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φ  Fraction of surface coverage of molecules attached to the wall ( eqφ  under 

equilibrium), dimensionless 

eγ  Effective strain, dimensionless 

aγ&  Apparent shear rate, sec−1 
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γ&  Rate of strain tensor. ( )
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v

~
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η  Viscosity, N sec/m2 

Bη  Viscosity in the bulk region, N sec/m2 
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ϕ  Fraction of surface coverage of molecules entangled with the bulk and 

attached to the wall, dimensionless 

Iκ  Shear rate in the interfacial region, sec−1 

Bκ  Shear rate in the bulk region, sec−1 

≈
κ  Rate of strain tensor, sec−1 

λ  Relaxation time, sec 

iNλ  Probability of segment loss per unit time per unit volume. (at 

equilibrium eq
iλ ), dimensionless 

≈
π  Total stress tensor, N/m2 

gf θθ ,  Arbitrary parameters in equation (3.28) and (3.29), dimensionless 

θ   Time, tt ′− , sec 

ϑ  Exponent in expression for fluctuation time, dimensionless 

Σ  Surface coverage, Chains/m2 

wσ  Wall shear stress, N/m2 

≈
σ  Stress tensor, N/m2 

Iτ  Dominant relaxation mode in the interfacial region, sec 
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1υ  Velocity of the tube (mesh) with respect to respective segment of test 
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mυ  Maximum velocity, m/sec 

~
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molecule. 
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Upper convected derivative of arbitrary variable.. 

B  Average over configuration distribution function 
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LDPE Low Density Polyethylene 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

The no-slip boundary condition at the fluid–solid interface has been a textbook 

prescription for students of fluid mechanics. However, the occurrence of sudden slippage 

at the wall for structured fluids under certain conditions has been a challenging problem 

in fluid mechanics. Flow instabilities occurring in entangled polymer solutions and 

melts in particular, has been a subject of intense investigation for the past several 

decades. A non-zero velocity at the boundary or a very high velocity gradient near the 

boundary gives rise to several instabilities in shear flow. Experimentally, only some 

polymeric fluids seem to undergo a distinct and dramatic wall-slip, the characteristics of 

which depend on the nature of the wall. Although slip is observed in most of the shear 

geometries, the slip-instabilities are more prone to occur in case of pressure flow since 

very high values of shear rates and wall stresses are achievable in this flow field. Also, 

since pressure flow is more commonly used in the polymer processing industry, these 

instabilities limit the processing speed to a great extent and therefore demand detailed 

investigation. 

 

Slipping fluids exhibit many typical characteristics such as a drastic reduction of 

resistance to flow, diameter dependence of flow curves, surface distortions of the 

extrudate and (apparent) violation of no-slip boundary condition close to the wall [Wang 

et al., 1999]. The critical value of wall shear stress for the onset of gross distortion as 

observed in many experiments varies usually between 0.01 MPa to 1 MPa for most of 

the tested polymers and its variation is much less than a decade within a particular 

polymer homologous series [Adewale and Leonov, 1997]. 

 

Several different molecular interpretations exist for wall slip. In the case of polymer 

solutions, apparent wall slip has been attributed to migration of macromolecules away 

from the wall under the influence of a stress gradient. This was believed to create a 

polymer-depleted layer of low viscosity near the boundary and cause apparent slip 

[Agarwal et al., 1994; Barnes, 1995]. For entangled melts, the mechanism of constitutive 
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(bulk) instability (non-monotonic shear stress-shear rate curves) was considered to be 

responsible for the observed instabilities [Denn, 1990]. Recently, two important 

mechanisms that have been proposed for wall-slip are the disentanglement mechanism 

and the debonding mechanism. When a polymeric liquid comes in contact with the bare 

wall, some of the chains get adsorbed onto the wall. These grafted chains get entangled 

with the free bulk chains and resist their movement. This causes the no-slip boundary 

condition to prevail even for such structured fluids. There are then two ways by which 

the polymeric liquid can slip past the wall. One is by chain desorption from wall [Denn, 

1990] and the other is by chain disentanglement at wall [Wang, 1999]. If the adhesive 

energy is not high enough to sustain the stress in the grafted chains created by the 

flowing bulk chains then at a critical stress the adsorbed chains would desorb from the 

wall and the bulk liquid can slip on the bare wall. This mechanism is known as 

debonding or adhesive failure. On the other hand, if the adsorption energy is high 

enough then at a critical stress the adsorbed chains could get oriented in the direction of 

the flow without desorbing so that the bulk chains can disentangle from them and slip. 

This is the so-called disentanglement mechanism. 

 

Theoretical formulations of each of these mechanisms differ considerably, thus making 

it difficult to ascribe the experimentally observed slip to any of the mechanisms 

exclusively. Several years of research in this subject has indeed developed some 

consensus regarding the mechanisms. It is now generally accepted that for entangled 

polymeric fluids, slip is caused by either disentanglement or debonding mechanisms 

rather than by constitutive instability. 

 

We propose to look at the problem of entanglement dynamics near the solid boundary 

and its implications on wall slip from a theoretical standpoint. The literature survey 

described in the next chapter points to the need for developing a rheological flow model 

that can unify several experimental observations under one common theoretical 

framework. 

 

Thus, a primary scope of this work is to develop a unified slip model. The word ‘unified’ 

has several dimensions. Unification is proposed to be achieved in terms of the nature of 

the slipping fluid (i.e., concentrated solution or melt), the mechanisms of slip (i.e., 

disentanglement and debonding) and the different theoretical frameworks that have 

been used for describing slip. As discussed in literature review, several characteristics of 
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slip observed in entangled polymer solutions and in melts are similar in nature. Slip in a 

polymer solution results in a continuous but large increase in flow rate and in diameter 

dependent flow curves. In a slipping polymer melt a discontinuous increase in flow rate 

and diameter dependent flow curves are observed. A unified model should be able to 

predict such differences. The literature review also describes how a polymeric fluid can 

show different slip characteristics when flowing on dies of different materials of 

construction. A unified model should be able to naturally account for the effect wall-

polymer interactions. The theoretical frameworks for describing slip occurring on low 

adhesive energy surfaces (by debonding) are considerably different than those that 

describe slip on high adhesive energy surfaces (i.e., by disentanglement). A unified 

model should be able to successfully combine such mechanisms into one consistent 

framework. The same model should be applicable for various slip regimes without any 

extra assumptions. 

 

Finally, the success of a model describing wall-slip will be determined by whether it can 

predict several experimentally observed slip effects such as diameter dependence for 

smaller die diameters, diameter independence for larger diameters, first order 

transitions in flow rate, flow oscillations, hysteresis, etc. Since slip is generally observed 

in concentrated solutions and melts, the dynamics of which can be successfully predicted 

by the transient network theory, we develop a unified model on this theoretical 

framework. Although the transient network model is ‘molecular’ in nature, it requires 

some empirical fitting parameters. The incorporation of the empiricism simplifies the 

model substantially. However, such a model is unable to answer several fundamental 

issues that are at the heart of the physics of slip phenomenon. Thus there is also a need 

for a truly molecular model for describing the dynamics of polymer molecules near a 

wall. Another important scope of this work is to develop a fully predictive molecular 

model for wall-slip in highly entangled polymers. 

 

All of the previous molecular theories for slip are essentially based on scaling models, 

which while providing a molecular understanding for wall slip cannot quantitatively 

predict the slip data. In this work, we propose a parameter free molecular constitutive 

equation based on the tube model for predicting slip on a high-energy wall. Our 

motivation is to develop an understanding of the molecular mechanisms that are 

responsible for slip due to disentanglement and to quantitatively predict various 

characteristic features of wall-slip. 



 4

 

Indeed, the choice between phenomenological and molecular models depends on the ends 

to be achieved. Phenomenological models are more suitable for engineering calculations 

of complex flows in complex geometries because of their relative mathematical 

simplicity. Molecular models, on the other hand, are insightful and fully predictive but 

are mathematically more complex and hence difficult to use in predictions on complex 

flows. 

 

This thesis is organized as follows. In the next chapter we provide a detailed account of 

the literature, its critical review and the current status of the problem. In the chapter 3, 

we propose a disentanglement model that is based on transient network theory. In the 

chapter 4 the analysis in the previous chapter (chapter 3) is extended to include the 

debonding mechanism, thus proposing a unified model. In chapter 5, we discuss an 

experimental work aimed at testing an important prediction of the unified slip model 

namely, the temperature dependence of the critical stress for debonding-driven slip. In 

chapter 6, we develop a molecular model for slip phenomena, which is based on the tube 

theory, and is free from any arbitrary fitting parameters. Finally, the summary and the 

various conclusions arrived out of our work are discussed along with the scope for future 

work.



CHAPTER 2 

 

LITERATURE SURVEY 

 

 

 

2.1. Introduction: 

 

Whenever a flowing fluid comes in contact with a solid boundary (wall) the magnitude of 

the macroscopic (slip) velocity of the fluid element next to the wall is given by the 

Navier's slip boundary condition [de-Gennes, 1979], βσ= 12sV , where 12σ  is the wall 

shear stress and β  is an interfacial friction coefficient. It is assumed that an interfacial 

region of the order of molecular dimensions a′  exists near the wall, which connects the 

solid boundary to the bulk fluid. The stress in the bulk under steady shear flow is given 

by 1212 ηκ=σ , where η  is the bulk viscosity and 12κ  is the shear rate. A similar 

relationship can also be written for the interfacial region as, II ,1212 κη=σ , where Iη  and 

I,12κ  are the viscosity and the shear rate in the interfacial region respectively. Since the 

velocity changes from the stationary wall to macroscopic velocity sV  over a length scale 

equal to molecular dimensions a′ , Is aV ,1212 κ′=βσ= . Thus, the Navier's relation 

IIsV ,1212 κη=ηκ=β  introduces a length scale called the extrapolation length b , given 

by, [de-Gennes, 1979; Wang 1999] 

a
V

b
I

s ′
η
η

=
β
η

=
κ

=
12

         (2.1) 

The physical interpretation of the extrapolation length (b ) is shown in figure (2.1). The 

extrapolation length b  is widely used to quantify the slip in the flowing fluids. When 

ab ′> , the fluid is said to be slipping on the wall. For monomeric liquids, the interfacial 

and bulk viscosities are of similar magnitude since both involve monomer-monomer 

interactions, hence b  is of the order of a′ . For polymeric liquids flowing on bare wall, 

i.e., a molecularly smooth non-adhering wall, the interfacial viscosity Iη  is still equal to 

the monomeric viscosity while η  increases by several orders of magnitude depending on 

the molecular weight of the flowing liquid ( η 4.3~ M ). Hence ab ′>>  and the polymer 

slips on the wall. However, if the wall is not bare, i.e., if it can adsorb polymer chains on 
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to its surface to form a grafted layer that can entangle with the flowing bulk, then 

ηη ~I  and hence ab ′~ . Thus, slip is considerably suppressed in this case. 

 

As discussed in the previous chapter, slip instabilities play a very important role in 

polymer processing industry. In extrusion-based industries, these instabilities limit the 

processing speed up to a great extent, as at higher flow rates the system shows 

extrudate distortion and pressure oscillations. Due to such high industrial importance, 

this area has been explored extensively for last five decades. The main aim behind such 

studies is to understand the molecular mechanisms behind these phenomena and to 

suggest the remedies to remove the extrusion instabilities. Further, the task to uncover 

the molecular origins of these phenomena has been considered as one of the few 

uncompleted challenges in the field of polymer Rheology. Roughly, this subject has 

invited over three thousand publications from 1950s up to 1990s [Wang, 1999]. We 

divide the literature on wall slip broadly into two parts: (i) experimental studies which 

are aimed at measuring wall slip and understanding the influence of various parameters 

that can affect slip, and (ii) theoretical investigations which are aimed at understanding 

the mechanisms of slip and predicting the observed flow behavior. Correspondingly, this 

chapter contains two main sections. In the first section, we present a detailed survey of 

the various experimental observations made in last few decades. In the second section, 

we provide a detailed account of the various theoretical interpretations and 

mathematical models that have been proposed in order to explain the observed 

experimental behavior. Figure (2.2) shows a schematic of the various issues discussed in 

this chapter. 

 

2.2. Experimental Observations: 

 

When polymeric liquids are sheared in viscometers and processing equipment, the 

phenomenon of wall slip manifests itself in various ways. Slip is seen in pressure flows 

(such as in extrusion or in capillary and slit rheometers) as well as in drag flows (such 

as in cone and plate, plate and plate, couette and sliding plate rheometers). 

Interestingly, the characteristics of slip behavior differ from apparatus to apparatus, 

since they explore different range of shear rates (or shear stresses). The occurrence of 

slip in some rheometers can also masked by other effects such as secondary flows and 

other instabilities. We will first discuss various experimental observations in the 
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Figure 2.1 A schematic of a simple shear geometry. The two plates are separated by 
distance H . Top plate moves with velocity tV , while bottom plate is stationary. The 

shear rate in the bulk is HVV st )(12 −=κ . The velocity profile extrapolates to zero at a 

distance b  below the interface, with extrapolation length 12κ= sVb . 
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Figure 2.2 A schematic of the various issues discussed in literature survey
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pressure flow viscometers followed by a survey of the experimental observations for the 

drag flow viscometers. 

 

2.2.1. Pressure flow 

 

Pressure flow rheometers (e. g. capillary viscometer and slit viscometer) are the most 

popular apparatus for studying slip. An important reason for this is that these 

rheometers explore a shear rate range that is observed in many of the extrusion 

processing techniques such as film blowing, casting, profile extrusion and spinning, 

which are most susceptible to slip instabilities. 

 

2.2.1.1 Manifestations of slip 

 

When a polymeric liquid is extruded through a capillary or a slit die at low shear rates 

(or low shear stresses), a smooth extrudate with die swell is observed. At higher rates, 

small ripples on the extrudate surface are observed. These ripples are popularly known 

as sharkskin. This behavior is observed in some polymers such as high density 

polyethylene [Tordella, 1969], linear low density polyethylene [Deeprasertkul et al., 

1998; Pudjijanto and Denn, 1994], polydimethylsiloxane (PDMS) [Piau et al., 1990], etc. 

At still higher shear rates in a typical rate-controlled extrusion process, one observes 

significant pressure drop and flow rate oscillations, though the input flow rate (feed) is 

maintained at a constant value. In this regime, the extrudate shows alternating bands 

of smooth and distorted surface [Kissi and Piau, 1990]. This flow regime is called “stick-

slip” or “spurt flow”. If the shear rate is increased even further a grossly distorted 

extrudate is observed [Wang, 1999]. This is typically called as “gross melt fracture”. 

 

If the polymer is extruded in a stress controlled process then sharkskin is observed at 

the same stress (or shear rate) as that in the rate-controlled process. However, at a 

higher shear stress corresponding approximately to the stress at which stick-slip is 

observed in a rate-controlled process, the apparent shear rate (or flow rate) jumps 

discontinuously by as much as one order of magnitude [Bagley et al., 1958; Tordella, 

1963; Wang and Drda, 1996a]. There are no pressure-drop and flow rate oscillations 

accompanying the stick-slip instability in a stress-controlled process. Interestingly, the 

extrudate after the discontinuous jump has a smooth surface [Tordella, 1963; Wang and 

Drda, 1996a], but this behavior changes with change in polymer-wall pair. If the stress 



 9

is increased further then the extrudate surface becomes grossly distorted in a manner 

similar to that observed in a rate-controlled extrusion process. On gradually decreasing 

the stress, the apparent shear rate (or flow rate) decreases discontinuously at a critical 

shear stress, which is generally lower than the stress at which the sudden increase was 

seen. Thus, a hysteresis is observed [Bagley et al., 1958; Kissi and Piau, 1990; Yang et 

al., 1998c]. Further, if the extrusion is carried out using dies of different diameter, the 

discontinuous increase in apparent shear rate increases with decrease in diameter thus 

showing the diameter dependent flow curves [Wang and Drda, 1996a]. However, such 

diameter dependence is seen to be decreasing with increase in diameter of the capillary 

in such a way that the capillaries with large diameter do not show any diameter 

dependence [Cohen and Metzner, 1982]. 

 

In polymers such as isotactic polypropylene or low density polyethylene, the sharkskin 

and stick-slip instabilities are completely absent even at very high stress levels [Yang et 

al., 1998a], but sometimes at very high flow rates the glossy spirals or macroscopic 

screw-like extrudate appears through the capillary [Kissi and Piau, 1990]. Such effect 

has been sometimes confused with the spurt phenomenon. However, now it has been 

accepted that such behavior is observed because of entry instability [Wang, 1999]. 

 

2.2.1.1. Extrudate distortion 

 

To the best of our knowledge, the first experimental observation of surface defect during 

extrusion dates back to 1942. Garvey and coworkers (1942) observed the extrudate 

distortion while extruding the synthetic rubber compound through tire thread die at 

110oC. Nason (1945) used a gas driven extrusion capillary rheometer for extrusion of 

polystyrene and cellulose acetate and observed that the extrudate of the polystyrene 

became wavy when the Reynolds number was in the range 800-1000. He found that the 

waviness of the extrudate increased further with increasing the extrusion pressure. 

After these early observations, several research groups have investigated similar 

phenomenon in other polymers. Many terms have been used in literature (as mentioned 

in the review of Boudreaux and Cuculo, 1977) to describe this phenomenon, namely melt 

fracture, elastic turbulence, waviness, ripples, bamboo effect, sharkskin, etc. The 

various details of the extrudate distortion phenomenon as investigated by several 

research groups have been reviewed extensively [White, 1973; Petrie and Denn, 1976; 

Boudreaux and Cuculo, 1977; Denn, 1990; Larson, 1992; Graham, 1999; Wang, 1999; 
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Denn, 2001]. In the following, we will summarize only some of the very important 

observations. 

 

Three types of extrudate distortions are generally observed during extrusion [Wang, 

1999]. At lower shear rates, ripples are observed on the surface of the extrudate. This 

behavior is seen irrespective of the mode of operation (either pressure controlled or the 

rate controlled). Such ripples are popularly known as sharkskin or sometimes called as 

surface fracture. The second type of distortion occurs only in rate-controlled mode, when 

periodic pressure and flow rate oscillations are seen. The emerging extrudate appears to 

be bamboo-like, where periodic rough and smooth bands on the surface can be seen. The 

third type of distortion is the gross distortion of the extrudate or the smooth spirals. The 

intensity and/or presence of any of the above instability depend on the various 

characteristics of polymer melt as well as its interactions with the die wall.  

 

2.2.1.1.1. Surface fracture: Sharkskin 

 

Sharkskin or surface fracture is the first indication of an instability and it occurs at a 

comparatively lower shear stress. As the name suggests the extrudate surface shows 

ripples perpendicular to the flow direction as shown in figure (2.3). Piau et al. (1990) 

defined sharkskin as 'a surface defect characterized by a small scale and high frequency 

rugosity of the free surface due to relaxation of strain at the die outlet'. In the early days 

of research in this area, the gross distortion was often confused with sharkskin 

behavior. Benbow and Lamb (1963) demonstrated the distinct differences between the 

gross fracture and sharkskin. While gross distortions occur as a result of melt fracture 

due to entry instability, sharkskin distortions are localized only at the surface and are 

also called surface instabilities. Generally, sharkskin is seen mainly in polyolefins like 

HDPE [Tordella, 1969], LLDPE [Deeprasertkul et al., 1998; Pudjijanto and Denn; 1994], 

polybutadine [Shaw and Wang, 2000] and PDMS [Piau et al., 1990] while other 

polymers directly show either stick slip transition or gross distortion (or spirals), with 

out showing sharkskin effect. 

 

In most of the cases it is found that coating the die surface with a fluoropolymer can 

eliminate the sharkskin [Moynihan et al., 1990; Hatzikiriakos and Dealy, 1993; Kissi et 

al., 1994; Kazachkov et al., 1995; Kissi and Piau, 1996b; Wang et al., 1996]. However, in 

some cases, sharkskin is seen to persist even after the coating the die with 



 11

 

 

 

Figure 2.3 Sharkskin on the extrudate of PDMS melt through an orifice die. It can be 
seen that the ripples on the surface are perpendicular to the axial direction. 
(Reproduced with permission. From Kissi and Piau, 1996b; © 1996, Elsevier Science B. 
V.).
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fluoropolymer [Person and Denn, 1997]. Instead of coating the entire die, Moynihan et 

al. (1990) coated only the entry and the exit regions of the slit die independently and 

observed the suppression of the sharkskin in both the cases. Similar observations of 

vanishing of sharkskin due to die lip (exit) coating have been made by others also 

[Kazachkov et al., 1995; Wang et al., 1996]. Moynihan et al. (1990) also varied the length 

to diameter ratio (L/D) of the capillary and observed that the sharkskin was delayed and 

occurred at higher shear rates with increase in L/D. Similar behavior has also been 

observed by Sornberger et al. (1987). Although Moynihan et al. (1990) and Sornberger et 

al. (1987) observed a substantial influence of die geometry on sharkskin; Venet and 

Vergnes (1997), Constantin (1984) and Beaufils et al. (1989) reported only a weak 

dependence of sharkskin on (L/D). Sornberger et al. (1987) also observed that sharkskin 

appears at a critical value of shear rate, and this critical shear rate increases with 

increase in temperature. They further observed that mixing a lubricant with LLDPE 

attenuates the severity of the sharkskin. Similar observations of reducing sharkskin by 

mixing lubricants or fluoropolymers have been made by Nam (1987), Rudin et al. (1990) 

and Hatzikiriakos (2000). 

 

Kurtz (1984) was the first to observe a distinct change in slope of the shear rate - shear 

stress flow curve at the onset of sharkskin. Ramamurthy (1986), Kalika and Denn 

(1987) and Wang et al. (1996) have also made similar observations for LLDPE at various 

temperatures. Wang et al. (1996) also used a die with 60o exit taper. The effect of this 

less abrupt exit leads to a smaller slope change. In general, though a change in slope of 

the flow curve is visible at the onset of sharkskin, it is not as severe as that observed 

during the stick slip instability regime at higher stress. Figure (2.4) shows various 

regions of extrudate distortions on the flow curve. The change in slope in the sharkskin 

region can be clearly seen in the figure. 

 

Molecular structure significantly affects the sharkskin behavior. Not all polymers, 

which show stick-slip behavior show sharkskin and vise a versa. As discussed earlier, 

sharkskin is mainly seen in polyolefins and PDMS. Amongst polyolefins, sharkskin is 

mainly observed in polymers with linear chain structure like HDPE and LLDPE. 

Commercial LDPE, which has long branches and high polydispersity, does not show 

sharkskin [Wang et al., 1996; Venet and Vergnes, 1997; Yang et al., 1998a]. Contrary to 

this, Mackley et al. (1998) indeed observed the surface instability for LDPE at low 

temperature around 140oC. However, the same vanished at higher temperatures. They 
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Figure 2.4 Flow curve for LLDPE at 215oC. Various regions of extrudate distortion are 
mentioned on the curve. (Reproduced with permission. From Kalika and Denn, 1987; © 
1987, Society of Rheology) 
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also found the severe sharkskin for LLDPE. Interestingly, when they blended LLDPE 

and LDPE, they found that the blend shows enhanced sharkskin than LLDPE at normal 

processing temperatures. 

 

It is generally observed that lower the polydispersity higher is the severity of sharkskin 

[Graham, 1999]. Kazatchkov and coworkers (1999) studied various LLDPEs with same 

weight average molecular weight and different polydispersity. They observed that an 

apparent shear rate at the onset of sharkskin goes on increasing with the polydispersity. 

After a critical polydispersity (~9.6) sharkskin vanished and spirally distorted extrudate 

appeared out of the die. Hatzikiriakos et al. (1997) observed an absence of sharkskin 

while extruding single site catalyzed metallocene LLDPE. They argued that though 

these metallocene LLDPE are less polydisperse, they have higher long chain branching 

than conventional LLDPE. However, contrary to the observation made by Hatzikiriakos 

et al. (1997), Deeprasertkul and coworkers (1998) observed the sharkskin for 

metallocene LLDPE. Stereoregularity is also shown to be influencing the sharkskin 

behavior. Tapadia et al. (2000) observed sharkskin in syndiotactic polypropylene (PP) 

while for isotactic polypropylene sharkskin was completely absent.  

 

Various mechanisms have been proposed to explain this behavior. Benbow and Lamb 

(1963) argued that sharkskin is initiated at the die exit. Based on birefringence studies, 

Vinogradov et al. (1972) argued that the high stresses at the die exit cause the 

sharkskin like surface distortion. Cogswell (1977) proposed that the stress singularity 

near the die exit could cause the local stress to exceed the melt strength of the polymer. 

This causes rupture of the polymer melt, which results in the sharkskin. On similar 

lines, Venet and Vergnes (1997) claimed that since LDPE has a strong strain-hardening 

elongational behavior (i.e., higher melt strength), it is resistant to rupture and hence 

does not show sharkskin. Rutgers and coworkers (1998) supported the argument of 

random crack formation under the influence of high tensile stress at the die exit by 

analyzing the flow field by means of optical stress birefringence. Rutgers and Mackley 

(2000) present a numerical simulation of a slit die for two grades of LLDPEs. They also 

calculate the critical stress at which melt ruptures in a uniaxial elongation flow for both 

the grades. They show that the onset of the surface fracture (exit tensile stress) 

correlates the critical stress level for melt rapture. They argue that as the critical 

extentional stress in reached, the periodical crack formation occurs in the emerging 

extrudate. The depth of the crack can be correlated to the depth of the material at the 
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die exit in which the tensile stress exceeds the critical level. Venet and Vergnes (2000) 

have also carried out a numerical study of the flow conditions at the die exit. They 

observe an existence of small traction zone located at the periphery of the die exit where 

the tensile stress grows with increase in flow rate. They further observe that the 

intensity and the dimensions of the traction zone remains unaffected due to die 

geometry. Based on these observations they argue that the tangential stress cannot be a 

unique parameter to explain the sharkskin phenomena and the history of deformation 

should also be taken into account. Moynihan et al. (1990), based on their observations 

from the capillary as well as slit die, proposed a similar mechanism to explain and locate 

the site for initiation of sharkskin. They proposed that the first requirement for surface 

melt fracture to occur is that the material be pre-stressed, which they visualized as 

occurring in the land region of the die and the second requirement is the acceleration of 

the melt as it exits the die. Ramamurthy (1986) and Kalika and Denn (1987) reported 

that the origin of the sharkskin is due to the loss of adhesion between the polymer and 

die wall. Dhori et al. (1997) proposed a molecular mechanism, in which they attribute 

the sharkskin to the wetting-dewetting (adsorption-desorption of the polymer molecules) 

process at the die lip (exit). The dewetting occurred as a result of the elastic energy in 

the tethered molecule exceeding the adhesion energy, while the wetting process was due 

to relaxation of the free (i.e., slipping) molecules at the die lip. 

 

Barone and coworkers (1998) proposed an interfacial molecular instability (IMI) 

mechanism to explain the sharkskin phenomenon. They proposed a mechanism that is 

in some sense similar to that proposed by Dhori et al. (1997). A crucial difference, 

however, is that the wetting-dewetting dynamics is replaced by entanglement-

disentanglement dynamics. They argue that due to higher exit stresses and/or 

elongational flow component near the die exit, the molecules tethered in the die lip 

region undergo a reversible coil to stretch transition much earlier than those in the die 

land. The coil state represents the entanglement state while the stretch state represents 

disentanglement. This results in cycles of local stress relaxation and growth, which 

produces a periodic perturbation of the extrudate swell that appears like sharkskin 

roughening on the extrudate surface. They estimated the sharkskin period using the 

average distance between two ripples and the velocity of the cooled extrudate. They 

found that the sharkskin period follows the WLF like temperature dependence in a 

manner similar to that exhibited by the melt viscosity (or the molecular relaxation 

time). Wang et al. (1996) showed that the frequency of sharkskin correlates well with 
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the characteristic molecular relaxation time determined by linear viscoelastic 

measurements. They argued that this observation correlates the sharkskin to a 

molecular relaxation process triggered by a reversible coil to stretch transition. Recently 

Barone and Wang (2001) have carried out the rheo-optical observations to show the 

presence of tethered chains in the die exit region to be the necessary criteria to generate 

the sharkskin on the extrudate. They coated the die exit using ethanol to assure no 

adsorption of polymer chains in the die lip region. They found the extrudate to be 

smooth even when the stress levels obtained by birefringence substantially exceed the 

onset value for sharkskin formation for a bare die. 

 

2.2.1.1.2. Bamboo-like extrudate. 

 

During a controlled-rate extrusion process a second critical stress is observed [see figure 

(2.4)], above which periodic flow rate and pressure oscillations take place and emerging 

extrudate shows alternate bands of smooth and sharkskin regions [see figure (2.5)] 

[Kissi and Piau, 1990; Denn, 1990]. Since the input flow rate into the die is constant, the 

oscillating output from the die must clearly be a result of the finite compressibility of the 

melt [Molenaar and Koopmans, 1994; Ranganathan et al., 1999]. The widths of the 

smooth and sharkskin regions of the extrudate depend on the frequency of the flow rate 

oscillations, which in turn depends on the compressibility of the melt and the material 

in the barrel (i.e. reservoir volume) [Wang, 1999; Pearson, 1985]. The bamboo-like 

distortions are not always visible in a controlled stress extrusion process. Indeed, in 

such a mode of operation, the shear rate (or flow rate) jumps discontinuously and the 

accompanying extrudate is typically smooth.  

 

As discussed earlier, only some polymers show stick slip behavior. Whether a polymer 

will show stick slip behavior or not depends mainly on its molecular characteristics and 

its interactions with the die surface. Further only highly entangled polymeric liquids 

show stick-slip instability [Wang, 1999], we will discuss this issue in more detail later in 

this chapter. Several observations of bamboo like extrudate for various polymers are 

reported in literature and can be found in various review papers [Wang, 1999; Denn, 

1990; Boudreaux and Cuculo, 1977; Petrie and Denn, 1976]. Further, similar to 

sharkskin behavior it is observed that the stick-slip behavior also vanishes on coating 

the die with a fluoropolymer [Hatzikiriakos et al., 1995; Piau et al., 1995]. Various 

details of such observations are discussed later in this chapter. 
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Some reports describe a second stable flow region for linear polyethylene after the stick-

slip instability (Schreiber et al., 1960; Tordella, 1969; Pudjijanto and Denn, 1994). 

Pudjijanto and Denn (1994) observed that such a stable region for LLDPE, when 

processed between 140 to 146 0C. It is claimed that a linear polyethylene requires low 

temperatures, large diameter capillaries to attain the second region of stability 

[Boudreaux and Cuculo (1977); Tordella (1969)]. 

 

2.2.1.1.3. Gross fracture or spirals 

 

Gross fracture or spirals are observed in mostly all entangled polymeric liquids 

irrespective of their slip behavior. Figures (2.6a) to (2.6c) show photographs of a grossly 

fractured extrudate of LLDPE while figure (2.6d) shows a photograph of a extrudate of 

PDMS distorted in the form of spirals. It has been suggested that such spirals or the 

gross distortion arise from the formation of secondary flow (vortices) in the barrel due to 

the strong converging flow near die entry [White, 1973; Wang, 1999]. White (1973) 

argued that the size of the vortices increases with the increase in flow rate. The 

streamlines in the die entry eventually break and material with different deformation 

history alternatively surge in to the capillary to give rise to gross distortion of the 

extrudate [White, 1973]. Perez-Gonzalez et al. (1997) observed that pressure 

fluctuations accompany gross distortion. They further observed that the severity of the 

extrudate distortion decreases with decrease in entrance angle of the capillary die. The 

phenomenon of entry instability and gross distortion is out of the scope of present work 

and hence will not be discussed in more detail here. 

 

2.2.1.2. Slip characteristics and system variables 

 

In this subsection, we will discuss the effect of various system variables on the stick-slip 

phenomena and the wall-slip phenomena occurring over a die land. Although some of 

the system variables are implicitly inter-related, we try to take account of each one 

independently. 
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Figure 2.5 Bamboo like extrudate distortion for PBD during the oscillatory region. 
(Reproduced with permission. From Kissi and Piau, 1996b; © 1996, Elsevier Science B. 
V.) 

 
Figure 2.6 Gross extrudate distortion (a-c) can be seen for LLDPE melt through 0.5 mm 
capillary die, while d is the spiral distortion observed for PDMS through orifice die. 
(Reproduced with permission. From Kissi and Piau, 1996b; © 1996, Elsevier Science B. 
V.) 
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2.2.1.2.1. Mode of operation and flow curve 
 

The mode of operation of the extrusion process has a significant effect on the slip 

characteristics as well as on the flow curve. As mentioned earlier, the extrusion 

rheometer can be operated in two modes; a rate-controlled mode, in which the piston 

speed or the net flow rate of the material through the extruder is controlled, and a 

stress-controlled mode, in which the pressure drop across the die is controlled. In 

principle, the relationship between the shear stress and shear rate (i. e., the apparent 

viscosity) is a material property and should be independent of the mode of operation. 

However, in the case of highly entangled polymeric liquids the flow curves observed in 

the two modes differ whenever stick-slip occurs. 

 

At low shear rates and up, until a critical shear rate (or shear stress) the flow curves of 

the rate controlled and stress controlled modes match identically. After the critical shear 

rate (or stress) is crossed, the flow in the rate-controlled mode becomes erratic; the 

pressure drop across the die and the flow rate through the die show periodic oscillations 

[Denn, 1990]. Figure (2.7) shows the pressure or stress oscillations of HDPE melt when 

extruded from a rate-controlled capillary rheometer. The frequency and the amplitude of 

the oscillations depend on the compressibility as well as the volume of the material 

remaining in the barrel (Pearson, 1985). Above the stick-slip instability, the pressure 

drop and the flow rate once again become monotonically increasing functions of each 

other. 

 

If the extrusion rheometer is operated under controlled pressure-drop model, the flow 

rate discontinuously increases at a critical pressure drop. The magnitude of the jump in 

the flow rate (or the apparent shear rate) depends on the molecular characteristics of 

the polymer. Above the discontinuity, the flow curve again becomes monotonic. While 

decreasing the pressure drop gradually system shows hysteresis as shown in figure (2.8). 

[Bagley et al., 1958; Kissi and Piau, 1990; Yang et al., 1998c]. 

 

Recently Munstedt et al. (2000) measured the velocity profile of the PE melt in a slit die 

using laser-Doppler velocimetry. They observed pronounced wall slip velocities at low 

shear rates. They further measured the velocity fluctuations along with the pressure 

fluctuations while the system is undergoing the stick-slip instability. Although they 

found that the frequencies of the oscillations for both velocity and pressure were same, 
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Figure 2.7 The flow curve for linear polyethylene at 180 oC in a rate controlled 
rheometer. The vertical line denotes the pressure oscillations. (Reproduced with 
permission. From Kolnaar and Keller, 1996; © 1996, Elsevier Science B. V.)  



 21

 

 

Figure 2.8 Flow of linear polyethylene through a flat entry capillary. Polymer melt 
shows hysteresis while undergoing discontinous stick-slip transition. (Reproduced with 
permission. From Bagley et al., 1958; © 1958, American Institute of Physics) 
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the shapes of the amplitude were completely different. They explained this behavior 

based on the entanglement-disentanglement model. 

 

Following the first discontinuity in flow rate in a stress-controlled mode of operation, 

Wang and Drda (1997b) reported a second critical stress for LLDPE, at which the flow 

rate again increased discontinuously. The flow curves after this second critical stress did 

not show diameter dependence, unlike those after the first critical stress. The authors 

claimed that the second criticality might arise out of disentanglement within the bulk 

chains (Constitutive instability).  

 

2.2.1.2.2. Temperature 

 

The influence of temperature on stick-slip has been extensively investigated. Even the 

earliest studies as reviewed by Boudreaux and Cuculo (1977) have reported that, in 

general, the critical stress for stick-slip is found to increase slightly with temperature. 

They further added that the observed increase was so slight that many investigators 

claimed the critical stress to be temperature independent. 

 

In 1992 in a seminal contribution Brochard and de Gennes proposed a scaling model, 

which showed that the critical stress for stick-slip should increase with temperature, 

provided slip occurs by the so-called “disentanglement mechanism”. Based on this 

premise, Wang and Drda (1996a) revisited the temperature dependence problem. While 

extruding HDPE through steel capillaries in a stress-controlled mode, they indeed found 

a small but definite increase in critical stress with increase in temperature [see figure 

(2.9)] They further observed that the slip length (b ) remains constant with respect to 

temperature in the explored temperature range. They found that the chains experience 

the same extent of stretching and its magnitude is same at all the temperatures. Since 

the ratio of critical shear stress to temperature was found out to be a constant, they 

argued that the transition is not an activation process (debonding) and hence the 

polyethylene melt slips on steel due to the disentanglement mechanism. 

 

In an interesting observation, Kolnaar and Keller (1994, 1997) have reported the 

existence of a narrow temperature window in which flow resistance drops significantly. 

While extruding the HDPE, they found a temperature range (146oC-152oC) in which, 

above a certain piston speed, the extrusion pressure decreased significantly with a small 
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Figure 2.9 The flow curve for linear polyethylene for various temperatures. It can be 
seen that as temperature increases the critical stress for stick slip transition also 
increases. (Reproduced with permission. From Wang and Drda, 1996a; © 1996, 
American Chemical Society) 
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increase in temperature. Above this temperature window, the pressure increased and 

showed oscillations accompanied by melt fracture. In-situ wide angle X-ray diffraction 

results showed an anomalous hexagonal phase near the capillary wall (Van Bislen et al., 

1995). The authors proposed that such a hexagonal phase is responsible for the slippage 

of polymer molecules at the wall causing a decrease in pressure. Until this day, this 

remains the only direct experimental observation so far on chain stretching at the wall 

accompanying wall slip. Recently Perez-Gonzalez et al. (2000) have also reported the 

existence of similar temperature window for metallocene LLDPE. They observed a non-

linear temperature dependence of the critical stress at the onset of slip. They found that 

up to 140oC the critical stress decreases with increase in temperature and above 140oC it 

increases with increase in temperature. They argue that the former behavior is the 

result of a flow induced phase change due to crystallization of the melt, while the later 

behavior can be explained based on the disentanglement model of Brochard and de 

Gennes (1992). 

 

Myerholtz (1967) observed that the critical shear rate at the onset of pressure and flow 

rate oscillations shifted to the higher values with increase in temperature. Vinogradov et 

al. (1984) and Wang and Drda (1996a) observed that the jump in the flow rate to be 

independent of temperature.  

 

2.2.1.2.3. Molecular characteristics 

 

Various molecular features of polymeric liquids are responsible for their slip 

characteristics. These include molecular weight, molecular weight distribution, 

entanglement molecular weight or plateau modulus and several molecular architectural 

characteristics like long and short chain branching and their distribution, 

stereoregularity, etc. Although it is understood that all these parameters are 

interrelated in a complex manner with the rheological response, they are also known to 

influence the slip behavior independently as discussed below. 

 

Several investigators have studied the effect of molecular weight on the slip 

characteristics. Vinogradov et al. (1972) used a controlled rate as well as a controlled 

stress capillary rheometer for studying various grades of polybutadine (PB) and 

polyisoperene (PI) of narrow molecular weight distribution. For various grades of both 

polymers the critical shear stress at which slip occurred was found out to be 
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independent of molecular weight. They also showed that sudden slip was seen only if the 

molecular weight was above some threshold value. Vinogradov et al. (1984) reported 

that the threshold molecular weight for slip instability (transition) to occur should be 

ew MM 5> , where eM  is the molecular weight between two entanglements. They 

further observed that the magnitude of the jump in flow rate has a 3.4 power law 

dependence on the molecular weight of the flowing polymer. Similar observations have 

been made by various other investigators [Kissi and Piau; 1990; Yang et al., 1998b]. It 

can be seen from figure (2.10) that as molecular weight increases the jump in shear rate 

also increases. 

 

For some polymers an inverse dependence of critical stress with respect to molecular 

weight is seen. Bagley (1961) reported that for linear polyethylene and polystyrene the 

product of molecular weight and critical shear stress is constant and could be related to 

recoverable shear strain. Tordella (1969) also observed inverse dependence of critical 

stress on molecular weight. Wang and Drda (1996b) extruded HDPE resin of various 

molecular weights in a controlled stress rheometer. They found that the critical stress 

scales as 5.0−∝σ wc M  irrespective of the molecular weight distribution [see figure (2.10)]. 

They explained this behavior based on the scaling theory of Brochard and de Gennes 

(1992). We will discuss the details of this scaling in the next section.  

 

A broader molecular weight distribution is known to reduce the severity of the fracture. 

In 1962, Sabia and Mullier observed that as the polydispersity increases, the hysteresis 

loop becomes shallower. Similar behavior was also observed by Myerholtz (1967). 

Vinogradov et al. (1984) observed that with increasing polydispersity the transition from 

lower curve to the slip branch occurred continuously (smoothly). 

 

To the best of our knowledge Den Otter (1970, 1971) was the first to report on the 

absence of melt fracture in LDPE. He observed pressure drop oscillations for linear 

polyethylene in a rate controlled rheometer, but reported that no such pressure 

fluctuations occurred for branched polyethylene (LDPE). Similar observations about the 

long chain branched polyethylene (LDPE) have been made by many investigators [for 

e.g., see Utracki and Gendron, 1984; Yang et al., 1998a] 
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Figure 2.10 The flow curves for linear polyethylene of various molecular weights. 
Molecular weight increases as MH07<MC02<MC60<MH20. It can be seen that as 
molecular weight increases the jump in the apparent shear rate also increases. Further 
the critical wall shear stress can be seen to be decreasing with increase in molecular 
weight. (Reproduced with permission. From Wang and Drda, 1996b; © 1996, American 
Chemical Society) 
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The entanglement molecular weight is one of the most important parameters that decide 

the fracture behavior of the polymer melt in the shear flow. As discussed earlier, the 

polymeric liquid does not show stick-slip behavior unless its molecular weight is above 

some threshold value, which is related to the entanglement molecular weight 

(Vinogradov et al., 1984). An interesting effect of the entanglement molecular weight on 

slip in polymer solutions is discussed later in this section. Tapadia et al. (2000) showed 

that syndiotactic polypropylene (s-PP) showed the sharkskin instability but the isotactic 

polypropylene (i-PP) of the same molecular weight and polydispersity failed to show any 

instability. Based on the sharkskin theory of Barone et al. (1998) they argue that since 

the entanglement molecular weight of s-PP is lesser than that of i-PP, s-PP is more 

prone to sharkskin instability for comparative molecular weight.  

 

2.2.1.2.4. Nature of polymer-wall interface 

 

The effect of die material on slip has indeed been a very important issue in discerning 

the mechanism of slip. One of the first reports on the effects of die material on slip 

characteristics is by Clegg (1957), in which he extruded polyethylene through roughened 

as well as smooth glass dies and found no difference in the slip behavior. Similarly 

Tordella (1963) extruded linear polyethylene through steel, glass, graphite and 

fluoropolymer dies and found no difference in critical stress for extrudate distortion. 

Vinogradov et al. (1984) studied various grades of PB of different molecular weights and 

polydispersity. They used steel, glass, teflon and teflon coated steel capillaries. Contrary 

to Clegg’s observations, they observed that the flow curves for teflon and teflon coated 

capillaries bifurcated much before the point at which slip was observed in steel and 

glass capillaries. Also, the shear rate increase in teflon and teflon coated capillaries was 

seen to be much faster than that compared to the inorganic surfaces 

 

In 1986, Ramamurthy revisited the effect of die material on slip behavior. He extruded 

an LLDPE resin through dies of various materials and observed that although the 

critical stress at the onset of surface distortions did show a dependence on the die 

material, the critical stress at the onset of the flow fluctuations showed a comparatively 

poor dependence. He noted that the onset of the melt fracture can be eliminated in film 

extrusion by using an alpha brass (a copper-zinc alloy with more than 20% zinc) die. 

Based on these results he argued that the slip occurred due to adhesive failure between 

the wall and the polymer melt. Halley and Mackay (1994) extruded LLDPE through dies 
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containing inserts made up of various metals located at the die exit. They observed that 

the viscosity was independent of the die exit material except for the brass insert where a 

significant increase in exit pressure was observed. They argued that the porous, copper-

rich brass surface increased adhesion between the LLDPE and die exit, which 

subsequently increased the pressure drop. Person and Denn (1997) also observed a 

decrease in shear rate at same shear stress with the α -brass dies as compared to 

stainless steel. They argued that the different adhesive energies of steel-LLDPE and α -

brass-LLDPE were responsible for such behavior. Chen et al. (1993) studied the effect of 

material of construction and surface roughness on the slip behavior of LLDPE. They 

found comparatively high slip velocities for stainless-steel die and lowest slip velocity for 

aluminum die. Further, they also observed an increase in slip velocity by decreasing the 

surface roughness. 

 

Several investigators have studied the effect of organic coatings (e.g. fluoropolymer) on 

the slip behavior. Most of them have shown a massive enhancement of slip even at lower 

shear stresses along with the complete elimination of extrusion instabilities 

[Hatzikiriakos et al., 1995; Piau et al., 1995; Wang and Drda, 1997a]. Figure (2.11) 

shows that the flow curve corresponding to a fluoropolymer coated die bifurcates from 

the flow curve for a steel capillary at a lower pressure drop, indicating massive slip. 

Recently Barone and Wang (2000) extruded a carbon black filled polyethylene and 

polybutadine through a slit die with only the lower half coated with fluoropolymer. By 

visual inspection they show that the colored polymer sticks to the bare half of the die 

while slips on the coated die. Contrary to this Person and Denn (1997) observed no effect 

of fluoropolymer coating when compared with stainless steel coating. They argued that 

massive slip was seen only when the fluoropolymer was vapor deposited on the wall and 

not when it was solution-deposited. 

 

Wang and Drda (1997a) investigated slip in a threaded die. It was believed that the bulk 

molecules entangle with the stagnant molecules to give rise to no-slip boundary 

condition. Compared to the smooth die, the sudden increase in flow rate occurred at 

higher wall shear stress for the case of the threaded die. Wang and Drda (1997a) 

postulate that the slip occurs due the sudden disentanglement between the chains 

stagnant in the threaded portion and the flowing bulk molecules. 
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2.2.1.2.5. Die geometry 

 

The variables associated with the die geometry are the length of the die, its diameter, 

and the entry angle. It is generally observed that increasing the capillary length and 

decreasing the entry angle tend to lower the severity of the instability by apparently 

increasing the critical stress and the rate at the onset of the distortion, while the critical 

stress at the onset of distortion is observed to be independent of capillary diameter 

[Boudreaux and Cuculo, 1977]. Tordella (1963, 1969) observed that the jump in 

apparent shear rate, 332 DQ π , (where Q  is flow rate and D  is the diameter of 

capillary) increases with increase in DL  of the capillary but occurs at the same critical 

wall shear stress. Den Otter (1971) observed that the extent of the hysteresis increases 

with increase in capillary length. Vinogradov et al. (1984) observed that the jump in flow 

rate increases with increase in DL  of the capillary. Similar results of increase in jump 

of apparent shear rate with a decrease in diameter or an increase in DL  have also been 

shown by Wang and Drda (1996a, 1997b) [see figure (2.12)]. Recently Lee and Mackley 

(2000) analyzed the flow behavior of LLDPE by using their multipass rheometer 

[Mackley et al., 1995] using capillaries of different DL . They simulated this flow 

numerically keeping a no slip boundary condition. They observed that the simulation 

predicted the observed behavior quantitatively for lower DL  but required to account 

for slip at higher DL . Contrary to these observations Person and Denn (1997) observed 

that the flow curves for LLDPE extruding through a steel die are independent of the gap 

spacing. Based on the theory of Hill et al. (1990), they argued that the measurable gap 

dependence is not a necessary consequence of wall slip. If the slip velocity is pressure 

dependent then its combined effect with slip can mask the gap dependence [Person and 

Denn, 1997]. 

 

Wales (1969) reported the absence of fracture in slit dies for LDPE, while fracture was 

observed in the case of capillary dies at similar stress. However, no difference between 

the two geometries was observed for HDPE. Various investigators have studied the 

comparative effect of slit versus capillary geometry on the slip characteristics. While 

some studies indeed show a difference, others show no effect of such geometry change. 

All such observations up to 1976 have been reviewed by Petrie and Denn (1976). 
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Figure 2.11 The flow curves for PBD for various dies. The ordinate is flow rate while 
the abscissa is pressure drop. It can be seen that the flow curve for the fluorinated 
capillary shows a massive slip as compared to stainless capillary after a critical pressure 
drop. (Reproduced with permission. From Kissi and Piau, 1996a; © 1996, Elsevier 
Science B. V.) 
 

 

Figure 2.12 The flow curves for the linear polyethylene for various capillary diameters. 
It can be seen that after a discontinuous jump the flow curves show diameter 
dependence. (Reproduced with permission. From Wang and Drda, 1996a; © 1996, 
American Chemical Society) 
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It is generally observed that a conical entry into the die delays the extrudate distortion. 

[Boudreaux and Cuculo, 1977] Schreiber et al. (1960) and Bagley and Schreiber (1961) 

argue that the value of critical shear stress and shear rate increases with taper since the 

deformation of fluid in various regions above capillary inlet becomes homogeneous. 

Ballanger et al. (1971) reported that the effect of the tapered entry decreased the 

severity of distortion. Piau et al. (2000) studied the effect of various porous media placed 

at the entrance of an extrusion die, on the slip characteristics of HDPE as well as PDMS 

resin. Although they observed a significant increase in pressure drop, the flow curve did 

not show any discontinuity or hysteresis. Recently Liang and Mackley (2001) have 

reported an application of gas-assisted extrusion process. They inject a gas at the metal 

die-molten polymer interface, which gives the full slip boundary condition. The 

formation of a low viscosity gas layer at the wall substantially reduces the overall stress 

level of the polymer at the exit of the die. Such massive slip and reduction of overall 

stress level also shows a significant reduction in the die swell of the emerging extrudate. 

 

2.2.1.2.6. Fillers 

 

Various fillers and additives are known to influence slip behavior. Plasticizers are 

commonly used to enhance slip at the extruder wall in case of polyvinylchloride [Todd, 

1972]. There are not many observations on the effect of fillers on the slip behavior in 

polymeric liquids. Bagley and Schreiber (1969) have reported that the addition of 

titaniumdioxide increased the critical stress for the onset of instability. They further 

noted that above 10 % addition of titaniumdioxide, the extrusion instability completely 

disappeared. Vinogradov et al. (1984) observed that when 100:30 PB-carbon black was 

extruded, the critical shear stress for the onset of instability increased and the jump in 

flow rate decreased as compared to the unfilled PB. The appearance of the extrudate 

after the transition was found out to be regular and smooth than that observed in the 

unfilled PB. Recently Rosenbaum et al. (2000) and Hatzikiriakos (2000) compounded 

small amount of boron nitrate with various polyolefin resins. They observed that 

typically 200-1000 ppm of boron nitrate not only eliminated the surface melt fracture 

(sharkskin) but also postponed the onset of gross melt fracture to significantly higher 

shear rate values depending on the resin, boron nitrate type, temperature, and additive 

content. Akay (1983) studied glass fiber filled PP in an injection capillary rheometer in 

which he forced the material through multiple capillaries. He found that the glass filled 

PP shows pressure as well as flow rate oscillations while calcium carbonate filled PP 
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does not. The fiber orientation studies showed a very high orientation of the glass fiber 

in the axial direction while flowing through the capillary. 

 

Fluoropolymer based processing aids are commonly used in polyolefins for improving 

their flow properties. De Smedt and Nam (1987) used fluoropolymer-based rubber 

processing aid in LLDPE. They argued that the fluoroelastomer moves towards the wall-

polymer interface, and acts as a lubricant. This enhances the slip and removes the 

processing instabilities. Lo et al. (1999) extruded the blend of HDPE and the 

fluoropolymer processing aid (Dynamar) through slit die and found the improvement in 

the flow behavior of HDPE. After the extrusion, they examined the slit die blocks using 

X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy and scanning 

electronic microscope. They indeed found the presence of a lubricating layer with the 

thickness in the range 5 to 15 mµ , which tends to increase with shear rate at high 

Dynamar concentration. They found that the efficiency of viscosity reduction is 

independent of thickness of lubricating layer. Similar results are also discussed by 

Focquet and Blong (1998) and Chen and Feng (1997). 

 

2.2.1.2.7. Wall slip in polymer solutions  

 

Tomos (1949) reported the first observation of wall slip in a 2.5-gm/lit solution of PMMA 

in chlorobenzene. Ramamurthy (1974) extruded a highly elastic polyacrylamide solution 

[1.49% solution of Separan AP 30 in a 50% by weight water-glycerol mixture] through a 

capillary rheometer. He observed that at higher flow rate the exit stream alternately 

accelerated and decelerated, showing oscillations. Further increasing the flow rates 

made the stream chaotic. Interestingly, at very high flow rates, he observed a second 

stable regime, where the flow field abruptly changed from oscillating flow to a smooth 

steady flow. Cohen and Metzner (1982, 1985) extruded the 0.5% aqueous Separan AP 30 

solution through a capillary and observed diameter dependent flow curves. Cohen and 

Metzner (1985) found a flow rate enhancement with decrease in capillary diameter. 

Similarly Metzner et al. (1979) and Cohen and Metzner (1982, 1985) found a decrease in 

viscosity with decrease in capillary diameter. Cohen and Metzner (1982) and De Vargas 

and Manero (1989) found an enhancement in flow rate over that of predicted by a no-slip 

theory with increasing pressure drop. Similar effects were seen by Chauveteauet (1982), 

Chauveteauet et al. (1984), Omari et al. (1989a, b), Kalashnikov and Vlasov (1978), 

Perez-Gonzalez et al. (1992). At a microscopic level slip has been observed by measuring 
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the velocity profile or the concentration profile near the wall. Muller-Mohnssen et al. 

(1987, 1990) measured velocity profile of aqueous solution of polyacrylamide through a 

capillary up to a distance of 0.15 µm from the wall. They observed a rapid increase in 

velocity from zero (no slip) velocity at wall, which occurred in a low viscosity boundary 

layer of thickness smaller than 0.15 µm. Rofe et al. (1996) also measured the velocity 

profile of a capillary flow of xanthan gum using nuclear magnetic resonance imaging. 

Figure 2.13 shows the velocity profile at various shear rates.  

 

Recently Pluctaveesak et al. (1999) studied the flow behavior of entangled PB solution 

through the pressure controlled capillary rheometer. They observed a sudden increase in 

flow rate at a critical stress. They further observed that with increase in the 

concentration of solution, the critical stress as well as the jump in flow rate increases 

(see figure 2.14). Similar to the observation in melts, they observed the rise in critical 

stress with increase in temperature. The critical stress was seen to be proportional to 

the plateau modulus, which increases with temperature as well as concentration. They 

explain this behavior based on the scaling theory of Brochard and de Gennes (1992), 

which we will discuss in next section. 

 

2.2.2. Drag flow 

 

2.2.2.1. General observations 

 

Most of the commercially used drag flow apparatus are based on the simple shear flow 

geometry shown in figure 2.1. These include cone and plate rheometer, plate and plate 

rheometer, couette rheometer and sliding plate rheometer. Several investigators have 

reported stick-slip instability in drag flow rheometers. The general observation is a 

discontinuous increase in shear rate [Mhetar and Archer, 1998b], gap dependent flow 

curves in the plate and plate rheometers [Hatzikiriakos et al., 1993], and a substantial 

increase in slip length )(b  with increase in shear stress [Mhetar and Archer, 1998a] or 

shear rate [Leger et al., 1997b]. Observations of wall slip in drag flow apparatus are 

affected by various other instabilities such as inertial instabilities, secondary flow and 

meniscus distortion. The different instabilities are discussed in various review papers 

and books (Larson, 1992; Petrie and Denn, 1976; Dealy and Giacomin, 1998; Powell, 

1998). In this section, we will summarize only those observations related to slip in drag 

flow geometry. 
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Figure 2.13 Velocity profile for xanthan solution in 2.6 mm capillary at various shear 
rates. (Reproduced with permission. From Rofe et al., 1996, © 1996, Society of Rheology) 

 

Figure 2.14 The flow curves for PBD solutions (in oligomeric PBD). The figure next to 
the curve shows volume fraction of the high molecular weight PBD. It can be seen that 
as the concentration (that is plateau modulus) increases from left to right the jump in 
shear rate as well as the critical stress for transition also increases. (Reproduced with 
permission. From, Plucktaveesak et al., 1999; © 1999, American Chemical Society) 
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Burton et al. (1983) analyzed polystyrene (PS) melt of various molecular weights using 

the parallel plate geometry. They observed that the torque required for maintaining a 

particular shear rate increases with increase in the gap separation. This effect was 

evident for samples having molecular weights in the entangled region. Two explanations 

were suggested. The first was the possibility of higher orientation of the tethered chains 

leading to severe shear thinning locally in the vicinity of the wall. The other explanation 

concerned the possibility of a stagnant adsorption layer of thickness of the order of 20 

µ m near the wall, which decreased the effective thickness of the gap. Henson and 

Mackay (1995) also observed similar behavior for polystyrene samples on steel and 

titanium surfaces. They argued that the observed effect was due to true slip of the melt 

on the wall (chain sliding along the surface) and observed the molecular weight 

dependence of the slip length to be 1.1Mb ∝ . Laun (1982) used a short-time sandwich 

rheometer (SSR) developed in their laboratory, to measure high shear transient 

properties of the polyethylene melt. He observed that the stick-slip transition (change in 

boundary condition from no slip to slip) occurred over the time scale of the few 

miliseconds. He concluded that for the stick-slip transition to occur not only a specific 

critical stress but also a certain amount of orientation in the melt is needed to be 

achieved. 

 

Hatzikiriakos and Dealy (1991) used their novel sliding plate rheometer (Giacomin et 

al., 1989) to study the flow behavior of high density polyethylene (HDPE) melt on 

various surfaces. On a bare surface they found that slip occurred at a critical shear 

stress of 0.09 MPa. They used two fluoropolymer coatings of which one showed no 

change in critical shear stress, but lowered the slip velocity, while the other lowered the 

critical stress along with enhancing the slip velocity. From the observed results they 

concluded that wall slip was a result of an adhesive failure occurring at the wall-

polymer interface. Hatzikiriakos et al. (1993) studied the effect of surface coating on slip 

behavior of LLDPE melt using the sliding plate rheometer. They observed that the flow 

curves became gap dependent after some critical stress was reached, which could be 

interpreted in terms of slip at the interface. They found that for various organic coatings 

the critical stress at the onset of slip, increased linearly with work of adhesion of the 

wall (coating)-polymer pair. Again, adhesive failure was inferred from the data. 

 

Koran and Dealy (1999a) developed a high pressure sliding plate rheometer, which can 

operate up to the pressure 70 MPa and used the same to study the wall slip behavior of 
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polyisobutelene (Koran and Dealy, 1999b). They found that whenever the slip occurred 

due to disentanglement (cohesive failure) mechanism, the flow curves at different mean 

pressures superposed on each other after applying the necessary pressure correction. 

However, the corrected flow curves did not superpose when slip occurred by adhesive 

failure. They inferred that the various characteristics of slip due to cohesive failure scale 

with respect to pressure in a manner similar to the way in which the viscosity scales 

with pressure. However, this does not happen for the case of slip by adhesive failure. 

They did not observe a discontinuous shear rate jump from no-slip to slip branch at 

ambient as well as higher pressures. They argued that the discontinuous spurt 

phenomena might not be an intrinsic property of the polymer but could arise from 

various complications in the pressure driven flow (Koran and Dealy, 1999b). 

 

Leger and coworkers [Migler et al., 1994; Leger et al., 1996b; 1997a; 1999] developed a 

new optical technique called near field velocimetry (N. F. V.) for the determination of 

velocity at the wall (i.e., up to 70 nm away from the wall). This technique requires the 

polymer molecules to be labeled with an easily photobleachable fluoroscent probe. The 

material is sheared between two surfaces of silica separated by a few microns by moving 

the top plate with a known velocity. They studied various polydimethylsiloxane (PDMS) 

grades of different molecular weights and various silica surfaces that were tailored to 

produce grafted layers of different surface coverage; different grafted layer thickness 

and end grafted surfaces with tethered PDMS chains of different molecular weights. In 

general for all the combinations they found an increase in slip velocity with increase in 

top plate velocity. For low surface coverage of strongly grafted chains, the slip velocity 

became almost comparable to the top plate velocity. They estimated the slip length (b ) 

for various combinations of surfaces and PDMS grades. The slip velocity vs. slip length 

plot showed three distinct flow regimes. In the first regime of low slip velocity, the slip 

length was found to be independent of top plate velocity (or shear rate) and rather small. 

Above a critical velocity in the second regime, slip length increased with a power law 

dependence on slip velocity. At higher slip velocity in the third regime, the slip length 

again became independent of slip velocity and the magnitude of b  was found to be a few 

order of magnitude higher than the molecular dimensions [see figure (2.15)] [Leger et 

al., 1997b]. The value of critical velocity (at which slip length starts increasing) was seen 

to be dependent on the molecular weight of the flowing polymer and the nature of 

surface [Leger et al., 1996; Leger et al., 1999]. 
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They further found that the critical shear rate shows a maximum when plotted with 

respect to surface grafting density. The critical shear rate increases linearly with 

surface grafting density at low values of grafting density and then starts decreasing 

with grafting density at higher values of grafting density. They inferred that the critical 

shear rate increases initially because of the additive effect of friction on each of the 

tethered chains, which act independently at the low surface coverage (the so-called 

“mushroom regime”). At high surface coverage the critical shear rate decreases because 

of collective behavior of the tethered chains [Durliat et al., 1997]. They measured the 

dependence of critical slip velocity on the molecular weight of the bulk chains and that 

of the tethered chains. Their experimental data showed 13.3 −−∗ ∝ NPs MMV , where PM  is 

the molecular weight of the bulk chains and NM  is the molecular weight of the tethered 

polymer [see figure (2.16)]. These observations are in excellent agreement with the 

predictions of the disentanglement model proposed by Brochard and de Gennes (1992). 

We will discuss this model and related work in detail in the second section of the 

literature survey. 

 

Mhetar and Archer (1998a) investigated wall-slip behavior of a concentrated solution of 

narrow molecular weight distribution polystyrene in diethyl phthalate. A plane-couette 

flow apparatus was used in their experiments. On bare silica surface the slip velocity vs. 

shear stress plot showed various power law regimes while slip length vs. shear stress 

plot showed four distinct flow regimes. For low stresses (no-slip), the slip length was 

independent of shear stress. After a critical stress was crossed, the slip length showed a 

power law dependence with respect to the shear stress and increased up to factor of 

three depending on the concentration of the solution. In the third region, the slip length 

again remained constant while in the fourth region the slip length decreased with 

respect to the shear stress [see figure (2.17)]. They also studied slip behavior on an 

Octadecyltrichlorosilane grafted silica surface. This organic surface showed about an 

order of magnitude increase in the slip length at low stresses than that compared with 

the bare silica surface. They proposed a scaling model, which explained the various 

power regimes observed by them. This model was based on the disentanglement 

mechanism and will be discussed in the next section. Mhetar and Archer (1998b, 1998c) 

studied the slip behavior for various polybutadine resins with narrow molecular weight 

distribution in a plain couette apparatus. On a clean silica glass surface, they found a 

discontinuity in the slip velocity at a critical stress when the hydrodynamic boundary 
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Figure 2.15 Slip length b  plotted slip velocity. Three regions of slip length can be 
clearly seen. (Reproduced with permission. From Leger et al., 1996b; © 1996, Elsevier 
Science B. V.) 
 

 

Figure 2.16 Dependence of critical slip velocity on the molecular weight of bulk as well 
as the tethered chain for nearly monodispersed PDMS melt. N  represents number of 
monomers in tethered chain while P  represents number of monomers in bulk chain. 
(Reproduced with permission. From Leger et al., 1996b; © 1996, Elsevier Science B. V.)
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Figure 2.17 The slip length b  is plotted with the wall shear stress. The forth region 
where the slip length decrease with stress can be clearly seen. Further it can be seen 
that the octadecyltrichlorosilane grafted silica surface shows massive surface as 
compared to bare silica at very low shear stress also. (Reproduced with permission. 
From, Mhetar and Archer, 1998a; © 1998, American Chemical Society) 
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condition changed from no-slip to slip. In addition, the critical shear stress was found to 

scale linearly with plateau modulus, 022.0 Nc G≈σ . They argued that this dependence is 

consistent with the scaling model for the disentanglement proposed by them in an 

earlier work [Mhetar and Archer, 1999a]. They used various treated silica surfaces and 

noted the change in slip behavior, depending on the energies as well as roughness of the 

surfaces. 

 

2.3. Theoretical analysis: 

 

The various experimental observations summarized in the previous section show the 

rich behavior of the wall-slip phenomenon. Several mechanisms and models have been 

proposed to describe wall slip. These include inertial instability, shear wave instability, 

entry instability, viscous heating, stress induced migration, constitutive instability, 

disentanglement (cohesive failure) and debonding (adhesive failure). Some of these 

mechanisms are contradictory to each other, while some are probably exclusively 

operative under different experimental conditions. In this section, we will summarize 

some of the important mechanisms relevant to the present work. The details of the other 

mechanisms can be found in various review papers [White, 1973; Petrie and Denn, 1976; 

Boudreaux and Cuculo, 1977; Denn, 1990; Larson, 1992; Agarwal et al., 1994]. The 

different theoretical mechanisms for sharkskin and the controversial issues regarding 

them are not discussed in this chapter in detail because they are out of scope of the work 

presented in this thesis. 

 

2.3.1 Stress induced migration: 

 

The phenomenon of stress induced migration and its implication on apparent wall-slip 

has been investigated extensively [Agarwal et al., 1994; Barnes, 1995]. Metzner et al. 

(1979) predicted slip by considering the diffusion of polymer molecules in the direction of 

stress gradient and by calculating the depletion layer thickness (slip layer thickness) δ. 

Tirrel and Malone (1977) solved the uncoupled diffusion and momentum equation by 

ignoring the dependence of viscosity on concentration. They estimated that the length to 

diameter ratio L/D required to achieve 63 % of fully developed concentration profile was 

5000 and thus concluded that this mechanism cannot predict slip seen in capillaries 

with much lower L/D ratio. Janssen (1980) coupled viscosity and concentration and 

proposed an instability mechanism, which predicted that concentration redistribution, is 
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completed in a relatively short time. Dutta and Mashelkar (1983) extended this analysis 

to channel flow but the predictions showed considerable difference with experimental 

data, which casts doubt on the instability mechanism. Cohen and Metzner (1982) found 

that though it takes a long time for concentration profile to develop fully, depletion near 

the wall is rapid, which was sufficient for slip to occur. Dutta et al. (1987) estimated flow 

length required for stress induced diffusion in capillary flows, and found it to be 

considerably less than the previous analysis done by neglecting viscosity and 

concentration dependence. Recently Mendez-Sanchez et al. (1999) developed a two-fluid 

model, which considers the capillary flow field to be consisting of two concentric regions 

filled with immiscible fluids. The core is the polymeric solution (bulk) while the small 

annular region is the polymer-depleted layer. They consider a power law model with 

different parameters in both the layers. The two fluid model predicts an apparent slip 

and shows that the slip velocity calculated by Mooney [Mooney, 1931] method is 

dependent on flow geometry. 

 

However, the stress induced migration theories suffer from four main drawbacks. 

Firstly, there is a fundamental difficulty in introducing thermodynamic arguments for 

stress induced migration in a flowing (non-equilibrium) system. Secondly, different 

theories predict contradictory trends for migration in capillary flows. [Agarwal et al., 

1994]. Thirdly, there is no convincing experimental evidence for radial migration of 

polymer molecules in pipe flow. Finally, the predicted L/D for slip to occur is still too 

long compared to experimental data. 

 

2.3.2 Constitutive instability 

 

Constitutive instability of the bulk fluid was proposed as another mechanism for wall 

slip. This mechanism is related to a non-monotonic shear stress-shear rate relationship. 

The idea was first proposed by Huseby (1966), who then developed a constitutive 

equation based on Pao’s theory [Pao, 1962; Pao, 1964] for predicting a non-monotonic 

flow curve. He argued that the behavior observed by Bagley et al. (1958) and Tordella 

(1963) is constitutive in nature. He added that the flow rate discontinuity occurs due to 

the non-monotonic shear stress-shear rate behavior of the polymer melt [see figure 

(2.18)]. Because of the convincing predictions of this hypothesis the constitutive (bulk) 

instability idea gained a lot of popularity in later years. 
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Figure 2.18 A non-monotonic flow curve represents a constitutive instability. A 
hysteresis loop under controlled stress mode can be clearly seen. The part of the flow 
curve with negative slope is argued to give rise to pressure and flow rate under rate 
controlled extrusion mode.  
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In 1978, Doi and Edwards (1978a, 1978b, 1978c) proposed a systematic approach 

towards the modeling of the dynamics of entangled polymeric liquids. In their theory, a 

polymer chain was considered to be confined to the tube formed by constraints posed by 

the surrounding molecules. It was proposed that the confined molecule undergoes a 

longitudinal motion along the tube to relax its orientation. This snake-like motion along 

the contour was called the reptation. Although this model was highly successful in 

predicting various experimental observations in the linear viscoelastic region, it 

predicted a maximum in shear stress under steady shear flow. The cause of this non-

monotonic nature was hinted to the lack of effective relaxation modes for fast flows [Doi 

and Edwards, 1979]. The shear stress shows maximum when the shear rate is of the 

order of dτ1 , where dτ  is the reptation time. They argued that the predicted response 

might correspond with the melt fracture behavior seen in polymer melt [Doi and 

Edwards, 1979]. Doi (1980a) extended their earlier model to incorporate the short time 

relaxation modes. Lin (1985) made use of this model and predicted a stress minimum 

following the a stress maximum of the original Doi-Edwards model. He showed that the 

discontinuous jump in the flow rate at a critical stress increases with increase in 

molecular weight and that increasing the polydispersity can eliminate the dip in the 

shear stress-rate plot. He concluded that the melt fracture phenomena were related to 

the bulk instability of linear polymers of high molecular weight and low polydispersity.  

 

McLeish and Ball (1986) extended Doi-Edwards theory by incorporating two distinct 

relaxation mechanisms. These were the reptation time ( dτ ) and the other contour length 

equilibrium time ( eqτ ). The latter involves random fluctuation of Rouse chain. Similar to 

the Lin (1985) model, the McLeish-Ball model predicted a stress maximum followed by a 

stress minimum for polymer of a molecular weight above a threshold value. McLeish 

(1987) extended the earlier model and showed that the stability of the interface between 

the low shear and high shear regions is determined by the normal stresses. Several 

empirical models such as the KBKZ model, the Jonhson-Segalman model, the 

corotational Maxwell model and the Giesekus model also show a non-monotonic flow 

curve for a particular set of fitting parameters [Bird et al., 1987a]. Kolkka et al. (1987) 

and Malkus et al. (1990) predicted a non-monotonic flow curve for the Jonhson-

Segalman and Giesekus models and argued that the experimentally observed 

phenomenon that gives an appearance of slip could in fact be governed solely by 

material properties of the fluid. Deiber and Schowalter (1991) also showed the non-
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monotonic curve for Doi-Edwards, Jonhson-Segalman and corotational Maxwell model. 

They showed that the predictions of these models fit the spurt data of Lim and 

Schowalter (1989) quantitatively. Effects such as a first order transition in flow rate, 

hysteresis and the possibility of pressure drop oscillations can be successfully explained 

with a non-monotonic flow curve [Hunter and Slemrod, 1983; McLeish and Ball, 1986; 

Deiber and Schowalter, 1991].  

 

There are several drawbacks of this hypothesis. Firstly, it fails to show any diameter 

dependence of flow curves, which is a distinct feature of wall-slip observed 

experimentally. Further, bulk instability hypothesis predicts that the interface of shear 

rate discontinuity propagates towards the center as pressure drop increases, which is 

not observed experimentally. Recently Yang et al., (1998b) related the hysteresis seen in 

the spurt flow to the history of the sample being sheared. They argued that since the 

sample from the barrel is constantly being brought into the die, sample under 

investigation cannot visit its history upon the discontinuous transition. Hence, it is not 

possible to observe any hysteresis phenomenon in capillary flow if the mechanism is 

intrinsic (that is constitutive instability). They further argued that the hysteresis would 

only be seen if the phenomenon is interfacial in nature since the chains at the interface 

that are adsorbed on the wall remain in the die and hence can revisit their history. 

 

2.3.3 Adhesive failure (debonding) mechanism: 

 

Adhesive failure at the wall has been proposed to be responsible for slip in melt 

extrusion, since the energy of the wall-polymer interface is known to dramatically 

influence slip behavior [Ramamurthy, 1986; Kalika and Denn, 1987]. The adhesive 

failure hypothesis proposes that polymer molecules adsorbed on the wall undergo a 

sudden desorption above a critical shear stress and hence slip at the wall. Vinogradov et 

al. (1972) argued that this phenomenon occurs due to a transition from a fluid state to a 

highly elastic state at higher shear rates. In the high elastic state polymer melts behave 

similar to a crosslinked polymer, and hence detach from the wall (surface) and slip. They 

further argued that the hysteresis loop in the flow curve is due to transition of the 

material into another physical state, which along with the bulk compression, gives rise 

to pressure and flow rate oscillations [Vinogradov et al. 1972; 1984]. They proposed that 

for such transition to occur the critical shear rate should correspond to the maximum of 

the loss modulus ( maxG ′′ ) [Vinogradov et al., 1977]. Extending Vinogradov et al.’s, (1984) 
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argument Denn (1990) argued that there is a critical stress at which the tethered chain 

suddenly desorps from the surface. These desorped chains at the wall are under a high 

degree of orientation. Since the orientation causes substantial change in free energy, re-

adsorption is unlikely. Re-adsorption can only occur by either diffusion of chains from 

the bulk or after the relaxation of the chains in the vicinity of the wall. Since both these 

processes are slow, the period of stick-slip should be of the order of residence time of the 

melt in the capillary as experimentally observed by Kalika and Denn (1987). 

 

Lau and Schowalter (1986) where the first to propose a kinetic rate model of surface-

bulk exchange of free and bonded macromolecules. They predicted a power law 

dependence of slip velocity and wall shear stress above a critical stress. Stewart (1993) 

modified the above model, which is based on the concept of activation rate theory of 

kinetics of chemical reactions and showed the dependence of slip velocity on normal 

stresses. Hill et al. (1990) showed that the stress dependence of slip velocity could be 

correlated with peel experiments of polymer on metal surface. Hatzikiriakos and 

Kalogerakis (1994) solved a transient network model for special case of polymer/wall 

interface. They suggested that whenever the end-to-end length of a segment that is 

attached to the wall was less than a critical segment length, the slip velocity was zero. 

When such a length crosses critical length, the segment breaks and system obeys an 

empirical slip equation. Hatzikiriakos (1995) modified above model to incorporate 

multiple relaxation modes. 

 

Black and Graham (1996) proposed a semi-empirical model based on unsteady state 

kinetics of wall-polymer interactions. The model takes into account both shear and 

normal stresses and shows that the slip leads to instability in the viscoelastic shear 

flow. Hill (1998) proposed a quasi-chemical model in which polymer chains near the wall 

undergo a dynamic adsorption-desorption process, which is influenced by the flow. He 

argued that even under strong slip condition, the polymer melt-solid interface is always 

under the equilibrium. The model predicted a critical wall shear stress at which large 

slip occurs naturally by sudden desorption of the chains from the wall. Recently Yarin 

and Graham (1998) have proposed a slip model based on the proposition that the 

lifetime of a tethered chain under shear flow is proportional to the excess energy gained 

by the tethered molecule due to the flow. In the case, where the detachment of tethered 

chains precedes disentanglement, they predict that the shear stress-slip velocity 

relationship becomes non-monotonic due to the desorption of tethered chains. They also 
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predict that when slip occurs by debonding, the slip length is independent of 

temperature. They argue that the temperature independence of the slip length may not 

be an appropriate criterion for assigning the slip mechanism to be disentanglement 

driven. Anastasiadis and Hatzikiriakos (1998) measured the adhesive energy for various 

wall-polymer pairs using the pendent drop method. Figure (2.19) shows the critical 

shear stress plotted against adhesive energies calculated using above method. From the 

linear relationship between the adhesive energy and critical shear stress, they argued 

that the adhesive failure was the governing mechanism for slip. 

 

Chain desorption mechanism has an important limitation. The theory is applicable only 

when the wall-polymer melt adhesive energy is low so that the molecule could be 

detached from the wall under flow. Although the experiments of Ramamurthy (1986) 

and Person and Denn (1997) show the effect of die material on critical shear stress, this 

is an indirect evidence of possibility of wall slip by debonding mechanism. However, the 

effect of die material indeed influences the configuration of the tethered molecule and 

thus can change the critical stress for disentanglement as well. Although there is a 

strong debate on whether polymer slips on metal surface by adhesive failure or by 

cohesive failure, it is generally accepted that polymer melt slips on organic surfaces by 

adhesive failure and that of on inorganic surface by cohesive failure [Wang, 1999]. 

 

2.3.3 Cohesive failure (disentanglement) mechanism: 

 

It is generally believed that chains, which are strongly tethered to a high-energy wall, 

disentangle from the bulk chains at a critical stress leading to discontinuous slip by a 

'disentanglement' mechanism. This picture was first conceptualized by Bergam (1976) 

when he argued that “the temporary network of entangled chain molecules yields 

through sudden disentanglement when shear stress is increased to a definite value, thus 

providing a thin layer of low-viscosity polymer where this value first is reached, i. .e. at 

the die periphery of the die entrance, and subsequently over the whole inner surface of 

the die”.  

 

Although the concept of disentanglement was proposed way back in 1976, it couldn’t 

attract much attention until early 90s when the wall slip problem in melts was re-

visited by Brochard and de-Gennes (1992). In a seminal contribution, they developed a 

scaling model for the flow of a polymer melt along the wall on which the chains of the 
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Figure 2.19 The critical shear stress for the onset of slip as a function of work of 
adhesion for different polyolefins on various interfaces. The authors claimed the 
adhesive failure to the governing mechanism for slip from above plot. (Reproduced with 
permission. From Anastasiadis and Hatzikiriakos, 1998; © 1998, Society of Rheology) 
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same polymer are tethered and entangled with the bulk chains. The model was 

developed for the case of low grafting density of tethered chains in the so-called 

'mushroom' region, in which different tethered chains do not overlap with each other. 

They argued that under the influence of flow a tethered polymer chain deforms into a 

‘cigar’ shaped coil and when the diameter of the deforming cylindrical coil of a tethered 

molecule decreases below the entanglement spacing the bulk chains suddenly 

disentangle from the tethered chains causing discontinuous slip. They proposed that 

polymer chains adsorbed on the wall undergo a coil to stretch transition at a critical 

shear stress. Since stretched molecules cannot entangle with the bulk molecules, the 

bulk slips past the stretched chains. They showed that the critical shear stress is given 

by, 

aTkBw Σ=σ∗          (2.2) 

where Σ  is the number of chains per unit area grafted to the wall, a  is the segment 

length or the entanglement distance (average distance between two entanglements). 

Equation (2.2) indicates that the critical wall shear stress ∗σw  increases with 

temperature and grafting density (in mushroom regime). As discussed in the earlier 

section, Wang and Drda (1996a) indeed observed an increase in critical stress with 

temperature [see figure (2.9)]. Recently Pluctaveesak et al. (1999) showed that the 

critical shear stress also increases with increase in concentration of the solution [see 

figure (2.14)]. Since increasing concentration or plateau modulus is equivalent to 

decreasing the segment length a , this behavior is also successfully predicted by the 

model. The Brochard-de Gennes model theoretically predicts three regions of slip as seen 

by Leger et al. (1997b) except in the first region, where the theory predicts small 

decreases in the slip length with slip velocity [see figure (2.16)]. Based on Brochard and 

de Gennes’s (1992) calculations Wang (1999) showed that 5.0~ −Σ M  and since all other 

parameters in equation (2.2) are independent of molecular weight, ∗σw  varies as 5.0−M  

as observed by his group experimentally [Wang and Drda, 1996b]. 

 

Ajdari et al., (1994) extended the Brochard and de Gennes (1992) model for various 

values of the bulk molecular weight. Further, they considered a probe chain (tethered 

chain) as being pulled through a stationary bulk of different molecular weight, which is 

equivalent to considering the bulk flowing past a stationary wall. They consider the non-

uniform (trumpet-like) deformation of the probe chain. They argue that the probe chain 

relaxes its stress similar to that of an arm of a star polymer. The usual reptational 
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diffusion is not possible because of tethering at one end. The various other modes of 

relaxation, which they consider are arm retraction and constraint release. They predict 

that at low slip velocities the friction of the undeformed probe chain is very strong. As 

the slip velocity increases, the probe chain deforms and above a certain threshold stress 

becomes almost velocity independent. They further predict that as the molecular weight 

of the bulk chain increases, the jump in slip velocity at the critical stress, goes on 

increasing. Brochard-Wyart et al. (1996) considered the effect of different grafting 

densities (surface coverage) on the slip phenomena. They showed that at lower grafting 

densities the friction of the mushroom is additive. Above a threshold, since all the bulk 

chains near the wall are trapped, the low velocity friction becomes independent of 

surface coverage. They further showed that the critical slip velocity depends on 

molecular weight of tethered and bulk polymer as, 

13 −−∗ ∝ NPs MMV           (2.3) 

They observed that above a threshold surface coverage, the critical slip velocity 

increases linearly with the surface coverage. Recently Mhetar and Archer (1998a) 

developed a scaling model for the case of mushroom region. They also consider arm 

retraction and constraint release to be the relaxation modes of the tethered chain. They 

considered the conformational changes of the tethered molecule under flow and 

predicted various friction laws in different slip velocity regions, which qualitatively 

agreed with their experimental data. 

 

2.3.4 Phenomenological Models. 

 

Apart from molecular theories, various empirical theories have also been proposed to 

model slip behavior. Shore et al. (1996) proposed a slip model for a capillary flow of 

polymer melt, which incorporates the stick-slip boundary condition, describing the 

kinetics of the first order transition. They solve the momentum balance using Maxwell 

model and the stick-slip boundary condition. The model predicts spurt flow, periodic 

oscillations and complicated spatiotemporal structures, which they argue to be similar 

to sharkskin. Adewale and Levnov (1997) proposed a flow model, which consists of a 

viscoelastic constitutive equation, along with a hardening effect. They propose an 

empirical stick-slip boundary condition and also take into account the compressibility 

effect. They successfully predict various features of slip including onset of critical 

condition for slip, proper description of hysteresis, frequencies of the pressure 

oscillations, etc. Brassur et al. (1998) proposed a slip equation, which shows non-
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monotonic slip velocity-wall shear stress relationship. They argued that 

multivaluedness of the constitutive equation is not required and multivaluedness of 

shear stress-slip velocity relationship can explain the observed spurt phenomena. 

 

Molenaar and Koopmans (1994) proposed an empirical model, which predicts the 

pressure and flow rate oscillations in the stick-slip region. They argued that the 

sawtooth like pressure signal in this region resembles the relaxation oscillations 

phenomenon. They further argued that this phenomenon can be described only in terms 

of second–order differential equation or two coupled first order equations. They 

construct such equations by performing the mass balance across the capillary taking 

into account the compressibility and volume of the polymeric liquid remaining in the 

barrel. They predict the flow rate and pressure drop fluctuations using above system 

and argue that the compressibility of the material is an essential parameter in 

describing the polymer melt from instability. Ranganathan et al. (1999) extended the 

Molenaar and Koopmans (1994) model for applying it to the multipass rheometer (MPR) 

[Mackley et al., 1995]. They generate the pressure vs. flow rate data for HDPE over a 

range of shear rates using MPR. They assumed an empirical relation between pressure 

and flow rate and predicted the flow oscillation data quantitatively. They argue that the 

pressure relaxation upon cessation of flow can be entirely attributed to the 

compressibility of the melt. 

 

2.4 Concluding Remarks 

 

Although wall slip, and in particular, the extrusion instabilities in melt, were first 

observed nearly five decades ago, the various distinguishing features of this complex 

phenomenon are still being explored experimentally and theoretically. Several decades 

of research in this field has indeed brought some consensus regarding the 

understanding of the underlying physics. However, some controversial issues still 

remain unresolved and often contradictory arguments are made by various groups to 

explain the same phenomenon. A critical review of the literature brings forth the 

existing gaps in understanding of the wall-slip phenomenon, which we will attempt to 

highlight in this section. 

 

Adewale and Leonov (1997) have pointed out some flaws in the then available literature. 

They had argued that none of the models predict onset of spurt (drastic change from slip 
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to non-slip boundary condition). In addition, slip models proposed in general are highly 

empirical and operate with many fitting constants. Further, the viscoelastic properties 

of melt in bulk flow are ignored in most of the models. Finally, role of compressibility 

effect in spurt flows is poorly understood. The first two points highlight the need for a 

more molecular approach than the empirical one. While last two point out the need for 

considering the polymeric system as a whole rather than concentrating on individual 

issues. 

 

From the discussion in the theoretical section it is evident that different mechanisms 

such as migration, desorption, constitutive instability and disentanglement exist to 

explain the observed instabilities associated with wall-slip. It is safe to assume that 

polymer migration may be ruled out for the case of concentrated polymer solutions and 

melts because of the problems listed earlier. Further it is clearly observed that over a 

wide range of shear rates, above the inverse of reptation time, the shear stress is nearly 

constant for very highly entangled melts or solutions or increases slowly with shear rate 

for less highly entangled ones [Mead et al., 1998]. Apart from this, some distinct 

drawbacks of constitutive instability theory are discussed earlier. Hence, it is safe to 

assume that the observed instability is indeed interfacial in nature and complex 

dynamics of the tethered chains is responsible for the same. We believe that the 

mechanisms of debonding and disentanglement are both active and occurrence of any of 

them depends on the nature of polymer-wall interface. This is an important premise for 

the work presented in this thesis. 

 

Although there is some consensus on the molecular origin of the mechanism, (that is 

interfacial) there is still some confusion as to whether the polymer slips on metal surface 

by debonding or disentanglement. The physical manifestation of slip shows up in terms 

of experimental observations of existence of a critical wall-shear stress, flow oscillations, 

extrudate distortion, hysteresis and temperature dependence of critical wall-shear 

stress. However, by merely observing a given manifestation in a given set of 

experimental data, it has not been possible so far to a priori assign a mechanism, be it 

debonding or disentanglement. Indeed the same experimental data on slip for the same 

polymer have been interpreted in terms of both disentanglement as well as debonding. 

For example, the experimental data on wall slip for common systems such as 

polyethylene in steel capillaries has been described by theoretical arguments of 

debonding [Hill, 1998; Yarin and Graham, 1998] as well as disentanglement [Wang and 
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Drda, 1997b]. It is important to recognize that the physical basis and the mathematical 

frameworks for debonding and disentanglement are completely different. It is generally 

believed that the magnitude of the energy of adhesion between the wall and the 

adsorbed polymer chains will determine the governing mechanism of slip. We believe 

that a unified model, which can predict slip by both debonding and disentanglement 

mechanisms and which can distinguish between the two mechanisms on basis of the 

relative role of adhesive energy will be helpful in ascribing the correct mechanism to 

given experimental slip data. In this work, we develop a unified slip model to address 

this issue. 

 

As discussed earlier, Wang and Drda (1996a) measured the temperature dependence of 

critical shear stress while extruding a linear polyethylene through steel die. They 

observed a positive dependence of critical stress on temperature. Based on the Brochard 

and de Gennes (1992) model they argued that the mechanism of stick-slip was 

disentanglement. Wang and Drda (1997b) argued that if the mechanism were debonding 

then, the critical stress should show inverse temperature dependence. To the best of our 

knowledge, no study has reported on the temperature dependence of critical shear stress 

for slip occurring by debonding. In this work, we plan to investigate the temperature 

dependence of critical shear stress for a surface with organic coating like fluoropolymer 

coating, on which the polyethylene is known to show the stick-slip transition by 

debonding mechanism. 

 

As seen, various molecular interpretations provided until now are at scaling level. These 

scaling models provide the relationship between the slip velocity and the applied stress 

by considering various relaxation modes of the grafted chain like arm retraction and 

constraint release. Although the scaling models provide very handy relationship 

between various controlling parameters, they fail to quantitatively predict the slip data. 

We believe that a constitutive equation based on the molecular theories would be useful 

in predicting the data quantitatively. Since the tube theories have been known to be the 

most successful molecular theories for entangled polymeric liquids, we feel that the tube 

model will provide a better framework to model the dynamics of the tethered molecules. 

Over a last two decade since the original tube model was proposed, several modifications 

have been suggested to improve the predictions of the tube model to quantitatively 

match the experimental data. Various relaxation mechanisms other than reptation have 

been proposed so as to model the dynamics of entangled liquids under fast flow 
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conditions. Some of these recently identified relaxation mechanisms are also active for 

the case of grafted chain. In this work, we provide further molecular insights by using 

one of the most refined tube models, into the complex phenomenon of wall slip with an 

emphasis on modeling towards a more quantitative prediction, something that has been 

lacking so far. 



CHAPTER 3 

 

A TRANSIENT NETWORK DISENTANGLEMENT MODEL 

 

 

 

3.1 Introduction: 

 

In this chapter we present a disentanglement model for wall slip. This model is based on 

the transient network theory, which provides a suitable physical description for 

deformation and stresses in entangled polymeric liquids such as concentrated solutions 

and melts. This chapter is organized as follows. As background information we present 

the basic outline of the transient network theory along with the various details relevant 

to the current problem. This is followed by the development of the disentanglement 

model. The main predictions of the disentanglement model are presented followed by 

discussions and conclusions. 

 

3.2 The transient network (TN) theory 

 

An entangled polymeric liquid can be considered as a liquefied rubber, in which the 

permanent chemical junctions of a covalently crosslinked rubber are replaced by the 

entanglements between chains [Bird et al., 1987b]. The resistance to flow principally 

comes from the frictional polymer-polymer interactions at the entanglements. Green and 

Tobolsky (1946) first proposed a molecular theory for polymer melt, which was based on 

rubber elasticity theory. In this model the chemically crosslinked permanent network in 

the theory of rubber elasticity was replaced by a physically crosslinked ‘transient’ 

network. The physical crosslinks or the entanglements were allowed to break and 

reform within an average lifetime of a junction. Green and Tobolsky (1946) considered 

the rate of disentanglement to be equal to the rate of re-entanglement. This model 

predicted a constitutive equation that was identical to the upper convective Maxwell 

(UCM) model [Larson, 1988]. Several modifications have been proposed to the Green-

Tobolsky's network model so as to predict the various observed rheological behaviors of 

entangled polymeric fluids. In this section we will briefly summarize the transient 

network theory and its various modifications, which are relevant to the problem at 
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hand. A more detailed discussion on the TN theory can be found elsewhere [Bird et al., 

1987b; Larson, 1988]. 

 

In transient network models, the contribution to stress is considered to be localized at 

entanglement points called junctions. A segment, which joins two junction points, is 

assumed to be a Gaussian spring. If the number of segments of type i and length Q that 

are created per unit time per unit volume at time t  are denoted by ),( tQLi , and the 

probability that the segments are destroyed is ),(1 tQi
−λ , then the diffusion equation 

which determines the distribution function of such segments is given by (Bird et al., 

1987b), 

),( tQ
(Q,t)LQ

Qt iN

iN
iNiN

iN

λ
ψ

+






















ψ



 ⋅κ⋅

∂
∂

−=
∂
ψ∂

≈
-

~
~

     (3.1) 

where 
~
Q  is the segment vector and T

~~
)(ê υ⋅∇=

≈
 is the deformation gradient tensor. 

~
iN QdtQ ),(

~
Ψ  represents the number of segments per unit volume at time t  that have 

end-to-end vector in the range of 
~

dQ  at 
~
Q . In the transient network model the total 

stress is assumed to be the sum of contributions from individual segments. The 

expression for the total stress is given by  
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where H  is a spring constant.  

 

The constitutive equation obtained from equations (3.1) and (3.2) is given by 
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Here 
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σ  is the stress tensor, eq
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σi  is the upper convected derivative of the stress tensor. The modulus iG0  is 
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Next, the creation and loss functions can be defined as  
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where )(tf  and )(tg  are dimensionless rates of creation and loss of entanglements. 

 

Under steady state, the dimensionless number of segments (normalized by the 

equilibrium number of segments), the shear viscosity and the first normal stress 

coefficient can be obtained as [Ahn and Osaki, 1995], 
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In the original Green-Tobolsky or Lodge’s network models, gf =  so that the number of 

entanglements remain unchanged and the fluid had a constant viscosity irrespective of 

the magnitude and rate of deformation. Thus, this is a linear viscoelastic constitutive 

equation. Several modifications to the original network theory have been proposed in 

order to account for the observed non-linear visco-elastic behavior such as shear 

thinning. It can be seen from equation (3.8) that with increasing shear rate if f  

increases more rapidly than 2g  then the model predicts shear thickening, otherwise it 

predicts shear-thinning. Interestingly, if f  increases more rapidly than g  as a function 

of shear rate, then the model predicts an increasing number of entanglements with 

shear rate, however, it may not predict shear thickening unless f  increases rapidly 

than 2g .  

 

The different modifications to the transient network model essentially use different 

physical arguments for the creation and loss of network segments. Several forms of f  

and g  have been proposed in literature and are reviewed by Ahn and Osaki (1995). The 

modified network models can be classified into basically two types: phenomenological 

and molecular, depending on the manner in which the segment creation and loss 

functions are related to either macroscopic or molecular deformation parameters, 
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respectively. In a molecular approach the segment loss rate is typically considered 

constant while the creation rate is related to the end-to-end distance Q  of Gaussian 

network segments [Tanaka and Edwards, 1992]. The change in the end-to-end distance 

is usually related to the macroscopic deformation by the affine deformation assumption. 

Vrahopoulou and McHugh (1987) proposed that the creation rate is proportional to 

))((exp Tkru B− , where )(ru  is free energy of non-gaussian chain and r  is the end-to-

end distance. Tanaka and Edwards (1992) and Wang (1992) argued that the rate of 

creation is proportional to the dangling chain density. Marrucci et al. (1993) postulated 

that the chain tension due to large deformation causes chains to break off from junctions 

more frequently than in absence of flow. The constitutive equations that arise from such 

molecular arguments are mathematically complex and often require sophisticated 

numerical solution procedures [Petruccione and Biller, 1988]. Indeed, the Doi-Edwards 

tube model [Doi and Edwards, 1978a, b, c, 1979] was also developed from the picture of 

a transient network. The modifications of the tube models provide even more complex 

constitutive equations. These will be discussed later in chapter 6 in greater detail. 

 

Phenomenological network models on the other hand, result in much simpler 

constitutive equations. Indeed closed form solutions can often be obtained from such 

models. In 1972, Carreau proposed a model in which the loss rate and the creation rate 

of the segments are dependent on second invariant of rate of deformation tensor. This 

Carreau B model has in all six fitting parameters of which three are determined from 

the linear viscoelastic measurements, while the other three are determined from the 

non-linear behavior. This model shows a very good fit to the various experimental data 

in both linear and non-linear regimes [Bird et al., 1977]. Phan-Thien and Tanner (1977) 

proposed a similar modification to the model and assumed the rate of creation and loss 

of segment to be proportional to mean squared segment vector 2Q . This model 

requires two parameters and two spectrums to be fitted. The two spectrums are fitted to 

linear viscoelastic data while the two parameters are fitted to non-linear material 

functions. Ahn and Osaki (1994) proposed a particularly simple network model using 

purely empirical forms of the rates of formation and loss of segments. In their model f  

and g  are functions of the macroscopic variable, effective strain, which is defined as 

122211 2)( σσ−σ=γ e . The use of this particular measure of macroscopic deformation 

enables derivation of closed form solutions to viscometric flows. In fact, most of the 

observed rheological responses of entangled fluids can be predicted by the Ahn-Osaki 
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model through proper choice of model parameters. We develop the disentanglement 

model in this chapter starting from the Ahn-Osaki model. 

 

3.3 Model development 

 

3.3.1 Polymer chains near wall 

 

We begin by outlining the framework of the disentanglement model based on the 

transient network concept. Consider the physical picture near the wall as depicted in 

the schematic shown in figure (3.1). Bulk polymer chains that are in the close vicinity to 

the wall adsorb on the wall strongly or weakly depending on the polymer-wall 

interactions. The segments of adsorbed molecules entangle with segments of the bulk 

molecules to form a transient network. The transient network has two types of 

junctions: the entanglements between adsorbed and bulk chains, and the adsorption 

points on the wall. The segments can break away from the network by either 

disentangling from the bulk chains or by desorbing (debonding) from the wall. In either 

case, the bulk of the fluid will then slip on the wall with a massive velocity. For 

simplicity of the analysis, it is assumed that a polymer molecule attaches to the wall at 

only a single site. If wP  are the number of chains per unit area attached to the wall, P  

are number of bulk polymer molecules per unit area coming in contact with the bare 

wall and w  are number of bare sites per unit area on the wall on which a molecule can 

be bonded, then the reaction of adsorption-desorption can be written as, 

wPP

a

d

w

k

k

+
←
→

         (3.10) 

where, ak  and dk  are kinetic rate constants for adsorption and desorption reaction, 

respectively. From equation (3.10), 

[ ] [ ][ ] [ ]wda
w PkwPk

dt

Pd
−=         (3.11) 

Since the kinetics of adsorption and desorption are extremely fast compared to the 

rheological time scale, the reaction (3.10) can be considered to be under quasi 

equilibrium [Hill, 1998]. Hence we can define the fraction of adsorbed sites as, 

[ ]
[ ]

[ ]
[ ] da

a

t

w

kPk

Pk

w

P

+
==φ          (3.12) 



 

Figure 3.1. Schematic representing flow induced disentanglement and debonding of polymer molecules attached to the wall. In case of 
disentanglement, the flow domain can be divided into two regions as shown in the figure. 
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where φ  is fraction of surface coverage. tw  are total number of sites per unit area to 

which polymer molecules can attach ( wPw wt += ). [ ]P  can be assumed to be constant 

because it is a very high value. It is assumed in this chapter that the adsorbed molecules 

do not detach from the wall ( =φ Constant). More specifically, we consider the case where 

the polymer is strongly adsorbed on the wall so as the occupy most of the sites on the 

wall, i.e., 1=φ . 

 

Consider the case of polymer molecules strongly adsorbed on the wall, say by hydrogen 

bonding. Flow induced desorption would require that the tension in the segment should 

exceed the adsorption force. The tension in the freely joined segment can be estimated as 

a

Tk

Na

Tk
F B

e

B
T ′′ 10

~~  [Brochard and de Gennes, 1992]. Here, eN  is the entanglement 

length, a′  is monomeric length scale. The force of adsorption can be estimated to be 

a

E
~F H

H ′
, where the energy of hydrogen bonding T)~O(kE BH . Thus HT FF <<  and it is 

expected that chain stretching by flow would not significantly affect the adsorption-

desorption dynamics. The above discussion also suggests that the 'side reaction' of 

desorption of disentangled chains in figure 1 can be neglected. This is because strongly 

adsorbed chains (e.g. PDMS on mica) have to be stretched much beyond the 

disentangled state to be desorbed by flow. Therefore, it is assumed in this chapter that 

the entanglement-disentanglement process governs the network dynamics.  

 

For the case of weak adsorption, for which T)O(kE BH << , the flow can significantly 

affect the adsorption-desorption kinetics, making it the governing mechanism for 

network dynamics. We will consider the case of debonding along with disentanglement 

in the next chapter. 

 

3.3.2 Transient network model for capillary flow 

 

As discussed in chapter 2, most of the experimental evidence for wall slip exists for 

pressure driven capillary flows. We will now start solving the network model through 

the capillary. We will therefore solve the network model for flow through capillary. 

However, our model leads to identical results for wall slip in the case of simple shear 

(drag) flows as demonstrated in Appendix I For sake of simplicity we begin by assuming 
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that the network segments are of only one type ( i =1) and henceforth drop the subscript 

i . Inserting equation (3.5) and (3.6) into equation (3.3) and non-dimensionalising it by 

following parameters for capillary flow, 
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we get, 

( )
≈

∗

≈≈

∇
∗∗

≈
−−γ−=+ IgfWeWeg &óó        (3.16) 

where, superscript ∗  indicates non-dimensionalised variables, λ  is the relaxation time, 

R  is the radius of the pipe, mυ  is the maximum velocity and 
R

mWe
λυ

=  is the 

Weissenberg number.  

 

We now consider fully developed flow through a capillary for which, )( zυυ=υ , 

)(rzz υ=υ , ( )z, rPP = , )(óó r
≈≈

= . The equation of motion can be written as,  
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         (3.18) 

It can be easily shown that the transient network model predicts θθσ=σ rr  (refer 

equation (3.21) and (3.22)). Thus, from equation (3.17) and (3.18) 

G(z)F(r)P(r,z) +=          (3.19) 

and hence from equation (3.18) 

z

P

2

r
rz ∂

∂
−=σ           (3.20) 

For capillary flow, the constitutive equation (equation 3.16) can be written in component 

form as, 

gfg rr +−=σ*          (3.21) 

gfg +−=σθθ
*          (3.22) 
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       (3.24) 
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Equation (3.20) together with equations (3.21) to (3.24) describes the flow of an 

entangled polymeric liquid through a capillary in terms of a transient network model 

framework. 

 

The solution of this set of equations requires a description of the functions f and g . 

Ahn and Osaki (1994, 1995) proposed that the creation and loss rates could be defined 

as functions of the effective strain  

 

)exp( eaf γ=           (3.25) 

)exp( ebg γ=           (3.26) 

where, 
12

2211

2σ
σ−σ

=γ e         (3.27) 

 

Deeper mechanistic considerations of the problem at hand suggest the following 

insights, 

• Adsorption of chains on the wall must restrict their relaxation dynamics and hence 

make them more susceptible to being deformed/stretched as compared to chains in the 

bulk. Hence the dynamics of entanglement and disentanglement near the wall ought to 

be different than those in the bulk. In terms of the network model, this means that the 

f  and g  increase with deformation earlier than those at the wall. 

• Consequently, the capillary can be divided into two domains, namely, the bulk and 

the wall. The wall domain can be assumed to be an annulus of diameter equal to that of 

the pipe and having a thickness of the order of the radius of gyration of the molecule 

[see figure (3.1)]. The wall domain is significant as long as the molecules are attached to 

the wall. 

• At low rates of deformation the segment, creation and loss rates are nearly equal to 

their equilibrium values (i.e., 1== gf ). Above a certain rate of deformation the 

adsorbed chains being to deform and orient. This is expected to increase the rate of loss 

of entanglements. At still higher deformation rates, the adsorbed chains might begin to 

experience stretch; upon which the rate of re-entanglement would increase above its 

equilibrium value due an additional spring-like retraction of the chains. At still higher 

deformation rates the rates of creation and loss of entanglements are expected to remain 

constant. 
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• Desorption of the molecules from the wall does not happen even at nearly complete 

disentanglement. As discussed earlier, this will hold for strongly adsorbed molecules. 

 

The above arguments suggest that the formation and loss rates should have an 'S' 

shaped functional nature with respect to the effective strain. We propose a new 

empirical function for creation and loss rates,  
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        (3.29) 

where ∫ ξξ−
π

=
x

dxerf
0

2 )exp(
2

)( . The model parameters are gfgf F,F θθ ,, . The 

parameters gf αα ,  are fitted such that 1== gf , at 0=γe . 

 

The main difference between the above functions and Ahn-Osaki’s exponential functions 

is that the creation and loss rates become asymptotically constant at high strains, at 

which the molecules might be sufficiently stretched. This behavior predicts a plateau at 

infinite shear rate, which is not possible with the Ahn-Osaki’s exponential function. As 

mentioned earlier the creation and loss rate functions proposed here are purely 

empirical in nature. We proceed now to solve the capillary flow problem by using these 

functional forms and show that the wall slip can be successfully predicted.  

 

3.4 Predictions 

 

3.4.1 Flow curves: 

 

The five simultaneous equations [equation (3.20) to equation (3.24)], i.e., the equation of 

motion and the constitutive equation can be elegantly simplified to give one main 

equation in terms of the effective strain as follows, 

w
*

rze r
z

P

2

r

g

f
G σ=σ=

∂
∂

−=γ0        (3.30) 

(The derivation to obtain this equation is given in appendix I) where f  and g  are 

explicit functions of eγ  as discussed in the previous section. This is the main equation of 
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the model. It describes the relation between the shear stress and the strain on a flowing 

fluid element. As shown in appendix I, this equation holds not only for capillary flow but 

can be derived for other simple shear flows such as in cone & plate or couette 

geometries. 

 

Te solution procedure for equation (3.30) is as follows. The capillary is divided into two 

domains, namely the annular wall region (  - δ= Rr to Rr = ) of thickness m10 8−=δ to 

account for attached chains and the remaining bulk region (  0=r to δ= - Rr ). For the 

numerical solution of equation (3.30) the bulk region is divided into 100 nodes and the 

wall annular region divided into 4 nodes. Equation (3.30) is solved for obtaining the 

strain, eγ , at each radial position with bisection method. In some calculations, the 

capillary is not divided into two domains but its cross section is directly divided into 100 

nodes from 0=r  to Rr = . The velocity at each radial position, r , is calculated from the 

effective strain by the following equation using a simple finite difference scheme. 

WeR

g

r
ez γ

=
∂
υ∂ *

          (3.31) 

Figure (3.2) shows the prediction of equation (3.30) for a typical set of model parameters. 

The shear stress-strain curve for the wall region can be seen along with creation and 

loss functions plotted with strain. The stress-strain curve for the wall region shows a 

non-monotonic behavior. As the effective strain increases, the stress increases first then 

goes through a maximum, followed by a minimum, after which it once again increases 

continuously. A plot of stress-shear rate also follows the same behavior, but is shifted on 

the abscissa. To solve the set of equations (3.30) and (3.31), using the f  and g  

functions proposed in this chapter equation (2.28) and (3.29), six model parameters are 

required to be fitted. Out of which gfgf F,F θθ ,,  are required to obtain f  and g  

functions while other parameters are λ  and 0G . The 0G  is equivalent to the plateau 

modulus and other five parameters for bulk are obtained by fitting steady shear data. If 

the interfacial region is taken into account then an independent set of gfgf F,F θθ ,,  in 

the interfacial region is required to be described. We have taken λ  and 0G  in the 

interfacial to be same as that in the bulk region. 

 

The origin of the non-monotonic stress-strain curve lies in the comparative rates of 

entanglement and disentanglement of chains at the wall. Figure (3.2) also shows the 
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functions f  and g  which are described by equation (3.28) and equation (3.29). For low 

effective strain (low shear rates) the f  and g  values are small and close to their 

equilibrium value of unity. Thus, in the limit of zero strain the stress increases linearly 

with strain. With increasing effective strain (or shear rates) the strongly adsorbed 

chains at the wall stretch more easily than those in the flowing bulk. The rate of 

disentanglement increases rapidly once a certain effective strain is reached until the 

chains almost completely disentangle. This gives rise to a decrease in stress. Hence the 

flow curve shows a maximum. At higher shear rates the rate of entanglement also 

increases in the stretched chains, as more sites are available for possible junction 

formation. The rates of entanglement and disentanglement balance each other to 

produce a state in which the number of entanglement points is very small and the 

chains are stretched. This is similar to the ‘marginal state’ proposed by Brochard and de 

Gennes (1992). The rapid rise in disentanglement rate causes the stress to decrease 

first, which gives rise to the maximum in stress. At still higher strains the ratio gf /  

remains constant because of which the stress increases again roughly proportional to eγ . 

This gives rise to a minimum in the flow curve. 

 

The effect of disentanglement of adsorbed chains can be seen directly by recognizing 

that the left side of equation (3.30). This equation can be written as nG
g

fG
e

e γ=
γ

0
0 , 

where n  is the normalized number of steady state network junctions. Thus, the Y-axis 

of figure (3.2) can be written as nG eγ0 . This means that as the stress decreases after the 

maximum, it is n  which decreases (i.e. disentanglement of chains). At larger strain, 

when n  remains constant the increase in stress corresponds to an increase in eγ . 

 

For the interfacial region, equation (3.30) can also be written as  

e
e

rz nkTn
g

fG
γφ=

γ
=σ )( 0

0         (3.32) 

where 0n  is the equilibrium number of entanglements of the adsorbed chains with the 

bulk chains per unit volume under no flow condition. nn0  are the total number of 

entanglements under full surface coverage ( φ =1). Since the adsorption-desorption time 

scale is much smaller compared to the rheological time scale [Hill, 1998], 0nφ  also 
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Figure 3.2. Prediction of equation (3.30) in annular (wall) region and in the bulk. Non-monotonic curve in the wall region shows 
hysteresis. Also, behavior of f  and g  functions proposed in this paper [equation (3.28) and (3.29)] are plotted on right hand side. These 
f  and g  functions are used to plot the stress-strain curve in the wall region. 
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denote the “equilibrium” number of entanglements under flow conditions. Equation 

(3.32) shows that the wall shear stress is directly proportional to the temperature and to 

the surface coverage φ . Both of these predictions are in qualitative agreement with the 

prediction of Brochard and de Gennes (1992). 

 

Non-monotonic stress/shear rate curves have been predicted by other models as 

discussed in chapter two. For example, the Doi-Edwards model predicts a maximum in 

stress. A modification of this model by McLeish and Ball [1986, 1987] predicts both a 

stress maximum and a stress minimum. They found that above a critical shear stress 

there would be a radial discontinuity in the shear rate and they assumed that the stable 

interface would exist at the minimum possible radius from the center. Similarly, the 

Johnson-Segalman model also predicts a stress maximum and minimum [Kolakka et al., 

1988; Malkus et al., 1990]. However, a fundamental difference between these predictions 

and our work is that the non-monotonic nature of the stress-strain (or strain rate) 

curves shown in figure (3.2) is due to disentanglement of chains at the wall and not in 

the bulk. In fact, our model may predict a similar curve for bulk chains at much higher 

stresses, the implications of which will be discussed later in this chapter. 

 

Figure (3.2) can be used to predict the flow curve for the net flow through the capillary, 

i.e., the wall shear stress ( wσ ) versus the apparent shear rate 







π
=γ

3

4

R

Q
a& . Here the 

flow rate can be obtained by integrating equation (3.31), which shows that an increase 

in strain, eγ , is analogous to an increase in flow rate, Q . The region of the non-

monotonic stress-strain curve in figure (3.2) in which the stress decreases with strain is 

a domain of unstable flow. Thus, if capillary flow experiments are carried out under 

controlled flow rate conditions, it is possible to travel through the unstable region. In 

such a case the model would, in principle, provide a constitutive equation for predicting 

pressure drop oscillations. However, if the experiments are carried out under controlled 

pressure drop conditions, then the model predicts a sudden jump in flow rate at a 

critical wall shear stress. Moreover, a hysteresis effect is also predicted. With increasing 

shear stress a ‘top-jump’ is possible, while with decreasing shear stress the system 

would probably show a ‘bottom-jump’ as indicated in figure (3.2). 

 

It is important to note that in general, a multi-valued flow curve does not necessarily 

predict all slip-characteristics such as flow enhancement and diameter dependence. For 



 68

example, a non-monotonic flow curve for the entire bulk flow does not predict diameter 

dependence (see discussions of chapter 2). However, a non-monotonic flow curve near a 

wall region is sufficient for predicting flow enhancement and diameter dependence of 

the net flow curve. We will discuss this point in more detail in next subsection. In other 

words, a difference in the dynamics of entanglement and disentanglement between bulk 

chains and wall chains is the fundamental origin of slip behavior. 

 

Finally, it is interesting to note that the stress-strain plot of figure (3.2) is qualitatively 

very similar to those observed in mechanical testing of solid polymers. In the limit of 

zero strain, the stress is linearly proportional to strain similar to figure (3.2). The “yield” 

point in figure (3.2) occurs when the wall chains disentangle and stretch. At higher 

strains any further stretching of the disentangled chains requires increasing force, 

which is similar to the “strain-hardening” phenomenon. 

 

3.4.2 Polymer solutions: 

 

We begin quantitative comparisons between model and experiments by analyzing 

experimental data on polymer solutions. As an example, we consider the data of Cohen 

and Metzner (1982) for a 0.5 % aqueous hydrolyzed polyacrylamide (PAm) solution. The 

molecular weight of PAm is in the range of 0.8 to 4.5 million [Cohen, 1981]. The critical 

concentration ∗C  can be calculated following Kulicke et al. (1982), 

MRC g 




×=

−−∗ 2/3225108.1         (3.33) 

Substituting the values of the radius of gyration as 
6

10 2/110
2 M

Rg

−

=  in meters 

[Brandrup and Immergut, 1989], ∗C  is found to be between 0.13% to 0.3%, which 

indicates that ∗> CC . That means the solution is sufficiently entangled to allow the 

modeling by a transient network formulation. 

 

We will first consider the original Ahn and Osaki model [equation (3.25) and (3.26)] to 

solve the fully developed capillary flow problem. The Ahn Osaki model consists of four 

parameters namely, a , b , relaxation time λ , and modulus 0G . In order to obtain 

realistic values of these parameters we have fitted the Ahn-Osaki model to 

viscosity/shear rate data of Cohen (1981) for the PAm solution. Figure (3.3) shows the fit  
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Figure 3.3. Fit of different models to viscosity-shear rate data of Cohen (1981). (1) 
Model parameters for Transient network model using Ahn-Osaki’s functions are 

0.128=0G , 0.6=λ , 0.12215=a  and 0.1=b , (2) Model parameters for Transient 

network model using equations 3.28 and 3.29 are 0.37=0G , 25.2=λ , 50000=fF , 

3000=gF , .20=θ f  and .20=θg  (3) For power law model 453.0=n  and 977.0=m . 
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Figure 3.4. Velocity profiles predicted using model parameters for Ahn-Osaki’s 
functions as given in figure (3.3). Power law model profile used in figure (3.3). In 
addition, Newtonian profile is also seen.  
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of a power law model ( n ~0.453) and that of the transient network model with Ahn and 

Osaki's f  and g  functions. 

 

Figure (3.4) shows the predicted non-dimensional velocity profile for pipe flow using the 

Ahn-Osaki transient network model, the power law model and a Newtonian model at 

different pressure drops. As expected, the velocity profile predicted by the Newtonian 

and the power law models is pressure drop independent, whereas that predicted by the 

network model is pressure drop dependent. It can be seen from figure (3.4) that the 

velocity gradient at the wall for the network model increases with pressure drop. 

 

Using the same model parameters, the volumetric flow rate Q  is plotted against wall 

shear stress wσ  in figure (3.5). The prediction of the transient network model with Ahn 

and Osaki's f  and g  functions lie above the power law prediction, and are in better 

agreement with the experimental data. Thus, the network model shows an apparent 

flow enhancement at the same pressure drop over the power law model. This might be 

interpreted as slip-like behavior. 

 

Although the above analysis predicts a pressure-drop dependence of the velocity profile, 

it fails to predict radius dependence of flow curves. This is easily seen by the following 

simple analysis. Equation (3.31) can be integrated to give, 
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It is clear that the apparent shear rate 




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
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Q
a&  is independent of R . 

 

The above analysis indicates that if the dynamics of entanglement and disentanglement 

are same in the bulk and near the wall, the transient network model (or any other 

model) will fail to show a radius dependence of the flow curves. Also, though the model 

predicts an increasing velocity gradient with increasing pressure drop, it still does not 

show a non-zero 'slip' velocity very close to the wall as observed experimentally [Muller-

Mohnssen et al., 1987].  

 

The above discussion suggests that the behavior of the network at the wall might be 

different from that in the bulk. We therefore conceptualize the capillary as being divided 
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Figure 3.5. Prediction of flow rate vs. wall shear stress for power law model and Transient network model using Ahn-Osaki’s functions. 
Model parameters are same as given in figure (3.3). Points represent experimental data [Cohen and Metzner, 1982]. 
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into two domains, namely, an annular wall region having a thickness of the order of 

radius of gyration of the polymer molecule ( m810~ − ), and the remaining space (bulk). It 

should be noted here that the significance of the annular region is only to take into 

account different dynamics of attached molecules from that of the bulk. As discussed in 

the theoretical section we assume that the dynamics of entanglement and 

disentanglement are given by equation (3.28) and (3.29) and that the model parameters 

gfgf è,è,F,F , the relaxation time λ  and the modulus 0G  have different values in the 

bulk and in the wall region. In the present calculations, we have kept the values of λ  

and 0G  to be same in both the domains. Equations (3.30) and (3.31) are solved in the 

two regions with different model parameters while maintaining the continuity of the 

velocity and the shear stress at the boundary of the two domains. Figure (3.3) shows the 

fit of the transient network model using creation and loss functions given by equation 

(3.28) and (3.29) to the viscosity/shear rate data of Cohen (1981) for the PAm solution. 

We use the parameters obtained by this fit for the bulk domain during capillary flow. 

The reason for this is that the stress levels in cone-plate viscometric data are well below 

the critical stress, so that the dynamics of chains in the bulk and in the wall regions are 

the same. Therefore, although, in principle, the bulk and wall regions can exist for a 

cone-plate geometry, they are indistinguishable under the given experimental 

conditions. 

 

Figure (3.6) shows model calculations of apparent shear rate 







π
=γ

3

4

R

Q
a&  vs. wall shear 

stress ( wó ) compared with the experimental data of PAm [Cohen, 1981]. The 

parameters for the bulk domain are obtained as discussed above. The parameters in the 

annular wall domain are obtained by fitting to the experimental points for D=0.109 cm. 

Using the bulk and annular region parameters so obtained, the flow curves for other 

diameters are predicted and it can be seen that those are in good agreement with the 

experimental data. 

 

Thus, the network model now shows diameter-dependent flow curves because of the 

consideration of two different domains. This can be easily shown by the following 

analysis. The total flow rate can be written as sum of contributions from the velocity in 

the bulk region and in the annular region. 
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Figure 3.6. Wall shear stress vs. apparent shear rate plot for transient network model using equation 3.28 and 3.29. Points represent 
experimental data [Cohen and Metzner, 1982] and line represents model prediction. Model parameters used in bulk are same as given in 
figure (3.3). Wall parameters 50000=fF , 38000=gF , .20=θ f  and 5.15=θ g  are used to fit flow curve for D=0.109 cm. Flow curves for 

other diameters are predicted. 
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b

r

b Rrr υπ+υ−υπ= ∫
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2d
0

)(2TQ        (3.35) 

where bυ  is velocity at the boundary of the bulk and wall domain (slip velocity) and δ  is 

the thickness of annulus. From equation (3.35), the apparent wall shear rate can be 

calculated as, 
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b
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where ∫ υ−υπ=
r

b rr
0

)(2 dBQ  and 
R

bυ
 can be calculated as, 
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b d
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         (3.37) 

At constant wall shear stress the integrand in equation (3.37) is a function of ∗r  only. 

Hence as R  increases, 
R

δ
−1  increases and tends to unity at large R . Consequently, the 

change in 
R

bυ
 decreases and tends to zero. Thus the model predicts significant diameter 

dependence for small diameter capillaries, but as the diameter increases the flow curves 

gradually become diameter-independent. 

 

Flow enhancement and diameter dependence are only indirect evidences for slip. 

Comparison of the predicted velocity profiles with experimentally measured velocity 

profiles should provide a better test for the model. As an example of direct slip 

measurement for polymer solution, we compare our model calculations with the 

experimental data of Muller-Mohnssen et al. (1987) on the velocity profile of a 0.25 % aq. 

PAm solution. The ∗C  for this solution was found out to be 0.078 % using a similar 

estimation to that discussed earlier. The model parameters for bulk flow are obtained by 

fitting viscosity-shear rate data as shown in figure (3.7). Model parameters in the 

annular region are fitted so as to predict the slip shown by Muller-Mohnssen et al. 

(1987). Figure (3.8) shows good agreement between the predicted velocity profile and the 

experimental velocity profile. In the above calculations we have assumed the flow to 

occur through a capillary of equivalent diameter. Since the experimental data was for 

flow through a rectangular conduit, this might be the reason for a small difference 

between the model and the experimental data. 
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Figure 3.7. Fit for experimental viscosity-shear rate data [Muller-Mohnssen et al., 
1987] using Transient Network model [equation (3.28) and (3.29)]. Fitted model 
parameters are 0.77=0G , 5.8=λ , 90=fF , 65=gF , 65.12=θ f  and 65.12=θg . 

Points represent experimental data and line represents model fit. 
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Figure 3.8. Comparison of velocity profile calculated by our model with the measured 
velocity profile [Muller-Mohnssen et al., 1987]. Bulk parameters are same as given in 
figure 3.7. Wall parameters are 900=fF , 2000=gF , 99.48=θ f  and 28.28=θg . Wall 

shear stress is wσ =4.6 Pa. Points represent experimental data and line represents 

model fit. 
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Muller-Mohnssen et al. (1987) did not measure the pressure drop across the conduit and 

hence could not detect the presence or absence of any critical wall shear stress, at which 

a jump in flow rate occurs. Our model calculations predict a critical stress for their data 

to be 4.6 Pa. Cohen and Metzner’s (1982) data does not show any critical wall shear 

stress. This could possibly be due to the fact that their capillary surface was pre-treated 

to decrease the adsorption of PAm chains on the wall. Equation (3.32) shows that a 

reduction in the grafting density can reduce the critical wall shear stress. For their data, 

it is possible that the critical stress was below the investigated range. It is also possible 

that a critical stress is completely absent. As discussed earlier, a multivalued stress is 

not a necessary condition for flow enhancement. In fact, our model parameters used for 

fitting to the Cohen and Metzner’s (1982) data do not predict a multivalued stress 

function. Thus, the fact that the dynamics of chains at the wall differs from that of 

chains in the bulk is enough to predict flow enhancement and diameter dependent flow 

curves shown in figure (3.5) and figure (3.6). 

 

3.4.3 Polymer melts: 

 

Our network model can also be applied to data for an entangled polymer melts. Polymer 

melts are known to show a sudden enhancement in flow rate above a critical pressure 

drop in controlled stress capillary flow. The flow curves for various melts also show 

diameter dependence and stick-slip oscillations in controlled flow rate capillary flow. 

 

Figure (3.9) shows the comparison of our model with the capillary flow data of Wang and 

Drda (1996a). Apparent shear rate (without correction) is plotted against wall shear 

stress for capillaries of different diameters. The model is fitted for D=1.04mm and flow 

rates for the lower diameter capillaries are predicted. Experimental data for a 

polyethylene melt shows a jump in apparent shear rate (or flow rate) at a critical shear 

stress of about 0.3 MPa. It can be seen that the magnitude of the jump increases with a 

decrease in diameter. The network model provides a good fit to the experimental data. 

 

It is interesting to note that at very high shear stress some polymers show another first 

order transition in apparent shear rate. For example Wang and Drda (1997b) show a 

second criticality for LLDPE resin. They found that unlike the first jump in aγ& , the 

second jump does not show diameter-dependent flow curves. Wang and Drda argue that 
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Figure 3.9. Comparison of model prediction for apparent shear rate vs. wall shear stress with polyethylene melt experimental data 
[Wang and Drda, 1996a]. Flow curve for D=1.04 mm is fitted using model parameters 75=fF , 100=gF , 65,12=θ f , 65.12=θg  in the 

bulk region, and 60000=fF , 375000=gF , 88.178=θ f  and 42.112=θg  in the wall region and 92000 1=G , 5.8=λ . Flow curves for 

other diameters are predictions. Points represent experimental data and line represents model fit. 
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Figure 3.10. Prediction of two discontinuous flow rate transitions and their diameter dependence. 
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the second criticality in flow rate may be due to stretching of the bulk chains. Our model 

predicts bulk disentanglement and hence a second jump in flow rate at a much higher 

shear stress as shown in figure (3.10). Interestingly, our model also predicts diameter 

independent flow curves after the second criticality. This happens because the difference 

between the wall and the bulk chain dynamics vanishes with the disentangling of bulk 

chains. The capillary is now a single domain and hence predicts diameter-independent 

flow curves.  

 

We note here that the diameter independence observed by Wang and Drda (1997) in the 

second flow rate jump need not necessarily arise due to bulk disentanglement. The 

second criticality could also arise from desorption of chains attached to the wall. Indeed, 

the chain desorption models suggest that pressure dependence of viscosity can 

effectively cancel out the diameter dependence of flow curves [Person and Denn, 1997].  

 

It is particularly interesting to compare the predicted slip length from our model with 

that of the Brochard-de Gennes model. An experimental study of Leger et al. (1997b) 

showed three distinct regions of slip in agreement with Brochard-de Gennes (1992) 

model. These are; (i) A low shear rates regime in which the slip length is very small and 

constant with respect to slip velocity. (ii) An intermediate shear-rate regime above a 

critical velocity, in which a near-linear relationship (of slope unity in a log-log plot) 

exists between slip length and slip velocity. (iii) A high shear rate regime in which the 

slip length is much larger than the size of a surface-anchored polymer molecule. Our 

model predictions are shown in figure (3.11) and figure (3.12). Here slip length is 

calculated as 12κ= sVb , where sV  is the boundary (slip) velocity and 12κ  is the velocity 

gradient in the bulk region at the boundary. The model successfully predicts these three 

regimes mentioned above. The slope of the b  vs. sV  curve in the second regime is 

predicted to be unity, which is close to that obtained by Leger et al. (1997b). It can be 

seen from figure (3.11) that there exists a fourth regime in which the slip length 

decreases with slip velocity. This decrease in slip length is due to the shear thinning of 

bulk fluid. The velocity gradient in the bulk increases more than the corresponding 

increase in the slip velocity, resulting in decrease of slip length. As derived in chapter 2 

b  can be defined as  

ab
I

B ′
η
η

=           (3.38) 
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Figure 3.11 Slip-length vs. slip-velocity plot for model parameters same as in figure 
(3.8). 

 
Figure 3.12 Slip-velocity vs. wall shear stress plot for model parameters same as in 
figure (3.8). 
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where Bη  is the bulk viscosity, Iη is the interfacial viscosity and a ′  is the monomer 

length scale. At higher stresses Bη  decreases due to the shear thinning nature while Iη  

remains constant (of the order of monomer viscosity after slip), which results in a 

decrease in b . The Brochard and de Gennes model predict the first three regions of slip-

length but it does not predict the fourth region since the model does not consider 

dynamics of bulk molecules. Yang et al. (1998a) have indeed observed a decrease in b  

with stress. Recently Mhetar and Archer (1998a) have also seen a decrease in the slip 

length at higher shear stress in couette flow of polystyrene solution in diethyl phthalate. 

They interpreted this decrease to be a consequence of shear thinning, which can be 

related to bulk stretching and/or disentanglement. 

 

3.4 Conclusion 

 

We have attempted to unify various features of the slip phenomenon in one theoretical 

framework. Unification has been achieved for systems (solutions and melts) and for the 

underlying physical mechanisms (wall disentanglement, desorption and bulk 

disentanglement). 

 

We have modeled the wall-slip phenomenon starting from the assumption of the 

existence of a dynamic network near the wall that is formed by entanglements between 

adsorbed chains and bulk chains. The network can be broken by either disentanglement 

of chains or by desorption of the wall chains. We have considered only the 

disentanglement mechanism in this chapter. We show that the model predicts flow rate 

enhancement, diameter-dependent flow curves, decrease in diameter dependence with 

increase in diameter, a discontinuous jump in flow rate for controlled pressure drop 

experiments and a second jump in flow rate at a higher stress. The model predicts a 

non-monotonic flow curve for severe disentanglement. The model also predicts four 

different regimes for the slip-length/slip velocity relation. Further, the critical stress is 

predicted to depend directly on the grafting density of adsorbed chains and on the 

temperature (provided no desorption occurs). The debonding mechanism will be 

considered in the next chapter. 



 CHAPTER 4 

 

A UNIFIED MODEL 

 

 

 

4.1 Introduction: 
 

As discussed in chapter 2, the two most widely accepted slip mechanisms today are 

debonding and disentanglement. Hitherto it has been difficult to pinpoint which of these 

two mechanisms is actually responsible for the wall-slip for a given experimental data. 

Indeed the slip data for a polymer-wall pair, for instance polyethylene on stainless steel, 

has been explained using both types of models: debonding and disentanglement. Further 

more, the theoretical framework for these models is quite different making it even more 

difficult to say about the governing mechanism for slip. This situation motivates the 

formulation of a unified model that can predict the slip by both mechanisms and can 

discern the true mechanism based on physico-chemical parameters of the experiments.  

 

The unified slip model developed in this chapter is an extension of the disentanglement 

model developed in the previous chapter. We have shown in chapter 3 that the model is 

naturally able to predict wall slip by an interfacial instability caused by a sudden 

disentanglement of the tethered chains from the bulk chains at a critical stress. The 

unified model developed here considers the dynamics of adsorption and desorption of 

chains at the wall in parallel with the entanglement-disentanglement dynamics. Since 

the adsorption-desorption processes strongly depend on the adhesive energy between the 

polymer and the wall, the model predicts slip to occur by debonding of chains at the wall 

for low adhesive energies and by disentanglement of chains at the wall for high adhesive 

energies. Thus, unification of the two mechanisms of slip is achieved in a single 

mathematical framework. 

 

Our approach as outlined distinctly differs from earlier slip models. Hill (1998) 

developed a slip model by postulating only a debonding mechanism. Brochard and de 

Gennes (1992), Ajdari et al. (1994) and Brochard-Wyart et al. (1996) developed scaling 

models only by postulating disentanglement mechanisms. Hatzikiriakos and 

Kalogerakis (1994) developed a slip model based on the TN formalism, but considered 
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only the strain induced debonding of tethered segments above a critical strain. Thus, 

their model is specifically for debonding mechanism. Recently Yarin and Graham (1998) 

have proposed a slip model based on the proposition that the lifetime of a tethered chain 

under shear flow is proportional to the excess energy gained by the tethered molecule 

due to flow. In the case, where the detachment of tethered chains precedes 

disentanglement, they predict that the shear stress-slip velocity relationship becomes 

non-monotonic due to desorption of tethered chains. Thus, their model is essentially a 

debonding model. They also predict that when slip occurs by debonding, the slip length 

[see equation (2.1)] is independent of temperature thus implying that the temperature 

independence of the slip length may not be an appropriate criterion for assigning the 

slip to be disentanglement driven. This is contrary to the hypothesis of Wang and Drda 

(1996a), who infer that the temperature invariance of slip length along with the time-

temperature superposition of slip data necessarily indicate slip by disentanglement. It is 

clear that none of the models developed so far have addressed the issue of the 

unification of the two mechanisms of slip in the same manner as the slip model 

described in this chapter. 

 

The physical basis of the unified model has been partially developed in the previous 

chapter, in which the interfacial polymer layer between the wall and the bulk fluid was 

considered to be an annular region with a thickness of approximately one radius of 

gyration. We showed that the model predicts wall slip in polymer melts as well as 

solutions, thus unifying different systems showing slip. However, the model considered 

slip solely by the disentanglement of adsorbed chains, completely disregarding 

debonding. Our previous work forms a natural platform on which we build a new model, 

which will unify the two mechanisms of slip, i. e. debonding and disentanglement, into 

one self-consistent framework. 

 

The model developed in this chapter is semi-empirical in nature and contains adjustable 

parameters arising from the phenomenological nature of the rates of creation and 

breakage of network. Although this approach does not throw light on the details of 

molecular dynamics of polymer chains near the wall, it has the inherent advantage of 

presenting a simpler constitutive equation that captures the essence of slip phenomena 

by either of the two physical mechanisms. Such a constitutive equation could be useful 

for providing numerical solutions to real engineering problems. 
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4.2 Model development 

 

We begin by postulating the existence of an interfacial layer at the capillary wall, 

wherein the molecules are sparsely adsorbed on to the wall (mushroom region) and their 

tails are entangled with the bulk. The interfacial layer can be considered to be a 

transient network made up of two types of network junctions [see figure (3.1)]: one 

consisting of the junctions on the wall, where the molecules are adsorbed, and the other 

consisting of the entanglement points with the bulk chains. The nature of these two 

types of network junctions is different in terms of their energetics and dynamics, as will 

be discussed later. We postulate that when both these types of junctions remain intact, 

the no-slip boundary condition prevails. Slip occurs when any one of the types of 

junctions is destroyed. If the junctions at the wall are destroyed, then slip occurs by 

debonding. When the entanglement junctions are destroyed, slip occurs by 

disentanglement. 

 

The physical basis of the unified model has been partially developed in the previous 

chapter. For the sake of continuity we will repeat some of the equations developed in 

chapter 3. We assume that a polymer molecule adsorbs at a single site on the wall and 

has a Gaussian configuration. Let wP  be the number of chains per unit area adsorbed on 

the wall, P  be the number of bulk polymer molecules per unit area coming in contact 

with the bare wall and w  be the number of the bare sites per unit area on the wall on 

which a molecule can adsorb. Then the adsorption-desorption process can be represented 

in the framework of a reversible chemical reaction as, 

wPP

a

d

w

k

k

+
←
→

         (4.1) 

where, ak  and dk  are kinetic rate constants for adsorption and desorption reactions, 

respectively. From equation (4.1), 

[ ] [ ][ ] [ ]wda
w PkwPk

dt

Pd
−=         (4.2) 

Let tw  be the total number of sites per unit area on which a polymer molecule can 

adsorb, then, 

w+P=w wt           (4.3) 
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Since the kinetics of adsorption and desorption are extremely fast as compared to the 

processes occurring on a rheological time scale [Hill, 1998], it is appropriate to assume 

that pseudo-equilibrium condition holds. Then from equation (4.2) and (4.3) we get, 

[ ]
[ ]

[ ]
[ ] da
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t

w

kPk

Pk

w

P

+
==φ          (4.4) 

Here φ  is the fractional surface coverage. Since the concentration of the unattached 

polymer molecules near the wall is very high, it can be assumed to be approximately 

constant.  

 

The kinetic coefficients in equation (4.4) can be defined as a product of the pre-

exponential frequency factor and an activation term [similar to that used by Hill (1998)]. 
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where aE∆  is the activation energy for adsorption, dE∆  is the activation energy for 

desorption, mE∆  is the elastic free energy of the attached molecule relative to the 

equilibrium (no-flow) state, h  is the Plank’s constant and A  is a parameter that 

converts the second order rate constant ak  into a pseudo-first order rate constant. It is 

important to note that we have assumed the desorption rate to be proportional to the 

elastic (recoverable) energy of the adsorbed molecule. 

 

The free energy of the attached molecule relative to the equilibrium (no-flow) state can 

be written as [Larson, 1988],  

eqBm E
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R
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TkE Beq 2
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Here subscript 0  represents unperturbed conditions (no flow). If it is assumed that the 

effective strain on the adsorbed molecule can be substituted by the effective elastic 

strain, then, 
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where 
12

2211

2σ
σ−σ

=γ e . For simplicity we assume that the constant of proportionality in 

equation (4.8) is unity. We feel that this is a reasonable assumption to make in the view 

of the fact that the network deforms affinely at low stress values. The approximation of 

substituting eγ  in place of the actual strain on a molecule allows one to derive a closed 

form constitutive relation for the shear stress as will be seen later. This approximation 

is further justified by the fact that the axial strain on molecules in laminar capillary 

flow is proportional to the normal stress [Philippoff, 1957], which is considered in eγ . 

From equations (4.5) to (4.8), the kinetic rate constant for desorption can be written as, 
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The above form of the kinetic rate constant for desorption implicitly takes into account 

the effect of temperature. The desorption rate is proportional to the energy of the 

adsorbed molecule, which is directly proportional to the product of the tension in the 

molecule and the strain experienced by the adsorbed molecule. Note that at constant 

wall-shear stress, the tension in the adsorbed molecule remains independent of 

temperature but the strain in the molecule decreases with an increase in temperature 

due to increased stiffness.  

 

Insertion of equations (4.9) and (4.5) into equation (4.4) gives the final expression for 

surface coverage, 
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where, adhE∆  is the adhesive energy )( adadh EEE ∆−∆=∆ . Thus the fractional surface 

coverage is a function of the adhesive energy for any polymer-wall pair. 

 

We have already discussed in chapter 3 the solution of the Transient Network (TN) 

model for the case of constant φ  (= 1) leading to disentanglement driven wall slip in the 

capillary flow. Note that when adhesive energy is very high, equation (4.10) gives 1≈φ . 

Thus, the model naturally predicts that the slip would occur by disentanglement on a 

highly adhesive surface. It was assumed that the capillary could be divided into two 
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regions, an interfacial annular region of thickness equal to approximately one radius of 

gyration at the wall consisting the adsorbed molecules, and the remaining bulk region. 

It was further argued that the dynamics of entanglement and disentanglement of the 

adsorbed chains are different from those of the bulk chains. We showed that the 

constitutive equation reduces to two governing equations for the network model, which 

have to be solved independently in the annular wall region and in the bulk region. These 

equations are, 

eB
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γ
=σ )( 0

0
12         (4.11) 
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          (4.12) 

where, superscript ∗  indicates non-dimensionalised variables ( )mυυ=υ 1
*
1 , 

RWe mυλ=  is the Weissenberg number, λ  is the relaxation time, R  is the radius of 

the capillary, mυ  is the maximum velocity, ( )gfn =  are the number of entanglements 

per unit volume under flow normalized with respect to the equilibrium number of 

entanglements 0n , and f  and g  are the rates of creation and the loss of 

entanglements, respectively. 

 

If however, 1<φ , which would imply desorption of chains, then as long as the interfacial 

network is intact the stress in the annular region is only due to the contribution from 

the segments of the adsorbed chains. Hence equation (4.11) for the annular region can 

be written as, 

e
e nkTn
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γφ=

γ
φ=σ )( 0

0
12         (4.13) 

 

Equation (4.12) and (4.13) can be solved provided the rates of entanglement and 

disentanglement under flow are known. In the present analysis we have used the f  and 

g  functions proposed by Ahn and Osaki (1994). 

)exp( eaf γ= , )exp( ebg γ=         4.14) 

The above functions when used in equation (4.13) yield a non-monotonic shear stress-

shear rate relationship for ab > . A maximum in stress occurs at )(1 abe −=γ . We have 

shown that such non-monotonic behavior represents severe disentanglement )( fg >  

due to chain stretching. At the stress maximum, the chains undergo a transition in the 
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end to end distance, akin to the coil to stretch transition predicted by Brochard and de 

Gennes (1992). 

 

Now let us consider the interfacial annular wall region. Equation (4.14) along with 

equations (4.12) and (4.13) constitute a set of equations that need to be solved in the 

annular wall region. It can be seen from equation (4.13) that in the annular region the 

contribution to the wall-shear stress is from three interdependent variables: (i) φ , the 

fractional surface coverage, which depends on the dynamics of adsorption and 

desorption and decreases with increase in eγ  and temperature, (ii) eγ  the effective 

strain, which represents the stretching of chains and (iii) gf , which decreases with eγ  

for severe disentanglement ( ab > ). Thus equation (4.13) can predict a non-monotonic 

local shear stress-shear rate relationship by two independent mechanisms. For low 

surface energy wall, the product eφγ  will cause a stress maximum due to desorption of 

macromolecules (decrease in φ ). For high surface energy wall the disentanglement of 

adsorbed chains will occur due to the chain stretching at constant fractional surface 

coverage φ  and the stress maximum will occur due to the product gfeγ . 

 

When strong slip occurs, either by a debonding or by a disentanglement mechanism, the 

network in the annular wall region is disrupted. We argue that in this region the stress 

transfer occurs primarily by friction between the bulk sliding over the bare wall in the 

case of debonding or between the bulk sliding over a carpet wall (carpet formed due to 

the stretched adsorbed chains on the wall) in the case of disentanglement. A ‘friction 

law’ can be written in a simple empirical form as proposed by de Gennes (1985) 

ws kV σ′=           (4.15) 

where k ′  is the friction coefficient. The various forms of k ′  for bare wall and carpet wall 

with different surface coverages have been developed by Ajdari et al. (1994) and 

Brochard-Wyart et al. (1996). In the current model k ′  has been taken to be a fitting 

parameter. 

 

We solve equations (4.11) and (4.12) in the bulk region, and equations (4.12) and (4.13) 

in the annular wall region before the onset of a strong slip. The model parameters 

common to the bulk and annular regions are 0G  and λ . However, the model parameters 

related to the entanglement and the disentanglement ( a  and b  respectively) are 
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different in the bulk and wall regions. The physical picture behind this assumption is as 

follows. The bulk chains can relax by several mechanisms such as reptation, convective 

constraint release, fluctuations and chain stretching. However, a tethered chain cannot 

reptate as long as it is attached to the wall. Therefore it is probably more susceptible to 

getting orientated and stretched. Hence the inherent dynamics of tethered chains as 

represented by a and b  in a network model is expected to be different than that of the 

bulk chains. The parameters related to kinetics of adsorption and desorption are A  and 

adhE∆ . A  in equation (4.10) is treated to be a curve fitting parameter, while the 

adhesive energy adhE∆  is taken from the available data in the literature. At the 

interface of both the regions, the continuity of the stress and velocity is maintained. 

After the stress maximum in the annular region, the interfacial region ceases to exist 

either due to loss of complete surface coverage or due to the stretched and fully 

disentangled chains. Therefore, after strong slip the slip boundary condition [equation 

(4.15)] is considered at the wall.  

 

4.3 Results and Discussion: 

 

4.3.1 Flow Curves: 

 

As discussed earlier, the non-monotonic shear stress-shear rate relationship at the wall 

results in a first order transition in the flow rate (i.e. strong slip). The figure (4.1) shows 

a qualitative model prediction of wall shear stress vs. slip velocity before and after a 

strong slip. The slip velocity before the first order transition (weak slip) is the velocity at 

the interface of the annular region. This is calculated from the network model. After 

strong slip, the slip velocity is calculated from equation (4.15). The transient network 

model, when solved in the annular wall region predicts a non- monotonic wall shear 

stress as shown by curve I in figure (4.1). The non-monotonic nature can arise due to 

disentanglement or due to debonding. Curve II in figure (4.1) represents either the 

monomer-monomer friction (in the case of disentanglement) or the monomer-wall 

friction (in the case of debonding). In a controlled stress experiment the slip velocity will 

jump from curve I to curve II at the stress maximum. Such a first order transition in the 

slip velocity will result in a first order transition in the flow rate. If curve I merges with 

curve II without going through the maximum, then the model will predict a continuous 

slip without any first order transition. This phenomenon has been observed in the case 
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of some polymers such as LDPE. The exact nature of Curve I and II will depend on the 

dynamics in the polymer-wall interfacial region, which will be governed by the 

molecular structure of the polymer and the characteristics of the wall-polymer 

interaction. 

 

Figure (4.2-a) shows a qualitative prediction of the fractional surface coverage ( φ ) and 

the non-monotonic wall-shear stress with respect to slip velocity. It can be seen that the 

fractional surface coverage ( φ ) remains constant while the wall-shear stress goes 

through a maximum. The decrease in wall-shear stress at constant φ  indicates that the 

slip occurs by disentanglement for the high value of adhesive energy indicated in figure 

(4.2a). If the adhesive energy is decreased while keeping the other parameters constant, 

then the slip occurs by debonding. Figure (4.2b) shows wall-shear stress and φ  as a 

function of the slip velocity at a lower value of the adhesive energy. Other parameters 

have been kept the same as in figure (4.2a). The surface coverage and the wall-shear 

stress rapidly decrease at the same slip velocity, confirming that the slip is due to 

debonding. Thus the model is able to predict the wall slip by both disentanglement and 

debonding mechanisms and unifies them into one mathematical framework. The critical 

model parameter, which governs the mechanism, is the adhesive energy. 

 

An important prediction of the unified slip model is the temperature dependence of slip 

parameters namely, the slip length )(Tb and the critical wall shear stress )(* Twσ . As 

discussed in chapter two the slip length is defined as, 







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
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η
η
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B

       (4.16)  

where Bη  is the bulk viscosity, Iη  is the interfacial viscosity a  is the monomer length 

scale and k ′ is the friction coefficient of ungrafted bare wall. Both interfacial and bulk 

viscosities are inversely proportional to temperature, while mmak ζ=′ 2  ( ma  is the 

monomer length and mζ  is the monomeric friction coefficient) is also inversely 

proportional to temperature [Yarin and Graham, 1998]. It can be clearly seen that the 

slip length is naturally independent of temperature for both mechanisms of slip. Thus, 
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Figure 4.1 A schematic of wall slip mechanisms. Slip due to both debonding and disentanglement mechanism can be seen. 
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the temperature dependence of the slip length cannot be used to discuss the governing 

mechanism of slip. 

 

In fact, the temperature dependence of the critical stress (not slip length) might be used 

to distinguish between the two slip mechanisms. The temperature dependence of stress 

arises from three factors: the temperature dependence of the network modulus, the 

activation terms in the adsorption-desorption kinetics and the temperature dependence 

of the stress induced desorption kinetics. It can be seen from equation (4.10) that the 

equilibrium (no flow condition) fractional surface coverage ( φ ) decreases with increase 

in temperature. In the presence of flow, the surface coverage tends to decrease further 

with increase in temperature. On the other hand, the modulus of the network tends to 

increase with temperature and the relaxation time decreases with increase in 

temperature. All these different temperature dependent factors influence the critical 

wall-shear stress. The parameter A  in equation (4.10) plays a crucial role in 

determining the temperature dependence of critical wall-shear stress. The parameter A  

considers the concentration of unattached polymer chains in the vicinity of the bare 

wall. The value of parameter A  can in principle be calculated from the equilibrium 

surface coverage data. A  controls the equilibrium fractional surface coverage ( eqφ ) such 

that eqφ  increases with increase in A . However, in the absence of any data on 

adsorption of chains from melts, we are forced to consider A  as a curve fitting 

parameter in our model. 

 

Figures (4.3a to 4.3c) show the critical wall-shear stress vs. desorption energy at two 

different temperatures and for various values of A . In general, three regions of 

temperature dependence can be seen in these figures. The first region corresponds to 

disentanglement, while the last two regions correspond to debonding. It can be seen that 

at high values of adhesive energies the critical shear stress is independent of the 

adhesive energy irrespective of the value of A . The governing mechanism in this region 

is disentanglement and the critical stress is also seen to be increasing with temperature 

as predicted by Brochard and de Gennes (1992) and our disentanglement model (chapter 

3). The mechanism changes from disentanglement to debonding, as the adhesive energy 

is progressively decreased. In the third region, where slip occurs by debonding, the 

temperature dependence is surprisingly similar to that in the first region. In this region 



 94

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01 1.E+01

Slip Velocity (m/s)

Sh
ea

r 
St

re
ss

 (
M

P
a)

0

0.25

0.5

0.75

1

φφ

(a)

 

0

0.01

0.02

0.03

0.04

0.05

0.06

1.0E-09 1.0E-07 1.0E-05 1.0E-03

Slip Velocity (m/s)

Sh
ea

r 
St

re
ss

 (
M

P
a)

0

0.1

0.2

0.3

φφ

(b)

 
Figure 4.2 A plot of fractional surface coverage and shear stress vs. slip velocity. The 
slip mechanism is dependent on the adhesive energy of the wall-polymer pair. The 
model parameters are A =0.0047, T =473 K, 0n =1.265×1026 ( 0G =0.547 MPa at 2000C). 

In the interfacial region a =8.0, b =9.0 (a) At high surface energy ( adhE∆ =2.827×10-19 

J/molecule) the non-monotonic behavior is due to disentanglement. The surface coverage 
remains constant. (b) If adhesive energy is decreased ( adhE∆ =2.921×10-20 J/molecule) 

keeping all other parameters constant, slip occurs due to debonding and stress and 
surface coverage drop simultaneously. 
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 the critical wall-shear stress increases with temperature and this dependence is 

independent of the value of A . For very low values of the adhesive energy, a small 

amount of stretching is sufficient to cause debonding. However, the extent of stretching 

decreases with temperature and therefore higher stress is required for debonding to 

occur. Hence the critical shear stress increases with temperature. We wish to caution 

that in the third region the equilibrium fractional surface coverage is so low that the 

transient network model may not be really applicable.  

 

The effect of parameter A  is seen in the second region of figures (4.3-a to 4.3-c). In 

figure (4.3-a) it can be seen that as the mechanism changes from disentanglement to 

debonding in the second region, the temperature dependence of the critical stress also 

reverses. For lower values of A , i.e. for low eqφ , the critical stress decreases with an 

increase in temperature. Such inverse temperature dependence was intuitively 

suggested by Wang and Drda (1997). Our model is the first to predict it mathematically. 

Thus, the temperature dependence of the critical stress could be an indicator of the 

governing slip mechanism. However, the parameter A  determines the temperature 

dependence of critical stress. For high values of A , i.e., for high eqφ , the critical stress 

increases with an increase in temperature over the full range of adhesive energies as 

seen in figure (4.3-c). Only for low values of A  and for the intermediate values of 

adhesive energies, the temperature dependence of critical wall-shear stress is different 

for disentanglement and debonding mechanisms (see figure 4.3-b). We will show in the 

next chapter that experimental determination of the temperature dependence of critical 

stress on a fluoropolymer coated surface (of low adhesive energy) validates the inverse 

temperature dependence. 

 

We have shown that our model successfully unifies the two mechanisms into one 

mathematical framework. It predicts that the adhesive energy between the polymer wall 

pair is the governing parameter determining the operative mechanism. It also predicts 

the temperature dependence of critical wall-shear stress. However, our model suffers 

from certain drawbacks owing to its inherent simplicity. For instance, the prediction of 

stress-slip velocity curve by the network model when ab >  does not show a minimum in 

stress. The stress decreases continuously in a manner predicted in the original Doi- 

Edwards model. The absence of a stress minimum in Doi-Edwards model is due to the 



 96

0.0001

0.001

0.01

0.1

1

1.0E-22 1.0E-21 1.0E-20 1.0E-19 1.0E-18 1.0E-17

Adhesive Energy (J/molecule)

C
ri

ti
ca

l W
al

l S
he

ar
 s

tr
es

s 
(M

P
a)

T= 473 K

T= 673 K

A=0.0047

IIII II
(a)

 

0.001

0.01

0.1

1

1.0E-22 1.0E-21 1.0E-20 1.0E-19 1.0E-18 1.0E-17

Adhesive Energy (J/molecule)

C
ri

ti
ca

l W
al

l S
he

ar
 s

tr
es

s 
(M

P
a)

T= 473 K

T= 673 K

A=0.05

IIII II
(b)

 

0.1

1

1.0E-22 1.0E-21 1.0E-20 1.0E-19 1.0E-18 1.0E-17

Adhesive Energy (J/molecule)

C
ri

ti
ca

l W
al

l S
he

ar
 s

tr
es

s 
(M

P
a)

T= 473 K

T= 673 K

A=1.0
IIII II

(c)

 
Figure 4.3 The temperature dependence of critical stress over the range of adhesive 
energies is shown. In the first and third regions, the temperature dependence is 
independent of A , while in the second region with increase in A  the temperature 
dependence reverses. The first region corresponds to disentanglement, while the other 
two regions correspond to debonding. The model parameters are the same as in figure 
(4.2). 
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absence of chain stretching [Doi and Edwards, 1986]. The friction law takes care of the 

stress transfer to the tethered chains or on the bare wall in the strong slip region, which 

increases stress with slip velocity. In the present model, our major concern is identifying 

the stress at which the instability begins and not to develop a slip law in the strong slip 

region. 

 

4.3.2 Comparison with experimental results: 

 

We will now compare our model predictions quantitatively with some of the available 

experimental data on slip in polymer melts. The details regarding the model parameters 

have been already discussed in the previous section. To compare the experimental 

results with the model predictions the adhesive energy values reported in literature are 

used. Hill (1998) has reported the adhesive energy of the polyethylene-steel pair 

(difference between polymer-metal (wall) work of adhesion and polymer-polymer work of 

cohesion) to be 90 mJ/m2. This adhesive energy can be converted into 

(energy)/(adsorption junction) or (energy)/(adsorbed molecule) by using the equilibrium 

surface coverage density based on an assumption that only a single junction on the wall 

is present in the circular area of 1nm radius. Figure (4.4) shows a quantitative fit of our 

model to the slip data for high-density polyethylene [Wang and Drda, 1996a]. For this 

high value of adhesive energy the model predicts slip to occur by a disentanglement 

mechanism. The network modulus 0G  is approximately of the order of the plateau 

modulus (for polyethylene, the plateau modulus is ~2.6 MPa). The model successfully 

predicts the first order transition in flow rate along with the diameter dependent flow 

curves. The diameter dependence originates from the difference in network dynamics in 

the bulk and interfacial region and can also be predicted for the case of a debonding 

mechanism by our model.  

 

The model also successfully predicts the temperature dependence of critical wall-shear 

stress. Figure (4.5) shows the critical wall-shear stress plotted against temperature. The 

points show the experimental data for polybutadiene on a steel surface [Yang et al., 

1998b]. It can be seen that the model fits the experimental data quantitatively, when 

the disentanglement is assumed to be the governing mechanism. In this case the 

network modulus 0G  has been assumed to be the same as the plateau modulus of the 

polymer ( 0G =1.0 MPa, or 0n = 2.314×1026 at 2000C). Recently Anastasiadis and 
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Hatzikiriakos (1998) have measured the adhesive energies of various polymer-metal 

pairs using the pendent drop method. They have also compared the critical wall stress 

data with the adhesive energy. We feel that fitting our model to such data will give a 

better test of the unification hypothesis. We have considered the experimental data of 

LLDPE on steel and on Teflon in this work. The experimental adhesive energy in units 

of (energy)/(area) has been converted to (energy)/(adsorbed molecule) as discussed 

earlier (See table 4.1). We begin by assuming that the system of LLDPE on steel shows 

slip due to disentanglement. The higher value of adhE∆  for LLDPE-steel system and 

increase in critical wall shear stress with increase in temperature support this 

assumption. The model successfully fits the critical stress as shown in figure (4.6a). The 

constant fractional surface coverage confirms slip by disentanglement. Keeping all the 

other parameters constant, if the adhesive energy is changed to that for LLDPE on 

Teflon, the model not only successfully predicts slip due to debonding but also predicts 

the experimentally observed critical wall-shear stress for the same system [see figure 

(4.6b)] 

 

As it stands, the model has two curve fitting parameters, ( ba − ) in the interfacial region 

and A . The network parameters for the chain dynamics in the interfacial region ( ba − ) 

can be obtained from independent experimental data on confined melts. The parameter 

A  can be obtained from equilibrium surface coverage data. 0G  is obtained from the 

plateau modulus while the bulk parameters like a , b  and λ  are to be fitted to 

viscometric data. If this is done, then no curve fitting parameters will be required and 

the model will become fully predictive.  

 

4.4 Conclusion 
 

In this chapter a unified slip model is developed, which shows slip by either mechanism, 

disentanglement or debonding depending on the adhesive energy. It is shown that in the 

case of either of the mechanisms prevailing, a local non-monotonic shear stress-shear 

rate behavior near the wall is necessary to show the first order transition in flow rate, 

which is the signature of stick-slip transition. The non-monotonic behavior near the 

wall. (annular wall region) arises through a coil to stretch transition for a high surface 

energy wall (disentanglement), while it arises through the desorption of the adsorbed
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Figure 4.4 A Comparison of the model prediction for apparent shear rate vs. wall shear 
stress with polyethylene melt experimental data [Wang and Drda, 1996a]. The flow 
curve for D=1.04 mm is fitted using model parameters same as that in figure (4.3a) with 
λ =0.1s, in bulk, region a =8.0, b =8.0 and k ′ =7×10-7. Flow curves for other diameters 
are predictions. Points represent the experimental data and the line represents the 
model fit. 
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Figure 4.5 A comparison of the model prediction for critical wall shear stress vs. 
temperature experimental data [Yang et al., 1998b]. The model parameters are, 
A =0.0047, T =313 K, adhE∆  = 2.827×10-19 J/molecule, 0n =2.314×1026 ( 0G =1MPa at 

400C). In the interfacial region a =8.0, b =9.056. 



 100

 

 

 

 

 

 

 

 

 

Table 4.1 The adhesive energy and critical wall shear stress data for various wall-
polymer pairs from Anastasiadis and Hatzikiriakos (1998). 
 

Ploymer-wall 

system 

The adhesive energy 

given in 

(energy)/(area) 

Converted form of 

adhesive energy in 

(energy/molecule) 

Corresponding 

critical wall shear 

stress 

LLDPE-steel 22.6 dyne/cm 7.098E-20 J/molecule 0.1 MPa 

LLDPE- Teflon 9.3 dyne/cm 2.921E-20 J/molecule 0.027 MPa 
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Figure 4.6 Comparison of adhesive energy and critical wall shear stress [Anastasiadis 
and Hatzikiriakos, 1998]. The model parameters are A =0.0047, T =473 K, 

0n =1.265×1026 ( 0G =0.547 MPa at 2000C). In the interfacial region a =8.0, b =11.0. (a) 

For adhesive energy corresponding to LLDPE-steel ( adhE∆ =7.098×10-20 J/molecule). The 

slip is considered to be by disentanglement. (b) For adhesive energy corresponding to 
LLDPE-Teflon® ( adhE∆ =2.921×10-20 J/molecule) the model correctly predicts critical 

stress by debonding. 
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 molecules for a low energy wall. After a strong slip (in both the cases), the stress 

transfer is assumed to arise from friction between the bulk molecules and the wall. In 

the case of debonding, the wall is bare while in the case of disentanglement the wall is 

carpeted. 

 

The model predicts diameter dependence of the flow curves for both disentanglement 

and debonding mechanisms. We believe that the diameter dependence arises from 

different flow behaviors (network dynamics) in the bulk and near the wall region. For 

the case of disentanglement the model shows direct dependence of critical wall-shear 

stress on temperature, while for debonding, this dependence is determined by the 

equilibrium surface coverage. 



CHAPTER 5 

 

EXPERIMENTAL DETERMINATION OF TEMPERATURE 

DEPENDENCE OF CRITICAL STRESS FOR SLIP DUE TO 

DEBONDING 

 

 

 

5.1 Introduction: 

 

As discussed earlier, the strong wall slip (stick-slip) observed during melt extrusion 

occurs either by disentanglement or by debonding processes [Wang, 1999]. However, 

there are no clear guidelines for discerning the governing mechanism of slip under a 

given set of experimental conditions. It has been hypothised that slip occurs by 

disentanglement for high adhesive energy surfaces and by debonding for low adhesive 

energy surfaces. The unified model proposed in the previous chapter provides a 

quantitative basis for this hypothesis. Furthermore, our model predicts that the 

temperature dependence of critical stress could be an important criterion for discerning 

the correct mechanism of slip prevailing under a given set of experimental conditions. 

 

The critical shear stress predicted by disentanglement models [see, chapter 2; Brochard 

and de Gennes, 1992] indicate that, 

Tw Σ∝σ∗           (5.1) 

where Σ  is the number of chains per unit area grafted to the wall (grafting density) and 

T is the absolute temperature. Equation (5.1) shows that the critical wall shear stress 

( ∗σw ) increases with increase in temperature when slip is due to disentanglement. Wang 

and Drda (1996a) indeed observed such a dependence for controlled stress extrusion of 

HDPE in steel die and hence they related the observed slip phenomenon to 

disentanglement. They ruled out the possibility of debonding and postulated that since 

debonding is an activation process, the critical stress for debonding should decrease with 

increase in temperature. This postulate, which was predicted by our unified model also, 

has not been experimentally confirmed so far. 
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In this chapter, we experimentally determine the critical stress for slip on a low 

adhesive energy surface at various temperatures. A fluoropolymer coated low energy 

surface ensures that slip occurs due to a debonding mechanism. We use a cone and plate 

geometry with cone coated with fluoroelastomer coating. We find that the critical stress 

for slip on this surface decreases with an increase in temperature. We also show that the 

unified model successfully predicts the observed temperature dependence. In next 

section we discuss various instabilities observed in cone and plate viscometers. In 

section 5.3, the detailed experimental plan is discussed. Finally, the experimental 

observations and the unified model prediction for this system are discussed in section 

5.4.  

 

5.2 Instabilities in cone and plate viscometers 

 

The cone and plate geometry is the most commonly used geometry to measure the 

viscoelastic properties of the polymeric liquid. Figure (5.1a) shows a schematic of cone 

and plate geometry. The fluid is confined between the cone and the plate. The angle β  

between cone and plate is generally very small and in the range 10 to 60. The cone is 

rotated at the angular velocity ω , and the shear rate ( βω ) is independent of radius. At 

low shear rates, the flow in this geometry is undisturbed, but at higher shear rates, the 

instabilities arise mainly due to existence of the free surface, secondary flows and 

elasticity of the fluid. Several instabilities are seen in cone and plate geometry. These 

include centrifugal expulsion (inertial disturbances), elasticity driven meniscus 

distortion, elastic instability, ect., at the interface [Larson, 1992; Powell, 1998]. Out of 

all these instabilities, elastic instability is seen for lightly entangled or un-entangled 

liquids such as Boger fluids [Larson, 1992]. This instability develops over a very long 

time scale and hence is out of scope of present work.  

 

5.2.1 Centrifugal expulsion (inertial disturbances) 

 

The flow in the cone and plate geometry becomes instable when the material being 

sheared is thrown out of the gap. Centrifugal effects produce secondary flow, which 

become important when Reynolds number eR >800 [Clegg, 1968; Larson, 1992]. Here 

Reynolds number is given by ηβρκ 22
124 R , where ρ  is density of the material, 12κ  is 

the shear rate, R  is plate radius and η  is shear viscosity. Tanner and Keentok (1983) 



 

 

105

argued that the inertial forces must be kept less than the capillary forces, which holds 

the meniscus in the gap. They further argued that the inertial expulsion occurs when 

CaeR exceeds 380 . Here Ca  is the Capillary number and is given by σωηR , where σ  

is the surface tension of the liquid. Based on above theories Larson (1992) postulates 

that with R =2 cm and β =0.04 rad, inertial expulsion occurs at the shear rate roughly 

about 650 s-1.  

 

5.2.2 Meniscus distortion: 

 

It can be seen from figure (5.1b) that though the material in the gap is sheared and 

stressed, the free meniscus surface has the stress free condition 0ˆˆ
~~

=⋅σ⋅
≈

tn , here 
~
n̂  is 

unit vector normal to free surface, 
~
t̂  is the unit vector tangent to the free surface and 

≈
σ  

is the stress tensor. This causes a strong discontinuity in the velocity field at the rim 

(free surface). This results in sharp increase in stress at upper and lower contact lines 

[Wang, 1999]. At higher shear rates, the stress built-up becomes significant such that it 

leads to meniscus distortion. Generally, two types meniscus distortions are seen. One is 

irregular nonaxisymmetric distortion while the other is an axisymmetric indentation of 

the meniscus [Larson 1992]. 

 

The irregular, nonaxisymmetric distortion is observed at moderate Weissenberg number 

and the corresponding shear rate is close to the onset at which severe shear thinning 

starts. The ratio 121 σN  (where 1N  is first normal stress difference and 12σ  is shear 

stress) is a critical parameter. At the onset of the meniscus distortion phenomena, a 

sharp increase in slope of 121 σN  is observed when it is plotted with shear stress 12σ . It 

is speculated that the distortion occurs due to azimuthally spaced eddies that penetrates 

the rotation axis of the cone [Larson, 1992; Kulicke and Porter, 1979]. 

 

The second one that is axisymmetric indentation of the meniscus is located half way 

between cone and plate. It lowers the effective shearing surface area. Tanner and 

Keentok (1983) observed that the instability occurs when the second normal stress 

difference ( 2N ) is negative and large in magnitude. Lee et al. (1992) argued that even 

first normal stress difference ( 1N ) is very large as compared to second normal stress 

( 2N ), this type of fracture is not observed. 



 

 

106

 

 

 

(a) 

 

    

(b) 

Figure 5.1 (a) Schematic of cone and plate geometry. (b) At the free surface stress is 
zero which gives rise to discontinuous boundary condition. 
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5.3 Experimental: 

 

5.3.1 Materials: 

 

The material used in this study was linear low density polyethylene (Dowlex 2045) from 

Dow Chemicals having Mw=116400 and Mn=34300. The molecular weight information 

was obtained by using 150C Waters GPC fitted with three detectors: light scattering, 

viscosity and refractive index (RI). The carrier solvent trichlorobenzene was pumped at 

a flow rate of 1 ml/min at 160 0C in the injector and column compartments. 

 

5.3.2 Apparatus: 

 

A Bohlin cone and plate controlled-stress rheometer (CVO 50) was used for the 

rheological measurements. A 5.40 truncated cone of 15 mm diameter was used. The cone 

and plate were of stainless steel. The measurements were carried out by using a bare 

cone as well as a fluoropolymer coated cone. The cone was coated by dipping it in a 5 % 

solution of the fluoroelastomer (SUMMIT, Sumitomo Corporation, Japan) in acetone for 

two hours. The wetted cone was dried in an open atmosphere till a thin layer of the 

fluoroelastomer was formed on the cone. The cone was then kept at 60 0C for two hours 

to remove the acetone and then at 220 0C for 12 hours to cure the coating. All 

experiments were carried out under controlled stress conditions at four temperatures 

namely, 150 0C, 170 0C, 190 0C and 210 0C.  

 

Extrusion experiments were carried out using a CEAST Rheovis 2100 rate controlled 

capillary rheometer at the temperatures mentioned above. LLDPE was extruded 

through a case hardened steel die of 1.0 mm diameter, L/D 40 and an entry angle of 600. 

Extrusion experiments were also carried out by using a coated die, for which the 

internal surface was coated with the same fluoroelastomer. Coating was carried out 

following the procedure recommended by Wang and Drda (1997a). A 5% solution of the 

fluoroelastomer in acetone was made to flow through the capillary for several times 

followed by drying the capillary at 220oC for 12 hours. 
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Figure 5.2 Shear stress and first normal stress difference plotted against shear rate. It 
can be seen that at the onset of instability N1 increases more rapidly for the bare cone. 
T=150 0C. 
 

 

 

Figure 5.3 The photograph of the plate immediately after the instability has occured in 
the cone and plate rheometer. The left picture (a) is from the plate where the coated 
cone was used, while the right picture (b) corresponds to a bare cone. The sample with 
the coated cone is almost free from distortions relative to the bare cone case. 
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5.4 Results and Discussion 

 

Irrespective of the nature of the cone (bare or coated) all the experiments showed a 

steady and continuous increase in shear rate with shear stress followed by a sudden 

increase in rpm of the cone at a critical shear stress. The data in figure (5.2) at 150 0C 

shows the observed instabilities for bare and coated fixtures (cones). Such instabilities in 

curvilinear viscometric flows are known to arise due to any of the failure mechanisms 

namely, centrifugal expulsion, elasticity driven meniscus distortion or slip [Powell, 

1998] as discussed earlier. 

 

It was observed during our experiments that at all temperatures the sudden increase in 

shear rate in the case of a bare cone occurred consistently at higher stresses than that 

for the coated cone. It was also observed that the first normal stress difference at the 

onset of instability increased much more rapidly for the bare cone than for the coated 

cone. Figure (5.2) shows the shear stress and normal stress data at 150 0C. 

 

Figure (5.3) shows photographs of the sample left on the plate after the sudden increase 

in the apparent shear rate in experiments in which both coated and uncoated cones 

where used. The photograph is of the experiment done at 170 0C. It can be seen that 

when the bare cone was used, the sample is cracked and was partly thrown out of the 

gap, while in the case of experiments with a coated cone the sample was almost devoid 

of any distortions. The Reynolds number at the onset of instability can be calculated 

from the expression discussed earlier. The Reynolds number can be given by 

ηβρκ 22
124 R . Taking the density of LLDPE to be 935 kg/m3 [Billmeyar, 1984], we get 

510−≈Re , which is much lower than the critical Reynolds number for expulsion 

800≈cRe . Although the material in the bare cone can be seen to be expelled out from 

the gap, the possibility for the centrifugal expulsion can be ruled out since the Reynolds 

number is much lower than the critical Reynolds number for expulsion [Larson, 1992]. 

In figure (5.4) the ratio of first normal stress difference ( 1N ) and shear stress ( 12σ ) is 

plotted against the shear stress ( 12σ ). It can be seen that at the onset of distortion for 

the bare cone, 121 σN  increases sharply as compared to that for the coated cone. Such 

sharp increase in the slope for the bare cone can be related to the surface distortion 

phenomena (elasticity driven meniscus distortion) [Larson, 1992]. We believe that the 
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Figure 5.4 121 σN  vs shear stress ( 12σ ), plotted for the data shown in figure 5.1. It can 

be seen that at the onset of instability 121 σN  increases more rapidly for the bare cone 
than that for the coated cone. 
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Figure 5.5 Flow curves for coated and uncoated surfaces (cone and capillary die) at 
170oC. The flow curves obtained from an uncoated cone smoothly merge with those 
obtained from an uncoated capillary die. The flow curve for a coated cone overlaps with 
that for the uncoated cone up to the point of slip, after which the flow curve in the coated 
die is always below that for the uncoated die. 
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instability in bare cone is initiated by meniscus distortion resulting finally in expulsion 

and/or cracking at very high speeds. For the case of the coated cone, the slope of 121 σN  

curve at the point of instability is much smaller than that of bare fixtures and also the 

instability occurred at lower shear stress (or shear rate). Hence, we believe that the 

instability in the coated cone case is most probably driven by slip. 

 

As an independent conformation, we performed similar experiments on the capillary 

rheometer. Figure (5.5) shows the data at 170 0C obtained from a capillary rheometer 

(using coated and bare dies) and from cone and plate rheometer (using coated and bare 

cones). It can be seen that the stress at which the slip occurred on the coated cone is the 

same at which the flow curve for the coated extrusion die separated from the flow curve 

of the bare extrusion die. A similar separation of flow curves for coated and bare 

surfaces have been observed by Xing and Schreiber (1996) and by Koran and Dealy 

(1999).  

 

The above experimental observations lead us to believe that it is possible to measure the 

critical stress for slip due to adhesive failure by conducting controlled stress 

experiments on a fluoropolymer-coated cone. We have measured the critical stress for 

slip as a function of temperature. Figure (5.6) shows the shear stress plotted against 

shear rate for various temperatures. The critical wall shear stress is then plotted 

against temperature in figure (5.7). It can be seen that the critical stress for adhesive 

failure (slip) decreases with an increase in temperature. This temperature dependence 

of critical stress for coated surfaces is opposite to that observed by Wang and Drda 

(1996a) for uncoated steel dies. We believe that the results presented here are the first 

observations of temperature dependence of critical stress for slip occurring due to 

debonding. This observation provides further evidence that the temperature dependence 

of critical stress could indeed be used to discern the true mechanism of slip. 

 

Our unified slip model developed in the previous chapter predicts this behavior. The 

stress in the interfacial region (i.e, wall shear stress) in given by, 

e
e nkTn

g

fG
γφ=

γ
φ=σ )( 0

0
12         (5.2) 
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Figure 5.6 The plot inserted within the figure shows shear stress plotted against shear 
rate for the coated cone up to the point of instability (slip). 
 

1E+04

1E+05

420 430 440 450 460 470 480 490

Temperature (K)

C
ri

ti
ca

l 
S

h
ea

r 
S

tr
es

s 
(P

a
)

 

Figure 5.7 The critical stress for debonding is plotted against temperature. The points 
show experimental data, while the line shows the model prediction. The model 
parameters are, A =0.0025, adhE∆  = 2.921E-20 J/molecule, 0n =2.057E+26. In the 

interfacial region a =8.0, b =11.25.  
where  
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is the fractional surface coverage, adhE∆  is the adhesive energy, 122211 2)( σσ−σ=γ e  is 

the effective strain, ( )gfn =  are the number of entanglements per unit volume under 

flow normalized with respect to the equilibrium number of entanglements 0n , and f  

and g  are the rates of creation and the loss of entanglements given by, 

)exp( eaf γ=  , )exp( ebg γ=        (5.4) 

Here, A , a  and b  are adjustable model parameters. The effective strain eγ  is directly 

proportional to shear rate. We have shown that the stress-effective strain ( 12σ  vs. eγ ) 

curve shows a non-monotonic behavior due to either a decrease in φ  (i.e., debonding) or 

due to decrease in n  (i.e., disentanglement). The critical stress for slip can be calculated 

from the non-monotonic stress curve as the value of the maximum stress before it begins 

to decrease.  

 

The important model parameter in the unified model is the adhesive energy. The 

adhesive energy for the LLDPE-Teflon® system (the difference between polymer-metal 

work of adhesion and polymer-polymer work of cohesion) is known to be 9.3 dyne/cm 

[Anastasiadis and Hatzikirikos, 1998]. This adhesive energy is converted into 

(energy)/(adsorption junction) or (energy)/(adsorbed molecule) for the calculations of the 

unified model. The maximum shear-stress is calculated using equation (5.2) for various 

temperatures. Figure (5.6) shows a quantitative theoretical fit for the temperature 

dependence data observed experimentally in the case of coated surfaces. We have 

already shown in the previous chapter that the same unified model also predicts an 

increase in critical stress with temperature for slip occurring by disentanglement on 

high-energy surfaces (polyethylene on bare steel walls). Thus, the unified model 

provides the first successful prediction of the correct temperature dependence of critical 

stress for slip occurring due to disentanglement and due to debonding. 
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5.5 Conclusion 

 

We have presented an experimental verification of the temperature dependence of 

critical shear stress for slip when the operative mechanism is debonding. The critical 

stress for polyethylene slipping on fluoropolymer surfaces was found to decrease with 

increase in temperature, which is opposite to the increase in critical stress with 

temperature observed for polyethylene slipping on uncoated steel surfaces [Wang and 

Drda, 1996a]. The unified slip model proposed in chapter 4 predicts both the trends 

correctly by simply using the correct adhesive energy values for the two surface-polymer 

pairs. We have shown correctly for the first time that the temperature dependence of 

critical stress can be used to discern the true mechanism of wall-slip for any polymer-

wall pair. 



CHAPTER 6 

 

A MOLECULAR MODEL FOR WALL SLIP 

 

 

 

6.1 Introduction: 

 

The previous chapters have attempted to develop a simpler empirical model for 

predicting strong slip. The model is successful because it can predict many of the 

experimentally observed characteristics features of the stick-slip instability. 

Furthermore, the model elegantly unifies the two apparently different mechanisms of 

slip, debonding and disentanglement. A key physical insight into the development of the 

unified model is that it adopts the transient network formalism for describing the 

dynamics of entangled polymeric fluid and also that it intuitively proposes a different 

dynamics for polymer molecules near the wall compared to those in the bulk. 

Consequently, the major drawback of the unified model is that it is incapable of 

answering exactly why and how does the chain dynamics of polymer chains near the 

wall differ from the bulk chain dynamics. In order to answer these very important 

fundamental questions, one needs to understand the molecular picture; in other words, a 

molecular model is required. In this chapter, we propose a molecular model that is based 

on the tube model of entangled polymers. The molecular model is developed for an 

idealized and simplified picture of polymer chains end-tethered to the highly adhesive 

wall. The most important prediction of the model is that it identifies a key molecular 

relaxation process that is responsible for stick-slip. The model is fully predictive and 

requires no adjustable parameters. The only information required is purely molecular 

properties of the polymer. 

 

The Doi-Edwards tube model is undoubtedly the most successful molecular theory for 

polymeric liquids. In an entangled polymeric liquid, non-crosslinked polymeric chains 

form a fine mesh due to their entanglements with each other. The transient network 

formalism is one way of modeling this picture. In 1967, Edwards presented a different 

picture of the entangled system. He proposed that the molecule could be considered to be 

confined in a mesh of constraints posed by the surrounding molecules. Edwards called 
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this unique configuration of the molecule the primitive path and surrounding 

constraints to be the tube. A key advance in this concept came in a seminal paper by de 

Gennes in 1971. He proposed that the molecule can not move laterally due to constraints 

imposed by the tube, but imagined that the molecule can move to and fro along the 

contour of the tube made of crosslinked chains performing a one dimensional diffusion. 

He called this movement of the molecule along the contour of the tube as reptation. In a 

series of seminal papers Doi and Edwards generalized this idea to non-crosslinked, non-

permanent set of obstacles, a situation observed in entangled melts and solutions of 

linear flexible and rod like polymers [Doi and Edwards, 1978a, b, c, 1979]. This family of 

models is generally called the tube model. 

 

6.2 Background on Tube Model 

 

6.2.1 Doi-Edwards (DE) Theory 

 

The Doi-Edwards theory deals with the large-scale motions of linear chains in an 

entangled system. Each chain is confined in a tube. The centerline of the tube tracks the 

current chain conformation. The diameter of the tube is governed by the mesh size, and 

it is a mean distance the chain should move laterally to meet the constraint imposed by 

other entanglements. The centerline of the tube, the primitive path of the chain, is 

assumed to be a random walk sequence of 0N  steps with step length a . The mean 

square end-to-end distance 
0

2R  of the tube (chain) under equilibrium is then, 

2
00

2 aNR =           (6.1) 

aNL 00 =           (6.2) 

where 0L  is the contour length or path length of the tube. The step length of the 

primitive path ( a ) and the diameter of the tube are independent of chain length 

(molecular weight) and are comparable in magnitude. In the Doi-Edwards theory, they 

are taken to be equal to each other. It is assumed that the motion of center of gravity of 

the chain is governed by its diffusion along the curvature of the tube. When the chain 

end emerges out from the current tube, it takes an instantaneous random direction. The 

chain thus creates a new primitive path with random orientations at the emerging end 

vacating the currently occupied tube at the other end. The time required to vacate the 
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original tube is known as disentanglement time or the reptation time dτ  [Graessley, 

1982]. 

 

Consider the melt to be deformed rapidly such that the chains are stretched affinely and 

the stress is built up. Primarily the relaxation of stress occurs in two steps, retraction 

and reptation. Due to the possibility of movement along the contour of the tube, the 

molecule retracts quickly to achieve an equilibrium path length to relax its stress 

related to its stretch. Though the molecule regains its equilibrium contour length by 

retraction, it is still orientated in the direction of deformation and its end-to-end 

distance is higher that the equilibrium end-to-end distance, which contributes to the 

stress. The relaxation of this stress can be achieved by randomization of the orientation, 

which occurs through the process of reptation. The process of retraction is very fast as 

compared to the reptation and occurs over a time scale rτ  known as the Rouse 

relaxation time or retraction time. In the original theory of Doi and Edwards, the 

retraction process was ignored and the theory assumes a constant equilibrium path 

length. 

 

Consider a strand in the primitive path having a unit vector 
~
u . The expression for the 

stress tensor 
≈
σ  is written as, 

~~
0

~~
03 uuGuuTkcN B ==σ

≈
        (6.3) 

where c  is the number of chains per unit volume, Bk  is Boltzmann’s constant, T  is 

absolute temperature and 0G  is the elasticity modulus or Young’s modulus of the 

network. Now if an instantaneous deformation 
≈
E  is applied, the deformation will carry 

a vector 
~
u  into ( )

~
.uE

≈
 and consequently the stress tensor is given as, 

( )( )
~~

0 ..3 uEuETkcN B ≈≈≈
=σ         (6.4) 

It should be noted that for any 
≈
E , 

~
.uE

≈
>1. The retraction process is a fast process, 

which brings the number of monomers per unit length of the tube to its equilibrium 

value. The retraction of the chain brings its path length to an equilibrium value of 0L . It 

can be shown that the number of subchains decrease in the retraction process and 
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becomes 
1

~
0 .

−

≈
uEN  and the length of subchain increases to 

~
.uEa

≈
[Marrucci, 1984]. 

After the retraction the stress is given by [Marrucci, 1984], 

( )( )
≈

≈

≈≈

≈

≈
==σ QG

uE

uEuE

uE
G 0

~

~~

~

0

.

..

.

1
      (6.5) 

where 
≈
Q  is the geometric universal tensor. Further, ∫ ∫

π π

φθθ
π

=
2

0 0

sin
4

1
ddLL  and this 

averaging is to be performed over isotropic, equilibrium orientation distribution 

function. The second relaxation step occurs over a longer time and corresponds to 

randomization of the retracted chain through the reptation by vacating the deformed 

tube. 

 

Doi (1980b) considered a chain having a path length 0L , with 0s =0 at the center of the 

chain and 0s  varies from 20L−  at one end to 20L  to other end. Then the orientational 

order parameter tensor ),( 0 tsS
≈

 can be defined as, 

≈≈
−= ItswtswtsS

3

1
),(),(),( 0

~
0

~
0        (6.6) 

where ),( 0
~

tsw  is the unit vector of the segment at 0s  location along the chain, and 
≈
I  is 

the unit tensor. The macroscopic stress can be calculated from ),( 0 tsS
≈

 as, 

∫
−

≈≈
=σ

2/

2/

00
0

0
0

0

),()(
L

L

dstsS
L

G
t         (6.7) 

The orientational order parameter tensor ),( 0 tsS
≈

 may be expressed as [Doi, 1980b], 

[ ] tdttEQ
t

ttsG
tsS

t

′′
′∂

′∂
=

≈≈∞−
≈ ∫ ),(

),,(
),( 0

0        (6.8) 

),,( 0 ttsG ′  is the probability that the tube segment located at 0s  at time t ′  survives until 

time t y, (Doi, 

1980b; Marrucci, 1986)
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where the first term on the right is the diffusion term, which corresponds to Brownian 

motion between chain and tube. )( 22
0 drep LD τπ=  is the longitudinal diffusion coefficient 

of the chain. The diffusion term represents the reptation process by which the primitive 

chain escapes into the randomly oriented tube. The second term is the convective term 

and corresponds to the tangential motion of the tube relative to the center of the chain.  

 

),( 0 tsυ  is the pre-averaged tangential velocity and arises due to the continuous 

retraction of the chain under continuous deformation in direction towards the center of 

the chain. The boundary and initial conditions for equation (6.9) are, 

2
0),,(

1),(

0
00

0

L
satttsG

conditioninitialttwhentsG

±==′

′==

L

L
    (6.10) 

),( 0 tsυ  is given by, 

sdtsStts
s

′′κ=υ ∫ ≈≈

0

0

0 ),(:)(),(         (6.11) 

Since ),( 0 tsυ  is always positive for steady flow and 
0s

G

∂
∂

 is always negative the net 

effect of the convective term will be to suppress the reptative diffusion process [Mead et 

al., 1995; Mead and Leal, 1995]. The equations (6.7) to (6.11) form a set of equations, 

which form a constitutive model of Doi and Edwards. The original model of Doi and 

Edwards assumes independent alignment approximation (IAA), which allows the 

individual parts of the primitive chain to deform affinely. With IAA, ),( 0 tsυ =0 and the 

above equations are considerably simplified. The model requires only two parameters to 

be fitted independently that must be obtained from the rheological data. These 

parameters are the plateau modulus and the reptation time. The predictions of this 

model are exceptionally good for slow and small deformations. The most important 

prediction of the tube model is the molecular weight ( M ) dependence of the zero shear 

viscosity ( 0η ). The theory predicts the dependence to be 3
0 M∝η  in comparison with 

experimental observation 4.3
0 M∝η . The theory predicts non-linear relaxation modulus 

for linear molecules in excellent agreement with experiments. The Doi-Edwards 

equation poorly predicts the shear stress relaxation after a reversing double-step strain. 

The response improves considerably after removing independent alignment 

approximation [Doi, 1980a]. The model predicts overshoot in shear stress in the startup 
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of steady shear flow. The detailed list of various predictions of Doi-Edwards model can 

be found out elsewhere [Larson, 1988; Doi and Edwards, 1986]. 

 

An important failure of the model is that it predicts a severe shear-thinning behavior. 

The stress undergoes a maximum at a shear rate dτκ 1~12  and approaches zero at 

higher shear rate. In addition, though the model predicts shear stress over shoot in the 

startup of steady shear, the first normal stress difference increases monotonically with 

time and does not show any overshoot. Various other drawbacks of the model are 

discussed elsewhere [Larson, 1988; Mead et al., 1998]. One of the most important 

features of the Doi-Edwards model is that it considers relaxation of stretch and 

relaxation of orientation independently. As the model assumes the relaxation of stretch 

to occur over infinitesimal time, the chains can be considered to be orientated but not 

stretched in any flow situation. Although it is sufficient to assume a reptation-dominant 

stress relaxation mechanism for 112 ≤τκ d , the assumption fails for higher shear rates 

where chain stretching can occur. 

 

6.2.2 The tube model with chain stretching (DEMG Model) 

 

In 1988, Marrucci and Grizzuti accounted for local chain stretching and consequently 

the retraction process by considering new curvilinear co-ordinate ‘ s ’. As discussed 

earlier the curvilinear co-ordinate 0s , ( )22 000 LsL ≤≤−  spans the primitive chain at 

equilibrium. In the DEMG model, it is assumed that chain is now arbitrarily stretched 

and s , ( )22 LsL ≤≤−  spans the new co-ordinates of the chain. A material point of the 

chain originally located at 0s  has been displaced to s  and the function s ( 0s ) defines the 

deformation and can be obtained from [Marrucci and Grizzuti, 1988; Pearson et al., 

1991] 
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Due to incorporation of this effect, equations (6.7) and (6.11) get modified to, 

sdtsStts
s
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Thus equation (6.8) to (6.10), (6.12) and (6.15) constitute the set of equations for tube 

model with segmental stretch. In recognition of the contribution of Marrucci and 

Grizzuti for generalizing the Doi-Edwards model for segmental stretching the model is 

designated as the DEMG model. The incorporation of the stretching in the reptation 

model improves its response in the transient mode showing the overshoot for the first 

normal stress difference in startup of steady shear flow above shear rate 121~ κτ r . 

However, under the steady shear, the predictions of DEMG are as bad as DE (Doi-

Edwards) theory showing a maximum in shear stress. In DEMG model, q  does exceed 

unity initially after startup of a fast shearing flow and produces an overshoot in the first 

normal stress difference. However, the shear flow rotates the chain in the flow direction, 

which decreases the 12S , decreasing υ  and hence q  and stress collapses back towards  

the DE value. It is apparent from the DEMG theory that the reptation is dominant for 

shear rates 112 <τκ d  and the stretching is dominant (in transient flow) for shear rates 

112 >τκ r . This means for high molecular weight polymers ( rd τ>>τ ) there is a wide 

range of shear rates in the regime rd τ<κ<τ 11 12 , where the flow is not slow enough so 

that chain relaxes by reptation and not fast enough so as to stretch the chains. Hence, a 

non-linear relaxation mechanism must exist in the middle region of shear rates so that 

the shear stress increases monotonically with 12κ  as observed experimentally. 

 

Before the development of the systematic approach to incorporate chain stretching in 

the tube model by Marrucci and Grizzuti (1988) and Pearson et al. (1991), several 

tentative attempts to incorporate chain stretching have been made [Lin, 1985; McLeish 

and ball, 1986]. These models predicted a non-monotonic flow curve for steady shearing. 

Because of lack of knowledge of the relaxation mechanisms for the middle region 

( rd τ<κ<τ 11 12 ), such non-monotonic prediction was misunderstood for the cause of 

spurt effect. However, various experimental studies have now conformed the existence of 

monotonic shear stress-shear rate behavior over a broad range of shear rates [Mead et 

al., 1998; Bearcea et al., 1993]. Apart from the linear polymers, the tube stretching is 

also very important for branched polymers. In that case, the retraction of the cross bar 

that connects two branch points becomes very sluggish. This case is out of scope of 
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present work and discussion can be found elsewhere [McLeish and Larson, 1998; 

McLeish and Milner, 1999] 

 

6.2.3 Constraint release tube models 

 

In 1996, Marrucci introduced an important relaxation mechanism addressing the issue 

of the renewal of the topological obstacles by the relative motion among chains due to 

flow (convection). This mechanism is known as convective constraint release (CCR). 

CCR is expected to occur when the mesh of constraints is flowing faster than the 

primitive chain. Considering the fact that the two mechanisms of relaxation (reptation 

and CCR) operate in parallel, their frequencies must be summed to get the overall effect 

[Marrucci, 1996]. For steady state, Ianniruberto and Marrucci (1996) proposed that the 

overall relaxation time becomes, 

≈≈
σκβ+

τ
=

τ
:

11

d

         (6.16) 

where β  is an arbitrary parameter. Based on the concept of Marrucci, Mead et al. (1998) 

developed a most refined constitutive model that considers both CCR and chain end 

fluctuations. The importance of the fluctuations was been recognized by Doi (1981), 

when he showed that the molecular weight dependence of 0η  significantly improves 

after accounting for chain end fluctuations. Mead et al. (1998) accounted for all these 

effects and proposed a contour variable model. They corrected the equation (6.9) and 

(6.12) for CCR and chain end fluctuations as, 
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The second last term of equation (6.17) describes the effect of CCR on the orientation 

probability function, while the last term of equation (6.18) incorporates CCR into the 

equation for tube stretch. Both these terms are evaluated at the chain end, because 

constraints are released only when the end of a neighboring chain is convected through 
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the tube of the test chain. )(qf  is the switch function and that is used to reduce the 

dominance of the CCR, when the corresponding segment is stretched. Mead et al. (1998) 

proposed the self-consistent form of switch function, )exp( qf −= . The last term of 

equation (6.17) is the fluctuation term, where )( 0sξτ  is the fluctuation time and is given 

by, 







 ξϑ






 τ

=τξ
20

0 2
exp

4
)(

N
s r         (6.19) 

where Lss )(21 0−=ξ  and ϑ  was estimated to be ~1.5. Equations (6.7), (6.8), (6.10), 

(6.13) to (6.15) and (6.17) to (6.19) constitute the contour variable model [Mead et al., 

1998]. This model is able to predict most of the experimental observations, including the 

important steady state behavior, which shows a monotonic flow curve up to moderate 

eMM /  values. The model requires three parameters, plateau modulus 

[ 0
0 )4/15( GGN = ], reptation time ( dτ ) and retraction time )3( 0Ndr τ=τ , which can be 

calculated from viscometric data.  

 

Another mechanism of relaxation that is active at low shear rates is the constraint 

release (CR). The physical basis of this mechanism is as follows. If the chains 

constituting the tube reptate away creating a hole in the tube, the probe chain 

undergoes a large-scale lateral motion (jump) with respect to its backbone [Graessley, 

1982; Watanabe, 1999]. A series of such jumps provide a Rouse-like chain relaxation 

process, which is called constraint release. In the case of linear monodispersed 

entangled system, relaxation due to reptation always dominates over the relaxation due 

to constraint release. Hence, while modeling the dynamics of the monodispersed linear 

polymers the relaxation due to constraint release is often neglected. However, this 

becomes important for polydisperse polymers, blends and branched polymers for which 

there is a significant difference between the orientation relaxation time scales of 

different topological components of the fluid. 

 

Consider a long chain with 1N  segments embedded in a sea of shorter entangled chains 

with 2N  segments. The mean waiting time for the local jump is equal to the reptation 

time of the surrounding chain and can be written as )()( 2Nz dw τΛ=τ , where 

( )z
122π=Λ , and z  is the average number of constraints per cell. The constraint 
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release time scale is then given by 22
221 2),( πτ=τ NNN wCR [Graessley, 1982]. In the 

case of star–linear blend, the arms of the star cannot reptate and hence the dominant 

relaxation mechanism is CR. If the star arm has 1N  segments and is dissolved in a sea 

of linear polymer of 2N  segments, the constraint release relaxation time is given by 

( ) )(),min(),( 2
5.0

21
2

121 NNNNNN dcr τ≈τ −  provided 101 >N .  

 

If the probe chain with 1N  segments is small ( 101 <N ) and is embedded in a sea of 

chains having 2N  segments, then the surrounding 2N  chains behave as a permanent 

network. In this situation, the probe chain can renew its configurations only by 

retracting its tail in its own tube, which leads to exponentially long relaxation times 

[Ajdari, et al., 1994; Brochard et al., 1994]. This relaxation time for arm retraction is 

given by )exp()()( 11
1

11 vNNNN dAR τ≈τ − , where value ν  is of the order of unity. 

 

6.3 A molecular model development for slip 

 

On the basis of the various relaxation mechanisms discussed in the previous section, we 

will now develop a molecular theory for slip on a high adhesive wall. In a real extrusion 

system, polymer chains in the vicinity of a wall adsorb to form loops and tails, which are 

entangled with the free bulk chains. The bulk and the adsorbed chains have 

polydispersity in terms of molecular weights and loop sizes. In this section, we develop a 

tube model for the simplified case of monodispersed end-tethered molecules of N  

segments per molecule, which are entangled with monodispersed bulk chains of P  

segments per molecule. We will call the grafted wall region as the ‘interfacial’ region and 

the region away from the wall as the ‘bulk’. We restrict our model development to the 

mushroom regime at the wall in which the tethered chains do not overlap with each 

other. Thus, the tube constraining a tethered chain is formed only by the bulk chains. 

The P  chains of the bulk flow past the wall with a (unknown) slip velocity sV  as shown 

in figure (6.1a).  

 

The picture in figure (6.1a) is equivalent to the case of a probe chain that is pulled by 

one end at a velocity sV  through a stationary melt [Ajdari et al., 1994; Mhetar and 



 

 

125

 

Bulk chain of 
P segments

Tethered 
chain of N 
segments
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Vs

Wall

Bulk chain of 
P segments

Tethered 
chain of N 
segments

a
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Wall

Tube of tethered chain 
formed by entangled bulk 
chains

 
Figure 6.1a The bulk chains flowing with macroscopic velocity sV  are entangled with 

the tethered chains. The bulk chains form the tube of the tethered chains. 
 

Stationary 
tube

Vs

Tethered 
chain  

Figure 6.1b The probe chain (tethered chain) is pulled at one end (tethered end) with 
velocity sV  through the bulk chains. 
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Figure 6.1c A schematic showing the interfacial region of thickness 0R . The slip length 

BsVb κ=  can also be seen in the sketch. 
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Archer, 1998a] (see figure 6.1b). Whereas the bulk experiences a shear rate Bκ , the 

interfacial region experiences an effective shear rate Iκ  at the same wall shear stress. 

Depending on the magnitude of Iκ , a slip length b  can be defined as shown in figure 

(6.1c). We make an attempt to develop a tube model that can quantitatively predict the 

interfacial shear rate Iκ , the slip velocity sV  and the slip length b  at a given value of 

the bulk shear rate Bκ  (or wall shear stress) with the knowledge of only molecular 

parameters. 

 

To begin with, it must be noted that there are several important differences between the 

modes of stress relaxation in a flowing bulk chain and those in a stationary tethered 

chain. The relaxation mechanisms of a tethered chain are similar in many ways to those 

of an arm of a star polymer [Ajdari, et al., 1994]. Firstly, the dominant stress relaxation 

mechanism for a bulk chain at low shear rates is reptation, whereas a tethered chain 

cannot reptate at all. Secondly, constraint release (CR) becomes an important 

mechanism for relaxation of a tethered chain since the bulk chains, which form the tube 

of the tethered chain, can reptate and release the constraints on the tethered chain. This 

results in a local random jump in the conformation of the tethered chain [Graessley, 

1982], which relaxes its stress. On the other hand, the contribution of constraint release 

for monodispersed bulk chains is negligible [Marrucci, 1996]. Thus, the principle 

mechanism of stress relaxation for a tethered molecule at low shear rates ( 1
,

−τ<κ IcrI ) is 

constraint release, where Icr ,τ  is the tube renewal time due to CR of the tethered chains 

with N  segments by bulk chains with P  segments. 

 

In the shear rate range 1
,

1
,

−− τ>κ>τ IcrIIr , the dominant relaxation mechanism is CCR, 

where Ir ,τ  is the retraction time of the tethered chain. In the CCR mechanism, the 

constraints on a test chain are released when the end of the chain that forms the tube is 

convected through the tube of the test chain. The convection velocity is the same as the 

motion along the contour that sets in by the continuous retraction process discussed 

earlier. For the case of bulk chains, the CCR relaxation occurs over the time scale of the 

order )1( BO κ , where Bκ  is the bulk shear rate [Marrucci, 1996], which is the same 

time scale over which the bulk chain is being deformed by flow. Hence, the bulk chains 

can randomize the flow-induced orientation of other bulk chains by CCR. However, 

when the test chain is a tethered molecule in the mushroom regime, the rate at which 
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its constraints are released by CCR is determined by the convective velocity of the ends 

of the bulk chains, which form the tube of the tethered chain. Since the bulk chains 

experience a different shear rate Bκ , the CCR relaxation time scale for a tethered chain 

is of the order )1( BO κ . On the other hand, the time scale over which the tethered chain 

experiences deformation is of the order )1( IO κ . Thus, when BI κ>>κ , the tethered 

chains will preferentially orient in the flow direction. In other words, the subdued CCR 

in the vicinity of the wall is unable to prevent the orientation of the tethered chains. We 

postulate that this is the physical mechanism at a molecular level that is responsible for 

sudden orientation and slip. 

 

Above the shear rate 1
,~ −τκ IrI , the chain relaxes mainly by fluctuations and partly by 

retraction. The contribution to stress comes from chain stretching. Tethering at one end 

slows down the retraction process. The retraction time for a tethered chain is four times 

larger than that of a free chain of the same molecular weight [Graessley, 1982]. The 

frequency of fluctuations of the contour length is maximum at the free end and 

decreases inwards in such a way that there are no fluctuations at the tethered end. 

 

Thus, a deformed tethered chain can relax its stress by retraction, constraint release 

(CR), convective constraint release (CCR) and fluctuations. We will now apply the CV 

model to the interfacial region, which consists of tethered molecules grafted on the wall 

in the mushroom regime. Let the undeformed reference coordinate of the contour length 

of the tethered chain be 0s  with the first segment (tethered) at 00 =s  and the free end 

at ILs ,00 = , where IL ,0  is the equilibrium contour length of the tethered molecule. Let s  

be the contour length variable for deformed tethered chain, which varies from tethered 

end 0=s  to the free end ILs = . The segment renewal probability ),( θsGI  for the 

tethered chain at time θ  and at position s  under steady state flow is given by, 
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           (6.20) 

 

The first term on the right hand side of equation (6.20) indicates tube renewal by 

dominating relaxation model either CR or Arm retraction (AR) depending on the 
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molecular weight of the tethered chain. The diffusivity for the tethered chains can be 

written as [Watanabe, 1999] )(2 22
III LD τπ= . The dominating relaxation mode for 

cNN >  is CR so that IcrI ,τ=τ , i. e., the diffusion is controlled by CR process. For 

cNN <  the diffusion is due to arm retraction so that IARI ,τ=τ . For a tethered chain of 

N  segments entangled with bulk chain having P  segments, the CR time scale depends 

on the values of N  and P . The CR time scale for cNN >  is given by [Brochard-Wyart, 

et al., 1994, Ajdari et al., 1994] ( ) )(),min()( 5.02
, PNPNN dIcr τ≈τ − . For cNN < , arm 

retraction is dominant with a relaxation time given by )exp()()( 1
, vNNNN dIAR τ≈τ − , 

where dτ  is the reptation time of a free chain with N  segments and the numerical 

factor of v  is taken to be unity. The value of critical number of segments cN  does not 

exceed 10 [Brochard-Wyart, et al., 1994]. 

 

The second term in equation (6.20) indicates convection of the mesh relative to the chain 

at an average relative velocity )(1 sυ  between the chain and its mesh. The third term 

gives the tube renewal by CCR wherein the constraints on the tethered chain are 

released by convection of the chain end of bulk chains of contour length BL  at an 

average velocity 2υ  that arises due to continuous retraction. )(1 sυ  and 2υ  are 

defined later in equation (6.25) and equation (6.27). The last term is the fluctuation 

contribution to tube renewal, where )( 0, sIξτ  is the fluctuation time-scale, Iq  is the local 

stretch (
0ds

ds
q I = ) and )( Iqf  is the switch function. The fluctuation time-scale for the 

tethered chain is given by,  

( ) ( )2
, exp)(4)( IrI NNs ξϑτ=τξ        (6.21) 

where II Lss )(21 0−=ξ  and ϑ  is 1.5. The pre-factor of 4 multiplying the retraction 

time rτ  of N  chain accounts for the effect of tethering one end of the chain [Graessley, 

1982]. The switch function is used to reduce the dominance of the CCR, when the 

corresponding segment is stretched. We have used here the self-consistent switch 

function as described by Mead et al. (1998) namely 1)( −= II qqf . 

 

At steady state, the segmental stretch Iq  is given by, 
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where, II Lsatq ,001 == L  

In equation (6.22), ))(( 22
, NLD dINrep τπ=  is the reptative diffusion coefficient and 

)(Ndτ  ( ))(3 NN rτ=  is the reptation time of a free chain with N  segments. 

 

The initial and boundary conditions for the tube renewal probability in equation (6.20) 

can be arrived at from the following discussion. It can be seen from equation (6.21) that 

the magnitude of fluctuations decreases exponentially from the free end to the tethered 

end. Since the maximum fluctuations at the free end, do not allow the end-segment to 

remain in the tube, 0)( =θIG  at the free end. In addition, since the other tube renewal 

mechanisms namely, CR and CCR, are uniform over the entire tube length, while the 

fluctuations are negligible at the tethered end, the boundary condition at the tethered 

end should be 0
)(

0

=
θ

ds

dGI . Thus, 
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The net relative velocity between the segments of the tethered chain and its tube 

consists of two components, the one, which sets in due to the continuous retraction 

process, is given by, 

sdsSs
s

III ′′κ=υ ∫
≈≈ 0

0 )(:)(         (6.24) 

and the other, which arises from the macroscopic velocity sV  of the tethered chain 

relative to the stationary tube formed by bulk chains [see figure (6.1b)]. Since Iυ  is 

always positive [Mead et al., 1995], the direction of relative movement of the segments is 

always towards the tethered end, which is parallel to the direction of the slip velocity 

sV . Hence, the net average relative velocity between the tethered molecule and its mesh 

is given by, 
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)()( 001 sVs Is υ+=υ         (6.25) 

)(sS I ′
≈

 in equation (6.24) is the orientational order parameter tensor for the tethered 

chain and is given by,  
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Here )(θ
≈

IE  is the deformation tensor for the tethered chains, which for shear flow is 

given by θκ= IIE , 
≈
IQ  is the geometric universal tensor 
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= IuEuEuEuEQ IIIII , where  is the average over the 

isotropic distribution of unit vectors 
~
u  and 

≈
I  is the unit tensor. 

 

As discussed earlier, the CCR relaxation of tethered chains is determined by the velocity 

of the end segments of the bulk chain. This velocity is calculated by 

sdsSs
BL

BBB ′′κ=υ=υ ∫
≈≈

2

0

02 )(:)(        (6.27) 

where, the bulk shear rate Bκ  and the integral are to be calculated from the constitutive 

equation for bulk chains [Equations. (6.7), (6.8), (6.10), (6.13) to (6.15) and (6.17) to 

(6.19) discussed in the earlier section] at the same wall shear stress. 

 

Further, the shear stress in the interfacial region is given by,  
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where, 0
,ING  is the plateau modulus of the interfacial region at the wall. 

 

The calculation of the stress in the interfacial region from equation (6.28) requires an 

additional relationship between the slip velocity sV  and the effective shear rate 

experienced by the tethered molecules Iκ . We use a simple relationship in analogy to 

that proposed earlier by Wang (1999) [see figure (6.1c)], 

IIs RV κ= ,0           (6.29) 
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where, NaR I =,0  is equilibrium end-to-end distance of a tethered molecule, which is 

also equal to the thickness of the grafted layer on the wall in the mushroom regime 

[Leger et al., 1999]. This assumption can be expected to remain valid as long as the 

tethered chain does not stretch extensively. Thus, we can expect overprediction of sV  

after strong slip. 

 

Besides the slip velocity, one also requires knowledge of the plateau modulus of the 

interfacial region, which is expected to depend on the surface coverage of the tethered 

chains. Consider a small volume of height approximately equal to the entanglement 

spacing a  shown by the dotted lines in figure (6.1a). Let there be ν  chains grafted on 

this area such that the chains per unit area are area/ν=Σ . Then the number of 

entanglements (or segments) in this volume element of height a  is aa /area)  /( Σ=×ν . 

Consequently, the plateau modulus is given by 

RT
aN

G
A

o
iN

Σ
=,          (6.30) 

where, AN  is the Avogrado’s number, R  is the universal gas constant and T  is the 

absolute temperature. Substituting equation (6.30) into equation (6.28) gives, 
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Finally, the main equation that couples the dynamics of the interfacial and bulk regions 

is the continuity of shear stress between these regions. Thus, 

 

IB ,12,12 σσ =            (6.32) 

 

Equations, (6.7), (6.8), (6.10), (6.13) to (6.15) and (6.17) to (6.19) for bulk along with 

equations (6.20) to (6.32) for interfacial region form the complete set of coupled integro-

differential equations, which must be solved for predicting the flow curves of the 

tethered chains. The model parameters are: the number of entanglements per chain for 

the bulk molecules ( P ), the number of entanglements per chain for the tethered 

molecules ( N ), the reptation time ( dτ ) of the bulk chain, the plateau modulus of the 
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bulk ( 0
,BNG ) and the surface coverage ( Σ ). The first two parameters require the 

knowledge of entanglement molecular weight eM , which has been well documented in 

the literature [Durliat et al., 1997]. The next two parameters can be determined from 

independent rheological experiments and are also documented in the literature for 

several polymers [Fetters et al., 1994]. The last parameter ( Σ ) can be controlled by 

modifying the polymer-surface chemistry. The relationship between CR timescale and 

the reptation timescale has been discussed earlier. The retraction timescale for a free 

polymer chain can be estimated as )(3)( 1 NNN dr τ=τ − . All these timescales can also be 

found elsewhere [Ajdari, et al., 1994; Graessley, 1982, Brochard-Wyart, et al., 1994]. The 

wall shear stress in all of the calculations presented below has been non-

dimensionalized using the bulk plateau modulus. Similarly, the slip velocity has been 

non-dimensionalized using the reptation time of the bulk chain and the equilibrium 

contour length of the bulk chain unless specified otherwise. Thus, P , N  and Σ  are the 

only parameters required to obtain the solution. The set of equations for the steady 

shear flow of contour variable model as well as slip model along with the detailed 

procedure to solve both of them is described in Appendix II. 

 

6.4 Predictions: 

 

All calculations presented in this section have been carried out for the case of a 

Polydimethylsiloxane (PDMS) melt, for which very precise experimental data on wall-

slip is available from the recent work of Leger and co-workers (1996a, 1996b, 1999) and 

Durliat et al. (1997). From the experimental data of Leger and coworkers (1996a), the 

reptation time of PDMS chain having molecular weight 970,000 kg/kgmol is estimated 

to be 0.5632 sec. The plateau modulus of PDMS melt is known to be 0.18 MPa, its 

molecular weight between entanglements ( eM ) is 13522 kg/kgmol and the segment 

length between entanglements can be estimated to be nm 7.855=a [Fetters, et al., 1994]. 

 

6.4.1 Flow curves 

 

We will first examine the flow curves of the tethered chains and the influence of 

molecular weight of the tethered chain on the flow curves. In figure (6.2), the molecular 

weight of the bulk chain is kept constant while the molecular weight of the tethered 

chain is varied. The non-dimensional shear stress is plotted against non-dimensional 



 

 

133

 

 

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

D imensionless Slip Velocity

D
im

en
si

o
n

le
ss

 S
h

ea
r 

S
tr

es
s

)(

)(

0 PL

PV dsτ

P=72

N=18

N=10

N=9

N=7

N=12

N=5

 

Figure 6.2 Dimensionless shear stress is plotted against dimensionless slip velocity for 
various values of N  keeping P  constant. It can be seen that as N  decreases the 
severity of non-monotonicity and the jump in slip velocity decreases. 
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slip velocity in figure (6.2) for various values of N  while keeping constant 72=P  and 

surface coverage 217 1/m 103×=Σ . This choice of the surface coverage essentially renders 

the interfacial plateau modulus equal to that of the bulk and has been chosen arbitrarily 

to demonstrate the main predictions of the model. However, all of the trends in figure 

(6.2) are observed for other values of Σ  also. The flow curve for the bulk chains shows a 

slight non-monotonic nature for BrBBd ,, /1/1 τ<κ<τ  for high value P  [Mead et al., 

1998]. The small amount of non-monotonicity is in agreement with the nature of the CV 

model and indicates that a further relaxation mechanism is still missing in this shear 

rate range. An improvement of the CCR mechanism has been recently proposed 

[Ianniruberto and Marrucci, 2000], which is expected to make the flow curve fully 

monotonic. 

 

For the tethered chains, it can be seen that the shear stress becomes increasingly non-

monotonic as N  increases. This clearly implies that the instability in the net flow has 

its origin in the interfacial region close to the wall. The maximum in the flow curve 

corresponds to a critical wall shear stress and a critical slip velocity (or a corresponding 

critical shear rate) at which the instability sets in. Figures (6.2) further shows that the 

shear stress increases monotonically in the low shear rate region 

1,0,, <τ=τκ IIcrsIcrI RV , indicating that the deformed tethered chain relaxes faster (due 

to CR) than the rate at which it is deformed. In the high shear rate region above 

1~)( ,0, IIrs RV τ  the contour length of the chain starts increasing and consequently the 

stress increases monotonically with shear rate due to stretching. In the intermediate 

shear rate region, the shear stress becomes non-monotonic for high P  and N  values. In 

this region, the main relaxation mechanism is CCR. Clearly, the CCR is ineffective in 

completely randomizing the orientation of the tethered chains. This happens, as 

hypothised earlier, because the CCR time scale, which is determined by the retraction 

velocity of bulk chains, is longer than the time scale over which the tethered chains 

experience deformation ( 1/~/~ 2, >κκυκτκ BIBIICCRI L ). Thus, the subdued CCR 

relaxation of the tethered chains cannot prevent their flow-induced orientation above 

the critical shear rate. As a result, the bulk chains suddenly lose their entanglements 

with the tethered chains and slip with a high slip velocity.  

 

The critical shear stress at which the flow curve becomes non-monotonic decreases with 

increase in N  due to the slowing down of the AR relaxation with molecular weight. 
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However, this trend does not continue for large values of cNN >  when the CCR 

relaxation starts influencing the CR mechanism. For very small values of N  the 

fluctuations of the contour length also relax the orientation of the chain. The relaxation 

due to fluctuations is highly effective in low molecular weight chains compared to that in 

high molecular weight chains [Ianniruberto and Marrucci, 2000]. This means that the 

low molecular weight tethered chains are less susceptible to orientation than the higher 

molecular weight tethered chains. 

 

6.4.2. Scaling: 

 

If τ is a typical relaxation time of the tethered chain, then the orientation of the chain 

would begin when the Weissenberg number 1~τκ I . Thus, if the dominant relaxation 

mode were constraint release then  

13
5.13

5.0

,

2/12
2/12* ~~ −−=

τ
κ= NP

NP

NR
RV

ICR

o

Ios      (6.33) 

This scaling law demonstrated in figure (6.3a) for the case of 05.0/ 0
,

0
, =BNIN GG  and 

PN < , agrees with that predicted by the Brochard et al. (1996) scaling model. Leger et 

al. (1996b) have experimentally validated this scaling, although in their experiments 

PN ≥  for which the above scaling should in fact be replaced by 

5.15.2
25.2

5.0

,

2/12
2/12* ~~~ −−

τ
κ= NP

NP

NR
RV

ICR

o

Ios      (6.34) 

For the case of 10~cNN < , the arm retraction is dominating mode of relaxation 

[Brochard-Wyart, et al., 1994], and the scaling for the critical slip velocity can be given 

by 

N

N
I

o

Ios eN
eN

NR
RV −−

τ
κ= 5.1

2

5.0
2/12

2/12* ~~~      (6.35) 

For higher values of 0
,

0
, / BNIN GG  (i.e., for higher surface coverage) the dependence of the 

critical slip velocity on P  and N  becomes complicated as shown in figure (6.3b). This is 

possibly due to the combined effect of the different relaxation mechanisms, which 

interact to produce a scaling, that does not agree with any one of the specific relaxation 

mechanisms. 
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Figure 6.3 The critical slip velocity (at the onset of instability) is plotted against 
number segments of tethered and bulk chain for two plateau modulus ratios. (a) 

=0
,

0
, BNIN GG 0.05 and (b) =0

,
0

, BNIN GG 1. 
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6.4.3. Coil-to-stretch transition: 
 

In figure (6.4), we plot the shear stress and contour length of the tethered molecule 

against slip velocity for the case of 72=P  and 7=N . For simplicity, we divide the slip 

velocity in three regions, first in which the stress increases with slip velocity, the second, 

where the stress decreases with slip velocity, and the third, where the stress again 

increases with slip velocity. In the third region, the numerical scheme adopted in this 

work poses some difficulties with respect to convergence at high slip velocities due to the 

change in the nature of the partial differential equation (equation 6.20) from parabolic 

to hyperbolic. The dashed line in this region simply indicates the possible trend in the 

increase in shear stress at the high slip velocities. In a controlled stress extrusion 

experiment, the thick arrows shown in figure (6.4) indicate the hysteresis associated 

with the slip instability. For a rate-controlled extrusion process, the second region of 

negative slope will correspond to an unstable region, where flow and pressure 

oscillations are expected to prevail. It is interesting to see that in this region while the 

stress becomes non-monotonic, the contour length of the tethered molecule increases by 

a factor of only about two. In the first and second region, though the contour length of 

the tethered molecule does not increase, the end-to-end distance of the tethered chain 

should obviously increases with the orientation of the molecule. Thus, the jump in slip 

velocity is associated with a ‘coil-to-stretch’ transition in which the tethered chain 

suddenly increases its end-to-end distance at a critical shear stress without increasing 

its segmental contour length substantially. 

 

In figure (6.5) the shear component of the orientational order parameter tensor 12S  is 

plotted against the non-dimensionalized length scale along the segmental contour length 

00 Ls  for various locations 1 to 3 on the shear stress curve of figure (6.4). For the 

corresponding curves in figure (6.5), 12S  is always zero at 00 Ls = 1. This implies that 

the segmental orientation is always random at the chain end, which is due to the 

fluctuations of the last segments. For all the curves 1 to 3 in figure (6.5), the value of 12S  

increases towards the tethered end indicating that the orientation increases near the 

tethered end. Point 1 in figure (6.4) is in the region where AR is the dominating 

relaxation mechanism. The molecule has little orientation at this point and hence shows 

low values of 12S  in the corresponding curve in figure (6.5). At point 2, in figure (6.4) the 

value of 12S  attains a maximum at the tethered end, which consequently leads to the 
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Figure 6.4 Dimensionless shear stress and segmental contour length are plotted 
against dimensionless slip velocity for P =72 and N =7. The hysteresis loop in the 
stress-controlled mode can be seen. The part of the curve with a negative slope indicates 
instability 
 

 
Figure 6.5 The shear component of the orientational order parameter tensor is plotted 
against the segmental contour length variable. The curves 1 to 3 correspond to various 
locations described on the shear stress-slip velocity curve of figure (6.4). 
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maximum in stress. Further increase in shear rate after the stress maximum, 

corresponding to point 3 in figure (6.4), shows a decrease in the value of 12S  as seen in 

the curve 3 of figure (6.5). This implies a strong orientation of the segments near the 

tethered end. Any further increase in shear rate increases the contour length since 

1
,

−τ>κ IrI . This picture of the orientation of a tethered molecule is very similar to that 

proposed by Ajdari et al. (1994) and Mhetar and Archer (1998). 

 

6.4.4. Comparison with experimental data:  

 

We now compare the predictions of our model with the experimental data of Léger and 

coworkers (1996a, 1996b, 1999) and Durliat et al. (1997). These experiments were 

performed using monodispersed end-grafted PDMS chains of molecular weight 96000 

kg/kgmol that are grafted on a wall to give a surface coverage of 

16210 102.2 )105/(0055.0 ×=×=Σ −  chains/m2. The grafted wall is in contact with a 

monodispersed melt of molecular weight 970000 kg/kgmol. Velocities were measured at 

a distance of 70 nm from the wall, which is of the order of the end-to-end distance of the 

bulk chains 




 = nm 67

2/12
,BoR . The values of the various model parameters for PDMS 

have been listed earlier. At the experimental surface coverage of 16102.2 ×=Σ  

chains/m2, the interfacial plateau modulus takes the value of 0.0115 MPa according to 

equation (6.30).  

 

Figure (6.6) shows the slip length ( BsVb κ/= ) plotted against slip velocity for two 

values of the interfacial plateau modulus namely, 0115.00
, =ING  MPa and 

18.00
,

0
, == BNIN GG  MPa. The bulk shear rate is taken as that value which gives the 

same shear stress in the bulk as that in the interfacial region (equation 3.32). The points 

in figure (6.6) show the experimental data while the lines shows the tube model 

prediction for the two values of the interfacial plateau modulus. The present model 

substantially overpredicts the critical slip length if the interfacial plateau modulus 

value calculated from equation (6.30) were to be used. The slip length decreases as the 

interfacial plateau modulus increases. This is because as the number of entanglements 

in the interfacial region increase, the shear stress that can be borne by the tethered 

chains at a given slip velocity increases, thereby increasing the bulk shear rate and 
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consequently decreasing the slip length. Thus it appears that the actual number of 

entanglements in the interfacial region is far more than that calculated from equation 

(6.30). Another possible reason for the over prediction of slip length could be that the 

bulk rheological behavior of the slightly polydisperse PDMS of 72=P  might not be 

accurately predicted by CV model. Only the zero-shear viscosity data on this polymer 

was available, whereas for a fair comparison, complete rheogram would be needed. We 

proceed now assuming 0
,

0
, BNIN GG =  for which quantitative match to the experimental 

data is obtained before strong-slip. Above the critical slip velocity, the slip length is 

overpredicted by the model. The reason for this is most probably the fact that equation 

(6.29) is not expected to be valid after strong slip because of the strong orientation of the 

tethered molecules. 

 

The model prediction of the critical slip velocity in figure (6.6) has been corrected to 

account for the fact that the experimental data is actually for a case where the surface 

coverage is greater than the overlap coverage by a factor of 7. Even at this surface 

coverage, the bulk chains penetrate the grafted layer sufficiently to avoid entanglements 

between the tethered chains [Durliat et al., 1997; Léger et al., 1999]. In this region of 

surface coverage the critical slip velocity is known to increase linearly with the surface 

coverage, while the slip length essentially remains locked at the value corresponding to 

that at the overlap coverage [Durliat et al., 1997; Léger et al., 1999; Brochard-Wyart, et 

al., 1996]. The solid line in figure (6.6) shows the predictions of the model when 

extended to surface coverage above the overlap. Thus, the model almost quantitatively 

predicts the experimental critical slip velocity data.  

 

Another interesting feature of figure (6.6) is that the slip length before the critical slip 

velocity is of the order of 2 to 3 µ m, which when compared to the coil size of the tethered 

molecule m 0209.0
2/12

, µ=IoR , clearly indicates that the bulk chains have a finite non-

zero slip velocity even before the strong slip. Thus, there is a ‘weak-slip’ region before 

the strong-slip region such that the no-slip boundary condition fails even before the 

strong-slip sets in. This behavior is very similar to that observed recently by Munstedt et 

al. (2000) for the extrusion of polyethylene through a slit die.  
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Figure 6.6 Comparison of experimental data with model prediction. The experimental 
data is by Durliat et al., (1997) and is for PDMS melt with P ~72 and N ~7. The upper 
curve is corresponds to =0

,ING 0.0115 and =0
,

0
, BNIN GG 0.064 while for 0

,
0

, BNIN GG = , a 

good fit with the experimental data can be seen. 
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6.5 Conclusions and Discussions 

 

We have developed a molecular model for tethered chains in the mushroom region. The 

model predicts a discontinuous strong slip that arises from sudden disentanglement of 

the tethered chains from the flowing bulk chains. The formulation of the model is based 

on the contour variable tube model. We have considered all possible modes of the 

relaxation applicable to a tethered chain namely, constraint release, convective 

constraint release, fluctuations and retraction. The most important concept proposed in 

the model is that the tethered molecules experience a suppressed CCR relaxation; 

because of which they are easily oriented by shear flow above a critical shear rate and 

critical shear stress. This, we believe, is the main molecular mechanism that drives 

strong slip by sudden disentanglement and has not been recognized in any of the 

previous scaling models for slip. Our model also differs from previous scaling models by 

virtue of its potential ability to quantitatively predict slip parameters based solely on 

molecular information. 

 

There are several other important predictions of the model. The tendency to show stick-

slip instability increases with molecular weight of the bulk molecules and of the 

tethered molecules. Shorter tethered molecules do not orient easily compared to longer 

molecules. Thus, extrusion of a material containing small molecular weight chains or 

extrusion through a die coated with small chains will not show stick-slip instability. The 

scaling laws predicted by the model for the critical stress and the critical slip velocity 

agree with those predicted by the earlier scaling models. However, our model also 

predicts different scaling laws for cases of very low and very high N . The model predicts 

that the stick-slip transition is caused by a coil-to-stretch transition of the tethered 

molecules, which is also in agreement with the earlier scaling models [Brochard and de 

Gennes, 1992]. Our model quantitatively predicts the critical slip velocity at which 

strong slip occurs, but requires much larger number of entanglements per unit volume 

in the interfacial region in order to quantitatively match the experimental slip length in 

the weak-slip region. This issue needs further exploration. The model also predicts two 

regions for the slip length, a weak slip region for low shear rates and a strong-slip region 

for high shear rates. Thus, the model suggests that the conventional no-slip boundary 

condition may not be valid for a large range of extrusion shear rates. 
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Finally, it is important to mention the limits within which our present model is 

applicable. We have so far considered the specific case of monodispersed bulk and end-

tethered chains. In a real system, both the bulk and tethered chains would have a 

distribution in chain lengths. The relaxation due to CR and CCR would be faster in a 

polydisperse material due to presence of shorter chains. This would decrease the time-

scale for the randomization process of the tethered molecules and thereby prevent their 

orientation. Thus, polydispersity would decrease the non-monotonicity of flow curve as 

observed experimentally [Myerholtz, 1967]. A real system is further complicated by the 

fact that a single bulk molecule can tether to multiple sites on the solid wall, giving rise 

to loops and tails. We have not addressed the dynamics of the loops and their influence 

on slip in this paper. The present tube model needs to be further refined to account for 

polydispersity and dynamics of loops on slip. The present model also does not consider 

the effects of other molecular architectural parameters such as long-chain branching. 

We hope however, that the new molecular insights that we have provided in the wall 

slip phenomenon will stimulate further theoretical and experimental work to 

understand this phenomenon in complicated systems. 

 



CHAPTER 7 

 

SUMMARY AND CRITICAL EVALUATION OF THESIS 

 

 

 

In this work, we have proposed semi-empirical and molecular models to predict slip by 

disentanglement and debonding mechanisms. We believe that the spurt phenomenon is 

interfacial in nature and either the disentanglement or the debonding of the tethered 

chains at the interface is responsible for the same. In chapter 3 we developed a 

disentanglement model that is based on an empirical transient network (TN) theory. We 

divided the flow in a capillary (or in any shear flow geometry) into two regions namely, 

interfacial and bulk. The interfacial region is a layer of fluid immediately next to the 

solid boundary and having a width of chain dimensions. Entanglements between the 

tethered chains and bulk chains form a dynamic network near the wall. We solve the TN 

model independently in both the regions keeping the stress and the velocity continuity 

at the boundary of the two regions. We argue that the dynamics of adsorbed chains is 

different from that of the bulk molecules. We show that the transient network model 

predicts disentanglement of the adsorbed molecules from the bulk chains at a critical 

wall-shear stress. The model also successfully predicts a first order transition in the flow 

rate at the critical wall-shear stress. Further, it predicts a direct proportionality 

between the temperature and the critical wall-shear stress, which is similar to the 

prediction made by Brochard and de Gennes (1992). Finally, the model also predicts the 

diameter dependence of the flow curves, hysteresis and the possibility of periodic 

oscillations in flow rate and pressure during extrusion. We show that the model predicts 

wall slip in polymer melts as well as in concentrated solutions, thus unifying different 

systems showing slip. However, the model considers only the disentanglement of 

adsorbed chains, completely disregarding debonding. 

 

In chapter 4 we proposed a unified model that accounts for both disentanglement and 

debonding into one self-consistent mathematical framework. The activation processes of 

adsorption and desorption are considered to occur at the wall in parallel to the 

stretching of the adsorbed chains. The model predicts slip occurring by either 

mechanisms, debonding or disentanglement depending on the adhesive energy of the 
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wall-polymer pair. It is shown that the stick-slip transition occurs due to a local non-

monotonic flow behaviour near the wall irrespective of the mechanism of slip. The model 

predictions of the critical wall shear stress are in good agreement with experiments for 

various adhesive energies of wall polymer pair. The model further predicts that the 

temperature dependence of the critical wall shear stress for debonding is different than 

that of disentanglement mechanism under certain experimental conditions. The unified 

model encompasses different systems (viz. entangled solutions and melts) and diverse 

mechanisms (viz. disentanglement and debonding) under a common mathematical 

framework. To validate the predictions of unified model, we have measured the critical 

stress for sudden slip due to debonding at various temperatures using a cone and plate 

viscometer with fluoroelastomer-coated cone. This experimental investigation was 

presented in chapter 5. The temperature dependence of the critical stress for instability 

(slip) on a coated cone is found out to be inversely dependent on temperature. This is 

expected for the case of debonding, which is known to be an activation process. The 

unified slip model successfully predicts the observed temperature dependence 

quantitatively. 

 

The disentanglement and unified slip models are semi-empirical in nature and contain 

adjustable parameters arising from the phenomenological nature of the rates of creation 

and breakage of network. While this approach does not throw light on the fundamental 

issues regarding molecular dynamics of polymer chains near the wall, it has the 

inherent advantage of presenting a simpler constitutive equation that captures the 

essence of slip phenomena by either of the two physical mechanisms. Such a constitutive 

equation could be useful for providing numerical solutions to real engineering problems. 

Thus, while the unified model provides an “engineering model” that can be useful for 

predicting slipping flows, it is mainly a phenomenological model consisting of several 

model parameters that have to be determined through independent rheological 

experiments. It is desirable to develop a truly molecular model that can predict slip on 

the basis of only molecular information without the need for any other adjustable 

parameters. 

 

Using the tube theory of entangled polymeric liquids, we developed in chapter 6 a 

molecular model for tethered chains in the mushroom region. The tube model was 

developed on the basis of the contour variable model, which is a refined version of the 

original Doi-Edwards tube model. We consider all possible modes of the relaxation 
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applicable to a tethered chain namely, constraint release (CR), convective constraint 

release (CCR), fluctuations and retraction. The most important concept proposed in the 

model is that the tethered molecules experience a suppressed CCR relaxation; because 

of which they are easily oriented by shear flow above a critical shear rate and critical 

shear stress. The model predicts a discontinuous slip that arises from sudden 

disentanglement of the tethered chains from the flowing bulk chains. 

 

We show that the tendency to show stick-slip instability increases with molecular 

weight of the bulk molecules and of the tethered molecules. Shorter tethered molecules 

do not orient easily compared to longer molecules. For low values of the interfacial 

modulus the model predicts the critical slip velocity to be 14.3~ −∗ NPVs , where P  is the 

number of segments of the bulk molecule while N  is the number of segments of the 

tethered molecule. For the values of interfacial modulus comparable to bulk modulus the 

tube model predicts a more complicated scaling. The model predicts that the stick-slip 

transition is caused by a coil-to-stretch transition of the tethered molecules such that 

the end segments of the tethered chains are always more randomized compared to the 

tethered end. The critical stress is predicted to be directly proportional to the absolute 

temperature and the grafting density of tethered chains. All of these predictions are also 

in agreement with the earlier scaling models [Brochard and de Gennes, 1992]. The 

model also predicts two regions for the slip length, a weak slip region for low shear rates 

and a strong-slip region for high shear rates. Our model quantitatively predicts the 

critical slip velocity at which strong slip occurs, but requires much larger number of 

entanglements per unit volume in the interfacial region in order to quantitatively match 

the experimental slip length in the weak-slip region. 

 

The important characteristics of all these models that predict stick-slip instability is the 

existence of the local non-monotonic shear stress-slip velocity relationship. In case of 

disentanglement mechanism, the stretching (orientation) of the tethered molecules 

increases auto-catalyatically with stress to give rise to such non-monotonic relationship. 

While in the case of debonding, the sudden desorption of the tethered chains suddenly 

decrease the stress to give rise to such relationship. In the present work, we predict such 

relationship using both the approaches, empirical and molecular. 

 

The molecular model in this work has been developed for the simplest case of end-

grafted tethered chains at very small surface coverage (in the mushroom regime). 
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However, the model can, in principle, be extended to more realistic situations wherein 

the grafting density is high so that different tethered chains could entangle with each 

other, or could form loops and tails on the wall, or could be entangled with a 

polydisperse melt. These refinements are out of the scope of the present work and would 

naturally constitute a major part of a separate work. We hope that the new molecular 

insights proposed in this work will stimulate further theoretical and experimental work 

to understand this phenomenon in complicated systems. 
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APPENDIX I 

 

DERIVATION OF EQUATION (3.30)  

 

 

 

The constitutive equation for Transient Network model is given as, 
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From equation (AI.2) and (AI.3) it can be seen that 
g
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3322 . Inserting this in 

equation (AI.4) we get, 
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This can be written as, 
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g

x
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Now using equation (AI.5) and (AI.7) we get, 

g

f
eγ=σ*

12           (AI.8) 

Equation (AI.7) and (AI.8) give a final set of constitutive equations to be solved. 
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APPENDIX II 

 

SET OF EQUATION FOR CONTOUR VARIABLE AND SLIP 

MODEL AND PROCEDURE TO SOLVE THE SAME 

 

 

 

AII.1 Set of equations for Contour Variable model 

 

We present the set of equations of contour variable model for steady shear flow: For a 

detailed description of the equations, the reader is referred to the original CV model 

[Mead et al., 1998]. Under the steady state, the constitutive equation for shear stress 

12σ  consists of a set of coupled integro-differential equations given by, 
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In the above equations, subscript B  stands for bulk chains, the bulk molecule is 

assumed to have P  segments and hence ))(( 22
, PLD dBPrep τπ= is the longitudinal 

diffusivity of bulk chain, ),( θsGB is the segment renewal probability for the bulk chain 

at time θ  and at position s , o
BNG ,  is the high frequency plateau modulus of the bulk 

chains, aPL B =,0  is the equilibrium contour length of a bulk chain, a  is the tube 

diameter or the length of a segment, BS ,12  is the shear component of the orientational 
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order parameter tensor 
≈
BS , 0s  is the undeformed reference coordinate of the contour 

length ( 2/,00 BLs ±=  at the chain ends and 00 =s  at the center), s  is the reference 

coordinate of the deformed contour length, Bq  is the segmental stretch ratio 

( 0/ ssqB ∂∂= ). The continuous retraction velocity of a bulk chain along its contour 

directed towards its center is give by, 

sdsSsdsSs
s

BB

s

BBB ′′κ=′′κ=υ ∫∫
≈≈ 0

,12,12

0

)()(:)(       (AII.5) 

)(θ
≈
BE  is the deformation tensor for bulk chains, 

≈
BQ  is the geometric universal tensor 
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~~~~ ≈≈≈≈≈≈

−













= IuEuEuEuEQ BBBBB ,  is the average over the isotropic 

distribution of unit vectors 
~
u , 

≈
I  is the unit tensor, B,ξτ  is the fluctuation time scale of 

the bulk chains and is given by, 

( ) ( )2
, 5.0exp4)()( BrB PPs ξϑτ=τξ         (AII.6) 

where 
BB Ls21−=ξ , ϑ =1.5, )(Prτ  is the retraction time of the bulk chain with P  

segments. 

 

The initial and boundary conditions for the above equations (AII.2) and (AII.4) are, 
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We will now summarize the procedure to be followed to solve such set integro-

differential equations that also can be found elsewhere [Mead et al., 1998; Marrucci and 

Grizzuti, 1988; Mead et al., 1995; Mead and Leal, 1995]. For any given choice of shear 

rate B,12κ , BQ ,12  is calculated as a function of θ  for once and for all. After that the 

following trial-error loop is needed to be solved. 

1. Assign some value to )( 0,12 sS B  and consider 0ss = . 
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2. Calculate the value of )(sBυ  using equation (AII.5). 

3. Integrate equation (AII.2) for s  using tri-diagonal matrix system. 

4. Now using the corrected value of s  go to step 2 and then step 3 until s  

converges. 

5. Integrate equation (AII.4) to calculate ),( θsG . 

6. Using equation (AII.3) calculate BS ,12 , compare it with the assigned value in step 

1, if the error is not below the allowed limit, then start from step 1 with the 

corrected values of BS ,12 . Recycle the loop until BS ,12  converges. 

7. Using equation (AII.1) calculate the shear stress. 

 

AII.2 Set of equations for slip model 

 

The segment renewal probability is given by, 

)(

),(
),(2)(

),(
)(

),(),(

,

2
12

2

s

sG
sG

L
qf

s

sG
s

s

sG
D

sG

I

I
I

B
I

II
I

I

ξτ
θ

−θ






 υ
−

∂
θ∂

υ−
∂

θ∂
=

θ∂
θ∂

 (AII.8) 

where, )(2 22
III LD τπ= . 

cNN >  IcrI ,τ=τ ; ( ) )(),min()( 5.02
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( ) ( )2
, exp)()( IrI NNs ξϑτ=τξ         (AII.10) 

 

The boundary conditions for equations (AII.8) and (AII.9) are, 
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Description of various parameters can be seen in chapter 6. The procedure to solve the 

above slip model is similar to that of CV model but more complicated because of 

simultaneous solving of bulk as well as interfacial region at same stress. 

 

In the model described above the constitutive equations for the bulk and the interfacial 

regions are coupled. The coupling arises from the fact that the retraction velocity 

required for the CCR relaxation of tethered chains has to be calculated from the 

constitutive equation of bulk while simultaneously maintaining the stress continuity 

between the two regions. The numerical procedure required to solve the coupled 

equations is briefly described below. For a given value of Iκ , the value of shear stress in 

the interfacial region is initially predicted from equations (AII.8) to (AII.19) assuming 
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2υ =0. The equations (AII.8) to (AII.19) can be solved similar to that of CV model for 

bulk described in the earlier section. 2υ  is then calculated from the bulk constitutive 

equation at the same shear stress by inverting equations (AII.1) to (AII.7) numerically. 

Next, this value of 2υ  is now used to solve the constitutive equation for the interfacial 

region to predict a new value of the stress. This procedure is repeated until the shear 

stress and 2υ  converge between previous and current iterations. An alternative 

procedure would be to first choose a value of the bulk shear rate B,12κ  and calculate 2υ  

and stress in the bulk using equations (AII.1) to (AII.7). Next, the interfacial shear rate 

I,12κ  and consequently, the slip velocity, are calculated by using equations (AII.8) to 

(AII.19) for a range of values of B,12κ  and then predicting stress which then matches 

with that predicted by bulk equations. In either procedure a numerical inversion of the 

integro-differential equations is required. We find that the numerical scheme is robust 

until a high value of interfacial shear rate ( IrI ,,12 /1 τ>κ ) after which the convergence is 

seriously affected due to the change of the nature of equations from parabolic to 

hyperbolic. It is important to note that the input variables to the problem are either the 

bulk shear rate or the wall shear stress, while the predicted variables are the interfacial 

shear rate, the slip velocity and the slip length. Thus, the input variables are the same 

as the control variables used in extrusion (or simple shear) experiments and the 

predicted variables are the same as those measured from experiments. 
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APPENDIX III 

 

FORTRAN PROGRAMS 

 

 

 

AIII.1 Programs in chapter 3 
 

c MAIN1.FOR 
 
$debug 
 
c This is the main program to solve equation 3.30 (chapter 3) in the  
c capillary. The transient network model is solved in both annular wall  
c region and in the bulk independently. The variables f1f, f1g, t1, t2 are  
c the fitting parameters required to calculate the f and g functions from  
c equation 3.28 and 3.29 in the bulk domain. Similarly f1fw, f1gw, t1w, t2w  
c are for interfacial or wall domain. go is the network modulus and common  
c for both the domains. pu and pd are the maximum and minimum values of  
c shear stress on shear stress vs. effective strain (non-monotonic) plot.  
c gu and gd are the effective strain corresponding to pu and pd  
c respectively. These maximum and minimum values are obtained from the  
c program max-min.for 
 
        implicit double precision (a-h,o-z) 
        open(1,file='yerr1.inp') 
        open(2,file='yerr2.inp') 
        open(4,file='yerr3.inp') 
        open(3,file='yerr.dat') 
 
        read(1,*)go, f1f, f1g 
        read(1,*)t1, t2 
        read(2,*)go, f1fw, f1gw 
        read(2,*)t1w, t2w, r1, trzw 
 
c Subroutine trans if to find out values of gf and gg in such a way that  
c f1f and f1g are unity at gam=0 
 
        call trans(f1f, t1, gf) 
        call trans(f1g, t2, gg) 
 
        read(4,*)gu, pu 
        read(4,*)gd, pd 
        close(1) 
        close(2) 
 
        gam=0.0 
        n=0 
 
c r1 is the radius of the capillary and the trzw is wall shear stress 
        cc=trzw/r1 
 
c The system of equations for bulk region 
 
c r is the radial distance from center of the capillary 



 

 

155

  

        r=0.00 
        write(3,*) r, abs(gam) 
 5      n=n+1 
        write(*,*) n 
        nn=0 
        r=r1*n/100.0 
        if (n.eq.100) then 
        goto 15 
        else 
        endif 
        gaml=-0.00 
        ugam=-0.00-15000000. 
 10     nn=nn+1 
        call ct(ffl, gaml, go, f1f, f1g, t1, t2, r, cc, gg, gf) 
        call ct(ffu, ugam, go, f1f, f1g, t1, t2, r, cc, gg, gf) 
        ygam=(gaml+ugam)/2 
        call ct(ffm, ygam, go, f1f, f1g, t1, t2, r, cc, gg, gf) 
        if ((ffl*ffm).le.0) then 
        gaml=gaml 
        ugam=ygam 
        else 
        gaml=ygam 
        ugam=ugam 
        endif 
        ww=abs(ugam-gaml) 
        if (abs(ugam-gaml).le.1e-3) then 
        gam=(ugam+gaml)/2 
        write(3,*) r, abs(gam) 
        write(*,*) r 
        goto 5 
        else 
        if (((ffu.le.0).and.(ffl.le.0)).or.((ffu.ge.0).and.(ffl.ge.0))) 
     &  then 
        pause 
        else 
        endif 
        goto 10 
        endif 
 
c TN Equation system for interfacial domain of 1e-8 m thickness 
 
 15     n1=-1 
        r=(r1-1e-8) 
        gam=0.00 
        call trans(f1fw, t1w, gfw) 
        call trans(f1gw, t2w, ggw) 
 20     n1=n1+1 
 
        nn1=-1 
        cc1=cc*r1 
        r=r+(1e-8)*n1/4.0 
        if (cc1.lt.pd) then 
        gaml=-0.00 
        ugam=-gd 
        write(*,*)'RIGHT' 
        else 
        gaml=-gd 
        ugam=-gd-15000000. 
        write(*,*)'WRONG' 
        endif 
 25     nn1=nn1+1 
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        call ct(ffl, gaml, go, f1fw, f1gw, t1w, t2w, r, cc, ggw, gfw) 
        call ct(ffu, ugam, go, f1fw, f1gw, t1w, t2w, r, cc, ggw, gfw) 
        ygam=(gaml+ugam)/2 
        call ct(ffm, ygam, go, f1fw, f1gw, t1w, t2w, r, cc, ggw, gfw) 
        if ((ffl*ffm).le.0) then 
        gaml=gaml 
        ugam=ygam 
        else 
        gaml=ygam 
        ugam=ugam 
        endif 
        ww=abs(ugam-gaml) 
        if (ww.le.1e-3) then 
        gam=(ugam+gaml)/2 
        write(3,*) r, abs(gam) 
        if (r.ge.r1) goto 50 
        goto 20 
        else 
        goto 25 
        endif 
  50    stop 
        end 
 
 
        subroutine ct(ff, gam, go, f1f, f1g, t1, t2, r, cc, gx, gy) 
        implicit double precision (a-h,o-z) 
        gamy=abs(gam)+gy 
        call errorf(gamy, erf, t1) 
        f=f1f*(1+erf)/2. 
        gamx=abs(gam)+gx 
        call errorf(gamx, erf, t2) 
        g=f1g*(1+erf)/2. 
        ff=(cc*r*g)+gam*go*f 
        return 
        end 
 
 
c The subroutine to calculate the error function 
 
        subroutine errorf(game, erf, t) 
        implicit double precision (a-h,o-z) 
        if (game.lt.0.0) then 
        i11=0 
        else 
        i11=1 
        endif 
        x=abs(game)/(2*sqrt(t)) 
        tni=(exp(-((0)**2))+exp(-(x**2)))*0.5 
        xx=0 
 9      if (abs(xx-x).le.1e-3) goto 10 
        xx=xx+x/10000.0 
        tni=tni+exp(-(xx**2)) 
        goto 9 
 10     tni=tni*x/10000.0 
        erf=2*tni/(sqrt(3.14159265359)) 
        if (i11.eq.0) then 
        erf=-erf 
        game=-abs(game) 
        else 
        endif 
        return 
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        end 
 
 
        subroutine trans(f1, t, g) 
        implicit double precision (a-h,o-z) 
        tt1=-0 
        tt2=-1500000000.0 
        call errorf(tt1, erf, t) 
        ff1=(2/f1)-1-erf 
        call errorf(tt2, erf, t) 
        ff2=(2/f1)-1-erf 
  1     ttm=(tt1+tt2)/2.0 
        call errorf(ttm, erf, t) 
        ffm=(2/f1)-1-erf 
        if ((ff1*ffm).lt.0) then 
        tt2=ttm 
        ff2=ffm 
        else 
        tt1=ttm 
        ff1=ffm 
        endif 
        if (abs(tt1-tt2).le.1e-6) then 
        ttm=(tt1+tt2)/2 
        g=ttm 
        else 
        goto 1 
        endif 
        return 
        end 
 

 
c MAX-MIN.FOR 
 
$debug 
 
c Program to evaluate a maximum and minimum in the effective strain and  
c shear stress plot. a is effective strain while b is shear stress. c and d  
c are dummy variables. 
        
   implicit double precision (a-h, o-z) 
        dimension a(805), b(805) 
        open(1,file='fg.dat') 
        open(2,file='yerr3.inp') 
        do i=1,802 
        read(1,99) a(i), b(i), c, d 
        enddo 
 99     format(4(e12.5,1x)) 
        do i=2,801 
        if (b(i).lt.b(i-1)) goto 10 
        enddo 
  10    l=i 
        if (i.ge.801) goto 40 
        do j=l, 801 
        write(*,*) b(j), b(j-1) 
        if (b(j).gt.b(j-1)) goto 20 
        enddo 
  20    m=j 
        write(2,*) a(l), b(l) 
        write(2,*) a(m), b(m) 
        close(2) 
  40    stop 
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        end 
 

 
c MAIN2.FOR 
 
$debug 
         
c Main program 2 which solves equation 3.31 in capillary geometry. 
c Program variables and subroutines are same as that in MAIN1.FOR 
c tlam is the relaxation time (lambda), v(i) is velocity 
c rr is the radius of the capillary, q is flow rate 
c (4.0*q/(3.14159265359*(r1**3))) is apparent shear rate 
 
        implicit double precision (a-h,o-z) 
        dimension v(120), gam(120), r(120) 
        open(1,file='yerr.dat') 
        open(2,file='velo.dat') 
        open(4,file='yerr2.inp') 
        open(5,file='yerr1.inp') 
        read(4,*)go, f1fw, f1gw 
        read(4,*)t1w, t2w, r1, trzw 
        read(5,*)go, f1f, f1g 
        read(5,*)t1, t2 
        close(5) 
        close(4) 
        tlam=8.5 
        do i=1,104 
        read(1,*) r(i), gam(i) 
        enddo 
        dr=abs(r(10)-r(11)) 
        rr=dr*100.0 
        we=tlam 
        dr1=0.25*1e-8 
        v(104)=0. 
        write(2,*) r(104), v(104), v(104) 
 
        call trans(f1gw, t2w, gg) 
        write(*,*) gg 
        do i=104,102,-1 
        call gv(gam(i-1), g, f1gw, gg, t2w) 
        der=(gam(i-1))*g/we 
        write(*,*) i, der 
        v(i-1)=v(i)+dr1*der 
        enddo 
 
        call trans(f1g, t2, gg) 
        do i=101,2,-1 
        call gv(gam(i-1), g, f1g, gg, t2) 
        der=(gam(i-1))*g/we 
        v(i-1)=v(i)+dr*der 
        write(*,*) r(i-1), der 
        enddo 
        do i=103, 1,-1 
        write(2,*) r(i), v(i)/v(1), v(i) 
        enddo 
        close(1) 
        close(2) 
 
c subroutine flowr performs an integration on v(i) to calculate  
c the flow rate. 
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        call flowr(v, r, q) 
        write(*,*) q, trzw, (4.0*q/(3.14159265359*(r1**3))) 
        stop 
        end 
 
 
        subroutine errorf(game, erf, t) 
        implicit double precision (a-h,o-z) 
        if (game.lt.0.0) then 
        i11=0 
        else 
        i11=1 
        endif 
        x=abs(game)/(2*sqrt(t)) 
        tni=(exp(-((0)**2))+exp(-(x**2)))*0.5 
        xx=0 
 9      if (abs(xx-x).le.1e-3) goto 10 
        xx=xx+x/10000.0 
        tni=tni+exp(-(xx**2)) 
        goto 9 
 10     tni=tni*x/10000.0 
        erf=2*tni/(sqrt(3.14159265359)) 
        if (i11.eq.0) then 
        erf=-erf 
        game=-abs(game) 
        else 
        endif 
        return 
        end 
 
 
        subroutine gv(gam, g, f1g, gg, t) 
        implicit double precision (a-h,o-z) 
        gamx=gam+gg 
        call errorf(gamx, erf, t) 
        g=f1g*(1+erf)/2. 
        return 
        end 
 
 
        subroutine trans(f1, t, g) 
        implicit double precision (a-h,o-z) 
        tt1=-0 
        tt2=-1500000000.0 
        call errorf(tt1, erf, t) 
        ff1=(2/f1)-1-erf 
        call errorf(tt2, erf, t) 
        ff2=(2/f1)-1-erf 
  1     ttm=(tt1+tt2)/2.0 
        call errorf(ttm, erf, t) 
        ffm=(2/f1)-1-erf 
        if ((ff1*ffm).lt.0) then 
        tt2=ttm 
        ff2=ffm 
        else 
        tt1=ttm 
        ff1=ffm 
        endif 
        if (abs(tt1-tt2).le.1e-6) then 
        ttm=(tt1+tt2)/2 
        g=ttm 
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        write(*,*)'#######@@@@@@@@@$$$$$$$$ CONGRATS ' 
        else 
        goto 1 
        endif 
        return 
        end 
 
 
        subroutine flowr(v, r, q) 
c Simpson’s rule is used to integrate velocity to calculate flow rate. 
        implicit double precision (a-h,o-z) 
        dimension v(120), r(120) 
        q1=(r(104)*v(104)+r(101)*v(101))/2. 
        q1=q1+r(103)*v(103)+r(102)*v(102) 
        q1=0.25*(1e-8)*2.*q1*3.14159265359 
        q2=(r(101)*v(101)+r(1)*v(1))/2. 
        do i=2,100 
        q2=q2+r(i)*v(i) 
        enddo 
        q2=q2*abs(r(10)-r(11))*2.*3.14159265359 
        q=q1+q2 
        return 
        end 
 

 
AIII.2 Programs in chapter 6 
 
 
c QO.FOR 
$debug 
 
c This program calculates shear component geometric universal tensor using  
c equation (6.5). st is the time variable.  
 
        open(1, file='qo.inp') 
c For time t=0 to t=0.1, dt is taken to be 1e-4, while time t=0.1 to t=100 
c dt is taken to be 0.01 
 
        do 1 ixi=1, 1000 
        st=(ixi-1)*1e-4 
        pi=3.14159265359 
        gg1=0.0 
        gg2=0.0 
 
        do 12 j=2,100 
        x=(j-1)*pi/100. 
        a=((sin(x))**2)*cos(x) 
        b=st*((cos(x))**2)*sin(x) 
        c=st*sin(2.*x) 
        d=1.+((st*cos(x))**2) 
        ff1=sqrt(d) 
        ff2=b/sqrt(d) 
        do 22 jj=2,100 
        si=sin(2*(jj-1)*pi/100.) 
        f1=sqrt(c*si+d) 
        ff1=ff1+f1 
        f2=(a*si+b)/f1 
        ff2=ff2+f2 
 22     enddo 
        ff1=ff1*(pi/50.) 
        ff2=ff2*(pi/50.) 
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c        write(*,*) ff1, ff2, x/pi 
        gg1=gg1+(sin(x))*ff1 
        gg2=gg2+ff2 
 12     enddo 
        gg1=gg1*pi/100.0 
        gg1=gg1/(4.*pi) 
        gg2=gg2*pi/100.0 
        gg2=gg2/(4.*pi) 
 
        q=gg2/gg1 
        write(*,*) st, q 
        write(1,*) q 
 1      enddo 
 
        do 21 ixi=10, 10000 
        st=0.01*(ixi+1) 
        pi=3.14159265359 
        gg1=0.0 
        gg2=0.0 
        do 102 j=2,100 
        x=(j-1)*pi/100. 
        a=((sin(x))**2)*cos(x) 
        b=st*((cos(x))**2)*sin(x) 
        c=st*sin(2.*x) 
        d=1.+((st*cos(x))**2) 
        ff1=sqrt(d) 
        ff2=b/sqrt(d) 
        do 202 jj=2,100 
        si=sin(2*(jj-1)*pi/100.) 
        f1=sqrt(c*si+d) 
        ff1=ff1+f1 
        f2=(a*si+b)/f1 
        ff2=ff2+f2 
 202    enddo 
        ff1=ff1*(pi/50.) 
        ff2=ff2*(pi/50.) 
        gg1=gg1+(sin(x))*ff1 
        gg2=gg2+ff2 
 102   enddo 
 
        gg1=gg1*pi/100.0 
        gg1=gg1/(4.*pi) 
        gg2=gg2*pi/100.0 
        gg2=gg2/(4.*pi) 
 
        q=gg2/gg1 
        write(*,*) st, q 
        write(1,*) q 
 21     enddo 
        stop 
        end 
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c BULK.FOR 
 
$debug 
c Program to solve the Contour Variable Model (Bulk flow) 
c This is set of equations AII.1 to AII.7 
c s0 is the undeformed length scale along the tube contour 
c s is the deformed length scale along the tube contour 
c q=ds/ds0; scap and stot are shear component of the orientational 
c order parameter tensors, qq=dq/ds0 
c pp is the ratio of retraction time to reptation time 
c q0 is the shear component of geometric universal tensor 
 
        parameter (n=101) 
        dimension s0(n),q(n),scap(n),stot(n),v(n),g(n),sp(n),pg(n) 
        dimension a(n), b(n), c(n), r(n), q0(11000), gg(n), s(n), qd(n) 
        dimension qq(n), ftz(n) 
 
        open(2, file='qo.inp') 
        open(4, file='bulk.dat') 
        open(3, file='conv.dat') 
 
c Reading a file containing shear component of geometric universal tensor. 
        do i=1, 10992 
        read(2,*) q0(i) 
        enddo 
 
c chk and chk1 are the permissible errors used for convergence 
        chk=1e-4 
        chk1=1e-5 
 
        do i=1,n 
        stot(i)=0.0 
        s0(i)=0.5*((i-1.)/(n-1.)) 
        s(i)=s0(i) 
        enddo 
 
c segn is the number of segments in a linear chain of the bulk 
        pp=(1./(3.*segn.)) 
         
c g is the segmental renewal probability and i is the spatial co-ordinate  
c on the chain, i=n corresponds to chain end while i=0 corresponds to  
c the center of the chain 
        do i=1,n 
        g(i)=1.0 
        q(i)=1.0 
        enddo 
        g(n)=0.0 
 
        pi2=9.869604401089 
        ds0=0.5/(n-1.) 
 
c wi is the Weissenberg number based on constraint release time scale 
c scap and stot are shear component of orientational order parameter tensor 
c scap is the previous value while stot is the current value 
        i=10 
        do 1102 n101=-3, -3 
        do 1100 n102=0, 9 
        j3j=0 
        wi=10.0**(n101+(n102/10.0)) 
 1000   write(*,*) abs(scap(i)-stot(i)), i, j3j 
        j3j=j3j+1 
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        do 32 ii=1, n 
        scap(ii)=stot(ii) 
        stot(ii)=0 
  32    enddo 
 
        j1j=0 
 
 1111   do i=1,n 
        qd(i)=q(i) 
        enddo 
        j1j=j1j+1 
        s(1)=0 
 
c v is the convection velocity and can be estimated using equation AII.5 
c Simpson’s rule is used to perform an integration 
        v(1)=0 
        do i=2,n 
        v(i)=v(i-1)+ds0*(qd(i-1)*scap(i-1)+qd(i)*scap(i))/2.0 
        enddo 
 
c Calculation of stretch s wrt s0. The code for solving equation AII.2 
c Equation AII.2 is discritised in such way that it can solved using 
c tridigonal system. a, b, c and r are variable constructed to solve 
c tridiagonal matrix system 
 
 2222   sm=s(n) 
        do i=1,n-2 
        a(i)=1.0 
        c(i)=1.0 
        b(i)=-2.0-(ds0**2.)*0.5*pi2*wi*pp*(v(n)/(s(n))) 
        r(i)=0.-(ds0**2.)*pi2*wi*pp*v(i+1) 
     &  -(ds0**2.)*0.5*pi2*wi*pp*(v(n)/(s(n)))*s0(i+1) 
        enddo 
        r(n-2)=r(n-2)-ds0 
        b(n-2)=b(n-2)+1.0 
        call tridag(a, b, c, r, sp, n-2) 
        s(1)=0.0 
        do i=2, n-1 
        s(i)=sp(i-1) 
        enddo 
        s(n)=s(n-1)+ds0 
c        write(*,*) abs(s(n)-sm) 
 
        if (abs(s(n)-sm).gt.1e-5) goto 2222 
        q(n)=1.0 
        qq(1)=0 
        do i=2, n-1 
        q(i)=(s(i)-s(i-1))/ds0 
        enddo 
        q(1)=q(2) 
        if (j1j.gt.50) chk1=5e-3 
        if (j1j.gt.150) chk1=5e-2 
        if (j1j.gt.250) goto 37 
        do i=1,n 
        if (abs(q(i)-qd(i)).gt.chk1) then 
c        write(*,*) 'abs(qd(i)-q(i)), i', abs(qd(i)-q(i)),i,qd(i),q(i) 
        goto 1111 
        else  
        endif 
        enddo 
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 37     do i=1, n-1 
        qq(i+1)=(q(i+1)-q(i))/ds0 
        enddo 
 
c To calculate fluctuation timescale 
        do i=1,n 
        ptz=4.0*exp(0.0-(0.25/pp)*((1.-(s(i)/s(n)))**2)) 
        ftz(i)=ptz/(wi*pp) 
        enddo 
 
c To calculate memory function g(i); i:space; j: time. g is calculated 
c using equation AII.4. This equation is also discritised so as to  
c solve by tridigonal system. 
c As mentioned in program qo.for, for time t=0 to t=0.1, dt is taken to be 
c 1e-4, while time t=0.1 to t=100, dt is taken to be 0.01 
        dt=1e-4 
        alp=dt/(ds0**2.0) 
        beta=dt/ds0 
 
        do 101 i=2, n-1 
        a(i-1)=-(alp/(2.*wi*pi2*(q(i)**2.)))-(beta* 
     &  ((qq(i)/(wi*pi2*(q(i)**3.)))+ (v(i)/q(i)))/4.) 
        c(i-1)=a(i-1)+(beta*((qq(i)/(wi*pi2*(q(i) 
     &  **3.)))+ (v(i)/q(i)))/2.) 
        b(i-1)=1.-a(i-1)-c(i-1) 
        b(i-1)=b(i-1)+dt*0.5*((1./q(i))*(v(n)/s(n))+ftz(i)) 
  101   enddo 
        b(1)=b(1)+a(1) 
 
        do 4 j=1, 1000 
 
        if (j.eq.1) then 
        do i=1,n 
        g(i)=1.0 
        enddo 
        g(n)=0 
        else 
        endif 
 
        do i=1,n 
        pg(i)=g(i) 
        enddo 
 
        do 6 i=2, n-1 
        r(i-1)=(1-alp/ 
     &   (wi*(q(i)**2)*pi2))*pg(i)+((alp/(2.*wi*(q(i)**2)*pi2))+ 
     &  (beta*((qq(i)/(wi*pi2*(q(i)**3.)))+ (v(i)/q(i)))/4.))*pg(i-1)+ 
     &  ((alp/(2.*wi*(q(i)**2)*pi2))- 
     &  (beta*((qq(i)/(wi*pi2*(q(i)*3.)))+ (v(i)/q(i)))/4.))*pg(i+1) 
        r(i-1)=r(i-1)-dt*0.5*((1./q(i))*(v(n)/s(n))+ftz(i))*pg(i) 
  6     enddo 
 
        call tridag(a, b, c, r, gg, n-2) 
        g(n)=0.0 
        do 7 i=1,n-2 
        g(i+1)=gg(i) 
        stot(i+1)=stot(i+1)-(g(i+1)-pg(i+1))*q0(j+1) 
  7     enddo 
        g(1)=g(2) 
        stot(1)=stot(1)-(g(1)-pg(1))*q0(j+1) 
  4     enddo 
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        do i=1,n 
        stot(i)=stot(i)+(g(i)-pg(i))*q0(1001)/2. 
     &  -100.0*(g(i)-pg(i))*q0(1001)/2. 
        enddo 
 
        dt=0.01 
        alp=dt/(ds0**2.0) 
        beta=dt/ds0 
 
        do 106 i=2, n-1 
        a(i-1)=-(alp/(2.*wi*pi2*(q(i)**2.)))-(beta* 
     &  ((qq(i)/(wi*pi2*(q(i)**3.)))+ (v(i)/q(i)))/4.) 
        c(i-1)=a(i-1)+(beta*((qq(i)/(wi*pi2*(q(i) 
     &  **3.)))+ (v(i)/q(i)))/2.) 
        b(i-1)=1.-a(i-1)-c(i-1) 
        b(i-1)=b(i-1)+dt*0.5*((1./q(i))*(v(n)/s(n))+ftz(i)) 
  106   enddo 
        b(1)=b(1)+a(1) 
 
        do 14 j=1001, 10991 
 
        do i=1,n 
        pg(i)=g(i) 
        enddo 
 
        do 16 i=2, n-1 
        r(i-1)=(1-alp/ 
     &   (wi*(q(i)**2)*pi2))*pg(i)+((alp/(2.*wi*(q(i)**2)*pi2))+ 
     &  (beta*((qq(i)/(wi*pi2*(q(i)**3.)))+ (v(i)/q(i)))/4.))*pg(i-1)+ 
     &  ((alp/(2.*wi*(q(i)**2)*pi2))- 
     &  (beta*((qq(i)/(wi*pi2*(q(i)*3.)))+ (v(i)/q(i)))/4.))*pg(i+1) 
        r(i-1)=r(i-1)-dt*0.5*((1./q(i))*(v(n)/s(n))+ftz(i))*pg(i) 
  16    enddo 
 
        call tridag(a, b, c, r, gg, n-2) 
        g(n)=0.0 
        do 17 i=1,n-2 
        g(i+1)=gg(i) 
        stot(i+1)=stot(i+1)-(g(i+1)-pg(i+1))*q0(j+1) 
  17    enddo 
        g(1)=g(2) 
        stot(1)=stot(1)-(g(1)-pg(1))*q0(j+1) 
        if (abs(g(n/2)-pg(n/2)).lt.1e-12) goto 98 
  14    enddo 
 
        do i=1,n 
        stot(i)=stot(i)+(g(i)-pg(i))*q0(9992)/2. 
        enddo 
  98    if (j3j.eq.20) goto 35 
        do 33 i=1,n 
        if (abs(scap(i)-stot(i)).gt.chk) goto 1000 
  33    enddo 
  35    chk=scap(1)*1.e-2 
        if (chk.lt.1e-5) chk=1e-5 
 
        write(*,*) scap 
        str=(stot(1)*(q(1)**2.)+stot(n)*(q(n)**2.))/2.0 
        do i=2,n-1 
        str=str+stot(i)*(q(i)**2.) 
        enddo 
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c Calculation of stress 
        stress=(15./2.)*str*ds0 
        write(4,*) wi, stress 
        write(3,*) wi,  stress, v(n) 
        write(*,*) wi, stress 
        if (n101.eq.3) goto 1102 
 1100   enddo 
 1102   enddo 
 
        stop 
        end 
          
 
c Subroutine for solving a program for solving the tridigonal matrix system 
        subroutine tridag(a, b, c, r, u, n) 
c        implicit double precision (a-h,o-z)  
        real a(501), b(501), c(501), r(501), u(501), gam (501) 
        if (b(1).eq.0)pause 'tridag failed 1' 
        bet=b(1) 
        u(1)=r(1)/bet 
        do 1 i=2,n 
        gam(i)=c(i-1)/bet 
        bet=b(i)-a(i)*gam(i) 
        if (bet.eq.0)pause 'tridag failed 2' 
        u(i)=(r(i)-a(i)*u(i-1))/bet 
 1      enddo 
 
        do i=n-1, 1, -1 
        u(i)=u(i)-gam(i+1)*u(i+1) 
        enddo 
        return 
        end 
 

 
c INTERFACIAL.FOR 
c This program is to solve contour variable model for the interfacial  
c region. This is set of equations AII.8 to AII.19. Various variables used  
c in this program are identical to that in the earlier program BULK.FOR. 
c  
$debug 
        implicit double precision (a-h,o-z) 
        parameter (n=101) 
        dimension s0(n),q(n),scap(n),stot(n),v(n),g(n),sp(n),pg(n) 
        dimension a(n), b(n), c(n), r(n), q0(11000), gg(n), s(n), qd(n) 
        dimension qq(n), ftz(n) 
        open(2, file='qo.inp') 
        open(3, file='sl.dat') 
        open(4, file='INTERFACIAL.dat') 
 
c Reading a file containing shear component of geometric universal tensor. 
        do i=1, 10992 
        read(2,*) q0(i) 
        enddo 
 
c rat is the ratio of interfacial modulus to bulk modulus 
        rat=1.0 
 
c chk and chk1 are the permissible errors used for convergence 
        chk=1e-6 
        chk1=1e-5 
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        do i=1,n 
        stot(i)=0.0 
        s0(i)=((i-1.)/(n-1.)) 
        s(i)=s0(i) 
        enddo 
        pp=90. 
        p=54. 
c p is the number of segments of tethered chain while pp is that of bulk 
        pt=pp/p 
        fac=(p**(-0.9))*(pp**3.4) 
        e=0.75*(pp**3.4)/(p**(0.9)) 
 
c g is the segmental renewal probability and i is the spatial co-ordinate  
c on the chain, i=n corresponds to chain end while i=0 corresponds to  
c tethered end 
        do i=1,n 
        g(i)=1.0 
        q(i)=1.0 
        enddo 
        g(n)=0.0 
 
        pi2=9.869604401089 
        ds0=1.0/(n-1.) 
        alp1=2.*(p**1.5) 
 
c vss and vss1 is the convection velocity given by equation (AII.17) 
        vss=1.0 
        i=10 
        do 1102 n101=-1,0 
        do 1100 n102=0,9 
        j3j=0 
 
c wi is the Weissenberg number based on constraint release time scale 
c scap and stot are shear component of orientational order parameter tensor 
c scap is the previous value while stot is the current value 
 
        wi=10.0**(n101+(n102/10.0)) 
        stress1=0 
 1000   write(*,*) abs(scap(i)-stot(i)), i, j3j, chk 
        j3j=j3j+1 
        vss=abs(vss) 
        do 32 ii=1, n 
        scap(ii)=stot(ii) 
        stot(ii)=0 
  32    enddo 
        j1j=0 
 
 1111   do i=1,n 
        qd(i)=q(i) 
        enddo 
 
        j1j=j1j+1 
        s(1)=0 
 
2222   sm=s(n) 
 
c v is the convection velocity and can be estimated using equation AII.14 
c Simpson’s rule is used to perform an integration 
        v(1)=1.0/sqrt(p) 
        do i=2,n 
        v(i)=v(i-1)+ds0*(qd(i-1)*scap(i-1)+qd(i)*scap(i))/2.0 
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        enddo 
 
c To calculate stretch s wrt s0. The code for solving equation AII.9 
c Equation AII.9 is discritised in such way that it can solved using 
c tridigonal system. a, b, c and r are variable constructed to solve 
c tridiagonal matrix system 
 
c       To calculate stretch s wrt s0 
        do i=1,n-2 
        a(i)=1.0 
        c(i)=1.0 
        b(i)=-2.0-(ds0**2.)*pi2*wi*(vss*alp1/s(n))/(6.*fac) 
        r(i)=0.-(ds0**2.)*pi2*wi*v(i+1)/(3.*fac) 
     &  -(ds0**2.)*pi2*wi*(vss*alp1/s(n))*s0(i+1)/(6.*fac) 
        enddo 
        r(n-2)=r(n-2)-ds0 
        b(n-2)=b(n-2)+1.0 
        call tridag(a, b, c, r, sp, n-2) 
        s(1)=0.0 
        do i=2, n-1 
        s(i)=sp(i-1) 
        enddo 
        s(n)=s(n-1)+ds0 
 
        if (abs(s(n)-sm).gt.1e-5) goto 2222 
        q(n)=1.0 
        qq(1)=0 
        do i=2, n-1 
        q(i)=(s(i)-s(i-1))/ds0 
        enddo 
        q(1)=q(2) 
        if (j1j.gt.50) chk1=5e-3 
        if (j1j.gt.150) chk1=5e-2 
        if (j1j.gt.250) goto 37 
        do i=1,n 
        if (abs(q(i)-qd(i)).gt.chk1) then 
c        write(*,*) 'abs(qd(i)-q(i)), i', abs(qd(i)-q(i)),i,qd(i),q(i) 
        goto 1111 
        else  
        endif 
        enddo 
 37     do i=1, n-1 
        qq(i+1)=(q(i+1)-q(i))/ds0 
        enddo 
 
c To calculate fluctuation timescale (equation AII.10) 
 
        do i=1,n 
        ptz=exp(0.0-(1.5*p)*((1.-(s(i)/s(n)))**2)) 
        ftz(i)=e*ptz/wi 
        enddo 
 
c To calculate memory function g(i); i:space; j: time. g is calculated 
c using equation AII.8. This equation is also discritised so as to  
c solve by tridigonal system. 
c As mentioned in program qo.for, for time t=0 to t=0.1, dt is taken to be 
c 1e-4, while time t=0.1 to t=100, dt is taken to be 0.01 
 
        dt=1e-4 
        alp=2.*dt/(ds0**2.0) 
        beta=dt/ds0 
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        do 101 i=2, n-1 
        a(i-1)=-(alp/(2.*wi*pi2*(q(i)**2.)))-(beta* 
     &  ((qq(i)/(wi*pi2*(q(i)**3.)))+ (v(i)/q(i)))/4.) 
        c(i-1)=a(i-1)+(beta*((qq(i)/(wi*pi2*(q(i) 
     &  **3.)))+ (v(i)/q(i)))/2.) 
        b(i-1)=1.-a(i-1)-c(i-1) 
        b(i-1)=b(i-1)+dt*((1./q(i))*(vss*alp1/s(n))+ftz(i)) 
  101   enddo 
        b(1)=b(1)+a(1) 
 
        do 4 j=1, 1000 
 
        if (j.eq.1) then 
        do i=1,n 
        g(i)=1.0 
        enddo 
        g(n)=0 
        else 
        endif 
 
        do i=1,n 
        pg(i)=g(i) 
        enddo 
 
        do 6 i=2, n-1 
        r(i-1)=(1-alp/ 
     &  (wi*(q(i)**2)*pi2))*pg(i)+((alp/(2.*wi*(q(i)**2)*pi2))+(beta* 
     &  ((qq(i)/(wi*pi2*(q(i)**3.)))+(v(i)/q(i)))/4.))*pg(i-1)+ 
     &  ((alp/(2.*wi*(q(i)**2)*pi2))-(beta*((qq(i)/(wi*pi2*(q(i)*3.))) 
     &  + (v(i)/q(i)))/4.))*pg(i+1) 
        r(i-1)=r(i-1)-dt*((1./q(i))*(vss*alp1/s(n))+ftz(i))*pg(i) 
  6     enddo 
 
        call tridag(a, b, c, r, gg, n-2) 
        g(n)=0.0 
        do 7 i=1,n-2 
        g(i+1)=gg(i) 
        stot(i+1)=stot(i+1)-(g(i+1)-pg(i+1))*q0(j+1) 
  7     enddo 
        g(1)=g(2) 
        stot(1)=stot(1)-(g(1)-pg(1))*q0(j+1) 
  4     enddo 
 
        do i=1,n 
        stot(i)=stot(i)+(g(i)-pg(i))*q0(1001)/2. 
     &  -100.0*(g(i)-pg(i))*q0(1001)/2. 
        enddo 
 
        dt=0.01 
        alp=2.*dt/(ds0**2.0) 
        beta=dt/ds0 
 
        do 106 i=2, n-1 
        a(i-1)=-(alp/(2.*wi*pi2*(q(i)**2.)))-(beta* 
     &  ((qq(i)/(wi*pi2*(q(i)**3.)))+ (v(i)/q(i)))/4.) 
        c(i-1)=a(i-1)+(beta*((qq(i)/(wi*pi2*(q(i) 
     &  **3.)))+ (v(i)/q(i)))/2.) 
        b(i-1)=1.-a(i-1)-c(i-1) 
        b(i-1)=b(i-1)+dt*((1./q(i))*(vss*alp1/s(n))+ftz(i)) 
  106   enddo 
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        b(1)=b(1)+a(1) 
 
        do 14 j=1001, 10991 
 
        do i=1,n 
        pg(i)=g(i) 
        enddo 
 
        do 16 i=2, n-1 
        r(i-1)=(1-alp/ 
     &  (wi*(q(i)**2)*pi2))*pg(i)+((alp/(2.*wi*(q(i)**2)*pi2))+(beta* 
     &  ((qq(i)/(wi*pi2*(q(i)**3.)))+(v(i)/q(i)))/4.))*pg(i-1)+ 
     &  ((alp/(2.*wi*(q(i)**2)*pi2))-(beta*((qq(i)/(wi*pi2*(q(i)*3.))) 
     &  + (v(i)/q(i)))/4.))*pg(i+1) 
        r(i-1)=r(i-1)-dt*((1./q(i))*(vss*alp1/s(n))+ftz(i))*pg(i) 
  16    enddo 
 
        call tridag(a, b, c, r, gg, n-2) 
        g(n)=0.0 
        do 17 i=1,n-2 
        g(i+1)=gg(i) 
        stot(i+1)=stot(i+1)-(g(i+1)-pg(i+1))*q0(j+1) 
  17    enddo 
        g(1)=g(2) 
        stot(1)=stot(1)-(g(1)-pg(1))*q0(j+1) 
        if (abs(g(n/2)-pg(n/2)).lt.1e-12) goto 98 
  14    enddo 
 
        do i=1,n 
        stot(i)=stot(i)+(g(i)-pg(i))*q0(10992)/2. 
        enddo 
  98    if (j3j.eq.20) goto 35 
        do 33 i=1,n 
        if (abs(scap(i)-stot(i)).gt.chk) goto 1000 
  33    enddo 
  35    chk=scap(1)*1.e-3 
        if (chk.lt.1e-6) chk=1e-6 
 
        do i=1,n 
        if (stot(i).lt.0.0) stot(i)=0.0 
        enddo 
        write(*,*) stot 
 
        str=(stot(1)*(q(1)**2.)+stot(n)*(q(n)**2.))/2.0 
        do i=2,n-1 
        str=str+stot(i)*(q(i)**2.) 
        enddo 
        vs=wi*v(1)/(pp*sqrt(p)) 
 
c Calculation of stress 
 
        stress=(15./4.)*str*ds0 
        write(*,*) wi, vs, stress, s(n) 
 
        call correction(rat*stress, rate, vss1) 
 
        vss1=vss1*rate/wi 
        if (abs(stress-stress1).gt.1e-5) then 
        stress1=stress 
        if (j3j.gt.100) goto 1121 
        vss=vss1 
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        goto 1000 
        else 
        endif 
 
        write(4,99) wi, vs, rat*stress, s(n) 
        write(3,*) vs, vs/rate 
 
 1100   enddo 
 1102   enddo 
 99     format(4(e12.5,1x)) 
 1121   stop 
        end 
 
        subroutine tridag(a, b, c, r, u, n) 
        implicit double precision (a-h,o-z)  
        dimension a(501), b(501), c(501), r(501), u(501), gam (501) 
        if (b(1).eq.0)pause 'tridag failed 1' 
        bet=b(1) 
        u(1)=r(1)/bet 
        do 1 i=2,n 
        gam(i)=c(i-1)/bet 
        bet=b(i)-a(i)*gam(i) 
        if (bet.eq.0)pause 'tridag failed 2' 
        u(i)=(r(i)-a(i)*u(i-1))/bet 
 1      enddo 
 
        do i=n-1, 1, -1 
        u(i)=u(i)-gam(i+1)*u(i+1) 
        enddo 
        return 
        end 
 
c Subroutine correction connects system if equations for bulk and system of 
c equations for interfacial region through equation AII.17 
c This subroutine calculates a convection velocity of chain in the bulk to  
c be used in the system of equations for interfacial region as a CCR  
c velocity at the same shear stress 
 
        subroutine correction(stress, rate, velo) 
        implicit double precision (a-h,o-z) 
        parameter (m=52) 
        dimension str2(m), str3(m), gam1(m), gam(m), con1(m), con(m) 
        open(1, file='conv90.dat') 
 
        do i=1, 51 
        read(1,*) gam1(i), str3(i), con1(i) 
        enddo 
        str2(1)=str3(1) 
        gam(1)=gam1(1) 
        con(1)=con1(1) 
        l=1 
        j=1 
 3      j=j+1 
        if (j.gt.m) goto 4 
        if (str2(l).lt.str3(j)) then 
        l=l+1 
        str2(l)=str3(j) 
        gam(l)=gam1(j) 
        con(l)=con1(j) 
        goto 3 
        else 
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        goto 3 
        endif 
 4      if (stress.gt.str2(l)) pause 
 
        if (stress.lt.str2(1)) then 
        rate=gam(1)+(stress-str2(1)) 
     &   *((gam(2)-gam(1))/(str2(2)-str2(1))) 
        velo=con(1)+(stress-str2(1)) 
     &   *((con(2)-con(1))/(str2(2)-str2(1))) 
        else 
        endif 
 
        j=1 
 6      if (stress.gt.str2(j+1)) then 
        j=j+1 
        goto 6 
        else 
        rate=gam(j)+(stress-str2(j)) 
     &   *((gam(j+1)-gam(j))/(str2(j+1)-str2(j))) 
        velo=con(j)+(stress-str2(j)) 
     &   *((con(j+1)-con(j))/(str2(j+1)-str2(j))) 
        endif 
        close(1) 
        return 
        end 
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SUMMARY 

 

 

 

In this work, we present various semi-empirical as well as molecular models to predict 

slip by disentanglement and debonding mechanisms. We believe that the spurt 

phenomenon is interfacial in nature and either the disentanglement or the debonding of 

the tethered chains at the interface is responsible for the same. We initially propose a 

disentanglement model that is based on transient network (TN) theory. We divide a 

capillary (or any shear flow geometry) into two regions namely, interfacial and bulk. The 

interfacial region is at the solid boundary having a width of molecular dimension. A 

dynamic network near the wall is formed by entanglements between tethered chains 

and bulk chains. We solve the TN model independently in both the regions keeping the 

stress and the velocity continuity at the boundary of both the regions. We argue that the 

dynamics of adsorbed chains is different from that of the bulk molecules. We show that 

the transient network model predicts disentanglement of the adsorbed molecules from 

the bulk chains at a critical wall-shear stress. The model also successfully predicts a 

first order transition in the flow rate at the critical wall-shear stress. Further, it predicts 

a direct proportionality between the temperature and the critical wall-shear stress, 

which is similar to the prediction made by Brochard and de Gennes (1992). Finally, the 

model also predicts the diameter dependence of the flow curves, hysteresis and the 

possibility of fluctuations in flow rate and pressure during extrusion. We show that the 

model predicts wall slip in polymer melts as well as solutions, thus unifying different 

systems showing the slip. However, the model considers the slip solely by the 

disentanglement of adsorbed chains, completely disregarding debonding.  

 

We then propose a unified model that accounts for both disentanglement and debonding 

into one self-consistent mathematical framework. The activation processes of adsorption 

and desorption are considered to occur at the wall in parallel to the stretching of the 

adsorbed chains. The model predicts the slip by either mechanism, debonding or 

disentanglement depending on the adhesive energy of the wall-polymer pair. It is shown 

that the stick-slip transition occurs due to the local non-monotonic flow behaviour near 

the wall irrespective of the mechanism of slip. The model predictions of the critical wall 

shear stress are in good agreement with experiments for various adhesive energies of 

wall polymer pair. The model further predicts that the temperature dependence of the 
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critical wall shear stress for debonding is different than that of disentanglement 

mechanism under certain experimental conditions. The unified model encompasses 

different systems (viz. entangled solutions and melts) and diverse mechanisms (viz. 

disentanglement and debonding) in a common mathematical framework. To validate the 

predictions of unified model, we measure the critical stress for sudden slip due to 

debonding for various temperatures using cone and plate viscometer with 

fluoroelastomer-coated cone. The temperature dependence of the critical stress for 

instability (slip) on a coated cone is found out to be inversely dependent on temperature. 

This is expected for the case of debonding, which is known to be an activation process. 

The unified slip model successfully predicts the observed temperature dependence 

quantitatively. 

 

Both these models (disentanglement and debonding) developed using TN theory are 

semi-empirical in nature and contains adjustable parameters arising from the 

phenomenological nature of the rates of creation and breakage of network. While this 

approach does not throw light on the details of molecular dynamics of polymer chains 

near the wall, it has the inherent advantage of presenting a simpler constitutive 

equation that captures the essence of slip phenomena by either of the two physical 

mechanisms. Such a constitutive equation could be useful for providing numerical 

solutions to real engineering problems. While the unified model provides an 

“engineering model” that can be useful for predicting slipping flows, it is mainly a 

phenomenological model consisting of several model parameters that have to be 

determined through independent rheological experiments. It is desirable to develop a 

truly molecular model that can predict slip on the basis of only molecular parameters 

and no other adjustable parameters. 

 

Using the tube theory of entangled polymeric liquid, we develop a molecular model for 

tethered chains in the mushroom region. We make use of the contour variable tube 

model, which is the most refined version in the series of the tube models. We consider all 

possible modes of the relaxation applicable to a tethered chain namely, constraint 

release (CR), convective constraint release (CCR), fluctuations and retraction. The most 

important concept proposed in the model is that the tethered molecules experience a 

suppressed CCR relaxation; because of which they are easily oriented by shear flow 

above a critical shear rate and critical shear stress. The model predicts a discontinuous 
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slip that arises from sudden disentanglement of the tethered chains from the flowing 

bulk chains. 

 

We show that the tendency to show stick-slip instability increases with molecular 

weight of the bulk molecules and of the tethered molecules. Shorter tethered molecules 

do not orient easily compared to longer molecules. And hence the die having small 

tethered chains will not show the transition. For low values of the interfacial modulus 

the model predicts the critical slip velocity to be 14.3~ −∗ NPVs , where P  is number of 

segments in the bulk molecule while N  is number of segments in the tethered molecule, 

which is in agreement with previous models. But for the values of interfacial modulus 

comparable to bulk modulus model predicts complicated scaling. The model further 

predicts that the stick-slip transition is caused by a coil-to-stretch transition of the 

tethered molecules, which is also in agreement with the earlier scaling models 

[Brochard and de Gennes, 1992]. The model also predicts two regions for the slip length, 

a weak slip region for low shear rates and a strong-slip region for high shear rates. Our 

model quantitatively predicts the critical slip velocity at which strong slip occurs, but 

requires much larger number of entanglements per unit volume in the interfacial region 

in order to quantitatively match the experimental slip length in the weak-slip region. 

We hope that the new molecular insights proposed in this work will stimulate further 

theoretical and experimental work to understand this phenomenon in complicated 

systems.  
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ABSTRACT 

 

Commercial plastic extrusion processes are severely limited by the occurrence of 

instabilities above a critical production rate. There are different types of instabilities 

observed in an extrusion process. In this work, we are primarily concerned with the 

stick-slip instability, which occurs above a critical wall shear stress during extrusion 

and is characterized by fluctuations in flow rate and pressure drop as well as the 

bamboo-like distorted extrudate surface. The stick-slip instability is believed to occur 

because of a sudden slip of the polymer chains at the die wall either due to 

disentanglement or debonding mechanism. In this work we attempt to theoretically 

understand this phenomenon through empirical and molecular models. 

 

Initially, we use the framework a transient network theory, which is suitable for 

describing dynamics of entangled liquids to model the slip phenomenon. We consider the 

case of polymers flowing over a high adhesive energy surface. We argue that the 

dynamics of chain entanglement and disentanglement at the wall is different from that 

in the bulk. We show that the severe disentanglement in the interfacial region can give 

rise to non-monotonic flow curve locally in that region. This model can predict all 

features of wall slip such as discontinuous increase in flow rate, diameter dependent 

flow curves, hysteresis and the possibility of pressure and flow rate oscillations. 

 

Next, we generalize the above model into a unified slip model, which predicts wall slip 

by either disentanglement or by debonding mechanism, depending upon the adhesive 

energy of the wall-polymer pair. The model predictions of the critical wall shear stress 

are in good agreement with experiments for various adhesive energies of the wall-

polymer pair. The model predicts that the temperature dependence of the critical wall 

shear stress for debonding is different than that of disentanglement mechanism under 

certain experimental conditions. To validate the predictions of unified model, we 

measure the critical stress for sudden slip due to debonding for various temperatures 

using cone and plate viscometer with fluoroelastomer-coated cone. The temperature 

dependence of the critical stress for instability (slip) on a coated cone is found out to be 

inversely dependent on temperature, which expected for the case of debonding. 

 

While the phenomenological models developed in the first part of this work are able to 

predict various macroscopic experimental observations of slip, it is desirable to 
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understand the key molecular dynamics that are responsible for slip. Towards this end 

we develop, in the final part of this thesis, a parameter-free tube model for predicting 

the stick-slip phenomenon. The model, which is based on the contour variable model 

[Mead et al., 1998, Macromolecules, 31, 7895], considers the dynamics of the tethered 

chains, which are grafted on a high-energy wall and which are entangled with the bulk 

chains flowing past them. We show that the restricted relaxation modes of the tethered 

molecule give rise to discontinuous slip instability. More specifically, the slow relaxation 

of the tethered chains due to the subdued constraint release by the convecting bulk 

chains (CCR) plays a crucial role in determining the nature of the flow curve near the 

wall. The restricted CCR experienced by a tethered chain is unable to randomize its 

flow-induced orientation above a critical shear rate or stress. This decreases the 

resistance to flow for the bulk chains, which suddenly slip past the oriented tethered 

chains. The model correctly predicts the molecular weight dependence of the slip length, 

critical slip velocity and critical wall shear stress. It also quantitatively predicts the slip 

length and the critical slip velocity for a PDMS melt, for which valuable molecular level 

experimental data are available in the literature. 
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