroleum ether) 0.4; $[\alpha]^{25}{ }_{\mathrm{D}}$: -50.4 (c 1.3, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta-0.07(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 2.16$ (ddd, $J=2.0,4.2,14.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.21 (dd, $J=6.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=6.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dd, $J=4.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=5.2,6.5,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{ddd}, J=4.0,7.7,11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=2.0,4.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta-5.4$ (q, 2C), 18.3 (s), 25.9 (q, 3C), 26.1 (q), $27.0(\mathrm{q}), 33.6$ (t), 64.4 (t), 72.8 (d), 80.8 (d), 81.7 (d), 106.8 (d), 112.5 (s) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=341.05[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 341.1761$, found 341.1752 .

(R)-1-((3aR,5R,6aR)-2,2-Dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-2-hydroxyethyl

 methanesulfonate (63)At $0{ }^{\circ} \mathrm{C}$, a solution of the $\mathbf{6 2}(8 \mathrm{~g}, 25.1 \mathrm{mmol})$ and triethylamine ($14.1 \mathrm{~mL}, 100.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with MsCl $(4.1 \mathrm{~mL}, 50.2 \mathrm{mmol})$ and stirred for 3 h . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed
 with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude mesylate ($9 \mathrm{~g}, 90 \%$) was used as such for the next step without purification.

To a cold $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of the above mesylate $63(9 \mathrm{~g}, 22.7 \mathrm{mmol})$ in dry tetrahydrofuran (150 mL) was added tetra-n-butylammonium fluoride (TBAF) (5.9 mL 22.7 mmol) and the resulting solution stirred for 2 h allowing the mixture to warm to room temperature. The reaction was quenched with water $(50 \mathrm{~mL})$. The organic layer was extracted with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting crude was purified by column chromatography ($85: 15$ petroleum ether/EtOAc) to afford
mesylate $63(6 \mathrm{~g}, 94 \%)$ as a colorless oil: $\mathrm{R}_{f}(30 \% \mathrm{EtOAc} /$ petroleum ether $) 0.5 ;[\alpha]^{25}{ }_{\mathrm{D}}$: +29.4 (c 4.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.25(\mathrm{~m}, 2 \mathrm{H})$, 2.91 (br s, 1H), 3.20 (s, 3H), 3.78 (dd, $J=3.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (dd, $J=2.7,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.38-4.48 (m, 1H), $4.77(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dt}, J=3.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 25.3(\mathrm{q}), 26.1(\mathrm{q}), 33.1(\mathrm{q}), 38.8(\mathrm{t}), 62.9(\mathrm{t}), 79.2(\mathrm{~d}), 80.2$ (d), 85.3 (d), 106.4 (d), 112.3 (s) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=305.21[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$305.0671, found 305.0665.

(3aR,5R,6aR)-2,2-Dimethyl-5-((S)-oxiran-2-yl)tetrahydrofuro[2,3-d][1,3]dioxole (53)

At $0^{\circ} \mathrm{C}$, a solution of the mesylate $\mathbf{6 3}(6 \mathrm{~g}, 21.2 \mathrm{mmol})$ in dry THF (50 mL) was treated with $\mathrm{NaH}(1.5 \mathrm{~g}, 31.88 \mathrm{mmol})$ the resulting suspension was stirred for 1 h allowing to warm to room temperature.
 The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched with water $(50 \mathrm{~mL})$ very slowly. The reaction mixture was extracted EtOAc (2 X 50 mL) and the combrined organic laywer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting crude was purified by column chromatography ($85: 15$ petroleum ether/EtOAc) to afford epoxide 53 (3 g , 76%) as a yellow color oil: $\mathrm{R}_{f}\left(25 \% \mathrm{EtOAc} /\right.$ petroleum ether) 0.6 ; $[\alpha]^{25}$ D: -13.3 (c 0.14 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{ddd}, J=5.8,8.2,14.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.34 (dd, $J=2.1,14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (dd, $J=2.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (dd, $J=4.1,4.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.31 (ddd, $J=2.7,3.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (ddd, $J=2.1,8.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=$ $4.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 25.8$ (q), 27.1 (q), 34.7 (t), 47.3 (t), 53.1 (d), 80.7 (d), 82.3 (d), 106.8 (d), 112.4 (s) ppm; MS (ESI) m/z $=209.08$ $[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}$ (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 209.0790$, found 209.0781.

(S)-1-((3aR,5R,6aR)-2,2-Dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)hex-3-yn-1-ol (64)

At $-78{ }^{\circ} \mathrm{C}$, a solution of 1-butyne $(2.9 \mathrm{~g}, 53.7 \mathrm{mmol}, 7.7 \mathrm{~mL}$, 7M) in THF (25 mL) was treated with $n-\mathrm{BuLi}(28.6 \mathrm{~mL}, 42.96 \mathrm{mmol}$, 1.5 M in THF) and $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(5.3 \mathrm{~mL}, 42.96 \mathrm{mmol})$ followed by a solution of the epoxide $53(2 \mathrm{gm}, 10.74 \mathrm{mmol})$ in THF (8 mL) with a
 15 minutes interval. The stirring was continued for another 1.5 h at-78 ${ }^{\circ} \mathrm{C}$ and then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The reaction mixture was allowed to reach rt and partitioned between ethyl acetate (25 mL) and water (25 mL). The aqueous layer was extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$) and the combined organic layer was washed with brine,
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the crude by column chromatography ($80: 20$ petroleum ether/EtOAc) gave the alkynol $64\left(1.8 \mathrm{~g}, 70 \%\right.$) as a colorless oil: $\mathrm{R}_{f}(25 \%$ EtOAc/petroleum ether) $0.5 ;[\alpha]^{25}$ D: $58.94\left(c 3.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.1$ (t, $J=7.45 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.43-$ 2.51 (m, 3H), 3.88-3.98 (m, 1H), 4.1 (ddd, $J=3.4,7.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (ddd, $J=1.5,3.9$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 12.4(\mathrm{t}), 14.1(\mathrm{q}), 24.1(\mathrm{t})$, 25.9 (q), 27.1 (q), 32.4 (t), 70.7 (d), 74.5 (s), 80.7 (d), 82.6 (d), 84.7 (s), 106.3 (d), 112.3 (s) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=262.75[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$263.1260, found 263.1252.
(S,E)-1-((3aR,5R,6aR)-2,2-Dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)hex-3-en-1-ol (65)

At $-78{ }^{\circ} \mathrm{C}$, ammonia (300 mL) was condensed into a two neck the flaskthat was fitted with a dry ice condenser and the other neck was fitted with a gas delivery-tube running to the bottom of the flask. The gas delivery-tube was removed, and 217 mg (0.03 g -atoms) of lithium was added in small portions with vigorous stirring for 30 min . Then a
 solution of alkyne $64(1.5 \mathrm{~g}, 6.24 \mathrm{mmol})$ in THF (10 mL), followed by t-butanol $(1.85 \mathrm{~g}, 25$ $\mathrm{mmol}, 2.4 \mathrm{~mL}$) were added to it very slowly. After the addition was complete, the reaction mixture was stirred at $-50^{\circ} \mathrm{C}$ for another 24 h . Then it was quenched by solid $\mathrm{NH}_{4} \mathrm{Cl}(\sim 2 \mathrm{gm})$, after that cooling bath was removed, and the ammonia was allowed to evaporate overnight. The reaction mixture was partitioned between ethyl acetate $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$) and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the crude by column chromatography ($80: 20$ petroleum ether/EtOAc) gave the alkenol $65(1.25 \mathrm{~g}, 82 \%$) as a colorless oil: $\mathrm{R}_{f}\left(25 \% \mathrm{EtOAc} /\right.$ petroleum ether) 0.5.; $[\alpha]^{25} \mathrm{D}$: -25.4 (c 2.3, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.09(\mathrm{~m}, 2 \mathrm{H})$, $2.11-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.41(\mathrm{~m}, 3 \mathrm{H}), 3.81-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{ddd}, \mathrm{J}=$ $2.0,3.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dt}, J=6.9,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dt}, J=5.9,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J$ $=3.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 13.7(\mathrm{q}), 25.6(\mathrm{t}), 26.2(\mathrm{q}), 27.3(\mathrm{q}), 31.9(\mathrm{t})$, 36.8 (t), 71.5 (d), 80.8 (d), 83.3 (d), 106.1 (d), 112.5 (s), 124.2 (d), 136.1 (d), ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=264.88[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$265.1416, found 265.1410.

(2R,3R,5R)-5-((S,E)-1-Hydroxyhex-3-en-1-yl)-2-methoxytetrahydrofuran-3-ol (51ß)

To an ice cooled solution of the acetonide $\mathbf{6 5}(1 \mathrm{~g}, 4.13 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL}), 2$ drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ were added and stirred for overnight at rt . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with $\mathrm{Et}_{3} \mathrm{~N}$. The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography ($75: 25$ petroleum
 ether/EtOAc) to yield a mixture of methyl glycoside $\mathbf{5 1} \boldsymbol{\beta}(700 \mathrm{mg}, 78 \%)$ as colorless syrup: R_{f} (40% EtOAc/petroleum ether) 0.5 and the isomer $51 \alpha\left(70 \mathrm{mg}, 8 \%\right.$) as colourless syrup: R_{f} (45% EtOAc/petroleum ether) 0.6.

Characterization data of compound $\mathbf{5 1 \beta} \boldsymbol{\beta}[\alpha]^{25} \mathrm{D}$: $-107.8\left(c 1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{dd}, J=2.5,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.09(\mathrm{~m}, 3 \mathrm{H})$, 2.13-2.2.17 (m, 1H), 2.26 (ddd, $J=5.5,9.8,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.87-$ $3.90(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{dt}, J=7.3$, $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dt}, J=6.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 13.6(\mathrm{q}), 25.6$ (t), 30.8 (t), 37.3 (t), 54.5 (q), 70.9 (d), 73.7 (d), 80.6 (d), 109.1 (d), 123.7 (d), 136.7 (d) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=239.00[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 239.126$, found 239.1252.

Characterization data of compound $51 \alpha:[\alpha]^{25}{ }_{\mathrm{D}}$: +77.1 (c 2.6, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.86$ (dt, $J=9.5,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.15$ (m, 2H), 2.18 (dt, $J=7.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (br s, 1H), $3.50(\mathrm{~s}, 3 \mathrm{H}), 3.75$ (ddd, $J=3.9,6.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (ddd, $J=3.66$,
 $7.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dt}, J=7.0,15.3 \mathrm{~Hz}, 1 \mathrm{H})$ $5.57(\mathrm{dt}, J=6.1,15.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 13.7(\mathrm{q}), 25.6(\mathrm{t}), 30.2(\mathrm{t}), 35.9$ (t), 55.9 (q), 71.8 (d), 72.7 (d), 80.7 (d), 102.3 (d), 124.2 (d), 135.5 (d) ppm; MS (ESI) m/z = $238.62[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$239.126, found 239.1252.

(2R,2'S,4R,4'S,5R,5'R)-4'-Bromo-5'-ethyl-5-methoxyoctahydro-[2,2'-bifuran]-4-ol (66)

To a solution of the methylglycoside $\mathbf{5 1} \boldsymbol{\beta}(115 \mathrm{mg}, 0.53 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$, NBS ($123 \mathrm{mg}, 0.69 \mathrm{mmol}$) was added and stirred for 4 h at rt . The reaction mixture was
concentrated under reduced pressure. Purification of the crude product by column chromatography (85:15 petroleum ether/EtOAc) gave 66 ($110 \mathrm{mg}, 70 \%$) as colorless syrup: $\mathrm{R}_{f}(20 \%$
 EtOAc/petroleum ether) $0.4 ;[\alpha]^{25}$ D: 26.8 (c 4.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.01$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), $1.51-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{dd}, J=10.5,12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{dt}, J=6.4,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{dd}, J=6.7,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.94 (dd, $J=2.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.98 (ddd, $J=3.6,8.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05 (br s, 1H), 4.24-4.28 $(\mathrm{m}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 10.0(\mathrm{q}), 25.4(\mathrm{t}), 31.3(\mathrm{t}), 39.8(\mathrm{t}), 46.1$ (d), 55.6 (q), 73.4 (d), 78.4 (d), 79.6 (d), 88.0 (d), 109.6 (d) ppm; MS (ESI) m/z $=317.03$ $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 317.0365,319.0365$ found 317.0356 and 319.0334.
(2R,2'S,4R,4'S,5R,5'R)-4'-Bromo-5'-ethyl-5-methoxyoctahydro-[2,2'-bifuran]-4-yl acetate (66-Ac)

To a solution of $\mathbf{6 6}(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}, 0.6 \mathrm{mmol})$, DMAP (2 mg) and stirred for 15 min . To this, acetic anhydride $(0.03 \mathrm{~mL}, 0.3 \mathrm{mmol})$
 was added at $0{ }^{\circ} \mathrm{C}$ and stirred further for 2 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The resulting crude product was purified by column chromatography (90:10 petroleum ether/EtOAc) to afford the aceate $\mathbf{6 6 - A c}(29 \mathrm{mg}, 84 \%)$ as colorless syrup: R_{f} ($20 \% \mathrm{EtOAc}$ /petroleum ether) $0.6 ;[\alpha]^{25}$ D: -37.5 (c $0.45, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=1.2$, $5.1,14.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (s, 3H), 2.23-2.31 (m, 1H), 2.46-2.54 (m, 1H), 2.71 (dt, $J=6.8,13.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.36 ($\mathrm{s}, 3 \mathrm{H}$), 3.91 (dd, $J=7.6,15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (dd, $J=7.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (dd, $J=6.9,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=1.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 9.9$ (q), 21.1 (q), 25.4 (t), 32.6 (t), 39.6 (t), 47.4 (d), 54.6 (d), 77.6 (d), 79.2 (d), 80.1 (d), 87.0 (d), 107.0 (d), 170.3 (s) ppm; MS (ESI) m/z $=359.14,361.30$ $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 359.047,361.047$, found 359.0462 and 361.0439 .
(2R,2'S,4R,4'S,5R,5'R)-5-Allyl-4'-bromo-5'-ethyloctahydro-[2,2'-bifuran]-4-ol (67 α) and (2R,2'S,4R,4'S,5S,5'R)-5-Allyl-4'-bromo-5'-ethyloctahydro-[2,2'-bifuran]-4-ol(67 β)

To a solution of methylglycoside $66(220 \mathrm{mg}, 0.74 \mathrm{mmol})$ and allyltrimethylsilane ($0.59 \mathrm{~mL}, 3.73 \mathrm{mmol}$) in acetonitrile (10 mL), was added drop wise an equimolar amount of trimethylsilyl triflate $(0.14 \mathrm{~mL}, 0.74 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. The solution was allowed to warm to 0 ${ }^{\circ} \mathrm{C}$ over 8 h . As soon as it reached to $0{ }^{\circ} \mathrm{C}$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added.The reaction mixture was concentrated under reduced pressure and was extracted with EtOAc (4 x 25 ml). The combined organic layers were dried over NaSO_{4} and concentrated under reduced pressure. The resulting crude was purified by column chromatography (petroleum ether:EtOAc, 90:10) to yield C-glycoside $\mathbf{6 7 \alpha} \boldsymbol{\alpha}$ as a major diastereomer (150 mg , $66 \%) \mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether $) 0.6$ and further elution afforded the minor C-glycoside $67 \boldsymbol{\beta}$ ($30 \mathrm{mg}, 13 \%$) as colorless syrup: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) 0.61 .

Characterization data of compound $67 \boldsymbol{\alpha}:[\alpha]^{25}{ }_{\mathrm{D}}:+23.1$ (c 6.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.51-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.28$ (ddd, $J=5.2,10.1,19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dt}, J=$
 $6.4,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (ddd, $J=2.1,8.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (d, J $=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{ddd}, J=3.7,8.3,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=2.4$, $4.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dt}, J=2.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, J=1.2,6.1,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}$, $J=1.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=1.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta 10.1(\mathrm{q}), 25.5(\mathrm{t}), 33.5(\mathrm{t}), 34.7(\mathrm{t}), 39.8(\mathrm{t}), 46.3(\mathrm{~d}), 70.9(\mathrm{~d}), 79.0(\mathrm{~d}, 2 \mathrm{C}), 83.7$ (d), 87.9 (d), 116.9 (t), 134.9 (d) ppm; MS (ESI) m/z $=327.07[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 327.0572,329.0572$ and found 327.0565 and 329.0542 .

Characterization data of compound $67 \boldsymbol{\beta}:[\alpha]^{25}{ }_{\mathrm{D}}$: -66.2 (c 0.3, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.0(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.53(\mathrm{dd}, J=7.3,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.96(\mathrm{~m}$, 2H), 2.11-2.22 (m, 2H), 2.23 (ddd, $J=5.3,8.8,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$
 (dt, $J=6.4,12.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.88-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{ddd}, J=3.7,7.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.09$ (m, 2H), 4.20-4.23 (m, 2H), 5.09 (dd, $J=1.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=1.4,17.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.77-5.85 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 10.0(\mathrm{q}), 25.5(\mathrm{t}), 33.6(\mathrm{t}), 37.8(\mathrm{t}), 39.9(\mathrm{t})$,
46.4 (d), 74.3 (d), 79.5 (d, 2C), 87.0 (d), 87.9 (d), 117.3 (t), 134.2 (d) ppm; MS (ESI) m/z = $327.05[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 327.0572,329.0572$ and found 327.0564 and 329.0540.
(2R,2'S,4R,4'S,5R,5'R)-5-Allyl-4'-bromo-5'-ethyloctahydro-[2,2'-bifuran]-4-yl acetate (67 α-Ac)

To a solution of $\mathbf{6 7 \boldsymbol { \alpha }}(25 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.07 \mathrm{~mL}, 0.49 \mathrm{mmol})$, DMAP (2 mg) and stirred for 15 min . To this, acetic anhydride (0.02 mL , 0.24 mmol) was added at $0^{\circ} \mathrm{C}$ and stirred further for 2 h . The
 reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The resulting crude product was purified by column chromatography ($95: 5$ petroleum ether/EtOAc) to afford the aceate $\mathbf{6 7} \boldsymbol{\alpha}$-Ac ($27 \mathrm{mg}, 95 \%$) as colorless syrup: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) 0.64 ; $[\alpha]^{25}{ }_{\mathrm{D}}:-11.1\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{dd}$, $J=7.3,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=1.4,5.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, $2.28-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.71(\mathrm{dt}, J=6.6,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{ddd}, J=4.2,6.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.03(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.12(\mathrm{~m}$, 2H), $5.27(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 5.75-5.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 9.9(\mathrm{q}), 21.0(\mathrm{q}), 25.5$ (t$), 33.6$ (t$), 36.2$ (t$), 39.4$ (t$), 47.7$ (d), 74.3 (d), 79.5 (d), 79.7 (d), 81.3 (d), 87.0 (d), 117.1 ($)$, 134.2 (d), 178.8 (s) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=369.02,370.91[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 369.0678,371.0678$ and found 369.0668 and 371.0646 .
(2R,2'S,4R,4'S,5S,5'R)-5-allyl-4'-bromo-5'-ethyloctahydro-[2,2'-bifuran]-4-yl
acetate (67β-Ac)

To a solution of $\mathbf{6 7} \boldsymbol{\beta}(15 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.04 \mathrm{~mL}, 0.29 \mathrm{mmol})$, DMAP (2 mg) and stirred for 15 min . To this, acetic anhydride (0.01 mL , 0.14 mmol) was added at $0{ }^{\circ} \mathrm{C}$ and stirred further for 2 h . The
 reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The resulting crude product was purified by column chromatography ($95: 5$ petroleum ether/EtOAc) to afford the diaceate $\mathbf{6 7} \boldsymbol{\beta}$-Ac ($15 \mathrm{mg}, 88 \%$) as colorless syrup: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) 0.65 ;
$[\alpha]^{25}{ }_{\mathrm{D}}:-5.8\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{dt}, J$ $=7.3,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{ddd}, J=3.4,5.3,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.24$ $(\mathrm{dt}, J=8.0,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{dt}, J=7.3,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dt}, J=$ $6.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=7.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=3.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ $7.0,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, J=3.1,6.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{td}, J=5.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}$, $J=3.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta 9.9(\mathrm{q}), 21.1$ (q), 25.5 (t), 34.2 (t), 37.4 (t), 39.8 (t), 47.6 (d), 77.5 (d), 79.3 (d), 80.1 (d), 83.1 (d), 87.0 (d), 117.7 (t), 133.6 (d), 170.6 (s) ppm; MS (ESI) m/z $=345.14[\mathrm{M}-\mathrm{H}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 369.0678,371.0678$ and found 369.0672 and 371.0649.

(Z)-4-(Allyloxy)but-2-en-1-ol (69)

The cis-2-butene-1,4-diol ($10 \mathrm{~g}, 113.5 \mathrm{mmol}$) was dissolved in DMF $(150 \mathrm{~mL})$ under a N_{2} atmosphere and cooled to $0^{\circ} \mathrm{C}$. To this, $\mathrm{NaH}(5.45$ $\mathrm{g}, 136.2 \mathrm{mmol}$) was added followed by allyl bromide $(8.83 \mathrm{~mL}, 102.1$
 mmol) after 15 minutes and then reaction mixture was allowed to warm to room temperature. After four hours, as indicated by TLC the reaction was complete. The reaction mixture was quenched very slowly with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $0{ }^{\circ} \mathrm{C}$. The organic material was extracted with ether and washed with brine solution. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the crude by column chromatography ($80: 20$ petroleum ether/EtOAc) gave the pure monoallyl ether 69 ($10.5 \mathrm{~g}, 72 \%$) as a colorless oil: $\mathrm{R}_{f}(30 \%$ EtOAc/petroleum ether) 0.56 ; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right.$): $\delta 2.71$ (br s, 1 H), 3.96 (dt, $J=$ $1.4,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{dd}, J=0.8,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.17$ (ddd, $J=1.3$, $2.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (ddd, $J=1.6,3.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.98(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 58.3$ (d), 65.5 (t), 71.2 (t), 117.3 (t), 127.8 (d), 132.3 (d), 134.3 (d) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=151.12[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 151.0735$, found 151.0726.

(E)-(5-(allyloxy) pent-3-en-1-yn-1-yl)triisopropylsilane (70)

To a solution of $69(100 \mathrm{mg}, 0.78 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2} atmosphere and PCC ($219 \mathrm{mg}, 1.01 \mathrm{mmol}$) mixed with $4 \AA \mathrm{~mol}$ sieves (1 g) was added. The reaction mixture was stirred at rt until TLC indicated complete consumption of starting material. The
 chromium salts were removed by filtering through a large plug of silica gel and washing with
diethyl ether. The aldehyde was further purified by flash column chromatography (90:10 petroleum ether/EtOAc) to afford the pure aldehyde ($90 \mathrm{mg}, 91 \%$) which was used directly for for next reaction.

At $-78{ }^{\circ} \mathrm{C}$, a solution of TMS-diazomethane ($0.4 \mathrm{~mL}, 2.0 \mathrm{M}$ solution in hexane) in THF (15 mL) was treated with $n-\operatorname{BuLi}(0.6 \mathrm{~mL}, 1.5 \mathrm{M}$ solution in hexane) and stirred for 15 min. To this the above prepared aldehyde ($90 \mathrm{mg}, 0.71 \mathrm{mmol}$) was added and stirred for another 10 min by then the TLC showed the complete disappearance of aldehyde. The reaction was allowed to warm to $-30^{\circ} \mathrm{C}$ wherein the TLC showed a new UV-active, nonpolar spot. The reaction mixture was again cooled to $-78^{\circ} \mathrm{C}$ and an additional 0.6 mL of n BuLi was added and stirring 10 min before introducing the $\operatorname{TIPSCl}(0.23 \mathrm{~mL}, 1.07 \mathrm{mmol})$. Then the the reaction was allowed to warm to room temperature over 1 h . The reaction was quenched with a small amount of water, and dried with MgSO_{4} and concentrated. The resulting crude was purified by column chromatography ($98: 2$ petroleum ether/EtOAc) to afford the pure allyl ether $70(120 \mathrm{mg}, 60 \%)$ as a colorless oil: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) $0.73 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 18 \mathrm{H}), 4.00(\mathrm{dt}, J=1.5,5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.04$ (dd, $J=1.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.21$ (ddd, $J=1.4,3.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ (ddd, $J=$ $1.6,3.3,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dt}, J=1.8,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-6.01(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{dt}, J=5.4$, $16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 11.3(\mathrm{~d}, 3 \mathrm{C}), 18.6(\mathrm{q}, 6 \mathrm{C}), 69.7(\mathrm{t}), 71.3(\mathrm{t}), 96.2$ (s), 104.9 (s), 112.0 (d), 117.1 (t), 134.5 (d), 140.2 (d) ppm; MS (ESI) m/z $=278.93[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+} 301.1964$, found 301.1405.

(2R,2'S,4S,4'S,5R,5'R)-5-allyl-4'-bromo-4-chloro-5'-ethyloctahydro-2,2'-

 bifuran (71)To a stirred solution of the alcohol $67 \boldsymbol{\alpha}(60 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added pyridine $(0.16 \mathrm{~mL}, 2$ mmol) and trifluoromethanesufonic anhydride $(0.1 \mathrm{~mL}, 0.6$ $\mathrm{mmol})$. The reaction mixture was stirred at rt for 0.5 h and then
 quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic phases were washed with saturated aqueous CuSO_{4} solution $(2 \times 10 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo and the crude triflate was briefly dried under high vacuum. Tetra-n-butylammonium chloride ($152 \mathrm{mg}, 0.55 \mathrm{mmol}$) and toluene $(20 \mathrm{~mL})$ were added to the
crude triflate and the resulting suspension was placed in a preheated oil bath $\left(120{ }^{\circ} \mathrm{C}\right)$ and reflux for 2.5 h . The cooled reaction mixture was filtered through a silica gel plug and washed with ether. The solvent was removed and the residue was dissolved in methanol (30 mL) , and Amberlyst IR-120 was added and the reaction mixture was stirred overnight. The reaction mixture was filtered and the solvent was removed in vacuo. Purfication by the crude flash chromatography (petroleum ether:EtOAc, 95:5) gave the title compound 71 as a clear and colourless oil ($27 \mathrm{mg}, 42 \%$); $\mathrm{R}_{f}\left(10 \% \mathrm{EtOAc} /\right.$ petroleum ether) $0.6 ;[\alpha]^{25}{ }_{\mathrm{D}}:+113.4$ (c 0.14 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.78$ (m, 1H), 2.14 (dt, $J=8.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (ddd, $J=4.6,9.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.67$ (dt, $J=6.7,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=$ $7.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.95(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{dt}, J=5.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}) 4.48(\mathrm{t}$, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 9.9(\mathrm{q}), 25.4(\mathrm{t}), 35.7(\mathrm{t}), 39.0(\mathrm{t}), 39.5(\mathrm{t}), 47.3$ (d), 62.4 (d), 79.3 (d, 2C), 82.1 (d), 87.2 (d), 117.8 (t), 133.5 (d) ppm; MS (ESI) m/z $=345.06[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{BrClO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 345.0233,347.0233$ and found 345.0225 and 347.0198.

(2R,2'S,4R,4'S,5R,5'R)-4'-bromo-5'-ethyl-5-((Z)-5-(triisopropylsilyl)pent-2-en-4-yn-1-yl)octahydro-[2,2'-bifuran]-4-ol(72)

To a solution of $\mathbf{6 7 \boldsymbol { \alpha }}(36 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ eq.) in dry benzene (5 mL) were added TIPS-enyne 70 ($98.5 \mathrm{mg}, 0.35 \mathrm{mmol}$) in benzene (1 mL) and HoveydaGrubbs $2^{\text {nd }}$ generation catalyst ($15 \mathrm{mg}, 0.02 \mathrm{mmol}$) in
 benzene (1 mL) at rt under nitrogen atmosphere. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 1.5 h . Addition of TIPS-enyne $70(98.5 \mathrm{mg}, 0.35 \mathrm{mmol})$ in benzene (1 mL) and catalyst (15 $\mathrm{mg}, 0.02 \mathrm{mmol}$) in benzene (1 mL) was repeated three times for every 1.5 h . Dimethyl sulfoxide ($0.4 \mathrm{~mL}, 50$ equiv per 1 equiv Grubbs' cat.) was added to the solution, and it was stirred open to the air for 15 h . The reaction mixture was concentrated in vacuo. The residue was purified by column chromatography (petroleum ether:EtOAc, 92:8) to yield cis-enyne 72 ($49 \mathrm{mg}, 86 \%$) as a colourless oil $\mathrm{R}_{f}\left(10 \% \mathrm{EtOAc} /\right.$ petroleum ether) $0.64 ;[\alpha]^{25}{ }_{\mathrm{D}}:+20.8$ (c 0.4 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 21 \mathrm{H}), 1.53(\mathrm{ddd}, J=$ $7.3,14.9,21.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{ddd}, J=5.1,9.8,14.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.61(\mathrm{dt}, J=6.4,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{ddd}, J=2.4,6.4,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{ddd}, J=6.9,10.3,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{td}, J=3.4,8.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.02$ (ddd, $J=2.2,4.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dt}, J=2.5,9.8, \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, J=2.0$, $6.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dt}, J=1.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dt}, J=7.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 10.1(\mathrm{q}), 11.3(\mathrm{~d}, 3 \mathrm{C}), 18.6(\mathrm{q}, 6 \mathrm{C}), 25.5(\mathrm{t}), 30.3(\mathrm{t}), 34.7(\mathrm{t}), 39.7(\mathrm{t})$, 46.4 (d), 71.3 (d), 79.1 (d), 79.1 (d), 83.2 (d), 87.8 (d), 95.8 (s), 103.4 (s), 111.4 (d), 140.8 (d) $\mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}=506.79[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{calcd}$ for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{BrO} 3 \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$ 507.1906, 509.1906 and found 507.1902 and 509.1881.

(2R,2'S,4R,4'S,5R,5'R)-4'-bromo-5'-ethyl-5-((Z)-pent-2-en-4-yn-1-yl)octahydro-[2,2'-bifuran]-4-ol (73)

To an ice cooled solution of the TIPS-enyne 72 (25 $\mathrm{mg}, 0.05 \mathrm{mmol})$ in THF (10 mL), TBAF ($20 \mathrm{mg}, 0.08 \mathrm{mmol}$) was added and stirred for 0.5 h at $-20{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched by adding few drops of $\mathrm{Et}_{3} \mathrm{~N}$. Solvent
 was evaporated under reduced pressure, and the residue was purified by column chromatography ($90: 10$ petroleum ether/EtOAc) to afford 75 ($12 \mathrm{mg}, 93 \%$) as colorless syrup: $\mathrm{R}_{f}\left(20 \% \mathrm{EtOAc} /\right.$ petroleum ether) $0.6 ;[\alpha]^{25}$ D: -44.7 (c 0.75, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 1.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{dt}, J=7.1,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.89-2.00$ (m, 2H), 2.29 (ddd, $J=5.1,10.0,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, J=6.4,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.80(\mathrm{~m}$, 2 H), 3.11 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (ddd, $J=2.5,6.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.87 (ddd, $J=7.1,10.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (ddd, $J=3.4,8.1,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (br s, 1H), $4.12(\mathrm{dt}, J=2.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{ddd}, J=2.0,6.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dt}, J=1.0,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.14(\mathrm{dt}, J=7.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 10.1(\mathrm{q}), 25.5(\mathrm{t}), 30.2(\mathrm{t})$, 34.8 (t), 39.8 (t), 46.4 (d), 71.2 (d), 79.1 (d), 79.1 (d), 80.2 (s), 82.1 (s), 83.0 (d), 87.9 (s), 110.0 (d), 141.8 (d) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=351.03[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 351.0572,353.0572$ and found 351.0562 and 353.0540.
(2S,2'R,4S,4'S,5R,5'R)-4-bromo-4'-chloro-5-ethyl-5'-((Z)-pent-2-en-4-yn-1-yl)octahydro-2,2'-bifuran (46)

The procedure used in the preparation of $\mathbf{7 1}$ has been adopted for the convertion of alcohol 73 ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) in into the title compound $\mathbf{4 6}$ as a clear and colourless oil (17 $\mathrm{mg}, 32 \%$); $\mathrm{R}_{f}\left(10 \% \mathrm{EtOAc} /\right.$ petroleum ether) $0.55 ;[\alpha]^{25}$ D: -
 0.96 (c 0.13, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.49(\mathrm{~m}$,
$1 \mathrm{H}), 1.70(\mathrm{dd}, J=6.7,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (dd, $J=7.4,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.32$ (dd, $J=4.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=6.1,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dt}, J=6.9,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, J=2.9,6.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.25(\mathrm{~m}, 1 \mathrm{H})$, $4.31(\mathrm{dt}, J=5.6,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dt}, J=1.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dt}$, $J=7.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 10.1(\mathrm{q}), 24.3(\mathrm{t}), 34.6(\mathrm{t}), 38.4(\mathrm{t}), 39.4$ (t), 47.4 (d), 59.4 (d), 78.6 (d), 80.1 (d), 80.2 (d), 82.3 (d), 84.2 (d), 86.2 (d), 111.1 (d), 139.8 (d) ppm; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrClO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 369.0233,371.0233$ and found 369.0231 and 371.0207.

SPECTRA

${ }^{1} \mathbf{H}$ NMR Spectrum of 52 in $\mathbf{C D C l}_{3}$
Sat4av2\#059.002.0019tNor-epo-Cesp
${ }^{13} \mathrm{C}$ NMR Spectrum of 52 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 55 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 55 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 56 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 56 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 57 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 57 in CDCl_{3}

${ }^{1} H$ NMR Spectrum of 58 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 58 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 59 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 50β in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of cis- 60 in CDCl_{3}

[^0]
${ }^{1} \mathrm{H}$ NMR Spectrum of trans-60 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of trans- 60 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of cis-60-Ac in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR Spectrum of cis-60-Ac in $\mathbf{C D C l}_{3}$

COSY of compound cis-60-Ac

NOESY of compound cis-60-Ac

${ }^{1} \mathrm{H}$ NMR Spectrum of trans-60-Ac in $\mathbf{C D C l}_{3}$

COSY of compound trans-60-Ac

NOESY of compound trans-60-Ac

${ }^{1} \mathrm{H}$ NMR Spectrum of 61 in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR Spectrum of 61 in $\mathbf{C D C l}_{3}$

${ }^{1} H$ NMR Spectrum of 62 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 62 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 63 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 63 in CDCl_{3}

${ }^{1}$ H NMR Spectrum of 53 in CDCl $_{3}$

${ }^{1} H$ NMR Spectrum of 64 in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR Spectrum of 64 in $\mathbf{C D C l}_{3}$

${ }^{1} H$ NMR Spectrum of 65 in CDCl_{3}

[^1]
${ }^{1} \mathrm{H}$ NMR Spectrum of 51β in CDCl_{3}

[^2]
${ }^{1} \mathrm{H}$ NMR Spectrum of 51α in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 51α in CDCl_{3}

${ }^{1} H$ NMR Spectrum of 66 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 66-Ac in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 66-Ac in CDCl_{3}

COSY of compound 66-Ac

NOESY of compound 66-Ac

${ }^{1}$ H NMR Spectrum of 67α in CDCl_{3}
(

COSY of compound 67α

NOESY of compound 67α

${ }^{1} H$ NMR Spectrum of 67β in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 67β in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 67α - Ac in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $67 \alpha-\mathrm{Ac}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 67β-Ac in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of $67 \beta-\mathrm{Ac}$ in CDCl_{3}

COSY of compound $67 \boldsymbol{\beta}$-Ac

NOESY of compound $67 \boldsymbol{\beta}$-Ac

${ }^{1} \mathrm{H}$ NMR Spectrum of 69 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 69 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 70 in $\mathbf{C D C 1}_{3}$

${ }^{13} \mathbf{C}$ NMR Spectrum of 70 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 71 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 71 in CDCl_{3}

${ }^{1} H$ NMR Spectrum of 72 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathbf{C}$ NMR Spectrum of 72 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathbf{H}$ NMR Spectrum of $\mathbf{7 3}$ in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 73 in CDCl_{3}
${ }^{1} \mathrm{H}$ NMR Spectrum of 46 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 46 in CDCl_{3}

CHAPTER II; SECTION B

Studies toward the total synthesis of Kumausallene

PRESENT WORK

While the work in the direction of Notoryne (46) synthesis was in progress, in parallel, the total synthesis of Kumausallene (47) was also attempted. As mentioned previously, considering the similar stereochemistry of one of the THF units of Kumausallene with Notoryne, one of the advanced intermediate that we have prepared as part of the Notoryne synthesis has been identified as the starting point for the total synthesis of Kumausallene. Kumausallene belongs to a family of non isoprenoid sesquiterpenes which contain a dioxa-bicyclo [3.3.0] octane core along with a unique exo-cyclic bromoallene moiety. In 1983, Kurosawa and co-workers reported the isolation of Kumausallene from the red algae Laurencia Nipponica Yamada indigenous to the coast of Hokkaido in Japan. ${ }^{52}$ Its Structure was characterized with the help of extensive NMR analysis. Kumausallene belongs to the class of furofuran natural products and, more importantly, it displays a chiral bromoallene motif.

The first total synthesis of Kumausallene was reported by Overman's group. ${ }^{46 \mathrm{~b}}$ As was described in the Introduction, the bromo allene motif was constructed through a $\mathrm{S}_{\mathrm{N}} 2$ ' displacement by using LiCuBr_{2}. The second synthesis was documented by Evans' group. ${ }^{48} \mathrm{~A}$ late stage electrophilic cyclization comprising the addition of the C3 hydroxy group on to the enyne side chain had been employed as the key reaction to install the bromoallene part of Kumausallene. Recently, Tang and co-workers ${ }^{50}$ documented the synthesis of Kumausallene in which a DMF-promoted biomimetic 1, 4-bromocyclization of a conjugated enynehas been employed as the key reaction to address the bromoallene synthesis. As shown in Figure 19, we are interested to explore the bromonium ion induced cyclo etherification of a conjugated enyne for the construction of the bicyclic core part as well as the exo cyclic bromoallene part of this natural product that has been applied earlier by Evans group. The key features of our retro synthesis aredepicted in Figure 19.

Retrosynthesis:

Two options have been selected in this context - either the total synthesis or the synthesis of Tang's bromoenyne intermediate 48. To have an alternative route that avoids the intermediate 48, we planned the bromoetherification of diol 75 followed by Appel reaction to introduce the bromine as the final event in our total synthesis of Kumausallene. The synthesis of 75 was planned from the triol 76 which, in turn can be prepared from the alkynol 64 that we have synthesized as a part of the Notoryne synthesis.

Figure 19. The proposed retrosynthetic route for (-)-Kumausallene (47)

Synthesis of the alkentriol 76

The synthesis of the key alkenetriol 76 started from the alkynol $\mathbf{6 4}$ that has been synthesized earlier as a part of Notoryne synthesis. The protection of the free -OH group in 64 as its benzyl ether was carried outby using BnBr and NaH in DMF to obtain 77. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 77, the presence of five Ar-H in the downfield region at $\delta 7.28$ 7.43 and of two doublets at $\delta 4.6$ and 4.84 with a large coupling constant of 11.4 Hz corresponding to the benzyl group confirmed the benzylation.

The 1,2-acetonide group in compound 77 was hydrolyzed by employing $60 \% \mathrm{AcOH}$ at $80^{\circ} \mathrm{C}$ to procure the lactols 78. The absence of two methyl singlets at $\delta 1.30$ and 1.46 in the ${ }^{1} \mathrm{H}$ NMR and of two quartets at $25.8,26.9 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR confirmed the acetonide group deprotection.

Scheme 107: Synthesis of the lactone 79

Now, the lactols 78 was treated with Meldrum acid in DMF in the presence of $E t_{3} \mathrm{~N}$ (cat.) to obtain lactone 79 in moderate yields. In the ${ }^{1} \mathrm{H}$ NMR spectrum of lactone $\mathbf{7 9}$, two additional protons were seen to resonate in the upfield region at $\delta 2.73-2.74$ and the C 2 proton has been shifted to $\delta 5.04$ as doublet of doublet of doublet (ddd). In addition, in the ${ }^{13} \mathrm{C}$

NMR spectrum compound 79, the two newly added two carbons appeared as triplet at 36.55 ppm and a singlet at 175.31 ppm , which confirmed the lactone formation. All other analytical data were in accordance with the assigned structure.

Next, the selective reduction of the internal triple bond to trans-alkene as well as debenzylation was examined under Birch reduction conditions employing Li and liq. NH_{3} at $-78{ }^{\circ} \mathrm{C}$. To our surprise, in addition to the expected transformations, the lactone carbonyl also reduced and the alkene triol 76 was obtained in 27% yield. This indicated the possible Bouveault-Blanc type reduction of lactone taking place in the present case. ${ }^{61}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum compound 76, the two olefinic protons resonated at $\delta 5.38$ and 5.57 as doublet of triplets (dt) with the coupling constant of 15.4 Hz indicative of a trans double bond. In the ${ }^{13} \mathrm{C}$ NMR spectrum of 76, the corresponding two doublets of the olefinic carbons resonated at 124.01 and 136.16 ppm .

Scheme 108: Birch reduction of lactone 79

As the synthesis of key triol $\mathbf{7 6}$ on large scales turned out to difficult due to the poor yields at two stages, we revised our strategy for the synthesis of 76 via α - C-allyl glycoside. Consequently, the synthesis of $\mathbf{7 6}$ started with the deprotection of 1,2 acetonide of alkynol $\mathbf{6 4}$ in the presence of MeOH in $\mathrm{H}_{2} \mathrm{SO}_{4}$ that led to a mixture of O-methyl glycosides. This mixture was directly used for the C-glycosidation. The C-glycosidation needed employing allylTMS and TMSOTf substantial optimization of solvents/conditions to control the selectivity and yield. As shown in Table 6, in acetonitrile at $0^{\circ} \mathrm{C}$, a mixture of α - and β - C-allyl glycosides respectively $\mathbf{8 0} \boldsymbol{\alpha}$ and $\mathbf{8 0} \boldsymbol{\beta}$ were obtained in 1:3 ratios. When the same reaction was carried out at $-40^{\circ} \mathrm{C}$, it gave the same mixture in a $12: 1$ ratio in favor of the α - glycoside $\mathbf{8 0} \alpha$. These α and β-C-allyl glycosides respectively, 80α and 80β were separated by column chromategraphy and subjected for the acetylation for further characterization with the help of 2D NMR spectral data analysis.

S. No.	Reaction conditions	Results obtained
1	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}, \mathrm{DCM}, 0^{\circ} \mathrm{C}-\mathrm{rt}$	Decomposition
2	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}, \mathrm{ACN}, 0^{\circ} \mathrm{C}-\mathrm{rt}$	Decomposition
3	ZnBr_{2}, toluene, $110{ }^{\circ} \mathrm{C}$	Decomposition
4	TMSOTf, DCM, $0^{\circ} \mathrm{C}-\mathrm{rt}$	Complex reaction mixture
5	TMSOTf, ACN, $0^{\circ} \mathrm{C}-\mathrm{rt}$	$76 \% \alpha$: $\beta(1: 3)$
6	TMSOTf, ACN, $-40{ }^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}$	84\% , $\alpha: \beta(12: 1)$

Table 6: Synthesis of C-glycosides $\mathbf{8 0} \boldsymbol{\alpha}$ and $\mathbf{8 0} \boldsymbol{\beta}$ via O-glycoside

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 0} \boldsymbol{\alpha}$-Ac, two singlets at 2.09 and 2.10 integrating each for three protons and two CHOAc at 5.01 (C2, ddd) and 5.22 (C6, ddd) were seen. The strong n Oe interactions noticed in between the $\mathrm{C} 4-\mathrm{H}^{4}, \mathrm{C} 5-\mathrm{H}^{5}$ and $\mathrm{C} 7-\mathrm{H}^{7}$ revealed that they are on the same side and that the anomeric configuration was alpha. Similarly, in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 0} \boldsymbol{\beta}$-Ac, two singlets at 2.07 and 2.10 for three protons each along with two CHOAc seen to resonate at down field at 4.98 (C2, ddd) and 5.03 (C6, ddd). In the ${ }^{13} \mathrm{C}$ NMR spectrum, two singlets at 170.14 and 170.76 ppm acknowledge the acyl group as well as two carbons of CHOAc coming at 77.19 (C2) and 72.64 (C6) as doublet (Scheme 3). In the NOESY of $\mathbf{8 0} \boldsymbol{\beta}$-Ac, the observed strong $\mathrm{n} O$ e interactions between the $\mathrm{C} 3-\mathrm{H}^{3}, \mathrm{C} 5-\mathrm{H}^{5}$ and $\mathrm{C} 7-$ H^{7} suggested a beta-configuration at the glycoside carbon (figure. 20).

Figure 20: The strong n O es noticed in the $\mathbf{8 0} \alpha$ - $\mathbf{A c}$ and $\mathbf{8 0} \beta$-Ac.

After having the key C-glycoside $\mathbf{8 0 \alpha}$, the next task was preparing the key alkenetriol 76. The synthesis of the key alkenetriol $\mathbf{7 6}$ started with the oxidative olefin cleavage of $\mathbf{8 0} \boldsymbol{\alpha}$, under the modified Lemieux-Johnson oxidation protocol employing OsO_{4} and NaIO_{4} in the presence of 2,6-lutidine. ${ }^{62}$ The resulting aldehyde was reduced immediately using NaBH_{4} in MeOH to procure the alkynetriol $\mathbf{8 1}$. The appearance of a new multiplet resonating at $\delta 3.67-$ 3.73 in ${ }^{1} \mathrm{H}$ NMR and new CH_{2} triplet at 59.6 ppm in ${ }^{13} \mathrm{C}$ NMR were in supportive of the assigned structure of compound 81. Subsequently, the triple bond of triol $\mathbf{8 1}$ was reduced to trans-alkene 76 under Birch reduction conditions employing Li and NH_{3} at $-50{ }^{\circ} \mathrm{C}$. The spectral data of $\mathbf{7 6}$ was in agreement with the data that we obtained earlier.

Scheme 109: Synthesis of key alkenetriol 76

Having established a scalable route for the alkenetriol 76, we proceeded further for the installation of a trans-enyne moiety. The eneyne 75 was synthesized from the alkenetriol 76 following a two-step sequence. The selective oxidation of $1^{\circ}-\mathrm{OH}$ to aldehyde by using DessMartin periodinane ${ }^{63}$ and the 3 carbon Wittig olefination ${ }^{29,50}$ of the resulting aldehyde with the ylide $\mathbf{8 3}$ gave the TMS protected enyne $\mathbf{8 2}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the enyne $\mathbf{8 2}$, showed that olefinic-H resonated as a doublet (d) at $\delta 5.64$ and a doublet of triplet (dt) at 6.26 ppm with a large coupling constant of 15.9 Hz indicating E-configured olefin. Also, in the ${ }^{13} \mathrm{C}$ NMR spectrum, doublets at 111.96 and 141.90 ppm, and alkyne singlets at 93.27 and 103.82 ppm and TMS quartet at -0.08 ppm for three carbons confirmed the presence of the TMSprotected enyne group. Next, the deprotection of the TMS group in $\mathbf{8 2}$ by using TBAF in THF afforded the advanced intermediate enyne 75. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound

75, peaks corresponding to the TMS group at $\delta-0.17$ are absent and a doublet at 2.80 (d) with a coupling constant 1.9 Hz representing the terminal alkyne-H was present. All other analytical data of compound 75 were in accordance with the assigned structure (Scheme 110).

Scheme 110: Synthesis of key enyne intermediate 75

Having this compound enyne diol 75 in hand, initially we explored the possibility of executing the key complexity transformation - bromonium ion induced bromo etherification of 75 to install the fused furofuran unit along with placing the pendant bromoallene tether, then carrying out the Appel reaction to introduce the bromo-group at the homoallylic position. This turned out to be a problematic proposition. Various sources of bromonium ion have been explored and their screening in different solvents has been investigated. In all the cases, the reactions led to complex mixtures and the isolation of one of the cyclized products turned out to be difficult. The use of freshly crystallized reagents and properly dried solvents like $\mathrm{CH}_{3} \mathrm{CN}$, DCM, and acetone could not lead to any success. The presence of two free hydroxyl groups in the substrate was reasoned to be one of the primary causes for the problems associated with this key cycloetherification. We have to go back to our original proposal of placing the homo-allylic bromine group prior to conducting the key complexity building transform i.e - the synthesis of Tang’s intermediate 48.

S. No.	Reaction conditions	Results obtained
1	NBS, DCM, $0^{\circ} \mathrm{C}-\mathrm{rt}$	Complex reaction mixture

2	NBS, ACN, $0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	Complex reaction mixture
3	NBS, acetone, $0^{\circ} \mathrm{C}-\mathrm{rt}$	Complex reaction mixture
4	TBCD, DCM, $0^{\circ} \mathrm{C}-\mathrm{rt}$	Complex reaction mixture
5	NBS, DMF, toluene, rt	Complex reaction mixture

Table 7. Attempted bormonium-ion induced cycloetherification of diol 75

Our efforts in this direction started with the conversion of the alkene triol 76 to the corresponding acetonide $\mathbf{8 4}$ by using 2,2- dimethoxypropane in the presence of p-TSA (cat.). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 4}$ showed the singlet peaks at $\delta 1.36$ and 1.38 integrating for three protons each acknowledging the acetonide unit. In the ${ }^{13} \mathrm{C}$ NMR spectrum the acetonide quaternary carbon resonated as a singlet at 101.34 and two methyl groups were characterized at 24.68 and 24.85 ppm as a quartet respectively and confirmed the acetonide protection.

Scheme 111: Synthesis of compound 85
Next, the Appel reaction ${ }^{46,50,60}$ of the resulting 84 was carried out employing CBr_{4}, TPP and 2,6-di-tertbutylpyridine. The corresponding bromo-compound $\mathbf{8 5}$ was obtained in moderate yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 5}$ showed the peaks of the CHBr at 4.51 as a doublet of triplet and the allylic protons of $\mathrm{CHCH}_{2} \mathrm{CHBr}$ are well separated, resonating at 2.31 and 2.48 as doublet of triplets. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the CHBr comes as a doublet at 59.0 ppm along with the allylic carbon of $\mathrm{CHCH}_{2} \mathrm{CHBr}$ coming at 36.66 ppm as a triplet compared to the starting alcohol which came at 32.71 ppm . All other analytical data were in accordance with the assigned structure.

The attempts to improve the yield of the Appel reaction were not successful. Despite the poor yield at this stage, we proceeded for the synthesis of bromoenyne 48 so that a formal total synthesis of Kumausallene could be completed. Accordingly, the compound $\mathbf{8 5}$ was subjected for acetonide hydrolysis employing PPTS in methanol at rt to obtain the diol $\mathbf{8 6}$ in 69% yield. The absence of the methyl singlets both in ${ }^{1} \mathrm{H}$ NMR ($\delta 1.34$ and 1.38 ppm) and
${ }^{13}$ CNMR [24.29 (q), 25.12 (q) and 101.08 (s) ppm] clearly indicated the acetonide hydrolysis. Next, the resulting diol 86 was subjected for the selective oxidation of $1^{\circ}-\mathrm{OH}$ employing DMP in dichloromethane and the intermediate aldehyde was immediately treated with the ylide generated from the phosphonium salt $\mathbf{8 3}$ employing the n-butyl lithium. Discouragingly, the reaction gave a complex mixture. Although the peaks corresponding to 87 could be seen on HRMS, efforts to obtain the pure samples of $\mathbf{8 7}$ for characterization met with failure.

Scheme 112: An attempts for the formal total synthesis of Kumausallene
The failures that we encountered across the various approaches that we explored for the synthesis of Notoryne and Kumausallene have revealed that the problems are mainly associated either with during the introduction of halo-group or during the bromoetherification event, in the latter case. One of the important messages that we have learned out of this exercise was that the construction or the manipulation of the enyne group after installing the halo-group is problematic. This should be addressed by holding the -OH group until the end and with a proper protecting group and also the key enyne or allene moieties should be introduced prior to the introduction of the bromo-group. Currently, work in this direction is in progress.
(3aR,5R,6aR)-5-((S)-1-(benzyloxy)hex-3-yn-1-yl)-2,2-dimethyltetrahydrofuro[2,3d][1,3]dioxole (77)

To an ice cooled solution of the alcohol $64(2.5 \mathrm{~g}, 10.4$ mmol) in DMF (25 mL) was added $\mathrm{NaH}(50 \%, 850 \mathrm{mg}, 17.7 \mathrm{mmol})$ and stirred for 0.5 h at rt . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with benzyl chloride ($1.9 \mathrm{~mL}, 15.6 \mathrm{mmol}$) and stirring was continued for 4 h at rt . The reaction mixture was quenched with
 ice, partitioned between ethyl acetate, water and the organic layer was separated and aqueous layer was extracted. The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude was purified by column chromatography ($95: 5$ petroleum ether/EtOAc) to afford 77 ($3.2 \mathrm{~g}, 93 \%$) as colorless syrup, $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) $0.6[\alpha]^{25}{ }_{\mathrm{D}}:-5.5\left(c 2.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.30$ (s, 3H), 1.46 (s, 3H), 2.06-2.26 (m, 3H), 2.32 (dd, $J=2.4,14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44-2.57 (m, 1H), $2.65-2.78$ (m, 1H), 3.83 (ddd, $J=4.0,5.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.18 (ddd, $J=2.9,8.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.6 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (ddd, $J=1.1,4.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.79$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28-7.43 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 12.5$ (t) 14.2 (q), 21.1 (t), 25.8 (q), 26.9 (q), 33.3 (t), 72.1(t), 75.4 (s), 77.92 (d), 80.6 (d), 81.0 (d), 83.4 (s), 106.6 (d), 111.9 (s), 127.7 (d), 128.1 (d, 2C), 128.3 (d, 2C), 138.2 (s) ppm; MS (ESI) m/z = 352.94 $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$353.1729, found 353.1722.
(3aR,5R,6aR)-5-((S)-1-(Benzyloxy)hex-3-yn-1-yl)tetrahydrofuro[3,2-b]furan-2(3H)-one (79)

A solution of compound 77 ($2.5 \mathrm{~g}, 7.5 \mathrm{mmol}$) in 20 mL of 60% acetic acid was heated at $80{ }^{\circ} \mathrm{C}$ for 3 h . The solvent was removed in vacuum using toluene as a co-solvent, the resulting crude lactol 78 (2 g, 91\%) was used as such for the next step without purification.

To a stirred solution of 78 ($2 \mathrm{~g}, 7 \mathrm{mmol}$) in dry DMF (20 mL), Meldrum's acid ($2 \mathrm{~g}, 17$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ were added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The solvent was removed in vacuum using toluene as a co-solvent. Purification of the crude product was carried out by column chromatography ($95: 5$ petroleum ether/EtOAc) to afford the pure lactone 79 ($800 \mathrm{mg}, 37 \%$) as a colorless oil: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ petroleum ether) 0.55; $[\alpha]^{25} \mathrm{D}:+62.4\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$,
2.14-2.21 (m, 2H), 2.31-2.44 (m, 2H), 2.46-2.50 (m, 2H), 2.73-2.74 (m, 2H), 3.58 (dd, $J=$ $5.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (dd, $J=6.8,14.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.57-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, 1 H), 5.04 (ddd, $J=2.0,4.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta 12.5$ (t), 14.1 (q), 21.7 (t), 34.0 (t), 36.6 (t), 72.5 (t), 74.9 (s), 78.4 (d), 78.9 (d), 81.1 (d), 83.8 (s), 84.4 (d), 127.8 (d), 128.0 (d, 2C), 128.4 (d, 2C), 138.0 (s), 175.3 (s) ppm; MS (ESI) m/z = $337.36[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$337.1416, found 337.1404.

(2R,3R,5R)-2-Allyl-5-((S)-1-hydroxyhex-3-yn-1-yl)tetrahydrofuran-3-ol (80 α)

At $-40^{\circ} \mathrm{C}$, a solution of methylglycosides of compound $\mathbf{6 4}(1 \mathrm{~g}, 4.7 \mathrm{mmol})$ and allyl trimethylsilane ($3.7 \mathrm{~mL}, 23.3 \mathrm{mmol}$) in acetonitrile (30 mL) was treated drop wise with trimethylsilyl triflate ($0.9 \mathrm{~mL}, 4.7 \mathrm{mmol}$) . The solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 8 h. As soon as it reached to $0{ }^{\circ} \mathrm{C}$, a saturated aqueous solutions of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the reaction mixture was concentrated under reduced pressure and the aqueous layer was extracted with EtOAc (4 x 25 ml). The combined organic layer was dried over NaSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (petroleum ether:EtOAc, 80:20) to yield α-C-glycoside $\mathbf{8 0} \alpha$ ($900 \mathrm{mg}, 86 \%$) as a colourless oil, R_{f} ($35 \% \mathrm{EtOAc} /$ petroleum ether) 0.6 ; along with β - C-glycoside $\mathbf{8 0 \beta}$ (80 $\mathrm{mg}, 7 \%$); R_{f} (35\% EtOAc/petroleum ether) 0.58.

Characterization data of compound $80 \boldsymbol{\alpha}:[\alpha]^{25}{ }_{\mathrm{D}}$: +131.8 (c 1.7, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.99$ (dd, $J=3.1,14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15-2.19 (m, 2H), 2.20-2.27 (m, 1H), 2.29-2.36 (m, 3H), 2.42-2.51 (m, 3H), 3.68 (ddd, $J=2.4,7.0,9.2 \mathrm{~Hz}$, 1H), 3.99 (ddd, $J=2.1,7.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (dd, $J=2.1,4.9 \mathrm{~Hz}$,
 $1 \mathrm{H}), 4.16(\mathrm{dt}, J=2.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=0.9,17.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.84-5.92 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 12.4(\mathrm{t}), 14.1(\mathrm{q}), 24.3(\mathrm{t}), 33.5(\mathrm{t}), 34.1$ (t), 70.8 (d), 71.2 (d), 74.4 (s), 79.3 (d), 83.2 (d), 84.8 (s), 117.0 (t), 134.9 (d) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=246.83[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$247.1310, found 247.1304.

Characterization data of compound $\mathbf{8 0 \beta} \boldsymbol{\beta}:[\alpha]^{25}{ }_{\mathrm{D}}$: -36.2 (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, 1.95 (ddd, $J=2.0,3.4,13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.12-2.22 (m, 4H), 2.26 (ddd, $J=5.9,9.1,15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30-2.33 (m, 2H), 2.97 (br s, 1H), 3.61 (br s, 1H), 3.97 (ddd, $J=2.9,6.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05 (ddd, $J=1.4$,
 6.9, $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (dt, $J=3.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.14(\mathrm{~m}, 2 \mathrm{H})$, 5.78-5.86 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 12.4(\mathrm{t}), 14.1(\mathrm{q}), 24.3(\mathrm{t}), 33.0(\mathrm{t}), 37.9$ (t), 71.3 (d), 74.5 (s), 74.6 (d), 79.7 (d), 84.7 (s), 86.5 (d), 117.4 (t), 134.2 (d) ppm; MS (ESI) $\mathrm{m} / \mathrm{z}=246.89[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$247.1310, found 247.1305.
(S)-1-((2R,4R,5R)-4-acetoxy-5-allyltetrahydrofuran-2-yl)hex-3-yn-1-yl acetate ($80 \alpha-\mathrm{Ac}$)

To a solution of $\mathbf{8 0} \boldsymbol{\alpha}(60 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($0.2 \mathrm{~mL}, 1.6 \mathrm{mmol}$), DMAP (2 mg) and stirred for 15 min . To this, acetic anhydride ($0.08 \mathrm{~mL}, 0.8 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred further for 2 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with brine, dried
 $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The resulting crude was purified by column chromatography ($90: 10$ petroleum ether/EtOAc) to afford the diaceate $\mathbf{8 0} \boldsymbol{\alpha}$-Ac (75 $\mathrm{mg}, 91 \%$) as colorless syrup: $\mathrm{R}_{f}\left(15 \%\right.$ EtOAc/petroleum ether) $0.64 ;[\alpha]_{\mathrm{D}}^{25}:-3.0$ (c 0.54 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.91$ (ddd, $J=1.8,5.0,14.6$ Hz, 1H), 2.09 (s, 3H), 2.10 (s, 3H), 2.13-2.18 (m, 2H), 2.33-2.42 (m, 3H), 2.47-2.63 (m, 2 H), 3.89 (ddd, $J=4.0,7.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.11 (ddd, $J=5.3,7.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (ddd, J $=5.3,6.4,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.12$ (m, 2H), 5.22 (ddd, $J=1.8,3.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.83$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 12.4(\mathrm{t}), 14.1(\mathrm{q}), 21.1(\mathrm{t}, 2 \mathrm{C}), 21.4(\mathrm{t}), 33.8(\mathrm{t}), 34.9$ (t), 72.9 (d), 73.9 (d), 74.3 (s), 77.1 (d), 81.3 (d), 83.8 (s), 117.2 (t), 134.0 (d), 170.2 (s), 170.6 (s) ppm; MS (ESI) m/z = $331.18[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 331.1522, found 331.1510.

(S)-1-((2R,4R,5S)-4-Acetoxy-5-allyltetrahydrofuran-2-yl)hex-3-yn-1-yl acetate (80 β-Ac)

To a solution of $\mathbf{8 0} \boldsymbol{\beta}(40 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($0.15 \mathrm{~mL}, 1.0 \mathrm{mmol}$), DMAP (2 mg) and stirred for 15 min . To this, acetic anhydride (0.05 $\mathrm{mL}, 0.5 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred further for 2 h . The reaction mixture was
diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The resulting crude was purified by column chromatography (90:10 petroleum ether/EtOAc) to afford the diaceate $\mathbf{8 0} \boldsymbol{\beta}$ - $\mathbf{A c}$ ($48 \mathrm{mg}, 87 \%$) as colorless syrup: R_{f} (15\% EtOAc/petroleum ether) 0.6; $[\alpha]^{25}{ }_{\mathrm{D}}$: + $42.2\left(c 4.6, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$
 NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.11$ (t, $\left.J=7.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.90-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}$, 3H), 2.12-2.18 (m, 2H), 2.28-2.31 (m, 2H), 2.34-2.43 (m, 1H), 2.48-2.62 (m, 2H), 4.07 (ddd, $J=2.6,6.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.23-4.28 (m, 1H), 4.98 (dd, $J=3.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (dd, J $=5.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta 12.4(\mathrm{t}), 14.1(\mathrm{q}), 21.1(\mathrm{t}), 21.1(\mathrm{t}), 21.5(\mathrm{t}), 33.4(\mathrm{t}), 37.5(\mathrm{t}), 72.6$ (d), 74.1 (s), 77.2 (d), 77.6 (d), 82.9 (d), 83.9 (s), 117.8 (t), 134.0 (d), 170.1 (s), 170.8 (s) ppm; MS (ESI) m/z = $331.23[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$331.1522, found 331.1509.
(2R,3R,5R)-2-(2-hydroxyethyl)-5-((S)-1-hydroxyhex-3-yn-1-yl)tetrahydrofuran-3-ol (81)

At $0^{\circ} \mathrm{C}$, to a solution of compound $\mathbf{8 0} \boldsymbol{\alpha}$ ($560 \mathrm{mg}, 2.5 \mathrm{mmol}$) in dioxane-water (3:1, 8 mL) were added 2,6-lutidine ($0.58 \mathrm{~mL}, 5$ mmol), OsO_{4} ($1 \mathrm{~mL}, 0.05 \mathrm{mmol}, 0.05 \mathrm{M}$ in toluene) and NaIO_{4} (2.1 $\mathrm{g}, 10 \mathrm{mmol}$). The reaction was stirred at $25{ }^{\circ} \mathrm{C}$ and monitored by TLC. After the reaction was complete, water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
 $(20 \mathrm{~mL})$ were added. The organic layer was separated, and the water layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ three times. Organic layers were concentrated and the resulting crude aldehyde ($530 \mathrm{mg}, 94 \%$) was used as such for the next step without purification.

To a solution of crude aldehyde ($530 \mathrm{mg}, 2.34 \mathrm{mmol}$) in dry methanol at $0{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}$ ($354 \mathrm{mg}, 9.4 \mathrm{mmol}$) was added in portion wise. After complete the addition reaction mixture was stirred for 3 h at rt . The reaction mixture was concentrated under reduced pressure and the resulting crude product was purified by column chromatography ($60: 40$ petroleum ether/EtOAc) to afford $\mathbf{8 1}$ ($500 \mathrm{mg}, 93 \%$) as colourless syrups, R_{f} ($80 \% \mathrm{EtOAc} /$ petroleum ether) 0.46 ; $[\alpha]^{25}{ }_{\mathrm{D}}$: -14.4 (c 3.5, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3H), 1.78-1.91 (m, 3H), 2.05-2.10 (m, 2H), 2.12-2.19 (m, 2H), 2.26-2.31 (m, 1H), 3.46 (br s, 3H), 3.60-3.64 (m, 1H), 3.67-3.73 (m, 2H), 3.82 (t, J = $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (s, 1H), 4.14$4.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 12.1(\mathrm{t}), 13.8(\mathrm{q}), 24.0(\mathrm{t}), 31.2(\mathrm{t}), 33.5(\mathrm{t})$,
59.6 (t), 70.4 (d), 71.3 (d), 74.7 (s), 79.3 (d), 82.0 (d), 83.9 (s) ppm; MS (ESI) m/z = 250.86 $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$251.126, found 251.1252.

(2R,3R,5R)-2-(2-hydroxyethyl)-5-((S,E)-1-hydroxyhex-3-en-1-yl)tetrahydrofuran-3-ol

 (76)The procedure used in the preparation of compound 65 has been adopted for the Birch reduction of alkyne $\mathbf{8 1}$ ($200 \mathrm{mg}, 0.87$ mmol) in to obtain the alkenol 76 ($175 \mathrm{mg}, 87 \%$) as a colorless oil: R_{f} (80\% EtOAc/petroleum ether) 0.4; $[\alpha]^{27}{ }_{\mathrm{D}}:-13.6$ (c 2.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.89-1.96$
 (m, 1H), 1.99-2.07 (m, 4H), 2.08-2.2.13 (m, 1H), 2.2 (ddd, $J=5.0, ~ 9.3,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (s, 3H), 3.75-3.85 (m, 4H), 4.06 (d, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.12 (br s, 1H), 5.38 (dt, $J=7.1,15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.58(\mathrm{dt}, J=6.1,15.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 13.7(\mathrm{q}), 25.6(\mathrm{t})$, 31.5 (t), 33.8 (t), 37.2 (t), 60.4 (t), 71.5 (d), 71.8 (d), 80.1 (d), 82.8 (d), 124.0 (d), 136.2 (d) ppm; MS (ESI) m/z = $253.12[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$253.1416, found 253.1406.
(2R,3R,5R)-5-((S,E)-1-hydroxyhex-3-en-1-yl)-2-((E)-5-(trimethylsilyl)pent-2-en-4-yn-1-yl)tetrahydrofuran-3-ol (82)

To an ice-cooled solution of the triol $76(100 \mathrm{mg}, 0.43$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, DMP ($240 \mathrm{mg}, 0.56 \mathrm{mmol}$) was added in small portions and stirred for 3 h . The reaction mixture was quenched with ice, partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, water and the organic layer was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford the aldehyde (90
 $\mathrm{mg}, 91 \%$) as colorless syrup. The crude aldehyde was used for the next step without purification.

At $-78{ }^{\circ} \mathrm{C}$, a solution of (trimethylsilylpropargyl)triphenylphosphonium bromide 83 ($715 \mathrm{mg}, 1.6 \mathrm{mmol}$) in THF (20.0 mL) was treated with $n \operatorname{BuLi}(0.9 \mathrm{~mL}, 1.5 \mathrm{M} 1.4 \mathrm{mmol}$) and stirred for 15 minutes at the same temperatures and then warmed to room temperature and stirred for another one hour. To this, a solution of the above aldehyde in THF (5 mL) was added slowly. The reaction was allowed to stirr for 8 h and then quenched with water, and
extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude by column chromatography (70:30 petroleum ether/EtOAc) gave alkenol $82(110 \mathrm{mg}, 86 \%)$ as a colorless oil: $\mathrm{R}_{f}(60 \%$ EtOAc/petroleum ether) 0.53; $[\alpha]^{25}$ D: -4.5 (c 1.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: $\delta-0.17$ (s, 9H), $0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.96$ (dd, $J=2.8,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.07(\mathrm{~m}, 4 \mathrm{H})$, 2.12-2.22 (m, 3H), 2.49 (td, $J=2.6,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.63 (ddd, $J=2.1,6.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.843.86 (m, 1H), 4.05 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.37 (dt, $J=7.3,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.61 (dt, $J=7.3,15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=7.6,15.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz): $\delta-0.08$ (q, 3C), 13.7 (q), 25.6 (t), 32.8 (t), 34.1 (t), 37.1 (t), 71.1 (d), 71.4 (d), 79.9 (d), 82.6 (d), 93.3 (s), 103.8 (s), 112.0 (d), 123.8 (d), 136.8 (d), 141.9 (d) ppm; MS (ESI) m/z $=345.21[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$345.1862, found 345.1852.
(2R,3R,5R)-5-((S,E)-1-hydroxyhex-3-en-1-yl)-2-((E)-pent-2-en-4-yn-1-yl)tetrahydrofuran-3-ol (75)

To an ice cooled solution of the TMS-diol 82 ($20 \mathrm{mg}, 0.06$ mmol) in THF (10 mL), TBAF ($24 \mathrm{mg}, 0.09 \mathrm{mmol}$) was added and stirred for 1 h at rt . The reaction mixture was quenched by few drops of $\mathrm{Et}_{3} \mathrm{~N}$. Solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (80:20
 petroleum ether/EtOAc) to yield 75 (14 mg, 90\%) as colorless syrup: R_{f} (30\% EtOAc/petroleum ether) 0.46; $[\alpha]^{25}$ D: -44.7 (c 0.75, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 0.99$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.95-1.99 (m, 1H), 2.01-2.09 (m, 4H), 2.13-2.24 (m, 3H), 2.26-2.33 (m, 1H), 2.47-2.53 (m, 1H), 2.80 (d, $J=1.9 \mathrm{~Hz} 1 \mathrm{H}$), 3.65 (ddd, $J=2.4,6.9,9.3$ Hz, 1H), 3.86 (ddd, $J=1.9,6.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04-4.08 (m, 2H), 5.34-5.41 (m, 1H), 5.55$5.65(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{dt}, J=7.3,15.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 13.7(\mathrm{q}), 25.6$ (t), 32.8 (t), 34.1 (t , 37.1 (t), 71.1 (d), 71.4 (d), 76.2 (s$), 77.2$ (d), 77.0 (d), 82.5 (d), 110.8 (d), 123.7 (d), 136.9 (d), 142.6 (d) ppm; MS (ESI) m/z = 272.93 [M+Na] ${ }^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$273.1467, found 273.1457.
(S,E)-1-((5aR,7R,8aR)-2,2-dimethylhexahydrofuro[3,2-d][1,3]dioxepin-7-yl)hex-3-en-1ol (84)

To a solution of triol $76(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ in acetone, were added DMP (0.21 mL , 1.7 mmol) and p-TSA (5 mg) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 2.5 h when

TLC indicated the reaction was complete then was treated with few drops of triethylamine and concentrate under reduced pressure and the resulting crude product was purified by column chromatography (85:15 petroleum ether/EtOAc) to obtain $84(90 \mathrm{mg}, 77 \%)$ as a colorless thick syrup: $\mathrm{R}_{f}\left(25 \%\right.$ EtOAc/petroleum ether) $0.5 ;[\alpha]^{25}{ }_{\mathrm{D}}$: -0.7 (c 7.2,
 $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, 1.87 (ddd, $J=4.7,9.4,14.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.92-2.28 (m, 7H), 3.17 (br s, 1H), 3.52 (dt, $J=4.8$, $12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (ddd, $J=2.6,4.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (dd, $J=2.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92-4.04 (m, 2H), 4.41 (dt, $J=2.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.43 (dt, $J=6.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.57 (dt, $J=5.7,15.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 13.7(\mathrm{q}), 24.7(\mathrm{q}), 24.9(\mathrm{q}), 25.6(\mathrm{t}), 32.3(\mathrm{t}), 32.7$ (t), 37.2 (t), 57.8 (t), 71.8 (d), 72.5 (d), 78.8 (d), 79.1 (d), 101.3 (s), 124.6 (d), 135.0 (d) ppm; MS (ESI) m/z = $293.10[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 293.1729$, found 293.1718.
(5aR,7R,8aR)-7-((R,E)-1-bromohex-3-en-1-yl)-2,2-dimethylhexahydrofuro[3,2d][1,3]dioxepine (85)

A solution of freshly sublimed CBr_{4} ($300 \mathrm{mg}, 0.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was degassed under N_{2} for 30 min and then filtered through a short column of basic alumina, rinsing the flask and column with $\mathrm{CH}_{2} \mathrm{C1}_{2}$ (2 X 3 mL). The resulted solution (final volume: 6 mL , 0.15 M in CBr_{4}) was stirred over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ until use.

To a solution of $84(50 \mathrm{mg}, 0.18 \mathrm{mmol}) \mathrm{Ph}_{3} \mathrm{P}(194 \mathrm{mg}, 0.74 \mathrm{mmol}, 4 \mathrm{eq})$ and 2, 6-ditertbutylpyridine ($141 \mathrm{mg}, 0.157 .2 \mathrm{~mL}, 0.74 \mathrm{mmol}$)in benzene (5 mL) was added A solution of CBr_{4} ($245 \mathrm{mg}, 0.74 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4.9 \mathrm{~mL} ; 0.15 \mathrm{M}\right.$) and then heated to $40{ }^{\circ} \mathrm{C}$ for 20 minutes. The reaction mixture was cooled to room temperature and concentrate and the crude was immediately purified by column chromatography ($90: 10$ petroleum ether/EtOAc) to obtain 85 (21 mg, 34\%) as a colorless thick syrup: R_{f} (20% EtOAc/petroleum ether) 0.6 ; $[\alpha]^{25}{ }_{\mathrm{D}}$: $7.5\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}$, 3H), 1.38 (s, 3H), 1.77 (ddd, $J=4.9,8.6,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.88 (ddd, $J=4.8,9.8,14.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.02-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{dt}, J=6.6,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=7.6,14.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.66-2.71 (m, 1H), 3.60 (ddd, $J=5.6,9.1,14.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93-4.00 (m, 2H), 4.024.07 (m, 2H), 4.51 (dt, $J=4.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (dt, $J=6.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59$ (dt, $J=6.1$, $15.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 13.7$ (q), 24.3 (q), 25.1 (q), 25.6 (t), 31.4 (t),
36.7 (t), 37.6 (t), 57.4 (d), 59.0 (t), 72.7 (d), 79.8 (d), 80.0 (d), 101.1 (s), 124.8 (d), 135.7 (d) ppm; MS (ESI) m/z = $354.85[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 355.0885, 357.0885 found 355.0875, 357.0853 .

SPECTRA

${ }^{1} \mathrm{H}$ NMR Spectrum of 77 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 77 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 79 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 79 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 80α in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 80β in CDCl_{3}
Fri3av500\#020.003.001rifRev-butyne-allyl-down-e.esp
${ }^{13} \mathrm{C}$ NMR Spectrum of 80β in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 80α-Ac in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 80α-Ac in CDCl_{3}

COSY of compound 80α-Ac

NOESY of compound $80 \alpha-A c$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{8 0} \boldsymbol{\beta}$-Ac in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 80β-Ac in CDCl_{3}

COSY of compound 80β-Ac

NOESY of compound $80 \boldsymbol{\beta}$-Ac

${ }^{1} \mathrm{H}$ NMR Spectrum of 81 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 81 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 76 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 76 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 82 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 82 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 75 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 75 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 84 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 84 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 85 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 85 in CDCl_{3}

REFERENCES

1. (a) Boivin, T. L. B. Tetrahedron 1987, 43, 3309-3362; (b) Wolfe, J. P.; Hay, M. B. Tetrahedron 2007, 63, 261-290; (c) Urabe, F.; Nagashima, S.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. J. Org. Chem. 2013, 78, 3847-3857.
2. (a) Ratnayake, S.; Gu, Z. M.; Miesbauer, L. R.; Smith, D. L.; Wood, K. V.; Evert, D. R.; McLaughlin, J. L. Can. J. Chem. 1994, 72, 287-293; (b) Gu, Z.- m.; Fang, X. p.; Zeng, L.; McLaughlin, J. L. Tetrahedron Lett. 1994, 35, 5367-5368; (c) Shi, G.; Kozlowski, J. F.; Schwedler, J. T.; Wood, K. V.; MacDougal, J. M.; McLaughlin, J. L. J. Org. Chem. 1996, 61, 7988-7989; (d) Takahashi, S.; Maeda, K.; Hirota, S.; Nakata, T. Org. Lett. 1999, 1, 2025-2028; (e) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 3543-3544; (f) Crimmins, M. T.; Pace, J. M.; Nantermet, P. G.; KimMeade, A. S.; Thomas, J. B.; Watterson, S. H.; Wagman, A. S. J. Am. Chem. Soc. 2000, 122, 8453-8463; (g) Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 24072473; (h) Emde, U.; Koert, U. Eur. J. Org. Chem. 2000, 1889-1904. (i) Eom, K. D.; Raman, J. V.; Kim, H.; Cha, J. K. J. Am. Chem. Soc. 2003, 125, 5415-5421; (j) Swain, N. A.; Brown, R. C. D.; Bruton, G. J. Org. Chem. 2004, 69, 122-129; (k) Banerjee, B.; Roy, S. C. Synthesis 2005, 2913-2919; (l) Kim, E. J.; Suh, K. M.; Kim, D. H.; Jung, E. J.; Seo, C. S.; Son, J. K.; Woo, M. H.; McLaughlin, J. L. J. Nat. Prod. 2005, 68, 194-197; (m) Marshall, J. A.; Sabatini, J. J. Org. Lett. 2006, 8, 3557-3560; (n) Kim, J. C.; Kim, K. H.; Jung, J. C.; Park, O. S. Tetrahedron-Asymm. 2006, 17, 36; (o) Ji, N.-Y.; Li, X.-M.; Li, K.; Wang, B.-G. J. Nat. Prod. 2007, 70, 1499-1502; (p) Li, Y.; Hale, K. J. Org. Lett. 2007, 9, 1267-1270; (q) Li, N.; Shi, Z.; Tang, Y.; Chen, J.; Li, X. Beilstein J. Org. Chem. 2008, 4, 48; (r) Morris, C. L.; Hu, Y.; Head, G. D.; Brown, L. J.; Whittingham, W. G.; Brown, R. C. D. J. Org. Chem. 2009, 74, 981988; (s) Spurr, I. B.; Brown, R. C. D. Molecules 2010, 15, 460-501; (t) AbdelMageed, W. M.; Ebel, R.; Valeriote, F. A.; Jaspars, M. Tetrahedron 2010, 66, 28552862; (u) Gharpure, S. J.; Nanda, L. N.; Shukla, M. K. Eur. J. Org. Chem. 2011, 6632-6635; (v) Fernandes, R. A.; Kattanguru, P. J. Org. Chem. 2012, 77, 9357-9360; (w) Adachi, M.; Yamada, H.; Isobe, M.; Nishikawat, T. Org. Lett. 2011, 13, 65326535; (x) Gui, J.; Tian, H.; Tian, W. Org. Lett. 2013, 15, 4802-4805; (y) Deore, P. S.; Argade, N. P. Org. Lett. 2013, 15, 5826-5829; (z) Sheikh, N. S. Nat. Prod. Rep. 2014, 31, 1088-1100.
3. Wright, K. Nature 1986, 323, 283-283.
4. Ghosh, A. K.; Dawson, Z. L.; Mitsuya, H. Bio. Med. Chem. 2007, 15, 7576-7580.
5. (a) Ghosh, A. K.; Chapsal, B. D.; Parham, G. L.; Steffey, M.; Agniswamy, J.; Wang, Y.-F.; Amano, M.; Weber, I. T.; Mitsuya, H. J. Med. Chem. 2011, 54, 5890-5901; (b) Hohlfeld, K.; Tomassi, C.; Wegner, J. K.; Kesteleyn, B.; Linclau, B. Acs Med. Chem. Lett. 2011, 2, 461-465; (b) Ghosh, A. K.; Parham, G. L.; Martyr, C. D.; Nyalapatla, P. R.; Osswald, H. L.; Agniswamy, J.; Wang, Y.-F.; Amano, M.; Weber, I. T.; Mitsuya, H. J. Med. Chem. 2013, 56, 6792-6802.
6. Klein, E.; Rojahn, W. Tetrahedron 1965, 21, 2353-2358.
7. Walba, D. M.; Edwards, P. D. Tetrahedron Lett. 1980, 21, 3531-3534.
8. McDonald, F. E.; Towne, T. B. J. Org. Chem. 1995, 60, 5750-5751
9. Sinha, S. C.; Sinha, A.; Keinan, E. J. Am. Chem. Soc. 1997, 119, 12014-12015.
10. Tian, S. K.; Wang, Z. M.; Jiang, J. K.; Shi, M. Tetrahedron:Asymm. 1999, 10, 25512562.
11. Brown, R. C. D.; Bataille, C. J.; Hughes, R. M.; Kenney, A.; Luker, T. J. J. Org. Chem. 2002, 67, 8079-8085.
12. Nakata, T.; Schmid, G.; Vranesic, B.; Okigawa, M.; Smithpalmer, T.; Kishi, Y. J. Am. Chem. Soc. 1978, 100, 2933-2935.
13. Paterson, I.; Craw, P. A. Tetrahedron Lett. 1989, 30, 5799-5802.
14. Evans, D. A.; Polniaszek, R. P.; Devries, K. M.; Guinn, D. E.; Mathre, D. J. J. Am. Chem. Soc. 1991, 113, 7613-7630.
15. (a) Hoye, T. R.; Hanson, P. R.; Kovelesky, A. C.; Ocain, T. D.; Zhuang, Z. P. J. Am. Chem. Soc. 1991, 113, 9369-9371; (b) Hoye, T. R.; Ye, Z. X. J. Am. Chem. Soc. 1996, 118, 1801-1802.
16. Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082-1087.
17. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976.
18. Koert, U. Tetrahedron Lett. 1994, 35, 2517-2520.
19. Narayan, R. S.; Borhan, B. J. Org. Chem. 2006, 71, 1416-1429.
20. Li, P.; Yang, J.; Zhao, K. J. Org. Chem. 1999, 64, 2259-2263.
21. Kojima, N.; Maezaki, N.; Tominaga, H.; Yanai, M.; Urabe, D.; Tanaka, T. Chem. Eur. J. 2004, 10, 672-680.
22. Dyson, B. S.; Burton, J. W.; Sohn, T.-i.; Kim, B.; Bae, H.; Kim, D. J. Am. Chem. Soc. 2012, 134, 11781-11790.
23. Holmes, M. T.; Britton, R. Chem. Eur. J. 2013, 19, 12649-12652.
24. Heathcock, C. H.; Fleming, B. M. T. In Comprehensive Organic Synthesis; Pergamon: Oxford, 1991; pp. 133-179.
25. Fukuyama, T.; Wang, C. L. J.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 260-262.
26. Collum, D. B.; McDonald, J. H.; Still, W. C. J. Am. Chem. Soc. 1980, 102, 21202121.
27. Brimble, M. A.; Edmonds, M. K. Tetrahedron 1995, 51, 9995-10012.
28. Ruan, Z. M.; Dabideen, D.; Blumenstein, M.; Mootoo, D. R. Tetrahedron 2000, 56, 9203-9211.
29. Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 87, 1318-1330.
30. Amouroux, R.; Folefoc, G.; Chastrette, F.; Chastrette, M. Tetrahedron Lett. 1981, 22, 2259-2262.
31. Evans, D. A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. J. Am. Chem. Soc. 1990, 112, 5290-5313.
32. Mohapatra, D. K.; Naidu, P. R.; Reddy, D. S.; Nayak, S.; Mohapatra, S. Eur. J. Org. Chem. 2010, 6263-6268.
33. Burke, S. D.; Jiang, L. Org. Lett. 2001, 3, 1953-1955.
34. Chen, C.-H.; Kuan, T.-C.; Lu, K.-J.; Hou, D.-R. Org. Biomol. Chem. 2010, 8, 36243626.
35. Wang, J.; Pagenkopf, B. L. Org. Lett. 2007, 9, 3703-3706.
36. Yoda, H.; Suzuki, Y.; Takabe, K. Tetrahedron Lett. 2004, 45, 1599-1601.
37. Tanaka, N.; Asai, M.; Takahashi-Nakaguchi, A.; Gonoi, T.; Fromont, J.; Kobayashi, J. i. Org. Lett. 2013, 15, 2518-2521.
38. Esumi, T.; Mori, T.; Zhao, M.; Toyota, M.; Fukuyama, Y. Org. Lett. 2010, 12, 888891.
39. Masutani, K.; Irie, R.; Katsuki, T. Chem. Lett. 2002, 36-37.
40. Crisostomo, F. R. P.; Padron, J. M.; Martin, T.; Villar, J.; Martin, V. S. Eur. J. Org. Chem. 2006, 1910-1916.
41. Wood, J. L.; Jeong, S.; Salcedo, A.; Jenkins, J. J. Org. Chem. 1995, 60, 286-287.
42. Knapp, S.; Madduru, M. R.; Lu, Z. J.; Morriello, G. J.; Emge, T. J.; Doss, G. A. Org. Lett. 2001, 3, 3583-3585.
43. Karche, N. P.; Jachak, S. M.; Dhavale, D. D. J. Org. Chem. 2003, 68, 4531-4534.
44. (a) Boukouvalas, J.; Pouliot, M.; Robichaud, J.; MacNeil, S.; Snieckus, V. Org. Lett. 2006, 8, 3597-3599; (b) Sabot, C.; Berard, D.; Canesi, S. Org. Lett. 2008, 10, 46294632.
45. Inoki, S.; Mukaiyama,T. Chem. Lett. 1990, 19, 67-70.
46. (a) Brown, M. J.; Harrison, T.; Overman, L. E. J. Am. Chem. Soc. 1991, 113, 53785384; (b) Grese, T. A.; Hutchinson, K. D.; Overman, L. E. J. Org. Chem. 1993, 58, 2468-2477.
47. de la Pradilla, R. F.; Montero, C.; Priego, J.; Martinez-Cruz, L. A. J. Org. Chem. 1998, 63, 9612-9613.
48. Evans, P. A.; Murthy, V. S.; Roseman, J. D.; Rheingold, A. L. Angew. Chem. Int. Ed. 1999, 38, 3175-3177.
49. Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 1295-1298.
50. Werness, J. B.; Tang, W. Org. Lett. 2011, 13, 3664-3666.
51. Kikuchi, H.; Suzuki, T.; Kurosawa, E.; Suzuki, M. Bull. Chem. Soc. Jpn. 1991, 64, 1763-1775.
52. Suzuki, T.; Koizumi, K.; Suzuki, M.; Kurosawa, E. Chem. Lett. 1983, 1639-1642.
53. (a) Hansen, E. C.; Lee, D. Org. Lett. 2004, 6, 2035-2038; (b) Kim, H.; Lee, H.; Lee, D.; Kim, S.; Kim, D. J. Am. Chem. Soc. 2007, 129, 2269-2274; (c) Cho, E. J.; Lee, D. Org. Lett. 2008, 10, 257-259; (d) Yun, S. Y.; Kim, M.; Lee, D.; Wink, D. J. J. Am. Chem. Soc. 2009, 131, 24-25.
54. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391-394
55. Birch, A. J. J. Chem. Soc. 1944, 430-436.
56. (a) Brown, R. S. Acc. Chem. Res. 1997, 30, 131-137; (b) Ishihara, J.; Shimada, Y.; Kanoh, N.; Takasugi, Y.; Fukuzawa, A.; Murai, A. Tetrahedron 1997, 53, 83718382; (c) Ko, C.; Hsung, R. P.; Al-Rashid, Z. F.; Feltenberger, J. B.; Lu, T.; Yang, J.H.; Wei, Y.; Zificsak, C. A. Org. Lett. 2007, 9, 4459-4462; (d) Huang, D.; Wang, H.; Xue, F.; Guan, H.; Li, L.; Peng, X.; Shi, Y. Org. Lett. 2011, 13, 6350-6353; (e) Denmark, S. E.; Burk, M. T. Org. Lett. 2012, 14, 256-259.
57. (a) Kozikowski, A. P.; Lee, J. J. Org. Chem. 1990, 55, 863-870; (b) Sheldrake, H. M.; Jamieson, C.; Burton, J. W. Angew. Chem. Int. Ed. 2006, 45, 7199-7202.
58. Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382.
59. (a)Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-8179; (b) Gessler, S.; Randl, S.; Blechert, S. Tetrahedron Lett. 2000, 41, 9973-9976; (c) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2000, 34, 18-29; (d) Grubbs, R. H.; Trnka, T. M. In Ruthenium in Organic Synthesis; Wiley-VCH Verlag GmbH \& Co. KGaA, 2005; pp. 153-177; (e) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2009, 110, 1746-1787.
60. Appel, R. Angew. Chem. Int. Ed. 1975, 14, 801-811.
61. (a) Bouveault, L.; Blanc, G. Bull. Soc. Chim. Fr. 1904, 31, 1210; (b) Adkins, H.; Gillespie, R. H. Org. Synth. 1949, 29, 80.
62. Yu, W. S.; Mei, Y.; Kang, Y.; Hua, Z. M.; Jin, Z. D. Org. Lett. 2004, 6, 3217-3219.
63. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.

LIST OF PUBLICATIONS:

is "Metal-mediated alkyne diol cycloisomerization: first and second generation formal total syntheses of didemniserinolipid B" Shyamsundar Das, Boddeti Induvadana, C.V. Ramana. Tetrahedron 2013, 69, 1881-1896.
is "First total synthesis of proposed structure of Notoryne" Shyamsundar Das, C.V. Ramana., to be communicated.
is "A chiral pool approach for total syntheses of (-) Kumausallene" Shyamsundar Das, C.V. Ramana., to be communicated

Erratum

[^0]: ${ }^{13} \mathrm{C}$ NMR Spectrum of cis-60 in CDCl_{3}

[^1]: ${ }^{13} \mathrm{C}$ NMR Spectrum of 65 in CDCl_{3}

[^2]: ${ }^{3} \mathrm{C}$ NMR Spectrum of 51β in CDCl_{3}

