Enantioselective Synthesis of Bioactive Molecules via
Asymmetric Reductions, Dihydroxylations of Olefins and Synthetic Methodologies Involving Reduction of Esters, Halogenation of Ketones and Hydroarylation of Arenes

A THESIS
SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY

By
Arun Rangnath Jagdale UNDER THE GUIDENCE OF Dr. A. SUDALAI

Chemical Engineering and Process Development Division National Chemical Laboratory

Pune-411008, INDIA

NATIONAL CHEMICAL LABOATORY

Dr. A. Sudalai

Scientist
Chemical Engineering \& Process Development Division, Pune - 411 008, India Phone (O) : 0091-20-25902174, Fax: 0091-20-25902676, e-mail: a.sudalai@ncl.res.in

CERTIFICATE

Certified that the work incorporated in the thesis entitled "Enantioselective Synthesis of Bioactive Molecules via Asymmetric Reductions, Dihydroxylations of Olefins and Synthetic Methodologies Involving Reduction of Esters, Halogenation of Ketones and Hydroarylation of Arenes" was carried out by the candidate under my supervision. Such material as had been obtained from other sources has been duly acknowledged in the thesis.

June 2008
(Dr. A. Sudalai)
Pune
Research Supervisor

NATIONAL CHEMICAL LABORATORY

DECLARATION

I here by declare that the thesis entitled "Enantioselective Synthesis of Bioactive Molecules via Asymmetric Reductions, Dihydroxylations of Olefins and Synthetic Methodologies Involving Reduction of Esters, Halogenation of Ketones and Hydroarylation of Arenes" submitted for the degree of Doctor of Philosophy in Chemistry to the University of Pune, has not been submitted by me to any other university or institution. This work was carried out at the National Chemical Laboratory, Pune, India.

June 2008
Pune

Arun R. Jagdale
CE \& PD Division,
National Chemical Laboratory, Dr. Homi Bhabha Road,

Pune-411 008, INDIA.

CONTENTS

age No.		
Acknowledgements		i
Abbreviations		iii
General Remarks		v
Abstract		vi
Chapter I	A new concise method of synthesis of tetrahydroquinolin-3-ol, Sumanirole maleate (PNU 95666-E) and 1-(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl)propan-1-one	
Section I	A novel method for the synthesis of (R)-tetrahydroquinolin-3-ols via Os-catalyzed asymmetric dihydroxylation coupled with $\mathbf{C o C l}_{2^{-}}$ catalyzed reduction of cyclic sulphites with $\mathbf{N a B H}_{4}$	
1.1.1	Introduction	01
1.1.2	Review of Literature	02
1.1.3	Present Work	14
1. 1.3.1	Objective	14
1.1.3.2	Results and Discussions	20
1.1. 4	Conclusion	28
1.1.5	Experimental Section	29
Section II	Formal asymmetric synthesis of	95666-E)
1.2.1	Introduction	43
1.2.2	Review of Literature	44
1.2.3	Present Work	47
1. 2.3.1	Objective	47
1.2.3.2	Results and Discussions	48
1.2. 4	Conclusion	54
1.2.5	Experimental Section	54
Section II	Asymmetric synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones	
1.3.1	Introduction	61

Chapter III	CoCl_{2}-catalyzed chemoselective reduction of carboxylic esters with $\mathrm{NaBH}_{4}:$ asymmetric synthesis of (\boldsymbol{R})-tolterodine
Section I	CoCl_{2}-Catalyzed chemoselective reduction of esters with NaBH_{4}
3.1 .1	Introduction

3.1.2 Review of Literature 129
3.1.3 Present Work 135
3.1.3.1 Objective 135
3.1.3.2 Results and Discussions 136
3.1.4 Conclusion 144
3.1.5 Experimental Section 144

Section II	Asymmetric Synthesis of (R)-tolterodine	
3.2 .1	Introduction	151
3.2 .2	Review of Literature	152
3.2 .3	Present Work	160
3.2 .3 .1	Objective	160
3.2 .3 .2	Results and Discussions	161
3.2 .4	Conclusion	167
3.2 .5	Experimental Section	167
3.3.	References	174
	\boldsymbol{p}-Toluenesulfonic acid $\quad(\boldsymbol{p}$-TSA)-mediated	hydroarylation of

Section I p-Toluenesulfonic acid (\boldsymbol{p}-TSA) mediated hydroarylation ofcinnamic acids with substituted anisoles and phenols under metal-and solvent-free conditions
4.1.1 Introduction 176
4.1.2 Review of Literature 177
4.1.3 Present Work 183
4.1.3.1 Objective 183
4.1.3.2 Results and Discussions 183
4.1.4 Conclusion 191
4.1.5 Experimental Section 191

Section II	$\mathrm{Cu}(\mathbf{O T f})_{2}$-catalyzed $\boldsymbol{\alpha}$-halogenation of ketones with 1,3-dichloro-5,5- dimethlhydantoin and \boldsymbol{N}-bromosuccinimide	
4.2 .1	Introduction	200

4.2.2 Review of Literature 200
4.2.3 Present Work 208
4.2.3.1 Objective 208
4.2.3.2 Results and Discussions 208
4.2.4 Conclusion 218
4.2.5 Experimental Section 218
4.3 References 226
List of Publications 228

ACKNOWLEDGEMENT

I wish to express my sincere gratitude towards my research guide, Dr. A. Sudalai, I will be always obliged to him for his suggestions and constant encouragement. I sincerely thank him for his impressive guidance, constant support, inspiration and personal freedom rendered to me during my research period. His endless enthusiasm and receptive attitude will always remain a source of inspiration for me.

I thank Dr. B. D. Kulkarni, Deputy Director and Head, CE-PD division, for his help and support. My special thanks go to Dr. S. Gurunath for his constant encouragement and moral support. I thanks to Drs. Pande, Mulla, Kalkote and Srinivasan for his help and support. I am immensely thankful to my seniors Drs. Milind, Gajanan, Vinay, Iliyas Abhimanyu, Sivakumar, Shriram, Ramesh and Srinivas for useful training in the initial phase of my career which made me what I am today. I would like thank my teachers Drs. Thube, Thopate, Mutkule, Kale, Diggikar, Gaikawad and Jadhav for teaching me discipline in life along with science. Also, I would like thank my teachers of S. P. college Drs. Avchat, Salvekar, Deshpande, Vaidhya, Bhagvat, Date, Bhave, Avasare and Apate for teaching me science along with discipline in life.

I am very thankful to Dr. Kalal, Sonawane, Kulkarni and Chavan for her help in the GCMS and HPLC analysis. I thank NMR group for their help in obtaining the analytical data. I thank PD office staff Mr. Bhosale, Mrs. Puranik and Mr. Kakade for their cooperation. It's my privilege to thank the Director, NCL for giving me this opportunity and providing all necessary infrastructure and facilities. Financial assistance from CSIR, New Delhi is greatly acknowledged.

I wish to thank my friendly and cooperative lab mates Dr. Victor, Pandu, Emmanuvel, Tanveer, Shyla, Santhosh, Gajanan, Kuppu swamy, Sawant, Asif, Sudhir, Ravi, Ramachandra, Deepak, Nana, Balaji, Prakash, Bharat, Mohan, Amol, Vijay, Hari, Satish, Santosh, Shaheen, Deepali, Payal, Shobhana, Divya, Vandana, Varun, Dayanand, Narshimha, Mutthu, Pratibha, Nagesh, Aparna, Cahruta, Chinmaya, Vajay, Vaishali, Geetanjali, Alka, Sheetal, Rohini, Arvind, Balamurugan, Rubas, Paramasivam, Raja, Mudasir, Baba, Gajanan and Ruchi for providing a cheerful atmosphere in the lab.

I wish to thanks Rakesh, Shima, Sandip and Santosh for helping me in my work during their projects.

I am deeply indebted to my friends at NCL, Sachin, Vilas, Laxman, Mahesh, Rajabhau, Amit, Ulhas, Shekhar, Vivek, Nagendra, Bapu, Amol, Namdeo, Avdhut, Kulbhushan, Kishan, Sharad, Om, Sambhaji, Mahesh, Jaiprakash, Bhargava, Raghupati, Ramesh, Anil, Ganesh, Taterao, Shafi, and Vanktesh. I am greatly indebted to my friends Nilkanth, Manisha ,Om, Sanjay, Pravin, Kishor, Ajit, Vijay, Santosh, Ravi, Vidhya and Deepali.

My special thanks goes to my family, Alka (Tai) Sarjerao (Anna) my brothers Abhijeet (Manu), Viswajeet (Sonu), sisters Archana, Nileema, and Anita for their constant support throughout my life. I also thank my sisters in law Bhagyashri, Lucky and Anju for their constant support towards my family. Also my sincere thanks go to Kamlesh, Pravin Mengawade and father in law Sambhaji Pawar for their support.
I owe much towards my wife Sandhya for her patience and encouragement throughout my career. I thank my lovely daughter Avanti for making my life beautiful.

I wish to thank great scientific community whose achievements are constant source of inspiration for me. I appreciate the efforts of all those authors and directors whose books and movies were entertaining, inspiring and enlightening. Finally, I thank God Almighty for His enormous blessings.

ABBREVATIONS

Ac	Acetyl
Ar	Aryl
Bn	Benzyl
$\mathrm{n}-\mathrm{Bu}$	n-Butyl
n-BuLi	n-Butyl Lithium
CAN	Cerric ammonium nitrate
Cbz	Benzyloxy carbonyl
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Methylene chloride
CHCl_{3}	Chloroform
$\mathrm{CH}_{3} \mathrm{CN}$	Acetonitrile
CuSO_{4}	Copper(II) sulfate
DBAD	Dibenzyl azodicarboxylate
DBU	1,8-Diazabicyclo[5.4.0]undecene-7
DIBAL-H	Diisobutyl alulinum hydride
DET	Diethyl Tartarate
DMF	Dimethyl formamide
DMSO	Dimethyl sulphoxide
DMAP	N,N-dimethyl-4-aminopyridine
ee	Enantiomeric excess
Et	Ethyl
$\mathrm{Et}_{3} \mathrm{~N}$	Triethylamine
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
EtOAc	Ethyl acetate
EtOH	Ethyl alcohol
g	Grams
h	Hours
HCl	Hydrochloric acid
HPLC	High pressure liquid chromatography
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid
IR	Infra red
IBX	2-Iodoxybenzoic acid
$\mathrm{K}_{2} \mathrm{CO}_{3}$	Potassium carbonate
KOH	Potassium hydroxide
LiAlH_{4}	Lithium aluminum hydride
LDA	Lithium diisopropyl amide
M +	Molecular ion
Me	Methyl
MeOH	Methyl alcohol
min	Minutes
mL	Milliliter
mp	Melting point
MS	Mass spectrum
Ms	Mesyl
NaBH_{4}	Sodium borohydride
NaHCO_{3}	Sodium bicarbonate
NaOH	Sodium hydroxide
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sodium sulfate
$\mathrm{NH}_{4} \mathrm{Cl}$	Ammonium chloride

$\mathrm{NH}_{4} \mathrm{OH}$	Ammonium hydroxide
NIS	N-iodosuccinimide
NMR	Nuclear Magnetic Resonance
NMO	N-Methyl morpholine N-oxide
Pd/C	Palladium on activated charcoal
Pet. ether	Petroleum ether
Ph	Phenyl
p-TSA	p-Toluene sulfonic acid
PhNO	Nitrosobenzene
Py	Pyridine
TBS	tert-Butyldimethylsilyl
TBHP	tert-Butyl hydroperoxide
TEMPO	$2,2,6,6$-tetramethyl-1-piperidinyloxy
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TBAF	Tetrabutylammonium fluoride
TBDMSCl	tert-Butyldimethylsilyl chloride
TBDPSCl	tert-Butyldiphenylsilyl chloride
TFA	Trifluoroacetic acid
TMSCN	Trimethylsilyl cyanide
Ts	Tosyl

GENERAL REMARKS

1. All solvents were distilled and dried before use.
2. Petroleum ether refers to the fraction collected in the boiling range $60-80^{\circ} \mathrm{C}$.
3. Organic layers after every extraction were dried over anhydrous sodium sulfate.
4. Column Chromatography was performed over silica gel (60-120 mesh).
5. TLC analyses were performed over aluminum plates coated with silica gel ($5-25 \mathrm{~m}$) containing UV active G-254 additive.
6. IR spectra were recorded on a Perkin-Elmer model 683 B or 1605 FT-IR and absorptions were expressed in cm^{-1}.
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Brucker FT AC-200 and MSL-300 MHz instruments using TMS as an internal standard. The following abbreviations were used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, brs = broad singlet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{dt}=$ doublet of triplet and ddd = doublet of doublet of doublet.
8. Mass spectra (MS) were recorded on an automated finnigan MAT 1020C mass spectrometer using ionization energy of 70 eV .
9. Optical rotations were carried out on JASCO-181 digital polarimeter at $25^{\circ} \mathrm{C}$ using sodium D light.
10. HPLC analyses were performed on Waters Alliance separation module-2695; equipped with 2487 UV-Visible detector.
11. All melting points and boiling points are uncorrected and the temperatures are in centigrade scale.
12. Elemental analysis was done on Carlo ERBA EA 110B instrument.
13. The compounds, scheme and reference numbers given in each chapter refers to that particular chapter only.
14. All the ligands $\left[(\mathrm{DHQ})_{2}\right.$-PHAL, $(\mathrm{DHQD})_{2}$-PHAL, oxazolidine] were purchased from Aldrich.

ABSTRACT

The title of the thesis "Enantioselective Synthesis of Bioactive Molecules via Asymmetric Reductions, Dihydroxylations of Olefins and Synthetic Methodologies Involving Reduction of Esters, Halogenation of Ketones and Hydroarylation of Arenes" clearly reflects the objective, which is to synthesize enantiomerically pure bioactive molecules and also to develop useful synthetic methodologies. Chapter 1 deals with the CoCl_{2}-catalyzed reductive cyclization of nitro cyclic sulphites using NaBH_{4} to give the corresponding tetrahydroquinolin-3-ol and its application in the asymmetric synthesis of sumanirole maleate (PNU 95666-E) and 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl]propan-1-one (S-903). Chapter 2 presents the synthesis of two anti-depressant drugs namely (\pm)-paroxetine and (\pm)-femoxetine using Suzuki coupling of enol tosylate with boronic acids as the key reaction. Chapter 3 describes the development of an improved methodology involving CoCl_{2}-catalysed chemoselective reduction of esters and its application in the asymmetric synthesis of (R) tolterodine. Chapter 4 describes a novel methodology involving p-TSA-mediated hydroarylation of cinnamic acids with substituted phenols and anisoles and $\mathrm{Cu}(\mathrm{OTf})_{2^{-}}$ catalyzed α-halogenation of ketones with 1,3-dichloro-5,5-dimethylhydantoin and N bromosuccinimide as halogen sources.

Chapter1

A new concise method of synthesis of tetrahydroquinolin-3-ol, sumanirole maleate (PNU 95666-E) and 1-((S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl)propan-1-one

Sharpless asymmetric dihydroxylation (ADH) is one of the most effective methods for the preparation of chiral diols, which are important intermediates for the synthesis of various bioactive compounds. This chapter deals with development of a novel method for the synthesis of tetrahydroquinolin-3-ol (5a-e) via CoCl_{2}-catalyzed reductive cyclization of nitro cyclic sulphites followed by its application to the synthesis of sumanirole maleate (PNU 95666-E) and 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1$(2 H)$-yl]propan-1-one (S -903), and is divided into three sections.

Section I: A new route for the synthesis of (\boldsymbol{R})-tetrahydroquinolin-3-ol via Os-catalyzed asymmetric dihydroxylation coupled with $\mathbf{C o C l}_{2}$ catalyzed reduction of cyclic sulphites with $\mathbf{N a B H}_{4}$

Substituted tetrahydroquinolines display a wide range of physiological activities ${ }^{1}$ such as analgesic, antiarrhythmic, cardiovascular, immuno-suppresent, antitumor, antiallergenic, anticonvulsant and antifertility and NMDA antagonist activities. ${ }^{2}$ This section describes a novel methodology for the synthesis of substituted tetrahydroquinolin-3-ols (5a-e) via CoCl_{2}-catalyzed one-pot reduction of nitro cyclic sulphites 4a-e using NaBH_{4} as reducing agent. α, β-Unsaturated esters 1a-e, prepared readily from Wittig olefination of the corresponding benzaldehydes, were subjected to Os-catalyzed asymmetric dihydroxylation (ADH) using (DHQ) $)_{2}$-PHAL as ligand to give the corresponding α-diols 2a-e, which on nitration using conc. HNO_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ gave the nitro diols 3a-e in high yields. Nitrodiols 3a-e were smoothly converted into the corresponding cyclic sulphites 4a-e ($\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) in excellent yields. These cyclic sulphites (4a-e), when subjected to CoCl_{2}-catalyzed reduction with NaBH_{4}, the corresponding tetrahydroquinoline derivatives 5a-e were obtained in 78-83\% yields (Scheme 1).

Scheme 1: (a) $\mathrm{OsO}_{4},(\mathrm{DHQ})_{2}$ - $\mathrm{PHAL}, \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}$, tert-BuOH:H2O, $25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (b) conc. $\mathrm{HNO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}, 2{ }^{\circ} \mathrm{C}$; (c) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; (d) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1$ mol\%), NaBH_{4}, EtOH, $0-25^{\circ} \mathrm{C}$.

During the course of this reaction, surprisingly we observed the reduction of multifunctional groups, all occurring in a single step.

Section II: Formal asymmetric synthesis of sumanirole maleate (PNU 95666-E)

Sumanirole maleate (PNU95666-E) (18) is a selective and high-affinity agonist at the dopamine D_{2} receptor subtype and is of interest as a potential agent for the treatment of Parkinson's disease. ${ }^{3}$ In this section, we describe a short synthesis of sumanirole maleate 18, by employing CoCl_{2}-catalyzed one-pot reduction of the corresponding cyclic sulphite 8 as the key step.

Unsaturated nitroester 6 was subjected to Os-catalyzed asymmetric dihydroxylation using (DHQD) 2_{2}-PHAL as ligand to give the chiral diol 7 in 82% yield, which was readily converted into the corresponding cyclic sulphite $8\left(\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Catalytic one-pot reduction of cyclic sulphite $\mathbf{8}$ using $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{~mol} \%$) and NaBH_{4} (5 equiv.), gave the tetrahydroquinoline derivative 9 in 81% yield. Selective amine protection in 9 was achieved with propionic anhydride in two steps to give amide 11 in 92% yield. Chiral amido alcohol 11 was mesylated ($\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and subsequent displacement of the mesylate with azide anion ($\mathrm{NaN}_{3}, \mathrm{DMF}$) gave azide 13, which on reduction [H_{2} (1atm), $10 \% \mathrm{Pd} / \mathrm{C}$] gave amine 14. Formation of imine from amine 14 ($\mathrm{HCHO}, \mathrm{MgSO}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) followed by its reduction $\left(\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}\right)$ gave the monomethylated amine 15 in 78\% yield. Synthesis of PNU 95666-E (18) from 15 has already been reported ${ }^{3}$ in the literature (Scheme 2).

ref. 3
\qquad

18
PNU 95666-E

Scheme 2: (a) $\mathrm{OsO}_{4},(\mathrm{DHQD})_{2}$ - $\mathrm{PHAL}, \mathrm{K} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}$, tert- $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}, 24$ h, 82%; (b) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (c) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{~mol} \%$), NaBH_{4}, EtOH, 0-25 ${ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 81 \%$; (d) $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (e) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$, $25^{\circ} \mathrm{C}, 92 \%$ over two steps; (f) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (g) NaN_{3}, DMF, 80 ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 93 \%$ over two steps; (h) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (i) HCHO, $\mathrm{MgSO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (j) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 78 \%$.

Section III: Asymmetric synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl]propan-1-one

Asymmetric synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-$1-(2 H)$-yl]propan-1-one (23a-b), a positive inotropic agent, ${ }^{4}$ is described in this section.

Tetrahydroquinolinol 5a, prepared by the CoCl_{2}-catalyzed reduction of the corresponding cyclic sulphite 4a, was treated with propionic anhydride to give amido alcohol 19 in 93\% yield and 95.5% ee (determined by chiral HPLC). Alcohol 19 on mesylation ($\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) followed by its displacement with azide ion (NaN_{3} in DMF) gave azide 21 in 91\% yield. Finally, azide 21 was reduced to amine [H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}$] (Scheme 3).

The N, N^{\prime} - dimethylation of amine 22 was achieved by treating 22 with formic acid and formaldehyde solution under reflux condition to afford 23a in 73\% yield and 94\% ee.

Scheme 3: (a) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%), \mathrm{NaBH}_{4}, \mathrm{EtOH}, 0-25^{\circ} \mathrm{C}, 78 \%$; (b) (RCO) ${ }_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 91%; (c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (d) $\mathrm{NaN}_{3}, \mathrm{DMF}, 8{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$ (two steps); (e) $\mathrm{H}_{2}(1 \mathrm{~atm}) 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (f) $\mathrm{HCHO}\left(40 \%\right.$ aq. solution), $\mathrm{HCO}_{2} \mathrm{H}, 80^{\circ} \mathrm{C}$, 3 h, 73\% over two steps.

Chapter 2

Pd-catalyzed Suzuki-Miyaura coupling of enol tosylate with boronic acids: A short synthesis of (\pm)-paroxetine and (\pm)-femoxetine, potent anti-depressant drugs

Suzuki-Miyaura coupling is one of the most effective reactions for the construction of CC bonds in organic synthesis. ${ }^{5}$ This chapter describes a new route for the synthesis of arylheterocyclic derivatives 28a-e wherein Pd-catalyzed Suzuki-Miyaura coupling of enol tosylate 27, derived from piperdine-4-one, with a variety of boronic acids was carried out. Synthesis of (\pm)-paroxetine 34 and (\pm)-femoxetine 35 , two potentially proven anti-depressant drugs, via Suzuki coupling, have also been described in this chapter.

Section I: Pd-catalyzed Suzuki coupling of enol tosylate with boronic acids

This section provides a new route for the synthesis of tetrahydropyridine derivatives 28a\mathbf{e} in three steps with substitutions at C_{3} and C_{4} positions (in three steps), starting from 4piperidone (25). Boc-protected 4-piperidinone 25 was carbomethoxylated (NaH , $(\mathrm{MeO})_{2} \mathrm{CO}$ in DMF) to give enol ester 26 in 89% yield, which on tosylation $\left(\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave enol tosylate 27 in 93% yield. Enol tosylate 27 was then subjected to Pd-catalyzed Suzuki coupling with several aryl boronic acids to give tetrahydropyridine derivatives 28a-e in 77-89\% yields (Scheme 4).

Section II: A short synthesis of (\pm)-paroxetine and (\pm)-femoxetine, potent anti-depressant drugs

(\pm)-Paroxetine 34 and (\pm)-femoxetine 35 are selective serotonin reuptake inhibitors used in the treatment of depression, obsessive compulsive disorder and panic. ${ }^{6} \alpha, \beta$-Unsaturated ester 28a, prepared via Suzuki coupling, on reduction with H_{2} (1 atm) over $10 \% \mathrm{Pd} / \mathrm{C}$) gave the corresponding saturated ester 29a with syn fashion in 99% yield. Both epimerization of ester 29a at C_{3}-position, coupled with hydrolysis of ester, was achieved with ${ }^{\text {' }} \mathrm{BuOK}$ in methanol to give the anti acid 30a in 85% yield, which on reduction with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ gave alcohol 31a in 93 \% yield. Etherification of alcohol 31a with sesamol was carried out in two steps: by mesylation of alcohol 31a, followed by its displacement with sesamol gave N-Boc protected paroxetine 33 in 91\% yield over two steps (Scheme 5).

28a R = F
28b $\mathrm{R}=\mathrm{H}$

35
(\pm) 29a R = F
(\pm) $29 \mathbf{b}$ R $=\mathrm{H}$

34
(\pm)-Paroxetine
$\left.\begin{array}{l}(\pm) 32 \mathrm{R}^{\prime}=\mathrm{Ms} \\ (\pm) 33 \mathrm{R}^{\prime}=\mathrm{Ar}\end{array}\right\}$ e, 91%
(\pm) 30a R = F
(\pm) 30 b R $=\mathrm{H}$

(\pm)-Femoxetine
Scheme 5: (a) $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%), \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 99 \%$; (b) ${ }^{t} \mathrm{BuOK}, \mathrm{MeOH}$, $65^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$; (c) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, THF, $0^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$; (d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25$ ${ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (e) sesamol, NaH, DMF, $110{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then $25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 91 \%$; (f) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2} 0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 82 \%$.

Finally, Boc- deprotection in 33 with TFA gave (\pm)-paroxetine 34 in 82% yield. For the formal synthesis of (\pm)-femoxetine $\mathbf{3 5}$, a similar sequence of reactions as that of (\pm) paroxetine 34 was carried out. ${ }^{7}$

Chapter 3

CoCl_{2}-catalyzed chemoselective reduction of carboxylic esters with $\mathbf{N a B H}_{4}$: asymmetric synthesis of (\boldsymbol{R})-tolterodine

This chapter describes a new, milder and efficient methodology for the chemoselective reduction of carboxylic esters catalyzed by CoCl_{2}. The use of this methodology is exemplified by its application in the asymmetric synthesis of (R)-tolterodine (43), a potent and competitive muscarinic antagonist.

Section I: $\mathbf{C o C l}_{2}$-catalyzed chemoselective reduction of carboxylic esters with NaBH_{4}

We have developed a simple and efficient procedure for the reduction of phenolic esters 36 and 39, using catalytic amount of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with NaBH_{4} (Schemes 6 and 7). For example $\mathrm{C}=\mathrm{C}$ double bond in aryl acrylates 36 was reduced to give the corresponding saturated alcohol 37 along with phenols 38a-b in excellent yields.

Scheme 6: (a) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%), \mathrm{NaBH}_{4}$ (3 equiv.), $\mathrm{EtOH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Surprisingly, phenolic acetates 39 were reductively deacylated under the same reaction conditions provides the corresponding phenols 40 in high yields. Several reducible groups such as $\mathrm{NO}_{2}, \mathrm{CN}$ and halogens were not affected. Good chemoselectivity, excellent yields, milder reaction conditions and use of NaBH_{4} are some of the distinct features of this methodology.

Scheme 7: (a) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{~mol} \%$), NaBH_{4} (2 equiv.), EtOH, 0-25 ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

In continuation of this investigation, we found surprisingly that addition of catalytic amount of diisopropyl amine enhances the reactivity of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaBH}_{4}$ system towords the reduction of carboxylic esters.

Scheme 8: (a) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (10 mol\%), ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(20 \mathrm{~mol} \%), \mathrm{NaBH}_{4}$ (4 equiv.), EtOH, $50-60^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Several carboxylic esters such as $\mathbf{4 1}$ and $\mathbf{4 3}$ underwent reduction smoothly with NaBH_{4} using catalytic amount of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} /{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$ to give the corresponding saturated alcohols 42 and 44 in excellent yields (Schemes 8 and 9).

$\substack{\mathrm{R}^{\prime} \mathrm{CO}_{2} \mathrm{Et}}$	$\mathbf{4 3}$ $\mathrm{R}^{\prime}=\mathrm{Bn}$, Ar, alkyl
Yield $=72-90 \%$	

Scheme 9: (a) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$), ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$ (20 mol\%), NaBH_{4} (4 equiv.), $\mathrm{EtOH}, 50-60^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Section II: Asymmetric Synthesis of (\boldsymbol{R})-tolterodine

(R)-Tolterodine, a potent and competitive muscarinic antagonist, is used in the treatment of urinary urge incontinence and other overactive bladder disorders, whereas (S) tolterodine exhibits a non-cholinergic spasmolytic activity as well as weak sedative effect. ${ }^{8}$ This section deals with a short asymmetric synthesis of (R)-tolterodine 43.

The p-TSA-mediated hydroarylation of cinnamic acid 35 with p-cresol gave dihydrocoumarin 37 in 99\% yield in a single step, which on aromatization with DDQ produced the corresponding coumarin 38 in 92% yield. Asymmetric reduction of coumarin 38 with catalytic $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and oxazolidine ligand 44 in catalytic amounts with NaBH_{4} gave the saturated alcohol 39 in 98 \% yield. Further selective protection of phenolic function in 39 with BnBr in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone gave the protected phenolic ether 40 in 82% yield. Alcohol moiety in 40 was transformed to mesylate 41 ($\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and its displacement with diisopropyl amine (${ }^{(} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{NaI}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in DMF) gave the protected tolterodine 42 in 81% yield and 95% ee. ${ }^{9}$ Finally, deprotection of benzyl group was carried out under reductive conditions with H_{2} (1 atm) over 10\% Pd/C to give (R)-tolteridone in 95\% yield and 95\% ee (Scheme 10).

Scheme 10: (a) p-TSA, $130{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 99 \%$; (b) DDQ, dioxane, $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 92 \%$; (c) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{~mol} \%$, ligand 44 ($1.1 \mathrm{~mol} \%$), NaBH_{4} (3 equiv.), EtOH, DMF, $0^{\circ} \mathrm{C}, 36 \mathrm{~h}, 98 \%$; (d) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 82 \%$; (e) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 30$ min; (f) ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$ (5 equiv.), $\mathrm{NaI}\left(20 \mathrm{~mol} \%\right.$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}, 80^{\circ} \mathrm{C}, 6 \mathrm{~h}$, 81\%; (g) H_{2} (1 atm), 10\% Pd/C, MeOH, $12 \mathrm{~h}, 90 \%$;

To improve the yield, we protected phenolic OH with OTs (TsCl , aq. NaOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at reflux conditions to give the tosylate 45 in 98% yield and 95% ee (determined by Mosher's ester analysis). Alcohol 45 was transformed to mesylate 46, which was displaced with diisopropyl amine to give 47. Finally, OTs was deprotected with aq. NaOH under reflux condition to give (R)-tolterodine in 76\% yield (Scheme 11).

Chapter 4

\boldsymbol{p}-Toluenesulfonic acid (\boldsymbol{p}-TSA)-mediated hydroarylation of cinnamic acids with anisoles and phenols under metal- and solvent-free conditions and $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed α-halogenation of ketones

Section I describes the development of a novel synthetic methodology involving p-TSAmediated hydroarylation of cinnamic acids with substituted anisoles and phenols. Section II presents the results of $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed α-halogenations of ketones with 1,3-dichloro-5,5-dimethylhydantoin and N - bromosuccinimide as halogen sources.

Section I: p-Toluenesulfonic acid (p-TSA)-mediated hydroarylation of cinnamic acids with anisoles and phenols under metal- and solvent-free conditions

4-Aryl 3,4-dihydrocoumarins 47 are of synthetic target as they are present in a number of natural products, such as neoflavonoids and complex flavonoids. ${ }^{10}$ This section describes a novel single-step procedure for the synthesis of 4-aryl 3,4-dihydrocoumarins 47 in high yields and excellent selectivity via hydroarylation of cinnamic acids with phenols
mediated by p-toluenesulfonic acid (p-TSA) under metal- and solvent-free conditions. ${ }^{11}$ In case of phenolic substrates with ortho substitutents such as $\mathrm{Cl}, \mathrm{Br}, \mathrm{OMe}$ and $\mathrm{CO}_{2} \mathrm{Me}$, the dihydrocoumarins formed initially, were labile and underwent transesterification with ethyl acetate to give the respective phenolic esters 48 in good yields (Scheme12).

Scheme 12: (a) p-TSA, $125^{\circ} \mathrm{C}, 3 \mathrm{~h}$, No solvent.

In continuation of this work, we have also developed an elegant methodology in which hydroarylation of cinnamic acids such as 45 with substituted anisoles 49 mediated by p toluenesulfonic acid (p-TSA) under metal- and solvent-free conditions gave 3-(4-methoxyphenyl)-3-phenylpropanoic acids 50 in high yields and excellent selectivity, thus anisoles 49 undergoing a Michael-type addition with cinnamic acids 45 (Scheme 13). Compounds 50 show excellent activity as G protein-coupled receptor 40 agonists. ${ }^{12}$

Scheme 13: (a) p-TSA, $125^{\circ} \mathrm{C}, 3 \mathrm{~h}$, No solvent.

Section II: $\mathbf{C u (O T f})_{2}$-catalyzed α-halogenation of ketones with 1,3-dichloro-5,5-dimethylhydantoin and N -bromosuccinimide.

α-Halo ketones are valuable intermediates for the synthesis of several organic compounds. ${ }^{13}$ This section describes $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed α-halogenation of ketones. We have found that $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzes α, α-dichlorination of aromatic ketones 51 with 1,3-
dichloro-5,5-dimethylhydantoin (52) as chlorine source to give α, α-dichloroketones 53 (Scheme 14). Under the same reaction conditions aliphatic ketones 54 gave α, α 'dichloroketones 55 (Scheme 15)..

Scheme 14: (a) $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%), \mathrm{CHCl}_{3}, 80^{\circ} \mathrm{C}, 6-12 \mathrm{~h}$.

Scheme 15: (a) $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%), \mathrm{CHCl}_{3}, 80^{\circ} \mathrm{C}, 6-12 \mathrm{~h}$.

In continuation of this work, we have subjected several aromatic ketones 51 to $\mathrm{Cu}(\mathrm{OTf})_{2}$ catalyzed α-bromination with N-bromosuccinamide (Scheme 16), wherein we found that α-bromoketones 57 were formed as the major product along with α, α dibromoacetophenones formed in small quantities.

Scheme 16: (a) $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%), \mathrm{CHCl}_{3}, 8{ }^{\circ} \mathrm{C}, 6-12 \mathrm{~h}$.
Aromatic ketones with electron-rich as well as electron-withdrawing substituents underwent α-halogenation with good yield and chemoselectivity. Other ketones such as aromatic, aliphatic, cyclic and acyclic ketones underwent halogenation under milder and catalytic conditions. Use of a catalytic amount of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and a stable halogen sources
such as 1,3-dichloro-5,5-dimethylhydantoin (52) or NBS (56) make this procedure an attractive one.

General References

1 Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031.
2 (a) Gademann, K.; Bethuel, Y. Angew. Chem. Int. Ed. 2004, 43, 3327; (b) GallouDagommer, I.; Gastaud, P.; Rajan Babu, T. V. Org. Lett. 2001, 3, 2053.

3 Romero, A. G.; Darlington, W. H.; McMillan, M. W. J. Org. Chem. 1997, 62, 6582.
4 Santangelo, F.; Casagrande, C.; Miragoli, G.; Vecchietti, V. Eur. J. Med. Chem. 1994, 29, 877.

5 (a) Baxter, J. M.; Steinhuebel, D.; Palucki, M.; Davies I. W. Org. Lett. 2005, 7, 215;
(b) Pastre, J. C.; Correia, C. R. D. Org. Lett. 2006, 8, 1657.

6 Mathis, C. A.; Gerdes, J. M.; Enas, J. D.; Whitney, J. N.; Taylor, S. E.; Zahang, Y.; Mckenna, D. J.; Havlik, S.; Peroutka, S. J. J. Pharm. Pharmacol. 1992, 44, 801.

7 Amat, M.; Bosch, J.; Hidalgo, J.; Cantó M.; Pérez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Luque, J. J. Org. Chem. 2000, 65, 3074.

8 Nilvebrant, L.; Andersson, K.-E.; Gillberg, P.-G.; Stahl, M.; Sparf, B. Eur. J. Pharmacol. 1997, 327, 195.

9 Ulgheri , F.; Marchetti, M.; Piccolo, O. J. Org. Chem. 2007, 72, 6056.
10 Zhang, X.; Wang, H.; Song, Y.; Nie, L.; Wang, L.; Liu, B.; Shen, P.; Liua, Y. Bioorg. Med. Chem. Lett. 2006, 16, 949.
11 (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633; (b) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669.

12 Song, F.; Lu, S.; Gunnet, J.; Xu, J. Z.; Wines, P.; Proost, J.; Liang, Y. Baumann, C.; Lenhard, J.; Murray, W. V.;. Demarest, K. T.; Kuo, G.-H. J. Med. Chem. 2007, 50, 2807.

13 (a) Tilstam, U.; Weinmann, H. Org. Process Res. \& Dev. 2002, 6, 384; (b) Guha, S. K.; Wu, B.; Kim, B. S.; Baik W.; Koo, S. Tetrahedron Lett. 2006, 47, 291.

Chapter I

A new concise method of synthesis of tetrahydroquinolin-3-ol, Sumanirole maleate (PNU 95666-E) and 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1-(2H)-yl]propan-1one

Section I:

A novel method for the synthesis of (R)-tetrahydroquinolin-3-ols via Oscatalyzed asymmetric dihydroxylation coupled with CoCl_{2}-catalyzed reduction of cyclic sulphites with NaBH_{4}

1.1.1 Introduction

The greatest interest in the synthesis of 1,2,3,4-tetrahydroquinolines is due to their biological activities. ${ }^{1}$ Simplest example is 2-methyl-1,2,3,4-tetrahydroquinoline (1) present in human brain(Fig. 1). Tetrahydroquinoline L-689560 (2) is one of the most potent NMDA antagonists yet found. ${ }^{2}$ Virantmycin (3) shows antibiotic activity. ${ }^{3}$ (+)Duocarmycin D_{1} (4), having chiral 3-hydroxytetrahydroquinoline system in their structure shows potential cytotoxic activity. ${ }^{4}$ Anechalin-H (5) is a complex tetrahydroquinoline and exhibits antibiotic activity against Moraxella catarrhalis. ${ }^{5}$

1
2-methyl-1,2,3,4tetrahydroquinoline

4
$(+)$-Duocarmycin D_{1}

3
Virantmycin

5
Anachelin H

Fig. 1 Some of the examples of tetrahydroquinoline derivatives

Many relatively simple synthesized 1,2,3,4-tetrahydroquinolines are already proven as potential drugs. ${ }^{6}$ Moreover, besides pharmaceutical applications, tetrahydroquinoline derivatives are useful as pesticides, ${ }^{7}$ antioxidants, ${ }^{8}$ and corrosion inhibitors, ${ }^{9}$ Also tetrahydroquinolines are widely used as active components of dyes ${ }^{10}$ and photosensitizers in photography. ${ }^{11}$

1.1.2 Review of literature

Literature search revealed that there are various reports available for the synthesis of tetrahydroquinoline derivatives which are described below.

Murahashi's Approach (1987) ${ }^{12}$

Murahashi et al. have described the synthesis of tetrahydroquinolines 6a-d via hexarhodiumhexadecacarbonyl complex catalyzed selective reduction of pyridine nucleus in quinolines 7a-d using carbon monoxide and water as efficient reducing agent (Scheme
1).

Scheme 1: (a) Catalytic $\mathrm{Rh}_{6}(\mathrm{CO})_{16}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$.

Gracheva's Approach (1988) ${ }^{13}$

Gracheva et al. have reported the use of $\mathrm{Ni}-\mathrm{Al}$ alloy for the reduction of quinolinecarboxylic acid 8a-c to obtain tetrahydroquinolinecarboxylic acid 9a-c in high yields (Scheme 2).

Scheme 2: (a) $\mathrm{Ni}-\mathrm{Al}$, aq. $\mathrm{NaOH}, 50^{\circ} \mathrm{C}, 12 \mathrm{~h}$,

Schaus's Approach (1990) ${ }^{14}$

Schaus et al. have reported the synthesis of (\pm)-quinpirole (13) using hydrogenation [catalytic $\mathrm{PtO}_{2}, \mathrm{H}_{2}(60 \mathrm{psig})$] of 6-methoxyquinoline (10) which afforded 6-methoxy-1,2,3,4-tetrahydroquinoline (11). Reductive alkylation of $\mathbf{1 1}$ [propanaldehyde, $15 \% \mathrm{Pd} / \mathrm{C}$, $\left.\mathrm{H}_{2}(60 \mathrm{psig})\right]$ furnished tetrahydroquinoline 12 in 36% yield over two steps. Further 12 was converted into (\pm)-quinpirole (13) employing a sequence of reactions (Scheme 3).

Scheme 3: (a) $\mathrm{PtO}_{2}(10 \mathrm{wt} \%), \mathrm{H}_{2}(60 \mathrm{psig}), 50{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{MeOH}$; (b) $15 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(60 \mathrm{psig})$, EtCHO, EtOH, $50^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Bouyssou's Approach (1992) ${ }^{15}$

Bouyssou et al. had employed transfer hydrogenation ($10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{H} / \mathrm{Et}_{3} \mathrm{~N}$) as a method for reducing quinoline 6d to afford the corresponding tetrahydroquinoline $\mathbf{7 d}$ in 85 \% yield (Scheme 4).

Scheme 4: (a) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCOOH}$ (5 equiv.), $\mathrm{Et}_{3} \mathrm{~N}(2$ equiv.), $50^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Szilagyi's approach (1992) ${ }^{16}$

Szilagyi et al. have reported an intramolecular Michael addition of amine functionality onto a α, β-unsaturated ketone 14 catalyzed by phosphoric acid to give 2-aryl-4-oxo-1,2,3,4-tetrahydroquinoline 15 in 85% yield (Scheme 5).

15

Scheme 5: $\quad \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{AcOH}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Katritzky's approach (1995) ${ }^{17}$

Katritzky et al. have reported acid catalyzed Diels-Alder reaction of N-methylaniline derivative 16 with ethyl vinyl ether to give reactive intermediate 4-ethoxy-1,2,3,4tetrahydroquinoline (17) which underwent in situ substitution by benzotriazol to provide 4-(benzotriazolyl)-1,2,3,4-tetrahydroquinoline (18) in 48% yield. At elevated temperatures, ionization of $\mathbf{1 8}$ gives immonium cation which can be trapped insitu by Grignard reagent to provide 4 -substituted tetrahydroquinolines 19 in good yields (Scheme 6).

19

Scheme 6: (a) 16 (10 mmol), ethyl vinyl ether ($1.2 \mathrm{~mL}, 12 \mathrm{mmol}$), p toluenesulfonic acid monohydrate $(10 \mathrm{mg}), 22^{\circ} \mathrm{C}, 30 \mathrm{~min}$. then 120 ${ }^{\circ} \mathrm{C}$, 10 min ; (b) $\mathrm{RMgX}\left(25 \mathrm{mmol}, \mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})\right.$ reflux, 1 h .

Kobayashi'Approach (1996) ${ }^{18}$

Kobayashi et al. have used asymmetric Aza Diels-Alder reactions of imine 20a-b and cyclopentadiene (19a) catalysed by $\mathrm{Yb}(\mathrm{OTf})_{3} \cdot(R)$-BINOL (23) complex to provide tetrahydroquinoline derivatives 20a-b in 69-92\% yields and 71\% ee (Scheme 7).

Scheme 7: (a) $\mathrm{Yb}(\mathrm{OTf})_{3}:(R)$-BINOL:DBU (20 mol\%) 23, 2,6-Di${ }^{t}$ butylpyridine (1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, MS $4 \mathrm{~A}^{\mathrm{o}},-15-0^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

Boger's approach (1997) ${ }^{19}$

Boger et al. have used asymmetric dihydroxylation as key step for the synthesis of duocarmycin-A (4). Asymmetric dihydroxylation of olefin 24 gave diol 25 in 95% yield. Tosylation of primary alcohol and protection of secondary alcohol as silyl ether in 25 gave 26. Intramolecular nucleophilic displacement of tosylate 26 with amide anion provided key intermediate 27 which on hydrolysis $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right.$, sealed tube, $\left.140{ }^{\circ} \mathrm{C}\right)$ gave diamine 28. By sequential transformations, 28 was further converted to duocarmycin A (4) (Scheme 8).

$27, \mathrm{R}=\mathrm{COPh}$
$28, \mathrm{R}=\mathrm{H}$$\quad \mathrm{d}$

Scheme 8: (a) $\mathrm{OsO}_{4}(1 \mathrm{~mol} \%)$, $(\mathrm{DHQD})_{2}$ - $\mathrm{PHAL}(10 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ ($40 \mathrm{~mol} \%$), THF: $\mathrm{H}_{2} \mathrm{O}(4: 1), 0-25^{\circ} \mathrm{C}, 24 \mathrm{~h}$, 92%; (b) (i) $\mathrm{Bu}_{2} \mathrm{SnO}$, toluene-THF (10:1), reflux, 6 h ; (ii) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 89 \%$; (c) TBDMS-OTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 3$ h, 67%; (c) $\mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 92 \%$; (d) $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{EtOH}, 140{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$, sealed tube, 85%.

Corey's approach (1999) ${ }^{20}$

Corey et al. have reported the synthesis of (\pm)-virantmycin (5) via intramolecular DielsAlder reaction of o-azaxylylene $\mathbf{3 0}$ which was prepared by elimination reaction of chloro carbamate 29 and underwent intramolecular [4+2] cycloaddition reaction in high stereoselectivity to furnish tetrahydroquinoline derivative 31 in 90% yield. Further (\pm)virantmycin (5) was synthesized by sequential reactions (Scheme 9).

5, (\pm)-Virantmycin

Scheme 9: (a) CsCO_{3} (5equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

Rajan Babu's approach (2001) ${ }^{21}$

Rajan Babu et al. have used Rh-catalyzed asymmetric hydrogenation as a key reaction for the synthesis of aminotetrahydroquinoline 40. Rh-catalyzed asymmetric hydrogenation of α-acetamido-2 nitrocinnamate ester (35) gave α-acetamido ester 36 in 96% yield and 98% ee. Further reduction of ester functionality with super hydride afforded the corresponding alcohol 37 which was subsequently transformed into its mesylate 38. Reduction $\left(\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}\right)$ of nitro in 38 to amine followed by cyclization provided 3-aminotetrahydroquinoline 39 which was transformed ($\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$) as its tosylamide 40 (Scheme 10).

40, $\mathrm{Ar}=3,5$ dimethylphenyl Rh complex

Scheme 10: (a) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{NaHCO}_{3}$, sealed tube, $80^{\circ} \mathrm{C}, 24 \mathrm{~h}, 80 \%$; (b) Rh catalyst 40, H_{2} (40 psig.), THF, 96%, 98% ee; (c) super hydride, $0^{\circ} \mathrm{C}$; (d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (e) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, 1 \mathrm{~h}, 25^{\circ} \mathrm{C}$; (f) TsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.

In another approach, 2-nitrocinnamate 41 was reduced to the corresponding allyl alcohol 42 using DIBAL-H. Sharplesss asymmetric epoxidation of allyl alcohol 42 gave the chiral epoxy alcohol 43, which was further transformed into tosylate 44. Reductive opening of epoxide 44 over PtO_{2} furnished secondary alcohol 45 in 70% yield. Finally reduction $\left(\mathrm{Fe} / \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}\right.$ and DMF$)$ of nitro functionality to amine which displaces
tosylate to afford 3-hydroxy tetrahydoquinoline followed by its protection as tosylamide gave 46 in 66\% yield (Scheme 11).

Scheme 11: (a) DIBAL-H, toluene, $0{ }^{\circ} \mathrm{C}, 75 \%$; (b) $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$ ($10 \mathrm{~mol} \%$), (+)-diethyl tartrate ($14 \mathrm{~mol} \%$), ${ }^{t} \mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30{ }^{\circ} \mathrm{C}, 6$ days, $60 \%,>90 \%$ ee; (c) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMAP, $0{ }^{\circ} \mathrm{C}, 80 \%$; (d) MgI_{2}, Toluene, $-55^{\circ} \mathrm{C}$; (e) $\mathrm{PtO}_{2}, \mathrm{H}_{2}(40 \mathrm{psig}), \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 70 \%$ over two steps; (f) $\mathrm{Fe}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, DMF, $70^{\circ} \mathrm{C}$; (g) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 66 \%$ over two steps.

Fujita's approach (2002) ${ }^{22}$

Fujita et al. had employed $\left[\mathrm{CpIrCl}_{2}\right]_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}$ catalyzed cyclization of 3-(2aminophenyl)propanol (47) to give tetrahydroquinoline (7a, 7d and 48) in high yields (Scheme 12).

47

Scheme 12: $\left[\mathrm{CpIrCl}_{2}\right]_{2}(5.0 \mathrm{~mol} \% \mathrm{Ir}), \mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~mol} \%)$, toluene, $111{ }^{\circ} \mathrm{C}$, 20 h.

Fujita's approach (2004) ${ }^{23}$

Fujita et al. have used Ir-catalyzed transfer hydrogenation of quinoline 6a and dihydroquinoline 49 to provide tetrahydroquinoline $7 \mathbf{a}$ in high yields. Addition of acid $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ or $\left.\mathrm{HClO}_{4}\right)$ considerably accelerates the rate of the reaction whereas addition of water minimizes the formation of byproducts (Scheme 13).

6a

49

(a) $\left[\mathrm{CpIrCl}_{2}\right]_{2}(1 \mathrm{~mol} \% \mathrm{Ir})$, aq. HClO_{4} (0.20 mmol) 2-propanol (9.5 mL), $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL})$, reflux, 17 h .

Gademann's approach (2004) ${ }^{24}$

Gademann et al. have described oxidative aza-annulation of amine 54 using dianisyltellurium oxide. N-Boc-protection of amine and conversion of acid group in 50 to dimethyl amide gave 51 in 61% yields. Further protection of phenol as its benzyl ethers 52 and reduction $\left(\mathrm{BH}_{3} \cdot \mathrm{THF}\right)$ of amide in 52 gave amine 53 . Deprotection of benzyl ether underwent oxidative cyclization with dianisyltelluriumoxide provided key intermediate 55 for the synthesis of Anachelin (3) (Scheme 14).

Scheme 14: (a) $\mathrm{Boc}_{2} \mathrm{O}$, aq. NaOH , dioxane; (b) BuOCOCl , THF; (c) $\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{2}$; (d) $\mathrm{CsCO}_{3}, \mathrm{BnBr}$, acetone, reflux; (e) $\mathrm{BH}_{3} \cdot \mathrm{THF}$; (16% over three steps starting from 50); (f) $\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2}$ (1 atm), $\mathrm{MeOH}, \mathrm{AcOH}, 99 \%$; (g) dianisyltelluriumoxide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 69 \%$.

Nishida's approach (2005) ${ }^{25}$

This approach utilized Ru-catalyzed ring closing metathesis (RCM) to construct dihydroquinoline core. Wittig olefination of o-Nitro benzaldehyde (56) gave nitrostyrene (57), which was subjected to reduction of nitro group $(\mathrm{Zn} / \mathrm{AcOH})$ to give the corresponding o-aminostyrene 58. Protection of amine in 58 as tosymide $59(\mathrm{TsCl}, \mathrm{Py}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), followed by Mitsunobu reaction with (R)-oct-1-en-3-ol (99\% ee) [DEAD and $\left.\mathrm{PPh}_{3}\right]$ provided the desired α, ω-diene 60 in 78% yield. The diene was subjected to ring closing metathesis (RCM) with Grubbs' catalyst 64 gave the corresponding 1,2dihydroquinoline in 92% yield which was subsequently hydrogenated over Adam's catalyst in MeOH to provide tetrahydroquinoline $\mathbf{6 1}$ in 94% yield and 99.7% ee. Finally detosylation of $\mathbf{6 1}$ to free amine $\mathbf{6 2}$ and subsequent methylation of the free nitrogen gave $(+)-(S)$-angustureine (63) in 80% yield (Scheme 15).

Scheme 15: (a) $\mathrm{Ph}_{3} \mathrm{PMeBr}, \mathrm{KN}(\mathrm{TMS})_{2}$, THF, $25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$; (b) Zn powder, $\mathrm{AcOH}, 25{ }^{\circ} \mathrm{C}$, overnight, 72%; (c) TsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 86 \%$; (d) DEAD, PPh_{3}, THF, 25 ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$; (e) Ru catalyst 64, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.01 \mathrm{M}), 50{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 92 \%$; (f) $\mathrm{PtO}_{2}, \mathrm{H}_{2}, \mathrm{MeOH}$, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 94 \%$; (g) anthracene sodium, DME, $-65^{\circ} \mathrm{C}, 10 \mathrm{~min}, 99 \%$; (h) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF, reflux, $10 \mathrm{~h}, 80 \%$.

Yang's approach (2006) ${ }^{26}$

Yang et al. have reported reductive cyclization of $\mathbf{6 8}$ using H_{2} over Pd / C to give 3-aryl tetrahydroquinoline 69a-c. Condensation of 2-nitrobenzaldehyde (65) with aryl propionitrile 66 and subsequent reduction of double bond with NaBH_{4} provided 67, which was subjected for reduction of nitro derivative with H_{2} over $20 \% \mathrm{Pd} / \mathrm{C}$ and reductive cyclization with cyano group afforded 3-aryltetrahydroquinoline 69a-c in 5773\% yields (Scheme 16).

Scheme 16: (a) $\mathrm{Na}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, 5 \mathrm{~h}$; (b) $\mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{CH}_{3} \mathrm{OH}$; (c) $\mathrm{H}_{2}, 30 \% \mathrm{Pd} / \mathrm{C}, \mathrm{THF}, \mathrm{CH}_{3} \mathrm{OH}$.

1.1.3 Present Work

1.1.3.1 Objective

As can be seen, the reported methods for the literature for the synthesis of tetrahydroquinoline mainly deal with racemic synthesis. Other disadvantages include lengthy synthetic routes, need of protection and deprotection of functional groups, low overall yield and use of expensive reagents. In this context, a more practical and efficient synthesis of functionalized tetrahydroquinoline derivatives is highly desirable. In this section, we describe a novel method for efficient synthesis of tetrahydroquinoline which make use of cobalt catalyzed reduction of cyclic sulphites.

Since this chapter deals with two potentially important reactions [asymmetric dihydroxylation (AD) and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ catalyzed reduction with NaBH_{4}], a brief account of Sharpless Asymmetric dihydroxylation (AD) and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ catalyzed reduction with NaBH_{4} is described as under.

Asymmetric Dihydroxylation (AD)

In recent years, much attention has been focused on the catalytic asymmetric synthesis. It often has significant economic advantages over stoichiometric asymmetric synthesis for industrial-scale production of enantiomerically pure compounds. All these asymmetric reactions crucially depend on ligand acceleration effect (LAE). ${ }^{27}$ Among all these reactions, Sharpless catalytic Asymmetric Dihydroxylation (AD) is one of the most important practical and widely used reaction in organic synthesis. It has become the most general method for the preparation of optically active vicinal-syn-diols from activated as well as inactivated olefins. ${ }^{28}$

Ligand Acceleration $=\frac{\text { Saturation rate with ligand }}{\text { Rate without ligand }}$
Scheme 17: Mechanism of OsO_{4}-catalyzed dihydroxylation of olefin

In 1936, Criegee et al. ${ }^{29}$ have found that addition of pyridine or any other tertiary amine to osmylation of olefins, accelerates the rate of reaction considerably. A major breakthrough has occurred in the field of asymmetric oxidation when Sharpless et al. ${ }^{28 \mathrm{~b}}$ demonstrated that asymmetric induction could be achieved when chiral amines were added to OsO_{4}-mediated asymmetric oxidation of olefins. Among the various ligands screened best results were obtained with ligands which were representatives of the
cinchona alkaloid family, dihydroquinidine (DHQD) and dihydroquinine (DHQ) (Scheme 1). ${ }^{30}$

To improve the \%ee of the chiral diol, the second catalytic cycle of AD should be avoided and this was achieved by employing the $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ as reoxidant and using biphasic conditions (Fig. 2).

Fig. 2: Catalytic cycle for AD using $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ as co-oxidant

These conditions helped in protecting the organic osmate-(VI) monoglycolate ester (species A, Fig. 2) from inopportune oxidation prior to hydrolysis and thereby releasing the diol and ligand to the organic phase and osmium-(VI) to the aqueous phase. Subsequently, osmium-(VI) obtains reoxidized and recycled into the catalytic cycle. Further improvement in the AD was realized by the addition of methyl sulfonamide
$\left(\mathrm{MeSO}_{2} \mathrm{NH}_{2}\right)$ to the reaction mixture. It also helps to accelerate the hydrolysis of the species \mathbf{A}, thus facilitating the dihydroxylation smoothly. Addition of methyl sulfonamide also allowed carrying out the reactions of 1,2-di- tri- and tetra- substituted olefins at $0{ }^{\circ} \mathrm{C}$, which improved the selectivity as well as enantiomeric excess. In order to develop the asymmetric version of the Os-catalyzed AD reaction, Sharpless and coworkers have screened various chiral ligands and found out that the derivatives of cinchona alkaloids gave excellent results. Among all the 250 derivatives of cinchona alkaloid ligands screened, the bis-DHQ 70 or DHQD 71 ethers of phthalazine-1, 4-diol have proven to be the best for obtaining high enantioselective diols ${ }^{31}$ (Fig. 3).

(DHQ) $)_{2}$-PHAL (70)

(DHQD) 2_{2}-PHAL (71)

Fig. 3: Ligands for asymmetric dihydroxylation reaction

Studies have demonstrated the importance of enzyme-like binding pocket of the dimeric cinchona alkaloid for high enantioselectivity of the chiral diols. ${ }^{32}$ Sharpless et al. ${ }^{28}$ have shown that the facial selectivity for both ligands $\mathbf{7 0}$ and $\mathbf{7 1}$ is different, based on their ability to induce the ee into the diols. This observation has led to the development of mnemonic model (Fig. 4) in which olefin with the constraints will be attacked either from the top (i.e. β) face in the presence of dihydroquinidine (DHQD) derivatives or from the bottom (i.e. α) face in the presence of dihydroquinine (DHQ) derived ligand.

Fig. 4: Enantioselectivity mnemonic scheme

Transition metal boride catalyzed reduction

Since the pioneering discovery of nickel-catalyzed hydrogenation by Paul Sabatier, organic chemists have been fascinated with transition metals and their compounds as promoters for other synthetically important reductions. In the last 40 years, metal hydrides, particularly sodium borohydride and lithium aluminum hydride, have emerged as preeminent reducing agents in modern organic chemistry. ${ }^{33}$ These are extraordinarily versatile reagents capable of reducing most functional groups. Moreover by attaching organic ligands at boron or aluminum or changing the metal counter ion, one can modulate the scope, regio and stereoselectivity of such reductions. Literally hundreds of substituted boron and aluminum hydrides have been described in the chemical literature and dozens are now commercially available. ${ }^{34}$

More recently, transition metal salts have been used as catalysts or additives in combination with NaBH_{4} and LiAlH_{4}, to modify or enhance the properties of these reagents. Nearly every conceivable combination of salt and hydride has been investigated with the concomitant development of many useful new synthetic methods. ${ }^{35}$ The resulting systems are complex, however, and in most cases virtually nothing is known about
mechanism or reactive intermediates. Boron and aluminum hydrides may combine with metal halides in several different ways: (1) simple metathesis (e.g., $\mathrm{LiCl}+\mathrm{NaBH}_{4}$, $\mathrm{LiBH}_{4},+\mathrm{NaCl}$), (2) reduction of the metal halide to the metal, (3) conversion of metal halide to metal hydride: (4) some combination of (2) and (3), viz., FeCl_{3}, $+\mathrm{LiBH}_{4}=$ $\mathrm{Fe}\left(\mathrm{BH}_{4}\right)_{2}$, or (5) formation of a boride or aluminide. ${ }^{36}$ Furthermore, it is often unclear whether the metal salt serves a true catalytic function or whether some transient, metalloidal complex formed in situ is the actual reducing agent.

Historically, borides were first produced by the combination of boron with metallic or metalloidal elements less electronegative than itself. For the most part, borides are very hard, high-melting, refractory substances whose structures and stoichiometries do not conform to the ordinary concepts of valence. H. I. Schlessinger discovered a much simpler synthesis in his pioneering work on borohydrides. Combinations of cobalt or nickel (or other metal salts) with aqueous NaBH_{4} deposit finely divided black precipitates of $\mathrm{Co}_{2} \mathrm{~B}$ and $\mathrm{Ni}_{2} \mathrm{~B}$ (eq 1).
$4 \mathrm{NaBH}_{4}+2 \mathrm{CoCl}_{2}+9 \mathrm{H}_{2} \mathrm{O}=\mathrm{Co}_{2} \mathrm{~B}+3 \mathrm{H}_{3} \mathrm{BO}_{3}+4 \mathrm{NaCl}+12.5 \mathrm{H}_{2}$
Because they actively catalyzed the decomposition of borohydride, these borides have been commonly used as a practical, controlled source of hydrogen (eq 2).
$\mathrm{NaBH}_{4}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{NaBO}_{2}+4 \mathrm{H}_{2}$
The actual composition of borides prepared from inorganic salts depends to a great extent on the specific mode of preparation. Maybury, Mitchell, and Hawthorne analyzed nickel and cobalt borides prepared in ethanol under N_{2} using excess NaBH_{4}, and concluded that the stoichiometries $\mathrm{Ni}_{2} \mathrm{~B}$ and $\mathrm{Co}_{2} \mathrm{~B}$ inadequately represented their constitution. ${ }^{37}$

In dimethylformamide (DMF) reduction of CoCl_{2} or $\mathrm{NiC1}_{2}$ with NaBH_{4}, produced dark brown/black solutions ${ }^{38}$ which comprised quite efficient systems for hydrogenation of alkenes, alkynes, azides, nitriles, alkyl halides, nitro compounds, amides, oximes, etc. ${ }^{39}$ Simple reaction procedures and excellent yields of products coupled with high catalytic efficiency makes this method much more impressive and practical.

1.1.3.2 Results and Discussion

(S)-Indole-2-carboxylic acid (72) is a key intermediate in the synthesis of perindopril 73, an orally active pharmaceutical used in the treatment of hypertension ${ }^{40}$ (Fig. 5).

72
(S)-Indole-2-carboxylic acid

73
Perindopril

Fig. 5 : \quad Structures of (S)-indole-2-carboxylic acid and perindopril

In order to synthesize (S)-indole-2-carboxylic acid (72), we visualized a strategy in which simultaneous reduction ${ }^{41}$ of nitro cyclic suphite 76 could probably lead to the cyclized product 72. Thus, o-nitrocinnamate 74, prepared from Wittig-Horner olefination of o nitrobenzaldehyde, was converted to the corresponding nitro diols 75 in 82% yield via Os-catalyzed asymmetric dihydroxylation (AD) using (DHQ) 2_{2}-PHAL as the chiral ligand. The nitro diol 75 was then readily transformed into the corresponding precursor nitro cyclic sulphite $76\left(\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in 95% yield (Scheme 18).

Scheme 18:
$\begin{aligned} & \text { (a) } \mathrm{K}_{2} \mathrm{OsO}_{4}(0.2 \mathrm{~mol} \%),(\mathrm{DHQ})_{2} \text {-PHAL }(1 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6} \text { (3 equiv.), } \\ & \mathrm{K}_{2} \mathrm{CO}_{3}(3 \text { equiv. }), \mathrm{MeSO}_{2} \mathrm{NH}_{2}\left(1 \text { equiv.), tert- } \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1), 25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h},\right. \\ & 82 \% \text {; (b) } \mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \% .\end{aligned}$

In order to validate our hypothesis, nitro cyclic sulphite 76 was then subjected to reduction with 4 equivalents of NaBH_{4} catalyzed by $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Surprisingly, the reaction took altogether a different course to give the cyclized 3hydroxytetrahydroquinoline $\mathbf{7 8}$, in a single step, as the only product in 81% yield, in stead of the expected cyclized ester 77. Under the reaction conditions, it was observed that a simultaneous reduction of multifunctional groups took place, all occurring in a single step (Scheme 19).

Scheme 19: (a) $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%), \mathrm{NaBH}_{4}$ (4 equiv.), $\mathrm{EtOH}, 0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

However, when nitro diol 75 was subjected to reduction under identical conditions, nitro group was unaffected. It was further observed that, nitro functionality was reduced when
nitro diol 75 was converted into its nitro cyclic sulphite 76. Encouraged by the result, we became interested in carrying out the reduction of several nitro cyclic sulphites 82a-e. To start with, the precursors (82a-e) were prepared in three steps starting from the corresponding α, β-unsaturated esters 79a-e. Firstly, 3,4-disubstituted cinnamates 79a-e were prepared in high yields by Wittig olefination of the corresponding benzaldehydes. The Os-catalyzed asymmetric dihydroxylation (AD) of the α, β-unsaturated esters 79a-e using $(\mathrm{DHQ})_{2}$-PHAL as the chiral ligand gave the corresponding chiral diols, 80a-e in $80-95 \%$ yields. Then, nitration of diol 80a-e in acetic acid was carried out to afford nitrodiols 81a-e in low yields, as considerable amount of byproducts were formed. However, when direct aromatic nitration of 80a-e was carried out in biphasic medium $\left(\mathrm{HNO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the corresponding nitro diols 81a-e were formed in good yields with excellent regioselectivity. Nitro diols 81a-e were then readily transformed to the corresponding nitro cyclic sulphites 82a-e $\left(\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in quantitative yields (Scheme 20).

Scheme 20 : (a) $\mathrm{K}_{2} \mathrm{OsO}_{4}(0.1 \mathrm{~mol} \%)$, (DHQ$)_{2}-\mathrm{PHAL}\left(0.5 \mathrm{~mol} \%\right.$), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1 equiv.), tert- $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), $25{ }^{\circ} \mathrm{C}$, 24 h ; (b) conc. HNO_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 30 \mathrm{~min}$.; (c) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

When nitro cyclic sulphites 82a-e were subjected to reduction with 4 equivalents of NaBH_{4} using $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as the catalyst, conditions, we observed that all the nitro cyclic sulphites 82a-e underwent complete reductions to give the corresponding cyclized tetrahydroquinol-3-ol derivatives 83a-e in high yields with excellent enantioselectivity (Scheme 21).

Scheme 21: (a) $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%), \mathrm{NaBH}_{4}$ (4 equiv.), $\mathrm{EtOH}, 0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) (EtCO) ${ }_{2} \mathrm{O}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

The results of reductions are presented in Table 1. As can be seen from Table 1, Cocatalyzed reduction of nitro cyclic sulphites 82a-e clearly provides tetrahydroquinolin-3ol 83a-e in very high yields, which comprises several transformations taking place in a single step.

Table 1: Co-catalyzed synthesis of tetrahydroquinolin-3-ol 83 ${ }^{\text {a }}$

No	Nitro cyclic sulphites	Amino alcohol (83) Yield (\%) ${ }^{\text {b }}$	Ee of 84 (\%) ${ }^{\text {c }}$
1	$\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{H}$ (76)	(78) 82	95
2	$\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{OMe}(82 \mathrm{a})$	(83a) 78	96
3	$\mathrm{R}, \mathrm{R}^{\prime}=-\mathrm{OCH}_{2} \mathrm{O}-(\mathbf{8 2 b})$	(83b) 81	94
4	R, R ' $=\mathrm{OBn}$ (82c)	(83c) 83	94
5	$\mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{OBn}(\mathbf{8 2 d})$	(83d) 85	92
6	$\mathrm{R}=\mathrm{OMe}$,	(83e) 82	94
R' = Ocyclopentyl (82e)			

[^0]Table 1 shows that synthesis of tetrahydroquinolin-3-ol 83a-e can be achieved with a variety of substituted nitro cyclic sulphites 82a-e using cheaply available reagents.

Since the optical purities of the tetrahydroquinol-3-ol derivatives 83a-e could not be established by HPLC due to their difficulty in separation, the protection of amine function in 83a-e as propyl amide (propionic anhydride, $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was carried out to give the respective amido alcohols 84a-e in high yields, which facilitated their easy characterization by HPLC analysis. For example, chiral HPLC chromatogram of 84a showed 95.5\% ee (Fig. 6).

Fig. 6 : HPLC Chromatogram of 84a

Enantiomeric excess of 84a-e was also determined by recording ${ }^{1} \mathrm{H}$ NMR of their Mosher's ester analysis. Thus, free hydroxyl moiety in amido alcohols 84a-e was subjected to esterification (catalytic DMAP, DCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) with Mosher's acid $[(R)$ -3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid] and the resulting Mosher's esters

85a-e were analyzed by ${ }^{1} \mathrm{H}$ NMR to determine their \%ee. For example, ${ }^{1} \mathrm{H}$ NMR spectrum of 84b showed methyl proton signals at $3.48(2.91 \mathrm{H})$ for R isomer ($d r$ 32:1, 94\% ee) (Fig. 7).

Fig. 7: $\quad{ }^{1} H$ NMR spectrum of Mosher's ester 85b

The formation of all the intermediates (79a-e to 82a-e) as well as final products (83a-e) involved were confirmed unambiguously from their corresponding spectral analysis. For example, ${ }^{1} \mathrm{H}$ NMR of the nitro diol 81a showed two typical signals at $\delta 4.51$ (d) and 5.85 (d) due to methine protons (CHOH) and signals at $\delta 7.33$ (s) and 7.65 (s) due to aromatic protons, thus confirming the formation of nitro diol 81a. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed four typical aromatic quaternary carbon signals at δ 132.3, 138.3, 146.6 and 152.1 (Fig. 8).

Fig. 8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of nitrodiol 76a

Next, the formation of the tetrahydroquinolin-3-ol 83a was confirmed by their ${ }^{1} \mathrm{H}$ NMR spectrum, which showed characteristic signals at δ 2.71-2.85 (dd), 2.92-3.02 (dd), 3.21 (m) corresponding to the benzylic methylene $\left(\mathrm{CH}_{2}\right)$ and methylene $\left(\mathrm{CH}_{2} \mathrm{~N}\right)$ protons respectively (Fig. 8). Also signal at $\delta 4.19(\mathrm{~m})$ due to methine proton (CHOH) confirms the formation of 3-hydroxytetrahydroquinoline. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 34.2$ and 47.6 and 63.3 for two methylene carbons $\left(\mathrm{ArCH}_{2}, \mathrm{NCH}_{2}\right)$ and one methine

Fig. 9: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and mass spectra of tetrahydroquinoline 83a
carbon $(\mathbf{C H O H})$ respectively. Disappearance of carbonyl signal in IR and ${ }^{13} \mathrm{C}$ confirms the formation of 3-hydroxyquinoline 83a.

We noticed that nitro functionality plays an important role in CoCl_{2} catalyzed reductions of nitro cyclic sulphites. Controlled experiment showed that nitro group resist for reduction in the absence of cyclic sulphites and cyclic sulphites underwent hydrolysis in absence of nitro group. Co-catalyzed redox interaction took place between cyclic sulphite and nitro (species A) in 76 to give more reactive intermediate (species B). Reductive opening of cyclic sulphate and reduction of nitroso intermediate (species \mathbf{C}) provides possibly α-hydroxy amide (species \mathbf{D}) which was in situ reduced to the tetrahydroquinol-3-ol 83 by the way of coordination of cobalt hydride with hydroxyl moiety (scheme 22).

Scheme 22: Probable mechanistic pathway

1.1.4 Conclusion

In conclusion, we have developed a simple methodology involving a single step multifunctional reduction of cyclic sulphites 82a-e, which gave the corresponding 3hydroxy tetrahydroquinolines 83a-e in high yields. Use of inexpensive, yet powerful
reducing agent NaBH_{4} in combination with catalytic amount of CoCl_{2} makes our synthesis more attractive. This method was found very effective in the asymmetric synthesis of bioactive compounds having tetrahydrquinoline core.

1.1.5 Experimental Section:

A typical experimental procedure for the preparation of (E)-ethyl 3-(2nitrophenyl)acrylate (74):

To the stirred solution of 2-nitrobenzaldehyde ($7.55 \mathrm{~g}, 50 \mathrm{mmol}$) in benzene (100 mL), $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(19.25 \mathrm{~g}, 55 \mathrm{mmol})$ was added. It was then refluxed for 4 h . under N_{2} atmosphere. After the completion of reaction, benzene was distilled out gave crude product. Chromatographic purification of crude product [silica gel (230-400 mesh) and petrolium ether: Ethyl acetate $(90: 10)$ as eluent] afforded the nitro cinnamate 74 in 10.5 g yield.

Yield: 95\%, gum, IR (CHCl_{3}): 756, 857, 974, 1037, 1095, 1184, 1202, 1216, 1251, 1275, 1291, 1319, 1347, 1368, 1393, 1444, 1477, 1573, 1607, 1640, 1716, 2984, 3023, $3415 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.35(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.66(\mathrm{~m}, 3 \mathrm{H}), 8.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=16$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.2,60.7,123.3,124.8,129.0,130.1,133.3,139.7$, 148.3, 165.4; Analysis: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires C 59.63 , H 5.01 , N 6.33 , found C 59.50 , H 4.91, N 6.34\%.

A typical experimental procedure for the preparation of (2R,3S)-ethyl 2,3-dihydroxy-3-(2-nitrophenyl)propanoate (75):

To the stirred solution of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(39.48 \mathrm{~g}, 120 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(16.56 \mathrm{~g}, 120 \mathrm{mmol})$, and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(3.8 \mathrm{~g}, 40 \mathrm{mmol})$ in tert- $\mathrm{BuOH}(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, $(\mathrm{DHQ})_{2^{-}}$ PHAL ($354 \mathrm{mg}, 1 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{OsO}_{4}(19 \mathrm{mg}, 0.2 \mathrm{~mol} \%)$ were added and stirred for 30
min. Then, to the reaction mixture (E)-ethyl 3-(2-nitrophenyl)acrylate (74) (8.84g, 40 mmol) was added and allowed to stir for 24 h at $25^{\circ} \mathrm{C}$. After completion of the reaction, sodium bisulphate $(10 \mathrm{~g})$ was added slowly at $0^{\circ} \mathrm{C}$. The organic layer was separated and aqueous layer was extracted with ethyl acetate ($3 \times 300 \mathrm{ml}$), the combined organic layers were washed with brine ($2 \times 400 \mathrm{~mL}$), dried over unhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification using flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate (60:40) as an eluent afforded 8.37 g pure 75 a .

Yield: $82 \% ;[\alpha]^{\mathrm{D}}{ }_{25}+126.0\left(c\right.$ 1, CHCl_{3}); yellow solid, mp: $86{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right): 668,757$, $860,1055,1108,1216,1263,1347,1527,1733,3020,3485 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.22(\mathrm{bs}, 1 \mathrm{H}), 3.38(\mathrm{bs}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}),, 7.67(\mathrm{t}, J=6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 14.10,62.32,69.77,73.43,124.35,128.44,129.72,133.21,136.24,147.62,172.61$; Analysis for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{6}$ requires C 51.77, H 5.13, N 5.49 ; found C 51.65 , H $5.33, \mathrm{~N}$ 5.54\%.

A typical experimental procedure for the preparation of nitro cyclic sulphite (76a):

To the solution of diol $75 \mathrm{a}(2.55 \mathrm{~g}, 10 \mathrm{mmol})$ and triethylamine $(4.2 \mathrm{ml}, 30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, freshly distilled $\mathrm{SOCl}_{2}(1.0 \mathrm{ml}, 12 \mathrm{mmol})$ was added dropwise under nitrogen atmosphere. It was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes (progress of reaction was monitored by TLC). The reaction mixture was quenched by the addition of cold water (20 $\mathrm{mL})$ and a saturated solution of. $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic extract was
washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product which decomposes on silica.

Yield: 95\%; Gum; IR (CHCl_{3}): 667, 757, 962, 1045, 1217, 1350, 1531, 1610,1747, 2985, 3022, $3519 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.36(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.80(\mathrm{~m}, 3 \mathrm{H})$, 8.13-8.18 (dd, $J=1.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (5 0 ~ M H z , ~} \mathrm{CDCl}_{3}$): $\delta 13.8,62.7,83.1,83.2$, $124.9,129.9,130.9,131.1,134.5,147.6,165.7$.

A typical experimental procedure for the preparation (R)-1,2,3,4-tetrahydroquinolin-3-ol (78a):

To the stirred solution of nitro cyclic sulphite $76 \mathbf{a}(10 \mathrm{mmol})$ and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(23.8 \mathrm{mg}$, $1 \mathrm{~mol} \%)$ in 95% ethanol $(30 \mathrm{~mL}), \mathrm{NaBH}_{4}(24 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and reaction mixture was allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After the completion of reaction, it was poured into ice cold water forms black precipitate. To the aqueous layer ethyl acetate $(100 \mathrm{~mL})$ was added and combined mixture was passed through celite. The organic layer was separated and the aqueous layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine (2 x 50 mL), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product. Chromatographic purification of crude product using flash silica gel (230-400 mesh) and petroleum ether:ethyl acetate: $\mathrm{Et}_{3} \mathrm{~N}(60: 40: 2)$ gave pure 1.22 g of 78a.

Yield: $1.222 \mathrm{~g}, 82 \%$; gum, $[\alpha]^{\mathrm{D}}{ }_{25}+11.2\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 667,756,850,1155$, 1215, 1253, 1278, 1371, 1496, 1608, 1735, 2935, 2983, 3018, $3446 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.73-2.83(\mathrm{dd}, J=3.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.09(\mathrm{dd}, J=3.5,16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19-3.36(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.27(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dt}, J=1.1,7.5$
$\mathrm{Hz}, 1 \mathrm{H}), 6.95-7.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 35.3, 47.6, 63.2, 114.1, 118.0, 118.6, 126.9, 130.4, 143.5; Analysis for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$ requires $\mathrm{C}, 72.46 ; \mathrm{H}, 7.43$; N, 9.39; found C, $72.22 ; \mathrm{H}, 7.21 ; \mathrm{N}, 9.49 \%$.

A general experimental procedure for the preparation of (2R,3S)-ethyl 2,3-dihydroxy-3-(3,4-dialkyloxyphenyl)propanoate 80a-e:

To 500 mL RB flask was charged with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (45 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (45 mmol), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(15 \mathrm{mmol})$, tert- $\mathrm{BuOH}(75 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$. Reaction mixture was stirred for 10 min and $(\mathrm{DHQ})_{2}-\mathrm{PHAL}(1 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{OsO}_{4}(0.2 \mathrm{~mol} \%)$ were added and stirred for additional 30 min . To the reaction mixture 79a was added and allowed to stir for 24 h at $25^{\circ} \mathrm{C}$. After completion of reaction, sodium bisulphate (5 g) was added slowly at $0^{\circ} \mathrm{C}$. Organic layer was separated and aqueous layer was extracted with ethyl acetate ($3 \times 100 \mathrm{ml}$) combined organic layer was washed with brine $(200 \mathrm{~mL})$, dried over sodium sulphate and concentrated under reduced pressure to yield the crude products, Flash column chromatography purification [silica gel (230-400 mesh) and petroleum ether : EtOAc (60:40) as an eluent] afforded 80a-e in pure form.

(2R,3S)-Ethyl 2,3-dihydroxy-3-(3,4-dimethoxyphenyl)propanoate (80a):

Yield: 95%; colorless solid; mp: $78{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+3.533\left(c 1.5, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 848$, 939, 1047, 1240, 1373, 1446, 1517, 1737, 2983, $3500 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.35(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.98(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.8,55.6,55.7,61.7,74.2,74.8,109.4,110.6,118.4,132.4,148.4$, 148.6, 172.6; Analysis for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C, 57.77; H, 6.71; found C, 57.47; H, 6.63\%.

(2R,3S)-Ethyl 3-(benzo[d][1,3]dioxol-6-yl)-2,3-dihydroxypropanoate (80b):

Yield: 92%; colorless solid; mp: $62{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+1.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 846$, 937, 1047, 1244, 1373, 1246, 1745, 2983, $3519 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.91(\mathrm{bs}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.89(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.87(\mathrm{dd}, J=1.5,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.9,61.8,74.32,74.9$, $100.9,106.9,107.8,119.6,133.8,147.1,147.5,172.5$; Analysis for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$ requires C, 56.69; H, 5.55; found C, 56.73 ; H, 5.53\%.
(2R,3S)-Ethyl 3-(4-(benzyloxy)-3-methoxyphenyl)-2,3-dihydroxypropanoate (80c): Yield: 80%; colorless solid; mp: $77{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+1.2\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$: IR $\left(\mathrm{CHCl}_{3}\right): 846,837$, 1049, 1244, 1361, 1479, 1751, 2985, $3519 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.19(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.48(\mathrm{bs}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.87(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-$ $7.43(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 13.8,55.7,61.7,70.7,74.7,74.8,110.0$, 113.4, 118.4, 127.0, 127.6, 128.3, 132.9, 136.8, 147.5, 147.3, 172.5; Analysis for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$ requires C, 65.88; H, 6.40; found, 65.84; H, 6.37%.
(2R,3S)-Ethyl 3-(3,4-bis(benzyloxy)phenyl)-2,3-dihydroxypropanoate (80d):
Yield: 85%; colorless solid; mp: $101{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+0.84\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 848$, $1045,1245,1373,1514,1593,1745,2981,3465 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.48(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 13.9,61.8,71.1,71.1,74.2,74.7,113.3,114.6,119.3$,
127.1, 127.3, 127.6, 127.6, 128.3, 133.2, 137.0, 137.1, 148.5, 148.7, 172.5; Analysis for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{6}$ requires $\mathrm{C}, 71.07 ; \mathrm{H}, 6.20$; found $\mathrm{C}, 71.01 ; \mathrm{H}, 6.17 \%$.
(2R,3S)-Ethyl 3-[4-(cyclopentyloxy)-3-methoxyphenyl]-2,3-dihydroxypropanoate (80e):

Yield: 81%; colorless solid; mp: $105{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+1.50\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 848$, 1045, 1245, 1373, 1514, 1593, 1745, 2981, $3465 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.94(\mathrm{~m}, 8 \mathrm{H}), 2.62(\mathrm{bs}, 1 \mathrm{H}), 3.07(\mathrm{bs}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.74-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.98(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,23.9,32.6,55.8,61.7,74.3,74.9,80.1,111.4,113.2$, 118.5, 132.3, 147.3, 149.59, 172.6; Analysis for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{6}$ requires C, 62.95; H, 7.46; found C, 62.90; H, 7.44\%.

A general experimental procedure for the preparation of (2R,3S)-ethyl 2,3-dihydroxy-3-(4,5-dialkyloxy-2-nitrophenyl) propanoate (81a-e):

To the stirred solution of diol 80a-e (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, conc. $\mathrm{HNO}_{3}(2 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. Reaction mixture was stirred for 30 min . and progress of reaction was monitored by TLC. After completion of reaction, 50 mL of water was added. Organic layer was separated and aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50$ $\mathrm{mL})$. Combined organic layers were washed with brine (50 mL), dried over unhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether:EtOAc $(60: 40)$ as an eluent] gave pure 81a-e in pure form.
(2R,3S)-Ethyl 2,3-dihydroxy-3-(4,5-dimethoxy-2-nitrophenyl)propanoate (81a):

Yield: 70%; yellow solid; mp: $131{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+105.23\left(c 1, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: 787, 848, $937,1049,1240,1371,1747,2985,3460,3640 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 13.3,55.1,55.3,60.1,69.0,72.7,106.1,111.0,132.3,138.3,146.6,152.1$, 171.6; Analysis for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{8}$ requires C, 49.52; H, 5.43; N, 4.44; found C, 49.65; H, 5.23; N, 4.55\%.
(2R,3S)-Ethyl 2,3-dihydroxy-3-(5-nitrobenzo[d][1,3]dioxol-6-yl)propanoate (81b):
Yield: 81%; yellow solid; mp: $138{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+138.5\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 786$, 846, $937,1049,1240,1373,1747,2985,3463,3643 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.14(\mathrm{dd}, J=1.1,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.2,60.0,68.8,72.7,101.9,103.3,108.4,134.8,140.0,145.9,150.8$, 171.3; Analysis for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{8}$ requires C, $48.17 ; \mathrm{H}, 4.38$; N, 4.68; found C, $48.01 ; \mathrm{H}$, 4.23; N, 4.76\%.
(2R,3S)-Ethyl 3-(4,5-bis(benzyloxy)-2-nitrophenyl)-2,3-dihydroxypropanoate (81c): Yield: 73%, yellow solid; mp: $141{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+105.34\left(c 0.8, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 763$, 1132, 1215, 1683, $3388 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $2.84(\mathrm{bs}, 1 \mathrm{H}), 3.19(\mathrm{bs}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}$, $2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.47(\mathrm{~m}, 11 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$): $\delta 12.5,58.9,68.0,68.9,69.1,71.9,108.0,112.7,125.7$, 126.0, 126.3, 126.4, 126.8, 131.9, 134.4, 134.6, 137.7, 145.1, 150.9, 170.6; Analysis for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{8}$ requires $\mathrm{C}, 64.23 ; \mathrm{H}, 5.39 ; \mathrm{N}, 3.00$; found $\mathrm{C}, 64.02 ; \mathrm{H}, 5.49 ; \mathrm{N}, 2.87 \%$.
(2R,3S)-Ethyl 3-(4-(benzyloxy)-5-methoxy-2-nitrophenyl)-2,3-dihydroxypropanoate (81d):

Yield: 75%; yellow solid; mp: $138^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+102.25\left(c 0.8, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right)$: 757, 1215, 1620, 2780, $3400 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.65(\mathrm{bs}, 1 \mathrm{H}), 2.97(\mathrm{bs}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13}$ C NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.7,55.9,61.0,69.5,70.6,73.2,108.9,111.4,127.0$, 127.7, 128.1, 132.8, 135.3, 138.7; Analysis for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{8}$ requires $\mathrm{C}, 58.31 ; \mathrm{H}, 5.41 ; \mathrm{N}$, 3.58; found C, 58.16; H, 5.28 ; N, 3.51\%.
(2R,3S)-Ethyl 3-(4-(cyclopentyloxy)-5-methoxy-2-nitrophenyl)-2,3-dihydroxypropanoate (81e) :

Yield: 81%; yellow solid; mp: $142{ }^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}}{ }_{25}+99.72\left(c 0.8, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 757$, 1215, 1620, $3465 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-$ $2.08(\mathrm{~m}, 10 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.99$ $(\mathrm{m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\right.$ DMSO- d_{6}): $\delta 13.3,23.0,31.6,31.7,55.1,60.2,69.0,72.8,79.7,106.5,113.1,132.0$, 137.8, 147.3, 151.1, 171.7; Analysis for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{8}$ requires C, 55.28; H, 6.28; N, 3.79; found C, 55.12; H, 6.13; N, 3.83\%.

A general experimental procedure for the preparation of (\boldsymbol{R})-1,2,3,4-tetrahydro-6,7-dialkyloxyquinolin-3-ol (83a-e)

To a stirred solution of nitro diol 81a-e $(6.0 \mathrm{mmol})$ and triethylamine $(3.00 \mathrm{ml}, 18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, was added freshly distilled thionyl chloride ($0.5 \mathrm{ml}, 7 \mathrm{mmol}$) dropwise under nitrogen atmosphere at $0^{\circ} \mathrm{C}$ and allowed to stir at $0^{\circ} \mathrm{C}$ for $30-45$ minutes
(monitored by TLC). The reaction mixture was quenched by the addition of cold water $(20 \mathrm{~mL})$ and a saturated solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products 82a-e, which was then subjected for reduction without purification.

To the stirred solution of nitro cyclic sulphite 82a-e (6 mmol) and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%)$ in 95% ethanol $(30 \mathrm{~mL}), \mathrm{NaBH}_{4}(24 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After completion of reaction, it was poured into ice cold water to form black precipitate. To the aqueous layer, 100 mL of ethyl acetate was added and combined mixture was passed through celite. The organic layer was separated and aqueous layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). Combined organic layers were washed with brine ($2 \times 50 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the pure product. Chromatographic purification of the crude product [flash silica gel (230-400 mesh) and petroleum ether:ethyl acetate: $\mathrm{Et}_{3} \mathrm{~N}$ (60:38:2)] gave pure tetrahydroquinolin-3-ol (83a-e) .

(R)-1,2,3,4-Tetrahydro-6,7-dimethoxyquinolin-3-ol (83a):

Yield: 78\%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+25.4$ (c 1.26, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right): 769,1215,1423,1647$, $3456 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.63-2.73(\mathrm{dd}, J=3.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{bs}$, $2 \mathrm{H}), 2.92-3.02(\mathrm{dd}, J=4.3,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 4.15-4.23(m, 1H), $6.12(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.2,47.6$, 55.5, 56.3, 63.3, 99.3, 110.1, 113.9, 137.2, 141.6, 148.0; MS: 209, 194, 176, 166, 148,

133, 120, 103, 91, 77, 65, 44; Analysis for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires C, 63.14; H, 7.23; N, 6.69; found C, 63.09; H, 7.17; N, 6.61\%.
(R)-5,6,7,8-Tetrahydro-[1,3]dioxolo[4,5-g]quinolin-7-ol (83b):

Yield: 81\%; Gum, $[\alpha]^{\mathrm{D}}{ }_{25}+28.2\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 765,1045,1247,1456$, 2985, $3450 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.18(\mathrm{bs}, 2 \mathrm{H}), 2.63-2.73(\mathrm{dd}, J=3.5$, $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.03(\mathrm{dd}, J=3.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.23(\mathrm{dd}, J=1.4,4.3 \mathrm{~Hz}, 2 \mathrm{H})$, 4.17-4.25(m, 1H), $5.82(\mathrm{~s}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 35.1,47.5,63.1,96.4,100.1,109.5,110.1,137.9,139.9$, 146.1; Analysis for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires $\mathrm{C}, 62.17 ; \mathrm{H}, 5.74 ; \mathrm{N}, 7.25$; found $\mathrm{C}, 62.11 ; \mathrm{H}, 5.76 ; \mathrm{N}, 7.21 \%$.
(R)-6,7-Bis(benzyloxy)-1,2,3,4-tetrahydroquinolin-3-ol (83c)

Yield: 83%; Gum, $[\alpha]^{\mathrm{D}}{ }_{25}+30.5\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 767,1217,1504,2927,3016$, $3402 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.74(\mathrm{bs}, 2 \mathrm{H}), 2.60-2.70(\mathrm{dd}, J=3.4,16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89-2.99(\mathrm{dd}, J=4.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.24(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.24(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~s}$, $2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.9,47.5$, $63.4,71.2,73.0,102.2,111.1,119.3,127.2,127.5,127.6,127.6,128.3,128.4,137.3$, 138.4, 141.7, 148.7; Analysis for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires C, 76.43 ; H, 6.41 ; N, 3.88; found C, 76.38; H, 6.37; N, 3.82\%.
(R)-7-(Benzyloxy)-1,2,3,4-tetrahydro-6-methoxyquinolin-3-ol (83d)

Yield: 85%; Gum, $[\alpha]^{\mathrm{D}}{ }_{25}+25.2$ (c $1, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right): 765,1217,1404,2927,3405$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.64(\mathrm{dd}, J=3.8,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.02(\mathrm{dd}, J=$ $4.2,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.18(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.24(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~s}$, $2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.44(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.7$, 47.4, 56.7, 63.2, 70.2, 101.8, 110.8, 114.9, 126.9, 127.4, 128.2, 137.3, 142.3, 147.3;

Analysis for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.56 ; \mathrm{H}, 6.71 ; \mathrm{N}, 4.91$; found $\mathrm{C}, 71.52 ; \mathrm{H}, 6.75$; N , 4.88\%.

(R)-7-(Cyclopentyloxy)-1,2,3,4-tetrahydro-6-methoxyquinolin-3-ol (83e):

Yield: 82\%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+22.2\left(c 1, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) 767,1217,1504,2927,3016$, $3402 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.55-1.83(\mathrm{~m}, 8 \mathrm{H}), 2.62-2.72(\mathrm{dd}, J=4.1$, $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-3.01(\mathrm{dd}, J=3.7,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.23(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 4.16-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.65(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.5,32.3,34.6,47.6,55.5,63.2,81.4,99.7,110.3,119.1,137.7,139.7$, 149.5; Analysis for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, 68.42 ; $\mathrm{H}, 8.04$; N, 5.32; found C, 68.38 ; H , 8.01; N, 5.37\%.

A general experimental procedure for the preparation of amido alcohol (84a-e)

To the stirred solution of tetrahydroquinolin-3-ol (83a-e) (4 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10$ mmol) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, propionic anhydride ($6.5 \mathrm{~mL}, 5 \mathrm{mmol}$) was added at $25^{\circ} \mathrm{C}$. Reaction mixture was stirred for 3 h . Progress of reaction was monitored by TLC and after completion of reaction, saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added. Organic layer was separated; aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. Combined organic layers were washed with brine (2 x 25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude products. Chromatographic purification [silica gel (230-400 mesh) and petroleum ether:ethyl acetate: (60: 40:)] gave amide 84a-e in pure form.

1-[(R)-3,4-Dihydro-3-hydroxy-6,7-dimethoxyquinolin-1(2H)-yl]propan-1-one (84a)

Yield: 82%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+8.69\left(c 1.15, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 846,937,1240,1388$, $1514,1660,1751,2983,3529 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}$,
$3 \mathrm{H}), 2.56(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.78(\mathrm{dd}, J=4.6,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-3.09(\mathrm{dd}, J=5.4$, $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.74-3.95(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.6,27.4,35.0,49.7,55.6,65.0,108.0,111.1,122.4,130.7,146.3$, 174.3; MS: 265, 209, 194, 176, 166, 148, 133, 120, 104, 91, 77, 57, 44; Analysis for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, $63.38 ; \mathrm{H}, 7.22 ; \mathrm{N}, 5.28$; found $\mathrm{C}, 63.43 ; \mathrm{H}, 7.19 ; \mathrm{N}, 5.22 \%$.

1-[(R)-7,8-Dihydro-7-hydroxy-[1,3]dioxolo[4,5-g]quinolin-5(6H)-yl]propan-1-one

 (84b)Yield: 85%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+12.7\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 847,1242,1515,1650,1753$, 2983, $3530 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.66-2.77(\mathrm{dd}, J=4.6,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.02(\mathrm{dd}, J=6.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-$ $4.09(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.9$, $27.3,35.5,49.1,65.9,98.0,108.2,111.5,122.1,131.7,145.2,174.1$; Analysis $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C, $62.64 ; \mathrm{H}, 6.07 ; \mathrm{N}, 5.62$; found $\mathrm{C}, 62.61 ; \mathrm{H}, 6.01 ; \mathrm{N}, 5.55 \%$.

1-[(R)-6,7-Bis(benzyloxy)-3,4-dihydro-3-hydroxyquinolin-1(2H)-yl]propan-1-one

 (84c)Yield: 77%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+15.1\left(c 1, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 847,1242,1515,1650,1753$, 2983, $3530 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2,18(\mathrm{bs}, 1 \mathrm{H})$, $2.46(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.69(\mathrm{dd}, J=4.9,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-3.00(\mathrm{dd}, J=5.6,16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69-3.88(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{bs}, 2 \mathrm{H}), 7.30-$ $7.45(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.5,27.1,35.1,49.2,65.8,71.2,73.0$, $102.2,111.1,119.3,127.2,127.5,127.6,127.6,128.3,128.4,137.3,138.4,141.7,148.7$, 173.2; Analysis for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$ requires C, $74.80 ; \mathrm{H}, 6.52$; $\mathrm{N}, 3.35$; found $\mathrm{C}, 74.82 ; \mathrm{H}$, 6.57; N, 3.31\%.

1-[(R)-6-(Cyclopentyloxy)-3,4-dihydro-3-hydroxy-7-methoxyquinolin-1(2H)-yl]propan-1-one (84e)

Yield: 73%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+15.1$ (c 1, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right): 849,1243,1515,1650$, 1753, 2983, $3530 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.17$1.88(\mathrm{~m}, 8 \mathrm{H}), 2.54(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.74(\mathrm{dd}, J=5.0,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.06$ $(\mathrm{dd}, J=5.3,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.90(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H})$, 6.60 (bs, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.1,23.5,27.5,32.1,35.1,47.1,55.4$, 63.1, 81.3, $99.8,110.1,119.5,137.4,139.2,149.5 ; 172.9$; Analysis for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4}$ requires C, $67.69 ; \mathrm{H}, 7.89 ; \mathrm{N}, 4.39$; found $\mathrm{C}, 67.62 ; \mathrm{H}, 7.82 ; \mathrm{N}, 4.32 \%$.

A general experimental procedure for the preparation of Mosher's ester (85b-e)

To the stirred solution of alcohol (0.1 mmol), DCC ($41 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ Mosher's acid ($26 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After the completion of reaction (monitored by TLC), solvent was distilled under reduced pressure and crude product was purified by column chromatography to give pure 84b-e.
(2R)-(R)-5,6,7,8-Tetrahydro-5-propionyl-[1,3]dioxolo[4,5-g]quinolin-7-yl
3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (85b)

Yield: $35 \mathrm{mg}, 75 \%$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.70(\mathrm{dd}, J=5.0,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.02(\mathrm{dd}, J=5.3,16.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.48(\mathrm{~s}, 3 \mathrm{H}), 3.88-4.10(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H})$, 7.35-7.46 (m, 5H).

Yield: $42 \mathrm{mg}, 66 \%$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.69(\mathrm{dd}, J=4.9,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-3.00(\mathrm{dd}, J=5.6,16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.47(\mathrm{~s}, 2.90 \mathrm{H}), 3.54(\mathrm{~s}, 0.10 \mathrm{H}) 3.69-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}$, $2 \mathrm{H}), 6.68(\mathrm{bs}, 2 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 10 \mathrm{H})$.

(2R)-(R)-6-(Cyclopentyloxy)-1,2,3,4-tetrahydro-7-methoxy-1-propionylquinolin-3-yl

 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (85e)Yield: $39 \mathrm{mg}, 73 \%$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.94$ $(\mathrm{m}, 8 \mathrm{H}), 2.42(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.94(\mathrm{dd}, J=3.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H})$, $3.43(\mathrm{~s}, 2.91 \mathrm{H}), 3.47(\mathrm{~s}, 0.09 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.46(\mathrm{~m}, 5 \mathrm{H})$.

Section 2:

Formal asymmetric synthesis of sumanirole maleate (PNU 95666-E)

1.2.1. Introduction:

Parkinson's disease, a neurodegenetive disease characterized by deteriorating motor function, is brought about by the loss of cells in the brain responsible for synthesizing the neurotransmitter dopamine. L-DOPA (86) is used for the treatment of Parkinson's disease. It may be noted that L-DOPA is converted to dopamine in situ by L-DOPA decarboxylase (Fig. 10).

Fig. 10: \quad Structures of L-DOPA and PNU 95666-E

However, after a period of time, L-DOPA (87) loses its efficiency, requiring additional therapy with dopamine agonists to attempt to re-establish the necessary level of dopamine receptor activation; adverse side effects such as psychiatric disorders are also common with L-DOPA (87). Evidence suggests that it is the activation of D2 receptors in the striatum, an area of the brain associated with motor function that is responsible for drug efficacy. However, currently available dopamine agonist drugs are not selective and possess high affinity for other dopamine receptor subtypes.

Sumanirole maleate (PNU95666-E) (87) is a potent and highly selective agonist at the dopamine D2 receptor subtype and possesses potential as a treatment for Parkinson's disease with greatly diminished side-effect liability. PNU95666-E (87) also showed
better efficiency in treatment for Parkinson's disease in the early stages, possibly preventing the development of response fluctuations seen with long term L-DOPA therapy. ${ }^{42}$

Sumanirole maleate (87) is a novel dopamine receptor agonist with high in vitro and in vivo selectivity for the D2 receptor subtype. It has greater than 200-fold selectivity for the D2 receptor subtype versus the other dopamine receptor subtypes in radioligand binding assays. In cell-based assays, PNU95666-E (87) is a fully efficient agonist, with EC_{50} values between 17 and 75 nM .

1.2.2 Review of literature

Literature search revealed that there are very few reports available for the synthesis of Sumanirole maleate (87) which are described below. ${ }^{43-45}$

Moon's Approach (1992) ${ }^{43}$

Moon et al. have reported catalytic hydrogenation $\left(\mathrm{PtO}_{2}\right)$ of 3-amidoquinoline 89 followed by amine protection provided diamidotetrahydroquinoline 90. Aromatic nitration at ortho position was achieved in two steps; para bromination of amino tetrahydroquinoline $\mathbf{9 0}$ to give bromo tetrahydroquinoline $\mathbf{9 1}$ followed by ortho nitration gave nitro tetrahydroquinoline 92 in good yield. Acidic hydrolysis of amide 92 to diamine 93 followed by alkylation (${ }^{n} \mathrm{PrI}$) of primary amine gave N, N-dipropylamino tetrahydroquinoline 94 . Reduction $\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right)$ of nitro group in 94 led to diamine 95 followed by reaction with $1,1^{\prime}$-carbonyldiimidazole provided racemic 96 in 83% yield (Scheme 23).

Scheme 23: (a) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{Ac}_{2} \mathrm{O}$, THF, $0^{\circ} \mathrm{C}$, $15 \mathrm{~min}, 84 \%$; (b) PtO_{2} ($10 \mathrm{~mol} \%$), $\mathrm{H}_{2}(50 \mathrm{lb}), \mathrm{AcOH}, 25$ ${ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 69 \%$; (c) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{Ac}_{2} \mathrm{O}$, THF, $0{ }^{\circ} \mathrm{C}$, $15 \mathrm{~min}, 84 \%$; (d) $\mathrm{Br}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{AcOH}, 25$ ${ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 86 \%$; (e) NaNO_{2}, TFA, $25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 74 \%$; (f) $\mathrm{EtOH}, \mathrm{HCl}$, reflux, $1 \mathrm{~h}, 86 \%$; (g) ${ }^{n} \operatorname{PrI}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, DMF, $100{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 65 \%$; (h) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 18 \mathrm{~h}$; (i) 1,1’carbonyldiimidazole, DMF, $100^{\circ} \mathrm{C}, 1 \mathrm{~h}, 83 \%$ for two steps.

Romero's approach (1997) ${ }^{44}$

Romero et al. have reported the synthesis of PNU 95666-E (87) by making use of Dphenylalanine (97) as chiral starting material. Protection of amine as its carbamate in 97 followed by amidation of acid moiety provided 98 in 61% yield. Bis(trifluoroacetoxy)iodobenzene/TFA mediated oxidative cyclization of 98 afforded lactum 99 in 85% yield. $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ reduction of lactum 99 gave 3-methylaminotetrahydriquinoline $\mathbf{1 0 0}$, which was then subjected to selective protection of methyl amine to its benzyl carbamate 101 in 65% yield. Free amine group in 101 was converted to methoxyamine urea derivative $102\left(\mathrm{COCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeONH}_{2}\right.$ in THF) and subsequent
oxidative cyclization provided benzo-fused urea 103 in 78% yields. Finally, deprotection of benzyl carbamate and $\mathrm{N}-\mathrm{OMe}$ in $103\left[\mathrm{H}_{2}(50 \mathrm{psi}), 20 \% \mathrm{Pd}(\mathrm{OH})_{2}\right]$ was achieved to give PNU 95666E (87) in 84\% (Scheme 24).

103

Scheme 24: (a) $\mathrm{ClCO}_{2} \mathrm{OMe}$, aq. $\mathrm{NaOH}, \mathrm{THF},-15-25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) $\mathrm{NH}_{2} \mathrm{OMe}, \mathrm{EDC}, 25^{\circ} \mathrm{C}, 22 \mathrm{~h}, 61 \%$ over two steps; (c) $\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (d) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, THF, $80^{\circ} \mathrm{C}, 22 \mathrm{~h}$; (e) N-(benzyloxycarbonyloxy)succinimide, Toluene, $-40^{\circ} \mathrm{C}, 30 \mathrm{~min}$. 65% over two steps; (f) $\mathrm{COCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{MeONH}_{2}, \mathrm{Et}_{3} \mathrm{~N}, 25^{\circ} \mathrm{C}, 48 \mathrm{~h}$; (g) $\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}, \mathrm{CHCl}_{3}, 0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$ over two steps; (h) $\mathrm{H}_{2}(50 \mathrm{ps}), 20 \%$ $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{EtOH}, 19 \mathrm{~h}, 84 \%$.

Hulin's approach (2004) ${ }^{45}$

Hulin et al. have used chiral tetraalkylammonium salt 108 as chiral PTC catalyst for asymmetric alkylation of N-(diphenylmethylene)glycine tert-butyl ester 104 with 2nitrobenzyl bromide (105) to provide imine 106, which on catalytic hydrogenation [10\% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm})$ and MeOH$]$ provided (R)-3-amino-3,4-dihydroquinolin-2-one (107) in 65\% yield (Scheme 25).

104

105

106

107

108

Scheme 25: (a) Chiral PTC 108 ($7 \mathrm{~mol} \%$) $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}, 12 \mathrm{~h}, 92 \%$; (b) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (1atm), $\mathrm{MeOH}, 2 \mathrm{M} \mathrm{HCl}, 65 \%$.

1.2.3 Present work

1.2.3.1 Objective

Literature search reveals that only three strategies namely chiral pool, asymmetric alkylation and resolution of racemates are available for the synthesis of sumanirole maleate, PNU95666-E (87). In section I of this Chapter, we have described a short and efficient synthesis of tetrahydroquinolin-3-ol (78a). In continuation of the work on Cocatalyzed reduction of nitro cyclic sulphite, a formal synthesis of sumanirole maleate, PNU95666-E (87) is described in this section.

Retrosynthetic analysis reveals that, for the synthesis of PNU95666-E (87), (R)-tetrahydro- N-methylquinolin-3-amine (109) turns out to be the key intermediate, which could be easily prepared from (S)- tetrahydroquinolin-3-ol (78b). We further visualized that amino alcohol 78b could be prepared from Co-catalyzed reduction of nitro cyclic sulphite 76b. The precursor nitro cyclic sulphite $\mathbf{7 6 b}$ could be obtained from nitro diol

75b, which is realizable from asymmetric dihydroxylation (AD) of nitro cinnamate 74 (Scheme 26).

Scheme 26: Retrosynthetic analysis of PNU95666-E (87)

1.2.3.2 Results and Discussion:

The present synthetic route employed for the synthesis of PNU95666-E is shown in Scheme 27. Unsaturated nitro esters 74, prepared from Wittig olefination of the corresponding nitrobenzaldehyde was converted to the corresponding diol $\mathbf{7 5 b}$ in 82% yield via Os-catalyzed asymmetric dihydroxylation using (DHQD) $)_{2}$-PHAL as the chiral ligand. The diol 75b was readily transformed into the corresponding nitro cyclic sulphite $76 \mathbf{b}\left(\mathrm{SOCl}_{2}\right.$ and $\mathrm{Et}_{3} \mathrm{~N}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in 95% yield.

114
94% ee

PNU96665-E

Scheme 27:
(a) $\mathrm{K}_{2} \mathrm{OsO}_{4}(0.2 \mathrm{~mol} \%)$, (DHQD$)_{2}-\mathrm{PHAL}(1 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1 equiv.), tert- $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), $25{ }^{\circ} \mathrm{C}$, $24 \mathrm{~h}, 82 \%$; (b) SOCl_{2}, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (c) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%), \mathrm{NaBH}_{4}, \mathrm{EtOH}, 0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}$, 81%; (d) $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (e) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 92 \%$ over two steps; (f) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (g) NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 16 \mathrm{~h}, 93 \%$ over two steps; (h) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (i) $\mathrm{HCHO}, \mathrm{MgSO}_{4}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (j) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (1atm), $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 78 \%$.

Nitro cyclic sulphite $\mathbf{7 6 b}$ was then subjected to one-pot reduction using CoCl_{2} ($1 \mathrm{~mol} \%$) and 4 equivalents of NaBH_{4} to give tetrahydroquinolin-3-ol 78b, in 81% yield. Formation of 78b was confirmed by spectral data. For example, ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 8 b}$ showed typical signals at $\delta 2.78$ (dd) and 3.04 (dd) corresponding to benzylic methylene protons.

Also signals at $\delta 3.21(\mathrm{~m})$ and $4.22(\mathrm{~m})$ correspond to methylene $\left(\mathrm{N}-\mathrm{CH}_{2}\right)$ and methine
(CHOH) protons respectively. Its ${ }^{13} \mathrm{C}$ NMR showed two methylene and one methine $(\mathbf{C H O H})$ carbon signals typically at $\delta 35.4,47.6$ and 63.3 respectively (Fig. 11).

Fig. 11: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of amino alcohol 78b

Initially, amine function in 78b was protected as tert-butyl carbamate 110a [(tert$\mathrm{BuOCO})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$], followed by protection of the free hydroxyl group as its mesylate 111a $\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. However, nucleophilic displacement of mesylate 111a with azide anion under various conditions failed to give the required azido
product probably due to interference shown by the bulky nature of tert-butyl group. We observed that protection of amine 78b as its amide $\mathbf{1 1 1 b}[\mathrm{EtCO})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$] was found to be useful in subsequent steps, as described below. At this stage, enantiomeric excess of 110b was determined by Mosher's ester analysis. Thus, free hydroxyl moiety in amido alcohol 110b was subjected to esterification (catalytic DMAP, DCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) with Mosher's acid [(R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid] and the resulting Mosher's ester 115 was analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum and enantiomeric excess was found to be 94 \% (Fig. 12).

Fig. 12: ${ }^{1}$ H NMR spectrum of Mosher's ester 115

Alcohol 110b was then mesylated to give mesylate 111b which was subjected to nucleophilic displacement with azide anion giving azide 112 in 93% yield. Presence of azide functionality was confirmed from IR spectroscopy, which showed strong absorption band at $2106 \mathrm{~cm}^{-1}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a typical signals at $\delta 3.77$ (m) due to the methine proton $\left(\mathrm{CHN}_{3}\right)$ confirming the formation of azide 112(Fig. 13).

Fig. 13: ${ }^{1} \mathbf{H},{ }^{13} \mathrm{C}$ NMR and IR spectra of 3-azidotetrahydroquinoline 112

Its ${ }^{13} \mathrm{C}$ NMR spectrum showed methine $\left(\mathrm{CHN}_{3}\right)$ and carbonyl carbon signals at $\delta 46.4$ and 173.5 respectively (Fig. 13). Reduction of azide moiety in $112\left[10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm})\right.$ in $\mathrm{CH}_{3} \mathrm{OH}$] gave 3-amino-tetrahydroquinoline 113 , which was transformed into the corresponding imine ($40 \% \mathrm{HCHO}, \mathrm{MgSO}_{4}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) in situ, subsequent reduction of which $\left[10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm})\right]$ provided N-methyl amine 114 in 78% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a typical signal at $\delta 2.91$ due to amino methyl proton $\left(N-\mathrm{CH}_{3}\right)$.

Fig. 12: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra of tetrahydroquinoline methyl amine 114

Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical carbon signals at $\delta 38.1,42.4$ and 54.0 corresponding to the amino methyl $\left(\mathrm{N}-\mathrm{CH}_{3}\right)$, methylene $\left(\mathrm{N}-\mathrm{CH}_{2}\right)$ and methine $(\mathrm{N}-\mathrm{CH})$
carbons respectively. Also signals for carbonyl carbon signal was observed at $\delta 174.7$ (Fig. 14).

Further, synthesis of PNU95666-E (87) from 114 has been reported in the literature. ${ }^{34}$

1.2.4 Conclusion

In conclusion, we have achieved the formal synthesis of PNU 95666-E (87), which was obtained in 13% overall yield and 94% ee. We have successfully applied asymmetric dihydroxylation and Co-catalyzed multifunctional reduction as key steps for the synthesis of PNU 95666-E (87).

1.2.5 Experimental section

A typical experimental procedure for the preparation of (2S,3R)-ethyl 2,3-dihydroxy-3-(2-nitrophenyl)propanoate (75b):

To 500 mL RB flask were added, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(39.48 \mathrm{~g}, 120 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(16.56 \mathrm{~g}, 120$ $\mathrm{mmol}), \mathrm{MeSO}_{2} \mathrm{NH}_{2}(3.8 \mathrm{~g}, 40 \mathrm{mmol})$, tert- $\mathrm{BuOH}(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. Reaction mixture was stirred for 10 min and (DHQD) $)_{2}$-PHAL ($1 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{OsO}_{4}(0.2 \mathrm{~mol} \%)$ were added and stirred for additional 30 min . To the reaction mixture (E)-ethyl 3-(2nitrophenyl)acrylate (109) (8.84g, 40 mmol$)$ was added and allowed to stir for 24 h at 25 ${ }^{\circ} \mathrm{C}$. After completion of reaction, sodium bisulphate $(10 \mathrm{~g})$ was added slowly at $0^{\circ} \mathrm{C}$. The organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 300 ml), combined organic layers were washed with brine ($2 \times 400 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product [flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate $(60: 40)$ as an eluent] afforded 8.37 g pure $\mathbf{7 5 b}$.

Yield: $82 \% ;[\alpha]^{\mathrm{D}}{ }_{25}-126.0\left(с 1, \mathrm{CHCl}_{3}\right)$; yellow solid, mp: $86{ }^{\circ} \mathrm{C} ; \%$, IR $\left(\mathrm{CHCl}_{3}\right): 668$, $757,860,1055,1108,1216,1263,1347,1527,1733,3020,3485 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.22(\mathrm{bs}, 1 \mathrm{H}), 3.38(\mathrm{bs}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}),, 7.67(\mathrm{t}, J$ $=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): \delta$ 14.1, $62.3,69.7,73.4,124.3,128.4,129.7,133.2,136.2,147.6,172.6$; Analysis for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{6}$ requires C 51.77 , H 5.13, N 5.49 ; found C 51.65 , H 5.33, N 5.54%.

A typical experimental procedure for the preparation of nitro cyclic sulphite (76b):

To the stirred solution of nitro diol $75(2.55 \mathrm{~g}, 10 \mathrm{mmol})$ and triethylamine $(4.2 \mathrm{ml}, 30$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added freshly distilled $\mathrm{SOCl}_{2}(1.0 \mathrm{ml}, 12 \mathrm{mmol})$ drop-wise under nitrogen atmosphere. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes (progress of reaction was monitored by TLC). The reaction mixture was quenched by the addition of cold water $(20 \mathrm{ml})$ and a saturated solution of $\mathrm{NaHCO}_{3}(20$ $\mathrm{ml})$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30$ $\mathrm{mL})$. The combined organic extract was washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, crude cyclic sulphite 76b which shows decomposition on silica. It was directly subjected for reduction.

Yield: 95\%: Gum; IR (CHCl_{3}): 667, 757, 962, 1045, 1217, 1350, 1531, 1610,1747, 2985, 3022, $3519 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.36(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.80(\mathrm{~m}, 3 \mathrm{H})$, 8.13-8.18 (dd, $J=1.2,7.9 \mathrm{~Hz}$); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,62.7,83.1,83.2$, $124.9,129.9,130.9,131.1,134.5,147.6,165.7 \%$.

A typical experimental procedure for the preparation (S)-1,2,3,4-tetrahydroquinolin-3-ol (78b):

To the stirred solution of nitro cyclic sulphite $76 \mathbf{b}(10 \mathrm{mmol}), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(23.8 \mathrm{mg}, 1$ $\mathrm{mol} \%$) and 95% ethanol $(30 \mathrm{~mL}), \mathrm{NaBH}_{4}(24 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After completion of reaction, reaction mixture was poured into ice cold water forms black precipitate. To the aqueous layer 100 mL of ethyl acetate was added and combined mixture was passed through celite. The organic layer was separated and aqueous layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). Combined organic layers were washed with brine ($2 \times 50 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: $\mathrm{Et}_{3} \mathrm{~N}$ (60: 40:2)] gave 1.22 g of $\mathbf{7 8 b}$ in pure form.

Yield: $1.22 \mathrm{~g}, 82 \% ;[\alpha]^{\mathrm{D}}{ }_{25}-20.86\left(c 1, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 656,1215,1510,1637$, 3018, $3390 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.73-2.83(\mathrm{dd}, J=3.5,16.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99-3.09 (dd, $J=3.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.36(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.27(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dt}, \mathrm{J}=1.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): \delta 35.3$, 47.6, 63.2, 114.1, 118.0, 118.6, 126.9, 130.4, 143.5; Analysis for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$ requires C, 72.46; H, 7.43; N, 9.39; found C, 72.42; H, 7.40; N, 9.44\%.

A typical experimental procedure for the preparation of (S)-tert-butyl 3,4-dihydro-

3-hydroxyquinoline-1(2H)-carboxylate(110a):

To the stirred solution of tetrahydroquinolin-3-ol (112) (745 mg, 5 mmol) and triethylamine $(1.3 \mathrm{~mL}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, was added $(\mathrm{Boc})_{2} \mathrm{O}(1.530 \mathrm{~g}, 7$ mmol) at $25^{\circ} \mathrm{C}$ and allowed to stir for 6 h . Progress of reaction was monitored by TLC and after completion of reaction, a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added. The organic layer was separated; the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$.

Combined organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude products. Chromatographic purification of crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: (60: 40:) as eluent] gave 1.120 g of 110a in pure form.

Yield $1.120 \mathrm{~g}, 90 \% ;[\alpha]^{\mathrm{D}}{ }_{25}-1.5$ (c $1.4, \mathrm{CHCl}_{3}$); Gum; IR $\left(\mathrm{CHCl}_{3}\right): 761,1051,1245$, 1755, 2358, $3463 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.85-2.96(\mathrm{dd}, J=$ $6.5,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.18(\mathrm{dd}, J=5.4,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.52(\mathrm{~m}, 2 \mathrm{H}), 4.98-5.04(\mathrm{~m}$, $1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 27.4,31.9,44.5,68.8,81.8,113.9,117.3,126.8,129.5,143.2,152.7 ;$ Analysis for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{C}, 67.45 ; \mathrm{H}, 7.68 ; \mathrm{N}, 5.62$; found $\mathrm{C}, 67.32 ; \mathrm{H}, 7.52 ; \mathrm{N}$, 5.56\%.

A typical experimental procedure for the preparation of 1-[(S)-3,4-dihydro-3-

 hydroxyquinolin-1(2H)-yl]propan-1-one (110b):To the stirred solution of tetrahydroquinolin-3-ol (112) $(0.74 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.3$ $\mathrm{mL}, 10 \mathrm{mmol}$) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, propionic anhydride ($7 \mathrm{mmol}, 0.9 \mathrm{~mL}$) was added at $25^{\circ} \mathrm{C}$. Reaction mixture was stirred for 3 h . Progress of the reaction was monitored by TLC and after the completion of reaction, a saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added. The organic layer was separated; the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petroleum ether:ethyl acetate: (60: 40:)] gave 944 mg of pure amide 110b.

Yield: $944 \mathrm{mg}, 92 \% ;[\alpha]^{\mathrm{D}}{ }_{25}-1.20\left(c\right.$ 1.4, $\left.\mathrm{CHCl}_{3}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 761,1051,1245,1755$, 2358, $3463 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.55(\mathrm{q}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.85(\mathrm{dd}, J=4.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-3.13(\mathrm{dd}, J=5.7,16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76-3.85(\mathrm{dd}, J=4.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-4.00(\mathrm{dd}, J=4.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H})$, 7.10-7.23 (m, 4H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 9.9,27.4,35.7,49.8,65.7,124.2$, 125.4, 125.9, 129.3, 129.7, 138.5; Analysis for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C, 70.22; $\mathrm{H}, 7.37$; N, 6.82; found C, 70.07; H, 7.24; N, 6.83\%.

A typical experimental procedure for the preparation of (S)-1,2,3,4-tetrahydro-1-propionylquinolin-3-yl methanesulfonate (111a-b):

To the stirred solution of amide $(0.82 \mathrm{~g}, 4 \mathrm{mmol})$ and triethylamine $(1.3 \mathrm{~mL}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, was added mesyl chloride $(5 \mathrm{mmol}, 0.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. It was then stirred for 15 min . After completion of the reaction (monitored by TLC), a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with ($2 \times 50 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$). The combined organic layers were washed with brine $(2 \times 25 \mathrm{~mL})$, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product.

A typical experimental procedure for the preparation of 1-[(R)-3-azido-3,4-dihydroquinolin-1(2H)-yl]propan-1-one (112):

To the stirred solution of mesylate $\mathbf{1 1 1 b}(4 \mathrm{mmol})$ in dry DMF $(10 \mathrm{~mL}), \mathrm{NaN}_{3}(650 \mathrm{mg}$, 10 mmol) was added. Reaction mixture was stirred for 16 h at $80^{\circ} \mathrm{C}$. After completion of reaction (monitored by TLC), it was poured into 50 mL of ice cold water and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine (2 x 25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give
the crude product 112. Chromatographic purification of crude product using flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate: (70: 30:) gave pure 855 mg azide 112.

Yield: 93\%; gum, $[\alpha]^{\mathrm{D}}{ }_{25}-61.25$ (c 1.1, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right): 752,1222,1517,1652$, $2106 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.53(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.79-2.90(\mathrm{dd}, J=5.8,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-3.16(\mathrm{dd}, J=6.6,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.81$ $(\mathrm{m}, 2 \mathrm{H}), 4.00-4.13(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.26(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 9.4, 27.4, $32.4,46.4,56.4,124.2,125.5,126.6,128.3,129.0,138.4,173.5$; Analysis for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ requires C, $62.59 ; \mathrm{H}, 6.13 ; \mathrm{N}, 24.33$; found $\mathrm{C}, 62.51 ; \mathrm{H}, 6.17 ; \mathrm{N}, 24.28 \%$.

A typical experimental procedure for the preparation of 1-[(R)-3-amino-3,4-dihydroquinolin-1(2H)-yl]propan-1-one (113):

To the solution of azide ($460 \mathrm{mg}, 2 \mathrm{mmol}$) in methanol $(10 \mathrm{~mL}), 40 \mathrm{mg}(10 \% \mathrm{Pd} / \mathrm{C})$ was added. Resulting reaction mixture was stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 12 h . After completion of reaction (monitored by TLC), it was filtered through celite and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product using flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate: $\mathrm{Et}_{3} \mathrm{~N}$ (50:45:5) gave pure amine 113.

Yield: 95\%; gum, $[\alpha]^{\mathrm{D}} 25-13.33$ (c 1.8, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right): 759,1020,1215,1510$, 1652, 1747, 3018, $3394 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $2.54(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.47(\mathrm{~m}, 2 \mathrm{H}), 4.00-4.18(\mathrm{~m}, 1 \mathrm{H}), 6.95-$ $7.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.6,29.5,32.4,41.68,45.1,114.1,117.7$, 118.2, 126.9, 130.2, 143.2, 173.4; Analysis for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires C, 70.56; H, 7.90; N, 13.71; found C, 70.42; H, 7.99; N, 13.78\%.

A typical experimental procedure for the preparation of 1-(3,4-dihydro-3-(methylamino)quinolin-1(2H)-yl)propan-1-one (114):

To the stirred solution of amine 113 and $40 \% \mathrm{HCHO}(1 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, anhydrous MgSO_{4} was added. Reaction mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$ and then MgSO_{4} was filtered and washed with additional 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated under reduced pressure gave crude imine. To the solution of crude imine in ethyl acetate (10 $\mathrm{mL}), 10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ was added. Resulting reaction mixture was stirred under $\mathrm{H}_{2}(1$ atm) for 5 h . After the completion of reaction (monitored by TLC), it was filtered through celite and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: $\left.\mathrm{Et}_{3} \mathrm{~N}(50: 45: 5)\right]$ gave pure methylamine 114.

Yield: 78\%; gum, $[\alpha]^{\mathrm{D}}{ }_{25}-57.9\left(c 1, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 761,1025,1210,1510,1652$, 1752, $3029 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.53 \quad(\mathrm{q}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.96(\mathrm{dd}, J=4.5,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-$ $4.26(\mathrm{dd}, J=4.5,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-4.29(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right): \delta 10.9,30.5,34.5,40.0,44.4,56.0,112.6,118.5,121.3,128.7$, 130.8, 147.2,176.6; Analysis for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.53 ; \mathrm{H}, 8.31 ; \mathrm{N}, 12.83$; found C, 71.51; H, 8.25; N, 12.77\%.

Section III

Asymmetric synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones

1.3.1 Introduction

Although excellent diuretics and ACE inhibitors are available for the treatment of congestive heart failures, the only current approach that relies on the stimulation of cardiac contractility is the use of cardiac glycosides with a variety of therapeutic limitations. 1-[(S)-3-(Dimethylamino)-6,7-dimethoxytetrahydroquinoline alkanones (116117) have recently been identified as potentially interesting positive inotropic agents (Fig 12). ${ }^{46}$

116, $\mathrm{R}=\mathrm{COEt}$
117, $\mathrm{R}=\mathrm{COPr}^{i}$
Fig. 12: Structures of positive inotropic agents
116 and 117

1.3.2 Review of literature

Literature search revealed that there is only one report available for the synthesis of 1-[(S)-3-(Dimethylamino)-6,7-dimethoxytetrahydroquinoline derivatives (116-117), which is described below.

Vecchietti's Approach (1994) ${ }^{46}$

Vecchietti et al. have reported racemic synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones (116-117). Diethyl 2-[(3,4dimethoxyphenylamino)methylene]malonate 119, obtained by the condensation of
ethoxymethylene malonate with 3,4-dimethoxyaniline (118), was cyclized $\left(\mathrm{POCl}_{3}\right.$ and DMF) to give chloro tetrahydroquinoline derivative 120. Subsequent dechlorination (10\% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ and AcOH) was achieved to give quinoline derivative 121. This was subjected to Curtius rearrangement of $\mathbf{1 2 1}$ via hydrazine amide 122 to provide 3-aminoquionoline 123 in good yields. Subsequently, reductive amination of $123(\mathrm{HCHO}$ and HCOOH$)$ gave 124, which was subjected to ionic hydrogenation under high pressure $\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right.$ and $\mathrm{AcOH})$ to give N, N-dimethyl amino tetrahydroquinoline 125. Finally, acylation of amine in 126 (acyl chloride and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) furnished amides 116-117 in good yields (Scheme 24).

Scheme : 25
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}=\mathrm{C}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$, heat,; (b) $\mathrm{POCl}_{3} / \mathrm{PCl}_{5}$; (c) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, acetic acid; (d) $\mathrm{NH}, \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$; (e) NaNO_{2}; (f) $\mathrm{HCHO} / \mathrm{HCOOH}$; (g) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, acetic acid, 80%; (h) acyl chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

In another approach, the same authors have described the asymmetric synthesis of diamine intermediate 125 starting from chiral starting material. $N-\mathrm{Cbz}$ protected $\mathrm{L}-$ DOPA derivative 126 was esterified to give methyl ester 127, which was regioselectively nitrated (conc. HNO_{3} and AcOH) to give nitro derivative 128. Nitro ester 128 was reduced $\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(4 \mathrm{~atm})\right.$ and AcOH$)$ to give (S)-3-amino-3,4-dihydro-6,7-dimethoxyquinolin- $2(1 \mathrm{H}$)-one 129, on reductive amination $(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCHO}$ and $\mathrm{MeOH})$ gave N, N-dimethylamino quinolin-2-one 130. Finally, LiAlH_{4} reduction of $\mathbf{1 3 0}$ gave very low yield of 3-(N, N-dimethylamino)quinoline 125 in 28\% (Scheme 26).

Scheme:26 (a) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{K}_{2}, \mathrm{CO}_{3}$, acetone, $60^{\circ} \mathrm{C}, 6 \mathrm{~h}, 73 \%$; (b) $\mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 15{ }^{\circ} \mathrm{C}, 3 \mathrm{~h} 76 \%$; (c) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(4 \mathrm{~atm}), \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 91 \%$; (d) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCHO}, 2 \mathrm{~N} \mathrm{HCl}, \mathrm{Et}_{2} \mathrm{O}, 40-50{ }^{\circ} \mathrm{C}$, 90%; (e) LiAlH_{4}, DME, reflux, $24 \mathrm{~h}, 28 \%$.

1.3.3 Present work

1.3.3.1 Objective

Review of literature reveals that only one report is available for the synthesis of 1-[(S)-3-(dimethylamino)3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones
(116-117). However, use of chiral starting material as well as the need to have several protecting groups in the synthesis make the existing method uneconomical. In section I of this Chapter, we have described an elegant method for the synthesis of 3-hydroxy tetrahydroquinoline derivatives 83a-e. In continuation of the work on Co-catalyzed
reduction of nitro cyclic sulphites, we describe a short synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones (116-117) in this section.

1.3.3.2 Results and Discussion

A general synthetic scheme for the synthesis of 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin- $1(2 \mathrm{H})$-yl]alkanones (116-117) is shown in Scheme 27. The synthetic route for the tetrahydroquinolin-3-ol 83a has been described in Section I. Amine function in 83a was protected as its amides $\mathbf{1 3 1 - 1 3 2}\left[\mathrm{RCOCl}\right.$ or $(\mathrm{RCO})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$] in $>90 \%$ yields.

83a

131, $\mathrm{R}=$ COEt, 95.5% ee
132, $\mathrm{R}=\mathrm{COPr}^{i}$,

133, $\mathrm{R}=\mathrm{COEt}$,
$134 \mathrm{R}=\mathrm{COPr}^{i}$,

Scheme : 27
(a) $(\mathrm{RCO})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 91 \%$; (b) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (c) NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$ over two steps; (d) H_{2} (1 atm) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$, 12 h ; (e) $\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 73 \%$ over two steps.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3 1}$ showed two typical proton signals at $\delta 1.18$ and 2.56 corresponding to the methyl $\left(\mathrm{CH}_{3}\right)$ and methylene $\left(\mathrm{CH}_{2}\right)$ protons respectively. Also proton signals for benzylic methylene $\left(\mathrm{ArCH}_{2}\right)$, aminomethylene $\left(N-\mathrm{CH}_{2}\right)$ and methine
(CHOH) protons have appeared at $\delta 2.73(\mathrm{dd}), 3.03(\mathrm{dd}), 3.74-4.00(\mathrm{~m})$ and $4.32(\mathrm{~m})$ respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic carbon signals at $\delta 8.67$ and 55.64 due to the methyl $\left(\mathrm{CH}_{3}\right)$ and methylene carbons $\left(\mathrm{CH}_{2}\right)$ of ethyl group. Also carbonyl signal at $\delta 174.3$ confirms the formation of amide carbonyl group (Fig. 13).

Fig. 13: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of alcohol 131

Enantiomeric excess of chiral alcohol 131 was determined by chiral HPLC and found to be 95.5%. Free hydroxyl moiety in 131-132 was then protected as its mesylate 133-134 ($\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) followed by its displacement with azide anion $\left(\mathrm{NaN}_{3}, \mathrm{DMF}\right)$ to
give azido quinolines $\mathbf{1 3 5}-136$ in $90-91 \%$ yields. The ${ }^{1} \mathrm{H}$ NMR spectrum of azide 135 showed a typical signal at $\delta 3.77$ due to methine $\left(\mathrm{CHN}_{3}\right)$ proton. Its ${ }^{13} \mathrm{C}$ NMR spectrum also showed a downfield shift for methine $\left(\mathrm{CHN}_{3}\right)$ carbon signal at $\delta 56.18$. Its IR spectrum showed a characteristic absorption band at $2110 \mathrm{~cm}^{-1}$ for azide group confirming the formation of azide product (Fig. 14).

Catalytic hydrogenation of azide function in 135 and 136 was carried out to give the corresponding amines followed by its reductive amination $\left(\mathrm{HCHO}, \mathrm{HCO}_{2} \mathrm{H}\right)$ produced 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]alkanones
117). The ${ }^{1} \mathrm{H}$ NMR spectrum of 116 showed a typical singlet at $\delta 2.35$ due to methyl amine protons $\left[\mathrm{N}_{\left(\mathrm{CH}_{3}\right)_{2}}\right.$]. Also signals at $\delta 41.33$ and 41.46 in its ${ }^{13} \mathrm{C}$ NMR spectrum due to methyl amine carbons confirmed the formation of 116 (Fig. 15).

Fig. 15: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 1 6 a}$

1.3.4 Conclusion

In conclusion, synthesis of 1-[(S)-3-(Dimethylamino)-6,7-dimethoxytetrahydroquinoline alkanones (116-117) have been achieved in 9 steps with 94% ee. We have utilized Asymmetric Dihydroxylation and Co-catalyzed multifunctional reduction as the key steps in the asymmetric synthesis of (S)-903.

1.3.5 Experimental Section

A general experimental procedure for the preparation of amide (131-132)

To the stirred solution of tetrahydroquinolin-3-ol 83a ($0.83 \mathrm{~g}, 4 \mathrm{mmol}$) and triethylamine $(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ in of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, was added anhydride or acid chloride (5 mmol) at $25^{\circ} \mathrm{C}$. Reaction mixture was stirred for 3 h . Progress of the reaction was monitored by TLC. After the reaction was complete, a saturated solution of NaHCO_{3} (30 mL) was added. The organic layer was separated; the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give a crude mass. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: (60: 40) as eluent] gave amide 131-132 in pure form.

1-[(S)-3,4-Dihydro-3-hydroxy-6,7-dimethoxyquinolin-1(2H)-yl]propan-1-one (131):

Yield: 82%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+8.69$ (c 1.15, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right): 846,1047,1240,1392$, 1514, 1747, 2983, $3514 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $2.56(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.78(\mathrm{dd}, J=4.6,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-3.09(\mathrm{dd}, J=5.4,16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.74-3.95(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.6,27.4,35.0,49.7,55.6,65.0,108.0,111.1,122.4,130.7,146.3$, 174.3; Analysis for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, 63.38; H, 7.22; N, 5.28; found C, 63.53; H, 7.19; N, 5.22\%.

1-[(S)-3,4-Dihydro-3-hydroxy-6,7-dimethoxyquinolin-1(2H)-yl]-2-methylpropan-1one (132):

Yield: 91\%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+9.5\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 846,1049,1238,1514,1660$, 1737, 2979, $3463 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.10-1.15(\mathrm{dd}, J=2.8,7.1 \mathrm{~Hz}$, $6 \mathrm{H}), 2.41-2.63(\mathrm{~m}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.82(\mathrm{dd}, J=4.8,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-3.12(\mathrm{dd}, J$ $=5.3,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{bs}, 1 \mathrm{H}), 3.74-3.83(\mathrm{dd}, J=5.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-4.12(\mathrm{~m}$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 5.22-5.32(\mathrm{~m}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{bs}, 2 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 19.7,19.9,30.8,35.3,49.9,55.9,66.1,108.0,111.5,131.2,146.7,146.9$, 178.0; Analysis for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires C, $64.50 ; \mathrm{H}, 7.58 ; \mathrm{N}, 5.01$; found C, 64.37 ; H , 7.41; N, 5.08\%.

A general procedure for the preparation of 1-[(S)-3-azido-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]alkanone (133-134):

To the stirred solution of amide 133-134 (4 mmol) and triethyl amine ($1.4 \mathrm{~mL}, 10 \mathrm{mmol}$) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, mesyl chloride ($5 \mathrm{mmol}, 0.5 \mathrm{~mL}$) was added at $0^{\circ} \mathrm{C}$. It was then stirred for 15 min . After completion of the reaction (monitored by TLC), a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude mesylate product. An attempt to purify mesylates was unsuccessful as they undergo elimination readily. Since the mesylates were difficult to purify, it was converted to the respective azides without purification. Formation of mesylate was confirmed by 1H NMR analysis of crude mesylate 133-134.
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.52(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}$, $3 \mathrm{H}), 2.95-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.82(\mathrm{~m}, 1 \mathrm{H}) 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.81-3.92(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.33(\mathrm{~m}$, $1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.6,27.4,33.0,38.3$, $46.4,55.8,74.3,108.2,11.0,128.5,130.9,147.1,173.6$.
(R)-1,2,3,4-Tetrahydro-1-(isobutyryl)-6,7-dimethoxyquinolin-3-yl methanesulfonate (134):
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.97-3.23(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H})$, 3.72-3.82(m, 1H) $3.87(\mathrm{~s}, 6 \mathrm{H}), 4.07-4.31(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{bs}, 2 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.5,20.0,30.8,33.2,38.5,46.8,75.9,108.1,11.3,120.17,131.3$, 147.4, 177.5.

To the stirred solution of mesylate $\mathbf{1 3 3 - 1 3 4}$ in dry DMF (10 mL), was added $\mathrm{NaN}_{3}(1.30$ $\mathrm{g}, 20 \mathrm{mmol}$). It was then stirred for 16 h at $80^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), it was poured into 50 mL of ice cold water and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product. Chromatographic purification of crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: (70:30:)] gave azide 135-136 in pure form.

1-[(R)-3-Azido-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]propan-1-one (135):
Yield: 91\%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+38.2$ (c 2, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right): 757,1043,1217,1514,1650$, 1735, 2110, $3018 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.57(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.88(\mathrm{dd}, J=5.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-3.15(\mathrm{dd}, J=5.4,16.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.72-3.82(\mathrm{~m}, 1 \mathrm{H}) 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.99-4.13(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{bs}, 2 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 9.5,27.4,31.7,46.5,55.7,55.7,56.1,108.1,110.9,119.8$, 130.8, 146.8,146.9, 173.3; Analysis for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, $57.92 ; \mathrm{H}, 6.25$; N, 19.30; found C, 57.88; H, 6.20; N, 19.33\%.

1-[(R)-3-azido-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]-2-methylpropan-1-one (136):

Yield: 91\%; Gum; $[\alpha]^{\mathrm{D}}{ }_{25}+39.4$ (c 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$: 759, 1047, 1218, 1510, 1647, 1745, 2106, $3018 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.73-$ $2.84(\mathrm{dd}, J=4.9,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.09(\mathrm{dd}, J=4.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.20(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69-3.80(\mathrm{~m}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.09(\mathrm{~m}, 2 \mathrm{H})$, 6.67 (bs, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.6,19.8,30.9,32.0,46.7,55.9,56.7$, 108.1, 111.1, 131.2, 147.0, 147.3, 177.3; Analysis for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, 59.20; H , 6.62; N, 18.41; found C, 59.14; H, 6.69; N, 18.44.

A general procedure for the synthesis of 1-[(S)-3-(Dimethylamino)-6,7dimethoxytetrahydroquinoline alkanones (116-117):

To the solution of azide (2 mmol) in methanol $(10 \mathrm{~mL})$, was added $10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg})$. It was stirred under H_{2} atmosphere (balloon pressure) for 12 h . After the completion of reaction (monitored by TLC), it was passed through the celite and concentrated under reduced pressure afforded crude amine. To the crude amine 40% aq. solution HCHO (1 $\mathrm{mL})$ and $\mathrm{HCO}_{2} \mathrm{H}(2 \mathrm{~mL})$ was added, resulting reaction mixture was refluxed for 3 h . After completion of reaction saturated NaHCO_{3} solution (10 mL) was added and extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine ($2 \times 20 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure.

Chromatographic purification of the crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate: triethyl amine (60:38:2) as eluent] gave pure $\mathbf{1 1 6}$ and $\mathbf{1 1 7}$. 1-[(R)-3-(Dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]propan-1one (116a):

Yield: 91%; mp $136^{\circ} \mathrm{C}\left[\right.$ lit. $\left.135-137{ }^{\circ} \mathrm{C}\right] ; \quad[\alpha]^{\mathrm{D}}{ }_{25}-3.2\left(c\right.$ 1, EtOH) $\left\{\right.$ lit. $[\alpha]^{\mathrm{D}}{ }_{25}-3.3(c 1$, $\mathrm{EtOH})\}^{46} ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 760,1049,1211,1511,1647,1743,3018,3450 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.46(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.80-2.91(m, 2H), 3.23-3.54(m, 2H), 3.82($\mathrm{s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.64(\mathrm{bs}, 2 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 9.8,27.5,29.5,41.3,41.4,55.9,55.9,61.4,61.8,108.2,111.1$, 128.6, 131.8, 146.9, 173.0; Analysis for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 64.96; H, 7.63; N, 10.10; found C, 64.82; H, 7.60; N, 10.27\%.

1-[(R)-3-(Dimethylamino)-3,4-dihydro-6,7-dimethoxyquinolin-1(2H)-yl]-2-

 methylpropan-1-one (116b):Yield: 91%; mp $119{ }^{\circ} \mathrm{C}\left[\right.$ lit. $\left.120-122{ }^{\circ} \mathrm{C}\right] ;[\alpha]^{\mathrm{D}}{ }_{25}-2.2$ (c 1, EtOH); IR (CHCl_{3}): 759, 1047, 1215, 1510, 1640, 1747, 3010, $3459 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.12(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H}), 2.90-3.12(\mathrm{~m}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) 3.10-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}$, $1 \mathrm{H}), 3.75-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.83(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.98$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 19.9,26.5,32.5,41.9,42.1,56.1,56.9,61.1$, 107.2, 111.1, 126.6, 131.4, 146.0, 175.1; Analysis for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 66.64; H, 8.55; N, 9.14; Found C, 66.61; H, 8.40; N, 9.02\%.

References

1 For review see, Katritzky, A.R.; Rachwal, S.; Rachwal B. Tetrahedron Vol. 52, No. 1996, 48, 15031-15070.
2 Leeson, P. D.; Carling, R. W.; Moore, K. W.; Moseley, A. M.; Smith, J. D.; Stevenson, G.; Chan, T.; Baker, R.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall, G. R.; Hoogsteen, K. J. Med. Chem. 1992, 35, 1954-1968.
3 Omura, S.; Nakagawa, A. Tetrahedron Lett. 1981, 22, 2199-2202.
4 Yamamoto, K.; Sugiyama, H.; Kawanishi, S. Biochemistry 1993, 32, 1059-1066.
5 (a) Hoehler, T. M.; Bebout, B. M.; Marais, D. J. Nature 2001, 412, 324-327; (b) Bethuel Y.; Gademann, K. J. Org. Chem. 2005, 70, 6258-6264.

6 (a) Kokwaro, G. O; Taylor, G. Drug Chem. Toxicol. 1990, 13, 347-354; (b) Prankerd R. J.; Ahmed, S. M. J. Pharm. Pharmacol. 1992, 44, 261-263; (c) Prankerd, R. J.; Ahmed, S. M. J. Pharm. Pharmacol. 1992, 44, 259-261; (d) Prankerd R. J.; Ahmed, S. M. J. Pharm. Pharmocnl. 1992, 44, 261-263; (e) Grimwood, S.; Moseby, A. M.; Carling, R. W.; Leeson. P. D.; Foster, A. C. Mol. Pharmacol. 1992, 41, 923-930; (f) Yoneda, Y.; Suzuki, T.; Ogita, K.; Han, D. J. Neurochem. 1993, 60, 634-644.
7 Walter, H. Eur. Pat. 1993, 555, 183; Chem. Abstr. 1994, 120,54551v.
8 Meier, H. R.; Evans, S. Eur. Pat. EP 1988, 273.868; Chem Abstr. 1989, 11098598p.
9 Chem. Abstr. 1990, 112,216659a.
10 Hahn, E.; Kraeh, C.; Mayer, U. Ger. Pat. 1993, DE 42,15,391. Chem. Abstr. 1994, 120,301123f.
11 Moore, W. H. U.S. Pat. 1988, US 4,788,121; Chem Abstr. 1989, 110, 240160k.
12 Murahashi, S.-I.; Imada, Y.; Hirai Y. Tetrahedron Lett. 1987, 28, 77-80.
13 Gracheva, I. N.;Tochilkin, A. I. Chem. Heterocycl. Comp.(Eng. Trans.) 1988, 65-67.
14 Schaus,J. M.;. Huser, D. L.; Titus R. D. Synth. Commun. 1990, 20, 3553-3562.
15 Bouyssou, P.; Le Goff, C.; Chenault, J. J. Heterocycl. Chem. 1992, 29, 895-898.
16 Tokes, A. L.; Litkei, Gy.; Szilagyi, L. Synth. Commun. 1992, 22, 2433-2445.
17 Ishitani H.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 7357-7360.
18 (a) Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem. 1995, 60, 2588-2596;
(b) Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem. 1995, 60, 7631-7640; Boger,D. L.;. McKie, J. A.; Nishi, T.; Ogiku, T. J. Am. Chem. Soc. 1997, 119, 311-
325.

20 Steinhagen H.; Corey, E. J. Org. Lett. 1999, 1, 823-824.
21 Gallou-Dagommer, I.;Gastaud, P.; RajanBabu, T. V. Org. Lett. 2002, 4, 2691-2694.
22 Fujita, K.; Yamamoto, K.; Yamaguchi, R. Org. Lett. 2001, 3, 2053-2056; Fujita, K.; Yamamoto, K.; Yamaguchi, R. Org. Lett. 2002, 4, 2691-2694.

23 Fujita, K.; Kitatsuji, C.; Furukawa S.; Yamaguchi, R. Tetrahedron Lett. 2004, 45, 3215-3217.

24 (a) Gademann, K.; Bethuel, Y. Org. Lett. 2004, 6, 4707-4710; (b) Gademann, K.; Bethuel, Y.; Locher, H.H.; Hubschwerlen, C. J. Org. Chem. 2007, 72, 8361-8370.

25 Theeraladanon, C.; Arisawa, M.; Nakagawa, M.; Nishida, A. Tetrahedron Asymmetry 2005, 16, 827-831.

26 Chen, W.; Liu, B.; Yang, C.; Xie, Y. Tetrahedron Lett. 2006, 47, 7191-7193.

Am. Chem. Soc. 1989, 111, 737-739; (b) Kolb, H. C.; Anderson, P. G.; Bennani, Y. L.; Crispino, G. A.; Jeong, K. S.; Kwong, H. L.; Sharpless, K. B. J. Am. Chem. Soc. 1993, 115, 12226-12227.

28 Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263-4265.
(a) Criegee, R. Justus Liebigs Ann. Chem. 1996, 522, 75; (b) Criegee, R. Angew. Chem. Int. Ed. Engl. 1937, 522, 75-96; (c) Criegee, R.; Marchand, B.; Wannowias, H. Justus Liegs. Ann. Chem. 1942, 550, 99; (d) Sharpless, K. B.; Teranishi, A. Y.; Backwall, J. E. J. Am. Chem. Soc. 1977, 99, 3120-3128; (e) Jorgensen, K. A.; Schioett, B. Chem. Rev. 1990, 90, 1483-1506.

30 Gawley, R. A.; Aube, J. Principles of Asymmetric Synthesis Elesevier Science (Oxford), 1996, Vol. 14, (Chap. 8), pp 314-350.

31 Sharpless K. B.; Amerg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu. D.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768-2771.

32 Amerg, W.; Bennani, Y. L.; Chadha, R. K.; Crispino, G. A.; Davis, W. D.; Hartung, J.; Jeong, K. S.; Ogino, Y.; Shibata, T.; Sharpless K. B. J. Org. Chem. 1993, 58, 844-849.

33 (a) Schlesinger, H. I.; Brown, H. C. U.S. Patents 2,461,661 1949; Chem. Abstr.

1949, 43, 4684e; U S. Patent 2,534,533 1950; Chem. Abstr. 1955, 49, 6991a. (b) Schlesinger, H. I.; Brown, H. C.; Hoekstra, H. R.; Rapp, L. R. J. Am. Chem. Soc. 1953, 75, 199. (c) Finholt, A. E.; Bond, A. C., Jr.; Schlesinger, H. I. J. Am. Chem. Soc. 1947, 69, 1199.

34 (a) Sodium Borohydride; 1979 Product Bulletin; Thiokol/Ventron: Danvers, MA; (b) Brown, H. C. Chem. Eng. News 1979 (March 5), 24; (c) Brown, H. C. Boranes in Organic Chemistry; Cornell University: Ithaca, NY, 1972; pp 209-226; (d) House, H. O. Modern Synthetic Reactions, $2{ }^{\text {nd }}$ ed.; Benjamin: Menlo Park, CA, 1972; pp 45144; (e) Wig-field, D. C. Tetrahedron 1979, 35, 449; (f) Chen, S. C. Synthesis 1974, 691; (g) Lithium Aluminum Hydride: Properties, Handling, Applications; Metallgesellschaft AG: Frankfurt, 1979.

35 Wade, R. C. J. Mol. Catal. 1983, 18, 273.
36 (a) Schlesinger, H. I.; Brown, H. C.; Hyde, E. K. J. Am. Chem. Soc. 1953, 75, 209213; (b) James, B. D.; Wallbridge, M. G. H. Prog. Inorg. Chem. 1970, 11, 99-231; (c) Ashby, E. C.; Korenowski, T. F.; Schwartz, R. D. J. Chem. Soc., Chem. Commun. 1974, 157; (d) Masamune, S.; Bates, G. S.; Georghiou, P. E. J. Am. Chem. Soc. 1974, 91, 3688; (e) Semmelhack, M. F.; Stauffer, R. D.; Yamashita, A. J. Org. Chem. 1977, 42, 3180; (f) Schaeffer, G. W.; Roscoe, J. S.; Stewart, A. C. J. Am. Chem. Soc. 1956, 78, 729-733; (g) Schlesinger, H. I.; Brown, H. C.; Finholt, A. E.; Galbreath, J. R.; Hoekstra, H. R.; Hyde, E. K. J. Am. Chem. Soc. 1953, 75, 215-219; (h) Stewart, A. C.; Schaeffer, G. W. J. Inorg. Nucl. Chem. 1956, 3, 194.

Maybury, P. C.; Mitchell, R. W.; Hawthorne, M. F. J. Chem. Soc., Chem. Commun. 1974, 534.

38 (a) Fleet, G. W. J.; Harding, P. J. C. Tetrahedron Lett. 1981, 22, 675. (b) Entwhistle, E. D.; Boehm, P.; Johnstone, R. A. W.; Telford, R. P. J. Chem. Soc., Perkin Trans 1 1980, 27.

39 (a) Strohmeier, W.; Steigerwald, H. 2. Naturforsch. B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 1977, 32b, 111. (b) Chung, S.-K. J. Org. Chem. 1979, 44, 1014. (c) Satyanarayana, N.; Periasamy, M. Tetrahedron Lett. 1984, 25, 2501. (d) Russell, T. W.; Hoy, R. C.; Cornelius, J. E. J. Org. Chem. 1972, 37, 3552. (e) Russell, T. W.; Hoy, R. C. J. Org. Chem. 1971, 36, 2018. (f) Nishio, T.; Omote, Y.

Chem. Lett. 1979, 1223. (g) Kashima, C.; Yamamoto, Y. Chem. Lett. 1978, 1285. (h) Anwer, M. K.; Spatola, A. F. Tetrahedron Lett. 1985, 26, 1381. (i) Satoh, T.; Suzuki, S. Tetrahedron Lett. 1969, 4555.

40 Vincent, M.; Remond, G.; Portevin, B.; Laubie S.M. Tetrahedron Lett. 1882, 23, 1677-1680.

41 Gao, Y.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 7538-7539.
42 (a) M. Cowart, S. P. Latshaw, P. Bhatia, J. F. Daanen, J. Rohde, S. L. Nelson, M. Patel, T. Kolasa, M. Nakane, M. E. Uchic, L. N. Miller, M. A. Terranova, R. Chang, D. L. Donnelly-Roberts, M. T. Namovic, P. R. Hollingsworth, B. R. Martino, J. J. Lynch, III, J. P. Sullivan, G. C. Hsieh, R. B. Moreland, J. D. Brioni, A. O. Stewart; J. Med. Chem. 2004, 47, 3853. (b) G. L. Alberts, J. F. Pregenzer, W. B. Im; British Journal of Pharmacology, 2000, 131, 514; (c) D. K. Joshi, J. W. Sutton, S. Carver, and J. P. Blanchard; Org. Process. Res \& Dev. 2005, 997.

43 Moon, M. W.; Morris, J.K. Heier, R. F.; Chidester, C.G.; Hoffmann, W. E.; Piercey, M. F.; Althaus, J.S.; VonVoigtlander, P.F.; Evans, D. L. Figur, L. M. Lahtis R. A. J. Med. Chem. 1992, 35, 1076-1092.

44 A. G. Romero, W. H. Darlington, M. W. McMillan; J. Org. Chem. 1997, 62, 6582.
45 Hulin,B.; Lopaze M.G. Tetrahedron: Asymmetry 2004, 15, 1957-1958.
46 Santangelo, F.; Casagrande, C.; Miragoli, G.; Vecchietti, V. Eur. J. Med. Chem. 1994, 29, 877-882.

Chapter II

Pd-catalyzed Suzuki coupling of enol tosylate with boronic acids: A short synthesis of (\pm)-paroxetine and (\pm)-femoxetine, potent antidepressant drugs

Section I:

Pd-catalyzed Suzuki-Miyaura coupling of enol tosylate with boronic acids

2.1.1 Introduction:

Six-membered nitrogen containing heterocycles are abundant in nature and exhibit diverse and important biological properties. ${ }^{1}$ Synthesis of piperidine ring-based alkaloids has been the subject of interest in recent years due to their biological activities. ${ }^{2}$ Especially, substitutions at C-3 and C-4 positions in piperidine ring with an anti stereoselectivity is the most common and important feature of these compounds. The chiral piperidines e.g. (-)-paroxetine hydrochloride $\mathbf{1}$ and (+)-femoxetine $\mathbf{2}$ have emerged as the excellent selective serotonin reuptake inhibitors and are used in the treatment of depression and obsessive-compulsive disorders ${ }^{2}$

1
(-)-Paroxetine

2
(+)-Femoxetine

3
Roche-1

4

5

Fig 1: \quad Structures of antidepressants drugs

Other analogs such as roche-1 3, 4 and 5 were also found to be non-peptide peptidomimetic type III inhibitors of rennin. ${ }^{3}$ All these compounds consist of common piperidine ring at the center and aryl substitution at $\mathrm{C}-4$ position, while $\mathrm{C}-3$ position possesses hydroxylmethylene or methyleneoxy groups in an anti fashion (Fig. 1). Several attempts have been made in recent years for the synthesis of piperidine nucleus in view of their structural and biological importance. ${ }^{4}$

2.1.2 Review of literature

Several recent reviews are available in the literature for the Suzuki-type coupling reactions. ${ }^{5}$ Some of the recently reported modifications of Suzuki-Miyaura coupling are listed below.

Suzuki's approach (1993) ${ }^{6}$

Suzuki et al. have reported $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$-catalyzed reaction of enol triflates $\mathbf{6}$ and $\mathbf{9}$ with aryl and alkyl boronic acids 7a-b to give the cross-coupled products $\mathbf{8}$ and $\mathbf{1 0}$ in high yields (Scheme 1).

Scheme 1: (a) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.5 \mathrm{~mol} \%)$, aq. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), dioxane, $85^{\circ} \mathrm{C}, 2-12 \mathrm{~h}$.

Huffman's approach (1999) ${ }^{7}$

Huffman et al. have used $\mathrm{NiCl}_{2}(\mathrm{dppf})_{2}$ or $\mathrm{PdCl}_{2}(\mathrm{dppf})_{2}$ as catalysts for Suzuki-Miyaura cross-coupling of enol tosylate $\mathbf{1 2}$ with phenyl boronic acid $\mathbf{7 b}$ to give the corresponding unsaturated ester 13 in 67% yield (Scheme 2).

Scheme 2: (a) $\mathrm{PhB}(\mathrm{OH})_{2}(1.3$ equiv. $), \mathrm{Pd}(\mathrm{dppf})_{2}(10 \mathrm{~mol}$ \%), aq. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$, THF, $30{ }^{\circ} \mathrm{C}$.

Monteiro's approach (2001) ${ }^{8}$

Monteiro et al. have reported $\mathrm{NiCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$-catalyzed cross-coupling of aryltosylates $\mathbf{1 4}$ with arylboronic acids $\mathbf{7 b}$ to give biphenyls $\mathbf{1 5}$, promoted by large excess of PCy_{3} as powerful ligand under milder reaction conditions (Scheme 3).

Scheme 3: (a) $\mathrm{NiCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(1-5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (2 equiv.), dioxane, $130{ }^{\circ} \mathrm{C}, 14-60 \mathrm{~h}$.

Lakshman's approach (2002) ${ }^{9}$

Lakshman et al. have used Suzuki-Miyaura coupling of O-arylsulfonate derivatives of 2’deoxyguanosine 16 with aryl boronic acids $7 \mathbf{b}$ to provide O-aryl derivatives of ${ }^{\prime}$ 'deoxyguanosine 17. The Suzuki cross-coupling of tosylates were found to be faster as compared to the corresponding halides (Scheme 4).

Scheme 4: (a) $\mathrm{Pd}(\mathrm{OAc})_{2}(7.1 \mu \mathrm{mmol})$, 2-(dicyclohexylphosphino)biphenyl ($14.8 \mu \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(0.15 \mathrm{mmol})$, nucleoside sulfonate 16 (73.7 $\mu \mathrm{mmol}$), boronic acid (1.5 molar equiv.), 1,4-dioxane (0.87 mL), $80-82^{\circ} \mathrm{C}, 30 \mathrm{~min}, 71-90 \%$.

Wu's approach (2003) ${ }^{10}$

Wu et al. have described the synthesis of 4-substituted-2-($5 H$)-furanones (19) using palladium catalyzed cross-coupling of 4-tosyl-2(5H)-furanone (18) with boronic acids
(7b) (Scheme 5).

Scheme 5: (a) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%)$, aq. KF (2 M), THF, $60^{\circ} \mathrm{C}, 2$ - 12 h .

Buchwald's approach (2003) ${ }^{11}$

Buchwald et al. have used $\mathrm{Pd}(\mathrm{OAc})_{2}$ in catalytic amount in combination with a special type of phosphine ligand 20, for Suzuki-Miyaura coupling of various enol tosylates 14 with aryl boronic acids $\mathbf{7 b}$ to give the corresponding biphenyls $\mathbf{1 5}$ in good yields (Scheme 6).

$\begin{array}{ll}\text { Scheme 6: } & \text { ArOTs or vinylOTs (1 equiv), } \operatorname{ArB}(\mathrm{OH})_{2}\left(2 \text { equiv), } \mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right. \\ & \text { (3 equiv.), } 2 \mathrm{~mol} \% \operatorname{Pd}(\mathrm{OAc})_{2}, 5 \mathrm{~mol} \% \mathrm{~L}^{*} 20, \mathrm{THF}, 80^{\circ} \mathrm{C} .\end{array}$

Percec's approach (2004) ${ }^{12}$

Percec's et al. have used NiCl_{2} (dppe)-catalyzed cross-coupling of aryl mesylates 21, arenesulfonates and aryl halides with arylboronic acids $\mathbf{7 b} . \mathrm{NiCl}_{2}$ (dppe) was found to be more efficient catalyst when excess of dppe 22 was used (Scheme 7).

Scheme 7: $\quad \mathrm{NiCl}_{2}(\text { dppe })_{2}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}\left(1.5\right.$ equiv.), toluene, $80^{\circ} \mathrm{C}, 2-12 \mathrm{~h}$.

Baxter's approach (2005) ${ }^{11}$

Baxter's approach involves Suzuki-Miyaura coupling of enol tosylates 23 with aryl boronic acids 7b to provide (E) - γ-amino- α, β-unsaturated esters $\mathbf{2 4}$ in high yields (Scheme 8).

$\begin{array}{ll}\text { Scheme 8: } & \text { (a) } \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%) \text {, enol tosylate }(1.15 \mathrm{mmol}) \text {, aryl } \\ & \text { boronic acid }(1.73 \mathrm{mmol}, 1.5 \text { equiv.), THF }(8 \mathrm{~mL}), 2 \mathrm{M} \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}(3.68 \mathrm{mmol}), 40^{\circ} \mathrm{C} 12 \mathrm{~h}, 61-90 \% .\end{array}$

2.1.3 Present work

2.1.3.1 Objective

Review of literature reveals that several modifications in terms of catalysts, substrates and reaction conditions for Suzuki reactions have been reported. However, these metalcatalyzed coupling methods are mainly targeted for the preparation of simple biaryl compounds. Hence, better methods are needed for the synthesis of functionalized heterocyclic compounds, mainly dihydropyridines 29a-g, which are potential intermediates for several drug molecules. Since this chapter deals with a key reaction namely Suzuki-Miyaura coupling of enol tosylates with aryl boronic acids, a brief account of Suzuki-Miyaura coupling is described as under.

Suzuki-Miyaura coupling

Palladium-catalyzed cross-coupling between organoboronic acids and halides or triflates is typically known as Suzuki coupling reaction. Recent developments in catalysts have broadened the possible applications enormously, so that the scope of the reaction partners is not restricted to aryls, but includes alkyls, alkenyls and alkynyls. Potassium trifluoroborates and organoboranes or boronate esters are used in place of boronic acids. Some pseudohalides (e.g. triflates, tosylates) can also be used as coupling partners. Organoboron compounds are highly electrophilic, but the organic groups on boron are
weakly nucleophilic, thus limiting the use of organoboron reagents for the ionic reactions. The coordination of a negatively charged base to the boron atom has been recognized to be an efficient method of increasing its nucleophilicity to transfer the organic group on boron to the adjacent positive center (1,2-migration reaction). However, intermolecular transfer reaction such as the Grignard-like reaction is relatively rare. Fortunately, organoboron compounds, even organoboronic acids and esters, have sufficiently enough reactivity for the transmetalation to other metals. The palladium catalyzed cross-coupling reaction of organoboron compounds with organic halides, triflates and tosylates provides the broad scope in C-C bond formation reactions.

2.1.3.2 Results and Discussion

Synthetic route for the preparation of enol tosylates 27, key coupling partners for the Suzuki-Miyaura coupling is shown in Scheme 9. The commercially available N-boc-4piperidinone 25 was carbomethoxylated [(MeO$)_{2} \mathrm{CO}, \mathrm{NaH}$ and DMF$\left.)\right]$ to give enol ester 26 in 87% yield. Enol ester 26 was then smoothly transformed into the corresponding precursor viz tosyl enol ester $27\left(\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in 95% yield.

Scheme 9: (a) $\mathrm{NaH},(\mathrm{MeO})_{2} \mathrm{CO}, \mathrm{DMF}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 87 \%$; (b) TsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 95 \%$.

We, then, subjected enol tosylate 27 to Pd-catalyzed Suzuki-Miyaura coupling with 4fluorophenylboronic acid. This Pd-catalyzed Suzuki-Miyaura cross-coupling proceeded smoothly to afford the corresponding conjugated ester 29a in 78% yield. We observed
that under the reaction conditions N-Boc functionality was unaffected, thus providing high yields of the protected coupled product 29a only.

$\begin{array}{ll}\text { Scheme 10: } & \text { (a) } \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mole} \%), \operatorname{ArB}(\mathrm{OH})_{2}(1.5 \text { equiv. }), \quad \text { aq. } \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}(1.8 \mathrm{~mL}), \operatorname{THF}(8 \mathrm{~mL}), 65^{\circ} \mathrm{C}, 8 \mathrm{~h}, 77-89 \% .\end{array}$

In order to generalize the scope of the reaction, we subjected various aryl boronic acids 28a-g having $\mathrm{Cl}, \mathrm{F}, \mathrm{CH}_{3}$, tert-butyl, OCH_{3} groups as substituents in the aryl nucleus for coupling with enol tosylate 27 in the presence of Pd catalyst [catalyst $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 M), THF].

Table 1: Pd-catalyzed Suzuki-Miyaura coupling of aryl boronic acids 28a-g with enol tosylate 27: preparation of 29a-g ${ }^{\text {a }}$

Entry	R $\mathbf{2 8 a - g}$	Yield of $\mathbf{2 9 a - g}(\%)^{\mathbf{b}}$
\mathbf{a}	$4-\mathrm{F}$	78
\mathbf{b}	H	87
\mathbf{c}	$4-\mathrm{Cl}$	82
\mathbf{d}	$2,4-\mathrm{F}$	89
\mathbf{e}	$4-\mathrm{CH}_{3}$	83
\mathbf{f}	$4-\mathrm{MeO}$	85
\mathbf{g}	4-tert-Butyl	77

[^1]The cross-coupling proceeded well to give the corresponding dihydropyridine derivatives 29a-g in good yields. Results of the study are presented in Table 1.

We observed that various boronic acids 28a-g underwent Suzuki-Miyaura coupling smoothly to give the coupled products in high yields (78-89\%) under milder reaction conditions. Use of catalytic amount of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and mild base $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ were only required to obtain the coupled products. For example, haloaryl boronic acids with Cl, F substituents underwent cross-coupling to provide haloaryl piperidine derivatives in 82-89 yields, which were difficult to prepare by other conventional methods.

The formation of all the intermediates (25 to 27) as well as the final products ($\mathbf{2 9 a} \mathbf{- g}$) were characterized unambiguously from their corresponding spectral analysis. For example, ${ }^{1} \mathrm{H}$ NMR of the enol tosylate 27 showed characteristic signals at $\delta 2.47,7.37$ and 7.84 corresponding to the benzylic methyl $\left(\mathrm{ArCH}_{3}\right)$ and aromatic protons (ArH) of tosyl group respectively. Also three methylene proton signals were shown at $\delta 2.47(\mathrm{~m})$, $3.53(\mathrm{t})$ and 4.17 (s) confirming the formation of enol tosylate 27 . Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical carbon signal at $\delta 21.5$ corresponding to the benzylic methyl $\left(\mathrm{ArCH}_{3}\right)$ crabon (Fig. 3).

Fig. 3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of enol tosylate 27
As another example, the ${ }^{1} \mathrm{H}$ NMR spectrum of 29a showed typical signals at $\delta 2.47,3.61$ and 4.25 due to three methylene protons $\left(\mathbf{C H}_{2}\right)$ and signals at $6.98-7.12$ (m) corresponding to the aromatic protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic signals at $\delta 32.74,39.20$ and 43.63 due to methylene carbons $\left(\mathrm{CH}_{2}\right)$ and signals at 114.94 (d), 128.27 (d), 137.44 (d), 161.96 (d) for aromatic carbons respectively, thus confirming the formation of unsaturated ester 29a (Fig. 4). Also, a characteristic absorption band in
its IR spectrum at $1695 \mathrm{~cm}^{-1}$ confirms the presence of conjugated ester carbonyl functionality.

Fig. 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of piperdine derivative 29a

2.1.4Conclusion

In conclusion, we have developed a short and efficient catalytic method for the construction of tetrahydropyridine cores 29a-g with substitutions at C-3 and C-4 position using Suzuki coupling of enol tosylate 27 with several aryl boronic acids 28a-g. The products formed are valuable intermediates in the synthesis of various drugs such as
paroxetine 1, femoxetine 2, and Roche-1 3. The applications of this simple methodology are presented in the following section.

2.1.5 Experimental Section:

Preparation of tert-butyl 3-methyl 5,6-dihydro-4-hydroxypyridine-1,3(2H)dicarboxylate (26):

To a stirred solution of $\mathrm{NaH}(2.0 \mathrm{~g}, 50 \mathrm{mmol})$ in dry DMF $(20 \mathrm{~mL})$, was added tert-butyl 4-oxopiperidine-1-carboxylate [$3.98 \mathrm{~g}, 20 \mathrm{mmol}$ in dry DMF (10 mL)] drop-wise under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. To the reaction mixture, dimethyl carbonate ($4.5 \mathrm{~g}, 50 \mathrm{mmol}$) was added and allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After completion of reaction (monitored by TLC), a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ was added. The aqueous layer was extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$). The combined organic extract was washed with brine solution ($2 \times 50 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product. Chromatographic purification of crude product [silica gel (230-400 mesh, petroleum ether: ethyl acetate (70:30) as eluent] afforded 4.53 g of enol ester $\mathbf{2 6}$ in pure form.

Yield: 89%; colourless liquid, IR $\left(\mathrm{CHCl}_{3}\right): 759,1168,1249,1669,1751,2979,3346 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.78$ (s, 3H), $4.06(\mathrm{~s}, 2 \mathrm{H}), 11.98(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.15$, 28.61, 40.04, 40.40, 51.32, 79.84, 95.28, 169.81, 170.79; Analysis for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires C, 56.02; H, 7.44; N, 5.44; found $56.06 ; \mathrm{H}, 7.41$; N, 5.39;

Preparation of 1-(tert-butoxycarbonyl)-3-(methoxycarbonyl)-1,2,5,6-tetrahydropyridin-4-yl 4-methylbenzene sulfonate (27):

To a stirred mixture of enol ester $26(3.855 \mathrm{~g}, 15 \mathrm{mmol})$ and triethylamine ($4.2 \mathrm{~mL}, 30$ $\mathrm{mmol})$ in dry dichloromethane (30 ml), was added tosyl chloride $(3.03 \mathrm{~g}, 17 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. It was then allowed to stir for 12 h at $25^{\circ} \mathrm{C}$. After completion of reaction mixture (monitored by TLC), water (50 mL) was added. The organic layer was separated and aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layer was washed with brine solution ($2 \times 50 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product [silica gel (230-400 mesh, petroleum ether: ethyl acetate (70:30) as eluent] afforded 5.67 g of enol tosylate 27 in pure form.

Yield: 93\%; Gum, IR (CHCl_{3}): 756, 1053, 1166, 1242, 1423, 1703, 2979, $3016 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.58(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}){ }^{\mathbf{1 3}}{ }^{3} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.53,28.16,29.27,39.57,42.76,51.69,80.41$, 118.55, 127.99, 129.68, 133.31, 145.42, 150.76, 154.02, 165.56. Analysis for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{~S}$ requires $\mathrm{C}, 55.46 ; \mathrm{H}, 6.12 ; \mathrm{N}, 3.40 ; \mathrm{S}, 7.79$ found $\mathrm{C}, 55.32 ; \mathrm{H}, 6.01 ; \mathrm{N}$, 3.22; S, 7.71\%.

General procedure for Pd-catalyzed Suzuki coupling: preparation of 1-tert-butyl 3methyl 4-(aryl)-5,6-dihydropyridine-1,3(2H)-dicarboxylate (29a-f):

To a stirred solution of enol tosylate $27(411 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{ArB}(\mathrm{OH})_{2} 28(1.7 \mathrm{mmol})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14 \mathrm{mg}, 5 \mathrm{~mol} \%)$ in THF $(8 \mathrm{~mL})$, was added $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution in demonized water (1.5 mL) under N_{2} atmosphere. It was then refluxed for 8 h . After completion of the reaction (monitored by TLC), water (50 mL) was added. The aqueous layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The combined organic extract was
washed with brine solution ($2 \times 25 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude products. Chromatographic purification of the crude products [silica gel (230-400 mesh, petroleum ether: ethyl acetate (70:30) as eluent] afforded 29a-e in pure form.

1-tert-Butyl 3-methyl 4-(4-fluorophenyl)-5,6-dihydropyridine-1,3(2H)-dicarboxylate (29a):

Yield: $260 \mathrm{mg}, 78 \%$; Gum, $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 763,1159,1238,1417,1510,1693,1783 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.15(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $28.23,32.74,39.46,43.63,51.25,79.95,114.73-115.15$ (d), 124.84, 128.19-128.35 (d), 137.41-137.47 (d), 154.33, 159.52-164.41 (d), 167.32; Analysis for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FNO}_{4}$ requires C, 64.46; H, 6.61; N, 4.18; found C, 64.48; H, 6.59; N, 4.21\%.

1-tert-Butyl 3-methyl 5,6-dihydro-4-phenylpyridine-1,3(2H)-dicarboxylate (29b):
Yield: $276 \mathrm{mg}, 87 \%$; Gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: 756, 1053, 1166, 1242, 1423, 1703, 2973, 3010 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.51(\mathrm{~s}, 9 \mathrm{H}), 2.48-2.55(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.61$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.15(\mathrm{dd}, J=2.2,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-$ $7.35(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.92,32.22,39.15,43.32,50.77,79.44$, 124.13, 126.16, $127.00,127.60,141.24,145.24,153 . .94,166.51$; Analysis for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires $\mathrm{C}, 68.12 ; \mathrm{H}, 7.30 ; \mathrm{N}, 4.41$; found $\mathrm{C}, 68.10 ; \mathrm{H}, 7.31 ; \mathrm{N}, 4.43 \%$.

1-tert-Butyl 3-methyl 4-(4-chlorophenyl)-5,6-dihydropyridine-1,3(2H)-dicarboxylate (29c):

Yield: $291 \mathrm{mg}, 83 \%$; Gum, IR $\left(\mathrm{CHCl}_{3}\right)$: $762,1158,1230,1410,1513,1695,1751 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.51(\mathrm{~s}, 9 \mathrm{H}), 2.43-2.51(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=$
$5.7,2 \mathrm{H}), 4.24(\mathrm{t}, J=2.6,2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 28.38,32.67,39.48,43.79,51.55,80.72,124.50,128.00$, $128.35,133.46,139.83,145.81,155.12,166.75$; Analysis for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClNO}_{4}$ requires C, 61.45; H, 6.30; N, 3.98; found C, 61.48; H, 6.32; N, 3.94\%.

1-tert-Butyl 3-methyl 4-(2,4-difluorophenyl)-5,6-dihydropyridine-1,3(2H)dicarboxylate (29d):

Yield: $315 \mathrm{mg}, 89 \%$; Gum, IR $\left(\mathrm{CHCl}_{3}\right): 769,1259,1330,1508,1745,2358,3010 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.51(\mathrm{~s}, 9 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-7.11(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $28.43,32.54,39.42,43.65,51.57,80.26,103.91(\mathrm{t}, J=26.0 \mathrm{~Hz}), 111.15(\mathrm{~d}, J=25.9 \mathrm{~Hz})$, $125.40(\mathrm{dd}, J=4.0,16.5 \mathrm{~Hz}), 126.76,129.40(\mathrm{dd}, J=5.1,9.5 \mathrm{~Hz}), 141.06,154.06,158.05$ (dd, $J=11.7,180.0 \mathrm{~Hz}$), $162.98(\mathrm{dd}, J=11.7,180.0 \mathrm{~Hz})$, 165.77; Analysis for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO} 4$ requires C, $61.18 ; \mathrm{H}, 5.99$; N, 3.96; found C, 61.13 ; H, $5.94 ; \mathrm{N}, 3.96 \%$.

1-tert-Butyl 3-methyl 5,6-dihydro-4-p-tolylpyridine-1,3(2H)-dicarboxylate (29e):

Yield: $275 \mathrm{mg}, 83 \%$; Gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 769,1163,1217,1681,1731,3020 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.54(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, $3.59(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.77,28.00,32.23,39.06,43.44,50.79,79.39$, $123.84,126.20,128.35,136.61,138.24,145.73,153.85,166.65$; Analysis for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4}$ requires C, 68.86; H, 7.60; N, 4.23; found C, 68.79; H, 7.62; N, 4.16\%.

1-tert-Butyl 3-methyl 5,6-dihydro-4-(4-methoxyphenyl)pyridine-1,3(2H)dicarboxylate (29f):

Yield: $295 \mathrm{mg}, 85 \%$; Gum, $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right)$: 767, 1037, 1176, 1242, 1514, 1681, 1731, 2931, $3018 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.59$ $(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 28.34,32.48,39.94,43.94,51.32$, $54.89,80.26,114.51,123.83,127.92,133.45,145.88,154.54,159.00,167.55$; Analysis for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5}$ Requires C, 65.69; H, 7.25; N, 4.03; found C, $65.65 ; \mathrm{H}, 7.21 ; \mathrm{N}, 4.07 \%$.

1-tert-Butyl 3-methyl 4-(4-tert-butylphenyl)-5,6-dihydropyridine-1,3(2H)dicarboxylate (29g)

Yield: 287 mg , 77%; colorless solid; mp: $77-79{ }^{\circ} \mathrm{C}$ (recrystallized in MeOH); IR $\left(\mathrm{CHCl}_{3}\right): 765,1054,1120,1168,1242,1419,1726,2966 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\mathrm{CDCl} 3): \delta 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.22(\mathrm{t}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.42,31.27,32.57,34.47,39.47,41.83,51.20,79.86,124.25,124.86$, 126.37, 138.49, 146.02, $150.25,154.32,167.17$; Analysis for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{4}$ requires C, $70.75 ; \mathrm{H}, 8.37$; N, 3.75; found C, 70.71 ; H, 8.32; N, 3.72\%.

Section II

A short synthesis of (\pm)-paroxetine and (\pm)-femoxetine, anti-depressant drugs

2.2.1 Introduction:

The pharmacology of (\pm)-paroxetine:
(\pm)-Paroxetine (1) is a potent and selective inhibitor of the neuronal reuptake of serotonin (5-hydroxytryptamine; 5-HT), which was considered as an antidepressant drug in 1991. ${ }^{2}$ It is also being studied in several other disorders with a presumed serotonergic component, primarily obsessive compulsive disorder (OCD) and panic disorder. In short term clinical trials in patients with depression, paroxetine produced clinical improvements that were significantly greater than those with placebo and similar to those achieved with other agents including tricyclic antidepressants (TCAs), maprotiline, nefazodone and the selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine, fluvoxamine and sertraline. ${ }^{14}$ Long term data suggest that paroxetine is effective in preventing relapse or recurrence of depression in patients treated for up to 1 year. In the elderly peoples, the overall efficacy of paroxetine was at least as good as that of comparator agents. Limited long term data show that paroxetine is effective in maintaining a therapeutic response over periods of 1 year (OCD) and up to 6 months (panic disorder). Preliminary data suggest that paroxetine has potential in the treatment of social phobia, premenstrual dysphoric disorder and chronic headache. Like the other SSRIs, paroxetine is better tolerated than the TCAs, causing few anti-cholinergic adverse effects. Serious adverse effects associated with paroxetine are very rare.

(-)-paroxetine 1

(+)-femoxetine 2

Roche-1 3

Fig : 6 Structures of anti-depressants drugs such as (-)-paroxetine $\mathbf{1},(+)$-femoxetine 2, and peptidomimetic inhibitor Roche-1 3.

Social phobia, also known as social anxiety disorder, is a highly prevalent disorder with significant morbidity. Patients with social phobia frequently develop co-morbid psychiatric disorders such as depression and substance abuse, and the disorder impacts significantly on social and occupational functioning. It has been suggested that the selective serotonin reuptake inhibitors (SSRIs) are useful in the management of this disorder, but few controlled trials have been undertaken in this regard.

In conclusion, paroxetine is effective and well-tolerated drug candidate for the treatment of depression. It also appears to be a useful alternative to other available agents for the treatment of patients with OCD or panic disorder.

2.2.2 Review of Literature

Literature search revealed that in view of biological importance of (-)-paroxetine 132, several synthetic approaches have been reported, ${ }^{18}$ which are described below.

Amat's approach (2000) ${ }^{19}$

Amat et al. have reported the synthesis of (-)-paroxetine 1a utilizing (R)-phenylglycinol 30 as a chiral starting material. Reaction of (R)-phenylglycinol 30 with methyl 5oxopentanoate 31 gave bicyclic lactam cis-32, which was converted to 33 (LiHMDS, $\left.\mathrm{ClCO}_{2} \mathrm{Bn}, \mathrm{PhSeCl}\right)$ followed by its oxidation with O_{3} to provided unsaturated lactum 34
in two steps. Michael addition of lithium aryl cyanocuprate onto the unsaturated ester 34 gave enantiopure trans-3,4-substituted 2-piperidone derivative 35 in 64% yield. Reductive cleavage of arylated bicyclic lactam 35 produced diol 36 in 75% yield. Debenzylation of $36\left[\mathrm{Pd}(\mathrm{OH})_{2}\right]$ followed by protection by Boc gave 37 in 57% yield. The Boc protected piperidine 37 was mesylated and etherified with sesmol affording 38 in 66 \% yield. Deprotection of N-Boc with TFA generated (-)-paroxetine 1a in 72% yield
(Scheme 11).

Scheme 11: (a) Toluene, $110^{\circ} \mathrm{C}$, azeotropic water removal, $36 \mathrm{~h}, 86 \%$; (b) LiHMDS, $\mathrm{ClCO}_{2} \mathrm{Bn}, \mathrm{PhSeBr}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}, 77 \%$; (c) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; then $\mathrm{O}_{2}, 25$ ${ }^{\circ} \mathrm{C}$; (d) $\mathrm{ArCu}(\mathrm{CN}) \mathrm{Li}$, THF, $-78{ }^{\circ} \mathrm{C}, 64 \%$; (e) (i) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{NH}_{4}$, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}$, then toluene, reflux, 85%; (ii) $\mathrm{AlCl}_{3}, \mathrm{LiAlH}_{4}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to $25{ }^{\circ} \mathrm{C}, 50 \%$; (f) $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2},(t-\mathrm{BuOCO})_{2} \mathrm{O}, \mathrm{EtOAc}, 25{ }^{\circ} \mathrm{C}$, 57%; (g) MsCl, Py, $10^{\circ} \mathrm{C}$, then NaH , sesamol, THF, reflux, 66%; (h) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 72 \%$.

Hayashi's approach (2001) ${ }^{20}$

Hayashi et al. reported the formal synthesis of (-)-paroxetine 1a via Rh-catalyzed Michael addition of aryl boronic acid to 5,6-dihydro-2(1H)-pyridinone 39 to give 4-aryl-2-piperidinone 40 using chiral bisphosphine ligand 42 in 70% yield and 98% ee. The amide moiety in 4-aryl-2-piperidinone 40 was protected to give $\mathbf{4 1}$, the key intermediate for the synthesis of (-)-paroxetine 1a (Scheme 12).

Scheme 12: (a) $\mathrm{Rh}(\mathrm{acac})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ ($3 \mathrm{~mol} \%$), ligand 42 (3.3 mol \%), dioxane: $\mathrm{H}_{2} \mathrm{O}$ (10:1), $40^{\circ} \mathrm{C}, 3 \mathrm{~h}, 98 \%$ ee, 70%; (b) (Boc) $)_{2} \mathrm{O}$, DMAP, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, 82%.

Liu's approach (2001) ${ }^{21}$

Liu et al. have used (S)-methylbenzylamine for the desymmetrization of the prochiral 3substituted glutaric anhydride 46. Diacid 45 was prepared from 4-fluorocinnamic acid methyl ester 43 in three steps (Michael addition to ester 43, hydrolysis of triester 44 followed by decarboxylation of acid). The prochiral 3-substituted glutaric anhydride 46 was then obtained by dehydration of 45 using acetyl chloride. Desymmetrization of meso-3-substituted glutaric anhydride 46 with (S)-methylbenzylamine was achieved in toluene at $-78^{\circ} \mathrm{C}$ generating chiral acid 47 which was further reduced and brominated to bromo 48. It was then cyclized (NaH in THF) leading to piperidin-2-one moiety 49. Acylation of 49 followed by reduction of amide moiety in piperidin-2-one 50 with lithium aluminum hydride afforded 3-hydroxymethylpiperidine 51. Finally, mesylation of
alcohol followed by its etherification with sesomol provided ether 52, which was subjected to deprotection of benzyl amine gave (-)-paroxetine 1a (Scheme 13).

Scheme 13: (a) $\mathrm{NaOMe}, \mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}, \mathrm{MeOH}$, reflux, $20 \mathrm{~h}, 70 \%$; (b)(i) 1 N NaOH , reflux, 20 h ; (ii) conc. HCl , reflux, $20 \mathrm{~h}, 70 \%$ (two steps); (c) AcCl, reflux, $20 \mathrm{~h}, 90 \%$; (d) (S)-methylbenzylamine, $\mathrm{Et}_{3} \mathrm{~N}$, toluene, $-78^{\circ} \mathrm{C}, 10 \mathrm{~h}, 25^{\circ} \mathrm{C}$, $10 \mathrm{~h}, 70 \%$; (e) (i) $\mathrm{Et}_{3} \mathrm{~N}$, isobutyl chloroformate, THF, -78 to $0^{\circ} \mathrm{C}, 20 \mathrm{~h}$; (ii) $\mathrm{NaBH}_{4}, \mathrm{H}_{2} \mathrm{O}, 0-25^{\circ} \mathrm{C}, 20 \mathrm{~h}, 86 \%$; (iii) PBr_{3}, conc. $\mathrm{HBr}, 0-25^{\circ} \mathrm{C}, 4$ days, 70%; (f) NaH , THF, reflux, $20 \mathrm{~h}, 85 \%$; (g) LDA, $\mathrm{MeO}_{2} \mathrm{CCN}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$, $4 \mathrm{~h}, 80 \%$; (h) LiAlH_{4}, THF, reflux, $72 \mathrm{~h}, 65 \%$; (i) (i) $\mathrm{MsCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$, 20 h ; (ii) sesamol, $\mathrm{Na}, n-\mathrm{PrOH}$, reflux, 36 h; (j) (i) $\mathrm{HCl}, 64 \%$; (ii) $10 \% \mathrm{Pd} / \mathrm{C}$, H_{2} (1 atm), $\mathrm{MeOH}, 68 \%$.

Beak's approach (2001) ${ }^{22}$

Beak et al. have used sparteine-mediated asymmetric addition of allyl amine onto nitroalkene 54. Conjugated addition of N-Boc protected allyl amine $53[n-\mathrm{BuLi}$ in the presence of (-)-sparteine under standard conditions] onto nitroalkene 54 provided the desired enecarbamate (S, S)-55 in 83% yield as a single diastereomer. Hydrolysis of 55 followed by its reduction with NaBH_{4} provided the nitro alcohol 56 in 88% yield.

Reduction of the nitro functionality via transfer hydrogenation and subsequent Bocprotection afforded 57 in 95% yield. Cyclization and deprotection of 57 afforded 58a in 83% yield. Mesylation of 58a followed by displacement with sesamol and subsequent deprotection gave 1a in 72% yield and 97% de (11 steps, 41% from 53) (Scheme 14).

Scheme 14: (a) $n-\mathrm{BuLi}$ (1 equiv.), (-)-sparteine (1.2 equiv.), toluene, $-78^{\circ} \mathrm{C}$, de 99%, 83%; (b) (i) $\mathrm{HCl}, \mathrm{CHCl}_{3}, 25^{\circ} \mathrm{C}$.; (ii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 86 \%$; (c) (i) cat. $\mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{NH}_{4}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$; (ii) $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 95$ $\%$; (d) (i) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (ii) KOt -Bu, THF, reflux, 12 h .; (iii) $\mathrm{TBAF}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 83 \%$; (e) (i) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (ii) NaH , sesamol, DMF, $100^{\circ} \mathrm{C}, 6 \mathrm{~h}$.; (iii) TFA, MeOH, $25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 97 \%$ de, 72%.

Guisan's approach (2002) ${ }^{23}$

Guisan et al. have reported a formal synthesis of (-)-paroxetine via enantioselective hydrolysis of racemic piperidin-2-one ester 59 using a commercially available lipase from C. antarctica A (CAL-A) with a substrate concentration of 50 mM . The chiral acid 60 was separated from ester 61, and could be transformed to (-)-paroxetine by known sequence of reactions (Scheme 15).

Scheme 15: (a) CAL-A, $\mathrm{Na}_{3} \mathrm{PO}_{4}(5 \mathrm{ml}, 10 \mathrm{mM}, \mathrm{pH} 7), 45^{\circ} \mathrm{C}$, substrate concentration $2 \mathrm{mM}, 50 \mathrm{~h}, 45 \%$.

Yu's approach (2003) ${ }^{24}$

Yu et al. have reported the synthesis of (-)-paroxetine using dynamic kinetic resolution of prochiral diester 63. Thus, 4-fluorobezaldehde was converted to bis-ester 63, which was subjected to enzymatic hydrolysis with pig liver esterase to afford optically active acid ester $\mathbf{6 4}$ in 86% yield and 95% ee. Selective reduction of the acid functionality in $\mathbf{6 4}$ with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ provided alcohol 65, which was further mesylated and treated with benzylamine to provide the lactam 66 in 82% yield and 99% ee. Acylation of lactam 66 afforded 67 (88\%). Reduction of 67 with either LAH (71\%) or BH_{3}.THF in refluxing THF (92%) gave amino alcohol 68. Etherification (80%) followed by hydrogenolysis of the benzyl group in 69 (93\%) completed the synthesis of (-)-paroxetine 1a (Scheme 16).

Scheme 16: (a) (i) diethyl malonate , $\mathrm{NaOH}, 150{ }^{\circ} \mathrm{C}, 75 \%$; (ii) aq. $10 \% \mathrm{HCl}$, $\mathrm{MeOH}, 60^{\circ} \mathrm{C}, 75 \%$; (b) PLE (pig liver esterase) ($p \mathrm{H} 7.0$), $10 \% \mathrm{aq}$. acetone, 95% ee, 86%; (c) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{THF}, 94 \%$; (d) (i) $\mathrm{MsCl}^{2}, \mathrm{Et}_{3} \mathrm{~N}$, toluene; (ii) $\mathrm{BnNH}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, toluene, 99% ee, 82%; (e) $\mathrm{NaH}, \mathrm{NaOMe}$, (MeO) $)_{2} \mathrm{CO}$, toluene, $100{ }^{\circ} \mathrm{C}, 88 \%$; (f) $\mathrm{BH}_{3} \cdot \mathrm{THF}, 93 \%$; (g) (i) MsCl , $\mathrm{Et}_{3} \mathrm{~N}$, toluene; (ii) sesamol, NaH , DMF, $60^{\circ} \mathrm{C}$, 80%; (h) (i) cat. 5% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(70 \mathrm{psi}),{ }^{i} \mathrm{PrOH}, \mathrm{AcOH}$; (ii) HCl gas.

Murthy's approach (2003) ${ }^{25}$

Murthy et al. have used the asymmetric conjugate addition of 4-fluorophenylmagnesium bromide 71 onto chiral α, β-unsaturated ester 70 to produce chiral adduct 72 in 80% yield (98:2 de), for the formal synthesis of 3,4-disubstituted piperidine, a key intermediate in the synthesis of (-)-paroxetine (1a). The most selective auxiliary was found to be Oppolzer's (1S)-(-)-camphorsultam 73 (Scheme 17).

Scheme 17: (a) 70 (1 equiv.), 71 (1.3 equiv.), $\mathrm{Et}_{2} \mathrm{O}$:toluene (1:1), $-10^{\circ} \mathrm{C}, 4 \mathrm{~h}, 80 \%$.

Chang's approach (2003) ${ }^{26}$

Chang et al. have used conjugated addition of $\mathbf{7 4}$ onto the unsaturated ester $\mathbf{7 5}$ to prepare N-alkyl-3-sulfonyl glutarimide 76. This was then subjected for selective reduction of amide moiety in 76 gave 4-substituted 3-sulfonyl- δ-lactams 77. Further, desulfurization with $\mathrm{Na}-\mathrm{Hg}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ led to 78, an important intermediate in the synthesis of (\pm)paroxetine 1 (Scheme 18).

Scheme 18: (a) $\mathrm{NaH}, \mathrm{THF}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 75 \%$; (b) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{LiAlH}_{4}, \mathrm{THF}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 76$ $\%$; (c) $\mathrm{Na}-\mathrm{Hg}, \mathrm{Na}_{3} \mathrm{PO}_{4}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$.

Simpkins's approach (2003) ${ }^{27}$

Simpkins's approach involves asymmetric desymmetrisation of prochiral imide 79 using a chiral lithium amide base $\mathbf{8 4}$ in its bis-lithiated form, which produced the desired imide $\mathbf{8 0}$ in 71% yield, with 97% of ee as a single diastereoisomer. Reduction of imide $\mathbf{8 0}$ (97% ee) gave piperidine alcohol $\mathbf{8 1}$, to which the appropriate sesamol side-chain was introduced by conventional means, via the intermediate mesylate 82. Deprotection of the piperidine nitrogen then gave the desired drug substance 1a as the free amine after base treatment in 54 \% yield (Scheme 19).

83

Scheme 19: (a) n - BuLi (1 equiv.), (-) sparteine (1.2 equiv.), toluene, $-78^{\circ} \mathrm{C}, 97$ $\%$ ee, 71%; (b) LiAlH_{4} (5 equiv.), THF, reflux, $12 \mathrm{~h}, 90 \%$; (c) MsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 72 \%$; (d) sesamol (5 equiv.), NaOMe (5 equiv.), $\mathrm{MeOH}, 12 \mathrm{~h}, 55 \%$; (e) (i) $\mathrm{CH}_{3} \mathrm{CHClOCOCl}, 0$ to $25^{\circ} \mathrm{C}$ and then reflux 3 h ; (ii) $\mathrm{MeOH}, \mathrm{NaOH}$, reflux, $2 \mathrm{~h}, 54 \%$.

Takasu's approach (2003) ${ }^{28}$

Takasu et al. have reported recemic synthesis of paroxetine making use of intermolecular aza-double Michael addition of unsaturated amide $\mathbf{8 5}$ with methyl acrylate (TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}$ in tert- BuOH :dichloroethane) leading to functionalized piperidin-2-one 86 as a
mixture of anti and syn. Without separation, epimerization of $\mathbf{8 6}(\mathrm{NaOMe})$ was achieved to give trans-86 followed by its reduction with LiAlH_{4} furnished the known piperidinol 87, (Scheme 20).

Scheme 20: (a) TBSOTf (1.2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (0.7 equiv.), tertBuOH (0.25 equiv.), $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 25{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{NaOMe}, \mathrm{MeOH}:$ toluene, reflux (58\% for two steps); (b) LiAlH_{4} (2 equiv.), THF, reflux, 56%.

Buchwald's approach (2003) ${ }^{29}$

Buchwald et al. have employed $\mathrm{Cu}(\mathrm{I}) / p$-tolBINAP as catalyst for the enantioselective 1,4-reduction of lactams, as shown in Scheme 21. 4-Fluoro-3-chloropropiophenone (88) was converted to aminoketone 89 followed by amidation gave amide 90. Subsequently, condensation followed by decarboxylation was achieved (NaOMe) to provide unsaturated lactam 91 in 76% yield. The lactam 91 was subjected to asymmetric reduction [catalyst $\mathrm{Cu}(\mathrm{I}) / p$-tolBINAP, PMHS in tert-AmOH $\}$ to give 92 in 90% yield and 90% ee. This intermediate 92 was converted to $\mathbf{9 4}$ in two steps (81% overall yield) using previously
reported conditions. The oxidative removal of the PMP functionality to give amine 95 which was protected as its carbamate with $(\mathrm{Boc})_{2} \mathrm{O}$ affording 96 in 75% yield. Etherification with 97 followed by deprotection of N-Boc group in 96 gave 1a in 52% (Scheme 21).

Scheme 21: (a) PMPNH_{2} (1.1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv), THF, reflux, 75%; (b) $\mathrm{ClCOCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ (1.1 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (sat), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (c) NaOEt (4 equiv), EtOH , reflux, 74% (two steps). (d) PMHS (16 equiv), t AmOH (16 equiv), (S)-p-tol-BINAP ($0.5 \mathrm{~mol} \%$), CuCl_{2} (2.5 mol $\%$), t - $\mathrm{BuONa}\left(5 \mathrm{~mol} \%\right.$), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$, air, $23{ }^{\circ} \mathrm{C} 90 \%, 90 \%$ ee. (e) NaH (6 equiv), MeOH (3 equiv), (MeO$)_{2} \mathrm{CO}$ (3 equiv), toluene, reflux, 86%. (f) $\mathrm{BH}_{3}, \mathrm{THF}$, reflux, 97%. (g) CAN (4 equiv), $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (3:1). (h) (Boc) $)_{2} \mathrm{O}$ (2.0 equiv), NaOH (1.5 equiv), toluene, $\mathrm{H}_{2} \mathrm{O}$, 75% (two steps). (i) 97 (1.3 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv), xylene, $130{ }^{\circ} \mathrm{C}$; (ii) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 52 \%$ (two steps).

Kobayashi's approach (2004) ${ }^{30}$

In Kobayashi's approach, trans-cyclopentene derivative 101 was prepared from monoacetate 99 by a sequence of reactions: (i) $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{MgCl} / \mathrm{CuCN}$ (cat.), 87%; (ii) $\mathrm{AcOH}, \mathrm{DIAD}, \mathrm{PPh}_{3}, 90 \%$; (iii) ($i-\mathrm{PrO}$) $\mathrm{Me}_{2} \mathrm{SiCH}_{2} \mathrm{Cu} \cdot \mathrm{MgICl}$ (3 equiv), THF, $2 \mathrm{~h}, 90 \%$ to produce 101. Ozonolysis of $\mathbf{1 0 1}$ proceeded well in n - PrOH to afford the diol in 85% yield
after reductive workup with NaBH_{4}. Subsequently, diol was converted into iodide and finally, on treatment with BnNH_{2} at $115^{\circ} \mathrm{C}$ for 2 h in dioxane produced trans piperidine 102 in 54% overall yield. Deprotection of piperidine 102 followed by etherification produced (-)-paroxetine 1a in 70 \% yield and 80% ee (Scheme 22).

102

Scheme 22: (a) (i) 4-F-C $\mathrm{C}_{4} \mathrm{MgCl}$ (3 equiv), CuCN (0.3 equiv), THF, 25
${ }^{\circ} \mathrm{C}, 87 \%$; (ii) $\mathrm{MeOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, DIAD, $\mathrm{PPh}_{3},-78{ }^{\circ} \mathrm{C}, 90 \%$; (b) (i) $(i \mathrm{PrO}) \mathrm{Me}_{2} \mathrm{SiCH}_{2} \mathrm{Cu} \cdot \mathrm{MgICl}(3$ equiv), THF, $2 \mathrm{~h}, 90 \%$; (ii) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{KF}, \mathrm{KHCO}_{3}, 60-65{ }^{\circ} \mathrm{C}$; (c) (i) $\mathrm{O}_{3},-70{ }^{\circ} \mathrm{C}$ then $\mathrm{Me}_{2} \mathrm{~S}$; (ii) $\mathrm{NaBH}_{4}, 0{ }^{\circ} \mathrm{C}$; (iii) I_{2}, imidazole, PPh_{3}; (iv) BnNH_{2}, dioxane, $115^{\circ} \mathrm{C}, 60 \%$; (d) (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (ii) H_{2}, (t$\mathrm{BuOCO})_{2} \mathrm{O}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{EtOAc}, 25^{\circ} \mathrm{C}, 50 \%$; (iii) MsCl , Py, $10^{\circ} \mathrm{C}$, then NaH , sesamol, THF, reflux, 70\%; (iv) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 70 \%$.

Nemes's approach (2004) ${ }^{31}$

Nemes et al. have employed the resolution of alcohol strategy for the synthesis of (-)paroxetine. Thus, Grignard reaction of p-fluorophenyl magnesium bromide 104 onto N -benzyl,4-piperidinone 103 followed by dehydration provided olefin 105 in 73% yield. The Prins reaction of $\mathbf{1 0 5}$ afforded racemic tetrahydropyridine-3-methanol 106, which was subjected to classical resolution (-)-dibenzyl tartarate providing (-)-106 in 41\% yield. The stereoselective reduction $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}\right)$ led to cis-piperidine-3-methanol $(3 R, 4 R)-107$. Further, it was converted to (-)-paroxetine 1a with known sequence of reactions (Scheme 23).

1a

Scheme :23 (a) THF, toluene; (b) $p-\mathrm{TsOH}, \mathrm{ClC}_{6} \mathrm{H}_{5}$, reflux, $3 \mathrm{~h}, 73 \%$; (c) $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 60 \%$; ; (d) (-)dibenzoyltartaric acid, acetone; (e) (i) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, $\mathrm{AcOH}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}, 78 \%$; (ii) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, (iii) (-)dibenzoyltartaric acid, acetone; (f) $\mathrm{MeSO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (g) NaOH, $\mathrm{H}_{2} \mathrm{O}$, xylene, ${ }^{s} \mathrm{BuOH}, 140{ }^{\circ} \mathrm{C}$; (h) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(5 \mathrm{~atm}), i \mathrm{PrOH}, 40^{\circ} \mathrm{C}$.

Sudalai's approach (2005) ${ }^{32}$

In our previous approach, we described CoCl_{2} catalyzed asymmetric reduction of γ -cyano- α, β-unsaturated ester 112 to afford key lactam 113 for the formal syntheis of (-)paroxetine. The unsaturated ester 110, prepared from 4-fluoro acetophenone (109), was subjected to allylic bromination (catalytic AIBN, NBS) to give 111. Displacement of the bromide group in 111 with cyanide (NaCN in DMF) gave nitrile 112. Asymmetric reduction of $\mathbf{1 1 2}$ with catalytic amount of CoCl_{2} usinng chiral ligand $\mathbf{1 1 4}$ provided $\mathbf{1 1 3}$ in 99\% yield and 86\% ee (Scheme 24).

Scheme 24: (a) (i) Ethyl bromo acetate (12 mmol.$), \mathrm{ArCOCH}_{3}(10 \mathrm{mmol}), \mathrm{Zn}$ dust (12 mmol), dry benzene, $80^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (ii) p-TSA ($10 \mathrm{~mol} \%$), benzene, Dean-Stark, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 80 \%$; (b) AIBN ($10 \mathrm{~mol} \%$), NBS, CCl_{4}, reflux, $12 \mathrm{~h}, 84$ \%; (c) NaCN , dry DMF, $25^{\circ} \mathrm{C}, 81 \%$; (d) cyano ester (1 mmol), CoCl_{2} ($1 \mathrm{~mol} \%$), Ligand 114 ($1.1 \mathrm{~mol} \%$), $\mathrm{NaBH}_{4}(4 \mathrm{mmol})$, DMF: $\operatorname{EtOH}(1: 1), 25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 99 \%, 86 \%$ ee.

Krische's approach (2006) ${ }^{33}$

Krische et al. have reported the racemic synthesis of paroxetine 1. Reduction of conjugated double bond in α-aryl tetrahydropyridine $\mathbf{1 1 5}$ produced saturated ketone 116

Scheme :25 (a) L-Selectride, THF, $-78{ }^{\circ} \mathrm{C}, 87 \%$; (b) $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{OMeCl}$, NaHMDS, THF, $0^{\circ} \mathrm{C}$, 65%; (c) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, THF, $50{ }^{\circ} \mathrm{C}$; (d) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 63 \%$ over two steps.
followed by Wittig reaction gave vinyl ether 117 in good yields. Finally, hydrolysis of vinyl ether to aldehyde its subsequent reduction gave the known alcohol 81 (Scheme 25).

Jørgensen's Approach (2006) ${ }^{34}$

Jørgensen et al. have used organocatalytic route for the synthesis of paroxetine which involving Michael addition of dibenzyl malonate 121 onto (E)-3-(4-fluorophenyl) acrylaldehyde (120) to giving dibenzyl 2-[(S)-1-(4-fluorophenyl)-2-formylethyl]malonate (122). Reductive amination of aldehyde 122 with benzyl amine followed by intramolecular cyclization gave lactum 123. Further, reduction of ester and amide groups in 123 was achieved with LiAlH_{4} to produce the known intermediate 81 (Scheme 26).

Scheme 26: (a) 10% catalyst $\mathrm{EtOH}, 0^{\circ} \mathrm{C}$ (b) $\mathrm{PhCH}_{2} \mathrm{NH}_{2}, \mathrm{NaBH}(\mathrm{OAc})_{3}$, dioxane, 70%; (c) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 85 \%$.

Correia's approach (2006) ${ }^{35}$

Correia et al. have reported racemic synthesis of paroxetine utilizing Heck arylation of α, β-unsaturated ester 124 to afford tetrahydopyridine 125. Reduction of double bond to give syn-piperidine 126 followed by epimerization and hydrolysis gave acid 127. Chemoselective reduction of acid 127 was achieved to provide alcohol 128 which was
transformed to ether 129. Finally deprotection of methyl carbamate gave paroxetine $\mathbf{1}$
(Scheme 27).

Scheme :27
(a) $\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), 4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{BF}_{4}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(1: 1), 60$ ${ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 74 \%$; (b) $\mathrm{Mg}, \mathrm{MeOH}$, ultrasound, $24 \mathrm{~h}, 100 \%$; (c) $\mathrm{CH}_{3} \mathrm{ONa}, \mathrm{MeOH}, 6{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 64 \%$; (d) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, THF, $25^{\circ} \mathrm{C}$, 84\%; (e)(i) $\mathrm{MeSO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$;(b) NaH , sesamol, DMF, reflux, $3 \mathrm{~h}, 56 \%$.

Gallagher's approach (2007) ${ }^{36}$

Gallagher et al. have used [(S)-Cl-MeO-BIPHEP]Ru-(cymene)Cl as catalyst in the asymmetric reduction of β-keto ester 130 to form the corresponding β-hydroxy ester 131 in 97% ee. Amidation of ester in 131 was carried out by treating benzyl amine with 131 in presence of $\mathrm{Et}_{3} \mathrm{Al}$ followed by its reduction with LiAlH_{4} afforded amino alcohol 132. Treatment of amino alcohol 132 with SOCl_{2} gave sulfonamide 133, which on
nucleophilic substitution with dibenzyl malonate gave the known lactam 86 with 97% ee (Scheme 28).

Scheme 28: (a) [((S)-Cl-MeO-BIPHEP)Ru-(cymene)Cl]Cl-CH2Cl $2_{2}(0.5 \mathrm{~mol} \%), \mathrm{H}_{2}(8$ bar), MeOH, $60^{\circ} \mathrm{C}, 95 \%$; (b) (i) $\mathrm{AlMe}_{3}, \mathrm{BnNH}_{2}, \mathrm{PhMe}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, 100%; (ii) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux, 98%; (c) (i) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}, 95 \%$; (ii) $\mathrm{RuCl}_{3}\left(0.25 \mathrm{~mol} \%\right.$), $\mathrm{NaIO}_{4}, \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C}, 87 \%$; (d) dimethyl malonate, $\mathrm{NaH}, \mathrm{DMF}, 60^{\circ} \mathrm{C}$; then 5 M HCl ; then $\mathrm{PhMe}, 110^{\circ} \mathrm{C}, 70 \%$; (e) (i) LiAlH_{4}, THF, reflux; (ii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) sesamol, NaH, DMF, $90^{\circ} \mathrm{C}, 52 \%$ over 3 steps; (iv) $10 \% \mathrm{Pd} / \mathrm{C}(35 \%)$, H_{2} (6 bar), ${ }^{i} \mathrm{PrOH}, \mathrm{AcOH}, 50^{\circ} \mathrm{C}$, then aq. $\mathrm{HCl},{ }^{i} \mathrm{PrOH}(82 \%)$.

Ikariya's approach (2007) ${ }^{37}$

Ikariya's approach describes asymmetric hydrogenation of prochiral glutarimides 134 with a chiral Ru-catalyst 138 catalyst to give chiral amido alcohol 135. Subsequently alcohol 135 was transformed to the corresponding bromide and its intramolecular cyclization using NaH to obtain chiral amide 136. Deprotection of N-aryl amine in 136 was achieved using CAN to afford the known amide 137.

$\left.\begin{array}{l}136, \mathrm{R}=\left(3,4-\mathrm{OCH}_{2} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{3} \\ 137, \mathrm{R}=\mathrm{H}\end{array}\right) \mathrm{c}$ $\mathrm{R}=\left(3,4-\mathrm{OCH}_{2} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{3}$

135

138

Scheme 29: (a) Catalyst. 138 ($10 \mathrm{~mol} \%$), H_{2} (3 Mpa), KOt - $\mathrm{Bu},{ }^{i} \operatorname{PrOH}, 80{ }^{\circ} \mathrm{C}$, (b)(i) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 14 \mathrm{~h}, 65 \%$; (ii) NaH , THF, $85^{\circ} \mathrm{C}, 24 \mathrm{~h}$, 54%; (c) CAN, $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 35 \%$.

Chavan's approach (2007) ${ }^{38}$

Chavan et al. have reported racemic formal synthesis of paroxetine 1. Amino diester 139, prepared by double Michael addition of benzyl amine onto methyl acrylate. It was then subjected to Dieckmann condensation to give ketoester 140, which was reduced and β hydroxy ester 141. This hydroxyester underwent simultaneous elimination after mesylation to afford the olefin 142. Benzyl group in 142 was then exchanged with methyl carbamate 143, followed by Heck arylation of 143 furnished the known intermediate 125 in moderate yields (Scheme 29).

141

$$
\left.\begin{array}{l}
142, \mathrm{R}=\mathrm{Bn} \\
143, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}
\end{array}\right\} \mathrm{e} \quad 125, \mathrm{Ar}=4-\mathrm{FC}_{6} \mathrm{H}_{4}
$$

Scheme 30: (a) $\mathrm{Et}_{3} \mathrm{~N}$, reflux (neat), overnight, 90%; (b) $\mathrm{NaH}, \mathrm{PhH}$, reflux, 3 h , 82%; (c) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25$ ${ }^{\circ} \mathrm{C}$, overnight, 75% (for two steps); (e) $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 80 \%$; (f) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NBr}, 120^{\circ} \mathrm{C}, 2 \mathrm{~d}$;

Hamada's approach (2007) ${ }^{39}$

Hamada's approach describes the use of Ir-catalyzed asymmetric malonate addition onto allylic carbonate $\mathbf{1 4 4}$ with chiral diaminophosphine oxide $\mathbf{1 5 0}$ as a ligand affording 145 in $\mathbf{9 2 \%}$. Hydroboration of olefin $\mathbf{1 4 5}$ gave alcohol $\mathbf{1 4 6}$ followed by its conversion to an azide $\mathbf{1 4 7}$ via mesylate (90% yield). Azide 147 was then treated with Lindlar's catalyst in toluene $/ \mathrm{MeOH}$ (5/1) under hydrogen atmosphere to provide lactam $\mathbf{1 4 8}$ in 93% yield as a single diastereomer (anti/syn = >99/1). Subsequent reduction of 148 with $\mathrm{BH}_{3} \cdot$ THF complex gave (-)-149 in 99\%yield (Scheme 30).

150

Scheme :30 (a) Ir cat. ($5 \mathrm{~mol} \%$), ligand 150 ($5 \mathrm{~mol} \%$), NaPF_{6} ($10 \mathrm{~mol} \%$), LiOAc (10 mol \%), dimethyl malonate (3 eq), BSA (3 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$; (b) $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(2 \mathrm{~mol} \%), 9-\mathrm{BBN}, \mathrm{THF}$, rt then $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{pH} 7$ buffer, 85%; (c) (i) $\mathrm{MsCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}$; (ii) $\mathrm{NaN}_{3}, \mathrm{DMF}, 50{ }^{\circ} \mathrm{C}, 90 \%$ (2 steps); (d) Lindlar's cat. H_{2}, toluene: $\mathrm{MeOH}(5: 1), 25^{\circ} \mathrm{C}, 93 \%(\mathrm{dr}=>99: 1)$; (e) $\mathrm{BH}_{3} \cdot \mathrm{THF}$, THF, reflux , 99%.

Dixon's approach (2008) ${ }^{40}$

Dixon et al. have used Michael addition of malonate nucleophile onto nitro olefin 151 catalyzed by a bifunctional organo-catalyst 154 for obtaining nitro diester 152 in 92% yield and 99% ee. Nitro derivative 152 was then subjected to nitro-Mannich lactamization (HCHO, BnNH_{2} in MeOH) to give lactum 153. Further decarboxylation and reductive removal of nitro group was achieved with tributyltin hydride and AIBN to afford the known lactum 81 (Scheme 31).

154

Scheme: 31 (a) $\mathrm{CH}_{3} \mathrm{NO}_{2}, \mathrm{NH}_{4} \mathrm{OAc}$, reflux, $24 \mathrm{~h}, 92 \%$; (b) catalyst 154, dimethyl malonate, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 72 \mathrm{~h}, 92 \%, 99 \%$ ee.(c) HCHO (37% solution in water), benzylamine, MeOH , reflux, $16 \mathrm{~h}, 68 \%$; (d) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, $110^{\circ} \mathrm{C}, 78 \%$.

2.2.3 Present Work

2.2.3.1 Objective

Literature search revealed that several strategies such as classical resolution, chemoenzymatic and enantioselective synthesis have been reported for the synthesis of (\pm) paroxetine (1) (vide supra). However, these methods suffer broadly from disadvantages such as low overall yields, the need for separation of diastereoisomers and the use of expensive reagents. In this context, a more practical approach for the synthesis of (\pm)paroxetine (1) is highly desirable.

2.2.3.2 Results and Discussion

Retrosynthetic analysis reveals that, for the synthesis of (\pm)-paroxetine 1, alcohol 58 could be taken as the key intermediate, which may be readily prepared from the corresponding acid 155 . We further visualized that acid 155 could be prepared by the reduction followed by base catalyzed epimerization of unsaturated ester 29a. The preparation of 29a via Pd-catalyzed Suzuki-Miyaura coupling of enol tosylate 27 with boronic acid 28a, has already been described in Section 1 of this chapter.

Scheme 32: Retrosynthetic analysis of (\pm)-paroxetine 1

The synthetic route for the synthesis of (\pm)-paroxetine is depicted in Scheme 33. Initially, we were interested in the asymmetric reduction of $\mathrm{C}=\mathrm{C}$ bond in tetrahydropyridine derivative 29a. For such reductions, we employed several catalytic conditions [catalyst CoCl_{2}, semicorrin ligand in combination with NaBH_{4} and $\mathrm{RuCl}_{2} \cdot \mathrm{BINAP}$ and $\mathrm{H}_{2}(700$
psig)]. However, unsaturated ester 29a failed to undergo reduction. This is probably due to the presence of have tetrasubstituted $\mathrm{C}=\mathrm{C}$, conjugation of $\mathrm{C}=\mathrm{C}$ bond with ester carbonyl and N-Boc moieties that resist chiral reduction. However, simple, non-chiral hydrogenation of 29a [10\% Pd/C, $\mathrm{H}_{2}(1 \mathrm{~atm})$ in MeOH$]$ was achieved to give saturated ester, which was subjected to basic hydrolysis without purification (tert-BuOK in refluxing $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$) to produce anti acid 155 in 93% yield.

29a

59

155
55
(\pm)-1

$\left.\begin{array}{l}58, \mathrm{R}=\mathrm{H} \\ 59, \mathrm{R}=\mathrm{Ms}\end{array}\right\} \mathrm{d}$

Scheme 33: (a) $\mathrm{H}_{2}(1 \mathrm{~atm}), 10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%)$, $\mathrm{MeOH}, \mathrm{RT}, 24 \mathrm{~h} .99 \%$; (b) ${ }^{\mathrm{t}} \mathrm{BuOK}$, $\mathrm{MeOH}, 65^{\circ} \mathrm{C}, 12 \mathrm{~h} .93 \%$; (c) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, THF, $0{ }^{\circ} \mathrm{C}, 12 \mathrm{~h} .91 \%$; (d) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{RT}, 3 \mathrm{~h}$; (e) sesamol 11, NaH, DMF, $110{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then $16 \mathrm{~h}, 25$ ${ }^{\circ} \mathrm{C}, 91 \%$; (f) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2} 0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 82 \%$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of acid 155 showed typical signals at $\delta 1.54-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.63$ $2.95(\mathrm{~m}, 4 \mathrm{H})$ and 4.19-4.43 ($\mathrm{dd}, 2 \mathrm{H})$ corresponding to three methylene $\left(\mathrm{CH}_{2}\right)$ and a pair of methine (CH) protons of piperdine ring. Its ${ }^{13} \mathrm{C}$ NMR showed characteristic signals at

Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR spectra of acid 155
$\delta 32.65,43.88$ and 46.15 due to three methylene $\left(\mathrm{CH}_{2}\right)$ carbons and signals at $\delta 44.34$ and 48.57 due to two methine $(\mathbf{C H})$ carbons respectively. Also a typical carbonyl signal at δ 176.6 in its ${ }^{13} \mathrm{C}$ NMR and a strong absorption band at $1712 \mathrm{~cm}^{-1}$ in its IR specrum confirmed the presence of carboxylic acid functionality in 155 (Fig. 7).

Chemoselective reduction of carboxylic acid function in 155 with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in dry THF gave the key alcohol 58 in 91% yield. Free alcohol moiety in 58 was protected as its mesylate followed by its displacement with sesamol gave the Boc-protected (\pm)paroxetine 59. Finally, deprotection of N-Boc group in 59 was achieved to obtain (\pm)paroxetine $\mathbf{1}$ in 87% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic signals at $\delta 5.87$ for methylene protons ($-\mathrm{OCH}_{2} \mathrm{O}-$) and disappearance of signals for tert-butyl group confirms the formation of (\pm)-paroxetine 1 (Fig. 8). The spectral values of (\pm)-paroxetine $\mathbf{1}$ are in complete agreement with the reported values. ${ }^{19}$

Fig. 8: ${ }^{1} \mathrm{H}$ NMR spectrum of ($\mathbf{\pm}$)-paroxetine (1)

The synthetic route for the formal synthesis of (\pm)-femoxetine 2 is presented in Scheme 34. Reduction of $\mathrm{C}=\mathrm{C}$ bond in $\mathbf{2 9 b}\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm})\right.$ in MeOH$)$ was achieved to give the saturated ester, which was subjected to in situ hydrolysis (tert-BuOK in MeOH: $\mathrm{H}_{2} \mathrm{O}$) to give the anti acid 156 in 93% yield. Chemoselective reduction of acid 156 with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in dry THF gave the known alcohol 157 in 91% yield. The further transformation of 157 into (\pm)-femoxetine 2 has been reported in the literature ${ }^{19}$ (Scheme 34).

Scheme 34: (a) $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%), \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}, \mathrm{RT}, 24 \mathrm{~h} .99 \%$; (b) ${ }^{t} \mathrm{BuOK}$, $\mathrm{MeOH}, 6{ }^{\circ} \mathrm{C}, 12 \mathrm{~h} .93 \%$; (c) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, THF, $0^{\circ} \mathrm{C}, 12 \mathrm{~h} .91 \%$.

2.2.4 Conclusion

In conclusion, we have successfully developed a simple and practical method for the synthesis of (\pm)-paroxetine (1) and a formal synthesis of (\pm)-femoxetine (2), which are important anti-depressant drugs presently sold in the market. The method described, here in is an elegant one with a high overall yield, employing Suzuki reaction of enol tosylate 27 with the corresponding boronic acid 28 as the key steps.

2.2.5 Experimental section

General procedure for the preparation of (土)-1-(tert-butoxycarbonyl)-4-aryl-piperidine-3-carboxylic acid (155-156):

To a solution of 29a or 29b (3 mmol) in 10 mL of methanol, $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ was added. It was then stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 12 h . After completion of the reaction (monitored by TLC), reaction mixture was then passed through celite and concentrated under reduced pressure. To this reduced product methanol (10 mL) and tert-BuOK (1 g) were added. The reaction mixture was then refluxed for 12 h . After completion of the reaction (monitored by TLC), methanol was distilled off under reduced pressure and a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added. The aqueous layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine solution $(2 \times 20 \mathrm{~mL})$, dried over unhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude acid product. Chromatographic purification [silica gel (230-400 mesh) petroleum ether: ethyl acetate (70:30) as eluent] of crude product gave acid 155 and 156 in pure form.

1-(tert-Butoxycarbonyl)-4-(4-fluorophenyl)piperidine-3-carboxylic acid (155):
Yield: 93%; Gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $757,1161,1215,1427,1512,1712,3442 \mathrm{~cm}^{\mathbf{- 1}} ; \mathbf{1} \mathbf{H} \mathbf{N M R}$ (200 MHz, CDCl_{3}): $\delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.95(\mathrm{~m}, 4 \mathrm{H}), 4.19-4.50(\mathrm{dd}$, $J=12.1,12.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-7.00(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=5.4,8.7 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 28.2,32.6,44.3,46.1,48.5,80.4,115.05-115.47(\mathrm{~d}, J=21.2$ $\mathrm{Hz}), 128.59-128.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 138.17-138.23(\mathrm{~d}, J=3.29 \mathrm{~Hz}), 154.52$, 159.15$184.01(\mathrm{~d}, J=244.0 \mathrm{~Hz}), 176.6$; Analysis for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{FNO}_{4}$ requires C, $63.14 ; \mathrm{H}, 6.86 ; \mathrm{N}$, 4.33; found C, 63.11; H, 6.82; N, 4.35\%.

Yield:93\%; Gum, IR (CHCl_{3}): 763, 1224, 1280, 1446, 1714, 1714, $3411 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.90(\mathrm{~m}, 4 \mathrm{H}), 4.25-4.57$ (dd, J $=12.4,12.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.27(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.4,28.2,43.1$, 45.3, 46.5, 51.0, 79.4, 126.5, 127.3, 128.1, 142.3, 154.3, 171.9; Analysis for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$ C, $66.86 ; \mathrm{H}, 7.59 ; \mathrm{N}, 4.59$; found C, $66.62 ; \mathrm{H}, 7.33 ; \mathrm{N}, 4.41 \%$.

A general procedure for preparation of (\pm)-tert-butyl 4-aryl-3-(hydroxymethyl)piperidine-1-carboxylate:

To the stirred solution of acids 155 or $156(2 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$, was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(3 \mathrm{mmol})$ dropwise with syringe at $0{ }^{\circ} \mathrm{C}$ under N_{2} atomosphere and allowed for stir for 12 h at $25^{\circ} \mathrm{C}$. After completion of reaction (monitored by TLC), methanol (5 mL) was added and allowed to stir for 30 min at $25^{\circ} \mathrm{C}$. To the reaction mixture, water (50 mL) and ethyl acetate $(50 \mathrm{~mL})$ were added. The organic layer was separated and aqueous layer was extracted with ethyl acetate ($2 \times 25 \mathrm{~mL}$). The combined organic layer was washed with brine solution ($2 \times 25 \mathrm{~mL}$), dried over unhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to give the crude alcohols. Chromatographic purification [silica gel (230-400 mesh) petroleum ether: ethyl acetate (70:30) as eluent] of the crude products gave alcohols 58 and 157 in pure form.
tert-Butyl 4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine-1-carboxylate (58):
Yield: 91\%; colorless solid; mp: $145-147{ }^{\circ} \mathrm{C}$; IR (KBr): 754, 835, 1028, 1668, 1601, 1345, 1263, 1229, 1257, 1114, 3032, $3448 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.47(\mathrm{~s}$, $9 H), 1.54-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.95(\mathrm{~m}, 4 \mathrm{H}), 3.30-3.50(\mathrm{~m}, 2 \mathrm{H}), 6.91-7.00(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.25,32.65,43.88,44.34$, 46.15, 48.57, $80.42,115.05-115.47(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 128.59-128.75(\mathrm{~d}, J=7.7 \mathrm{~Hz})$,
138.17-138.23 (d, $J=3.3 \mathrm{~Hz}), 154.52,159.15-164.01(\mathrm{~d}, J=244.0 \mathrm{~Hz}), 176.67$; Analysis for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{FNO}_{3}$ requires $\mathrm{C}, 66.00 ; \mathrm{H}, 7.82 ; \mathrm{N}, 4.53$; found $\mathrm{C}, 66.23 ; \mathrm{H}, 7.71 ; \mathrm{N}, 4.59 \%$. tert-Butyl 3-(hydroxymethyl)-4-phenylpiperidine-1-carboxylate (157):

Yield: 91%; colorless solid; mp: $132-133{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 658,1152,1670,1692,3400$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.60-1.74(\mathrm{~m}, 3 \mathrm{H}), 2.51(\mathrm{td}, J=11.3$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=13.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=11.0,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42(\mathrm{dd}, J=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m} \mathrm{1} \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 25.0,28.4,29.7,42.4,43.4,45.2,57.6,80.0,126.9,128.4$, 142.5, 155.7; Analysis for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $\mathrm{C}, 70.07 ; \mathrm{H}, 8.65 ; \mathrm{N}, 4.81$; found 70.14; H, 8.45; N, 4.71\%.

Preparation of (\pm)-tert-butyl 3-\{(benzo[d][1,3]dioxol-6-yloxy)methyl\}-4-(4-fluorophenyl)piperidine-1-carboxylate (59):

To a 25 mL two neck RB flask, charged with alcohol 58 (1 mmol), $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL}, 2$ $\mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, was added $\mathrm{MsCl}(1.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. Reaction mixture was stirred for 30 min . After completion of reaction (monitored by TLC), a saturated solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added. The organic layer was separated and aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine solution (25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and dried under reduced pressure to give crude mesylate, which was subjected for etherification without purification.
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.60-2.05(\mathrm{~m}, 3 \mathrm{H}), 2.58-2.78(\mathrm{~m}, 3 \mathrm{H}), 2.89$ $(\mathrm{s}, 3 \mathrm{H}), 3.77-4.01(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.42(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.19(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 28.1,31.3,36.7,40.8,43.5,46.1,69.3,79.6,115.4,128.5,139.7,154.3,161.5$.

To the oven dried two necked RB flask equipped with reflux condenser was charged with $\mathrm{NaH}(1.5 \mathrm{mmol})$, sesamol (1 mmol) and DMF $(5 \mathrm{~mL})$. The reaction mixture was heated for $100^{\circ} \mathrm{C}$ for 30 min . It was then cooled to 25 C and then crude mesylate $(1 \mathrm{mmol}$ in 2 mL DMF) was added. Reaction mixture was stirred for 12 h at $25^{\circ} \mathrm{C}$. After completion of reaction (monitored by TLC), water (30 mL) and ethyl acetate (30 mL) were added. The organic layer was separated and aqueous layer was extracted with ethyl acetate (2×25 $\mathrm{mL})$. Combined organic layers were washed with brine solution (25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of crude product [silica gel (230-400 mesh) petroleum ether: ethyl acetate (60:40) as eluent] gave N-Boc paroxetine 59 in pure form.

Yield: 91\%; gum, IR (CHCl_{3}): 879, 1247, 1600, 1690, $2880 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.60-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.60-2.87(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.62(\mathrm{~m}, 2 \mathrm{H}), 4.20-$ $4.46(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 6.13(\mathrm{dd}, J=2.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 28.2,33.8,36.8,40.8,43.6,43.9,46.1,68.3,79.6,115.4,128.4,137.9,157.0$, 163.1, 161.6; Analysis for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{5}$ requires $\mathrm{C}, 67.12 ; \mathrm{H}, 6.57 ; \mathrm{N}, 3.26$; found C , 67.02; H, 6.41; N, 3.21\%.

Preparation of (\pm)-paroxetine (1)

To the stirred solution of tert-butyl carbamate of paroxetine 59 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, TFA (2 mL) was added at $0^{\circ} \mathrm{C}$. Reaction mixture was then allowed to stirr at $25^{\circ} \mathrm{C}$ for 6 h . After completion of the reaction, solvent was distilled out under reduced pressure and then a saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and ethyl acetate $(20 \mathrm{~mL})$ was added. The organic layer was
separated and the aqueous layer was extracted with ethyl acetate (2 x 20 mL). The combined organic layer was washed with brine solution (25 mL), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ concentrated under reduced pressure to give the crude product. Chromatographic purification of the crude product [silica gel (230-400 mesh) petroleum ether: ethyl acetate (50:50) as eluent] gave (\pm)-paroxetine $\mathbf{1}$ in pure form.

Yield: 82%; gum, IR $\left(\mathrm{CHCl}_{3}\right): 814,1037,1129,1184,1224,1260,1431,1465,1508$, 1602, 1701, 2877, 2962, $3033 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.88-2.11(\mathrm{~m}, 2 \mathrm{H})$, 2.29-2.39 (m, 1H), 2.70-2.92(m, 3H), 3.42-3.65 (m, 4H), $5.87(\mathrm{~s}, 2 \mathrm{H}), 6.11(\mathrm{dd}, J=1.7$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=8.7 \mathrm{~Hz}$, 2H), $7.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 29.7, 40.0, 42.3, 44.7, 47.3, 68.0, 97.8, 101.0, 105.4, 107.7, 115.5, 128.9, 138.0, 141.8, 153.8, 161.6; Analysis for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}_{3}$ requires $\mathrm{C}, 69.29 ; \mathrm{H}, 6.12$; $\mathrm{N}, 4.25$; found $\mathrm{C}, 69.11 ; \mathrm{H}, 6.26 ; \mathrm{N}, 4.19 \%$.

2.3 References

1 (a) Strunz, G. M.; Findlay, J. A. The Alkaloids; Academic: New York, 1985; Vol. 26, p 89; (b) Oefner, C.; Binggeli, A.; Breu, V.; Bur, D.; Clozel, J. P.; d’rcy, A.; Dorn, A.; Fischli, W.; Gruninger, F.; Guller, R.; Hirth, G.; Marki, H.; Mathews, S.; Miller, M.; Ridley, R. G.; Stadler, H.; Viera, E.; Wilhelm, M.; Winklr, F.; Wostl, W. Chem. Biol. 1999, 6, 127; (с) Viera, E.; Binggeli, A.; Breu, V.; Bur, D.; Fischli, W.; Gu" ller, R.; Hirth, G.; Märki, H. P.; Müller, M.; Oefner, C.; Stadler, H.; Wilhelm, M.; Wostl, W. Bioorg. Med. Chem. Lett. 1999, 9, 1397; (d) Güller, R.; Binggeli, A.; Breu, V.; Bur, D.; Fischli, W.; Hirth, G.; Jenny, C.; Kansy, M.; Montavon, F.; Muller, M.; Oefner, C.; Stadler, H.; Vieira, E.; Wilhelm, M.; Wostl, W.; Marki, P. Bioorg. Med. Chem. Lett. 1999, 9, 1403;

2 Dechant, K. L.; Clissold, S. P. Drugs 1991, 41, 225.
(a) Bursavich, M.G.; West,C. W.; Rich, D. H. Org. Lett. 2001, 3, 2317-2320. (a) Oefner, C.; Binggeli, A.; Breu, V.; Bur, D.; Clozel, J.-P.; D’Arcy, A.; Dorn, A.; Fischli, W.; Gruninger, F.; Guller, R.; Hirth, G.; Marki, H. P.; Mathews, S.; Muller, M.; Ridley, R. G.; Stadler, H.; Vieira, E.; Wilhelm, M.; Winkler, F. K.; Wostl, W. Chem. Biol. 1999, 6, 127.
(a) Southon, I. W.; Buckingham, J. Dictionary of Alkaloids; Chapman \& Hall London, 1989; (b) Daly, J. W. J. Nat. Prod. 1998, 61, 162; (c) Singh, S. Chem. Rev. 2000, 100, 925-1024. (d) Kozikowski, A.P.; Araldi,G. L.; Boja, J.; Meil,W. M.; Johnson,K. M.; Flippen-Anderson,J. L.; George,C.; Saiah, E. J. Med. Chem. 1998, 41, 1962-1969.
5 (a) Suzuki, A. Acc. Chem. Res. 1982, 15, 178-184; (b) Miyaura, N.; Suzuki, A Chem. Rev. 1995, 95, 2457-2483.

6 Oh-e, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201-2208.
Huffman. M. A.; Yasuda, N. Synlett 1999, 4, 471-473.
Zim,D.; Lando, V.R.; Dupont, J.; Monteiro, A. L. Org. Lett. 2001, 3, 3049-3051.
Lakshman, M. K.; Thomson, P. F.; Nuqui,M.A.; Hilmer, J. H.; Sevova,N.; Boggess, B. Org. lett. 2002, 4, 1479-1482.

10 Wu, J.; Zhu,Q.; Wang, L.; Fathi, R.; Yang, Z. J. Org. Chem. 2003, 68, 670-673.

11 Nguyen, H. N.; Huang, X.; Buchwald S. L.;J. Am. Chem. Soc. 2003, 125, 1181811819.

12 Percec, V.; Golding, G. M.; Smidrkal, J.; Weichold, O. J. Org. Chem. 2004, 69, 3447-3452.

13 Steinhuebel, D.; Baxter, J. M. Palucki, M.; Davies, I. W. J. Org. Chem. 2005, 70, 10124-10127.

14 (a) Briner, K.; Dodel, R. C. Curr. Pharm. Design 1998, 4, 291-302; (b) Owens, M. J.; Morgan, N.; Plott, S. J.; Nemeroff, C. B. J. Pharmacol. Exp. Ther. 1997, 283, 1305-1322; (c) Mongeau, R.; Blier, P.; de Montigny, C. Brain Res. Rev. 1997, 23, 145-195.

15 (a) Reebye, P. N.; Yiptong, C.; Samsoon, J.; Schulsinger, F.; Fabricius, J. Pharmacopsychiatry 1982, 15, 164-169; (b) Boerup, C.; Peterson, I. M.; Honore, P. F.; Wetterberg, L. Psychopharmacology 1979, 63, 241-243. (c) Johnson, T. A.; Jang, D. O.; Slafer, B. W.; Curtis, M. D.; Beak, P. J. Am. Chem. Soc. 2002, 124, 11689-11698; (d) Christensen, J. A.; Engelstoft, M.; Schaumburg, K.; Schou, H.; Watjen, F. Tetrahedron Lett. 1983, 24, 5151-5152.
16 (a) Broekkamp, C. L. E.; Leysen, D.; Peeters, B. W. M. M.; Pinder, R. M. J. Med. Chem. 1995, 38, 4615. (b) Frances, A.; Manning, D.; Marin, D.; Kocsis, J.; McKinney, K.; Hall, W.; Klein, M. Psychopharamacol. Suppl. 1992, 106, S82S86. (c) Kranzler, H. R.; Amine, H.; Modesto-Lowe, V.; Oncken, C. Pharmacol. Treat. Drug Alcohol Depend. 1999, 22, 401. (d) Schaffer, A.; Naranjo, C. A. Drugs 1998, 56, 571-585. (e) Sullivan, M. J.; Reesor, K.; Mikail, S.; Fisher, R. Pain 1993, 52, 294. (f) Peterson, C. B.; Mitchell, J. E. J. Clin. Psychiatry 1999, 55, 685-697. (g) Kaye, W. H. Psychopharmacol. Bull. 1997, 33, 335-344. (h) Brody, A. L.; Saxena, S.; Schwartz, J. M.; Stoessel, P. W.; Maidment, K.; Phelps, M. E.; Baxter, L. R., Jr. Psychiatr. Res. 1998, 84, 1-6.

17 (a) Briner, K.; Dodel, R. C. Curr. Pharm. Design 1998, 4, 291-302. (b) Owens, M. J.; Morgan, N.; Plott, S. J.; Nemeroff, C. B. J. Pharmacol. Exp. Ther. 1997, 283, 1305-1322. (c) Mongeau, R.; Blier, P.; de Montigny, C. Brain Res. Rev. 1997, 23, 145-195.

Tetrahedron: Asymmetry 2008, 19, 131-155.
19 Amat,, M.; Bosch, J.; Hidalgo, J.; Canto, M.; Perez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Luque, J. J. Org. Chem. 2000, 65, 3074.
20 Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852.
21 Liu, L. T.; Hong, P. C.; Huang, H. L.; Chen, S. F.; Wang, C. L.; Wen, Y. S. Tetrahedron: Asymmetry 2001, 12, 419.
22 Johnson, T. A.; Curtis, M. D.; Beak, P. J. Am. Chem. Soc. 2001, 123, 1004.
23 Palomo, J. M.; Lorente, G. F.; Mateo, C.; Lafuente, R. F.; Guisan, J. M. Tetrahedron: Asymmetry 2002, 13, 2375.
24 Yu, M. S.; Lantos, I.; Peng, Z. Q.; Yu, J.; Cacchio, T. Tetrahedron Lett. 2000, 41, 5647.

25 Murthy, K. S.; Rey, A. W.; Tjepkema, M. Tetrahedron Lett. 2003, 44, 5355.
26 Chen, C. Y.; Chang, B. R.; Tsai, M. R.; Chang, M. Y.; Chang, N. C. Tetrahedron 2003, 59, 9383.

27 Gill, C. D.; Greenhalgh, D. A.; Simpkins, N. S. Tetrahedron 2003, 59, 9213.
28 Takasu, K.; Nishida, N.; Ihara, M. Tetrahedron Lett. 2003, 44, 7429.
29 Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253.
30 Igarashi, J.; Ishiwata, H.; Kobayashi, Y. Tetrahedron Lett. 2004, 45, 8065.
31 Czibula, L.; Nemes, N.; Sebök, F.; Szántay Jr., C.; Mák M. Eur. J. Org. Chem. 2004, 3336-3339.

32 Paraskar, A. S. Sudalai A. Tetrahedron 2006, 62, 4907-4916.
33 Koech, P. K.; Krische, M. J. Tetrahedron 2006, 62, 10594-10602.
34 Brandau, S.; Landa, A.; Franzén, J.; Marigo, M.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2006, 45, 4305-4309.

35 Pastre, J. C.; RoqueC.; Correia, D. Org. Lett. 2006, 8, 1657-1660.
36 Bower, J. F.; Riis-Johannessen, T.; Szeto, P.; Whitehead A.J.; Gallagher,T. Chem. Commun.2007, 728-730.

Ito, M.; Sakaguchi, A.; Kobayashi, C.; Ikariya, T. J. Am. Chem. Soc. 2007, 129, 290-291.

38 Chavan, S. P.; Khobragade,D.A.; Pathak, A.B.; Kalkote, U. R. Synth. Commun. 2007, 37, 3143-3149.

39 Nemoto, T.; Sakamoto, T.; Fukuyama T.; Hamada. Y. Tetrahedron Lett. 2007, 48, 4977-4981.

40 Hynes, P. S.; Stupple, P. A.; Dixon, D.J.; Org. Lett. 2008, 10, 1389-1391.

Chapter III

CoCl_{2}-catalyzed chemoselective reduction of

 carboxylic esters with NaBH_{4} : asymmetric synthesis of (R)-tolterodine
Section I

CoCl_{2}-Catalyzed chemoselective reduction of esters with NaBH_{4}

3.1.1 Introduction

Reduction of carboxylic acids and esters is one of the most important reactions in organic chemistry. ${ }^{1}$ Sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$, lithium aluminum hydride (LAH), borane $\left(\mathrm{BH}_{3}\right)$, diisobutyl aluminum hydride (DIBAL-H) are some of common reducing agents known. Inspite of high reactivity of LAH, it was associated with drawbacks such as tedious workup procedure and poor chemoselectivity. Although DIBAL-H, an expensive reagent, is effective for the reduction of carboxylic esters with good chemoselectivity, it becomes unfavorable on large scale preparations. $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, another important reducing agent capable of reducing carboxylic acids yet fails to reduce carboxylic ester moiety. NaBH_{4} is a mild, inexpensive yet powerful reducing agent capable of reducing wide range of functional groups such as aldehydes, ketones and imines. ${ }^{2}$ Despite its low reactivity towards carboxylic acids and esters, recent studies indicate that the reactivity of NaBH_{4} towards carboxylic acids and esters can indeed be enhanced by the addition of certain additives.

3.1.2 Review of literature

Several recent reviews are available in the literature for the reduction of carboxylic acids and esters with borohydrides. ${ }^{3}$ Some of the recently reported modifications to enhance the reactivity of NaBH_{4} for reduction of $\mathrm{C}=\mathrm{C}$ bonds, carboxylic acids and esters by the addition of certain additives or by changing the structure of ester moiety which are presented below.

Bonds approach (1963) ${ }^{4}$

Bond et al. have reported the selective reduction of carboxylic ester in cyanoesters $\mathbf{1}$ to give cyanoalcohols 2 using NaBH_{4} in diglyme in $50-95 \%$ yields (Scheme 1).

$$
\mathrm{R}=\mathrm{H}, \text { alkyl, OMe },
$$

Scheme 1: (a) NaBH_{4} (3 equiv.), diglyme, $25^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

Chung's approach (1979) ${ }^{5}$

Chung et al. have reported the use of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in combination with NaBH_{4} for the reduction of $\mathrm{C}=\mathrm{C}$ bond in styrenes $\mathbf{3}$ and aliphatic alkenes $\mathbf{4}$ to give the corresponding saturated alkanes 5-6 in 45-98\% yields (Scheme 2).

Scheme 2: (a) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1 equiv.), NaBH_{4} (2 equiv.) $\mathrm{EtOH}, 25^{\circ} \mathrm{C}, 10 \mathrm{~min}-6 \mathrm{~h}$.

Ganem's approach (1982) ${ }^{6}$

Ganem et al. have described the use of CoCl_{2} in combination with NaBH_{4} to reduce the benzonitrile (7) to give the corresponding benzylamine (8) in 79% yield. Also $\mathrm{CoCl}_{2} / \mathrm{NaBH}_{4}$ was found to be effective for reductions of $\mathrm{C}=\mathrm{C}$ bond in conjugated esters 9 to give the saturated esters 10 in good yields (Scheme 3).

Narisada's approach (1989) ${ }^{7}$
Narisada et al. have used $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ in combination with NaBH_{4} for the reduction of $\mathrm{C}=\mathrm{C}$ bond in α, β-unsaturated esters 9 to obtain the saturated esters 10 in high yields (Scheme
4).

Scheme 4: (a) $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ (0.75 equiv.), NaBH_{4} (10 equiv.) MeOH : THF (7:3), $25^{\circ} \mathrm{C}$, 2 h .

Periasamy's approach (1991) ${ }^{8}$

Periasamy et al. have reported I_{2}-promoted reduction of the carboxylic acids $\mathbf{1 1}$ with NaBH_{4} to give the corresponding alcohols 12 in 82-98\% yields (Scheme 5).

Scheme 5: (a) NaBH_{4} (1.2 equiv.), I_{2} (0.5 equiv.), THF, $25{ }^{\circ} \mathrm{C} 1 \mathrm{~h}$.

Periasamy's approach (1992) ${ }^{9}$

In another report, Periasamy et al. have used catechol in combination with TFA to promote the reduction of carboxylic acids $\mathbf{1 1}$ with NaBH_{4} to afford alcohols $\mathbf{1 2}$ in 2088\% yields (Scheme 6).

Scheme 6: (a) NaBH_{4} (1 equiv.), catechol (2 equiv.), TFA (1 equiv.), THF, 4-12 h.

Abiko's approach (1992) ${ }^{10}$

Abiko et al. have used conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in combination with NaBH_{4} to promote reduction of amino acids 13 to give the corresponding amino alcohols 14 in high yields (Scheme 7).

13

14

Scheme 7: (a) NaBH_{4} (2.5 equiv.), $\mathrm{H}_{2} \mathrm{SO}_{4}$ (0.5 equiv.), THF, 4 h .

Narasimhan's approach (1995) ${ }^{11}$

Narasimhan et al. have used $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ for the reduction of aryl carboxylic acids $\mathbf{1 1}$ to the corresponding benzyl alcohols 12 in 70-95\% yields (Scheme 8).

Scheme 8: (a) $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ (0.5 equiv.), THF, $67^{\circ} \mathrm{C}, 1-6 \mathrm{~h}$.

Pittman's approach (2003) ${ }^{12}$

Pittman et al. have used LiCl in combination with NaBH_{4} for the reduction of carboxylic esters 15 to give the respective alcohols 12 in 90-97\% yields (Scheme 9).

Scheme 9: (a) LiCl (1equiv.), NaBH_{4} (1equiv.), diglyme, $162^{\circ} \mathrm{C}, 1 \mathrm{~h}$

Khurana's Appraoach (2004) ${ }^{13}$

Khurana et al. have used nickel boride prepared in situ from $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and NaBH_{4}, in methanol-water at ambient temperature for the chemoselective reduction of $\mathrm{C}=\mathrm{C}$ bond in α, β-unsaturated aldehydes, ketones, carboxylic acids, and esters 16 to give the corresponding saturated carbonyl compounds 17 (Scheme 10).

Scheme 10: (a) $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (5 equiv.), NaBH_{4} (5 equiv.) $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 0.25-10 \mathrm{~h}$.

Reiser's approach (2005) ${ }^{14}$

Reiser et al. have used CoCl_{2} in combination with ligand 20 for the enantioselective reduction of $\mathrm{C}=\mathrm{C}$ bond in α, β-unsaturated carbonyl compounds with sodium borohydride. β-Trisubstituted α, β-unsaturated esters 18 and amides were readily converted to their corresponding saturated counterparts 19 with enantioselectivities up to 97% ee (Scheme 11).

Scheme 11: $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1 mol\%), $\mathrm{L}^{*} 20$ (1.1 mol\%), NaBH_{4} (2 equiv.) EtOH;DMF (1:1), $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Zhu's approach (2006) ${ }^{15}$

Zhu et al. have reported the reduction of α-hydroxy and α-amino esters 21 and 22 with
NaBH_{4} to give the corresponding diols 23 and amino alcohols 24 in high yields (Scheme
12).

Scheme 12: (a) NaBH_{4} (1 equiv.), diglyme, $30{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

De Souza's Approach (2006) ${ }^{16}$

De Souza et al. have described reduction of several aromatic ethyl isopropyl and benzyl esters 25 with NaBH_{4} : MeOH system in refluxing THF to their corresponding alcohols 26 in 66-99\% yield (Scheme 13).

Scheme 13: (a) NaBH_{4} (6.0 equiv.), $\mathrm{MeOH}\left(8 \mathrm{~mL}\right.$), $\mathrm{THF}, 70^{\circ} \mathrm{C}$.

Zhang's approach (2007) ${ }^{17}$

Zhang et al. have used KBH_{4} in combination with MgCl_{2} to reduce acids $\mathbf{1 1}$ and esters $\mathbf{1 5}$ to the respective alcohols 12 in high yields (Scheme 14).

Scheme 14 : $\mathrm{KBH}_{4} \cdot \mathrm{MgCl}_{2}$ (1.2 equiv.), THF, $66^{\circ} \mathrm{C}$, 2 h .

3.1.3 Present work

3.1.3.1 Objective

Review of literature reveals that several modifications in terms of additives, reaction conditions, etc have been reported for the reduction of carboxylic acids and esters with NaBH_{4}. The modifications also include substitutions at α-position by groups such as OH , NH_{2} and CN . Although several reducing reagents are known to reduce carboxylic ester moiety to the corresponding alcohols, these are costly, difficult to handle and often requires harsh conditions. In recent years, reactivity of NaBH_{4} has been increased by the addition of metal salts like $\mathrm{CoCl}_{2}, \mathrm{MgCl}_{2}, \mathrm{CaCl}_{2}, \mathrm{LiCl}$ and ZnCl_{2}. A combination of catalytic CoCl_{2} with NaBH_{4} has been extensively used for the reduction of $\mathrm{C}=\mathrm{C}$ in α, β unsaturated esters, but it fails to reduce ester functionality under the reaction conditions. In this section, we describe the use of CoCl_{2} as catalyst in the reduction of carboxylic esters with NaBH_{4} to the corresponding saturated alcohols under ambient reaction conditions.

3.1.3.2 Results and Discussion

In our study, for the preparation of phenyl-3-phenylpropanoate, we visualized Cocatalyzed reduction of $\mathrm{C}=\mathrm{C}$ bond in phenyl cinnamate (28) with NaBH_{4}. Accordingly, we subjected phenyl cinnamate (28) for the reduction of $\mathrm{C}=\mathrm{C}$ bond with $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol}$ \%) and of NaBH_{4} (2 equiv.) in ethanol. Unexpectedly, we found that, under the reaction conditions, ester moiety was also reduced simultaneously to give the corresponding 3phenylpropanol (34a) in 95% yield. However, carboxylic ester moiety in ethyl cinnamate (27) was found to be unaffected under the same reduction conditions giving ethyl 3phenylpropanoate (33) in 98% yield (Scheme 15).

Scheme 15: (a) Unsaturated ster $(2 \mathrm{mmol}), \mathrm{NaBH}_{4}(4 \mathrm{mmol}), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1$
$\mathrm{mol} \%), \mathrm{EtOH}(10 \mathrm{~mL}), 0-25^{\circ} \mathrm{C}, 10 \mathrm{~h}$.

In order to generalize the scope of the reaction, we subjected coumarin (30) and dihydrocoumarin (31) to CoCl_{2}-catalyzed reduction with NaBH_{4}. We found that both $\mathrm{C}=\mathrm{C}$ bond and carboxylic ester group underwent reductions simultaneously to give the corresponding saturated alcohols $\mathbf{3 5}$ and $\mathbf{3 6}$ respectively in $89-93$ \% yields. Interestingly, (E)-ethyl 3-(2-acetoxyphenyl)acrylate (32) under the reaction conditions underwent selective reduction of $\mathrm{C}=\mathrm{C}$ only along with deacylation of acetate moiety, thus the ethyl
ester moiety was unaffected giving saturated ester 37 in 95% yield. Results of the study are presented in Table 1, which showed that phenyl esters can be easily reduced to the corresponding phenols in high yields.

Table 1: $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$-catalyzed chemoselective reduction of phenyl esters with $\mathrm{NaBH}_{4}{ }^{\text {a }}$

No	Ester	Product	$\begin{aligned} & \begin{array}{l} \text { Yield } \\ (\%)^{b} \\ \hline \end{array} \end{aligned}$
a			$95^{\text {c }}$

b $\underset{\mathrm{Ph}}{\sim} \mathrm{CO}_{2} \mathrm{Et}$
27
C

29
d

30
e

31

32
f

35

36

${ }^{\text {a }}$ Reaction condition : Ester (2 mmol), $\mathrm{NaBH}_{4}(4 \mathrm{mmol}), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{~mol} \%$), $\mathrm{EtOH}(10 \mathrm{~mL}), 0-25^{\circ} \mathrm{C}, 10 \mathrm{~h}$.
${ }^{\mathrm{b}}$ isolated yields after chromatographic purification.
${ }^{\text {c }}$ phenol was isolated in quantitative yield.
${ }^{\mathrm{d}} 4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$ was isolated in quantitative yield.

Moreover, phenols can be protected as phenyl acetates and deprotected under strong basic as well as acidic conditions. We found that our reagent was quite effective in reductively deprotecting acetyl groups. Thus, we subjected various phenyl acetates for
reductions with $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{~mol} \%$) and NaBH_{4} (2 equiv.), which afforded the corresponding phenols in excellent yields (Scheme 16).

$$
\begin{array}{ll}
\text { Scheme 16: } & \text { (a) ArOAc }(2 \mathrm{mmol}), \mathrm{NaBH}_{4}(4 \\
& \text { mmol }), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%), \\
& \operatorname{EtOH}(10 \mathrm{~mL}), 0-25^{\circ} \mathrm{C}, 10 \mathrm{~h} .
\end{array}
$$

Several phenolic acetates 38a-h underwent reduction to give free phenols 39a-h in excellent yields (Table 2). Notably, under the reaction conditions reducible functional groups such as halide, NO_{2}, and CN were found to be unaffected.

Table 2: $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$-catalyzed chemoselective reduction of phenyl esters with $\mathrm{NaBH}_{4}{ }^{\text {a }}$

No	Phenyl acetates $(38 a-h)$	Products $(39 a-h)$	Yield $(\%)^{\text {b }}$
\mathbf{a}	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OAc}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	99
\mathbf{b}	$2-\mathrm{H}_{3} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OAc}$	$2-\mathrm{H}_{3} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OH}$	98
\mathbf{c}	$2-\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{OAc}$	$2-\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{OH}$	97
\mathbf{d}	$4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OAc}$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OH}$	97
\mathbf{e}	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OAc}$	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OH}$	95
\mathbf{f}	$4-\mathrm{EtO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OAc}$	4- $\mathrm{EtO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OH}$	94
g	1-Naphthyl-OAc	1-Naphthol	98
\mathbf{h}	3-AcO-pyridine	3-Hydroxypyridine	97

[^2]We thus observed that CoCl_{2} effectively catalyzes the reduction of phenyl esters to give the corresponding saturated alcohols in high yields. However, such modification of ester moiety with aryl substitution limits the scope of the reaction as alkyl ester reduction was found to be more atom economical. To increase the reactivity of NaBH_{4}, additives such
as transition metal salts have been extensively studied in recent years. We have reasoned that an elegant combination, comprising catalytic amount of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in combination with several amines may be effective for the reduction of carboxylic esters with NaBH_{4}. Thus, we subjected reduction of ethyl cinnamate to reduction with catalytic amount of CoCl_{2} in combination with NaBH_{4}, in the presence of various amines. Systematic study on effect of addition of various amines like $\mathrm{PhNH}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP and diisopropyl amine in the Co-catalyzed reductions was also carried out. We then found that diisopropyl amine was an effective additive for the Co-catalyzed reduction of simple carboxylic esters (Scheme 17).

$$
\begin{array}{ll}
\text { Scheme 17: } & \text { (a) Ester }(2 \mathrm{mmol}), \mathrm{NaBH}_{4}(4 \mathrm{mmol}), \\
& \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%),{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(10 \\
& \mathrm{mol} \%), \mathrm{EtOH}(10 \mathrm{~mL}), 50-60{ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .
\end{array}
$$

Systematic study was further carried out on different esters; the results of which are presented in Table 3. Various carboxylic esters underwent reductions to give the corresponding alcohols in good yields. Reducible functional groups such as $\mathrm{NO}_{2}, \mathrm{CN}$ and halides again were found to be unaffected. In these cases reductions underwent slowly requiring 12-24 hours and 5-10\% catalyst as compared to phenyl esters.

Table 3: $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{-i} \mathrm{Pr}_{2} \mathrm{NH}$-catalyzed chemoselective reductions of esters with $\mathrm{NaBH}_{4}{ }^{\text {a }}$: Role of diisopropyl amine ${ }^{\mathrm{a}}$
No

[^3]
Mechanism:

Mechanistically, it may be reasoned that participation of the oxygen lone pair in resonance with aromatic rings results in a higher carbonyl bond order in phenyl esters than in the corresponding ethyl esters so that the addition of 'hydride' from the reagent is faster to the more reactive phenyl esters, which is rate determining; thus probably accounting for higher selectivity (Fig. 1).

11

Fig. 1: Mechanism of phenyl ester reductions with NaBH_{4}

Generally, CoCl_{2} reacts with NaBH_{4} to give the reactive intermediate $\mathrm{Co}\left(\mathrm{BH}_{4}\right)_{2}$., ${ }^{5,}{ }^{6}$ Probably, diisopropyl amine makes a complex with $\mathrm{Co}\left(\mathrm{BH}_{4}\right)_{2}$, which enhances the reactivity of hydride towards the simple esters to give the corresponding alcohols (Fig. 2).

Fig. 2: Mechanism of carboxylic ester reduction with catalytic $\mathrm{CoCl}_{2}: \mathrm{R}_{2} \mathrm{NH} / \mathrm{NaBH}_{4}$

The formation of all products was confirmed unambiguously from their corresponding spectral analysis. For example, ${ }^{1} \mathrm{H}$ NMR of the 36 showed characteristic signals at $\delta 2.15-$ $2.40(\mathrm{~m}), 3.53-3.78(\mathrm{~m})$ and $4.60(\mathrm{dd})$ due to methylene $\left(\mathrm{CH}_{2}\right)$ and methine (CH) protons respectively. Its ${ }^{13} \mathrm{C}$ NMR showed signals at $\delta 37.0,38.5$ and 60.5 due to the methine $(\mathbf{C H})$ and two methylene $\left(\mathrm{CH}_{2}\right)$ carbons respectively (Fig. 3).

Chloroformed

Fig. 3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of alcohol 36

As a second example, the ${ }^{1} \mathrm{H}$ NMR of nitro alcohol $\mathbf{3 4 d}$ showed characteristic signals at δ $1.94(\mathrm{~m}), 2.99(\mathrm{t}), 3.72(\mathrm{t})$ due to methylene $\left(\mathrm{CH}_{2}\right)$ protons and typical aromatic signals 7.35-7.53 (m) 7.90 (dd) due to aromatic protons. Its ${ }^{13} \mathrm{C}$ NMR showed a characteristic signal at $\delta 61.6$ due to methylene $\left(\mathrm{CH}_{2} \mathrm{OH}\right)$ confirming formation of alcohol 34d (Fig. 4).

Fig. 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of nitro alcohol 34 d

3.1.4 Conclusion

In conclusion we have described use of NaBH_{4} in combination with catalytic amount of CoCl_{2} to reduce the phenyl esters in high yields and chemoselectivity. We have described the use of a new elegant catalytic combination comprising CoCl_{2} and diisopropyl amine for the reduction of alkyl carboxylic esters to give saturated alcohols in high yields. This reduction procedure was found to be a good alternative for the use of strong reducing agents like LAH and DIBAL-H which are costly and difficult to handle.

3.1.5 Experimental section

General experimental procedure for the reduction of esters (28-32):
To a stirred solution of esters 28-32 (2 mmol) and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4.7 \mathrm{mg}, 1 \mathrm{~mol} \%)$ in 95% ethanol (10 mL), $\mathrm{NaBH}_{4}(152 \mathrm{mg}, 4 \mathrm{mmol})$ was added slowly at $0{ }^{\circ} \mathrm{C}$. It was then allowed to stir for 10 h at $25^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), it was quenched with addition of water $(20 \mathrm{~mL})$ and ethyl acetate $(20 \mathrm{~mL})$ forming dark black solution, which was passed through celite. The organic layer was separated and the aqueous layer was extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (2 x 20 mL), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of crude product [silica gel (230-400 mesh, petroleum ether: ethyl acetate (70:30) as eluent] afforded alcohols 33-37 in pure form.

Ethyl 3-phenylpropanoate (33):

Yield: 98\%; colorless liquid; IR (CHCl_{3}): 698, 744, 968, 1029, 1060, 1454, 1495, 1747
$\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.65-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.81-$
$2.91(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta 13.9,30.6,35.3,59.8,125.9,127.9,128.1,140.3,172.6$; Analysis for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.13 ; \mathrm{H}, 7.92$; found $\mathrm{C}, 74.11 ; \mathrm{H}, 7.95 \%$.

3-(Phenyl)propan-1-ol (34a):

Yield: 95\%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}\right): 698,744,968,1029,1060,1454,1495,3325$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.44(\mathrm{bs}, 1 \mathrm{H}), 1.84-1.95(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $31.11,33.73,63.39,126.73,127.14,128.15,140.43$; Analysis for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$ requires C, 79.37; H, 8.88; found C, 79.32; H, 8.82\%.

2-(3-Hydroxy-1-phenylpropyl)-4-methylphenol (35):

Yield: 93%; colorless solid, mp: $77{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 702,818,10371255,1446,1504$, 1610, 3170, $3419 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.05-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$, 3.46-3.59 (m, 1H) 3.70-3.80 (m, 1H), $4.56(\mathrm{dd}, J=5.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}) 6.69-6.88(\mathrm{~m}, 3 \mathrm{H})$, 7.17-7.31 (m, 5H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 20.1,36.9,38.3,59.7,114.9,125.1$, 126.5, 127.6, 127.9, 128.0, 130.2, 144.4, 151.6; Analysis for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, 79.31; H, 7.49; found C, 79.27; H, 7.47\%.

2-(3-Hydroxy-1-phenylpropyl)phenol (36):

Yield: 93\%; Gum; IR (CHCl_{3}): 700, 746, 808, 1020, 1238, 1367, 1454, 1595, 1610, 2923, 3211, $3413 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.10-2.44$ (bs, 1 H and $\mathrm{m}, 2 \mathrm{H}$), $3.50-3.78(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.64(\mathrm{dd}, J=6.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 7.19-7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.0,38.5,60.5,115.7$, 120.6, 125.9, 127.0, 128.0, 128.1, 128.4, 130.8, 143.9, 153.5; Analysis for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.92 ; \mathrm{H}, 7.06$; found $\mathrm{C}, 78.90 ; \mathrm{H}, 7.03 \%$.

Ethyl 3-(2-hydroxyphenyl)propanoate (37):

Yield: 95\%; gum ; IR (CHCl_{3}): 698, 746, 965, 1029, 1060, 1454, 1479, 1745, 3170, 3420 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{bs}, 1 \mathrm{H}), 2.67-2.75$ $(\mathrm{m}, 2 \mathrm{H}), 2.86-2.94(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.94(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.16(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 13.9,24.9,34.8,61.0,116.5,127.7,130.3,154.2$, 175.2; Analysis for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, 68.02; H, 7.27; found C, $68.12 ; \mathrm{H}, 7.11 \%$.

A general experimental procedure for the reduction of phenol acetates (38a-h):

To a stirred solution of phenol acetates 38a-h $(2 \mathrm{mmol})$ and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4.7 \mathrm{mg}, 1 \mathrm{~mol}$ $\%$) in 95% ethanol (10 mL), was added $\mathrm{NaBH}_{4}(76 \mathrm{mg}, 2 \mathrm{mmol})$ slowly at $0^{\circ} \mathrm{C}$. It was then stirred for $1-2 \mathrm{~h}$ at $25^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), it was quenched with the addition of water $(20 \mathrm{~mL})$ and ethyl acetate $(20 \mathrm{~mL})$ forming dark black solution, which was passed through celite. The organic layer was separated and the aqueous layer was extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine ($2 \times 20 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Chromatographic purification of crude product [silica gel (230-400 mesh, petroleum ether: ethyl acetate (70:30) as eluent] afforded phenols 39a-h in pure form.

Phenol (39a):

Yield: 99\%; colorless solid, mp: $42{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 752,810,887,1218,1365,1498$, $1595,3342 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.00(\mathrm{bs}, 1 \mathrm{H}), 6.85-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.94-$ $7.01(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 115.4,120.9,129.6$, 154.9; Analysis for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ requires C, 76.57 ; H, 6.43; found C, $76.53 ; \mathrm{H}, 6.47 \%$. 2-Methylphenol (39b):

Yield: 98\%; Gum; IR (CHCl_{3}): 752, 842, 1043, 1108, 1242, 1463, 1504, 1593, $3386 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.25(\mathrm{~s}, 3 \mathrm{H})$, 6.75-6.87 (m, 2H), 7.04-7.14 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.6,114.9,120.5,124.1,126.8,130.9,153.5$; Analysis for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ requires $\mathrm{C}, 77.75 ; \mathrm{H}, 7.46$; found $\mathrm{C}, 77.71 ; \mathrm{H}, 7.44 \%$.

2-Methoxyphenol (39c):
Yield: 97\%; Gum; IR (CHCl_{3}): 746, 833, 916, 1024, 1108, 1224, 1259, 1502, 1595, 3427, $3527 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.89(\mathrm{~s}, 3 \mathrm{H}), 5.58(\mathrm{bs}, 1 \mathrm{H}), 6.83-6.93$ (m, 4H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 55.6,110.7,114.5,119.9,121.3,145.6,146.5$;

Analysis for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$ requires $\mathrm{C}, 67.73 ; \mathrm{H}, 6.50$; found $\mathrm{C}, 67.71 ; \mathrm{H}, 6.52 \%$.

4-Bromophenol (39d)

Yield: 97%; white solid, mp: $62{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right): 821,1072,1242,1436,1488,1587$, $3271 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.95(\mathrm{bs}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 113.0,117.1,132.4,154.2$; Analysis for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrO}$ requires $\mathrm{C}, 41.65 ; \mathrm{H}, 2.91$; found $\mathrm{C}, 41.60 ; \mathrm{H}, 2.89 \%$.

4-Nitrophenol (39e):

Yield: 95\%; yellow solid, mp: $119^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right): 756,810,1112,1215,1286,1489$, $1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 115.0,125.2,139.4,163.2 ;$ Analysis for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3}$ requires C, $51.80 ; \mathrm{H}, 3.62 ; \mathrm{N}, 10.07$; found C, $51.82 ; \mathrm{H}, 3.59 ; \mathrm{N}, 10.02 \%$.

Ethyl 4-hydroxybenzoate (39f):

Yield: 94%; colorless solid, mp: $115^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $771,850,1016,1168,1454,1591$, $1612,3213 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.36(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta 13.6,59.7,114.6,120.6,130.9,161.1,165.8$; Analysis for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$ requires C, 65.05;
H, 6.07; found C, 65.02; H, 6.06\%.

1-Naphthol (39g):

Yield: 98%; colorless solid, mp: $95{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 765,788,1043,1083,1271,1369$, 1458, 1579, 1598, 2929, $3255 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.40(\mathrm{bs}, 1 \mathrm{H}), 6.77$ (dd, 1.1, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (dt, 1.1, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.83(\mathrm{~m}, 1 \mathrm{H})$, 8.11-8.18 (m, 1H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 110.1,120.2,121.3,125,2,125.9$, 126.2, 126.9,130.9, 156.9; Analysis for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}$ requires C, 83.31; $\mathrm{H}, 5.59$; found C , 83.12; H, 5.32\%.

Pyridin-3-ol (39h):

Yield: 98\%; colorless solid, mp: $125{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right): 798,1280,1375,1458,2854$, 2923, $2956 \mathrm{~cm}^{-1}$; H NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-7.35(\mathrm{~m}, 2 \mathrm{H}), 8.08-8.11(\mathrm{dd}, J=$ $1.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.28-8.30(\mathrm{dd}, J=0.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 121.0, 122.6, 136.4, 138.4, 152.6; Analysis for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}$ requires C, $63.15 ; \mathrm{H}, 5.30$; N, 14.73; found C, 63.11; H, 5.33; N, 14.71\%.

A general experimental procedure for the reduction of esters: addition of diisopropyl amine:

To a stirred solution of esters 27a-i (2 mmol), $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(24 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and diisopropyl amine ($0.02 \mathrm{~mL}, 10 \mathrm{~mol} \%$) in 95% ethanol (10 mL), $\mathrm{NaBH}_{4}(152 \mathrm{mg}, 4$ mmol) was added slowly at $25{ }^{\circ} \mathrm{C}$. It was then stirred for 24 h at $50-60{ }^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), it was quenched with addition of water $(20 \mathrm{~mL})$ and ethyl acetate $(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic layers were
washed with brine ($2 \times 20 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude products. Chromatographic purification of crude product [silica gel (230-400 mesh, petroleum ether: ethyl acetate (70:30) as eluent] afforded alcohols 34a-i in pure form.

3-(4-Chlorophenyl)propan-1-ol (34b):

Yield: 87%; gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 754,968,1029,1060,1454,1495,3325 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.76(\mathrm{bs}, 1 \mathrm{H}), 1.78-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{~ N M R}(50 \mathrm{MHz}$, CDCl_{3}): $\delta 31.1,33.7,61.3,128.1,129.5,131.2,140.0$; Analysis for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClO}$ requires C , 63.35; H, 6.50; Found C, 63.32; H, 6.52\%.

3-(3,4-Dimethoxyphenyl)propan-1-ol (34c):

Yield: 82%; gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 745,857,968,1029,1060,1460,1495,3498 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.64(\mathrm{bs}, 1 \mathrm{H}), 1.61-1.95(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.68(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.72-6.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz} \mathrm{CDCl}_{3}\right): \delta 31.5,34.2,55.7,55.8,62.1,111.2,111.6,120.10$ 134.3, 147.0, 147.7;

Analysis for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, $67.32 ; \mathrm{H}, 8.22$; found C, $67.28 ; \mathrm{H}, 8.21 \%$.
3-(2-Nitrophenyl)propan-1-ol (34d):
Yield: 87%; gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 857,968,1029,1060,1245,1440,1507,3430 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.67(\mathrm{bs}, 1 \mathrm{H}), 1.87-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.72(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.88-7.95(\mathrm{dd}, \quad J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$

NMR (50 MHz, CDCl_{3}): δ 29.1, 33.2, 61.6, 124.4, 126.8, 131.8, 132.8, 136.7, 149.1;
Analysis for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires $\mathrm{C}, 59.66 ; \mathrm{H}, 6.12 ; \mathrm{N}, 7.73$; found $\mathrm{C}, 59.63 ; \mathrm{H}, 6.10$; N , 7.75\%.

2-Benzylpropane-1,3-diol (34e):

Yield: 94\%; gum, IR (CHCl_{3}): 745, 857, 968, 1029, 1060, 1454, 1498, $3400 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.99-2.27(\mathrm{~m}, 1 \mathrm{H}$, and bs, 2 H), $2.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.63-3.85 (m, 4H), 7.17-7.36 (m, 5H); ${ }^{13}$ C NMR (50 MHz CDCl 3): $\delta 34.1,43.7,64.9$, 126.0, 128.9, 139.8; Analysis for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ requires for $\mathrm{C}, 72.26 ; \mathrm{H}, 8.49$; found C , 72.23; H, 8.44;

Phenylmethanol (34f):

Yield: 94%; gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 857,968,1495,3498 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.99(\mathrm{bs}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz CDCl 3) : $\delta 64.3$, 126.7, 127.1, 128.1, 140.6; Analysis for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ requires C, 77.75 ; $\mathrm{H}, 7.46$; found 77.72; H, 7.45\%.

(4-Bromophenyl)methanol (34g):

Yield: 94\%; gum, IR (CHCl_{3}): 968, 1029, 1060, 1501, $3390 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz , CDCl_{3}): $\delta 1.88(\mathrm{bs}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz CDCl 3) : $\delta 63.9,121.1,128.4,131.3,139.5$; Analysis for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrO}$ requires $\mathrm{C}, 44.95$; $\mathrm{H}, 3.77$; found $\mathrm{C}, 44.92 ; \mathrm{H}, 3.73 \%$.

2-(4-Nitrophenyl)ethanol (34i):

Yield: 94\%; gum, IR (CHCl_{3}): 857, 1063, 1245, 1498, 3450; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.70(\mathrm{bs}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $8.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 67.2,121.2,128.6,146.1$, 147.1;Analysis for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires $\mathrm{C}, 57.48 ; \mathrm{H}, 5.43$; $\mathrm{N}, 8.38$; found $\mathrm{C}, 57.44 ; \mathrm{H}$, 5.40; N, 8.35\%.

Section II: Asymmetric Synthesis of (R)-tolterodine

3.2.1 Introduction

3.2.1.1 Pharmacology and use:

(R)-Tolterodine (40a) is a competitive muscarinic receptor antagonist. ${ }^{18}$ Both urinary bladder contraction and salivation are mediated via cholinergic muscarinic receptors. (S)tolterodine (40b) has shown a non-cholinergic spasmolytic activity and a weak sedative effect. After oral administration, tolterodine is metabolized in the liver, resulting in the formation of the 5-hydroxymethyl derivative (40c), a major pharmacologically active metabolite. The 5-hydroxymethyl metabolite, which exhibits an antimuscarinic activity similar to that of tolterodine, contributes significantly to the therapeutic effect. Both tolterodine and the 5-hydroxymethyl metabolite exhibit a high specificity for muscarinic receptors, since both show negligible activity and affinity for other neurotransmitter receptors and other potential cellular targets, such as calcium channels. Tolterodine (40a) has a pronounced effect on bladder function. The main effects of tolterodine are an increase in residual urine, reflecting an incomplete emptying of the bladder, and a decrease in detrusor pressure, consistent with an antimuscarinic action on the lower urinary tract. For the treatment of overactive bladder (with symptoms of urinary frequency, urgency, or urge incontinence)

40a
(R)-Tolterodine

40b
(S)-Tolterodine

40c
5-hydroxymethyltolterodine

Fig. 5: Structures of tolterodines and metabolite

Tolterodine (40a) and its active metabolite, 5-hydroxymethyltolterodine, act as competitive antagonists at muscarinic receptors. This results in inhibition of bladder contraction, decrease in detrusor pressure and an incomplete emptying of the bladder.

3.2.2. Review of literature

Literature search reveals that very few reports are avalaible for the synthesis of (R) tolterodine (40a), which are listed below.

Österlund's approach (1998) ${ }^{19}$

Österlund et al. have used chiral axazolidonone 41 for the asymmetric synthesis of (R) tolterodine 40a. Asymmtric Grignard addition of 2-benzyloxy-5-methylphenylmagnesuim bromide onto chiral axazolidonone 41 gave Micheal adduct 42 in 84% yield, which on hydrolysis gave chiral acid 43 in 98% ee. The acid 43 was then converted to the corresponding amide 44 in 81%. Finally, reduction of amide 44 with LiAlH_{4} followed by deprotection of benzyl ether $\left[\left(\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2}(1 \mathrm{~atm})\right]\right.$ gave (R)-tolterodine in 74% yield and 98% ee (Scheme 18).

41

42

43

44

45

Scheme 18: (a) 2-benzyloxy-5-methylphenyl bromide, Mg , THF, $65{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$, $\mathrm{CuBr}_{2} \cdot \mathrm{SMe}_{2}$, THF, $-50^{\circ} \mathrm{C}$, then added 41, -25 to $-20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 84 \%$; (b) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}$, THF: $\mathrm{H}_{2} \mathrm{O}$; (c) SOCl_{2}, py, $\mathrm{C}_{6} \mathrm{H}_{6}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (d) ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{Et}_{2} \mathrm{O}$, $45{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 90 \%$; (e) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 45^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (f) $\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2}(1$ atm), $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 74 \%$.

Piccolo's approach (2002) ${ }^{20}$
Piccolo et al. have reported a short synthesis of (R)-tolterodine utilizing Rh-catalyzed hydroformylation reaction of styrene. Hydroarylation of p-cresol (46) with phenylacetylene (47) gave the corresponding olefin 48, which was subjected to Rhcatalyzed hydroformylation $\left[\mathrm{CO} / \mathrm{H}_{2}(100 \mathrm{~atm})\right]$ using chiral phosphine 50 as ligand to give aldehyde 49 (7 \%ee). Finally, reductive amination of aldehydes $49\left[5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(3 \mathrm{~atm})\right.$, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$ in MeOH$]$ gave (R)-tolterodine 40a in 7\% ee (Scheme 19).

Scheme 19: (a) acidic $\mathrm{Al}_{2} \mathrm{O}_{3}, 1,2$-dichlorobenzene, reflux, 72 h , 90\%; (b) $\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{acac}(0.4 \mathrm{~mol} \%$); ligand 50 (1.6 $\mathrm{mol} \%$), $\mathrm{CO} / \mathrm{H}_{2}$ (100 atm), toluene, $100^{\circ} \mathrm{C}, 24 \mathrm{~h}, 99 \%$; (c) $\mathrm{Pd} / \mathrm{C}(5 \%), \mathrm{H}_{2}(3 \mathrm{~atm}),{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{MeOH}, 5{ }^{\circ} \mathrm{C}, 16$ h, 96%.

Pettus's approach (2004) ${ }^{21}$

Pettus et al. have used endo selective [4+2] cycloaddition of o-quinone methides with chiral enol ether 55. The aldehyde 52 prepared from O-Boc protection of phenol 51 , was subjected to $[4+2]$ cycloaddition with chiral enol ether 37 in the presence of PhMgBr to give benzopyran 53 as single diasteriomer in 90% yield. Acid hydrolysis (CSA) of 53 gave lactol 54 in 85% yield. Further synthesis of (R)-tolterodine is known in literature (Scheme 20).

51

54

52
$\longrightarrow(\mathrm{R})$-tolterodine
40a

Scheme 20: (a) $\mathrm{Boc}_{2} \mathrm{O}$ (1.1 equiv), Hunig's base (0.5 equiv), DMAP (cat.), $0.1 \mathrm{M} \mathrm{CH} \mathrm{Cl}_{2}$; (b) PhMgBr (1.05 equiv), (-)-55 (2 equiv), $0.1 \mathrm{MEt}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 3 \mathrm{~h}$; (c) CSA (0.6 equiv), $0.1 \mathrm{M} 1: 1$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 70^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

Mathad's approach (2005) ${ }^{22}$

Mathad et al. have reported racemic synthesis of (\pm)-tolterodine 40. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ mediated hydroarylation reaction of cinnamic acid with p-cresol gave dihydrocoumarin 56 which underwent trans-esterification with $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone:methanol mixture to give the corresponding methyl ester 57. Reduction of methyl ester 57 to the alcohol 58 was achieved with Vitride in THF. Further alcohol 58 was transformed to its tosylate and its displacement with diisopropyl amine was achieved to give benzyl ether protected tolterodine 59. Finally deprotection of benzyl ether was carried out with Raney Nickel to give racemic tolterodine $\mathbf{4 0}$, which was subjected to resolution with L-(+)-tartaric acid gave (R)- tolterodine 40a (Scheme 21).

Scheme 21: (a) $\mathrm{H}_{2} \mathrm{SO}_{4}, 120-125^{\circ} \mathrm{C}, 92 \%$; (b) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $\mathrm{CH}_{3} \mathrm{OH}$, reflux, 96%; (c) Vitride, THF, $25-35{ }^{\circ} \mathrm{C}, 97 \%$; (d) p-Toluene sufonyl chloride, $\mathrm{EtN}^{i} \mathrm{Pr}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} 25-35^{\circ} \mathrm{C}, 99 \%$; (e) ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{CN}, 110-115{ }^{\circ} \mathrm{C}, 12-14$ h, 95%; (f) H_{2}, Raney $\mathrm{Ni}, \mathrm{CH}_{3} \mathrm{OH}, 25-35{ }^{\circ} \mathrm{C}, 94 \%$; (g) L-(+)-tartaric acid, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{OH}, 40 \%$.

Andersson's approach (2005) ${ }^{23}$

Andersson et al. have used CBS reduction of chalcone 62 (prepared form substituted acetophenone 60 followed by Heck arylation of 61) to the corresponding chiral allyl alcohol 63 in 97% ee. Allyl alcohol 63 was transformed to chiral indanone $64\left(\mathrm{Et}_{3} \mathrm{~N}\right.$, DABCO) which on Bayer-Villager oxidation ($m-\mathrm{CPBA}, \mathrm{TsOH}$) gave dihydrochromen-2one $\mathbf{5 6 a}$ in 92% yield and 94% ee. Hydrolysis of $\mathbf{5 6 a}$ followed by dibenzylation (BnBr , $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol) gave the benzyl protected ester 65 which was reduced $\left(\mathrm{LiAlH}_{4}\right)$ to the alcohol 58 (94% ee). Free alcohol in 58 was transformed to the amine by sequential reactions reported in literature (Scheme 22).

Scheme 22: (a) $\mathrm{PhCHO}, \mathrm{MeOH}, \mathrm{MeONa}, 0-25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 95 \%$: (b) $\mathrm{PdCl}_{2}(5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(15$ mol\%), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.2 equiv.), DMF, $130^{\circ} \mathrm{C}, 1 \mathrm{~h}, 73 \%$; (c) (S)-Me-CBS ($5 \mathrm{~mol} \%$), $\mathrm{BH}_{3} \cdot \mathrm{THF}, \mathrm{THF},-20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 91 \%, 97 \% \mathrm{ee} ;(\mathrm{d}) \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DABCO}(20 \mathrm{~mol} \%)$, THF, $60{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 90 \%$, 94% ee; (e) m-CPBA, TSOH $\cdot \mathrm{H}_{2} \mathrm{O}$, MS $4 \mathrm{~A}^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4{ }^{\circ} \mathrm{C}$, $92 \%, 94 \%$ ee; (f)(i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, reflux, 1 h ; (ii) $\mathrm{BnBr}, \mathrm{NaI}, \mathrm{Me}_{2} \mathrm{CO}$, reflux; (g) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 25^{\circ} \mathrm{C}$, (87% over two steps); (h) 4-nitrophenylsulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, 0{ }^{\circ} \mathrm{C}, 83 \%$; (h) ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$, reflux, 48 h , 81%; (i) $\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{MeOH}, \mathrm{H}_{2}(1 \mathrm{~atm}), 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 97 \%, 99 \%$ ee.

Rhee's Approach (2007) ${ }^{24}$

Rhee et al. have used L-tartaric acid for the resolution of racemic tolterodine. Reduction $\left(\mathrm{NaBH}_{4}\right)$ of β-keto ester 66 to the corresponding diol 67 (98\%) followed by $\mathrm{FeCl}_{3}-$ catalyzed Friedel-Craft alkylation with p-cresol afforded 68 in 70% yields. Further, phenol in $\mathbf{1 3 3}$ was protected as its tosylate $(\mathrm{TsCl}$, aq. NaOH$)$ and alcohol $\left(\mathrm{NsCl}, \mathrm{Et}_{3} \mathrm{~N}\right)$ as its nosylate to give corresponding sulphonates 69 in 88% yield. Nucleophilic displacement of nosylate with diisopropylamine to give protected tolterodine 70, which was after deprotection (aq. NaOH) gave (\pm)-tolterodine 40. Subsequent resolution of
racemate with L-tartaric acid provided (R)-tolterodine tartarate 40a in 44\% yields (Scheme 23).

(R)-tolterodine tartarate,

Scheme 23: (a) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, rt, $30 \mathrm{~min}, 98 \%$; (b) p-cresol, $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $1 \mathrm{~d}, 70 \%$; (c) $\mathrm{TsCl}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (d) NsCl , $\mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88 \%$; (e) $i-\mathrm{Pr}_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 12 h ; (f) (i) NaOH , MeOH , reflux, 4 h ; (ii) $\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $1 \mathrm{~h}, 77 \%$; (g) (i) $\mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}$; (ii) L-tartaric acid, MeOH , acetone, reflux, $1 \mathrm{~h}, 44 \%$.

Piccolo's Approach (2007) ${ }^{25}$

Piccolo et al. have reported enantioselective synthesis of (S)-tolterodine 40b utilizing Rhcatalyzed asymmetric reduction of coumarin. Heck arylation of 2-bromo-4-cresol 71 with cinnamic acid (55) gave the coumarin derivative 72 which was subjected to Rh -catalyzed asymmetric reduction with phosphine ligand 73 to give the (S)-dihydrocoumarin. Subsequently, reduction of dihydrocoumarin 56b with DIBAL-H gave hemiacetal 54b
which upon reductive amination with diisopropyl amine gave the (S)-tolterodine 40 b in 98\% ee (Scheme 24).

Scheme 24: (a) $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%) \mathrm{Et}_{4} \mathrm{NCl},(\mathrm{Cy})_{2} \mathrm{MeN}, \mathrm{DMA}, 95{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, 77 \%$; (b) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5 \mathrm{~mol} \%), S, S$-Chiraphos ($10 \mathrm{~mol} \%$), H_{2} (12 bar), MeOH , aq. $4 \mathrm{~N} \mathrm{NaOH}, 50^{\circ} \mathrm{C}, 24 \mathrm{~h}, 84 \%$; (c) DIBAL-H, toluene , $-25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 89 \%$; (d) $\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{MeOH}, \mathrm{H}_{2}(1 \mathrm{~atm}), 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 98 \%$.

Hayashi's approach (2008) ${ }^{26}$

Hayashi et al. have used Rh-catalyzed asymmetric Michel addition of phenyl boronic acid to the arylmethylene cyanoacetates 74 with (R, R)-Ph-bod 78 as a chiral ligand to afford 3,3-diaryl-2-cyanopropanoates 75 in 97% yield. Decarbomethoxylation of 75 (NaCN and LiI in DMF) gave nitrile 76 in 92% yield and 98% ee, which was subjected to reduction (DIBAL-H) to provide aldehyde 77 in 79 \% yield. Subsequently, reductive amination with diisopropyl amine gave 59a which was converted to (R)-tolterodine 40a (Scheme 25).

Scheme 25: (a) $\mathrm{PhB}(\mathrm{OH})_{2}\left(1.5\right.$ equiv.), $\operatorname{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(3 \mathrm{~mol} \%)$, 78 ($\left.3.3 \mathrm{~mol} \%\right)$, $\mathrm{KOH}(20$ mol\%), $\mathrm{H}_{2} \mathrm{O}$ (1equiv.), dioxane, $30^{\circ} \mathrm{C}, 2 \mathrm{~h}, 97 \%$; (b) NaCN, LiI, DMF, 120 ${ }^{\circ} \mathrm{C}, 15 \mathrm{~h}, 92 \%, 98 \%$ ee; (c) (i) DIBAL, $-40^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (ii) $\mathrm{MeOH},-40-0{ }^{\circ} \mathrm{C}, 1$ h; (iii) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{rt}, 30 \mathrm{~min} .79 \%$; (d) $\mathrm{NaBH}(\mathrm{OAc})_{3},{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 25^{\circ} \mathrm{C}$, $15 \mathrm{~min} .86 \%$; (e) $\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{MeOH}, \mathrm{H}_{2}(1 \mathrm{~atm}), 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

3.2.3 Present work

3.2.3.1 Objective

As can be seen from above descriptions, the literature methods for the synthesis of (R) tolterodine employ either resolution of racemic tolterodine, use of high pressure reduction of coumarin derivative or employment of chiral auxiliary to prepare (R)-tolterodine. We became interested in the synthesis of pharmacologically important drug namely (R) tolterodine via CoCl_{2}-catalyzed asymmetric reduction of coumarin derivative. The retrosynthetic analysis of (R)-tolterodine is shown in Scheme 26. We visualized that alcohol 68a could be a key intermediate, which could in turn be obtained from asymmetric reduction of coumarin derivative72.

Compound 72 could be easily prepared via hydroarylation of cinnamic acid 55 with p cresol 46 followed by aromatization with DDQ.

Scheme 26: Retrosynthetic analysis of (R)-tolterodine 40a

3.2.3.2 Results and Discussion

Present synthetic scheme for the synthesis of (R)-tolterodine 40a is shown in Scheme 27. In section I of Chapter IV, we have described a one-step, simple and efficient method for the synthesis of dihydrocoumarins. ${ }^{27}$ By following our synthetic procedure, p toluenesulphonic acid-mediated hydroarylation of cinnamic acid (55) with p-cresol (46) at $130{ }^{\circ} \mathrm{C}$ under solvent-free condition was carried out to give dihydrocoumarin derivative 56 in 99% yield, which on oxidative aromatization produced coumarin derivative 72 (DDQ in dioxane, reflux) ${ }^{28}$ in 92% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic signal at $\delta 6.35$ (s) due to olefinic proton. Also, its IR spectrum showed a characteristic strong absorption band at $1735 \mathrm{~cm}^{-1}$ due to carboxylic ester carbonyl confirming the formation of coumarin derivative72.

Scheme 27: (a) p-TSA, $130{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 99 \%$; (b) DDQ, dioxane, $110^{\circ} \mathrm{C}, 12 \mathrm{~h}, 92 \%$; (c) CoCl_{2} : ligand 80, NaBH_{4}, EtOH, DMF, $0^{\circ} \mathrm{C}, 36 \mathrm{~h}, 98 \%$; (d) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $60{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 82 \%$; (e) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 30 \mathrm{~min}$; (f) ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{NaI}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, DMF, $80{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (g) $\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2}$ (1atm), MeOH, 12 h, 90%;

The $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$-catalyzed asymmetric reduction ${ }^{29}$ of coumarin 72 with 4 molar equivalents of NaBH_{4} using (4S)-(+)-phenyl- $\alpha-[(4 S)$-phenyloxazolidin-2-ylidine]-2-oxazoline-2-acetonitrile (80) as chiral ligand [ethanol/DMF 5:2] gave the saturated alcohol 68a in 98\% yield and 95% ee. Its ${ }^{1} \mathrm{H}$ NMR showed characteristic signals at $\delta 2.25$ $(\mathrm{m}), 3.63(\mathrm{~m})$ and $4.56(\mathrm{dd})$ due to two methylene $\left(\mathrm{CH}_{2}\right)$ and methine (CH) protons respectively. Its ${ }^{13} \mathrm{C}$ NMR showed characteristic signals at $\delta 36.9,38.3$ and 59.7
corresponding to the methine (CH) and two methylene $\left(\mathrm{CH}_{2}\right)$ carbons respectively confirming the formation of the saturated alcohol 68a (Fig. 6).

Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 68a

The phenolic function in $\mathbf{6 8 a}$ was readily protected as its benzyl ether $\mathbf{5 8 a}\left(\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}\right.$ in acetone, 82% yield). Its ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic signal at $\delta 5.00$ (s) due to benzylic methylene $\left(\mathrm{PhCH}_{2} \mathrm{O}\right)$ protons. Also a typical signal at $\delta 70.4$ due to benzylic methylene $\left(\mathrm{PhCH}_{2} \mathrm{O}\right)$ carbon confirming the formation of benzyl ether 58a. Free alcohol group was then protected as its mesylate 79 followed by its displacement with
diisopropylamine (catalytic $\left.\mathrm{NaI}, \mathrm{Na}_{2} \mathrm{CO}_{3},{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{DMF}\right)^{30}$ gave benzyl protected (R)tolterodine 59a in 91% yield and 95% ee. Its ${ }^{1} \mathrm{H}$ NMR showed characteristic signals at δ 0.90 (d) due to four methyl ($4 \mathrm{x} \mathrm{CH}_{3}$) protons. Finally, reductive removal of benzyl ether was achieved to give (R)-tolterodine $\mathbf{4 0 a}$ in 90% yield. Its ${ }^{1} \mathrm{H}$ NMR showed characteristic signals at $\delta 1.07$ (d) and 1.13 (d) due to four methyl ($4 \times \mathrm{CH}_{3}$) protons. Also, a typical signal at $\delta 3.23(\mathrm{~m})$ is due to aminomethylene $\left(\mathrm{CH}_{2} \mathrm{~N}\right)$ protons.

Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (R)-tolterdione 40a

Its ${ }^{13} \mathrm{C}$ NMR showed characteristic signals at $\delta 19.6,19.9$ due to methyl $\left(4 \times \mathrm{CH}_{3}\right)$ confirming the formation of tolterodine 40a (Fig. 7).

It should be noted that when the phenolic function was protected as its benzyl ether 58a, (R)-tolterodine 40a was obtained in a lower yield due to the formation of mixtures of benzyl ethers arising out of protection of both the OH . However, chemoselective protection of the phenolic OH group in 68a as its tosylate $\mathbf{8 1}$ (p-toluenesulfonyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aq $\mathrm{NaOH}, 98 \%$ yield) was achieved to give a tosylate. Its ${ }^{1} \mathrm{H}$ NMR showed characteristic signals at $\delta 2.42$ (s), 7.31 (d) and 7.79 (d) corresponding to the methyl and aromatic protons of tosyl group (Scheme 28).

Scheme 28: (a) TsCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then aq $\mathrm{NaOH}, 45^{\circ} \mathrm{C}, 3 \mathrm{~h}, 98 \%$; (b) (i) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{NaI}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, DMF, $80^{\circ} \mathrm{C}$, $6 \mathrm{~h}, 92 \%$; (c) aq. NaOH , MeOH reflux, $4 \mathrm{~h}, 79 \%$.

Free alcohol group in 81a was then protected as its mesylate 82, followed by displacement of mesylate 82 with diisopropylamine $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaI}\right.$, in DMF) gave tosyl protected (R)-tolterodine 69. Its ${ }^{1} \mathrm{H}$ NMR showed characteristic signals at $\delta 0.91$ (d), 2.26 (s) and 2.45 (s) due methyl protons [($4 \times \mathrm{CH}_{3}$) and a pair of ArCH_{3} protons] respectively. Its ${ }^{13} \mathrm{C}$ NMR showed characteristic signals at $\delta 20.3,20.6,21.0$ and 21.58 corresponding to methyl carbons ($4 \times \mathrm{CH}_{3}$) and a pair of ArCH_{3} carbons (Fig. 8).

Fig. 8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of tosyl protected tolterodine 69

Finally, tosyl group in 69 was hydrolyzed using basic conditions (aq. KOH) to afford (R)tolterodine 40a with an increased yield of $82 \% ;\left\{[\alpha]_{25}{ }^{\mathrm{D}}+21.8\left(c 1.5, \mathrm{CH}_{3} \mathrm{OH}\right)\right\}$.

3.2.4 Conclusion

In conclusion we have described a simple and practical synthesis of (R)-tolterodine via CoCl_{2}-oxazolidine ligand $\mathbf{8 0}$ catalyzed asymmetric reduction of coumarin derivatives $\mathbf{7 2}$ with NaBH_{4} in 61% overall yield and 95% ee. Easy handling, milder reaction condition and high ee are some of the distinct features, which make this synthesis more practical and efficient.

3.2.5 Experimental section

Preparation of 6-methyl-4-phenylchroman-2-one (56):

A 25 mL round bottom flask equipped with a reflux condenser, was charged p-cresol $(0.540 \mathrm{~g}, 5 \mathrm{mmol})$, cinnamic acid $(0.740 \mathrm{~g}, 5 \mathrm{mmol})$ and p-toluenesulfonic acid (5 mmol). The reaction mixture was heated at $130{ }^{\circ} \mathrm{C}$ for 3 h . After completion of the reaction (monitored by TLC), the reaction mixture was cooled, quenched with addition of water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The organic layers were washed brine ($2 \times 50 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the crude product. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate $(80: 20)]$ gave 1.178 g of 56 in pure form.

Yield : 99\%, 1.178 g , colorless solid, $\mathbf{m p} 84^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 1045,1209,1499,1769$, $2561,2900 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=2.7,6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.28(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{bs}, 1 \mathrm{H}), 6.98-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, CDCl_{3}): $\delta 20.7,114.9,116.8,118.4,126.5,128.2,128.7,129.4,132.7$, 133.7, 135.1, 152.1, 153.4, 160.7; Analysis for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ required C, 80.65; H, 5.92; found C, 80.45 ; H, 5.72\%.

Preparation of 6-methyl-4-phenyl-2H-chromen-2-one (72):

To a stirred solution of 6-methyl-4-phenylchroman-2-one ($1.07 \mathrm{~g}, 4.5 \mathrm{mmol}$) in dry dioxane $(25 \mathrm{~mL})$, was added $\operatorname{DDQ}(1.59 \mathrm{~g}, 7 \mathrm{mmol})$ under N_{2} atmosphere. It was then refluxed for 5 h . After completion of the reaction mixture, it was filtered through neutral alumina and concentrated under reduced pressure to give crude product. Chromatographic purification of crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate (70:30)] gave 0.97 g of 72 in pure form.

Yield: $92 \%, 0.97 \mathrm{~g}$, colorless solid, mp: $132-134{ }^{\circ} \mathrm{C}, \quad \mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 763,1217,1566$, 1737, $3020 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.39$ $(\mathrm{m}, 3 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): 20.7$, $114.9,116.8,126.5,128.7,129.4,132.7,133,7,135,1,152.1,152.1,155.4,160.7$;

Analysis for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$ requires C, 81.34 ; H, 5.12; Found: C, 81.33 ; H, 5.14%.

Preparation of 2-(3-hydroxy-1-phenylpropyl)-4-methylphenol (68a):

To a stirred solution of coumarin $72(0.94 \mathrm{~g}, 4 \mathrm{mmol}), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(9.4 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and ligand $\mathbf{8 0}(15.9 \mathrm{mg}, 1.2 \mathrm{~mol} \%$) in 95% ethanol (8 mL) and dry DMF (2 mL), was added $\mathrm{NaBH}_{4}(0.62 \mathrm{~g}, 16 \mathrm{mmol})$ slowly at $-10^{\circ} \mathrm{C}$. It was stirred at $0^{\circ} \mathrm{C}$ for 36 h . After the completion of the reaction (monitored by TLC), it was diluted with 50 mL of water and 50 mL of ethyl acetate. The organic layer was separated, washed with brine solution (2 x 20 mL), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product. Flash column chromatographic purification using silica gel (230-400 mesh) and petroleum ether/ethyl acetate (70:30) as eluent afforded 948 mg of the saturated alcohol 68a in pure form.

Yield: 98\%, Gum, $[\alpha]^{25}{ }_{\mathrm{D}}+71.8\left(c\right.$ 1.0, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: 702, 818, 1037 1255, 1446, 1504, 1610, 3170, $3419 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.05-2.45(\mathrm{~m}, 2 \mathrm{H})$,
$2.17(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.59(\mathrm{~m}, 1 \mathrm{H}) 3.70-3.80(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=5.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}) 6.69-$ $6.88(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.1,36.9,38.3,59.7$, $114.9,125.1,126.5,127.6,127.9,128.0,130.2,144.4,151.6$; Analysis: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $79.31 ; \mathrm{H}, 7.49$; found C, 79.27 ; H, 7.47%.

3-[2-(Benzyloxy)-5-methylphenyl]-3-phenylpropan-1-ol (58a):

To a stirred solution of phenol $68 \mathrm{a}(0.92 \mathrm{~g}, 3.8 \mathrm{mmol})$ and $\operatorname{BnBr}(0.6 \mathrm{~mL}, 4.8 \mathrm{mmol})$ in acetone $(20 \mathrm{~mL})$, was added dry $\mathrm{K}_{2} \mathrm{CO}_{3}(5.52 \mathrm{~g}, 40 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. It was then refluxed under N_{2} atmosphere for 12 h . After completion of reaction (monitored by TLC), it was filtered and concentrated under reduced pressure to give crude product. Chromatographic purification of crude product [silica gel (230-400 mesh) and petroleum ether: ethyl acetate (60:40)] gave 1.03 g of benzyl ether 58a in pure form.

Yield: 82%; white solid, mp: $65^{\circ} \mathrm{C} ;[\alpha]^{\mathrm{D}} 25+4.55\left(c 1, \mathrm{CHCl}_{3}\right)$ IR $\left(\mathrm{CHCl}_{3}\right): 759,1026$, 1217, 1496, 1602, $34444 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.38$ $(\mathrm{m}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.95(\mathrm{~m}$, 3H), 7.16-7.26(m,5H), 7.31-7.38(m,5H), ${ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 20.6,37.5$, $39.1,60.9,70.4,112.0,125.8,127.40,127.47,127.7,128.10,128.13,128.4,128.7,130.1$, 132.8, 136.9, 144.4, 153.8; Analysis for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}$ requires C, 83.10; H, 7.28; found C, 83.08; H, 7.29\%.

2-(3-Hydroxy-1-phenylpropyl)-4-methylphenyl 4-methylbenzenesulfonate (81):

To a stirred solution of phenol 68a $(0.48 \mathrm{~g}, 2 \mathrm{mmol})$ and tosyl chloride $(0.42 \mathrm{~g}, 2.2$ $\mathrm{mmol})$ in dichloromethane (10 mL), was added aq. $\mathrm{NaOH}(3 \mathrm{~mL}, 1 \mathrm{M})$ at $25^{\circ} \mathrm{C}$. It was then refluxed for 3 h . After completion of the reaction (monitored by TLC), it was diluted with water $(20 \mathrm{~mL})$ and dichloromethane $(20 \mathrm{~mL})$. The organic layer was separated and
the aqueous layer was extracted with dichloromethane (20 mL). The combined organic layers were washed with brine ($2 \times 20 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude tosylate product. The crude product was purified by column chromatography using flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate $(8: 2)$ as eluent afforded 0.77 g of tosylate $\mathbf{8 1}$ in pure form.

Yield 91\%, Gum, $[\alpha]^{\mathrm{D}}{ }_{25}+11.2\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \quad$ IR $\left(\mathrm{CHCl}_{3}\right): 765,1172,1359,1492,1598$, $3394 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.04-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $3.54(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.91(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.20(\mathrm{~m}, 5 \mathrm{H})$, $7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.1$, $22.5,36.6,40.2,54.3,116.3,126.1,128.3,128.4,128.8,130.1,1302,133.1,142.143 .0$, 146.7, 149.6; Analysis for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$ requires C, $69.67 ; \mathrm{H}, 6.10 ; \mathrm{S}, 8.09$ found $\mathrm{C}, 69.43$; H, 6.01; S, 7.82\%.

General procedure for the preparation of mesylates 79 and 82:

To a stirred solution alcohol 58a or $\mathbf{8 1}(1 \mathrm{mmol})$, triethylamine $(0.3 \mathrm{~mL}, 2 \mathrm{mmol})$ in dichloromethane (10 mL), was added mesyl chloride (1.1 mL of 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $0^{\circ} \mathrm{C}$ and allowed to stir for 30 min . After completion of the reaction (monitored by TLC), saturated solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added. The organic layer was separated and aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The combined organic layer was washed with brine solution (25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to give crude mesylate. Formation of mesylates 79 and 82 was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy.

3-(2-(benzyloxy)-5-methylphenyl)-3-phenylpropyl methanesulfonate (79):
Yield: $99 \% ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}$, $3 \mathrm{H}), 3.87(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.91-6.99 (m, 2H), 7.14-7.42 (m, 10H); ${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22,4,33.2,37.9$, $39.2,67.0,72.3,114.7,125.8,126.1,126.3,127.5,1279,128.9,141.3,154.3$. 2-(3-Methanesulfonoyl-1-phenylpropyl)-4-methylphenyl 4-methylbenzenesulfonate (82):

Yield: $99 \% ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 2.26-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}$, $3 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 4.07-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.13-$ $7.30(\mathrm{~m}, 5 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 20.7,21.2,31.2,36.6,39.1,67.6,121.4,126.4,127.5,127.95,127.99,128.2$, 128.4, 129.6, 132.4, 135.9, 136.7, 141.1, 144.9, 145.3.

General procedure for the preparation of phenol protected tolterodine (59a and 69)

To a stirred solution of mesylate 79 or $82(4 \mathrm{mmol}), \mathrm{NaI}(2 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{mmol})$ in DMF (10 mL), was added diisopropylamine (10 mmol) under N_{2} atmosphere. It was then stirred at $80{ }^{\circ} \mathrm{C}$ for 4 h . After completion of the reaction (monitored by TLC), reaction mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine ($2 \times 50 \mathrm{~mL}$), dried over unhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. The crude product was purified by column chromatography using flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate: triethyl amine (60:38:2) as eluent afforded protected tolterodine 59a and 69 in pure form.

3-[2-(Benzyloxy)-5-methylphenyl]-N,N-diisopropyl-3-phenylpropan-1-amine (59a):
Yield: 91\%, Gum, $[\alpha]^{\mathrm{D}}{ }_{25}+51\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ Lit. $\left\{+52\left(c 1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$; IR (neat, $\left.\mathrm{cm}^{-1}\right)$ $1025,1238,1499,2868,2928,2968,3030 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.90(\mathrm{~d}, \mathrm{~J}=$ $6.6 \mathrm{~Hz}, 12 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}$, and $\mathrm{s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=13.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 4.40$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 6.70-7.50(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 20.54, 20.62, 20.72, $36.80,41.45,43.88,48.60,69.98,111.69,125.55,127.11,127.23$, 127.52, 127.91, 128.24, 128.38, 129.57, 133.54, 137.38, 145.04, 153.88; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NO}: \mathrm{C}, 83.81$; H, 8.97; N, 3.37; O, 3.85. Found: C, 83.80; H, 8.95; N, 3.35; O, 3.83

2-(3-(diisopropylamino)-1-phenylpropyl)-4-methylphenyl 4-methylbenzenesulfonate (69):

Yield: 92%, Gum, $[\alpha]^{\mathrm{D}}{ }_{25}+21\left(c\right.$ 1, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 12 \mathrm{H}), 1.91-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.88-$ $3.04(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.76($ $\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.3,20.6,21.0,21.5,37.1,41.5,43.7$, 48.7, 121.2, 126.0, 127.4, 128.0, 126.1, 128.2, 128.9, 129.6, 133.4, 136.4, 137.7, 143.1, 144.9, 145.5; Analysis for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 72.61 ; \mathrm{H}, 7.77 ; \mathrm{N}, 2.92 ; \mathrm{S}, 6.68$; found C, 72.42; H, 7.44; N, 2.99; S, 6.78\%.

Preparation of (R)-tolterodine (40a):

To a solution of 3-(2-(benzyloxy)-5-methylphenyl)- N, N-diisopropyl-3-phenylpropan-1amine (59a) ($0.83 \mathrm{~g}, 2 \mathrm{mmol}$) in methanol (10 mL), was added $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$ and allowed to stir for 12 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. After completion of the reaction, it was passed trough celite and concentrated under reduced pressure to give the crude product. The
crude product was purified by column chromatography using flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate:triethylamine (70:28:2) as eluent afforded 0.58 g of tolterodine 40a in pure form.

To a stirred solution of tosylate (69) (1 mmol) in methanol (5 mL), was added aq. KOH (3 mmol). It was then refluxed for 4 h . After complete hydrolysis, saturated solution of ammonium chloride (20 mL). It was then extracted with ethyl acetate (2 x 20 mL). The combined organic extract was washed with brine ($2 \times 20 \mathrm{~mL}$), dried over unhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ concentrated under reduced pressure to give the crude product. The crude product was purified by column chromatography using flash silica gel (230-400 mesh) and petroleum ether: ethyl acetate:triethylamine (70:28:2) as eluent afforded 0.58 g of (R)-tolterodine 40a in pure form.

Yield: 79%; mp: $212-216{ }^{\circ} \mathrm{C}$; $[\alpha]^{\mathrm{D}}{ }_{25}+22.5$ (c $\left.1, \mathrm{MeOH}\right)$ Lit. $\{+23(c 1.0, \mathrm{MeOH})\}$ IR $\left(\mathrm{CHCl}_{3}\right) 754,968,3016,3434 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $6 \mathrm{H}), 6.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.78(\mathrm{~m}, 2 \mathrm{H}), 3.23$ (m, 2H), $4.48(\mathrm{dd}, J=3.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.88(\mathrm{~m}, 2 \mathrm{H})$, 7.17-7.34 (m, 5H); ${ }^{13} \mathbf{C}$ NMR (200 MHz, CDCl_{3}): $\delta 19.6,19.9,20.7,33.3,39.3,42.1$, 47.9, 118.0, 126.1, 127.73, 128.2,128.4, 128.6, 129.2, 132.3, 144.7, 153.1; Analysis for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}$ requires C, 81.18; H, 9.60; N, 4.30; found C, $81.25 ; \mathrm{H}, 9.43 ; \mathrm{N}, 4.11 \%$.

3.3 References

1 (a) Brown, H. C. Hydroboration; W. A. Benjamin: New York, 1962; (b) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, $3^{\text {rd }}$ ed.; Plenum Press: New York, 1990. Part A

2 For reviews, see: Periasamy, M.; Thirumalaikumar, M. J. Organomet. Chem. 2000, 609, 137.

3 For reviews, see: Ganem, B.; Osby, J. O. Chem. Rev. 1986, 86, 763.
4 Meschino, J. A.;Bond, C. H. J. Org. Chem. 1963, 28, 3129.
5 Chung, S. K. J. Org. Chem. 1979, 44, 1014.
6 Heinzman, S. W.; Ganem, B. J. Am. Chem. Soc. 1982, 104, 6801.
7 Narisada, M.; Horibe, I.; Watanabe, F.; Takeda, K. J. Org. Chem. 1989, 54, 5308.
8 Bhaskar Kanth J. V.; Periasamy M. J. Org. Chem. 1991, 56, 5964-5965.
9 Suseela, Y.; Periasamy, M. Tetrahedron 1992, 48, 371.
10 Abiko, A.; Masamune, S. Tetrahedron Lett. 1992, 33, 5517.
11 Narasimhan, S.; Madhavan, S.; Prasad, K. G. J. Org. Chem. 1995, 60, 5314.
12 Zhu, H. J.; Pittman, C. U. Synth. Commun. 2003, 33, 1733.
13 Khurana, J. M.; Sharma, P. Bull. Chem. Soc. Jpn. 2004, 77, 549.
14 Geiger, C.; Kreitmeier, P.; Reiser, O. Adv. Synth. Catal. 2005, 347, 249.
15 Li, L.C.; Jiang, J. X.; Ren, J.; Ren, Y.; Pittaman. Jr. C. U.; Zhu H-J. Eur. J. Org. Chem. 2006, 1981.

16 (a) Da Costa, J. C. S.; Pais, K. C.; Fernandes, E. L.; De Oliveira, P. S. M.; Mendonça, J. S.; De Souza, M. V. N.; Peralta, M. A.; Vasconcelos, T. R. A. ARKIVOC 2006, 128; (b) Boechat, N.; DaCosta, J. C.; Mendonça, J. S.; De Oliveira, P. S. M.; De Souza, M. V. N. Tetrahedron Lett. 2004, 45, 6021.

17 Qiu, Y.-C.; Zhang, F.-L.; Zhang, C.-N. Tetrahedron Lett. 2007, 48, 7595.
18 (a) Kaur, K.; Aeron, S.; Bruhaspathy, M.; Shetty, S. J.; Gupta, S.; Hegde, L. H.; Silamkoti, A. D. V.; Mehta, A.; Chugh, A.; Gupta, J. B.; Sarma, P. K. S.; Kumar, N. Bioorg. Med. Chem. Lett. 2005, 15, 2093; (b) Chancellor, M. B.; Appell, R. A.; Sathyan, G.; Gupta, S. K. Clin. Ther. 2001, 23, 753; (c) Nilvebrant, L. Life Sci. 2001, 68, 2549; (d) Nilvebrant, L.; Andersson, K.-E.; Gillberg, P.-G.; Stahl, M.;

Sparf, B. Eur. J. Pharmacol. 1997, 327, 195; (e) Drugs Future 1997, 22, 733.
19 Andersson, P. G.; Schink, H. E.; Osterlund, K. J. Org. Chem. 1998, 63, 8067.
20 Botteghi, C.; Corrias, T.; Marchetti, M.; Paganelli, S.; Piccolo, O. Org. Process Res. Dev. 2002, 6, 379.

21 Selenski, C.; Pettus, T. R. R. J. Org. Chem. 2004, 69, 9196.
22 Srinivas, K.; Srinivasan, N.; Reddy, K. S.; Ramakrishna, M.; Reddy, C. R.;
Arunagiri, M.; Kumari, L. R.; Venkataraman, S.; Mathad, V. T. Org. Process Res. Dev. 2005, 9, 314.

23 Hedberg, C.; Andersson, P. G. Adv. Synth. Catal. 2005, 347, 662.
24 De Castro, K. A.; Ko, J.; Park, D.; Park, S.; Rhee, H. Org. Process Res. Dev. 2007, 11, 918.

25 Ulgheri, F.; Marchetti, M.; Piccolo, O. J. Org. Chem. 2007, 72, 6056.
26 Sörgel, S.; Tokunaga, N.; Sasaki, K.; Okamoto, K.; Hayashi, T. Org. Lett. 2008, 10, 589.

27 Jagdale, A. R.; Sudalai, A. Tetrahedron Lett. 2007, 48, 4895.
28 Walker, D.; Hiebert, J. D. Chem. Rev. 1967, 67, 153.
29 Paraskar, A. S.; Sudalai, A. Tetrahedron 2006, 62, 4907.

Chapter IV

p-Toluenesulfonic acid (p-TSA)-mediated hydroarylation of cinnamic acids with anisoles and phenols under metal- and solvent-free conditions and
$\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed a-halogenation of ketones

Section I:

\boldsymbol{p}-Toluenesulfonic acid (\boldsymbol{p}-TSA) mediated hydroarylation of cinnamic acids with substituted anisoles and phenols under metal- and solventfree conditions

4.1.1 Introduction

4-aryldihydrocoumarins are widely present in nature and found to be important candidates for treatment of several dieseses. ${ }^{1}$ For example, traditional Chinese and Japanese medicines have used tannin-containing plant extracts for the treatment of infections and diseases for centuries. ${ }^{2}$ Tannins and other natural products, such as flavonoids, present the skeleton of 4-aryldihydrocoumarins in their structure. ${ }^{3}$ The important biological activities that dihydrocoumarin derivatives 1-2 present (inhibition of aldose reductase ${ }^{3 \mathrm{~b}}$ and protein kinases, ${ }^{3 \mathrm{c}}$ antiherpetic activity, ${ }^{4}$ and selective inhibition of HIV replication ${ }^{5}$) make them attractive candidates for new lead compounds in biological testing. For example, dihydrocoumarin 2 isolated from Aloe Vera, exhibits potential antioxidative and immunomodulatory properties. ${ }^{6}$ 3-Aryl-3-(4-phenoxy)propionic Acid (3) shows good pharmacokinetic profile as G Protein-coupled receptor 40 agonists and would be beneficial in the treatment of type II diabetes. ${ }^{7}$

1
Neoflavanoid

2

3
GPR-40 Agonist

Fig. 1 Examples of dihydrocoumarins and 3-aryl propionic acids

4.1.2 Review of literature

Literature search revealed that hydroarylation reaction was found to be important method in the synthesis of coumarins and dihydrocoumarins. ${ }^{8}$ Some of the recent reports are described below.

Johnston's approach (1968) ${ }^{9}$

Johnston's et al. reported PPA catalyzed cyclization of N-phenylcinnamide (4) to the corresponding 4-phenyl-3,4-dihydrocarbostyril (5) in good yields. Election-withdrawing substitution on aryl $\left(\mathrm{R}=\mathrm{Cl}, \mathrm{NO}_{2}\right)$ as well as election-donating substitution on aniline nucleus $\left(\mathrm{R}^{\prime}, \mathrm{R} "=\mathrm{Me}\right)$ provided good yields of products formed.

Scheme 1: (a) $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{H}_{3} \mathrm{PO}_{4}(1: 1) 130^{\circ} \mathrm{C}, 10 \mathrm{~min}, 1 \mathrm{~h}$.

Pickett's approach (1992) ${ }^{10}$

Pickett et al. have used LiH as a base catalyst for hydroarylation of the phenol $\mathbf{6}$ with acrylate esters $\mathbf{7}$ to give dihydrocoumarins $\mathbf{8}$ in high yields

Scheme 2: (a) LiH (0.049 mol), o-cresol (2.47 mol), reflux, then added ethyl acrylate

Braz-Pilho's approach (1997) ${ }^{11}$

Braz-Pilho's et al reported the two step procedure for the synthesis of neoflavonoids $\mathbf{1 0}$. p-Methoxycinnamic acid (9) was converted to the acid chloride and its treatment with AlCl_{3} followed by addition of phenols $\mathbf{1 1}$ gave the neoflavonoids $\mathbf{1 0}$ in 18% yields.

9

10

11

Scheme 3: (a) $\left(\mathrm{COCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right.$; (b) AlCl_{3}, phenol $11, \mathrm{CS}_{2}, 25^{\circ} \mathrm{C}, 72 \mathrm{~h}$.

Fujiwara's approach (2000) ${ }^{12}$

Fujiwara et al reported the Pd-catalyzed hydroarylation of propionic acids $\mathbf{1 2}$ with phenol 13 for the synthesis coumarin 14 in 56-64 \%yields.

Scheme 4: (a) $\mathrm{Pd}(\mathrm{OAc})_{2}$ or $\mathrm{PtCl}_{2} \cdot 2 \mathrm{AgOAc}(5 \mathrm{~mol} \%)$, TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Li's approach (2001) ${ }^{13}$

Li et al. reported the Rh-catalyzed addition of triphenylbismuth (16) onto the α, β unsaturated esters $\mathbf{1 5}$ to give the corresponding conjugated addition products $\mathbf{1 7}$ in high yields.

Scheme 5: (a) $\mathrm{Rh}_{2}(\mathrm{COD})_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, THF: $\mathrm{H}_{2} \mathrm{O}$ (7:3), $50^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Li's approach (2001) ${ }^{14}$

Li et al. reported the Rh-catalyzed addition of diphenyldichlorosilane 18 onto the α, β unsaturated esters $\mathbf{1 5}$ to give the corresponding conjugated addition products $\mathbf{1 7}$ in high yields.

Scheme 6: (a) $\mathrm{NaF}(5.0 \mathrm{mmol}),(\mathrm{COD})_{2} \mathrm{RhBF}_{4}(0.013 \mathrm{mmol})$, water $(5 \mathrm{~mL}), 100^{\circ} \mathrm{C}, 12 \mathrm{~h}, 47-97 \%$.

Li's approach (2001) ${ }^{15}$

Li et al. reported the addition trimethylphenylstannanes $\mathbf{1 9}$ onto the α, β-unsaturated esters $\mathbf{1 5}$ to give the corresponding conjugated addition products $\mathbf{1 7}$ in high yields.

Scheme 7: (a) $\left[\mathrm{Rh}(\mathrm{COD})\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right] \mathrm{BF}_{4} \quad$ (5 mol\%), water $(4 \mathrm{~mL}), 50^{\circ} \mathrm{C}, 12 \mathrm{~h}, 30-77 \%$.

Uemura's approach (2002) ${ }^{16}$

Uemura's approach describes BiCl_{3} promoted Michel type addition of $\mathrm{Ar}_{4} \mathrm{Sn} 21$ to the β nitrostyrene 20 to provide 1,4-addition diaryl nitro product 22 in moderate yields along with diaryl byproduct 23.

Scheme 8: (a) $20(1 \mathrm{mmol}), 21(0.25 \mathrm{mmol}), \mathrm{PdCl}_{2}(0.05 \mathrm{mmol}), \mathrm{LiCl}(2 \mathrm{mmol}), \mathrm{AcOH}(10 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 20 h .

Trost's approach (2003) ${ }^{17}$

Trost et al have used $\mathrm{Pd}(\mathrm{OAc})_{2}$ for the hydroarylation reaction of propionic acid (24) with electon rich phenol 25 to afford coumarin derivatives 26 in 51-69\% yields.

Scheme 9: (a) $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{NaOAc}(20 \mathrm{~mol} \%), \mathrm{HCO}_{2} \mathrm{H}, 35^{\circ} \mathrm{C}$.

He's approach (2004) ${ }^{18}$

He et al. reported Au-catalyzed carbon-carbon bond formation reaction between arenes and electron-deficient alkynes 24 to provide coumarins 29 in $44-99 \%$ yields.

Scheme 10: (a) Arene (1 mmol), alkyne (0.5 mmol), $\mathrm{AuCl}_{3} / 3 \mathrm{AgOTf}(5 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}), 1-96 \mathrm{~h}$.

Tunge's approach (2005) ${ }^{19}$

Tunge et al reported the synthesis of dihydrocoumarin 31 with electron rich phenols $\mathbf{3 0}$ and cinnamic acids $\mathbf{9}$ mediated by TFA in high yields.

Scheme 11: (a) TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 4), 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Kitamura's approach (2005) ${ }^{20}$

Kitamura et al. reported TFA mediated synthesis of 4-aryl-3,4-dihydrocoumarins 33 from activated phenols 32 and electron-rich cinnamic acids and esters 9 .

Scheme 12: (a) Cinnamic acid/ester (1 mmol) and phenol (1 mmol), TFA (1 mL), $25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Kitamura's approach (2005) ${ }^{21}$

Kitamura et al used $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in combination with AgOTf as a Catalyst for hydroarylation of propiolic acids $\mathbf{3 5}$ with arenes $\mathbf{3 4}$ to provide the 3,3-diarylacrylic acids $\mathbf{3 6}$ in 81-96\% yields.

Scheme 13: (a) $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.05 \mathrm{mmol}), \operatorname{AgOTf}(0.10 \mathrm{mmol})$, arene (6 mmol), propiolic acid (2 mmol), TFA $(1 \mathrm{~mL}), 25-40^{\circ} \mathrm{C}, 15-40 \mathrm{~h}$.

Barluenga's approach (2006) ${ }^{22}$

Barluenga et al. reported the reaction of alkenyl carbene chromium(0) complexes 37 with excess ketene acetals 38 to give 4-aryl-3,4-dihydrocoumarins 39 in moderate yield.

Scheme 14: (a) Acetal (3 equiv.), THF, $90^{\circ} \mathrm{C}$, sealed tube, 2 h .

Fillion's approach (2006) ${ }^{23}$

Fillion et al. have used $\mathrm{Yb}(\mathrm{OTf})_{3}$-catalyzed annulation reactions of activated phenols $\mathbf{4 0}$ with 5-alkylidene Meldrum's acids 41 to provide dihydrocoumarin derivatives 42 in 61$91 \%$ yields.

Scheme 15: (a) $\mathrm{Yb}(\mathrm{OTf})_{3}(10 \% \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{NO}_{2}, 100{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$

4.1.3 Present work

4.1.3.1 Objective

Literature methods reveal that the preparation of dihydrocoumarins has been accomplished in many ways. However, many of these methods suffer from disadvantages such as lack of substrate generality, the use of large excess of expensive reagents, and the controversy regarding the use of transition metals. For instance, hydroarylation is substrate specific and occurs only with electron-rich phenols and cinnamic acids. ${ }^{8}$

4.1.3.2 Results and Discussion

In our study, for the preparation of phenylcinnamate (46), we visualized p toluenesulfonic acid-mediated esterification of cinnamic acid (43) with simple phenol (44) could be achieved. Thus, we subjected p-toluenesulfonic acid-mediated esterification of simple cinnamic acid with phenol 44a $(\mathrm{R}=\mathrm{H})$ under solvent-free condition. We have observed that, under the reaction conditions, it took a different course (hydroarylation) to furnish the corresponding dihydrocoumarin 45 in 99% yield (Scheme 1), However, under identical conditions, cinnamic acid was smoothly esterified with 4-nitrophenol $\mathbf{4 4 b}(\mathrm{R}=$ NO_{2}) to furnish the required ester $46\left(\mathrm{R}=\mathrm{NO}_{2}\right)$ in 98% yield (Scheme 16).

Scheme 16 : (a) cinnamic acid (5 mmol), phenol (5.5 mmol), p-toluenesulfonic acid (5 mmol), $125^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

Surprised by this result, we carried out several experiments systematically to optimize the reaction conditions for this transformation. This hydroarylation reaction failed when carried out in organic solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}, \mathrm{C}_{6} \mathrm{H}_{6}\right.$, toluene and DMF, even at reflux temperatures) as well as when using other acid catalysts (camphorsulfonic acid or acetic acid). After several experiments, the combination of p-toluenesulfonic acid, phenol and cinnamic acid, all in equimolar amounts and heating at $125^{\circ} \mathrm{C}$ for 3 h , was found to be the best, which gave dihydrocoumarin in 99% yield. Systematic study of hydroarylation of various cinnamic acids with substituted phenols was carried out subsequently (Scheme
17).

Scheme 17: (a) cinnamic acid (5 mmol), phenol (5.5 mmol), ptoluenesulfonic acid (5 mmol), $125^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

Phenols with halide, alkyl and O-alkyl substituents underwent hydroarylation smoothly with cinnamic acid to give the corresponding dihydrocoumarins $45 \mathbf{a - j}$ in $89-99 \%$.

Results are presented in Table 1. We observed that, in case of m-cresol gave a single para-substituted product in 87% yield was obtained.

Table 1: $\quad p$-Toluenesulfonic acid-mediated hydroarylation of cinnamic acids with phenols ${ }^{\text {a }}$

Entry	Ar	R^{\prime}	Yield of $\mathbf{4 5}(\%)$
\mathbf{a}	Ph	H	99
\mathbf{b}	Ph	$2-\mathrm{Me}$	95
\mathbf{c}	Ph	$3-\mathrm{Me}$	97
\mathbf{d}	Ph	$4-\mathrm{Me}$	99
\mathbf{e}	Ph	$4-\mathrm{Cl}$	89
\mathbf{f}	Ph	$4-\mathrm{Bu}^{\mathrm{t}}$	89
\mathbf{g}	Ph	1-Naphthol	93
\mathbf{h}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	87
\mathbf{i}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$4-\mathrm{Me}$	94
\mathbf{j}	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	H	89

[^4]However, in the case of phenolic substrates with ortho substituents such as $\mathrm{Cl}, \mathrm{Br}, \mathrm{OMe}$ and $\mathrm{CO}_{2} \mathrm{Me}$, intramolecular lactonization did not take place; instead the corresponding hydroxy acids were isolated (Table 2). In order to make the work-up procedure easier for these substrates, the reaction mixture was quenched with ethyl acetate, followed by addition of water to afford the corresponding hydroxy ethyl esters 47a-d in excellent yields (Scheme 18).

Scheme 18: (a) cinnamic acid (5 mmol), phenol (5.5 mmol), p toluenesulfonic acid (5 mmol), $125^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

Table 2: p-Toluenesulfonic acid mediated hydroarylation of cinnamic acids with phenols ${ }^{\text {a }}$

Entry	R'	Yield of $\mathbf{4 7}(\%)$
\mathbf{a}	$2-\mathrm{Br}$	92
\mathbf{b}	$2-\mathrm{Cl}$	87
\mathbf{c}	$2-\mathrm{OMe}$	79
\mathbf{d}	$2-\mathrm{CO}_{2} \mathrm{Me}$	93

[^5]In contrast, when anisole was subjected to hydroarylation with cinnamic acid 43 under the same reaction conditions, the corresponding 3-(4-methoxyphenyl)-3-phenylpropanoic acid 49a $(o / p=1: 1)$ was obtained in 95% yield (Scheme 13).

Scheme 13: cinnamic acid (5 mmol), anisole (5.5 mmol), p toluenesulfonic $\operatorname{acid}(5 \mathrm{mmol}), 125^{\circ} \mathrm{C}, 3 \mathrm{~h}$

Subsequently, several anisoles with substituents such as $\mathrm{Br}, \mathrm{Cl}, \mathrm{OMe}$, etc, were subjected to hydroarylation with cinnamic acids to produce the corresponding carboxylic acids 49a\mathbf{j} in excellent yields, the results of which are presented in Table 3. As can be seen, exclusive para-selectivity was observed for all the substrates studied (except 1a), in accordance with the Friedel-Crafts alkylation mechanism. ${ }^{24}$ However, if the para position was blocked, alkylation occurred at the ortho position (entry g, Table 3). Other less
activated substrates such as toluene failed to undergo hydroarylation. Acetanilide, under the reaction conditions, underwent complete hydrolysis producing aniline. Treatment of chalcone with anisole in the presence of p-TSA yielded a mixture of products that was difficult to separate.

Table 3: p-Toluenesulfonic acid-mediated hydroarylation of cinnamic acids with anisoles ${ }^{\text {a }}$

Entry	Ar	R^{\prime}	Yield (\%) $^{\text {b }}$
a	Ph	H	95^{c}
b	Ph	$2-\mathrm{Br}$	87
c	Ph	$3-\mathrm{Br}$	88
d	Ph	$2-\mathrm{Cl}$	75
e	Ph	$2-\mathrm{Me}$	91
f	Ph	$3-\mathrm{Me}$	93
g	Ph	$4-\mathrm{Me}$	95^{d}
h	Ph	$3-\mathrm{OMe}$	71
i	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	82
j	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	H	65

[^6]Mechanistically, in the case of phenols, formation of phenolic esters followed by intramolecular Friedel-Crafts type cyclization leads to dihydrocoumarin derivatives 45aj. ${ }^{24}$ This observation was experimentally proved, substantiated by with the evidence of exclusive formation of ortho products. In the case of anisoles, protonation of cinnamic acids leads to a highly electrophilc benzylic carbon such that Friedel-Crafts type alkylation with electron-rich anisole took place producing 3-(4-methoxyphenyl)-3phenylpropanoic acids 49a-j.

The formation of all products were confirmed unambiguously from their corresponding spectral analysis. For example, ${ }^{1} \mathrm{H}$ NMR of the 45a showed characteristic signals at δ
$2.32(\mathrm{dd})$ and $4.34(\mathrm{t})$ due to methylene $\left(\mathrm{CH}_{2}\right)$ and methine $(\mathbf{C H})$ protons respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at $\delta 36.84,40.43$ and 167.4 corresponding to the methylene $\left(\mathrm{CH}_{2}\right)$, methine (CH) and ester carbonyl carbon $\left(\mathrm{CO}_{2} \mathrm{Ar}\right)$ respectively. Its IR spectrum showed typical absorption band at $1772 \mathrm{~cm}^{-1}$ confirming the dihydrocoumarin core (Fig. 2).

Fig. 2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of dihydrocoumarin 45
${ }^{1} \mathrm{H}$ NMR spectrum of 47 showed characteristic signals at $\delta 1.12(\mathrm{t})$ and 4.04 (q) due to protons of ethyl group, Also typical signals at 2.07 (dd), 4.90 (t) and 5.89 (s) corresponding to the methylene $\left(\mathrm{CH}_{2}\right)$ and methine $(\mathbf{C H})$ and phenolic hydroxyl (ArOH) protons respectively. Its ${ }^{13} \mathrm{C}$ NMR showed characteristic signals at $\delta 40.9,60.4$ and 171.8 due to methylene $\left(\mathrm{CH}_{2} \mathrm{CH}\right)$ and methine $\left(\mathrm{CH}_{2} \mathrm{CH}\right)$ and ester carbonyl carbon respectively. Its IR spectrum showed typical absorption bands at 1733 and $2918 \mathrm{~cm}^{-1}$ confirming ester and phenol moieties in 47 (Fig. 3).

Fig. 3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ethyl 3-(3-chloro-2-hydroxyphenyl)-3phenylpropanoate (47b)
${ }^{1} \mathrm{H}$ NMR spectrum of 49a showed characteristic signals at $\delta 3.76(\mathrm{~s}), 3.04(\mathrm{~d})$ and $4.47(\mathrm{t})$ due to methyl $\left(\mathrm{OCH}_{3}\right)$, methylene $\left(\mathrm{CH}_{2}\right)$, and methine $\left.\mathbf{C H}\right)$ protons respectively. Its ${ }^{13} \mathrm{C}$ NMR showed signals signals at $\delta 55.08,40.58$ and 45.72 due to methyl, methylene and methine carbon respectively.

Fig. 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3-(4-methoxyphenyl)-3-phenylpropanoic acid (49a)

4.1.4 Conclusion

In conclusion, we have developed a convenient, practical, metal and solvent free process for hydroarylation of cinnamic acids with phenols and anisoles mediated by p toluenesulfonic acid affording dihydrocoumarins 3 and 3-(4-methoxyphenyl)-3phenylpropanoic acids 7a-j, respectively, in good to high yields. High regioselectivity, easy handling, broad substrate scope and the use of cheap p-toluenesulfonic acid as acid mediator are some of the advantages of this methodology.

4.1.5 Experimental section

General experimental procedure for hydroarylation of cinnamic acid with substituted phenols.

To the 25 ml RB flask equipped with reflux condenser, were charged phenol (5 mmol), cinnamic acid (5 mmol) and p-TSA (5 mmol). Reaction mixture was heated to 125 $130^{\circ} \mathrm{C}$ under nitrogen atmosphere for 3 h . Reaction mixture was cooled and diluted with ethyl acetate (50 mL). The organic layer was washed with water ($2 \times 50 \mathrm{~mL}$) and brine $(50 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate, concentrated under reduced pressure. Purified by column chromatography using flash silica gel (230400 Mesh) using 5\%ethyl acetate/petroleum ether as eluent.

4-Phenylchroman-2-one (45a):

Yield: 99%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 752,919,1135,1218,1456,1610,1772 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.03(\mathrm{dd}, J=2.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.8,1 \mathrm{H}), 6.98(\mathrm{dd}, J=$ $1.8,7.2 \mathrm{~Hz} \mathrm{1H}), 7.04-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 36.84, 40.53, 116.97, 124.53, 125.68, 127.44, 127.53, 128.24, 128.67, 129.01, 140.20, 151.60, 167.47; Analysis $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$ requires C, 80.34 ; H, 5.39; found C, 80.35; H, 5.38\%.

8-Methyl-4-phenylchroman-2-one (45b):

Yield: 95%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$): $757,917,1136,1225,1470,1605,1775 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 3,03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.37(\mathrm{~m}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.85,36.93,40.83,124.05,125.57,125.80,126.38$, 127.52, 127.54, 129.05, 130.25, 140.41, 149.99, 167.45; Analysis $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 80.65; H, 5.92; found C, 80.64; H, 5.93\%.

7-Methyl-4-phenylchroman-2-one (45c):

Yield: 97%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$): $757,914,1133,1232,1476,1610,1775 \mathrm{~cm}^{-1} ; \mathbf{1}^{\mathbf{H}} \mathbf{N M R}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 3,04(\mathrm{dd}, J=1.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.9,37.0$, $40.2,117.3,122.5,125.2,127.3,127.3,127.9,128.9,138.9,140.4,151.4,167.6$;

Analysis $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 80.65 ; H, 5.92; found C, 80.63 ; H, 5.94%.

6-Methyl-4-phenylchroman-2-one (45d):

Yield: 99%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 752,919,1135,1218,1456,1610,1772 \mathrm{~cm}^{-1} ; \mathbf{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.20(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=2.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.39(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 20.6,36.8,40.5,116.6,125.2,127.3,127.4,128.5,128.9,129.1,133.9,140.4$, 149.5, 167.3; Analysis $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 80.65 ; H, 5.92 ; found C, $80.63 ; \mathrm{H}, 5.94 \%$.

6-Chloro-4-phenylchroman-2-one (45e)

Yield: 89%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 699,1217,759,880,925,1489,1589,1602,1777 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.04(\mathrm{dd}, J=2.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=2.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-$
7.41 ($\mathrm{m}, 4 \mathrm{H}$) ; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.4,40.4,118.3,127.3,127.4,127.8$, $128.0,128.75,129.2,129.7,139.3,150.0,167.0$; Analysis for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$ requires C, 81.40; H, 7.19; O, 11.41; found C, 81.38; H, 7.20\%.

6-tert-Butyl-4-phenylchroman-2-one (45f):

Yield: 89%, gum, $\mathbf{I R}\left(\mathbf{C H C l}_{3}\right.$): $752,919,1135,1218,1456,1610,1772 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(\mathrm{~s}, 9 \mathrm{H}), 3.02(\mathrm{dd}, J=3.6,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=2.0,7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.25-7.36 (m, 4H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 31.3,34.3,37.2,40.9,116.5,124.7$, 125.1, 125.6, 127.4, 127.4, 129.0, 140.6, 147.5, 149.5, 167.4; Analysis $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$ requires C, $81.40 ; \mathrm{H}, 7.19$; O, 11.41; found C, 81.38 ; H, 7.20%.

3,4-Dihydro-4-phenylbenzo[h]chromen-2-one (45g):

Yield: 93%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 756,1134,1215,1377,1506,1766 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.09-3.17(\mathrm{dd}, J=6.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.18$ $(\mathrm{m}, 3 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.78-7.83(\mathrm{~m}, 1 \mathrm{H}), 8.23-8.33(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 37.0,40.9,119.7,121.2,123.6,124.0,125.1,126.5$, $126.69,127.3,127.4,127.5,129.0,133.5,140.5,146.6,166.8$; Analysis for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 83.19 ; \mathrm{H}, 5.14$; found $\mathrm{C}, 83.20 ; \mathrm{H}, 5.13 \%$.

4-(4-Chlorophenyl)chroman-2-one (45h):

Yield: 87%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$): $757,919,1134,1218,1460,1614,1775 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 3.00-3.07(\mathrm{dd}, J=6.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.7,39.9,117.1,124.6,125.0,128.1,128.8,128.9,129.1,133.3,138.7,151.5,167.1$;

Analysis for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{2}$ requires C, 69.64; H, 4.29; Cl, 13.70; found C, 69.62; H, 4.30; Cl, 13.71%.

4-(4-Chlorophenyl)-6-methylchroman-2-one (45i):

Yield: 94%, gum, $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 757,1014,1147,1492,1766 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.97-3.04(\mathrm{dd}, J=6.1,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ Analysis for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2}$ requires $\mathrm{C}, 70.46 ; \mathrm{H}, 4.80 ; \mathrm{Cl}, 13.00$; found $\mathrm{C}, 70.44 ; \mathrm{H}, 4.79$; Cl, 12.98\%.

4-(4-Methoxyphenyl)chroman-2-one (45j):

Yield: 89%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $758,1018,1147,14502,1767 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 2.99-3.05(\mathrm{dd}, J=6.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-7.00(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.33(\mathrm{~m}$, 1H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.0,39.6,55.1,114.3,116.9,124.5,126.0,128.4$, 128.5, 132.0, 151.5, 158.8, 167.6; Analysis for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.57 ; \mathrm{H}, 5.55$; found C, 75.35 ; H, 5.44\%.

Ethyl 3-(3-bromo-2-hydroxyphenyl)-3-phenylpropanoate (46a):

Yield: 92%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 757,1215,1301,1440,1490,1676,1733,3153 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.05-3.12(\mathrm{dd}, J=4.6,8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.97 (dd, $J=1.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.27(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.0$, $38.5,40.7,60.4,113.4,122.5,126.7,127.1,127.9,128.6,131.47,142.8,152.0,173.8 ;$

Analysis for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{3}$ requires C, $58.47 ; \mathrm{H}, 4.91$; found C, $58.31 ; \mathrm{H}, 4.83 \%$.

Ethyl 3-(3-chloro-2-hydroxyphenyl)-3-phenylpropanoate (46b):
Yield: 84%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 756,1020,1215,1398,1454,1733,2918 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.02-3.09(\mathrm{dd}, J=4.4,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-$ $7.08(\mathrm{dd}, J=1.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.27(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.08$, $39.51,40.95,60.45,120.49,126.57,126.86,127.18,127.86,128.40,131.46,142.39$, 149.03, 171.80; Analysis for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 67.00 ; \mathrm{H}, 5.62 ; \mathrm{Cl}, 11.63$; found C , 67.02; H, 5.60; Cl, 11.62\%.

Ethyl 3-(2-hydroxy-3-methoxyphenyl)-3-phenylpropanoate (46c):

Yield: 79%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 757,1031,1215,1265,1514,1731,2939 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz): $\delta 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=4.7,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.03$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{bs}, 1 \mathrm{H}) 6.58-6.80(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.34(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.9,39.5,40.4,55.9,61.0,113.1,122.1,122.8$, 126.4, 128.8, 129.4, 133.8, 144.0, 151.0, 173.0; Analysis $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, 71.98; H, 6.71; found C, 71.97 ; H, 6.69%.

Methyl 3-(2-(ethoxycarbonyl)-1-phenylethyl)-2-hydroxybenzoate (46d):

Yield: 93%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 757,1031,1215,1265,1514,1731,2939 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (200 MHz): $\delta 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.74$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,40.4,45.9$, $51.5,62.2,112.0,117.8,126.6,127.3,128.3,128.5,129.7,134.0,135.1,143.1,160.3$, 170.2, 171.7; Analysis for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}$ requires C, $69.50 ; \mathrm{H}, 6.14$; found $\mathrm{C}, 69.31$; H , 6.08\%.

General experimental procedure for hydroarylation of cinnamic acid with substituted anisoles.

To the 25 ml RB flask equipped with reflux condenser, were charged anisole (5 mmol), cinnamic acid (5 mmol) and p-TSA (5 mmol). Reaction mixture was heated to 125 $130^{\circ} \mathrm{C}$ for 3 h . Reaction mixture was cooled and diluted with ethyl acetate $(50 \mathrm{~mL})$. The organic layer was washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to give the crude product. The crude product was purified by column chromatography using flash silica gel (230-400 Mesh) using 30\% ethyl acetate-petroleum ether as eluent gave products 49a-i in pure form.

3-(4-Methoxyphenyl)-3-phenylpropanoic acid (49a)

Yield: 95\%; gum, IR (CHCl_{3}): 757, 1031, 1217, 1247, 1512, 1706, $2931 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 3.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.47(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.31(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 40.5,45.7$, 55.0, 113.9, 126.4, 127.4, 128.5, 135.3, 143.5, 158.1, 178.1; Analysis $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, $74.98 ; \mathrm{H}, 6.29$; found C, $74.90 ; \mathrm{H}, 6.23 \%$.

3-(3-Bromo-4-methoxyphenyl)-3-phenylpropanoic acid (49b):

Yield: 87%; gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 732,910,1055,1282,1494,1712,2925,3029 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 3.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 40.1,45.2,55.8,111.4,111.7,126.5$, 127.2, 127.3, 128.4, 132.1, 136.7, 142.6, 154.2, 177.5; Analysis for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3}$ requires C, 57.33; H, 4.51; found C, 57.32; H, 4.54\%.

3-(2-Bromo-4-methoxyphenyl)-3-phenylpropanoic acid (49c):
Yield: 88%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $756,1035,1217,1492,1604,1712,2358,3020,3274 \mathrm{~cm}^{-}$
${ }^{1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 39.2,43.5,54.1,112.4,116.9,123.4,125.1,126.6,127.1,127.6$, 133.2, 141.5, 157.1, 171.6; Analysis for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3}$ requires C, $57.33 ; \mathrm{H}, 4.51$; found C , 57.32; H, 4.54\%.

3-(3-Chloro-4-methoxyphenyl)-3-phenylpropanoic acid (49d):
Yield: 75%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 756,1056,1215,1495,1714,2935 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), 3.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=2.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.33(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$, CDCl_{3}): $\delta 40.3,46.2,55.8,111.49,122.2,126.5,127.1,127.4,128.4,136.1,136.7,143.6$, 153.2, 177.6; Analysis for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3}$ requires C, 66.10 ; $\mathrm{H}, 5.20$; found $\mathrm{C}, 66.08$; H , 5.19\%.

3-(4-Methoxy-3-methylphenyl)-3-phenylpropanoic acid (49e):
Yield: 91%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) 757,1215,1253,1506,1710,3020 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.15(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{t} J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=2.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16-7.27 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.3,40.6,45.7,55.2,109.8,125.4$, 126.4, 126.6, 127.4, 128.5, 134.8, 143.7, 156.3, 178.0; Analysis $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C, 75.53 ; $\mathrm{H}, 6.71$; found $\mathrm{C}, 75.55$; $\mathrm{H}, 6.73 \%$.

3-(4-Methoxy-2-methylphenyl)-3-phenylpropanoic acid (49f):

Yield: 93%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 757,1215,1238,1506,1708,2345,3020,3236 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 3.4(\mathrm{dd}, J=1.8,8.1 \mathrm{~Hz}, 2 \mathrm{H}) 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.85$ $(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.25(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 21.3,39.3,39.8,55.2,111.7,121.0,126.1,127.5,12.7,128.2$, 128.7, 137.5, 143.1, 156.6, 178.1; Analysis for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C, $75.53 ; \mathrm{H}, 6.71$; found C, $75.54 ; \mathrm{H}, 6.74 \%$.

3-(2-Methoxy-5-methylphenyl)-3-phenylpropanoic acid (49g):

Yield: 95\%; gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right)$: $767,1027,1132,1230,1502,1712,2921 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.87(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=1.6,8.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.14-7.26 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.5,39.3,39.9,55.4,110.7$, 126.1, 127.7, 127.8, 128.2, 128.4, 129.5, 131.4, 142.9, 154.6, 178.6; Analysis $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.53 ; \mathrm{H}, 6.71$; found $\mathrm{C}, 75.52 ; \mathrm{H}, 6.73 \%$.

3-(2,4-Dimethoxyphenyl)-3-phenylpropanoic acid (49h):

Yield 71\%; gum, IR (CHCl_{3}): 759, 1031, 1213, 1458, 1610, 1708, 2360, 2925, $3014 \mathrm{~cm}^{-}$
${ }^{1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 3.03(\mathrm{dd}, J=1.8,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}$, 3H) $4.81(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37-6.43(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.26(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 39.4, 39.6, 55.2, 55.3, 98.7, 103.9, 124.2, 126.1, 127.7, 128.1, 128.2, 143.2, 157.6, 159.4, 178.1; Analysis for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, 71.31; H, 6.34; found C, 71.34; H, 6.33\%.

3,3-Bis(4-methoxyphenyl)propanoic acid (49j):

Yield: 65\%, gum, IR (CHCl_{3}): 575, 1033, 1232, 1247, 1510, 1710, 2360, 2927, $3020 \mathrm{~cm}^{-}$
${ }^{1} ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 3.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 4.42(\mathrm{t}, J=7.8$
$\mathrm{Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 40.7,44.9,55.1,113.8,128.4,135.7,158.0,177.4$; Analysis for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, $71.31 ; \mathrm{H}, 6.34 ; \mathrm{O}$, found $\mathrm{C}, 71.30 ; \mathrm{H}, 6.31 \%$.

3-(4-Chlorophenyl)-3-(4-methoxyphenyl)propanoic acid (49i):

Yield: 82\%, gum, IR $\left(\mathrm{CHCl}_{3}\right): 756,1251,1512,1606,1708,2360,2925,3018,3139 \mathrm{~cm}^{-}$
${ }^{1}$; ${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 3.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.16(\mathrm{dd}, J=7.0,8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 40.4,55.1,114.0,128.4,128.6,128.8,132.2,134.82$, 142.0, 158.2, 177.6; Analysis for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3}$ requires C, 66.10 ; $\mathrm{H}, 5.20$; found $\mathrm{C}, 66.11$; H, 5.17\%.

Section II:

$\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed α-halogenation of ketones with 1,3-dichloro-5,5dimethylhydantoin and N-bromosuccinimide.

4.2.1 Introduction

Halogenation of ketones at the α-position is a fundamental process in organic chemistry for a wide scope of chemical transformations. ${ }^{25}$ The development of new methods for such halogenations of organic compounds has been studied extensively. Carbonyl compounds have been halogenated at the α-position by numerous reagents. Generally, direct α-halogenation of carbonyl compounds has been achieved in strong acidic and relatively vigorous reaction conditions. A milder route for α-chlorination involves the conversion of ketones to the corresponding enol ethers or enol silanes followed by electrophilic halogenation to give α-halo ketones. Metal halides like cupric halide are also used in stoichiometric amounts for halogenation of aldehydes, ketones, enol ethers, enol silanes etc.

4.2.2 Review of literature

Literature search revealed that halogenations of ketones has been achieved by numerous methods. ${ }^{25}$ Some of the recent reports are described below.

Ostrum's approach (1964) ${ }^{26}$

Ostrum et al. have reported α-bromination of hydroxyacetophenones $\mathbf{5 0}$ with stoichiometric amounts of CuBr_{2} under the heterogeneous conditions to give α-bromo acetophenones 51 in high yields. Use of CuBr_{2} in excess is a limitation of reaction (Scheme 19).

Scheme 19: (a) Hydroxy acetophenone (3 mmol), $\mathrm{CuBr}_{2}(5 \mathrm{mmol})$, EtOAc (25 $\mathrm{mL}), \mathrm{CHCl}_{3}(25 \mathrm{~mL})$, reflux, $1-5 \mathrm{~h}$.

Kaufman's approach (1964) ${ }^{27}$

Kaufman's et al. have described the use of sulfuryl chloride $\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right)$ for halogenation of various ketones. For example, α-chlorination of acetone resulted in poor selectivity of the chlorinated products (52-54) (Scheme 20).

Scheme 20: ketone, $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (1-2 equiv.), $30-40^{\circ} \mathrm{C}, 2-3 \mathrm{~h}$.

Reed's approach (1964) ${ }^{28}$

Reed et al. have described the use of N -chlorosuccinimide (56) in combination with water for oxidative chlorination of acetylenes 55 to give dicloroketones 57 in $74-81 \%$ yields (Scheme 21).

Scheme 21: (a) $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$, then conc. HCl reflux, 12 h .

Pillai's approach (1989) ${ }^{29}$

Pillai et al. have used poly- N-haloacrylamide, prepared from commercially available polyacrylamide (PA), a new solid phase polymeric reagents used for the halogenation of ketones 58 to give α-haloketones 59-61 ($\mathrm{X}=\mathrm{Br}, \mathrm{Cl}$ and I) (Scheme 22).

58,

$$
\begin{aligned}
& \mathbf{5 9}, \mathrm{X}=\mathrm{Br}, 62-77 \% \\
& \mathbf{6 0}, \mathrm{X}=\mathrm{Cl}, 25-30 \% \\
& \mathbf{6 1}, \mathrm{X}=\mathrm{I}, 15-85 \%
\end{aligned}
$$

59-61

Scheme 22: (a) ketone (5 mmol), $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, polymeric reagent (34 molar equiv.), 10% sulphuric acid, $60^{\circ} \mathrm{C}, 8-12 \mathrm{~h}$.

Mitani's Approach (1991) ${ }^{30}$

Mitani et al. have reported α-bromination of chalcones $\mathbf{6 2}$ with CuBr_{2} to give α-bromo chalcones 63 (Scheme 23).

Scheme 23: (a) chalcone (2 mmol), CuBr_{2} (4 mmol), TFA (8 $\mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NTs}\left(0.2 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$, electrolysis using carbon rod electrodes in an undivided cell.

Dai's approach (1993) ${ }^{31}$

Dai et al. have reported a two step procedure for α-halogenation of β-dicarbonyl derivatives 64 and 65 to give α-halodicarbonyl derivatives 67a-b and 68a-b in high yields (Scheme 24).

Scheme 24: (a) keto ester (3 mmol), $\mathrm{NaH}(3 \mathrm{mmol})$, DMSO $(15 \mathrm{~mL}), 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then anhydrous CuX 2 (6-9 mmol), $25-40^{\circ} \mathrm{C}, 7-16 \mathrm{~h}$.

Brummond's approach (1999) ${ }^{32}$

Brummond et al. have reported two-step procedures for α-chlorination of ketones 69 and
70. The procedure involves initial formation of a kinetic enolate of ketones (LDA) and the addition of p-toluenesulfonyl chloride as a positive chlorine source to give α-chloro cycloalkanones 71 and α-chloroacetophenones 72 in high yields (Scheme 25).

Scheme 25: (a) ketone, LDA (1.0 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$;
(b) p-toluenesulfonyl chloride (1.0 equiv. 0.1 M solution), THF, $-78-0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Peppe's approach (2002) ${ }^{33}$

Peppe et al. have used execess of CuCl_{2} for dichlorination of acetophenones $\mathbf{5 8}$ in dimethylformamide to produce the corresponding α, α-dichloroacetophenones 73 in high yields (Scheme 26).

Scheme 26: $\quad \begin{aligned} & \text { (a) } \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(11.73 \mathrm{mmol}), \mathrm{LiCl}(11.73 \mathrm{mmol}), \mathrm{DMF}(9 \mathrm{~mL}), \\ & \text { then ketone }(1.95 \mathrm{mmol}), 90^{\circ} \mathrm{C}, 2-6 \mathrm{~h} .\end{aligned}$

Paul's approach (2003) ${ }^{34}$

Paul et al. have reported the use of dioxane-dibromide complex and silica gel under microwave irradiation for the α-bromination of substituted acetophenones 58. Acetophenones react with dioxane- dibromide under solvent-free and microwave irradiation condition to give the corresponding conditions α-bromoacetophenones 59 and α, α^{\prime}-bromoacetophenones 74 in high yields (Scheme 27).

Scheme 27: (a) dioxane-dibromide (1.1 equiv.) and silica gel (60-120 mesh, 2 g), microwave , 1-180 min; (b) dioxane-dibromide (2.5 equiv.) and silica gel ($60-120$ mesh, 5 g), microwave , $1-180 \mathrm{~min}$.

Lee's approach (2003) ${ }^{35}$

Lee $e t$ al. have used p-toluenesulphonic acid-mediated α-bromination of ketones $\mathbf{5 8}$ to afford the corresponding α-bromoketones 59 in high yields (Scheme 28).

$$
\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{NO}_{2}, \mathrm{OMe}
$$

Scheme 28: (a) carbonyl compound (1.0 mmol), p-toluenesulfonic acid monohydrate $(1.5 \mathrm{mmol}), \quad \mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL}), \mathrm{NCS}$ or NBS $(1.0 \mathrm{mmol})$, reflux, $1-2 \mathrm{~h}$.

Lee's approach (2004) ${ }^{36}$

Lee et al. have described the α-halogenation of carbonyl compounds using hypervalent iodine(III)sulfonates promoted by microwave irradiation under solvent-free conditions. Halogenation of ketone involves sequential reaction of the carbonyl compounds with [hydroxy(tosyloxy)iodo]benzene (Koser's reagent, HTIB) to produce α-tosyloxycarbonyl intermediate 75 followed by its reaction with $\operatorname{MgX}_{2}(X=B r, C l$, and I) gave α-halo carbonyl derivatives 59, 60 and 61(Scheme 29).

Scheme 29: (a) carbonyl compound (1.0 mmol), HTIB (1.2 mmol) MWI (700 W), 90 sec , $25^{\circ} \mathrm{C}, \mathrm{MgX}_{2}(2 \mathrm{mmol}), \mathrm{MWI}(700 \mathrm{~W}), 120 \mathrm{sec}, 25^{\circ} \mathrm{C}$.

Jørgensen's approach (2004) ${ }^{37}$

Jørgensen et al. have reported an organo-catalytic approach to the asymmetric α chlorination of aldehydes 76 using NCS as the chlorine source that afforded optically active α-chloroaldehydes 77 in high yields and high optical purity (Scheme 30).

Scheme 30: (a) aldehyde, NCS (1.3 equiv.), catalyst 78 ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 2-10 \mathrm{~h}$.

Jørgensen's approach (2004) ${ }^{38}$

In another report, Jørgensen et al. have described an organo-catalytic asymmetric α chlorination of ketones $\mathbf{6 9}$ using NCS as the chlorine source that afforded optically active α-chloroketones 71a in moderate yields with excellent optical purity (Scheme 31).

Scheme 31: ketone (1.25-2.5 mmol), catalyst 78 (10-20 mol\%), $\mathrm{NCS}(0.5 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2},-24^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Yamamoto's approach (2004) ${ }^{39}$

Yamamoto et al. have used chiral chlorine sources 81a-c in combination with ZrCl_{4} for the chlorination of silyl enol ether 79 to give α-chloro ketones $\mathbf{8 0}$ in moderate optical purities with high yields (Scheme 32).

79, $\mathrm{SiR}_{3}=\mathrm{TMS}$, TBDMS, TIPS

80
42-86\%ее

81a-c

$$
\begin{aligned}
\mathrm{Ar}= & \mathrm{Ph}, \\
& \text { 1-Naphthyl, } \\
& \text { 9-Naphthyl }
\end{aligned}
$$

Scheme 32: (a) Enolether, ZrCl_{4} (1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 81$ (1 equiv.), $1.5-2 \mathrm{~h}$.

Tanemura's approach (2004) ${ }^{40}$

Tanemura et al. have reported $\mathrm{NH}_{4} \mathrm{OAc}$-catalyzed α-bromination of acetophenones $\mathbf{5 8}$ to give α-bromoacetophenones 59 in high yields (Scheme 33).

Scheme 33: substrate (10 mmol), NBS (10.5 mmol), $\mathrm{NH}_{4} \mathrm{OAc}$ (1 mmol), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), 25^{\circ} \mathrm{C}$.

Terent'ev's approach ${ }^{41}$

Terent'ev et al. have used conc. HCl in combination with $\mathrm{H}_{2} \mathrm{O}_{2}$ as an effective chlorine source for the dichlorination of acetophenones $\mathbf{5 8}$ to give α, α-dichloroacetophenones $\mathbf{7 3}$ in good yields (Scheme 34).

$\mathrm{R}=\mathrm{Br}, \mathrm{Cl}, \mathrm{F}, \mathrm{NO}_{2}$,
Scheme 34: (a) acetophenones, $\mathrm{H}_{2} \mathrm{O}_{2}$ (2.7 equiv.) conc. HCl $(20 \mathrm{~mL})$, $\mathrm{EtOH}(20 \mathrm{~mL})$, reflux, $10-15 \mathrm{~min}$.

Yadav's approach (2006) ${ }^{42}$

Yadav et al. have described α-halogenation of 1,3-diketones $\mathbf{6 4}$ and 1,3-ketoesters 65 in an ionic liquid $\left[\mathrm{Bmim}^{2}\right] \mathrm{PF}_{6}$ with N-halosuccinimide to give the corresponding α-halo ketone derivatives 67, 68 and 82 (Scheme 35).

$\mathrm{R}=$ alkyl or aryl
64, $\mathrm{R}^{\prime}=$ alkyl
65, $\mathrm{R}^{\prime}=\mathrm{O}$-alkyl

67, $\mathrm{X}=\mathrm{Br}$,
68, $\mathrm{X}=\mathrm{Cl}$,
82, $\mathrm{X}=\mathrm{I}$

Scheme 35: (a) 1,3-ketoester (1 mmol), N-halosuccinimide (1.05 mmol), [Bmim] $\mathrm{PF}_{6}(2 \mathrm{~mL}), 25^{\circ} \mathrm{C}, 10-60 \mathrm{~h}$.

4.2.3 Present work

4.2.3.1 Objective

Although several reagent systems are known in the literature for α-halogenation of carbonyl compounds, these are associated with certain drawbacks such as generality, harsh reaction conditions, stoichiometric amounts of the catalyst, use of toxic gases etc. This provides scope for development of milder conditions for α-halogenation of organic carbonyl compounds. In particular α-Halogenation of ketones with metal halides $\left(\mathrm{CuX}_{2}\right)$ have been extensively studied to obtain various halo derivatives. Major drawback of this reaction is the use of metal halides in large excess. In this section, we describe $\mathrm{Cu}(\mathrm{OTf})_{2^{-}}$ catalyzed α-halogenation of ketones using 1,3-dichloro-5,5'-dimethylhydantoin and N bromosuccinimde as halogen sources.

4.2.3.2 Results and Discussion

In continuation of our work ${ }^{43}$ on $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed transformations, we became interested in employing $\mathrm{Cu}(\mathrm{OTf})_{2}$, being a mild Lewis acid catalyst, for α-halogenation of ketone using 1,3-dichloro-5,5'-dimethylhydantoin as electrophilic chlorine source. ${ }^{44}$ Accordingly, we subjected acetophenone 58a to $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed chlorination of with 1,3-dichloro-5,5'-dimethylhydantoin (83, 1 equiv.), which provided 2,2-dichloro-1phenylethanone 73a in 92\% yield (Scheme 36).

Scheme 36: (a) $\mathrm{Cu}(\mathrm{OTf})_{2}(1 \mathrm{~mol} \%), \mathrm{CHCl}_{3}, 80^{\circ} \mathrm{C}$.

Encouraged by this result, we have screened various Lewis acids such as $\mathrm{Cu}(\mathrm{OTf})$, $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{CuCl}_{2}, \mathrm{CuCl}, \mathrm{CuI}, \mathrm{Co}(\mathrm{OAc})_{2}$ and CoCl_{2} for the chlorination of acetophenones using 1,3-dichloro-5,5'-dimethylhydantoin 83 as chlorine source, which produced 2,2-dichloro-1-phenylethanone. Results of these studies are presented in Table 4, which showed that $\mathrm{Cu}(\mathrm{OTf})_{2}$ was found to be an effective catalyst campared to others for the synthesis of α, α-dichloroacetophenones with very high selectivity and excellent yields.

Table 4: Catalyst screening for dichlorination of acetophenone (58a) with 1,3-dichloro 5,5'-dimethylhydration (83)		
No.	catalyst	Yield of 73a $(\%)^{\text {a }}$
1	$\mathrm{Cu}(\mathrm{OTf})_{2}$	92
2	CuOTf	10
3	$\mathrm{Cu}(\mathrm{OAc})_{2}$	23
4	CuCl	10
5	CuCl	0
6	CuI	0
7	$\mathrm{Co}(\mathrm{OAc})_{2}$	0
8	CoCl	
		traces

Reaction conditions: ketone (4 mmol), 1,3-dichloro-5,5'-dimethylhydantion (4.4 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%), \mathrm{CHCl}_{3}(20 \mathrm{ml})$, reflux.

For $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed chlorination of acetophenone, out of solvents like $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and temperatures ranging from $25^{\circ} \mathrm{C}$ to reflux, we found that CHCl_{3} at reflux temperature is the best solvent system for the chlorination. To generalize the scope of reaction, we became interested in subjecting various aromatic ketones to α chlorination. We found that dichlorination of substituted acetophenones underwent smoothly giving high yields of α, α-dichloroketones with good yield and selectivity, the results of which are summarized in Table 5.

Table 5: Dichlorination of substituted acetophenones ${ }^{\text {a }}$

entry	R	time (h)	yield of $\mathbf{7 3}(\%)^{\mathrm{b}}$
\mathbf{a}	H	8	92
\mathbf{b}	$4-\mathrm{O}_{2} \mathrm{~N}$	6	76
\mathbf{c}	$4-\mathrm{Br}$	7	77
\mathbf{d}	$4-\mathrm{Cl}$	7	71
\mathbf{e}	$4-\mathrm{F}$	8	73
\mathbf{f}	$4-\mathrm{CH}_{3}$	5	75
\mathbf{g}	$4-\mathrm{OCH}_{3}$	6	83
\mathbf{h}	$3,4-\left(\mathrm{OCH}_{3}\right)_{2}$	6	85
\mathbf{i}	$3,4,5-\left(\mathrm{OCH}_{3}\right)_{3}$	5	85^{c}
\mathbf{j}	Propiophenone	6	87
\mathbf{k}	$\alpha-$ Tetralone	7	85
\mathbf{l}	2-Acetyl	6	86
	naphthalene		

[^7]Remarkably, nuclear chlorination was not at all observed even in the activated aromatic ketones such as methoxyacetophenones ($\mathbf{5 8 g} \mathbf{g} \mathbf{h}$). This can be explained from the fact that $\mathrm{Cu}(\mathrm{OTf})_{2}$ is activating α-position of the ketone by enolization and thus deactivating the aromatic ring for electrophilic chlorination. Only in the case of 3,4,5trimethoxyacetophenone (58i), we observed aromatic chlorination as well as monochlorination at the α-position. As can be seen from Table 5, substituted aromatic ketones (nitro, halide, CH_{3} and OCH_{3}) underwent α, α-dichlorination to give the corresponding α, α-dichloroacetophenones 73a-I in high yields.

We were interested to examine aliphatic ketones as well as chalcones for dichlorination reaction. Thus, $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed α-chlorination of aliphatic ketones 54 were carried
out with 1,3-dichloro-5,5'-dimethylhydantoin which gave α, α^{\prime}-dichloroketones 55 in good yields (Scheme 37).

Scheme 37: (a) $\mathrm{Cu}(\mathrm{OTf})_{2}(1 \mathrm{~mol} \%), \mathrm{CHCl}_{3}, 80^{\circ} \mathrm{C}$.

As can be seen from Table 6, aliphatic ketones gave α, α '-dichlorination in 61-76\% yields. However, 3,3-dimethylbutan-2-one (54e) gave 1,1-dichloro-3,3-dimethylbutan-2one in 71% yield.

Table 6: Dichlorination of aliphatic ketones ${ }^{\text {a }}$

entry	ketone (54a-e)	time (h)	Yield of $\mathbf{5 5}(\%)^{\text {b }}$
\mathbf{a}	cyclohexanone	8	61
b	2-methylcyclohexanone	6	67
c	2-butanone	7	67
d	2-pentanone	7	76
\mathbf{e}	3,3-dimethylbutan-2-one	8	$71^{\text {c }}$

${ }^{\mathrm{a}}$ Reaction conditions: ketone (4 mmol), 1,3-dichloro 5,5'-dimethyl hydantoin (4.4 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%), \mathrm{CHCl}_{3}(20 \mathrm{~mL})$, reflux.
${ }^{\mathrm{b}}$ Isolated yields after column chromatography,
${ }^{c} 1,1$-dichloro-3,3-dimethylbutan-2-one was isolated.

In the case of chalcones $\mathbf{6 2 a - c}, \alpha, \alpha$-dichlorochalcones 84a-c were obtained in excellent yields and interestingly the double bond was not affected under the reaction conditions (Scheme 38).

Scheme 38: (a) $\mathrm{Cu}(\mathrm{OTf})_{2}(1 \mathrm{~mol} \%), \mathrm{CHCl}_{3}, 80^{\circ} \mathrm{C}$.

Various chalcones ($\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{OMe}$) underwent α, α-dichlorination to give $\alpha, \alpha-$ dichlorochalcones 84a-c in 83-87\% yields (Table 7).

Table 7: Dichlorination of chalcones ${ }^{\text {a }}$

entry	R (54a-e)	time (h)	Yield of $\mathbf{8 4}(\%)^{b}$
\mathbf{a}	H	8	87
\mathbf{b}	Cl	6	84
\mathbf{c}	OMe	7	83

${ }^{\text {a }}$ Reaction conditions: ketone (4 mmol), 1,3-dichloro 5,5'-dimethyl hydantoin (4.4 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%), \mathrm{CHCl}_{3}(20 \mathrm{~mL})$, reflux. ${ }^{\mathrm{b}}$ Isolated yields after column chromatography,

Next, we have subjected acetophenone to $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed α-bromination with N bromosuccinimide. We observed that $\mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed bromination of acetophenone with NBS (1 equiv.) gave α-bromoacetophenone 59a in 82\% yield (Scheme 39).

Scheme 39: (a) $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%), \mathrm{CHCl}_{3}, 80^{\circ} \mathrm{C}$

We also observed that α, α-dibromoacetone was formed as a minor product under reaction conditions. The systematic study of various ketones was carried out, the results of which are presented in Table 8.

Table 8 : α-Bromination of ketones ${ }^{\text {a }}$

Entry	Ketone (R)	time (h)	yield of $59(\%)^{b}$
a	H	8	82
b	$3-\mathrm{NO}_{2}$	6	89
c	$4-\mathrm{NO}_{2}$	6	76
d	$3,4-\mathrm{Cl}_{2}$	7	77
e	3,4-($\left.\mathrm{OCH}_{3}\right)_{2}$	6	65
f	α-tetralone	7	85
g	2-acetylnaphthalene	6	86
h	cyclohexanone	6	77
i	2-methylcyclohexanone	6	81
${ }^{\text {a }}$ Reaction conditions: ketone (4 mmol), NBS (4.4 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%), \mathrm{CHCl}_{3}(20 \mathrm{~mL})$, reflux. ${ }^{\mathrm{b}}$ Isolated yields after column chromatography, ${ }^{\text {c }} 2$-chloro(2-chloro $3,4,5$-trimethoxy phenyl)ethanone was isolated.			

Mechanism

In the presence of $\mathrm{Cu}(\mathrm{OTf})_{2}$, acetophenone undergoes enolization forming enolate (species A), which further undergoes nucleophilic addition onto electrophilic dimethylhydantoin dichloride $\mathbf{8 3}$ giving α-chloroacetophenone and dimethylhydantoin chloride (species B). α-Chloroacetophenone undergoes second enolization followed by chlorination with dimethylhydantoin chloride to give α, α-dichloro acetophenone 73.

Fig. 6: Mechanism for $\mathrm{Cu}(\mathrm{OTf})_{2}$ - catalyzed dichlorination

The characterization of all the products were confirmed unambiguously from their corresponding spectral analysis. For example, ${ }^{1} \mathrm{H}$ NMR of 73 f showed characteristic signals at $\delta 2.45,6.65,7.31$ and 7.98 due to methyl $\left(\mathrm{CH}_{3}\right)$, methine $\left(\mathrm{CHCl}_{2}\right)$ and aromatic protons respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at $\delta 67.7$ and 185.2 due to the methine $\left(\mathbf{C H C l}_{2}\right)$ and carbonyl carbons respectively (Fig. 5).

Fig. 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of nitrodiol (76a)

As a second example, ${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 4 a}$ showed characteristic signals at $\delta 5.95,7.20$ and 7.85 due to the methine $\left(\mathrm{CHCl}_{2}\right)$ and olefinic protons respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at $\delta 69.7$ and 185.3 due the methine $\left(\mathbf{C H C l}_{2}\right)$ and carbonyl carbons respectively (Fig.6).

Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of dichlochalcone (84a)

As a third example, ${ }^{1} \mathrm{H}$ NMR of 2-bromo-2-methylcyclohexanone (59i) showed a characteristic signal at $\delta 1.82$ (s) for its methyl protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at $\delta 27.9,65.7$ and 204.4 due the methyl $\left(\mathrm{CH}_{3}\right)$, methine $\left(\mathrm{CHCl}_{2}\right)$ and carbonyl carbons respectively (Fig.7)

Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra 2-bromo-2-methylcyclohexanone (59i)

4.2.4 Conclusion

In conclusion we have developed a simple and efficient catalytic method for dichlorination of ketones. In terms of handling and availability 1,3-dichloro-5,5'dimethylhydantoin is superior chlorinating agent compared to other chlorine sources known. Our method works very well with variety of ketones and tolerates various functional groups.

4.2.5 Experimental section

A general procedure for $\boldsymbol{\alpha}, \boldsymbol{\alpha}$-dichlorination of ketones:

To a stirred solution of ketone (4 mmol) and $\mathrm{Cu}(\mathrm{OTf})_{2}(2 \mathrm{~mol} \%)$ in $\mathrm{CHCl}_{3} \mathrm{CHCl}_{3}(20$ mL), was added 1,3-dichloro-5,5'-dimethyl hydration (4.4 mmol). Then it was refluxed for 8 h under nitrogen atmosphere. After completion of reaction (monitored by TLC), the reaction mixture was diluted with 20 mL chloroform. Organic phase was washed with a saturated sodium thiosulphate solution $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over unhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to give crude product. Crude product was purified by column chromatography [silica gel (60-120 mesh) and petroleum ether:ethyl acetate as eluent] to give dichloroketone in pure form.

2,2-Dichloro-1-phenylethanone (73a):

Yield: 92%, gum, IR $\left(\mathrm{CHCl}_{3}\right): 757,990,1093,1402,1590,1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.63(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (50 MHz CDCl 3): $\delta 67.74,128.76,129.62,131.20,134.33$, 185.45; Analysis for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{C}_{12} \mathrm{O}$ requires C, $50.83 ; \mathrm{H}, 3.20$; found C, $50.80 ; \mathrm{H}, 3.21$

2,2-Dichloro-1-(4-nitrophenyl)ethanone (73b):
Yield: 76%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 757,990,1093,1335,1402,1450,1590,1711 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.55(\mathrm{~s}, 1 \mathrm{H}), 8.34-8.35(\mathrm{dd}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta 67.71,123.79,130.85,135.79,150.70,184.35$; Analysis for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NO}_{3}$ requires C, 41.06; H, 2.15; N, 5.98; found C, 40.87; H, 2.07; N, 5.82\%.

1-(4-Bromophenyl)-2,2-dichloroethanone (73c):
Yield: 77\%, gum, IR (CHCl_{3}): 669, 1011, 1075, 1215, 1274, 1400, 1586, $1712 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.58(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 67.63,129.74,129.86,131.05,133.08,184.80$. Analysis for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrCl}_{2} \mathrm{O}$ requires C, $35.86 ; \mathrm{H}, 1.88$; found $\mathrm{C}, 35.71 ; \mathrm{H}, 1.75 \%$.

2,2-Dichloro-1-(4-chlorophenyl)ethanone (73d):

Yield: 71\%; gum, IR (CHCl_{3}): 669, 850, 1094, 1216, 1274, 1402, 1590, 1712, 2400, $3019 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.53(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.07$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 67.79,129.17,129.41,131.21,141.09$, 184.56; Analysis for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}$ requires C, $42.99 ; \mathrm{H}, 2.26$; found $\mathrm{C}, 42.76 ; \mathrm{H}, 2.29 \%$.

2,2-Dichloro-1-(4-fluorophenyl)ethanone (73e):
Yield: 73%; IR $\left(\mathrm{CHCl}_{3}\right): 767,849,1012,1090,14101592,1714 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad \delta \quad 6.58(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 67.75,116.12(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 127.44(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.64(\mathrm{~d}, J=9.9$ $\mathrm{Hz}), 166.31(\mathrm{~d}, J=258.4 \mathrm{~Hz}), 184.37$; Analysis for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}$ requires $\mathrm{C}, 42.99 ; \mathrm{H}, 2.26$; found C, 42.81 ; $\mathrm{H}, 2.21 \%$.

2,2-Dichloro-1-p-tolylethanone (73f):

Yield: 75%; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 669,756,1216,1280,1419,1607,1702,2400,3091 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.45(\mathrm{~s}, 3 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 21.68,67.71,128.58,129.48,129.66$,
145.63, 185.26; Analysis for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{OCl}_{2}$ requires $\mathrm{C}, 53.23 ; \mathrm{H}, 3.97$; found $\mathrm{C}, 53.12 ; \mathrm{H}$, 3.82%.

2,2-Dichloro-1-(4-methoxyphenyl)ethanone (73g):
Yield: 83%; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 857,1410,1620,1711 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $3.90(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.40,67.71,114.01,123.67,131.98,164.42,184.24$; Analysis for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires C, 49.34; H, 3.68; found C, $49.21 ; \mathrm{H}, 3.45 \%$.

2,2-Dichloro-1-(3,4-dimethoxyphenyl)ethanone (73h):
Yield: 85%; IR (CHCl_{3}): 669, 756, 1092, 1215, 1326, 1491, 1611, 1697, 2399, $3019 \mathrm{~cm}^{-}$
${ }^{1} ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=2,8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 55.56,55.73,67.33,109.82,111.25,123.64,124.11,148.93,154,19,184,16$.

Analysis for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{C}_{12} \mathrm{O}_{3}$ requires $\mathrm{C}, 48.22$; $\mathrm{H}, 4.05$; found $\mathrm{C}, 48.11 ; \mathrm{H}, 4.12 \%$.
2-Chloro-1-(2-chloro-3,4,5-trimethoxyphenyl)ethanone (73i):
Yield: 85%; IR $\left(\mathrm{CHCl}_{3}\right): 757,823,1410,1614,1711 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 48.68,55.83,60.70,60.76,108.15,118.16,130.83,146.10,149.69$, 151.99, 192.58; Analysis for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{C}_{12} \mathrm{O}_{4}$ requires C, 47.33 ; $\mathrm{H}, 4.33$; found $\mathrm{C}, 47.21$; H , 4.37\%.

2,2-Dichloro-1-phenylpropan-1-one (73j):

Yield: 87%; IR $\left(\mathrm{CHCl}_{3}\right)$: $757,1223,1410,1590,1713 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 7.41-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.62(\mathrm{~m} \mathrm{1H}), 8.29-8.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$

NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.91,71.10,127.93,131.22,133.38$, 187.90; Analysis for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$ requires C, $52.71 ; \mathrm{H}, 4.91$; found C, $52.67 ; \mathrm{H}, 4.83 \%$.

2,2-Dichloro-3,4-dihydronaphthalen-1(2H)-one (73k):
Yield: 85%; IR $\left(\mathrm{CHCl}_{3}\right): 746,815,879,1123,1217,1291,1425,1598,1702 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.96(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 27.28,43.08,86.22,127.39,128.62,129.68,134.48$, 142.02, 183.65; Analysis for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 55.84 ; \mathrm{H}, 3.75$; found $\mathrm{C}, 55.65$; H , 3.71\%.

2,2-Dichloro-1-(naphthalen-4-yl)ethanone(731):

Yield: 86%; IR $\left(\mathrm{CHCl}_{3}\right): 784,846,938,1047,1373,1465,1695,2941 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.79(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.87-8.06(\mathrm{~m}, 3 \mathrm{H}), 8.50(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 69.07,123.89,125.17,126.80,128.12$, 128.54, 129.86, 130.76, 133.71,134.26, 188.08; Analysis for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$ requires C, 60.28; H, 3.37; found C, 60.11; H, 3.21\%.

(E)-1,1-Dichloro-4-phenylbut-3-en-2-one (84a):

IR (CHCl_{3}): 746, 981, 1076, 1147, 1216, 1333, 1450, 1613, 1691, 2401, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.97(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.66(\mathrm{~m}$, $2 \mathrm{H}), 7.89(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 69.75,117.43,128.75$, 128.92, 131.36, 133.67, 147.75, 185.35; Analysis for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$ requires C, 55.84; H, 3.75; found C, 55.67 ; H, 3.79\%.
(E)-1,1-Dichloro-4-(4-methoxyphenyl)but-3-en-2-one (84b):
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ $(\mathrm{d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.19,69.85,114.37,114.97,126.42,130.66,147.51,162.30,185.39$; Analysis for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 53.90 ; \mathrm{H}, 4.11$; found $\mathrm{C}, 53.79 ; \mathrm{H}, 4.19 \%$.

(E)-1,1-Dichloro-4-(4-chlorophenyl)but-3-en-2-one (84c):

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.96(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 69.70,117.86,129.25,129.89,132.20,137.37,146.21,185.21$; Analysis for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}$ requires $\mathrm{C}, 48.14 ; \mathrm{H}, 2.83$; found $\mathrm{C}, 48.01 ; \mathrm{H}, 2.89 \%$.

1,3-Dichlorobutan-2-one:

${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.46(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.64$ $(\mathrm{q}, J=6.9,1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 19.84,45.51,55.57,196.80$; Analysis for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}$ requires C, $34.07 ; \mathrm{H}, 4.29$; found $\mathrm{C}, 34.23 ; \mathrm{H}, 4.11 \%$.

1,3-Dichloropentan-2-one:

${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.89-2.13(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.56(\mathrm{q}$, 1H), 4.44-4.46 (d, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.22,26,79,45.94,62.25$, 196.47; Analysis for $\mathrm{C}_{5} \mathrm{H}_{8 \mathrm{Cl}}^{2}$ O requires C, $38.74 ; \mathrm{H}, 5.20$; found $\mathrm{C}, 38.66 ; \mathrm{H}, 5.29 \%$.

2,6-Dichloro-2-methylcyclohexanone:

${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.78-2.00(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.49-$ $2.64(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.33(\mathrm{dd}, J=6.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.10$, 26.74, 38.39, 42.20, 60.31, 70.69, 196.92; Analysis for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 46.43$; H , 5.57; found C, 46.32; H, 5.51\%.

A general procedure for $\boldsymbol{\alpha}$-bromination of ketones:

To a stirred solution of ketone (4 mmol) and $\mathrm{Cu}(\mathrm{OTf})_{2}(2 \mathrm{~mol} \%)$ in $\mathrm{CHCl}_{3} \mathrm{CHCl}_{3}(20$ mL), was added N -bromosuccinimide (4 mmol). Then it was refluxed for 8 h under nitrogen atmosphere. After completion of reaction (monitored by TLC), the reaction mixture was diluted with 20 mL chloroform. Organic phase was washed with a saturated sodium thiosulphate solution (20 mL) and brine $(20 \mathrm{~mL})$. The organic layer was dried over unhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to give crude product. Crude product was purified by column chromatography [silica gel ($60-120$ mesh) and petroleum ether:ethyl acetate as eluent] to give α-bromoketone 57a-i in pure form.

2-Bromo-1-phenylethanone (57a):
Yield: 82%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 759,1234,1374,1462,1592,1691 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.47(\mathrm{~s}, 2 \mathrm{H}), 7.46-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.99(\mathrm{dt}, J=1.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.15,128.65,129.28,133.57,134.76,190.92 ; \mathbf{M} / \mathbf{S}: 200,198$, 105, 91, 77, 65, 51;Analysis for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}$ requires C, 48.27; H, 3.54; found C, 48.22; H , 3.52%.

2-Bromo-1-(3-nitrophenyl)ethanone (57b):

Yield: 89%, gum, IR $\left(\mathrm{CHCl}_{3}\right): 769,1215,1265,1352,1535,1614,1693 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=1.1,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.48(\mathrm{dq}, J=1.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 30.22,123.48,127.94,130.13,134.35,134.99,148.30,189.32$; M/S: 244, 242, 150, 134, 120, 104, 92, 76, 63, 40; Analysis for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{3}$ requires C, 39.37; H, 2.48; N, 5.74; found C, 39.33; H, 2.49; N, 5.77\%.

2-Bromo-1-(4-nitrophenyl)ethanone (57c):

Yield: 76%, gum, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 757,856,1190,1215,1270,1346,1529,1693 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.47(\mathrm{~s}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $2 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 30.36. 123.88, 129.92, 138.29, 138.29, 150.51, 189.84; Analysis for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{3}$ requires C, 39.37; H, 2.48; N, 5.74; found C, 39.34; H, 2.43; N, 5.73\%.

2-Bromo-1-(3,4-dichlorophenyl)ethanone (57d):

Yield: 77%, IR $\left(\mathrm{CHCl}_{3}\right): 756,890,1192,1590,1690 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 4.50(\mathrm{~s}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=1.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.15,127.23,130.15,131.07,132.15,133.78$, 138.11, 192.07; M/S: $268,173,145,124,109,95,74,62,42$; Analysis for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrCl}_{2} \mathrm{O}$ rquires C, 35.86 ; H, 1.88; found C, 35.83 ; H, 1.85\%.

2-Bromo-1-(3,4-dimethoxyphenyl)ethanone (57e):

Yield: 65%, IR (CHCl_{3}): 757, 890, 930, 1143, 1590, $1695 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=2.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.57,55.87$, $56.01,110.03,111.66,123.20,124.18,149.15,154.29,184.61$; Analysis for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$ requires $\mathrm{C}, 46.36$; $\mathrm{H}, 4.28$; found $\mathrm{C}, 46.32 ; \mathrm{H}, 4.33 \%$.

2-Bromo-3,4-dihydronaphthalen-1(2H)-one (57f):

Yield: 85%, gum, IR (neat): 796, 887, 1195, 1303, 1598, $1681 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.43-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.99(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.41(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{t}, \mathrm{J}=4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dt}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.79,31.59,50.44,126.70,128.11,128.51,129.52$,
133.79, 142.71, 190.07; Analysis for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}$ requires C, 53.36; $\mathrm{H}, 4.03$; found C , 53.31 ; H, 3.98\%.

2-Bromo-1-(naphthalen-5-yl)ethanone (57g):
Yield: 86%, $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right): 777,1086,1168,1247,1508,1685 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 4.58(\mathrm{~s}, 2 \mathrm{H}), 7.48-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.87-8.07(\mathrm{~m}, 3 \mathrm{H}), 8.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.94,124.03,125.43,126.56,128.26,128.36,128.47$, 130.34, 131.91, 133.70, 194.02; M/S: 250, 248,155, 141, 127, 115, 95, 77, 63, 42;

Analysis for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}$ requires C, 57.86; H, 3.64; found C, 57.82; H, 3.61\%.

2-Bromocyclohexanone(57h):

Yield: 77%, gum, IR (neat): $1176,1340,1452,1717 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.73-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.91-3.06(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{dt}, J=1.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.00,26.50,36.61,37.77,53.44,203.05 ; \mathbf{M} / \mathbf{S}: 180$, 176,132, 97, 82, 69, 55, 41; Analysis for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{BrO}$ requires $\mathrm{C}, 40.71 ; \mathrm{H}, 5.12$; found C , 40.74; H, 5.09\%.

2-Bromo-2-methylcyclohexanone(57i):

Yield: 81%, colorless liquid, IR (neat): $1132,1340,1452,1723 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.56-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.99-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.45(\mathrm{~m}, 2 \mathrm{H})$, 3.13-3.31 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.14,26.69,27.92,56.53,43.41$, 65.71, 204.46; Analysis for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{BrO}$ requires $\mathrm{C}, 44.00 ; \mathrm{H}, 5.80$; found $\mathrm{C}, 44.05$; H , 5.82\%.

4.3: References

1 (a) Staunton, J. Comprehensive Organic Chemistry; Sammes, P. G., Ed.; Pergamon: Oxford, 1979; Vol. 4, pp 651. (b) Matern, U.; Lüer, P.; Kreusch, D. Comprehensive Natural Products Chemistry; Sankawa, U., Ed.; Pergamon: Oxford, 1999; Vol. 1, pp 623.

2 (a) Yoshida, T.; Ohbayashi, G.; Ishihara, K.; Ohwashi, W.; Haba, K.; Okano, Y.; Shingu, T.; Okuda, T. Chem. Pharm. Bull. 1991, 39, 2233. (b) Okuda, T.; Hatano, T.; Yakazi, K. Chem. Pharm. Bull. 1983, 31, 333. (c) Saijio, R.; Nonaka, G.-I.; Nishioka, I. Chem. Pharm. Bull. 1989, 37, 2063. (d) Iinuma, M.; Tanaka, T.; Asai, F. Phytochemistry 1994, 36, 941. (e) Iinuma, M.; Tanaka, T.; Mizuno, M.; Katsuzaki, T.; Ogawa, H. Chem. Pharm. Bull. 1989, 37, 1813. (f) Hsu, F.-L.; Nonaka, G.-I. Nishioka, I. Chem. Pharm. Bull. 1985, 33, 3142. (g) Nonaka, G. -I.; Kawahara O.; Nishioka, I. Chem. Pharm. Bull. 1982, 30, 4277.

3 (a) Iinuma, M.; Tanaka, T.; Asai, F. Phytochemistry 1994, 36, 941; (b) Iinuma, M.; Tanaka, T.; Mizuno, M.; Katsuzaki, T.; Ogawa, H. Chem. Pharm. Bull. 1989, 37, 1813; (c) Hsu, F.-L.; Nonaka, G.-I. Nishioka, I. Chem. Pharm. Bull. 1985, 33, 3142. (d) Nonaka, G.-I. Kawahara O.; Nishioka, I. Chem. Pharm. Bull. 1982, 30, 4277.

4 Takechi, M.; Tanaka, Y.; Takehara, M.; Nonaka, G.-I. Nishioka, I. Phytochemistry 1985, 24, 2245.

5 Tillekeratne, L. M. V.; Sherette, A.; Grossman, P.; Hupe, L.; Hupe, D.; Hudson, R. A. Bioorg. Med. Chem. Lett. 2001, 11, 2763.

6 Zhang, X.; Wang, H.; Song, Y.; Nie, L.; Wang, L.; Liu, B.; Shen, P.; Liua, Y. Bioorg. Med. Chem. Lett. 2006, 16, 949-953.

7 Song, F.; Lu, S.; Gunnet, J.; Xu, J. Z.; Wines, P.; Proost, J.; Liang, Y.; Baumann, C.; Lenhard, J.; Murray, W. V.; Demarest, K.T.; Kuo G.-H. J. Med. Chem. 2007, 50, 2807-2817.

8 For reviews see (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633-639; (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731-1769.

9 Johnston, K. M. Tetrahedron 1968, 25, 5595-5600.
10 Pickett, J. E.; Van Dort, P. C. Tetrahedron Lett. 1992, 33, 1161-1164.

11 Bezerra, M. Z. B.; Machado, M. I. C.; Morais, S. M. D.; Braz-Pilho, R. J. Braz. Chem. Soc. 1997, 8, 229-232.

12 (a) Jia, C.; Lu, W.; Oyamada, J.; Kitamura, T.; Matsuda, K.; Irie, M.; Fujiwara, Y. J. Am. Chem. Soc. 2000, 122, 7252-7263. (b) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992-1995.

13 (a) Venkatraman, S.; Meng Y.; Li, C.-J. Tetrahedron Lett. 2001, 42, 4459-4462; (b) Venkatraman, S.; Li, C.-J. Tetrahedron Lett. 2001, 42, 781-784.

14 (b) Huang, T.-S.; Li, C.-J. Chem. Commun. 2001, 2348-2349.

17 Trost, B. M.; Toste, F. D.; Greenman, K. J. Am. Chem. Soc. 2003, 125, 4518-4526.
18 Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669-3671.
19 Li, K.; Foresee, L. N.; Tunge, J. A. J. Org. Chem. 2005, 70, 2881-2883.
20 Aoki, S.; Amamoto, C.; Oyamada, J.; Kitamura, T. Tetrahedron 2005, 61, 9291.
21 (a) Oyamada, J.; Kitamura, T. Chem. Lett. 2005, 34, 1430-1431; Aoki, S.; Amamoto, C.; Oyamada, J.; Kitamura, T. Tetrahedron 2005, 61, 9291-9297; (c) Oyamada, J.; Kitamura, T. Tetrahedron 2006, 62, 6918.
22 Barluenga, J.; Andina, F.; Aznar, F. Org. Lett. 2006, 8, 2703-2706.
23 Fillion, E.; Dumas, A.M.; Kuropatwa, B. A.; Malhotra, N. R.; Sitler, T. C. J. Org. Chem. 2006, 71, 409-412.

24 Calloway, N. O. Chem. Rev. 1935, 17, 327.
25 (a) Larock, R.C. In comprehensive organic Transformation, $2^{\text {nd }}$ ed.; VCH: New york, 1999; pp 709-727; (b) Larock, R. C. Comprehensive Organic Transformations; VCH Publishers: New York, 1989; 369-380. (c) De Kimpe, N.; Verhé, R. In The Chemistry of α-Haloketones, α-Haloaldehydes and α-Haloimines; Patai, S.; Rappoport, Z., Eds.; John Wiley and Sons: Chichester, 1988; pp 1-119.

26 King, L.C.; Ostrum, G. K. J. Org. Chem. 1964, 29, 3459-3561.

27 Wyman D. P.; Kaufman P. R. J.Org.Chem. 1964, 29, 1956-1960.
28 Reed Jr. S.F. J.Org.Chem. 1964, 30, 2195 - 2198.
29 George, B. K.; Rajsekharan Pillai, V. N. Polymer, 1989, 30, 178-181.
30 Mitani, M.; Kobayashi, T.; Koyama, K. J. Chem. Soc., Chem. Commun., 1991, 1418-1419.

31 Shi, X. X.; Dai, L. X. J. Org. Chem. 1993, 58, 4596-4598.
32 Brummond K. M.; Gesenberg, K. D. Tetrahedron Lett. 1999, 40, 2231-2234.
33 Nobrega, J. A.; Goncalves, C. S. M.; Peppe, C. Synth. Comm. 2002, 32, 3711.
34 Paul, S.; Gupta, V.; Gupta R.; Loupy, A. Tetrahedron Lett. 2003, 44, 439-442.
35 Lee, J. C.; Bae, Y. H.;Chang, S.-K. Bull. Korean Chem. Soc. 2003, 24, 407.
36 Lee, J. C.; Park, J. Y.; Yoon, S. Y.; Bae, Y. H.; Lee, S. J. Tetrahedron lett. 2004, 45, 191-193.

37 Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.; Jørgensen, K.A. J. Am. Chem. Soc. 2004, 126, 4790-4791.

38 Marigo, M.; Bachmann, S.; Halland, N.; Braunton, A.; Jørgensen K. A. Angew. Chem. Int. Ed. 2004, 43, 5507 -5510.

39 Zhang, Y.; Shibatomi, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 1503815039.

40 Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T. Chem. Commun. 2004, 470-471.

41 Terent'ev, A. O.; Khodykin, S. V.; Troitskii, N. A.; Ogibin, Y. N.; Nikishin G. I.; Synthesis, 2004, 2845-2448.
42 Meshram, H. M.; Reddy, P. N.; Vishnu, P.; Sadashiv, K.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 991-995.

43 Paraskar, A. S.; Dewkar, G. K.; Sudalai, A. Tetrahedron Lett. 2003, 44, 3305-3308; (b) Paraskar, A. S.; Sudalai, A. Tetrahedron Lett. 2006, 47, 5759-5762; (c) Jagdale A.R.; Paraskar, A. S.; Sudalai, A. Indian J. Chem. 47B, 2008, article in press.

44 Tilsman, U.;Wienmann, H. Org. Process Res. Dev. 2002, 6, 384-393.

List of publications

$1 \quad p$-Toluenesulfonic acid mediated hydroarylation of cinnamic acids with anisoles and phenols under metal and solvent-free conditions

Arun R. Jagdale and Arumugam Sudalai, Tetrahedron Lett. 2007, 48, 4895-4898.
2 Co-catalyzed mild and chemoselective reduction of phenyl esters with NaBH_{4} : A practical synthesis of (R)-tolterodine

Arun R. Jagdale and Arumugam Sudalai, Tetrahedron Lett. 2008, 49, 3790-3793
$3 \mathrm{Cu}(\mathrm{OTf}) 2$ catalyzed Biginelli type condensation of aldehydes, β-keto esters and carbamates: synthesis of 3,4-dihydro[1,3]oxazin-2-ones

Arun R. Jagdale, Abhimanyu S. Paraskar and Arumugam Sudalai, Indian J. Chem. 47B, 2008, Article in press

4 A new methodology for the asymmetric synthesis of tetrahydroquinolin-3-ol via asymmetric dihydroxylation and CoCl_{2}-catalyzed reduction of cyclic sulphite with NaBH_{4} : Application in the synthesis of Sumanirole maleate (PNU95666-E).

Arun R. Jagdale, R. Santhosh Reddy and Arumugam Sudalai, Org. Lett. 2008, manuscript under preparation.

5 A short and novel synthesis of Paroxetine and Femoxetine via Suzuki coupling reaction of enol tosylate and boronic acid.

Arun R. Jagdale, Gurunath Suryavanshi and Arumugam Sudalai, Tetrahedron, 2008. manuscript underpreparation.
$6 \mathrm{Cu}(\mathrm{OTf})_{2}$-catalyzed α-halogenation of ketones with 1,3-dichloro-5,5dimethylhydantoin and N -bromosuccinimide

Arun R. Jagdale and Arumugam Sudalai, Chemistry letters 2008, manuscript under preparation.
$7 \mathrm{CoCl}_{2}{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$-catalyzed mild and chemoselective reduction of esters with NaBH_{4}
Arun R. Jagdale, Abhimanyu S. Paraskar and Arumugam Sudalai, Synth. Lett. 2008, manuscript under preparation.

[^0]: ${ }^{a}$ reaction condition: nitro cyclic sulphites (2 mmol), $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{~mol} \%$), $\mathrm{NaBH}_{4}(8 \mathrm{mmol})$, ethanol (10 mL), $0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
 ${ }^{\mathrm{b}}$ isolated yield after coloumn chromatograhphic purification.
 ${ }^{\text {c }}$ determined by chiral HPLC and Mosher's ester analysis.

[^1]: ${ }^{\text {a }}$ Reaction conditions: $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (5 mole \%), $\mathrm{ArB}(\mathrm{OH})_{2}(1.73 \mathrm{mmol})$, Enol tosylate (1.15 mmol), aq. $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(1.8 \mathrm{~mL})$, THF (8 mL), $50^{\circ} \mathrm{C}, 8 \mathrm{~h}$. ${ }^{\mathrm{b}}$ isolated yield after column chromatographic purification.

[^2]: ${ }^{\text {a }}$ Reaction condition : Ester (2 mmol), NaBH_{4} (4 mmol), $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%)$, $\mathrm{EtOH}(10 \mathrm{~mL}), 0-25^{\circ} \mathrm{C}, 10 \mathrm{~h}$.
 ${ }^{\mathrm{b}}$ isolated yields after chromatographic purification.

[^3]: ${ }^{a}$ Reaction condition : Ester (2 mmol), $\mathrm{NaBH}_{4}(4 \mathrm{mmol}), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%),{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(10 \mathrm{~mol} \%)$, EtOH (10 mL), $0-25^{\circ} \mathrm{C}, 24 \mathrm{~h}$.
 ${ }^{\mathrm{b}}$ isolated yields after chromatographic purification.

[^4]: ${ }^{\text {a }}$ Reaction conditions: cinnamic acid (5 mmol), phenol (5.5 mmol), p-toluenesulfonic acid (5 mmol), $125^{\circ} \mathrm{C}, 3 \mathrm{~h}$.
 ${ }^{\mathrm{b}}$ isolated yield after column chromatographic purification.

[^5]: ${ }^{\text {a }}$ Reaction conditions: cinnamic acid (5 mmol), phenol (5.5 mmol), p-toluenesulfonic acid (5 mmol), $125^{\circ} \mathrm{C}, 3 \mathrm{~h}$.
 ${ }^{\mathrm{b}}$ isolated yield after column chromatographic purification.
 ${ }^{\text {c }}$ workup: reaction mixture was quenched with ethyl acetate
 followed by the addition of water.

[^6]: ${ }^{\text {a }}$ Reaction conditions: cinnamic acid (5 mmol), anisole (5.5 mmol), p toluenesulfonic acid (5 mmol), $125{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; bisolated yield after column chromatographic purification; also $\sim 5 \%$ of the corresponding demethylated phenolic compounds were formed; ${ }^{\mathrm{c}}$ (ortho : para $=1: 1$); ${ }^{\mathrm{d}}$ only ortho product was formed.

[^7]: ${ }^{\text {a }}$ Reaction conditions: ketone (4 mmol), 1,3-dichloro 5,5'dimethyl hydration (4.4 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%), \mathrm{CHCl}_{3}$ $(20 \mathrm{ml})$, reflux. ${ }^{\mathrm{b}}{ }^{\mathrm{b}}$ Isolated yields after column chromatography, ${ }^{\text {c }} 2$-chloro(2-chloro 3,4,5-trimethoxy phenyl)ethanone was obtained.

