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Abstract

Self-organization in systems is a fascinating phenomenon that leads to spatiotem-

poral patterns ranging from simple to the complex in many physical, chemical, and

biological systems. The performance of reacting systems right from a catalyst surface

to fixed-bed reactors, multiphase systems, and fluid bed reactors arise due to the

interactions amongst the various transport mechanisms of diffusion, convection, and

nonlinear reactions simultaneously taking place. The understanding of these systems

require interfacing recent progress in bifurcation, chaos, and turbulence theories along

with newer methods of time-series analysis. The presence of nonlinear rate processes

can make the system sensitive to parameter values manifesting instabilities and non-

stationary behavior. For example, in the case of chemical reactions taking place on

heterogeneous surfaces, spatiotemporal pattern formation takes place due to vary-

ing surface concentrations of chemical species or temperature gradients. The study

and analysis of these reaction-diffusion patterns is of utmost importance and suitable

methodologies should be devised for the control of pattern formation and dynamics.

The present thesis is devoted to developing new and robust methods for carrying out

spatiotemporal data analysis and pattern recognition based on dynamical character-

ization and management of uncertainty. The advantages of these new methodologies

over conventional modeling of reaction-diffusion systems are brought out by under-

standing the spatiotemporal pattern formation, its recognition, and quantitatively

analyzing the system dynamics for system behavior.

After a brief introduction of these topics in Chapter 1, the subsequent chapters

2-5 present the methodologies, situations considered, and results of analysis for the

aims discussed above. A summary of each of these Chapters in the thesis is described

below.
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Chapter 2: Methods for Dimensionality Reduction

Dimensionality reduction which places entities represented by high-dimensional

vectors or by pairwise dissimilarities has always been a pertinent problem in the

study of complex spatiotemporal patterns. Chapter 2 discusses the methodologies

and the algorithms that are made use of for analyzing these complex spatiotemporal

patterns. Multidimensional scaling (MDS) is a method that represents measurements

of similarity or dissimilarity data on a set of objects. The data taken for MDS analysis

may be intercorrelations of test items, flying mileages between different cities, trade

indices for a set of countries, etc. MDS attempts to model such data as distances

among points in a geometric space and the results obtained may be visually inspected

and explored. Each object or event is represented by a point in a multidimensional

space. The points are arranged in this space so that the distances between pairs of

points have the strongest possible relation to the similarities among pairs of objects.

That is, two similar objects are represented by two points that are close together, and

two dissimilar objects are represented by two points that are far apart. The space

is usually a two- or three-dimensional Euclidean space while Principal Component

Analysis (PCA) finds a linear projection of the original data which capture as much

of variance in the data. Both MDS and PCA use proximity measures such as the

correlation coefficient or Euclidean distance to generate a spatial configuration (map)

of points in multidimensional space where distances between points reflects the simi-

larity among them. MDS techniques yield coordinates in minimum dimensions with

the projection based on preservation of inter-point (a position in space that is an ab-

stract representation of a perceived object) distances. Although, the above methods

identify each object with locations in the low-dimensional space, data points (nodes)

lying far apart on a curved data manifold can artificially map close together in the

reduced projection [Ten00]. This leads to erroneous presumptions being made about
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existing relationships in the system behavior. Isometric graphing complements MDS

by providing a superior way to move along the curved data manifold and projects

dissimilarities (distances) between the objects more accurately. Its usefulness has

been shown in the classification of facial images and handwriting patterns. Isometric

graphing makes use of the Dijkstra’s algorithm (introduced in 1959) and provides one

of the most efficient algorithm for solving the shortest path problem. The intrinsic

geometry of a data manifold (which can be treated as a weighted graph or a network

of data points or nodes) can be understood based on the shortest path distance algo-

rithm. It finds the minimum distance from one given node of a network, called the

source node to all other nodes. For any pair of points (A,B), the strategy is to start

at A and systematically build up a list of paths that lie between A and B, in order of

increasing distance from A until B itself is reached. Thus we have formulated a new

algorithm incorporating the superior features of Isometric graphing and Multidimen-

sional scaling (IGMDS) for the effective characterization and analysis of space-time

patterns monitored as snapshots in time and obtained from high dimensional spa-

tially extended systems. To validate the applicability of the method, we have studied

the low-dimensional Rössler system and high dimensional Gray-Scott autocatalytic

system (that shows various types of spatiotemporal patterns including spots, stripes,

turbulence, etc., in different parameter regions). IGMDS methodolgy captures the

topological features of Rössler model and makes possible the segregation of different

kinds of Gray-Scott patterns as inferred by our analysis.

Chapter 3: Studies with IGMDS for Reaction-Diffusion

Modeling on Regular and Fractal Surfaces.

Heterogeneous surface reactions exhibiting complex spatiotemporal dynamics give

rise to pattern formation and can be studied as processes involving reaction-diffusion

mechanisms. For chemical reactions on heterogeneous surfaces, the patterns occur
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due to variations in surface concentrations of chemical species or temperature and the

modeling of the observed patterns may be carried out by solving designed equations

incorporating the roles of reaction rates, heat effects, surface diffusion of chemical

species, and other nonequilibrium conditions operating in the system. In many real-

istic situations, the surface has fractal characteristics. Conventional reaction-diffusion

modeling would consider an ideal smooth surface for computational simplicity. On

the other hand, if the true features of the surface geometry are to be included, these

modeling strategies in terms of finite difference will not be sufficient especially when

the nonlinear rate processes dominate. Thus, to decipher the complex reaction mech-

anisms on fractal surfaces (lattices having non-integral dimensions) the approach

based on Isometric graphing and Multidimensional scaling (IGMDS) of fractal sur-

faces for extracting geodesic distances (i.e., shortest scaled distances that obtain edges

of neighboring surface nodes and their interconnections.) is adopted [Jai04]. The im-

plementation of the Isometric graphing algorithm is feasible in the case of fractal

surfaces because nodes lying close together in the fractal space should also map close

together on an identified network, even when fractal scaling of the distances are con-

sidered. Fractal surfaces of varying dimensions have been constructed by applying

successive self-affine transformations to construct pseudosurfaces on which reaction

and diffusion take place. The distribution of the surface nodes and their connectivities

together form a complex network for diffusion mechanisms to operate. The connec-

tivity of the nodes is optimized using Dijkstra’s algorithm. Generalized reaction-

diffusion models for first-order reaction kinetics and other nonlinear rate forms have

been formulated using the identified diffusion network. To exemplify the approach

for nonlinear kinetics, three models are studied, viz., (a) CO oxidation model that

follows the Langmuir-Hinshelwood mechanism, (b) FitzHugh- Nagumo model which

show patterns arising due to the interaction of the concentration wavefronts, (c) cu-

bic model which deals with complex spatiotemporal patterns. The advantages gained
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were shown by studying spiral dynamics and other complex patterns formed on regu-

lar and fractal surfaces and proves the credibility of the model formulation where the

data is assumed to be monitored as snapshots in time. The IGMDS coordinates not

only analyze the dissimilarity of snapshots in the spatial patterns but characterize the

dissimilarity based on the time evolution properties of the spatiotemporal dynamics.

Implementation of the IGMDS methodology is especially beneficial in the estimation

of dynamical invariants, viz., the Lyapunov exponents and KS entropy that are useful

for making inferences about the complexity of the evolved spatiotemporal patterns.

In Chapter 3, the applicability of IGMDS in evaluating these dynamical invariants

is also presented and the results show that this analysis can be used to discuss the

combined roles of disorder arising due to surface fractality and noise for a broad range

of conditions. The isometric graphing and MDS methodology captures the features of

spirals breaking up to turbulence by a corresponding loss in the periodic movements

of the MDS coordinates.

Chapter 4: Analysis of Reaction-Diffusion Systems on

Regular and Fractal Lattice Using Coupled Map Lattices.

Coupled map lattices (CMLs) have been extensively studied as paradigms of spa-

tially extended systems exhibiting complex spatiotemporal dynamics. They are sim-

ple, computationally tractable network models for studying complicated spatiotem-

poral dynamics in terms of discrete space (“lattice”), discrete time (“map”), and a

continuous state with local and global interactions (“coupled”). The simplicity of the

methodology makes it possible to use CMLs for developing formalisms for character-

izing pattern formation in reaction-diffusion systems. In Chapter 4, we discuss the

model formulation and usage of isometric graphing for identification of near neighbors

to characterize the effects of spatial coupling on the lattice. IGMDS can be favor-

ably employed to calculate the dynamic invariants of this system with advantages
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in reduced dimensionality and computing times when compared to the full system.

In CMLs, the neighboring lattice sites interact through diffusive coupling and repre-

sentative networks can be established and analyzed based on their connectivity. For

fractal lattices, the inter-site distances are drawn from self-affine distributions. To

generate these self-affine structures, a wavelet filtering algorithm employing normal-

ized and filtered Gaussian distribution at different wavelet scales for N discrete sites

is implemented. The Hurst exponent (H) is related to the fractal dimension, D by

D = 2−H, with H value ranging between 0 and 1 [Sim02]. Fractal lattices character-

ized by different H values were generated by performing an inverse wavelet transform

using the filtered wavelet coefficients and the dynamical behavior of CML reaction-

diffusion process is studied on them. We study diffusion networks and the subsystem

scaling properties (with respect to the full system) on lattices having different fractal

dimensions and the results obtained are compared with that of a regular lattice hav-

ing integer dimensions. The dynamics of the CML for the reaction-diffusion process

is defined as

xn+1(i) =
1

Ai + 1
[f(xn(i)) +

∑
j∈conn

f(xn(j))]

where xn(i) is the state of the ith site at time n and index i runs from 1 to N on a linear

chain. Ai represents the number of connections at the ith site and the summation over

j implies all sites connected to site i on which diffusion mechanisms operate [Rag95].

The temporal evolution of the lattice gives rise to the formation of the domain struc-

tures. These domain structures which are different for varying coupling parameters

are subjected to IGMDS analysis. The dynamic invariants such as the Lyapunov

exponents and Kolmogorov-Sinai (KS) entropy calculated from the temporal IGMDS

coordinates were interestingly congruous with the values of the invariants calculated

from the whole system dynamics. This observation holds good with both the frac-

tal and regular CMLs. Thus the IGMDS analysis captures the temporal dynamic
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features thereby rendering the method very useful. The calculation of these system

invariants including entropy density (the size-independent quantification of entropy)

has shown that the nature of the lattice plays an important role in dynamical behav-

ior. Studies of the system behavior in terms of the subsystem properties facilitates

further improvements in computational effort and is therefore advantageous.

Chapter 5: Small World Behavior of Complex Reaction

Networks.

Complex scale-free networks (SFN) with short paths and high clustering, i.e.,

small world networks have been a subject for active research [Alb02]. Chapter 5

shows how isometric graphing methodology can be effectively used to elucidate the

small world behavior in complex reaction systems. Properties of small world networks

deviate significantly from random graphs with identical number of nodes. SFNs have

been observed to have small characteristic path lengths with the incoming/outgoing

branches in these networks following power law distributions [Wat98]. Many indus-

trially important chemical reactions involve complex reaction pathways and may be

treated as a graphical network of chemical species linked by reaction steps. Consid-

ering the reacting species and reactions as two distinct types of nodes, the reaction

network can be modeled as directed bipartite graphs. The reaction steps have chemi-

cal reactants/products as incoming/outgoing and this renders the network to behave

as a directed bipartite graph. Isometric graphing methodology would be befitting

for the network analysis of these complex reaction mechanisms and the results of the

studies with complex networks having many elementary reaction steps, viz., CH4 ox-

idation, NOx and SOx combustion unequivocally show SFN characteristics [Jai04a].

The concentrations of the chemical species with time are obtained by integrating the

generalized rate equations. Each edge of the bipartite graph is assigned a distance

proportional to the reaction rate. Robustness of the reaction network is confirmed
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based on the calculation of SFN properties, such as the characteristic path length.

The average number of edges connected to any given node, i.e., degree of vertex

connectivity, together with the value of clustering coefficients obtained indicate the

extent of self-organization and suggest SFN features being present in the system.

The studies prefigure that in large networks there can exist relatively shorter paths

connecting any two nodes and the effect of this shorter average path length is that

it indicates proximity of different entities in a network that are otherwise not appar-

ent. The analysis identifies the important species, i.e., those take part in maximum

number of reactions and the results show that the network features are sensitive with

respect to those species having high vertex degree distribution, and stable with re-

spect to many other randomly selected species with lower connectivity. Based on the

species in the network having highest vertex degree connectivity, reduced reaction

mechanisms may be formulated that capture the essential features of the reaction

mechanism in a simplified way.



Chapter 1

Introduction

1.1 Self-Organization in Complex Nonlinear

Systems

Many natural systems, i.e., physical, biological, chemical systems exhibit a wide

range of complex behavior such as sensitivity to initial conditions, multi-scale phe-

nomena, self-organization, spatiotemporal chaos, turbulence, etc. Self-organization,

the spontaneous emergence of ordered structures, is a fascinating phenomenon that

leads to spatiotemporal patterns in complex systems [Aba93]. The systems, in which

self-organization processes occur becomes highly organized over time, without being

solely ordered by outside agents or by external forces [Ash47]. Systems evolve natu-

rally into self-organized states by determinism (e.g., regular waves, travelling waves,

solitons and even spatiotemporal chaos) or by stochastic governance (e.g., effects of

white/colored noise, probabilistic evolution, etc.). Other examples include the con-

vective roll patterns in hydrodynamic experiments, spatiotemporal patterns formed

in chemical reaction-diffusion systems, biological patterns (the stripes of a tiger, the

beautiful colors of butterflies, sea shells, etc.) and other patterns seen in nature

(e.g., the veins of a leaf, ragged form of coast-lines, formation and movement of sand

dunes, etc). Self-organization occurs in open systems that are maintained far-from-
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thermodynamic equilibrium through continuous exchange of matter and energy with

the surroundings [Kur84]. The dynamics of systems that give rise to spatiotemporal

pattern formation is studied in terms of mass, energy and momentum conservation

laws and described mathematically by nonlinear differential equations, coupled map

lattices, cellular automata (CA), etc. [Arg94].

The presence of nonlinear rate processes can make the system sensitive to param-

eter values by manifesting instabilities and nonstationary behavior. In fact, chaos

theory deals with unpredictable and apparently random behavior of deterministic

systems, that are extremely sensitive to infinitesimal changes in initial conditions

[Sli94]. The mildest of perturbations is known to create chaotic conditions, e.g., as

vividly described, the flapping of a butterfly’s wings in Peking may end up starting a

cascade of events that results in a tornado in Texas. Chaotic systems form a class that

are generalized as complex systems. Ilya Prigogine, who received the Nobel Prize in

Chemistry in 1977, proposed that as long as systems (dissipative, nonlinear) receive

energy and matter from external sources, they may pass through periods of insta-

bility that result ultimately in self-organizing mechanisms [Nic77]. Complex systems

are those systems that satisfy two conditions; (a) the system is composed of many

interacting parts; (b) the interactions result in emergent properties that cannot be

represented in terms of the sum of properties of the individual components.

The dynamics exhibited by a given system depends on two parameters; (1) the num-

ber of parts (N) that constitutes the system; (2) the average number of connections

(K) among the parts within the system. The systems, depending on the predomi-

nance of N and K, are classified into three types (•) K very small compared to

N ; the number of connections are very small compared to the total number of parts.

Each part behaves essentially independently of other parts and the properties are the

sum of the properties of the individual parts. Such systems tend to be static or reach

simple dynamic equilibrium and are called “sub-critical” systems.
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(•) K increasing compared to N ; this is the situation when the number of connec-

tions, K, increases in a faster rate than that of N . That is, though K is increasing,

K � N . As a result of increased connectivity, many emergent properties appear in

the system, the local fluctuations are transferred to extended parts and the dynamics

become more and more complex. This propagation does not usually cause global

changes, since the ratio of K to N is relatively small and such systems are called

“edge of chaos” systems or “critical systems”.

(•) K approaches N ; most components of the systems are connected to almost every

other component. This creates unstable “supercritical systems” described by chaos

theory. Chaos theory and fractal geometry deals with supercritical systems, while

complexity theory focuses on “edge of chaos” systems and the transition between the

system types.

The formation of spatiotemporal patterns can be looked upon as interactions

of individual subsystem elements. The local dynamics taking place in these indi-

vidual subsystems contribute to the overall global dynamics of the complex system

through efficient coupling mechanisms. For example in the reaction-diffusion systems,

the diffusive coupling mechanism links appropriately with the local dynamics. The

performance of reacting systems right from a catalyst surface to fixed-bed reactors,

multiphase systems, and fluid bed reactors arise due to the interactions amongst the

various transport mechanisms of diffusion, convection, and nonlinear reactions simul-

taneously taking place. In the present day context, a better understanding of these

practical systems therefore requires interfacing the theoretical advances in bifurca-

tion, chaos, and turbulence theories along with newer methods of time-series and

data analysis.

Most of the dynamical systems studied in the present thesis fall into the category

of complex systems as classified above. In particular, the spatiotemporal pattern

formation taking place on fractal surfaces studied is explained on the basis of anoma-
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lous reaction-diffusion mechanisms taking place on them. The coupled map lattice

models describe the dynamics of reaction-diffusion arising in a situation when all the

components of the system are connected to all other components (defined by global

coupling). The small world network systems studied represent the case of “edge of

chaos” systems. The wide variety of spatiotemporal patterns formed in these non-

linear systems are distinguished as due to the simultaneous occurrence of reaction-

diffusion phenomena and different types of mathematical models have been used to

characterize and analyze these patterns. They are briefly reviewed in sections 1.2-1.4.

1.2 Reaction-Diffusion Systems

The study of wavefront propagation and pulse formation is a prerequisite to under-

standing many esoteric problems associated with nonlinear dynamics. Spatiotemporal

dynamics in a wide class of self-organizing systems (e.g., excitable, oscillatory and

bistable media) may be described by multicomponent models of reaction-diffusion

equations (defined by nonlinear partial differential equations). Spatiotemporal pat-

terns formed in these systems are due to the instability of wavefronts resulting from

the competition between the cross-inhibitory and the cross-excitatory nature of the

system [Cro93]. Reaction and diffusion processes play a pivotal role in chemical sys-

tems. Turing (1952) proposed that these processes lead to a wide range of pattern

forming instabilities. The competition between different temporal growth rates and

spatial ranges of diffusion for the different chemical species present is an important

feature of reaction-diffusion systems. The equations for the concentrations, u1(x, t)

and u2(x, t) of two reacting and diffusing chemical species in 1-D space with diffusion

coefficients D1 and D2 may be written as

∂tu1 = D1∂
2
xu1 + a1u1 − b1u2 (1.1)

∂tu2 = D2∂
2
xu2 + a2u2 − b2u1 (1.2)
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In the above equations, the rate terms have been described based on the interaction

of an activator u1 and an inhibitor u2, and typically represent chemical and biological

systems [Kau93]. For positive a1 and b1, the growth of u1 enhances the production of

u1 and u2 while the growth of u2 leads to the decay of u1 and u2. Perturbative forces

such as external electric fields or light intensity also lead to complex pattern formation

in reaction-diffusion systems [Zem03]. Reaction-diffusion systems yield mainly two

types of spatial organization;

(1) One implies a propagation in system variables such as temperature, concentration

(e.g., Chemical waves in Belousov-Zhabotinskii reaction).

(2) Stationary in character, i.e., some structures with periodic concentrations in space

(e.g., Turing structures). The standing waves in reaction-diffusion systems arise from

a wave instability that requires unequal diffusivities of the chemical species involved

[Yan03].

Theoretically, systems that are far-from-equilibrium are represented in terms of

“microscopic equations”. Ginzburg-Landau equations or “amplitude equations” are

complex partial differential equations used to describe the perturbative analyses of

the microscopic equations and form a basis for studying a variety of nonlinear systems

[Saa92, Shr92]. Many properties of non-equilibrium systems are explained on the basis

of these equations and problems such as existence and interaction of defects, coherent

structures and chaos may be suitably addressed within this simple framework [Cro93].

The ordinarily diffusively, (i.e., locally) coupled complex Ginzburg-Landau equation

[Kur84] is stated as

dW (x, t)

dt
= W − (1 + ic2)|W |2W +D(1 + ic1)δ2W (1.3)

and can be derived, for example, from equations of oscillatory media in the vicinity of

their Hopf bifurcation points by employing the center-manifold reduction technique.

Here, W is the complex amplitude of an oscillator at a given time, t and location,
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x. The spatially uniform solution is unstable and the system exhibits spatiotemporal

chaos for appropriate parameter values. A two-dimensional Ginzburg-Landau model

of plasma turbulence, that has added forcing and dissipation effects acting at different

scales, has been studied with the primary aim on analyzing the role of coherent

structures in turbulent transport and dissipation [New88].

The reaction-diffusion models used to describe the situations of self-organizing

systems discussed in the following chapters of the present work are:

(a) Gray-Scott model (GS) model: The autocatalator model explains spatiotem-

poral patterns formed in response to finite amplitude perturbations (e.g., self-replicating

spots, stripes, turbulent patterns, etc.).

(b) CO oxidation model: Identifies oscillatory spiral patterns, turbulence, etc.

formed on heterogeneous catalytic surfaces.

(c) FitzHugh-Nagumo (FHN) model: This reaction-diffusion model involving

one activator and one inhibitor that provides a mathematical description of the exci-

tation and propagation of rotating spiral waves.

(d) Cubic model: Accounts for the patterns like Turing structures formed in activator-

inhibitor type reactions.

To put self-organization and pattern formation into perspective, two typical chem-

ical systems showing such phenomena are discussed below. (a) Belousov-Zhabotinskii

reaction, and (b) Carbon monoxide (CO) oxidation on Pt(110) surfaces.

1.2.1 Pattern Formation in Chemically Reacting Systems

Self-organization in chemical reactions (chemical oscillations) are known to be an

abundant source of pattern formation and chaos. If the reaction system is left un-

stirred, it gives fascinating structures in space and time. Belousov-Zhabotinskii (BZ)

reaction is quoted as one of the paradigm examples of nonlinear kinetics and pat-

tern formation in chemical systems [Fie74, Fie85, Zha87, Kap95]. Likewise, chemi-
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cal reactions taking place on heterogeneous surfaces, for example, carbon monoxide

(CO) oxidation on platinum (Pt), also show spatiotemporal pattern formation due to

varying surface concentrations of chemical species or temperature gradients. These

are examples of anisotropic systems with broken rotational symmetry [Imb95] and

show ordered arrays of topological defects, anisotropic phase turbulence and travel-

ling waves along a preferred orientation [Bar99].

1.2.1.1 Examples of Pattern Forming Chemical Systems

Belousov-Zhabotinskii (BZ) reaction is a self-catalytic redox reaction that periodi-

cally moves between an oxidized and a reduced state [Tys76]. It involves the reaction

between an organic substrate which can be easily brominated and oxidized and a

bromate ion (BrO−3 ) dissolved in sulfuric acid or nitric acid over a one-electron redox

catalyst. The catalytic systems generally used are Ce(III)/Ce(IV) salts, Mn(II) salts

and ferroin. The organic compound usually used is malonic acid (HOOC-CH2-COOH)

or alkyl-substituted malonic acids. Because the reaction is very photosensitive, ruthe-

nium complexes are preferred for the studies. The reaction consists of several steps

and many intermediate species are formed. As the BZ reaction oscillates between

the oxidized and the reduced states, the solution exhibits a periodic display of colors.

The period length of the BZ systems varies depending on the amounts of mineral

acids, organic substrate, catalyst, bromate ion, temperature, etc. Thus the reaction

is oscillating in both time and space. In most chemical reactions, the concentration

of the species depends monotonously on time, but in an oscillating reaction the con-

centration of some species increase and then decrease during the time, between the

two limits. If ferroin is used as the catalyst, the change of color is between blue

(oxidized state of ferroin) and red (reduced state). For Ce(III)/Ce(IV) systems, the

color changes from yellow to colorless. In the case of Mn, it is between red Mn(III)

and colorless Mn(II). BZ reaction exhibits an interesting spectacular display of colors
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(c)(b)(a)

Figure 1.1: Belousov-Zhabotinskii reaction involving bromate-1,4-cyclohexane dione-ferroin sys-
tem. (a) crossing chemical waves (b) staircase crossing chemical waves (c) transverse waves formed
due to restricted spiral formation [Zha87].

when illuminated with UV light in the presence of Ru-ion as catalyst. The reduced

state has a red color, which shows an intense fluorescence. The oxidized state, Ru(III)

is green in color and is devoid of fluorescence. In the absence of UV light source, the

oscillatory Ru-BZ reaction changes color between green and red, while in the presence

of UV light, it exhibits a pulsating fluorescence. On studying the reaction in a petri

dish by spreading out as a thin unstirred layer of reacting solution, oxidation wave

fronts are formed and propagates. When BZ reaction is perturbed with pulses of spa-

tially uniform light at some particular frequency, synchronous states may be observed

with characteristic frequencies. The forcing destroys spiral waves and different spatial

patterns appear. This structures are formed because each point tends to synchronize

with external force as well as with the neighboring points. These wavefronts when

interrupted at any point, lead to the formation of spiral waves. BZ patterns are gen-

erally observed in isotropic homogeneous media [Cro93]. Spiral waves in BZ reactions

can only be generated by nonisotropic perturbations (UV light, as discussed above).

Stationary patterns like Turing structures are not observed in BZ systems because

the differences in the diffusion coefficients of the species involved are insufficient to

cause Turing instabilities [Yan03].

Heterogeneous catalytic reactions giving rise to self-sustained oscillations were

first studied for CO oxidation on platinum catalysts [Hug72]. CO oxidation on Pt
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doped catalytic surfaces can exhibit a variety of self-sustained oscillations and spa-

tiotemporal patterns including propagating reaction fronts, standing waves, spirals

and turbulence [Sli94]. The reaction between adsorbed CO and O atoms to form

CO2 is best explained by Langmuir-Hinshelwood (L-H) mechanism. The mechanism

has been confirmed for Pt catalysts by Ultra High Vacuum (UHV) [Mat84] techniques

and proceeds via the following steps:

(a) Adsorption of CO and O2 from the gas-phase;

(b) Dissociation of the molecules on the catalytic surface;

(c) Surface diffusion;

(d) Reaction between the adsorbed molecules;

(e) Desorption of the product.

Densely packed layers of adsorbed CO are formed on Pt single crystal surfaces and

beyond a certain critical coverage, lead to the inhibition of the dissociative chemisorp-

tion of O2. On the other hand, the adsorption of CO is still permitted even when the

surface is saturated with adsorbed O atoms (asymmetric inhibition) [Ert90]. Kinetic

oscillations are formed on Pt single crystal surfaces due to structural transformations

caused by the adsorption-desorption processes occurring simultaneously with the re-

action [Sli94, Ert82, Mor69]. Adsorbate induced surface structured transformations

showing periodic transitions of the system between two pseudostationary states has

also been observed. For the clean Pt(100) plane, the probability of the impacting O2

molecule to stick to the surface, known as the sticking probability, is higher for the

1×1 (unreconstructed) surface than that of the hex phase (reconstructed). Thus the

reaction rate on the hex phase is slow in the beginning of the reaction and as the

concentration of CO increases beyond a critical value, the hex→ 1×1 transformation

takes place. For 1×1 phase, the sticking coefficient for dissociative O2 adsorption is

high and this allows the adsorbed O atoms to react with the adjacent CO molecules

to form CO2. As the reaction proceeds, the coverage of CO drops down below the
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Pt (100)

Figure 1.2: Schematic represen-
tation of surface atoms in the hex
phase and 1×1 phase of Pt(100),
[Sli94].

[110]

[110]
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Figure 1.3: Structural model
of the reconstructed and unrecon-
structed Pt(110) surface, [Sli94].

critical value and the surface transforms to the hex phase again and this begins a

new cycle of oscillations. In order to obtain oscillations at a given temperature and

O2 partial pressure, the CO partial pressure (and hence the CO coverage) must be

high enough to lift the reconstruction, but sufficiently low so that the reaction can

proceed to form CO2. Thus the concurrent equalization of both the processes are

necessary for the sustenance of the oscillations. The difference in the sticking coef-

ficient of O2 between the reconstructed and the unreconstructed phase regulates the

rate of removal of adsorbed CO. The larger this difference, the wider is the range

Figure 1.4: Snapshots of CO
coverage obtained for CO oxida-
tion on Pt(110). (a) stable spi-
rals; (b) turbulent state.



Introduction 19

of reaction rate oscillations [Sli94]. Pt(110) plane also exhibits oscillations by giving

rise to periodic phase transitions during CO oxidation. As in the case of Pt(100), the

reconstruction (of the 1×2, missing row type) is lifted by adsorption of CO, if the

coverage exceeds a certain critical value forming the unreconstructed 1×1 phase. For

Pt(110) plane, much more regular and reproducible oscillations are seen and this may

be related to different mechanisms occurring during spatial self-organization. Thus in

CO oxidation, the nonlinear kinetics together with the surface reconstruction due to

adsorption effects lead to spatiotemporal oscillations and a plethora of labyrinthine

patterns, including pulses, wave trains, chaos, etc. The detailed analysis and charac-

terization of the spatiotemporal patterns formed by CO oxidation over heterogeneous

catalytic surfaces is discussed in Chapter 3. The reaction-diffusion systems are mod-

elled and discussed on the basis of nonlinear partial differential equations (PDEs) that

represent the system dynamics in continuous domains in space and time. The forms

of models are quite generic and very efficient in describing spatiotemporal patterns

formed in various systems. However, they are computationally exhaustive and this

deters its application in many complex nonlinear systems.

1.3 Coupled Map Lattices

Coupled map lattices (CMLs) are simple, computationally tractable network models

for studying complicated spatiotemporal dynamics in terms of discrete time (“map”),

discrete space (“ lattice”) and a continuous state with both local and global interac-

tions (“coupled”). The method has the privilege that any PDE can be discretized into

a system of coupled maps where the system is already chaotic even in the absence of

coupling. The CML approach can be looked upon as a combination of two processes

[Kan00];

(a) collection of elements that locally exhibit chaotic dynamics on a lattice, (i.e., local
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mapping of each site).

(b) coupling between these elements leading to a diffusive process (coupling among

the local elements).

They have been used to model biological oscillators [Bre97], Josephson junction ar-

rays [Bra95, Wie96], excitable media [Ger90], neural networks [Col95, Abb93], spatial

games [Now92], genetic control networks [Kau69], chemical systems and many other

self-organizing systems. A discrete form of CML dynamics incorporating a Laplacian

type operator with nonlinear process mechanism is described as

xn+1(i) = (1− ε)f(xn(i) +
ε

2
[f(xn(i+ 1)) + f(xn(i− 1))]) (1.4)

where n is a discrete time step, i is a lattice point (i = 1, 2, · · · , N = system size) and

ε is the coupling parameter. The complete CML is described by N equations, if the

local nonlinear function used at each lattice point is a 1-D map like the logistic map

that is defined by the equation, f(x) = 1− ax2 (a is the nonlinearity parameter). In

general, the dimension of the CML is given as Nd, where d is the dimension of the

local map used. Thus, the dimensionality of the CML diverges as the system size,

N , increases. The model can be modified to incorporate the dynamical behavior of

spatially extended systems by using a higher dimensional discrete Laplacian operator.

CML models can easily assume low-dimensional chaos (logistic map, Henon map, etc.

[Ras89]) and thus spatiotemporal systems can be easily understood. They can be

used as a hybrid of cellular automata (CAs) and PDEs for studying many complex

spatiotemporal systems. Table 1.1 shown summarizes the basic structures of CAs,

CMLs and PDEs. The dynamical behavior of many spatially extended systems can

be explained on the basis of the interaction of elementary local dynamics. CMLs can

be appropriately used to model such systems efficiently and the applications of CMLs

in pattern dynamics and convection (Rayleigh-Bénard) is described next.
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Table 1.1: Comparison of different models
Model Space Time State

CA D D D
CML D D C D = Discrete
ODE D C C C = Continuous
PDE C C C

1.3.1 Applications of CMLs in Pattern Dynamics

The quenching of a spatiotemporal system from a disordered state (at high temper-

ature) to an ordered state (at low temperature) leads to spatial pattern formation

[Kan00, Sch81]. For example, if a homogeneous high temperature mixture of two

metallic components is rapidly cooled down to a lower temperature, then a sud-

den phase separation occurs. That is, the mixture loses its homogeneity and forms

a fine-grained structure that alternates between the two constituent metal compo-

nents. Such kind of patterns formed from clustering reactions in a homogeneous,

supersaturated solution of either solid or liquid is known as spinodal decomposition

[Ale03].

Oonu and Puri (1986, 1988) proposed a CML model adopting a map with bistable

fixed points as the local dynamics (f(x) = tanh(βx)), to define spinodal decompo-

sition. Accounting for the phase transition dynamics, the diffusively coupled CML

dynamics, Eq. 1.4, can be restructured as

xn+1(i, j) = f(xn(i, j))− � f(xn(i, j))− xn(i, j)� (1.5)

where, i and j are the lattice points on the CML chain, and � · · · � denotes the

spatial average of the suitable neighboring points considered. This method based on

the diffusively coupled CMLs is extensively used as a powerful tool to study phase

separation processes [Tuc03].

Another application of CMLs is in the analysis of the pattern formation in ex-

citable media. Excitable media are spatially distributed systems that have the ability
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to propagate signals without damping. Cardiac tissue simulation for atrial fibrillation

is one such instance. Atrial fibrillation (AF) is a heart disorder, where the atrium

of the heart beats excessively in uncontrolled rhythms asynchronous with the regular

circadian heart beat. This causes wide variety of symptoms, from shortness of breath

to other complicated heart disorders. AF is caused by dead cardiac cells that create

a region of inactivity in the tissue leading to reentrant waves and that give rise to

turbulent spiral formation, resulting in the re-excitation of the recovering tissue re-

gions. The CML with local dynamics given by f(x) = b × (x − H(x)) + c, used to

model such excitable media is given as

xn+1(i, j) = b× (xn(i, j)−H(xn(i, j))) + d× (H(xn(i+ 1, j))) +

H(xn(i− 1, j) +H(xn(i, j + 1)) +H(xn(i, j − 1))) (1.6)

where, H(x) is the Heaviside’s step function (H(x) = 1 for x > 0 and H(x) = 0 for

x < 0). The constant c in the local map comes from an external stimulus applied

to a single neuron that is replaced by b and d (stimuli from other lattice points) in

diffusively coupled CML [Kan00]. The above equation can also be used to model the

electrical activities in neural tissues.

1.3.2 Applications of CMLs in Rayleigh-Bénard Convection

A horizontal fluid layer when heated from below give rise to the formation of spatial

flow structures. Flows of this type is known as Rayleigh-Bénard convection [Qiu04a].

It shows interesting features of hydrodynamics instability phenomena and nonlinear

pattern formation. The phenomenon can easily be visualized in a fluid (e.g., whale

oil) enclosed in a box with a temperature gradient applied between the top and

bottom parts of the box. The system control parameter is known as the Rayleigh

number which depends on (a) fluid average density; (b) fluid kinematic viscosity; (c)

fluid coefficient of volume expansion; (d) local gravitational acceleration; (e) fluid
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thermal diffusiveness; (f) the system size; (g) the characteristic vertical temperature

difference. When the Rayleigh number reaches a critical value, the system undergoes a

rearrangement between the hot and cold portions resulting in the spatial organization

and formation of spatiotemporal patterns.

A two-dimensional lattice (x, y) with y representing the vertical direction is chosen

to model this convection phenomenon using CML. A velocity field vt(x, y) (Lagrangian

part) and internal energy Et(x, y) (Eulerian part) as field variables at time t are as-

signed to the above lattice. The movement along the flow of the fluid is indicated by

the Lagrangian part. The Eulerian part comprises of terms describing the buoyancy

force, heat diffusion and viscosity. It is observed for the Eulerian part that;

(1) a site on a higher temperature receives a force in the upward direction;

(2) heat diffusion gives rise to the diffusion for Et(x, y);

(3) due to the influence of viscosity, the velocity field vt(x, y) is also subjected to

diffusive dynamics;

(4) the pressure term (compressible fluid) imposes a force on the neighboring lattice

points.

At high Rayleigh numbers, localized structures called “plumes” whose formation is

assumed to be due to the transition between soft and hard turbulence are also ob-

served. The CML model attributes this kind of transition to the change of the velocity

distribution profile from Gaussian to exponential form. When a network constituting

many elements is formed by the influence of nonlinear dynamics (through the inter-

action between the elements) in a system, it shows complex dynamical behavior in

each element and in the relationship between the elements.
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1.4 Small World Networks (SWN)

As described above, CMLs have been used to model biological oscillators, Josephson

junction arrays, excitable media, neural networks and many other self-organizing sys-

tems. In all these cases, the connection topology is assumed to be either completely

regular or completely random. But recent studies shows that real networks are nei-

ther completely regular nor completely random but lie between these two extremes of

order and randomness. For example, the cell is best described as a complex network

of chemicals linked through chemical reactions; similarly, the Internet is a complex

network of routers and computers linked by various physical or wireless links [Alb02].

Such systems that are highly clustered (like regular lattices) and have small char-

acteristic path lengths (like random graphs) are called small world networks. Small

world networks are defined as complex networks with short path lengths exhibiting

high clustering. That is, the concept of small world is based on the notion that de-
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Figure 1.5: Flow chart for representing the significance of complex networks, [Ama00].

spite their often large size, in most real networks, there is a relatively short path

between any two nodes. The distance between two nodes is defined as the number

of edges along the shortest path connecting them. Stanley Milgram (1967) proposed

the renowned “six degrees of separation” which is the fundamental assumption of
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small world phenomenon. The underlying concept is that every person in this world

is connected to everyone else through a chain of at most six mutual acquaintances.

That is, if each person knows about one hundred individuals, and given that there are

about a billion people on the Earth, then seven connections are enough to link each

one together [Col98]. Amaral, et al. have studied the statistical properties of a variety

of disparate real-world networks and depending on the degree of node distributions

they classified SWNs into three as [Ama00];

(1) Scale-free networks (SFN), characterized by a node connectivity distribution that

decays as power law. World Wide Web (WWW) is one of the largest networks which

has been studied. Here the nodes are web pages and the edges are hyperlinks that

point from one webpage to another.

(2) Broad-scale networks, characterized by a connectivity distribution that has a

power law regime followed by a sharp cutoff. Movie actor collaboration network is an

example of this category. This is a continuously expanding network where the nodes

are the actors, and two nodes share an edge if the corresponding actors have acted in

a movie together.

(3) Single-scale networks, characterized by a connectivity distribution with a fast

decaying tail. The neuronal network of the nematode worm, C. elegans is one of the

examples, where the nodes are the neurons, and an edge joins two neurons if they

are connected by a synaptic gap [Spo02]. In SWNs, (a) the local neighborhood is

preserved as in the case of regular lattices; (b) the diameter of the network, that is

explained by average shortest distance between two nodes increases logarithmically

with the number of nodes. Based on this property, the name small world networks

has been coined, because of the possibility of any two nodes in the network being

connected through a minimum number of links suggesting local connectivity to be of

finite dimensionality.
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1.4.1 Regular, Small World and Random Networks

Asymptotic results from graph theory suggests that for a regular lattice, where each

node is equidistant from its neighboring nodes, the local neighborhood is maintained.

The characteristic path length, L, and the average number of edges between any two

nodes, is given as L = N1/d, for very large number of nodes, N (for a regular square

lattice, the dimension, d = 2). The clustering coefficient, C, a measure of the close-

ness of nodes with respect to each other is constant for a regular lattice, i.e., the

number of nodes lying within any given area remains constant. For a random graph,

where the edges are distributed randomly in space, the characteristic path length

corresponds to L = log(N) while the clustering coefficient is inversely proportional

to N , suggesting that the number of nodes lying in a given area of a random graph

differ from node to node. Figure 1.6 explains the above results.

Complex networks can generally be described in terms of;

(a) Clustering coefficient: Many social, biological and communication systems can

be described by complex networks and the models of such networks represent indi-

viduals or organizations and the links mimic the interactions among them. In social

networks, one can observe the formation of cliques that represent circles of friends

or acquaintances in which every member knows every other member. This innate in-

clination to form clusters, the cliquishness, is measured by clustering coefficient, the

quantification of the fraction of neighboring nodes that are connected to one another

[Wat98]. The clustering coefficient, Ci of a selected node, i, having ki edges which

connect it to ki other nodes, in a network is defined as Ci = 2Ei/ki(ki−1), where, Ei

is the actual number of edges that exists between ki nodes. The clustering coefficient

of the whole network is the average of all individual Ci ’s. That is, for a network of

i = 1, · · · , N nodes, the clustering coefficient is given as C = (1/N)
∑N

i=1Ci.

(b) Characteristic path length: Characteristic path length, L is the minimum

number of links a particular node has to any other node, averaged over all pairs of
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(b)(a)

Figure 1.6: (a) Regular lattice, L(N) = N1/d, C(N) ≈ constant; (b) Random graph, L(N) =
log(N), C(N) ≈ N−1 [Ama00].
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Figure 1.7: The random rewiring procedure of Watts-Strogatz model, [Wat98].
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Figure 1.8: The normalized characteristic path length and clustering coefficient for the Watts-
Strogatz model.
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nodes in the network. In other words, it can be defined as the number of edges in the

unique shortest path connecting any two nodes, averaged over all pairs of nodes in

the entire network. For instance, in the friendship analogy, L is the average number

of friendships in the shortest chain connecting two people.

(c) Degree distribution: The average degree of connectivity, < k >, is the average

number of nodes connected to a particular node in the network. In SWNs, not all

the nodes have the same number of edges (node degree). The degree distribution

function, P (k), characterizes the spread in the node degrees and gives the probability

that a randomly selected node has exactly k edges. In a random network, almost all

the nodes have approximately the same node degree and the degree of distribution of

a random graph is a Poisson distribution, which is different from that of SWNs that

follows the power-law. That is, P (k) ∼ k−γ. Such networks that shows a power-law

degree distribution are called scale-free networks (Barabási and Albert, 1999).

Watts and Strogatz (1998) proposed a network model to explain the small world

phenomenon. The model is interpositioned between an ordered finite-dimensional

lattice and a random graph. The algorithm to generate Fig. 1.7 involves two steps;

(1) Start with order: Start with a circular ring of N nodes, where each node has

the same number of connections to its first K neighbors (K/2 on either side). To

have a well-connected but sparse network every time, N � K � ln(N)� 1.

(2) Randomize: Each edge of the ring lattice is rewired randomly with a probability,

p, excluding self-connections and repeating edges, retaining the number of nodes. The

process is continued till p = 1, when the network becomes completely random.

Networks with probability, p, lying between that of p = 0 and p = 1 represents

the SWNs. The normalized characteristic path length and clustering coefficient for

increasing probability of rewiring, i.e., p, is shown in Fig. 1.8. It can be seen that there

is a broad range of p over which there is a rapid drop of characteristic path length,

while the clustering coefficient remains almost unchanged. This region corresponds



Introduction 29

to SWNs, that are highly clustered with short characteristic path lengths compared

to that of the random network with the equivalent number of nodes or edges.

1.4.2 Scale-free Networks (SFN)

Scale-free networks are a class of SWNs with the node connectivity distribution that

decays as a power-law. These networks with much higher clustering coefficient than

that of an equivalent random network, also show a logarithmic increase in their diame-

ter with the number of nodes [Roz02]. The dependence of the node degree distribution

on power-law has steered to proposing numerous scale-free models that focus on the

network dynamics, ultimately leading to the universal theory of network evolution.

The approach of many of the SWN models is to construct a graph with correct topo-

logical features while that of the SFNs is mainly based on capturing the network

dynamics. The idea behind the SFN models is that by studying the dynamics of

the evolving networks efficiently, the topology of these networks would be defined

automatically [Alb02].

The Barabási-Albert (BA) model of power-law scaling proposed by Barabási and

Albert states that growth and preferential attachment of the nodes play important

roles in network development. That is SFNs grow from a primary set of nodes,

called the nucleus of nodes, and secondary nodes (additional nodes) are introduced

at every time step that are randomly connected to the primary nodes with the linear

attachment probabilities. For example, it can be seen that WWW grows exponentially

in time by the addition of new web pages, and the repertory of research literature

builds up by the publication of new papers [Alb02]. Preferential attachment implies

that addition of the secondary nodes to an already existing primary node depends on

the node’s degree. For instance, in the case of research papers, a new publication is

more likely to cite well-known and much cited publications than those of less-cited

and less-known ones. The algorithm of the model is given as:
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(1) Growth: Starting with a small number (m0) of nodes, a new node with (m ≤ m0)

edges is added to (m0) at every time step that link the new node to m different nodes

already present in the system.

(2) Preferential attachment: The probability,
∏

of a new node, j being connected

to a node i depends on the degree ki of node i and is represented in the form of

equation as

∏
(ki) =

ki∑
j kj

(1.7)

This procedure of addition of nodes results in a network with N = t+m0 nodes and

mt edges. According to the model, the network evolves into a scale invariant state

with the power-law exponent, γBA = 3 and this scaling exponent is independent of

m, the only parameter in the model.

The preferential attachment of nodes is constrained by two factors;

(a) Aging of the nodes: A generic example of this situation is that of the network

of actors where the actors stop acting with the passage of time, that is, even a highly

connected node eventually cease receiving new links (the node becomes inactive).

This inactive node still remains as a part of the network contributing to the network

statistics.

(b) The limited capacity of the nodes to receive new links: The state is that

the nodes become inactive when it attains the maximum links it can ever have. A

representative case is that of airports, where it is physically impossible for an airport

to become a hub to all airlines because of the limitations of airspace and time.

Since small world networks are not fully regular or random, they can be success-

fully used to study the network topology of fractals. Heterogeneous catalytic surfaces,

in real situations are rough and fractal-like (scale-free) with the active species de-

posited on the catalyst support. The active species, after reacting with the permitted

number of suitable adsorbate molecules become saturated and inactive, for example in



Introduction 31

the case of CO oxidation on Pt catalytic surfaces, the catalyst surface gets deactivated

due to CO poisoning (analogous to constraints discussed in SWNs). The preferential

attachment of the nodes in SWNs, discussed above can be considered as equivalent to

the conditions of surface reconstruction caused due to the sticking probability (in CO

oxidation). The active species can be regarded as one set of nodes, and the adsorbate

molecules can be regarded as another set of nodes. Thus, a small world network with

the structure of a directed bipartite graph can be attributed to these surfaces and

study the evolution of the dynamics taking place on them. SWNs have been used to

explain the target problems for the class of A+B → B reactions. Here, the species B

move independently of each other, while the A species are assumed to be held fixed.

This kind of study is very important in the theory of chemical reactions [Jas02].

1.5 Justification and Scope of Work

The study of self-organization has therefore provided novel and profound insights to

the internal structure of many complex dynamical systems in interdisciplinary areas.

The study and analysis of reaction-diffusion patterns is of utmost importance and

suitable methodologies should be devised for the control of pattern formation and

dynamics. The present thesis is devoted to developing new and robust methods for

carrying out spatiotemporal data analysis and pattern recognition based on dynam-

ical characterization and management of uncertainty. The advantages of these new

methodologies over conventional modeling of reaction-diffusion systems are brought

out in understanding spatiotemporal pattern formation, its recognition, and quan-

titatively analyzing the system dynamics. Chapters, 2-5 present the methodologies,

situations considered, and results of analysis for the aims discussed above in the

Introduction and as summarized in the thesis Abstract.



Chapter 2

Methods for Dimensionality
Reduction

Dimensionality reduction that places entities represented by high-dimensional vec-

tors or by pairwise dissimilarities has always been a pertinent problem in the study

of complex spatiotemporal patterns. Dimensionality reduction is the process of map-

ping a multidimensional space associated with high-dimensional data into a space

of fewer dimensions simultaneously preserving certain features of the original mea-

surements. The process permits easy visualization, assortment and simplification of

large data sets. Large databases (e.g., global climate patterns, stellar spectra, human

gene distribution, etc.), are provided with large number of variables and it is very

likely that the subsets of variables are highly correlated with each other. Considera-

tion of these superfluous variables for analysis leads to inaccurate predictions of the

low-dimensional structures hidden in their high-dimensional observations. Thus, it is

very important to choose the methods of dimensionality reduction without compro-

mising on accuracy. The dimensionality of a model is the number of independent or

input variables used by the model. Several methods like principal component analysis

(PCA), independent component analysis (ICA), self-organizing maps (SOM), locally

linear embedding (LLE), multidimensional scaling (MDS), etc., have been used to

address the above problem. All these methods are found to be incapable of the



Methods for Dimensionality Reduction 33

effective description of the features of spatiotemporal data obtained from different

systems studied. To address the limitations of the above methods, we have devel-

oped a novel hybrid algorithm incorporating the superior features of MDS and a

shortest path distance identification algorithm (viz., Isometric Graphing and Multi-

Dimensional Scaling (IGMDS)), to analyze and characterize spatiotemporal patterns.

The methodology is seen to allow easier calculation of the dynamical invariants (Lya-

punov exponents, Kolmogorov-Sinai entropy, etc.) for high-dimensional systems and

this aspect is further discussed in detail in Chapters 3 and 4. In the present Chap-

ter 2, methods of dimensionality reduction are discussed, and the advantages of using

IGMDS for analyzing complex spatiotemporal patterns are brought out. Case studies

using IGMDS presented in the Chapter are representative of both low-dimensional

and high-dimensional systems and aims at explaining the superior features of IGMDS

over other prevailing methods of dimensionality reduction.

2.1 Principal Component Analysis (PCA)

Principal component analysis involves a mathematical procedure that transforms a

number of possibly correlated variables into a fewer number of uncorrelated variables

(that are linear combinations of the original variables) called principal components

(a set of orthogonal vectors). The first principal component is taken to be along the

direction with the maximum variance of the data. The second principal component

is constrained to lie in the subspace perpendicular to that of the first. Within that

subspace, the vector points in the direction of the maximum variance. This process

is repeated and each succeeding component accounts for as much of the remaining

variability in the data as possible. The principal components analysis of a set of

data in <p dimensional space yields very suitable approximation to that data, of all

ranks q ≤ p. The first linear principal component of a set of data minimizes the
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total squared distance from each point to its orthogonal projection to the reduced

dimensional space [Has01].

For a set of observations, xi = x1, x2, · · · xN , the p × q matrix Vq with q orthogonal

unit vectors as columns, can be determined in terms of the least squares as

min
Vq

N∑
i=1

‖(xi − x)−VqVT
q (xi − x)‖2 (2.1)

The matrix, Hq = VqVT
q is a projection matrix. The solution to the above equation

is an N × p matrix X. The singular value decomposition (which is explained later in

this chapter) of X gives X = UDVT, where,

U → N × p orthogonal matrix;

V → p× p orthogonal matrix;

D → p× p diagonal matrix;

The columns of UD are called the principal components of X and the projected

points are represented in terms of UD.

The PCA procedure is very suitable for the segregation of clusters in the data, for

dimension reduction, and data compression. The disadvantage of the method is that

since it is a linear method of projection, its application to nonlinear data sets is

unsuitable.

To overcome the above limitation, principal curves analysis and principal surface

analysis have been proposed. Principal curves generalize the principal component line

and provides a one-dimensional curved approximation to a set of data points in <p.
Principal curves can be viewed in terms of principal points that lie on a smooth curve

in a similar way than a SOM constrains the points to fall on a smooth manifold. A

more generalized analysis technique is in terms of the principal surface, that provides

a curved manifold approximation of dimension 2 or more.

The limitation of all these methods (principal components, principal curves, prin-

cipal surfaces) of analysis is that they are not very reliable when used for dimensions
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greater than two, since they lack attractive visualization and restricts smoothing in

higher dimensions.

2.2 Independent Component Analysis (ICA)

Independent component analysis is a linear projection technique that relies on the

non-Gaussian nature of the multivariate data sets (typically those data sets, which

are based on the indirect measurements from the underlying source). The analysis

is based on two assumptions; (a) the components of the vector source signals are

statistically independent (b) the components of the vector source signals have non-

Gaussian distributions.

The singular value decomposition (SVD), X = UDVT can also be represented in

terms of latent variables, i.e., if S =
√
NU and AT = DVT/

√
N , then X = SAT.

In terms of the random variables, the SVD can be interpreted as an estimate of the

latent model as following,

X1 = a11S1 + a12S2 + · · ·+ a1pSp

X2 = a21S1 + s22S2 + · · ·+ a2pSp
...

...

Xp = ap1S1 + sp2S2 + · · ·+ appSp (2.2)

i.e., X = AS. The correlated Xj are each represented as a linear expansion of the

non-Gaussian variables Si. In ICA technique, the orthogonal matrix A is determined

such that the components of the vector random variable S = ATX are independent

and non-Gaussian.

ICA technique can be successfully used in the separation of mixed signals. In the

classical example of the cocktail party problem, where different microphones pick up

different independent sources (music, speech from different speakers, etc.). ICA sep-
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arates the signals by exploiting the independence and non-Gaussianity of the original

sources. ICA is thus applied to multivariate data and perform linear projection such

that the projected data look as far from Gaussian as possible [Has01].

2.3 Self-Organizing Maps (SOM)

The data visualization procedure technique, self-organizing maps, are a class of neu-

ral network algorithm that works both as a projection technique and as clustering

method. The number of neurons in a SOM need to be large enough so that a few neu-

rons can be chosen to represent each larger group (class) of the data. These small sets

of neurons provide a subsymbolic representation to the data groups to be trained. In

the training process, these automatically forming small sets of neurons become proto-

types that are ordered according to their similarity. The prototypes lies in a one− or

two−dimensional manifold in the feature space [Has01]. The high-dimensional data

can be mapped down to a low-dimensional coordinate system and the manifold is

referred to as a constrained topological map.

In SOM, the prototypes are considered to be buttoned on to the principal com-

ponent plane of a two-dimensional regular grid in a regular pattern. These buttoned

prototypes, in the reduced space, try to bend the plane so that they approximate the

original data as close as possible.

For a set of observations, xi, the SOM procedure can be described as follows;

step I: Find the closest prototype points, mj to xi in Euclidean distance in the di-

mension feature space, <p.
xi = x1, x2, · · · , xN where, N , the number of points in the data.

step II: For all neighbors mk of mj, update mk as per the equation,

mk ← mk + α(xi −mk) (2.3)

The neighbors of mj are defined to be all mk such that the distances lj and lk are
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small.

lj and lk are the indices of the integer coordinate pair; α is the learning rate that

controls the updation procedure. The effect of the update is to move the prototypes

closer to the data and to maintain a smooth two-dimensional spatial relationship

between the prototypes.

SOM algorithm succeeds in separating the data into different clusters and identi-

fying them. The drawback of the algorithm is that while separating the clusters, some

clusters makes the manifold to fold back on itself. This leads to the misinterpretation

about the spread and characterization of the clusters.

2.4 Locally Linear Embedding (LLE)

The main assumption of locally linear embedding is that the data set is sampled from

a nonlinear manifold embedded in a high-dimensional space. LLE is an unsupervised

learning algorithm that computes low-dimensional embeddings of high-dimensional

inputs [Row00]. The data should be sufficiently large such that the nonlinear mani-

fold considered is well-sampled. Each data point and its neighbors are assumed to lie

on or close to a locally linear patch of the associated manifold. The steps involved in

LLE algorithm are;

(1) Euclidean distances are used to reconstruct the data points from their k-nearest

neighbors, and k is the only one free parameter in the algorithm. (2) After choosing

the neighborhood of each data point, optimal weights (that sums up the contribution

of the jth data point to the ith reconstruction) and the low-dimensional coordinates

are computed by suitable standard linear algebraic methods.

The algorithm is a noniterative method and finds the global minima of the recon-

struction and the data are mapped into a single global coordinate system of lower

dimensionality. The mapping is derived from the symmetries of locally linear connec-
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tions and the actual computation of the embedding reduces into a sparse eigenvalue

problem. LLE is simple to be implemented since the optimizations avoid the local

minima problems. The advantages of LLE are that only a few parameters need to be

set and that the local geometry of the high-dimensional data is well preserved in the

embedded space. The algorithm is susceptible to erroneous interpretations if the data

is noisy or sparse. This is because, since the connectivity of each data point is via

Euclidean distances, the approach can lead to short-circuit edges if the neighborhood

is too large with respect to the locally linear patch of the manifold on which the data

points lie. Under the influence of noise, the data points moves off the patch slightly

that again lead to short-circuit errors.

The above analysis methods, although, are able to identify each object with loca-

tions in the low-dimensional space, the data points lying far apart on a curved data

manifold can artificially map close together in the reduced projection. This leads

to fallacious presumptions being made about the existing relationship amongst the

system variables. Our development of an efficient technique (viz., isometric graphing

and multidimensional scaling (IGMDS)) to improve upon difficulties and limitations

of the other methods of dimensionality reduction for high-dimensional spatiotemporal

systems is treated next.

2.5 Isometric Graphing and Multidimensional

Scaling (IGMDS)

An isometric feature mapping procedure (ISOMAP, [Ten00]) based on MDS has been

developed for dimensionality reduction and applied to studying dissimilar, collection

of objects. This nonlinear projection method is formulated based on the essential fea-

tures of multidimensional scaling (MDS) and the shortest path distance algorithm,

the Dijkstra’s algorithm. Dijkstra’s algorithm (a shortest path distance algorithm)
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complements MDS by providing a superior way to move along the curved data man-

ifold and projects dissimilarities (distances) between objects more accurately. The

procedure offers advantages to nonlinear projection using LLE, in that it is more

accurate in representing global distances. The usefulness of the algorithm has been

shown for classifying facial images and handwriting patterns [Ten00]. We have studied

this methodology of extracting the geodesic distances, (i.e., shortest scaled distances

that obtain edges of neighboring data points and their interconnections) and formu-

lated a novel method of isometric graphing and multidimensional scaling (IGMDS)

for efficient and suitable dimensionality reduction of spatiotemporal data obtained

from various reaction-diffusion systems [Jai04]. To corroborate the advantages of this

methodology, (a) the Rössler system (low-dimensional system) and (b) an ensemble

of images obtained from Gray-Scott model (spatiotemporal system) are analyzed and

the effectiveness of the model for dimensionality reduction is discussed systematically

below.

2.5.1 Multidimensional Scaling

Multidimensional scaling (MDS) is a method that represents measurements of sim-

ilarity or dissimilarity among pairs of objects as distances between points in a low-

dimensional space. The data taken for MDS analysis may be intercorrelations of test

items, flying mileages between different cities, trade indices for a set of countries, etc.

MDS representation is a plane and the more the data sets are positively correlated,

the more closely spaced the points (which represents the data sets under considera-

tion) would be in this plane. MDS attempts to model such data as distances among

points in a geometric space and allows graphical visualization. This aids in data ex-

ploration and draws out the hidden regularities/irregularities which otherwise remain

obscure. The points are arranged in the MDS space so that the distances between

pairs of points have the strongest possible relation to the similarities among pairs
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of objects. That is, two similar objects are represented by two points that are close

together, and two dissimilar objects are represented by two points that are far apart.

The reduced space is usually a two- or three-dimensional Euclidean space.

MDS is a generic term that includes various types, that can be classified accord-

ing to whether the similarities data are qualitative (nonmetric MDS) or quantitative

(metric MDS). MDS types can also be classified on the basis of the number of simi-

larity matrices and the nature of the MDS model.

MDS is frequently used for the following purposes;

(a) As a method that represents similarity/dissimilarity data as distances in a

low-dimensional space in order to make these data accessible to visual inspection and

exploration;

(b) As a technique that allows one to test if and how certain criteria, by which

one can distinguish among different objects of interest are manifested;

(c) As a data-analytic approach that allows to discover the dimensions that un-

derlie judgements of dissimilarity;

The classical MDS analysis (based on only one similarity matrix) can be clearly

understood by the following example of the flying mileages between 10 American

cities. The cities are the “objects” and the mileages are the “similarities”. The input

data for MDS is given in Table 2.1. An MDS of these data gives the map, Fig. 2.1,

that represents the relative locations of these 10 cities in the United States. The

map has 10 points, one for each of the 10 cities. Cities that are similar (have short

flying mileages) are represented by points that are close together, and cities that are

dissimilar (have large mileages) by points far apart.

2.5.1.1 Determination of MDS Coordinates from Euclidean Distances

MDS attempts to represent proximities (similarity/dissimilarity) by distances among

the points of an m-dimensional configuration Y, the MDS space. For computing the
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Table 2.1: Flying mileages between 10 American cities.

Atlanta Chicago Denver Houston Los- Miami New- San- Seattle Washington
Angeles York Francisco D.C.

0 587 1212 701 1936 604 748 2139 2182 543 Atlanta
587 0 920 940 1745 1188 713 1858 1737 597 Chicago

1212 920 0 879 831 1726 1631 949 1021 1494 Denver
701 940 879 0 1374 968 1420 1645 1891 1220 Houston

1936 1745 831 1374 0 2339 2451 347 959 2300 Los Angeles
604 1188 1726 968 2339 0 1092 2594 2734 923 Miami
784 713 1631 1420 2451 1092 0 2571 2408 205 New York

2139 1858 949 1645 347 2594 2571 0 678 2442 San Francisco
2182 1737 1021 1891 959 2734 2408 678 0 2329 Seattle
543 597 1494 1220 2300 923 205 2442 2329 0 Washington D.C.

distance between any two points, i and j, MDS analysis employs the most frequently

used distance function, the Euclidean distance.

The Euclidean distance of points i and j in a two-dimensional configuration Y is

computed by the following formula

dij(Y) = [(xi1 − xj1)2 + (xi2 − xj2)2)]
1
2 (2.4)

The above equation can be generalized to the m-dimensional case as

dij(Y) = [
m∑

a=1

(xia − xja)2)]
1
2 (2.5)

The matrix Y of Cartesian coordinates of points in Euclidean space can be calculated

when we know the Euclidean distances D amongst those points. This is done by the

following steps;

Step 1. Use the cosine law to convert D to a matrix X of “scalar prod-

ucts”:

Cosine Law: For a triangle between points i, j and k in Euclidean space with sides

dij,dik, and djk, and angle θjik between sides dij and dik

Cos(θjik) =
(d2

ij + d2
ik − d2

jk)

2dijdik

(2.6)



Methods for Dimensionality Reduction 42

Chicago New York

Washington D.C.

Atlanta

Miami
Houston

Los Angeles

San Francisco
Denver

Seattle

Figure 2.1: Representation of the flying mileages of 10 US cities in MDS subspace.

If we define

bjik =
(d2

ij + d2
ik − d2

jk)

2
, then, bjik = dijdikCosθjik (2.7)

The element bjik is the scalar product of the vectors from point i to j, the vector

d
ik

d
jk

d
ij

k

ji

Figure 2.2: Illustration of the cosine law of a triangle

from point i to k, and of Cosθjik, the cosine angle between the two vectors.

Step 2. Singular Value Decomposition (SVD) of X to obtain Y:

Singular value decomposition, which is also known as Eckart-Young theorem, is

closely related to eigendecomposition. The main idea of SVD is that every N × p

matrix can be decomposed into,

X = UDVT
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U → an N × p matrix with columns uj, the left singular vectors, all orthogonal to

each other, (i .e.,UTU = Ip)

D → a p × p diagonal matrix, with each diagonal element d1 ≥ d2 · · · ≥ dp ≥ 0,

known as the singular values, and

V → a p × p orthogonal matrix, with columns vj called the right singular vectors,

(i .e.,VTV = Ip).

To compute the SVD of X, the eigendecomposition is done, i.e.,

XTX = UDVT

XV = UDVTV = UD

XVD−1 = UDD−1 = U (2.8)

The number of nonzero singular values is equal to the rank of X. Thus if X has one

or more zero singular values, it is singular or rank deficient, which means that the

columns are linearly dependent. That is, if any column (row) of X is equal to the

weighted sum (linear combination) of the other columns (rows).

The “scalar products” matrix Xi formed from the elements bjik is a symmetric

matrix which may be decomposed into singular values and singular vectors. If X is

symmetric and positive semidefinite, the SVD corresponds to an eigendecomposition,

i.e., if X = XT, we have UDVT = VDUT which after pre- and post-multiplying by

U and V and using their orthogonality, yields UTV = Ip and thus U = V. When

the rank of Xi equals the dimensionality of D, we can calculate Y = UD
1
2 and

Xi = YYT.

2.5.2 Shortest Path Algorithm: Dijkstra’s Algorithm

Finding a shortest path from one node (vertex) to any other node in a graph is one

of the classic computer science problems. From a weighted graph, a shortest path

algorithm finds the optimal route through a network and thereby enables network
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characterization. There are two types of shortest path algorithms (a) Label-setting

algorithm (e.g. Dijkstra’s Algorithm); On each pass, one vertex’s value is set which

cannot be changed. It is not applicable for graphs with negative weights. (b) Label-

correcting algorithm (e.g. Bellman-Ford Algorithm); Vertex’s value can be changed

at any time. It is applied to graphs with negative weights.

In the present thesis, Dijkstra’s algorithm is used to find the shortest path dis-

tances of the reaction-diffusion networks obtained from various spatiotemporal sys-

tems. Dijkstra’s algorithm introduced in 1959, is an example of a label-setting algo-

rithm and provides one of the most efficient algorithms for solving the shortest path

problem. Dijkstra’s algorithm is the most suitable technique to be implemented to

find the minimum distance from one given node of a network, called the source node,

to all the other nodes [Eli89]. It consists of the following steps; (a) try all the possible

paths from a source node (vertex);

(b) choose the shortest path among these nodes;

(c) follow this shortest path until another shortest path can be found.

Dijkstra’s algorithm takes a labelled graph and a pair of vertices A and B and finds

the shortest path between them (or one of the shortest paths, if there is more than

one). The strategy is to start at A and systematically build up a list of shortest paths

to all vertices which lie between A and B, in order of increasing distance from A until

B itself is reached.

In a labelled graph (otherwise known as the network), the length of a path is

defined to be the sum of the lengths of its edges. The weights attached to the edges

can be used to represent quantities such as distances, costs or times. For example,

the length of the path AFDEGH from A to H in Fig. 2.3 (a) is 1+3+4+7+6 = 21.

In the Fig. 2.4, the solid line from A to B represents the shortest path from A to

B and let C be any intermediate node along the path. Then, that part of the solid

line that starts from A and ending at C, must be the shortest path from A to C.
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This is because if there exists a shorter path from A to C (the dashed line), then by

moving along the dashed line from A to C and then along the solid path from C to

B, we would get a shorter path from A to B. But this is impossible since the solid

path from A to B is the shortest one ever possible. This principle is known as the

principle of optimality and is the fundamental postulate of Dijkstra’s algorithm.

The tracing routine of the principle of optimality can be clearly explained using

the example, Fig. 2.3. Let A be the source node (highlighted using the circle in

Fig. 2.3(a)) and the path AF is the shortest possible path from A to F (the blue

solid line in Fig. 2.3(b)), since any other path from A to F would have to start out

along the edge AB, which has length 2. Thus it is the first edge in a growing tree.

The algorithm now looks for all the vertices that can be connected to the growing

tree. These are the vertices B (via the edge AB), D (via the edge FD), and G (via

the edge FG). The nearest node to A needs to be chosen and added to the growing

tree, the situation can be tabulated as in Table 2.2. It can be seen that B is closest

Table 2.2: Table explaining the operating procedure of the principle of optimality.
Proposed NODE Path from A to proposed NODE Edge Length

B AB 2
D AFD 4
G AFG 6

and thus B is added to the growing tree by making the path AB highlighted using

the solid blue line (as in Fig. 2.3(c)). The procedure is continued in the above fashion

until all the nodes are added to the tree (Fig. 2.3(d)). The operating procedure of

Dijkstra’s algorithm in a directed graph can be explained using the examples shown

in Fig. 2.5. The connection between two any two nodes A and B, is represented by

an arrow starting from A and ending at B. The configuration Fig. 2.5(a), has 5 nodes

and 6 connections with the number of edges = 6. Node 1 is connected to nodes 2, 3, 4;

node 2 is connected only to 4; node 3 is connected only to 4; node 4 is connected
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only to 5. The input data file to the Dijkstra’s algorithm needs to be sorted and is

Table 2.3: The input data file for the Fig. 2.5(a)
From NODE To NODE EDGE length

1 2 10 1
10−→ 2

1 3 10 1
10−→ 3

1 4 14 1
14−→ 4

2 4 10 2
10−→ 4

3 4 10 3
10−→ 4

4 5 14 4
14−→ 5

given in the Table 2.3. The shortest path distance algorithm gives the output as in

Table 2.4. The algorithm gives the shortest distance between any two nodes if they

are connected and, −1, if no connection exists between them. It gives 0 as distance for

a node with itself. In the configuration Fig. 2.5(b), there are 5 nodes and the number

Table 2.4: The output file from Dijkstra’s Algorithm for the configuration Fig. 2.5(a)
1 2 3 4 5

1 0 10 10 14 28
2 -1 0 -1 10 24
3 -1 -1 0 10 24
4 -1 -1 -1 0 14
5 -1 -1 -1 -1 0

of edges = 7. The input data file to the shortest path distance algorithm is as in

Table 2.5. As seen from the diagram, the shortest path from node 1 to node 5, is not

via node 4 but via node 2 and the algorithm accordingly gives the output as shown in

the Table 2.6. Because Dijkstra’s algorithm involves the principle of optimality, it can

undeniably be used with effectiveness, as an optimization technique for analyzing the

high-dimensional data from different complex systems. Thus in the present thesis, we

have exploited this feature of Dijkstra’s algorithm and that of the superior aspects

of MDS for developing our analysis technique known as IGMDS. The method is
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Table 2.5: Input data for the configuration Fig. 2.5(b)

From NODE To NODE EDGE length 1
10−→ 2

1 2 10 1
10−→ 3

1 3 10 1
14−→ 4

1 4 14 1
20−→ 5

2 4 10 2
10−→ 4

2 5 10 2
10−→ 5

3 4 10 3
10−→ 4

4 5 14 4
14−→ 5

Table 2.6: The output data file from the Dijkstra’s Algorithm for the Fig. 2.5(b).
1 2 3 4 5

1 0 10 10 14 20
2 -1 0 -1 10 10
3 -1 -1 0 10 24
4 -1 -1 -1 0 14
5 -1 -1 -1 -1 0

especially advantageous because it can naturally handle the analysis of nonlinear

data sets lying on a curved surface (e.g., a Swiss-roll). We found the technique very

suitable for the effective characterization and analysis of complex patterns obtained

from high-dimensional spatially extended systems that are monitored as snapshots in

time and for extracting the topological features of the reaction-diffusion systems we

are dealing with, in the current study.

The IGMDS procedure for finding the shortest path distances in a graph with

edges connecting neighboring points on the surface for a MDS projection uses a

distance matrix D with elements

d(i, j) = [(xi − xj)2 + (yi − yj)2 + (zi − zj)2]1/2 i, j = 1, · · · , n (2.9)

and can be summarized in three steps [Bis98]. For convenience in notation, the 3-

D spatial coordinate of a node (xi, yi, zi) is denoted by referring to it as i without
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Figure 2.6: Schematic describing the notation used for the isometric graphing of distances between
a node i and other nodes.

ambiguity in the subsequent discussion.

Step (i): Construction of neighborhood graph G for node i;

The nodes i and j may be identified as neighbors in two ways, namely, (a) if distance

d(i, j) < δ for j = 1, · · · , n, or may be evaluated by (b) if j = 1, · · · , n is one of the

K nearest neighbors of node i. The corresponding edge lengths between two nodes

(i, j) are then set equal to d(i, j) [calculated using Eq. (2.9)].

Step (ii): Computation of shortest paths between two nodes (i, j);

Initialize dG = d(i, j), if i, j are nearest neighbors and are linked by an edge. Other-

wise, set dG(i, j) = ∞. Evaluate {dG(i, k) + dG(k, j)} for k = 1, 2, · · · , n where n is

the total number of nodes. Now, dG(i, j) is replaced by min{dG(i, k) + dG(k, j)} and

this procedure is repeated till the final entries in the matrix DG = {dG(i, j)} has the

shortest path distances between all pairs of points (i, j), i, j = 1, · · · , n ∈ G.

For an arbitrarily chosen node i, the application of Dijkstra’s algorithm [Eli89]

gives the indices of nearest neighbor nodes say (i, 1), (i, 2), (i, 3), · · · in a sphere of
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radius γdG(i, 1). Let the corresponding distances between the ith node and the near-

est neighbors be dG(i, 1), dG(i, 2), dG(i, 3), · · ·. The Dijkstra’s algorithm is used for

identifying near neighbor nodes of (i, 1), (i, 2), (i, 3) and indexed in a similar fashion,

to obtain, [(i, 1), 1], [(i, 1), 2], · · ·;[(i, 2), 1], [(i, 2), 2], · · ·;[(i, 3), 1], [(i, 3), 2], · · ·, respec-

tively. Fig. 2.6 shows a schematic of the connectivity indices of node i using the

shortest path lengths. Implementation of the procedure repeatedly for all nodes

i = 1, · · · , n yields both the connectivity indices between any two nodes (i, j) on

the surface and also the shortest path distances between them in a matrix DG with

elements dG(i, j).

Step (iii): Apply MDS to matrix DG and obtain a p-dimensional IGMDS-component

matrix Y ;

The MDS algorithm [Bor97] uses the double-centered (i.e., obtained from DG by

subtracting the row-means, the column-means and adding the grand-means) and

squared DG matrix, to form a symmetric matrix B with elements

bij(dG) = −1

2
[d2
G(i, j)− 1

n

n∑

k=1

d2
G(i, k)− 1

n

n∑

k=1

d2
G(k, j)

+
1

n2

n∑
g=1

n∑

h=1

d2
G(g, h)] (2.10)

so that the scalar product B = Y Y ′ can be defined. The Y matrix contains the

IGMDS components which minimize the cost function E = ‖B(dG) − B(dY )‖L2 , for

DY = {dY (i, j)} the matrix of distances (obtained from the IGMDS coordinates

yij ∈ Y ) where ‖.‖L2 is the L2 norm. This minimization step can be carried out by

performing a singular value decomposition (SVD) of matrix B, i.e., B = WSW ′, so

that the required matrix Y = WS1/2 with elements,

yij = wij
√
sj, i, j = 1, · · · , n (2.11)

can be obtained from S = {sj} the eigenvalues and W = {wij} their corresponding or-

thonormal eigenvectors. The number of significant IGMDS components, p, is decided
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by considering p columns of Y such that its projection with elements yij, i = 1, · · · , n,

j = 1, · · · , p minimize the cost function E and determines the required order of the

projection with IGMDS components that can capture the intrinsic geometry of the

surface.

2.6 Case Studies with IGMDS

The advantage of IGMDS is that the method is capable of characterizing the low-

dimensional system and is successful in the reconstruction of attractors (for e.g.,

Rössler attractor). Equally advantageous is the dimensionality reduction performed

by IGMDS for high-dimensional spatiotemporal dynamical systems. To validate the

applicability of IGMDS, we have analyzed and characterized one case example each

of low-dimensional chaos (Rössler system) and that of a high-dimensional spatiotem-

poral dynamical (Gray-Scott) system.

2.6.1 Reconstruction of the Rössler Attractor from the Low-

dimensional IGMDS Subspace

The Rössler system, a simplification of the Navier - Stokes equations for fluid flow, was

discovered by Otto Rössler while studying the far-from-equilibrium chemical kinetics

in 1976. The chaotic attractors of Rössler systems are prototypes for a large variety

of chaotic behavior especially in chemical chaos (Scott, 1991). The Rössler system is

represented by three coupled nonlinear differential equations as follows [Tho86]

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c) (2.12)
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where, x1, x2, x3 are the three variables that evolve in continuous time, t and a, b, c

are the parameters. The linear terms of the first two equations create oscillations

in the variables x1 and x2. The nonlinearity is introduced by the single quadratic

term x1x3 in the third equation. The Rössler attractor shown in the Fig. 2.7(b) is for

8192 points. The parameter values chosen are a = 0.45, b = 2.0, c = 4.0. The strange

attractor lies in a bounded region of phase-space and it has been shown to have fractal

structure (i.e., self-similarity at different scales). The nearby trajectories undergoes

the process of stretching on short time scales, followed by the process of folding at

longer scales, i.e., if we follow some trajectory in the x3 = 0 plane, it will suddenly be

lifted as a spike of the x3-component and then folds back into the x3 = 0 plane of the

attractor at another point to continue its evolution. This system shows stationary,

periodic, quasiperiodic and chaotic attractors depending on the values of the a, b, c

parameters. These attractors are interconnected by bifurcations (Hopf bifurcation)

from stationary to periodic attractor and period-doubling cascade from periodic to

chaotic attractor [Gas05]. The attractor is an example of deterministic chaos and

can be reconstructed from a single component, say x1-component, without losing the

topological, qualitative characteristics of the attractor by IGMDS using the following

steps; (a) Integrate the above system of equations in time to get x1(t), x2(t), x3(t);

(b) From the time series obtained, reconstruct the 3 − D attractor using the delay-

coordinate method; (c) Apply IGMDS on the x1(t), x2(t), x3(t) to get the distance

matrix, DG, which after double-centering and the singular value decomposition yields

the IGMDS components matrix, Y , with elements yij. The normalized error variance

is given as σ2 = Em/
∑

mEm, m = 1, · · · , p and the residual plot obtained from

the IGMDS coordinates, shows an elbow at p = 2. This indicates that two IGMDS

components, which captures the sufficient features of the attractor, are only required

to represent the 3-dimensional Rössler attractor in the projected IGMDS space.
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Figure 2.7: Dimensionality reduction of the Rössler system using IGMDS. (a) the time series
obtained, x1 against time, t (b) Rössler attractor constructed for 8192 points (c) Dimensionality
reduction using IGMDS for number of modes, m = 2 (d) Reconstruction of the attractor from the
IGMDS components, y1j , y2j , j = 1 · · · t.

2.6.2 The Gray-Scott Autocatalytic Model

Reaction and diffusion of chemical species can produce a variety of patterns, resem-

bling those seen in natural systems. Gray-Scott equations model such reactions. The

Gray-Scott model, first designed as a model of glycolysis, corresponds to the following

two reactions [Pea93];

U + 2V → 3V

V → P (2.13)

Both reactions are reversible and P is an inert product. The reaction-diffusion equa-

tions in terms of the partial derivatives of U and V are represented in dimensionless
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Figure 2.8: Patterns formed in the Gray-Scott model that are represented by Greek letters. The
parameter space leading to corresponding pattern formation is shown in Fig. 2.9.

units as given below [Pea93]

∂U

∂t
= Du∇2U − UV 2 + F (1− U)

∂V

∂t
= Dv∇2V − UV 2 − (F + k)V (2.14)

where, k → dimensionless rate constant of the second reaction, and, F → dimension-

less feed rate. The spatial mesh consists of 64×64 grid points with periodic boundary

conditions and the diffusion coefficients are Du = 2× 10−5 and Dv = 10−5. A simple

Euler scheme is used to integrate the equations (forward finite-difference method)

and the time step used is equal to 1.

The complex interplay between activator and inhibitor aided by the reaction and

diffusion components create a wide variety of spatiotemporal patterns including spots

(formation of spots are interesting because the process resembles the biological cell

division), wandering bubbles that repeatedly collide with and annihilate each other,

stripes, travelling waves, turbulence, etc. in different parameter regions of a smooth
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Figure 2.9: The phase diagram showing
the parameter space leading the pattern
formation of the Gray-Scott model. The
parameter space where pattern formation
occurs (Fig. 2.8) is indicated by Greek let-
ters. The evolution of system to uniform
blue and red states is indicated by B and
R, respectively [Pea93].

surface. The interplay between two antagonistic feedback is essential for pattern

formation. The positive feedback consists in self-enhancement or autocatalysis of one

of the chemical components (activator). This is indispensable for small perturbations

to be amplified. An increase in the concentration of the activator must also be

complemented by a fast-diffusing response in order to obtain pattern formation. The

geometrical patterns resulting from the Gray-Scott model are different than the ones

obtained in the case of Turing instabilities, as pattern formation occurs in GS model

even when the diffusion coefficients are equal. The pattern formation in the model

occurs only when the values for F and k were chosen in a certain area bounded by

the Hopf curve and the saddle-node bifurcation curve. Fig. 2.8 shows 9 patterns that

are obtained from the Gray-Scott model and the corresponding parameter space is

shown in Fig. 2.9. The figure gives an overview of the Gray-Scott patterns when the

equations are integrated on a 2-D space (XY), over a gradient of control parameters,

F and k (the phase diagram shows spot replication, stripes, travelling waves and

spatiotemporal chaos). The concentration of U is represented by red and blue colors,

i.e., U = 1 (red) and U ≈ 0.2 (blue) and yellow is intermediate to red and blue

[Pea93, Lee93].

(•) pattern γ: Time-dependent, consists primarily of stripes with small localized
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regions oscillating with a relatively high frequency (∼ 10−3).

(•) patterns θ, κ, µ: These patterns are similar to that observed by Lee, et al. In

patterns θ, κ, the perturbations grow radially outward with a velocity normal to the

stripes leading to their stoppage when two stripes collide with each other. In pattern

µ, long stripes grow in length and the growth is parallel to the stripes that takes place

at the tips [Pea93, Lee93].

(•) pattern α: Time-dependent, consists of fledgling spirals (full spirals are never

formed) that annihilates and collides with each other constantly.

(•) patterns λ, ε: These patterns are similar and consists of red and blue spots

on a red or yellow background. Patterns λ are time-independent while patterns ε

are time-dependent. The spots occur only in regions of parameter space where the

system is excitable and the uniform steady state is the red state (U = 1, V = 0).

(•) pattern δ: Consists of regular hexagons except for apparently stable defects.

(•) pattern β: Time-dependent, shows phase turbulence and occurs in the vicinity

of a Hopf bifurcation to a stable periodic orbit. The phase of the oscillators varies as

the function of position because of the inability of the medium to synchronize.

Figure 2.10 is an ensemble of 36 snapshots of the high-dimensional spatiotemporal

system obtained from the autocatalator model that are considered for the IGMDS

analysis. The snapshots as can be seen from the figure, represent various stages of

evolution of spots and stripes. The spatiotemporal patterns formed are subjected to

IGMDS analysis. With the pixel values of each snapshot/pattern made available, the

distance matrix DG, as described in Section. 2.5.2 can be calculated. The method

segregates and projects the snapshots into the low-dimensional IGMDS subspace in

terms of the IGMDS components matrix, Y with elements, yij. The normalized er-

ror variance, σ2, against significant IGMDS components, i.e., residual plot obtained

from the IGMDS coordinates, Fig. 2.11, shows a decrease in error variance with the

number of dimensions required to represent the data. From Fig. 2.11, it can be seen
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Figure 2.10: Spatiotemporal patterns formed from the Gray-Scott model, subjected to IGMDS
analysis.
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Figure 2.11: Component reduction features of IGMDS for Gray-Scott Patterns. The normalized
error variance σ2 as a function of significant IGMDS components, m shows that p = m = 9 modes
are only required for the representation of the complex data.
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Figure 2.12: A two-dimensional IGMDS representation of the Gray-Scott Patterns. The snapshots
of spots and stripes are shown as numbered points in the IGMDS subspace.

that p = 9 modes are sufficient to capture features of the high-dimensional spatiotem-

poral system. In Fig. 2.12, the stripes formed are clustered together and is clearly

demarcated from that of spots that forms another cluster. For example, the snapshots

representing stripes that are numbered as 4, 6, 8, 9, 13, 16, 20, 27, 28, 32, 35, 36 form a

cluster of points. We can see that there is a spread among the points in the region

representative of spots, while all the points that represent the stripes form a single

bunch of points. This is because the nature of the spots in each and every snap-

shot is different, while the stripes are all represented as near-identical labyrinthine

structures. For example, the size and the nature of spots in snapshot numbered, 1, in

Fig. 2.10, is different from that of snapshot 10 and this is represented by a correspond-

ing spread in the IGMDS coordinates. The snapshots 14 and 15 looks visually similar,

but from the IGMDS coordinates we can see that the point representing snapshot 17

is placed close to that of the snapshot 14. Consideration of more dimensions would

certainly improve the classification of patterns but for identifying coarse features a

two dimensional projection is only shown in Fig. 2.12.
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2.7 Conclusions

(•) The advantages and disadvantages of different methods of dimensionality reduc-

tion are discussed.

(•) The novel method developed, IGMDS, can suitably be adapted to extract the

features of both low-dimensional and high-dimensional space-time systems.

(•) Rössler attractor, an example of low-dimensional system, has been reconstructed

using IGMDS effectively by using a single component without losing the topological

features of the attractor.

(•) IGMDS methodology makes possible the segregation of different kinds of high-

dimensional spatiotemporal patterns and facilitates dimensionality reduction as in-

ferred by our analysis using the Gray-Scott model.

The applicability of the method for analyzing and characterizing complex spa-

tiotemporal patterns formed as a result of reaction and diffusion processes occurring

on regular and fractal surfaces is studied in Chapter 3.



Chapter 3

Studies with IGMDS for
Reaction-Diffusion Modeling on
Regular and Fractal Surfaces

In Chapter 2, the practicality of IGMDS as a superior dimensionality reduction tech-

nique has been illustrated for both low-dimensional and high-dimensional systems.

Chapter 3 presents a detailed study of the applications of IGMDS to model reaction-

diffusion systems. Heterogeneous surface reactions exhibiting complex spatiotemporal

dynamics and patterns can be studied as processes involving reaction-diffusion mech-

anisms [Cro93, Arg94, Kap95]. For chemical reactions on heterogeneous surfaces,

the patterns occur due to variations in surface concentrations of chemical species or

temperature. The modeling of the observed patterns may be carried out by solving

designed equations incorporating the roles of reaction rates, heat effects, surface diffu-

sion of chemical species and other nonequilibrium conditions operating in the system.

In reality, many reaction surfaces involving heterogeneous media are associated with

fractal characteristics and conventional reaction-diffusion modeling would have to con-

sider finely spaced finite-difference grids in 3-D spatial dimensions [Moi99, Moi01].

Obtaining solutions to the model becomes intricate and it would be desirable to have

algorithms that simplify the consideration of complexities arising due to the fractal

nature of the surface. For this purpose, we show the IGMDS approach to study re-
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actions on fractal surfaces based on isometric graphing using geodesic distances. The

overall modeling methodology involves four steps, namely, (a) fractal surface simu-

lation; (b) surface characterization by isometric graphing and MDS; (c) formulation

and solution of reaction-diffusion models to obtain the space-time system dynamics

taking into account the scaling in distances due to the fractal surface; and (d) apply-

ing the isometric graphing and MDS formalism for pattern recognition of the complex

dynamics obtained from the solutions of the reaction-diffusion model formulated in

step-(c). The advantages gained by Isometric Graphing and Multidimensional Scal-

ing approach are exemplified by studying simple and complex reactions exhibiting

pattern formation on both regular (i.e., 2-D smooth surface) and fractal surfaces.

Computer simulations for reactions based on percolation cluster diffusion modeling

with various occupation probabilities on Sierpinski fractals have shown a strong influ-

ence of the surface properties on the kinetics of reactions [Moi99, Moi01]. The effects

of noninteger rate orders and phase diagrams with formation of adsorbate clusters

having a fractal nature [Sen90, Moi98] as a function of the concentration of inactive

surface bring out the importance of these considerations. For realistically model-

ing rough surfaces, with fractal dimensions lying between two and three, a method

that uses affine transformations for constructing a fractal surface with self-similarity

at successively finer length scales has been shown [Par97] and used in simulation of

reactions by Monte-Carlo techniques. We use these self-affine transformations for

simulating fractal surfaces having specified dimensions on which reaction and diffu-

sion take place and is discussed later in this Chapter. The properties of these fractal

surfaces from the view-point of addressing the aims of this study are discussed.

For the fractal surface, its topology needs to be characterized by information

about the distribution of surface nodes and their connectivities that together form a

complex network for diffusion mechanisms to operate. It has been recognized that

the topology and evolution of real networks are governed by robust organizing princi-
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ples [Alb02, Sto01]. Their analysis for a variety of interdisciplinary systems (cellular

reactions, ecology, protein folding, worldwide web, etc.) have shown many common

underlying features including small world characteristics, clustering phenomena and

connectivities of nodes. The distance between two nodes is dependent on some other

nodes acting as edge points that link together to form the shortest path connecting

them on the surface. Estimating the intrinsic geometry of a data manifold based

on identifying near neighbor data and their connectivities to form complex networks

have been studied [Ten00]. The methodology uses Dijkstra’s algorithm (as described

in Section 2.5.2) to determine the geodesic distances [Ten00] between the surface

nodes and network identification on the fractal surface [Eli89, Bis98]. In Section 3.2,

the isometric graphing methodology is used to identify the diffusion network on frac-

tal surfaces. The distinct advantage of this methodology is that it can be applied in

a straightforward manner to fractal surfaces because nodes lying close together in the

fractal space should map close together on the diffusion network, even when fractal

scaling of distances is considered.

For fractal objects, the process of diffusion has been described by the theory

of finding the probability density of a random walk or by applying the classical

model of continuous diffusion that estimates the spatial distributions in concentra-

tions of chemical species. The random walk motion follows Einstein’s law of diffusion

< R2 >= 2Dt, where < R2 > is the mean displacement of the walk in time t and D,

the diffusion coefficient. However, diffusion processes on fractal objects are anomalous

because they do not follow Einstein’s law and scale as < R2 >' t2/Dw , where Dw is the

dimension of the random walk trajectory. The slowing down of the diffusion process

is ascribed to delays of the diffusing particles in the corners and crevices of the fractal

object and there exists reviews on this subject [She01, Mur93, Hav02] with applica-

tions of current interest [Spo93, Ste95, Sol93, Byc95] in surface growth and transport

in fluid porous media, diffusion on fractals, 2-D rotating flow, anomalous diffusion at
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liquid surfaces, etc. In particular, to describe diffusion in a Df -dimensional fractal

space, a generalized diffusion equation has been derived [Osh85] that considers the

diffusion coefficient, D, the scaled distances arising due to the fractal dimension, Df ,

and an exponent for the anomalous diffusion θ estimated on the basis of the random

walk properties of particles on the surface. A generalized diffusion equation [Osh85]

can be used to describe the anomalous diffusion on fractals and this has been re-

cently shown to unify [Mal01] a wide class of situations ranging from super-diffusion

2/Dw > 1 to sub-diffusion 2/Dw < 1. In Section 3.3, generalized reaction-diffusion

models for first-order linear kinetics and other nonlinear rate forms are formulated

using the identified diffusion network in Section 2.5.2. To exemplify the approach for

nonlinear kinetics, we use three generic excitable pattern forming reaction-diffusion

systems; (a) FitzHugh-Nagumo (FHN) model that is particularly interesting because

of its capability to show rotating spiral waves [Tys88, Win91, Bar91, Bar92, Ara96]

and spiral break-up to complex turbulent patterns [Gar99]. The model has been

appropriately used to study situations including anisotropy and heterogeneity aris-

ing on reaction surfaces and is recently reviewed [Bar02]; (b) Simple cubic model

[Fie85, Kap95, Mur96] with reactions of the activator-inhibitor type and having the

capability to form complex multidomain Turing patterns depending on the choice of

system parameter values; (c) CO oxidation model based on Langmuir-Hinshelwood

mechanism of adsorption that identifies the oscillatory spirals, turbulence, etc. formed

on heterogeneous catalytic surfaces [Pes00, Sli01].

3.1 Fractal Surface Generation

Heterogeneous surfaces can be highly disordered with noninteger fractal dimensions,

Df , that characterize the space-filling ability of the fractals. The fractal dimension
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Df may be experimentally evaluated [Avn89] and is defined as

N(σ) = Cσ−Df/2 (3.1)

where N(σ) is the number of spheres of diameter σ required to fill up the fractal

surface with C a constant [Par97]. A fractal surface of dimension Df may be con-

structed by applying successive affine transformations which perform contraction and

translations. The union of these contracted and displaced images constitutes a fractal

X itself

X =

q⋃
j=1

ωj(X
′) (3.2)

where q is the total number of affine transformations {ωj}. The self-affine transfor-

mations are of the form

ωj(X
′) = ωj




xi

yi

zi


 = λj




cosθj −sinθj 0

sinθj cosθj 0

0 0 1







xi

yi

zi


+




lj

mj

nj


 (3.3)

Here λj is a scaling factor, θj is a rotation angle, and lj, mj and nj are the translations

in x, y and z directions, respectively. The fractal dimension of the surface so obtained

satisfies

q∑
j=1

λ
Df
j = 1 (3.4)

and for constant λ, the surface generated from q affine transformations is given by

Df = − ln q

ln λ
(3.5)

Thus, fractal surfaces of different dimensions Df may be obtained by choosing the

number of affine transformations q along with values for the other parameters λj, θj,

lj, mj, nj for j = 1, . . . , q. Iterating Eqs. (3.2) and (3.3) yield the 3-D fractal surface
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Figure 3.1: Fractal surface
and its characterization by IG-
MDS. (a) The complex topology
of the fractal surface {xi, yi, zi} of
fractal dimension, Df = 2.771,
obtained with q = 21 num-
ber of successive affine trans-
formations. (b) Projected IG-
MDS coordinates (©), i.e., Y =
{yi1, yi2, yi3} of fractal surface co-
ordinates {xi, yi, zi} shows the
complex network identified for
surface diffusion.

coordinates (xi, yi, zi) for i = 1, . . . , n as given in [Par97]. A coordinate forms a node

and the cumulative set of nodes therefore represents the surface [Par97]. A typical

fractal surface of dimension Df = 2.771, with normalized coordinates (xi, yi, zi) ∈
[0, 1], and obtained by choosing q = 21 affine transformations [Eqs. (3.2) and (3.3)]

is shown in Fig. 3.1(a). It was observed that i = 1, · · · , 5625 iterations of Eq. (3.3)

and obtaining as many nodes (xi, yi, zi) was sufficiently large to satisfy Eq. (3.5). For

modeling purposes, we may consider (xi, yi, zi) to be a node which facilitates both

reaction and diffusion of species to take place, or acts as an edge point for the diffusion

network on the surface.
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3.2 Surface Characterization by IGMDS

The MDS method combined with isometric graphing is especially advantageous for

the characterization of fractal surfaces because it can naturally handle the analysis

of nonlinear data sets lying on a curved surface by moving along the points on the

surface (xi, yi, zi), i = 1, · · · , n. The MDS coordinates importantly prevent short-

circuiting between closely spaced points that in reality are far apart due to the fractal

nature of the surface. It is therefore necessary to consider the topology of the fractal

surface by building up isometric graphing of shortest-path distances between surface

nodes before attempting a MDS analysis. Surface diffusion mechanisms can then be

mimicked to occur over the diffusion network obtained by the isometric graphing.

Figure 3.1(b) shows the fractal surface [shown in Fig. 3.1(a)] projected using MDS

coordinates Y = {yi1, yi2, yi3} for p = 3 (for the minimum in the singular values S

occurring for p = 3) and show the shortest path connections between the nodes

i = 1, · · · , n, and j = 1, · · · , n using the connectivity indices obtained by isometric

graphing in Step (ii) of Section 2.5.2. The complex nature of the diffusion network in

the IGMDS transformed space is seen for the fractal surface. It may be pointed out

that if the Steps (i-iii) are carried out for (xi, yi, zi) ∈ (0, 1) belonging to a regular

surface, then IGMDS correctly identifies the network to have four near neighbors per

node for 1 < γ <
√

2 (i.e., diagonal nodes not detected), while eight near neighbors

per node are detected for γ =
√

2 (i.e., including the four diagonal nodes) with p = 2

for both cases. This approach, therefore, adapts itself smoothly to surfaces ranging

from the regular to the irregular. The advantages of characterizing the surface using

IGMDS are discussed in Section 3.3, where the connectivities and the distance matrix

form a convenient basis for solving reaction-diffusion models for different types of

surfaces.
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3.3 IGMDS Based Reaction-Diffusion Modeling

Studies of pattern formation in reacting systems have analyzed the behavior of dif-

ferent forms of reaction kinetics with diffusion of chemical species. A two-component

system with variables u and v denoting concentrations of chemical species following

kinetic rate expressions f, g may be modeled by

∂u

∂t
=

1

α
f(u, v,K) +D152 u

∂v

∂t
= g(u, v,K) +D252 v (3.6)

Here, D1 and D2 are the respective diffusion constants of the U and V chemical

species, and α is the ratio of characteristic length scales related to energy dissipation

arising because of the diffusion mechanism. For an ith node on a regular surface the

evolution equations using its nn(i) neighborhood indices may be written as

∂u(i, t)

∂t
=

1

α
f(u(i, t), v(i, t)) +D1

nn(i)∑

k=1,2,···

u([(i, k), 1], t)− 2u((i, k), t) + u(i, t)

dG[(i, k), 1]dG(i, k)

∂v(i, t)

∂t
= g(u(i, t), v(i, t)) +D2

nn(i)∑

k=1,2,···

v([(i, k), 1], t)− 2v((i, k), t) + v(i, t)

dG[(i, k), 1]dG(i, k)
(3.7)

where, the notation (i, k) denotes the kth near neighbor for node i and [(i, k), 1] is

the first nearest neighbor for the kth near neighbor of node i. In the above repre-

sentation, the flux due to surface diffusion for node i is accounted by all its nearest

neighbors k = 1, · · · , nn(i). As can be seen, for a regular surface the diffusion term

in Eq. (3.7) becomes a standard forward difference discretized model employing four

near neighbors, i.e., nn(i) = 4.

To discuss the modeling aspects of reaction-diffusion processes occurring on a

fractal surface of dimension Df , it is salutary to start with the general form of a

reaction-diffusion equation for a fractal surface as [Osh85, She01]

∂u(r, t)

∂t
=

1

rDf−1
5 (D1r

Df−θ−15 u)− hu(r, u(r, t), v(r, t), K)



Studies with IGMDS for Reaction-Diffusion Modeling on Regular and Fractal Surfaces 68

∂v(r, t)

∂t
=

1

rDf−1
5 (D2r

Df−θ−15 v)− hv(r, u(r, t), v(r, t), K) (3.8)

where hu, hv are the reaction dependent terms with rate parameters K and r speci-

fying the spatial position. The diffusion term in Eq. (3.6) can then be written in the

following form

D152 u =
D1

rθ
52 u+

D1(Df − θ − 1)

r(θ+1)
5 u

D252 v =
D2

rθ
52 v +

D2(Df − θ − 1)

r(θ+1)
5 v (3.9)

where θ is the exponent of anomalous diffusion and is given by

θ = Dw − 2 = 2(Df/Ds − 1) (3.10)

The dimension of a random walk trajectory, Dw, is calculated by observing the mean

square displacement (< R2
N >) after N random walk steps and this is known to scale

as < R2
N >∝ N2/Dw . A value of θ may be calculated for fractal surfaces of different

dimensions Df and is outlined below. Starting from a randomly chosen initial node

on the fractal surface, a random walk trajectory for N -steps is obtained and < R2
N >

is computed and averaged (<>) over different choice of initial nodes on the fractal for

large number of steps, N . Here, Ds is the spectral dimension and arises whenever a

physical quantity depends on the system connectivity/branching properties [Avn89].

Thus Ds = Df ln < R2
N > / lnN and on carrying out the averaging to obtain < R2

N >

for a fractal surface of dimension Df = 2.771, a value of Ds = 2.386 giving θ = 0.3226

was obtained from Eq. (3.10).

The diffusion term in Eq. (3.9), reformulated for the fractal surface of dimension

Df , using the indexed nodes on the fractal surface may now be obtained as

D152 u(i, t) =
D1

rθ

nn(i)∑

k=1,2,···

u([(i, k), 1], t)− 2u((i, k), t) + u(i, t)

dG[(i, k), 1]dG(i, k)
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+
D1(Df − θ − 1)

r(θ+1)

nn(i)∑

k=1,2,···

u((i, k), t)− u(i, t)

dG(i, k)

D252 v(i, t) =
D2

rθ

nn(i)∑

k=1,2,···

v([(i, k), 1], t)− 2v((i, k), t) + v(i, t)

dG[(i, k), 1]dG(i, k)

+
D2(Df − θ − 1)

r(θ+1)

nn(i)∑

k=1,2,···

v((i, k), t)− v(i, t)

dG(i, k)
(3.11)

where r =
√
x2
i + y2

i + z2
i is the Euclidean distance of an ith node from an origin

arbitrarily chosen as (0,0,0). As seen in Fig. 3.1(a), the fractal surface being irregular,

the evolution of individual nodes will now depend only on the state of its neighboring

surface nodes.

3.3.1 Quantitative Verification of Reaction-Diffusion

Modeling Using IGMDS

For purposes of quantitatively verifying the reaction-diffusion model by IGMDS we

carried out two tests using the corresponding models for a regular surface [Eq. (3.7)]

and for fractal surfaces [Eqs. (3.8, 3.11)]. For the first test, we studied the situation

when only diffusion takes place on the two types of surfaces in the absence of reaction,

i.e., with f = g = 0 in Eq. (3.7) for the regular surface and hu = hv = 0 in Eq. (3.8)

for the fractal surface. Diffusion tends to homogenize the concentration values and

so the dynamics for both regular and fractal surfaces for equal number of nodes (say,

n = 6400) will be expected to attain the same stationary-state value. On carrying

out the simulations for an initial random distribution of concentration values at t = 0

for the i = 1, · · ·n nodes for both regular and fractal surfaces of varying dimensions

Df , an unique stationary-state value for all nodes i = 1, · · · , n was obtained. The

set of solid line curves in Fig. 3.2(a-d) show the satisfaction of the test because

t → ∞ as convergence to an identical homogeneous stationary-state for regular as
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Figure 3.2: Validation of IG-
MDS by simulation for fractal
surfaces. Regular and fractal sur-
face simulation of the dynamics
shows convergence to a unique
stationary state for both a diffu-
sion system (solid lines) as well as
first order reaction-diffusion sys-
tem (dashed lines) at arbitrar-
ily chosen surface nodes (a) for
regular surface, (b)-(d) for frac-
tal surfaces of varying dimension
Df = 2.2619, Df = 2.6309, and
Df = 2.7712, respectively.

well as fractal surfaces of varying Df is obtained. Note that the simulation for the

regular surface shown in [Fig. 3.2(a)] was carried out using a standard finite-difference

algorithm on a square-mesh grid with four neighbors considered. On the other hand,

the simulations for the fractal surfaces with varying Df shown in [Fig. 3.2(b-d)] used

the near neighborhood indices obtained by IGMDS employing appropriate distance

scaling and dependent on the network path.

A second test was carried out in a fashion similar to the first, but, the situation

assumed first-order surface reaction U → V to be occurring along with the diffusion

mechanism. The surfaces are assumed to be immersed in a reservoir of reactant U

held at constant concentration u0. The reaction-diffusion model [Eq. (3.6)] then has

a linear form with f(u, v) = (1/α)(u0 − u) + ku, g(u, v) = 0 with k the first-order

reaction rate constant. In this situation, non-equilibrium conditions exist with the

reaction-diffusion dynamics governed by the above linear equation and both regular

and fractal surfaces should again as t → ∞ converge to a unique but this time a

non-equilibrium stationary-state value for all nodes i = 1, · · · , n. An initial random

distribution of concentration values at t = 0 for the i = 1, · · ·n nodes for both regular

and fractal surfaces of varying dimensions Df as done in the first test was again
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employed. The results of simulation did show the desired convergence to an identical

stationary-state value for the regular surface [Fig. 3.2(a)] (using the finite difference

algorithm) and for fractal surfaces [Fig. 3.2(b-d)] with varying Df (using IGMDS

modeling). The results obtained using the above simple tests quantitatively validate

the modeling approach with IGMDS for fractal and regular surfaces.

3.3.2 Reaction-Diffusion Models Studied

Unlike first-order linear kinetics that give rise to a homogeneous state for regular and

fractal surfaces, pattern formation may be observed on consideration of nonlinear re-

action kinetic mechanisms. It is in this common and important setting that IGMDS

offers considerable advantages in system analysis. For exemplification purposes, we

study the IGMDS approach using the generic nonlinear kinetic expressions of the

FitzHugh-Nagumo (FHN), the two-component cubic autocatalytic reaction and sim-

ple CO oxidation models and study their pattern forming properties on both regular

and fractal surfaces.

3.3.2.1 FitzHugh-Nagumo Model

For FHN kinetics [Ara96] the functions f and g in model Eq. (3.6) follow

f(u, v) = u(1− u)(u− uthr)
g(u, v) = (u− v) (3.12)

with u representing the concentration of an activator species and v that of an in-

hibitor. Here uthr = (b + v)/a is a v-dependent threshold defining the excitability

of the medium and a, b are other parameters of the model. For regular surfaces,

rotating spiral patterns have been observed on solving Eq. (3.6) using finite difference

approximations for cross-gradient initial conditions in u and v, (i.e., linear profiles

between 0 and 1 along the x-axis for u and between 0 and a − 2b for v along the
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Figure 3.3: The activator concentration, u, (indicated by adjoining colormap) showing the evolved
dynamical pattern in a snapshot. (a) spiral pattern in u(xi, yi) formed on the regular surface for
the FHN model; (b) complex pattern in u(xi, yi) on the regular surface for the cubic model; (c)
spiral pattern in u(xi, yi) formed on the regular surface for the CO oxidation model; (d) complex
pattern in u(xi, yi, zi) on the fractal surface for the FHN model; (e) complex pattern u(xi, yi, zi) on
the fractal surface for the cubic model; and (f) complex pattern u(xi, yi, zi) on the fractal surface
for the CO oxidation model.

y-axis) for Neumann boundary conditions, i.e., 5u = 0. For the regular surface of

size (101 × 101), the formation of this spiral pattern is seen on simulation of the

FHN model [Eqs. (3.7), (3.12) and (3.12) with parameter values chosen as D1 = 1.0,

D2 = 0.05, α = 0.05, a = 0.75 and b = 0.01]. Figure 3.3(a), a 2-D snapshot obtained

at large time t of the concentration values u(x, y), shows the evolved spiral (which

rotates in time) when plotted using a colormap.

3.3.2.2 Cubic Model

On the other hand, the generic two-component cubic model [Mur96] has the functions

f, g defined by

f(u, v) = u+ v − u3

g(u, v) = u+ v + A (3.13)
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with A, a bifurcation parameter. Pattern formation in this system is induced by

positive feedback provided by the self-production of the activator U whose production

is also inhibited at the same time by levels of the other species V. Simulation of the

cubic model [i.e., Eqs. (3.7), (3.13) and (3.13) with D1 = 0.05, D2 = 1.0, α = 0.05

and A = −0.1] shows the formation of a complex spatiotemporal chaotic pattern

when solved for a regular surface [i.e., Eqs. (3.7), (3.13) and (3.13) with D1 = 0.05,

D2 = 1.0, α = 0.05 and A = −0.1 and shown in Fig. 3.3(b)].

3.3.2.3 CO Oxidation Model

The CO oxidation model that proceeds by Langmuir-Hinshelwood (L-H) mechanism

constitutes the following steps:

k−1
CO + [∗] 
 [CO−∗]

k1

k2
O2(g) + 2 [∗] → 2 [O−∗]

k3
[CO−∗] + [O−∗] → CO2(g) + 2 [∗]

Here, [∗] denotes an empty adsorption site, and g denotes gaseous species. The

reaction may be modeled as a two-component reaction-diffusion system and describes

the dynamics of CO/O coverage, u, and the surface structure, v, with CO surface

diffusion considered [Bär, et al. (1994)]. The model equations for the CO coverage

and the degree of (1× 1), reconstruction denoted by u and v, respectively, are

∂u

∂t
= f(u, v) +D52 u

∂v

∂t
= h(u)− v

f(u, v) = −1

ε
u(u− 1)(u− b+ v

a
)
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h(u) =





0, 0 ≤ u < 1/3

1− 6.75u(u− 1)2, 1/3 ≤ u ≤ 1

1, 1 < u.

(3.14)

The physical parameters, viz., temperature T , partial pressures pCO, pO2 are present

in the model parameters a, b and ε. The parameter ε represents the ratio of time

scales of surface reactions and structural transformations. The value of the param-

eter a represents whether the system is excitable and incorporates effects of varying

temperature, while b denotes the extents of CO and O on the surface and becomes

smaller for increasing CO adsorption capability [Bär, et al. (1994)]. Function h(u)

is taken from the experimental dependence of the surface structure v on the CO

coverage u and D is the surface diffusivity constant for CO on an inert material on

which the Pt single crystals are deposited. The spatial coupling is introduced only

via CO diffusion because O diffusion is known to be slow. In the present study, no-

flux boundary conditions have been used. The CO oxidation model described above

shows interesting variety of structures like rotating spiral waves, chemical turbulence,

standing waves, etc. The presence of rotating spiral waves under bistable, excitable

as well as oscillatory conditions have been observed experimentally. The coexistence

of spirals with a continuous distribution of periods and wavelengths in the predom-

inantly CO-covered excitable parameter region can very well be explained by this

model based on the assumption that most spirals are stemmed to the surface defects

that are not excitable [Bar95]. Incoherent spatiotemporal patterns are also observed

with this model for parameter values different from those for stable spirals. A spiral

can only be stable when its period τ0 is larger than τmin permitted by the dispersion

relation. The scaling properties of τ0 and τmin are given as

τ0 ∝ εα, α = 0.4

τmin ∝ εβ, β = 0.6
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Figure 3.4: Snapshots of spirals breaking up into turbulence in CO oxidation model D = 0.5, a =
0.84, b = 0.07, ε = 0.08 (indicated by adjoining colormap).

For these conditions, when τmin exhibits a larger exponent, the spirals are no longer

stable and break up giving rise to chemical turbulence (Fig. 3.4). The turbulent states

are generally characterized by the statistics of topological defects [Bar95]. Improved

method based on IGMDS to characterize these features is discussed later in this

Chapter.

3.3.3 Formation of Patterns on Fractal Surfaces

For nonlinear reaction on fractal surfaces with nodes having physical dimensions less

than length scales for diffusion, we have, for both the activator and inhibitor species,
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where the diffusion term is now described by Eq. (3.11).

∂u(i, t)

∂t
=

1

α
f(u(i, t), v(i, t)) +D152 u(i, t)

∂v(i, t)

∂t
= g(u(i, t), v(i, t)) +D252 v(i, t) (3.15)

This reaction-diffusion model Eq. (3.15) may be solved by integrating in time for

u(i, t) for the nodes initially assigned a cross-gradient distribution. Figures 3.3(d),

3.3(e) and 3.3(f) show snapshots of u(xi, yi, zi) obtained by simulation for a fractal

surface and using identical parameter values as chosen earlier for the regular surface

shown in Figs. 3.3(a), 3.3(b), and 3.3(c). The patterns in the snapshot u(xi, yi, zi),

i = 1, · · · , n are seen to be different and not identifiable because of the complex

nature of the fractal surface. Consequently, it is necessary to have ways to study the

spatiotemporal snapshots and quantitatively analyze the complexity in the patterns so

as to bring out the effects of fractality on the spatiotemporal dynamics. In Section 3.4,

we show that the general framework of isometric graphing and MDS can be used to

analyze the patterns in the snapshots and this is made possible due to the superior

dimension reduction features the IGMDS methodology offers.

3.4 Pattern Analysis by IGMDS on Regular and

Fractal Surfaces

Let u(xi, yi, zi,m), m = 1, · · · ,M be M number of snapshots forming an ensemble

with time index m (i.e., t = m∆t, where ∆t is the snapshot sampling interval). For

convenience in notation, a snapshot is denoted by u(i,m), where the spatial index

i denotes the concentration values at the spatial location (xi, yi, zi), i = 1, · · · , n
for n the total number of active nodes. The isometric graphing approach, described

in Section 2.5.2, can be applied to the snapshot data u by adapting the method to

consider the time index m. The adaptation may be carried out by using a matrix D
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of distances with elements

d(l,m) = [
n∑
i=1

(u(i, l)− u(i,m))2]1/2 m, l = 1, · · · ,M (3.16)

where d(l,m) is a hyper-distance denoting the dissimilarity between two snapshots

u(i, l), u(i,m) with time indices l, m, respectively. Note that in comparison to the

calculation of distances in Eq. (2.9) on the fractal surface, based on 3-D node coor-

dinates (xi, yi, zi), the pseudo-distance formulation in Eq. (3.16) has a large number

of contributory terms because the summation is now carried out over concentration

differences between two snapshots (l,m) for each node i = 1, · · · , n. The neighbor-

hood graph, G, characterizing the dissimilarity of M snapshots can be obtained by

the IGMDS formalism described in Section 2.5.2, Steps (i-iii), but with node indices

(i, j) substituted by time indices (l,m). The graph G can be used to calculate dis-

similarities dG and form the matrix B, with elements

blm(dG) = −1

2
[d2
G(l,m)− 1

M

M∑

k=1

d2
G(l, k)− 1

M

M∑

k=1

d2
G(k,m)

+
1

M2

M∑
g=1

M∑

h=1

d2
G(g, h)], (3.17)

that can be transformed to a scalar product form, B = Y Y ′, as done earlier for the

fractal surface in Section 2.5.2. In this case, however, the Y matrix obtained has the

IGMDS coordinates

ylm = wlm
√
sl, l,m = 1, · · · ,M (3.18)

that minimize a cost function E = ‖B(dG)− B(dY )‖L2 . Here, matrix B(dY ) has the

dissimilarities based on pseudo-distances dY and obtained from the IGMDS coordinate

matrix Y . By double centering and svd of B [Eq. (3.17)] we can obtain eigenvalues

S = {sl} and eigenfunctions W = {wml} where the number of significant IGMDS

components, p, may be decided by considering p << M of matrix Y (i.e., yml, m =
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1, · · · ,M , l = 1, · · · , p) minimizing the cost function E. The minimization efficiency

may be analyzed by calculating the normalized error variance σ2 = Em/
∑

mEm, m =

1, · · · , p for increasing p. Studies calculating σ2 in this fashion were carried out for

the patterns observed from the regular and fractal surfaces shown in Fig. 3.3. The

results presented in Fig. 3.5 (solid lines) show an elbow for p ≤ 3 and that σ2 is always

minimal for p ≥ 3. The observation suggests that for p = 3 not only a significant

dimensionality reduction is possible using IGMDS but the nonlinear features of the

spatiotemporal data are very effectively captured in a lower dimensional space.

3.4.1 Comparative Studies of IGMDS with PCA

As discussed in Chapter 2, principal component analysis (PCA) is a method which has

been conventionally used for dimensionality reduction by mathematically replacing a

group of variables with a new variable in a transformed subspace called as a principal

component. Each principal component is a linear combination of the original variables

and the components have the property of orthogonality. A proper choice in the

number of principal components is required so that there is no redundancy of the

data. A reduced description similar to IGMDS may also be obtained by PCA. It

seems possible to compare the dimensionality reduction by IGMDS with that of the

linear PCA analysis and is discussed below. Instead of the distance matrixB [Eq. 3.16]

used in IGMDS, the PCA uses a correlation matrix C of the data u with elements

clm = (1/M)
n∑
i=1

u(i, l)u(i,m), l,m = 1, · · · ,M (3.19)

as the kernel to solve the standard eigenvalue problem CW = SW with W being

the required set of eigenfunctions and the corresponding eigenvalues S. We calculate

the principal component vectors zlm ∈ Z by zlm = wlm
√
sm, l,m = 1, · · · ,M with

wlm ∈ W and sm ∈ S. The number of principal components, say p, required for no

redundant information is obtained by considering p columns of Z such that a cost
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Figure 3.5: Comparison of com-
ponent reduction features of IG-
MDS with PCA. (a) Normalized
error variance σ2 as a function
of significant IGMDS components
m shows an elbow at p = m = 3
and minimal σ2 for p > 3 for
the patterns obtained from FHN
and cubic models (solid lines).
On the other hand PCA requires
many more modes, i.e., p >> 3
(dashed lines) and with higher
σ2 when compared to IGMDS.
(◦) regular surface with spiral
dynamics, FHN model; (?) reg-
ular surface with complex dy-
namics, cubic model; (2) frac-
tal surface with complex pattern,
FHN model; and (4) fractal sur-
face with complex pattern, cubic
model.

function EPCA shows minimal mean-square error while maximizing the variance for

each component. This is carried out under the constraint that a principal component

is uncorrelated with all previously found principal components. The cost function for

PCA is defined by [Hyv01, Dia96]:

EPCA = tr(C)−
p∑
i=1

W TCW (3.20)

and can be evaluated by [Dia96]:

EPCA,p =
M∑

i=p+1

sm (3.21)

The dimensionality reduction brought about by PCA as a function of p may be evalu-

ated [using Eq. 3.21] and studying the normalized error variance

σ2 = EPCA,m/
∑

mEPCA,m, m = 1, · · · , p, as a function of p and the results ob-

tained are plotted in Fig. 3.5 (dashed lines) for patterns on both regular and fractal

surfaces. The normalized error variance σ2 from PCA analysis do not show an el-

bow for p ≤ 3 and only for p >> 3 dimensionality reduction seems possible. In
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other words, it is seen that for the examples under consideration PCA requires sig-

nificantly greater number of components when compared to IGMDS. This brings out

the advantage that the present IGMDS methodology has to offer especially when the

data is spatiotemporally complex, high-dimensional and possesses a high degree of

nonlinearity.

3.4.2 Studies of Time Evolution Properties from Snapshot

Data by IGMDS

The IGMDS coordinates ylm, l = 1, · · · ,M , m = 1, · · · , p are obtained and its elements

not only analyze the dissimilarity of snapshots in the spatial patterns but character-

ize the dissimilarity based on the time evolution properties of the spatiotemporal

dynamics. Thus, snapshots with similar features in the patterns will cluster together

in IGMDS coordinate space. Simultaneously, differences in the snapshot features can

be quantified by their geodesic separation, i.e., the distance between their respec-

tive IGMDS coordinates. Advantageously, now, the time record of the movements of

IGMDS coordinates snapshot-to-snapshot is available and can be used to study the

recurrence properties of spatial patterns in extended periods of time. Figure 3.6(a)-

(f) shows the movements of IGMDS coordinates corresponding to the three reaction-

diffusion models (FHN, cubic and CO oxidation) on both regular and fractal surfaces.

For the FHN dynamics on the regular surface with spiral formation Fig. 3.3(a), the

movements of the IGMDS coordinates show not only a well-formed ellipse (suggesting

a coherent structure in the pattern) but also suggest that there exist a periodic recur-

rence in snapshot properties [see, Fig. 3.6(a)]. Interestingly for the cubic model, where

the spatiotemporal dynamics on the regular surface shows an irregular pattern, i.e.,

Fig. 3.3(b), the IGMDS coordinate movements Fig. 3.6(b), diagnose a near-periodic

recurrence in time. It can also be seen that for the CO oxidation dynamics on the

regular surface with spiral formation Fig. 3.3(c), the movements of the IGMDS co-
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Figure 3.6: Pattern recognition by IGMDS. IGMDS coordinate movement with p = 3, i.e., Y =
{yml}, m = 1, · · · ,M , l = 1, 2, 3, for the six cases in Fig. 3.3 (a-f). Five hundred snapshots
monitored at time step interval ∆t = 0.1 are taken for analysis after elimination of initial transients.
(a) for spiral pattern formed on a regular surface using the FHN model; (b) for complex pattern
on a regular surface using the cubic model; (c) for spiral pattern on a regular surface using the CO
oxidation model; (d) for complex pattern on a fractal surface using FHN model; (e) for complex
pattern on a fractal surface using cubic model; and (f) for complex pattern on a fractal surface using
CO oxidation model.

ordinates show coherent elliptical structures with a periodic turnaround in snapshot

properties as in Fig. 3.6(c). It is unlikely that a visual and qualitative study of the

large number of snapshots taken for this analysis would have brought out this fea-

ture. It is important to note that the pattern recognition was carried out using the

present methodology with u(i, t) considered as snapshot data and obtained from the

mathematical model by solving it only as a “toy model” for this purpose.

The IGMDS analysis is applied to the patterns formed on the fractal surface

showed the results as shown in Fig. 3.6(d)-(f). For the FHN model, the presence of

ellipse-like structures is clearly captured by the IGMDS analysis as seen. The distor-

tions in shape and recurrence behavior in Fig. 3.6(d) when compared to the plot for

the spiral formation on the regular surface Fig. 3.6(a) is due to the complex nature

of the fractal surface. Also, the presence of a coherent dynamical structure in the

data snapshots of u(i, t) from the fractal surface is not seen in Fig. 3.6(d) because of
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the surface and space-time complexities present [see, Fig. 3.6(d)]. On the other hand,

IGMDS analysis, provides a possible way to study the space-time behavior of moni-

tored snapshot data from fractal surfaces by analyzing the features of the identified

dynamical structure as shown in Fig. 3.6(d). Figure 3.6(e) shows the movement of the

IGMDS coordinates for the fractal surface for the complex spatiotemporal behavior

seen in Fig. 3.3(e) using the cubic model. This study shows that the IGMDS coor-

dinate movements [Fig. 3.6(e)] were similar to that obtained for the regular surface

[Fig. 3.6(b)] but with the presence of distortions from periodic behavior indicative

of surface effects playing a role. For the CO oxidation model showing turbulent dy-

namics on fractal surface, i.e., Fig. 3.3(f), the IGMDS analysis gives the coordinate

movements in the snapshots as seen in Fig. 3.6(f). The coherence in the structure

is completely lost and this results in the scattering of the corresponding IGMDS co-

ordinates. This may be attributed to the combined effect of the turbulent dynamics

and the fractal nature of the surface and the associated complicated reaction-diffusion

mechanism. The IGMDS analysis therefore brings out the sensitivity with respect to

identification of periodicity and also commonality in behavior in complex dynamics

and that it may be used effectively for studying these system properties.

3.4.3 Feature Extraction from Turbulent Patterns by

IGMDS

We studied the situation when Gaussian white noise η(t; 0, σ) (with mean zero and

variance σ = 0.2) affects the inhibitor production v of the FHN model by

g(u, v) = u− v + η(t; 0, σ)u. (3.22)

Under these conditions on solving the corresponding FHN model [i.e., Eqs. (3.7),

(3.12) and (3.22)] the spiral pattern breaks into turbulence [Gar99] and is shown

in Fig. 3.7(a-c). It would be interesting to see if the isometric graphing and MDS
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Figure 3.7: Study of noise induced spiral breakup to turbulence in the FHN model by IGMDS.
(a-c) Snapshots of u(xi, yi) monitored at increasing time showing spiral breakup to turbulence for
other parameter values D1 = 1.12, D2 = 0.0, α = 0.02, a = 1.0 and b = 0.1 on a regular surface;
(d) IGMDS coordinate movement obtained on analysis of snapshots exhibiting spiral breakup [i.e.,
500 snapshots monitored at time steps ∆t = 0.1 from the snapshot shown in (b) and beyond] to
turbulence and shows the loss in periodicity on comparing with Fig. 3.6(a) for the regular surface.
(e) Corresponding movement for the fractal surface also shows similar IGMDS coordinate behavior
as observed in (d).

methodology capture the features of turbulence by a corresponding loss in the periodic

movements of the IGMDS coordinates that was seen earlier in Fig. 3.6(a) for the spiral

dynamics. The results obtained in Fig. 3.7(d) show that the dynamical behavior of

the IGMDS coordinates do lose their periodic nature. For the study with noise but

on a fractal surface [i.e., Eqs. (3.12), (3.15) and (3.22)], the coordinate movement

showed a dynamical pattern shown in Fig. 3.7(e) which is qualitatively similar to the

corresponding situation without noise in Figs. 3.6(d) and (e).
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3.5 Quantitative Characterization of Dynamical

Invariants by IGMDS

An interesting quantitative application of the IGMDS coordinates movements to ana-

lyze the complexity of the dynamics and its sensitivity to fractal surfaces and surface

disorder is studied. Quantitative characterization of the dynamical properties of sys-

tems exhibiting complex dynamics has been carried out in a fundamental way by

estimating an invariant measure called the Lyapunov exponents (Λ), because they

are independent of the initial conditions chosen for study (in our case, the first snap-

shot in an ensemble). The calculation of Lyapunov exponents for low-dimensional

systems allow easy interpretations to be made with respect to the stability of the dy-

namics and entropy production/loss. Extensive studies have been carried out for the

evaluation of the Lyapunov exponents from time-series data [Bro91, Arg94, Wil97].

A p-dimensional system is associated with p-exponents (Λi, i = 1, 2, · · · , p) and they

represent the time-averaged shrinking and expanding rates of the dynamics in each

of the p-component directions. They are determined by studying the evolution of

a “fiducial” orbit f(k) ∈ Rd, k = 1, 2, · · ·N in the phase-space of the system and

observing the growth rate of small deviations δf(k) from the fiducial orbit with time

averaging. Chaotic behavior is exemplified by the presence of at least one positive

Lyapunov exponent and a zero valued exponent. The existence of more than one

positive Lyapunov exponent suggests the presence of a hyper-chaotic attractor and

indicates that orbit properties diverge, i.e., are unstable in more than one direc-

tion. Periodic orbits have a zero valued maximal Lyapunov exponent while stable

systems have only negative exponents. For calculating the Lyapunov exponents we

have used a robust method [Bro91] that converges accurately for sufficient yu,lm and

yv,lm data sets and constructing accurate local neighborhood mappings. Another

meaningful and important measure can be calculated from the Lyapunov exponents
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is the Kolmogorov-Sinai (KS) entropy that has been used for quantifying the mean

information production and the growth of uncertainty in a system subjected to small

perturbations via the Pesin inequality [Arg94]. The KS entropy S is defined as the

sum of the positive Lyapunov exponents, i.e., S =
∑

Λ+. For regular predictable

behavior, the KS entropy is zero while for chaotic and turbulent systems it takes a

finite positive value and tends to infinity for a stochastic process.

3.5.1 Calculation of Lyapunov Exponents Using IGMDS

Coordinates

For the above discussions of Lyapunov exponents, the IGMDS coordinates yml refer to

the activator variable U. IGMDS analysis may also be carried out using snapshot data

of the other species V and the corresponding time series of IGMDS coordinates in V

obtained. The time series of IGMDS coordinates for the two species is differentiated

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

t 

Λ 

Figure 3.8: Convergence of the Lyapunov exponents Λi to positive, zero and negative values in
time (t) for FHN kinetics on a fractal surface with Df = 2.26.

by denoting them as yu,ml and yv,ml, respectively. For calculation of the Lyapunov
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exponents, we use the IGMDS coordinates of both the variables yu,lm and yv,lm l =

1, 2, · · · ,M ;m = 1, 2, · · · p with p = 3 and evaluate Λi, i = 1, · · · , 6 in an IGMDS

reduced phase-space. Our calculations for the Lyapunov exponent using IGMDS

coordinate data showed the necessary convergence to values within small error bounds

and is shown in Fig. 3.8 for FHN kinetics taking place on a fractal surface of dimension

Df = 2.26. The results show the presence of negative exponents, a zero exponent

(close to zero and within numerical accuracy), and more than one positive exponent

indicative of a chaotic system.

3.5.2 Computation of KS Entropy by IGMDS Coordinates

For studying the effects of surface disorder on the entropy, calculations were carried

out on surfaces of varying fractal dimensions Df and created using the self-affine

transformation procedure described in Section 3.1. For a regular surface Df = 2.0

with spiral FHN kinetics the largest Lyapunov exponent Λ1 was found to be zero

and therefore gives entropy S = 0. The dynamical periodicity in the spiral pattern is

quantitatively captured by the calculated invariant properties. Also on evaluating the

entropy for surfaces of increasing fractal dimension Df , it was observed that the KS

entropy S becomes positive and goes through a maximum (Fig 3.9) for Df = 2.26.

This suggests that surface disorder due to fractality can affect reaction characteristics

and dynamics significantly. On carrying out the entropy calculations using the cubic

model it was found that this system is also sensitive to surface disorder but to a much

lesser extent than FHN kinetics because entropy values were lower for any chosen

value of Df . For the cubic model, however, the maximum in the entropy occurs at

Df = 2.63 suggesting that the spatiotemporal dynamics on disordered surfaces is

dependent on the nonlinear properties of the system. We also used IGMDS to study

the effect of noise intensity η [Eq. (3.22)] on pattern formation for both regular and

fractal surfaces. The results obtained on increasing noise intensity on spiral behavior
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Figure 3.9: Variation of entropy S with fractal dimension for FHN (solid line) and cubic (dashed
line) models showing the effect of surface disorder on the respective systems.
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Figure 3.10: Variation of entropy S as a function of noise intensity η. A noise induced transition
at a particular value of η = 0.25 indicative of spiral breakup and high entropy for a regular surface
(dashed line). A similar transition to much higher values of entropy is observed for the fractal
surface Df = 2.26 at η = 0.2. On increasing Df = 2.46 this transition to higher entropy is absent
(dot-dashed line).
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for the FHN kinetics are shown in Fig. 3.10, dashed line. The spiral breakup and a

transition to turbulence for a regular surface was seen to occur at η = 0.25. For the

fractal dimension Df = 2.26 [that showed the maximum in S in Fig. 3.9] calculations

of the entropy for varying η showed that the effects of noise can be identified even on

disordered surfaces. The entropy calculation using the IGMDS coordinates showed

that a similar transition in entropy values occurred in the region of η = 0.2 and is

shown in Fig. 3.10, solid line. For a higher value of Df = 2.46 this transition is absent

[Fig. 3.10, dot-dashed line] implying that the system behavior depends on combined

effects of nonlinearity, surface disorder and noise, but IGMDS provides a means for

evaluating the system behavior in the presence of these factors.

It is also likely that an understanding of the nonlinear properties of spatiotempo-

ral systems in reduced dimension descriptions can be used to complement the studies

that have been carried out using proper orthogonal decomposition with empirical ba-

sis functions [Hol96, Gho01]. It may be also remarked that the Lyapunov estimation

calculations used the IGMDS components in reduced dimensions p = 3 of both sys-

tem variables u, v. By phase-space reconstruction techniques [Bro91] using time-delay

embedding and Takens theorem [Tak81], it may now be possible to calculate the Lya-

punov exponents when only single variable snapshot data is available, say u. For the

reduced dimensionality of the spatiotemporal system, p ≤ 3, studying the topological

invariants of the movements of IGMDS coordinates may also reveal properties related

to its flow by following the topological invariant methodologies developed for analyz-

ing low-dimensional deterministic systems [Gil98, Des01, Gh01a]. IGMDS therefore

provides considerable scope for detailed studies of complex pattern forming systems.
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3.6 Deactivation Studies on Catalytic Surfaces by

IGMDS using CO Oxidation Model

The IGMDS methodology can naturally account for and simplify the study of complex

situations that arise in catalytic processes, e.g., fractality, nonuniform distribution of

active sites, effects of catalyst deactivation, anisotropy in diffusion, and importantly

does the above with the consideration of all spatial dimensions. The complex situa-

tions of nonuniform distribution of active sites, effects of catalyst deactivation, etc. are

analyzed effectively using the CO oxidation model. Results bringing out the adapt-

ability of the method for representative situations are discussed here. Figure 3.11

presents the results of solving Eq. 3.11 for a wide range of variation in the parameter

a related to T . The results compare the average surface coverage, û, obtained after

eliminating initial transients for two surfaces of varying fractal dimensions and that

obtained from a square lattice operating with all other parameters and conditions

remaining same. Coordinates of a square lattice were synthetically generated and the

IGMDS algorithm correctly diagnosed the near neighbor interactions as arising from

a square lattice. In general, for all three surfaces, the inhibitor CO coverage increased

with a to saturation but followed different trends. In fact û, for fractal surfaces, is

higher when compared to the square lattice and clearly shows that careful choice

of support properties is essential especially when ideal geometric surfaces cannot be

employed. Simulations were also carried out by assigning randomly diffusion and

reaction properties to the different sites. As the reaction between CO and oxygen

proceeds, due to the poisoning effects of CO, some adsorption sites on the catalytic

support gets deactivated ruling out the possibility for them to take part in further

reaction. But these deactivated sites still support surface diffusion. The remaining

active sites permits adsorption to take place thereby favoring them to partake both in

reaction and diffusion. The individual terms in Eq. (3.11) were appropriately adjusted
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Figure 3.11: Mean CO coverage, û, against the partial pressure of CO, a. û is shown for varying
a for fractal surface of Df = 2.771, Df = 2.261 and square lattice indicated by dotted, dot-dashed
and continuous lines respectively. The number of sites partaking only in diffusion is taken to be
0, 600, 1200 out of the 2116 sites available as indicated by green, red and blue colors respectively.

Figure 3.12: The CO coverage, u, on the fractal catalytic surface with 5400 active sites obtained
for D = 0.01, a = 0.2, b = 0.1, ε = 0.8 (the darker regions correspond to low CO coverage).
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to take care of this feature. Here, we calculate the mean CO coverage, û (averaged

over spatial domain) for different number of initial active sites. Out of the 2116 points

considered for the CO oxidation mechanism to take place, initially all the available

sites are made to have both reaction and diffusion simultaneously taking place (i.e.,

0 sites only diffusive), then 600 sites are made to be deactive for reaction (active for

only diffusion) followed by 1200 sites supporting only diffusion. From Fig. 3.11, it

can be concluded that as the surface complexity increases, i.e., as we proceed from

regular lattice to fractal surfaces of higher fractal dimension (from Df = 2.261 to

Df = 2.771), the mean CO coverage increases explaining the effect of surface hetero-

geneity on CO oxidation. Thus, the results in Fig. 3.11 show that this situation of

non-uniform distribution of active sites has an effect on overall system performance

as seen by û behavior. Fig. 3.13 compares the dynamic behavior in time for regular
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Figure 3.13: The temporal dynamics of different adsorption sites for CO oxidation model (a) for
regular lattice (b) fractal lattice of Df = 2.771. The parameter values taken are D = 0.01, a =
0.2, b = 0.1 and ε = 0.8.

lattice as well as that for a fractal surface, Df = 2.771. In the case of regular square
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lattice only monostability was observed [Fig. 3.13(a)] while for the same operating

conditions on fractal surfaces, clusters of site dependent steady states (multistable)

were observed [Fig. 3.13(b)]. This interesting feature when plotted as a colormap (for

example, see Fig. 3.12) in spatial dimensions, would show pattern formation as seen

experimentally. Catalyst deactivation plays an important role in process performance

but its study using conventional finite difference grid based methodologies is not con-

venient. On the other hand, the IGMDS methodology can be suitably tailored to

simulate and study effects of deactivation on process performance. Thus, we can sim-

ulate the deactivation process by eliminating the reaction terms for particular sites

(i.e., only diffusion term is accounted in Eq. (3.11)) at slow time scales and study the

observed behavior.

The results presented above show some of the advantages in modeling nonlinear

rate processes on heterogeneous catalyst surfaces where surface diffusion plays an

important role.

3.7 Conclusions

(•) IGMDS has been successfully used for the characterization of fractal surfaces gen-

erated using self-affine transformations by identifying the reaction-diffusion network

and the results are compared with a regular surface.

(•) We have formulated the reaction-diffusion equations incorporating the anoma-

lous diffusion mechanisms operating on fractal surfaces by using the distance matrix

calculated from IGMDS.

(•) Modeling approach with IGMDS for regular and fractal surfaces has been

quantitatively validated by studying the situations; (a) when only diffusion (absence

of reaction) takes place on the surfaces and (b) when first order surface reaction

taking place along with the diffusion mechanism.
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(•) Its potential has been shown by studying interesting spiral and turbulence

patterns formed during reaction and diffusion for regular and fractal surfaces.

(•) The capability of IGMDS to resolve hidden information both in spatial and

dynamic context from reactions occurring on fractal surfaces has been shown.

(•) The component reduction features of IGMDS have been compared with that

of PCA and the results clearly suggest the superiority of IGMDS.

(•) The analysis is based on the identification of complex diffusion networks on

surfaces and brings out a fresh approach for studying reaction-diffusion systems.

(•) The use of IGMDS in tracking movements of snapshots as coordinates on non-

linear manifolds brings about considerable dimensionality reduction that in turn sim-

plifies analysis of high-dimensional systems. This is because well-developed method-

ologies for low-dimensional systems may now be applied as shown here by calculation

of dynamical invariants.

(•) We have used IGMDS to carry out deactivation studies occurring on het-

erogeneous catalytic systems modeled as fractal surfaces. With advances in ex-

perimental techniques (e.g., low energy electron microscopy [Pha03], atomic force

microscopy (AFM) [Man03, Qiu04]) imaging surface dynamics and monitoring 3-D

spatial coordinates on metal and non-metal surfaces is increasingly become possible

[Sem96, Man03]. Studying and characterizing the behavior of these surfaces by IG-

MDS under different experimental conditions may help in designing surfaces with

optimal properties.

This Chapter has analyzed reaction-diffusion systems using continuous space-time

models described by partial differential equations. A generality in the methodology for

analysis has been shown for different pattern forming systems. It would be interesting

to see if the methodology outlined here is generally applicable to complex coupled

networked systems. Chapter 4 addresses this issue by applying IGMDS to complex

systems that are general and also mathematically easy to study.



Chapter 4

Analysis of Networked Systems on
Regular and Fractal Surfaces Using
Coupled Map Lattice Formalisms

Coupled map lattices (CMLs) have been extensively studied as paradigms of spa-

tially extended systems exhibiting complex spatiotemporal dynamics. These network

models being simple and computationally tractable are used to study complicated

spatiotemporal dynamics in terms of discrete space, discrete time, and a continuous

state with local and global interactions [Kan00]. The simplicity of the methodology

makes it possible to use CMLs for developing formalisms for characterizing pattern

formation in reaction-diffusion systems. Here we discuss the model formulation and

advantage of using near neighbor graphing for identification of near neighbors to char-

acterize the spatial coupling network on lattices [Jai04]. Notably, here we show that

IGMDS can be favorably employed to calculate the dynamical invariants of spatiotem-

poral system and offers significant advantages in carrying out the calculations with

reduced dimensionality and with lower computing times when compared to calcula-

tions using the full system. In CMLs, the neighboring lattice sites interact through

diffusive coupling and representative networks can be established and analyzed based

on their connectivity.

For fractal lattices, the CML inter-site distances may be drawn from self-affine
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distributions and to generate these self-affine structures, a wavelet filtering algorithm

(WFA) employing normalized and filtered Gaussian distribution at different wavelet

scales for N discrete sites may be implemented.

One method to generate these self-affine structures with long-range power corre-

lations is the Fourier filtering algorithm (FFA). The disadvantage of this method is

the presence of aliasing effects, i.e., it imposes a finite cut off in the range over which

the variables are actually correlated. As a result, one must generate a very large

sequence of Gaussian random numbers, and then use only a fraction of them that

are actually correlated. This fraction can be as small as 0.1% of the initial length of

the sequence [Pen91, Pra92]. This limitation makes the FFA unsuitable for the study

of scaling properties effectively. The WFA can be used advantageously to overcome

these effects so that the actual correlations extend to the whole system [Sim02].

Another salient feature of WFA is that the wavelet basis functions are localized

in both space and frequency. That is, unlike cosines and sines, which define Fourier

transform, the individual wavelet functions are far better localized in space; and

perform the analysis with respect to frequency components (characterized by scale).

The scale-wise decomposition helps to compensate for the aliasing effects and thus

generation of profiles with well-defined long-range correlations independent of the

system size is therefore possible.

The generalized CML equation is defined as:

xn+1(i) =
1

Ai + 1
[f(xn(i)) +

∑
j∈conn

f(xn(j))] (4.1)

Ai represents the number of connections at the ith site and the summation over

j implies all the sites connected to site i on which diffusion mechanisms operate

[Rag95, Kan00]. For the nonlinear dynamics governing the transformations at each

site, we assume it to follow the logistic map

xn+1 = f(xn(i)) = 1− ax2
n(i) (4.2)
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where, x ∈ [−1, 1] and a is the nonlinearity parameter of the reaction component.

Coupled map lattices with the local dynamics governed by the logistic map equa-

tion have been known to generate a wide variety of patterns as: doubling of kinks,

frozen random pattern, pattern selection, travelling waves, spatiotemporal intermit-

tency, and fully developed spatiotemporal chaos [Kan00]. In this Chapter, we have

studied the CML space-time dynamics and the analysis of the spatiotemporal pat-

terns formed on regular and fractal (1+1) surfaces defined by different values of Hurst

exponents (a measure of fractal dimension) using IGMDS. The results are compared

to obtain an insight into the effects of fractal properties and nature of the connectivity

in defining the dynamical behavior of the system.

4.1 Network Generation of CMLs Using Wavelet

Filtering Algorithm

The fractal (1 + 1) lattices used for the present study are generated using the WFA

[Sim02]. The lattices so obtained, that are statistically self-similar and may be rep-

resented by different Hurst exponents, H. The Hurst exponent is related to the

fractal dimension, D, for a known statistically self-similar data set by the expression,

D = 2 − H [Dec00]. The value of the Hurst exponent ranges between 0 and 1. A

value of H = 0.5 indicates a true random walk or fractional Brownian motion. A

Hurst exponent 0.5 < H < 1.0 indicates “persistent behavior” and 0 < H < 0.5 in-

dicates a time series with “anti-persistent behavior”. A small H has a higher fractal

dimension and a rougher surface while a larger value has a lower fractal dimension

and tends to a smoother surface. The scaling relation observed in these structures

can be represented in terms of the Hurst exponent by the following expression

x→ λx, h→ λHh. (4.3)
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where, λ is a real number, x, represents the space and h(x), the magnitude of the

variable at the spatial point (x). In the present study, we have generated the fractal

lattices with predefined Hurst exponents, H = 0.2, 0.5, 0.8, representative of anti-

persistent, Brownian motion and persistent behavior. The procedure constitutes the

following steps [Sim02].

(a) Prepare an array of {ηi} Gaussian random numbers, with i = 1, 2, · · · , N ,

where N is the number of discrete sites.

(b) The random numbers are filtered according to the following equation to get

the wavelet coefficients {wi}

wi = (aj(i))
H+ 1

2
ηi

〈|η|〉j(i) , i = 1, 2, · · · , N (4.4)

Here aj(i) = 2−j(i) represents the scale, at level j(i), where j(i) is defined as the level

corresponding to the location index i of the vector wi. The average 〈|η|〉j(i) is taken

over all indices i corresponding to the one and the same level ji.

(c) Take the inverse wavelet transform of {wi} using the compact supported

Daubechies D12 wavelet to get a statistically self-similar fractal lattice with a partic-

ular Hurst exponent value.

A schematic of the lattices considered for the present study is shown in the Fig. 4.1.

The length of each lattice is N = 28. Periodic boundary conditions are used in

evolving the CML (Eq. 4.1). The fractal lattices studied are H = 0.2, H = 0.5

and H = 0.8. From the schematic, the topological nature of the fractal and regular

CML lattices can be easily seen. Each site on the regular lattice is represented

by the normalized X-Y plane coordinates (xi, yi), for i = 1 · · · , N . Each site is

therefore arranged equidistant from any other site. For the fractal lattices, each site

is represented by the normalized set of coordinates (xi, yi) ∈ [0, 1]. The cumulative

set of these sites constitutes each lattice generated. For modeling purposes, we may

consider (xi, yi) to be a site which permits both reaction and diffusion of the species
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Figure 4.1: Schematic describing the (1 + 1)-
surfaces/lattices generated for different Hurst
exponent, H using WFA. Each lattice is of
length, N = 256 with periodic boundary con-
ditions. The wavelet used for the simulation is
Daubechies D12 wavelet. (◦) Regular lattice;
(?) Fractal lattice with H = 0.2; (+) Fractal
lattice with H = 0.5; (4) Fractal lattice with
H = 0.8.

(a)

(b)

(c)

Figure 4.2: (2+1) surfaces gener-
ated using WFA for (a) H = 0.2; (b)
H = 0.5; and (c) H = 0.8.

to take place or act as an edge site for the diffusion network on the lattice. The lattice

sites for the fractal with H = 0.2, lie more scattered in a given space and the degree of

roughness of this fractal is more compared to the other fractals. That is, the degree of

roughness decrease fromH = 0.2 throughH = 0.5 toH = 0.8, withH = 0.8 being the

smoothest lattice of all the three and lying close to the regular lattice. (2+1) surfaces

can also be constructed by restructuring the WFA, for example, Fig. 4.2 shows (2+1)

surfaces for different values of Hurst exponent, H = 0.2, 0.5 and H = 0.8. The lattice

is contained in a 64 × 64 × 64 mesh. The wavelet scalewise decomposition shown in

the Fig. 4.3 distinguishes the properties of the fractal lattices obtained for different

Hurst exponents. Wavelet coefficients at the lower scales capture gross and global
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Figure 4.3: Scalewise wavelet decomposition is shown for the fractal lattices generated. N = 256,
the number of sites and the number of scales, j = 8. (a) H=0.2; (b) H=0.5; (c) H=0.8.

features and the coefficients at higher scales contribute more to the detailed features.

From Fig. 4.3, it can be seen that at higher scales j = 7, j = 8 represent the detailed

features of the given fractals and that for the fractal with H = 0.2, these features are

prominent when compared to that with H = 0.5 and H = 0.8. Thus the roughness of

the lattices can very well be deduced from the multiresolution analysis, with H = 0.2

being the most rough and the H = 0.8, the least.

4.2 Network Identification Using IGMDS

Finding the shortest path distances in a graph with edges connecting neighboring

sites on the surface for a MDS projection uses a distance matrix D with elements

d(i, j) = [(xi − xj)2 + (yi − yj)2 + (zi − zj)2]1/2 i, j = 1, · · · , n (4.5)
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Figure 4.4: The schematic illustrates
the identification of near neighbors with
respect to the coupling parameter α.
The number of sites within a circle of ra-
dius rα(2) is greater than that within a
circle of radius rα(1). (a) Regular CML,
where the number of near neighbors for
each point, i is the same for a particu-
lar α; (b) Fractal CML, where the num-
ber of near neighbors for each site differs
from site to site for a given α value.
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Figure 4.5: The sparse matrix plot
showing the number of nearest neigh-
bors of any site i for the regular and
the fractal CML. (a-c) the number of
near neighbors for each site i for dif-
ferent values of the coupling strength α
from local to global, [i.e., α = 0.9, 0.6
and 0.01 respectively] for the regular lat-
tice; (d-f) the number of near neighbors
for each site i for different values of the
coupling strength α from local to global,
[i.e., α = 0.9, 0.6 and 0.01 respectively]
for the fractal lattice.

and may be calculated using IGMDS algorithm as described in Section 2.5.2. The

extent of connectivity in either of the above mentioned cases can be effectively varied

by introducing a scaling in the following way. Here we consider the spatial domain x

to span [0, 1] containing N lattice sites and for any lattice site i, where i = 1 · · ·N we

define its distance with the first nearest neighbor as r. All the sites within a circle

of radius rα are considered as the nearest neighbors for that particular lattice site

i. Parameter α defines the connection neighborhood as well as the strength of the

interaction between the sites (α values lie between 0 and 1). Figure. 4.4 represents

the schematic illustrating the identification of the near neighbors with respect to
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the coupling parameter α. For scaling parameters α(1) > α(2) ⇒ rα(1) < rα(2)

which implies that the number of nearest neighbors within the circle of radius rα(2)

may be greater than that within the circle of radius rα(1), i.e.,α → 1 is the nearest-

neighbor coupling limit, while α→ 0 is the global coupling limit. Periodic boundary

conditions are imposed on the lattice, i.e., x(i) = x(N + i) and this feature has

been captured in nearest neighbor identification on implementation of near neighbor

graphing algorithm. The connectivity matrix M is a stochastic matrix obtained from

the Dijkstra’s algorithm and has the form

M =




· · ·
0, · · · , 0, 1

Ai + 1
, · · · , 1

Ai + 1︸ ︷︷ ︸
Ai+1

, 0, · · · , 0

· · ·




(4.6)

The total number of sites on which i depends is Ai + 1 including the site i itself. A

nonzero (i, j)th element in the matrix M therefore signifies that a connection exists

between ith and the jth site. Each element is divided by Ai + 1 such that each row

sums up to 1.

The matrix M, for regular CML, is band-diagonal and circulant and for variation

in α, the number of nonzero elements about the diagonal varies proportionately.

Whereas for fractal CML, in the matrix M, the width of the diagonal band varies for

every site. Moreover, the number of nearest neighbors for any site, i, falling within a

circle of radius rα, changes disproportionately with α. Fig. 4.5 represents the number

of nearest neighbors for any site i. For higher values of α, the local coupling is

prominent. Low values of α shows the global coupling regime. In the case of regular

CML, for α = 0.9, each site has same number of nearest neighbors (2) and is evenly

spread around the diagonal band in the sparse matrix plot. As α decreases towards

the global coupling region (α = 0.01) the number of nearest neighbors increases and

the width of the diagonal band increases. For fractal CML, the number of the near



Analysis of Networked Systems on Regular and Fractal Surfaces Using Coupled Map Lattice ... 102

neighbors varies and global coupling takes place for low α values.

4.3 Pattern Formation, Analysis and

Characterization

As mentioned earlier in this Chapter, evolution of CML dynamics generates a wide

variety of patterns, viz., doubling of kinks, frozen random pattern, pattern selection,

travelling waves, spatiotemporal intermittency, and fully developed spatiotemporal

chaos, etc. We have studied the patterns formed under different parameter conditions,

i.e., by varying the coupling strength and the nonlinearity parameter. Here, we

discuss the applicability of IGMDS to characterize these spatiotemporal patterns

formed using IGMDS and to calculate the dynamical invariants (Lyapunov exponents,

KS entropy) of the system.

4.3.1 Effect of Coupling Strength (α) and Nonlinearity Pa-

rameter (a) on Pattern Formation

One of the intrinsic properties of the CMLs is the possibility of formation of domain

patterns and occurrence of spatiotemporal chaos [Ara92, Bun90]. Sections of the lat-

tice, having state variable values in chosen ranges may be termed as domains with

domain walls. The diffusive coupling in the system causes the neighboring sites to in-

fluence one another and to be drawn to the same orbit (state) [?]. As the nonlinearity

increases, individual sites tend to exhibit local chaos. For the smaller domains diffu-

sion is dominant and periodic orbits are observed. The nature of the patterns and the

domains formed during the evolution of CML is found to be dependent upon the value

of the coupling strength, α, and the nonlinearity parameter, a. Figure 4.6(a) shows

the temporal evolution (snapshots) for the regular CML of 256 lattice sites with the

nonlinearity parameter of the logistic map, a = 1.44. In the global coupling region
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Figure 4.6: Study of space-time dynamics on a regular CML using IGMDS for the logistic map
parameter, a = 1.44. (a-d) Snapshots (1024) of spatiotemporal dynamics monitored after iterating
the Eq. 4.2 and leaving 1000 transients shows the formation of domains for increasing values of α,
i.e., [α = 0.01, 0.4, 0.6, 0.9 respectively]. (d) IGMDS coordinate movement obtained on analysis of
the above snapshots with p = 3, i.e., Y = {yml},m = 1, · · · ,M, l = 1, 2, 3 in the low-dimensional
MDS subspace.
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Figure 4.7: Representation of the space-time dynamics on a fractal CML of H = 0.5 using IGMDS.
(a) the space-time dynamics for a = 1.44, α = 0.4; (b) the space-time dynamics for a = 1.5, α = 0.4;
(c) the space-time dynamics for a = 1.75, α = 0.4; (d) the space-time dynamics for a = 1.85, α = 0.4.
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Figure 4.8: Study of space-time dynamics on a regular CML using IGMDS for the logistic map
parameter, a = 1.9. (a-d) Snapshots of spatiotemporal dynamics monitored after iterating the
Eq. 4.2, leaving 1000 transients showing the mixing of domain walls for increasing values of α, [i.e.,
α = 0.01, 0.4, 0.6, 0.9 respectively].

of the coupling strength, α, i.e., for α = 0.01, the lattice show spatial homogeneity

but with two domains. Spatial uniformity arises when all the lattice sites are in full

synchronization, i.e., all the sites are in the same state. On the other hand, more

complex patterns with domain structures are seen for higher values of α. As we can

see from Fig. 4.6(b), (c) and (d), these domains are of different sizes for the different

values of α. It can be seen that with the increase in value of the nonlinearity pa-

rameter, i.e., as the value of a is increased, the domains are no longer stable and the

patterns start to collapse as is shown in Fig. 4.7 (for H = 0.5, a = 1.44, 1.5, 1.75, 1.85)

for a particular value of the coupling strength, α = 0.4. The uniform state, i.e. for

α = 0.01, is stable for all parameter a values and appears to be globally attracting,

(Fig. 4.8(a), where a = 1.9) while for all other α values, the patterns collapse as

shown as in Fig. 4.8(b)-(d).
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4.3.2 Analysis of the Patterns Formed Using IGMDS and

FFT

The patterns obtained from the dynamics of the CML may be subjected to IGMDS

(as described in Section. 2.5.2) analysis and FFT to get the power spectrum. The

Fourier transform converts the waveform data in the time domain into the frequency

domain. The method is very useful since it reveals the periodicities in the input data

and the relative strength of any periodic components. The Fourier power spectrum is

obtained from the time series constructed from the IGMDS coordinates. The number

of snapshots taken for the IGMDS analysis is 1024 and is shown for the regular CML

in the Fig. 4.6(e), (f), (g), (h) for different α values ranging from global to local. Each

snapshot is represented by a point in the low-dimensional IGMDS transformed space

with each point being plotted in 3 IGMDS coordinates. The temporal movements

of the IGMDS coordinates define the classification of the snapshots into different

clusters. It can be seen that the clustering behavior seen in the distribution of IGMDS

coordinates depends on the α value. The banded nature of the CML dynamics is

captured very efficiently by the IGMDS analysis. As can be seen from Fig. 4.6(e), (f),

(g), (h), the complex nature of the dynamics could be simplified and projected into the

low-dimensional subspace. The band-periodic nature of the CML is indicated by the

sequential transition amongst the clusters. For example, from Fig. 4.6(h), the banded

periodicity of the CML dynamics is identified by IGMDS coordinates distributed

as clusters (4 clusters) representing the snapshots. The effect of the nonlinearity

parameter in the dynamics of the CML is confirmed by the IGMDS analysis. When

a is increased to a = 1.9, for all coupling values of α, the patterns show collapsed

nature with loss in homogeneity on increased local coupling. The IGMDS analysis

of the snapshots for the nonlinearity parameter, a = 1.9, is shown in the Fig. 4.8.

The time series generated from the first IGMDS coordinates and the corresponding
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Figure 4.9: Study of the space time dynamics in terms of IGMDS analysis and Fourier power
spectrum. (a-d) the spatiotemporal patterns obtained by evolution of CML dynamics on the regular
CML of 256 lattice sites (i.e., (a) a = 1.44, α = 0.01 (global); (b) a = 1.44, α = 0.9 (local); (c)
a = 1.9, α = 0.01; (d) a = 1.9, α = 0.9); (e-h) the time movement of the IGMDS coordinates for the
above cases of 1024 snapshots; (i-l) the time series constructed from the first IGMDS coordinates
for 70 sites; (m-p) the Fourier power spectra of the time series.

Fourier power spectra are shown in Fig. 4.9(i)-(l) and Fig. 4.9(m)-(p), respectively.

In Fig. 4.9(m), (o), (p), the power spectra obtained are chaotic and this implies that

the movement of successive IGMDS coordinates occur within the clusters and also

amongst the clusters. On the other hand, Fig. 4.9(n), (FFT of the time series) gives

a strong single peak suggesting the hopping of successive IGMDS coordinates only

amongst the clusters, identifying the periodicity in chaos. IGMDS analysis was also

carried out for fractal CMLs (Fig. 4.10, Fig. 4.11). It is to be noted that for the same

value of the nonlinearity parameter, a, i.e., a = 1.44, for the global coupling region,

which corresponds to the homogeneous steady states for the CML dynamics, the
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Figure 4.10: Study of the space time dynamics in terms of IGMDS analysis and Fourier power
spectrum for fractal CML of H = 0.2. (a-d) the spatiotemporal patterns obtained by evolution of
CML dynamics for 256 lattice sites (i.e., (a) a = 1.44, α = 0.01 (global); (b) a = 1.44, α = 0.9 (local);
(c) a = 1.9, α = 0.01; (d) a = 1.9, α = 0.9); (e-h) the time movement of the IGMDS coordinates for
the above cases of 1024 snapshots; (i-l) the time series constructed from the first IGMDS coordinates
for 70 sites; (m-p) the Fourier power spectra of the time series.

time movement of the IGMDS coordinates show the same distribution (Fig. 4.9(e),

Fig. 4.10(e), Fig. 4.11(e)) for regular as well as fractal CMLs. The effects of the

fractal nature of the CML also are clearly seen by the analysis when compared with

the regular CML. This lattice feature could be explained from the scattering behavior

of the IGMDS coordinates in the fractal CML to that in regular CML. It is already

seen that in the global coupling region, for all a values, the homogeneous spatial states

are always observed (i.e., for a = 1.44, a = 1.9), although the dynamics is chaotic.

The IGMDS analysis shows clear distinctions in these aspects and thus provides

a means to analyze the system properties in terms of the coordinate movements
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Figure 4.11: Study of the space time dynamics in terms of IGMDS analysis and Fourier power
spectrum for fractal CML of H = 0.5. (a-d) the spatiotemporal patterns obtained by evolution of
CML dynamics for 256 lattice sites (i.e., (a) a = 1.44, α = 0.01 (global); (b) a = 1.44, α = 0.9 (local);
(c) a = 1.9, α = 0.01; (d) a = 1.9, α = 0.9); (e-h) the time movement of the IGMDS coordinates for
the above cases of 1024 snapshots; (i-l) the time series constructed from the first IGMDS coordinates
for 70 sites; (m-p) the Fourier power spectra of the time series.

which otherwise would have been very difficult to identify. The IGMDS analysis also

projects the effect of fractal surfaces in the coordinates obtained, i.e., for fractal CML

of H = 0.2 and H = 0.5, the time movements of the IGMDS coordinates are different

as is seen in Fig. 4.10(f)-(h) and Fig. 4.11(f)-(h). As in the case of regular CML,

the Fourier spectra show strong single peaks for Fig. 4.10 (f), (h) and Fig. 4.11 (f),

(h) suggesting a periodic movement of the IGMDS coordinates amongst the clusters,

while Fig. 4.10(e), (g) and Fig. 4.11(e), (g) indicating the hopping of the IGMDS

coordinates within and amongst the clusters.
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4.3.3 Comparative Studies of IGMDS with PCA

To corroborate the superiority of IGMDS, the patterns are subjected to PCA analysis

as shown in the Fig. 4.12. The PCA analysis was carried out as in Section. 3.4.1.

The normalized error variance, σ2, from PCA analysis lacks the elbow as in case of

IGMDS analysis as is seen from the Fig. 4.12. The IGMDS projection would require

only 3 modes, which is far lesser than PCA, for any chosen coupling strength. This

observation shows unambiguously the advantage the IGMDS method has in analyzing

nonlinear space-time systems.
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Figure 4.12: Comparison of component
reduction features of IGMDS with PCA
shown for the fractal CML of H = 0.5.
Normalized error variance σ2 as a func-
tion of significant IGMDS components m
shows an elbow at p = m = 3. On
the other hand PCA requires many more
modes, i.e., p >> 3 and with higher σ2

when compared to IGMDS. (◦) for IG-
MDS analysis(α = 0.4, 0.6, 0.9); (?) for
PCA, α = 0.4; (2) for PCA, α = 0.6;
(+ for PCA, α = 0.9.

4.4 Quantitative Characterization of Dynamical

Properties and Subsystem Dynamics Using

IGMDS

Quantitative characterization of the complex dynamics exhibited by diffusively cou-

pled CMLs is another area where the principles of IGMDS can be used successfully.

The IGMDS coordinates obtained from the snapshot analysis of the CML dynamics

can be used to calculate the dynamic invariants (the Lyapunov exponents and KS
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entropy) of the system. The determination of entropy in terms of the subsystems that

mimic the full system dynamics saves considerable time and computational efforts.

Typically, entropy calculations for a full system of size 256 lattice points which took

8 hours on an c© HP 9000 workstation, reduced to less than 15 minutes using the

IGMDS coordinates. The results obtained for these calculations are presented below.

4.4.1 Calculation of Lyapunov Exponents and KS Entropy

As discussed in Section 3.5.1, the Lyapunov spectrum (LS) is defined as the set {λi}Ni=1

of the N Lyapunov exponents arranged in decreasing order and the spectrum is com-

puted from the eigenvalues of the long-term products of the Jacobi matrices [Car99].

A Lyapunov spectrum (LS) of N Lyapunov exponents corresponds to the rates of

expansion and/or contraction of nearby orbits in the tangent space and they may be

used as system invariants useful for dynamical characterization. Fig. 4.13 shows the

convergence of the Lyapunov exponents obtained from the IGMDS coordinates for a

fractal of H = 0.5 and 1024 snapshots and 256 sites for α = 0.9. The results show the

presence of negative exponents, a zero exponent (close to zero and within numerical

accuracy) and more than one positive exponent indicative of a chaotic system. In the

present study, as defined in Section 3.5.2, we have computed the KS entropy from the

spatiotemporal dynamics after discarding 1000 transients and converged values are

obtained on evolving the system for 1000 time steps over 1000 initial conditions. The

system size considered for the calculations is 256 sites. Fig. 4.14 shows the entropy, h,

of the lattices against the coupling strength for fractal CMLs of different Hurst expo-

nents and compared with that of a regular CML. It can be seen that for low values of

α, i.e., in the global coupling regime, the magnitude of the entropy is nearly same for

all fractals as well as for the regular CML. Accordingly, we obtain the homogeneous

states in Fig. 4.6(a), Fig. 4.8(a), Fig. 4.10(a), and Fig. 4.11(a). This is because in

the global coupling limit, any site i is connected to all other sites, irrespective of



Analysis of Networked Systems on Regular and Fractal Surfaces Using Coupled Map Lattice ... 111

0 50 100 150 200 250 300 350 400 450 500
−6

−5

−4

−3

−2

−1

0

1

2

3

4

λ Figure 4.13: Convergence of the Lya-
punov exponents λi to positive, zero
and negative values in time (t) for the
CML dynamics on a fractal lattice with
H = 0.5.

0

0.5

1

1.5

2
h

α

(a)

(b)

(c)

(d)

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.14: Entropy against α
values for fractal CMLs in com-
parison with the regular CML.
(a) fractal CML of H = 0.2;
(b) fractal CML of H = 0.5;
(c)fractal CML of H = 0.8; (d)
regular CML.

the nature of the CML considered. As α increases, the coupling becomes local and

the entropy increases and the behavior turns out to be sensitive to the nature of the

fractality of the CML. The values of entropy decrease with the increase in the Hurst

exponent values from antipersistent, H = 0.2 through random, H = 0.5 to persistent

behavior, H = 0.8. The entropy values for H = 0.2 [Fig. 4.14(a)] are higher than

that of H = 0.5 [Fig. 4.14(b)] and H = 0.8 [Fig. 4.14(c)]. The difference in the value

of the invariant for the different the CMLs under consideration is very prominent in

the local coupling limit. This may be attributed to the difference in the distribution

of near neighbors for any particular site i, for CMLs of varying fractal dimensions.



Analysis of Networked Systems on Regular and Fractal Surfaces Using Coupled Map Lattice ... 112

The above results indicate that the higher the disorder of the lattice, the higher the

entropy. On the contrary, for regular CML, the entropy values remain almost the

same for all α values. This is because any site i is placed equidistant from any other

site on the linear chain of N sites. Another important feature of the entropy behavior

for the fractal CMLs is that for the intermediate α values, i.e., for α = 0.4, 0.5, 0.6,

the lattices show a ’dip’ in the entropy values.

The entropy is also calculated using the projected IGMDS coordinates taken as a

low-dimensional time series. The values show excellent quantitative agreement with

that calculated using the rigorous approach. The results for different α are compared

in the Table. 4.1.

Table 4.1: Comparison of entropy obtained using rigorous method and IGMDS method.
Entropy Entropy from MDS

α (Rigorous) coordinates
(Simpler)

Subsystem size Subsystem size
256 128 64 256 128 64

1.0 4.282 1.896 1.02 4.279 1.882 1.025
0.882 2.813 1.093 0.179 2.803 1.077 0.167
0.705 0.0 0.018 0.0 0.0 0.018 0.0

4.4.2 Entropy Analysis of Subsystems

A representative case (H = 0.5) of the entropy behavior for the subsystems is shown

in Fig. 4.15. As the system size increases (from 32, 64, · · · , 256) the magnitudes of the

entropy also increases proportionally. This procedure of analyzing the subsystems dy-

namical invariants is very advantageous for handling complex spatiotemporal systems

of very high system size and as shown here, facilitates further model reduction. Thus

the subsystem analysis renders an appropriate method to draw scaling relationships

in the entropy [Par98] as a function of subsystem size, especially in the local coupling



Analysis of Networked Systems on Regular and Fractal Surfaces Using Coupled Map Lattice ... 113

0

0.5

1

snh

^

α

1.5

2

2.5

3

3.5

4

4.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.15: Entropy behav-
ior, h, against α values for in-
creasing subsystem size, ns (ns =
32, 64, · · · , 256 in increasing order
as shown by direction mark ↑) for
the fractal CML of H = 0.5.

ρ h

50 100 150 200
0

0.02

0.04

n
s

(d) 

(c) 

(a) 

(b) 

↑  

↑  

↑  n
sc

↑  

Figure 4.16: The entropy den-
sity, ρh, against subsystem size,
ns for the different CMLs. (a)
for Regular CML of different val-
ues of α (i.e., α = 0.05 (dotted
line), α = 0.2 (dot-dashed line),
α = 0.9 (dashed line)); (b) for
H = 0.2; (c) H = 0.5 and (d)
H = 0.8.

region.

The size independent quantification of entropy, i.e., the entropy density, ρh, gives

the average rate of information loss/gain in the dynamics and is defined as

ρh =
∑

λ+/ns (4.7)

where, ns is the subsystem size. The plots of ρh with ns show that ρh saturates out

to a constant value for ns ≥ nsc, where nsc is the critical value of the subsystem

size, (see Fig. 4.16). The behavior of ρh with respect to the scaling in connectivity
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varying from global (0.2) to local (0.9) for all the types of lattices showed saturation

of ρh suggesting that dynamical behavior of subsystems can be advantageously used

to quantify the entropy of the full system. This observation may very well be used to

study the dynamics of the systems of very large sizes.

4.5 Conclusions

(•) Generality and simplicity of the CML and IGMDS makes it applicable to study

complex space-time dynamics on the fractal (1+1) and higher surfaces and to ana-

lyzing fundamental properties of reaction-diffusion processes. A comparative study

is made using regular CML.

(•) The construction of the fractal (1+1) surfaces considered for the present study

is illustrated using wavelet transform, and the reaction-diffusion network is identified

and characterized using IGMDS.

(•) The effect of the coupling strength, α, and the nonlinearity parameter, a, on

the pattern formation is studied. It is seen that for low values of coupling (α =

0.01, global), homogeneous steady states are formed. For high values of coupling

strength,(α = 0.9, local), patterns with domain structures are formed.

(•) Our study proves the ability of IGMDS to identify the complex spatiotempo-

ral patterns, to calculate the Lyapunov exponent and other invariants of the CML

exhibiting complex spatiotemporal dynamics i .e., the calculation of Lyapunov expo-

nents and KS entropy in terms of the low dimensional IGMDS coordinates.

(•) Fourier power spectrum obtained from the time series constructed using the

first IGMDS coordinate captures the periodicity in chaos very effectively.

(•) The value of the KS entropy calculated from the low dimensional IGMDS co-

ordinates is found to be in excellent agreement with that calculated from the rigorous

approach. The superiority of the method is that it is much faster and simple to that
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of the conventional formalism.

(•) Deciphering relations by subsystem analysis permits spatiotemporal dynamics

and their properties to be analyzed in a simplified way rather than considering the

high-dimensional full system.

(•) It may also be concluded from KS entropy behavior that fractal CMLs show

different dynamical properties at different coupling strengths. These results suggest

that the nature of the lattice plays an important role in dynamical behavior and the

present methodology can be extended to study the effects of the nature of fractality

of the surfaces in space-time systems.

The analysis of coupled networks here in this Chapter has shown that their studies

may be made tractable by model reduction techniques. It would also be desirable to

study real world systems to see if the nature of networked systems can be simplified

and criteria can be evolved for such identification. Towards this aim we study ex-

amples of complex, chemically reacting combustion systems [Jai04a] in Chapter 5 to

see if properties can be ascertained that facilitate lower dimensional analysis to be

feasible.



Chapter 5

Small World Behavior of Complex
Reaction Networks

Coupled map lattices, as described in the previous Chapter, have been used to model a

wide variety of self-organizing systems. In all these systems, the connection topology

have been assumed to be either completely regular or completely random. But recent

studies have associated real network topology with small world phenomenon [Wat98].

In the present Chapter, we have studied the small world behavior of combustion reac-

tion networks and identified the scaling relationships existing between the individual

components of the complex network to propose reduced reaction mechanisms.

Complex scale-free networks (SFN) with short paths and high clustering, i.e.,

small world networks, that are frequently observed in nature have been a subject of

active research [Wat98, Alb02]. Properties of small world networks deviate signifi-

cantly from random graphs with identical number of nodes. SFNs have been observed

to have small characteristic path lengths with the incoming/outgoing branches, (i.e.,

the number of edges that direct to/away from the vertices) in these networks fol-

lowing power law distributions. Many chemical reaction mechanisms of industrial

importance involve complex reaction pathways and may be treated as a graphical

network of chemical species linked by reaction steps (Goddard, 2002; Ross & Vlad,

1999). Considering reacting species and reactions as two distinct types of nodes, the
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reaction network can be modeled as directed bipartite graphs. Moreover, reaction

steps have chemical reactants/products as incoming/outgoing and this renders the

network to behave as a directed bipartite graph. Results of our studies with complex

networks having many elementary reaction steps, viz., CH4 oxidation, NOx and SOx

combustion interestingly show SFN characteristics. The concentrations of the chemi-

cal species with time are obtained by integrating the generalized rate equations. Each

edge of the bipartite graph is assigned a distance proportional to the reaction rate.

The average number of edges separating two nodes in SFN, i.e., characteristic path

lengths is calculated at each integration step. Robustness of the reaction network

is confirmed based on calculation of SFN properties, such as the characteristic path

length. The average number of edges connected to any given node, i.e., degree of

vertex connectivity, together with the values of clustering coefficients, indicate the

extent of self-organization and suggest SFN features being present when compared to

those computed from a corresponding random network.

5.1 Combustion Reactions of CH4, SOx and NOx:

A General Discussion

Vigorous and highly exothermic oxidation-reduction reactions that take place between

certain substances (particulary organic compounds) and oxygen are called combus-

tion reactions. These industrially important chemical reactions consists of many com-

plex, elementary steps, many reactive intermediate species and reaction mechanisms

that are sensitive to a wide range of conditions [Qui02]. Acquisition of fundamental

knowledge and proper diagnostic tools are indispensable to interpret the elementary

mechanisms (chemical kinetics, fluid-dynamics, thermodynamics, etc.) involved in

combustion processes. Equipped with advanced technological and computational as-

pects, the industrial plants are optimized both in design phase and also in applying
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suitable kinetic models to describe fluid dynamics, mass and heat transfer, etc., as-

sociated with the reactors [Ran01]. Combustion reactions accounts for almost 90

percent of total power generation and will continue to remain as the primary source

of energy in the years to come. Most of the hydrocarbon fuels are involved in com-

bustion devices such as internal combustion engines, industrial boilers, furnaces and

gas turbines. For example, methane combustion is used in electric power generation,

transportation sector, etc., to cut down higher levels of pollution from gasoline and

diesel powered vehicles.

Along with the innumerable applications, the combustion processes generates var-

ious environmentally hazardous chemicals. These reactions lead to the emission of

many environmental pollutants such as particulate matter (PM), poly aromatic hy-

drocarbons (PAH), volatile organic compounds (VOCs), etc. [Ran01]. Because of

these environmental implications, implementation of such processes on industrial scale

requires constant monitoring and control methods.

Major products of methane combustion are CO2, CO and H2O along with many

other unwanted organic compounds as byproducts. CO2 contributes to global warm-

ing while inhalation of CO leads to the formation of carboxy-haemoglobin in the blood

and thus interferes with the normal transport of blood to lungs, brain resulting in

severe health problems. The combustion of fuels containing sulfur, primary oils and

coals, results in the formation of sulfurdioxide (SO2), sulfurtrioxide (SO3) together

referred to as SOx. SOx react with water vapor in the atmosphere to form sulfuric

acid mist. Airborne sulfuric acid has been found in smog, acid rain, snow, lakes,

rivers and soil. The acid is extremely corrosive and harmful to the environment.

Desulfurization of the fuels and flue gas desulfurization (FGD) involves utilization

of scrubbers to remove the sulfur oxides from the flue gases. The principal nitrogen

pollutants generated during combustion reactions, especially of gases and light oils,

are nitric oxide (NO) and nitrogen dioxide (NO2), collectively referred to as NOx.
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NOx emissions have been linked to acid rain, photochemical smog and tropospheric

ozone depletion. Selective catalytic reduction (SCR) is one of the most used methods

to control NOx emission.

Thus studies of mechanisms of pollutant formation and characterization of reacting

systems in complex fluid dynamic conditions are of ultimate importance to obtaining

a higher eco-compatibility of such systems. Since these oxidation processes constitute

many reaction steps, proposing suitable mechanism with a substantial reduction in

the number of steps is a major challenge.

5.1.1 Methods for Reduction of Complex Reaction

Mechanisms

Many methods have been proposed for the reduction of these complex reaction mech-

anisms and are classified as follows [Gla77]:

(•) Partial equilibrium: The method is based on identifying the fastest reactions

with the highest reaction rates and are considered in partial equilibrium since the

rate determining steps are of slowest reactions [Egg95];

(•) Sensitivity analysis: This procedure depends on changing the initial conditions

of reactants either by increasing/decreasing species concentrations or the system con-

ditions (e.g., temperature, pressure). This results in a subsequent change in the

number of moles of a particular species that manifests as a change in chemical term

and is subjected to analysis. The reactions showing greater fluctuations are regarded

as the most sensitive reactions;

(•) Reaction flow analysis: Here, the contribution of different reactions to the

formation/consumption of a particular chemical species involved is considered. The

reaction is included as a part of reduced mechanism, if the percentage of contribution

is greater than or equal to a threshold value [Gla77, Egg95].

(•) Mathematical reduction technique: The reduction technique developed by
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Table 5.1: Peters’ Mechanism
CH4 + H = CH3 + H2

CH4 + OH = CH3 + H2O
CH3 + O = CH2O + H
CH2O + H = HCO + H2

CH2O + OH = HCO + H2O
HCO + H = CO + H2

HCO + M = CO + H + M
HCO + O2 = CO + HO2

CO + OH = CO2 + H
H + O2 = OH + O
O + H2 = OH + H
OH + H2 = H2O + H
OH + OH = H2O + O
H + O2 + M = HO2 + M
H + OH + M = H2O + M
H + HO2 = OH + OH
H + HO2 = H2 + O2

OH + HO2 = H2O + O2

Maas, [Maa92] traces the directions of source term vector and determines those di-

rections that leads to a rapid steady-state. Contrary to the conventional reduction

methods, the directions of the source term vector are not associated with individual

species or elementary reactions and do not remain fixed throughout the combustion

process. By perturbing the compositions of the species in all different directions, the

dynamical behavior of the source term can be studied. The Jacobian of the chemical

system is thus calculated and the eigenvalues are associated with the time scales of

the chemical reaction process. By implementing the procedure, the fast and slow

reaction groups can be estimated locally and because of this, for each step of the

process, the reduced reaction mechanism is understood [Egg95].

(•) Peter’s reduced mechanism: This mechanism studied for CH4 combustion

involves 18 complex reactions and 14 species. To simplify the original mechanism,

steady-state and partial equilibrium hypotheses are assumed. Table 5.1 shows the
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Table 5.2: Peters’ Reduced Mechanism
CH4 + 2H + H2O = CO + 4H2

CO + H2O = CO2 + H2

H + H + M = H2 + M
O2 + 3H2 = 2H + 2H2O

reactions in Peter’s mechanism [Pet93]. Also, freely propagated methane gas flames

are analyzed by another method, i.e., by reaction flow analysis [War96]. A reduced

mechanism with four reactions and eight species is obtained (Table 5.2).

(•) Smooke’s mechanism: This complex reaction mechanism includes 40 elemen-

tary reactions incorporating the activated free radical reactions [Smo91]. The rate

coefficient, k is calculated as:

k = AT βexp−E0/RT (5.1)

where, T is the temperature; R, the universal gas constant; E0, the activation energy;

and A and β are empirical constants [Qui02].

(•) Somer’s reduced mechanism: This mechanism has been used to analyze

the stability and structure of natural gas flames with variation in gas composition.

This method has a lot of practical applications (for e.g., burners for domestic and

commercial applications). The methodology uses the concept of chemical equilibrium

and chemical kinetics with stoichiometric chemical equations to obtain a reduced

reaction mechanism.

In the following Sections, we discuss the necessity of controlling (by a reduction of

the reaction steps in the complex mechanisms involved) the multistep reactions (CH4,

SOx, NOx combustion), the stoichiometric network analysis leading to formulations

of generalized rate equations and their correspondence to directed bipartite graphs.

We introduce a new methodology to compute the characteristic small world features

of these reaction networks using the shortest path distance algorithm and show that

the network is stable by carrying out sensitivity studies at randomly selected nodes.
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On the other hand, results show that the network becomes unstable when sensitivity

studies are carried out for components identified to have a high vertex degree distribu-

tion. Based on the species in the network having highest vertex degree connectivity,

reduced reaction mechanisms may be formulated that capture the essential features

of the reaction mechanism in a simplified way.

5.2 Stoichiometric Network Analysis (SNA)

A chemical reaction network consists of several elementary reaction steps. Each reac-

tion step is described by a stoichiometric equation that represents the reactants and

the products of a single collision event. Stoichiometric network analysis (SNA) was

developed by Clarke (1983) as an approach for studying nonlinear reaction mecha-

nisms giving rise to chemical oscillations [Ros99]. Another objective of SNA is the

prediction of potential stability of a reaction network. The method allows a particular

reaction mechanism to be analyzed in terms of its potential instability, for example,

the possibility of self-sustained oscillations, in a certain parameter space of the rate

coefficients even when their values are not accurately known. A method proposed

by Clarke and Jiang directs to obtaining approximate equations for Hopf and saddle-

node bifurcations based on SNA. Their studies showed the effects of adding or deleting

certain elementary reactions from the mechanism on the bifurcation structures.

5.2.1 Procedure for SNA

Let us consider a reaction mechanism involving n species having concentration, Xi,

and m reactions. The net production of species Xi in ith reaction is dependent on

the stoichiometric coefficients νij, where i = 1, · · · , n and j = 1, · · · ,m. The stoichio-

metric coefficient matrix of order n×m, i.e., ν, is formed by a set of stoichiometric

coefficients νij. The reaction order of each species is defined as κij. The rate Rj of
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the jth reaction is

Rj = kj

n∏
i=1

(Xij)
κij (5.2)

with kj being the rate coefficient of that reaction. For a homogeneous reaction, the

deterministic evolution of the reaction mechanism is given by the set of differential

equations
dXi

dt
=

m∑
j=1

νijRj (5.3)

For the reaction mechanisms considered in the present study, viz., CH4 oxidation,

NOx and SOx combustion, the experimentally estimated rate coefficients and order

of the reaction are obtained from the LEEDS database [Lee03]. Eq. 5.3 is integrated

by Gears routine [IMSL] and the concentration profile for all the species are obtained

for 5000 integration time steps.

5.2.1.1 Reaction Mechanisms Studied

(•) Methane Oxidation

Number of species = 35;

Number of reaction steps = 171.

(•) SOx combustion

Number of species = 41;

Number of reaction steps = 226.

(•) NOx combustion

Number of species = 43;

Number of reaction steps = 320.
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5.2.2 Graph Theory and SNA

Graph theory provides an elegant visual representation of various problems in dis-

crete mathematics by establishing a topological relationship between elements of an

abstract set. A finite graph consists of a discrete set of N elements called vertices or

nodes together with a discrete set of M edges connecting them. A pair of vertices can
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-d

-d

-2cc

-b
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3
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Figure 5.1: Schematic of the reaction network for the reaction mechanism given in Eq. 5.4.

321

HF GEDCBA

Figure 5.2: The bipartite graph obtained from the reaction network for the reaction mechanism
given in Eq. 5.4.
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be connected by more than one edge. The graphical representation of reaction net-

works consisting of various kinetic and stoichiometric pathways are available [God02].

Here we identify the chemical species and reactions as vertices with the edges indi-

cating the stoichiometric coefficients (− indicates that the species is a reactant in

the step). Thus, for a given reaction mechanism involving n species taking part in

m reactions we have total number of vertices N = n + m, represented by a directed

bipartite graph with two distinct type of nodes. The above notions are illustrated by

considering the reaction mechanism,

1. aA + bB = cC + dD

2. bB + dD + 2eE = f F

3. dD + 2cC = 2gG + hH

(5.4)

The above reaction mechanism can be graphically represented as in Fig. 5.1. The

corresponding bipartite representation of the same graph is given in Fig. 5.2. The

stoichiometric matrix of the reaction mechanism in Eq. 5.4 assumes the form

ν =




−a −b c d 0 0 0 0

0 −b 0 −d −2e f 0 0

0 0 −2c −d 0 0 2g h


 (5.5)

where the number of columns correspond to the number of chemical species and the

number of rows to the number of reactions. Each edge is assigned a distance pro-

portional to the reaction rate, R, indicative of whether a particular chemical species

takes part in the reaction or zero otherwise. It is evident from the bipartite graph, as

illustrated in Fig. 5.1, edges only connect a species to a reaction node and vice versa

and the N ×N distance matrix, D, has the following structure

D =


 [0] [dij]

[dij] [0]


 i = 1, . . . , n, j = 1, . . . ,m (5.6)
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where dij ∝ Rij. The vertices of the reaction network graph lie in an abstract space

and by introducing a notion of distance to the edges it is made amenable to further

analysis by studying its topological features.

5.3 Small World Features of Reaction Networks

Complex networks describe a wide variety of systems ranging from computer net-

works and internet links to social relationships [Alb02]. Graph theoretical studies

classically described these complex networks as random graphs. However, the be-

havior of complex systems prompted studies with these network systems regarding

the presence of, if any, self-organizing principles. In fact, interesting results obtained,

showed clearly the presence of small world concepts in complex networks despite their

large network size. In other words, in large networks there can exist relatively shorter

paths connecting any two nodes and the effect of this shorter average path length is

that it indicates the proximity of different entities in a network that are otherwise

not apparent.

The shortest path matrix, DG, is calculated for all the N nodes in the reaction

network graph, G, by the present study using Dijkstra’s algorithm described as in Sec-

tion 2.5.2. For all the reaction mechanisms considered in the present study Table 5.3

shows the average path length, l, as computed by the number of edges connecting

any two nodes in the network along its shortest path and averaged over all nodes.

Not all nodes in a given network have same number of edges and is characterized

by a distribution function p(K) such that for the ith node Pi(K) = pi(K)/N is the

fraction of nodes having K connections. In a random graph most of the nodes have

approximately the same degree K resulting in a Poisson distribution with a K cen-

tered peak. In small world networks with an underlying self-organizing principle the

distribution deviates from the Poisson distribution and the average degree < K >
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Table 5.3: The network structure and general characteristics of reaction network for oxidation of
CH4, NOx and SOx.

Oxidation of; CH4 SOx NOx

Species (n) 35 41 43
Reactions (m) 171 226 320

Nodes (N) 206 267 363
Edges (M) 638 828 1185

l 3.92 3.93 3.63
< K > 6.1942 6.2022 6.5234
µ1 18.228 20.195 97.5
µ2 568.28 796.29 1463.0
λ1 7.3 7.2 7.0
λ2 129.8 157.5 21.0
λ3 4915.0 7346.9 1324.0
C 0.068 0.0537 0.041

deviates significantly from that in random networks. The average degree for the three

reaction mechanisms is given in Table 5.3 and may be compared with corresponding

values for random network given in Table 5.4.

A common property of all networks is formation of clusters and can be quantified

by computation of the clustering coefficients [Wat98]. In case reaction networks in-

volve two distinct type of nodes a generalized non-vanishing clustering coefficient, C,

inherent to the bipartite structure has the form (Newman, et al. 2001):

C =
1

1 +
(µ2 − µ1)(λ2 − λ1)2

µ1λ1(2λ1 − 3λ2 + λ3)

(5.7)

where µi = ΣjK
iPX(j)(K) and λi = ΣjK

iPR(j)(K). In the reaction network PX(j)(K)

represents the fraction of species, X(j), taking part in m reactions while PR(j)(K)

means the fraction of reactions, R(j), in which n species are involved.

The reaction rates as defined in Eq. 5.2 are dependent on species concentration and

the reaction network changes along with the importance (distance) of different step

dynamically. All the above mentioned quantities, characteristic path length, l, average
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degree,< K >, and clustering coefficient, C, can after computing for each time step be

averaged over the total integration time. The averaged results obtained are reported

in Table 5.3. Clustering coefficients have also been calculated for random networks

having identical number of species, reactions, nodes and edges for the three reaction

mechanisms under consideration. The results are reported in Table 5.4. Relatively

smaller values of C for random networks as compared to the actual reaction network

confirm that reaction mechanisms are actual small world networks.

5.4 Robustness of Reaction Networks and Model

Reduction

Many complex systems exhibit a surprising extent of tolerance for errors (Albert &

Barabási, 2002). The stability of these networks is often attributed to the adaptability

of the network to a sudden change in the topology. Here we will therefore study and

exemplify the network stability in this dynamical sense. Species concentration at

nodes when perturbed, the transient behavior may be obtained by integrating

dXi

dt
=

m∑
j=1

νijRj + ηδik (5.8)

where η is the Gaussian noise and δik a delta function for the species subject to per-

turbation. By the analysis carried out in the previous Section, the important species,

i.e., those that take part in maximum number of reactions, have been identified.

Results showed that the network features are sensitive with respect to those species

having a high degree of connectivity as seen from the fluctuations in the values of l.

On the other hand, the network was seen to be stable with respect to many other

randomly selected species with lower connectivity with the observed network features

not altered [see, Fig. 5.3(a)]. Similar stability features were observed with respect to

randomly selected species in the case of NOx and SOx reaction mechanisms. Similar
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Table 5.4: Clustering coefficient values of random reaction network for oxidation of CH4, NOx and
SOx with identical network features given in Table 5.3.

Oxidation of; CH4 SOx NOx

< K > 8.9718 9.0383 9.3968
µ1 25.7 29.0 33.8
µ2 111.25 1460.0 2202.7
λ1 6.2 7.0 7.0
λ2 150.6 229.0 201.0
λ3 6268.5 16590.0 17317.0
C 0.0398 0.0361 0.0273

to CH4 oxidation, the networks were found to be extremely sensitive for the respec-

tive species with maximum connections, viz., H or SOx and NO for NOx reaction

0 10 20 30 40 50

3.92

0 10 20 30 40 50

3.93

0 10 20 30 40 50

 l 

 l

 l 

 t 

(a) 

(c) 

(b) 

3.62 

Figure 5.3: The average degree l as a function of time for unperturbed (dashed line) and perturbed
(thick line) for (a) CH4 (b) SOx (c) NOx oxidation reaction mechanisms.

mechanisms [see, Fig. 5.3(b),(c)].

Stability analysis of complex networks can also be studied by focussing on the

topological aspects of robustness by removing nodes or edges. In the present study

as we have identified H, H and NO as the vital node (species) taking part in 105,

122, 181 reactions in CH4, SOx and NOx reaction mechanism, respectively. A sub-
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Table 5.5: The reduced network structure and general characteristics of reaction network for
oxidation of CH4, SOx and NOx.

Oxidation of; CH4 SOx NOx

Species (n) 35 41 43
Reactions (m′) 105 122 181

Nodes (N ′) 140 163 224
Edges (M ′) 394 448 677

l 2.96 3.93 3.63
< K > 5.6286 5.4969 6.0357
µ1 11.257 10.926 15.720
µ2 308.28 341.65 656.37
λ1 7.4 7.1 7.0
λ2 116.8 127.7 16.9
λ3 4956.6 5421.0 1058.0
C ′ 0.0971 0.0754 0.064
fC 0.100 0.087 0.066

network can be defined using only these reactions. By now considering the modified

number of total number of nodes, N ′, with the number of reduced reactions, m′, but

including all the species, n, i.e., N ′ = n+m′ the characteristic features of the reduced

network may be calculated. For the reduced network topology the values of µ1, µ2,

λ1, λ2, λ3 are quite different from those of the entire network (see, Tables 5.3 and

5.5). However, the clustering coefficient of the reduced network scales as C ′ ∼ fC,

where f = N/N ′ for C the clustering coefficient of the entire network as given in last

row of Table 5.3. The validity of the reduction procedure is thus ascertained by the

scaling in the computed clustering coefficients.

5.5 Conclusions

(•) A new methodology has been developed for network analysis of complex chemical

reaction mechanisms. The reactions studied are the multistep combustion reactions

like oxidation of CH4, SOx, NOx that are industrially important.



Small World Behavior of Complex Reaction Networks 131

(•) Stoichiometric network of these reaction mechanisms can be studied as graph

theoretical models based on directed bipartite graph, that is established based on the

Dijkstra’s algorithm.

(•) Our analysis show these systems as exhibiting features of SFNs satisfying

the requirement of higher clustering coefficient when compared to an equivalently

constructed random graphs.

(•) Reaction networks are robust to perturbation of concentration of randomly

chosen species nodes and a reduced reaction mechanism depending on species having

highest degree of connectivity can thus be deduced.

(•) Reduced reaction mechanism preserves network properties and scales cluster-

ing coefficient by reduction factor f .
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