BY
 DUSHANT ANANDRAO KHOBRAGADE

DIVISION OF ORGANIC CHEMISTRY: TECHNOLOGY NATIONAL CHEMICAL LABORATORY

PUNE 411008, INDIA

DECEMBER 2006

A THESIS
SUBMITTED TO THE UNIVERSITY OF PUNE

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

CHEMISTRY

BY

DUSHANT ANANDRAO KHOBRAGADE

Division of Organic Chemistry: Technology
National Chemical Laboratory
Pune 411008
INDIA
DECEMBER 2006

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "Synthesis of Biologically Active Compounds" submitted by Mr. Dushant A. Khobragade was carried out by him under my supervision at National Chemical Laboratory, Pune. Material that has been obtained from other sources is duly acknowledged in this thesis.

Date:
Subhash P. Chavan
Research Supervisor

DECLARATION

I hereby declare that the thesis entitled "Synthesis of Biologically Active Compounds" submitted for Ph. D. degree to the University of Pune has been carried out at National Chemical Laboratory, under the supervision of Dr. Subhash P. Chavan. This work is original and has not been submitted in part or full by me for any degree or diploma to this or any other university.

Date:

Dushant A. Khobragade
Division of Organic Chemistry: Technology
National Chemical Laboratory
Pune 411008.
**
*
*

Acknowledgements

It gives me great pleasure to express my deep gratitude to my research guide, Dr. S. P. Chavan, for introducing me to the fascinating field of Organic Chemistry, for his inspiring guidance and never diminishing encouragement throughout my research programme.

I am thankful to Dr. S. K. Kamat and Dr. U. R. Kalkote for their affection, suggestions and helping me to speed up work throughout my research programme.

I am also thankful to Dr. T. Ravindranathan (former head, OCT), Dr. M. K. Gurjar (Head, OCT) and Dr. S. Sivaram (Director, NCL) for permitting me to work in NCL. Help rendered from all the senior scientists Mrs. Latha Sivadasan, Mrs. K. Balakrishnan, Dr. V. H. Deshpande, Dr. Kelkar, Dr. Bhide, Dr. Deshmukh, Dr. Pansare, Dr. Karthikeyan, Dr. Renu Vyas, Dr. Lahoti, Dr. Pradipkumar, Dr. K. V. Srinivasan, Dr. Mrs. Wakharkar, Dr. Mrs. Bhanu Chanda, Dr. H. B. Borate, Dr. R. A. Joshi, Mrs. R. R. Joshi, Mr. I. Shivakumar, Dr. Sawaikar, Dr. Gajbhiye, Dr. C. V. Ramana, Dr. Hotha Srinivas, Dr. Ramalingam, Dr. Muthukrishnan, Dr. Mrs. Chandawadkar of NCL is gratefully acknowledged.

I am indebted to Mr. M. D. Uplenchwar, Prof. Mr. and Mrs. McKelvey, Mrs. Nilima Jail, Mr. Ramakant Tamboli, Mr. Bhandarkar, Mr. Tarale, FFE foundation for their invaluable assistance.

I would also like to thank Prof. M. S. Wadia, Prof. R. S. Mali, Prof. Mrs. Kusurkar, Prof. D. D. Dhawale, Dr. M. G. Kulkarni, Dr. S. L. Kelkar, Dr. Dhananjay Lokhande for their useful guidence.

My sincere thanks to Prof. Shinji Yamada for providing spectral data of some compounds and Alkali Metals Limited, Hydreabad for their help in the form of chemicals.

Special thanks to Tanveer Wajid, Shashikant, Sanjay, Sachin, Bhalchandra, Mahesh Shinde, Ganesh, Nitin Patil, Kiran Kale, and Parminder Singh.

I take this opportunity to thank my seniors and labmates Amar, Anil Sharma, R. Sivappa, K. Sivasankar, Rajendra, K. Pasupathy, Ramesh, Preeti, Sambhaji, G. Ramakrishna, Ch. Praveen, Pallavi, Mahesh, Ashok, Sanjay Chandke, Abasaheb, Ganesh, Lalit, Kishore, Swapna, Sudhir, Vikas, Manoj, Kiran, Shankar, Makrand for their help.

I would like to thank Ruta, Swapnaja, Kiran, Archana, Sachin, Sachin Shirke, Atul, Tejas, Abhijit, Mushtaq, Tushar, Maruthi, Ramana, Rupali, Pallavi Dhole, Sharan and Vikas Bansode.

I would also like to thank Dhananjay Thorat, Mandar, Manjeet, Mandar Bodas, Shrinivas Dumbre, Sudhir Joshi, Sachin Patil, Kishor, Anis, DPS Reddy, Krishnakanth, Ravi, Nagaprasad, Ekambaram, Sahoo, Kiran, Siddarth, K. Mahesh, C. Ramesh, Sandeep Shinde, Pravin Shinde, Gajanan, Abhimanyu, Pandurang, Sankar, Sarita, Santosh Bhor, Prashant Waske, Sudhir Landge, Vivek Bulbule, Preeti Koranne, Mahesh Patil, Vivek Bhagwat, Smritilekha, Dhananjoy Mondal, Chinmoy, Rita, Rehman, Bhargav, Anuj, Raghupati, Ramdas, Gorakh, Abhijeet Purude, Anil Chopade, Ganesh Salunkhe, Sulakhe, Sonali, Varsha, Manjusha, Poorva, Sharad, Dhanajay Magar, Ashfaq, Shafi, Tanveer, Ismail, Tatya Potewar, Palimkar, Atul Gholap, Vaibhav Gholap, Vinod, Sandip Gholap, Vishal, P. D. Shinde, Amit, Sachin Nehete, Umesh Nehete, Santosh Kadam, Suleman, Amit Patwa, Umashankar, Aniruddha Doke, Jayprakash Nadgeri, Mahesh Sonar, Ulhas, Vasu, Subbarao, Nagendra Sharma, Nagendra Kondekar, Dr. Someshwar Sahare, Mr. Sanjay Dhabarde, Pratap, Adinath, Mayur, Kailash, Pushpesh, Mahesh Bhure, Dnyaneshwar, Manish, Pramod, Rahul, Sandip, Mahesh, Shivaji, Satish Chavre, Dilip, Ravi Deshmukh, Anil Bhise, Prashant Karandikar, Pankaj, Milind, Manmath, Anil Kumar Pande and many others who made my tenure at NCL cheerful.

I wish to thank office staff (Mr. Balan, Mrs. Kulkarni, Mrs. Catherine, Mr. Fernandes, Mr. Tikhe, Mr. Ranwade, Mr. Varadrajan, Mr. Kakade, Mr. Bhise, Mr. Sambhu, Mr, Bhosale, Mr. Dhumal, Mr. Khopade) for the help whenever required. I would also like to acknowledge all the staff members of NMR, Microanalysis, Special Instruments Lab and Library for their assistance during the course of my work.

Words fall short to thank my parents, family members and teachers, who have contributed a lot for me to reach this stage and will always remain a sole source of inspiration in my life. The thesis is a form of pay to respect their attributes.

Finally I thank CSIR, New Delhi for financial support.
General Remarks i
Abbreviations ii
Abstract v
Chapter I Total Synthesis of Antidepressants
Section 1: Total Synthesis of (\pm)-Venlafaxine
1.1.1 Introduction 1
1.1.2. Antidepressants 3
1.1.3. Venlafaxine 11
1.1.4 Literature Review 14
1.1.5. Present Work 21
1.1.6. Experimental 34
1.1.7. Spectra 42
1.1.8. References 43
Section 2: Formal Total Synthesis of (\pm)-Paroxetine
1.2.1 Introduction 46
1.2.2. Polymorphism 46
1.2.3. Clinical Profile 46
1.2.4 Literature Review 47
1.2.5. Present work 68
1.2.6. Experimental 74
1.2.7. Spectra 82
1.2.8. References 83

Chapter II: Synthetic Studies Towards Other Biologically Active Molecules

Section 1: \quad Total Synthesis of (\pm)-Mesembrine
2.1.1. Introduction 86
2.1.2. Biosynthesis 87
2.1.3. Literature Review 93
2.1.4. Present Work 126
2.1.5. Experimental 135
2.1.6. Spectra 145
2.1.7. References 146
Section 2: Synthetic Studies Towards Zafirlukast
2.2.1 Introduction 149
2.2.2. Zafirlukast 153
2.2.3 Literature Review 155
2.2.4 Present Work 157
2.2.5. Experimental 163
2.2.6. Spectra 171
2.2.7. References 172
List of Publications 174

General Remarks

1. All the melting points are uncorrected and the temperatures are in the centigrade scale.
2. The compound numbers, scheme numbers and reference numbers given in each section refer to that section only.
3. All the solvents were distilled before use. Petroleum ether refers to the fraction boiling in the range of $60-80^{\circ} \mathrm{C}$.
4. Organic layers were dried over anhydrous sodium sulfate.
5. TLC analysis was carried out using thin layer plates pre-coated with silica gel 60 F254 (Merck) and visualised by fluorescence quenching or Iodine or by charring after treatment with p-anisaldehyde.
6. In cases where chromatographic purification was done, silica gel (60-120 mesh) was used as the stationary phase or otherwise as stated.
7. IR spectra were recorded on Perkin-Elmer Infrared Spectrophotometer Model 68B or on Perkin-Elmer 1615 FT Infrared Spectrophotometer.
8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on Bruker AV-200 (50 MHz) or Bruker AV-400 (100 MHz) or Bruker DRX-500 (125 MHz). Figures in the parentheses refer to ${ }^{13} \mathrm{C}$ frequencies. Tetramethyl silane was used as the internal standard.
9. Mass spectra were recorded at an ionization energy of 70 eV on Finnigan MAT1020, automated GC/MS instrument and on API Q STARPULSAR using electron spray ionization [(ESI), solvent medium: a mixture of water, acetonitrile and ammonium acetate] technique and mass values are expressed as m / z. HRMS were recoreded on a micromass Q-T of micro with spray source (ESI ${ }^{+}$) mode.
10. Starting materials were obtained from commercial sources or prepared using known procedures.
11. Microanalysis data were obtained using a Carlo-Erba CHNS-O EA 1108 elemental analyzer within the limits of accuracy ($\pm 0.4 \%$).

Abbreviations

Ac	Acetyl
ADD	(Azodicarbonyl)dipiperidine
AIBN	2,2-Azobis(isobutyronitrile)
${ }^{t} \mathrm{Am}$	tertiary amyl
Ar	Aryl
Aq.	Aqueous
BINAP	2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
BMS	Borane-dimthyl sulfide
Bn	Benzyl
BnBr	Benzyl bromide
Boc	tertiary butoxy carbonyl
Bu	Butyl
sBu	secondary butyl
$t \mathrm{Bu}$	tertiary-butyl
CAL	Candida antarctica lipase
CAN	Cerric ammonium nitrate
Cat.	Catalytic
Cbz	Carbobenzyloxy
$m C P B A$	meta-chloroperbenzoic acid
CSA	Camphor sulfonic acid
DBDMH	1,3-Dibromo-5,5-dimethylhydantoin
DBN	1,5-diazabicyclo[4.3.0]non-5-ene
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DCB	1,2-Dichlorobenzene
DCC	N, N--Dicyclohexylcarbodiimide
DCE	1,2-Dichloroethane
DCM	Dichloromethane
DEPT	Distortionless Enhancement by Polarization Transfer
DIAD	Diisopropylazodicarboxylate
DIBAL	Diisobutyl aluminium hydride
DIPT	Diisopropyltartrate

DMAP	4-Dimethylamino pyridine
DME	1,2-dimethoxyethane
DMF	N, N-Dimethylformamide
DMS	Dimethy sulfide
DMSO	Dimethyl sulfoxide
dppf	(Bis-diphenylphosphino)ferrocenyl
Et	Ethyl
g	gram(s)
GABA	Gamma-aminobutyric acid
h	hour(s)
IPA	Isopropyl alcohol
IR	Infra red
HMPA	hexamethylphosphoramide
Hz	Hertz
KHMDS	Potassium hexamethyl disilazide
LDA	Lithium diisopropyl amide
LHMDS	Lithium hexamethyl disilazide
LICA	Lithium isopropyl cyclohexylamide
MAD	Methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide)
Me	Methyl
min	minute(s)
ml	mililitres
Mp	Melting point
Ms	methanesulfonyl
MVK	Methyl vinyl ketone
NBS	N-bromosuccinimide
NCS	N-chlorosuccinimide
NMO	N-methyl morpholine oxide
NMR	Nuclear magnetic resonance
ORTEP	Oak Ridge Thermal Ellipsoid Plot
PCC	Pyridinium chlorocromate
PDC	Pyridinium dichromate
PEG	Polyethylene glycol

PHMS	Poly(hydromethylysiloxane)
PLE	Pig liver esterase
PMP	para-methoxyphenyl
PPA	Polyphosphoric acid
PTAB	Phenyl trimethylammonium tribromide
PTC	Phase transfer catalysis
PPTS	Pyridinium para-toluene sulfonate
PTSA	para-toluene sulfonic acid
r t	Tetrabutyl ammonium bromide
TBAB	Tetrabutyl ammonium hydrogen sulfate
TBAHSO	Tetrabutyl ammonium iodide
TBAI	tert-butyldimethylsilyl triflate
TBSOTf	tert-butyldimethylsilyl chloride
TBSCl	Trifluoroacetic acid
TFA	Tetrahydofuran
THF	Thin layer chromatography
TLC	$N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine
TMEDA	Trimethylsilyl chloride
TMSCl	Toluenesulfonyl
Ts	Benzyltrimethylammonium hydroxide
Triton-B	

The thesis entitled "Synthesis of Biologically Active Compounds" is divided into two parts-

Chapter-I: deals with total synthesis of antidepressants and is further divided into two sections.

Chapter-II: is further divided into two sections and deals with synthesis of (\pm)mesembrine and zafirlukast.

Chapter-I: Total synthesis of antidepressants

Chapter I is divided into two sections and describes total synthesis of (\pm)-venlafaxine and formal synthesis of (\pm)-paroxetine.

Section 1: Total Synthesis of (\pm)-Venlafaxine

This section presents a brief literature review and an account of synthetic endeavor towards (\pm)-venlafaxine.

Venlafaxine $\mathbf{1}$ is a new generation antidepression drug developed by Wyeth-Ayerst Company at the end of 1993. Its commercial name is Effexor and is also called as Wy45030.

Literature survey on the synthesis of this important antidepressant revealed that an economically and technically viable process for manufacture of venlafaxine was not available. Earlier patented methods for condensation of p-methoxyphenylacetonitrile 2 with cyclohexanone 3 to obtain cyanoalcohol 4 employed hazardous bases, organic solvents under anhydrous and cryogenic conditions to furnish the desired product with
meagre 30% yields. Obviously, this is not a suitable process on industrial scale. Moreover, use of organic solvents makes it undesirable from environment point of view.

In order to search for an efficient process for condensation a variety of bases were screened. Surprisingly, the simplest and inexpensive bases like NaOH and KOH were found to be far superior to all the other bases examined. The best conditions were found to be 10% aqueous $\mathrm{NaOH} / \mathrm{KOH}$ under phase transfer conditions.

Scheme 1. Reagents and conditions: a) 10% aq. NaOH , cat. $\mathrm{TBAHSO}_{4}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, (quantitatve yields); b) $\mathrm{LiAlH}_{4}, \mathrm{AlCl}_{3}, \mathrm{THF}, 0^{\circ} \mathrm{C}$, (99\%); c) 35% formalin, $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{H}_{2} \mathrm{O}, \Delta,(85 \%)$.

Cyanoalcohol 4 was then reduced with $\mathrm{LiAlH}_{4} / \mathrm{AlCl}_{3}$ to give amine 5 in near quantitative yields! Amine 5 was used as such for further reaction. Tilford's modified procedure for N, N-dimethylation furnished target molecule $\mathbf{1}$ in 85% yield (scheme 3).

One-pot Synthesis of (\pm)-Venlafaxine

Scheme 2. Reagents and conditions: a) $\mathrm{H}_{2}(280 \mathrm{psi})$, Raney Ni, 35% formalin, $\mathrm{MeOH}, 100{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 30 \%$.

When cyanoalcohol 4 was subjected to catalytic hydrogenation using Raney nickel, (\pm)-venlafaxine 1 was obtained in 30% yield and 60% starting material was recovered (scheme 2).

Hydrochloride salt 6 of venlafaxine free base $\mathbf{1}$ was prepared using isopropyl alcohol saturated with HCl gas and recrystallized from ethyl acetate (scheme 3).

Scheme 3. Reagents and conditions: a) $\mathrm{HCl} / \mathrm{iPrOH}$, EtOAc.
In conclusion, a novel protocol was developed for condensation of arylacetonitriles with cyclic ketones in aqueous medium and was utilized for the synthesis of a commercially important antidepressant drug viz. venlafaxine. The process is simple to operate, obviating use of expensive catalysts and hazardous reagents, replacing organic solvents with water as the reaction medium and eliminates the cumbersome purification techniques such as column chromatography, making it eco-friendly.

Section-2: Formal Total Synthesis of (\pm)-Paroxetine

This section details a literature review and a formal total synthesis of (\pm)-paroxetine.

Paroxetine 7, also called as Paxil, is an orally administered psychotropic drug. It is a selective serotonin reuptake inhibitor (SSRI) antidepressant, released in 1992 by the pharmaceutical company Glaxo Smith Kline and has since become one of the most prescribed antidepressants in the market due to its efficacy in treating depression as well as a spectrum of anxiety disorders ranging from panic attacks to phobias.

There are several methods by which this vital drug is synthesized, but surprisingly there was not a single route where Heck-coupling was employed during the course of this work. Recently a synthesis appeared describing use of tetrafluoroborate salt as the electrophile. Although the present strategy is similar to that reported in literature, this synthesis utilises commercially available p-fluorobromobenzene for the Heck reaction.

Accordingly, methyl acrylate $\mathbf{8}$ was refluxed with $\mathrm{BnNH}_{2} \mathbf{9}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to give correspondong double Michael adduct, which upon Dieckmann condensation using NaH in refluxing benzene furnished β-ketoester, which exists as a mixture of $\mathbf{1 0}$ and $\mathbf{1 1}$. Borohydride reduction of the ketoester followed by mesylation of the resultant alcohol and subsequent elimination provided α, β-unsaturated ester 12. Benzyl protection was then exchanged with methyl carbamate to furnish compound 13 and was subjected to Heck coupling under solvent-free conditions. Delightingly, carbamate 13 furnished the corresponding free amine 14, albiet in moderate yields (scheme 4). Conversion of 14 to paroxetine 7 is reported in the literature. Also, carbamate of 15 was prepared from 14 whose conversion to paroxetine 7 is known.

Scheme 4. Reagents and conditions: a) $\mathrm{Et}_{3} \mathrm{~N}$, reflux, overnight 90%; b) $\mathrm{NaH}, \mathrm{PhH}$, reflux; 82%; c) NaBH_{4}, $\mathrm{MeOH}, 2 \mathrm{~h} ; \mathrm{d}$) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$ to rt , overnight, 75% (for two steps); e) $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{NaHCO}_{3}, \mathrm{DCM}$, 80%; f) $p \mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{~F},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NBr}, 120{ }^{\circ} \mathrm{C}, 2 \mathrm{~d}, 30 \%$; (g) $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DCM}, \mathrm{r} \mathrm{t}$, overnight, 85%.

Thus, a formal total synthesis of (\pm)-paroxetine was accomplished using Heck coupling as the key step.

Chapter-II: Synthetic Studies Towards Other Biologically Active Molecules

Chapter II is divided into two sections and deals with total synthesis of (\pm)-mesembrine and zafirlukast.

Section-1: Total Synthesis of (\pm)-Mesembrine

This section presents a brief literature review and a total synthesis of (\pm)-mesembrine.

The Sceletium alkaloid (-)-mesembrine 16 is a naturally occurring serotonin uptake inhibitor. The central challenge in the synthesis of mesembrine and its analogues is the construction of the chiral benzylic quaternary center.

It was decided to explore our recently developed protocol for performing anionic reactions of aryl acetonitriles under aqueous conditions to effect Michael addition for construction of the quaternary center. Quaternary benzylic center embedded in mesembrine and related natural products, provides a test target for the application of such newly developed methodologies.

Michael addition of 3,4-dimethoxyphenylacetonitrile $\mathbf{1 7}$ to methyl acrylate $\mathbf{1 8}$ using 10% aq. NaOH under PTC conditions afforded double Michael adduct 19 in 75% yield. Alternatively, compound 19 was obtained using catalytic Triton-B in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ in quantitative yields! Dieckmann condensation of 19 using NaH in DME furnished β ketoester, which was demethoxycarbonylated using Krapcho's method to obtain ketone 20. Ketone 20 was protected as dioxolane with 2,2-dimethyl-1,3-propanediol in refluxing benzene using PPTS as a catalyst.

Nitrile was then reduced with DIBAL in DCM at $0{ }^{\circ} \mathrm{C}$ to obtain aldehyde, which was converted to olefin 21 with methylenetriphenylphosphorane employing Wittig reaction. Olefin 21 was then subjected to hydroboration with BMS complex, followed by alkaline work-up to give alcohol, which was mesylated and the resultant mesylate was further treated with 30% aq. MeNH_{2} solution in a sealed tube at $100{ }^{\circ} \mathrm{C}$ to yield amine, which was protected as benzyl carbamate. Dioxolane was then hydrolysed by refluxing in an acetone-water mixture (1:1) with a drop of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to obtain ketone 22. Silyl enol ether of the resultant ketone 22 was prepared, which was subsequently brominated with NBS to give α-bromoketone, which upon dehydrobromination with LiBr and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ in hot DMF provided enone 23. The carbamate was unmasked with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in the presence of excess of $\mathrm{Me}_{2} \mathrm{~S}$ to give the target molecule 16 (scheme 5).

Scheme 5. Reagents and conditions: (a) 10% aq. $\mathrm{NaOH}, \mathrm{TBAHSO}_{4}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 76 \%$; (b) $\mathrm{NaH}, \mathrm{DME}$, reflux, $3 \mathrm{~h}, 89 \%$; (c) $\mathrm{NaCl}, \mathrm{H}_{2} \mathrm{O}$, DMSO, $140{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 87 \%$; (d) $\mathrm{HOCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{OH}$, PPTS, PhH, reflux, 3 h, 95%; (e) DIBAL, DCM, $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 100 \%$; (f) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{I}^{-}, \mathrm{NaNH}_{2}$, Et $2 \mathrm{O}: T H F(1: 1), 0{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}, 82 \%$; (g) BMS, THF, $0{ }^{\circ} \mathrm{C}$, then 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}, 30 \%$ aq. $\mathrm{NaOH}, 75 \%$; (h) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeSO}_{2} \mathrm{Cl}, \mathrm{DCM}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 100%; (i) 40% aq. MeNH_{2}, THF- $\mathrm{H}_{2} \mathrm{O}$, in sealed tube, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (j) $\mathrm{ClCOOCH}_{2} \mathrm{Ph}, \mathrm{K}_{2} \mathrm{CO}_{3}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 4 \mathrm{~h}$, 88%; (k)) $\mathrm{CH}_{3} \mathrm{COCH}_{3}-\mathrm{H}_{2} \mathrm{O}, 1-2$ drops $\mathrm{H}_{2} \mathrm{SO}_{4}$, reflux, $24 \mathrm{~h}, 85 \%$; (l) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{TMSCl}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 2 h , 100%; (m) NBS, THF, $0^{\circ} \mathrm{C}, 10 \mathrm{~min}, 100 \%$; (n) $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{LiBr}, \mathrm{DMF}, 110^{\circ} \mathrm{C}, 2 \mathrm{~h}, 75 \%$; (o) $\mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{Me}_{2} \mathrm{~S}$, DCM, $0^{\circ} \mathrm{C}-\mathrm{rt}, 1 \mathrm{~h}, 95 \%$.

Thus, a simple and efficient total synthesis of (\pm)-mesembrine has been achieved in 20% overall yield. Preparation of Michael adduct 19 served as the key step. This approach
involving prochiral cyclohexanone 20 or 22 may serve as an entry to the synthesis of chiral mesembrine.

Section-II: Synthetic Studies Towards Zafirlukast

A brief literature review and an account on efforts towards synthesis of zafirlukast is presented.

Zafirlukast 24

Zafirlukast 24, is a synthetic selective peptide leukotriene receptor antagonist (LTRA), with chemical name 4-(5-cyclopentyloxycarbonylamino-1-methyl-indol-3-ylmethyl- N -o-tolylsulfonylbenzamide. Zafirlukast is one of a new class of drugs, which acts by blocking the effects of leukotrienes-natural substances, which trigger inflammation, mucous secretion and which cause bronchoconstriction typical of an asthmatic attack. One important factor in the success of the product may be its tablet form, since there are sometimes disadvantages and difficulties associated with the usage of inhalers.

Scheme 6. Reagents and conditions: a) fuming HNO_{3}, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 0{ }^{\circ} \mathrm{C}, 80 \%$; b) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, reflux, $8 \mathrm{~h}, 85 \%$; c) $\mathrm{H}_{2}(50 \mathrm{psi})$, Raney Ni , $\mathrm{MeOH}, \mathrm{rt}, 6 \mathrm{~h}, 96 \%$; d) NaNO_{2}, Urea, $0{ }^{\circ} \mathrm{C}, 44 \%$; e) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{Me}_{2} \mathrm{SO}_{4}$, acetone, reflux, $2 \mathrm{~h}, 72 \%$; f) NBS, $(\mathrm{PhCOO})_{2}, \mathrm{CCl}_{4}$, reflux, $10 \mathrm{~h}, 96 \%$.

Bromide 29 was prepared as follows. p-Toluic acid 25 was nitrated with fuming HNO_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, followed by esterification of the resultant nitro acid with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH to give compound 27. Reduction of the nitro group with Raney nickel
under hydrogen atmosphere, followed by diazotization gave phenol 28 and subsequent methylation of the resultant phenol with MeI, followed by benzylic bromination with NBS, catalysed by benzoyl peroxide gave bromide 29 (scheme 6).

Before directly going for actual synthesis, it was decided to test the efficiency of key step i.e. Wittig reaction as the precious bromide $\mathbf{2 9}$ was prepared through a sequence of steps. Accordingly, 1-methylisatin 30 was treated with the ylide generated from the $\mathrm{Ph}_{3} \mathrm{P}$ and BnBr to give olefin 31 as a mixture of isomers, which upon catalytic hydrogenation using Raney Ni furnished oxindole 32. Oxindole 32 was then subjected to reduction with BMS complex to afford indole 33 (scheme 7).

Scheme 7. Reagents and conditions: a) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{PhBr}^{-}, \mathrm{NaH}, \mathrm{THF}, \mathrm{r}$, $24 \mathrm{~h}, 84 \%$; b) H_{2}, Raney $\mathrm{Ni}, \mathrm{MeOH}$, 6 h, 98%; c) BMS, THF, r t, 2 h, 70%.

Scheme 8. Reagents conditions: a) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{ArBr}^{-}$, $\mathrm{NaH}, \mathrm{THF}, 24 \mathrm{~h}, 70 \%$ b) H_{2}, Raney $\mathrm{Ni}, \mathrm{MeOH}, 6 \mathrm{~h}, 94 \%$ c) Phthalic anhydride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhH}$, reflux, 77%.

With good yield of Wittig reaction on model isatin, it was time to test its efficiency with elaborated bromide 29 and 1-methyl-5-nitroisatin 34 . Thus, to a suspension of 34 in THF was added the ylide generated from Wittig salt of $\mathrm{Ph}_{3} \mathrm{P}$ with bromide 29, to furnish
the expected olefin 35 in 50% yield. Low yields may be attributed to very low solubility of 1-methyl-5-nitroisatin 34 in THF. With proper choice of solvent system yield may be improved. Olefin 35 was then subjected to catalytic hydrogenation using Raney Ni to give oxindole 36 with concomitant reduction of the nitro group. Amine 36 was protected as phthalimide with phthalic anhydride and $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing benzene to furnish 37 (scheme 8).

Thus, an advanced intermediate 37, adorned with all requisite fuctionalities for further elaboration, has been synthesized employing Wittig reaction. Due to time constraints, the synthetic plan was not investigated further. However, with judicious choice of reagents and tuning of reaction conditions phthalimide 37 could be taken to target molecule.

Chapter-I: Total Synthesis of Antidepresssants
Section-1: Total Synthesis of (\pm)-Venlafaxine

1.1.1. Introduction

1.1.1.1. Depression

Depression is one of the most common psychological problems, affecting people of all ages, gender, and background. ${ }^{1}$ It is a type of mood disorder, a persistent condition affecting a person's lifestyle, activities and relationships. The cost in human suffering cannot be estimated. Major depression is characterized by various physical and psychological symptoms including profound sadness, loss of interest or pleasure in activities normally enjoyed and other symptoms that impair a person's ability to function. Depression can interfere with normal functioning, and frequently causes problems with work, social and family adjustment. It causes pain and suffering not only to those who have a disorder, but also to those who care about them. Serious depression can destroy family life as well as the life of the depressed person.

1.1.1.2. Types of Depression

1. Major depressive disorder (MDD): It is characterized by a severely depressed mood that persists for longer periods (at least two weeks). It may occur as a single episode or may be recurrent throughout lifespan. Clinically the major depression may be further divided into mild, major and severe. MDD is further subdivided as follows-

Depression with Catatonic Features: Catatonia is characterized by motoric immobility evidenced by catalepsy or stupor. This MDD subtype may also manifest excessive, nonprompted motor activity (akathisia), extreme negativism or mutism, and peculiarities in movement, including stereotypical movements, prominent mannerisms, and prominent grimacing. It is very rarely encountered.

Depression with Melancholic Features: Melancholia is characterized by a loss of pleasure (anhedonia) in most or all activities, a failure of reactivity to pleasurable stimuli, a quality of depressed mood more pronounced than that of grief or loss, a worsening of symptoms in the morning hours, early morning waking, psychomotor retardation, anorexia or excessive guilt.

Total Synthesis of (\pm)-Venlafaxine

Depression with Atypical Features: It is characterized by mood reactivity and positivity, significant weight gain or increased appetite, excessive sleep or somnolence, leaden paralysis, or significant social impairment as a consequence of hypersensitivity to perceived interpersonal rejection.

Depression with Psychotic Features: These people may be presented with hallucinations or delusions that are either mood-congruent (content coincident with depressive themes) or non-mood-congruent (content not coincident with depressive themes). It is clinically more common to encounter a delusional system as an adjunct to depression than to encounter hallucinations, whether visual or auditory.
2. Dysthymia: Is a long-term, mild depression that lasts for a minimum of two years. Those with Dysthymia are vulnerable to co-occurring episodes of Major Depression. This disorder often begins in adolescence and crosses the lifespan. People who are diagnosed with major depressive episodes and dysthymic disorder are diagnosed with double depression. Dysthymic disorder develops first and then one or more major depressive episodes happen later.
3. Bipolar I Disorder: Is an episodic illness in which moods may cycle between mania and depression. It is also called as "Manic Depression".
4. Bipolar II Disorder: Is an episodic illness that is defined primarily by depression but evidences episodes of hypomania.
5. Postpartum Depression: Or Post-Natal Depression is clinical depression that occurs within two years of childbirth. Due to physical, mental and emotional exhaustion combined with sleep-deprivation; motherhood can "set women up" so to speak for clinical depression.

1.1.2. Antidepressants

1.1.2.1. Clssification of Antidepressants

According to their chemical structures and mode of action antidepressant drugs are classified ${ }^{3,4,5}$ as follows-

1. Monoamine Oxidase Inhibitors: MAOIs act by inhibiting the activity of monoamine oxidase preventing the breakdown of monoamine neurotransmitters thereby increasing the available stores. There are two isoforms of monoamine oxidase, MAO-A and MAO-B. MAO-A preferentially deaminates serotonin, melatonin, adrenaline and noradrenaline. MAO-B preferentially deaminates phenylethylamine and trace amines. Dopamine is equally deaminated by both types. Examples of MAOIs are selegiline 1, phenelzine 2, toloxatone 3 , iproniazid 4 etc.

Toloxatone 3

Iproniazid 4
2. Reversible Inhibitors of Monoamine Oxidase A: The early MAOIs inhibited monoamine oxidase irreversibly. When they react with monoamine oxidase, they permanently deactivate it, and the enzyme cannot function until it has been replaced by the body, which can take about two weeks. A few newer MAOIs are reversible, meaning that they can inhibit the enzyme for a time, but eventually detach, allowing the enzyme to function once more. They are referred to as RIMAs. Examples include moclobemide 5, brofaromine $\mathbf{6}$ etc.

Moclobemide 5

Brofaromine 6
3. Dopamine Reuptake Inhibotor: Inhibit the reuptake of extracellular dopamine back into the presynaptic cell by blocking the cell membrane-standing dopamine transporter. This usually results in an elevated extracellular dopamine level. DARIs bind at the transporter molecule and form a non-covalent complex with it. As far as the DARImolecule is large enough (which is normally the case), it suppresses the binding of other substances that are transporter substrates - as endogenous compounds (like dopamine) and drugs (e.g. amphetamine). A very special kind of pseudo-DARIs have been developed that bind covalently at the transporter, permanently block the binding of larger drugs like cocaine, but allow small molecules like dopamine to pass through. Drugs falling under this category are phenmetrazine 7 , methylphenidate $\mathbf{8}$, amineptine 9 , vanoxerine 10 etc.

Phenmetrazine 7

Methylphenidate 8

Amineptine 9

4. Norepinephrine-Dopamine Reuptake Inhibitors: As the name suggests, this class of antidepressants inhibits reuptake of both the norepinephrine and dopamine e. g. bupropion 11.

Bupropion 11
5. Norepinephrine Reuptake Inhibitors (NARIs): These elevate the extracellular level of the neurotransmitter norepinephrine in the central nervous system by inhibiting its reuptake from the synaptic cleft into the presynaptic neuronal terminal via the norepinephrine transporter. Virtually, they do not act at other monoamine transporters. Examples of NARIs include reboxetine 12, atomoxetine 13 etc.

Reboxetine 12

Atomoxetine 13
6. Serotonin-Norepinephrine Reuptake Inhibitors: Are a class of antidepressants used in the treatment of clinical depression and other affective disorders. They act upon two neurotransmitters in the brain that are known to play an important part in mood, namely, serotonin and norepinephrine. Candidates of this category are venlafaxine 14, duloxetine 15, milnacipran 16 etc.

Venlafaxine 14

Duloxetine 15

Milnacipran 16
7. Selective Serotonin Reuptake Inhibitors: This class of antidepressants is used for treating depression, anxiety disorders and some personality disorders. These drugs prevent reuptake of a neurotransmitter called serotonin or 5-hydroxytryptamine, thereby increasing

Total Synthesis of (\pm)-Venlafaxine

the extracellular level of serotonin into the presynaptic cell. A low level of serotonin is responsible for depression. They are selective in that they do not have inhibitory action upon other monoamine transporters. As compared to other classes this is more prefered as they have lesser side effects and drug interactions. Examples are paroxetine 17, fluoxetine 18, citalopram 19, sertraline 20 etc.

Paroxetine 17

Citalopram 19

Fluoxetine 18

Sertraline 20
8. Selective Serotonin Reuptake Enhancers: Is a group of antidepressants, which enhances the reuptake of serotonin instead of blocking it. Examples of selective serotonin reuptake enhancer (SSRE) include tianeptine 21 etc.

9. Tricyclic Antidepressants: Tricylic antidepressants (TCAs) work by inhibiting the reuptake of the neurotransmitters norepinephrine, dopamine, or serotonin by nerve cells. Tricyclics may also possess an affinity for muscarinic and histamine H 1 receptors to varying degrees. This class of antidepressants is plagued by lack of pharmacological

Total Synthesis of (\pm)-Venlafaxine

specificity, adverse side effects, delayed onset of action and potential for fatal overdose. Examples include iprindole 22, melitracen 23, opipramol 24, doxepin 25 etc.

Doxepin 25
10. Tetracyclic Antidepressants: Like TCAs, this class also causes many side effects. Generally these drugs are used when other types of drugs are ineffective. Candidates of this class are maprotiline 26, mianserin 27 etc.

Maprotiline 26

Mianserin 27
11. Noradrenergic and Specific Serotonergic Antidepressants: These are a relatively new class of antidepressants. As per name, they are thought to act by noradrenergic autoreceptor and heteroreceptor antagonism combined with specific serotonergic antagonism. This results in increases in both noradrenergic and specific serotonergic transmission. NaSSAs have fewer side effects than tricyclic antidepressants and selective serotonin reuptake inhibitors (SSRIs) while being equally effective. Examples of this class include mirtazapine 28 etc.

Mirtazapine 28

Classification of antidepressants according to neurotransmitter activity.

1.1.2.3. General mechanism of action of antidepressants

There are many neurotransmitters ${ }^{6,7}$ in the brain e.g. serotonin or 5 -hydroxy tryptamine (5HT), dopamine, noradrenaline (NA) or norepinephrine (NE), acetylcholine (ACh), glutamate and GABA. These compouds are sometimes referred to as biogenic monoamines. If some of these transmitters get out of balance e.g. you have too much or too little of a particular transmitter, some mental disorder will be observed. This is explained by the so-called "monoamine hypothesis". Serotonin (5-HT) and noradrenaline (NA) in the brain are involved with control of sleep/wake, emotions, mood, arousal, emotion, drive, temperature regulation, feeding etc. If a person has reduced levels of serotonin and noradrenaline in the part of the brain that controls above said factors, the person is said to be suffering from depression. There are many theories about how depression occurs but present day clinical pharmacology treats depression on the basis of monoamine hypothesis.

Figure 1. A synapse

Figure 3. Reduced nerve activity

Figure 2. Normal nerve activity

Figure 4. Reduced nerve activity but with recycling blocked, and increased passage of messages

In normal condition electrical impulse (e. g. tighten the muscle etc.) is sent from the brain cell down one of the nerve fibres/neurons towards the end. When this message or impulse arrives at the end of the nerve fibre, a chemical (known as "transmitter") is released from the nerve end which travels across the gap between the first nerve fibre and the next, receiving one. When the transmitter hits the receptor on the side, the receptor changes shape. This causes changes inside the nerve ending which sets off an electrical message in that nerve fibre on to the next brain/nerve cell. This sequence then carries on until the effect occurs (e. g. the muscle moves etc.). The transmitter is either broken down

Total Synthesis of (\pm)-Venlafaxine

by enzymes (e. g. monoamine oxidase etc.) and removed or taken back up again into the nerve ending (i. e. recycled) - a process known as re-uptake. The nerve fibre and synapse is then ready for next message.

If the levels of serotonin or noradrenaline are reduced, it will lower the activity and produce the symptoms of depression. Then increasing the levels of serotonin or noradrenaline should help to reduce the symptoms. One way of doing this is to block the reuptake (recycling) of transmitters. This is just what these antidepressants do. They block the reuptake of serotonin and noradrenaline, so the next time an impulse comes along, there is more transmitter, a stronger message is passed, and activity in that part of the brain is increased i. e. symptoms of depression vanish.

1.1.3. Venlafaxine

1.1.3.1. Introduction

Introduction of SSRIs proved to be a major advancement in the pharmacotherapy of depression, both from a practical and theoretical basis. Venlafaxine 14 is a new generation antidepressant drug ${ }^{3,6-8}$ developed by Wyeth-Ayerst Company in 1993. It is marketed in the racemic form under different trade names. Recently, generic version of venlafaxine has been approved by USFDA. Venlafaxine is a phenylethylamine compound, which exhibits a unique pharmacological profile with antidepression properties. It inhibits reuptake of biogenic amine like serotonin and norepinephrine, ${ }^{9,10}$ hence called as Serotonin Norepinephrine Reuptake Inhibitor (SNRI). Although venlafaxine is sold as a racemate, (-)-venlafaxine is a more potent inhibitor of norepinephrine synaptosomal uptake while (+)venlafaxine is more selective in serotonin uptake. It is different from other antidepressants in that it has no or little activity on a variety of neuroreceptors ${ }^{3}$ (e. g. α or β-adrenergic receptors, muscarinic receptors, cholinergic receptors, histaminic receptors etc.). Like TCAs it has no activity at the fast sodium channels of cardiac cells, therefore devoid of cardiotoxicity. It does not inhibit MAO activity. It is unique among antidepressants in that it downregulates β-receptors after a single dose and causes rapid onset of clinical antidepressant activity. It inhibits dopamie reuptake at high dosage. The absence of other significant sites of pharmacological action gives it wide therapeutic window. Coadministration of two drugs, which inhibit individually either srotonin or norepinephrine uptake has been shown to shorten the treatment time. Likewise, combination of two drugs inhibiting both serotonin and norepinephrine uptake appears to produce a more rapid onset of clinical antidepressant activity than either mechanism alone.

1.1.3.2. Polymorphism

Polymorphism is the property of a substance to exist in two or more crystalline phases that have different arrangements and/or conformations of molecules in the solid state. ${ }^{11}$ Racemic venlafaxine hydrochloride is highly polymorphic existing in five different polymorphic forms. ${ }^{12,13}$ The five polymorphs of venlafaxine hydrochloride are classified according to their main melting endotherm in differential scanning calorimetry (DSC): form $1\left(210-212{ }^{\circ} \mathrm{C}\right)$, form $2\left(208-210^{\circ} \mathrm{C}\right)$, form $3\left(202-204{ }^{\circ} \mathrm{C}\right.$, phase from melting), form $4\left(219-220^{\circ} \mathrm{C}\right.$, hydrate/alcohol solvate), and form $5\left(216-218{ }^{\circ} \mathrm{C}\right.$, phase from sublimation).

Figure 5. Phase transformations in venlafaxine hydrochloride polymorphs 1-5

Figure 6. ORTEP diagram of venlafaxine free base to show the intramolecular O-H...N $\left(1.77 \AA, 145.8^{\circ}\right)$ hydrogen bond. Thermal ellipsoids are drawn at 50\% probability level.

Like its hydrochloride salt, venlafaxine free base does not exhibit polymorphism. It has monoclinic space group $P 21 / c$. The intramolecular $\mathrm{O}-\mathrm{H} . . . \mathrm{N}$ interaction ties up the molecule in a single conformation.

1.1.3.3. Pharmacology

A. Clinical profile

Rapid onset of action is one of the criteria for a perfect antidepressant. Venlafaxine is shown to be superior to placebo in a variety of trials. ${ }^{14-17}$ In contrast to SSRIs, venlafaxine has an ascending dose-response curve. This is consistent with a second mechanism of action (i.e. inhibition of norepinephrine), which becomes clinically relevant. At $225 \mathrm{mg} /$ day the magnitude of antidepression effect is 50% higher than that seen with SSRIs. A response rate for $375 \mathrm{mg} /$ day is five times that of placebo after one week of treatment. Like a number of antidepressants, venlafaxine is metabolised to a pharmacologically active metabolite o-desmethylvenlafaxine (ODV). ${ }^{18}$ ODV has longer plasma half-life (10 hours) than venlafaxine (4 hours), which probably prolongs its duration of action. Venlafaxine and ODV have no MAO inhibitory activity. It is available in extended-release as well as immediate-release dosings. Extended-release dosing simplifies dosing, single dose a day is sufficient. ${ }^{19}$

B. Safety and Tolerance

Like SSRIs, venlafaxine does not have significant effects on the sodium fast channels, which gives it a wide therapeutic window. Treatment for acute overdoses does not require specific or unusual intervention beyond general nursing care and observation. Overdosing is frequently accompanied by nausea and vomitting, which further limits its toxicity. The most common adverse side effects are nausea, dizziness and somnolence. Like SSRIs, venlafaxine may cause sexual dysfunction after a prolonged treatment. At higher doses common side effects observed are hypertension, sweating and tremor.

C. Cost effectiveness

Venlafaxine, offering potential pharmacological benefits including early onset of action, dose flexibility, broad range of activity, improved tolerance and efficacy proves a cost-effective drug. An earlier response can be particularly beneficial in more severely depressed patients. ${ }^{20}$

A brief literature survey of total syntheses of venlafaxine and its sila-analogs is presented.

Jinpei ${ }^{21}$ (J. China Pharm. Univ. 1999, 30, 249)

Scheme 1. Reagents and conditions: a) $\mathrm{ClCO}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{AlCl}_{3}, \mathrm{PhH}$, reflux, $4 \mathrm{~h}, 70 \%$; b) 33% aq. $\mathrm{Me}_{2} \mathrm{NH}$, EtOH, rt, 15 h ; c) $\mathrm{KBH}_{4}, \mathrm{EtOH}, \mathrm{rt}, 8 \mathrm{~h}, 64 \%$; d) $\mathrm{PBr}_{3}, \mathrm{CHCl}_{3}, 0{ }^{\circ} \mathrm{C}$ then reflux, $15 \mathrm{~h}, 53 \%$; e) Mg , THF, reflux, then $0^{\circ} \mathrm{C}$, cyclohexanone 34 then reflux, 1 h ; f) conc. $\mathrm{HCl}, 47 \%$ (for 2steps).

Friedel-Craft acylation of anisole 29 with chloroacetyl chloride provided chloride $\mathbf{3 0}$, which upon treatment with $\mathrm{Me}_{2} \mathrm{NH}$ afforded amidoketone 31. Reduction of compound 31 with KBH_{4} gave aminoalcohol 32, which was further converted into the corresponding bromide 33 using PBr_{3}. Grignard reaction of bromide 33 with cyclohexanone 34 gave venlafaxine 14. Its hydrochloride salt 35 was prepared using conc. HCl (scheme 1).

Yardley ${ }^{22,23}$ (J. Med. Chem. 1986, 33, 2899-2905; US Patent No. 4, 535, 186, 1985)
p-Methoxyphenylacetonitrile 36 was condensed with cyclohexanone 34 using LDA at $-78{ }^{\circ} \mathrm{C}$ to obtain cyanoalcohol 37 . Compound 37 was then subjected to hydrogenation with $5 \% \mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$ in $\mathrm{NH}_{3} / \mathrm{EtOH}$ system to afford aminoalcohol 38. N, N-Dimethylation of the primary amine 38 was effected with modified Eschweiler-Clarke reaction to afford

Total Synthesis of (\pm)-Venlafaxine

venlafaxine 14. Hydrochloride salt of venlafaxine, 35 was prepared using $20 \% \mathrm{HCl}$ in IPA (scheme 2).

Scheme 2. Reagents and conditions: a) LDA, THF, $-78{ }^{\circ} \mathrm{C}$ then cyclohexanone 34, $2 \mathrm{~h}, 83 \%$; b) $\mathrm{H}_{2}, 5 \%$ $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{NH}_{3}$-EtOH (2:8), 57\%; c) $\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}, \mathrm{H}_{2} \mathrm{O}$ reflux, overnight; d) $\mathrm{HCl}(20 \%$ in $i \mathrm{PrOH}) 80 \%$ (for 2 steps).

Scheme 3. Reagents and conditions: a) (COCl $)_{2}$, DMF, DCM, $\mathrm{rt}, 4 \mathrm{~h}$; b) $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{DCM}, \mathrm{rt}$, overnight, 97% (2 steps); c) LDA, THF, $-78{ }^{\circ} \mathrm{C}$, then cyclohexanone 34, $50 \mathrm{~min}, 44 \%$; d) LiAlH_{4}, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 1$ h, 40%.

In these cases formation of tetrahydroisoquinolines by the reaction of the activated ring position with the electropholic iminium intermediates of Eschweiler-Clarke reaction occurred. Also, traces of oxazines were detected in these reactions. This problem was circumvented in a modified route (scheme 3), where p-bromophenylacetic acid 39 was converted into its chloride 40 using $(\mathrm{COCl})_{2}$ in the presence of DMF. Acid chloride 40 was treated with $\mathrm{Me}_{2} \mathrm{NH}$ to give corresponding acetamide 41. Condensation of acetamide 41 with cyclohexanone 34 at $-78{ }^{\circ} \mathrm{C}$ using LDA furnished amidoalcohol 42, which was reduced using AlH_{3} to yield venlafaxine analog 43. A small library of several derivatives have been prepared by these methods.

Rathod ${ }^{24}$ (EP 1249447, 2001)

Scheme 4. Reagents and conditions: a) cyclohexyl magnesium bromide $44, \mathrm{THF}, 10{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 6 \mathrm{~h}, 80 \%$; b) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 3 \mathrm{~h}, 76 \%$; c) PTAB, THF, reflux, $3 \mathrm{~h}, 82 \%$; d) NaCN , MeOH, rt, $2 \mathrm{~h}, 64 \%$; e) H_{2}, Raney Ni , NH_{3} - $\mathrm{EtOH}, 500 \mathrm{kPa}, \mathrm{r} \mathrm{t}, 7 \mathrm{~h}, 78 \%$; f) $\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}, \mathrm{H}_{2} \mathrm{O}$, reflux, $6 \mathrm{~h}, 75 \%$.

Rathod et. al. patented a procedure for synthesis of venlafaxine 14 involving Grignard reaction of cyclohexyl magnesium bromide 44 with p-anisaldehyde 45 to yield carbinol 46. Oxidation of the carbinol with CrO_{3} furnished corresponding ketone 47, which upon α-bromination with PTAB gave α-bromoketone 48. Spiroepoxide 49 was obtained by treatment of bromoketone 48 with NaCN . Catalytic hydrogenation of spiroepoxide 49 with Raney nickel afforded aminoalcohol 38, which was converted into venlafaxine $\mathbf{1 4}$ by a known method (scheme 4).

Shepherd ${ }^{25}$ (GB 2227 743, 1990)

Scheme 5. Condensation of I with cyclohexanone 34

Shepherd patented a method, where compound $\mathbf{I}\left(\mathrm{R}^{1}=\mathrm{CN}, \mathrm{CONMe}_{2}, \mathrm{CSNMe}_{2}\right.$; $R^{2}=H$, Me or a protecting group and $M=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{MgX}$) was condensed with cyclohexanone 34 using different bases or the corresponding Grignard ($\mathbf{I}, \mathrm{M}=\mathrm{MgX}$) reagent to obtain compound III ($\mathrm{R}^{1}=\mathrm{CN}, \mathrm{CONMe}_{2}, \mathrm{CSNMe}_{2} ; \mathrm{R}^{2}=\mathrm{H}$, Me or a suitable protecting group). Compound III was converted to venlafaxine $\mathbf{1 4}\left(\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{1}=\right.$ $\mathrm{CH}_{2} \mathrm{NMe}_{2}$) by reducing III with a suitable reducing agent (for $\mathrm{R}^{1}=\mathrm{CN}$, hydrogenation followed by N, N-dimethylation; AlH_{3} for CONMe_{2}, Raney nickel for CSNMe_{2} etc.). Compound III has also been converted to O-desmethylvenlafaxine, a potent antidepressant drug, by unmasking the protection/reduction in proper sequence (e.g. hydrogenation using Raney nickel when $\mathrm{R}^{1}=\mathrm{CSNMe}_{2}$ and $\mathrm{R}^{2}=\mathrm{Bn}$ etc.). Obvious disadvantages of the method are use of the strong and hazardous bases like LDA, BuLi, Grignard reagents, necessity of cryogenic conditions, use of anhydrous organic solvents accompanied by low yields in the first step, which are unsuitable from industrial point of view.

Rangappa ${ }^{26 a}$ (Bioorg. Med. Chem. Lett. 2004, 14, 3279-3281)

Scheme 5. Reagents and conditions: a) cyclohexanone 34, $\mathrm{NaOH}, \mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, \mathrm{rt}, 15 \mathrm{~h}, 96 \%$; b) Raney $\mathrm{Ni}, \mathrm{H}_{2}(10 \mathrm{~atm})$, anhydrous $\mathrm{NH}_{3}-\mathrm{MeOH}, 35-40{ }^{\circ} \mathrm{C}$, then formalin, $25-30{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 83 \%$; c) $\mathrm{HCO}_{2} \mathrm{H}$, HCHO , reflux, 25-30 h, then HCl in $i \operatorname{PrOH}(\mathrm{pH}=2), 85 \%$.

Scheme 6. Reagents and conditions: a) ArCHO, $\mathrm{HSCH}_{2} \mathrm{COOH}, \mathrm{DCC}, \mathrm{THF}$ or MW.

Total Synthesis of (\pm)-Venlafaxine

Soon after the grant of US patent ${ }^{34,37}$ filed by us, Rangappa et. al. published their work, which involved condensation of p-methoxyphenylacetonitrile 36 with cyclohexanone 34, using NaOH in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (1:1) medium. Catalytic hydrogenation of cyanoalcohol 37 with Raney nickel followed by reaction with formalin gave oxazine 50, which was further subjected to Eschweiler-Clarke conditions to obtain venlafaxine free base 14. Treatment of $\mathbf{1 4}$ with $i \mathrm{PrOH} / \mathrm{HCl}$ gave its hydrochloride salt 35 .

Use of MeOH in the first step is undesirable from ecology point of view. Besides, it takes longer time for condensation. Recently, they have also prepared several analogues ${ }^{26 b}$ of venlafaxine which, exhibited antimicrobial activity.

Saigal 27 (US $\left.7,026,513,2006\right)$

Scheme 7. Reagents and conditions: a) $\mathrm{H}_{2}(35 \mathrm{psi})$, Raney Ni , aq. $\mathrm{NH}_{3}-\mathrm{MeOH}, \mathrm{r} \mathrm{t}, 90 \%$; b) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{HCHO}$, $\mathrm{H}_{2} \mathrm{O}$, reflux; 16 h ; c) $\mathrm{HCl} / i \mathrm{PrOH}$.

A slightly modified method was patented by Saigal et. al. from Nicolas Piramal India Limited, where catalytic hydrogenation of cyanoalcohol 37, using Raney nickel was carried out in aqueous NH_{3} - EtOH system (scheme 7).

Dolitzky ${ }^{28}$ (US 6,924,393, 2005)

Scheme 8. Reagents and conditions: a) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{HCHO}$, reflux, 21 h ; c) HCl gas, acetone or $i \mathrm{PrOH}$.

Total Synthesis of (\pm)-Venlafaxine

An another modified process for the preparation of venlafaxine hydrochloride 35 was patented by Dolitzky et. al., which employed amine hydrochloride 52 instead of the free amine 38 (scheme 8). Synthesis of different polymorphs of venlafaxine hydrochloride has also been disclosed in the patent.

Sila-venlafaxines

Tacke ${ }^{29,30}$ (J. Organometallic Chemistry 2006, 691, 3589-3595; Organometallics 2006, 25, 1188-1198)

Scheme 9. Reagents and conditions: a) 1-arylvinylmagnesium bromide 54, TMEDA, hexane, $-78{ }^{\circ} \mathrm{C}, 59 \%$; b) $\mathrm{LiAlH}_{4}, 83 \%$; c) $\mathrm{LiNMe}_{2}, \mathrm{Me}_{2} \mathrm{NH}, 40 \%$; d) $\mathrm{H}_{3} \mathrm{O}^{+}, 91 \%$; e) $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{HCl}, 93 \%$.

Silavenlafaxine 59a, desmethoxy sila-venlafaxine 59b and its five membered analog 59c and their hydrochloride salts have been prepared by Tacke et. al. from the 1,1-dimethoxy-1-silacyclohexane 53a (and cyclopentane 53b). Reaction of 53a (or 53b) with (1-arylvinyl) magnesium bromide 54 ($\mathrm{R}=\mathrm{H}$ or OMe) gave 1-methoxy-1-(arylylviny)-1silacyclohexane 55a and 55b (cyclopentane 55c), which upon treatment with LiAlH_{4} afforded 1-(arylviny)-1-silacyclohexane 56a and 56b (cyclopentane 56c). Compound 56 was then reacted with LiNMe_{2} in the presence of $\mathrm{Me}_{2} \mathrm{NH}$ to furnish 1-(dimethylamino)-1-(2-dimethyalmino)-1-aryl-1-silacyclohexane 57a and 57b (cyclopentane 57c). Hydrolysis of compound 57 yielded silavenlafaxine 58a and desmethoxy-sila-venlafaxine 58b and five

Total Synthesis of (\pm)-Venlafaxine

membered analog of silavenlafaxine 58c. Their hydrochloride salts 59a, 59b and 59c were prepared by treatment with ethereal HCl (scheme 9).

Tacke ${ }^{31,32}$ (Organometallics 2004, 23, 4987-4994; Bioorg. Med. Chem. Lett. 2006, 16, 2555-2558)

Scheme 10. Reagents and conditions: a) i. 2,4,6-trimethoxyphenyllithium 61, TMEDA, hexane; ii. MeOH, 66%; b) (1-(4-methoxyphenyl)vinyl)lithium 63, TMEDA, hexane, $-78{ }^{\circ} \mathrm{C}, 47 \%$; c) 2 M HCl in $\mathrm{Et}_{2} \mathrm{O}$; d) $\mathrm{LiNMe}_{2}, \mathrm{Me}_{2} \mathrm{NH}, \mathrm{THF}, 40 \%$; e) KOAc, $\mathrm{AcOH}(\mathrm{pH}=5), 86 \%$.

Treatment of 1,1-dichloro-1-silacyclohexane $\mathbf{6 0}$ with one equivalent 2,4,6trimethoxyphenylbutyllithium 61 followed by methanolysis afforded 1-methoxy-1-(2,4,6-trimethoxyphenyl)-1-silacyclohexane 62. Compound 62 was further reacted with 1-(4methoxyphenyl)vinyllithium 63 to obtain 1-[1-(4-methoxyphenyl)vinyl]-1-(2,4,6-trimethoxyphenyl)-1-silacyclohexane 64, which upon treatment with ethereal HCl yielded 1-chloro-1[1-(4methoxyphenyl)vinyl]-1-silacyclohexane, chlorine was replaced with NMe_{2} using LiNMe_{2} in the presence of $\mathrm{Me}_{2} \mathrm{NH}$, followed by hydrolysis gave racemic silavenlafaxine 58a. Racemic silavenlafaxine was resolved with CSA and then converted into its HCl salt (scheme 10). Apart from norepineprine reuptake inhibition, \boldsymbol{R}-58a showed anti-emetic properties.

1.1.5. Present Work

Synthesis of venlafaxine 14 was undertaken due to its immense commercial significance, unique antidepressant activity, exclusive special structure and a morphological effect.

1.1.5.1. Retrosynthesis

As depicted in scheme 11, retrosynthetic analysis reveals that target molecule 14 could be obtained from the corresponding cyanoalcohol 37 , which in turn could be derived from p-methoxyphenylacetonitrile 36 and cyclohexanone 34 . In synthetic sequence p methoxyphenylacetonitrile $\mathbf{3 6}$ could be condensed with cyclohexanone 34 using a suitable base to obtain cyanoalcohol 37, which could be reduced with a suitable reducing agent followed by N, N-dimethylation by some known literature method. Alternatively, target molecule 14 could also be obtained from from aminoester 65 and 1,5-dibromopentane 66 by Grignard approach. Aminoester 65 could be obtained from ethyl 2-(4-methoxyphenyl) acetate 67.

Scheme 11. Retrosynthetic analysis of venlafaxine 14

1.1.5.2. Results and discussion

Patented literature methods ${ }^{23-25}$ were not suitable from industrial point of view as they involved expensive, hazardous reagents, toxic chemicals, anhydrous organic solvents, cryogenic conditions etc. Some routes were a bit lengthy. Although, a method is known in literature, which involved condensation of p-methoxyphenylacetonitrile 36 with cyclohexanone 34, use of strong bases like BuLi^{22} and LDA, ${ }^{25}$ cryogenic conditions and anhydrous solvents makes it undesirable from industrial point of view. Also, they suffer from low yields under these conditions. So, development of a more efficient, cost-effective, ecologically and technically viable protocol was apt.

Total synthesis of (\pm)-venlafaxine by Grignard approach

As depicted in retrosynthetic analysis, target molecule 14 could be obtained from aminoester 65 and 1,5-dibromopentane 66. Grignard reaction of 1,5-dibromopentane 66 with aminoester 65 would give target molecule 14. Compound 65 was prepared ${ }^{33}$ by heating a mixture of ethyl 2-(4-methoxyphenyl)acetate 67 , $(\mathrm{HCHO})_{\mathrm{n}}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in PhMe at $85{ }^{\circ} \mathrm{C}$ in the presence of TBAI. It was further treated with $\mathrm{Me}_{2} \mathrm{NH}$ in THF at room temperature in the presence of catalytic amount of FeCl_{3} to furnish aminoester 65 in 79% yield in 45 minutes (scheme 12). In the absence of catalyst, it took 48 hours for completion of the reaction.

Scheme 12. Reagents and conditions: a) (HCHO) $)_{\mathrm{n}}, \mathrm{K}_{2} \mathrm{CO}_{3}$, TBAI, PhMe, $80{ }^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$; b) $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{rt}, 45$ $\min , 58 \%$ (two steps); c) $\mathrm{BrMg}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{MgBr}$, THF, $0^{\circ} \mathrm{C}$ then reflux, $3.5 \mathrm{~h}, 50 \%$.

IR spectrum of compound 65 showed an absorption at $1727 \mathrm{~cm}^{-1}$ revealing the presence of ester function. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 65 showed two doublets at δ 7.23 and 6.83 revealing presence of four aromatic protons. A quartet at $\delta 4.14$ corresponded to $\mathrm{OCH}_{2} \mathrm{CH}_{3}$. A sharp singlet appeared at $\delta 3.78$ corresponding to OMe . A

Total Synthesis of (\pm)-Venlafaxine

doublet of doublet at $\delta 3.73$ was assigned to benzylic proton proximal to ester function. Two doublets of doublet that appeared at $\delta 3.01$ and 2.42 revealed two $\mathrm{CH}_{2} \mathrm{NMe}_{2}$ protons. The singlet at $\delta 2.27$ belonged to $\mathrm{N}-\mathrm{Me}_{2}$. The triplet at $\delta 1.22$ corresponded to three $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ protons. ${ }^{13} \mathrm{C}$ NMR spectrum of compund 65 showed a signal at $\delta 172.4$ characteristic of ester function. Six aromatic carbons appeared at $\delta 158.6,129.4,128.5$, 113.7. A signal at $\delta 62.7$ was ascribed to $\mathrm{CH}_{2}-\mathrm{NMe}_{2}$, while $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ carbon appeared at δ 59.8. The carbon of methyl ether appeared at $\delta 54.5$. The benzylic carbon was found to appear at $\delta 49.3$. The signal at $\delta 45.2$ was attributed to $\mathrm{N} \mathrm{Me}_{2}$ and the signal at $\delta 13.8$ was assigned to $\mathrm{OCH}_{2} \mathrm{CH}_{3}$. Further, the molecular weight of compound $\mathbf{6 5}$ was confirmed by MS spectrum, showing a signal at 251 indicating M^{+}.

Next, aminoester 65 was reacted with Grignard reagent prepared from 1,5dibromopentane 66 in THF to afford venlafaxine 14 free base in 50% yield (scheme 11).

IR spectrum of venlafaxine 14 showed an absorption at $3164 \mathrm{~cm}^{-1}$ indicating the presence of OH group. ${ }^{1} \mathrm{H}$ NMR spectrum of venlafaxine $\mathbf{1 4}$ showed two doublets at $\delta 7.03$ and 6.79 revealing four aromatic protons. A singlet at $\delta 3.79$ indicated presence of OMe , a triplet at $\delta 3.28$ revealed benzylic proton and two doublets at $\delta 2.93$ and 2.28 were assigned to $\mathrm{CH}_{2} \mathrm{NMe}_{2}$. The singlet at $\delta 2.33$ corresponded to $\mathrm{NMe} 2_{2}$, and the multiplets at δ 1.23-1.27 and $0.83-1.00$ corresponded to the remaining cyclohexyl protons. ${ }^{13} \mathrm{C}$ NMR spectrum of venlafaxine 14 showed four signals at $\delta 157.7,132.0,129.4,112.7$ revealing aromatic carbons. Quaternary carbon proximal to OH appeared at δ 73.4. Signal at $\delta 60.7$ corresponded to $\mathrm{CH}_{2} \mathrm{NMe}_{2}$. The signal at $\delta 54.3$ was attributed to OCH_{3}. The signal at δ 51.2 revealed benzylic carbon. The signal at $\delta 44.8$ revealed $\mathrm{N}-\mathrm{Me}_{2}$ carbons and the signals at $\delta 37.5,30.7,25.5,21.0,20.7$ correspond to cyclohexyl ring carbons. Molecular formula $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{2}$ of venlafaxine was further confirmed by MS spectrum showing a signal at 277 indicating M^{+}.

$\underline{\text { Green synthesis of (} \pm \text {)-venlafaxine }}$

Though the above synthesis is short and efficient, Grignard reaction employing Mg and organic solvents makes it unsuitable for industrial scale.

Hence an alternative scheme was looked at, which employs commercially available and inexpensive p-methoxyphenylacetonitrile 36 and cyclohexanone 34 . First, it was decided to see whether efficiency of the method reported in the literature could be improved. Accordingly, p-methoxyphenylacetonitrile 36 was condensed with

Total Synthesis of (\pm)-Venlafaxine

cyclohexanone 34 according to the literature procedures using BuLi, LDA etc. but these efforts to improve yields were fruitless.

Condensation of p-methoxyphenylacetonitrile 36 with cyclohexanone 34

Scheme 13. Reagents and conditions: a) BuLi or LDA, or THF or Hexane, $-78^{\circ} \mathrm{C}$; b) ROM/ROH or THF, (Where, $\mathrm{M}=\mathrm{Na}, \mathrm{K} ; \mathrm{R}=\mathrm{Me}, \mathrm{Et}, i \mathrm{Pr}, t \mathrm{Bu}$), low yields, dehydrated byproduct formed.

Since condensation of p-methoxyphenylacetonitrile 36 with cyclohexanone 34 according to the literature methods using BuLi or LDA gave poor yields (scheme 13), in order to look for an efficient way for condensation, a variety of bases like $\mathrm{NaNH}_{2}, \mathrm{NaH}$, metal alkoxides (ROM where, $\mathrm{R}=\mathrm{Me}, \mathrm{Et}, i \mathrm{Pr}, t \mathrm{Bu}$ etc. and $\mathrm{M}=\mathrm{Na}, \mathrm{K}$ etc.), $\mathrm{NaOH}, \mathrm{KOH}$ was studied. With metal alkoxides, reaction was incomplete at low temperatures. At room temperature, the cyanoalcohol formed undergoes dehydration. Also, use of NaNH_{2} and NaH did not improve the situation. Different reaction conditions were studied but without success. Sometimes, these bases formed some undesired side products.

Finally, attention was diverted to much milder and inexpensive bases like NaOH and KOH. Surprisingly, these bases proved to be the most suitable and efficient of all the tried bases. Use of one equivalent powdered NaOH or KOH at $0^{\circ} \mathrm{C}$ gave cyanoalcohol 37 in 83% yield within an hour when a mixture of p-methoxyphenylacetonitrile 36 and powdered NaOH or KOH was stirred for 30 minutes and then cyclohexanone 34 was added dropwise at $0-10^{\circ} \mathrm{C}$. Catalytic amount of powdered NaOH or KOH at $0^{\circ} \mathrm{C}$ in the presence of phase transfer catalyst for a short period of time provided the required condensed product 37 in 85% yield. 50% aqueous NaOH or KOH solution under phase transfer catalysis at $0-10^{\circ} \mathrm{C}$ also gave cyanoalcohol 37 in about 85% yield. Finally, it was observed that 10% aqueous NaOH or KOH under phase transfer catalysis at $0-10{ }^{\circ} \mathrm{C}$ for 1 hour (scheme 14) were the most suitable conditions giving the cyanoalcohol 37 in almost quantitative yields! ${ }^{34}$ Condensation of p-methoxyphenylacetonitrile 36 with cyclohexanone 34 was also effected with PEG (MW-6000) at room temperature in 73\% yields. Longer

Total Synthesis of (\pm)-Venlafaxine

reaction times or catalyst loading did not affect the yields. Results of this study are listed in table 2.

Scheme 14. Reagents and conditions: a) 10% aq. NaOH or KOH , cat. $\mathrm{TBAHSO}_{4}, 0-10{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, quantitative yields.

IR spectrum of compound 37 showed an absorption at $3492,3406 \mathrm{~cm}^{-1}$ for hydroxyl group and at $2241 \mathrm{~cm}^{-1}$ suggesting the presence of $\mathrm{CN} .{ }^{1} \mathrm{H}$ NMR spectrum of compound 37 showed two doublets at $\delta 7.26$ and 6.89 corresponding to four aromatic protons. The signal at $\delta 3.81$ corresponded to OMe . The signal at $\delta 3.71$ corresponded to benzylic proton. The multiplet at $\delta 1.51-1.75$ corresponded to ten protons of the cyclohexane region and a broad singlet at $\delta 1.17$ for 1 H was due to the hydroxy group. ${ }^{13} \mathrm{C}$ spectrum of compound 37 showed four signals at δ 159.6, 130.6, 123.6, 114.0 corresponding to aromatic ring carbons and a signal at $\delta 119.8$ revealed the presence of $C \mathrm{~N}$. The signal at $\delta 72.6$ was assigned to the quaternary carbon proximal to the OH group. The signal at $\delta 55.2$ revealed the presence of OCH_{3}. The signal at $\delta 49.2$ corresponded to the benzylic carbon, and three signals at $\delta 34.8,25.1,21.4$ corresponded to the cyclohexyl ring carbons. Further, its molecular formula was confirmed by MS spectrum showing signal at 225 corresponding to M^{+}.

Table 2. Condensation of p-methoxyphenylacetonitrile 36 with cyclohexanone 34 using various bases

Entry	Base (solvent)	Catalyst	Temp.	Time	Yield
1.	$\mathrm{BuLi} / \mathrm{LDA}(\mathrm{THF})$	---	$-78^{\circ} \mathrm{C}$	30 min	30%
2.	$\mathrm{ROM}(\mathrm{ROH} / \mathrm{THF})$	---	$-78^{\circ} \mathrm{C}$	30 min	Incomplete reaction
3.	$\mathrm{NaNH}_{2}(\mathrm{THF})$	---	$-50^{\circ} \mathrm{C}$	45 min	Poor yields
4.	$\mathrm{NaH}(\mathrm{THF})$	---	$0{ }^{\circ} \mathrm{C}$	60 min	45%

5.	Powdered equimolar $\mathrm{NaOH} / \mathrm{KOH}$	TBAHSO_{4}	$0-10^{\circ} \mathrm{C}$	60 min	83%
6.	Powdered catalytic $\mathrm{NaOH} / \mathrm{KOH}$	TBAHSO_{4}	$0-10^{\circ} \mathrm{C}$	60 min	85%
7.	50% aq. catalytic $\mathrm{NaOH} / \mathrm{KOH}$	TBAHSO_{4}	$0-10^{\circ} \mathrm{C}$	60 min	85%
8.	10% aq. catalytic $\mathrm{NaOH} / \mathrm{KOH}$	TBAHSO_{4}	$0-10^{\circ} \mathrm{C}$	60 min	quantitative
9.	Powdered catalytic $\mathrm{NaOH} / \mathrm{KOH}$	PEG	R T	60 min	73%

Having successfully demonstrated a novel and mild method for condensation, it was decided to explore the strength and weakness of this method. Generality of the protocol ${ }^{35}$ was established by condensing various arylacetonitriles with ketones. Results of this study are listed in table 3 .

Table 3. Condensation of arylacetonitriles with ketones

Entry	Nitrile	Ketone	Product	PTC ${ }^{\text {a }}$	Time	Yield
1.				TBAHSO_{4}	1 h	97
2.				TBAHSO_{4}	1 h	87

3.
4.

13.			N R	TBAHSO_{4}	O ${ }^{\text {g }}$	---
14.			N R	TBAHSO_{4}	ON	---
15.	$\mathrm{NC}_{88}^{\widehat{C N}}$			TBAHSO_{4}	$\begin{gathered} 30 \\ \min \end{gathered}$	77

a. \quad PTC $=$ Phase transfer catalyst
b. Powdered nitrile was used
c. About 10% dehydrated product was obtained
d. \quad TBAI $=$ Tetrabutyl ammonium iodide
e. Powdered ketone was used
f. No reaction was observed even at room temperaure
g. $\mathrm{ON}=$ overnight

From this study it was observed that arylacetonitriles could be readily condensed with cyclic ketones only. Sterically demanding nitriles (e.g. 85) failed to give the condensed product. Cyclohexanols (e.g. 37, 69, 71, 73, 75, 80, 83) formed were stable enough under reaction conditions and should be freed from the base thoroughly after workup, otherwise they have propensity to undergo retro-condensation. Once isolated, they are quite stable and can be stored for infinite time at room temperature. Corresponding cyclopentanols (e.g. 77, 78, 81, 84) were found to be rather unstable and showed a tendency to undergo spontaneous dehydration during reaction itself, if continued for longer times even at $0^{\circ} \mathrm{C}$ and upon storage for longer times even in refrigerator. Malononitrile $\mathbf{8 8}$

Total Synthesis of (\pm)-Venlafaxine

was readily condensed with cyclohexanone 34 to give the dehydrated product 89 as the only product under reaction conditions.

Reduction of cyanoalcohol 37

Reduction of the cyanoalcohol 37 to aminoalcohol 38 was tried using different reducing agents. NaBH_{4} alone or in combination with $\mathrm{AlCl}_{3}{ }^{36}$ or $\mathrm{I}_{2}{ }^{37}$ was not able to bring about reduction and only starting material was recovered.

Scheme 15. Reagents and conditions: a) $\mathrm{H}_{2}(280 \mathrm{psi})$, Raney Ni, MeOH, $100^{\circ} \mathrm{C}, 6 \mathrm{~h}, 30 \%$; b) $\mathrm{H}_{2}(280 \mathrm{psi})$, Raney $\mathrm{Ni}, \mathrm{NH}_{3}-\mathrm{MeOH}$ (20\%), $100^{\circ} \mathrm{C}, 6 \mathrm{~h}, 30 \%$.

Hydrogenation of 37 using $\mathrm{HCO}_{2} \mathrm{NH}_{4}$ in the presence of Pd - C was not satisfactory. Catalytic hydrogenation with $5 \% \mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$ gave a mixture of products. Reduction of 37 with $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ using Raney nickel gave aminoalcohol 38 in 60% yield. Catalytic hydrogenation of 37 using Raney nickel at 280 psi and $100{ }^{\circ} \mathrm{C}$ in $20 \% \mathrm{NH}_{3}$ in MeOH gave only undesired amine $\mathbf{9 0}$ as a major product alongwith starting material 37. When the reduction was carried out under neutral conditions in MeOH , under identical conditions 30$40 \%$ required amine 38 , and $50-60 \%$ starting material 37 was recovered back (scheme 15). Thus, novel conditions were developed, where usage of expensive catalyst was avoided and the reaction could be performed employing inexpensive catalyst.

Alternativley, while cyanoalcohol 37 was reduced with LiAlH_{4} in THF at $10-15^{\circ} \mathrm{C}$ to obtain aminoalcohol 38 in 92% yields, $\mathrm{LiAlH}_{4}-\mathrm{AlCl}_{3}$ reduction gave almost quantitative yields!

IR spectrum of aminoalcohol 38 showed absorptions at $3362,3294 \mathrm{~cm}^{-1}$ characteristic of OH and the NH_{2} functionality. ${ }^{1} \mathrm{H}$ NMR spectrum of aminoalcohol 38 showed two doublets at $\delta 7.15$ and 6.80 , corresponding to four aromatic protons. The signal at $\delta 3.78$ was assigned to OMe .

$\underline{N, N \text {-dimethylation of aminoalcohol 38: completion of total synthesis }}$

Scheme 16. Reagents and conditions: a) $35 \% \mathrm{HCHO}, 88 \% \mathrm{HCO}_{2} \mathrm{H}$, $\mathrm{MW}, 5 \mathrm{~min}$, poor yields; b) 35% $\mathrm{HCHO}, 88 \% \mathrm{HCO}_{2} \mathrm{H}, \mathrm{H}_{2} \mathrm{O}$, reflux, overnight, 85%.

Finally, the N, N-dimethylation was accomplished via a modified EschweilerClarke's procedure using $35 \% \mathrm{HCHO}, 88 \% \mathrm{HCO}_{2} \mathrm{H}$ employing a large excess of water as illustrated by Tilford et. al. in 85% yields. ${ }^{38} N, N$-Dimethylation of aminoalcohol 38 was also carried out with microwave irradiation. When the reaction mixture was heated in a microwave oven at $100{ }^{\circ} \mathrm{C}$ for 2 minutes, a faster moving spot appeared on TLC along with venlafaxine 14. The faster moving spot disappeared when reaction was continued for 2 more minutes, which is probably the the oxazine ${ }^{22,23,26 a}$ intermediate $50(\mathrm{R}=\mathrm{H})$ or $91(\mathrm{R}=$ Me), which was not isolated (scheme 16). The unoptimized yields were poor under microwave conditions and the method needs further investigation.

One-pot synthesis of (\pm)-venlafaxine ${ }^{39}$

Later, it was discovered that when catalytic hydrogenation of compound 37 was carried out using Raney nickel in the presence of formalin ($35 \% \mathrm{aq}$. HCHO), venlafaxine 14 was obtained in 30% yield with 60% of the recovered starting material (scheme 17).

The venlafaxine free base $\mathbf{1 4}$ formed under these conditions can be separated simply by acid-base treatment and the starting material can be recycled. This makes the process attractive from industrial point of view. Sometimes, up to 74% venlafaxine 14 was obtained, but the results were not reproducible. Similarly, it was observed that when the reaction was carried out in $20 \% \mathrm{NH}_{3}-\mathrm{MeOH}$ system, cyanoalcohol 37 underwent retrocondensation and the resultant p-methoxyphenylacetonitrile was reduced to amine $\mathbf{9 0}$,

Total Synthesis of (\pm)-Venlafaxine

which underwent subsequent N, N-dimethylation to give amine 92 with the recovered starting material (scheme 17).

Scheme 17. Reagents and conditions: a) $\mathrm{H}_{2}(280 \mathrm{psi})$, Raney Ni, $35 \% \mathrm{HCHO}, \mathrm{MeOH}, 100{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 30 \%$; b) H_{2} (280 psi), Raney Ni, $35 \% \mathrm{HCHO}, \mathrm{NH}_{3}-\mathrm{MeOH}(20 \%), 10{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 30 \%$.

Preparation of (\pm)-venlafaxine hydrochloride 35

Hydrochloride salt of the free venlafaxine base, 35 was prepared by dropwise addition of $i \mathrm{PrOH}$ saturated with HCl gas to a solution of venlafaxine free base in ethyl acetate (scheme 18). It was further crystallized from ethyl acetate.

Scheme 18. Reagents and conditions: a) $20 \% \mathrm{HCl}$ (gaseous) in $i \mathrm{PrOH}, 92 \%$.

IR spectrum of venlafaxine hydrochloride 35 showed absorptions at $3323,3192 \mathrm{~cm}^{-}$ ${ }^{1}$ indicating the presence of $-\mathrm{OH} .{ }^{1} \mathrm{H}$ NMR spectrum of compound 35 showed a broad signal at $\delta 11.41$ indicating H^{+}. Four protons in the aromatic region appeared at $\delta 7.13$ and 6.83 as two doublets. A doublet that appeared at $\delta 4.07$ was assigned to benzylic proton. A sharp singlet at $\delta 3.78$ indicated the presence of OMe . $\mathrm{NMe} e_{2}$ protons appeared as two doublets at $\delta 2.82$ and 2.63. Multiplets appearing at δ 3.11-3.35, 1.47-1.70, 0.84-1.29 corresponded to remaining 13 protons. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 35 exhibited four signals at $\delta 158.7,131.1,130.1,113.9$ corresponding to six aromatic carbons. The signal at

Total Synthesis of (\pm)-Venlafaxine

$\delta 73.4$ indicated the presence of quaternary carbon proximal to OH . The signal at $\delta 59.9$ revealed $\mathrm{CH}_{2} \mathrm{NMe}_{2}$. The signal at $\delta 55.0$ corresponded to OCH_{3}. The signal at $\delta 52.3$ indicated benzylic carbon, while signals at $\delta 44.9$ and 42.5 were due to the $\mathrm{N}-\mathrm{CH}_{3}$ carbons. Signals at $\delta 36.4,31.2,25.2$, 21.4 and 21.0 corresponded to cyclohexyl ring carbons. MS spectrum of compound 35 showed signal at 277 corresponding to $\mathrm{M}-\mathrm{HCl}$.

1.1.5.3. Conclusion

Key step of the synthesis i.e. condensation of p-methoxyphenylacetonitrile 36 with cyclohexanone 34 was achieved emplyoing mild and inexpensive bases like $\mathrm{NaOH}, \mathrm{KOH}$ under phase transfer conditions in quantitative yields in aqueous medium! The step is highly efficient and simple to operate, does not require further purification of the intermediate cyanoalcohol. Another salient feature of the process is that the product is simply filtered off from the reaction mixture and dried in air. The intermediate formed is of very high purity and was used as such for further reaction. The protocol is generalized for many substituted acetonitriles and ketones. Again, novel conditions were developed where the usage of expensive catalyst like $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$ was avoided and the inexpensive and commercially available catalyst viz. Raney nickel was employed. Further, catalytic hydrogenation of the intermediate cyanoalcohol followed by subsequent N, N-dimethylation could be performed in one pot to obtain venlafaxine free base.

Thus, a highly efficient, practical, industrially, technically, ecologically viable and cost-effective process for multigram synthesis of venlafaxine has been developed obviating the use of hazardous and expensive reagents and chemicals. To the best of our knowlede this is the best synthesis of venlafaxine as of today! The process has been patented in different patent offices including India and US.

1.1.6. Experimental

Ethyl 3-(dimethylamino)-2-(4-methoxyphenyl)propanoate (65)

A mixture of ethyl p-methoxyphenylacetate $67(4 \mathrm{~g}, 20.62 \mathrm{mmol})$, paraformaldehyde $(1.05 \mathrm{~g}, 35.0 \mathrm{mmol})$ and TBAI $(0.381 \mathrm{~g}, 1.03$ $\mathrm{mmol})$ was heated in $\mathrm{PhMe}(16 \mathrm{ml})$ at $80-85^{\circ} \mathrm{C}$ for 3.5 hours. The reaction mixture was allowed to cool. Then, a solution of $\mathrm{Me}_{2} \mathrm{NH}$ in THF was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$ in the presence of catalytic $\mathrm{FeCl}_{3}(0.160 \mathrm{~g}, 0.001 \mathrm{~mol})$ and stirred for 45 minutes. After completion of the reaction, 100 ml water was added to the reaction mixture and aqueous layer was acidified with conc. $\mathrm{HCl}(\mathrm{pH}=2)$. Aqueous layer was washed with $\mathrm{DCM}(3 \mathrm{x} 50$ $\mathrm{ml})$ and made alkaline $(\mathrm{pH}=8)$ using $5 \% \mathrm{NaOH}$ solution, extracted with $\mathrm{DCM}(3 \mathrm{x} 50 \mathrm{ml})$, washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatographic purification over silca gel $(0.5 \% \mathrm{MeOH}$ in CHCl_{3}) furnished aminoester $\mathbf{6 5}$ as a thick colourless oil $(3.08 \mathrm{~g})$.

When the reaction was carried out without catalyst, it took 48 hours for completetion.

Molecular formula	: $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$
Yield	: 58\%
IR (CHCl_{3})	$\begin{aligned} : & 3498,3356,3018,2978,1727,1611,1513,1249,1216 \\ & 1178,758 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (200 MH	: $\delta 7.23(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 4.14$ (m, 2H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=5.37 \mathrm{~Hz}$ and 10.26 Hz , 1 H), 3.01 (dd, $J=9.77 \mathrm{~Hz}, 12.21 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (dd, $J=5.37$ Hz and $12.21 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{t}, J=7.33 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR (50 MHz	$\begin{aligned} : & \delta 172.4,158.6,129.4,128.5,113.7,62.7,59.8,54.5,49.3 \\ & 45.2,13.8 \end{aligned}$
MS (EI) m/z	: $251\left(\mathrm{M}^{+}\right), 206,162,148,133,119,101,91,77,65,58$

Venlafaxine (14)

To a suspension of $\mathrm{Mg}(0.114 \mathrm{~g}, 4.75 \mathrm{mmol})$ in THF (2 ml) a solution of dibromopentane $66(0.536 \mathrm{~g}, 2.33 \mathrm{mmol})$ in THF $(2 \mathrm{ml})$ was added drop-wise at $0-5^{\circ} \mathrm{C}$. After addition, the reaction mixture was allowed to warm to room temperature and stirred for 1.5 hours. Again, the reaction mixture was cooled to $0-5^{\circ} \mathrm{C}$ and a solution of amino ester 39 ($0.45 \mathrm{~g}, 1.79 \mathrm{mmol}$) in THF (5 ml) was added to it drop-wise. After the addition, the reaction mixture was first allowed to come to room temperature within 0.5 hour and then refluxed for 3.5 hours. The reaction mixture was allowed to cool and 50% aq. NaOH solution was added to the reaction mixture $(\mathrm{pH}=12)$, extracted with ethyl acetate ($50 \mathrm{ml} \mathrm{x} \mathrm{2)}$), washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (5% MeOH in CHCl_{3}) to furnish venlafaxine 14 as a colourless solid $(0.25 \mathrm{~g})$.

Molecular formula	: $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{2}$
Yield	: 50\%
Mp	: $74-76{ }^{\circ} \mathrm{C}$
IR (CHCl_{3})	: 3164, 2982, 2938, 2860, 2832, 2782, 1610, 1512, 1465, 1445, 1277, 1246, 1217, 1180, 1039, $755 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR (200 MH	: $\delta 7.03(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ ($\mathrm{s}, 3 \mathrm{H}$), $3.28(\mathrm{t}, J=12.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=2.93 \mathrm{~Hz}$ and $12.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{dd}, J=3.42 \mathrm{~Hz}$ and $12.70 \mathrm{~Hz}, 1 \mathrm{H}), 1.23-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.83-1.00(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (50 MH	$\begin{gathered} \text { : } 157.7(\mathrm{C}), 132.0(\mathrm{C}), 129.4(\mathrm{CH}), 112.7(\mathrm{CH}), 73.4(\mathrm{C}), \\ 60.7\left(\mathrm{CH}_{2}\right), 54.3\left(\mathrm{CH}_{3}\right), 51.2(\mathrm{CH}), 44.8\left(\mathrm{CH}_{3}\right), 37.5 \\ \left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{2}\right) . \end{gathered}$
MS (EI) m/z	: 277 (M M^{+}), 258, 219, 179, 162, 134, 119, 99, 91, 81
Analysis	: Calculated for C-73.61, H-9.81, N-5.05; found; C-73.49, H-9.55, N-4.82

A mixture of p-methoxyphenylacetonitrile 36 ($100 \mathrm{~g}, 0.68 \mathrm{~mol}$), 10% aqueous NaOH solution $(100 \mathrm{ml}, 0.25 \mathrm{~mol})$ and $\mathrm{TBAHSO}_{4}(5 \mathrm{~g}, 0.014$ mol) was stirred at room temperature for 30 minutes. A dark red colour appeared. To this was added cyclohexanone $34(67 \mathrm{~g}, 0.680 \mathrm{~mol})$ in small portions at $0{ }^{\circ} \mathrm{C}$, with vigorous stirring, in such a way that temperature should not rise above $10{ }^{\circ} \mathrm{C}$. A white solid was formed within 30 minutes to one hour. The solid was crushed and the reaction mixture was further stirred vigorously at room temperature for one more hour. The solid was filtered, washed with water till neutral to pH paper and air-dried. Crystallization from ethyl acetatepetroleum ether (500:350, v/v) gave a bright white solid (161.66 g).

Molecular formula	: $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$
Yield	: 97\%
Mp	: $126-7{ }^{\circ} \mathrm{C}$
IR (Nujol)	$\begin{aligned} : & 3492,3406,2924,2855,2241,1614,1456,1377,1254, \\ & 982,833,789 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & : ~ \delta 7.26(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 1.51-1.75(\mathrm{~m}, 10 \mathrm{H}), 1.17 \\ & (\mathrm{bs}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & : \delta 159.6(\mathrm{C}), 130.6(\mathrm{C}), 123.6(\mathrm{CH}), 119.8(\mathrm{CN}), 114.0 \\ & (\mathrm{CH}), 72.6(\mathrm{C}), 55.2\left(\mathrm{CH}_{3}\right), 49.2(\mathrm{CH}), 34.8\left(\mathrm{CH}_{2}\right), 25.1 \\ & \left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{2}\right) . \end{aligned}$

MS (EI) m/z
: $245\left(\mathrm{M}^{+}\right), 147,132,116,99,91,81,65,55$.
Analysis
: Calculated for C-73.44, H-7.81, N-5.71 found C-73.24, H-7.52, N-5.32

1-(2-Amino-1-(4-methoxyphenyl)ethyl) cyclohexanol (38)

To a mechanically stirred solution of $\mathrm{AlCl}_{3}(103.60 \mathrm{~g}, 0.779 \mathrm{~mol})$ in THF (900 ml), at $0{ }^{\circ} \mathrm{C}, \mathrm{LiAlH}_{4}(59.80 \mathrm{~g}, 1.575 \mathrm{~mol})$ was added cautiously, in portions. Temperature was maintained below $10{ }^{\circ} \mathrm{C} . \mathrm{A}$ solution of cyanoalcohol $37(130.0 \mathrm{~g}, 0.530 \mathrm{~mol})$ in THF (500 ml) was added drop-wise over a period of 1.5 hours. The reaction mixture was then brought to room temperature and stirred for 30 minutes. The reaction mixture was again cooled in an ice-salt bath. The reaction was quenched with ethyl acetate $(60 \mathrm{ml})$ maintaining the temperature below $10^{\circ} \mathrm{C}$. The reaction mixture was then transferred to a beaker, cooled externally in an ice-salt bath and treated very cautiously with 25% aq. NaOH solution (360 ml) with mechanical stirring. (After addition of about $50 \mathrm{ml} 25 \% \mathrm{aq}$. NaOH solution, a hard solid was formed, cooling was removed and the contents were stirred manually during the addition of remaining NaOH solution). The solid was loosened at room temperature, which was further stirred for 1 hour. A bright white solid appeared. The solid was filtered off, washed thoroughly with ethyl acetate. The filtrate was concentrated in vacuo and combined with the above washings, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and ethyl acetate removed under reduced pressure to obtain aminoalcohol 38 as a thick yellow oil (129.4 g).

Molecular formula	$: \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}$
Yield	$: 98 \%$
IR (Neat)	$: 3362,3294,2931,2855,1601,1584,1509,1455,1295$,
	$1178,1034,968,832, \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H N M R}\left(\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$	$\delta 7.15(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 2 \mathrm{H})$,
	$3.78(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6.57 \mathrm{~Hz}$,
	$4 \mathrm{H}), 1.42-1.75(\mathrm{~m}, 7 \mathrm{H}), 1.00-1.30(\mathrm{~m}, 3 \mathrm{H})$

\mathbf{N}, N-Dimethylation of aminoalcohol (38)

A mixture of aminoalcohol $37(132 \mathrm{~g}, 0.53 \mathrm{~mol}), 35 \%$ formalin ($120 \mathrm{ml}, 1.26 \mathrm{~mol}$), 88% formic acid ($312 \mathrm{ml}, 7.3 \mathrm{~mol}$) and water $(1350 \mathrm{ml}, 75 \mathrm{~mol})$ was refluxed for 24 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate (3 x 500 ml). The aqueous layer was made alkaline with 40% aq. NaOH solution saturated with NaCl and extracted with ethyl acetate (4 x 500 ml). The combined organic extracts were washed with

Total Synthesis of (\pm)-Venlafaxine

chilled water (2 x 300 ml), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford venlafaxine 14 as a thick colourless liquid, which solidified upon standing ($121.88 \mathrm{~g}, 83 \%$ yield).

1-(2-(Dimethylamino)-1-(4-methoxyphenyl)ethyl) cyclohexanol hydrocloride (35)

Venlafaxine $14(92.4 \mathrm{~g})$ was dissolved in ethyl acetate (450 ml) at $50-55^{\circ} \mathrm{C}$, filtered hot then cooled to $10-15{ }^{\circ} \mathrm{C}$ and pH was adjusted to <2 with addition of isopropyl alcohol saturated with HCl gas and allowed to stand for 15 minutes. The white solid was filtered off, washed with EtOAc (75 ml), and then with petroleum ether (150 ml). The crystalline salt was dissolved in $\mathrm{MeOH}(160 \mathrm{ml})$ at $50-55{ }^{\circ} \mathrm{C}$ and filtered when hot. The hydrochloride salt 35 was precipitated by adding ethyl acetate drop-wise, at room temperature. After 4 hours the solid was filtered and washed with ethyl acetate $(100 \mathrm{ml})$. The solid $(98.3 \mathrm{~g})$ was allowed to dry in air (6-8 hours).

Molecular formula	: $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{ClNO}_{2}$
Yield	: 94\%
Mp	: $219-220{ }^{\circ} \mathrm{C}$
IR (Nujol)	$\begin{aligned} & : 3323,3192,3045,2922,2853,2586,2522,2466,1612, \\ & 1512,1464,1443,1242,1178,1038,970,829,817,770, \\ & 735 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (200 MH	$\begin{aligned} & : \delta 11.41(\mathrm{bs}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.71 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J \\ & =8.71 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=12.89 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), \\ & 3.11-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{~d}, J=4.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.63(\mathrm{~d}, J= \\ & 4.93 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.70(\mathrm{~m}, 7 \mathrm{H}), 0.84-1.29(\mathrm{~m}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (50 MHz	$\begin{aligned} & : \delta 158.7(\mathrm{C}), 131.1(\mathrm{C}), 130.1(\mathrm{CH}), 113.9(\mathrm{CH}), 73.4(\mathrm{C}), \\ & 59.9\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{3}\right), 52.3(\mathrm{CH}), 44.9\left(\mathrm{CH}_{3}\right), 42.5 \\ & \left(\mathrm{CH}_{3}\right), 36.4\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 21.4 \\ & \left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{2}\right) \end{aligned}$

MS (EI) m/z
: 277 (M-HCl), 275, 259, 214, 120

Total Synthesis of (\pm)-Venlafaxine

One-pot preparation of (\pm)-venlafaxine

Cycloalkanol 37 ($5 \mathrm{~g}, 0.02 \mathrm{~mol}$) was subjected to hydrogenation (200 psi) using Raney nickel (0.75 g) in an autoclave reactor in $\mathrm{MeOH}(100 \mathrm{ml})$ in the presence of formalin (35% solution 25 ml) at $60^{\circ} \mathrm{C}$ for 6 hours. The reaction mixture was allowed to cool and filtered. The catalyst was thoroughly washed with MeOH . The combined filtrate was concentrated under reduced pressure to afford an oily residue, which was then dissolved in ethyl acetate and washed with $10 \% \mathrm{aq}$. HCl . The aqueous layer was washed with ethyl acetate, basified using 10% aq. NaOH solution saturated with NaCl , and extracted with ethyl acetate, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to furnish a bright white solid $(1.69 \mathrm{~g}, 30 \%)$. The first ethyl acetate fraction after washing with water, brine, drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentration under reduced pressure returned unreacted $37(3 \mathrm{~g}, 60 \%)$.

2-(1-Hydroxycyclohexyl)-2-phenyl acetonitrile (69)

Molecular formula	$: \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$
$\mathbf{Y i e l d}$	$: 87 \%$
$\mathbf{M p}$	$: 101-2{ }^{\circ} \mathrm{C}$
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right)$	$: 3450,3019,2937,2859,2242,1602$,
	$1494,1455,1216,1151,1080,980,758$,
	$668 \mathrm{~cm}^{-1}$

${ }^{1} \mathbf{H}$ MNR (200 MHz, $\mathbf{C D C l}_{3}$) : $\delta 7.36(\mathrm{~s}, 5 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 1.53-1.76(\mathrm{~m}, 10 \mathrm{H}), 1.17(\mathrm{bs}$, 1H)
${ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathbf{C D C l}_{3}$) : $\delta 131.7,129.4,128.4,128.2,119.6,72.6,49.0,34.8,34.6$, 25.0, 21.3

MS (EI) m/z
: $215\left(\mathrm{M}^{+}\right), 177,149,130,122,99,89,81,79,67,61,55$
Analysis
: Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$; C-78.10, $\mathrm{H}-7.96, \mathrm{~N}-6.51$ found C-78.32, H-8.06, N-6.38

2-(3,4-Dimethoxyphenyl)-2-(1-hydroxycyclohexyl) acetonitrile (71)

Molecular formula	$: \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$
Yield	$: 95 \%$
Mp	$: 134-5^{\circ} \mathrm{C}$

$\mathbf{M p} \quad: 134-5^{\circ} \mathrm{C}$
IR ($\left.\mathbf{C H C l}_{3}\right) \quad: 3415,3019,2936,2857,2249,1600$, $1514,1453,1253,1026,757 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ MNR (200 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 6.81(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H})$, $1.89(\mathrm{~s}, 1 \mathrm{H}), 1.49-1.55(\mathrm{~m}, 9 \mathrm{H}), 1.15(\mathrm{bs}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta 148.9,148.6,123.9,127.8,119.7,112.3,110.7,72.5$, 55.7, 49.4, 34.8, 34.7, 25.0, 21.3

MS (EI) \mathbf{m} / \mathbf{z}	$: 275\left(\mathrm{M}^{+}\right), 257,242,224,189,177,162,131,99,90,81$,
	69,63
Analysis	$:$ Calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3} ; \mathrm{C}-69.79, \mathrm{H}-7.69, \mathrm{~N}-5.09$ found
	$\mathrm{C}-70.15, \mathrm{H}-7.49, \mathrm{~N}-5.15$

2-(1-Hydroxycyclohexyl)-2-(3,4,5-trimethoxyphenyl) acetonitrile (73)

Molecular formula
Yield
Mp
IR $\left(\mathrm{CHCl}_{3}\right)$

$$
\begin{aligned}
: & \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4} \\
: & 90 \% \\
: & 156-8{ }^{\circ} \mathrm{C} \\
: & 3473,2943,2854,2239,1596, \\
& 1511,1466,1424,1331,1247, \\
& 1152,985,863,710,680,668, \mathrm{~cm}^{-1}
\end{aligned}
$$

${ }^{1} \mathbf{H}$ MNR (200 MHz, $\mathbf{C D C l}_{3}$) : $\delta 6.53(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 1.77$ (bs, 2H), 1.55-1.66 (m, 8H), 1.19 (bs, 1H)
${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 153.2,138.2,127.1,119.4,116.8,72.7,60.7,56.2,50.3$, 35.1, 34.9, 25.2, 21.6

Analysis : Calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4} ; \mathrm{C}-66.86, \mathrm{H}-7.59, \mathrm{~N}-4.59$ found C-66.69, H-7.37, N-4.24

Total Synthesis of (\pm)-Venlafaxine
4-(Cyano(4-methoxyphenyl)methyl)-1-(3,4-dimethoxyphenyl)-4hydroxycyclohexanecarbonitrile (80)

Molecular formula
Yield
Mp
IR (Nujol)

$$
\begin{aligned}
& : \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \\
& : 56 \% \\
& : 148-152{ }^{\circ} \mathrm{C} \\
& : 3406,2925,2855,2240, \\
& \quad 1611,1516,1462,1377, \\
& 1250,1026,838,768 \mathrm{~cm}^{-1}
\end{aligned}
$$

${ }^{1} \mathbf{H}$ MNR (200 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.30(\mathrm{~d}, J=8.72 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.97(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 1.93-2.27(\mathrm{~m}, 6 \mathrm{H})$, 1.72 (s, 2H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 160.0,149.1,148.8,132.5,130.5,122.8,121.9,119.0$, $117.5,114.4,111.2,109.0,71.0,56.0,55.9,55.3,49.4$, 43.2, 33.2, 32.4, 32.3, 32.2

Analysis
: Calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} ; \mathrm{C}-70.92, \mathrm{H}-6.45, \mathrm{~N}-6.89$
found C-70.59, N-6.39, H-6.65

1.1.6 References

1. This information was obtained from internet search via Google search engine and from Wikipedia.
2. Gutirerrez, M. A.; Stimmel, G. L.; Aiso, J. Y. Clinical Therapeutics 2003, 25, 2138-2154.
3. Preskorn, S. Eur. Psychiatry 1997, 12, 285s-294s.
4. Kent, J. M. The Lancet 2000, 355, 911-918.
5. Anderson, I. M. Current Anaesthesia and Critical Care 1999, 10, 32-39.
6. Horst, W. D.; Preskorn, S. Journal of Affective Disorders 1998, 51, 237-254.
7. Vetulani, J.; Nalepa, I. European Journal of Pharmacology 2000, 405, 351-363.
8. Pento, J. T. Drugs of the Future, 1988, 13, 839-840.
9. Langer, S. Z.; Moret, C.; Raisman, R.; Dubocovich, M. L.; Briley, M. Science 1980, 210, 1133.
10. Muth, E. A.; Haskins, J. T.; Moyer, J. A., Husbands; G. E. M.; Nielsen, S. T.; Sigg, E. B. Biochem Pharmacol. 1986, 35, 4493.
11. (a) McCrone, W. C. In Physics and Chemistry of the Organic Solid State; Fox, D.; Labes, M. M.; Weissberger, A. Eds.; Wiley-Interscience: New York, 1965, Vol. 2, pp 725-767. (b) Bryn, S. R.; Pfeiffer, R. R.; Stowell, J. G. Solid-State Chemistry of Drugs; SSCI: West Lafayette, IN, 1999. (c) Bernstein, J. Polymorphism in Molecular Crystals; Clarendon: Oxford, 2002.
12. Roy, S.; Aitipamula, S.; Nangia, A. Crystal Growth \& Design 2005, 5, 2268-2276.
13. (a) Mahender Rao, S.; Vyas, K.; Lakshmi Devi, A. S.; Reddy, G. O. WO 02/46140 A1, 2002. (b) Dolitzky, B. N.; Aronhime, J.; Nisnevich, G. US Patent 2002/0183553, 2002. (c) Dolitzky, B. N.; Aronhime, J.; Nisnevich, G. WO 03/048082 A2, 2003. (d) Bhavin, R. S.; Patel, M. S.; Patel, G. B.; Ramakrishna, N. V. S.; Manakiwala, S. C.; Agarwal, V. K.; Pandita, K.; Patel, P. R. WO 03/050074 A1, 2003.
14. Guelfi, J. D.; White, C.; Hackett, D. J Clin Psychiatry 1995; 56: 450-58.
15. Khan, A.; Fabre, L. F.; Rudolph, R. Psychopharmacol. Bull. 1991, 27, 141-44.
16. Mendels, J.; Johnston, R.; Mattes, J. Psychopharmacol. Bull. 1993, 29, 169-74.
17. Schweizer, E.; Weise, C.; Clary, C. Journal of Clinical Psychopharmacology 1991, 11, 233-36.

Total Synthesis of (\pm)-Venlafaxine

18. Holliday, S. M.; Bentield, P. Drugs 1995, 49, 280-295.
19. Cunningham, L. A. Ann. Clin. Psychiatry 1997, 14, 99-106.
20. Priest, R. G. Clinical Pharmaceutics 1996, 18, 347-358.
21. Jinpei, Z.; Huibin, Z.; Xuezhen, H.; Wenlong, H. J. China Pharm. Univ. 1999, 30, 249.
22. Yardley, J. P.; Husbands, G. E. M.; Stack, G.; Butch, J.; Moywe J. A.; Muth, E. A.; Andree, T.; Fletcher, H.; James, N. M. G.; Sielecki, A. J. Med. Chem. 1986, 33, 2899-2905.
23. Husbands, G. E. M.; Yardley, J. P.; Mills, G.; Muth, E. A. US Patent No. 4, 535, 186, 1985.
24. Rathod, D. M.; Rangaraju, S. G.; Moreshwar, M.; Patel, N.; Deodhar, M.; Mandar, M. EP 1249447, 2001.
25. Shepherd, P. G. UK Patent No. GB 2227743 A 1990.
26. (a) Basappa; Kavitha, C. V.; Rangappa, K. S. Bioorg. Med. Chem. Lett. 2004, 14, 3279-3281. (b) Kavitha, C. V.; Basappa; Nanjunda Swamy, S. N.; Mantelingu, K.; S.; Doreswamy, S.; Sridhar, M. A.; Prasad, J. S.; Rangappa, K. S. Bioorg. Med. Chem. 2006, 14, 2290-2299.
27. Saigal, J.; Gupta, R.; Pandit, V. V.; Desai, A. J.; Mehta, N. V.; Rane, S. H. US Patent No. 7,026,513, 2006.
28. Dolitzky, B.-Z.; Aronhime, J.; Wizel, S.; Nisnevich, G. A. US Patent No. 6,924,393, 2005.
29. Daiss, J. O.; Burschka, C.; Mills, J. S.; Montana, J. G.; Showell, G. A.; Julie B. H.; Tacke, W. R. J. Organometallic Chemistry 2006, 691, 3589-3595.
30. Daiss, J. O.; Burschka, C.; Mills, J. S.; Montana, J. G., Showell, G. A.; Julie B. H.; Tacke, W. R. Organometallics 2006, 25, 1188-1198.
31. Daiss, J. O.; Penka, M.; Burschka, C.; Tacke, W. R. Organometallics 2004, 23, 4987-4994.
32. Daiss, J. O.; Barnes, M. J.; Mills, J. S.; Montana, J. G., Showell, G. A.; Julie B. H.; Tacke, W. R. Bioorg. Med. Chem. Lett. 2006, 16, 2555-2558.
33. Aguilar, N. I.; Llado, B. I.; Garcia, C.; Miguel, O.; Madrid, S. WO 01/07397 A1, 2001.

Total Synthesis of (\pm)-Venlafaxine

34. Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. US Patent No. 6,504,044 B2, 2003.
35. Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. Tetrahedron Lett. 2004, 45, 7291-7295.
36. Blackwood, R. K.; Hess, G. B.; Larrabee, C. E.; Pilgrim, F. J. J. Am. Chem. Soc. 1958, 80, 6244-6249.
37. Bhanu Prasad, A. S.; Bhaskar Kanth, J. V.; Periasamy, M. Tetrahedron 1992, 48, 4623-4628.
38. Tilford, C. H.; Van Campen, M. G. Jr. J. Am. Chem. Soc. 1954, 76, 2431.
39. Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. US Patent No. 6,350,912 B1 Chem. Abstr. 2002, 136, 200009.

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $65\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $65\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $65\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Venlafaxine $14\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Venlafaxine $14\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $37\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{13} \mathbf{C}$ NMR Spectrum of Compound $37\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathbf{C C l}_{4}\right)$

DEPT NMR Spectrum of Compound 37 ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $38\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 35 ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $35\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $35\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $69\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $69\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT NMR Spectrum of Compound $69\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $71\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $71\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $73\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathbf{C C l}_{4}\right)$

DEPT NMR Spectrum of Compound $73\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $80\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $80\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT NMR Spectrum of Compound $80\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Section-2: Formal Total Synthesis of (\pm)-Paroxetine

1.2.1. Introduction

1

2

3

Figure 1. Antidepressants (-)-paroxetine 1, (+)-femoxetine 2, and peptidomimetic inhibitor Roche-1 3.
3-Substituted-4-arylpiperidines ${ }^{1}$ exhibit a wide range of biological activity e. g. (-)paroxetine 1, and (+)-femoxetine 2, marketed under different trade names, are selective serotonin reuptake inhibitors, ${ }^{2}$ used in the treatment of depression, obsessive compulsive disorder, and panic, marketed under different trade names. The piperidine Roche-1 3, is nonpeptide peptidomimetic type III inhibitor of renin. ${ }^{3}$ Paroxetine is an orally administered psychotropic drug chemically known as (-)-trans-4R-(p-fluorophenyl)-3S-(3',4'methylenedioxyphenoxy)methyl) piperidine hydrochloride hemihydrate. It has become one of the most prescribed antidepressants due to its efficacy in treating depression as well as a spectrum of anxiety disorders ranging from panic attacks to phobias, since its release in 1992 by the pharmaceutical company Glaxo Smith Kline.

1.2.2. Polymorphism

Two crystal forms of paroxetine hydrochloride hemihydrate (form-I) and IPA crystal solvate crystals (form-II) are reported by Itaya et. al. ${ }^{4}$

1.2.3. Clinical Profile

It differs from other antidepressants in having some muscarinic binding property. It is well absorbed and has a high degree of plasma protein binding. ${ }^{5}$ It is well tolerated and has lower toxicity. Side effects are drowsiness, sweating and sexual dysfunction. ${ }^{6}$ It may cause movement abnormalities or distonia. Usual dose is $20 \mathrm{mg} / \mathrm{d}$ but can be increased to $60 \mathrm{mg} / \mathrm{d}$ if necessary. It exhibits common discontinuation reactions as observed with other SSRIs and venlafaxine.

1.2.4. Literature Review

Literature survey revealed that several methods have been devised to prepare 4arylpiperidine motif. ${ }^{7-14}$ Syntheses of paroxetine can be categorized as: (a) cyclization of chiral linear compounds, ${ }^{7}$ (b) expansion of chiral five-membered rings, ${ }^{8}$ (c) asymmetric nucleophilic addition to α, β-unsaturated δ-lactams or piperidine derivatives, ${ }^{9}$ (d) desymmetrization of meso-glutalimides, ${ }^{10}$ (e) exploitation of pyridines, ${ }^{11}$ (f) kinetic resolution of intermediate esters, ${ }^{12}(\mathrm{~g})$ optical resolution of piperidine derivatives, ${ }^{4,13}$ and (h) miscellaneous. ${ }^{14}$
(a) Cyclization of chiral linear compounds

Jørgensen $^{7 \mathrm{a}}$ (Angew. Chem. Int. Ed. 2006, 45, 4305-4309)

Scheme 1. Reagents and conditions: a) (S)-2-[bis(3,5-bis(trifluoromethyl) phenyl(trimethylsilyloxyl) methyl] pyrrolidine ($10 \mathrm{~mol} \%$), $\mathrm{EtOH}, 0^{\circ} \mathrm{C}, 96 \mathrm{~h}, 72 \%, 86 \%$ ee; b) $\mathrm{PhCH}_{2} \mathrm{NH}_{2}, \mathrm{NaBH}(\mathrm{OAc})_{3}$, dioxane, 70%; c) $\mathrm{LiAlH}_{4}, \mathrm{THF}, \Delta, 85 \%$; d) ref. $7 \mathrm{~d}-\mathrm{h}, 9 \mathrm{a}, 10 \mathrm{a}, \mathrm{b}, 13 \mathrm{a}, \mathrm{b}, 14 \mathrm{~b}$ for paroxetine $\mathbf{1}$ and ref. $7 \mathrm{~h}, 10 \mathrm{a}, \mathrm{b}$ for femoxetine 2.

Jorgensen et. al. reported formal total synthesis of (-)-paroxetine 1 and (+)femoxetine 2 employing first enantioselective organocatalytic conjugate addition of malonates to α, β-unsaturated aldehydes. The organocatalytic 1,4 -addition of dibenzylmalonate 4 to cinnamaldehyde 5 using the L-proline derivative (S)-2-[bis(3,5bistrifluoromethylphenyl)trimethylsilanyloxymethyl]pyrrolidine (S)-6 as the catalyst

Formal Total Synthesis of (土)-Paroxetine

afforded Michael adduct $\mathbf{7 a}$ in 80% yield 91% ee and $\mathbf{7 b}$ in 72% and 86% ee. Compound 7 was converted into lactam $\mathbf{8}$ in a tandem process comprising three steps: imine formation, reduction, and lactamization, in 70% overall yield with an excellent diastereomeric ratio of 13:1 referring to the trans lactam. Lactam 8 was reduced with LiAlH_{4} to give 9 in 85% yield as one diastereomer, which follwed by etherification with sesamol 10, hydrogenolysis of the benzyl protection furnished $(-)$-paroxetine $\mathbf{1}$, as reported in the literature. ${ }^{5 d-\mathrm{h}, 8 \mathrm{a}, \mathrm{b}, 11 \mathrm{a}, \mathrm{b} \text {, }}$ ${ }^{12 \mathrm{~b}}$ The two-step asymmetric synthesis of $\mathbf{8 a}$ and $\mathbf{8 b}$ leads to (+)-femoxetine $\mathbf{2}$ and (-)paroxetine $\mathbf{1}$ in overall seven and six steps respectively (scheme 1).

Kobayashi $^{\text {7b }}$ (Tetrahedron Lett. 2004, 45, 8065-8068)

Scheme 2. Reagents and conditions: a) $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{MgCl}, \mathrm{CuI}, \mathrm{THF}$; b) $\mathrm{MeOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, $\mathrm{DIAD}, \mathrm{PPh}_{3},-78{ }^{\circ} \mathrm{C}$, 63%; c) (iPrO) $\mathrm{Me}_{2} \mathrm{SiCH}_{2} \mathrm{Cu} \cdot \mathrm{MgICl}, \mathrm{THF}, 2 \mathrm{~h}$; d) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{KF}, \mathrm{KHCO}_{3}, 60-6{ }^{\circ} \mathrm{C}$; e) TBSCl, imidazole, 58%; f) $\mathrm{O}_{3},-70^{\circ} \mathrm{C}$, then, $\mathrm{Me}_{2} \mathrm{~S}$; g) $\mathrm{NaBH}_{4}, 0^{\circ} \mathrm{C}$; h) I_{2}, imidazole, PPh_{3}; i) BnNH_{2}, dioxane, $115{ }^{\circ} \mathrm{C}, 47 \%$ (for 4 steps); j) $B u_{4} N F, 76 \%$; k) ref. $7 \mathrm{~d}-\mathrm{h}, 9 \mathrm{a}, \mathrm{b}, 13 \mathrm{a}, \mathrm{b}, 14 \mathrm{~b}$.

Kobayashi et. al. reported syntheses of paroxetine $\mathbf{1}$ and femoxetine $\mathbf{2}$ based on regio- and stereoselective allylation of cyclopentenyl esters. Thus, reaction of monoacetate 11 with $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{MgCl}$ (3 equiv.) in the presence of $\mathrm{CuI}(30 \mathrm{~mol} \%$) followed by Mitsunobu inversion with $\mathrm{MeOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ afforded 12 in 63% yield from 11. Reaction of 12 with ($i-\mathrm{PrO}$) $\mathrm{Me}_{2} \mathrm{SiCH}_{2} \mathrm{Cu} \cdot \mathrm{MgICl}$ furnished $\mathbf{1 3}$ after Tamao oxidation and subsequent TBS protection. Compound $\mathbf{1 3}$ was efficiently transformed into piperidine $\mathbf{9 b}$ utilizing established protocol (scheme 2). Similarly, compound 9b can be elaborated to (-)paroxetine 1 by known chemistry.

Jacobsen $^{\text {c }}$ (J. Am. Chem. Soc. 2003, 125, 11204-11205)

$$
16 \mathrm{~b} \xrightarrow{c}(-) \text {-paroxetine } 1
$$

Scheme 3. Reagents and conditions: a) $\mathbf{A}, \mathrm{CNCH}_{2} \mathrm{CN}$ or $\mathrm{CNCH}_{2} \mathrm{CO}_{2} \mathrm{Me}, t \mathrm{BuOH}$, cyclohexane, $23{ }^{\circ} \mathrm{C}$; b) reduction; c) ref. 11b.

Jacobson and Taylor demonstrated application of their methodology for the preparation of enantiomerically enriched piperidines, as exemplified by an expedient asymmetric catalytic synthesis of $(-)$-paroxetine 1 . Thus, (- -paroxetine 1 was prepared from $\mathbf{1 4}$ through the intermediacy of $\mathbf{1 5}$ and $\mathbf{1 6}$ in six steps in $\mathbf{4 7 \%}$ overall yield, following a synthesis developed at Sumigo Fine Chemicals (scheme 3). ${ }^{11 \mathrm{~b}}$

Wang $^{7 \mathrm{Td}}$ (Tetrahedron: Asymmetry 2001, 12, 419-426)

Wang et. al. reported a convenient and practical method for the preparation of chiral 4-aryl-2-piperidinone from 3-arylglutaric anhydride and (S)-methylbenzylamine, which was exploited in the synthesis of $(-)$-paroxetine 1 (scheme 4). Diacid 19 was prepared from 4-fluorocinnamic acid methyl ester 17 in three steps (Michael addition to ester 17, hydrolysis of triester 18, and decarboxylation of the resultant acid). ${ }^{7,8}$ Prochiral 3substituted glutaric anhydride 20 was then obtained by dehydration of the commercially available diacid $\mathbf{2 0}$ in acetyl chloride.

Scheme 4. Reagents and conditions: a) $\mathrm{NaOMe}, \mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right), \mathrm{MeOH}$, reflux, $20 \mathrm{~h}, 70 \%$; b) 1 N NaOH , reflux, 20 h ; c) conc. HCl , reflux, $20 \mathrm{~h}, 70 \%$ (two steps); d) $\mathrm{CH}_{3} \mathrm{COCl}$, reflux, $20 \mathrm{~h}, 90 \%$; e) (S)methylbenzylamine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhMe},-78^{\circ} \mathrm{C}, 10 \mathrm{~h}, \mathrm{rt}, 10 \mathrm{~h}, 70 \%$; f) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{ClCO}_{2} \mathrm{Bu}, \mathrm{THF},-78$ to $0{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$, then $\mathrm{NaBH}_{4}, \mathrm{H}_{2} \mathrm{O}, 0-25^{\circ} \mathrm{C}, 20 \mathrm{~h}, 86 \%$; g) PBr_{3}, conc. $\mathrm{HBr}, 0-25^{\circ} \mathrm{C}, 4$ days, 70%; h) NaH , THF, reflux, 20 h , 85%; i) LDA, THF, $-78{ }^{\circ} \mathrm{C}, \mathrm{ClCO}_{2} \mathrm{Me}, 4 \mathrm{~h}, 78 \%, 99 \%$ de; j) LiAlH_{4}, THF, reflux, $72 \mathrm{~h}, 65 \%$; k) $\mathrm{MsCl}, \mathrm{DCM}$, rt, 20 h; l) i. sesamol, Na, PrOH, reflux, 36 h; ii. HCl, 64\%; (m) H2, Pd-C, MeOH, 68\%.

Desymmetrisation of meso-3-substituted glutaric anhydride 20 with (S)methylbenzylamine ($99 \% \mathrm{ee}$) was effected in PhMe at $-78^{\circ} \mathrm{C}$, according to the procedure described by Karanewsky. ${ }^{10}$ In the amidation of 3-arylglutaric anhydride 20, mixture of hemiamides 21a and 21b was obtained in 98% yield, former being the major isomer. The carboxyl group of hemiamide 21a was converted into the bromide 22 through the intermediacy of alcohol in satisfactory yield by reduction of the corresponding mixed anhydride with NaBH_{4}, bromination of the resultant alcohol with PBr_{3} and HBr then gave bromide 22 in moderate yields. Treatment of bromide 22 with sodium hydride suspended in refluxing THF afforded chiral 2-piperidinone $\mathbf{2 3}$ in 85% yield and $>99 \%$ de after recrystallisation. C-3 acylation of 2-piperidinone $\mathbf{2 3}$ with $\mathrm{ClCO}_{2} \mathrm{Me}$ using LDA gave trans-3,4-disubstituted 2-piperidinone 24. Reduction of 2-piperidinone $\mathbf{2 4}$ with LiAlH_{4} provided 3-hydroxymethyl piperidine, which was converted into mesylate $\mathbf{2 5}$. Treatment of mesylate $\mathbf{2 5}$ with sesamol 10 in the presence of NaOPr , provided aryl ether $\mathbf{2 6}$. Ether 26 was treated

Formal Total Synthesis of (土)-Paroxetine

with HCl , and the resultant hydrochloride salt was purified by recrystallisation. The chiral auxiliary was removed by hydrogenolysis to provide (-)-paroxetine $\mathbf{1}$ as its hydrochloride salt.

Beak $^{7 \text { e,f }}$ (J. Am. Chem. Soc. 2001, 123, 1004-1005; J. Am. Chem. Soc. 2002, 124, 1168911698)

Scheme 5. Reagents and conditions: a) BuLi, (-)-sparteine, PhMe, $-78{ }^{\circ} \mathrm{C}$; b) (E)-triisopropyl(3nitroallyloxy) silane, 83%, $>99: 1 \mathrm{dr}$; c) $\mathrm{HCl}, \mathrm{CHCl}_{3}$; d) NaBH_{4}; e) $\mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{NH}_{4}$; f) (Boc$)_{2} \mathrm{O}, 95 \%$; g) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$; h) $\mathrm{KOtBu}, \mathrm{THF} ;$ i) TBAF, 83%; j) MsCl, $\mathrm{Et}_{3} \mathrm{~N}$; k) sesamol, NaH, DMF; l) TFA, 72\%, >97:3 dr.

Beak et. al. reported synthesis of (-)-paroxetine 1 by employing their methodology involving (-)-sparteine-mediated lithiation and conjugate addition of N -Boc- N - $(p-$ methoxyphenyl)-allylamines to α, β-unsaturated nitro compounds. Thus, treatment of 27 with BuLi in the presence of $(-)$-sparteine in PhMe at $-78{ }^{\circ} \mathrm{C}$ followed by conjugate addition to nitroalkene $\mathbf{2 8}$ provided the desired carbamate $(S, S)-\mathbf{2 9}$ in 83% yield as a single diastereomer (Scheme 5). Hydrolysis and reduction of the resultant aldehyde provided nitro alcohol (R, S) $\mathbf{- 3 0}$ in 88% yield. Reduction of the nitro group by transfer hydrogenation and subsequent Boc protection afforded (R, S) - $\mathbf{3 1}$ in 95% yield. Cyclization mediated by mesylate of the alcohol followed by unmasking the remaining alcohol protection afforded (S, R) - $\mathbf{3 2}$ in 83% yield. Mesylation of $\mathbf{3 2}$ followed by displacement of the mesyl with sesamol and subsequent Boc deprotection provided (-)-paroxetine 1 in 72% yield and $>97: 3$ ee (11 steps, 41% from 27). This protocol was also applied to the synthesis of (+)femoxetine 2.

Formal Total Synthesis of (土)-Paroxetine
Bosch $^{7 \mathrm{~g}}$ (J. Org. Chem. 2000, 65, 3074-3084)

Scheme 6. Reagents and conditions: a) PhMe, reflux, $36 \mathrm{~h}, 86 \%$ (cis/trans, $85: 15$); b) TFA, DCM, $25^{\circ} \mathrm{C}$, quantitative, (cis/trans, 14:86).

An enantiodivergent synthesis of (+)- and (-)-paroxetine 1 and (+)-femoxetine 2 was reported by Bosch et. al. starting from enatiomerically pure cis- $\mathbf{3 5}$ and trans- $\mathbf{3 5}$ lactams. Lactams cis- $\mathbf{3 5}$ and trans- $\mathbf{3 5}$ were obtained by azeotropic removal of water from a solution of (R)-phenylglycinol $\mathbf{3 3}$ and methyl 5-oxopentanoate $\mathbf{3 4}$ (scheme 6) in PhMe , as a 85:15 mixture, respectively in 86% overall yield. The mixture was separated by column chromatography. Similarly, when a solution of lactam cis-35 and TFA in DCM was stirred for 64 hours at $25^{\circ} \mathrm{C}$, a 14:86 mixture of cis- $\mathbf{3 5}$ and trans- $\mathbf{3 5}$ was recovered quantitatively!

Scheme 7. Reagents and conditions: a) LHMDS, $\mathrm{ClCO}_{2} \mathrm{R},-7{ }^{\circ} \mathrm{C}$, THF, then $\mathrm{PhSeBr} ; 85 \%$ for 29a 77% for 29b; b) $\mathrm{O}_{3},-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, \mathrm{DCM}$; c) $\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right) \mathrm{CuCNLi},-78^{\circ} \mathrm{C}$, THF, 80% for $\mathbf{3 1 a}$ and 70% for $\mathbf{3 1 b}$; d) $\mathrm{LiAlH}_{4}, \mathrm{AlCl}_{3}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, \mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{MeOH}, 74 \%$; e) $\mathrm{H}_{2},(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{EtOAc}, 73 \%$; f) MsCl , pyridine, $10^{\circ} \mathrm{C}$; g) sesamol, NaOMe , MeOH , reflux; h) TFA, DCM, 57% (for 2 steps).

Formal Total Synthesis of (土)-Paroxetine

Treatment of trans- $\mathbf{3 5}$ with LHMDS (2.2 equiv.), $\mathrm{ClCO}_{2} \mathrm{Me}$ or $\mathrm{ClCO}_{2} \mathrm{Bn}$ (1.0 equiv.), respectively, and PhSeBr (1.4 equiv.), followed by ozonolysis of the resultant selenides (trans-36a and trans-36b) under neutral conditions (Scheme 7) furnished lactams trans-37a and trans-37b. Conjugate addition of $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CuCNLi}$ to trans-37a and trans37b provided lactams trans-38a and trans-38b in 70\% and 75\% respectively. Lactams 38a and $\mathbf{3 8 b}$ were treated with alane $\left(\mathrm{LiAlH}_{4} / \mathrm{AlCl}_{3}\right)$, which caused the cleavage of $\mathrm{C}-\mathrm{O}$ bond of the oxazolidine ring and simultaneous reduction of the ester and amide carbonyl group to give the alcohol 39 (Scheme 6). Alcohol 39 was deprotected and the free amine was protected as its Boc derivative 40. Alcohol 40 was converted into mesylate 41 and the mesyl group was further replaced with sesamol using NaH. Subsequent Boc deprotection furnished (-)-paroxetine 1.
$\mathbf{Y u}^{\mathbf{7 h}}$ (Tetrahedron Lett. 2000, 41, 5647-5651)

Scheme 8. Reagents and conditions: a) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOEt}$, b) NaOH, Δ; c) $\mathrm{MeOH}, \mathrm{H}^{+}, 75 \%$; d) $\mathrm{PLE}(\mathrm{pH}=$ 7), 10% aq. acetone, 95%; e) BMS, THF, 94%; f) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N} ; \mathrm{g}$) $\mathrm{BnNH}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhMe}, 82 \%,>99 \%$ ee; h) $\mathrm{NaH},(\mathrm{MeO})_{2} \mathrm{CO}, \Delta, 88 \%$; i) $\mathrm{LiAlH}_{4}, 71 \%$ or $\mathrm{BH}_{3} \cdot \mathrm{THF}, 92 \%$; j) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhMe} ; \mathrm{k}$) sesamol, $\mathrm{NaH}, \mathrm{DMF}$, $60^{\circ} \mathrm{C}, 80 \%$; l) $\mathrm{H}_{2}(70 \mathrm{psi}), 5 \% \mathrm{Pd} / \mathrm{C}$, IPA-AcOH, 93%.

Yu et. al. reported an enzyme hydrolysis mediated asymmetric synthesis of (-)paroxetine 1 (scheme 8). Synthesis commenced with preparation of bis ester 43 in 75% yield by reaction of p-fluorobenzaldehyde 42 with ethyl acetoacetate using NaOH , followed by esterification. Hydrolysis of $\mathbf{4 3}$ with PLE consistently afforded optically active acid ester, in 86% yield and 95% ee, which was reduced with BMS to obtain alcohol 44 in 94% yield. Alcohol 44 was mesylated, which on treatment with benzylamine provided

Formal Total Synthesis of (土)-Paroxetine

lactam 45 in 82% yield and $>99 \%$ ee. Lactam $\mathbf{4 5}$ upon acylation and subsequent reduction with either $\mathrm{LiAlH}_{4}\left(71 \%\right.$ yield) or $\mathrm{BH}_{3} \cdot \mathrm{THF}$ in refluxing THF (92% yield) gave aminoalcohol 46. Etherification with sesamol in DMF (80% yield) followed by hydrogenolysis of the benzyl group using $5 \% \mathrm{Pd} / \mathrm{C}$ in IPA-AcOH (93% yield) completed the synthesis of $(+)$-paroxetine $\mathbf{1}$.
(b) Expansion of chiral five-membered rings

Cossy ${ }^{\mathbf{8 a}, \mathbf{b}}$ (Eur. J. Org. Chem. 2002, 3543-3551; Tetrahedron Lett. 2001, 42, 5705-5707)

Scheme 9. Reagents and conditions: a) $\mathrm{SOCl}_{2}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$ to rt ; b) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{r} \mathrm{t}, 80 \%$; c) PhCHO , cat. PTSA, PhMe, reflux, 69%; d) LHMDS, THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{ClCO}_{2} \mathrm{iBu}$; e) $\mathrm{PhSeCl},-78{ }^{\circ} \mathrm{C}$; f) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 99 \%$; g) $\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CuLi}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}, 97 \%, 98 \% \mathrm{de}$; h) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Et}_{3} \mathrm{SiH}$; i) $\mathrm{MsCl}, \mathrm{EDC}$, $0{ }^{\circ} \mathrm{C}$ to rt ; j) $\mathrm{Et}_{3} \mathrm{~N}$, reflux, 84%; k) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, PhMe, reflux; l) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 100 \%$; m) ref. 7d-h, 9a,b, 13a,b, 14b.

An elegant formal synthesis of (-)-paroxetine $\mathbf{1}$ employing enantioselective ring enlargement of a trisubstituted prolinol was reported by Cossy et. al. After treatment of Lpyroglutamic acid 47 with SOCl_{2} in MeOH (88% yield), the resultant methyl ester was reduced with NaBH_{4} in EtOH at $0{ }^{\circ} \mathrm{C}$ to room temperature in 90% yield and the amidoalcohol 48 was protected with benzaldehyde in the presence of a catalytic amount of PTSA. Optically pure bicyclic compound 49 was isolated in 69% yield. α, β-Unsaturated
lactam 51 was prepared through conventional steps i. e. treatment of $\mathbf{4 5}$ with LHMDS and quenching with $\mathrm{ClCO}_{2} i \mathrm{Bu}$ followed by PhSeCl and then oxidative elimination of the selenide $\mathbf{5 0}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$. Conjugate addition of $\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CuCNLi}$ to $\mathbf{5 1}$ was achieved at $78{ }^{\circ} \mathrm{C}$ in THF to give compound 52 in 70% yield with $>98 \%$ diastereomeric excess. Treatment of compound 52 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and $\mathrm{Et}_{3} \mathrm{SiH}$ furnished amino alcohol 53. When 53 was treated with MsCl (1.1 equiv) at $0^{\circ} \mathrm{C}$ in EDC for 50 min and then heated under reflux for 36 hours in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (3.1 equiv), the expected trisubstituted 5chloropiperidine 54 was isolated in 84% yield as a single diastereomer. Treatment of chloropiperidine 54 with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN in refluxing PhMe replaced chlorine with hydride, the ester was reduced with LiAlH_{4} in THF, which furnished the expected known piperidine $\mathbf{9 b}$ in quantitative yields (Scheme 9).
(c) Asymmetric nucleophilic addition to α, β-unsaturated δ-lactams or piperidine derivatives

Buchwald $^{9 \mathbf{a}}$ (J. Am. Chem. Soc. 2003, 125, 11253-11258)

Scheme 10. Reagents and conditions: a) $\mathrm{PMPNH}_{2}, \mathrm{Et} \mathrm{E}_{3} \mathrm{~N}$, THF, reflux, 75%; b) $\mathrm{ClCOCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, DCM; c) NaOEt , EtOH, reflux, 74%; d) PMHS, $t \mathrm{AmOH}$, (S)-p-tol-BINAP, $\mathrm{CuCl}_{2}, \mathrm{NaO} t \mathrm{Bu}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$, air, 23 ${ }^{\circ} \mathrm{C} 90 \%, 90 \%$ ee; e) $\mathrm{NaH}, \mathrm{MeOH},(\mathrm{MeO})_{2} \mathrm{CO}, \mathrm{PhMe}$, reflux, 86%; f) $\mathrm{BH}_{3} \cdot \mathrm{THF}$, reflux, 97%; g) CAN, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (3:1); h) (Boc) $)_{2} \mathrm{O}, \mathrm{NaOH}, \mathrm{PhMe}, \mathrm{H}_{2} \mathrm{O}, 75 \%$ (two steps); i) i. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, xylene, $130{ }^{\circ} \mathrm{C}$; ii. TFA, DCM, 52\% (two steps).

Buchwald et. al. elegantly applied their catalytic enantioselective conjugate reduction methodology to the synthesis of $(-)$-paroxetine $\mathbf{1}$ as depicted in scheme 10. Thus, a mixture of p-anisidine, 4-fluoro-3-chloropropiophenone 55 and $\mathrm{Et}_{3} \mathrm{~N}$ was refluxed in THF to afford amine in 77% yield, which after amidation gave compound 56. Refluxing a

Formal Total Synthesis of (土)-Paroxetine

solution of compound 56 in the presence of NaOMe in EtOH afforded lactam 57. Catalytic enantioselective reduction of lactam with excess of PMHS and $t \mathrm{AmOH}$ afforded 58 in 90% yield and 90% ee using $0.5 \mathrm{~mol} \%(R)$ - p-tolBINAP. Compound $\mathbf{5 8}$ was converted to $\mathbf{5 9}$ in two steps (81% overall yield). Further PMP group was replaced with Boc, alcohol was converted into ether using tosylate of sesamol, which followed by Boc deprotection furnished (-)-paroxetine 1.

Keshava Murthy ${ }^{\mathbf{9 b}}$ (Tetrahedron Lett. 2003, 44, 5355-5358)

Scheme 11. Reagents and conditions: a) $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$; b) $\mathrm{KO} t \mathrm{Bu}$; c) ref. 15.

Keshava Murthy et. al. reported a highly stereoselective method for the preparation of a key synthetic precursor of paroxetine by asymmetric conjugate addition (scheme 11). The menthol-based Michael acceptors 61 (Table 1, entries 1-4) were prepared in nearquantitative yields by a modification of the procedure described by Meth-Cohn via transesterification of arecoline ($\mathbf{6 0}, \mathrm{R}=\mathrm{OMe}$) in PhMe using the requisite menthol or menthol-derived auxiliary (1.0 equiv.) together with $\mathrm{KO} t \mathrm{Bu}$ (0.05 equiv.). For the isoborneol-based auxiliary (entry 5), it was necessary to transesterify 10dicyclohexylsulfamoylisoborneol with methylnicotinate (BuLi, THF) followed by quaternization (iodomethane) and reduction $\left(\mathrm{NaBH}_{4}\right)$. The camphorsultam-based auxiliary (entry 6) was obtained using the procedure described by Ho and Mathre.

A diethyl ether solution of p-fluorophenylmagnesium bromide was added to the Michael acceptor 66 in PhMe at $0-10{ }^{\circ} \mathrm{C}$. Thermodynamically more stable $\mathrm{C}-3, \mathrm{C}-4-$ trans isomer was obtained by treatment of the Michael adducts 61 with catalytic $\mathrm{KO} t \mathrm{Bu}$ in PhMe , which can be further elaborated to (-)-paroxetine $\mathbf{1}$ by known literature methods. ${ }^{15}$

Table 1. Ratio of 61:ent-61 for various auxiliaries.

Entry	R	61	Ent-61	Yield (\%)
1.		1.0	1.0	75
2.		3.7	1.0	76*
3.		4.0	1.0	86*
4.		1.0	4.0	86*
5.		2.7	1.0	67
6.		>9.8	<0.2	75

*Yield assessed by NMR

Cossy ${ }^{\mathbf{9 c , d}}$ (New J. Chem. 2003, 27, 475-482; Tetrahedron Lett. 2001, 42, 7805-7807)

Scheme 12. Reagents and conditions: a) LHMDS, THF, $-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, \mathrm{ClCO}_{2} \mathrm{Me}, 93 \%$; b) R*OH, DMAP, powdered MS ($4 \AA$) , PhMe , reflux, 50%; c) NaH , sonication, THF, rt, $\mathrm{PhSeCl}, \mathrm{HMPA}, 68 \%$; d) $\mathrm{H}_{2} \mathrm{O}_{2}$ (excess), DCM, $0^{\circ} \mathrm{C}, 100 \%$; e) $\mathrm{Ar}_{2} \mathrm{CuLi}$, THF, $-78{ }^{\circ} \mathrm{C}, 80 \%$; f) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt , then reflux, $85 \% ; \mathrm{g}$) ref. 11b.

A short formal synthesis of paroxetine $\mathbf{1}$ employing diastereoselective cuprate addition to a chiral racemic olefinic amido ester was reported by Cossy et. al. Treatment of N-Boc δ-valerolactam 62 with LHMDS in THF at $-78^{\circ} \mathrm{C}$ followed by the addition of $\mathrm{ClCO}_{2} \mathrm{Me}$ afforded the corresponding methyl amidocarboxylate $\mathbf{6 3}$ in 93% yield. Asymmetric amido ester $\mathbf{6 4}$ was readily obtained by transesterification of $\mathbf{6 3}$ with the chiral racemic auxiliary $\mathrm{R}^{*} \mathrm{OH}$ in refluxing PhMe mediated by DMAP, as a mixture of diastereomers in 50% yield in 65:35 ratio. Phenylselenation of the mixture of $\mathbf{6 4}$ gave selenide $\mathbf{6 5}$ as a $75: 25$ mixture of diastereomers, which were oxidized with $\mathrm{H}_{2} \mathrm{O}_{2}$ in DCM at $0{ }^{\circ} \mathrm{C}$ to furnish lactam 66 in quantitative yields. Addition of $\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CuLi}$ to lactam 66 in THF at $-78{ }^{\circ} \mathrm{C}$ provided compound 67 in 80% yield (Scheme 12). Cleavage of the chiral auxiliary in compound 67 was accomplished by reduction with LiAlH_{4} in THF to give a known amino alcohol 68 in 85% yield.

Hayashi $^{9 \mathrm{e}}$ (J. Org. Chem. 2001, 66, 6852-6856)

Scheme 13. Reagents and conditions: a) $\mathrm{Rh} /(R)$-BINAP ($30 \mathrm{~mol} \%$), dioxane, $40^{\circ} \mathrm{C}, 12 \mathrm{~h}, 63 \%$; b) ref. 5 h ; c) (Boc) $)_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{CH}_{3} \mathrm{CN}$; d) ref. 7 h .

Hayashi et. al. described the first example of an excellent catalytic asymmetric synthesis of p-fluorophenyl-2-piperidinones, which is realized by the rhodium catalyzed asymmetric 1,4 -addition of arylboron reagents to 5,6 -dihydro- $2(1 H)$-pyridinones. Thus, the reaction of N-benzyl-5,6-dihydro- $2(1 H)$-pyridinone 69 with p-fluorophenylboroxine 70 and water in the presence of $\mathrm{Rh} /(R)$-binap catalyst in dioxane at $40^{\circ} \mathrm{C}$ for 12 hours gave $(R)-45$ in 63% yield and 97% ee (scheme 13). Similarly, reaction of 5,6-dihydro- $2(1 \mathrm{H})$-pyridinone $\mathbf{7 1}$ with p-fluorophenylboroxine $\mathbf{7 0}$ gave arylation product (R) - $\mathbf{7 2}$ of around 98% ee in high yields. Compound 72 was converted into its Boc derivative 73, a known intermediate ${ }^{7 \mathrm{~h}}$ reported in the synthesis of paroxetine $\mathbf{1}$.

(d) Desymmetrization of meso-glutalimides

Simpkins ${ }^{10 \mathrm{aa}, \mathrm{b}}$ (Tetrahedron 2003, 59, 9213-9230; Synlett 2002, 2074-2076)

Simpkins et. al. applied the chiral base desymmetrisation of imides to the synthesis of the antidepressant (-)-paroxetine $\mathbf{1}$ (scheme 14). Deprotonation of imide $\mathbf{7 4}$ with a chiral base \mathbf{B} at $-78{ }^{\circ} \mathrm{C}$ in THF, followed by quenching with $\mathrm{CNCO}_{2} \mathrm{Me}$ afforded imide 75 . reduction of imide 75 with LiAlH_{4} in refluxing THF gave alcohol with concomitant reduction of both imide carbonyls, which was mesylated to obtain 76. Mesylate 76 was transformed into the (- -paroxetine $\mathbf{1}$ through a sequence of usual steps through the intermediacy of ether 77.

Scheme 14. Reagents and conditions: a) Chiral base B , THF, $-78^{\circ} \mathrm{C}$, then $\mathrm{MeO}_{2} \mathrm{CCN}, 71 \%, 97 \%$ ee; b) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux, overnight, 90%; c) MsCl , pyridine, 72%; d) sesamol, $\mathrm{NaOMe}, \mathrm{MeOH}$, reflux, overnight, 55%; e) $\mathrm{CH}_{3} \mathrm{CHClOCOCl}, 0^{\circ} \mathrm{C}$ to r t; f) reflux, 3 h ; g) MeOH, reflux, 2 h ; h) $\mathrm{NaOH}, 54 \%$.
(e) Exploitation of pyridines

Yamada ${ }^{11 \mathrm{a}}$ (Tetrahedron Lett. 2005, 46, 8673-8676)
Yamada and Jahan reported an elegant formal total synthesis of (-)-paroxetine 1 and (+)-femoxetine 2 by using chiral 1,4-dihydropyridines as key intermediates. Addition of a cuprate generated from $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{Li}$ and $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ to a pyridinium salt bearing a chiral auxiliary produced from 78 with $\mathrm{ClCO}_{2} \mathrm{Me}$ gave 1,4 -adduct 79 in 69% yield with 95% de. Removal of the chiral auxiliary was accomplished by treatment with NaOMe in DCM to yield ester $\mathbf{8 0}$ (Scheme 15). Hydrogenation of dihydropyridine $\mathbf{8 0}$ in the presence of PtO_{2} in EtOH proceeded regioselectively to give tetrahydropyridine $\mathbf{8 1}$. When the reduction was allowed to continue for six days, simultaneous reduction of both double bonds in dihydropyridine $\mathbf{8 0}$ proceeded and provided a $4: 1$ mixture of cis- and transpiperidines 82. On the other hand, further reduction of the remaining double bond in $\mathbf{8 1}$ was accomplished by use of $\mathrm{DCM}-\mathrm{AcOH}(4: 1)$ as a mixed solvent to afford a 15:1 mixture of cis- and trans- piperidines $\mathbf{8 2}$.

Isomerization of cis-piperidine $\mathbf{8 2}$ into trans-piperidine $\mathbf{8 2}$ was achieved in quantitative yield by treatment with NaOMe at $50{ }^{\circ} \mathrm{C}$ in PhMe. Reduction of ester $\mathbf{8 2}$ provided alcohol 83, which is the reported precursor of $(-)$-paroxetine 1 . Similar reduction of cis-piperidine 82 afforded cis-alcohol 83 , which was converted to N-Boc derivative $\mathbf{8 4}$.

Scheme 15. Reagents and conditions: a) ClCOR, $\left(p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{~F}\right)_{2} \mathrm{CuLi} \cdot \mathrm{LiBr},-70{ }^{\circ} \mathrm{C}, 78 \%,>99 \% \mathrm{de}$; b) 28% $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{DCM}, \mathrm{rt}, 3 \mathrm{~h}, 71 \%$; c) H_{2} (1 atm), $\mathrm{PtO}_{2}\left(10 \mathrm{Wt} \%\right.$), $\mathrm{EtOH}, 27 \mathrm{~h}, 91 \%$; d) $\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{PtO}_{2}$ (20 Wt \%), EtOH, 6 d, 91%; e) H_{2} (1 atm), $\mathrm{PtO}_{2}\left(10 \mathrm{Wt} \%\right.$), DCM-AcOH, $32 \mathrm{~h} ;$ f) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 4.5 \mathrm{~h}, 82 \%$; g) ref. 12e, 13b.

A formal synthesis of (+)-femoxetine 2 was also accomplished according to a procedure similar to the formal synthesis of $(-)$-paroxetine 1 . This method can provide all the stereoisomers of a 3,4-disubstituted piperidine.

Liu $^{\mathbf{1 1 b}}$ (Heterocycles 1999, 51, 2439-2444)
Liu et. al. reported a synthesis of an intermediate for paroxetine starting from pyridine. Addition of $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$ to the solution of $\mathrm{CuCl}, 1,10-\mathrm{ph}$ enanthroline and the N-acyl pyridinium salt obtained by treatment of methyl nicotinate $\mathbf{8 5}$ with methyl chloroformate afforded the p-fluorophenyl-1,4-dihydropyridine $\mathbf{8 6}$ in 50% yield. Hydrogenation of dihydropyridine under hydrogen atmosphere ($50-60 \mathrm{psi}$) in a warm solution of MeOH-THF (1:1) provided tetrahydropyridine. The unaffected double bond in tetrahydropyridine was then reduced with Mg in MeOH to obtain a cis/trans mixture of piperidine 87. The cis isomer was converted into the trans isomer by treatment with 1 N KOH solution in MeOH . The trans piperidine ester 87 was then hydrolysed with aq. KOH

Formal Total Synthesis of (土)-Paroxetine

solution and N-protected trans piperidine carboxylic acid $\mathbf{8 8}$ was obtained in 70% yield. The carbamate 88 was then hydrolyzed to trans-arylnipetonic acid 89 , which was reduced with NaBH_{4} via its anhydride to obtain 90 or trans ester 87 was reduced to N methylpiperidine carbinol 91 with LiAlH_{4}. Both the intermediates has been converted into (\pm)-paroxetine 1 (scheme 16).

Scheme 16. Reagents and conditions: a) $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{CuCl}, 1,10$-phenanthronine, p-fluorophenylmagnesium bromide, THF, $0-15^{\circ} \mathrm{C}, 16 \mathrm{~h}, 50 \%$; b) H_{2}, ($50-60 \mathrm{psi}$), $10 \% \mathrm{Pd}-\mathrm{C}$, MeOH-THF ($1: 1$), $50^{\circ} \mathrm{C}, 24 \mathrm{~h}, 99 \%$; c) Mg powder, $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then $\mathrm{rt}, 24 \mathrm{~h}$; d) 1 N KOH in MeOH , reflux, $30-40 \mathrm{~min}$; e) 2 N aq. $\mathrm{KOH}, \mathrm{MeOH}, \mathrm{r}$ $\mathrm{t}, 16-24 \mathrm{~h}, 70 \%$; f) 2 N aq. $\mathrm{KOH}, \mathrm{MeOH}$, reflux, $16-24 \mathrm{~h}, 68 \%$; g) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{ClCO}_{2} \mathrm{Bu}, \mathrm{THF},-50$ to $-20^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then NaBH_{4}, water, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88 \%$; h) LiAlH_{4}, THF, reflux, $72 \mathrm{~h}, 80 \%$; i) ref. 12e, 13 b .

(f) Kinetic resolution of intermediate esters

Gotor ${ }^{12, b, \mathbf{c}}$ (Tetrahedron: Asymmetry 2003, 14, 1725-1731; J. Org. Chem. 2003, 68, 3333-3336; J. Org. Chem. 2001, 66, 8947-8953)

Gotor et. al. reported an enzymatic resolution of trans- N-benzyloxycarbonyl-4-(4-fluorophenyl)-3-hydroxymethyl piperidine 92, a chiral intermediate in the synthesis of (-)paroxetine 1, by alkoxycarbonylation with diallylcarbonate 93 using Candida antarctica lipase B (CAL-B) with high enantioselectivity (95% ee) using various organic solvents. Transformation of alcohol $\mathbf{9 2}$ into paroxetine is known in the literature (scheme 17). ${ }^{16}$

Scheme 17. Reagents and conditions: a) CAL-B, organic solvent; b) ref. 16.
Palomo ${ }^{12 \mathrm{da}, \mathrm{e}}$ (Tetrahedron: Asymmetry 2002, 13, 2653-2659; Tetrahedron: Asymmetry 2002, 13, 2375-2381)

Palomo et. al. resolved (\pm)-trans-4-(p-fluorophenyl)-6-oxo-piperidin-3-ethyl carboxylate ($3 S R, 4 S R$)-95 enzymatically using CAL-B into ($3 R, 4 S$)-96 carboxylic acid and $(3 S, 4 R)-95$ (scheme 18), an intermediate for the synthesis of (-)-paroxetine $1 .{ }^{15}$

Scheme 18. Reagents and conditions: a) CAL-A, $\mathrm{H}_{2} \mathrm{O} ;$ b) ref. 15.

(g) Optical resolution of piperidine derivatives

Nemes ${ }^{13}$ (Eur. J. Org. Chem. 2004, 3336-3339)

Nemes's simple, practical and effective strategy for the stereoselective synthesis of (-)-paroxetine 1 is depicted in Scheme 19. Grignard reaction of $p-\mathrm{FC}_{6} \mathrm{H}_{6} \mathrm{MgBr}$ with 1-benzyl-4-piperidone 97 afforded alcohol 98 . N-benzyl-tetrahydropyridine derivative 99 was isolated as p-toluenesulfonate in 73% yield, after dehydration of 98 with PTSA. Prins reaction of $\mathbf{9 9}$ furnished racemic tetrahydropyridine-3-methanol rac-100 in 59% yield. Resolution of the rac-100 provided (-)-100 in 41\% yield. Stereoselective reduction of (-)100 on Pd / C catalyst, with the retention of the N-benzyl protective group, led to cis-piperidine-3-methanol $(3 R, 4 R)$-101. Final enantiomeric purity was ensured by repeated

Formal Total Synthesis of (土)-Paroxetine

crystallization as the L-dibenzoyltartrate salt in 78% yield. The cis-amino alcohol methanesulfonate derivative $\mathbf{1 0 2}$ was then obtained in 97% yield with MsCl . Reaction of 102 with sesamol in xylene in the presence of NaOH resulted in the formation of trans- N benzylparoxetine 103. Hydrogenolysis of 103 then completed the synthesis of (-)paroxetine $\mathbf{1}$ in 90% yield.

Scheme 19. Reagents and conditions: a) p- $\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$, THF/PhMe; b) PTSA, $\mathrm{ClC}_{6} \mathrm{H}_{5}$, reflux; (c) $\mathrm{CH}_{2} \mathrm{O}$, $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$; d) (-)-dibenzoyltartaric acid/acetone; e) (i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{AcOH}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, 4{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$; (iii) (-)-dibenzoyltartaric acid, acetone; (f) $\mathrm{MsCl}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$; (g) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, xylene, $s \mathrm{BuOH}$, $140^{\circ} \mathrm{C}$; (h) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, i \mathrm{PrOH}, 40^{\circ} \mathrm{C}, 5 \times 10^{5} \mathrm{~Pa}$.

Itaya ${ }^{4}$ (Chem. Pharm. Bull. 2000, 48, 529-536)
Itaya et. al. reported a convenient synthesis of paroxetine hydrochloride from p fluorobenzaldehyde 104 involving optical resolution. Methyl p-fluorophenyl cinnamate 105 was prepared from p-fluorobenzaldehyde 104 and MeOAc in the presence of NaOMe . Methyl cyanoacetate was subsequently added to the reaction mixture to afford dimethyl 2-cyano-3-(p-fluorophenyl) glutarate 106 in 79% yield.

Compound 106 was hydrogenated using Ra-Co to give (\pm)-cis,trans-4-(p-fluorophenyl)-5-methoxycarbonylpiperidine-2-one 107 in 90% yield, which was further treated with NaOMe to give trans-107 isomer. Compound $\mathbf{1 0 7}$ was reduced with LiAlH_{4} to give ($3 S R, 4 S R$)-trans-4-(p-fluorophenyl)-3-hydroxymethylpiperidine $\mathbf{1 0 8}$ in 83% (from 106). The racemic alcohol was optically resolved using L-o-chlorotartranilic acid to give salt of (3S,4R)-trans-4-(p-fluorophenyl)-3-hydroxymethyl piperidine 108. The amino alcohol 108 was protected as its Boc derivative in $\mathrm{PhMe} / \mathrm{H}_{2} \mathrm{O}$ and the free alcohol was

Formal Total Synthesis of (土)-Paroxetine

mesylated to obtain $\mathbf{1 0 9}$, which was subsequently reacted with sesamol to give N-Boc paroxetine 110. Compound 110 was dissolved in IPA and HCl was introduced to the solution to obtain paroxetine hydrochloride IPA solvate crystals 111 (scheme 20).

Scheme 20. Reagents and conditions: a) MeOAc, NaOMe , b) $\mathrm{CNCH}_{2} \mathrm{CO}_{2} \mathrm{Me}, 79 \%$; c) $\mathrm{H}_{2}, \mathrm{Ra}-\mathrm{Co}, 90 \%$; d) NaOMe ; e) LiAlH_{4}; f) L-o-chlorotartranilic acid; g) $(\mathrm{Boc})_{2} \mathrm{O}$; h) MsCl ; i) NaOMe , sesamol; j) $\mathrm{HCl} / \mathrm{IPA}$.
(h) Miscellaneous

Chang ${ }^{14 \mathrm{a}}$ (Tetrahedron 2003, 59, 9383-9387)

Scheme 21. Reagents and conditions: a) $\mathrm{NaH},(E)$-ethyl-3-(p-fluorophenyl) acrylate 113, THF, 75%; b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{3} \mathrm{~N}$, THF, reflux, $3 \mathrm{~h}, 76 \%$; c) $\mathrm{Na}-\mathrm{Hg}$, $\mathrm{MeOH}, 90 \%$; d) ref. 7 h .

Chang et. al. reported a formal synthesis of (\pm)-paroxetine 1 employing their methodology for the preparation of 4 - or 5 -substituted 3 -sulfonyl- δ-lactams via regioselective reduction of N-alkyl-3-sulfonyl glutarimides. Michael addition of compound 112 to (E)-ethyl-3-(p-fluorophenyl) acrylate $\mathbf{1 1 3}$ provided N-benzyl-3-sulfonyl glutarimide 114 (scheme 21). Compound 114 was reduced with LiAlH_{4} in refluxing THF in the

Formal Total Synthesis of (土)-Paroxetine

presence of $\mathrm{Et}_{3} \mathrm{~N}$ to give the corresponding δ-lactam 115 in 76% yield. Reductive desulfonylation of $\mathbf{1 1 5}$ with sodium amalgam in MeOH solution furnished 116 in 90% yield, whose conversion into (\pm)-paroxetine $\mathbf{1}$ is reported.

Correia ${ }^{\text {14b }}$ (Org. Lett. 2006, $8,1657-1660$)

Scheme 22. Reagents and conditions: a) p-fluorobenzenetetrafluoroborate, $\mathrm{Pd}(\mathrm{OAc})_{2}$, ($10 \mathrm{~mol} \%$), AcOH$\mathrm{H}_{2} \mathrm{O}, \mathrm{r} \mathrm{t}, 4 \mathrm{~h}, 74 \%$; b) $\mathrm{Mg} / \mathrm{MeOH}$, ultrasound, $24 \mathrm{~h}, 100 \%$; c) $\mathrm{MeONa}, \mathrm{MeOH}$, reflux; d) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux, 56%.

Correia and Jahan reported the first synthesis of (\pm)-paroxetine 1 employing Heckchemistry for formation of bond between piperidine nucleus and aromatic ring. Heck arylation of olefin 117 with p-fluorobenzenetetrafluoroborate using $\operatorname{Pd}(\mathrm{OAc})_{2},(10 \mathrm{~mol} \%)$ in $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ system afforded compound 118 in 74% yield. Ester 118 was efficiently reduced with Mg in MeOH to give a diastereomeric mixture of cis- and trans-4-(4-fluorophenyl)-piperidine-1,3-dicarboxylic acid dimethyl esters 119 in quantitative yields in a ratio of 75:25. Equilibration to the thermodynamically more stable trans isomer $\mathbf{1 2 0}$ was accomplished by refluxing the stereoisomeric mixture with NaOMe in $\mathrm{MeOH}(68 \%$ yield). Reduction of $\mathbf{1 2 0}$ with LiAlH_{4} gave a known intermediate $\mathbf{6 8}$ in 80% yield (Scheme 22).

An alternative synthesis of (\pm)-paroxetine $\mathbf{1}$ has also been reported by Correia and Jahan The cis-trans mixture of 4-(p-fluorophenyl)-piperidine-1,3-dicarboxylic acid dimethyl esters $\mathbf{1 1 9}$ was equilibrated to the trans isomer $\mathbf{1 2 0}$ using 1 M KOH in methanol under reflux for 40 min . In the sequence, the solvent was evaporated and the mixture was
hydrolyzed using aq. 2 M KOH at room temperature for 12 h , furnishing the expected carboxylic acid $\mathbf{1 2 1}$ in 64% yield. Reduction of $\mathbf{1 2 1}$ with BMS gave the primary alcohol $\mathbf{1 2 2}$ in 82% yield. Alcohol $\mathbf{1 2 2}$ was then converted into mesylate, and the mesyl group was replaced with sesamol. Basic hydrolysis of the carbamate with methanolic KOH under reflux gave (\pm)-paroxetine 1 in 73% yield (scheme 23).

Scheme 23. Reagents and conditions: a) 2 M aq. $\mathrm{KOH}, \mathrm{rt}, 12 \mathrm{~h}, 64 \%$; b) BMS, THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 16 \mathrm{~h}, 82 \%$; c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}, 45 \mathrm{~min}$; d) sesamol, NaH , DMF , reflux, 3 h , then, rt, $12 \mathrm{~h}, 56 \%$; e) $\mathrm{KOH}, \mathrm{MeOH}$, reflux, $6 \mathrm{~d}, 73 \%$.

Ihara ${ }^{14 \mathrm{c}}$ (J. Org. Chem. 2005, 70, 3957-3962)

Scheme 24. Reagents and conditions: a) TBSOTf, $\mathrm{NEt}_{3}, t \mathrm{BuOH}, \mathrm{EDC}, \mathrm{r}$; b) $\mathrm{NaOMe}, \mathrm{MeOH}-\mathrm{PhMe}$, reflux (58% for 2 steps); c) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux, quantitative; d) ref. 7 h .

Ihara et. al. demonstrated application of their intermolecular aza-double Michael methodology leading to functionalized piperidin-2-ones for the synthesis of paroxetine and two other alkaloids. The sequence employed to prepare paroxetine 1, as outlined in Scheme 24 , started with reaction of the unsaturated amide $\mathbf{1 2 3}$ with methyl acrylate in the presence of TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}$, and $t \mathrm{BuOH}$ in DCE to provide a mixture of trans- and cis-3,4disubstituted piperidinones 124, which was treated with NaOMe to afford trans-124 in 58% overall yield (for 2 steps). Reduction of trans- $\mathbf{1 2 4}$ with LiAlH_{4} quantitatively furnished the known pipereidinol $\mathbf{9 b}$, whose transformation into paroxetine $\mathbf{1}$ has been reported in the literature.

1.2.5. Present Work

Due to their unique biological properties, the piperidines have long been target molecules in organic synthesis. Most of the reported syntheses of paroxetine 1 suffer from low efficiency and/or lenghthy sequence. Therefore, interest of the pharmaceutical industry in the manufacture of this drug requires the development of new synthetic methods amenable to large scale preparation.

In connection with an ongoing programme on the synthesis of biologically active compounds, especially antidepressant compounds, we have recently developed a technically and economically viable protocol ${ }^{17}$ for the synthesis of antidepressant drug venlafaxine (section 1). Our interest in development of practical routes for such molecules, prompted us to undertake synthesis of another highly active antidepressant drug paroxetine 1.

Among the palladium-catalyzed C-C couplings, Heck reaction holds a prominent position due to its exceptional versatility, thus allowing ingenious applications in the total synthesis of complex organic structures. Although organic synthesis is enormously benefited by Heck chemistry, ${ }^{18-22}$ surprisingly, when the synthesis of paroxetine was undertaken not a single approach was reported until very recently. ${ }^{14 \mathrm{~b}}$ During the course of synthetic endeavor of paroxetine, Heck protocol was reported to construct 4-arylpiperidine system forging a bond between C-4 of piperidine nucleus and aryl moiety. Reluctance to such approach may be attributable to the resistance of such complex acrylates to undergo arylation resulting in low conversions or yields of the desired Heck-adducts, posing a serious drawback. Accompanying decomposition or polymerization or side reactions under the harsh reaction conditions generally employed for such substrates could be other possible factors. We investigated our synthetic plan employing traditional, commercially available halide viz. p-fluorobromobenzene as the coupling partner as compared to the p fluorobenzenediazonium tetrafluoroborate salt recently reported in the literature.

1.2.5.1. Retrosynthetic analysis

Retrosynthetic analysis revealed that the target molecule $\mathbf{1}$ could be obtained from amino alcohol 125, which in turn could be derived from aminoester 126, which could be presumably built from the olefin 127 and p-fluorobromobenzene 128 employing Heck

Formal Total Synthesis of (土)-Paroxetine

reaction. Olefin 127 could be conveniently prepared from the commercially available materials viz. methyl acrylate $\mathbf{1 2 9}$ and $\mathrm{BnNH}_{2} \mathbf{1 3 0}$ (scheme 25).

Paroxetine 1

125

126
$\mathrm{BnNH}_{2}+$ 130

129

127

128

Scheme 25. Retrosynthetic analysis.

1.2.5.2. Results and discussion

Olefin $\mathbf{1 2 7}$ was obtained from methyl acrylate $\mathbf{1 2 9}$ and benzylamine $\mathbf{1 3 0}$ as follows. A neat mixture of methyl acrylate $\mathbf{1 2 9}$ and $\mathrm{BnNH}_{2} \mathbf{1 3 0}$ was refluxed in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to furnish double Michael adduct 131 in 90% yield (scheme 26). ${ }^{23}$

IR spectrum of compound 131 showed an absorption at $1733 \mathrm{~cm}^{-1}$ characteristic of ester function. ${ }^{1} \mathrm{H}$ NMR spectrum compound 131 showed a multiplet at δ 7.25-7.34 revealing aromatic protons $(5 \mathrm{H})$. The singlet at $\delta 3.68$ revealed six protons corresponding to two ester methoxy groups $(6 \mathrm{H})$. The singlet at $\delta 3.63$ suggested presence of the benzylic protons. Two triplets at $\delta 2.84$ and 2.50 corresponded to the remaining 8 protons. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 3 1}$ showed signal at $\delta 172.3$ characteristic of ester function. The signals at $\delta 138.7,128.5,128.0,126.9$ revealed the aromatic carbons. Benzylic carbon appeared at $\delta 58.2$. Signal at $\delta 51.1$ indicated methoxy methyl carbon. Remaining four carbons appeared at $\delta 49.01,32.4$. Further, mass spectrum of compound $\mathbf{1 3 1}$ showed a signal at 279 revealing M^{+}confirming its molecular formula.

Ar = p-fluorobenzene

Scheme 25. Reagents and conditions: a) $\mathrm{Et}_{3} \mathrm{~N}$, reflux, overnight, 90%; b) $\mathrm{NaH}, \mathrm{PhH}$, reflux, $3 \mathrm{~h}, 82 \%$; c) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{~h} ; \mathrm{d}$) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$ to r , overnight, 75% (for two steps); e) $\operatorname{Pd}(\mathrm{OAc})_{2}$ or $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NBr}, 120^{\circ} \mathrm{C}, 2 \mathrm{~d}$.

Compound 131 was further subjected to Dieckmann condensation using NaH in refluxing benzene to give ketoester 132 in 82% yield, which existed as a mixture of tautomers $\mathbf{1 3 2}$ and 133. ${ }^{23,24}$

IR spectrum of the tautomers ($\mathbf{1 3 2}$ and 133) showed an absorption at $3368 \mathrm{~cm}^{-1}$ corresponding to enolic OH and absorptions at 1748 and $1718 \mathrm{~cm}^{-1}$ characteristic of β ketoester. ${ }^{1} \mathrm{H}$ NMR spectrum of β-ketoester 132 (and 133) revealed a broad singlet at δ 11.96 characteristic of intramolecularly hydrogen bonded enolic proton. The multiplet at δ 7.29-7.37 revealed presence of five aromatic protons. The singlet at $\delta 3.77$ revealed methoxy protons $(3 \mathrm{H})$. The singlet at $\delta 3.67$ was attributed to benzylic protons $(2 \mathrm{H})$. The remaining protons appeared at $\delta 3.21,2.93,2.65,2.44 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 132 revealed a signal at δ 203.2, characteristic of carbonyl carbon. Ester carbonyl carbon appeared at $\delta 171.1$. Aromatic and two olefinic carbons appeared at $\delta 170.3,168.9,137.9$, 137.6, 128.8, 128.6, $128.24,128.20,127.3,127.1$ and 96.4. The benzylic carbon appeared at $\delta 62.0$. The signal at $\delta 61.5$ was attributed to $\mathrm{C}-2$. The signals at $\delta 56.3$ and 54.9 were assigned to methoxy carbons. Other carbons appeared at $\delta 53.0,51.9,51.1,49.8,48.6$, 40.5, 29.3. Mass spectral analysis revealed a signal at $247\left(\mathrm{M}^{+}\right)$confirming the assigned structure.

Ketoester $\mathbf{1 3 2}$ was reduced with NaBH_{4} in MeOH at $0^{\circ} \mathrm{C}$ and the resultant alcohol 134 was mesylated in DCM, which underwent concomitant elimination to afford the desired olefin 127 in 75% yield (scheme 25).

IR spectrum of compound 127 revealed absorption at $1714 \mathrm{~cm}^{-1}$ characteristic of α, β-unsaturated ester. ${ }^{1} \mathrm{H}$ NMR spectrum of olefin 127 showed a multiplet at $\delta 7.34-7.40$ in the aromatic region $(5 \mathrm{H})$. Multiplet at $\delta 7.04-7.07$ was ascribed to olefinic proton. The singlet at $\delta 3.76$ was due to methoxy protons. Benzylic protons appeared at $\delta 3.71$ while the remaining protons resonated at $\delta 3.29,2.59,2.33-2.43 .{ }^{13} \mathrm{C}$ NMR spectrum showed a signal at $\delta 166.3$ characteristic of α, β-unsaturated ester function. Aromatic and olefinic carbon appeared at $\delta 138.0,137.8,129.1,128.9,128.3,127.2$. The signal at $\delta 62.3$ revealed benzylic carbon. Remaining three carbons $\left(\mathrm{CH}_{2}\right)$ appeared at $\delta 51.5,48.2$, 26.4. Molecular formula $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ was further confirmed by its MS spectrum, which showed a signal at 233 correponding to M^{+}.

Feasibility of the Heck reaction was tested under various conditions. Arylation of the olefin $\mathbf{1 2 7}$ to p-fluorophenyl piperidine $\mathbf{1 3 5}$ using $\mathrm{Pd}(\mathrm{OAc})_{2}$ was not successful in various solvents like DMF, MeOH or $\mathrm{CH}_{3} \mathrm{CN}$ in the presence or absence of TBAB using various bases like $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}$ etc. Even $\mathrm{Pd}_{(}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$ was not able to bring about arylation under aforementioned reaction conditions. Also, subjection of the olefin 127 as per procedure reported by Correia et. al. ${ }^{3 a}$ employing traditional commercially available electrophile p-fluorobromobenzene did not furnish expected Heck adduct 135 (scheme 25).

Benzyl protection of the acrylate was then exchanged with methyl carbamate with $\mathrm{ClCO}_{2} \mathrm{Me}$ using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DCM at room temperature to obtain compound 136 in 80% yield.

IR spectrum of compound 136 showed a broad absorption at $1704 \mathrm{~cm}^{-1}$ due to carbamate and ester merging together. ${ }^{1} \mathrm{H}$ NMR spectrum of carbamate $\mathbf{1 3 6}$ exhibited a multiplet at δ 7.05-7.09 corresponding to olefinic proton. The downfield appearance of this signal indicated that its position is β to the electron withdrawing group i.e., ester function. Benzylic protons appeared at $\delta 4.16$ as a doublet. Two singlets at $\delta 3.76$ and 3.73 revealed carbamate and ester methoxy groups. Remaining four protons appeared at $\delta 3.53$ as a triplet and a multiplet at $\delta 2.28-2.38 .{ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 165.1$ and 155.6 corresponding to ester and carbamate carbonyls. The olefinic carbons appeared at $\delta 137.5$ and 128.0. The ester and carbamate methoxy carbons resonated at $\delta 52.4$ and 51.4. The

Formal Total Synthesis of (土)-Paroxetine

three signals that appeared at $\delta 42.4,39.2,25.1$ were assigned to CH_{2}. MS spectrum of compound 136 showed a signal at 199 corresponding to M^{+}further confirming its molecular formula.

Scheme 26. Reagents and conditions: (a) $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{NaHCO}_{3}, \mathrm{DCM}, \mathrm{rt}, 24 \mathrm{~h}, 80 \%$; (b) 128, $\mathrm{Pd}_{\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \text {, }}$ $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NBr}, 120^{\circ} \mathrm{C}, 2 \mathrm{~d}, 45 \%$; (c) $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DCM}$, r t, overnight, 85%; d) ref $11 \mathrm{~b}, 12 \mathrm{e}, 14 \mathrm{~b}$; e) ref 11a.

Having obtained the carbamate 136, it was subjected to Heck reaction. Delightfully, carbamate $\mathbf{1 3 6}$ underwent arylation smoothly under solvent free conditions in TBAB melt and this was accompanied by concomitant unmasking of the carbamate protection to furnish free amine 137, albeit in moderate yields (scheme 26).

IR spectrum of compound 137 showed an absorption at $3467 \mathrm{~cm}^{-1}$ revealing the presence of amine function and the absorption at $1682 \mathrm{~cm}^{-1}$ characteristic of α, β unsaturated ester. ${ }^{1} \mathrm{H}$ NMR spectrum of 137 showed signal at $\delta 7.72$ corresponding to olefinic proton. Four aromatic protons appeared as two multiplets at $\delta 7.11-7.15$ and 6.936.97. The broad singlet at $\delta 4.76$ was attributed to benzylic protons. The methoxy protons resonated at $\delta 3.58$. The signals at $\delta 3.99(\mathrm{~d}, 1 \mathrm{H}), 3.10-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dt}, 1 \mathrm{H}), 1.93-$ $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dd}, 1 \mathrm{H})$ matched well with the remaining protons. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 137 showed a signal at $\delta 168.6$ revealing ester function. The aromatic carbons appeared at $\delta 161.3$ corresponding to carbon proximal to F. ortho carbons appeared at δ 114.7. Signal at $\delta 129.0$ corresponded to meta carbons. Quaternary aromatic carbon was observed at δ 142.0. Signals at $\delta 143.9$ and 95.9 corresponded to olefinic carbons. Methoxy carbon appeared at $\delta 50.5$. The benzylic carbon appeared at $\delta 35.5$ and the two CH_{2}

Formal Total Synthesis of (土)-Paroxetine

appeared at $\delta 36.0$ and 28.9. Further assigned structure was confirmed by Mass spectral analysis and single crystal X-ray diffraction pattern.

Figure 2. ORTEP representation of compound 137.
Transformation of amine 137 into paroxetine is known in the literature. ${ }^{11 a}$ Also, carbamate derivative of amine $\mathbf{1 3 7}, \mathbf{1 3 8}$ was prepared, which is a known intermediate in the synthesis of paroxetine. ${ }^{11 b, 12 e, 14 b}$ Thus, formal total synthesis of (\pm)-paroxetine $\mathbf{1}$ was accomplished in overall six steps.

1.2.5.3. Conclusion

Formal total synthesis of (\pm)-paroxetine has been accomplished employing Heck reaction utilising traditional commercially available p-fluorobromobenzene as compared to p-fluorobenzenediazonium tetrafluoroborate salt employed in literature synthesis with comparable 20% overall yield in six steps, under solvent free conditions.

1.2.9. Experimental

Dimethyl 3,3'-(benzylazanediyl) dipropanoate (131)

A neat mixture of methyl acrylate $129(63 \mathrm{ml}, 0.70 \mathrm{~mol})$ and $\mathrm{BnNH}_{2} \mathbf{1 3 0}(25 \mathrm{~g}, 0.23 \mathrm{~mol})$ was refluxed in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ $(65 \mathrm{ml}, 0.46 \mathrm{~mol})$ overnight. Excess methyl acrylate was distilled off, the residue was taken in EtOAc and washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Solvent removed under reduced pressure. The resultant oil was chromatographed over silica gel using EtOAc-pet ether to furnish Michael adduct 131 as a yellow oil (58.67 g).

Molecular formula
Yield : 90\%
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathbf{)} \quad: 3022,2953,2835,1733,1495,1454,1438,1356,1333$, 1216, 1176, 1129, 1045, 846, 757, 699, $668 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 7.25-7.34(\mathrm{~m}, 5 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=$ $7.07 \mathrm{~Hz}, 4 \mathrm{H}), 2.50(\mathrm{t}, J=7.07 \mathrm{~Hz}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta 172.3,138.7,128.5,128.0,126.9,58.2,51.1,49.01,32.4$
MS (EI) $\boldsymbol{m} / \boldsymbol{z} \quad: 302(\mathrm{M}+\mathrm{Na}), 280(\mathrm{M}+1), 266,206,194$.

Methyl 1-benzyl-4-oxopiperidine-3-carboxylate (132) and methyl 1-benzyl-4-hydroxy-1,2,5,6-tetrahydropyridine-3-carboxylate (133)

To a suspension of $\mathrm{NaH}(5.38 \mathrm{~g}, 0.13 \mathrm{~mol})$ in benzene, a solution of Michael adduct $131(25 \mathrm{~g}$, 0.09 mol) in PhH was added drop-wise and refluxed for 3 hours. The reaction mixture was allowed to cool and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with ethyl acetate, washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Column chromatographic separation over silica gel (EtOAc- pet ether) afforded ketoester, as a pale yellow oil (18.15 g), which exists as a mixture of tautomers 132 and 133.

Molecular formula	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}$
Yield	: 82\%
IR (CHCl_{3})	: 3368, 3020, 1748, 1718, 1667, 1623, 1445, 1366, 1308, 1237, 1216, 1121, 1061, 756, 700, $669 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR (200 MH	$\begin{aligned} & \text { : } \delta 11.96(\mathrm{bs}, 0.61 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 5 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67 \\ & (\mathrm{~s}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 1.58 \mathrm{H}), 2.27-3.14(\mathrm{~m}, 1.30 \mathrm{H}), 2.65(\mathrm{q}, J= \\ & 5.68 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=5.68 \mathrm{~Hz}, 1.62 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (100 MH	$\begin{aligned} & : \delta 203.2,171.1,170.3,168.9,137.9,137.6,128.8,128.6, \\ & 128.24,128.20,127.3,127.1,96.4,62.0,61.5,56.3,54.9, \\ & 53.0,51.9,51.1,49.8,48.6,40.5,29.3 \end{aligned}$
MS (EI) m / z	: 248 (M+1), 246, 218, 216, 214, 194.

Methyl 1-benzyl-1,2,5,6-tetrahydropyridine-3-carboxylate (127)

To a solution of β-ketoester $132(12.6 \mathrm{~g}, 0.05 \mathrm{~mol})$ in $\mathrm{MeOH}, \mathrm{NaBH}_{4}$ $(0.97 \mathrm{~g}, 0.03 \mathrm{~mol})$ was added in portions at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 2 hours. MeOH was removed on rotavapor, water was added to it and extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to furnish a faint yellow syrup. To the solution of this syrup in $\mathrm{DCM}, \mathrm{Et}_{3} \mathrm{~N}(10.65 \mathrm{ml}, 0.08 \mathrm{~mol})$ was added and cooled to $0^{\circ} \mathrm{C}, \mathrm{MsCl}(4.35 \mathrm{ml}$, 0.05 mol) was added drop-wise via syringe at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm gradually and left overnight. It was observed that the mesylate was formed smoothly and subsequently underwent elimination under reaction conditions to afford the desired olefin. The reaction mixture was washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was filtered and concentrated under reduced pressure and the resultant residue was chromatographed over silica gel to furnish olefin 127 as a pale yellow syrup (8.84 g).

Molecular formula $\quad: \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$
Yield $\quad: 75 \%$ (for 2 steps)
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathbf{~} \quad: 3025,2922,2809,1714,1658,1438,1365,1268,1217$,

$$
1126,1055,1045,970,755,721,699,667 \mathrm{~cm}^{-1}
$$

${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 7.34-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.71$
($\mathrm{s}, 2 \mathrm{H}), 3.29(\mathrm{q}, J=2.78,2 \mathrm{H}), 2.59(\mathrm{t}, J=5.68 \mathrm{~Hz}, 2 \mathrm{H})$, 2.33-2.43 (m, 2H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 166.3,138.0,137.8,129.1,128.9,128.3,127.2,62.3$, 51.5, 48.2, 26.4

MS (EI) m / z
: $233\left(\mathrm{M}^{+}\right), 218,203,199$
Analysis
: Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$; C-72.70, H-7.41, N-6.06 found C-72.55, H-7.32, N-5.98

Dimethyl 5,6-dihydropyridine-1,3(2H)-dicarboxylate (136)

To a mixture of olefin $127(2.5 \mathrm{~g}, 0.011 \mathrm{~mol})$ and $\mathrm{NaHCO}_{3}(0.455 \mathrm{~g}$, $0.005 \mathrm{~mol})$ in $\mathrm{DCM}, \mathrm{ClCO}_{2} \mathrm{Me}(1.534 \mathrm{~g}, 0.016 \mathrm{~mol})$ was added dropwise at $0^{\circ} \mathrm{C}$ and stirred at room temperature for 24 hours. The reaction mixture was washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Column chromatographic separation $\left(\mathrm{SiO}_{2}\right)$ using EtOAc-pet ether gave a faint yellow syrup (1.83 g).

Molecular formula	: $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4}$
Yield	: 85\%
IR ($\mathbf{C H C l}_{3}$)	$\begin{aligned} : & 3020,2955,2926,1704,1656,1627,1449,1412,1343 \\ & 1289,1238,1217,1191,1123,1092,1052,756,668 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (200 MH	$\begin{gathered} : \delta 7.05-7.09(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=2.27 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) \\ 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, J=5.69 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.38(\mathrm{~m}, 2 \mathrm{H}) \end{gathered}$
${ }^{13} \mathrm{C}$ NMR (100 MH	165.1, 155.6, 137.5, 52.4, 51.4, 42.4, 39.2, 25.1
MS (EI) $\boldsymbol{m} / \boldsymbol{z}$	$\begin{aligned} & : 221(\mathrm{M}+\mathrm{Na}), 199\left(\mathrm{M}^{+}\right), 197,181,179,157,137,151,129 \\ & 123 \end{aligned}$
Analysis	: Calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4} ; \mathrm{C}-54.26, \mathrm{H}-6.58, \mathrm{~N}-7.03$ found C-54.02, H-6.35, N-6.78

Methyl 4-(4-fluorophenyl)-1,4,5,6-tetrahydropyridine-3-carboxylate (137)

A mixture of olefin $\mathbf{1 3 5}(1 \mathrm{~g}, 5.024 \mathrm{mmol})$, p-fluorobromobezene $\mathbf{1 2 8}$ $(1.76 \mathrm{~g}, 10.05 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(0.58 \mathrm{~g}, 10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.386 \mathrm{~g}$, $10.05 \mathrm{mmol})$ and TBAB ($2.33 \mathrm{~g}, 10.05 \mathrm{mmol}$) was heated at $120^{\circ} \mathrm{C}$ under argon atmosphere for 2 days. The reaction mixture was allowed to cool, water was added to it and extracted with EtOAc, washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and the solvent was evaporated in vacuo. Column chromatographic purification $\left(\mathrm{SiO}_{2}\right)$ using EtOAc-pet ether furnished amine 137 as a colourless solid $(0.531 \mathrm{~g})$.

Molecular formula	: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FNO}_{2}$
Yield	: 45\%
Mp	: $156-8^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$)	$\begin{aligned} : & 3467,3019,1682,1626,1506,1438,1353,1314,1284, \\ & 1216,1108,1070,930,757,669 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (400 MH	$\begin{aligned} & \delta 7.72(\mathrm{~d}, J=6.27 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.97 \\ & (\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{bs}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=4.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, \\ & 3 \mathrm{H}), 3.10-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=3.26 \mathrm{~Hz} \text { and } 13.05 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=2.26 \mathrm{~Hz} \text { and } 13.05 \mathrm{~Hz} \text {, } \\ & 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (100 MH	$\begin{aligned} & \delta 168.6(\mathrm{C}), 161.3,143.9(\mathrm{CH}), 142.0(\mathrm{C}), 129.0(\mathrm{C}-\text { meta }), \\ & 114.7(\mathrm{C}-\text { ortho }), 95.9(\mathrm{C}), 50.5\left(\mathrm{CH}_{3}\right), 36.0\left(\mathrm{CH}_{2}\right), 35.5 \\ & (\mathrm{CH}), 28.9\left(\mathrm{CH}_{2}\right) \end{aligned}$
MS (EI) m/z	: $235\left(\mathrm{M}^{+}\right.$), 221, 201, 199, 195, 187, 157, 130, 102.
Analysis	: calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FNO}_{2}$; C-66.37, H-6.00, F-8.08, N5.95 found C-66.25, H-5.82, F-7.88, N-9. 45

Crystal data of compound 137 : Empirical formula- $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FNO}_{2}$; Formula weight235.25; Temperature-297(2) K; Wavelength- $0.71073 \AA$; Crystal system, space groupOrthorhombic, Pbca; Unit cell dimensions- $\mathrm{a}=9.173(2) \AA \alpha=90^{\circ}$., $\mathrm{b}=13.436(3) \AA \beta=$ 90°., $\mathrm{c}=19.662(4) \AA \gamma=90^{\circ}$.; Volume- 2423.3(9) $\AA^{3} ; \mathrm{Z}$, Calculated density- $8,1.290$ $\mathrm{Mg} / \mathrm{m}^{3}$; Absorption coefficient- $0.097 \mathrm{~mm}^{-1} ; \mathrm{F}(000)-992$; Crystal size- $0.53 \times 0.44 \times 0.30$ mm ; Theta range for data collection- 2.88 to 25.00°; Limiting indices- $-10<=\mathrm{h}<=10$, -
$15<=\mathrm{k}<=15,-23<=\mathrm{l}<=21$; Reflections collected/unique- 11343/2129 [R(int) $=0.0203]$; Completeness to theta $=25.00^{\circ}-100.0 \%$; Absorption correction- Semi-empirical from equivalents; Max. and min. transmission- 0.9714 and 0.9503 ; Refinement method- Fullmatrix least-squares on F^{2}; Data/restraints/parameters- 2129/0/155; Goodness-of-fit on F^{2} 1.133; Final R indices [I>2sigma(I)]- R1 $=0.0475$, wR2 $=0.1227$; R indices (all data)$R 1=0.0556, w R 2=0.1273$; Largest diff. peak and hole- 0.167 and $-0.132 \mathrm{e} . \AA^{-3}$.

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for compound 137.

$\mathrm{F}(1)-\mathrm{C}(11)$	$1.356(3)$
$\mathrm{O}(1)-\mathrm{C}(6)$	$1.222(2)$
$\mathrm{O}(2)-\mathrm{C}(6)$	$1.342(2)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.440(3)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.332(3)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.443(3)$
$\mathrm{N}(1)-\mathrm{H}(1)$	0.8600
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.359(3)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.440(3)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.505(3)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9300
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.508(3)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9700
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9700
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.541(3)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9700
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9700
$\mathrm{C}(5)-\mathrm{C}(8)$	$1.526(3)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9600
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9600
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9600
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.372(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.380(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.385(3)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9300
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.364(4)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9300
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.352(4)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.386(3)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9300
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9300
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(7)$	$116.56(17)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$119.90(18)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{H}(1)$	120.1
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{H}(1)$	120.1
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120.84(19)$

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	120.45(18)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)$	118.52(16)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	124.3(2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	117.9
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	117.9
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	109.8(2)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.7
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.7
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.7
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.7
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	110.81(18)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.1
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(8)$	115.26(16)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	108.97(16)
$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{C}(4)$	111.27(17)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	107.0
$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{H}(5)$	107.0
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	107.0
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{O}(2)$	120.95(19)
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(1)$	124.4(2)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(1)$	114.64(16)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$	117.9(2)
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(5)$	123.12(18)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(5)$	118.94(19)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.5(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.3
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.3
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	118.1(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.9
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.9
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{F}(1)$	119.6(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	122.5(2)
$\mathrm{F}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	117.9(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	118.5(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.8
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.8
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	121.5(2)
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{H}(13)$	119.2
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.2

Torsion angles [${ }^{\circ}$] for compound 137.

$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$3.0(3)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$-179.44(19)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$5.7(3)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$-34.9(3)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-107.7(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(8)$	$77.2(2)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(8)$	$18.1(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$-156.89(18)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$-48.8(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$79.4(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	$-0.5(3)$
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{O}(1)$	$-179.05(19)$
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(1)$	$-175.3(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{O}(1)$	$-0.3(3)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{O}(1)$	$3.2(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{O}(2)$	$178.22(17)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{O}(2)$	$12.6(3)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(13)$	$-112.1(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(13)$	$-168.91(17)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(9)$	$66.4(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(9)$	$-0.2(3)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-178.79(19)$
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$0.0(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$0.0(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$179.21(19)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{F}(1)$	$-179.0(2)$
$\mathrm{F}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$0.2(4)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$0.4(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$178.9(2)$
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$-0.4(4)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	

Dimethyl 4-(4-fluorophenyl)-5,6-dihydropyridine-1,3(4H)-dicarboxylate (138)

To a mixture of amine $\mathbf{1 3 7}(0.300 \mathrm{~g}, 1.28 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.352 \mathrm{~g}$, $2.55 \mathrm{mmol})$ in $\mathrm{DCM}, \mathrm{ClCO}_{2} \mathrm{Me}(0.145 \mathrm{~g}, 1.54 \mathrm{mmol})$ was added dropwise at room temperature and stirred overnight. The reaction mixture was then washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the DCM was evaporated in vacuo. The residue was chromatographed over silica gel using ethyl acetate-pet ether (2:8) to furnish a colourless oil $(0.318 \mathrm{~g})$.

Molecular formula	: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}_{4}$
Yield	: 85\%
IR	: 3109, 2998, 1728, 1633, 1597, 1439, 1244, 1172, $768 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR(200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) :	$\begin{aligned} & : \delta 8.28(\mathrm{bs}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=5.78 \mathrm{~Hz} \text { and } 8.79 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 6.93(\mathrm{t}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{bs}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), \\ & 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{t}, J=12.55 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-2.03,(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) :	: $\delta 166.9,162.7$ (Cipso), 160.3 (Cipso), 153.2 (C), 139.4 (C), $136.5(\mathrm{CH}), 128.9($ meta $a \mathrm{CH}), 128.8($ meta CH$)$, 115.2 (ortho CH), 115.0 (ortho CH), 108.9 (C), $53.6\left(\mathrm{CH}_{3}\right)$, $51.2\left(\mathrm{CH}_{3}\right), 37.8\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{CH}), 29.0\left(\mathrm{CH}_{2}\right)$
MS (EI) m / z	: $316(\mathrm{M}+\mathrm{Na}$)

Formal Total Synthesis of (土)-Paroxetine

1.2.5. References

1. For reviews, see: (a) Buffat, M. G. B. Tetrahedron 2004, 60, 1701-1729. (b) Laschat, S.; Dickner, T. Synthesis 2000, 1781-1813.
2. For reviews, see: (a) Caley, C. F.; Weber, S. Ann. Pharmacother. 1993, 27, 12121222. (b) Dechant, K. L.; Clissold, S. P. Drugs 1991, 41, 225-253.
3. Bursavich, M. G.; Rich, D. H. J. Med. Chem. 2002, 45, 541-558.
4. Sugi, K.; Itaya, N.; Katsura, T.; Igi, M.; Yamazaki, S.; Ishibashi, T.; Yamaoka, T.; Kawada, Y.; Tagami, Y.; Otsuki, M.; Ohshima, T. Chem. Pharm. Bull. 2000, 48, 529-536.
5. Mackay, F. J.; Dunn, N. R.; Wilron, L. V.; Pearce, G. L.; Freemantle, S. N.; Mann, R. D. Pharmacocpidem Drug Safety 1997, 6, 235-246.
6. Anderson, I. M. Current Anaesthesia and Critical Care 1999, 10, 32-39.
7. (a) Brandau, S.; Landa, A.; Franzen, J.; Marigo, M.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2006, 45, 4305-4309. (b) Igarashi, J.; Ishiwata, H.; Kobayashi, Y. Tetrahedron Lett. 2004, 45, 8065-8068; (c) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 11204-11205. (d) Liu, L. T.; Hong, P.-C.; Huang, H.-L.; Chen, S.-F.; Wang, C.-L. J.; Wen, Y.-S. Tetrahedron: Asymmetry 2001, 12, 419426. (e) Johnson, T. A.; Curtis, M. D.; Beak, P. J. Am. Chem. Soc. 2001, 123, 10041005. (f) Johnson, T. A.; Jang, D. O.; Slafer, B. W.; Curtis, M. D.; Beak, P. J. Am. Chem. Soc. 2002, 124, 11689-11698. (g) Amat, M.; Bosch, J.; Hidalgo, J.; Canto, M.; Perez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Luque, J. J. Org. Chem. 2000, 65, 3074-3084. (h) Yu, M. S.; Lantos, I.; Peng, Z.-Q.; Yu, J.; Cacchio, T. Tetrahedron Lett. 2000, 41, 5647-5651.
8. (a) Cossy, J.; Mirguet, O.; Pardo, D. G.; Desmurs, J.-R. Eur. J. Org. Chem. 2002, 3543-3551. (b) Cossy, J.; Mirguet, O.; Pardo, D. G.; Desmurs, J.-R. Tetrahedron Lett. 2001, 42, 5705-5707.
9. (a) Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 1125311258. (b) Murthy, K. S. K.; Rey, A. W.; Tjepkema, M. Tetrahedron Lett. 2003, 44, 5355-5358. (c) Cossy, J.; Mirguet, O.; Pardo, D. G.; Desmurs, J.-R. New J. Chem. 2003, 27, 475-482. (d) Cossy, J.; Mirguet, O.; Pardo, D. G.; Desmurs, J.-R. Tetrahedron Lett. 2001, 42, 7805-7807. (e) Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852-6856.
10. (a) Gill, C. D.; Greenhalgh, D. A.; Simpkins, N. S. Tetrahedron 2003, 59, 92139230. (b) Greenhalgh, D. A.; Simpkins, N. S. Synlett 2002, 2074-2076.
11. (a)Yamada, S.; Jahan, I.; Tetrahedron Lett. 2005, 46, 8673-8676. (b) Shih, K.-S.; Liu, C.-W.; Hsieh, Y.-J.; Chen, S.-F.; Ku, H.; Liu, L.-T.; Lin, Y.-C.; Huang, H.-L.; Wang, C.-L. J. Heterocycles 1999, 51, 2439-2444.
12. (a) De Gonzalo, G.; Brieva, R.; Sanchez, V. M.; Bayod, M.; Gotor, V. Tetrahedron: Asymmetry 2003, 14, 1725-1731; (b) de Gonzalo, G.; Brieva, R.; Sanchez, V. M.; Bayod, M.; Gotor, V. J. Org. Chem. 2003, 68, 3333-3336. (c) de Gonzalo, G.; Brieva, R.; Sanchez, V. M.; Bayod, M.; Gotor, V. J. Org. Chem. 2001, 66, 89478953. (d) Palomo, J. M.; Fernandez-Lorente, G.; Mateo, C.; Fuentes, M.; Guisan, J. M.; Fernandez-Lafuente, R. Tetrahedron: Asymmetry 2002, 13, 2653-2659. (e) Palomo, J. M.; Fernandez-Lorente, G.; Mateo, C.; Fernandez- Lafuente, R.; Guisan, J. M. Tetrahedron: Asymmetry 2002, 13, 2375-2381.
13. Czibula, L.; Nemes, A.; Seboek, F.; Szantay, C. Jr.; Mak, M. Eur. J. Org. Chem. 2004, 3336-3339.
14. (a) Chen, C.-Y.; Chang, B.-R.; Tsai, M.-R.; Chang, M.-Y.; Chang, N.-C. Tetrahedron 2003, 59, 9383-9387. (b) Pastre, J. C.; Correia, C. R. D. Org. Lett. 2006, 8, 1657-1660. (c) Takasu, K.; Nishida, N.; Tomimura, A.; Ihara, M. J. Org. Chem. 2005, 70, 3957-3962.
15. (a) Willcocks, K.; Barnes, R. D.; Rustidge, D. C.; Tidy, D. J. D. J. Label. Cmpds. Radiopharm. 1993, 33, 783-794. (b) Engelstoft, M.; Hansen, J. B. Acta Chem. Scand. 1996, 50, 164-169. (c) Christensen, J. A.; Engelstoft, M.; Schaumburg, K.; Schou, H.; Watjen, F. Tetrahedron Lett. 1983, 24, 5151-5152.
16. (a) Christensen, J. A.; Squires R. F. Ger. Patent 2,404,113, 1974. US Patent 3,912,743, 1975. US Patent 4,007,196, 1977; Chem. Abstr. 1974, 81, 152011q. (b) Faruk, E. A.; Martin, R. T. EP Patent 223,334, 1986; Chem. Abstr. 1987, 107, 96594y.
17. (a) Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. US Patent 6,350,912 B1 Chem. Abstr. 2002, 136, 200009. (b) Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. US Patent 6,504,044 B2, 2003.
18. Mo, J.; Xiao, J. Angew. Chem. Int. Ed. 2006, 45, 4152-4157.
19. For early reviews of the Heck reaction, see: (a) Heck, R. F. Acc. Chem. Res. 1979, 12, 146-151. (b) Heck, R. F. Org. React. 1982, 27, 345-390.
20. For a more recent overview of the Heck reaction, see: Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009-3066, and references therein.
21. For reviews of the intramolecular Heck reaction, see: (a) Link, J. T. Org. React. 2002, 60, 157-534. (b) Negishi, E.; Coperet, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. Rev. 1996, 96, 365-393.
22. For reviews of the asymmetric Heck reaction, see: (a) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945-2963. (b) Shibasaki, M.; Christopher, D. J. B.; Kojima, A. Tetrahedron 1997, 53, 7371-7395. (c) Shibasaki, M.; Vogl, E. M. J. Organomet. Chem. 1999, 576, 1-15.
23. Devaux, B.; Pacheco, H. R. Ger. Offen. 2,510,831, 1974.
24. (a) Morishita, S.; Hashimoto, S. JP 60,142,957, 1985. (b) Rajsner, M.; Adlerova, E.; Protiva, M. Collection Czechoslov. Chem. Communs. 1963, 28, 1031-1043.

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\left.131 \mathbf{(2 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $131\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $131\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1}$ H NMR Spectrum of Compound $132+133\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $132+133\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $132+133\left(100 \mathrm{MHz}\right.$, CDCl $\left._{3}+\mathbf{C C l}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 134 ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $134\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT NMR Spectrum of Compound $134\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $136\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectrum of Compound $136\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $136\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $137\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $137\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$
(

DEPT NMR Spectrum of Compound $137\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $137\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $138\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $138\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

Chapter-II: Synthetic Studies Towards Other Biologically Active Molecules

Section-1: Total Synthesis of (\pm)-Mesembrine

Figure 1. Mesembrine 1 and related members of the family.
Interest in the constituents of certain Sceletium species of the family Aizoaceae, e. g., mesembrine 1, joubertiamine 2, dates back to 1896 when the alkaloids were detected in the drug-preparation Channa. ${ }^{1}$ (-)-Mesembrine 1, chemically being N-methyl-3a-(3',4'-dimethoxyphenyl)-6-oxo-cis-octahydroindole, is a naturally occurring serotonin uptake inhibitor. ${ }^{2}$ Its structure was elucidated by Popelak and coworkers in $1960 .{ }^{3}$ Due to their biologically significant activities and intriguing structural relationship with the more complex Amaryllidaceae alkaloids like crinine 3, maritidine 4, elwesine 5, pretazettine 6, morphine 7 etc., possessing a highly congested quaternary center, these alkaloids have been attracting considerable attention of organic chemists over the years. ${ }^{4}$

2.1.2. Biosynthesis

mesembranol 9

mesembrenone 10

sceletenone 11

Figure 2. Some other Sceletium alkaloids.
Jeffs et. al. established that phloretic acid and sceletenone are intermediates in the biosynthesis of mesembrine and related octahydroindole alkaloids. ${ }^{5}$ They administered the labeled compounds including phenylalanine 12, cinnamic acid 13, 4'-hydroxycinnamic acid 14 to Sceletium strictum and their incorporation into mesembrenol 8, the major alkaloid are recorded. Experimental evidence suggested that 3 '-aromatic oxygen function of mesembrine 1, is introduced at a late stage of biosynthesis. This was conferred from the fact that incorporation of labeled $3^{\prime}, 4^{\prime}$-dihydroxycinnamic acid $\left[5^{\prime}-{ }^{3} \mathrm{H}\right] \mathbf{1 5}$ and ferulic acid $\left[5^{\prime}-{ }^{3} \mathrm{H}\right] \quad 16$ was very low. Feeding experiments with tritium labeled 4^{\prime} hydroxycinnamaldehyde $\left[3^{\prime}, 5^{\prime}-{ }^{3} \mathrm{H}_{2}\right]$ 17, 4^{\prime}-hydroxycinnamyl alcohol $\left[3^{\prime}, 5^{\prime}-{ }^{3} \mathrm{H}_{2}\right]$ 18, 4^{\prime} hydroxydihydrocinnamic acid $\left[3^{\prime}, 5^{\prime}-{ }^{3} \mathrm{H}_{2}\right.$] (phloretic acid) 19, 4'-hydroxydihydrocinnamyl alcohol $\left[3^{\prime}, 5^{\prime}-{ }^{3} \mathrm{H}_{2}\right] 20$ showed that phloretic acid $\mathbf{1 9}$ is a good precursor. Incorporation of radiolabel from 18 into mesembrenol 8 was limited to the aromatic ring. Relatively high incorporation of $\mathbf{1 9}$ usually not regarded as a common intermediate can be explained by assuming the existence of a pathway in which 19 is converted to 4'-hydroxycinnamic acid 14 as shown in scheme 1.

Intact incorporation of doubly labeled ferulic acid 16 into sceletenone 11 and mesembrenol 8 was confirmed by ${ }^{14} \mathrm{C}$ data (0.15% incorporation of ${ }^{3} \mathrm{H}:{ }^{14} \mathrm{C}=6.26: 1,46 \%$ ${ }^{3} \mathrm{H}$ retention and 0.1% incorporation ${ }^{3} \mathrm{C}:{ }^{14} \mathrm{C}=12.6: 1,93 \%,{ }^{3} \mathrm{H}$ retention, respectively). The loss of 54% tritium label in phenolic base may be accounted for by the potential lability of tritium adjacent to a phenolic hydroxy group under the conditions used in the isolation of the alkaloids.

Scheme 1. Phloretic acid as a precursor to Sceletium alkaloids.

The role of ferulic acid 16 in the biosynthetic pathway was monitored by a trapping experiment involving the feeding of phloretic acid $\left[3^{\prime}, 5^{\prime}-{ }^{3} \mathrm{H}_{2}\right] 19$ in the presence of excess of inactive ferulic acid 16. When radiolabeled 19 was administered to Sceletium strictum plant alone, a 2.26% incorporation of label in mesembrenol $\mathbf{8}$ in the presence of 6 molar excess of $\mathbf{1 6}$ incorporation of label was lowered to 0.92% and accompanied by a 0.32% incorporation of $\mathbf{1 9}$ is lowered in the trapping experiment but is still at a relatively high level demonstrating its direct incorporation into the alkaloids. Incorporation of various precursors was consistent with the existence of a metabolic grid as represented in scheme 2.

Role of sceletenone

Sceletenone $\left[3^{\prime}, 5^{\prime}-{ }^{3} \mathrm{H}_{2}\right] \mathbf{1 1}$ was administered to Sceletium strictum and after 12 days mesembrenol 8, isolated after rigorous purification retained a level of radioactivity corresponding to 2% incorporation. This indicated that sceletenone $\mathbf{1 1}$ is an intermediate in the biosynthesis of 3 ',4'-dioxyaryl alkaloids of the mesembrine family and 3 '-aromatic oxygen was introduced at a late stage after the formation of octahydroindole ring.

Further, when mesembrenone- $\left[5^{\prime}-{ }^{3} \mathrm{H}\right]$ and mesembrenone-[4'-o-methyl $\left.-{ }^{-3} \mathrm{H}\right] \mathbf{1 0}$ were fed to S. strictum, 1.1% incorporation of o-methyl labeled mesembrenone into mesembrenol and incorporation of mesembrenone $\left[5^{\prime}-{ }^{3} \mathrm{H}\right.$] into mesembrine $\mathbf{1}$ and mesembrenol 8 suggested that biosynthesis of the mesembrine alkaloids involved sequential reduction of the cyclohexenone chromophore.

Scheme 2. Established and possible metabolic pathways.
Feeding of mesembrenone-[5 $\left.5^{3}-{ }^{3} \mathrm{H}\right] \mathbf{1 0}$ and sceletenone-[5'- $\left.{ }^{3} \mathrm{H}\right] \mathbf{1 1}$ to the young 3month old plants resulted in spectacularly high incorporation into mesembrenol. The result provided firm evidence for the formation of the non-phenolic alkaloids from the phenolic alkaloids. Also, since sceletenone $\mathbf{1 1}$ isolated from the feeding of mesembrenone-[$\left.55^{-3} \mathrm{H}\right] \mathbf{1 0}$ to Sceletum strictum was not radioactive, o-demethylation did not appear to be an important biosynthetic process in the formation of phenolic alkaloids in this plant.

In an independent experiment Herbert and Kattah ${ }^{6}$ isolated radioactive mesembrine 1 from radiolabeled methionine feeding experiment (${ }^{14} \mathrm{C}$-methyl labeled) showed that all of the radioactivity was associated with methyl groups (Zeisel-Hertzig-Meyer). Each methyl is equally labeled since the ratio of activity for the two methoxy groups to the N-methyl is very close to $2: 1$. This was further confirmed independently by separate experiments where, vigorous oxidation of methionine-derived mesembrine to veratric acid 21 was found

Total Synthesis of (\pm)-Mesembrine

to contain 64% of the original activity present in the alkaloid corresponding to the two methoxy groups. This was in turn confirmed by its conversion to inactive protocatechuic acid 22 and radiolabeled methyl iodide.

Feeding experiments with phenylalanine 12, in which the site of the ${ }^{14} \mathrm{C}$ was located at C-2, C-3 or uniformly on the carbons of the aromatic ring, only the ring labeled amino acid resulted in any significant incorporation of radiolabel into the alkaloid fraction. Feeding with both $\left[2-{ }^{14} \mathrm{C}\right]$ and $\left[3-{ }^{14} \mathrm{C}\right]$ ty rosines resulted in a significant incorporation of the label into the alkaloid fraction. From these observations, it was concluded that phenylalanine $\mathbf{1 2}$ is not converted to tyrosine in the biosynthesis of this alkaloid and each of these amino acids follows separate metabolic routes. Vigorous oxidation of mesembrine derived from DL-[ring- $\left.{ }^{14} \mathrm{C}\right]$ phenylalanine afforded veratric acid 21, which was shown to contain all of the radioactivity present in the original alkaloid. Therefore, it was deduced that aromatic ring of the alkaloid is derived from aromatic nucleus of the amino acid.

Scheme 3. Determination of source of aromatic ring of mesembrine from nucleic acid.
That the entire side chain of the amino acid was lost in the conversion of phenylalanine $\mathbf{1 2}$ to mesembrine $\mathbf{1}$ was evident from the lack of incorporation of label from the feeding experiments with DL- $\left[2-{ }^{14} \mathrm{C}\right]$ phenylalanine and DL-[3- $\left.{ }^{14} \mathrm{C}\right]$ phenylalanine. When labeled mesembrine derived from [$\left.3-{ }^{-14} \mathrm{C}\right]$ tyrosine was converted to 24 and subjected to Hofmann degradation, 3,4-dimethoxybiphenyl $\mathbf{2 5}$ and $\mathrm{Et}_{3} \mathrm{~N}$ (trapped as tetramethylammonium iodide) produced from the reaction were virtually inactive. These

Total Synthesis of (\pm)-Mesembrine

results indicated that the label is contained on the ethylene produced in this reaction and restricts the sites of label in the mesembrine to the C-2 and C-3 carbons of the ethamine bridge (scheme 4 and 5).

Scheme 4. Fate of C-3 carbon in the amino acid metabolism and formation of octahydroindole system.
The Hofmann degradation of mesembrenol 8, the major alkaloid in S. strictum afforded the dienol, which without isolation was smoothly rearranged in 1 N hydrochloric acid to the biphenyl system 27 . The structure of 27 was confirmed by its chemical synthesis. A second Hofmann degradation on 27 afforded styrene 28, which on cleavage with $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}$ in aq. dioxane gave a quantitative yields of formaldehyde, which was isolated as its dimedone adduct. When a sample of mesembrenol derived from a feeding experiment with $\left[2-{ }^{14} \mathrm{C}\right]$ tyrosine was degraded in this manner the radioactive label was shown to be located to greater than 86% on the C-2 carbon atom, which indicated that tyrosine is incorporated intact into the octahydroindole skeleton of these alkaloids (scheme 4 and 5).

Total Synthesis of (\pm)-Mesembrine

$r m a=$ relative molar activity

Scheme 5. Fate of C-2 carbon in the amino acid metabolism and formation of octahydroindole system

Thus, biosynthetic studies concluded that aromatic ring of phenylalanine provided the aromatic C_{6} unit present as the 3,4-dimethoxyphenyl ring and $\mathrm{C}_{6} \mathrm{C}_{2} \mathrm{~N}$ unit is derived from tyrosine, which constitutes the octahydroindole moiety. The carbons of the O - and N methyl groups are provided by the S methyl of methionine, presumably via the agency of the ubiquitous biological transmethylating agent S-adenosylmethionine.

2.1.3. Literature Review

Present section details the reported syntheses of mesembrine $\mathbf{1}$.

Roudriguez ${ }^{77, \mathbf{b}}$ (Tetrahedron Lett. 1965, 4847-4851; Tetrahedron, 1968, 24, 6583-6589)

Ar = 3,4-dimethoxyphenyl

Scheme 6. Reagents and conditions: a) butadiene, 76\%; b) Nef reaction, 70\%; c) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}$; d) NaH , allyl bromide, 80%; e) $\mathrm{LiAlH}_{4}, 90 \%$; f) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 92%; g) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, 80 \%$; h) $\mathrm{Ag}_{2} \mathrm{O}, 93 \%$; i) $(\mathrm{COCl})_{2} ;$ j) $\mathrm{MeNH}_{2} ;$ k) $\mathrm{LiAlH}_{4}, 90 \%$; l) $\mathrm{HCO}_{2} \mathrm{Ac}, 92 \%$; m) $\mathrm{H}_{2} \mathrm{CrO}_{4}, 80 \%$; n) PTAB, 90%; o) CaCO_{3}, DMF, reflux, 85%; p) Clorox oxidation, quantitative; q) $\mathrm{Cr}(\mathrm{OAc})_{2}, 40 \%$; r) NaBH_{4}, quantitative; s) $\mathrm{Pt} / \mathrm{O}_{2}, \mathrm{EtOAc}, 3 \mathrm{~d}$; t) $\mathrm{H}_{3} \mathrm{O}^{+}$, 50\%.

Roudriguez and Shamma reported a total synthesis of (\pm)-mesembrine 1 using nitrostyrene and butadiene as the starting materials employing Diels-Alder reaction. Nitrostyrene 30 was condensed with butadiene to furnish the nitrocyclohexene 31. Ketone $\mathbf{3 2}$ was obtained by Nef reaction on $\mathbf{3 1}$ followed by preferential catalytic reduction (scheme 6). Compound $\mathbf{3 2}$ was alkylated with ally1 bromide to yield olefin $\mathbf{3 3}$. Reduction of $\mathbf{3 3}$ with LiAlH_{4}, followed by acetylation afforded the acetate, which with $\mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$ oxidation and further oxidation of the resultant aldehyde with silver oxide, followed by amidation

Total Synthesis of (\pm)-Mesembrine

gave compound 34. LiAlH_{4} reduction of 34 gave the amino alcohol, which upon N formylation gave compound 35 . Compound 35 was oxidized to give ketone, which upon bromination followed by dehydrobromination, produced enone 36. Enone 36 was epoxidized with Clorox and subsequent reduction of the epoxide using chromous acetate, followed by reduction with NaBH_{4}, afforded diol 37. Preferential oxidation with Pt /air, followed by acid catalyzed dehydration, finally yielded (\pm)-mesembrine 1 .

Yamada ${ }^{8}$ (Tetrahedron Lett. 1971, 1133-1136)

Scheme 7. Reagents and conditions: a) PPA, 59%; b) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{PTSA}$; c) $\mathrm{N}_{2} \mathrm{H}_{4}, 82 \%$; d) $\mathrm{HCO}_{2} \mathrm{Ac}$; e) $\mathrm{LiAlH}_{4}, 82 \%$; f) $\mathrm{HCO}_{2} \mathrm{Ac}$; g) PTSA, acetone, 70%; h) $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{KO} t \mathrm{Bu}$; i) $\mathrm{NaOH} ;$ j) $\mathrm{AcOH}, \Delta, 90 \%$; k) L-proline pyrrolidide; l) MVK; m) AcOH, $\mathrm{H}_{2} \mathrm{O}$, pyrrolidine, 38%; n) $10 \% \mathrm{HCl}-\mathrm{EtOH}, 78 \%$.

Yamada and Otani reported the first chiral synthesis of (+)-mesembrine $\mathbf{1}$ employing L-proline derivative (scheme 7). β-phthaloylaminopropionic acid 38 was condensed with veratrole $\mathbf{3 9}$ to furnish phthaloylamino ketone $\mathbf{4 0}$. Ketone $\mathbf{4 0}$ was ketalized with ethylene glycol followed by treatment with hydrazine hydrate to give an amine 41. Formylation of 41, followed by reduction of the formamide with $\mathrm{LiA}_{1} \mathrm{H}_{4}$ gave a secondary amine, which was formylated again and the ketal was hydrolyzed to give ketone 42. Conversion of ketone $\mathbf{4 2}$ to aldehyde $\mathbf{4 3}$ was accomplished with modified Darzens method. Aldehyde $\mathbf{4 3}$ was treated with methyl vinyl ketone in the presence of L-proline pyrrolidide

Total Synthesis of (\pm)-Mesembrine

and the Michael adduct upon annulation gave cyclohexenone 44 in 38% yield. Treatment of $\mathbf{4 4}$ with 10% ethanolic HCl furnished (+)-mesembrine $\mathbf{1}$.

Stevens ${ }^{1}$ (J. Org. Chem. 1975, 40, 3495-3498)

Scheme 8. Reagents and conditions: a) LDA, EDC, THF, $-78{ }^{\circ} \mathrm{C}, 86 \%$; b) DIBAL; c) MeNH_{2}; d) $\mathrm{NH}_{4} \mathrm{I}$; e) MVK, HCl .

Stevens et. al. reported an efficient total synthesis of (\pm)-mesembrine 1 employing acid-promoted rearrangement of cyclopropylimine to 2 -pyrroline, followed by acidcatalyzed annulation of this intermediate with methyl vinyl ketone. Cyclopropanation of 3,4-dimethoxyphenyl acetonitrile $\mathbf{4 5}$ was effected with EDC using LDA to obtain nitrile 46. Reduction of $\mathbf{4 6}$ to the corresponding aldehyde $\mathbf{4 7}$ employing DIBAL and subsequent imine formation proceeded smoothly to afford cyclopropylimine 48, which upon ammonium iodide induced rearrangement furnished the required 2-pyrroline 49. HClcatalyzed annulation of 49 with methyl vinyl ketone provided (\pm)-mesembrine 1 (scheme 8).

Tahk and Keely ${ }^{9}$ reported a similar synthesis of (\pm)-mesembrine $\mathbf{1}$ employing pyrroline 49.

Martin ${ }^{10}$ (J. Org. Chem. 1979, 44, 3391-3396)
Martin et. al. reported a facile total synthesis (\pm)-mesembrine 1, employing a general strategy for the construction of quaternary carbon atoms via geminal alkylation of monoprotected 1,4-dione as the key step. Requisite monoprotected 1,4-dione 51 was conveniently prepared in 75% overall yield by addition of the Grignard reagent derived

Total Synthesis of (\pm)-Mesembrine

from 2-methyl-2-(2-bromoethyl)-1,3-dioxolane to veratraldehyde 50, followed by Jones oxidation (scheme 9).

Scheme 9. Reagents and conditions: a) $\mathrm{BrMg}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) \mathrm{CH}_{3}$, THF ; b) $\mathrm{HCrO}_{4}, 75 \%$; c) $\mathrm{PhCH}=\mathrm{NCHLiP}(\mathrm{O})(\mathrm{OEt})_{2}$, THF, $-78{ }^{\circ} \mathrm{C}$ to rt , reflux; d) $\mathrm{BuLi},-78{ }^{\circ} \mathrm{C}$; e) $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMeCO}_{2} \mathrm{Me},-78{ }^{\circ} \mathrm{C}$ to 25 ${ }^{\circ} \mathrm{C}$; f) $\mathrm{H}_{3} \mathrm{O}^{+}$; g) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 65 \%$; h) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \Delta, 82 \%$.

Olefination of 51 with diethyl N-benzylideneaminolithiomethyl phosphonate afforded 2-azadiene 52, which cleanly underwent regioselective 1,2-addition of BuLi generating the metallo enamine 53 in situ, which upon alkylation with N-(2-bromomethyl)-N-methylcarbamate followed by acidic work up furnished δ-ketoaldehyde 54. Subsequent treatment of δ-ketoaldehyde $\mathbf{5 4}$ with aq. $\mathrm{KOH}-\mathrm{MeOH}$ resulted in facile annulation to give the key intermediate 4,4-disubstituted cyclohexenone 55 in 65% overall yield. Hydroxideinduced N-decarbomethoxylation of $\mathbf{5 5}$, followed by ensuing spontaneous cyclization of the intermediate furnished (\pm)-mesembrine 1 in 82% yield.

Sanchez ${ }^{11}$ (Chem. Lett. 1981, 891-894)

Sanchez and Tabbals reported a total synthesis of (\pm)-mesembrine 1, employing cinnamonitrile as the starting material. Conjugate addition of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ to cinnamonitrile 56 using Triton-B in $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{KF} / 18$-crown-6 furnished nitro compound 57. Compound $\mathbf{5 7}$ was subjected to modified Nef reaction, followed by acid hydrolysis of the acetal intermediate to obtain cyanoaldehyde 58 in 73% yield (scheme 10).

Scheme 10. Reagents and conditions: a) $\mathrm{CH}_{3} \mathrm{NO}_{2}, \mathrm{KF}, 18$-crown-6 or $\mathrm{CH}_{3} \mathrm{NO}_{2}$, Triton- $\mathrm{B}, 70-90 \%$; b) i) $\mathrm{NaOMe}, \mathrm{MeOH}$; ii) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$; c) $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}, 73 \%$; d) i. MVK, DBN, ii. Pyridine-AcOH, 48\%; e) 1,3propanedithiol, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 73 \%$; f) DIBAL, $\mathrm{PhMe} ;$ g) $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}, \mathrm{NaCNBH}_{3}$; h) $\mathrm{NCS}, \mathrm{AgNO}_{3}$; i) Amberlyst-15, PhH, 35\% (3 steps).

Requisite 4,4-substituted cyclohexenone $\mathbf{5 9}$ was constructed by DBN catalysed Michael addition of methyl vinyl ketone, followed by Robinson annulation in 48% overall yield. The enone carbonyl was protected with 1,3-propanedithiol in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and the resultant nitrile was reduced with DIBAL in PhMe to furnish aldehyde 60. Aldehyde 60 was then treated with $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}$, followed by NaCNBH_{3} in $t \mathrm{BuOH}$ to afford amine 61. Thioacetal was deprotected using NCS in the presence of AgNO_{3} and further treated with Amberlyst-15 in warm benzene to furnish (\pm)-mesembrine 1.

Keck 12 (J. Org. Chem. 1982, 47, 1302-1309)
A total synthesis of (\pm)-mesembrine $\mathbf{1}$ has been described by Keck and Webb employing intramolecular ene cyclization of an acylnitroso olefin, giving cyclic hydroxamic acid, "ene product". Lithioveratrole was condensed with 3-methoxy-2-cyclohexen-l-one 62, followed by acid work-up afforded enone 63. NaBH_{4} reduction, followed by exposure of the resultant alcohol to acetic anhydride in pyridine gave acetate 64 in 67% yield. Claisen rearrangement of 64 using Ireland method furnished crystalline 65 (scheme 11). Hydroxamic acid 66 was obtained in 78% yield by Jones and Hurd method from acid 65. Oxidation of 66 in the presence of 9,10-dimethylanthracene gave Diels-Alder adduct 67 in 83\% yield.

Scheme 11. Reagents and conditions: a) Lithioveratrole, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{O}^{+}, 72 \%$; b) $\mathrm{NaBH}_{4}, \mathrm{EtOH},-20^{\circ} \mathrm{C}$ to r t , 89%; c) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 76%; d) LICA, THF, HMPA, $-78{ }^{\circ} \mathrm{C}$; e) TBSCl, THF, reflux; 71%; f) $\mathrm{SOCl}_{2}, \mathrm{PhH}$, DMF, reflux; g) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 78 \%$; h) $n \mathrm{Pr}_{4} \mathrm{NIO}_{4}, \mathrm{CHCl}_{3}$, DMF, $9,10-\mathrm{DMA}, 83 \%$; i) PhMe, reflux, 100%; j) $\mathrm{TiCl}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}, 78 \%$; k) NaH , MeI, THF, 90%; 1) NBS, DME- $\mathrm{H}_{2} \mathrm{O}, 0$ ${ }^{\circ} \mathrm{C}, 88 \%$; m) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{PhMe}$, reflux, 90%; n) PCC, DCM, $0{ }^{\circ} \mathrm{C}, 85 \%$; o) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{PTSA}, \mathrm{PhH}$, reflux; p) LiAlH_{4}, THF, reflux; q) $\mathrm{H}_{3} \mathrm{O}^{+}, 75 \%$ (for 3 steps).

This adduct was decomposed in refluxing PhMe to afford "ene product" 68 in quantitative yields. This cyclic hydroxamic acid was converted to the corresponding lactam by $\mathrm{TiC1}_{3}$ reduction according to the procedure of Miller and Mattingly, which was N methylated with MeI using oil-free NaH in dry THF to yield 69. Lactam 69 reacted smoothly with 1 equiv. of NBS in aq. DME to give bromohydrin, which upon replacement of bromine with tin hydride gave lactam alcohol, which upon further oxidation with PCC in DCM at $0{ }^{\circ} \mathrm{C}$ gave keto lactam 70. Protection of 70 with ethylene glycol in refluxing benzene containing a trace of PTSA gave ketal and the lactam was then reduced with LiAlH_{4} in THF and the crude amino ketal, thus obtained was treated with dil. HC1 to furnish (\pm)-mesembrine 1.

Total Synthesis of (\pm)-Mesembrine
Pinnick ${ }^{13}$ (Tetrahedron Lett. 1983, 24, 4785-4788)

Scheme 12. Reagents and conditions: a) Lithium N-cyclohexyl- N-isopropylamide, bromoveratrole, THF, 30$40 \%$; b) DIBAL, THF; c) MVK, 58-64\% (from 72).

Pinnick and Kochhar et. al. reported a short and efficient synthesis of (\pm)mesembrine 1 from 1-methyl-2-pyrrolidone 71. 1-Methylpyrrolidone 71 was arylated with bromoveratrole and the resultant 3-aryl-2-pyrrolidone $\mathbf{7 2}$ was reduced with DIBAL to furnish the 2-pyrroline 49. 2-Pyrroline 49 was treated with methyl vinyl ketone to give (\pm)mesembrine 1 in 58-64\% overall yield from 72 (scheme 12).

A similar synthesis of (\pm)-mesembrine 1 was reported by Kim and Curphey ${ }^{14}$ starting from 1-methyl-3-pyrrolidone by addition of aryllithium followed by dehydration to obtain 2-pyrroline 49.

Jeffs ${ }^{15}$ (J. Org. Chem. 1983, 48, 3861-3863)

Scheme 13. Reagents and conditions: a) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, 100 \%$; b) $\mathrm{PCC}, 88 \%$; c) MeNH_{2}, EtOH ; d) ref. 12.

Jeffs et. al. reported a short and efficient formal synthesis of (\pm)-mesembrine 1, employing a substituted cyclobutanone. Cyclobutanone 73 on Bayer-Villiger oxidation with 30% alkaline $\mathrm{H}_{2} \mathrm{O}_{2}$ afforded hydroxy lactone $\mathbf{7 4}$ in quantitative yields (scheme 13).

Total Synthesis of (\pm)-Mesembrine

Oxidation of $\mathbf{7 4}$ with PCC gave keto lactone $\mathbf{7 5}$ in 86\% yield. Refluxing keto-lactone $\mathbf{7 5}$ in ethanolic MeNH_{2} for 12 hours furnished the cis octahydroindolone 70, is a known intermediate ${ }^{12}$ reported in the synthesis of (\pm)-mesembrine 1 .

Meyers ${ }^{16}$ (J. Am. Chem. Soc. 1985, 107, 7776-7778)

Scheme 14. Reagents and conditions: a) BuLi, THF, then 77; b) PPTS, EtOH, $60{ }^{\circ} \mathrm{C}, 85 \%$; c) (S)-valinol, PhMe , reflux, $16 \mathrm{~h}, 90 \%$; d) $s \mathrm{BuLi}$, allyl bromide, THF, 71%; e) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 6 \mathrm{~h} ;$ f) MeNH_{2}; g) NaCNBH_{3}; h) LiAl(OEt) ${ }_{3} \mathrm{H}, \mathrm{DME}-\mathrm{PhMe},-2{ }^{\circ} \mathrm{C}$; i) $\mathrm{Bu}_{4} \mathrm{NH}_{2} \mathrm{PO}_{4}, \mathrm{EtOH}, \Delta$; j) $4 \mathrm{~N} \mathrm{NaOH}, \mathrm{rt}, 60 \%$.

Keto-acid 78 was prepared from the dilithio salt of (3,4-dimethoxyphenyl)acetic acid 76 and 2-methyl-2-(2-iodoethy1)-1,3-dioxolane 77 using BuLi in THF, followed by hydrolysis of the acetal with PPTS in EtOH at $60^{\circ} \mathrm{C}$ (scheme 14). Treatment of 78 with (S)-valinol in PhMe under reflux for 16 hours produced bicyclic lactam 79 as a mixture of diastereomers. The diastereomeric mixture was metalated with $s \mathrm{BuLi}$ in THF at $-20^{\circ} \mathrm{C}$ and treated with allyl bromide to give compound $\mathbf{8 0}$ in 90% yield with high diastereoselectivity. The allyl group was transformed into the aminoethyl group in 72% yield, by Lemieux oxidation and the resultant aldehyde was immediately subjected to reductive amination to furnish secondary amine 81. Reduction of $\mathbf{8 1}$ with $\mathrm{LiAl}(\mathrm{OEt})_{3} \mathrm{H}$ afforded the tricyclic product, which was heated with an ethanolic solution of $\mathrm{Bu}_{4} \mathrm{NH}_{2} \mathrm{PO}_{4}$ to furnish the keto aldehyde, which upon further treatment with 4 N NaOH at room temperature spontaneously underwent cyclization to furnish (+)-mesembrine $\mathbf{1}$ via $\mathbf{8 2}$.

Total Synthesis of (\pm)-Mesembrine
Livinghouse ${ }^{17}$ (J. Org. Chem. 1986, 51, 1629-1631)

Scheme 15. Reagents and conditions: a) DMF, POCl_{3}; b) [methoxy(phenylthio)-methyl]lithium 84; 10% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}, 63 \%$; c) MVK, DBN; d) $0.3 \mathrm{~N} \mathrm{NaOEt} \mathrm{in} \mathrm{EtOH;} \mathrm{e)} \mathrm{PTSA}, \mathrm{THF-} \mathrm{H}_{2} \mathrm{O}$, reflux, $24 \mathrm{~h}, 91 \%$ (3 steps); f) MeNH_{2}, THF, $80^{\circ} \mathrm{C}$ then THF- $\mathrm{H}_{2} \mathrm{O}, 71 \%$; g) ref. 12.

Livinghouse and Hackett reported an efficient formal synthesis of (\pm)-mesembrine 1 via a p-(methoxy(phenylthio)methylidene) enolate Robinson annulation sequence. Starting material 83 was prepared by the exhaustive formylation of 3,4dimethoxyphenylacetic acid $\mathbf{7 6}$ with $\mathrm{POC1}_{3}$ in DMF. Exposure of $\mathbf{8 3}$ to [methoxy(phenylthio)-methyl]lithium 84, followed by hydrolysis of the resultant adduct with 10% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ provided the enal $\mathbf{8 5}$ in 63% yield. Sequential treatment of a THF solution of $\mathbf{8 5}$ with methyl vinyl ketone in the presence of DBN followed by 0.3 N ethanolic NaOEt furnished the cyclohexenones $\mathbf{8 6}$ as a mixture of E / Z isomers in 10:1 ratio (scheme 15).

The mixture of cyclohexenones $\mathbf{8 6}$ was subjected to PTSAcatalyzed hydrolysis to provide the corresponding methyl ester $\mathbf{8 7}$. Exposure of $\mathbf{8 7}$ to MeNH_{2}, followed by imine hydrolysis afforded keto-lactam 70 in 71% yield, whose conversion into (\pm)-mesembrine $\mathbf{1}$ is reported in the literature. ${ }^{12}$

Hoshino ${ }^{18}$ (Chem. Pharm. Bull. 1987, 35, 2734-3743)

$\xrightarrow{h}(\pm)$-mesembrine 1

Scheme 16. Reagents and conditions: a) MVK, pyrrolidine, $\mathrm{K}_{2} \mathrm{CO}_{3}$, then $10 \% \mathrm{HCl}$; b) AcOH , reflux; c) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{PTSA}, \mathrm{PhH}$; d) $m \mathrm{CPBA}, \mathrm{Et}_{2} \mathrm{O}$; e) $\mathrm{LiClO}_{4}, \mathrm{Bu}_{3} \mathrm{PO}, \mathrm{PhH}$; f) $50 \% \mathrm{NaOH}$, allyl bromide, 18-crown- $6,25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; g) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, 62 \%$; h) $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}, \mathrm{NaCNBH}_{3}$, then $\mathrm{H}_{3} \mathrm{O}^{+}$.

Condensation of homoveratraldehyde $\mathbf{8 8}$ with methyl vinyl ketone via pyrrolidine enamine in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in THF at room temperature and subsequent hydrolysis with $10 \% \mathrm{HCl}$ furnished ketoaldehyde $\mathbf{8 9}$. Refluxing $\mathbf{8 9}$ with AcOH gave cyclized product 90, ketalization of which afforded cyclohexene 91 in 46% yield. Epoxidation of 91 with m CPBA in ether gave an epoxide in 91% yield, which upon rearrangement in the presence of LiClO_{4} and $\mathrm{Bu}_{3} \mathrm{PO}$ in boiling benzene gave cyclohexanone $\mathbf{9 2}$ in moderate to good yields. Alternatively, compound $\mathbf{9 2}$ was obtained in 80% yield by hydroboration-oxidation, followed by oxidation with Collin's reagent. Alkylation of $\mathbf{9 2}$ with allyl bromide gave olefin 93 at $25{ }^{\circ} \mathrm{C}$ in 70% yield within 30 minutes. Oxidation of $\mathbf{9 3}$ with $\mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$ gave an aldehyde 94 in 62% yield, which upon reductive amination with $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}$ and NaCNBH_{3}, followed by acid treatment afforded (\pm)-mesembrine 1 in 15% yield (scheme 16).

Winkler ${ }^{19}$ (J. Am. Chem. Soc. 1988, 110, 4831-4832)
An efficient and elegant synthesis of (\pm)-mesembrine $\mathbf{1}$ was reported by Winkler et. al. utilizing the vinylogous amide photocycloaddition-retro-Mannich-Mannich sequence. Treatment of Tebbe reagent with compound $\mathbf{9 5}$, obtained from reaction of veratrole with 3bromopropionyl chloride, led to the formation of styryl bromide, which upon treatment

Total Synthesis of (\pm)-Mesembrine

with ammonia furnished amine 96 in 89% yield (scheme 17). Condensation of 96 with 4 -chloro-3-buten-2-one provided compound 97 in 77% yield. Irradiation of 97 furnished photocycloaddition-retro-Mannich product 99 via 98. Methylation of 99 with trimethyloxonium tetrafluoroborate followed by treatment with DMAP in reluxing $\mathrm{CH}_{3} \mathrm{CN}$ produced (\pm)-mesembrine $\mathbf{1}$ in 84% yield.

Scheme 17. Reagents and conditions: a) Tebbe reagent; b) $\mathrm{NH}_{3}, 89 \%$; c) 4-chloro-3-buten-2-one, 77%; d) $h v$, 74%; e) trimethyloxonium tetrafluoroborate, DMAP, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, 84%.

Shono ${ }^{20}$ (Chem. Lett. 1989, 1963-1969)

Scheme 18. Reagents and conditions: a) -2 e, $\mathrm{MeOH}-\mathrm{AcOH}, 77 \%$; b) 3,4-dimethoxy-4'-vinylbenzene 102, $\mathrm{TiCl}_{4}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 87 \%$; c) $\mathrm{NaOH}, \mathrm{DMF}, \Delta, 94 \%$ (overall); d) -2 e, THF-H2O; e) PTSA, DCM, 48% (2 steps); f) $\mathrm{LiAlH}_{4}, \mathrm{THF} ; \mathrm{g}$) HCl gas; h) $\mathrm{MVK}, \mathrm{CH}_{3} \mathrm{CN}$; i) $\mathrm{H}_{3} \mathrm{O}^{+}, 63 \%$ (3 steps).

Shono et. al. reported an elegant synthesis of (\pm)-mesembrine 1 exploiting $\alpha, \alpha, N-$ $\operatorname{tris}($ methoxycarbonyl)- β-arylpyrrolidine obtained by Lewis acid treatment of dimethyl N -

Total Synthesis of (\pm)-Mesembrine

methoxycarbonyl- N -methoxymethylaminomalonate with aryl olefin. Starting compound 101 was prepared in 77% yield by anodic oxidation of dimehtyl N-methoxycarbonyl- N methylaminomalonate $\mathbf{1 0 0}$ in MeOH containing AcOH (scheme 18). A solution of $\mathbf{1 0 1}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in DCM was added dropwise into a refluxing solution of 3,4-dimethoxy-4'vinylbenzene $\mathbf{1 0 2}$ and TiCl_{4} in DCM and further refluxed for 1 hour after addition to give compound $\mathbf{1 0 3}$ in 87% yield. Hydrolysis of $\mathbf{1 0 3}$ and subsequent decarboxylation gave acid 104 in 94% yield. Anodic oxidation of 104 in THF- $\mathrm{H}_{2} \mathrm{O}$ solvent, followed by acid treatment gave an enecarbamate, which in turn was reduced with LiAlH_{4} to give 2pyrroline 49, which was condensed with methyl vinyl ketone to afford (\pm)-mesembrine $\mathbf{1}$ in 63% yield.

Takano ${ }^{21 a, b, \mathbf{c}}$ (Chem. Lett. 1990, 1239-1242; Tetrahedron Lett. 1981, 22, 4479-4482; Chem. Lett. 1981, 1385-1386)

Takano et. al. reported an enantiospecific synthesis of (-)-mesembrine 1 employing intramolecular 1,3-dipolar cycloaddition using (S)- O-benzylglycidol 105 as starting material. Accordingly, 3,4-dimethoxyphenyl acetonitrile 45 was condensed with (S)-Obenzylglycidol 105 using LDA as a base to furnish cyanoalcohol, which upon basic hydrolysis gave lactone 106 in 64% overall yield as a mixture of diastereoisomers (scheme 19). LiAlH_{4} reduction of lactone $\mathbf{1 0 6}$ yielded diol $\mathbf{1 0 7}$ in 97% yield.

Primary hydroxy group of $\mathbf{1 0 8}$ was replaced using Grieco protocol to give selenide 108 in 94% yield. Aziridine ester 110 was formed in 93% yield by treatment of the secondary alcohol 108 with 2,3-dibromopropionyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ followed by reaction with BnNH_{2} in the same pot. Compound $\mathbf{1 0 9}$ upon exposure to 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ furnished olefin 110 quantitatively, which upon heating at $250^{\circ} \mathrm{C}$ in degased xylene in a sealed tube furnished the pyrrolidine lactone 111 in 85% yield as a single isomer.

Catalytic hydrogenation of $\mathbf{1 1 1}$ with $\mathrm{Pd}(\mathrm{OH})_{2}$ furnished free secondary amine in 88% yield without affecting o-benzyl ether, which upon treatment with 37% formalin, followed by NaBH_{4} brought about spontaneous N -methylation and reduction of the lactone to furnish aminodiol. Subsequent Swern oxidation of the aminodiol followed by intramolecular aldolization of the resultant keto-aldehyde furnished enone $\mathbf{1 1 2}$ in $\mathbf{7 5 \%}$ overall yield. Reduction of $\mathbf{1 1 2}$ under Luche conditions yielded allylic alcohol as a mixture of isomers, which was converted into acetate 113. Treatment of acetate $\mathbf{1 1 3}$ with Li in

Total Synthesis of (\pm)-Mesembrine

liquid NH_{3} resulted in concurrent debenzylation and reductive elimination to furnish (-)mesembrine 1.

Scheme 19. Reagents and conditions: a) LDA, 3,4-dimethoxyphenylacetonitrile 45, THF, $-78{ }^{\circ} \mathrm{C}$ to rt ; b) $10 \% \mathrm{KOH}-\mathrm{EtOH}$, reflux, overnight, then $10 \% \mathrm{HCl}-\mathrm{EtOH}, \mathrm{rt}, 64 \%$ overall; c) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 40 \mathrm{~min}$, 97%; d) $o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SeCN}, \mathrm{Bu}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{~h}, 94 \%$; e) 2,3-dibromopropionyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-10{ }^{\circ} \mathrm{C}$, 30 min then BnNH_{2}, rt, $5 \mathrm{~h}, 93 \%$; f) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, DCM, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 9 \mathrm{~h}, 100 \%$; g) xylene, $250{ }^{\circ} \mathrm{C}$, (sealed tube), $20 \mathrm{~min}, 85 \%$; h) $\mathrm{H}_{2}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 8 \mathrm{~h}, 88 \%$; i) 37% formalin, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then, $\mathrm{NaBH}_{4}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 75 \%$; j) $(\mathrm{COCl})_{2}$, DMSO, DCM, $-78{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$, then $\mathrm{Et}_{3} \mathrm{~N},-71^{\circ} \mathrm{C}$ to rt ; k) 0.5 N NaOH , $\mathrm{EtOH}, \mathrm{rt}, 11 \mathrm{~h}, 75 \%$; l) $\left.\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, \mathrm{~m}\right) \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 9$ h, 76%; n) Li, liquid $\mathrm{NH}_{3},-33^{\circ} \mathrm{C}, 10 \mathrm{~min}, 26 \%$.

An another modified synthesis was reported from lactone 106. Alkylation of 106 with crotyl bromide using LDA gave the α, α-disubstituted lactone 114 , which upon acid catalyzed debenzylation afforded the primary alcohol, which on sequential saponification, periodate cleavage and reduction gave lactone 115, in 75 \% overall yield (scheme 20).

Total Synthesis of (\pm)-Mesembrine

Palladium catalyzed oxidation of $\mathbf{1 1 5}$ led to a regioselective carbonylation to give methyl ketone 116. Base induced intramolecular cyclization of the keto lactone $\mathbf{1 1 6}$ yielded bicyclic enone 117 in 66% yield. Treatment of enone 117 with aq. MeNH_{2} gave the monocyclic vinylogous amide 118 in 41% yield accompanied by 7% yield of bicyclic compound 119. Conversion of $\mathbf{1 1 8}$ into $\mathbf{1 1 9}$ was eventually accomplished in 85% yield using an equimolar amount of DEAD and $\mathrm{Ph}_{3} \mathrm{P}$. Reduction of 119 with Li metal in liquid NH_{3} furnished (-)-mesembrine \mathbf{I}.

Scheme 20. Reagents and conditions: a) LDA, crotyl bromide, THF, $-78^{\circ} \mathrm{C}$; b) conc. $\mathrm{HCl}, \mathrm{EtOH}$, reflux, 3 h ; c) $20 \% \mathrm{KOH}$ in $\mathrm{MeOH}, \mathrm{CO}_{2}$ gas, then NaIO_{4}; d) $\mathrm{NaBH}_{4}, \mathrm{H}_{3} \mathrm{O}^{+}$; e) $\mathrm{PdCl}_{2}, \mathrm{CuCl}$, wet DMF, $\mathrm{O}_{2}, 1$ week; f) $\mathrm{KO} t \mathrm{Bu}$, THF, reflux, overnight; g) $40 \% \mathrm{MeNH}_{2}$, sealed tube, $180^{\circ} \mathrm{C}$, 1 h ; h) $\mathrm{Li} / \mathrm{NH}_{3}$.

Pinhey ${ }^{22}$ (J. Chem. Soc. Perkin Trans 1, 1991, 1053-1057)

A formal synthesis of (\pm)-mesembrine 1 have been reported by Pinhey and Parkinson employing 3,4-dimethoxyphenyllead triacetate as electrophilic arylating agent to generate the quaternary benzylic center. Arylation of the mixture of vinylogous β-keto esters $\mathbf{1 2 0}$ with excess 3,4-dimethoxyphenyllead triacetate gave intermediate $\mathbf{8 7}$ in almost quantitative yields. The ketone function was protected as its ethylene ketal, ester was then reduced with LiAlH_{4} to yield alcohol 121. Alcohol $\mathbf{1 2 1}$ was readily converted to nitrile $\mathbf{1 2 2}$ with tetrabutylammonium cyanide in HMPA at $80{ }^{\circ} \mathrm{C}$ in high overall yield via corresponding tosylate (scheme 21). Hydrolysis of the ketal furnished enone 59, whose transformation into (\pm)-mesembrine $\mathbf{1}$ is known in the literature. ${ }^{11}$

Scheme 21. Reagents and conditions: a) 3,4-dimethoxyphenyllead triacetate, pyridine, $\mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$, then $55^{\circ} \mathrm{C}, 48 \mathrm{~h}, 57 \%$; b) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, PTSA, PhMe, reflux, $18 \mathrm{~h}, 92 \%$; c) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 3 \mathrm{~h}, 84 \%$; d) PTSA, pyridine, $\mathrm{rt}, 48 \mathrm{~h}, 79 \%$; e) $\mathrm{Bu}_{4} \mathrm{NCN}, \mathrm{HMPA}, 80^{\circ} \mathrm{C}, 30 \mathrm{~h}, 76 \%$; f) HCl, THF, rt, 94%; g) ref. 11.

Remuson ${ }^{23 a, b}$ (Heterocycles, 1992, 34, 37-49; Tetrahedron Lett. 1985, 26, 4083-4086)

Scheme 22. Reagents and conditions: a) NaH, 3-[(trimethylsilyl)methyl]but-3-enyl-4-methyl benzenesulfonate 124, DME, $0^{\circ} \mathrm{C}, 60 \%$; b) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 1,2$ drops $2 \mathrm{~N} \mathrm{HCl}, 24 \mathrm{~h}, 67 \%$; c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, DCM, $-20^{\circ} \mathrm{C}$ to r t, overnight, 80%; d) O_{3}, DMS, $-78^{\circ} \mathrm{C}, 95 \%$; e) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, PTSA, PhH, reflux, then $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux, then $\mathrm{H}_{3} \mathrm{O}^{+}, 75 \%$ (for 3 steps).

Remuson et. al. reported a formal synthesis of (\pm)-mesembrine 1, employing intramolecular cyclization of allyl silyl substituted N-acyliminium ion. 3-Arylimide 123 was alkylated with 3-[(trimethylsilyl)methyl]but-3-enyl-4-methylbenzenesulfonate 124

Total Synthesis of (\pm)-Mesembrine

using NaH in DME to furnish imide 125 in 60% yield (scheme 22). Compound $\mathbf{1 2 5}$ was reduced with NaBH_{4} in EtOH with addition of 1,2 drops of 2 N HCl to furnish the hindered amido alcohol $\mathbf{1 2 6}$ as a mixture of diastereoisomers in 67% yield in accordance with the literature precedence. The amido alcohol $\mathbf{1 2 6}$ was converted into the acyliminium ion under basic condition ($\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-20^{\circ} \mathrm{C}$), which stereoselectively underwent concomitant cyclization to furnish compound 127. Ozonolysis of compound 127 furnished keto-lactam 70, whose transformation into (\pm)-mesembrine $\mathbf{1}$ is reported in the literature. Similar syntheses were reported by Speckamp et. al. ${ }^{23 c, \mathrm{~d}}$ and Rajagopalan ${ }^{23 \mathrm{e}}$ starting from imide $\mathbf{1 2 3}$ and $\mathbf{1 2 5}$ respectively.

Michael ${ }^{24}$ (Tetrahedron Lett. 1992, 33, 6023-6024)

Scheme 23. Reagents and conditions: a) MeI, DCM; b) t-butyl 3-oxopent-4-enoate 129, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{r} t, 56 \%$ for $\mathbf{1 3 0}$ and 17% for $\mathbf{1 3 1}$; c) TFA, 71%; d) TFA, ultrasound, 82%; e) ref. 21 b .

Michael et. al. reported a formal synthesis of (\pm)-mesembrine 1, employing condensation of 3 -aryl Δ^{1}-pyrrolinium salts with tbutyl 3-oxopent-4-enoate, followed by TFA treatment (scheme 23). Alkylation of thiolactam $\mathbf{1 2 8}$ with MeI, followed by reaction of the resultant 2 -methylthio- Δ^{1}-pyrrolinium iodide with t-butyl 3 -oxopent-4-enoate $\mathbf{1 2 9}$ gave compound 131 in 56% yield, resulting from the expected Knoevenagel-like condensation, followed by interception of the enone by the liberated methanethiolate anion and hexahydroindolone and compound 131 in 17% obtained from conjugate addition of the competitively formed enamine to $\mathbf{1 2 9}$, followed by condensation. Both $\mathbf{1 3 0}$ and $\mathbf{1 3 1}$ yielded Δ^{7}-mesembrenone $\mathbf{1 1 9}$ after treatment with TFA (71% from $4,82 \%$ from 5).

Total Synthesis of (\pm)-Mesembrine

Reduction of Δ^{7}-mesembrenone 119 to (\pm)-mesembrine 1 using Li in liquid NH_{3} is documented in the literature. ${ }^{21 b}$

Shibuya ${ }^{25}$ (Tetrahedron Lett. 1992, 33, 6999-7002)

An enantioselctive synthesis of (+)-mesembrine 1 was reported by Shibuya et. al., employing halolactonization of bis- γ, δ-unsaturated carboxylic imides derived from a camphorsultam for the formation of quaternary carbons in a highly diastereoselective fashion. Symmetrical diene-carboxylic acid 132, prepared from ethyl 3,4-dimethoxyphenyl acetate through sequential diallylation and saponification, was condensed with a sultam derived from D-camphorsulfonic acid, under the methods reported by Oppolzer, to give N acylsultam 133 in 65% yield (scheme 24).

Scheme 24. Reagents and conditions: a) SOCl_{2}; b) Sultam; c) I (collidine) ${ }_{2} \mathrm{ClO}_{4}, \mathrm{DCM}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O},-50^{\circ} \mathrm{C}$; d) $10 \% \mathrm{NaOH}$, then CO_{2}; e) NaIO_{4}; f) NaBH_{4}; g) O_{3}, DCM , pyridine, $-78{ }^{\circ} \mathrm{C}$; h) $\mathrm{Me}_{2} \mathrm{~S}$; i) $\mathrm{MeCH}=\mathrm{PPh}_{3}$, THF; j) $\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{O}_{2}$, wet DMF; k) KOtBu, THF, reflux, overnight; 1) $40 \% \mathrm{MeNH}_{2}$, sealed tube, $180^{\circ} \mathrm{C}, 1 \mathrm{~h}$; m) $\mathrm{Li} / \mathrm{NH}_{3}$.

Treatment of $\mathbf{1 3 3}$ with iodonium di-sym-collidine perchlorate gave a diastereoisomeric mixture of $\mathbf{1 3 4}$, in 83% yield. Treatment of 134 with aq. KOH (20\%) followed by acid work-up and sequential saponification, periodate cleavage and reduction in the same flask gave lactone $\mathbf{1 3 5}$ in 80% yield. Ozonolysis of $\mathbf{1 3 5}$ gave aldehyde $\mathbf{1 3 6}$ in 70% yield. Wittig reaction of $\mathbf{1 3 6}$ with $\mathrm{MeCH}=\mathrm{PPh}_{3}$ in THF , followed by palladium catalyzed oxidation gave the requisite methyl ketone 116. Ketone 116 was transformed into (\pm)-mesembrine 1 according to the literature procedure i. e. treatment with KOtBu ,

Total Synthesis of (\pm)-Mesembrine

followed by treatment with 40% aq. MeNH_{2} in a sealed tube followed by $\mathrm{Li} / \mathrm{NH}_{3}$ reduction.

Matsumura ${ }^{\mathbf{2 6}}$ (Tetrahedron, 1993, 49, 8503-8512)

Matsumura et. al. reported an elegant total synthesis of (\pm)-mesembrine 1, exploiting anodic oxidation protocol for introduction of aryl groups at position β to the nitrogen atom of cyclic amines involving 1,2-migration of aryl group. Pyrrolidine 137 upon anodic oxidation gave compound 138. Anodic α-methoxylation of cyclic amine $\mathbf{1 3 8}$ gave pyrrolidine 139. α-Methoxy group in compound 139 was replaced with an aryl group (3,4dimethoxyphenyl) to obtain compound 140, which upon subsequent silver ion-promoted migration of the α-aryl group to the β-position gave pyrroline 141 . Reduction of compound 141 furnished pyrroline 49, which upon treatment with methyl vinyl ketone furnished (\pm)mesembrine 1 (scheme 25).

Scheme 25. Reagents and conditions: a) -e / MeOH ; b) $\mathrm{H}^{+}, \Delta, 76 \%$; c) $\mathrm{X}^{+}, \mathrm{MeOH}, 66 \%$ for $\mathrm{X}=\mathrm{Br}, 93 \%$ for $\mathrm{X}=\mathrm{I} ; \mathrm{d}$) veratrole, $\mathrm{H}^{+}, 83 \%$ for $\mathrm{X}=\mathrm{Br}, 90 \%$ for $\mathrm{X}=\mathrm{I} ;$ e) $\mathrm{Ag}^{+}, \mathrm{MeOH}, 66 \%$ for $\mathrm{X}=\mathrm{Br}, 72 \%$ for $\left.\mathrm{X}=\mathrm{I} ; \mathrm{f}\right) \mathrm{H}^{+}$ or Δ; g) $\mathrm{LiAlH}_{4}, 67 \%$; h) MVK, 93%.

Kosugi ${ }^{27}$ (Tetrahedron:Asymmetry, 1993, 4, 1409-1412)
Kosugi et. al. employed an elegant way of transfer of chirality by cycloaddition of enantiomerically pure β, β-disubstituted vinyl sulfoxides with dichloroketene to give β, β disubstituted γ-lactones for the synthesis of $(+)$-mesembrine 1 , via 4,4-disubstituted cyclohexenones. Synthesis commenced with conjugate addition of aryl cuprate to the acetylenic sulfoxide $\mathbf{1 4 2}$ to give vinylic sulfoxide $\mathbf{1 4 3}$ in $\mathbf{7 3} \%$ yield. A THF solution of

Total Synthesis of (\pm)-Mesembrine

trichloroacetyl chloride was slowly added to a THF solution of $\mathbf{1 4 3}$ containing freshly prepared $\mathrm{Zn}-\mathrm{Cu}$ at $0^{\circ} \mathrm{C}$ to furnish the mixture of monochloro and dichloro lactones $\mathbf{1 4 4}$.

Kosugi ${ }^{27}$ (Tetrahedron:Asymmetry, 1993, 4, 1409-1412)

Scheme 26. Reagents and conditions: a) $\mathrm{ArCu}, \mathrm{THF}, 73 \%$; b) $\mathrm{Cl}_{3} \mathrm{CCOCl}, \mathrm{Zn}-\mathrm{Cu}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; c) $\mathrm{Zn}-\mathrm{AcOH}, 0$ ${ }^{\circ} \mathrm{C}$, and then, $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}, 47 \%$ (2 steps); d) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; e) $\mathrm{CH}_{2} \mathrm{~N}_{2}, 65 \%$; f) MeNH_{2}, THF; g) 2-ethyl-2-methyl-1,3-dioxolane, PTSA; h) LiAlH_{4}, THF; i) $\mathrm{H}_{3} \mathrm{O}^{+}$; j) $\mathrm{NH}_{4} \mathrm{OH}, 79 \%$ (3 steps).

This mixture was subjected to dechlorination with Zn in AcOH , which with concomitant deacetalizatin gave lactone 145 in 47% overall yield. Intramolecular aldoltype condensation using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH furnished the enone carboxylic acid, which upon esterification with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ gave ester 87 in 65% overall yield. Heating the ester with MeNH_{2} in THF yielded lactam 70 in 83% yield. Protection of the carbonyl group, reduction of the amide functionality with LiAlH_{4}, followed by deprotection gave (+)mesembrine 1 (scheme 26).

Fukumoto ${ }^{28}$ (J. Org. Chem. 1995, 60, 6785-6790, Tetrahedron Lett. 1994, 35, 6499-6502)

Fukumoto et. al. reported a concise and highly enantioselective formal synthesis of $(-)$-mesembrine $\mathbf{1}$, exploiting substituent effect by a trimethylsilyl group on enantioselectivity of the tandem Katsuki-Sharpless asymmetric epoxidation and enantiospecific ring expansion strategy for the enantioselective construction of benzylic quaternary carbon center (scheme 27).

Scheme 27. Reagents and conditions: a) cyclopropyltriphenylphosphonium bromide, NaH, THF, $65^{\circ} \mathrm{C}, 3 \mathrm{~h}$; b) $\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, \mathrm{rt}, 3 \mathrm{~h}$; c) L-(+)-DIPT, $t \mathrm{BuOOH}, \mathrm{Ti}(\mathrm{OiPr})_{4}, 4 \AA$ molecular sieves, $\mathrm{DCM},-40^{\circ} \mathrm{C}, 48 \mathrm{~h}$; d) $\mathrm{PhSSPh}, \mathrm{Bu}_{3} \mathrm{P}, \mathrm{THF}$, reflux, 1 h ; e) $\mathrm{HOCH}_{2} \mathrm{H}_{2} \mathrm{OH}$, PTSA, PhH, reflux, 4.5 h ; f) $m \mathrm{CPBA}, \mathrm{NaHCO}_{3}, \mathrm{DCM}-$ $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 1.5 \mathrm{~h}$; g) BuLi, allyl bromide, THF, $\mathrm{r} \mathrm{t}, 5 \mathrm{~h}$; h) PTSA, acetone- $\mathrm{H}_{2} \mathrm{O}$, reflux, 12 h then NaBH_{4}, $\mathrm{MeOH}, \mathrm{rt}, 30 \mathrm{~min}$; i) TBSOTf, $\left.\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}, 10 \mathrm{~min} ; \mathrm{j}\right) \mathrm{Na}-\mathrm{Hg}, \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{~h}$ then $\mathrm{Bu}_{4} \mathrm{NF}$, THF, $\mathrm{rt}, 3 \mathrm{~h}$; k) DMSO, $(\mathrm{COCl})_{2}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then $\mathrm{Et}_{3} \mathrm{~N}, 0{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; 1) TESOTf, 2,6-lutidine, DCM, rt, $10 \mathrm{~min}, \mathrm{O}_{3}, \mathrm{DCM},-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then $\left.\mathrm{NaBH}_{4}, 10 \% \mathrm{HCl}, \mathrm{rt}, 10 \mathrm{~min} ; \mathrm{m}\right) \mathrm{O}_{2}, \mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{DMF}-$ $\left.\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 48 \mathrm{~h} ; \mathrm{n}\right)$ ref. $21 \mathrm{~b}, 25$.

Accordingly, ketone 146 was converted into cyclopropylidene ether in 54% yield by Wittig reaction with cyclopropylidenetriphenylphosphorane, which upon desilylation with $\mathrm{Bu}_{4} \mathrm{NF}$ furnished alcohol 147 in 84% yield. Tandem asymmetric epoxidation and 1,2rearrangement of 147 was carried out with t-butyl hydroperoxide in the presence of diisopropyl L-(+)-tartarate [(+)-DIPT], titanium tetraisopropoxide [$\left.\mathrm{Ti}(\mathrm{O} i \mathrm{Pr})_{4}\right]$ and $4 \AA$ molecular sieves to give cyclobutanone in 65% yield with 92% ee, which was converted into sulfide $\mathbf{1 5 0}$ in 91% yield. In the absence of TMS group, ee was only moderate (63%).

Total Synthesis of (\pm)-Mesembrine

Sulfide 148 was then subjected to standard acetalization conditions, followed by oxidation of the sulfide with m CPBA to give sulfone 149 in 88% yield. Optically pure sulfone 149 was alkylated with allyl bromide, the acetal was hydrolysed and the resultant ketone was reduced with NaBH_{4} and subsequent silylation with TBSOTf using $\mathrm{Et}_{3} \mathrm{~N}$ gave silyl ether 150 (100%). Desulfonylation with $\mathrm{Na}-\mathrm{Hg}$, followed by deprotection of silyl ether with $\mathrm{Bu}_{4} \mathrm{NF}$ afforded alcohol, which was oxidized under Swern conditions to furnish ketone $\mathbf{1 5 1}$ in 82% yield. Successive treatment of ketone $\mathbf{1 5 1}$ with TESOTf in the presence of 2,6-lutidine and ozone, followed by NaBH_{4} reduction and treatment with $10 \% \mathrm{HCl}$ gave olefinic lactone, which upon subjection to Wacker oxidation furnished ketone 116 (100\%), which has been previously transformed into (-)-mesembrine $\mathbf{1}$ in three steps. ${ }^{2 \mathrm{lb}, 25}$

Ogasawara ${ }^{29}$ (Heterocycles, 1996, 42, 135-139)

Scheme 28. Reagents and conditions: a) AD-mix- $\beta, \mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$; b) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{PhH}, \mathrm{rt}$; c) $\mathrm{O}_{3}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$; d) $\mathrm{BnNHMe}, \mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{MS}, 4 \AA$; e) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}$, $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{AcOEt-EtOH}, 93 \%$; f) DIBAL, DCM, $-78{ }^{\circ} \mathrm{C}$; g) $\mathrm{PhSH}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{r} \mathrm{t}, 54 \%$; h) Swern oxidation, 100%; i) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{PhH}$, reflux; j) $10 \% \mathrm{KOH}-\mathrm{MeOH}, \mathrm{r}$ t, 77%; k) HCl-EtOH, reflux, 87%.

Ogasawara and Yoshimitsu reported a total synthesis of (-)-mesembrine 1, employing meso desymmetrization of the olefin ester $\mathbf{1 5 2}$ by enantioselective Sharpless AD reaction and radical initiated reaction. Synthesis commenced with treatment of $\sigma-$ symmetric ester 152 with AD-mix- β containing $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ in the presence of methanesulfonamide at $0^{\circ} \mathrm{C}$ for 140 hours to give a mixture of diastereomeric pairs of lactone 153 and ene-lactone 154 in 54% and 30% yield respectively. With two equiv. of AD-mix- β only lactone $\mathbf{1 5 3}$ was obtained in 89% yield (scheme 28).

Lactone 153 was treated with a little excess of $\mathrm{Pb}(\mathrm{OAc})_{4}$ in benzene to give aldehyde 155, followed by reductive amination of 155 with BnNHMe in the presence of $(\mathrm{Boc})_{2} \mathrm{O}$ furnished carbamate 156. Similarly, when ene-lactone 154 was subjected to ozonolysis same aldehyde was obtained, which was transformed into carbamate 156. Lactone 156 was reduced to lactol, which was converted into the hemithioketal 157, which upon sequential reduction, thioketalization and oxidation yielded keto hemithioacetal. Treatment of the keto hemithioacetal with $\mathrm{Bu}_{3} \mathrm{SnH}$ in refluxing benzene in the presence of AIBN furnished desired keto aldehyde 158, which upon annulation with KOH gave the cyclohexenone 159. Exposure of cyclohexenone 159 to dil. HCl effected concurrent removal of the carbamate group with concurrent intramolecular Michael addition to furnish $(-)$-mesembrine 1 in excellent yield.

Denmark ${ }^{30}$ (J. Org. Chem. 1997, 62, 1675-1686)

Denmark and Marcin reported a total synthesis of (-)-mesembrine 1 employing asymmetric construction of quaternary carbon center by tandem [4+2]/[3+2] cycloaddition of a nitroalkene. Treatment of iodide $\mathbf{1 6 0}$ with activated zinc, followed by transmetalation with copper cyanide in the presence of LiCl provided the intermediate organocopper species. Conjugate addition of this organocopper reagent to (E)-2-(3,4-dimethoxyphenyl)-1-nitroethene 161, after trapping with PhSeBr , furnished nitro selenide 162. Oxidation of 162, followed by elimination with $\mathrm{H}_{2} \mathrm{O}_{2}$ gave desired nitroalkene $\mathbf{1 6 3}$ in 72% overall yield as a 1.0:1.5 (E / Z) mixture. The mixture was isomerized to $23: 1(E / Z)$ ratio with MAD.
E / Z-nitroalkene mixture $\mathbf{1 6 3}$ was treated with 1 equiv. of MAD and was allowed to stir for 5 min and then ($1 R, 2 S$)-2-(1-methyl-1-phenylethyl)cyclohexanol vinyl ether (-)164 was introduced. After 1 hour, an additional equiv. of MAD was slowly added to drive the reaction to completion. This protocol reproducibly provided the desired [4+2]cycloadduct 165 in 82-86\% yield with 25-29/1 diastereoselectivity (scheme 29).

Total Synthesis of (\pm)-Mesembrine

Scheme 29. Reagents and conditions: a) Zn dust, b) $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}$; c) (E)-2-(3,4-dimethoxyphenyl)-1nitroethene 161; d) PhSeBr ; e) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}-\mathrm{THF}, 72 \%$ (2 steps); f) MAD, $\mathrm{PhMe},-10{ }^{\circ} \mathrm{C}$; g) MAD, 5 min ; h) $(-)-\mathbf{1 6 4}, 1 \mathrm{~h}$; i) MAD, (1 equiv.), PhMe, $-10^{\circ} \mathrm{C}$; j) PhH , reflux, $2 \mathrm{~h}, 79 \%$ (2 steps); k) H_{2}, Raney $\mathrm{Ni}, \mathrm{MeOH}$, $36 \mathrm{~h}, 74 \%$; l) $\mathrm{CH}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$, $\mathrm{MeOH} ; \mathrm{m}$) H_{2}, Raney Ni , $\mathrm{MeOH}, 81 \%$ (overall); n) (1,1’(azodicarbonyl)dipiperidine, $t \mathrm{BuOMgBr}$, THF, rt, $2 \mathrm{~h}, 80 \%$; o) TFA, r t, 28 h , then $30 \% \mathrm{NaOH}$, reflux, 2.5 h , 60%.

Tandem intramolecular [3+2]-dipolar cycloaddition of nitronate 165 in refluxing benzene afforded tricyclic nitroso acetal 166, as a $30 / 1$ mixture of diastereomers, in 79% overall yield. Catalytic hydrogenation of $\mathbf{1 6 6}$ using W2 Raney Ni furnished amine 167 in 74% yield. Reaction of the amino alcohol 167 with formaldehyde produced an intermediate that was subsequently hydrogenated over Raney-nickel to afford the N-methyl amino alcohol 168 in 81% yield. PCC oxidation of amino alcohol $\mathbf{1 6 8}$ by Mukaiyama method ($1,1^{\prime}$-(azodicarbonyl)dipiperidine (ADD) and tbutoxymagnesium bromide) furnished enal in 80% yield, which upon treatment with $60 \% \mathrm{TFA}$, for 28 hours at room temperature,

Total Synthesis of (\pm)-Mesembrine

provided presumed enolic α-keto aldehyde, which upon treatment with $30 \% \mathrm{NaOH}$ cleaved the alkoxymethylene group to afford target molecule 1.

Mori 31 (J. Org. Chem. 1997, 62, 3263-3270)
Mori et. al. reported total synthesis of (-)-mesembrine 1 via palladium-catalyzed enantioselective allylic substitution and zirconium-promoted cyclization (scheme 30). A solution of allyl carbonate 169 and N -tosylallylamine in THF was warmed in the presence of $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(2.8 \mathrm{~mol} \%)$ and $\mathrm{dppb}(5.6 \mathrm{~mol} \%)$ as a ligand at $50^{\circ} \mathrm{C}$ for 13 hours, to obtain tosylamide 170 in 80% yield and 86% ee.

Scheme 30. Reagents and conditions: a) $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3},(S)$-BINAPO, N-tosylallylamine, THF, $\mathrm{r} \mathrm{t}, 19 \mathrm{~h}$, 86% yield, 86% ee; b) $\mathrm{Cp}_{2} \mathrm{ZrBu}_{2}$; c) MeMgBr ; d) O_{2}; e) $\mathrm{H}_{3} \mathrm{O}^{+}$; f) $\mathrm{Bu}_{4} \mathrm{NF}$; g) $\mathrm{ClCO}_{2} \mathrm{Me}, 91 \%$; h) $\mathrm{CrO}_{3}, 3,5-$ dimethylpyrazole, 65%; i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} ;$ j) $\left(\mathrm{TMSOCH}_{2}\right)_{2}$, TMSOTf; k) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 75 \%$; l) Dess-Martin periodinane; m$) \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, n) Na-naphthalenide, THF, $-78{ }^{\circ} \mathrm{C}$; o) BuLi, MeI, THF, $\left.1 \mathrm{~h} ; \mathrm{p}\right) 10 \%$ aq. HCl, r t, $18 \mathrm{~h}, 35 \%$.

To a THF solution of $\mathrm{Cp}_{2} \mathrm{ZrBu}_{2}$ was added a THF solution of $\mathbf{1 7 0}$ at $-78^{\circ} \mathrm{C}$ and the solution was stirred at room temperature for 4 hours, which upon hydrolysis provided hexahydroindole derivative 171. Free alcohol 171 was converted into its carbonate 172. Allylic oxidation of $\mathbf{1 7 2}$ with CrO_{3} gave enone 173. Enone $\mathbf{1 7 3}$ was reduced with Pd / C and the resultant ketone was acetalized, followed by carbonate deprotection to furnish free alcohol 174. Alcohol 174 was oxidized with Dess-Martin periodinane and subsequently

Total Synthesis of (\pm)-Mesembrine

deformylated with $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ to give acetal 175. Detosylation with sodium naphthalenide, methylation of the free amine followed by hydrolysis of the acetal gave (-)mesembrine 1

Langlois ${ }^{32}$ (Tetrahedron Lett. 1998, 39, 8979-8982)

Scheme 31. Reagents and conditions: a) 177, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}, 24 \mathrm{~h}, 85-86 \%$; b) BuLi, THF, $-25^{\circ} \mathrm{C}$; c) 4bromobutene, -5 to $-10{ }^{\circ} \mathrm{C}, 93-94 \%$; d) BuLi , THF, $-25^{\circ} \mathrm{C}, 15 \mathrm{~min}$; e) 2-(N-methylphenylsulfonamido)ethyl trifluoromethane sulfonate $\mathbf{1 8 0},-78^{\circ} \mathrm{C}, 12 \mathrm{~h}, 58-70 \%$; f) MeI, $\left.\mathrm{BaO}, \mathrm{EtNO}_{2}, 130{ }^{\circ} \mathrm{C}, 6 \mathrm{~h} ; \mathrm{g}\right) \mathrm{NaBH}_{4}, \mathrm{EtOH}, 0-$ $5^{\circ} \mathrm{C}, 30 \mathrm{~min}$; h) $0.5 \mathrm{~N} \mathrm{HCl}, 0-5{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 77 \%$ (3 steps); i) $\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{H}_{2} \mathrm{O}-\mathrm{DMF}, \mathrm{O}_{2}, 45^{\circ} \mathrm{C}, 24 \mathrm{~h}, 69 \%$; j) KOH , dioxane, $100^{\circ} \mathrm{C}, 18 \mathrm{~h}, 88 \%$; k) Li/ NH_{3}, THF, $t \mathrm{BuOH},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 74 \%$.

Langlois et. al. reported a concise synthesis of (-)-mesembrine 1 employing stereoselective alkylation of dianion derived from C2 symmetric imidazolines allowing efficient formation of quaternary benzylic center. Compounds 178a and 178b were obtained by condensing hydrochloride salt of ethyl 2-(3,4-dimethoxyphenyl)acetimidate 177 with either (S,S)-1,2-diamino-1,2-diphenylethane 176a and (S,S)-1,2diaminocyclohexane 176b. Regioselective alkylation of dianions derived from imidazoline derivatives 178a and $\mathbf{1 7 8 b}$, using two equiv. of BuLi at $-25^{\circ} \mathrm{C}$, with 1.1 equiv. of 4bromobutene at $-5^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$ afforded imidazolines $\mathbf{1 7 9 a}$ and $\mathbf{1 7 9 b}$ in high yields.

Again, alkylation of the dianion of 179a and 179b, with triflate derivative 180 using BuLi furnished quaternary substituted imidazolines 181a and 181b in acceptable yields and in diastereomeric excess of 75% and more than 95% respectively. Imidazoline 181b was N-permethylated using an excess of MeI under pressure in a sealed tube and the resultant

Total Synthesis of (\pm)-Mesembrine

imidazolinium derivative was in turn reduced with NaBH_{4} and the resultant aminal was then converted to the desired aldehyde $\mathbf{1 8 2}$ in good overall yield using 0.5 NHCI . Terminal olefin in $\mathbf{1 8 2}$ was subsequently converted to the corresponding methyl ketone $\mathbf{1 8 3}$ under Wacker's conditions. The synthesis was completed by an intramolecular aldol reaction, followed by cleavage of the phenylsulphonyl protection group under Birch conditions to afford (-)-mesembrine $\mathbf{1}$ (scheme 31).

Ogasawara ${ }^{33}$ (Tetrahedron Lett. 1998, 39, 7747-7750)

Scheme 32. Reagents and conditions: a) ethyl vinyl ether, NBS, $\mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}, 98 \%$; b) $\mathrm{Bu}_{3} \mathrm{SnCI}$ (cat.), AIBN (cat.), $\mathrm{NaBH}_{4}, t \mathrm{BuOH}$, reflux, $6 \mathrm{~h}\left(87 \%\right.$); c) $m \mathrm{CPBA}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (cat.), DCM, rt, $1 \mathrm{~h}, 93 \%$; d) $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCI}, \mathrm{Me}_{3} \mathrm{Al}$, THF, reflux, $8 \mathrm{~h}, 98 \%$; e) Swern oxidation, 80%; f) LiAIH_{4} THF, reflux, 2 d ; g) $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}, 75 \%$; h) $\mathrm{CS}_{2}, \mathrm{NaH}$, MeI, THF, r t, $6 \mathrm{~h}, 91 \%$; i) o-dichlorobenzene, reflux, 18 h , 82%; j) CrO_{3}-3,5-dimethylpyrazole, $\mathrm{DCM},-15^{\circ} \mathrm{C}, 2 \mathrm{~h}, 73 \%$; k) $10 \% \mathrm{KOH}, \mathrm{EtOH}$, reflux, $24 \mathrm{~h}, 35 \%$.

Enantiomerically pure allylic alcohol $\mathbf{1 8 4}$ was treated with ethyl vinyl ether in the presence of NBS to give bromo-acetal 185. Treatment of $\mathbf{1 8 5}$ with NaBH_{4} in the presence of a catalytic amount of $\mathrm{Bu}_{3} \mathrm{SnCl}$ and AIBN gave cyclized product $\mathbf{1 8 6}$ through a radical intermediate, which on reaction with $m \mathrm{CPBA}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, afforded γ lactone 187. To introduce the cyclohexene double bond, 187 was first converted to ketoamide 189, via 188. Reduction of 189 with LiAlH_{4} afforded single amino-alcohol 190, which was transformed into cyclohexene 193, through intermediacy of 191 and 192. Allylic oxidation of 193 gave cyclohexenone 194, which was decarbamoylated to give (-)mesembrine $\mathbf{1}$ by concurrent cyclization (Scheme 32).

Rigby ${ }^{34}$ (Org. Lett. 2000, 2, 1673-1675)

Scheme 33. Reagents and conditions: a) $\left.\mathrm{NaH},(\mathrm{MeO})_{2} \mathrm{CO}, \mathrm{b}\right) \mathrm{NaH}, \mathrm{Tf}_{2} \mathrm{O}, 87 \%$; c) tributyl $(3,4-$ dimethoxyphenyl)stannane, d) $\mathrm{LiOH}, \mathrm{MeOH}, 81 \%$; e) (PhO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhH}, 80 \%$; f) 2,2-dimethyl-5,5-bis(propylthio)-2,5-dihydro-1,3,4-oxadiazoline, PhH , reflux, 66%; g) Raney Ni, EtOH; h) $\mathrm{H}_{3} \mathrm{O}^{+}, 100 \%$; i) $\mathrm{SmI}_{2}-\mathrm{HMPA}, ~ t \mathrm{BuOH}, \mathrm{THF}, 70 \%$; j) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}^{+}$; k) LiAlH_{4}, THF; 1) $\mathrm{H}_{3} \mathrm{O}^{+}, 75 \%$.

Rigby and Dong reported a synthesis of (\pm)-mesembrine 1 by a sequence featuring $[4+1]$ cycloaddition of bis-(alkylthio) carbene with a functionalized vinyl isocyanate. Synthesis commenced with commercially available monoprotected dione 195, which was transformed in four steps via vinyl triflate 196 to the key β-aryl- α, β-unsaturated acid 197 in 71% overall yield (Scheme 33). Exposure of 197 to DPPA/TEA, followed by attempted purification of the resultant acyl azide on silica gel gave the rearranged vinyl isocyanate 198, which was immediately heated in refluxing benzene in the presence of excess 2,2-dimethyl-5,5-bis(propylthio)-2,5-dihydro-1,3,4-oxadiazoline to afford the crucial 2:1 adduct 200 through intermediate 199.

Raney nickel mediated reductive cleavage of all four carbon-sulfur bonds in compound 200 delivered the requisite enamide 201 after acetal hydrolysis. Reduction of the remaining enamide alkene to the cis-fused aryloctahydroindole system 70 was achieved by employing SmI_{2}-based reduction protocol. This followed by a routine series of

Total Synthesis of (\pm)-Mesembrine

operations i.e. protection of the ketone, reduction of the amide and hydrolysis of the acetal afforded (\pm)-mesembrine $\mathbf{1}$.

Taber ${ }^{35}$ (J. Org. Chem. 2001, 66, 143-147)

Scheme 34. Reagents and conditions: a) NaH, THF, BuLi; b) 3-bromo-1-chloro-2-methylpropene, 73\%; c) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 80 \%$; d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 87 \%$; e) $\mathrm{LiOH}, 1,4$-dioxane- $\mathrm{H}_{2} \mathrm{O}, 64 \%$; f) $\mathrm{Me}_{3} \mathrm{COCl}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$; g) lithium (S)-(+)-4-phenyl-2-oxazolidinone, 68%; h) (3,4-dimethoxyphenyl) magnesium iodide, $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$, THF, DMS, 94%; i) $\mathrm{H}_{2} \mathrm{O}_{2}$, $\mathrm{LiOH}-\mathrm{H}_{2} \mathrm{O}$; j) LiAlH_{4}, THF, Δ, 89%; k) NaH , DMF, $\mathrm{BnCl}, 84 \%$; l) KHMDS, $\mathrm{Et}_{2} \mathrm{O}, 85 \%$; m) $\left.\mathrm{O}_{3}, \mathrm{Ph}_{3} \mathrm{P} ; \mathrm{n}\right)$ PTSA, PhH , reflux, Dean-Stark, 83%; o) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 87 \%$; p) $\mathrm{Na} / \mathrm{NH}_{3}, \mathrm{THF},-$ $78{ }^{\circ} \mathrm{C} ; 86 \%$; q) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}, 84 \%$; r) $\mathrm{MeNH}_{2}, \mathrm{H}_{2} \mathrm{O}-\mathrm{THF} ;$ s) $\mathrm{MnO}_{2}, \mathrm{DCM}, 68 \%$.

Taber and Neubert described a total synthesis of (-)-mesembrine 1, employing diastereoselective conjugate addition and subsequent intramolecular alkylidene $\mathrm{C}-\mathrm{H}$ insertion (scheme 34). Alkylation of the dianion of acetoacetate 202 with 3-bromo-1-chloro-2-methylpropene was effecetd to give ketoester $\mathbf{2 0 3}$ in good yield. Reduction of the

Total Synthesis of (\pm)-Mesembrine

ketone 203 and mesylation of the resultant alcohol was accompanied by concomitant elimination to give $(E)-\alpha, \beta$-unsaturated ester, which upon hydrolysis with LiOH afforded acid 204. Next, the chiral auxiliary was introduced by the reaction of lithium (S)-(+)-4-phenyl-2-oxazolidinone with the mixed anhydride of $\mathbf{2 0 4}$ derived from pivalic acid to obtain 205.

Conjugate addition of arylmagnesium iodide to acyl oxazolidinone $\mathbf{2 0 5}$ proceeded with high stereoselectivity to funish 206. Hydrolysis of the oxazolidinone amide 206 then gave acid 207. Acid 207 was subjected to LiAlH_{4} reduction and the resultant alcohol was converted into its benzyl ether 208. Benzyl ether 208 cyclized smoothly to give cyclopentene 209 with retention of absolute configuration. Ozonolysis of 209 gave the intermediate keto aldehyde, which upon cyclization with KOH in MeOH , involving intramolecular aldol reaction and subsequent dehydration gave cyclohexenone 210, under acid catalysis. The cyclohexenone 210 was reduced $\left(\mathrm{LiAlH}_{4}\right)$ to the secondary alcohol, and subsequent debenzylation gave diol 211. The primary alcohol was then selectively converted to mesylate, which following amination, oxidation, and cyclization then gave (-)-mesembrine 1.

Kulkarni ${ }^{\mathbf{3 6}}$ (Tetrahedron Lett. 2002, 43, 2297-2298)

Scheme 35. Reagents and conditions: a) CH_{2} : $\mathrm{CHCH}_{2} \mathrm{OCH}_{2} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Cl}^{-}$, $\mathrm{KOt} \mathrm{Bu}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 93 \%$; b) xylene reflux, $7 \mathrm{~h}, 98 \%$; c) MVK, ethanolic KOH (cat.), ether, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}, 85 \%$; d) OsO_{4} (cat.), $\mathrm{NaIO}_{4}, 5 \mathrm{~h}$, 60%; e) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone, $4 \mathrm{~h}, 60 \%$; f) MeNH_{2} excess, $\mathrm{MeOH}, 8{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$ in sealed tube, quantitative; g) i. 2-ethyl-2-methyl-1,3-dioxolane, PTSA, reflux, 2 h , ii. LiAlH_{4} excess, $\mathrm{THF}^{2}-\mathrm{Et}_{2} \mathrm{O}$, reflux, 23 h , iii. 10% aq. $\mathrm{HCl}, \mathrm{rt}, 2$ days, 72%.

Total Synthesis of (\pm)-Mesembrine

Kulkarni et. al. reported a short and efficient synthesis of (\pm)-mesembrine $\mathbf{1}$ employing tandem Wittig olefination-Claisen rearrangement. Reaction of veratraldehyde 50 with allyloxymethylenetriphenylphosphonium chloride using KOt Bu as the base furnished the E / Z-mixture of allyl vinyl ether 212 in good yield, which smoothly underwent Claisen rearrangement in refluxing xylene to furnish 2-aryl-4-pentenal 213 in quantitative yields. Compound $\mathbf{2 1 3}$ on treatment with methyl vinyl ketone and a catalytic amount of ethanolic KOH underwent tandem Michael addition-intramolecular aldol condensation to give allyl cyclohexenone 214 in 85% yield.

Aldehyde 215 was obtained in 60% yield by treatment of 214 with a catalytic amount of OsO_{4} and 1.5 equiv. of NaIO_{4}. Jone's oxidation of 215 furnished lactone 75. Treatment of lactone 75 with excess MeNH_{2} gave the lactam 70. The lactam was then subjected to ketal exchange with 2-ethyl-2-methyl-1,3-dioxolane. The excess dioxolane was removed under vacuum and the crude lactam was reduced with LiAlH_{4}. Acid hydrolysis of the crude ketal amine so obtained gave (\pm)-mesembrine $\mathbf{1}$ (scheme 35).
$\mathbf{T u}^{37}$ (Org. Lett. 2003, 5, 2319-2321)

Scheme 36. Reagents and conditions: a) TBSCl, Im; b) PCC, DCM; c) TsNHNH ${ }_{2}$, THF, 60% (3 steps); d) BuLi then veratraldehyde; e) TsNCINa, PTAB; f) $\mathrm{ZnBr}_{2}, \mathrm{DCM}, 98 \%$; g) $\mathrm{MeOCH}=\mathrm{PPh}_{3}$; h) $\mathrm{HClO}_{4}, 85 \%$ (2 steps); i) Red-Al, o-xylene, reflux, $6 \mathrm{~h}, 50 \%$; j) i. $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{TiCl}_{4}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$; ii. Na-naphthalenide, DME, $-78^{\circ} \mathrm{C}, 93 \%$ (2 steps); k) $\mathrm{NaCNBH}_{3}, \mathrm{ZnCl}_{2}$, formalin; 1) PDC, DCM, 90%.

A short and general approach to (\pm)-mesembrine 1 has been developed employing stereocontrolled ZnBr_{2}-catalyzed rearrangement of 2,3-aziridino alcohol (scheme 36). Synthesis commenced with transformation of the commercially available cyclohexane-1,4diol 216 to hydrazone 217 in three steps in 60% overall yield. Shapiro coupling of $\mathbf{2 1 7}$ with

Total Synthesis of (\pm)-Mesembrine

3,4-dimethoxybenzaldehyde followed by aziridination afforded aziridino alcohol $\mathbf{2 1 8}$ as a mixture of isomers (2:1) in 26% overall yield. Subjection of 218 to catalytic amounts of ZnBr_{2}, in DCM at room temperature for 1 hour furnished 219 in a single diastereoisomeric form, which was then converted into 220 in 85% overall yield.

Reduction of 223 with Red-A1 resulted in amino alcohol 221. Alternatively, 221 was obtained in excellent yields when $\mathbf{2 2 0}$ was treated with $\mathrm{NaBH}_{3} \mathrm{CN}$ and TiCl_{4} in DCM at $-78{ }^{\circ} \mathrm{C}$ followed by removal of the tosyl group using sodium naphthalenide. After N methylation of 221, followed by oxidation using PDC, 221 ultimately was converted into (\pm)-mesembrine 1.

Taber ${ }^{38}$ (J. Org. Chem. 2005, 70, 7711-7714)

Scheme 37. Reagents and conditions: a) 3,4-(dimethoxyphenyl)magnesium bromide, THF, $0-20{ }^{\circ} \mathrm{C}$, overnight; b) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, PTSA (cat.), PhH, reflux, 64%; c) Shi's catalyst, DME- $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 4$ h ; d) allylmagnesium chloride, THF, $0-20^{\circ} \mathrm{C}$, overnight, 73%; e) 10% aq. HCl , THF, reflux, $1 \mathrm{~h}, 92 \%$; f) O_{3}, $\mathrm{MeOH},-78{ }^{\circ} \mathrm{C} ; \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}, 0^{\circ} \mathrm{C}, 73 \%$; g) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 20^{\circ} \mathrm{C}$, overnight, 90%; h) 40% aq. $\mathrm{CH}_{3} \mathrm{NH}_{2}$, THF, $65^{\circ} \mathrm{C}, 1 \mathrm{~h}$; i) MnO_{2}, $\mathrm{DCM}, 20^{\circ} \mathrm{C}, 3 \mathrm{~h}, 61 \%$.

Taber and He reported a short synthesis of (-)-mesembrine 1 employing enantioselective construction of quaternary stereogenic centre. Treatment of 3,4(dimethoxyphenyl) magnesium bromide with cyclohexanone 198 gave the known alkene 91 after dehydration using PTSA in the presence of excess ethylene glycol. Shi expoxidation of 91 followed by ring opening of the resultant crude epoxide by allylmagnesium chloride furnished the enantiomerically enriched secondary alcohol $\mathbf{2 2 3}$ in

Total Synthesis of (\pm)-Mesembrine

96\% ee. Exposure of $\mathbf{2 2 2}$ to 10% aqueous HCl in THF gave the enone 214. Selective ozonolysis of the terminal double bond in 214 followed by treatment of the resultant ozonide in situ with NaBH_{4} in the presence of CeCl_{3} furnished diol 223 as a 4:1 mixture of diastereomers. The primary hydroxyl group in diol $\mathbf{2 2 3}$ was selectively converted into the corresponding tosylate 224, which on heating with 40% aq. MeNH_{2}, followed by oxidation using activated MnO_{2} gave (-)-mesembrine $\mathbf{1}$ (scheme 37).

Malachowski ${ }^{39}$ (Org. Lett. 2006, 8, 4007-4010)

Scheme 38. Reagents and conditions: a) SOCl_{2}, b) L-prolinol; c) MeI , NaH ; d) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Ar}-$ $\mathrm{B}(\mathrm{OH})_{2}, \mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 96 \%$; e) $\mathrm{Li}, \mathrm{NH}_{3}, t \mathrm{BuOH},-78{ }^{\circ} \mathrm{C}$; f) 1,3-pentadiene; g) allyl bromide, 70% (for 3 steps), de $>99: 1$; h) $6 \mathrm{~N} \mathrm{HCl}, \mathrm{MeOH}, 95 \%$; i) $1,2-\mathrm{DCB}, \Delta, 80 \%$; j) O_{3}, DMS; k) $\mathrm{MeNH}_{2}, \mathrm{NaCNBH}_{3}, 63 \%$ for 2 steps; 1) MeNHOH, $\mathrm{EtOH}, \Delta, 60 \%$; m) $\mathrm{Mo}(\mathrm{CO})_{6}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}, \Delta, 75 \%$ (for 2 steps).

Malachowski et. al. demonstrated a total synthesis of mesembrine 1, employing a sequence of three reactions: enantioselective Birch reduction-allylation, enol ether hydrolysis, and Cope rearrangement resulting in the stereoselective generation of chiral quaternary center on a 2 -cyclohexen-1-one ring. Synthesis commenced with conversion of

Total Synthesis of (\pm)-Mesembrine

acid 225 into acid chloride and coupling with (L)-prolinol as the chiral auxiliary, followed by methylation of the alcohol to obtain the o-anisic acid derivative 226 in 75% yield (scheme 38). Cross-coupling of 226 with 3,4-dimethoxyphenylboronic acid furnished biaryl derivative 227. Birch reduction of 227 followed by Cope rearrangement provided compound 228 with excellent chemoselectivity. Hydrolysis of compound $\mathbf{2 2 8}$ with 6 N $\mathbf{H C l}$ gave cyclohexen-2-one 229 that susequently rearranged to $\mathbf{2 3 0}$. Ozonolysis of the terminal alkene afforded aldehyde 231, which was immediately subjected to reductive amination. Resultant secondary amine spontaneously underwent conjugate addition to afford 232. Cleavage of the chiral auxiliary with N-methylhydroxylamine afforded 233, which was reduced, hydrolyzed, and decarboxylated in one step with $\mathrm{Mo}(\mathrm{CO})_{6}$ to afford (+)-mesembrine 1.

2.1.4.1. Retrosynthetic analysis

Ar = 3,4-dimethoxyphenyl, R = protecting group

Scheme 39. Retrosynthetic analysis.
Retrosynthetic analysis (scheme 39) revealed that target molecule $\mathbf{1}$ could be obtained from enone 234, which in turn could be prepared from ketone 235. Elaboration of nitrile 236, employing a suitable sequence would give compound 235. Ketone $\mathbf{2 3 6}$ in turn could be obtained from β-ketoester 237. Demethoxycarbonylation of β-ketoester 237 would give 4,4-disubstituted ketone 236. β-ketoester 237 in turn could be obtained by double Michael addition of methyl acrylate 239 to 3,4-dimethoxyphenylacetonitrile 45, followed by Dieckmann condensation of the resultant double Michael adduct 238.

2.1.4.2. Results and discussion

In connection with an ongoing programme on the synthesis of biologically active compounds, we have recently developed a technically and economically viable protocol ${ }^{40}$ for the synthesis of antidepressant drug venlafaxine. In order to establish generality of the protocol it was decided to employ this protocol for the construction of quaternary carbon center, a formidable challenge posed by such molecules as mesembrine 1 and related members of this family of alkaloids.

Total Synthesis of (\pm)-Mesembrine

Accordingly, Michael addition of 3,4-dimethoxyphenyl acetonitrile 45 to methyl acrylate 239 using 10% aq. NaOH or KOH at $0^{\circ} \mathrm{C}$, under phase transfer conditions gave double Michael adduct $\mathbf{2 3 8}$ in 75% yield within 1 hour. ${ }^{40}$ Alternatively, compound $\mathbf{2 3 8}$ was obtained quantitatively using Triton-B as a catalyst, in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ (scheme 40).

IR spectrum of compound 238 showed a strong absorption at $1736 \mathrm{~cm}^{-1}$ characteristic of ester carbonyl and an absorption at $2232 \mathrm{~cm}^{-1}$ characteristic of nitrile. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 238 showed a multiplet at δ 6.94-6.80 corresponding to three aromatic protons. The six ester methoxy protons appeared at $\delta 3.58$, and the other two methoxy protons appeared at $\delta 3.87$ and 3.84. The multiplet at $\delta 2.04-2.48$ accounted for the remaining eight protons. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 238 showed signal at δ 172.2 correponding to ester function. The six aromatic carbons appeared at $\delta 149.5,148.9$, 128.3, 120.9, 111.4, 108.8. A signal at $\delta 118.3$ indicated nitrile carbon. The methoxy carbons appeared at $\delta 55.8$ and 51.6. The signal at $\delta 46.4$ revealed the quaternary carbon and the remaining four carbons appeared at $\delta 35.7$ and 29.9. Molecular formula of compound $\mathbf{2 3 8}$ was further confirmed by its MS spectrum, which showed a signal at 350 corresponding to $\mathrm{M}+1$.

Michael adduct 238 was subjected to Dieckmann condensation using NaH in DME under reflux for 3 hours to give β-ketoester in 89% yield, which exists as a mixture of ketoenol tautomers 237 and 240.

IR spectrum of tautomers $\mathbf{2 3 7}$ and $\mathbf{2 4 0}$ showed a broad absorption at $3365 \mathrm{~cm}^{-1}$ and $1665 \mathrm{~cm}^{-1}$ characteristic of β-ketoester and an absorption at $2236 \mathrm{~cm}^{-1}$ corresponding to nitrile group. ${ }^{1} \mathrm{H}$ NMR spectrum of β-ketoester showed a broad singlet at $\delta 12.20$ characteristic of enol proton. The three aromatic protons appeared at $\delta 6.95$ and 6.84 as multiplet and doublet respectively. The signals at $\delta 3.89,3.84$ and 3.75 revealed nine methoxy protons. Multiplets at δ 2.49-3.00 and 2.13-2.24 revealed seven protons. ${ }^{13} \mathrm{C}$ NMR spectrum of β-ketoester showed two signals at $\delta 171.5$ and 170.5 corresponding to ester function, which may be attributed to mixture of tautomers. Signals at $\delta 149.2,148.8,131.6$, 121.7, 111.2, 109.1 revealed six aromatic protons. A signal at $\delta 117.4$ corresponded to nitrile carbon. The methoxy protons appeared at $\delta 55.8$, and 51.5 . Mass spectral analysis of compound 237 and 240 showed signals at 318 and 317 corresponding to $\mathrm{M}+1$ and M^{+} respectively, further confirming its molecular formula.

The mixture of tautomers $\mathbf{2 3 7}$ and $\mathbf{2 4 0}$ was subjected to demethoxycarbonylation in wet DMSO at $140{ }^{\circ} \mathrm{C}$ for 6 hours using Krapcho's method ${ }^{41}$ to obtain ketone 236 in 87%

Total Synthesis of (\pm)-Mesembrine

yield (scheme 40). Use of THF as a solvent for Dieckmann condensation gave low yields (about 40\%).

Scheme 40: Reagents and conditions: a) 10% aq. $\mathrm{NaOH}, \mathrm{TBAHSO}_{4}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 75 \%$; b) Triton-B (cat.), $\mathrm{CH}_{3} \mathrm{CN}$, reflux, overnight, (quantitative); c) NaH , DME, reflux, $3 \mathrm{~h}, 89 \%$; d) NaCl , DMSO, $\mathrm{H}_{2} \mathrm{O}, 140^{\circ} \mathrm{C}, 6 \mathrm{~h}$, 87\%;

Scheme 41. Reagents and conditions: a) 1,3-propanediol, PTSA, PhH, reflux, b) 1,3-propanediol, PPTS, PhH , reflux; c) 1,3-propanediol, $(\mathrm{COOH})_{2}, \mathrm{PhH}$, reflux; d) 1,3-propanediol, $\mathrm{CSA}, \mathrm{PhH}$, reflux.

Absorptions at $2241 \mathrm{~cm}^{-1}$ and $1710 \mathrm{~cm}^{-1}$ in the IR spectrum of compound 236 confirmed the presence of nitrile and ketone function. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 236 showed signals at $\delta 6.99$ and 6.86 revealing three aromatic protons. Methoxy protons appeared as two singlets at $\delta 3.92$ and $3.89 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 3 6}$ showed signal at $\delta 206.4$ revealing carbonyl function. The aromatic protons were revealed by signals at $\delta 149.0,148.8,130.7,121.0,111.0,108.7$. The signal at $\delta 117.2$ suggested presence of nitrile function. The methoxy carbons appeared as a singlet at δ 55.6. Quaternary carbon appeared at $\delta 42.2$. The remaining four carbons appeared at $\delta 38.2$ and

Total Synthesis of (\pm)-Mesembrine

36.6. Appearance of signals at 260 and 259 in the MS spectrum of compound 236 corresponding to $\mathrm{M}+1$ and M^{+}further confirmed its molecular formula.

Surprisingly, protection of the ketone $\mathbf{2 3 6}$ with 1,3-propanediol ${ }^{42}$ in the presence of either PTSA, PPTS, CSA or $(\mathrm{COOH})_{2}$ as a catalyst was not successful (scheme 41).

Also, replacing 1,3-propanediol with ethylene glycol or transdioxolation with 2-ethyl-2-methyl-1,3-dioxolane ${ }^{42}$ did not give the expected 1,3-dioxolane 242 (scheme 42).

Scheme 42: Reagents and conditions: a) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, PTSA, PhH, reflux, b) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, PPTS, PhH , reflux; c) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH},(\mathrm{COOH})_{2}, \mathrm{PhH}$, reflux; d) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CSA}, \mathrm{PhH}$, reflux; e) 2-ethyl-2-methyl-1,3-dioxolane, PTSA, PhH, reflux, f) 2-ethyl-2-methyl-1,3-dioxolane, PPTS, PhH, reflux, g) 2-ethyl-2-methyl-1,3-dioxolane, $(\mathrm{COOH})_{2}, \mathrm{PhH}$, reflux, h) 2-ethyl-2-methyl-1,3-dioxolane, $\mathrm{CSA}, \mathrm{PhH}$, reflux,

Even 2,2-dimethyl-1,3-propanediol didn't give the desired compound either using PTSA, CSA or oxalic acid. Eventually, acetal 243 was obtained with 2,2-dimethyl-1,3propandiol using PPTS as a catalyst, in refluxing benzene over Dean-Stark apparatus (scheme 43).

Disappearance of absorption at $1710 \mathrm{~cm}^{-1}$ in the IR spectrum of compound 243 indicated formation of acetal. An absorption at $2237 \mathrm{~cm}^{-1}$ indicated the presence of nitrile function. Appearance of singlet at $\delta 0.99$ corresponding to methyl protons and a doublet at $\delta 3.53$ corresponding to CH_{2} s proximal to oxygens of acetal in ${ }^{1} \mathrm{H}$ NMR spectrum of

Total Synthesis of (\pm)-Mesembrine

compound 243 indicated formation of acetal. Disappearance of the signal at $\delta 206.4$ corresponding to carbonyl carbon and appearance of signal at $\delta 95.7$ revealing acetal quaternary center proximal to the oxygen atoms and a signal at $\delta 22.4$ indicating the acetal methyls in the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 243 also suggested formation of the acetal. Molecular formula of the acetal was further confirmed by MS spectrum, which showed signals at 346 and 345 corresponding to $\mathrm{M}+1$ and M^{+}respectively.

Scheme 43: Reagents and conditions: a) 2,2-dimethyl-1,3-propanediol, PTSA, PhH, reflux; b) 2,2-dimethyl-1,3-propanediol, CSA, PhH, reflux; c) 2,2-dimethyl-1,3-propanediol, $(\mathrm{COOH})_{2}, \mathrm{PhH}$, reflux; d) 2,2-dimethyl-1,3-propanediol, PPTS, PhH, reflux, 7 h, 95%.

Nitrile $\mathbf{2 4 3}$ was then reduced with DIBAL in DCM at $0^{\circ} \mathrm{C}$ to obtain aldehyde $\mathbf{2 4 4}$ in quantitative yields (scheme 44).

Scheme 44: Reagents and conditions: a) DIBAL, DCM, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, quantitative; b) $\mathrm{CH}_{3} \mathrm{NO}_{2}$, NaH or KOt Bu , THF.

Appearance of absorptions at $1713 \mathrm{~cm}^{-1}$ and $2712 \mathrm{~cm}^{-1}$ and disappearance of absorption at $2237 \mathrm{~cm}^{-1}$ in the IR spectrum of compound 244 indicated conversion of nitrile into aldehyde. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 244 showed a sharp singlet at $\delta 9.29$ revealing aldehyde function. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 4 4}$ showed appearance of signal at $\delta 200.6$ characteristic of aldehyde carbonyl. Further, appearance of signal at 348
in the MS spectrum of compound 244 corresponding to M^{+}confirmed its molecular formula.

Attempts to homologate the aldehyde $\mathbf{2 4 4}$ by nitroaldol reaction with $\mathrm{CH}_{3} \mathrm{NO}_{2}$ were not successful (scheme 44). Then another course was taken to homologate aldehyde 244, where it was olefinated employing Wittig reaction with methylene triphenylphosphorane to obtain compound 246 in 82% yield using NaNH_{2} as a base in THF.

Disappearance of strong absorption at $1713 \mathrm{~cm}^{-1}$ and $2712 \mathrm{~cm}^{-1}$ in the IR spectrum of compound 246 indicated formation of the olefin. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 246 showed a doublet of doublet at $\delta 5.81$ and two doublets at $\delta 5.09$ and 4.92 suggesting the formation of olefin. Disappearance of signal at $\delta 200.6$ and appearance of signals at $\delta 112.7$ and 146.2 in ${ }^{13} \mathrm{C}$ NMR spectrum of compound 246 corroborated with the above observation. Further, appearance of signals in the MS spectrum of compound 246 at 347 and 346 revealing $\mathrm{M}+1$ and M^{+}confirmed its molecular formula.

Further olefin 246 was subjected to hydroboration with BMS complex, followed by alkaline work up (30% aq. NaOH and 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$) to obtain alcohol 247 in 75% yield (scheme 45).

IR spectrum of compound 247 exhibited a broad signal at $3462 \mathrm{~cm}^{-1}$ characteristic of hydroxy function. Absence of any signals in the olefinic region and appearance of a signal at $\delta 3.29$ revealing $-\mathrm{CH}_{2} \mathrm{OH}$ function in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 247 indicated conversion of olefin into the terminal alcohol. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 247 also showed absence of the olefinic carbons and showed a signal at $\delta 59.0$ indicative of $-\mathrm{CH}_{2} \mathrm{OH}$ function. Molecular formula of alcohol 247 was further confirmed by its MS spectrum showing a signal at 364 revealing M^{+}.

Subsequently, alcohol 247 was converted into mesylate 248 (scheme 45) with MsCl using $\mathrm{Et}_{3} \mathrm{~N}$ in DCM at $0^{\circ} \mathrm{C}$ in quantitative yields!

IR spectrum of compound 248 showed absence of an absorption at $3462 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectrum of compound 248 showed an additional signal at $\delta 2.25$ indicating - $\mathrm{SO}_{2} \mathrm{Me}$. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 248 showed a signal at $\delta 36.1$ indicative of $-\mathrm{SO}_{2} \mathrm{Me}$.

Mesylate 248 was treated with 30% aq. MeNH_{2} solution in a sealed tube at $100{ }^{\circ} \mathrm{C}$ and the resultant free amine was protected with $\mathrm{ClCO}_{2} \mathrm{Bn}$ to obtain benzyl carbamate 249 using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base in THF- $\mathrm{H}_{2} \mathrm{O}$ in 88% overall yield (scheme 45).

IR spectrum of compound 249 showed strong absorption at $1694 \mathrm{~cm}^{-1}$ characteristic of the carbamate function. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 249 showed appearance of two

Total Synthesis of (\pm)-Mesembrine

singlets at $\delta 7.36$ and 7.33 , corresponding to the carbamate phenyl ring. The splitting of signal may be due to mixture of rotamers. The singlets at $\delta 5.11$ and 5.06 corresponded to the benzylic protons of the carbamate function. Molecular structure of carbamate $\mathbf{2 4 9}$ was further confirmed by its mass spectrum, which showed appearance of the signals at 512 and 511 corresponding to the $\mathrm{M}+1$ and M^{+}respectively.

Subjection of the acetal $\mathbf{2 4 9}$ to α-bromination ${ }^{43}$ with Br_{2} in the presence of AlCl_{3} in MeOH or THF didn't give required α-bromoacetal 250 (scheme 45).

Scheme 45. Reagents and conditions: a) DIBAL, DCM, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, quantitative, b) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{I}^{-}, \mathrm{NaNH}_{2}, \mathrm{THF}$, $0^{\circ} \mathrm{C}, 30 \mathrm{~min} 82 \%$; c) BMS, THF, $0^{\circ} \mathrm{C}$ to rt , overnight, then 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ and 30% aq. NaOH ; d) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 100 \%$; e) 40% aq. MeNH_{2}, sealed tube, $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$; f) $\mathrm{ClCO}_{2} \mathrm{Bn}, \mathrm{K}_{2} \mathrm{CO}_{3}$, THF$\mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 4 \mathrm{~h}, 88 \%$ (2 steps); g) $\mathrm{Br}_{2}, \mathrm{AlCl}_{3}$, THF or $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$.

Due to unforeseen problems associated with α-bromination of acetal 249, it was hydrolysed in acetone-water (1:1) system under reflux in the presence of catalytic amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to obtain ketone $235(\mathrm{R}=\mathrm{Cbz})$ in 85% yields (scheme 46).

IR spectrum of compound 235 showed a broad absorption at $1669 \mathrm{~cm}^{-1}$. This may be due to merger of the carbamate and carbonyl absorption. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 235 showed disappearance of a doublet at $\delta 3.48$ and a singlet at $\delta 0.96$ corresponding to the acetal function, indicating hydrolysis of acetal. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 3 5}$ showed appearance of signal at $\delta 210.1$ indicating the formation of ketone. Further, its molecular formula was confirmed by MS spectrum, which showed a signal at 426 and 425 revealing $\mathrm{M}+1$ and M^{+}respectively.

Total Synthesis of (\pm)-Mesembrine

Silyl enol ether of the ketone $\mathbf{2 3 5}$ was prepared by refluxing a solution of $\mathbf{2 3 5}$ and TMSCl in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{3} \mathrm{CN}$ for 2 hours in quantitative yields and the crude silyl enol ether $\mathbf{2 5 1}$ was further subjected to bromination with NBS in THF at $0^{\circ} \mathrm{C}$ to give α-bromoketone 252 (scheme 46), which was used as such for further reaction. ${ }^{44}$

Scheme 46: Reagents and conditions: a) Acetone- $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$ (cat.), reflux, 85%; b) $\mathrm{TMSCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 2 h , quantitative (crude); c) NBS, THF, $0^{\circ} \mathrm{C}, 10 \mathrm{~min}$, quantitative (crude).

The crude α-bromoketone $\mathbf{2 5 2}$ was then subjected to dehydrobromination using DBU as a base in different solvents like DCM, benzene or DME, but surprisingly, it did not furnish the desired enone $234(\mathrm{R}=\mathrm{Cbz})$. Treatment of α-bromoketone 252 with $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and LiBr in DMF at $110^{\circ} \mathrm{C}$ furnished the desired enone 234 in 75% yields (scheme 47). ${ }^{45}$

IR spectrum of compound 234 showed a strong absorption at $1690 \mathrm{~cm}^{-1}$ characteristic of enone. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 3 4}$ showed singlet at $\delta 7.34$ and 7.33 corresponding to five carbamate phenyl protons. The splitting of signals was observed which was attributed to the mixture of the rotamers. Doublet at $\delta 7.12$ corresponded to 0.35 protons, doublet at $\delta 6.94$ corresponded to 0.52 protons. A singlet at $\delta 6.81$ corresponded to two protons and the singlet at $\delta 6.71$ corresponded to one proton. The doublet of doublet at $\delta 6.13$ corresponded to 0.51 protons. The two singlets at $\delta 5.08$ and $\delta 5.05$ corresponding to 1.62 and 0.38 protons constitute benzylic protons. The six methoxy protons appeared at δ 3.88 (two protons), 3.86 (three protons), and 3.80 (one proton). A singlet at $\delta 3.19$ corresponded to 1.48 protons. The singlet at $\delta 2.86$ corresponded to 2.48 protons. The doublet at $\delta 2.74$ corresponded to 0.47 protons. A multiplet at $\delta 1.98-2.35$ corresponded to seven protons. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 234 showed two signals at δ 209.8, 197.9 corresponding to the enone carbonyl. The doublet at $\delta 154.4$ corresponded to the β-carbon of the enone while the α-carbon may be merged with the phenyl carbons of the carbamate. The signal at $\delta 66.83$ revealed the presence of benzylic carbon. N-Me appeared at $\delta 34.18$

Total Synthesis of (\pm)-Mesembrine

and 34.67. Appearance of a signal at 424 in MS spectrum corresponding to $\mathrm{M}+1$, further confirmed its structure.

The remaining task was then unmasking the carbamate without affecting the double bond in enone 234. Thus, according to the literature precedence, enone 234 was treated with TMSI^{46} but it resulted in the formation of an inseparable mixture of products. Also, treatment of the enone 234 with $40 \% \mathrm{KOH}$ in methanol ${ }^{47}$ or with $\mathrm{Ba}(\mathrm{OH})_{2}{ }^{48}$ was not fruitful. Eventually, the carbamate was unmasked using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ complex ${ }^{49}$ in presence of excess DMS in DCM at $0^{\circ} \mathrm{C}$ to get the target molecule 1 in 95% yields (scheme 47).

Scheme 47. Reagents and conditions: a) $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{LiBr}, \mathrm{DMF}, 110^{\circ} \mathrm{C}, 75 \%$; b) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{DCM}, \mathrm{Me}_{2} \mathrm{~S}, 0^{\circ} \mathrm{C}$, $1 \mathrm{~h}, 95 \%$.

IR spectrum of mesembrine 1 showed absorption at $1716 \mathrm{~cm}^{-1}$ characteristic of the ketone function. ${ }^{1} \mathrm{H}$ NMR spectrum of mesembrine 1 showed two doublets at $\delta 6.87$ and 6.81 and a doublet of doublet at $\delta 6.85$ corresponding to three aromatic protons. The two singlets at $\delta 3.86$ and 3.84 were attributed to the methoxy protons. The signal at $\delta 2.36$ corresponded to $\mathrm{N}-\mathrm{Me}$. The remaining protons appeared as two triplets at $\delta 3.04$ and 2.64 for four protons and multiplets at $\delta 3.18-3.22,2.25-2.31$ and 2.13-2.18 for remaining eight protons. ${ }^{13} \mathrm{C}$ NMR spectrum of mesembrine 1 , showed signal at $\delta 210.8$ revealing presence of ketone function. Its molecular formula was confirmed by MS spectrum, which showed a signal at 289 indicating presence of M^{+}.

2.1.4.3. Conclusion

In conclusion, (\pm)-mesembrine has been efficiently synthesized utilizing readily available materials by double Michael addition employing the protocol under aqueous conditions as the key step in 18% overall yield.

2.1.5. Experimental

Dimethyl 4-cyano-4-(3,4-dimethoxyphenyl)heptanedioate (238)

A mixture of finely powdered 3,4dimethoxyphenylacetonitrile 45 ($5 \mathrm{~g}, 28.25 \mathrm{mmol}$) and TBAHSO $_{4}(0.096 \mathrm{~g}, 0.28 \mathrm{mmol})$ in 10% aq. NaOH solution (20 ml) was stirred for 30 minutes at room temperature. A dark red colour appeared. The mixture was then cooled in an ice-bath. Methyl acrylate $\mathbf{2 3 9}$ was slowly added dropwise at $0{ }^{\circ} \mathrm{C},(12.65 \mathrm{ml}, 138.95 \mathrm{mmol})$. After 1 hour a colourless solid was formed, which was filtered and crystallized from EtOAc ($7.49 \mathrm{~g}, 76 \%$ yield).

Alternatively, compound 238 was prepared by refluxing a mixture of 3,4dimethoxyphenylacetonitrile ($100 \mathrm{~g}, 0.564 \mathrm{~mol}$) and methyl acrylate ($253 \mathrm{ml}, 2.82 \mathrm{~mol}$) in the presence of Triton-B ($2.35 \mathrm{ml}, 0.006 \mathrm{~mol}, 40 \%$ solution in MeOH) in $\mathrm{CH}_{3} \mathrm{CN}$ for overnight in almost quantitative yields (197 g).

Molecular formula	: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{6}$
Yield	: 76\%
Mp	: $72-3{ }^{\circ} \mathrm{C}$
IR (Nujol)	: 2961, 2932, 2851, 2232, 1736, 1513, 1459, 1449, 1413, $1195,1173,1144,1024,889,823,768,701,657 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR (200 MH	$\begin{aligned} : & \delta 6.80-6.94(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 6 \mathrm{H}), \\ & 2.04-2.48(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (50 MH	$\begin{aligned} & : \delta 172.2,149.5,148.9,128.3,120.9,118.3,111.4,108.8 \\ & 55.8,51.6,46.4,35.7,29.9 \end{aligned}$
MS (EI) m/z	: 350 (M+1), 318, 286, 259, 208, 149
Analysis	: Calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{6}$; C-61.88, H-6.64, N-4.01 found, C-61.53, H-6.35, N-3.88

Methyl 5-cyano-5-(3,4-dimethoxyphenyl)-2-oxocyclohexanecarboxylate (237) and Methyl 5-cyano-5-(3,4-dimethoxyphenyl)-2-hydroxycyclohex-1-enecarboxylate (240)

To a suspension of oil free $\mathrm{NaH}(57.6 \mathrm{~g}, 0.69$ mol) in DME (200 ml), a solution of Michael adduct $238(100 \mathrm{~g}, 0.32 \mathrm{~mol})$ in DME (400 ml) was added drop-wise and refluxed for 3 hours. The solvent was distilled off, the reaction mixture was allowed to cool and NaH was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, water was added to it and extracted with EtOAc, washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated under reduced pressure. Crystallization (ethyl acetate) furnished a colourless solid (80.84 g).

Molecular formula	: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$
Yield	: 89\%
Mp	: $125-6{ }^{\circ} \mathrm{C}$
IR (Nujol)	$\begin{aligned} : & 3365,2956,2919,2850,2236,1665,1515,1457,1375 \\ & 1337,1285,1255,1209,1152,1023 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (200 MH	$\begin{aligned} & : \delta 12.20(\mathrm{~s}, 0.83 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}) 3.89 \\ & (\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.49-3.00(\mathrm{~m}, 5 \mathrm{H}), 2.13- \\ & 2.24(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (50 MH	$\begin{aligned} & : \delta 171.5,170.5,149.2,148.8,131.6,121.7,117.4,111.2, \\ & \quad 109.1,94.6,55.8,51.5,40.5,34.7,31.4,26.9 \end{aligned}$
MS (EI) m/z	: $318(\mathrm{M}+1), 317\left(\mathrm{M}^{+}\right), 285,189,174,146,119,91,77$
Analysis	: Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$; C-64.34, $\mathrm{H}-6.03, \mathrm{~N}-4.41$ found C-64.74, H-5.94, N-4.09

1-(3,4-dimethoxyphenyl)-4-oxocyclohexanecarbonitrile (236)

The mixture of tautomers 237 and 240 ($75.0 \mathrm{~g}, 0.24 \mathrm{~mol}$), $\mathrm{NaCl}(69.20 \mathrm{~g}$, $1.18 \mathrm{~mol})$ in DMSO ($419 \mathrm{ml}, 5.92 \mathrm{~mol}$) was heated at $140{ }^{\circ} \mathrm{C}$ for 6 hours in the presence of water ($21.29 \mathrm{ml}, 1.18 \mathrm{~mol}$). The reaction mixture was allowed to cool, diluted with water, extracted with ether ($3 \times 200 \mathrm{ml}$), and the combined extracts were washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Crystallization from EtOAc afforded a pale yellow solid (53.31 g).

Total Synthesis of (\pm)-Mesembrine

Acetal (243)

A mixture of ketone 236 ($50 \mathrm{~g}, 0.19 \mathrm{~mol}$), 2,2-dimethyl-1,3propanediol $(22.08 \mathrm{~g}, 0.21 \mathrm{~mol})$ and PPTS ($4.85 \mathrm{~g}, 0.019 \mathrm{~mol}$) was refluxed in benzene in a round bottom flask fitted with Dean-Stark apparatus for 7 hours to remove water. The reaction mixture was washed with aq. NaHCO_{3} solution, and then thoroughly with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Evaporation of the solvent under reduced pressure followed by crystallization from EtOAc furnished a colourless solid ($67.27 \mathrm{~g}, 95 \%$).

Molecular formula	$: \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4}$
Yield	$: 95 \%$
Mp	$: 131-3{ }^{\circ} \mathrm{C}$
IR (Nujol)	$: 2923,2857,2237,1463,1377,1260,1243,1142,1103 \mathrm{~cm}^{-1}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.81 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.88$
(s, 3H), 3.53 (d, $J=14.16 \mathrm{~Hz}, 4 \mathrm{H}$), 2.39 ($\mathrm{d}, J=11.23 \mathrm{~Hz}$, 2H), 1.86-2.07 (m, 6H), 0.99 ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathbf{C D C l}_{3}$) : $\delta 148.9,148.5,132.6,122.0,117.4,111.1,109.1,95.7$, 69.7, 55.6, 43.2, 33.4, 30.0, 29.6, 22.4

MS (EI) m/z
: $346(\mathrm{M}+1), 345\left(\mathrm{M}^{+}\right), 317,259,189,141,128$
Analysis $\quad:$ Calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4} ; \mathrm{C}-69.54, \mathrm{H}-7.88, \mathrm{~N}-4.05$ found,

Aldehyde (244)

To a stirred solution of nitrile 243 ($60 \mathrm{~g}, 0.17 \mathrm{~mol}$) in DCM (250 ml), DIBAL ($104 \mathrm{ml}, 0.21 \mathrm{~mol}, 2 \mathrm{M}$ in toluene) was added dropwise at $0{ }^{\circ} \mathrm{C}$, under argon atmosphere. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour. Reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $0^{\circ} \mathrm{C}$ and stirred for 20 minutes. Then $10 \% \mathrm{HCl}$ solution was added, stirred for few minutes and extracted with DCM, washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to obtain a white solid in quantitative yields (60.52 g).

Molecular formula	$: \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$
Yield	$: 100 \%$
Mp	$: 148{ }^{\circ} \mathrm{C}$
IR (Nujol)	$: 2928,2712,1713,1598,1585,1518,1466,1377,1332$,
	$1258,1234,1022,884,813,767,701,627 \mathrm{~cm}^{-1}$

${ }^{1} \mathbf{H}$ NMR ($200 \mathbf{M H z}, \mathbf{C D C l}_{3}$) : $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.46$ (d, $J=11.23 \mathrm{~Hz}, 4 \mathrm{H}), 1.88-2.34(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.66(\mathrm{~m}, 2 \mathrm{H})$, 0.94 ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathbf{C D C l}_{3}$) : $\delta 200.6,149.1,148.2,130.7,119.3,111.2,110.2,96.6$, 69.7, 55.6, 53.1, 30.0, 28.8, 27.0, 22.5

MS (EI) m / z
: $348\left(\mathrm{M}^{+}\right), 319,233,215,192,141,128,91,69$
Analysis
: Calculated for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$; C-68.94, H-8.10 found, 68.79 , $\mathrm{H}-$ 8.23

Olefin (246)

A mixture of $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}(116.0 \mathrm{~g}, 0.28 \mathrm{~mol})$ and $\mathrm{NaNH}_{2}(10.08 \mathrm{~g}$, $0.26 \mathrm{~mol})(250 \mathrm{ml})$ was stirred in THF under nitrogen atmosphere at room temperature for 2 hours. A dark yellow colour of the ylide appeared. It was cooled with ice-salt mixture. A solution of aldehyde 244 ($50 \mathrm{~g}, 0.14 \mathrm{~mol}$) in THF (200 ml) was added drop-wise with salt-ice cooling. Yellow color of the ylide disappeared soon after the addition of aldehyde solution. The reaction mixture was stirred

Total Synthesis of (\pm)-Mesembrine

for 30 minutes. Solvent was removed under reduced pressure and quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EtOAc, the combined extracts were washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to obtain a thick red residue which after purification by column chromatography over neutral alumina furnished thick colourless oil (49.71 g).

Molecular formula	: $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$
Yield	: 82%
IR (Neat)	$\begin{aligned} & : 2949,2862,1594,1513,1461,1259,1145,1109,1029, \\ & 909,886,871,806 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (200 MH	$\begin{aligned} & : \delta 6.77-6.91(\mathrm{~m}, 3 \mathrm{H}), 5.81(\mathrm{dd}, J=10.73 \mathrm{~Hz} \text { and } 17.55 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.73 \mathrm{~Hz} 1 \mathrm{H}), 4.92(\mathrm{~d}, J=17.55 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{~d}, J=9.85 \mathrm{~Hz}, 4 \mathrm{H}), 1.85-2.10(\mathrm{~m}, 8 \mathrm{H}), \\ & 0.97(\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (50 MH	$: \delta 148.7,147.3,146.2,138.4,118.8,112.7,111.2,110.9$, $97.3,69.8,69.7,55.8,44.0,31.7,30.0,28.8,22.6$
MS (EI) m/z	: 347 (M+1), $346\left(\mathrm{M}^{+}\right), 318,260,190,159,141,69$
Analysis	: Calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$; C-72.80, H-8.73 found, C-72.50, H-8.85

Alcohol (247)

To a stirring solution of olefin 246 ($45 \mathrm{~g}, 130.06 \mathrm{mmol}$) in THF (150 ml), BMS complex ($16.04 \mathrm{ml}, 169.08 \mathrm{mmol}$) was added dropwise via syringe at $0^{\circ} \mathrm{C}$, under argon atmosphere. The reaction mixture was then allowed to warm to room temperature and stirred overnight. The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$, followed by addition of 30% aq. $\mathrm{NaOH}(65 \mathrm{ml})$ and stirred for 30 minutes. Then $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(65 \mathrm{ml})$ was added dropwise and further stirred for 1 hour at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with EtOAc, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Column chromatographic purification over neutral alumina afforded a thick colourless syrup (35.51 g).

Molecular formula	$: \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5}$
Yield	$: 75 \%$

$\begin{aligned} \text { IR }\left(\mathbf{C H C l}_{\mathbf{3}}\right) & : 3462,3016,2946,2838,1589,1517,1464,1255,1216, \\ & 1150,1117,1106,1027,807,759,667 \mathrm{~cm}^{-1}\end{aligned}$
${ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathbf{C D C l}_{3}$) : $\delta 6.73-6.86(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~d}, J=$ $15.14 \mathrm{~Hz}, 4 \mathrm{H}), 3.29(\mathrm{t}, J=6.83 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H})$, $1.92-2.05(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.77(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($50 \mathbf{M H z}, \mathbf{C D C l}_{3}$) : $\delta 148.9,147.1,137.4,118.8,111.2,110.3,97.7,66.7,59.0$, $55.8,55.6,45.9,39.5,34.8,32.2,28.6,23.7,6.9$

MS (EI) m/z
Analysis
: $364\left(\mathrm{M}^{+}\right)$
: Calculated for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5}$; C-69.20, H-8.85 found C-69.35, H-8.63

Mesylate (248)

To a stirring solution of alcohol $247(25 \mathrm{~g}, 68.68 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(14.33 \mathrm{ml}, 103.02 \mathrm{mmol})$ in $\mathrm{DCM}(100 \mathrm{ml}), \mathrm{MsCl}(8.80$ $\mathrm{ml}, 113.64 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$, under nitrogen atmosphere. After 30 minutes, the reaction mixture was washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered concentrated in vacuo to afford a pale yellow syrup in quantitative yields $(41.85 \mathrm{~g})$. The crude mesylate was used for further reaction without purification.

Molecular formula	$: \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~S}$
Yield	$:$ quantitative

IR $: 3021,2938,2838,1518,1465,1333,1256,1216,1027 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl ${ }_{3}$) : $\delta 6.78-6.90(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.47(\mathrm{~d}, J=14.87 \mathrm{~Hz}$, $4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.95-2.12(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.74(\mathrm{~m}, 7 \mathrm{H})$, 0.95 ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 148.8,147.0,137.5,119.0,111.0,97.7,66.9,55.9,55.8$, 47.3, 39.9, 36.1, 32.2, 30.1, 28.6, 22.7

Carbamate (249)

A mixture of mesyl ester 248 ($30 \mathrm{~g}, 67.87 \mathrm{mmol}$) and 40% aq. MeNH_{2} solution (60 ml) was heated in THF in a sealed tube at $100{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and saturated aq. NaHCO_{3} solution (25 ml)

Total Synthesis of (\pm)-Mesembrine

added to the reaction mixture, followed by drop-wise addition of $\mathrm{ClCO}_{2} \mathrm{Bn}(10.65 \mathrm{ml}$, 74.66 mmol) and stirred for 4 hours. Water was added to the reaction mixture and extracted with EtOAc, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent removed under reduced pressure. Column chromatographic purification over neutral alumina (pet ether/EtOAc, 85:15-70:30) afforded pale yellow oil (30.52 g).

Molecular formula	: $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{6}$
Yield	: 88\%
IR (CHCl_{3})	: $3018,2957,1694,1518,1216,759 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR (200 MH	$\begin{aligned} & \text { : } 7.36(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 3 \mathrm{H}), 6.80(\mathrm{bs}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 0.38 \mathrm{H}), \\ & 5.06(\mathrm{~s}, 1.62 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.48(\mathrm{~d}, J=13.18 \mathrm{~Hz}, 4 \mathrm{H}) \\ & 2.93(\mathrm{bs}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=4.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=10.74 \\ & \mathrm{Hz}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}), 1.88-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.78(\mathrm{~m}, \\ & 7 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$
MS (EI) m/z	: $512(\mathrm{M}+1), 511\left(\mathrm{M}^{+}\right), 425,233,141,108,91,65$
Analysis	: Calculated for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{6}$; C-70.42, $\mathrm{H}-8.08, \mathrm{~N}-2.74$ found C-70.23, H- 7.93

Benzyl 2-(1-(3,4-dimethoxyphenyl)-4-oxocyclohexyl)ethyl(methyl)carbamate (235)

A solution of carbamate $\mathbf{2 5 3}$ ($20 \mathrm{~g}, 39.14 \mathrm{mmol}$) was refluxed for 24 hours in acetone-water ($1: 1,100 \mathrm{ml}$), in the presence of few drops of conc. HCl. Acetone was removed from the reaction mixture, and extracted with EtOAc, washed with saturated NaHCO_{3} solution, water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Column chromatographic purification (pet ether-EtOAc, 7:3) furnished a thick colourless oil (14.14 g).

Molecular formula	$: \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{5}$
Yield	$: 85 \%$
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right)$	$: 3019,1669,1216,895,759 \mathrm{~cm}^{-1}$
$\left.{ }^{1} \mathbf{H} \mathbf{N M R ~ (2 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$	$: \delta 7.25(\mathrm{~s}, 5 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.01$
	$(\mathrm{bs}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 1.40 \mathrm{H}), 3.81(\mathrm{~s}, 2.17 \mathrm{H}), 3.78(\mathrm{~s}, 2.42 \mathrm{H})$,
	$2.94(\mathrm{bs}, 2 \mathrm{H}), 2.67(\mathrm{~d}, J=12.21 \mathrm{~Hz}, 3 \mathrm{H}), 2.11-2.38(\mathrm{~m}, 6 \mathrm{H})$,
	$1.78-1.97(\mathrm{~m}, 4 \mathrm{H})$

Total Synthesis of (\pm)-Mesembrine
${ }^{13} \mathbf{C}$ NMR ($\mathbf{5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta 210.1,155.6,149.1,147.5,136.6,134.9,128.2,127.6$, 118.6, 111.2, 109.7, 66.7, 55.8, 55.5, 45.1, 44.8, 40.0, 39.2, 37.6, 35.5, 34.1, 33.6, 29.5

MS (EI) m/z
: $426(\mathrm{M}+1), 425\left(\mathrm{M}^{+}\right), 233,180,151,91,71$
Analysis
: Calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{5}$; C-70.57, H-7.34, N-3.29 found C-70.50, H-7.11, N-3.35

Benzyl 2-(3-bromo-1-(3,4-dimethoxyphenyl)-4-oxocyclohexyl)ethyl(methyl)carbamate (252)

A solution of ketone $235(10 \mathrm{~g}, 23.53 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(6.55 \mathrm{ml}$, $47.06 \mathrm{mmol})$ and $\mathrm{TMSCl}(4.47 \mathrm{ml}, 35.29 \mathrm{mmol})$ was refluxed in $\mathrm{CH}_{3} \mathrm{CN}(65 \mathrm{ml})$ for 2 hours. $\mathrm{CH}_{3} \mathrm{CN}$ was distilled off, the residue was allowed to cool, EtOAc added to it, washed with water, brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo to obtain a thick crimson oil. The crude oil was dissolved in THF and cooled to $0{ }^{\circ} \mathrm{C}$. NBS $(4.19 \mathrm{~g}, 23.53$ mmol) was added to it in one lot at $0{ }^{\circ} \mathrm{C}$ and stirred for 10 minutes. The reaction was quenched with brine, THF layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to furnish a thick dark crimson syrup (11.84 g), which was used without purification for further reaction.

Molecular formula $\quad: \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BrNO}_{5}$
Yield : quantitative (crude)
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathbf{)}: \mathbf{3 0 2 0 , 2 9 3 4 , 1 6 9 8}, 1590,1520,1465,1408,1255,1216$, 1028, 910, 758, 698, $668 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.30(\mathrm{~s}, 5 \mathrm{H}), 6.85(\mathrm{~m}, 3 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=$ 4.88 Hz and $13.19 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2.36 \mathrm{H}), 3.85(\mathrm{~s}, 0.92 \mathrm{H})$, 3.84 (s, 2.40H), 2.97 (bs, 3H), 2.71 (s, 4H), 2.33 (s, 3H), 1.75 ($\mathrm{s}, 3 \mathrm{H}$)

Benzyl 2-(1-(3,4-dimethoxyphenyl)-4-oxocyclohex-2-enyl)ethyl(methyl) carbamate (234)

A mixture of α-bromoketone $252(5.2 \mathrm{~g}, 10.34 \mathrm{mmol}), \mathrm{Li}_{2} \mathrm{CO}_{3}$ $(2.07 \mathrm{~g}, 27.91 \mathrm{mmol})$ and $\operatorname{LiBr}(1.62 \mathrm{~g}, 18.61 \mathrm{mmol})$ was heated in dry DMF at $120^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture

Total Synthesis of (\pm)-Mesembrine

was allowed to cool, water was added to it and extracted with ether, washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration followed by evaporation of the solvent and chromatographic purification over silica gel (pet ether-EtOAc, 3:1) furnished a pale yellow syrup (3.28 g).

Molecular formula	: $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{5}$
Yield	: 75\%
IR (CHCl_{3})	$\begin{aligned} & : 3019,2938,1690,1589,1518,1461,1407,1365,1305, \\ & 1256,1216,1055,835,756,699,668 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDC}$	$\begin{aligned} & \text { : } \delta 7.34(\mathrm{~s}, 1.40 \mathrm{H}), 7.33(\mathrm{~s}, 3.60 \mathrm{H}), 7.12(\mathrm{~d}, J=9.77 \mathrm{~Hz} \\ & 0.35 \mathrm{H}), 6.94(\mathrm{~d}, J=12.21 \mathrm{~Hz}, 0.52 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~s}, \\ & 1 \mathrm{H}), 6.13(\mathrm{dd}, J=9.77 \mathrm{~Hz} \text { and } 16.12 \mathrm{~Hz}, 0.51 \mathrm{H}), 5.08(\mathrm{~s}, \\ & 1.68 \mathrm{H}), 5.05(\mathrm{~s}, 0.32 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, \\ & 1 \mathrm{H}), 3.19(\mathrm{bs}, 1.48 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~d}, J=9.28 \mathrm{~Hz} \\ & 0.47 \mathrm{H}), 2.17-2.36(\mathrm{~m}, 7 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}$	$\begin{aligned} & : \delta 209.8,197.9,155.2,153.7,153.5,148.8,147.6,147.2 \\ & \quad 136.2,134.5,129.0,128.0,127.9,127.4,127.3,118.5 \\ & \quad 118.3,111.0,110.8,109.6,66.4,55.5,55.4,55.3,55.2, \\ & 45.8,44.5,41.9,38.9,37.3,35.2,33.8 \end{aligned}$
MS (EI) m/z	: $446(\mathrm{M}+\mathrm{Na}$), $424(\mathrm{M}+1), 382$

Mesembrine 1

To a solution of enone 234 ($1.5 \mathrm{~g}, 3.55 \mathrm{mmol}$), DMS (5.18 ml , $70.92 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{ml}), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(4.50 \mathrm{ml}, 35.46 \mathrm{mmol})$ was added dropwise via syringe at $0{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 1 hour. The reaction was quenched with $25 \% \mathrm{NH}_{4} \mathrm{OH}$ solution, extracted with DCM, washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Removal of the solvent followed by column chromatographic purification over silica gel using MeOH-DCM (1\%-5\%) system furnished mesembrine $\mathbf{1}$ as a pale yellow oil (0.97 g).

Molecular formula
: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}$
Yield : 95\%
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathbf{)} \quad: \mathbf{2 9 5 9}, 1716,1519,1254,1217,755,666 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 6.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=2.0 \mathrm{~Hz}$ and 8.3 Hz , $1 \mathrm{H}), 6.83$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 3.18-3.22 (m, 1H), $3.04(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=4.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.38-2.43 (m, 2H), 2.36 ($\mathrm{s}, 3 \mathrm{H}$), 2.25-2.31 (m, $1 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 210.8,149.2,147.7,139.8,118.0,111.3,110.2,70.2$, $56.1,55.9,54.6,47.6,40.4,40.0,38.8,36.1,35.0$
$\mathbf{M S}(\mathbf{E I}) \mathbf{m} / \mathbf{z} \quad: 289\left(\mathrm{M}^{+}\right), 274,254,218,204,128,91,70,59$
Analysis
: Calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}$; C-70.50, H-8.01, N-4.84 found C-70.21, H-7.75, N-4.69

2.1.7. References

1. Stevens, R. V.; Lesko, P. M.; Lapalme, R. J. Org. Chem. 1975, 40, 3495-3498.
2. Taber, D. F.; Neubert T. D. J. Org. Chem. 2001, 66, 143-147.
3. (a) Popelak, A.; Haack, E.; Lettenbaur, G.; Springer, H. Naturwissenschaften 1960, 47, 156. (b) Popelak, A.; Haack, E.; Lettenbaur, G.; Springer, H. Naturwissenschaften 1960, 47, 231.
4. (a) For joubertiamine see: Momose, T.; Toyooka, N.; Nishio, M.; Shinoda, H.; Fujii, H.; Yanagino, H. Heterocycles 1999, 51, 1321-1343. (b) For crinine see: Fennell, C. W.; Elgorashi, E. E.; van Staden, J. J. Nat. Prod. 2003, 66, 1524-1526. (c) For maritidine see: Elgorashi, E. E.; van Staden, J. South African Journal of Botany 2003, 69, 593-594. (d) For elwesine see: Ishibashi, H.; So, Taru S.; Okochi, K.; Sato, T.; Nakamura, N.; Nakatani, H.; Ikeda, M. J. Org. Chem. 1991, 56, 95102. (e) For pretazettine see: Nishimata, T.; Sato, Y.; Mori, M. J. Org. Chem. 2004, 69, 1837-1843. (f) For morphine see: Parker, K. A.; Fokas, D. J. Org. Chem. 2006, 71, 449-455.
5. (a) Jeffs, P. W.; Karle, J. M.; Martin, N. Phytochemistry 1978, 17, 719-728. (b) Jeffs, P. W.; Archie, W. C.; Farrier, D. S. J. Am. Chem. Soc. 1967, 89, 2509-2510. (c) Jeffs, P. W.; Archie, Hawks, R. L.; W. C.; Farrier, D. S. J. Am. Chem. Soc. 1973, 93, 3752-3756.
6. (a) Herbert, R. B.; Kattah, A. E. Tetrahedron 1990, 46, 7105-7118. (b) Herbert, R. B.; Kattah, A. E. Tetrahedron Lett. 1989, 30, 141-144.
7. (a) Shamma, M.; Rodriguez, H. R. Tetrahedron 1968, 24, 6583-6589. (b) Shamma, M.; Rodriguez, H. R. Tetrahedron Lett. 1965, 4847-4851.
8. Yamada, S.-I.; Otani, G. Tetrahedron Lett. 1971, 1133-1136.
9. Keely, S. L. Jr.; Tahk, F. C. J. Am. Chem. Soc. 1968, 90, 5584-5587.
10. Martin, S. F.; Thomas A.; Puckette, T. A.; Colapret, J. A. J. Org. Chem. 1979, 44, 3391-3396.
11. Sanchez, I. H.; Tabbals, F. R. Chem. Lett. 1981, 891-894.
12. Keck, G. E.; Webb, R. B. II J. Org. Chem. 1982, 47, 1302-1309.
13. Kochhar, K. S.; Pinnick, H. W. Tetrahedron Lett. 1983, 24, 4785-4788.
14. Curphey, T. J.; Kim, H. L. Tetrahedron Lett. 1968, 1441-1444.

Total Synthesis of (\pm)-Mesembrine

15. Jeffs, P. W.; Redfearn, R.; Wolfram, J. J. Org. Chem. 1983, 48, 3861-3863.
16. Meyers, A. I.; Hanreich, R.; Wanner, K. T. J. Am. Chem. Soc. 1985, 107, 77767778.
17. Hackett, S.; Livinghouse, T. J. Org. Chem. 1986, 51, 1629-1631.
18. Hoshino, O.; Sawaki, S.; Shimamura, N.; Onodera, A.; Umezawa, B. Chem. Pharm. Bull. 1987, 35, 2734-3743.
19. Winkler, J. D.; Muller, C. L.; Scott, R. D. J. Am. Chem. Soc. 1988, 110, 4831-4832.
20. Shono, T.; Terauchi, J.; Matsumura, Y. Chem. Lett. 1989, 1963-1969.
21. (a) Takano, S.; Imamura, Y.; Ogasawara, K. Chem. Lett. 1990, 1239-1242. (b) Takano, S.; Imamura, Y.; Ogasawara, K. Tetrahedron Lett. 1981, 22, 4479-4482. (c) Takano, S.; Imamura, Y.; Ogasawara, K. Chem. Lett. 1981, 1385-1386.
22. Parkinson, C. J.; Pinhey, J. T. J. Chem. Soc., Perkin Trans 1 1991, 1053-1057.
23. (a) Yvonne, G.-M.; Gramain, J.-C.; Hajouji, H.; Remuson, R. Heterocycles 1992, 34, 37-49. (b) Gramain, J.-C.; Remuson, R. Tetrahedron Lett. 1985, 26, 4083-4086. (c) Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron Lett. 1975, 45, 3963-3966.
(d) Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron 1978, 34, 2579-2586. (e) Rajagopalan, P. Tetrahedron Lett. 1998, 38, 1893-1894.
24. Michael, J. P.; Howard, A. S.; Katz, R. B.; Zwane, M. I. Tetrahedron Lett. 1992, 33, 6023-6024.
25. Yokomatsu, T.; Iwasawa, H.; Shibuya, S. Tetrahedron Lett. 1992, 33, 6999-7002.
26. Matsumura, Y.; Terauchi, J.; Yamamoto, T.; Konno, T.; Shono, T. Tetrahedron 1993, 49, 8503-8512.
27. Kosugi, H.; Miura, Y.; Kanna, H.; Uda, H. Tetrahedron: Asymmetry 1993, 4, 14091412.
28. (a) Nemoto, H.; Tanabe, T.; Fukumoto, K. J. Org. Chem. 1995, 60, 6785-6790. (b) Nemoto, H.; Tanabe, T.; Fukumoto, K. Tetrahedron Lett. 1994, 35, 6499-6502.
29. Ogasawara, K.; Yoshimitsu, T. Heterocycles 1996, 42, 135-139.
30. Denmark, S. E.; Marcin, L. R. J. Org. Chem. 1997, 62, 1675-1686.
31. Mori, M.; Kuroda, S.; Zhang, C.-S.; Sato, Y. J. Org. Chem. 1997, 62, 3263-3270.
32. Langlois, Y.; Dalko, P. I.; Brun, V.; Langlois, Y. Tetrahedron Lett. 1998, 39, 89798982.
33. Ogasawara, K.; Yamada, O. Tetrahedron Lett. 1998, 39, 7747-7750.
34. Rigby, J. H.; Dong, W. Org. Lett. 2000, 2, 1673-1675.

Total Synthesis of (\pm)-Mesembrine

35. Taber, D. F.; Neubert, T. D. J. Org. Chem. 2001, 66, 143-147.
36. Kulkarni, M. G.; Rasne, R. M.; Davawala, S. I.; Doke, A. K. Tetrahedron Lett. 2002, 43, 2297-2298.
37. Song, Z. L.; Wang, B. M.; Tu, Y. Q.; Fan, C. A.; Zhang, S. Y. Org. Lett. 2003, 5, 2319-2321.
38. Taber, D. F.; He, Y. J. Org. Chem. 2005, 70, 7711-7714.
39. Paul, T.; Malachowski, W. P.; Lee, J. Org. Lett. 2006, 8, 4007-4010.
40. (a) Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. U.S. Patent US 6,350,912B1 Chem. Abstr. 2002, 136, 200009. (b) Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. U.S. Patent US 6,504,044B2, 2003. (c) Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. Tetrahedron Lett. 2004, 45, 7291-7295.
41. Krapcho, A. P. Synthesis, 1982, 10, 893-915.
42. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, Second Edition, 1991, pp. 185, 188.
43. Garbisch, E. W. Jr. J. Org. Chem. 1965, 30, 2109.
44. Reuss, R. H.; Hasner, A. J. Org. Chem. 1974, 39, 1785.
45. Floyd, M. B.; Weiss, M. J. J. Org. Chem. 1979, 44, 71-75.
46. Olah, G.; Narang, S. C.; Gupta, B.; Malhotra, B. G. J. Org. Chem. 1979, 44, 1247.
47. Angle, S. R.; Arnaiz, D. O. Tetrahedron Lett. 1989, 30, 515.
48. Overman, L. E.; Sharp, M. J. Tetrahedron Lett. 1988, 29, 901.
49. Sanchez, I. H.; Lopez, F. J.; Soria, J. J.; Larraza, M. I.; Flores, H. J. J. A. Chem. Soc. 1983, 105, 7640.

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $238\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $238\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $238\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $237+240\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $237+240\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathbf{C C l}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $236\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $236\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $236\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $243\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $243\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $243\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $244\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $244\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $246\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $246\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $246\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum of Compound $247\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $247\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $247\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $248\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $248\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $249\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR Spectrum of Compound $235\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $235\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound 235 ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $252\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $234\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $234\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $234\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Mesembrine $1\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT NMR Spectrum of Mesembrine $1\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Section-2: Synthetic Studies Towards Zafirlukast

2.2.1. Introduction

2.2.1.1 Asthma

Asthma is a chronic disease ${ }^{1}$ in which sufferers have repeated attacks of difficulty in breathing and coughing. Around 100 million people suffer from the chronic lung disease worldwide. People of all ages get asthma but 50 per cent of sufferers are children, mostly boys, under 10. Among adults, women are more likely to develop asthma than men.

Acute asthmatic attack may be triggered by exertion, cold, smoke, air pollution, airborne infection or allergies. To acquire asthma, people seem to need to have been born with a predisposition to the disease. It may not reveal itself until they have been exposed to some asthma irritants.

Broncheoles in the lungs are made up of ring-shaped muscles that are capable of contracting or relaxing. Asthmatics tend to be sensitive to various types of irritants in the atmosphere e. g. exertion, colds, air pollution, air-borne infection, allergies etc. that makes these brancheoles contract will narrow the passages, which makes it more difficult for the air to pass through and also gives rise to the characteristic wheezy noise. The inner lining of these brancheoles becomes inflated, which makes the lining swell and produce an excess amount of the mucus (phlegm), also contributing to the airway narrowing.
2.2.1.2. Medication: Medicines for asthma are generally divided in two main groups.

1. Relievers (bronchodilators): These are quick-acting medicines that relax the muscles of the airways. This opens the airways and makes it easier to breathe. They are further categorized into three groups.
A. Beta-2 agonists: Beta-2 agonists act on molecule-sized receptors on the muscle of the broncheoles. Examples are salbutamol 1 (Ventolin) and terbutaline 2 (Bricanyl). These medicines are inhaled from a variety of delivery devices, the most familiar being the pressurised metered-dose-inhaler (MDI). They are used when required to relieve shortness of breath. Longer-acting beta-2 agonists include salmeterol 3 (Serevent) and formoterol 4 (Foradil, Oxis). Their action lasts over 12 hours, making them suitable for twice daily dosage to keep the airways open throughout the day.

Synthetic Studies Towards Zafirlukast

Salbutamol 1

Terbutaline 2

Formoterol 4
B. Anticholinergics: The nerve impulses cause the muscles to contract, thus narrowing the airway. Anticholinergic medicines block this effect, allowing the airways to open. The size of this effect is fairly small, so it is most noticeable if the airways have already been narrowed by other conditions, such as chronic bronchitis. An example of an anticholinergic is ipratropium bromide 5 (Atrovent).

Ipratropium bromide 5
C. Theophyllines: Theophylline 6 (Slophyllin) and aminophylline 7 (Phyllocontin continus) are given orally and are less commonly used as they are more likely to produce side effects than inhaled treatment. They are still in very wide use throughout the world. All three types of reliever can be combined if necessary.

Theophylline 6

Aminophylline 7
2. Preventers: They are categorized into three main groups.
A. Corticosteroid: reduce inflammation within the airways, allowing many patients with previously troublesome asthma to lead almost symptom-free lives. Examples include beclometasone 8 (Becotide), budesonide 9 (Pulmicort) and fluticasone 10 (Flixotide). They are usually given as inhaled treatment, although sometimes oral steroid tablets prednisolone 11 (Deltacortril) may be required for severe attacks.

Beclometasone 8

Fluticasone 10

Budesonide 9

Prednisolone 11
B. Cromones: act to reduce inflammation of the airways. They tend to be best for mild asthma and are more effective in children than adults. The medicines are given by inhalation and are usually very well tolerated. Examples include sodium cromoglicate 12 (Intal) and nedocromil sodium (Tilade).

Synthetic Studies Towards Zafirlukast

Sodium cromoglicate 12

Nedocromil sodium 13
C. Leukotriene receptor antagonists: are the compounds released by inflammatory cells within the lungs, which have a powerful constricting effect upon the airways. The examples are montelukast $\mathbf{1 4}$ (Singulair) and zafirlukast 15 (Accolate).

Montelukast 14

Zafirlukast 15

2.2.2. Zafirlukast

Zafirlukast ${ }^{2} 15$ is a synthetic, selective peptide leukotriene receptor antagonist ${ }^{3,4}$ (LTRA), with the chemical name 4-(5-cyclopentyloxy-carbonylamino-1-methyl-indol-3-ylmethyl)-3-methoxy- N-o-tolylsulfonylbenzamide, marketed by AstraZeneca with various brand names Accolate, Accoleit, and Vanticon. It was the first LTRA to be marketed in the USA and is now approved in over 60 countries. Zafirlukast is one of a new class of drugs, which act by blocking the effects of leukotrienes-natural substances, which trigger inflammation, mucus secretion and which cause bronchoconstriction typical of an asthmatic attack. One important factor in the success of the product may be its tablet form, since there are sometimes disadvantages and difficulties associated with the usage of inhalers.

Mechanism of Action ${ }^{5}$: Zafirlukast is a selective and competitive receptor antagonist of leukotriene D4 and E4 (LTD4 and LTE4), components of slow-reacting substance of anaphylaxis (SRSA). Cysteinyl leukotriene production and receptor occupation have been correlated with the pathophysiology of asthma, including airway edema, smooth muscle constriction, and altered cellular activity associated with the inflammatory process, which contribute to the signs and symptoms of asthma. Patients with asthma were found in one study to be 25-100 times more sensitive to the bronchoconstricting activity of inhaled LTD4 than nonasthmatic subjects. In vitro studies demonstrated that zafirlukast antagonized the contractile activity of three leukotrienes (LTC4, LTD4 and LTE4) in conducting airway smooth muscle from laboratory animals and humans. Zafirlukast prevented intradermal LTD4-induced increases in cutaneous vascular permeability and inhibited inhaled LTD4-induced influx of eosinophils into animal lungs. Inhalational challenge studies in sensitized sheep showed that zafirlukast suppressed the airway

Synthetic Studies Towards Zafirlukast

responses to antigen; this included both the early- and late-phase response and the nonspecific hyperresponsiveness.

In humans, zafirlukast inhibited bronchoconstriction caused by several kinds of inhalational challenges. Pretreatment with single oral doses of zafirlukast inhibited the bronchoconstriction caused by sulfur dioxide and cold air in patients with asthma. Pretreatment with single doses of zafirlukast attenuated the early- and late-phase reaction caused by inhalation of various antigens such as grass, cat dander, ragweed, and mixed antigens in patients with asthma. Zafirlukast also attenuated the increase in bronchial hyperresponsiveness to inhaled histamine that followed inhaled allergen challenge.

2.2.3. Literature Review

Matassa ${ }^{5}$ (J. Med. Chem. 1990, 33, 1781-1790; U. S. Patent 4,859,692 and U. S. Patent $5,993,859)$

Scheme 1. Reagents and conditions: a) $\mathrm{Ag}_{2} \mathrm{O}$, dioxane, $60^{\circ} \mathrm{C}$; b) NaH , MeI, DMF; c) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, THF; d) cyclopentyl chloroformate 20, N-methylmorpholine, DCM ; e) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}$, THF, MeOH ; f) o-tolyl sulfonamide 22, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride, DMAP, DCM.

5-Nitroindole 16 was alkylated at C-3 with bromo ester 17, under catalysis by silver oxide, to give ester 18. N -methylation of the indole was carried out with MeI using NaH in anhydrous DMF to give 19. Catalytic hydrogenation of the nitro group with Pd-C gave primary amine, which upon acylation with cyclopentyl chloroformate 20 gave urethane 21. Ester 21 was hydrolyzed at room temperature with LiOH to give the corresponding carboxylic acid, which was coupled with o-tolyl sulfonamide 22 in DCM to give zafirlukast 15 in the presence of carbodiimide (Scheme 1).

An improved process ${ }^{6}$ was reported by Mosley et. al. based on the above described synthesis.

A similar synthesis was also reported in 16% overall yield by Li and Ning^{7}, employing condensation of bromoester 17 with 5 -nitroindole 16 followed by subsequent N methylation, reduction, acylation, hydrolysis and condensation as depicted in scheme 1.

Synthetic Studies Towards Zafirlukast

Reddy ${ }^{8}$ (Org. Proc. Res. Dev. 2004, 8, 952-958)

Scheme 2. Reagents and conditions: a) DBDMH, $\mathrm{AIBN}, \mathrm{CH}_{3} \mathrm{Cl}$, reflux, 81%; b) ZnBr_{2}, dioxane, $60-65{ }^{\circ} \mathrm{C}$, 62%; c) DCC, DMAP, o-toluene sulfonamide 22, DCM, 63%; d) H_{2}, Raney Ni, THF, 88%; e) cyclopentyl chloroformate 20, N -methylmorpholine, DCM, 89\%.

Reddy et. al. reported a total synthesis of zafirlukast 15 by coupling bromide $\mathbf{2 4}$, derived from commercially available 3-methoxy-4-methylbenzoic acid 23 with 1-methyl-5nitroindole 25. Bromination of $\mathbf{2 3}$ with DBDMH in the presence AIBN in CHCl_{3}, afforded bromomethylbenzoic acid derivative 24 in 81% yield. Alkylation of indole 25 with bromide 24 in dioxane mediated by ZnBr_{2} at $60-65{ }^{\circ} \mathrm{C}$ furnished indole 26 in 62% yield. Acid 26 was coupled with o-toluene sulfonamide 22 using DCC in the presence of DMAP as a catalyst to give sulfonamide 27 in 63% yield. Catalytic hydrogenation of 27 using Raney Ni in MeOH smoothly afforded amine, which upon acylation with cyclopentyl chloroformate 20 yielded the target molecule 15 in 89\% yield (Scheme 2).

2.2.4. Present work

2.2.4.1. Retrosynthetic analysis

The purpose of the present work was to devise a practical and efficient synthesis of zafirlukast $\mathbf{1}$ from easily accessible starting materials.

20

28

17

Scheme 3. Retrosynthetic analysis
Retrosynthetic analysis revealed that target molecule $\mathbf{1 5}$ could be assembled from fragment 28, cyclopentyl chloroformate 20 and o-tolyl sulfonamide 22. Ultimately, fragment 28 could be build from 1-methyl-5-nitroisatin 29 and bromide 17 (scheme 3).

Preparation of 1-methyl-5-nitroindole 29

Isatin 30 was nitrated with fuming HNO_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0{ }^{\circ} \mathrm{C}$ to furnish 5nitroisatin 31 in 78% yield. ${ }^{9}$ 5-Nitroisatin 31 was methylated with MeI in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature to obtain 1-methyl-5-nitroisatin 29 in 82% yield (scheme 4). ${ }^{10}$

Scheme 4. Reagents and conditions: a) fuming $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, 0^{\circ} \mathrm{C}, 78 \%$; b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeI, DMF, $24 \mathrm{~h}, \mathrm{r} \mathrm{t}$, 82%.

Preparation of bromide $\mathbf{2 4}{ }^{\mathbf{1 1}}$

Scheme 5. Reagents and conditions: a) fuming HNO_{3}, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 0^{\circ} \mathrm{C}, 80 \%$; b) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, reflux, $8 \mathrm{~h}, 85 \%$; c) H_{2} (50 psi), Raney Ni , MeOH, rt, $6 \mathrm{~h}, 96 \%$; d) NaNO_{2}, Urea, $0^{\circ} \mathrm{C}, 44 \%$; e) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{Me}_{2} \mathrm{SO}_{4}$, acetone, reflux, $2 \mathrm{~h}, 72 \%$; f) NBS, $(\mathrm{PhCOO})_{2}, \mathrm{CCl}_{4}$, reflux, $10 \mathrm{~h}, 96 \%$.
p-Toluic acid 32 was nitrated with fuming HNO_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0{ }^{\circ} \mathrm{C}$ to obtain 3-nitro p-toluic acid 33 in 80% yield. ${ }^{12}$ Esterification of acid 33 with catalytic conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in refluxing MeOH furnished ester 34 in 85% yield. ${ }^{13}$ Catalytic hydrogenation of the nitro ester 34 with Raney nickel gave amine 35^{14}, which was converted into diazonium salt with NaNO_{2}, in the presence of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to furnish phenol 36. ${ }^{15}$ Subsequent methylation of the resultant phenol with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ in acetone gave methyl ether 37 in 72% yield. ${ }^{16}$ Benzylic bromination of methyl ether 37 was effected with NBS in the presence of catalytic benzoyl peroxide to furnish bromide 17 (scheme 14). ${ }^{17}$

Synthetic Studies Towards Zafirlukast

2.2.4.2. Model Study

Scheme 6. Reagents and conditions: a) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{PhBr}^{-}, \mathrm{NaH}, \mathrm{THF}, \mathrm{rt}, 24 \mathrm{~h}, 84 \%$; b) H_{2}, Raney $\mathrm{Ni}, \mathrm{MeOH}$, 6 h, 98%; c) BMS, THF, r t, 2 h, 70\%.

Before directly going for actual synthesis of zafirlukast, it was decided to test the efficiency of key step i.e. Wittig reaction as the precious bromide 24 is prepared through a sequence of steps. Accordingly, 1-methylisatin 38 was treated with the ylide generated from the $\mathrm{Ph}_{3} \mathrm{P}$ and BnBr to give olefin 39 as a E / Z mixture of isomers in 84%. The ratio of E / Z mixture was not determined as the double bond was to be destroyed in the subsequent reduction step.

IR spectrum of compound 39 showed strong absorption at $1695 \mathrm{~cm}^{-1}$ characteristic of the amide function. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 9}$ showed multiplet at δ 8.31-8.35 corresponding to 0.62 protons, a singlet at $\delta 7.89$ corresponding to 0.71 protons, doublet at $\delta 7.71$ corresponding to 0.58 protons, singlet at $\delta 7.67$ corresponding to 1.20 protons, singlet at $\delta 7.64$ corresponding to 0.44 protons, multiplet at $\delta 7.46-7.57$ corresponding to 3.94 protons, multiplet at $\delta 7.25-7.36$ corresponding to 1.68 protons, doublet of triplet at δ 7.08 corresponding to 0.54 protons, doublet at $\delta 6.95$ corresponding to 0.24 protons, doublet at $\delta 6.91$ corresponding to 0.39 protons, singlet at $\delta 6.87$ corresponding to 0.71 protons, doublet at $\delta 6.83$ corresponding to 0.48 protons, and a singlet at $\delta 3.33$ corresponding to $\mathrm{N}-\mathrm{CH}_{3} .{ }^{13} \mathrm{C}$ NMR spectrum of compound 39 showed signal at $\delta 168.3$ revealing amide carbonyl. The signals at $\delta 144.3,137.1,137.0,135.1,132.0,130.4,129.7$, $129.4,129.3,128.8,128.6,128.2,127.3,122.8,121.7,121.2,108.1$ revealed aromatic carbons. The signal at $\delta 26.1$ corresponded to the $\mathrm{N}-\mathrm{CH}_{3}$ carbons. Molecular formula of the

Synthetic Studies Towards Zafirlukast

compound 39 was further confirmed by MS spectrum, which showed appearance of signals at $274(\mathrm{M}+\mathrm{K}), 258(\mathrm{M}+\mathrm{Na}), 235(\mathrm{M}+1)$, and 232 corresponding to M^{+}.

The isomeric mixture was subjected to catalytic hydrogenation using Raney Ni to furnish oxindole 40 in 98% yield.

IR spectrum of compound 40 showed a strong absorption at $1706 \mathrm{~cm}^{-1}$ characteristic of oxindole carbonyl. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 0}$ showed multiplet at δ 7.17-7.30 corresponding to six protons, doublet of triplet at $\delta 6.93$ corresponding to one proton, doublets at $\delta 6.79$ and 6.75 corresponding to one proton each. The three benzylic protons appeared as doublets of doublet at $\delta 3.74,3.54$ and 2.91 . The signal at δ 3.20 revealed N-methyl protons. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 40 showed signal at δ 176.7 corresponding to amide function. The signals at $\delta 144.1,137.8,129.3,128.2,128.1$, 127.8, 126.5, 124.4, 121.9 revealed aromatic carbons. The signal at $\delta 25.9$ indicated the N CH_{3} carbon. The signals at $\delta 36.7$ and 46.9 revealed the benzylic carbons. Further, molecular formula of the compound was confirmed by MS spectrum, which showed signal at 238 revealing $\mathrm{M}+1$.

Oxindole 40 was then subjected to borane-methyl sulfide reduction to afford indole 41 in 70% yield (scheme 6). ${ }^{17}$

2.2.4.3. Attempted Synthesis of Zafirlukast

Scheme 7. Reagents conditions: a) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{ArBr}^{-}$, NaH , THF, $24 \mathrm{~h}, 50 \%$; b) H_{2}, Raney Ni, $\mathrm{MeOH}, 6 \mathrm{~h}$, 94%; c) Phthalic anhydride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhH}$, reflux, 77%.

With good yield of model Wittig reaction with 1-methyl isatin 38, it was time to test its efficiency with elaborated bromide 17 and 1-methyl-5-nitroisatin 29 . Thus, to a suspension of 29 in THF was added the ylide generated from salt of $\mathrm{Ph}_{3} \mathrm{P}$ with bromide 17, to furnish the expected olefin 42 in 50% yield as a mixture of isomers. Geometry of the double bond was not significant as it was to be destroyed in the subsequent reduction step.

IR spectrum of compound 42 showed a strong absorption at $1720 \mathrm{~cm}^{-1}$ characteristic of ester and amide carbonyl merging together. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 42 showed following signals for aromatic and olefinic protons: doublet at $\delta 8.34$ corresponding to one proton, multiplet at δ 8.23-8.28 corresponding to one protons, singlet at $\delta 8.11$ corresponding to one proton, doublet at $\delta 6.92$ corresponding to 0.80 protons, a doublet at $\delta 6.91$ corresponding to 0.20 protons. The signals at $\delta 4.01,3.99$ and 3.96 revealed six methoxy protons. The signals at $\delta 3.37$ and 3.34 corresponded to $\mathrm{N}-\mathrm{CH}_{3}$ protons. Molecular formula of compound 242 was further confirmed by MS spectrum, which showed signal at 368 revealing M^{+}.

Low yields may be attributed to very low solubility of the 1-methyl-5-nitroisatin 29 in THF. Yields of olefin 42 may be improved with proper choice of solvent system and reaction conditions.

Olefin 42 was then subjected to catalytic hydrogenation using Raney Ni to give oxindole 43 in 94% yield with concomitant reduction of the nitro group. Amine 43 was protected as phthalimide with phthalic anhydride and $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing benzene to furnish 44 in 77% yield (scheme 16). ${ }^{17}$

IR spectrum of compound 44 showed a strong absorption at $1721 \mathrm{~cm}^{-1}$ characteristic of amide function. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 44 showed two doublets of doublet at $\delta 7.96$ and 7.82 corresponding to four protons indicating formation of phthalimide and three doublets of doublet at $3.96,3.63$ and 2.91 revealed three benzylic protons. The singlets at $\delta 3.92$ and 3.91 revealed six methoxy protons. The singlet at $\delta 3.28$ revealed $\mathrm{N}-\mathrm{CH}_{3}$ protons. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 44 showed signal at δ 177.1, 167.4, 167.0 revealing the presence of amide and ester functions. The signals at $\delta 55.4$, 52.1 revealed methoxy carbons. The signal at 44.8 revealed $\mathrm{N}-\mathrm{CH}_{3}$ carbon and the two benzylic carbons appeared at $\delta 31.9,26.3$. MS spectrum of compound 44 showed signal appearing at 471 corresponding to $\mathrm{M}+1$, further confirmed its molecular formula.

Synthetic Studies Towards Zafirlukast

2.2.4.4. Conclusion

An advanced intermediate 44, adorned with all requisite functionalities for further elaboration, has been synthesized employing Wittig reaction. Due to time constraints, the synthetic plan further could not be investigated. However, with judicious choice of reagents and tuning of reaction conditions phthalimide 44 could be taken to target molecule.

2.2.5. Experimental

5-Nitroisatin (31)

Isatin $30(14.7 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added to conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(121 \mathrm{ml})$ cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-salt bath. Fuming HNO_{3} (4.2 ml) was added to this, drop by drop, in such a way that temperature should not rise above $5{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stand for about 30 minutes and then poured over crushed ice (500 g). A yellow precipitate separated immediately. The solid was filtered and washed with water and air dried to a constant weight (15 g).

Yield	$: 85 \%$
Mp	$: 252{ }^{\circ} \mathrm{C}(\text { dec. })^{9}$

1-Methyl-5-nitroisatin (29)

A mixture of nitroisatin $31(10 \mathrm{~g}, 0.052 \mathrm{~mol})$, $\mathrm{MeI}(16.21 \mathrm{ml}, 0.260$ $\mathrm{mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(21.56 \mathrm{~g}, 1.56 \mathrm{~mol})$ in anhydrous DMF was stirred overnight at room temperature. Water was added to the reaction mixture and acidified with dilute HCl till acidic to pH paper. A yellow solid separated, which was filtered and washed thoroughly with water till neutral to pH paper and air dried to a constant weight $(9.66 \mathrm{~g})$.

Molecular formula	$: \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$
Yield	$: 90 \%$
Mp	$: 202-6{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{10} \mathrm{Mp} \mathrm{203}$

Methyl 4-methy-3-benzoic acid (33)

Fuming $\mathrm{HNO}_{3}(39.4 \mathrm{ml}, 0.932 \mathrm{~mol})$ was slowly added to conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (98 $\mathrm{ml}, 1.84 \mathrm{~mol})$ at $0-5{ }^{\circ} \mathrm{C}$. The cooled nitrating mixture was taken in a beaker equipped with a mechanichal stirrer and addition funnel. p-Toluic acid 32 ($100 \mathrm{~g}, 0.735 \mathrm{~mol}$) was added to this mixture, in small portions, over 5 hours at such a rate to maintain the temperature at $0-5{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred further for additional 2 hours at room temperature and then

Synthetic Studies Towards Zafirlukast

poured over ice. The solid that separated was filtered, washed with water till it was free of acid and then air-dried to a constant weight (106.47 g).

Yield	$: 80 \%$
Mp	$: 187.5^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{12} \mathrm{Mp} 190{ }^{\circ} \mathrm{C}\right)$

Methyl 4-methyl-3-nitrobenzoate (34)

Acid 33 ($100 \mathrm{~g}, 0.552 \mathrm{~mol}$) was dissolved in $\mathrm{MeOH}(1000 \mathrm{ml})$. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(30 \mathrm{ml})$ was added cautiously to this solution. The mixture was refluxed for 8 hours. Solvent was distilled off. Ice-cold water was added to the residue. It was then extracted with EtOAc, washed with NaHCO_{3} solution, water, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo to furnish faint yellow a solid $(91.57 \mathrm{~g})$

Yield
: 85\%
Mp $\quad: 45^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{13} \mathrm{Mp} 51^{\circ} \mathrm{C}\right)$

Methyl 3-amino-4-methylbenzoate (35)

Nitro ester $34(80 \mathrm{~g}, 0.410 \mathrm{~mol})$ was subjected to hydrogenation in a Parr shaker in MeOH using Raney Ni as the catalyst ($5 \mathrm{~g}, 20 \mathrm{~mol} \%$) at 50 psi for 8 hours. The catalyst was filtered off, washed thoroughly with MeOH and the combined filtrates concentrated under reduced pressure to furnish a yellow solid (65.0 g).

Yield : 96\%
Mp $\quad: 114-5^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{14} \mathrm{Mp} 116^{\circ} \mathrm{C}\right)$

Methyl 3-hydroxy-4-methylbenzoate (36)

The amino ester $35(60 \mathrm{~g}, 0.364 \mathrm{~mol})$ was added to dil. $\mathrm{H}_{2} \mathrm{SO}_{4}(125 \mathrm{ml}$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ diluted with 1 L water) and warmed on a water bath until all the compound was dissolved. Cold water (800 ml) was added and the mixture was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaNO}_{2}(62.6 \mathrm{~g}, 0.907 \mathrm{~mol})$ was added to this mixture with constant stirring. It was then stirred at room temperature for 15 minutes. Then, urea ($65.4 \mathrm{~g}, 1.09 \mathrm{~mol}$) was added in portions. The mixture was warmed at $50^{\circ} \mathrm{C}$ for 15 minutes (temperature was not allowed to rise above $55^{\circ} \mathrm{C}$). EtOAc was added to the

Synthetic Studies Towards Zafirlukast

reaction mixture and washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated under reduced pressure to afford a colourless solid (26.56 g).

Yield	$: 44 \%$
Mp	$: 81^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{15} \mathrm{Mp} 82-3^{\circ} \mathrm{C}\right)$

Methyl 3-methoxy-4-methylbenzoate (37)

A mixture of methyl 3-hydroxy-4-methylbenzoate 36 ($25 \mathrm{~g}, 0.151 \mathrm{~mol}$), $\mathrm{Me}_{2} \mathrm{SO}_{4}(28.3 \mathrm{ml}, 0.386 \mathrm{~mol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(103.5 \mathrm{~g}, 0.75 \mathrm{~mol})$ was refluxed in acetone for 2 hours. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off, washed thoroughly with acetone. The filtrates were combined and concentrated, the residue was redissolved in EtOAc washed with water, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo to furnish a white solid (19.52 g).

Yield
: 72\%

Mp

$$
: 41-42{ }^{\circ} \mathrm{C}\left(\text { lit. }{ }^{16} \mathrm{Mp} 42-3{ }^{\circ} \mathrm{C}\right)
$$

Methyl 4-(bromomethyl)-3-methoxybenzoate (24)

A mixture of methyl 3-methoxy-4-methylbenzoate $37(5 \mathrm{~g}, 27.8 \mathrm{mmol})$, NBS ($4.94 \mathrm{~g}, 27.8 \mathrm{mmol}$), and benoyl peroxide ($0.0008 \mathrm{~g}, 0.003 \mathrm{mmol}$) was refluxed in $\mathrm{CCl}_{4}(25 \mathrm{ml})$ for 10 hours. The reaction mixture was allowed to cool and filtered. The residue was washed with CCl_{4} and the combined filtrate concentrated in vacuo. Purification by column chromatography over silica gel (5-10\% EtOAc-pet ether) furnished a colourless solid (7.19 g).

Yield	$: 100 \%$
$\mathbf{M p}$	$: 69-71{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{11} 73-75{ }^{\circ} \mathrm{C}\right)$

Benzyl triphenylphosphonium bromide

To a solution of $\mathrm{Ph}_{3} \mathrm{P}(22 \mathrm{~g}, 0.084 \mathrm{~mol})$ in toluene, $\mathrm{BnBr}(10 \mathrm{ml}, 0.084 \mathrm{~mol})$ was added dropwise with ice-cooling and stirred at room temperature for 2 hours. A solid was formed, which was filtered and washed with toluene and then dry pet ether to remove unreacted $\mathrm{Ph}_{3} \mathrm{P}$. The salt was dried under vacuum ($35 \mathrm{~g}, 96 \%$ yield).

Synthetic Studies Towards Zafirlukast

(2-Methoxy-4-(methoxycarbonyl)benzyl)triphenylphosphonium bromide

To an ice-cooled solution of $\mathrm{Ph}_{3} \mathrm{P}(10.15 \mathrm{~g}, 0.039 \mathrm{~mol})$ in PhMe , bromide $17(10 \mathrm{~g}$, 0.039 mol) was added and stirred at room temperature for 2 hours. A solid was formed, which was filtered and washed with PhMe and then dry pet ether to remove unreacted $\mathrm{Ph}_{3} \mathrm{P}$. The salt was dried under vacuum ($17.1 \mathrm{~g}, 85 \%$ yield).

3-Benzylidine-1-methylindolin-2-one (39)

A mixture of benzyl triphenylphosphonium bromide (6.08 g , $13.98 \mathrm{mmol})$ and $\mathrm{NaH}(0.522 \mathrm{~g}, 13.04 \mathrm{mmol})$ was stirred in THF for 1 hour. A dark red colour developed. To this a solution of 1methylisatin 38 ($1.5 \mathrm{~g}, 9.32 \mathrm{mmol}$) in THF (5 ml) was added dropwise via syringe. The reaction mixture was stirred for two hours at room temperature and was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EtOAc, washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resultant residue was chromatographed over silica gel (EtOAc-pet ether, 1:9) to furnish a yellow-red solid as a mixture of E / Z isomers (2.19 g).

Molecular formula	: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$
Yield	: 84\%
IR	$\begin{aligned} : & 3020,1695,1609,1472,1423,1216,1091,1043,929 \\ & 757,669 \end{aligned}$
${ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathbf{C D C l}_{3}$) : $\delta 8.31-8.35(\mathrm{~m}, 0.62 \mathrm{H}), 7.89(\mathrm{~s}, 0.71 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=2.28$	
Hz,	$0.58 \mathrm{H}), 7.67(\mathrm{~s}, 1.20 \mathrm{H}), 7.64(\mathrm{~s}, ~ 0.44 \mathrm{H}), 7.46-7.57(\mathrm{~m}$,
3.94 H),	$7.25-7.36(\mathrm{~m}, 1.68 \mathrm{H}), 7.08(\mathrm{dt}, J=0.88 \mathrm{~Hz}$ and 7.58
Hz, 0.54	H), 6.95 (d, $J=1.01 \mathrm{~Hz}, 0.24 \mathrm{H}), 6.91(\mathrm{~d}, J=0.88 \mathrm{~Hz}$,
0.39 H),	6.87 (s, 0.71 H), 6.83 (d, J= $2.40 \mathrm{~Hz}, 0.48 \mathrm{H}), 3.33$ (s,
2H), 3.33	(s, 1H)

${ }^{13} \mathbf{C}$ NMR (125 MHz CDCl $_{3}$) : $\delta 168.3,144.3,137.1,137.0,135.1,132.0,130.4,129.7$, $129.4,129.3,128.8,128.6,128.2,127.3,122.8,121.7$, 121.2, 108.1, 26.1

MS (EI) m/z
: $274(\mathrm{M}+39), 258(\mathrm{M}+23), 236(\mathrm{M}+1), 232$
Analysis : Calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$; C-81.68, H-5.57, N-5.95 found; C-81.52, H-5.25, N-5.77

3-Benzyl-1-methylindolin-2-one (40)

The isomeric mixture of olefins $39(2.0 \mathrm{~g}, 8.51 \mathrm{mmol})$ was subjected to hydrogenation (balloon pressure) in the presence of Raney $\mathrm{Ni}(0.100 \mathrm{~g})$ in MeOH at room temperature for 2 hours. The catalyst was filtered off, washed thoroughly with MeOH and the combined filtrates concentrated under reduced pressure to furnish a yellow solid (2.02 g).

Molecular formula	$: \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$
Yield	$: 98 \%$
IR (CHCl $\left.\mathbf{3}_{3}\right)$	$: 3019,1706,1614,1496,1455,1471,1377,1354,1216$,
	$1090,757,700,669 \mathrm{~cm}^{-1}$

${ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathbf{C D C l}_{3}$) : $\delta 7.20-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{dt}, J=1.52 \mathrm{~Hz}$ and $7.45 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{dd}, J=3.03 \mathrm{~Hz}$ and $6.70 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=4.55 \mathrm{~Hz}$ and $9.48 \mathrm{~Hz}, 1 \mathrm{H}$), $3.54(\mathrm{dd}, J=4.55 \mathrm{~Hz}$ and $13.65 \mathrm{~Hz}, 1 \mathrm{H}$), $3.20(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{dd}, J=9.48 \mathrm{~Hz}$ and $13.65 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.7,144.1,137.8,129.3,128.1,127.8,126.5,124.4$,
121.9,

MS (EI) m/z
Analysis
107.7, 46.9, 36.7, 25.9
: 239 (M+2), $238(\mathrm{M}+1), 184$
: Calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO} ; \mathrm{C}-80.98, \mathrm{H}-6.37, \mathrm{~N}-5.90$ found, C-80.79, H-6.09, N-5.63

3-Benzyl-1-methyl-1H-indole (41)

To a solution of oxindole $40(1.0 \mathrm{~g}, 4.22 \mathrm{~mol})$ in THF, BMS complex was added dropwise at room temperature. The reaction mixture was stirred for 30 minutes. Then the reaction mixture was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Solvent was evaporated under reduced pressure. Column chromatographic purification over neutral alumina using EtOAc-pet ether (1:9) gave indole $41(0.653 \mathrm{~g})$.

Molecular formula	$: \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}$
Yield	$: 70 \%$
Mp	$: 61{ }^{\circ} \mathrm{C}$

Synthetic Studies Towards Zafirlukast

$$
\left.\begin{array}{ll}
\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) & : 3060,3027,2933,1600,1500,1452,1434,1364,1316, \\
& 1242,1125,1045,802,754,732,697 \mathrm{~cm}^{-1} \\
{ }^{1} \mathbf{H} \mathbf{N M R ~ (2 0 0 ~ M H z , ~ C D C l} \\
3
\end{array}\right): \delta 7.42(\mathrm{~d}, J=7.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.20(\mathrm{~m}, 8 \mathrm{H}), 6.99(\mathrm{~d}, J=
$$

Methy 3-methoxy-4-((1-methyl-5-nitro-2-oxoindolin-3-ylidene)methylbenzoate (42)

A mixture of (2-methoxy-4(methoxycarbonyl)benzyl) triphenylphosphonium bromide ($7.59 \mathrm{~g}, 14.56 \mathrm{mmol}$) and $\mathrm{NaH}(0.544 \mathrm{~g}$, 13.59 mmol) was stirred in THF for 1 hour. A dark red colour developed. The suspension was allowed to settle. The supernatant ylide solution was added dropwise via syringe to a suspension of 1-methyl-5-nitroisatin 29 ($2 \mathrm{~g}, 9.71 \mathrm{mmol}$) in THF. The reaction mixture was stirred overnight at room temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EtOAc, washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resultant residue was chromatographed over silica gel to furnish a yellow solid as a mixture of isomers E / Z isomers (2.50 g).

Molecular formula	$: \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$
Yield	$: 50 \%$
Mp	$: 197-9{ }^{\circ} \mathrm{C}$
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right)$	$: 1720,1611,1461,1377,1198,1105,1023,979,749 \mathrm{~cm}^{-1}$

${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 8.34(\mathrm{~d}, J=2.14 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.28(\mathrm{~m}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H})$, 7.73 (d, $J=1.24 \mathrm{~Hz}, 0.19 \mathrm{H}$), 7.69-781 (m, 3H), 6.92 (d, $J=$
8.72
3.99 $\mathrm{Hz}, 0.80 \mathrm{H}), 6.91(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 0.20 \mathrm{H}), 4.01(\mathrm{~s}, 0.58 \mathrm{H})$,3.99 (s, 2.42H), $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 2.40 \mathrm{H}), 3.34(\mathrm{~s}, 0.60 \mathrm{H})$

MS (EI) m/z : $368\left(\mathrm{M}^{+}\right), 350,326,328,315,301,297,292,274,265$, 260, 258, 252, 238, 236, 205, 149

Analysis
: Calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} ;$ C-61.95, H-4.38, N-7.61; found, C-61.70, H-4.25, N-7.53

Methyl 4-((5-(1,3-dioxoisoindolin-2-yl)-1-methyl-2-oxoindolin-3yl)-methoxybenzoate

 (44)

The isomeric mixture of olefins $42(1 \mathrm{~g}, 2.71$ mmol) was subjected to hydrogenation (balloon pressure) in the presence of Raney nickel (0.100 g ,) in MeOH at room temperature for 2 hours. The catalyst was filtered off, and the residue was washed thoroughly with MeOH and the combined filtrates were concentrated under reduced pressure to furnish amine 43 as a crimson syrup ($0.924 \mathrm{~g}, 94 \%$ yield). Amine 43 was used as such for further reaction. A mixture of amine 43 , phthalic anhydride (0.436 g , $2.94 \mathrm{~mol}), \mathrm{Et}_{3} \mathrm{~N}(0.62 \mathrm{ml}, 4.40 \mathrm{~mol})$ and $\operatorname{DMAP}(0.036 \mathrm{~g}, 0.30 \mathrm{~mol})$ was refluxed overnight in benzene. The reaction mixture was allowed to cool, EtOAc added to it, washed with 3 N HCl followed by water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated under reduced pressure. The resultant residue was precipitated from EtOAc-DCM to obtain a pinkish solid (1.06 g).

Molecular formula	$: \mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$
Yield	$: 77 \%$
Mp	$: 265{ }^{\circ} \mathrm{C}($ dec. $)$
IR $\left(\mathrm{CHCl}_{3}\right)$	$: 3020,2954,2401,1779,1721,1621,1500,1468,1437$,
	$1412,1388,1369,1351,1293,1216,1105,1082,1038$,
	$930,877,759,721,669 \mathrm{~cm}^{-1}$

${ }^{1} \mathbf{H}$ NMR ($\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta 7.96(\mathrm{dd}, J=3.15 \mathrm{~Hz}$ and $5.30 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=$
3.15 Hz and $5.30 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (dd, $J=1.27 \mathrm{~Hz}$ and 7.71
$\mathrm{Hz}, 1 \mathrm{H}$), 7.53 (d, $J=1.27 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (s, 1H), 7.27 (s,
$1 \mathrm{H}), 6.94$ (d, $J=8.33 \mathrm{~Hz}, 1 \mathrm{H}$), 6.74 (s, 1H), 3.96 (dd, $J=$
4.92 Hz and $9.60 \mathrm{~Hz}, 1 \mathrm{H}$), $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.91$ (s, 3H), 3.63
(dd, $J=4.92 \mathrm{~Hz}$ and $13.26 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 ($\mathrm{s}, 3 \mathrm{H}$), 2.91 (dd, $J=9.60 \mathrm{~Hz}$ and $13.26 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 177.1,167.4,167.0,157.5,144.1,134.3,131.8,131.7$, $131.2,130.0,129.5,127.0,125.6,123.7,121.8,110.9$, 108.1, 55.4, 52.1, 44.8, 31.9, 26.3

MS (EI) m/z
: $471(\mathrm{M}+1), 423,380$

Synthetic Studies Towards Zafirlukast

Analysis : Calculated for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} ; \mathrm{C}-68.93, \mathrm{H}-4.71, \mathrm{~N}-5.95$;
found, C-68.74, H-4.93, N-5.90

2.2.6. References

1. This information was obtained through internet search via Google search engine and is based on text by Dr Carl J Brandt and Dr Finn Rasmussen.
2. Formerly ICI 204219; AstraZeneca trade name Accolate.
3. (a) Krell, R. D.; Aharony, D.; Buckner, C. K.; Keith, R. A.; Kusner, E. J.; Snyder, D. W.; Bernstein, P. R.; Matassa, V. G.; Yee, Y. K.; Brown, F. J., Hesp, B.; Giles, R. E. Am. Rev. Respir. Dis. 1990, 141, 978-987. (b) Smith, L. J.; Geller, S.; Ebright, L.; Glass, M.; Thyrum, P. T. Am. Rev. Respir. Dis. 1990, 141, 988-992.
4. (a) Buckner, C. K.; Saban, R.; Castleman, W. L.; Will, J. A. Ann. N. Y. Acad. Sci. 1988, 524, 181. (b) Buckner, C.; Fedyna, J.; Krell, R.; Robertson, J.; Keith, R.; Matassa, V.; Brown, F.; Bernstein, P.; Yee, Y.; Will, J.; Fishleder, R.; Saban, R.; Hesp, B.; Giles, R. FASEB J. 1988, 2, A1264 (Abstr.). (c) Jones, T. R.; Charette, L.; Denia, D. Can. J. Physiol. Pharmacol. 1988, 66, 762. (d) Hay, D. W. P.; Muccitelli, R. M.; Tucker, S. S.; Vickery-Clark, L. M.; Wilson, K. A.; Gleason, J. G.; Hall, R. F.; Wasserman, M. A.; Torphy, T. J. Pharmacol. Exp. Ther. 1987, 243, 474.
5. (a) Matassa, V. G.; Maduskuie, T. P. Jr.; Shapiro, H. S.; Hesp, B.; Snyder, D. W.; Aharony, D.; Krell, R. D.; Keith, R. A. J. Med. Chem. 1990, 33, 1781. (b) Matassa, V. G.; Maduskuie, T. P. Jr.; Shapiro, H. S.; Hesp, B.; Snyder, D. W.; Aharony, D.; Krell, R. D.; Keith, R. A. U. S. Patent 4, 859,692. (c) Matassa, V. G.; Maduskuie, T. P., Jr.; Shapiro, H. S.; Hesp, B.; Snyder, D. W.; Aharony, D.; Krell, R. D.; Keith, R. A. U. S. Patent 5, 993,859.
6. Ancell, C. L.; Derrick, I.; Moseley, J. D.; Stott, J. A. Org. Proc. Res. Dev. 2004, 8, 808-813.
7. Li, W.; Ning, Q. Chinese Journal of Pharmaceuticals 2004, 35, 451-452, 465.
8. Srinivas, K.; Srinivasan, N.; Rama Krishna, M.; Reddy, C. R.; Arunagiri, M.; Lalitha, R.; Sri Rami Reddy, K.; Reddy, B. S.; Reddy, G. M.; Reddy, P. P.; Kishore Kumar, M.; Reddy, M. S. Org. Proc. Res. Dev. 2004, 8, 952-954.
9. Calvery, H. O.; Noller, C. R.; Adams, R. J. Am. Chem. Soc. 1925, 47, 3058-3060.
10. Borsche, W.; Weussmann, H.; Fritzsche, A. Ber. Dtsch. Chem. Ges. 1924, 57, 1151.
11. Crieral, R.; Armengol, M.; Reyes, A.; Alvarez, M.; Palomer, A.; Cabre, F.; Pascua1, J.; Garcia, M. L.; Mauleon, D. Eur. J. Med. Chem. 1997, 32, 547-570.

Synthetic Studies Towards Zafirlukast

12. Adams, A.; Ashley, J. N.; Barder, H. J. Chem. Soc. 1956, 3797-3744.
13. Kamiya, S.; Matsui, H.; Shirahase, H.; Nakamura, S.; Wada, K.; Kanda, M.; Shimaji, H.; Kakeya, N. Chem. Pharm. Bull. 1995, 43, 1692-1695.
14. Duvaz, N.; Ionescu, M.; Cambanis, A.; Vitan, M.; Feyns, V. J. Med. Chem. 1968, 11, 500.
15. Payne, R. J.; Bulloch, E. M.; Abell, A. D.; Abell, C. Bioorg. Mol. Chem. 2005, 3, 3629-3635.
16. Irie, H.; Matsumoto, R.; Nishimura, M.; Zhang, Y. Chem. Pharm. Bull. 1990, 38, 1852-1856.
17. Julian, P. L.; Pikl, J. J. Am. Chem. Soc. 1933, 55, 2105-2110.
18. Hoogwater, D. A.; Reinhout, D. N.; Lie, T. S.; Gunneweg, J. J.; Beyerman, H. C. Recl. Trav. Chim. Pays-Bas 1973, 92, 819.

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 39 ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $39\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

DEPT NMR Spectrum of Compound $39\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

[^0]
${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $40\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of Compound $44\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT NMR Spectrum of Compound $44\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

List of Publications

1. "One-pot Process for the Preparation of 1-[2-Dimethylamino-(4-methoxyphenyl)ethyl]cyclohexanol" Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. US Patent No. 6,350,912 B1 Chem. Abstr. 2002, 136, 200009.
2. "An Efficient Synthesis of $(\pm)-\beta$-Herbertenol by a 1,3-Cyclopentadione Annelation Strategy" Chavan, S. P.; Kharul, R. K.; Kale, R. R.; Khobragade, D. A. Tetrahedron 2003, 59, 2737-2741.
3. "Process for the Preparation of 1-[Cyano(aryl)methyl]cyclohexanol" Chavan, S. P.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Khobragade, D. A.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. US Patent No. 6,504,044 B2.
4. "An Efficient and Green Protocol for the Preparation of Cycloalkanols: A Practical Synthesis of Venlafaxine" Chavan, S. P.; Khobragade, D. A.; Kamat, S. K.; Sivadasan, L.; Balakrishnan, K.; Ravindranathan, T.; Gurjar, M. K.; Kalkote, U. R. Tetrahedron Letters 2004, 45, 7291-7295.
5. "A Simple and Efficient Synthesis of (\pm)-Mesembrine" Chavan, S. P.; Khobragade, D. A.; Pathak, A. B.; Kalkote, U. R. Tetrahedron Letters 2004, 45, 5263-5265.
6. "Convenient Formal Total Synthesis of (\pm)-Paroxetine" Chavan, S. P.; Khobragade, D. A.; Pathak, A. B.; Kalkote, U. R. (communicated).
7. "A Practical Synthesis of (\pm)-Venlafaxine" Chavan, S. P.; Khobragade, D. A.; Thakkar, M. R.; Kalkote, U. R. (communicated).

[^0]: ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $40\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

