

CACALYEIC VAPOTR PHASE HMROLYSIS OF

VERAFIED
INL

CHLOROBEN ZENE - A KINETIC STUDY

COMPUTERUSED

A THES IS

SUBMITED TO

THE UNIVERSITY OF BOMBAY
FOR THE DECRER OF
MASTER OF SCIENCE (TECHNOLOGY)

BY
VASANT DATTATREYA DEO, B.Sc., B.SC. (Tech.)

46113

$$
1.9^{\prime} 65
$$

ACMICILEDGEAZII

I am deeply indebted to Dr. L.K.Doraiswary for h1s inspiring guidance throughout the entire investigation carried out by me in the National Chemical Laboratory.

I thankful to Dr. R.Venkataraman, Director of the Mational Chemical Laboratory, for allowing me to present the work in the form of a thesis.

I also wish to avail of this opportunity to express my sincere thanks to my colleagues of the Organic Intermediates and Dyes Division for their cheerful ao-operation.

Finally I am graterul to the Council of Scientific and Industrial Research, New Delhi, for avarding a junior research fellowship.

Kational Chemical Laboratory

Poona 8.

CONTENTS

Page
Chapter 1. Introduction. 1
Summary of existing processes. 2
Sulfonation process. 2
The Dow process. 3
Cumene route to phenol. 4
Raschig process. 5
Other processon with industrial potential. 7
Scope of present work. 8
Chapter II. Literature survey. 10
Vapour phase hydrolysis of chlorobenzane. 11
Catalysts used. 11
Reaction mechanism 15
Chapter III. Thermodynamic considerations. 20
Thermodynamic properties of chlorobenzone. 20
Heat of formation. 21
Free energy of formation. 22
Thermodynamic properties of phenol 23
Thermodynamic properties of hydrochloric 24acid.
Thermodynamic properties of water. 24
Heat of reaction. 24
Equilibrium constant. 24
Equilibrium conversion. 25
Page
Chapter IV. Experimental. 34
Reaction feed. 34
Reactor. 36
Experimental procedure. 37
Product analysis. 38
Chapter V. Results and discussions. 42
Organisation of experiments. 42
Catalyst preparation. 42
Catalyst activation and life. 43
Mass transfer studies. 45
Rate data. 47
Analysis of data. 49
Initial rate studies. 49
Determination of rate equation 53
Conclusion. 59

GHAPIEA I

INTRODUCPION

Phenol is used in large quantities in the mamufacture of phenol formaldehyde resins (bakelite) and as a dye intermediate. Another important use is in the manufacture of Nyion; phenol is catalytically hydrogenated to cyclohexanol, a valuable solvent, which is then oxidized to adipic add, a raw aaterial for Nylon 66, Other uses of phenol are $:$ in the mamufacture of non-ionic detergents; in the production of additives for lube ofls and rubber; as a solvent in petroleum refining; and in the manufacture of phenol derivatives such as salicylic acid, pentachlorophenol, pierie acid, phenyl phosphates and fungicides (e.g. chloranil).

It ia expected that phenol production will be on the increase. The reason for this upaurge is that increasing quantities of phenol are likely to be utilised in the manufacture of caprolactum (intermediate for Mylon 6), adipic acid, bisphenol A and allyl phenols. At the end of 1959, United States phenol plants had a combined capacity of 0.33 million tons, and projects announced since then were expected to raise the production potential by about 40 per cent by the ond of (2) 1962 . During the same period, the estimated rise in Canadian phenol plant capacity was 150 per cent. A recent estimate forecasts a rise in U.S. demand to 0,435 million tons in 1965, The factors that would aase msjor changes in the economics of the
rast-groving producticn of phenol have beon sumod up as follows.
(1) Iaprovementa in the teghology of phonol manufacture.
(2) Changes in the phenol end-use pattern.
(3) Competiticn by other intormediated for phonol aarkets.
(4) Broadening of the raM gaterials base for phenol sinuracture.
(5) A shift in the supply-domand ratio for phonol.

Sumary of existine processes

At prosent thore are four commercial processes for the production of phonol. A fifth process is ready for comnercial exploitation, and two other processes of induatrial potential have also beon reportod. A brief sumsry of these processes is (2) given below *

Sulfonation process

This process involves the following sequence of steps i
(a) Sulfonation of benzene :

(b) Processing of benzene sulfonic acid

(c) Caustic fusion :

(d) Springing of phenol:

Sulfurous acid is made from 30 , for use in the springing of sodium phonate. The yiold of phenol 13 of the order of 90 par cent. This method is being used by several firms : Monsanto Chemical Company, and Roichhold Chemical Corporation.

The Dow process

This process consists of two steps $:$
(a) Chlorination :

The halogenation reaction 13 carried out in the $11 q u 1 d$ phase using ferric chloride as catalyst. Gonveraion per pass of benzene 1s 30-50 per cent, and the yield based on benzene ranges froa 80-95 per cent.
(b) Hydrolysis:

The reaction 1 s carriod out at 4000 psig and $37 \mathrm{C}-400^{\circ} \mathrm{C}$. A 10-15 per cent aqueous solution of caustic $1 s$ used in 10 per cont excess over theory. Diphenyl oxide is formed as a by-product, and phenol yleld based on benzene 18 85-88 per cent.

Gumene Route to phenol

This process consists of three steps:
(a) Synthesis of cumene :

Sulfuric acid or aluilnium chloride is used as catalyst in the liquid phase alkylation.
(b) Auto-oxidation of cumene :

The reaction is carried out in an aqueous emulsion containing an emisifying agent and sodium carbonate to maintain the optimum pH range of 8,5-10. The optimu temperature is $110-130^{\circ} \mathrm{C}$, Total conversion per pass is about 25 per cent. The by-products formed in the reaction are acetophenone, dimethylphenyl carbinol, phenol and aethylstyrene. The product is purified.
(c) Decomposition :

Dilute sulfuric acid is used as catalyst in this reaction. The reaction temperature is between 45 and $65^{\circ} \mathrm{C}$. Acetone and phenol are then recovered in a series of extraction and fractionation steps.

The overall phenol yield in the cumene process is $85-90$ per cent based on cumone. The acetone yield is approximately the same. This process is reportad to be employed by Hercules Powder Co, and Oronite Chemical Co, in the Onited States, and by B.A. Shavinigan Ltd, in Canada.

Raschtg process

There are two steps in this process :
(a) Oxychlorination :

The reaction 1 s aarriod out in the vapour phase over a solid catalyst at $250-270^{\circ} \mathrm{C}$. Conversions of the order of 10 per cent are obtained.
(b) Stean hydrolysis:

This reaction is also carried out in the vapour phase over a solid catalyst at $450-500^{\circ} \mathrm{C}$. Conversion per pass is $8-15$ per cent.

The yield of phenol 13 B5-95 per eont based on benzone. The process is regenerative with respect to hydrochloric acid. Also the exothormic heat of the first reaction can be utilized for the second reaction which is endothermic. This process is employed by Hooker Chenical Co, and by Union Carbide Corpn.

Other processes with industrial potontial

(1) Toluone 13 used ss the starting aatorial, and two steps are involved.
(a) oxidation of toluene :

phase in the presence of ofl-soluble cobalt or asiganese salts. The overall benzoic acid yield is reported to be 85-90 per eent.
(b) Oxidation of benzoic acid and hydrolysis :

The oxidation is carried out in liquid phase at $230^{\circ} \mathrm{C}$. In the presence of a soluble cupric salt which nay be prosoted by some magnesiua salts. Hydrolysis to phenol is effected by stean. The yield of phonol on benzoic acid is reported to be 80-83 per cent. Toluene based phenol synthesis is being triod by Dow Chemical Co.
(2) Benzene is alr-oxidized in the presence of radiation from radioactive sources (e.g. cobalt 60). This approach for the preparation of phenol has been announced by Japanese and Russian sources.
(3) Another source has attempted to oxidize benzene by air in the presence of an electric discharge. The route followed 1s:

$$
\text { Bonzone } \longrightarrow \text { Cyclohexane } \longrightarrow \text { Cyclohoxanol } \longrightarrow \text { Phenol }
$$

This is a case of indirect oxidation of benzene, in the sense that only benzene and air are used as ray matorials although intermediate reaction stages are involvod. Although a plant
constructed for Schenectady Varnish Co. is making an atteapt to nanufacture phenol by air oxidation of benzene, this route has not so far beon comercially exploited.
(4) In this process cyclohexylbenzene is oxidized by molecular oxygen to yield the rydroperoxide which is then decomposed to phenol and cyclohexanone by phosphoric-suluric acid mixtures. Cyclohexanone is an intermediate in the production of adipic acid and caprolactan. The maximum yiold is reported to be 79 per cent phenol and 75 per cont cyclohexanone. This route is yet to be tried on a comercial scale.

Scope of present work

Each of these processes has its oun advantages, and froa a basic chemical engineering point of viev, offers considerable scope for detailed study and improvesent. In the present work, studies on the hydrolysis of chlorobenzene (second step of the Raschig process) are reported as part of an overall programe of investigations on the Raschig process. Uaing tricalcium phosphate as catalyst, the kinetics of this endothermic reaction has been studied. As the catalyst gets deactivated in 5-7 hours (depending upon the conditions of use), an attempt has also been made to study the deactivation kineties,

REPERENCPS

(1) Sherwood, P.l., Pet. Proc., 8, 1348 (1953).
(2) Sherwood, P.H., Ind. Chem., 10, 515 (1962).

GHAPT目 II

LIT BRATURE SURVEY

In this chapter some salient features of the Raschig process are outlined, and reported results on the catalytic vapour phase hydrolysis of chlorobenzene (which ocmprises the second step of the process) are sumarised.

The Rasch1g procose consists of two stages, in the first or which monochlorobenzene is produced cat alytically according to the equation,

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HCl}+2 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O},
$$

and in the second stage, the monochlorobenzene is catalytically hydrolysed with steam to yield phenol and regenerate the mCl according to the reaction,

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{HCl}
$$

The first reaction is exothermic whereas the second is endothoraic, Conversion per pass in the second step is of the order of $8-15$ per cent. With so low a conversion per pass, it is evidently desirable to effect phenol recovery without condensing the entire chlorobenzene and vater vapors ${ }^{\text {(1) }}$. This consideration of theraal economy is of significant influence on the commercial competitiveness of the process. Operating at certain conditions, practically no by-products are formed; the
process converts virtaally all of the benzene fed to phenol without producing chlorobenzones as by-products.

The prineipal advantage of the process is its amenability (2) to simplification in design, and as a result plant investment coats have boen substantially roducod. Main improvementa i the series of parallel tubes containing the catalyst has been replaced by a single catalyst container; distillation equipment have beon combined so that one system an handle product from both stages (in the oarlier designs separate systems were used to fractionate the erade and hydrolysis products); the catalyst regeneration system has boon simplifiod through process modifications. Its principal defoct, howover, is the problem of corrosion and deactivation of the catalyst.

Vapour phase hydrolysis of chlorobenzene

Catalysts used

Gatalysts that have been tried for the vapour phase hydrolysis of chlorobenzene to phenol can be broadly classiffed under four difforent groups : setals, metal oxides, salts and adds. These have been tried either independently or by impregnating on supports like silica gel and asbestos, Sllica gel itself is known to act as a catalyst, but its activity can be enhanced by promoters like cupric chloride.

Metals such as granular copper and copper-oobalt (11)
mixture ; alkaline earth metals on which cobalt, copper, silver, gold or metals of the platinu group have been (12) deposited $;$ oxides such as zinc oxide, titaniuv dioxide, neutral and acid manganese pyrophosphates on which copper, niekel, cobalt, silver, gold or setals of the platimum group are deposited; and nickel oxide, molybdemum trioxide, zirconiur oxide, silica, tungsten trioxide, magnesium oxide, aluninium $(13,14)$
trioxide
have been used in several investigations.

Anong these catalysts, silica gel has recelved the maximum attention. Results have been reported on the preparation of different types of silica gels and it is olaimed that Okatov's (15)
gel is superior to many other variaties of silica gels . $(16,17,18)$
It is also stated that the catalytic activity of silica gel in the hydrolysis of chlorobenzene is enhanced by copper; and that the method of preparation of the silica gel-cupric chloride catalyst greatly influancos its activity. Another important factor in the activity of this catalyst is (15,19) the method of addition of the oopper eomponent

The use of activators like chlorides of silver; aluminium, tin, zinc, aagnesium, calcium and sodium has been shown to promote the catalytic sation of the silica gel-cupric chloride $(20,21)$
catalyst , These activators are also clalmed to enhance the durability of the catalyst. It was found that with allver chloride as promoter the catalyst (silica gel-cupric chloride) gave a conversion of 84 per cont after 40 hours of use,
whereas without silver chloride the yield or phenol was 73 per cent after 15 hours of use.

The use of inorganic salts in the preparation of silica gel catalysts has been found to generally decrease the yield of phenol, the only exception being copper chloride. Salts such as amoniun molybdate, mercuric chloride, lithium chloride, manganese chloride, barium chloride, colcium chloride and (22) magnesium chloride have all been tried . Bithor thore was a dininution of activity, or, as in the case of lithium chloride, the silica gel ceased to function as a catalyst, Iron compounds in ceneral have been found to poison the silica gel catalyst; thus washing the silica gel with nitric acid should incroase its catalytic efficiency.

The influence of compression on the properties of silica (23)
gel oatalysts has been studied , Coapression or supported catalyata generally faproves their mechanical strength, activity, useful life and bulk density. The reaction showed the highest yield of phenol when aacroporous silies gel was eompressed to 5000 atmospheres, e.g. at $500^{\circ} \mathrm{C}$., the yiold was 9.2 per cent when uncompressed catalyst vas used, 13.4 per cent when compressed to $5000,9.5$ per cent vhen compressed to 10,000 , and 9.2 per cent when compressed to 20,000 atmospheres.

Among the other catalysts which have been extensively studied are tricaleiun phosphate or any other salt hsving magnesium, aluminfun, calciun, copper or selenfum in the positive
radical and phosphorous, chlorine or silica in the negative (24) radical . Among this class of catalysts, tricalcium phosphate has received by far the greatest attention.

With tricalciue phosphate as catalyst it was observed that the selectivity of the reaction decreased beyond $575^{\circ} \mathrm{C}$., the propertion of side products being higher at higher temperatures. The phosphate eatalyst was found to be theraally more stable than silica gel and less sensitive to deactivation
by mineral impurities. According to the BIOS report , 1000 cc. of tricalcium phosphate gives 100 ga , per hour of phenol in a yield of 90 per cent.

Methods of preparing tricalcium phosphate have been $(3,25)$ reported in several sources . The general procedure is brierly as follows : Solutions of phosphoric acid, annonium chloride and calelua chloride in appropriate concentrations are prepared. The ammonia solution is mixed with dilute phosphorie acid solution, and to this nixture calcium chloride solution is added. The precipitate of tricalcium phosphate is filtered, washed free of impurities, and dried.

Shrivastava et al employed tricalcium phosphate and trinagnosium phosphate as catalyats in their atudies and reported that magnedum phosphate is superior to calcium phosphate. These investigators usod the phosphate catalysts both directly and supported on a silica base. Supported catalyats were observed to give higher conversions, At $450^{\circ} \mathrm{C}$.
sillca based tricalcium phosphate gave a conversion or 7.1 per cont, while under the same conditions the unaupported catalyst give less than 1 per cont.

In addition to the catalysts described above, several other catalysts (including salts and acids) have also been used froa time to t1me. Anong those are : kieselguhr and collo1dul (27)
clays ; aluminium hydrosilicates ; materisis with (30)
strong base exchange properties ; porous silioa prepared froa chrysocollap minerals containing aluainiun hydrosilicates (29)
such as Fullor's earth in the presence of coppor ; fiethyl (31)
phosphates activated with copper aalts; acids such as (25)
stannic; titanic and aluminic acids ; salts such as tin vanadate, cadnium phosphate and copper phosphate supported on (11)
silica gel i and alcium carbonate and calotum phosphate deposited with copper, nickel, cobalt, silver, gold or metala (12)
of the platimu group *
In an interesting investigation, Russel and James
$(32,33)$
passed vapours of chlorobenzene and water over a catalytic netal guch as copper capable of forming a volatile salt under the conditions of use. The volatile salt together with the reaction products was then passed over silica gel. They also found that passago of the vapours over copper shavings helps to maintain the catalytic activity of silica gel impregnatod with netals.

Reaction mechanism
Free $=0 \mathrm{H}$ groups prosent in allica gol are rosponsible for
its catalytic action. The labile hydrogen atom in the -OH group of aflica gel reacts with chlorobenzone at the $\mathrm{C}-\mathrm{Cl}$ bond as show in stage A of chart (1). The ester group formed intermediately on the surface of the silica gel is subsequently hydrolyzed non-cetalytically according to stage B. Phenol is formed in stage B and the -0 groups of silica gel are regenerated and are free to catalyze the reaction repeatedly.

This mechanism 1s also applicable to calcium phosphate crystal hydrate. The structure of tricalcium phosphate is (25) shown in chart (2). It has been proved that solid erystal hydrates (metallic salts) are compounds with more or less pronounced acidic properties which differ only qualitatively from solid acids and acid salts. At $400-500^{\circ} \mathrm{C}$, the lability of hydrogen in arystal hydrates is quite high. This interpretation justirles the assumption that the catalytic activity of tricalcium phosphate is likewise associated with its -OH groups which contain a labile hydrogen atom.

Shrivastava et al atate that the role of the catalyst is purely mechanical. It provides the conditions necessary for the most favourable orientation of the reacting molecules. The PO_{4} radical is the effective part of the catalyst, the cationic part meroly helping to render the eatalyst insoluble in water. The PO_{4} radical acts as orienting agent because of the semi-ionic bond between phosphorous and one of the oxygon atons. The reactants on entering the electrical field provided by the $P^{+} \quad O^{-}$dipole will arrange
themselves in such a manner that the positive and negative poles are towards the negative and positive poles respectively of the nearest PO_{4} radicals as show below.

$$
\begin{aligned}
& \mathrm{P}^{+} \quad \mathrm{O}^{-} \\
& \mathrm{Cl}^{-} \quad \mathrm{C}_{6} \mathrm{H}_{5}^{+} \\
& \mathrm{H}^{+}-\mathrm{OH}^{-} \\
& \mathrm{O}^{-}-
\end{aligned}
$$

The hydrolysis will definitely take place oven when the chlorobenzene and water molecules are arranged at random without a catalyst, but this will only occur at high temperatures and pressures. It is a reasonable conclusion that, if the cationic portion of the molecule is made smaller, the catalyst will be more effective, so that a larger part of the molecular volume $1 s$ occupied by the PO_{4} radical.
(A)
®

+ $\mathrm{HCl}--$
$\mathrm{OC}_{6} \mathrm{H}_{5}$
i
i
i
i
i
i
i
i
I
u

ェー $-\bar{\omega}=0$
$+$
I
I_{0}^{0}
0
\uparrow
둥
+
+

REPERRACAS

(1) Sherwood, P.H., Pet. Proc., 8, 1348 (1953).
(2) Ghementator, Chem. Bngs., 69, (June 25, 1962).
(3) BIOS, Final report No. 507.
(4) BIOS, Final report No.937.
(5) PIA, Final report No. 768 .
(6) Crawford, R.H., Chem. Bnge. News, 25 , 235 (1947).
(7) Sherwood, P.if., Pet. Proc., 8, 1543 (1953).
(8) Tonn, $\mathrm{H}, \mathrm{H}, \mathrm{Jr}$, , Chem. Bngg*, 61, No. 11 , 157 (1954).
(9) Venkataraman, K. , "Chemistry of Intermediates and Dyes," part I, Acaderic Press Inc., New York (1952).
(10) Groggins, P.H., 昭it Process in Organic Synthesis," Megraw-Hill Book Co. Inc., New York (II edition -1938).
(11) Vernon, A.A. and Thompson, F.X., J. Phy. Chem., 44, 727 (1940).
(12) Freidlin, L. Kh., Balandin, A.A. and Fridman, G.A., Bull. Acad. Sci., USSR, 137 (1958).
(13) Chalkly, J. Am. Chem. Soc., 51, 2489 (1929).
(14) Raschig, FGES, British Patent 358903 (1929).
(15) Freidlin, L. Th., Balandin, A.A., Lebedeva, A.I. and Fridman, G.A. Bull. Acad. Sal., USSR, Clasee. Sci. Chin., 515 (1947).
(16) Nobuto Oht Repts, Govt. Chem. Ind. Research Inst., Tolcyo, 46, 163 (1951).
(17) Nobuto Ohta, 1b1d, 46, 327 (1952).
(18) Nobuto Ohta and Takalhi Tezuka, J. Chom. Soc. Japan, 54, 462 (1951).
(19) Nobuto Ohta, Repts. Govt. Cher. Ind. Research Inste, Tolgo, 47, 51 (1952).
(20) Yoshinichi Chiba and "ikuo Yamaguchi, J. Soc. Org. Synthot. Chan., Japon, 12, 26 (1954).
(21) Peter; H., British Patant 695,464 (1953).
(22) Preidlin, L_{*} Oh+; et al, Izv. Akad. Nauk Otdel. Min. Nauk, 53(2), (1945).
(23) Preidlin, L. Kn., Vereshchagin, L.F. and Numanov, I. $4 .$, Doklady Akad. Nauk., USSR, 88, 1011 (1953).
(24) Lawrence, V.A., US Patent $2,311,777$.
(25) Proidlin, L. Whe, Balandin, A.A., Lebedeva, h.I. and Preidlin, G.A., Bull. Acad. Sci., USSR, 135 (1957).
(26) Shrivastava, R.K., Anjaneyulu, T.S.R. and Basu, A.N., J. Sci. Ind. Research; 136 (1960).
(27) Prog11, S.A., Franch Patent 720,721.
(28) Lloyd and Kennedy, US Patent $1,735,327$.
(29) R1tter, H., US Patont $1,936,567$ (1934).
(30) Bertach, US Patont $1,966,281$ (1931).
(31) Naumov, A.I., et al, USSR Patent 118,490
(32) Russol, L.J. and James, P.N., US Patent $1,950,359$ (1934),
(33) Russel, L.J. and James, P.f., US Patont $1,844,710$ (1932).

CHAPTER III

THERMODYHAMIC CONSIDRRATIONS

The reaction under

is widely used in industrial practice, but no data are reported on the equilibrium conversions obtainable at different temperatures. The thernodynamic properties of phenol, hydrochloric acid and vater are reportod, and some data on chlorobenzene are also available. In this chapter all the available theraodynamie properties are tabulated, and where necessary they have been estimated for inclusion in the tables. Equations have been developed based on these values for calculating the heat of reaction, free energy of reaction, equilibrium constant, and equilibrium conversion as functions of temperature.

Thermodynanie properties of chlorobenzene

The thormodynamic functions, $\frac{0_{T}^{\circ}-H_{0}^{\circ}}{I}, H_{T}^{\circ}-H_{0}^{\circ}, S^{\circ}$ and c_{p}°, or chlorobenzene have been reported ${ }^{(1,2)}$. Using these values, the heat and free energy of formation can be calculated as functions of temperature. For this purpose, $/ \Delta H_{f}^{0}$ at one temperature is required, and this may be calculated from the heat
of combustion data.

$$
\text { Heat of formation. } \Delta H_{f}^{\circ} \text { at } 298.16^{\circ} \mathrm{K} \text {. was calculated }
$$ from the heat of combustion value at that temperature.

$$
\begin{aligned}
& \Delta H_{\mathrm{c}}(1) \text { at } 298.16^{\circ} \mathrm{K},=-743,3 \mathrm{kcal} \cdot / \mathrm{g} \cdot \mathrm{nol} . ~(3) \\
& \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(1) \text { at } 298.16^{\circ} \mathrm{K},=-2,53653 \mathrm{kcal} \cdot / \mathrm{g} \cdot \pm 0 \mathrm{l} .
\end{aligned}
$$

$\Delta F_{f}^{0}(8)$ can be calculated from the relation,

$$
\begin{equation*}
\Delta H_{f}(g)=\Delta H_{f}(1)+\Delta H_{v} \tag{1}
\end{equation*}
$$

The value of Δr_{v} at $298.16^{\circ} \mathrm{K}$, was estimated from Watson's equation,

$$
\frac{\Delta \mathrm{F}_{1}}{\Delta \mathrm{H}_{2}}=\left[\begin{array}{l}
1-\mathrm{Tr}_{1} \tag{2}\\
1-\mathrm{Tr}_{2}
\end{array}\right]
$$

0.38
where $\Delta H_{v_{1}}$ and $\Delta H_{v_{2}}$ are the heats of vaporization at reduced temperatures Tr_{1} and Tr_{2}, corresponding to $404.9^{\circ} \mathrm{K}$. (normal boiling point) and $298.16^{\circ} \mathrm{K}$, respectively.

$$
\begin{aligned}
\Delta H_{v_{1}} & =8.735 \mathrm{kcal} . / \mathrm{g} \\
* * H_{v_{2}} & =10.1 \mathrm{kcal} . / \mathrm{g} .301
\end{aligned}
$$

and

$$
\Delta H_{f}^{O}(\mathrm{~g})=12.64 \mathrm{kcnl} / \mathrm{g} \cdot \mathrm{~mol} .
$$

Heats of formation in the range $298.16^{\circ} \mathrm{K}$. to $1000^{\circ} \mathrm{K}$. were estimated from the relation,

$$
\begin{equation*}
\Delta H_{f}^{\circ}=\Delta H_{i}^{\circ}+\left(H_{T}^{\circ}-H_{0}^{\circ}\right)_{\mathrm{comp}}-\Sigma\left(H_{T}^{\circ}-H_{0}^{\circ}\right)_{\text {ele }} \tag{3}
\end{equation*}
$$

where $\Delta H_{f_{0}}^{0}$ is the zero point heat of formation, $\Delta H_{f_{T}}^{0}$ is the heat of formation at $\tau^{\circ} \mathrm{K}$., and $H_{T}^{\circ}=H_{o}^{\circ}$ is the heat content function. Heat content functions for ahlorobenzone and for its constituent elements, carbon, hydrogen and ehlorine, are available at temperatures up to $1000^{\circ} \mathrm{K} .^{(1,4,5)}$. Hy substituting $\Delta H_{f_{T}}^{\circ}$ for ehlorobenzene at $298.16^{\circ} \mathrm{K}$. and ($H_{I}^{\circ}-H_{o}^{\circ}$) for chlorobonzene and the eloments at the same temperature in Equation (3), the zero point heat of reaction $\Delta{H_{f_{0}}^{0}}^{\text {was }}$ calculated. This value (16.236 keal. $/ \mathrm{g}$.mol.) was then used to calculate the heat of formation of chlorobenzene over the temperature range $298.16^{\circ}-1000^{\circ} \mathrm{K}$. These values are summarised in Table 3.1.

Free energy of formation. The following basic equation

 was used :$$
\begin{equation*}
\Delta Q_{T}^{\circ}=\Delta H_{T}^{\circ}-T \Delta S_{T}^{\circ} \tag{4}
\end{equation*}
$$

ΔS_{T}° of formation was calculated from the entropy values of chlorobenzene listed in Table 3.1 and of the elesents ${ }^{(1,4)}$. Then using the values of ΔH_{f}° from Fable 3.1, ΔG_{f}° was calculated from

Bquation (4).

$$
\Delta g_{f}^{\circ} \text { vas also calculated from Equations (5) and (6) }
$$

given below :

$$
\begin{align*}
& \Delta H_{T}^{\circ}=I_{H}+(\Delta a) T+1 / 2(\Delta b) T^{2}+1 / 3(\Delta a) T^{3} \\
& \text { + } \tag{5}\\
& \Delta O_{T}^{\circ} \equiv I_{H}-(\Delta a) T \ln T-1 / 2(\Delta b) T^{2}= \\
& (\Delta c) I^{3}+I_{S} \tag{6}
\end{align*}
$$

The use of Equation (6) requires a lnowledge of the constants, $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d , for chlorobenzene and 1 ts constituent elements. The $(6,7)$
olemental values were taken from the literature, and those for chlorobanzene were calculat ed from the reported C_{p}° values by the method of least squares. The values of the compounds and elements involved are summarized in Table 3.2. The constants I_{H} and I_{S} were estinated from Bquations (5) and (6) using the values or ΔH_{f}° and $\Delta 0_{f}^{\circ}$ at $298^{\circ} \mathrm{K}$.

The mean values of ΔG_{f}° calculated by the two methods are iisted in Table 3.1, the average deviation being 0.634 per cent. Thermodynanie properties of phenol $(8,9)$ These are 1isted in Table 3.3.

$(5,10)$

Thermodynamic properties of hydrochloric acid

These are listed in Table 3,4.
(11)

Thermodynamic properties of vaster

These are listed in Table 3.5.

Heat of reaction

The heat of reaction as a function of temperature was calculated over the temperature range $298^{\circ}-1000^{\circ} \mathrm{K}$, from the values of ΔH_{T}° for the products and reactants. These are list od In Table 3.6.

Equilibrium constant

The equilibrium constant of any reaction may be calculated from the equation,

For the reaction under consideration,

$$
\begin{aligned}
& -\Delta 0_{\mathrm{f}_{\left(\mathrm{H}_{2} \mathrm{O}\right.}^{0}}^{0}
\end{aligned}
$$

Values of ΔQ_{f}^{0} for chlorobenzene, phenol, hydrochloric acid and water have all been tabulated before. From these, ΔQ_{T}° was calculated at different temperatures and the reaulting values are summarized in Table 3.6.

The oquilibrium constants (K) calculated from Bquation (7) using the values of ΔQ_{T}° at several temperatures are also sumarized in the same table. A plot of $\log \mathrm{K}$ vs. I appears in Fig. (3.1).

Equilibrium conversion
The equilibrium conversion of the reaction may be determined from the equation,

$$
\begin{equation*}
k=\frac{n_{R}^{r} \cdot n_{s}^{s}}{n_{B}^{b} \cdot n_{c}^{c}}\left(\frac{\pi}{n_{i}}\right)^{\overline{r+b}-\overline{b+c}} \cdot k_{v} \tag{B}
\end{equation*}
$$

where \mathbb{K}_{v} is the fugaeity coefficient term and is given by

$$
\begin{equation*}
k_{v}=\frac{v_{R}^{r} \cdot v_{S}^{s}}{v_{B}^{b} \cdot v_{C}^{c}} \tag{9}
\end{equation*}
$$

The term ${\underset{v}{ }}$ is a measure of the deviation from ideality of the reaction, and becomes significant at high pressure and low temperature.

At ordinary pressures, $\mathbb{K}_{\mathbb{V}}$ may be assumed to be unity over the entire temperature range. Assuming π and \mathbb{K}, each as being equal to unity, and writing x as the moles of phenol formed at equilibrium per mole of chlorobenzene, the following equation can be written.

$$
\begin{equation*}
K=\frac{x^{2}}{(1-x)(1-x)} \tag{10}
\end{equation*}
$$

The values of x onlculat ed from Equation (20) at different values of K corresponding to the temperatures listed In Table 3.6 are also given in the same table.

$$
\begin{aligned}
& \text { Table } 3.1
\end{aligned}
$$

Table 3.2

Compound	Formula	Temp. ${ }_{\text {OK. }}$ range	a	$b \times 10^{3}$	ex 10^{6}	dx 10^{9}	Ref.
Carbon	C	300-1500	-1.2704	14.0270	-10.3519	2.7582	(6)
Hydrogen	H_{2}	270-1500	6.7363	0.5972	-4.2370	0.3157	(6)
Chlorine	Cl_{2}	273-1500	6.8628	5.5271	-4.8843	1.4653	(6)
Chlorobenzene	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	298.16-1000	-7.5955	132.2700	-104.3500	32.1600	Calculated by the method or least squares using reported $\mathrm{C}_{\mathrm{p}}^{0}$ data
Wat er	$\mathrm{H}_{2} \mathrm{O}$	298.16-1000	8.2200	0.0150	1.3400	-	(7)
Hydrochloric ac1d	HCI	298.16-1000	6.7000	0.8400	-	-	(7)
Phenol	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	298.16-1000	-8.6269	143.1500	-115.6900	36.6700	Calculated by the method of least squares using reported C_{p}^{0} data (8)

Table 3.3
Thermodynamic functions of phenol in the ideal gas atate $(8,9)$

	$-\left(\mathrm{C}_{\mathrm{T}}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}\right) / \mathrm{T}$	$\left(\mathrm{H}_{T}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}\right) / \mathrm{T}$	s°	$\mathrm{c}_{\mathrm{p}}{ }^{\text {¢ }}$	$\Delta \mathrm{H}_{\mathrm{r}}^{\circ}$	$\Delta 0_{\text {P }}{ }^{\circ}$
\bigcirc	\bigcirc	0	\bigcirc	0	19.63	-18.63
273.16	60.17	13.18	73.35	22.70	22.72	-9.12
298.16	61.36	14.07	75.43	24.75	23.05	-7.88
300	61.45	14.13	75.58	24.90	23.07	-7.99
400	66.01	17.79	83.80	32.45	24.12	-2.51
500	70.37	21.37	91.74	38.64	24.92	+2.97
600	74.56	24.67	99.23	43.54	25.55	+8.61
700	78.59	27.65	106.24	47.44	26.00	+14.34
800	82.46	30.33	112.79	50.62	26.40	+20.13
900	86.18	32.73	118.91	53.26	26.65	+25.96
1000	89.74	34.90	124.65	55.49	26.82	+31.82

Table 3.4
Thermodynamic functions of HCl in the ideal gas state $(5,10)$

	$\frac{-\left(0_{T}^{\circ}-H_{0}^{\circ}\right)}{T}$	$\frac{\left(\mathrm{H}_{\mathrm{T}}^{\mathrm{O}}-\mathrm{H}_{\mathrm{O}}^{\circ}\right)}{\mathrm{T}}$	s°	$\mathrm{c}_{\mathrm{p}}{ }^{\text {¢ }}$	$\Delta \mathrm{H}_{\mathrm{r}}^{\circ}$	$\triangle 0_{\text {r }}{ }^{\circ}$
298.16	37.748	6.925	44.674	6.964	-22.06	-22.77
300	37.791	6.926	44.717	6.964	-12.33	-22.77
400	39.785	6.937	46.722	6.973	-12.41	-23.00
500	41.334	6.946	48.280	7.004	-12.48	-23.21
600	42.602	6.961	49.563	7.068	-12.56	-23.41
700	43.676	6.983	50.569	7.167	-12.63	-23.59
800	44.610	7.013	51.623	7.889	-12.69	-23.76
900	45.439	7.051	52.490	7.423	-12.74	-23.92
1000	46.184	7.095	53.279	7.560	-12.78	-24.07

Table 3.5
Thermodynamic proparties of water in the ideal gas state (11)

${ }^{\text {T }}$ (\%ap. ${ }^{\text {K. }}$	$\left(\mathbf{c}_{T}^{\circ}-H_{0}^{\circ}\right) / T$	$\left(\mathbf{H}_{T}^{\circ}-H_{0}^{\circ}\right) / T$	s°	c_{p}°	ΔH°	$\Delta 0_{r}^{\circ}$
298.16	-37. 172	7.934	45.106	8.025	-54.7979	-54.6351
300	-37.221	7.933	45.154	8.026	-57.8022	-54.6152
400	-39.508	7.975	47.483	8.185	-58.0420	-53.5160
500	-41.295	8.039	49.334	8.415	-58.2760	-52.3080
600	-42.768	8.122	50.890	8.677	-58.4990	-51.1540
700	-44.026	8.220	52.248	8.959	-58.7090	-49.9120
800	-45.131	8.330	53.464	9.254	-58.9020	-48.6430
900	-46.180	8.452	54.572	9.559	-59.0800	-47.3490
1000	-47.018	8.590	55.598	9.869	-59.2390	-46.0360

Table 3.6
Equi11brium constants and conversions for the reaction

${ }_{\text {T }}^{\text {grap }}$)	ΔH_{T}°	$\begin{gathered} \Delta a_{T} \\ \text { keal./g.mol. } \end{gathered}$	$\log K$	K	Conversion (x)
298.16	-	0.00807	-0.005913	0.9865	0.5184
300	$=$	-	-	-	-
400	9.8903	-0.09875	0.05393	1. 132	0.5189
500	10.0108	=0.05969	0.02564	1.06	0.5063
600	-	-	-	-	-
700	9.9296	-0.29098	0.09078	1.232	0.5259
800	10.0365	-0.34453	0.09408	1.242	0.5269
900	10.1570	-0.431155	0.10470	1.273	0.5302
1000	10.5325	-0.42193	0.09217	1.237	0.5273

REERENGES

(1) Godnov, I.N., Sverdin, A.S. and Savogina, M.S., Zhur. P1z. Kh1m*, 24, 807 (1950).
(2) Whiffen, D.H., J. Chem. Soc., 1350 (1956).
(3) Lennart, S., Bjellerap, L., Krooks, 3. and Westermark, H., Acta. Chem. Scandinavia, 7, 65 (1953).

Rossini, P.D., Pitzer, K.S., Taylor, W.J., Bert, J.P., Kilpatrick, J.E., Beckett, C.W., Hilliams, M.G. and Werner, H.G., "Selected Values of Thernodynamic Properties of Pydrocarbons," Natl. Bur. Standards, C. 461.
(5) Arnold, C.W. and Kobe, K.A., Chem. Eng. Prog., No.6, 48, 293 (1949).
(6) Crawford, H.H. and Kobe, K.A., Petr. Ref., No.7, 37, 125 (1958).
(7) Perry, J.H., "Chemical Engineera "and Book," McGrav-H111 Book Co. Inc., New York (IV edition).
(8) Green, J.H.S., J. Chen, Soc., (London) 2236 (1961).
(9) Chermin, H.A.G., Petr. Ref., No.5, 40 , 235 (1961).
(10) Rossini, F.D, et al, "Selected Values of Chemical Thermodynamic Proporties," Sories III, Vol. I, Natl. Bur. Standards (1948).
(11) Rossinf, F.D., Prosen, E.J.R. and Pitzer, K.3., J. Res. Nat1. Bur. Standards, 34, 134 (1945).

GHAPTE IV

EXPER TMENTI AL

The reactor assembly consisted of : (1) separate feeding arrangenents for chlorobenzene and water; (b) separate vaporizers for chlorobenzene and water; (c) super-heater and reactor; and (d) air and water condensers. A diagramatic sketch of the experimental set-up is show in Fig. (4.1) and a photograph of the assembly appoars in Fig. (4.2).

Reactants feed

The constant flow dovice used for water $[\mathrm{Fig}$. (4.3) 7 was similar to that exployed by Rihani and Doraiswary . It consisted of a storage vessel, the lower portion of which was connected to a chamber (2) in such a alanner that ilquid from the vessel would rall at a point somewhere in the aiddle of (2) through a tube cut at an angle as ahow in the ifgure. The cylindrical chamber was in turn connected to a tube ending at the bottom into a drop counting adapter. A glass rod with a Nichrome wire fused to its lover ond was f1xed in the cylindrical tube. This was necessary since the flows involved were very suall and could not be accommodated in the avallable capillary. Rates of flow were varied by adjusting its length through the eapillary.

The vessel was filled with water. Water floved into the cylindrical zone up to a certain level and this level was maintained in the cylindrical tube. As drops of inquid rell into
the adapter from the cylinder, the level of the liquid in the cylindrical chamber also decreased. But when the level came dow to (b) a bubble of air escaped into the storage vessel, and a corresponding amount of liquid entered the chamber to level (a), thas maintaining practically a constant level in the feed system, the limits of error being the variation of liquid head in the range (a)-(b).

Water from the constant flow device entered a burette. The burette was filled almost to the top in order to provide a sufficient head of liquid. By adjustment of flow of the liquid into the burette from the constant feeding device and the flow out of the burette by a stop-cock, it was possible to ensure constant flow of water into the reactor.

Chlorobenzene was fed into the chlorobenzene vaporizer from a D.C.L. "M" pump. The capacity of the pump could be varied from 0 to $1710 \mathrm{ml} . / \mathrm{hr}$. by manipulating the stroke adjustment micrometer thimble. The thimble was graduated in ten main divisions, covering the entire range from zero to maximum output. A constant check on the constancy of the rate was maintained by passing the liquid through a drop counting connection.

Two separate vaporizers of similar design were provided for chlorobenzene and water. Each vaporizer consisted of a chamber heated by Nichrome wire wound round the surface; a gauge glass indicated the level of the liquid in the charaber. By maintaining a constant level of liquid by appropriate adjustment
of the heat input, any desired feed rate within the limits of the design could be achieved. Suitable condensers were provided between the vaporizers and the corresponding adapters to prevent the vapors from entering the adapters and interfering with the flow rates.

Peactor

The reactor system consisted of a super-heater and a reactor. The pyrex glass super-heater ended in a conical bottom (with a stop-cock) and was provided at the top with a B_{29} pyrex joint. Chlorobenzene vapors and steam were admitted separately into the super-heater through tubes provided with B_{10} joints and fused to the main body of the super-heater.

The reactor was made of quartz glass (capable of withstanding high temperatures) of 1 in . diameter and 12 in . length, as shown in Fig. (4.4). The bottom part of the reactor ended in a B_{29} quartz joint which exactly fitted into the B_{29} pyrex joint of the super-heater. The top part of the reactor ended in a B_{29} quartz joint which was provided with an adapter made of quartz. A constriction (for catalyst support) was made 4 in. above the reactor bottom. A quartz thermowell tube with a B_{19} quartz joint fitted into one of the two B_{19} quartz joints of the adapter, and the tip of the thermowell tube just rested over the catalyst support.

The reactor was connected to an air condenser. One end of the condenser was connected to the second B_{19} joint of the
quartz adapter through a B_{19} pyrex joint, and the other end to a receiver through a water condenser. The whole assembly was leak-proof.

The reactor was placed in an electrically heated furnace. The furnace and other parts of the assembly were heated by electrical resistance wire. There were in all Pive heating circuits : two for the vaporizers, one for the super-heater, one for the main reactor, and one for heating the path between the vaporizer and super-heater. Temperatures were controlled by regulating the heat input through variable autotransformers. A voltage stabilizer was introduced in the electrical circuit to ensure a constent voltage.

Experimental procedure

The reactor was filled with the catalyst ($-22+30 \mathrm{~B} .3$. mesh) to the required height. Heating of all the units was commenced, and when the required temperatures were reached chlorobenzene and water were introduced into the vaporizers at predetermined rates. The reaction being endothermic, there was a slight fall in the temperature of the reactor, and it was brought to the desired level by adjustment of the voltage.

One of the principal difficulties encountered was that, unless the reactants were uniformly distributed in the catalyst bed, there was noticeable chanelling leading also to the further complication of catalyst carryover. Care was taken to avoid this situation in all the runs. The products of reaction
collected in the receiver consisted essentially of water, phenol, chlorobenzene and hydrochloric acid. At the temperatures employed, the extent of side reactions was negligible.

Product analys is

Hydrochloric acid in the products was determined by titration against standard alkali and phenol by bromination. The stock solutions required for the estimation were sodium thiosulfate $(0.1 \mathrm{~N}), \mathrm{Krr}^{-\mathrm{KBrO}_{3}(0.1 \mathrm{~N})}$, and potassium hydroxide $(0.5 \mathrm{~N})$. Hydrochloric acid was determined by titrating against standard potassium hydroxide using methyl orange as indicator. Phenol was determined as follows :

Estimation of phenol by bromination (2) :

After the estimation of hydrochioric acid present in the catalyzate, the chlorobenzene left unconverted was separated and the solution was made up to a known volume, usually 1 litre. 25 ml . of this solution were pipetted out in a conical flask. 50 ml . of the brominating solution, 50 ml . of distilled water and 5 ml . of concentrated hydrochloric acid were added to it. The flask was stoppered imnediately, shaken for 1 minute, and allowed to stand for 30 rinutes with occasional swirling of the contents. KBrO_{3} reacted with KBr in the presence of hydroenloric acid liberating bromine which brominated the phenol present to tribromophenol :

$$
\mathrm{KBrO}_{3}+5 \mathrm{KBr}+6 \mathrm{HCl} \quad 6 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Br} 2
$$

The flask was cooled and excess bromine was displaced by iodine by the adition of 10 ml . of 20% potassium iodide, and the liberated lodine was titrated against standard thiosulfate.

$$
\begin{aligned}
& \mathrm{Br}_{2}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KBr}+\mathrm{I}_{2} \\
& 2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}
\end{aligned}
$$

A blank analysis was carried out without using the solution containing phenol. The difference in the amounts of thiosulfate consumed between the blank and sample titrations gave the quantity of thiosulfate required by the phenol present. The amount of phenol present in the total volume was calculated, keeping in view the fact that 6000 ml . of IN thiosulfate $\equiv 94$ gm. of phenol. In the absence of side reactions the molar quantities of HCl and phenol should be identical.

Sample estimation :
(1) Estimation of nydrochloric acid :

Alkali required to neutralize $\mathrm{HCl}=108.7 \mathrm{ml}$. present in the catalyzate

Strength of alkali solution $\quad=0.2498 \mathrm{~N}$
\therefore Amount of hydrochloric acid $\quad=0.02716 \mathrm{~mol}$. present in the catalyzate

Chlorobenzene fed in 1 hour $=0.2000 \mathrm{~mol}$.

- Conversion
(2) Estimation of phenol by $\mathrm{KBr}_{\mathrm{KBrO}}^{3}$ method

Quantity of sample pipetted
Quantity of brominating solution
$=20 \mathrm{ml}$.

Strength of sodium thiosulfate
$=75 \mathrm{ml}$. solution

Standard thiosulfate required for $=14.71 \mathrm{ml}$. excess iodine

Blank reading
$=79.95 \mathrm{ml}$.

* . 65.24 ml . of 0.09993 N sodium thiosulfate

Since 1000 ml . of $1 \mathrm{~N} \mathrm{Na} \mathrm{S}_{2} \mathrm{O}_{3}$
$\equiv \frac{94}{6} \mathrm{gm}$. of phenol,
amount of phenol in 500 ml .

- - Conversion
$=0.02716 \mathrm{~mol}$.
$=13.58$ per cent

FIG. 4.1. EXPERIMENTLE SET-UP

FIG.4.2. PHOTOGRAPH OF THE ASSEMBLY

1 STORAGE VESSEL
2 CHAMBER
3 CYLINDRICAL TUBE
4 GLASS ROD
5 CAPILLARY
6 NICHROME WIRE
7 ADAPTER

FIG. 4.3. WATER FEED

FIG.4.4. REACTOR

REFERENCES

(1) Rihani, D.N. and Doraiswamy, L.K., Ind. Eng. Chem./Proc. Dev. and Design, to be published.
(2) Vogel, A.I., "glementary Practical Organic Chemistry," 'Longmans, Green and Co., New York, I edition (1958).

CHAPTER V

RESULTS AND DISCUSSIONS

Organization of experiments

The experimental work in this study was organized with the principal objective of determining the effect of process variables on the vapor phase hydrolysis of chlorobenzene to phenol using unsupported tricalcium phosphate as catalyst. The preparation of the catalyst and its reactivation were also considered in some detail. The results and discussion are presented under the following broad sections : (1) catalyst proparation; (2) catalyst activation and life; (3) mass transfer studies; (4) rate data : (effect of the variables, reactants ratio, space velocity and temperature); (5) analysis of data and mechanism; and (6) conclusions.

Catalyst preparation

Preliminary experiments established the ract that catalysts such as bauxite and charcoal impregnated with cupric chloride and thorium nitrate exhibit low and short-lived activity. The industrially used catalyst, tricalcium phosphate, was then chosen for detailed studies.

The following solutions were first prepared : (1) 280 ml . phosphoric acid (59.5 Be) was diluted to 70 litres with water; (2) 1.05 litres aqueous ammonia of specific gravity 0.91 was diluted to 5 litres with water; and (3) 1.3 kg . hydrated calcium
chloride $\left(\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$ was dissolved in 25 litres water.

The amonia solution was mixed with the diluted phosphoric acid solution, and to the mixture the calcium chloride solution was added slowly over a period of one hour with continuous and energetic stirring. The precipitate of tricalcium phosphate was sucked off, freed from impurities by repeated washings, and dried at $80^{\circ} \mathrm{C}$.

Catalyst activation and ilfe

Tricalcium phosphate prepared according to the procedure described above exhibits no catalytic activity as such. It has to be activated by passing air at an elevated temperature for a few hours. From reported data and a few preliminary experiments, a temperature of $550^{\circ} \mathrm{C}$. was found to be the most suitable for activation. Using this temperature, the effect of activation time was systematically studied. In all the experiments, air was dried and purified by passing through sulfuric acid, potassium hydroxide, and anhydrous calcium chioride.

Freshly prepared somples of tricalcium phosphate, each weighing 6 gm , were heated in the reactor at $550^{\circ} \mathrm{C}$. In a stream of air for $2,4,5,6$ and 8 hours respectively. The conversion in each case was determined, and a time vs. conversion curve was plotted. It can be seen from the Table (5.1) and Pig. (5.1) that beyond a period of 5 hours, the conversion is not affected by increase in time. In all the runs reported in this
work, the catalyst was activated for 5 hours at $550^{\circ} \mathrm{C}$.

Before undertaking kinetic investigations on the catalyst, a life test was carried out to ensure that all the kinetic data were taken when the effect of fouling was absent. It was observed that the catalyst was coated with a deposit of carbon after a few hours of use, leading to a progressive fall in conversion. The carbon deposit on the deactivated catalyst could be burnt off by heating it in a stream of afr at $550^{\circ} \mathrm{C}$. for a period of 5 hours, the optimum regeneration time determined earlier. The amenability of the catalyst to repeated regenerations was then ascertained by the following procedure.

For each conversion cycle, the degree of conversion of chlorobenzene to phenol was estimated at different process times. The regeneration eycle was then carried out at $550^{\circ} \mathrm{C}$. by passing air for 5 hours. At the end of this cycle, conditions were brought back to those of the conversion cycle, and the conversion cycle completed by carrying out the reaction till the catalyst was again deactivated. The results plotted in Fig. (5.2) clearly show that, for each conversion cycle, during the first 3 hours there is a steady rise in conversion, then for a period of about 4 hours uniform conversions are obtained, aftor which there is a steady iall in conversion.

From these results $1 t$ appears that the catalyst can be regenerated several times. In industrial practice, a continuous fluidized bed or moving bed reactor can be advantageously used for a catalyst of this type which gets
deactivated within a few hours. Alternatively, two reactors can be used such that one is in the production cycle while the other is in the reactivation cycle.

In any kinetic study of this catalyst, therefore, the experiments should be so orgonized that rate data are obtained under conditions of constant catalyst activity. Thus, for obtaining the conversion at a given set of conditions, it will be necessary to prepare a conversion vs. process time curve under these conditions; then the actual conversion will be given by the flat portion of the curve shown in Fig. (3.2). obtaining kinetic data for a reaction of this kind, in which the catalyst tends to be deactivated so rapidly, is therefore a time consuming operation involving the determination of a complete process time vs. conversion plot for a single experimental rate point.

Mass transfer studies

In catalysts which are very active, mass transfer may be the limiting step. But for catalysts of low activity, the mass transfer effect may not be significant since the chemical reaction, being comparatively slow, may frequentiy be the rate determining step.

For the present catalyst, the conversion obtained even at a very high value of $W / F(112.5)$ is less than 20 per cent suggesting that mass transfer may not be a significont step. However, several experiments were carried out to evaluate the mass transfer effect by increasing the velocity of the feed for
the same residence time (i.e. the same value of $W / F)$. The mass transfor effect can be minimized by operating at high feed rates, since at these high velocities the equivalent fluid film surrounding the catalyst particle will be destroyed and the partial pressures of the reactants and products in the fluid bulk may be considered to be equal to the partial pressures on the catalyst surface. This is a necessary requirement in any kinetic study since catalytic rate equations are based on concentrations on the catalyst surface, while the experimentally determined concentrations are those in the fluid buik, Even if the data are obtained under conditions where this identity does not exist, the concentrations on the catalyst surface can be estimated from the bulk concentration values from known correlations (1,2).

Experimentally the effect of velocity can be determined by increasing the feed rate of chlorobenzens (with a corresponding increase in the water rate to keep the same ratio) and also correspondingly increasing the weight of the catalyst so that the residence time (denoted dimensionally by W/F) is maintained constant. It is assumed that the flow is tubular, and that the flow patterns are not affected by increased velocities. However, as it is experimentally difficult to adjust the values of W and F accurately so that W/F remains constant at different velocities, conversion data were determined for difforent weights of catalyst (6, 10 and 12 gm .) by changing the feed rate several times for a given catalyst weight. Thus three sets of W / F vs. x plots were
obtained for the three weights of catalyst used as shown in table (5.2) and Fig. (5.3).

A cross plot of Fig. (5.3) giving conversion as a function of feed (chlorobenzene) velocity for $W / F=50$ is shown in Fig. (5.4). It is evident that for each value of W / F, conversion tends to be independent of velocity beyond a certain value; this value for $W / F=50$ is 13 feet per second.

It is necessary to ensure that the velocity is beyond the critical value for any given W / F in all the kinetics experiments. It is interesting to note that although the conversions obtained by this catalyst are quite low, there is a distinct mass transfer effect at low velocities.

Rate data
The three principal variables to be investigated in obtaining rate data for a system involving two reactants are : space velocity with respect to the key component (chlorobenzene), represented by W/F; ratio of the two reactants (chlorobenzene and water); and temperature.

In order to obtain a suitable rate equation, it is always advisable to correlate the data at different ratios and space velocities at the most suitable temperature, and then to Introduce the effect of temperature. In the present study a series of preliminary runs showed that $550^{\circ} \mathrm{C}$. is the most suitable temperature, and therefore the bulk of the experimental
data for determining the reaction mechanism were obtained at this temperature. The following ranges of the variables were studied :

Ratio of chlorobenzene (CB) to water		1:1 to 1:8
W/F, gra. catalyst/gra. mole $\mathrm{CB} / \mathrm{hr}$.		28 to 112
Temperature, ${ }^{\circ} \mathrm{C}$.	:	475 to 575

A total of about 30 experiments were carried out to study the effect of these variables. This actually involved 30×10 or 300 conversion deteminations since, as stated earlier, each rate point could only be detemined after preparing a process time vs, conversion curve for any given set of conditions, and this normally involved ten experimental determinations. Typical time-conversion curves for runs R4, R13, R6 and T6, T10, T12, T14 are show in P1gs. (5.5) and (5.6) respectively. The flat portions of these curves represent the actual conversions for the corresponding runs.

Curves showing conversion as a function of W / F for four different ratios of chlorobenzene to water, $1: 1,1: 3,1: 6$, 1:8, are shown in Figs. $(5.7),(5.8),(5.9)$ and (5.10) respectively, and the experimental results are tabulated in Table (5.3). Their use in the determination of reaction mechanism is discussed in the next section.

[^0] chlorobenzene : water ratio of $1: 6$. Plots of W / F vs. conversion
at three other temperatures $475^{\circ}, 515^{\circ}$ and $575^{\circ} \mathrm{C}$. are shown in Figs. (5.11), (5.12) and (5.13) respectively; the experimental results are tabulated in Table (5.4).

Analysis of data

Inftial rate studies. For any vapour phase reaction catalysed by a solid surface, the effect of pressure on the initial reaction rate suggests a clue to the probable mechanism. The nature of this curve is different for different mechanisms. For the present reaction,

which can be written in more general form

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{R}+\mathrm{S}
$$

Where A stands for chlorobenzene, B for water, R for phenol and S for hydrochloric acid, the effect of the ratio of the reactants can be used in place of pressure as an inftial guide to the probable mechanism.

It has been pointed out by Hougen that for most industrial catalysts, surface reaction offers the controlling resistance. Thas it seems no longer necessary, particularly when an industrial catalyst is used, as in the present case, to
consider mechanisms other than surface reaction. It is only when this mechanism falls that adsorption and desorption mechanisms should be considered. In such an event the catalyst in question should probably be either improved or replaced.

For the present reaction the following mechanisms were considered.
(1) Dual site surface reaction with adsorption of all the components of the reaction system (A, B, R and S).

$$
r=\frac{k\left(P_{A} P_{B}-\frac{P_{R} P_{S}}{K}\right)}{\left(1+K_{A} P_{A}+K_{B} P_{B}+K_{R} P_{R}+K_{S} P_{S}\right)^{2}}
$$

(2) Dual site surface reaction between adsorbed chlorobenzene and water in the gas phase

$$
\begin{equation*}
r=\frac{k\left(P_{A} P_{B}-\frac{P_{R} P_{S}}{K}\right)}{\left(1+K_{A} P_{A}+K_{R} P_{R}+K_{S} P_{S}\right)^{2}} \tag{5.2}
\end{equation*}
$$

derived as follows. When $r=r_{0}, P_{A}=P_{A}=0$. If we denote the mole fraction of A by y_{A}, then the mole fraction of $B, y_{B}=\left(1-y_{A}\right)$. The equation for mechanism (1) then reduces to

$$
\begin{equation*}
s_{0}=\frac{k \pi^{2} y_{A}\left(1-y_{A}\right)}{\left[1+k_{A} \pi y_{A}+k_{B} \pi\left(1-y_{A}\right)\right]^{2}} \tag{5,3}
\end{equation*}
$$

This equation can be written as

$$
\begin{align*}
x_{0} & =\frac{y_{A}\left(1-y_{A}\right)}{\frac{1}{\pi^{2} k}\left[1+K_{A} \pi y_{A}+k_{B} \pi\left(1-y_{A}\right)\right]^{2}} \\
& =\frac{y_{A}\left(1-y_{A}\right)}{\left(a^{\prime}+b^{\prime} y_{A}\right)^{2}} \tag{5.4}
\end{align*}
$$

where

$$
s^{\prime}=\frac{1}{\sqrt{k}}\left(\frac{1}{\pi}+k_{B}\right)
$$

$$
b^{\prime}=\frac{1}{\sqrt{k}}\left(K_{A}-K_{B}\right)
$$

The form of Equation (5.4) shows that a plot of r_{0} against y_{A} should show a maximum. In the present reaction y_{A} was changed from 0.11 to 0.5 . For every value of y_{A} (1.e. ratio of A to B), several runs were made, and the conversion determined as a function of W / F as shown in Table 5.3 ; then the initial rate r_{0} was determined by plotting the reaction rate r as a function of conversion, \mathbf{r} being determined by graphical differentiation of the curves of Figs. $(5.7),(5.8),(5.9)$ and (5.10). The curves of r vs. W/F, shown in Figs. (5.14), (5.15), (5.16) and (5.17), were extrapolated to $x=0$ in each case to give the corresponding value of r_{0}. These values are summarized below.

Ratio of CB to water y_{A}
r_{0}

$1: 8$	0.111	0.00203
1.6	0.143	0.00326
$1: 3$	0.250	0.00370
$1: 1$	0.500	0.00143

r_{0} is plotted as a function of y_{A} in Fig. (5.18). It can be seen that the nature of the curve corresponds to the mechanism where surface reaction is rate controling. By
simplifying the rate equation for the second case of surface reaction considered, it can be shown that a similar curve will result.

Determination of rate equation. Let $m=$ moles of B used per mole of A. Then,

$$
\begin{equation*}
P_{R}=P_{S}=\frac{x}{m+1} \pi \tag{5,5}
\end{equation*}
$$

$P_{A}=\frac{1-x}{m+1} \pi$

$$
\begin{equation*}
=\frac{\pi}{m+1}-p_{R} \tag{5,6}
\end{equation*}
$$

$$
\begin{align*}
P_{B} & =\frac{m-x}{m+1} \pi \\
& =\frac{m}{m+1} \pi-p_{R} \tag{5,7}
\end{align*}
$$

$$
\begin{align*}
R & =\frac{\left(P_{A} P_{B}-\frac{P_{R} P_{S}}{K}\right)}{r} \\
& =\frac{1}{\sqrt{k}}+\frac{R_{A}}{\sqrt{k}} P_{A}+\frac{K_{B}}{\sqrt{k}} P_{B}+\frac{K_{R}}{\sqrt{k}} P_{B}+\frac{R_{S}}{\sqrt{k}} P_{S}
\end{align*}
$$

Since $P_{R}=P_{S}$, this equation reduces to

$$
\begin{equation*}
R=a+b P_{A}+c P_{B}+(d+e) P_{R} \tag{5.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{a}=\frac{1}{\sqrt{k}} \\
& \mathrm{~b}=\frac{\mathrm{K}_{\mathrm{A}}}{\sqrt{\mathrm{k}}} \\
& \mathrm{c}=\frac{K_{B}}{\sqrt{k}} \\
& d+e=\frac{\left(K_{R}+K_{S}\right)}{\sqrt{k}}
\end{aligned}
$$

Substituting the values of P_{A}, P_{B} and P_{S} in terms of P_{R} and m, and separating the variables

$$
\begin{equation*}
R=(d+e-b-c) P_{R}+\left(a+\frac{\pi}{m+1} b+\frac{m \pi}{m+1} c\right) \tag{5.10}
\end{equation*}
$$

If the reaction takes place according to the second mechanism, the constant c will vanish and Equation (5.10) reduces to

$$
\begin{equation*}
(a+e-b) P_{R}+\left(a+\frac{\pi}{m+1} b\right)=R \tag{5.11}
\end{equation*}
$$

A plot of the function R against P_{R} should give a straight line whose slope is ($d+e-b$) and intercept is

$$
a+\frac{\pi}{m+1} b \text {. Different values of m will give straight lines of }
$$ different intercepts but of the same slope.

Fig. (5.19) shows a plot of P_{R} vs. R for the four ratios considered in this study. It can be seen that straight lines are obtained for each of these ratios up to $R=8$
and that the slope of these four lines are the same.

The intercept term can be rewritten as

$$
\begin{equation*}
a m+(a+\pi b)=I(1+m) \tag{5.12}
\end{equation*}
$$

Where I represents the intercepts for the different ratios read from Fig. (5.19). According to Equation (5.12), when is plotted against $I(1+m)$, a straight line should be obtained whose slope gives a and intercept $(a \not a r b)$. This plot is show in Fige (5,20). From the values of the slope (average) and intercepts,

$$
\begin{aligned}
& a=5.8 \\
& b=1.28
\end{aligned}
$$

Substituting these values in the slope ($a+c-b$) of the straight lines show of Fig. (5.19) the value of $(a+e)$ is obtained as

$$
/(d+e)=96.28
$$

From the defining equations of a, b, d and e the following values of the constant of Equation (5.2) may be obtained.

$$
k=\frac{1}{a}=0.03
$$

$$
\begin{aligned}
& K_{A}=b \sqrt{k}=0.22 \\
& \left(K_{R}+K_{S}\right)=(d+e) \sqrt{k}=16.1
\end{aligned}
$$

$\left(\pi_{R}+\pi_{S}\right)$ can be put together and a constant $K_{R S}$ defined such that $K_{R S}=K_{R}+K_{S}$. The separate determination of K_{R} and K_{S} is not possible, since the partial pressures of R and S were not independently varied in this investigation. The final equation can therefore be written as

$$
\begin{equation*}
r=\frac{0.03\left(p_{A} P_{B}-\frac{P_{R} P_{S}}{K}\right)}{\left(1+0.22 P_{A}+16.1 P_{R}\right)^{2}} \tag{5.13}
\end{equation*}
$$

This equation suggests that surface reaction between adsorbed chlorobenzene and water in the gas phase is rate controlling, and since the values of the constants are positive this mechanism can be considered to be plausible. Mechanism (1) was not found to be
satisfactory since negative values were obtained for the constants.

The correctness of the equation was determined by calculating the reaction rate from the estirated values of the constants and comparing these rates with the corresponding values determined by graphical differentiation of the experimental $x-W / F$ curves. Calculated and experimental values are show in Table (5.5). The average errors for the different ratios were as follows:

Ratio
1:8
1:6
1:3
1:1

Error: \%

8.33
22.12
6.82

Mechanism does not hold.

The average error for all the three ratios, $1: 8,1: 6$ and $1: 3$, up to a conversion of 12% is 12.5%. The error for the ratio 1:1 was more than 50% indicating that this mechanism probably does not hold at such a high mole fraction of A in the feed.

The rate equation developed holds good only at $550^{\circ} \mathrm{C}$. No attempt was made in this study to determine the constants at different temperatures, since the experimental work at these temperatures was restricted to one ratio only.

Conclusion

Although more work is necessary to arrive at a definite conclusion regarding the mechanism of the reaction, it can be tentatively postulated that the controlling mechanism in the hydrolysis of chlorobenzene on tricalcium phosphate is the surface reaction between adsorbed chlorobenzene and water in the gas phase. In this investigation the adsorption equilibrium constants for phenol and water have been put together as a single constant. More experiments are necessary to estimate these constants separately. The experimental work has shown that the mechanism suggested by the behaviour of the initial rate as a function of initial mole fraction is in fact the most plausible mechanism. The variation of the rate constant and the adsorption constants with temperature has not been studied. Also, the kinetics of deactivation has not been fully investigated. Further work in this subject should therefore include (1) a temperature correlation for the rate and adsorption constants, and (2) a study of the behaviour of these constants as a function of process time.

$\begin{aligned} & \frac{\text { Table } 5.1}{\text { Effect of catalyst activation time on conversion }} \\ & \text { Activation temperature }=550^{\circ} \mathrm{C} . \\ & \text { Wt. of catalyst }=6 \mathrm{gm} \\ & \text { CB feed rate }=0.20 \mathrm{moles} / \mathrm{hr} . \\ & C B \text { water }=1: 6\end{aligned}$

Run HO.	Activation time hr.	Conversion 眷
A1	2	5.90
A2	4	7.50
A3	5	8.02
A4	6	8.02
A5	7	8.02

Table 5.2
Effect of mass transfor
Temperature $=550^{\circ} \mathrm{C}$.
$C B:$ water $=1: 6$

Run No.	Rate of CB moles/hr.	Rate of water moles/hr.	Wt. of catalyst gm.	W/F	Conversion $\%$
M1	0.2667	1.60	6	30.00	8.080
M2	0.2000	1.20	6	22.50	6.15
M3	0.1334	0.80	6	44.98	11.50
M4	0.2667	1.60	10	37.50	10.74
M5	0.2000	1.20	10	50.00	13.58
M6	0.1334	0.80	10	74.96	16.30
M7	0.0889	0.53	10	112.50	17.15
M8	0.2667	1.60	12	45.00	12.70
M9	0.2000	1.20	12	60.00	15.10
M10	0.1334	0.80	12	94.19	16.90

$$
\begin{aligned}
& \text { Table } 5.3 \\
& \begin{array}{c}
\frac{\text { Table } 5.3}{\text { Effect of ratio of }} \\
\text { reactants } \\
\text { Temperature }=550^{\circ} \mathrm{C} . \\
\text { Wt. of catalyst }=10 \mathrm{gm} .
\end{array} \\
& \begin{array}{l}
1: 1 \\
1: 3 \\
1: 6
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
W / F \\
28.13 \\
32.14 \\
37.50 \\
50.00 \\
37.50 \\
50.00 \\
74.96 \\
37.50 \\
50.00 \\
74.96 \\
112.50
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ratio of }
\end{aligned}
$$

Table 5.3 (contd.)

Run No.Chlorobenzene feed rate moles/hr	Ratio of CB to water (molar)	W / F	Conversion \%	
R12	0.2667	1.8	37.50	5.94
R13	0.2000		50.00	9.195
R14	0.1334	74.96	12.16	
R15	0.0889	12.50	14.55	

Table 5.4
Effect of temperature on conversion

Run No.	Temperature OC.	Rate of CB moles/hr.	W / F	Conversion $\%$
T1	475	0.2667	37.50	5.10
T2		0.2000	50.00	6.78
T3	0.1334	74.96	7.20	
T4		0.0889	112.50	7.99
T5	515	0.2667	37.50	8.45
T6		0.2000	50.00	9.33
T7		0.1334	74.96	10.35
T8		0.0889	112.50	11.55
R8	550	0.2667	37.50	10.74
R9		0.2000	50.00	13.58

Table 5.4 (contd.)

Run №.	${ }_{\text {Pemperatare }}^{\text {Octare }}$	Rate or notes ch.	W/	${ }^{\text {Conversston }}$
${ }_{810}$	550	0.1334	74.96	${ }^{26.30}$
${ }_{811}$		0.0839	122.50	17.15
т9	575	0.2000	50.00	15.38
${ }_{12}$		0.1334	74.96	16.50
${ }_{11}$		0.0839	112.50	${ }^{17.25}$

Table 5.5
Comparison of calculated and experimental rates
Temperature $=550^{\circ} \mathrm{C}$.

No.	$C B$ to water ratio	$\underset{\text { Experimental }}{\text { rxi } 0^{3}}$	$\begin{gathered} r \times 10^{3} \\ \text { Calculated } \end{gathered}$	Deviation
1	1:3	3.37	3.3771	11.9000
2		3.26	3.505	7.5160
3		3.12	3.264	4.6150
4		2.99	3.038	1.6050
5		2.82	2.835	0.4167
6		2.64	2.651	2.4390
7		2.42	2.479	6.3750
8		2.18	2.319	19.7200
9		3.70	2.328	37.08
10	1:6	2.87	2.22	32.65
11		2.78	2.117	23.85
12		2.66	2.020	24.06

Table 5.5 (cont.d.)

Explo
Experimen
1.932
1.834
1.752
1.676
1.589
1.524
1.998
1.914
1.838
1.762
1.692
1.626
1.559
Deviation
\%

21.08
14.92
 1.808 2.1290 4.569
8.810
14.91
23.73

TABLE OF SYMBOLS

A, B	-	Chlorobenzene, water.
R, S	-	Phenol, hydrochloric acid.
c_{p}^{0}	-	Heat capacity, cal. $/{ }^{\circ} \mathrm{K} . / \mathrm{g} \cdot \mathrm{mole}$.
$\begin{aligned} & a, b, c, \\ & a, e \end{aligned}$	-	Constants in equation 3.5 and equation 5.9.
$\triangle G_{P}^{\circ}$	-	Free energy of formation, kcal./g.mole.
$\triangle G_{T}^{\circ}$	-	Free energy of reaction, kcal./g.mole.
$\frac{\mathrm{G}_{T}^{\circ}-\mathrm{H}_{0}^{0}}{T}$	-	Pree energy function, cal. $/{ }^{\circ} \mathrm{K} . / \mathrm{g}$. mole.
$\triangle H_{C}^{\circ}$	-	Heat of combustion, kcal./g.mole.
$\triangle H_{f}^{\circ}$	-	Heat of formation, kcal./g.mole.
$\triangle H_{T}^{\circ}$	-	Heat of reaction, kcal./g.mole.
$\left(\mathrm{H}_{T}^{\mathrm{O}}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)$	-	Enthalpy function, kcal./g.mole.
$\triangle H_{V}^{\circ}$	-	Heat of vaporisation, kcal./g.mole.
K	-	Equilibrium constant.
$\mathrm{K}_{\mathrm{A}}, \mathrm{K}_{\mathrm{B}}$,	-	Adsorption equilibrium constants.
$\mathrm{K}_{\mathrm{R}}, \mathrm{K}_{\mathrm{S}}$		
K_{v}	-	Fugacity coefficient term.
1, g	-	Liquid, gas.

I	-	Intercept of equation 5.12.
m	-	Moles of B used per mole of A.
n	-	Number of moles.
P_{A}, P_{B},	-	Partial pressures of A, B, R, S.
$\mathrm{P}_{\mathrm{R}}, \mathrm{P}_{\mathrm{S}}$		
R	-	Gas constant, cal. ${ }^{\circ}{ }^{\mathrm{K}}$ //g.mole.
R	-	Rate factor,
r	-	Reaction rate, g.moles/g.cat./hr.
r_{0}	-	Initial rate, g.moles/g.cat./hr.
s°	-	Entropy, cal. $/{ }^{\circ} \mathrm{K}$ 。/mole.
T	-	Temperature, ${ }^{\circ} \mathrm{K}$.
x	-	Moles of phenol formed per mole of chlorobenzene.
W/F	-	gm./g.mole/hr.
	-	Total pressure, atm.
	-	Fugacity coefficient.
$\mathrm{y}_{\text {A }}$	-	Mole rraction of A.
y_{B}	-	Mole fraction of B .

FIG.5.2. CATALYST ACTIVITY AS A FUNCTION OF PROCESS TIME

FIG. 5.3. MASS TRANSFER EFFECT: W/F VS CONVERSION FOR DIFFERENT CATALYST WTS.

FIG. 5.4. MASS TRANSFER EFFECT: FEED VELOCITY AS A FUNCTION OF CONVERSION

FIG. 5.7. $X-W / F$ PLOT AT $550^{\circ} \mathrm{C}$. AND CB/WATER RATIO OF $1: 3$

FIG. 5.8. $x-W / F$ PLOT AT $550^{\circ} \mathrm{C}$. AND CB/WATER RATIO OF $1: 3$

FIG. 5.9. $\mathrm{X}-\mathrm{W} / \mathrm{F}$ PLOT AT $550^{\circ} \mathrm{C}$. AND CB/WATER RATIO OF $1: 6$

FIG. $5.11 \quad \mathrm{X}-\mathrm{W} / \mathrm{F}$ PLOT AT $475^{\circ} \mathrm{C}$.

FIG. $5 \cdot 12 . \quad X-W / F$ PLOT AT $515^{\circ} \mathrm{C}$.

FIG. 5.13. $\underline{X-W / F ~ P L O T ~ A T ~} 575^{\circ} \mathrm{C}$.

FIG. 5•15. REACTION RATE AS A FUNCTION OF W/F AT $550^{\circ} \mathrm{C}$. AND CB WATER RATE OF $1: 3$

FIG. 5.17. REACTION RATE AS A FUNCTION OF W/F AT $550^{\circ} \mathrm{C}$. CB/ WATER RATIO OF $1: 8$

FIG.5.20. VARIATION OF INTERCEPT FUNCTION WITH m.

REFERENCES

(1) Hougen, $\mathrm{O} . \mathrm{A}$. and Watson, K.M., "Chemical Process Principles," Part III (John. Wiley and Sons), New York (1947).
(2) Hougen, O.A., Chem. Engg. Prog., Monograph Series No. 1 (1951).
(3) Hougen, O.A., Lecture, Kyoto University (1957).

[^0]: The effect of temperature was studied at a fixed

