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Abstract

Abstract

In the traditional approach of chemical kinetics, the reaction network is modeled

by using a set of ordinary differential equations (ODEs). This set of equations are termed

as reaction rate equations (RREs), that are solved subject to given initial conditions. In

this approach, the time evolution of the concentrations of constituent species is treated

continuously. However, this methodology is found to be valid in the thermodynamic

limit. For example, the cellular systems cannot be simulated correctly in the continuum

limit due to a smaller number of molecules. Hence, these systems need to be simulated

probabilistically by methods that take into account the discrete and random nature of

biochemical interactions. The application of kinetic Monte Carlo based stochastic simu-

lation algorithms (SSAs) has gained wide popularity for the simulations of such kind of

biochemical systems. However, their drawback is the requirement of huge computational

time in performing the simulations.

The problem of excess computational load has been solved by the development of

accelerated stochastic simulation algorithms. Unlike the SSAs, these techniques take a

large enough leap in time executing several possible reactions. The reaction numbers are

modeled by using the Poisson distribution. Further, various attempts have been made to

solve the problem of negative molecular numbers during the simulations by proposing

new computational methods.

In this thesis, a new computational method for the stochastic simulation of chemi-

cal systems has been developed. The newly developed accelerated stochastic simulation

method successfully reduces the computational load while maintaining the accuracy of

the simulations. The first chapter of this thesis is an introductory chapter. The second

chapter discusses different stochastic simulation methodologies. The third chapter deals

with the newly developed simulation methodology. The next two chapters are devoted to

solving the issue of negative populations, followed by a separate chapter on the acceler-

ated computational method that selects an error control parameter in a logical manner.

xi



Abstract

The thesis is organized as follows :

Chapter 1: The first chapter of the thesis begins by introducing the notion of chemical

reactions followed by their types and corresponding rate equations. A brief discussion

about examples of chemical reactions is also provided. Further two different simulation

approaches (deterministic and stochastic) to study chemical kinetics have been discussed.

The results of deterministic approach to the Lotka-Voltera model shows the necessity of

insight through stochastic simulations to get a realistic picture of the behavior of chemical

systems.

Chapter 2: Chapter 2 begins with a brief history of Monte Carlo methods followed

by the areas of application of the kinetic Monte Carlo method. The rest of the chapter

discusses the development of stochastic simulation methods over the years. The tool of

kinetic Monte Carlo was launched in the form of SSA as a standard tool for studying

chemical kinetics by Daniel Gillespie. In order to overcome the drawback of the compu-

tational load during the simulations, several accelerated algorithms (tau leaping methods)

were proposed. The hybrid methods combine the deterministic methods along with the

stochastic methods. Apart from these, numerical methods analytical techniques which

deal with the chemical master equation (CME) in calculating the moments of probability

distributions were used.

Chapter 3: This chapter is based on the development of a new computational method

which has been named as the representative reaction approach (RRA). In this method,

the entire reaction network to be simulated is represented by a single representative reac-

tion (RR). By applying a leap condition to this RR, a large enough time step is derived.

The RRA method has been successfully applied for the simulation of several chemical

systems. The reported examples show that the first and second moments have been cor-

rectly reproduced. The performance of the RRA method in terms of CPU time has also

been compared with other state-of-the-art methods.

Chapter 4: It has been found that the simulations of certain chemical systems by

accelerated methods is prone to negative molecular numbers. Over the years, a number

xii



Abstract

of methods have attempted to solve this problem. In this chapter, a new method has been

proposed which uses the SSA and the binomial distribution in conjunction with the RRA

method. Like other proposed methods, this new approach successfully solves the issue

for the given examples. The new methodology is also found to be appealing on the front

of the CPU time needed to complete the simulation.

Chapter 5: Chapter 5 deals with the problem addressed in the previous chapter, but

with a totally different perspective. Here, a novel idea of noise is used to solve the issue

of negative molecular numbers. The failure of the leap condition leads to the firing of

excess numbers of reactions, which, in turn, gives rise to negative numbers. This excess

part in the occurrence of reaction numbers is treated as noise. It has been found that the

removal of this noise part generates correct trajectories of chemical species.

Chapter 6: All the approximate accelerated stochastic simulation methods make use

of an arbitrarily chosen error control parameter for the choice of the time step. The choice

of the parameter for simulating one particular chemical system may not be a good choice

for some other system. Here, a scheme has been developed to choose this parameter in

a logical way. This is accomplished by combining the RRA method with the coupled

harmonic oscillator (CHO).

xiii
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PDEs partial differential equations

SDEs stochastic differential equations

RREs reaction rate equations
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CHAPTER 1

Introduction

The true logic of this World is in the calculus of probabilities.

-James Clerk Maxwell
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Chapter 1

1.1 Chemical Reactions

Chemical reactions are processes in which the rearrangement of atoms among react-

ing molecules leads to the formation of new molecules with different properties. The re-

acting molecules in a chemical reaction are called reactants, while those getting formed

are called products. They can also be interpreted as processes where bonds between

atoms in the reactants are broken, and the new molecules are formed as products by

forming new bonds. The occurrence of these chemical reactions can be explained on

the basis of collision theory. The collisions between the reacting molecules gives rise

to reactive collisions and non-reactive collisions. The reactive molecular collisions have

enough energy, known as the activation energy, to cross the potential barrier to form the

products. The number of reactive collisions can be increased either by increasing the

reactant concentration or by increasing the temperature. From recent findings,1 quantum

tunneling is also seen as an another alternative for the occurrence of chemical reactions.

Chemical reactions have been taking place not just in the laboratory, but within us

and our surroundings since time immemorial. A few examples of such chemical reac-

tions are photosynthesis, combustion, rusting of iron, digestion of food in our body, and

aerobic and anaerobic cellular respiration. Some processes that involve chemical reac-

tions like the making of curd, the souring of milk, the washing of cloths using detergents

and striking a match have been associated with our day today lives. The synthesis of

ammonia, the water gas shift reaction and the thermite reaction are some examples of

industrially important reactions. In the semiconductor industry, chips are manufactured

by exposing a photoresist material to ultraviolet light. These chips are further used in

electronic devices. On the front of biology, the reactions in a gene regulatory network

and metabolic pathways are essential for our cellular activities.

In most of the chemical systems, the transformations of constituent substances (by

chemical reactions) are accompanied by their spreading-out process called as diffusion.

3



Chapter 1

These reaction-diffusion systems are also found in physics, biology and ecology. The

solutions of the reaction-diffusion equations gives various self-regulated patterns. The

formation of such patterns was proposed by Alan Turing2 as a result of interaction of two

chemicals (morphogens) diffusing at different rates. The formation of stripes on tigers

and zebras and the spots on the coats of leopards can be explained by using the reaction-

diffusion equations.3, 4 He also predicted the notion of oscillating chemical reactions,

which are a paradigm for non-equilibrium thermodynamics. Thus, the chemical reactions

and their usage have spanned nearly all spheres of our modern civilization.

1.2 Chemical Kinetics

The work on the formulation of law of mass action by Peter Waage, Cato Guldberg and

later, independently, by van’t Hoff contributed to the development of chemical kinetics.

The field of chemical kinetics deals with the study of rates of chemical reactions. The

word kinetics is taken from the Greek word ‘kinesis’meaning movement.

Consider a chemical reaction5, 6

aA + bB
k−→ cC + dD (1.1)

In this reaction, a molecules of A and b molecules of B react with each other to produce

c molecules of C and d molecules of D. The lower case letters a, b, c, d are the stoichio-

metric coefficients, while the upper case letters (A and B) are reactants and (C and D)

products. All the reactions of type (1.1) reported in this thesis are elementary reactions,

one that take place in a single step. For such reactions, the rate of a reaction is given by:

r = −
1

a

d[A]

dt
= −

1

b

d[B]

dt
=

1

c

d[C]

dt
=

1

d

d[D]

dt
(1.2)

where [X] denotes the concentration of substance X.

The rate equation or rate law of a chemical reaction is an expression that relates the

rate of a reaction to the concentration of each reactant and the reaction rate constant. For

4



Chapter 1

a chemical reaction like (1.1) the rate equation is :

r = k [A]a [B]b (1.3)

where k is the reaction rate constant. The sum of powers, a + b of the concentrations of

the reactants in the Eq.(1.3) is called as the order of that chemical reaction. The order of

a reaction can be zero, first, second, third and even a fraction.

Zero order reaction :

φ
k1−→ A

In such type of reactions, the rate of a reaction is independent of the concentration of

the reactant. Thus, changing the concentration has no effect on the reaction rate. Its rate

equation is :

r = k1 (1.4)

The units of the reaction rate constant k1 are mole litre−1 sec−1.

Some of the enzyme-catalysed reactions and reactions that occur on metal surfaces at

high pressure are zero order reactions.

First order reaction :

A
k2−→ B

The rate of this reaction depends on the concentration of only one reactant. The rate

equation is :

r = −
d[A]

dt
= k2[A] (1.5)

The units of the reaction rate constant k2 are sec−1.

The radioactive decay of unstable nuclei follows first order kinetics.

5
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Second order reaction :

A + B
k3−→ C

For this reaction, the rate equation depends on the product of the concentrations of two

first order reactants. The rate equation is :

r = −
d[A]

dt
= k3[A][B] (1.6)

In case both the reactants in Eq.(1.6) are of the same kind, the rate equation depends on

the concentration square of that reactant. Thus, the rate equation becomes :

r = −
d[A]

dt
= k3[A]

2 (1.7)

The units of the reaction rate constant k3 are mole−1 litre sec−1.

The reactions of order three occur rarely due to the lower probability of simultaneous

collision of three molecules.

1.3 Examples

1.3.1 The Four Reaction Model

This model of decaying-dimerizing reactions7 had been used by Daniel Gillespie and

others for simulations by different methods. The reaction model comprises of following

set of four reactions :

R1 : X1
c1−→ φ

R2 : 2X1
c2−→ X2

R3 : X2
c3−→ 2X1

R4 : X2
c4−→ X3

6
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where X1, X2, X3 are the different chemical species taking part in this reaction system,

with c1, c2, c3, c4 as the reaction rate constants of the reactions. The chemical system

consists of one bimolecular reaction, R2 and three unimolecular reactions, R1, R3 and

R4. In this chemical system, the monomer X1 decaying through reaction R1 gets re-

versibly (through R2 and R3) dimerized to an unstable dimer X2. Further, the reaction

R4 converts X2 to a stable species X3.

1.3.2 The Lotka-Volterra Model

The exceptionally remarkable dynamical properties (oscillating behavior) of a set of

coupled auto-catalytic reactions were first observed by Alfred Lotka.8, 9, 10 Later, Vito

Volterra independently applied reaction rate equations to corresponding chemical reac-

tions for the modeling of population dynamics in ecology. Hence, the name Lotka-

Volterra model.11, 12 The model consists of following reactions13 :

R1 : X + Y1
c1−→ 2Y1

R2 : Y1 + Y2
c2−→ 2Y2

R3 : Y2
c3−→ Z

where Y1 and Y2 are the reactant species that change their molecular numbers with time,

while X denotes the species whose number of molecules remain constant with time.

c1, c2, c3 are the reaction rate constants of the three reactions. The dynamics of these

reactions can be understood by using the predator-prey interpretation. Here, Y1 is treated

as a prey and Y2 as a predator. The reaction R1 shows the reproduction of species Y1(prey)

by eating the abundantly available food, X in nature. The reproduction of species Y2 by

feeding itself on prey species, Y1 is described in reaction R2. Finally, the death of the

predator, Y2 is described through reaction R3.

7
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1.4 Computational Methods

Since the advent of computing machines, the computer simulations of natural phenomena

had emerged as one of the key disciplines.14 An increase in the computing power over the

years had further contributed to the field. The methods for the simulations of biochemical

reaction networks have been discussed and reviewed in the literature.15, 16, 17 For such

chemical systems, the choice of a simulation methodology depends on the features that

need to be explored, the chemical reactions, the molecule numbers and availability of the

computational resources.

Generally, these simulation methods are classified into two main categories of deter-

ministic and stochastic methods. They are further classified depending on the continuous

and discrete regime. The deterministic methods with ordinary or partial differential equa-

tion (ODE/PDE) based models18, 19 falls in the continuous regime, while those dealing

with the Boolean models,20, 21, 22 and Petri nets comes in the discrete regime. The con-

tinuous stochastic approaches with approximations based on the master equations deals

with stochastic differential equations (SDE) like the Fokker-Planck23, 24 and the Langevin

equation.25, 26, 27 The commonly used kinetic Monte Carlo based Gillespie algorithm28, 13

and other τ -leap based algorithms7, 29 come in the category of discrete stochastic meth-

ods.

1.4.1 Deterministic Method

The kinetics of the conversion of sucrose into glucose and fructose was reported by Lud-

wig Wilhelmy30 in 1850 by using an ordinary differential equation (ODE). He found that

the reaction rate is directly proportional to the concentrations of the reactants. This dis-

covery putforth the future foundations for the modeling of chemical reactions by using

ordinary differential equations (ODEs). Thus, for each chemical species an ODE can be

written depending on the type of a chemical reaction. This set of ODEs corresponding

8
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to each chemical species are called as the reaction rate equations (RREs). For a reac-

tion network consisting of N chemical species {S1, ..., SN} with Xi as the number of

molecules of ith species the RREs are of the form :

dXi

dt
= fi(X1, ..., XN) (i = 1, ..., N) (1.8)

where the functions fi depend on the types of reactions. Eq.(1.8) is usually expressed in

terms of concentration variables, Zi ≡Xi/Ω, where Ω is the system volume. The species

concentrations are continuous functions of time. This traditional approach is applicable

for a well-stirred chemical system where there are no fluctuations or any correlations

among the molecules.

The analytical solutions are obtained for simple reaction networks, while for the com-

plex one, it seems unfeasible to solve Eq.(1.8). Hence, numerical iterative methods have

had been used to obtain their solutions. In case of the RREs, given the initial value con-

ditions like the species concentrations at t = 0 and the values of the rate constants the

time evolution trajectories of the species can be obtained. Over a fixed period of time,

for given initial conditions, the same set of output values are generated: a fact underlying

the deterministic nature of the RREs. In the last few years, the numerical study of ODEs

has flourished into a well-established branch of applied mathematics with the availabil-

ity of sophisticated softwares. But, given a wide range of numerical methods, one must

choose a suitable algorithm for integrating such RREs.18, 19

In case of ODE based numerical schemes, the species concentrations are treated as

continuous functions of time. The deterministic approach is adequate for chemical sys-

tems with sufficiently large number of molecules (in the thermodynamic limit) giving

a continuous description of time evolution. However, in certain chemical systems the

molecular populations of some key species becomes so small that it may trigger fluc-

tuations in their concentrations. In such a scenario, the assumption of continuous de-

scription of concentration breaks down as the discreteness of molecules comes into the

picture.31, 32, 33, 34, 35, 36, 37
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For example, in case of gene expression, the reactions (transcription, translation and

mRNA degradation) are stochastic in nature which gives rise to fluctuations. Here, the

lower number of protein and mRNA molecules makes the deterministic simulations

inconvenient. This paves the way for stochastic simulations, where the discrete and

stochastic nature of molecules is taken into account.

The following example of the Lotka-Volterra Model illustrates the discrepancy be-

tween the deterministic and stochastic approach. It can be seen (from Figure 1.1) that

the stochastic averages do not match with the results of the deterministic solutions. The

RREs for the set of reactions described in the previous section (1.3.2) are provided be-

low13 :
d[Y1]

dt
= c1XY1 − c2Y1Y2 (1.9)

d[Y2]

dt
= c2Y1Y2 − c3Y2 (1.10)

This predator-prey system can reach a steady state, when the rate of reproduction of prey

species, Y1 becomes the same at which it is getting consumed and the predator species,

Y2 takes birth at a rate equal to the rate of its death. In other words, such a kind of state

can be attained by setting the time derivatives of Eq.(1.9) and Eq.(1.10) to zero as follows

:
d[Y1]

dt
=

d[Y2]

dt
= 0 (1.11)

The solution of Eq.(1.11) gives Y1 = Y1s = c3/c2 and Y2 = Y2s = c1X/c2. It is found that the

deterministic simulation performed by using these values (Y1s and Y2s) gives a constant

trajectory of the respective species with time. On the other hand, the physically realistic

approach of stochastic simulation28, 13 depicts oscillatory behavior of the corresponding

species. The simulations were performed by using the following parameters : [Y1] = 1000

molecules litre−1, [Y2] = 1000 molecules litre−1, c1 = 10 sec−1/ (molecules litre−1), c2

= 0.01 sec−1/(molecules litre−1) and c3 = 10 sec−1/(molecules litre−1)
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Figure 1.1: The stochastic method produces an oscillatory behavior for the predator and prey

species, while the deterministic values remain constant with time.

1.4.2 Stochastic Method

In statistics, probability theory deals with the study of random events taking place in

nature. These events are characterized by certain random variables. The evolution of

these random variables that are associated with some system over a period of time is

treated as a random process or a stochastic process. The successive tossing of a coin, a

path traced by a random walker on a lattice, the exchange rate between the US Dollar and

the Indian Rupee over a certain period, the emission of photons, the share prices on stock

markets and meteorological data are examples of stochastic processes in our day-to-day

life. All the aforementioned examples can be studied by constructing stochastic models.

Historically, it was Albert Einstein38 (1905) and Smoluchowski39 (1906) who marked

the beginning of stochastic modeling. They explained the phenomenon of Brownian
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motion where random fluctuations were explained by using statistical concepts.40 Earlier,

Maxwell and Boltzmann had used statistics to give a probabilistic description of the

occupation of possible states by gas molecules. But, time evolution was not considered

in their theories. In the following years, several scientists like Langevin, Kolmogorov,

Doob, Ito and others contributed to the theory of stochastic processes. However, until the

1960s, there were few applications of these ideas to chemical kinetics.

In 1940, it was biophysicist Max Delbruck41 who took into account the discrete-

stochastic nature of molecules. He solved the differential equations with statistical fluctu-

ations for autocatalytic reactions. Around the same time, H. A. Kramers42 used stochastic

ideas to treat chemical reaction like the Brownian motion of particles. Further, Bartholo-

may derived a stochastic model for unimolecular chemical reactions43, 44 and also for the

Michaelis-Menten reaction.45, 46 In the 1960s, in a series of papers, McQuarrie47, 48, 49

applied the theory of stochastic processes to study the chemical kinetics of small sys-

tems. There, McQuarrie introduced a differential-difference equation, which is nowa-

days known as the chemical master equation (CME):

∂P (X, t)

∂t
=

∑

X′

[

WXX′PX′ −WX′XPX

]

(1.12)

Here, P(X, t) is the probability of finding the system in state X at time t, while WXX′ and

WX′X are the transition probabilities from the states X′ and X respectively. X represents

a vector of species concentrations taking part in a chemical system. The first term on the

right hand side of Eq.(1.12) represents a gain in state X with an increase in its probability,

while the second term is a loss (accompanied by negative sign) in state X with a decrease

in probability.

The CME in Eq.(1.12) is basically a set of coupled ODEs with one equation for each

possible reactant combination of molecules. Thus, owing to its complexity, it is only

possible to give an analytical solution for a select few simple chemical systems. But,

most of the realistic chemical systems consist of large number of reactions. For such

complex systems, numerical solutions are required. The numerical approach deals with

12
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the construction of a simulated time profile (trajectory) for each species, i.e. the graph of

Xi(t) vs t. The simulation procedures developed for the construction of such trajectories

have been discussed in the next chapter.

1.5 Outline of the thesis

The next chapters of this thesis are organized as follows:

Chapter 2 discusses the state-of-the-art stochastic simulation methods that have been

developed over the years. Initially a brief historical account of the kinetic Monte Carlo

(kMC) methods is provided. The basis of the stochastic simulations is followed with the

rigorous theoretical details of the kMC based stochastic simulation algorithm (SSA).28, 13

Nowadays, the stochastic simulation algorithm (SSA) is widely used for the study of

chemical kinetics. Other contemporary algorithms have also been included in the discus-

sion. The expensive computational burden of these aforementioned simulation methods

is relieved by the introduction of approximate accelerated simulation methods. The dis-

cussion pertaining to a number of such simulation methods is given in the chapter. The

last section is based on the treatment of analytical methods.

Chapter 3 is based on our work towards the development of a new accelerated stochas-

tic simulation method. It includes a new methodology that had been proposed in order

to increase the computational efficiency of SSA like algorithms. The crux of this new

method lies in representing the entire reaction network with a single representative reac-

tion (RR); hence the name ‘representative reaction approach (RRA)’.50 The choice of an

appropriate RR, the application of a leap condition to this RR, the calculation of expected

number of reactions and the subsequent time step, τ have been discussed in detail. Fur-

ther, the accuracy of the RRA method is tested by applying it to three different examples.

Here, it has been found that the proposed method works well, especially in simulating

the behavior of complicated oscillatory chemical reactions.
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Chapter 4 reports our work on the development of a computational method that at-

tempts to provide a solution to the occurrence of negative molecular numbers during

the simulations. Initially, a brief overview of other algorithms that have tried to solve

the problem of negative populations is given. This new algorithm works by combining

the newly proposed RRA method with the SSA and also with the ideas of the binomial

distribution.51 The steps for their implementation are outlined in the form of a simple

flowchart. The new method has been applied successfully to chemical systems, which

are prone to the occurrence of negative numbers. It has been found that the new algorithm

is efficient and accurate.

Chapter 5 deals with the same problem that has been mentioned in the previous chap-

ter, but from a totally different perspective. The occurrence of these unrealistic (or neg-

ative) numbers can also be seen as a signature of the failure of the leap condition. In

this work,52 it is speculated that a certain noise is associated with the choice of reac-

tion numbers of individual reactions. In the simulations, this novel concept of noise is

used along with the RRA method. This RRA noise method is validated by simulating

different chemical systems, ranging from uni-molecular to oscillatory reactions.

Chapter 6 includes a description of a new accelerated stochastic simulation method,

which is based on the idea of choosing an error control parameter, ε in a logical way.

Generally, all the accelerated stochastic simulation methods take a time step, τ by using

an arbitrarily chosen error control parameter. Here, a model based on a coupled harmonic

oscillator is proposed, which can be connected with the representative reaction approach

(RRA). Thereafter, ε is chosen based on mathematical considerations for using it further

in the evaluation of the time step, τ . The idea has been applicable for efficiently sim-

ulating the chemical systems and also for dealing with the issue of negative molecular

numbers.
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Stochastic Simulation Methods

All Models are wrong, but some are useful.

-George E. P. Box
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2.1 Monte Carlo Simulation

Nowadays, the computer simulations stand out as a complementary to the traditional

branches of theoretical and experimental sciences. The computer oriented numerical

methods are used in the form of simulations. They are used for solving difficult an-

alytical equations or to gain insights into the behavior of complex systems for which

designing experiments is demanding. Monte Carlo simulation is one such renowned

numerical technique that uses the notion of random numbers for the simulations. This

technique was first formulated in the middle of the twentieth century; when Ulam, von

Neumann, and Fermi were working on the Manhattan project. The name Monte Carlo

was suggested by Metropolis referring to the famous Monte Carlo casino in Monaco.

The method of the Metropolis Monte Carlo algorithm53 is used for studying equilibrium

properties by generating configurations according to some desired distribution. However,

in Metropolis Monte Carlo, time is not involved, making it unfeasible for studying the

time evolution or kinetics.

Over the years, many methods were developed to incorporate time to study simula-

tions of the physical processes. One such attempt was made in 1975 by Bortz et al.,54

when they developed an algorithm for the simulation of Ising spin systems. It was fol-

lowed by the development of another Monte Carlo based sophisticated algorithm called

as stochastic simulation algorithm (SSA)28, 13 for the simulation of chemical kinetics. In

the early days, these types of computational methods were called as ‘dynamic-Monte

Carlo’, ‘time dependent Monte Carlo’or simply ‘Monte Carlo’. The usage of the ter-

minology ‘kinetic Monte Carlo (kMC)’was started in the 1990s.55 The essence of kMC

based methods lies in the use of transition rates that depend on the energy barrier fol-

lowed by time increments. The kMC based algorithms describe exact time evolution of

the underlying processes. However, one has to know the processes and their rates in
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advance.

The kMC have had been used in the simulations of surface diffusion, thin film growth,

crystal growth, vacancy diffusion in alloys, defect mobility and clustering in irradiated

solids.56, 57, 58, 59, 60, 61, 62, 63 In recent years, the kMC algorithms have gained wide popu-

larity through their applications to the reaction networks in biological systems. In these

aforementioned applications, the processes to be simulated like growth, diffusion and

chemical reactions are treated as stochastic processes: hence the resulting simulations

are called as stochastic simulations. In this thesis, the theoretical underpinnings followed

by applications of the stochastic simulation algorithms to simulate chemical reactions are

discussed.

2.2 Framework : Stochastic Chemical Kinetics

In this section, some of the notations and concepts developed by Gillespie and co-workers

have been discussed.28, 13, 25, 17, 16 It is assumed that a well-stirred chemical system of N

chemical species {S1, ..., SN} interacts through M chemical reactions {R1, ..., RM}. Let

Xi denote the integer number of molecules of species Si. The entire mixture of some

fixed volume Ω is kept in thermal equilibrium at some constant temperature T. The dy-

namical state of the system is specified by the vector: X(t) ≡ {X1(t), ..., XN(t)}, pro-

vided that the chemical system was in state X(t0) = x at some initial time t0. Each

reaction is characterized by the following quantities :

(i) the state change vector, νj ≡ {ν1j , ..., νNj}, where νij is the change in the Si molec-

ular population due to reaction channel, Rj

(ii) the propensity function, aj(x), of a reaction is the product of the rate constant times

the number of different reactant combinations. Then,

the probability, that the Rj reaction will take place somewhere inside volume Ω in

the next infinitesimal time interval [t, t+dt) is given by :

aj(x) dt. (2.1)
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The above quantities are explained by using some of the commonly occurring dif-

ferent types of reactions {R1, R2, R3, R4} with their respective reaction rate constants

{c1, c2, c3, c4} :

R1 : φ
c1−→ X1

R2 : X1
c2−→ X2

R3 : X1 +X2
c3−→ X3

R4 : 2X1
c4−→ X2

The state change vectors for these reactions are as follows :

ν1 ≡ {ν11 = 1}

ν2 ≡ {ν12 = −1, ν22 = 1}

ν3 ≡ {ν13 = −1, ν23 = −1, ν33 = 1}

ν4 ≡ {ν14 = −2, ν24 = 1}

The propensities of the above mentioned reactions are given below :

a1 = c1

a2(x1) = c2x1

a3(x1, x2) = c3x1x2

a4(x1) = c4(x1(x1 − 1))/2

The stochastic evolution of the state of the chemical system, X(t) is specified by the

function P (x, t|x0, t0). The laws of probability64 are applied to the definition of aj(x) in

Eq. (2.1) to derive a time evolution equation for the stochastic process. This equation is

called as the chemical master equation (CME).65

∂P (x, t|x0, t0)

∂t
=

M
∑

j=1

[aj(x − νj)P (x − νj , t|x0, t0)− aj(x)P (x, t|x0, t0)] (2.2)
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The above equation describes the time evolution of the probability, P (x, t) with respect

to some given initial conditions (x0, t0). The solution of the CME gives a complete

description of the stochastic dynamics of the underlying chemical system. However, it is

a Herculean task to solve the CME for complex chemical systems rather than for some

simple one.

2.3 Stochastic Simulation Algorithms

In order to circumvent the difficulties associated with the CMEs, researchers turned to-

wards the development of numerical simulation methods. The essence of these tech-

niques is to find the moments without calculating the corresponding probability distri-

bution functions. These moments are estimated over an ensemble of a sufficiently large

number of simulation runs. The decade of 1970s saw various initial attempts66, 67, 68, 69, 70, 71

in this direction, but the lack of generalization could not take them far.

In the year 1976, it was Daniel Gillespie, who proposed the kinetic Monte Carlo

based elegant, general-purpose yet simple algorithm for the stochastic simulation of

chemical reactions. Nowadays, it is known as the stochastic simulation algorithm (SSA).28

The simulations are carried out by finding out which reaction will occur and when that

particular reaction will occur. In other words, two random variables (µ and τ ) are associ-

ated with these two events. These two random variables are distributed by the following

the joint probability density function, which is a consequence of Eq. (2.1) defined in the

previous section.

p(τ, µ|x, t) = aµ(x) exp(−a0(x)τ) (2.3)

Here, τ is a real random variable with exponential distribution, while µ is an integer

with point probabilities. Gillespie introduced the direct method28 of generating a pair of

random variables (τ , µ) in each iteration. These two random variables are selected as
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follows :

τ =
1

a0(x)
ln

(

1

r1

)

(2.4a)

µ = the smallest integer satisfying

µ
∑

ν=1

aν(x) > r2a0(x) (2.4b)

where r1 and r2 are two uniformly distributed random variables in the interval (0,1).72

There is another method (called as the first reaction method)28 of generating the ran-

dom variables, which is less efficient than the direct method. The elegance of the direct

method lies in the execution of a randomly selected single reaction event in the next spec-

ulated time interval. In this way, different single reaction events are simulated in each

time interval until the final simulation time is reached. The execution of only one reac-

tion in a given time step contributes to the huge computational time for realistic reaction

networks.

Thereafter, many attempts have contributed towards the improvement of the SSA.

The next reaction method (NRM)73 of Gibson and Bruck is a significant enhancement

over the efficiency of the SSA. This method appears in a modified form of the first re-

action method. It uses only a single random number per simulation event as compared

to two in the direct method. Here, the index priority queue is used to store the puta-

tive reaction times of all the reactions, with the times arranged in an ascending order

from top. Thus, the index and the time of the next reaction is always at the top position

in the queue. Afterwards, using the idea of dependency graphs, the respective reaction

propensities are updated. This avoids the redundant recalculations of all the reaction

propensities. In this way, the NRM algorithm saves the computational time relative to

the SSA, but its programming is a formidable task.

It was found that summing the propensity functions in Eq. (2.4b) contributes to an

increase of the computational load in the SSA. Thus, by taking into account the afore-

mentioned issue the optimized direct method,74 the sorting direct method75 and the log-

arithmic direct method76 have been developed. The software package Moleculizer77 de-

veloped by Lok and Brent makes use of the just-in-time strategy (using the reactions and
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species only when required) to simulate the mechanism of yeast. Slepoy et al.78 devel-

oped a method in which the next reaction is chosen with a constant-time, independent of

the number of reactions. The modified next reaction method of Anderson,79 which in-

corporates the time dependent propensities and time delays, is found to be efficient over

existing exact simulation methods.

An exact accelerated stochastic simulation algorithm (ER-leap algorithm)80 simulates

multiple reactions in a single step, but with the same probability distribution Eq. (2.3)

as the SSA. The delayed reactions81 have also taken into account in the delay stochastic

simulation algorithm (DSSA). More recently, in 2013, Yates et al.82 have proposed an

exact stochastic simulation algorithm based on the recycling direct method (RDM). This

algorithm uses a single uniform random number with a statistically acceptable recycling

of random numbers. This simplicity of the RDM (just one line modification in the SSA)

is expected to enhance the applications of the simulation methods in the modeling of

biological systems.

2.4 Approximate Accelerated Algorithms

2.4.1 Tau Leaping Methods

There is no doubt that the developments described in the previous section over the years

are quite satisfactory. However, the Achilles heel (in spite of accuracy) of all these exact

simulation methods is the execution of a single reaction in each time step. This, in turn,

has lead to an increase in the computational load. Thus, various attempts have been made

to sacrifice the accuracy for the speed-up of the simulations. This section discusses all

the attempts made in this direction.

In the year 2001, Daniel Gillepsie came up with an approximate accelerated stochas-

tic simulation algorithm. The method is referred as Gillepsie’s approximate stochastic

algorithm (GASA).7 Here, the time step, τ is taken sufficiently large so that many more

21



Chapter 2

reaction events are allowed to occur. This time step, τ is chosen in such a way that it

fulfills the leap condition,7 which is: the time step has to be small enough so that no

propensity function changes by an appreciable amount.

aj(x) ≈ constant in [t, t + τ), ∀j (2.5)

Further, the reaction events taking place in this time step (leap) are modeled by the Pois-

son distribution72 owing to their discrete nature. The random variable (expected reac-

tions), ajτ , which is provided to the Poisson random number generator gives an integer

number of reactions, P(aj(x)τ), that are supposed to occur in the next time step τ . The

change in the state of the system is done as follows :

x(t+ τ) = x(t) +
M
∑

j=1

νjP(aj(x)τ) (2.6)

The execution of multiple reactions as compared to a single reaction is the essence of

this method. Thus, the multiple reactions and large enough leaps in time makes this

algorithm computationally efficient. The more consistent choice of the time step, τ , with

the leap condition is provided by the Gillepsie-Petzold (GP)29 and Cao-Gillepsie-Petzold

(CGP)83 tau leap algorithms.

The multiscale time behavior appears in many realistic chemical systems. There are

chemical systems which consist of slow and fast reactions. The fast reactions occur many

more times during a typical SSA simulation run than the slow reactions. The fast reac-

tions reach equilibrium more quickly, leaving behind reactions in the slow regime. In

fact, the slow reactions are accountable for the dynamics of the chemical system, but

much of the time is invested in the simulation of fast reactions. In the context of numer-

ical solutions of ODEs,18, 19 this property is called as the stiffness. This issue has been

addressed by the implicit tau leap method84 by using an idea of numerical integration

of ODEs. In the slow-scale stochastic simulation algorithm (ssSSA),85 the insignifi-

cant fast reactions are ignored and the slow reactions are simulated using their modified

propensities. There are several methods that use the concept of partial equilibrium as-

sumptions86, 87, 88, 89 to skip the fast reactions.
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In recent times, the representative reaction approach (RRA)50 method is one of the

contributions to the approximate accelerated algorithms. It is found that this method is

significantly faster for simulating oscillatory reactions, which are difficult to handle us-

ing other accelerated methods. The simplicity in coding is yet another advantage over

other methods. The new tau leap method proposed by Doraiswami et al.90 based on the

Chebyshev’s inequality64 gives a probabilistic view for the assurance of the leap condi-

tion. All these methods have increased the speed of the simulations. But, in some cases

where there are a small number of species, they have given rise to physically unrealistic

numbers (negative numbers) during their simulations.

This difficulty during the simulations is addressed by developing some other sim-

ulation methods. One of the main reasons, for the occurrence of negative numbers is

the unbound nature of Poisson random variables, which are used for the modeling of

reactions. Hence, the Poisson random variables are replaced by the Binomial random

variables, B(Nj , aj(x)τ/Nj) using the properties of the later. In this case, the change in

the state of the system is given by the following equation :

x(t + τ) = x(t) +
M
∑

j=1

νjB(Nj , aj(x)τ/Nj) (2.7)

Tian-Burrage91 and Chatterjee et al.92 have proposed the (bounded) binomial tau leap

methods. The multinomial tau leaping (MτL)93 is an extension of the binomial methods.

The Tian-Burrage method fails for the cases of multiple-channel reactant dependencies.

This limitation is overcome by the modified binomial Leap method of Peng et al.,94 but

with an increase in the computational time. The method of Chatterjee et al. solves

the problem of negative numbers, but it introduces a bias in the choice of the reaction

numbers depending on the order in which they are selected. The algorithm of Cao et

al.95 partitions the reaction network into the critical and non-critical sets of reactions.

The critical reactions are modeled by the SSA, while the Poisson distribution is used

for other. The N-leap method,96 K-leap method97 and R-leap method98 deal with the

calculation of the total reactions from the leap condition. These methods have found
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dual applications in the speedup as well as solving the issue of negative numbers. The

RRA method used in conjunction with the binomial distribution51 and the idea of noise52

have also helped to solve the problem of negative numbers.

2.4.2 Hybrid Methods

This is another class of methods that has been used for the simulation of multiscale

systems. It employs deterministic methods along with the stochastic. The reaction rate

equations or the chemical langevin equation are used with the SSA. Thus, being an amal-

gam of two different approaches, it has the name ‘hybrid methods’.99, 100, 101 The deter-

ministic methods are used for the simulation of fast reactions (large species), while the

stochastic methods are used for the simulation of slow reactions (small species). Math-

ematically speaking, this implies the partitioning of the CME. Hellander and Lotsted102

have given the solution of the CME by coupling the deterministic and stochastic meth-

ods. It is found that for certain biological systems, the hybrid solver is more efficient

than the SSA. Nevertheless, the hybrid methods lack the required theoretical framework.

The reliable criteria of partitioning, handling of the fast reactions with small species, and

dynamic re-partitioning are some of the key issues.

2.5 Analytical Methods

The numerical computational schemes discussed earlier require the sampling of a large

number of realizations (an ensemble of simulation runs) to estimate authentic statistics

in the form of moments of different species of chemical systems. This in turn have

contributed towards the computational cost of the simulations. The application of the

analytical methods to estimate the mean and variance helps to make the effort computa-

tionally less expensive. The use of analytical techniques to chemical kinetics dates back

to 1940, when Max Delbruck gave a mathematical reasoning to the fluctuations in the
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autocatalytic reactions. Thereafter, researchers have applied the analytical ideas to var-

ious simple and specific chemical systems of interest. It must be remembered that the

study of chemical kinetics was initiated by using the analytical methods much before the

advent of high performance computing. Thus, an increase in the computing power over

time has helped in the advancement of such methods.

The CME that gives a probabilistic picture of the underlying dynamics can be solved

exactly for very few chemical systems. The systems that involve only uni-molecular

reactions,103, 104 bi-molecular reaction with two reactant species105 and the closed system

of equations are some of them. For the general case of chemical systems, we have to look

for some other techniques. The methods of linear noise approximation (LNA),23 moment

closure approximations106, 107, 108 and probability generating function (PGF)49, 109, 110 gives

an approximate solution of the CME.

The system size expansion23 introduced by the theoretical physicist Nico van Kampen

gives the moments in terms of the power series expansion of the inverse volume of the

chemical system of interest. The leading first order term of this expansion is given by

the LNA. This term is valid in the limit of large volumes. In this case, the first moment

is decoupled from the second moment and are given by the RREs. The time evolution

equations of the second moment are decoupled from the third moment. All this works

when the species are present in large amounts (large volumes). The limitation of LNA is

that it is not good for systems with a small number of species.108

For the case of higher order reactions (second order), the equation of moments appear

in the form of coupled equations. The moment equations of the first moment include the

second and higher moments, while those corresponding to the second moment include

the next higher moments. This leads to an infinite hierarchy of coupled equations.106, 108

At this point, an approximation is required that neglects the moments higher than a cer-

tain order by setting them to zero. This is the moment closure approximation. It is more

accurate for the intermediate number of species than the LNA. The theoretical validity

of these methods has been discussed by Grima et al.. Lee et al.106 have shown that the
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moment closure approximations are efficient and more accurate than exact methods. The

method of the probability generating function (PGF) is used for the numerical estimation

of the probability distribution and first and second order moments. It was used for the

first time for the numerical computation of the probability distribution by Lee et al.. It is

used by converting the CME to a partial differential equation (PDE). Further, by taking

the derivatives of its solution, the moments are estimated.

2.6 Softwares

The exact and approximate simulation techniques discussed above have been put together

in the form of different sophisticated software packages. Some of them are: StochKit2,111

Kinetikit,112 BioNets,113 STOCKS.114 In the last year, StochSS (Stochastic Simulation

Service)115 has been launched. It incorporates deterministic, stochastic as well as the

spatial stochastic simulations.
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CHAPTER 3

A New Approximate Method for the

Stochastic Simulation of Chemical

Systems : The Representative Reaction

Approach

Statistical thinking will one day be

as necessary for efficient citizenship

as the ability to read and write.

-H. G. Wells
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Abstract

We have developed two new approximate methods for stochastically simulating chem-

ical systems. The methods are based on the idea of representing all the reactions in

the chemical system by a single reaction, i.e., by the representative reaction approach

(RRA). Discussed in the article are the concepts underlying the new methods along with

a flowchart with all the steps required for their implementation. It is shown that the RRA

with the reaction 2A −→ B as the representative reaction (RR) performs significantly

faster than the exact stochastic simulation algorithm (SSA) developed by Daniel Gille-

spie and is able to successfully reproduce at least the first two moments of the probability

distribution of each species in the systems studied. Moreover, the RRA is shown to be

simpler and more effective than Gillespie's approximate stochastic algorithm (GASA)

in handling systems where the species fluctuate by different orders of magnitude. As

such, the RRA methods represent a promising new method for stochastically simulating

chemical systems.

28



Chapter 3

3.1 Introduction

The study of the kinetics of chemical systems has traditionally involved a master

equation49, 65 : a set of coupled ordinary differential equations (reaction rate equations)

describing the time evolution of the concentration of the different chemical species re-

acting in the system. To solve such differential equations numerically, with a given set

of rate constants and initial concentrations, some integrators116 have been used to calcu-

late the time profiles of the concentrations. An alternative to this deterministic approach

has been put forward by Doob117, 118 and Gillespie13, 28 whose seminal work focused on

a stochastic approach, more specifically, the kinetic Monte Carlo54 - based stochastic

simulation algorithm (SSA). Unlike the numerical algorithms, the SSA does not approx-

imate the time increments by specific finite time steps and also takes into account the

fluctuations in the system.

Since its introduction, the SSA28, 117, 118 has become popular for the study of chemi-

cal kinetics of different systems, especially biological systems that involve genetic reg-

ulatory networks and cellular processes.119, 120, 121, 122 However, due to the occurrence

of a single reaction event in each time increment, the practical application of the SSA

is severely limited with respect to the time scale and the molecular populations of the

chemical systems that it can effectively simulate. Several approximate methods have

therefore been proposed, so as to speed up the SSA. These include the Poisson τ -leap

method,7 the midpoint τ -leap method,7 the implicit τ -leap method,84 the Poisson Runge-

Kutta methods,123 the multinomial τ -leap method,93 efficient step size selection for the τ

leaping,83 and the binomial τ -leap methods.91, 92 Apart from these, other attempts have

also been made to reduce the computational load of the SSA: He et al. have used a hybrid

Monte Carlo algorithm for polymerization reaction kinetics;124 Gibson and Bruck have

modified the first reaction method (similar to the SSA) such that unused reaction times

could be refined for reuse;73 Rao and Arkin applied the quasi steady-state assumption to
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the subset of fast reactions in the system to reduce the computational time to numerically

simulate the systems,89 and Haseltine and Rawlings have tried to improve the computa-

tional efficiency by partitioning the system into subsets of fast and slow reactions.101

Of these, the most appealing in terms of (relative) simplicity and effectiveness is

Gillespie's approximate Poisson τ -leap method7 (henceforth referred to in the manuscript

as Gillespie's approximate stochastic algorithm (GASA)). The principal idea behind this

method is that instead of executing a single reaction in every time increment and chang-

ing the molecular population accordingly (as in the SSA), a larger leap τ in time is taken,

during which all of the reactions in the system are allowed to occur, the number of oc-

currences of each being determined with the aid of random numbers selected from the

Poisson distribution. The size of the τ leap is determined from the leap condition which

Gillespie defines as the necessary requirement that the propensity functions (the product

of the rate constants with the number of reactant combinations) of the reactions do not

change appreciably in value as a result of the leap.

GASA has proved successful in accelerating the simulations of several different types

of chemical systems, in comparison to the SSA, while also replicating at least the first

two moments of the probability distribution of the species with time. However, for chem-

ical systems where the species amounts fluctuate significantly, or cases where the species

amounts vary by different orders of magnitude, GASA has been found wanting in terms

of accurately replicating the changes in species amounts with time. Modifications have

been proposed to the GASA method to improve its reliability, such as the Gillespie-

Petzold (G-P) method,29 but, to date, most attempts at improvement have also led to

increasing complexity of the algorithms employed. A method that can retain the sim-

plicity of GASA, while also being able to reliably and efficiently simulate complex and

challenging chemical systems, would therefore be highly desirable. Our objective in this

manuscript is to propose just such a method.

This article is organized as follows: (i) first, we have discussed the theoretical basis

for our proposed method, which we have termed the representative reaction approach
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(RRA), where we have discussed the leap condition for the RRA as well as the choice

of the most appropriate RR, along with a flowchart describing the steps in the algorithm;

then we have tested our two proposed RRA methods, RRA-τ and RRA-N, on (ii) a

model system of chemical reactions, on (iii) a more complicated system with chemical

oscillations, on (iv) a system having reacting species fluctuating by different orders of

magnitude, and finally (v) we have provided an evaluation of our method and presented

conclusions.

3.2 Methodology

3.2.1 Chief concepts and notations

This subsection discusses in brief some of the notations and concepts that have been em-

ployed by Gillespie7 and co-workers92, 91, 125, 86 in developing the approximate stochastic

simulation methods. To study the evolution of molecular numbers, a well-mixed reacting

system of N molecular species {S1, ..., SN} is considered. Let Xj(t) denotes the num-

ber of species of Sj at time t. This entire mixture of chemical species interacts inside

some fixed volume Ω at a constant temperature through reaction channels {R1, ..., RM}.

For each reaction channel Ri (i = 1,...,M), a propensity function ai(x), is defined which,

along with ai(x)dt,65, 25 gives us the probability that the Ri reaction will take place in

the infinitesimal time interval [t, t+dt). This propensity function ai(x) is the product

of the rate constant with the number of reactant combinations for the given reaction.

For a reaction of the type X1 + X2 −→ 2X1, ai(x) = c1x1x2, where c1 is the specific

reaction probability rate constant for the reaction, being algebraically related to the con-

ventional deterministic rate constant k1 by c1 =
(

k1
NAΩ

)

where ks are in the units of mole

inverse second inverse and Ω in liters. NA is the Avogadro’s number. x1 and x2 are the

amounts of the reactants X1 and X2. For a reaction of the type 2X1 −→ 2X2, ai(x) =

c2x1(x1−1)/2, where c2 is the specific reaction probability rate constant for the reaction,
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with c2 =
(

2k2
NAΩ

)

3.2.2 Our approach

For any given step j during the simulation, our approach is to first determine the expected

number of reactions that would take place for that step j for the entire chemical system

comprising all of the individual reactions. This is achieved by representing the entire

chemical system as a single, representative reaction, and then determining the expected

number of reactions for that representative reaction (RR). Our method is therefore termed

the representative reaction approach (RRA). The propensity function of the RR is taken

to be a0 : the sum of the propensity functions of all the individual reactions, while C0 - the

specific reaction probability rate constant for RR is determined as C0 =
∑M

i=1

(

ai(x)
a0(x)

)

ci :

the weighted average of all the cis in the system. For any individual reaction, assuming a

Poisson distribution for the possible number of occurrences of that reaction, the expected

number of occurrences, ni, in any given step is equal to ai(x)τ .7 Now, one can either

determine the value of τ for that particular step by (i) evaluating τ for the representative

reaction, or alternatively, (ii) one can evaluate N0 - the total number of reactions taking

place for that step for the representative reaction, and then determine the value of τ for

that step from τ = N0/a0(x).

Once τ is determined for that particular step, the expected number of occurrences for

the ith reaction is determined from ni = ai(x)τ .7 This value ai(x)τ is the variable used

in poidev the computer algorithm used to generate the corresponding Poisson random

number72 ki. ki is the number of times the ith reaction will occur in that particular step

j. Thus, the values of ki corresponding to all the reactions can be determined for this

jth step and the amounts of reactants for each reaction adjusted accordingly to afford the

propensity functions ai(x) for the next, j+1 th, step, where the process of determining the

kis is carried out in exactly the same fashion.
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3.2.3 The leap condition for the RRA

Detailed in the previous subsection are the two possible ways, indicated as (i) and (ii),

for determining the kis for each of the reactions for a specific step, based on the approach

of considering the entire system as being represented by a single reaction. However, the

question that has not been answered yet is : how does one determine either the τ for the

method (i) or N0 for the method indicated in (ii) We propose that τ or N0 be chosen in a

manner such that it satisfies the leap condition7 for RR: that the propensity (in this case,

a0(x) of RR is not altered by an appreciable extent by the size of the jump, i.e., by the

value chosen for τ or N0.

For method (i), henceforth, referred to as the RRA-τ method, one can employ the

leap condition criteria established by Gillespie7 to determine the change in τ for the

single reaction chosen as the representative reaction. Henceforth, this approach will be

called the RRA-τ method. For single reactions, the Gillespie leap condition criteria for

choosing τ becomes a simple expression and thus easy to implement. Examples of such

expressions will be shown in the next subsection, when discussing the choice of the most

appropriate RR.

For method (ii), henceforth, referred to as the RRA-N method, the approach em-

ployed will be to bound the change in the value of a0(x), the propensity function for the

RR, as follows:

|a0(x + λ) − a0(x)| ≤ εa0(x) (3.1)

or

|∆a0(x)| ≤ εa0(x) (3.2)

where

∆a0(x) = a0(x + λ) − a0(x) (3.3)

Here, ε is a parameter that would remain constant throughout the simulation, and λ

is the amount by which we change the state of the system. Now, it has been shown in the

past7 that the term ∆a0(x) can be approximated by a first-order Taylor series expansion
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as

∆a0(x) = λ∇a0(x) (3.4)

Hence,

λ∇a0(x) ≤ εa0(x) (3.5)

A further approximation is added at this point to further accelerate the system. This

can be done by multiplying the function on the right of the inequality above (εa0(x)) by

a factor. This is the equivalent of dividing ∆a0(x) by the same factor, and is therefore

justified in that it will lead to a reduction in the ∆a0(x) value and thus further comply

with the leap condition. This factor is chosen to be 16, so that we can define a new

parameter ε′, where ε′ = 16ε. The somewhat arbitrary nature of the choice of the value

of 16 for the factor will be understood in the context of the essential tunability of the

values of ε and ε′ that will be discussed in the next section: it is found that the algorithm

produces the best results in terms of accuracy and speed when such a factor is employed.

Hence, after incorporating the factor of 16, we get the new equation:

λ∇a0(x) ≤ ε′a0(x) (3.6)

where ε′ = 16ε.

By using Eq. (3.6), and using the expression for ∇a0(x) for the chosen RR, one can

determine the value of N0, and thereby τ , for a given step for that specific RR. Examples

of the values of N0 thus obtained for different RR cases will be discussed in the next

subsection.

3.2.4 What is the most appropriate representative reaction (RR) ?

Described in this subsection are the expressions that can be derived for the methods (i)

RRA-τ and (ii) RRA-N for different representative reactions (RRs).
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A −→ B as the Representative Reaction (RR) : The unimolecular reaction A −→ B

is the simplest possible choice for the RR, and therefore the one that is considered first.

(i) The RRA-τ method : As discussed in the previous subsection, for this method,

the value of τ is determined from the leap condition for the RR (in this case A −→ B),

as established in GASA.7 For A −→ B, the expression for τ is

τ =
ε

|−C0|
(3.7)

ε is a parameter that is kept constant throughout the simulation. The value of C0 for the

RR is determined, as discussed earlier from the weighted average of all the cis of the

different reactions in the system: C0 =
∑M

i=1

(

ai(x)
a0(x)

)

ci. This expression is indeed quite

simple, but it suffers from the drawback that it only depends on C0 and not on x0 : the

amount of the hypothetical species A. As will be seen for the subsequent examples, x0

appears in the denominator of the expression for τ for other RRs, and thus serves to

modulate and reduce the value of τ . With the absence of x0 in Eq. (3.7), the value of

τ tends to be somewhat high, especially for the beginning few steps of the simulation.

Thus the RR A −→ B, despite its simplicity, is not a good choice for doing simulations

with the RRA-τ method.

(ii) The RRA-N method : For the RR A −→ B, the expression for ∇a0(x) is C0.

Therefore, using Eq. (3.7), one gets the following expression for N0 :

N0 =
ε′a0(x)

C0
(3.8)

Like for the RRA-τ method, this expression suffers from the absence of x0. For other

RRs, as will be shown later, x0 appears in the denominator in the right-hand side of Eq.

(3.8), and serves to regulate the value of N0. The absence of x0 in Eq. (3.8) leads to

somewhat large changes in N0 for the beginning few steps of the simulations for any

given chemical system. Thus, as for the RRA-τ method, A −→ B is not a good choice

as the RR for the RRA-N method.
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2A −→ B as the Representative Reaction (RR) :

(i) The RRA-τ method : Since in case of this RR the propensity function is given

by

a0 =
(x0(x0 − 1)

2!

)

C0 (3.9)

to get an expression for x0, we solve the resulting quadratic equation which yields two

roots for x0, of which we choose the root :

x0 =
C0 +

√

C2
0 + 8a0C0

2C0
(3.10)

to avoid the possibility of negative values for x0. Here, the value of τ , determined from

the GASA leap condition, is

τ =
ε

|−C0(2x0 − 1)|
(3.11)

This expression gives rise to acceptable values of τ , because of the presence of x0 in the

denominator.

As will be shown in the examples discussed in the next section, the use of the RRA-τ

method with 2A −→ B as the RR provides results which equal or improve upon the

accuracy and reliability of the other approximate methods.

(ii) The RRA-N method : The value of N0, determined from this method, using Eq.

(3.6), is

N0 =
ε′a0(x)

C0(2x0 − 1)
(3.12)

where the x0 is calculated as discussed earlier. As with the RRA-τ method, this value of

N0 provides results that are quite acceptable, as evidenced by the results for the examples

discussed in the subsequent sections of the article.

3A −→ B as the representative reaction (RR) :

(i) The RRA-τ method : Now, as before, considering x0 as the number of reactant

molecules for the hypothetical reactant species A for the RR 3A −→ B, we have the
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propensity,

a0 =
(x0(x0 − 1)(x0 − 2)

3!

)

C0 (3.13)

So to get an expression for x0 for this case, one could use a subroutine to calculate

the cubic roots but it makes our algorithm computationally more complicated, losing the

simplicity which is one of the criteria for choosing the RR. Instead of that, we can neglect

the lower order terms for x0 in Eq. (3.13) to get a final expression for x0. The expression

of τ for this RR is derived to be

τ =
ε

|−3C0(3x2
0 − 6x0 + 2)/6|

(3.14)

This expression for τ leads to a problem that is the opposite of the one faced when

using A −→ B : here, the quadratic dependence of τ on x0 in the denominator leads to

values that are too small in size as compared to values obtained for the RR 2A −→ B.

In other words, not much acceleration over the exact stochastic simulation method

(SSA) is observed in this case. The reliability of the algorithm with this RR is thus not in

doubt, but the essential purpose of making an accelerated algorithm is lost for this case.

A similar problem occurs for the cases 4A −→ B, 5A −→ B and other higher order

versions of this type of RR. The term x0 begins to appear in higher and higher orders in

the denominator, thereby making the size of the jumps smaller and smaller, and reducing

the efficiency of the accelerated algorithm.

(ii) The RRA-N method : The value of N0, determined from this method, using Eq.

(3.6) is

N0 =
2ε′a0(x)

C0(3x2
0 − 6x0 + 2)

(3.15)

where the x0 is calculated as discussed in the earlier method. In this case too, as for

the RRA-τ method, the presence of x2
0 in the denominator leads to values of N0 that are

smaller than those obtained from the RR, 2A −→ B. Hence the efficiency of the method

is reduced. Again, as for the RRA-τ method, higher powers of x0 appear in the denomi-

nator for the cases 4A −→ B, 5A −→ B and so on, thereby making the algorithms even

less efficient, and thus defeating the purpose of making an accelerated algorithm.
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A+B −→ C as the representative reaction (RR) :

In case of this particular RR, we have x0 as the number of the reactant molecules for

the hypothetical reactant species A and y0 as the number of the reactant molecules for the

hypothetical reactant species B. Thus, the corresponding propensity function is,

a0 = C0x0y0 (3.16)

Even though the expression looks simple, this is a case of a single equation with

two unknown variables, namely x0 and y0. Therefore, the values of x0 and y0 cannot be

determined independently in terms of the known a0(x) and C0 values.

Naturally, a similar problem also occurs if we take our RR to be A + 2B −→ C or

2A+B −→ C or A+B+C −→ D or any other variant of a bimolecular or tri-molecular

or any other multimolecular reaction.

Our analysis thus indicates that the most appropriate RR for doing the simulation, the

one that combines simplicity and efficiency most effectively, is the RR 2A −→ B. This

is therefore our chosen reaction for the representative reaction approach. Its efficiency

will be revealed in the three illustrative examples that are described later in the article.

3.2.5 Steps for the implementation of the RRA-τ and RRA-N meth-

ods

Based on the discussion earlier, the implementation steps for the RRA methods, for the

RR : 2A −→ B, are outlined as follows :

• Step 1 : input the initial number of species, rate constants of the constituent reactions;

initialize the counters and the random number generators to a seed value.

• Step 2 : calculate the propensity functions : {a1, ..., aM}, the sum of the propensity

functions : a0(x) =
∑M

i=1 ai(x), the weighted rate constant : C0 =
∑M

i=1

(

ai(x)
a0(x)

)

ci
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• Step 3 : calculate the total number of species present : x0 =
C0+

√
C2

0+8a0C0

2C0

• Step 4 : calculate the tau step :

(i) For RRA-τ method : τ = ε
|−C0(2x0−1)| if the tau step is less than or equal to

2/a0(x) then perform the SSA otherwise continue with the RRA-τ method

(ii) For RRA-N method : τ = N0

a0(x)
, where the total number of reactions N0 =

ε′a0(x)
C0(2x0−1) ; if N0 is less than or equal to 1, then perform the SSA otherwise continue

with RRA-N method

• Step 5 : calculate the expected number of occurrences, the nis for the individual reac-

tions ni = aiτ

• Step 6 : use the Poisson random number generator to find the kis, the actual number

of occurrences for the individual reactions; ki = poidev(ni, iseed)

• Step 7 : make the necessary changes in the species population using the appropriate

stoichiometric parameters and reaction numbers

• Step 8 : go to Step 2
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This algorithm is further outlined in the flowchart below :

Flowchart

Figure 3.1: The flowchart for the implementation of RRA methods.
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3.3 Optimization of the Values of the Parameters ε and

ε′

It was determined in the previous section that the most appropriate choice of RR for

both the RRA-τ and the RRA-N approaches is the reaction 2A −→ B. For this RR, the

expressions derived for τ and N0 for the two methods depend on the parameters ε and ε′

respectively. Discussed in this subsection is the choice of the most appropriate values of

ε and ε′ for the two methods. To this end, the two methods were tested on a four reaction

model : a chemical system that has been demonstrated to be successfully simulated by

GASA.7 The system comprises of the following reactions :

R1 : X1
c1−→ φ

R2 : 2X1
c2−→ X2

R3 : X2
c3−→ 2X1

R4 : X2
c4−→ X3

where X1, X2, X3 are the species participating in this reaction system, with c1, c2, c3, c4

as the rate constants of the corresponding reactions.

Table 3.1: The values of the rate constants of the reactions and the initial species population for

the four reaction model.

Parameters used in Numerical values
the simulation of the parameters

c1 1.0
c2 0.002
c3 0.5
c4 0.04
X1 10000
X2 0
X3 0

41



Chapter 3

The RRA-τ and the RRA-N methods were tested for this four reaction model system

for different values of ε and ε′, respectively. The results are discussed in the following:

(i) The RRA-τ method : In the following Figures (3.2-3.4), the results obtained

by the application of the RRA-τ algorithm on the four reaction model, as well as the

comparison to the results obtained by the exact stochastic simulation algorithm (SSA)

are shown.
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(a) ε = 0.03

(b) ε = 0.09

Figure 3.2: The trajectories of the means [(a)and(b)] and CVs [(c)and(d)] of X1 and X2 species

using SSA (blue line) and RRA-τ (red line) with (a) ε = 0.03 and (b) ε = 0.09
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(a) ε = 0.15

(b) ε = 0.2

Figure 3.3: The trajectories of the means [(a)and(b)] and CVs [(c)and(d)] of X1 and X2 species

using SSA (blue line) and RRA-τ (red line) (a) ε = 0.15 and (b) ε = 0.2
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Figure 3.4: The trajectories of the means [(a)and(b)] and CVs [(c)and(d)] of X1 and X2 species

using SSA (blue line) and RRA-τ (red line) with ε = 0.3.

The simulations were run 10 times for both the SSA and the RRA, using different

seed values for the random number generators, and the mean values of the chemical

species were calculated. The mean values obtained for the species X1 and X2 with time,

using the SSA and the RRA-τ , as well as the values of the coefficient of variation (CV),

which is defined as the ratio of the standard deviation to the mean for the species, for both

the SSA and the RRA-τ are shown in the five figures. The values of ε employed are as

follows: 0.03, 0.09, 0.15, 0.2, and 0.3 for the curves shown in Figures respectively. The

comparison of the mean and the CV of the results from the RRA-τ method with the SSA

indicates that the alteration of the value of ε from 0.09 to 0.3 leads to almost identical

results and, as compared to the values obtained from SSA, to fairly accurate results. The

accuracy of the results is seen to be marginally more accurate for ε = 0.03, but this comes

at the cost of a slower simulation. Hence, keeping the balance of accuracy and efficiency

in mind, the value chosen for ε in evaluating the RRA-τ method and comparing it to SSA

and the other approximate methods, GASA and G-P,29 is 0.2.
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(ii) The RRA-N method : Figures (3.5-3.7) show the results of the simulations done

for the four reaction model with different values of ε′ employed for the RRA-N method.

The values of ε′ employed are as follows : 0.48, 0.80, 1.28, 1.6, and 3.2 for the curves

shown in Figures 3.5-3.7, respectively.
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(a) ε = 0.48

(b) ε = 0.80

Figure 3.5: The trajectories of the means [(a)and(b)] and CVs [(c)and(d)] of X1 and X2 species

using SSA (blue line) and RRA-N (red line) with (a) ε = 0.48 and (b) ε = 0.80.
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(a) ε = 1.28

(b) ε = 1.6

Figure 3.6: The trajectories of the means [(a)and(b)] and CVs [(c)and(d)] of X1 and X2 species

using SSA (blue line) and RRA-N (red line) with (a) ε = 1.28 and (b) ε = 1.6.
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Figure 3.7: The trajectories of the means [(a)and(b)] and CVs [(c)and(d)] of X1 and X2 species

using SSA (blue line) and RRA-N (red line) with ε = 3.2.

As for the RRA-τ method, both the mean and the CV of the probability distributions

for the species X1 and X2 were plotted for the different cases, and the values are com-

pared to the SSA. The figures indicate that there is little difference in the curves upon

changing the value of ε′ from 0.48 to 3.2. However, what is affected is the size of the

first jump : from ε′ 1.6 onward, it was seen that the change in the values of X1 and X2

was quite significant for the first step. Hence, to balance efficiency and reliability of the

method, the optimal value of ε′ for the RRA-N method was chosen to be 1.28.

Hence the optimized parameters for the two methods are ε = 0.2 for the RRA-τ

method and ε′ = 1.28 for the RRA-N method. The efficiency and reliability for the two

RRA methods with these optimized values of ε and ε′ will be evaluated for three separate

examples discussed in the next few sections.
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3.4 The Four Reaction Model : Comparison of RRA-τ

and RRA-N to Other Accelerated Methods

The four reaction model system was discussed in the previous section in the context

of the optimization of the values of ε and ε′ for the RRA-τ and the RRA-N methods,

respectively. Discussed in this section is the comparison, for the same four reaction

model, of the RRA-τ and the RRA-N methods with two other accelerated methods:

GASA and the G-P method. It is noted here that both GASA and G-P also employ

the parameter ε′ and the value that the methods recommend is 0.03. For all the cases

discussed here onward, this standard value of ε = 0.03 has been employed for all the

simulations using these two approximate methods.
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(a) RRA-τ (red curve)

(b) RRA-N (red curve)

Figure 3.8: The trajectories of the means [(a),(b)] and CVs [(c),(d)] for the probability distri-

butions of the species X1 and X2 using SSA (blue curve), GASA (green curve), G-P (magenta
curve), RRA-τ and RRA-N (both red curves) for the case of the four reaction model.
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Figure 3.8 shows the comparison of the mean and the CV of the probability dis-

tributions for the species X1 and X2 obtained from running simulations with the four

different methods : the exact SSA (shown in blue), GASA (shown in green), G-P (shown

in magenta),the RRA-τ and the RRA-N (both shown in red). As the figure indicates,

all three accelerated methods work quite well in predicting the mean of the probability

distributions for the two species X1 and X2. However, there is a distinct difference in per-

formance when it comes to the second moment: it is seen from the CV curves (Figs. 3.8a

(c) and (d)) that GASA provides results that are less accurate than the RRA-τ method

and the G-P. A similar result is obtained when comparing the RRA-N method to GASA

and G-P as (Figs. 3.8b (c) and (d)) indicate. However, a comparison of the average time

taken to run the simulations for the three different algorithms indicates that GASA and

G-P hold a distinct advantage over the two RRA methods. The average CPU time taken

when employing the different methods is shown in Table 3.2 (which also collects the

corresponding information for the other examples that have been studied). For the case

Table 3.2: The averaged values of the CPU time (in seconds) taken by different simulation meth-

ods for various chemical systems.

Chemical Systems SSA GASA G-P RRA-τ RRA-N

Four Reaction Model 11.439 0.036 0.053 1.622 0.300
Oregonator Model 52.524 0.020 1.494 8.893 1.492
Viral Infection Model 140.090 0.074 0.549 147.750 72.509

of the four reaction model, it was determined that the average time taken to do a GASA

simulation was 0.036 s; the G-P, 0.053 s; the RRA-N, 0.300 s; the RRA-τ , 1.622 s; and

the SSA, 11.439 s. Thus, while the two RRA methods do provide a distinct acceleration

in comparison to the SSA, as evidenced by the CPU time taken, they are not as efficient

as GASA and G-P. The explanation for this is the fact that, while the two RRA meth-

ods do accelerate the system, they take smaller jumps in time than GASA and the G-P

methods. This is because of the regulating variable x0 in the denominator for the RR

2A −→ B, which serves to decrease the size of the jump for the RRA methods. While
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this appears to be a disadvantage, in terms of efficiency, for relatively simple systems

such as the four reaction model considered here, this is actually a significant advantage

for more complicated systems, two examples of which will be discussed in the next two

sections. As will be seen, the sacrifice of a minor loss in efficiency because of smaller

step size is more than compensated by the gain in the accuracy of the simulations of the

more complicated systems.

3.5 The Model of Oscillatory Reactions: The Oregona-

tor Model

We show in this section the application of our RRA algorithms to the more complicated

case of an oscillatory chemical system.13 To correctly simulate oscillatory chemical

systems is a significant challenge for an approximate accelerated method, because of the

fluctuations in the species amounts with small changes in time. The model discussed here

is the Oregonator which is a theoretical model for autocatalytic reactions. The system

consists of the following set of reactions :

R1 : X1 + Y2
c1−→ Y1

R2 : Y1 + Y2
c2−→ Z1

R3 : X2 + Y1
c3−→ 2Y1 + Y3

R4 : 2Y1
c4−→ Z2

R5 : X3 + Y3
c5−→ Y2

where Y1, Y2, Y3 are the species participating in this reaction system, while X1, X2,

X3 indicates that the molecular population level of these species is assumed to remain

constant and c1, c2, c3, c4, c5, as the rate constants of the above reactions.

The values of the different model parameters used in the simulation of the above

reaction system are provided in the following table.
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Table 3.3: The values of the rate constants of the reactions and the initial species population for

the Oregonator model.

Parameters used in Numerical values
the simulation of the parameters

c1 2.0
c2 0.1
c3 104.0
c4 0.016
c5 26.0
Y1 500
Y2 1000
Y3 2000

The Oregonator has been investigated by the SSA, GASA,G-P, and the two RRA

methods. Shown in Figures 3.9a (a-c) is the comparison of the mean values obtained

for the species Y1, Y2 and Y3 with time, using SSA, GASA, G-P, and RRA-τ . The CV

values obtained for the Y1, Y2 and Y3 are shown in Figure 3.9b (a-c). Likewise, Figures

3.10a and 3.10b show the mean and CV values, respectively, for SSA, GASA, G-P, and

RRA-N.
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(a) means

(b) CVs

Figure 3.9: The trajectories of the means and CVs [(a),(b),(c)] for the probability distributions of

the species Y1, Y2 and Y3 using SSA (blue curve), GASA (green curve), G-P (magenta curve),

and RRA-τ (red curve) for the case of the Oregonator model.
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(a) means

(b) CVs

Figure 3.10: The trajectories of the means and CVs [(a),(b),(c)] for the probability distributions

of the species Y1, Y2 and Y3 using SSA (blue curve), GASA (green curve), G-P (magenta curve),
and RRA-N (red curve) for the case of the Oregonator model.
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As is clear from the four figures, the two RRA methods do not give an exact corre-

spondence to the SSA values, which is indeed very difficult to achieve for the challenging

oscillatory systems, but it is also clear that the two RRA methods perform significantly

better than GASA and G-P, not only in replicating the mean values but even in replicating

the second moment (CV) of the probability distributions for the three species in question.

In the case of GASA, it is found that the curves showing the mean and CV of the prob-

ability distributions for the different species appear to be laterally displaced from the

other curves. This is because it was found that the first τ value obtained from the GASA

simulations was very large : 5.6969 units, as compared to the first step for the other

methods: G-P, 1.2079E-2 units; RRA-τ , 2.7177E-5 units; RRA-N, 1.7393E-4 units; and

SSA, 1.5315E-6 units. Hence, though the subsequent steps for GASA are smaller in

size, the first, large jump violates the leap condition and makes GASA inappropriate for

simulating this class of chemical systems.

With regard to the average time taken for the simulations, the values in seconds are

GASA 0.020, G-P 1.494, RRA-N 1.492, RRA-τ 8.893, and SSA 52.524 (see Table 3.2).

GASA, of course, is quite fast in comparison to the others, but, as discussed earlier, it is

also completely unreliable. Among the rest, it is seen that the RRA-N method performs

as efficiently as G-P in terms of time taken, and as the curves indicate, is significantly

more reliable in replicating both the first and the second moments of the probability

distributions for the different species.

Overall, the comparison of efficiency and accuracy among the different algorithms

for the challenging oscillatory model example provides definite evidence of the efficiency

and reliability of the RRA methods, especially the RRA-N method.
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3.6 Example Involving Species Fluctuating by

Different Orders of Magnitude

In this section, we discuss the simulation of a chemical system where the chemical

species fluctuate by different orders. As mentioned in the section Introduction, this be-

longs to the class of problems where accelerated methods have been found wanting in

terms of combining accuracy and efficiency. The system discussed in this section has

been studied and dis- cussed previously by Haseltine and Rawlings.101 They observed

that the three principal species: template, genome, and struct in the system varied by

different orders of magnitude as the reactions proceeded over time : the amount of the

species template fluctuates between 5 and 25, genome between 0 and 200, and struct

between 100 and 12,000.

For this system, the simulations have been done with the SSA, GASA, G-P as well

as with the two RRA methods. For each case, the simulations have been repeated ten

times, and the values for the mean as well as for the coefficient of variation, CV, have

been calculated.

This model, the reactions for which are discussed in the following, shows the mech-

anism of the infection of a cell by a virus. The chemical reactions are :

R1 : nucleotides
template−−−−−→ genome

R2 : nucleotides + genome −→ template

R3 : nucleotides + aminoacids
template−−−−−→ struct

R4 : template −→ degraded

R5 : struct −→ secreted/degraded

R6 : genome + struct −→ secreted

where genome and template are the nucleic acids, and struct is the viral structural protein.

In this system, the molecular population number of the nucleotides and amino acids are
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assumed to remain constant and the template is considered to act as a catalyst for the

reactions R1 and R3.

The values of the different model parameters used in the simulation of the above

reaction system are provided in the table below.

Table 3.4: The values of the rate constants of the reactions and the initial species population for

the viral infection model.

Parameters used in Numerical values
the simulation of the parameters

c1 1.0 day−1

c2 0.025 day−1

c3 1000.0 day−1

c4 0.25 day−1

c5 1.9985 day−1

c6 7.5E-6 day−1

Template 5
Genome 0
Struct 100
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(a) means

(b) CVs

Figure 3.11: The trajectories of the means and CVs [(a),(b),(c)] for the probability distributions

of the species Template, Genome, and Struct using SSA (blue curve), GASA (green curve), G-P

(magenta curve), and RRA-τ (red curve) for the case of the viral infection model.
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(a) means

(b) CVs

Figure 3.12: The trajectories of the means and CVs [(a),(b),(c)] for the probability distributions

of the species Template, Genome, and Struct using SSA (blue curve), GASA (green curve), G-P

(magenta curve), and RRA-N (red curve) for the case of the viral infection model.

61



Chapter 3

Figures 3.11a (a-c) show the change in the mean values for the three species: tem-

plate, genome, and struct with change in time. Each figure has four curves, corresponding

to the SSA (blue), GASA (green), the G-P (magenta), and the RRA-τ (red). Figure 3.11b

(a-c) shows the corresponding CV values for the three different species as obtained from

the four methods. Likewise, Figures 3.12a and 3.12b show the comparison of the SSA,

GASA, and G-P with the RRA-N method.

As the figures indicate, the two RRA methods outstrip GASA and G-P in replicating

both the mean and the CV of the three species in question. With regard to the average

time taken, the values in seconds are as follows: GASA: 0.074, G-P: 0.549, RRA-N :

72.509, SSA: 140.090, and RRA-τ : 147.750. Hence, while RRA-τ does well to replicate

the results of the SSA, it is unable to accelerate the system. However, GASA and G-P,

while being much faster than the RRA methods, provide results for both the mean and

the CV for the three species that are quite inaccurate. It is only the RRA-N method that

succeeds in providing accuracy while also managing to accelerate the simulation of the

system at least by a factor of 2. Hence, for this difficult and very relevant set of problems,

it is demonstrated that the RRA methods, especially the RRA-N method, can be effective

and reliable substitutes for the exact SSA algorithm.

Overall, what the application of the two RRA methods to the three examples indicates

is that the RRA methods, in general, take more steps, and thus slightly longer times, in

comparison to the other accelerated methods discussed here : GASA and G-P. However,

this, in turn, leads to a considerable improvement in the accuracy and reliability of the

methods. The best RRA method that combines the qualities of reliability and efficiency

is found to be the RRA-N method. This, combined with the overall simplicity of the

approach and the resultant algorithm, makes it a promising method for stochastically

simulating different types of chemical systems.
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3.7 Conclusions

In the work described in this article, we have endeavored to develop new approximate

methods for conducting stochastic simulations on chemical systems. The new meth-

ods are based on the concept of treating 2A −→ B as a single representative reaction

for the system : the representative reaction approach (RRA). Two methods have been

proposed based on this approach: RRA-τ and the RRA-N, and the application of these

methods to three different chemical systems indicates that the two methods, especially

the RRA-N, perform creditably in combining accuracy and efficiency in simulating the

mean and the CV of the probability distributions of the different species, in comparison

to other approximate methods such as GASA and G-P method. It is to be noted that the

new approximate methods take smaller jumps in time than the other approximate meth-

ods that have been proposed. However, the subsequent loss in efficiency is more than

compensated for by the concurrent increase in accuracy of the simulations. This is espe-

cially relevant when one wants to simulate more challenging and complicated systems,

as demonstrated in the article for an oscillatory model system as well as for a system

where the species concentrations vary by different orders of magnitude. The methods

have the added virtue of giving rise to very simple and straightforward algorithms. In-

deed, as can be observed from the flowchart provided for the implementation of the RRA

methods, they are simpler algorithms than GASA, for which it is necessary to calcu-

late all the partial derivatives of the propensity functions with respect to the different

species present in the system and then to make a stoichiometric matrix to calculate the

denominators corresponding to each reaction involved in the system;7 such calculations

are unnecessary in our method. In terms of potential drawbacks for our method, it should

be mentioned that for reactions where species approach molecular populations close to

zero, the RRA methods, like other approximate accelerated methods7, 84, 89, 101 may begin

to provide negative molecular populations. Work is currently in progress to address this

issue. Overall, it is clear that the RRA methods, especially the RRA-N method, provides

63



Chapter 3

a simple, easy way to successfully simulate a wide variety of different chemical systems

over long periods of time, and, as such, should find wide ranging applicability in the

fields of chemistry and bio-chemistry.
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Solving the Problem of Negative

Populations in Approximate

Accelerated Stochastic Simulations

Using the Representative Reaction

Approach

Twinkle, twinkle, quasi star

Biggest puzzle from afar

How unlike the other ones

Brighter than a billion suns

Twinkle, twinkle, quasi-star

How I wonder what you are

-George Gamow
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Abstract

Methods based on the stochastic formulation of chemical kinetics have the potential to

accurately reproduce the dynamical behavior of various biochemical systems of interest.

However, the computational expense makes them impractical for the study of real sys-

tems. Attempts to render these methods practical have led to the development of accel-

erated methods, where the reaction numbers are modeled by Poisson random numbers.

However, for certain systems, such methods give rise to physically unrealistic negative

numbers for species populations. The methods which make use of binomial variables, in

place of Poisson random numbers, have since become popular, and have been partially

successful in addressing this problem. In this manuscript, the development of two new

computational methods, based on the representative reaction approach (RRA), has been

discussed. The new methods endeavor to solve the problem of negative numbers, by

making use of tools like the stochastic simulation algorithm and the binomial method, in

conjunction with the RRA. It is found that these newly developed methods perform better

than other binomial methods used for stochastic simulations, in resolving the problem of

negative populations.
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Figure 4.1: Artistic imagination of solving the problem of negative numbers in stochastic simu-
lations. This image appeared on the inner cover of the Journal of Computational Chemistry.

4.1 Introduction

Cellular interactions are of considerable interest for the understanding of chemical

dynamics of various biological processes. The state of the art experimental techniques in

cell biology attempt to resolve the temporal dynamics in these systems, but, considering

the complexity of these processes, computational modeling is of great importance. These

interactions can be modeled as a set of chemical reactions. As the interactions are driven

by species that are present in low copy numbers, the dynamical behavior is governed

by the molecular fluctuations.33, 120, 126 The deterministic model, based on the reaction

rate equations, simulates the time behavior, but fails to capture the intrinsic noise in such

systems. Also, the deterministic model treats time evolution as a continuous process

and does not take into account the discrete nature of the reactant species. These issues
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are effectively handled by the alternative: probabilistic model for simulating biological

systems.

The probabilistic kinetic Monte Carlo method54 : the Doob-Gillespie algorithm,117, 118, 28, 13

is widely used nowadays for simulating the time behavior of reactants, intermediates and

products in a reaction network. In the literature, this algorithm is known as the stochastic

simulation algorithm (SSA).13 In the SSA, a single reaction out of several reactions from

the entire reaction network is allowed to occur in each time increment and the simulation

is continued until some desired time has been achieved. Although this has proved an

effective approach for providing an accurate depiction of the change of the reactant, in-

termediate and product species during the reaction, the SSA suffers from the significant

drawback in that the simulation of any realistic biochemical system, which consists of

many more reactions, requires considerable computational time. To address this issue,

several improvements to the SSA have been proposed, which include the next reaction

method,73 optimized direct method,74 and sorting direct method,75 but these, too, have

not been successful at providing sufficient reduction in computational time for the simu-

lations. To incorporate time delays, along with discreteness and noise, the delay SSA81

has been proposed. This algorithm is essentially a generalized version of the SSA, ac-

counting for time delays that are not considered in the SSA.

To circumvent this difficulty of the SSA, Gillespie designed the Gillespie’s approxi-

mate stochastic algorithm (GASA),7 which takes larger time steps to simulate many more

reaction events. The reaction events corresponding to every reaction are determined by

means of the Poisson random variable. The time step in the GASA is calculated using

the leap condition which ensures that there is no significant loss of accuracy in the sim-

ulations, by assuming that the propensity function (the product of the rate constant of

the reaction with the reactant populations) of each reaction in the system changes by an

infinitesimal amount during each time step. This approach has helped to significantly re-

duce the computational time for the simulations. Several improvements to this method,
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that serve to improve the accuracy, have been proposed, which include the Gillespie-

Petzold (G-P) method,29 and methods proposed by Rathinam et al.84 and Cao et al..83

Along with these methods, the recently proposed representative reaction approach (RRA)

of Kadam and Vanka50 in which all the reactions in a chemical system are represented by

a single, representative, reaction, 2A −→ B, also presents a viable approach to reducing

the computational time while maintaining the required accuracy for chemical systems.

However, one of the major problems with the accelerated methods described in the

previous paragraph is that the reaction events corresponding to every reaction are deter-

mined by means of the Poisson random variable. The unbounded nature of sample values

generated from Poisson random variables may result in negative molecular numbers if

the time step is sufficiently large. One way to avoid this negative number problem is to

use binomial random variables, since they have a finite range of sample values. Several

methods which use the binomial distribution-based random variable have been devel-

oped, which include the BD-τ leap methods developed by Tian-Burrage91 and Chatterjee

et al.,92 the multinomial tau leap method93 which is an extension of the BD-τ leap, the

Modified Binomial Leap Method,94 generalized binomial leap method127 for delayed re-

actions, R-leaping method98 for accelerating the SSA by reaction firings and also the

Binomial τ -leap Spatial SSA (Bτ -SSSA)128 which considers both reaction and diffusion

events during each τ leap. In addition to such methods using binomial random numbers,

Cao et al.95 have modified the GASA to solve this problem by classifying the reactions

into critical and noncritical reactions, and using Poisson random variables. However, all

the approximate methods developed to date that use binomial random numbers are not

without their flaws. In case of the BD-τ leap method of Tian-Burrage,91 the concept of

the limiting reactants91, 92 is used to determine the maximum permitted occurrences of

a particular reaction. This constraint is over restrictive in cases where there are certain

reactions that increase the amount of the consumed reactant population for that particular

reaction. The other problem of the Tian-Burrage method is that it fails for cases where

there are multiple-channel reactant dependencies. To address these problems, Peng et
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al.94 have proposed the modified binomial leap method, but due to the necessity, in this

approach, of generating some more binomial random variables for each time step, it is

not computationally efficient. Chatterjee et al.92 have also tried to solve the problem of

negative populations by first determining the binomial random variable corresponding to

a particular reaction and then updating the currently available molecules by subtracting

the molecules that have reacted. The problem with this approach, however, is that, if

the earlier considered reactions have used up most of the available molecules, then the

reactions that are selected afterwards are left with fewer numbers of molecules and have

fewer firings than the earlier reactions. The method, therefore, incorporates a bias in

the choice of the reaction numbers depending on the order in which the reactions are

selected. Chatterjee et al.92 have admitted this problem and have suggested the random

selection of the reaction order at each time step. This, however, does not entirely solve

the bias at each time step for the reaction numbers.

The intent, in this chapter, is to propose two methods that can successfully address

the aforementioned issues while also being computationally efficient and easy to code.

The methods are based on the modification of the RRA50 by (a) the addition of the con-

dition that the SSA be used when negative populations result at a time step : the RRA-N

with SSA approach and (b) the use of the binomial random variable for every time step

: the RRA-N with binomial approach. It will be demonstrated that both the methods,

which are easy to code, perform creditably in comparison to other methods. This article

is organized as follows : (i) first, we have discussed in brief the RRA-based method:

RRA-N, and the subsequent modifications, mentioned as (a) and (b) in the previous para-

graph, which we are proposing to solve the problem of negative molecular numbers. The

flowchart of the proposed methods has also been provided. After this, we have tested

our proposed methods on (ii) the Carletti-Burrage model,94 on (iii) the simple isomeriza-

tion reaction Model, on (iv) the four reaction model and finally on (v) the challenging

model of Circadian rhythms.129, 102 Finally, (vi) we have provided some conclusions to

our work.
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4.2 Overview and Modifications to the RRA

4.2.1 Basis for the stochastic simulation of chemical kinetics

Consider a well-stirred mixture of N molecular species {S1, ..., SN} which are interacting

with each other through M chemical reactions {R1, ..., RM}. It is assumed that this

mixture is in thermal equilibrium at temperature T. The dynamical state of this entire

chemical system (or mixture) at any time t can be specified by the state vector : X(t) ≡

{X1(t), ..., XN(t)}. Every reaction {R1, ..., RM} is characterized by a quantity called the

propensity function aj(x),65, 25 which is the product of the rate constant and the number

of reactant combinations for a given reaction. The other property of every reaction is

the state change vector νj ≡ {ν1j , ..., νNj}. Here, aj(x)dt gives the probability that Rj

reaction will occur in the next infinitesimal time interval [t, t+dt), and νij is the change

produced by the Rj reaction in the molecular population of the Si species.

4.2.2 RRA-N : an overview

In this recently proposed method,50 any chemical system consisting of individual chem-

ical reactions is modeled by means of a single reaction, 2A −→ B. In other words, the

entire chemical system is represented by a single representative reaction (RR), hence

the name : RRA. Discussion pertaining to the specific choice of the RR can be found

elsewhere. During the course of the simulation in any particular iteration, the expected

number of reactions that are supposed to take place in the next time step for the entire

chemical system is first determined. For the RR, 2A −→ B, the propensity function

is taken as the sum of the propensity functions of all individual reactions and the rate

constant as the weighted average of all the rate constants associated with the individual

reactions. The firings associated with all the reactions in the chemical system are as-

sumed to follow the Poisson distribution; that is, a Poisson random number is used to

select the reaction numbers. Here, aj(x)τ are the expected number of firings7 of reaction
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Rj in the time step τ .

Using the leap condition, the expected number of reactions (N0) can be calculated

for the concerned RR. This is derived to be :

N0 =
ε′a0(x)

C0(2x0 − 1)
(4.1)

where, ε′ = 16ε. The time step can be obtained from τ = N0

a0(x)
and next, the expected

number of firings of each reaction––the reaction number ––can be obtained from the Pois-

son random number generator.

4.2.3 Modifications to the RRA-N

(i) The RRA-N with the SSA : As discussed in Introduction, approximate methods such

as RRA-N that have been developed to speed up the simulations sometimes gives rise to

physically unrealistic molecular numbers to negative amounts for the reactant species.

When the time step is large and some of the reactants are present in small amounts, there

exists the possibility of the molecular amounts being driven to negative values. Also,

the simultaneous occurrence of different reactions can lead to negative numbers. When

negative molecular numbers are encountered while simulating the chemical system by

the RRA-N method, we propose to make use of the SSA, where only a single reaction

is simulated in each infinitesimal time increment. The procedure is as follows : for any

time step during the simulation, first the RRA-N method is followed, with the value of

error control parameter, ε, taken to be 0.04. If, at the end of the given step, the molecular

numbers of any of the species is determined to be negative, then that RRA-N step is

cancelled. The algorithm does not take the large time step obtained from the RRA-N

calculations and switches instead to the small time increment from the SSA. Although

choosing a single reaction event during this (now) small time step, the SSA approach

ensures that the chemical reaction selected for the single firing is usually the one that

has relatively greater propensity than other reactions. As the reactions that have low

propensity have an extremely small likelihood of being chosen, and since, even if chosen,
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the reaction would fire only once, there is no possibility of obtaining negative numbers.

The detailed procedure is explained in the flowchart.

(ii) The RRA-N with Binomial : In most of the approximate methods, the number

of firings of the reactions has been assumed to follow the Poisson distribution. The

range of sample values of Poisson random variables goes from zero to infinity. When

a larger time step is taken during the simulations, the expected values of the reactions

increases (as the expected value is aj(x)τ ) and, as a result, we get large values for the

Poisson random variables. Thus, when the reaction number exceeds one of the molecular

numbers in a particular reaction or when the same reactant is simultaneously involved in

different reactions, negative numbers are obtained. As discussed in the Introduction,

Tian-Burrage,91 as well as Chatterjee et al.92 have tried to address this issue by replacing

the Poisson random variables with the binomial random variables; since they have a finite

range of sample values.

What is proposed here, to address this problem of negative populations, is the ap-

plication of the idea of binomial random variables to the RRA. To generate a binomial

random variable from a computer algorithm,72 we need to supply two variables to it,

namely : (i) the maximum number of reactions (Kj) and (ii) the probability (p). The

maximum number of reactions, Kj , are determined by using the concept of the limiting

reactant. The binomial distribution has the same mean as that of the Poisson; which is

aj(x)τ . The probability of occurrence of Rj is given by : p = aj (x)τ

Kj
. The maximum

number of reactions Kj for some of the common chemical reactions are defined below :

For the first order reaction,

A −→ B, Kj = A

For the second order reactions,

A +B −→ C, Kj = min(A,B)

2A −→ B, Kj = A/2
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In case of RRA-N with A −→ B as the RR, there are x0 hypothetical species of the

reactant A with the propensity function a0(x) equal to the sum of the propensities of all the

individual reactions; the maximum number of reactions are K = x0

2 and the probability

is p = a0(x)τ
K

.

In this modified version of RRA-N, we propose to use the binomial approach when-

ever negative molecular numbers are encountered during the simulation. Thus, if a given

RRA-N step results in some species having negative populations, we undo that particular

step of the RRA-N by making a switch to the binomial method. Now, here the number

of firings of the reaction, (N0), is recalculated in exactly the same way as before, but this

information is used to obtain the variables for obtaining the binomial random number.

Consequently the time step τ , the maximum number of reactions (Kj) and the probabil-

ity, p are all calculated. This recipe will give us the new number of reaction firings (N ′
0)

for this given time step, the value of N ′
0 being obtained from the binomial distribution.

Finally, the reaction numbers of the individual reactions are calculated from N ′
0 by de-

termining their share of N ′
0 from the weighted average, that is from nj = int[(aj(x)

a0(x)
)N ′

0] .

The value of the error control parameter, ε, is the same as that used in the RRA-N with

SSA (0.04).

The simulation of the chemical system by modifying the RRA-N using the bino-

mial approach described here gives an edge over the existing binomial methods of Tian-

Burrage91 as well as that of Chatterjee et al..92 This will be clear in the subsequent

sections where different examples have been discussed.

4.3 Steps and the Flowchart

4.3.1 Steps for the implementation of the modified-RRA

Based on the discussion above, the implementation steps for the RRA-N method modi-

fied using the SSA and the binomial approaches are outlined as follows :
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• Step 1 : input the initial number of species, rate constants of the constituent reactions;

initialize the counters and the random number generators to a seed value. Transfer

the initial number of species to some temporary locations (variables)

• Step 2 : calculate the propensity functions : {a1, ..., aM}, the sum of the propensity

functions : a0(x) =
∑M

j=1 aj(x), the weighted rate constant : C0 =
∑M

j=1

(

aj (x)

a0(x)

)

cj

• Step 3 : calculate the total number of species present.

x0 =
C0+

√
C2

0
+8a0C0

2C0

• Step 4 : calculate the time step τ = N0

a0(x)
, where the total number of reactions are :

N0 =
16εa0(x)

C0(2x0−1) , the value of ε being 0.04

• Step 5 : calculate the expected number of reactions, the njs, for the individual reac-

tions. nj = ajτ

• Step 6 : use the Poisson random number generator to find the kjs, the actual number

of occurrences for the individual reactions.

kj = poidev(nj , iseed)

• Step 7 : make the necessary changes in the molecular population using the appropriate

stoichiometric parameters and reaction numbers

• Step 8 : if negative numbers are encountered then discard the step; choose either (a)

the SSA or (b) the binomial using the initial species stored in the temporary loca-

tions. If negative numbers are not encountered, then continue with the RRA-N

(a) Use the SSA

(b) Use the binomial

(i) calculate the total number of reactions : N0 =
16εa0(x)

C0(2x0−1)

(ii) calculate the time step : τ = N0

a0(x)

(iii) calculate the maximum number of reactions, K = x0

2 ,
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the probability, p = a0(x)τ
K

and finally, the binomial random variable N ′
0 = bnldev(p,

K, iseed)

(iv) calculate the reaction numbers of the individual reactions, nj = int[(aj(x)
a0(x)

)N ′
0]

(v) make the necessary changes in the species population using the appropriate

stoichiometric parameters and reaction numbers

• Step 9 : go to Step 1
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4.3.2 Flowchart :

Figure 4.2: The algorithm for the RRA-N with SSA and the RRA-N with binomial methods.
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4.4 The Carletti-Burrage Model

The Carletti-Burrage model94 consists of the following set of reactions :

R1 : RNA
c1−→ DNA1

R2 : DNA1
c2−→ RNA

R3 : m
c3−→ RNA

R4 : RNA
c4−→ m

R5 : 2m
c5−→ D

R6 : D
c6−→ 2m

R7 : DNA + D
c7−→ DNA1

R8 : DNA1
c8−→ DNA + D

R9 : DNA1 + D
c9−→ DNA2

R10 : DNA2
c10−→ DNA1 + D

where RNA, DNA, DNA1, DNA2, D, and m are the species taking part in the different

reactions; and the symbols (c1 − c10) over the arrows indicate the rate constants of the

respective reactions.

The values of the different model parameters used in the simulation of this reaction

system are provided in the table.
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Table 4.1: The values of the rate constants of the reactions and the initial species population for

the Carletti-Burrage model.

Parameters used in Numerical values
the simulation of the parameters

c1 0.078
c2 3.9E-3
c3 7.0E-4
c4 0.043
c5 0.083
c6 0.5
c7 0.020
c8 0.479
c9 2.0E-4
c10 8.765E-12
m 200
D 600

DNA 200
DNA1 0
DNA2 0
RNA 0

The different stochastic approaches, discussed in Introduction, were used to simulate

the Carletti-Burrage model. It is to be noted that the BD-τ method of Tian-Burrage91

was inapplicable for this system, due to the fact that there is a bimolecular reaction (R9),

in which the two reactants (D and DNA1) are also the consumed reactants in two other

reaction channels, thereby creating the problem of multiple reactions with common con-

sumed reactants. Furthermore, we note here that the simulation of the Carletti-Burrage

model using GASA,7 led to physically unrealistic (negative) numbers. Hence, the results

with GASA are also not discussed for this example. Therefore, only the methods that

were successful at simulating this model: the RRA-N with SSA and the RRA-N with

Binomial, discussed in the previous section, as well as the SSA,28 the G-P29 and BD-τ

leap of Chatterjee et al.,92 have been reported here.

The standard value7 of ε = 0.03 was used for doing the simulations with GASA and

G-P. It is also noted here that this is the standard value for ε that has been used for the
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G-P method for all the subsequent examples as well. It is further noted that, having

now established, with the example of the Carletti-Burrage model, that the GASA and

the BD-τ method of Tian-Burrage do not have universal applicability in addressing the

problem of negative populations in chemical systems, they will not be considered in the

subsequent examples.
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Figure 4.3: The trajectories of the means [(a)-(f)] for the probability distributions of the species

DNA, DNA1, DNA2, D, m, RNA using SSA (blue curve), G-P (green curve), BD-τ of Chatterjee-

Vlachos-Katsoulakis (magenta curve), RRA-N with SSA (maroon curve) and RRA-N with bino-

mial (red curve) for the case of the Carletti-Burrage model.

For each case, the simulations were performed 10 times, with the seed value of the

random number generator being changed on each occasion, and the mean and the co-

efficient of variation (CV) calculated from the 10 simulations in each case. Shown in

figure 4.3 is the comparison of the means of the probability distributions for the different

species using SSA, G-P, the BD-τ method of Chatterjee-Vlachos-Katsoulakis, the RRA-

N with SSA and the RRA-N with binomial. The CV for the probability distribution for

the species using the respective simulation methods is shown in figure 4.4.
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Figure 4.4: The trajectories of the CVs [(a)-(f)] for the probability distributions of the species

DNA, DNA1, DNA2, D, m, RNA using SSA (blue curve), G-P (green curve), BD-τ of Chatterjee-

Vlachos-Katsoulakis (magenta curve), RRA-N with SSA (maroon curve) and RRA-N with bino-

mial (red curve) for the case of the Carletti-Burrage model.

Table 4.2: The average values of the CPU time (secs) taken by different simulation methods for

the Carletti-Burrage model.

Simulation Methods SSA G-P BD-τ RRA-SSA RRA-binomial

CPU time (secs) 2.716 10.580 5.644 0.529 0.529
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From the table, it is clear that, for the Carletti-Burrage model, the modified RRA-N

methods : the RRA-N with SSA and RRA-N with binomial, provide an edge over the

SSA as well as over the other accelerated methods. The Figures 4.3 and 4.4 indicate that

there is a near exact correspondence between the simulation methods - the SSA, G-P,

BD-τ of Chatterjee-Vlachos-Katsoulakis, RRA-N with SSA and RRA-N with binomial.

However, the two RRA-N methods are also faster than all the other methods. In this

context, it is to be noted that we have used the coarse grain variable factor f 92 of 2.0 for

the case of the BD-τ method. This causes the simulations to be accurate, but increases

the computational time for this method considerably (Table 4.2). Increasing the value of f

would speed up the simulations, but this can cause the accuracy of the simulations using

the BD-τ method to drop off. This is illustrated in the Figures 4.5 and 4.6, where the

means and CVs of the probability distributions for the different species are shown, with

the BD-τ simulations having been done for f = 100.0. A perusal of Figures 4.5 and 4.6

shows that, for this case, the results obtained with the BD-τ method begin to diverge from

the rest, even though, as shown in Table 4.2, the time required for the BD-τ simulations is

reduced. In short, for this particular example, the modified RRA-N methods are seen to

provide the proper balance of accuracy and speed as compared to the other approximate

methods.
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Figure 4.5: The trajectories of the means [(a)-(f)] for the probability distributions of the species

DNA, DNA1, DNA2, D, m, RNA using SSA (blue curve), G-P (green curve), BD-τ of Chatterjee-

Vlachos-Katsoulakis (magenta curve), RRA-N with SSA (red curve) for the case of the Carletti-

Burrage model.
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Figure 4.6: The trajectories of the CVs [(a)-(f)] for the probability distributions of the species

DNA, DNA1, DNA2, D, m, RNA using SSA (blue curve), G-P (green curve), BD-τ of Chatterjee-

Vlachos-Katsoulakis (magenta curve), RRA-N with SSA (red curve) for the case of the Carletti-

Burrage model.

Thus, for this example, the modified RRA-N methods offer a distinct advantage over

the BD-τ methods of Tian-Burrage91 and Chatterjee et al.,92 using a Binomial distribu-

tion, as well as over the GASA7 and G-P29 methods, using a Poisson distribution.

4.5 The Simple Isomerization Reaction Model

In this section, we discuss the simple isomerization reaction model consisting of three

reactions. This chemical system has the following set of reactions :

R1 : X1
c1−→ X2

R2 : X2
c2−→ X1

R3 : X2
c3−→ X3
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where X1, X2, X3 are the reacting species and c1, c2 and c3 are the rate constants of the

corresponding reactions.

Table 4.3: The values of the rate constants of the reactions and the initial species population for

the simple isomerization reaction model.

Parameters used in Numerical values
the simulation of the parameters

c1 1.0
c2 2.0
c3 0.01
X1 120
X2 60
X3 0

A perusal of the rate constants (c1 = 1.0, c2 = 2.0 and c3 = 0.01) suggests that the

population of the species X2 can become negative during the course of simulation by

accelerated methods. The mean and the CV of the probability distributions for the species

X1, X2, X3 obtained by means of the SSA, G-P, the BD-τ method of Chatterjee-Vlachos-

Katsoulakis and the RRA-N with SSA method is shown in Figure 4.7. Likewise, Figure

4.8 shows the corresponding curves for the RRA-N with Binomial method along with

the other simulation methods.
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Figure 4.7: The trajectories of the means [(a)-(c)] and CVs [(d)-(f)] for the probability distribu-
tions of the species X1, X2, X3 using SSA (blue curve), G-P (green curve), BD-τ of Chatterjee-

Vlachos-Katsoulakis (magenta curve) and RRA-N with SSA (red curve) for the case of the simple

isomerization reaction model.
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Figure 4.8: The trajectories of the means [(a)-(c)] and CVs [(d)-(f)] for the probability distribu-

tions of the species X1, X2, X3 using SSA (blue curve), G-P (green curve), BD-τ of Chatterjee-
Vlachos-Katsoulakis (magenta curve) and RRA-N with binomial (red curve) for the case of the

simple isomerization reaction model.

The Figures 4.7 and 4.8 indicate that the trajectories of the values for the mean and

CV predicted by the SSA, the BD-τ method of Chatterjee-Vlachos-Katsoulakis, G-P, the

RRA-N with SSA, and the RRA-N with Binomial are in good agreement. For the BD-τ

method of Chatterjee-Vlachos-Katsoulakis, the value of coarse grain factor, f, is taken to

be 2. Like in the previous example, increasing the value of f, while reducing the CPU

time, leads to the loss of accuracy for this method. The comparison of the CPU time in

Table 4.4 also shows that, in terms of efficiency, the RRA-N methods, especially RRA-N

with SSA, perform better than the other accelerated methods.
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Table 4.4: The average values of the CPU time (secs) taken by different simulation methods for

the simple isomerization reaction model.

Simulation Methods SSA G-P BD-τ RRA-SSA RRA-Binomial
CPU time (secs) 3.579 3.371 3.270 2.569 3.210

Hence, this example again emphasizes the satisfactory applicability of the new meth-

ods to chemical systems where negative population is a potential problem when applying

approximate stochastic methods.

4.6 The Four Reaction Model

In this section, we discuss the four reaction model, as proposed by Gillespie.7 The reac-

tions of this model are given in section 3.3 of the chapter 3 of this thesis. The numerical

values used for the simulation are provided in table below.

Table 4.5: The values of the rate constants of the reactions and the initial species population for
the four reaction model.

Parameters used in Numerical values
the simulation of the parameters

c1 1.0
c2 0.5
c3 0.002
c4 0.04
X1 1000
X2 0
X3 0
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Figure 4.9 shows the mean and CV of the probability distributions for the species X1,

X2 and X3 obtained by means of the SSA, G-P, the BD-τ method of Chatterjee-Vlachos-

Katsoulakis and the RRA-N with SSA method, while Figure 4.10 shows the same curves

for the approximate stochastic methods compared with the RRA-N with binomial. Table

4.6 shows the average CPU time that was required to run the different simulations.

Figure 4.9: The trajectories of the means [(a)-(c)] and CVs [(d)-(f)] for the probability distribu-

tions of the species X1, X2, X3 using SSA (blue curve), G-P (green curve), BD-τ of Chatterjee-

Vlachos-Katsoulakis (magenta curve) and RRA-N with SSA (red curve) for the case of the four
reaction model.
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Figure 4.10: The trajectories of the means [(a)-(c)] and CVs [(d)-(f)] for the probability distribu-

tions of the species X1, X2, X3 using SSA (blue curve), G-P (green curve), BD-τ of Chatterjee-

Vlachos-Katsoulakis (magenta curve) and RRA-N with binomial (red curve) for the case of the

four reaction model.

Table 4.6: The average values of the CPU time (secs) taken by different simulation methods for

the four reaction model.

Simulation Methods SSA G-P BD-τ RRA-SSA RRA-Binomial
CPU time (secs) 4.499E-2 8.798E-2 5.539E-2 1.699E-2 1.999E-2

The Figures 4.9 and 4.10 indicate that there is, again, good agreement between the

different methods. However, what is of note is that, as indicated by the average CPU

times for the different methods shown in Table 4.6, both the G-P method as well as

the BD-τ method of Chatterjee-Vlachos-Katsoulakis are actually slower on average than

the SSA. This is due to the higher computational cost of running the more involved

algorithms in the G-P and the BD-τ methods. The two RRA-N methods fare better in

comparison, requiring about a third of the time in comparison to the other methods, while

being as accurate. As before, it is noted here that the CPU time for the BD-τ method of

Chatterjee-Vlachos-Katsoulakis can be significantly reduced by increasing the f value,
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but this comes at a cost of accuracy of the simulations.

4.7 The Model of Circadian Rhythms

The final model discussed here is that of the Circadian rhythms129, 102 which is observed in

almost all living organisms and which is characterized by a period close to 24 h. These

rhythms are cyclic hormonal processes, which have been observed in animals, plants,

fungi, and cyanobacteria.
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The following set of biochemical reactions have been used to describe the system of

Circadian rhythms :

R1 : Da + A
γaA−−→ D′

a

R2 : D
′
a

θa−→ Da + A

R3 : Dr + A
γrA−−→ D′

r

R4 : D
′
r

θr−→ Dr + A

R5 : φ
α′

aD
′

a+αaDa−−−−−−−→ Ma

R6 : Ma
δmaMa−−−−→ φ

R7 : φ
α′

rD
′

r+αrDr−−−−−−−→ Mr

R8 : Mr
δmrMr−−−−→ φ

R9 : φ
βaMa−−−→ A

R10 : A
δaA−−→ φ

R11 : φ
βrMr−−−→ R

R12 : R
δrR−−→ φ

R13 : A+R
γcAR−−−→ C

R14 : C
δaC−−→ R
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Table 4.7: The values of the rate constants of the reactions and the initial species population for

the model of Circadian rhythms.

Parameters used in Numerical values
the simulation of the parameters

αA 50.0
α

′

A 500.0
αR 0.01

α
′

R 50.0
βA 50.0
βR 5.0
δMA 10.0
δMR 0.5
δA 1.0
δR 0.05
γA 1.0
γR 1.0
γC 2.0
θA 50.0
θR 100.0

Because of the highly oscillatory nature of the rhythms, it is challenging to simulate

such systems by approximate accelerated methods. Indeed, for this case, it was found

that the G-P method, as well as the RRA-N method with Binomial both failed to avoid the

problem of negative populations, and so have not been discussed in the figures and the ta-

bles pertaining to this system. Also, the BD-τ method of Chatterjee-Vlachos-Katsoulakis

cannot be used to simulate this system because it is not able to take into account the con-

stitutive reactions such as (φ→ A), cases where the reactant (φ) amount is not a specified

quantity. Therefore, the only approximate method left that both succeeds in avoiding the

negative population problem, as well as avoids technical flaws pertaining to constitutive

reactions, is the RRA-N with SSA method. The comparison of this approximate method

with the SSA is shown in figure 4.11 below. Table 4.8 shows the average CPU time that

was required for the SSA and RRA-N with SSA methods.
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Figure 4.11: The trajectories of the means [(a),(b)] and CVs [(c),(d)] for the probability distribu-
tions of the species R and C using SSA (blue curve) and RRA-N with SSA (red curve) for the

case of Circadian rhythms.

Table 4.8: The average values of the CPU time (secs) taken by different simulation methods for

the circadian rhythms.

Simulation Methods SSA RRA-SSA

CPU time (secs) 30.103 24.075

From Table 4.8, it is clear that the RRA-N with SSA works faster than the SSA in

replicating the results. The curves in figure 4.11 indicate a slight mismatch in the accu-

racy which is attributed to the highly unstable nature of the system over time. However,

as figure 4.11 also indicates, the RRA-N with SSA method provides a reliable variation

in the trend of the change in the means and CVs of the species populations with time.

Overall, for the four examples studied with the different simulation methods, the

modified RRA-N methods : RRA-N with SSA and RRA-N with binomial are seen to

perform at the same level or better than the other state-of-the-art approximate methods

designed to solve the problem of negative populations. The other advantage of the mod-

ified RRA-N methods is that, unlike some Binomial methods like the BD-τ method of
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Chatterjee et al.,92 a standard parameter of 0.04 is specified and used consistently for

all the simulations and gives reliable results. This offers an advantage over the BD-τ

leap methods where it is actually required to optimize the coarse grain factor, f, for every

different chemical system.

4.8 Conclusions

In this manuscript, an attempt has been made to solve the problem of physically unre-

alistic numbers, that is, negative populations for species present in a chemical system.

This is a problem that can appear when approximate, accelerated stochastic methods are

used. What has been discussed in the manuscript are modifications to the recently pro-

posed RRA-based RRA-N method, to tackle the problem of negative populations. The

two modified methods: RRA-N with SSA and RRA-N with binomial have been tested

on various chemical systems and been found to perform at an advantage, in terms of ef-

ficiency as well as accuracy, over other state-of-the-art methods that have been proposed

to tackle the problem of negative populations. The modified RRA-N methods have ad-

ditional advantages in that they are quite simple in design and relatively straightforward

to code. In addition, it is also not necessary to change the modified RRA-N methods,

by modification of error control parameters, whenever a new system is encountered. As

such, the new approaches described in this work present promising alternatives to exist-

ing approximate methods for tackling the problem of negative populations in chemical

systems.

96



CHAPTER 5

The accounting of noise to solve the

problem of negative populations in

approximate accelerated stochastic

simulations

Somewhere, something incredible is waiting to be known.

-Carl Sagan
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Abstract

The advent of different approximate accelerated stochastic simulation methods has helped

considerably in reducing the computational load of the exact simulation algorithms.

However, along with the reduction in the computational load comes the risk of driv-

ing the molecular numbers to the regime of negative numbers during the simulations.

Over the years, various methods have been developed in order to solve the problem by

using different strategies. Some methods have employed binomial numbers to model

the reactions, while others have tried the partitioning of the reaction network. In this

manuscript, we have proposed a new approach where the noise inherent in the choice of

the number of firings of a given reaction during a time step is taken into account. This

idea of noise accounting is used in conjunction with the accelerated stochastic method:

the Representative Reaction Approach (RRA). It is found that the new method is suc-

cessful at solving the problem of negative numbers, and compares very favorably with

other state-of-the-art stochastic simulation methods.
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5.1 Introduction

The stochastic time evolution of a chemical system can be described by the Chemical

Master Equation (CME).49, 65 But owing to its complexity, solving the CME is a difficult

task and one has to rely on Monte Carlo simulation techniques that generate stochastic

realizations of the underlying chemical kinetics. One such technique is the kinetic Monte

Carlo (kMC)54 based stochastic simulation algorithm (SSA)28, 13 developed by Daniel

Gillespie. This technique simulates a randomly chosen single reaction during each time

step giving stochastic realizations until a desired time is reached. However, this approach

is demanding for the simulations of realistic systems. Subsequent to the development of

the SSA, several methods have been developed in order to improve the performance of

the SSA, such as the next reaction method,73 the optimized direct method,74 the sorting

direct method75 and the more recent recycling direct method (RDM).82 In addition to

these methods, the delay stochastic simulation algorithm (DSSA),81 which considers time

delays, has also been developed. It has been found that such attempts to increase the

computational performance of the SSA have only been marginally successful.

The lack of significant success in improving the SSA with exact simulation ap-

proaches has led to the development of new approximate methods, where some of the

accuracy of the SSA has been sacrificed. One such approach consists of hybrid meth-

ods,102, 130, 101 which have been used for the multiscale simulations of chemical systems.

In these methods, the chemical Langevin equation25 or the reaction rate equations are

coupled with the SSA. Even though the hybrid methods have succeeded in reducing the

computational load of the SSA to some extent, they have lost the simplicity of the SSA.

Another approach consists of leaping methods, where larger time steps are taken in or-

der to simulate the occurrence of more reactions. In one such method, which was the

first of its kind, Daniel Gillespie proposed Gillespie’s approximate stochastic algorithm

(GASA).7 In this method, the time step during the simulations is derived from the leap

99



Chapter 5

condition : a condition wherein a change in the number of reactant molecules in a given

reaction is allowed as long as it alters the propensity function (the product of the reactant

number of molecules and the rate constant) by an infinitesimal amount for that reaction.

This method has helped to reduce the computational load of the simulations. Over the

years, several improvements to this approach have been proposed, which includes the

Gillespie- Petzold (G-P) method,29 the implicit tau-leaping method of Rathinam et al.,84

the efficient step size method of Cao et al.,83 the N-leap method of Xu and Lan,96 the K-

leap method of Cai and Xu97 and the recent Representative Reaction Approach (RRA)50

that we have developed.

In all the approximate accelerated methods mentioned above, the reaction numbers

are modeled by a Poisson distribution. Since the range of random variables generated by

the Poisson distribution is unlimited, some reactions will fire many more times, thereby

giving rise to physically unrealistic or negative numbers during the simulations. In other

words, the occurrence of the negative population during the simulations can also be in-

terpreted as the consequence of a violation of the leap condition. One obvious way to

avoid the occurrence of negative populations is to model reaction numbers by random

variables that have a finite range. Hence, simulation methods which use binomial ran-

dom variables were developed. They include the BD-τ leap methods of Tian-Burrage,91

Chatterjee et al.,92 the multinomial τ -leap approach,93 the efficient binomial leap,94 the

R-leap,98 and the generalized binomial leap for delayed reactions,127 as well as the RRA

used in conjunction with the binomial distribution.51 Apart from these methods, Cao et

al.95 have developed a method where the reaction network is partitioned into critical and

noncritical reactions. This same concept of partitioning of a reaction network has been

used by Yates et al.131 in their confidence-based method. In case of such methods, the

noncritical reactions were modeled by Poisson variables.

However, all the methods mentioned in the above paragraph have their own pros

and cons. The BD-τ leap method of Tian- Burrage91 is based on the concept of lim-

iting reactants, which is used to determine the upper bound on the maximum allowed
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firings of each reaction channel during a leap. This constraint seems to be artificial in

some situations; for instance, in reaction networks in which there are certain reactions

that tend to increase the consumed reactant numbers for that particular reaction. Along

with this, this method also fails to simulate the cases where there are multiple channel

reactant dependencies, i.e. cases where a single reactant gets consumed in multiple reac-

tions. Chatterjee et al.92 approached this problem by employing the binomial distribution

while updating the currently available molecular population. This introduces some bias

in the choice of the reaction numbers, as the earlier reactions occur more frequently than

those selected afterwards. In other words, it depends on the order in which the reactions

are selected. A potential solution to this problem that has been suggested is to choose

the reactions randomly at each time step. The efficient binomial leap attempts to solve

the problem, but it becomes slow due to the requirement of some more binomial random

variables at each time step. Cao et al.95 tried to fix the problem, but their solution became

less flexible with the introduction of the second control parameter. Along with this, the

use of Poisson random variables keeps alive the risk of physically unrealistic numbers be-

ing obtained. The multinomial τ -leaping93 and R-leaping,98 which are extensions of the

binomial methods, have obtained some success at solving the aforementioned problems,

but lose the computational simplicity of these methods.

Therefore, as the paragraphs above indicate, there are difficulties inherent in all the

previous methodologies that have been employed to date. In this current work, we report

a new approach that we have adopted in order to try and surmount these difficulties. This

new method is primarily based on the notion of noise, and works in conjunction with the

Representative Reaction Approach (RRA). The new approach is based on the reasoning

that approximate stochastic simulation methods fail because the number of firings deter-

mined for each reaction during the simulation step by these methods is greater than the

appropriate number. In other words, if y is the number of firings determined by an ap-

proximate accelerated method for a given reaction during a given time step, it is in excess

of the appropriate value, say x, by a value n. By appropriate, what is meant is that x is the
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value of the number of firings of that specific reaction that would be perfect in keeping

with the leap condition. The implication here is that if x had been chosen as the number

of firings by the approximate accelerated method, instead of y, then the simulation would

have proceeded perfectly, without encountering problems such as that of negative popu-

lations. So, if one could find the correct number of firings (x) for each reaction in each

time step, one could proceed with the accelerated simulation. Now, since y = x + n, if one

could determine the amount (n) by which y exceeds the appropriate number of firings, x,

then one could determine x and thus proceed with an accelerated algorithm that would

give results faster than SSA but with problems such as negative populations eliminated.

But how would one find n ?

We postulate that n is the noise inherent in the determination of the number of firings

(y) for a given reaction by the approximate accelerated method. Now, noise in this con-

text in the system can have both positive and negative values, because actual stochastic

dynamics can both slow down or accelerate at any stage of the reaction. However, for

the leap in question, where the number of firings has led to negative populations, the

noise correction can only be a subtraction from the determined number of firings of the

given reaction. This is because considering the fluctuations/noise as a positive correc-

tion to the number of firings would lead to even more unphysical negative values for the

populations. Therefore, such corrections, while they can be calculated, are discarded.

Hence, if the noise n is subtracted from y, viz. x = y - n, then one would obtain the

correct number of firings for each step, in accordance with the leap condition. This is

further illustrated in Figure 5.1.

We have tested this idea for the case of the Representative Reaction Approach (RRA),

an accelerated stochastic method that we have developed,50 by incorporating this new

concept of subtracting the noise, n, from the number of firings obtained for each step

for every reaction. This new approach (termed as RRA-Noise), has been compared to a

number of other accelerated methods that have been proposed in the literature, including

GASA,7 G-P,29 the BD-τ of Chatterjee et al.92 etc. The current approach provides results
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Figure 5.1: The pictorial theme of the concept of noise associated with every reaction; in a par-
ticular time step, x is the appropriate number of reactions, y is the calculated number of reactions

and n is the associated noise.

which compares very favorably with other approaches, in addition to being relatively

simple and easy to implement.

The rest of the paper is organized as follows : in the Methodology section, we have

discussed in brief the necessary background required for the theoretical discussion, with

the description of the new method followed by the implementation details of the same.

In the Results and discussion section, simulations of different examples have been re-

ported that confirm the reliability and efficiency of the newly proposed approach. The

conclusions are provided in the last section.

5.2 Methodology

5.2.1 Background

A well-stirred mixture of N chemical species {S1, ..., SN}, which are interacting with

each other through M chemical reactions {R1, ..., RM} has been considered. The mix-

ture is assumed to be in thermal equilibrium at some finite temperature T. The state

of this mixture at any particular time, t, is specified by a state change vector : X(t) ≡

{X1(t), ..., XN(t)}. Our aim is to study the time evolution of this N component vector

from some given initial conditions, say, X(t) ≡ x0 Each chemical reaction Rj in the mix-

ture is characterized by a propensity function, aj and by the state change vector, νj ≡
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{ν1j , ..., νNj}. Here, νij is the change produced by the Rj reaction in the molecular pop-

ulation of the Rj species. The quantity aj(x)dt gives the probability that the Rth
j reaction

will occur somewhere in the next infinitesimal time interval [t, t+dt).

5.2.2 Concept of Noise

As mentioned in the Introduction, the current approach is to determine the value of the

number of firings (n) that is in excess of the appropriate value (x) that would be in ac-

cordance with the leap condition. This value n is determined as the noise present in the

number of firings (y) calculated by the approximate accelerated stochastic method. In

order to determine the value of the noise, n, we calculate the Poisson noise for every

reaction firing value calculated for every step.

In an attempt to accelerate the SSA, Gillespie had modeled7 the occurrences of differ-

ent chemical reactions by Poisson random variables. Since the number of events (chem-

ical reactions) taking place in a specific time interval are discrete in nature, it is apt to

model them by the Poisson probability distribution. In other words, the firings of chemi-

cal reactions are treated as Poisson processes. It was further shown by Gillespie that the

mean (or expected) value and the variance of the Rth
j reaction is ajτ . In a Poisson pro-

cess, the actual number of reactions fluctuates about its mean value, ajτ , with a standard

deviation of
√
ajτ . These fluctuations in the reaction numbers are treated as Poisson

noise. In electronics, similar fluctuations are known as shot noise.132, 133

The fluctuation in every individual reaction implies that all reactions in the chemical

system are accompanied by noise. The noise also expresses the basic form of uncertainty

associated with the occurrence of the reactions. The uncertainty is substantial when the

number of molecules participating in such reactions (or the propensity function) is small

enough. It can be negligible (or very small), when the number of molecules (or the

propensity function) are abundant. This means that the reactions in any chemical system

are always accompanied by the noise. The strength of the noise associated with a reaction
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varies as the square root of the expected number of firings of the given reaction. Thus,

the noise relatively decreases as the expected number of firings of the reaction increases.

However, the ratio of expected number of reactions to the noise,i.e.,
ajτ√
ajτ

, increases.

In case of chemical systems that have less number of molecules, the simulations may

show unfeasible fluctuations, which, in turn, may give rise to unrealistic (or negative)

numbers. Hence, the occurrence of negative numbers can be avoided by removing such

unfeasible fluctuations that are in the form of noise. Furthermore, it will be shown in the

Results and discussion section that the removal of noise associated with every reaction

does not affect the accuracy of the simulations.

5.2.3 Representative reaction approach (RRA) with noise

In order to speed up the SSA simulations, the Representative Reaction Approach (RRA)50

has been proposed. In this recently proposed method, the chemical system to be simu-

lated is represented by a single representative reaction (RR). The reaction that has been

found to be the most effective is 2A −→ B. Like any other reaction, the RR is also

characterized by the rate constant and the propensity function. The propensity function,

a0(x) is the sum of propensities of all the individual reactions and the rate constant, C0 is

a weighted average of all the rate constants. Thereafter, the total number of hypothetical

species, x0 are calculated. Furthermore, by applying the leap condition to this RR, the

expected reactions that are supposed to take place in the next time step are determined.

The firings of the individual reactions are modeled by using the Poisson random number

generator.72 However, as discussed in the Introduction, such approximate accelerated

methods as the RRA are prone to exhibiting negative numbers during the simulations,

for certain reaction systems.

The current approach is to employ the notion of noise whenever negative numbers

are encountered in a given step during the simulation. Initially, the simulations of any

chemical system are carried out in the usual way by the RRA approach. When negative
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numbers are obtained at any time step, that step of the RRA is annulled. Working on the

assumption that the negative numbers obtained are an indication of excess noise in the

leap (see Figure 5.1), the current method attempts to reduce the uncertainty in the fluctu-

ations by removing the noise from the expected number of reactions. The procedure for

the noise elimination based approach that is employed along with the RRA, is provided

in the next subsection.

5.2.4 Steps for the implementation of RRA-Noise

The implementation details of the new method, RRA-Noise, are outlined below :

• Step 1 : input the initial number of species and the rate constants of the constituent

reactions; initialize the counters and the random number generators to a seed value

and transfer the initial number of species to some temporary locations (variables).

• Step 2 : calculate the propensity functions : {a1, ..., aM} the sum of the propensity

functions : a0(x) =
∑M

j=1 aj(x),

the weighted rate constant : C0 =
∑M

j=1

(

aj (x)

a0(x)

)

cj

• Step 3 : calculate the total number of species present :

x0 =
C0+

√
C2

0+8a0C0

2C0

• Step 4 : calculate the time step τ = N0

a0(x)
, where the total number of reactions are :

N0 =
16εa0(x)

C0(2x0−1) , the value of ε being 0.06

• Step 5 : calculate the expected number of reactions for the individual reactions : expj =

ajτ

• Step 6 : calculate the actual number of firings of individual reactions : kj = poidev(expj , iseed)

• Step 7 : make the necessary changes in the molecular populations using the appropri-

ate stoichiometric parameters and reaction numbers
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• Step 8 : if negative numbers are not found, continue with the RRA; else discard the

step and use the initial species stored for that step in the temporary locations.

• Step 9 : calculate the noise : σj =
√
ajτ

• Step 10 : calculate the corrected expected number of reactions :

expj ′ = expj − σj

• Step 11 : calculate the new actual number of reactions :

nj = poidev(expj ′, iseed)

• Step 12 : make the necessary changes in the molecular populations.

• Step 13 : go to Step 1.

5.3 Results and Discussion

Discussed below are the results of simulations done for four different chemical systems.

In addition to the simulations done with the newly proposed RRA-Noise method, simu-

lations have also been done with the Stochastic Simulation Algorithm (SSA)28, 13 and the

approximate accelerated methods : the Gillespie’s Approximate Stochastic Algorithm

(GASA),7 the Gillespie-Petzold (G-P) method29 and the Binomial distribution based tau

(BD-τ ) method of Chatterjee et al..92 This section discusses the results of the simula-

tions for the different systems and provides a comparison of the efficiency and robustness

of the RRA-Noise method in comparison to the other methods. Specifically, what was

compared was (i) the means and the coefficient of variations (CVs) obtained for 500 sim-

ulation runs for each method, and (ii) the average CPU times and the number of steps for

a simulation obtained from the CPU times of the 500 simulation runs for each method.

This was done for all the five chemical system examples considered. The stability anal-

ysis of the newly proposed algorithm has been discussed for the system of first order

reactions and the oscillatory reaction model.
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5.3.1 The Carletti-Burrage Model

This reaction network was proposed by Carletti and Burrage.94 It has already been dis-

cussed in section 4.4 in chapter 4 of this thesis.

The Carletti-Burrage model is simulated by different methods which have been dis-

cussed earlier. In case of simulation by Gillespie’s Approximate Stochastic Algorithm

(GASA), we found that negative molecular numbers occurred for some species during

certain steps of the simulations. Thus, GASA was found to be unsuitable for the sim-

ulation of this model. Moreover, the binomial distribution based tau (BD-τ ) method of

Tian-Burrage91 could not be applied for this model, since there are some species which

take part in multiple reactions: a situation that the BD-τ method of Tian-Burrage is in-

capable of handling, making it technically non-applicable for such reaction networks.

Hence, only the methods that were successfully able to reproduce the simulation trajec-

tories are reported here. They are: the Stochastic Simulation Algorithm (SSA),28, 13 the

Gillespie-Petzold (G-P) method,29 the binomial distribution based tau (BD-τ ) method of

Chatterjee et al.,92 and our newly proposed method: RRA-Noise.

The error control parameter, ε, with a standard value of 0.03 was used for doing the

simulations with GASA and G-P (this value of ε has been the standard value employed

in previous reports),7, 29 while, in the case of the RRA-Noise, the value of ε has been

taken as 0.06. These ε values have been used for all the subsequent examples of the

chemical systems simulated by these methods. As mentioned earlier, the values of the

means (with their respective error bars) and the CVs reported in Figures 5.2a and 5.2b

have been calculated over an ensemble of 500 simulation runs, using a different seed

value for the random number for each run.

The comparisons of the means (with ± 1SD error bars) of the probability distributions

of some key species of the Carletti- Burrage model using SSA, G-P, the BD-τ method

of Chatterjee- Vlachos-Katsoulakis, and the RRA-Noise is shown in Figure 5.2a. The

coefficient of variation (CV) for the same species for the same set of simulation methods
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is shown in Figure 5.2b below.

(a) means

(b) CVs

Figure 5.2: The trajectories of the means and CVs [(a)-(d)] for the probability distributions of

the species DNA, DNA1, DNA2 and RNA using SSA (blue curve), G-P (green curve), BD-τ of

Chatterjee-Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) for the case of the
Carletti-Burrage model.
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Table 5.1: The average values of the CPU time (secs) and the number of steps for 500 simulations

taken by different simulation methods for the case of Carletti-Burrage model.

Simulation Methods SSA G-P BD-τ RRA-Noise
CPU time (secs) 5.029 14.970 40.327 4.234

Steps 33210 30905 16368 2854

The CPU time values in Table 5.1 show that the newly proposed RRA-Noise is sig-

nificantly faster than the G-P and the BD-τ methods, and faster than the SSA. This is

evident by the less number of steps taken by the RRA-Noise method. The overlap of

the trajectories of the means of the respective species in Figure 5.2a is an indicator of

good agreement between the different simulation methods. In the case of the BD-τ of

Chatterjee-Vlachos-Katsoulakis (magenta), it is found that the tail ends of the simulated

trajectories (for DNA, DNA1 and DNA2) are not within the ± 1SD error bars of the

SSA trajectories. The spikes in profiles of CVs for the same species in Figure 5.2b are a

signature of this deviation, which are not in agreement with the others. The occurrence

of the spikes is attributed to the increase in the standard deviation at the respective time

points. In case of the BD-τ method, the time steps are taken by employing a coarse grain

factor,92 f, taken as 2.0. It has been found that the smaller value of the coarse grain factor

serves to make the simulations more accurate. However, this also leads to an increase in

the CPU time. The increase in the value of f reduces the CPU time, but this now leads

to the loss of accuracy in the simulations. This is shown in Figure 5.3a and 5.3b, where

the simulations are performed by increasing the coarse grain factor, f, to 4.0. Figure 5.3a

and 5.3b depicts different (inaccurate) simulation trajectories obtained from the BD-τ of

Chatterjee-Vlachos-Katsoulakis at the reduced CPU time.
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(a) means

(b) CVs

Figure 5.3: The trajectories of the means and CVs [(a)-(d)] for the probability distributions of
the species DNA, DNA1, DNA2 and RNA using SSA (blue curve), G-P (green curve), BD-τ of

Chatterjee-Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) for the case of the

Carletti-Burrage model with an increase in coarse grain factor.
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On the other hand, in the case of the G-P method, the choice of SSA during the

simulations contributes to the increase in the CPU time. Thus, with the RRA-Noise

results lying within the SSA results in terms of ± 1SD error bar, it turns out that it

provides good results in terms of accuracy. This is a heartening result, especially since

the RRA-Noise is seen to perform considerably better than the BD-τ method, which had

been specifically developed to tackle the problem of negative populations in chemical

systems.92

5.3.2 The Simple Isomerization Reaction Model

This subsection discusses the simple isomerization reaction model. It has been discussed

in section 4.5 in chapter 4 of this thesis. The reaction model alongwith a table of param-

eters used for the simulation have been provided in chapter 4.

Like for the previous example, the simple isomerization reaction model has also been

simulated by different simulation methods. The comparisons of the means with ± 1SD

error bars and the CVs of the probability distributions for the species X1, X2, X3 by using

the SSA, the G-P, the BD-τ method of Chatterjee-Vlachos-Katsoulakis, and the RRA-

Noise is shown in Figure 5.4. Their trajectories have been calculated over an ensemble

of 500 simulation runs. It was found that the simulation of this model by GASA leads

to negative numbers, making it inapplicable for comparisons with other methods. The

model system has been simulated by the BD-τ method with a coarse grain factor, f,

equal to 2.0. It was seen that while the simulated profiles are accurate for this coarse

grain factor value, the simulation also takes excess CPU time of 59.479 seconds. An

attempt to reduce this CPU time by increasing the value of f to 50.0 gives totally different

trajectories, as shown in Figure 5.5. Furthermore, this also comes at the risk of obtaining

negative numbers for the species X2. Thus, for this example, the RRA-Noise again scores

over BD-τ : a method that had been developed specifically in order to sort out the issue

of negative numbers.
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Figure 5.4: The trajectories of the means with ± 1SD error bars [(a)-(c)] and CVs [(d)-(f)] for the

probability distributions of the species X1, X2, X3 using SSA (blue curve), BD-τ of Chatterjee-

Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) for the case of the simple iso-

merization model.

Table 5.2: The average values of the CPU time (secs) and the number of steps taken by different

simulation methods for the case of the simple isomerization reaction model.

Simulation Methods SSA G-P BD-τ RRA-Noise
CPU time (secs) 83.919 33.131 59.479 35.151

Steps 68468 36126 34895 27826

Admittedly, the G-P method is marginally better in terms of accuracy in comparison

to RRA-Noise, and the two methods are found to be equally accurate, which indicates

that the G-P is the most effective method for the simulation of this particular chemical

system. However, the RRA-Noise is only slightly less efficient, which indicates that it

would be almost as effective as the G-P in simulating this system. It takes less number

of steps than observed for all of the other methods (Table 5.2). It is also found that the

trajectories obtained from the RRA-Noise simulations are within the SSA results from

the viewpoint of ± 1SD error bars. Therefore, this example also showcases the efficiency

and reliability of RRA-Noise at simulating a chemical system that is susceptible to the

problem of negative numbers.
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Figure 5.5: The trajectories of the means [(a)-(c)] and CVs [(d)-(f)] for the probability distribu-

tions of the species X1, X2, X3 using SSA (blue curve), BD-τ of Chatterjee-Vlachos-Katsoulakis

(magenta curve) and RRA-Noise (red curve) with f = 50 for the case of the simple isomerization

model.

5.3.3 Simple Model System

The simple model system of two reactions discussed here was used by Cao et al.95 to

test the reliability and efficiency of their modified Poisson tau leap method. It consists of

the following set of reactions:

R1 : X1
c1−→ X2

R2 : X2
c2−→ X3

where X1, X2, X3 are the reacting species and c1, c2 are the rate constants of the corre-

sponding reactions.
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Table 5.3: The values of the rate constants of the reactions and the initial species population for a

simple model of two reactions.

Parameters used in Numerical values
the simulation of the parameters

c1 10.0
c2 0.1
X1 9
X2 20000
X3 0

The study of the associated rate constants of the two reactions (c1 = 10, c2 = 0.1)

and the corresponding reactant species (X1 = 9, X2 = 20 000) indicates that there is

a possibility of getting negative numbers for the X1 species. This fact gets conrmed

when the G-P method is seen to drive the X1 species to unrealistic numbers during the

simulations. The same is seen to be true for GASA. Hence, apart from the SSA, only

BD-τ and RRA-Noise have been considered. The results are shown in Figure 5.6 and

Table 5.4 below.

In case of species X1, it was observed that it falls off rapidly and afterwards does

not demonstrate any fluctuation. Hence, the time trajectories of the X1 species are not

reported in Figure 5.6. What is shown are the time trajectories of the X2 and the X3

species. For these two species, the values shown in Figure 5.6 indicate that there is

considerable agreement between all the simulation methods.
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Figure 5.6: The trajectories of the means with ± 1SD error bars [(a) and (b)] and the CVs [(c)

and (d)] for the probability distributions of the species X2 and X3 using SSA (blue curve), BD-τ

of Chatterjee-Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) for the case of

the simple model system.

Table 5.4: The average values of the CPU time (secs) and the number of steps taken by different

simulation methods for the case of the simple model system.

Simulation Methods SSA BD-τ RRA-Noise

CPU time (secs) 8.298 16.794 7.257

Steps 19633 9814 726

The mean trajectories of X2 and X3 are within the ± 1SD error bars of the SSA

trajectories. The significantly less number of steps contribute to the CPU time perfor-

mance of the RRA-Noise. The simulated trajectories and the CPU times tabulated in

Table 5.4 indicate the effectiveness of the RRA-Noise. More importantly, it is again seen

to be faster than the BD-τ method. Like earlier examples, any attempt to increase the

efficiency of BD-τ leads to loss of accuracy in the results.
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5.3.4 Model of First Order Reactions : Simulation and Numerical

Stability

In this section, the simulation along with its numerical stability of the model of four

unimolecular reactions is discussed. This model was used by Chatterjee et al.92 to test

their BD-τ method.

R1 : X1
c1−→ X2

R2 : X2
c2−→ X3

R3 : X3
c3−→ X2

R4 : X2
c4−→ X1

here, X1, X2, and X3 are the species taking part in four different reactions and c1, c2, c3

and c4 are the rate constants of these reactions.

Table 5.5: The values of the rate constants of the reactions and the initial species population for

first order reactions.

Parameters used in Numerical values
the simulation of the parameters

c1 2.0
c2 1.0
c3 2.0
c4 1.0
X1 20000
X2 0
X3 0

In this model, which consists of all first order reactions, the species X2 takes part in

several of the reactions. This makes the reaction network more complicated in compari-

son to the earlier example pertaining to the simple isomerization reaction model.

As shown in Figure 5.7, there is good agreement between the means and CVs of the

probability distributions for the species X1, X2 and X3 obtained by using the SSA, the

BD-τ method of Chatterjee- Vlachos-Katsoulakis and RRA-Noise. Unlike the previous
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two examples, the G-P method gives rise to negative numbers during the simulations as

does GASA. Hence, they are not included for the comparative study along with the oth-

ers. As in all the previous cases, the time profiles of all the species have been calculated

over an ensemble of 500 different simulation runs.

Figure 5.7: The trajectories of the means with ± 1SD error bars [(a)-(c)] and the CVs [(d)-(f)]

for the probability distributions of the species X1, X2, X3 using SSA (blue curve), BD-τ of

Chatterjee-Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) for the case of the

model of first order reactions.

Table 5.6: The average values of the CPU time (secs) and the number of steps taken by different

simulation methods for the case of the model of first order reactions.

Simulation Methods SSA BD-τ RRA-Noise

CPU time (secs) 18.141 56.224 9.557

Steps 199180 100001 3640

The average CPU times shown in Table 5.6 indicates that RRA-Noise is computa-

tionally more efficient than the other methods. It is almost twice as fast as the SSA. It

also indicates that the number of steps taken by RRA-Noise are very much less than other

methods. The low computational efficiency of BD-τ can be attributed to the small size

of the time steps, leading to a large number of steps. As before, this can be changed by

increasing the value of the coarse grain factor (2.0), but that, as in the previous examples,
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leads to a significant loss of accuracy. This is illustrated in Figure 5.8, showing the results

of simulations where the coarse grain factor had been increased to 5000.0. As Figure 5.8

indicates, the mean and the CVs for the different species becomes far less accurate for

the BD-τ case in comparison to the other methods. The CPU values corresponding to

the aforementioned f values are given in Table 5.7.

Figure 5.8: The trajectories of the means [(a)-(c)] and the CVs [(d)-(f)] for the probability

distributions of the species X1, X2, X3 using SSA (blue curve), BD-τ of Chatterjee-Vlachos-

Katsoulakis (magenta curve) with f = 5000 and RRA-Noise (red curve) for the case of the model

of first order reactions.

Table 5.7: The average values of the CPU time (secs) taken by different simulation methods for

the case of the model of first order reactions with f = 5000.

Simulation Methods SSA BD-τ RRA-Noise

CPU time (secs) 18.141 1.093 9.557

The results in Figure 5.9 provide a good match of simulation methods with each

other in terms of ± 1SD error bars. Overall this model of first order reactions is a classic

example where, in addition to the accuracy, the CPU times of the corresponding methods

are of prime importance. And here, as in the previous cases, the newly proposed RRA-

Noise again ends as the most favorable approximate simulation method.
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The numerical stability of the RRA-Noise is discussed for this example by taking

multiple runs and further benchmarking them against the SSA. The SSA is simulated

over an ensemble of 20 000 (black curve) simulation runs. The RRA-Noise is simulated

over an ensemble of 100 (red curve), 500 (green curve), 1000 (blue curve), 5000 (brown

curve) and 10 000 (orange curve) simulation runs. It has been found that with the increase

in the number of realizations, the RRA-Noise gets converged to the SSA trajectories with

the decrease in the error. The error between the trajectories of the SSA and the RRA-

Noise has been calculated at some chosen discrete time points. The Figure 5.9 shows

the trajectories ((a)-(c)) of the species along with their closely monitored behavior ((d)-

(f)) on a different scale. The Table 5.8 provides the absolute errors for the different

realizations at specific time points.
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Figure 5.9: The trajectories of the means with ± 1SD error bars [(a)-(c)] and the same trajectories

on a different scale [(d)-(f)] simulated using RRA-Noise with 100 (red curve), 500 (green curve),

1000 (blue curve), 5000 (brown curve), 10000 (orange curve) runs and SSA with 20000 runs

(black curve) for the case of the model of first order reactions.
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Table 5.8: The absolute errors between the trajectories of the SSA and the RRA-Noise for differ-

ent runs at discrete time points.

Time points with 100 runs
1 17.779 2.922 14.856
2 0.294 0.932 0.771
3 9.910 8.100 0.189
4 1.672 5.550 5.878

Time points with 500 runs

1 9.663 5.020 4.642
2 0.577 2.640 4.063
3 1.826 1.895 1.930
4 0.347 2.411 0.063

Time points with 1000 runs
1 8.577 4.830 3.746
2 0.649 1.958 4.608
3 0.672 0.032 1.359
4 0.035 0.580 1.455

Time points with 5000 runs

1 8.379 4.153 4.225
2 1.443 0.923 2.520
3 0.326 2.344 0.672
4 0.212 0.891 1.321

Time points 10000 runs
1 7.918 3.826 4.092
2 0.728 0.861 1.867
3 0.437 1.230 0.332
4 0.145 0.885 1.260

It is found that with the increase in the number of runs, the absolute error tends to

decrease, thereby converging towards the SSA. The trajectory of RRA-Noise with 10

000 runs (orange) gets closer to the SSA profile, relative to the curve which has 100 runs

(red). This behavior can be observed in the Figure 5.9 ((d)-(f)), where wide fluctuations

are observed for the curve with 100 runs in comparison to those with 10 000 runs.
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5.3.5 Oscillatory Model System : Simulation and Numerical Stabil-

ity

The simulation as well as the numerical stability of the oscillatory reaction model, namely

the Oregonator model, will be discussed in this section. This model was simulated by

Daniel Gillespie by using the SSA. The simulation of this chemical system by GASA

leads to negative numbers, hence the results with the GASA have not been discussed

further. The BD-τ of Chatterjee-Vlachos-Katsoulakis has been found to be inapplicable

for this particular system. The rest of the methods : SSA, G-P and RRA-Noise have been

discussed below. The oscillatory nature of this model poses a challenge to methods that

claim to solve the problem of negative numbers.

The mean trajectories are shown in Figure 5.10 (a)-(c), while Figure 5.10 (d)-(f) show

the corresponding trajectories of the CVs. The behavior of the trajectories in the Figure

5.10 (a)-(c) by the different simulation methods underlines the oscillatory nature of the

chemical system. The trajectories of the G-P (green curve) show a slightly out-of-phase

behavior relative to the others. However, the trajectories of SSA (blue curve) and RRA-

Noise (red curve) are found to be in good agreement. This is observed to a good extent

in all the curves.
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Figure 5.10: The trajectories of the means with ± 1SD error bars [(a)-(c)] and the CVs [(d)-(f)]

for the probability distributions of the species Y1,Y1,Y3 using SSA (blue curve), G-P (green curve)

and RRA-Noise (red curve).

Table 5.9: The average values of the CPU time (secs) and the number of steps taken by different

simulation methods for the case of the Oregonator model.

Simulation Methods SSA G-P RRA-Noise

CPU time (secs) 70.069 14.976 35.224

Steps 694868 16542 29125

The comparison of the CPU times of different methods in Table 5.9 indicates that

the G-P is more efficient than the rest of the methods. However, their simulated profiles

indicates a slight outward shift relative to the trajectories of other methods. It is also

observed that the G-P trajectories are not within the SSA trajectories in terms of ± 1SD

error bars. On the other hand, the RRA-Noise is found to take relatively more steps, but

is able to reproduce the trajectories accurately. More importantly, no negative molecular

numbers have been found during the simulations.

The numerical stability of this model system is discussed along the lines similar to
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those of the previous example. The given model is simulated by the SSA using an en-

semble of 20 000 (black curve) simulation runs, while the RRA-Noise is used for the

simulation over an ensemble of 100 (red curve), 500 (green curve), 1000 (blue curve),

5000 (brown curve) and 10 000 (orange curve) simulation runs. Unlike the previous ex-

ample, this is an oscillatory model with no steady state. It is found that the absolute error

at some discrete points decreases with an increase in the number of realizations of the

RRA-Noise.

It has been found that with the increase in the number of realizations, the RRA-Noise

gets converged to the SSA trajectories with decrease in the error. The error between the

trajectories of the SSA and the RRA-Noise has been calculated at some chosen discrete

time points. Figure 5.11 shows the mean trajectories ((a)-(c)) of the species, while Table

5.10 provides the absolute errors for the different realizations at specific time points.

Figure 5.11: The trajectories of the means [(a)-(c)] simulated using RRA-Noise with 100 (red

curve), 500 (green curve), 1000 (blue curve), 5000 (brown curve), 10000 (orange curve) runs and

the SSA with 20000 runs (black curve), for the case of the Oregonator model.

In Figure 5.11, it is observed that the simulation by the RRA-Noise with 100 runs

(red curve) shows a downward and upward shift relative to the SSA trajectory with 20

000 runs (black curve). The trajectory with 10 000 runs (orange curve) gets substantially

closer to the exact SSA trajectory. The variation in the absolute error in Table 5.10 is
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seen as a signature of the highly oscillatory character of the chemical system.

Table 5.10: The absolute errors between the trajectories of the SSA and the RRA-Noise for

different runs at discrete time points.

Time points for 100 runs

1 11.396 161.357 18.711
2 22.308 48.094 194.045
3 2.155 11.085 160.426
4 0.985 52.447 43.190

Time points for 500 runs

1 3.174 6.695 17.408
2 41.302 111.648 77.653
3 11.188 72.191 49.520
4 49.485 41.032 29.818

Time points for 1000 runs
1 2.001 21.669 8.416
2 30.584 109.157 22.778
3 7.388 56.546 34.213
4 49.250 38.105 94.080

Time points for 5000 runs

1 0.979 47.324 2.136
2 6.969 61.696 5.923
3 17.139 9.866 61.658
4 22.457 24.735 84.764

Time points for 10000 runs
1 1.304 14.978 8.993
2 3.192 9.973 0.945
3 13.437 26.698 47.993
4 5.367 25.048 10.685

Overall, from the simulations of the five different examples, discussed in the sections

above, it can be speculated that the newly developed method, which uses the RRA and

accounts for noise during the simulation solves the problem of negative populations. In

all the examples considered, it was seen that, unlike in the RRA-Noise case, one has to

find the best possible value of the coarse grain factor for the BD-τ method of Chatterjee

et al. in order to achieve the necessary accuracy, a choice that usually led to a loss of

efficiency for the method.
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The examples that have been chosen and discussed in the current work were those

that highlight difficult cases where the existing state-of-the-art methods either fail or per-

form with lower efficiency. However, it is to be noted that the current approach is not

a general theoretical modification in stochastic simulations for correcting the number of

firings for every leap during the simulations, but is a remedy to the negative population

problem for specific leaps where the reactant population becomes negative due to the

wrongly calculated number of firings, for those leaps, by existing methods. Therefore,

it is still possible that the current method, while clearly having been demonstrated to

have performed well for the examples considered, might also provide negative numbers

for reactant population in certain cases, and thus fail for certain chemical systems. It

is, nevertheless, expected, that the current recipe for correcting the problem of nega-

tive populations would work in a large majority of cases, as the current set of examples

demonstrates.

5.4 Conclusions

In order to achieve a speed-up over the SSA, various approximate accelerated methods

have been developed. However, such approaches are fraught with problems of accuracy,

problems that become more acute when dealing with chemical systems that deal with

low molecular populations. In such cases, there are instances where negative molecular

numbers have been obtained during the simulations. In the current work, we have sought

to solve this problem by introducing the novel concept of accounting for the noise ob-

tained for the number of firings of each reaction in a given time step. We have tested out

this idea by combining the noise accounting with the accelerated method : the Repre-

sentative Reaction Approach (RRA) that we had developed earlier.50 This new method,

termed as RRA-Noise, has been tested on a number of different examples, ranging from

simple unimolecular system to oscillatory chemical system. It has been found that the
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RRA-Noise is effective not only in terms of accuracy but also in efficiency, in compari-

son to state-of-the-art approximate accelerated methods such as Gillespie’s Approximate

Stochastic Algorithm (GASA),7 Gillespie-Petzold (G-P),29 BD-τ of Chatterjee et al..92

This newly developed method has the added virtue of being quite simple and easy to

code. The discussion pertaining to the stability of algorithm emphasizes the robustness

of newly proposed method. Furthermore, for the newly proposed method, there is no

necessity to change the value of error control parameter for every new chemical system

that has to be simulated. Finally, it may also be mentioned that the notion of accounting

for noise during a simulation may find applications in other fields of interest as well.
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CHAPTER 6

Stochastic Simulation of Chemical

Kinetics using a New Strategy to

Choose the Error Control Parameter

Anything you dream is fiction,and

anything you accomplish is science,

the whole history of mankind is

nothing but science fiction.

-Ray Bradbury
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Abstract

Computational modeling has become an indispensible tool for studying kinetic behavior,

especially after advances in approximate accelerated stochastic methods has allowed the

combination of efficiency and accuracy in dealing with chemical systems. However,

all accelerated approaches rely on the choice of an error control parameter, ε, in order

to determine the size of the time step. The choice of ε in these methods is usually

arbitrary and restricted, which sometimes leads to an adverse effect on the results of the

simulations. In the current work, we propose a novel simulation method by means of

which ε can be chosen in both a flexible and logical manner. The simulation results from

the methods proposed in the current study have been found to be on par, or better, than

the other state-of-the-art accelerated simulation approaches.
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6.1 Introduction

The interdisciplinary field of computational biology aims to model the complex in-

teractions within biological systems based on some experimental observations. These

interactions are modeled mathematically by a set of coupled, first-order, ordinary differ-

ential equations (ODEs), known as the reaction rate equations (RREs). However, with the

advent of advanced experimental techniques, it has been confirmed that stochasticity is of

paramount importance in biological systems. The stochasticity and the subsequent fluc-

tuations33, 120, 126 have been attributed to the presence of a very small number of molecules

in cellular systems. The RREs, also termed as the deterministic model, which consider

the time evolution as a continuous process, fail to take into account the stochastic fluctu-

ations inherent in such systems. This issue has been more succesfully addressed by the

kinetic Monte Carlo54 - based Doob-Gillespie algorithm.117, 118, 28, 13 This probabilistic

model, also known as the stochastic simulation algorithm (SSA),13 has been widely em-

ployed for studying the dynamical behavior of reactants, intermediates and products for

a given reaction network. The SSA simulates a single reaction firing from the entire reac-

tion network in each time step until some desired time has been reached. The simulation

of every successive reaction event produces accurate realizations of the time trajectories,

but in case of realistic cellular systems, the simulations are very slow and computation-

ally expensive. Several different methods have been subsequently developed as poten-

tial improvements to the SSA, such as the next reaction method,73 the optimized direct

method74 and the sorting direct method.75 Other than this, Barrio et al. have generalized

the SSA to the delay stochastic simulation algorithm (DSSA),81 in order to consider the

time delays in addition to the discreteness and intrinsic noise. However, all these meth-

ods have not been entirely successful in their attempt to reduce the computational load

of the SSA. More approximate methods have therefore been developed as alternatives to
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the exact SSA approach. One set of such approaches corresponds to the hybrid meth-

ods,101 which have been proposed for the multiscale simulation of chemically reacting

systems. These methods couple the RREs, or the chemical Langevin equation,25 with the

SSA. The reaction network is partitioned into the subsets of fast reactions and slow re-

actions. The fast reactions (or the species with larger molecular numbers) are simulated

by deterministic models, while the slow reactions (or the species with smaller molecu-

lar numbers) are simulated by the SSA. In order to accommodate the species in the fast

reactions having a small number of molecules, the multiscale SSA with the partial equi-

librium assumption86 and the slow-scale SSA85 have been employed. However, these

methods, while having achieved some success at reducing the computational load of the

SSA, have also become more unweildy, yielding complicated algorithms, in contrast to

the elegant SSA approach.

Another approach attempts to reduce the computational load of the SSA by sacrific-

ing some of the accuracy of the simulations. In one such attempt, Gillespie introduced

the idea of Gillespie's Approximate Stochastic Algorithm (GASA).7 In this method, by

taking a large enough pre-selected time step (leap), several firings of each reaction are

allowed to occur. The time step is derived from the leap condition, which ensures that

there is no significant variation in the propensity functions (the product of rate constant

and the number of reactant combinations) of the individual reactions. The individual

reaction events are sampled from the Poisson Distribution. Further modifications to the

GASA have also been proposed, which include the Gillespie-Petzold (G-P) method,29 the

implicit tau-leaping method of Rathinam et al.,84 the efficient step size method of Cao et

al.,104 the N-leap method of Xu and Lan,96 the representative reaction approach (RRA)50

and a course-time-step method.134 Tiejun Li135 has done the convergence analysis of

explicit tau-leaping methods by using the stochastic differential equations. Anderson

et al.136 have provided the error analysis of tau-leaping methods. However, the use of

Poisson random numbers to sample the reaction events of individual reactions may give

rise to negative numbers during the simulations by the above mentioned methods. This
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problem is partially solved by methods that employ binomial distribution based random

numbers. These include the leaping methods of Tian-Burrage,91 Chatterjee et al.,92 the

multinomial tau leap method,93 the modified binomial leap method,94 the generalized bi-

nomial leap method127 and the recently proposed RRA modified methods51 that use the

SSA and the binomial distribution.

In all of the above-mentioned accelerated leaping methods, the calculated time step

satisfies the leap condition,7, 29 with ε as an error control parameter. While this approach,

in general, increases the size of the time step over the time step obtained with the SSA,

it is to be noted that the choice of the value of ε in such methods is completely arbitrary.

The ε chosen for the simulation of one particular chemical system might not be a good

choice for the simulation of some other system. The choice of some other value of ε may

or may not give reliable simulation results. The numerical variation in the value of ε also

leads to different simulation results in terms of accuracy and computational time.

Thus, an accelerated stochastic approach which makes use of a sound and flexible

way to choose an error control parameter would certainly have an edge over the con-

ventional approximate methods that all employ the ε. In this work, a new approximate

accelerated method based on such a notion has been proposed. This has been achieved by

taking our recently developed representative reaction approach (RRA)50 and combining

it with the idea of a coupled harmonic oscillator (CHO) as a representation of the chem-

ical system in question. As the following sections of the manuscript will demonstrate,

this original approach leads to an approximate simulation algorithm that chooses ε based

on mathematical considerations. It provides a viable method for successfully simulating

chemical systems with accuracies and speeds comparable to, and, in some cases, better

than the existing approximate methods. More importantly, it has also been found to solve

the problem of negative populations for certain chemical systems.

The rest of the paper is organized as follows : In the Methodology section, we have
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discussed in brief the framework of the representative reaction approach (RRA), the con-

cept of representing the system as a coupled harmonic oscillator, a mathematical strat-

egy to choose the error control parameter and the methodology of the newly proposed

method along with the steps of execution. In Results and Discussion section, simulations

of different examples which confirm the reliability and efficiency of the newly proposed

approach are discussed. The conclusions are provided in the last section.

6.2 Background

In general, the SSA can be used to simulate a well-stirred mixture, in thermal equilibrium

at temperature T, of N molecular species {S1, ..., SN} which are interacting with each

other through M chemical reactions {R1, ..., RM}. Every reaction is characterized by

a quantity called the propensity function aj(x), which is the product of the number of

reactant combinations with the rate constant for a given reaction. The other property

of every reaction is the state change vector νi ≡ {ν1i, ..., νNi}. Here, ai(x)dt gives the

probability that the reaction Ri will occur in the next infinitesimal time interval [t, t+dt),

and νij is the algebraic change in the number of molecules between the reactant and the

product for the Ri reaction. For more details, please see the original papers published by

Gillespie and co-workers on this approach.28, 13

We have recently proposed the representative reaction approach (RRA)50 in an at-

tempt to reduce the computational load of the SSA. In this simulation technique, the

chemical system which consists of many reactions has been represented by a single,

representative reaction (RR) 2A −→ B. Hence, this method has been termed as the repre-

sentative reaction approach (RRA). Like other individual reactions, the RR 2A −→ B is

characterized by a propensity function, a0(x), which is taken as the sum of the propensity

functions of all the individual reactions, and the rate constant, C0, which is the weighted

average of all the rate constants. Since a0(x) is the propensity function of the RR 2A

−→ B, and the rate constant of this reaction is also known, one can then also determine

134



Chapter 6

the amount of the hypothetical species x0 corresponding to the reactant A in the RR 2A

−→ B. Considering the system to be comprised of this single representative reaction,

the time step, τ , for any given iteration can then be determined. The reaction numbers

associated with each individual reaction in the system are then sampled from the Poisson

distribution, with ai(x)τ as the expected number of reactions of reaction Ri in the time

step τ .

The RRA has been found to be successful in simulating all types of chemical sys-

tems.50 Furthermore, in more recent work, we have demonstrated that employing the

RRA in conjunction with the Binomial distribution leads to a potential solution to the

problem of negative populations.51

6.3 R CHO : Representing the System as a Coupled Har-

monic Oscillator

As mentioned in the previous section, in our recently proposed method, the RRA, the

chemical system to be simulated is characterized by two fundamental quantities, namely

- the propensity function, a0(x), and the reaction rate constant, C0. What is proposed

as a new approach is to further represent the system as two bodies of equal masses, m,

attached to three springs, each with a spring constant, k : the coupled harmonic oscillator

(CHO). Representing the system as a CHO will, as shown in subsequent sections, allow

the determination of the time step, τ , for any given iteration.

For this representative CHO, the spring constant, k is correlated to a0(x), the propen-

sity function of the chemical system. The reasoning behind this is as follows : the value

of k governs the dynamical behavior of the coupled mass-spring system, just as the value

of a0(x) is instrumental in deciding the size of the time step, τ , in the chemical system.

Furthermore, the mass, m, which measures the amount of matter contained in the system,
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is a fundamental property of the CHO. In continuing the analogy with the chemical sys-

tem, one can then make the correlation of m with the reaction rate constant, C0, which is

a specific, characteristic property of the chemical system.

Therefore, in order for this CHO to represent the chemical system, the fundamental

quantities that characterize the CHO : its k and m, can be correlated to the quantities

a0(x) and C0 respectively of the chemical system.

Now, the angular frequency, ω, of the CHO is as follows :

ω =

√

k

m
(6.1)

For the specific CHO that represents the chemical system, the angular frequency, ω

now is equated to

ω =

√

a0
C0

(6.2)

This new representation of the chemical system by a CHO, and the corresponding

correlation between the different quantities in the system, is illustrated in Figure 6.1.

Figure 6.1: A block diagram showing the correlations between the chemical system to be simu-

lated, the Representative Reaction Approach (RRA) where the entire chemical system is repre-

sented as a single reaction, and the relation of the fundamental quantities of this representative

single reaction chemical system with the quantities of the system when represented as a coupled

harmonic oscillator (CHO).

The value of having a CHO represent the chemical system is that this provides an

136



Chapter 6

avenue for determining the time step of the system, for any given iteration. This is

elaborated upon in the next section.

6.4 Mathematical Recipe

In case of the Coupled Harmonic Oscillator (CHO), the displacement, x, is given by :

x(t) = Acos(θ + φ1)−Bsin(θ + φ2) (6.3)

Where, θ = ωt

Here, A and B are the amplitudes of the oscillations, ω is the angular frequency, φ1

and φ2 are the phase angles and t is the cumulative elapsed time.

Considering a representative CHO that has A = 1, B = 1 and φ1 = φ2 = 0, we have

x(t) = cos(θ)− sin(θ) (6.4)

Now, θ = ωt, and, ω, if we were to employ a CHO as a representative of the system,

would be given by the equation : ω =
√

a0
C0

, as discussed in the previous section.

Hence,

θ =

√

a0
C0

t (6.5)

Therefore, for any given iteration, there would be a specific value for ω, depending

on the values of a0(x) and C0 at that given iteration. Therefore, at every time-step, the

system would be represented by a specific CHO, with a specific angular velocity, ω,

different from the preceding and the succeeding time step.

The objective of representing the chemical system by a CHO is to obtain the value

of the time step, τ , or the size of the leap, for that given iteration in the chemical sys-

tem. This is done by determining a specific value of θ, by following the mathematical

procedure described in the next paragraph. Once θ is determined, the value of the time t

corresponding to that value of θ can be determined from Eq. (6.5), as t =
√

C0

a0
θ. This

t value can be considered to be τ if the determined value of θ represents a small change
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in the dynamical behavior of the system consistent with Gillespie's leap condition:7 the

time evolution during the stochastic simulation of a chemical system should proceed in

such a way that the propensity function of each chemical reaction in the system remains

nearly unchanged while going from one step to another.

How the specific value of θ, discussed above, is obtained is described in the following

few paragraphs.

In dynamical systems theory, the concept of an Arnold tongue137, 138 is used to study

the region in the space of parameters. It was used earlier to study the dynamical systems

on the circle. The resulting equation of the dynamical behavior is termed as the circle

map equation.137, 138 The circle map is given by :

θn+1 = θn + Ω−
K

2π
sin(2πθn) (6.6)

Here, θ is the polar angle whose value lies between 0 and 1, K is the coupling strength

and Ω is the externally applied frequency.

The Jacobian of the circle map is given by :

∂θn+1

∂θn
= 1−Kcos(2πθn) (6.7)

In our case, the idea of Arnold tongue137, 138 is applied to the system of the coupled har-

monic oscillator (CHO). The parameters in the circle map equation, namely, the coupling

strength, K and the externally applied frequency, Ω are replaced by the parameters : total

propensity function, a0(x) and the angular frequency, ω of the system in question. Thus,

the resulting equations become :

θn+1 = θn + ω −
a0(x)

2π
sin(2πθn) (6.8)

∂θn+1

∂θn
= 1− a0(x)cos(2πθn) (6.9)

In order to ensure that the Leap Condition is satisfied, it is hypothesized that the

subsequent values of θ change by a minuscule amount. It turns out that the small change

(θn+1 ≈ θn) in their values introduces an error, viz. δ1 = |θn+1 − θn|. The proximity in
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the values of θ makes the change in θn+1 w. r. t. θn, i. e., δ2 =
∂θn+1

∂θn
, small. These small

changes introduces errors. Since these random errors follows the normal distribution, the

errors δ1 and δ2 are approximated by random deviates that follow a normal distribution.72

Hence, the modified equations become :

θn =
1

2π
sin−1

[

2π

a0(x)
(ω + |δ1|

]

(6.10)

θn =
1

2π
cos−1

[

1− δ2
a0(x)

]

(6.11)

These values of θn are further used for calculating the time step, τ for any iteration as

given below :

τ =

√

C0

a0
θn (6.12)

6.5 Methodology

For any given iteration, the time step, τ , is calculated from Eq. (6.12), with θn calculated

from Eq. (6.11) for the specific a0(x) and the C0 values determined for that particular

step. Next, the time step, τ with θn from Eq. (6.11), is used for the calculations of the

expected number of reaction events, aiτ , of each reaction, followed by the sampling of

the reaction numbers by using the Poisson probability distribution.72 Finally, the amount

of the reactants in the chemical system is updated according to the stoichiometry. In case

any negative molecular numbers are obtained during the simulations, the time step, τ is

recalculated using the θn value obtained from Eq. (6.10) for the same values of a0(x) and

C0 for that particular step. The rationale behind using Eq. (6.10) is that it gives relatively

small values of the time step than that obtained using Eq. (6.11). Thus, it shields the al-

gorithm form violating the Leap Condition and also ensures that only positive molecular

numbers are obtained during the simulations. The time steps obtained from Eq. (6.11)

are fairly large, which helps to increase the efficiency of the simulations. In case of oc-

currence of negative numbers (or subsequent loss of accuracy) a switch to Eq. (6.10)

gives time steps relatively small. These small time steps ensures the simulations are
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accurate. Thus, the occasional shifts to these two regimes maintain the efficiency and

accuracy of the simulations. More importantly, unlike other accelerated methods this has

been achieved without any arbitrary choice of the error control parameter.

6.6 Steps for the Implementation of RRA CHO

Based on the discussion above, the implementation steps for RRA CHO are outlined as

follows :

• Step 1 : input the initial number of species and the rate constants of the constituent

reactions; initialize the counters and the random number generators to a seed value

and transfer the initial number of species to some temporary locations (variables).

• Step 2 : calculate the propensity functions : {a1, ..., aM} the sum of the propensity

functions : a0(x) =
∑M

j=1 aj(x)

• Step 3 : calculate the rate constant : C0 =
∑M

j=1

(

aj (x)

a0(x)

)

cj

• Step 4 : calculate the parameter : θn = 1
2π cos

−1
[

1−δ2
a0(x)

]

,

where δ2 = gasdev(iseed) is a normal (Gaussian) random deviate

• Step 5 : calculate the time step : τ =
√

C0

a0
θn

• Step 6 : calculate the expected number of reactions : ni = aiτ

• Step 7 : use the Poisson random number generator to find the kis, the actual number

of reactions for the individual reactions :

ki = poidev(ni, iseed)

• Step 8 : make the necessary changes in the molecular population using the appropriate

stoichiometric parameters and reaction numbers

• Step 9 : if negative numbers are not found, go to step (2); else discard the step and use

the initial species stored for that step in the temporary locations.
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• Step 10 : calculate the parameter : θn = 1
2π sin

−1
[

2π
a0(x)

(ω + |δ1|
]

, where δ2 = gas-

dev(iseed) is a normal (Gaussian) random deviate

• Step 11 : follow the steps from (5)-(9)

• Step 12 : go to step (2)

6.7 Results and Discussion

The newly proposed method discussed in the previous section has been employed for

three different examples that are discussed below. In order to compare their accuracy and

efficiency with other state-of-the-art methods, the three examples have also been studied

with the Stochastic Simulation Algorithm (SSA), Gillespie's Approximate Stochastic Al-

gorithm (GASA),7 Gillespie-Petzold (G-P) method29 and the Binomial distribution based

tau leap (BD-τ ) method of Chatterjee et al..92

6.7.1 Four Reaction Model

The Four Reaction Model7 consists of the following set of reactions :

R1 : X1
c1−→ φ

R2 : 2X1
c2−→ X2

R3 : X2
c3−→ 2X1

R4 : X2
c4−→ X3

Here, X1, X2 and X3 are the species taking part in the different reactions; while c1, c2,

c3 and c4 the rate constants for the respective reactions.

The numerical values of the initial molecular species and the rate constants of the

reactions are given in Table 6.1.
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Table 6.1: The values of the rate constants of the reactions and the initial species population for

the four reaction model.

Parameters used in Numerical values
the simulation of the parameters

c1 1.0
c2 0.002
c3 0.5
c4 0.04
X1 10000
X2 0
X3 0

The simulated trajectories of the first two moments of the probability distributions by

different stochastic simulation methods : the SSA (Blue), the Gillespie’s Approximate

Stochastic Algorithm (GASA) (Green), the Gillespie-Petzold (G-P) (Magenta) as well as

the newly proposed RRA CHO (Red) are depicted in Figure 6.1.

142



Chapter 6

Figure 6.2: The trajectories of the means [(a)-(c)] and of the CVs [(d)-(f)] for the probability

distributions of the species X1, X2, X3 obtained over 100 simulation runs of (blue curve), GASA

(green curve), G-P (magenta curve), and RRA CHO (red curve).

The error control parameter, ε, with a standard value of 0.03 was used for doing

the simulations with GASA and G-P. The values of ε are the standard values that have

been employed by the respective methods.7, 29 These ε values have been used for all the

subsequent examples simulated by these methods in this manuscript. The values of the

means and the CVs in Figure 6.2 are calculated over an ensemble of 100 simulation runs.

Figures 6.2 (a-c) show the time evolution of the first moment of the probability dis-

tribution : the mean for the different species, using the simulation methods mentioned

above. Likewise, Figures 6.2 (d-f) show the time evolution of the second moment of the

probability distribution : the Coefficient of Variation (CV). The trajectories of the means

in the Figures 6.2 (a-c) obtained by different simulation methods are in good agreement

with each other. However, the trajectories of the CVs in Figures 6.2 (d-f), obtained by

GASA and G-P, are not on par with those obtained by other simulation methods, namely

- the SSA and RRA CHO. This loss of accuracy in simulations by the GASA and G-P

methods is attributed to the larger time steps for the iterations, and thus, in their failure
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Table 6.2: The average values of the CPU time (secs) taken by different simulation methods for

the four reaction model.

Simulation Methods SSA GASA G-P RRA CHO
CPU time (secs) 9.906 0.270 0.311 4.935

to obey the leap condition.

The CPU times of different simulation methods, collected in Table 6.2, show that for

this example, GASA and G-P offer a distinct advantage relative to the other simulation

methods. However, as discussed above, this comes at the cost of a loss of accuracy

for these two methods. On the other hand, the simulated trajectories (i.e. means and

CVs) of the newly developed RRA CHO method have a proper fit with their counterpart

trajectories of the SSA. This indicates that the handicap of the CPU time performance of

the RRA CHO has been overcome by the superior accuracy of the CVs for this method.

Apart from this, it is also to be noted that the existing methods use ε values that have been

tuned to be effective for such chemical systems. It is possible that the same ε values might

prove less effective for more challenging chemical systems, such as the Carletti-Burrage

Reaction Model, which, being prone to the problem of negative molecular numbers, is

much more difficult to simulate. This model is discussed in the next subsection.

6.7.2 The Carletti-Burrage Model

The following reaction network model was proposed by Carletti and Burrage,94 which

consists of ten reactions will be discussed here. This chemical system has the following

set of reactions :

R1 : RNA
c1−→ DNA1

R2 : DNA1
c2−→ RNA

R3 : m
c3−→ RNA

R4 : RNA
c4−→ m
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R5 : 2m
c5−→ D

R6 : D
c6−→ 2m

R7 : DNA + D
c7−→ DNA1

R8 : DNA1
c8−→ DNA + D

R9 : DNA1 + D
c9−→ DNA2

R10 : DNA2
c10−→ DNA1 + D

where RNA, DNA, DNA1, DNA2, D and m are the species taking part in the different

reactions; and the symbols (c1 − c10) over the arrows indicate the rate constants of the

respective reactions.

The numerical values of the initial species population and the rate constants of the

reactions are given in Table 6.3.

Table 6.3: The values of the rate constants of the reactions and the initial species population for

the Carletti-Burrage model.

Parameters used in Numerical values
the simulation of the parameters

c1 0.078
c2 3.9E-3
c3 7.0E-4
c4 0.043
c5 0.083
c6 0.5
c7 0.020
c8 0.479
c9 2.0E-4
c10 8.765E-12
m 200
D 600

DNA 200
DNA1 0
DNA2 0
RNA 0
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It is to be noted that the simulation of this particular system by GASA was found to

lead to physically unrealistic (negative) numbers. Hence the results with the GASA have

not been discussed further. Moreover, the binomial distribution based tau (BD-τ ) method

of Tian-Burrage91 could not be applied for this model, since there are some species which

take part in multiple reactions: a situation that the BD-τ method of Tian-Burrage is in-

capable of handling, making it technically non-applicable for such reaction networks.

Hence, only the methods that were successfully able to reproduce the simulation trajec-

tories are reported here. Hence the SSA, G-P, the BD - τ method of Chatterjee-Vlachos-

Katsoulakis and the newly proposed RRA CHO have been discussed in the figure and in

the paragraphs below. The colors pertaining to the different methods remain the same.

Figures 6.3 (a-c) show the trajectories of the means of the species involved in the

system, while Figures 6.3 (d-f) shows the corresponding trajectories of the CVs.

Figure 6.3: The trajectories of the means [(a)-(c)] and of the CVs [(d)-(f)] for the probability dis-

tributions of the species DNA, DNA1, DNA2 obtained over 100 simulation runs of (blue curve),

G-P (magenta curve), BD-τ of Chatterjee-Vlachos-Katsoulakis (orange curve) and RRA CHO
(red curve).
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Table 6.4: The average values of CPU time (secs) for 100 simulations taken by different simula-

tion methods for the Carletti-Burrage Model.

Simulation Methods SSA G-P BD-τ RRA CHO
CPU time (secs) 1.065 3.107 8.222 3.242

The CPU time values in Table 6.4 show that the stochastic simulation algorithm is

faster than all the other methods used for the simulation. All the methods agree with each

other to a good extent, as shown in Figure 6.3. In case of the BD-τ method, the time steps

are taken with a coarse grain factor,92 f, taken as 2.0. The accuracy of the simulations

is more guaranteed by using the smaller values of the coarse grain factor. However, this

also contributes to an increase in the CPU time of simulations. The increase in the value

of f reduces the CPU time, but this now leads to the loss of accuracy in the simulations.

This is observed in the simulations performed by taking a coarse grain factor, f, as 4.0.

The CPU time of G-P is slightly less than that of newly developed RRA CHO. The CPU

time of G-P is contributed by the share of SSA during the simulations. This example

is prone to the problem of negative numbers emphasizes that the RRA CHO method

tackles the problem quite efficiently than the BD-τ method, which had been specifically

developed for the problems of negative populations.

Thus, this example shows that the currently proposed approach can also be used to

solve the problem of negative numbers during the simulations.

6.7.3 Model of First Order Reactions

In this sub-section, the simulation of the model of four unimolecular reactions is dis-

cussed. This model was used by Chatterjee et al.92 to test their BD-τ method. This

model has more complexity, as the species X2 takes part in several of the reactions. The

chemical system is made up of the following reactions :
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R1 : X1
c1−→ X2

R2 : X2
c2−→ X3

R3 : X3
c3−→ X2

R4 : X2
c4−→ X1

Here, X1, X2, and X3 are the species taking part in four different reactions and c1, c2, c3

and c4 are the rate constants of these reactions.

The numerical values of the model parameters used for the simulations are given in

Table 6.5.

Table 6.5: The values of the rate constants of the reactions and the initial species population for

the model of first order reactions.

Parameters used in Numerical values
the simulation of the parameters

c1 2.0
c2 1.0
c3 2.0
c4 1.0
X1 20000
X2 0
X3 0

The simulation of this chemical system by GASA and G-P with the usual error con-

trol parameter gives very poor trajectories. This behavior is attributed to the failure of

the leap condition when employing these two methods. Hence, GASA and G-P have not

come in the discussion of this chemical system. Thus, discussed below are the results of

simulating the chemical system by SSA, BD-τ of Chatterjee-Vlachos-Katsoulakis and

the newly developed RRA CHO.

Figures 6.4 (a-c) show the time evolution of the mean values of the species: X1, X2,

X3 by the different simulation methods, while the Figures 6.4 (d-f) shows the CVs of
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the corresponding species. From the Figure 6.4, it is clear that the different simulation

methods have successfully simulated the time behavior of different molecular species

in this system. The BD-τ of Chatterjee-Vlachos-Katsoulakis (orange curve) and the

RRA CHO (red curve) are as good as the SSA (blue curve).

Figure 6.4: The trajectories of the means [(a)-(c)] and the CVs [(d)-(f)] for the probability

distributions of the species X1, X2, X3 using SSA (blue curve), BD-τ of Chatterjee-Vlachos-

Katsoulakis (orange curve) and RRA CHO (red curve) for the case of First Order Reactions.
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Table 6.6: The average values of CPU time (secs) taken for 500 simulations by different simula-

tion methods for the First Order Reactions.

Simulation Methods SSA BD-τ RRA CHO
CPU time (secs) 18.141 59.208 9.687

The average CPU times shown in Table 6.6 indicates that RRA CHO is computa-

tionally more efficient than the other methods. It is almost two times as fast as the SSA.

The low computational efficiency of BD-τ can be imputed to the small size of the time

steps, leading to a large number of steps. It has been found that, the increase in the value

of coarse grain factor leads to a significant loss of accuracy. This is found that with the

coarse grain factor, f = 5000.0, the means and the CVs for the different species becomes

far less accurate for the BD-τ case in comparison to the other methods. Further increase

in the coarse grain factor to 10000.0 also leads to similar results.

As the results shown in Figure 6.4 and Table 6.6 indicate, this model of first order

reactions is a classic example for cases where, in addition to the accuracy, the CPU times

of the corresponding methods are of prime importance. The newly proposed RRA CHO

turns up as the most favorable approximate simulation method for this case.

6.8 Conclusions

The approach of investigating chemical kinetics through stochastic simulations, instead

of through deterministic methods, has seen important developments, with new acceler-

ated, approximate approaches7, 29, 50 having been developed in order to study all types of

chemical systems. However, all the accelerated approaches developed to date rely on

the use of an error control parameter, ε, for modulating the speed of the simulations, a

parameter whose value is arbitrarily assigned. The current work attempts to overcome

this dependence on an arbitrary parameter by providing flexibility for the choice of ε in a

logical and mathematical fashion. This has been achieved by representing the chemical
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system as a Coupled Harmonic Oscillator (CHO), and by evaluating the time step by fol-

lowing the time evolution of the CHO, for any given iteration, over a period of time. This

novel accelerated method has been found to be effective not only for successfully simu-

lating chemical systems but also for simulating those that have the problem of negative

molecular numbers.
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Conclusions and Future Work

Science, my lad, is made up

of mistakes, but they are

mistakes which it is useful

to make, because they lead

little by little to the truth.

-Jules Verne
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The use of the state-of-the-art experimental techniques have underlined the inherent

stochastic nature of the interactions in biological systems. The complexity of these in-

teractions makes the aspect of mathematical modeling essential for the study of such

systems. However, the of modeling systems having discrete integer species population

turns out to be a demanding task with the conventional methods, thus paving the way for

an alternative approach, that of - stochastic simulation methods. The kinetic Monte Carlo

based stochastic simulation algorithms have been successfully applied for simulations of

biological systems. One of the pitfalls of these algorithms is the enormous computational

time taken for the simulations of realistic reaction networks.

The aforementioned issue of computational time has been resolved by the devel-

opment of approximate accelerated stochastic simulation algorithms. This dissertation

introduces one such approximate accelerated stochastic simulation method. We have

named it as the representative reaction approach (RRA). The crux of this method lies in

representing the whole system of chemical reactions by a single representative reaction.

The objective is to find the expected number of reactions and, further, a leap in time.

This newly developed methodology has been successfully applied for the simulation of

a number of chemical systems. The RRA method takes smaller steps in time relative to

other approximate accelerated methods. Thus, it has found to be useful for the simula-

tion of complicated oscillatory chemical reactions. The resulting algorithm of the RRA

method is simple and easy to code. Like other contemporary methods, the RRA method

also suffers from the drawback of negative numbers during simulations.

In this dissertation, attempts have been made to deal with the problem of occur-

rence of negative numbers by developing two new computational methods using the RRA

method. In one simulation method, a binomial distribution based idea is applied to the

RRA method. The other one with the concept of noise in the occurrence of reaction num-

bers. The excess amount of noise in the reaction numbers is responsible for driving the

molecular numbers to a negative regime. The problem is solved by removing this noise
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from the reaction numbers. It is found that these new methods are on par with the other

methods developed for solving the problem of negative numbers. All these methods have

the advantage of being simple and relatively straightforward to code.

All these approximate accelerated simulation methods rely on the use of an error

control parameter. This parameter is instrumental for choosing the size of the time step.

In all these simulations, the choice of the parameter is completely arbitrary. Hence, a

parameter chosen for one particular chemical system may not be good enough for accu-

rately predicting the dynamics of some other system. We have developed a method that

provides flexibility for the choice of the error control parameter in a logical and mathe-

matical manner. The proposed method successfully simulates the chemical systems, but

also solves the problem of negative numbers during the simulations.

The work presented in this dissertation can be extended by applying the developed

computational methods to some realistic biochemical reaction networks. It would be

interesting to apply the proposed methods to the metabolic and signaling pathways and

also to gene regulatory networks. These biochemical networks are in the form of mod-

els. The simulation data generated by our methods can be verified by testing with the

experimental data.

The difficulties in solving the CME for complex chemical systems have made people

go for the estimation of statistics by using the exact stochastic simulation algorithms.

These algorithms are accurate, but their simulations are computationally time consuming.

While the simulations performed with a large enough time step using the accelerated

methods can be computationally efficient, there could be a significant bias in the results.

The recenly proposed Multi-level method solves this problem. Hence, a future goal

could be the development of new Multi-level Monte Carlo method with applications to

gene regulatory networks. Finally, I want to conclude by quoting the following lines

of Daniel T. Gillespie - ‘I have come to believe that one’s knowledge of any dynamical

system is deficient unless one knows a valid way to numerically simulate that system on

a computer. ’
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