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         In this thesis we shall mainly focus on the calculation of properties using 

Fock space multi reference coupled cluster (FSMRCC) method. These 

properties include difference energies, shape resonance of electron molecule 

collision, geometry optimization and analytic gradient. 

Abstract 

         The state-of-the-art single-reference coupled-cluster (SRCC) [1-4] theory 

is one of the most accurate and widely used electronic structure methods for 

studying ground state structure, properties [5-7] and spectroscopy [8] of closed-

shell molecules around equilibrium geometry. Apart from a high-level 

treatment of dynamic electron-correlation, the most attractive feature of SRCC 

method is that it is size-extensive [2] and separates correctly provided the 

reference state is also size-consistent, even at the truncated level, which is not 

true for truncated configuration interaction (CI) method [9].  

        SRCC theory, however, fails to describe properly the electron correlation 

when multiple determinants become equally important for the zeroth order 

description of the wave function. In general, in the case of quasi-degenerate 

situations, such as potential energy surfaces, bond-breaking or making regions, 

open shell systems and low-lying excited states of molecules, where multiple 

reference determinants become equally important, multi reference description 

becomes necessary.  

        MRCC theories can be divided into two classes, e.g., single root MRCC, 

e.g., state specific MRCC [10-15], and multi-root MRCC. We shall focus on 

second class. This theory is based on effective Hamiltonian defined over a 
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small model space. Diagonalizing the effective Hamiltonian within the model 

space [16, 17], we get multiple roots simultaneously. There are two effective 

Hamiltonian based MRCC theories, viz, the state-universal MRCC (SUMRCC) 

or Hilbert space multi reference coupled cluster (HSMRCC) [18] and the 

valence-universal MRCC (VUMRCC) or Fock space multi reference coupled 

cluster (FSMRCC) [19-23]. Both differ in the way the dynamic correlation is 

introduced and hence are suitable for different types of situations. HSMRCC is 

suitable for studying potential energy surface [24]. On the other hand, 

FSMRCC is suitable for the calculation of ionization potential [25], electron 

affinity [26] and excitation energy [22, 27]. In this thesis we shall focus on 

FSMRCC. 

       When there is a collision between electron and atom or molecule, the 

electron gets trapped into one of the virtual orbitals of the atom or a molecule. 

The compound system becomes quasi- bound and the wave function is not 

square integrable. The energy of the system is complex and can be written as:  

                                                         
2rE E i Γ= −   

where, rE  and Γ  are position, and width of the resonance, respectively [28, 

29]. Thus we cannot apply normal bound state methods. To make the wave 

function square integrable, the analytical continuation of the Hamiltonian is 

achieved through complex scaling [29-31] or complex absorbing potential 

(CAP) [32]. FSMRCC method in augmentation with CAP method permits 

direct and simultaneous determination of both resonance position and width 

from the eigen values of an analytically continued Hamiltonian, and has been 



xx 
 

applied successfully to explain various atomic phenomena [32-34]. To study 

the shape resonance for electron-molecule collision we are going to adopt the 

aforesaid method, i.e., FSMRCC method in augmentation with CAP method 

[35].    

       Response properties are obtained by taking derivative of energy with 

respect to perturbation. Derivative of energy can be calculated either 

numerically or analytically.    

       Calculation of response properties using SRCC method was initiated by 

Monkhorst [5]. Since the SRCC method is non variational [1], generalized 

Hellmann-Feynman theorem is not satisfied. As a result, the expression for 

first-order property in SRCC depends explicitly on first derivatives of the 

cluster amplitudes with respect to the external perturbation. Thus, it is 

necessary to calculate the cluster amplitude derivatives for all the modes of 

perturbation. For first-order properties, this apparent problem was overcome by 

Bartlett, et. al., [36] using the idea of algebraic Z-vector method within CC 

frame work which was first applied by Schaefer [37] for configuration 

interaction method. However, application of Z-vector type of approach turns 

out to be tedious for higher-order properties, e.g., hessian, polarizability. 

       A more elegant approach was proposed by Jørgensen and co-workers [38] 

based on constrained variation approach (CVA), using Lagrange undetermined 

multiplier. This method can be easily extended for higher order derivatives 

[38]. The incorporation of the constraint equation using Lagrange multiplier 
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builds in a consequent (2n+1) rule [39] comparable with the stationary 

methods. 

       Study of molecular properties within the MRCC based methods is 

relatively recent. Originally Pal [40] proposed a straight forward derivative 

formulation of the effective Hamiltonian Bloch equation along the lines of 

Monkhorst [5]. However, since this involves first derivative of the wave 

function parameters in the first energy derivative. Subsequent to this Pal and 

co-workers formulated a constrained variation based approach to the MRCC 

problems [41, 42], where Bloch equations are introduced as constraints while 

making a specific root of the effective Hamiltonian stationary. At the same 

time Szalay [43] independently developed similar approach within the 

complete model space (CMS) for Hilbert space approach. However, the 

approach of Pal and co-workers [41, 42] used for general incomplete model 

space (IMS). Later, they made extensive development of theory within the 

FSMRCC approach to evaluate electric properties of excited and ionized states 

of suitable closed shell systems [44]. Thus, in addition to excited states doublet 

radicals have been studied    

         While the energy derivatives with respect to the electric fields has been 

studied [45-47] using Lagrange multiplier in the context of MRCC, there are 

almost no studies of such derivatives within the MRCC approach. In addition 

to Shape resonance, we will use this method to evaluate the analytic gradients 

of doublet radicals. This can be done within the one-valance Fock space 

approach. The thesis will also report optimization of geometry of excited states 
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using one hole and one particle FSMRCC by calculating gradients numerically. 

The thesis is organized as follows: 

         First chapter: A general introduction is proposed leading to the subject 

matter of the thesis. Here, a brief overview of some of the basic concepts and 

developments in single reference coupled cluster theories are presented. Quasi-

degenerate situations and their multi reference treatments are also highlighted. 

Introduction to computation of properties using numeric and analytic approach 

are discussed. We also introduce the idea of complex absorbing potential 

(CAP) and discuss the present status of CAP MRCC approach. We conclude 

the first chapter with the objectives and scope of the thesis. 

         Second chapter: The second chapter deals with shape resonance of 

electron-molecule collision. We present results of shape resonance arising from 

e--F2, N2O and CO collision. We have used correlated independent particle 

Fock space multi reference coupled-cluster augmented with complex absorbing 

potential (CAP-CIP-FSMRCC). 

         Third Chapter: The optimization of geometry is an extremely important 

task in chemistry. It is indeed challenging to find the geometries of excited 

states. No results are available using the MRCC method, which can describe 

the excited states accurately. In this chapter, we have optimized the geometry 

of molecules within the FSMRCC framework using numerical gradients. Low 

lying excited states are dominated by single hole, single particle excitations 

from ground state closed shell molecules have been described in this chapter. 

Excited state gradients are done by calculation of using finite field multi 
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reference coupled cluster method. We also report adiabatic excitation energies 

to confirm the excited state geometries. We report excited state geometries of 

CH+, H2O, O3 and HCHO. 

         Fourth Chapter: Development of analytic gradients within the 

FSMRCC. This is the first attempts of analytic gradients for FSMRCC. In this 

chapter we will give working equations for the analytic gradients of one 

valence problem. 

         Fifth Chapter: In this chapter we shall write general conclusion and 

scope of the thesis.  
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CHAPTER I 

 

Introduction 

 
 I.1. Overview of the thesis: 
       

The goal of quantum chemistry which is derived from quantum physics 

is to explain various phenomena in chemistry like bonding, spectroscopy, 

molecular properties of atoms and molecules [1-3].  

Application of quantum chemical techniques to study molecular 

properties has been developed significantly in last few decades, by involving 

either energy directly or by using derivative of energy. Several methods are 

available in literatures on diverse theoretical, conceptual and computational 

methods that have led to such progress [4–12]. Properties of molecule, viz, 

ionization energy, electron affinity, excitation energy, shape resonace study etc 

can be calculated by involving difference energy. The shape resonance study of 

electron-molecule collision which involves difference of energy has been 

studied in augmentation with complex scaling [13-16], complex absorption 

potential (CAP) [17, 18] and various other methods [19-21] by many bound 

state ab initio quantum mechanical methods [21-31].  

Interpreting certain intermolecular behaviors study of electrical response 

is necessary. Response property calculation involes derivative of energy with 
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respect to perturbation parameters. The electric and magnetic properties have 

been studied by several ab initio quantum mechanical methods [32-47]. The 

electrical and magnetic response properties have also been done earlier by Pal 

et al. [48], Pal and co-workers [49-55] by using highly accurate Fock space and 

Hilbert space multi reference coupled cluster framework. Other than external 

electric or magnetic field another perturbation parameter is change of nuclear 

coordinate. First derivative of energy with respect to coordinate is known as 

gradient. Gradient was first done by Pulay [56] within Hartree-Fock (HF) 

frame work. Now-a-days gradients can be calculated by several highly 

correlated ab initio methods [57-73]. Gradient is most challenging task to 

quantum chemists. On the other hand geometry optimization is the most 

important task to all class of chemists. Optimization of geometry requires first 

and second derivative of energy with respect to change of coordinate. Study of 

excited state geometry optimization has been very recent   

The thesis will mainly focus on studying of the following two different 

properties:  

1)  Shape resonance.  

2) Calculation of response properties, where the change of coordinate is 

the perturbation parameter. 

Working on the first problem is challenging, because the particle is in 

quasi bound state, wave function is not square integrable. Hence, the bound 

state quantum theory is not applicable. However, with the help of complex 

scaling, complex absorption potential method, etc a free particle problem is 
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converted into a bound state problem and bound state quantum chemical 

methods can be applied. 

Working with various response properties has drawn attention, because 

it involves well-defined properties that are intrinsic to molecules, e.g. dipole 

moment, polarizability, hyper-polarizability, gradient, etc. It is important to 

understand these properties in order to explain chemical and physical 

phenomenon.  

Based on the aim of the study, quantum chemistry can be further divided 

into molecular structure [2] and molecular dynamics [74]. Development of the 

molecular structure is very important, because the success of the molecular 

dynamics is dependent on the accuracy of molecular structure theory. 

Hartree-Fock (HF) [2, 75-77] method is the simplest electronic structure 

method. It gives almost 95-99% of total energy. However, Hartree-Fock 

method fails to fulfill the requirements of chemists. Because in chemistry we 

are interested in the difference  energies. To have correct difference energies, it 

is important to calculate both the quantities equally accurately. The small error 

in one can lead to wrong qualitative description. Addition to that HF does not 

include electron correlation of opposite spin, that’s why HF method fails to 

explain bond dissociation of closed shell molecules which fragment into open 

shell. There are several correlated many-body methods, e.g., configuration 

interaction (CI) [78], many-body perturbation theory (MBPT) [79-83] and 

coupled-cluster (CC) [84-87] theory. Correlation energy can also be calculated 

partly using density functional theory (DFT) [88, 89].  
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Full CI is exact and size extensive, but computationally very expensive. 

Truncated CI is neither size-extensive nor size-consistent.  

MBPT is a very powerful method and often yields reasonably good 

results at low order of perturbation, but it suffers from the convergence 

problem. 

DFT is computationally very easy, can even handle big molecules, but 

DFT cannot predict weak interactions accurately.  

On the other hand, CC methods have drawn special attention because of 

size-extensivity and size-consistency (provided the reference is size consistent) 

even at the truncated level. This method is able to treat electron-correlation 

accurately. For these reason CC method serves as an efficient tool for studying 

molecular structure and property [90, 91]. The drawback of this method is that, 

it is computationally expensive for handling big systems (>50 atoms).  

Analytical response approach within the CC framework was initiated by 

Monkhorst [90] and Bartlett and co-workers [91]. Later this method has 

explored as an efficient technique to study the energy derivatives.  

For degenerate and quasi-degenerate states, where various determinants 

contribute equally, single reference description fails. Non-dynamic electron 

correlation, in general, is taken care through the linear combination of multi-

determinants and hence, they are commonly known as multi-reference (MR) 

theory. Analogous to SR methods, this includes multi-reference configuration 

interaction (MRCI) [92], multi-reference Møller-Plesset perturbation method 

(MRMP) [93-96], multi-reference density functional theory (MRDFT) [97], 
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multi-reference coupled cluster (MRCC) [98-100] theory etc. Multi reference 

methods include dynamical electron correlation in the similar way to their 

corresponding SR analogues.  

MRCC method are further divided into two classes. First one describes a 

specific root and is known as the state-specific (SS) MRCC approach [101-

107] and another is multi-root description. The multi root description methods 

are based on effective Hamiltonian approach [108]. Effective Hamiltonian is 

defined over a smaller space called model space. The diagonalization of the 

effective Hamiltonian within model space gives exact eigen values. Depending 

on the way the dynamic correlation is described [107, 109-117], these methods 

are further divided into Hilbert space (HS) [118] and Fock space (FS) [99, 113, 

114, 119, 120] approach. In the HS approach, a state universal wave operator is 

introduced. The state universal wave operator contains different cluster 

operators for each of the determinants in the model space [99, 113, 114]. This 

method is widely applied for the study of potential energy surface (PES) 

[107a]. The HSMRCC method suffers seriously from intruder state problem, 

which arises when a determinant outside the model (reference) space is 

energetically almost degenerate to the state within the model space at some 

point on a potential energy surface. Intruder state problem can destroy the 

convergence of multi-reference, multi root procedure. It can even lead to 

unphysical features on computed potential energy surface. For multi reference 

problems Mukherjee et al. [101] developed state selective MRCC method for 

PES study. Their method is suitable from the point of view to overcome the 
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intruder state problem. On the other hand for studying ionization [111], 

electron-attachment [121] and electronic excitation [117] of molecules Fock-

space (FS) MRCC is suitable. This method is based on the concept of common 

vacuum and valence-universal wave-operator. Within Fock Space frame-work, 

the model space consists of different configurations, which are obtained by 

linear combination of electron occupancies among active orbitals. These 

occupancies of the active orbitals are denoted in terms of number of the active 

particles and active holes with respect to the vacuum. To eliminate intruder 

states in a computationally efficient manner Malrieu [108a] proposed effective 

FS Hamiltonian scheme. Meissner [107] implemented the method.  

Single reference methods like equation-of-motion (EOM) CC (EOM-

CC) [122-126], coupled cluster linear response (CC-LR) [127, 128], symmetry-

adapted cluster configuration interaction (SAC-CI) [129, 130] etc. have also 

been developed to handle certain classes of quasi-degeneracy but within the 

single reference frame work. EOM-CC method is suitable for ionized, electron 

attached and excited states of molecules [131-139]. For one valance problem, 

i.e., ionization potential (IP), electron affinity (EA) EOM-CC and FSMRCC 

are equivalent. However, such equivalency vanishes in higher valence sectors. 

Nooijen et al. [135, 136] have recently developed similarity transformed (ST) 

EOM-CC method. STEOM-CC method is size extensive. Jørgensen, et al., 

[127] developed CC-LR method and is widely used for calculation of 

excitation energies. The EOM-CC and CC-LR excitation energies are identical. 

Within the EOM-CC framework derivative of energy for the calculation of 
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property was formulated by Stanton [140]. Stanton and Gauss [141, 142] 

implemented derivative EOM-CC for calculation of property. Calculation of 

gradients within the STEOM-CC framework using a Lagrange undetermined 

multiplier was implemented by Nooijen et al. [143]. Still now energy 

derivatives in the context of MRCC methods is still a challenge. Pal [144] 

introduced a straight forward formulation for derivative of energy within 

MRCC framework. The method is based on Monkhorst’s SRCC linear 

response approach [90]. Ajitha et al. [145, 146, 49, 50] developed 

computational algorithm for electrical response and applied for dipole moments 

of doublet radicals, low-lying excited states of molecules. In this approach 

derivative of energy need the evaluation of derivative cluster amplitude. In the 

SRCC framework, problem of derivative of amplitude was solved by 

incorporation of the Z-vector technique [147] or by using the constrained 

variational approach (CVA) [148, 149]. Szalay [67] has formulated CVA based 

energy derivative for EOM-CC, HSMRCC and FSMRCC within the complete 

model space (CMS). Pal, et al, [51, 150] proposed a formulation for derivative 

of energy within the FSMRCC [51b] and HSMRCC [51a] frame work, using 

Lagrange functional. Manohar et al. [53, 151] implemented CVA approach 

within FSMRCC framework for dipole moment and polarizability of doublet 

radicals and excited state molecules. 

The focus of the thesis is mainly on calculation of response properties 

using Fock space multi-reference coupled cluster approach. 
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Electronic resonance is a well known phenomena of quantum theory. 

This phenomenon is observed when there is a collision between an electron and 

an atom or molecule. The electron gets trapped into a virtual orbital. The 

compound system becomes quasi-bound and the wave function loses its square 

integrability. Thus, the bound state methods cannot be used to describe the 

quasi bound problem. By introducing complex scaling [13-16] or complex 

absorption potential (CAP) [17, 18] the analytic continuation of the 

Hamiltonian can be achieved. Sajeev et al. [31] have introduced the correlated 

independent particle Fock space multi reference coupled cluster in 

augmentation with CAP (CAP-CIP-FSMRCC) to solve the resonance problem 

within the FSMRCC framework. 

The organization of thesis is as follows: 

First chapter: A general introduction is given leading to the subject 

matter of the thesis. In this chapter a brief overview of some of the basic 

concepts and developments in single reference coupled cluster theories are 

presented. Quasi-degenerate situations and their multi reference treatments are 

also highlighted. Introduction to computation of properties using numeric and 

analytic approach are discussed. We also introduce the idea of complex 

absorbing potential (CAP) and discuss the present status of CAP-FSMRCC 

approach. We conclude the first chapter with the objectives and scope of the 

thesis. 

Second chapter: The second chapter deals with shape resonance of 

electron-molecule collision. We present results of shape resonance arising from 
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e--F2, N2O and CO collision. We have used correlated independent particle 

Fock space multi reference coupled-cluster augmented with complex absorbing 

potential (CAP-CIP-FSMRCC). 

Third Chapter: The optimization of geometry is an extremely 

important task in chemistry. It is indeed challenging to find the geometries of 

excited states. No results are available using the MRCC method, which can 

describe the excited states accurately. In this chapter, we have optimized the 

geometry of molecules within the FSMRCC framework using numerical 

gradients. Low lying excited states are dominated by one hole, one particle 

excitations of closed shell molecules have been described in this chapter. We 

also report adiabatic excitation energies to confirm the excited state geometries. 

We report excited state geometries of CH+, H2O, O3 and HCHO. 

Fourth Chapter: In this chapter we have developed the expressions for 

the analytic gradients using Fock space multi-reference coupled cluster 

(FSMRCC) theory. The expressions are given for one valance problem. Using 

Lagrange formulation equation for gradients are derived.    

Fifth Chapter: In this chapter we shall write general conclusion and 

scope of the thesis. We shall discuss about the future prospects of the methods 

developed in the thesis. 
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I.2. Condition to be fulfilled by good theory:  

The method should satisfy some basic conditions, such that it may be 

considered as a ‘theoretical model’ for electronic structure calculations. Pople 

et al. [152] proposed some criteria for a ‘theoretical model’ for electronic 

structure calculations and Bartlett [85] improved that. We shall briefly discuss 

them below: 

1. The method should be independent of molecular systems, electronic 

configurations and symmetry. 

2. The method should be invariant with respect to classes of 

transformation. Unitary transformations should not alter the orbital degeneracy. 

3. The method should be size-consistent. A method is said to be size-

consistent if energy obtained by its implementation on a system of several 

molecules at non-interacting limit is same as the sum of the energies obtained 

by separate implementations of the method on these molecules. 

4. The method should be size-extensive which means energy of a 

strongly interacting many-electron system for a given potential should be 

approximately proportional to number of electrons in the system. 

5. The method should be computationally cost effective and efficient. 

The necessary and sufficient conditions for a theoretical method to be 

good are that, the method should fulfill size-consistency and size-extensivity 

criteria. Another most important criteria is efficiency and accuracy of the 

theoretical method. To develop a good theoretical model for calculating energy, 
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these conditions should be satisfied not only in ground state as well as excited 

state and open shell systems also.  

 

I.3. Size consistency and size extensivity: 

I.3.A. Size consistency: 

Pople, [152] and Bartlett [85] defined the term size-consistency. Size 

consistency of a method refers to its behavior. It is applied to a collection of N 

non-interacting monomers. Size-consistency is defined as additive separability 

of the energy during dissociation, e.g., let us take a molecule AB, which 

dissociates into its fragment molecule A and B. If we calculate the energy of 

AB, A and B in a particular method, this method is can be designated as size-

consistent, only when 

                                                AB A BE  E  E= +                                          (I.1) 

is satisfied, and the corresponding wave function should be: 

                                                AB A B Ψ = Ψ Ψ                                           (I.2) 

From the above explanation it is self defined that a self consistent 

method can predict qualitatively correct dissociation curve.  

 

I.3.B. Size extensivity: 

Another criterion for being a good theoretical method is size extensivity. 

Size extensivity is related to mathematical scaling of the energy of the system, 

with number of electrons [98, 109, 153, 154]. A theoretical method can be 
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called size extensive, if the energy of a many electron system, calculated with 

the method, even in the presence of interactions, is proportional to the number 

of electrons N. The size extensivity is especially important for electron 

correlation methods. If a method is not size-extensive, the error in correlation 

energy shows either sub-linear or super-linear dependence on the number of 

electrons, i.e. size of the system. In the former case, fraction of the exact 

correlation energy recovered per electron decreases as the size of the system 

increases, at zero correlation energy in the limit N →∞ . In the later case the 

same fraction increases with the system size, leading to prediction of infinite 

correlation energy per electron as N →∞ . Therefore, all non-size-extensive 

methods show progressively unphysical behavior as size of the system 

increases. Size-extensive methods are considered to be particularly appropriate 

for large systems, as they strive to recover a roughly constant fraction of exact 

energy with increasing system size.      

 

I.4. Second quantization: 

Development of second quantization formalism, Feynman’s 

diagrammatic representation [155], etc, accelerate the development of quantum 

field theory. 

In Second quantization formalism the anti-symmetry property of wave 

function is converted into algebraic properties of certain operators. No new 

insight in physics is introduced by second quantization, but second quantization 

shows another way to treat the many-electron systems in a different manner. In 
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second quantization much emphasis is given on one and two-electron integrals, 

i.e. ˆi h j  and ˆij g kl  rather than from N electron wave function. Here we 

shall give a little overview of the method. For details please see ref. [155-157]. 

While treating the quantization of radiation fields Dirac introduced the 

concepts of second quantization formalism. It is applied in non-relativistic 

Schrödinger equation to describe matter field, then it became necessary to 

reformulate the quantum theory of identical many-particles, with an implicit 

incorporation of the symmetry or anti-symmetry principle associated with the 

particles. Here two terms are introduced, viz, quanta creation operator and 

quanta annihilation operators.  

In the many-electron problem in quantum chemistry to describe second 

quantization complete orthonormal spin-orbitals ( ){ }i xχ  are considered. For 

each spin-orbital, iχ , two operators, viz., creation operator †
ˆia  and annihilation 

operator ˆia . †
ˆia operates on an N-electron determinant which does not contain 

iχ , it generates an (N+1)-electron system, not only that, it also contains iχ  

orbital also. On the other hand ˆia  operates on an N-electron system, but here 

the N-electron determinant contains iχ  orbital, then it annihilates ith electron 

and generates an (N-1)-electron system, which does not contain iχ . 

Mathematical representations of creation and annihilation operators are: 

                                                †ˆ ... ...i k l i k la χ χ χ χ χ=                              (I.3)                        

                                                ˆ .... ....
i i k l k la χ χ χ χ χ=                            (I.4)  
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NOTE: From now onward ‘^’ will be dropped for operators, e.g., â  will be 

written as a  

When there is no hole or particle, then that state is called vacuum state and is 

denoted by vac  and postulated to exist with the following properties: 

                                                †
i ia vac χ=                                            (I.5) 

                                                i ia vacχ =                                             (I.6)     

                                                1vac vac =                                             (I.7) 

                                                † 0i ia vac vac a= =                                  (I.8)         

Since the spin-orbitals are orthonormal, that’s why the creation and 

annihilation operators associated with an orbital are adjoint to each other and 

the determinants are anti-symmetric with respect to exchange of two orbitals. 

Creation operators of two orthonormal orbitals are anti commutator of each 

other. On the other hand, a pair of operators consisting of a creation and an 

annihilation operator follows the following anti commutation relation: 

                                                { }† † † † † †, 0i j j i i ja a a a a a+ = =                           (I.9)              

                                                { }, 0i j j i i ja a a a a a+ = =                             (I.10)  

                                                { }† † †,i j j i i j ija a a a a a δ+ = =                          (I.11) 

If i j= , then it can be proved that the term would not survive, i.e., we cannot 

create or annihilate two electron in same spin orbital iχ , which restates the 

Pauli’s exclusion principle.   

Let us have a set of creation operator and we start with vacuum state and 

successively creating electrons in different orbitals by using the set of creation 
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operator. We can generate any determinant with a given number of electrons by 

using this string of creation operators. The linear vector space spanned by 

determinants with different number of electrons including vacuum state is 

known as Fock-space [158, 159]. Creation and annihilation operators can act 

within Fock space. Any determinant IΦ  in Fock-space can be represented by 

sequence of creation operators acting on the vacuum, i.e.  

                                                † † †....I i j ka a a va cΦ =                                   (I.12)                      

The algebra of all linear operators on Fock-space is spanned by all possible 

distinct product operators { }† † †... ...i j k l m na a a a a a  are obtained by taking product of a 

string of creation { }† † †...i j ka a a  and annihilation operators { }...l m na a a  [158].  

In terms of second quantization electronic Hamiltonian can be 

represented as: 

                                                 

†

,

† †

,
,

1
2

el i k
i k

i j k l
i j
k l

H i h k a a

ij g kl a a a a

= +∑

∑

                              (I.13)                  

Where, i h k  and ij g kl  are one electron and two electron integral terms, 

respectively and can be expressed as: 

                                         
( ) ( )

( ) ( ) ( ) ( )

*
1 1

* *
1 2 1 2 1 2

i k

i j k k

i h k x h x d x

ij g kl x x h x x dx dx

χ χ

χ χ χ χ

=

=

∫

∫

  

     
(I.14)         

NOTE: From now onward ‘→ ’ will be dropped for operators, e.g., x  will 

be written as x       
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By using the normal ordering [81, 159] method and commutation rule, 

the matrix elements of second quantized operators between any two 

determinants can be evaluated. Normal ordering is defined as if the string of 

annihilation operators precede the creation operators, e.g. in Equation (I.13), 

the creation operators came first followed by the annihilation operators. By 

convention, the annihilation operators are written in the right of a creation 

operator, when they are associated with the same spin orbital and generate two 

terms, where the first term is known as contraction term and the second term 

consists of two creation-annihilation operators in anti-commutation form. The 

process of moving the annihilation operators to the right is continued for the 

left over operator sequences in both the terms until fully normal-order (full 

contraction) is achieved. When all the annihilation and creation operators are 

fully contracted, then the vacuum expectation value of a normal ordered 

operator will vanish, even the matrix elements are non-zero. Wick’s theorem 

[159] explained the process in a simplified manner. Statement of Wick’s 

theorem is, “any general operator sequence A is equal to sum of its normal 

ordered form {A} and normal-ordered form { }

A  of its all possible contracted 

terms.” Thus, in terms of mathematics: 

                                         { } { }


A A A= +                                                   (I.15)                     

From Wick’s theorem we can tell that the product of two normal-ordered 

operators X and Y are given as follows: 

                                         { } { }


XY XY XY= +                                            (I.16)     
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Second term of right hand side of Equation (I.16) represents the normal-

ordered form of product X and Y with all the possible contraction between 

them, excluding self-contractions. Normal ordering and Wick’s theorem lead to 

diagrammatic representation of matrix element evaluation. A normal ordered 

Hamiltonian Equation. (I.13) can be diagrammatically represented by using a 

vertex to represent its matrix element, such as: ij g kl . Normal ordered 

operator sequence associated with the matrix element can be represented by 

attaching certain labeled directed lines to the vertex. Annihilation operators are 

represented by upward directed lines coming into the vertex and the creation 

operators are represented by upward directed lines going out of the vertex.   

The generalized Wick’s theorem (Equation (I.16)) can be represented 

diagrammatically by putting X on top of Y. A contraction between X and Y is 

represented by a line joining an outgoing line on X, with an incoming line on Y 

with a matching orbital label. The second part of Equation (I.16) can be 

represented by drawing all possible connected graphs with lines connecting 

vertices of X and Y. These lines are called internal lines. Similarly, the first 

term can be represented by all disjoint diagrams without any connection 

between two vertices. The desired matrix element is obtained by selecting 

graphs with a set of external incoming lines matching the occupied orbitals on 

the left side determinant. 

Concept of normal ordering, Wick’s theorem and diagrammatic 

representation can easily be extended to hole-particle operators [81]. When 
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normal ordering with respect to 0Φ  is considered, the electronic Hamiltonian 

Equation (I.13) can be expressed as: 

                                  

{ } { }

( )

0

0 0 0

† † †

, , ,
,

1
2

el N

el

N i j i k l j
i j i j

k l

a

H H H

H H

H i h j a a ik g jl a a a a

i u j i h j ia g ja ia g aj
∈Φ

= +

= Φ Φ

= +

= + −

∑ ∑

∑

      (I.17)            

The curly bracket represents the normal-ordering of enclosed sequence 

of operators with respect to 0Φ . 0H  and NH  are vacuum expectation value and 

normal-ordered form of electronic Hamiltonian, respectively. In diagrammatic 

notation, the holes and particles are represented by downward and upward 

directed lines, respectively. Hole creation and annihilation operators are 

represented by hole lines terminating or originating from the operator vertex. 

Thus, the generalized Wick’s theorem can be used to obtain diagrammatic 

representation of operator products and their matrix elements between any two 

arbitrary determinants.  

The advantages of using second quantization method are as follows: 

1) The anti-symmetry principle is easily incorporated into the picture. 

2) The second quantized operators are suitable to describe those where 

number of electron changes, e.g., ionization, electron affinity, etc, because the 

second quantized operators are independent of number of electrons. 
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3) Wick’s theorem and associated diagrammatic representations 

simplify the implementation of the method and help to monitor their size-

extensivity. 

 

I.5. Hartree-Fock theory:  

From assumptions of quantum mechanics the atoms and the molecules 

are in bound state formed by an equally attractive and repulsive 

electromagnetic interaction in the sea of electrons and heavy nuclei is moving.  

To describe an atom or a molecule by quantum mechanics, it is 

necessary to solve the corresponding time-independent Schrödinger equation to 

determine wave-function (Ψ) [1, 2] of the system, which is: 

                                         H εΨ = Ψ                                                    (I.18) 

H  is the Hamiltonian operator. H  consists of  kinetic energy of 

constituent particles and potential energy resulted out from various interactions 

among them. These interactions are of two types, one is attractive interaction, 

arises because of interaction between opposite charged particles, like attractive 

interaction between electron and nucleus and another is repulsive interaction, 

arises because of interaction between same charged particle, e.g., electron-

electron repulsion, nucleus-nucleus repulsion.  

For a molecule consisting of M proton and N electrons. The 

Hamiltonian can be written as: 

     2 2

1 1 1 1

1 1 1
2 2

M N N M
A

A i
A i i AA i A

ZH
M r R= = = =

= − ∇ − ∇ −
−∑ ∑ ∑∑

, ,

1N N
A B

i j A B A Bi j
i j A B

Z Z
R Rr r

< <

+ +
−−∑ ∑     (I.19) 
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The first two terms of right hand side of Equation (I.19) are the kinetic 

energy of the nuclei and electron, respectively. AR  and ir  are the spatial 

coordinates of nuclei A and electron i , respectively. The third term is 

electrostatic energy of attraction between electron i and nucleus A, AZ  is the 

charge of nucleus A. Among the five terms, first three terms represent 

attractive force, so come with a negative sign. On the other hand the last two 

terms are repulsive force, so sign is positive. Between the last two terms the 

first one is repulsive electrostatic force between electron i  and j , the 

restriction i j<  is imposed to avoid double counting another option is to 

multiply by a factor 1 / 2 . Same is imposed for the last term, which arises 

because of electrostatic repulsion between nucleus A and B, of charge AZ  and 

BZ . Ψ  is the wave function of the system and is a function of space and spin 

coordinates of nuclei, denoting the combined space-spin coordinate of ith 

electron by ( , )i i ix r ξ= . Where, iξ , is the spin of ith electron. The N electron-M 

nuclear system wave function (Ψ ) can be represented as: 

                                         
1

( ,...., , ,...., )
NA MR R x xΨ  

Solution of the eigen value equation (I.18), gives stationary state energies and 

wave-functions. When no external perturbation is applied, then, the atoms and 

molecules are assumed to be in one of these stationary states, which are 

considered as the ground state.  

Solution of Equation (I.18) is exactly solvable only for hydrogen atom, 

which contains only one electron and one nucleus, but it is not so simple for 

many electron systems. Thus, some approximations are necessary. 
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The nucleus is much heavier compared to electrons, so the velocity of 

the nuclei should be much lower than that of electrons. Thus, we can say that 

the motion of the nuclei can be frozen during electronic motion. This 

approximation is popularly known as the Born-Oppenheimer (BO) 

approximation  [2, 160, 161]. Thus by using BO approximation we can drop 

the first and last term of equation (I.19). The rest term of the total Hamiltonian 

can be considered as electronic Hamiltonian ( elH ), and can be expressed as: 

                                         ( )
1

( )
N N

el i i j
i i j

H h r g r r
= <

= + −∑ ∑                                 (I.20) 

Where, ( )ih r  and ( )i jg r r−  are represented as: 

           

( )

2

1

1( )
2

1

i A

M
A

i i
A

i j
i j

Zh r
r R

g r r
r r

=

= − ∇ −
−

− =
−

∑

                                   (I.21)                                                         

In Equation (I.20), the first term is known as one body operator and represents 

the coordinate of electron i , ( )ih r  is known as core operator and represents the 

Hamiltonian of an individual electron at the given nuclear configuration, no 

other interaction term is considered. The Second terms is the known as 

electrostatic repulsion force between electron i  and j . It is a two-body 

operator. Solution of Equation (I.18) at a fixed nuclear geometry, with the 

above Hamiltonian, used in Equation (I.20) gives wave functions 

1 1( ,...., ; ,...., )
Nel Mx x R RΨ  for different electronic states with corresponding 
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electronic energies. 1( ,...., )el ME R R . Addition of nuclear terms to electronic 

energy provides an potential energy surface (PES) [2, 161]. 

The BO approximation is important in quantum chemistry in the sense 

that it simplifies the complicated problem of involving many nuclei and 

electrons to many electron problem at a fixed geometry. By introducing the 

concept of PES, it serves to bring back the picture of molecule as formation of 

chemical bonds in between constituent atoms and of chemical reactions as 

occurring on an energy landscape. 

The term ix , depends not only on spatial coordinate, it is also dependent 

on spin part also. From Pauli’s exclusion principle we know that, no two 

electrons can have same quantum number. Thus in a spatial orbital maximum 

two electrons can be accommodated. Since electrons are Fermions, that’s why 

electrons are antisymmetric with respect to interchange of space-spin 

coordinates of any two electron. Mathematically antisymmetry can be 

represented as: 

                                          1 2 2 1( , ,...., ) ( , ,...., )N Nx x x x x xΨ = −Ψ                        (I.22)              

Instead of above representation, we can represent same in determinant form, 

which is popularly known as Slater determinant, and can be written as: 

                              

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

1 2

2

1 2

1 1 1 1

2 2 2

1

.......

.......
1 .. .. ..( , ,..., )

! .. .. ..
.. .. ..

....

N

N

N

NN N N

x x x

x x x

x x x
N

x x x

χ χ χ

χ χ χ

χ χ χ

Ψ =              (I.23)   
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In short hand notation we can express a normalized Slater determinant as: 

                              ( ) ( ) ( )
21 2 1

1( , ,...., ) , ,....,
!I N i j k Nx x x x x x

N
χ χ χΨ =          (I.24) 

Here the normalization constant is included, and shows the diagonal elements 

of the determinant. 

In BO approximation, we have shown that in Equation (I.19), an inter 

electronic repulsion term is present, making the solution of the equation 

complicated, by containing ( ) 1

i jr r
−

− term, which can never can be represented 

as: ( ) ( ) 11
i jr r

−− − . For this reason the Hamiltonian cannot be written as: 

i jH H H= + , to handle this term, we have to adopt further approximations.  

The Hartree-Fock (HF) approximation [2, 75, 76] is a mile stone in 

electronic structure theory to describe an approximate solution of the electronic 

part of the Schrödinger equation. In the HF method the 1 / ijr   term is handled 

very brilliantly. 

The basis of the HF theory is that, the stationary states of many 

electronic systems, particularly in the ground state of a closed shell (All the 

electrons are paired) atoms and molecules can be described by single Slater 

determinant Equation (I.24) 

                               ( ) ( ) ( )
21 2 1

1( , ,...., ) , ,....,
!I N i j k Nx x x x x x

N
χ χ χΨ =

                     

In this approximation each electrons are assumed to be independent of 

each other, i.e., electrons are assumed to move in a spherically averaged inter 

electronic repulsion potential. This approximation takes care of 1 / ijr  part. The 
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HF method is known as independent particle model. The spin orbitals are 

approximately varied by constraining them only to the extent that they remain 

orthonormal, i.e. |a b abχ χ δ= , until the minimum energy is achieved. In this 

way we get the best spin orbitals, which minimizes the energy. This procedure 

leads to integro-differential equations, which is known as Hartree-Fock 

equations. To make the electronic energy ( )0 0elHΦ Φ  stationary. In the HF 

equation the Fock matrix ( ( )f x ) is consisted by two parts:  

(1) one electron operator, it includes kinetic energy of electron ( eT ) and 

potential energy of electron with nucleus ( neV ). 

(2) two electron operator ( ( )HFV x ). The two electron operator takes care 

of the most important 1 / ijr  term. The Hartree-Fock equation can be written as 

follows: 

                                         ( ) ( ) ( )a a af x x xχ ε χ=                                            (I.25)      

                                       
( ) ( )

2

1

1
2

e ne HF

M
A

HF
A A

f x T V V x

Z V
r R=

= + +

= − ∇ − +
−∑

                             (I.26) 

                                        ( ) ( ) ( )
1 1

N N

HF j j
j j

V x J x K x
= =

= +∑ ∑                                 (I.27) 

                                       ( ) ( ) ( ) ( ) ( )
*

' ' '
'

j j
j i i

x x
J x x dx x

x x
χ χ

χ χ=
−∫                      (I.28) 

                                       ( ) ( ) ( ) ( ) ( )
* ' '

'
'

j i
j i j

x x
K x x dx x

x x
χ χ

χ χ=
−∫                     (I.29) 



25 
 

( )f x  is the Fock operator [2]. ( )HFV x  is the Hartree-Fock potential. ( )HFV x  

consists of two parts: (1) The Coulomb term and (2) The exchange term.  

The Coulomb term is expressed by ( )jJ x . Expression of ( )jJ x  is given 

in Equation (I.28). Physical significance of Coulomb term is that, it is a 

spherically averaged potential experienced by an electron due to motion of all 

the other electrons.  

The exchange term is denoted as: ( )jK x . The expression of ( )jK x  is 

given in Equation (I.29). There is no counterpart in classical mechanics 

regarding the physical significance of exchange potential. Since wave function 

is antisymmetric in nature so the exchange term is introduced in quantum 

mechanics.   

In the integro-differential HF method, Equation (I.25), ( )a xχ  exists in 

the both side. Thus, to solve the equation iterative procedure is adopted [2]. To 

solve this equation, an initial guess of spin orbitals is used to calculate the 

approximate HF potential. Fock matrix is used to obtain a new set of spin-

orbitals. This procedure is repeated until some self-consistency is achieved 

between successive iteration. That’s why this method is known as self 

consistent field (SCF) method. 

When Equation (I.25) to Equation (I.29) are solved, yields an 

orthonormal set of spin orbitals. ( ), 1, 2,....,i iχ = ∞ , with corresponding orbital 

energy iε . The N spin orbitals ( ), 1, 2,....,a a Nχ = , with lowest energies are 

referred to as occupied orbitals (hole), and the remaining set of spin-orbitals 
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( ), 1,....,r r Nχ = + ∞ , are referred to as unoccupied or virtual orbitals (particles). 

Slater determinant consists of occupied spin-orbitals is the HF wave-function 

that approximates a stationary state of the Hamiltonian.  

The HF approximation is in good agreement for ground state of non-

degenerate many-electron systems and equations are exactly solvable as non-

linear integro-differential equations only for atoms [2]. For molecules, orbitals 

involved are centered at different nuclei. For this reason the explicit two-

electron interaction term is difficult.  

To overcome this problem, Roothan [77] introduced the concept of 

expansion of basis set functions, which is a finite set of spatial basis functions 

( ){ }, 1,..,r kµφ µ = . Basis functions are introduced to expand the spatial part of 

the spin-orbitals, which converts an integro-differential form of HF equation 

into a matrix eigen value HF equation for the expansion coefficient. Using 

iterative SCF procedure the equations are solved. Based on different forms of 

spin orbitals, several varieties of HF methods came out, e.g., restricted Hartee 

Fock (RHF) came into picture by imposing the restriction of spin-orbitals, 

obtained by associating different spin-functions to a set of spatial orbitals. The 

closed shell HF determinant is referred to as closed shell RHF method. In open 

shell systems unpaired electron(s) is present in the system and known as 

restricted open shell HF (ROHF) method. On the other hand, use of 

unrestricted set of orbitals results in unrestricted HF method. RHF or ROHF 

determinant is purely an eigen function of total spin operator 2S , whereas, 

UHF determinant is not in general.  
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The advantage of HF approximation is that it replaces the complicated 

many-electron problem to an independent particle picture by treating electron 

repulsion in a spherically average manner, leading to very popular molecular 

orbital (MO) theory, where electrons occupy different orbitals. This is the first 

accurate approximate method to approach modern quantum chemistry. 

Although HF method gives 95-98% accurate exact ground state energy, 

but the interest of chemists are in taking the difference of energy, which leads 

to higher percentage of error. Other than this, there are some other draw backs 

of HF method. The drawbacks of the HF methods are as follows:  

1) HF method cannot account for the instantaneous electron repulsion. 

2) HF method is very good to explain the ground state energy and 

properties of molecules, but it fails to explain the excited state and quasi 

degenerate states of molecules.  

A very good example, where HF theory fails is that, it wrongly predicts 

the ionization energy of nitrogen molecule; even qualitatively it fails to explain 

properly.  

That’s why we have to search for better method.  

 

I.6. Correlation energy:  

As of our earlier discussion the energy obtained from HF method cannot 

give exact energy. Thus, there is a difference between exact energy and HF 

energy. This difference of energy is called as correlation energy. 

                                        0 0corrE Eε= −                                                         (I.30) 
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corrE , 0ε , 0E  are correlation energy, exact energy and HF energy, respectively.  

The correlation energy is responsible for optical and chemical properties 

and can be compared to binding energy of outer valance electrons. Before 

discussing details about properties of molecules we shall first discuss about the 

various methods to calculate the correlation energies. Configuration interaction 

(CI) [2, 78, 162], many body perturbation theory (MBPT) [79-83], coupled 

cluster (CC) theory [84-87, 163], density functional theory (DFT) [88, 89] are 

the commonly used technique to calculate the correlation energy. 

In the next sub-sections we shall give an outline about the fully 

correlated methods. We can classify the methods available to calculate 

correlation energies in the following manner:  

A) Variation method, e.g., configuration interaction (CI) method, 

independent electron pair approximation (IEPA), coupled electron pair 

approximation (CEPA).  

B)  Perturbative method, e.g., many-body perturbation theory (MBPT).  

C) Neither variational, nor perturbative (non-variational, non-

perturbative) method, e.g., coupled cluster (CC) method.  

 

I.6. A. Variational method: configuration interaction (CI) 

method: 

Conceptually most simple method to calculate the correlation energy is 

configuration interaction (CI) method [2, 78, 162]. From HF theory we get a set 

of orthonormal orbitals as eigen functions of the Fock operator. For an N-



29 
 

electron system, the exact wave function can be obtained by a linear 

combination of many determinants configurations.  

The CI wave function can be written as:  

   0
,

.....a a ab ab
i i ij ij

i a a b
i j

C C
>
>

Ψ = Φ + Φ + Φ +∑ ∑                    (I.31) 

Here intermediate normalization, i.e., 0 1Φ Ψ =  is assumed. Where Ψ  is the 

CI wave function and 0Φ  is Hartree-Fock wave function or reference 

determinant. In Equation (I.31), , ,..,i j  etc. denote the occupied orbitals, and 

a,  b,..,  etc. are virtual orbitals in reference determinant. Throughout the thesis 

, ,..,i j  are denote occupied orbital and a,  b,..,  denote virtual orbital, unless until 

it is mentioned specifically. The constraints a b> , i j>  are imposed to avoid 

double counting. Here a
iΦ  is singly excited determinant, which is obtained by 

replacing occupied orbital iχ  in 0Φ  by an unoccupied orbital aχ . Similarly, 

ab
ijΦ  is denoted as doubly excited determinant.  

Using linear variation method to determine expansion coefficients is 

known to result in eigen value problem for the Hamiltonian matrix, defined 

over all the determinants [2]. Matrix elements of Hamiltonian between any two 

Slater determinants are evaluated by using Slater-Condon rules [2]. Full-CI 

(FCI) method includes all possible N electron excited determinants within a 

given basis. The lowest eigen value and eigenvector of full-CI (FCI) 

Hamiltonian matrix corresponds to the ground state, rest of the eigen values 

and eigenvectors correspond to different excited states. FCI is conceptually 

simple, size consistent and within a given basis set FCI gives exact solution of 
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many electron problem. For large molecules, inclusion of N electron excited 

determinants is computationally very expensive. If we choose a small molecule 

with moderate size of basis set, the number of excited determinants rapidly 

increases, but it is also true that large basis set is necessary to obtain accurate 

correlation energy. That’s why FCI is computationally impractical. So 

truncation up to a certain number of excited state determinants is necessary, but 

not truncation upto first excitation, because of Brioullin theorem [2]. CI 

method truncated up to any excitation may lead to loss of size extensivity and 

size consistency. General truncation scheme restricts excited determinants to 

only doubles or singles and doubles. The first one is known as configuration 

interaction doubles (CID/DCI) and the later one is configuration interaction 

singles and doubles (CISD). Truncated CI methods are suitable especially for 

ground state, because here the reference determinant is dominant and recover 

correlation energy significantly for small system within a given basis set [164]. 

However it fails as size of the system increases.    

FCI is size consistent, but computationally very expensive, so it is better 

to choose truncated method, but truncation up to any excited states, leads to 

loss of size consistency. We can explain this in the following way:  

Let us consider a molecule AB, consists of A and B. Assuming that the 

wave functions of AB, A, B obtained by CID method are ABΨ , AΨ  and BΨ , 

respectively. CID would include up to two electron excitation. Whereas, the 

product A BΨ •Ψ would include up to four electron excitations, which indicates 

that, AB A BΨ ≠ Ψ Ψ , as a corollary we can say also that AB A BE E E≠ + . Thus, it is 
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proved that CID is not a size-consistent method. Similarly we can generalize 

that any truncated CI is not size extensive.  

Similarly, another criterion for being a good theoretical method is size 

extensivity, which is related to mathematical scaling of the energy of the 

system, with number of electrons [98, 153, 154].  

Studies on truncated CI methods have shown that the percentage of 

exact correlation energy within a given basis is obtained in these methods 

decreases as the size of the molecule increases [1]. For this reason truncated CI 

methods loss size-extensivity.  

CI being conceptually very simple method, but computationally very 

difficult. The energy obtained from truncated CI is found to show sub-linear 

dependence [2], with the number of electrons tends to infinity. Thus, any form 

of truncated CI cannot be considered as good theoretical model. 

Significant development is observed for getting correlation energy by CI 

techniques and these methods avoid the exact diagonalization of the 

Hamiltonian matrix. The Slater determinants used in traditional CI are 

generally impure spin eigen functions. Due to spin-free nature of electronic 

Hamiltonian, using spin adapted N-electron functions referred to as 

configuration state functions (CSF) which is a very efficient technique [78, 

162]. Various approaches have been developed for construction of spin-adapted 

CSF:  

(i) Unitary group approach (UGA) method was developed by Paldus, et 

al. [165]. Here CSF is considered as basis of the irreducible representation 
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space of an underlying unitary group [166]. Shavitt [167] implemented UGA 

using graphical representation of CSF.  

(ii) Symmetric group approach (SGA) was introduced by Matsen [166] 

and Karwowski et al. [168, 169]. Here the CSF is constructed as basis for 

irreducible representation of N-electron permutation group NS .  

(iii) Iterative diagonalization technique developed by Davidson [170]. It 

is an alternative way to determine the eigen values and eigen vectors of the 

Hamiltonian matrix in CI method. By introducing matrix vector product with a 

trial vector, unnecessary step of complete diagonalization is avoided.   

(iv) Roos [171] proposed a direct CI procedure. It is used very often to 

compute this product to avoid explicit construction and storage of Hamiltonian 

matrix elements.  

(v) Siegbahn’s [172] method involves combination of direct CI 

technique with a graphical UGA to achieve efficiency in large scale 

calculations. 

 

I.6.B. Independent electron pair approximation (IEPA): 

Since the Hamiltonian contains two particle interaction at most, the 

triples and higher excitations do not contribute directly to correlation energy. 

Singles contribution is absent due to Brillouin’s  theorem [2]. This suggests 

that total correlation energy can be written as sum of correlation energy from 

occupied pairs.  

                         corr ij
i j

E e
<

= ∑  
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with                                     0
ab ab

ij ij ij
a b

e C H
<

= Φ Φ∑   

We devise an approximate N electron problem into ( )N N 1
2
−

 two electron 

problem. This scheme is known as independent electron pair approximation 

(IEPA).  

Sinanoğlu [173] and Nesbet [174] independently introduced this concept 

in quantum chemistry. Sinanoğlu [173] named it as many-electron theory 

(MET).  

The IEPA is based on two approximations: 

1) Neglect the pair coupling terms 

2) Assuming the non-linear terms cancel with part of the energy terms 

The IEPA wave-function and energy expressions are: 

                                            0
ab ab

ij ij ij
a b

C
<

Ψ = Φ + Φ∑                                  (I.32) 

                                            
0 0 0

ab ab
ij ij

a b

HF ab

E H C H

E e

<

= Φ Φ + Φ Φ

= +

∑
                (I.33)       

From Equation (I.33) it is clear that the correlation energy obtained from this 

method is same as obtained by CID. Hence IEPA is often entitled as pair-at-a-

time CI [2], but IEPA is computationally simpler than CID. It is apparently 

meant that the IEPA is an approximation of CI, but incorporating the coupling 

between different pairs concludes that it is an approximation to FCI. IEPA 

gives size-extensive results but it is not invariant to unitary transformation.    
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I.6.C. Coupled-electron pair approximation (CEPA):                

Meyer [175] proposed and implemented the coupled-electron pair 

approximation (CEPA), by including the interactions between the pairs, but 

neglecting the non-linear terms.    

In CEPA the expression of correlation energy is: 

                                             0
ab ab

corr ij ij
c d

E H C
<

= Φ Φ∑                                  (I.34)               

There are several forms of CEPA [176-178]. Among them some give 

size-extensive results. 

 

I.6.D. Perturbative method: many-body perturbation theory 

(MBPT): 

Another useful approach to calculate the correlation energies of atoms 

and molecules is  Many body perturbation theory (MBPT) [79-83]. The method 

is non-variational. It adopts perturbative approach. MBPT is classified into two 

types: Møller-Plesset (MP) [2] and Epstein-Nesbet (EN) [179] perturbation 

theories.  

In MBPT approach the exact Hamiltonian H  is partitioned into zeroth-

order Hamiltonian, 0H  and a small term 'H  known as perturbation. Stationary 

states ( IΦ ) and energies ( IE ) of the zeroth-order Hamiltonian and the 

perturbation matrix elements '
I JHΦ Φ  are known. On the other hand the 

stationary states ( IΨ ) and energies ( IE ) of the H  have to determine in terms of 

these known quantities. Assuming that there exsists an one-to-one 
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correspondence between stationary states and energies of 0H  and H , i e. there 

is a parameter λ , known as perturbation parameter, which varies from 0 to 1 

and connects eigen values and eigen vectors of 0H  (for 0λ = ) and H  (for 

1λ = ). In perturbation theory ( IΨ ) and ( Iε ) are obtained by expanding a 

Taylor series in the limit of 0λ → , i e, zeroth-order Hamiltonian. One more 

assumption is that, the 0H  is chosen in such a manner that the perturbation is 

small enough for the Taylor series to be convergent. The reason for this 

assumption is that the first few terms in the expansion yields sufficiently 

accurate approximation to the exact values. In practice it is possible to satisfy 

these requirements only for ground state. That’s why perturbation theory is 

applied mainly to calculate correlation energy of the ground state of closed 

shell systems. Generally 0H  is chosen as one electron operator, such that ( IΦ ) 

are represented by determinants. When perturbative corrections to HF ground 

state and energies are to be calculated, 0H  is chosen as sum of Fock operators, i 

e, ( )0
i

H f i=∑ . This is called Møller Plesset (MP) partitioning scheme. Here 

0Φ  is dominant determinant for ground state, 0E  is the zeroth order energy 

which is the sum of energies of occupied HF orbitals, and ( , 0I IΦ ≠ ) are 

various excited determinants. Assuming that Zeroth-order ground state 0Φ  and 

the corresponding exact ground state 0Ψ  are intermediately normalized, i e, 

0 0 1Φ Ψ = . Difference between the exact ground state energy ( 0ε ) and zeroth-

order energy ( 0E ) is denoted by 0ε∆  can be written as follows: 
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              0 0 0 0 0'E Hε ε− = ∆ = Φ Ψ                     (I35)        

In perturbation theory, 0ε∆  and 0Ψ  are written as series of correction 

terms of increasingly higher order in perturbation.   

( ) ( ) ( )1 2
0 0 0 0... ....nε ε ε ε∆ = ∆ + ∆ + + ∆ +          (I.36) 

( ) ( ) ( )1 2
0 0 0 0... ....nΨ = Φ + Ψ + Ψ + + Ψ +          (I.37) 

( ) ( )1
0 0 0'n nHε −∆ = Φ Ψ                                       (I.38) 

Here ( )
0

nε∆  and ( )
0
nΨ  are the n-th order energy and wave function correction for 

ground state respectively and contain n-th power perturbation of 'H .  

There are various methods available to solve the correction of energy 

and wave functions at various orders of perturbations. Brillouin-Weigner 

perturbation theory (BWPT) [81], Rayleigh-Schrödinger [79, 81, 82] 

perturbation theory (RSPT) are important among them.    

In BWPT, the perturbation at any order is dependent on exact ground 

state energy 0E , which is unknown. Thus, one has to solve for total energy up 

to a certain order by iterative procedure [81]. The expression for ( )
0

nε∆  and ( )
0
nΨ  

in BWPT are given below: 

                                             
1

( ) 0
0 0 0

0 0

'
n

n QH
E

ε
ε

−
 

∆ = Φ Φ − ∆ 
                    (I.39) 

                                             ( )( ) 0
0 0 0

0 0

'
n

n Q H
E H

ε
 

Ψ = − ∆ Φ − 
                    (I.40)      

On the other hand in RSPT, the quantities in the Equation (I.39) and 

Equation (I.40) are substituted in the Schrödinger equation. The terms of fixed 
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power of V are then collected and solved for energies and wave functions of 

various orders.  

In contrast to BWPT, these expressions contain only the known 

unperturbed ground state energy 0E  in the denominator of the resultants, that’s 

why, can be applied directly without resorting to iterative procedure.   

Brueckner [180] proved that RSPT with MP partitioning leads to size-

extensive perturbation series. It was done for the first few orders in the context 

of infinite nuclear matter. Using diagrammatic approach, Goldstone [181] and 

Hugenholtz [182] showed that the term which have size-intensive, correspond 

to unlinked set of diagrams. It can be proved that the MP partitioned RSPT 

contains such unlinked diagrams mutually cancel at every perturbation order 

and leading to a size-extensive series, this is known as the linked diagram 

theorem. Kelly [183] applied the diagrammatic approach for atoms.  

Applications of RSPT are based on RHF vacuum employ the Møller-

Plesset (MP) partitioning scheme. The zeroth order Hamiltonian is a diagonal 

operator, expressed in terms of HF orbital energies, which simplifies the 

expressions for energy and wave function corrections and is known as Møller-

Plesset perturbation theory (MPPT).  

The accuracy of many-body method can be measured in terms of the 

perturbation order. Thus, MBPT is a very efficient tool for calibrated 

measurement of energy and wave function. The MP based RSPT is now 

commonly used for correlated calculations of atoms and molecules.   
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The disadvantage of perturbation theory is that, convergence is not 

guaranteed by the method.  

 

I.6.E. Coupled cluster (CC) method: 

The state-of-the-art method in electronic structure theory is coupled 

cluster (CC) method. Coupled cluster method was first introduced in nuclear 

physics by Coester, Coester and Kümmel [184]. The coupled cluster theory in 

electronic structure theory was developed from the pair correlation theory of 

Sinanoğlu [173] and Nesbet [174]. Hubbard [185] applied diagrammatic MBPT 

and showed that the exact ground state wave function of many-electron system 

can be written in an exponential form. Čížek and Paldus [163c] first introduced 

coupled cluster theory in electronic structure theory.  

The dynamical electron correlation in CC wave function is brought in 

through an exponential wave-operator operating on the reference function; 

generally the HF wave function is considered as reference wave function. In 

coupled cluster theory the wave function is expressed as: 

                                             0
T

cc eΨ = Φ                                                  (I.41) 

The exponential nature of operator, truncated CC functions introduce the 

unlinked higher body excitation terms.  

Usually, intermediate normalization is applied for wave function. Here 

T  is known as cluster operator. The cluster operators commute with each other 

T  is neither hermitian nor anti hermitian. In terms of diagrammatic 

representation, T  contains only the upward open connected wave function 
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diagrams. The cluster operator can be written as sum of electron-excitation 

operators, viz, one-electron, two-electron, etc.  

                                             1 2 3 ..... NT T T T T= + + + +                                    (I.42)    

Where, the terms in the right hand side can be written in terms of second 

quantization as: 

                                             

1
,

2

.. †
..

....
....

.

.

a
i a i

i a

ab
ij a b j i

i j
a b

abc
N ijk a b c k j i

i j k
a b c

T t a a

T t a a a a

T t a a a a a a

+

+ +

>
>

+ +

> >
> >

=

=

=

∑

∑

∑

                               (I.43) 

The N-body cluster operator, NT  acting on vacuum 0Φ  produces N-tuply 

hole-particle excited determinant.  

Since in Equation (I.41) only one single determinant is taken as 

reference function, that’s why this method is known as single reference coupled 

cluster method (SRCC). 

In the exact limit of full CC has correspondence with FCI. We can write 

              1 1C T=  

                                             

2
2 2 1

3
3 3 1 2 1

2 4
4 4 1 3 2 1

1
2!

1
3!

1 1
2! 4!

C T T

C T TT T

C T TT T T

= +

= + +

= + + +

                              (I.44)                           
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The cluster amplitudes in CC method are treated as independent 

parameters. Substituting Equation (I.41) into Schrödinger equation with normal 

ordered Hamiltonian leads to:  

                                             0 0N

T T
corrH e eεΦ = Φ                                     (I.45)    

If we project from left of Equation (I.45) by 0Φ  and various excited 

determinants ( ...
...

ab
ijΦ ) separately, we shall get equations, from where we can 

get the correlation energy and amplitudes. 

                                             0 0 0 0
T T

N corrH e eεΦ Φ = Φ Φ                       (I.46) 

Expanding the right hand side of Equation (I.46), we shall see due to 

normalization condition, only the term survive which does not contain T , 

others will become zero. Thus, the Equation (I.46) becomes:    

                                             0 0
T

N corrH e εΦ Φ =                                         (I.47) 

                                             ... ...
... 0 ... 0

ab T ab T
ij N corr ijH e eεΦ Φ = Φ Φ                  (I.48)        

From Equation (I.47) we get the correlation energy and the cluster amplitudes 

can be obtained from Equation (I.48). 

The right side of Equation (I.48) is not a number, that’s why we have to 

consider unlinked, open diagrams also. Because of Te  term, the unlinked terms 

of both sides of Equation (I.48) get mutually canceled. Thus, Equation (I.47) 

and Equation (I.48) can be written as: 

                                             0 0 ,
T

corr N closed connected
H eε = Φ Φ                         (I.49) 

                                             ...
... 0 ,

0ab T
ij N open linked

H eΦ Φ =                               (I.50)                    

Similarly, for single hole-particle excitation we can write:  
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                                             0 ,
0a T

i N open connected
H eΦ Φ =  

The disconnected terms of Equation (I.48) for double excitations can occur as 

product of connected single excitation terms 0 ,
a T
i N open connected

H eΦ Φ , with 

singly excited cluster amplitude ( )b
jt  disappears from final equations. In the 

same way, the connected, open terms survive in Equation (I.48), leading to 

completely connected CC equations 

                                             0 0 ,
T

corr N closed connected
H eε = Φ Φ                         (I.49) 

                                             ...
... 0 ,

0ab T
ij N open connected

H eΦ Φ =                            (I.51) 

Because of commutation relation between the cluster operators, one 

cluster operator cannot contract with another cluster operator. This fact implies 

that when we attempt to draw CC diagrams, each cluster operator in the 

diagram should be connected with Hamiltonian vertex not with each other. On 

the other hand the Hamiltonian operator consists of two parts, viz., one body 

( f ) and two-body (V ), that is why the Hamiltonian can have a maximum of 

four lines for such connections. Again by Slater rule [2], each term of Equation 

(I.51), can have a maximum of four cluster operators. Therefore the CC 

equations are algebraic non-linear equations in unknown cluster amplitudes and 

are at most of quatric power. On the other hand, from Equation (I.49), 

correlation energy contains only one-body and two-body cluster operators, 

which are coupled to higher-body cluster operators via Equation (I.51).     

The above CC equations can be derived in another way [9, 84, 159] by 

pre-multiplying Equation (I.45) by Te−   and we get:  
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                                             0 0
T T

N corre H e ε− Φ = Φ                                    (I.52) 

The non-hermitian operator, T T
NH e H e

−
−=  nothing but the original 

Hamiltonian, NH  similarity transformed ( 1X AX− ) by an invertible operator, 

TX e= . Thus, Equation (I.52) can be viewed as an eigen value equation for the 

similarity transformed Hamiltonian, H . It is also known that the similarity 

transformation does not change its eigen values. Thus, to derive Equation (I.47) 

and Equation (I.48), we follow the same procedure and get the following set of 

equations: 

                                             0 0
TT

corr Ne H eε −= Φ Φ                                   (I.53)                                      

                                          ....
.... 0 0Tab T

ij Ne H e−Φ Φ =                                    (I.54) 

If two operators A and B are having the form: A Ae Be− , Campbell-Baker-

Hausdroff (CBH) formula can be applied. According to CBH formula A Ae Be−  

can be expanded as:                                       

                             

[ ] [ ]

[ ] [ ]

1, , ,
2!

1 1, , , , , , , ....
3! 4!

A Ae Be B B A B A A

B A A A B A A A A

−  = + + + 

       + +       

    (I.55) 

Similarly, the similarity transformed Hamiltonian, T T
NH e H e−=  

becomes:                                                
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1, , ,
2!

1 1, , , , , , , . . . .
3! 4!

N N N

N N

T T
NH e H e H H T H T T

H T T T H T T T T

−
−     = = + + +    

          + +           

 (I.56)                                                                                   

Due to the two body nature of 
N

H  and commutative nature of cluster operator, 

this series can be shown to terminate after four fold commutation. The 

connected nature of correlation energy and cluster amplitudes are explicitly 

revealed by the presence of commutators Equation (I.56), with 
N

H being 

connected, its commutation with cluster operators, generates only connected 

terms, eventually leading to a completely connected series. 

Equation (I.54) can be represented as condition to make the lower 

triangular block of 
N

H to vanish. This facilitates finding the corresponding 

eigen value of NH , which in turn is equivalent to calculate corrε . Derivation of 

CC equations by applying BCH formula shows that CC method may be viewed 

as diagonalization of similarity transformed Hamiltonian to obtain correlation 

energy. This is also useful to understand various generalization of CC method 

for multi-reference as well as equation-of-motion CC (EOM-CC) methods for 

excited states [108, 159].  

As we discussed earlier in FCI, it is impractical because of computation 

cost, that’s why we have to truncate upto a certain excitation. Since double 

excitations are dominant in the first-order MBPT wave-function based on 

closed-shell RHF vacuum 0Φ , in a same way we can say that the two-body 

cluster operator 2T  is expected to be most important. Čížek [163a] first 
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approximated that truncating the cluster operator up to its two-body part, i.e., 

2T T≅  and named as coupled-pair many-electron theory (CPMET). Now-a-

days CPMET is known as coupled cluster doubles (CCD). The same name was 

given by Sinanoğlu [173b]. Sinanoğlu used a kind of stationary principle on 

dominant part of the energy functional. On the other hand, Čížek adopted a 

non-variational strategy involving solution of Equation (I.51) for determining 

the two-body cluster amplitudes.  

Bartlett et al. [186] and Pople et al. [187] independently started 

systematic development and application of CC method. Bartlett et al. [186] had 

done by using spin-orbital form. On the other hand Pople et. al. [187] applied 

CC method, where the cluster operators are truncated to include one-body, two-

body cluster operator, i.e., 
1 2T T T≅ +  and is known as coupled cluster singles 

doubles (CCSD) method. Noga and Bartlett [188] truncated up to triples cluster 

inclusion, i.e., 
1 2 3T T T T≅ + +  and is referred to as coupled cluster singles 

doubles triples (CCSDT) method [189]. The CCSDT methods are particularly 

very important for molecules with high electron densities, multiple bonds, etc. 

The CCD, CCSD and CCSDT methods represent a hierarchy of increasing 

accurate CC methods. Kucharski and Bartlett [190] extended this hierarchy by 

including quadruple cluster operator, i.e., 
1 2 3 4T T T T T≅ + + +  and is known as 

coupled cluster singles doubles triples quadruple (CCSDTQ) method. One 

thing to mention in this context is that we can never truncate the cluster 

operator only up to 
1

T , i.e., 
1

T T≅ , i.e., coupled cluster singles (CCS), because 

of Thouless theorem. [191].       
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Advantage of truncating up to double excitations is that, by CCD wave-

function we can include not only the double excitations, but also include higher 

body excitations, e.g. quadruple, hexapole. Exponential nature of the CC wave-

functions naturally includes such excitations, and hence may be considered to 

be a better representation as we compare with the CI counterpart. Another 

advantage of CC method is that the approximate CC methods are obtained by 

truncating the cluster operator, are also size-extensive as well as size-

consistent. The amplitude equations are represented by only connected open 

diagrams. It can be shown that the cluster operators calculated from these 

equations are additively separable and can be represented by connected 

diagrams of the Hamiltonian with the cluster operator.       

Since CC equations are represented by only connected open diagrams, it 

can be shown that the cluster operator calculated from these equations are 

additively separable. That’s why they can be represented by connected 

diagrams of Hamiltonian with cluster operator. The CC correlation energy is 

also additively separable and hence size extensive. Additive separability is 

ensured by exponential nature of the wave function. It also ensures size-

consistency of CC method, subject to the condition that the reference function 

properly separates under dissociation [161]. 

To solve algebraic non-linear cluster amplitudes of CC equations, Jacobi 

iteration procedure is adopted. Single iteration involves evaluation of products 

of cluster amplitudes with the Hamiltonian. Efficient factorization of CC 

equations along with matrix multiplication based technique to evaluate such 
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product is well defined. Computational scaling of CCD and CCSD method is 

approximately 2 4*o vN N  floating point operations per iteration, where oN  and 

vN  correspond to the number of occupied and virtual orbitals, respectively 

[84d]. Scaling rapidly increases as higher-body cluster operators are added, e.g. 

the scaling of CCSDT and CCSDTQ are 3 5*o vN N  and 4 6*o vN N , respectively 

[84d].    

Correlation energy for CCD:  

                                              ( ) ( ), , ,

2
corr

i j a b i j a b

ij ab ij ba ij ab
ε

ε ε ε ε

 −  =
+ − +∑  

This is exactly same as the correlation energy obtained from MP2 energy. The 

relation between CC and MBPT is well studied [98, 192]. For each iteration 

CC equations generate an additional set of MBPT diagrams for both energy and 

wave function. For this reason CC method can be viewed as a way to 

systematically sum selected classes of MBPT diagrams to infinite order. In 

other words, CC method is an indirect way to carry out a partial infinite-order 

summation of MBPT diagrams [84d]. This relation is useful for CCSD and 

CCSDT methods.   

The CC method formulation is based on spin-orbitals. Thus, CC method 

is applicable to both closed and open shell molecules, described by single 

determinant, ROHF or UHF determinant. Such spin-orbital formulations are 

computationally demanding as they involve more number of cluster amplitudes 

than the minimum number dictated by spin-symmetry of the targeted state. 

Spin-integration is introduced to overcome the problem in spin-orbital CC 
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formulations based on closed-shell RHF determinant, represented as vac . 

Spin integration is usually performed by choosing an independent set of cluster 

amplitudes depending only on the spatial orbitals and associating certain spin-

integration factors to the terms in CC equations. It is known that this procedure 

is equivalent to spin-adaptation of CC method, such excited state configuration 

obtained by the action of cluster operator on RHF determinant are non-

orthogonal. Using graphical method of angular momentum for spin-adapting 

various cluster operator Paldus [98] have obtained an orthogonally spin-

adapted CC formulations applicable for closed shell states based on closed 

shell RHF determinant.  

 

I.6.E.i. Various SRCC approaches: 

Although coupled cluster method is explicitly a non-variational method, 

but, there are several ways to solve Equation (I.45). Normal coupled cluster 

(NCC) or single reference coupled cluster (SRCC) method is neither 

variational, nor perturbative. Coupled cluster equation can also be casted in a 

variational framework. In this approach energy functional is written as an 

expectation value and amplitude equations are obtained using variation of the 

energy with respect to cluster amplitudes. Expectation value, unitary value 

coupled cluster (XCC, UCC) [193], extended coupled cluster [194-199]are few 

of the functions used in stationary or variational CC theory. Variational CC is 

more complex compared to SRCC. Being variational it has natural advantage in 

the calculation of energy derivatices. 



48 
 

I.6.E.i.1. Expectation value and unitary coupled-cluster 

(XCC and UCC) ansatz: 

 In variational CC approach energy function is made stationary with 

respect to cluster amplitudes. In expectation value theory we can write energy 

function as expectation value of Hamiltonian.  

      
†

†
0 0

0 0

T T

T T

H
E

e He
e e

Ψ Ψ
=

Ψ Ψ

Φ Φ
=

Φ Φ

                         (I.57)            

Here †T  is hole-particle destruction operator. The function is Hermitian but 

non-terminating. It is shown by Pal et al. [150] that the function can be written 

as:   

      †

0 0
T T

conn
E e He= Φ Φ                     (I.58)          

The above energy expression is a non-terminating series and needs to be 

truncated for practical application. Pal and co-workers [193] used truncation 

scheme based on the number of cluster amplitudes. Though energy functional 

is connected the equation for cluster amplitude contains disconnected diagrams 

Bartlett and co-workers [200] used linear truncation scheme based on 

perturbation order. The perturbative truncation scheme ensures size extensivity 

at each order. However, it misses out important terms of lower order. Whereas, 

some terms involving higher order cluster amplitudes would be included when 

truncation is based on number of T amplitudes, it leads to disconnected 
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diagrams in cluster amplitude equations. The amplitude equations are obtained 

using following equation: 

      
( )

( )

0

0 0E
t

∂
=

∂
                      (I.59)                 

Van Vleck [201], Primas [202] and Kutzelnigg [177] proposed another 

approach in variational CC method. This approach is called unitary coupled 

cluster (UCC) method. In UCC, the functional is given by: 

                                              0ucc eσΨ = Φ                                                (I.60) 

Here, σ  is anti-hermitian. σ  is chosen as †T Tσ = − . † †T Tσ = −  and †σ σ= − . 

Cluster amplitudes may be obtained by using variational or non-variational 

amplitudes. The non-variational [203] is closely resembles to NCC approach 

and the set of equations can be obtained by replacing the T  in the NCC 

equations by σ . 

Kutzelnigg [176] proposed that UCC can be solved variationally. The 

energy function in  UCC functional can be written as: 

                                              

0 0

0 0

0 0

e He
E

e e

e He

σ σ

σ σ

σ σ

−

−

−

Φ Φ
=

Φ Φ

= Φ Φ
                         (I.61) 

Thus, the UCC equation becomes similarity transformed like NCC, but the σ  

amplitudes are obtained variationally like XCC. Bartlett and Noga used UCC 

(n) [202] ansatz analogous to XCC (n). However, unlike XCC (n), UCC (n) 

functional is symmetric.   
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I.6.E.i.2. Extended coupled-cluster (ECC) ansatz: 

Arponen [194a] by adding one more similarity transformation on the 

Hamiltonian using hole particle destruction operators derived the following 

expression.   

                                              0 0 0N

corr S SE e e H e eτ τ− −= Φ Φ                          (I.62) 

The above equation is known as extended coupled cluster (ECC) [194-199]. In 

Equation (I.62) τ  is known as hole-particle creation operators and 

characteristically identical as T  operators in NCC. On the other hand S  

operator is just the reverse of τ  and are known as hole-particle destruction 

operator, and identical to τ  operators used in XCC, but not conjugate with τ . 

After double similarity transformation the final form of ECC functional is:    

                                              0 0 0[ ]
N

corr S
linked Double linked

E e H eτ= Φ Φ             (I.63) 

The first linking is contraction between τ  and H . Double linking implies that 

the S  operator, if not directly connected to the Hamiltonian, must contract with 

least two distinct τ  operators. The double linking ensures the connectedness of 

the terms of the equations for S  and τ , which are obtained by making the 

energy stationary with respect to t  and s  amplitudes separately. ECC gurantees 

size-extensivity and size consistency. Piecuch and Bartlett [203] proved that 

ECC is size-extensive.  
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I.7. Quasi-degeneracy: 

The single reference (SR) methods can successfully describe those 

states, where single determinant, 0Φ  is dominating. Closed-shell atoms, near 

equilibrium ground state of molecules belong to this category. Although, some 

open-shell states can be described by using a dominant UHF or ROHF based 

SR methods. SR methods are suitable to describe dynamic correlation [92a], 

but in chemistry, some situations arise, where various determinants contribute 

equally in accurate description of a state [92a, 109]. This is known as quasi-

degeneracy. In open-shell atoms, excited, electron attached or detached states 

of atoms and molecules, reaction transition states, bond-dissociation processes 

this phenomenon is observed. A quasi-degenerate state is characterized by a 

significant amount of non-dynamical electron correlation. Non-dynamical 

correlation arises due to interaction between dominant determinants.     

  

I.8. Single-reference based methods to treat non-dynamical 

correlation: 

In general to handle quasi-degeneracy multi-reference based methods 

are used. However, there are some methods which can take care of quasi-

degenerate problem within SR frame work. Symmetry adapted cluster 

configuration interaction (SAC-CI) [129, 130], equation-of-motion coupled 

cluster (EOM-CC) [122-126], reduced multi-reference coupled cluster 

(RMRCC) method [204, 205], active-space coupled cluster approach [206], 

tailored CCSD [207], orbital-optimized coupled cluster scheme [208], spin-flip 



52 
 

methods [209], higher-order non-iterative corrections derived from similarity-

transformed Hamiltonian [210], renormalized coupled cluster methods [211], 

etc are belong to this category. These methods can handle quasi-degeneracy. 

Among these the first two methods are briefly described in the next two sub-

sections.      

 

I.8.A. Symmetry adapted cluster configuration interaction 

(SAC-CI):   

 For a singlet closed shell state symmetry adopted cluster (SAC) wave 

function is: 

      

( ) 0

0

exp

11 ....
2

SAC
ground i i

i

i i i j i j
i i

C S

C S C C S S

 Ψ = Φ 
 

 = + + + Φ 
 

∑

∑ ∑

(I.64) 

iS  is symmetry adapted excitation operator. 

           ( )0 0SAC
ground groundH EΦ − Ψ =                     (I.65)                     

           ( ) †
0 0SAC

i ground i groundS H E SΦ − Ψ =        (I.66) 

This is non-variational way of solving SAC equations. In a variational 

approach equations are: 

           ( ) 0SAC SAC
ground ground groundH EΨ − Ψ =          (I.67)              

                     ( ) † 0SAC SAC
ground i ground i groundS H E SΨ − Ψ =        (I.68)      

Using variational or non-variational formulation equations can be obtained.  
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The excited function kΦ  are obtained using SAC wave function as: 

           † SAC
k k groundPSΦ = Ψ           (I.69) 

           1 SAC SAC
ground groundP = − Ψ Ψ          (I.70) 

P is an operator that projects out SAC function: 

           0SAC
k groundΦ Ψ =                                         (I.71) 

           0SAC
k groundHΦ Ψ =           (I.72) 

SAC-CI can also be used for electron attached or detached states. The general 

form of the kΦ  wave function can be written as: 

           † SAC
k k groundPRΦ = Ψ          (I.73) 

Where, kR ’s are excitation, electron attach/detachment operator. 

 

I.8.B. Equation-of-motion coupled cluster (EOM-CC) 

method: 

  The equation of motion (EOM) formulation is one of the tools used in 

quantum chemistry to obtain direct difference energies. In EOM-CC 

approximation the exact electronic wave function can be written as: 

                     EOM CC ccR−Ψ = Ψ           (I.74)                

Where, ccΨ  is defined in Equation (I.41). 1R  is defined as:  

           { } { }† † †
0

,
,

a ab
i ij

ia a b
i j

R r r a i r a ib j= + +∑ ∑             (I.75) 
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Where, R  and T  are excitation operators and 0Φ  is the HF wave function. 1R  

and T  commute with each other. Substituting the above wave function in 

Schrödinger equation we get: 

           0 0Re ReT TH EΦ = Φ          (I.76)          

Premultiplying by Te−  we get: 

            0 0Re eT T T Te He R E− −Φ = Φ                     (I.77) 

            0 0HR ERΦ = Φ           (I.78) 

H
−

 is non-Hermitian and has left and right eigen vectors: 

            
LH EL

HR ER

=

=

                              (I.79)        

Left and right vectors can be normalized so that they are biorthogonal: 

             i j ijL R δ=           (I.80) 

 

 I.9. Multi-reference based methods: 

To treat non-dynamical correlation properly, we have to first specify the 

zeroth-order reference state, (0)Ψ  as an approximation to the desired quasi-

degenerate state Ψ . (0)Ψ  is generally constructed as a linear combination of a 

set of M strongly interacting determinants ( , 1,2,..,I I MΦ = ). (0)Ψ  can be 

obtained in many ways. For a given state, (0)Ψ  is not unique. Non-dynamic 

correlation is calculated by using an appropriate multi-reference method, and 

brings a correction terms X for the wave-function.    
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(0)

1

(0)

M

I I
I

C

X

=

Ψ = Φ

Ψ = Ψ +

∑
                                         (I.81)                        

By introducing multi-reference (MR) [109] method, non-dynamic 

correlation can be treated by employing multi-determinantal zeroth-order 

description.    

The set of strongly interacting determinants ( IΦ ) contributes to zeroth-

order description of a given quasi-degenerate state and is usually found to be 

adequate to construct zeroth-order description of some of quasi-degenerate 

states. The space spanned by ( IΦ ) contains the zeroth-order reference states of 

a manifold of quasi-degenerate states and is known as model or reference 

space, denoted by P . The space spanned by all determinants which not 

belonging to the model space are referred as complement space ( )Q . The 

model space is considered as zeroth order approximation to the space P  of 

some exact quasi-degenerate states of the full Hamiltonian H , with their 

reference states in P .       

To choose model space, we shall first define three important terms:  

(1) The orbitals occupied in all the model space determinants are 

referred to as core or hole orbitals. 

(2) The unoccupied orbitals in the model space determinants are referred 

to as particle, or, virtual orbitals. 

(3) The orbitals which are occupied in only some of the model space 

determinants are referred to as active or valance orbitals. 
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Model space determinants differ in occupancies of only valance orbitals. 

To construct model space, we have to include some of the quasi-degenerate 

determinants. When all possible determinants are included in the model space, 

then it is called complete model space (CMS). On the other hand, in incomplete 

model space (IMS) all possible are not included in the model space. 

We will discuss previously discussed methods within multi-reference 

frame-work: 

A)  Multi-configuration self consistent field method (MCSCF). 

B) Multi reference configuration interaction method (MRCI). 

C) Multi reference perturbation method (MRMP). 

D) Multi reference coupled cluster method (MRCC). 

    

I.9.A. Multi-configuration self consistent field (MCSCF) 

method: 

In this section we will discuss the methods previously discussed in the 

context of single reference. However, now the reference space is multi-

determinant.  

Multi-configuration self consistent field (MCSCF) is another method 

which is very similar to CI method [2, 212, 213]. An MCSCF wave-function is 

a truncated CI expansion, where only a small number of selected determinants 

are important to describe a state are retained. In contrast to CI, both the 

expansion coefficient and orbitals are optimized to minimize the energy of 

MCSCF wave-function. This leads to equations somewhat similar in structure 
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to the HF equations and are solved by a SCF approach. Complete active space 

MCSCF (CAS-SCF) is a variant of MCSCF and is used frequently [214]. In 

CAS-SCF, the determinants selected, to be included in the expansion are done 

by identifying a set of orbitals, known as active or valance orbitals. All the 

determinants are generated by distributing the given number of valance 

electrons, amongst all active orbitals included in the MCSCF expansion. Based 

on generalization of valance-bond approach of Heitler and London [215], there 

are several other various MCSCF method.   

MCSCF wave functions can be used as reference states for multi-

reference configuration interaction (MRCI), multi-reference perturbation 

theories, like complete active space second order perturbation theory 

(CASPT2), and can be dealt with various complex problems in quantum 

chemistry.  

 

I.9.B. Multi-reference configuration interaction (MRCI) 

method: 

The multi-reference configuration interaction (MRCI) [92a, 216-219] is 

a popular and standard method in quantum chemistry. In MRCI method, the 

wave function is constructed as linear combinations of all distinct excited 

determinants, generated by excitations on each determinant within the model 

space. MRCISD includes all single and double excitations, but thr difference is 

that here we have to do with respect to every determinant in the model space 

[92a].     
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1

M

MR CISD I I S S D D
I S D

C C C−
=

Ψ = Φ + Φ + Φ∑ ∑ ∑                     (I.82) 

SΦ  and DΦ  are the singly and doubly excited determinants obtained from the 

set of reference functions ( IΦ ), respectively. Generally, the model space 

contains singly and doubly excited determinants and the final MRCI wave 

function includes some triple and quadruple excitations. The coefficients ‘ C ’s 

are determined variationally leading to diagonalizing the Hamiltonian matrix 

evaluated between different determinants.   

Presently MRCI methods use spin-adapted configuration state functions 

(CSF) instead of determinants, along with the efficient rules developed for 

evaluation of coupling coefficients entering in the Hamiltonian matrix 

elements. Excitations from each of the model space CSFs are considered. Total 

number of CSFs included in MRCI wave function, scales linearly with size of 

the model space. Applying MRCI is difficult in case of large model space, 

specifically large incomplete model space. If we compare with SRCI, the first-

order interacting space of the reference determinant 0Φ  is spanned by all singly 

and doubly excited CSFs, but in MRCI the excited CSFs are included in MRCI 

expansion span a much bigger space than the first order interacting space of the 

zeroth order reference function. Instead of generating singly and doubly excited 

CSFs from each of the model space CSFs, configurations may be constructed 

by applying excitation operators to the contracted zeroth order reference 

function as a whole, and known as internally contracted configurations (ICC) 

[92a]. Meyer [220] showed that the set of excited ICCs of a zeroth order 
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reference function span its first order interacting space. Werner and Reinsch 

[221] applied ICCs in MRCI, resulting in internally contracted MRCI 

(ICMRCI) method. Knowles and Werner [222] formulated the same in an 

efficient manner. Use of larger model spaces as compared to conventional 

model space is allowed in ICMRCI method. The ICCs are not orthogonal and 

depend on the combining coefficients of model space CSFs, that’s why 

complication arises in evaluating the coupling constants and Hamiltonian 

matrix elements. To overcome this, recent approaches to ICMRCI includes a 

balanced combination of contracted CSFs [222].  

Like truncated SRCI methods, truncated MRCI methods are also not 

size-extensive. 

 

 I.9.C. Multi-reference perturbation theory: 

The multi-reference perturbation theory can be classified into two sub-

classes [223]: 

i) Multi-reference perturbation theory. 

ii) Quasi-degenerate perturbation theory. 

We shall discuss here both the theories. Before discussing the Quasi-

degenerate perturbation theory, we shall briefly discuss the effective 

Hamiltonian formalism.  
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I.9.C.i. Multi-reference perturbation theory (MRPT): 

The multi-reference perturbation theory (MRPT) follows the same 

formalism of single reference perturbation theory [93 a, b] but instead of single 

determinant multiple determinants are used.  

In MRPT, a zeroth order wave function (0)Ψ  describes the desired state. 

Construction of Ψ is done (mostly by MCSCF calculation) by diagonalizing 

the Hamiltonian over the model space. Ψ is then used to construct the zeroth 

order Hamiltonian ( )0H . The eigen functions, eigen values and perturbation are 

(0)Ψ , 0E  and V , respectively. If perturbation is small, then the perturbation 

expansion around zeroth order wave function is used to calculate perturbative 

corrections to energies ( )nε  and wave functions ( )nΧ for the desired states are:        

            

(0) (0)
0 0

0

(0)

(1) (2)

(1) (2)
0

....

....

H E

V H H

Eε ε ε

Ψ = Ψ

= −

Ψ = Ψ + Χ

Χ = Χ + Χ +

= + + +

                             (I.83) 

Using this approach, we can get one state at a time, i.e., state specific 

[183] and is known as diagonalize-then-perturb approach. 

When we calculate the zeroth order wave function, then maximum part 

of non-dynamical correlation energy is recovered. The unrecovered part is the 

state-specific dynamic correlation it is recovered in low orders of perturbation 

expansion around the zeroth order state. Thus, to recover the state-specific 
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dynamic correlation, we have to adopt MRPT. MRPT is generally used to 

calculate the first order wave-function correction, (1)Χ . MRPT is sufficient to 

calculate up to third order. 

A special case of MRPT is complete active space second order 

perturbation theory (CASPT2). In this method, second order MRPT approach is 

applied using CASSCF wave function as zeroth order wave function. This 

method is developed by Roos et al, [224]. In CASPT2, the second order wave 

function is expanded in terms of excited ICCs. Wolinski et al. [225], Dyall 

[226] and Celani et al. [227] adopted similar approach for MRPT development. 

Instead of ICCs, uncontracted CSFs can be used to expand the first order wave 

function. This method leads to another variety of MRPT, developed by Murphy 

and Messmer [228], Hirao [229] Kozlowski and Davison [230]. 

Choice of zeroth order Hamiltonian is the most difficult part in MRPT. 

Generally, in multi-reference problems, the zeroth order Hamiltonian is non-

diagonal, that’s why a set of linear equations have to solve to determine the 

first order wave function.   

 

I.9.C.ii. Effective Hamiltonian approach: 

Using effective Hamiltonian approach an alternative way of developing 

multi reference based theories. In this approach a simultaneous description of a 

manifold of quasi-degenerate states can be attempted [95, 108, 231]. The 

concept of effective Hamiltonian is based on the partitioning N-electron Hilbert 

space into a smaller M-dimensional model space P  and its complimentary Q  
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space. The model space consists of a set of M determinants ( , 1,....,I I MΦ = ), 

and Q  is constructed over the rest ( , 1,....,J J MΦ = + ∞ ), and 1P Q+ = . The 

model space is approximated as M-dimensional target space P  spanned over a 

set of M quasi-degenerate exact states; { }, 1,....,A A MΨ =  of the full 

Hamiltonian H  with corresponding energies ( , 1,....,AE A M= ), implying that 

each quasi-degenerate state in P  has a significant component in the model 

space [99]. 

If the eigen values of a Hamiltonian are identical to the energies of quasi 

degenerate states of the Hamiltonian, belong to the target space P , then this 

Hamiltonian is called effective Hamiltonian, and is denoted by effH . The 

corresponding eigen vectors ( (0) , 1,....A A MΨ = ) of the effH  within the model 

space represent an approximation to the corresponding quasi-degenerate states 

( , 1,....,A A MΨ = ) of H : 

                                                     

(0) (0)

(0)

(0)

1,....,eff A A A

A IA I
I

A A A

H A M

C

εΨ = Ψ ∀ =

Ψ = Φ

Ψ = Ψ + Χ

∑                (I.84) 

In the model space the effH  effectively plays the role of the full 

Hamiltonian H  and that’s why the name ‘effective Hamiltonian’ [108, 231, 

232]. The effH  is defined over entire Hilbert space, but usually it is constructed 

such that only its matrix elements over the model space are required for the 

purpose of its diagonalization to obtain Aε  and (0)
AΨ  It proceeds via defining 
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valence universal operator, known as wave operator, Ω , which  relates the 

eigen vectors of effH  to the corresponding exact  quasi-degenerate states of H .  

                                                     ( )

(0)

0

A A

A A

A

P P

ΩΨ = Ψ ∀

Ψ = ΩΨ

= Ω

                            (I.85)                 

 Kato [233], Bloch [234], and des Cloizeaux [235] introduced the 

concept of effective Hamiltonian. The effective Hamiltonian can be constructed 

by following two ways: 

 

I.9.C.ii.1. Similarity transformation approach:  

In this method a similarity transformation of H  is carried out, by the 

wave operator, Ω  to obtain an operator H : 

                                                     1H H−= Ω Ω                                              (I.86)    

Similarity transformation ensures that all eigen values of H


 are same as those 

of H . This implying that  H  can be used as effH . If the eigen vectors of H  

corresponding to the quasi-degenerate staes in P  lies entirely within model 

space. The wave operator is determined in such a way that H  becomes 

diagonal with respect to model space and essentially developed eigen value 

equation of H , corresponding to the quasi-degenerate states in P  from the 

eigen value equations for other states [232]. To define H , we generally employ 

the minimal decoupling scheme, leading to a block triangular form for effH . 
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0

eff

QHP

H PHP QHQ PHQ

=

= + +

                       (I.87) 

In this approach, the effH  is assumed to be an operator within the entire Hilbert 

space [232], but only its model space component PHP  is relevant to obtain the 

eigen values and eigen vectors of desired quasi-degenerate states. This 

approach requires that 1−Ω  exsits. 

 

I.9.C.ii.2. Bloch equation approach: 

In Bloch equation approach, the Schrödinger equation for all the quasi-

degenerate states in P  is expressed as: 

                                                     

eff

Bloch
eff

H P H P

H PH P

QH P Q PH P

Ω = Ω

= Ω

Ω = Ω Ω

                                 (I.88)                               

Equation (I.88) is known as Bloch equation [83, 100, 109, 234]. In this 

formalism, the matrix elements of effH  over only the model space enter into the 

Bloch equation.  

For both these approaches, a normalization condition fixes its matrix 

elements over the model space, i.e., P PΩ . Usually specified through 

parameterization of Ω . Intermediate normalization scheme, i.e., P P PΩ =  

[100] is the most commonly used method. Intermediate normalization implies 

that the projection of exact quasi-degenerate state in P  onto P  is nothing but 

the corresponding eigen functions of effH , within the model space. 
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Alternatively, we can say, if intermediate normalization is applied, then, no 

additional component lying within the model space will be generated by action 

of Ω  on the model space.  

The differences between the above two approaches are:  

1) Similarity transformation based approach can be applied only when 

1−Ω  is available, and we can evaluate the operator 1H−Ω Ω . effH  can be defined 

in terms of Ω . On the other hand in the Bloch equation approach explicit form 

of 1−Ω  is not required, and effH  is in general not an explicit function of Ω . 

Thus, to solve for effH  we have to adopt iterative method along with Ω  [100, 

232]. effH  can be defined in terms of Ω , only when intermediate normalization 

is used.    

2) In the first case the matrix elements of effH  over the entire Hilbert 

space are available, computationally easier and can be used for other purposes. 

On the other hand, second method involves the matrix elements of effH , only 

within the model space [232]. 

Varieties of effective Hamiltonians with different properties are there in 

literature [108, 231], Bloch’s [234] approach is simplest among them.  

The Bloch’s effective Hamiltonian is non-hermitian [108, 231]. Des 

Clozieaus [235] derived a hermitian effective Hamiltonian by transforming the 

right eigen vectors of Bloch’s effective Hamiltonian into an orthogonal set. For 

further studies on effective Hamiltonian see ref. [108, 231].    
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In the effective Hamiltonian formalism, both perturbative as well as 

non-perturbative scheme to compute Ω  and effH  can be formulated. 

Perturbative schemes lead to quasi-degenerate perturbation theory, and the non-

perturbative counterpart leads to multi-reference coupled cluster methods.  

Kirtman [236], Malrieu et al, [233, 237] proposed intermediate 

Hamiltonian approach, which is similar to effective Hamiltonian scheme.  

In the intermediate Hamiltonian approach the intermediate Hamiltonian 

provides exact energy of a subset of quasi-degenerate states (cf. effective 

Hamiltonian provides exact energies of all the quasi degenerate states 

associated with M-dimensional model space). This approach is useful and 

flexible to avoid certain convergence problems associated with constructing the 

effective Hamiltonians, where, some of the targeted quasi-degenerate states do 

not have significant component within the model space. Mukherjee et al. [238] 

and Meissner et al. [232, 239] applied the intermediate Hamiltonian approach 

to formulate non-perturbative coupled-cluster scheme.        

 

I.9.C.iii. Quasi-degenerate perturbation theory (QDPT): 

In quasi-degenerate perturbation theory (QDPT), the perturbation 

expansion is carried out over entire quasi-degenerate target space P  around the 

model space P  [81, 95] (cf. in MRPT expansion is carried out over a single 

quasi-degenerate state around a zeroth order model space). As discussed in 

section I.6.D, that in the single-reference perturbation theory, the Hamiltonian 

is separated into two parts, viz. the zeroth order Hamiltonian, 0H  and a small 
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perturbation term, V . 0H  is constructed in such a manner that the model space, 

P  and its complementary space Q  are its eigen subspaces. Assuming P  and Q  

are well separated with respected to 0H  in terms of energy. Usually 0H  is 

constructed is such a manner that determinants in P  and Q  are eigen functions 

of 0H  [81, 95], and model space provides a zeroth order approximation for the 

target space. In such circumstances, the complementary space interacts weakly 

with the model space through V  and perturbation is well-defined.  

In the effective-Hamiltonian formalism, perturbation expansion is 

carried out for wave-operator Ω , and effective Hamiltonian, effH  can be 

expressed as:                                                            

                                                     

(0) (1) (2)

(1) (2)
0

....

....eff eff effH H H H

Ω = Ω +Ω +Ω +

= + + +

                      (I.89)                           

Based on Ω  and effH , different types of QDPT can be formulated, e.g., 

0H H V= + , for Bloch’s effective Hamiltonian in Equation (I.88), leads to 

generalized Bloch equation [81, 95]. Expression for degenerate model space is:  

                                                     [ ]0, H P V P PV PΩ = Ω −Ω Ω                      (I.90)                     

                                                     0
Bloch
effH PH P PV P= + Ω                            (I.91) 

Substituting Ω  from Equation (I.89) in Equation (I.90), leads to expression for 

( )nΩ  in terms of lower order quantities [81, 95].   

                                  

( ) ( ) ( ) ( )

( )

1
1 1

0
1

0

,

1

n
n n n m m

m
H P V P PV P

−
− − −

=

 Ω = Ω − Ω Ω 

Ω =

∑
              (I.92)           
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Equation (I.92) is used to generate order-by-order many-body Rayleigh-

Schrödinger (RS) perturbative equation to determine Bloch’s effective 

Hamiltonian and wave-operator. For a complete degenerate model space, 

Brandow [240] proved that unlinked diagrams are present in any order of RS 

expressions for wave-operator and effective Hamiltonian gets canceled by each 

other.     

QDPT has various forms, and are characterized by different 

requirements on the diagonal part of Ω . Because of the presence of intruder 

state convergence problem may come, while using complete model space 

[241]. Intruder states are functions formed from the complement space, having 

energies within the energy range of target states that leads to divergence in 

perturbation expansion. To overcome the convergence problem, such functions 

can be moved into the complementary space, and generally these model spaces 

are categorized as incomplete model space. Hose and Kaldor [242] applied 

incomplete model space (IMS) for the first time in QDPT.   

 

I.9.D. Multi-reference coupled cluster theory (MRCC): 

The MRCC theories are developed by getting exponentially 

parameterized ansatz for the wave operator and schemes are formulated to 

determine the parameters unambiguously by giving a platform for MRCC 

formalism to function within an effective Hamiltonian framework. The 

exponential parameterization is borrowed from SRCC theory, which maintains 

size-extensivity as well as size-consistency and gives highly accurate results. 
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This stems from partial infinite-order summation nature of CC theory. If we 

compare with SRCC, there is only one way to parameterize, but several 

parameterization schemes are available in MRCC theory [98, 100].  

Within CMS it is easier to exponentially parameterize wave operator 

(Ω ) to satisfy both intermediate normalization and size-extensivity. There are 

several classes of ansatz have been used, viz, state-universal (SU) or Hilbert 

space (HS) ansatz [118], valence-universal (VU) or Fock space (FS) ansatz [99, 

109, 110, 119, 120], state-specific (SS) ansatz [101-106, 243], generalized 

multi-reference Brillouin–Wigner coupled cluster theory [244, 245]. In the next 

sub-sections we shall discuss a little-bit about these methods. 

  

I.9.D.i. State-universal or Hilbert space multi-reference 

coupled cluster theory (SUMRCC/HSMRCC): 

The state-universal multi-reference coupled cluster theory (SUMRCC) 

or Hilbert space multi-reference coupled cluster theory (HSMRCC) is proposed 

by Jezioroski and Monkhorst (JM) [118] and is useful in studying the potential 

energy surface of molecules [107a, 246]. In this formalism, a cluster operator is 

introduced for each model space determinant, and expression of the wave 

operator is: 

                                                     Te µ
µ µ

µ

Ω = Φ Φ∑                                (I.93)                    

Tµ  is the cluster operator, associated with the model space determinant. The 

structure of Tµ  is similar to T  in the SRCC. Tµ  contains all hole-particle 
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excitations. Tµ  is chosen in such a way that Tµ  operators cannot produce 

excitations within the model space. In the second quantized notation, µΦ  is 

considered as hole-particle vacuum. The cluster amplitudes in Tµ , 

corresponding to the excitations leading to states within model space are set to 

zero, to satisfy the intermediate normalization [118].  The inverse of wave 

operator ( )1−Ω  does not exist within the Hilbert-space containing same number 

of electrons as the model space determinants [118]. For this reason similarity 

transformation approach is not possible. Thus, to derive the standard forms of 

state-universal MRCC theory, we have to adopt Bloch’s equation approach.  

Using Bloch equation approach, the expression of the Hamiltonian 

becomes:  

                                                     T T
effHe e Hµ µ νµ

ν

µΦ = ∀∑                     (I.94) 

The above equation can be solved in two ways,  

1) Solution by using CBH formula. 

2) Solution by avoiding CBH formula. 

The two methods are discussed briefly: 

 

I.9.D.i.1. Solution by using CBH formula: 

Jezioroski and Monkhorst approach to solve Equation (I.94) is similar to 

the SRCC equations. Pre-multiplying Equation (I.94) by Te µ−  and then left 

projection by Q  and P  (separately) leads to: 
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                        * *T T T T
effe He e e Hµ µ µ ν νµ

µ µ µ ν
ν µ

µ− −

≠

Φ Φ = Φ Φ ∀∑                  (I.95) 

                                              ,T T
effH e Heµ µνµ

ν µ µ ν−= Φ Φ ∀             (I.96) 

                                                     effH C CE=                                             (I.97) 

                                                      effCH CE=                                             (I.98) 

                                                      effCH C E=                                            (I.99)                                                    

                                                      1CC CC= =                                           (I.100) 

*
µΦ s are the determinants in the Q -space, and consists of hole-particle 

excitation out of µΦ . From Equation (I.95), cluster amplitudes, Tµ  can be 

calculated. Equation (I.96) describes the Bloch’s effective Hamiltonian, effHνµ . 

Equation (I.97) and Equation (I.98) are defined to diagonalize effHνµ , resulting 

the right and left side, C  and C , respectively. Equation (I.99) is used to 

calculate energy, which comes as a diagonal matrix of order M × M , where 

M is the number of quasi-degenerate states under consideration, and the last 

equation, i.e. Equation (I.100) represents bi-orthonormal relation between C  

and C . Equation (I.95) is similar to SRCC equations. Left hand side is same as 

SRCC cluster amplitude equations and known as direct term. In SRCC, this 

part is explicitly connected. The terms on right hand side couple the cluster 

amplitudes of different vacuums are referred as renormalization terms. Using 

CBH formula for TTe e νµ− , Jezioroski and Monkhorst did a perturbative proof of 

connectivity of cluster amplitudes and effective Hamiltonian. Renormalization 

term generates all folded diagrams of Brandow’s open shell MBPT [240]. The 
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quantities ( , 1,....,effH Mνµ ∀ = ) are evaluated by using normal-ordered expressions 

for H , with respect to determinant µΦ  as vacuum:           

                                              ( ) ( ) ( )0 0N NH H H F Vµ µ µ= + + +                 (I.101) 

( )
0

H µ  is expectation value of H  with respect to µΦ  and N stands for normal-

ordering. ( )
0 N

H µ  is a diagonal one-body operator containing orbital energies. 

( )
N

F µ , V  are one and two body operator respectively. Elements of ( )
N

F µ , 

depends on the orbitals obtained and reference vacuum [246]. V  contains two-

electron repulsion terms also.  

Jezioroski and Monkhorst presented the truncation scheme for cluster 

operators for practical purpose. The renormalization term, arises because of 

CBH formula for T Te eµ ν−  are very complicated and generates a huge number of 

diagrams for further truncation. While deriving the spin-adapted version of 

SUMRCC theory with singles and doubles approximation (SUMRCCSD), 

Jezioroski et al. [247] derived systematically different truncations for direct as 

well as renormalization terms also. In this method size-consistency property is 

conserved at truncated levels, but the nature of resultant renormalization term 

becomes very cumbersome.  

 

I.9.D.i.2. Solution by avoiding CBH formula: 

To avoid CBH formula, Meissner, Kucharski, Balková, Bartlett [246, 

248] proposed another method. Where, Q  and P  are projected from left of 

Equation (I.94), and generates: 
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                                              * * TT
effHe e Hν νµ

µ µ µ ν
ν

µΦ Φ = Φ Φ ∀∑        (I.102)                                

                                                ,T
effH He µνµ

ν µ µ ν= Φ Φ ∀       (I.103)        

If CBH formula is not applied, the (I.97), and (I.98) contain unlinked 

and disconnected terms and the unlinked terms get nullified and leads to size-

extensive quantities [246]. Kucharski et al., [246] derived the SUMRCCSD 

equations by diagrammatic representation, and model spaces with up to six-

fold excitations.  

 

I.9.D.ii. Valence-universal or Fock space multi-reference 

coupled cluster theory (VUMRCC/FSMRCC): 

The valence-universal or Fock-space multi-reference coupled cluster 

theory (VUMRCC/FSMRCC) [99, 109, 110, 120, 121] is based on the concept 

of common vacuum. An N-electron RHF configuration is chosen as vacuum, 

with reference to this vacuum holes and particles are defined. These are further 

divided into active and inactive holes and particles. The model space 

determinant containing h-active hole and p-active particle is denoted as: ( , )p h
iΦ . 

The model space of a ( ),  p h  valence Fock-space can be expressed as: 

             ( )0 ( , ) ( , ) ( , )p h p h p h
i i

i
Cµ µΨ = Φ∑       (I.104) 

The exact wave function is written as: 

                                                      ( , ) ( , ) ( , )p h p h p h
i i

i
Cµ µΨ = Ω Φ∑                    (I.105) 

Projection operator for the model space is: 
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                                                      ( , ) ( , ) ( , )p h p h p h
i i

i
P = Φ Φ∑                        (I.106)                            

Orthogonal component of the model space is: 

                                                      1Q P= −                                                (I.107) 

Dynamic correlation is introduced via wave operator (Ω ). Ω  is defined 

in such a way that the states are generated by its action on the reference 

function must satisfy Schrödinger equation to generate the exact states for the 

( ),  p h  valence system. Ω  generates all probable excitation from the model 

space, and should contain cluster operators, ( ),p hT  and defined as: 

                                                     ( ) ( , ),

0 0

k l
p h

p h

k l
T T

= =

= ∑∑                                    (I.108)                    

( , )k l

T  implies that the cluster operators are capable to create or destroy k-active 

particles and l-active holes. 
( ),~ p h

T  contains all lower ( , )k lT . Ω  can be defined as:  

                                                     ( ){ },p hTΩ =                                              (I.109)            

The cluster operator in Equation (I.109) is normal ordered. The 

Schrödinger equation for the manifold of quasi-degenerate states can be written 

as: 

                                                     ( , ) ( , )p h p hH Eµ µ µΨ = Ψ                             (I.110)          

Using Equation (I.104) and left projecting Ω  of both side of Equation (I.110) 

we have: 

                                      ( , ) ( , ) ( , ) ( , )p h p h p h p h
i i i i

i i
H C E Cµ µ µ

   Ω Φ = Ω Φ   
   
∑ ∑      (I.111) 

Effective Hamiltonian for ( ),p h  valence system can be defined as: 



75 
 

                                                     ( )( , )p h
eff j i

j ij

H C E C
µµ µ=∑                            (I.112) 

                                        ( )( , ) ( , ) 1 ( , )p h k l k l
eff i jij

H H−= Φ Ω Ω Φ                           (I.113)  

                                          ( , ) ( , )( , ) 1,
p h p hp h

effor H P H P−= Ω Ω                             (I.114) 

1−Ω  in Equation (I.114), may not exists. Thus, to define effective Hamiltonian 

we have to adopt Bloch’s equation approach (Equation (I.88). This approach 

eliminates 1−Ω .  

In Bloch approach we solve following equation to obtain Ω  and effH : 

                                                    

( , ) ( , ) ( , )

( , ) ( , ) ( , )

0

0

0,1,...., ; 0,1,....,

k l k l k l
eff

k l k l k l
eff

P H H P

Q H H p

k p l h

 Ω −Ω = 

 Ω −Ω = 

∀ = =

                 (I.115)                                                                  

Normalization condition is specified indirectly through parameterization 

of Ω . For CMS, intermediate normalization scheme is applied.    

Diagonalizing the effective Hamiltonian within P space gives energies 

of the corresponding states and the left and right eigen vectors.    

                                                   ( , ) ( , ) ( , )p h p h p h
effH C C E=                                  (I.116) 

                                                   ( , ) ( , ) ( , )p h p h p h
effC H EC=                                   (I.117) 

                                                   ( , ) ( , ) ( , ) ( , ) 1p h p h p h p hC C C C= =                         (I.118) 

There is no contraction between different cluster amplitudes within the 

exponential, leading to partial hierarchical decoupling of cluster equations. 

This is known as sub-system embedding condition (SEC). Lower valence 

cluster equations are completely decoupled from the higher valence cluster 

equation, because of SEC. Thus to solve Bloch’s equation for a particular 
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sector, it is necessary to solve progressively from the lowest valence (0, 0) 

sector (i.e. SRCC sector) upwards up to (p, h) valence sector, and the lower 

valence sectors will appear as a constant in the higher valence sector. 

 

I.9.D.iii. State-specific multi-reference coupled cluster 

theory (SSMRCC):  

In state specific multi-reference coupled cluster (SSMRCC) [101-106] 

formalism, the wave operator is partitioned into two parts, viz, ( )extTe and (int)Te . 

(int)Te  acts on a suitably chosen single-determinantal reference function ( 0Φ ) to 

generate the model space reference-function ( intΦ ) consists of model space 

determinants. ( )extTe  creates virtual space excitations from all model space 

determinants. The reference determinant 0Φ  can vary, depending upon 

various states. The exact function is generated as: 

                                                   ( ) ( ) ( )int
0

ext ext intT T Te e eΨ = Φ = Φ                (I.119) 

( )extTe and (int)Te are mutually commutative, hence the SSMRCC theory can be 

considered as a direct generalization of the standard single reference CC 

theory. The correlation energy and T  amplitudes in this method are as follows: 

                                            ( ) ( )

0 0

ext intT T
N corrH e e ε Φ Φ =                           (I.120) 

                                            ( ) ( )*
0 0

ext intT T
NH e e Φ Φ =                               (I.121) 
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In deriving the above formulas, intermediate normalization ( )0 1Ψ Φ =  is 

considered. *Φ  is any excited determinant. NH  is normal ordered Hamiltonian, 

i.e., 0 0NH H H= − Ψ Ψ , consists of one ( )NF  and two body ( )NV  operators.  

To tackle the quasi-degeneracy problem, linearized form for the (int)Te  is 

used and the ( )extTe  is kept intact [249]. Resulting ansatz assumes the following 

form: 

                                            ( )( ) (int)
01

extTe CΨ = + Φ                                  (I.122) 

The equations for the amplitudes are linear in terms of (int)C . If ( )intTe  includes 

all possible excitations within the active orbital space, ( )

0

intTe Φ  and 

( )(int)
01 C+ Φ  wave functions are completely equivalent and only practical 

reasons may determine which approach will be more effective and convenient 

in a particular case.  

 

I.9.D.IV. Multi-reference Brillouin-Weigner coupled cluster 

theory (MRBWCC):  

As per our previous discussion we have seen that in the HSMRCC 

method, each reference determinant is related with distinct cluster operator 

[118]. In the SUMRCC approach, all the states are obtained simultaneously, 

but these methods suffer from the intruder state problem, resulting in serious 

convergence problem. FSMRCC methods [99, 109, 110, 120, 121] adopt the 

concept of common vacuum. In the SSMRCC [101-106] method, only one 
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state is studied at a time, and the intruder state problem can be tackled very 

efficiently.  

By denominator shifting the intruder state problem is handled by the 

multi-reference Brillouin Wigner coupled cluster [MRBWCC] theory [244, 

245, 250-252]. The cluster equations are relatively simple and close 

resemblance to the SRCC problem, that’s why converges smoothly. Major 

drawback of MRBWCC is that in the method suffers from size-extensivity 

problems. That’s why for large systems posteriori corrections [252, 253] are 

necessary, but this method can be applied successfully to study diatomic to 

mid-sized molecules [254, 255].  

In MRBWCC the model space spanned by M reference configuration 

µΦ . As a general function within the model space, reference state can be 

written as a linear combination of these configurations and can be expressed as:   

                                             
1

M
P PCω µ µ

µ=

Ψ = Φ∑                                           (I.123) 

ω  is the chosen state, P  is the projection operator. Exact wave function can be 

expressed in terms of the wave operator, ωΩ  as follows: 

                                             P
ω ω ωΨ = Ω Ψ                                               (I.124)     

For the sake of simplicity ω  is dropped from ωΩ .    

The wave operator is augmented with the Jeziorski and Monkhorst 

ansatz: 

                                              ( )

1

M
Se µ

ω µ µ
µ=

Ω = Φ Φ∑                                   (I.125) 
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( )S µ  is global excitation operator, defined with respect to the µ -th reference 

determinant. ( )S µ  consists of  cluster operator ( )T µ  and the 12F  part is ( )R µ  

[256]. Thus ( )S µ  can be expressed as sum of  ( )T µ  and ( )R µ : 

                                              ( ) ( ) ( )S T Rµ µ µ= +                                      (I.126) 

Expression for ( )R µ  is: 

                         ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
1
4

i k jj kl
k i kl ijR R R C R C Rµ µ µ µ µ µ µ= + = +       (I.127)                                   

                                         ( ) ( ) ( ) ( ) ( )k kj k
i j i iR F a F aα α

α αµ µ µ µ µ= ≡                    (I.128) 

                                         ( ) ( ) ( ) ( ) ( )1
2

kl kl kl b
ij ij b ijR F a F aαβ α

αβ αµ µ µ µ µ= +              (I.129) 

Here ,  ,  p q r  indices corresponds to general spin orbitals, ,  ,  i j k  are occupied 

spin-orbitals, ,  ,  a b c  are for virtual counterpart. ....
....

i
kC  are parameters to be 

determined. a  are normal ordered replacement operators with respect to the 

pertinent references, and the matrix elements, ( )klFαβ µ corresponds to integrals 

over the correlation factor, ( )12 12f r  

                                         ( ) ( )12 12klF kl f rαβ µ αβ=                                    (I.130)                        

Exact energy can be obtained as an eigen value of the effective 

Hamiltonian. The eigen value equation can be written as: 

                                         effH C E Cω ω ω
µν ν µ

ν

=∑                                                (I.131) 

For CMS, cluster amplitudes corresponding to excitations within the 

model space are set to zero and assuming intermediate normalization, the 

remaining cluster amplitudes are obtained by solving cluster equations.                               
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
,

Seff

S
N connected

S
N Disconnected Linked

H e

H e

H e

µ µ
ω µν ν µ

µ µ
ν µ

µ µ
ν µ

ε

µ

µ

− Φ Φ =

 Φ Φ + 

 Φ Φ 

                 (I.132) 

 

I.10. Calculation of properties using derivative of energy: 

Stationary state energies are important. However, in chemistry, 

quantities of interest are difference of energies, i.e., binding energy, 

dissociation energy, ionization potential (IP), electron affinity (EA), etc. Most 

of spectroscopy involves change of energy in the presence of external field, 

like, electric or magnetic field. The change of energy due to external 

perturbation is also known as molecular properties.  

Expectation value approach is useful only for first order peoperties. 

According to quantum mechanics, any first order property can be obtained 

using expectation value approach, i.e.,   

                                         D
µΨ Ψ

=
Ψ Ψ

                                                     (I.133)         

When an atom or a molecule is placed in an external field, if the field is 

small, then energy, wave function can be expressed as Taylor series expansion 

and each derivative of energy is associated with properties. For small 

perturbation, we can expand the change of energy and wave function with 

respect to the perturbatation field as a Taylor series expansion: 
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( )

( )

2
(1)

0

2
(1)

0

( ) . .....
2!

( ) . .....
2!

EE g E gE g g

g g g g

= + + +

Ψ
Ψ = Ψ + Ψ + +

                 (I.134)              

Where, ( )1

0g

EE
g =

∂
=
∂

 and ( )
2

2
2

0g

EE
g

=

∂
=
∂

 are first and second derivative of 

energy with respect to the field ( )g . ( )1

0gg =

∂Ψ
Ψ =

∂
, ( )

2
2

2
0gg

=

∂ Ψ
Ψ =

∂
 are derivative 

of wave function with respect to field. These properties are referred as response 

properties [3, 155, 257]. Using Hellmann-Feynman theorem (HFT) [258-260] 

these properties can be defined [3]. The general expression for HFT can be 

written as: 

                                        
0 0

0 0

( )
( )

H g
E g g

g

∂
Ψ Ψ

∂ ∂=
∂ Ψ Ψ

                                    (I.135) 

For response properties the expression of the perturbed Hamiltonian is: 

                                        ( )
3

1
i i

i
H g H d g H d g

=

= − • = −∑                            (I.136) 

g  is field applied. This field should be weak, so that time-independent 

perturbation is applicable.  

The derivatives of energy can be calculated using  

A) Numerical or finite field approach.  

       B) Analytic approach.  

       In the next two subsections we shall discuss briefly about the two methods: 
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I.10.A. Finite field approach: 

From computational point of view the simplest and the most straight 

forward way to calculate various energy derivatives is the finite field method. 

In this approach, any energy derivative is obtained by numerical difference of 

energies for different perturbation values. Using various methods finite field 

calculations were performed for the multipole moment [261-265], like, 

multipole polarizability [261-264, 266] and hyperpolarizability [267-269] etc. 

Accuracy of these calculations is dependent on the accuracy of energy. The 

method is convenient but the method suffers from accuracy problem to be 

precise, the method is unsatisfactory for higher order properties.  

 

I.10.B. Analytic approach:      

In analytical approach explicit expression of energy derivatives are 

solved. Analytic energy derivatives are desirable from the point of view of 

getting accurate higher order properties, and shows significant progress in last 

few decades. Analytic derivative packages with respect to nuclear parameters, 

as well as external fields have been developed at different levels of 

sophistications. 
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I.11. Calculation of linear response for molecules using 

coupled cluster theory: 

Coupled cluster based linear response theories (CCLRT) were 

developed by various authors. A time dependent  formalism was given by 

Monkhorst [90] and was later extended by Dalgaard and Monkhorst [257] and 

Koch et al. [127a, 148c] Mukherjee and Mukherjee [270] as well as Ghosh et 

al, [271] gave time independent version of the response approach. The original 

equations of Monkhorst incorporated only the change of the cluster amplitudes 

with respect to the external perturbation. Bartlett and co-workers [147] 

introduces orbital changes with respect to perturbation parameters. Thus, the 

method of Bartlett and co-workers [147] is suitable for gradients where orbital 

response is very important. First analytic linear response approach was 

developed by Monkhorst [90, 257] within coupled cluster framework. The 

perturbed Hamiltonian (1)H  is written as: 

                                        (1)H gO=                                                             (I.137) 

 g , the perturbation strength, and O  is the uniform external field operator. 

Total Hamiltonian can be written as: 

                                        0( )H g H gO= +                                                   (I.138) 

 The expression for energy and cluster amplitude becomes: 

                                        ( ) ( )
0 0( ) ( )

N

T g T g
corrH g e g eεΦ = Φ                        (I.139)  

                                        ( )( )
0 0( ) ( ) T gT g

corr Ng e H g eε −= Φ Φ                       (I.140)                   

                                        ( )* ( )
0( ) 0T gT g

Ne H g e−Φ Φ =                                (I.141)                
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Expanding the energy and cluster amplitude by Taylor series expansion 

around zero perturbation strength and derivative of correlation energy and 

amplitude equations can be derived: 

                                        { }(1) (1)
0 0,corr T Te O H T eε −  = Φ + Φ                    (I.142)             

                                        { }* (1)
0, 0T Te O H T e−  Φ + Φ =                           (I.143)            

To solve Equation (I.142) we need derivative of the cluster amplitudes, which 

is obtained by solving Equation (I.143) and need to be solved for every mode 

of perturbation, which is computationally very tedious. Since SRCC is a non-

variational theory, so it cannot take the advantages of the generalized HFT and 

(2n+1)-rule [148c, 272] for variation theory. 

The problem can be overcome by the following two methods: 

A) Z-vector method. 

B) Constrained variational approach. 

C) Stationary response approach. 

We shall briefly discuss below the two methods. 

 

I.11.A. Z-vector method: 

This method was introduced first by Schaefer [273] for CI method, and 

Bartlett and co-workers [147] implemented for SRCCSD, which is based on 

interchange theorem of Dalgarno [274]. Rewriting Equations (I.142) and 

(I.143) in another form: 

                                        ( )(1) (1)corr TY T Q Oε = +                                           (I.144)  
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                                        ( )(1)0 AT B O= +                                                   (I.145)  

Where,  

                                        ( )(1) (1)
0 0

T T
N c

Y T H e T= Φ Φ                                 

                                        ( ) ( )0 0
T

c
Q O Oe= Φ Φ                                        

                                        ( )(1) * (1)
0

T
N c

AT H e T= Φ Φ                    

                                        ( ) ( )*
0

T

c
B O Oe= Φ Φ  

Introducing TZ , independent of perturbation, and defining this as follows: 

                                        T TZ A Y=                                                              (I.146)  

Substituting Equation (I.141) in Equation (I.140) we get: 

                                        ( ) ( )(1)corr TZ B O Q Oε = +                                       (I.147)  

Equation (I.146) is a linear equation and contains no perturbation term and 

solution yields the Z-vector. This method is advantageous in the sense that, 

previously we have to solve Equation (I.145) for every mode of perturbation, 

but Equation (I.147) has to solve only once and store it. The term containing 

non-perturbative term is calculated for (3N-6) times. This procedure is 

conceptually simple, but a bit cumbersome for higher order properties. 

 

I.11.B. Constrained variational approach: 

Constrained variational approach (CVA) is based on the Lagrange’s 

unknown multiplier method. This method is introduced to calculate derivative 

of energy with respect to perturbation in the SRCC framework by Jørgensen et 

al, [102a, 102c, 275].  
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This method involves construction of a functional with undetermined 

Lagrange multipliers qλ . Corresponding SRCC equations can be written as:   

                                         0 0 0
0

T T T T
q q

q
e He e Heλ− −

≠

ℑ = Φ Φ + Φ Φ∑       (I.148)  

If we vary ℑ  with respect to all the parameters, i.e., T  and qλ and 

setting them to zero, which is essential condition for variation, we have: 

                                         

0

0 q
q

T

λ
λ

∂ℑ
=

∂

∂ℑ
= ∀

∂

                                                  (I.149)               

First we vary with respect to qλ , we have: 

                                         *
0 0T Te He−Ψ Φ =                                            (I.150)  

This term does not contain any qλ  term. 

Again, when we differentiate with respect to T , we will get qλ term.                                                                                                   

                                  

[ ] [ ]

*
0

0

*
0 0

( ) ( )

( ) ( )

, ,

T T T T

T T T T
q q

q

T T T
q q

q

e T He e H T e
T

e T He e H T e

e H T e H T e
T

λ

λ

− −

− −

− −

∂ℑ
= Φ − + − Φ +

∂

Φ − + − Φ

∂ℑ
= Φ Φ + Φ Φ

∂

∑

∑

(I.151)                                                                                                                          

One thing to mention here is that, in variational case we normally do 

expectation value, but such attempts in CC would lead to an infinite 

terminating series. But if we solve in this manner, we shall get variational 

expression. 
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Derivative with respect to qλ , gives solution for T , and qλ can be 

calculated for derivative with respect to T  

                           [ ] [ ]*
0 0, ,T T T

q q q
qq

e H T e H T eλ
λ

− −∂ℑ
= Φ Φ + Φ Φ

∂ ∑       (I.152) 

If we compare with the Z-vector method, we will see that the terms on 

the RHS are same as CVA methods. 

In this formulation obtaining derivative for expressions for higher order 

derivative is quite simpler. The cluster amplitude derivatives obey the (2n+1) 

rule, but the derivatives of Lagrange multipliers obey (2n+2)-rule [148c, 272]. 

 

I.11.C. Stationary response approach: 

In stationary response approach Hellmann-Feynman theorem is 

satisfied. Thus, stationary approach is naturally suitable for the calculation of 

properties. In this approach the energy functional is defined and is made 

stationary with respect to the ground state cluster amplitudes. It was shown by 

Pal and coworkers [276, 277] that if cluster amplitudes and their derivatives are 

truncated to uniform degree, then the stationarity condition  

                                  
( )

( ) 0
i

j

E
t

∂
=

∂
                                          (I.153) 

leads to identical set of equations for a fixed  value of i j− . The derivative 

cluster amplitudes are obtained by making the derivative energy functional 

stationary with respect to unperturbed or ground state cluster amplitudes. The 

stationary  approach leads to (2n+1)-rule with the help of first derivative of 

cluster amplitudes we can calculate the third order properties. XCC, UCC and 
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ECC are the popular energy functionals used.  However, the problem of the 

stationary response approach is that the functional is non terminating and needs 

to be truncated for practical application. Except ECC functional XCC and UCC 

also gives disconnected diagrams leading to loss of size extensivity. ECC being 

double linked functional this problem is eliminated naturally. 

 

I.12. MRCC response approach 

MRCC methods are well established for the calculation of energies of 

quasi degenerate systems. Depending on the way the non dynamic correlation 

is introduced the methods are divided into various sub classes. Though 

response approach for closed shell systems existed for quite some time, similar 

development with multi-reference based methods is very recent. Formulation of 

energy derivatives using multiroot coupled cluster methods is a challenging 

task. Monkhorst’s [90, 257] linear response approach was extended for the 

multi root problem by Pal and co-workers [49, 50, 145]. This approach was 

implemented for first derivatives when perturbation is electric field [49, 50, 

145]. However, this approach is not suitable as it requires first derivative of the 

cluster amplitudes for first derivative of energy. Lagrange based linear 

response approach for the specific root of the effective Hamiltonian, was 

developed by  Pal and co-workers [51, 150] within the MRCC framework. This 

approach was formulated for the Hilbert space [51a] as well as Fock-space 

[51b] methods. The formulation is very general and can be implemented for 

any method. Szalay [67] independently formulated similar approach for a 



89 
 

complete model space using  Lagrange multipliers for the FSMRCC method. 

Theory of analytic gradients within EOMCC framework was developed by 

Stanton [68] using energy derivatives and implemented by stanton and gauss 

[69]. Nooijen and co-workers [143] implemented analytic gradients within 

STEOMCC using Lagrange based approach. Recently, Krylov and co-workers 

[71] developed and implemented the Lagrange based response approach within 

Lagrange framework for the spin flip EOMCC. Analytic gradients for SAC-CI 

[58], CI [57, 61, 69], MRCI [63], propagators [64] and RI-CC2 [62] are 

available in the literature. 

 

I.12.A. Z-vector method for FSMRCC response: 

 Within FSMRCC frame work the Z-vector method was implemented by 

Ajitha et al. [145, 49, 50]. Here we discuss briefly about the method. 

 The formalism of Z-vector technique is same as used in SRCC method. 

In this method effective Hamiltonian effH  is introduced instead of normal 

Hamiltonian. The effH  is defined within model space. In presence of field eigen 

value equation for effH  becomes: 

    ( ) ( ) ( ) ( )eff i jji
i

H g C g E g C gµ µ µ  = ∑                         (I.154) 

Where, ( )jC gµ  and ( )E gµ  are the field-dependent model space coefficients 

and energies of the states of the interest.  

 For deriving the response equations, the relevant field-dependent 

quantities are expanded as a Taylor series expansion in g: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 2 2

0 1 2 2

0 1 2 2

0 1 2 2

1 ....
2!

1 ....
2!

1 ....
2!
1 ....
2!

eff eff eff eff

j j j j

g g g

H g H H g H g

E g E E g E g

C g C C g C g

µ µ µ µ

µ µ µ µ

Ω = Ω +Ω + Ω +

= + + +

= + + +

= + + +

                       (I.155)   

( )0Ω , ( )0
effH , ( )0Eµ , ( )0

jC µ  are wave-operator, effective Hamiltonian, exact energies 

and the model space coefficients of the field free situation.  

The Bloch equation (Equation (I.88)) in the absence of any external 

perturbation is given by: 

    ( ) ( ) ( )0 0 0 0effP H H P Ω −Ω =                                            (I.156) 

                  ( ) ( ) ( )0 0 0 0effQ H H P Ω −Ω =                                            (I.157) 

Analytic response of the Bloch equation at each order in g  can be obtained 

from the derivatives of the Bloch equation evaluated at zero field.  

   ( ) ( ) ( ) ( ) ( )0

0
0eff g

P H g g g H g P
g =

∂  Ω −Ω = ∂
                (I.158) 

   ( ) ( ) ( ) ( )
0

0eff g
Q H g g g H g P

g =

∂  Ω −Ω = ∂
                (I.159)  

These equations describe the analytic response of the wave operator and the 

effective Hamiltonian to the weak external field. Similarly closed algebraic 

equations may thus be derived for response at each order in g . While solving 

Equation (I.158) and Equation (I.159), we hold the unperturbed quantities, i.e, 

,effH Ω  obtained from Equation (I.156) and Equation (I.157) constant. We 
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obtain the first derivative of the effective Hamiltonian from the solution of 

Equation (I.158).  

 Equation (I.158) and Equation (I.159) for one valance can be written as: 

( ) ( ) ( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( )

0,1 1 1 0,1 0,1 1 0,1

0,1 1 0,1 0,1

, ,

eff

P H H T H T P

P H P

   + +   

=

      (I.160)               

                    

( ) ( ) ( ) ( ) ( )( )(

( ) ( )( ) ( )( ) ( )( ) ) ( )

0,1 1 1 0,1 0,1 1

0,1 0,1 1 0,1 1 0,1 1 0,1

, ,

, , 0eff eff

Q H H T H T

T H T H P

   + + −   

   − =   

         (I.161)       

It can be seen that derivative cluster amplitudes are required to get derivative 

effective Hamiltonian. Following SRCC Z-vector approach the final expression 

for the ( )1
effH   is: 

         

( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0,1 0,1 1 0,1

0,1 1 1 0,1 0,1

0,1 0,1 0,1 0,1 1 0,1

effP H P

P H H T P

Q Q Q H Pξ

=

+ +          (I.162) 

Equation (I.161) is a result of interchange theorem. Thus, the derivative 

effective Hamiltonian is written in terms of ξ -amplitudes and is independent of 

derivative ( )0,1T   amplitudes. The equation for ( )0,1ξ  is perturbation independent 

and hence needs to be solved only once. However, derivative of ( )0,0T  

amplitudes do appear explicitly. 
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I.12.B. Constrained variational approach within FSMRCC 

one valance problem: 

The constrained variational approach (CVA) for Hilbert space [51a] and 

Fock space [51b] was developed by Shamsunadar et al. [51]. Here we shall 

discuss only the CVA approach within FSMRCC framework for ionized states, 

i.e., (0,1) sector. The formalism for electron attached state is same, but the 

electron attached state is obtained by reverting hole-particle indices.   

 The valence universal wave operator, Ω  is defined as: 

    ( ) ( ){ }0,0 0,1T Te eΩ =                                                     

The equation for cluster amplitude and effective Hamiltonian are 

obtained by solving Equation (I.156) and Equation (I.157) 

The effH  and Ω  are obtained by solving the equations. The diagonalization 

of the effective Hamiltonian yields the roots, which are the energies of the 

corresponding exact states. As a result of normal ordering, subsystem 

embedding condition (SEC) [99] holds due to which, one can systematically 

solve for the cluster amplitudes starting from the zero valence (0,0) sector of 

FS upwards upto the desired valence sector.  

 The energy of a specific state of the ionized system is given by: 

    ( ) ( )( ) ( )0,10,1 0,1
i eff jij

ij
E C H Cµ µ µ= ∑           (I.163) 

The Lagrangian is constructed to minimize the energy expression given above, 

with the constraint that the MRCC equations are satisfied for the state µ .  
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( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

0,10,1 0,1

0,1 0,1 0,1 0,1 0,1 0,1

0,0 0,0 0,0 0,0 0,0

0,1 0,1 1

i eff jij
ij

eff

i j
ij

C H C

P Q Q H H P

P Q Q H P

E C C

µ µ

µ µ µ

ℑ = +

 Λ Ω −Ω + 

Λ Ω +

 
− 

 

∑

∑





        (I.164)         

For singles double approximations ( ) ( ) ( )0,1 0,1 0,1
1 2Λ = Λ + Λ   and ( ) ( ) ( )0,0 0,0 0,0

1 2Λ = Λ + Λ  

In Equation (I.164) 'sΛ  are Lagrange multipliers. For complete model 

space (CMS), effH  has an explicit expression in terms of cluster operators, 

resulting the fact that the closed part of the Lagrange multiplier vanishes. Thus, 

the above Equation reduced to:  

    ( ) ( )( ) ( ) ( )( )( )0 0,1 0 (0,1) 0 0,1 0
opt effC H C

µµ
ℑ =                   (I.165) 

Differentiating Equation (I.164) with respect to Λ  gives the cluster amplitudes. 

The equations for Ω -amplitudes are decoupled from the Λ amplitudes. On the 

other hand to evaluate Λ  amplitude Ω  amplitudes are required. The 

Lagrangian is defined in Equation (I.164) can be differentiated with respect to 

the field g, to obtain the derivative Lagrangians at every order. The zeroth 

order and the first order Lagrangian can therefore be written as:                       
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( ) ( )( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )( )

( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( )

1 0,1 1 (0,1) 0 0,1 0 0,1 0 (0,1) 1 0,1 0

0,1 0 (0,1) 0 0,1 1

0,1 0,1 1 0 0 0 0,1 0 0,1

0,1 0,1 0 1 0 0 1 1 0,1 0 0 0,1 0 0,1

0,1 0,1 1 0 0 0,1 0,0 0,0 0 1 0 0 1 0,1

0

eff eff

eff

eff

eff eff

C H C C H C

C H C

P H H P

P H H H H P

P H P P H H P

E

µµ µµ

µµ

µ

ℑ = + +

+

 Λ Ω −Ω + 

 Λ Ω + Ω −Ω −Ω + 

Λ Ω + Λ Ω + Ω

 



( )( ) ( )( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )0,1 0 0,1 1 0,1 1 0,1 0 1 0,1 0 0,1 0 1i j i j i j
ij ij

C C C C E C Cµ µ µ µ µ µ µ

 
+ − − 

 
∑ ∑  

(I.166)          

Equation (I.164) and Equation (I.166) gives the energy and the first order 

energy derivative for the µ -th state. Because of stationarity of Lagrangian with 

respect to Λ  and Ω , the above expressions are further simplified. The energy 

derivatives follow (2n+1) rule with respect to the Λ -amplitudes and (2n+2)-

rule with respect to the Ω -amplitude. The (2n+1) rule for the eigen vectors 

( )0,1C  and ( )0,1C   for evaluation of energy derivatives. With this the expression 

for derivative Lagrangian simplifies to:  

            

( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

1 0,1 0 0,1 1 0,1 0

0,1 0,1 0 1 0 0 0,1 1 0,1

0,0 0,0 0 0 0,0

opt eff

eff

C H C

P H H P

P H P

µµ
 ℑ = + 

 Λ Ω −Ω + 

Λ Ω



         (I.167) 

The CVA method is a single-root method. The Λ amplitudes depend on 

the desired state of the molecule. Therefore, for every state one has to calculate 

the Λ  amplitudes separately. In contrast, the non-variational response of 
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FSMRCC [144] has a multiple-root structure. However, the expensive 

evaluation of wave-function derivatives for each mode of perturbation is 

avoided in CVA-FSMRCC. Also, the single-root feature makes CVA more 

attractive for the cases like curve-crossing studies of excited states, etc. than the 

non-variational response method. It can be seen that the Λ -equations for one-

valence problem are same as the zeta equations. in the EOMCC method [126, 

141]. 

 

I.13. Electronic resonance: 

When an electron collides with a molecule various possibilities occur 

during their collision process. This includes elastic or inelastic scattering, 

excitation of electronic and/or nuclear states of the molecule, dissociative 

attachment, ionization. However, at low energy range below 10 eV scattering is 

possibile. In an elastic scattering energy of the particle is conserved. In a non-

elastic scattering exchange of energy between the electron and target molecule 

happens and the energy of the outgoing electron is either less or more than the 

incident electron. During electron molecule scattering the electron can get 

trapped in the attractive potential of the target molecule and never come out of 

the attractive potential well. To avoid this possibility the potential at the origin 

should be less attractive than ( ) 2  V r r−= − . In another possibility, due to 

multiple scattering, electron is temporarily trapped by the target and eventually 

comes out. In order to have free particle in and out at the infinity the interaction 

potential of the target molecule should fall off quicker than 3r−  at infinity. This 
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is called as the direct scattering. During the direct scattering process when the 

life time of the compound system is larger then the collision time the 

phenomenon is called as a resonance. Resonance scattering involves formation 

of a metastable or a quasi bound state with sufficiently long life which 

eventually decays into open channels. Resonance phenomena constitutes some 

of the most interesting features of scattering experiments. In this thesis we have 

considered the shape resonance phenomena associated with the elastic 

scattering (where the kinetic energy is conserved before and after collision). 

The electronic wave function of the resonant state has large amplitude 

within the target molecule at some incident energies. This is possible when the 

incident energy falls in one of the discrete bands, where the incident electron 

finds a comfortable quasi stationary orbit in the field of target molecule. The 

effective potential in the target molecule is made up of attractive potential (at 

small distances) combined with a repulsive potential (at long distances) which 

produces a barrier in the potential. For energies below the maximum in the 

barrier, there would be bound states inside the attractive part of the potential if 

tunneling can be ignored. However, quantum mechanical tunneling permits 

particle to be ‘trapped’ inside the attractive part of the potential to escape to 

infinity, and the tunneling rate depends on the height and thickness of the 

barrier. Larger l values causes bigger centrifugal barriers, making resonance 

narrower and thus suppressing tunneling. Once the electron has entered the 

region inside the barrier, it will take some time before the electron can come 

out by tunneling effect. This type of resonance is called shape resonance or 
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potential resonance. Since the resonance state is produced by an appropriate 

shape of the effective interaction potential between the electron and the 

molecule.  

In the presence of the inelastic channels, electron transfers part of the 

energy in exciting the target molecule. If the energy of the incident electron is 

large enough, then after the excitation its energy becomes negative and it 

coincides with one of the bound state energies of the excited target molecule. It 

can escape only after it gains sufficient energy and this takes some time before 

it could come out. This type of resonance is called as core-excited type I 

resonance or the Feshbach resonance [278].  

Shape resonance associated with the effective potentials in the inelastic 

channel are called as core-excited type II resonance or core excited shape 

resonances.  

Resonance states can be correctly described as states embedded in and 

interacting with the continuum. The resonance energy is  complex and is given 

by: 

                                    
2res RE E i Γ= −                     (I.168) 

resE  is known as Siegert energy. Where, RE  is position of the resonance and Γ  

gives half width of the resonance. In resonance, the wave function of the 

outgoing electron is not square integrable. This makes the computation of the 

resonance wave function difficult. Thus, the bound state methods cannot be 

used to solve the resonance problem.  
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We are interested in the solution of the combined system i.e, an electron 

and a target molecules, which can be described by the Hamiltonian. By solving 

the time independent Schrodinger equation the energy of the system and wave 

function can be obtained. However, it is a many body problem and dynamic 

interaction of the electron with the target molecule does not allow us separation 

of variables. Thus we need to use some approximations to solve the problem. 

The final wave function has to be anti symmetric with respect to the exchange 

of the projectile electron and target electrons. Among various methods, we will 

discuss few of the approaches. There are various approaches for the calculation 

of resonance parameters they can be broadly divided into direct and indirect 

approaches. Siegert method [279], complex scaling [13-16], complex 

absorption potential [17, 18] optical potential method [280] are the direct 

methods. Whereas, stabilization method [19-21], time delay maximum analysis 

[281], S matrix parametrization [282] are indirect methods. The direct methods 

are more convenient to apply. The Siegert method [279] obtains resonance 

parameters as poles of the S matrix. In this approach any iterative 

diagonalization of the full matrix is avoided. However, the broad resonances 

may get hidden or masked by scattering poles regardless of the range of finite 

basis set used. In the close-coupling [283] approximation the scattering wave 

function is expanded as a truncated product function consisting of target and 

scattered electron function. The scattered electron function is a continuum 

function satisfying the appropriate boundary conditions in the asymptotic 

region. The phase shifts, as a function of energy, are obtained and are fitted to 
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the Breit-Wigner formula [284-286] to get the energy and the width of the 

resonance. 

The methods which treat resonance as a quasi bound state in the 

scattering continuum have their origin in the scattering theory. The potentials 

used initially were static potentials without any exchange or polarization. Later 

on they were included parametrically or by scaling the results to fit the 

experimental values. Apart from the standard scattering theory purely 2L  

methods have been explored for the study of resonance problem. The Kohn and 

Schwinger variational approach is the earliest approach [287]. In the 2L  

approach resonance state is obtained by diagonalization of the Hamiltonian 

once it is projected onto an 2L  basis set. In these methods asymptotic wave 

functions are not included. Apart from these methods, hybrid methods which 

use sacttering calculations as well as L2 methods were used for the study of 

resonance. In these methods polarization of the target due to incoming electron, 

many body effects and non-adiabatic effects were successfully implemented. 

The T-matrix [288] and R-matrix [289] methods are very successful. The 

boomerang model [290, 291] derived resonance parameters using ab initio 

method.  

 In the direct scattering approach resonance is associated with the 

complex eigen value of the Hamiltonian. The Gamow-Siegert wave function is 

a solution of the Schrödinger equation with purely outgoing boundary 

condition. These boundary condition ensures that the eigen values are complex. 

These states are divergent and does not belong to the hermitian domain of the 
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Hamiltonian. In the inner region they resemble with a bound state and outside 

they represent decaying states. Thus, study of resonance using quantum 

methods requires simultaneous treatment of electron correlation and continuum 

effects. By changing the boundary conditions, the complex Hamiltonian of the 

(N+1) particle turns into a non-Hermitian Hamiltonian with eigen values of the 

Hamiltonian are real. However, Hamiltonian can be modified in such a way 

that the eigen values represent the Siegert energies. This modification of the 

Hamiltonian is obtained through analytic continuation method. 

 

I.13.A. Complex scaling: 

Balslev and Combes [13, 14] developed the complex scaling method, 

which simplified the theory of atomic and molecular resonance.  

Complex scaling method involves similarity transformation. By 

applying unbounded similarity transformation to the original Hamiltonian ( )H  

the resonance state becomes square integrable functions associated with the 

eigen function of a transformed Hamiltonian, 1UHU −  [292].  

                                             ( )( ) ( )1

2R res RUHU U E i U− Γ Ψ = − Ψ 
 

              (I.169) 

Such that: 

                                              0RUΨ →  as r →∞   

RUΨ  belongs to Hilbert space, but not RΨ . The unbounded similarity 

transformation is provided by complex scaling method. The original eigen 

spectrum is changed (some energy eigen spectrum may exist) and the complex 
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scaled Hamiltonian losses its self-adjoint nature. The new set of eigen values 

may occur in the complex plane. The complex operator is expressed as: 

                                             
i r

rU e
θ ∂

∂=                                                         (I.170) 

For any analytic function, ( )f r , we can operate U  as: 

                                             ( ) ( )iUf r f re θ=                                               (I.171)  

Complex scaling method compresses the information about the 

evolution of a resonance state at infinity into a small well defined part of the 

space. Resonance state involves single square integrable function and not 

collection of continuum eigen state of the unscaled Hermitian Hamiltonian. 

Using complex scaling the resonance wave function becomes square integrable.  

Boundary condition distinguishes if a particular function is a bound state 

[L2-function] or unbound/scattering state [non-L2-function]. In complex 

scaling, for a particular value of / 2θ ≥ Π , the boundary condition of square 

integrability is conserved. On the other hand any other set of eigen functions of 

real eigen value would not appear as ir re θ→ . This implies that H  and ( )H θ  

have same real eigen values. If long range potential is used, then scattering 

wave functions (continuum solutions of H ) are conserved, otherwise not. The 

radial scattering solution can be represented as linear combinations of ( ) /ikr re ± , 

as r →∞ . To maintain bound state, we have to take both ir e θ→  and ik ke θ−→ , 

otherwise either of r or k will shoot up exponentially to ∞ . If ik ke θ−→ , the 

corresponding energy eigen spectrum ( )E  for the allowed scattering energies 

become: 2 2 2/ 2 / 2iE k e kθ−= → . This implies that the continuum is rotated into 
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the lower half complex energy plane. In fact the continuous spectrum of ( )H θ  

is different from H . From the above discussion we can write the following 

conclusions: 

 1) Bound state eigen values of ( )H θ are independent of θ . If  

/ 2θ ≤ Π , then ( )H θ  and H  are identical. 

 2) Scattering threshold corresponds to the possibility of fragmentation 

of different system of different states of excitations, and independent of θ , 

/ 2θ ≤ Π . 

 3) The continuous spectra of the original Hamiltonian ( )H  are rotated 

around their respective starting points by an angle of 2θ  into the lower half 

plane. During this process, certain new discrete complex eigen values may 

come up in the lower half complex energy plane in the sector 

( )00 arg 2thresz E θ> − ≥ − , z  is complex energy and 0
thresE  is the threshold 

scattering energy.  

 Although the complex scaling theory is valid for full molecular 

problem, but the method is valid for the centre of mass Hamiltonian of a 

system of particles interacting through the dilation analytic potentials. The 

complex scaling method is consistent with the Born-Oppenheimer 

approximation, which is very first approximation to study resonance. On the 

other hand, if we apply directly the Balslev and Combes theorem [13-15] for 

resonance study, then it will be very much impractical to use. Because in that 

case, the wave function will depend on nuclear and electronic coordinate. 
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Applying complex scaling method to molecular potential may lead to 

determining the electronic spectra for unphysical internuclear separations [293, 

294]. In addition to that, handling complex nuclear distance is very difficult. 

Thus, it is better to fix the nuclei on the real axis and scale the electronic 

coordinate. This approximation reduces the mathematical effort and made easy 

for computational implementation. This approximation is known as complex 

coordinate real axis clamped nuclei approximation (CCRACNA). The 

difficulty arises to imply CCRACNA, when the nuclear coordinates are fixed in 

real axis and the electronic coordinate ir  is scaled as: i
i ir re θ→ , then the nuclear 

interaction will become: 
1i

ire Rθ
α

α

−
−∑ . The nuclear interaction become non-

analytic [295] because the argument of the absolute value can vanish for a 

continuous range of value, such that, i
ire Rθ

α=  and dot products of the two 

radius vector will become: cosir Rα θ=  and gives a continuous range line of 

square branch points, making the Hamiltonian non-analytic. This makes the 

Balslev-Combes theorem [13-15] inapplicable to BO Hamiltonian. To solve the 

problem, two different groups [296, 297] independently developed methods to 

implement CCRACNA in a practical manner. McCurdy and Rescigno [296] 

applied Gaussian basis functions, where only the exponents are scaled by a 

complex factor. These can also be back rotated by ie θ− . McCurdy and Rescigno 

[296] diagonalized the real Hamiltonian. The back rotated wave functions and a 

real Hamiltonian is equivalent to using real wave functions and a complex 

Hamiltonian. On the other hand Moiseyev and Corcoran [297] applied BO 
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approximation. When the method of coordinate rotation is applied to such 

Hamiltonian, they kept the nuclear coordinate fixed and rotated only the 

electronic coordinate. Scaling only the electronic coordinate is advantageous 

for practical purpose. They have applied this method to study autoionizing 

states of 2H  and 2H − . For this study they scaled only the electronic coordinates 

of BO Hamiltonian [297]. Simon [298] introduced smooth exterior scaling 

(SES), such that any interior non analyticities can be avoided, but the 

coordinates be on the real axis for long enough. In this case the exterior 

complex scaling operator can be written as: 

                                             
0

0

( )

0

1

i r r
r

U if r r

e if r r
θ ∂

−
∂

= <

= ≥

                                  (I.172)                            

Expression for Hamiltonian is:  

                                  
( ) ( )

( )( )

0

0 0
i

H H r if r r

H r r e if r rθ

θ = <

= − ≥

                     (I.173) 

Lipkin and co-workers [299] implemented the Simon’s [298] method for model 

system using finite-basis set approximation. In this method, the basis is scaled. 

Thus for exterior scaling the orthonormal basis functions are given as: 

                                             
( )

( )( )

0

2
0 0 0

i i

i i
i

r if r r

e r r e r if r r
θ

θ− −

Φ = Φ <

= Φ − + ≥



         (I.174)            

Rom et al. [300] proposed another smooth exterior scaling (SES) which avoids 
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the need of carrying out the analytical continuation of the potential term in the 

Hamiltonian into the complex coordinate plane. SES can be expressed as: 

                                             ( ) ( ) ( ) ( )1 1iF r
f r e g r

r
θ∂

= = + −
∂

                      (I.175)                  

The path in the complex coordinate plane, ( )F r  is defined as: ( ) iF r re θ→  as 

r →∞  and ( )g r  is a fraction. If ( )0V r r≥  , then the unscaled potential 

( )V r can be used.    

            Moiseyev [301] derived SES Hamiltonian of having expression: 

                                             ( )( )
2

2 CAPH V F r V∇
= − + +                               (I.176) 

CAPV  is universal energy independent complex absorbing potential (CAP). If 

SES is applied, then the CAP has non-zero values in the region where 

interaction potential vanishes. Complex SES Hamiltonian is obtained by adding 

to the unscaled Hamiltonian matrix, which represents universal CAP.      

            For complex scaling, if a truncated basis { }µφ φ=  of order M is used, 

then the following relation can be obtained:   

                                             H T V= +                                                       (I.177) 

Here ‘-’ denotes scaling. H  contains large number of complex eigen values. 

The most impotant task is to find out which complex eigen value corresponds 

to resonance states. If we use complete basis set, and during the process, if we 

increase rotation angle θ , when resonance eigen value ( )resE  is revealed, it will 

become independent of complex scale factor, ie θη = . Such that: 
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2

2 .... 0res resE E
η η

∂ ∂
= = =

∂ ∂
                                    (I.178) 

In practice we have to use a finite basis set of order M. Thus, resE  should be 

fairly necessary. To find resE  we have to adopt graphical method. Using various 

types of stabilization graph [302-304] finding resE  is possible.                            

If scaling operator satisfies ( ) 1† *U U
−
= , then  the transformed 

Hamiltonian becomes complex symmetric. This equality makes the resonance 

computationally feasible.  

Complex scaling has been successfully applied to SCF method [305-

307]. There are two different ways of approaches of applying in the SCF field:  

1) McCurdy et al, [305, 306] adopted real Hamiltonian in augmentation 

with complex wave functions. In this method resonant eigen values were 

obtained by SCF method. This method is comparable to bound state SCF 

method.  

2) Another approach used complex Hamiltonian with real basis 

functions. This method was proposed by Mishra et al. [307] Here the resonance 

eigen value can be calculated by a little bit modification of exsisting code. This 

method has also been applied to calculate resonance and width by using highly 

correlated method like FSMRCC [308].  

 Other than complex scaling method, finite box method have also drawn 

extra attention for studying resonance, in such cases the compound system 

becomes quasi-bound. The molecular Hamiltonian is perturbed by an 

appropriate complex potential, which enforces an absorbing boundary 
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condition. This artificial potential absorbs the emitted particle and 

simultaneously transforms the former continuum wave function into a square 

integrable wave function. Jolicard and Austin [17, 309-311] applied CAP 

method for this purpose. The stability of resonance eigen value can also be 

achieved by varying the strength or the location of the absorbing potential [18, 

312-314], whose job would be to absorb the perfectly outgoing Siegert state 

without creating any reflection [310]. Difficulty of using the are the conditions 

and approximations at which the spectrum of CAP augmented Hamiltonian 

resembles with the spectrum of complex scaled Hamiltonian. 

 

I.13.B. Complex absorption potential (CAP): 

            Analytic continuation of the Hamiltonian can also be achieved using 

complex absorbing potential. CAP can easily be implemented with any 

quantum chemistry method. First application of CAP for resonance problem 

was by Jolicard and Austin [17] using Hazi-Taylor [19] potential model. In 

CAP method absorbing boundary conditions are introduced in region exterior 

to the target molecule. The CAP absorbes the outgoing electron and the wave 

function is made square integrable. Electron absorption is achieved by 

introducing or adding one particle potential to the Hamiltonian: 

                                             ( )H H i Wη η= −                     (I.179) 
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η  is real positive number, known as CAP strength and W is potential. Riss and 

Meyer [18] proved that when dE
d

η
η

  is minimal the energy ( )E η  is a Siegert 

energy.  

                                             
2res RE E i Γ= −          (I.168)  

The eigen spectrum of a perturbed Hamiltonian: 

                                             ( ) ( )H H i W rη η= −                                        (I.180) 

The η  independent Hamiltonian can be expressed as: 

                                             ( )
2

2

1 , 0
2

dH V r
dr

η= − + >                              (I.181) 

( )W r  is continuous Coulomb potential. 0η → , the eigen value of 

( )H η converges towards the poles of the Green’s function on its physical sheet, 

subject to the condtion that ( )0 arg 0Eπ ≥ ≥ ≥ . CAP becomes equivalent to 

complex scaling in the limit of 0η +→ , which is impoosible for practical 

purpose. Because This limit can only be achieved only when complete basis set 

is used, but complete basis set is computationally expensive. The large value of 

η creates artificial reflections. Various correction scheme exsists in the 

literature to remove the artificial reflections [280, 309]. Assuming ( )0W r , 

which is twice differentiable and satisfies the following relations: 

                                             
( )0 0

0

c

c

W r for r r

for r r

= ≤

> >
                                    (I.182)                       
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( )'
0 0W r ≥  and ( )0W r →∞  for r →∞ , cr  is cut off parameter. For reflection-free 

CAP, the regular solution is identical to the exact Siegert resonance wave 

function upto cr  and 0E  is the exact Siegert resonance energy. This 

perturbation is not desired on the target and CAP is set to zero in the vicinity of 

the target. Riss and Meyer [312, 313] developed transformative CAP (TCAP). 

In exchange part it implies a modified kinetic energy instead of adding local 

complex potential. For cut-off potential TCAP and SES are identical. CAP 

methods are best for treating molecular electronic resonance [17, 315].    

           CAP method in augmentation with CI [316], electron propagator 

theories [317-319], MRCI [320-322], has been applied to study the resonance 

states in metastable ions. To calculate resonance energy and width, these 

methods involve difference of energy between ground state total energy of the 

[N±1] and neutral target. Resonance energy and width for the electron 

detachment (Auger resonance)/electron attachment shape resonance can be 

obtained simultaneously from the ionization potential/electron affinity studies. 

Taking the same idea we can apply CAP method to calculate resonance energy 

and width of meta-stable states within FSMRCC frame work. Sajeev et al, [31] 

developed correlated independent particle FSMRCC in augmentation with CAP 

(CAP-CIP-FSMRCC) method to calculate resonance energy and width of 

metastable state in an efficient manner. The method is briefly discussed below. 

Details will be described in chapter II.   
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To start with CAP-CIP-FSMRCC method, let us start with CAP-

FSMRCC method. Then the advantage of CAP-CIP-FSMRCC method over 

CAP-FSMRCC will be clear.  

In the CAP-FSMRCC approach for the resonance problem, electron 

absorption is achieved by adding the absorption potential to the Hamiltonian: 

                                             ( )H H i Wη η= −                                          (I.179) 

The strength of the potential is defined as, η , W is local, non-negative, 

semi definite one particle potential. At 
0

lim
η→

, ( )H η  describes the analytic 

continuation of the Hamiltonian H . As discussed earlier in Section I.9.D.ii, 

that in FSMRCC method, the wave operator and the effective Hamiltonian are 

solved by using Bloch equation [234] (Equation I.88). For electron attached 

state Equation (I.88) can be written as: 

              (1,0) (1,0) (1,0) 0effP H H P Ω −Ω =                 

                                   (1,0) (1,0) (1,0) 0effQ H H p Ω −Ω =                         (I.183)              

All the quantities like wave function and effective Hamiltonian are η  

dependent. The Equations of (I.183) are η dependent and have to be solved for 

getting the cluster amplitudes and the effective Hamiltonian. Since effective 

Hamiltonian is complex, the model space coefficients along with the roots are 

also complex. 

                                             ( ) ( ) ( ) ( )effH C C Eη η η η=                             (I.184)       

To calculate resonance energy N electron ground state must be 

unperturbed. The ( )E η  that we obtain from Equation (I.184) is not a good 
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approximation to the resonance energy as N- electron state is also perturbation 

(η) dependent here. Thus, the more accurate way to get resonance energy is:  

                                  ( ) ( ) ( ) ( )      0res srcc srccE E E Eη η η η= + − =    (I.185) 

In the CAP-FSMRCC methods CAP term is added at the SRCC level, 

making the procedure computationally expensive. To get-rid-of the problem, 

Sajeev et al. [31] proposed the CAP implementation within the CIP-FSMRCC 

approach of Bartlett and co-workers [323]. We approximate that:  

                                             ( ) ( )(0,0) (0,0) 0T Tη η= =                                  (I.186) 

Using this we generate the H
−

 operator. Thus, in this approach we get rid of η 

dependence in the SRCC part. The correlated complex potential independent 

particle theory for resonance problem has the form:  

                                             ( )( ) ( ) ( )c p pf ν η ε η η+ Φ = Φ                        (I.187)                      

Where f  is the Fock operator, ( )cν η  is correlated complex potential. In order 

to get ( )cν η , we first solve FSMRCC equations without CAP. The first 

approximation to ( )cν η  is obtained by adding CAP potential to the one body 

part of NH . Iterative procedure is continued till the eigen values of ( )effH η  are 

converged. Convergence is fast as we start from the converged cluster 

amplitudes which are independent of η as a first approximation. 

 

 

 

 



112 
 

I.14. Objective and scope of the thesis: 

Before winding up the introduction part, we briefly mention the 

objective and scope and chapter orientation of the thesis.  

In the thesis we have studied properties using energy or derivative of 

energy, and is done within FSMRCC frame work. The chapters are organized 

as follows:    

First chapter: A general introduction is proposed leading to the subject 

matter of the thesis. Here, a brief overview of some of the basic concepts and 

developments in single reference coupled cluster theories are presented. Quasi-

degenerate situations and their multi reference treatments are also highlighted. 

Introduction to computation of properties using numeric and analytic approach 

are discussed. We also introduce the idea of complex absorbing potential 

(CAP) and discuss the present status of CAPFSMRCC approach. We conclude 

the first chapter with the objectives and scope of the thesis. 

Second chapter: The second chapter deals with shape resonance of 

electron-molecule collision. We present results of shape resonance arising from 

e--F2, N2O and CO collision. We have used correlated independent particle 

Fock space multi reference coupled-cluster augmented with complex absorbing 

potential (CAP-CIP-FSMRCC). 

Third Chapter: The optimization of geometry is an extremely 

important task in chemistry. It is indeed challenging to find the geometries of 

excited states. No results are available using the MRCC method, which can 

describe the excited states accurately. In this chapter, we have optimized the 
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geometry of molecules within the FSMRCC framework using numerical 

gradients. Low lying excited states are dominated by single hole, single particle 

excitations from ground state closed shell molecules have been described in 

this chapter. Excited state gradients are done by calculation of using finite field 

multi reference coupled cluster method. We also report adiabatic excitation 

energies to confirm the excited state geometries. We report excited state 

geometries of CH+, H2O, O3 and HCHO. 

Fourth Chapter: Development of analytic gradients within the 

FSMRCC. This is the first attempts of implementing analytic gradients for 

FSMRCC. In this chapter we will give working equations for the analytic 

gradients of one valence problem. 

Fifth Chapter: In this chapter we shall write general conclusion and 

scope of the thesis. 
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CHAPTER II 

 

Study of shape resonance: An application of 

Fock space multi-reference coupled cluster 

method 

Abstract: 

In this chapter we have applied correlated independent particle potential 

within Fock space multi-reference framework in augmentation with complex 

absorption potential , which has been developed by Sajeev et al. [Y. Sajeev, R. 

Santra, S. Pal, J. Chem. Phys. 123 (2005) 204110]. This is an advanced ab 

initio tool to calculate life time of resonances in the low-energy electron-

molecule collision problem. This method quantitatively describes an elastic 

electron-molecule scattering below the first electronically inelastic threshold. 

The complex absorption potential is introduced for analytic continuation of the 

Hamiltonian to calculate position and width of resonance. In this method 

electron correlation, relaxation and analytic continuation are treated 

simultaneously. This method within Fock space multi reference formalism in 

augmentation with complex absorption potential is known as CAP-CIP-

FSMRCC. In this chapter, we have studied shape resonance of  e-- F2, e--CO 
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and e-- N2O molecules. In particular, we have studied e-- F2 scattering at 

different bond lengths to know whether 2F −  is bound at the equilibrium bond 

length of F2, and this molecule is important in several electrically excited gas 

lasers. Among the other three molecules N2O, CO are of environmental 

interest.  

 

II.1. Introduction: 

Resonant states are metastable states, which are formed by temporary 

trapping of an electron in an atom or a molecule. The compound system has 

sufficient energy to break into neutral atoms or molecules and a free electron. 

Resonances are characterized by the complex energies called Siegert energy [1] 

associated with the eigen functions which diverge asymptotically. Unlike in 

bound state problem, where the wave function is square integrable and can be 

described by the basis set, resonance states are only quasi bound and are not 

square-integrable. Thus, it is desirable to transform the resonance problem into 

a bound state problem so that existing ab initio methods can be used for the 

calculation of resonance parameters. For past few decades efforts have been 

made to develop methods so that resonance energies can be calculated within 

the framework of ab initio bound state methods. Among these are the complex 

scaling [2-5], complex absorbing potential [6, 7] and stabilization methods [8-

10]. All these methods use some parametrization in the Hamiltonian and 

several eigen values of the Hamiltonian are obtained as a function of this 

parameter. Empirical correlation methods are another way of studying the quasi 



141 
 

bound states [11]. Complex scaling is also known as the complex coordinate 

method. In complex scaling method the information about the evolution of a 

resonance state at infinity is compressed into a small well defined space. 

Though conceptually simple, this method is complex to implement for 

molecules. Complex basis functions [12-14] are used to study the quasi bound 

states in molecules. Alternative approach is the use of complex absorbing 

potential (CAP). There are various attempts to construct an optimal absorbing 

potential [7, 15-18] for the calculation of resonance states. The popularity of 

the CAP approach is due to its simplicity in implementing with any electronic 

structure method. However, several states need to be studied at a time in order 

to identify the resonance state. Thus, methods which are suitable for studying 

multiple states at a time are useful. The idea behind the complex absorbing 

potentials is to introduce an absorbing boundary condition in the exterior 

region of the molecular scattering target which results in a non-Hermitian 

Hamiltonian. One of the square integrable eigen functions of this Hamiltonian 

corresponds to the resonance state. The associated complex eigen value then 

gives the position and width of the resonance. Since we use finite basis set it is 

difficult to separate the physical stabilization points from the nonphysical once. 

Sajeev and co-workers [19] have developed a new CAP scheme to eliminate 

the false resonance states from the real resonance states. CAP method has been 

successfully used for the study of vibrational quasi bound states [20, 21], i.e. 

Feshbach resonance. CAP has been successfully used for the study of shape 

resonance with multi-reference configuration interaction (MRCI) [22-25], 
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Multi-reference coupled cluster (MRCC) [26, 27], Green’s function [28-30], 

equation of motion-coupled-cluster (EOM-CC) [31] and the symmetry-adapted 

configuration interaction (SAC-CI) [32]. Position of the resonance state is 

energy difference of the N electron ground state and the electron attached 

(N+1) electron state. Fock space multi reference coupled cluster method 

(FSMRCC) [33-37] gives the direct difference energy and is successful for the 

accurate calculation of difference energies. In the CAP-FSMRCC method we 

apply the CAP potential in the single reference coupled cluster approach itself. 

In this approach electron correlation and the analytic continuation are treated 

simultaneously. We need to solve the SRCC and FSMRCC equations for each 

of the potential strengths in CAP-FSMRCC. Thus, it is computationally 

expensive. Bartlett and co-workers [38] formulated the correlated independent 

particle potential (CIP) within FSMRCC framework. In another approach we 

apply the CAP to CIP-FSMRCC method. We call this method as CAP-CIP-

FSMRCC [39] to differentiate it from the CAP-FSMRCC method. At the 

converged limit both the methods should give the same results. CAP-CIP-

FSMRCC method is computationally inexpensive and yet accurate. This 

method is tested for the study of the resonance of e--molecule shape resonance 

[39, 40].  

In this chapter we shall discuss on the shape resonance of e-- F2, e-- CO 

and e-- N2O collision. 

e--F2 scattering is an interesting system. The aim of this study is to see 

the effect of electron correlations on F2 scattering. There are several theoretical 
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studies [41-45] on electron F2 scattering. Since the potential energy curves of 

the neutral ground state and the ionic ground state exhibit curve crossing. There 

is a controversy regarding the 2F −  being bound at the equilibrium bond length 

of the neutral F2. The determination of the crossing point is important for the 

study of dynamics. The correct determination of the crossing point requires 

balance treatment of the electron correlation in the ionic as well as neutral state.  

e--CO scattering is interesting because it refers to a Π -resonance. 

Among different heteronuclear diatomic systems CO is an interesting system. 

We have studied e--CO shape resonance. 

Similarly, e--N2O scattering study is also an interesting system. There 

are significant discrepancies between the experimental [46-48] and theoretical 

results [49-51]. The controversy remains regarding existence of shape 

resonance of Σ  symmetry. Experimental evidences showed that there are two 

distinct resonance peaks. The lower one is at 2 eV of Π  symmetry, and higher 

at 8 eV of Σ  symmetry.   

The chapter is organized as follows. Section II.2 gives a brief review of 

the theoretical details of the method. In section II.3 deals with correlated 

complex potential and approximate form of correlated complex potential. 

Section II.4 gives results and discussion on them, followed by conclusions in 

section II.5.  
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II.2. Theoretical details: 

In this section we briefly discuss the FSMRCC method with emphasis 

on correlated independent particle potential for resonance problem. In the next 

section we shall discuss in details about the method. The study of shape 

resonance involves temporary trapping of electron in the potential well created 

by the angular momentum barrier and the attractive forces at small distances. It 

is known that the method for studying resonance must be able to treat the 

electron correlation and continuum effects simultaneously. Also, it should be 

able to handle multiple states at a time. FSMRCC method provides direct 

difference energies of multiple states at a time and introduces electron 

correlation in an efficient manner.  

In FSMRCC, N electron RHF is chosen as a vacuum, with respect to 

this vacuum holes and particles are defined. These are further divided into 

active and inactive space. The problem of our interest is one active particle 

which is a complete model space. The model space for the (1, 0) sector can be 

written as:  

                                                    (0)(1,0) (1,0)
i i

i
Cµ µΨ = Φ∑                 (II.1)              

Where, iCµ ’s  are the model space coefficients and iΦ ’s are the model space. 

  The correlated wave functions for the µ -th state is defined as: 

                                                     (1,0) (0)(1,0)
µ µΨ = ΩΦ                                    (II.2)        

                                                    { }(1,0) (0,0)exp( )T TΩ = +                           (II.3)      

Ω  is the valence universal wave operator.    
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(1,0)T  operator destroys exactly one active particle. The normal ordering 

of the operators prevents contraction between the T ’s. This leads to the 

decoupling of the equations for different Fock space sectors. The Bloch 

equation [52] for the ( )1,  0  sector is:   

                                                    (1,0) (1,0) 0effP H H P Ω −Ω =                     (II.4) 

                                                    (1,0) (1,0) 0effQ H H P Ω −Ω =                     (II.5)     

 Equation (II.4) and Equation (II.5) define the effective Hamiltonian and 

amplitude equations.                                                    

P  and Q  are the model space and complementary space projection 

operators. FSMRCC method is discussed in chapter I. For even more details on 

FSMRCC see ref. [33].  

In the CAP-FSMRCC approach for the resonance problem, electron 

absorption is achieved by adding the absorption potential to the Hamiltonian: 

                                                    ( )H H i Wη η= −                              (II.6) 

The strength of the potential is defined as η , W which is a local, non-

negative semi definite one particle potential. In the limit that 0η → , ( )H η  

describes the analytic continuation of the Hamiltonian H . All the quantities 

like wave function and effective Hamiltonian are η  dependent.  The Equation 

(II.4) and Equation (II.5) are η dependent and have to be solved for getting the 

cluster amplitudes and the effective Hamiltonian. Since effective Hamiltonian 

is complex, the model space coefficients along with the roots are also complex. 

                                                    ( ) ( ) ( ) ( )effH C C Eη η η η=                     (II.7)       
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For the calculation of resonance energy N electron ground state must be 

unperturbed. The E (η ) that we obtain from Equation (II.7) is not a good 

approximation to the resonance energy as N-electron state is also perturbation 

(η) dependent here. Thus, the more accurate way to get resonance energy is:  

                                       ( ) ( ) ( ) ( )      0res srcc srccE E E Eη η η η= + − =         (II.8) 

The CAP procedure described so far was implemented initially. 

However, it is computationally intensive as we need to calculate for each η the 

SRCC and FSMRCC equations. Since CAP is defined only over the particle-

particle block, its effect on correlation energy is very small. Sajeev et al. [36] 

proposed the CAP implementation within the CIP-FSMRCC approach of 

Bartlett and co-workers [35]. Thus we approximate:  

                                                     ( ) ( )(0,0) (0,0)~ 0T Tη η =                         (II.9) 

Using this, we generate the H
−

 operator. Thus, in this approach we get rid of η 

dependence in the SRCC part. The correlated complex potential independent 

particle theory for resonance problem has the form:  

                                                     ( )( ) ( ) ( )c p pf ν η ε η η+ Φ = Φ                (II.10)                      

Where f  is the Fock operator, ( )cν η  is correlated complex potential. In order 

to get ( )cν η , we first solve FSMRCC equations without CAP. The first 

approximation to ( )cν η  is obtained by adding CAP potential to the one body 

part of NH
−

. Iterative procedure is continued till the eigen values of ( )effH η  are 

converged. Convergence is fast as we start from the converged cluster 

amplitudes which are independent of η as a first approximation. We have used 
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CAP-CIP-FSMRCC method truncated at singles doubles level (CAP-CIP-

FSMRCCSD). 

 

II.3. The Correlated Complex Potential: 

The correlated complex potential ( ) CV η  can be derived by 

incorporating a complex absorbing potential in the correlated potential. 

Correlated potential is introduced to solve Equation (II.10). Complex absorbing 

potential (CAP) is applied to render the wave function of the projectile square 

integrable, and leaving the target unaffected. To describe the (N±1)-electron 

state, the ground state with N-electronic configuration can be described by the 

Hamiltonian is unperturbed by CAP. In order for the CIP method to have a 

CAP unperturbed target state, we eliminate the effect of the CAP on the 

Hartree-Fock ground state by replacing  

                                                      W PWP→                                           (II.11) 

Where, P  is the projection operator, which projects onto the subspace of 

unoccupied orbitals and is defined as: 

                                                       i i
i

P φ φ=∑                                      (II.12) 

Rewriting W  as:  

                                                       0p qWφ φ =                                      (II.13)          

Between p and q, if anyone is an occupied orbital, then the cluster amplitudes 

of the (0,0)-sector, i.e., in the single reference case is invariables with respect to 

the CAP and can be expressed as: 
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                                                        (0,0) (0,0)( ) ( 0)t tη η= =                           (II.14)        

  Since we have to study electron attachment, so here we shall focus on 

correlated complex potential for electron attachment phenomena ((N+1) 

electronic state), i.e. (1, 0) sector of the Fock space and we introduce CAP 

potential into FSMRCC theory. To introduce it in both the (0, 0) and (1, 0) 

sectors to completely define the valance universal wave operator for the CAP 

perturbed Hamiltonian. 

                                                         ( )H H i Wη η= −                                (II.6) 

Due to subsystem embedding condition (SEC) to solve the cluster amplitudes, 

the first step would be to introduce CAP one-body term in the single reference 

case, i.e., (0, 0) sector of the Fock space. The physical concepts make it 

possible to apply the perturbation by CAP directly to the next hierarchical 

sector of Fock space defined by SES. Within FSMRCC framework the only 

one-body interaction terms of 
N

H . Similarly to the 
N

H  interaction, in order to 

introduce the CAP perturbation in the (1, 0) sector of Fock space, the CAP 

perturbation term can be transformed into 
N

W  interaction term:  

                                             ( ) ( )(0,0)

,
expN N connected open

W i W Tη η = −             (II.15) 

The CAP interaction term satisfies (II.13) and NW
−

 is defined by (II.6). The idea 

of analytic continuation for the effective Hamiltonian is to replace all the one-

body particle-particle interactions of 
N

H  diagrams entering (1,0)
CV and 

(1,0)T amplitudes with a new particle-particle interaction of the form:             

                                             ( )( ) ( ) ( )
N N None body one body

H H Wη η
− −

= +            (II.16)              
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In FSMRCC method, the new set of non-linear ( )(1,0)T η  amplitude 

equations are solved by iterative manner, and the solution of the new effective 

Hamiltonian is: 

             ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1,0 (1,0) (1,0) (1,0) (1,0) (1,0)EA
eff pp HF C pp pp PH C V C Cη η ε η η η ε η= + =      (II.17)     

and is equivalent to Bloch equation: 

                                ( ) ( ) ( ) ( ) ( ) ( )1,0 1,0(1,0) (1,0)
,N N eff

P H P P H Pη η η ηΩ = Ω
       

(II.18) 

( )N
H η  is the normal ordered form of the Hamiltonian ( )H η  of Equation (II.6). 

(1,0)
Pε is the solution Equation (II.17) and are the correlated complex of EAs of 

( )H η . In a similar fashion the correlated complex potential for ionization, i.e., 

can be calculated by replacing the particle-particle one body part of the 
N

H  

interactions in (0,1)
CV  and (0,1)T with the particle-particle

N
H . 

  

II.3.A. Approximated form of correlated complex potential: 

The analytic continuation method computationally easier. Theoretical 

methods treat the full scattering problem including non-resonant contribution to 

the scattering cross section [53-56], but there are difficulties in computing 

resonance parameters using analytic continuation methods. These are: 

1) Since the finite basis set is used, thus it is difficult to locate which 

complex eigen value in the discrete spectrum may correspond to resonant state. 

For a complete basis set, for every resonance state, there exists an eigen value 

( )E η  of ( )H η , which satisfies  
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                                                          ( )
0

lim
2rE E i

η
η

+→

Γ
= −                           (II.19) 

On the other hand in the approximate numerical treatments using a finite basis 

set, the resonance energy shows certain stability properties, and in practice they 

are determined form ‘stabilization graphs’, because the complex velocity, 

( )iν η ( ( ) i
i

Eν η η
η

∂
=

∂
) of one of the trajectories is minimum in magnitude near 

the resonance energy [57, 58]. Graphical optimization by analytic continuation 

parameters is time consuming and not worthy in terms of computation, because 

the electronic structure calculation must be performed several times using a 

large basis set.   

2) Electron correlation and relaxation effects are important in locating 

the position and width of resonances. In ab initio methods, where the analytic 

continuation scheme has been framed should describe correlation energy 

accurately. The accurate calculation of resonance parameters requires heavy 

computational expenses due to the stabilization graphs and they are equivalent 

of electron correlation. The difficulty of the stabilization method is again 

increased by optimizing the geometric parameters which minimizes CAP 

perturbation and maximizes the electron-overlap with the wave function of the 

scattered electron.       

To get CIP potential, first we have to solve the non-linear FSMRCC 

equations. The expression for the first iterative solution of the ( )(1,0)
CV η  problem 

can be obtained from the unperturbed (1,0)
CV , by replacing the one-body part of 

the 
N

H  interactions with the CAP augmented one-body part of the Hamiltonian 
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interactions ( )
N

H η  (Equation (II.16)). In fig. II.1(a) we have shown the 

resultant (1,0)
CV , which is represented as ( )(1,0)

CV η . ( )(1,0)
CV η  is coupled with 

( )
N

H η  interactions from (II.18) generates ( )(1,0)T η  diagrams (fig. II.1(b)), the 

CAP unperturbed (1,0)
CV  contribution from ( )(1,0)T η  is dropped and substituted it 

with the ( )(1,0)
CV η  diagrams. This CAP contribution can be written in term of  

( )
N

H η  and the CAP unperturbed amplitudes are within parentheses of fig. II.1 

(c). Following the iterative procedure, using new cluster amplitudes, correlated 

potential can be generated for next iteration. This iteration can be continued 

until the eigen values of ( ),N effH η  converges.  

 

                                                                     

                              

fig. II.1 The CAP perturbed FSMRCC diagrams. (a) ( )(1,0)
cV η , (b) ( ) ( )1,0

1T η , (c) ( ) ( )1,0
2T η  diagrams. W  

perturbation is denoted by filled circles, vertical double lines indicate CAP-perturbed excitations and 

the CAP-perturbed correlated potential is symbolized by box with vertical lines.     
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The CAP-FSMRCC and CAP-CIP-FSMRCC are theoretically 

equivalent in defining the analytic continuation of the Hamiltonian, but they 

differ in the implementation. In CAP-FSMRCC the analytic continuation starts 

from many-body Hamiltonian and the diagonalization of the complex effective 

Hamiltonian gives the resonance energy, relative to the target state. On the 

other hand in CIP-CAP-FSMRCC the analytic continuation scheme starts from 

the real FSMRCC effective Hamiltonian and the diagonalization of the 

iteratively solved new complex effective Hamiltonian yields an equivalent 

energy difference.            

From the above discussion we can say that using CAP-CIP-FSMRCC 

studying the resonance trajectory becomes simplified, when the iterations are 

terminated after correlated potential calculation. This truncation of the iterative 

procedure is justified by the fact that the 
eff

H  and (1,0)T  amplitudes are 

converged quantities for the CAP unperturbed 
eff

H  and eigen values of 
eff

H  

corresponds to the correlated electronic states of the (N+1) -electron system. 

The dynamic and non-dynamic correlation for (N+1) -electron states are 

retained in this procedure. A suitably chosen CAP should define an exact 

analytic continuation for the Fock space ( )1,0  sector with a minimum change 

in the correlation energy. Termination of the iterative procedure in the second 

step of the complex correlated potential calculation is advantageous over the 

CAP-FSMRCC procedure is that: 

1) No modified calculation of the FSMRCC is required for bound states, 

minimum changes in the cluster amplitudes of (1, 0)-sector and ,N effH  matrix. 
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2) Construction of  (1,0)T  is the most expensive part of FSMRCC 

calculation. In this case, once (1,0)T matrix generated can be used for ( )(1,0)T η  

and ( )(1,0) 1T η can easily be constructed from (1,0)T , just by adding a few 

diagrams. Whereas, in CAP-FSMRCC for each η  value, this step has to repeat. 

  

II.4. Results and discussion: 

 We have used CAP-CIP-FSMRCCSD for the study of e--F2, CO and 

N2O resonance study. For our study of resonance we chose box shaped CAP, 

which is applied in the peripheral region of the box leaving target unperturbed. 

The form of the potential is:  

                                                            
3

1
( ; ) ( ; )i i i

i
W x C W x C

=

= ∑
                            (II.20) 

                                                        
2

0
( ; )

( )

i i

i i i

i i i i

x C
W x C

x C x C

 ≤


= 
 − >  

(II.21)        

 The CAP box size is such that: 

                                                            
/ 2

x y

z

C C C

C R C

δ

δ

= =

= +
   

 

II.4.A. Fluorine: 

 Fluorine is a closed-shell molecule with a 2
u
+Σ  ground state. Molecular 

fluorine is an important constituent in several electrically excited gas lasers, 

e.g., for rare-gas-fluoride laser modeling. The electron scattering of fluorine 
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molecule has been investigated theoretically several times. The theoretical 

treatment of e--F2 scattering is complicated due to strong polarization of the 

target. It is expected that the correlation as well as polarization will play an 

important role in the accurate description of the resonance, in particular for 

highly electronegative molecule like, fluorine.  

The R-matrix study by Morgan et al. [43] used static exchange model 

with polarization (SEP). Their study found that the ionic state is stable against 

auto-detachment at the equilibrium internuclear separation of the neutral 

molecule. The R-matrix calculations at the SEP level of correlation indicates 

that the position of the crossing point of the ionic and neutral potential curve is 

strongly influenced by the correlation included in the fixed-nuclei calculation. 

The resonance structure becomes narrower as R approaches the crossing point 

of the potential curve of neutral molecular ground state with the negative ion. It 

was predicted that the resonance could be an artifact of the static exchange 

approximation and would disappear if correlation effects were included.  

We have used d-aug-cc-pVDZ basis set [59] in our calculation. The 

electronic configuration of F2 in its ground state is:  

                                                        2 2 2 2 4 2 41 1 2 2 1 3 1g u g u u g gσ σ σ σ π σ π  

We have studied resonance of 2F −  at various bond lengths, viz., 2.47, 

2.57, 2.62, 2.64 and 2.67 a.u., respectively. 

In TABLE II.1 we report the crossing point where the resonance turns 

into the bound state for different theoretical methods. In our study we find that 

at 2.67 a.u., i.e., the equilibrium bond length of neutral F2, the electron affinity 
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of F2 is positive, indicating that 2F −  is becoming bound at this geometry. Ingr et 

al. [44] calculated the crossing point of the neutral target potential curve with 

the resonance state potential curve by the extrapolation of the resonance width 

to zero. Ingr et al. [44] used CAP-MRCI method to find out the crossing point 

of the two curves. They obtained 2.623 a.u. as the point where 2F −  is stable. 

Later Brems et al. [42] used Feshbach-Fano R matrix method to find the 

crossing point. Though the basis set used is same and the crossing point was at 

2.41 a.u. The SD-MRCI results of Tarana et al. [45], found that 2F −  becomes 

bound at 2.76 a.u. which is quite high compared to all other theoretical 

calculations. The basis set used by Tarana et al. [45], is cc-pVTZ for F atom 

while the continuum basis is same as that of Brems et al. [42] Tarana et al. 

[45], studied three different models, static exchange (SE), static exchange-plus-

polarization (SEP) and single and double excitations multi-reference CI (SD-

MRCI). Their study at the SE level shows resonance for the equilibrium 

internuclear distance which vanishes at the SEP level. SD-MRCI method 

resonance is observed, however position and width are different. Thus, it can 

be inferred that the position of the crossing point of the neutral target potential 

curve with the ionic potential is sensitive to the inclusion of electron 

correlation. Though, basis set as well as methods used are widely different, it 

can be seen that all the MR methods are having qualitatively similar value of 

the crossing point. Here, we would like to mention that in FSMRCC method 

the electron correlation is consistently included in the neutral as well as ionic 

state giving more balanced treatment of electron correlation. Whereas, in 
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MRCI treatment of electron correlation is unbalanced because of the 

independent calculations for the ionic and neutral target states. Since the 

position of the resonance is difference of (N+1) and N electron state, i.e., 

electron affinity. We have also checked the electron affinity of the fluorine 

atom.  We obtain 3.21 eV compared to the 2.2 eV of SD-MRCI of Tarana et. 

al. [45], 13.5 eV using SEP by Brems et al. [42] and 3.54 eV using MRCISD 

(MRCI method truncated at singles doubles level) by Ingr et al. [44]. The 

experimental electron affinity is 3.4 eV. It is interesting to note that 

FSMRCCSD and MRCISD results are closer to the experimental value 

compared to the other theoretical method. Also these two methods give 

crossing points as 2.67 eV and 2.62 eV, which are quite well in agreement with 

each other despite of different basis sets. 

We report the resonance energy and width at different bond lengths in 

TABLE II.2. Using CAP-CIP-FSMRCCSD and CAP-MRCISD results of Ingr 

et al. [43], for bond lengths where ever results are available. Ingr et. al. [43], 

have used [5s4p2d1f] basis, the continuum part of the wave function is 

described using diffuse s and p functions which is different for different bond 

lengths. Though basis sets are widely different. We still report them to have 

qualitative comparison. From TABLE II.2 we can see that with the bond 

distance width of resonance decreases sharply in both the methods, implying 

more lifetimes of the meta-stable state. It can be seen that the width of 

resonance is much more sensitive to the basis set than the position. At the 

equilibrium distance of neutral F2, 2F −  is bound. 
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TABLE II.1. Bond lengths in a.u. where the resonance state turns into the 

bound state: 

R Method Basis  

2.41a Feshbach-Fano partitioning method 

(FFR) 

5s4p2d1f 

2.56b R-matrix method ---- 

2.62c CAP-MRCISD 5s4p2d1f+continuum basis 

2.76d SD-MRCI  cc-pVTZ+continuum basis  

2.67 CAP-CIP-FSMRCCSD d-aug-cc-pVDZ 

a: Ref. 42. 

b: Ref. 43. 

c: Ref. 44. 

d: Ref. 45. 
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TABLE II.2. Position and width of shape resonance for e--F2 for various 

bond lengths: 

Bond 

length 

(a.u.) 

Energy 

(eV) 

Width 

(eV) 

Energy 

(eV) 

Width 

(eV) 

 CAP-MRCISD CAP-CIP-FSMRCCSD 

2.47 1.726 0.021 1.178 0.147 

2.57 0.576 0.0029 0.582 0.082 

2.62 ------ ------ 0.220 0.060 

2.64 ------ ------ 0.065 0.048 

 

 

II.4.B. Carbon monoxide:  

The electronic molecular orbital configuration of CO is: 

                                          2 2 2 2 4 21 2 3 4 1 5σ σ σ σ π σ  

We report the 2Π  resonance which is obtained by adding an electron in 

the 2Π  state of the ground state of CO. We have used 4s4p basis for carbon 

and oxygen used by Mishra et al. [60-62]. We compare our results with other 

theoretical and experimental results [63]. All the values are reported in TABLE 

II.3. For CAP-CIP-FSMRCCSD calculations the CAP box lengths chosen were 

x yC C Cδ= =  and 1.068zC Cδ= + , where, , ,x y zC C C  are distances from centre of 

the coordinate system along the x, y and z-axis, respectively and Cδ =10 a.u. 

CAP-CIP-FSMRCCCSD predicts resonance at 1.19 eV with the width of 0.07 
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eV. The second order dilated electron propagator [61] and bi-orthogonal [62] 

electron propagator in the same basis predict position of 1.71 and 1.68 eV, 

respectively. Our results underestimate the resonance position. However, our 

width is in good agreement with the width obtained using propagator method 

which is in the same basis. Compared to the experimental values our position 

and width are quite small due to basis set. 

 

TABLE II.3. Resonance Energy and width of the e--CO shape resonance: 

Method Energy (eV) Width (eV) 

Experimenta 1.50 0.40 

Boomerang Modelb 1.52 0.80 

Close couplingc 1.75 0.28 

Second order dialated 

propagatord 

1.71 0.08  

Bi-orthogonal propagator 

second ordere 

1.68 0.09 

CAP-CIP-FSMRCCSD 1.19 0.07 

 a: See ref. 62.  

 b: See ref. 63.  

 c: See ref. 64. 

 d: See ref. 61. 

 e: See ref. 60. 
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To study the basis set effects and convergence with the basis set, we 

have studied CO in maug-cc-pVDZ basis and added p function on C and O. 

The p-functions were obtained by scaling the previous p coefficient by 0.75. 

The results are reported in TABLE II.4. It can be seen that the width is very 

sensitive to the basis set. With addition of each p functions width and positions 

of resonance is reduced. The width is converged to 0.32 eV after addition of 4p 

functions. The position of the resonance is at 1.22 eV compared to 

experimental value, position and width are still small. However, it has 

approached the experimental value compared to the 4s5p basis 

 

TABLE II.4. Basis set convergence for CO: 

Basis set Position (eV) Width (eV) 

Experimenta 1.50 0.40 

Maug-cc-pVDZ 3.02 0.46 

Maug-cc-pVDZ+1p (C 1p/O 1p) 2.15 0.35 

Maug-cc-pVDZ+2p (C 2p/O 2p) 1.68 0.32 

Maug-cc-pVDZ+3p (C 3p/O 3p) 1.19 0.31 

Maug-cc-pVDZ+4p (C 4p/O 4p) 1.22 0.32 

a: See ref. 62.             

 

II.4.D. Nitrous oxide:  

N2O is present in the upper atmosphere which plays an important role in 

depletion of ozone layer [65]. We have chosen d-aug-cc-pVDZ basis set [59]. 
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The N-N and N-O bond lengths are 2.13 and 2.24 a.u., respectively. Electronic 

configuration of N2O in its ground state is:  

                                          2 2 2 2 2 2 4 2 41 2 3 4 5 6 1 7 2σ σ σ σ σ σ π σ π  

There have been several experimental [46-48] and theoretical [49-51] studies 

for N2O resonance. Two shape resonances have been reported one at 2.2 eV 

and the other one at 8 eV. TABLE II.5 reports the resonance energy and width 

for Σ  and Π  states using different methods.  Morgan et al. [50] did static 

exchange (SE) and static-exchange-plus-polarization (SEP) model calculations 

for N2O. The SE results of Morgan et al. [50], were similar to the one obtained 

by Sarpal et al. [49] They found the low energy  2Π resonance, however, they 

did not find  a 2Σ resonance below 10 eV in either model. The SEP calculations 

predict 2Π resonance peak at 1.99 eV with a width of 0.35 eV. In our study the 

lower resonance, i.e., 2Π-resonance energy is at 2.34 eV with the width of 0.34 

eV. Our resonance energy matches well with the experimental values. 

However, experimental width is available only for impulse approximation 

which is quite high compared to all the theoretical results. Using impulse 

approximation Dubé [48] showed the position and width of resonance at 2.3 eV 

and 0.7 eV, respectively. The width of the resonance is less using CAP-CIP-

FSMRCCSD compared to the CI [49] and Schwinger Multichannel method 

[51]. Coming to the 2Σ resonance we find that CAP-CIP-FSMRCCSD gives 

position at 7.77eV with the width of 1.64 eV. Our results for position and width 

are slightly less compared to the other theoretical and experimental values. 

Sarpal et al. [49] obtained position and width at 8eV and 2 eV, respectively. 
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Schwinger multichannel method [48] gives position at 8 eV with the width of 

2.8 eV. Vibrational excitation measurement of Andrić and Hall [46] showed a 

resonance peak at 8.3 eV with the width slightly greater than 3 eV.  
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TABLE II.5. Resonance Energy and width of the e-- N2O shape resonance: 

State Method Energy (eV) Width (eV) 

2Π Linear transmission experimenta 2.25 ----- 

Impulse approximationb 2.30 0.70 

Vibrational Excitationc 2.30 ----- 

Configuration interactiond 2.15 0.64+0.1 

Static Exchange Polarizatione 1.99 0.35 

Schwinger multichannelf 2.19 0.52 

CAP-CIP-FSMRCCSDg 2.34 0.34 

2Σ Vibrational Excitation 8.30 3.00 

Configuration Interaction 8.00 2.0 

Schwinger multichannel 8.00 2.80 

CAP-CIP-FSMRCCSD 7.77 1.64 

a: see ref. 47. 

b: see ref. 48. 

c: see ref. 46. 

d: see ref. 49. 5s3p1d+continuum basis 

e: see ref. 50.  5s3p1d 1.8846dα =   

f. See ref. 51. 6-31+ (2d) 

g. d-aug-cc-pVDZ. 
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II.5. Conclusion: 

            In this chapter we have used CAP-CIP-FSMRCCSD method to study 

the resonance position and width of e--F2, e-- CO and e-- N2O shape resonance. 

For study of shape resonce we have used d-aug-cc-pVDZ basis  set is used for 

F, N and O for e--F2 and e--N2O shape resonance study.  

 For F2 we have studied the resonance at different bond lengths of F2, 

starting from 2.47 to 2.67 a.u. It has been observed that with the bond length 

resonance position and width drops. At the equilibrium bond length of F2 i.e., 

2.67 a.u., electron affinity becomes positive, indicating that 2F −  becomes stable 

and no resonance is observed. We report in TABLE II.1 results of various 

previous studies indicating bond length of F2 at which 2F −  is bound. Our results 

are in good agreement with the previous CAP-MRCISD results of Ingr et. al.   

For CO we have used 4s5p basis used by Mishra et al. for comparison. 

CAP-CIP-FSMRCCSD underestimates the position of resonance. However, 

our width (0.07 eV) is in good agreement with the second order peopagator 

(0.08 eV) and biorthogonal propagator (0.09 eV). Basis set convergence studies 

have been done by adding evenly tempered p functions to the maug-cc-pVDZ 

basis. It has been observed that upon addition of each p function, both 

resonance position and width is reduced, finally width is converged to 0.32 eV 

after addition of 4p functions. This study shows the importance of basis set for 

the study of shape resonance. 

            N2O is another system we have studied. Experimental results confirm 

double resonance with lower one positioned at 2 eV corresponds to Π-
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symmetry and higher of Σ-symmetry. We get 2Π resonance at 2.31 eV and 2Σ at 

7.77 eV. Our results are in good agreement with the experimental results.  
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CHAPTER III 

Excited state geometry optimization by using 

Fock-space multi-reference coupled cluster 

method 

 

Abstract:   

The Fock space multi-reference coupled-cluster (FSMRCC) method is 

used for the geometry optimization of the low-lying excited states of the 

molecules. Molecular geometries of the carbon monohydride cation (CH+), 

water (H2O), ozone (O3) and formaldehyde (HCHO) in their low lying excited 

states are optimized. Excited state gradients are calculated using finite field 

multi reference coupled cluster method. We also report the adiabatic excitation 

energies in order to examine the nature of stationary point obtained via 

geometry optimization. We compare our results with other theoretical and/or 

experimental results. 

  

III.1. Introduction: 

 Single reference coupled cluster (SRCC) [1-4] method is very successful 

in describing energy and properties of closed shell and high spin open shell 



170 
 

molecules [5-9]. The underlying assumption in SRCC is that the wave function 

is dominated by a single determinant. However, this assumption no longer 

works for excited states, bond dissociation, transition states and various other 

problems. To handle these situations within single reference framework, 

various methods exsists in the literature, like active space CC [10], method of 

moments approach (MMCC) [11], tailored CC (TCCSD) [12, 13], Equation-of-

motion CC (EOM-CC) [14-16], renormalized CC methods [17]. However, a 

more general solution is to use genuine multi reference methods.   

Multi reference coupled cluster (MRCC) methods incorporate non 

dynamic electron correlation in an effective manner. There are two subclasses 

of MRCC methods, which have been studied extensively. One is the multi root 

description via effective Hamiltonian approach [18-20] and the other describes 

a specific root, known as the state-specific (SS) MRCC [21] approach. 

Methods based on the effective Hamiltonian approach are further divided into 

the Hilbert space (HS) [22-25] and Fock space (FS) [26-31] approach 

depending on the way the dynamic part of electron correlation is described. 

Both these approaches are fully size-extensive. In both the approaches energies 

of the states are obtained by diagonalization of the effective Hamiltonian 

defined within a pre-chosen model space. The Fock-space multi-reference 

coupled cluster (FSMRCC) method has been used successfully for energies of 

excited states [32], ionized states [33] and electron attached states. FSMRCC is 

known to describe the quasi-degeneracy of the low-lying states of the above 

types quite efficiently. FSMRCC method uses valence universal wave operator, 
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which correlates the model spaces with the exact wave function. The Hilbert 

space approach uses a state-universal wave operator with different cluster 

operators for each determinant in the model space. The method has been used 

for studying potential energy surface (PES), bond-dissociation [34], etc.  

FSMRCC as well as HSMRCC suffer from the convergence problem due to the 

presence of the intruder states. To eliminate the intruder state problem 

Intermediate Hamiltonian (IH) theory [35]  can be used. The other solution to 

avoid intruder state problem is to use state-specific (SS) MRCC [36, 37] 

approach. However, there is no unique way to define state specific MRCC 

approach.  Among few are Brillouin-Wigner (BW) MRCC ansatz [38], 

exponential multi-reference wave function ansatz (MRexpT) [39], the state-

specific MRCC method suggested by Mukherjee and coworkers (Mk-MRCC) 

[40] and Internally contracted multi-reference coupled cluster (ic- MRCC)  [41] 

theory. However, for PES, the state selective MRCC method developed by 

Mukherjee and co-workers [40] is found to be more suitable in recent years 

from the point of view of circumventing the important problem of intruder 

states. Parallel to this, methods like equation-of-motion coupled cluster (EOM-

CC) [14-16], symmetry-adapted cluster configuration interaction [42, 43], 

similarity transformed EOMCC (STEOM-CC) [44] approaches have been 

developed to handle cases of quasi-degeneracy.  

There are attempts of inclusion of full or partial triples within FSMRCC 

[45-48] framework. Pal and coworkers implemented partial triples for 

ionization potential [46] and excitation energies [46]. Bartlett and coworkers 
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[48] have included full triples corrections for the excitation energies within 

intermediate Hamiltonian based FSMRCC. Inclusion of iterative and non-

iterative triples within EOM-CC [49-50] and state selective [51] approaches for 

energy calculation has also been done. Piecuch et al. [52] implemented the 

non-iterative corrections to method of moments coupled cluster (MMCC) for 

excitation energies.  

Analytic formulation of the energy gradients began with the pioneering 

work of Pulay [53]. While analytic derivative formalism [5] of single reference 

coupled cluster (SRCC) method [1-4] is well studied, a similar formalism for 

multiple root problems is very recent. Accurate calculations of energy 

derivatives with respect to different perturbations are important for problems of 

chemical interest. Energy derivative with respect to displacement of the nuclei 

is one of the key ingredients in describing the effect of molecular vibrations on 

properties computed within the Born-Oppenheimer approximation. The energy 

derivative with respect to coordinates are necessary to find out the stationary 

point on the potential energy surface [9, 54]. Spectroscopic constants like infra-

red [55, 56] and Raman [56-59] properties are important in the determination 

of molecular structure. 

First order properties can be obtained using expectation value or 

response approach. For approximate methods these two approaches do not lead 

to same results.  Analytic derivative or what is known as a response approach is 

preferred in particular for CC because the expectation value approach does not 

truncate naturally. Along the line of the SRCC linear response approach [5], 
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MRCC analytic linear response approach was developed by Pal [60] and then 

implemented by Ajitha et al. [61, 62] for dipole moment of the doublet 

radicals. However, this initial approach is unsatisfactory, since it requires 

cluster amplitude derivatives for first energy derivatives. To eliminate the 

amplitude response dependence a method called Z-vector method [63] was first 

used in configuration interaction. Later, this technique was also used for EOM-

CCSD [64], SAC-CI [65] and SRCC [66]  gradients. Taking clue from the 

developments in SRCC context, the constrained variation formulation [67] 

using Lagrange multiplier was developed by Pal and co-workers [68, 69] for 

Fock as well as Hilbert space. This approach has been tested well for the 

electric [70, 71] and magnetic properties [72]. Szalay [73] independently 

developed response approach formulation based on Lagrange multipliers for 

compete model spaces. Lagrange multiplier approach has been applied for CI 

[74], MBPT [75], EOM-CC [75], STEOM-CC [76] and Mk-MRCC [77]  

methods to get analytic gradients. 

FSMRCC and EOM-CC are equivalent for one valence problem. 

However, this equivalence breaks down for higher sectors. However, no study 

of excited state FSMRCC gradients is currently available. Analytic evaluation 

of excited state gradients within FSMRCC framework requires considerable 

computational effort. The coupled perturbed orbital contribution needs to be 

evaluated for each sector of the Fock space. As an initial application in this 

paper, we have used numerical approach for the calculation of the gradient of 

the excited state dominated by the HOMO to LUMO excitation. Using 
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numerical gradients we have optimized the excited state geometries. The 

calculated gradients have been validated by calculations of adiabatic excitation 

energies and compared with the corresponding experimental or available 

theoretical results.  

This chapter is organized as follows: In section III.2 we give a brief 

theoretical background of the method. Results and Discussion on them are 

presented in section III.3, using low lying excited states of CH+, H2O, O3 and 

HCHO as test cases. Section III.4 gives conclusions on them. 

 

III.2. Theoretical background: 

Fock space multi-reference coupled cluster (FSMRCC) method is based 

on  the concept of a common vacuum. An N-electron RHF configuration is 

chosen as a vacuum, with respect to which holes and particles are defined 

which are further divided into active and inactive holes and particles. We 

briefly introduce the notations to be used in this paper. The model space 

determinants with ‘h’ active holes and ‘p’ active particles are denoted as ( , )p h
iΦ . 

Thus, the starting multi-reference wave function for a ( )p,  h -valence Fock 

space can be written as:                                                          

                                           (0)( , ) ( , ) ( , )p h p h p h
i i

i
Cµ µΨ = Φ∑                      (III.1) 

Where, C’s are the model space coefficients for the model space ( , )p h
iΦ  with p 

active particles and h active holes. The correlated wave function is written as: 

                                           ( , ) (0)( , )p h p h
µ µΨ = ΩΨ                                    (III.2)         
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Where a wave operator Ω  can be written as: 

                                           ( ){ }( , )exp p hTΩ =                                     (III.3)            

Curly bracket denotes normal ordering of the operators in it. To generate the 

exact states for the ( )p,  h -valence system, the wave operator must generate all 

valid excitations from the model space. Normal ordering ensures that the 

contractions among different cluster operators within the exponential are 

avoided, leading to a hierarchical decoupling of the cluster equations. This is 

commonly referred to as a sub-system embedding condition (SEC) [78].  The 

Fock space Bloch equation [79] is solved using SEC i.e., starting from ( )0,0  

sector to desired Fock space sector. The Projection operator P  is defined as: 

                                           ( , ) ( , )p h p h
i i

i
P = Φ Φ∑                              (III.4)                                                      

and the orthogonal operator Q  is defined as 1 P− .  The Bloch equation has a 

form: 

                                           ( , ) 0k l
effP H H Ω −Ω =    

                                                        0,1; 0,1k l∀ = =                        (III.5)                

                                           ( , ) ( , ) 0k l k l
effQ H H P Ω −Ω =    

                                                         0,1; 0,1k l∀ = =                       (III.6)                                                                                                                                                                                                                                                                                      

The model space for the low lying excited states can be described by a 

one hole-one particle state, and is denoted as ( )1,1  sector of the Fock space. In 

the case of complete model space (CMS), the intermediate normalization is 

commonly employed. However, for incomplete model space (IMS), 
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intermediate normalization has to be abandoned. It is shown by Pal et al. [32] 

that since ( )1,1  sector is a quasi-complete model space, intermediate 

normalization can be used without any loss of generality. The lower valence 

cluster equations are completely decoupled from the higher valence cluster 

amplitude equations because of the SEC. Thus, the Bloch equations are solved 

progressively from the lowest valence ( )0,0  sector upwards to ( )1,1  valence 

sector. Lower valence amplitudes, once solved, appear as constants in the 

equation for the higher valence amplitudes. The effective Hamiltonian is 

constructed for ( )1,1  sector and spin adapted for the singlet and triplet states. 

The energies of the corresponding sates are obtained by diagonalization of the 

spin-adapted effective Hamiltonian within the model space.             

                                           (1,1) (1,1) (1,1)
effH C EC=                                   (III.7)                                                                                                                   

  To optimize the geometry of the singlet and triplet states, we have used 

FSMRCC method using singles and doubles truncation scheme (FSMRCCSD). 

Gradients are obtained by numerical differentiation of energy. Molecular 

symmetry has been used to decrease the computational effort. In the calculation 

of geometry optimization, a cut off of 10-4 has been taken on root mean square 

(RMS) gradient.  

To verify the geometry obtained from the above procedure, we have 

calculated the adiabatic excitation energy of the molecule corresponding to that 

state and compared it with the experimental or available theoretical adiabatic 

excitation energy. This also validates the   optimized geometry of the excited 

state. To obtain the adiabatic excitation energy, we start with the optimized 
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geometry through the excited state geometry gradients obtained numerically. 

The RHF at this geometry is chosen as a vacuum. The Bloch equation is solved 

up to the ( )1,1  sector using SEC. We retain the closed part of H  explicitly and 

hence, we obtain the total energy of the corresponding excited state. Finally, to 

obtain adiabatic excitation energy, we subtract from this only the closed part of 

H  at the ground state geometry. 

 

III.3. Results are discussion: 

Fock space multi-reference coupled cluster is used for the geometry 

optimization of low-lying excited states. We have chosen carbon mono-hydride 

cation, water, ozone and formaldehyde as test systems for our study. Along 

with the excited state geometries, we also report adiabatic excitation energies 

for all the molecules.  We report the singlet and triplet geometries of the 

excited states dominated by the homo-lumo excitation. We compare our results 

with the EOM-CCSD, coupled cluster linear response theory (CC-LRT), Full 

CI (FCI) and experimental results where ever available.  EOM-CCSD results 

obtained using ACES II [80]. CC-LRT calculations were done using MRCC 

[81] where as FCI calculations were done using GAMESS software [82]. For 

formaldehyde we compare our results with MRCISD and MRAQCC method 

[83].    
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III.3.A. Carbon monohydride cation (CH+): 

CH+ is a 6 electron system with the MO configuration of,  2 2 21 2 3σ σ σ . 

RHF of CH+ is chosen as a vacuum. A large non-dynamic electron correlation 

contribution comes from the 2 2 21 2 1σ σ π  configuration. We report the excited 

state geometry of the singlet and triplet Π  state dominated by the HOMO to 

LUMO excitation, i.e., from 3 1g uσ π→ . Model space consists of one active 

hole and two active particles. We have used three different basis sets in our 

study. cc-pVDZ, cc-pVTZ [84] are the two basis sets. Third basis consists of 

Dunning double zeta plus polarization basis [85] augmented with diffuse s and 

p functions on carbon and one diffuse s function on hydrogen. The final basis 

set is (10s6p1d)/[5s3p1d] for carbon and (5s1p)/[3s1p] for hydrogen.  This is 

called as basis B. 

 In table III.1 we report the optimized geometry and adiabatic excitation 

energies of the carbon mono-hydride cation (CH+) for singlet and triplet excited 

state, using cc-pVDZ and cc-pVTZ basis set. We compare our results for the 

bond length and adiabatic excitation energy with the EOM-CCSD values. In 

cc-pVDZ basis we also report the full configuration interaction (FCI) values. 

For the singlet state we also report the experimental bond length and excitation 

energy. In cc-pVDZ basis set FSMRCCSD gives a bond length of 1.231 Å for 

the singlet state which is slightly underestimated compared to the EOM-CCSD 

results of 1.263 Å. As we go from cc-pVDZ to cc-pVTZ basis, bond length is 

reduced to 1.202 Å and 1.220 Å in FSMRCCSD and EOM-CCSD respectively. 

For the Singlet state our bond length is close to the experimental value of 1.234 
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Å, however, it is underestimated compared to the EOM-CCSD as well as FCI 

value. The adiabatic excitation energies cc-pVDZ basis set for the 1Π  state 

using FSMRCC (3.07 eV), EOM-CCSD (3.08eV), FCI (3.06 eV) are in good 

agreement with each other. The experimental adiabatic excitation energy (2.99 

eV) for triplet state, FSMRCCSD gives a bond length of 1.146 Å, whereas 

EOM-CCSD gives 1.151 Å in cc-pVDZ basis. However, in case of triplet Π 

state, as we go from cc-pVDZ to cc-pVTZ basis, bond length is increased to 

1.151 Å in FSMRCCSD. Whereas, in EOM-CCSD bond length is reduced to 

1.125 Å. Triplet state excitation energy is 1.08 eV using FSMRCCSD,  where 

as, EOM-CCSD gives 1.14 eV. As we go from cc-pVDZ to cc-pVTZ basis, 

adiabatic excitation energy values for the 1Π  state are decreased marginally in 

FSMRCCSD as well as EOM-CCSD methods.  However, for the triplet state as 

we go from cc-pVDZ to cc-pVTZ adiabatic excitation energies are increased in 

both the methods.  

 Table III.2 reports singlet and triplet Π  state results in basis B. We 

compare out results with EOM-CCSD and Full CI results. It can be seen that 

our values are in good agreement for the triplet Π  state with EOM-CCSD and 

Full CI. Also the adiabatic excitation energies match with EOM-CCSD value. 

Though compared to Full CI (1.10 eV) FSMRCCSD (1.13eV) and EOM-

CCSD(1.13 eV) are slightly overestimated. For the singlet state bond length 

and adiabatic excitation energy are marginally large compared to EOM-CCSD 

value. FCI over estimates the bond length compared to FSMRCCSD as well as 

EOM-CCSD. 
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Table III.1. Optimized C-H bond lengths and adiabatic excitation energies 

for the singlet and triplet Π state of CH+:  

State Basis Method C-H bond 

(Å) 

AEE (eV) 

1Π cc-pVDZ FSMRCCSD 1.231 3.07 

EOM-CCSD 1.263 3.08 

FCI 1.273 3.06 

cc-pVTZ FSMRCCSD 1.202 3.03 

EOM-CCSD 1.220 3.07 

 Experimental 1.234 2.99 

3Π cc-pVDZ FSMRCCSD 1.146 1.08 

EOM-CCSD 1.151 1.14 

FCI 1.160 1.05 

cc-pVTZ FSMRCCSD 1.151 1.12 

EOM-CCSD 1.125 1.16 
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Table III.2. Optimized C-H bond lengths and adiabatic excitation energies 

for the singlet and triplet Π state of CH+ using basis Ba: 

State Method C-H bond (Å) AEE (eV) 

1Π FSMRCCSD 1.223 3.19 

EOMCCSD 1.238 3.15 

FCI 1.254 3.10 

3Π FSMRCCSD 1.132 1.13 

EOMCCSD 1.132 1.13 

FCI 1.135 1.10 

 a: C: (10s6p1d)/[5s3p1d]. H: (5s1p)/[3s1p]  

 

III.3.B. Water: 

   The ground-state RHF wave function for water is 

2 2 2 2 2
1 1 2 1 11 2 1 3 1ground a a b a bΨ = .  The low-lying excited states of water considered here 

are generated by excitations from 1 11 3b Sa→ . Model space consists of one 

active hole and one active particle. The singlet and triplet 1B  excited state 

geometries as well as adiabatic excitation energies are reported in Table III.3. 

Geometries are optimized in aug-cc-pVDZ basis [84]. It can be seen from the 

Table III.3 that FSMRCCSD predicts bond length 0.01 Å shorter compared to 

EOM-CCSD, CC-LRT and MRCISD method. RI-CC2 underestimates the bond 

length and bond angle compared to all the theoretical methods. The bond angle 

using FSMRCC is in good agreement with the MRCISD. EOM-CCSD and CC-

LRT predict bond length slightly higher compared to FSMRCCSD and 
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MRCISD. The adiabatic excitation energy using FSMRCCSD (7.05 eV) is in 

good agreement with EOM-CCSD (7.11 eV), CC-LRT (7.10 eV), MRCISD 

(6.69 eV) usderestimates the adiabatic excitation energy compared to other 

theoretical methods. 

 For the 3
1B  state of FSMRCCSD is in good agreement with EOM-CCSD 

for the bond length as well as bond angle. However, CC-LRT overestimates the 

bond angle. The adiabatic excitation energy using EOM-CCSD and CC-LRT 

are in good agreement, whereas FSMRCCSD marginally over estimates. 

 

Table III.3. Optimized geometry and adiabatic excitation energies for the 

singlet and triplet B1 state of water: 

State Method O-H bond 
length 

(Å) 

H-O-H bond 
angle 

(0) 

AEE 
(eV) 

1B1 FSMRCCSD 1.062 103.0 7.05 

EOM-CCSD 1.072 104.5 7.11 

MRCISD 1.070 103.05 6.69 

CC-LRT 1.072 104.63 7.10 

RI-CC2 1.043 102.60 ---- 

3B1 FSMRCCSD 1.090 107.00 6.90 

EOM-CCSD 1.097 107.10 6.59 

CC-LRT 1.10 109.66 6.62 
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III.3.C. Ozone: 

Because of the importance of ozone is the shielding of harmful UV 

light, excited state ozone spectra has been studied extensively. Ozone is a 

challenging system, due to the strong multi-reference character of the excited 

states. Thus ozone serves as an ideal candidate for the test of the valance-

universal MRCC theory. Geometries of the low lying singlet and triplet 2B  

states of ozone are studied. We have used two basis sets for the study of 1
2B  

state. The first basis is called basis A, consists of Dunning (10s5p)/[4s2p] 

contraction [85]. In addition, one d polarization function with exponent 1.211 is 

added. The second basis set used is aug-cc-pVDZ [84]. The RHF wave 

function for the ground state of O3 molecule at the geometry of the 2B state is 

given by: 

[ ] 2 2 2 2 2 2 2 2
1 2 1 2 1 1 2 23 2 5 3 1 6 4 1co re a b a b b a b a  

We have chosen 21a  as active hole and 12b  as active particle. The model 

space consists of singly excited determinant within this active subspace with 

respect to the vacuum. The 2B  state can be characterized as a single excitation 

from 2 11 2a b→ . Table III.4 reports optimized geometries as well as adiabatic 

excitation energies of the singlet and triplet 2B  state. We compare our results in 

basis A with the polarization configuration interaction (POL-CI) [86] 

calculations in DZP basis. We also report in parenthesis adiabatic excitation 

energies obtained using FSMRCCSD method from our previous calculations 

[87] done in DZP basis. In our previous study we have reported adiabatic as 
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well as vertical excitation energies of six low lying excited states. Adiabatic 

excitation energies were calculated using MCSCF-CI optimized geometries for 

all states including the ground state 1
1Α . However, in the present study of the 

1
2B  state we have chosen the POL-CI optimized geometry. It can be seen from 

Table III.4, that POL-CI predicts slightly longer bond length and shorter bond 

angle compared to FSMRCCSD for the triplet 2B  state. EOM-CCSD and 

FSMRCCSD agree well for the bond length and bond angle for the 3
2B state. 

Adiabatic excitation energies using FSMRCCSD, POL-CI and EOM-CCSD are 

in good agreement with each other. For the singlet state, FSMRCCSD predicts 

bond length of 1.391 Å which is in good agreement with the EOM-CCSD value 

of 1.391 Å, where as, POL-CI predicts slightly longer bond length of 1.405 Å. 

The bond angle of FSMRCCSD (108.50) is in agreement with the POL-CI 

(108.40) value. Where as, EOM-CCSD (110.90) overestimates it. Though the 

geometries of FSMRCCSD and EOM-CCSD are slightly different, the 

excitation energies is in good agreement with each other. POL-CI gives 

adiabatic excitation energy value of 5.54 eV. Our previous calculations predict 

adiabatic excitation energies of 4.62 eV. The difference between the old and 

new values is due to different ground state geometry. The 1
2B  state was also 

studied using aug-cc-pVDZ basis set. We compare our results with EOM-

CCSD and CC-LRT. The bond length using FSMRCCSD (1.375 Å) is in good 

agreement with the EOM-CCSD (1.381 Å) as well as CC-LRT (1.381 Å) 

values. However, FSMRCCSD underestimates bond angle by 20. The adiabatic 
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excitation energy using FSMRCSSD (4.88 eV) is in good agreement with 

EOM-CCSD (4.90 eV) and CC-LRT (4.96 eV).  

 

Table III.4. Optimized geometries and adiabatic excitation energies for the 

singlet and triplet B2 states of ozone: 

State Method Basis 

set 

Distance 

(Å) 

<O-O-O 

(0) 

AEE 

(eV) 

3B2(1a2→2b1) FSMRCCSD DZP 1.341 108.3 0.92 

(0.92) 

POL-CIa 1.382 107.9 0.92 

EOM-CCSD 1.345 108.7 0.95 

1B2(1a2→2b1) FSMRCCSD 1.391 108.5 4.92 

(4.62)b 

POL-CIa 1.405 108.4 5.54 

EOM-CCSD 1.398 110.9 5.00 

FSMRCC Aug-cc-

pVDZ 

1.375 107.0 4.88 

EOM-CCSD 1.381 109.37 4.90 

CC-LRT 1.381 109.37 4.96 

a: see ref. 86. 

b: see ref. 87. 

αd=1.211 
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III.3.D. Formaldehyde: 

We report the excited state geometry of the singlet and triplet 2A  state in 

cc-pVDZ basis. We compare our results with EOM-CCSD, MRCISD, 

MRAQCC [83] and experimental [88, 89] values. Our model space consists of 

one active hole and one active particle. Table III.5 reports optimized 

geometries along with the adiabatic excitation energies. It can be seen that 

FSMRCCSD, EOM-CCSD and MRAQCC are in good agreement with each 

other for the C-O as well as C-H bond length. Theoretical and experimental C-

H bond distances also agree well with each other. FSMRCCSD predicts H-C-H 

angle of 122.90. Whereas, EOM-CCSD, MRCISD and MRAQCC predicts 

bond angle as 123.20, 125.10 and 123.80 respectively, compared to the 

experimental value of 118.60. Thus, compared to experiment all the theories 

predict slightly higher bond angle. FSMRCCSD, MRCISD and MRAQCC 

agree with wach other for adiabatic excitation energy (AEE). EOM-CCSD 

overestimates AEE. There are no experimental results available for the triplet 

state so we compare our results with EOM-CCSD values. For the triplet 2A  

state FSMRCCSD and EOM-CCSD agree well with each other for bond length 

and bond angle. Here too, EOM-CCSD predicts excitation energies slightly 

higher compared to FSMRCCSD. 
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Table III.5. Optimized bond distances (Å), bond angle (0) and adiabatic 

excitation energies (eV) for the singlet and triplet A2 states of 

formaldehyde: 

State Parameter FSMRCCSD EOM-

CCSD 

MRCISD MRAQCCa Expt.b 

1A2 RCO (Å) 1.317 1.323 1.358 1.349 1.321 

RCH (Å) 1.098 1.099 1.091 1.099 1.103 

HCH (0) 122.9 123.2 125.1 123.8 118.6 

AEE (eV) 3.62 3.71 3.63 3.60 3.50 

3A2 RCO (Å) 1.304 1.316 ---- ---- ---- 

RCH (Å) 1.093 1.095 ---- ---- ---- 

HCH (0) 124.1 124.3 ---- ---- ---- 

AEE (eV) 3.15 3.26 ---- ---- ---- 

a: see ref. 83 

b: see ref. 88, 89. 

 

III.4. Conclusion:  

Fock space multi reference coupled cluster method is used for geometry 

optimization of low-lying excited states. We also report adiabatic excitation 

energies to compare the optimized geometry. We compare our results for 

geometry with CC-LRT, EOM-CCSD, MRCISD, MRAQCC results obtained 

using analytic method. Our results for triplet are in good agreement with other 

theoretical results. For the singlet state bond angle difers by maximum of 20 
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and bond lengths are within 0.01 Å for most cases. Thus, the numerically 

optimized excited state geometries are in good agreement with other analytic 

results.    
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Chapter IV 

 

Analytic gradient formulation for doublet 

radical using Fock space multi-reference 

coupled cluster method 

Abstract 

The response approach using Fock space multi-reference coupled cluster 

method for the calculation of electric properties has been established. Electric 

properties of doublet radicals were obtained using Lagrange based constrained 

variational approach (CVA). In this chapter, we will present the CVA approach 

for the analytic gradients of doublet radicals. For electric properties orbital 

response is not crucial. However, for gradient study it is important to include 

orbital response. The CVA response approach will be extended for analytic 

gradients of doublet radicals.  

 

IV.1. Introduction 

Single reference coupled cluster (SRCC) method [1-4] has been very 

successful for the calculation ground state energies, properties [5-8], gradients 

[9-13] and potential energy surfaces [14] of closed shell molecules. Due to 
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exponential form of the wave function, it introduces electron correlation very 

accurately and gives size extensive values of properties. However, for the 

situations where several configurations contribute equally for the accurate 

description of the exact wave function, i.e., bond-breaking situations or excited 

states, SRCC fails.  The restricted open shell-based CC (ROHF-CC) [15] 

methods, which include  linear approximation of triples operator, have been 

successful in describing the quasi-degenerate cases. Within single reference 

framework, in addition to full singles and doubles amplitudes selected triple 

and quadruple level excitations have been considered to handle quasi-

degenerate [16] cases. However, multi reference (MR) or multi determinantal 

approach is a more general solution.  MRCC [17-28] methods can be broadly 

classified into Fock-space or valence-universal (VU) [23-27] theories and 

Hilbert-space (HS) or state-universal (SU) [23] and state specific [17-22] 

methods. Among the multi-reference methods, effective Hamiltonian based 

[29, 30] methods provides multiple roots via diagonalization of the effective 

Hamiltonian. The Fock space MRCC method is suitable for the calculation of 

properties of systems with variable number of electrons i.e ionization potential 

[31], electron affinity [32], excitation energy [27, 33] in a single calculation. 

The Hilbert space methods are suitable for the calculation of properties of 

systems with fixed number of electrons and are suitable for the potential energy 

surface calculations [34]. However, both the methods suffer from the problem 

of convergence due to presence of intruder states. The intruder state problem 

can be handled using intermediate Hamiltonian [35] method. Intruder state 
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problem can also be solved by using state specific multireference method 

developed by Mukherjee and co-workers [36].  

The equation of motion coupled cluster (EOM-CC) [37-41] method 

extends single-reference coupled-cluster (CC) theory to calculate excited, 

ionized and electron-attached energies [42-49]. Coupled-cluster linear response 

theory (CC-LRT) [50, 51] is an alternative derivation of EOM-CC theory and 

both the methods are equivalent for excitation energies. Similarly, the coupled-

cluster based Green’s function [52] method is equivalent to EOM-CC. The 

symmetry-adapted cluster configuration interaction (SAC-CI) approach by 

Hirao and Nakatsuji [53, 54] is also closely related to EOM-CC and CC-LRT. 

The similarity transformed EOM-CC method (STEOM-CC), which is size 

extensive, was developed by Nooijen and co-workers [45, 55]. For the one 

valence problem, EOMCC and FSMRCC are equivalent. However, the 

equivalence breaks down for higher valence sectors. The spin-flip EOMCC 

(SF-EOM-CC) [56] method has also been introduced as a clever way to 

describe the multi-reference states. The  method of moments coupled cluster 

(MMCC) [57] has also been successful in describing some quasi-degenerate 

problems.  

To increase the scope and applicability of a method for general 

electronic structure calculations, it is important to have analytic response 

formulation which can be used for the calculation of various properties. Energy 

derivatives are routinely used for the potential energy surface study [14], 

calculation of force constant [58], for identification of maxima, minima or 
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transition state [59]. The analytic derivates are also used for the calculation of 

infra red (IR) spectra [60, 61] and Raman spectra [61-64]. The Geometry 

optimization [65] is one of the most common task in computational chemistry 

and accurate geometries are of fundamental importance for accurate calculation 

of molecular properties. For most of the ab inito methods like, Hatree Fock 

(HF) [58a, 66, 67], multi configuration self consistent field (MCSCF) methods 

[67-71], density functional theory (DFT) [72], time-dependent density 

functional theory (TD-DFT) [73], configuration interaction (CI) [74, 75] as 

well as multi-reference CI (MRCI) [76, 77], symmetry-adapted cluster CI 

(SAC-CI) [78], perturbative methods [79], propagator method [80] and 

resolution of identity CC2 [81] analytic gradients are routinely available. Since 

electron correlation plays an important role in the accurate calculation of 

potential energy surfaces and gradients the analytic calculation of these using 

correlated methods is particularly important. Analytic gradient calculations 

using coupled cluster method is well established and all the problems 

associated with the elimination of the derivative cluster amplitudes are dealt 

using Z- vector method [9] or the Lagrange based constrained variation 

approach (CVA) [10, 82]. Both the approaches lead to the same result for first 

order properties. Since coupled cluster is non variational in nature we need to 

solve for an extra amplitudes which are perturbation independent. Thus, 

analytic gradient requires twice the effort of the energy calculation in coupled 

cluster method. Theory of analytic gradients in equation of motion coupled 

cluster (EOM-CC) was proposed by Stanton [83] and Szalay [84]. EOM-CC 
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gradient was implemented by Stanton and Gauss [85]. Nooijen and co-workers 

[86] implemented gradients for the Similarity  transformed equation of motion 

coupled cluster (STEOM-CC) using Lagrange approach. Using similar 

approach and truncating at singles doubles excitation of cluster amplitude 

Krylov [87] implemented gradient within spin-flip EOM-CC (SF-EOM-CC) 

frame work. Gwaltney [88] implemented partitioned EOM-CC. Hoffmann and 

co-workers [89] used a Lagrangian based approach to obtain analytic formulas 

for generalized Van Vleck perturbation theory (GVVPT2) energy gradients. 

Though analytic formulation of energy derivatives within single reference 

coupled cluster was developed long ago [5]. The formulation of analytic 

derivative methods within multi-reference framework has been a recent 

phenomena due to various complexities. Within MRCC framework Szalay [84] 

developed gradient method for Hilbert space (HS) and Fock Space (FS) MRCC 

frame work. Within MRCC frame work, Pittner [90] has successfully 

implemented gradient within multi-reference Brillouin-Weigner coupled 

cluster framework (MRBWCC) and Gauss and coworkers [91, 92] 

implemented analytic gradient withing Mk-MRCC frame work. Following the 

response approach of the SRCC method Pal [93] developed analytic response 

approach within FSMRCC framework. Applications were carried out for the 

one valence as well as excited state dipole moments. However, since this 

approach includes amplitude derivatives it was not a satisfactory.  Ajitha et al. 

[94] developed Z-vector method for the ( )0,1  sector of the Fock space for the 

calculation of the dipole moment. It was shown that we can only eliminate the 
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highest sector cluster amplitude derivatives in the derivative effective 

Hamiltonian. The lower sector derivative cluster amplitudes will be explicitly 

present in the equation. It was shown that the dependence of the derivative 

cluster amplitudes is the one valence sector can be eliminated in the derivative 

effective Hamiltonian in favour of a new set of perturbation independent 

amplitudes only under the diagonal approximation of the effective 

Hamiltonian. Since elimination of the derivative cluster amplitudes could be 

effected only in some special cases their approach was not satisfactory. Pal and 

co-workers [94] also developed the algebraic elimination method to generalize 

the Z-vector method for SUMRCC theory. However, the Z-vector is state-

dependent due to multi-state nature of MRCC theories. Thus, we loss the 

advantage of multi reference method of FSMRCC. Similar to the SRCC 

constrained variation approach (CVA) [82], Szalay [84] developed a response 

approach within FSMRCC framework using CVA for a complete model space 

for analytic gradient calculation. Shamasundar et al. [95, 96] formulated 

Lagrange based response approach for valence universal [95] as well as state 

universal [96] multi-reference coupled cluster methods. This approach was 

applicable to complete and incomplete model space. CVA-FSMRCC approach 

was extensively tested for the first and second derivative of energy of the 

doublet radicals and excited states, when the perturbation was electric field [97, 

98]. We will extend the CVA-FSMRCC response formulation for the 

calculation of analytic gradients of doublet radicals. In this chapter we will give 

working equations for the analytic gradients of one valence problem.  
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IV.2. Theory: 

 Fock space multi-reference coupled cluster (FSMRCC) theory is based 

on the concept of a common vacuum and valence universal wave operator. In 

the FSMRCC, N electron restricted Hartree–Fock (RHF) is chosen as a 

vacuum. With respect to this vacuum holes and particles are defined, which are 

further divided into active and inactive holes and particles. The model space, in 

general, is a linear combination of important determinants, with p active 

particles and h active holes. Such a model space belongs to the ( ),p h  sector of 

the Fock space. The model space wave function can be written as: 

    ( ) ( ) ( )0 ( , ) , ,p h p h p h
i i

i
Cµ µΨ = Φ∑                 (IV.1) 

where C’s are the model space coefficients for the model space ( , )p h
iΦ . With p 

active particles and h active holes. The dynamic correlation is introduced 

through the wave operator which takes the model space to the exact wave 

function: 

    ( , ) (0)( , )p h p h
µ µΨ = Ω Ψ         (IV.2) 

The wave operator Ω  can be written as: 

    ( ){ }( , )exp p hTΩ =          (IV.3) 

Where, curly bracket denotes the normal ordering of the operators in it. The Ω  

should contain cluster operators ( , )p hT  which are defined as: 

    ( , ) ( , )

1 0

p h
p h k l

k l
T T

= =

= ∑∑         (IV.4)  
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The cluster operator ( , )k lT  is capable of destroying exactly k active 

particles and l active holes, in addition to creation of holes and particles. Thus, 

the ( , )p hT  contains all the lower ( , )k lT  operators. To define effective 

Hamiltonian, the Bloch equation [99] is adopted, which is also used to solve 

the cluster amplitudes. For ( ),p h  sector the Bloch equation can be defined as: 

    

( ) ( ) ( )

( ) ( )

, , ,

, ,( , )

0

0

0, 1; 0, 1

k l k l k l
eff

k l k lk l
eff

P H H P

Q H H P

k l

 Ω −Ω = 

 Ω −Ω = 

∀ = =

      (IV.5)    

  The Fock space Bloch equation is solved using subsystem embedding 

condition (SEC) [100]. The projection of the Bloch equation to the model space 

defines effective Hamiltonian where as projection to the Q space gives 

equation for the cluster amplitudes. Use of Bloch equation avoids the 

requirement of the 1−Ω  which may not exists in some cases. The effective 

Hamiltonian ( )effH  is non hermitian, the diagonalization of the effective 

Hamiltonian ( )effH  within P space gives the energies of the multiples states of 

our interest.      

   ( , ) ( , ) ( , ) ( , ) 1k l k l k l k lC C C C= =         (IV.6) 

We have truncated the FSMRCC amplitudes at singles doubles level 

(FSMRCCSD). 
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IV.3. FSMRCCSD analytic gradient: 

 In FSMRCCSD method the exact energies are obtained via 

diagonalization of the effective Hamiltonian. The eigen value of equation for 

the effective Hamiltonian for one active hole and zero active particle (electron 

detached state) can be written as: 

    

( ) ( ) ( )

( ) ( )

0,1 0,1 0,1

0,1 0,1

( )eff ij i jH H

P H P

= Φ Ω Φ

= Ω

       (IV.7)  

Since effective Hamiltonian in general we have left and right eigen vectors. 

    

( ) ( ) ( )0,1 0,1 0,1
eff

eff

H C EC

E CH C

=

=> = 

                    (IV.8)

                    ( ) ( )0,1 0,1
effCH EC=           (IV.9)    

Subject to the condition Equation (IV.6) 

Differentiating Equation (IV.8) gives: 

                   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0,11 1 0,1 0,1 1 0,1 0,1 0,1 0,1 1
eff eff effE C H C C H C C H C= + +                (IV.10)  

Where, C’s are model space coefficients. The derivative of effective 

Hamiltonian involves derivative Hamiltonian and wave function derivative. 

Since energy derivative involves model space coefficient derivative, we have to 

calculate energy derivative for a specific µ -th state. So, here the advantage of 

calculation of multiple state at a time is lost. Thus, we can write: 

( )0,1
effdHdE E C

dg dg C g
∂ ∂

= +
∂ ∂

         (IV.11)          
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Where, g is perturbation. The first term is explicit derivatives of the effective 

Hamiltonian with respect to perturbation. The second term is the derivative of 

the model space coefficients.  The derivative of the effective Hamiltonian with 

respect to perturbation can be expressed as: 

( ) ( ) ( )

( )

( )

( )

( )

( ) ( )

0,1 0,1 0,1 0,0

0,0

0,1 0,10,1

0,1

eff eff eff

eff eff

dH H H T
dg g gT

H HT c
g c gT

∂ ∂ ∂
= + +

∂ ∂∂

∂ ∂∂ ∂
+

∂ ∂ ∂∂

         (IV.12)     

Where,  

          
( )

( ) ( )
0,1 1

4
eff

pq pq pqrs
pq pq

rs

H
h g pq rs g

g
γ

∂
= + Γ

∂ ∑ ∑   (IV.13)     

One particle density: 

                   ( ) ( )( )
( ) ( )( ) ( ) ( )0,0 0,1 0,0 0,10,0 0,1 †

0 01
T T T T

pq e p qeγ
− + += Φ + Λ + Λ Φ      (IV.14)        

Two particle density:     

         ( ) ( )( )
( ) ( )( ) ( ) ( )0,0 0,1 0,0 0,10,0 0,1 † †

0 01
T T T T

pqrs e p q sre
− + +Γ = Φ + Λ + Λ Φ    (IV.15)         

Where, 'sΛ  are deexcitation operators. For singles doubles approximation Λ  can 

be written as: 

1 2Λ = Λ + Λ . 1Λ  and 2Λ  are expressed as: 

                                              ( ) { }0,0 †
1

i
a

ia
i aΛ = Λ∑           (IV.16)  

                                              ( ) { }0,0 † †
2

1
4

ij
ab

ij
ab

i j baΛ = Λ∑                   (IV.17) 

The first term of Equation (IV.12) is Hellmann-Feynmann term, which has 

explicit perturbation dependence. The second and third terms are the amplitude 
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response terms and the last term is the orbital response term. These terms can 

be eliminated using Z-vector  method or using the Lagrange formulation. We 

will be using the Lagrange formulation. The Lagrangian for the one valence 

problem with one active hole and zero active particles can be written as:              

                                         

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0,1 0,1 0,1

0,1 0,1 0,1 0,1 0,1

0,0 0,0 0,0 0,0 0,0

0,1 0,1 1

i eff jijij

eff

i j
ij

pq pq pq pq pq pq
pq pq

C H C

P Q Q H H P

P Q Q H P

E C C

F S

µ µ µ

µ µ µ

λ δ ζ δ

ℑ = +

 Λ Ω −Ω + 

Λ Ω −

 
− + 

 

− + −

∑

∑

∑ ∑





      (IV.18)              

Here F and S are Fock and Overlap matrix respectively in MO basis. Λ , λ  and 

ζ  are Lagrange undetermined multipliers.  

              pq
j

F p h q pj qj= +∑                 (IV.19)   

              pq p qS = Φ Φ            (IV.20)  

The Lagrangian is made stationary with respect to Λ , λ  and ζ  i.e,  

              

0

0

0

pq pq

pq pq

L

L F

L S

δ
λ

δ
ζ

∂
=

∂Λ

∂
= = −

∂

∂
= = −

∂

         (IV.21)   
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All the parameters of the Lagrangian are perturbation dependent. The 

first term gives the amplitude equation. Differentiation with respect to 

T { ( ) ( )0,0 0,1,T T } gives equations for the Λ . The second and third equation are 

equivalent to the Hartree Fock equations. If we include all the orbitals as active 

orbitals then the energy is invariant with respect to the unitary transformation 

among the occupied orbitals i.e. 0ijΛ = . Similarly for ( )1,0 sector of the Fock 

space if we choose all the particles as the active orbitals then 0abΛ = . 

However, in general that is not true for the Fock space calculations. Using the 

stationarity of Lagrangian with respect to all the parameters in it the equation, 

the derivative of Lagrange can be written as: 

           

( ) ( )( ) ( )( ) ( )( )( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0,1 0 0,1 1 0,1 0

0,1 0,1 0 1 0 0 0,1 1 0,1

0,0 0,0 0 1 0 0,0

0 1 0 1

eff

eff

pq pq pq pq
pq pq

C H C

P H H P

P H P

F S

µµ

λ ζ

ℑ = +

 Λ Ω −Ω + 

Λ Ω +

+∑ ∑



      (IV.22)              

The derivative effective Hamiltonian does not contain any term from 

derivatives of the cluster amplitudes. The gradients can be obtained using Ω  

and Λ -amplitudes only. The amplitude response equations will be obtained by 

making Lagrange stationary with respect to cluster amplitudes. The orbital 

response multipliers λ  and ζ  will be determined by making Lagrange 

stationary with respect to atomic to molecular orbital coefficients, c ’s, i.e. L
c
∂
∂

. 
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Following the strategy similar to the Levchenko et al. [87] we obtain the 

equations for the orbital response multipliers Ω  and Λ  as following: 

 

Equation for iaλ : 

                         

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

*

*

0,1

2 2

2 2

2 2

2 2

2 0

jb

ia a i jk bc

jb
jb jb

jk jb
jk jb

jb bc
jk bc

ijbc jkab kjab
jbc jkb

jikb
jkb

ik aj ib ac

ib aj ib ja ij ab ij ba

ij ak ij ka ib aj ib ja

ij ab ij ba ib ac ib ca

bc aj bc ja ib jk

jk ab jk ba

λ ε ε λ λ

λ λ

γ γ

γ γ

− + + +

− + − +

− + + − +

− − + − +

− Γ + − Γ + Γ +

− − Γ =

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑   (IV.23)      

           

Equation for abλ : 

        

( ) ( ) ( )

( ) *

2 2

2 0

ab a b ab a b ijbc ijab
ijc

acij
ijc

ac ij

ij bc ij cb

λ ε ε γ ε ε− + − + − Γ + Γ

+ + Γ =

∑

∑
     (IV.24)            

This equation the constrained imposed is a b≠  
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Equation for ijλ : 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( )

0,0 * *

0,1 0,1

*

2 2

2 2

2 2

2 0

ij i j ij i j jkab
kab

ka abik abki
ka abk

kb kila lika
kb kla

jakl
kla

ab ik ab ki

jk ia jk ai ab jk

jb ik jb ki kl ja

kl ia kl ai

λ ε ε γ ε ε

γ

− + − + − Γ +

Λ − + Γ − Γ +

− + − Γ + Γ +

Γ − + =

∑

∑ ∑

∑ ∑

∑

     (IV.25)          

This equation the constrained imposed is i j≠   

 

Equation for iaω : 

( ) ( )

( ) ( )0,1

1
2

2 2

2 0

ia i ia i ia

ijbc jkab jkba
jbc jkb

jikb
jkb

bc aj bc ja ib jk

jk ab jk ba

ω ε λ ε γ+ + +

− Γ + − Γ + Γ +

Γ − + =

∑ ∑

∑

      (IV.26)                
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Equation for ijω : 

( ) ( )

( ) ( )

( )( ) ( )

*

0,1

1
2

2 2

2 2

2 2 0

ij i ia i ij i ij

ka ka
ka ak

jkab abik abkl
kab kab

kila lika jakl
kla kla

jk ia jk ai jk ia jk ai

ab ik ab ki ab jk

kl ja kl ia kl ai

ω ε δ ε λ ε γ

λ γ

+ + +

− + − +

− Γ + Γ − Γ +

− Γ + Γ + Γ − + =

∑ ∑

∑ ∑

∑ ∑

   (IV.27)       

       

Equation for abω : 

( ) ( )

( )

*

* *

1
2

2 2

2 0

ab ab a ab

ijbc ijcb acij
kab ijc

cdbi cdib
icd

ac ij ij bc ij cb

ia dc

ω εγ ε λ+ +

− Γ + Γ + Γ − +

Γ − Γ =

∑ ∑

∑

           (IV.28)   

The CVA method is a single-root method. The Λ  amplitudes depend on 

the desired 

state of the molecule. Therefore, for every state one has to calculate the Λ  

amplitudes separately.  However, the expensive evaluation of wave-function 

derivatives for each mode of perturbation is avoided in CVA-FSMRCC. Also, 

the single-root feature makes CVA more attractive for the cases like curve-

crossing studies of excited states . The Fock space equations are decoupled for 

each sector. The T amplitude equations are decoupled from the  Λ  equations, 

however, Λ  equations are coupled with the T  amplitudes. It may be noticed 
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that the coupling within the Λ  amplitudes in various valence sectors is exactly 

opposite of SEC. Thus, one has to solve for the  Λ  amplitudes successively 

from the highest valence sector to the lowest valence sector. Evaluation of 

gradients involve derivative of one and two electron integrals. These quantities 

depend upon the first order response of Hamiltonian in the atomic orbital basis 

and the molecular orbital coefficients. The later is avoided through Z vector 

approach or Lagrange approach. The effective one and two particle densities 

are constructed and back transformed to atomic basis to contract with the 

derivative and one and two electron integrals. The general procedure to be 

followed is: 

1) Solve Hartree Fock equations.  

2) Transform one and two electron integrals in MO basis 

3) Evaluate CCSD equations and construct the H   

4) Solve Lambda equations (IV.18) 

5) Evaluate one and two particle densities  

6) Solve Z-vector equation for eliminating orbital response and 

construct the relax density matrices. 

7) Add the relax density matrices with SCF and CC density matrices to 

construct total density matrices.  

8) Back transform the total one and two particle densities to atomic 

basis. 
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9) calculate derivative overlap, one and two electron integrals in  the 

atomic basis. Contract them with the densities to get the analytic derivatives of 

the energy i.e. gradients.   

Similar equations can be derived for doublet radicals with electron 

attached states.           
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CHAPTER V 

 

Chapter I gives a comprehensive review of  electronic structure methods 

for atoms and molecules. We started our discussion with the Born-

Oppenheimer approximation (BOA) [1], which simplifies the electronic 

structure calculation by freezing the motion of nuclei. We have focused our 

discussion on the Hartree-Fock (HF) or SCF method [2-5]. The HF method 

Scope and goal of the thesis 

 

Abstract: 

This chapter deals with future prospects of the work presented in the 

thesis. The thesis mainly involves the application of Fock space multi-reference 

method for the calculation of life-time of resonance states and geometry 

optimization of excited states and doublet radicals. FSMRCC method is known 

to give accurate spectroscopic energies. This method includes dynamic and 

non-dynamic electron correlation in a consistent manner to give accurate 

difference energies. Thus, FSMRCC is best suited for the calculation of 

properties of doublet radicals and excited states.  

 

V.1. Future prospects: 
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simplifies the electronic structure calculation by assuming the N-electron wave 

function as a single Slater determinant. HF method recovers 95% of the total 

energy, however, it fails in some cases to give even qualitative trend correct. 

These are cases where the correlation energy plays an important role, even 

though it is a small fraction of the total energy. Thus, we need to go beyond HF 

method for more accurate calculation of N-electron system. Electron 

correlation of anti-parallel spins is not included in the HF method. We have 

discussed correlated methods like, configuration interaction (CI) [6], many 

body perturbation theory (MBPT) [7-11] and coupled cluster theory (CC) [12-

15]. In the introduction we have emphasized on the state-of-the-art CC method 

and discussed the advantages of CC methods over other methods to calculate 

correlation energy. The single reference methods include the static correlation 

exactly, but for excited states and closed shell molecules away from 

equilibrium, where no single determinant is dominant, the single reference 

methods fail. In such cases multi reference description becomes necessary. In 

section I.9 we have discussed the multi reference based [16-29] coupled cluster 

methods.  

The thesis involves calculation of various properties using Fock space 

multi reference coupled cluster method. The properties in which we are 

interested are: 

1. The position and life time of resonances. 

2. Geometry optimization of low lying excited states dominated by hole-

particle excitation using numerical differentiation. 
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3. Analytic formulation and implementation for geometry optimization 

of doublet radicals. 

Resonance states are temporary bound states. Since these are decaying 

states, they do not belong to the Hermitian domain of the Hamiltonian. Thus, 

normal bound state methods cannot be used to study resonance states. With the 

help of analytic continuation of the Hamiltonian the problem is transformed, so 

that the bound state methods can be used. The analytic continuation was done 

by using complex absorbing potential (CAP) [30, 31] in FSMRCC method, 

truncated at singles and doubles level (FSMRCCSD). This method is known as 

CAP-CIP-FSMRCCSD [32]. The study was done at the equilibrium geometry 

of the target molecule. We can study the life time of the shape resonance as a 

function of geometry. Study of complex potential energy surface is also useful 

for the study of orientation of the adsorbate molecule on crystal structure. 

Analytic gradients are useful in geometry optimization. We have 

presented equations for the analytic gradients of doublet radicals. The 

formulation can be used for cation or anion. The approach is based on 

Lagrange based method and is a very general one. This can easily be extended 

for higher order derivatives. The method can also be extended for the excited 

states geometry optimization. We have successfully implemented this approach 

for first and second derivatives, when external perturbation is electric field. 

This same approach can be used for the calculation of mixed derivatives. Table 

V.1 lists the derivatives and the corresponding properties that can be calculated 

using analytic gradients.  
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Table V.1. List of properties can be calculated using gradient: 

Derivative Properties can be calculated 

i

dE
dx

  Forces on nuclei, stationary points on 

potential energy surface. Equilibrium 

and transition state structure. 

2

i j

d E
dx dx

 
Harmonic force constants, harmonic-

vibrational frequencies. 

3

i j k

d E
dx dx dx

 
Cubic force constants, vibrational 

corrections to distances and 

rotational constants. 

4

i j k l

d E
dx dx dx dx

 
Quartic force constants, anharmonic 

corrections to vibrational 

frequencies. 

2

i

d E
dx d αε

 
Dipole derivative, infra red 

intensities within harmonic 

approximation.  

3

i

d E
dx d dα βε ε

 
Polarizability derivative, Raman 

intensity 
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