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ABSTRACT

Mathematical reaction/process models are neededa foariety of tasks in
chemical engineering and technology. These taskside but are not limited to,
equipment design, operation, and scale-up, prediatf steady-state and dynamic
behavior, monitoring, control, fault detection amlagnosis and optimization.
Conventionally, two approaches, namelyphenomenological (also termed
“mechanistic” or “first principles”), andcempirical (which comprise of regression
methods), are used in chemical reaction/processelingd Both these approaches
suffer from several disadvantages especially whederdying reaction/process
behavior is nonlinear, which is often the case aal practice. Another important
chemical engineering task, namely, process opttmizas traditionally conducted
using deterministic gradient based methods. Thesthods also suffer from
drawbacks such as entrapment into a local minimum.

The difficulties involved in thephenomenologicaland regression-based
modeling anddeterministic optimization techniques necessitated exploratidn o
alternative nonlinear modeling and optimizatioratggies. In recent yearArtificial
Intelligence (Al) based nonlinear modeling and stochastic op@tion techniques
owing to their several advantages have providegtaactive avenue for modeling
highly nonlinear, complex multivariable systemsaso optimization of chemical
reactions and processes. Similar to Al, machinenieg (ML) based modeling
methods also possess certain attractive charaatsrig\ccordingly, in the present
thesis, artificial intelligence and machine leaghiormalisms have been extensively
employed to build exclusively data-driven models tlisks such as steady state and
dynamic reaction/process modeling. The specific #&id ML-based methodologies
used in process modeling arartificial neural networks (ANNS), genetic
programming(GP), and support vector regressiof6VR). Additionally, an Al-based
stochastic method, namelgenetic algorithmgGA) has been used for optimizing a
chemical process.Apart from the stated Al-based methods, conventiona
mathematical methods such psncipal component analysi@PCA) andsensitivity
analysis have been used for conducting dimensionality rédnicand identifying

influential causal (input/independent) variablespectively.

XX



Notable features of the studies presented in tbeighare:

» Artificial intelligence and machine learning metBodhave been
comprehensively used for modeling coal gasificagidot plant process; the
coals used in gasification are high ash Indianscoal

* It has been clearly demonstrated that the genatgr@amming technique while
searching and optimizing the form and associatednpeters of an appropriate
linear/nonlinear data-fitting function, also iddi@s those inputs which
significantly influence the model output.

* An entirely Al-based hybrid methodology integrati@ and GA formalisms
has been employed for modeling and optimizatiomesin-based adsorptive
removal of toxic metal ions from contaminated water

* The GP strategy has been utilized for an accuragdigiion of API gravity
values of crude oils. The nonlinear model developses SARA composition
of crude olils to predict the API gravity magnitudes

* In a first of its kind of study, genetic programmihas been employed to
develop models for VLE prediction, where it hasrbekown that a single GP

model under certain conditions can predict VLE afitiple binary systems.

This thesis is divided into nine chapters. A bdescription of these chapters is

provided below.

Chapter Igives a bird’s eye-view of the significance of therk reported in the
thesis. It also presents information about the eatisnal modeling and optimization
techniques, and difficulties encountered theredfe Thapter next presents salient
features of the Al-based modeling and optimizatgirategies and their generic

application areas in chemical engineering and telcigy.

Chapter 2, first describes in detail the variousbAsed formalisms utilized in
the various studies reported in the thesis, suchudtslayer perceptror{(MLP) neural
network genetic programmingGP), support vector regressio(SVR) andgenetic
algorithms (GAs). This chapter also provides a descriptior ttonventional
mathematical techniques, namgdyincipal component analys(®CA) andsensitivity
analysis, which have been used for performing dimensionalé&guction, and
identifying influential causal (input/independentjeaction/process variables,

respectively. Additionally, statistical measuregmely, coefficient of correlation

XXi



(CO), root mean squared errqiRMSH, and Steiger’s test that has been used for the
evaluation and comparison of the prediction ancegaization performance of the Al

and ML-based models are explained in the chapter.

Chapter 3 reports study a wherein data were celedrom extensive
gasification experiments conducted in a pilot-placale fluidized-bed coal gasifier
(FBCG)—Ilocated at CSIR-Central Institute of Miniagd Fuel Research (CIMFR),
Dhanbad, India—using high-ash Indian coals. Speadlfi, the effects of eight coal
and gasifier process related parameters on thegfmsification performance variables,
namely CO+H generation rate syngas production ratecarbon conversionand
heating value of the syngasere rigorously studied. The data collected fribrese
experiments were used in the FBCG modeling, whiak wonducted by utilizing two
artificial intelligence (Al) strategies namefyenetic programmingGP) andartificial
neural networkANNs). The original eight-dimensional input spawfethe FBCG
models was reduced to three-dimensional space ysingipal component analysis
(PCA), and the PCA-transformed three variables wesed in the Al-based FBCG
modeling. A comparison of the GP and ANN-based rsod®/eals that their output
prediction accuracies and the generalization perdoice vary from good to excellent
as indicated by the high training and test setetation coefficient magnitudes. This
study also presents results of the sensitivity yamiglperformed to identify those coal
and process related parameters, which significaafiiect the FBCG process

performance.

Chapter 4reports development of the data-driven modelstierdgasification of
chars derived from the high ash coals. Specificallg models predict two important
gasification performance parameters, \gasification rate constanand reactivity
index These models have been constructed using thregutational intelligence
(CI) methods, namelygenetic programming(GP), multilayer perceptron(MLP)
neural network (NN), andupport vector regressio(SVR). The inputs to the CI-
based models consist of seven parameters repmgetite gasification reaction
conditions and properties of high ash coals andsciide data used in the modeling
were collected from the extensive gasification expents. These were performed in
the CQ atmosphere in a thermo-gravimetric analyzer (TG&ng char samples
derived from the Indian coals containing high agintent. Values of the two

gasification performance parameters were obtaiyefitting the experimental data to

XXii



the shrinking unreacted core (SUC) model. It haanbzbserved that all the Cl-based
models possess an excellent prediction accuracy gemeralization capability.
Accordingly, these models can be gainfully employethe design and operation of
the fixed and fluidized bed gasifiers using high asals.

In Chapter 5, a GP-based strategy has been sudgestéa) simultaneously
identifying the important predictor (independentisal/input) variables that
significantly influences the output (dependent able) of an input-output model, and
(b) searching and optimizing an optimal data fgtianction and its parameters. The
said strategy has been illustrated by conductirggpwmcess identification case studies
wherein the GP formalism has been shown to (i)tiflethe influential time-delayed
inputs and outputs, and (ii) simultaneously perf@yatem identification using these
influential predictors. The two chemical enginegrisystems chosen in the case
studies are nonlinear height control system foor@aal tank, and nonlinear adiabatic
CSTR concentration control system. It is noticedrfrthe GP-based models obtained
in these case studies that although the data saplithe GP algorithm contained six
predictor variables, it searched and optimized rsodeth only four predictor
variables; noticeably, these predictors were idiedtiby the sensitivity analysis to be
having most influence on the model output. The @Beld system identification
strategy suggested here—being computationally enara and much less tedious—
has the potential to become an effective altereatiy the conventionally used
linear/nonlinear identification strategies. Haviigntified a process using the GP
strategy the corresponding model can be gainfuiljzed to implement the model

predictive control (MPC) strategy.

Chapter 6 presents, the API graviflARI) is an important physicochemical
characteristic of crude oils and often used inmet@ng their properties and quality.
There exist models— predominantly linear ones —pimdicting the’API magnitude
from the molecular composition of crude oil. Thigpeoach is tedious and time-
consuming since it requires quantitative deternmmatof numerous crude oil
components. Usually, the hydrocarbons present & ¢hude oils are grouped
according to their molecular average structures $@turates Aromatics Resinsand
Asphaltenes(SARA) fractions. An°API prediction model based on these four
fractions is relatively easier to develop althoutliis approach has been rarely

utilized. A rigorous scrutiny suggests that sonighe dependencies between the
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individual SARA fractions and the correspondf4d®| magnitude could be nonlinear.
Accordingly, in this study, SARA fractions basednhoear models have been
developed for the prediction ofAPl magnitudes using three computational
intelligence (Cl) formalisms, namelygenetic programming artificial neural
networksandsupport vector regressiofhe SARA analyses and API-gravity values
of 403 crude oil samples covering wide ranges len utilized in developing these
models. A comparison of the Cl-based models witlexsting linear model indicates
that all the former class of models possessesnifisantly better’AP| prediction and
generalization performance than that exhibited H®y linear model. Also, the SVR-
based model has been found to be the most accliPatgravity predictor. Owing to
their better prediction accuracy, Cl-based modals be gainfully used to predict
°API values of crude oils.

In Chapter 7, a computational intelligence (CI) dzthshybrid strategy was
employed to model and optimize, tannin-formaldehy@&A) and tannin-aniline-
formaldehyde (TAFA) resin-based adsorption of atsefAs(lll)] and arsenate
[As(V)] ions for securing optimal reaction condit& This strategy first uses an
exclusively reaction data driven modeling strateggmely, genetic programming
(GP), to predict the extent (%) of As(lll)/As(V) satbed on the TFA and TAFA
resins. Next, the input space of the GP-based rmaelsisting of reaction condition
variables was optimized usinggenetic algorithm(GA), which is an artificial
intelligence based stochastic nonlinear optimizatiwethod; the objective of this
optimization was to maximize the adsorption of Ay@&nd As(V) ions on the two
resins. Finally, the sets of the optimal reactiemdition variables provided by the
GP-GA hybrid method were verified experimentallyaeTverification results indicate
that the optimized conditions have lead to 0.3% &880 increase in the adsorption
of the As(lll) and As(V) ions respectively on th&A resin. More significantly, the
optimized conditions resulted in an improvement3dd2 % in the adsorption of
As(lll), and 12.77% in the adsorption of As(dh the TAFA resin. The GP-GA
hybrid strategy employed in this study can be gdiyfutilized for modeling and

optimization of similar type of contaminant-remoyabcesses.

Chapter 8 presents, a study wherg@enetic programming(GP) has been
introduced for the prediction of VLE. Specificalljpur case studies have been

performed wherein seven GP-based VLE models hawn beeveloped using
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experimental data for predicting thapor phase compositiorfy;) of a ternary and
groups of non—ideal binary systems. The input spdteese models consists of three
attributes of pure componentacéntric factor critical temperature and critical
pressurg, and three intensive thermodynamic parametéygsid phase compositign
pressure andtemperaturg The prediction and generalization performancthefGP-
based models was rigorously compared with thabh@fcorresponding conventionally
employed Van Laar, NRTL, and UNIQUAC models. Theutes obtained thereby
indicate superior prediction accuracy and geneaxitim performance of the GP-based
models vis-a-vis that of the conventional thermadgic models. The GP-based
modeling method proposed in this study can be ghynéitilized in the prediction of
VLE as also designing corresponding experimentsdiffierent pressure and

temperature ranges.
Chapter 9 givean overview of the important results presentedis thesis and

the conclusions drawn thereof. Directions for fatuesearch are also presented in this

chapter.
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Chapter 1
Introduction

ABSTRACT

Modeling and optimization of chemical reactions gdcesses
is an important activity in chemical engineeringheaology. It
assists in the prediction of reaction/process b&raequipment
design and scale-up, process operation and moniorcontrol,
etc. There exist conventional methods for condgctimodeling
and optimization of chemical reactions and processehese
have certain deficiencies. Accordingly, in the prdasthesis,
artificial intelligence and machine learning baséarmalisms
have been used for modeling and optimization olmber of
reactions and processes. This chapter outlinestieently used
principle reaction and process modeling and optahan
methods, and the need for newer approaches thereof.
Additionally, the chapter presents an overviewhef tontents of

the subsequent chapters.



1.1MOTIVATION FOR THE THESIS

For designing and operating a chemical processargling out related tasks, it
is necessary to understand its behavior comple@bnducting experiments for
getting an insight in to the process behavior ierofan expensive, complicated,
tedious, and a time-consuming proposition. The#fecdlties can be overcome if a
representative process model is available. Thecbbge of mathematical modeling
has been stated as (Constantinides, 1987) — “tsteart, from theoretical and
empirical knowledge of the process, a mathematieatription, which can be used to
predict the process behavior.” The mathematical ehaaf a chemical process
provides—over specific ranges of operating variglded parameters—quantitative
information on the process behavior; it describeteast the major features of the
chemical and physical mechanisms underlying thege® The process behavior
described by mathematical models mainly includesadt-state, dynamic, and
spatiotemporal phenomena. A properly constructediehof a process (physical,
chemical, biological, and biochemical) can be usedredict its behavior under
different operating scenarios. In chemical engimgepractice, an accurate, robust,
and reliable mathematical process model assisthanpreliminary process design,
complex simulation, prediction of the steady-statel dynamic behavior, startup,
shutdown, scaling up, process monitoring, modektbasontrol, fault detection and
diagnosis, and process optimization.

Chemical processes comprise a set of unit opesatanmd reactors that convert
raw materials into desirable products through plogiemical conversions. Modern
day chemical processes are highly complex with dtitmde of interconnected
equipments, sensors, and control systems. Constyjuearge number of variables
and parameters associated with these systemsanteth each other thereby making
design, operation, control, and analysis of praegssdifficult task. Notwithstanding
these difficulties, it is at most necessary thagrapon of chemical processes is safe,
robust, efficient, commercially viable, and envinoent friendly. In the modern times
of advanced software and hardware technologies,staeed goal is achieved via
computer-aided chemical process design, operatiwmontrol, simulation, and
optimization. It helps in (a) reducing the timg ldetween process innovation and its

commercial implementation and exploitation, (b) wimgy efficiency, safety,



competitiveness, and flexibility of new chemicahpis, and (c) improving operational
efficiencies of existing plants.

There exist various types of models, namely, phemiogical, empirical,
black-box, stochastic, statistical, Monte-Carlollutar automata, etc. Each one of
these possesses advantages and drawbacks. Irsthbrée decades, a new class of
modeling paradigm that uses various artificial liigence (Al) and machine learning
(ML) formalisms is being increasingly utilized ihe@mical process modeling. Models
belonging to this class have several attractivep@moes. Accordingly, the principal
motivation of this thesis is to explore selectiveahd machine learning formalisms
for modeling chemical reactions and processes. thuidilly, an Al-based method is
employed for conducting chemical process optimuratirhe present chapter provides
(a) a bird’s eye-view of the Al and ML based modgland optimization formalisms
used in conducting the studies described in thesepent chapters, and (b) an

overview of the contents of chapters 2 to 9 of thesis.

1.2 PROCESS ENGINEERING TASKS

The principal tasks encountered in chemical engingeand technology

that involves development of models are descril@ovibin brief.

(a) Prediction of steady-state and dynamic process behiar

A reaction or a process essentially displays twmes of behavior, namely
steady-stateand dynamic The corresponding mathematical models are caisgbr
similarly. In the case of former, after an initiednsient behavior, reaction proceeds at
a constant (steady) rate. In a dynamic state, hexyegaction behavior is not steady
and varies with time. When a reaction/process hesm@asteady (static) state its
operating variables reach a constant value andot@ary unless an external force is
applied. Steady-state modeling is particularly ukéf design calculations. When a
process is in a dynamic state, its operating vhesakexhibit time-dependent
variations. Dynamic process models are crucialatiimg a comprehensive view of

the reaction/process/plant behavior.

(b) Process optimization

Process optimization aims at determining optimalues of operating

variables/parameters for securing a desirable padonce, such as better product
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quality, higher conversion, improved (lower) selaty for the desired (undesired)
product, minimum operating cost, and profit maxiatian. It can also help in
ensuring a safe, cost-efficient, and environmenenftly process operation.

Avalilability of a process model is a pre-requigde process optimization.

(c) Model based process control

For any chemical process, influential parameterd aariables need to be
manipulated (controlled) for achieving the desiqgacess performance. This is
achieved by implementing a process control mechaniis is a critical engineering
activity in any chemical process since it ensuresaf®, economical, and environ-
friendly process operation. Using the knowledgethedf process’s steady-state and
dynamical behavior, process control maintains theagmiude of a
specific process variable within a desired rang®. iRstance, the temperature of a
chemical reactor may be controlled to maintain asgient product output or
conversion. The conventional proportional-integlativative (PID) control strategy
does not explicitly take into account the processdeh In general, model-based
control is found to yield better performance théwe PID scheme especially for

controlling nonlinear systems.

(d) Process monitoring

In order to deliver quality products, critical pess operating variables should
precisely follow their specified trajectories. Pegs variability can be reduced by
employing an efficient monitoring strategy. Suchsystem, based on a dynamic
process model and functioning online is capablguetkly identifying any abnormal
process behavior so that corrective measures caakiea swiftly. It also helps in

diagnosing process faults.

(e) Process identification

Process identification is necessary in implementmg@del-based process
control. It involves development of empirical inputput models and thereby
identifying dynamic process behavior. Given past gesent values of the
manipulated and controlled variables, this type noddel typically predicts the

single/multistep ahead magnitude of the manipulatethble.



() Quantitative Structure—Activity/Property Relationships (QSAR/QSPR)
QSAR/QSPR represents a relationship (model) betwd#esn structural

parameters of a molecule and its activity/properfyhese relationships are
unquestionably of great importance in modern cheynand its sub-disciplines. Once
a correlation between structure and activity/propés developed, any number of
compounds, including those not yet synthesized,bemaneadily screened; it helps in
screening specific structures (molecules) possgdbia desired activity/property. In
the next step, the screened compounds are syrdldeaim tested in the laboratory.
Thus, the QSAR/QSPR approach conserves resourdescaalerates development of
new molecules for use as drugs, materials, additiee for any other purpose
(Karelson et al., 1996).

(9) Fault detection and diagnosis (FDD)

A properly and timely detection and diagnosis oftwcence of faults in
chemical plants of all sizes, assumes greatest riampme from the viewpoint of
personnel and equipment safety. Of concern istAlsanonetary loss incurred during
the short- and long—term plant shut-downs owingrioequipment malfunction or a
failure. Since it directly helps to prevent any ending hazardous situation, process
fault detection and diagnosis (FDD) has becomenteyral part of the process design
and operation activity. The task of FDD is greaignplified if a process model is
available (or can be developed) since various egemm fault and malfunction

scenarios can be simulated using models.

(h) Soft-sensors

In the absence of hardware sensors, product asatysonducted in the quality
control laboratory using instrumental and chemiocathods. Some analyses are
tedious, and time-consuming. Consequently, thetplantinues to produce off-spec
product during the time taken for the chemical gsial This difficulty is overcome
by developing soft-sensors. These are softwaredbssesors (mathematical models),
which given the information about the current valoé process variables, can predict
the values of the quality control variables. Thdt-sensor models are developed
using historical data of process variables and maters, and the corresponding
values of quality control variables determined wumstrumental and/or chemical
methods. When operated in the prediction mode;ssfsor models are capable of

predicting the values of quality control variabéésiost instantaneously.
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(i) Data mining

Process operation over time generates huge amadindsta regarding, for
example, process operating variables and parameacs the corresponding
conversions, yields, selectivities, and quality tecolnvariables. These data contain
wealth of information and knowledge hidden in thédata mining is a non-trivial
task of identifying valid, novel, potentially us&ftand ultimately understandable
patterns within process data. It is the processexdfacting previously unknown
comprehensible and actionable information fromdadgtabases and using it to make
crucial process/business decisions (Provost anaté&igw2013). One of the important
elements of data mining is to develop models uniyéidden relationships between
different process variables and/or parameters haddorresponding product specific

and process performance attributes.

1.3 CONVENTIONAL PROCESS MODELING TECHNIQUES

A great deal of effort has been spent over the daseral decades towards
mathematical modeling of chemical processes. Aldilg of an accurate process
model is essential for predicting the process bienavnder wide-ranging input
conditions. Commonly, two approaches, namghgnomenologicaindempirical are

employed for modeling a chemical process.

1.3.1 Phenomenological Modeling

The phenomenological (also termédst principles or mechanistit models
rigorously account for the reaction mechanism, naass heat transport phenomena,

and thermodynamics associated with the chemicalgssunder consideration.

Principal advantages of the phenomenological mndelpproach

= Provides valuable insight into the process behavior

= Model can be used in extrapolated regions of tphatispace.

= Can be used in process scale-up.

= Since these represent physico-chemical phenomedexlyimg a process, first
principles models provide an insight into the méic phenomena responsible

for process behavior.



Difficulties encountered in phenomenological moaigli

Being inherently complex and nonlinear, many chamacocesses are difficult
to model phenomenologically. Specific difficultiesencountered in the
phenomenological modeling of the chemical proceases

= Most chemical processes witness existence of nhellpnlinear interactive
relationships between process variables and paeasnet

= Cost-intensive and exhaustive experimentation @giired for studying the
effects of influential process operating varialdesl parameters on the process
behavior.

= Often, there exists insufficient knowledge of theygicochemical phenomena
(e.g., reaction Kkinetics, heat and mass transpogchamisms and
thermodynamics) underlying a process and, thugnsite effort is needed to

arrive at a reasonable model

In view of the difficulties associated with the ploenenological modeling, it becomes
necessary to explore alternative modeling appraadbee such practical option is the
development of exclusively data-driven models. Camly, data-driven models are

developed usingmpirical (regression) methods.

1.3.2 Empirical Modeling

Empirical models, sometimes also termed as “blamkK-tmodels provide a
convenient alternative tirst-principlesmodels. In mathematical modeling, when the
primary goal is the most accurate replication oftadaregardless of the
mathematical model structure, a black-box modedipgroach is useful (Sjoberg et
al., 1995). In conventional empirical modeling, ggss behavior is modeled using
appropriately chosen empirical equations, for eXampolynomial or multivariable
linear/nonlinear expressions. This procedure termegressionuses a heuristic
procedure wherein an appropriate functional fonat possibly fits the process data
is selected in advance following which the unknoWwmction parameters are
estimated using a suitable parameter estimatiorhadetSince several efficient
linear/nonlinear parameter estimation methods aadable, the real difficult part in
empirical modeling is specification of the modelsture. For linear systems model

specification is easy; however for a nonlinear eyst it poses significant difficulties



since it involves selecting an appropriate modelcstire from the numerous

competing ones (Verma et al., 2016).

Principal advantages of the empirical modeling apph

Appropriate linear or nonlinear models are fittedlesively from the process
data containing values of dependent and independemtables and
parameters.

The detailed knowledge of physico-chemical phenamemderlying the

process is not needed.

Difficulties encountered in empirical modeling

1.4

The exact form of the data-fitting function needs he specified before
parameters associated with it can be estimated iEha difficult task that
requires a “trial-and-error” approach since verteofa number of variables
nonlinearly influence the process behavior and puecise interactions
between them are not known.

Mostly provide correct predictions over a limiteahge of the process data
used in developing the model.

In general can not be used for extrapolation.

Large amounts of statistically well distributed alaire needed to develop an
empirical model possessing good prediction accuracyg generalization
capability.

ARTIFICIAL INTELLIGENCE (Al)-BASED PROCESS MO DELING
TECHNIQUES

Artificial intelligence(Al) is a branch of computational science, whigvelops

mathematical algorithms mimicking various kindgrgglligent behavior exhibited by

the biologically evolving species with the aim ofopding novel and efficient

solutions to complex modeling, classification angtimization problems (Fogel,

2006). Stated differently, Al is essentially commd with the development of

algorithms and techniques, which allow computers‘lEarn” and utilize this

knowledge to solve problems such as function appration, classification, image

and speech recognition and clustering. The Al, hanedoes not have to confine

itself to methods that are observed only in theurgatAccordingly, oftermachine
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learning (ML) algorithms are also considered to be parAbf Unlike Al, the ML

algorithms are not based on the intelligent behrasiserved in nature although their
working can be termed “intelligent.” Both Al and Miased modeling formalisms are
exclusively data-driven and their performance caitidepends upon the quality and
guantity of the data. In the following, major AlcaML-based modeling methods are

described in brief.

(a) Artificial Neural Networks (ANNS)

Artificial neural networks (ANNs) (Freeman and Skegg 1996) are an
information-processing paradigm founded on the raeidms followed by the highly
interconnected cellular structure of the humanrordihey basically simulate the
brain’s lower level mechanisms, such as, learnipgttern recognition, pattern
association, generalization, and self-organizafibambe et al., 1996). ANNs are a
black-box empirical modeling paradigm where procesxleling is possible solely
based on the historic process input-output data. dmmonly employed ANNs for
modeling purposes, such as multilayer perceptrobnRMand radial basis function
(RBF) neural network utilize a generic nonlineandtion as a building block of the
function to be approximated and, thus, the troustestask of specifying the form of
the fitting function gets completely eliminated. NN possess certain added
advantages such as amenability to parallel praogsdiue to which process modeling
becomes easier, less cumbersome, and faster campmrthe phenomenological

modeling approach.

(b) Genetic Programming (GP)

There exists a novel member of the evolutionarnpmigms family, namely,
genetic programmingGP) (Koza, 1992) that in its original form proveda method
for automatically creating computer programs tpatform pre-specified tasks
simply from a high-level statement of the proble@enetic programming follows
Darwin’s theory of biological evolution comprisirigurvival of the fittest” and
“genetic propagation of characteristics” principlésaddresses the goal of automatic
generation of computer programs by: (i) genetichHgeding a random population of
computer programs, and (ii) iteratively transforgiithe population into a new
generation of computer programs, by applying arslofy nature-inspired genetic
operations, namelyselection crossover,and mutation (Vyas et al., 2015). Another



important application of GP termed “symbolic regies” is in data-driven modeling,
which has been extensively explored in this thélde novel aspect of GP when used
in modeling is that given an example input-outpatadset, the method is capable of
automatically obtaining an appropriate linear/noadir data-fitting function and its

parameters.

(c) Fuzzy Logic (FL)

Fuzzy Logic is a systematic mathematical formutatior investigating and
characterizing different types of uncertaintiesqitmnchy and Hashemi, 2013). It is
best suited when a mathematical model of the psoegker does not exist, or exists
but is too complex to be evaluated fast enoughafoeal time operation, or is too
difficult to encode, when data are imprecise aogy It was popularized by Lotfi
Zadeh in the sixties (Zadeh, 1965). It is basedhenpremise that Boolean logic,
represented by O and 1, does not adequately repriesgrecise or fuzzy information.
Fuzzy logic uses membership functions having vahet&een 0 and 1. The degree of
membership allows an object in a set to be anywinetfge range of 0 (completely not
in the set) to 1 (completely in the set), thus pimg to deal with uncertain situations
naturally (Bose, 1994). The values of fuzzy vamgsabhre expressed with English
words such asold, warm, hot or weak medium andhigh; each of these is defined by
a suitable (e.g., Guassian, triangular, or tragipmembership function. In contrast
to the abrupt changes from O to 1 in Boolean lotlie, membership functions allow
gradual variations in the variables. FL providesiraple way to arrive at a definite
conclusion based upon vague, ambiguous, impregieégsy or missing input
information. This unique ability of FL has beenliagd to model complex nonlinear
processes where development of a suitable phendoggcel mathematical

expression becomes difficult (Mendel, 1995).

1.5 MACHINE LEARNING (ML)-BASED PROCESS MODELING

TECHNIQUE: Support Vector Regression (SVR)

The SVR (Vapnik, 1995; Burges, 1998) is a regressioalog of the statistical
machine learning theory based classification pgradinamely, support vector
machines(Vapnik, 1995). It is a linear method in a higmeinsional feature space
that is nonlinearly related to the input space. Sbffhalism possesses some desirable
characteristics, such as good generalization wbit the regression function,
robustness of the solution, sparseness of theggigre and an automatic control of

10



the solution complexity. It also provides an egiplknowledge of the data points that
define the regression function. This feature assistinterpreting an SVR-based

model in terms of the training data.
1.6 CONVENTIONAL PROCESS OPTIMIZATION TECHNIQUES

Apart from predicting the process performance unglarying operating
conditions, a process model can also be used treseptimum process conditions
that would maximize process performance. The obgabf process optimization
could involve maximization of conversion, produg@lg, product selectivity, process
profit, etc., and/or minimization of operating lpgsoduction cost, selectivities of the

undesirable products, etc. A generalized optimiragiroblem statement is given as:
maximize/minimitze= (x, f); subject to constraints;, C,.... (1.2)

where, x = set of decision variables (to be optimized),= objective function, and
S = set of objective function parameters

Depending upon the type of process model (phenological/empirical/Al-
based) a suitable formalism should be selecteth®omodel optimization. There exist
two principle methods of optimization, nametigterministic,andstochastic Figure
1.1 adapted from Devillers (1996) shows an overvawsearch and optimization

methods.

Figure 1.1: Classification of search and optimization methods.
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1.6.1 Deterministic Optimization Methods

These classical methods emboding algorithms whedfp heavily on linear
algebra since they are commonly based on the catipuitof the gradient, and in
some cases also Hessian, of the response vari@éeszzuti, 2013). They aim to
arrive at the optimum by approximating the locaghborhood of a given solution in
the search space and moving to a better solutioenexrer possible. All gradient
based methods and some line search methods far timd class.

Gradient based methodsAs suggested by their name, these methods evaluate
gradient of the dependent variable (e.g., predictibor) with respect to the decision
variable, and move (update) the decision variabléhe negative direction of the
gradient. There exist several gradient-based opé#tioin methods such aelta rule
andconjugate gradient

Advantage of gradient based optimization method

* They converge to an optimium solution speedily, niegas compared to the
stochastic optimization methods, they need smati@mber of objective

function evaluations to reach the optimal solution.

Disadvantages of gradient-based optimization method

= Most of these methods require the objective fumctidto be
maximized/minimized) to be continuous, smooth aifterntiable. In many
real-life systems, the objective function could beisy, non-smooth and
discontinuous and, thus, not amenable to gradias¢d methods.

= Invariably get stuck in a local optimum leadingatsub-optimal solution.

1.6.2 Stochastic Optimization Methods
These methods are mostly used in nonlinear optitoiza They randomly

generate candidate solutions, which are subsequemdhipulated according to a
specific algorithm. Here, the emphasis is on samgplhe search space as widely as
possible while trying to locate the promising rewiofor further search. In the
stochastic techniques, randomly generated init@lupation of candidate solutions is
constantly refined so as to find better solutiohs. contrast to the traditional
deterministic optimization techniques, which inadly operate on a single candidate
solution, the stochastic methods operate on a ptipolof candidate solutions. This

makes it possible for the stochastic techniquesetych several areas of the solution
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space. The size of the candidate solution popwasauser-defined and depends on

the size of decision variable space under condidera
1.7 AI-BASED STOCHASTIC OPTIMIZATION TECHNIQUES

In recent years, several Al-based nonlinear seanchoptimization techniques
such agyenetic algorithmgparticle swarmant colonyandartificial immune systems

have been proposed. All these have a random compongheir implementation.

Advantages of stochastic methods

= Unlike deterministic gradient based optimizationtinoels, stochastic ones do
not require the objective function to be smootmtrwous, and differentiable.

= Since they operate on a population of candidatetisols, they scan a wider
solution Space. Invariably, they converge to a tsmuthat is global or the

deepest local minimum.

Genetic algorithms(GAs): Genetic algorithms (Holland, 1975) are the mostelid
used stochastic optimization formalisithey belong to the Al-based class of search
and optimization methods namadyolutionary algorithmsGAs enforces the survival
of the fittest paradigm of evolution along with thgenetic propagation of
characteristics. This brings to bear a balancedet#i between exploitation and
exploration (Michalewicz, 1996) during search for @ptimum solution. Beginning
from a randomly generated population of candidatieit®ns to the optimization
problem at hand, GA produces offspring populati@mmfparentcandidates that are
fitter in some respect. The mechanisms used ispoffg production arselection
crossoverand mutation Unlike deterministic optimization methods, whiatove
from point to point, in GA procedure an initial pdation of solutions is constantly
refined in a manner imitating selection and adagptiothe biological evolution, while

discovering expectedly better solutions.
1.8 OUTLINE OF THE THESIS

The principal aim of this thesis is to employ Alsled modeling formalisms
such as artificial neural networks, genetic prograng and support vector regression
for developing data-driven models of a number oérsltal engineering systems
including reactions and processes. Additionallynege algorithms are used for

optimization of reaction conditions. The remaindérthis thesis is divided in eight
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chapters and references are listed alphabetictliijeaend of each chapter. In what

follows, a brief overview of chapters 2 to 8 isided.
Chapter 2: Modeling and Optimization Methodologies

In this chapter, first the various Al-based modglamd optimization formalisms
utilized in the studies reported in this thesig described in detail. The chapter also
provides details of the conventional mathemati@dhhiques, namelyprincipal
component analysi@nd ensitivity analysis These methods have been used in
reducing the dimensionality of the input space & tmodels and identifying
influential causal (predictor) variables in the exde data sets used in modeling.
Additionally, the statistical measures, namelyefficient of correlatiofCC) androot
mean squared erro(RMSH, and the Steiger's z-test used in the evaluatind
comparison of the prediction and generalizationfggerance of the data-driven

models, are described.

Chapter 3: Modeling of high ash coal gasificationn a pilot plant scale fluidized
bed gasifier

The quality of coal—especially its high ash contesignificantly affects the
performance of coal-based processes. Accordinglthis study, data were collected
from extensive gasification experiments conducted pilot-plant scale fluidized-bed
coal gasifier (FBCG)—Iocated at CIMFR, Dhanbad—gskgh-ash Indian coals.
Specifically, the effects of eight coal and gasifieocess related parameters on the
four gasification performance variables, namely EQ-fgeneration rate syngas
production rate carbon conversionandheating value of the syngasere rigorously
studied. The data collected from extensive gagiboaexperiments were used in the
FBCG modeling, which was conducted by utilizing tamificial intelligence (Al)
strategies namelgenetic programmingGP) andartificial neural networkANNS).
The original eight-dimensional input space of tlBE models was reduced to three-
dimensional space using principal component arglyBiICA). This study also
presents results of the sensitivity analysis peréat to identify those coal and process

related parameters, which significantly affect BBCG process performance.
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Chapter 4: High ash char gasification in thermo-graimetric analyzer and
prediction of gasification performance parameters 8ing
computational intelligence formalisms

This chapter reports development of the data-drivexels for the gasification
of chars in the C®atmosphere in a thermo-gravimetric analyzer (TGAgse chars
were derived from the high ash Indian coals. Spedly, the models predict two
important gasification performance parameters, gasification rate constanand
reactivity index These models were constructed using three comiquah
intelligence (Cl) methods, namefjenetic programmingGP), multilayer perceptron

(MLP) neural network, angupport vector regressioisVR).

Chapter 5: Genetic programming methodology for selcting predictor
variables and modeling in process identification

In this chapter, a GP-based strategy has been stiegg®r (a) simultaneously
identifying the important predictor (independentigal/input) variables that
significantly influences the output (dependent aiale) of an input-output model, and
(b) searching and optimizing an optimal data fgthanction and its parameters. The
said strategy has been illustrated by conductirggpwmcess identification case studies
wherein the GP formalism has been shown to (i)tiflethe influential time-delayed
inputs and outputs, and (ii) simultaneously perfaystem identification using the

identified influential predictors.

Chapter 6: Prediction of API gravity of crude oils using SARA analysis:
Computational intelligence based models

This chapter presents results of SARB8afurates Aromatics Resins and
Asphaltenes) fractions based development of nonlinear mogetdicting °API
magnitudes of crude oils using three computatiantdlligence (Cl) formalisms,
namely, genetic programming artificial neural networks and support vector
regression The SARA analyses and API-gravity values of 403de oil samples
covering wide ranges have been utilized in develppghese models. The Cl-based
models are found to possess an exceflaRt prediction accuracy and generalization

performance.
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Chapter 7: Removal of arsenic ions from wastewateusing TFA and TAFA
resins: Computational intelligence based reaction odeling and
optimization

In this study, tannin-formaldehyde (TFA) and tanamiline-formaldehyde

(TAFA) resins were synthesized and employed sutdésfor an adsorptive removal

of arsenite [As(ll)] and arsenate [As(V)] ionsindhe contaminated water. Further, a

computational intelligence (Cl) based hybrid moadgloptimization strategy

integrating genetic programming and genetic alporihas been employed to model
and optimize, tannin-formaldehyde (TFA) and tanamline-formaldehyde (TAFA)
resin-based adsorption of arsenite [As(lll)] andeaate [As(V)] ions for securing

optimal reaction conditions

Chapter 8: Genetic programming formalism for predicion of vapor-liquid
equilibrium (VLE)

This chapter presents a study whergemetic programmingGP) has been
introduced for the prediction of vapor-liquid-eqgoila (VLE). Specifically, three case
studies have been performed wherein four GP-baseB ¥Yhodels have been
developed using experimental data for predictirgtipor phase compositiofy;) of

a ternary, and a group of non—ideal binary systems.

Chapter 9: Conclusions
An overview of the important results presentechis thesis and the conclusions
drawn thereof are presented in this chapter.
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Chapter 2

Modeling and Optimization Methodologies

ABSTRACT

In the present thesis, a number of artificial ihggnce (Al) and
machine learningML) based formalisms have been employed to build
exclusively data-driven models for a variety ofroi@l reactions and
processes. These methods are artificial neural oedsy genetic
programming, and support vector machines. Additiignan Al-based
method namely genetic algorithm has been employeddtimizing
reaction conditions of a chemical reaction. Apadn the Al-based
methods, conventional methods such as principalpooent analysis
and sensitivity analysis have been employed foredsonality
reduction of the input space and ranking predictariables in the
order of their influence on the response variablespectively. This
chapter describes all the stated methods in sefftaietails and lays a

strong foundation for the subsequent chapters.
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2.1 INTRODUCTION

Chapter 1 (sections 1.3.1 and 1.3.2) has expldimecomplexities associated
with the phenomenologicaland empirical (regression-based) reaction/process
modeling, and section 1.6.1 has presented the dckglof deterministic optimization
techniques. The principal observations that eamhbde from the stated complexities
and drawbacks are:

» Deficiencies of phenomenological modeling necetsita) investigation of
optional nonlinear modeling strategies, which do meed full details of the
physicochemical phenomena underlying the systero#ss) and (b) it should
be possible to model a system/process simply fterrelevant data consisting
of independent (causal) and dependent (responsaples/parameters.

* The drawbacks of the regression-based modelingigiees require modeling
approaches that do not need an explicit specifinatf the structure (form) of
the model. That is, it should be possible to penfonodeling without making
assumptions regarding the data fitting function assbciated parameters.

» Deficiencies of the conventional deterministic ap#iation formalisms
necessitate exploration of methods that do not tleedbjective function (to

be maximized or minimized) to be smooth, differabke and continuous.

In recent yeardAtrtificial Intelligence (Al) and Machine Learning(ML) based
modeling techniques owing to their several advasgatpave provided an attractive
avenue for modeling nonlinear and complex multaale systems. There also exist
Al-based efficient stochastic methods that overcothe drawbacks of the
deterministic optimization formalisms.

In the present thesis, Al- and ML-based formalidmase been employed to
build exclusively data-driven models for tasks sash(a) steady-state modeling of
coal-gasifier pilot plant, and char gasification ttrermo-gravimetric analyzer, (b)
batch reaction modeling of resin-based adsorptefaoval of arsenic ions from

contaminated water, (c) process identification ofc@nical tank and adiabatic
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continuous stirred tank reactor (CSTR) systemsp(ddliction of API gravity values
of crude oils, and (e) vapor-liquid equilibria (V)arediction for non-ideal systems.
The specific Al-based methodologies used in theseleling studies argenetic
programming(GP), artificial neural network§ANNS), andsupport vector regression
(SVR). The Al-based stochastic optimization strgteged in the thesis for the
optimization of process conditions of resin-basddoaptive removal of arsenic ions
from contaminated water genetic algorithn{GA).

Often, variables in the data pertaining to a preceperation are linearly
correlated. This poses problems, such as redundandyexcessive computational
load, during process modeling. There exists a atgthamelyprincipal component
analysis(PCA), which assists in removing linearly corretatvariables; thereby, the
dimensionality of a data set can be reduced. Irpthsent thesis, PCA has been used
for reducing the dimensionality of the input spacé several Al-based
reaction/process models.

In a chemical process, multiple operating conditranables/parameters (model
inputs) affect the process outputs (such as comveryield, and selectivity) to
different degrees. Some variables and/or paramatersimply more influential than
others. A method known aensitivity analysi¢SA) is capable of ranking the process
operating condition variables/parameters accordmgheir influence on a specific
output variable. The SA method has been used mthasis for ranking the process
input variables/parameters according to their grflce on the model outputs.

In the studies presented in chapters 3 to 8, itofi@n necessary to compare the
prediction accuracy and generalization capabilify competing models. This
comparison was performed using two statistical mmess namelycoefficient of
correlation (CC) androot mean squared errdlRMSH. Additionally, Steiger’s z-test
was employed to compare equivalence of correlatogfficients of competing
models, and thereby determining the better perfogrmodels.

This chapter presents the essential details of wheous modeling and

optimization formalisms as also the statistical sueas and the test, used in the
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studies presented in the thesis. The remainddri®thapter is structured as follows.
Section 2.2 describes the Al-based modeling tectesignamelyartificial neural
networks(ANNSs), multilayer perceptronMLP) neural networks (section 2.2.1), and
genetic programmingGP) (section 2.2.2); the machine learning basgaport vector
regression(SVR) modeling method is explained in section 2\@xt, section 2.4
presents an overview of the Al-based stochastionigation formalisms; the widely
usedgenetic algorithm(GA) method is detailed in section 2.4.1. The dpsion of
principal component analysiPCA) andsensitivity analysigSA) is provided in
sections 2.5 and 2.6, respectively. Finally, esalnof Steiger’s z-tesare presented

in section 2.7.
2.2 ARTIFICIAL INTELLIGENCE (Al)-BASED MODELING TEC HNIQUES

2.2.1 Artificial Neural Networks (ANNS)

Artificial neural networks are over-simplified sgsts that simulate the
intelligent performance displayed by human beirlggsy imitate the types of physical
neurological connections occurring in the humannbraANNs are founded on the
conception that a highly interconnected system iofple processing nodes (also
called “processing elements” or “artificial neams”) can learn the complex
nonlinear relationships that may exist betweenaldeis of a data-set (Tambe et al.,
1996). There exist several types of ANNs as preskimt Table 2.1. These essentially
belong to two categories namdged-forwardandfeed-backANNSs. In the first type,
information flow is in the forward direction onlywhereas in feedback neural
networks information is fed back to the nodes m same layer and/or to those in the
preceding layer(s). Feed forward neural networkd\N@) are the most frequently used
class of ANNs. Among FFNs, an architecture termadtilayer perceptron(MLP)
has found maximum number of applications in alney&ry science and engineering

discipline. Another widely used FFNiiadial basis functio{RBF) neural network.
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Table 2.1: Commonly used artificial neural network architeeti(Tambeet al., 1996)
ANN Models

Feed forward

'

v

Supervised learning

Unsupervised learning

= Associative-Reward- = Kohonen Self-

Penalty(ARP)

= Adaptive Heuristic
Critic (AHC)

= Adaline/Madaline

= Counterpropogation = Linear Associative
Memory (LAM)

(CP)
= Cauchy
Machine(CM)

= Boltzmann
Machine(BM)

= Multilayer
Perceptron (MLP)

= Perceptron

= Radial Basis
Functiort (RBF)

organizing Feature
Map (SOFM)

» Fuzzy Associative
Memory (FAM)

Reinforcement
Learning (DR)

= Learning Vector
Quantizer (LVQJ

= Learning Matrix

!

Feedback

:

Supervisgearning

= Brain-State in-a-
Box (BSB)

= Fuzzy Cognitive
Map (FCM)

Unsupervised learning

= Discrete
Bidirectional
Associative
Memory(BAM)

= Additive Grossberg
(AG)

» Analog Adaptive
Resonance Theory
(ART2)

» Binary Adaptive
Resonance Theory
(ART1)

» Shunting Grossberg
(SG)

= Adaptive
Bidirectional
Associative Memory
(ABAM)

» Discrete Hopfield
(DH)

= Continuous Hopfield
(CH)

! model that utilizes hybri(competitive + supervis@dearning schemes
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Multilayer Perceptron Neural Network (MLPNN)

Given a representative data set (example set) storgi of independent
(causal/input/predictor), and the correspondiegenden{output/response) variables
of a system/process, an MLP neural network possesseability of learning and
generalizing the nonlinear relationships that elzettiveen the inputs, and outputs to
an arbitrary degree of accuracy. An MLP has beemdoto be an attractive ANN
architecture to conduct exclusively data-drivenlm&ar process modeling especially
in situations wherein development of the first piotes (phenomenological) or
classical empirical (regression-based) modelingpbs impractical, tedious, and/or
costly. The principle features of MLP-based modets (Tambe et al., 1996; Patel et
al., 2007):

e Used in approximating complex and nonlinear inputpat relationships and
performing supervised classification.

* The detailed knowledge of the causative mechanmtenomena that underlies
a reaction or process is unnecessary for the numlalopment.

« A well-trained MLP-based model possesses “genetabiz’ ability due to
which it can exactly predict outputs for a fresh ee inputs, which do not
belong the example set.

* Even multiple input- multiple outpu{MIMO) nonlinear relationships can be
approximated effortlessly and simultaneously.

* It uses a generic nonlinear function for fitting taxample set data, and thus it is

unnecessary to pre-specify the form of the daterditfunction explicitly.

In Figure 2.1, a commonly used MLPNN is depicteéd.omprises four layers of
processing nodes—anput layer two intermediate layers calldddden layersand
an output layer these layers housk J, K and L number of processing nodes,

respectively. Very often, MLPNN consists of justiagle hidden layer.
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\ output variables |

output layer

hidden layer 2

hidden layer 1

input layer

input variables

Figure 2.1: Schematic of two hidden layers multiple input—tiplé output (MIMO)
MLP network.

The processing nodes, alternatively referred toamificial neurons nodes
processing units/elementare the fundamental constituents of an MLPNN. yThe
perform simple mathematical manipulations on thenerical information (data)
received from their input connections with the m®ging elements (PES) in the
previous layer and pass on the computed outputset®Es located in the next layer.
Each connection of an MLPNN has a parameter tertiwethht” associated with it.
Although a PE may have multiple output connecti@rsoutput signal of the same
strength is transmitted across each one of themMIP, there exist inter-layer
connections, which are classified agcitatory or inhibitory, according to their
resultant actions. The excitatory connection caragositive signal and enhances the
activation level of the destination node. An intoby connection has a negative sign,
and it reduces the destination PE’s activationlleve

The MLPNN's input layer houses a number of nodieedqual to the number of
predictor variables in the example data; the nurobeandes in the output layer equals
the number of outputd ) in the system being modeled. It may however leddhat

the number of hidden layers and the number of s@deh one of them houses, are
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determined heuristically based on the desired augmediction accuracy and

generalization capability of the MLPNN-based modehe weights f;;} on the

MLPNN'’s connections represent the parameters ofntloglel that it approximates

during training. As shown in Figure 2.1, an MLPNMNntains a bias node with its

output fixed at +1, in its input and hidden laydhsese nodes are connected to all the

nodes in the next layer. The significance of biades is that these help the MLPNN-

fitted function to be positioned anywhere in thdimensionainput space.

Table 2.2: Commonly used transfer functions in MLP neuralwmeks (Simpsons,
1990; Hunt et al., 1992)

wn

=

p-
ge

il

1].

Function Equation Properties
a. | Linear f(x) = ax Differentiable, scales-up or scales-do
the f(x) values in proportion to re:
valued constard, used at output layer.
b. | logistic sigmoid | f(x) = 1 Positive, differentiable, monotonic, ste
(1+e™%) . .
like, symmetric around 0.5, output ran
[0, 1].
c. | hyperbolic tangent f(x) =tanh) _e*—e™ | Differentiable, monotonic, symmetri
¢*+e™ | step-like, zero-mean, output range [-1,
: ian _ -x? Differentiable, pulse-like.
d. | Gaussia f(x)—exp(a—xz) ifferentiable, pulse-like

A processing unit in the network’s active i.e., ded and output layers

essentially performs three numerical operationstFt combines all the input signals

to compute the net input. It is then transforme ithe node’s activation levehgt

activationor simplyactivation) using an activation function. Lastly, the netiaation

is operated upon using a transfer function to yiblel node’s output. The transfer

function can transform PE’s activation in a lineanonlinear manner. Different types

of transfer functions are used for performing stransformations. Table 2.2 lists the

formulae of some commonly used transfer functionsl @heir properties. The

nonlinear Gaussian function listed in Table 2.2segses some special properties and
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is used mostly in radial basis function (RBF) netxgo On the other hand, thagistic
andtanh sigmoidfunctions are the common choices foultilayer perceptror(MLP)
networks.

The input layer neurons of an MLP perform no corapahs. They simply pass
their outputs to the neurons to the next layerdérdlayer). Following application of
an input vectorx,,, from the example s&b the input layer, each hidden layer neuron
first calculates its activation according to theigiwed sum of inputs using the

following equation:

h _— h h _ 1 h h
net;; =wW;'x, +6; = Y wy; xp + 6;

— 0 h h h,: _
—le xpl +W2j xp2+ ..... +lexk1+9j,]—1,...,J (21)

Where,neti"j represent activation gf" hidden layer neuron whest® input @ = 1,2,
..., Np) pattern/vector in the example set is appliech®ihput nodes. The vectw}‘
denotes the weights of the connections linkingitipeit layer nodes to thé" hidden
node, and9]'-‘ representshe strength of the link between the bias gficdidden node.
The subscripts i’ and ‘©” designates the quantities associated with hiddeh a
output layers, respectively. The hidden layer otgpare computed by nonlinearly
transforming their activations using a transferction. Outputs of the first hidden
layer neurons are either passed to the neurortseafiéxt hidden layer or the output
layer. The hidden neurons’ outputs are computetgusinonlinear activation function
that nonlinearly transforms the net activation lexfea hidden neuron. The outputs of
the processing nodes in first hidden layer fornuispo the nodes in the subsequent
layer; this layer could be another hidden layemmoutput layer. The outputs of these
nodes are computed similarly as shown in Eg. (2lL)nay, however, be noted that
output layer neurons can use either linear or dimear transfer function to compute

their outputs.

MLPNN training: Towards performing a nonlinear function approximai an
MLPNN is trained in a manner such that a pre-spgtiérror function is minimized.
The training (learning) process for MLP essentiali;ns at obtaining an optimal set
of network’s connection weights that would minimiae error function. There are
essentially two methods of training an MLP neuratwork namelybatch and

continuousmode. In the batch mode, network outputs are at@duusing all input
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patterns in the example data set following whidhnatwork weights are updated
once. In the continuous mode, network weights atpisted immediately after

computing the network output pertaining to a singfaut pattern in the example set.

In the present thesis, continuous mode has beehingemining the MLP-based
models. It consists of two passes through the ortwarchitecture; these are termed
forward and reversepasses. In the forward pass, outputs of all thgpubunodes
(network output) are evaluated using input patteettors of example set. In the
reverse pass, the magnitude of the error functipeciic to the input pattern is
calculated using the desired (target) network autpod it is used in updating the
network weights. A single training iteration is coleted when weight-updation
procedure is carried out for all the patterns ie #xample set. Typically, MLP
training needs to be conducted over several iteratiill convergence is achieved.

Commonly, foot mean squared errb RMSH is used as the error function in
MLP training; the widely employed error function mmization technique is known
as the &rror back-propagatioh(EBP) algorithm (Rumelhart et al., 1986). TRMSE

is calculated as:

RMSE = \/ngl(y;xp_yéndl)z 2.2)
Np

where N,, represents the number of patterns in the exampta det;p is the
pattern/vector index, ang,”” and y;"* respectively, denote the experimental
(target/desired), and MLP-predicted outputs peiraito the p™" input pattern.

The EBP algorithm uses a gradient-descent techrikgoen asgeneralized
delta rule (GDR) for iteratively updating the network weighte:espective whether
the destination neuronbelongs to the hidden or an output layer, the bagight

updation rule for training MLP follows the same ioagrinciple given as the delta

rule:

Magnitude of weight scaled-error

correction at training with respect

iteration,t, (Aw;; (¢) | = | learning rateq [ x | 1o jthnode | X)output of i" nod

(2.3)
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The EBP algorithm for MLP training uses two freegmeters, namellearning rate

n (0 <x < 1), andmomentum coefficiente,, (0 < pepp < 1), in its formulation; both

these parameters are tuned heuristically.

Over-fitting of MLP weights and how to avoid: iFor building an optimal MLP
model with good output prediction accuracy, and egalization capability, it is
necessary to avoid what is known as “model ovéinfy.” An over-fitted MLP
model has captured even the micro details suchoes® nn the data at the cost of
learning the smooth trends therein. Such a modetlastically useless since it makes
poor predictions for a new set of inputs (poor gelzation). Over-fitting occurs
when (a) an MLP model—with an aim of reducing tmediction error to minimum
possible—is trained over a very large number ahing iterations (known as *“over-
training”), and (b) MLP’s architecture houses mdreden layers and neurons than
are necessary (known as “over-parameterizatiohlgnce, it is absolutely critical to
take suitable precautions to avoid over-fittingpafANN model.

To avoid over-fitting, the example input-output alaet is divided into two
subsets, namelyraining and test sets. While the first set is used in training the
network weights, the test set is used for evalgative generalization ability of the
network undergoing training. Specifically, afteckdraining stepRMSEis computed
for both training RMSE,) and test RMSkE) sets; WhileRMSE, indicates the data-
fitting ability (also termed “recall ability”) othe network undergoing training,
RMSEs: measures how well the network is generalizingeAftaining the network
over a large number of iterations, the set of ndtweeights resulting in the smallest
RMSE;: magnitude for the test set data is accepted tomlmgpamal weight set. It may,
however, be noted that this weight set pertairntheospecific number of hidden units
considered in the network architecture.

The complete procedure for constructing an optianetitecture and the related
weight matrix of an MLP neural network using the &Btrategy is summarized in
the following steps (Bishop, 1994):

1. Choose a small magnitude, for example, one or twaHe number of hidden

units,J, and randomly initialize the network weight matrix

2. Minimize the test seRMSE using error back propagation algorithm. Repeat

training multiple times using each time a differeem\ddom number sequence for
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initializing the network weights. This helps in éxpng MLP’s weight space
widely and, consequently, locating the deepestllocghe global minimum on
the error surface. Store the network weights thadyced the smalle®&M Sk

3. Repeat steps 1 and 2 by systematically increasiaghtimber of hidden units

until RMSEg:attains its smallest possible magnitude.

Issues related to MLP trainingTo construct an optimal MLP model, the effects of
variation in its structural attributes, namely, raen of hidden layers, number of
nodes in each hidden layer, and the type of trarfshection, and the two EBP
algorithm-specific parameters, namely, learninge raf) and momentum
coefficient( uepp), Need to be rigorously investigated. The detaflshe heuristic
procedure involved in obtaining an optimal MLP netkv model possessing good
prediction accuracy and generalization capabiliéy de found in, for example,
Freeman and Skapura (1991); Zurada (1992); Bish®®4); and Tambe et al. (1996).

Applications of MLP neural networks in chemical scences and engineering/
technology

Artificial Neural Networks (ANNs) have been usedcinemical science with a
great success for providing potential solutionsteariety of data-driven problems.
There are some notable generic reviews of appbicatof artificial neural networks in
chemical science and engineering/technology. Thes®&urns and Whitesides, 1993;
Bishop, 1994; Himmelblau, 2000; and Zhang and Ficed 2003; for books see,
Tambe et al., 1996; and Bulsari, 1995.

Table 2.3: Representative recent applications of MLP neuedWorks in chemical
engineering/technology

Sr. Application Specific study Reference
No.
Vapor-liquid equilibrium predictions. Sharma et al.
(1999)
Modeling of an industrial fluid catalyticc Michalopoulos et
1 Process modeling cracking unit al. (2001)
Prediction of vapor-liquid equilibria for] Mohanty(2005)
binary systems.
Prediction of nonlinear viscoelastic Al-Haik et al.
behavior of polymeric composites (2006)
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Table 2.3continued...

Sr. Application Specific study Reference
No.
Modeling of anaerobic tapered fluidizgdRangasamy et al.
bed reactor for starch wastewater (2007)
treatment
Modeling of the activated sludge Moral et al. (2008)
process
Thermal conductivity prediction of Eslamloueyan et al.
agueous electrolyte solutions (2011)
1. Process modeling| Estimation of thermal conductivity of | Hezave et al. (2012)
ionic liquids
Modeling of biomass gasification Puig-Arnavat et al.
process in fluidized bed reactors. (2013)
Modeling of ultrasound-assisted transt Badday et al. (2014)
esterification process
Modeling of photocatalyatic process onAmani-Ghadim and
synthesized ZnO nanoparticles Dorraji (2015)
Gas mixture analysis Moore et al. (1993
2. Data analysis A neural network methodology for heatThibault and
transfer data analysis. Grandjean (1991)
Fault diagnosis in complex chemical | Hoskins et al. (1991)
Process fault plants
3. detection/diagnosis Framework for enhancing fault Farell and Roat
diagnosis capabilities (1994)
Soft sensors development for on-line | de Assis and Maciel
4 Soft sensor bioreactor state estimation (2000)
' development Real-time process monitoring and Gonzaga et al. (2009
control of an industrial polymerization.
Identification of dynamic process model Pollarclet{1992)
Process — .
5. . e . Robust model predictive control Tsai et al. (2003)
identification . o
architecture for a neutralization process
Dynamic prediction and control of heat Diaz et al. (2001)
6 Model based exchangers
' process control System identification and model Mohanty (2009)
predictive control for a flotation colummn
Quantitative Prediction of fluid properties Lee and Chen (199
Structure- Prediction of polymer properties Sumpter and Noid
7. Activity/Property (1996)
Relationships Developing Quantitative Structure- Dudek et al. (2006)
(QSAR/QSPR). | Activity Relationships
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ANN software packages

There are numerous open source and commercialaeffpackages for training
MLP neural networks. Two software packages naméBMSPSS (2011) and
RapidMiner(2011) have been used to develop MLP-based mad#iss thesis. Their
details are as given below.

* IBM® SPSS®statistics is a comprehensive system for analyda@. The
Advanced Statistics optional add-on module offdre additional analytic
skills. This module has been used with the SPS&stta Core system and is
entirely integrated into that system.

* RapidMiner is a software platform that offers an integragéedironment for
machine learning, data mining, text mining, pradetanalytics and business
analytics. It supports all steps of a typical daaing exercise including data
preparation, validation and optimization, and reswisualization. The
RapidMiner (free) Basic Edition is restricted tsiagle logical processor, and
10,000 data rows are available under the AGPL $een

2.2.2 Genetic Programming (GP)

The principal features of the GP formalism (Koz892; Kinnear, 1994) are
conceptually similar to the genetic algorithms (GAGA (Goldberg, 1989) is a
stochastic search and optimization technique. Baekh and GA are based on the
principles ofnatural selection(“survival of the fittest”) andyeneticsfollowed by the
biologically evolving species. Given an objectivendtion, the GA is capable of
efficiently searching and obtaining the optimalued of the decision variables that
would maximize or minimize the function. Althoughet GP method utilizes same
principles as employed by GA, it conducts whatisnedsymbolic regressio(SR).

It is a methodology of searching both the strudtiman of a data-fitting function and
all of its parameters. Thus, GP is capable of aatmally attaining the mathematical
model that fits a given set of process data conmgislependent (also termed
“response” variables) and independent (also terfpestiictor” or “causal”) variables.
Although intellectually novel and appealing, the @@Pmalism has not been applied
as extensively as other Al-based modeling formalissach as artificial neural

networks and fuzzy logic.
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GP implementation The general form of the model to be obtained uSRgbased

symbolic regression is given as

y =f(X, a) (2.4)

wherey denotes the dependent variabtes [x;, x5, ..., x;, ..., x;]" refers to thd-
dimensional vector of independent variabléggpresents a linear/nonlinear function
whose parameters are defined in terms &fdmensional vectorq = [a;, «; , ...,
a, ..., ax]". Given data consisting of values of the operatingables, x (model
inputg, and the corresponding values of the reactionfs®ooutput, y (model
outpu), the task of GP is to secure the best fittingcfiomal form, f, and its
parameter vectou,.

The GP procedure initiates by creating a randontialnipopulation of
mathematical expressionst}{representing candidate solutions to the datingt
problem defined in Eq. (2.4); each candidate smfutrepresents a different
mathematical data-fitting function, and it is cddgymbolically in the form of a
tree-like structure. This structure comprises types of building units namely
functions(operatorg andterminals(operand$ (see Figure 2.2). While functions are
nodes with branches, terminals are leaves (nodié®uti branches) of the tree. The
function nodes represent operators of a candiddategien. The set of operators that
can be used to form a mathematical expressiorvendelow.

» Arithmetic operatorsaddition, subtraction, multiplication, division

» Trigonometric and other mathematical operatasBsie cosing tan, cot,

logarithm, exponentiationetc.

» Conditional operatordF-THEN-ELSE

* Boolean operator&AND, OR etc.
The terminal nodes define “operands,” which areuargnts of the mathematical
model represented by a candidate solution or estiipon which an operator acts.
The terminal set comprises variables, constangn@hts of the parameter vector,
and zero-arity functions (i.e., functions with ngg@ments) such asand (random
number). When arranged properly, the operators gpetands appearing in a tree
form a complete mathematical expression. The elerarfunction and terminal sets
are the building units of a candidate solution.ilumstrative tree structure defining a

mathematical expressiondy(+ 6) x (x, — 3)” is shown in Figure 2.23§.
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A typical implementation of the GP-based symboé&gression is shown in the

form of a flowchart in Figure 2.3; it consists oflbwing major steps.

1. Initialization: Randomly create an initial population of candédablutions in
the symbolic form using tree structures.
2. REPEAT
a. Ranking Evaluate fitness scores of candidate solutiomsrank them
according to their scores.
b. Selection:Choose candidates possessing high fithess sanifesn a
mating pool to undergo crossover and mutation digers,
c. Crossover Generate offspring candidate solutions by impleting
crossover operation.
d. Mutation Create a new generation of candidate solutions

performing mutation operation on offspring candedsolutions.
3. UNTIL TERMINATION

Each of the above steps can be implemented a nurhberys. In what follows, steps

corresponding to a generic GP implementation aptaged in sufficient details.

Step 1 (Initialization): Set the generation indew{,,) to zero (Figure 2.3) and
randomly form an initial population of a pre-spesif number of candidate
solutions/expressions using symbolically coded s®actures as described

above.

Step 2a (Ranking: Using a pre-specified fithess function evaludigsess value of
the each candidate solution. Fitness function nreaghe data-fitting ability
of a candidate solution. Typically, the mathemategression represented
by the tree-structure is used to compute the mpdadicted value of the
output variable,y, and thereby that solution’s fithess value. Onetha

several possible fitness functions is as follows:

1
a7 1442 g

=1,2, .., (2.5)

whereR, refers the fitness value (score) qf' candidate solutiony, refers

to the number of candidate solutions in the popdaanda refers to the
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mean-squared-erroMSE) between the desired (target) and model predicted

outputs; it is computed as:

N ex
A2 22y Py b2
q Np

(2.6)

wherd/, denotes the number of patterns in the datapseé;the pattern
index, andy,”” andy;*®, respectively represent the desired (experimental)
and the model-predicted outputs to tp€ input pattern. Following
computation of the fitness values, candidate smhstiare ranked in the

decreasing order of their fitness.

Step 2b(Selection:. From the ranked population, this step seledtsrfisolutions to
form a mating pool of parent candidate solutionsspssing high fitness
scores to undergo crossover and mutation opera{®es Figure 2.2bj).
There exist several methods suchRasllette-wheel selectigiipowski and
Lipowska, 2012) Tournament selectio(Miller and Goldberg, 1995klitist
mating (Thierens and Goldberg, 1994) etc., for carrying the stated

selection.

Step 2c(Crossove). In this key step, a pair of offspring candidaelutions is
generated from each of the randomly selected pdifzarent trees in the
mating pool. The crossover operation can be peddrim a number of
ways. For example, in a crossover scheme termmeggle-point, a point is
chosen randomly along the length of each pareet (see Figure 2.B)),
and both the parent trees are sliced at the regpepbints. Next, two
offspring candidate solutions are created by miytuakchanging and
combining the sliced portions of the two parentse($igure 2.2Y). In
another crossover scheme, termeado point crossovet a pair of nodes is
selected randomly from each parent tree, and tients lying between
them are exchanged mutually among the parentsro &opair of offspring.
Commonly, crossover is performed with a higher piolity than the

mutation operation.
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X | —> root node

(a) tree structure + — Y\ —> ogperator node

X 6 X 3\ —> operand node

expression: (x;+ 6) X (x4 —3)

(b) selection of branches * . v °

for crossover
X 6 X, 3 sin A °
parent I : (x;16) X (x;—3) A A

2

parent II :(\/ sin x,) + (x3— (v;+2))

» -_—
+ i -
(c) one point crossover
¥ 6 sin X, 3
)
offspring I : (x;+ 6) X (x3—(x;+2)) offspring I1 : (\/ sinx,) + (x,—3)
X X

(d) node undergoing

mutation + =) /) (+ +

N\ /6 YA /3 A\ /6 YA /3
individual I:(x, 1 6) X (x, - 3) individual IT:(x;t 6) x (x4 + 3)

Figure 2.2: Schematic of genetic programming) pasic tree structureb) random
selection of branches for reproduction) ¢rossover operation, and)(
mutation operation.
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Figure 2.3: Flow-chart of generic GP implementation
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Step 2d(Mutation): It modifies (mutates) contents of randomly choganction
and/or terminal node(s) of offspring solution treesduced by the crossover
operation; it is albeit conducted with a small gbitity. This operation
maintains population diversity and broadens thecbefor good data-fitting
models. Mutation can be conducted two ways nametgrich” and “node”
mutation. In node mutation (Figure 2ZdP( an operator (operand) of a
randomly chosen function (terminal) node is repliabg another operator
(operand), whereas in the branch mutation a ranganbsen branch is
replaced by a randomly generated another brancle @dd¢pulation of
candidate solutions resulting upon mutated offgpfarms a new generation

of candidate solutions (i.&..,= Ny, + 1).

Step 3 (Terminatior): Repeat step 2 iteratively till one of the two feliog
termination criteria gets satisfied: (i) the GP baslved over a pre-specified
number of generations, and (ii) the fitness valdeth® best candidate
solution no longer increases significantly or remsaiconstant over a

sufficiently large number of generations.

Over-fitting of GP-based modednd how to avoid it Similar to MLP neural

networks, a GP-based model is prone to “over-fittinAn over-fitted GP-based
model learns even the micro-details in the datéhatcost of learning the smooth
trends therein. Such a model is useless sinceelitig/isub-optimal predictions for a
new set of inputs (poor generalization). In GPnirag procedure, over-fitting occurs
when the model—in an attempt to reduce the prediatirror—contains more terms
and parameters than necessary. In short, complefxihe model becomes high owing
to the more-than-necessary number of terms andmeseas in the data-fitting
function. It is well-known that a model with higloraplexity performs poorly at

generalization. Thus, it is important to take amprapriate precaution to avoid an
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over-fitted GP-based model. This is commonly aadhieyas in MLP training) by
partitioning the entire input-output example dagtiassailable for model building into
two sets, namelytraining andtestsets. While the GP steps are implemented using the
training set, upon convergence the top rankingtswius evaluated using the test set
and the solution is accepted as the “best-so-faly o its data-fitting performance in
respect of the test set is closely comparable thih of the training set.

In another method to avoid over fitting, the fitaemlue of an over-fitted model
is appropriately penalized so that it does notretite mating pool. To obtain an
overall optimal data fitting modef*) a number of runs may be required by varying
the GP-algorithmic parameters systematically. A etadd accepted as an overall
optimal one only if (i) the correlation coefficianin respect of the training and test set
outputs are highest and comparable, and (ilM&&RMSEmagnitudes in respect of
training and test set outputs are lowest and coatp&ar Once an appropriately
validated optimal model is secured, its parametergan be fine-tuned further by
utilizing a standard nonlinear regression techniqter instance, Marquardt's
algorithm (Marquardt, 1963). Such a refinemenindfeed feasible, does improve the

prediction accuracy and generalization performaricee GP-based model.

Applications of GP in chemical sciences and engingeg

The applications of GP in chemical sciences hawided mainly on data
mining, which can be further categorized intibe-based classificatiorgndsymbolic
regressionbased model development. It is the second GP apiglic that has been
exploited in this thesis. Earlier the GP technidpas been successfully exploited in
various fields of chemistry and chemical enginegridomprehensive reviews of GP
applications in chemistry and chemical engineeargprovided by Willis et al., 1997
and Vyas et al., 2015. A few selected applicatioh§&P in chemical sciences and
engineering are listed in Table 2.4.

39



Table 2.4: Representative applications of genetic programming chemical
engineering/technology

Sr. Application Specific study Reference
No.
Steady-state modeling of chemical proces#/cKay et al.
systems. (1997)
GP-assisted stochastic optimization Cheema et al.
strategies for the optimization of glucose [[¢2002)
gluconic acid.
Optimization of a controlled release Barmpalexis
pharmaceutical formulation. et al. (2011)
K-value program for crude oil componentsFattah (2012)
at high pressures based on PVT laboratory
1. | Process modeling| data.
Prediction of permeation flux decline Shokrkar et
during MF of oily wastewater. al. (2012)
Estimation of the magnitude afinimum Hosseini et
spouting velocityUng in spouted beds withal. (2014)
a conical base.
Prediction of char gasification performancgdatil-Shinde
parameters derived from high ash coals. | et al. (2016)
Synthesis of heat-integrated complex Wang et al.
2. | Process synthesis| distillation systems (2008)
Bioprocess monitoring: application to Sankpal, et al,
3 Proc.ess. continuous production of gluconic acid by (2001)
monitoring immobilized Aspergillus niger.
Process identification and fault diagnosis|diVitczak et al.
non-linear dynamic systems. (2002)
Process fault
4. detection/diagnosis Fault classification using genetic Zhang and
programming. Nandi (2007)
Data-driven Soft Sensors in the process | Kadlec et al.
5 Soft sensor industry. (2009)
" | development The development of soft-sensors for Sharma and
biochemical processes. Tambe (2014)
System identification of a fluidized Nandi et al.
g | Process/system | catalytic cracking (FCC) unit, for an (2000)

identification

exothermic reaction.
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Table 2.4continued...

Sr. Application Specific study Reference

No.

System identification of Tennessee Faris and
Eastman chemical process reactor. Sheta (2013)

6. PFOC?_SS /_system To identify the influential time-delayed | Verma et al.

identification inputs and outputs, and simultaneously | (2016)
perform system identification using these
influential predictors.

7. | Model based Generation of empirical dynamic GP Grosman and
process control models to implement the nonlinear mode| Lewin (2002)

predictive control (NMPC) strategy.
Development of steady-state and dynamicDassau et al.
temperature control models. (2006)

8. | Quantitative Building quantitative structure—property | Barmpalexis
Structure- relationship (QSPR) models et al. (2011)
Activity/property : : :
Relationships Development of a linear genetic Bagheri et al.
(QSAR/QSPR). programming (LGP) based quantitative | (2014)

structure-property relationship (QSPR)
model for the prediction of standard state
real gas entropy of pure materials

Software packages for GP implementation

Following are the details of two user-friendly sadte packages that are

available for implementing GP algorithm.
Eurega Formulizg Schmidt and Lipson, 2009; 2014) makes use of sjimb
regression technique to capture the intrinsic i@lahips existing in a given

data set, and explain them in a simple mathemafocal (structure). It uses

GP heavily in its framework, and is optimized tmyde “parsimonious”

solutions meaning of low complexity.

SyMod software uses machine learning to build symbolicdets of the

relationship existing between one or more discaetor continuous attributes

(i.e. independent/causal variables), and a disaveteontinuous dependent

(response/output) variable. It allows the userpecey a set of mathematical

functions, and operators; these are subsequengly tos construct predictive
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models using genetic programming algorithm. Morrimation of SyMod
package can be obtained at the following URL:

http://www.symbolicmodeler.org/

2.3 MACHINE LEARNING BASED MODELING METHOD: Support
Vector RegressionSVR)

Support vector regression (SVR) (Vapnik, 1995; Bgrgl998) is an adaptation
of the statistical/machine learning theory basedssification paradigm, namely
support vector machise(Vapnik, 1998). This formalism possesses someaids
characteristics, such as good generalization wphilft the regression function, the
robustness of the solution, sparseness of theggigre and an automatic control of
the solution complexity. Moreover, it provides axpkcit knowledge of the data
points that define the regression function. Thestdes allows an interpretation of an
SVR-approximated model in terms of the trainingadat

Given an example data sBt= {(x,, y,)}, 1 =1, 2, ... p,..., N, wherex,, is al-
dimensional vector of input variables, apjpdhe corresponding scalar output (target),
the objective of the SVR algorithm is to fit a regsion functiony = f (x), such that it
accurately predicts the outputg;] corresponding to a new set of input examples
{x;} (Sharma and Tambe, 2014). In SVR, the inputsfissenonlinearly mapped into
a high dimensional feature spac®) (wherein they are correlated linearly with the
outputs. The SVR algorithm attempts to place a arbend the regression function as
shown in Figure 2.4. The region enclosed by the tshcalled an-insensitivezone,
wheree represents the radius of the tube. The optiminatrderion in SVR penalizes
those data points, theg values of which lie more than distance away from the
regression functiof(x). A detailed description of the SVR and its imp&artation is
found in, for example, Vapnik (1995), Nandi et @004), and Desai et al. (2005).
The SVR-based regression function has the folloviangn:

fxw) = fxaa) =357 (a5~ ay) KXy X) +b (2.7)

where,a,, anda,, (= 0) are the coefficients (Lagrange multipliersjsfging a,a,= 0;
p=1,2,..,P andK(x,, X) denotes the kernel function describing the dotlpct in

the feature space. The vectoris described in terms of the Lagrange multipliers
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and a*. In Eq. (2.7), only some of the coefficierts,— a,), are non-zero and the
corresponding input vectors;, are called “support vectors (SVs).” The SVs ban

thought of as the most informative data points, clvhcompress the information
content of the training set. A number of guidedifier the judicious selection of SVR
parameters are provided by Cherkassky and Ma (2004he present study, SVR
based models have been developed usinget8%R module of the data-mining

package known a@apid Miner(2014).

® data points
O support vectors
® firted by STR

L

Figure 2.4. A schematic of support vector regression usHmgsensitive loss function

Applications of SVR in chemical engineering and tdmology

In a short time, SVM/SVR have found plenty appli@as in chemistry, such as
drug design (discriminating between ligands andligands, inhibitors and non-
inhibitors, etc.), development of quantitative stue-activity relationships, where
SVM formalism is used to predict various physicdlemical, or biological properties,
chemometrics (optimization of chromatographic safl@an or compound
concentration prediction from spectral data as etes), text mining (automatic
recognition of scientific information), and sendechnology (for qualitative and
guantitative prediction from sensor data). A corhpresive review of SVR
applications in chemistry is provided by Ivanci2®@7). In chemical engineering too
SVR has found a number of applications. A repredem list of a few such

applications is provided in Table 2.5.
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Table 2.5: Representative applications of support vector eggjon in chemical
engineering/technology

Sr. Application Specific study Reference
No.
Prediction of pressure drops of Lahiri and Ghanta
slurry flow in pipeline. (2008)
) Predicting the point gas hold-up forGandhi et al. (2008
1. | Process modeling
bubble column reactor through
recurrence quantification analysis pf
LDA time-series
Fault diagnosis based on Fisher | Chiang et al. (2004
discriminant analysis.
2. | Process fault SVR method has been applied for| Ge et al. (2004)
detection/diagnosis he fault diagnosis in sheet metal
stamping processes.
Soft sensing modeling based p¥an et al. (2004)
SVM and Bayesian model selection.
Soft sensor :
3. Soft-sensor development for Desai et al. (2006)
development _ _
bioprocesses in fed-batch
bioreactors
Predictive functional control design Zhang and Wang
for output temperature of coking | (2008)
Model based
4. furnace
process control : _
Modeling and predictive control of gawrynczuk (2016)
neutralization reactor
Development of a QSAR model for Yao et al. (2004)
Quantitative the prediction of toxicities of 153
Structure- phenols.
5. | Activity/property | Support vector machines QSAR forYi and Qin (2007)

Relationships

the toxicity of organic chemicals

(QSAR/QSPR).

Predictions of chromatographic

retention indices of alkyl phenols

Fatemi et al. (2009
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Advantages of SVR

= |t uses the structural risk minimization princighy penalizing the model
complexity while minimizing the training data errdrhis results in a model
with a better generalization capability.
= Solves a quadratic objective function endowed waiteingle minimum and,
thus, SVR provides globally optimal minimal solunso
= |t permits computations in the input space itsaifl,ahence, reduces the
computational load significantly.
= SVR defines a robust regression function and allsparseness of regression
function.
Software packages for SVR implementation
In the present thesis, SVR-based models have bmarapped usingrapidminer
packageZ014).

2.4  ARTIFICIAL INTELLIGENCE (Al) BASED STOCHASTIC
OPTIMIZATION FORMALISMS

There exist a number of Al-based optimization mdghsuch aparticle swarm
ant colony artificial immune systemsand genetic algorithmsthese belong to the
class termed as “stochastic search and optimiZaatgorithms and possess some
unique advantages as explained in section 1.7aramonly employed deterministic
gradient based algorithms. Among various Al-basptinozation methods, genetic
algorithms are used most widely. In what folloas,overview of particle swarm, ant
colony, and artificial immune system methods isvpmted followed a detailed

description of GA.

(a) Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is an evolutignaomputation technique
developed by Kennedy and Eberhart in 1995 (KenmedlyEberhart, 1995; Eberhart
and Kennedy, 1995; Eberhart et al., 1996). In PS@maber of simple entities—the
particles—are placed in the search space of somlelgm or function, and each
estimates the objective function at its currenaitmn. Each particle then determines

its movement through the search space by combsonge aspect of the history of its
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own current and best (best-fithess) locations whitse of one or more members of
the swarm, with some random perturbations. The rerdtion takes place after all
particles have been moved. Eventually, the swarra a$ole, like a flock of birds

jointly foraging for food, is probably to move ckwdo an optimum of the fitness

function.

(b) Ant Colony Optimization (ACO)

Theant colony optimization algorithfACO), proposed by Dorigo et al. (1996,
1999), is a probabilistic methodology used in dolutof those computational
problems, which can be reduced to searching gotits garough graphs. The ACO
method is inspired by the behavior of ants whikcdvering paths from the colony to
food source. In the real world, to begin ants wamdadomly, and upon locating a
food source return to their colony; while going kac the nest, they lay pheromone
trails. When other ants find such a trail, they kes likely to keep travelling at
random; instead, they are most likely to follow treal, and if they indeed find food
reinforce the path by depositing pheromones wigiterning to the colony. Over time,
however, the pheromone trail begins to evaporatleaara result its attractive strength
decreases. As the time taken to and fro the fooetases, the pheromones have more
time to evaporate. A trail short in length, getsrchad over faster and, therefore, the
pheromone concentration remains at high levelg &slaid on the trail as fast as it
can evaporate. Pheromone evaporation also hasvantade of getting entrapped in
to a locally optimal solution. If no evaporationsv® take place, the paths chosen by
the first few ants would tend to be highly attreetto the following ones. In such a
case, rigorous exploration of the solution spacaldvbe severely limited. Thus, it is
important that one ant finds a short (good, in otherds) path from the nest to a food
source in which case, other ants are more likelyotlow that path. The positive
feedback that gets created eventually leaves allatits following a single “good”
path. The principle of the ACO is to mimic the sthtbehavior of actual ants with
"simulated ants" walking around the graph represgnthe optimization problem
under consideration. ACO algorithms have been usedenerate near optimal

solutions to théeTravelling Salesman Probleforigo and Gambardella, 1997). The
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ant colony algorithm has advantages such as tl@sbée run continuously and adapt

to changes in real time.

(c) Artificial Immune Systems (AIS)

The vertebrate immune system, which defends ourybfxdm foreign
substances, is one of the most complex and elabbaatily systems. Its complexity
is, in fact, comparable with that of the brain. MVdadvances in the technology, the
curiosity about how the immune system functiongeased very rapidly (de Castro
and Timmis, 2002). This led to its study includithg development of mathematical
models based on several of its main operative nmesms. Similar to the study of the
nervous system that led to the emergence of ANINsstudy of the immune system
has lately inspired the development of AIS as aehasomputational/artificial
intelligence (CI/Al) paradigm (de Castro and Timm&002). The tremendous
information-processing capabilities of the immugstem, such as feature extraction,
pattern recognition, learning, memory, and its riistive nature provide rich
metaphors for its artificial counterpart, i.e. Al@ickelin and Dasgupta, 2005;
Dasgupta and Nino, 2009). A number of computationathods performing above
tasks have been derived from the functioning ofitheaune system and applied for
the solution of much complex real world mathematissience and engineering

problems.

Applications of particle swarm, ant colony, and arificial immune system
methods in chemical science, engineering, and teaiogy

A large number of studies have been performed bgl@img the stochastic
optimization methodologies. A wide variety of rasgh papers and reviews on
particle swarm, ant colony, and artificial immungstems, and their applications in
various fields are available in the literature. $onotable studies and reviews on
these methods are Dasgupta and Stephanie (1999)(26801), Maniezzo and
Carbonaro (2002), Dasgupta et al. (2003), Martenal.e(2007) and Garcia and
Fernandez (2012). A severely curtailed represemtasample of these studies in

chemical engineering is given in the following &bl
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Table 2.6: Representative applications of particle swarm, atbny, and artificial
immune systems in chemical engineering/technology

Optimization

method

Specific study

Reference

Optimization of the hydrolysis of lingo cellulos

residues.

icGiordano et al

(2013)

Prediction of phase equilibrium of binary syste

containing ionic liquids.

ms
Lazzus (2013)

Particle swarm | Techno-economic optimization of a shell and tulsadeghzadeh
method heat exchanger et al. (2015)
Model re-parameterization and parameteda Silveira et
estimation for solid-state fermentation process.| al. (2016)
Bi-level heat exchanger network synthesis witWang et al.
evolution method for optimization. (2016)
Introduction to ant colony optimization andorigo et al.
survey its most notable applications. (2006)
Zheng et al.
Reduce NQemissions in coal-fired utility boilers
Ant colony (2008)
method Optimization of significant process variables |iBeltramo et al.
the biogas production process. (2016)
Jayaraman et
Design and scheduling of batch plants
al. (2000)
Fault Diagnosis of batch chemical processes using
Dai and Zhao
a dynamic time warping (DTW)-based artificial
(2011)
immune system
Artificial
Dragoi et al.
immune system| Removal of heavy metals from residual waters
(2012)
Optimization of process parameters fdtamid et al.
biodegradable iron chelate fop&labatement. (2014)
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2.4.1. Genetic Algorithm (GA)

Genetic algorithms developed by Holland (1975) dad®e Goldberg, 1989;
Davis, 1991; Deb, 1995) is a nonlinear search grtanization technique based on
the mechanisms of natural selection and geneticsthe most widely used Al-based
stochastic nonlinear optimization formalism, whiehforces “the survival of the
fittest” paradigm of evolution along with the “geitepropagation of characteristics”
followed by the biologically evolving species. ¥ a robust nonlinear search and
optimization technique for conducting function nrakation/ minimization. Being a
stochastic technique, it differs substantially fraire widely used deterministic
gradient-based optimization methods (such as catgugradient) in that it involves a
random component in some stages in its implementaiihe advantages of the GA

technique are as follows:

= Random initialization of the candidate solution plapion assists GA in
escaping from a locally optimum solution (termedcdl minimum’) and
reaching the globally optimum solution or at lehst deepest local minimum.

= |tis a zeroth order optimization techniqgue meantndpes not use derivative
information of the objective function. GA requiresly the measurements of
the objective function and not the measurementsliect calculation) of the
gradient (or the higher order derivatives) of tladsfunction (Deb, 1995;
Nandi et al., 2001).

= |t searches the solution space heuristically andncé, unlike most
deterministic gradient-based methods it is un-adie@dy the properties (e.g.,
smoothness, differentiability, continuity, etc.) olie objective function
(Goldberg, 1989).

= |t has a remarkable capability of handling nonlma@ad noisy objective

functions.

In the present thesis, GA has been used for prooesisnization wherein an
MLP/GP/SVR based process model is available. Thaxleh relates the process
operating conditions (inputs) to its output thatfimks process performance.
Accordingly, in what follows, the procedure for tk&A-based optimization of the
input space of a data-based model (ANN/SVR/GPimsg
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The process optimization objective under considamas stated as;

Given process data comprising values of processatipg (input) variables and the
corresponding values of process outfrnetsponsg variables, find the optimal values
of input variables such that the pre-specified mees of process performance are

simultaneously minimized/maximized.

Having specified an objective functiof, GA searches and optimizes ils
dimensional decision variable space Guch that the function is minimized or

maximized. The function maximization/minimizatioroplem can be defined as:

Maximize/Minimig8 = f (x, B); xF < x?P'<x? (2.8)

i

Where,y denotes the output variable; thdimensional vectorx = [x;, x5, ..., X, ...,
x;]", represents the set of process operating (degisariables and/or parameters to
be optimized;x! andx”are the lower and upper bounds xgnandx/?‘denotes the
i*" optimized decision variabl¢, refers to the function correlating the output &bl
with the inputs, an@ represents the parameter vector of funcfion

In the current thesis, GA has been used to finati@a optimal operating
conditions that would maximize the extent of arsesilsorption (output) on resins
(see Chapter 7). In this study, the developed dat@n model itself acts as an
objective function to be maximized. This data-dniveodel predicts the extent of

adsorption on a resin.

Overview of GA implementatian

A simple GA-implementation procedure comprisesofeihg components:

In each cell of an organism, there is the same afetchromosomes.
Chromosomes are strings of DNA and serve as a nfode¢he whole organism. A
chromosome consists of genes, which are blocks dA.DEach gene has its own
position in the chromosome called Itecus Complete set of genetic material (all
chromosomes) is called genome GA encodes all candidate solutions to the
optimization problem in the form of a genetic codmmonly, these candidate
solutions (also termedtrings or chromosomeésare represented using binary digits

(binary coding), i.e., in terms a@kroandone
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Binary Encoding Binary encoding is the most common. In binary eig, every

chromosome is a string of bits, 0 or 1.

Chromosome A 101100101100101011100101

Chromosome B 111111100000110000011111

Drawbacks of binary codindNumber of bits used scales with the number ofbdes

and the precision of each variable.

Real Value Coding Direct value encoding can be used in problems, a/ls@me

complicated value, such as real numbers, is ussel.0flbinary encoding for this type
of problems would be very difficult. In real valemcoding, every chromosome is a
string of some real numbers. These can be anyitomgected to the problem, for

instance, catalyst concentration, reactant conagoitr, temperature etc.

Chromosome A| 1.2324 5.3243.4556| 2.3293 2.4545

In the GA procedure, a random population\gfnumber of strings is created.
either using binary digits or real numbers. In byjneoding, each string containing
14, number of bits is divided intbsegments where af* (i = 1, 2, ...|) segment of
length I represents the binary representation of tffe decision variable. The

decimal equivalenty;, of thei‘" binary segment is evaluated as

U_ »Lys,
xi=x{“+%; 21,205 Yl 1A =04 (2.9)
whereS; represents the decimal value of i binary segment comprising bits.

Upon decoding allV, strings in the current population in this mannégit fitness

values, {4}, are evaluated using a pre-specified fitness tionc Next, the string
population is subjected to the actions of four gieneperators, namelyselection
reproduction crossover and mutation to obtain a new generation of candidate
solutions. The actions of these GA operators greated with successive generations
of solutions till convergence is achieved. The renGA-implementation can now be

summarized as follows:
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Step 1(Initialization): Set generation indexvg"en) to zero and generate a population
of N, binary strings (chromosomes) randomly. Each stomgsisting ofl4,,
bits is divided intol segments equal to the number of decision (input)

variables to be optimized.

Step AFitness computation Decodeg" (g= 1, 2,...,N4) binary string to obtain the
corresponding decimal values of the decision véeghb,;, i =1, 2, ...| (see

eg. 2.9), and evaluate the fitneRg') of theq™ string as given by
Ry =H(y9) =HIf"Xq a)] (2.10)

whereX,, refers to the real-valued decision variable vecXgr [x,1, X4z, ..
xq,]T. After computing fitness values of all thé, strings in the current
population, the strings are ranked in the decrgasirder of their fithess

values.

Step 3(Selection of parenys From the current population, choodg number of
parent strings to form the mating pool. The memlaérthis pool, which are
used to produce offspring population, possessivelgthigh fithess scores.
The commonly used parent selection techniqueRardette-wheel selection
(Lipowski and Lipowska, 2012 ournament selectio(Miller and Goldberg,
1995), ancklitist mating(Thierens and Goldberg, 1994).

* Roulette-wheel selectiorSelection of the candidate solutions in the
mating pool is done, such that candidates with driditness scores
contribute higher number of copies to the matinglpl is conducted
by creating copies of the candidates in proportiontheir fithess
scores. This ensures that the mating pool has mmoraber of
candidates with higher fitness as compared to thagelower fithess

Scores.

* Tournament selectionThis is a static selection scheme where the
probability of selection of a candidate remainglyaconstant across
generations. In this scheme, a specified numb#edctine “tournament
size”, of members are chosen from the parent ptipuland these

enter competition for selection. The winner is ded based on the

52



best fithess and allowed to enter the reprodugthase. This process is
repeated sufficiently, along with recombination antutation, to
produce the offspring population.

Elitist Selection Elitism is sometimes the case that a good solution is
found early on in the GA run but gets deleted fribv@ population as
the GA progresses. One solution is to “memorized best solution
found so far. A technique callegditism has been used to ensure that
the best members of the population are carried dawirom one

generation to the next.

Step 4(Crossovey. From the mating pool, selec{/2) number of parent pairs

randomly; the crossover operation is performed achepair using a high

value for the crossover probabilitg; (range 0.9-1.0). A random number is

drawn, and whenever it falls below the crossovebability, two individuals

(selected using one of the selection schemes descrin the following

section) are allowed to undergo crossover. If Hr@lom number test fails, the

chosen individuals are duplicated and placed inoffepring population. This

crossover operation, when repeated on thg2) number of parent pairs,

producesV, number of offspring strings.

One point crossoverHere, a random cut-point is chosen along the
length of the coded solution and the two parenbrimsomes are split
at this point. The tail portion (i.e., the entiné fositions following the
cut-point) of the two parents are exchanged toteréao offspring
chromosomes.

Two-point crossover Two random cut-points are chosen and the
portions of the encoded representations of thenpareetween these
cut-points are mutually exchanged.

Uniform crossover It is the generalized form of crossover where
chromosomal exchanges happen between parentss antdtple (the
number is chosen randomly) cut-points. The recoathin operator

has a probability associated with it which dictdtess often it is used.
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Step 5(Mutation): Mutate the bits of offspring strings wherein thelpability that a
randomly selected bit undergoes mutationPj§,; (range 0.0% 0.05). In
mutation, a randomly selected bit has been flipjpech zero to one and vice
versa. The population emerging after the mutatiperation represents a new

generation of solutions and thublgk,= Ne, + 1).

Step 6(Terminatior): Repeat steps 2 to 5 on the new generation of sttiligt is
observed that the fitness of the best solution show increase over a large
number (say 1000) of successive generations or the GA hasvedabver a
specified numberN/,,) of generations. Finally, the binary segments in the
string possessing maximum fitness score are dec(medeq. 2.9), and the
optimal values of the decision variables obtainbdreéby represent the
optimized solutionX* = [x;*, x,*, ..., x;*] . Analogous to the GP procedure,
it is necessary in the GA procedure also that thizeeGA implementation is
repeated several times using different seed valoeshe random number
generator. The optimal solutions obtained theraleycampared, and the one
satisfying the optimization objective of function araimization or
minimization in a best possible manner is selea@sdan overall optimal

solution.
Applications of GA in chemical sciences and engingeg

In chemical engineering, GAs are primarily used tfog steady-state/dynamic
process optimization, nonlinear process identificatind control, fault detection and
diagnosis, QSAR (quantitative structure-activity late®nships) and QSPR
(quantitative structure property relationships) kéas A number of short and
comprehensive reviews of GA applications in cherpiahd chemical engineering are
provided by, for example, Lucasius and Kateman $)9Qucasius and Kateman
(1994), and Venkatasubramanian and Sundaram (1%@ne of the important

chemical engineering applications of GAs are listedable 2.7.
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Table 2.7: Representative applications of genetic algorithm ¢hemical

engineering/technology

Sr. No. | Specific study Reference
1. Forecasting chaotic time series Szpiro (1997)
Optimization study of benzene isopropylation on
2. Nandi et al. (2004)
Hbeta catalyst to maximize the process performance.
Development of correlations for the overall gasdhal
3. up, volumetric mass transfer coefficient, and Gupta et al. (2009)
effective interfacial area in bubble column reastor
Experimental optimization of supercritical extracti| Bashipour and
4,
of B-carotene from Aloe barbadensis Miller. Ghoreishi (2012)
Determination of interaction parameters in Khansary and
5.
multicomponent systems of liquid—liquid equilibria] Sani(2014)
Yousefinejad and
6. Chemometrics tools in QSAR/QSPR studies
Hemmateenejad (2015
Mathematical modeling of continuous ethanol
Esfahanian et al.
7. fermentation in a membrane bioreactor by
(2016)
pervaporation
Study of change in particle size distribution igaes-
8. Farizhandi et al. (2016
solid fluidized bed due to particle attrition.
9. Optimization of chemical reactors network. Lean@l. (2016)
Modeling and optimization of a pharmaceutical | Velasco-Mejia et al.
10.
crystallization process. (2016)
Modeling and optimization of toluene oxidation over
11. Zonouz et al. (2016)
perovskite-type nanocatalysts
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2.5 DIMENSIONALITY REDUCTION METHOD: Principal Component
Analysis (PCA)

PCA was first introduced in statistics by Pearsd@0(), who formulated the
analysis as finding “lines and planes of closddbfisystems of points in space”. PCA
was briefly mentioned by Fisher and MacKenzie ()3&3more suitable than analysis
of variance (ANOVA) for the modeling of responsetadaFisher and MacKenzie
(1923) also outlined the nonlinear iterative patast squares (NIPALS) algorithm,
which was later rediscovered by Wold (1966) andefiog (1933) that have further
developed PCA to its present stage (also see GataldKowalski, 1986).

When large multivariate datasets are analyzeds tfien desirable to reduce
their dimensionality. Principal component analy$BBCA) is one technique for
achieving the stated task; it is a multivariatdistiaal technique that analyzes a data
set in which original variables are described byesa& inter-correlated quantitative
dependent (derived) variables. Multivariate teche& can consider a number of
factors, which control data variability simultansbuand therefore offer significant
advantages over univariate techniques, where erassociated with repeated
statistical testing can occur. In simple terms PG#\, essence, computes new
orthogonal variablesp(incipal component®r factorg from linear combinations of
the original variables to display the pattern afiarity of the observations, and of the
original variables. Principal components are adfamed variable set defining the
eigenvectors of the covariance of the data andais®ciated parameters. The first
principal component, or factor, accounts for theagest variability in the data; or the
first few variables retain most of the variatioregent in all of the original data
(Nomikos and MacGregor, 1994), and there can biafante number of new factors
with each accounting for less data variability thiae previous (Dong and McAvoy,
1996).

To illustrate the PCA method, consider a two dinme matrix, X(N,,, |),

defining N, measurements dfvariables. The PCA decomposes,into matrices of
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latent variables and the corresponding parametasin also as “loadings”) as given

by:
X=TP +E (2.11)

where, matrixX is assumed to be mean-centered (mean = 0) andheesszaled (i.e.
the standard deviation of elements of each colusnanity); T (N,, |) denotes the
matrix of I principal component (PC) scores (each column ofrimdt signifies a
principal component)P’ refers to the transpose of the loading maté, 1), andE
denotes the residuals. In the event of linearlyedated variables, firsR principle
component scores capture a large amount of varianitee data, and thus Eq. (2.11)
can be rewritten as

=XE 6 (p) +E' (2.12)

where,t,. denotes ther-dimensionalrth score vectorp, refers to the transpose of
thert" I-dimensional loading vectop,, andE’denotes the residual matrix. It can be
seen from Eq. (2.12) that the original,& |) dimensional data matrix, can now be
represented in terms of, number ofR-dimensional score vectors. SinRes smaller
thanl, the original data can be represented in termes @haller matrix. The sum of
squares of elements of a score vectpy i related to the eigenvalue (also known as
“trace’) of that vector and it serves as a measure ok#r@nce captured by thé"
principle component. It thus follows that larger timagnitude of a trace, more

significant is the respective principal component.

Application areas of Principal Component Analysis PCA)

A wide variety of research papers and reviews aalable in the technical
literature wherein PCA has been used in varioudiesu Some selective studies and
reviews on this method are, Kruger et al. (2008)¢difand Williams (2010), and Bro
and Smilde (2014).
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Table 2.8: Representative applications of principal comporamlysis in chemical
engineering/technology

Sr. No. | Specific study Reference

1. Principal component analysis in linear systems: | Moore(1981)

Controllability, observability, and model reduction

2. Detection and diagnosis of abnormal batch Nomikos(1996)
operations.
3. Non-linear principal components analysis using | Hiden et al. (1997)

genetic programming

4. The application of principal component analgsig | Chen et al. ( 2000)
kernel density estimation to enhance process
monitoring

5. Fault detection behavior and performance arabyfsi| Wang et al. (2002)

principal component analysis based process

monitoring methods

6. Fault identification for process monitoring wsin Cho et al. (2005)

kernel principal component analysis.

7. A review of principal component analysis and its | Tzeng and Berns
applications to color technology. (2005)

8. Sensor-fault detection, diagnosis and estimdton | Wang and Cui
centrifugal chiller systems. (2005)

9. Coal gasification in a pilot plant scale fluidtdzbed | Patil-Shinde et al.
gasifier (2014)

10. Prediction of high ash char gasification perfance| Patil-Shinde et al.
parameters (2016)

2.6 SENSITIVITY ANALYSIS

In this thesis, sensitivity analysis (also termedportancé analysis) has been
performed for the example input-output data usedhi& development of various
models. It is the analysis of the importance ofr@ggsion or uncertainty in the model
inputs in a decision-making or modeling exercide.is conducted to ascertain the

extent of influence exerted by each input (indepet@ausal) variable on the output
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(dependent/response) variable. The “importanced pfedictor/independent variable
is a measure of how much the model-predicted ouyalle changes when the
predictor magnitude is changed. The related quetgitned hormalized importance

is simply the importance value divided by the latgenportance value and expressed
it as a percentage (IBM SPSS, 2011). The importanedysis is conducted using the
entire set of data which have been used in devedofsie models. Thenportance
chart is purely a bar chart of the values in the imparéatable, sorted by the
descending values of importance.

Methods of sensitivity analysis

Numerous methods have been developed to deternuwne sknsitive model
outputs are to changes in model inputs. Most metlogies examine the effects of
changes in a single parameter value or input vigriagsuming no variations in all the
other inputs. (UNESCO Report, 2005).

Analytical methods Analytical approaches for sensitivity analysis du axist for
complex simulation models. However, procedures dasesimplifying assumptions

and guesstimates can be used to yield useful satysimformation.

Difficulties faced with analytical methods

» Obtaining the derivatives for many models.

* Needing to assume mathematical (usually lineagtimiships when obtaining
estimates of derivatives by making small changesmpfit data values near
their nominal or most likely values.

» Having large variances associated with most procestels.

Above stated difficulties have motivated the reptaent of analytical method by

numerical and statistical approach for sensitiaitialysis.

Numerical and statistical methodsThere exist a number afiumerical and
statistical methods for sensitivity analysis. A few prominemes aredeterministic
sensitivity analysis, first-order sensitivity ansiy; and Monte Carlo sampling
methods A detailed description of these methods can hendp for example, in
UNESCO Report (2005). In the present thesis seitgianalysis was conducted for
MLP based models. An overview of MLP-based sengjtanalysis is given below.
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2.6.1 Artificial neural network based sensitivity analysis

For feed-forward networknultilayer perceptronfMLP), sensitivity is analyzed
through the hyper-rectangle model. In this methbd,sensitivity measure is defined
as the mathematical expectation of output deviatioa to expected input deviation
with respect to overall input patterns in a conbimsi interval. Based on the structural
characteristics of the MLP, a bottom-up approactadspted. A single neuron is
considered first, and algorithms with approximatdlrived analytical expressions
that are functions of expected input deviation gireen for the computation of its
sensitivity. Then another algorithm is given to qgaie the sensitivity of the entire
MLP network. In the present thesis, the sensitiatalysis was performed using
(IBM SPSS, 2011) package.

Application areas of sensitivity analysis in chemal engineering/technology

Table 2.9: Representative applications of sensitivity analysn chemical
engineering/technology

Sr. No. | Specific Study Reference
To study mechanics of artificial neural networkstfoe
o _ . ' Olden and
1. relative influence of the independent variablethim
o Jackson(2002)
prediction process.
Importance of input variables on the output ofedfe Montano and
2. forward neural network have been proposed Palmer(2003)
Quantifying variable importance in artificial netra Olden et al.
3. networks (2004)
4 Identifying, quantifying and communicating the Loucks et al.
' uncertainties in model outputs. (2005)
. To rank the impact of object oriented metrics ialtta Kaur et al.
' prediction modeling. (2006)
To predict and simulate the behavior of the Fenton | £imolia et al.
6. process. (2010)
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2.7 STEIGER’S Z-TEST

In a variety of situations in research, it is daisie to be able to make statistical
comparisons between correlation coefficients memkson the same individuals. For
example, an experimenter may wish to assess whéeteerpredictions correlate
equally with a criterion variable. In another stiog, the experimenter may wish to
test the hypothesis that an entire matrix of catiehs has remained stable over time.
A statistical test known as Steiger’s z-test (%gid980) is performed for comparing
the performance of a pair of models. Specificdalys test is used to examine whether
the two correlation coefficients corresponding lte predictions of two competitive
models are significantly different. It tests tidl hypothesigH,) that statistically two
correlation coefficient magnitudes are not différem. CCyg =CCyc. Subscript®, B,
andC, respectively denote the experimental values ansktipoedicted by the models
B and C, where CC,5(CCy4c) refers to the correlation coefficient pertaining ttee
model B (model C) predicted outputs and their corresponding expamiad
counterparts. If the obtainegolvaluesare less than 0.05, this indicates a uniform
rejection of the null hypothesis (at 95% confideteeel) regarding the statistical
equivalence of th€C magnitudes pertaining to the respective modebkpé#ican thus
be concluded that the differences in @€ magnitudes of the stated model pairs are
statistically significant. From th€C magnitudes and the results of Steiger’s z-test for
a pair of models, it is possible to determine alihnodel possesses higher prediction
accuracy and generalization capability.

The formula for computing Steiger’s Z-statistigisen below.

[N-3]
2)([1—7'23 ]Xh

Z 2z — Z13] % (2.13)

where, Z,, andZ,; are the Fisher’'s Z transformationsrgf andr;; , respectively.

1—[fxrm?]
1-rm?2

2 2
2 _Tiz +7i3

: where rm >

(2.14)

If Z>1.96, p<.05;Z>2.58p<.01

2.8 CONCLUSION

The Al-based modeling methods such as artificialrale networks, genetic

programming, and support vector regression haveesattractive features. As a
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result, they have found numerous modeling appboatin chemical engineering and
technology. In this chapter, these methods, whaletbeen extensively employed to
conduct various modeling studies in chapters 3 twa8e been described in sufficient
details. This chapter also presents the commoniljzed Al-based stochastic
optimization method, namely, genetic algorithm, ethihas been employed in Chapter
7 for obtaining optimal conditions for a resin-baseaste-water treatment reaction.

In addition to the Al-based modeling, a numbertatiges reported in this thesis
have utilized dimensionality reduction and sengitianalysis methods (sections 2.5
and 2.6); these are respectively used for reduttiegdimensionality of the input
space of the models and identifying influentialuhpariables.

In each of the modeling studies presented in tlesish there was a need to
rigorously compare the prediction and generaliraperformance of the competing
Al-based and other models. This comparison wasopedd mostly using the
Steiger’s z-test described in section 2.7. In surgmthis chapter lays a strong
foundation for the subsequent chapters by presgntindetail the various Al and
machine learning-based modeling and optimizatiorthods, as also conventional

mathematical methods used in data pre-processing.

NOMENCLATURE
E' residual matrix in PCA
f linear/nonlinear function whose parameters arengefin terms of &-

dimensional vectomy

I Number of input nodes in MLPNN, and pattern indeX6VR formulation

K kernel function in SVR , and number of input no@e&™ hidden layer of
MLPNN
14, length of a chromosome or a string in GA simulation

14 number of bits to represeiit decision variable

l

netihj activation off"™ hidden layer
Ngen, generation index

Njen generation index in GA simulation
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NA.. maximum number of generations for GA evolution

N, number of patterns in the data set

N, number of binary strings (population size) in GAslation; number of
candidate solutions in the GP population

P’ transpose of the loading matrix

P4 crossover probability in GA procedure

P4, mutation probability in GA procedure

Dr transpose of thet"J- dimensional loading vector in PCA
R4 string fitness in GA procedure

fitness score off" candidate solution in GP

R4  fitness score off" candidate solution in GA

S; decoded decimal value 6f binary segment

t, N,-dimensional-*" score vector in PCA

w!  weights of the connections between input layer saae]" hidden node

= [x1, X2, .., X;, ..., x;,] " refers to thd-dimensional vector of
independent/input variables

x°Pt  i" optimized decision variable
y Dependent/output variable
Vp Experimental (target) outputs pertaining to t#i& input pattern.

y;"d’ Model-predicted outputs pertaining to th& input pattern.

Greek letters
o = [ay, Ay, ..., ...,axg]", parameter vector in GP
a,, ay Lagrange multipliersn SVR

B Parameter vector of functigh

63



N mean-squared-error between the target and moddicped outputs for the
entire solution population

n learning rate in the EBP algorithm

.9]’.1 Strength of the connection that the bias neuronesmakthj™ hidden node.

Hebp momentum coefficient in the EBP algorithm
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Chapter 3

Artificial Intelligence-based Modeling of High AshCoal
Gasification in a Pilot Plant Scale Fluidized Bed Gsifier

ABSTRACT

The quality of coal—especially its high ash contesignificantly affects
the performance of coal-based processes. Coaligasdn is a cleaner
and an efficient alternative to the coal combustfon producing the
syngas. The high-ash coals are found in a numbepohtries, and they
form an important source for the gasification. Aabogly, in this study,
extensive gasification experiments were conductedl pilot-plant scale
fluidized-bed coal gasifie(FBCG) using high-ash coals from India.
Specifically, the effects of eight coal and gasifigocess related
parameters on the four gasification performance ialales, namely
CO+H, generation rate, syngas production rate, carbonwersion, and
heating value of the syngas, were rigorously stulidiéhe data collected
from these experiments were used in the FBCG nmugjelvhich was
conducted by utilizing two artificial intelligend@l) strategies namely
genetic programmindGP) and artificial neural network§ANNS9. The
novelty of the GP formalism is that it searches aptimizes both the
form and parameters of an appropriate linear/noahln function that
best fits the given process data. The original edjmensional input
space of the FBCG models was reduced to three-diomeal space using
the principal component analys{fBCA) and the PCA-transformed three
variables were used in the Al-based FBCG modelkgomparison of
the GP and ANN-based models reveals that their wugrediction
accuracies and the generalization performance végm good to
excellent as indicated by the high training andt test correlation
coefficient magnitudes lying between 0.92 and 0.996s study also
presents results of the sensitivity analysis pentt to identify those
coal and process related parameters, which sigaifity affect the

FBCG process performance.
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3.1 INTRODUCTION

The widely employed coal-based combustion technesodor the power
generation suffer from a number of drawbacks, sashlower efficiency, and
significant emissions df0,, SO, andNO, gases. These emissions lead to the climate
change, and air pollution. An important factor ti#tuences the performance of a
thermal power station is the quality of the coatdign the combustion. Specifically,
usage of the high ash (>20%) coal produces fotigvadverse effects: (a) emission
of more particulate matter into the atmosphere, réguced power station boiler
efficiency leading to consumption of higher volunwscoal to achieve the targeted
power output, which results in higher coal tranggosn costs and, consequently,
costlier power, and (c) higher levels of impuriti'gem the coal (e.g., ash and
moisture) that do not contribute to the combuspoocess; these also lead to severe
waste disposal problems.

There are a number of countries such as India, &uaistralia, and Turkey,
where high ash coal deposits are found. In Indial-based energy meets nearly 70%
of the country’s energy needs. The Indian thernoavgy stations invariably receive
high ash coals and, thereforé), emission control has become a major concern. For
achieving the stringent pollution control targethianges in the coal utilization
practices and the development of clean coal tecgned have become essential.
These measures are expected to result in a higrceoegersion efficiency and lower
environmental impact (Takematsu and Maude, 1991¢. Jasification of coal is such
a promising clean coal technology (Miller, 2011heTtypical thermal efficiencies of
the conventional pulverized-fuel (PF)-fired poweat®ns are approaching 37%,
whereas supercritical PF units can achieve netieffities of 47% (Clean coal
technology, 2000). In comparison, power generati®ing anintegrated Gasification
Combined Cycl€IGCC) system has achieved thermal efficienciespgroximately
47% (Heaven, 1996) and it is believed that theciefficies exceeding 50% are
possible in the near future (Clean coal technol@®p0; Davidson, 1983). The newer
gas turbine concepts and increased process tempEyatre targeting efficiencies up
to 65% (Davidson, 1983).

The gasification technology, being environmentifdly is a potential

alternative to the conventional coal combustioredagpower generation. The
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conventional thermal power plants with steam cyellesie cannot achieve the high
efficiency targets, and hydrogen production frone ttombustion plants is not
feasible. These limitations are not applicableh® gasification technologies and they
possess several other advantages as well due io fiability in the syngas
applications. There exist three major coal gadificatechnologies, namely moving
(fixed) bed, fluidized bed, and entrained bed gasif Among these, the fluidized bed
coal gasifier (FBCG) possesses following advant§gésvan, 2012):

* Process conditions in an FBCG are more uniformihgatb better heat and
mass transfer in the bed and steady product cotgasi

* Provides better contact between the solid and gaseeactants, which is
favorable for maximizing carbon conversion.

» It has a high solids residence time, can use biggsdicle sizes, and is capable
of handling the high-sulfur coals without a needr fthe flue-gas
desulfurization systems, which incur high capitadl @perational costs.

* It operates at lower temperatures and thus emiterl@amounts of nitrogen
oxides (VO,). The low temperature process, besides improuiegstystem’s
reliability, is also inherently more energy effictesince it consumes nearly all
the heat generated in the gasifier in supportieggésification.

* The FBCG can handle a wide variety of coals rangiom the high quality
bituminous coal to the lignite. For more reactiweel§, such as the sub-
bituminous coal and lignite, the fluidized bed fjass can achieve good
gasification yields and carbon conversion at reédyi mild conditions.

» The tar and phenol formation is low or negligible.

* The large fuel inventory provides safety, relidijland stability.

» Potential for in situ sulfur capture.

e Better turn-down ratio.

Due to the above-stated several attractive charsiots, the fluidized bed coal
gasifiers are better suited—in comparison with tiker types of gasifiers—for
handling high ash coals.

A large number of studies have been performedvesiigate the fluidized bed
coal gasification (see, for example, Gutierrez &vatkinson, 1982; Ocampo et al.,
2003; and Ju et al., 2010). However, a detailedeemxental investigation and
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analysis of the fluidized bed gasification with acids on the high ash coals cannot
found in the open scientific literature. Such algtis important since in countries like
India a large portion of the electrical energy cerfrem the coal-fired thermal power
stations and there exists a dire need to switclr twemore efficient clean coal
technologies, such as gasification. Another redspstudying the FBCG in depth is
the following: the gasifier operates in the dry asmoval mode owing to which the
operating temperature needs to be lower. This raayltrin an unconverted carbon in
the fly and bottom ashes. To address the issues@rfrom the low temperature
FBCG operation, an in-depth investigation of theouwss factors affecting the FBCG
performance has become necessary. Accordinglystady first reports the results of
the fluidized bed gasification in a pilot-plant kcgasifier using high ash coals of
Indian origin.

Availability of an accurate, robust, and reliablathematical process model of
an FBCG assists in the preliminary process desigmplex simulation, prediction of
the steady-state and dynamic behavior, startupgdstwn, change of fuel and load,
scaling up, control, fault detection and diagnosisgd process optimization. Such
models are also helpful in fixing the right magdiuof the bed temperature so as to
() avoid bed agglomeration and incomplete char veosion (due to lower
temperatures), (i) avert tar formation (owing tghhtemperatures), and (iii) ensure
high gasification efficiency. Conducting experingneéspecially at a large scale, is
often expensive, complicated and time-consuming; tagdeling can save time and
money (Gomez-Barea and Leckner, 2010). Owing teetla@lvantages, a great deal of
effort has been spent over the last five decadesrtb mathematically modeling
different types of gasifiers.

3.1.1 Phenomenological Modeling of Fluidized Bedoal Gasification

Commonly, phenomenologica(“first principles or “mechanistit) models of
an FBCG are developed for gaining design and pedace related information on
the process operating under a variety of reactionlitions. These models incorporate
complex and nonlinear reaction and mass and haasgort phenomena. Different
types of models can be developed for the FBCG—fitmensimple black-box or zero-
dimensional models, where mass and heat balaneawnade over the entire gasifier

to predict the exit gas composition, to the compier-isothermal, three-dimensional
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ones taking into account the fluid dynamics andrtta behavior. Owing to the sheer
complexity of the underlying physicochemical pheeoa, the phenomenological
modeling of the coal gasification/gasifier is a ldmaging task. This task is often
simplified by making a number of assumptions regaydhe numerous mechanisms
underlying the gasification process.

Broadly, two types ofphenomenologicalmodels, namely thermodynamic
(equilibrium) and kinetic (rate), are developedtfoe FBCG (Lee, 2007). The models
belonging to the first category are independentth&f gasifier type and assume
complete oxygen consumption. Being independenhefdasifier type, these models
are not useful for examining the effects of opeatparameters on the gasifier
behavior. The other type, i.&ineticmodels, comprises an appropriate hydrodynamic
model of the fluidized bed coupled with the kinstaf various reactions occurring in
the gasifier. Given a set of operating conditiohsaspecific type of a gasifier, its
kinetic model is capable of predicting the prodesbkavior in terms of, for instance,
product composition, and temperature profiles.him phenomenological modeling of
an FBCG, once the model structure is fixed, themarge number of kinetic,
thermodynamic, and heat and mass transport relgaeameters appearing in the
model need to be determined either by conductiqgements and/or by simulation.
Some notable representative studies as also revipegaining to the
phenomenological modeling (including computatiofiald dynamics modeling) of
the fluidized bed gasification can be found in Rimart et al. (1987), Sett and
Bhattacharya (1988), de Souza-Santos (1989), Gatyal. (1989), Gururajan et al.
(1992), Lim et al. (1995), Witt and Perry (1996)t\Met al. (1997), Donne et al.
(1998), Moorea-Taha (2000), Villanueva et al. @0Mazumder (2010), Armstrong
et al. (2011), Irfan et al. (2011), Yang et al. X2]) Xiangdong et al. (2013), and
Singh et al. (2014).

The specific difficulties encountered in the pheeowlogical modeling of
gasification processes are: (i) nonlinear interg&ya number of process variables,
(i) lengthy throughput dependent process dynami@s) cost-intensive and
exhaustive experimentation required for studying éfffects of influential operating
variables and parameters, and (iv) unavailabilityao in-depth knowledge of the
physicochemical phenomena (e.g., kinetics, heat raads transport mechanisms)

underlying the coal gasification phenomena
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3.1.2 Alternate FBCG Modeling Strategies

An alternative approach to the phenomenological eting of the gasification
process is to utilize regression methods to fortewdapirical models. However, in
this approach the exact form of the data fittingdtion (model) needs to be specified
before the function parameters could be estimatbi. is a difficult task since in the
gasification process multiple factors influence ttamlinear gasification phenomena
and the precise interactions between them are uilyt Known. The complexities
involved in the phenomenological and regressiorethasnodeling of FBCG
necessitate exploration of alternative nonlineadetiog strategies that do not require
full details of the underlying physicochemical pberena. The Al-based modeling
strategies, for examplartificial neural network§ANNS), and the statisticahachine
learning (ML) theory-based formalism, namedypport vector regressiofsVR), are
exclusively data-driven strategies and thus these ke used for modeling FBCG.
There exist a number of studies wherein ANNs haenbemployed in the energy-
related science and engineering (Mjalli and Al- Mfa2008; Nougues et al., 2000;
Liukkonen et al., 2012; Puig-Arnavat et al., 20B&hera, 2014). In an exhaustive
data driven modeling study of FBCG, Chavan et(2012) developed two ANN
based models for the prediction of gas productiae rand heating value of the
product gas, using process data from 18 globaktyated coal gasifiers. These
models use six inputs namefied carbon volatile matter mineral mattey air feed
per kilogram of coalsteam feed per kilogram of coandtemperature Despite their
potential, however, the Al and ML based strategige been only rarely employed in
the modeling of fluidized bed gasifiers.

Apart from the ANNSs, the Al comprises a novel esthely data-driven
modeling formalism, namelgenetic programmingGP). The unigueness of the GP
methodology is that given an example input-outttadet, it is capable of searching
and optimizing both, the specific form (structurapd the parameters, of an
appropriate linear/nonlinear data-fitting functiand unlike ANNSs, the GP does this
without making any assumptions regarding the stimecand parameters of the data-
fitting function. A detailed description of GP foatism is given in Chapter 2 (section
2.2.2). Despite its novelty, the GP has not beezd usidely for the data-driven
modeling applications in chemical engineering/textbgy to the same extent as the

ANNs and SVR. Accordingly, the principal objectived this paper are (i) to
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rigorously study the gasification of the high asldian coals in the pilot-plant scale
FBCG and (ii) to develop GP-based models for thedigtion of four FBCG
performance variables, namely CQ# generation rate(y;) (kg/kg coal),syngas
production rate(y,) (kg/kg coal),carbon conversiofys) (%), andheating value of the
syngas(ys) (kcal/NnT). In the FBCG modeling, following eight processiahles and
parameters have been used as the model infudk:ratio (fixed carbon/volatile
matter) &), ash content of cogk,) (wt %), specific surface area of coéts) (m?/g),
activation energy of gasificatiofx,) (kJ/mol),coal feed ratgxs) (kg/h), gasifier bed
temperature(xs) (°C), ash discharge raté€x;) (kg/h) andair/coal ratio (xs) (kg/kg
coal). The novel features of the present studyaar®llows.

a) Extensive experimentation has been conducted flystg the high ash coal
gasification under steady state conditions in atylant scale FBCG located
at the Central Institute of Mining and Fuel Resear(@@IMFR), Dhanbad,
India.

b) A rigorous literature search shows that this isftlst study wherein the GP
strategy has been employed for the data-driven hmgden the coal-related
energy science and engineering.

c) Theprincipal component analysi®CA) has been performed for reducing the
dimensionality of the models’ eight-dimensional uhgpace representing the
various coal and gasifier parameters.

d) Thesensitivity analysi®f the eight model inputs has been performed tmega
their influence on the four process performanceatdes

Conventionally, phenomenological models for thel gzsification/gasifier use four
types of inputs: (i) coal properties (proximate /andultimate analysis), (ii) process
operating variables and parameters (reactor termergressure, feed rate, etc.), (iii)
physicochemical parameters (e.g., surface aretfjeo€oal, and (iv) reaction kinetics
parameters. In an earlier study on the FBCG moge(@havan et al. (2012) used the
first two types of inputs. The present FBCG modglstudy, in comparison, utilizes
all the four types of inputs owing to which the ungpace now contains additional
information pertaining to the physicochemical phaeoa occurring in the gasifier.

The importance of the selected eight model inpytsXg) is described below.
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The extents of fixed carbon and volatile mattetetfthe effect of hydrogen
and oxygen containing functional groups in the céals effect is represented
in the form of fuel ratio (FC/VM)x;) as a model input.

Ash (wt %) (&) is an indicator of coal’s mineral matter conteSeveral
formulas have been proposed for converting thecasitent in the coal to its
mineral matter content. One of the oldest yet stillely used correlation is
given by Parr (1932):

mineral mattéwt %) = (1.08 xash(wt %)) + (0.55 xS(wt %)) (3.1)

where S refers to the sulfur content in the coal. Since #ulfur (as also
carbonate) content of the Indian coals is low,napéified version of the Parr

correlation (Eq. 3.1) is used for these coals asrgby Choudhury (2013):
mineral matfert %) = 1.1 xash(wt %) (3.2)

The ash in the coal is responsible for lowering ¢hebonaceous material in
the coal matrix thereby negatively affecting thalgy of the product gas.

The rate of gasification depends on the accedyilwfi the reactant gases to
the internal surface of the porous coal where adites reside. Accordingly,
specific surface area {fg) (xs), has been considered as a model input.

In the coal gasification process, the char-@@sification is one of the rate
controlling steps and hence the activation energy/n{ol) ;) of the
char-€0, gasification reaction forms an input to the model.

The coal feed rate (kg/h¥s) has been chosen because it defines the flow rate
of the basic carbonaceous raw material.

The significance of the model input, namely gasified temperature (°CXd),

is that, as its magnitude increases, the produsiggaeration per kilogram of
the coal increases. Also, higher gasification teajpee results in the faster
pyrolysis generating an increased amount ofCthg which in turn gets
converted to the CO via the Boudouard reaction.

The ash discharge rate (kg/h¥;,)(has been considered as a model input
(Satonsaowapak et al., 2011) because togethertietitoal feed ratexq), it
significantly influences the residence time of toal particles in the gasifier

bed. For instance, the residence time decreasésanitincrease in the coal
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feed rate Xs) or the ash withdrawal rate;§. This results in the lower product
gas generation per kilogram of the coal feed. Adicgly, in the low
temperature gasification, it is necessary to abosufficient residence time for
the coal particles to achieve maximum carbon caiwerand product gas
generation per kg of the coal (Chavan et al., 26112 et al., 1997).

* The air/coal ratio (kg/kg of coal)xd) is an important gasification process
parameter since (Ocampo et al., 2003; Kim et &97) (a) the air-assisted
oxidation of the carbon is one of the key reactitorsattaining the desired
temperature for the gasification, (b) an increaséhe air/coal ratio increases
the carbon conversion, and (c) an excessive air/catio decreases the
heating value of the syngas thereby negativelgcéfig the performance of

the gasification process.

In this study, the prediction accuracies and gdizatéon capabilities of the four
GP-based models have been compared with those eofctmresponding four
multilayer perceptron neural network (MLPNN) basewbdels. This comparison
indicates that both types of models possess anllexteability to predict the
magnitudes of the four gasifier performance vaaabl

The structure of the chapter is as follows. Theaitketof the FBCG and the
experiments conducted thereof are given in “expental section” (section 3.2),
Section 3.3 titled “Results and Discussion” sftipresents the results pertaining to
(a) the sensitivity analysis of the eight modelutsp (section 3.3.1), (b) artificial
intelligence (Al)-based FBCG Modeling (section 3)3which includes the details of
development of the GP and MLP-based FBCG modebiigvied by a comparison of
prediction and generalization performance of GP ktdP-based models. Finally,

section 3.4 summarizes the principal findings ef study.

3.2 EXPERIMENTAL SECTION

In this study, four types of Indian coals with agintent varying between 27%
and 48% have been used. Their basic properties evalaated by the proximate and
ultimate analyses (see Table 3. 1) carried outrdong to the Indian standards, viz.
IS: 1350 (Part-1) 1984, IS: 1350 (Part-Ill) 1969, 11350 (Part-1V/Sec-1) 1974, IS:
1350 (Part-1V/Sec-2) 1975. The specific surfaceaaod the coal samples was
measured using Tristar 3000 surface area anallergmeritics, U.S.A.).
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Coal gasification comprises two stepgrolysisandchar gasification(Ollero et
al., 2003). The kinetics of the char gasificatioaswnvestigated in the reaction rate
controlling regime. Here, char—-GQpasification kinetic parameters, such as the
gasification rate constant and the gasificationivatbn energy thereof, were
evaluated using the laboratory scale thermo-gravimanalyzer (TGA) by following
the procedure given in Shaw et al. (1997), Beamishl. (1998), and Cakal et al.
(2007).

3.2.1 FBCG Pilot Plant

Gasification experiments were conducted in an lmwh FBCG pilot plant
(Figure 3.1). The gasifier with a capacity to hentio—20 kg coal/h and operating
temperature <1000 °C consists of the following gatems: coal feeding system,
gasifying agent feeding system, fluidized bed gasibish extraction system, cyclone
separator, syngas cooling and cleaning system, flav@ stack. Gasification
experiments were conducted using four types of scdast varying the process
operating conditions. The gasifier temperature wased by an external electric
heating system. The preheated air (200-250 °CYlamduperheated steam (200—-250
°C) were mixed using an air/steam mixer and fedht gasifier through a conical
distributor. Ash in the bed was extracted at a radled rate and cooled to 40 °C
prior to discharging in the ash bin. The hot dusty fuel gases leave the gasifier
from the freeboard section and enter the cyclonergvimost of the elutriated particles
are captured.

The fuel gas from the cyclone enters the quenchunwol Following the
softening treatment, water from the settler tank dizectly sprayed by spray nozzles
on the hot syngas to reduce its temperature. Theldden water gets collected in the
seal pot situated at the bottom of the quench gipe.cooled gas exits from the top
side in the seal pot and passes through a vemtuibiser wherein any left-over acidic
contents of the cooled gas are cleaned furtheor Ryiflaring, the clean gas from the
knockout drum is transferred through a system pressontrol valve and water-
sealed flare stack. By using the water displacemegihod, the syngas samples were
extracted in the glass pipettes through a samplkection port located at the
downstream of the knockout drum. These gas samy@es analyzed using an offline

gas chromatograph (Model GC 1000; Chemito, Indid)e ranges of the various
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constituents of the syngas given by the analysis wereCO (%) 1(-22; H, (%)
10-22; CQ (%) 10-25; N, (%) 45-60; and CH(%) < 2.

b

Figure 3.1: Fluidized bed gasification pilot plant consistingppocess elements: (
Coal feeding system, (2) Gasifying agent feedingfesy, (3) Fluidized bed gasifie
(4) Ash extraction system, (5) Cyclone separat®y,§yngas cooling and cleani
system, and?() Flare stacl

Table 3.1:Analysis of Coal Samples (Air Dried Bas

Proximate analys Ultimate analysi

Coal Ash Moisture | Volatile | Fixed

(Wt %) | (Wt %) | Matter | Carbon| C (%) | H (%) | N (%) | S(%) | O (%)

(%2) (Wt %) | (wt %)
C1 41.3 6.5 24.5 277 | 37.15 283 0.86 | 0.55 6.68
Cc2 48.9 7.1 20.4 236 | 3082 190 0.60 | 0.24 5.55
C3 27.0 9.7 25.7 37.6 | 48.46 3.44 1.03| 0.60 7.07
Cc4 36.0 8.1 20.7 35.2 | 4351 | 3.03 | 0.98 | 0.51 4.27

*By difference
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Table 3.2:FBG Experimental data

Expt. | Coal | FC/VM Sp. | Activation| Coal | Gasifier Ash Air/coal ratio CO+H, Syngas Carbon | Syngas heat
no. | type | (xq) surface| energy | feedrate| temp. | discharge| (kg/kg coal) | (kg/kg coal)| production | conversion value
area (kJ/mol) (kg/h) (°C) rate (xg) (y1) rate (%) (kcal/NnT)
(m/g) (%4) (x5) (x6) (kg/h) (kg/kg coal)|  (y3) (Va)
(x3) (x7) (¥2)
1 C1 1.13 103.60 120.60 115 852 6.0 1.13 0.27 1.61 66.34 1104.0
2* C1l 1.13 103.60 120.60 11.0 896 5.0 1.20 0.44 781 80.64 1278.0
3* C1l 1.13 103.60 120.60 11.0 905 5.0 1.23 0.43 831 81.13 1260.0
4 C1 1.13 103.60 120.60 10.3 912 4.5 1.26 0.46 1.89 84.19 1260.0
5* C1 1.13 103.60 120.60 11.0 918 4.5 1.29 0.49 921 85.42 1275.3
6 C1l 1.13 103.60 120.60 10.5 925 4.5 1.34 0.49 1.95 84.82 1245.0
7 Cc2 1.16 115.15 117.15 16.0 815 10.3 0.87 0.14 911 52.78 0962.4
8 C2 1.16 115.15 117.15 16.0 825 9.5 0.87 0.18 1.27 61.76 1023.6
9 C2 1.16 115.15 117.15 15.0 834 9.5 0.91 0.18 1.29 61.27 1025.4
10* | C2 1.16 115.15 117.15 14.0 839 7.0 0.92 0.22 1.33 64.89 1102.2
11+ C2 1.16 115.15 117.15 14.0 839 7.0 0.94 0.24 1.36 68.13 1077.6
12 Cc2 1.16 115.15 117.15 14.0 845 8.0 0.94 0.23 912 62.64 1122.6
13 Cc2 1.16 115.15 117.15 15.0 855 8.5 0.88 0.20 912 63.57 1095.6
14 Cc2 1.16 115.15 117.15 15.0 859 8.0 0.89 0.24 6 1.3 71.01 1161.3
15 Cc2 1.16 115.15 117.15 15.0 859 8.5 0.91 0.22 4 1.3 67.43 1137.0
16 C2 1.16 115.15 117.15 13.0 872 55 0.94 0.32 214 77.56 1282.2
17* | C2 1.16 115.15 117.15 14.3 879 8.0 0.96 0.31 1.40 72.86 1233.3
18 C2 1.16 115.15 117.15 13.0 880 6.0 0.95 0.32 414 75.79 1113.6
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Table 3.2continued...

Coal | FC/VM Sp. | Activation| Coal | Gasifier] Ash Air/coal ratio CO+H, Syngas Carbon | Syngas heat
Expt. | type | (xq) surface| energy | feedrate| temp. | dischargel (kg/kg coal) | (kg/kg coal)| production | conversion value
no. area (kJ/mol) (kg/h) (°C) rate (xg) (y1) rate (%) (kcal/NnT)
(M7g) | (x4) (xs) | (x¢) | (kg/h) (kg/kg coal)|  (y3) (V4)
(x3) (x7) (v2)
19 c2 1.16 115.15 117.15 14.0 880 5.8 0.91 0.32 114 77.96 1295.4
20 Cc2 1.16 115.15 117.15 13.0 887 5.5 0.98 0.33 6 1.4 78.39 1261.5
21 Cc2 1.16 115.15 117.15 13.4 890 6.0 0.98 0.33 414 76.66 1281.9
22 Cc2 1.16 115.13 117.15 13.3 892 7.0 1.04 0.33 814 76.02 1211.7
23* | C2 1.16 115.15 117.15 13.0 893 5.8 1.00 0.34 1.48 78.73 1254.3
24 Cc2 1.16 115.15 117.15 13.5 896 6.0 1.02 0.35 814 79.43 1291.5
25 c2 1.16 115.15 117.15 12.5 900 6.0 1.10 0.35 315 77.94 1238.1
26 Cc2 1.16 115.13 117.15 13.0 901 5.8 0.97 0.34 614 79.88 1298.4
27 C2 1.16 115.15 117.15 13.0 903 6.0 0.95 0.33 314 78.04 1266.3
28 c2 1.16 115.15 117.15 13.0 904 5.8 0.98 0.36 714 81.19 1320.0
29 C3 1.46 86.25 133.37 11.5 833 6.5 1.27 0.34 1.87 60.51 1110.0
30* | C3 1.46 86.25 133.37 11.0 889 5.5 1.30 0.48 .002 70.06 1257.0
31 C3 1.46 86.25 133.37 10.5 911 5.0 1.34 0.52 209 74.33 1269.0
32 C3 1.46 86.25 133.37 10.0 966 4.0 1.43 0.57 2.34 86.22 1215.6
33 C4 1.70 94.52 125.87 12.0 841 7.0 1.12 0.32 1.64 60.12 1161.0
34* | C4 1.70 94.52 125.87 11.5 875 6.7 1.24 0.39 831 67.49 1164.0
35 C4 1.70 94.52 125.87 11.5 89( 6.0 1.22 0.44 1.82 68.74 1242.0
36 C4 1.70 94.52 125.87 11.0 90( 6.0 1.34 0.47 1.96 73.59 1221.0
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During gasification, the major controlled paramsterere coal feed rate, bed
temperature, air flow rate, steam flow rate, asthavawal rate, and bed height. The
bed temperature was major feedback for the comegds to control various other
operating parameters. It was controlled via mamijind) the coal and air feed rates.
The bed height was controlled by adjusting the ohtesh extraction from the bottom
of the gasifier. Upon following the stated expenmta and control procedures, a
number of experiments (=36) were conducted by naryiFBCG operating conditions
in the following ranges: (i) coal feed rate = 10<k@/h), (ii) air/ coal ratio = 0.8-1.5
(kg/kg of coal), (iii) steam feed rate 0.2 (kg/kg of coal), (iv) gasifier bed
temperature = 800-960 (°C), (v) ash withdrawal ratd-10 (kg/h), and (vi) bed
height~ 10 cm. All the experiments were conducted with tfiaimum fluidization
velocity of 0.625 m/s. The proximate and ultimatalgses of the four types (C1-C4)
of coals are given in Table 3.1, and the valuethefseven inputs{to xg) and the
corresponding four outputy,fy,) pertaining to the 36 gasification experiments are
listed in Table 3.2; the values of the second inpatnely percentage of ash)( are

listed in Table 3.1.

3.3 RESULTS AND DISCUSSION

3.3.1 Sensitivity Analysis of Model Inputs

In this study, the sensitivity analysis (also tedmienportance” analysis) of the
predictor/input/independent variables in the gasifiata has been performed using
the IBM-SPSS (2011) package to ascertain the erfdanfluence exerted by the eight
input variables X;—xg) on the four process performance variabigsy); the details
of the sensitivity analysis are given in Chaptels2ction 2.6). The importance
analysis was conducted using the entire set ofrerpatal data listed in Tables 3.1
and 3.2. The four panela«d) of Figure 3.2 exhibit the importance and norneliz
importance charts, which indicate the extent ougrfice exerted individually by the
eight input variables x{—xg) on the four performance variabley;<ys;). The
importance chart is simply a bar chart of the valunethe importance table, sorted in

the descending values of importance. From Figu2eiBis observed that ther/coal
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ratio (xg), gasifier bed temperaturéss), ash discharge rat€x;), andcoal feed rate
(xs) influence the gasifier performance variables nsighificantly. These sensitivity
results are in conformity with those observed i skudies by Pinto et al. (2003), Lee
et al. (2002), and Ponzio et al. (2006). It is alsticed that the basic coal properties
viz. FC/VM ratio ), ash contentxg), specific surface areasf, and gasification
activation energy X;) impart relatively lower influence on the gasifica
performance. Chavan et al. (2012) and Kim et @97) have also made similar

observations during their gasification studies.

Normalized Importance Normalized Importance
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
- s
X, (b)
0.0 0.05 0.1 015 020 0.25 0.0 0.05 0.1 0.15 0.20
Importance Importance
Normalized Importance Normalized Importance

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

Xy
5
(c) .\'3 (d)
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.4
Importance Importance

Figure 3.2: Normalized importance of eight model inpuis—(xg) on four model
outputs namely CO+iHgeneration rate (pane), syngas generation rate (parmg|
carbon conversion (pane), heating value of syngas (parkpl

3.3.2 Atrtificial Intelligence (Al)-based FBCG Modelng

The principal component analysis (PCA) (Geladi Konavalski, 1986) described

in Chapter 2 (section 2.5) was performed on thatedgmensional input space of the
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GP and MLP-based models with a view to reduce iheeksionality of the input
space and thereby the complexity of the modelsovA dimensional input space also
lowers the computational load during the GP/MLPdolasodeling. The results of the
PCA provided the following magnitudes of the vadann the experimental data
captured by the eight principal components (PE€);, 70.2%;PC,, 21.5%;PC;, 4%;
PCs, 2.4%;PGCs, 1.6%;PCs, 0.2%;PC;, 0.1%; andPCs, 0.0%. It is thus seen that the
first three PCs have captured a large percenta§®.7%) of the data variance. Thus,
it was possible to reduce the dimensionality of itiut space of the GP and MLP-
based models from eight to three by consideringetements of the first three PCs in
place of the original eight inputs. The three P@a&asformed inputsv(, Vo, v3) are

defined as

vi=0.288%, — 0.396%, — 0.399%, + 0.382%, — 0.387%; + 0.242%, — 0.289%, +
0.405%4 (3.3)

Vo = 0.424%,— 0. 228%, — 0.23%; + 0. 273%,+ 0. 243%; — 0.556%¢ + 0.514%, —
0.08%, (3.4)

vs=—0.81%, —0.25%, —0.162%; +0.174%,- 0.11%; —0.431%, + 0.005%, +
0.159%, (3.5)

where X;; 1 =1, 2, ..., 8, denote theormal scoreqstandardized variables) of the
eight input variable values] listed in Tables 3.1 and 3.2. For developingrtiealels
possessing good prediction accuracy and geneializability, the experimental data
were split randomly wherein 75% data (27 pattemsi)e used as the training set for
developing the models while 25% data (9 patternsjewused as the test set for
assessing the generalization ability of the modelsSupporting Information Table

3.2, the test set data are marked using the dsteris’) symbol.
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Table 3.3: Details of GP-based FBCG Models

_ *
Model No GP-based models CCyn | MSEy, | CCut | MSEe
| y1=0.1058 [0.8374; + 0.1965 7 73 — 0.36452 — 0.09381z5°] + 0.3414 0.993 1.41x10 [0.981 | 3.5x 10
Il y2>=0.2806 [1.11&; — 0.1032,— 0.21172 2, ] + 0.3414 0993 | 1.28x10 |0.997 | 5.37x 10
1 y3= 8.4187 [0.300%;° + 0.1524z 2,°— 0.197723— 1.0892, — 0.276]+ 72.9869 | 0.980 3.905 0.980 2.288
v y4=91.441 [ 0.8156, 75 + 0.2545z 72, + 0.07754z,° — 0.194625° — 0.2459z,° | 0.925 1296.95 0.969| 621.62
23— 0.6572—-0.02941 ] + 1197.72
*z = (\W)/(2.3708), 2 = (W)/(1.3099) andz; = (v3)/(0.5676); v denotes't PCA-transformed variable
Table 3.4:Details of MLP-based FBCG Models
Model | Output | Input No. of | Hidden Transfer Transfer
No variable| nodes | hidden | nodes in each function for | function for | pepp CCin | MSEy, | CCst | MSE
layers | hidden layer | hidden layer| output layer
| 3 1 2 tanh Identity 0.05 0.1 0.998 1.4¥100.978| 5.3x10
Il Y2 3 1 2 tanh Identity 0.004 0.1 0994 9.0%100.996| 9.8x10
1 Y3 3 1 2 tanh Identity 0.05 0.1 0.977 3.370 0.982 22.8
\Y, Ya 3 1 2 tanh Identity 0.05 0.2 0.920 1371.81 0.960 17.89
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GP-based modeling

The four GP-based models predicting as many {.) gasifier performance
variables were developed using thereqa Formulizesoftware package (Schmidt and
Lipson, 2009). The detailed procedure for GP (Ko2892; Kinnear, 1994)
implementation has been explained in Chapter 2ti(ge@.2.2). This package has
been optimized to construct parsimonious modelssgasng good generalization
ability. In the GP-based modeling, theean squared erroMSE dependent fithess
function was used. The effects of the GP procechaedmeters such as the size of the
training and test sets as also the various inpunalization schemes were studied
rigorously. The prediction accuracy and the gemeatbn performance of each model
were evaluated by computing treefficient of correlation(CC) and the MSE
between the experimental (target) and the correBpgmmodel-predicted values of
the four process performance variables. These ijiganere evaluated separately for
the training and test data sets. The overall bestets were selected on the basis of
their high CC and loWMSE magnitudes in respect of both training and testla&a.
The four GP-based models, respectively predicti®y €H, generation rate(yi),
syngas production ratéy,), carbon conversiorys), andheating value of the syngas
(y4), are listed in Table 3.3 along with the correspng magnitudes of the training
and test set coefficients of correlation and mepraged errors.

The four panelsa-d) of Figure 3.3 respectively show the parity plofsthe
experimental versus GP model-predicted values ef fdur process performance
variables Y1— y4) in respect of both training and test set datac#s be noticed from
panels &-c), the model predicted values of the performanagalkesy;, y, andys;
exhibit a close match with their experimental ceuparts. The prediction accuracy of
the GP-based model for the performance variahléheating value of the syngas),
though high is marginally inferior to that possesby the GP-models fon, y,, and

Ys.

MLP-based modeling

The MLP-based analogs of the four GP-based models developed using the
same training and test sets as used in the develdpof the GP-based models. To

construct an optimal MLP-based (Zurada, 1992; Bish@94) model the detailed
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procedure explained in Chapter 2 (section 2.2.5) lbeen followed. The effects of

network’s structural parameters (i.e., the numbdridden layers, number of nodes in

each hidden layer and type of transfer function dahd two EBP algorithm

parameters, nameljearning rate () and momentum coefficienfu,,), on the

model’s prediction accuracy and generalization bdiya were systematically

examined. Also, the effect of random weight iniiation was studied to obtain an

MLP model that corresponds to the global or thepdstlocal minimum on the

model’s nonlinear error surface. The details of ii@el architecture along with the

values of the training and test €&€ andMSE for the four MLP models are listed in

Table 3.4. The four panela+d) of Figure 3.4 respectively show the parity plofs

the experimental versus MLP model-predicted vabfeakhe performance variablgs

to y,. Similar to Figure 3.3, it can be observed in FegQ.4 that the MLP predicted

values of the performance variablgs y,, andys exhibit a close match with their

experimental counterparts. From t8€ andMSE values listed in Tables 3.3 and 3.4

following observations can be made:

* All the four GP-based models are nonlinear.

* The high £0.925) and comparabléC magnitudes are observed in respect of the
training and test set outputs for all the GP and®Miased models.

 Among the four models constructed separately utiegGP and MLP methods,
the prediction accuracy and generalization perfoigaaof the first three models,
respectively predicting the magnitudes of CQ+g€neration rate(y,), syngas
generation ratgly,), andcarbon conversiorys) are excellentqCy., andCCis; >
0.98); the fourth one predicting theeating value of theyngas(ys), however,
possesses relatively lower prediction accuracy gederalization performance
(CCtrn, ~ 0.92 andCCy; ~ 0.96).

 The CC andMSE magnitudes for the training and test set datailddausing the
GP and MLP models indicate that both types of nogelssess comparable

prediction and generalization performance.
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Figure 3.3: Plots of experimental versus GP model-predictddegof performance
variables, namely CO+Hyeneration ratey(, kg/kg coal) (paned), syngas production
rate {-, kg/kg coal) (paneb), carbon conversiory4, %) (panelkc), and heating value
of syngasy, kcal/Nn?) (paneld).

An explanation is in order for the relatively lowprediction accuracy and
generalization performance in predicting theating value of the syng#g,) by both
GP and MLP-based models. In this study, the ovéditing value of the generated
syngas is computed by adding the heating value8@f(3014 kcal/nr), H, (3050
kcal/nnt), and CH (9530 kcal/nm) in their respective proportions in the syngas. In
the experiments conducted in the FBCG, the indaligaercentages of the generated
CO and H varied between 10 and 22, while the percentagthefgenerated CH
varied between 0.5 and 2.0. The quantitative arsabfgshe composition of the syngas
was made using the gas chromatography, and itite glausible that the accuracy of
the measurement of concentration of ,CWhose proportion in the syngas is much

lower than that of the CO or,Hwas not as good as that of the stated major
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components. The effect of even a marginal inacguracthe measurement of the
methane gets amplified in the computation of thatihg value of syngas, due to
methane’s nearly 3.15 times higher heating valuenndompared with that of the CO
or Hy. In essence, slight inaccuracies in the measursmainthe minor syngas
component (i.e., Chl together with its much higher heating value cdudde led to
the small deviations in the actual magnitudes ef dwerall heating values of the
syngas. These deviations are possibly responsibl¢he lower (albeit marginally)
prediction accuracies of both the GP and MLP-basedels predicting the overall
heating value of the generated syngas. It is thesr ¢hat accurate measurements of
the low concentrations of methane in the syngadymioshould assist in improving

they, prediction accuracy of the GP- and MLP-based nwdel
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Figure 3.4: Plots of experimental versus MLP model-predictealues of
performance variables, namely COsgeneration ratey{, kg/kg coal) (paneh),
syngas production ratg,( kg/kg coal) (pandb), carbon conversiory4, %) (panek),
and heating value of syngas, (kcal/NnT) (paneld).
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3.4 CONCLUSION

Coal gasification is a cleaner and an efficiergrafative to the coal combustion
for producing the syngas. The high-ash coals aradon a number of countries, and
they form an important source for the gasificatidxccordingly, in this study,
extensive gasification experiments were conduateal pilot-plant scale fluidized-bed
coal gasifier (FBCG) using high-ash coals from éndifhe FBCG is a complex
nonlinear process and the complete details of thdenying physicochemical
phenomena are not available; thus, developmertteophenomenological model for
an FBCG process is a cumbersome, time-consumirtjcastly task. To overcome
the difficulties associated with the phenomenolalgimodels, in this study the
knowledge of the proximate analysis, char»Cg@asification activation energy,
surface area of the coal, and influential processampeters has been utilized for
developing exclusively data driven FBCG models mtety four important
gasification performance variables. For modelingyet artificial intelligence (Al)
formalism, namelgenetic programmingGP) has been used and the performance of
the GP-based models was compared with the corrdsgpMLP neural network-
based ones. Both types of models have been fourmbssess output prediction
accuracies and the generalization performancevidwgt from good to excellent as
indicated by the high training and test set coti@hacoefficient magnitudes lying
between 0.920 to 0.996. A rigorous literature gleahows that this is the first study
wherein the GP strategy has been employed for dkee-dtiven modeling in the coal
sciences and engineering. The models developddsistudy can be gainfully used in
designing and control of the FBCG, and in selectingcess operating conditions
leading to an optimal gasifier operation. These emdan also be used in predicting
the gasification performance of similar types oélsoin the bubbling FBCG of pilot

scale capacity.

NOMENCLATURE

v; i™ PCA-transformed variable

A~

X; thenormal scoregstandardized variables) of the eight input vdeatalues X;)

Yi i™ output (dependent) variable
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Chapter-4

High Ash Char Gasification in Thermo-gravimetric
Analyzer and Prediction of Gasification Performance
Parameters Using Computational Intelligence formakms

ABSTRACT

Coal gasification is a cleaner and more efficientogess than coal
combustion. Although high ash coals are routinegedi in the energy
generation, systematic gasification kinetic studiesg chars derived from
these coals are scarce. Accordingly, this chapports the development of
the data-driven models for the gasification of chderived from the high
ash coals. Specifically, the models predict twonificant gasification
performance parameters, viz. gasification rate ¢ant and reactivity
index. These models have been constructed usiree tbomputational
intelligence (Cl) methods, namely genetic programmif@P), multilayer
perceptron (MLP) neural network(NN), and support vector regression
(SVR. The inputs to the Cl-based models consist of nsepagameters
representing the gasification reaction conditiomzlgroperties of high ash
coals and chars. The data used in the modeling wakected by
performing extensive gasification experiments & @0, atmosphere in a
thermo-gravimetric analyze(TGA), using char samples derived from
Indian coals with high ash content. Values of thieowe-state two
gasification performance parameters were obtaineg fitting the
experimental data to the shrinking un-reacted c{B&®C model. It has
been observed that all the Cl-based models developthis study possess
an excellent prediction accuracy and generalizatapability. Accordingly,
these models can be gainfully employed in the desigl operation of the
fixed and fluidized bed gasifiers using high asal€o
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4.1 INTRODUCTION

The commonly used coal combustion technologieshan gpower generation
industry produce significant amounts of emissiohgreenhoused0,) and polluting
gases, such &0, andNO,. Thus, the development of clean coal technolobes
received a global attention for overcoming the aslweffects of coal combustion. For
mitigating the undesirable impact of coal combustom the environment, stringent
pollution control norms have been prescribed byrdmilatory agencies of countries
generating coal-based power. The suggested measerespected to result in higher
coal conversion efficiencies and a lower environtaemnmpact (Takematsu and
Maude, 1991). One of the important norms that hbeen prescribed includes
changing coal utilization practices.

Gasification is a cleaner and more efficient precdsgn the combustion for
converting carbonaceous materials into energy @vill2011). In a gasification
reaction, solid fuel is converted at high tempaegunto a gaseous fuel (syngas) that
burns relatively cleanly. There exist three majaalcgasification technologies,
namelymoving(fixed), fluidizedandentrainedbedgasifiers. The gasification of coals
and chars has been studied extensively for undhelisign the specific underlying
reactions and developing the corresponding kinetclels (see, for example, Ballal
and Zygourakis, 1986; Ye et al., 1998; Ochoa e28l01; Zhang et al., 2006; Irfan et
al., 2011).

The gasification of coal occurs in two steps. Tinst fstep is pyrolysis, which
produces volatiles and char. Normally, char (pysis residue) represents 55-70% of
the original coal. In the second step, solid cearanverted to gaseous products (char

gasification). The principal reactions occurringidg the gasification of char are as

follows:
C +C0, — 2 CO; AH = + 159.7 kdnol™? (4.1)
C +H,0 — CO +Hj,; AH =+ 118.9 kdmol™* (4.2)
C+0, — CO,; AH =— 405.9 kJmol™! (4.3)
CO +H,0 — CO, +H,; AH =-40.9 kJmol™? (4.4)
C +2H, — CH,; AH =-87.4 kJmol™ (4.5)
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The reaction enthalpies of the above reactiongiaen at standard conditions, i.e., at
25°C and 0.1013 MPa pressure (Kristiansen, 1996).

Due to its several attractive characteristics anghdr efficiency, coal
gasification is gaining importance for producingattical energy. It is, however, a
complex nonlinear process and, therefore, sevesales need to be addressed while
designing and operating a coal-based gasifier.

e Commonly, in industry an air-steam or oxygen-staamture is used as a
gasifying agent. The endothermic gasification reas; such as the
Boudouard (reaction 1) and water-gas (reactiona®), driven by the heat
generated during the air- or oxygen-assisted paxiabustion of a fraction of
the coal (reaction 3). Ideally, gasification neddsbe carried out with a
minimum amount of air or oxygen to avoid generawwdrundesired products,
such asL0, andH,0, in high quantities. However, an inadequate qtyaofi
air or oxygen results in an incomplete coal conearsand, consequently,
insufficient amount of heat generation to drive #relothermic gasification
reactions.

* The char€0, reaction is the slowest compared to the otherrbgémeous
gasification reactions with oxygen and steam. |t tiserefore, the rate-
determining reaction. The mechanisms of the di@y—and char—steam
reactions are considered to be identical (Kriseansl996; Jayaraman et al.,
2015).

* Being a well-known gasifying ager@Q, in the flue gas can be utilized in the
fuel system of the gasifier, which helps in redgcihe CO, emissions to the

atmosphere as also increasing the gasifier efiigien

It is thus clear that a thorough study of the redgt and kinetics of the char-
gasification (Boudouard) reaction is necessary(ipdetermining the quantity of heat
required to drive the reaction, (ii) fixing the anmd of air or oxygen required in the
exothermic oxidation reaction 3, so that just efoagount of heat is generated for
driving the char-gasification reaction, and (iiging CO, in the flue gas as a gasifying
agent.

Owing to their importance, the reactivity and kiogtof coal-char gasification
have been studied widely in tli®, atmosphere (Adschiri et al., 1986; Ahn et al.,
2001; Ochoa et al., 2001; Kim et al., 2011; Sahal.e2011, 2013; Silbermann et al.,
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2013; Jayaraman et al., 2015). Presently, coal®dnin countries such as India,
Australia, China, and Turkey contain ash in higihcpetages and these constitute a
major raw material for thermal power stations. Heere in the literature, systematic
experimental and modeling studies addressing trectivty and kinetics of
gasification of high ash coals are limited (see,eéample, Saha et al., 2011, 2013).
In the past, an attempt was made by Adschiri et1886) in which a first principles
model was proposed to predict the change in thee dating char gasification. This
model utilized the gasification temperatu€g), partial pressure, and characteristics
of only the parent coal as inputs—i.e., the praperof char produced were not
considered. For deriving the aforementioned moddkchiri et al. (1986) utilized
char gasification data collected using a thermadgratric analyzer (TGA). Chars
produced from 14 different parent coals in a flwedl bed were employed in the
gasification experiments. A significant limitatiah this model is that its gasification
rate prediction accuracy is suboptimal and a migjari the coals used in the TGA-
based experiments contained low amounts of asim Bragorous literature survey, it
is noticed that although necessary, a model baseteocoal and char properties, and
gasification conditions, is not available for pedig the char gasification rate
constants and char reactivity.

The phenomenological (first principles) modeling afcoal-char gasification
process is a difficult task. The specific diffiagak encountered in this modeling are
(Patil-Shinde et al., 2014): (i) a widely differirgpsification behavior due to the
variation in the coal-char characteristics, (inhoear interplay of multiple process
variables, (iii) cost-intensive, tedious, and exime experimentation required for
studying the effects of influential process operatvariables and parameters, and
(iv) unavailability of the detailed knowledge red@ng physicochemical phenomena
(e.g., kinetics and heat and mass transport mesinahpiunderlying the gasification
process. Some notable representative studies amelvee on the modeling of coal
gasification are by Gururajan et al. (1992), Mor&aha (2000), Chejne et al. (2011),
and Zhao et al. (2012).

In view of the difficulties encountered in the pbarenological modeling of
coal gasification process, it becomes necessargxfgore alternative modeling
approaches. One such practical option is developrokrexclusively data-driven
models. The advantage of these models is thatdhrybe utilized in predicting the

gasification behavior under a variety of processrafing conditions for a number of
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coals and chars produced from them. Consequeh#yefforts involved in conducting

the time-consuming, costly, and tedious experimertsreduced drastically. The said
data-driven models can also be useful in seledisgitable coal for an efficient and
optimal gasifier operation.

Commonly, data-driven gasification/gasifier modedse developed using
regression methods. In this approach, the exasttste of the data-fitting function
needs to be specified before the parameters assweiih it can be estimated. This is
a difficult task since, in coal/char gasificatiom,number of variables nonlinearly
influence the process behavior, and the preciserdaations between them are not
known. These difficulties associated with the depment of the standard regression-
based modeling however can be overcome by constgucdbmputational intelligence
(Cl) based models. Accordingly, in the present tdapdata-driven Cl-based
generalized models have been developed for thagtmd of the char gasification
rate constant and reactivity index from the knowkedf the properties of coals
containing high ash content, and the correspondimys, as also the gasification
conditions. The Cl-based modeling formalisms usedganetic programmingGP),
multilayer perceptron(MLP) neural network(NN), andsupport vector regression
(SVR). The details of all these three data-drivesdeting formalisms are provided in
Chapter 2 (sections 2.2.2, 2.2.1 and 2.3), respdyti

Due to its simplicity of operation, and high acaya&f measurement, TGA has
been widely used in the determination of gasifaatreactivity and related kinetic
studies (Irfan et al., 2011). The experimental datahe present investigation were
collected by conducting gasification in tG6, atmosphere in a TGA. A total of 108
gasification experiments were conducted using thiestuminous high ash Indian
coals. The performance of the gasification reacti@s monitored in terms ahar
gasification rate constar(t;) (min™!) andreactivity index(r;) (min~1). The general

forms of the Cl-based models developed in thisystud given as
ks =fi (Tg: Cco,» Te » Snys Ca 1 Sco,, Pp, ) (4.6)
1 = f1 (Te, Cco,r Te + Snys Ca 5 Scoys ey B) 4.7)

wherea = [a;, ay,.....,ay]" andp = [By, Bs...... By]", respectively, represent the
parameter vectors; the seven process variablegparaieters that form the input

space of the models are defined asT§): char gasification temperatur€C), (ii)
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Cco,: CO, fraction, (iii) Tp : char preparation temperatur€C), (iv) Sy, : surface
area-BET methocﬁmzlg), (V) C4: coal-ash(%), (Vi) Sco, : surface areac0, method
(m?/g), and (vii)¢p: porosity (%).

The data-driven models presented in this studyeapected to be significantly
useful in predicting the values of the rate corstaml reactivity index for chemically
controlled gasification reactions utilizing highhasoals, and chars derived from them.
Applicability of the models, however, may be lintitéor the gasification of the low
ash coals since the reaction behavior exhibitedtH®ge coals differs from that
displayed by their counterparts containing high asfitent.

The remainder of this chapter is structured a¥el The details of the char
preparation and characterization, as also TGA-bagification experiments, are
provided in the “Experimental” (section 4.2). Siem 4.3 titled “Results and
Discussion” first presents the results of theepbmenological modeling of the
gasification reaction using the shrinking un-redatere (SUC) approach, followed by
the development of the Cl-based generalized mdoelshe prediction of the char
gasification rate constant and reactivity indexisTdection also presents results of (a)
the principal component analysis (PCA) conducted peaform dimensionality
reduction of the input space of the models, andi(©)mparison of the prediction and
generalization performance of the three types ofb&led models. Finally, in
“Concluding Remarks” (section 4.4), the principéihdings of this study are

summarized.
4.2 EXPERIMENTAL

4.2.1 Selection of Coal Samples

Three sub-bituminous high ash coals with varying esntent (27 — 48.9% ash
on air-dried basis) were selected from three Ind@al mines. These samples are the
true representatives of Indian coals. A major paorifaround 70%) of the coals being
mined currently in India has an average ash peagenf 45% (Patel et al., 2007).

4.2.2 Char Preparation

Char samples were prepared in the Arghy) @tmosphere (Naredi and Pisupati,
2007; Jayaraman et al., 2015) at 800, 900, and °00@Bing a TGA (Model:
STA449F3 Jupiter of Netzsch, Germany). Phdlow rate was kept constant at 50

ml/min throughout the duration of char preparatiépproximately, 500 mg of the
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air-dried coal sample was taken in a flat alumiamgle container and temperature

was raised at the rate of “@min until it reached the desired value. Afteaiting

the targeted temperature, the sample was kepteiT @A for an additional 30 min;

this ensured that the sample is free from the Nelatatter (Saha, 2013).

4.2.3 Characterization of Coal and Char

Proximate and Ultimate AnalysesThe basic properties of coal samples were

evaluated by conducting proximate and ultimate ywes (see Table 4.1) performed
according to the Indian standards, viz. IS: 1358rt(P 1984, IS: 1350 (Part-1ll)
1969, IS: 1350 (Part-1V/Sec-1) 1974, and IS: 138ar(-IV/Sec-2) 1975 (Saha et al.,

2007).

Table 4.1: Analysis of three types of high ash coal samplegduin the

experimentation

Proximate analysis (air-dried basis) Ultimate asialydry ash-free basis)
coa | Mostrs| s [VoE] Thet |
(M) (B) wM | (FO C (%) | H(%) | N(%)| S(%) | O (%)
(wt %) | (wt %) W 9%) | (wt %)
coall 6.5 41.3 24.5 27.7 71.237 5.42 165 105 20
coal 2 7.1 48.9 20.4 23.6 70.05 4.32 136 0p5 23
coal 3 9.7 27.0 25.7 37.6 76.596 5.43 163 095 15

*By difference

Porosity Determination Porosity of the coal samples was calculated udirgrue

(p:) and particle densitiespf) as follows (Parkash and Chakrabartty, 1986; Saha,

2013);

Porosi) = % x 100 gy

Surface Area Measurement3he BET andCO, surface areas of the char samples

were measured using Tristar 3000 surface area zsraljvlicromeritics, U.S.A.);

BET surface area was determined using nitrogemaadaorbate (99.999% purity).

When CO, was used as an adsorbate, the respective sunfaas were determined

with the help of Dubinin—Radushkevich (D-R) equatibhe adsorption isotherms for

the BET- andC0,-based surface areas were measuredl86 and 0C, respectively.
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4.2.4 Gasification Experiments

The gasification experiments were conducted inishthermally operated TGA
(STA 449 F3 Jupiter, Netzsch, Germany) iGg, atmosphere at 900, 950, 1000, and
1050C. The ultrapure dry nitrogen gNwas chosen as an inert g&%), (purity
99.999%) in concentrations of 30, 70, and 100%afz#d with N) was used as the
gasifying agent. A char sample weighing 50 mg waead uniformly on a flat
alumina (ALOs3) container, which was placed on the TGA’'s samperier. The
sample was heated at the rate diCltnin up to the desired temperature with the inert
gas (N) flow rate of 50 ml/min. For conducting a gasifioa experiment in th€0,,
atmosphere, the nitrogen flow was replaced—posairmient of the desired
temperature—by th€0, flow (50 ml/min) to maintain th€0, atmosphere of the
desired concentration. The TGA instrument usedhédasification experiments was
calibrated and the repeatability of its measuremeras tested by performing several
experiments by employing calcium oxalate as a eefez sample. For minimizing the
buoyancy effect, each gasification experiment wasected by a blank run, which
was conducted under conditions identical to thafigaton experiment. The TGA
instrument has an “S”-type thermocouple integdatgth the furnace. It is positioned
just below the sample holder and has the abilitméasure the temperature accurately
within +1.5°C.

The char gasification reaction was conducted inaamer such that diffusional
resistance is avoided. The particle size of the nbaonly influences the gasification
reaction rate but also plays a crucial role in deteing the rate controlling step (i.e.,
whether gasification is a chemical reaction orudiibn controlled). The absence of
diffusional resistance is confirmed if no changethe reaction rate is observed for
different sizes of the particles while all otheacon conditions remain unchanged.
In this study, the char particle size was kept mith0.21 to+ 0.15 mm range for all
gasification experiments. Earlier, Saha (2013) latducted experiments with
similar char samples to examine the presence/absainthe diffusional resistances
using smaller particle sizes-(.15 to+ 0.10 mm) at 105, andCO, partial pressure
varying between 0.1 and 0.03 MPa. No change ingé&fication reactivity was
observed in these experiments. Thus, it is safenfer that the char gasification

reactions reported in this study, which are conellich the temperatur€0, partial
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pressure, and char particle size ranges of [9080°0), [0.1, 0.03 MPa], and{0.21

mm, +0.15 mm], respectively, are kinetically (chemicaltpntrolled.

During the char gasification experiments, the datasisting of the following

seven attributes representing TGA operating d¢mmd, and coal and char

properties (these form the input space of the gasibn models) were recorded (see

Appendix 4.A). The basis of selection of the sen®del inputs is given below.

Char gasification temperaturéC) (T;) is a significant attribute since
according to the Arrhenius law, the rate of theathdrmicCO, gasification
reaction increases with increasifig (Ahn et al., 2001; Liu et al., 2009). This
can be easily verified in Appendix 4.A wherein & noticed that the
magnitudes of the reactivity index) and rate constanky) of the char€O,
gasification reaction increase with increasijg

The magnitudes of; andk, also increase with increasigg, fraction Cco,).
Such an increase in the gasification rate is aitedb to an increase in the
number of reactant molecules diffusing to and ggtadsorbed on the active
sites of the char surface (Ahn et al., 2001; Zhetra)., 2006).

Char preparation temperaturéC) (Tp) is one of the multiple factors
influencing the pyrolysis phenomenon during gaatifan. It is considered as a
model input since both the model outputs, namiglyandr;, decrease with
increasindl’y (Van Heek and Muhlen, 1987; Fermoso et al., 20i0)gs been
also reported (Wu et al., 2009) that increasinglygis temperature adversely
affects the gasification reaction, which is atttéml to the decrease in the
char’s surface area as the pyrolysis temperatgreases.

Ash (wt %) (C,) is an indicator of the coal’s mineral matter @mitjmineral
matter (wt %) =1.1 xash (wt %)]. It lowers the extent of the carbonaceous
material in the coal matrix and, thereby, negayivefluences the quality and
guantity of the gas produced. During combustion gadification, mineral
matter in coal is converted into ash by chemical reastigh typical sample
of an Indian coahsh contains 90% or more SiO2,@4, Fe&Os, and CaO. The
balance 10% or less consists of MgO,,®aK,0O, and TiQ as the basic
constituents, and SOand BOs as the acidic constituents. Details of the
elemental analysis of the three coal-ash samplesgiaen in Saha (2013).

Some of these inorganic components act as catalystsee coal conversion
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processedt is known that alkali and alkaline earth metat$ as catalysts for
carbon gasification (Miura et al., 1989; Takaradeaale 1986; Saha et al.,
2011). The active metal ions (e.g., sodium, potassiand calcium) must be
connected to the carboxylic and phenolic groupfotm active sites on the
coal surface for exhibiting the catalytic activity.the present investigation, it
is found that the char gasification reaction ratereases with the increasing
ash content. This result can be attributed to adrigatalytic activity of the

inorganic elements with increasing ash content.

» During gasification, the macro- and meso-pores e the char provide
channels for the reacting gas to reach the actigs m the micropores where
reaction takes place (Ng et al., 1984). The BETaseraready,) specifically
measures the area of the meso- and macro-poresaghiheCO, surface area
(Sco,) indicates the micropore area. In the presentsingation, Appendix 4.A
clearly shows that both the rate constant of thea-€b, gasification reaction
and reactivity index decrease with decreasiRg, Sco,; and porosity ¢p)
values of the char. Accordingly, these three inftisd factors have been
considered as model inputs (Bhatia and Gupta, 199%;and Perimultter,
1989; Feng and Bhatia, 2003).

4.3 RESULTS AND DISCUSSION

4.3.1 Determination of Reactivity Index Values
The reactivity index) is commonly used in determining and comparing the

gasification reactivities of different chars undearying reaction conditions. It is

defined ag; = 3—5 , Wherer, ; refers to the time required to achieve 50% conerrs
0.5

(Takarada et al., 1985). This definition has beseduin the present study for
determining the gasification reactivity values bacsamples. The magnitudes were
computed fromt, s values derived from the fractional conversigh\ersus timet

relationship monitored in each experiment.

4.3.2 Determination of Rate Constant K;) Values Using Shrinking Un-
Reacted Core Model

A number of kinetic models have been used to chenize coal gasification

reactions. Among these, the most widely employedtiae homogeneous, shrinking
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unreacted core (SUC), and random pore models. Gemsgy its simplicity and
efficient representation of underlying phenomen®dC model has been utilized in
the present investigation for representing @@ -char gasification kinetics (Molina
and Mondragon, 1998; Irfan et al., 2011). This m@dsumes that the reaction occurs
only on the surface of the progressively shrinkiagbon core. In the beginning, the
particle is surrounded by the gas. As conversiaymasses, an increasing ash layer
surrounds the continuously shrinking internal cofé¢he unconverted material. This
also indicates that the reaction front moves fréom@ surface toward the particle’s
interior. The external radius of the particle remsaunchanged during the entire
reaction. In the char gasification reaction, itaasonable to consider the porous inert
solid product layer to be the ash layer. The SUGIehalso assumes that the un-
reacted solid is impervious to the gas since deansely packed. On the other hand,
the ash layer is porous so that the reactant gaslifase inside and the product gas
can diffuse out. The SUC model considers threetismascenarios, namely diffusion
through the gas film controlling, ash layer diffusicontrolling, and chemical reaction
controlling (Kim et al.,, 2011). As described earlighe gasification reaction
conditions used in this study correspond to thersbally controlled region and the

corresponding SUC model is represented as

T =K (1= Xeon) /2 (4.9)
Its solution is given by
31~ xcon) V3] = Kkt (4.10)
Or
1- (1= xpon) Y3 =kgt (4.11)

wherex,,, represents the char conversiomefers to the time (min), and, denotes

the rate constank(= k/3). In this study, the magnitude kf was determined from the
slope of the [1- (1 - x.,,) /°] versust plot. Thek, andr; values corresponding to
a total of 108 gasification experiments along wtie activation energies computed

using the Arrhenius equation are listed in Appertix.

4.3.3 Principal Component Analysis
While developing the data-driven models, it is rsseey to avoid correlated

inputs since these cause redundancy and unned¢gssarease the computational
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load involved in the model construction. Accordingthe seven inputs of the CI-
based models were subjected to the principal coenaanalysis (PCA) (Geladi and
Kowalski, 1986). It helps in removing the linearmations existing (if any) between
the variables and, thereby, reducing the dimen$tgnaf the input space of the
model. In this study, seven principal component€s)Pwere extracted from the
gasification related input data listed in AppendiA. The PCA yielded following
values of the variance in the experimental datauceg by the seven PCSRE;:
49.6%;PC,: 19.8%; P(C5:14.3%; PC,: 14.3%; PCs: 4%; PC4: 0.5%; andPC;: 0.2%
(PC; denotes thé" PC). It is thus seen, that the first four PCs heagtured a large
percentage~95%) of the variance in the seven inputs. Thisllteadicates that it is
possible to consider only the first four P@gs(v4) as defined below, in place of the
original seven inputs for developing the gasificatmodels.

vy =-0.376%] + 0.4652] +0.379 &/ + 0.518%] + 0.48%] (4.12)
v, = 0.599%] — 0.401%] + 0.597%. + 0.033%] + 0.35%] (4.13)
vg=— %] @)1
v = %) 18)
wherea?é' (=1, 2,..., Q; Q=7) denote the normal ssqsstandardized variables)

pertaining to the values of the seven inputs listedppendix 4.A. The normalized

variables were obtained as follows:

. I _%
k\é = M ; J = 11 21 LR ’Npat 4:(6)

Oq

Wherexé representg” value ofg™ un-normalized input variable,; x, refers to the
mean ofx,, and o, represents standard deviationxgf The mean and standard
deviation values used in the normalization procedare given below whebng,
X2, X3, X4, X5, Xg @Nd X, respectively represent the mean valuesTgf, Cco,, Tp
»SN,» Car Sco, @andep.

x; =975 C); X, = 0.667; X3 = 900 (°C); x, = 28.81 (/g);
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Xs = 56.387(%); X, = 239.24 (nF/g); %, = 19.40 ¢0). (4.17)
The corresponding standard deviation values agevas below.
0, =56.162 fC); 0,=0.288 0;=82.030C); o0,=12.84 (/g);

05=10.826 0b); 04 =40.167 (7/g); o,= 4.172 ). (4.18)

Similar to the model inputs, the two outputs, nanikgland r;, were also normalized

as follows:
~J ké'_is -
k‘sl :()'—k , J - 1, 2, ..... ,Npat (419)
=
A= =12, Noar (4.20)

where, k, and 7, refer to the mean values &f andr;, respectively, and their
corresponding standard deviations are denoted, layd g,. The magnitudes of these
are as followsk, = 0.0125 fin™'); 7= 0.0261fnin!); o, = 0.00762 fin™!); o,=
0.0149 fin™).

4.3.4 Cl-Based Models for the Prediction ofC0, Gasification Rate
Constant and Reactivity Index

The PCA-transformed four variables;4v,;) defined by Equations (4.12) —
(4.15) were used as inputs in developing the GR-PMand SVR-baseflis andr;
predicting models. For constructing and assessiaggeneralization ability of these
models, the experimental data set (See Appendix ébAsisting of 108 input—output
patterns was randomly partitioned in 3:1 ratio itreaning (81 patterns) and test (27
patterns) sets. While the former set was usedaimitrg the Cl-based models, the
latter was used in testing their generalizationabdpy. The output prediction
accuracy and generalization performance of eachaSéd model were evaluated in
terms of thecoefficient of correlationfCC), root mean squared errofRMSH, and
mean absolute percent errdMAPE) values pertaining to the experimental and

model-predicted quantities of the char gasificatiate constant and reactivity index.

GP-Based Modeling of Gasification Performance Varibles
The two GP-based models predicting the gasificiopmance variables, namely
ks andr;, were developed usingurega Formulizesoftware package (Schmidt and
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Lipson, 2009). In the GP (Koza, 1992; Kinnear, I)9®dplementation, th&RMSE
dependent fitness function was used to assign ithes§ values of the candidate
expressions. The effects of the GP procedural patersy such as the size of the
training and test sets as also various input nomatadn schemes, were studied
rigorously. The two overall best models, respetyiyeedicting chaigasification rate

constant(ks) (GP model-I) andeactivity indexr; ) (GP model-Il), are as follows:

ks = 0.14080,2+ 0.08651L,05— 0.103830,+ 0.2912, + 0.1316, — 0.165D, — 0.8297;
~0.1657 (4.21)

fl = 0048571)12 - 0.1374)31)4 + 03116)4 + 0268491 - 007561)2 - 07114)3
—0.1374 (4.22)

whereo; denotes™ PCA-transformed variabl@ndk, and # , respectively, refer to
the normalized values d&fs andr; (see eqgs. 4.19 and 4.20). As can be seen, both GP
models have nonlinear forms. It is also observatl ttrese models contain all the four
PCA-transformed variable$1f v4). This is noteworthy since the GP formalism is
known to use only those inputs from the supplieth dlaat significantly influence the
dependent variable (Cheng and Worzel, 2015). Frguatons (4.12)—(4.15), it is
noticed that the four PCA transformed variablesehbeen derived using as many
subsets of the seven gasification variables andnpeters defining the coal and char
properties. The presence of all four PCA-transfarnvariables in the GP-based
models in turn underlines the importance of thegindl seven variables and
parameters in determining the values of the chaifigation rate constant and

reactivity index.

MLP- and SVR-Based Modeling of Gasification Perfornance Variable

The details of the heuristic procedure involvedobtaining an optimal MLP
network (Freeman and Skapura, 1991; Bishop, 199ddel possessing good
prediction and generalization performance has lex@hained in Chapter 2, section
2.2.1 ; a detailed description of the SVR (Vapnil@95; Burges, 1998) and its
implementation has been provided in Chapter 2,i@e@.3. In the present study,
SVR-based models were developed using &#VR module of the data-mining

package known afapid Miner (2014) and MLP-based models were built using
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IBM-SPSY2011) package. The parameter values and ottréyuses of the optimal

MLP-based models | and II, respectively predictthg k; andn;

magnitudes, are

listed in Table 4.2; the details of the correspagdbVR-based optimal models | and

Il, are given in Table 4.3.

Table 4.2: Details of the architecture of the optimal MLP-ldhsaodels*and the
corresponding EBP algorithm parameter values

Number| Number Transfer| Transfer L _
function | function | Momentum| L€arning
Model | Output | Input of of f - rate
. ) . or for coefficient
no. | variable| nodes| hidden | hidden hi
layers | nodes idden | -output (epp ()
nodes node
I ks 4 1 3 tanh identity 0.07 0.4
Il n 4 1 3 tanh identity 0.004 0.2

*Qther details of the EBP-based modgs) rescaling method used for the scale-

dependent variables: standardiz€t) learning modebatch (c) the random number
generator seed value with respect to the optimalPMhodel 200 (d) maximum
training epochsl00.

Table 4.3: Details of thesinsensitive loss function-based optimal SVR modeid
the corresponding parameter values

Model | Output Kernel Kernel | Kernel | Kernel C (cost £
no. | variable type gamma | degree| cache | parameter)
I ks ANOVA 0.25 2.0 200 2.7 0.05
Il n ANOVA 25 2.0 200 256 0.05

Comparison of the Cl-Based Models Predicting the Gafication Rate Constant
The magnitudes a€C, RMSE andMAPE pertaining to thé predictions made

by the GP model-I, MLP model-l, and SVR model-I apecified in Table 4.4. It is

seen in this table that th€C (RMSEMAPE) magnitudes with respect to the

experimentak, values and those predicted by the Cl-based mddelsoth training

and test set data are high (low) and comparables fBsult indicates that the stated

models possess an excelldnt prediction accuracy and generalization capability.

Figure 4.1 consists of the three parity plots digplg the experimentdl, values and
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those predicted by the GP-, MLP-, and SVR-basedefspdespectively. As can be
noticed in all the threea{c) panels of Figure 4.1, there exists a good agraeme
between the experimental and model-prediétedalues.

Table 4.4: Statistical analysis of the prediction and geneasibn performance of the
gasification rate constankd) predicting GP-, MLP-, and SVR-based

models
Training set Test set
Model
CCyn | RMSE., | MAPE,, | CCq | RMSE.. | MAPE,
GP model-l | 0974 | 1.79x18 | 11.197 | 0.987| 9.75x10| 8.467

MLP model-l| 0984 | 1.37x18 | 9.194 0.993| 6.92x1D| 8.687

SVRmodel-l| 0991 | 1.04x18 | 3.342 0.989 | 8.77x1D| 9.900
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Figure 4.1: Parity plots of experimental versus model-predictalues of char
gasification rate constankd, min®); Panels ), (b), and €), respectively, depict
plots pertaining to th&g predictions made by GP-, MLP-, and SVR-based nsodel
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Table 4.5: Statistical analysis of the prediction and geneaibn performance of the
reactivity index f;) predicting GP-, MLP-, and SVR-based models

Training set Test set
Model
CCyn | RMSEy, | MAPEy, | CCq | RMSE.: | MAPE.
GP model-ll | 0961 | 4.38x18 | 15.069 | 0.971| 3.42x1D| 13.307
MLP model-ll | 0.982 | 3.03x18 | 9.478 0.971| 2.89x10| 11.351
SVR model-Il | 0.991 | 2.02x18 | 3.442 0.974| 2.70x1D| 14.134
0.08 (a) AO.OS (b)
§0.06 OV Eé 0.0
g Ea E - n, )
@0 04 ’ " - - \5_]'/004 * .
1:; [ @ —;: axXai
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L A H\"m
e ]
& 0.02
£ 0.
g .
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Figure 4.2: Parity plots of experimental versus model-predioctatlies of reactivity
index ;, min?'); panels &), (b) and €), respectively, depict plots
pertaining to they predictions made by GP-, MLP-, and SVR-based
models.
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Comparison of Cl-Based Models for Reactivity IndexPrediction

The magnitudes of th€C, RMSE and MAPE pertaining to the; predictions
made by the three Cl-based models are listed iheT&b. From the table, it is clear
that similar to thé&g-predicting models, each one of the three Cl-basedels for the
reactivity index possesses an excellent predictamecuracy and generalization
capability. Figure 4.2 contains threed) panels, which respectively show how well
the predictions of the GP-, MLP-, and SVR-based ei®dhatch the corresponding
experimental reactivity index values. In all thes@els, it is noticed that there exists a

good match between the experimental and model-gezth values.

Steiger's Test A statistical test known as Steiger's z-test (Seigl980) was
performed for comparing the prediction performantdhe GP-, MLP-, and SVR-
based models. It tests the null hypothedig) (that statistically two correlation
coefficient magnitudes are not different, i@Cyg = CCxc, WhereCCpg (CCyc) refers
to the correlation coefficient pertaining to thedabB (model C) predicted outputs
and their corresponding experimental counterpditg. results of the Steiger’s z-test
for the Cl-based models predictifg, and r; are listed in Tables 4.6 and 4.7,
respectively. It is seen in these tables that lidha six model pairs (three each foy
andr) thep-values are less than 0.05. This indicates a unifi@jection of the null
hypothesis (at 95% confidence level) about theistiedl equivalence of th€C
magnitudes pertaining ths andr; predictions made by the model pairs GP-MLP,
MLP-SVR, and GP-SVR. It can thus be concluded thatdifferences in th€C
magnitudes of the stated model pairs are statilsticagnificant. From theCC
magnitudes listed in Tables 4.4 and 4.5, it is nlexkthat among the three Cl-based
models, the MLP- basdd; prediction model, and the SVR-basggrediction model
possess high prediction accuracies, and best dead¢ican capabilities. Therefore,
these models are more suited for the predictiothefgasification rate constant and
reactivity index values. It may, however, be nothadt there exist only minor
differences between the prediction accuracies/gdimation capabilities of the three
Cl-based models. Accordingly, the GP-based mods#ig, to their simplicity and
lower complexity, should be preferred if the coneece of usage is the main

criterion for the utilization of a model.
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Table 4.6: Results of Steiger’s z-test testing the null higpsis Hp) pertaining to the
equivalence of correlation coefficiel@C) magnitudes with respect to the
model pairs predicting the gasification rate conis(gs) values

Model pair

(B-C) df CCap CChc CCgc z p-value H

GP-MLP 108 0.977 0.987 0.989 3.648 2.63%10 Reject

MLP-SVR | 108 0.987 0.991 0.991] 2.032 4.21¥10 Reject

SVR-GP 108 0.991 0.977 0.986 5.301 1.14%¥10 Reject

Ho: CCyp = CCyc, Where A denotes experimental valueskgf df refers to the
degrees of freedom; reject H p-value < 0.05.

Table 4.7: Results of the Steiger’s z-test testing the hyflothesisKly) pertaining to
the equivalence of correlation coefficie®) magnitudes with respect to
the model pairs predicting reactivity index) (values

Model pair

(B-C) df CCap CCac CCgc z p-value H

GP-MLP | 108 | 0.960 0.979 0.980 -4.026 5.67%10 Reject

MLP-SVR | 108 | 0.979 0.989 0.97 -2.949 3.18%10 Reject

SVR-GP | 108 | 0.989 0.960 0.961 5.904 3.53¥10 Reject

Ho: CCu5 = CCyc, Where A denotes experimental values of df refers to the degrees
of freedom; reject blif p-value < 0.05.

4.4 CONCLUDING REMARKS

The present chapter reports results of the Cl-bda&atdriven modeling for the
prediction ofchar gasification rate constarks), reactivity index(r;) magnitudes
corresponding to the gasification of high ash Indiaals. The data for this modeling
were collected by conducting gasification experiteem a TGA in theCO,
atmosphere. These data were first fitted to the &té@el to obtain values & and

11, Which were then correlated with the seven paramaémodel inputs) consisting of
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the coal and char properties, and the gasificat@rditions. The data-driven models
possessing an excellent prediction accuracy ancergkration capability were
developed using three Cl formalisms, namely GP, MNPand SVR. Among these,
the GP-based ones are less complex, easier to, graspnore convenient to deploy in
a practical setting. A notable feature of this gtigdthat phenomenological (i.e., SUC)
and data-driven approaches (GP, MLP, and SVR) hasen integrated into
developing comprehensive models for predicting tmportant kinetic parameters
associated with the gasification of high ash colie models developed in this study
can be gainfully employed in the design and opematif the gasifiers using high ash
coals, which are available in abundance globallgdifionally, the models for
determining the rate constant can be used for giiedithe activation energies of the

coal gasification reactions involvir@D, in the temperature range of 900-1850

NOMENCLATURE

ks mean values dftg
The mean value of,

; th th : - -
xc]1 j° value ofg™ un-normalized input variable,

,?CII' Normal scores (standardized variables) pertaitorthe values of the
seven inputs
T mean values of;

Greek symbols
Oy standard deviations @
o, Standard deviation of;

o, standard deviations of
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Appendix 4.A: Experimental data consisting of coal and chaperties and gasification conditions, and the cpoading values of
gasification rate constant and reactivity indeXaed in building Cl-based models

Gasification

Expt. CO_Z Char preparation Surface area| Ash Surface area| Porosity Rate Re_activity Activation
o, temperature| fraction | temperature | (BET) method| (c,) | (CO;) method| (¢p) constgr_lt index energy
(Te) CC) | (Ceo,) (Tp) (°C) (Sn,) (M) | (%) | (Sco,) (M79) | (%) | (ks) (Min™) | () (min?) | kI/mole
1 900 1 800 44.85 59.86 266.67 23.3p 0.0091 0.0172 3.291
2 950 1 800 44.85 59.86 266.67 23.3b 0.014p0 0.0263
3 1000 1 800 44.85 59.86 266.67 23.35 0.0238 0.0376
4 1050 1 800 44.85 59.86 266.67 23.35 0.0329 0.0556
5 900 1 900 24.67 59.86 246.38 21.4p 0.0063 0.0143 9.061
6 950 1 900 24.67 59.86 246.38 21.46 0.0104 0.0238
7 1000 1 900 24.67 59.86 246.38 21.46 0.0162 0.0357
8 1050 1 900 24.67 59.86 246.38 21.46 0.0253 0.0454
9 900 1 1000 18.19 59.86 200.01 20.10 0.0045 0.0100 33.2B
10 950 1 1000 18.19 59.86 200.01 20.10 0.0082 0.0172
11 1000 1 1000 18.19 59.86 200.01 20.10 0.0123 0.028
12 1050 1 1000 18.19 59.8¢ 200.01 20.10 0.0220 0.0357
13 900 0.7 800 44.85 59.86 266.67 23.35 0.0070 0.0151 115.33
14 950 0.7 800 44.85 59.86 266.67 23.35 0.0103 0.0260
15 1000 0.7 800 44.85 59.86 266.67 23.35 0.0194 0.03b7
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Appendix 4.A continued...

Gasification | CO, | Char preparation Surface area| Ash Surface area| Porosity Rate Reactivity | Activation

EXpL temperature| fraction | temperature | (BET) method| (c,) | (CO;) method| (¢p) constant index energy

@) | (Co) | @O | Sn) (PG | () | (Sco) (M) | (%) | (ks) (min®) | () (min®) | ka/mole

16 1050 0.7 800 44.85 59.86 266.67 23.35 0.0251 0.0556

17 900 0.7 900 24.67 59.86 246.38 21.46 0.0050 0.0111 125.32

18 950 0.7 900 24.67 59.86 246.38 21.46 0.0084 0.0208

19 1000 0.7 900 24.67 59.86 246.38 21.46 0.0123 0.0313

20 1050 0.7 900 24.67 59.86 246.38 21.46 0.0223 0.0434

21 900 0.7 1000 18.19 59.86 200.01 20.10 0.0039 0.0084 142.63

22 950 0.7 1000 18.19 59.86 200.01 20.10 0.0070 0.0167

23 1000 0.7 1000 18.19 59.86 200.01 20.10 0.0114 3.026

24 1050 0.7 1000 18.19 59.86 200.01 20.10 0.0204 0.033

25 900 0.3 800 44.85 59.86 266.67 23.35 0.0043 0.0100 121.67

26 950 0.3 800 44.85 59.86 266.67 23.35 0.0087 0.01y2

27 1000 0.3 800 44.85 59.86 266.67 23.35 0.0133 0.0263

28 1050 0.3 800 44.85 59.86 266.67 23.35 0.0178 0.0385

29 900 0.3 900 24.67 59.86 246.38 21.46 0.0033 0.0077 140.00

30 950 0.3 900 24.67 59.86 246.38 21.46 0.0064 0.0128

31 1000 0.3 900 24.67 59.86 246.38 21.46 0.0102 0.0217
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Appendix 4.A continued...

Expt. Gasification CQZ Char preparation Surface area| Ash Surface area| Porosity Rate Re_activity Activation

o, temperature| fraction | temperature | (BET) mezthod (Cy) | (COy) meghod (¢p) constfelr_lt index energy
(Te) °C) | (Ceo,) (Tp) (°C) (Sn,) (m7g) | (%) | (Sco,) (M79) | (%) | (ks) (min™) | () (min?) | kI/mole

32 1050 0.3 900 24.67 59.86 246.38 21.46 0.0172 0.0313
33 900 0.3 1000 18.19 59.86 200.01 20.10 0.0020 0.0048 163.72
34 950 0.3 1000 18.19 59.86 200.01 20.10 0.0048 0.0102
35 1000 0.3 1000 18.19 59.86 200.01 20.10 0.0083 Q.01
36 1050 0.3 1000 18.19 59.86 200.01 20.10 0.0137 3.026
37 900 1 800 50.35 67.5 296.25 24.54 0.0108 0.0364 .2501
38 950 1 800 50.35 67.5 296.25 24.54 0.014y 0.0444
39 1000 1 800 50.35 67.5 296.25 24.54 0.0220 0.0588
40 1050 1 800 50.35 67.5 296.25 24.54 0.0334 0.0667
41 900 1 900 29.39 67.5 290.17 22.91 0.006[ 0.0167 .6207
42 950 1 900 29.39 67.5 290.17 22.91 0.010p 0.0270
43 1000 1 900 29.39 67.5 290.17 22.91 0.0154 0.0385
44 1050 1 900 29.39 67.5 290.17 22.91 0.0237 0.0625
45 900 1 1000 19.6 67.5 240.17 20.43 0.0048 0.0102 .9430
46 950 1 1000 19.6 67.5 240.17 20.43 0.006p 0.0156
47 1000 1 1000 19.6 67.5 240.17 20.48 0.0095 0.0227
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Appendix 4.A continued...

Expt. Gasification CQZ Char preparation Surface area| Ash Surface area| Porosity Rate Re_activity Activation
o, temperature| fraction | temperature | (BET) mezthod (Cy) | (COy) meghod (¢p) constfelr_lt index energy
(Te) °C) | (Ceo,) (Tp) (°C) (Sn,) (m7g) | (%) | (Sco,) (M79) | (%) | (ks) (min™) | () (min?) | kI/mole
48 1050 1 1000 19.6 67.5 240.17 20.48 0.0209 0.0417
49 900 0.7 800 50.35 67.5 296.25 24.54 0.0093 0.0278 05.8D
50 950 0.7 800 50.35 67.5 296.25 24.54 0.0139 0.0417
51 1000 0.7 800 50.35 67.5 296.25 24.54 0.0209 0.0556
52 1050 0.7 800 50.35 67.5 296.25 24.54 0.0319 0.0649
53 900 0.7 900 29.39 67.5 290.17 22.91 0.0057 0.0139 10.09
54 950 0.7 900 29.39 67.5 290.17 22.91 0.0092 0.0254
55 1000 0.7 900 29.39 67.5 290.17 22.91 0.0117 0.0357
56 1050 0.7 900 29.39 67.5 290.17 22.91 0.0222 0.0588
57 900 0.7 1000 19.6 67.5 240.17 20.43 0.0038 0.0086 35.92
58 950 0.7 1000 19.6 67.5 240.17 20.43 0.0068 0.0161
59 1000 0.7 1000 19.6 67.5 240.17 20.43 0.0106 0.0270
60 1050 0.7 1000 19.6 67.5 240.17 20.43 0.0190 0.0333
61 900 0.3 800 50.35 67.5 296.25 24.54 0.0060 0.0263 11.22
62 950 0.3 800 50.35 67.5 296.25 24.54 0.0090 0.0313
63 1000 0.3 800 50.35 67.5 296.25 24.54 0.0146 0.0400
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Appendix 4.A continued...

Expt. Gasification CQZ Char preparation Surface area| Ash Surface area| Porosity Rate Re_activity Activation
o, temperature| fraction | temperature | (BET) mezthod (Cy) | (COy) meghod (¢p) constfelr_lt index energy
(Te) °C) | (Ceo,) (Tp) (°C) (Sn,) (m7g) | (%) | (Sco,) (M79) | (%) | (ks) (min™) | () (min?) | kI/mole
64 1050 0.3 800 50.35 67.5 296.25 24.54 0.0215 0.0454
65 900 0.3 900 29.39 67.5 290.17 22.91 0.0046 0.0119 15.00
66 950 0.3 900 29.39 67.5 290.17 22.91 0.0071 0.0179
67 1000 0.3 900 29.39 67.5 290.17 22.91 0.0102 0.0263
68 1050 0.3 900 29.39 67.5 290.17 22.91 0.0181 0.0370
69 900 0.3 1000 19.6 67.5 240.17 20.43 0.0024 0.0059 45.91
70 950 0.3 1000 19.6 67.5 240.17 20.43 0.0045 0.0100
71 1000 0.3 1000 19.6 67.5 240.17 20.43 0.0074 0.0161
72 1050 0.3 1000 19.6 67.5 240.17 20.43 0.0134 0.0250
73 900 0.7 800 37.23 41.8 228.34 15.20 0.0048 0.0097 39.70
74 950 0.7 800 37.23 41.8 228.34 15.20 0.0115 0.0188
75 1000 0.7 800 37.23 41.8 228.34 15.20 0.0186 0.0282
76 1050 0.7 800 37.23 41.8 228.34 15.20 0.0245 0.0515
77 900 0.7 900 27.65 41.8 221.99 14.61 0.0043 0.0112 45.8B
78 950 0.7 900 27.65 41.8 221.99 14.61 0.0086 0.0172
79 1000 0.7 900 27.65 41.8 221.99 14.61 0.0148 0.0250
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Appendix 4.A continued...

Expt. Gasification CQZ Char preparation Surface area| Ash Surface area| Porosity Rate Re_activity Activation
o, temperature| fraction | temperature | (BET) mezthod (Cy) | (COy) meghod (¢p) constfelr_lt index energy
(Te) °C) | (Ceo,) (Tp) (°C) (Sn,) (m7g) | (%) | (Sco,) (M79) | (%) | (ks) (min™) | () (min?) | kI/mole
80 1050 0.7 900 27.65 41.8 221.99 14.61 0.0235 0.0454
81 900 0.7 1000 7.33 41.8 163.20 12.02 0.0026 0.0060 65.10
82 950 0.7 1000 7.33 41.8 163.20 12.02 0.0064 0.0125
83 1000 0.7 1000 7.33 41.8 163.20 12.02 0.0103 0.0185
84 1050 0.7 1000 7.33 41.8 163.20 12.02 0.0186 0.0278
85 900 1 800 37.23 41.8 228.34 15.2 0.0075 0.0160 5518
86 950 1 800 37.23 41.8 228.34 15.2 0.0122 0.0250
87 1000 1 800 37.23 41.8 228.34 15.2 0.0196 0.0385
88 1050 1 800 37.23 41.8 228.34 15.2 0.0296 0.0510
89 900 1 900 27.65 41.8 221.99 14.61 0.005p 0.0126 .7138
90 950 1 900 27.65 41.8 221.99 14.61 0.0104 0.0227
91 1000 1 900 27.65 41.8 221.99 14.611 0.0180 0.0303
92 1050 1 900 27.65 41.8 221.99 14.61 0.0279 0.0427
93 900 1 1000 7.33 41.8 163.20 12.02 0.003p 0.0083 .0755
94 950 1 1000 7.33 41.8 163.20 12.0p 0.0079 0.0168
95 1000 1 1000 7.33 41.8 163.20 12.0p 0.0130 0.0220
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Appendix 4.A continued...

Expt. Gasification CQZ Char preparation Surface area| Ash Surface area| Porosity Rate Re_activity Activation
o, temperature| fraction | temperature | (BET) method| (c,) | (CO;) method| (¢p) constgr_lt index energy
(Te) °C) | (Ceo,) (Tp) (°C) (Sn,) (MF1G) | (%) | (Sco,) (MTQ) | (%) | (ks) (min™) | () (min) | kI/mole
96 1050 1 1000 7.33 41.8 163.20 12.0p 0.0225 0.0357
97 900 0.3 800 37.23 41.8 228.34 15.2 0.003D 0.0067 0.396
98 950 0.3 800 37.23 41.8 228.34 15.2 0.0066 0.0126
99 1000 0.3 800 37.23 41.8 228.34 15.2 0.0115 0.0213
100 1050 0.3 800 37.23 41.8 228.34 15.2 0.0197 0.0357
101 900 0.3 1000 7.33 41.8 163.20 12.02 0.0020 0.0060 95.1%
102 950 0.3 1000 7.33 41.8 163.20 12.02 0.0046 0.0094
103 1000 0.3 1000 7.33 41.8 163.20 12.02 0.0080 0.0156
104 1050 0.3 1000 7.33 41.8 163.20 12.02 0.0208 0.0217
105 900 0.3 900 27.65 41.8 221.99 14.611 0.0023 0.0070 66.08
106 950 0.3 900 27.65 41.8 221.99 14.611 0.0051 0.0118
107 1000 0.3 900 27.65 41.8 221.99 14.61 0.0109 0.0200
108 1050 0.3 900 27.65 41.8 221.99 14.61 0.0151 0.0285
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Chapter 5

Use Genetic Programming for Selecting Predictor Vdables
and Modeling in Process Identification

ABSTRACT

Availability of an accurate and robust dynamic mlodeessential
for implementing the model dependent process contvben first
principles based modeling becomes difficult, tesliand/or costly,
a dynamic model in the black-box form is obtainguocess
identification) by using the measured input-output process data.
Such a dynamic model frequently contains a numbgme delayed
inputs and outputs as predictor variables. The aeieation of the
specific predictor variables is usually done viatral and error
approach that requires an extensive computatiori@brie The
computational intelligence(Cl) based data-driven modeling
technique, namely, genetic programmi(@P), can search and
optimize both the structure and parameters of @dinonlinear
dynamic process model. It is also capable of chapsihose
predictor variables that significantly influenceetrmodel output.
Thus, usage of GP for process identification hefpavoiding the
extensive time and efforts involved in the selactwd the time
delayed input-output variables. This advantageols f€ature has
been illustrated in this study by conducting praceentification of
two chemical engineering systems. The results ef GP-based
identification when compared with those obtaineigishe transfer
function based identification clearly indicates thatperformance

by the former method.
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5.1 INTRODUCTION

Availability of an accurate, parsimonious, and rstodynamical process model
is essential in various tasks such as model baseg$s control, process monitoring,
and optimization. The task of constructing mathérahtmodels of dynamical
processes from their measured input-output dat&kniswn as “process/system
identification.” It can be viewed as the interfabetween the real world of
applications and the mathematical world of contt@ory and model abstractions
(Ljung, 2010). There are two principal ways for doating process identification
namely, phenomenologica(first-principles) andempirical / black-box In the first
approach, the physico-chemical phenomena underlanghemical process is
rigorously described in terms of the mass, energlyraomentum balance equations.
This type of modeling requires complete detailthefgoverning phenomena, such as,
kinetic rate constants, heat and mass transfeficieets, and other thermodynamic
information, which in most cases of practical ietdrare unavailahl@lso, chemical
processes very often exhibit complex nonlinear bieina which makes the
development of phenomenological models a tedioastlyc and possibly even an
impossible task to be completed in a reasonable Span. In such cases, the other
approach i.e., empirical/black-box modeling is resbto for process identification.

A black-box model representing the dynamics of raglsi input-single output
(SISO) nonlinear process can be described usingredés time-variant inputs and

outputs as given below:

Vee1= F Voo Yec1r Vo200 Yeem+15 Ues Ue—1, Ug—210-+, Ugopt1) (5.1)

wherey,, , refers to thene-time-step-aheathlue of the outpuy, subscript refers to
the sampling instany is the manipulated variable (inpuf)denotes the functional
relationship between,,, and the current and past (time delayed/lagged)sadd the
inputs and outputs, anch and n, respectively refer to the number of lags in the
process output and input. In the above equatiancthrent and time-delayed inputs
and outputs signify the predictor variables for tme-step-ahead-prediction of the
output, . Yi4q-

The principal advantage of the black-box modelisgthat a model can be
constructed solely from the measured process ddit@wt needing the details of the
governing physico-chemical phenomena. In the cotiweal black-box modeling, the
model structure is specified a-priori and the pasters associated with this model are
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estimated using an appropriate linear/nonlineaatesgy. Since several efficient
linear/nonlinear parameter estimation methods aadable, the real difficult part in
the black-box modeling is the specification of thedel structure. For linear systems
model specification is easy; however, for nonlinegstems selection of model
structure poses significant difficulties since itvolves choosing an appropriate
nonlinear model structure from numerous competimgso

The complexities involved in the conventional bldmk approaches to system
identification necessitated exploration of altgive modeling strategies that do not
require a-priori specification of the model struetuThis requirement is fulfilled, for
example, by a number of computational intelligeriCs) based exclusively data-
driven nonlinear modeling formalisms suchaasficial neural network§ANNSs), and
support vector regressiofiSVR). An excellent overview of various linear and
nonlinear methods for process/system identificatogiven by Ljung (2010) (also
see Garcia and Morari, 1982; Isidori, 1989; Nararaird Parthasarathy, 1990; Tambe
et al., 1996).

Apart from ANNs and SVR, the discipline of Cl congas a novel exclusively
data-driven modeling formalism, namejgnetic programmingGP). The uniqueness
of the GP methodology is that given an example thguiput data set, it is capable of
searching and optimizing both, the specific strreetgform) and the associated
parameters, of an appropriate linear/nonlinear -filtag function; significantly,
unlike ANNs and SVR methods, GP does this withowtkimg any assumption
regarding the structure and parameters of the fdatay function (Patil-Shinde et al.,
2014). Despite its novelty, GP has not been usetlwin process identification to
the same extent as ANNs and SVR. The full detailssB (Koza,1990; Poli et
al.,2008; Shrinivas et al.,2015) are provided im@hbr 2, Section 2.2.2 of this thesis.

Implementation of GP is a stochastic procedure #merefore, it contains a
strong random element. A typical characteristictlod best solution (data-fitting
model) searched and optimized by the GP is thabiitains only those predictor
variables that yield an optimal data-fitting perf@nce. In the context of process
identification, this means that GP selects onlyséhtime delayed inputs and outputs
as predictors in Eq. (5.1), which significantly lugnce the one-step ahead output
(vt+1)- This automatic selection of the important premficvariables by the GP
formalism is immensely beneficial in practice sintesubstantially reduces the

computational time and effort required in identifyithe specific time-delayed inputs
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and outputs in Eq. (5.1). Accordingly, in this stusivo process identification case
studies have been performed to demonstrate thexistaility of GP of simultaneously
identifying the important time delayed inputs andputs and performing the system
identification. The two chemical engineering-spiecystems chosen in the case
studies are: (i) nonlinear height control systemt # conical tank, and (ii)
concentration control system for a nonlinear adiab@STR. For convenience, the
process input-output data for these systems hawen babtained using their
phenomenological models. In real practice, the ggednput-output data should be
collected by performing open-loop experiments

There have been studies wherein GP has been endploysystem/process
identification (see e.g. Kristinsson and Dumont 929 Iba and Sato (1995),
Yadavalli et al. (1999), Nandi et al. (2000), andnipal et al. (2001)). It may
however be noted that these studies did not expBiés feature of identifying
influential predictor variables. In the presentdstuthe performance of the process
model identified by the GP has also been compargd that identified using a
transfer function model. A novel feature of the 8Rnalism is that while searching
for an optimal data fitting model, it can identkgy predictors and their combinations
in the example data. This GP property has beenogzglin the present study for
automatically choosing those lagged inputs andwsfpvhich significantly influence
the one-time-step ahead output in the dynamic gooedel.

5.2 RESULTS AND DISCUSSION

5.2.1 Case study I: Nonlinear Height Control Systerfor a Conical Tank

In this case study, a conical tank has been coregidsee Figure 5.1) wherein
F;, and F,,; are the inlet and outlet flow rates, respectivélye control objective is
to maintain the height of the tank, at a given set point by manipulating the inlet
flow rate, F;,. The conical tank dynamics are described by fahgwequations
(Aravind et al., 2013):
Area of the tank is given by:
D =nr? (5.2)

—r—
tana—h—

Il

(5.3
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According to law of conservation of mass:

inlet flow rate — outlet flow rate = accumulation

D = Fip— Fou 45.
Fyue= LVh (5.5)
DS =Fyp- LA (5.6
%1 _ Fin TD|_\/ﬁ ®.7

Wherei—? is therate of change of height.

Therefore,
bid h2
D= w (5.8)
dh _ (Fin - LVR)H?
a - 71'R2h2 (59

Here,H is the maximum height of the tank withas the radius at that height,
is the discharge coefficient, afdis the height of the tank at any instant|n this
tank, the inlet flow rateF;,, is the manipulated variable and the height oftém, h,
is the controlled variable. Eq. (5.9) was integilai® generate an input-output dataset
for identifying the process. A total of 1000 datznts were generated while varying
Fi, randomly in the 50 to 20@m3sec™? range at every time step of one second. The
parameter values used in simulating Eq. (5.9) prabability of F;, variation at any
instant = 0.22H = 73 cm L = 20cm?%sec™!, R= 19.25 cm and initial height of tank
= 24 cm. The generated time profilesFyf andh are shown in Figures 5.2 and 5.3,

respectively.
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GP-based identification

The generated data were arranged for the GP-basedss identification by
considering one current and two time delayed vatidsthh andF;,. Thus, a set of
six predictor variablesh{, hi_q, h_3; Fin, + Fin,_,» Fin,_,) Was considered for the
prediction of the one-time-step-ahead model outih&;data set of 1000 points was
split randomly intraining, testandvalidationsets in 70:20:10 ratio. While the first set
was used in generating the GP model, the secondhamtsets were respectively
employed in testing the generalization ability bé tmodel, and its validation. For
generating the GP-based model, a software packapeedEureqga Formulize
(Schmidt and Lipson, 2009) was employed. The GRcked following fittest
expression:

6.6437
hep1 = 2| het
34.7472 XFip, 93.5708 11— 134.1376 Xy

~05 Xht_1> (5.10)

The values of theorrelation coefficien{(CC), root mean squared errdRMSH and
mean absolute percentage erfddAPE) for the training, test, and validation set data
are listed in Table 5.1. The high (low) and cormapée values 0€C (RMSE, MAPE

for the training, test and validation sets indictttat the GP-based model (5.10)
possesses excellent one-time-step-ahead predi@omuracy and generalization
ability.

Table 5.1: Prediction accuracy and generalization perforraasficGP-based model
(5.10) for conical tank height control system

Training set| Testset| Validation set

CcC 0.9993 0.9984 0.9937
RMSE 0.1269 0.0799 0.0638
MAPE 0.0015 0.0007 0.0005

Figure 5.4 shows the parity plot of the desiredgéf versus GP model-
predicted values df., ;. From the GP-based optimal data-fitting model @.1t is
noticed that the model consists of four predictariables ke, hc_q, he_,andFy,,). It

can thus be seen that although the data suppli¢gkdet@&P algorithm contained six
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predictor variables b, h¢_q, hi_3; Fin,, Fin,_,» Fin,_, ) the method searched a

optimized a model with only four predictor variabkhe, hi_q, hi—2; Fin,)-
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i
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Figure 5.4: Desiredversus G-model predictedh.; values pertaining to the trainin
test, validation set data.

Transfer function basedidentification

Here the control system consists of an injF;,), and outputh). The output is
related to the input via a transfer function. Thewated data generated for t
conical tank height control system described eaappropriately arrang: to conduct
transfer Function based process identification &ipgivalues of both andF;,,. The
same proportion of 70:20:10 was use' partition the dataset of 1000 points il
training, test and validation sets. For developing transfer function lsed model
Matlab Sysid System identificatic) toolboxwas used. The continuc-time identified

transfer function model is given

0.005835 53+0.002684 $2+0.0003145 S+6.571X 1078 (5 11)

T:(S) =
1( ) S$3+0.085 S2+0.001164 S+4.852%x10~8

In Laplace transform, the input is representecF;,(S) and output is represented
h(S).

h
T(S) = 7o (5.12)
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The transfer function of the system multiplied bg tnput function produces tl
output function of the system. The values<CC, RMSEand MAPE pertaining to the
transfer functiorbaser model (5.11) are given in Table 5.2. Figure shows the
parity plot of the desired (target) versus transfer fumctmode-predicted values
hi,+1. A comparison of these values with those corredpanto the predictions of tf

GP-basednodel (5.10) revee that the Clbased model possesses superior predi

accuray and generalization capabili

Table 5.2:Prediction accuracy and generalization performari¢eansfer functior
model (5.11) fc conical tank height control system

Training set| Test set Validation se

CC 0.9828 0.9624 0.8760
RMSE 0.6549 0.4116 0.5471
MAPE 0.0161 0.0088 0.0098

i
(=]

Ny
W

B
==l

L)
(=1

Transfer function model predicted h,,,
L
h

25 P * Training
o = Test
20 ,/ Validation
20 25 30 35 40 45 50

Desired hy,,

Figure 5.5: Desired versus trans-function model predictel.; values pertaining t
the training, test, validation set data.
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5.2.2 Case study Il: Adiabatic Nonlinear CSTR Concatration Control
System

This case study considers a continuously stirredt t@actor (CSTR) (Figure
5.6) in which a second order irreversible exotherafiemical reactionA—B) takes
place. The control objective is to maintain the cantration ofA, i.e. C4, at a given
set-point by manipulating the inlet flow raté, The adiabatic CSTR dynamics are
described by the following ordinary differentialuegions (Luyben, 1996):

Reactor componem continuity:

dC, F

A== (Cap—Ca)-kCa? (5.13)
-Ea

k = ko €rT (5.14)

dCs _F Ea

—2==(Ca,—Ca) — ko eRTC,2 (5.15)

wheredditA is therate of change of concentration of A

Reactor energy balance equation is given as:

dT _ F Hr kCa?
5 - v(Tn-D- o (5.16)
C,= 4.184-0.002(T - 273) (5.17)
dT_ F Hr ko RT Cp2

— R Ko ©! A
a v (T D= 1 (4184 0.002(T_273)) (5.18)

Where‘;—: is rate of change of the outlet temperattieC,  is the inlet concentration

of speciesA, Vis the volume of the CSTRg denotes the reaction rate consta&his
the gas constanijr represents the heat of reactidp, is fluid inlet temperature is
the density of liquid,C, is the fluid specific heat capacity is fluid outlet

temperature, and, denotes the activation energy of the reaction.
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F(t) 5 Ca(t); T(1)

Figure 5.6: Schematic of an adiabatic CSTR control sys

In this CSTR process, the outlet concentratioA, i.e. C,, and temperatur«T,
both vary with time, antF and C, are the manipulated and controlled variak
respectively. For the purpose of illustration, & and transfer function bas
dynamic malels have been built only 1C,. As in Case study | (section 5.2.
process data were generated by integrating thegpiemological model described
Equatiors (5.15) to (5.18). SpecificallF was perturbed randomly at every time ¢
of 0.1 min inthe range, 10 to 150 min~!, to generate an ing-output dataset
consisting of 1000 points. The parameter valuesl isesimulating (5.15) to (5.1¢
were: probability of variation at any instant = 0.2,,_= 6 mollit™, V=100 lit, k, =
0.15 lit mol™*min~%, R = 8.314 #nol K1, Hy = -590 Jmol™?, T;,= 288 K,p =
1.050 kglit™1, £, = 5000 Jmol~1, initial concentration oA = 2 mollit™1, and initial
outlet temperature = 295 K. Figures 5.7, 5.8 a®d frespectively show the genere

time profiles off, C, , andT.
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GP- based identificatior

For developing the C-based discrete time model, the current and two-

delayed values of botCA andF, wereutilized. Thus, the six predictor variabCy
' Ca 1 Ca, Foo Fea, F._,) set was employed ideveloping the G-based model
predicting the onstef-ahead process outpdt, .. For developing the discrete tir
GP-based model the data set consistin1000 points was split randomly training,

test and validation sets in 70:20:1Cratio, respectigly. The GP searched fitte

expression obtained usithe Eurega Formulizesoftwarepackage is given &
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(0.2213 —0.0644 x CAt»z )

Ca,.,=1.9125 (CAtJr TSI F

~0.4771 x CAH> (5.19)

Likewise Case Study I, in this caalso it is seen that among the six predi
variables that were provided to it, the GP al¢onithas used only four of the

(CAI'CAt.I'CAt.z' F.) in obtaining model (5.19). The values of CC,RMSEandMAPE

corresponding to the, ., predictions made by (5.19) for the training, testjdation
set data are listed in Table 5.3. Figure 5.10 shbegarity plot of the desired vers
GP-model predicted values cC, . From this figure and the high (low) a
comparable values (CC (RMSEandMAPE) for the training, test and validation :
data it is clear that the GP based identificatioodet (5.19) possesses an excel

one-time- ste@head prediction accuracy and generalizationtgl

Table 5.3: Prediction accuracy and generation performance of G-based model
(5.19) for CSTR control syste

Training set| Testset| Validation se

CcC 0.9937 0.9928 0.9939
RMSE 0.0362 0.0259 0.0308
MAPE 0.0030 0.0016 0.0024
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Figure 5.10:Desiredversus GP-model predictéd, ., values pertaining to tr
training, test, validation set data.
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Transfer function based identification

Here, the simulated CSTR generated data were adaagpropriately for the
development of the transfer function based prombssification, wherein both input
(Fin), and output ,) signals were utilized. This data set of 1000 {somas split
randomly in training, test and validation sets ih2D:10 ratio. The continuous-time
transfer function based model obtained udiaglab sysidsoftware is given below:

0.0015253+40.125 S240.007943 S+0.0001468
§3-1.226 S2+0.49 5+0.00231

T,(S) = (5.20)
In this Laplace transform based model, the inpu¢sesented b, (S) and output is
represented by

T,(S) = iA(—(SS)) (5.21)

The transfer function defined in this equation wimealtiplied by the input function
produces the output function of the CSTR systeme TE, RMSE and MAPE
magnitudes pertaining to th&, ,, predictions made using (5.20) are listed in Table
5.4. Figure 5.11 shows the parity plot of the dsskiftarget) versus transfer function
model-predicted values df, . A comparison of the prediction and generalization
performance of the GP and transfer function bas8@iRCmodels indicates that the

former model has outperformed the latter model.

Table 5.4: Prediction accuracies and generalization perfoomanf transfer function
model (5.20) for CSTR control system

Training set| Testset| Validation set

CcC 0.9888 0.9815 0.9920
RMSE 0.0526 0.0585 0.0449
MAPE 0.0090 0.0089 0.0074
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Figure 5.11:Desired versus trans-function model predicted, ,, values pertaining
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5.2.3 Sensitivity Analysis of Predictor Variable

In this study, sensitivity analysis (also termephportance” analysis) was al
performed for the data used in the developmentwaf GF-basd models. It was
conducted using thlBM-SPSS packag@011) to ascertain the extent of influel
exerted by each predictor variable on the-time-stepahead value of the outp
(controlled) variable (see Chapter 2, section @rGafdetailed discussicof sensitivity
analysis).

The importance analysis for the conical tank systemcase stuc-l was
conducted using the entire simulated data set 00 J®ints. Figure 5.12 exhibits t
importance and normalized importance chart indicgtine extent of fluence exerted
by each predictor variable on the -time-step-aheadalue of the controlled variab
(he+2). In this figure, it is seen that the four predicvariables, namelyh;, heq, heo,
and F;, exert a significant influence on tth..; magnitueé. Notably, the same fo
variables appear in the optimal model (5.10) thermaohstrating the ability (the GP
formalism to select the most influential predictaariables during searching a

optimizing a datditing model.
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Figure 5.12:Normalized importance of six predictor variablesppaocess outpt h.;.

Figure 5.13 exhibits the importance and normalizegportance chart
pertaining to the adiabatic nonlinear CSTR coneiain control system. It indicat
that among the sipredictor variablesC,,, CAt—l’ CAt.z’ Fi, Fi.1, Ft.2) those four that
influence the onéime-step-ahead value of the control variallg)(most strongly are
Ca,,» Fi Cy,, and Ca,, It is noteworthy that the same four predictor Valea have

beenutilized by the GP formalism in obtaining the opginmodel (5.19

Normalized importance
40% 60% 80%

0% 20%

0 02 0.4 0.6 08 1 !
Importance

Figure 5.13:Normalizecimportance of six predictor variables on procedput. C, .

5.3 CONCLUSION

In the conventional process/system identificatitht becomes tedious ai
computationally intensive to select specific predictor variables that stron
correlate with thesingle- or multi-time-stepahead values of the output. In this pa
a GPbased strategy has been suggested for simultayedesitifying the importan
predictor variables as also searching and optimizan optimal data fitting functic
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and its parameters. The said strategy has beestrétad by conducting two process
identification case studies wherein the GP formallgas been shown to (a) identify
the influential time-delayed inputs and outputsd glv) simultaneously perform
system identification using these influential potdis. The two chemical engineering
systems chosen in the case studies are: (i) nanmliheight control system for a
conical tank, and (ii) adiabatic nonlinear CSTR aantration control system. From
the GP-based models obtained in these case studgesoticed that although the data
supplied to the GP algorithm contained six predictariables, it searched and
optimized models with only four predictor variabldgoticeably, these predictors
were identified by the sensitivity analysis to keevimg most influence on the model
output. Both the GP based process identificatiodets (5.10) and (5.19) predict the
one-time-step-ahead values of the output variafligs andC,,,) with an excellent
prediction and generalization performance as indetdy the high (low) magnitudes
of the correlation coefficient (root mean squaredreand mean absolute percentage
error) pertaining to the training, test, and vdiiola set data. It is also observed that
the GP-based models possess better predictiona@gcand generalization capability
than the continuous-time transfer function mod#sreover, the GP-based models
are less complex than the transfer function modgtss feature is important since
usually less complex (i.e., parsimonious) modelsspes better at generalization than
their more complex counterparts. To summarize,GRebased system identification
strategy—being computationally economical and mashk tedious—has the potential
to become an effective alternative to the conveafiy used linear/nonlinear
identification strategies. Having identified a pees using the GP strategy the
corresponding model can be gainfully utilized toplement the model predictive
control (MPC) strategy.

NOMENCLATURE

f functional relationship between,, and the current and past (time delayed/
lagged) values of the inputs and outputs

m, n number of lags in the process output and inpupeesvely
t sampling instant
u manipulated variable (input)

Y41 ONe-time-step-ahead value of the output
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Chapter 6

Prediction of °API Values of Crude Oils by Use of
Saturates/Aromatics/Resins/Asphaltenes Analysis:
Computational- Intelligence-Based Models

ABSTRACT

The®API value is an important physicochemical charaistér of crude
oils often used in determining their properties andility. There exist
models—predominantly linear ones—for predictingel magnitude
from the molecular composition of a crude oil. Téyproach is tedious
and time-consuming since it requires quantitativetedmination of
numerous crude-oil components. Usually, the hyditomas present in
a crude oil are grouped according to their moleculaverage
structures into saturates, aromatics, resins, agphaltenegSARA. An
°API-value prediction model dependent on these flsactions is
relatively easier to develop, although this apprhodtas been rarely
used. A rigorous scrutiny of the relevant data ssgg that some of the
dependencies between the individual SARA fractiamsl the
corresponding°API-value could be nonlinear. Accordingly, in this
study, SARA-fraction based nonlinear models haen lkeveloped for
the prediction of°’API values using three Computational Intelligence
(CI) formalisms: genetic programmir(@P), artificial neural networks
(ANN9, and support vector regressigS8VR. The SARA analyses and
°API values of 403 crude-oil samples covering wideges have been
used in developing these models. A comparisoneoCtibased models
with an existing linear model indicates that alletliormer class of
models possess a significantly bett®&Pl-value prediction and
generalization performance than those exhibitedtH®y linear model.
Also, the SVR-based model has been found to bentis¢ accurate
°APl-value predictor. Because of their better préidic accuracy, Cl-

based models can be gainfully used to pretiétl values of crude oils.
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6.1 INTRODUCTION

Crude oil is a complex mixture of hydrocarbons tladgo contains some
“hetero” atoms such as oxygen, nitrogen, and sulibe knowledge of a crude oil's
type and quality is essential because these cleaistcts determine its market value
and ease of refining. The stated crude-oil attebutan be ascertained by the use of
various properties, such as, standard specificitgtgaour point, and sulfur and metal
contents. Often, the density of petroleum oilsxigressed in terms of tfAPI value;
this metric was devised by American Petroleum fai(API) and National Bureau
of Standards. It is known to be a crucial propdrgcause it directly affects the
production and price of a crude oil. THAPI value is used extensively in the
classification and determining properties, suchthasviscosity and compressibility
factor, of petroleum oils, and also in setting tperating parameters of distillation
columns in a refinery. It is a measure of the craifs “lightness” or “heaviness” or
the standard specific gravity that compares theiBpegravity of the oil to that of

water;°API value is computed as

141.5

°API = °
specific gravity (60 l:‘/eof’F)

—131.5 (6.1)

In a commonly used classification scheme, crude ait categorized on the
basis of their°’API magnitudes as follows (Strubinger et al. 201&jtra heavy
(°API<10); heavy (10<°API<22.3); medium (22.3<API<31.1), and light
(°API>31.1). The°API value is measured using a standard hydrometording to
the American Society for Testing and Materials (A§Tmethods D287 ASTM
D287-12 2012) and D1298 ASTM D1298-12b2012). It varies strongly with
temperature because of the significant volume esipanof the oil upon heating.
Generally, the less processing a crude oil musterga] it is regarded as more
valuable. Considering the chemistry of oil refinitige denser the crude oil, the higher
is its carbon/hydrogen ratio, and more intense eostly refinery processing is
required for producing specific volumes of gasolaral distillate fuels. ThusAPI
value of a crude oil significantly influences theagtum of investment and energy
consumption in a refinery, which form the two lageomponents of the total
refining cost (ICCT 2014). Commonly, the higher tWd®l magnitude, the lighter is
the crude oil and higher is its demand; therefare,accurate evaluation G6API

becomes very important (Lammoglia and Filho, 2011).
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In a widely used classification scheme, crude aniéscategorized on the basis of
their composition and types of hydrocarbons preseihem (Albahri et al., 2003).
Specifically, the hydrocarbons are classified ifdgar groups on the basis of their
molecular average structures, polarizability, aradapty: Saturates(alkanes and
cycloparaffins); Aomatics(hydrocarbons; mono, di, and polyaromatRgsinspolar
molecules with the heteroatoms nitrogen, oxygeliyuguand Asphaltenegsimilar to
resins but possessing higher molecular weight goalyamromatic core). This method
of classification is known as SARA analysis. Thatetl crude oil components are
separated by use of the SARA-fractionation meth8de{ght and Ozum, 2002).
Various techniques, such as the clay/gel-adsorgtioonmatography (basis &STM
D2007-93, thin-layer chromatography (TLC) (Vela et al., 959, and high-
performance liquid chromatography (HPLC) (Suatard &wab, 1975; Chaffin et al.,
1996) are used to perform the SARA analysis. Amomgse, HPLC has been
demonstrated to be a very efficient alternativtht/ASTM 20071993) procedure for
SARA fractionation because it is achieved rapidly.

The ASTM tests for measuring ti&PI value need expensive equipment and
are time-consuming to perform; thus, these areicdiff to use in the on-line
monitoring of the crude-oil quality (Muhammad arel\dasconcellos Azeredo, 2014).
To overcome this difficulty, mathematical modelattpredict thé API value from the
measured values of other oil-specific attributesssenbeen proposed. Accordingly, it
has been shown that the quality of the crude pmiroland its derivatives, as assessed
in terms of the®API values, could be predicted directly from the lecalar
composition of crude oils. A number of studies hiollwed this strategy to propose
models that use data from various spectroscopitiadst such as Fourier transform
infrared-attenuated total reflectance, absorptiond asynchronous ultraviolet
fluorescence (Abbas et al., 2012), nuclear magmesonance (Muhammad and de
Vasconcellos Azeredo, 2014), infrared (Pasquini Bndno, 2007), and attenuated
total reflection Fourier transform infrared spestropy (Filgueiras et al. 2014), for the
prediction of°API magnitudes. Another approach to developing aehgredicting
the °API value is dependent on the use of SARA fractampredictors. The principal
advantage of this methodology is that because efithited number of inputs (i.e.,
four), a SARA-fraction-based model can be develagtatively easily, and speedily

compared to a model that takes into account a langeber of hydrocarbons present
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in a crude oil. Although attractive, this approdas been rarely used in developing
the °APl-value prediction models. An extensive literatsearch has revealed that a
SARA-fraction-based model has been developed by &ah Buckley (2002) to
predict the°’API magnitudes. The principal objective of theindst, however, was to
examine three methods (namely, gravity-driven clatographic separation, TLC,
and HPLC) used for separating crude oils and dilgdrocarbon materials into SARA
fractions. Fan and Buckley (2002) proposed th&Pl prediction model for
differentiating the SARA data obtained by the uBA®TM and HPLC methods from
those provided by the TLC-flame-ionization-detec{@LC-FID) method. Their
model, possessing a linear form and valid over °thBl-value range of 15-40, is

given as

APl =74.5-0306S—-0.385A—-1.08R—0.763 A, (6.2)

where S, A, R, and 4,, respectively, represent the weight percentage$olwadf
saturates, aromatics, resins, and asphaltenes. nidgnitude of thecorrelation
coefficient(CC) between the experimental, and Eq. (6.2) - preditAPI values for
the HPLC-analyzed 87 crude-oil samples were fountle 0.825 (Fan and Buckley
2002).

To verify the true nature of the dependencies (léretinear or nonlinear)
between the SARA constituents and the correspornthi®j values, a large data set
consisting of SARA analyses of 565 crude-oil samplas compiled from a number
of publications, including a database. Differemalgtical methods, such as TLC-FID,
ASTM, HPLC, gas chromatography-mass spectromet@-§&), and open-column
chromatography, have been used in conducting thRASAnalyses. The compiled
data contain a number of samples for which the w#ldes of the individual SARA
constituents do not add up exactly to 100. Thus,dhta set was screened to select
403 samples for which the wt% magnitudes of SARAstituents add up to
100+ 2%. Here, the value of 2% was chosen to allow riaslsexperimental errors in
the SARA analyses. The screened data set and Hpeatere data sources are
tabulated in Appendix 6.A. This set contains da#&tgning to the light (115
samples), medium (127 samples), heavy (127 sampled)very-heavy (34 samples)
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crude oils. These data were used to generate tss-piots (Figure 6.1), wherein
°API values were plotted against the individual ¢bnents of the SARA analyses. It
is seen in Figure 6.&) that there exists an approximately linear refat@tween the
°API| values and the wt% of saturates. However, ailaimnference of linear
dependence cannot be drawn unambiguously becausiee dhrge scatter seen in
Figures 6.1§), 6.1€), and 6.1d), pertaining to the relationships existing between
°API values and the wt% of aromatics, resins, ampdhasenes, respectively. Thus, it
is quite plausible that these relationships, altjfironot obvious to the naked eye, in
reality are nonlinear. Hence, it is worthwhile tgpkore whether a nonlinear model
would better capture the relationships between BBl values and the SARA
components of crude oils and thereby make moreratcpredictions than the linear
model defined in Eq. (6.2). With this objective,rabd Cl-based modeling
formalisms—GP, ANNs, and SVR—have been used ingtudy for developing the
SARA-fraction-based models for prediction“@PI| values of crude oils. In addition,
the prediction and generalization performance & @i-based models have been
compared with those of the linear model (Eq. 6TRe same large-sized data set used
in generating the cross plots in Figure 6.1 waglusethe development of the CI-
based models for simulating the stated linear mddeteover, the coefficients of the
linear model of Fan and Buckley (2002) were frestdyermined by use of the large-
sized data set to further test whether a linear ehagl indeed the most-suitable
predictor of°API. The results of all these modeling studies rtyemdicate that the
Cl-based models possess significantly high&Pl-value-prediction accuracy and -
generalization capability than the original andfileshly fitted linear models.

This chapter is structured as follows. Section 6tl2d “Data” provides details
of the data used in the Cl-based modeling§Ad?| values. The next section 6.3 termed
“Results and Discussion,” describes developmetii@three Cl-based models for the
prediction of°API values. This section also provides results abaparison of the
°APl-value-prediction performance of the three Cédxh models with that of the
linear model by Fan and Buckley (2002) and its ttedi version. Finally,

“Conclusion” (section 6.4) summarizes the majodiings of this study.
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Figure 6.1: Crossplots of °API values vs.percentages of individual SAF
constituent.

6.2 DATA

The GP-, MLP; and SVF-based models predicting tRAPI value of a crude o
weredeveloped by use of a data set consisting of 403tloutput patterns (Append
6.A). Each pattern contains four predictor variahlmodel inputs) with wt% value
of saturatesy), aromaticsA), resins R), and asphaltened ), and the correspondi
magnitude of°API (desired model output). For constructing thedels, the input
and °API values were normalized by use of th-score method. The predicti
accuracy and generalization capability of a modetenassessed on the basis of
CC, RMSE ard mear-absolute-percent erroM@APE) values, which were comput
by use of the experimental and the correspondindet-predicted®API values. The
MAPEwas evaluated according to the following expres

Np
i=1

1 i~Yij R
MAPE;(%) = - |%| x100; j=1,2,....Nop (6.3)
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wherej denotes the index of candidate solutidfyPE; refers to theMAPE of the
j™-candidate solution in the population; is the desired (target) output value
corresponding to thé™-input data pattern in the training/test data $et; is the
model-predictedAPI value when thé™-input pattern is used to compute the output
of the j™-candidate solution, anty,, is the number of input/output patterns in the
training/test set. All models were trained and rthggneralization performance was
tested by use of the fivefold cross-validation sebeln this method, the available
example set was portioned into five subsets. Miglttpaining runs were conducted,
and each time a different subset was used as shedt the remaining four subsets
were used as the training set. Finally, the stesisguantities—namelyCC, RMSE
and MAPE—corresponding to training and test sets obtaimedanultiple runs are
averaged. The optimal model is selected on theshashigh (low) and comparable
averaged values @C (RMSE MAPE) for both training and test sets. In the following
subsections, details of the construction of the, &R-P-, and SVR-based models and
a comparison of theifAPI-value-prediction and -generalization performarere
presented.

6.3 RESULTS AND DISCUSSION

6.3.1 GP-Based Modeling

The GP-basedAPI-value prediction model was developed by ustheEurega
Formulize software (Edwards, 2009; Schmidt and Lipson, 2008)s software has
been optimized to search parsimonious models Wigh, low complexity), which are
expected to possess the much-desired generalizalitity. The Eureqa Formulize
software uses the plain “single train/test splitbgedure, in which training and test
sets of fixed sizes are, respectively, used incthrestruction and assessment of the
generalization capability of a candidate expression

The detailed procedure for GP (Koza, 1992; Poklet2008) implementation
has been explained in Chapter 2 (section 2.2.2)0oBtaining a parsimoniolfAPI-
value prediction model possessing good predicticnui@cy and generalization
capability, several GP runs were conducted, eade tising a different operator
subset from the large set provided by tBereqa Formulizepackage. The best
solution in each run was documented. From seveic solutions, those satisfying
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the following criteria were screened to select aarall optimal model (Goel et al.,
2015):
« Small and comparable magnitudes RMSE and high and comparable
magnitudes o€Cs for both training and test set.
* Must contain all four input variableS; A, R, and4,,.
» Should possess low complexity (i.e., should condasmall number of terms,

which ensures better generalization by the model).

In GP simulations, thBMSEwas evaluated as follows:

J=1,2,....Npp (6.4)

where, RMSE; refers to theRMSE pertaining to thej™-candidate solution. The
optimal GP-basedAPI-value prediction model selected on the basipreviously

described criteria is as follows:

(RxAp)+ (Ax$%) R + (A x Ap x §%)
9.286+(5.482 X AxAp)+(SxRxAp)+(5.482 x AXRXAp)

°API = 10.204 x (5 + ) + 24.61 (6.5)

$-46456 » _ A-30.813 5 _ R—16.316
, A= R =
21.194 12.986 12.714

N A,—6.384
,and A, = -2
6.365

where, S =

The CC, RMSE,andMAPE magnitudes with respect té&\Pl-value predictions made
by Eqg. (6.5) for both training and test sets astd in Table 6.1.

6.3.2 MLP-Neural-Network-Based Modeling

A detailed description of the MLP training proceeluand related issues is
provided by, for example, Zurada (1992), Bishop98)9 and Tambe et al. (1996)
(also see Chapter 2 (section 2.2.1)). The MLP-bagxdunal °’API-value prediction
model was trained by use of tleeror back propagationfEBP) algorithm from the
RapidMiner data-mining suite (Mierswa et al. 2006; RapidMi2&07). The model
consists of four input nodebl & 4), and a single output-layer node in its amsttiire;
the four input-layer nodes represent weight peegeg of theS A, R, and 4,

components, respectively, in the crude oils, argingle output node represents the
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corresponding®API value. To obtain an optimal MLP model, its stural and
training algorithm-specific parameters—such asrtinaber of hidden layers, number
of hidden nodes in each layer, learning raje énd momentum coefficient,,)—
were systematically varied. The criterion for chogsan optimal model was
minimum RMSEmagnitude for the test set. The magnitudes oMhE architectural
and EBP specific parameterg fi.pp) that led to an optimal MLP model were number
of hidden layers = two; number of nodes in Hiddaydrs 1 and 2: five each= 0.5;
and u.p, = 0.01. The prediction accuracy and the genetaizgerformance of the
optimal MLP model have been evaluated in termsC&f, RMSE and MAPE
magnitudes with respect to the target and MLP-mpdetiicted°API values for the

training- and test-set data; these are listed bieTé. 1.

6.3.3 SVR-Based Modeling

A rigorous description of the SVR (Vapnik, 1995, 969 1997) based
development of a multiple input — single output mlot provided in Chapter 2,
section 2.3. In the present study, the SVR-bd#del-value prediction model was
also developed by use of tRRapidMinersoftware (RapidMiner 2007). Specifically,
the model was constructed by use of #f&VR algorithm; the kernel function used
was the radial-basis function. The algorithm ude®d parameters: regularization
constant C), kernel gammayj, and radius of the tube)( These were varied
systematically to obtain an optimal SVR model psss® high’API-value prediction
accuracy and generalization capability. The magesu of the stated-SVR
parameters that led to an optimal SVR modelGrel.0,y = 1.0, anct = 0.001. This
optimal model is derived from 260 support vectdiable 6.1 lists th€C, RMSE and
MAPE magnitudes with respect to tli&PIl-value predictions made by the optimal

SVR model for both training and test sets.

6.3.4 Comparison of °’API-Value Models

The large-sized data set consisting of 403 datiznat covers a wide range of
light, medium, heavy, and very-heavy crude oils.ughbefore comparing the
performance of variousAPI prediction models, an exercise was conducted to
improve the prediction and generalization perforogaof the linear model (Eq. 6.2)

proposed by Fan and Buckley (2002). Specificalye five parameters of Eq. 6.2
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were refitted by use of the Marquardt (1963) aldpon. The same training and test
data sets that were used in developing the Cl-basmtels were used in this model
refitting. The refitted linear model—or the moddieFan and Buckley (2002)

(modified-FB) model—is given as
°API = —205.889 + 2.483 S + 2.228 A+ 2.104 R + 1.905 4, (6.6)

The prediction and generalization performance efttivee Cl-based, FB, and
modified-FB models are provided in Table 6.1. Tpesformance assessment is made
in terms of theCC, RMSE andMAPE values computed by use of the experimental
and model predictedAPI values. For the FB and modified-FB models, ¢hes
statistical quantities were evaluated by use ofsdi@e training and test data sets as
used in the development of the Cl-based modelsnRte CC, RMSE and MAPE
values pertaining to the predictions of the modHieB model (Eq. 6.6), it is observed
that refitting the five parameters of the origirfdB model (Eq. 6.2) has indeed
resulted in a significant improvement in th&PI-value-prediction accuracy and -
generalization capability of the original FB mod8pecifically, theCC with respect
to the training and test data have improved by Hnd 11.25%, respectively,
whereas the correspondiRMSEandMAPE magnitudes have decreased by 28.9 and
29%, and 36.08 and 35.48%, respectively.

The CC, RMSE and MAPE magnitudes listed in Table 6.1 also indicate that
there exists a minor variation in th&APIl-value prediction accuracies and
generalization capabilities of the three Cl-basedlahs. Here, it is noticed that among
the three Cl-based models, the prediction and gération performance of the SVR
model is marginally better than that of the GP- BidP-based models. The highC
magnitude of 0.871 with respect to th&Pl-value predictions made by the SVR
model by use of both training- and test-set da&arty indicates that the model
possesses good prediction accuracy and generafizedapability. This observation is
also supported by the low&MSE and MAPE magnitudes pertaining to tiéPI-
value predictions by the SVR-based model compariid thhe predictions made by
the GP- and MLP-based models.
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A comparison of the’API-value-prediction and —generalization performanc

exhibited by the Cl-based, FB, and modified-FB niedeveals the following.
* The CC magnitudes corresponding to the predictions madalbthree CI-

based models by use of the training- and testaet are significantly higher
than those for the FB and modified-FB models.

 The training- and test-seRMSE and MAPE values pertaining to the
predictions by all three Cl-based models are digpnitly lower than the

corresponding values for the FB and modified-FB eted

Table 6.1: Prediction accuracy GAPI values and generalization performance of GP,
MLP, SVR, FB and modified FB models

°AP|-value Training Set Test Set
Model CCin | RMSEy, | MAPEy, | CCui | RMSEi, | MAPE.,
GP 0.840 | 5.436 18.01 0.841| 5.544 18.19
MLP 0.859 | 5.220 19.37 | 0.859 | 5.192 19.59
SVR 0.871 | 4.811 13.45 | 0.871 | 4.995 | 1351
FB 0.730 | 7.911 36.00 | 0.727 | 8.166 | 36.18
Modified-FB | 0.820 5.625 23.01 0.818 5.811 23.34

The overall inferences from the results presentedable 6.1 are that all three
Cl-based models outperform the FB and modified-F&lets by a wide margin, and
that the SVR-based model performs marginally bdtten the MLP- and GP-based
models.

The Steiger (1980) z-test (for more details seep@mna2, section 2.7) was
performed to rigorously compare the prediction gaderalization performance of the
three Cl-based and the modified-FB models. Thisisegsed to examine whether the
two CCs corresponding to the predictions of two competimagels are significantly
different. It tests the null hypothesid,) that twoCC magnitudes are not statistically
different; that is,CCag = CCac, Where subscripts A, B, and C, respectively—fa th
present study—denote the experimeffdP| values and those predicted by models B
and C. The choice of the modified-FB model for cangon stems from the fact that
its °API prediction and generalization performance igdvehan that of the original
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FB model. The Steiger (1980) z-test has examined/#tidity of the null hypothesis

(CCap = CCxc) With respect to the following three pairs°@P1 values:

* Experimental/GP-model predicted and experimentalifrenl-FB model
predicted

* Experimental/MLP-model predicted and experimentatiiied-FB model
predicted

* Experimental/SVR-model predicted and experimentadfiited-FB model
predicted

The results of the Steiger (1980) z-test are listedlable 6.2. It is observed in
this table that in all the three cases, the nufidtiyesis regarding the equivalence of
the twoCCs—one of which pertains to the predictions of thedified-FB model—
has been uniformly rejected. Hence, it is posdsiblenfer that there is a statistically
nonsignificant difference in th€C magnitudes of the various model pairs. This
inference, along with th€EC, RMSE andMAPE values listed in Table 6.1, is clearly
indicative of the superior prediction and genegdlan performance of the three CI-

based models compared to the modified-FB model.

Table 6.2: Results of the Steiger (1980) z-test comparingetation coefficient CC)
values of GP, MLP and SVR models with the modifiéglimodel

. Full example set
Model pair 8-C)
CCap | CCac | df Z P H,
GP/Modified-FB 0.840 | 0.816 | 401 | 2.305 | 2.11x10° | Reject
MLP/Modified-FB 0.857 | 0.816 | 401 | 3.881 | 1.03x10" | Reject
SVR/Modified-FB 0.870 | 0.816 | 401 | 5.638 | 1.71x10° | Reject
FB/Modified-FB 0.727 | 0.816 | 401 | -6.393 | 1.62x10™ | Reject

H, is rejected when p ,(wherep,= 0.05). H,, is the null hypothesi&C,z=CCy,
where A denotes experimental °API values of cruldg df = degrees of freedom.

The parity plots of the experimentd\PIl values and those predicted by the
SVR, MLP, GP and the modified-FB models, respetfivare shown in Figures
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6.2(@@) through 6.2q). It can be clearly seen that the data pointsigurieés 6.24),
6.2(b), and 6.2¢), showing the predictions of SVR, MLP, and GP nisde
respectively, exhibit a lower scatter compared whih predictions of the modified-FB
model. This observation also supports the earisult that the SVR-, MLP-, and GP-
based models are capable of predicting *hEI values of crude oils with a better
accuracy and generalization ability than both thH& &nhd modified-FB models.
Among the better-performing models, the GP modeleahbee of its compact size and
ease of computation—is more convenient to use aptbyl in practical applications.
However, when the higheSAPI-value prediction accuracy is the principal eribn

of selection, then the SVR model should receivesfepential treatment.
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Figure 6.2: Parity plots of the experimental API gravity vaduend those predicted by
the following models:g) SVR, ©) MLP, (c) GP and, d) Modified-FB.
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A notable feature of the GP-based model (Eq. 6s5fhat it possesses a
nonlinear structure. It may be noted that by itsyw&haracter the GP formalism, can
search and optimize a linear or a nonlinear fumcéind all the associated parameters
that would fit the example data optimally. The fétat the GP model has searched
and optimized a nonlinear function for fitting th&Pl-value data of a large number
of crude oils is indicative ofAPI values indeed being dependent nonlinearly @en th
weight percentages of the SARA fractions of crutde &rom the superior prediction
and generalization performance of the three Cldbasenlinear models, it can be
inferred that nonlinear equations are better suited the linear ones for relating the

°API values to the SARA composition of crude oils.

6.4 CONCLUSION

The °API value is an important physicochemical charastierof crude oils and
used routinely in the determination of their othmoperties and quality. Various
models (predominantly linear) have been developegiedicting°API values from
the molecular composition of crude oils. Becauseduires determining the extent of
a large number of crude oil components, the stapguloach becomes tedious, costly,
and time-consuming. In a practically convenientutjto rarely used approach, the
wt% values of the molecular average structureshiem ¢rude oil—saturatesS)
aromatics A), resins R), and asphaltenesgl{)—have been used as model inputs to
predict the°API values. A linear model derived from this apmioavas proposed
earlier by Fan and Buckley (2002). Scrutiny of artemsive crude-oil database
suggests that the relationships between’&il values and wt% values of some of
the SARA constituents could be nonlinear. For capguthese nonlinearities and
thereby developing models possessing bétd?l value-prediction accuracies, this
study uses three Cl-based and exclusively datadriormalism: GP, MLP, and
SVR. Similar to the linear model, these formalisuse the SARA composition of a
crude oil for the prediction of it8API value. Among three Cl-based methods, GP
possesses several novel and attractive charamtgrisut it remains a much-less-used
data-driven modeling technique when compared witiNA and SVR. The best-
fitting GP based’APl-value prediction model developed in this stymssesses a

nonlinear form. A comparison of the prediction @y@heralization performance of the
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three Cl-based models indicates that the SVR glyaltes yielded an overall best-

performing model. It has been also found that eafcthe three Cl-based nonlinear
models possesses a bettthPl-value prediction accuracy and generalization
capability than not only the original linear FB nebdut also its improved linear

version (the modified-FB model). This result clganhdicates that the nonlinear

models using weight percentages of the SARA caresiis are better-suited than the
corresponding linear ones for predicting th&Pl values of crude oils. Other

noteworthy characteristics of the Cl-based mode&getbped in this study are as

follows.

* A large number of SARA-constituent data and theespondingAPI values
pertaining to the light, medium, heavy, and vergwecrude oils have been
used in the model development.

* The previously stated SARA analyses were perforrogduse of various
methods, such as TLC-FID, ASTM, HPLC, GC-MS, anderspolumn
chromatography.

These characteristics have imparted a wider applitato the Cl-based
models. Because of their significantly higher peddn accuracies, these models

possess a potential to be the preferred ones éaligiing the’AP1 value of crude oils.

NOMENCLATURE

A wt% of aromatics

A scaled A
wt% of asphaltenes
scaledd,,

N, number of patterns in the example data set; nunmipert/output patterns in
the training/test set for GP

N,, number of candidate solutions in a population &

R wt% of resins

scaled R

o)}
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”»

Vi

Yij

wt% of saturates

scaled S

desired (target) output value corresponding toithénput data pattern in
the training/test data set

magnitude of the model-predictedP| value wher™ -input pattern is used
to compute the output of thi&-candidate solution
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Appendix 6.A: °API-Value Models Data

Sr. Saturates| Aromatics| Resins| Asphaltenes °API Reference
No. (wt %) (Wt %) | (Wt%) (wt %) values

1 20.01 11.36 36.26 32.37 10.83  Sanchez - Minero. ¢2al.3)

2 25.38 17.04 31.41 26.17 13.1 Sanchez - Mineab. €2013)

3 32.1 26.34 25.82 15.74 21.2  Sanchez - Minero €@l 3)

4 43.15 29.95 18.2 8.7 27.1 Sanchez - Minero efall3)

5 51.62 31.35 14.2% 2.78 32.8 Sanchez - Minerh €2@13)

6 27.9 31.7 32.1 7.3 10.5 Molina et al. (2010)

7 20.5 39.2 36.5 3.6 10.7 Molina et al. (2010)

8 35.8 30.3 32.1 1.8 13.§ Molina et al. (2010)

9 23 22 35 18 10.4| Hinkle et al. (2010)

10 38.4 29.8 25.8 4.8 16.5 Wang and Buckley (2003)
11 64.1 14.5 17.9 2.7 20.7  Wang and Buckley (2003)
12 49.5 21.5 25.6 2.8 22.6  Wang and Buckley (2003)
13 67.3 14.9 15.1 2.3 29.2 Wang and Buckley (2003)
14 70.6 15 12.9 1.3 31 Wang and Buckley (2003)
15 70.6 16.3 11.4 1.9 31.1 Wang and Buckley (2003)
16 62.8 15.8 18.7 2.6 31.2 Wang and Buckley (2003)
17 63.4 16.5 17.4 2.7 31.6 Wang and Buckley (2003)
18 65.2 18.3 13.9 1.3 37.2 Wang and Buckley (2003)
19 59.4 24.9 10.2 6.5 41.3 Wang and Buckley (2003)
20 46 25 15 12 13.5| Hernandez et al. (1983)

21 37 31 12 18 14.3| Hernandez et al. (1983)

22 11 12 64 15 15 Cendejas et al. (2013)

23 27 15 47 11 21 Cendejas et al. (2013)
24 38 15 42 5 30 Cendejas et al. (2013)
25 42.72 3847 | 1786  0.31 3392'52;2{6\2/6(‘;%‘13‘5‘)‘1 Buenrostro -
26 46.81 3713 | 1563 001 | 382 G'gﬁ;:{e\z/a(‘;%ff)d Buenrosro -
27 | 44.03 3832 | 1665  0.01 4152'(‘)’%2{6\2/6(‘;%‘13‘{‘)‘1 Buenrostro -
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28 30.1 31.3 13.6 25 18 Kumar et al. (2005)

29 48.1 28.8 6.5 16.5 28 Kumar et al. (2005)

30 32.3 194 37.1 11.2 22.6 Nasr-El-Din and Taylor9@)9
31 36.77 46.72 6.12 10.39 19.85 Kord and Ayatollabil@)
32 43.67 52.09 0.49 3.75 20.75 Kord and Ayatol(@bil2)
33 46.12 37.24 7.57 9.07 20.93 Kord and Ayatol{2biL2)
34 38.99 50.59 6.17 4.25 22.71 Kord and Ayatol(@bil2)
35 42.68 40.69 7.63 9 24.46 Kord and Ayatollahi (2012)
36 62.4 17.2 6.2 14.2 37.2 Tang et al. (2005)

37 39.6 9.1 44.5 6.8 12.1 a‘gg)ma”iam and Hanson
38 35.7 7 54.5 2.9 12.9 a‘gg)ma”iam and Hanson
39 26.2 41.5 21.9 10.2 12 Hannisdal et al. (2006)
40 19 45 20 16 19 Freitas et al. (2009)

41 19 32 38 12 19 Islas- Flores et al. (2006)
42 55 30 13 2 36 Islas- Flores et al. (2006)
43 26.96 42.65 15.03 15.36 10.2 Rose et al. (2001)

44 52.49 41.04 5.48 0.99 34.24 Nokandeh et al.Zp01

45 29.53 54.52 12.04 3.91 23 Kazempour et al. (R013
46 41.81 44.15 10.8 3.24 25.7 Kazempour et al. (2013)
47 18.17 28.97 | 41.52 11.31 21|  Chéavez-Miyauchi et28l1B)
48 41.8 28.7 28.4 15 28.4 Alcazar-Vara et al. (2012)
49 41.7 34.2 21.8 2.3 36 Alcazar-Vara et al. (2012)
50 42 43 8 7 23.8| Amin et al. (2011)

51 53.48 34.45 8.5 5.3 31 Amin et al. (2011)

52 16.8 44.9 24.8 13.5 10.2  Clarke and Pruden (1997
53 43 50 7 0 10.1| World Data Base (2005)
54 25 35 22 18 10.9| World Data Base (2005)
55 54 14 15 17 11 World Data Base (2005)
56 26 29 22 22 11.2] World Data Base (2005)
57 25 47 17 11 11.4) World Data Base (2005)
58 43 24 11 22 11.4) World Data Base (2005)
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59 32 32 17 19 11.6/ World Data Base (2005)
60 21 35 24 21 11.7) World Data Base (2005)
61 26 52 12 10 11.9] World Data Base (2005)
62 24 55 15 6 12.3 World Data Base (2005)
63 30 62 7 1 12.3| World Data Base (2005)
64 19 35 23 22 13.2| World Data Base (2005)
65 28 39 30 3 13.6| World Data Base (2005)
66 21 39 31 7 13.7/ World Data Base (2005)
67 66 24 8 2 14 World Data Base (2005)
638 32 41 24 3 14.3| World Data Base (2005)
69 29 51 11 10 14.7)  World Data Base (2005)
70 24 43 20 12 14.8) World Data Base (2005)
71 23 0 76 1 15.2| World Data Base (2005)
72 70 23 6 1 16 World Data Base (2005)
73 53 27 10 10 16.4/ World Data Base (2005)
74 80 19 1 0 16.8| World Data Base (2005)
75 32 32 17 19 18.2| World Data Base (2005)
76 34 31 20 15 18.3] World Data Base (2005)
77 38 29 20 13 18.8) World Data Base (2005)
78 38 40 14 8 19.5 World Data Base (2005)
79 33 31 24 12 19.6/ World Data Base (2005)
80 19 63 12 6 19.7/ World Data Base (2005)
81 34 32 21 13 19.8/ World Data Base (2005)
82 46 30 13 10 20.3] World Data Base (2005)
83 39 35 21 5 20.4| World Data Base (2005)
84 39 28 21 12 20.6| World Data Base (2005)
85 68 22 4 6 20.7| World Data Base (2005)
86 38 39 8 16 21.3] World Data Base (2005)
87 36 25 23 16 21.4) World Data Base (2005)
88 39 34 11 16 21.8) World Data Base (2005)
89 36 22 29 13 22.1 World Data Base (2005)
90 38 61 1 0 22.4| World Data Base (2005)
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91 38 38 14 11 22.6| World Data Base (2005)
92 44 30 17 9 22.9| World Data Base (2005)
93 53 38 7 2 23.2| World Data Base (2005)
94 43 37 13 7 23.4| World Data Base (2005)
95 48 36 14 3 23.7| World Data Base (2005)
96 34 64 2 0 24.3| World Data Base (2005)
97 87 10 2 2 24.8| World Data Base (2005)
98 53 37 6 4 25 World Data Base (2005)
99 59 34 6 0 25.3| World Data Base (2005)
100 66 23 4 6 25.3] World Data Base (2005)
101 48 30 17 6 25.6| World Data Base (2005)
102 48 32 9 12 25.9 World Data Base (2005)
103 68 23 7 2 26.1| World Data Base (2005)
104 70 25 4 0 26.2| World Data Base (2005)
105 48 31 13 8 26.2| World Data Base (2005)
106 61 26 6 8 26.3| World Data Base (2005)
107 60 24 8 8 28.8| World Data Base (2005)
108 69 28 3 0 27.1| World Data Base (2005)
109 56 31 11 3 27.3| World Data Base (2005)
110 90 9 0 0 27.4| World Data Base (2005)
111 47 35 12 6 27.5| World Data Base (2005)
112 45 40 11 3 27.6| World Data Base (2005)
113 72 25 2 0 27.8| World Data Base (2005)
114 51 39 9 1 28.4| World Data Base (2005)
115 53 34 10 4 28.5| World Data Base (2005)
116 55 35 9 1 28.6| World Data Base (2005)
117 88 11 1 0 28.7| World Data Base (2005)
118 55 31 10 4 29.4) World Data Base (2005)
119 54 32 7 6 29.5| World Data Base (2005)
120 53 36 10 1 29.5| World Data Base (2005)
121 54 32 8 6 29.8| World Data Base (2005)
122 95 3 2 0 29.8| World Data Base (2005)
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123 52 35 9 5 29.9| World Data Base (2005)
124 53 30 11 6 30 World Data Base (2005)
125 92 7 0 0 30.1| World Data Base (2005)
126 51 36 9 5 30.2| World Data Base (2005)
127 80 18 2 0 30.3] World Data Base (2005)
128 57 27 9 7 30.3| World Data Base (2005)
129 84 13 2 0 30.4| World Data Base (2005)
130 51 34 9 5 30.6| World Data Base (2005)
131 86 12 1 0 30.7| World Data Base (2005)
132 64 22 9 5 30.7| World Data Base (2005)
133 60 35 5 1 31 World Data Base (2005)
134 62 25 9 4 31 World Data Base (2005)
135 74 12 9 6 31 World Data Base (2005)
136 85 13 1 0 31.1| World Data Base (2005)
137 65 28 6 1 31.2| World Data Base (2005)
138 66 26 6 2 31.6| World Data Base (2005)
139 86 12 2 0 31.7| World Data Base (2005)
140 51 39 6 3 31.8| World Data Base (2005)
141 3 97 0 0 31.8| World Data Base (2005)
142 60 28 6 5 32 World Data Base (2005)
143 64 27 7 2 32 World Data Base (2005)
144 61 37 2 0 32.3| World Data Base (2005)
145 61 32 6 1 32.3| World Data Base (2005)
146 56 32 8 5 32.4| World Data Base (2005)
147 91 7 2 0 32.5| World Data Base (2005)
148 82 17 1 0 32.6| World Data Base (2005)
149 65 29 5 1 32.8| World Data Base (2005)
150 62 26 7 5 32.8/ World Data Base (2005)
151 70 15 6 8 32.9| World Data Base (2005)
152 73 21 5 1 33 World Data Base (2005)
153 67 22 8 4 33.4| World Data Base (2005)
154 73 20 4 3 33.4| World Data Base (2005)
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155 57 42 0 0 33.7| World Data Base (2005)
156 71 21 5 4 33.7| World Data Base (2005)
157 67 25 7 1 33.8| World Data Base (2005)
158 81 14 2 4 33.8| World Data Base (2005)
159 65 25 8 2 34.4| World Data Base (2005)
160 73 21 4 1 34.5| World Data Base (2005)
161 82 13 2 2 34.8/ World Data Base (2005)
162 78 16 5 0 35.1| World Data Base (2005)
163 71 25 4 0 35.2| World Data Base (2005)
164 62 31 6 2 35.7| World Data Base (2005)
165 71 20 8 1 35.8| World Data Base (2005)
166 83 13 2 3 36 World Data Base (2005)
167 65 27 5 3 36.1| World Data Base (2005)
168 61 30 8 2 36.1| World Data Base (2005)
169 66 26 6 1 36.4| World Data Base (2005)
170 65 25 6 5 36.5| World Data Base (2005)
171 64 32 4 0 36.7| World Data Base (2005)
172 70 22 6 2 36.7| World Data Base (2005)
173 78 18 3 1 36.8| World Data Base (2005)
174 81 16 3 0 36.8| World Data Base (2005)
175 84 14 2 1 36.9| World Data Base (2005)
176 84 13 1 2 37 World Data Base (2005)
177 79 15 4 3 37.1| World Data Base (2005)
178 76 22 2 0 37.2] World Data Base (2005)
179 76 23 1 0 37.6| World Data Base (2005)
180 72 23 4 1 37.8] World Data Base (2005)
181 68 26 6 2 37.8| World Data Base (2005)
182 80 18 3 0 38 World Data Base (2005)
183 73 22 4 1 38.1| World Data Base (2005)
184 76 20 3 1 38.3| World Data Base (2005)
185 85 11 2 1 38.4| World Data Base (2005)
186 62 32 5 2 38.6| World Data Base (2005)
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187 79 15 6 0 38.7| World Data Base (2005)

188 74 24 1 0 38.8| World Data Base (2005)

189 72 22 4 2 38.9] World Data Base (2005)
190 74 21 3 1 39 World Data Base (2005)

191 72 22 5 1 39 World Data Base (2005)

192 68 25 7 1 39.2| World Data Base (2005)
193 69 24 6 1 39.4| World Data Base (2005)
194 88 11 0 1 39.9| World Data Base (2005)

195 81 17 1 1 40.5| World Data Base (2005)
196 94 5 0 0 41.3| World Data Base (2005)
197 94 6 0 0 41.8| World Data Base (2005)
198 81 19 0 0 42.9| World Data Base (2005)

199 76 21 3 1 43.6| World Data Base (2005)
200 19 14 46 20 10 Hinkle et al. (2008)

201 35.7 24.6 324 7.3 13 Lammoglia and Filho (2011)
202 42.5 33.1 22.3 2.12 14.4  Lammoglia and Filho (2011)
203 40.2 33.3 234 3.1 19.4 Lammoglia and Filho (2011)
204 44.9 32.1 20.6 2.4 20 Lammoglia and Filho (3011
205 49.6 28.6 20 1.76 21.3 Lammoglia and Filho (301
206 72.7 13.9 13.4 0.5 27.4  Lammoglia and Filhd (30
207 68.1 17.6 14.3 0.5 27.7 Lammoglia and Filhd (30
208 55.7 24.3 19.1 0.9 28.1 Lammoglia and Filhd (30
209 50.4 28.1 19.7 1.8 29.4 Lammoglia and Filhd (30
210 81.2 6 12.8 0.5 36.2 Lammoglia and Filho (2011)
211 79.2 134 7.4 0.5 40.2 Lammoglia and Filho (301
212 85.9 14.1 0.1 0.1 47.2 Lammoglia and Filho (301
213 20.74 39.2 24.81 15.25 10.71 Hsu and Robirnzod7(

214 15.83 36.74 18.61 28.82 12 Ancheyta (2013)

215 47.9 36.5 15.2 0.4 23.314Ancheyta (2013)

216 48 37.5 14.2 0.3 22.98 Ancheyta (2013)

217 41.2 36.4 20.4 2.1 22.98 Ancheyta (2013)

218 82.7 13.4 3.9 0 37.2 Ancheyta (2013)
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219 62.7 23.6 12.2 1.5 36.2 Ancheyta (2013)

220 35.3 36.8 24.5 3.5 18.23 Ancheyta (2013)

221 41.8 38.8 18.7 0.6 23.3  Ancheyta (2013)

222 50.9 34.6 14 0.5 28.4  Ancheyta (2013)

223 40.6 32.1 20.6 6.6 27.8  Ancheyta (2013)

224 79.8 16.5 3.6 0.1 46.3 Ancheyta (2013)

225 57.3 27.9 13.5 1.3 30.§ Ancheyta (2013)

226 60.6 30 9.2 0.2 33.62 Ancheyta (2013)

227 42.4 36.1 20.5 1 22.1 Ancheyta (2013)

228 65 30.7 4.3 0 46.3 Ancheyta (2013)

229 50.3 31.4 17.5 0.7 26.] Ancheyta (2013)

230 55.4 28.3 12.9 3.4 37 Ancheyta (2013)

231 545 28.8 14.9 1.8 30. Ancheyta (2013)

232 24.4 43.4 19.9 12.4 19.2  Ancheyta (2013)

233 45 29 14 12 26.12 Kok et al. (1998)

234 18 31 22 29 14.95 Kok et al. (1998)

235 69 18 13 0 36 Al-Saffar et al. (2001)

236 43 40 13 6 25.1| Pantoja et al. (2011)

237 50 30 13 5 26.2| Pantoja etal. (2011)

238 51 30 13 5 26.4| Pantojaetal. (2011)

239 62 31 7 2 32.2| Pantoja et al. (2011)

240 61 29 8 2 32.2| Pantojaetal. (2011)

241 63 27 7 3 34.5| Pantoja et al. (2011)

242 18.5 31.9 37.9 11.7 19 Islas-Flores et al. (2005)
243 38.44 14.59 41.44 5.53 29.59 Castro and Vaz{pea9)
244 26.53 14.74 47.6 11.13 21.27 Castro and Vazquép9j2
245 10.49 9 64.12 16.39 15.82 Castro and Vazqden9)
246 15 19.11 46.78 19.11 9.17 Castro and Vazquez {2009
247 56.2 25.7 171 1 28.4  Khalil de Oliveira et(2012)
248 51.1 30.9 16.6 1.4 29.8 Khalil de Oliveirale(2012)
249 29 42.2 15.8 13 11 Tharanivasan et al. (2009)
250 17.8 46.2 18.4 17.3 7 Tharanivasan et al. (2009
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251 18.2 42.7 21.5 17.6 8 Tharanivasan et al. (2009
252 50.3 30.5 14.6 4 20 Tharanivasan et al. (2009)
253 17.3 39.7 25.8 16.9 9 Tharanivasan et al. (2009
254 61.1 29.6 5.3 4 32 Tharanivasan et al. (2009)
255 60.9 36.6 2.4 0 22 Tharanivasan et al. (2009)
256 16.43 3491 | 41.12 5.61 8.80 Zhang et al. (2013)

257 55.1 38.8 3.6 2.8 44.45 Flego and Zannoni 201
258 57.8 38 2.9 1.8 43.11 Flego and Zannoni (2012)
259 12.3 78.2 8.1 2.9 50.21 Flego and Zannoni 401
260 61.2 34.7 2.8 1.7 41.583 Flego and Zannoni (2012)
261 32.3 41.8 20.5 5.8 33.94 Flego and ZannoniLZP0
262 46.3 49.4 4.8 0 45.38 Flego and Zannoni (2012)
263 53.5 35.8 9.3 1.4 38.3 Flego and Zannoni (2012
264 63.8 7.8 4.4 24.1 35.88 Flego and Zannoni 4201
265 11.6 48.3 23.2 17 19.34 Flego and Zannoni (2012)
266 17.8 68.9 9.8 3.6 33.6  Flego and Zannoni (2012
267 25.1 41 16.3 17.8 24.7  Flego and Zannoni (012
268 27.1 50.2 15.8 7 31.35 Flego and Zannoni (2012)
269 9.6 30.5 40.1 20 12.7 Flego and Zannoni (2012)
270 7.1 22.3 38 32 13.3 Flego and Zannoni (2012)
271 15.6 45.7 19.3 19.4 21.1 Flego and ZannoniLZp0
272 47.9 29.2 18 6 40.7  Flego and Zannoni (2012)
273 43.4 35.8 14.5 6.8 35.7 Flego and Zannoni 2p01
274 50.4 31.6 15.8 3.2 42.9  Flego and Zannoni 401
275 31.3 44.6 18.9 5.5 33.7 Flego and Zannoni (2012)
276 62.2 27.3 7.3 3.7 44.1  Flego and Zannoni (2012)
277 57.9 35.1 4.9 24 43.8 Flego and Zannoni (2012)
278 46.4 30.5 19.4 4.4 32.2  Flego and Zannoni 4201
279 28.1 50.3 16.8 5 29.4  Flego and Zannoni (2012)
280 49.1 31.7 17.6 2.3 26.% Flego and Zannoni Zp01
281 15.2 334 35.1 16.3 10.9 Flego and ZannoniLZp0
282 65.13 16.86 4.13 13.88 38 Guietal. (2010)

183




283 | 34.22 3882 | 1996  6.58 18.8d(42%51?;ar9ar and Ashrafizadeh
284 18.8 51.9 14.6 14.3 10 Poindexter and Mars@qp0
285 10.7 57.4 24.1 7.9 10.5 Poindexter and Mar8@qp
286 14.6 53.1 25 8.3 11.1] Poindexter and Marsh (2009
287 68.3 17.1 9.4 3.2 31.2 Abudu and Goual (2008)
288 43.21 35.3 16.68 4.99 22.4  Rogel et al. (2003)

289 45.31 33.29 17.5% 3.85 22.2 Rogel et al. (2003)

290 49.43 37.62 8.61 4.43 25.7  Rogel et al. (2003)

291 49.68 37.78 9.28 3.34 26.8 Rogel et al. (2003)

292 48.61 34.35 11.65 5.38 22.8 Rogel et al. (2003)

293 48.83 37.4 9.51 4.26 25.6 Rogel et al. (2003)

294 54.54 35.35 8.23 1.87 25 Rogel et al. (2003)

295 5541 36.77 6.89 0.94 26.3 Rogel et al. (2003)

296 49.41 38.23 | 10.44 1.92 270 Rogel et al. (2003)

297 39.62 38.71 16.88 4.93 18.83 Rogel et al. (2003)

298 42.64 36.35 12.96 7.74 2471 Rogel et al. (2003)

299 49.53 41.33 2.54 6.15 26.. Rogel et al. (2003)

300 51.79 29.93 15.88 2.46 26./ Rogel et al. (2003)

301 54.73 3041 | 12.78 2.08 251 Rogel et al. (2003)

302 32.45 41.5 21.12 4.93 16.3 Rogel et al. (2003)

303 26.13 45.3 22.57 6.01 14 Rogel et al. (2003)

304 47.4 21.7 255 5.4 22.8 Cunha et al. (2008)

305 51.2 24.2 23.1 15 26.6  Khalil de Oliveirale(2012)
306 54.5 23 22 0.5 27.4  Khalil de Oliveira et aD12)
307 57.1 245 18 0.4 27.8 Khalil de Oliveira et(2012)
308 53.8 22 23.7 0.5 28.3  Khalil de Oliveira et(2012)
309 57.7 24.2 17.4 0.7 28.8§ Khalil de Oliveira et aD12)
310 52.7 33.6 12.6 11 29 Khalil de Oliveira et al. 12D
311 56.6 244 19 0.5 29.5 Khalil de Oliveira et(2012)
312 61.3 24.7 13.9 0.5 30.6  Khalil de Oliveirale(2012)
313 57.2 26.2 14.7 2 31.1 Khalil de Oliveira et(2012)
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314 66.7 20.1 12.8 0.4 33.9  Khalil de Oliveirale(2012)
315 11.7 32 41.6 14.7 7.5 Angle and Hua (2011)
316 14.1 37.3 37.2 114 9 Poteau et al. (2005)
317 15 38 35 12 8 Acevedo et al. (2004)
318 17 44 30 10 14 Acevedo et al. (2004)
319 42 34 18 7 21 Acevedo et al. (2004)
320 41 45 12 2 21 Acevedo et al. (2004)
321 40.3 29 19.2 9.5 15.9 Maninpey et al. (2010)
322 12 37 33 17 9 Dalmazzone et al. (2012)
323 52.9 29.7 13.2 4 29.20 Panuganti et al. (2011)
324 66.26 25.59 5.35 2.8 41.6 Panuganti et al. (2011)
325 19 25 43 13 9 Marcano et al. (2011)
326 12 36 38 14 10.3] Marcano et al. (2011)
327 55 28 13 4 23.7| Marcano et al. (2011)
328 19 28 42 11 8 Marcano et al. (2011)
329 60 14 24 2 24.3| Marcano et al. (2011)
330 52 26 16 6 30.3] Marcano et al. (2011)
331 32.3 38.25 21.6 6.04 18.36 Khansari et al. 2201
332 20 43 27 10 12.9| Linan et al. (2010)

333 17 41 29 13 11.6/ Linan et al. (2010)

334 19 42 28 11 12.9| Linan et al. (2010)

335 61 20 19 0.59 27 Ferno et al. (2010)

336 25 33 29 13 9 Ocanto et al. (2009)
337 30 26 32 12 15 Ocanto et al. (2009)
338 10 23 48 19 8 Ocanto et al. (2009)
339 25 28 35 11 15 Ocanto et al. (2009)
340 11 19 57 13 8 Ocanto et al. (2009)
341 25 24 36 15 20 Ocanto et al. (2009)
342 21 27 37 15 21 Ocanto et al. (2009)
343 35 33 28 4 28 Ocanto et al. (2009)
344 44 25 21 10 20 Ocanto et al. (2009)
345 22 30 44 4 21 Ocanto et al. (2009)
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)

346 35 24 32 9 21 Ocanto et al. (2009)

347 40.41 42.06 12.21 5.32 27.6  Juyal et al. (2012)

348 59.56 32.76 6.95 0.73 35| Juyal et al. (2012)

349 57.4 30.8 104 14 32 Gonzalez et al. (2005)
350 55.8 23.9 17.5 2.7 30 Kraiwattanawong et &I092
351 59.6 26.5 10.1 3.8 30 Kraiwattanawong et &1092
352 49.5 28.4 12.4 9.7 27 Kraiwattanawong et al. (200¢
353 45.3 26.8 24.9 3.1 22.4 Rocha et al. (2013)

354 52 30 12 6 26 | Juyal et al. (2009)

355 30.1 42.1 13.36 13.5 29.17 Kord et al. (2012)

356 32.61 43.48 7.61 16.3 20.29 Jafari Behbahaali €2012)
357 22.6 33.6 32.9 10.8 8.1 Cinar et al. (2011)

358 44.65 34.55 17.9 2.86 29.83 Mendoza de la Grak €009)
359 44.14 40.13 12.79 2.94 32.03 Gonzalez et@0qR

360 33 14 51 0 16.2|  Abivin and Taylor (2012)
361 29 26 39 7 10.2] Abivin and Taylor (2012)
362 28 29 37 6 10.7| Abivin and Taylor (2012)
363 29 19 35 17 13.2| Abivin and Taylor (2012)
364 22 24 45 10 7.4 | Abivin and Taylor (2012)
365 33 22 40 13.5| Abivin and Taylor (2012)
366 38 20 37 15.6| Abivin and Taylor (2012)
367 45 18 26 11 11.4f  Abivin and Taylor (2012)
368 29 23 32 15 10.6| Abivin and Taylor (2012)
369 34 24 27 13 15.5/  Abivin and Taylor (2012)
370 22 20 48 11 9 Abivin and Taylor (2012)
371 32 24 34 9 11.4)  Abivin and Taylor (2012)
372 54.8 23.57 21.21 0.41 35.3 Mena-Cervantes et@L1(R
373 10.9 61.5 18.1 9.5 6 Chang et al. (2003)

374 8.3 35.6 45.4 10.7 5.9 Chang et al. (2003)

375 12.4 45.1 35.9 4.7 9.11 Marques et al. (2011)
376 23 21.1 38.8 171 10.5 Angle et al. (2005)

377 21 19 44 16 11 Angle et al. (2005)
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378 16.1 48.5 16.8 18.6 6.4 Fadaei et al. (2011)

379 58.4 26.2 14.61 0.79 29.9 Pacheco et al. (2011)

380 30.27 45.05 18.7 5.99 11.42 Longetal. (2011)

381 6.1 60.3 23.5 10.1 6.1 Fathi and Pereira-Almao 120[L
382 9.4 63.1 13.3 14.1 6.7 Fathi and Pereira-Al(@28d 1)
383 9.2 62.8 13.7 14.2 6.5 Fathi and Pereira-Al(28d 1)
384 9.4 61.9 13.6 15.1 6.9 Fathi and Pereira-Almao 120[L
385 9.3 62.6 14.1 13.9 6.9 Fathi and Pereira-Al(28d 1)
386 9.8 64.6 12.5 13.2 7.2 Fathi and Pereira-Almao 120[L
387 9.2 64.3 12.2 14.3 7.1 Fathi and Pereira-Al(@28d 1)
388 10.3 66.4 104 12.9 7.3 Fathi and Pereira-Al(28d1)
389 9.8 65.6 11.2 13.3 7.2 Fathi and Pereira-Al(@28d 1)
390 30.2 24.8 40.1 3.6 13.5 Bukka et al. (1992)

391 27.91 60.64 6.35 5.3 12.89 Bahzad et al. (2010)

392 20.35 62.92 6.88 9.85 9.58 Bahzad et al. (2010)

393 16.3 39.8 26.4 17.5 8.03 Peramanu et al. (2001)

394 194 38.1 26.7 15.8 10.7 Peramanu et al. (2001)

395 231 41.7 204 14.8 12.5 Peramanu et al. (2001)

396 20.8 41.1 22.1 16 11.1 Peramanu et al. (2001)

397 36.9 37.9 194 5.8 22.4 Leon et al. (2002)

398 32.3 42.2 19.8 5.8 18.3 Leon et al. (2002)

399 43.6 35.5 14.3 6.6 22.8 Leon et al. (2002)

400 44.3 38.9 11.6 5.2 25.§ Leon et al. (2002)

401 45.6 34.2 17 3.2 25 Leon et al. (2002)

402 51.9 38.9 8.1 1.1 26.3 Leon et al. (2002)

403 68.3 11.6 18.8 1.3 39 Mohammadi et al. (2012)
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Chapter 7

The Removal of Arsenite [As(lI)] and Arsenate [AsY)] lons from
Wastewater Using TFA and TAFA Resins: Computational
Intelligence Based Reaction Modeling and Optimizadin

ABSTRACT

Being significantly toxic, removal of arsenic fornas important
ingredient of the drinking- and waste-water treatmeTannin is a
polyphenol-rich substrate that adsorptively bindsthe multivalent
metal ions. In this study, tannin-formaldehy(iEBFA) and tannin-
aniline-formaldehyd€TAFA) resins were synthesized and successfully
used for an adsorptive removal of arsenji&glll)] and arsenate
[A9V)] ions from the contaminated water. Next, a computat
intelligence(Cl) based hybrid strategy was used to model and aptimi
the resin-based adsorption of (R5) and AgV) ions for securing
optimal reaction conditions. This strategy firsteasan exclusively
reaction data driven modeling method, namely, germabgramming
(GP) to predict the exten®o) of Aglll)/AYV) adsorbed on TFA and
TAFA resins. Next, the input space of the GP-baseodels
representing reaction condition variables/paramstevas optimized
using genetic algorithriGA) method; the objective of this optimization
was to maximize the adsorption of(ll9 and AgV) ions on the two
resins. Finally, the sets of optimal reaction cdiugis given by GP-GA
hybrid modeling-optimization method were verifiexperimentally,
which indicate that the optimized conditions hagadl to 0.3% and
1.3% increase in the adsorption of (As) and AgV) ions on TFA
resin. More significantly, the optimized conditidmsve increased the
adsorption of AGll) and A¢V) on TAFA resin by 3.02% and 12.77%,
respectively. The GP-GA based strategy introducede hcan be
gainfully utilized for modeling and optimization eimilar type of

contaminant-removal processes.
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7.1 INTRODUCTION

Presence of toxic materials is a serious problejuireg an effective solution
during the management and treatment of water arstiewater. Globally, one of the
most toxic metals, namely, arsenic forms a comnamaminant of the ground water,
which is an important source of the drinking wafeg et al., 2003). Depending upon
arsenic’s oxidation state, its toxicity varies siigantly. In the non-processed natural
drinking water, it is mostly found as arsenite [W3| and arsenate [As(V)] (Kandu
and Gupta, 2006). Among these, As(lll) is sixtygsrmore toxic than As(V) (Kandu
et al., 2004). According to World Health Organirati(WHO), and United States’
Environment Protection Agency (USEPA), the maximalhowed concentration of
arsenic in the drinking water is 0.01 mg/L (WHOQP20USEPA, 1999). However, in
most regions of the world arsenic concentrationeegs that limit by many folds.
Mohan and Pittman (2007) have critically reviewedhoval of arsenic from water
and wastewater using various adsorbents.

Tannins, which are available widely, can be effectagents for the water
treatment in developing countries. These occuradtumre as a biomass containing
multiple hydroxyl groups and exhibiting a speci#iffinity towards metal ions. Thus,
tannins are potentially effective and efficient adbents for the recovery of metal
ions. Their disadvantage, however, is that beingemsoluble; they can get easily
leached by water when used directly as an adsofbetite recovery of metals from
the aqueous systems. A number of attempts involwmygobilization of tannins has
been made to overcome the drawback alluded to athise et al., 2004). Makeswari
et al. (2014) synthesized a novel tannin gel adsuriirom the leaves dRicinus
Communisfor removing chromium(VI) ions. A bio-adsorbentorin the tannin
immobilized collagen/cellulose has been synthestaedhang et al. (2015) for the
adsorption of lead(ll). Shirato and Kamei (1994yénpatented synthesis of insoluble
tannin; it is prepared by dissolving a hydrolysatalenin powder in aqueous ammonia
and the resulting mixture is treated with a fornefilgle solution to form a
precipitate. This is then subjected to the treatnoéra mineral acid. The resulting
polymer is used for the processing of waste liq@dd recovery of heavy metals. A
method for the preparation of an insoluble tanmdsoabent and the adsorption of
nuclear fuel material, and iron ions thereof, h&® deen patented (Shirato and
Kamei, 1994).
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In an earlier study, Mulani et al. (2014) synthediand characterized tannin-
formaldehyde and tannin-aniline-formaldehyde resitlBey also studied the
adsorption kinetics of arsenic using the said tesins. Specifically, Mulani et al.
(2014) investigated the effect of influential pasters such as pH and contact time
on the kinetics of arsenic adsorption and desampfithe objective of the present
study is twofold: (a) development of models pradirtthe extent of As(l11)/As(V)
adsorption on the tannin-formaldehyde (TFA) andntaaniline-formaldehyde
(TAFA) resins, and (b) obtaining the optimal resimmposition and reaction pH
magnitudes leading to maximum adsorption of theedtenetalloid ions.

In order to optimize the resin-based As(llIl)/As(v@moval reactions and
thereby obtain the conditions resulting in the maxn adsorption of As(lll) and
As(V) ions, it is necessary to develop the respeateaction models. There exist two
principal methods, namelphenomenologicaindempirical for modeling the stated
adsorption reactions. Both these approaches posggsicant difficulties, which are
detailed in Chapter 1 (section 1.3). The difficedti encountered in the
phenomenological and empirical (essentially regoesbased) reaction modeling

requires exploration of alternative nonlinear reactmodeling strategies.

Artificial neural networks (ANNSs) (see, for examplBishop, 1994; Zurada,
1992; Tambe et al., 1996) and support vector regregSVR) (Vapnik, 1995; Zaid,
2012) are computational intelligence (Cl) basedlwesively data-driven nonlinear
modeling formalisms; these have been used widaali@rnatives to the regression
based modeling. In addition to ANNs and SVR, theldfi of computational
intelligence comprises a novel data-driven modelstgategy, namely genetic
programming (GP). There exist a number of studreshemistry and chemical
engineering wherein the GP-based symbolic regnesk@ms been employed for
developing data-driven predictive models (seegf@mmple, Patil- Shinde et al.,2014;
Goel et al.,2015; Pandey et al.,2015; Ko¢ and Ki5; Bahrami et al.,2016). It
possesses several attractive characteristics, veneclexplained in Chapter 2 (section
2.2.2) as also by Vyas et al., 2015 and Verma.eP@l6. Due to its several attractive
characteristics, in this study, GP has been emglofpest to develop models
predicting the extent of As(lll) and As(V) adsomgation the tannin-formaldehyde and

tannin-aniline-formaldehyde resins. Next, the inppaice of the GP-based models
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consisting of molar composition of the resin anact®on pH was optimized using the
GA formalism with a view to maximize the extentAs(111)/As(V) adsorption by the
resins. A detailed description of GA formalism (lold, 1975; Goldberg, 1989; Deb,
1995) has been provided in Chapter 2, section 2ld.fhe past, the GP-GA hybrid
modeling-optimization strategy alluded to above Hasen employed in the
optimization of glucose to gluconic acid fermerdatiCheema et al., 2002). There
also exist studies in chemical engineering/techmplowherein two other Cl-based
strategies namely ANNs and SVR are individually bomad with the GA
optimization method to formulate ANN-GA (Nandi dt, 2001; Huang et al.,2003;
Rao et al.,2009) and SVR-GA (Nandi et al.,2004; ¥/al.,2009) hybrid modeling-

optimization strategies, respectively.

In the present investigation, following four casedses have been performed
using the hybrid GP-GA strategy.
» Case study I: Modeling and optimization of adsamptf As(lll) on TFA resin
» Case study II: Modeling and optimization of adsmpiof As(V) on TFA resin
e Case study lll: Modeling and optimization of adsmp of As(lll) on TAFA
resin

» Case study IV: Modeling and optimization of adsmpiof As(V) on TAFA resin

The inputs and outputs pertaining to the fourlfaBed models developed in
this study are given in Table 7.1. In case stubax Il, experiments were conducted
at a fixed tannin concentration and, therefores itot considered as a model input. In
case study lll, tannin and aniline concentratiores ot included as model inputs
since experiments were conducted at fixed tannthaamline concentrations (Mulani
et al., 2014). In all the four case studies, sdveess of GA-optimized reaction
conditions that were expected to result in the owpd adsorption of As(lll)/As(V)
ions, were obtained. The overall best sets of ¢mmdi obtained thereby were
subjected to experimental verification. Resultsto$ experimentation indicate that
the optimized reaction conditions have indeed semeé in improving the extent of

As(l11)/As(V) adsorption on the TFA and TAFA resins
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Table 7.1: Inputs and the output of four GP-based models

Model inputs (reaction operating Model output (extent of
Model . .

variables/parameters) adsorption)

| Moles of formaldehydex{) and ammonia| Adsorption (%) ¥) of As(lII)
(x2), and reactiorpH (x3) on TFA resin
Moles of formaldehydex{) and ammonia| Adsorption (%) ¥) of As(V) on

Il . .
(x2), and reactiompH (X3) TFA resin

" Moles of formaldehydex{) and ammonia| Adsorption (%) ¥) of As(llI)
(x2), and reactiorpH (X3) on TAFA resin

IV Moles of tanninX;), aniline(x;) and Adsorption (%) Y) of As(V) on
formaldehydgxs), and reactiompH (X4) TAFA resin

This chapter is organized as follows. The detaifisresin preparation and
characterization as also the resin-based As(lll)d aAs(V) adsorption
experimentation, are provided in the “ Materialsl anethods ” (section 7.2). Next,
the “Results and Discussion” (section 7.3) firstsatbes the outcome of the
adsorption experiments, which is followed by thesantation of the results and
discussion pertaining to the four modeling-optinima case studies (section 7.3.2).
Section 7.3.3 provides results of the experimevaitiation of the overall optimum
reaction conditions yielded by the GP-GA hybridattgy. Finally, “Concluding

Remarks” (section 7.4) summarize the principalifigd of the study.

7.2 MATERIALS AND METHODS

Tannic acid (LOBA CHEMIE, Mumbai, India), anilinmmonia (25 wt%
solution, MERCK, India), formaldehyde (37 wt% sabmt, QUALIGENS, India),
sodium As(lll), and sodium arsenate (LOBA CHEMIEuiMbai, India) were used

without further purification and distillation.

7.2.1 Preparation of Tannin-Formaldehyde (TFA) Resin

The composition of various synthesized tannin-fddelayde monomer resins is
presented in Table 7.2. Here, 10-50 mL of 37% fédetayde solution was added to
4g of commercial tannin powder and the resultanttumeé was stirred for five
minutes to ensure a uniform mixing. Depending am diesired composition, 20—40
mL ammonia solution (25 wt%) was added to the aistaged mixture with

continuous stirring, and the brown precipitate fedhhereby was kept at an ambient
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temperature (Z&) for fifteen days. This precipitate was neutrdizwith 10.8 N
hydrochloric acid solutions and the resultant piaie was filtered through
Whatman no.2 filter paper and treated with 1.2 Mirbghloric acid for making it
insoluble in the acidic and basic media. It washier washed with de-ionized water

and dried at 8T to obtain an insoluble solid tannin resin.

Table 7.2: Monomer composition of tannin-formaldehyde (TFASins

Resin. Tannin (g) | Formaldehyde (mLAmmonia (mL)
TFA 01 4.0 50 40
TFA 02 4.0 40 40
TFA 03 4.0 30 40
TFA 04 4.0 20 40
TFA 05 4.0 10 40
TFA 06 4.0 50 20
TFA 07 4.0 40 20
TFA 08 4.0 30 20
TFA 09 4.0 20 20
TFA 10 4.0 10 20

7.2.2 Preparation of Tannin-Aniline-Formaldehyde (TAFA) Resin

The procedure for the TFA synthesis was repeat@deipare the tannin-aniline-
formaldehyde (TAFA) resins except that tannin wadiglly substituted with aniline.
Three sets of TAFA resins were prepared using thied procedure by varying the

tannin: aniline ratio as listed in Tables 7.3 =7.5

Table 7.3: Monomer composition of tannin-aniline-formaldehydesins [tannin:
aniline ratio 3:1 (w/w)]

Resin Tannin (g) Aniline (g) | Formaldehyde (mL) Ammonia (mL)
TAFA 01 3.0 1.0 50 40
TAFA 02 3.0 1.0 40 40
TAFA 03 3.0 1.0 30 40
TAFA 04 3.0 1.0 20 40
TAFA 05 3.0 1.0 10 40
TAFA 06 3.0 1.0 50 20
TAFA 07 3.0 1.0 40 20
TAFA 08 3.0 1.0 30 20
TAFA 09 3.0 1.0 20 20
TAFA 10 3.0 1.0 10 20
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Table 7.4: Monomer composition of tannin-aniline-formaldehydesins [tannin:
aniline ratio 2:2 (w/w)]

Resin Tannin (g) Aniline (g) | Formaldehyde (mL) Ammonia (mL)
TAFA 01 2.0 2.0 50 40
TAFA 02 2.0 2.0 40 40
TAFA 03 2.0 2.0 30 40
TAFA 04 2.0 2.0 20 40
TAFA 05 2.0 2.0 10 40

Table 7.5: Monomer composition of tannin-aniline-formaldehydesins [tannin:
aniline ratio 1:3 (w/w)]

Resin No.| Tannin (g) Aniline (g) | Formaldehyde (mL) Ammonia (mL)
TAFA 06 1.0 3.0 50 40
TAFA 07 1.0 3.0 40 40
TAFA 08 1.0 3.0 30 40
TAFA 09 1.0 3.0 20 40
TAFA 10 1.0 3.0 10 40

7.2.3 As(lll)/As(V) adsorption on TFA and TAFA resins

Arsenic standards for [As(Ill)] and [As(V)] weregpared from NaA3, and
Na,HAsO,.7H,O [Loba Chemie Pvt, Ltd, Mumbai, India], respeciyvéhe As(lll)
and As(V) stock solutions were prepared by dissgiii73.30 mg of sodium arsenite
and 450 mg of sodium arsenate, respectively in &0 distilled water. The
intermediate and secondary standards of arsenitiaw were prepared freshly for
each experiment. The working solutions containirgeraic were prepared by
dissolving an appropriate amount of arsenic froen stock solutions in de-ionized
water. The efficiency of TFA and TAFA resins in r@nng As(lll) and As(V) was
studied at different pH magnitudes ranging betw2and 10.

7.2.4 Adsorption Measurements
The experiments pertaining to the adsorption oflA&&s(V) ions on TFA and

TAFA resins were performed in a batch mode. Theermxtof adsorption of
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As(ll1)/As(V) was measured as a function of timedgyH under vigorous agitation.

Max-uptake capacity of As(lll) and As (V) is mg/grhresin.

Analytical method The residual arsenic in a water sample was detednirsing
the molybdenum blue method (Johnson and Pilsor?)1%7was utilized to estimate
the individual concentrations of As(lll) and As(W) the treated water samples to
assess the efficiency of the oxidation step andemgirent adsorption-based removal
of arsenic. Spectrophotometric measurements weferpeed at 865 nm wavelength
using an absorbance cell of 1 cm path length ferdetermination of arsenic. The
calibration curves for the total arsenic were pregausing solutions containing
As(lll) and As(V).

Molybdenum blue methadThis method allows for the routine analysis of INB(
and As(V) by the spectroscopic measurement of srsealybdenum complexes.
Since water used in the experiment contained noegtigible amount of phosphate,
the method was modified for the determination ofilysand As(V) only (Johnson
and Pilson, 1972). This method requires a mixedj@egs which was prepared as

given below.

Preparation of mixed reageniMix thoroughly a solution of 25 mL of 5N sulfuric
acid and 7.5 mL of 0.032 M ammonium molybdate; tdd 15 mL of 0.1 M ascorbic
acid solution (freshly prepared) followed by thedi@dn of 2.5 mL of 0.0082 M
potassium antimony tartrate solution with a tholougxing post each addition. This
reagent was prepared freshly each time.

The mixed reagent when added to an untreated &lmfua sample containing
As(V) ions, produces blue color due to the formaind arsenomolybdate complex. It
may, however, be noted that As(lll) does not fonm $aid complex. Accordingly, the
intensity of the color formed and, hence, the dimoce of the untreated aliquot are
proportional to the concentration of As(V) presdsdr converting As(lll) to As(V),
potassium iodate was used as an oxidizing agenss ffte absorbance of an oxidized
aliquot of the sample is proportional to the tatahcentration of arsenic (i.e., As(lll)
+ As(V)). The concentration of As(lll) is then calated as the difference between
the concentration of total arsenic (As(lll) + As){\and that of the As(V).

Two sets of solutions respectively containing A3(Hnd As(V) ions in the

concentration range of 1-15 mg/L were prepared ftloer standard solutions. One
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set was used for the oxidation treatment of thelBsgliquots while the other set
formed solutions of the untreated As(V). One mllaf hydrochloric acid and 1 mL
of 0.017 M potassium iodate were added successivebxidize each of the aliquots
containing As(lll) with a thorough mixing after da@ddition. Ten minutes were
allowed for the oxidation of As(lll) to As(V) andhereafter, 4 mL of the mixed
reagent was added to each of the treated (oxidiaed)untreated aliquots with a
thorough mixing. After two hours, a blue coloredaric-molybdenum complex was
formed. The amount of complex formed is directlyopwrtional to the arsenic
concentration, which was determined as a functicdheabsorbance measured at 865
nm wave-length with a UV spectrophotometer. Blaakples were run twice using

the above-described procedure along with the sanple

7.3 RESULTS AND DISCUSSION
7.3.1 Experimental

Effect of pH. The waste water containing metal ions is acidic nature.
Accordingly, the effect of pH on the adsorptionAd(lll) and As(V) on TFA and
TAFA resins was studied in the pH range of 2-10e Malues of the reaction
operating variables and the corresponding magrstuafethe adsorption (%) of
As(lll) and As(V) ions on the TFA and TAFA resingdisted in Appendix 7. A. It is
observed that at lower pH values, the phenolic gre®H) of the TFA resin gets
protonated to higher extent, which results in @rgjr repulsion to the positively
charged arsenic ion in the solution; such a stmais not favorable for As(lII)
removal (Mohan and Pittman, 2007; Dutré and Vanrsteete, 1998; Dambies et al.,
2002; Arai et al., 2005; Pena et al., 2006). Haveis(V) ions were best adsorbed
on TFA resin in the pH range of 3-5. It can thusriferred that in this pH range the
metal anions follow the anion exchange mechanisin arcordingly, get adsorbed by
releasing protons from the phenol©H groups of tannin (Onyango et al., 2003;
Zhang et al., 2007). The experimental results alsow that an increase in the pH
magnitude does not result in a significant changethe adsorption (%) of
As(ll1)/As(V) ions. This may be due to the hydroxgtoup not being abundantly

present on the surface of TFA and TAFA resins.

Comparison with other AdsorbentsTFA and TAFA resins exhibit higher

adsorption capacity for As (lll) and As(V) ions cpaned to the adsorbents prepared
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from the waste rice husk (Amin et al., 2006). Is H®een also found that TFA and
TAFA resins possess lower adsorption capacity fefVA ions when compared with
that of, for example, ferrihydride, mesoporous ahanand amorphous aluminum
hydroxide (Anderson et al., 1976; Thirunavukkaragial., 2001; Kim et al., 2004).

7.3.2 GP-Based Adsorption Reaction Modeling and GMBased
Optimization of the Reaction Conditions

Pre-Processing of Adsorption Data

The experimental data reported in Appendix 7. &rtganing to the adsorption
of As(lll) and As(V) ions on TFA and TAFA resins meeused to develop four GP-
based models described below in case studieslll, ihnd IV, respectively. From the
data, it is seen that there exists an order of madm difference between some of the
reaction condition variables and, therefore, pr@eessing of the input and output
data was carried out through a normalization schéie normalized input variables
were obtained as follows:

. J_%
~f X XiL - .
xl - o_x. y J - 1, 2, e ,Np,

14

i=1,2,..l (7.1)

where, N, represents the number of patterns in the exansite et §, = 40 in all
four case studies); refers to the dimensionality of the input spate= (3 for case

studies | to Il and = 4 for case study IV@L‘ represents thé™ un-normalized input

J

variable of jt pattern;x; denotes the normal score (standardized variakltaiping

to thei™ input variable of thg'™® pattern/vector, ang; anday,, respectively refer to

the mean and standard deviation values ofthénput variable. Similar to the model

inputs, the outputs in all the four case studiesew®rmalized as follows:

yl-y
Oy

y) = ;=12 Ny (7.2)
where, §/, denotes the normal score (standardized varigi@eiaining to thejt™
output patterny’ refers to thg™ output value, ang and gy, respectively refer to
the mean and the standard deviation of Mjenumber of outputs. The mean and

standard deviation values used in the above-degtnimrmalization procedure are
listed in Table 7.6.
For developing GP-based models possessing goodcioedaccuracy and

generalization ability, each of the four experinamiata sets, listed in Appendix 7.A

210



(Tables 7.A.1- 7.A.4) was split randomly in 75:28i0 into training (30 patterns) and
test (10 patterns) sets. The training set was tmedeveloping a GP-based model
while the test set data was used in testing thergémation ability of the trained

model. In Appendix 7.A (Tables 7.A.1- 7.A.4), tlest set data are marked using “*”

symbol.

Table 7.6: Mean and standard deviation magnitudes in resgenputs {x;} and the
output {y} of four GP-based models

Model inputs Model output
Case
Study Mean Standard deviation|  Mean (%) de\S/itZSC()jr?r(?’ %)
x; = 0.323 moles, | 0x,= 0.164 moles,
| | %, =0.477 moles, | o,, = 0.144moles, |y =74.925 | g,= 16.057
X3 =5.6 0y, =3.045
%,= 0.323 moles, | 0x,= 0.164 moles,
Il X,=0.477 moles, oy, = 0.144 moles, y =86.572| 0,=15.728
%3= 6.6 0y, = 3.112
%; = 0.351 moles, | 0x,= 0.182 moles,
| %, =0.433 moles, |oy, =0.148 moles, |y =74.585|0,=11.141
xX3= 9.7 Oy, = 2.96
x;=0.000881 o,,= 0.000298 moles,
moles,x, = 0.027 | g, =0.00542 moles,
IV | moles, 0y,=0.179 moles, | Y= 71.684 | 0,=7.348
x3 =0.366 moles, o,,= 3.097
%, =7

GP-based Modeling

A detailed description of GP (Koza, 1992) formalissngiven in Chapter 2
(section 2.2.2). The GP-based models were develays#ug Eureqga Formulize
software package (Schmidt and Lipson, 2009) thatbeen optimized to construct
parsimonious (i.e. with lower complexity) expres&@ossessing good generalization
ability. This software offers to its users a numbgpptions for preprocessing of the
example input-output data and generation of cameligalutions. In all the case
studies, these options were rigorously and sysieatigtexplored with the objective
of securing models possessing high As(lll)/As(V3@gbtion prediction accuracy and
generalization capability. A set containing fivestzaarithmetic operators, namely,

addition subtraction multiplication, division, and exponentiationwas used in the
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generation of candidate expressions. To secure/arralb optimal data-fitting model,
the GP procedure was repeated numerous times byownyp different seed
expressions and random number generator seed vatueach repeated run, the GP
algorithm searched a different mathematical expoasd he prediction accuracy and
the generalization performance of a GP-based mudal evaluated in terms of
coefficient of correlation(CC) androot mean squared erro(RMSE between the
experimental (target) and the corresponding modsadhipted values of the adsorption
(%) of As(ll)/As(V) ions on a particular resin. &be two statistical measures were
evaluated separately for the training and test sleti® The overall best GP-model was
selected on the basis of their high and comparatalgnitudes ofCC and low and

comparable values ®MSEin respect of both the training and test set data.

Case Study-lI GP-based Modeling and GA-based Optimization of éwidion
of Aqlll ) on TFA Resin

The input space of the GP-based model-1 consisthirek reaction operating
variables, viz. molar concentrations of formaldehyd,) and ammoniax;), and
solution pH §3). The training and test data sets used in cortgiguthis model are
listed in Appendix 7.A (Table 7.A.1). The overaddh GP-based modeEP_Model-
I) relating the three normalized inpui,(x, andx;) to the output®) predicting the

normalized value of the adsorption (%) of As(llf) the TFA resin is given as:

$=0.6714 f1+1.05+1_0523f6f;‘39:51£1+£§_£2 -0.276%2%,- 0.6152 (7.3)
The predictions oGP_Model-lhave yielded high and comparable magnitudes
of the coefficient of correlation(CC, = 0.957; CCs = 0.949) and low and
comparable values of th@ot mean square erro(RMSE,., = 4.820; RMSE; =
4.265) in respect of both the training and tesdsed. It thus clearly suggests that the
model possesses reasonably good prediction accaratyeneralization capability.
The parity plot of the experimentsl values and those predicted by the GP-based
model-I (obtained by de-normalizing values) has been presented in Figure 7.1. In
this plot, it is noticed that there exists a goodtech between the experimental and

model-predicted values of the adsorption (%) ofiljs¢n the TFA resin.
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Figure 7.1: Parity plot of experimental versus GP-model preictalues of
adsorption of As(lll) on TFA resin (%Y.

Having obtained the high performi®P_ Model-| its input space consisting

of the three reaction (decision) variablas— x;) was optimized by employing GA

formalism with the objective of maximizing the extef adsorption (%) of As(lll) on

TFA resin. This optimization was performed using hendelSolvg2016) software.

While performing the said optimization, followingalues of the GA-specific

parameters were used: population si¥g)(= 50, crossover rateRf.) = 1, mutation

rate R4 ,¢) = 0.03125 and maximum number of generatidfg,) = 100.

Using these parameter values several GA replicat® run by employing

different random number generator seeds. The tmethets of optimized reaction

operating variables obtained thereby are listeGaible 7.7.

Table 7.7: Optimized reaction variables given by GP-GA hybnéthod for case

study |

Optimized reaction variables GA- Experimentall
Optimal _ maximized f)/alidated y

solution| formaldehyde; ammonia oH As(Il) As(ll)
set moles moles opty | adsorption (%) _ i o
(%% (P (x37) adsorption (%)

1. 0.615 0.343 2.876 99.46 99.6

0.544 0.577 4.997 91.52 91.2

3. 0.615 0.432 2.697 91.70 90.9
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Case Study I GP-based Modeling and GA- based Optimization of
Adsorption of A¢V) on TFA Resin

The input space of the GP-based model-1l congithe same three reaction
operating variables/parameters considered in dasg & However, the model output
describes adsorption (%) of As(V) on TFA resin. Trening and test set data used
in developing GP-based model-ll are given in AppendA (Table 7.A.2). By
implementing the GP procedure described in Chapt{eection 2.2.2), the following
best data-fitting expressioGP_Model-I) was obtained:

$= 1.686 £+ — 0.8981%3 — 0.1817 2,22 — 4.037%% — 0.1946 %5 + 0.8573  (7.4)

The CC magnitudes in respect of the predictions by Eqd)(Tor the training
and test set data af&,., = 0.969 and’C..= 0.962, respectively; the corresponding
RMSEmagnitudes ar& MSE,.,= 4.540 andRMSE; = 6.565. The high (low) and
comparable magnitudes of the training and tesCs&x (RMSES$ clearly suggest an
excellent prediction and generalization performabyeGP_Model-Il Figure 7.2
shows the parity plot of the experimental ver&B_Model-Il predicted magnitudes
of the adsorption (%)yf of As(V) on TFA resin. As can be noticed fromstipiot, the
model predicted As(V) adsorption values exhibit Bbse match with their
experimental counterparts; particularly in the oegwhereiny magnitudes are 70,
the match is excellent

The three inputs ofGP_Model-Il representing three reaction variables were
optimized to secure their optimal values leadingnaximization of the adsorption
(%) of As(V) on TFA resin. The GA-specific paranmstehat yielded the top three
sets of optimized reaction variables are: poputas@e (V,) = 55, crossover rate
(RA) = 1, mutation rateR4,:) = 0.03111 and maximum number of generations
(Ngen) = 110. Using these parameter values several G& were conducted using
each time a different value of the random numbe&egeor. Table 7.8 lists the top
three optimized sets of the reaction conditionsaioletd usingMendelSolveg(2016)
software. As can be seen, the best solution giwethé hybrid GP-GA method is
expected to result in the As(V) absorption of 99,8%hkich is 2.8% higher than the
maximum adsorption (%) of 97% obtained in experitaen
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Figure 7.2: Parity plot of experimental versus GP-model prexictalues of
adsorption of As(V) on TFA resin (%y)(

Table 7.8: Optimized reaction variables given by GP-GA hybmeéthod for case

study Il

_ Optimized reaction variables o _
Optimal formaldenvadd ammonia GA-maximized | Experimentally
solution y pH As(V) validated As(V)
set m?)lcets molizs (x2PY) | adsorption (%)| adsorption (%)
(") (2" >
1. 0.123 0.294 2.008 99.809 98.3
2. 0.253 0.294 6.144 93.345 92.9
3. 0.123 0.426 5.778 91.539 90.7

Case Study Il GP-based Modeling and GA- based Optimization of
Adsorption of A¢lll ) on TAFA Resin

The input space of the GP-based Model-Ill predgctime adsorption of As(lIl)
on TAFA resin contains three reaction operatingaldes, viz. molar concentrations
of formaldehyde X;) and ammoniax;), and solution pHx3). The training and test
set data used in developing this model are listeflppendix 7.A (Table 7.A.3). The
overall best modelGP_model-Il) obtained by using Eurega Formulize software is as

follows:

§ =%{ - 2.7209 £ - 0.1831 £Z + 0.3646 £,X7 - 0.4914 %5 - 0.2211 X; %5 + 1.3232
(7.5)
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The CC andRMSEmagnitudes in respect of the predictions made dpy(E5)
for the training and test set data @&,,, = 0.859,CC; = 0.868, RMSE,, = 6.374
and RMSE,; = 5.593. These values indicate tl@P_model-lll is endowed with
reasonably good prediction and generalization pexdoce. This observation is also
supported by the parity plot in Figure 7.3 depigtof the experimental versiaP_
Model-IIl predicted As(lIl) adsorptiory) values.
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Figure 7.3: Parity plot of experimental versus GP-model prexictalues of
adsorption of As(lll) on TAFA resin (%Y.

Towards obtaining the optimal conditions leadingneaximization of As(lll)
adsorption on TAFA resin, the input space of@f_Model-lllwas subjected to GA-
based optimization usiniglendelSolvg2016) software. The GA-specific parameters
that yielded the three overall best sets of op#thizeaction condition variables are:
population size ) = 50, crossover rateRf) = 1, mutation rateR4,.) = 0.03125
and maximum number of generationg f,) = 150. The top three GA-optimized sets
of optimized reaction conditions, which are expddie maximize the adsorption of
As(lll) on TAFA resin are listed in Table 7.9. Fraime tabulated values, it is seen
that the GA-searched best solution is capable grawing the extent of As(lll)
adsorption from 90.3% (best experimental As(llI3@gbtion value) to 94.07%.
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Table 7.9: Optimized reaction variables given by GP-GA hybméthod for case

study I
Optimal Optimized reaction variables | GA-maximized c _ I
Ptimal . maldehydd ammonia As(lll) xperimentally
solution moles moles pH adsorption (%) validated As(lll)
opt . o
set (xi,pt) (xgpt) (x37) adsorption (%)
1. 0.362 0.583 2.000 94.07 93.32
2. 0.615 0.586 3.001 90.59 89.73
3. 0.357 0.294 2.000 93.05 91.76

Case Study IV: GP-based Modeling and GA-based Opation of
Adsorption of A¢V) on TAFA Resin

In this case study, the input space of the GP-basedel-1V contains four
reaction operating variables, namely, molar comegéinhs of tannin x;), aniline
(x,), formaldehyde X;), and solution pHx,). The training and test set data used in
developing this model are listed in Appendix 7.Aalfle 7.A.4). The overall best
model GP_model-lY, predicting the extent (%) of [As(V)] adsorptiam TAFA

resin is as follows:

$ = 0.2459%2 - 0.2937%3+ 0.2450%, %5%, - £,%,%, + 0.4698%; -0.3624  (7.6)

The CC andRMSEmagnitudes in respect of the predictions by thazleh for
the training and test set data &&,,, = 0.969,CC,; = 0.976,RMSE,., = 2.406 and
RMSE.; = 4.289. These values clearly indicate te&®_model-IVpossesses very
good prediction and generalization performanceutédg/.4 shows the parity plot of
the experimental versuSP_ Model-IVpredicted magnitude of the As(V) adsorption
(y) on TAFA resin. A close match between the modeldmted As(V) adsorption
values and their experimental counterparts stromgigports the observation that
GP_Model-1Vis capable of reasonably accurate predictions,adsw possesses good

generalization capability.
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Figure 7.4: Parity plot of experimental versus GP-model predictalues of
adsorption of As(V) on TAFA resin (%y)

In order to maximize the extent of As(V) adsorptimm TAFA resin, the four
inputs of GP_Model-IVwere optimized usinyylendelSolvg2016) genetic algorithm
software. The GA-specific parameters that yielded three overall best sets of
optimized reaction condition variables are: popatasize (V4) = 60, crossover rate
(R4) = 1, mutation rateR4,:) = 0.03100 and maximum number of generations
(Ngen) = 105. The top three GA searched sets of optithimaction conditions
resulting in the maximized As(V) adsorption on TAF#sin value are listed in Table
7.10. From the tabulated values, it is seen that GA-searched best solution is
capable of enhancing As(V) adsorption from 84.738@s{ experimental As(V)
adsorption value) to 99.83%.

Table 7.10: Optimized reaction variables given by GP-GA hybmeéthod for case

study IV
Optimized reaction operating variables GA- Experimentally|
Optimal tannin | aniline | formaldehyde maximized| validated
solution y pH | As(V) As(V)
set moles | moles moles (x2P") | adsorption | adsorption (%)
X
() | ") | ™) ' )
1. 0.000587 0.022 0.615 2.00d 99.834 97.5
> 0.001175 0.032 0.615 2.003 93.892 92.2
3. 0.000588 0.022 0.615 4.013 88.232 86.7
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7.3.3 Experimental Validation of Optimized ReactionOperating Variables

In Tables 7.7-7.10, the overall best set of GAroed reaction conditions,
which is expected to result in the maximum adsomtf As(lll)/As(V) on TFA and
TAFA resins is listed first. In order to validatbet GA-optimized solutions, the
overall best solution in each case study was stdgeto experimental verification.
The magnitudes of the adsorption (%) of As(lll)/s(n TFA and TAFA resins
measured in the respective validation experimergsliated in the last column of
Tables 7.7-7.10. Here, it is seen that the expetally validated adsorption
magnitudes (99.6%, 98.3%, 93.32, 97.5%) are inoredde to close agreement with
the corresponding GA-maximized values of 99.46%89%%, 94.07, and 99.83%, in
case studies |, IlI, Ill, and IV, respectively. Fraime experimental data listed in
Appendix 7.A, it is observed that the best adsorptwalues obtained using non-
optimized reaction operating conditions in casaliswi [, II, Ill, and IV are 99.3%
(experiment numbers 3 and 13), 97% (experiment rust31 and 36), 90.3%
(experiment numbers 2 and 3), and 84.73% (expetim@mber 21), respectively. It
can thus be seen that the optimized solutions g@eaviby the GP-GA hybrid
modeling-optimization strategy have enhanced thergof As(lll)/As(V) adsorption
by 0.3%; 1.3%, 3.02, and 12.77% in case studiedV trespectively. In the absence
of a reaction model, a non-assisted manual inspecti the reaction data provides no
clues to the precise values of the optimized reaatbnditions that are necessary for
the maximization of adsorption of As(ll)/As(V) ofFA and TAFA resins. This
difficulty has been overcome by the usage of theG2Phybrid technique, which has
provided the optimized conditions leading to readd® to major improvements in
the extent of As(lll)/As(V) adsorption on TFA andHFA resins.

7.4 CONCLUSION

Arsenic is one of the most toxic metalloid and veften forms a contaminant
of the ground water globally. Since groundwaterars important source of the
drinking water removal of arsenic therein has gaimeportance while managing and
treating water and wastewater. Accordingly, thiadgt reports usage of tannin-
formaldehyde (TFA), and tannin-aniline-formaldehyd€AFA) resins for the
adsorptive removal of As(lll) and As(V) ions. Moke, the chapter presents results

of a study wherein a hybrid method (termed ‘GP-GAftegrating genetic
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programming (GP) and genetic algorithms (GA) hanbemployed for modeling and
optimization of the adsorptive removal of As(lII¥f&/) ions using TFA and TAFA

resins. The principal advantage of the GP-GA tepms is that modeling and
optimization can be performed exclusively from #usorption reaction data without
invoking the detailed knowledge of the physicochmahphenomena underlying the
reaction. Usage of the said hybrid formalism hasviged a number of sets of
optimized reaction conditions that are expecteth&ximize the adsorptive removal
of As(lll) and As(V) ions. The overall best of tleesptimized reaction conditions
when verified experimentally, have resulted in 0.8% 1.3% increases (over the
corresponding best non-optimized experiments) emTtRA-based adsorption (%) of
As(lll) and As(V) metal ions, respectively. Moregsificantly, improvements of

3.02% and 12.77% (over the respective best nomraged experiments) have been
witnessed in the adsorption of As(lll) and As(\@spectively on the TAFA resin due
to the application of GA-optimized reaction conuiits. The GP-GA based hybrid
modeling-optimization strategy presented here fobe tadsorptive removal of
As(lI/As(V) ions can be gainfully utilized for &¢hmodeling and optimization of

other contaminant removal processes.

NOMENCLATURE
I dimensionality of the input space
Ny population size in GA simulation
Ngen, maximum number of generations in GA evolution
Ny, number of patterns in the example data set
R4 crossover rate in GA procedure
R4, mutation rate in GA procedure
X; it" normalized input variable
X; mean values of thé" input variable

x°Pt  ith optimized decision variable.
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mean value of output variable
normal score (standardized variable) pertainindpég™ output pattern
standard deviation values of tH& input variable

standard deviation value of output variable
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APPENDIX 7.A

Table 7.A.1: Experimental data for As(lIl) adsorption on TFAire&ase study 1)

Expt. | Formaldehyde moles Ammonia moles| pH | As(lll) adsorption(%o)
No. (x1) (X2) (X3) v)
1 0.615 0.587 2 71.7
2 0.615 0.587 3 98.3
3 0.615 0.587 5 99.3
4* 0.615 0.587 8 87.9
5 0.615 0.587 10 80.0
6* 0.492 0.587 2 78.6
7 0.492 0.587 3 95.9
8 0.492 0.587 5 99.0
9 0.492 0.587 8 72.8
10* 0.492 0.587 10 76.2
11 0.369 0.587 2 73.5
12 0.369 0.587 3 99.0
13 0.369 0.587 5 99.3
14* 0.369 0.587 8 70.4
15 0.369 0.587 10 61.8
16 0.246 0.587 2 71.7
17 0.246 0.587 3 99.0
18* 0.246 0.587 5 99.0
19 0.246 0.587 8 76.2
20 0.246 0.587 10 65.9
21 0.123 0.587 2 56.9
22* 0.123 0.587 3 99.0
23 0.123 0.587 5 99.0
24 0.123 0.587 8 47.6
25 0.123 0.587 10 46.3
26* 0.369 0.294 2 71.4
27 0.369 0.294 3 66.9
28 0.369 0.294 5 73.8
29 0.369 0.294 8 74.2
30* 0.369 0.294 10 65.9
31 0.246 0.294 2 64.5
32* 0.246 0.294 3 65.5
33 0.246 0.294 5 55.2
34 0.246 0.294 8 62.8
35 0.246 0.294 10 55.6
36 0.123 0.294 2 61.1
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Table 7.A.1continued...

Expt. | Formaldehyde moles Ammonia moles| pH | As(lll) adsorption(%)
No. (X1) (X2) (%3) v)
37 0.123 0.294 3 70.4
38* 0.123 0.294 5 60.7
39 0.123 0.294 8 61.4
40 0.123 0.294 10 63.3
*test data
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Table 7.A.2: Experimental data for As(V) adsorption on TFA re&ase study 1)

Expt. | Formaldehyde moles Ammonia moles| pH | As(V) adsorption(%)
No. (X1) (%) (%3) v)
1* 0.615 0.587 2 83.4
2 0.615 0.587 4 86.1
3 0.615 0.587 8 85.6
4 0.615 0.587 9 83.9
5* 0.615 0.587 10 79.6
6 0.492 0.587 2 58.7
7 0.492 0.587 4 50.0
8 0.492 0.587 8 57.5
o* 0.492 0.587 9 50.3
10* 0.492 0.587 10 26.5
11 0.369 0.587 2 95.3
12* 0.369 0.587 4 92.4
13 0.369 0.587 8 93.2
14 0.369 0.587 9 90.2
15 0.369 0.587 10 89.5
16 0.246 0.587 2 93.6
17* 0.246 0.587 4 94.1
18 0.246 0.587 8 95.3
19 0.246 0.587 9 92.9
20 0.246 0.587 10 91.9
21* 0.123 0.587 2 94.1
22 0.123 0.587 4 94.9
23 0.123 0.587 8 94.9
24 0.123 0.587 9 92.9
25 0.123 0.587 10 92.9
26 0.369 0.294 2 94.9
27* 0.369 0.294 4 91.5
28 0.369 0.294 8 94.5
29 0.369 0.294 9 90.7
30 0.369 0.294 10 95.3
31* 0.246 0.294 2 97.0
32 0.246 0.294 4 95.8
33 0.246 0.294 8 95.8
34 0.246 0.294 9 93.6
35* 0.246 0.294 10 79.3
36 0.123 0.294 2 97.0
37 0.123 0.294 4 94.9
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Table 7.A.2continued...

Expt. | Formaldehyde moles Ammonia moles| pH | As(V) adsorption%)
No. (X1) (%) (X3) v)
38 0.123 0.294 8 96.4
39 0.123 0.294 9 92.9
40 0.123 0.294 10 93.6
*test data
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Table 7.A.3: Experimental data for As(lIl) adsorption on TAFAsihe (case study Ill)

Expt. | formaldehyde moles Ammonia moles| pH | As(lll) adsorption(%)
No. (x1) (%2) (X3) v)
1* 0.615 0.587 2 84.8
2 0.615 0.587 3 90.3
3 0.615 0.587 5 90.3
4 0.615 0.587 8 60.4
5* 0.615 0.587 10 71.1
6* 0.369 0.587 3 88.6
7 0.369 0.587 5 76.2
8 0.369 0.587 8 76.9
9 0.369 0.587 10 80.7
10 0.246 0.587 2 83.3
11* 0.246 0.587 3 76.2
12 0.246 0.587 5 83.3
13 0.246 0.587 8 77.3
14 0.246 0.587 10 61.1
15 0.123 0.587 2 75.5
16 0.123 0.587 3 71.7
17* 0.123 0.587 5 86.2
18 0.123 0.587 8 64.2
19* 0.123 0.587 10 72.1
20 0.615 0.294 2 74.8
21 0.615 0.294 3 79.3
22 0.615 0.294 5 69
23* 0.615 0.294 8 59.3
24 0.492 0.294 3 81
25* 0.492 0.294 5 80.4
26 0.492 0.294 8 62.1
27 0.492 0.294 10 49.4
28 0.369 0.294 3 89.9
29 0.369 0.294 5 88.3
30 0.369 0.294 8 88.3
31 0.369 0.294 10 75.9
32 0.246 0.294 2 76.9
33* 0.246 0.294 3 84.5
34 0.246 0.294 5 75.5
35 0.246 0.294 8 80.7
36 0.246 0.294 10 53.2
37 0.123 0.294 2 64.9
38* 0.123 0.294 3 64.2
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Table 7.A.3continued...

Expt. | formaldehyde moles Ammonia moles| pH | As(lll) adsorption(%)
No. (x1) (%2) (X3) v)
39 0.123 0.294 5 63.1
40 0.123 0.294 10 52.5
*test data
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Table 7.A.4:Experimental data for As(V) adsorption on TAFA re§ase study V)

Expt. Tannin Aniline | Formaldehyde pH | As(V) adsorption{o)
No. | (mole) ) | (mole) &) | (mole) &s) | (xa) )
1 0.001175 0.0215 0.615 2 68.98
2* 0.001175 0.0215 0.615 4 74.20
3 0.001175 0.0215 0.615 8 77.56
4 0.001175 0.0215 0.615 9 81.38
5 0.001175 0.0215 0.615 1( 81.10
6* 0.001175 0.0215 0.493 2 67.30
7 0.001175 0.0215 0.493 8 75.11
8 0.001175 0.0215 0.493 9 80.67
9 0.001175 0.0215 0.493 1( 79.26
10 0.001175 0.0215 0.369 4 61.83
11 0.001175 0.0215 0.369 8 67.68
12 0.001175 0.0215 0.369 9 71.36
13 0.001175 0.0215 0.246 2 63.98
14 0.001175 0.0215 0.246 8 63.83
15 0.001175 0.0215 0.246 9 70.12
16 0.001175 0.0215 0.246 1 69.09
17 0.001175 0.0215 0.123 2 65.63
18 0.001175 0.0215 0.123 8 69.21
19 0.001175 0.0215 0.123 9 68.16
20 0.001175 0.0215 0.123 1 69.16
21* 0.000587 0.0322 0.615 2 84.73
22 0.000587 0.0322 0.615 8 77.90
23 0.000587 0.0322 0.615 9 80.07
24 0.000587 0.0322 0.615 1 81.69
25* 0.000587 0.0322 0.493 9 79.50
26 0.000587 0.0322 0.493 10 77.78
27* 0.000587 0.0322 0.369 2 66.37
28 0.000587 0.0322 0.369 4 60.43
29 0.000587 0.0322 0.369 8 69.90
30 0.000587 0.0322 0.369 9 73.09
31 0.000587 0.0322 0.369 10 72.31
32* 0.000587 0.0322 0.246 2 64.42
33* 0.000587 0.0322 0.246 4 59.86
34 0.000587 0.0322 0.246 8 68.30
35* 0.000587 0.0322 0.246 9 76.16
36* 0.000587 0.0322 0.246 1( 81.24
37 0.000587 0.0322 0.123 2 57.80
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Table 7.A.4continued...

Expt. Tannin Aniline | Formaldehyde pH | As(V) adsorption{o)
No. | (mole) &) | (mole) &) | (mole) &) | (xa) v)
38 0.000587 0.0322 0.123 4 57.80
39* 0.000587 0.0322 0.123 9 79.47
40 0.000587 0.0322 0.123 10 72.93
*test data
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Chapter 8

Genetic Programming based Models for Prediction oYapor-
Liquid Equilibrium

ABSTRACT

In chemical industry, design, operation, and cohtrbseparation processes
heavily rely on the knowledge of the vapor-liquighiébrium (VLE). It is not
always feasible, convenient, and economical to yaout detailed
experiments studying the effects of operating patars on the separation
behavior. Thus, commonly thermodynamic models siscthe equation of
state(EoS, and activity coefficient are used for the estimatof VLE. These
models are mostly developed for binary, tertiargd ajuaternary systems.
Purely data-driven modeling approaches are alsoduse develop these
models. This approach too has its own difficulti€Bis chapter presents a
study wherein genetic programmin@P) has been introduced for the
prediction of VLE. Specifically, three case studies/e been performed
wherein four GP-based VLE models have been dewtlogiag experimental
data for predicting the vapor phase compositipn), of a ternary, and two
groups of non-ideal binary systems. The input spdichese models consists
of three attributes of pure compone@sentric factor, critical temperature,
and critical pressurg and three intensive thermodynamic parametigsid
phase composition, pressure, and temperaturéhe prediction and
generalization performance of the GP-based modekss wigorously
compared with that of the corresponding conventilgremployed Van Laar,
NRTL, and UNIQUAC models. The results obtainedettneindicate superior
prediction accuracy and generalization performante¢he GP-based models
vis a vis that of the conventional thermodynamicdet® The GP-based
modeling method proposed in this study can be giynitilized in the
prediction of VLE as also designing correspondixgegiments in different

pressure and temperature ranges.
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8.1 INTRODUCTION

An accurate prediction of the phase behavior ofribal species and their
mixtures is essential for designing, optimizing amohtrolling separation processes,
and other unit operations employed in the chemiondustry. Predicting phase
equilibrium properties, such as phase compositem] partition coefficients at
temperatures and pressures of interest using kelialmdels offers an attractive
alternative to costly and time consuming experiraemeasurements (Gebreyohannes
et al., 2013). Phase equilibrium, and in particwapor-liquid-equilibrium (VLE), is
important in a number of process engineering agptinos. Designing an effective,
efficient, and economical separation scheme is ins®ly essential since lack of an
accurate knowledge of VLE poses significant diffiiles in chemical process design
and development work. It has been broadly recognitet a viable separation
scheme is as important as good chemistry for theess of chemical processes on a
commercial scale (Dohrn and Brunner ,1995).

Conducting VLE experiments and a precise measureafelata thereof is often
tedious, time-consuming and expensive; for higkbctive systems, the task becomes
even more difficult and complicated. For instantes not always feasible to carry
out VLE experiments at all the ranges of operatemgperatures and pressures of
practical interest (Vaferi et al., 2013). To overm this difficulty, mathematical
models are developed for the prediction of VLE.

There exist two principal methods, namghienomenologicaiind empirical,
for modeling VLE. The phenomenological approactsdalermed “mechanistic” or
“first principles”) includes thermodynamic modelach as,equation of stateand
activity coefficient models (Lashkarbolooki et al., 2013). This approach needs
complete knowledge of the underlying physico-chaiphenomena. The prediction
of VLE data by conventional thermodynamic methosidedious since it involves
determination of various thermodynamic parametghsch is arbitrary in many ways
and, in some cases also introduces significancuracies (Sharma et al., 199B8pr
some of the components, determination of thermoayn@arameters such amary
interaction parameter(BIP) by itself can be an elaborate and time consg
exercise.

The second (i.eempirical) approach to VLE modeling is exclusively data-
driven and, therefore, can be employed in the aleseha detailed knowledge of the
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physico-chemical phenomenon underlying the VLE. utilizes linear/nonlinear

regression methods in formulating the models. Anificant requirement of this

approach is that the exact structure (form) oflthear/nonlinear data-fitting model

needs to be specified unambiguously prior to thenesion of the unknown model-

parameters. In case of ideal systems exhibitingineat VLE behavior, the

specification of the corresponding linear datart function is relatively easy.

However, VLE behavior of a large number of systedisplays a nonlinear

dependence on the operating parameters. In suds gd®osing an appropriate
nonlinear data-fitting model, from numerous competimodels becomes a daunting
task (Patil-Shinde et al., 2014). The above-stadéticulties, which are faced

commonly during both the phenomenological and sjom-based VLE modeling,

require exploration of alternative nonlinear modglstrategies.

The two computational intelligence (CI) based eglely data-driven nonlinear
modeling formalisms, namelArtificial neural networks(ANNS) (see e.g., Bishop,
1994; Zurada, 1992; Tambe et al.,, 1996), angport vector regressiofSVR)
(Vapnik, 1995; Zaid, 2012) are often used as agras to the regression based
modeling. These have found numerous applicationthenfield of thermodynamics
and prediction of transport properties. Table &gdorts a number of studies wherein
ANNSs and SVR have been employed in VLE predictions.

In addition to ANNs and SVR, the field of computeial intelligence comprises
a data-driven modeling strategy, namejgnetic programming(GP). The GP
formalism has been described in detail in Chaptesé&ction 2.2.2). In earlier
applications the GP technique has been used, $barnnoe, in estimation of solvent
activity in polymer solutions (Tashvigh et al., B),lprocess identification (Verma et
al., 2016), gasification performance predictiontiF&hinde et al., 2016), prediction
of Kovats retention indices (Goel et al., 2016)c®i it possesses several attractive
characteristics, in this study, the GP formalisra been utilized for developing data-
driven models predicting the vapor phase compasitb ternary, and a group of
binary mixtures. An exhaustive literature seardtidates that this is the first instance
wherein GP has been used in VLE prediction. Thetegys studied here are
industrially relevant. The three specific VLE mbdg case studies that have been
performed are listed in Table 8.2. In all, four B&sed models have been developed,

the inputs and outputs pertaining to these modelgiaen in Table 8.3.
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Table 8.1:VLE studies by using Atrtificial Intelligence formaims

Thermodynamic

System(s) Components Inputs Outputs Al formalism model Reference
TemperatureT),
critical temperaturefT(.), . i-
! I peraturefe) Bubble point Multi-layer
: . critical pressureR;), perceptron (MLP) . .
. Nine binary systems : pressurel), and . . Peng—Robinson | Vaferi et
Binary . acentric factor), trained using .
containing ethanol . . vapor phase .| equation of state | al. (2013)
normal boiling pointT,) and . back-propagation
. . composition §;) .
composition of the solutes in the algorithm
liquid (x;)
€O, + 1— propanol, Equilibrium te_mpe.rature'_l'(}, _ o Multilayer
CO,mole fraction in the liquid Equilibrium perceptron (MLP) .
CO,+ 2— propanal, . . Peng—Robinson
phase %), pressureR), and | trained using ... | Zarenezhag
_ CO,+ 1- butanol, . : EOS coupled with
Binary + critical temperature of alkanol | CO, mole fraction| Levenberg- and
CO,+ 1- pentanol, . Van der Waals and . .
alkanols (To), in the vapor phaseMarquardt back- Aminian
CO,+ 2- pentanol, critical pressure of alkanoPf) ) ropagation Wong-Sandiler (2011)
CO,+ 1- hexanol,and P ' Vi propag mixing rules
CO.+ 1 heptanol and learning
27 =~ Nep acetnric factor of an alkanabyj. algorithm
Normalised concentrations of Partial pressure Multi-layer Kurz et al. (1995);
CO,,NH3, and H,O0 in the liquid perceptron (MLP)| Muller et al. Ghaemi et
Ternar CO,,NH3, and H,0 P;), and total . .
ermary 2»NH;, and H, phase#;), and (P) and Radial basis | (1998) ; Goppert | al. (2008)

TemperatureT)

pressureRorq;)

function(RBF)

and Mauner (1988
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Table 8.1continued...

System(s) Components Inputs Outputs Al formalism Thermodynamic | Reference
model
Chlorodifluoromethan + Mole fraction of
carbondioxide (R22C0,), CO. R22 and R23 Multilayer
trifluoromethan + o2 e perceptron .
carbondioxide (R230,). '(E‘C.t)hzr']'g%doféhase (MLP) Redlich-Kwang- sa”m'ff"‘”d
Binary carbondisulfied + TemperatureT), pressureR) frallc’tion of CO trained by the | Soave (RKS) ouset
trifluoromethanCS,—R23), R22 and Rzgl in Levenberg- equation of state (2007)
carbondisulfied + the \’/a or phasey)) Marquardt
chlorodifluoromethan por phasg algorithm
(CS,—R22)
CO, + 1-Hexane Reduced temperaturé.,
CO, + 2-Ethyl-1-butene, | hydrocarbon mole fraction in liquid
CO, (solvent)/ CO, + n—Hexane, phase £;), and , Least-Squares Peng—Robinson | Mesbah et
hydrocarbon L Bubble point/dew | Support Vector .
bi CO, + Propyl acrylate , hydrocarbon mole fraction in vapor__. : equation of state | gl. (2015)
inary CO, + Propyl methacrylate, phase ¥;) point pressure Machine and SAFT
mixtures 2 Py ylate,p i, . (LSSVM)
CO, + Decafluorobutane, | hydrocarbons acentric factas)
CO, + Methyl methacrylate and critical pressurePg),.
CO. + ethvl caproate Mole fraction of Multilayer Soave-Redlich-
Binar COZ + ethyl capr Iaté and TemperatureT), pressureR), CO, in vapor phase| perceptron Kwong (SRK) or | Mohanty
y COo. + ethyl caprzlte ’ (¥co,), and liquid | neural network | Peng Robinsons | (2005)
z yrcap phase %co,), (MLP NN) equation of state
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Table 8.1continued...

System(s) Components Inputs Outputs Al formalisml hermodynami | Reference
c model
CO,+ B|_sphenol A (BPA), Reduced temperature of the systdin) Cascade-
, CO,+ Diphenyl carbonate | - .
Binary systems €O+ Quinoline critical pressureH,) , acentric factor«,) | Bubble- and forward back- | Not used Lashkarbol-
of CO, + cyclic C02+ Nicotine ' of cyclic compounds and dew-point propagation thermodynamic| ooki et al.
compounds C02+ Benzené composition ofCO, in the vapory;), and | pressures artificial neural| model (2013)
CO,+ Tetrahydrofuran liquid (x;) phases networ
Reduced temperature of n@o-,
compoundl. = T/T¢; whereT is
the temperature of the binary system and
T¢ is the critical temperature of ndi
CO, + n-Pentadecane, ccc)mpound P 2 cascade-
Binary systemg CO, + Decafluorobutane, critical pressure of no©, compound Bubble and dew forward b_ack- Not used _ Las_hkarbol-
of CO, + CO, + 1 Hexene, (Po) point pressures propagation thermodynamic| ooki et al.
hydrocarbon | CO, + 2-Ethyl-1- butene, acentric factor of noi60, compound §) art;ﬁuall( neural | model (2013)
CO, + n-Hexane and mole fraction of carbon dioxide in nhetwor
binary systemsx(,) —for bubble point
pressure an@yco,) — for dew point
pressure
Water + ethanol ... Liquid mole fraction of solvents Vapqr mole
+2-propanol saturated with (1, 2y, X2) fraction of Multilaver
NaNO5, NaCl, KCI L 20 =3/ solvents Y Tan—Wilson
critical temperature of solveriy), perceptron e Nguyen et
Ternary critical pressure of solvengy) 01, 2 vs), neural network| (Modification of| %5507y
Ethanol +1 propanol + acentric factord) ' and bubble (MLP NN) Wilson model) '
water saturated with NaCl ' point

KCI, CuS0,

cation radiusR+) and anion radiusx()

temperature (T)
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Table 8.1continued...

System(s)

Components

Inputs

Outputs

Al formalism

Thermodynami
¢ model

Reference

CO, + ethyl caprate,

Equilibrium temperature

(M,

Equilibrium pressureR),

Peng-Robinson

y - Co, + et::yll caprolate, CO, mole fraction in the | and Feed forward, back (SPR) and SiM
Inary systems €0, + ethyl caprylate, liquid phasexc., CO, mole fraction in | propagation neural oave- -vioussa
of CO,+ ester | CO, + diethyl carbonate, itical t Zt the vapor phase/éo.) | network Redlick- et al. (2008)
CO, + ethyl butyrate and cr!t!cal emperatureft), q 02 Kwong (SRK)
CO, + isopropyl acetate crl |ca.pressure[(c), an EOS
acentric factow,of esters
The binary systems compos & ritical volumec),
of alkenes, aromatics acentric factor),
aldehydes, alcohols, amines|, dipole moment, o Multl-layer_ perceptron Ma_rg_ules Yamamoto
Seventeen . . entropy of vaporization (MLP) trained using | activity .
: amides, carboxyl acids, Margules parameters . e and Tochigi
binary systems nitriles. esters. ethers. ketond Sand back-propagation coefficient (2007)
: ’ ' : electronegativity of algorithm equation
nitro compounds, water, and
halogen compound components 1
g P and 2.
Hexane + ethanol,
Hexane + benzene, Universal
, Carbon disulfide + acetone, | Mole fraction in liquid Mole fraction in vapor . . : Quasi-
Binary, and hlorof Radial basis function hemical Ganguly
Ternary Acetone + chloroform, phase £;), temperature | phase ¥;),and (RBF) NN chemica (2003)
Hexane-benzene + toluene, | (T) pressurel) (UNIQUAC)
Acetone + methanol + model
chloroform
Mole fraction in vapor| Multi-layer perceptron
Binar Al\\/lr:rt:gr?ig :V?,g;gpe TemperatureT), phase ¥;), mole (MLP) trained using | Peng Sharma et
y pressurel), fraction in liquid phase back-propagation Robinson EOS| al. (1999)

(xi)!

algorithm
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Table 8.2: Description of three case studies

nsS.

Case study | System Components Objective of GP-basdéling
(i) 1, 2-dichloroethane (1) - _ _
o Prediction of the mole fraction of 1-2 dichloroatie
I Ternary (ii) trichloroethylene (2) ) .
(v1), and trichloroethylengy,) in vapor phase
(iif) 1-propanol (3)
Group of (i) tetrachloromethane (1) — ethanol (2) Prediction of mole fraction of tetrachloromethanevapor
I binary (ify tetrachloromethane (1) —1-propanol (2), | hhasey:,), using a single model for three binary systen
(iii) tetrachloromethane (1) — 1-butanol (2)
a. Prediction of mole fraction of ethanol, 1-propanol,
and 1-butanol in vapor pha§,)}, using a single
(i) ethanol (1) — ethyl acetate (2) model developed using data of first three binary
" Group of (i) 1-propanol (1) — propyl acetate (2) systems for interpolation.
binary (i) 1-butanol (1) — butyl acetate (2), b. To test the extrapolation ability of the developed

(iv) 1-pentanol (1) — pentyl acetate (2)

model on fourth binary system, namely, 1-pentang
(1) — pentyl acetate (2) to predict vapor phase

composition of 1-pentanoyy).
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Table 8.3: The inputs and the outputs pertaining to the foBrlased models developed in this study.

Model ::ﬂgu(t); Model inputs (intensive thermodynamic variables pace component properties) Model output
TemperatureT); mole fractions of 1, 2-dichloroethang }, and trichloroethylenex{) | Mole fraction of 1, 2-dichloroethane
| (case study-I) 6 | in liquid phase; acentric factors of 1, 2-dichldt@me (,), trichloroethylened),) and| in vapor phasey )
1-propanol {3)
TemperatureT); mole fractions of 1, 2-dichloroethaneg ), and trichloroethylenex{) | Mole fraction of trichloroethylene in
Il (case study-I) 6 | inliquid phase; acentric factors of 1, 2-dichldr@e (), trichloroethylened),) and | vapor phase %)
1-propanol {3)
(i) Mole fraction of tetrachloromethane in liquitigse £,), (ii) pressure,R), (iii) Mole fraction of tetrachloromethane
temperatureT), (iv) critical temperature dhesecond component, namely, ethanol/[Lin vapor phasey)
I (case study-Il > propanol/ 1-butanollt,) of the binary system, and (v) critical pressimesecond
component, namely, ethanol/1-propanol/ 1-butaRg) Of the binary system
(i) Acentric factor ofthefirst component, namely, ethanol/1-propanol/ 1-batdw,) | Mole fraction of ethanol, 1-propanol
of the binary system, (ii) acentric factortbé second component, namely, ethyl and 1-butanol, and 1-pentanol in
IV(case study-IIl) 5 acetate/propyl acetate/butyl acetatg)(of the binary system, (iii) liquid phase mole| vapor phasey; }

fractions of first components namely, ethanol/1gammol/1-butanolx;) of the binary

system, (iv) pressurd) (kF,), and (v) temperaturd) (K),
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Once a properly validated optimal GP-based modelcasstructed, its
parameters can be further refined using a standandinear regression technique,
such as, Marquardt’s algorithm (Marquardt, 1968 his study, all the four GP-based
models were developed and their generalization lubiya was assessed using
experimental data. Additionally, as reported in BHEMA (Gmehling and Onken,
1986; Gmehling et al., 1986) data series, the ss@te of VLE data were used to
develop corresponding activity coefficient moddls;the case studies a subset of
following activity coefficient models was used: Wboh (Wilson, 1964; Smith et al.,
2005), Van Laar (Wong et al., 1992), Non random-bigqoid (NRTL) (Renon and
Prausnitz, 1969), and Universal Quasi-chemical @QMWC) (Anderson and
Prausnitz, 1978)The prediction and generalization performance & @&P-based
models was rigorously compared with that of theresponding thermodynamic
models. The results of this comparison indicate tiat the GP-based models possess
comparable or better VLE prediction ability thare tbonventional thermodynamic
models.

The remainder of this chapter is structured a®¥asl Various thermodynamic
models for the VLE predictions are described byiefl section 8.2 titled “Phase
equilibria modeling.” section 8.3, titled “Data’quides details of the data used in the
GP-based modeling of vapor phase composition. Exé section 8.4 titled “Results
and Discussion,” describes the three case studiesrein GP-based models have
been developed for (i) ternary system (section28.4ii) a group of three non-ideal
binary systems (section 8.4.3), and (iii) a grodpfaur non-ideal binary systems
(section 8.4.4). Additionally, this section alsaydes results of the comparison of
the prediction and generalization performance @& tlteveloped four GP-based
models with their thermodynamic counterparts aso alse fine-tuned genetic
programming-Marquardt (GP- Marquardt) models. HypdlConcluding Remarks”

(section 8.5) summarize the principal findingsha# study.
8.2 PHASE EQUILIBRIA MODELING

8.2.1 Activity Coefficient Models

A number of methods such as, tlegular solution theoryuniversal functional
activity coefficient(UNIFAC) (Fredenslund et al.,, 1977), analytical solution of
groups(ASOG) (Derr and Deal,1969) are available forVé prediction; however,
none of these strategies can be regarded as g lagblirate predictor (Smith et al.,
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2005). Thus, these methods are used only when periexental VLE data are
available for the system of interest. The notabkgures regarding the applicability of
thermodynamic VLE models are given below (Prausettal., 1998; Smith et al.,
2005):

* For moderately non-ideal systems, all the majore®(van Laar, two constant
Margules, Wilson, UNIQUAC, and NRTL) perform comahly well.

« For mixtures of very different species, such aspol associating compounds
(e.g. alcohols and other oxy hydrocarbons), the-parameter VLE models,
namely, Van Laar, two constant Margules, UNIQUA@Gd aVilson equation,
are preferred over the three parameter NRTL equatio

* For non-polar solvents (e.g. hydrocarbons), thesti] UNIQUAC, and NRTL
models have been found to make superior predictibas the Van Laar and
two-parameter Margules equations.

e The NRTL and UNIQUAC equations are useful wheréasWilson equation is
inapplicable for species which are dissimilar amnel anly partially soluble to

form two liquid phases.

8.2.2 Equation of State Models

A commonly employed method for predicting/descripithermodynamic
properties of fluids, mixtures of fluids, and salis “equations of statéEoS)”. It is
an efficient tool for calculating also the phasauiliorium of systems in pure or
mixture form. The EOSs are widely used in theoettamd practical studies involving
chemical process design, petroleum industry, resefluids, etc. The van der Waals
equation of state (Van der Waals, 1910) was tls¢ diquation to predict vapor-liquid
coexistence. Later, the Redlich-Kwong equationtafes(Redlich and Kwong, 1949)
improved the accuracy of the van der Waals equabyprproposing temperature
dependence for the attractive term. Soave (1978) Reng and Robinson (1976)
proposed additional modifications of the Redlich¢fwy equation to more accurately
predict the vapor pressure, liquid density, andldxjium ratios. Numerous equations
of state have been proposed in the literature wiitier an empirical, semi empirical,
or theoretical basis. There are some notable cdmepsive reviews on equation of
state and these can be found in the workdvaftin (1979), Anderko (1990), and
Sengers et al. (2000).
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Since design, operation, and control of a large memof industrial chemical
processes are based on the predictions of VLE tlardhodynamic property models,

it is at most important that they are robust aruhb#e of accurate predictions.

8.3 DATA

The experimental VLE data were sourced from then@siey Data Series,
DECHEMA (Gmehling and Onken, 1986; Gmehling et 3986) (see Appendix 8.A
(Tables 8.A.1, 8.A.2, and 8.A.3)) to develop fouP-Based models in three case
studies for the prediction of vapor phase compmsitEach of the four example sets
used in the four case studies was split random({y%n25) ratio in the training and test
sets, respectively. Whereas 75% data were usegelviglaping (training) the GP-based
models, the test set data (25%) were used in tethiem generalization ability of the

developed models.

Table 8.4:Physical properties of the components used instioidy

Acentric|  Critical Critical

Component factor | Temperature Pressure Reference
(w) (Te) (K) | (F) (kFy)

Ethanol 0.6436 514.0 6137 Perry and Green (2007)
1-Propanol 0.6209 536.8 5169 Perry and Green (2007)
1-Butanol 0.5883 563.1 4414 Perry and Green (2007)
1,2-Dichloroethane| 0.2866 Perry and Green (2007)
Trichloroethylene 0.2170 Yaws (1999)
1-Pentanol 0.5748 Perry and Green (2007)
Ethyl acetate 0.3664 Perry and Green (2007)
Propyl acetate 0.3889 Perry and Green (2007)
Butyl acetate 0.4394 Perry and Green (2007)
Pentyl acetate 0.4480 Yaws (1999)

8.4 RESULT AND DISCUSSION
8.4.1 GP-based Vapor-Liquid Equilibria Modeling

All GP-based models were developed using Bueeqa Formulizesoftware
package (Schmidt and Lipson, 2012). The packageahasimber of options for
preprocessing of the example input-output datagemebration of candidate solutions.
While building each GP-based model, these optioveye rigorously and
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systematically explored with the objective of obtag models possessing high
accuracy of predictingapor phase mole fractiofy;) and generalization capability.
An operator set containing five arithmetic operstaramely,addition subtraction
multiplication, division and exponentiation was used in the generation of the
candidate expressions. To obtain a best possilitefiltng model, the GP (Koza,
1992; Poli, 2008) procedure (see Chapter 2, se@idr2) was repeated a number of
times by using every time different seed expressimmd random number generator
seed values. It is worth noting that in each regmbatin, the GP algorithm converged
to a different mathematical expression. The fitnefssach candidate expression was
evaluated using thequared errorfitness function. The statistical measures, used |
assessing the prediction accuracy and generalizgi@formance of a GP-based
model werecoefficient of correlationCC) androot mean squared erro(RMSE;
these were evaluated using the experimental (Jasget the corresponding model-
predicted values ofvapor phase mole fractiofy;). These two statistical quantities
were calculated separately for the training and desa sets. The overall best GP-
model was selected from those obtained in the plalGP runs on the basis of its
high and comparable magnitudesGE and low and comparable valuesR¥SEin
respect of both the training and test set datat,Nbg parameterg3, of the overall
best model were refined further by using a standamlinear regression technique,
namely Marquardt's algorithm (Marquardt, 1963) with view to improve its

prediction and generalization performance

8.4.2. Case Study |: GP-Based VLE Modeling of Terng System 1, 2
Dichloroethane (1), Trichloroethylene (2), 1-Propaal (3)

The objective of this case study is to develop @R modelsGP_model-land -
II) predicting mole fractions df, 2-dichloroethandy;), andtrichloroethylene(y,),
in the vapor phase. Towards this goal, a total®fsbbaric VLE data points at high
temperature (352.65 —358.55 K) were collected (Gimgland Onken, 1986) for the
ternary system given in Table 8.A.1. These datasisting of the physiochemical
properties (acentric factor) and the experimentalditions (temperature, liquid and
vapor phase compositions) are given in Tables 8482A.1, respectively. From these
data the training set (43 data patterns) was sgleota way such that it covers all the

ranges of the experimental data and operating tondi
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(A) GP-based model for predicting mole fraction of 1, Zlichloroethane in
vapor phase ¥,)

The input space of th&P_model-I predicting the mole fraction of 1, 2-
dichloroethane in vapor phasg, ], contains six variables, namely, temperatdne (
mole fractions of 1, 2-dichloroethare, §, and trichloroethylenex{) in liquid phase,
acentric factors of 1, 2-dichloroethafw,), trichloroethylene ¢,), and 1-propanol
(w3). By implementing the GP procedure given in sec8ahl, the overall best GP-
based model GP_model-) predicting the value of mole fraction of 1, 2-
dichloroethane in the vapor phgsg) that was secured is given as:

1.476 X 1072

X1

This model (8.1) when subjected to the nonlinearagsion using Marquardt's

method (Marquardt, 1963) yielded following express{GP-Marquardt_model):

1.4 x 1072

y,= 0.314- +1.12x2w,+ 0.219 Tx;w; w5 — 0.375x, — 13.183x, (8.2)

X1

As can be seen in Eq. (8.2), the Marquardt’s mettaxlfitted a different set of
parameters to the GP-based model. The predictip@&Pb model-1have yielded high
and comparable magnitudes of the coefficient ofetation CCy, = 0.997;CCyq =
0.998), and low and comparable values of the roearmsquare erroRMSE=
1.13x10% RMSEy = 1.08x10%) in respect of both the training and test sea.dAt
comparison of the prediction accuracies and gewmaten performance of
GP_model-1 with that of other four models, namely, GP-MarquartVilson
(Gmehling and Onken, 1986), NRTL (Gmehling and Onk86), and UNIQUAC
(Gmehling and Onken, 1986) is provided in Table 8l CC andRMSEmagnitudes
listed in this table clearly reveal that the pragb&P_Model-lhas better prediction

accuracy and generalization capability than it$call competing models.
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Table 8.5: Statistical

analysis and comparison of predictioenagalization
performance ofcP_model-lwith other four models for estimation of

mole fraction of 1, 2-dichloroethane in vapor ph@se

Type of model Training set Test set
CCern RMSE CCyst RMSE,
GP_modeH 0.997 1.13x19 0.998 1.08x106
GP-Marquardt_mode}l 0.997 1.46x108 0.998 1.31x18
Wilson_modell 0.996 1.34x19 0.998 1.02x18
NRTL_modell 0.995 1.43x10 0.997 1.10x18
UNIQUAC_modell 0.995 1.42x10 0.997 1.11x19

Figure 8.1 shows a comparison of the predictionhefmole fraction of 1, 2-
dichloroethane in vapor phasg,;) by the GP_model-] with their experimental
counterpart. An excellent match between the ewrpmrtal and model predicted
values of the mole fraction of 1, 2-dichloroethamevapor phase pertaining to both
training and test set data clearly establishes atstanding prediction and

generalization performance BP_model-l

Figure 8.1: Parity plot of the experimental versus GP_modekédted mole

predicted,y

GP_model-I
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0.4 0.6

Experimental y

0.8

fraction of 1, 2-dichloroethane in vapor phagg ©f case study |

249




(B) GP-based modeling of mole fraction of trichloroethiene in vapor phaseys,)

The GP-based model (hereafter term@E_model-1) for predicting the mole
fraction of trichloroethylene in vapor phasg, ) was developed using same inputs
(see Tables 8.4 and 8.A.1) as employed in the dpuent of the model for
predicting the mole fraction of 1, 2-dichloroethaimethe vapor phasey(). The
overall best GP-based modeGR_model-I), which resulted in the high and
comparable magnitudes @C and low and comparable magnitudes RWMISE in

respect of both training and test sets, is given as

3.674 w3
(8242x,)@1

y,=1.941 + 3.455 1072 Tx, + ~6.02x 1073 T - 11.1%, — 2.293 2w,

(8.3)

The equation (8.3) when subjected to nonlinearesgion using Marquardt’'s method
(Marquardt, 1963) vyielded following equatiorsR-Marquardt_model-) with a

different set of parameter magnitudes.

2.342 w3
(9667x1)®1

y,=1.24 + 0.025 T, + —4.0x 1073T = 7.903x,- 2.106x2w, (8.4)
The CC magnitude in respect of the outpys ) predicted byGP_model-Il and

the corresponding desired (experimental) valueshi®training and test sets are 0.998

and 0.994, respectively, and the correspon@®MSE magnitudes are 1.01x%@&nd

1.69x10%, respectively. From the high (low) and comparaldties ofCC (RMSB

for both the training and test set data, it cacdrecluded that the GP-based model has

exhibited an excellent performance in predicting generalizing the mole fraction

magnitudes of trichloroethylene in the vapor ph&sext, performance d&P_model-

Il was compared with that of the correspond®ig-Marquardt_model-lland three

activity coefficient models, namely, Wilson, NRTand UNIQUAC. This comparison

made in terms of thEC andRMSEvalues is provided in Table 8.6. Here, the results

reveal that the prediction and generalization perémce of theGP_model-Il is

comparable with that of the competing four models.
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Table 8.6: Statistical analysis and comparison of predictiornagalization
performance oGP_model-II with other four models for estimation of
mole fraction of trichloroethylene in vapor phage)(

Type of model Training set Test set
CCern RMSE ., CCyst RMSE
GP_modeH| 0.998 1.01x10 0.994 1.69x10
GP-Marquardt_model 0.995 1.28x10 0.988 1.27x10
Wilson_modelll 0.996 1.38x10 0.998 6.96x10
NRTL_modelll 0.996 1.45x10 0.998 7.19x108
UNIQUAC_modelll 0.996 1.48x10 0.998 7.46x10
0.8
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Figure 8.2: Parity plot of the experimental versus GP_motigi+kedicted mole
fraction of trichloroethylene in vapor phagg ) of case study |

Figure 8.2 displays the parity plot of ti&P_model-lipredicted values of the
mole fraction of trichloroethylene in the vapor pbdy,) and their experimental
counterparts. As can be seen, there is a very chigeement between the
experimental and model predicted values pertaitinthe training as also test set
data thus supporting the earlier observation af excellent prediction accuracy and
generalization performance BP_model-Il. The results of this case study essentially
indicate that the GP formalism can serve as artiaddl modeling method capable of
yielding comparable or even better prediction agcyrand generalization capability
when compared with existing methods for VLE pradict
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8.4.3 Case Study Il: GP-Based VLE Modeling of Grop of Three Binary
Systems, namely, (i) Tetrachloromethane (1) — Ethah (2), (ii)
Tetrachloromethane (1) - 1 - Propanol (2), and ()i
Tetrachloromethane (1) -1-Butanol(2)

The objectives of this case study is as follows

* To develop a single optimal GP-based model faroag of three binary systems
for predicting the vapor phase composition of tleenmon first component,

namely, tetrachloromethang, § in each of the three systems.

In this case study, the second components of thiregy systems belong to the
homologous series of alcohol. The 96 experimerdtd goints (Gmehling and Onken,
1986; Gmehling et al., 1986) pertaining to the ¢hbenary systems cover temperature
and pressure ranges of 293.15-343.15 K, and 5.0719434kP,, respectively (also
see Table 8.A.2). These data points were dividéal time training (72 patterns) and
test (24 patterns) data sets to, respectively, tnmisand test a single optimal
GP_model-lllpredicting vapor phase composition of the comnfiost component of
the three binary systems.

The input space of propos&P_model-lllconsisted of two critical properties,
namely, critical temperatureT{) (K), and critical pressure,R() (kF,) of three
components, namely, ethanol, 1-propanol, and I1dAoltaand three intensive
thermodynamic variables, namely, the mole fractbrietrachloromethane in liquid
phase £,), pressureR) (kP,), and temperaturel) (K) (see Tables 8.4 and 8.A.2,
respectively). By implementing the GP procedurecdksd in sections 2.2.2 and
8.4.1, the following overall optimal GP-based modek obtained for the prediction
of the mole fraction of tetrachloromethane in vaploasgy, ):

y1=5.016 + 2.028 1073x;P — 2.493207*P,,—3.376x107>T,, —3.465 x1073T —

0.5851(1.06 x 10~3)(2028x107%x1,T;) (8.5)

This model when subjected to parameter fine-tubythe nonlinear regression using
Marquardt's method (Marquardt, 1963) vyielded follogv expression GP-
Marquardt_model-II).

y1= 4.666 + 24073x3P — 1.85407*P, —3x1073T,,— 4x1073T —
0.582(0.792)(0-064x117c,) (8.6)

252



The performance o&P_model-Il] in making accurate predictions pertaining to
each of the three binary systems was comparedthaéthof the two thermodynamic
models, namely, VanLaar (Gmehling and Onken, 1@36ghling et al., 1986) and
NRTL (Gmehling and Onken, 1986; Gmehling et al.3@)9 The above stated
comparison made in terms 6IC and RMSEvalues pertaining to the predictions of
mole fraction of tetrachloromethane in vapor phasg made byGP_model-111,GP-
Marquardt_model-Il] and models of VanLaar, and NRTL is provided ablg 8.7.
The magnitudes of the stated statistical quanttiearly suggest tha&P_model-Il|
possesses an excellent prediction accuracy andajeagion capability. It is also
seen that (a) the prediction and generalizatiofopeance of GPModel-IIl closely
matches with that of the VanLaar, and NRTL models &) the performance of the
GP-Marquardt_model-Ill is only marginally inferior than the other tareompeting

models.
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Figure 8.3: Parity plot of the experimental versus GP_modelpliedicted mole
fraction of tetrachloromethan€(l,) in vapor phasey) of case study Il

Figure 8.3 shows a comparison of the experimerghies of the mole fraction
of tetrachloromethane in vapor phage)(for individual binary system with that the
corresponding predictions made G¥_model-Ill All points falling on or very close
to the 45° line indicates a very good match between the éxymatal and model
predictedy, values. In this case study, it is noteworthy dterthat a single GP-based
model is capable of accurately predicting VLE foultiple binary systems thus
saving the efforts involved in developing a separabdel for each binary system in

the group.
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Table 8.7: Statistical analysis and comparison of predictienegalization performance GP_model-lllwith other three models for estimation of
mole fraction of tetrachloromethan@d(,,) in vapor phasey)

CCl,(1)- ethanol(2) CCl, (1) - 1-propanol(2) CCl,(1)- 1-butanol(2)

Typte of model/ binary Training set Test set Training set Test set Trgisiet Test set
system

CCon | RMSEqy | CCrot | RMSEeg; | CCorn | RMSEqry | CCest | RMSEeq | CCrn | RMSE ey | CCrsr | RMSEie
GP_modeHll 0.994 | 1.83x18 | 0.997| 1.54x10? | 0.993| 1.94x1? | 0.995| 1.41x10? | 0.995| 3.63x10? | 0.996 | 4.35x10°
GP-Marquardt_modellll | 5994 | 7.02x18 | 0.995| 6.44x10? | 0.987| 3.08x1C7 | 0.972| 2.21x1C? | 0.994| 4.04x1C? | 0.991| 1.61x1C?
VanLaar_modellll 0.997 | 1.21x18 | 0.997| 1.36x10% | 0.996| 1.69x10? | 0.997| 2.06x10? | 0.995| 5.35x10° | 0.996| 3.99x10°
NRTL_modellll 0.999 | 7.92x18 | 0.999| 6.75x10° | 0.997| 1.83x10% | 0.997| 2.05x10% | 0.998| 3.77x10° | 0.999| 1.42x10°
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8.4.4 Case Study lll: GP-Based VLE Modeling for Graip of three Binary
Systems, namely, (i) Ethanol (1) — Ethyl acetate X2(ii)) 1-Propanol
(1) — Propyl acetate (2), and (iii) 1-Butanol (1) Butyl acetate (2)

The objectives of this case study are as follows:

* To propose a single GP-based optimal mo@# (model-1Y to predict mole
fractions in vapor phaseg/) of the first components of a group of three binary
systems; these components are: ethanpropanaol and1-butanol. It may be
noted, that (a) the first (second) components Oftred three systems are
homologs of the alcohol (acetate) series, and @nyventionally, a separate
model is developed for the VLE prediction pertaghino each binary system.

* To test the extrapolation ability of the develogeB-based model to predict
mole fractions in vapor phase;{ of the fourth binary system, namely, 1-
pentanol (1) — pentyl acetate (2). Note that thet ind second components of
this system are the higher homologs of corresp@ghdamponents of the three
alcohol-acetate binary systems whose data werddsed in developing the
GP-based model.

In this study, 130 experimental VLE data pointgg@eing to the group of above
stated four binary systems belonging to alcohotaieehomologous series were
compiled from DECHEMA, VLE data series (Gmehlingla@nken, 1986; Gmehling
et al., 1986). Details of the experimental datadusehe GP model building are given
in Table 8.A.3. The GP-based model was develom@igucombined data of three
binary systems, namely, (a) ethanol (1) — ethykaee(2), (b) 1 — propanol (1) —
propyl acetate (2), and (c) 1-butanol (1) — batgetate (2). Apart from testing the
model for its generalization ability using a test sonsisting of data of the stated
three binary systems, the model’'s extrapolatiohitglwas tested using a validation
set consisting of data of the fourth binary systeamely, 1-pentanol (1) —pentyl

acetate (2).

For developing the GP-based model for the prediatibmole fraction of first
components in vapor phasg, (s), following variables and parameters were selected
as inputs: (i) acentric factor a@he first component, namely, ethanol/1-propanol/ 1-

butanol (v;) of the binary system, (ii) acentric factor tife second component,
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namely, ethyl acetate/propyl acetate/butyl acefatg of the binary system, (iii)
liquid phase mole fractions of first components eimethanol/1-propanol/1-butanol
(x1) of the binary system, (iv) pressu@) (kP,), and (v) temperaturel) (K), (see
Tables 8.4 and 8.A.3, respectively). By implememtine GP procedure described in
sections 2.2.2 and 8.4.1, the following best datad expression GP_model-1Y
yielding high (low) magnitudes &€C (RMSE in respect of its predictions pertaining

to both training and test set data was obtained.

y, = 0.03333 + 0.5564, w, + 1.066x3 + 1.736 x10~5T2x, w, — 0.000967%, P
— 0.004603T x2 (8.7)

For fine-tuning of its parameters, this model walsjscted to the nonlinear regression
using Marquardt’'s method (Marquardt, 1963), whiebulted in following expression

with small changes in the parameter values:

y, = 0.035 + 0.574, w, + 1.0643 + 1.721 x105T2x, w; — 0.00%; P — 0.005 T2
(8.8)

The prediction and generalization performance of G®del-IVwas compared
with that of the two activity coefficient modelsamely, Van Laar and NRTL, as also
GP-Marquardt_model-IVThe results of this comparison in termsQf andRMSE
values are provided in Table 8.8. Specifically, sketed two statistical measures were
evaluated considering separately the data of ebttiedhree binary systems, namely,
(a) ethanol and ethyl acetate, (b) 1 — propanol armropyl acetate, and (c) 1-butanol
— butyl acetate. It is observed in this tablef hr@dictions made b&P_model-IV
have yielded higiCC (~ 0.999) and lowRMSEvalues £5.30x10°) in respect of both
the training and test sets for each of the threaryi systems. It is also noticed that
GP_model-IVpossessebetter prediction accuracy and generalization dépathan

the activity coefficient models as al&P-Marquardt_model-1V
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Table 8.8: Statistical analysis and comparison of predictienagalization performance GP_model-IMwith other three models for estimation of mole
fraction of ethanol, 1-propanol, and 1-butanol aper phasey)

Type of model/ binary system Ethanol (1) - Ethyttate (2) 1-Propanol(1) - Propyl acetate (2 1-Boit§1)-Butyl acetate (2)
Training set Test set Training set Test set Traisiet Test set

CCirn | RMSE,, | CCist | RMSE st | CCipy | RMSEry | CCist | RMSE st | CCirn | RMSEy, | CCist RMSE;

GP_modeHV 0.998 | 1.46x10 | 0.998 | 1.78x10 | 0.999 | 5.37x10 | 0.999 | 5.30x10 | 0.999 | 6.80x10 | 0.998 | 9.88x10

GP-Marquardt_modelV 0.996 | 6.06x18 | 0.996 | 4.94x18 | 0.998 | 7.73x10 | 0.999 | 7.30x18 | 0.997 | 8.15x18 | 0.998 | 7.62x1D

VanLaar_modellV 0.999 | 9.25x10 | 0.998 | 1.19x18 | 0.999 | 8.79x10 | 0.999 | 8.91x18 | 0.998 | 1.04x18 | 0.998 | 1.04x1D

NRTL_modellV 0.999 | 9.19x10 | 0.998 | 1.19x18 | 0.999 | 8.63x10 | 0.999 | 8.74x10 | 0.998| 9.81x10 | 0.998 | 1.03x18
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1
> 0.8
© .
_8 B Ethanol (1)- Ethyl acetate (2):Training data set
g 0.6 ¥ A Ethanol (1)- Ethyl acetate (2):Test data set
> ® 1-Propanol (1) — Propyl acetate (2):Training data set
é 0.4 A 1-Propanol (1) — Propyl acetate (2): Test data set
g X 1-Butanol (1) - Butyl acetate (2):Training data set
%I 0.2 + 1-Butanol (1) - Butyl acetate (2):Test data set
0 @ 1- Pentanol (1)- Pentyl acetate (2): Extrapolation data set

0 02 04 06 08 1
Experimental y

Figure 8.4: Parity plot of the experimental versus GP_modeldiédicted mole
fraction of ethanol, 1-propanol, 1-butanol, arpgehtanol in vapor phase
(1) of case study Il
The prediction and generalization ability of themprsed GP-model is shown
graphically in terms of the parity plot in Figured8Here, experimental values of the
mole fractions of component (1), namely, ethangdrdpanol, and 1-butanol in vapor
phase, ¥,) are plotted against the correspond®8_model-1Vpredicted values in
respect of training and test set data. Figure Botvs that all the data points of three
binary systems (utilized in constructi®P_model-1Y are positioned on or close to
the solid line indicating that model predictionssgly match their targets. This figure
also shows results pertaining to the extrapolatést of GP_model-1V In the figure
are plotted the experimental and model predictddega(circle symbol) of the mole
fraction of 1-pentanol (1) (first component of tfwrth binary system). As can be
observed, there exists a reasonably close matetebrtthe experimental values and
their model predictions, thus supporting the exdlaon ability of GP_model-1Vto
apply the learned trends in the data of three pisgstems to make predictions for a

new binary system.
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Testing extrapolation ability of the GP_model-1V: Rediction of mole fraction of

1-pentanol in vapor phase ¥,)

In a special exercise, @Rodel-IVwas used for extrapolation. Specifically, it
was utilized to make predictions of the mdidaction of the first component of the
fourth binary system, namely, 1-pentanol and peatgtate. It may be noted that the
training or test sets used in training and testitegGP-model-I\VVdid not contain data
of this binary system. The results of extrapolataercise given in Table 8.9, indicate
that GP-model-IVpossesses a very good extrapolation capability Wwgh magnitude
for the coefficient of correlation=0.998) and low magnitude @bot mean square
error (= 4.58x10) (refer Table 8.9).

Table 8.9: Statistical analysis and comparison of predictienagalization performance of
GP_model-IVwith other three models to test its extrapolati@pability on
fourth binary system, namely, 1-pentanol (1) —pleaiyetate (2) to predict
vapor phase composition of 1-pentangl)(

. 1-Pentanol (1) —Pentyl acetate(2)
Type of model/ binary system
for extrapolation CC RMSE
GP_modeHV 0.998 4.58 x10
GP-Marquardt_modelV 0.998 5.97x10
VanLaar_modellV 0.998 6.36x10
NRTL_modellV 0.998 6.42x10

8.5 CONCLUSION

In this work, an Al-based modeling strategy, namgbnetic programming has
been utilized to develop models for the predicidrvapor liquid equilibria. Among
various Cl-based methods, GP possesses severdl arayattractive characteristics
and, yet, it remains an infrequently used dataedriimodeling technique when
compared with ANNs and SVR. In this investigatitimee case studies have been
conducted wherein four models have been developetthidé prediction of vapor phase
composition. The specific systems studied are bgwe: (a) a ternary system (case

study 1), (b) a group of three binary systems whefirst component is common and
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the second components are homologs of an alcohielss@Ease study 1), and (c) a

group of three binary systems consisting of firet aecond components belonging to

alcohol and acetate homologous series (case dslijidyHe predictors of these models

include temperature, pressure, critical temperatcriéical pressure, acentric factor,

and liquid phase composition. The experimental deiemn DECHEMA chemistry

data series were utilized to develop the stated foadels. To examine whether

model parameters could be fine-tuned further, tReb@sed models were subjected to

nonlinear parameter estimation using Marquardt'shoe The performance of the

GP-based models was compared rigorously with thHat cwumber of classical

thermodynamic models, namely, Van Laar, Wilson, NRand UNIQUAC as also

GP-Marquardt models. Prediction accuracies and rgénation performance of all

developed models are verified to be better compatifdthe available prediction of

thermodynamic models. Values of correlation cogdfic (CC), root mean squared
error (RMSB show that in general, the developed GP-based Im@iles out better
results than thermodynamic models, namely, Van ,Laéiflson, NRTL, and

UNIQUAC as also GP- Marquardt’'s model for estimatad vapor phase composition

of ternary and group of binary mixtures.

The novelty of this study is as follows.

A rigorous search of the literature indicates th#t is the first study, wherein
GP strategy has been used innovatively for VLE iptexhs.

A single optimal GP-based mod&bRP _model-1l) has been developed for a
group of three binary systems—with a common fiminponent—to predict
vapor phase composition of individual binary system

A single model (GPmodel-I1\J has been developed for a group of three binary
systems—with their first and second components rgghgy to alcohol and
acetate homologous series, respectively— to predisbr phase composition
of individual binary system. Also, the extrapolatioapability of the model
was tested on a totally different binary systemtaming homologs of alcohol
and acetate. The results of this case study shatvaghregards with the three
binary systemsGP_model-IVpossesses an excellent prediction accuracy and
generalization capability. Moreover, and notably, also possesses

extrapolation ability as confirmed by its closelyatching predictions of the
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mole fraction in the vapor phase of a totally diéiet binary system containing
higher homologs of the alcohol-acetate series.

* The prediction accuracies of the GP-based modptstexd here are as good as
or better than the conventiongiermodynamic models used in the VLE
prediction. Also, GP-based models are less comfglassimonious), easier to

grasp, and more convenient to deploy in a pracsieting.

The GP-based VLE modeling approach illustrated barebe gainfully extended to
develop similar type of models for numerous othelustrially important binary and

ternary systems.

NOMENCLATURE

P, critical pressure ofi"*component

T, critical temperature of**component

x; liquid phase composition éf*component
y;  vapor phase composition Bf:component

w; acentric factor ofi®*component
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Appendix 8.A

Table 8.A.1: Data source and ranges of experimental conditiegarding ternary system used in case study-| foegging GP- based model-I and II

Mole fraction of

Mole fraction of

Mole fraction of

Mole fraction of

Pressure _ _ _ _ No of

Temperature 1,2-dichloroethane trichloroethylene| 1,2-dichloroethane trichloroethylene
System (P) o o . _ data Reference
(T (K) in liquid phase in liquid phase in vapor phase | in vapor phase
(kF) patterns
(x1) (x2) (1) (v2)
1, 2-dichloroethane (1) _
. Gmehling and
trichloroethylene (2) | 352.65-358.55 101.325 0.103-0.819 0.051- 0.785 0.156 - 0.797 073> 0.692 58

1-propanol (3)

Onken (1986)
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Table 8.A.2: Data source and ranges of experimental conditiegarding three different binary systems used ie sasdy-Il for generating GP

based model-lll
Temperature Pressurek) Mole fraction of | Mole fraction of | Number
System (T? K) (kP,) CCl, in liquid CCl, invapour | of data Reference
. phase, £;) phase, ¥,) patterns

318.15 25.695 046.792 | 0.0212 0.9541 | 0.1210 0.7822 13 | Gmehling and Onken (1986)

CCl,(1)- ethanol(2) | 323.15 40.543 057.315 | 0.1000 0.9000 | 0.3370 0.7050 09 | Gmehling and Onken (1986)
338.15 64.160 101.434 | 0.02370.9483 | 0.1075 0.7688 15 | Gmehling and Onken (1986)
293.15 05.179 012.739 | 0.0906 0.9030 | 0.6210 0.9240 09 Gmehling and Onken (1986
303.15 08.653 020.132 | 0.0906 0.9030 | 0.5670 0.9100 09 Gmehling and Onken (1986

CCl, (1)- 1-propanol(2) :
313.15 14.299 030.537 | 0.0906 0.9030 | 0.5240 0.9240 09 Gmehling and Onken (1986
343.15 49.183 091.966 | 0.0825 0.9630 | 0.3856 0.9130 11 Gmehling and Onken (1986
308.15 07.613 023.398 | 0.0989 0.9934 | 0.7885 0.9923 | 21 Gmehling et al. (1986)

CCl,(1)- 1-butanol(2)
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Table 8.A.3: Data source and ranges of experimental conditiegarding four different binary systems used in ctisdy-Ill for generating GP based

)
~—

Q)
~—

[®2)
~—

Q)
~—

(o)
~—

model-1V
Pressure Temperature | Mole fraction of Mole fraction of | No. of
System (P)(kP) (T) (K) component (1) in | component (1) in | data Reference
liquid phase,X;) | vapor phase){) | patterns

Ethanol (1)- Ethyl acetate (2) 101.325| 345.3349.85 | 0.10% 0.8924 0.086- 0.965 24 Gmehling and Onken (198

1-Propanol (1) Propyl acetate (2) 101.325] 3678%1.15 0.136-0.9520 0.216-0.930 20 Gmehling and Onken (198
079.993 361.21363.88 0.162 0.9350 0.239-0.899 09 Gmehling and Onken (198
053.329 350.22 353.03 | 0.162 0.9350 0.232 0.889 09 Gmehling and Onken (198
026.66 5 | 333.13337.17 | 0.162 0.9350 0.215 0.874 09 Gmehling and Onken (198

1-Butanol (1)- Butyl acetate (2) 101.325| 389.3894.90 | 0.109 0.9950 0.2170.989 33 Gmehling et al. (1986)
022.065 | 349.55351.45 | 0.16% 0.8730 0.216-0.807 07 Gmehling et al. (1986)
006.666 | 323.85327.85 | 0.186-0.9210 0.225 0.833 10 Gmehling et al. (1986)

1-Pentanol(1) Pentyl acetate(2) 100.765] 409:6013.70 | 0.456-0.8700 0.521 0.878 09 Gmehling et al. (1986)
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Chapter 9

Thesis Conclusion

9.1 INTRODUCTION

In this chapter, the principle findings and conmus reached thereof of the
studies presented in this thesis are reported. tibadily, suggestions for the further
research are presented.

Mathematical models of chemical reactions and @®ee are required for a
variety of tasks in chemical engineering and te@ioyg such as, prediction of
reaction’s steady-state and dynamic behavior, egeliph design, operation, scale-up,
control, fault detection and diagnosis, optimizatioetc. Conventionally, two
approaches, namelphenomenologicaffirst principles/ mechanistic) anempirical
are employed for chemical process modeling. Mody chemical processes are
complex and are difficult to model phenomenolodicalsince the complete
knowledge regarding the physico-chemical phenomerderlying their behavior—
which is absolutely necessary for this type of nlioage—is usually not available or
tedious, time-consuming and costly to acquire Wpeeiments. The nonlinear nature
of chemically reacting systems makes first-prinegpinodeling even more daunting
Being not demanding in terms of the availabilityneéchanistic knowledge, empirical
modeling is an attractive alternative to first piples modeling; however, it has its
own drawbacks such as the requirement that the &rthe model to be fitted must
be specified a priori before estimating the functparameters. This is, in general, a
difficult task since in many chemical processes tipkd variables influence the
nonlinear phenomenon and the precise interactietvgden them are not fully known.

Commonly, deterministic gradient-based methods are used in process
optimization. Invariably, these approaches reqthi the objective function (to be
maximized/minimized) must be continuous, differabtle and smooth—a criterion
difficult to fulfill especially in the case of extdively data-driven reaction/process
models. Gradient-based optimization methods alse laatendency to get stuck in a
local optimum leading to sub-optimal solutions.

To overcome the stated drawbacks of phenomenolégicgpirical modeling
approaches and deterministic optimization techrique this thesis artificial
intelligence (Al) based modeling methods, namatiificial neural network§ANN),
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andgenetic programmingGP), and a machine learning (ML) based method &drm
support vector regressiomave been employed for modeling a number of comple
chemical reactions and processes, and developgngpeerty estimation relation. The
processes for which models have been developedhdeto diverse fields, namely,
thermal energy production, polymers, petroleum,ewdteatment, and separation
processes.

An important application of process models is itimation. Accordingly, an
Al-based hybrid modeling-optimization strategy greing GP formalism and a
stochastic optimization method, namefjgnetic algorithmqGA) has been used in
optimizing a resin based adsorptive waste-watatrrent process.

In addition to the novel Al-based modeling and miation methodologies,
two conventional methods, namelpyincipal component analysigPCA), and
sensitivity analysi{SA) have been utilized for reducing the dimenaliiy of the
models’ input spaces, and identifying influentigbut variables, respectively.

In chapters 1 and 2, a broad objective of the ¢hethie need for utilizing
artificial intelligence based modeling and optintiaa methods, and their detailed
description are provided. The following section \pdes the rationale, salient

features, and highlights of the studies reportechiapters 3 to 8.

9.2 OVERALL CONCLUSION

Chapter 3 deals with experimentation and modelih@ @oal gasifier using
artificial intelligence based methods. Coal gaatien is a cleaner and an efficient
alternative to the coal combustion for producing iyngas. The high-ash coals are
found in a number of countries, and they form arpantant source for the
gasification. In India also a major portion of tectricity is generated in coal-based
thermal power stations. Accordingly, in this studyiensive gasification experiments
were conducted in a pilot-plant scale fluidized-lwedl gasifier (FBCG) using high-
ash coals from India. Specifically, the effectemfht coal and gasifier process related
parameters on the four gasification performancebbes, namely CO-+kgeneration
rate, syngas production rate, carbon conversiahhaating value of the syngas, were
rigorously studied. The data collected from theg@eements were used in the FBCG
modeling by utilizing two artificial intelligenceA{) strategies namely genetic
programming (GP) and artificial neural networks (A#. A comparison of the GP

and ANN-based models reveals that their output iptied accuracies and the
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generalization performance vary from good to excell The novelty of this study is
that (a) modeling of a coal gasification procesemm currently mined coal in India
has been utilized, was conducted using state-e&thartificial intelligence systems,
(b) the models can be used in designing, opera#ing,optimizing environmentally
friendly coal gasifiers that use high ash coals] &) a rigorous literature search
shows that this is the first study wherein the @Btegy has been employed for the
data-driven modeling in the coal sciences and amging.

Although high ash coals are routinely used in thergy generation, systematic
gasification kinetic studies using chars derivednir these coals are scarce.
Accordingly, chapter 4 reports the developmentha tata-driven models for the
gasification of chars derived from the high ashiso8pecifically, the models predict
two significant gasification performance parameteis. gasification rate constant,
and reactivity index. These models have been aactstl using three computational
intelligence (Cl) methods, namely genetic prograngn(iGP), multilayer perceptron
(MLP) neural network (NN), and support vector regien (SVR). The data used in
the modeling were collected by performing extengasification experiments in the
CO, atmosphere in a thermo-gravimetric analyzer (TG&)ng char samples derived
from Indian coals with high ash content. Values tbe stated gasification
performance parameters were obtained by fitting ¢xperimental data to the
shrinking un-reacted core (SUC) model. All the @sbd models developed in this
study possess an excellent prediction accuracy gameralization capability. The
notable features of this study are: (a) For th& fime, models have been developed
to predict the kinetic char gasification rate dans ks), and reactivity indexr()
magnitudes corresponding to the gasification ohhagh Indian coals being mined
currently, and (b) phenomenological and Al-basedieting are integrated to predict
the char gasification kinetic parameters. The el®developed here can be gainfully
employed in the design and operation of not onlidized bed gasifiers but also of
fixed bed ones using high ash Indian as also atb&is. Additionally, the models for
determining the rate constant can be used for giiedithe activation energies of the
coal gasification reactions involvir@, in the temperature range of 900-1850

Choosing inputs (independent/causal variables) mathematical model, which
are influential and, thus, significantly affect astput (dependent/response variable)

is a tedious, time consuming and trial and erracedure in conventional empirical
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modeling. In Chapter 5, genetic programming-baseategy has been suggested for
simultaneously identifying the important predictaariables as also searching and
optimizing an optimal data fitting function and parameters. The said strategy has
been illustrated by conducting two process idesdtfon case studies wherein the GP
formalism has been shown to (a) identify the infitied time-delayed inputs and
outputs, and (b) simultaneously perform systemtifieation using these influential
predictors. The two chemical engineering systenoseh in the case studies are: (i)
nonlinear height control system for a conical taaukd (ii) adiabatic nonlinear CSTR
concentration control system. Chapter 5, cleadyablishes that GP method is
capable of automatically identifying those inputhieh significantly influence the
dependent variable. Thus, efforts involved in idgimg the influential inputs are
greatly reduced. Additional benefit of GP-basedleis is that they are in most cases
less complex owing to which they exhibit better gratization performance than their
more complex counterparts, such as ANNs and SVRhe GP-based process
identification demonstrated in Chapter 5 is siguifitly useful in implementing model
based control strategies.

The API gravity {API) is an important physicochemical property afide oils.

It is used routinely in the determination of theurality and properties. In Chapter 6,
GP, MLP, and SVR methods have been used for dewglapodels for predicting
°AP| values of crude oils. These models use rargljzed SARA (Saturates
Aromatics Resins andAsphaltenescomposition as inputs for the prediction®sfI
gravity. It has been observed that all three Cedasonlinear models possess a better
°APl-value prediction accuracy and generalizatiompatélity than the currently
available only model (Fan and Buckley, 2002) asdimproved linear version (the
modified- Fan and Buckley model). This result dgandicates that the Cl-based
models are currently the best models for the SAR&tions based prediction of API
gravity of crude oils.

Groundwater is an important source of the drinkivater globally and often
contaminated with harmful arsenic metalloid ion$u3, removal of arsenic has
gained importance while managing and treating watet wastewater. Chapter 7,
reports usage of tannin-formaldehyde (TFA), andnita@aniline-formaldehyde
(TAFA) resins for the adsorptive removal of As(lldnd As(V) ions from the
contaminated water. Moreover, a fully artificialtelligence based hybrid strategy
(termed “GP-GA”) integrating genetic programmirand genetic algorithms, has
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been utilized for the modeling and optimizationre$in-based adsorptive removal of
As(lll)/As(V) ions from water and waste-water. Thsaid strategy has led to
significant improvements in the resin based adsgrpemoval of As(lll) and As(V)
ions over that observed in experiments beforeopeihg the reaction optimization.
The hybrid methodology utilized in this study cdsoabe extended for the modeling
and optimization of other contaminant-removal peses.

Among various Cl-based methods, genetic programnpogsesses several
novel and attractive characteristics, and yetritaims an unused data-driven modeling
technique for VLE predictions when compared with MéNand SVR. Accordingly,
Chapter 8 presents a study wherein the GP-basaeddaen modeling approach has
been successfully employed for the first time foedicting the vapor-liquid equilibria
(VLE) of a ternary and groups of binary mixturehieTpredictor variables of these
models include temperature, pressure, critical t¥atpre, critical pressure, acentric
factor, and liquid phase composition, whereas thgw (response) variable was
vapor phase composition. The experimental data frarous sources were used in
VLE modeling. Prediction accuracies and generabmnaperformance of all the GP-
based models were verified and found to be betierpared with the predictions of
the existing thermodynamic models, namely, Van Laafilson, NRTL, and
UNIQUAC.

The novel features of this study are as follows.

* A new method of modeling has been successfullyieghpbr VLE predictions.

* A single optimal GP-based model has been develéped group of three
binary systems to predict vapor phase compositiom;developed model has
been used for predicting mole fraction in the vaploase of first components
of individual binary systems.

» A single optimal GP-based model has been develéped group of three
binary systems, and the extrapolation capabilityhef developed model has
been successfully tested on a different (i.e. fgubinary system, where the

four binary systems belong to homologous seriedaafhols and acetates.

The advantage of GP-based VLE models is that ampaced to the
thermodynamic models these are less complex,reasgrasp, and more convenient
to deploy in a practical setting. There exists aormous scope for applying the GP-

based VLE modeling approach to other binary antargrsystems.
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9.3 SUGGESTIONS FOR FUTURE RESEARCH

This thesis presents applications of artificialeligence (Al) and machine
learning (ML) methodologies for process/reactiondeling, process identification,
property prediction, and optimization of variodgemical systems. Among the three
Al-based methods used in the stated modeling, Gpitedats attractive characteristics
has been a least used method in chemistry and chkeengineering/technology as
compared to ANNs and SVR. Its major advantage beéapgending upon the nature of
relationship, it is capable of fitting a linear wonlinear data fitting function and its
parameters without making any assumptions. Tiseséll a huge scope for using GP
in chemical engineering for applications such agE\rediction of multi-component
systems, model predictive control (MPC), etc. Oe fandamental side, a GP
algorithm/software capable of solving multiple impa multiple output (MIMO)
modeling problems does not seem to be availablethem open domain or
commercially. Availability of such a software/atgbm will make it possible
simultaneous fitting of multiple data-fitting funans.

In the thesis, Al-based models have been develépedasification of Indian
coals containing a high percentage of ash. Thesds care used extensively in
combustion applications and, thus, Al-based modeatihcoal combustion processes
will be beneficial for industries where the saidheology is used in equipment such
as boilers and steel furnaces.

Deep learning algorithms are increasingly useuaming of multi-layer ANNs
with hundreds/thousands of neurons. These are apébmining huge number of
data and therefore find applications in computatiotensive image recognition,
speech recognition, robotics, etc. In chemicaliregying/technology, deep learning
based ANNs can be used in image recognition agita such as recognizing size
and shape of bubbles in a fluidized bed and idgngfflow behavior of liquids and
fluids.

To summarize, the potential of Al and ML methoddlimit-less. These are
likely to find ever increasing applications in aesuch as plant/equipment safety,
emission control, design of new drug and other swés with desired properties, and

chemical process centric internet of things (10T).

275



List of Publications

Publications Received from the Work Presented in th Thesis

. Patil-Shinde, V., Kulkarni, T., Kulkarni, R., ChavaP. D., Sharma, T.,
Sharma, B. K., Tambe, S. S., and Kulkarni, B. R01@4). Artificial
intelligence-based modeling of high ash coal geaiifon in a pilot plant scale
fluidized bed gasifierlndustrial & Engineering Chemistry Researctb3(49),
18678-18689.

. Patil-Shinde, V., Saha, S., Sharma, B. K., Tamb&.Sand Kulkarni, B. D.
(2016). High Ash Char Gasification in Thermo-Graeinc Analyzer and
Prediction of Gasification Performance Parametesng) Computational
Intelligence FormalismsChemical Engineering Communications2038),
1029-1044.

. Verma, D., Goel, P., Patil-Shinde, V., and Tamhe$S(2016, January). Use
genetic programming for selecting predictor vamalbdnd modeling in process
identification. InIEEE explore, 2016 Indian Control ConferencélCC) (pp.
230-237). IEEE. (ISBN: 978-1-4673-7992-2), doi:
10.1109/INDIANCC.2016.7441133.

. Goel, P., Saurabh, K., Patil-Shinde, V., and Tanth&5. (2016). Prediction of
°API Values of Crude Oils by Use of Saturates/ArtosdResins/Asphaltenes
Analysis: Computational-Intelligence-Based Mod&8BE  Journal,
doi:10.2118/184391-PA

. Patil-Shinde, V., Mulani, K. B., Donde, K., Chavax, N., Ponrathnam, S.,
and Tambe, S. S. (2016). The Removal of arsenise([l)] and arsenate [As
(V)] ions from wastewater using TFA and TAFA resirfSomputational
intelligence based reaction modeling and optimiatiournal of
Environmental Chemical Engineeringd(4), 4275-4286.

Patil-Shinde, V., Tambe, S. S. (2016). Genetic @ogning formalism for

prediction of vapor-liquid equilibrium. (to be coramcated toFluid phase
Equilibria).

276



