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ABSTRACT 

Mathematical reaction/process models are needed for a variety of tasks in 

chemical engineering and technology. These tasks include but are not limited to, 

equipment design, operation, and scale-up, prediction of steady-state and dynamic 

behavior, monitoring, control, fault detection and diagnosis and optimization.   

Conventionally, two approaches, namely, phenomenological (also termed 

“mechanistic” or “first principles”), and empirical (which comprise of regression 

methods), are used in chemical reaction/process modeling. Both these approaches 

suffer from several disadvantages especially when underlying reaction/process 

behavior is nonlinear, which is often the case in real practice. Another important 

chemical engineering task, namely, process optimization is traditionally conducted 

using deterministic gradient based methods. These methods also suffer from 

drawbacks such as entrapment into a local minimum. 

The difficulties involved in the phenomenological and regression-based 

modeling and deterministic optimization techniques necessitated exploration of 

alternative nonlinear modeling and optimization strategies. In recent years, Artificial 

Intelligence (AI) based nonlinear modeling and stochastic optimization techniques 

owing to their several advantages have provided an attractive avenue for modeling 

highly nonlinear, complex multivariable systems as also optimization of chemical 

reactions and processes. Similar to AI, machine learning (ML) based modeling 

methods also possess certain attractive characteristics. Accordingly, in the present 

thesis, artificial intelligence and machine learning formalisms have been extensively 

employed to build exclusively data-driven models for tasks such as steady state and 

dynamic reaction/process modeling. The specific AI- and ML-based methodologies 

used in process modeling are artificial neural networks (ANNs), genetic 

programming (GP), and support vector regression (SVR). Additionally, an AI-based 

stochastic method, namely, genetic algorithms (GA) has been used for optimizing a 

chemical process. Apart from the stated AI-based methods, conventional 

mathematical methods such as principal component analysis (PCA) and sensitivity 

analysis have been used for conducting dimensionality reduction and identifying 

influential causal (input/independent) variables, respectively.  
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Notable features of the studies presented in the thesis are: 

• Artificial intelligence and machine learning methods have been 

comprehensively used for modeling coal gasification pilot plant process; the 

coals used in gasification are high ash Indian coals.  

• It has been clearly demonstrated that the genetic programming technique while 

searching and optimizing the form and associated parameters of an appropriate 

linear/nonlinear data-fitting function, also identifies those inputs which 

significantly influence the model output. 

• An entirely AI-based hybrid methodology integrating GP and GA formalisms 

has been employed for modeling and optimization of resin-based adsorptive 

removal of toxic metal ions from contaminated water. 

• The GP strategy has been utilized for an accurate prediction of API gravity 

values of crude oils. The nonlinear model developed uses SARA composition 

of crude oils to predict the API gravity magnitudes. 

• In a first of its kind of study, genetic programming has been employed to 

develop models for VLE prediction, where it has been shown that a single GP 

model under certain conditions can predict VLE of multiple binary systems. 

This thesis is divided into nine chapters. A brief description of these chapters is 

provided below.   

Chapter 1 gives a bird’s eye-view of the significance of the work reported in the 

thesis. It also presents information about the conventional modeling and optimization 

techniques, and difficulties encountered thereof. The chapter next presents salient 

features of the AI-based modeling and optimization strategies and their generic 

application areas in chemical engineering and technology. 

Chapter 2, first describes in detail the various AI-based formalisms utilized in 

the various studies reported in the thesis, such as multilayer perceptron (MLP) neural 

network, genetic programming (GP), support vector regression (SVR) and genetic 

algorithms (GAs). This chapter also provides a description the conventional 

mathematical techniques, namely, principal component analysis (PCA) and sensitivity 

analysis, which have been used for performing dimensionality reduction, and 

identifying influential causal (input/independent) reaction/process variables, 

respectively. Additionally, statistical measures, namely, coefficient of correlation 
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(CC), root mean squared error (RMSE), and Steiger’s test that has been used for the 

evaluation and comparison of the prediction and generalization performance of the AI 

and ML-based models are explained in the chapter. 

Chapter 3 reports study a wherein data were collected from extensive 

gasification experiments conducted in a pilot-plant scale fluidized-bed coal gasifier 

(FBCG)—located at CSIR-Central Institute of Mining and Fuel Research (CIMFR), 

Dhanbad, India—using high-ash Indian coals. Specifically, the effects of eight coal 

and gasifier process related parameters on the four gasification performance variables, 

namely CO+H2 generation rate, syngas production rate, carbon conversion, and 

heating value of the syngas, were rigorously studied. The data collected from these 

experiments were used in the FBCG modeling, which was conducted by utilizing two 

artificial intelligence (AI) strategies namely genetic programming (GP) and artificial 

neural networks (ANNs). The original eight-dimensional input space of the FBCG 

models was reduced to three-dimensional space using principal component analysis 

(PCA), and the PCA-transformed three variables were used in the AI-based FBCG 

modeling. A comparison of the GP and ANN-based models reveals that their output 

prediction accuracies and the generalization performance vary from good to excellent 

as indicated by the high training and test set correlation coefficient magnitudes. This 

study also presents results of the sensitivity analysis performed to identify those coal 

and process related parameters, which significantly affect the FBCG process 

performance. 

Chapter 4 reports development of the data-driven models for the gasification of 

chars derived from the high ash coals. Specifically, the models predict two important 

gasification performance parameters, viz. gasification rate constant and reactivity 

index. These models have been constructed using three computational intelligence 

(CI) methods, namely genetic programming (GP), multilayer perceptron (MLP) 

neural network (NN), and support vector regression (SVR). The inputs to the CI-

based models consist of seven parameters representing the gasification reaction 

conditions and properties of high ash coals and chars. The data used in the modeling 

were collected from the extensive gasification experiments. These were performed in 

the CO2 atmosphere in a thermo-gravimetric analyzer (TGA) using char samples 

derived from the Indian coals containing high ash content. Values of the two 

gasification performance parameters were obtained by fitting the experimental data to 
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the shrinking unreacted core (SUC) model. It has been observed that all the CI-based 

models possess an excellent prediction accuracy and generalization capability. 

Accordingly, these models can be gainfully employed in the design and operation of 

the fixed and fluidized bed gasifiers using high ash coals.  

In Chapter 5, a GP-based strategy has been suggested for (a) simultaneously 

identifying the important predictor (independent/causal/input) variables that 

significantly influences the output (dependent variable) of an input-output model, and 

(b) searching and optimizing an optimal data fitting function and its parameters. The 

said strategy has been illustrated by conducting two process identification case studies 

wherein the GP formalism has been shown to (i) identify the influential time-delayed 

inputs and outputs, and (ii) simultaneously perform system identification using these 

influential predictors. The two chemical engineering systems chosen in the case 

studies are nonlinear height control system for a conical tank, and nonlinear adiabatic 

CSTR concentration control system. It is noticed from the GP-based  models obtained 

in these case studies that although the data supplied to the GP algorithm contained six 

predictor variables, it searched and optimized models with only four predictor 

variables; noticeably, these predictors were identified by the sensitivity analysis to be 

having most influence on the model output. The GP-based system identification 

strategy suggested here—being computationally economical and much less tedious—

has the potential to become an effective alternative to the conventionally used 

linear/nonlinear identification strategies. Having identified a process using the GP 

strategy the corresponding model can be gainfully utilized to implement the model 

predictive control (MPC) strategy. 

 Chapter 6 presents, the API gravity (oAPI) is an important physicochemical 

characteristic of crude oils and often used in determining their properties and quality. 

There exist models— predominantly linear ones —for predicting the oAPI magnitude 

from the molecular composition of crude oil. This approach is tedious and time-

consuming since it requires quantitative determination of numerous crude oil 

components. Usually, the hydrocarbons present in the crude oils are grouped 

according to their molecular average structures into Saturates, Aromatics, Resins and 

Asphaltenes (SARA) fractions. An oAPI prediction model based on these four 

fractions is relatively easier to develop although this approach has been rarely 

utilized.  A rigorous scrutiny suggests that some of the dependencies between the 
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individual SARA fractions and the corresponding oAPI magnitude could be nonlinear. 

Accordingly, in this study, SARA fractions based nonlinear models have been 

developed for the prediction of oAPI magnitudes using three computational 

intelligence (CI) formalisms, namely, genetic programming, artificial neural 

networks and support vector regression. The SARA analyses and API-gravity values 

of 403 crude oil samples covering wide ranges have been utilized in developing these 

models. A comparison of the CI-based models with an existing linear model indicates 

that all the former class of models possesses a significantly better oAPI prediction and 

generalization performance than that exhibited by the linear model. Also, the SVR-

based model has been found to be the most accurate API gravity predictor. Owing to 

their better prediction accuracy, CI-based models can be gainfully used to predict 
oAPI values of crude oils. 

In Chapter 7, a computational intelligence (CI) based hybrid strategy was 

employed to model and optimize, tannin-formaldehyde (TFA) and tannin-aniline-

formaldehyde (TAFA) resin-based adsorption of arsenite [As(III)] and arsenate 

[As(V)] ions for securing optimal reaction conditions. This strategy first uses an 

exclusively reaction data driven modeling strategy, namely, genetic programming 

(GP), to predict the extent (%) of As(III)/As(V) adsorbed on the TFA and TAFA 

resins. Next, the input space of the GP-based models consisting of reaction condition 

variables was optimized using  genetic algorithm (GA), which is an artificial 

intelligence based stochastic nonlinear optimization method;  the objective of this 

optimization was to maximize the adsorption of As(III) and As(V) ions on the two 

resins. Finally, the sets of the optimal reaction condition variables provided by the 

GP-GA hybrid method were verified experimentally. The verification results indicate 

that the optimized conditions have lead to 0.3% and 1.3% increase in the adsorption 

of the As(III) and As(V) ions respectively on the TFA resin. More significantly, the 

optimized conditions resulted in an improvement of 3.02 % in the adsorption of 

As(III), and 12.77% in the adsorption of As(V) on the TAFA resin. The GP-GA 

hybrid strategy employed in this study can be gainfully utilized for modeling and 

optimization of similar type of contaminant-removal processes.  

Chapter 8 presents, a study wherein genetic programming (GP) has been 

introduced for the prediction of VLE. Specifically, four case studies have been 

performed wherein seven GP-based VLE models have been developed using 
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experimental data for predicting the vapor phase composition, (��) of a ternary and 

groups of non–ideal binary systems. The input space of these models consists of three 

attributes of pure components (acentric factor, critical temperature, and critical 

pressure), and three intensive thermodynamic parameters (liquid phase composition, 

pressure, and temperature). The prediction and generalization performance of the GP-

based models was rigorously compared with that of the corresponding conventionally 

employed Van Laar, NRTL, and UNIQUAC models. The results obtained thereby 

indicate superior prediction accuracy and generalization performance of the GP-based 

models vis-a-vis that of the conventional thermodynamic models. The GP-based 

modeling method proposed in this study can be gainfully utilized in the prediction of 

VLE as also designing corresponding experiments at different pressure and 

temperature ranges. 

 

Chapter 9 gives an overview of the important results presented in this thesis and 

the conclusions drawn thereof. Directions for future research are also presented in this 

chapter.
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Chapter 1 
 

 Introduction 
 

ABSTRACT   
 

Modeling and optimization of chemical reactions and processes 

is an important activity in chemical engineering/technology. It 

assists in the prediction of reaction/process behavior, equipment 

design and scale-up, process operation and monitoring, control, 

etc. There exist conventional methods for conducting modeling 

and optimization of chemical reactions and processes. These 

have certain deficiencies. Accordingly, in the present thesis, 

artificial intelligence and machine learning based formalisms 

have been used for modeling and optimization of a number of 

reactions and processes. This chapter outlines the currently used 

principle reaction and process modeling and optimization 

methods, and the need for newer approaches thereof. 

Additionally, the chapter presents an overview of the contents of 

the subsequent chapters. 
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1.1 MOTIVATION FOR THE THESIS 

For designing and operating a chemical process and carrying out related tasks, it 

is necessary to understand its behavior completely. Conducting experiments for 

getting an insight in to the process behavior is often an expensive, complicated, 

tedious, and a time-consuming proposition. These difficulties can be overcome if a 

representative process model is available. The objective of mathematical modeling 

has been stated as (Constantinides, 1987) — “to construct, from theoretical and 

empirical knowledge of the process, a mathematical description, which can be used to 

predict the process behavior.” The mathematical model of a chemical process 

provides—over specific ranges of operating variables and parameters—quantitative 

information on the process behavior; it describes at least the major features of the 

chemical and physical mechanisms underlying the process. The process behavior 

described by mathematical models mainly includes steady-state, dynamic, and 

spatiotemporal phenomena. A properly constructed model of a process (physical, 

chemical, biological, and biochemical) can be used to predict its behavior under 

different operating scenarios. In chemical engineering practice, an accurate, robust, 

and reliable mathematical process model assists in the preliminary process design, 

complex simulation, prediction of the steady-state and dynamic behavior, startup, 

shutdown, scaling up, process monitoring, model based control, fault detection and 

diagnosis, and process optimization.  

Chemical processes comprise a set of unit operations, and reactors that convert 

raw materials into desirable products through physicochemical conversions. Modern 

day chemical processes are highly complex with a multitude of interconnected 

equipments, sensors, and control systems. Consequently, a large number of variables 

and parameters associated with these systems interact with each other thereby making 

design, operation, control, and analysis of processes a difficult task. Notwithstanding 

these difficulties, it is at most necessary that operation of chemical processes is safe, 

robust, efficient, commercially viable, and environment friendly. In the modern times 

of advanced software and hardware technologies, the stated goal is achieved via 

computer-aided chemical process design, operation, control, simulation, and 

optimization.  It helps in (a) reducing the time lag between process innovation and its 

commercial implementation and exploitation, (b) ensuring efficiency, safety, 
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competitiveness, and flexibility of new chemical plants, and (c) improving operational 

efficiencies of existing plants.     

There exist various types of models, namely, phenomenological, empirical, 

black-box, stochastic, statistical, Monte-Carlo, cellular automata, etc. Each one of 

these possesses advantages and drawbacks. In the last three decades, a new class of 

modeling paradigm that uses various artificial intelligence (AI) and machine learning 

(ML) formalisms is being increasingly utilized in chemical process modeling.  Models 

belonging to this class have several attractive properties. Accordingly, the principal 

motivation of this thesis is to explore selective AI and machine learning formalisms 

for modeling chemical reactions and processes. Additionally, an AI-based method is 

employed for conducting chemical process optimization. The present chapter provides 

(a) a bird’s eye-view of the AI and ML based modeling and optimization formalisms 

used in conducting the studies described in the subsequent chapters, and (b) an 

overview of the contents of chapters 2 to 9 of this thesis. 

   

1.2  PROCESS ENGINEERING TASKS  

The principal tasks encountered in chemical engineering and technology 

that involves development of models are described below in brief. 

(a) Prediction of steady-state and dynamic process behavior   

 A reaction or a process essentially displays two types of behavior, namely 

steady-state and dynamic. The corresponding mathematical models are categorized 

similarly. In the case of former, after an initial transient behavior, reaction proceeds at 

a constant (steady) rate. In a dynamic state, however, reaction behavior is not steady 

and varies with time.  When a reaction/process reaches a steady (static) state, its 

operating variables reach a constant value and do not vary unless an external force is 

applied. Steady-state modeling is particularly useful in design calculations. When a 

process is in a dynamic state, its operating variables exhibit time-dependent 

variations. Dynamic process models are crucial in getting a comprehensive view of 

the reaction/process/plant behavior. 

(b) Process optimization  

Process optimization aims at determining optimal values of  operating 

variables/parameters for securing a desirable performance, such as better product 
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quality, higher conversion, improved (lower) selectivity for the desired (undesired) 

product, minimum operating cost, and profit maximization. It can also help in 

ensuring a safe, cost-efficient, and environment friendly process operation. 

Availability of a process model is a pre-requisite for process optimization. 

(c) Model based process control 

For any chemical process, influential parameters and variables need to be 

manipulated (controlled) for achieving the desired process performance. This is 

achieved by implementing a process control mechanism. It   is a critical engineering 

activity in any chemical process since it ensures a safe, economical, and environ-

friendly process operation. Using the knowledge of the process’s steady-state and 

dynamical behavior, process control maintains the magnitude of a 

specific process variable within a desired range. For instance, the temperature of a 

chemical reactor may be controlled to maintain a consistent product output or 

conversion.  The conventional proportional-integral-derivative (PID) control strategy 

does not explicitly take into account the process model. In general, model-based 

control is found to yield better performance than the PID scheme especially for 

controlling nonlinear systems.  

(d)  Process monitoring   

In order to deliver quality products, critical process operating variables should 

precisely follow their specified trajectories.  Process variability can be reduced by 

employing an efficient monitoring strategy. Such a system, based on a dynamic 

process model and functioning online is capable of quickly identifying any abnormal 

process behavior so that corrective measures can be taken swiftly. It also helps in 

diagnosing process faults.  

(e) Process identification 

Process identification is necessary in implementing model-based process 

control. It involves development of empirical input-output models and thereby 

identifying dynamic process behavior. Given past and present values of   the 

manipulated and controlled variables, this type of model typically predicts the 

single/multistep ahead magnitude of the manipulated variable. 
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(f) Quantitative Structure—Activity/Property Relationsh ips (QSAR/QSPR) 

QSAR/QSPR represents a relationship (model) between the structural 

parameters of a molecule and its activity/property. These relationships are 

unquestionably of great importance in modern chemistry and its sub-disciplines. Once 

a correlation between structure and activity/property is developed, any number of 

compounds, including those not yet synthesized, can be readily screened; it helps in 

screening specific structures (molecules) possessing the desired activity/property. In 

the next step, the screened compounds are synthesized and tested in the laboratory. 

Thus, the QSAR/QSPR approach conserves resources and accelerates development of 

new molecules for use as drugs, materials, additives, or for any other purpose 

(Karelson et al., 1996). 

(g) Fault detection and diagnosis (FDD) 

A properly and timely detection and diagnosis of occurrence of faults in 

chemical plants of all sizes, assumes greatest importance from the viewpoint of 

personnel and equipment safety. Of concern is also the monetary loss incurred during 

the short- and long–term plant shut-downs owing to an equipment malfunction or a 

failure. Since it directly helps to prevent any impending hazardous situation, process 

fault detection and diagnosis (FDD) has become an integral part of the process design 

and operation activity. The task of FDD is greatly simplified if a process model is 

available (or can be developed) since various equipment fault and malfunction 

scenarios can be simulated using models.                   

(h) Soft-sensors 

In the absence of hardware sensors, product analysis is conducted in the quality 

control laboratory using instrumental and chemical methods. Some analyses are 

tedious, and time-consuming. Consequently, the plant continues to produce off-spec 

product during the time taken for the chemical analysis. This difficulty is overcome 

by developing soft-sensors. These are software based sensors (mathematical models), 

which given the information about the current values of process variables, can predict 

the values of the quality control variables. The soft-sensor models are developed 

using historical data of process variables and parameters, and the corresponding 

values of quality control variables determined via instrumental and/or chemical 

methods. When operated in the prediction mode, soft-sensor models are capable of 

predicting the values of quality control variables almost instantaneously. 
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(i) Data mining 

Process operation over time generates huge amounts of data regarding, for 

example, process operating variables and parameters and the corresponding 

conversions, yields, selectivities, and quality control variables. These data contain 

wealth of information and knowledge hidden in them. Data mining is a non-trivial 

task of identifying valid, novel, potentially useful, and ultimately understandable 

patterns within process data. It is the process of extracting previously unknown 

comprehensible and actionable information from large databases and using it to make 

crucial process/business decisions (Provost and Fawcett, 2013). One of the important 

elements of data mining is to develop models unraveling hidden relationships between 

different process variables and/or parameters and the corresponding product specific 

and process performance attributes. 

 

1.3   CONVENTIONAL PROCESS MODELING TECHNIQUES 

A great deal of effort has been spent over the last several decades towards 

mathematical modeling of chemical processes. Availability of an accurate process 

model is essential for predicting the process behavior under wide-ranging input 

conditions. Commonly, two approaches, namely, phenomenological and empirical are 

employed for modeling a chemical process.  

1.3.1 Phenomenological Modeling 

The phenomenological (also termed first principles or mechanistic) models 

rigorously account for the reaction mechanism, mass and heat transport phenomena, 

and thermodynamics associated with the chemical process under consideration. 

Principal advantages of the phenomenological modeling approach  

� Provides valuable insight into the process behavior. 

� Model can be used in extrapolated regions of the input space. 

� Can be used in process scale-up. 

� Since these represent physico-chemical phenomena underlying a process, first 

principles models provide an insight into the intrinsic phenomena responsible 

for process behavior.  
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Difficulties encountered in phenomenological modeling 

Being inherently complex and nonlinear, many chemical processes are difficult 

to model phenomenologically. Specific difficulties encountered in the 

phenomenological modeling of the chemical processes are:  

� Most chemical processes witness existence of multiple nonlinear interactive 

relationships between process variables and parameters. 

� Cost-intensive and exhaustive experimentation is required for studying the 

effects of influential process operating variables and parameters on the process 

behavior. 

� Often, there exists insufficient knowledge of the physicochemical phenomena 

(e.g., reaction kinetics, heat and mass transport mechanisms and 

thermodynamics) underlying a process and, thus, extensive effort is needed to 

arrive at a reasonable model. 

In view of the difficulties associated with the phenomenological modeling, it becomes 

necessary to explore alternative modeling approaches. One such practical option is the 

development of exclusively data-driven models. Commonly, data-driven models are 

developed using empirical (regression) methods.  

1.3.2 Empirical Modeling  

Empirical models, sometimes also termed as “black-box” models provide a 

convenient alternative to first-principles models. In mathematical modeling, when the 

primary goal is the most accurate replication of data, regardless of the 

mathematical model structure, a black-box modeling approach is useful (Sjöberg et 

al., 1995). In conventional empirical modeling, process behavior is modeled using 

appropriately chosen empirical equations, for example, polynomial or multivariable 

linear/nonlinear expressions. This procedure termed regression uses a heuristic 

procedure  wherein an appropriate functional form that possibly fits the process data 

is selected in advance following which the unknown function parameters are 

estimated using a suitable parameter estimation method. Since several efficient 

linear/nonlinear parameter estimation methods are available, the real difficult part in 

empirical modeling is specification of the model structure. For linear systems model 

specification is easy; however for a nonlinear systems it poses significant difficulties 



8 

 

since it involves selecting an appropriate model structure from the numerous 

competing ones (Verma et al., 2016).  

Principal advantages of the empirical modeling approach 

� Appropriate linear or nonlinear models are fitted exclusively from the process 

data containing values of dependent and independent variables and 

parameters.   

� The detailed knowledge of physico-chemical phenomena underlying the 

process is not needed.  

Difficulties encountered in empirical modeling  

� The exact form of the data-fitting function needs to be specified before 

parameters associated with it can be estimated. This is a difficult task that 

requires a “trial-and-error” approach since very often a number of variables 

nonlinearly influence the process behavior and the precise interactions 

between them are not known. 

� Mostly provide correct predictions over a limited range of the process data 

used in developing the model. 

� In general can not be used for extrapolation. 

� Large amounts of statistically well distributed data are needed to develop an 

empirical model possessing good prediction accuracy and generalization 

capability. 

 

1.4   ARTIFICIAL INTELLIGENCE (AI)-BASED PROCESS MO DELING 

TECHNIQUES  

Artificial intelligence (AI) is a branch of computational science, which develops 

mathematical algorithms mimicking various kinds of intelligent behavior exhibited by 

the biologically evolving species with the aim of providing novel and efficient 

solutions to complex modeling, classification and optimization problems (Fogel,  

2006). Stated differently, AI is essentially concerned with the development of 

algorithms and techniques, which allow computers to “learn” and utilize this 

knowledge to solve problems such as function approximation, classification, image 

and speech recognition and clustering. The AI, however, does not have to confine 

itself to methods that are observed only in the nature. Accordingly, often machine 
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learning (ML) algorithms are also considered to be part of AI. Unlike AI, the ML 

algorithms are not based on the intelligent behavior observed in nature although their 

working can be termed “intelligent.” Both AI and ML-based modeling formalisms are 

exclusively data-driven and their performance critical depends upon the quality and 

quantity of the data. In the following, major AI and ML-based modeling methods are 

described in brief. 

 
(a) Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) (Freeman and Skapura, 1996) are an 

information-processing paradigm founded on the mechanisms followed by the highly 

interconnected cellular structure of the human brain. They basically simulate the 

brain’s lower level mechanisms, such as, learning, pattern recognition, pattern 

association, generalization, and self-organization (Tambe et al., 1996). ANNs are a 

black-box empirical modeling paradigm where process modeling is possible solely 

based on the historic process input-output data. The commonly employed ANNs for 

modeling purposes, such as multilayer perceptron (MLP) and radial basis function 

(RBF) neural network utilize a generic nonlinear function as a building block of the 

function to be approximated and, thus, the troublesome task of specifying the form of 

the fitting function gets completely eliminated. ANNs possess certain added 

advantages such as amenability to parallel processing, due to which process modeling 

becomes easier, less cumbersome, and faster compared to the phenomenological 

modeling approach.  

(b)  Genetic Programming (GP) 

There exists a novel member of the evolutionary algorithms family, namely, 

genetic programming (GP) (Koza, 1992) that in its original form provided a method 

for automatically creating  computer programs that perform  pre-specified tasks 

simply from a high-level statement of the problem. Genetic programming follows 

Darwin’s theory of biological evolution comprising “survival of the fittest” and 

“genetic propagation of characteristics” principles. It addresses the goal of automatic 

generation of computer programs by: (i) genetically breeding a random population of 

computer programs, and (ii) iteratively transforming the population into a new 

generation of computer programs, by applying analogs of nature-inspired genetic 

operations, namely, selection, crossover, and mutation (Vyas et al., 2015). Another 
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important application of GP termed “symbolic regression” is in data-driven modeling, 

which has been extensively explored in this thesis. The novel aspect of GP when used 

in modeling is that given an example input-output data set, the method is capable of 

automatically obtaining an appropriate linear/nonlinear data-fitting function and its 

parameters.  

(c)  Fuzzy Logic (FL)  

Fuzzy Logic is a systematic mathematical formulation for investigating and 

characterizing different types of uncertainties (Tootoonchy and  Hashemi, 2013). It is 

best suited when a mathematical model of the process either does not exist, or exists 

but is too complex to be evaluated fast enough for a real time operation, or is too 

difficult to encode,  when data are imprecise and noisy. It was popularized by Lotfi 

Zadeh in the sixties (Zadeh, 1965). It is based on the premise that Boolean logic, 

represented by 0 and 1, does not adequately represent imprecise or fuzzy information.  

Fuzzy logic uses membership functions having values between 0 and 1. The degree of 

membership allows an object in a set to be anywhere in the range of 0 (completely not 

in the set) to 1 (completely in the set), thus permitting to deal with uncertain situations 

naturally (Bose, 1994). The values of fuzzy variables are expressed with English 

words such as cold, warm, hot or weak, medium, and high; each of these is defined by 

a suitable (e.g., Guassian, triangular, or trapezoidal) membership function. In contrast 

to the abrupt changes from 0 to 1 in Boolean logic, the membership functions allow 

gradual variations in the variables. FL provides a simple way to arrive at a definite 

conclusion based upon vague, ambiguous, imprecise, noisy or missing input 

information. This unique ability of FL has been utilized to model complex nonlinear 

processes where development of a suitable phenomenological mathematical 

expression becomes difficult (Mendel, 1995). 

1.5 MACHINE LEARNING (ML)-BASED PROCESS MODELING 
TECHNIQUE: Support Vector Regression (SVR) 

The SVR (Vapnik, 1995; Burges, 1998) is a regression analog of the statistical 

machine learning theory based classification paradigm, namely, support vector 

machines (Vapnik, 1995). It is a linear method in a high-dimensional feature space 

that is nonlinearly related to the input space. SVR formalism possesses some desirable 

characteristics, such as good generalization ability of the regression function, 

robustness of the solution, sparseness of the regression, and an automatic control of 
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the solution complexity.  It also provides an explicit knowledge of the data points that 

define the regression function. This feature assists in interpreting an SVR-based 

model in terms of the training data.  

1.6   CONVENTIONAL PROCESS OPTIMIZATION TECHNIQUES 

Apart from predicting the process performance under varying operating 

conditions, a process model can also be used to secure optimum process conditions 

that would maximize process performance. The objective of process optimization 

could involve maximization of conversion, product yield, product selectivity, process 

profit, etc., and/or minimization of operating loss, production cost, selectivities of the 

undesirable products, etc. A generalized optimization problem statement is given as: 

                       maximize/minimize  f = (x, β);  subject to constraints C1, C2,…        (1.1) 

where,  x = set of decision variables (to be optimized),  f  = objective function, and     

β =  set of objective function parameters 

Depending upon the type of process model (phenomenological/empirical/AI-

based) a suitable formalism should be selected for the model optimization. There exist 

two principle methods of optimization, namely, deterministic, and stochastic. Figure 

1.1 adapted from Devillers (1996) shows an overview of search and optimization 

methods. 

Figure 1.1: Classification of search and optimization methods. 
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1.6.1 Deterministic Optimization Methods  

These classical methods emboding algorithms which rely heavily on linear 

algebra since they are commonly based on the computation of the gradient, and in 

some cases also Hessian, of the response variables (Cavazzuti, 2013). They aim to 

arrive at the optimum by approximating the local neighborhood of a given solution in 

the search space and moving to a better solution whenever possible. All gradient 

based methods and some line search methods fall under this class.  

Gradient based methods: As suggested by their name, these methods evaluate 

gradient of the dependent variable (e.g., prediction error) with respect to the decision 

variable, and move (update) the decision variable in the negative direction of the 

gradient. There exist several gradient-based optimization methods such as delta rule 

and conjugate gradient.  

Advantage of gradient based optimization method 

• They converge to an optimium solution speedily, meaning as compared to the 

stochastic optimization methods, they need smaller number of objective 

function evaluations to reach the optimal solution. 

Disadvantages of gradient-based optimization methods 

� Most of these methods require the objective function (to be 

maximized/minimized) to be continuous, smooth and differentiable. In many 

real-life systems, the objective function could be noisy, non-smooth and 

discontinuous and, thus, not amenable to gradient-based methods. 

� Invariably get stuck in a local optimum leading to a sub-optimal solution.  

1.6.2 Stochastic Optimization Methods  

These methods are mostly used in nonlinear optimization. They randomly 

generate candidate solutions, which are subsequently manipulated according to a 

specific algorithm. Here, the emphasis is on sampling the search space as widely as 

possible while trying to locate the promising regions for further search. In the 

stochastic techniques, randomly generated initial population of candidate solutions is 

constantly refined so as to find better solutions. In contrast to the traditional 

deterministic optimization techniques, which invariably operate on a single candidate 

solution, the stochastic methods operate on a population of candidate solutions. This 

makes it possible for the stochastic techniques to search several areas of the solution 
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space. The size of the candidate solution population is user-defined and depends on 

the size of decision variable space under consideration.  

1.7 AI-BASED STOCHASTIC OPTIMIZATION TECHNIQUES   

In recent years, several AI-based nonlinear search and optimization techniques 

such as genetic algorithms, particle swarm, ant colony and artificial immune systems, 

have been proposed. All these have a random component in their implementation. 

Advantages of stochastic methods 

� Unlike deterministic gradient based optimization methods, stochastic ones do 

not require the objective function to be smooth, continuous, and differentiable.  

� Since they operate on a population of candidate solutions, they scan a wider 

solution Space. Invariably, they converge to a solution that is global or the 

deepest local minimum.  

Genetic algorithms (GAs): Genetic algorithms (Holland, 1975) are the most widely 

used stochastic optimization formalism. They belong to the AI-based class of search 

and optimization methods namely evolutionary algorithms. GAs enforces the survival 

of the fittest paradigm of evolution along with the genetic propagation of 

characteristics. This brings to bear a balanced tradeoff between exploitation and 

exploration (Michalewicz, 1996) during search for an optimum solution. Beginning 

from a randomly generated population of candidate solutions to the optimization 

problem at hand, GA produces offspring population from parent candidates that are 

fitter in some respect.  The mechanisms used in offspring production are selection, 

crossover and mutation. Unlike deterministic optimization methods,  which move 

from point to point, in GA procedure an initial population of solutions is constantly 

refined in a manner imitating selection and adaption in the biological evolution, while 

discovering expectedly better solutions.  

1.8 OUTLINE OF THE THESIS 

The principal aim of this thesis is to employ AI-based modeling formalisms 

such as artificial neural networks, genetic programming and support vector regression 

for developing data-driven models of a number of chemical engineering systems 

including reactions and processes. Additionally, genetic algorithms are used for 

optimization of reaction conditions. The remainder of this thesis is divided in eight 
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chapters and references are listed alphabetically at the end of each chapter. In what 

follows, a brief overview of chapters 2 to 8 is provided.   

Chapter 2: Modeling and Optimization Methodologies  

In this chapter, first the various AI-based modeling and optimization formalisms 

utilized in the studies reported in this thesis, are described in detail. The chapter also 

provides details of the conventional mathematical techniques, namely, principal 

component analysis and sensitivity analysis. These methods have been used in 

reducing the dimensionality of the input space of the models and identifying 

influential causal (predictor) variables in the example data sets used in modeling. 

Additionally, the statistical measures, namely, coefficient of correlation (CC) and root 

mean squared error (RMSE), and the Steiger’s z-test used in the evaluation and 

comparison of the prediction and generalization performance of the data-driven 

models, are described. 

Chapter 3:  Modeling of high ash coal gasification in a pilot plant scale fluidized 
bed gasifier 

The quality of coal—especially its high ash content—significantly affects the 

performance of coal-based processes. Accordingly, in this study, data were collected 

from extensive gasification experiments conducted in a pilot-plant scale fluidized-bed 

coal gasifier (FBCG)—located at CIMFR, Dhanbad—using high-ash Indian coals. 

Specifically, the effects of eight coal and gasifier process related parameters on the 

four gasification performance variables, namely CO+H2 generation rate, syngas 

production rate, carbon conversion, and heating value of the syngas, were rigorously 

studied. The data collected from extensive gasification experiments were used in the 

FBCG modeling, which was conducted by utilizing two artificial intelligence (AI) 

strategies namely genetic programming (GP) and artificial neural networks (ANNs). 

The original eight-dimensional input space of the FBCG models was reduced to three-

dimensional space using principal component analysis (PCA). This study also 

presents results of the sensitivity analysis performed to identify those coal and process 

related parameters, which significantly affect the FBCG process performance. 
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Chapter 4: High ash char gasification in thermo-gravimetric analyzer and 
prediction of gasification performance parameters using 
computational intelligence formalisms 

This chapter reports development of the data-driven models for the gasification 

of chars in the CO2 atmosphere in a thermo-gravimetric analyzer (TGA); these chars 

were derived from the high ash Indian coals. Specifically, the models predict two 

important gasification performance parameters, viz. gasification rate constant and 

reactivity index. These models were constructed using three computational 

intelligence (CI) methods, namely genetic programming (GP), multilayer perceptron 

(MLP) neural network, and support vector regression (SVR).  

 

Chapter 5:  Genetic programming methodology for selecting predictor 
variables and modeling in process identification 

In this chapter, a GP-based strategy has been suggested for (a) simultaneously 

identifying the important predictor (independent/causal/input) variables that 

significantly influences the output (dependent variable) of an input-output model, and 

(b) searching and optimizing an optimal data fitting function and its parameters. The 

said strategy has been illustrated by conducting two process identification case studies 

wherein the GP formalism has been shown to (i) identify the influential time-delayed 

inputs and outputs, and (ii) simultaneously perform system identification using the 

identified influential predictors.  

 
Chapter 6: Prediction of API gravity of crude oils using SARA analysis:  

Computational intelligence based models 

This chapter presents results of SARA (Saturates, Aromatics, Resins and 

Asphaltenes ) fractions based development of nonlinear models predicting oAPI 

magnitudes of crude oils using three computational intelligence (CI) formalisms, 

namely, genetic programming, artificial neural networks and support vector 

regression. The SARA analyses and API-gravity values of 403 crude oil samples 

covering wide ranges have been utilized in developing these models. The CI-based 

models are found to possess an excellent oAPI prediction accuracy and generalization 

performance. 
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Chapter 7: Removal of arsenic ions from wastewater using TFA and TAFA 
resins: Computational intelligence based reaction modeling and 
optimization 

In this study, tannin-formaldehyde (TFA) and tannin-aniline-formaldehyde 

(TAFA) resins were synthesized and employed successfully for an adsorptive removal 

of arsenite [As(III)] and arsenate [As(V)] ions from the contaminated water. Further, a 

computational intelligence (CI) based hybrid modeling-optimization strategy 

integrating genetic programming and genetic algorithm has been  employed to model 

and optimize, tannin-formaldehyde (TFA) and tannin-aniline-formaldehyde (TAFA) 

resin-based adsorption of arsenite [As(III)] and arsenate [As(V)] ions for securing 

optimal reaction conditions.  

Chapter 8: Genetic programming formalism for prediction of vapor-liquid 
equilibrium (VLE) 

This chapter presents a study wherein genetic programming (GP) has been 

introduced for the prediction of vapor-liquid-equilibria (VLE). Specifically, three case 

studies have been performed wherein four GP-based VLE models have been 

developed using experimental data for predicting the vapor phase composition, (��) of 

a ternary, and a group of non–ideal binary systems.  

Chapter 9: Conclusions 

An overview of the important results presented in this thesis and the conclusions 

drawn thereof are presented in this chapter. 

 

REFERENCES 

Bose, B. K. (1994). Expert system, fuzzy logic, and neural network applications in 

power electronics and motion control. Proceedings of the IEEE, 82(8), 1303-1323. 

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. 

Data mining and knowledge discovery, 2(2), 121-167. 

Cavazzuri, M. (2013). General guidelines: How to proceed in an optimization 

exercise. In Optimization Methods: From Theory to Design, (pp. 147-152), 

Springer-Verlag Berlin Heidelberg. DOI: 10.1007/978-3-642-31187.  



17 

 

Constantinides, A. (1987). Applied Numerical Methods with Personal Computers. 

Schowalter, W. P., Carberry, J. J., and Fair, J. R. (Eds.), McGraw-Hill, Inc. New 

York, NY, USA, ISBN: 0070796904. 

Devillers, J. (1996). Genetic algorithms in computer-aided molecular design. In 

Genetic Algorithms in Molecular Modeling. Devillers, J. (Ed.), Academic Press. 

London, pp.1-21. 

Fogel, D. B. (2006). Evolutionary Computation: Toward a New Philosophy of 

Machine Intelligence. 3rd ed., (Vol. 1). John Wiley & Sons, Inc. 

Freeman, J. A., and  Skapura, D. M. (1991). Neural Networks Algorithms, 

Applications, and Programming Techniques. Addison-Wesley Publishing 

Company, Reading, M.A, USA. 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of 

Michigan Press, Ann Arbor, MI. 

Karelson, M., Lobanov, V. S., and Katritzky, A. R. (1996). Quantum-chemical 

descriptors in QSAR/QSPR studies. Chemical reviews, 96 (3), 1027-1044. 

Koza, J. (1992). Genetic Programming: On the Programming of Computers by Means 

of Natural Selection. MIT Press, Cambridge, MA. 

Mendel, J. M. (1995). Fuzzy logic systems for engineering: A tutorial. Proceedings of 

the IEEE, 83(3), 345-377. 

Michalewicz, Z. (1994). GAs: What are they?. In Genetic Algorithms+ Data 

Structures= Evolution Programs. 3rd ed., Springer-Verlag Berlin Heidelberg, pp. 

13-30. 

Provost, F., and  Fawcett, T. (2013). Data Science for Business: What You Need to 

Know about Data Mining and Data-Analytic Thinking. O'Reilly Media, Inc. 

Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P. Y., 

Hjalmarsson, H., and  Juditsky, A. (1995). Nonlinear black-box modeling in 

system identification: A unified overview. Automatica, 31(12), 1691-1724. 

Tambe, S. S., Kulkarni, B. D., and Deshpande, P. B. (1996). Elements of Artificial 

Neural Networks with Selected Applications in Chemical Engineering, and 



18 

 

Chemical & Biological Sciences. Simulation & Advanced Controls Inc., 

Louisville, K.Y. 

Tootoonchy, H., and  Hashemi, H. H. (2013). Fuzzy logic modeling and controller 

design for a fluidized catalytic cracking unit. In Proceedings of the World 

Congress on Engineering and Computer Science, Vol  II  WCECS 2013, (pp. 982-

987), San Francisco,  USA 

Vapnik, V. (1995). The Nature of Statistical Learning Theory. 2nd ed., Springer 

Verlag, New York. ISBN 978-1-4419-3160-3 

Vapnik, V. (1998). Statistic Learning Theory. Willey, New York. 

Verma, D., Goel, P., Patil-Shinde, V., and Tambe, S. S. (2016, January). Use genetic 

programming for selecting predictor variables and modeling in process 

identification. In IEEE explore, 2016 Indian Control Conference (ICC) (pp. 230-

237). IEEE. (ISBN: 978-1-4673-7992-2), doi: 

10.1109/INDIANCC.2016.7441133. 

Vyas, R., Goel, P., and  Tambe, S. S. (2015). Genetic programming applications in 

chemical sciences and engineering. In Handbook of Genetic Programming 

Applications; Gandomi, A.H., Amir H., Alavi, Ryan, C. (Eds.), Springer 

International Publishing, Switzerland, pp.99–

140.doi:http://dx.doi.org/10.1007/978-3-319-20883-1.  

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. 

  



19 

 

Chapter 2   

Modeling and Optimization Methodologies   

 

ABSTRACT 

In the present thesis, a number of artificial intelligence (AI) and 

machine learning (ML) based formalisms have been employed to build 

exclusively data-driven models for a variety of chemical reactions and 

processes. These methods are artificial neural networks, genetic 

programming, and support vector machines. Additionally, an AI-based 

method namely genetic algorithm has been employed for optimizing 

reaction conditions of a chemical reaction. Apart from the AI-based 

methods, conventional methods such as principal component analysis 

and sensitivity analysis have been employed for dimensionality 

reduction of the input space and ranking predictor variables in the 

order of their influence on the response variables, respectively. This 

chapter describes all the stated methods in sufficient details and lays a 

strong foundation for the subsequent chapters.    
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2.1 INTRODUCTION  

Chapter 1 (sections 1.3.1 and 1.3.2) has explained the complexities associated 

with the phenomenological and empirical (regression-based) reaction/process 

modeling, and section 1.6.1 has presented the drawbacks of deterministic optimization 

techniques.  The principal observations  that can be made from the stated complexities 

and drawbacks are: 

• Deficiencies of phenomenological modeling necessitate (a) investigation of 

optional nonlinear modeling strategies, which do not need full details of the 

physicochemical phenomena underlying the system/process, and (b) it should 

be possible to model a system/process simply from its relevant data consisting 

of independent (causal) and dependent (response) variables/parameters.  

• The drawbacks of the regression-based modeling techniques require modeling 

approaches that do not need an explicit specification of the structure (form)  of 

the model. That is, it should be possible to perform modeling without making 

assumptions regarding the data fitting function and associated parameters.  

• Deficiencies of the conventional deterministic optimization formalisms 

necessitate exploration of methods that do not need the objective function (to 

be maximized or minimized) to be smooth, differentiable and continuous.  

In recent years, Artificial Intelligence (AI) and Machine Learning (ML) based 

modeling techniques owing to their several advantages, have provided an attractive 

avenue for modeling nonlinear and complex multivariable systems. There also exist 

AI-based efficient stochastic methods that overcome the drawbacks of the 

deterministic optimization formalisms.  

In the present thesis, AI- and ML-based formalisms have been employed to 

build exclusively data-driven models for tasks such as (a) steady-state modeling of 

coal-gasifier pilot plant, and char gasification in thermo-gravimetric analyzer, (b) 

batch reaction modeling of resin-based adsorptive removal of arsenic ions from 

contaminated water, (c) process identification of a conical tank and adiabatic 
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continuous stirred tank reactor (CSTR) systems, (d) prediction of API gravity values  

of crude oils, and (e) vapor-liquid equilibria (VLE) prediction for non-ideal systems. 

The specific AI-based methodologies used in these modeling studies are genetic 

programming (GP), artificial neural networks (ANNs), and support vector regression 

(SVR). The AI-based stochastic optimization strategy used in the thesis for the 

optimization of process conditions of resin-based adsorptive removal of arsenic ions 

from contaminated water is genetic algorithm (GA).  

Often, variables in the data pertaining to a process operation are linearly 

correlated. This poses problems, such as redundancy and excessive computational 

load, during process modeling.  There exists a method, namely, principal component 

analysis (PCA), which assists in removing linearly correlated variables; thereby, the 

dimensionality of a data set can be reduced. In the present thesis, PCA has been used 

for reducing the dimensionality of the input space of several AI-based 

reaction/process models.  

In a chemical process, multiple operating condition variables/parameters (model 

inputs) affect the process outputs (such as conversion, yield, and selectivity) to 

different degrees. Some variables and/or parameters are simply more influential than 

others. A method known as sensitivity analysis (SA) is capable of ranking the process 

operating condition variables/parameters according to their influence on a specific 

output variable. The SA method has been used in this thesis for ranking the process 

input variables/parameters according to their influence on the model outputs.   

In the studies presented in chapters 3 to 8, it was often necessary to compare the 

prediction accuracy and generalization capability of competing models. This 

comparison was performed using two statistical measures, namely, coefficient of 

correlation (CC) and root mean squared error (RMSE). Additionally, Steiger’s z-test 

was employed to compare equivalence of correlation coefficients of competing 

models, and thereby determining the better performing models.  

This chapter presents the essential details of the various modeling and 

optimization formalisms as also the statistical measures and the test, used in the 
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studies presented in the thesis.  The remainder of this chapter is structured as follows. 

Section 2.2 describes the AI-based modeling techniques, namely artificial neural 

networks (ANNs), multilayer perceptron (MLP) neural networks (section 2.2.1), and 

genetic programming (GP) (section 2.2.2); the machine learning based support vector 

regression (SVR) modeling method is explained in section 2.3. Next, section 2.4 

presents an overview of the AI-based stochastic optimization formalisms; the widely 

used genetic algorithm (GA) method is detailed in section 2.4.1. The description of 

principal component analysis (PCA) and sensitivity analysis (SA) is provided in 

sections 2.5 and 2.6, respectively. Finally, essentials of Steiger’s z-test are presented 

in section 2.7.  

2.2 ARTIFICIAL INTELLIGENCE (AI)-BASED MODELING TEC HNIQUES  

2.2.1 Artificial Neural Networks (ANNs) 

Artificial neural networks are over-simplified systems that simulate the 

intelligent performance displayed by human beings; they imitate the types of physical 

neurological connections occurring in the human brain.  ANNs are founded on the 

conception that a highly interconnected system of simple processing nodes (also 

called ‘‘processing elements’’ or ‘‘artificial neurons’’) can learn the complex 

nonlinear relationships that may exist between variables of a data-set (Tambe et al., 

1996). There exist several types of ANNs as presented in Table 2.1.  These essentially 

belong to two categories namely feed-forward and feed-back ANNs. In the first type, 

information flow is in the forward direction only, whereas in feedback neural 

networks information is fed back to the nodes in the same layer and/or to those in the 

preceding layer(s). Feed forward neural networks (FFNs) are the most frequently used 

class of ANNs. Among FFNs, an architecture termed multilayer perceptron (MLP) 

has found maximum number of applications in almost every science and engineering 

discipline. Another widely used FFN is radial basis function (RBF) neural network. 
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Table 2.1: Commonly used artificial neural network architectures (Tambeet al., 1996) 

        ANN Models 
 
 
 

Feed forward 
 
 

    Feedback 

Supervised learning Unsupervised learning Supervised learning Unsupervised learning 
 

� Associative-Reward-
Penalty(ARP) 

� Kohonen Self-
organizing Feature 
Map (SOFM) 

 

� Brain-State in-a-
Box (BSB) 

� Discrete 
Bidirectional 
Associative 
Memory(BAM) 
 

� Adaptive Heuristic  
Critic (AHC) 

� Fuzzy Associative 
Memory (FAM) 

 

� Fuzzy Cognitive 
Map (FCM) 

� Additive Grossberg 
(AG) 

� Adaline/Madaline � Drive-
Reinforcement 
Learning (DR) 
 

 � Analog Adaptive 
Resonance Theory 
(ART2) 

� Counterpropogation1 
(CP) 

� Linear Associative 
Memory (LAM) 

 

 � Binary Adaptive 
Resonance Theory 
(ART1) 
 

� Cauchy 
Machine(CM) 

� Learning Vector 
Quantizer (LVQ)1 

 

 � Shunting Grossberg 
(SG) 
 

� Boltzmann 
Machine(BM) 

 

� Learning Matrix 
(LM) 

 � Adaptive 
Bidirectional 
Associative Memory 
(ABAM) 
 

� Multilayer 
Perceptron (MLP) 

 

  � Discrete Hopfield 
(DH) 

� Perceptron 
 

  � Continuous Hopfield 
(CH) 

� Radial Basis 
Function1 (RBF) 

   

1 model that utilizes hybrid (competitive + supervised) learning schemes 
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Multilayer Perceptron Neural Network (MLPNN)  

Given a representative data set (example set) consisting of independent 

(causal/input/predictor), and the corresponding dependent (output/response) variables 

of a system/process, an MLP neural network possesses an ability of learning and 

generalizing the nonlinear relationships that exist between the inputs, and  outputs to 

an arbitrary degree of accuracy. An MLP has been found to be an attractive ANN 

architecture to conduct exclusively data-driven nonlinear process modeling especially 

in situations wherein development of the first principles (phenomenological) or 

classical empirical (regression-based) modeling becomes impractical, tedious, and/or 

costly. The principle features of MLP-based models are (Tambe et al., 1996; Patel et 

al., 2007): 

• Used in approximating complex and nonlinear input-output relationships and 

performing supervised classification.   

• The detailed knowledge of the causative mechanistic phenomena that underlies 

a reaction or process is unnecessary for the model development. 

• A well-trained MLP-based model possesses “generalization” ability due to 

which it can exactly predict outputs for a fresh set of inputs, which do not 

belong the example set.  

• Even multiple input- multiple output (MIMO) nonlinear relationships can be 

approximated effortlessly and simultaneously.  

• It uses a generic nonlinear function for fitting the example set data, and thus it is 

unnecessary to pre-specify the form of the data-fitting function explicitly.  

In Figure 2.1, a commonly used MLPNN is depicted. It comprises four layers of 

processing nodes—an input layer, two intermediate layers called hidden layers, and 

an output layer; these layers house I, J, K and L number of processing nodes, 

respectively. Very often, MLPNN consists of just a single hidden layer.  
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Figure 2.1:  Schematic of two hidden layers multiple input−multiple output (MIMO) 
MLP network. 

 

The processing nodes, alternatively referred to as artificial neurons, nodes, 

processing units/elements, are the fundamental constituents of an MLPNN. They 

perform simple mathematical manipulations on the numerical information (data) 

received from their input connections with the processing elements (PEs) in the 

previous layer and pass on the computed outputs to the PEs located in the next layer. 

Each connection of an MLPNN has a parameter termed “weight” associated with it. 

Although a PE may have multiple output connections, an output signal of the same 

strength is transmitted across each one of them. In MLP, there exist inter-layer 

connections, which are classified as excitatory or inhibitory, according to their 

resultant actions. The excitatory connection carries a positive signal and enhances the 

activation level of the destination node. An inhibitory connection has a negative sign, 

and it reduces the destination PE’s activation level.  

 The MLPNN’s input layer houses a number of nodes (I) equal to the number of 

predictor variables in the example data; the number of nodes in the output layer equals 

the number of outputs (L) in the system being modeled. It may however be noted, that 

the number of hidden layers and  the number of nodes each one of them houses,  are 
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determined heuristically based on the desired output prediction accuracy and 

generalization capability of the MLPNN-based model. The weights {���} on the 

MLPNN’s connections represent the parameters of the model that it approximates 

during training.  As shown in Figure 2.1, an MLPNN contains a bias node with its 

output fixed at +1, in its input and hidden layers; these nodes are connected to all the 

nodes in the next layer. The significance of bias nodes is that these help the MLPNN-

fitted function to be positioned anywhere in the I-dimensional input space. 

 

Table 2.2: Commonly used transfer functions in MLP neural networks (Simpsons, 
1990; Hunt et al., 1992) 

 Function  Equation Properties 

a. Linear f(x) = ax Differentiable, scales-up or scales-down 
the f(x) values in proportion to real 
valued constant a, used at output layer. 

b. logistic sigmoid f(x) = 
�(�����) Positive, differentiable, monotonic, step-

like, symmetric around 0.5, output range 
[0, 1]. 

c. hyperbolic tangent f(x) = tanh(x) = 
������
������ Differentiable, monotonic, symmetric, 

step-like, zero-mean, output range [-1, 1]. 

d. Gaussian f(x)=exp(� !
"! ) Differentiable, pulse-like. 

 

A processing unit in the network’s active i.e., hidden and output layers 

essentially performs three numerical operations. First, it combines all the input signals 

to compute the net input. It is then transformed into the node’s activation level (net 

activation or simply activation) using an activation function. Lastly, the net activation 

is operated upon using a transfer function to yield the node’s output. The transfer 

function can transform PE’s activation in a linear or nonlinear manner. Different types 

of transfer functions are used for performing such transformations. Table 2.2 lists the 

formulae of some commonly used transfer functions and their properties. The 

nonlinear Gaussian function listed in Table 2.2 possesses some special properties and 
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is used mostly in radial basis function (RBF) networks. On the other hand, the logistic 

and tanh sigmoid functions are the common choices for multilayer perceptron (MLP) 

networks.  

The input layer neurons of an MLP perform no computations. They simply pass 

their outputs to the neurons to the next layer (hidden layer). Following application of 

an input vector, #$, from the example set to the input layer, each hidden layer neuron 

first calculates its activation according to the weighted sum of inputs using the 

following equation: 

 %&'��(  = )�( #* + +�(  =  ∑ w��(   �*� + /�0� +�(  

           =  ���(   �*� + ���(   �*� + ….. +  �/�(  �1/ + +�(; j = 1,…,J                                (2.1) 

where, %&'��(  represent activation of 234 hidden layer neuron when 534 input (p = 1,2, 

…, 67) pattern/vector in the example set is applied to the input nodes. The vector )�( 

denotes the weights of the connections linking the input layer nodes to the 234 hidden 

node, and +�( represents the strength of the link between the bias and 234 hidden node. 

The subscripts “h”  and “o”  designates the quantities associated with hidden and 

output layers, respectively. The hidden layer outputs are computed by nonlinearly 

transforming their activations using a transfer function. Outputs of the first hidden 

layer neurons are either passed to the neurons of the next hidden layer or the output 

layer. The hidden neurons’ outputs are computed using a nonlinear activation function 

that nonlinearly transforms the net activation level of a hidden neuron. The outputs of 

the processing nodes in first hidden layer form inputs to the nodes in the subsequent 

layer; this layer could be another hidden layer, or an output layer. The outputs of these 

nodes are computed similarly as shown in Eq. (2.1).  It may, however, be noted that 

output layer neurons can use either linear or a nonlinear transfer function to compute 

their outputs.   

MLPNN training: Towards performing a nonlinear function approximation, an 

MLPNN is trained in a manner such that a pre-specified error function is minimized. 

The training (learning) process for MLP essentially aims at obtaining an optimal set 

of network’s connection weights that would minimize an error function. There are 

essentially two methods of training an MLP neural network namely batch and 

continuous mode. In the batch mode, network outputs are evaluated using all input 
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patterns in the example data set following which all network weights are updated 

once. In the continuous mode, network weights are adjusted immediately after 

computing the network output pertaining to a single input pattern in the example set.  

In the present thesis, continuous mode has been used in training the MLP-based 

models.  It consists of two passes through the network architecture; these are termed 

forward and reverse passes. In the forward pass, outputs of all the output nodes 

(network output) are evaluated using input patterns/vectors of example set. In the 

reverse pass, the magnitude of the error function specific to the input pattern is 

calculated using the desired (target) network output, and it is used in updating the 

network weights. A single training iteration is completed when weight-updation 

procedure is carried out for all the patterns in the example set. Typically, MLP 

training needs to be conducted over several iterations till convergence is achieved. 

Commonly, “root mean squared error” (RMSE) is used as the error function in 

MLP training; the widely employed error function minimization technique is known 

as the “error back-propagation” (EBP) algorithm (Rumelhart et al., 1986). The RMSE 

is calculated as:  

                                   89:; = =∑ (>?@�?�>?ABC)!D??EF G?                                          (2.2) 

 

where 6* represents the number of patterns in the example data set; p is the 

pattern/vector index, and �*� * and �*HIJ respectively, denote the experimental 

(target/desired), and MLP-predicted outputs pertaining to the  534 input pattern.  

The EBP algorithm uses a gradient-descent technique known as generalized 

delta rule (GDR) for iteratively updating the network weights. Irrespective whether 

the destination neuron j belongs to the hidden or an output layer, the basic weight 

updation rule for training MLP follows the same basic principle given as the delta 

rule: 

Magnitude of weight 
correction at training 
iteration, t, (△��� (t)) 

 

=    learning rate, η   × 

 scaled- error          
with respect 
to 2M( node 

 

×  output of  NM( node 

                                (2.3) 
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The EBP algorithm for MLP training uses two free parameters, namely learning rate, 

η (0 < η < 1), and momentum coefficient, OPQR (0 < OPQR < 1), in its formulation; both 

these parameters are tuned heuristically. 

Over-fitting of MLP weights and how to avoid it: For building an optimal MLP 

model with good output prediction accuracy, and generalization capability, it is 

necessary to avoid what is known as ‘‘model over-fitting.’’ An over-fitted MLP 

model has captured even the micro details such as noise in the data at the cost of 

learning the smooth trends therein. Such a model is practically useless since it makes 

poor predictions for a new set of inputs (poor generalization). Over-fitting occurs 

when (a) an MLP model—with an aim of reducing the prediction error to minimum 

possible—is trained over a very large number of training iterations (known as ‘‘over-

training’’), and (b) MLP’s architecture houses more hidden layers and neurons than 

are necessary (known as ‘‘over-parameterization’’). Hence, it is absolutely critical to 

take suitable precautions to avoid over-fitting of an ANN model.  

To avoid over-fitting, the example input-output data set is divided into two 

subsets, namely, training and test sets. While the first set is used in training the 

network weights, the test set is used for evaluating the generalization ability of the 

network undergoing training. Specifically, after each training step, RMSE is computed 

for both training (RMSEtrn) and test (RMSEtst) sets; While RMSEtrn indicates the data-

fitting  ability (also termed “recall ability”) of the network undergoing training, 

RMSEtst measures how well the network is generalizing. After training the network 

over a large number of iterations, the set of network weights resulting in the smallest 

RMSEtst magnitude for the test set data is accepted to be an optimal weight set. It may, 

however, be noted that this weight set pertains to the specific number of hidden units 

considered in the network architecture. 

 The complete procedure for constructing an optimal architecture and the related 

weight matrix of an MLP neural network using the GDR strategy is summarized in 

the following steps (Bishop, 1994):  

1. Choose a small magnitude, for example, one or two for the number of hidden 

units, J, and randomly initialize the network weight matrix.  

2. Minimize the test set RMSEtst using error back propagation algorithm. Repeat 

training multiple times using each time a different random number sequence for 
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initializing the network weights. This helps in exploring MLP’s weight space 

widely and, consequently, locating the deepest local or the global minimum on 

the error surface. Store the network weights that produced the smallest RMSEtst.  

3. Repeat steps 1 and 2 by systematically increasing the number of hidden units 

until RMSEtst attains its smallest possible magnitude. 

Issues related to MLP training: To construct an optimal MLP model, the effects of 

variation in its structural attributes, namely, number of hidden layers, number of 

nodes in each hidden layer, and the type of transfer function, and the two EBP 

algorithm-specific parameters, namely, learning rate (η)  and momentum 

coefficient ( OPQR), need to be rigorously investigated. The details of the heuristic 

procedure involved in obtaining an optimal MLP network model possessing good 

prediction accuracy and generalization capability can be found in,  for example,  

Freeman and Skapura (1991); Zurada (1992); Bishop (1994); and Tambe et al. (1996). 

Applications of MLP neural networks in chemical sciences and engineering/ 

technology 

Artificial Neural Networks (ANNs) have been used in chemical science with a 

great success for providing potential solutions to a variety of data-driven problems. 

There are some notable generic reviews of applications of artificial neural networks in 

chemical science and engineering/technology. These are Burns and Whitesides, 1993; 

Bishop, 1994; Himmelblau, 2000; and Zhang and Friedrich, 2003; for books see, 

Tambe et al., 1996; and Bulsari, 1995.  

 
Table 2.3: Representative recent applications of MLP neural networks in chemical 

engineering/technology  

Sr. 
No. 

Application Specific study Reference 

1. Process modeling 

Vapor–liquid equilibrium predictions. Sharma et al. 
(1999) 

Modeling of an industrial fluid catalytic 
cracking unit 

Michalopoulos et 
al. (2001) 

Prediction of vapor-liquid equilibria for 
binary systems. 

Mohanty (2005) 

Prediction of nonlinear viscoelastic 
behavior of polymeric composites 

Al-Haik et al. 
(2006) 
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Table 2.3 continued… 

Sr. 
No. 

Application Specific study Reference 

1. Process modeling 

Modeling of anaerobic tapered fluidized 
bed reactor for starch wastewater 
treatment  

Rangasamy et al. 
(2007) 

Modeling of the activated sludge 
process 

Moral  et al. (2008) 

Thermal conductivity prediction of 
aqueous electrolyte solutions 

Eslamloueyan et al. 
(2011) 

Estimation of thermal conductivity of 
ionic liquids 

Hezave et al. (2012)  

Modeling of biomass gasification 
process in fluidized bed reactors. 

Puig-Arnavat et al.  
( 2013) 

Modeling of ultrasound-assisted trans-
esterification process  

Badday et al. (2014) 

Modeling of photocatalyatic process on 
synthesized ZnO nanoparticles 

Amani-Ghadim and 
Dorraji (2015) 

2. Data analysis 
Gas mixture analysis  Moore et al. (1993) 
A neural network methodology for heat 
transfer data analysis. 

Thibault and 
Grandjean (1991) 

 

3. 

 
Process fault 
detection/diagnosis 
 

Fault diagnosis in complex chemical 
plants 

Hoskins et al. (1991) 

Framework for enhancing fault 
diagnosis capabilities  

Farell and Roat 
(1994) 

4. 

 
Soft sensor 
development 
 

Soft sensors development for on-line 
bioreactor state estimation 

de Assis and Maciel 
(2000) 

Real-time process monitoring and 
control of an industrial polymerization. 

Gonzaga et al. (2009) 

5. 
Process 
identification  

Identification of dynamic process model Pollard et al. (1992) 
Robust model predictive control 
architecture for a neutralization process 

Tsai et al. (2003) 

6.  
Model based 
process control 

Dynamic prediction and control of heat 
exchangers 

Dı ́az et al. (2001) 

System identification and model 
predictive control for a flotation column 

Mohanty (2009) 

7. 

Quantitative 
Structure-
Activity/Property 
Relationships 
(QSAR/QSPR). 

Prediction of fluid properties Lee and Chen (1993) 
Prediction of polymer properties Sumpter and Noid 

(1996) 
Developing Quantitative Structure-
Activity Relationships 

Dudek et al. (2006) 
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ANN software packages  

There are numerous open source and commercial software packages for training 

MLP neural networks. Two software packages namely, IBMSPSS (2011) and 

RapidMiner (2011) have been used to develop MLP-based models in this thesis. Their 

details are as given below. 

• IBM® SPSS® statistics is a comprehensive system for analyzing data. The 

Advanced Statistics optional add-on module offers the additional analytic 

skills. This module has been used with the SPSS Statistics Core system and is 

entirely integrated into that system. 

• RapidMiner  is a software platform that offers an integrated environment for 

machine learning, data mining, text mining, predictive analytics and business 

analytics. It supports all steps of a typical data-mining exercise including data 

preparation, validation and optimization, and results visualization. The 

RapidMiner (free) Basic Edition is restricted to a single logical processor, and 

10,000 data rows are available under the AGPL license. 

2.2.2 Genetic Programming (GP) 

The principal features of the GP formalism (Koza, 1992; Kinnear, 1994) are 

conceptually similar to the genetic algorithms (GAs); GA (Goldberg, 1989) is a 

stochastic search and optimization technique. Both GP and GA are based on the 

principles of natural selection (“survival of the fittest”) and genetics followed by the 

biologically evolving species. Given an objective function, the GA is capable of 

efficiently searching and obtaining the optimal values of the decision variables that 

would maximize or minimize the function. Although the GP method utilizes same 

principles as employed by GA, it conducts what is termed symbolic regression (SR). 

It is a methodology of searching both the structural form of a data-fitting function and 

all of its parameters. Thus, GP is capable of automatically attaining the mathematical 

model that fits a given set of process data comprising dependent (also termed 

“response” variables) and independent (also termed “predictor” or “causal”) variables. 

Although intellectually novel and appealing, the GP formalism has not been applied 

as extensively as other AI-based modeling formalisms such as artificial neural 

networks and fuzzy logic.  
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GP implementation: The general form of the model to be obtained using GP-based 

symbolic regression is given as  

                                                       y = f (x, α)                                                          (2.4) 

where y denotes the dependent variable; x = [��, ��, ..., ��, ..., �/]T refers to the I-

dimensional vector of  independent variables , f  represents a linear/nonlinear function 

whose parameters are defined in terms of a K-dimensional vector, α = [S�,  S� , ..., 

S1, ..., ST]T. Given data consisting of values of the operating variables,  x (model 

inputs),  and the corresponding values of the reaction/process output,  y (model 

output), the task of GP is to secure the best fitting functional form,  f,  and its 

parameter vector, α. 

The GP procedure initiates by creating a random initial population of 

mathematical expressions, {f}, representing candidate solutions to the data fitting 

problem defined in Eq. (2.4); each candidate solution represents a different 

mathematical data-fitting function,  and it is coded symbolically in the form of a 

tree-like structure.  This structure comprises two types of building units namely 

functions (operators) and terminals (operands) (see Figure 2.2). While functions are 

nodes with branches, terminals are leaves (nodes without branches) of the tree. The 

function nodes represent operators of a candidate solution. The set of operators that 

can be used to form a mathematical expression is given below. 

• Arithmetic operators: addition, subtraction, multiplication, division 

• Trigonometric and other mathematical operators: sine, cosine, tan, cot, 

logarithm, exponentiation, etc. 

• Conditional operators: IF-THEN-ELSE 

• Boolean operators: AND, OR, etc. 

The terminal nodes define “operands,” which are arguments of the mathematical 

model represented by a candidate solution or entities upon which an operator acts. 

The terminal set comprises variables, constants (elements of the parameter vector,α), 

and zero-arity functions (i.e., functions with no arguments) such as rand (random 

number). When arranged properly, the operators and operands appearing in a tree 

form a complete mathematical expression. The elements of function and terminal sets 

are the building units of a candidate solution. An illustrative tree structure defining a 

mathematical expression “(��+ 6) × (�� − 3)” is shown in Figure 2.2 (a).  
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A typical implementation of the GP-based symbolic regression is shown in the 

form of a flowchart in Figure 2.3; it consists of following major steps.  

1. Initialization: Randomly create an initial population of candidate solutions in 

the symbolic form using tree structures. 

2. REPEAT 

a. Ranking: Evaluate fitness scores of candidate solutions and rank them 

according to their scores. 

b. Selection: Choose candidates possessing high fitness scores to form a 

mating pool to undergo crossover and mutation operations. 

c. Crossover: Generate offspring candidate solutions by implementing 

crossover operation. 

d. Mutation: Create a new generation of candidate solutions by 

performing mutation operation on offspring candidate solutions. 

3. UNTIL TERMINATION 

Each of the above steps can be implemented a number of ways. In what follows, steps 

corresponding to a generic GP implementation are explained in sufficient details.  

Step 1  (Initialization): Set the generation index (6V&% ) to zero (Figure 2.3) and 

randomly form an initial population of a pre-specified number of candidate 

solutions/expressions using symbolically coded tree structures as described 

above.  

Step 2a  (Ranking): Using a pre-specified fitness function evaluates fitness value of 

the each candidate solution. Fitness function measures the data-fitting ability 

of a candidate solution. Typically, the mathematical expression represented 

by the tree-structure is used to compute the model predicted value of the 

output variable, y, and thereby that solution’s fitness value. One of the 

several possible fitness functions is as follows: 

                                              8W = ���△X! ;    q = 1, 2, …, 6W                                               (2.5)    

where 8W refers the fitness value (score) of  qth candidate solution, 6W refers 

to the number of candidate solutions in the population and △W� refers to the 
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mean-squared-error (MSE) between the desired (target) and model predicted 

outputs; it is computed as: 

                                                    △W�= ∑ (>?@�?�>?ABC)!D??EF G?                                            (2.6) 

               where 6* denotes the number of patterns in the data set; p is the pattern 

index, and �*� * and �*HIJ, respectively represent the desired (experimental) 

and the model-predicted outputs to the pth input pattern. Following 

computation of the fitness values, candidate solutions are ranked in the 

decreasing order of their fitness. 

Step 2b (Selection): From the ranked population, this step selects fitter solutions to 

form a mating pool of parent candidate solutions possessing high fitness 

scores to undergo crossover and mutation operations (See Figure 2.2 (b)). 

There exist several methods such as Roulette-wheel selection (Lipowski and 

Lipowska, 2012), Tournament selection (Miller and Goldberg, 1995), elitist 

mating (Thierens and Goldberg, 1994) etc., for carrying out the stated 

selection.  

Step 2c (Crossover): In this key step, a pair of offspring candidate solutions is 

generated from each of the randomly selected pairs of parent trees in the 

mating pool. The crossover operation can be performed in a number of 

ways. For example, in a crossover scheme termed “single-point”, a point is 

chosen randomly along the length of each parent tree (see Figure 2.2(b)), 

and both the parent trees are sliced at the respective points. Next, two 

offspring candidate solutions are created by mutually exchanging and 

combining the sliced portions of the two parents (see Figure 2.2(c)). In 

another crossover scheme, termed “two-point crossover,” a pair of nodes is 

selected randomly from each parent tree, and the contents lying between 

them are exchanged mutually among the parents to form a pair of offspring.  

Commonly, crossover is performed with a higher probability than the 

mutation operation. 
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(a) tree structure  
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(c) one point crossover  
 

 

 

 

 

 

 

(d) node undergoing 
mutation  
 

 

 

Figure 2.2:  Schematic of genetic programming: (a) basic tree structure, (b) random 
selection of branches for reproduction, (c) crossover operation, and (d) 
mutation operation. 
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Figure 2.3: Flow-chart of generic GP implementation 

  

Random initialization of population of candidate data fitting solutions (Ngen =0 ) in 
the form of tree structures  

Fitness evaluation using pre-specified fitness function and their 
ranking in the decreasing order of their fitness values. 

Selection of candidate solutions with relatively high fitness 
score from ranked population to form mating pool 

Crossover to create offspring 

Node/branch mutation to create new generation 
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Termination 
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Best candidate solution with maximum fitness value forms solution to SR problem 
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Step 2d (Mutation): It modifies (mutates) contents of randomly chosen function 

and/or terminal node(s) of offspring solution trees produced by the crossover 

operation; it is albeit conducted with a small probability. This operation 

maintains population diversity and broadens the search for good data-fitting 

models. Mutation can be conducted two ways namely “branch” and “node” 

mutation. In node mutation (Figure 2.2(d)) an operator (operand) of a 

randomly chosen function (terminal) node is replaced by another operator 

(operand), whereas in the branch mutation a randomly chosen branch is 

replaced by a randomly generated another branch. The population of 

candidate solutions resulting upon mutated offspring forms a new generation 

of candidate solutions (i.e. 6V&%= 6V&% + 1). 

Step 3 (Termination): Repeat step 2 iteratively till one of the two following 

termination criteria gets satisfied: (i) the GP has evolved over a pre-specified 

number of generations, and (ii) the fitness value of the best candidate 

solution no longer increases significantly or remains constant over a 

sufficiently large number of generations.  

Over-fitting of GP-based model and how to avoid it: Similar to MLP neural 

networks, a GP-based model is prone to “over-fitting.” An over-fitted GP-based 

model learns even the micro-details in the data at the cost of learning the smooth 

trends therein. Such a model is useless since it yields sub-optimal predictions for a 

new set of inputs (poor generalization). In GP training procedure, over-fitting occurs 

when the model—in an attempt to reduce the prediction error—contains more terms 

and parameters than necessary. In short, complexity of the model becomes high owing 

to the more-than-necessary number of terms and parameters in the data-fitting 

function. It is well-known that a model with high complexity performs poorly at 

generalization. Thus, it is important to take an appropriate precaution to avoid an 
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over-fitted GP-based model. This is commonly achieved (as in MLP training) by 

partitioning the entire input-output example data set available for  model building into 

two sets, namely, training and test sets. While the GP steps are implemented using the 

training set, upon convergence the top ranking solution is evaluated using the test set 

and the solution is accepted as the “best-so-far” only if its data-fitting performance in 

respect of the test set is closely comparable with that of the training set.  

In another method to avoid over fitting, the fitness value of an over-fitted model 

is appropriately penalized so that it does not enter the mating pool.  To obtain an 

overall optimal data fitting model (f*) a number of runs may be required by varying 

the GP-algorithmic parameters systematically. A model is accepted as an overall 

optimal one only if (i) the correlation coefficients in respect of the training and test set 

outputs are highest and comparable, and (ii) the MSE/RMSE magnitudes in respect of 

training and test set outputs are lowest and comparable. Once an appropriately 

validated optimal model is secured, its parameters, α, can be fine-tuned further by 

utilizing a standard nonlinear regression technique, for instance, Marquardt’s 

algorithm (Marquardt, 1963). Such a refinement, if indeed feasible, does improve the 

prediction accuracy and generalization performance of the GP-based model.  

Applications of GP in chemical sciences and engineering 

The applications of GP in chemical sciences have focused mainly on data 

mining, which can be further categorized into rule-based classification, and symbolic 

regression based model development. It is the second GP application that has been 

exploited in this thesis. Earlier the GP technique has been successfully exploited in 

various fields of chemistry and chemical engineering. Comprehensive reviews of GP 

applications in chemistry and chemical engineering are provided by Willis et al., 1997 

and Vyas et al., 2015. A few selected applications of GP in chemical sciences and 

engineering are listed in Table 2.4. 
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Table 2.4: Representative applications of genetic programming in chemical 
engineering/technology 

Sr. 
No. 

Application Specific study Reference 

1. Process modeling 

Steady-state modeling of chemical process 
systems. 

McKay et al. 
(1997) 

GP-assisted stochastic optimization 
strategies for the optimization of glucose to 
gluconic acid. 

Cheema et al. 
(2002) 

Optimization of a controlled release 
pharmaceutical formulation. 

Barmpalexis 
et al. (2011) 

K-value program for crude oil components 
at high pressures based on PVT laboratory 
data. 

Fattah (2012) 

Prediction of permeation flux decline 
during MF of oily wastewater. 

Shokrkar et 
al. (2012) 

Estimation of the magnitude of minimum 
spouting velocity (Ums) in spouted beds with 
a conical base. 

Hosseini  et 
al. (2014) 

Prediction of char gasification performance 
parameters derived from high ash coals. 

Patil-Shinde 
et al. (2016) 

2. Process synthesis 
Synthesis of heat-integrated complex 
distillation systems  

Wang et al. 
(2008) 

3. 
Process 
monitoring 

Bioprocess monitoring: application to 
continuous production of gluconic acid by 
immobilized Aspergillus niger. 

Sankpal, et al. 
(2001) 

4. 

 

Process fault 
detection/diagnosis 

 

Process identification and fault diagnosis of 
non-linear dynamic systems. 

Witczak et al. 
(2002) 

Fault classification using genetic 
programming. 

Zhang and 
Nandi (2007) 

5. 
Soft sensor 
development 

Data-driven Soft Sensors in the process 
industry. 

Kadlec et al. 
(2009) 

The development of soft-sensors for 
biochemical processes. 

Sharma and 
Tambe (2014) 

6. 
Process /system 
identification 

System identification of a fluidized 
catalytic cracking (FCC) unit, for an 
exothermic reaction. 

Nandi et al. 
(2000) 
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Table 2.4 continued… 

Sr. 
No. 

Application Specific study Reference 

6. 
Process /system 
identification 

System identification of Tennessee 
Eastman chemical process reactor. 
 

Faris and 
Sheta (2013) 

To identify the influential time-delayed 
inputs and outputs, and simultaneously 
perform system identification using these 
influential predictors. 

Verma et al. 
(2016) 

7. Model based 
process control 

Generation of empirical dynamic GP 
models to implement the nonlinear model 
predictive control (NMPC) strategy. 

Grosman and 
Lewin (2002) 

Development of steady-state and dynamic 
temperature control models. 

Dassau et al. 
(2006) 

8. Quantitative 
Structure-
Activity/property 
Relationships 
(QSAR/QSPR). 

Building quantitative structure—property 
relationship (QSPR) models 

Barmpalexis 
et al. (2011) 

Development of a linear genetic 
programming (LGP) based quantitative 
structure-property relationship (QSPR) 
model for the prediction of standard state 
real gas entropy of pure materials 

Bagheri et al. 
(2014) 

 

Software packages for GP implementation  

Following are the details of two user-friendly software packages that are 

available for implementing GP algorithm. 

� Eureqa Formulize (Schmidt and Lipson, 2009; 2014) makes use of symbolic 

regression technique to capture the intrinsic relationships existing in a given 

data set, and explain them in a simple mathematical form (structure). It uses 

GP heavily in its framework, and is optimized to provide “parsimonious” 

solutions meaning of low complexity.  

� SyMod software uses machine learning to build symbolic models of the 

relationship existing between one or more discrete and/or continuous attributes 

(i.e. independent/causal variables), and a discrete or continuous dependent 

(response/output) variable. It allows the user to specify a set of mathematical 

functions, and operators; these are subsequently used to construct predictive 
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models using genetic programming algorithm. More information of SyMod 

package can be obtained at the following URL:  

http://www.symbolicmodeler.org/.  

 

2.3  MACHINE  LEARNING BASED MODELING METHOD: Support 
Vector Regression (SVR) 

Support vector regression (SVR) (Vapnik, 1995; Burges, 1998) is an adaptation 

of the statistical/machine learning theory based classification paradigm, namely 

support vector machines (Vapnik, 1998). This formalism possesses some desirable 

characteristics, such as good generalization ability of the regression function, the 

robustness of the solution, sparseness of the regression, and an automatic control of 

the solution complexity. Moreover, it provides an explicit knowledge of the data 

points that define the regression function. This feature allows an interpretation of an 

SVR-approximated model in terms of the training data.  

Given an example data set, D = {(#*, �*)}, i = 1, 2, ..., p,…, 6*, where #* is a I-

dimensional vector of input variables, and ��  the corresponding scalar output (target), 

the objective of the SVR algorithm is to fit a regression function, y = f (x), such that it 

accurately predicts the outputs {��} corresponding to a new set of input examples   

{ #�} (Sharma and Tambe, 2014). In SVR, the inputs are first nonlinearly mapped into 

a high dimensional feature space (Φ) wherein they are correlated linearly with the 

outputs. The SVR algorithm attempts to place a tube around the regression function as 

shown in Figure 2.4. The region enclosed by the tube is called an ε-insensitive zone, 

where ε represents the radius of the tube. The optimization criterion in SVR penalizes 

those data points, the y values of which lie more than ε distance away from the 

regression function f(x). A detailed description of the SVR and its implementation is 

found in, for example, Vapnik (1995), Nandi et al. (2004), and Desai et al. (2005). 

The SVR-based regression function has the following form: 

                        ](#, )) =  ](#, _, _∗) = ∑ (S*∗ −G?*0�  S* ) a(#*, x) + b     (2.7) 

where, S* and S*∗  (≥ 0) are the coefficients (Lagrange multipliers) satisfying S*S*∗= 0; 

p = 1, 2, …, P, and K(#*, x) denotes the kernel function describing the dot product in 

the feature space. The vector w is described in terms of the Lagrange multipliers α 
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and α* . In Eq. (2.7), only some of the coefficients,(S*− S*∗ ), are non-zero and the 

corresponding input vectors, #�, are called “support vectors (SVs).”  The SVs can be 

thought of as the most informative data points, which compress the information 

content of the training set.  A number of guidelines for the judicious selection of SVR 

parameters are provided by Cherkassky and Ma (2004). In the present study, SVR 

based models have been developed using the ε-SVR module of the data-mining 

package known as Rapid Miner (2014).  

 

 
Figure 2.4.  A schematic of support vector regression using ε-insensitive loss function 

Applications of SVR in chemical engineering and technology 

In a short time, SVM/SVR have found plenty applications in chemistry, such as 

drug design (discriminating between ligands and nonligands, inhibitors and non-

inhibitors, etc.), development of quantitative structure-activity relationships, where 

SVM formalism is used to predict various physical, chemical, or biological properties, 

chemometrics (optimization of chromatographic separation or compound 

concentration prediction from spectral data as examples), text mining (automatic 

recognition of scientific information), and sensor technology (for qualitative and 

quantitative prediction from sensor data). A comprehensive review of SVR 

applications in chemistry is provided by Ivanciuc (2007). In chemical engineering too 

SVR has found a number of applications. A representative list of a few such 

applications is provided in Table 2.5.  
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Table 2.5: Representative applications of support vector regression in chemical    
engineering/technology 

 
Sr. 

No. 

Application Specific study Reference 

1. Process modeling 

Prediction of pressure drops of 

slurry flow in pipeline.  

Lahiri and Ghanta 

(2008) 

Predicting the  point gas hold-up for 

bubble column reactor through 

recurrence quantification analysis of 

LDA time-series 

Gandhi et al. (2008) 

2. Process fault 

detection/diagnosis 

Fault diagnosis based on Fisher 

discriminant analysis. 

Chiang et al. (2004) 

SVR method has been applied for 

the fault diagnosis in sheet metal 

stamping processes. 

Ge  et al. (2004) 

3. 
Soft sensor 

development 

Soft sensing modeling based on 

SVM and Bayesian model selection. 

Yan et al. (2004) 

Soft-sensor development for 

bioprocesses in fed-batch 

bioreactors 

Desai et al. (2006) 

4. 
Model based 

process control 

Predictive functional control design 

for output temperature of coking 

furnace 

Zhang  and Wang 

(2008) 

Modeling and predictive control of a 

neutralization reactor 

Ławryńczuk (2016) 

5. 

Quantitative 

Structure-

Activity/property 

Relationships 

(QSAR/QSPR). 

Development of a QSAR model for 

the prediction of toxicities of 153 

phenols. 

Yao et al. (2004) 

Support vector machines QSAR for 

the toxicity of organic chemicals 

Yi  and  Qin (2007) 

Predictions of chromatographic 

retention indices of alkyl phenols 

Fatemi et al. (2009) 
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Advantages of SVR 

� It uses the structural risk minimization principle by penalizing the model 

complexity while minimizing the training data error. This results in a model 

with a better generalization capability.  

� Solves a quadratic objective function endowed with a single minimum and, 

thus, SVR provides globally optimal minimal solutions. 

� It permits computations in the input space itself and, hence, reduces the 

computational load significantly. 

� SVR defines a robust regression function and allows sparseness of regression 

function. 

Software packages for SVR implementation 

In the present thesis, SVR-based models have been developed using Rapidminer 

package (2014). 

 

2.4. ARTIFICIAL INTELLIGENCE (AI) BASED STOCHASTIC 
OPTIMIZATION FORMALISMS 

There exist a number of AI-based optimization methods such as particle swarm, 

ant colony, artificial immune systems, and genetic algorithms; these belong to the 

class termed as “stochastic search and optimization” algorithms and possess some 

unique advantages as explained in section 1.7 over commonly employed deterministic 

gradient based algorithms. Among various AI-based optimization methods, genetic 

algorithms are used most widely.  In what follows, an overview of particle swarm, ant 

colony, and artificial immune system methods is provided followed a detailed 

description of GA.  

(a) Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is an evolutionary computation technique 

developed by Kennedy and Eberhart in 1995 (Kennedy and Eberhart, 1995; Eberhart 

and Kennedy, 1995; Eberhart et al., 1996). In PSO a number of simple entities—the 

particles—are placed in the search space of some problem or function, and each 

estimates the objective function at its current location. Each particle then determines 

its movement through the search space by combining some aspect of the history of its 
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own current and best (best-fitness) locations with those of one or more members of 

the swarm, with some random perturbations. The next iteration takes place after all 

particles have been moved. Eventually, the swarm as a whole, like a flock of birds 

jointly foraging for food, is probably to move close to an optimum of the fitness 

function. 

(b) Ant Colony Optimization (ACO) 

The ant colony optimization algorithm (ACO), proposed by Dorigo et al. (1996, 

1999), is a probabilistic methodology used in solution of those computational 

problems, which can be reduced to searching good paths through graphs. The ACO 

method is inspired by the behavior of ants while discovering paths from the colony to 

food source. In the real world, to begin ants wander randomly, and upon locating a 

food source return to their colony; while going back to the nest, they lay pheromone 

trails. When other ants find such a trail, they are less likely to keep travelling at 

random; instead, they are most likely to follow the trail, and if they indeed find food 

reinforce the path by depositing pheromones while returning to the colony. Over time, 

however, the pheromone trail begins to evaporate and as a result its attractive strength 

decreases. As the time taken to and fro the food increases, the pheromones have more 

time to evaporate. A trail short in length, gets marched over faster and, therefore, the 

pheromone concentration remains at high levels as it is laid on the trail as fast as it 

can evaporate. Pheromone evaporation also has an advantage of getting entrapped in 

to a locally optimal solution. If no evaporation was to take place, the paths chosen by 

the first few ants would tend to be highly attractive to the following ones. In such a 

case, rigorous exploration of the solution space would be severely limited. Thus, it is 

important that one ant finds a short (good, in other words) path from the nest to a food 

source in which case, other ants are more likely to follow that path. The positive 

feedback that gets created eventually leaves all the ants following a single “good” 

path. The principle of the ACO is to mimic the stated behavior of actual ants with 

"simulated ants" walking around the graph representing the optimization problem 

under consideration. ACO algorithms have been used to generate near optimal 

solutions to the Travelling Salesman Problem (Dorigo and Gambardella, 1997). The 



47 

 

ant colony algorithm has advantages such as these can be run continuously and adapt 

to changes in real time. 

(c) Artificial Immune Systems (AIS)  

The vertebrate immune system, which defends our body from foreign 

substances, is one of the most complex and elaborate bodily systems. Its complexity 

is, in fact, comparable with that of the brain. With advances in the technology, the 

curiosity about how the immune system functions increased very rapidly (de Castro 

and Timmis, 2002). This led to its study including the development of mathematical 

models based on several of its main operative mechanisms. Similar to the study of the 

nervous system that led to the emergence of ANNs, the study of the immune system 

has lately inspired the development of AIS as a novel computational/artificial 

intelligence (CI/AI) paradigm (de Castro and Timmis, 2002). The tremendous 

information-processing capabilities of the immune system, such as feature extraction, 

pattern recognition, learning, memory, and its distributive nature provide rich 

metaphors for its artificial counterpart, i.e. AIS (Aickelin and Dasgupta, 2005; 

Dasgupta and Nino, 2009). A number of computational methods performing above 

tasks have been derived from the functioning of the immune system and applied for 

the solution of much complex real world mathematics, science and engineering 

problems.  

 
Applications of particle swarm, ant colony, and artificial immune system 
methods in chemical science, engineering, and technology 

A large number of studies have been performed by employing the stochastic 

optimization methodologies.  A wide variety of research papers and reviews on 

particle swarm, ant colony, and artificial immune systems, and their applications in 

various fields are available in the literature. Some notable studies and reviews on 

these methods are Dasgupta and Stephanie (1999), Shi (2001), Maniezzo and  

Carbonaro (2002), Dasgupta et al. (2003), Martens et al. (2007) and  García and 

Fernández (2012). A severely curtailed representative sample of these studies in 

chemical engineering is given in the following table. 
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Table 2.6: Representative applications of particle swarm, ant colony, and artificial 
immune systems in chemical engineering/technology 

Optimization 

method  
Specific study Reference 

Particle swarm 

method  

Optimization of the hydrolysis of lingo cellulosic 

residues.  

Giordano et al. 

(2013) 

Prediction of phase equilibrium of binary systems 

containing ionic liquids. 
Lazzús (2013) 

Techno-economic optimization of a shell and tube 

heat exchanger 

Sadeghzadeh 

et al. (2015) 

Model re-parameterization and parameters 

estimation for solid-state fermentation process.  

da Silveira et 

al. (2016) 

Bi-level heat exchanger network synthesis with 

evolution method for optimization. 

Wang et al. 

(2016) 

Ant colony 

method  

Introduction to ant colony optimization and 

survey its most notable applications. 

Dorigo et al. 

(2006) 

Reduce NOx emissions in coal-fired utility boilers 
Zheng et al. 

(2008) 

Optimization of significant process variables in 

the biogas production process. 

Beltramo et al. 

(2016) 

Design and scheduling of batch plants 
Jayaraman et 

al. (2000) 

Artificial 

immune system   

Fault Diagnosis of batch chemical processes using 

a dynamic time warping (DTW)-based artificial 

immune system 

Dai and Zhao 

(2011) 

Removal of heavy metals from residual waters 
Dragoi et al. 

(2012) 

Optimization of process parameters for 

biodegradable iron chelate for H2S abatement. 

Hamid et al. 

(2014) 
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2.4.1. Genetic Algorithm (GA) 

Genetic algorithms developed by Holland (1975) (also see Goldberg, 1989; 

Davis, 1991; Deb, 1995) is a nonlinear search and optimization technique based on 

the mechanisms of natural selection and genetics. It is the most widely used AI-based 

stochastic nonlinear optimization formalism, which enforces “the survival of the 

fittest” paradigm of evolution along with the “genetic propagation of characteristics” 

followed by the biologically evolving species. It is a robust nonlinear search and 

optimization technique for conducting function maximization/ minimization. Being a 

stochastic technique, it differs substantially from the widely used deterministic 

gradient-based optimization methods (such as conjugate gradient) in that it involves a 

random component in some stages in its implementation. The advantages of the GA 

technique are as follows: 

� Random initialization of the candidate solution population assists GA in 

escaping from a locally optimum solution (termed ‘local minimum’) and 

reaching the globally optimum solution or at least the deepest local minimum. 

� It is a zeroth order optimization technique meaning it does not use derivative 

information of the objective function. GA requires only the measurements of 

the objective function and not the measurements (or direct calculation) of the 

gradient (or the higher order derivatives) of the said function (Deb, 1995; 

Nandi et al., 2001). 

� It searches the solution space heuristically and, hence, unlike most 

deterministic gradient-based methods it is un-affected by the properties (e.g., 

smoothness, differentiability, continuity, etc.) of the objective function   

(Goldberg, 1989). 

� It has a remarkable capability of handling nonlinear and noisy objective 

functions. 

In the present thesis, GA has been used for process optimization wherein an 

MLP/GP/SVR based process model is available. This model relates the process 

operating conditions (inputs) to its output that defines process performance.  

Accordingly, in what follows, the procedure for the GA-based optimization of the 

input space of a data-based model (ANN/SVR/GP) is given. 
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The process optimization objective under consideration is stated as; 

Given process data comprising values of process operating (input) variables and the 

corresponding values of process output (response) variables, find the optimal values 

of input variables such that the pre-specified measures of process performance are 

simultaneously minimized/maximized.  

Having specified an objective function, f, GA searches and optimizes its I-

dimensional decision variable space (x) such that the function is minimized or 

maximized. The function maximization/minimization problem can be defined as: 

                             Maximize/Minimize (y) =  ] (x, b);     ��c < ��e*M<��f                (2.8) 

Where, y denotes the output variable; the I-dimensional vector, x = [��, ��, ..., ��, …, 

�/]T,  represents the set of process operating (decision) variables and/or parameters to 

be optimized; ��c and ��fare the lower and upper bounds on ��, and ��e*Mdenotes the 

NM(  optimized decision variable, ] refers to the function correlating the output variable 

with the inputs, and b  represents the parameter vector of function ].  

In the current thesis, GA has been used to find reaction optimal operating 

conditions that would maximize the extent of arsenic adsorption (output) on resins 

(see Chapter 7). In this study, the developed data-driven model itself acts as an 

objective function to be maximized. This data-driven model predicts the extent of 

adsorption on a resin.  

Overview of GA implementation:  

A simple GA-implementation procedure comprises following components: 

In each cell of an organism, there is the same set of chromosomes. 

Chromosomes are strings of DNA and serve as a model for the whole organism. A 

chromosome consists of genes, which are blocks of DNA. Each gene has its own 

position in the chromosome called its locus. Complete set of genetic material (all 

chromosomes) is called a genome. GA encodes all candidate solutions to the 

optimization problem in the form of a genetic code. Commonly, these candidate 

solutions (also termed strings or chromosomes) are represented using binary digits 

(binary coding), i.e., in terms of zero and one. 
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Binary Encoding: Binary encoding is the most common. In binary encoding, every 

chromosome is a string of bits, 0 or 1. 

Chromosome A 101100101100101011100101 

Chromosome B 111111100000110000011111 

 
Drawbacks of binary coding: Number of bits used scales with the number of variables 

and the precision of each variable. 

Real Value Coding: Direct value encoding can be used in problems, where some 

complicated value, such as real numbers, is used. Use of binary encoding for this type 

of problems would be very difficult. In real value encoding, every chromosome is a 

string of some real numbers. These can be anything connected to the problem, for 

instance, catalyst concentration, reactant concentration, temperature etc. 

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545 

 
In the GA procedure, a random population of 6W  number of strings is created. 

either using binary digits or real numbers. In binary coding, each string containing 


g(hi  number of bits is divided into I segments where an NM( (i = 1, 2, ..., I) segment of 

length 
�i represents the binary representation of the NM( decision variable. The 

decimal equivalent, ��, of the NM( binary segment is evaluated as 

        �� = ��c + 
j kl�  kmnok

�Ckp� �  ;    i = 1, 2,….., I ;      ∑ 
�i/�0�   =  
g(hi                                (2.9) 

where :� represents the decimal value of the NM( binary segment comprising 
�i bits. 

Upon decoding all 6W  strings in the current population in this manner, their fitness 

values, {8i}, are evaluated using a pre-specified fitness function. Next, the string 

population is subjected to the actions of four genetic operators, namely, selection, 

reproduction, crossover, and mutation, to obtain a new generation of candidate 

solutions. The actions of these GA operators are repeated with successive generations 

of solutions till convergence is achieved. The entire GA-implementation can now be 

summarized as follows: 
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Step 1 (Initialization): Set generation index (6q�$i ) to zero and generate a population 

of 6W binary strings (chromosomes) randomly. Each string consisting of 
g(hi  

bits is divided into I segments equal to the number of decision (input) 

variables to be optimized. 

Step 2 (Fitness computation):  Decode rM( ( q= 1, 2,..., 6W) binary string to obtain the 

corresponding decimal values of the decision variables, �W�, i = 1, 2, ..., I (see 

eq. 2.9), and evaluate the fitness (8Wi) of the qth string as given by  

                                       8Wi = H ( �W) = H []∗(sW , α ) ]                                        (2.10) 

            where sW refers to the real-valued decision variable vector, sW= [�W�, �W�, ..., 

�W/]T. After computing fitness values of all the 6W strings in the current 

population, the strings are ranked in the decreasing order of their fitness 

values. 

Step 3 (Selection of parents): From the current population, choose 6W  number of 

parent strings to form the mating pool. The members of this pool, which are 

used to produce offspring population, possess relatively high fitness scores. 

The commonly used parent selection techniques are Roulette-wheel selection 

(Lipowski and Lipowska, 2012), Tournament selection (Miller and Goldberg, 

1995), and elitist mating (Thierens and Goldberg, 1994). 

• Roulette-wheel selection: Selection of the candidate solutions in the 

mating pool is done, such that candidates with higher fitness scores 

contribute higher number of copies to the mating pool. It is conducted 

by creating copies of the candidates in proportion to their fitness 

scores. This ensures that the mating pool has more number of 

candidates with higher fitness as compared to those with lower fitness 

scores.  

• Tournament selection: This is a static selection scheme where the 

probability of selection of a candidate remains fairly constant across 

generations. In this scheme, a specified number, called the “tournament 

size”, of members are chosen from the parent population and these 

enter competition for selection. The winner is decided based on the 
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best fitness and allowed to enter the reproductive phase. This process is 

repeated sufficiently, along with recombination and mutation, to 

produce the offspring population.  

• Elitist Selection: Elitism is sometimes the case that a good solution is 

found early on in the GA run but gets deleted from the population as 

the GA progresses. One solution is to “memorize” the best solution 

found so far. A technique called elitism has been used to ensure that 

the best members of the population are carried forward from one 

generation to the next.  

Step 4 (Crossover): From the mating pool, select (6W/2) number of parent pairs 

randomly; the crossover operation is performed on each pair using a high 

value for the crossover probability, tghi (range 0.9−1.0). A random number is 

drawn, and whenever it falls below the crossover probability, two individuals 

(selected using one of the selection schemes described in the following 

section) are allowed to undergo crossover. If the random number test fails, the 

chosen individuals are duplicated and placed in the offspring population. This 

crossover operation, when repeated on the (6W/2) number of parent pairs, 

produces 6W  number of offspring strings. 

• One point crossover: Here, a random cut-point is chosen along the 

length of the coded solution and the two parent chromosomes are split 

at this point. The tail portion (i.e., the entire bit positions following the 

cut-point) of the two parents are exchanged to create two offspring 

chromosomes. 

• Two-point crossover: Two random cut-points are chosen and the 

portions of the encoded representations of the parents between these 

cut-points are mutually exchanged. 

• Uniform crossover: It is the generalized form of crossover where 

chromosomal exchanges happen between parents, across multiple (the 

number is chosen randomly) cut-points. The recombination operator 

has a probability associated with it which dictates how often it is used. 
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Step 5 (Mutation): Mutate the bits of offspring strings wherein the probability that a 

randomly selected bit undergoes mutation is tHuMi  (range 0.01− 0.05). In 

mutation, a randomly selected bit has been flipped from zero to one and vice 

versa. The population emerging after the mutation operation represents a new 

generation of solutions and thus, (6q�$i = 6q�$i  + 1). 

Step 6 (Termination): Repeat steps 2 to 5 on the new generation of strings till it is 

observed that the fitness of the best solution shows no increase over a large 

number (say ≈ 1000) of successive generations or the GA has evolved over a 

specified number (6Hv i ) of generations. Finally, the N binary segments in the 

string possessing maximum fitness score are decoded (see eq. 2.9), and the 

optimal values of the decision variables obtained thereby represent the 

optimized solution, X* = [��*, ��*, ..., ��*] T.  Analogous to the GP procedure, 

it is necessary in the GA procedure also that the entire GA implementation is 

repeated several times using different seed values for the random number 

generator. The optimal solutions obtained thereby are compared, and the one 

satisfying the optimization objective of function maximization or 

minimization in a best possible manner is selected as an overall optimal 

solution. 

Applications of GA in chemical sciences and engineering 

In chemical engineering, GAs are primarily used for the steady-state/dynamic 

process optimization, nonlinear process identification and control, fault detection and 

diagnosis, QSAR (quantitative structure-activity relationships) and QSPR 

(quantitative structure property relationships) tasks. A number of short and 

comprehensive reviews of GA applications in chemistry and chemical engineering are 

provided by, for example, Lucasius and Kateman (1993), Lucasius and Kateman 

(1994), and Venkatasubramanian and Sundaram (1998). Some of the important 

chemical engineering applications of GAs are listed in Table 2.7. 
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Table 2.7: Representative applications of genetic algorithm in chemical 
engineering/technology 

 

Sr. No. Specific study Reference 

1. Forecasting chaotic time series Szpiro (1997) 

2. 
Optimization study of benzene isopropylation on 

Hbeta catalyst to maximize the process performance. 
Nandi et al. (2004) 

3. 

Development of correlations for the overall gas hold-

up, volumetric mass transfer coefficient, and 

effective interfacial area in bubble column reactors. 

Gupta et al. (2009) 

4. 
Experimental optimization of supercritical extraction 

of β-carotene from Aloe barbadensis Miller. 

Bashipour and  

Ghoreishi (2012) 

5. 
Determination of interaction parameters in 

multicomponent systems of liquid–liquid equilibria 

Khansary and  

Sani(2014) 

6. Chemometrics tools in QSAR/QSPR studies 
Yousefinejad and 

Hemmateenejad (2015) 

7. 

Mathematical modeling of continuous ethanol 

fermentation in a membrane bioreactor by 

pervaporation  

Esfahanian et al. 

(2016) 

8. 
Study of change in particle size distribution in a gas-

solid fluidized bed due to particle attrition. 
Farizhandi et al. (2016) 

9. Optimization of chemical reactors network. Leong et al. (2016) 

10. 
Modeling and optimization of a pharmaceutical 

crystallization process. 

Velásco-Mejía et al. 

(2016) 

11. 
Modeling and optimization of toluene oxidation over 

perovskite-type nanocatalysts 
Zonouz et al. (2016) 
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2.5  DIMENSIONALITY REDUCTION METHOD: Principal Component 
Analysis (PCA) 

PCA was first introduced in statistics by Pearson (1901), who formulated the 

analysis as finding “lines and planes of closest fit to systems of points in space”. PCA 

was briefly mentioned by Fisher and MacKenzie (1923) as more suitable than analysis 

of variance (ANOVA) for the modeling of response data. Fisher and MacKenzie 

(1923) also outlined the nonlinear iterative partial least squares (NIPALS) algorithm, 

which was later rediscovered by Wold (1966) and Hotelling (1933) that have further 

developed PCA to its present stage (also see Geladi and Kowalski, 1986). 

When large multivariate datasets are analyzed, it is often desirable to reduce 

their dimensionality. Principal component analysis (PCA) is one technique for 

achieving the stated task; it is a multivariate statistical technique that analyzes a data 

set in which original variables are described by several inter-correlated quantitative 

dependent (derived) variables. Multivariate techniques can consider a number of 

factors, which control data variability simultaneously and therefore offer significant 

advantages over univariate techniques, where errors associated with repeated 

statistical testing can occur. In simple terms PCA, in essence, computes new 

orthogonal variables (principal components or factors) from linear combinations of 

the original variables to display the pattern of similarity of the observations, and of the 

original variables. Principal components are a transformed variable set defining the 

eigenvectors of the covariance of the data and the associated parameters. The first 

principal component, or factor, accounts for the greatest variability in the data; or the 

first few variables retain most of the variation present in all of the original data 

(Nomikos and MacGregor, 1994), and there can be an infinite number of new factors 

with each accounting for less data variability than the previous (Dong and McAvoy, 

1996). 

To illustrate the PCA method, consider a two dimensional matrix, X(6*, I), 

defining 6* measurements of I variables. The PCA decomposes, X, into matrices of 
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latent variables and the corresponding parameters (known also as “loadings”) as given 

by: 

                                                    X = TP’ + E                                                       (2.11) 

where, matrix X is assumed to be mean-centered (mean = 0) and variance-scaled (i.e. 

the standard deviation of elements of each column is unity); T (6*, I) denotes the 

matrix of I principal component (PC) scores (each column of matrix T signifies a 

principal component); P’ refers to the transpose of the loading matrix, P(I, I), and E 

denotes the residuals. In the event of linearly correlated variables, first R principle 

component scores capture a large amount of variance in the data, and thus Eq. (2.11) 

can be rewritten as 

                                                  X = ∑ 'h(5h)w + ;wxh0�                                (2.12) 

where, 'h denotes the 6*-dimensional �M( score vector; 5h refers to the transpose of 

the �M( I-dimensional loading vector, 5h, and ;wdenotes the residual matrix. It can be 

seen from Eq. (2.12) that the original (6*× I) dimensional data matrix, X, can now be 

represented in terms of 6* number of R-dimensional score vectors. Since R is smaller 

than I, the original data can be represented in terms of a smaller matrix. The sum of 

squares of elements of a score vector ('h) is related to the eigenvalue (also known as 

“ trace”) of that vector and it serves as a measure of the variance captured by the �M( 

principle component. It thus follows that larger the magnitude of a trace, more 

significant is the respective principal component. 

Application areas of Principal Component Analysis (PCA) 

A wide variety of research papers and reviews are available in the technical 

literature wherein PCA has been used in various studies. Some selective studies and 

reviews on this method are, Kruger et al. (2008), Abdi and Williams (2010), and Bro 

and Smilde (2014). 
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Table 2.8: Representative applications of principal component analysis in chemical 
engineering/technology 

Sr. No. 

 

Specific study Reference 

1. Principal component analysis in linear systems: 

Controllability, observability, and model reduction 

Moore(1981) 

2. Detection and diagnosis of abnormal batch 

operations. 

Nomikos(1996) 

3. Non-linear principal components analysis using 

genetic programming 

Hiden et al. (1997) 

4. The application of principal component analysis and 

kernel density estimation to enhance process 

monitoring 

Chen et al. ( 2000) 

5. Fault detection behavior and performance analysis of 

principal component analysis based process 

monitoring methods 

Wang et al. (2002) 

6. Fault identification for process monitoring using 

kernel principal component analysis. 

Cho et al. (2005) 

7. A review of principal component analysis and its 

applications to color technology. 

Tzeng and Berns 

(2005) 

8. Sensor-fault detection, diagnosis and estimation for 

centrifugal chiller systems.  

Wang and  Cui 

(2005) 

9. Coal gasification in a pilot plant scale fluidized bed 

gasifier 

Patil-Shinde et al. 

(2014) 

10. Prediction of high ash char gasification performance 

parameters 

Patil-Shinde et al. 

(2016) 

 

2.6  SENSITIVITY ANALYSIS 

In this thesis, sensitivity analysis (also termed “importance” analysis) has been 

performed for the example input-output data used in the development of various 

models. It is the analysis of the importance of imprecision or uncertainty in the model 

inputs in a decision-making or modeling exercise.  It is conducted to ascertain the 

extent of influence exerted by each input (independent/causal) variable on the output 
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(dependent/response) variable. The “importance” of a predictor/independent variable 

is a measure of how much the model-predicted output value changes when the 

predictor magnitude is changed. The related quantity termed “normalized importance” 

is simply the importance value divided by the largest importance value and expressed 

it as a percentage (IBM SPSS, 2011). The importance analysis is conducted using the 

entire set of data which have been used in developing the models. The importance 

chart is purely a bar chart of the values in the importance table, sorted by the 

descending values of importance.  

Methods of sensitivity analysis 

Numerous methods have been developed to determine how sensitive model 

outputs are to changes in model inputs. Most methodologies examine the effects of 

changes in a single parameter value or input variable assuming no variations in all the 

other inputs. (UNESCO Report, 2005).   

Analytical methods: Analytical approaches for sensitivity analysis do not exist for 

complex simulation models. However, procedures based on simplifying assumptions 

and guesstimates can be used to yield useful sensitivity information.  

Difficulties faced with analytical methods   

• Obtaining the derivatives for many models. 

• Needing to assume mathematical (usually linear) relationships when obtaining 

estimates of derivatives by making small changes of input data values near 

their nominal or most likely values. 

• Having large variances associated with most process models. 

Above stated difficulties have motivated the replacement of analytical method by 

numerical and statistical approach for sensitivity analysis. 

Numerical and statistical methods: There exist a number of numerical and 

statistical methods for sensitivity analysis. A few prominent ones are: deterministic 

sensitivity analysis, first-order sensitivity analysis, and Monte Carlo sampling 

methods. A detailed description of these methods can be found, for example, in 

UNESCO Report (2005).  In the present thesis sensitivity analysis was conducted for 

MLP based models. An overview of MLP-based sensitivity analysis is given below.  
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2.6.1 Artificial neural network based sensitivity analysis 

For feed-forward network multilayer perceptron (MLP), sensitivity is analyzed 

through the hyper-rectangle model. In this method, the sensitivity measure is defined 

as the mathematical expectation of output deviation due to expected input deviation 

with respect to overall input patterns in a continuous interval. Based on the structural 

characteristics of the MLP, a bottom-up approach is adopted. A single neuron is 

considered first, and algorithms with approximately derived analytical expressions 

that are functions of expected input deviation are given for the computation of its 

sensitivity. Then another algorithm is given to compute the sensitivity of the entire 

MLP network. In the present thesis, the sensitivity analysis was performed using 

(IBM SPSS, 2011) package. 

Application areas of sensitivity analysis in chemical engineering/technology 

Table 2.9: Representative applications of sensitivity analysis in chemical 
engineering/technology 

 
Sr. No. Specific Study Reference 

1. 

To study mechanics of artificial neural networks for the 

relative influence of the independent variables in the 

prediction process. 

Olden and 

Jackson(2002) 

2. 
Importance of input variables on the output of a feed 

forward neural network have been proposed 

Montano and 

Palmer(2003) 

3. 
Quantifying variable importance in artificial neural 

networks 
Olden et al. 

(2004) 

4. 
Identifying, quantifying and communicating the 

uncertainties in model outputs. 

Loucks et al. 

(2005) 

5. 
To rank the impact of object oriented metrics in fault 

prediction modeling. 

Kaur et al. 

(2006) 

6. 
To predict and simulate the behavior of the Fenton 

process. 
Elmolla et al. 

(2010) 

 

  



61 

 

2.7 STEIGER’S Z-TEST  

In a variety of situations in research, it is desirable to be able to make statistical 

comparisons between correlation coefficients measured on the same individuals. For 

example, an experimenter may wish to assess whether two predictions correlate 

equally with a criterion variable. In another situation, the experimenter may wish to 

test the hypothesis that an entire matrix of correlations has remained stable over time. 

A statistical test known as Steiger’s z-test (Steiger, 1980) is performed for comparing 

the performance of a pair of models. Specifically, this test is used to examine whether 

the two correlation coefficients corresponding to the predictions of two competitive 

models are significantly different. It tests the null hypothesis (yz) that statistically two 

correlation coefficient magnitudes are not different, i.e. 		i{ =		i|. Subscripts A, B, 

and C, respectively denote the experimental values and those predicted by the models 

B and C, where 		i{(		i|) refers to the correlation coefficient pertaining to the 

model B (model C) predicted outputs and their corresponding experimental 

counterparts. If the obtained p-values are less than 0.05, this indicates a uniform 

rejection of the null hypothesis (at 95% confidence level) regarding the statistical 

equivalence of the CC magnitudes pertaining to the respective model pairs. It can thus 

be concluded that the differences in the CC magnitudes of the stated model pairs are 

statistically significant. From the CC magnitudes and the results of Steiger’s z-test for 

a pair of models, it is possible to determine   which model possesses higher prediction 

accuracy and generalization capability.  

The formula for computing Steiger’s Z-statistic is given below.  

                                        Z = [}�� − }�~] × ��G�~���×���h!� �×(                                      (2.13) 

where,  }�� and }�~ are the Fisher’s Z transformations of ��� and ��~ , respectively. 

                                     h = 
����×hH!���hH!  ;   where   ��� = 

hF!!  � hF�!
�                              (2.14) 

If    Z > 1.96,   p < .05; Z > 2.58, p < .01     

 

2.8  CONCLUSION 

The AI-based modeling methods such as artificial neural networks, genetic 

programming, and support vector regression have some attractive features. As a 
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result, they have found numerous modeling applications in chemical engineering and 

technology. In this chapter, these methods, which have been extensively employed to 

conduct various modeling studies in chapters 3 to 8, have been described in sufficient 

details. This chapter also presents the commonly utilized AI-based stochastic 

optimization method, namely, genetic algorithm, which has been employed in Chapter 

7 for obtaining optimal conditions for a resin-based waste-water treatment reaction.  

In addition to the AI-based modeling, a number of studies reported in this thesis 

have utilized dimensionality reduction and sensitivity analysis methods (sections 2.5 

and 2.6); these are respectively used for reducing the dimensionality of the input 

space of the models and identifying influential input variables. 

In each of the modeling studies presented in the thesis, there was a need to 

rigorously compare the prediction and generalization performance of the competing 

AI-based and other models. This comparison was performed mostly using the 

Steiger’s z-test described in section 2.7. In summary, this chapter lays a strong 

foundation for the subsequent chapters by presenting in detail the various AI and 

machine learning-based modeling and optimization methods, as also conventional 

mathematical methods used in data pre-processing. 

 

NOMENCLATURE  

;′  residual matrix in PCA 

f        linear/nonlinear function whose parameters are defined in terms of a K-
dimensional vector, α 
 

I     Number of input nodes in MLPNN, and pattern index in SVR formulation 

K kernel function in SVR , and number of input nodes in 2nd hidden layer of 
MLPNN 
 
g(hi   length of a chromosome or a string in GA simulation 


�i  number of bits to represent NM( decision variable 

%&'��(   activation of j th hidden layer  

6q�$    generation index 

6q�$i   generation index in GA simulation  
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6Hv i   maximum number of generations for GA evolution 

6*      number of patterns in the data set 

6W  number of binary strings (population size) in GA simulation; number of 
candidate solutions in the GP population 
 

P’ transpose of the loading matrix 

tghi   crossover probability in GA procedure 

tHuMi   mutation probability in GA procedure 

5h  transpose of the �M(J- dimensional loading vector in PCA 

8i  string fitness in GA procedure 

8W      fitness score of  qth candidate solution in GP 

8Wi  fitness score of  qth candidate solution in GA 

:�  decoded decimal value of Nth binary segment 

'h  6*-dimensional �M( score vector in PCA 

)�(     weights of the connections between input layer nodes and j th hidden node 

#*  = [��, ��,, ..., ��, ..., �/,]T refers to the I-dimensional vector of  
independent/input variables  

 ��e*M  i th  optimized decision variable 

y       Dependent/output variable 

�*� *
  Experimental (target) outputs pertaining to the 5M( input pattern. 

�*HIJ   Model-predicted outputs pertaining to the 5M( input pattern. 

Greek letters 

α     = [S�,  S� , ..., S1, ..., ST]T, parameter vector in  GP 

S*, S*∗   Lagrange multipliers in SVR 

b  Parameter vector of function ] 
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2
q∆     mean-squared-error between the target and model predicted outputs for the 

entire solution population  
 

η learning rate in the EBP algorithm 

+�(      Strength of the connection that the bias neuron makes with j th hidden node.  

OPQR     momentum coefficient in the EBP algorithm 
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Chapter 3 

Artificial Intelligence-based Modeling of High Ash Coal 
Gasification in a Pilot Plant Scale Fluidized Bed Gasifier 

 
ABSTRACT 

The quality of coal—especially its high ash content—significantly affects 

the performance of coal-based processes. Coal gasification is a cleaner 

and an efficient alternative to the coal combustion for producing the 

syngas. The high-ash coals are found in a number of countries, and they 

form an important source for the gasification. Accordingly, in this study, 

extensive gasification experiments were conducted in a pilot-plant scale 

fluidized-bed coal gasifier (FBCG) using high-ash coals from India. 

Specifically, the effects of eight coal and gasifier process related 

parameters on the four gasification performance variables, namely 

CO+H2  generation rate, syngas production rate, carbon conversion, and 

heating value of the syngas, were rigorously studied. The data collected 

from these experiments were used in the FBCG modeling, which was 

conducted by utilizing two artificial intelligence (AI) strategies namely 

genetic programming (GP) and artificial neural networks (ANNs). The 

novelty of the GP formalism is that it searches and optimizes both the 

form and parameters of an appropriate linear/nonlinear function that 

best fits the given process data. The original eight-dimensional input 

space of the FBCG models was reduced to three-dimensional space using 

the principal component analysis (PCA) and the PCA-transformed three 

variables were used in the AI-based FBCG modeling. A comparison of 

the GP and ANN-based models reveals that their output prediction 

accuracies and the generalization performance vary from good to 

excellent as indicated by the high training and test set correlation 

coefficient magnitudes lying between 0.92 and 0.996. This study also 

presents results of the sensitivity analysis performed to identify those 

coal and process related parameters, which significantly affect the 

FBCG process performance. 
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3.1 INTRODUCTION 

The widely employed coal-based combustion technologies for the power 

generation suffer from a number of drawbacks, such as lower efficiency, and 

significant emissions of CO�, SO�, and NO� gases. These emissions lead to the climate 

change, and air pollution. An important factor that influences the performance of a 

thermal power station is the quality of the coal used in the combustion. Specifically, 

usage of the high ash (>20%) coal produces  following adverse effects: (a) emission 

of more particulate matter into the atmosphere, (b) reduced power station boiler 

efficiency leading to consumption of higher volumes of coal to achieve the targeted 

power output, which results in higher coal transportation costs and, consequently, 

costlier power, and (c) higher levels of impurities from the coal (e.g., ash and 

moisture) that do not contribute to the combustion process; these also lead to severe 

waste disposal problems. 

There are a number of countries such as India, China, Australia, and Turkey, 

where high ash coal deposits are found. In India, coal-based energy meets nearly 70% 

of the country’s energy needs. The Indian thermal power stations invariably receive 

high ash coals and, therefore,  CO� emission control has become a major concern. For 

achieving the stringent pollution control targets, changes in the coal utilization 

practices and the development of clean coal technologies have become essential. 

These measures are expected to result in a high coal conversion efficiency and lower 

environmental impact (Takematsu and Maude, 1991). The gasification of coal is such 

a promising clean coal technology (Miller, 2011). The typical thermal efficiencies of 

the conventional pulverized-fuel (PF)-fired power stations are approaching 37%, 

whereas supercritical PF units can achieve net efficiencies of 47% (Clean coal 

technology, 2000). In comparison, power generation using an Integrated Gasification 

Combined Cycle (IGCC) system has achieved thermal efficiencies of approximately 

47% (Heaven, 1996) and it is believed that the efficiencies exceeding 50% are 

possible in the near future (Clean coal technology, 2000; Davidson, 1983). The newer 

gas turbine concepts and increased process temperatures are targeting efficiencies up 

to 65% (Davidson, 1983). 

The gasification technology, being environment-friendly is a potential 

alternative to the conventional coal combustion-based power generation. The 
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conventional thermal power plants with steam cycles alone cannot achieve the high 

efficiency targets, and hydrogen production from the combustion plants is not 

feasible. These limitations are not applicable to the gasification technologies and they 

possess several other advantages as well due to their flexibility in the syngas 

applications. There exist three major coal gasification technologies, namely moving 

(fixed) bed, fluidized bed, and entrained bed gasifiers. Among these, the fluidized bed 

coal gasifier (FBCG) possesses following advantages (Chavan, 2012): 

• Process conditions in an FBCG are more uniform leading to better heat and 

mass transfer in the bed and steady product composition. 

• Provides better contact between the solid and gaseous reactants, which is 

favorable for maximizing carbon conversion. 

• It has a high solids residence time, can use bigger particle sizes, and is capable 

of handling the high-sulfur coals without a need for the flue-gas 

desulfurization systems, which incur high capital and operational costs. 

• It operates at lower temperatures and thus emits lower amounts of nitrogen 

oxides (6� ). The low temperature process, besides improving the system’s 

reliability, is also inherently more energy efficient since it consumes nearly all 

the heat generated in the gasifier in supporting the gasification. 

• The FBCG can handle a wide variety of coals ranging from the high quality 

bituminous coal to the lignite. For more reactive fuels, such as the sub-

bituminous coal and lignite, the fluidized bed gasifiers can achieve good 

gasification yields and carbon conversion at relatively mild conditions. 

• The tar and phenol formation is low or negligible. 

• The large fuel inventory provides safety, reliability, and stability. 

• Potential for in situ sulfur capture. 

• Better turn-down ratio. 

Due to the above-stated several attractive characteristics, the fluidized bed coal 

gasifiers are better suited—in comparison with the other types of gasifiers—for 

handling high ash coals. 

A large number of studies have been performed to investigate the fluidized bed 

coal gasification (see, for example, Gutierrez and Watkinson, 1982; Ocampo et al., 

2003; and Ju et al., 2010). However, a detailed experimental investigation and 
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analysis of the fluidized bed gasification with a focus on the high ash coals cannot 

found in the open scientific literature. Such a study is important since in countries like 

India a large portion of the electrical energy comes from the coal-fired thermal power 

stations and there exists a dire need to switch over to more efficient clean coal 

technologies, such as gasification. Another reason for studying the FBCG in depth is 

the following: the gasifier operates in the dry ash removal mode owing to which the 

operating temperature needs to be lower. This may result in an unconverted carbon in 

the fly and bottom ashes. To address the issues arising from the low temperature 

FBCG operation, an in-depth investigation of the various factors affecting the FBCG 

performance has become necessary. Accordingly, this study first reports the results of 

the fluidized bed gasification in a pilot-plant scale gasifier using high ash coals of 

Indian origin. 

Availability of an accurate, robust, and reliable mathematical process model of 

an FBCG assists in the preliminary process design, complex simulation, prediction of 

the steady-state and dynamic behavior, startup, shutdown, change of fuel and load, 

scaling up, control, fault detection and diagnosis, and process optimization. Such 

models are also helpful in fixing the right magnitude of the bed temperature so as to 

(i) avoid bed agglomeration and incomplete char conversion (due to lower 

temperatures), (ii) avert tar formation (owing to high temperatures), and (iii) ensure 

high gasification efficiency. Conducting experiments, especially at a large scale, is 

often expensive, complicated and time-consuming task; modeling can save time and 

money (Gómez-Barea and Leckner, 2010). Owing to these advantages, a great deal of 

effort has been spent over the last five decades toward mathematically modeling 

different types of gasifiers. 

3.1.1 Phenomenological Modeling of Fluidized Bed Coal Gasification 

Commonly, phenomenological (“first principles” or “mechanistic”) models of 

an FBCG are developed for gaining design and performance related information on 

the process operating under a variety of reaction conditions. These models incorporate 

complex and nonlinear reaction and mass and heat transport phenomena. Different 

types of models can be developed for the FBCG—from the simple black-box or zero-

dimensional models, where mass and heat balances are made over the entire gasifier 

to predict the exit gas composition, to the complex non-isothermal, three-dimensional 
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ones taking into account the fluid dynamics and thermal behavior. Owing to the sheer 

complexity of the underlying physicochemical phenomena, the phenomenological 

modeling of the coal gasification/gasifier is a challenging task. This task is often 

simplified by making a number of assumptions regarding the numerous mechanisms 

underlying the gasification process. 

Broadly, two types of phenomenological models, namely thermodynamic 

(equilibrium) and kinetic (rate), are developed for the FBCG (Lee, 2007). The models 

belonging to the first category are independent of the gasifier type and assume 

complete oxygen consumption. Being independent of the gasifier type, these models 

are not useful for examining the effects of operating parameters on the gasifier 

behavior. The other type, i.e., kinetic models, comprises an appropriate hydrodynamic 

model of the fluidized bed coupled with the kinetics of various reactions occurring in 

the gasifier. Given a set of operating conditions of a specific type of a gasifier, its 

kinetic model is capable of predicting the process behavior in terms of, for instance, 

product composition, and temperature profiles. In the phenomenological modeling of 

an FBCG, once the model structure is fixed, then a large number of kinetic, 

thermodynamic, and heat and mass transport related parameters appearing in the 

model need to be determined either by conducting experiments and/or by simulation. 

Some notable representative studies as also reviews pertaining to the 

phenomenological modeling (including computational fluid dynamics modeling) of 

the fluidized bed gasification can be found in Rhinehart et al. (1987), Sett and 

Bhattacharya (1988), de Souza-Santos (1989), Goyal et al. (1989), Gururajan et al. 

(1992), Lim et al. (1995), Witt and Perry (1996), Witt et al. (1997), Donne et al. 

(1998),  Moorea-Taha (2000), Villanueva et al. (2008), Mazumder (2010), Armstrong 

et al. (2011), Irfan et al. (2011), Yang et al. (2012), Xiangdong et al. (2013), and 

Singh et al. (2014). 

The specific difficulties encountered in the phenomenological modeling of  

gasification processes are: (i) nonlinear interplay of a number of  process variables, 

(ii) lengthy throughput dependent process dynamics, (iii) cost-intensive and 

exhaustive experimentation required for studying the effects of influential  operating 

variables and parameters, and (iv) unavailability of an in-depth knowledge of the 

physicochemical phenomena (e.g., kinetics, heat and mass transport mechanisms) 

underlying the coal gasification phenomena. 
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3.1.2 Alternate FBCG Modeling Strategies 

An alternative approach to the phenomenological modeling of the gasification 

process is to utilize regression methods to formulate empirical models. However, in 

this approach the exact form of the data fitting function (model) needs to be specified 

before the function parameters could be estimated. This is a difficult task since in the 

gasification process multiple factors influence the nonlinear gasification phenomena 

and the precise interactions between them are not fully known. The complexities 

involved in the phenomenological and regression-based modeling of  FBCG 

necessitate exploration of alternative nonlinear modeling strategies that do not require  

full details of the underlying physicochemical phenomena. The AI-based modeling 

strategies, for example, artificial neural networks (ANNs), and the statistical machine 

learning (ML) theory-based formalism, namely support vector regression (SVR), are 

exclusively data-driven strategies and thus these can be used for modeling FBCG. 

There exist a number of studies wherein ANNs have been employed in the energy-

related science and engineering (Mjalli and Al- Mfargi, 2008;  Nougues et al., 2000; 

Liukkonen  et al., 2012; Puig-Arnavat  et al., 2013; Behera, 2014). In an exhaustive 

data driven modeling study of  FBCG, Chavan et al. (2012) developed two ANN 

based models for the prediction of gas production rate and heating value of the 

product gas, using  process data from  18 globally located coal gasifiers. These 

models use six inputs namely, fixed carbon, volatile matter, mineral matter, air feed 

per kilogram of coal, steam feed per kilogram of coal, and temperature. Despite their 

potential, however, the AI and ML based strategies have been only rarely employed in 

the modeling of fluidized bed gasifiers. 

Apart from the ANNs, the AI comprises a novel exclusively data-driven 

modeling formalism, namely genetic programming (GP). The uniqueness of the GP 

methodology is that given an example input-output data set, it is capable of searching 

and optimizing both, the specific form (structure) and the parameters, of an 

appropriate linear/nonlinear data-fitting function and unlike ANNs, the GP does this 

without making any assumptions regarding the structure and parameters of the data-

fitting function. A detailed description of GP formalism is given in Chapter 2 (section 

2.2.2). Despite its novelty, the GP has not been used widely for the data-driven 

modeling applications in chemical engineering/technology to the same extent as the 

ANNs and SVR. Accordingly, the principal objectives of this paper are (i) to 
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rigorously study the gasification of the high ash Indian coals in the pilot-plant scale 

FBCG and (ii) to develop GP-based models for the prediction of four FBCG 

performance variables, namely CO+ H� generation rate (y1) (kg/kg coal), syngas 

production rate (y2) (kg/kg coal), carbon conversion (y3) (%), and heating value of the 

syngas (y4) (kcal/Nm3). In the FBCG modeling, following eight process variables and 

parameters have been used as the model inputs: fuel ratio (fixed carbon/volatile 

matter) (x1), ash content of coal (x2) (wt %), specific surface area of coal (x3) (m
2/g), 

activation energy of gasification (x4) (kJ/mol), coal feed rate (x5) (kg/h), gasifier bed 

temperature (x6) (°C), ash discharge rate (x7) (kg/h) and air/coal ratio (x8) (kg/kg 

coal). The novel features of the present study are as follows. 

a) Extensive experimentation has been conducted for studying the high ash coal 

gasification under steady state conditions in a pilot-plant scale FBCG located 

at the Central Institute of Mining and Fuel Research (CIMFR), Dhanbad, 

India. 

b) A rigorous literature search shows that this is the first study wherein the GP 

strategy has been employed for the data-driven modeling in the coal-related 

energy science and engineering. 

c) The principal component analysis (PCA) has been performed for reducing the 

dimensionality of the models’ eight-dimensional input space representing the 

various coal and gasifier parameters. 

d) The sensitivity analysis of the eight model inputs has been performed to gauge 

their influence on the four process performance variables. 

Conventionally, phenomenological models for the coal gasification/gasifier use four 

types of inputs: (i) coal properties (proximate and/or ultimate analysis), (ii) process 

operating variables and parameters (reactor temperature, pressure, feed rate, etc.), (iii) 

physicochemical parameters (e.g., surface area) of the coal, and (iv) reaction kinetics 

parameters. In an earlier study on the FBCG modeling, Chavan et al. (2012) used the 

first two types of inputs. The present FBCG modeling study, in comparison, utilizes 

all the four types of inputs owing to which the input space now contains additional 

information pertaining to the physicochemical phenomena occurring in the gasifier. 

The importance of the selected eight model inputs (x1− x8) is described below. 
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• The extents of fixed carbon and volatile matter reflect the effect of hydrogen 

and oxygen containing functional groups in the coal. This effect is represented 

in the form of fuel ratio (FC/VM) (x1) as a model input.  

• Ash (wt %) (x2) is an indicator of coal’s mineral matter content. Several 

formulas have been proposed for converting the ash content in the coal to its 

mineral matter content. One of the oldest yet still widely used correlation is 

given by Parr (1932): 

                      mineral matter (wt %) = (1.08 × ash (wt %)) + (0.55 × S (wt %))     (3.1) 

where S refers to the sulfur content in the coal. Since the sulfur (as also 

carbonate) content of the Indian coals is low, a simplified version of the Parr 

correlation (Eq. 3.1) is used for these coals as given by Choudhury (2013): 

                                      mineral matter (wt %) = 1.1 × ash (wt %)                          (3.2) 

The ash in the coal is responsible for lowering the carbonaceous material in 

the coal matrix thereby negatively affecting the quality of the product gas.  

• The rate of gasification depends on the accessibility of the reactant gases to 

the internal surface of the porous coal where active sites reside. Accordingly, 

specific surface area (m2/g) (x3), has been considered as a model input. 

• In the coal gasification process, the char−CO2 gasification is one of the rate 

controlling steps and hence the activation energy (kJ/mol) (x4) of the 

char−CO� gasification reaction forms an input to the model. 

• The coal feed rate (kg/h) (x5) has been chosen because it defines the flow rate 

of the basic carbonaceous raw material.  

• The significance of the model input, namely gasifier bed temperature (°C) (x6), 

is that, as its magnitude increases, the product gas generation per kilogram of 

the coal increases. Also, higher gasification temperature results in the faster 

pyrolysis generating an increased amount of the CO�, which in turn gets 

converted to the CO via the Boudouard reaction. 

• The ash discharge rate (kg/h) (x7) has been considered as a model input 

(Satonsaowapak et al., 2011) because together with the coal feed rate (x5), it 

significantly influences the residence time of the coal particles in the gasifier 

bed. For instance, the residence time decreases with an increase in the coal 
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feed rate (x5) or the ash withdrawal rate (x7). This results in the lower product 

gas generation per kilogram of the coal feed. Accordingly, in the low 

temperature gasification, it is necessary to allow a sufficient residence time for 

the coal particles to achieve maximum carbon conversion and product gas 

generation per kg of the coal (Chavan et al., 2012; Kim et al., 1997).  

• The air/coal ratio (kg/kg of coal) (x8) is an important gasification process 

parameter since (Ocampo et al., 2003; Kim et al., 1997): (a) the air-assisted 

oxidation of the carbon is one of the key reactions for attaining the desired 

temperature for the gasification, (b) an increase in the air/coal ratio increases 

the carbon  conversion, and (c) an excessive air/coal ratio decreases the 

heating value of the syngas thereby  negatively affecting the performance of 

the gasification process. 

 
In this study, the prediction accuracies and generalization capabilities of the four 

GP-based models have been compared with those of the corresponding four 

multilayer perceptron neural network (MLPNN) based models. This comparison 

indicates that both types of models possess an excellent ability to predict the 

magnitudes of the four gasifier performance variables.  

The structure of the chapter is as follows. The details of the FBCG and the 

experiments conducted thereof are given in “experimental section” (section 3.2), 

Section 3.3  titled ‘‘Results and Discussion’’  first presents the results  pertaining to 

(a) the sensitivity analysis of the eight model inputs (section 3.3.1), (b) artificial 

intelligence (AI)-based FBCG Modeling (section 3.3.2), which includes the details of 

development of the GP and MLP-based FBCG modeling followed by a comparison of 

prediction and generalization performance of GP and MLP-based models.  Finally, 

section 3.4 summarizes the principal findings of the study. 

3.2 EXPERIMENTAL SECTION 

In this study, four types of Indian coals with ash content varying between 27% 

and 48% have been used. Their basic properties were evaluated by the proximate and 

ultimate analyses (see Table 3. 1) carried out according to the Indian standards, viz. 

IS: 1350 (Part-I) 1984, IS: 1350 (Part-III) 1969, IS: 1350 (Part-IV/Sec-1) 1974, IS: 

1350 (Part-IV/Sec-2) 1975. The specific surface area of the coal samples was 

measured using Tristar 3000 surface area analyzer (Micromeritics, U.S.A.).  
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Coal gasification comprises two steps: pyrolysis and char gasification (Ollero et 

al., 2003). The kinetics of the char gasification was investigated in the reaction rate 

controlling regime. Here, char−CO2 gasification kinetic parameters, such as the 

gasification rate constant and the gasification activation energy thereof, were 

evaluated using the laboratory scale thermo-gravimetric analyzer (TGA) by following 

the procedure given in Shaw et al. (1997), Beamish et al. (1998), and Çakal et al. 

(2007). 

3.2.1 FBCG Pilot Plant  

Gasification experiments were conducted in an air-blown FBCG pilot plant 

(Figure 3.1). The  gasifier with a capacity to handle 10−20 kg coal/h and operating 

temperature <1000 °C consists of the following subsystems: coal feeding system, 

gasifying agent feeding system, fluidized bed gasifier, ash extraction system, cyclone 

separator, syngas cooling and cleaning system, and flare stack. Gasification 

experiments were conducted using four types of coals by varying the process 

operating conditions. The gasifier temperature was raised by an external electric 

heating system. The preheated air (200−250 °C) and the superheated steam (200−250 

°C) were mixed using an air/steam mixer and fed to the gasifier through a conical 

distributor. Ash in the bed was extracted at a controlled rate and cooled to ≈ 40 °C 

prior to discharging in the ash bin. The hot dusty raw fuel gases leave the gasifier 

from the freeboard section and enter the cyclone where most of the elutriated particles 

are captured. 

The fuel gas from the cyclone enters the quench column. Following the 

softening treatment, water from the settler tank was directly sprayed by spray nozzles 

on the hot syngas to reduce its temperature. The dust laden water gets collected in the 

seal pot situated at the bottom of the quench pipe. The cooled gas exits from the top 

side in the seal pot and passes through a venturi scrubber wherein any left-over acidic 

contents of the cooled gas are cleaned further. Prior to flaring, the clean gas from the 

knockout drum is transferred through a system pressure control valve and water-

sealed flare stack. By using the water displacement method, the syngas samples were 

extracted in the glass pipettes through a sample collection port located at the 

downstream of the knockout drum. These gas samples were analyzed using an offline 

gas chromatograph (Model GC 1000; Chemito, India). The ranges of the various 



 

constituents of the syngas given by the GC 

10−22; CO2 (%) 10−25; N

 

Figure 3.1: Fluidized bed gasification pilot plant consisting of process elements: (1) 
Coal feeding system, (2) Gasifying agent feeding system, (3) Fluidized bed gasifier, 
(4) Ash extraction system, (5) Cyclone separator, (6) Syngas cooling and cleaning 
system, and (7) Flare stack.
 

Table 3.1: Analysis of Coal Samples (Air Dried Basis)

Coal 

Proximate analysis
Ash 
(wt %) 
(x2) 

Moisture 
(wt %)

C1 41.3 6.5

C2 48.9 7.1

C3 27.0 9.7

C4 36.0 8.1

*By difference
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constituents of the syngas given by the GC analysis were: CO (%) 10

25; N2 (%) 45−60; and CH4 (%) < 2.  

Fluidized bed gasification pilot plant consisting of process elements: (1) 
Coal feeding system, (2) Gasifying agent feeding system, (3) Fluidized bed gasifier, 
(4) Ash extraction system, (5) Cyclone separator, (6) Syngas cooling and cleaning 

7) Flare stack. 

Analysis of Coal Samples (Air Dried Basis) 

Proximate analysis Ultimate analysis
Moisture 
(wt %) 

Volatile 
Matter 
(wt %) 

Fixed 
Carbon 
(wt %) 

C (%) H (%) 

6.5 24.5 27.7 37.15 2.83 

7.1 20.4 23.6 30.82 1.90 

9.7 25.7 37.6 48.46 3.44 

8.1 20.7 35.2 43.51 3.03 

CO (%) 10−22; H2 (%) 

 

Fluidized bed gasification pilot plant consisting of process elements: (1) 
Coal feeding system, (2) Gasifying agent feeding system, (3) Fluidized bed gasifier, 
(4) Ash extraction system, (5) Cyclone separator, (6) Syngas cooling and cleaning 

Ultimate analysis 

N (%) S (%) O (%)* 

0.86 0.55 6.68 

0.60 0.24 5.55 

1.03 0.60 7.07 

0.98 0.51 4.27 
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Table 3.2: FBG Experimental data 

Expt. 
no. 

Coal 
type 

FC/VM 
(��) 

Sp. 
surface 

area 
(m2/g) 
(��) 

Activation 
energy 

(kJ/mol) 
(��) 

Coal 
feed rate 
(kg/h) 
(��) 

Gasifier 
temp. 
(oC) 
(��) 

Ash 
discharge 

rate 
(kg/h) 
(��) 

Air/coal ratio 
(kg/kg coal) 

(��) 

CO+H2 
(kg/kg coal) 

(��) 

Syngas 
production 

rate 
(kg/kg coal) 

(��) 

Carbon 
conversion 

(%) 
(��) 

Syngas heat 
value 

(kcal/Nm3) 
(��) 

1 C1 1.13 103.60 120.60 11.5 852 6.0 1.13 0.27 1.61 66.34 1104.0 
  2* C1 1.13 103.60 120.60 11.0 896 5.0 1.20 0.44 1.78 80.64 1278.0 
  3* C1 1.13 103.60 120.60 11.0 905 5.0 1.23 0.43 1.83 81.13 1260.0 
4 C1 1.13 103.60 120.60 10.3 912 4.5 1.26 0.46 1.89 84.19 1260.0 

  5* C1 1.13 103.60 120.60 11.0 918 4.5 1.29 0.49 1.92 85.42 1275.3 
6 C1 1.13 103.60 120.60 10.5 925 4.5 1.34 0.49 1.95 84.82 1245.0 
7 C2 1.16 115.15 117.15 16.0 815 10.3 0.87 0.14 1.19 52.78 0962.4 
8 C2 1.16 115.15 117.15 16.0 825 9.5 0.87 0.18 1.27 61.76 1023.6 
9 C2 1.16 115.15 117.15 15.0 834 9.5 0.91 0.18 1.29 61.27 1025.4 

  10* C2 1.16 115.15 117.15 14.0 839 7.0 0.92 0.22 1.33 64.89 1102.2 
  11* C2 1.16 115.15 117.15 14.0 839 7.0 0.94 0.24 1.36 68.13 1077.6 
12 C2 1.16 115.15 117.15 14.0 845 8.0 0.94 0.23 1.29 62.64 1122.6 
13 C2 1.16 115.15 117.15 15.0 855 8.5 0.88 0.20 1.29 63.57 1095.6 
14 C2 1.16 115.15 117.15 15.0 859 8.0 0.89 0.24 1.36 71.01 1161.3 
15 C2 1.16 115.15 117.15 15.0 859 8.5 0.91 0.22 1.34 67.43 1137.0 
16 C2 1.16 115.15 117.15 13.0 872 5.5 0.94 0.32 1.42 77.56 1282.2 

  17* C2 1.16 115.15 117.15 14.3 879 8.0 0.96 0.31 1.40 72.86 1233.3 
18 C2 1.16 115.15 117.15 13.0 880 6.0 0.95 0.32 1.44 75.79 1113.6 
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Table 3.2 continued… 

 
Expt. 
no. 

Coal 
type 

FC/VM 
(��) 

Sp. 
surface 

area 
(m2/g) 
(��) 

Activation 
energy 

(kJ/mol) 
(��) 

Coal 
feed rate 
(kg/h) 
(��) 

Gasifier 
temp. 
(oC) 
(��) 

Ash 
discharge 

rate 
(kg/h) 
(��) 

Air/coal ratio 
(kg/kg coal) 

(��) 

CO+H2 
(kg/kg coal) 

(��) 

Syngas 
production 

rate 
(kg/kg coal) 

(��) 

Carbon 
conversion 

(%) 
(��) 

Syngas heat 
value 

(kcal/Nm3) 
(��) 

19 C2 1.16 115.15 117.15 14.0 880 5.8 0.91 0.32 1.41 77.96 1295.4 
20 C2 1.16 115.15 117.15 13.0 887 5.5 0.98 0.33 1.46 78.39 1261.5 
21 C2 1.16 115.15 117.15 13.4 890 6.0 0.98 0.33 1.44 76.66 1281.9 
22 C2 1.16 115.15 117.15 13.3 892 7.0 1.04 0.33 1.48 76.02 1211.7 

  23* C2 1.16 115.15 117.15 13.0 893 5.8 1.00 0.34 1.48 78.73 1254.3 
24 C2 1.16 115.15 117.15 13.5 896 6.0 1.02 0.35 1.48 79.43 1291.5 
25 C2 1.16 115.15 117.15 12.5 900 6.0 1.10 0.35 1.53 77.94 1238.1 
26 C2 1.16 115.15 117.15 13.0 901 5.8 0.97 0.34 1.46 79.88 1298.4 
27 C2 1.16 115.15 117.15 13.0 903 6.0 0.95 0.33 1.43 78.04 1266.3 
28 C2 1.16 115.15 117.15 13.0 904 5.8 0.98 0.36 1.47 81.19 1320.0 
29 C3 1.46 86.25 133.37 11.5 833 6.5 1.27 0.34 1.87 60.51 1110.0 

  30* C3 1.46 86.25 133.37 11.0 889 5.5 1.30 0.48 2.00 70.06 1257.0 
31 C3 1.46 86.25 133.37 10.5 911 5.0 1.34 0.52 2.09 74.33 1269.0 
32 C3 1.46 86.25 133.37 10.0 966 4.0 1.43 0.57 2.34 86.22 1215.6 
33 C4 1.70 94.52 125.87 12.0 841 7.0 1.12 0.32 1.64 60.12 1161.0 

  34* C4 1.70 94.52 125.87 11.5 875 6.7 1.24 0.39 1.83 67.49 1164.0 
35 C4 1.70 94.52 125.87 11.5 890 6.0 1.22 0.44 1.82 68.74 1242.0 
36 C4 1.70 94.52 125.87 11.0 900 6.0 1.34 0.47 1.96 73.59 1221.0 
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During gasification, the major controlled parameters were coal feed rate, bed 

temperature, air flow rate, steam flow rate, ash withdrawal rate, and bed height. The 

bed temperature was major feedback for the control loops to control various other 

operating parameters. It was controlled via manipulating the coal and air feed rates. 

The bed height was controlled by adjusting the rate of ash extraction from the bottom 

of the gasifier. Upon following the stated experimental and control procedures, a 

number of experiments (=36) were conducted by varying  FBCG operating conditions 

in the following ranges: (i) coal feed rate = 10−16 (kg/h), (ii) air/ coal ratio = 0.8−1.5 

(kg/kg of coal), (iii) steam feed rate ≈ 0.2 (kg/kg of coal), (iv) gasifier bed 

temperature = 800−960 (°C), (v) ash withdrawal rate = 4−10 (kg/h), and (vi) bed 

height ≈ 10 cm. All the experiments were conducted with the minimum fluidization 

velocity of 0.625 m/s. The proximate and ultimate analyses of the four types (C1−C4) 

of coals are given in Table 3.1, and the values of the seven inputs (x1 to x8) and the 

corresponding four outputs (y1−y4) pertaining to the 36 gasification experiments are 

listed in Table 3.2; the values of the second input, namely percentage of ash (x2), are 

listed in Table 3.1. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Sensitivity Analysis of Model Inputs 

In this study, the sensitivity analysis (also termed “importance” analysis) of the 

predictor/input/independent variables in the gasifier data has been performed using 

the IBM-SPSS (2011) package to ascertain the extent of influence exerted by the eight 

input variables (x1−x8) on the four process performance variables (y1−y4); the details 

of the sensitivity analysis are given in Chapter 2 (section 2.6). The importance 

analysis was conducted using the entire set of experimental data listed in Tables 3.1 

and 3.2. The four panels (a−d) of Figure 3.2 exhibit the importance and normalized 

importance charts, which indicate the extent of influence exerted individually by the 

eight input variables (x1−x8) on the four performance variables (y1−y4). The 

importance chart is simply a bar chart of the values in the importance table, sorted in 

the descending values of importance. From Figure 3.2, it is observed that the air/coal 
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ratio (x8), gasifier bed temperature (x6), ash discharge rate (x7), and coal feed rate 

(x5) influence the gasifier performance variables most significantly. These sensitivity 

results are in conformity with those observed in the studies by Pinto et al. (2003), Lee 

et al. (2002), and Ponzio et al. (2006). It is also noticed that the basic coal properties 

viz. FC/VM ratio (x1), ash content (x2), specific surface area (x3), and gasification 

activation energy (x4) impart relatively lower influence on the gasification 

performance. Chavan et al. (2012) and Kim et al. (1997) have also made similar 

observations during their gasification studies. 
 

 

Figure 3.2: Normalized importance of eight model inputs (x1− x8) on four model 
outputs namely CO+H2 generation rate (panel a), syngas generation rate (panel b), 
carbon conversion (panel c), heating value of syngas (panel d). 
 

3.3.2 Artificial Intelligence (AI)-based FBCG Modeling  

The principal component analysis (PCA) (Geladi and Kowalski, 1986) described 

in Chapter 2 (section 2.5) was performed on the eight-dimensional input space of the 
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GP and MLP-based models with a view to reduce the dimensionality of the input 

space and thereby the complexity of the models. A low dimensional input space also 

lowers the computational load during the GP/MLP-based modeling. The results of the 

PCA provided the following magnitudes of the variance in the experimental data 

captured by the eight principal components (PCs): PC1, 70.2%; PC2, 21.5%; PC3, 4%; 

PC4, 2.4%; PC5, 1.6%; PC6, 0.2%; PC7, 0.1%; and PC8, 0.0%. It is thus seen that the 

first three PCs have captured a large percentage (≈ 95.7%) of the data variance. Thus, 

it was possible to reduce the dimensionality of the input space of the GP and MLP-

based models from eight to three by considering the elements of the first three PCs in 

place of the original eight inputs. The three PCA-transformed inputs (v1, v2, v3) are 

defined as 

v1 = 0.288 ��� ‒ 0.396 ���  ‒ 0.399 ��~  + 0.382 ��� ‒ 0.387 ���  + 0.242 ���  ‒ 0.289 ���  + 

0.405 ���                                                                                                             (3.3) 

v2 = 0.424 ���‒ 0. 228 ���  ‒  0.233��~  + 0. 273 ���+ 0. 243 ���   ‒ 0.556 ���   + 0.514 ���  ‒ 

0.08 ���                               (3.4) 

v3 = ‒ 0.811���  ‒ 0.25 ���    ‒ 0.162 ��~  + 0.174 ��� ‒ 0.115���   ‒ 0.431 ���  + 0.005 ���   + 

0.159 ���                        (3.5) 

where  ���; i = 1, 2, ..., 8, denote the normal scores (standardized variables) of the 

eight input variable values (xi) listed in Tables 3.1 and 3.2. For developing the models 

possessing good prediction accuracy and generalization ability, the experimental data 

were split randomly wherein 75% data (27 patterns) were used as the training set for 

developing the models while 25% data (9 patterns) were used as the test set for 

assessing the generalization ability of the models. In Supporting Information Table 

3.2, the test set data are marked using the asterisk (“ * ”) symbol. 
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Table 3.3: Details of GP-based FBCG Models 

Model No 
GP-based models* 		3�� 9:;3�� 		3�3 9:;3�3 

I y1 = 0.1058 [0.8374 z1 + 0.1965  z1 z3 ‒ 0.3645 z2 ‒ 0.09381 z3
3] + 0.3414 0.993 1.41 x 10-4 0.981 3.5 x 10-4 

II y2 = 0.2806 [1.118 z1 ‒ 0.103 z2 ‒ 0.2117 z1 z2 ] + 0.3414 0.993 1.28 x 10-3 0.997 5.37 x 10-4 

III y3 = 8.4187 [0.3003 z1
2 + 0.1524 z1 z2

2 ‒ 0.1977 z3 ‒ 1.089 z2 
 ‒ 0.276 ]+ 72.9869 0.980 3.905 0.980 2.288 

IV 
y4 = 91.441 [ 0.8156 z1 z3  + 0.2545 z1 z2 + 0.07754 z2

3  ‒ 0.1946 z3
3 ‒ 0.2459 z1

2 
z3 ‒ 0.657 z2 ‒ 0.02941 ] + 1197.72 

0.925 1296.95 0.969 621.62 

*z1 = (v1)/(2.3708),   z2 = (v2)/(1.3099)  and  z3 = (v3)/(0.5676);  vi denotes ith PCA-transformed variable 

 

Table 3.4: Details of MLP-based FBCG Models 

Model 
No 

Output 
variable 

Input 
nodes 

No. of 
hidden 
layers 

Hidden 
nodes in each 
hidden layer 

Transfer 
function for 
hidden layer 

Transfer 
function for 
output layer 

OPQR     η 		3�� 9:;3�� 		3�3 9:;3�3 

I 
y1 
 

3 1 2 tanh Identity 0.05 0.1 0.993 1.4×10-4 0.978 5.3×10-4 

II y2 3 1 2 tanh Identity 0.005 0.1 0.994 9.0×10-4 0.996 9.8×10-4 

III y3 3 1 2 tanh Identity 0.05 0.1 0.977 3.370 0.982 1.822 

IV y4 3 1 2 tanh Identity 0.05 0.2 0.920 1371.81 0.960 617.99 
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GP-based modeling 

The four GP-based models predicting as many (y1− y4) gasifier performance 

variables were developed using the Eureqa Formulize software package (Schmidt and 

Lipson, 2009). The detailed procedure for GP (Koza, 1992; Kinnear, 1994) 

implementation has been explained in Chapter 2 (section 2.2.2). This package has 

been optimized to construct parsimonious models possessing good generalization 

ability. In the GP-based modeling, the mean squared error (MSE) dependent fitness 

function was used. The effects of the GP procedural parameters such as the size of the 

training and test sets as also the various input normalization schemes were studied 

rigorously. The prediction accuracy and the generalization performance of each model 

were evaluated by computing the coefficient of correlation (CC) and the MSE 

between the experimental (target) and the corresponding model-predicted values of 

the four process performance variables. These quantities were evaluated separately for 

the training and test data sets. The overall best models were selected on the basis of 

their high CC and low MSE magnitudes in respect of both training and test set data. 

The four GP-based models, respectively predicting CO + H� generation rate (y1), 

syngas production rate (y2), carbon conversion (y3), and heating value of the syngas 

(y4), are listed in Table 3.3 along with the corresponding magnitudes of the training 

and test set coefficients of correlation and mean squared errors.  

The four panels (a−d) of Figure 3.3 respectively show the parity plots of the 

experimental versus GP model-predicted values of the four process performance 

variables (y1− y4) in respect of both training and test set data. As can be noticed from 

panels (a−c), the model predicted values of the performance variables y1, y2 and y3 

exhibit a close match with their experimental counterparts. The prediction accuracy of 

the GP-based model for the performance variable, y4 (heating value of the syngas), 

though high is marginally inferior to that possessed by the GP-models for y1, y2, and 

y3.  

MLP-based modeling  

The MLP-based analogs of the four GP-based models were developed using the 

same training and test sets as used in the development of the GP-based models. To 

construct an optimal MLP-based (Zurada, 1992; Bishop,1994) model the detailed 
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procedure explained in Chapter 2 (section 2.2.1) has been followed. The effects of 

network’s structural parameters (i.e., the number of hidden layers, number of nodes in 

each hidden layer and type of transfer function and the two EBP algorithm 

parameters, namely learning rate (η) and momentum coefficient (OPQR), on the 

model’s prediction accuracy and generalization capability were systematically 

examined. Also, the effect of random weight initialization was studied to obtain an 

MLP model that corresponds to the global or the deepest local minimum on the 

model’s nonlinear error surface. The details of the model architecture along with the 

values of the training and test set CC and MSE for the four MLP models are listed in 

Table 3.4. The four panels (a−d) of Figure 3.4 respectively show the parity plots of 

the experimental versus MLP model-predicted values of the performance variables y1 

to y4. Similar to Figure 3.3, it can be observed in Figure 3.4 that the MLP predicted 

values of the performance variables y1, y2, and y3 exhibit a close match with their 

experimental counterparts. From the CC and MSE values listed in Tables 3.3 and 3.4 

following observations can be made: 

• All the four GP-based models are nonlinear. 

• The high (≥0.925) and comparable CC magnitudes are observed in respect of the 

training and test set outputs for all the GP and MLP-based models. 

• Among the four models constructed separately using the GP and MLP methods, 

the prediction accuracy and generalization performance of the first three models, 

respectively predicting the magnitudes of CO+H2 generation rate (y1), syngas 

generation rate (y2), and carbon conversion (y3) are excellent (		3�� and 		3�3 ≥ 

0.98); the fourth one predicting the heating value of the syngas (y4), however, 

possesses relatively lower prediction accuracy and generalization performance 

(CC3��  ∼ 0.92 and CC3�3 ∼ 0.96). 

• The CC and MSE magnitudes for the training and test set data obtained using the 

GP and MLP models indicate that both types of models possess comparable 

prediction and generalization performance. 
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Figure 3.3: Plots of experimental versus GP model-predicted values of performance 
variables, namely CO+H2 generation rate (y1, kg/kg coal) (panel a), syngas production 
rate (y2, kg/kg coal) (panel b), carbon conversion (y3, %) (panel c), and heating value 
of syngas (y4, kcal/Nm3) (panel d). 
 

An explanation is in order for the relatively lower prediction accuracy and 

generalization performance in predicting the heating value of the syngas (y4) by both 

GP and MLP-based models. In this study, the overall heating value of the generated 

syngas is computed by adding the heating values of CO (3014 kcal/nm3), H2 (3050 

kcal/nm3), and CH4 (9530 kcal/nm3) in their respective proportions in the syngas. In 

the experiments conducted in the FBCG, the individual percentages of the generated 

CO and H2 varied between 10 and 22, while the percentage of the generated CH4 

varied between 0.5 and 2.0. The quantitative analysis of the composition of the syngas 

was made using the gas chromatography, and it is quite plausible that the accuracy of 

the measurement of  concentration of CH4  whose proportion in the syngas is much 

lower than that of the CO or H2 was not as good as that of the stated major 



101 

 

components. The effect of even a marginal inaccuracy in the measurement of the 

methane gets amplified in the computation of the heating value of syngas, due to 

methane’s nearly 3.15 times higher heating value when compared with that of the CO 

or H2. In essence, slight inaccuracies in the measurements of the minor syngas 

component (i.e., CH4) together with its much higher heating value could have led to 

the small deviations in the actual magnitudes of the overall heating values of the 

syngas. These deviations are possibly responsible for the lower (albeit marginally) 

prediction accuracies of both the GP and MLP-based models predicting the overall 

heating value of the generated syngas. It is thus clear that accurate measurements of 

the low concentrations of methane in the syngas product should assist in improving 

the y4 prediction accuracy of the GP- and MLP-based models. 

 

 

Figure 3.4:  Plots of experimental versus MLP model-predicted values of 
performance variables, namely CO+H2 generation rate (y1, kg/kg coal) (panel a), 
syngas production rate (y2, kg/kg coal) (panel b), carbon conversion (y3, %) (panel c), 
and heating value of syngas (y4, kcal/Nm3) (panel d). 
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3.4 CONCLUSION 

Coal gasification is a cleaner and an efficient alternative to the coal combustion 

for producing the syngas. The high-ash coals are found in a number of countries, and 

they form an important source for the gasification. Accordingly, in this study, 

extensive gasification experiments were conducted in a pilot-plant scale fluidized-bed 

coal gasifier (FBCG) using high-ash coals from India. The FBCG is a complex 

nonlinear process and the complete details of the underlying physicochemical 

phenomena are not available; thus, development of the phenomenological model for 

an FBCG process is a cumbersome, time-consuming, and costly task. To overcome 

the difficulties associated with the phenomenological models, in this study the 

knowledge of the proximate analysis, char−CO2 gasification activation energy, 

surface area of the coal, and influential process parameters has been utilized for 

developing exclusively data driven FBCG models predicting four important 

gasification performance variables. For modeling, novel artificial intelligence (AI) 

formalism, namely genetic programming (GP) has been used and the performance of 

the GP-based models was compared with the corresponding MLP neural network-

based ones. Both types of models have been found to possess output prediction 

accuracies and the generalization performance that vary from good to excellent as 

indicated by the high training and test set correlation coefficient magnitudes lying 

between 0.920 to 0.996.  A rigorous literature search shows that this is the first study 

wherein the GP strategy has been employed for the data-driven modeling in the coal 

sciences and engineering. The models developed in this study can be gainfully used in 

designing and control of the FBCG, and in selecting process operating conditions 

leading to an optimal gasifier operation. These models can also be used in predicting 

the gasification performance of similar types of coals in the bubbling FBCG of pilot 

scale capacity. 

 

NOMENCLATURE 

��      i th PCA-transformed variable 

���  the normal scores (standardized variables) of the eight input variable values (xi) 

�� i th  output (dependent) variable 



103 

 

REFERENCES 

Armstrong, L. M., Gu, S., and  Luo, K. H. (2011). Parametric study of gasification 

processes in a BFB coal gasifier. Industrial & Engineering Chemistry Research, 

50(10), 5959-5974. 

Beamish, B. B., Shaw, K. J., Rodgers, K. A., and Newman, J. (1998). 

Thermogravimetric determination of the carbon dioxide reactivity of char from 

some New Zealand coals and its association with the inorganic geochemistry of 

the parent coal. Fuel processing technology, 53(3), 243-253. 

Behera, S. K., Rene, E. R., Kim, M. C., and Park, H. S. (2014). Performance 

prediction of a RPF‐fired boiler using artificial neural networks. International 

Journal of Energy Research, 38(8), 995-1007. 

Bishop, C. M. (1994). Neural networks and their applications. Review of scientific 

instruments, 65(6), 1803-1832. 

Çakal, G. Ö., Yücel, H., and  Gürüz, A. G. (2007). Physical and chemical properties 

of selected Turkish lignites and their pyrolysis and gasification rates determined 

by thermogravimetric analysis. Journal of analytical and applied pyrolysis, 80(1), 

262-268. 

Chavan, P. D. (2012).  Studies on effect of coal properties and process parameters on 

gasification kinetics. Ph.D. Thesis, Indian School of Mines: Dhanbad, India. 

Chavan, P. D., Sharma, T., Mall, B. K., Rajurkar, B. D., Tambe, S. S., Sharma, B. K., 

and Kulkarni, B. D. (2012). Development of data-driven models for fluidized-bed 

coal gasification process. Fuel, 93, 44-51. 

Chavan, P., Datta, S., Saha, S., Sahu, G., and  Sharma, T. (2012). Influence of high 

ash Indian coals in fluidized bed gasification under different operating conditions. 

Solid Fuel Chemistry, 46(2), 108-113. 

Choudhury, S. (2013). Studies on demineralization of coal: Fractional factorial 

design. Int. J. Innovative Technol. Res, 1(1), 2320-5547. 

Clean Coal Technology Demonstration Program: Program Update 2000; U.S. 

Department of Energy (DOE): Washington, DC, 2001; http:// www.netl.doe.gov/ 



104 

 

technologies/coalpower/cctc/resources/pdfsprog/cm3tupdat/ ct_pgm_2000_all.pdf   

(accessed Jan. 19, 2014). 

Davidson, R. M. (1983). Mineral effects in coal conversion , Report ICTIS/TR22 , 

(Vol. 22). IEA Coal Research, London. 

de Souza-Santos, M. L. (1989). Comprehensive modelling and simulation of fluidized 

bed boilers and gasifiers. Fuel, 68(12), 1507-1521. 

Donne, M. S., Dixon, R., Pike, A. W., Odeku, A. J. L., and  Ricketts, B. E. (1998). 

Dynamic modelling of the ABGC prototype integrated plant. COAL R143; Coal R 

& D Programme, Energy Technology Support Unit: Harwell Laboratory, U.K.  

Geladi, P., and  Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. 

Analytica chimica acta, 185, 1-17. 

Gómez-Barea, A., and  Leckner, B. (2010). Modeling of biomass gasification in 

fluidized bed. Progress in Energy and Combustion Science, 36(4), 444-509. 

Goyal, A., Zabransky, R. F., and  Rehmat, A. (1989). Gasification kinetics of Western 

Kentucky bituminous coal char. Industrial & engineering chemistry research, 

28(12), 1767-1778. 

Gururajan, V. S., Agarwal, P. K., and  Agnew, J. B. (1992). Mathematical modelling 

of fluidized bed coal gasifiers: Chemical reaction engineering. Chemical 

engineering research & design, 70(A3), 211-238. 

Gutierrez, L. A., and  Watkinson, A. P. (1982). Fluidized-bed gasification of some 

Western Canadian coals. Fuel, 61(2), 133-138. 

Heaven, D. L., Daniel, F., and  Calif, I.  (1996). Gasification converts a variety of 

problem feed-stocks and wastes. Oil and Gas Journal,  94 (22), 49−54. 

IBM SPSS Neural Networks 20 manual, IBM: Chicago, 2011.  

Irfan, M. F., Usman, M. R., and  Kusakabe, K. (2011). Coal gasification in CO2 

atmosphere and its kinetics since 1948: a brief review. Energy, 36(1), 12-40. 



105 

 

Ju, F., Chen, H., Yang, H., Wang, X., Zhang, S., and  Liu, D. (2010). Experimental 

study of a commercial circulated fluidized bed coal gasifier. Fuel Processing 

Technology, 91(8), 818-822. 

Kim, Y. J., Lee, J. M., and  Kim, S. D. (1997). Coal gasification characteristics in an 

internally circulating fluidized bed with draught tube. Fuel, 76(11), 1067-1073. 

Kinnear, K. E. (1994). Advances in Genetic Programming (Vol. 1). MIT press, 

Cambridge, MA. 

Koza, J. (1992). Genetic Programming: On the Programming of Computers by Means 

of Natural Selection. MIT Press, Cambridge, MA. 

Lee, S. (2007). Gasification of coal. In Handbook of Alternative Fuel Technologies; 

Lee, S., Speight, J. G., Loyalka, S. K., Eds.; CRC Press: Boca Raton, pp 25−80. 

Lee, W. J., Kim, S. D., and  Song, B. H. (2002). Steam gasification of an Australian 

bituminous coal in a fluidized bed. Korean Journal of Chemical Engineering, 

19(6), 1091-1096. 

Lim, K. S., Zhu, J. X., and Grace, J. R. (1995). Hydrodynamics of gas-solid 

fluidization. International journal of multiphase flow, 21, 141-193. 

Liukkonen, M., Hälikkä, E., Hiltunen, T., and  Hiltunen, Y. (2012). Dynamic soft 

sensors for NOx emissions in a circulating fluidized bed boiler. Applied energy, 

97, 483-490. 

Mazumder, A. (2010). Development of a simulation model for fluidized bed mild 

gasifier. Thesis, Paper 101, University of New Orleans, New Orleans;  

http://scholarworks.uno.edu/td/101/ (accessed Jan. 20, 2014). 

Miller, B. G. (2011). Clean coal technology for advanced power generation; in: Clean 

Coal Engineering Technology; Chapter 7; Elsevier: Burlington, MA 01803, USA; 

pp 251−296. 

Mjalli, F. S., and  Al-Mfargi, A. (2008). Artificial neural approach for modeling the 

heat and mass transfer characteristics in three-phase fluidized beds. Industrial & 

Engineering Chemistry Research, 47(13), 4542-4552. 



106 

 

Moorea-Taha, R. (2000). Modeling and Simulation for Coal Gasification; IEA Coal 

Research 2000; IEA Clean Coal: London; ISBN 92- 9029-354-3, pp 1−50. 

Nougues, J. M., Pan, Y. G., Velo, E., and  Puigjaner, L. (2000). Identification of a 

pilot scale fluidised-bed coal gasification unit by using neural networks. Applied 

thermal engineering, 20(15), 1561-1575. 

Ocampo, A., Arenas, E., Chejne, F., Espinel, J., Londono, C., Aguirre, J., and  Perez, 

J. D. (2003). An experimental study on gasification of Colombian coal in fluidised 

bed. Fuel, 82(2), 161-164. 

Ollero, P., Serrera, A., Arjona, R., and  Alcantarilla, S. (2003). The CO2 gasification 

kinetics of olive residue. Biomass and Bioenergy, 24(2), 151-161. 

Pinto, F., Franco, C., Andre, R. N., Tavares, C., Dias, M., Gulyurtlu, I., and Cabrita, I. 

(2003). Effect of experimental conditions on co-gasification of coal, biomass and 

plastics wastes with air/steam mixtures in a fluidized bed system. Fuel, 82(15), 

1967-1976. 

Ponzio, A., Kalisz, S., and  Blasiak, W. (2006). Effect of operating conditions on tar 

and gas composition in high temperature air/steam gasification (HTAG) of plastic 

containing waste. Fuel Processing Technology, 87(3), 223-233. 

Puig-Arnavat, M., Hernández, J. A., Bruno, J. C., and Coronas, A. (2013). Artificial 

neural network models for biomass gasification in fluidized bed gasifiers. biomass 

and bioenergy, 49, 279-289. 

Rhinehart, R. R., Felder, R. M., and Ferrell, J. K. (1987). Coal gasification in a pilot-

scale fluidized bed reactor. 3. Gasification of a Texas lignite. Industrial & 

engineering chemistry research, 26(10), 2048-2057. 

Satonsaowapak, J., Kulworawanichpong, T., Oonsivilai, R., and  Oonsivilai, A. 

(2011). Gasifier system identification for biomass power plants using neural 

network. International Journal of Chemical, Molecular, Nuclear, Materials and 

Metallurgical Engineering, 5(12), 1079-1084. 

Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from 

experimental data. science, 324(5923), 81-85. 



107 

 

Sett, A., and Bhattacharya, S. C. (1988). Mathematical modelling of a fluidised-bed 

charcoal gasifier. Applied energy, 30(3), 161-186. 

Shaw, K. J., Beamish, B. B., and  Rodgers, K. A. (1997). Thermogravimetric 

analytical procedures for determining reactivities of chars from New Zealand 

coals. Thermochimica Acta, 302(1), 181-187. 

Singh, N., Raghavan, V., and Sundararajan, T. (2014). Mathematical modeling of 

gasification of high‐ash Indian coals in moving bed gasification system. 

International Journal of Energy Research, 38(6), 737-754. 

Takematsu, T., and Maude, C. (1991). Coal gasification for IGCC power generation. 

International Energy Agency, Coal Research: London. 

Villanueva, A., Gómez-Barea, A.,  Revuelta, E., Campoy, M., Ollero, P. (2008).  

Guidelines for selection of gasifiers modeling strategies. In Proceedings of 16th 

European Biomass Conference and exhibition; Valencia, Spain, pp 980−986. 

Witt, P. J., Perry, H., and  Schwartz, M. P. (1997). Application of CFD to fluidised 

bed systems. In Proceedings of International conference on CFD in Minerals and 

Metals Processing and Power Generation; CSIRO Minerals: Melbourne, 

Australia, pp 353−360. 

Witt, P. J.; Perry, J. H. (1996). A study in multiphase modeling of fluidized bed. In 

Proceedings of the 7th Biennial Conference on Computational Techniques and 

Applications: CTAC95, Melbourne, Australia, 3−5 Jul. 1995; World Scientific: 

Singapore, 1996; pp 787− 794. 

Xiangdong, K., Zhong, W., Wenli, D. U., and Feng, Q. I. A. N. (2013). Three stage 

equilibrium model for coal gasification in entrained flow gasifiers based on Aspen 

Plus. Chinese Journal of Chemical Engineering, 21(1), 79-84. 

Yang, S., Yang, Q., Li, H., Jin, X., Li, X., and Qian, Y. (2012). An integrated 

framework for modeling, synthesis, analysis, and optimization of coal 

gasification-based energy and chemical processes. Industrial & Engineering 

Chemistry Research, 51(48), 15763-15777. 

Zurada, J.M. (1992). Introduction to Artificial Neural Network. West Publ Co., St. 

Paul.  



108 

 

Chapter-4 

 
High Ash Char Gasification in Thermo-gravimetric 

Analyzer and Prediction of Gasification Performance 
Parameters Using Computational Intelligence formalisms 

 
ABSTRACT 

Coal gasification is a cleaner and more efficient process than coal 

combustion. Although high ash coals are routinely used in the energy 

generation, systematic gasification kinetic studies using chars derived from 

these coals are scarce.  Accordingly, this chapter reports the development of 

the data-driven models for the gasification of chars derived from the high 

ash coals. Specifically, the models predict two significant gasification 

performance parameters, viz. gasification rate constant, and reactivity 

index. These models have been constructed using three computational 

intelligence (CI) methods, namely genetic programming (GP), multilayer 

perceptron (MLP) neural network (NN), and support vector regression 

(SVR). The inputs to the CI-based models consist of seven parameters 

representing the gasification reaction conditions and properties of high ash 

coals and chars. The data used in the modeling were collected by 

performing extensive gasification experiments in the CO� atmosphere in a 

thermo-gravimetric analyzer (TGA), using char samples derived from 

Indian coals with high ash content. Values of the above-state two 

gasification performance parameters were obtained by fitting the 

experimental data to the shrinking un-reacted core (SUC) model. It has 

been observed that all the CI-based models developed in this study possess 

an excellent prediction accuracy and generalization capability. Accordingly, 

these models can be gainfully employed in the design and operation of the 

fixed and fluidized bed gasifiers using high ash coals. 
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4.1 INTRODUCTION 

The commonly used coal combustion technologies in the power generation 

industry produce significant amounts of emissions of greenhouse (CO�) and polluting 

gases, such as SO  and NO . Thus, the development of clean coal technologies has 

received a global attention for overcoming the adverse effects of coal combustion. For 

mitigating the undesirable impact of coal combustion on the environment, stringent 

pollution control norms have been prescribed by the regulatory agencies of countries 

generating coal-based power. The suggested measures are expected to result in higher 

coal conversion efficiencies and a lower environmental impact (Takematsu and 

Maude, 1991). One of the important norms that have been prescribed includes 

changing coal utilization practices. 

Gasification is a cleaner and more efficient process than the combustion for   

converting carbonaceous materials into energy (Miller, 2011). In a gasification 

reaction, solid fuel is converted at high temperatures into a gaseous fuel (syngas) that 

burns relatively cleanly. There exist three major coal gasification technologies, 

namely moving (fixed), fluidized and entrained bed gasifiers. The gasification of coals 

and chars has been studied extensively for understanding the specific underlying 

reactions and developing the corresponding kinetic models (see, for example, Ballal 

and Zygourakis, 1986; Ye et al., 1998; Ochoa et al., 2001; Zhang et al., 2006; Irfan et 

al., 2011). 

The gasification of coal occurs in two steps. The first step is pyrolysis, which 

produces volatiles and char.  Normally, char (pyrolysis residue) represents 55–70% of 

the original coal. In the second step, solid char is converted to gaseous products (char 

gasification). The principal reactions occurring during the gasification of char are as 

follows: 

C + CO�  → 2 CO; △H = + 159.7 kJ mol‒�                        (4.1) 

C + H�O → CO + H�; △H = + 118.9 kJ mol‒� (4.2) 

C + O�   →  CO� ; △H = ‒ 405.9 kJ mol‒� (4.3) 

CO + H�O → CO� + H�; △H = ‒ 40.9 kJ mol‒� (4.4) 

C + 2 H� →  CH� ; △H = ‒ 87.4 kJ mol‒� (4.5) 
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The reaction enthalpies of the above reactions are given at standard conditions, i.e., at 

25oC and 0.1013 MPa pressure (Kristiansen, 1996). 

Due to its several attractive characteristics and higher efficiency, coal 

gasification is gaining importance for producing electrical energy. It is, however, a 

complex nonlinear process and, therefore, several issues need to be addressed while 

designing and operating a coal-based gasifier. 

• Commonly, in industry an air-steam or oxygen-steam mixture is used as a 

gasifying agent. The endothermic gasification reactions, such as the 

Boudouard (reaction 1) and water-gas (reaction 2), are driven by the heat 

generated during the air- or oxygen-assisted partial combustion of a fraction of 

the coal (reaction 3). Ideally, gasification needs to be carried out with a 

minimum amount of air or oxygen to avoid generation of undesired products, 

such as CO� and H�O, in high quantities. However, an inadequate quantity of 

air or oxygen results in an incomplete coal conversion and, consequently, 

insufficient amount of heat generation to drive the endothermic gasification 

reactions.  

• The char–CO� reaction is the slowest compared to the other heterogeneous 

gasification reactions with oxygen and steam. It is, therefore, the rate-

determining reaction. The mechanisms of the char–CO� and char–steam 

reactions are considered to be identical (Kristiansen, 1996; Jayaraman et al., 

2015).  

• Being a well-known gasifying agent, CO� in the flue gas can be utilized in the 

fuel system of the gasifier, which helps in reducing the CO� emissions to the 

atmosphere as also increasing the gasifier efficiency. 

It is thus clear that a thorough study of the reactivity and kinetics of the char-

gasification (Boudouard) reaction is necessary for: (i) determining the quantity of heat 

required to drive the reaction, (ii) fixing the amount of air or oxygen required in the 

exothermic oxidation reaction 3, so that just enough amount of heat is generated for 

driving the char-gasification reaction, and (iii) using CO� in the flue gas as a gasifying 

agent. 

Owing to their importance, the reactivity and kinetics of coal-char gasification 

have been studied widely in the CO� atmosphere (Adschiri et al., 1986; Ahn et al., 

2001; Ochoa et al., 2001; Kim et al., 2011; Saha et al., 2011, 2013; Silbermann et al., 
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2013; Jayaraman et al., 2015). Presently, coals mined in countries such as India, 

Australia, China, and Turkey contain ash in high percentages and these constitute a 

major raw material for thermal power stations. However, in the literature, systematic 

experimental and modeling studies addressing the reactivity and kinetics of 

gasification of high ash coals are limited (see, for example, Saha et al., 2011, 2013). 

In the past, an attempt was made by Adschiri et al. (1986) in which a first principles 

model was proposed to predict the change in the rate during char gasification. This 

model utilized the gasification temperature, CO� partial pressure, and characteristics 

of only the parent coal as inputs—i.e., the properties of char produced were not 

considered. For deriving the aforementioned model, Adschiri et al. (1986) utilized 

char gasification data collected using a thermo-gravimetric analyzer (TGA). Chars 

produced from 14 different parent coals in a fluidized bed were employed in the 

gasification experiments. A significant limitation of this model is that its gasification 

rate prediction accuracy is suboptimal and a majority of the coals used in the TGA-

based experiments contained low amounts of ash. From a rigorous literature survey, it 

is noticed that although necessary, a model based on the coal and char properties, and 

gasification conditions, is not available for predicting the char gasification rate 

constants and char reactivity. 

The phenomenological (first principles) modeling of a coal-char gasification 

process is a difficult task. The specific difficulties encountered in this modeling are 

(Patil-Shinde et al., 2014): (i) a widely differing gasification behavior due to the 

variation in the coal-char characteristics, (ii) nonlinear interplay of multiple process 

variables, (iii) cost-intensive, tedious, and exhaustive experimentation required for 

studying the effects of  influential process operating variables and parameters, and 

(iv) unavailability of the detailed knowledge regarding physicochemical phenomena 

(e.g., kinetics and heat and mass transport mechanisms) underlying the gasification 

process. Some notable representative studies and reviews on the modeling of coal 

gasification are by Gururajan et al. (1992), Moreea-Taha (2000), Chejne et al. (2011), 

and Zhao et al. (2012). 

In view of the difficulties encountered in the phenomenological modeling of 

coal gasification process, it becomes necessary to explore alternative modeling 

approaches. One such practical option is development of exclusively data-driven 

models. The advantage of these models is that they can be utilized in predicting the 

gasification behavior under a variety of process operating conditions for a number of 
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coals and chars produced from them. Consequently, the efforts involved in conducting 

the time-consuming, costly, and tedious experiments, are reduced drastically. The said 

data-driven models can also be useful in selecting a suitable coal for an efficient and 

optimal gasifier operation.  

Commonly, data-driven gasification/gasifier models are developed using 

regression methods. In this approach, the exact structure of the data-fitting function 

needs to be specified before the parameters associated with it can be estimated. This is 

a difficult task since, in coal/char gasification, a number of variables nonlinearly 

influence the process behavior, and the precise interactions between them are not 

known.  These difficulties associated with the development of the standard regression-

based modeling however can be overcome by constructing computational intelligence 

(CI) based models. Accordingly, in the present chapter, data-driven CI-based 

generalized models have been developed for the prediction of the char gasification 

rate constant and reactivity index from the knowledge of the properties of coals 

containing high ash content, and the corresponding chars, as also the gasification 

conditions. The CI-based modeling formalisms used are genetic programming (GP), 

multilayer perceptron (MLP) neural network (NN), and support vector regression 

(SVR). The details of all these three data-driven modeling formalisms are provided in 

Chapter 2 (sections 2.2.2, 2.2.1 and 2.3), respectively. 

Due to its simplicity of operation, and high accuracy of measurement, TGA has 

been widely used in the determination of gasification reactivity and related kinetic 

studies (Irfan et al., 2011). The experimental data for the present investigation were 

collected by conducting gasification in the CO� atmosphere in a TGA. A total of 108 

gasification experiments were conducted using the sub-bituminous high ash Indian 

coals. The performance of the gasification reaction was monitored in terms of char 

gasification rate constant (��) (min‒�) and reactivity index (��) (min‒�). The general 

forms of the CI-based models developed in this study are given as 

                       �¥ = ]� (¦§, 	¨©!, ¦7 , :ª!, 	
 , :¨©!, «7, α )                           (4.6) 

                       �� = ]� (¦§, 	¨©!, ¦7 , :ª!, 	
 , :¨©!, «7, β )                            (4.7) 

where α = [ S�, S�,…., S¬]T and β = [ b�, b�,…., bG]T, respectively, represent the 

parameter vectors; the seven process variables and parameters that form the input 

space of the models are defined as: (i) ¦§ : char gasification temperature (oC), (ii) 
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	¨©!: CO�  fraction, (iii) ¦7 : char preparation temperature (oC), (iv) :ª! : surface 

area-BET method (m2/g), (v) 	
: coal-ash (%), (vi) :¨©! : surface area-CO� method 

(m2/g), and (vii) «7: porosity (%). 

The data-driven models presented in this study are expected to be significantly 

useful in predicting the values of the rate constant and reactivity index for chemically 

controlled gasification reactions utilizing high ash coals, and chars derived from them. 

Applicability of the models, however, may be limited for the gasification of the low 

ash coals since the reaction behavior exhibited by these coals differs from that 

displayed by their counterparts containing high ash content. 

The remainder of this chapter is structured as follows. The details of the char 

preparation and characterization, as also TGA-based gasification experiments, are 

provided in the ‘‘Experimental’’ (section 4.2). Section 4.3 titled ‘‘Results and 

Discussion’’  first presents the results  of the phenomenological modeling of the 

gasification reaction using the shrinking un-reacted core (SUC) approach, followed by 

the development of the CI-based generalized models for the prediction of the char 

gasification rate constant and reactivity index. This section also presents results of (a) 

the principal component analysis (PCA) conducted to perform dimensionality 

reduction of the input space of the models, and (b) a comparison of the prediction and 

generalization performance of the three types of CI-based models. Finally, in 

‘‘Concluding Remarks’’ (section 4.4), the principal findings of this study are 

summarized.  

4.2 EXPERIMENTAL 

4.2.1 Selection of Coal Samples 

Three sub-bituminous high ash coals with varying ash content (27 – 48.9% ash 

on air-dried basis) were selected from three Indian coal mines. These samples are the 

true representatives of Indian coals. A major portion (around 70%) of the coals being 

mined currently in India has an average ash percentage of 45% (Patel et al., 2007). 

4.2.2 Char Preparation 

Char samples were prepared in the Argon (A�) atmosphere (Naredi and Pisupati, 

2007; Jayaraman et al., 2015) at 800, 900, and 1000oC using a TGA (Model: 

STA449F3  Jupiter  of  Netzsch, Germany). The A� flow rate was kept constant at 50 

ml/min throughout the duration of char preparation. Approximately, 500 mg of the 
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air-dried coal sample was taken in a flat alumina sample container and temperature 

was raised at the rate of 10oC/min until it reached the desired value. After attaining 

the targeted temperature, the sample was kept in the TGA for an additional 30 min; 

this ensured that the sample is free from the volatile matter (Saha, 2013). 

4.2.3 Characterization of Coal and Char 

Proximate and Ultimate Analyses: The basic properties of coal samples were 

evaluated by conducting proximate and ultimate analyses (see Table 4.1) performed 

according to the Indian standards, viz. IS: 1350 (Part-I) 1984, IS: 1350 (Part-III) 

1969, IS: 1350 (Part-IV/Sec-1) 1974, and IS: 1350 (Part-IV/Sec-2) 1975 (Saha et al., 

2007). 

Table 4.1: Analysis of three types of high ash coal samples used in the 
experimentation 

Coal 

Proximate analysis (air-dried basis) Ultimate analysis (dry ash-free basis) 

Moisture 
(M) 

(wt %) 

Ash 
(B) 

(wt %) 

Volatile 
Matter 
(VM) 

(wt %) 

Fixed 
Carbon 
(FC) 

(wt %) 

C (%) H (%) N (%) S (%) O (%)* 

coal 1 6.5 41.3 24.5 27.7 71.17 5.42 1.65 1.05 20.71 

coal 2 7.1 48.9 20.4 23.6 70.05 4.32 1.36 0.55 23.72 

coal 3 9.7 27.0 25.7 37.6 76.56 5.43 1.63 0.95 15.43 
*By difference 

Porosity Determination: Porosity of the coal samples was calculated using the true 

(®3) and particle densities (®7) as follows (Parkash and Chakrabartty, 1986; Saha, 

2013): 

                                       Porosity (%) =  
(¯°� ¯±) ¯°  × 100                                           (4.8) 

Surface Area Measurements: The BET and CO� surface areas of the char samples 

were measured using Tristar 3000 surface area analyzer (Micromeritics, U.S.A.);  

BET surface area was determined using nitrogen as an adsorbate (99.999% purity). 

When CO� was used as an adsorbate, the respective surface areas were determined 

with the help of Dubinin–Radushkevich (D–R) equation. The adsorption isotherms for 

the BET- and CO�-based surface areas were measured at −196 and 0oC, respectively. 
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4.2.4 Gasification Experiments 

The gasification experiments were conducted in the isothermally operated TGA 

(STA 449 F3 Jupiter, Netzsch, Germany) in a CO� atmosphere at 900, 950, 1000, and 

1050oC. The ultrapure dry nitrogen (N2) was chosen as an inert gas; CO� (purity 

99.999%) in concentrations of 30, 70, and 100% (balanced with N2) was used as the 

gasifying agent. A char sample weighing 50 mg was spread uniformly on a flat 

alumina (Al2O3) container, which was placed on the TGA’s sample carrier. The 

sample was heated at the rate of 10oC/min up to the desired temperature with the inert 

gas (N2) flow rate of 50 ml/min. For conducting a gasification experiment in the CO� 

atmosphere, the nitrogen flow was replaced—post attainment of the desired 

temperature—by the CO� flow (50 ml/min) to maintain the CO� atmosphere of the 

desired concentration. The TGA instrument used in the gasification experiments was 

calibrated and the repeatability of its measurements was tested by performing several 

experiments by employing calcium oxalate as a reference sample. For minimizing the 

buoyancy effect, each gasification experiment was corrected by a blank run, which 

was conducted under conditions identical to the gasification experiment. The TGA 

instrument has an ‘‘S’’-type thermocouple integrated with the furnace. It is positioned 

just below the sample holder and has the ability to measure the temperature accurately 

within ±1.5oC. 

The char gasification reaction was conducted in a manner such that diffusional 

resistance is avoided. The particle size of the char not only influences the  gasification 

reaction rate but also plays a crucial role in determining the rate controlling step (i.e., 

whether gasification is a chemical reaction or diffusion controlled). The absence of 

diffusional resistance is confirmed if no change in the reaction rate is observed for 

different sizes of the particles while all other reaction conditions remain unchanged. 

In this study, the char particle size was kept within −0.21 to + 0.15 mm range for all 

gasification experiments. Earlier, Saha (2013) had conducted experiments with 

similar char samples to examine the presence/absence of the diffusional resistances 

using smaller particle sizes (−0.15 to + 0.10 mm) at 1050oC, and CO� partial pressure 

varying between 0.1 and 0.03 MPa. No change in the gasification reactivity was 

observed in these experiments. Thus,  it is safe to infer that the char gasification 

reactions reported in this study, which are conducted in the  temperature, CO� partial 
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pressure, and char particle size ranges of [900, 1050oC], [0.1, 0.03 MPa], and [−0.21 

mm, +0.15 mm], respectively, are kinetically (chemically) controlled. 

During the char gasification experiments, the data consisting of the following 

seven attributes  representing  TGA operating conditions, and  coal and char 

properties (these form the input space of the gasification models) were recorded (see 

Appendix 4.A). The basis of selection of the seven model inputs is given below. 

• Char gasification temperature (oC) (¦§) is a significant attribute since 

according to the Arrhenius law, the rate of the endothermic CO� gasification 

reaction increases with increasing ¦³ (Ahn et al., 2001; Liu et al., 2009). This 

can be easily verified in Appendix 4.A wherein it is noticed that the 

magnitudes of the reactivity index (��) and rate constant (��) of the char- CO� 

gasification reaction increase with increasing ¦§.  

• The magnitudes of �� and �� also increase with increasing CO� fraction (	¨©!). 

Such an increase in the gasification rate is attributed to an increase in the 

number of reactant molecules diffusing to and getting adsorbed on the active 

sites of the char surface (Ahn et al., 2001; Zhang et al., 2006). 

• Char preparation temperature (oC) (¦7) is one of the multiple factors 

influencing the pyrolysis phenomenon during gasification. It is considered as a 

model input since both the model outputs, namely �� and ��, decrease with 

increasing ¦7 (Van Heek and Muhlen, 1987; Fermoso et al., 2010). It has been 

also reported (Wu et al., 2009) that increasing pyrolysis temperature adversely 

affects the gasification reaction, which is attributed to the decrease in the 

char’s surface area as the pyrolysis temperature increases. 

• Ash (wt %) (	
) is an indicator of the coal’s mineral matter content [mineral 

matter (wt %) =1.1 × ash (wt %)]. It lowers the extent of the carbonaceous 

material in the coal matrix and, thereby, negatively influences the quality and 

quantity of the gas produced. During combustion and gasification, mineral  

�´''e� in coal is converted into ash by chemical reactions. A typical sample 

of an Indian coal ash contains 90% or more SiO2, Al2O3, Fe2O3, and CaO. The 

balance 10% or less consists of MgO, Na2O, K2O, and TiO2 as the basic 

constituents, and SO3 and P2O5 as the acidic constituents. Details of the 

elemental analysis of the three coal-ash samples are given in Saha (2013). 

Some of these inorganic components act as catalysts in the coal conversion 
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processes. It is known that alkali and alkaline earth metals act as catalysts for 

carbon gasification (Miura et al., 1989; Takarada et al., 1986; Saha et al., 

2011). The active metal ions (e.g., sodium, potassium, and calcium) must be 

connected to the carboxylic and phenolic groups to form active sites on the 

coal surface for exhibiting the catalytic activity. In the present investigation, it 

is found that the char gasification reaction rate increases with the increasing 

ash content. This result can be attributed to a higher catalytic activity of the 

inorganic elements with increasing ash content. 

• During gasification, the macro- and meso-pores present in the char provide 

channels for the reacting gas to reach the active sites in the micropores where 

reaction takes place (Ng et al., 1984). The BET surface area (:ª!) specifically 

measures the area of the meso- and macro-pores, whereas the CO� surface area 

(:¨©!) indicates the micropore area. In the present investigation, Appendix 4.A 

clearly shows that both the rate constant of the char-CO� gasification reaction 

and reactivity index decrease with decreasing :ª!, :¨©!; and porosity («7) 

values of the char. Accordingly, these three influential factors have been 

considered as model inputs (Bhatia and Gupta, 1992; Chi and Perlmutter, 

1989; Feng and Bhatia, 2003).  

4.3 RESULTS AND DISCUSSION 

4.3.1 Determination of Reactivity Index Values  

The reactivity index (��) is commonly used in determining and comparing the 

gasification reactivities of different chars under varying reaction conditions. It is 

defined as �� = 
z.�¶·.¸ , where ¹z.� refers to the time required to achieve 50% conversion 

(Takarada et al., 1985). This definition has been used in the present study for 

determining the gasification reactivity values of char samples. The �� magnitudes were 

computed from  ¹z.� values derived from the fractional conversion (x) versus time (t) 

relationship monitored in each experiment. 

4.3.2 Determination of Rate Constant (º») Values Using Shrinking Un-
Reacted Core Model 

A number of kinetic models have been used to characterize coal gasification 

reactions. Among these, the most widely employed are the homogeneous, shrinking 
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unreacted core (SUC), and random pore models. Considering its simplicity and 

efficient representation of underlying phenomenon, SUC model has been utilized in 

the present investigation for representing the CO�-char gasification kinetics (Molina 

and Mondragon, 1998; Irfan et al., 2011). This model assumes that the reaction occurs 

only on the surface of the progressively shrinking carbon core. In the beginning, the 

particle is surrounded by the gas. As conversion progresses, an increasing ash layer 

surrounds the continuously shrinking internal core of the unconverted material.  This 

also indicates that the reaction front moves from the surface toward the particle’s 

interior. The external radius of the particle remains unchanged during the entire 

reaction. In the char gasification reaction, it is reasonable to consider the porous inert 

solid product layer to be the ash layer. The SUC model also assumes that the un-

reacted solid is impervious to the gas since it is densely packed. On the other hand, 

the ash layer is porous so that the reactant gas can diffuse inside and the product gas 

can diffuse out. The SUC model considers three reaction scenarios, namely diffusion 

through the gas film controlling, ash layer diffusion controlling, and chemical reaction 

controlling (Kim et al., 2011). As described earlier, the gasification reaction 

conditions used in this study correspond to the chemically controlled region and the 

corresponding SUC model is represented as  

                                              
I ¼½¾IM  = k ( 1 ‒ �ge$) �/~                                    (4.9) 

Its solution is given by 

                                         3 [ 1 ‒ ( 1 ‒ �ge$) �/~] =  kt                                 (4.10) 

Or 

                                                    1 ‒ ( 1 ‒ �ge$) �/~ = �� t                                    (4.11) 

where �ge$ represents the char conversion, t refers to the time (min), and �� denotes 

the rate constant (��= k/3). In this study, the magnitude of �� was determined from the 

slope of the [1 ‒ ( 1 ‒ �ge$) �/~] versus t  plot. The �� and �� values corresponding to 

a total of 108 gasification experiments along with the activation energies computed 

using the Arrhenius equation are listed in Appendix 4.A. 

4.3.3 Principal Component Analysis 

While developing the data-driven models, it is necessary to avoid correlated 

inputs since these cause redundancy and unnecessarily increase the computational 
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load involved in the model construction. Accordingly, the seven inputs of the CI-

based models were subjected to the principal component analysis (PCA) (Geladi and 

Kowalski, 1986). It helps in removing the linear correlations existing (if any) between 

the variables and, thereby, reducing the dimensionality of the input space of the 

model. In this study, seven principal components (PCs) were extracted from the 

gasification related input data listed in Appendix 4.A. The PCA yielded following 

values of the variance in the experimental data captured by the seven PCs—t	�: 

49.6%; t	�: 19.8%;  t	~:14.3%;  t	�: 14.3%;  t	�: 4%; t	�: 0.5%; and  t	�: 0.2% 

(t	� denotes the i th PC). It is thus seen, that the first four PCs have captured a large 

percentage (≈ 95%) of the variance in the seven inputs. This result indicates that it is 

possible to consider only the first four PCs (v1– v4) as defined below, in place of the 

original seven inputs for developing the gasification models.  

              υ1 = ‒0.376 ��~� + 0.465 ���� + 0.379 ���� + 0.518 ���� + 0.48 ����                   (4.12) 

               υ2 = 0.599 ��~�  – 0.401 ����  + 0.597 ���� + 0.033 ����  + 0.35 ����                     (4.13)           

               υ3 = –  ����                                                                                                  (4.14) 

               υ4 =   ����                                                                                                    (4.15) 

where ��W�  (q = 1, 2,. . ., Q; Q = 7) denote the normal scores (standardized variables)  

pertaining to the values of the seven inputs listed in Appendix 4.A. The normalized 

variables were obtained as follows: 

��W� =  XÅ � XÆX  ;     j = 1, 2, . . . ,  Npat                                                   (4.16)     

where �W�   represents j th value of qth un-normalized input variable, �W;  �W refers to the 

mean of �W, and σW  represents standard deviation of �W. The mean and standard 

deviation values used in the normalization procedure are given below where ��, 

��,  �~, �� , ��, �� and  �� respectively represent the mean values of  ¦§ , 	¨©! , ¦7 

, :ª! , 	
, :¨©! and «È. 

�� = 975 (oC);         �� = 0.667;         �~ = 900 (oC);      �� = 28.81 (m2/g);    
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�� = 56.387(%);    �� = 239.24 (m2/g);    �� = 19.40 (%).                                  (4.17)   

The corresponding standard deviation values are as given below.     

σ� = 56.162 (oC);    σ� = 0.288;    σ~ = 82.03 (oC);     σ�= 12.84 (m2/g);   

σ�= 10.826 (%);     σ� = 40.167 (m2/g);    σ�= 4.172 (%).                                     (4.18) 

Similar to the model inputs, the two outputs, namely �¥ and  ��, were also normalized 

as follows:     

        �Ï�� = 
1ÐÅ�ºÐÆÑ  ;  j = 1, 2, ….., Npat                                                                        (4.19) 

        �̂�� = 
hÓÅ�ÔÓÆÕ  ;  j = 1, 2, ….., Npat                                                                          (4.20) 

where,  �Ö and  �I refer to the mean values of �� and �� ,  respectively,  and  their 

corresponding standard deviations are denoted by Ú� and Ú�. The magnitudes of these 

are as follows: �Ö = 0.0125 (min‒�);  �I= 0.0261(min‒�); Ú� = 0.00762 (min‒�); Ú�= 

0.0149 (min‒�).  

4.3.4 CI-Based Models for the Prediction of ÛÜ� Gasification Rate 
Constant and Reactivity Index 

The PCA-transformed four variables (v1–v4) defined by Equations (4.12) – 

(4.15) were used as inputs in developing the GP-, MLP-, and SVR-based �� and ��  
predicting models. For constructing and assessing the generalization ability of these 

models, the experimental data set (See Appendix 4.A) consisting of 108 input–output 

patterns was randomly partitioned in 3:1 ratio into training (81 patterns) and test (27 

patterns) sets. While the former set was used in training the CI-based models, the 

latter was used in testing their generalization capability. The output prediction 

accuracy and generalization performance of each CI-based model were evaluated in 

terms of the coefficient of correlation (CC), root mean squared error (RMSE), and 

mean absolute percent error (MAPE) values pertaining to the experimental and 

model-predicted quantities of the char gasification rate constant and reactivity index. 

GP-Based Modeling of Gasification Performance Variables   

The two GP-based models predicting the gasifier performance variables, namely 

�� and ��, were developed using Eureqa Formulize software package (Schmidt and 
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Lipson, 2009). In the GP (Koza, 1992; Kinnear, 1994) implementation, the RMSE-

dependent fitness function was used to assign the fitness values of the candidate 

expressions. The effects of the GP procedural parameters, such as the size of the 

training and test sets as also various input normalization schemes, were studied 

rigorously. The two overall best models, respectively predicting char gasification rate 

constant (��) (GP model-I) and reactivity index (�� ) (GP model-II), are as follows: 

�Ï¥ = 0.1408 υ3
2 + 0.08651υ2υ3 ‒ 0.1038υ3υ4+ 0.2912υ4 + 0.1316υ1 ‒ 0.1657υ2 ‒ 0.8297υ3          ‒ 0.1657                                                                                                                     (4.21) 

�̂�  = 0.04857 υ1
2   ‒ 0.1374υ3υ4 

 +  0.3116υ4 + 0.2684υ1 ‒ 0.07561υ2 ‒ 0.7114υ3  

        ‒ 0.1374                                                                                                                      (4.22) 

where υi denotes ith PCA-transformed variable, and �Ï¥ and  �̂� , respectively, refer to 

the normalized values of �� and �� (see eqs. 4.19 and 4.20). As can be seen, both GP 

models have nonlinear forms. It is also observed that these models contain all the four 

PCA-transformed variables (υ1– υ4). This is noteworthy since the GP formalism is 

known to use only those inputs from the supplied data that significantly influence the 

dependent variable (Cheng and Worzel, 2015). From Equations (4.12)–(4.15), it is 

noticed that the four PCA transformed variables have been derived using as many 

subsets of the seven gasification variables and parameters defining the coal and char 

properties. The presence of all four PCA-transformed variables in the GP-based 

models in turn underlines the importance of the original seven variables and 

parameters in determining the values of the char gasification rate constant and 

reactivity index. 

MLP- and SVR-Based Modeling of Gasification Performance Variable  

The details of the heuristic procedure involved in obtaining an optimal MLP 

network (Freeman and  Skapura, 1991; Bishop, 1994)  model possessing good 

prediction and generalization performance has been explained  in Chapter 2, section 

2.2.1 ; a detailed description of the SVR (Vapnik, 1995; Burges, 1998) and its 

implementation has been provided in Chapter 2, section 2.3. In the present study, 

SVR-based models were developed using the ε-SVR module of the data-mining 

package known as Rapid Miner (2014) and MLP-based models were built using  
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IBM-SPSS (2011) package.  The parameter values and other attributes of the optimal 

MLP-based models I and II, respectively predicting the �� and ��  magnitudes, are 

listed in Table 4.2; the details of the corresponding SVR-based optimal models I and 

II, are given in Table 4.3.   

Table 4.2:  Details of the architecture of the optimal MLP-based models*and the 
corresponding EBP algorithm parameter values 

Model 
no. 

Output 
variable 

Input 
nodes 

Number 
of 

hidden 
layers 

Number 
of 

hidden 
nodes 

Transfer 
function 

for 
hidden 
nodes 

Transfer 
function 

for 
output 
node 

Momentum 
coefficient 

(µebp) 

Learning 
rate 

(η) 

I �� 4 1 3 tanh identity 0.07 0.4 

II �� 4 1 3 tanh identity 0.004 0.2 

*Other details of the EBP-based models: (a) rescaling method used for the scale-
dependent variables: standardized; (b) learning mode: batch; (c) the random number 
generator seed value with respect to the optimal MLP model: 200; (d) maximum 
training epochs:100.  

 
Table 4.3: Details of the ε-insensitive loss function-based optimal SVR models and 

the corresponding parameter values 

Model 
no. 

Output 
variable 

Kernel 
type 

Kernel 
gamma 

Kernel 
degree 

Kernel 
cache 

C (cost 
parameter) 

 ε 

I �� ANOVA 0.25 2.0 200 2.7 0.05 

II �� ANOVA 25 2.0 200 256 0.05 

 

Comparison of the CI-Based Models Predicting the Gasification Rate Constant  

The magnitudes of CC, RMSE, and MAPE pertaining to the �� predictions made 

by the GP model-I, MLP model-I, and SVR model-I are specified in Table 4.4. It is 

seen in this table that the CC (RMSE/MAPE) magnitudes with respect to the 

experimental �� values and those predicted by the CI-based models for both training 

and test set data are high (low) and comparable. This result indicates that the stated 

models possess an excellent �� prediction accuracy and generalization capability. 

Figure 4.1 consists of the three parity plots displaying the experimental �� values and 
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those predicted by the GP-, MLP-, and SVR-based models, respectively. As can be 

noticed in all the three (a-c) panels of Figure 4.1, there exists a good agreement 

between the experimental and model-predicted �� values. 

Table 4.4: Statistical analysis of the prediction and generalization performance of the 
gasification rate constant (��) predicting GP-, MLP-, and SVR-based 
models 

Model 
Training set Test set 

		3�� 89:;3�� 9Ýt;3�� 		3�3 89:;3�3 9Ýt;3�3 
GP model-I 0.974 1.79×10-3 11.197 0.987 9.75×10-4 8.467 

MLP model-I 0.984 1.37×10-3 9.194 0.993 6.92×10-4 8.687 

SVR model-I 0.991 1.04×10-3 3.342 0.989 8.77×10-4 9.900 

 

Figure 4.1: Parity plots of experimental versus model-predicted values of char  
gasification rate constant (��, min‒1); Panels (a), (b), and (c), respectively, depict 
plots pertaining to the �� predictions made by GP-, MLP-, and SVR-based models. 
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Table 4.5: Statistical analysis of the prediction and generalization performance of the 
reactivity index (��) predicting GP-, MLP-, and SVR-based models 

Model 
Training set Test set 

		3�� 89:;3�� 9Ýt;3�� 		3�3 89:;3�3 9Ýt;3�3 
GP model-II 0.961 4.38×10-3 15.069 0.971 3.42×10-3 13.307 

MLP model-II 0.982 3.03×10-3 9.478 0.971 2.89×10-3 11.351 

SVR model-II 0.991 2.02×10-3 3.442 0.974 2.70×10-3 14.134 

 

 

 

 

 

Figure 4.2: Parity plots of experimental versus model-predicted values of reactivity 
index (��, min‒1); panels (a), (b) and (c), respectively, depict plots 
pertaining to the ��  predictions made by GP-, MLP-, and SVR-based 
models. 
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Comparison of CI-Based Models for Reactivity Index Prediction 

The magnitudes of the CC, RMSE, and MAPE pertaining to the �� predictions 

made by the three CI-based models are listed in Table 4.5. From the table, it is clear 

that similar to the ��-predicting models, each one of the three CI-based models for the 

reactivity index possesses an excellent prediction accuracy and generalization 

capability. Figure 4.2 contains three (a-c) panels, which respectively show how well 

the predictions of the GP-, MLP-, and SVR-based models match the corresponding 

experimental reactivity index values. In all these panels, it is noticed that there exists a 

good match between the experimental and model-predicted �� values. 

 

Steiger’s Test: A statistical test known as Steiger’s z-test (Steiger, 1980) was 

performed for comparing the prediction performance of the GP-, MLP-, and SVR-

based models. It tests the null hypothesis (yz) that statistically two correlation 

coefficient magnitudes are not different, i.e., 		
Þ = 		
¨, where 		
Þ (		
¨) refers 

to the correlation coefficient pertaining to the model B (model C) predicted outputs 

and their corresponding experimental counterparts. The results of the Steiger’s z-test 

for the CI-based models predicting �� and �� are listed in Tables 4.6 and 4.7, 

respectively. It is seen in these tables that for all the six model pairs (three each for �� 

and ��) the p-values are less than 0.05. This indicates a uniform rejection of the null 

hypothesis (at 95% confidence level) about the statistical equivalence of the CC 

magnitudes pertaining to �� and �� predictions made by the model pairs GP–MLP, 

MLP–SVR, and GP–SVR. It can thus be concluded that the differences in the CC 

magnitudes of the stated model pairs are statistically significant. From the CC 

magnitudes listed in Tables 4.4 and 4.5, it is observed that among the three CI-based 

models, the MLP- based �� prediction model, and the SVR-based �� prediction model 

possess high prediction accuracies, and best generalization capabilities. Therefore, 

these models are more suited for the prediction of the gasification rate constant and 

reactivity index values. It may, however, be noted that there exist only minor 

differences between the prediction accuracies/generalization capabilities of the three 

CI-based models. Accordingly, the GP-based models, due to their simplicity and 

lower complexity, should be preferred if the convenience of usage is the main 

criterion for the utilization of a model. 
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Table 4.6:  Results of Steiger’s z-test testing the null hypothesis (H0) pertaining to the 
equivalence of correlation coefficient (CC) magnitudes with respect to the 
model pairs predicting the gasification rate constant (��) values 

Model pair 
(B-C) 

df 		
Þ 		
¨ 		Þ¨ z p-value H0 

GP-MLP 108 0.977 0.987 0.989 3.648 2.63×10-4 Reject 

MLP-SVR 108 0.987 0.991 0.991 2.032 4.21×10-2 Reject 

SVR-GP 108 0.991 0.977 0.986 5.301 1.14×10-7 Reject 

H0: 		i{ = 		i|, where A denotes experimental values of �o;  df refers to the 
degrees of freedom;   reject H0 if p-value < 0.05. 

 

Table 4.7:  Results of the Steiger’s z-test testing the null hypothesis (H0) pertaining to 
the equivalence of correlation coefficient (CC) magnitudes with respect to 
the model pairs predicting reactivity index (��) values 

 

Model pair 
(B-C) 

df 		
Þ 		
¨ 		Þ¨ z p-value H0 

GP-MLP 108 0.960 0.979 0.980 -4.026 5.67×10-5 Reject 

MLP-SVR 108 0.979 0.989 0.976 -2.949 3.18×10-3 Reject 

SVR-GP 108 0.989 0.960 0.961 5.904 3.53×10-9 Reject 

H0: 		i{ = 		i|, where A denotes experimental values of �/ ;  df refers to the degrees 
of freedom;  reject H0 if p-value < 0.05. 

 

4.4 CONCLUDING REMARKS 

The present chapter reports results of the CI-based data-driven modeling for the 

prediction of char gasification rate constant (��), reactivity index (��) magnitudes 

corresponding to the gasification of high ash Indian coals. The data for this modeling 

were collected by conducting gasification experiments in a TGA in the CO� 

atmosphere. These data were first fitted to the SUC model to obtain values of �� and 

��, which were then correlated with the seven parameters (model inputs)  consisting of 
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the coal and char properties, and the gasification conditions. The data-driven models 

possessing an excellent prediction accuracy and generalization capability were 

developed using three CI formalisms, namely GP, MLPNN, and SVR. Among these, 

the GP-based ones are less complex, easier to grasp, and more convenient to deploy in 

a practical setting. A notable feature of this study is that phenomenological (i.e., SUC) 

and data-driven approaches (GP, MLP, and SVR) have been integrated into 

developing comprehensive models for predicting two important kinetic parameters 

associated with the gasification of high ash coals. The models developed in this study 

can be gainfully employed in the design and operation of the gasifiers using high ash 

coals, which are available in abundance globally. Additionally, the models for 

determining the rate constant can be used for predicting the activation energies of the 

coal gasification reactions involving CO� in the temperature range of 900–1050oC. 

 

NOMENCLATURE 

�Ö mean values of ��  

    �W    The mean value of �W 

�W�    j th value of qth un-normalized input variable, �W 

��W� Normal scores (standardized variables)  pertaining to the values of the 
seven inputs 

�I mean values of  �� 
Greek symbols 

Ú� standard deviations of �� 

σW Standard deviation of �W 

Ú� standard deviations of  �� 
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Appendix 4.A:  Experimental data consisting of coal and char properties and gasification conditions, and the corresponding values of 
gasification rate constant and reactivity index utilized in building CI-based models 

Expt. 

no. 

Gasification 
temperature 

(¦§) (oC) 

CO₂ 
fraction 

(	¨©!) 

Char preparation 
temperature 

(¦7) (oC) 

Surface area 
(BET) method 

(:ª!) (m2/g) 

Ash 

(	
) 
(%) 

Surface area 
(CO₂) method 
(:¨©!) (m2/g) 

Porosity 

(«È) 
(%) 

Rate 
constant 

(��) (min-1) 

Reactivity 
index 

(��) (min-1) 

Activation 
energy 

kJ/mole 

1 900 1 800 44.85 59.86 266.67 23.35 0.0091 0.0172 113.29 

2 950 1 800 44.85 59.86 266.67 23.35 0.0140 0.0263 

3 1000 1 800 44.85 59.86 266.67 23.35 0.0238 0.0376 

4 1050 1 800 44.85 59.86 266.67 23.35 0.0329 0.0556 

5 900 1 900 24.67 59.86 246.38 21.46 0.0063 0.0143 119.06 

6 950 1 900 24.67 59.86 246.38 21.46 0.0104 0.0238 

7 1000 1 900 24.67 59.86 246.38 21.46 0.0162 0.0357 

8 1050 1 900 24.67 59.86 246.38 21.46 0.0253 0.0454 

9 900 1 1000 18.19 59.86 200.01 20.10 0.0045 0.0100 133.23 

10 950 1 1000 18.19 59.86 200.01 20.10 0.0082 0.0172 

11 1000 1 1000 18.19 59.86 200.01 20.10 0.0123 0.0278 

12 1050 1 1000 18.19 59.86 200.01 20.10 0.0220 0.0357 

13 900 0.7 800 44.85 59.86 266.67 23.35 0.0070 0.0151 115.33 

14 950 0.7 800 44.85 59.86 266.67 23.35 0.0103 0.0260 

15 1000 0.7 800 44.85 59.86 266.67 23.35 0.0194 0.0357 
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Appendix 4.A continued… 

Expt. 

no. 

Gasification 
temperature 

(¦§) (oC) 

CO₂ 
fraction 

(	¨©!) 

Char preparation 
temperature 

(¦7) (oC) 

Surface area 
(BET) method 

(:ª!) (m2/g) 

Ash 

(	
) 
(%) 

Surface area 
(CO₂) method 

(:¨©!) (m2/g) 

Porosity 

(«È) 
(%) 

Rate 
constant 

(��) (min-1) 

Reactivity 
index 

(��) (min-1) 

Activation 
energy 

kJ/mole 

16 1050 0.7 800 44.85 59.86 266.67 23.35 0.0251 0.0556  

17 900 0.7 900 24.67 59.86 246.38 21.46 0.0050 0.0111 125.32 

18 950 0.7 900 24.67 59.86 246.38 21.46 0.0084 0.0208 

19 1000 0.7 900 24.67 59.86 246.38 21.46 0.0123 0.0313 

20 1050 0.7 900 24.67 59.86 246.38 21.46 0.0223 0.0434 

21 900 0.7 1000 18.19 59.86 200.01 20.10 0.0039 0.0084 142.63 

22 950 0.7 1000 18.19 59.86 200.01 20.10 0.0070 0.0167 

23 1000 0.7 1000 18.19 59.86 200.01 20.10 0.0114 0.0263 

24 1050 0.7 1000 18.19 59.86 200.01 20.10 0.0204 0.0339 

25 900 0.3 800 44.85 59.86 266.67 23.35 0.0043 0.0100 121.67 

26 950 0.3 800 44.85 59.86 266.67 23.35 0.0087 0.0172 

27 1000 0.3 800 44.85 59.86 266.67 23.35 0.0133 0.0263 

28 1050 0.3 800 44.85 59.86 266.67 23.35 0.0178 0.0385 

29 900 0.3 900 24.67 59.86 246.38 21.46 0.0033 0.0077 140.00 

30 950 0.3 900 24.67 59.86 246.38 21.46 0.0064 0.0128 

31 1000 0.3 900 24.67 59.86 246.38 21.46 0.0102 0.0217 
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Appendix 4.A continued… 

Expt. 

no. 

Gasification 
temperature 

(¦§) (oC) 

CO₂ 
fraction 

(	¨©!) 

Char preparation 
temperature 

(¦7) (oC) 

Surface area 
(BET) method 

(:ª!) (m2/g) 

Ash 

(	
) 
(%) 

Surface area 
(CO₂) method 

(:¨©!) (m2/g) 

Porosity 

(«È) 
(%) 

Rate 
constant 

(��) (min-1) 

Reactivity 
index 

(��) (min-1) 

Activation 
energy 

kJ/mole 

32 1050 0.3 900 24.67 59.86 246.38 21.46 0.0172 0.0313  

33 900 0.3 1000 18.19 59.86 200.01 20.10 0.0020 0.0048 163.72 

34 950 0.3 1000 18.19 59.86 200.01 20.10 0.0048 0.0102 

35 1000 0.3 1000 18.19 59.86 200.01 20.10 0.0083 0.0172 

36 1050 0.3 1000 18.19 59.86 200.01 20.10 0.0137 0.0263 

37 900 1 800 50.35 67.5 296.25 24.54 0.0103 0.0364 101.25 

38 950 1 800 50.35 67.5 296.25 24.54 0.0147 0.0444 

39 1000 1 800 50.35 67.5 296.25 24.54 0.0220 0.0588 

40 1050 1 800 50.35 67.5 296.25 24.54 0.0334 0.0667 

41 900 1 900 29.39 67.5 290.17 22.91 0.0067 0.0167 107.62 

42 950 1 900 29.39 67.5 290.17 22.91 0.0105 0.0270 

43 1000 1 900 29.39 67.5 290.17 22.91 0.0154 0.0385 

44 1050 1 900 29.39 67.5 290.17 22.91 0.0237 0.0625 

45 900 1 1000 19.6 67.5 240.17 20.43 0.0043 0.0102 130.94 

46 950 1 1000 19.6 67.5 240.17 20.43 0.0066 0.0156 

47 1000 1 1000 19.6 67.5 240.17 20.43 0.0095 0.0227 

 



131 

 

Appendix 4.A continued… 

Expt. 

no. 

Gasification 
temperature 

(¦§) (oC) 

CO₂ 
fraction 

(	¨©!) 

Char preparation 
temperature 

(¦7) (oC) 

Surface area 
(BET) method 

(:ª!) (m2/g) 

Ash 

(	
) 
(%) 

Surface area 
(CO₂) method 

(:¨©!) (m2/g) 

Porosity 

(«È) 
(%) 

Rate 
constant 

(��) (min-1) 

Reactivity 
index 

(��) (min-1) 

Activation 
energy 

kJ/mole 

48 1050 1 1000 19.6 67.5 240.17 20.43 0.0209 0.0417  

49 900 0.7 800 50.35 67.5 296.25 24.54 0.0093 0.0278 105.80 

50 950 0.7 800 50.35 67.5 296.25 24.54 0.0139 0.0417 

51 1000 0.7 800 50.35 67.5 296.25 24.54 0.0209 0.0556 

52 1050 0.7 800 50.35 67.5 296.25 24.54 0.0319 0.0649 

53 900 0.7 900 29.39 67.5 290.17 22.91 0.0057 0.0139 110.09 

54 950 0.7 900 29.39 67.5 290.17 22.91 0.0092 0.0254 

55 1000 0.7 900 29.39 67.5 290.17 22.91 0.0117 0.0357 

56 1050 0.7 900 29.39 67.5 290.17 22.91 0.0222 0.0588 

57 900 0.7 1000 19.6 67.5 240.17 20.43 0.0038 0.0086 135.92 

58 950 0.7 1000 19.6 67.5 240.17 20.43 0.0068 0.0161 

59 1000 0.7 1000 19.6 67.5 240.17 20.43 0.0106 0.0270 

60 1050 0.7 1000 19.6 67.5 240.17 20.43 0.0190 0.0333 

61 900 0.3 800 50.35 67.5 296.25 24.54 0.0060 0.0263 111.22 

62 950 0.3 800 50.35 67.5 296.25 24.54 0.0090 0.0313 

63 1000 0.3 800 50.35 67.5 296.25 24.54 0.0146 0.0400 
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Appendix 4.A  continued… 

Expt. 

no. 

Gasification 
temperature 

(¦§) (oC) 

CO₂ 
fraction 

(	¨©!) 

Char preparation 
temperature 

(¦7) (oC) 

Surface area 
(BET) method 

(:ª!) (m2/g) 

Ash 

(	
) 
(%) 

Surface area 
(CO₂) method 

(:¨©!) (m2/g) 

Porosity 

(«È) 
(%) 

Rate 
constant 

(��) (min-1) 

Reactivity 
index 

(��) (min-1) 

Activation 
energy 

kJ/mole 

64 1050 0.3 800 50.35 67.5 296.25 24.54 0.0215 0.0454  

65 900 0.3 900 29.39 67.5 290.17 22.91 0.0046 0.0119 115.00 

66 950 0.3 900 29.39 67.5 290.17 22.91 0.0071 0.0179 

67 1000 0.3 900 29.39 67.5 290.17 22.91 0.0102 0.0263 

68 1050 0.3 900 29.39 67.5 290.17 22.91 0.0181 0.0370 

69 900 0.3 1000 19.6 67.5 240.17 20.43 0.0024 0.0059 145.91 

70 950 0.3 1000 19.6 67.5 240.17 20.43 0.0045 0.0100 

71 1000 0.3 1000 19.6 67.5 240.17 20.43 0.0074 0.0161 

72 1050 0.3 1000 19.6 67.5 240.17 20.43 0.0134 0.0250  

73 900 0.7 800 37.23 41.8 228.34 15.20 0.0048 0.0097 139.70 

74 950 0.7 800 37.23 41.8 228.34 15.20 0.0115 0.0188 

75 1000 0.7 800 37.23 41.8 228.34 15.20 0.0186 0.0282 

76 1050 0.7 800 37.23 41.8 228.34 15.20 0.0245 0.0515 

77 900 0.7 900 27.65 41.8 221.99 14.61 0.0043 0.0112 145.83 

78 950 0.7 900 27.65 41.8 221.99 14.61 0.0086 0.0172 

79 1000 0.7 900 27.65 41.8 221.99 14.61 0.0148 0.0250 
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Appendix 4.A continued… 

Expt. 

no. 

Gasification 
temperature 

(¦§) (oC) 

CO₂ 
fraction 

(	¨©!) 

Char preparation 
temperature 

(¦7) (oC) 

Surface area 
(BET) method 

(:ª!) (m2/g) 

Ash 

(	
) 
(%) 

Surface area 
(CO₂) method 

(:¨©!) (m2/g) 

Porosity 

(«È) 
(%) 

Rate 
constant 

(��) (min-1) 

Reactivity 
index 

(��) (min-1) 

Activation 
energy 

kJ/mole 

80 1050 0.7 900 27.65 41.8 221.99 14.61 0.0235 0.0454  

81 900 0.7 1000 7.33 41.8 163.20 12.02 0.0026 0.0060 165.10 

82 950 0.7 1000 7.33 41.8 163.20 12.02 0.0064 0.0125 

83 1000 0.7 1000 7.33 41.8 163.20 12.02 0.0103 0.0185 

84 1050 0.7 1000 7.33 41.8 163.20 12.02 0.0186 0.0278 

85 900 1 800 37.23 41.8 228.34 15.2 0.0075 0.0160 118.55 

86 950 1 800 37.23 41.8 228.34 15.2 0.0122 0.0250  

87 1000 1 800 37.23 41.8 228.34 15.2 0.0196 0.0385  

88 1050 1 800 37.23 41.8 228.34 15.2 0.0296 0.0510  

89 900 1 900 27.65 41.8 221.99 14.61 0.0056 0.0126 138.71 

90 950 1 900 27.65 41.8 221.99 14.61 0.0104 0.0227  

91 1000 1 900 27.65 41.8 221.99 14.61 0.0180 0.0303 

92 1050 1 900 27.65 41.8 221.99 14.61 0.0279 0.0427 

93 900 1 1000 7.33 41.8 163.20 12.02 0.0036 0.0083 155.07 

94 950 1 1000 7.33 41.8 163.20 12.02 0.0079 0.0168 

95 1000 1 1000 7.33 41.8 163.20 12.02 0.0130 0.0220 
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Appendix 4.A continued… 

Expt. 

no. 

Gasification 
temperature 

(¦§) (oC) 

CO₂ 
fraction 

(	¨©!) 

Char preparation 
temperature 

(¦7) (oC) 

Surface area 
(BET) method 

(:ª!) (m2/g) 

Ash 

(	
) 
(%) 

Surface area 
(CO₂) method 

(:¨©!) (m2/g) 

Porosity 

(«È) 
(%) 

Rate 
constant 

(��) (min-1) 

Reactivity 
index 

(��) (min-1) 

Activation 
energy 

kJ/mole 

96 1050 1 1000 7.33 41.8 163.20 12.02 0.0225 0.0357  

97 900 0.3 800 37.23 41.8 228.34 15.2 0.0030 0.0067 160.39 

98 950 0.3 800 37.23 41.8 228.34 15.2 0.0066 0.0126 

99 1000 0.3 800 37.23 41.8 228.34 15.2 0.0115 0.0213 

100 1050 0.3 800 37.23 41.8 228.34 15.2 0.0197 0.0357 

101 900 0.3 1000 7.33 41.8 163.20 12.02 0.0020 0.0060 195.15 

102 950 0.3 1000 7.33 41.8 163.20 12.02 0.0046 0.0094 

103 1000 0.3 1000 7.33 41.8 163.20 12.02 0.0080 0.0156 

104 1050 0.3 1000 7.33 41.8 163.20 12.02 0.0208 0.0217 

105 900 0.3 900 27.65 41.8 221.99 14.61 0.0023 0.0070 166.08 

106 950 0.3 900 27.65 41.8 221.99 14.61 0.0051 0.0118 

107 1000 0.3 900 27.65 41.8 221.99 14.61 0.0109 0.0200 

108 1050 0.3 900 27.65 41.8 221.99 14.61 0.0151 0.0235 
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Chapter 5 
 

Use Genetic Programming for Selecting Predictor Variables 
and Modeling in Process Identification 

 

ABSTRACT     
 

Availability of an accurate and robust dynamic model is essential 

for implementing the model dependent process control. When first 

principles based modeling becomes difficult, tedious and/or costly, 

a dynamic model in the black-box form is obtained (process 

identification) by using the measured input-output process data. 

Such a dynamic model frequently contains a number of time delayed 

inputs and outputs as predictor variables. The determination of the 

specific predictor variables is usually done via a trial and error 

approach that requires an extensive computational effort. The 

computational intelligence (CI) based data-driven modeling 

technique, namely, genetic programming (GP), can search and 

optimize both the structure and parameters of a linear/nonlinear 

dynamic process model. It is also capable of choosing those 

predictor variables that significantly influence the model output. 

Thus, usage of GP for process identification helps in avoiding the 

extensive time and efforts involved in the selection of the time 

delayed input-output variables. This advantageous GP feature has 

been illustrated in this study by conducting process identification of 

two chemical engineering systems. The results of the GP-based 

identification when compared with those obtained using the transfer 

function based identification clearly indicates the outperformance 

by the former method. 
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5.1 INTRODUCTION 

Availability of an accurate, parsimonious, and robust dynamical process model 

is essential in various tasks such as model based process control, process monitoring, 

and optimization. The task of constructing mathematical models of dynamical 

processes from their measured input-output data is known as “process/system 

identification.” It can be viewed as the interface between the real world of 

applications and the mathematical world of control theory and model abstractions 

(Ljung, 2010). There are two principal ways for conducting process identification 

namely, phenomenological (first-principles) and empirical / black-box. In the first 

approach, the physico-chemical phenomena underlying a chemical process is 

rigorously described in terms of the mass, energy and momentum balance equations. 

This type of modeling requires complete details of the governing phenomena, such as, 

kinetic rate constants, heat and mass transfer coefficients, and other thermodynamic 

information, which in most cases of practical interest are unavailable. Also, chemical 

processes very often exhibit complex nonlinear behavior, which makes the 

development of phenomenological models a tedious, costly and possibly even an 

impossible task to be completed in a reasonable time span. In such cases, the other 

approach i.e., empirical/black-box modeling is resorted to for process identification. 

A black-box model representing the dynamics of a single input-single output 

(SISO) nonlinear process can be described using discrete time-variant inputs and 

outputs as given below: 

                 �3��=   f  (�3, �3��, �3��,…, �3�ß��; à3, à3��, à3��,…,  à3����)             (5.1) 

where �3�� refers to the one-time-step-ahead value of the output y, subscript t refers to 

the sampling instant, u is the manipulated variable (input), f denotes the functional 

relationship between �3�� and the current and past (time delayed/lagged) values of the 

inputs and outputs, and m and n, respectively refer to the number of lags in the 

process output and input. In the above equation, the current and time-delayed inputs 

and outputs signify the predictor variables for the one-step-ahead-prediction of the 

output, i.e. �3��. 

The principal advantage of the black-box modeling is that a model can be 

constructed solely from the measured process data without needing the details of the 

governing physico-chemical phenomena. In the conventional black-box modeling, the 

model structure is specified a-priori and the parameters associated with this model are 
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estimated using an appropriate linear/nonlinear strategy. Since several efficient 

linear/nonlinear parameter estimation methods are available, the real difficult part in 

the black-box modeling is the specification of the model structure. For linear systems 

model specification is easy; however, for nonlinear systems selection of model 

structure poses significant difficulties since it involves choosing an appropriate 

nonlinear model structure from numerous competing ones. 

The complexities involved in the conventional black box approaches to system 

identification   necessitated exploration of alternative modeling strategies that do not 

require a-priori specification of the model structure. This requirement is fulfilled, for 

example, by a number of computational intelligence (CI) based exclusively data-

driven nonlinear modeling formalisms such as artificial neural networks (ANNs), and 

support vector regression (SVR). An excellent overview of various linear and 

nonlinear methods for process/system identification is given by Ljung (2010) (also 

see Garcia and Morari, 1982; Isidori, 1989; Narendra and Parthasarathy, 1990; Tambe 

et al., 1996). 

Apart from ANNs and SVR, the discipline of CI comprises a novel exclusively 

data-driven modeling formalism, namely genetic programming (GP). The uniqueness 

of the GP methodology is that given an example input-output data set, it is capable of 

searching and optimizing both, the specific structure (form) and the associated 

parameters, of an appropriate linear/nonlinear data-fitting function; significantly, 

unlike ANNs and SVR methods, GP does this without making any assumption 

regarding the structure and parameters of the data-fitting function (Patil-Shinde et al., 

2014). Despite its novelty, GP has not been used widely in process identification to 

the same extent as ANNs and SVR. The full details of GP (Koza,1990; Poli et 

al.,2008; Shrinivas et al.,2015) are provided in Chapter 2, Section 2.2.2 of this thesis.  

Implementation of GP is a stochastic procedure and, therefore, it contains a 

strong random element. A typical characteristic of the best solution (data-fitting 

model) searched and optimized by the GP is that it contains only those predictor 

variables that yield an optimal data-fitting performance. In the context of process 

identification, this means that GP selects only those time delayed inputs and outputs 

as predictors in Eq. (5.1), which significantly influence the one-step ahead  output 

(�3��). This automatic selection of the important predictor variables by the GP 

formalism is immensely beneficial in practice since it substantially reduces the 

computational time and effort required in identifying the specific time-delayed inputs 
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and outputs in Eq. (5.1). Accordingly, in this study two process identification case 

studies have been performed to demonstrate the stated ability of GP of simultaneously 

identifying the important time delayed inputs and outputs and performing the system 

identification. The two chemical engineering-specific systems chosen in the case 

studies are: (i) nonlinear height control system for a conical tank, and (ii) 

concentration control system for a nonlinear adiabatic CSTR. For convenience, the 

process input-output data for these systems have been obtained using their 

phenomenological models. In real practice, the process input-output data should be 

collected by performing open-loop experiments. 

There have been studies wherein GP has been employed in system/process 

identification (see e.g. Kristinsson and Dumont (1992), Iba and Sato (1995), 

Yadavalli et al. (1999), Nandi et al. (2000), and Sankpal et al. (2001)). It may 

however be noted that these studies did not explore GP’s feature of identifying 

influential predictor variables. In the present study, the performance of the process 

model identified by the GP has also been compared with that identified using a 

transfer function model. A novel feature of the GP formalism is that while searching 

for an optimal data fitting model, it can identify key predictors and their combinations 

in the example data. This GP property has been exploited in the present study for 

automatically choosing those lagged inputs and outputs, which significantly influence 

the one-time-step ahead output in the dynamic process model. 

5.2   RESULTS AND DISCUSSION   

5.2.1 Case study I: Nonlinear Height Control System for a Conical Tank 

In this case study, a conical tank has been considered (see Figure 5.1) wherein 

á�� and  áâã3 are the inlet and outlet flow rates, respectively. The control objective is 

to maintain the height of the tank, h, at a given set point by manipulating the inlet 

flow rate,  á��. The conical tank dynamics are described by following equations 

(Aravind et al., 2013): 

Area of the tank is given by: 

                                                             D = πr2                                                         (5.2) 

  

                                                         tanα =
r

h
=

R

H
                                               (5.3) 
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According to law of conservation of mass: 

inlet flow rate – outlet flow rate = accumulation 

                                                       D
dh

dt
 = á�� ‒ áâã3                                                (5.4) 

 

                                                        áâã3=  L√h                                                        (5.5) 

 

                                                     D dh

dt
 =á��‒ L√ℎ                                               (5.6) 

 

                                                        
dh

dt
 =  Fin  ‒  L√h

D
                                               (5.7) 

  

Where 
dh

dt
 is the rate of change of height. 

Therefore, 

                                                       D =  πR2h2

H2                                                         (5.8) 

 

                                                      
dh

dt
 =   jFin  ‒  L√hnH2

πR2h2                                                (5.9) 

 

Here, H is the maximum height of the tank with R as the radius at that height, L 

is the discharge coefficient, and h is the height of the tank at any instant, t. In this 

tank, the inlet flow rate, á��, is the manipulated variable and the height of the tank, h, 

is the controlled variable. Eq. (5.9) was integrated to generate an input-output dataset 

for identifying the process. A total of 1000 data points were generated while varying 

á�� randomly in the 50 to 200 cm~sec�� range at every time step of one second. The 

parameter values used in simulating Eq. (5.9) are: probability of á�� variation at any 

instant = 0.22, H = 73 cm, L = 20 cm�.�sec��, R = 19.25 cm and initial height of tank 

= 24 cm. The generated time profiles of á�� and h are shown in Figures 5.2 and 5.3, 

respectively. 

 



 

                                           

Figure 5.1: Schematic

 

     
Figure 5.2:

       
Figure 5.3: Controlled
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Schematic of a height control system for a conical tank.

Figure 5.2: Random variations in manipulated variable, 

 

 

       
Controlled variable (h) response to the random variations in 

of a height control system for a conical tank. 

 
variations in manipulated variable, Fin. 

 
) response to the random variations in Fin. 
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GP-based identification  

The generated data were arranged for the GP-based process identification by 

considering one current and two time delayed values of both h and á��. Thus, a set of 

six predictor variables (ℎ3, ℎ3��, ℎ3��; á��° , á��°�F, á��°�!) was considered for the 

prediction of the one-time-step-ahead model output; the data set of 1000  points was 

split randomly in training, test and validation sets in 70:20:10 ratio. While the first set 

was used in generating the GP model, the second and third sets were respectively 

employed in testing the generalization ability of the model, and its validation. For 

generating the GP-based model, a software package named Eureqa Formulize 

(Schmidt and Lipson, 2009) was employed. The GP searched following fittest 

expression: 

             ℎ3�� = 2èℎ3+ 6.6437

34.7472 × éêë°‒ 93.5708  × (°�F‒ 134.1376 × (°�! ‒ 0.5 × ℎ3��ì         (5.10) 

The values of the correlation coefficient (CC), root mean squared error (RMSE) and 

mean absolute percentage error (MAPE) for the training, test, and validation set data 

are  listed in Table 5.1. The high (low) and comparable values of CC (RMSE, MAPE) 

for the training, test and validation sets indicate that the GP-based model (5.10) 

possesses excellent one-time-step-ahead prediction accuracy and generalization 

ability.  

Table 5.1:  Prediction accuracy and generalization performance of GP-based model 
(5.10) for conical tank height control system 

 

 

 

 

 

Figure 5.4 shows the parity plot of the desired (target) versus GP model-

predicted values of ℎ3��. From the GP-based optimal data-fitting model (5.10), it is 

noticed that the model consists of four predictor variables (ℎ3, ℎ3��, ℎ3��and á��°). It 
can thus be seen that although the data supplied to the GP algorithm contained six 

 Training set Test set Validation set 

CC 0.9993 0.9984 0.9937 

RMSE 0.1269 0.0799 0.0638 

MAPE 0.0015 0.0007 0.0005 



 

predictor variables (ℎ
optimized a model with only four predictor variables (

 

Figure 5.4: Desired versus GP

 

Transfer function based 

Here the control system consists of an input (

related to the input via a transfer function. The simulated data generated for the 

conical tank height control system described earlier appropriately arranged

transfer Function based process identification by using values of both 

same proportion of 70:20:10 was used to

training, test and validation sets. For developing the transfer function ba

Matlab Sysid (System identification

transfer function model is given as:

 

                             ¦�(:)
 

In Laplace transform, the input is represented by 

h(S). 

                           ¦�(:)
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ℎ3, ℎ3��, ℎ3��; á��°, á��°�F, á��°�! ) the method searched and 

optimized a model with only four predictor variables (å3, å3��, å3��

 

versus GP-model predicted ht+1 values pertaining to the training, 
test, validation set data. 

Transfer function based identification 

Here the control system consists of an input (á��), and output (

related to the input via a transfer function. The simulated data generated for the 

conical tank height control system described earlier appropriately arranged

transfer Function based process identification by using values of both 

same proportion of 70:20:10 was used to partition the dataset of 1000 points into 

training, test and validation sets. For developing the transfer function ba

System identification) toolbox was used. The continuous

transfer function model is given as:  

� � < z.zz��~� o��z.zz���� o!�z.zzz~��� o��.���� �z�í
o��z.z�� o!�z.zz���� o��.�����z�í  

In Laplace transform, the input is represented by á��(S) and output is represented by 

� � < (�o�
ék¾�o�                                                                               

) the method searched and 

�;  á��°).  

 

values pertaining to the training, 

), and output (h). The output is 

related to the input via a transfer function. The simulated data generated for the 

conical tank height control system described earlier appropriately arranged to conduct 

transfer Function based process identification by using values of both h and á��. The 

partition the dataset of 1000 points into 

training, test and validation sets. For developing the transfer function based model 

was used. The continuous-time identified 

                      (5.11) 

(S) and output is represented by 

                                                                               (5.12) 



 

The transfer function of the system multiplied by the input function produces the 

output function of the system. The values of 

transfer function-based

parity plot of the desired (target) versus transfer function model

å3��. A comparison of these values with those corresponding to the predictions of the 

GP-based model (5.10) reveals

accuracy and generalization capability.

 

Table 5.2: Prediction accuracy and generalization performance of transfer function 
model (5.11) for

 

 

 

 

 

 

 

                    

Figure 5.5: Desired versus transfer
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The transfer function of the system multiplied by the input function produces the 

output function of the system. The values of CC, RMSE and MAPE

based model (5.11) are given in Table 5.2. Figure 5.5 

plot of the desired (target) versus transfer function model-predicted values of

. A comparison of these values with those corresponding to the predictions of the 

model (5.10) reveals that the CI-based model possesses superior prediction 

cy and generalization capability. 

Prediction accuracy and generalization performance of transfer function 
model (5.11) for conical tank height control system 

 

Desired versus transfer-function model predicted ht+1 values pertaining to 
the training, test, validation set data. 

 

 Training set Test set Validation set

CC 0.9828 0.9624 0.8760 

RMSE 0.6549 0.4116 0.5471 

MAPE 0.0161 0.0088 0.0098 

The transfer function of the system multiplied by the input function produces the 

MAPE pertaining to the 

model (5.11) are given in Table 5.2. Figure 5.5 shows the 

predicted values of 

. A comparison of these values with those corresponding to the predictions of the 

based model possesses superior prediction 

Prediction accuracy and generalization performance of transfer function 

values pertaining to 

Validation set 
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5.2.2 Case study II: Adiabatic Nonlinear CSTR Concentration Control 
System 

This case study considers a continuously stirred tank reactor (CSTR) (Figure 

5.6) in which a second order irreversible exothermic chemical reaction (A→B) takes 

place. The control objective is to maintain the concentration of A, i.e. 	
, at a given 

set-point by manipulating the inlet flow rate, F. The adiabatic CSTR dynamics are 

described by the following ordinary differential equations (Luyben, 1996):  

Reactor component A continuity: 

 

                                         
dCA

dt
=

F

V
jCAin

‒ CAn‒ k CA
2                                         (5.13) 

 

                                         k = k0 e-Ea
RT                                                      (5.14) 

 

                                        
dCA

dt
=

F

V
jCAin

‒ CAn ‒ k0 e-Ea
RTCA

2                                  (5.15) 

 

where  dCA

dt
  is the rate of change of concentration of A 

Reactor energy balance equation is given as:  

           

                                              
dT

dt
 = F

V
(Tin‒ T) ‒ HR k CA

2

ρCp
                                            (5.16) 

                                             Cp= 4.184 ‒ 0.002 (T ‒ 273)          (5.17) 

                                             
dT

dt
= F

V
(Tin‒ T) ‒ HR k0 e-Ea

RT CA
2

 ρ (4.184 ‒ 0.002 (T‒273))
          (5.18) 

 

where 
IîIM  is rate of change of the outlet temperature, T, CAin

 is the inlet concentration 

of species A, V is the volume of the CSTR, k0 denotes the reaction rate constant, R is 

the gas constant, HR  represents the heat of reaction, Tin is fluid inlet temperature, ρ is 

the density of liquid, Cp is the fluid specific heat capacity, T is fluid outlet 

temperature, and Ea denotes the activation energy of the reaction. 



 

Figure 5.6:

 

In this CSTR process, the outlet concentration of 

both vary with time, and 

respectively. For the purpose of illustration, the GP and transfer function based 

dynamic models have been built only for

process data were generated by integrating the phenomenological model described by 

Equations (5.15) to (5.18). Specifically, 

of 0.1 min in the range, 10 to 150 lit

consisting of 1000 points. The parameter values used in simulating (5.15) to (5.18) 

were: probability of F 

0.15 lit mol��min��, 

1.050 kg lit��, Ea = 5000 J 

outlet temperature = 295 K. Figures 5.7, 5.8 and 5.9, respectively show the generated

time profiles of F, 	
 ,

 

                            

Figure 5.7:
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Figure 5.6: Schematic of an adiabatic CSTR control system.

In this CSTR process, the outlet concentration of A, i.e. 	
, and temperature, 

both vary with time, and F and 	
 are the manipulated and controlled variables, 

respectively. For the purpose of illustration, the GP and transfer function based 

dels have been built only for 	
. As in Case study I (section 5.2.1), 

process data were generated by integrating the phenomenological model described by 

s (5.15) to (5.18). Specifically, F was perturbed randomly at every time step 

the range, 10 to 150 lit min��, to generate an input

consisting of 1000 points. The parameter values used in simulating (5.15) to (5.18) 

F variation at any instant = 0.2, CAin
= 6 mol lit

, R = 8.314 Jmol��K��, HR = ‒590 J mol��
= 5000 J mol��, initial concentration of A = 2 mol 

outlet temperature = 295 K. Figures 5.7, 5.8 and 5.9, respectively show the generated

, and T. 

 

Figure 5.7: Random variations in manipulated variable, 

 

Schematic of an adiabatic CSTR control system. 

, and temperature, T, 

are the manipulated and controlled variables, 

respectively. For the purpose of illustration, the GP and transfer function based 

. As in Case study I (section 5.2.1), 

process data were generated by integrating the phenomenological model described by 

was perturbed randomly at every time step 

, to generate an input-output dataset 

consisting of 1000 points. The parameter values used in simulating (5.15) to (5.18) 

lit��, V=100 lit, k0 = 

�, Tin= 288 K, ρ = 

2 mol lit��, and initial 

outlet temperature = 295 K. Figures 5.7, 5.8 and 5.9, respectively show the generated 

Random variations in manipulated variable, F. 



 

Figure 5.8: Controlled

Figure 5.9: Outlet

GP- based identification

For developing the GP

delayed values of both, 

, CA t-1 , CA t-2, á3, á3��
predicting the one-step

GP-based model the data set consisting of

test and validation sets in 70:20:10 

expression obtained using 
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Controlled variable (	
) response for random variations in 

 

 

Outlet temperature (T) response for random variations in 

 

based identification 

For developing the GP-based discrete time model, the current and two time

delayed values of both, CA and F, were utilized. Thus, the six predictor variable (

�, á3��) set was employed in developing the GP

step-ahead process output, CA t.1. For developing the discrete time 

based model the data set consisting of 1000 points was split randomly in 

sets in 70:20:10 ratio, respectively. The GP searched fittest 

expression obtained using the Eureqa Formulize software package is given as:

 
) response for random variations in F. 

 

) response for random variations in F. 

based discrete time model, the current and two time-

utilized. Thus, the six predictor variable (CA t 
developing the GP-based model 

. For developing the discrete time 

1000 points was split randomly in training, 

ely. The GP searched fittest 

package is given as: 



 

                          CAt+1
=1.

Likewise Case Study I, in this case 

variables that were  provided to it, the GP algorithm has used only four of them 

(CAt
,CAt-1

,CAt-2
, Ft) in obtaining model (5.19). The values of the 

corresponding to the C

set data are listed in Table 5.3. Figure 5.10 shows the parity plot of the desired versus 

GP-model predicted values of 

comparable values of 

data it is clear that the GP based identification model (5.19) possesses an excellent 

one-time- step-ahead prediction accuracy and  generalization ability.

Table 5.3:  Prediction accuracy and generaliza
(5.19) for CSTR control system

 

 

 

 

 

 

 

 

 

Figure 5.10: Desired 
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.9125 ñCAt
+

è0.2213 ‒ 0.0644 × CA
t-2 ì

1.9125 × Ft
 ‒ 0.4771 × CAt-1

Likewise Case Study I, in this case also it is seen that among the six predictor 

variables that were  provided to it, the GP algorithm has used only four of them 

) in obtaining model (5.19). The values of the CC, 

CAt+1
 predictions made by (5.19) for the training, test, validation 

set data are listed in Table 5.3. Figure 5.10 shows the parity plot of the desired versus 

model predicted values of CAt+1
. From this figure and the high (low) and 

comparable values of CC (RMSE and MAPE) for the training, test and validation set 

data it is clear that the GP based identification model (5.19) possesses an excellent 

ahead prediction accuracy and  generalization ability.

Prediction accuracy and generalization performance of GP
(5.19) for CSTR control system 

 

Desired versus GP-model predicted CAt+1
 values pertaining to the 

training, test, validation set data. 

Training set Test set Validation set

0.9937 0.9928 0.9939 

RMSE 0.0362 0.0259 0.0308 

MAPE 0.0030 0.0016 0.0024 

ò           (5.19) 

also it is seen that among the six predictor 

variables that were  provided to it, the GP algorithm has used only four of them 

CC, RMSE and MAPE 

predictions made by (5.19) for the training, test, validation 

set data are listed in Table 5.3. Figure 5.10 shows the parity plot of the desired versus 

. From this figure and the high (low) and 

) for the training, test and validation set 

data it is clear that the GP based identification model (5.19) possesses an excellent 

ahead prediction accuracy and  generalization ability. 

tion performance of GP-based model 

 

values pertaining to the 

Validation set 
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Transfer function based identification  

Here, the simulated CSTR generated data were arranged appropriately for the 

development of the transfer function based process identification, wherein both input 

(Fin), and output (	
) signals were utilized. This data set of 1000 points was split 

randomly in training, test and validation sets in 70:20:10 ratio. The continuous-time 

transfer function based model obtained using Matlab sysid software is given below: 

 

                          ¦��:� < z.zz���o��z.��� o!�z.zz�ó�~ o�z.zzz����o���.��� o!�z.�ó o�z.zz�~�                      (5.20) 

 

In this Laplace transform based model, the input is represented by Fin (S) and output is 

represented by 

                          ¦�(:) = |p(o)é(o)                                                                      (5.21) 

 

The transfer function defined in this equation when multiplied by the input function 

produces the output function of the CSTR system. The CC, RMSE and MAPE 

magnitudes pertaining to the CAt+1
  predictions made using (5.20) are listed in Table 

5.4. Figure 5.11 shows the parity plot of the desired (target) versus transfer function 

model-predicted values of CAt+1
. A comparison of the prediction and generalization 

performance of the GP and transfer function based CSTR models indicates that the 

former model has outperformed the latter model. 

 

Table 5.4: Prediction accuracies and generalization performance of transfer function 
model (5.20) for CSTR control system 

 

 

 

 

 

 

 Training set Test set Validation set 

CC 0.9888 0.9815 0.9920 

RMSE 0.0526 0.0585 0.0449 

MAPE 0.0090 0.0089 0.0074 



 

Figure 5.11: Desired versus transfer

to the training, test, validation set data.

 

5.2.3 Sensitivity Analysis of Predictor Variables

In this study, sensitivity analysis (also termed “importance” analysis) was also 

performed for the data used in the development of two GP

conducted using the IBM

exerted by each predictor variable on the one

(controlled) variable (see Chapter 2, section 2.6 for a detailed discussion 

analysis).  

The importance analysis for the conical tank system in case study

conducted using the entire simulated data set of 1000 points. Figure 5.12 exhibits the 

importance and normalized importance chart indicating the extent of in

by each predictor variable on the one

(ht+1). In this figure, it is seen that the four predictor variables, namely, 

and Fint
 exert a significant influence on the 

variables appear in the optimal model (5.10) thus demonstrating the ability of

formalism to select the most influential predictor variables during searching and 

optimizing a data-fitting model. 

 

 

 

154 

 

Desired versus transfer-function model predicted CAt+

to the training, test, validation set data. 

5.2.3 Sensitivity Analysis of Predictor Variables 

In this study, sensitivity analysis (also termed “importance” analysis) was also 

performed for the data used in the development of two GP-base

IBM-SPSS package (2011) to ascertain the extent of influence 

exerted by each predictor variable on the one-time-step-ahead value of the output 

(controlled) variable (see Chapter 2, section 2.6 for a detailed discussion 

The importance analysis for the conical tank system in case study

conducted using the entire simulated data set of 1000 points. Figure 5.12 exhibits the 

importance and normalized importance chart indicating the extent of in

by each predictor variable on the one-time-step-ahead-value of the controlled variable 

). In this figure, it is seen that the four predictor variables, namely, 

exert a significant influence on the ht+1 magnitude. Notably, the same four 

variables appear in the optimal model (5.10) thus demonstrating the ability of

formalism to select the most influential predictor variables during searching and 

fitting model.  

 

+1
 values pertaining 

In this study, sensitivity analysis (also termed “importance” analysis) was also 

based models. It was 

(2011) to ascertain the extent of influence 

ahead value of the output 

(controlled) variable (see Chapter 2, section 2.6 for a detailed discussion of sensitivity 

The importance analysis for the conical tank system in case study-I was 

conducted using the entire simulated data set of 1000 points. Figure 5.12 exhibits the 

importance and normalized importance chart indicating the extent of influence exerted 

value of the controlled variable 

). In this figure, it is seen that the four predictor variables, namely, ht, ht-1, ht-2, 

e. Notably, the same four 

variables appear in the optimal model (5.10) thus demonstrating the ability of the GP 

formalism to select the most influential predictor variables during searching and 



 

Figure 5.12: Normalized importance of six predictor variables on process output,

Figure 5.13 exhibits the importance and normalized importance charts 

pertaining to the adiabatic nonlinear CSTR concentration control system. It indicates 

that among the six predictor variables (

influence the one-time

CAt-1
, Ft CAt

, and CAt-

been utilized by the GP formalism in obtaining the optimal model (5.19).

 

Figure 5.13: Normalized

 
5.3 CONCLUSION 

In the conventional process/system identification, it

computationally intensive to select the

correlate with the single

a GP-based strategy has been suggested for simultaneously identifying the important 

predictor variables as also searching and optimizing an optimal data fitting function 
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Normalized importance of six predictor variables on process output,

Figure 5.13 exhibits the importance and normalized importance charts 

pertaining to the adiabatic nonlinear CSTR concentration control system. It indicates 

predictor variables (CAt
, CAt-1

, CAt-2
, Ft, Ft-1, F

time-step-ahead value of the control variable (CA

-2
. It is noteworthy that the same four predictor variables have 

utilized by the GP formalism in obtaining the optimal model (5.19).

 
Normalized importance of six predictor variables on process output,

In the conventional process/system identification, it becomes tedious and 

computationally intensive to select the specific predictor variables that strongly 

single- or multi-time-step-ahead values of the output. In this paper, 

based strategy has been suggested for simultaneously identifying the important 

predictor variables as also searching and optimizing an optimal data fitting function 

 
Normalized importance of six predictor variables on process output, ht+1. 

Figure 5.13 exhibits the importance and normalized importance charts 

pertaining to the adiabatic nonlinear CSTR concentration control system. It indicates 

Ft-2) those four that 

A) most strongly are 

It is noteworthy that the same four predictor variables have 

utilized by the GP formalism in obtaining the optimal model (5.19). 

 
importance of six predictor variables on process output, CAt+1

. 

becomes tedious and 

specific predictor variables that strongly 

ahead values of the output. In this paper, 

based strategy has been suggested for simultaneously identifying the important 

predictor variables as also searching and optimizing an optimal data fitting function 
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and its parameters. The said strategy has been illustrated by conducting two process 

identification case studies wherein the GP formalism has been shown to (a) identify 

the influential time-delayed inputs and outputs, and (b) simultaneously perform 

system identification using these influential predictors. The two chemical engineering 

systems chosen in the case studies are: (i) nonlinear height control system for a 

conical tank, and (ii) adiabatic nonlinear CSTR concentration control system. From 

the GP-based models obtained in these case studies, it is noticed that although the data 

supplied to the GP algorithm contained six predictor variables, it searched and 

optimized models with only four predictor variables. Noticeably, these predictors 

were identified by the sensitivity analysis to be having most influence on the model 

output. Both the  GP based process identification models (5.10) and (5.19) predict the 

one-time-step-ahead values of the output variables (å3�� and CAt+1
) with an excellent 

prediction and generalization performance as indicated by the high (low) magnitudes 

of the correlation coefficient (root mean squared error and mean absolute percentage 

error) pertaining to the training, test, and validation set data. It is also observed that 

the GP–based models possess better prediction accuracy and generalization capability 

than the continuous-time transfer function models. Moreover, the GP-based models 

are less complex than the transfer function models. This feature is important since 

usually less complex (i.e., parsimonious) models possess better at generalization than 

their more complex counterparts. To summarize, the GP-based system identification 

strategy—being computationally economical and much less tedious—has the potential 

to become an effective alternative to the conventionally used linear/nonlinear 

identification strategies. Having identified a process using the GP strategy the 

corresponding model can be gainfully utilized to implement the model predictive 

control (MPC) strategy. 

NOMENCLATURE 

f functional relationship between �3�� and the current and past (time delayed/  
lagged) values of the inputs and outputs 

m , n number of lags in the process output and input, respectively 

t sampling instant 

u manipulated variable (input) 

�3��    one-time-step-ahead value of the output y 
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Chapter 6 

Prediction of ºAPI Values of Crude Oils by Use of 
Saturates/Aromatics/Resins/Asphaltenes Analysis: 

Computational- Intelligence-Based Models 
 

ABSTRACT   
         

The oAPI value is an important physicochemical characteristic of crude 

oils often used in determining their properties and quality. There exist 

models—predominantly linear ones—for predicting the oAPI magnitude 

from the molecular composition of a crude oil. This approach is tedious 

and time-consuming since it requires quantitative determination of 

numerous crude-oil components. Usually, the hydrocarbons present in 

a crude oil are grouped according to their molecular average 

structures into saturates, aromatics, resins, and asphaltenes (SARA). An 
oAPI-value prediction model dependent on these four fractions is 

relatively easier to develop, although this approach has been rarely 

used. A rigorous scrutiny of the relevant data suggests that some of the 

dependencies between the individual SARA fractions and the 

corresponding oAPI-value could be nonlinear. Accordingly, in this 

study, SARA-fraction based nonlinear models have been developed for 

the prediction of oAPI values using three Computational Intelligence 

(CI) formalisms: genetic programming (GP), artificial neural networks 

(ANNs), and support vector regression (SVR). The SARA analyses and 
oAPI values of 403 crude-oil samples covering wide ranges have been 

used in developing these models. A comparison of the CI-based models 

with an existing linear model indicates that all the former class of 

models possess a significantly better oAPI-value prediction and 

generalization performance than those exhibited by the linear model. 

Also, the SVR-based model has been found to be the most accurate 
oAPI-value predictor. Because of their better prediction accuracy, CI-

based models can be gainfully used to predict oAPI values of crude oils. 
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6.1 INTRODUCTION 

Crude oil is a complex mixture of hydrocarbons that also contains some 

“hetero” atoms such as oxygen, nitrogen, and sulfur. The knowledge of a crude oil’s 

type and quality is essential because these characteristics determine its market value 

and ease of refining. The stated crude-oil attributes can be ascertained by the use of 

various properties, such as, standard specific gravity, pour point, and sulfur and metal 

contents. Often, the density of petroleum oils is expressed in terms of the oAPI value; 

this metric was devised by American Petroleum Institute (API) and National   Bureau 

of Standards. It is known to be a crucial property because it directly affects the 

production and price of a crude oil. The oAPI value is used extensively in the 

classification and determining properties, such as the viscosity and compressibility 

factor, of petroleum oils, and also in setting the operating parameters of distillation 

columns in a refinery. It is a measure of the crude oil’s “lightness” or “heaviness” or 

the standard specific gravity that compares the specific gravity of the oil to that of 

water; oAPI value is computed as 

                            °API < ���.��RPõ�ö�õ ÷�øù�3ú (�z℉ �z℉ü ) − 131.5                              (6.1) 

In a commonly used classification scheme, crude oils are categorized on the 

basis of their °API magnitudes as follows (Strubinger et al. 2012): extra heavy 

(°API<10); heavy (10<°API<22.3); medium (22.3<°API<31.1), and light 

(°API>31.1). The °API value is measured using a standard hydrometer according to 

the American Society for Testing and Materials (ASTM) methods D287 (ASTM 

D287-12 2012) and D1298 (ASTM D1298-12b 2012). It varies strongly with 

temperature because of the significant volume expansion of the oil upon heating. 

Generally, the less processing a crude oil must undergo, it is regarded as more 

valuable. Considering the chemistry of oil refining, the denser the crude oil, the higher 

is its carbon/hydrogen ratio, and more intense and costly refinery processing is 

required for producing specific volumes of gasoline and distillate fuels. Thus, °API 

value of a crude oil significantly influences the quantum of investment and energy 

consumption in a refinery, which form the two largest components of the total 

refining cost (ICCT 2014). Commonly, the higher the °API magnitude, the lighter is 

the crude oil and higher is its demand; therefore, an accurate evaluation of °API 

becomes very important (Lammoglia and Filho, 2011).  
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In a widely used classification scheme, crude oils are categorized on the basis of 

their composition and types of hydrocarbons present in them (Albahri et al., 2003). 

Specifically, the hydrocarbons are classified into four groups on the basis of their 

molecular average structures, polarizability, and polarity: Saturates (alkanes and 

cycloparaffins); Aromatics (hydrocarbons; mono, di, and polyaromatic); Resins (polar 

molecules with the heteroatoms nitrogen, oxygen, sulfur); and Asphaltenes (similar to 

resins but possessing higher molecular weight and a polyaromatic core). This method 

of classification is known as SARA analysis. The stated crude oil components are 

separated by use of the SARA-fractionation method (Speight and Ozum, 2002). 

Various techniques, such as the clay/gel-adsorption chromatography (basis of ASTM 

D2007-93), thin-layer chromatography (TLC) (Vela et al., 1995), and high-

performance liquid chromatography (HPLC) (Suatoni and Swab, 1975; Chaffin et al., 

1996) are used to perform the SARA analysis. Among these, HPLC has been 

demonstrated to be a very efficient alternative to the ASTM 2007 (1993) procedure for 

SARA fractionation because it is achieved rapidly. 

The ASTM tests for measuring the °API value need expensive equipment and 

are time-consuming to perform; thus, these are difficult to use in the on-line 

monitoring of the crude-oil quality (Muhammad and de Vasconcellos Azeredo, 2014). 

To overcome this difficulty, mathematical models that predict the °API value from the 

measured values of other oil-specific attributes, have been proposed. Accordingly, it 

has been shown that the quality of the crude petroleum and its derivatives, as assessed 

in terms of the °API values, could be predicted directly from the molecular 

composition of crude oils. A number of studies have followed this strategy to propose 

models that use data from various spectroscopic methods, such as Fourier transform 

infrared-attenuated total reflectance, absorption and synchronous ultraviolet 

fluorescence (Abbas et al., 2012), nuclear magnetic resonance (Muhammad and de 

Vasconcellos Azeredo, 2014), infrared (Pasquini and Bueno, 2007), and attenuated 

total reflection Fourier transform infrared spectroscopy (Filgueiras et al. 2014), for the 

prediction of °API magnitudes. Another approach to developing a model predicting 

the °API value is dependent on the use of SARA fractions as predictors. The principal 

advantage of this methodology is that because of the limited number of inputs (i.e., 

four), a SARA-fraction-based model can be developed relatively easily, and speedily 

compared to a model that takes into account a large number of hydrocarbons present 
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in a crude oil. Although attractive, this approach has been rarely used in developing 

the °API-value prediction models. An extensive literature search has revealed that a 

SARA-fraction-based model has been developed by Fan and Buckley (2002) to 

predict the °API magnitudes. The principal objective of their study, however, was to 

examine three methods (namely, gravity-driven chromatographic separation, TLC, 

and HPLC) used for separating crude oils and other hydrocarbon materials into SARA 

fractions. Fan and Buckley (2002) proposed the °API prediction model for 

differentiating the SARA data obtained by the use of ASTM and HPLC methods from 

those provided by the TLC-flame-ionization-detector (TLC-FID) method. Their 

model, possessing a linear form and valid over the °API-value range of 15–40, is 

given as  

                    °API < 74.5 − 0.306 S − 0.385 A − 1.08 R − 0.763 AR                   (6.2) 

where S, A, R, and Ý*, respectively, represent the weight percentages (wt%) of 

saturates, aromatics, resins, and asphaltenes. The magnitude of the correlation 

coefficient (CC) between the experimental, and Eq. (6.2) - predicted °API values for 

the HPLC-analyzed 87 crude-oil samples were found to be 0.825 (Fan and Buckley 

2002). 

To verify the true nature of the dependencies (whether linear or nonlinear) 

between the SARA constituents and the corresponding °API values, a large data set 

consisting of SARA analyses of 565 crude-oil samples was compiled from a number 

of  publications, including a database. Different analytical methods, such as TLC-FID, 

ASTM, HPLC, gas chromatography-mass spectrometry (GC-MS), and open-column 

chromatography, have been used in conducting the SARA analyses. The compiled 

data contain a number of samples for which the wt% values of the individual SARA 

constituents do not add up exactly to 100. Thus, the data set was screened to select 

403 samples for which the wt% magnitudes of SARA constituents add up to 

100 ± 2%. Here, the value of 2% was chosen to allow for small experimental errors in 

the SARA analyses. The screened data set and the respective data sources are 

tabulated in Appendix 6.A. This set contains data pertaining to the light (115 

samples), medium (127 samples), heavy (127 samples), and very-heavy (34 samples) 
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crude oils. These data were used to generate the cross-plots (Figure 6.1), wherein 

°API values were plotted against the individual constituents of the SARA analyses. It 

is seen in Figure 6.1(a) that there exists an approximately linear relation between the 

°API values and the wt% of saturates. However, a similar inference of linear 

dependence cannot be drawn unambiguously because of the large scatter seen in 

Figures 6.1(b), 6.1(c), and 6.1(d), pertaining to the relationships existing between 

°API values and the wt% of aromatics, resins, and asphaltenes, respectively.  Thus, it 

is quite plausible that these relationships, although not obvious to the naked eye, in 

reality are nonlinear. Hence, it is worthwhile to explore whether a nonlinear model 

would better capture the relationships between the °API values and the SARA 

components of crude oils and thereby make more accurate predictions than the linear 

model defined in Eq. (6.2). With this objective, three CI-based modeling 

formalisms—GP, ANNs, and SVR—have been used in this study for developing the 

SARA-fraction-based models for prediction of °API values of crude oils. In addition, 

the prediction and generalization performance of the CI-based models have been 

compared with those of the linear model (Eq. 6.2). The same large-sized data set used 

in generating the cross plots in Figure 6.1 was used in the development of the CI-

based models for simulating the stated linear model. Moreover, the coefficients of the 

linear model of Fan and Buckley (2002) were freshly determined by use of the large-

sized data set to further test whether a linear model is indeed the most-suitable 

predictor of °API. The results of all these modeling studies clearly indicate that the 

CI-based models possess significantly higher °API-value-prediction accuracy and -

generalization capability than the original and the freshly fitted linear models. 

This chapter is structured as follows. Section 6.2, titled “Data” provides details 

of the data used in the CI-based modeling of °API values. The next section 6.3 termed 

“Results and Discussion,” describes development of the three CI-based models for the 

prediction of °API values. This section also provides results of a comparison of the 

°API-value-prediction performance of the three CI-based models with that of the 

linear model by Fan and Buckley (2002) and its refitted version. Finally, 

“Conclusion” (section 6.4) summarizes the major findings of this study. 



 

 

Figure 6.1: Cross-plots of 
constituents

6.2 DATA  

The GP-, MLP-, and SVR

were developed by use of a data set consisting of 403 input/output patterns (Appendix 

6.A). Each pattern contains four predictor variables (model inputs) with wt% values 
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where j denotes the index of candidate solution; 9Ýt;� refers to the MAPE of the 

234-candidate solution in the population; �� is the desired (target) output value 

corresponding to the N34-input data pattern in the training/test data set; ���,� is the 

model-predicted °API value when the N34-input pattern is used to compute the output 

of the 234-candidate solution, and 6* is the number of input/output patterns in the 

training/test set. All models were trained and their generalization performance was 

tested by use of the fivefold cross-validation scheme. In this method, the available 

example set was portioned into five subsets. Multiple training runs were conducted, 

and each time a different subset was used as the test set; the remaining four subsets 

were used as the training set. Finally, the statistical quantities—namely, CC, RMSE, 

and MAPE—corresponding to training and test sets obtained in multiple runs are 

averaged. The optimal model is selected on the basis of high (low) and comparable 

averaged values of CC (RMSE, MAPE) for both training and test sets. In the following 

subsections, details of the construction of the GP-, MLP-, and SVR-based models and 

a comparison of their °API-value-prediction and -generalization performance are 

presented.  

 

6.3 RESULTS AND DISCUSSION  

6.3.1 GP-Based Modeling 

The GP-based °API-value prediction model was developed by use of the Eureqa 

Formulize software (Edwards, 2009; Schmidt and Lipson, 2009). This software has 

been optimized to search parsimonious models (i.e., with low complexity), which are 

expected to possess the much-desired generalization ability. The Eureqa Formulize 

software uses the plain “single train/test split” procedure, in which training and test 

sets of fixed sizes are, respectively, used in the construction and assessment of the 

generalization capability of a candidate expression.  

The detailed procedure for GP (Koza, 1992; Poli et al., 2008) implementation 

has been explained in Chapter 2 (section 2.2.2). For obtaining a parsimonious °API-

value prediction model possessing good prediction accuracy and generalization 

capability, several GP runs were conducted, each time using a different operator 

subset from the large set provided by the Eureqa Formulize package. The best 

solution in each run was documented. From several such solutions, those satisfying 
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the following criteria were screened to select an overall optimal model (Goel et al., 

2015): 

• Small and comparable magnitudes of RMSE and high and comparable 

magnitudes of CCs for both training and test set. 

• Must contain all four input variables: S, A, R, and Ý*. 
• Should possess low complexity (i.e., should contain a small number of terms, 

which ensures better generalization by the model). 

In GP simulations, the RMSE was evaluated as follows: 

                                     89:;� = =∑ (������,�)�Y�
�E� Y�

     ; j = 1, 2,…, Npp                                    (6.4) 

where, 89:;� refers to the RMSE pertaining to the 234-candidate solution. The 

optimal GP-based °API-value prediction model selected on the basis of previously 

described criteria is as follows: 

°API = 10.204 × è:� + jxÏ×iÏ?n� jiÏ× ���n �xÏ � (i �× iÏ? × ���)ó.����j�.��� ×iÏ×iÏ?n�jo�×xÏ×iÏ?n�j�.��� ×iÏ×xÏ×iÏ?nì +  24.61    (6.5) 

 

where,   :� = o���.�����.�ó� , Ý� = i�~z.��~��.ó�� , 8Ï = x���.~����.��� , and Ý�* = i?��.~���.~��   

The CC, RMSE, and MAPE magnitudes with respect to °API-value predictions made 

by Eq. (6.5) for both training and test sets are listed in Table 6.1.  

 

6.3.2 MLP-Neural-Network-Based Modeling  

A detailed description of the MLP training procedure and related issues is 

provided by, for example, Zurada (1992), Bishop (1995), and Tambe et al. (1996) 

(also see Chapter 2 (section 2.2.1)). The MLP-based optimal °API-value prediction 

model was trained by use of the error back propagation (EBP) algorithm from the 

RapidMiner data-mining suite (Mierswa et al. 2006; RapidMiner 2007). The model 

consists of four input nodes (N = 4), and a single output-layer node in its architecture; 

the four input-layer nodes represent weight percentages of the S, A, R, and Ý* 

components, respectively, in the crude oils, and a single output node represents the 
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corresponding °API value. To obtain an optimal MLP model, its structural and 

training algorithm-specific parameters—such as the number of hidden layers, number 

of hidden nodes in each layer, learning rate (η), and momentum coefficient (OPQR)—

were systematically varied. The criterion for choosing an optimal model was 

minimum RMSE magnitude for the test set. The magnitudes of the MLP architectural 

and EBP specific parameters (η, OPQR) that led to an optimal MLP model were number 

of hidden layers = two; number of nodes in Hidden Layers 1 and 2: five each; η = 0.5; 

and OPQR = 0.01. The prediction accuracy and the generalization performance of the 

optimal MLP model have been evaluated in terms of CC, RMSE, and MAPE 

magnitudes with respect to the target and MLP-model-predicted °API values for the 

training- and test-set data; these are listed in Table 6.1. 

6.3.3 SVR-Based Modeling 

A rigorous description of the SVR (Vapnik, 1995, 1996, 1997) based 

development of a multiple input – single output model is provided in Chapter 2, 

section 2.3. In the present study, the SVR-based °API-value prediction model was 

also developed by use of the RapidMiner software (RapidMiner 2007). Specifically, 

the model was constructed by use of the ɛ-SVR algorithm; the kernel function used 

was the radial-basis function. The algorithm uses three parameters: regularization 

constant (C), kernel gamma (γ), and radius of the tube (ɛ). These were varied 

systematically to obtain an optimal SVR model possessing high °API-value prediction 

accuracy and generalization capability. The magnitudes of the stated ɛ-SVR 

parameters that led to an optimal SVR model are C = 1.0, γ = 1.0, and ɛ = 0.001. This 

optimal model is derived from 260 support vectors. Table 6.1 lists the CC, RMSE, and 

MAPE magnitudes with respect to the °API-value predictions made by the optimal 

SVR model for both training and test sets. 

6.3.4 Comparison of ºAPI-Value Models 

The large-sized data set consisting of 403 data patterns covers a wide range of 

light, medium, heavy, and very-heavy crude oils. Thus, before comparing the 

performance of various °API prediction models, an exercise was conducted to 

improve the prediction and generalization performance of the linear model (Eq. 6.2) 

proposed by Fan and Buckley (2002). Specifically, the five parameters of Eq. 6.2 
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were refitted by use of the Marquardt (1963) algorithm. The same training and test 

data sets that were used in developing the CI-based models were used in this model 

refitting. The refitted linear model—or the modified Fan and Buckley (2002) 

(modified-FB) model—is given as 

            °Ýt	 < −205.889 + 2.483 : + 2.228 Ý + 2.104 8 + 1.905 Ý*          (6.6) 

The prediction and generalization performance of the three CI-based, FB, and 

modified-FB models are provided in Table 6.1. This performance assessment is made 

in terms of the CC, RMSE, and MAPE values computed by use of the experimental 

and model predicted °API values. For the FB and modified-FB models, these 

statistical quantities were evaluated by use of the same training and test data sets as 

used in the development of the CI-based models. From the CC, RMSE, and MAPE 

values pertaining to the predictions of the modified-FB model (Eq. 6.6), it is observed 

that refitting the five parameters of the original FB model (Eq. 6.2) has indeed 

resulted in a significant improvement in the °API-value-prediction accuracy and -

generalization capability of the original FB model. Specifically, the CC with respect 

to the  training and test data  have improved by 11.2 and 11.25%, respectively, 

whereas the corresponding RMSE and MAPE magnitudes have decreased by 28.9 and 

29%,  and 36.08 and 35.48%, respectively. 

The CC, RMSE, and MAPE magnitudes listed in Table 6.1 also indicate that 

there exists a minor variation in the °API-value prediction accuracies and 

generalization capabilities of the three CI-based models. Here, it is noticed that among 

the three CI-based models, the prediction and generalization performance of the SVR 

model is marginally better than that of the GP- and MLP-based models. The high CC 

magnitude of 0.871 with respect to the °API-value predictions made by the SVR 

model by use of both training- and test-set data clearly indicates that the model 

possesses good prediction accuracy and generalization capability. This observation is 

also supported by the lower RMSE and MAPE magnitudes pertaining to the °API-

value predictions by the SVR-based model compared with the predictions made by 

the GP- and MLP-based models. 
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A comparison of the °API-value-prediction and –generalization performance 

exhibited by the CI-based, FB, and modified-FB models reveals the following. 
• The CC magnitudes corresponding to the predictions made by all three CI-

based models by use of the training- and test set data are significantly higher 

than those for the FB and modified-FB models. 

• The training- and test-set RMSE and MAPE values pertaining to the 

predictions by all three CI-based models are significantly lower than the 

corresponding values for the FB and modified-FB models. 

Table 6.1:  Prediction accuracy of °API values and generalization performance of GP, 

MLP, SVR, FB and modified FB models 

oAPI-value 
Model 

 Training Set Test Set 

		3�� 89:;3�� 9Ýt;3�� 		3�3 89:;3�3 9Ýt;3�3 
GP 0.840 5.436 18.01 0.841 5.544 18.19 

MLP 0.859 5.220 19.37 0.859 5.192      19.59 

SVR 0.871 4.811 13.45 0.871 4.995 13.51 

FB 0.730 7.911 36.00 0.727 8.166 36.18 

Modified-FB 0.820 5.625 23.01 0.818 5.811 23.34 

 

The overall inferences from the results presented in Table 6.1 are that all three 

CI-based models outperform the FB and modified-FB models by a wide margin, and 

that the SVR-based model performs marginally better than the MLP- and GP-based 

models. 

The Steiger (1980) z-test (for more details see Chapter 2, section 2.7) was 

performed to rigorously compare the prediction and generalization performance of the 

three CI-based and the modified-FB models. This test is used to examine whether the 

two CCs corresponding to the predictions of two competing models are significantly 

different. It tests the null hypothesis (yz) that two CC magnitudes are not statistically 

different; that is, 		
Þ = 		
¨, where subscripts A, B, and C, respectively—for the 

present study—denote the experimental °API values and those predicted by models B 

and C. The choice of the modified-FB model for comparison stems from the fact that 

its °API prediction and generalization performance is better than that of the original 
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FB model. The Steiger (1980) z-test has examined the validity of the null hypothesis 

(		
Þ < 		
¨) with respect to the following three pairs of °API values:  

• Experimental/GP-model predicted and experimental/modified-FB model 

predicted 

• Experimental/MLP-model predicted and experimental/modified-FB model 

predicted 

• Experimental/SVR-model predicted and experimental/modified-FB model 

predicted 

The results of the Steiger (1980) z-test are listed in Table 6.2. It is observed in 

this table that in all the three cases, the null hypothesis regarding the equivalence of 

the two CCs—one of which pertains to the predictions of the modified-FB model—

has been uniformly rejected. Hence, it is possible to infer that there is a statistically 

nonsignificant difference in the CC magnitudes of the various model pairs. This 

inference, along with the CC, RMSE, and MAPE values listed in Table 6.1, is clearly 

indicative of the superior prediction and generalization performance of the three CI-

based models compared to the modified-FB model. 

 

Table 6.2:  Results of the Steiger (1980) z-test comparing correlation coefficient (CC) 

values of GP, MLP and SVR models with the modified-FB model  

Model pair (B-C) 
 

		
Þ 

 

		
¨ 

Full example set 

df Z P yz 

GP/Modified-FB 0.840 0.816 401 2.305 2.11×10‒2 Reject 

MLP/Modified-FB 0.857 0.816 401 3.881 1.03×10‒4 Reject 

SVR/Modified-FB 0.870 0.816 401 5.638 1.71×10‒8 Reject 

FB/Modified-FB 0.727 0.816 401 -6.393 1.62×10‒10 Reject 

yz is rejected when p <  5z(where 5z= 0.05). yz is the null hypothesis 		i{=		i|, 
where A denotes experimental ºAPI values of crude oils;  df = degrees of freedom. 

 

The parity plots of the experimental °API values and those predicted by the 

SVR, MLP, GP and the modified-FB models, respectively, are shown in Figures 
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6.2(a) through 6.2(d). It can be clearly seen that the data points in Figures 6.2(a), 

6.2(b), and 6.2(c), showing the predictions of SVR, MLP, and GP models, 

respectively, exhibit a lower scatter compared with the predictions of the modified-FB 

model. This observation also supports the earlier result that the SVR-, MLP-, and GP-

based models are capable of predicting the °API values of crude oils with a better 

accuracy and generalization ability than both the FB and modified-FB models. 

Among the better-performing models, the GP model—because of its compact size and 

ease of computation—is more convenient to use and deploy in practical applications. 

However, when the highest °API-value prediction accuracy is the principal criterion 

of selection, then the SVR model should receive a preferential treatment.  

 

 

Figure 6.2: Parity plots of the experimental API gravity values and those predicted by 

the following models: (a) SVR, (b) MLP, (c) GP and, (d) Modified-FB. 
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A notable feature of the GP-based model (Eq. 6.5) is that it possesses a 

nonlinear structure. It may be noted that by its very character the GP formalism, can 

search and optimize a linear or a nonlinear function and all the associated parameters 

that would fit the example data optimally. The fact that the GP model has searched 

and optimized a nonlinear function for fitting the °API-value data of a large number 

of crude oils is indicative of °API values indeed being dependent nonlinearly on the 

weight percentages of the SARA fractions of crude oils. From the superior prediction 

and generalization performance of the three CI-based nonlinear models, it can be 

inferred that nonlinear equations are better suited than the linear ones for relating the 

°API values to the SARA composition of crude oils. 

 

6.4 CONCLUSION 

The °API value is an important physicochemical characteristic of crude oils and 

used routinely in the determination of their other properties and quality. Various 

models (predominantly linear) have been developed for predicting °API values from 

the molecular composition of crude oils. Because it requires determining the extent of 

a large number of crude oil components, the stated approach becomes tedious, costly, 

and time-consuming. In a practically convenient though rarely used approach, the 

wt% values of the molecular average structures in the crude oil—saturates (S), 

aromatics (A), resins (R), and asphaltenes (Ý*)—have been used as model inputs to 

predict the °API values. A linear model derived from this approach was proposed 

earlier by Fan and Buckley (2002). Scrutiny of an extensive crude-oil database 

suggests that the relationships between the °API values and wt% values of some of 

the SARA constituents could be nonlinear. For capturing these nonlinearities and 

thereby developing models possessing better °API value-prediction accuracies, this 

study uses three CI-based and exclusively data-driven formalism: GP, MLP, and 

SVR. Similar to the linear model, these formalisms use the SARA composition of a 

crude oil for the prediction of its °API value. Among three CI-based methods, GP 

possesses several novel and attractive characteristics, but it remains a much-less-used 

data-driven modeling technique when compared with ANNs and SVR. The best-

fitting GP based °API-value prediction model developed in this study possesses a 

nonlinear form. A comparison of the prediction and generalization performance of the 
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three CI-based models indicates that the SVR strategy has yielded an overall best-

performing model. It has been also found that each of the three CI-based nonlinear 

models possesses a better °API-value prediction accuracy and generalization 

capability than not only the original linear FB model but also its improved linear 

version (the modified-FB model). This result clearly indicates that the nonlinear 

models using weight percentages of the SARA constituents are better-suited than the 

corresponding linear ones for predicting the °API values of crude oils. Other 

noteworthy characteristics of the CI-based models developed in this study are as 

follows.  

• A large number of SARA-constituent data and the corresponding °API values 

pertaining to the light, medium, heavy, and very heavy crude oils have been 

used in the model development. 

• The previously stated SARA analyses were performed by use of various 

methods, such as TLC-FID, ASTM, HPLC, GC-MS, and open-column 

chromatography. 

These characteristics have imparted a wider applicability to the CI-based 

models. Because of their significantly higher prediction accuracies, these models 

possess a potential to be the preferred ones for predicting the °API value of crude oils. 

 

NOMENCLATURE 

A wt% of aromatics 

Ý�  scaled A 

ÝR  wt% of asphaltenes 

Ý�*   scaled ÝR 

6R  number of patterns in the example data set; number input/output patterns in 
the training/test set for GP 
 6RR   number of candidate solutions in a population for  GP 

R wt% of resins 

8Ï  scaled R 
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S wt% of saturates 

:�  scaled  S 

��  desired (target) output value corresponding to the N34-input data pattern in 
the training/test data set 
 ���,
  magnitude of the model-predicted °API value when N34 -input pattern is used 

to compute the output of the 234-candidate solution 
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Appendix 6.A: ºAPI-Value Models Data 

Sr. 
No. 

Saturates 
(wt %) 

Aromatics 
(wt %) 

Resins 
(wt%) 

Asphaltenes 
(wt %) 

ºAPI 
values 

Reference 

1 20.01 11.36 36.26 32.37 10.3 Sanchez - Minero et al. (2013) 

2 25.38 17.04 31.41 26.17 13.1 Sanchez - Minero et al. (2013) 

3 32.1 26.34 25.82 15.74 21.2 Sanchez - Minero et al. (2013) 

4 43.15 29.95 18.2 8.7 27.1 Sanchez - Minero et al. (2013) 

5 51.62 31.35 14.25 2.78 32.8 Sanchez - Minero et al. (2013) 

6 27.9 31.7 32.1 7.3 10.5 Molina et al. (2010) 

7 20.5 39.2 36.5 3.6 10.7 Molina et al. (2010) 

8 35.8 30.3 32.1 1.8 13.8 Molina et al. (2010) 

9 23 22 35 18 10.4 Hinkle et al. (2010) 

10 38.4 29.8 25.8 4.8 16.5 Wang and Buckley (2003)  

11 64.1 14.5 17.9 2.7 20.7 Wang and Buckley (2003) 

12 49.5 21.5 25.6 2.8 22.6 Wang and Buckley (2003)  

13 67.3 14.9 15.1 2.3 29.2 Wang and Buckley (2003) 

14 70.6 15 12.9 1.3 31 Wang and Buckley (2003)  

15 70.6 16.3 11.4 1.9 31.1 Wang and Buckley (2003) 

16 62.8 15.8 18.7 2.6 31.2 Wang and Buckley (2003)  

17 63.4 16.5 17.4 2.7 31.6 Wang and Buckley (2003) 

18 65.2 18.3 13.9 1.3 37.2 Wang and Buckley (2003)  

19 59.4 24.9 10.2 6.5 41.3 Wang and Buckley (2003) 

20 46 25 15 12 13.5 Hernandez et al. (1983) 

21 37 31 12 18 14.3 Hernandez et al. (1983)  

22 11 12 64 15 15 Cendejas et al. (2013) 

23 27 15 47 11 21 Cendejas et al. (2013) 

24 38 15 42 5 30 Cendejas et al. (2013) 

25 42.72 38.47 17.86 0.31 33.39 
Alcazar-Vara and Buenrostro –
Gonzalez (2011) 

26 46.81 37.13 15.63 0.01 38.27 
Alcazar-Vara and Buenrostro –
Gonzalez (2011) 

27 44.03 38.32 16.65 0.01 41.35 
Alcazar-Vara and Buenrostro –
Gonzalez (2011) 
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28 30.1 31.3 13.6 25 18 Kumar et al. (2005) 

29 48.1 28.8 6.5 16.5 28 Kumar et al. (2005) 

30 32.3 19.4 37.1 11.2 22.6 Nasr-El-Din and Taylor (1992) 

31 36.77 46.72 6.12 10.39 19.85 Kord and Ayatollahi (2012) 

32 43.67 52.09 0.49 3.75 20.75 Kord and Ayatollahi (2012) 

33 46.12 37.24 7.57 9.07 20.93 Kord and Ayatollahi (2012) 

34 38.99 50.59 6.17 4.25 22.71 Kord and Ayatollahi (2012) 

35 42.68 40.69 7.63 9 24.46 Kord and Ayatollahi (2012) 

36 62.4 17.2 6.2 14.2 37.2 Tang et al. (2005) 

37 39.6 9.1 44.5 6.8 12.1 
Subramaniam and Hanson 
(1998) 

38 35.7 7 54.5 2.9 12.9 
Subramaniam and Hanson 
(1998)  

39 26.2 41.5 21.9 10.2 12 Hannisdal et al. (2006) 

40 19 45 20 16 19 Freitas et al. (2009) 

41 19 32 38 12 19 Islas- Flores et al. (2006) 

42 55 30 13 2 36 Islas- Flores et al. (2006) 

43 26.96 42.65 15.03 15.36 10.2 Rose et al. (2001) 

44 52.49 41.04 5.48 0.99 34.24 Nokandeh et al. (2012) 

45 29.53 54.52 12.04 3.91 23 Kazempour et al. (2013) 

46 41.81 44.15 10.8 3.24 25.7 Kazempour et al. (2013)  

47 18.17 28.97 41.52 11.31 21 Chávez-Miyauchi et al. (2013) 

48 41.8 28.7 28.4 1.5 28.4 Alcazar-Vara et al. (2012)  

49 41.7 34.2 21.8 2.3 36 Alcazar-Vara et al. (2012) 

50 42 43 8 7 23.8 Amin et al. (2011) 

51 53.48 34.45 8.5 5.3 31 Amin et al. (2011) 

52 16.8 44.9 24.8 13.5 10.2 Clarke and Pruden (1997) 

53 43 50 7 0 10.1 World Data Base (2005) 

54 25 35 22 18 10.9 World Data Base (2005) 

55 54 14 15 17 11 World Data Base (2005) 

56 26 29 22 22 11.2 World Data Base (2005) 

57 25 47 17 11 11.4 World Data Base (2005) 

58 43 24 11 22 11.4 World Data Base (2005) 
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59 32 32 17 19 11.6 World Data Base (2005) 

60 21 35 24 21 11.7 World Data Base (2005) 

61 26 52 12 10 11.9 World Data Base (2005) 

62 24 55 15 6 12.3 World Data Base (2005) 

63 30 62 7 1 12.3 World Data Base (2005) 

64 19 35 23 22 13.2 World Data Base (2005) 

65 28 39 30 3 13.6 World Data Base (2005) 

66 21 39 31 7 13.7 World Data Base (2005) 

67 66 24 8 2 14 World Data Base (2005) 

68 32 41 24 3 14.3 World Data Base (2005) 

69 29 51 11 10 14.7 World Data Base (2005) 

70 24 43 20 12 14.8 World Data Base (2005) 

71 23 0 76 1 15.2 World Data Base (2005) 

72 70 23 6 1 16 World Data Base (2005) 

73 53 27 10 10 16.4 World Data Base (2005) 

74 80 19 1 0 16.8 World Data Base (2005) 

75 32 32 17 19 18.2 World Data Base (2005) 

76 34 31 20 15 18.3 World Data Base (2005) 

77 38 29 20 13 18.8 World Data Base (2005) 

78 38 40 14 8 19.5 World Data Base (2005) 

79 33 31 24 12 19.6 World Data Base (2005) 

80 19 63 12 6 19.7 World Data Base (2005) 

81 34 32 21 13 19.8 World Data Base (2005) 

82 46 30 13 10 20.3 World Data Base (2005) 

83 39 35 21 5 20.4 World Data Base (2005) 

84 39 28 21 12 20.6 World Data Base (2005) 

85 68 22 4 6 20.7 World Data Base (2005) 

86 38 39 8 16 21.3 World Data Base (2005) 

87 36 25 23 16 21.4 World Data Base (2005) 

88 39 34 11 16 21.8 World Data Base (2005) 

89 36 22 29 13 22.1 World Data Base (2005) 

90 38 61 1 0 22.4 World Data Base (2005) 
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91 38 38 14 11 22.6 World Data Base (2005) 

92 44 30 17 9 22.9 World Data Base (2005) 

93 53 38 7 2 23.2 World Data Base (2005) 

94 43 37 13 7 23.4 World Data Base (2005) 

95 48 36 14 3 23.7 World Data Base (2005) 

96 34 64 2 0 24.3 World Data Base (2005) 

97 87 10 2 2 24.8 World Data Base (2005) 

98 53 37 6 4 25 World Data Base (2005) 

99 59 34 6 0 25.3 World Data Base (2005) 

100 66 23 4 6 25.3 World Data Base (2005) 

101 48 30 17 6 25.6 World Data Base (2005) 

102 48 32 9 12 25.9 World Data Base (2005) 

103 68 23 7 2 26.1 World Data Base (2005) 

104 70 25 4 0 26.2 World Data Base (2005) 

105 48 31 13 8 26.2 World Data Base (2005) 

106 61 26 6 8 26.3 World Data Base (2005) 

107 60 24 8 8 28.8 World Data Base (2005) 

108 69 28 3 0 27.1 World Data Base (2005) 

109 56 31 11 3 27.3 World Data Base (2005) 

110 90 9 0 0 27.4 World Data Base (2005) 

111 47 35 12 6 27.5 World Data Base (2005) 

112 45 40 11 3 27.6 World Data Base (2005) 

113 72 25 2 0 27.8 World Data Base (2005) 

114 51 39 9 1 28.4 World Data Base (2005) 

115 53 34 10 4 28.5 World Data Base (2005) 

116 55 35 9 1 28.6 World Data Base (2005) 

117 88 11 1 0 28.7 World Data Base (2005) 

118 55 31 10 4 29.4 World Data Base (2005) 

119 54 32 7 6 29.5 World Data Base (2005) 

120 53 36 10 1 29.5 World Data Base (2005) 

121 54 32 8 6 29.8 World Data Base (2005) 

122 95 3 2 0 29.8 World Data Base (2005) 
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123 52 35 9 5 29.9 World Data Base (2005) 

124 53 30 11 6 30 World Data Base (2005) 

125 92 7 0 0 30.1 World Data Base (2005) 

126 51 36 9 5 30.2 World Data Base (2005) 

127 80 18 2 0 30.3 World Data Base (2005) 

128 57 27 9 7 30.3 World Data Base (2005) 

129 84 13 2 0 30.4 World Data Base (2005) 

130 51 34 9 5 30.6 World Data Base (2005) 

131 86 12 1 0 30.7 World Data Base (2005) 

132 64 22 9 5 30.7 World Data Base (2005) 

133 60 35 5 1 31 World Data Base (2005) 

134 62 25 9 4 31 World Data Base (2005) 

135 74 12 9 6 31 World Data Base (2005) 

136 85 13 1 0 31.1 World Data Base (2005) 

137 65 28 6 1 31.2 World Data Base (2005) 

138 66 26 6 2 31.6 World Data Base (2005) 

139 86 12 2 0 31.7 World Data Base (2005) 

140 51 39 6 3 31.8 World Data Base (2005) 

141 3 97 0 0 31.8 World Data Base (2005) 

142 60 28 6 5 32 World Data Base (2005) 

143 64 27 7 2 32 World Data Base (2005) 

144 61 37 2 0 32.3 World Data Base (2005) 

145 61 32 6 1 32.3 World Data Base (2005) 

146 56 32 8 5 32.4 World Data Base (2005) 

147 91 7 2 0 32.5 World Data Base (2005) 

148 82 17 1 0 32.6 World Data Base (2005) 

149 65 29 5 1 32.8 World Data Base (2005) 

150 62 26 7 5 32.8 World Data Base (2005) 

151 70 15 6 8 32.9 World Data Base (2005) 

152 73 21 5 1 33 World Data Base (2005) 

153 67 22 8 4 33.4 World Data Base (2005) 

154 73 20 4 3 33.4 World Data Base (2005) 
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155 57 42 0 0 33.7 World Data Base (2005) 

156 71 21 5 4 33.7 World Data Base (2005) 

157 67 25 7 1 33.8 World Data Base (2005) 

158 81 14 2 4 33.8 World Data Base (2005) 

159 65 25 8 2 34.4 World Data Base (2005) 

160 73 21 4 1 34.5 World Data Base (2005) 

161 82 13 2 2 34.8 World Data Base (2005) 

162 78 16 5 0 35.1 World Data Base (2005) 

163 71 25 4 0 35.2 World Data Base (2005) 

164 62 31 6 2 35.7 World Data Base (2005) 

165 71 20 8 1 35.8 World Data Base (2005) 

166 83 13 2 3 36 World Data Base (2005) 

167 65 27 5 3 36.1 World Data Base (2005) 

168 61 30 8 2 36.1 World Data Base (2005) 

169 66 26 6 1 36.4 World Data Base (2005) 

170 65 25 6 5 36.5 World Data Base (2005) 

171 64 32 4 0 36.7 World Data Base (2005) 

172 70 22 6 2 36.7 World Data Base (2005) 

173 78 18 3 1 36.8 World Data Base (2005) 

174 81 16 3 0 36.8 World Data Base (2005) 

175 84 14 2 1 36.9 World Data Base (2005) 

176 84 13 1 2 37 World Data Base (2005) 

177 79 15 4 3 37.1 World Data Base (2005) 

178 76 22 2 0 37.2 World Data Base (2005) 

179 76 23 1 0 37.6 World Data Base (2005) 

180 72 23 4 1 37.8 World Data Base (2005) 

181 68 26 6 2 37.8 World Data Base (2005) 

182 80 18 3 0 38 World Data Base (2005) 

183 73 22 4 1 38.1 World Data Base (2005) 

184 76 20 3 1 38.3 World Data Base (2005) 

185 85 11 2 1 38.4 World Data Base (2005) 

186 62 32 5 2 38.6 World Data Base (2005) 
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187 79 15 6 0 38.7 World Data Base (2005) 

188 74 24 1 0 38.8 World Data Base (2005) 

189 72 22 4 2 38.9 World Data Base (2005) 

190 74 21 3 1 39 World Data Base (2005) 

191 72 22 5 1 39 World Data Base (2005) 

192 68 25 7 1 39.2 World Data Base (2005) 

193 69 24 6 1 39.4 World Data Base (2005) 

194 88 11 0 1 39.9 World Data Base (2005) 

195 81 17 1 1 40.5 World Data Base (2005) 

196 94 5 0 0 41.3 World Data Base (2005) 

197 94 6 0 0 41.8 World Data Base (2005) 

198 81 19 0 0 42.9 World Data Base (2005) 

199 76 21 3 1 43.6 World Data Base (2005) 

200 19 14 46 20 10 Hinkle et al. (2008) 

201 35.7 24.6 32.4 7.3 13 Lammoglia and Filho (2011) 

202 42.5 33.1 22.3 2.12 14.4 Lammoglia and Filho (2011) 

203 40.2 33.3 23.4 3.1 19.4 Lammoglia and Filho (2011) 

204 44.9 32.1 20.6 2.4 20 Lammoglia and Filho (2011) 

205 49.6 28.6 20 1.76 21.3 Lammoglia and Filho (2011) 

206 72.7 13.9 13.4 0.5 27.4 Lammoglia and Filho (2011) 

207 68.1 17.6 14.3 0.5 27.7 Lammoglia and Filho (2011) 

208 55.7 24.3 19.1 0.9 28.1 Lammoglia and Filho (2011) 

209 50.4 28.1 19.7 1.8 29.4 Lammoglia and Filho (2011) 

210 81.2 6 12.8 0.5 36.2 Lammoglia and Filho (2011) 

211 79.2 13.4 7.4 0.5 40.2 Lammoglia and Filho (2011) 

212 85.9 14.1 0.1 0.1 47.2 Lammoglia and Filho (2011) 

213 20.74 39.2 24.81 15.25 10.71 Hsu and Robinson (2007) 

214 15.83 36.74 18.61 28.82 12 Ancheyta  (2013) 

215 47.9 36.5 15.2 0.4 23.314 Ancheyta  (2013) 

216 48 37.5 14.2 0.3 22.98 Ancheyta  (2013) 

217 41.2 36.4 20.4 2.1 22.98 Ancheyta  (2013) 

218 82.7 13.4 3.9 0 37.2 Ancheyta  (2013) 
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219 62.7 23.6 12.2 1.5 36.2 Ancheyta  (2013) 

220 35.3 36.8 24.5 3.5 18.23 Ancheyta  (2013) 

221 41.8 38.8 18.7 0.6 23.3 Ancheyta  (2013) 

222 50.9 34.6 14 0.5 28.4 Ancheyta  (2013) 

223 40.6 32.1 20.6 6.6 27.8 Ancheyta  (2013) 

224 79.8 16.5 3.6 0.1 46.3 Ancheyta  (2013) 

225 57.3 27.9 13.5 1.3 30.6 Ancheyta  (2013) 

226 60.6 30 9.2 0.2 33.62 Ancheyta  (2013) 

227 42.4 36.1 20.5 1 22.1 Ancheyta  (2013) 

228 65 30.7 4.3 0 46.3 Ancheyta  (2013) 

229 50.3 31.4 17.5 0.7 26.1 Ancheyta  (2013) 

230 55.4 28.3 12.9 3.4 37 Ancheyta  (2013) 

231 54.5 28.8 14.9 1.8 30.6 Ancheyta  (2013) 

232 24.4 43.4 19.9 12.4 19.2 Ancheyta  (2013) 

233 45 29 14 12 26.12 Kök et al. (1998)  

234 18 31 22 29 14.95 Kök et al. (1998)  

235 69 18 13 0 36 Al-Saffar et al. (2001) 

236 43 40 13 6 25.1 Pantoja et al. (2011) 

237 50 30 13 5 26.2 Pantoja et al. (2011) 

238 51 30 13 5 26.4 Pantoja et al. (2011) 

239 62 31 7 2 32.2 Pantoja et al. (2011) 

240 61 29 8 2 32.2 Pantoja et al. (2011) 

241 63 27 7 3 34.5 Pantoja et al. (2011) 

242 18.5 31.9 37.9 11.7 19 Islas-Flores et al. (2005) 

243 38.44 14.59 41.44 5.53 29.59 Castro and Vazquez  (2009)  

244 26.53 14.74 47.6 11.13 21.27 Castro and Vazquez  (2009)  

245 10.49 9 64.12 16.39 15.82 Castro and Vazquez  (2009)  

246 15 19.11 46.78 19.11 9.17 Castro and Vazquez  (2009)  

247 56.2 25.7 17.1 1 28.4 Khalil de Oliveira et al. (2012) 

248 51.1 30.9 16.6 1.4 29.8 Khalil de Oliveira et al. (2012) 

249 29 42.2 15.8 13 11 Tharanivasan et al. (2009) 

250 17.8 46.2 18.4 17.3 7 Tharanivasan et al. (2009) 
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251 18.2 42.7 21.5 17.6 8 Tharanivasan et al. (2009) 

252 50.3 30.5 14.6 4 20 Tharanivasan et al. (2009) 

253 17.3 39.7 25.8 16.9 9 Tharanivasan et al. (2009) 

254 61.1 29.6 5.3 4 32 Tharanivasan et al. (2009) 

255 60.9 36.6 2.4 0 22 Tharanivasan et al. (2009) 

256 16.43 34.91 41.12 5.61 8.89 Zhang et al. (2013) 

257 55.1 38.8 3.6 2.8 44.45 Flego and Zannoni  (2012)  

258 57.8 38 2.9 1.8 43.11 Flego and Zannoni  (2012) 

259 12.3 78.2 8.1 2.9 50.21 Flego and Zannoni  (2012) 

260 61.2 34.7 2.8 1.7 41.53 Flego and Zannoni  (2012) 

261 32.3 41.8 20.5 5.8 33.94 Flego and Zannoni  (2012) 

262 46.3 49.4 4.8 0 45.38 Flego and Zannoni  (2012) 

263 53.5 35.8 9.3 1.4 38.3 Flego and Zannoni  (2012) 

264 63.8 7.8 4.4 24.1 35.88 Flego and Zannoni  (2012) 

265 11.6 48.3 23.2 17 19.34 Flego and Zannoni  (2012) 

266 17.8 68.9 9.8 3.6 33.6 Flego and Zannoni  (2012) 

267 25.1 41 16.3 17.8 24.7 Flego and Zannoni  (2012) 

268 27.1 50.2 15.8 7 31.35 Flego and Zannoni  (2012) 

269 9.6 30.5 40.1 20 12.7 Flego and Zannoni  (2012) 

270 7.1 22.3 38 32 13.3 Flego and Zannoni  (2012) 

271 15.6 45.7 19.3 19.4 21.1 Flego and Zannoni  (2012) 

272 47.9 29.2 18 6 40.7 Flego and Zannoni  (2012) 

273 43.4 35.8 14.5 6.8 35.7 Flego and Zannoni  (2012) 

274 50.4 31.6 15.8 3.2 42.9 Flego and Zannoni  (2012) 

275 31.3 44.6 18.9 5.5 33.7 Flego and Zannoni  (2012) 

276 62.2 27.3 7.3 3.7 44.1 Flego and Zannoni  (2012) 

277 57.9 35.1 4.9 2.4 43.8 Flego and Zannoni  (2012) 

278 46.4 30.5 19.4 4.4 32.2 Flego and Zannoni  (2012) 

279 28.1 50.3 16.8 5 29.4 Flego and Zannoni  (2012) 

280 49.1 31.7 17.6 2.3 26.5 Flego and Zannoni  (2012) 

281 15.2 33.4 35.1 16.3 10.9 Flego and Zannoni  (2012) 

282 65.13 16.86 4.13 13.88 38 Gui et al. (2010) 
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283 34.22 38.82 19.96 6.58 18.89 
Hoshyargar and Ashrafizadeh 
(2013)  

284 18.8 51.9 14.6 14.3 10 Poindexter and Marsh (2009) 

285 10.7 57.4 24.1 7.9 10.5 Poindexter and Marsh (2009) 

286 14.6 53.1 25 8.3 11.1 Poindexter and Marsh (2009) 

287 68.3 17.1 9.4 3.2 31.2 Abudu and Goual (2008) 

288 43.21 35.3 16.68 4.99 22.4 Rogel et al. (2003) 

289 45.31 33.29 17.55 3.85 22.2 Rogel et al. (2003) 

290 49.43 37.62 8.61 4.43 25.7 Rogel et al. (2003) 

291 49.68 37.78 9.28 3.34 26.8 Rogel et al. (2003) 

292 48.61 34.35 11.65 5.38 22.8 Rogel et al. (2003) 

293 48.83 37.4 9.51 4.26 25.6 Rogel et al. (2003) 

294 54.54 35.35 8.23 1.87 25 Rogel et al. (2003) 

295 55.41 36.77 6.89 0.94 26.3 Rogel et al. (2003) 

296 49.41 38.23 10.44 1.92 27.2 Rogel et al. (2003) 

297 39.62 38.71 16.83 4.93 18.3 Rogel et al. (2003) 

298 42.64 36.35 12.96 7.74 24.1 Rogel et al. (2003) 

299 49.53 41.33 2.54 6.15 26.1 Rogel et al. (2003) 

300 51.79 29.93 15.83 2.46 26.7 Rogel et al. (2003) 

301 54.73 30.41 12.78 2.08 25.1 Rogel et al. (2003) 

302 32.45 41.5 21.12 4.93 16.3 Rogel et al. (2003) 

303 26.13 45.3 22.57 6.01 14 Rogel et al. (2003) 

304 47.4 21.7 25.5 5.4 22.8 Cunha et al. (2008) 

305 51.2 24.2 23.1 1.5 26.6 Khalil de Oliveira et al. (2012) 

306 54.5 23 22 0.5 27.4 Khalil de Oliveira et al. (2012) 

307 57.1 24.5 18 0.4 27.8 Khalil de Oliveira et al. (2012) 

308 53.8 22 23.7 0.5 28.3 Khalil de Oliveira et al. (2012) 

309 57.7 24.2 17.4 0.7 28.8 Khalil de Oliveira et al. (2012) 

310 52.7 33.6 12.6 1.1 29 Khalil de Oliveira et al. (2012) 

311 56.6 24.4 19 0.5 29.5 Khalil de Oliveira et al. (2012) 

312 61.3 24.7 13.9 0.5 30.6 Khalil de Oliveira et al. (2012) 

313 57.2 26.2 14.7 2 31.1 Khalil de Oliveira et al. (2012) 
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314 66.7 20.1 12.8 0.4 33.9 Khalil de Oliveira et al. (2012) 

315 11.7 32 41.6 14.7 7.5 Angle and Hua (2011) 

316 14.1 37.3 37.2 11.4 9 Poteau et al. (2005) 

317 15 38 35 12 8 Acevedo et al. (2004) 

318 17 44 30 10 14 Acevedo et al. (2004) 

319 42 34 18 7 21 Acevedo et al. (2004) 

320 41 45 12 2 21 Acevedo et al. (2004) 

321 40.3 29 19.2 9.5 15.8 Maninpey et al. (2010) 

322 12 37 33 17 9 Dalmazzone et al. (2012)  

323 52.9 29.7 13.2 4 29.29 Panuganti et al. (2011)  

324 66.26 25.59 5.35 2.8 41.6 Panuganti et al. (2011) 

325 19 25 43 13 9 Marcano et al. (2011) 

326 12 36 38 14 10.3 Marcano et al. (2011) 

327 55 28 13 4 23.7 Marcano et al. (2011) 

328 19 28 42 11 8 Marcano et al. (2011) 

329 60 14 24 2 24.3 Marcano et al. (2011) 

330 52 26 16 6 30.3 Marcano et al. (2011) 

331 32.3 38.25 21.6 6.04 18.36 Khansari et al. (2012) 

332 20 43 27 10 12.9 Linan et al. (2010) 

333 17 41 29 13 11.6 Linan et al. (2010) 

334 19 42 28 11 12.9 Linan et al. (2010) 

335 61 20 19 0.59 27 Ferno et al. (2010)  

336 25 33 29 13 9 Ocanto et al. (2009)  

337 30 26 32 12 15 Ocanto et al. (2009) 

338 10 23 48 19 8 Ocanto et al. (2009) 

339 25 28 35 11 15 Ocanto et al. (2009) 

340 11 19 57 13 8 Ocanto et al. (2009) 

341 25 24 36 15 20 Ocanto et al. (2009) 

342 21 27 37 15 21 Ocanto et al. (2009) 

343 35 33 28 4 28 Ocanto et al. (2009) 

344 44 25 21 10 20 Ocanto et al. (2009) 

345 22 30 44 4 21 Ocanto et al. (2009) 
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346 35 24 32 9 21 Ocanto et al. (2009) 

347 40.41 42.06 12.21 5.32 27.5 Juyal et al. (2012) 

348 59.56 32.76 6.95 0.73 35 Juyal et al. (2012) 

349 57.4 30.8 10.4 1.4 32 Gonzalez et al. (2005) 

350 55.8 23.9 17.5 2.7 30 Kraiwattanawong et al. (2009) 

351 59.6 26.5 10.1 3.8 30 Kraiwattanawong et al. (2009) 

352 49.5 28.4 12.4 9.7 27 Kraiwattanawong et al. (2009) 

353 45.3 26.8 24.9 3.1 22.4 Rocha et al. (2013) 

354 52 30 12 6 26 Juyal et al. (2009) 

355 30.1 42.1 13.36 13.5 29.17 Kord et al. (2012) 

356 32.61 43.48 7.61 16.3 20.29 Jafari Behbahani et al. (2012) 

357 22.6 33.6 32.9 10.8 8.1 Cinar et al. (2011) 

358 44.65 34.55 17.9 2.86 29.3 Mendoza de la Cruz et al. (2009) 

359 44.14 40.13 12.79 2.94 32.03 Gonzalez et al. (2007) 

360 33 14 51 0 16.2 Abivin and Taylor (2012) 

361 29 26 39 7 10.2 Abivin and Taylor (2012) 

362 28 29 37 6 10.7 Abivin and Taylor (2012) 

363 29 19 35 17 13.2 Abivin and Taylor (2012) 

364 22 24 45 10 7.4 Abivin and Taylor (2012) 

365 33 22 40 4 13.5 Abivin and Taylor (2012) 

366 38 20 37 4 15.6 Abivin and Taylor (2012) 

367 45 18 26 11 11.4 Abivin and Taylor (2012) 

368 29 23 32 15 10.6 Abivin and Taylor (2012) 

369 34 24 27 13 15.5 Abivin and Taylor (2012) 

370 22 20 48 11 9 Abivin and Taylor (2012) 

371 32 24 34 9 11.4 Abivin and Taylor (2012) 

372 54.8 23.57 21.21 0.41 35.3 Mena-Cervantes et al. (2011) 

373 10.9 61.5 18.1 9.5 6 Chang et al. (2003) 

374 8.3 35.6 45.4 10.7 5.9 Chang et al. (2003) 

375 12.4 45.1 35.9 4.7 9.11 Marques et al. (2011) 

376 23 21.1 38.8 17.1 10.5 Angle et al. (2005) 

377 21 19 44 16 11 Angle et al. (2005) 
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378 16.1 48.5 16.8 18.6 6.4 Fadaei et al. (2011) 

379 58.4 26.2 14.61 0.79 29.9 Pacheco et al. (2011) 

380 30.27 45.05 18.7 5.99 11.42 Long et al. (2011) 

381 6.1 60.3 23.5 10.1 6.1 Fathi and Pereira-Almao (2011) 

382 9.4 63.1 13.3 14.1 6.7 Fathi and Pereira-Almao (2011) 

383 9.2 62.8 13.7 14.2 6.5 Fathi and Pereira-Almao (2011) 

384 9.4 61.9 13.6 15.1 6.9 Fathi and Pereira-Almao (2011) 

385 9.3 62.6 14.1 13.9 6.9 Fathi and Pereira-Almao (2011) 

386 9.8 64.6 12.5 13.2 7.2 Fathi and Pereira-Almao (2011) 

387 9.2 64.3 12.2 14.3 7.1 Fathi and Pereira-Almao (2011) 

388 10.3 66.4 10.4 12.9 7.3 Fathi and Pereira-Almao (2011) 

389 9.8 65.6 11.2 13.3 7.2 Fathi and Pereira-Almao (2011) 

390 30.2 24.8 40.1 3.6 13.5 Bukka et al. (1992)  

391 27.91 60.64 6.35 5.3 12.89 Bahzad et al. (2010) 

392 20.35 62.92 6.88 9.85 9.58 Bahzad et al. (2010)  

393 16.3 39.8 26.4 17.5 8.05 Peramanu et al. (2001) 

394 19.4 38.1 26.7 15.8 10.7 Peramanu et al. (2001) 

395 23.1 41.7 20.4 14.8 12.5 Peramanu et al. (2001) 

396 20.8 41.1 22.1 16 11.1 Peramanu et al. (2001) 

397 36.9 37.9 19.4 5.8 22.4 Leon et al. (2002) 

398 32.3 42.2 19.8 5.8 18.3 Leon et al. (2002) 

399 43.6 35.5 14.3 6.6 22.8 Leon et al. (2002) 

400 44.3 38.9 11.6 5.2 25.6 Leon et al. (2002) 

401 45.6 34.2 17 3.2 25 Leon et al. (2002) 

402 51.9 38.9 8.1 1.1 26.3 Leon et al. (2002) 

403 68.3 11.6 18.8 1.3 39 Mohammadi et al. (2012) 
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Chapter 7     

The Removal of Arsenite [As(III)] and Arsenate [As(V)] Ions from 
Wastewater Using TFA and TAFA Resins: Computational 
Intelligence Based Reaction Modeling and Optimization  

 
ABSTRACT 

Being significantly toxic, removal of arsenic forms an important 

ingredient of the drinking- and waste-water treatment. Tannin is a 

polyphenol-rich substrate that adsorptively binds to the multivalent 

metal ions. In this study, tannin-formaldehyde (TFA) and tannin-

aniline-formaldehyde (TAFA) resins were synthesized and successfully 

used for an adsorptive removal of arsenite [As(III )] and arsenate 

[As(V)] ions from the contaminated water. Next, a computational 

intelligence (CI) based hybrid strategy was used to model and optimize 

the resin-based adsorption of As(III ) and As(V) ions for securing 

optimal reaction conditions. This strategy first uses an exclusively 

reaction data driven modeling method, namely, genetic programming 

(GP) to predict the extent (%) of As(III )/As(V) adsorbed on TFA and 

TAFA resins. Next, the input space of the GP-based models 

representing reaction condition variables/parameters was optimized 

using genetic algorithm (GA) method; the objective of this optimization 

was to maximize the adsorption of As(III ) and As(V) ions on the two 

resins. Finally, the sets of optimal reaction conditions given by GP-GA 

hybrid modeling-optimization method were verified experimentally, 

which indicate that the optimized conditions have lead to 0.3% and 

1.3% increase in the adsorption of As(III ) and As(V) ions on TFA 

resin. More significantly, the optimized conditions have increased the 

adsorption of As(III ) and As(V) on TAFA resin by 3.02% and 12.77%, 

respectively. The GP-GA based strategy introduced here can be 

gainfully utilized for modeling and optimization of similar type of 

contaminant-removal processes. 
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7.1 INTRODUCTION  

Presence of toxic materials is a serious problem requiring an effective solution 

during the management and treatment of water and wastewater. Globally, one of the 

most toxic metals, namely, arsenic forms a common contaminant of the ground water, 

which is an important source of the drinking water (Ng et al., 2003). Depending upon 

arsenic’s oxidation state, its toxicity varies significantly. In the non-processed natural 

drinking water, it is mostly found as arsenite [As(III)] and arsenate [As(V)] (Kandu 

and Gupta, 2006). Among these, As(III) is sixty times more toxic than As(V) (Kandu 

et al., 2004). According to World Health Organization (WHO), and United States’ 

Environment Protection Agency (USEPA), the maximum allowed concentration of 

arsenic in the drinking water is 0.01 mg/L (WHO, 2004; USEPA, 1999). However, in 

most regions of the world arsenic concentration exceeds that limit by many folds. 

Mohan and Pittman (2007) have critically reviewed removal of arsenic from water 

and wastewater using various adsorbents.  

Tannins, which are available widely, can be effective agents for the water 

treatment in developing countries. These occur in nature as a biomass containing 

multiple hydroxyl groups and exhibiting a specific affinity towards metal ions. Thus, 

tannins are potentially effective and efficient adsorbents for the recovery of metal 

ions. Their disadvantage, however, is that being water-soluble; they can get easily 

leached by water when used directly as an adsorbent for the recovery of metals from 

the aqueous systems. A number of attempts involving immobilization of tannins has 

been made to overcome the drawback alluded to above (Liao et al., 2004). Makeswari 

et al. (2014) synthesized a novel tannin gel adsorbent from the leaves of Ricinus 

Communis for removing chromium(VI) ions. A bio-adsorbent from the tannin 

immobilized collagen/cellulose has been synthesized by Zhang et al. (2015) for the 

adsorption of lead(II). Shirato and Kamei (1994) have patented synthesis of insoluble 

tannin; it is prepared by dissolving a hydrolysable tannin powder in aqueous ammonia 

and the resulting mixture is treated with a formaldehyde solution to form a 

precipitate. This is then subjected to the treatment of a mineral acid. The resulting 

polymer is used for the processing of waste liquids and recovery of heavy metals. A 

method for the preparation of an insoluble tannin adsorbent and the adsorption of 

nuclear fuel material, and iron ions thereof, has also been patented (Shirato and 

Kamei, 1994). 



203 

 

In an earlier study, Mulani et al. (2014) synthesized and characterized tannin-

formaldehyde and tannin-aniline-formaldehyde resins; they also studied the 

adsorption kinetics of arsenic using the said two resins. Specifically, Mulani et al. 

(2014) investigated the effect of influential parameters such as pH and contact time 

on the kinetics of arsenic adsorption and desorption. The objective of the present 

study is twofold: (a) development of models predicting the extent of As(III)/As(V) 

adsorption on the tannin-formaldehyde (TFA) and tannin-aniline-formaldehyde 

(TAFA) resins, and (b) obtaining the optimal resin composition and  reaction pH 

magnitudes leading to maximum adsorption of the stated metalloid ions.  

In order to optimize the resin-based As(III)/As(V) removal reactions and 

thereby obtain the conditions resulting in the maximum adsorption of As(III) and 

As(V) ions, it is necessary to develop the respective reaction models. There exist two 

principal methods, namely, phenomenological and empirical, for modeling the stated 

adsorption reactions. Both these approaches possess significant difficulties, which are 

detailed in Chapter 1 (section 1.3). The difficulties encountered in the 

phenomenological and empirical (essentially regression-based) reaction modeling 

requires exploration of alternative nonlinear reaction modeling strategies. 

Artificial neural networks (ANNs) (see, for example, Bishop, 1994; Zurada, 

1992; Tambe et al., 1996) and support vector regression (SVR) (Vapnik, 1995; Zaid, 

2012) are  computational intelligence (CI) based exclusively data-driven nonlinear 

modeling formalisms; these have been used widely  as alternatives to the regression 

based modeling. In addition to ANNs and SVR, the field of computational 

intelligence comprises a novel data-driven modeling strategy, namely genetic 

programming (GP). There exist a number of studies in chemistry and chemical 

engineering wherein the GP-based symbolic regression has been employed for 

developing data-driven predictive models (see, for example, Patil- Shinde et al.,2014; 

Goel et al.,2015; Pandey et al.,2015; Koç and Koç, 2015; Bahrami et al.,2016). It 

possesses several attractive characteristics, which are explained in Chapter 2 (section 

2.2.2) as also by Vyas et al., 2015 and Verma et al., 2016. Due to its several attractive 

characteristics, in this study, GP has been employed first to develop models 

predicting the extent of As(III) and As(V) adsorption on the tannin-formaldehyde and 

tannin-aniline-formaldehyde resins. Next, the input space of the GP-based models 
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consisting of molar composition of the resin and reaction pH was optimized using the 

GA formalism with a view to maximize the extent of As(III)/As(V) adsorption by the 

resins. A detailed description of GA formalism (Holland, 1975; Goldberg, 1989; Deb, 

1995) has been provided in Chapter 2, section 2.4.1. In the past, the GP-GA hybrid 

modeling-optimization strategy alluded to above has been employed in the 

optimization of glucose to gluconic acid fermentation (Cheema et al., 2002). There 

also exist studies in chemical engineering/technology wherein two other CI-based 

strategies namely ANNs and SVR are individually combined with the GA 

optimization method to formulate ANN-GA (Nandi et al., 2001; Huang et al.,2003; 

Rao et al.,2009) and SVR-GA (Nandi et al.,2004; Wu et al.,2009) hybrid modeling-

optimization strategies, respectively. 

In the present investigation, following four case studies have been performed 

using the hybrid GP-GA strategy.  

• Case study I: Modeling and optimization of adsorption of As(III) on TFA resin  

• Case study II: Modeling and optimization of adsorption of As(V) on TFA resin  

• Case study III: Modeling and optimization of adsorption of As(III) on TAFA 

resin  

• Case study IV: Modeling and optimization of adsorption of As(V) on TAFA resin 

   The inputs and outputs pertaining to the four GP-based models developed in 

this study are given in Table 7.1. In case studies I and II, experiments were conducted 

at a fixed tannin concentration and, therefore, it is not considered as a model input. In 

case study III, tannin and aniline concentrations are not included as model inputs 

since experiments were conducted at fixed tannin and aniline concentrations (Mulani 

et al., 2014). In all the four case studies, several sets of GA-optimized reaction 

conditions that were expected to result in the improved adsorption of As(III)/As(V) 

ions, were obtained. The overall best sets of conditions obtained thereby were 

subjected to experimental verification. Results of this experimentation indicate that 

the optimized reaction conditions have indeed succeeded in improving the extent of 

As(III)/As(V) adsorption on the TFA and TAFA resins. 
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Table 7.1:  Inputs and the output of four GP-based models 

Model 
Model inputs (reaction operating 
variables/parameters) 

Model output (extent of  
adsorption) 

I 
Moles of formaldehyde (x1) and ammonia 
(x2), and reaction pH (x3) 

Adsorption (%) (y) of As(III) 
on TFA resin 

II 
Moles of formaldehyde (x1) and ammonia 
(x2), and reaction pH (x3) 

Adsorption (%) (y) of As(V) on 
TFA resin 

III 
Moles of formaldehyde (x1) and ammonia 
(x2), and reaction pH (x3) 

Adsorption (%) (y) of As(III) 
on TAFA resin 

IV 
Moles of tannin (x1), aniline (x2) and  
formaldehyde (x3), and reaction pH (x4) 

Adsorption (%) (y) of As(V) on 
TAFA resin 

 

This chapter is organized as follows. The details of resin preparation and 

characterization as also the resin-based As(III) and As(V) adsorption 

experimentation, are provided in the “ Materials and methods ” (section 7.2). Next, 

the “Results and Discussion” (section 7.3) first describes the outcome of the 

adsorption experiments, which is followed by the presentation of the results and 

discussion pertaining to the four modeling-optimization case studies (section 7.3.2). 

Section 7.3.3 provides results of the experimental validation of the overall optimum 

reaction conditions yielded by the GP-GA hybrid strategy. Finally, “Concluding 

Remarks” (section 7.4) summarize the principal findings of the study. 

 

7.2 MATERIALS AND METHODS  

Tannic acid (LOBA CHEMIE, Mumbai, India), aniline, ammonia (25 wt% 

solution, MERCK, India), formaldehyde (37 wt% solution, QUALIGENS, India), 

sodium As(III), and sodium arsenate (LOBA CHEMIE, Mumbai, India) were used 

without further purification and distillation. 

 7.2.1 Preparation of Tannin-Formaldehyde (TFA) Resin  

The composition of various synthesized tannin-formaldehyde monomer resins is 

presented in Table 7.2. Here, 10–50 mL of 37% formaldehyde solution was added to 

4g of commercial tannin powder and the resultant mixture was stirred for five 

minutes to ensure a uniform mixing. Depending on the desired composition, 20–40 

mL ammonia solution (25 wt%) was added to the above-stated mixture with 

continuous stirring, and the brown precipitate formed thereby was kept at an ambient 
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temperature (25oC) for fifteen days. This precipitate was neutralized with 10.8 N 

hydrochloric acid solutions and the resultant precipitate was filtered through 

Whatman no.2 filter paper and treated with 1.2 M hydrochloric acid for making it 

insoluble in the acidic and basic media. It was further washed with de-ionized water 

and dried at 80oC to obtain an insoluble solid tannin resin.  

Table 7.2:  Monomer composition of tannin-formaldehyde (TFA) resins 

Resin. Tannin (g) Formaldehyde (mL) Ammonia (mL) 

TFA 01 4.0 50 40 
TFA 02 4.0 40 40 
TFA 03 4.0 30 40 
TFA 04 4.0 20 40 
TFA 05 4.0 10 40 
TFA 06 4.0 50 20 
TFA 07 4.0 40 20 
TFA 08 4.0 30 20 
TFA 09 4.0 20 20 
TFA 10 4.0 10 20 

 

7.2.2 Preparation of Tannin-Aniline-Formaldehyde (TAFA) Resin  

The procedure for the TFA synthesis was repeated to prepare the tannin-aniline-

formaldehyde (TAFA) resins except that tannin was partially substituted with aniline. 

Three sets of TAFA resins were prepared using the stated procedure by varying the 

tannin: aniline ratio as listed in Tables 7.3 – 7.5. 

Table 7.3: Monomer composition of tannin-aniline-formaldehyde resins [tannin: 
aniline ratio 3:1 (w/w)] 

Resin  Tannin (g) Aniline (g) Formaldehyde (mL) Ammonia (mL) 

TAFA 01 3.0 1.0 50 40 
TAFA 02 3.0 1.0 40 40 
TAFA 03 3.0 1.0 30 40 
TAFA 04 3.0 1.0 20 40 
TAFA 05 3.0 1.0 10 40 
TAFA 06 3.0 1.0 50 20 
TAFA 07 3.0 1.0 40 20 
TAFA 08 3.0 1.0 30 20 
TAFA 09 3.0 1.0 20 20 
TAFA 10 3.0 1.0 10 20 



207 

 

Table 7.4: Monomer composition of tannin-aniline-formaldehyde resins [tannin: 
aniline ratio 2:2 (w/w)] 

Resin  Tannin (g) Aniline (g) Formaldehyde (mL) Ammonia (mL) 

TAFA 01 2.0 2.0 50 40 
TAFA 02 2.0 2.0 40 40 
TAFA 03 2.0 2.0 30 40 
TAFA 04 2.0 2.0 20 40 
TAFA 05 2.0 2.0 10 40 

 
 
Table 7.5: Monomer composition of tannin-aniline-formaldehyde resins [tannin: 

aniline ratio 1:3 (w/w)] 

Resin No. Tannin (g) Aniline (g) Formaldehyde (mL) Ammonia (mL) 

TAFA 06 1.0 3.0 50 40 
TAFA 07 1.0 3.0 40 40 
TAFA 08 1.0 3.0 30 40 
TAFA 09 1.0 3.0 20 40 
TAFA 10 1.0 3.0 10 40 

 

7.2.3 As(III)/As(V) adsorption on TFA and TAFA resins 

 Arsenic standards for [As(III)] and [As(V)] were prepared from NaAsO� and 

Na�HAsO�.7H�O [Loba Chemie Pvt, Ltd, Mumbai, India], respectively. The As(III) 

and As(V) stock solutions were prepared by dissolving 173.30 mg of sodium arsenite 

and 450 mg of sodium arsenate, respectively in 100 mL distilled water. The 

intermediate and secondary standards of arsenic solutions were prepared freshly for 

each experiment. The working solutions containing arsenic were prepared by 

dissolving an appropriate amount of arsenic from the stock solutions in de-ionized 

water. The efficiency of TFA and TAFA resins in removing As(III) and As(V) was 

studied at different pH magnitudes ranging between 2 and 10.  

7.2.4 Adsorption Measurements 

The experiments pertaining to the adsorption of As(III)/As(V) ions on TFA and 

TAFA resins were performed in a batch mode. The extent of adsorption of 
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As(III)/As(V) was measured as a function of time and pH under vigorous agitation. 

Max-uptake capacity of As(III) and As (V) is mg/gm of resin.  

Analytical method: The residual arsenic in a water sample was determined using 

the molybdenum blue method (Johnson and Pilson, 1972). It was utilized to estimate 

the individual concentrations of As(III) and As(V) in the treated water samples to 

assess the efficiency of the oxidation step and subsequent adsorption-based removal 

of arsenic. Spectrophotometric measurements were performed at 865 nm wavelength 

using an absorbance cell of 1 cm path length for the determination of arsenic. The 

calibration curves for the total arsenic were prepared using solutions containing 

As(III) and As(V). 

Molybdenum blue method: This method allows for the routine analysis of As(III) 

and As(V) by the spectroscopic measurement of arsenic-molybdenum complexes. 

Since water used in the experiment contained no or negligible amount of phosphate, 

the method was modified for the determination of As(III) and As(V) only (Johnson 

and Pilson, 1972). This method requires a mixed reagent, which was prepared as 

given below.  

 
Preparation of mixed reagent: Mix thoroughly a solution of 25 mL of 5N sulfuric 

acid and 7.5 mL of 0.032 M ammonium molybdate; add to it 15 mL of 0.1 M ascorbic 

acid solution (freshly prepared) followed by the addition of 2.5 mL of 0.0082 M 

potassium antimony tartrate solution with a thorough mixing post each addition. This 

reagent was prepared freshly each time.  

The mixed reagent when added to an untreated aliquot of a sample containing 

As(V) ions, produces blue color due to the formation of arsenomolybdate complex. It 

may, however, be noted that As(III) does not form the said complex. Accordingly, the 

intensity of the color formed and, hence, the absorbance of the untreated aliquot are 

proportional to the concentration of As(V) present. For converting As(III) to As(V), 

potassium iodate was used as an oxidizing agent. Thus the absorbance of an oxidized 

aliquot of the sample is proportional to the total concentration of arsenic (i.e., As(III) 

+ As(V)). The concentration of As(III) is then calculated as the difference between 

the concentration of total arsenic (As(III) + As (V)) and that of the As(V). 

Two sets of solutions respectively containing As(III) and As(V) ions in the 

concentration range of 1–15 mg/L were prepared from their standard solutions. One 
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set was used for the oxidation treatment of the As(III) aliquots while the other set 

formed solutions of the untreated As(V). One mL of 1 N hydrochloric acid and 1 mL 

of 0.017 M potassium iodate were added successively to oxidize each of the aliquots 

containing As(III) with a thorough mixing after each addition. Ten minutes were 

allowed for the oxidation of As(III) to As(V) and, thereafter, 4 mL of the mixed 

reagent was added to each of the treated (oxidized) and untreated aliquots with a 

thorough mixing. After two hours, a blue colored arsenic-molybdenum complex was 

formed. The amount of complex formed is directly proportional to the arsenic 

concentration, which was determined as a function of the absorbance measured at 865 

nm wave-length with a UV spectrophotometer. Blank samples were run twice using 

the above-described procedure along with the samples. 

 
7.3 RESULTS AND DISCUSSION  

7.3.1 Experimental  

Effect of pH: The waste water containing metal ions is acidic in nature. 

Accordingly, the effect of pH on the adsorption of As(III) and As(V) on TFA and 

TAFA resins was studied in the pH range of 2–10. The values of the reaction 

operating variables and the corresponding magnitudes of the adsorption (%) of 

As(III) and As(V) ions on the TFA and TAFA resins are listed in Appendix 7. A. It is 

observed that at lower pH values, the phenolic group (‒OH) of the TFA resin gets 

protonated to higher extent, which results in a strong repulsion to the positively 

charged arsenic ion in the solution; such a situation is not favorable for As(III) 

removal (Mohan and Pittman, 2007; Dutré and Vandecasteele, 1998; Dambies et al., 

2002; Arai  et al., 2005; Pena et al., 2006). However, As(V) ions were best adsorbed 

on TFA resin in the pH range of 3–5. It can thus be inferred that in this pH range the 

metal anions follow the anion exchange mechanism and, accordingly, get adsorbed by 

releasing protons from the phenolic ‒OH groups of tannin (Onyango et al., 2003; 

Zhang et al., 2007). The experimental results also show that an increase in the pH 

magnitude does not result in a significant change in the adsorption (%) of 

As(III)/As(V) ions. This may be due to the hydroxyl group not being abundantly 

present on the surface of TFA and TAFA resins. 

Comparison with other Adsorbents: TFA and TAFA resins exhibit higher 

adsorption capacity for As (III) and As(V) ions compared to the adsorbents prepared 
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from the waste rice husk (Amin et al., 2006). It has been also found that TFA and 

TAFA resins possess lower adsorption capacity for As(V) ions when compared with 

that of, for example, ferrihydride, mesoporous alumina, and amorphous aluminum 

hydroxide (Anderson et al., 1976; Thirunavukkarasu  et al., 2001; Kim et al., 2004). 

 
7.3.2 GP-Based Adsorption Reaction Modeling and GA-Based 

Optimization of the Reaction Conditions 
 
Pre-Processing of Adsorption Data  

The experimental data reported in Appendix 7. A,  pertaining to the adsorption 

of As(III) and As(V) ions on TFA and TAFA resins were used to develop four GP-

based models described below in case studies I, II, III, and IV, respectively. From the 

data, it is seen that there exists an order of magnitude difference between some of the 

reaction condition variables and, therefore, pre-processing of the input and output 

data was carried out through a normalization scheme. The normalized input variables 

were obtained as follows: 

                        ���� <  kÅ� k"�k ;  j = 1, 2, . . . ,  6R;    i = 1, 2,…, I.                                 (7.1) 

where, 6R represents the number of patterns in the example data set (6R = 40 in all 

four case studies); I refers to the dimensionality of the input space (I = 3 for case 

studies I to III and = 4 for case study IV); ��� represents the N34 un-normalized input 

variable of  234 pattern; ���� denotes the normal score (standardized variable) pertaining 

to the N34 input variable of the 234 pattern/vector, and �� and Ú k, respectively refer to 

the mean and standard deviation values of the N34  input variable. Similar to the model 

inputs, the outputs in all the four case studies were normalized as follows: 

                                               ��� < >Å�>�
"�  ;   j = 1, 2, . . . , 6R                                    (7.2) 

where, ���, denotes the normal score (standardized variable) pertaining to the 234 

output pattern; �� refers to the 234 output value, and �� and Ú>, respectively refer to 

the mean and the standard deviation of the 6R number of outputs. The mean and 

standard deviation values used in the above-described normalization procedure are 

listed in Table 7.6.  

For developing GP-based models possessing good prediction accuracy and 

generalization ability, each of the four experimental data sets, listed in Appendix 7.A 
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(Tables 7.A.1- 7.A.4) was split randomly in 75:25 ratio into training (30 patterns) and 

test (10 patterns) sets. The training set was used for developing a GP-based model 

while the test set data was used in testing the generalization ability of the trained 

model. In Appendix 7.A (Tables 7.A.1- 7.A.4), the test set data are marked using “*” 

symbol. 

 
Table 7.6:  Mean and standard deviation magnitudes in respect of inputs {��} and the 

output {y} of four GP-based models 

Case  
Study 

Model inputs Model output 

Mean Standard deviation Mean (%) 
Standard 

deviation (%) 

I 
�̅� =  0.323 moles, �̅� < 0.477 moles, �̅~ = 5.6 

Ú F= 0.164 moles, Ú ! = 0.144 moles, Ú � =3.045 

�� =74.925 Ú>= 16.057 

II 
�̅�= 0.323 moles, �̅�= 0.477 moles,  ��~=  6.6 

Ú F= 0.164 moles, Ú ! = 0.144 moles,  Ú �= 3.112 

� �= 86.572 Ú>=15.728 

III 
 ��� =  0.351 moles,  ��� = 0.433 moles,  ��~ =  5.7 

Ú F= 0.182 moles,  Ú ! = 0.148 moles,  Ú �= 2.96 

� �= 74.585 Ú>=11.141 

IV 

�̅�= 0.000881 
moles, �̅� = 0.027 
moles, �̅~ = 0.366 moles, �̅� = 7 

Ú F= 0.000298 moles,  Ú != 0.00542 moles, Ú �= 0.179 moles, Ú �= 3.097 

��= 71.684 Ú>= 7.348 

 

GP-based Modeling 

A detailed description of GP (Koza, 1992) formalism is given in Chapter 2 

(section 2.2.2). The GP-based models were developed using Eureqa Formulize 

software package (Schmidt and Lipson, 2009) that has been optimized to construct 

parsimonious (i.e. with lower complexity) expressions possessing good generalization 

ability. This software offers to its users a number of options for preprocessing of the 

example input-output data and generation of candidate solutions. In all the case 

studies, these options were rigorously and systematically explored with the objective 

of securing models possessing high As(III)/As(V) adsorption prediction accuracy and 

generalization capability. A set containing five basic arithmetic operators, namely, 

addition, subtraction, multiplication, division, and exponentiation, was used in the 
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generation of candidate expressions. To secure an overall optimal data-fitting model, 

the GP procedure was repeated numerous times by employing different seed 

expressions and random number generator seed values. In each repeated run, the GP 

algorithm searched a different mathematical expression. The prediction accuracy and 

the generalization performance of a GP-based model was evaluated in terms of 

coefficient of correlation (CC) and root mean squared error (RMSE) between the 

experimental (target) and the corresponding model-predicted values of the adsorption 

(%) of As(III)/As(V) ions on a particular resin. These two statistical measures were 

evaluated separately for the training and test data sets. The overall best GP-model was 

selected on the basis of their high and comparable magnitudes of CC and low and 

comparable values of RMSE in respect of both the training and test set data. 

 
Case Study-I: GP-based Modeling and GA-based Optimization of Adsorption 

of As(III ) on TFA Resin 
  

The input space of the GP-based model-I consists of three reaction operating 

variables, viz. molar concentrations of formaldehyde (��) and ammonia (��), and 

solution pH (�~). The training and test data sets used in constructing this model are 

listed in Appendix 7.A (Table 7.A.1). The overall best GP-based model (GP_Model-

I) relating the three normalized inputs (���, ��� and ��~) to the output (��) predicting the 

normalized value of the adsorption (%) of As(III) on the TFA resin is given as: 

��= 0.6714 ���+
z.��ó��.z���.z� ���z.z~~�� �F� ��!� �!  - 0.2767�������- 0.6152              (7.3) 

The predictions of GP_Model-I have yielded high and comparable magnitudes 

of the coefficient of correlation (		3�� = 0.957; 		3�3 = 0.949) and low and 

comparable values of the root mean square error (89:;3�� = 4.820; 89:;3�3 = 

4.265) in respect of both the training and test set data. It thus clearly suggests that the 

model possesses reasonably good prediction accuracy and generalization capability. 

The parity plot of the experimental y values and those predicted by the GP-based 

model-I (obtained by de-normalizing �� values) has been presented in Figure 7.1. In 

this plot, it is noticed that there exists a good match between the experimental and 

model-predicted values of the adsorption (%) of As(III) on the TFA resin. 
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Figure 7.1:   Parity plot of experimental versus GP-model predicted values of 

adsorption of As(III) on TFA resin (%) (y). 
 

Having obtained the high performing GP_ Model-I,  its input space consisting 

of the three reaction (decision) variables (��‒ �~) was optimized by employing GA 

formalism with the objective of maximizing the extent of adsorption (%) of As(III) on 

TFA resin. This optimization was performed using the MendelSolve (2016) software. 

While performing the said optimization, following values of the GA-specific 

parameters were used: population size (6
) = 50, crossover rate (8õ�i ) = 1, mutation 

rate (8ßã3i ) = 0.03125 and maximum number of generations (6÷P�) = 100.  

Using these parameter values several GA replicates were run by employing 

different random number generator seeds. The top three sets of optimized reaction 

operating variables obtained thereby are listed in Table 7.7. 

 

Table 7.7: Optimized reaction variables given by GP-GA hybrid method for case 
study I 

Optimal 
solution 

set 

Optimized reaction variables GA-
maximized 

As(III) 
adsorption (%) 

 

Experimentally 
validated 
As(III) 

adsorption (%) 

formaldehyde 
moles  ( ��e*M) 

ammonia        
moles (��e*M) 

pH (�~e*M) 

1. 0.615 0.343 2.876 99.46 99.6 

2. 0.544 0.577 4.997 91.52 91.2 

3. 0.615 0.432 2.697 91.70 90.9 
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Case Study II: GP-based Modeling and GA- based Optimization of 
Adsorption of As(V) on TFA Resin  

  The input space of the GP-based model-II consists of the same three reaction 

operating variables/parameters considered in case study I. However, the model output 

describes adsorption (%) of As(V) on TFA resin. The training and test set data used 

in developing GP-based model-II are given in Appendix 7.A (Table 7.A.2). By 

implementing the GP procedure described in Chapter 2 (section 2.2.2), the following 

best data-fitting expression (GP_Model-II) was obtained: 

��= 1.686 ���� − 0.8981���~ − 0.1817 ������� − 4.037���� − 0.1946 ��~ + 0.8573      (7.4) 

The CC magnitudes in respect of the predictions by Eq. (7.4) for the training 

and test set data are 		3�� = 0.969 and 		3�3= 0.962, respectively; the corresponding 

RMSE magnitudes are 89:;3��= 4.540 and 89:;3�3 = 6.565. The high (low) and 

comparable magnitudes of the training and test set CCs (RMSEs) clearly suggest an 

excellent prediction and generalization performance by GP_Model-II. Figure 7.2 

shows the parity plot of the experimental versus GP_Model-II predicted magnitudes 

of the adsorption (%) (y) of As(V) on TFA resin. As can be noticed from this plot, the 

model predicted As(V) adsorption values exhibit a close match with their 

experimental counterparts; particularly in the region wherein y magnitudes are ≥ 70, 

the match is excellent.  

The three inputs of GP_Model-II representing three reaction variables were 

optimized to secure their optimal values leading to maximization of the adsorption 

(%) of As(V) on TFA resin. The GA-specific parameters that yielded the top three 

sets of optimized reaction variables are: population size (6
) = 55, crossover rate 

(8õ�i ) = 1, mutation rate (8ßã3i ) = 0.03111 and maximum number of generations 

(6÷P�) = 110. Using these parameter values several GA runs were conducted using 

each time a different value of the random number generator. Table 7.8  lists the top 

three optimized sets of the reaction conditions obtained using MendelSolve (2016) 

software. As can be seen, the best solution given by the hybrid GP-GA method is 

expected to result in the As(V) absorption of 99.8%, which is 2.8% higher than the 

maximum adsorption (%) of 97% obtained in experiments. 
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Figure 7.2: Parity plot of experimental versus GP-model predicted values of 

adsorption of As(V) on TFA resin (%) (y).  

 
Table 7.8:  Optimized reaction variables given by GP-GA hybrid method for case 

study II 

Optimal 
solution 

set 

Optimized reaction variables 
GA-maximized 

As(V) 
adsorption (%) 

Experimentally 
validated As(V) 
adsorption (%) 

formaldehyde 
moles � ��e*M) 

ammonia        
moles (��e*M) 

pH (�~e*M) 

1. 0.123 0.294 2.008 99.809 98.3 

2. 0.253 0.294 6.144 93.345 92.9 

3. 0.123 0.426 5.778 91.539 90.7 

 
 
Case Study III: GP-based Modeling and GA- based Optimization of 

Adsorption of As(III ) on TAFA Resin  
 

The input space of the GP-based Model-III predicting the adsorption of As(III) 

on TAFA resin contains three reaction operating variables, viz. molar concentrations 

of formaldehyde (��) and ammonia (��), and solution pH (�~). The training and test 

set data used in developing this model are listed in Appendix 7.A (Table 7.A.3). The 

overall best model (GP_model-III) obtained by using Eureqa Formulize software is as 

follows: 

�� = ���� - 2.7209 ���� - 0.1831 ��~� + 0.3646 ������� - 0.4914 ��~ - 0.2211 ��� ��~ + 1.3232                                                                                                                     

(7.5) 
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The CC and RMSE magnitudes in respect of the predictions made by Eq. (7.5) 

for the training and test set data are 		3�� = 0.859, 		3�3 = 0.868,  89:;3�� = 6.374 

and 89:;3�3 = 5.593. These values indicate that GP_model-III is endowed with 

reasonably good prediction and generalization performance. This observation is also 

supported by the parity plot in Figure 7.3 depicting of the experimental versus GP_ 

Model-III predicted As(III) adsorption (y) values. 
 

 

Figure 7.3: Parity plot of experimental versus GP-model predicted values of  
adsorption of As(III) on TAFA resin (%) (y). 

 

Towards obtaining the optimal conditions leading to maximization of As(III) 

adsorption on TAFA resin, the input space of the GP_Model-III was subjected to GA-

based optimization using MendelSolve (2016) software. The GA-specific parameters 

that yielded the three overall best sets of optimized reaction condition variables are: 

population size (6
) = 50, crossover rate (8õ�i ) = 1, mutation rate (8ßã3i ) = 0.03125 

and maximum number of generations (6÷�$) = 150. The top three GA-optimized sets 

of optimized reaction conditions, which are expected to maximize the adsorption of 

As(III) on TAFA resin are listed in Table 7.9. From the tabulated values, it is seen 

that the GA-searched best solution is capable of improving the extent of As(III) 

adsorption from 90.3% (best experimental As(III) adsorption value) to 94.07%. 
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Table 7.9: Optimized reaction variables given by GP-GA hybrid method for case  
study III 

 

Optimal 
solution 

set 

Optimized reaction variables GA-maximized 
As(III) 

adsorption (%) 
 

Experimentally 
validated As(III) 
adsorption (%) 

formaldehyde 
moles � ��e*M) 

ammonia        
moles (��e*M) 

pH (�~e*M) 

1. 0.362 0.583 2.000 94.07 93.32 

2. 0.615 0.586 3.001 90.59 89.73 

3. 0.357 0.294 2.000 93.05 91.76 
 
 
 
Case Study IV: GP-based Modeling and GA-based Optimization of 

Adsorption of As(V) on TAFA Resin  

In this case study, the input space of the GP-based Model-IV contains four 

reaction operating variables, namely, molar concentrations of tannin (��), aniline 

(��), formaldehyde (�~), and solution pH (��). The training and test set data used in 

developing this model are listed in Appendix 7.A (Table 7.A.4). The overall best 

model (GP_model-IV), predicting the extent (%) of [As(V)] adsorption on TAFA 

resin is as follows: 

�� = 0.2459 ��~� - 0.2937 ���~+ 0.2459 �����~��� - ���������  + 0.4698 ��~ - 0.3624          (7.6) 

The CC and RMSE magnitudes in respect of the predictions by this model for 

the training and test set data are 		3�� = 0.969, 		3�3 = 0.976, 89:;3�� = 2.406 and 

89:;3�3 = 4.289. These values clearly indicate that GP_model-IV possesses very 

good prediction and generalization performance. Figure 7.4 shows the parity plot of 

the experimental versus GP_ Model-IV predicted magnitude of the As(V) adsorption 

(y) on TAFA resin. A close match between the model-predicted As(V) adsorption 

values and their experimental counterparts strongly supports the observation that 

GP_Model-IV is capable of reasonably accurate predictions, and also possesses good 

generalization capability. 
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Figure 7.4: Parity plot of experimental versus GP-model predicted values of 

adsorption of As(V) on TAFA resin (%) (y). 
 

In order to maximize the extent of As(V) adsorption on TAFA resin, the four 

inputs of GP_Model-IV were optimized using MendelSolve (2016) genetic algorithm 

software. The GA-specific parameters that yielded the three overall best sets of 

optimized reaction condition variables are: population size (6
) = 60, crossover rate 

(8õ�i ) = 1, mutation rate (8ßã3i ) = 0.03100 and maximum number of generations 

(6÷P�) = 105. The top three GA searched sets of optimized reaction conditions 

resulting in the maximized As(V) adsorption on TAFA resin value are listed in Table 

7.10. From the tabulated values, it is seen that the GA-searched best solution is 

capable of enhancing As(V) adsorption from 84.73% (best experimental As(V) 

adsorption value) to 99.83%. 

 

Table 7.10: Optimized reaction variables given by GP-GA hybrid method for case 
study IV 

Optimal 
solution 

set 

Optimized reaction operating variables GA-
maximized 
As(V) 
adsorption 
(%)  

Experimentally 
validated  
As(V) 
adsorption (%)  

tannin 
moles � ��e*M) 

aniline     
moles (��e*M) 

formaldehyde 
moles (�~e*M) 

pH (��e*M) 

1. 0.000587 0.022 0.615 2.000 99.834 97.5 

2. 0.001175 0.032 0.615 2.003 93.892 92.2 

3. 0.000588 0.022 0.615 4.013 88.232 86.7 
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7.3.3 Experimental Validation of Optimized Reaction Operating Variables  

In Tables 7.7–7.10, the overall best set of GA-optimized reaction conditions, 

which is expected to result in the maximum adsorption of As(III)/As(V) on TFA and 

TAFA resins is listed first. In order to validate the GA-optimized solutions, the 

overall best solution in each case study was subjected to experimental verification. 

The magnitudes of the adsorption (%) of As(III)/As(V) on TFA and TAFA resins 

measured in the respective validation experiments are listed in the last column of 

Tables 7.7–7.10. Here, it is seen that the experimentally validated adsorption 

magnitudes (99.6%, 98.3%, 93.32, 97.5%) are in reasonable to close agreement with 

the corresponding GA-maximized values of 99.46%, 99.81%, 94.07, and 99.83%, in 

case studies I, II, III, and IV, respectively. From the experimental data listed in 

Appendix 7.A, it is observed that the best adsorption values obtained using non-

optimized reaction operating conditions in case studies I, II, III, and IV are 99.3% 

(experiment numbers 3 and 13), 97% (experiment numbers 31 and 36), 90.3% 

(experiment numbers 2 and 3), and 84.73% (experiment number 21), respectively. It 

can thus be seen that the optimized solutions provided by the GP-GA hybrid 

modeling-optimization strategy have enhanced the extent of As(III)/As(V) adsorption 

by 0.3%; 1.3%, 3.02, and 12.77% in case studies I to IV, respectively. In the absence 

of a reaction model, a non-assisted manual inspection of the reaction data provides no 

clues to the precise values of the optimized reaction conditions that are necessary for 

the maximization of adsorption of As(III)/As(V) on TFA and TAFA resins. This 

difficulty has been overcome by the usage of the GP-GA hybrid technique, which has 

provided the optimized conditions leading to reasonable to major improvements in 

the extent of As(III)/As(V) adsorption on TFA and TAFA resins. 

 

7.4 CONCLUSION  

Arsenic is one of the most toxic metalloid and very often forms a contaminant 

of the ground water globally. Since groundwater is an important source of the 

drinking water removal of arsenic therein has gained importance while managing and 

treating water and wastewater. Accordingly, this study reports usage of tannin-

formaldehyde (TFA), and tannin-aniline-formaldehyde (TAFA) resins for the 

adsorptive removal of As(III) and As(V) ions. Moreover, the chapter presents results 

of a study wherein a hybrid method (termed ‘GP-GA’) integrating genetic 
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programming (GP) and genetic algorithms (GA) has been employed for modeling and 

optimization of the adsorptive removal of As(III)/As(V) ions using TFA and TAFA 

resins. The principal advantage of the GP-GA techniques is that modeling and 

optimization can be performed exclusively from the adsorption reaction data without 

invoking the detailed knowledge of the physicochemical phenomena underlying the 

reaction. Usage of the said hybrid formalism has provided a number of sets of 

optimized reaction conditions that are expected to maximize the adsorptive removal 

of As(III) and As(V) ions. The overall best of these optimized reaction conditions 

when verified experimentally, have resulted in 0.3% and 1.3% increases (over the 

corresponding best non-optimized experiments) in the TFA-based adsorption (%) of 

As(III) and As(V) metal ions, respectively. More significantly, improvements of 

3.02% and 12.77% (over the respective best non-optimized experiments) have been 

witnessed in the adsorption of As(III) and As(V), respectively on the TAFA resin due 

to the application of GA-optimized reaction conditions. The GP-GA based hybrid 

modeling-optimization strategy presented here for the adsorptive removal of 

As(III)/As(V) ions can be gainfully utilized for the modeling and optimization of 

other contaminant removal processes. 

 

NOMENCLATURE 

I dimensionality of the input space 

6
  population size in GA simulation 

6÷P�   maximum number of generations in GA evolution 

6Rø3  number of patterns in the example data set 

8õ�i   crossover rate in GA procedure 

8ßã3i   mutation rate in GA procedure 

���  NM( normalized input variable 

��  mean values of the N34  input variable 

��e*M  NM( optimized decision variable. 
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��  mean value of output variable 

�� �  normal score (standardized variable) pertaining to the 234 output pattern 

Ú k  standard deviation values of the N34  input variable   

Ú>  standard deviation value of output variable 
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APPENDIX 7.A  

Table 7.A.1: Experimental data for As(III) adsorption on TFA resin (case study I) 

Expt. 
No. 

Formaldehyde moles 
(x1) 

Ammonia moles 
(x2) 

pH 
(x3) 

As(III) adsorption (%)  
(y) 

1 0.615 0.587 2 71.7 
2 0.615 0.587 3 98.3 
3 0.615 0.587 5 99.3 

4* 0.615 0.587 8 87.9 

5 0.615 0.587 10 80.0 

6* 0.492 0.587 2 78.6 

7 0.492 0.587 3 95.9 
8 0.492 0.587 5 99.0 
9 0.492 0.587 8 72.8 

10* 0.492 0.587 10 76.2 

11 0.369 0.587 2 73.5 
12 0.369 0.587 3 99.0 
13 0.369 0.587 5 99.3 

14* 0.369 0.587 8 70.4 

15 0.369 0.587 10 61.8 
16 0.246 0.587 2 71.7 
17 0.246 0.587 3 99.0 

18* 0.246 0.587 5 99.0 

19 0.246 0.587 8 76.2 
20 0.246 0.587 10 65.9 
21 0.123 0.587 2 56.9 

22* 0.123 0.587 3 99.0 

23 0.123 0.587 5 99.0 
24 0.123 0.587 8 47.6 
25 0.123 0.587 10 46.3 

26* 0.369 0.294 2 71.4 

27 0.369 0.294 3 66.9 
28 0.369 0.294 5 73.8 
29 0.369 0.294 8 74.2 

30* 0.369 0.294 10 65.9 

31 0.246 0.294 2 64.5 

32* 0.246 0.294 3 65.5 

33 0.246 0.294 5 55.2 
34 0.246 0.294 8 62.8 
35 0.246 0.294 10 55.6 
36 0.123 0.294 2 61.1 
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Table 7.A.1 continued… 

Expt. 
No. 

Formaldehyde moles 
(x1) 

Ammonia moles 
(x2) 

pH 
(x3) 

As(III) adsorption (%) 
(y) 

37 0.123 0.294 3 70.4 

38* 0.123 0.294 5 60.7 

39 0.123 0.294 8 61.4 
40 0.123 0.294 10 63.3 

*test data 
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Table 7.A.2: Experimental data for As(V) adsorption on TFA resin (case study II) 

Expt. 
No. 

Formaldehyde moles 
(x1) 

Ammonia moles 
(x2) 

pH 
(x3) 

As(V) adsorption (%) 
(y) 

1* 0.615 0.587 2 83.4 

2 0.615 0.587 4 86.1 
3 0.615 0.587 8 85.6 
4 0.615 0.587 9 83.9 

5* 0.615 0.587 10 79.6 

6 0.492 0.587 2 58.7 
7 0.492 0.587 4 50.0 
8 0.492 0.587 8 57.5 

9* 0.492 0.587 9 50.3 

10* 0.492 0.587 10 26.5 

11 0.369 0.587 2 95.3 

12* 0.369 0.587 4 92.4 

13 0.369 0.587 8 93.2 
14 0.369 0.587 9 90.2 
15 0.369 0.587 10 89.5 
16 0.246 0.587 2 93.6 

17* 0.246 0.587 4 94.1 

18 0.246 0.587 8 95.3 
19 0.246 0.587 9 92.9 
20 0.246 0.587 10 91.9 

21* 0.123 0.587 2 94.1 

22 0.123 0.587 4 94.9 
23 0.123 0.587 8 94.9 
24 0.123 0.587 9 92.9 
25 0.123 0.587 10 92.9 
26 0.369 0.294 2 94.9 

27* 0.369 0.294 4 91.5 

28 0.369 0.294 8 94.5 
29 0.369 0.294 9 90.7 
30 0.369 0.294 10 95.3 

31* 0.246 0.294 2 97.0 

32 0.246 0.294 4 95.8 
33 0.246 0.294 8 95.8 
34 0.246 0.294 9 93.6 

35* 0.246 0.294 10 79.3 

36 0.123 0.294 2 97.0 
37 0.123 0.294 4 94.9 
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Table 7.A.2 continued… 

Expt. 
No. 

Formaldehyde moles 
(x1) 

Ammonia moles 
(x2) 

pH 
(x3) 

As(V) adsorption (%) 
(y) 

38 0.123 0.294 8 96.4 
39 0.123 0.294 9 92.9 
40 0.123 0.294 10 93.6 

*test data 
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Table 7.A.3: Experimental data for As(III) adsorption on TAFA resin (case study III)                       

Expt. 
No. 

formaldehyde moles 
(x1) 

Ammonia moles 
(x2) 

pH 
(x3) 

As(III) adsorption (%) 
(y) 

1* 0.615 0.587 2 84.8 
2 0.615 0.587 3 90.3 
3 0.615 0.587 5 90.3 
4 0.615 0.587 8 60.4 
5* 0.615 0.587 10 71.1 
6* 0.369 0.587 3 88.6 
7 0.369 0.587 5 76.2 
8 0.369 0.587 8 76.9 
9 0.369 0.587 10 80.7 
10 0.246 0.587 2 83.3 
11* 0.246 0.587 3 76.2 
12 0.246 0.587 5 83.3 
13 0.246 0.587 8 77.3 
14 0.246 0.587 10 61.1 
15 0.123 0.587 2 75.5 
16 0.123 0.587 3 71.7 
17* 0.123 0.587 5 86.2 
18 0.123 0.587 8 64.2 
19* 0.123 0.587 10 72.1 
20 0.615 0.294 2 74.8 
21 0.615 0.294 3 79.3 
22 0.615 0.294 5 69 
23* 0.615 0.294 8 59.3 
24 0.492 0.294 3 81 
25* 0.492 0.294 5 80.4 
26 0.492 0.294 8 62.1 
27 0.492 0.294 10 49.4 
28 0.369 0.294 3 89.9 
29 0.369 0.294 5 88.3 
30 0.369 0.294 8 88.3 
31 0.369 0.294 10 75.9 
32 0.246 0.294 2 76.9 
33* 0.246 0.294 3 84.5 
34 0.246 0.294 5 75.5 
35 0.246 0.294 8 80.7 
36 0.246 0.294 10 53.2 
37 0.123 0.294 2 64.9 
38* 0.123 0.294 3 64.2 
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Table 7.A.3 continued… 

Expt. 
No. 

formaldehyde moles 
(x1) 

Ammonia moles 
(x2) 

pH 
(x3) 

As(III) adsorption (%) 
(y) 

39 0.123 0.294 5 63.1 
40 0.123 0.294 10 52.5 

*test data 
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Table 7.A.4: Experimental data for As(V) adsorption on TAFA resin (case study IV)                          

Expt. 
No. 

Tannin 
(mole) (x1) 

Aniline 
(mole) (x2) 

Formaldehyde 
(mole) (x3) 

pH 
(x4) 

As(V) adsorption(%) 
(y) 

1 0.001175 0.0215 0.615 2 68.98 
2* 0.001175 0.0215 0.615 4 74.20 
3 0.001175 0.0215 0.615 8 77.56 
4 0.001175 0.0215 0.615 9 81.38 
5 0.001175 0.0215 0.615 10 81.10 
6* 0.001175 0.0215 0.493 2 67.30 
7 0.001175 0.0215 0.493 8 75.11 
8 0.001175 0.0215 0.493 9 80.67 
9 0.001175 0.0215 0.493 10 79.26 
10 0.001175 0.0215 0.369 4 61.83 
11 0.001175 0.0215 0.369 8 67.68 
12 0.001175 0.0215 0.369 9 71.36 
13 0.001175 0.0215 0.246 2 63.98 
14 0.001175 0.0215 0.246 8 63.83 
15 0.001175 0.0215 0.246 9 70.12 
16 0.001175 0.0215 0.246 10 69.09 
17 0.001175 0.0215 0.123 2 65.63 
18 0.001175 0.0215 0.123 8 69.21 
19 0.001175 0.0215 0.123 9 68.16 
20 0.001175 0.0215 0.123 10 69.16 
21* 0.000587 0.0322 0.615 2 84.73 
22 0.000587 0.0322 0.615 8 77.90 
23 0.000587 0.0322 0.615 9 80.07 
24 0.000587 0.0322 0.615 10 81.69 
25* 0.000587 0.0322 0.493 9 79.50 
26 0.000587 0.0322 0.493 10 77.78 
27* 0.000587 0.0322 0.369 2 66.37 
28 0.000587 0.0322 0.369 4 60.43 
29 0.000587 0.0322 0.369 8 69.90 
30 0.000587 0.0322 0.369 9 73.09 
31 0.000587 0.0322 0.369 10 72.31 
32* 0.000587 0.0322 0.246 2 64.42 
33* 0.000587 0.0322 0.246 4 59.86 
34 0.000587 0.0322 0.246 8 68.30 
35* 0.000587 0.0322 0.246 9 76.16 
36* 0.000587 0.0322 0.246 10 81.24 
37 0.000587 0.0322 0.123 2 57.80 
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Table 7.A.4 continued… 

Expt. 
No. 

Tannin 
(mole) (x1) 

Aniline 
(mole) (x2) 

Formaldehyde 
(mole) (x3) 

pH 
(x4) 

As(V) adsorption(%) 
(y) 

38 0.000587 0.0322 0.123 4 57.80 
39* 0.000587 0.0322 0.123 9 79.47 
40 0.000587 0.0322 0.123 10 72.93 

*test data 
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Chapter 8 

Genetic Programming based Models for Prediction of Vapor-
Liquid Equilibrium 

 
ABSTRACT 

In chemical industry, design, operation, and control of separation processes 

heavily rely on the knowledge of the vapor-liquid equilibrium (VLE). It is not 

always feasible, convenient, and economical to carry out detailed 

experiments studying the effects of operating parameters on the separation 

behavior. Thus, commonly thermodynamic models such as the equation of 

state (EoS), and activity coefficient are used for the estimation of VLE. These 

models are mostly developed for binary, tertiary, and quaternary systems. 

Purely data-driven modeling approaches are also used to develop these 

models. This approach too has its own difficulties. This chapter presents a 

study wherein genetic programming (GP) has been introduced for the 

prediction of VLE. Specifically, three case studies have been performed 

wherein four GP-based VLE models have been developed using experimental 

data for predicting the vapor phase composition, (���, of a ternary, and  two  

groups of  non–ideal binary systems. The input space of these models consists 

of three attributes of pure components (acentric factor, critical temperature, 

and critical pressure), and three intensive thermodynamic parameters (liquid 

phase composition, pressure, and temperature). The prediction and 

generalization performance of the GP-based models was rigorously 

compared with that of the corresponding conventionally employed Van Laar, 

NRTL, and UNIQUAC models. The results obtained thereby indicate superior 

prediction accuracy and generalization performance of the GP-based models 

vis a vis that of the conventional thermodynamic models. The GP-based 

modeling method proposed in this study can be gainfully utilized in the 

prediction of VLE as also designing corresponding experiments in different 

pressure and temperature ranges. 
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8.1 INTRODUCTION 

An accurate prediction of the phase behavior of chemical species and their 

mixtures is essential for designing, optimizing and controlling separation processes, 

and other unit operations employed in the chemical industry. Predicting phase 

equilibrium properties, such as phase composition, and partition coefficients at 

temperatures and pressures of interest using reliable models offers an attractive 

alternative to costly and time consuming experimental measurements (Gebreyohannes 

et al., 2013). Phase equilibrium, and in particular vapor-liquid-equilibrium (VLE), is 

important in a number of process engineering applications. Designing an effective, 

efficient, and economical separation scheme is immensely essential since lack of   an 

accurate knowledge of VLE poses significant difficulties in chemical process design 

and development work. It has been broadly recognized that a viable separation 

scheme is as important as good chemistry for the success of chemical processes on a 

commercial scale (Dohrn  and Brunner ,1995). 

Conducting VLE experiments and a precise measurement of data thereof is often 

tedious, time-consuming and expensive; for highly reactive systems, the task becomes 

even more difficult and complicated. For instance, it is not always feasible to carry 

out VLE experiments at all the ranges of operating temperatures and pressures of 

practical interest (Vaferi et al., 2013). To overcome this difficulty, mathematical 

models are developed for the prediction of VLE. 

There exist two principal methods, namely, phenomenological and empirical, 

for modeling VLE. The phenomenological approach (also termed “mechanistic” or 

“first principles”) includes thermodynamic models such as, equation of state, and 

activity coefficient models (Lashkarbolooki et al., 2013). This approach needs 

complete knowledge of the underlying physico-chemical phenomena. The prediction 

of VLE data by conventional thermodynamic methods is tedious since it involves 

determination of various thermodynamic parameters, which is arbitrary in many ways 

and, in some cases also introduces significant inaccuracies (Sharma et al., 1999). For 

some of the components, determination of thermodynamic parameters such as binary 

interaction parameter (BIP) by itself can be an elaborate and time consuming 

exercise.  

The second (i.e. empirical) approach to VLE modeling is exclusively data-

driven and, therefore, can be employed in the absence of a detailed knowledge of the 
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physico-chemical phenomenon underlying the VLE. It utilizes linear/nonlinear 

regression methods in formulating the models. A significant requirement of this 

approach is that the exact structure (form) of the linear/nonlinear data-fitting model 

needs to be specified unambiguously prior to the estimation of the unknown model-

parameters. In case of ideal systems exhibiting a linear VLE behavior, the 

specification of the corresponding linear data-fitting function is relatively easy. 

However, VLE behavior of a large number of systems displays a nonlinear 

dependence on the operating parameters. In such cases choosing an appropriate 

nonlinear data-fitting model, from numerous competitive models becomes a daunting 

task (Patil-Shinde et al., 2014). The above-stated difficulties, which are faced 

commonly during both the phenomenological and regression-based VLE modeling, 

require exploration of alternative nonlinear modeling strategies.  

The two computational intelligence (CI) based exclusively data-driven nonlinear 

modeling formalisms, namely, Artificial neural networks (ANNs) (see e.g., Bishop, 

1994; Zurada, 1992; Tambe et al., 1996), and support vector regression (SVR) 

(Vapnik, 1995; Zaid, 2012) are often used as alternatives to the regression based 

modeling. These have found numerous applications in the field of thermodynamics 

and prediction of transport properties. Table 8.1 reports a number of studies wherein 

ANNs and SVR have been employed in VLE predictions. 

In addition to ANNs and SVR, the field of computational intelligence comprises 

a data-driven modeling strategy, namely genetic programming (GP). The GP 

formalism has been described in detail in Chapter 2 (section 2.2.2). In earlier 

applications the GP technique has been used, for instance, in estimation of solvent 

activity in polymer solutions (Tashvigh et al., 2015), process identification (Verma et 

al., 2016), gasification performance prediction (Patil-Shinde et al., 2016), prediction 

of Kovats retention indices (Goel et al., 2016). Since it possesses several attractive 

characteristics, in this study, the GP formalism has been utilized for developing data-

driven models predicting the vapor phase composition of ternary, and a group of 

binary mixtures. An exhaustive literature search indicates that this is the first instance 

wherein GP has been used in VLE prediction. The systems studied here are 

industrially relevant.  The three specific VLE modeling case studies that have been 

performed are listed in Table 8.2. In all, four GP-based models have been developed; 

the inputs and outputs pertaining to these models are given in Table 8.3. 
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Table 8.1: VLE studies by using Artificial Intelligence formalisms  

System(s) Components Inputs Outputs AI formalism 
Thermodynamic 
model 

Reference 

Binary  
Nine  binary systems 
containing ethanol 

Temperature (T), 
critical temperature (¦|�,  
critical pressure (t|),  
acentric factor(ω), 
normal boiling point (¦�) and 
composition of the solutes in the 
liquid (��)  

Bubble point 
pressure (P), and 
vapor phase 
composition (��) 

Multi-layer 
perceptron (MLP)  
trained using 
back-propagation 
algorithm  

Peng–Robinson 
equation of state 

Vaferi et 
al. (2013) 

Binary  + 
alkanols 

CO�+ 1 ‒ propanol, CO�+ 2 ‒ propanol, CO�+ 1‒ butanol, CO�+ 1‒ pentanol, CO�+ 2‒ pentanol, CO�+ 1‒ hexanol,and CO�+ 1‒ heptanol 

Equilibrium temperature (T), CO�mole fraction in the liquid 
phase (��),  
critical temperature of alkanol 
(¦|), 
critical pressure of alkanol (t|), 
and   
 acetnric factor of an alkanol (ω). 

Equilibrium 
pressure (P), and  
CO2 mole fraction 
in the vapor phase 
(��)  
 

Multilayer 
perceptron (MLP) 
trained using 
Levenberg-
Marquardt back-
propagation 
learning 
algorithm 

Peng–Robinson 
EOS coupled with 
Van der Waals and 
Wong-Sandler 
 mixing rules 

Zarenezhad 
and 
Aminian 
(2011) 

Ternary  CO�, NH~, and  H�O 

Normalised concentrations of CO�, NH~, and  H�O in the liquid 
phase (��), and  
Temperature (T) 

Partial pressure 
(t�), and total 
pressure(tMeMvJ) 

Multi-layer 
perceptron (MLP) 
and Radial basis 
function(RBF) 

Kurz et al. (1995); 
Muller et al. 
(1998) ; Goppert 
and Mauner (1988) 

Ghaemi et 
al. (2008) 
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Table 8.1 continued… 

System(s) Components Inputs Outputs AI formalism Thermodynamic 
model 

Reference 

Binary  

Chlorodifluoromethan + 
carbondioxide (R22‒CO�), 
trifluoromethan +  
carbondioxide (R23‒CO�),  
carbondisulfied + 
trifluoromethan(CS�‒R23), 
carbondisulfied + 
chlorodifluoromethan 
(CS�‒R22) 

Temperature (T), pressure (P) 

Mole fraction of CO�, R22, and R23 
in the liquid phase 
(��), and mole 
fraction of CO�, 
R22, and R23  in 
the vapor phase (��)  
 

Multilayer 
perceptron 
(MLP)               
trained by the 
Levenberg-
Marquardt 
algorithm 

Redlich-Kwang-
Soave (RKS) 
equation of state 

Karimi and 
Yousefi 
(2007) 

CO�(solvent)/
hydrocarbon 
binary 
mixtures 

CO� + 1‒Hexane , CO� + 2-Ethyl ‒1‒butene, CO� +  n ‒Hexane,  CO� + Propyl acrylate , CO� + Propyl methacrylate, CO� + Decafluorobutane, CO� + Methyl methacrylate 

 
Reduced temperature (¦�), 
hydrocarbon mole fraction in liquid 
phase (��), and 
hydrocarbon mole fraction  in vapor 
phase (��),  
hydrocarbons acentric factor (ω),  
and critical pressure (ẗ ),. 
 

Bubble point/dew 
point pressure 

Least-Squares 
Support Vector 
Machine 
(LSSVM) 

Peng–Robinson 
equation of state 
and SAFT 

Mesbah et 
al. (2015) 

Binary  
CO� + ethyl caproate,  CO� + ethyl caprylate, and  CO� + ethyl caprate 

Temperature (T),  pressure (P), 
 

Mole fraction of  CO� in vapor phase 
(�¨©!), and  liquid 
phase  (�¨©!), 

Multilayer 
perceptron 
neural network  
(MLP NN) 

Soave-Redlich-
Kwong (SRK) or 
Peng Robinsons 
equation of state 

Mohanty 
(2005) 
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Table 8.1 continued… 

System(s) Components Inputs Outputs AI formalism Thermodynami
c model 

Reference 

Binary systems 
of CO� + cyclic 
compounds 

CO�+ Bisphenol A (BPA),  CO�+ Diphenyl carbonate , CO�+ Quinoline,  CO�+ Nicotine,  CO�+ Benzene,  CO�+ Tetrahydrofuran  

Reduced temperature of the system (¦��),  
critical pressure (ẗ �) , acentric factor (��) 
of cyclic compounds and  
composition of CO� in the vapor (��), and 
liquid (��) phases 

Bubble- and 
dew-point 
pressures 

Cascade-
forward back-
propagation 
artificial neural 
network 

Not used 
thermodynamic 
model  

Lashkarbol-
ooki et al. 
(2013) 

Binary systems  
of CO� + 
hydrocarbon 

CO� + n‒Pentadecane,  CO� + Decafluorobutane,  CO� + 1 Hexene,  CO� + 2-Ethyl ‒1‒ butene,  CO� + n-Hexane 

Reduced temperature of non-CO� 
compound ¦� = T/¦̈ ;  where T is 
the temperature of the binary system and ¦̈  is the critical temperature of non-CO� 
compound,  
critical pressure of non-CO� compound 
(ẗ ),  
acentric factor of non-CO� compound (ω) 
and mole fraction of  carbon dioxide in 
binary systems (�¨©!) −for bubble point 
pressure  and (�¨©!) − for dew point 
pressure 

Bubble and dew 
point pressures 

cascade-
forward back-
propagation 
artificial neural 
network 

Not used 
thermodynamic 
model 

Lashkarbol-
ooki et al. 
(2013) 

Ternary  

Water + ethanol 
+2‒propanol saturated with 
NaNO~, NaCl, KCl 
 
Ethanol +1‒ propanol + 
water saturated with NaCl, 
KCl, CuSO� 

Liquid mole fraction of solvents 
 (��, ��, �~),  
critical temperature of solvent (¦̈ ),  
critical pressure of solvent (ẗ ),  
acentric factor (ω),  
cation radius (R+)  and  anion radius (R−) 

Vapor mole 
fraction of 
solvents 
 (��, ��, �~), 
and   bubble 
point 
temperature (T) 

Multilayer 
perceptron 
neural network  
(MLP NN)  

Tan–Wilson 
(modification of 
Wilson model) 

Nguyen et 
al. (2007) 



241 

 

Table 8.1 continued… 

System(s) Components Inputs Outputs AI formalism Thermodynami
c model 

Reference 

Binary systems 
of CO�+ ester  

CO� + ethyl caprate,  CO� + ethyl caproate,  CO� + ethyl caprylate,  CO� + diethyl carbonate,  CO� + ethyl butyrate and  CO� + isopropyl acetate 

Equilibrium temperature 
(T), CO� mole fraction in the 
liquid phase �¨©!, 
critical temperature (¦̈ ),  
critical pressure (ẗ ), and  
acentric factor ��of esters 

Equilibrium pressure (P), 
and CO� mole fraction in 
the vapor phase (�¨©!) 
 

Feed forward, back 
propagation neural 
network 

Peng-Robinson 
(PR) and 
Soave-
Redlick-
Kwong (SRK) 
EOS 

Si-Moussa 
et al. (2008) 

Seventeen 
binary systems 

The binary systems composed 
of alkenes, aromatics, 
aldehydes, alcohols, amines, 
amides, carboxyl acids, 
nitriles,esters, ethers, ketones 
nitro compounds, water, and 
halogen compound 

Critical volume(V̈ ),  
acentric factor (ω),  
dipole moment,  
entropy of vaporization 
and  
electronegativity of 
components 1 
and  2. 

Margules parameters 

Multi-layer perceptron 
(MLP)  trained using 
back-propagation 
algorithm 

Margules 
activity 
coefficient 
equation 

Yamamoto 
and Tochigi 
(2007) 

Binary, and 
Ternary  

Hexane + ethanol,  
Hexane + benzene,  
Carbon disulfide + acetone, 
Acetone + chloroform,  
Hexane-benzene + toluene,  
Acetone + methanol + 
chloroform 

Mole fraction  in liquid 
phase (��), temperature 
(T)  

Mole fraction  in vapor 
phase (��),and   
pressure (P) 

Radial basis function  
(RBF) NN 

Universal 
Quasi-
chemical 
(UNIQUAC) 
model 

Ganguly 
(2003) 

Binary  
 Methane + ethane                                                   
Ammonia +water 
 

Temperature (T),   
pressure (P), 

Mole fraction  in vapor 
phase (��), mole 
fraction  in liquid phase 
(��), 

Multi-layer perceptron 
(MLP)  trained using 
back-propagation 
algorithm 

Peng- 
Robinson EOS 

Sharma  et 
al. (1999) 
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Table 8.2: Description of three case studies 

Case study System Components Objective of GP-based modeling 

I Ternary 

(i)   1, 2-dichloroethane (1)  

(ii)  trichloroethylene (2) 

(iii) 1-propanol (3) 

Prediction of  the mole fraction of 1-2 dichloroethane 

(��), and trichloroethylene (y�) in vapor phase  

II 
Group of 

binary 

(i) tetrachloromethane (1) – ethanol (2) 

(ii)  tetrachloromethane (1) –1-propanol (2),  

(iii)  tetrachloromethane (1) – 1-butanol (2) 

Prediction of mole fraction of tetrachloromethane in vapor 

phase (y�), using a single model for three binary systems. 

III 
Group of 

binary 

(i)   ethanol (1)  –  ethyl acetate (2) 

(ii)  1-propanol (1)  – propyl acetate (2) 

(iii) 1-butanol (1)  –  butyl acetate (2), 

(iv) 1-pentanol (1) – pentyl  acetate (2) 

a. Prediction of mole fraction of ethanol, 1-propanol, 

and 1-butanol in vapor phase {(y��}, using a single 

model developed using data of first three binary 

systems for interpolation. 

b. To test the extrapolation ability of the developed 

model on fourth binary system, namely, 1-pentanol 

(1) – pentyl acetate (2)  to predict vapor phase 

composition of 1-pentanol (y�). 
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Table 8.3: The inputs and the outputs pertaining to the four GP-based models developed in this study.  

Model  
No. of 
inputs 

Model inputs (intensive thermodynamic variables and pure component properties) Model output 

I (case study-I) 6 

Temperature (T); mole fractions of 1, 2-dichloroethane (���, and trichloroethylene (��� 

in liquid phase; acentric factors of 1, 2-dichloroethane (���, trichloroethylene (��� and 

1-propanol (�~� 

Mole fraction of 1, 2-dichloroethane 

in vapor phase (��� 

II (case study-I) 6 

Temperature (T); mole fractions of 1, 2-dichloroethane (���, and trichloroethylene (��� 

in liquid phase; acentric factors of 1, 2-dichloroethane (���, trichloroethylene (��� and 

1-propanol (�~) 

Mole fraction of trichloroethylene  in 

vapor phase, (��) 

III (case study-II) 5 

(i) Mole fraction of tetrachloromethane in liquid phase (��), (ii) pressure, (P), (iii) 

temperature (T), (iv) critical temperature of the second component, namely, ethanol/1-

propanol/ 1-butanol (¦g!) of the binary system, and (v) critical pressure the second 

component, namely, ethanol/1-propanol/ 1-butanol (tg!) of the binary system 

Mole fraction of tetrachloromethane  

in vapor phase (��)  

IV(case study-III) 5 

(i) Acentric factor of the first component, namely, ethanol/1-propanol/ 1-butanol (��) 

of the binary system, (ii) acentric factor of the second component, namely, ethyl 

acetate/propyl acetate/butyl acetate (��) of the binary system, (iii) liquid phase mole 

fractions of first components namely, ethanol/1-propanol/1-butanol (��) of the binary 

system, (iv) pressure (P) (�tv), and (v) temperature (T) (K), 

Mole fraction of ethanol, 1-propanol, 

and 1-butanol, and 1-pentanol in 

vapor phase {��} 
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Once a properly validated optimal GP-based model is constructed, its 

parameters can be further refined using a standard nonlinear regression technique, 

such as, Marquardt’s algorithm (Marquardt, 1963). In this study, all the four GP-based 

models were developed and their generalization capability was assessed using 

experimental data. Additionally, as reported in DECHEMA (Gmehling and Onken, 

1986; Gmehling et al., 1986) data series, the same sets of VLE data were used to 

develop corresponding activity coefficient models; in the case studies a subset of 

following activity coefficient models was used: Wilson (Wilson, 1964; Smith et al., 

2005), Van Laar (Wong et al., 1992), Non random two-liquid (NRTL) (Renon and 

Prausnitz, 1969), and Universal Quasi-chemical (UNIQUAC) (Anderson and 

Prausnitz, 1978). The prediction and generalization performance of the GP-based 

models was rigorously compared with that of the corresponding thermodynamic 

models. The results of this comparison indicate that that the GP-based models possess 

comparable or better VLE prediction ability than the conventional thermodynamic 

models. 

The remainder of this chapter is structured as follows. Various thermodynamic 

models for the VLE predictions are described briefly in section 8.2 titled “Phase 

equilibria modeling.” section 8.3, titled “Data” provides details of the data used in the 

GP-based modeling of vapor phase composition. The next, section 8.4 titled ‘‘Results 

and Discussion,’’ describes the three case studies wherein GP-based models have 

been developed for (i) ternary system (section 8.4.2), (ii) a group of three non-ideal 

binary systems (section 8.4.3), and (iii) a group of four non-ideal binary systems 

(section 8.4.4). Additionally, this section also provides results of the comparison of 

the prediction and generalization performance of the developed four GP–based 

models with their thermodynamic counterparts as also the fine-tuned genetic 

programming-Marquardt (GP- Marquardt) models. Finally, ‘‘Concluding Remarks’’ 

(section 8.5) summarize the principal findings of the study. 

8.2  PHASE EQUILIBRIA MODELING 

8.2.1 Activity Coefficient Models 

A number of methods such as, the regular solution theory, universal functional 

activity coefficient (UNIFAC) (Fredenslund et al., 1977), or analytical solution of 

groups (ASOG) (Derr and Deal,1969) are available for the VLE prediction; however, 

none of these strategies can be regarded as a highly accurate predictor (Smith et al., 



245 

 

2005). Thus, these methods are used only when no experimental VLE data are 

available for the system of interest. The notable features regarding the applicability of 

thermodynamic VLE models are given below (Prausnitz et al., 1998; Smith et al., 

2005): 

• For moderately non-ideal systems, all the major models (Van Laar, two constant 

Margules, Wilson, UNIQUAC, and NRTL) perform comparably well.  

• For mixtures of very different species, such as polar or associating compounds 

(e.g. alcohols and other oxy hydrocarbons), the  two-parameter  VLE models, 

namely, Van Laar, two constant Margules, UNIQUAC, and Wilson equation, 

are preferred over the three parameter NRTL equation.  

• For non-polar solvents (e.g. hydrocarbons), the Wilson, UNIQUAC, and NRTL 

models have been found to make superior predictions than the Van Laar and 

two-parameter Margules equations.  

• The NRTL and UNIQUAC equations are useful whereas the Wilson equation is 

inapplicable for species which are dissimilar and are only partially soluble to 

form two liquid phases. 

 8.2.2 Equation of State Models 

A commonly employed method for predicting/describing thermodynamic 

properties of fluids, mixtures of fluids, and solids is “equations of state (EoS)”. It is 

an efficient tool for calculating also the phase equilibrium of systems in pure or 

mixture form. The EOSs are widely used in theoretical and practical studies involving 

chemical process design, petroleum industry, reservoir fluids, etc. The van der Waals 

equation of state (Van der Waals, 1910) was the first equation to predict vapor-liquid 

coexistence. Later, the Redlich-Kwong equation of state (Redlich and Kwong, 1949) 

improved the accuracy of the van der Waals equation by proposing temperature 

dependence for the attractive term. Soave (1972) and Peng and Robinson (1976) 

proposed additional modifications of the Redlich-Kwong equation to more accurately 

predict the vapor pressure, liquid density, and equilibrium ratios. Numerous equations 

of state have been proposed in the literature with either an empirical, semi empirical, 

or theoretical basis. There are some notable comprehensive reviews on equation of 

state and these can be found in the works of Martin (1979), Anderko (1990), and 

Sengers et al. (2000). 
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Since design, operation, and control of a large number of industrial chemical 

processes are based on the predictions of VLE, and thermodynamic property models, 

it is at most important that they are robust and capable of accurate predictions.  

8.3 DATA 

The experimental VLE data were sourced from the Chemistry Data Series, 

DECHEMA (Gmehling and Onken, 1986; Gmehling et al., 1986) (see Appendix 8.A 

(Tables 8.A.1, 8.A.2, and 8.A.3)) to develop four GP-based models in three case 

studies for the prediction of vapor phase composition. Each of the four example sets 

used in the four case studies was split randomly in (75:25) ratio in the training and test 

sets, respectively. Whereas 75% data were used in developing (training) the GP-based 

models, the test set data (25%) were used in testing the generalization ability of the 

developed models.  

Table 8.4: Physical properties of the components used in this study 

Component 
Acentric 
factor 
(�� 

Critical 
Temperature 

(¦g) (K) 

Critical 
Pressure 

(tg) ��tv) 
Reference 

Ethanol 0.6436 514.0 6137  Perry and Green (2007) 
1-Propanol 0.6209 536.8 5169 Perry and Green (2007) 
1-Butanol 0.5883 563.1 4414 Perry and Green (2007) 
1,2-Dichloroethane 0.2866 

 

Perry and Green (2007) 
Trichloroethylene 0.2170 Yaws (1999) 
1-Pentanol 0.5748 Perry and Green (2007) 
Ethyl acetate 0.3664 Perry and Green (2007) 
Propyl acetate 0.3889 Perry and Green (2007) 
Butyl acetate 0.4394 Perry and Green (2007) 
Pentyl acetate 0.4480 Yaws (1999) 

 

8.4 RESULT AND DISCUSSION 

8.4.1   GP-based Vapor-Liquid Equilibria Modeling 

All GP-based models were developed using the Eureqa Formulize software 

package (Schmidt and Lipson, 2012). The package has a number of options for 

preprocessing of the example input-output data and generation of candidate solutions. 

While building  each GP-based model, these options were rigorously and 
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systematically explored with the objective of obtaining  models possessing high 

accuracy of predicting vapor phase mole fraction (��) and generalization capability. 

An operator set containing five arithmetic operators, namely, addition, subtraction, 

multiplication, division and exponentiation, was used in the generation of the 

candidate expressions. To obtain a best possible data-fitting model, the GP (Koza, 

1992; Poli, 2008) procedure (see Chapter 2, section 2.2.2) was repeated a number of 

times by using every time different seed expressions and random number generator 

seed values. It is worth noting that in each repeated run, the GP algorithm converged 

to a different mathematical expression. The fitness of each candidate expression was 

evaluated using the squared error fitness function. The statistical measures, used  in 

assessing the prediction accuracy and generalization performance of a GP-based 

model were coefficient of correlation (CC) and root mean squared error (RMSE); 

these were evaluated using the experimental (target) and the corresponding model-

predicted values of  vapor phase mole fraction (��). These two statistical quantities 

were calculated separately for the training and test data sets. The overall best GP-

model was selected from those obtained in the multiple GP runs on the basis of its 

high and comparable magnitudes of CC and low and comparable values of RMSE in 

respect of both the training and test set data. Next, the parameters, β, of the overall 

best model were refined further by using a standard nonlinear regression technique, 

namely Marquardt’s algorithm (Marquardt, 1963) with a view to improve its 

prediction and generalization performance 

 

8.4.2. Case Study I: GP-Based VLE Modeling of Ternary System 1, 2 
Dichloroethane (1), Trichloroethylene (2), 1-Propanol (3)  

The objective of this case study is to develop two GP models (GP_model-I and -

II ) predicting mole fractions of 1, 2-dichloroethane (��), and trichloroethylene (��), 

in the vapor phase. Towards this goal, a total of 58 isobaric VLE data points at high 

temperature (352.65 –358.55 K) were collected (Gmehling and Onken, 1986) for the 

ternary system given in Table 8.A.1. These data consisting of the physiochemical 

properties (acentric factor) and the experimental conditions (temperature, liquid and 

vapor phase compositions) are given in Tables 8.4 and 8.A.1, respectively. From these 

data the training set (43 data patterns) was selected in a way such that it covers all the 

ranges of the experimental data and operating conditions.  



248 

 

(A) GP-based model for predicting mole fraction of 1, 2-dichloroethane in 
vapor phase (��) 

The input space of the GP_model-I predicting the mole fraction of 1, 2-

dichloroethane in vapor phase (���, contains six variables, namely, temperature (T); 

mole fractions of 1, 2-dichloroethane (���, and trichloroethylene (��� in liquid phase, 

acentric factors of 1, 2-dichloroethane (���, trichloroethylene (���, and 1-propanol 

(�~). By implementing the GP procedure given in section 8.4.1, the overall best GP-

based model (GP_model-I) predicting the value of mole fraction of 1, 2-

dichloroethane in the vapor phase (��) that was secured is given as: 

 

��= 0.3253 ‒ 
�.��� × �z�!

 F  + 1.32 �����+ 0.1997 T �����~ ‒ 0.4189 �� ‒ 11.95 �� (8.1) 

 

This model (8.1) when subjected to the nonlinear regression using Marquardt’s 

method (Marquardt, 1963) yielded following expression (GP‒Marquardt_model‒I): 

 

��= 0.314 ‒ 
�.� × �z�!

 F   + 1.12 �����+ 0.219 T �����~ ‒ 0.375 �� ‒ 13.183 ��       (8.2) 

 

As can be seen in Eq. (8.2), the Marquardt’s method has fitted a different set of 

parameters to the GP-based model. The predictions by GP_model-I  have yielded high 

and comparable magnitudes of the coefficient of correlation (CCtrn = 0.997; CCtst =  

0.998), and low and comparable values of the root mean square error (RMSEtrn= 

1.13×10-2; RMSEtst =  1.08×10-2)  in respect of both the training and test set data. A 

comparison of the prediction accuracies and generalization performance of 

GP_model-I with that of other four models, namely, GP-Marquardt, Wilson 

(Gmehling and Onken, 1986), NRTL (Gmehling and Onken, 1986), and UNIQUAC 

(Gmehling and Onken, 1986) is provided in Table 8.5. The CC and RMSE magnitudes 

listed in this table clearly reveal that the proposed GP_Model-I has better prediction 

accuracy and generalization capability than its all four competing models. 
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Table 8.5: Statistical analysis and comparison of prediction generalization 
performance of GP_model-I with other four models for estimation of 
mole fraction of 1, 2-dichloroethane in vapor phase (��)  

 

Type of model Training set Test set 

		3�� 89:;3�� 		3�3 89:;3�3 
GP_model‒I 0.997 1.13×10-2 0.998 1.08×10-2 

GP‒Marquardt_model‒I 0.997 1.46×10-2 0.998 1.31×10-2 

Wilson_model‒I 0.996 1.34×10-2 0.998 1.02×10-2 

NRTL_model‒I 0.995 1.43×10-2 0.997 1.10×10-2 

UNIQUAC_model‒I 0.995 1.42×10-2 0.997 1.11×10-2 

 

Figure 8.1 shows a comparison of the predictions of the mole fraction of 1, 2-

dichloroethane in vapor phase (��) by the GP_model-I, with their experimental 

counterpart.  An excellent match between the experimental and model predicted 

values of the mole fraction of 1, 2-dichloroethane in vapor phase pertaining to both 

training and test set data clearly establishes an outstanding prediction and 

generalization performance by GP_model-I.  

 

 
Figure 8.1: Parity plot of the experimental versus GP_model-I predicted mole  

fraction of 1, 2-dichloroethane in vapor phase (��) of case study I 
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(B) GP-based modeling of mole fraction of trichloroethylene in vapor phase (��) 

The GP-based model (hereafter termed GP_model-II) for predicting the mole 

fraction of trichloroethylene in vapor phase (��) was developed using same inputs 

(see Tables 8.4 and 8.A.1) as employed in the development of the model for 

predicting the mole fraction of 1, 2-dichloroethane in the vapor phase (��). The 

overall best GP-based model (GP_model-II), which resulted in the high and 

comparable magnitudes of CC and low and comparable magnitudes of RMSE in 

respect of both training and test sets, is given as: 

 

��= 1.941 + 3.455 ×  10�� T�� + 
~.��� ��(���� F)�F – 6.02 ×  10�~ T – 11.13�� – 2.293�����     

(8.3) 

 

The equation (8.3) when subjected to nonlinear regression using Marquardt’s method 

(Marquardt, 1963) yielded following equation (GP-Marquardt_model-II) with a 

different set of parameter magnitudes. 

 

��= 1.24 + 0.025 T �� + 
�.~�� ��(ó��� F)�F – 4.0 ×  10�~T – 7.903 ��- 2.106 �����           (8.4) 

 

The CC magnitude in respect of the output (��) predicted by GP_model-II  and 

the corresponding desired (experimental) values for the training and test sets are 0.998 

and 0.994, respectively, and the corresponding RMSE magnitudes are 1.01×10-2 and 

1.69×10-2, respectively. From the high (low) and comparable values of CC (RMSE) 

for both the training and test set data, it can be concluded that the GP-based model has 

exhibited an excellent performance in predicting and generalizing the mole fraction 

magnitudes of trichloroethylene in the vapor phase. Next, performance of GP_model-

II  was compared with that of the corresponding GP-Marquardt_model-II and three 

activity coefficient models, namely, Wilson, NRTL, and UNIQUAC. This comparison 

made in terms of the CC and RMSE values is provided in Table 8.6. Here, the results 

reveal that the prediction and generalization performance of the GP_model-II   is 

comparable with that of the competing four models. 
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Table 8.6: Statistical analysis and comparison of prediction generalization 
performance of GP_model-II  with other four models for estimation of 
mole fraction of trichloroethylene in vapor phase (��) 

 

 
 

 
Figure 8.2:  Parity plot of the experimental versus GP_model-II predicted mole 

fraction of trichloroethylene in vapor phase (��) of case study I 
 

Figure 8.2 displays the parity plot of the GP_model-II predicted values of the 

mole fraction of trichloroethylene in the vapor phase (��) and their experimental 

counterparts. As can be seen, there is a very close agreement between the 

experimental and model predicted values pertaining to the training as also  test set 

data thus supporting the earlier observation of   an excellent prediction accuracy and 

generalization performance by GP_model-II.  The results of this case study essentially 

indicate that the GP formalism can serve as an additional modeling method capable of 

yielding comparable or even better prediction accuracy and generalization capability 

when compared with existing methods for VLE prediction.  
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Type of model Training set Test set 

		3�� 89:;3�� 		3�3 89:;3�3 
GP_model‒II 0.998 1.01×10-2 0.994 1.69×10-2 

GP‒Marquardt_model‒II 0.995 1.28×10-1 0.988 1.27×10-1 

Wilson_model‒II 0.996 1.38×10-2 0.998 6.96×10-3 

NRTL_model‒II 0.996 1.45×10-2 0.998 7.19×10-3 

UNIQUAC_model‒II 0.996 1.48×10-2 0.998 7.46×10-3 
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8.4.3  Case Study II: GP-Based VLE Modeling of Group of Three Binary 
Systems, namely, (i) Tetrachloromethane (1) – Ethanol (2), (ii) 
Tetrachloromethane (1) – 1 – Propanol (2), and (iii) 
Tetrachloromethane (1) -1-Butanol(2) 

The objectives of this case study is as follows 

•  To develop a single optimal GP-based model for a group of three binary systems 

for predicting the vapor phase composition of the common first component, 

namely, tetrachloromethane (��) in each of the three systems.  

In this case study, the second components of three binary systems belong to the 

homologous series of alcohol. The 96 experimental data points (Gmehling and Onken, 

1986; Gmehling et al., 1986) pertaining to the three binary systems cover temperature 

and pressure ranges of 293.15–343.15 K, and 5.179–101.434 �tv, respectively (also 

see Table 8.A.2). These data points were divided into the training (72 patterns) and 

test (24 patterns) data sets to, respectively, construct and test a single optimal 

GP_model-III predicting vapor phase composition of the common  first component of  

the three binary systems.  

The input space of proposed GP_model-III consisted of two critical properties, 

namely, critical temperature, (¦g!) (K), and critical pressure, (tg!) (�tv) of three 

components, namely, ethanol, 1-propanol, and 1-butanol, and three intensive 

thermodynamic variables, namely, the mole fraction of tetrachloromethane in liquid 

phase (��), pressure (P) (�tv), and temperature (T) (K) (see Tables 8.4 and 8.A.2, 

respectively). By implementing the GP procedure described in sections 2.2.2 and 

8.4.1, the following overall optimal GP-based model was obtained for the prediction 

of  the mole fraction of tetrachloromethane in vapor phase (��): 

��= 5.016 + 2.028 × 10�~��~P – 2.493×10��tg!– 3.376×10�~¦g!  – 3.465 ×10�~T –

0.5851(1.06 × 10�~)(�.z��×�z���1î¼!)                  (8.5) 

This model when subjected to parameter fine-tuning by the nonlinear regression using 

Marquardt’s method (Marquardt, 1963) yielded following expression (GP-

Marquardt_model-III). 

��= 4.666 + 2×10�~��~P – 1.85×10��tg!– 3×10�~¦g!– 4×10�~T – 

0.582(0.792)(z.z���1î¼!)                                                                                            (8.6) 
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 The performance of GP_model-III, in making accurate predictions pertaining to 

each of the three binary systems was compared with that of the two thermodynamic 

models, namely, VanLaar  (Gmehling and Onken, 1986; Gmehling et al., 1986) and 

NRTL (Gmehling and Onken, 1986; Gmehling et al., 1986).  The above stated 

comparison made in terms of CC and RMSE values pertaining to the predictions of 

mole fraction of tetrachloromethane in vapor phase (��), made by GP_model-III, GP-

Marquardt_model-III, and models of VanLaar, and NRTL is provided  in Table 8.7. 

The magnitudes of the stated statistical quantities clearly suggest that GP_model-III  

possesses an excellent prediction accuracy and generalization capability. It is also 

seen that (a) the prediction and generalization performance of GP_Model-III closely 

matches with that of the VanLaar, and NRTL models and (b)  the performance of the 

GP-Marquardt_model-III,  is only marginally inferior  than the other three competing 

models.  

 

Figure 8.3: Parity plot of the experimental versus GP_model-III predicted mole 
fraction of tetrachloromethane (		
�) in vapor phase (��) of case study II 

 
Figure 8.3 shows a comparison of the experimental values of the mole fraction 

of tetrachloromethane in vapor phase (��) for individual binary system with that the 

corresponding predictions made by GP_model-III. All points falling on or very close 

to the 45â line indicates a very good match between the experimental and model 

predicted ��  values. In this case study, it is noteworthy to note that a single GP-based 

model is capable of accurately predicting VLE for multiple binary systems thus 

saving the efforts involved in developing a separate model for each binary system in 

the group. 
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Table 8.7:  Statistical analysis and comparison of prediction generalization performance of GP_model-III with other three models for estimation of 

mole fraction of tetrachloromethane (		
�) in vapor phase (��) 
 

Type of model/ binary 
system 

		
�(1)- ethanol(2) 		
� (1) - 1-propanol(2) 		
�(1)- 1-butanol(2) 

Training set Test set Training set Test set Training set Test set 

		3�� 89:;3�� 		3�3 89:;3�3 		3�� 89:;3�� 		3�3 89:;3�3 		3�� 89:;3�� 		3�3 89:;3�3 
GP_model‒III 0.994 1.83×10-2 0.997 1.54×10-2 0.993 1.94×10-2 0.995 1.41×10-2 0.995 3.63×10-2 0.996 4.35×10-3 

GP‒Marquardt_model‒III 0.994 7.02×10-2 0.995 6.44×10-2 0.987 3.08×10-2 0.972 2.21×10-2 0.994 4.04×10-2 0.991 1.61×10-2 

VanLaar_model‒III 0.997 1.21×10-2 0.997 1.36×10-2 0.996 1.69×10-2 0.997 2.06×10-2 0.995 5.35×10-3 0.996 3.99×10-3 

NRTL_model‒III 0.999 7.92×10-3 0.999 6.75×10-3 0.997 1.83×10-2 0.997 2.05×10-2 0.998 3.77×10-3 0.999 1.42×10-3 
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8.4.4 Case Study III: GP-Based VLE Modeling for Group of three Binary 
Systems, namely, (i) Ethanol (1) – Ethyl acetate (2), (ii) 1-Propanol 
(1) – Propyl acetate (2), and (iii) 1-Butanol (1) - Butyl acetate (2) 

The objectives of this case study are as follows: 

• To propose a single GP-based optimal model (GP_model-IV) to predict mole 

fractions in vapor phase (��� of the first components of a group of three binary 

systems; these components are: ethanol, 1-propanol, and 1-butanol. It may be 

noted, that (a) the first (second) components of all the three systems are 

homologs of the alcohol (acetate) series, and (b) conventionally, a separate 

model is developed for the VLE prediction pertaining to each binary system. 

• To test the extrapolation ability of the developed GP-based model to predict 

mole fractions in vapor phase (��� of the fourth binary system, namely, 1-

pentanol (1) – pentyl acetate (2). Note that the first and second components of 

this system are the higher homologs of corresponding components of the three 

alcohol-acetate binary systems whose data were considered in developing the 

GP-based model.  

In this study, 130 experimental VLE data points pertaining to the group of above 

stated four binary systems belonging to alcohol-acetate homologous series were 

compiled from DECHEMA, VLE data series (Gmehling and Onken, 1986; Gmehling 

et al., 1986). Details of the experimental data used in the GP model building are given 

in Table 8.A.3.  The GP-based model was developed using combined data of three 

binary systems, namely, (a) ethanol (1) – ethyl acetate (2), (b) 1 – propanol (1) – 

propyl acetate (2),   and (c) 1-butanol (1) – butyl acetate (2). Apart from testing the 

model for its generalization ability using a test set consisting of data of the stated 

three binary systems, the model’s extrapolation ability was tested using a validation 

set consisting of data of the fourth binary system, namely, 1-pentanol (1) –pentyl 

acetate (2).  

For developing the GP-based model for the prediction of mole fraction of first 

components in vapor phase (��′Ö�, following variables and parameters were selected 

as inputs: (i) acentric factor of the first component, namely, ethanol/1-propanol/ 1-

butanol (��) of the binary system, (ii) acentric factor of the second component, 
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namely, ethyl acetate/propyl acetate/butyl acetate (��) of the binary system, (iii) 

liquid phase mole fractions of first components namely, ethanol/1-propanol/1-butanol 

(��) of the binary system, (iv) pressure (P) (�tv), and (v) temperature (T) (K), (see 

Tables 8.4 and 8.A.3, respectively). By implementing the GP procedure described in 

sections 2.2.2 and 8.4.1, the following best data-fitting expression (GP_model-IV) 

yielding high (low) magnitudes of CC (RMSE) in respect of its predictions pertaining 

to both training and test set data was obtained.  

 

�� = 0.03333 + 0.5564 ���� + 1.066 ��~ + 1.736 × 10��¦����� – 0.0009673 ��P  

– 0.004603 T ���                             (8.7) 

 

For fine-tuning of its parameters, this model was subjected to the nonlinear regression 

using Marquardt’s method (Marquardt, 1963), which resulted in following expression 

with small changes in the parameter values: 

 

�� = 0.035 + 0.574 ���� + 1.064��~ + 1.721 × 10��T����� – 0.001��P – 0.005 T ��� 

                                                                                                                         (8.8) 

 

The prediction and generalization performance of GP_ model-IV was compared 

with that of the two activity coefficient models, namely, Van Laar and NRTL, as also 

GP-Marquardt_model-IV. The results of this comparison in terms of CC and RMSE 

values are provided in Table 8.8. Specifically, the stated two statistical measures were 

evaluated considering separately the data of each of the three binary systems, namely, 

(a) ethanol and ethyl acetate, (b) 1 – propanol and  – propyl acetate, and (c) 1-butanol  

– butyl acetate.  It is observed in this table, that predictions made by GP_model-IV 

have yielded high CC (≈ 0.999) and low RMSE values (≈5.30×10-3) in respect of both 

the training and test sets for each of the three binary systems. It is also noticed that 

GP_model-IV possesses better prediction accuracy and generalization capability than 

the activity coefficient models as also GP-Marquardt_model-IV. 
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Table 8.8:    Statistical analysis and comparison of prediction generalization performance of GP_model-IV with other three models for estimation of mole 
fraction of ethanol, 1-propanol, and 1-butanol in vapor phase (��) 

 
Type of model/ binary system Ethanol (1) - Ethyl acetate (2) 1-Propanol(1) - Propyl acetate (2) 1-Butanol (1)-Butyl acetate (2) 

Training set Test set Training set Test set Training set Test set 

		3�� 89:;3�� 		3�3 89:;3�3 		3�� 89:;3�� 		3�3 89:;3�3 		3�� 89:;3�� 		3�3 89:;3�3 
GP_model‒IV 0.998 1.46×10-2 0.998 1.78×10-2 0.999 5.37×10-3 0.999 5.30×10-3 0.999 6.80×10-3 0.998 9.88×10-3 

GP‒Marquardt_model‒IV 0.996 6.06×10-2 0.996 4.94×10-2 0.998 7.73×10-2 0.999 7.30×10-2 0.997 8.15×10-2 0.998 7.62×10-2 

VanLaar_model‒IV 0.999 9.25×10-3 0.998 1.19×10-2 0.999 8.79×10-3 0.999 8.91×10-3 0.998 1.04×10-2 0.998 1.04×10-2 

NRTL_model‒IV 0.999 9.19×10-3 0.998 1.19×10-2 0.999 8.63×10-3 0.999 8.74×10-3 0.998 9.81×10-3 0.998 1.03×10-2 
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Figure 8.4: Parity plot of the experimental versus GP_model-IV predicted mole   

fraction   of ethanol, 1-propanol, 1-butanol, and 1-pentanol in vapor phase 
(��) of case study III 

The prediction and generalization ability of the proposed GP-model is shown 

graphically in terms of the parity plot in Figure 8.4. Here, experimental values of the 

mole fractions of component (1), namely, ethanol, 1-propanol, and 1-butanol in vapor 

phase, (��� are plotted against the corresponding GP_model-IV predicted values in 

respect of training and test set data. Figure 8.4 shows that all the data points of three 

binary systems (utilized in constructing GP_model-IV) are positioned on or close to 

the solid line indicating that model predictions closely match their targets. This figure 

also shows results pertaining to the extrapolation test of GP_model-IV. In the figure 

are plotted the experimental and model predicted values (circle symbol) of the mole 

fraction of 1-pentanol (1) (first component of the fourth binary system). As can be 

observed, there exists a reasonably close match between the experimental values and 

their model predictions, thus supporting the extrapolation ability of GP_model-IV to 

apply the learned trends in the data of three binary systems to make predictions for a 

new binary system.  
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Testing extrapolation ability of the GP_model-IV: Prediction of mole fraction of 

1-pentanol in vapor phase (��) 

 In a special exercise, GP-model-IV was used for extrapolation. Specifically, it 

was utilized to make predictions of the mole fraction of the first component of the 

fourth binary system, namely, 1-pentanol and pentyl acetate. It may be noted that the 

training or test sets used in training and testing the GP-model-IV did not contain data 

of this binary system. The results of extrapolation exercise given in Table 8.9, indicate 

that GP-model-IV possesses a very good extrapolation capability with high magnitude 

for the coefficient of correlation (=0.998) and low magnitude of root mean square 

error (= 4.58×10-2) (refer Table 8.9).  

 

Table 8.9:  Statistical analysis and comparison of prediction generalization performance of 
GP_model-IV with other three models to test its extrapolation capability on 
fourth binary system, namely, 1-pentanol (1) –pentyl acetate (2) to predict 
vapor phase composition of 1-pentanol (y�). 

 

 

 

 

 

 

 

8.5 CONCLUSION 

In this work, an AI-based modeling strategy, namely, genetic programming   has 

been utilized to develop models for the prediction of vapor liquid equilibria. Among 

various CI-based methods, GP possesses several novel and attractive characteristics 

and, yet, it remains an infrequently used data-driven modeling technique when 

compared with ANNs and SVR. In this investigation, three case studies have been 

conducted wherein four models have been developed for the prediction of vapor phase 

composition. The specific systems studied are as follows: (a) a ternary system (case 

study I),  (b) a group of three binary systems wherein first component is common and 

Type of model/ binary system 
for  extrapolation 

1-Pentanol (1) –Pentyl  acetate(2) 

CC 89:; 

GP_model‒IV 0.998 4.58 ×10-2 

GP‒Marquardt_model‒IV 0.998 5.97×10-2 

VanLaar_model‒IV 0.998 6.36×10-3 

NRTL_model‒IV 0.998 6.42×10-3 
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the second components are homologs of an alcohol series (case study II), and (c) a 

group of three binary systems consisting of first and second components belonging to 

alcohol and acetate homologous series (case study III). The predictors of these models 

include temperature, pressure, critical temperature, critical pressure, acentric factor, 

and liquid phase composition. The experimental data from DECHEMA chemistry 

data series were utilized to develop the stated four models. To examine whether 

model parameters could be fine-tuned further, the GP based models were subjected to 

nonlinear parameter estimation using Marquardt’s method.  The performance of the 

GP-based models was compared rigorously with that of a number of classical 

thermodynamic models, namely, Van Laar, Wilson, NRTL, and UNIQUAC as also 

GP-Marquardt models. Prediction accuracies and generalization performance of all 

developed models are verified to be better compared with the available prediction of 

thermodynamic models. Values of correlation coefficient (CC), root mean squared 

error (RMSE) show that in general, the developed GP-based models gives out better 

results than thermodynamic models, namely, Van Laar, Wilson, NRTL, and 

UNIQUAC as also GP- Marquardt’s model for estimation of vapor phase composition 

of ternary and group of binary mixtures.  

The novelty of this study is as follows.  

• A rigorous search of the literature indicates that this is the first study, wherein 

GP strategy has been used innovatively for VLE predictions. 

• A single optimal GP-based model (GP_model-III) has been developed for a 

group of three binary systems—with a common first component—to predict 

vapor phase composition of individual binary system. 

• A single model (GP_model-IV) has been developed for a group of three binary 

systems—with their first and second components belonging to alcohol and 

acetate homologous series, respectively— to predict vapor phase composition 

of individual binary system. Also, the extrapolation capability of the model 

was tested on a totally different binary system containing homologs of alcohol 

and acetate. The results of this case study show that as regards with the three 

binary systems, GP_model-IV possesses an excellent prediction accuracy and 

generalization capability. Moreover, and notably, it also possesses 

extrapolation ability as confirmed by its closely matching predictions of the 
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mole fraction in the vapor phase of a totally different binary system containing 

higher homologs of the alcohol-acetate series.  

• The prediction accuracies of the GP-based models reported here are as good as 

or better than the conventional thermodynamic models used in the VLE 

prediction. Also, GP-based models are less complex (parsimonious), easier to 

grasp, and more convenient to deploy in a practical setting.  

The GP-based VLE modeling approach illustrated here can be gainfully extended to 

develop similar type of models for numerous other industrially important binary and 

ternary systems.   

 

NOMENCLATURE   

tg� critical pressure of  NM(component 

¦g� critical temperature of  NM(component 

�� liquid phase composition of NM(component 

�� vapor phase composition of NM(component 

�� acentric factor of  NM(component 
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Appendix 8.A 

     Table 8.A.1: Data source and ranges of experimental conditions regarding ternary system used in case study-I for generating GP- based model-I and II 
 

System 
Temperature 

(T) (K) 

Pressure 

(P) 

��tv) 

Mole fraction of 

1,2-dichloroethane 

in liquid phase 

(��) 

Mole fraction of 

trichloroethylene 

in liquid phase 

(��) 

Mole fraction of 

1,2-dichloroethane 

in vapor phase 

(��) 

Mole fraction of 

trichloroethylene 

in vapor phase 

(��) 

No of 

data 

patterns 

Reference 

1, 2-dichloroethane (1) 

trichloroethylene (2) 

1-propanol (3) 

352.65-358.55 101.325 0.103 – 0.819 0.051- 0.785 0.156 - 0.797 0.073 – 0.692 58 
Gmehling and 

Onken (1986) 
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Table 8.A.2:  Data source and ranges of experimental conditions regarding three different binary systems used in case study-II for generating GP 
based model-III 

 

System 
Temperature 

(¦) (K) 
Pressure (t� ��tv) 

Mole fraction of 		
� in liquid 
phase, (��) 

Mole fraction of 		
� in vapour 
phase, (y�) 

Number 
of data 
patterns 

Reference 

		
�(1)- ethanol(2) 

318.15 25.695 ‒ 046.792 0.0212 ‒ 0.9541 0.1210 ‒ 0.7822 13 Gmehling and Onken (1986) 

323.15 40.543 ‒ 057.315 0.1000 ‒ 0.9000 0.3370 ‒ 0.7050 09 Gmehling and Onken (1986) 

338.15 64.160 ‒ 101.434 0.0237 ‒ 0.9483 0.1075 ‒ 0.7688 15 Gmehling and Onken (1986) 

		
� (1)- 1-propanol(2) 

293.15 05.179 ‒ 012.739 0.0906 ‒ 0.9030 0.6210 ‒ 0.9240 09 Gmehling and Onken (1986) 

303.15 08.653 ‒ 020.132 0.0906 ‒ 0.9030 0.5670 ‒ 0.9100 09 Gmehling and Onken (1986) 

313.15 14.299 ‒ 030.537 0.0906 ‒ 0.9030 0.5240 ‒ 0.9240 09 Gmehling and Onken (1986) 

343.15 49.183 ‒ 091.966 0.0825 ‒ 0.9630 0.3850 ‒ 0.9130 11 Gmehling and Onken (1986) 

		
�(1)- 1-butanol(2) 308.15 07.613 ‒ 023.398 0.0989 ‒ 0.9934 0.7885 ‒ 0.9923        21 Gmehling et al. (1986) 
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Table 8.A.3: Data source and ranges of experimental conditions regarding four different binary systems used in case study-III for generating GP based 
model-IV 

System 

Pressure 

(t���tv) 

Temperature    

(¦) (K) 

 

Mole fraction of 

component (1) in 

liquid  phase, (��) 

Mole fraction of  

component (1) in 

vapor phase, (��) 

No. of 

data 

patterns 

Reference 

Ethanol (1) ‒ Ethyl acetate (2) 101.325 345.33 ‒349.85 0.101 ‒ 0.8924 0.086 ‒ 0.965 24 Gmehling and Onken (1986) 

1-Propanol (1) ‒ Propyl acetate (2) 101.325 367.85‒371.15 0.136 ‒ 0.9520 0.216 ‒ 0.930 20 Gmehling and Onken (1986) 

079.993 361.21‒363.88 0.162 ‒ 0.9350 0.239 ‒ 0.899 09 Gmehling and Onken (1986) 

053.329 350.22 ‒ 353.03 0.162 ‒ 0.9350 0.232 ‒ 0.889 09 Gmehling and Onken (1986) 

026.66 5 333.13 ‒ 337.17 0.162 ‒ 0.9350 0.215 ‒ 0.874 09 Gmehling and Onken (1986) 

1-Butanol (1) ‒ Butyl acetate (2) 101.325 389.35 ‒ 394.90 0.109 ‒ 0.9950 0.217‒ 0.989 33 Gmehling et al. (1986) 

022.065 349.55 ‒351.45 0.161 ‒ 0.8730 0.210 ‒ 0.807 07 Gmehling et al. (1986) 

006.666 323.85‒327.85 0.180 ‒ 0.9210 0.225 ‒ 0.833 10 Gmehling et al. (1986) 

1-Pentanol(1) ‒ Pentyl acetate(2) 100.765 409.60 ‒413.70 0.456 ‒ 0.8700 0.521 ‒ 0.878 09 Gmehling et al. (1986) 
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Chapter 9  

Thesis Conclusion 

9.1 INTRODUCTION 

In this chapter, the principle findings and conclusions reached thereof of the 

studies presented in this thesis are reported. Additionally, suggestions for the further 

research are presented.  

Mathematical models of chemical reactions and processes are required for a 

variety of tasks in chemical engineering and technology, such as,  prediction of 

reaction’s steady-state and dynamic behavior, equipment design, operation, scale-up, 

control, fault detection and diagnosis, optimization, etc. Conventionally, two 

approaches, namely, phenomenological (first principles/ mechanistic) and empirical 

are employed for chemical process modeling. Modern day chemical processes are 

complex and are difficult to model phenomenologically, since the complete 

knowledge regarding the physico-chemical phenomena underlying their behavior—

which is absolutely necessary for this type of modeling—is usually not available or 

tedious, time-consuming and costly to acquire via experiments. The nonlinear nature 

of chemically reacting systems makes first-principles modeling even more daunting. 

Being not demanding in terms of the availability of mechanistic knowledge, empirical 

modeling is an attractive alternative to first principles modeling; however, it has its 

own drawbacks such as the requirement that the form of the model to be fitted must 

be specified a priori before estimating the function parameters. This is, in general, a 

difficult task since in many chemical processes multiple variables influence the 

nonlinear phenomenon and the precise interactions between them are not fully known.  

Commonly, deterministic gradient-based methods are used in process 

optimization. Invariably, these approaches require that the objective function (to be 

maximized/minimized) must be continuous, differentiable and smooth—a criterion 

difficult to fulfill especially in the case of exclusively data-driven reaction/process 

models. Gradient-based optimization methods also have a tendency to get stuck in a 

local optimum leading to sub-optimal solutions. 

To overcome the stated drawbacks of phenomenological/empirical modeling 

approaches and deterministic optimization techniques, in this thesis artificial 

intelligence (AI) based modeling methods, namely, artificial neural networks (ANN), 
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and genetic programming (GP), and a machine learning (ML) based method termed 

support vector regression, have been employed for modeling a number of complex 

chemical reactions and processes, and developing a property estimation relation. The 

processes for which models have been developed belong to diverse fields, namely, 

thermal energy production, polymers, petroleum, water treatment, and separation 

processes. 

An important application of process models is in optimization. Accordingly,  an 

AI-based hybrid modeling-optimization strategy integrating GP formalism and a 

stochastic optimization method, namely, genetic algorithms (GA) has been used in 

optimizing a resin based adsorptive waste-water treatment process.   

In addition to the novel AI-based modeling and optimization methodologies, 

two conventional methods, namely, principal component analysis (PCA), and 

sensitivity analysis (SA) have been utilized for reducing the dimensionality of the 

models’ input spaces, and identifying influential input variables, respectively.  

In chapters 1 and 2, a broad objective of the thesis, the need for utilizing 

artificial intelligence based modeling and optimization methods, and their detailed 

description are provided. The following section provides the rationale, salient 

features, and highlights of the studies reported in chapters 3 to 8.   

9.2 OVERALL CONCLUSION 

Chapter 3 deals with experimentation and modeling of a coal gasifier using 

artificial intelligence based methods. Coal gasification is a cleaner and an efficient 

alternative to the coal combustion for producing the syngas. The high-ash coals are 

found in a number of countries, and they form an important source for the 

gasification. In India also a major portion of the electricity is generated in coal-based 

thermal power stations. Accordingly, in this study, extensive gasification experiments 

were conducted in a pilot-plant scale fluidized-bed coal gasifier (FBCG) using high-

ash coals from India. Specifically, the effects of eight coal and gasifier process related 

parameters on the four gasification performance variables, namely CO+H2 generation 

rate, syngas production rate, carbon conversion, and heating value of the syngas, were 

rigorously studied. The data collected from these experiments were used in the FBCG 

modeling by utilizing two artificial intelligence (AI) strategies namely genetic 

programming (GP) and artificial neural networks (ANNs). A comparison of the GP 

and ANN-based models reveals that their output prediction accuracies and the 
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generalization performance vary from good to excellent. The novelty of this study is 

that (a) modeling of a coal gasification process wherein  currently mined coal in India 

has been utilized, was conducted using state-of-the-art artificial intelligence systems, 

(b) the models can be used in designing, operating, and optimizing environmentally 

friendly coal gasifiers that use high ash coals, and (c) a rigorous literature search 

shows that this is the first study wherein the GP strategy has been employed for the 

data-driven modeling in the coal sciences and engineering.  

Although high ash coals are routinely used in the energy generation, systematic 

gasification kinetic studies using chars derived from these coals are scarce.  

Accordingly, chapter 4 reports the development of the data-driven models for the 

gasification of chars derived from the high ash coals. Specifically, the models predict 

two significant gasification performance parameters, viz. gasification rate constant, 

and reactivity index. These models have been constructed using three computational 

intelligence (CI) methods, namely genetic programming (GP), multilayer perceptron 

(MLP) neural network (NN), and support vector regression (SVR). The data used in 

the modeling were collected by performing extensive gasification experiments in the 

CO� atmosphere in a thermo-gravimetric analyzer (TGA), using char samples derived 

from Indian coals with high ash content. Values of the stated gasification 

performance parameters were obtained by fitting the experimental data to the 

shrinking un-reacted core (SUC) model. All the CI-based models developed in this 

study possess an excellent prediction accuracy and generalization capability. The 

notable features of this study are: (a) For the first time, models have been developed 

to predict  the kinetic char gasification rate constant (k�), and reactivity index (r�) 
magnitudes corresponding to the gasification of high ash Indian coals being mined 

currently, and (b) phenomenological and AI-based modeling are integrated to predict 

the  char gasification kinetic parameters.  The models developed here can be gainfully 

employed in the design and operation of not only fluidized bed gasifiers but  also of 

fixed bed ones using high ash Indian as also other coals.  Additionally, the models for 

determining the rate constant can be used for predicting the activation energies of the 

coal gasification reactions involving CO� in the temperature range of 900–1050oC. 

Choosing inputs (independent/causal variables) of a mathematical model, which 

are influential and, thus, significantly affect its output (dependent/response variable) 

is a tedious, time consuming and trial and error procedure in conventional empirical 
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modeling.  In Chapter 5, genetic programming-based strategy has been suggested for 

simultaneously identifying the important predictor variables as also searching and 

optimizing an optimal data fitting function and its parameters. The said strategy has 

been illustrated by conducting two process identification case studies wherein the GP 

formalism has been shown to (a) identify the influential time-delayed inputs and 

outputs, and (b) simultaneously perform system identification using these influential 

predictors. The two chemical engineering systems chosen in the case studies are: (i) 

nonlinear height control system for a conical tank, and (ii) adiabatic nonlinear CSTR 

concentration control system.   Chapter 5, clearly establishes that GP method is 

capable of automatically identifying those inputs which significantly influence the 

dependent variable. Thus, efforts involved in identifying the influential inputs are 

greatly reduced.  Additional benefit of GP-based models is that they are in most cases 

less complex owing to which they exhibit better generalization performance than their 

more complex counterparts, such as ANNs and SVR.  The GP-based process 

identification demonstrated in Chapter 5 is significantly useful in implementing model 

based control strategies. 

The API gravity (oAPI) is an important physicochemical property of crude oils. 

It is used routinely in the determination of their quality and properties. In Chapter 6, 

GP, MLP, and SVR methods have been used for developing models for predicting 
oAPI values of crude oils. These models use rarely utilized SARA (Saturates, 

Aromatics, Resins, and Asphaltenes) composition as inputs for the prediction of oAPI 

gravity. It has been observed that all three CI-based nonlinear models possess a better 

°API-value prediction accuracy and generalization capability than the currently 

available only model (Fan and Buckley, 2002) and its improved linear version (the 

modified- Fan and Buckley model). This result clearly indicates that the CI-based 

models are currently the best models for the SARA fractions based prediction of API 

gravity of crude oils.  

Groundwater is an important source of the drinking water globally and often 

contaminated with harmful arsenic metalloid ions. Thus, removal of arsenic has 

gained importance while managing and treating water and wastewater. Chapter 7, 

reports usage of tannin-formaldehyde (TFA), and tannin-aniline-formaldehyde 

(TAFA) resins for the adsorptive removal of As(III) and As(V) ions from the 

contaminated water. Moreover, a fully artificial intelligence based hybrid strategy 

(termed “GP-GA”)  integrating  genetic programming  and genetic algorithms,  has 
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been utilized for the modeling and optimization of resin-based adsorptive removal of 

As(III)/As(V) ions from water and waste-water.  The said strategy has led to 

significant improvements in the resin based adsorptive removal of As(III) and As(V) 

ions  over that observed in experiments before performing  the reaction optimization.  

The hybrid methodology utilized in this study can also be extended for the modeling 

and optimization of other contaminant-removal processes.  

Among various CI-based methods, genetic programming possesses several 

novel and attractive characteristics, and yet it remains an unused data-driven modeling 

technique for VLE predictions when compared with ANNs and SVR. Accordingly, 

Chapter 8 presents a study wherein the GP-based data-driven modeling approach has 

been successfully employed for the first time for predicting the vapor-liquid equilibria 

(VLE) of a ternary and groups of binary mixtures. The predictor variables of these 

models include temperature, pressure, critical temperature, critical pressure, acentric 

factor, and liquid phase composition, whereas the output (response) variable was 

vapor phase composition. The experimental data from various sources were used in 

VLE modeling. Prediction accuracies and generalization performance of all the GP-

based models were verified and found to be better compared with the predictions of 

the existing thermodynamic models, namely, Van Laar, Wilson, NRTL, and 

UNIQUAC.  

The novel features of this study are as follows. 

• A new method of modeling has been successfully applied for VLE predictions. 

• A single optimal GP-based model has been developed for a group of three 

binary systems to predict vapor phase composition; the developed model has 

been used for predicting mole fraction in the vapor phase of first components 

of individual binary systems.  

• A single optimal GP-based model has been developed for a group of three 

binary systems, and the extrapolation capability of the developed model has 

been successfully tested on a different (i.e. fourth) binary system, where the 

four binary systems belong to homologous series of alcohols and acetates. 

The advantage of GP-based VLE models is that  as compared to the 

thermodynamic models these  are less complex, easier to grasp, and more convenient 

to deploy in a practical setting. There exists an enormous scope for applying the GP-

based VLE modeling approach to other binary and ternary systems. 
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9.3  SUGGESTIONS FOR FUTURE RESEARCH 

This thesis presents applications of artificial intelligence (AI) and machine 

learning (ML)  methodologies for process/reaction modeling, process identification, 

property prediction,  and optimization of various chemical systems. Among the three 

AI-based methods used in the stated modeling, GP despite its attractive characteristics 

has been a least used method in chemistry and chemical engineering/technology as 

compared to ANNs and SVR. Its major advantage being depending upon the nature of 

relationship, it is capable of fitting a linear or nonlinear data fitting function and its 

parameters without making any assumptions.  There is still a huge scope for using GP 

in chemical engineering for applications such as VLE prediction of multi-component 

systems, model predictive control (MPC), etc. On the fundamental side, a GP 

algorithm/software capable of solving multiple input – multiple output (MIMO) 

modeling problems does not seem to be available in the open domain or 

commercially.  Availability of such a software/algorithm will make it possible 

simultaneous fitting of multiple data-fitting functions.  

In the thesis, AI-based models have been developed for gasification of Indian 

coals containing a high percentage of ash. These coals are used extensively in 

combustion applications and, thus, AI-based modeling of coal combustion processes 

will be beneficial for industries where the said technology is used in equipment such 

as boilers and steel furnaces. 

 Deep learning algorithms are increasingly used in training of multi-layer ANNs 

with hundreds/thousands of neurons. These are capable of mining huge number of 

data and therefore find applications in computation intensive image recognition, 

speech recognition, robotics, etc.  In chemical engineering/technology, deep learning 

based ANNs can be used in image recognition applications such as recognizing size 

and shape of bubbles in a fluidized bed and identifying flow behavior of liquids and 

fluids.  

To summarize, the potential of AI and ML methods is limit-less. These are 

likely to find ever increasing applications in areas such as plant/equipment  safety, 

emission control, design of new drug and other molecules with desired properties, and 

chemical process centric internet of things (IOT).  

 
 



276 

 

List of Publications 
 

Publications Received from the Work Presented in the Thesis 
 

1. Patil-Shinde, V., Kulkarni, T., Kulkarni, R., Chavan, P. D., Sharma, T., 
Sharma, B. K., Tambe, S. S., and  Kulkarni, B. D. (2014). Artificial 
intelligence-based modeling of high ash coal gasification in a pilot plant scale 
fluidized bed gasifier. Industrial & Engineering Chemistry Research, 53(49), 
18678-18689. 
 

2. Patil-Shinde, V., Saha, S., Sharma, B. K., Tambe, S. S., and  Kulkarni, B. D. 
(2016). High Ash Char Gasification in Thermo-Gravimetric Analyzer and 
Prediction of Gasification Performance Parameters Using Computational 
Intelligence Formalisms. Chemical Engineering Communications, 203(8), 
1029-1044. 
 

3. Verma, D., Goel, P., Patil-Shinde, V., and Tambe, S. S. (2016, January). Use 
genetic programming for selecting predictor variables and modeling in process 
identification. In IEEE explore, 2016 Indian Control Conference (ICC) (pp. 
230-237). IEEE. (ISBN: 978-1-4673-7992-2), doi: 
10.1109/INDIANCC.2016.7441133. 
 

4. Goel, P., Saurabh, K., Patil-Shinde, V., and Tambe, S. S. (2016). Prediction of 
°API Values of Crude Oils by Use of Saturates/Aromatics/Resins/Asphaltenes 
Analysis: Computational-Intelligence-Based Models. SPE Journal, 
doi:10.2118/184391-PA  
 

5. Patil-Shinde, V., Mulani, K. B., Donde, K., Chavan, N. N., Ponrathnam, S., 
and Tambe, S. S. (2016). The Removal of arsenite [As (III)] and arsenate [As 
(V)] ions from wastewater using TFA and TAFA resins: Computational 
intelligence based reaction modeling and optimization. Journal of 
Environmental Chemical Engineering, 4(4), 4275-4286. 
 

6. Patil-Shinde, V., Tambe, S. S. (2016). Genetic programming formalism for 
prediction of vapor-liquid equilibrium. (to be communicated to Fluid phase 
Equilibria ).  

 

 


