Asymmetric Synthesis of Bioactive 1, 2-Aminoalcohols and Methodologies involving Dihydroxylation of Olefins, Esterification and Iodination of Aromatics

A THESIS
SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
(IN CHEMISTRY)

To
UNIVERSITY OF PUNE

By
L. Emmanuvel

UNDER THE GUIDANCE OF Dr. A. SUDALAI

Chemical Engineering and Process Development Division National Chemical Laboratory Pune- 411008, INDIA

DEDICATED TO

 $\mathcal{M Y B E L O V E D}$ FAMILY MEMBERS$\mathcal{A N D}$
FRIENDS

NATIONAL CHEMICAL LABOATORY
Dr. A. Sudalai
Scientist
Chemical Engineering \& Process Development Division, Pune - 411 008, India
Phone (O) : 0091-20-25902174, Fax: 0091-20-25902676, e-mail: a.sudalai@ncl.res.in

CERTIFICATE

Certified that the work incorporated in the thesis entitled "Asymmetric Synthesis of Bioactive 1, 2-Aminoalcohols and Methodologies involving Dihydroxylation of Olefins, Esterification and Iodination of Aromatics" was carried out by the candidate under my supervision. Such material as had been obtained from other sources has been duly acknowledged in the thesis.

October 2008
Pune
Research Supervisor

NATIONAL CHEMICAL LABORATORY

DECLARATION

I here by declare that the thesis entitled "Asymmetric Synthesis of Bioactive 1, 2-Aminoalcohols and Methodologies involving Dihydroxylation of Olefins, Esterification and lodination of Aromatics" submitted for the degree of Doctor of Philosophy in Chemistry to the University of Pune, has not been submitted by me to any other university or institution. This work was carried out at the National Chemical Laboratory, Pune, India.

October 2008
Pune

L. Emmanuvel

CE \& PD Division
National Chemical Laboratory
Pune - 411008

Section I	A short enantioselective synthesis of (+)-L-733,060 via Shi' epoxidation of homoallylic carboxylate
2.1.1	Introduction 58
2.1.2	Review of Literature 59
2.1.3	Present Work 65
2.1.3.1	Objective 65
2.1.3.2	Asymmetric epoxidation of olefins 67
2.1.4	Results and Discussion 72
2.1.5	Conclusion 81
2.1 .6	Experimental Section 81
Section II	Enantioselective synthesis of threo-sphingosine using kinetic resolution via Sharpless epoxidation
2.2.1	Introduction 88
2.2.2	Review of Literature 89
2.2.3	Present Work 95
2.2.3.1	Objective 95
2.2.3.2	Chemistry of sulfur ylides 96
2.2.4.	Results and Discussion 99
2.2.5	Conclusion 106
2.2.6	Experimental Section 107
2.2.7	References 113
Chapter III	NaIO_{4}-mediated dihydroxylation of olefins, iodination of aromatics and direct esterification of aldehydes
Section I	$\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated diastereoselective dihydroxylation of olefins: A catalytic approach to the Prevost-Woodward reaction
3.1.1	Introduction 116
3.1.2	Review of Literature 116
3.1.3	Present Work 126
3.1.3.1	Objective 126
3.1.4	Results and Discussion 126
3.1.5	Conclusion 136
3.1 .6	Experimental Section 136

Section II	$\mathrm{NaIO}_{4} / \mathrm{KI} / \mathrm{NaCl}: \mathrm{A}$ new reagent system for iodination of activated aromatics through in situ generation of iodine monochloride
3.2.1	Introduction 144
3.2 .2	Review of Literature 145
3.2.3	Present Work 151
3.2.3.1	Objective 151
3.2 .4	Results and Discussion 152
3.2 .5	Conclusion 158
3.2 .6	Experimental Section 158
Section III	$\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated direct conversion of aromatic aldehydes to aromatic esters
3.3.1	Introduction 162
3.3.2	Review of Literature 162
3.3.3	Present Work 166
3.3.3.1	Objective 166
3.3.4	Results and Discussion 166
3.3.5	Conclusion 171
3.3 .6	Experimental Section 172
3.3.7	References 174
Chapter IV	Ti-Superoxide catalyzed one-pot oxyfunctionalization of olefins and Pd-catalyzed suzuki type coupling reaction of arylmercuric acetate with arylboronic acid
Section I	Titanium superoxide: An efficient, reusable catalyst for one pot oxyfunctionalization of olefin via epoxide opening
4.1.1	Introduction 178
4.1.2	Review of Literature 179
4.1.3	Present Work 184
4.1.3.1	Objective 184
4.1.4	Results and Discussion 184
4.1.5	Conclusion 194
4.1.6	Experimental Section 194
Section II	Phosphine ligand and base-free Pd-catalyzed Suzuki type

	cross-coupling reaction of arylboronic	acids
	mercuric acetates	aryl
4.2 .1	Introduction	203
4.2 .2	Review of Literature	208
4.2 .3	Present Work	214
4.2 .3 .1	Objective	212
4.2 .4	Results and Discussions	212
4.2 .5	Conclusion	217
4.2 .6	Experimental Section	217
4.2 .7	References	220
	List of Publications	223

ACKNOWLEDGEMENT

I wish to express my sincere gratitude towards my research guide, Dr. A. Sudalai. I will be always obliged to him for his suggestions, criticisms and constant encouragement. I sincerely thank him for his splendid guidance, constant support, inspiration and personal freedom rendered to me during my research period. His endless enthusiasm and receptive attitude will always remain a source of inspiration for me.

I thank Dr. B. D. Kulkarni, Deputy Director and Head, CE-PD division, for his help and support. My special thanks go to Dr. S. Gurunath for his constant encouragement and moral support. I also want to thank Dr. Paul Vincent, Dr. Mayadevi, and B. Senthil Kumar for their help and encouragement. I am immensely thankful to my seniors Drs. Abhimanyu, Ram, Ramesh, Srinivasa Rao, Siva, Arun and Victor for useful training in the initial phase of my career which made me what I am today.

I thank NMR group and CMC group for their help in obtaining the analytical data. I thank PD office staff Mr. Bhosale, Mrs. Puranik and Mr. Kakade for their cooperation. It's my privilege to thank the Director, NCL for giving me this opportunity and providing all necessary infrastructure and facilities. Financial assistance from CSIR, New Delhi is greatly acknowledged.

I wish to thank my friendly and cooperative lab mates, Pandu, Tanveer, Ravi, Shyla, Santhosh, varun, Kamble, Narashimha, Kiran, Senthil, Divya, Shaheen, Ramchandra, Sawant, Balaji, Prakash, Vijay, Hari, Amol, Satish, Santosh, Shobhana, Prathiba, Nagesh and Aparna for providing a cheerful atmosphere in the lab. I am also thankful to project students Sheetal, Rajakannu and Muthuraja for helping me in this work. I specially remember my friends Muruganantham, Gopu and Shima for their encouragements.

I am indeed very grateful to my family members whose constant love, care, support and encouragement have been the main force and motivation so far and will continue so in the days to come.

Finally, I thank God Almighty for His enormous blessings

L. Emmanuvel

ABBREVATIONS

Ac	Acetyl
Ar	Aryl
Bn	Benzyl
Boc	N-tert-Butoxycarbonyl
$(\mathrm{Boc})_{2} \mathrm{O}$	Ditert-butyl dicarbonate
$\mathrm{n}-\mathrm{Bu}$	n-Butyl
n-BuLi	n-Butyl Lithium
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Methylene chloride
CHCl_{3}	Chloroform
$\mathrm{CH}_{3} \mathrm{CN}$	Acetonitrile
DBU	1,8-Diazabicyclo[5.4.0]undecene-7
DIBAL-H	Diisobutyl alulinum hydride
DMF	Dimethyl formamide
DMSO	Dimethyl sulphoxide
DMAP	N,N-dimethyl-4-aminopyridine
ee	Enantiomeric excess
Et	Ethyl
$\mathrm{Et}_{3} \mathrm{~N}$	Triethylamine
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
EtOAc	Ethyl acetate
EtOH	Ethyl alcohol
g	Grams
h	Hours
HCl	Hydrochloric acid
HPLC	High pressure liquid chromatography
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid
IR	Infra red
IBX	2-Iodoxybenzoic acid
Imid.	Imidazole
KHMDS	potassium hexamethyl disilazide

$\mathrm{K}_{2} \mathrm{CO}_{3}$	Potassium carbonate
KOH	Potassium hydroxide
LiAlH_{4}	Lithium aluminum hydride
LiHMDS	Lithium hexamethyl disilazide
M+	Molecular ion
Me	Methyl
MeOH	Methyl alcohol
min	Minutes
mL	Milliliter
mp	Melting point
MS	Mass spectrum
Ms	Mesyl
NaBH_{4}	Sodium borohydride
NaHCO_{3}	Sodium bicarbonate
NaOH	Sodium hydroxide
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sodium sulfate
$\mathrm{NH}_{4} \mathrm{Cl}$	Ammonium chloride
$\mathrm{NH}_{4} \mathrm{OH}$	Ammonium hydroxide
NMR	Nuclear Magnetic Resonance
NMO	N-Methyl morpholine N -oxide
Pd/C	Palladium on activated charcoal
Pet. ether	Petroleum ether
Ph	Phenyl
p-TSA	p-Toluene sulfonic acid
PhNO	Nitrosobenzene
Py	Pyridine
Red-Al	Bis(2-methoxyethoxy)aluminum hydride
TBS	tert-Butyldimethylsilyl
TBHP	tert-Butyl hydroperoxide
TEMPO	2,2,6,6-tetramethyl-1-piperidinyloxy

THF	Tetrahydrofuran
TLC	Thin layer chromatography
TBAF	Tetrabutylammonium fluoride
TBDMSCI	tert-Butyldimethylsilyl chloride
TBDPSCl	tert-Butyldiphenylsilyl chloride
TFA	Trifluoroacetic acid
TMSCN	Trimethylsilyl cyanide
Ts	Tosyl

GENERAL REMARKS

1. All solvents were distilled and dried before use.
2. Petroleum ether refers to the fraction collected in the boiling range $60-80^{\circ} \mathrm{C}$.
3. Organic layers after every extraction were dried over anhydrous sodium sulfate.
4. Column Chromatography was performed over silica gel (60-120 mesh).
5. TLC analyses were performed over aluminum plates coated with silica gel (5-25 m) containing UV active G-254 additive.
6. IR spectra were recorded on a Perkin-Elmer model 683 B or 1605 FT-IR and absorptions were expressed in cm^{-1}.
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Brucker FT AC-200 and MSL-300 MHz instruments using TMS as an internal standard. The following abbreviations were used: s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, brs = broad singlet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{dt}=$ doublet of triplet and ddd = doublet of doublet of doublet.
8. Mass spectra (MS) were recorded on an automated finnigan MAT 1020C mass spectrometer using ionization energy of 70 eV .
9. Optical rotations were carried out on JASCO-181 digital polarimeter at $25^{\circ} \mathrm{C}$ using sodium D light.
10. All melting points and boiling points are uncorrected and the temperatures are in centigrade scale.
11. Elemental analysis was done on Carlo ERBA EA 110B instrument.
12. The compounds, scheme and reference numbers given in each chapter refers to that particular chapter only.

Abstract

The thesis entitled "Asymmetric Synthesis of Bioactive 1, 2-Aminoalcohols and Methodologies involving Dihydroxylation of Olefins, Esterification and Iodination of Aromatics" is divided into four chapters.

The title of the thesis clearly reflects the objective, which involes the synthesis of enantiomerically pure bioactive molecules and also the development of useful synthetic methodologies. Chapter 1 describes the synthesis of two trans hydroxypiperidine-based bioactive amino alcohols, namely Febrifugine, a potent antimalarial alkaloid and the formal synthesis of (-)-epiquinamide, a quinazolizidine alkaloid, using OsO_{4} catalyzed asymmetric dihydroxylation of homoallylic esters. Chapter 2 deals with the synthesis of (+)-L-733,060 via Shi epoxidation of homoallylic carboxylate and sphingosine via kinetic resolution of allylic alcohol. Chapter 3 deals with NaIO_{4}-mediated synthetic transformations involving catalytic modification of the Prevost and Woodward reactions for syn and anti dihydroxylation of olefins and aromatic electrophilic iodination of activated arenes using $\mathrm{NaIO}_{4} / \mathrm{KI} / \mathrm{NaCl}$ in acetic acid and direct esterification of aldehydes via radical pathway. Chapter 4 presents synthetic transformations involving a titanium superoxide-catalyzed one pot dioxy functionalization of olefins under truly heterogeneous conditions to afford diols as well as vicinal methoxy alcohols and Pd- catalyzed ligand and base-free Suzuki type coupling of boronic acids with arylmercuric acetates.

CHAPTER I

A short and enantioselective synthesis of (+)-febrifugine, an antimalarial alkaloid and formal synthesis of (-)-epiquinamide via Sharpless asymmetric dihydroxylation of homoallylic esters

Sharpless Asymmetric dihydroxylation (ADH) is one of the most effective methods for the preparation of chiral diols, which are important intermediates for the synthesis of various bioactive molecules. ${ }^{1}$ This chapter deals with enantioselective synthesis of febrifugine and (-)-epiquinamide using ADH of homoallylic esters.

Section 1: A short, enantioselective synthesis of (+)-Febrifugine, a potent antimalarial alkaloid

Febrifugine (1), isolated from the Chinese medicinal plant Dichroa febrifuga Lour, has been found to be effective against avian malaria, Plasmodiuna cynomolgi in monkey, Plasnaoclium berghei in mice. ${ }^{2}$ Interestingly, Febrifugine (1) was also found to exhibit excellent therapeutic activity than its enantiomer, racemate and isofebrifugine against malarial parasite plasmodium. This section describes a short enantioseletive synthesis of febrifugine via aymmetric dihydroxylation of 1,4-diene.

The synthetic approach towards febrifugine started with commercially available 1,5-hexadien-3-ol (2), which was subjected to Johnson-Claisen [3,3]-sigmatropic rearrangement (trimethyl orthoacetate, catalytic amount of propionic acid, xylene, $135{ }^{\circ} \mathrm{C}$) to give exclusively E-diene ester 3 as a single product in 86% yield (Scheme 1). ${ }^{3}$ Regioselective asymmetric dihydroxylation of internal olefin in $\mathbf{3}$ was achieved using $\alpha-\mathrm{AD}$ mix $\left\{\right.$ cat. $\left.\mathrm{OsO}_{4},(\mathrm{DHQ})_{2}-\mathrm{PHAL}, \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3},{ }^{t} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}, 2 \mathrm{~h}\right\}$ to produce the hydroxylactone 4 in 73% yield. Mesylation of the free alcohol $\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$) in $\mathbf{4}$ followed by $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} in DMF at $80^{\circ} \mathrm{C}$ resulted in the formation of azidolactone 6. Reduction of azide under Staudinger conditions $\left(\mathrm{PPh}_{3}\right.$, $\left.\mathrm{H}_{2} \mathrm{O}\right)^{4}$ furnished the lactam 7; presumably formed by the intramolecular lactamization of the free amine generated in situ releasing the free alcohol. ${ }^{5}$ Chemoselective reduction of lactam 7 was achieved with lithium aluminium hydride (LAH) to give hydroxy piperidine
8. The free amine and alcohol groups were subsequently protected with Cbz and BnBr respectively to afford the intermediate 10 in 72% yield over three steps.

Scheme 1: Reagents and conditions: a) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OMe})_{3}$, cat. propanoic acid, xylene, $135{ }^{\circ} \mathrm{C}$, 88%; b) $\mathrm{OsO}_{4},(\mathrm{DHQ})_{2} \mathrm{PHAL}, \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3}, t$ - $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1), 73 \%$; c) MsCl , $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; d) NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 82 \%$ over two steps; e) PPh_{3}, THF, $25^{\circ} \mathrm{C}$ then $\mathrm{H}_{2} \mathrm{O}$ reflux, 93%; f) LAH, THF, reflux, 85%; g) $\mathrm{CbzCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, THF: $\mathrm{H}_{2} \mathrm{O}(1: 1)$; h) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$, 84%; i) NBS, $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$; j) 4-quinazolinone, $\mathrm{KOH}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$; k) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 78 \%$ over two steps; 1) 6 N HCl , reflux, 78% over two steps.

Regioselective bromohydroxylation (NBS, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$) of terminal olefin in 10 gave the separable diastereomeric terminal halide $\mathbf{1 1}$ in the ratio $1: 1$ (${ }^{1} \mathrm{H}$ NMR spectral analysis). Without separation of the isomers, halohydrin 11 was coupled with 4-quinazolinone to afford the corresponding coupled product 12, which was subjected to oxidation with DessMartin periodinane (DMP) ${ }^{6}$ to obtain protected febrifugine 13 in 83% yiled. Finally, removal of protecting groups was successfully achieved using 6 N HCl to afford febrifugine 1. Thus, a practical asymmetric synthesis of febrifugine alkaloid $\mathbf{1}$ is achieved using Sharpless asymmetric dihydroxylation of homoallylic carboxylate as the key step.

Section 2: Enantioselective formal synthesis of (-)-Epiquinamide via asymmetric dihydroxylation

(-)-Epiquinamide (23), a quinazolizidine alkaloid, was recently isolated from the skin extracts of the Ecuadorian poison dart frog Epipedobates tricolor. ${ }^{7}$ It has modest activity in cells expressing various nAChR subtypes, with highest activity in SH-sy5y cells and k-177 cells expressing human $\alpha 4 \beta 2-n A C h R$. It represents a new structural class of nicotinic agonists and is also proven to function as a potential lead compound for the development of new therapeutics for neuronal receptors.

Our synthesis of quiazolizidinone intermediate 22 commenced with Grignard addition of vinylmagnesium bromide to the aldehyde $\mathbf{1 4}$ to afford allylic alcohol $\mathbf{1 5}$, which was subjected to Johnson-Claisen $[3,3]$ sigmatropic rearrangement (trimethyl orthoacetate, catalytic amount of propionic acid, xylene, $135^{\circ} \mathrm{C}$) to give E-homoallylic ester 16 exclusively in 75\% yileld (Scheme 2). Having the required carbon backbone with olefin functionality at γ, δ position, asymmetric dihydroxylation $\left\{\mathrm{OsO}_{4}(\mathrm{DHQ})_{2}-\mathrm{AQN}\right.$, $\left.\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3},{ }^{t} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}\right\}$ was performed to yield hydroxylactone 17 in 79% yield and 85% ee (HPLC analysis). Mesylation $\left(\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right)$ of free
alcohol group in $\mathbf{1 7}$ gave its mesylate 18 , which was subjected to $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} (DMF, $80^{\circ} \mathrm{C}$) to furnish azidolactone 19 with complete inversion of configuration.

Scheme 2: Reagents and conditions: a) $\mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 83 \%$; b) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OMe})_{3}$, cat. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$, xylene, $135^{\circ} \mathrm{C}, 4 \mathrm{~h}, 85 \%$; c) $\mathrm{OsO}_{4}(0.1 \mathrm{~mol} \% \text {), (} \mathrm{DHQ})_{2} \mathrm{AQN}(0.5 \mathrm{~mol} \%)$, $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), t - $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), $24 \mathrm{~h}, 89 \%$; d) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}^{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 98 \%$; e) NaN_{3}, DMF, $60^{\circ} \mathrm{C}, 5 \mathrm{~h}, 87 \%$; f) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, MeOH, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 99 \%$; g) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 98 \%$; h) NaH , THF, reflux, 97%.

Reduction of azide group and PMB deprotection in 19 under hydrogenation conditions $\left\{\mathrm{H}_{2}\right.$ (1 atm.), $10 \% \mathrm{Pd} / \mathrm{C}\}$ at $25{ }^{\circ} \mathrm{C}$ produced lactam 20 in 98% yield, presumably via intramolecular O-to- N ring expansion of amine generated in situ. Mesylation $\left(\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}\right.$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$) of both the hydroxyl groups in 20 gave dimesylate 21, which was subjected to N-alkylation (NaH , THF, reflux) to form the known intermediate
quinazolizidine 22 in 97% yiled. The conversion of quinazolizidinone 22 to epiquinamide 23 has been reported in the literature. ${ }^{7 c}$

CHAPTER II

Section 1: A short enantioselective synthesis of (+)-L-733,060 via Shi epoxidation of a homoallylic carboxylate

$(+)$-L-733,060 (33) possessing 2-alkyl-3-hydroxypiperidine structural unit has proven to be selective and potent non-peptide neurokinin substance P receptor antagonist. ${ }^{8}$ Also, it has been implicated in a variety of disorders including migraine, rheumatoid arthritis and pain. Recent studies have shown that (+)-L-733,060 (33) can act both as an antitumor agent and as a promising new target for the treatment of retinoblastoma. This section illustrates the practical, enantioselective synthesis of (+)-L-733,060 (33) via Shi epoxidation of homoallylic carboxylate 26 using ketone 34, derived from D-fructose, as the chiral catalyst. Our approach to the synthesis of L-733,060 (33) commenced with allylic alcohol 24, which was subjected to Johnson-Claisen [3,3]- sigmatropic rearrangement to give E-homoallylic ester 25 exclusively in 82% yield (Scheme 3). Alkaline hydrolysis of ester 25 using aq. KOH furnished potassium alkenoate 26, which was subjected to Shi epoxidation ${ }^{9}$ using D-fructose-derived ketone 34 as the chiral catalyst ($30 \mathrm{~mol} \%$) and Oxone as the stoichiometric oxidant to afford hydroxylactone 27 in 62% yield and 92% ee [\%ee was determined from ${ }^{1} \mathrm{H}$ NMR of the corresponding Mosher's ester]. Mesylation $\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\right)$ of alcohol 27 gave the mesylate 28, which was subjected to $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} (DMF, $60{ }^{\circ} \mathrm{C}$) to afford azidolactone 29. Reduction of azide 29 under Staudinger conditions $\left(\mathrm{PPh}_{3}, \mathrm{THF}\right.$, $25^{\circ} \mathrm{C}$ then $\mathrm{H}_{2} \mathrm{O}$, reflux) produced lactam 30 in 91% yield, via intramolecular O-to- N - ring expansion of the amine generated in situ. Reduction of lactam 30 with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in THF followed by the protection of the secondary amine with $(\mathrm{Boc})_{2} \mathrm{O}$ gave the syn
aminoalcohol 31 in 73% yield over two steps. O-alkylation of 31 with 3,5bis(trifluoromethyl)benzyl bromide in the presence of NaH furnished 32, which upon deprotection of the Boc group under acidic conditions afforded L-733,060 (33).

Scheme 3: Reagents and conditions: a) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OMe})_{3}$, propanoic acid, $135^{\circ} \mathrm{C}, 6 \mathrm{~h}, 82 \%$; b) aq. KOH , reflux; c) $p \mathrm{H} 10-11$, Oxone, chiral ketone $34, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{CN},-5^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $15{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$, 62%; d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 96 \%$; e) NaN_{3}, DMF, $60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 94 \%$; f) PPh_{3}, THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then $\mathrm{H}_{2} \mathrm{O}$ reflux $3 \mathrm{~h}, 91 \%$; g) i) $\mathrm{Me}_{2} \mathrm{~S} \mathrm{BH}_{3}$, THF, reflux, 6 h ; ii) $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, cat. DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 73 \%$ over two steps; h) 3, 5-bis (trifluoromethyl)benzyl bromide, NaH , DMF:THF (3:1), $0{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$; i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 18 \mathrm{~h}, 81 \%$ over two steps.

Thus, an efficient organocatalytic asymmetric synthesis of (+)-L-733,060 (33) has been achieved using Shi epoxidation of homoallylic carboxylate as the key step.

Section II: Enantioselective synthesis of sphingosine via Sharpless kinetic resolution

Sphingolipids ${ }^{10}$ are derived from the common base structure, i.e. sphingosine (45). As important messengers for controlling cell growth, maturity, survival, and death, sphingolipids show promising efficacy for the control of cancer and other proliferative diseases. The related N-acylsphingosines are widely used in the cosmetic industry as active ingredients to improve skin cell cohesion. This section describes the synthesis of sphingosine 45 via Sharpless kinetic resolution of allylic alcohol. ${ }^{11}$

Scheme 4 : Reagents and conditions: a)TBHP, D-(-)-DET, $\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~A}^{\circ} \mathrm{MS},-20^{\circ} \mathrm{C}$, $18 \mathrm{~h}, 43 \%$; b) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 93 \%$; c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~S}^{+} \mathrm{I}$, $n \mathrm{BuLi}$, THF, $-20^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 82 \%$; d) CSA, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; e) Grubbs' catalyst ($10 \mathrm{~mol} \%$), Pentdec-1ene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $10 \mathrm{~h}, 62 \%$; f) PMB-Cl, NaH, DMF:THF, $2 \mathrm{~h}, 0^{\circ} \mathrm{C}$; g) TBAF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; 83% over two steps; h) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; i) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 6 \mathrm{~h}, 79 \%$ over two steps; j) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; k) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C} 1 \mathrm{~h}$ then reflux $2 \mathrm{~h}, 82 \%$.

The synthesis of sphingosine 45 was started with the kinetic resolution of racemic diol 35 via Sharpless epoxidation using (-)-DET and $\mathrm{Ti}(\mathrm{OiPr})_{4}$ to furnish epoxyalcohol 36
followed by silyl protection of the diol with TBSCl (Scheme 4). The chiral epoxide 37 was regioselectively opened with sulfonium ylide ${ }^{12}$ to get the allyl alcohol 38 with one carbon homologation. Selective deprotection of the primary silyl ether in $\mathbf{3 8}$ was achieved using camphor sulfonic acid to result in the formation of diol 39, which was cross-coupled with pentadec-1-ene in the presence of Grubbs catalyst ${ }^{13}$ to get the long chain diol $\mathbf{4 0}$ in 62% yield. The free alcohol groups were then protected as PMB ethers and the secondary silyl protection was cleaved using TBAF to furnish the free alcohol 42 in 83% yield over two steps. Mesylation $\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\right)$ of OH followed by $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} resulted in azide 44 with complete inversion of configuration. Deprotection of PMB ether followed by reduction of azide function using LiAlH_{4} furnished sphingosine 45 in 82% yield and 95\% ee.

CHAPTER III

Section 1: $\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated diastereoselective dihydroxyaltion of olefins: a catalytic approach to Prevost-Woodward reaction

The catalytic dihydroxylation of alkenes represents a unique method for the preparation of 1,2-diols with defined relative configuration and several oxidants are now used for this purpose both in the laboratory and industry. This section deals with, a new "transition metal-free" procedure for the dihydroxylation of alkenes catalyzed by LiBr and mediated by either NaIO_{4} or (diacetoxyiodo)benzene $\left[\mathrm{PhI}(\mathrm{OAc})_{2}\right]$, which are quite stable at the reaction temperature.

During the course of our investigation on NaIO_{4}-mediated organic transformations, we observed that treatment of olefin 46 with catalytic amount of $\mathrm{NaIO}_{4}, \mathrm{LiBr}$ and acetic acid resulted in syn diol derivative 47, which upon hydrolysis under basic conditions furnished
syn diol 48 (Scheme 5). The syn selectivity is controlled by water, formed in situ from NaIO_{4} and AcOH . This reaction is a simple catalytic modification of Woodward reaction. ${ }^{14}$

$$
\text { R, } \mathrm{R}_{1}=\mathrm{H}, \mathrm{alkyl} \text { aryl }
$$

yield : 65-91\% syn: anti up to 100:0

Scheme 5: Reagents and conditions: i) olefin (3 mmol), NaIO_{4} ($30 \mathrm{~mol} \%$), KI (20 $\mathrm{mol} \%$), $\mathrm{AcOH}(5 \mathrm{~mL}), 9{ }^{\circ} \mathrm{C}$, 18 h ; ii) $\mathrm{K}_{2} \mathrm{CO}_{3}(4.5 \mathrm{mmol})$, $\mathrm{MeOH}(15 \mathrm{~mL}), 25^{\circ} \mathrm{C}, 24$ h.

Attempts to obtain anti diols, by removing water formed in situ using either molecular sieves $\left(4 \mathrm{~A}^{\circ}\right)$ or anhydrous MgSO_{4} were not successful. Interestingly, anti diols 49 were obtained when $\mathrm{PhI}(\mathrm{OAc})_{2}$ was employed as the oxidant in stoichiometric amounts under the same reaction conditions (Scheme 6). The absence of water in the reaction mixture led to the formation of anti diol, a Prevost product. ${ }^{15}$

$$
\begin{array}{ll}
\mathrm{R}, \mathrm{R}_{1}=\mathrm{H}, \text { alkyl, aryl } & \begin{array}{l}
\text { yield: } 75-89 \% \\
\text { anti: } \operatorname{syn}=\text { up to 100:0 }
\end{array}
\end{array}
$$

Scheme 6: Reagents and conditions: i) olefin (3 mmol), $\mathrm{LiBr}(20 \mathrm{~mol} \%$), $\mathrm{PhI}(\mathrm{OAc})_{2}(3 \mathrm{mmol}), \mathrm{AcOH}(5 \mathrm{~mL}), 95^{\circ} \mathrm{C}, 18 \mathrm{~h}$; ii) $\mathrm{K}_{2} \mathrm{CO}_{3}(9 \mathrm{mmol}), \mathrm{MeOH}(20$ mL), $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Several alkenes (aliphatic, styrenic, allylic, di-substituted alkenes, α, β-unsaturated alkenes, etc) with electron-donating and -withdrawing groups underwent dihydroxylation and produced the corresponding syn and anti diols in excellent yields.

Section 2: $\mathrm{NaIO}_{4} / \mathrm{KI} / \mathrm{NaCl}:$ A new reagent system for iodination of activated aromatics through in situ generation of iodine monochloride

Aromatic iodo compounds are versatile building blocks for the preparation of organometallic reagents and some are potential intermediates for the synthesis of pharmaceutical and bioactive molecules. They are also useful in metal-catalyzed (e.g. Heck, Stille and Negishi) cross-coupling reactions, which are widely employed in the preparation of $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$, etc. bond- forming reactions. ${ }^{16}$ Aryl iodides are usually more difficult to prepare than the corresponding other aryl halides due to the low electrophilic strength of iodine. This section deals with an efficient, new and milder procedure for the iodination of activated aromatics using $\mathrm{NaIO}_{4} / \mathrm{KI} / \mathrm{NaCl} / \mathrm{aq} . \mathrm{AcOH}$ reagent (Scheme 7). Iodination of activated aromatics had been achieved with alkali metal iodides (KI or NaI) as iodine source and NaIO_{4} as oxidant in aq. AcOH acting both as solvent and an acid source in the presence of NaCl (2 equiv.) as additive to obtain iodoaromatics 51 in excellent yields.

Scheme 7: Reagents and conditions: i) arene (3 mmol), $\mathrm{KI}(3 \mathrm{mmol}), \mathrm{NaIO}_{4}$ (3 mmol), $\mathrm{NaCl}(6 \mathrm{mmol}), 10 \mathrm{~mL}$ of $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}(9: 1), 25^{\circ} \mathrm{C}$.

The addition of NaCl as additive increases the yield considerably. Other oxidizing agents like KIO_{3}, Oxone also gave excellent yields with KI as well as I_{2} as iodine source.

Section 3: $\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated direct esterification of aromatic aldehydes to esters

The direct conversion of aldehydes or alcohols to the corresponding carboxylic esters is often required in organic synthesis particularly in the synthesis of natural products. The conventional method for the synthesis of carboxylic esters involves oxidation of aldehydes to carboxylic acids followed by esterification with alcohols catalyzed by either acid or base. ${ }^{17}$ Thus the direct esterification of alcohols or aldehydes to esters minimizes the number of steps in the organic syntheses. This section describes a new cost-effective procedure for the direct esterification of aromatic aldehydes 52 to the corresponding esters 53 mediated by $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{H}^{+}$combination (Scheme 8).

$\mathrm{R}=\mathrm{Me}, \mathrm{NO}_{2}, \mathrm{Cl}$, etc yield: 78-98\%
Scheme 8: Reagents and conditions: (i) aldehyde (3 mmol), $\mathrm{NaIO}_{4}(3 \mathrm{mmol})$, $\mathrm{mmol})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$, methanol (9 mL), $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$.

CHAPTER 4

Section 1: Titanium superoxide: A stable and reusable catalyst for one-pot oxyfunctionalization of olefins via epoxide opening

Direct introduction of two oxygen atoms across the olefin with either syn or anti selectivity is one of the most important reactions since the resulted diols or diol derivatives are the important building blocks in organic chemistry. Generally, diol derivatives are prepared via a two-step process of epoxidation followed by its opening in the presence of acid catalysts. This section describes the one-pot synthesis of diols and alkoxyalcohols from olefins using m CPBA as oxidant and catalyzed by titanium superoxide (TS) as catalyst.

Titanium superoxide (TS) was prepared by the addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to titanium tetraisopropoxide ${ }^{18}$ in methanol to produce a yellow solid and has been proposed to have the polymeric structure as shown in (Scheme 9).

TS
Scheme 9: Reagents and conditions: (i) $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

We observed that when olefin 54 was reacted with mCPBA in the presence of titanium superoxide and methanol furnished alkoxy alcohols 56 in excellent yields probably via opening of in situ generated epoxides 55 with alcohols as nucleophiles. Both aliphatic as well as aromatic olefins regioselectively produced the alkoxy alcohols in excellent yields (Scheme 10).

Scheme 10: Reagents and conditions: (i) alkene, $m \mathrm{CPBA}$, titanium superoxide (20 wt\%), $\mathrm{CHCl}_{3}: \mathrm{MeOH}(9: 1), 25^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

We also observed that when methanol was replaced with water, anti diols 57 were produced in good yields (Scheme 11). However, vigorous stirring was required to achieve good yields of diol. After the completion of the reaction, the reaction mixture was filtered
and the residue containing titanium superoxide was tested for reusability and found to be active for oxyfunctionalization of olefins.

Scheme 11: Reagents and conditions: (i) alkene, $m \mathrm{CPBA}$, titanium superoxide (20 $\mathrm{wt} \%), \mathrm{CHCl}_{3}: \mathrm{H}_{2} \mathrm{O}(9: 1), 25^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

Section 2: Phosphine ligand and base-free, Pd- catalyzed Suzuki type crosscoupling reaction of arylboronic acids with arylmercuric acetates

The palladium-catalyzed Suzuki-Miyaura coupling of aryl halides with arylboronic acids or esters is one of the most powerful and versatile methods for the formation of $\mathrm{C}-\mathrm{C}$ bonds, in particular for the preparation of biaryl compounds. In recent years this reaction has been successfully applied for the synthesis of natural products, drugs and conducting polymers. This section describes the Suzuki type cross-coupling reaction of arylboronic acids with arylmercuric acetates.

Scheme 12: Reagents and conditions: i) arylmercuric acetate (3 mmol), aryl boronic acid (3 mmol) $\operatorname{Pd}(\mathrm{dba})_{2}(5 \mathrm{~mol} \%)$, toluene $(5 \mathrm{~mL}), 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

It has been reported that the reaction of arylboronic acids $\mathbf{5 9}$ with aryl mercuric salts $\mathbf{5 8}$ in polar solvent such as methanol led to the isolation of diarylmercury. ${ }^{19}$ We found that when the same reaction was carried out in non-polar solvents like toluene in the presence of palladium salts as catalyst it took different course to give the cross-coupled biaryls $\mathbf{6 0}$ in good yield (Scheme 12). Among the several metal salts and solvents screened, palladium catalysts were found to be extremely active and gave excellent yields of biphenyls over other metal complexes. Among the solvents, toluene gave excellent yield while the more polar solvents like $\mathrm{MeOH}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}$ and dioxane resulted in diphenyl mercury as the major product. A remarkable feature of this system is that neither base nor phosphine ligand was required.

References

1 (a) Kolb, H. C.; Van-Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483. (b) Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263.

2 (a) Koepfli, J. B.; Mead, J. F.; Brockman, J. A. J. Am. Chem. Soc., 1947, 69,1837.
(b) Koepfli J. B., Mead J. F., Brockman J. A. J. Am. Chem. Soc. 1949, 71, 1048.

3 (a) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741; (b) Mori, K.; Nukada, T.; Ebata, T. Tetrahedron 1981, 37, 1343.
4 Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
5 (a) Schar, P.; Renaud, P. Org. Lett. 2006, 8, 1569; (b) Maio, W. A.; Sinishtaj, S.; Posner, G. H. Org. Lett. 2007, 9, 2673; (c) Sun, H.; Abboud, K, A.; Horenstein, N. A. Tetrahedron 2005, 61, 10462.

6 Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
7 (a) Fitch, R. W.; Garraffo, H. M.; Spande, T. F.; Yeh, H. J. C.; Daly, J. W. J. Nat. Prod. 2003, 66, 1345; (b) Fitch, R. W.; Xiao, Y. X.; Kellar, K. J.; Daly, J. W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4909; (c) Huang, P.-Q., Guo, Z.-Q.,

Ruan, Y.-P. Org. Lett. 2006, 8, 1435.
8 (a) Baker, R.; Harrison, T.; Hollingworth, G. J.; Swain, C. J.; Williams, B. J. EP 0528 495A1, 1993; (b) Harrison, T.; Williams, B. J.; Swain, C. J.; Ball, R. G. Bioorg. Med. Chem. Lett. 1994, 4, 2545.

9 Ager, D. J.; Anderson, K.; Oblinger, E.; Shi, Y.; VanderRoest, J. Org. Process Res. Dev. 2007, 11, 44.

10 Karlsson, K.-A. Trends Pharmacol. Sci. 1991, 12, 265; (b) Hannun, Y.; Bell, R. M. Science 1989, 243, 500.

11 (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974; (b) Martin, V. S.;Woodward, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237.

12 (a) Alcaraz, L.; Harntt, J. J.; Mioskowski, C.; Martel, J.P.; Le Gall, T.; Shin, D.-S.; Falck, J. R. Tetrahedron Lett. 1994, 35, 5449. (b) baylon, C.; Heck, M.P.; Mioskowski, C. J. Org. Chem. 1999, 64, 3354.

13 Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
14 (a) Woodward, R. B.; Brutcher, F. V. J. Am. Chem. Soc. 1958, 80, 209; (b) Woodward, R. B. U.S. Patent, 2,687,435, 1954.
15 (a) Prevost, C. Compt. Rend. 1933, 196, 1129; (b) Prevost, C.; Wiemann, J. Compt. Rend. 1937, 204, 700.
16 (a) Heck, R.F.; Acc. Chem. Res. 1979, 12, 146; (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (c) Negishi, E.-I.; Dian, M.; Zeng, F.; Babinski, D.; Anastasia, L. Org. Lett. 2003, 5, 1597.
17 Larock, R. C. Comprehensive Organic Transformation; VCH: New York, 1989; pp 840-841.
18 Dewkar, G. K., Nikalje, M.D., Ali, I.S., Paraskar, A.S., Jagtap, H.S., Sudalai, A. Angew. Chem. Int. Ed. 2003, 40, 405.

19 (a) Michaelis, A.; Becker, P. Ber.dtsch. chem.. Ges. 1882, 15, 180; (b) Seaman, W.; Johnson, J. R. J. Am. Chem. Soc. 1931, 53, 711.

CHAPIER1

\mathcal{A} short and enantioselective synthesis of (+)-febrifugine and formal synthesis of (-)-epiquinamide via Sharpless asymmetric dihydroxylation of homoallyfic esters

Section I:

A short enantioselective synthesis of (+)-Febrifugine, a potent antimalarial alkaloid

1.1.1 Introduction

Malaria is by far the most important tropical parasitic disease that kills more people than any other communicable diseases except for tuberculosis. In many developing countries, especially in Africa, malaria exacts an enormous toll in lives, in medical costs, and in days of labor lost. Plasmodium falciparum accounts for the majority of infections and is found to be the most lethal. ${ }^{1}$ However, malaria is a curable disease if promptly diagnosed and adequately treated. Currently, a number of drugs such as chloroquine and quinine are available for the treatment of malaria, but the rapid development of drug resistance is a serious problem. Medicinal agents based on novel mechanisms of action are, therefore, required to overcome the emergence of resistance and to control an ever-increasing number of epidemics caused by the malarial parasite. For centuries in China, the roots of Dichroa febrifuga Lour (Chinese name: Cháng Shan), a saxifragaceous plant, have been employed against malarial fevers, and no parasite resistant to D. febrifuga has been reported. ${ }^{2}$
$(+)$-Febrifugine (1) and isofebrifugine (2) both isolated in 1947 from the Chinese medicinal plant and related plants are well-known antimalarial agents. ${ }^{3}$ (+)-Febrifugine (1) is found to be effective against avian malaria, Plasmodiuna cynomolgi in monkey, Plasnaoclium berghei in mice, has powerful emetic index and has been found to exhibit excellent therapeutic activity than its enantiomer, racemate or isofebrifugine against malarial parasite plasmodium. Interestingly, febrifugine and isofebrifugine are
epimerizable via ω-aminoenone under acidic condition. ${ }^{4}$ These alkaloids were approximately 100 times as effective as quinine against Plasmodia lophurae in ducks.

(+)-Febrifugine (1)

Halofebrifugine (3)

(+)-Isofebrifugine (2)

Hydrachine A (4)

Fig. 1: Febrifugine and its structurally related compounds

The planar structures of $\mathbf{1}$ and $\mathbf{2}$ were first proposed in 1950. Subsequently, their relative and absolute structures were proposed, based on Baker's synthetic work. ${ }^{5}$ The relative configuration of $\mathbf{1}$ was corrected in 1973 and then the absolute structures of $\mathbf{1}$ and $\mathbf{2}$ were corrected in 1999, as shown in Fig. 1. These repeated errors and corrections have caused much confusion in the study of the relationship between the structure and antimalarial activity of febrifugine derivatives. The antimalarial activity exhibited by these two compounds have stimulated intensive chemical and biological studies, which have led to the development of halofebrifugine (3) as an antiparasitic feed additive, which has recently been shown to inhibit collagen production and is currently under clinical trials for treatment of scleroderma in human. ${ }^{6}$ Recent studies also led to the isolation of hydrachine A (4) as a novel alkaloid and led to the discovery of several febrifugine analogues, ${ }^{7}$ which show potent antimalarial activity (Fig. 1).

1.1.2 Review of Literature

Literature search reveals that there are several reports available for the asymmetric as well as racemic syntheses of febrifugine (1); some of the recent ones are described below.

Burgess' approach (1996) ${ }^{8}$

This approach deals with opening of epoxide 7, generated from cyclic ene carbamate, with silyl enol ether 6 in the presence of a Lewis acid as the key step. Accordingly, silyl enol ether 6, the necessary nucleophilic partner, was readily prepared from 4hydroxyquinazoline (5) by N -alkylation with chloroacetone followed by enolisation and its protection as trimethylsilyl ether. Reaction of $\mathbf{6}$ with epoxide 7 was then accomplished in the presence of titanium tetrachloride to generate a mixture of separable diastereomers of 8. After chromatography purification, hydrolysis of the carbamate ester with potassium hydroxide yielded the natural product, febrifugine (1) (Scheme 1).

Scheme 1: i) NaH , DMF, $0^{\circ} \mathrm{C}$ then chloroacetone $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 62 \%$; ii) TMSOTf, Hunig base, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 82 \%$; iii) 7, cat. $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 40 \%$; iv) separation by flash chromatography, then KOH , diethylene glycol, $\mathrm{H}_{2} \mathrm{O}$, reflux, 10%.

Kobayashi's approach (1999) ${ }^{9}$

Kobayashi et al. have described the synthesis of febrifugine using lanthanide-catalyzed three-component reaction between aldehyde 9, 2-methoxypropene (10) and 2methoxyaniline (11), which furnished the protected 1,2-amino alcohol 12 in 92% yield. The anti-adduct was then treated with HF to deprotect the silyl (TBS) group. Bromination
of the resulting free hydroxyl group gave a cyclized adduct, whose N-protecting group was removed using ceric ammonium nitrate (CAN) to afford 13 in excellent yield. Piperidine 13 was protected as its N-Boc group and was treated with lithium hexamethyldisilazide (LHMDS) and then trimethylsilyl chloride (TMSCl) to obtain silyl enol ether. The resulting silyl enol ether was oxidized with m-CPBA and then brominated to give bromoketone 14 . The coupling of bromoacetone 14 with 4-hydroxyquinazoline using potassium hydroxide (KOH) followed by removal of protecting groups using 6 N HCl afforded febrifugine (1) (Scheme 2).

Scheme 2: i) $\mathrm{Yb}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$, THF: $\mathrm{H}_{2} \mathrm{O}, 5^{\circ} \mathrm{C}, 92 \%$; ii) $\mathrm{HF}, \mathrm{THF}, 99 \%$; iii) PPh_{3}, $\mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$; iv) CAN, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 70 \%$; v) $\mathrm{Boc}_{2} \mathrm{O}$; vi) LHMDS, THF, TMSCl; vii) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 52 \%$; viii) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 79 \%$; ix) 4hydroxyquinazoline, $\mathrm{KOH}, 75 \%$; x) 6 N HCl , reflux, quant.

Hatakeyama's approach (2001) ${ }^{10}$

Hatakeyama et al. have employed the 1,3-dipolar addition of nitrone $\mathbf{2 0}$ with allyl alcohol as the key step. This synthesis started with enzyme mediated kinetic resolution of racemic propargylic alcohol 15 on acetylation with vinyl acetate in the presence of Novozym 435 to afford (S)-acetate 16 with 91% ee and 43% yield. Selective hydrogenation of 16 with

Scheme 3: i) $\mathrm{CH}_{2}=$ CHOAc, Novozym 435, $i-\mathrm{Pr}_{2} \mathrm{O}, 43 \%, 91 \%$ ee; ii) Lindlar catalyst, H_{2}, MeOH then $\mathrm{K}_{2} \mathrm{CO}_{3}$; iii) TBDPSCl, imid, DMF, 80%; iv) lithium naphthalenide, THF, -25 ${ }^{\circ} \mathrm{C}$; v) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$; vi) O_{3} then $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; vii) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, $\mathrm{Et}_{3} \mathrm{~N}$, allyl alcohol, 74% diastereomeric mixtures; viii) (a) $\mathrm{H}_{2}, \mathrm{PdCl}_{2}, \mathrm{MeOH}$; (b) $\mathrm{Boc}_{2} \mathrm{O}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$; (c) tosyl imidazole, NaH, THF, 92\%; ix) 4-quinazolone, KH, DMF, 77%; x) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 98 \%$; xi) 6 N HCl , reflux.

Lindlar catalyst followed by in situ methanolysis of ester and silyl protection gave olefin 17 in 80% yield. Upon reductive removal of the benzyl ether using lithium naphthalenide, mesylation followed by ozonolysis of the olefin gave aldehyde 18. Treatment of aldehyde 18 with $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in allyl alcohol generated nitrone 20 in situ which underwent simultaneous 1,3-dipolar cycloaddition with allyl alcohol to give 21 as diastereomers. Hydrogenolytic $N-O$ bond fission and Boc protection gave the corresponding diol, which was converted into epoxide 22 by reaction with N-tosyl imidazole. Regioselective opening of epoxide with potassium salt of 4-quinazolone followed by oxidation with Dess-Martin periodinane produced protected febrifugine, which upon acid treatment furnished (+)-febrifugine (1) (Scheme 3).

Kobayashi's approach (2001) ${ }^{11}$

Kobayashi et al. have described the synthesis of febrifugine (1) from 2,3-diacetoxy- N benzyloxycarbonylpiperidine (27) employing diastereoselective nucleophilic addition of tin enolate. Accordingly, ester 23 was converted into its Weinreb amide 24 on treatment with methoxy methyl amine followed by silyl deprotection. Mitsunobu reaction of 24 using diphenylphosporic azide (DPPA) converted the hydroxyl group at the 5-position into an azide group, which upon palladium-catalyzed hydrogenolysis followed by Cbz protection of the resulting amine yielded Weinreb amide 25 in 42% yield. Lithium aluminium hydride reduction of $\mathbf{2 5}$ provided a high yield of (3S)-N-benzyloxycarbonyl-2,3-dihydroxypiperidine (26). Diacetylation and coupling with the tin (II) enolate 29 followed by deprotection afforded febrifugine (1) (Scheme 4).

Scheme 4: i) a) $\mathrm{Me}_{3} \mathrm{Al}, \mathrm{MeNH}(\mathrm{OMe})$; b) $1 \mathrm{~N} \mathrm{HCl}, 65 \%$, two steps; ii) (a) DEAD, PPh_{3}, DPPA; (b) $\mathrm{H}_{2}(10 \mathrm{~atm}), 10 \% \mathrm{Pd} / \mathrm{C}$; (c) $\mathrm{CbzCl}, 42 \%$, three steps; iii) LiAlH_{4} in $\mathrm{Et}_{2} \mathrm{O}, 91 \%$; iv) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}$, quant.; v) 29, $\mathrm{Sn}(\mathrm{OTf})_{2}, i-\mathrm{PrEt}_{2} \mathrm{~N}, 025^{\circ} \mathrm{C}, 70 \%$; vi) (a) 30% $\mathrm{HBr} / \mathrm{AcOH}$, (b) $\mathrm{MeONa} / \mathrm{MeOH}, 25 \%$, two steps.

Honda's approach (2004) ${ }^{12}$

In this approach, protected (4R)-hydroxy-L-proline ester (30) was oxidized with RuO_{4} to give the corresponding lactam, which upon reduction with lithium triethylborohydride gave aminal 31. Wittig olefination of aminal 31 gave the Weinreb amide 33 formed via Michael addition of α, β-unsaturated amide 32. Grignard addition of MeMgBr to the amide 32 afforded the ketone 34 , which on reaction with Wittig reagent gave the olefin 35 in 43% yield. Selective removal of the Boc group in 35 was achieved using ZnBr_{2} to afford amine, which was subjected to SmI_{2}-promoted reductive deamination to furnish the lactam 37. Reduction of lactam 37 with LiAlH_{4} followed by protection of the resulting amine and alcohol functionalities and ozonolysis of the resulting olefin gave ketone 38. Finally, ketone 38 was converted to (+)-febrifugine (1) via α-bromination (39) and coupling with 4-hydroxyquinazoline (Scheme 5).

Scheme 5: i) cat. $\mathrm{RuO}_{4}, \mathrm{NaIO}_{4}, \mathrm{AcOEt} / \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 86 \%$; ii) $\mathrm{LiEt}_{3} \mathrm{BH}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$; iii) (EtO) $)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CON}(\mathrm{Me}) \mathrm{OMe}, \mathrm{NaH}, \mathrm{THF}, 25{ }^{\circ} \mathrm{C}, 83 \%$; iv) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; v) $\mathrm{MeMgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 88 \%$; (vi) Tebbe's reagent, THF, $40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 81 \%$ (vii) a) ZnBr_{2}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; b) Sml_{2}, THF:HMPA, MeOH, $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 90 \%$; viii) (a) LiAlH_{4}, THF, 65 ${ }^{\circ} \mathrm{C}$; (b) $\mathrm{CbzCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 95 \%$; (c) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}, 0{ }^{\circ} \mathrm{C}, 90 \%$; (d) O_{3}, MeOH, $-78{ }^{\circ} \mathrm{C}$ then $\mathrm{Me}_{2} \mathrm{~S}, 92 \%$; ix) (a) TMSOTf, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (b) NBS, 25 ${ }^{\circ} \mathrm{C}$; x) (a) 4-hydroxyquinazoline, KH, DMF, $70^{\circ} \mathrm{C}, 57 \%$; (b) 6 N HCl , reflux 92%.

Harayama's approach (2005) ${ }^{13}$

Harayama et al. have described the synthesis of $d l$-febrifugine using intramolecular Michael addition of ω-amidoenone 42 as the key step. 2,3-Piperidinediol 41, prepared from tetrahydropyridine 40 by oxone-acetone oxidation, was subjected to Wittig olefination to afford ω-amidoenone 42 with E-selectivity. The trans olefin 42 was subjected to Michael addition in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to afford the Michael adduct 43. Methyl ketone 43 was converted to febrifiugine (1) via standard reaction sequences involving α-bromination followed by coupling with 4(3H)-quinazolinone (Scheme 6).

Scheme 6: i) Oxone, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 84 \%$; ii) $\mathrm{CH}_{3} \mathrm{COCH}=\mathrm{PPh}_{3}$, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, $1 \mathrm{~h}, 76 \%$; iii) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 75 \%$; iv) (a)TMS•OTf, $i-\mathrm{Pr}_{2} \mathrm{EtN}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 20 \mathrm{~min}$; (b) NBS, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; v) (a) $4(3 \mathrm{H})$-quinazolinone, $25^{\circ} \mathrm{C}, 4.5 \mathrm{~h}, 51 \%$; (b) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{MeOH} / \mathrm{THF}, 25^{\circ} \mathrm{C}, 3.5 \mathrm{~h}, 88 \%$.

Caprio's approach (2005) ${ }^{14}$

Caprio et al. employed 1,3-dipolar cycloaddition of nitrone 48 with N-allylquinazolone 49 as the key step to give febrifugine. Reduction of diester 45 using LiAlH_{4} followed by di-tosylation of the resulting diol with tosyl chloride in the presence of DMAP gave 1,5ditosylate 46. Cyclization of 46 was achieved on reacting with hydroxylamine hydrochloride to give piperidine 47, which was then oxidized using manganese dioxide to give a mixture of readily separable regioisomeric nitrones 48. The 1,3-dipolar cycloaddition of nitrone 48 with dipolarophile 49 produced the corresponding adduct, whose $\mathrm{N}-\mathrm{O}$ bond was reductively cleaved using $\mathrm{Zn} /$ acetic acid to give the crude $\mathbf{5 0}$. Amino alcohol 50 was converted to febrifugine by standard reactions i.e. Boc protection, oxidation and deprotection (Scheme 7).

Scheme 7: (i) a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 24 \mathrm{~h}, 88 \%$; b) TsCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}, 86 \%$; (ii) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{Et}_{3} \mathrm{~N}$, reflux, $4 \mathrm{~h}, 74 \%$; (iii) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 88 \%$ overall yield; (iv) a) 49, PhMe, reflux, $24 \mathrm{~h}, 48 \%$; b) Zn , HOAc , reflux; (v) a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; b) Dess-Martin periodinane, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant.; c) 6 M HCl , reflux, 67%.

1.1.3 Present Work

1.1.3.1 Objective

As can be seen from the above discussions, the literature methods for the synthesis of $(+)$ febrifugine (1) employ either chiral starting materials or expensive reagents involving longer reaction sequences, often resulting in poor product selectivities. The catalytic synthesis of (+)-febrifugine (1) is thus undertaken by employing the asymmetric dihydroxylation of homoallylic ester as the key reaction.

Retrosynthetic analysis

The retrosynthetic analysis of (+)-febrifugine (1) is shown in Scheme 8. We envisaged that 2-allyl-3-hydroxypiperidine 52 could serve as a valuable intermediate for the asymmetric synthesis of $(+)$-febrifugine $\mathbf{1}$. We further anticipated that the piperidine moiety in 52 could be constructed by the reductive N - to O - ring expansion of azidolactone 53, which in turn could be obtained readily via regioselective asymmetric dihydroxylation (ADH) of 1,4-dienic ester 54 . We also thought that the chemoselective [3,3]-sigmatropic Claisen-Johnson rearrangement of 1,5-hexadiene-3-ol (55) would result in the formation of dienic ester 54. Since the synthetic strategy involves asymmetric dihydroxylation as the key reaction, a brief account of ADH is described below.

Scheme 8: Retrosynthetic analysis of (+)-febrifugine (1)

1.1.3.2 Asymmetric Dihydroxylation

In recent years much attention has been focused on the catalytic asymmetric synthesis. There are several methods to obtain enantiomerically pure compounds that include classical optical resolution, chromatographic separation of enantiomers, enzymatic resolution and asymmetric synthesis. ${ }^{15}$ It often has significant economic advantages over stoichiometric asymmetric synthesis for industrial-scale production of enantiomerically pure compounds. All these asymmetric reactions crucially depend on ligand acceleration effect (LAE). ${ }^{16}$ Among all these reactions, Sharpless Catalytic Asymmetric Dihydroxylation (AD) is one of the most important practical and widely used reactions in organic synthesis. It has become the most general method for the preparation of optically active vicinal cis-diols from activated as well as inactivated olefins. ${ }^{17}$

In 1936, Criegee et al. ${ }^{18}$ have found that addition of pyridine or any other tertiary amine to osmylation of olefins accelerates the rate of reaction considerably. A major breakthrough has occurred in the field of asymmetric oxidation when Sharpless ${ }^{17 \mathrm{~b}}$ et al. demonstrated that asymmetric induction could be achieved when chiral amines were added to OsO_{4}-mediated asymmetric oxidation of olefins. Among the various ligands screened best results were obtained with ligands which were representatives of the cinchona alkaloid family, dihydroquinidine (DHQD) and dihydroquinine (DHQ). ${ }^{19} \mathrm{~A}$ number of recent methods employ chiral diamine ligands for the asymmetric osmylation of olefins. The simplified mechanism of achiral and chiral dihydroxylation is given in

Scheme 9.

Scheme 9: Simplified mechanism of achiral and chiral dihydroxylation

Mechanism of OsO_{4}-catalyzed dihydroxylation of olefin

In order to develop a catalytic method, several co-oxidants such as sodium or potassium chlorate, ${ }^{20}$ hydrogen peroxide, ${ }^{21}$ tert-butyl hydroperoxide ${ }^{22}$ and N -methylmorpholine N oxide (NMO) ${ }^{23}$ were introduced .

The idea to use these co-oxidants was to minimize the amount of toxic and costly osmium so as to make the process more economical. Sharpless et al ${ }^{24}$ have established that the most practical and suitable catalytic method is with NMO as co-oxidant but the ee's of the diol was less than those produced by the stoichiometric reactions (primary catalytic cycle) The reason was thought to be the involvement of second catalytic cycle (secondary catalytic cycle), which results in low or no ee at all. To improve the \%ee of the chiral diol, the second catalytic cycle of AD should be avoided and this was achieved by employing the $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ as reoxidant and using biphasic conditions (Fig. 2). ${ }^{25}$

Fig. 2: Catalytic cycle for $A D$ using $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ as co-oxidant.

These conditions helped in protecting the organic osmate-(VI) monoglycolate ester (species A, Fig. 2) from inopportune oxidation prior to hydrolysis and thereby releasing the diol and ligand to the organic phase and osmium-(VI) to the aqueous phase. Subsequently, osmium-(VI) gets reoxidized and recycled into the catalytic cycle. Further improvement in the AD was realized by the addition of methyl sulfonamide $\left(\mathrm{MeSO}_{2} \mathrm{NH}_{2}\right)$ to the reaction mixture. It also helps to accelerate the hydrolysis of the species \mathbf{A}, thus facilitating the dihydroxylation smoothly. Addition of methyl sulfonamide also allowed carrying out the reactions of 1,2 -ditri- and tetra- substituted olefins at $0{ }^{0} \mathrm{C}$, which improved the selectivity as well as \%ee. In order to develop the asymmetric version of the Os-catalyzed AD reaction, Sharpless and coworkers have screened various chiral ligands and found out that the derivatives of cinchona alkaloids gave excellent results. Among all the 250 derivatives of cinchona alkaloid ligands screened, the bis-DHQ (56)
or DHQD (57) ethers of phthalazine-1, 4-diol have proven to be the best for obtaining high enantioselectivities of the chiral diols (Fig. 3). ${ }^{26}$

$(\mathrm{DHQ})_{2}$-PHAL (56)

(DHQD) $)_{2}$-PHAL (57)

Fig. 3: Ligands for asymmetric dihydroxylation reaction

The recent studies have demonstrated the importance of enzyme-like binding pocket of the dimeric cinchona alkaloid for high enantioselectivity of the chiral diols. ${ }^{26,27}$ Sharpless et al have shown that the facial selectivity for both ligands $\mathbf{5 6}$ and $\mathbf{5 7}$ is different, based on their ability to induce the ee into the diols.

Fig. 4: Enantioselectivity in ADH
This observation has led to the development of mnemonic model (Fig. 4) in which olefin with the constraints will be attacked either from the top (i.e. β) face in the presence of dihydroquinidine (DHQD) derivatives or from the bottom (i.e. α) face in the presence of dihydroquinine (DHQ) derived ligand.

1.1.4. Results and Discussion

Our synthesis of (+)-febrifugine (1) commenced with the commercially available 1,5-hexadien-3-ol (55), which was subjected to Claisen-Johnson [3,3]-sigmatropic rearrangement (trimethyl orthoacetate, cat. propionic acid, xylene, $135{ }^{\circ} \mathrm{C}$) to give (E)-1,4-dienic ester 54 exclusively in 86% yield (Scheme 10). ${ }^{28}$ Surprisingly, we observed that the reaction conditions exclusively favored the Claisen-Johnson rearrangement to give the desired dienic ester 54 over a possible oxy-Cope rearrangement; no trace of 5hexenal, an oxy-Cope product was formed. The appearance of a signal at $\delta 3.67$ (s) in the ${ }^{1} \mathrm{H}$ NMR spectrum of dienic ester 54 confirmed the presence of ester methyl proton ($\mathrm{CO}_{2} \mathrm{CH}_{3}$). The display of four signals at the olefinic region $(\delta 4.95-5.81,5 \mathrm{H})$ further confirmed the presence of both terminal as well as internal olefins. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed characteristic signals at $\delta 173.8$ due to the carbonyl carbon $(-\mathbf{C}=\mathrm{O})$ and at δ 115.6, 129.6, 129.7 and 137.7 corresponding to the olefinic carbons (Fig. 5).

$\left.\begin{array}{l}58, R=H \\ 59, R=M s\end{array}\right) \mathrm{C}$

Scheme 10: Reagents and conditions: (a) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OMe})_{3}$, cat. propanoic acid, xylene, 135 ${ }^{\circ} \mathrm{C}, 88 \%$; (b) cat. $\mathrm{OsO}_{4},(\mathrm{DHQ})_{2}$-PHAL, $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3}, t$-BuOH: $\mathrm{H}_{2} \mathrm{O}$ (1:1) 73%; (c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (d) NaN_{3}, DMF, $80^{\circ} \mathrm{C}$, 82% over two steps; (e) PPh_{3}, THF, 25 ${ }^{\circ} \mathrm{C}$ then $\mathrm{H}_{2} \mathrm{O}$ reflux, 93%; (f) LiAlH_{4}, THF, reflux; 85%; (g) $\mathrm{CbzCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, THF: $\mathrm{H}_{2} \mathrm{O}$ (1:1); (h) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 84 \%$; (i) NBS, $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}, 88 \%$; (j) 4-quinazolinone, $\mathrm{KOH}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$; (k) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 78 \%$ over two steps; (l) 6 N HCl , reflux, 63%.

Fig. 5 : ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 54

Regioselective asymmetric dihydroxylation of internal olefin of 54 was achieved using $(\mathrm{DHQ})_{2}$ - PHAL , cat. $\mathrm{OsO}_{4}, \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3},{ }^{t} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1)$ at $0{ }^{\circ} \mathrm{C}$ to get the hydroxylactone 58 in 73% isolated yield and 82% ee (determined from its Mosher's ester). Under the basic condition, the resulting diol simultaneously underwent lactonization to form exclusively the five-membered lactone 58. No trace of sixmembered lactone was found.
TMS

Chloroform-d
\cdots

0
7
7
1

Fig. 6: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra of 58

The IR spectrum of ester 58 showed an absorption band at $1768 \mathrm{~cm}^{-1}$ that corresponds to the presence of five-membered lactone carbonyl moiety. The disappearance of methyl signal in the ${ }^{1} \mathrm{H}$ NMR spectrum of 58 confirmed the formation of lactone. The two characteristic signals at $\delta 5.19$ and 5.84 in its ${ }^{1} \mathrm{H}$ NMR spectrum indicated that only internal olefin in the molecule underwent dihydroxylation leaving the terminal olefin ($\mathrm{CH}=\mathrm{CH}_{2}$) unaffected. The two newly formed methine protons (- CHO - and $-\mathrm{CHOH}-$) have displayed signals at $\delta 4.46$ and 3.62 respectively. In the ${ }^{13} \mathrm{C}$ NMR spectrum of 58 , the carbonyl carbon signal has shown downfield shift i.e. from $\delta 173.8$ to 177.8 due to the formation of strained five-membered lactone (Fig. 6). Carrying out the reaction for longer reaction time has produced the crude product in diminished crude yield, presumably due to the dihydroxylation of both the $\mathrm{C}=\mathrm{C}$ double bonds. It may also be noted that replacing OsO_{4} with potassium osmate, resulted in poor selectivity, leading to dihydroxylation of both the $\mathrm{C}=\mathrm{C}$ bonds even at $0^{\circ} \mathrm{C}$.

Mesylation of the free alcohol group in $58\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right)$ produced the corresponding methane sulfonate ester 59 in quantitative yield. Without purification, mesylate 59 was subjected to $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} in DMF at $80^{\circ} \mathrm{C}$ to furnish the azidolactone 53 with inversion of configuration. The signals for the terminal olefins $\left(\mathrm{CH}_{2}=\mathrm{C}-\right.$ and $\left.\mathrm{R}-\mathrm{CH}=\mathrm{C}\right)$ have appeared as multiplets at $\delta 5.23$ and 5.85 respectively in the ${ }^{1}$ H NMR spectrum of 53 . The signals at $\delta 3.74$ and 4.48 are due to the methine protons (CHN_{3} - and - CHO-) respectively. Its ${ }^{13} \mathrm{C}$ NMR displayed a typical signal at $\delta 173.1$ for the lactone carbonyl and at $\delta 132.4$ and 119.4 due to the terminal olefinic carbons. Reduction of azide 53 under Staudinger condition ${ }^{29}\left(\mathrm{PPh}_{3}, \mathrm{H}_{2} \mathrm{O}\right.$, heat) gave lactam $\mathbf{6 0}$ $\left\{[\alpha]^{25}{ }_{\mathrm{D}}+10\left(c 0.8, \mathrm{CHCl}_{3}\right)\right\}$; presumably formed by the intramolecular lactamization of
the free amine generated in situ by the reduction of azide. ${ }^{30}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 0}$ showed a broad singlet at $\delta 6.08$ due to the amide proton (-NHCO-), while the olefinic protons $\left(\mathrm{CH}_{2}=\mathrm{C}\right.$ - and $\left.\mathrm{R}-\mathrm{CH}=\mathrm{C}\right)$ have shown peaks at $\delta 5.22$ and 5.76 respectively. The signals for methine protons (-CHNH- and -CHOH-) have appeared as multiplets at $\delta 3.68$ and 3.26 respectively. The formation of lactam $\mathbf{6 0}$ was further confirmed from its ${ }^{13} \mathrm{C}$ NMR spectrum, which showed a typical signal at $\delta 172.0$ for the amide carbonyl (CONH) function.

Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 1}$

The chemoselective reduction of lactam $\mathbf{6 0}$ was achieved with lithium aluminium hydride to afford 2-allyl-3-hydroxypiperidine (61). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 1}$ showed that the terminal olefin was unaffected during LiAlH_{4} reduction and displayed signals at $\delta 5.81$ and 5.16. Further, the reduction of amide carbonyl was confirmed from its ${ }^{13} \mathrm{C}$ NMR spectrum, which showed the absence of carbonyl carbon signal (Fig. 7).

The free amine and alcohol groups were subsequently protected with Cbz and Bn groups respectively to obtain the intermediate 52 in 72% yield in that order over two steps $\left\{[\alpha]^{25}{ }_{\mathrm{D}}-37\left(c\right.\right.$ 0.8, $\left.\mathrm{CHCl}_{3}\right) ;$ lit. $^{5 \mathrm{~h}}[\alpha]^{25}{ }_{\mathrm{D}}-45\left(c\right.$ 1.55, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$.

Fig. 8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 52

The ${ }^{1} \mathrm{H}$ NMR spectrum of 52 displayed a multiplet at $\delta 7.23$ for two phenyl rings $\left(\mathrm{C}_{6} \mathbf{H}_{5}\right.$) while the signals for benzylic protons $\left(-\mathrm{NCO}_{2} \mathrm{CH}_{2}-\mathrm{Ph}\right.$ and $\left.-\mathrm{OCH}_{2} \mathrm{Ph}\right)$ have appeared at δ 5.12 and 4.49 respectively. As expected, the olefinic protons $\left(\mathrm{CH}_{2}=\mathrm{C}\right.$ - and $\left.\mathrm{R}-\mathrm{CH}=\mathrm{C}\right)$ remain unaffected displaying signals at $\delta 5.73$ and 5.12. Its ${ }^{13} \mathrm{C}$ NMR spectrum exhibited a typical signal at $\delta 156$ corresponding to the carbonyl carbon in Cbz protection (Fig. 8). With the intermediate 52 in hand, we began bromohydroxylation ($\mathrm{NBS}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$) of terminal olefin in 52 to obtain the corresponding halohydrin. Thus, bromohydroxylation of 52 took place regioselectively to give a separable diastereomeric terminal halide $\mathbf{6 3}$ in the ratio 1.5:1 (determined from the ${ }^{1} \mathrm{H}$ NMR spectrum). The disappearance of the signals corresponding to the olefinic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 3}$ confirmed that the functionalization of olefin has occured. The IR spectrum of halohydrin 63 exhibited a broad absorption at $3348 \mathrm{~cm}^{-1}$ indicating the presence of hydroxyl group whereas the dibromo derivative, a minor product formed, had no IR absorption. After separating the dibromide, the diastereomers of halohydrin 12 mixture was coupled with 4hydroxyquinazoline in the presence of KH to afford the diastereiosmers of N-alkylated product 64 as the inseparable mixture. The free alcohol group in $\mathbf{6 4}$ was then oxidized using Dess- Martin periodinane ${ }^{31}$ to furnish the protected febrifugine $65\left\{[\alpha]^{25}{ }_{\mathrm{D}}-25.0\right.$ (c $0.5, \mathrm{CHCl}_{3}$); lit. $\left.{ }^{5 \mathrm{~h}}[\alpha]^{25}{ }_{\mathrm{D}}-22.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)\right\}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 5}$ displayed signals in the range $\delta 7.5-8.2$ corresponding to the quinazolinone unit along with aromatic protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical signal at $\delta 200.1$ corresponding to the carbonyl carbon $(\mathrm{C}=\mathrm{O})$ functionality.

Finally, treatment of $\mathbf{6 5}$ with 6 N HCl produced (+)-febrifugine (1) in 63% yield. After recrystallization from ethanol, its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and melting point were found to be completely identical with the reported values (Fig. 9).

Fig. 9: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (+)-febrifugine (1)

1.1.5. Conclusion

In summary, we were able to establish an alternative, short enantioselective synthesis of $(+)$-febrifugine (1) via asymmetric dihydroxylation of 1,4-dienic ester in 12 linear steps
with 82% ee. The carbon back-bone of (+)-febrifugine was synthesized through ClaisenJohnson rearrangement of 1,5-hexadien-3-ol while the piperidine ring was constructed using reductive ring expansion of azido lactone. This synthesis is practical and seems obviously applicable for the synthesis of substituted hydroxyl piperidines.

1.1.6. Experimental section

(E)-Methyl octa-4,7-dienoate (54)

An oven dried 500 mL round bottomed flask was charged with 1,5-hexadien-3-ol (55) $(9.8 \mathrm{~g}, 100 \mathrm{mmol})$, propanoic acid ($390 \mathrm{mg}, 5 \mathrm{~mol} \%$), trimethyl orthoacetate ($72.0 \mathrm{~g}, 600$ mmol) and xylene (300 mL). The mixture was refluxed at $135^{\circ} \mathrm{C}$ for 18 h . After the completion of the reaction, as monitored by TLC, it was cooled to room temperature and the excess trimethyl orthoacetate and xylene were removed under reduced pressure. It was then extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude ester 54, which was purified by column chromatography using petroleum ether: ethyl acetate (9:1) to obtain pure 54 as colorless oil. Yield: $88 \%(13.55$ g); ${ }^{1} \mathbf{H}-$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.36(\mathrm{~m}, 6 \mathrm{H}), 2.73(\mathrm{dt}, J=4.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 4.95(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 2 \mathrm{H}), 579(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13}$ C-NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.8,33.9,36.6,51.4,115.1,129.0,129.3,136.8,173.3 ; \mathbf{I R}\left(\right.$ neat, cm^{-1}): 2936, 2861, 2355, 2332, 1735, 1520, 1442, 1251, 1176, 956, 852; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 70.10 ; \mathrm{H}, 9.15$. Found: C, $70.19 ; \mathrm{H}, 9.21 \%$.

(S)-Dihydro-5-((S)-1-hydroxybut-3-enyl)furan-2(3H)-one (58)

A 500 mL two-necked round bottomed flask was charged with potassium ferricyanide (8. $39 \mathrm{~g}, 120 \mathrm{mmol}$), potassium carbonate ($39.48 \mathrm{~g}, 120 \mathrm{mmol}$), (DHQ) $)_{2}$-PHAL ($311 \mathrm{mg}, 1$
$\mathrm{mol} \%)$ and $t-\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1,300 \mathrm{~mL})$. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ on an ice bath and $\mathrm{OsO}_{4}(10.8 \mathrm{mg}$ in toluene, $0.22 \mathrm{~mL}, 0.5 \mathrm{~mol} \%)$ was added via syringe. After 10 min . of stirring at $0{ }^{\circ} \mathrm{C}$ dienic ester $54(6.16 \mathrm{~g}, 40 \mathrm{mmol})$ was added drop-wise and allowed to stir for 2 h at $0^{\circ} \mathrm{C}$. After the completion of the reaction as monitored by TLC, it was quenched with saturated sodium sulfite and extracted with ethyl acetate (3 x 50 mL), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude hydroxy lactone 58, which was purified by column chromatography using petroleum ether: ethyl acetate (1:1) to give 58 as a viscous gum. Yield: $73 \%(4.55 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}^{25}+42\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.13-2.42(\mathrm{~m}, 5 \mathrm{H}), 2.5-2.65(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.69(\mathrm{ddd}, J=10.3,6.7$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.52$ (ddd, $J=10.9,7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (dd, $J=2.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17-5.23 (m, 1H), 5.75-5.95 (m, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.0,28.6,37.8$, 72.6, 82.2, 118.5, 133.7, 178.0; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3445,2936,2866,1769,1519,1247$, 1185, 1035, 963; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}$: C, 61.52; H, 7.74. Found: C, $61.61 ; \mathrm{H}, 7.79 \%$.

(S)-1-((S)-Tetrahydro-5-oxofuran-2-yl)but-3-enyl methanesulfonate (59)

To a stirred solution of hydroxyl lactone $58(4 \mathrm{~g}, 25.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(3.87 \mathrm{~g}, 38 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 5 min . methane sulfonyl chloride $(3.5 \mathrm{~g}, 30.7$ mmol) was added drop-wise. The reaction mixture was then stirred for another 1 h at $0^{\circ} \mathrm{C}$ and brought to room temperature. After the completion of the reaction, as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to obtain crude mesylate 59 , which was purified by column chromatography using petroleum ether: ethyl acetate (1:1) to give pure mesylate 59 as a viscous liquid. Yield:
$94 \%(5.63 \mathrm{~g}) ;[\alpha]^{25}{ }_{\mathrm{D}}+28\left(c 1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.29-2.40(\mathrm{~m}$, $4 \mathrm{H}), 2.45-2.65(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.78(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=$ $2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 23.9, 27.9, 35.8, 39.1, 78.9, 82.0, 118.0, 133.1, 176.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2939,2868$, $1775,1735,1512,1355,1250,1185,1011,815$; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 46.14 ; \mathrm{H}$, 6.02; S, 13.69. Found: C, 46.19; H, 6.14\%.

(S)-5-((R)-1-Azidobut-3-enyl)-dihydrofuran-2(3H)-one (53)

To a stirred mixture of crude methane sulfonate ester $59(5.95 \mathrm{~g})$ in DMF (30 mL) was added sodium azide ($87 \mathrm{~g}, 475 \mathrm{mmol}$) and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 7 h. After the completion of the reaction, as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude azido lactone 53, which was purified by column chromatography using petroleum ether: ethyl acetate (7:3). Yield: $87 \%(3.8 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}^{25}-21\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 2.1-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.63(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.80(\mathrm{ddd}, J=11.2,6.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-$ 4.51 (ddd, $J=11.8,7.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.29(\mathrm{~m}, 1 \mathrm{H})$, 5.73-5.94 (m, 1H); ${ }^{13} \mathbf{C}$-NMR (50 MHz, CDCl_{3}): $\delta 22.7,28.1,35.2,63.8,80.1,119.4$, 132.4, 176.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2935,2865,2110,1775,1514,1247,1031,819$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 53.03; H, 6.12; N, 23.19. Found: C, 53.10; H, 6.18; N, 23.24\%. (5S, 6R)-6-Allyl-5-hydroxypiperidin-2-one (60)

To a stirred solution of azidolactone $53(3.5 \mathrm{~g}, 19.3 \mathrm{mmol})$ in dry THF (50 mL) was added triphenyl phosphine $(5.06 \mathrm{~g}, 21.23 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred at room temperature till the evolution of nitrogen gas is ceased.

Water ($720 \mathrm{mg}, 40 \mathrm{mmol}$) was added and the reaction mixture was refluxed for 3 h . After the completion of the reaction, solvent and traces of water were removed under reduced pressure to give the crude lactam 60, which was purified by column chromatography using petroleum ether: ethyl acetate (1:1) to provide the pure lactam 60. Yield: 93\% (2.8 $\mathrm{g}) ;[\alpha]^{25}{ }_{\mathrm{D}}+10\left(c \quad 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.79-2.28(\mathrm{~m}, 4 \mathrm{H}), 2.40-$ $2.63(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.17(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~m}$, 1H), 5.64-5.84 (m, 1H), $6.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 27.5,28.4,38.5$, $57.7,67.5,119.4,133.4,172.0,122.2,138.9$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3445,2939,2895,1657$, 1132, 965; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 61.91; H, 8.44; N, 9.03. Found: C, 62.02; H, 8.41; N, 9.11\%.

(2R, 3S)-2-Allylpiperidin-3-ol (61)

An oven dried two-necked round bottomed flask was charged with lithium aluminium hydride ($648 \mathrm{mg}, 24 \mathrm{mmol}$) and dry THF (50 mL) was added via syringe. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of lactam $60(2.5 \mathrm{~g}, 16 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added drop-wise maintaining the temperature of the reaction mixture below $10^{\circ} \mathrm{C}$. After the addition was complete, the reaction mixture was stirred at the same temperature for 1 h and then refluxed for 5 h to ensure the completion of the reaction. It was then quenched with ethyl acetate and filtered through celite. The filtrate was washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to get the crude amino alcohol 61, which was purified by column chromatography using petroleum ether:ethyl acetate (1:1) to get amino alcohol $\mathbf{6 1}$ as colorless solid. Yield: $85 \%(2.1 \mathrm{~g})$; mp: $112-114{ }^{\circ} \mathrm{C}$ (recrystallized from CHCl_{3}); $[\alpha]^{25}{ }_{\mathrm{D}}$ 46 (c 1, MeOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.21-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.57(\mathrm{~m}, 1 \mathrm{H})$,
$1.63-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{brs}, 2 \mathrm{H}), 2.30-2.41(\mathrm{dt}, J=9.6,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.46-2.59 (dt, $J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.92-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.33$ (ddd, $J=13.9,9.68,4.18 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.94$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.6,37.5,40.2,49.5,65.5,74.7,122.2,138.9$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3412, 2942, 2893, 1672, 1395; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 68.04 ; \mathrm{H}$, 10.71; N, 9.92. Found: C, 68.09; H, 10.65; N, 9.85\%.

4.8. (2R, 3S)-Benzyl 2-allyl-3-hydroxypiperidine-1-carboxylate (62)

To a mixture of amino alcohol $\mathbf{6 1}(1.9 \mathrm{~g}, 13.5 \mathrm{mmol})$ in THF: $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}, 1: 1)$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(3.73 \mathrm{~g}, 27 \mathrm{mmol})$ followed by benzyl chloroformate $(2.754 \mathrm{~g}, 16.2 \mathrm{mmol})$ drop-wise at $0{ }^{\circ} \mathrm{C}$. After stirring for 5 h , the reaction mixture was extracted with ethyl acetate, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to get the crude N-protected amino alcohol 62, which was purified by column chromatography using petroleum ether:ethyl acetate (8:2) to give $\mathbf{6 2}$ as a viscous brown oil. $[\alpha]^{25}{ }_{\mathrm{D}}-37\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.39-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.65-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.17-2.46(\mathrm{~m}, 2 \mathrm{H})$, $2.85(\mathrm{dt}, J=10.24,2.33 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{brs}, 1 \mathrm{H}), 4.03-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.38(\mathrm{~m}, 1 \mathrm{H})$, 4.98-5.02 (m, 2H), $5.13(\mathrm{~s}, 2 \mathrm{H}), 5.59-5.79(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 19.0,25.8,33.8,38.9,57.1,66.7,72.8,117.3,127.8,127.9,128.5,134.4$, 136.8, 156.7; IR (neat, cm^{-1}): 3412, 2935, 2889, 1723, 1685, 1352, 1163, 1025, 982; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, 69.79; H, 7.69; N, 5.09. Found: C, 69.98; H, 7.58; N, 5.11\%.
(2R, 3S)-Benzyl 2-allyl-3-(benzyloxy)piperidine-1-carboxylate (52)

To a stirred solution of crude amino alcohol $62(3.5 \mathrm{~g})$ in DMF $(40 \mathrm{~mL})$ was added 60% sodium hydride ($550 \mathrm{mg}, 16.2 \mathrm{mmol}$) dispersed in mineral oil at $0{ }^{\circ} \mathrm{C}$. After 5 min . of stirring, benzyl bromide ($2.6 \mathrm{~g}, 15 \mathrm{mmol}$) was added drop-wise via syringe and allowed to stir for another 4 h . After completion of the reaction, as monitored by TLC, it was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. It was then extracted with ethyl acetate ($3 \times 200 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude product 52, which was purified by column chromatography using petroleum ether:ethyl acetate (4:1) to afford 52 as colorless liquid. Yield: $84 \%(4.14 \mathrm{~g}$, two steps $) ;[\alpha]^{25}{ }_{\mathrm{D}}-37\left(c 0.8, \mathrm{CHCl}_{3}\right) ;$ lit. ${ }^{5 \mathrm{~h}}[\alpha]^{25}{ }_{\mathrm{D}}-$ 45 (c 1.55, CHCl_{3}); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.36-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.95(\mathrm{~m}$, $3 \mathrm{H}), 2.11-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.93(\mathrm{dt}, J=13.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.99-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.4-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.97-5.18(\mathrm{~m}, 4 \mathrm{H}), 5.59-5.73(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ 7.29 (m, 10H); ${ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.7,24.1,33.9,38.8,52.3,66.9,70.0$, $73.3,117.4,127.4,127.7,127.8,128.3,128.4,134.5,137.0,138.7,156.1 ;$ IR (neat, cm^{-} ${ }^{1}$): 2939, 2887, 1727, 1680, 1625, 1352, 1163; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3}: \mathrm{C}, 75.59 ; \mathrm{H}$, 7.45; N, 3.83. Found: C, 75.63; H, 7.52; N, 3.92\%.

4.10. Diastereomers of halohydrin (63)

To a stirred solution of $52(2 \mathrm{~g}, 5.48 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(2: 1,20 \mathrm{~mL})$ was added N bromosuccinimide ($1.67 \mathrm{~g}, 6 \mathrm{mmol}$) at room temperature. After completion of the reaction, it was quenched with aq. sodium thiosulphate solution and extracted with ethyl acetate, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude halohydrin 63, which was purified by column chromatography using petroleum ether:ethyl acetate (4:1)
to give $\mathbf{6 3}$ as a gum. Yield: $87 \%(2.2 \mathrm{~g}) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.39-1.44(\mathrm{~d}, J$ $=8.60,1 \mathrm{H}), 1.53-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.25(1 \mathrm{H}), 2.67-2.74 \& 2.80-2.93(\mathrm{t}$, $J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.33 \& 3.4(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.21(\mathrm{~m}$, $2 \mathrm{H}), 4.44 \& 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.11 \& 5.15(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 10 \mathrm{H}) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$: 3456, 2912, 2872, 1728, 1683, 1031, 819.

4.11. O-Benzyl-N-benzyloxycarbonyl febrifugine (65)

To a stirred solution of $\mathbf{6 3}(668 \mathrm{mg}, 1.8 \mathrm{mmol})$ in dry methanol $(10 \mathrm{~mL})$ was added KOH $(0.5 \mathrm{~g}, 3.6 \mathrm{mmol})$ and 4-hydroxyquinazoline ($263 \mathrm{mg}, 1.8 \mathrm{mmol}$) and the mixture was stirred at room temperature for 24 h . Then, solvent was removed under reduced pressure and the residue was extracted with ethyl acetate, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give inseparable mixture of $\mathbf{6 4}$ as viscous liquid, which was subjected to oxidation as described below. To a stirred solution of crude alcohol 64 in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added DessMartin periodinane ($848 \mathrm{mg}, 2 \mathrm{mmol}$) at room temperature. After the completion of the reaction, it was quenched with water. The precipitate formed was filtered through a sintered funnel and the filtrate was concentrated and subjected to column chromatographic purification to give the protected febrifugine 65 as a pale yellow oil. Yield: $78 \% ;[\alpha]^{25}{ }_{\mathrm{D}}$-25.0 (c 0.5, CHCl_{3}); lit. ${ }^{5 \mathrm{~h}}[\alpha]^{25}{ }_{\mathrm{D}}$-22.0 (c 1.0, CHCl_{3}); ${ }^{1} \mathbf{H}$-NMR (200 MHz, CDCl_{3}): $\delta 1.40(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.93(\mathrm{~m}, 2 \mathrm{H})$, 2.74-2.95 (m, 3H), 3.50(s, 1H), $4.05(\mathrm{br}, 1 \mathrm{H}), 4.50-5.25(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 10 \mathrm{H})$, 7.46-7.49 (m, 1H), 7.70-7.90(m, 4H), 8.24-8.26(m, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $19.3,24.1,39.4,40.7,50.5,50.6,53.8,67.2,70.3,73.5,121.7,126.5,127.2,127.4,127.5$, 127.6, 127.9, 128.2, 128.4, 134.3, 136.4, 138.2, 146.4, 148.1, 160.8, 200.0; IR (neat):

2932, 2895, 1730, 1680, 1620, 1352, $1163 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3}: \mathrm{C}, 75.59 ; \mathrm{H}$, 7.45; N, 3.83. Found: C, 75. 63; H, 7.52; N, 3.92\%.

4.12. Febrifugine (1)

A mixture of protected febrifugine $65(116 \mathrm{mg}, 0.30 \mathrm{mmol})$ and 6 N aqueous HCl solution was heated at reflux for 4 h . The mixture was poured into saturated aqueous NaHCO_{3} solution (50 mL) and extracted with ethyl acetate. The organic layer was washed with brine, dried and concentrated. The residue was subjected to column chromatographic purification (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$; ethyl acetate: petroleum ether 2:1) to give $\mathbf{1}$ as colorless needle. Yield: $63 \%(57 \mathrm{mg}) ; \mathrm{mp}: 138-140{ }^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{5 \mathrm{~m}} \mathrm{mp} 139-140{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{25}+25.0(c$ $0.1, \mathrm{EtOH})\left\{\mathrm{lit}^{5 \mathrm{j}}[\alpha]^{25}{ }_{\mathrm{D}}+28(c\right.$ 0.5, EtOH$\left.)\right\} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.30-1.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.48-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.74(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dt}, J=2.4,12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=7.3,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=4.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=4.8,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ $(\mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dt}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dt}, J=$ 8.1, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=0.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 25.7,35.3,44.0,45.9,54.7,60.1,72.2,121.9,126.8,127.4,127.6,134.5$, 146.4, 148.2, 161.0, 202.7; IR (KBr, cm ${ }^{-1}$): 2928, 2856, 1722, 1675, 1616; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 63.77; H, 6.36; N, 13.94. Found: C, 63. 79; H, 6.39; N, 13.96\%.

Section II

Enantioselective Formal Synthesis of (-)-Epiquinamide via Asymmetric Dihydroxyaltion

1.2.1 Introduction

Agonists and partial agonists acting at nicotinic acetylcoline receptors (nAChR) are currently of much interest. ${ }^{32}$ Epiquinamides (66a-b), unprecedented quinolizidine alkaloids, were isolated ${ }^{35}$ by Daly and co-workers in 2003 from the skin extract of the Ecuadorian poison dart frog Epipedobates tricolor, which also serves as source of epibatidine (Fig. 10). They have modest activity in cells expressing various nAChR subtypes, with highest activity noted in SH-sy5y cells and k-177 cells expressing human $\alpha 4 \beta 2-n A C h R .{ }^{36}$ Epiquinamide represents the first example of a new class of nicotinic ligand and has been found to be highly selective for b2 nicotinic acetylcholine receptors (nAChRs), as such, representing a new structural class of nicotinic agonists and could be considered a lead compound for the development of nAChR therapeutic agents.

(-)- epiquinamide (66a)

(+)- epiquinamide (66b)

Epibatidine (67)

Fig. 10

The minute amount $(\sim 240 \mu \mathrm{~g})$ of 66 isolated from the skin extracts was enough to determine the structure and the relative stereochemistry of the natural product as $(1 R$, $10 R$)-1-acetamidoquinolizidine. Due to the fact that epiquinamides (66a-b) could be a novel nicotinic agonist it was decided to synthesize epiquinamide (66) with the aim of developing new nicotinic agents. During the course of this work, the structure and
relative stereochemistry of epiquinamides (66a-b) were confirmed by two independent asymmetric syntheses.

1.2.2 Review of literature

Literature search reveals that there are only three reports on the asymmetric synthesis of either $(-)$ or $(+)$-epiquinamide and one for the racemic synthesis using pipecolic acid. A short description of all the four reported methods is presented below.

Blaauw's approach (2005) ${ }^{37}$

Blaauw et al. have employed a strategy in which the addition of allyl silane to the N acyliminium ion became the key step. This synthesis commenced with treatment of cinnamoyl chloride with amino acid 68 followed by esterification of acid functionality with methyl iodide to furnish amido ester 69 in quantitative yield. Deprotection of acetal moiety in 69 with TFA furnished the piperidine 70 , which upon selective oxidation of the enamide double bond with Oxone in methanol furnished N, O-acetal 71. In the presence of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$, allyltrimethylsilane was added to the N-acyliminium ion formed from 71 stereoselectively to yield diene 72. Ring closing metathesis followed by reduction of double bond gave the bicyclic ring 73. Mesylation of free alcohol group in 73 followed by nucleophilic displacement with NaN_{3} resulted in azide 74. The decarboxylation was achieved in three step procedure i.e. ester hydrolysis, mixed anhydride formation with $\mathrm{Boc-Cl}$ and elimination by coupling with 2 -mercaptopyridine- N -oxide (75) to obtain bicyclic azido amide 76. Reduction of azide functionality in 76 using LiAlH_{4} and then acetylation of the resulting amine produced (-)-epiquinamide (66a) (Scheme 11).

Scheme 11: i) cinnamoyl chloride, $\mathrm{NaOH}, \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; ii) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $0{ }^{\circ} \mathrm{C}, 97 \%$; iii) TFA, $25{ }^{\circ} \mathrm{C}$; iv) Oxone, $\mathrm{NaHCO}_{3}, \mathrm{MeOH}$; v) allyl trimethylsilane, $\mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}$; vi) Grubbs' II generation catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; vii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$; viii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; ix) $\mathrm{NaN}_{3}, \mathrm{DMF}$, $80^{\circ} \mathrm{C}$; x) $\mathrm{NaOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$; xi) (a) Boc-Cl, NMM, THF, $-15^{\circ} \mathrm{C}$; xii) 75 , ${ }^{\dagger} \mathrm{BuSH}$, THF, $25^{\circ} \mathrm{C}$; xiii) LiAlH_{4}, THF, $60^{\circ} \mathrm{C}$; xiv) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{NaOH}, 1,4$-dioxane, $\mathrm{H}_{2} \mathrm{O}$.

Gerwick's approach (2006) ${ }^{38}$

In this chiral pool approach, ornithine is used as the starting material. Treatment of ornithine derived amino ester 77 with methoxy methyl amine gave Weinreb amide which on reaction with allyl Grignard reagent furnished the ketone 78. Chelation-controlled hydride reduction of ketone 78 employing $\mathrm{LiAl}\left(\mathrm{O}^{i} \mathrm{Bu}\right)_{3} \mathrm{H}$ produced alcohol, which was subsequently converted to methane sulfonate ester 79 in the presence of triethyl amine. Removal of the Boc protection in TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then intramolecular $\mathrm{S}_{\mathrm{N}} 2$ cyclization
induced by $\mathrm{K}_{2} \mathrm{CO}_{3}$ yielded substituted piperidine intermediate $\mathbf{8 0}$. N -Allylation of the free amine with allyl bromide gave diallyl piperidine 81. The bicyclic ring was constructed by the ring closing metathesis using Grubbs' second generation catalyst to yield 82, which was converted to (-) epiquinamide (66a) via hydrogenation followed by acetylation (Scheme 12).

Scheme 12: i) $\mathrm{MeONH}(\mathrm{Me}) . \mathrm{HCl}, \mathrm{EDCI}, \operatorname{DMAP}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$; ii) $\mathrm{CH}_{2}=\mathrm{CH}-$ $\mathrm{CH}_{2} \mathrm{Br}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}-25{ }^{\circ} \mathrm{C}, 86 \%$; iii) $\mathrm{LiAl}\left(\mathrm{O}^{i} \mathrm{Bu}\right)_{3} \mathrm{H},-78{ }^{\circ} \mathrm{C}, 93 \%$; iv) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 97 \%$; v) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}-25{ }^{\circ} \mathrm{C}$ then $\mathrm{K}_{2} \mathrm{CO}_{3}$; vi) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$ then allyl bromide, 73% over two steps; vii) Grubbs' II generation catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 5 h , 83%; viii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{Ac}_{2} \mathrm{O}, 2$ days, 63%.

Huang's approach (2006) ${ }^{39}$

Huang et al. have described the synthesis of (-)-epiquinamide using Grignard addition to glutarimide derivative as the key step. Alkyl magnesium bromide $\mathbf{8 4}$ was added to the glutarimide derivative $\mathbf{8 3}$ to obtain a separable diastereomeric mixture of $\mathbf{8 5}$. Treatment of 85 with $\mathrm{Et}_{3} \mathrm{SiH}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as acid catalyst gave desilylated piperidinone $\mathbf{8 6}$ in 96:4 diastereomeric ratio. Tosylation of $\mathbf{8 6}$ led to the corresponding sulfonate ester in 92% yield, which after oxidative N-deprotection using ceric ammonium
nitrate (CAN) provided tosylate 87. Intramolecular N-alkylation was achieved with sodium hydride to afford the bicyclic lactam 88 in quantitative yield. Catalytic hydrogenation of $\mathbf{8 8}$ led to benzyl deprotection to give the free alcohol, which upon mesylation gave the mesylate 89 in 100% yield. Mesylate 89 was finallyconverted to (-) epiquinamide (66a) by displacing Ms group with NaN_{3} followed by reduction and acetylation (Scheme 13).

Scheme 13: i) 84, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 93 \%$; ii) $\mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 60 \%$; iii) TsCl , Pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$; iv) $\mathrm{CAN}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}, 70 \%$; v) NaH , THF, 100%; vi) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, 98 \%$; vii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$; viii) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80{ }^{\circ} \mathrm{C}$, 53%; ix) LiAlH_{4}, THF then $\mathrm{Ac}_{2} \mathrm{O}, 78 \%$.

Barker's approach (2006) ${ }^{40}$

Barker et al. have employed the Diekmann condensation as the key step to construct the bicyclic ring. The synthesis started with racemic pipecolinic acid (90), which was converted into its ethyl ester using thionyl chloride in ethanol and then N-alkylated with ethyl 4-bromobutyrate to give diester 91 in 85% yield. Dieckmann cyclisation of diester 91 was achieved using potassium tert-butoxide in THF at room temperature to give keto-
ester 92. Hydrolysis and decarboxylation of $\mathbf{9 2}$ by heating in 4 M HCl furnished ketone $\mathbf{9 3}$ in 89% yield. Ketone $\mathbf{9 3}$ was converted into oxime $\mathbf{9 4}$ using $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$. Reduction of oxime 94 using LiAlH_{4} followed by acetylation furnished the diastereoisomers of epiquinamide (66) in excellent yields (Scheme 14).

Scheme 14: (i) SOCl_{2}, EtOH, reflux, $2 \mathrm{~h}, 99 \%$; (ii) 1.05 equiv ethyl 4-bromobutyrate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux, $22 \mathrm{~h}, 85 \%$; (iii) 2 equiv $\mathrm{KO}^{\prime} \mathrm{Bu}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$; (iv) $4 \mathrm{M} \mathrm{HCl}, 90-100^{\circ} \mathrm{C}, 12 \mathrm{~h}, 89 \%$; (v) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, pyridine, EtOH , reflux, $1 \mathrm{~h}, 82 \%$; (vi) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 84 \%$; (vii) $\mathrm{AcCl}, \mathrm{NEt}_{3}, \mathrm{DMF}, 25^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

1.2.3 Present work

1.2.3.1 Objective

From the above discussions, it is obvious that only a few reports are available for the synthesis of (-)-epiquinamide and all the reported methods employ the chiral pool strategy. Hence, a catalytic method to introduce chirality into the molecule along with a flexibility to obtain all the four diastereoisomers is desirable.

Retrosynthetic analysis

The retrosynthetic analysis of (-)-epiquinamide is shown in Scheme 15. We envisioned that (-)-epiquinamide (66a) could be easily prepared by the displacement of mesylate with amide function as in $\mathbf{9 5}$ to provide the bicyclic ring. The amide $\mathbf{9 5}$ in turn can be
prepared by the reduction of azide $\mathbf{9 6}$ using catalytic hydrogenation in excess. The azide 96 could be prepared by asymmetric dihydroxylation of olefin 97 , which would be easily prepared by the Claisen-Johnson rearrangement of allylic alcohol 98.

Scheme 15: Retrosynthetic analysis of (-) epiquinamide

1.2.4 Results and discussion

The synthetic route employed for the asymmetric synthesis of (-)-epiquinamide (66) is shown in Scheme 16. The synthesis started with mono protection of commercially available 1,5-pentanediol (99) using p-methoxy benzyl chloride and NaH in DMF: THF at $0{ }^{\circ} \mathrm{C}$ to get the primary alcohol $\mathbf{1 0 0}$ with good yield (82%) along with the diprotected product (8%). The formation of mono protection was confirmed from the ${ }^{1} \mathrm{H}$ NMR spectrum of 99, which showed typical signals at $\delta 6.87$ (d) and 7.26 (d) corresponding to aromatic protons. The methoxy protons $\left(-\mathrm{OCH}_{3}\right)$ and the benzylic protons have appeared as singlets at $\delta 3.8$ and 4.43 respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum exhibited a typical pattern for the 1,4-substituted aromatic ring, which appeared at $\delta 159,130,129$ and 113 . Further, the free -OH group showed an absorption band (broad) at $3498 \mathrm{~cm}^{-1}$ whereas the diprotected compound had no absorption in this region.

89
Ref. 39
2 steps

66

Scheme 16: (a) NaH, PMB-Cl, DMF: THF (1:1), $0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 82 \%$; (b) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C}, 97 \%$. (c) $\mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{THF}, 3 \mathrm{~h}, 83 \%$; (d) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OMe})_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, 135^{\circ} \mathrm{C}, 4 \mathrm{~h}, 85 \%$; (e) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3}$, (DHQ) $)_{2}$-AQN, $\mathrm{OsO}_{4},{ }^{\mathrm{t}} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), 89%; (f) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 98 \%$; (g) NaN_{3}, DMF, $60{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 87 \%$; (h) Pd/C(10\%), H_{2} (1atm), MeOH, $25{ }^{\circ} \mathrm{C}, 99 \%$; (i) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 98 \%$; (j) NaH, THF, reflux, 97%.

Under Swern oxidation ${ }^{8}$ conditions (oxalyl chloride, $\mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N},-7{ }^{\circ} \mathrm{C}$), the primary alcohol $\mathbf{1 0 0}$ was quantitatively oxidized to aldehyde $\mathbf{1 0 1}$ without any over oxidation. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed a characteristic signal for aldehydic proton (-CHO) at δ 9.75 while the ${ }^{13} \mathrm{C}$ NMR spectrum showed a characteristic signal at $\delta 202.5$ corresponding to the aldehydic carbonyl carbon (-HC=O) (Fig. 11).

Fig. 11: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 101

Also, the IR spectrum of $\mathbf{1 0 1}$ showed a sharp absorption band at $1710 \mathrm{~cm}^{-1}$ corresponding to the carbonyl $(-\mathrm{C}=\mathrm{O})$ stretching frequency. Grignard addition of vinyl magnesium bromide (prepared from vinyl bromide and magnesium metal in the presence of a pinch of iodine) to aldehyde 101 at $0{ }^{\circ} \mathrm{C}$ in THF as the solvent resulted in the formation of allylic alcohol 98. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic signals in the olefinic region i.e. $\delta 5.18$ and 5.78 corresponding to the terminal olefin. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed two typical signals at $\delta 116.5$ and 136.5 in addition to the aromatic carbon
signals for the olefinic function. The broad absorption band at $3448 \mathrm{~cm}^{-1}$ in the IR spectrum of $\mathbf{9 8}$ further confirmed the presence of alcohol group (-OH).

Fig. 12: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 97

Allylic alcohol 98 was then subjected to Claisen-Johnson rearrangement ${ }^{28}$ with trimethyl orthoacetate in the presence of catalytic amount of propionic acid at $135{ }^{\circ} \mathrm{C}$ to get γ, δ olefinic ester 97. This reaction was found to be highly stereospecific and produced only E-isomer. The ${ }^{1} \mathrm{H}$ NMR spectrum of 97 showed a typical multiplet at $\delta 5.21$ corresponding to the internal olefin while the methyl ester $\left(-\mathrm{CO}_{2} \mathbf{M e}\right)$ exhibited a singlet $(3 \mathrm{H})$ at δ 3.69. The carbonyl group $(\mathbf{C}=\mathrm{O})$ of ester appeared at $\delta 170$ in its ${ }^{13} \mathrm{C}$ NMR
spectrum (Fig. 12). Further, its IR spectrum displayed a sharp absorption band at 1737 cm^{-1} corresponding to the ester carbonyl group in 97.

With the required carbon backbone for epiquinamide in hand, we focused our attention on introducing the hetero atoms across the olefinic bond. The olefin 97 was then subjected to the asymmetric dihydroxylation (ADH) using cat. OsO_{4} and $(\mathrm{DHQ})_{2}-\mathrm{PHAL}$ as ligand and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ as the reoxidant. Under basic condition $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ of ADH , the resulting diol underwent lactonization with the ester moiety regioselectively to form a stable five-membered lactone 102; $[\alpha]_{D}{ }^{25}+8.12\left(c 0.1, \mathrm{CHCl}_{3}\right)$. The formation of lactone 102 enabled us to differentiate the two hydroxyl groups thereby facilitating stepwise introduction of hetero atoms into the molecule. The formation of lactone was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum, which exhibited two new signals at $\delta 4.46$ and 3.65 corresponding to the methine protons (-CH-O). The carbonyl carbon showed a downfield chemical shift i.e. from $\delta 170.1$ to 176.2 in its ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 2}$ due to the formation of five-membered lactone ring strain (Fig. 13). Its IR spectrum showed strong absorption bands at 3448 and $1769 \mathrm{~cm}^{-1}$ due to the presence of -OH and lactone carbonyl $(-\mathrm{C}=\mathrm{O})$ groups respectively. Its optical purity was determined from the chiral HPLC analysis, which accounts for 90% ee (Fig. 14).

Fig. 14: Chiral HPLC of hydroxyl lactone 102

The free alcohol group was then converted into its methane sulfonate ester 103 on treatment with methane sulfonyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. Without further purification, mesylate 103 was subjected to $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} in DMF to afford the azido lactone 96 in excellent yield. There was no appreciable change in the ${ }^{1} \mathrm{H}$ NMR spectra of azidolactone 96 and hydroxylactone 102. However, its ${ }^{13} \mathrm{C}$ NMR spectrum showed a slight upfield shift for $\mathbf{C}-\mathrm{N}_{3}$ carbon i.e. from $\delta 73.1$ to 64.7 . Further, a characteristic sharp absorption at $2108 \mathrm{~cm}^{-1}$ in its IR spectrum confirmed the presence of azide $\left(-\mathrm{N}_{3}\right)$ group (Fig. 15).

Fig.15: IR spectrum of azidolactone 96

The reduction of azide group as well as the PMB deprotection were achieved using Pd catalyst $\left(5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right)$ to obtain the lactam 104 as the single product in quantitative yield: the azide 96 underwent reduction to give the corresponding amine, which further underwent intramolecular opening with the lactone forming a stable six-membered amide; thus releasing the free alcohol. It was also observed that the use of lesser amount
of $\mathrm{Pd} / \mathrm{C}(5 \mathrm{wt} \%)$ resulted in the reduction of azide group only while the PMB group remained unaffected.

104
\sim
N
∞
0
\sim
\sim

Fig. 16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 104

The ${ }^{1} \mathrm{H}$ NMR spectrum of lactam 104 had no signals in the aromatic region, which confirmed the deprotection of the PMB ether. A broad peak at $\delta 6.69$ (s) is due to the amide proton (-NHCO-) and peaks at $\delta 3.6$ and 3.2 correspond to methine protons ($\mathrm{CH}-\mathrm{O}$ and $\mathrm{CH}-\mathrm{N}$) respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical signal at $\delta 168.3$ corresponding to amide carbonyl (-CO-NH) group (Fig. 16). The presence of amide
group was further evidenced by the two characteristic absorption band at 1346 and 1664 cm^{-1} in its IR spectrum. The diol groups in lactam 104 were mesylated completely with two equivalent of $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in THF to give dimesylate $95 ;[\alpha]_{\mathrm{D}}{ }^{25}$ $+4.41\left(c 0.6, \mathrm{CHCl}_{3}\right)$. Surprisingly, this reaction failed when $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used probably due to the insolubility of the diol 104. The appearance of two singlets each integrating to three protons at $\delta 3.03$ and 3.10 in the ${ }^{1} \mathrm{H}$ NMR of 94 confirmed the formation of dimesylate.

Fig. 17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8 9}$

Finally, the bicyclic ring was constructed by the N-alkylation of the amide using sodium hydride in THF to obtain quinolizidine $89 ;[\alpha]_{\mathrm{D}}+2.25\left(c 0.5, \mathrm{CHCl}_{3}\right)$. The other possible three-membered ring was not formed probably due to the ring strain. The formation of bicyclic ring was confirmed by the disappearance of the amide proton (NHCO) in the ${ }^{1} \mathrm{H}$ NMR of 89. Further, a peak at $\delta 3.09(\mathrm{~s}, 3 \mathrm{H})$ in its proton spectrum indicated that one of the methane sulfonate esters $\left(\mathrm{CH}_{3} \mathrm{SO}_{2}-\right)$ remained unaffected during the intramalocular N alkylation. Its ${ }^{13} \mathrm{C}$ NMR showed signals at $\delta 77.63$ and 61.5 due to the methine carbons (Fig. 17). Further, the synthesis of (-)-epiquinamide (66a) from intermediate $\mathbf{8 9}$ has been reported in the literature. ${ }^{39}$

1.2.6 Conclusion

In conclusion, a concise enantioselective formal synthesis of (-)-epiquinamide (66a) has been achieved with 90% ee in ten steps from commercially available 1,5-pentane diol using asymmetric dihydroxyaltion of homoallylic ester $\mathbf{9 7}$ as the chiral inducing step. Intramolecular reductive cyclization and N -alkylation was employed to construct the quinolizidine ring while Claisen-Johnson rearrangement was used to generate the required carbon backbone. The synthetic strategy described herein has significant potential for further extension to quinazolizidine-based bioactive molecules and has the flexibility to synthesize all the four stereoisomers of epiquinamide by changing either the ligand or olefin geometry in ADH step.

1.2.7 Experimental section

5-(4-Methoxybenzyloxy)pentan-1-ol (100)

To a stirred solution of 1,5-pentane diol $99(10.4 \mathrm{~g}, 100 \mathrm{mmol})$ in THF:DMF (1:1, 240 $\mathrm{mL})$ was added 60% sodium hydride $(4 \mathrm{~g}, 100 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min of stirring, p -
methoxy benzyl chloride ($15.6 \mathrm{~g}, 13.5 \mathrm{~mL}, 100 \mathrm{mmol}$) was added drop-wise via syringe. The reaction mixture was stirred for additional 1 h at the same temperature. After the completion of the reaction as monitored by TLC, it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the solvent was then evaporated under reduced pressure. The residue was extracted with ethyl acetate (3 X 200 mL), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure and purified by column chromatography using petroleum ether: ethyl acetate (4:1) to get mono protected ether 100 as a colorless oil. Yield: $82 \%(18.368 \mathrm{~g}) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H})$, $3.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.67(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 159.1,130.5,129.2,113.7,72.5,70.0,62.5,55.2,32.4,29.4,22.4$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): 3498,2935,2860,1733,1612,1533,1461,1365,1301,1247,1172,1097,1035$, 819; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 69.61; H, 8.99. Found: C, 69.52; H, 9.01\%.

5-(4-Methoxybenzyloxy)pentan-1-al (101)

To a stirred solution of oxalyl chloride (12.1 g, $8.22 \mathrm{~mL}, 98 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dimethyl sulfoxide ($11.232 \mathrm{~g}, 10.2 \mathrm{~mL}, 144 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ drop-wise. The reaction was highly exothermic and care was taken to maintain the temperature at $-78^{\circ} \mathrm{C}$. After stirring for 10 min , a solution of alcohol $\mathbf{1 0 0}(10.72 \mathrm{~g}, 48$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was added slowly so that the temperature is maintained less than $-70{ }^{\circ} \mathrm{C}$. It was stirred for 1 h at the same temperature and triethylamine (19.372 g, $26.7 \mathrm{~mL}, 192 \mathrm{mmol}$) was added drop-wise. The reaction mixture was then slowly brought to room temperature and stirred for another 1 h . After the completion of the reaction, it was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, washed with water,
brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to afford the crude aldehyde 101, which was purified by column chromatography using petroleum ether: ethyl acetate (9:1) to obtain pure aldehyde $\mathbf{1 0 1}$ as a colorless oil. Yield: $97 \%(10.3 \mathrm{~g}) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.45$ (dt, $J=7.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.5$, $159.1,130.5,129.2,113.7,69.4,55.2,43.5,29.1,18.9$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2933,2858$, $2360,1733,1710,1604,1514,1456,1247,1163,1101,1033,821$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 70.24; H, 8.16. Found: C, 69.23; H, 9.17\%.

7-(4-Methoxybenzyloxy)hept-1-en-3-ol (98)

A two-necked round bottomed flask was charged with Mg metal ($1.2 \mathrm{~g}, 50 \mathrm{mmol}$), a pinch of iodine and THF (200 mL). To this stirred mixture, vinyl bromide $(6.42 \mathrm{~g}, 60$ mmol) in THF was added drop-wise at room temperature. During the addition, it was gently heated on water bath $\left(45^{\circ} \mathrm{C}\right)$ to initiate the Grignard reagent formation. The initiation of the reaction was observed visually and the light brown color of iodine disappeared. After the Mg metal have dissolved completely, the aldehyde 101 (10.2 g, 46 $\mathrm{mmol})$ in THF (10 mL) was added slowly over a period of 10 min at $0{ }^{\circ} \mathrm{C}$ and stirred for another 3 h . After the completion of the reaction, it was cooled to $-10^{\circ} \mathrm{C}$ and a saturated solution of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the excess Grignard reagent. Solvent was then evaporated under reduced pressure and the residue was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure and the crude allylic alcohol $\mathbf{9 8}$ was purified by column chromatography using petroleum ether: ethyl acetate (4:1) to
obtain pure allylic alcohol 98 as colorless oil. Yield: $83 \%(9.545 \mathrm{~g}) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 2 \mathrm{H})$, $4.42(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, J=6.4 \mathrm{~Hz}), 1.61(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.9,136.3,130.3,129.0,116.4,113.5,74.5,72.3,69.5,55.0,33.7$, 29.2, 21.6; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3448,2939,2862,2360,2331,1733,1612,1591,1514$, 1461, 1363, 1301, 1247, 1174, 1097, 1033, 821; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 71.97 ; \mathrm{H}$, 8.86. Found: C, 71.34 ; H, 8.92%.
(E)-Methyl 9-(4-methoxybenzyloxy)non-4-enoate (97):

A oven dried 100 mL round bottomed flask was charged with allylic alcohol 98 (3.49 g , 14 mmol), propionic acid ($208 \mathrm{mg}, 20 \mathrm{~mol} \%$) and trimethyl orthoacetate ($13.44 \mathrm{~g}, 14 \mathrm{~mL}$, 112 mmol). The mixture was refluxed at $135^{\circ} \mathrm{C}$ for 5 h . After the completion of the reaction as monitored by TLC, it was cooled to room temperature and the excess trimethyl orthoacetate was removed under reduced pressure. The residue was extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to obtain the crude olefinic ester 97 , which was purified by column chromatography using petroleum ether:ethyl acetate (9:1) to obtain pure olefinic ester $\mathbf{9 7}$ as a colorless oil. Yield: $85 \%(3.64 \mathrm{~g})$; Colorless oil; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.44$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=6.8,3.15 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, CDCl_{3}): $\delta 172.0,159.1,130.7,129.2,113.9,92.0,84.1,72.5,69.8,55.2$, 51.8, 34.7, 29.1, 28.3, 25.6; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3444,2937,2856,2360,2331,1737$,

1612, 1514, 1460, 1438, 1363, 1301, 1247, 1220, 1172, 1099, 1035, 821; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}: \mathrm{C}, 70.56 ; \mathrm{H}, 8.55$. Found: C, $69.46 ; \mathrm{H}, 9.12 \%$.
(S)-5((S)-5-(4-Methoxybenzyloxy)-1-hydroxypentyl)dihydrofuran-2(3H)-one (102)

A 250 mL two-necked flask was charged with potassium ferricyanide ($8.39 \mathrm{~g}, 25.5$ $\mathrm{mmol})$, potassium carbonate $(3.519 \mathrm{~g}, 25.5 \mathrm{mmol})$, (DHQ$)_{2}$-PHAL ($72.5 \mathrm{mg}, 1 \mathrm{~mol} \%$) and $t-\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1,150 \mathrm{~mL})$. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ on an ice bath and $\mathrm{OsO}_{4}(0.5 \mathrm{~mol} \%, 10.8 \mathrm{mg}$ in toluene) was added via syringe. After 10 min . of stirring at $0{ }^{\circ} \mathrm{C}$ olefin $97(2.397 \mathrm{~g}, 8.5 \mathrm{mmol})$ was added drop-wise. The reaction mixture was brought to room temperature and stirred for 24 h . After the completion of the reaction as monitored by TLC, it was quenched with saturated sodium sulfite solution and extracted with ethyl acetate (3 x 50 mL), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to obtain the crude lactone 102, which was purified by column chromatography using petroleum ether: ethyl acetate (1:1). Yield: $89 \%(2.33 \mathrm{~g}) ; \mathrm{mp}: 78{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+8.12\left(c 0.1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathbf{H}-$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.43$ (s, 2H), $3.38(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H})$, $2.23(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.8,159.1,130.55,129.3$, 113.7, 83.1, 73.1, 72.5, 69.8, 55.2, 32.5, 29.4, 28.6, 23.9, 22.3; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3448$, 2939, 2864, 1768, 1612, 1512, 1461, 1363, 1247, 1180, 1097, 1033, 918, 819, 732; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}, 66.21 ; \mathrm{H}, 7.84$. Found: $\mathrm{C}, 65.12 ; \mathrm{H}, 7.32 \%$.
(S)-5-(4-Methoxybenzyloxy)-1-((S)-tetrahydro-5-oxofuran-2-yl)pentyl methane sulfonate (103)

To a stirred solution of hydroxyl lactone $102(830 \mathrm{mg}, 2.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(530 \mathrm{mg}, 5.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min of stirring, methane sulfonyl chloride ($355 \mathrm{mg}, 3.1 \mathrm{mmol}$) was added drop-wise at the same temperature. The reaction mixture was stirred for another 1 h at $0^{\circ} \mathrm{C}$ and brought to room temperature. After the completion of the reaction, as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×50 mL), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to get crude mesylate 103, which was purified by column chromatography using petroleum ether: ethyl acetate (1:1). Yield: $98 \%(1.172 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+12.1\left(c 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.46(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.65$ (m, 6H); ${ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.2,159.2,130.5,129.3,113.8,83.3,79.6$, $72.6,69.5,55.3,38.9,30.5,29.1,28.0,24.1,21.7$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2941,2869,1782$, 1731, 1612, 1512, 1352, 1247, 1174, 1118, 1033, 923, 821; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~S}$: C, 55.94; H, 6.78; S 8.30. Found: C, 55.24; H, 7.0\%.

(S)-5-((R)-5-(4-Methoxybenzyloxy)-1-azidopentyl)dihydrofuran-2(3H)-one (96)

To a stirred solution of methane sulfonate ester $103(900 \mathrm{mg}, 2.25 \mathrm{mmol})$ in DMF (5 mL) was added sodium azide ($455 \mathrm{mg}, 7 \mathrm{mmol}$) and the reaction mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 8 h . After the completion of the reaction as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x 50 mL), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure and the residue was purified by column chromatography using petroleum ether: ethyl acetate (7:3) to obtain pure azido lactone $\mathbf{9 5}$ as colorless oil. Yield: $87 \%(651 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{25}-15.16\left(c 0.5, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.46$ $(\mathrm{m}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H})$, $2.16(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.66(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.2,158.9,130.3$, $129.0,113.5,80.7,72.3,69.2,64.4,55.0,30.1,29.1,27.9,22.7,22.3 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$: 2939, 2862, 2108, 1778, 1612, 1514, 1461, 1359, 1247, 1178, 1099, 1031, 912, 819; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 61.25; H, 6.95; N, 12.60. Found: C, 60.42; H, 6.27; N, 12.55%.
(5S, 6R)-5-Hydroxy-6-(4-hydroxybutyl)piperidin-2-one (104)
To a stirred solution of azide $95(400 \mathrm{mg}, 1.2 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was added 5% $\mathrm{Pd} / \mathrm{C}(200 \mathrm{mg}, 50 \mathrm{wt} \%)$ carefully at room temperature and a hydrogen balloon was kept to provide hydrogen atmosphere. After the completion of the reaction as monitored by TLC, it was filtered over celite and the filtrate was concentrated under reduced pressure to provide the diol 103, which was purified by column chromatography using methanol: ethyl acetate (1:9) to give pure diol $\mathbf{1 0 3}$ as colorless solid. Yield: 99% (222 mg); mp: 85 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+3.56(c 0.5, \mathrm{MeOH}) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~m}$, $1 \mathrm{H}), 3.59(\mathrm{t}, J=5.7,2 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.79-2.0(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}$, 6 H) ${ }^{\mathbf{1 3}}{ }^{\mathbf{C}}$-NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 168.3,63.7,58.7,56.2,31.6,30.6,25.9,24.6,19.2$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $3445,2995,2992,1662,1342,1170,927$; Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}$, 57.73 ; H, 9.15 ; N, 7.48. Found: C, 56.89; H, 9.89; N, 7.55\%.

Dimesylated amide 95

To a stirred solution of diol $104(830 \mathrm{mg}, 2.6 \mathrm{mmol})$ in THF (200 mL) was added $\mathrm{Et}_{3} \mathrm{~N}$ $(530 \mathrm{mg}, 5.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min of stirring, methane sulfonyl chloride (710 mg , 6.2 mmol) was added drop-wise over a period of 10 min . The reaction mixture was
stirred for another 1 h at $0{ }^{\circ} \mathrm{C}$ and brought to room temperature. After the completion of the reaction as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to get the crude dimesylate 95, which was purified by column chromatography using petroleum ether: ethyl acetate (1:1) to get pure dimesylate $\mathbf{9 5}$ as a viscous gum. Yield: $98 \%(873 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{25}+4.41\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.02(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{q}, J=8.5,4.30 \mathrm{~Hz}), 4.25(\mathrm{t}, J=6.1 \mathrm{~Hz})$, $3.61(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 3 \mathrm{H}), 1.57$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4,75.2,69.1,58.1,55.1,37.7,36.1,32.8$, 27.6, 25.6, 22.6, 20.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3020,2941,1664,1346,1215,1174,927,757$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{~S}_{2}$: C, 38.47; H, 6.16; N, 4.08. Found: C, 37.46; H, 6.99; N, 4.01\%.

(1S, 9R)-Octahydro-4-oxo-1H-quinolizin-1-yl methanesulfonate (89)

To a cooled solution of $95(121 \mathrm{mg}, 0.29 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ in THF $(25 \mathrm{~mL})$ was added a suspension of $\mathrm{NaH}(13.92 \mathrm{mg}, 0.58 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ over a period of 10 min . After stirring for 1 h at that temperature, the mixture was warmed to $40{ }^{\circ} \mathrm{C}$ and stirred for another 1 h . It was then quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography (ethyl acetate: petroleum ether $=1 / 1$) on silica gel to give bicyclic lactam 89 as a viscous gum. Yield: $97 \%(69 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}+2.25(c 0.5$, CHCl_{3}); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.77(\mathrm{dt}, J=11.5,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.5(\mathrm{dt}, J=9.6$, $2.78 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.73(\mathrm{~m}, 5 \mathrm{H})$;
${ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.3,24.4,25.0,27.2,31.0,38.8,43.0,61.5,77.6,166.8 ;$
IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2934,2857,1610,1445,1215.5,1048$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$:
C, 48.57; H, 6.93; N, 5.66; S, 12.97. Found: C, 48.50; H, 6.99; N, 5.60\%.

1.2.7 References

1 Hutchings, B. L.; Gordon, S.; Ablondi F.; Wolf, C. F.; Williams, J. H. J. Org. Chem., 1952, 17, 19.

2 Koepfli, J. B.; Mead, J. F.; Brockman, J. A. J. Am. Chem. Soc., 1947, 69,1837.
3 (a) Ablondi, F., Gordon, S., Morton, J., II, Williams, J. H. J. Org. Chem., 1952, 17, 19. (b) Koepfli, J. B.; Mead, J. F.; Brockman, J. A. J. Am. Chem. Soc., 1949, 71, 1048.

4 (a) Uesato, S.; Kuroda, Y.; Kato, M., Fujiwara, Y., Hase, Y., Fujita, T., Chem. Pharm. Bull., 1998, 46, 1. (b) Barringer, D. F.; Berkelhammer, G.; Wayne, R. S. J. Org. Chem., 1973, 38, 1937.
(a) Baker, B. R.; Schaub, R. E.; McEvoy, F. J.; Williams, J. H. J. Org. Chem. 1952, 17, 132. (b) Baker, B. R.; Schaub, R. E.; McEvoy, F. J.; Joseph, J. P.; Williams, J. H. J. Org. Chem. 1953, 18, 153.

6 Waletzky, E.; Berkelhammer, G.; Kantor, S. U. S. Patent 3320124, 1967.
7 (a) Takeuchi, Y.; Koike, M.; Azuma, K.; Nishioka, H.; Abe, H.; Kim, H. S.; Wataya, Y.; Harayama, T. Chem. Pharm. Bull. 2001, 49, 721. (b) Michael, J, P.; Koning, C. B.; Pienaar, D.P. Synlett 2006, 383. (c) Zhu, S.; Meng, L.; Zhang, Q.; Wei, L. Bioorg. Med. Chem. Lett. 2006, 16, 1854. (d) Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.; Kim, H.; Wataya, Y.; Miura, M.; Takeshita, M.; Oshima, Y. J. Med. Chem. 1999, 42, 3163. (e) Patnam, R. Chang, F. R.; Chen, C. Y.; Kuo, R. Y.; Lee, Y. H.; Wu. Y. J. Nat. Prod. 2001, 64, 948.

8 Burgess, L. E.; Gross, E. K. M.; Jurka, J. Tetrahedron Lett. 1996, 37, 3225;
9 Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.; Wataya, S. J. Org. Chem. 1999, 64, 6833;

10 Ooi, H.; Urushibara, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2001, 3, 953 .

Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.; Wataya, S. J. Org. Chem. 1999, 64, 6833.

Katoh, M.; Matsune, R.; Nagase, H.; Honda, T. Tetrahedron 2004, 45, 6221.
Takeuchi, Y.; Oshige, m.; Azuma, K.; Abe, H.; Harayama, T. Chem. Pharm. Bull. 2005, 53, 868.

Ashoorzadeh, A.; Caprio, V. Synlett 2005, 346.
Johnson, R. A.; Sharpless K. B. In "Catalytic Asymmetric Synthesis" VCH Publishers (New York), 1993, Chap. 4, pp. 227-270.
(a) Jacobsen E. N.; Marko, I.; France, M. B.; Svendsen, J. S.; Sharpless K. B. J. Am.Chem. Soc. 1989, 111, 737. (b) Kolb, H. C.; Anderson, P. G.; Bennani, Y. L.; Crispino, G. A.; Jeong, K. S.; Kwong, H. L.; Sharpless, K. B. J. Am. Chem. Soc. 1993, 115, 12226.
a) Kolb, H. C.; Van-Nieuwenhze, M, S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483. (b) Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263.
(a) Criegee, R.; Justus Liebigs Ann. Chem. 1996, 522, 75. (b) Criegee, R. Angew. Chem. Int. Ed. Engl. 1937, 50, 153. (c) Criegee, R.; Marchand, B.; Wannowias, H. Justus Liegs. Ann. Chem. 1942, 550, 99. (d) Sharpless, K. B.; Teranishi, A. Y.; Backwall, J. E. J. Am. Chem. Soc. 1977, 99, 3120. (e) Jorgensen, K. A.; Schiott, B. Chem. Rev. 1990, 90, 1483.
Gawley, R. A.; Aube, J. In "Principles of Asymmetric Synthesis" Elsevier Science (Oxford), 1996, Vol. 14, (Chap. 8), pp 314-350.
Hoffman, K. A. Chem. Ber. 1912, 45, 3329.
(a) Milas, N. A.; Sussman, S. J. Am. Chem. Soc. 1936, 58, 1302. (b) Milas, N. A.; Trepagnier, J. H.; Nolan, J. T.; Iliopulos, M. I. J. Am. Chem. Soc. 1959, 81, 4730. Sharpless, K. B.; Akashi, K. J. Am. Chem. Soc. 1976, 98, 1986.
(a) VanRheenen, V.; Kelly, R. C.; Cha. D. Y. Tetrahedron Lett. 1976, 17, 1973. (b) Schneider, W. P.; Mclntosh, A. V. US 2769284, Nov. 6, 1956.

Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968.

Minato, M.; Yamamota, K.; Tsuji, J. J. Org. Chem. 1990, 55, 766.
Sharpless K. B.; Amerg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong,
K. S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu. D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768.

Amerg, W.; Bennani, Y. L.; Chadha, R. K.; Crispino, G. A.; Davis, W. D.;
Hartung, J.; Jeong, K. S.; Ogino, Y.; Shibata, T.; Sharpless K. B. J. Org. Chem. 1993, 58, 844.
(a) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741. (b) Mori, K.;
Nukada, T.; Ebata, T. Tetrahedron 1981, 37, 1343.
Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
(a) Schar, P.; Renaud, P. Org. Lett. 2006, 8, 1569. (b) Maio, W. A.; Sinishtaj, S.; Posner, G. H. Org. Lett. 2007, 9, 2673. (c) Sun, H.; Abboud, K, A.; Horenstein, N. A. Tetrahedron 2005, 61, 10462.
(a) Zhdankin, V. V.; Stang, P, J. Chem. Rev. 2002, 102, 2523. (b) Stang, P, J.; Zhdankin, V, V.; Chem. Rev. 1996, 96, 1123 - 1178.

Daly, J. W.; Spande, T. S.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556.
Fitch, R. W.; Garraffo, H. M.; Spande, T. F.; Yeh, H. J. C.; Daly, J. W. J. Nat. Prod. 2003, 66, 1345.

Daly, J. W. Cell. Mol. Neurobiol. 2005, 25, 513.
(a) Daly, J. W.; Spande, T. F.; Garrafo, H. M. J. Nat. Prod. 2005, 68, 1556. (b) Spande, T. F.; Garrafo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. 1992, 114, 3475.

Fitch, R. W.; Xiao, Y. X.; Kellar, K. J.; Daly, J. W. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4909.

Wijdeven, M. A.; Botman, P. N. M.; Wijtmans, R.; Schoemaker, H. E.; Rutjes, F. P. J. T.; Blaauw, R. H. Org. Lett. 2005, 7, 4005.

Suyama, T. L.; Gerwick, W. H. Org. Lett. 2006, 8, 4541.
Huang, P.-Q.; Guo, Z.-Q.; Ruan, Y.-P. Org. Lett. 2006, 8, 1435
Teng, S. T. A.; Barker, D. Tetrahedron Lett. 2006, 47, 5017.

CFAPIER2

\mathcal{A} short and enantioselective synthesis of (+)-L-733,060 and threo-sphingosine via asymmetric epoxidations

Section I

A short enantioselective synthesis of (+)-L-733,060 via Shi' epoxidation of homoallylic carboxylate

2.1.1. Introduction

Substance P (SP), a peptide neurotransmitter, is a member of the tochynin family of peptides, which include neurokinins A and B (NKA, NKB). These peptides bind to a series of three neurokinin receptors, $\mathrm{NK}_{1}, \mathrm{NK}_{2}$, and NK_{3}, which have selective affinity for SP, NKA, and NKB respectively. ${ }^{1}$ For example SP has been shown to elicit a IL-I production in macrophages, sensitize neutrophils and enhance dopamine release in the substantia nigra region in cat brain. The neurokinin substance P has also been associated with a variety of biological effects including smooth muscle contraction, neurogenic inflammation and pain transmission. Recently, (+)-L-733,060 (1) ${ }^{2}$ and (+)-CP-99,994 (2), ${ }^{3}$ possessing 2-alkyl-3-hydroxypiperidine and 2-alkyl-3-aminopiperidine structural units respectively, have proven to be selective and potent non-peptide neurokinin substance P receptor antagonists (Fig. 1). Also, they have been implicated in a variety of disorders including migraine, rheumatoid arthritis and pain. ${ }^{4}$ Recent studies ${ }^{5}$ have further shown that $(+)-\mathrm{L}-733,060(\mathbf{1})$ can act both as an antitumor agent and as a promising new target for the treatment of retinoblastoma. In view of these potential pharmacological applications, several reports on the synthesis of $\mathbf{1}$ and 2, both in racemic and optically active forms, have been published. ${ }^{6}$

1

2

3

Fig. 1

2.1.2. Review of Literature

Various asymmetric syntheses of non-peptidic neurokinin NK1 receptor antagonist namely (+)-L-733,060 (1) and (2S,3S)-3-hydroxy-2-phenyl piperidine (3) have been documented in the literature. ${ }^{2}$ Some of the interesting and important synthetic routes to (+)-L-733,060 (1) are described below.

Harrison's approach (1994) ${ }^{2}$

Harrison and co workers have accomplished the first synthesis of (\pm)-L-733,060 (1) and explored its NK_{1} receptor antagonist property. This approach employs the reduction of keto lactam 4 to give the corresponding hydroxy piperidine in 72% yield, which was protected with $(\mathrm{Boc})_{2} \mathrm{O}$ to obtain the intermediate 3. Etherification of alcohol group in 3 with 3,5-bis(trifluromethyl)benzyl bromide followed by removal of the Boc protection afforded (\pm)-L-733,060 (1) in good yield (Scheme 1).

Scheme 1: (i) LiAlH_{4}, THF, reflux, 72%; (ii) di-t-butyl dicarbonate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 98 \%$; (iii) 3,5-bis(trifluoromethyl)benzyl bromide, $\mathrm{NaH}, \mathrm{DMF}, 47 \%$; (iv) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 81 \%$.

Rao's approach (2003) ${ }^{7}$

This approach describes the synthesis of (+)-L-733,060 (1) starting from N-Boc protected amino alcohol 5. Oxidation of the primary alcohol 5 under Swern oxidation condition $\left\{(\mathrm{COCl})_{2}, \mathrm{DMSO}_{2} \mathrm{Et}_{3} \mathrm{~N}\right\}$ followed by addition of vinyl magnesium bromide to it produced allylic alcohol 6. Protection of allylic alcohol as silyl ether followed by N allylation of the amine resulted in diene 7, which upon ring closing metathesis using Grubbs' catalyst gave the unsaturated piperidine moiety 8. The catalytic hydrogenation of olefin 8 furnished the intermediate 3 in 65% yield. Etherification of alcohol group in 3 with 3,5-bis(trifluromethyl)benzyl bromide followed by deprotection of the Boc-group provided (+)-L-733,060 (1) (Scheme 2).

Scheme 2: (i) DMSO, $\left(\mathrm{COCl}_{2}\right.$, , $i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{THF}, 2 \mathrm{~h}, 90 \%$; (ii) TBDMS-Cl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 24 \mathrm{~h}, 90 \%$; (iii) Allyl bromide, NaH , DMF, $0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}, 24 \mathrm{~h}$, 90%; (iv) TBAF-AcOH, THF, $0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 85 \%$; (v) Grubbs' catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 6$ h, 82\%; (vi) Pd/C, H_{2}, EtOH, 4 h, 65%; (vii) 3,5-bis(trifluoromethyl)benzyl bromide, NaH , DMF, 80%; (viii) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 79 \%$.

Chang's approach (2005) ${ }^{8}$

Chang et al. have employed a new method of addition of Grignard reagent onto glutarimide 9 for the synthesis of (\pm)-L-733,060 (1). Accordingly, addition of phenyl magnesium bromide to glutarimide 9 followed by trapping the resulted - OH group with $\mathrm{Ac}_{2} \mathrm{O}$ proceeded regioselectively to provide the enol ether 10 in 82% yield. Removal of the sulfonate ester group was achieved using $\mathrm{Na} / \mathrm{Hg}$ to obtain enol ether 11. Hydrolysis of enol ether 11 using BBr_{3} afforded ketolactam 12, which was reduced with LiAlH_{4} to give piperidine 13. Etherification of alcohol group in 13 with 3,5-bis(trifluromethyl)benzyl bromide followed by deprotection of benzyl group produced (\pm)-L-733,060 (1) (Scheme 3).

Scheme 3: (i) $\mathrm{NaH}, \mathrm{PhMgBr}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 82 \%$; (ii) $\mathrm{Na}-\mathrm{Hg}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 90 \%$; (iii) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 90 \%$; (iv) LiAlH_{4}, THF, reflux, 87%; (v) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$, 90%; (vi) 3,5 -bis(trifluoromethyl)benzyl bromide, NaH , DMF, 47%; (vii) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 81\%.

Ham's approach (2005) ${ }^{9}$

This approach describes the synthesis of (+)-L-733,060 starting from chiral oxazoline 14 prepared from the corresponding amino alcohol. Ozonolysis of double bond in $\mathbf{1 4}$
followed by Horner-Wittig reaction of the resulting aldehyde furnished α, β-unsaturated ester $\mathbf{1 5}$ in 87% yield. 1,4-Reduction of 15 with copper bromide, Red-Al and 2-butanol gave the saturated methyl ester 16 in 83% yield. Reduction of oxazoline was achieved using $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{H}_{2}$ during which process intramolecular lactamization took place to give lactam 17. Reduction of lactam 17 with LiAlH_{4} and protection of amine gave the required intermediate 3. Etherification of alcohol 3 with 3,5-bis(trifluromethyl)benzyl bromide followed by deprotection afforded (+)-L-733060 (1) (Scheme 4).

Scheme 4: (i) $\mathrm{O}_{3}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$, then $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$; (ii) $(\mathrm{MeO})_{2} \mathrm{POCH}_{2} \mathrm{COOMe}$, $\mathrm{LiCl} .{ }^{i}{ }^{\mathrm{Pr}}{ }_{2} \mathrm{NEt}$, $\mathrm{CH}_{3} \mathrm{CN}, 87 \%$; (iii) CuBr, Red-Al, 2-butanol, THF, 83%; (iv) $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}$, (70 psi), MeOH: AcOH (10:1), 76%; (v) (a) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{MeOH}, \mathrm{THF}$; (b) (Boc) $)_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 62 \%$; (vi) (a) 3,5-bis(trifluoromethyl)benzyl bromide, $\mathrm{NaH}, \mathrm{DMF}, 76 \%$; (b) trifluoroacetic acid, 93%.

Oshitari's approach (2006) ${ }^{10}$

Oshitari et al. have achieved the synthesis of (+)-L-733,060 starting from optically active amino alcohol 18. Protection of amine functionality in 18 with (Boc$)_{2} \mathrm{O}$ followed by esterification of the free alcohol group with benzoyl chloride gave the protected amino alcohol 19. One carbon extension and ring closure to obtain enamine 20 was achieved in one-pot via $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ catalyzed hydroformylation of olefin 19. Hydrogenation of
$\mathrm{C}=\mathrm{C}$ bond in $\mathbf{2 0}$ followed by hydrolysis gave the intermediate $\mathbf{3}$ which was converted to (+)-L-733,060 (1) via standard reaction sequences (Scheme 5).

Scheme 5: (i) BzCl , pyridine, $25^{\circ} \mathrm{C}, 10 \mathrm{~h}$; (ii) $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(3 \mathrm{~mol} \%$), biphephos (6 $\mathrm{mol} \%$), $\mathrm{CO} / \mathrm{H}_{2}$ (5 atm), THF, $65^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (iii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 20 \mathrm{~h}$; (iv) $1 \mathrm{M} \mathrm{NaOH}: \mathrm{MeOH}: 1,4$-dioxane, (2:3:6), $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (v) $3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{NaH}$, THF:DMF (1:3), $0^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (vi) TFA, $25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, \mathrm{NaHCO}_{3}$.

Kumar's approch (2007) ${ }^{11}$

This approach employs opening of chiral azido epoxide 24 with allyltrimethyl silane in the presence of TiCl_{4} as Lewis acid. Accordingly, the synthesis started with Sharpless asymmetric epoxidation of cinnamyl alcohol (21) to get epoxy alcohol 22 in 99% ee. Regioselective opening of epoxide with NaN_{3} resulted in trans azido diol 23, which was converted to the cis azido epoxide 24 via standard reaction sequences. Among the several reagents screened, allyltrimethyl silane opened azido epoxide 24 regioselctively to give the azido alcohol in moderate yield, which was protected as silyl ether 25. One carbon degradation was achieved via one-pot dihydroxylation followed by diol cleavage to get the crucial azido aldehyde 26. Azido aldehyde 26 underwent aza-Wittig reaction in the presence of PPh_{3} to provide six-membered imine, which upon reduction with NaBH_{4}
gave piperidine moiety 3. Etherification of alcohol with 3,5-bis(trifluromethyl)benzyl bromide followed by deprotection afforded (+)-L-733,060 (1) (Scheme 6).

Scheme 6: (i) (S,S)-(-)-DET, Ti(OPr-i) $)_{4}$, TBHP, MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 3 \mathrm{~h}, 89 \%$; (ii) $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(8: 1), 65^{\circ} \mathrm{C}, 5 \mathrm{~h}, 98 \%$; (iii) PivCl, Pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1), 0^{\circ} \mathrm{C}-25$ ${ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (iv) MsCl, Et N , DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (v) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 10 \mathrm{~h}$, 80% (3 steps); (vi) allyltrimethylsilane, $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 65 \%$. (vii) TBSOTf, 2,6lutidine, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (viii) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, 1,4$-dioxane: $\mathrm{H}_{2} \mathrm{O}(3: 1), 0^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (ix) PPh_{3}, THF, $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (x) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min} ., 65 \%$; (xi) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}, 95 \%$; (xii) TBAF, THF, $0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 90 \%$; (xiii) 3,5 -bis(trifluoromethyl)benzyl bromide, NaH , DMF, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 78 \%$; (xiv) TFA, MeOH, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 70 \%$.

Wang's approach (2008) ${ }^{12}$

Wang et al. employed the reductive coupling of 4-pivaloxybutanal (27) with (R)-phenyl N-tert-butanesulfinyl imine (28) in the presence of SmI_{2} to afford amino alcohol 29 with required stereochemistry. Removal of the chiral auxiliary followed by selective N acylation with 4-methoxybenzoic anhydride afforded amide 30. Mesylation of free alcohol group in 30 furnished oxazoline 31 in 85% yield, with complete inversion of
configuration at C-2. Reductive ring-opening of oxazoline $31\left(\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{HOAc}, 40^{\circ} \mathrm{C}\right)$ gave syn-1,2-amino alcohol 32 in excellent yield. Selective O-alkylation with 3, 5bis(trifluromethyl)benzyl bromide provided 33 in 82% yield. The intermediate 33 was converted to (+)-L-733,060 (1) by standard reaction sequences (Scheme 7).

Scheme 7: i) SmI_{2}, ${ }^{\mathrm{B}} \mathrm{BuOH},-78{ }^{\circ} \mathrm{C}, 78 \%$; (ii) $\mathrm{HCl}, \mathrm{MeOH}$; (iii) (PMPCO) ${ }_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 88%; (iv) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%$; (v) $\mathrm{NaCNBH}_{3}, \mathrm{AcOH}, 90 \%$; (vi) $\mathrm{NaH}, 3,5-$ bis(trifluromethyl)benzyl bromide, TBAI, DMF, 82%; (vii) $\mathrm{NaOMe}, \mathrm{MeOH}$; (viii) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 78 \%$; (ix) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.

2.1.3. Present Work

2.1.3.1. Objective

As can be seen from the above discussion, the literature methods for the synthesis of (+)-L-733,060 (1), either employ chiral starting material, expensive reagents, involve longer
reaction sequences or lack of selectivity. Hence, the synthesis of (+)-L-733,060 using catalytic enantioselective reactions is desirable. This section describes a short synthesis of $(+)-L-733,060(1)$, using Shi' epoxidation ${ }^{13}$ of homoallylic carboxylate 36 as the key step to induce chirality in the molecule. The retrosythetic analysis for the synthesis of (+)-L$733,060(\mathbf{1})$ is shown in Scheme 8.

The retrosynthetic analysis of $\mathbf{1}$ reveals that syn amino alcohol $\mathbf{3}$ could be considered as a key intermediate. We thus planned to employ intramolecular reductive cyclization of azidolactone 34 under Staudinger reduction conditions for the construction of the 6membered heterocyclic ring in 3 . The azidolactone 34 can be readily made from the corresponding hydroxy lactone 35 by $\mathrm{S}_{\mathrm{N}} 2$ displacement with azide ion. We envisaged further that introduction of chirality in $\mathbf{3 5}$ with trans stereochemistry could be realized via Shi epoxidation of potassium 5-phenylpent-4-enoate (36), which in turn could be prepared from allylic alcohol 37 through [3,3]-sigmatropic rearrangement.

35

36

37

Scheme 8: Retrosynthesis of (+)-L-733, 060 (1)

Since this synthetic strategy involves asymmetric epoxidation of unfunctionalized olefin using chiral ketone (Shi' epoxidation) as the key reaction, a brief account on this epoxidation method is described below.

2.1.3.2. Asymmetric epoxidation of olefins

Chiral epoxides are versatile building blocks for the synthesis of enantiomerically pure complex molecules. Also, regioselective opening of epoxides with nucleophiles such as alcohol, azide, amine, water, etc could result in valuable intermediates in organic synthesis. Asymmetric epoxidation of olefins, which are abundant in nature, presents a powerful strategy for the synthesis of enantiomerically enriched epoxides.

Sharpless asymmetric epoxidation

Asymmetric epoxidation remained a daunting task till Sharpless and Katsuki reported the use of titanium tetraisopropoxide for epoxidation in $1980 .{ }^{14}$ The enantiomeric excesses greater than 90% were reported in the titanium tartarate-based epoxidation of a variety of allylic alcohols 38. Subsequent development of this system led to a catalytic system for the asymmetric epoxidation of allylic alchohols. The discovery and development of the reaction, now known as 'Sharpless epoxidation', was a significant factor in awarding 2001 Nobel Prize in Chemistry to Professor Sharpless for his work on asymmetric oxidations (Scheme 9).
38
$\mathrm{R}=\mathrm{alkyl}$, aryl, H , etc

yield up to 95%
ee up to 99%

Scheme 9: i) (S,S)-(-)-DET, $\mathrm{Ti}(\mathrm{OPr}-i)_{4}, \mathrm{TBHP}, \mathrm{MS} 4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

Jacobsen asymmetric epoxidation

In 1990, Eric Jacobsen and Tsutomu Katsuki announced their independently developed systems for the catalytic AE of unfunctionalized alkenes 40 to obtain the corresponding chiral epoxides 41 using manganese salen complex $42 .{ }^{15}$ The use of only nonbonding
interactions between the substrate and catalyst broadens the potential scope of this catalyst. The greater enantioselectivity (ee's $>90 \%$) obtained in this method represented a major breakthrough in catalytic AE. Unfortunately, these Mn (salen) complexes were successful only for the epoxidation of cis-olefins and failed with trans-olefins (Scheme 10).

$\mathrm{R}_{1}=\mathrm{H}$, alkyl, etc

42

Scheme 10: NaOCl , cat. $\mathbf{4 2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Shi' asymmetric epoxidation

Asymmetric epoxidation of unfunctionalized trans-olefin was a challenge until Shi reported the use of fructose-derived ketone $\mathbf{4 5}$ as the chiral inducing source. He explained that dioxiranes generated in situ from chiral ketone 45 could be used for a highly enantioselective asymmetric epoxidation of trans-olefins 43 to obtain the corresponding epoxides 44 with excellent enantioselectivity (Scheme 11). ${ }^{16}$

Scheme 11: i) oxone, 45 , aq. $\mathrm{KOH}, \mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}$.

Mechanism of Shi’ epoxidation

The mechanism proposed by Shi for the enantioselective epoxidation of unfunctionalized olefins using chiral ketone is shown in Scheme 12. The chiral ketone 45 derived from fructose is attacked by the KHSO_{5} under basic condition to give peroxy compound 46.

Fig. 2: Mechanism of Shi' epoxidation

The peroxy compound eliminates the sulphate ion under basic condition to produce the dioxirane 48. The olefin then adds to the dioxirane 48 in such a way that the least steric hindrance is encountered by olefin. Finally, dioxirane decomposes to liberate the catalyst namely chiral ketone with the production of chiral epoxides (Fig. 2).

The pH is a very important factor for the epoxidation of olefins with dioxiranes generated in situ. Generally, higher pH results in more rapid auto decomposition of oxone, which
leads to decrease of epoxidation efficiency. For this reason, epoxidations are usually carried out at the optimal pH within a narrow window of 7.8-8. The Baeyer-Villiger oxidation is one of the major decomposition pathways for the catalyst, although no direct evidence has been obtained thus far. Further analysis of the reaction suggests that the competing Baeyer-Villiger reaction may be reduced at a higher pH , which leads to a more efficient formation of dioxirane 48.

Enantioselectivity in Shi' epoxidation

Understanding the reaction mode of the dioxirane-mediated epoxidation is critical for developing a reliable model to predict the stereochemical outcome of the reaction and for designing a more effective ketone catalyst. Two mechanistic extremes namely spiro (I) and planar (II) are presented in Fig. 3.

I
Spiro

II
Planar

Fig. 3: Spiro and planar transition states for the dioxirane epoxidation of olefins

Based on the experimental observation of higher reactivity of cis-olefin than the corresponding trans-olefin, a spiro transition (IV) state was proposed by Baumstark et al. ${ }^{17}$ This proposal came from the analysis of steric effects in both transition states. The lower reactivity of trans- hexenes can be attributed to the fact that there is a unfavorable steric interaction between the alkyl group of the trans-olefin and methyl group of
dioxirane in the spiro-trans transition state (III), while such interaction does not exist in the spiro-cis transition state (IV) (Fig. 4).

III
Spiro- trans
More favored

Fig. 4: Spiro and planar transition states for the epoxidation of trans and cis-olefins with dimethyldioxirane.

Stereochemical analysis provides another valuable way to address this issue. Figure 5 lists a few of the possible reaction transition states for the epoxidation of the olefin using dioxirane of ketone 45 . Due to the steric repulsion, transition states \mathbf{B} and \mathbf{D} are disfavored (for trans-disubstituted olefins). The favored transition states spiro \mathbf{A} and planar D result in the opposite stereochemistry for the epoxide product. Therefore, analyzing the stereochemistry of resulting epoxides will allow us to determine which of these two transition states is favored. For trans-disubstituted and trisubstitued olefins, all the examples with known epoxide configurations show that epoxide 49 is formed predominantly, which supports a spiro transition state. This analysis provides us with a model to predict the stereochemistry of the formed epoxide (Fig. 5). ${ }^{18}$

Fig. 5: Possible transition states in Shi' epoxidation of olefin

2.1.4. Results and discussion

Our synthesis of L-733,060 (1) commenced with the preparation of allylic alcohol 37 by the Grignard addition of vinyl magnesium bromide onto benzaldehyde. The reaction proceeded smoothly at $0{ }^{\circ} \mathrm{C}$ to give allylic alcohol 37 in 86% yield (Scheme 12). The formation of allylic alcohol 37 was confirmed from its ${ }^{1} \mathrm{H}$ NMR spectrum, which showed characteristic signals at $\delta 6.07(\mathrm{~m}, 1 \mathrm{H})$ and $5.26(\mathrm{~m}, 2 \mathrm{H})$ corresponding to the terminal olefin. The benzylic methine proton signal (-CH-OH) has appeared as doublet at $\delta 5.36$. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a signal at $\delta 75.0$ corresponding to the methine carbon $(-$ $\mathbf{C H O H})$ and at $\delta 114.8$ and 127.5 due to the olefinic carbons. Allylic alcohol 37 was then subjected to Claisen-Johnson [3,3]-sigmatropic rearrangement ${ }^{19}$ on reaction with
trimethyl orthoacetate in the presence of catalytic amount of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ at $135{ }^{\circ} \mathrm{C}$ to obtain exclusively E-homoallylic ester 51 in 82% yield.

Scheme 12: a) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OMe})_{3}$, propanoic acid, $135^{\circ} \mathrm{C}, 6 \mathrm{~h}, 82 \%$; b) aq. KOH , reflux; c) pH $10-11$, Oxone, chiral ketone $45, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{CN},-5^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $15^{\circ} \mathrm{C}, 5 \mathrm{~h}, 62 \%$; d) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 96 \%$; e) $\mathrm{NaN}_{3}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 94 \%$; f) $\mathrm{PPh}_{3}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then $\mathrm{H}_{2} \mathrm{O}$ reflux $3 \mathrm{~h}, 91 \%$; g) i) $\mathrm{Me}_{2} \mathrm{~S} \cdot \mathrm{BH}_{3}$, THF, reflux, 6 h ; ii) $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, cat. DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 73 \%$ over two steps; h) 3,5-bis(trifluoromethyl)benzyl bromide, NaH, DMF: THF (3:1), $0^{\circ} \mathrm{C}, 6 \mathrm{~h}$; i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 18 \mathrm{~h}, 81 \%$ over two steps.

The ${ }^{1} \mathrm{H}$ NMR spectrum of homoallylic ester 51 displayed a singlet at $\delta 3.68$ corresponding to the methoxy protons $\left(-\mathrm{OCH}_{3}\right)$. The signals for olefinic protons ($\mathrm{PhCH}=\mathrm{C}$ - and $\mathrm{C}=\mathrm{CH}-$) have appeared at $\delta 6.4$ and 6.2 respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a characteristic signal at $\delta 173.1$ corresponding to the ester carbonyl carbon (C=O) (Fig. 6).

51

Chloroform-d

Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 51

Alkaline hydrolysis of ester 51 using aq. KOH furnished potassium alkenoate 36, which was subjected to Shi' epoxidation using D-fructose-derived ketone 45 as the chiral catalyst ($30 \mathrm{~mol} \%$) and Oxone as the stoichiometric oxidant to afford hydroxylactone 35 in 62% yield and 92% ee [\%ee was determined from the ${ }^{1} \mathrm{H}$ NMR of the corresponding Mosher's ester and $\left.[\alpha]^{25}{ }_{D}-53.3\left(c 0.22, \mathrm{CHCl}_{3}\right)\right] .{ }^{8}$

Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 35

The disappearance of signals corresponding to the methoxy proton $\left(-\mathrm{OCH}_{3}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5}$ confirmed the formation of lactone. The functionalization of $\mathrm{C}=\mathrm{C}$ was confirmed by the appearance of signals at at $\delta 4.69$ and 5.2 (d) due to the newly formed methine protons of $\mathbf{3 5}$ (-CH-O and -CH-OH) respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed signals for the methine carbons of $\mathbf{3 5}(-\mathbf{C H O H}$ and $-\mathbf{C H O})$ at $\delta 76.1$ and 83.55 respectively while the methylene carbon signals $\left(-\mathrm{CH}_{2}-\right.$ and $\left.\mathbf{C H}_{2}-\mathrm{CO}\right)$ have appeared at δ 23.93 and 28.48. Further, the presence of lactone group was confirmed by the appearance of a typical signal at $\delta 177.46$ corresponding to the lactone carbonyl carbon $(\mathbf{C}=\mathrm{O})$ group
(Fig. 7). The IR spectrum of the lactone 35 showed a strong absorption band at $1768 \mathrm{~cm}^{-1}$ indicating the presence of five-membered lactone.

Fig. 8: Mosher's ester of hydroxy lactone 35

The free alcohol group was then esterified with Mosher's acid in the presence of diethyl azodicarboxylate to get the corresponding Mosher ester A. From the ${ }^{1} \mathrm{H}$ NMR spectrum of the Mosher's ester of alcohol 35, the ee was found to be 92%. It displayed two signals at $\delta 5.89(\mathrm{~d})$ and $5.75(\mathrm{~d})$ in the ratio (16.1:1) due to the benzylic protons and singlets at δ 3.60 and 3.45 corresponding to the methoxy protons $\left(\mathrm{OCH}_{3}\right)$ (Fig. 8).

Mesylation of free alcohol group in $\mathbf{3 5}$ using MsCl in $\mathrm{Et}_{3} \mathrm{~N}$ gave the corresponding methane sulfonate ester, which was subjected to $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} (DMF, 60
$\left.{ }^{\circ} \mathrm{C}\right)$ to afford azidolactone $34\left\{[\alpha]^{25}{ }_{\mathrm{D}}+163.49\left(c 0.7, \mathrm{CHCl}_{3}\right)\right\}$ with complete inversion of configuration.

Fig. 9: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 34

The ${ }^{1} \mathrm{H}$ NMR spectrum of 34 displayed a multiplet at $\delta 4.64$ corresponding to the methine protons $\left(\mathrm{CHN}_{3}\right.$ and -CHO$)$ and signals at $\delta 2.04$ and 2.47 are due to the methylene protons (- $\mathrm{CH}_{2}-\mathrm{C}$ and $\left.-\mathrm{CH}_{2} \mathrm{CO}\right)$ respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a characteristic peak shifted to upfield at $\delta 68.39$, which corresponds to the $\mathbf{C}-\mathrm{N}_{3}$ group (Fig. 9). The chiral HPLC of azidolactone shows that the enantiomers have formed in the
ratio (96:4), which corresponds to 92% ee (Fig. 10). The IR spectrum of azidolactone 34 displayed strong absorption bands at $2108 \mathrm{~cm}^{-1}$ and $1778 \mathrm{~cm}^{-1}$ corresponding to the azide and carbonyl $\mathbf{C}=\mathrm{O}$ group of lactone respectively.

Fig. 10: HPLC chromatogram of azido lactone 34

Reduction of azide 34 under either Staudinger protocol $\left(\mathrm{PPh}_{3}, \mathrm{THF}, 25{ }^{\circ} \mathrm{C}\right.$ then $\mathrm{H}_{2} \mathrm{O}$, reflux) or catalytic hydrogenation $\left[\mathrm{H}_{2}(1 \mathrm{~atm}), 10 \% \mathrm{Pd} / \mathrm{C}\right]$ at ambient conditions produced lactam 53 in 91% yield, presumably via intramolecular O-to- N - ring expansion ${ }^{20}$ of the amine generated in situ. The formation of lactam 53 was confirmed from its ${ }^{1} \mathrm{H}$ NMR spectrum, which displayed signals at $\delta 4.48$ and 3.85 corresponding to the methine protons (-CH-NHCO and - CHOH). Its ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 73$ and 67.1 corresponding to the methine carbons $(-\mathrm{CH}-\mathrm{NHCO}$ and -CHOH$)$. The other signal at $\delta 177.4$ corresponds to amide carbonyl carbon (-CONH-) and signals at $\delta 30.99$ and 28.65 are due to methylene carbons $\left(-\mathrm{CH}_{2}-\right.$ and $\left.-\mathrm{CH}_{2} \mathrm{CO}-\right)$ respectively.

Reduction of lactam 53 was achieved using $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in THF to give the amino alcohol whose protection of the secondary amine with $(\mathrm{Boc})_{2} \mathrm{O}$ gave the syn- amino alcohol 3 in 73% yield over two steps. The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 indicated the presence of Boc methyl protons at $\delta 1.43$ as a singlet (Fig. 11). The signals at $\delta 5.30$ and 4.44 correspond to the methine protons ($\mathrm{CH}-\mathrm{N}$ and $\mathbf{C H}-\mathrm{O}$) of the substituted piperidine moiety 3 . Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed signals at $\delta 156.72$ and 80.12 indicating the presence of Boc carbonyl (-NCO-) and tertiary butyl carbon ($\mathrm{Me}_{3} \mathrm{C}-\mathrm{O}$) groups respectively.

Fig. 11: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3

Having constructed the piperidine ring with the desired syn-stereochemistry, O-alkylation of $\mathbf{3}$ with 3,5-bis(trifluoromethyl)benzyl bromide in the presence of NaH was performed to give $54\left\{[\alpha]^{25}{ }_{\mathrm{D}}+27.9\left(c \quad 0.8, \mathrm{CHCl}_{3}\right)\right.$; lit. $\left.{ }^{5 \mathrm{~h}}[\alpha]^{25}{ }_{\mathrm{D}}+30.38\left(c \quad 1.55, \mathrm{CHCl}_{3}\right)\right\}$. Finally, deprotection of the Boc group under acidic conditions afforded (+)-L-733,060 (1) \{[$\alpha]^{25}{ }_{\mathrm{D}}$ $+31.7\left(c\right.$ 0.5, $\left.\mathrm{CHCl}_{3}\right) ;\left[\mathrm{lit.}^{5 \mathrm{~h}}[\alpha]^{25}{ }_{\mathrm{D}}+34.29\left(c 1.32, \mathrm{CHCl}_{3}\right]\right\}$. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and other spectral data were in complete agreement with the reported values (Fig. 12).

Fig. 12: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$

2.1.5. Conclusion

In summary, the enantioselective synthesis of (+)-L-733, 060 (1) has been achieved in 92% ee using Shi' epoxidation of homoallylic carboxylate 36 as the chiral inducing step. The intramolecular reductive cyclization of azidolactone 34 was used in the construction of piperidine ring while Claisen-Johnson rearrangement was employed for the construction of the required carbon backbone. The synthetic strategy described herein has significant potential for further extension to piperidine-based bioactive molecules as well as other NK_{1} receptor antagonists.

2.1.6. Experimental Section

Phenylprop-2-en-1-ol (37)

A two-necked round bottomed flask was charged with Mg metal ($1.44 \mathrm{~g}, 60 \mathrm{mmol}$), a pinch of iodine and dry THF (300 mL). To this mixture, vinyl bromide ($5.35 \mathrm{~g}, 50 \mathrm{mmol}$) in dry THF was added drop-wise. The reaction mixture was gently heated on water bath $\left(45{ }^{\circ} \mathrm{C}\right)$ to initiate the Grignard reagent formation. The initiation of the reaction was observed visually and the iodine color disappeared. After the Mg metal dissolved completely, benzaldehyde ($5.3 \mathrm{~g}, 50 \mathrm{mmol}$) in THF (10 mL) was added slowly at $0{ }^{\circ} \mathrm{C}$. After the completion of the reaction, it was cooled to $-10^{\circ} \mathrm{C}$ and a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the excess Grignard reagent. Solvent was evaporated under reduced pressure and the residue was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude product, which was purified by column chromatography using petroleum ether: ethyl acetate (4:1) to get pure allylic alcohol $\mathbf{3 7}$ as colorless oil. Yield: $82 \%(5.494 \mathrm{~g}) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31$
$(\mathrm{m}, 5 \mathrm{H}), 6.01(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dt}, J=5.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (m, 1H), 2.14 (brs, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.5,140.2,128.3,127.5$, 126.3, 114.8, 75.0; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3448,2939,2862,2360,2331,1733,1612,1591$, 1514, 1461, 1363, 1301, 1247, 1174, 1097, 1033, 821; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 80.56$; H, 7.51. Found: C, 79.38; H, 8.02\%.
(E)-Methyl 5-phenypent-4-enoate (51)

An oven dried 100 mL round bottomed flask was charged with allylic alcohol $37(5 \mathrm{~g}, 37$ mmol) and propanoic acid ($259 \mathrm{mg}, 10 \mathrm{~mol} \%$) followed by trimethyl orthoacetate (22.2 $\mathrm{g}, 185 \mathrm{mmol}$). The mixture was refluxed at $135^{\circ} \mathrm{C}$ for 5 h . After the completion of the reaction as monitored by the TLC, it was cooled to room temperature and the excess trimethyl orthoacetate was removed under reduced pressure. The reaction mixture was extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was then concentrated under reduced pressure to obtain the crude olefinic ester 51, which was subjected to column chromatographic purification using petroleum ether: ethyl acetate (9:1) to obtain pure ester 51 as colorless oil. Yield: $73 \%(5.53 \mathrm{~g}) ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~m}$, $5 \mathrm{H}), 6.42(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.1,137.2,131.0,128.4,128.2,127.1,84.2,72.5,69.8,55.2,51.8$, 34.8, 29.1, 28.3, 25.6; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3444,2937,2856,2360,2331,1737,1612$, 1514, 1460, 1438, 1363, 1301, 1247, 1220, 1172, 1099, 1035, 821; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 75.76; H, 7.42. Found: C, 75.69; H, 7.51\%.
(S)-5-((R)-Hydroxy(phenyl)methyl)dihydrofuran-2(3H)-one (35)

A mixture of homoallylic ester $51(5 \mathrm{~g}, 27 \mathrm{mmol})$ and 20% aq. $\mathrm{KOH}(25 \mathrm{~mL})$ was refluxed on an oil bath for 3 h . After the completion of the reaction, water was removed under educed pressure to get colorless solid of potassium salt of homoallylic carboxylate 36 along with excess potassium hydroxide. Without further purification it was subjected to Shi' epoxidation as follows.

The potassium salt 36 was dissolved in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(1: 1,50 \mathrm{~mL})$ and the pH of the solution was adjusted to $10-11$ by adding 25% aq. sulphuric acid. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and the chiral ketone $45(2.064 \mathrm{~g}, 8 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ was added as a solution in acetonitrile. Aqueous solutions of oxone ($13.8 \mathrm{~g}, 30 \mathrm{mmol}$) and 20% aq. KOH $(1.68 \mathrm{~g}, 30 \mathrm{mmol})$ were added simultaneously over approximately 4 h such that the reaction pH was maintained at $10-11$ and the temperature at -5 to $5{ }^{\circ} \mathrm{C}$. Upon completion of the oxone charge, the resultant white slurry was warmed to $10-15^{\circ} \mathrm{C}$ and held for 2 h . The lactone 35 is formed spontaneously under the reaction conditions after the epoxidation has occurred. To isolate the lactone 35, the epoxidation reaction mixture was acidified to pH 2 with 25% sulphuric acid and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under vacuum, cooled to $20-30^{\circ} \mathrm{C}$, and crystallized in hexane to get lactone 35 as colorless solid. Yield: $62 \%(3.21 \mathrm{~g}) ; \mathbf{m p}: 102{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-53.3$ (c 0.22 , CHCl_{3}); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.7(\mathrm{~m}$, $1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.92$, 138.52, 128.71, 128.50, 125.98, 83.37, 73.23, 28.54, 20.54; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3448$, 2939, 2864, 1768, 1612, 1512, 1461, 1363, 1247, 1180, 1097, 1033, 918, 819, 732; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$: C 68.74; H 6.29; Found: C 68. 26; H, 6.62\%.
(R)-5-((S) Azido(phenyl)methyl)-dihydrofuran-2(3H)one (34)

To a solution of alcohol $35(4 \mathrm{~g}, 20.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(4.07 \mathrm{~g}$, $40 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 5 min of stirring, methane sulfonyl chloride ($2.28 \mathrm{~g}, 20 \mathrm{mmol}$) was added drop-wise over a period of 5 min . The reaction mixture was then stirred for another 1 h at $0{ }^{\circ} \mathrm{C}$ and brought to room temperature. After the completion of the reaction, as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$ washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to get crude methane sulfonate ester 52 in almost quantitative yield.

To a solution of mesylate $52(5 \mathrm{~g}, 18.5 \mathrm{mmol})$ in DMF (50 mL) was added sodium azide ($3.25 \mathrm{~g}, 50 \mathrm{mmol}$) and the reaction mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 7 h . After the completion of the reaction, as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 50 mL) washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude azido lactone 34, which was purified by column chromatography using petroleum ether: ethyl acetate (8:2) to produce 34 as pale yellow oil. Yield: $89 \%(3.47 \mathrm{~g}) ;[\alpha]^{25}{ }_{\mathrm{D}}+163.49\left(c 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.0-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=8.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J$ $=9.0,3.9 \mathrm{~Hz}), 4.62(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=6.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, CDCl_{3}): $\delta 24.6,27.9,68.4,81.2,127.7,129.0,129.1,134.5,176.2$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2939,2862,2108,1778,1612,1514,1461,1359,1247,1178,1099,1031$, 912, 819; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 60.82; H 5.10; N 19.34. Found: C 60.42; H 5.96; N 18.78\%.

5-Hydroxy-6-phenylpiperidin-2-one (53)

To a solution of azide 34 ($3 \mathrm{~g}, 14.2 \mathrm{mmol}$) in dry THF (100 mL) was added $\mathrm{PPh}_{3}(5.24 \mathrm{~g}$, $20 \mathrm{mmol})$ carefully at room temperature and stirred for 2 h . After that $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the reaction mixture was refluxed for 5 h . After the completion of the reaction, as monitored by TLC, the solvent was removed under reduced pressure. The residue was extracted with ethyl acetate (3 x 50 mL) washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude lactam 53, which was purified by column chromatography using petroleum ether: ethyl acetate (8:2) to obtain 53 as gum. Yield: 91%; $[\alpha]_{\mathrm{D}}+51.4$ (c 0.8 , CHCl_{3}); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.73-1.86(\mathrm{~m}, 2 \mathrm{H}), 2.2-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.59$ $(\mathrm{dd}, J=16.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.85(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, CDCl_{3}): $\delta 30.0,30.1,65.4,69.8,131.3,132.2,132.6,141.9,177.6 ;$ IR (neat, cm^{-1}): $3020,2941,1664,1346.22,1215,1174,927$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$: C 69.09; H 6.85; N 7.32. Found: C 69.98; H 6.02; N 7.55\%.

(2S, 3S)-1-(3-Hydroxy-2-phenyl piperidin-1-yl)-2,2-dimethyl propan-1-one (3)

To a solution of the lactam 53 in dry THF $(30 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ dropwise and the mixture was then refluxed for 6 h . After the completion of the reaction, the solvent was removed under reduced pressure and the residue was extracted with ethyl acetate to give the corresponding amino alcohol. Without purification, amino alcohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}$ followed by catalytic amount of DMAP were added. After stirring for 5 min at $0^{\circ} \mathrm{C},(\mathrm{Boc})_{2} \mathrm{O}$ was added drop-wise and the reaction mixture was allowed to stir for another three hours. After the completion of the reaction, it was extracted with ethyl acetate, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to get crude product. Chromatographic purification of the crude product using petroleum
ether: ethyl acetate gave the pure $\mathbf{3}$ as viscous liquid. Yield: 73% (over two steps); $[\alpha]^{25}{ }_{D}$ $+33.0\left(c 1.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.^{11}[\alpha]_{\mathrm{D}}{ }^{25}+37.5\left(c 1.0, \mathrm{CHCl}_{3}\right)\right\} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.13-7.35 (m, 5H), 5.32(m, 1H), 4.45-4.49(m, 1H), 4.0-4.09(m, 1H), 2.74-2.89 (ddd, J $=3.2,9.7,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 23.98, 25.92, 28.36, 39.90, 60.24, 67.48, 80.11, 126.86, 126.89, 138.15, 156.70; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3447,3018,2979,2955,1676,1602,1495,1418,1367,1327,1168$, 1137, 984, 876, 851, 756; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 69.29; H, 8.36; N, 5.05. Found: C, 69.43; H, 8.13; N, 4.92\%.

(2S, 3S)-1-(tert-Butyoxycarbonyl)-2-phenyl-3-[(3,5-bis(trifluoromethyl)benzyloxy]

 piperidine (54)To a stirred solution of $\mathbf{3}$ in dry DMF $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added sodium hydride (10 mg , 60% dispersion in mineral oil, 0.43 mmol) in one portion. After 5 min of stirring at the same temperature 3,5-bis(trifluoromethyl)benzyl bromide ($110 \mathrm{mg}, 0.36 \mathrm{mmol}$) in dry DMF (1 mL) was added via syringe. The reaction mixture was stirred for 12 h at $80^{\circ} \mathrm{C}$ and it was then quenched with water (3 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography on silica gel column using petroleum ether: ethyl acetate (7:3) to provide $54(0.14 \mathrm{~g})$ as a colorless oil. Yield: $78 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+30.45\left(c 1.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.^{7}[\alpha]_{\mathrm{D}}{ }^{25}+30.4\left(c \quad 1.55, \mathrm{CHCl}_{3}\right)\right\} ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.78-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{ddd}, \mathrm{J}=$ $11.2,9.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.67(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 20.2,25.3,26.3,27.2,44.4,63.2,71.2,77.0,120.2$,
123.1, 126.7, 127.3, 127.8, 132.4, 141.2, 142.4, 159.0; IR (neat, cm^{-1}): 2945, 1644, 1381, 1345, 1253, 1172, 875, 665; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{NO}_{3}: \mathrm{C}, 59.64 ; \mathrm{H}, 5.41 ; \mathrm{F}, 22.64$; N, 2.78; Found. C, 59.61; H, 5.38; N, 2.76\%.

Preparation of (+)-L-733,060 (1)

To an ice-cooled solution of $54(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added trifluoroacetic acid ($228 \mathrm{mg}, 2 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 12 h and then quenched with saturated NaHCO_{3} and extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CHCl}_{3}$ (1:9) as eluent to give pure 1 as colorless viscous liquid. Yield: $89 \%(79 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{25}+31.2\left(c 0.66, \mathrm{CHCl}_{3}\right)$ $\left\{\right.$ lit. $\left.{ }^{11}[\alpha]_{\mathrm{D}}{ }^{25}+34.3\left(c 1.32, \mathrm{CHCl}_{3}\right)\right\} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \mathrm{d} 1.42-204(\mathrm{~m}, 3 \mathrm{H})$, $2.22(\mathrm{br} \mathrm{d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, \mathrm{H}), 2.76-2.81(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H})$, $3.84(\mathrm{brs}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.50(\mathrm{~m}, 7 \mathrm{H}), 7.78$ (s, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): 20.6,27.5,47.1,64.0,70.5,77.2,120.9,124.1$,
 4.75; N, 3.47; Found. C, 59.52; H, 4.81; N, 3.56\%.

Section II

Enantioselective synthesis of threo-sphingosine using kinetic resolution via Sharpless epoxidation

2.2.1. Introduction

Sphingolipids such as ceramides, cerebrosides and gangliosides are ubiquitous components of cell membranes. ${ }^{21}$ They play critical roles in many physiological processes including cell growth, differentiation, neuronal repair, cell recognition, adhesion, and signalling. ${ }^{22}$ Over the past decade, significant strides have been made in the elucidation of biological function of sphingolipids. One of the remarkable findings is the identification of sphingolipid metabolites as second messengers, which provides the basis for the emerging concept of sphingolipid metabolites as therapeutics with clinical potential. ${ }^{23}$ Common to this diverse group of natural products is a sphingoid base scaffold with a polar 2-amino alcohol head and a long aliphatic chain with a 4,5trans double bond as in sphingosines (55 \& 56) or an 2-amino-1,3,4 triol head group without unsaturation as in phytosphingosines $(57 \& 58) .{ }^{3}$

55, erythro- sphingosine

57, lyxo-phytosphingosine

56, threo- sphingosine

58, ribo-phytosphingosine

Fig. 13: Structures of sphingolipids

The hydrophilic moiety, located on the external surface of the membrane, determines the specificity of interactions, whereas the lipophilic portion, anchored on the outer-
leaflet, contributes primarily to the structural rigidity of the membrane. The most common naturally occurring sphingoid bases of animal and plant tissues are erythrosphingosine (55) and ribo-phytosphingosine (57) (Fig. 13).
ribo-Phytosphingosine is readily obtained on an industrial scale from yeast fermentation process while erythro-sphingosine is available only by chemical synthesis or laborious animal tissue extraction. The wide spectrum of the biological activity of these molecules justifies the efforts towards the synthesis of them as well as of their stereoisomers and various analogues. ${ }^{24}$ The most commonly employed strategies are those which make use of carbohydrates ${ }^{25}$ and serine ${ }^{26}$ as a source of chirality; many approaches are also based on asymmetric reactions, such as aldol condensation ${ }^{27}$ as well as Sharpless asymmetric dihydroxylation ${ }^{28}$ and asymmetric epoxidation (using Shi's catalyst or Sharpless protocol ${ }^{29}$). The design of an efficient and catalytic route to sphingosines therefore continues to be important.

2.2.2. Review of literature

Literature search revealed that there are more than hundred reports on the synthesis of the diastereomers of sphingosines. Many synthetic efforts have utilized starting materials derived from the chiral pool, in particular, carbohydrate, serine, and tartaric acid precursors.

Garner's approach (1988) ${ }^{30}$

Garner and his co-workers have achieved the synthesis of erythro-sphingosine (55) from the known oxazolidine aldehyde 59, available from N-Boc-L-serine in just 3 steps. The addition of lithium 1-pentadecyne ($\mathbf{6 0}$) to the aldehyde 59 proceeded with very good erythro stereoselectivity to give a diastereomeric mixture of propargylic alcohols 61 in the ratio 8:1. Partial reduction of alkyne was achieved using Benkeser's conditions (lithium in ethylamine) at $-78{ }^{\circ} \mathrm{C}$ to obtain the protected sphingosine derivative 62.

Deprotection of acetonide group in $\mathbf{6 2}$ with hot aqueous $\mathrm{HC1}$ afforded sphingosine (55) in 65% overall yield after basic workup (Scheme 13).

Scheme 13: i) THF, $23^{\circ} \mathrm{C}$, quant.; ii) Li, $\mathrm{EtNH}_{2},-78^{\circ} \mathrm{C}$; iii) 1 N HCl .

Chung's approach (1999) ${ }^{31}$

Chung et al. have employed the chiral oxazolidine 63, derived from serine in three steps, as the starting material. The ester group in $\mathbf{6 3}$ was converted to the β-keto phosphonate 64 by treating with dimethyl methylphosphonate. Phosphonate ester 64 was then subjected to Horner-Wadsworth-Emmons olefination with tetradecylaldehyde

Scheme 14: i) $\mathrm{CH}_{3} \mathrm{PO}(\mathrm{OMe})_{2}$, n-BuLi, THF; (ii) $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{CHO}$, DBU , LiCl, THF; (iii) $10 \% \mathrm{HCl}, \mathrm{THF}$; iv) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; vi) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
to provide O, N-protected enone 65 , whose acetonide group was deprotected to generate the N-protected amino enones 66 in 65% yield. Reduction of ketone group with
$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ in THF produced erythro-sphingosine (55) while use of NaBH_{4} in MeOH furnished threo-sphingosine (56) as the major product (Scheme 14).

Ogino's approach (1999) ${ }^{32}$

Garner's aldehyde 67 has been used as the starting material in this synthesis. Wittig olefination of serine-derived aldehyde 67 with $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{PPh}_{3}{ }^{+} \mathrm{Br}^{-}$using lithium hexamethyldisilazide (LHMDS) as the base produced a separable mixture of (Z)- and (E)-olfins $\mathbf{6 8}$ and $\mathbf{6 9}$ in $80-84 \%$ combined yield. The epoxidation of Z-olefin (70) was achieved using 2 equiv. of m-CPBA with good enantioslectivity. Treatment of $\mathbf{7 0}$ with diphenyl diselenide (PhSeSePh) and sodium borohydride gave the hydroxy selenide 71. The subsequent oxidation of the crude hydroxyselenide $\mathbf{7 1}$ with 30% hydrogen peroxide resulted in elimination to give allylic alcohol, which upon deprotection of the oxazolidine ring under acidic condition furnished sphingosine (56) (Scheme 15).

Scheme 15: i) $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{PPh}_{3} \mathrm{Br}$, LHMDS, $-78{ }^{\circ} \mathrm{C}$; ii) $m \mathrm{CPBA}, 25{ }^{\circ} \mathrm{C}$; iii) PhSeSePh , NaBH_{4}, reflux; iv) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 25^{\circ} \mathrm{C}$; v) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 25^{\circ} \mathrm{C}$.

Somfai's approach (2003) ${ }^{33}$

Somfai et al. have accomplished the synthesis of threo-sphingosine (56) using Shi' epoxidation of olefin 72 as the chiral inducing step. Accordingly, treatment of diene $\mathbf{7 2}$ with chiral catalyst 73 and oxone as oxidant produced the separable regioisomeric mixtures of epoxides 74 and 75. Regioselective opening of the epoxide 74 with $\mathrm{NH}_{4} \mathrm{OH}$ gave trans amino alcohol 76 at $125{ }^{\circ} \mathrm{C}$. Under Mitsunobu reaction condition the amino
alcohol was converted to the corresponding aziridine, which was subsequently protected as its acetate 77 . Treatment of the protected aziridine 77 with Lewis acid $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right)$ followed by hydrolysis under acidic condition furnished sphingosine (56) (Scheme 16).

Scheme 16: i) cat. 73, Oxone; ii) $\mathrm{NH}_{4} \mathrm{OH}, 125^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; iv) $\left.\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{H}_{2} \mathrm{O} ; \mathrm{v}\right) \mathrm{H}_{2} \mathrm{SO}_{4}$.

Bittman's approach (2005) ${ }^{34}$

Scheme 17 illustrates the synthesis of erythro-sphingosine 55 from protected D-threitol derivative, which was achieved by Bittman et al. Alcohol 79 was oxidized with PCC to afford the corresponding aldehyde, which was subjected to Horner-Wittig reaction to afford α, β-unsaturated ester $\mathbf{8 0}$. Reduction of the ester group in $\mathbf{8 0}$ with DIBAL-H followed by protection of the resulting alcohol with AcCl gave the acetate 81. Coupling of acetate $\mathbf{8 1}$ with freshly prepared $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{MgBr}$ in the presence of catalytic $\mathrm{Li}_{2} \mathrm{CuCl}_{4}$ in $\mathrm{Et}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$ followed by deprotection of acetal group with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ provided diol 82. Treatment of diol 82 with a mixture of diisopropylazodicarboxylate (DIAD) and $\mathrm{Ph}_{3} \mathrm{P}$ at $0{ }^{\circ} \mathrm{C}$ and then adding TMSN_{3} resulted the azide substituted product $\mathbf{8 3}$ with concomitant transfer of the silyl group to the primary hydroxyl group. Azido silyl ether

83 was converted to erythro-sphingosine (55) following standard reaction sequences (Scheme 17).

Scheme 17: i) $\mathrm{PCC}, \mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, MS; ii) $(i-\mathrm{PrO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NEt}_{3}$, LiBr , THF, $25{ }^{\circ} \mathrm{C}$; iii) DIBAL-H, $-78{ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv) $\mathrm{AcCl}, i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40{ }^{\circ} \mathrm{C}$; v) (a) $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{MgBr}, \mathrm{Li}_{2} \mathrm{CuCl}_{4}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$; (b) $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$; vi) (a) PPh_{3}, DIAD, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; (b) $\mathrm{TMSN}_{3}, 0{ }^{\circ} \mathrm{C}$; (c) TBAF, THF; vii) (a) PPh_{3}, THF: $\mathrm{H}_{2} \mathrm{O}$ (9:1); (b) Na , NH_{3}, THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Dhavale's approach (2005) ${ }^{35}$

In this approach, the olefin 84, obtained from D-glucose in five steps, was subjected to cross-metathesis reaction with pentadec-1-ene to get the corresponding cross-coupled product 85 with exclusively E-selectivity at the olefinic bond. Removal of the acetonide protection under acidic conditions followed by cleavage of the resulting diol using NaIO_{4} and then reduction gave threo-sphingosine 56 in excellent yield (Scheme 18).

Scheme 18: i) Pentadec-1-ene, Grubbs' catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}$; ii) TFA, $30^{\circ} \mathrm{C}$; iii) NaIO_{4}, acetone/water, $30^{\circ} \mathrm{C}$; iv) LiAlH_{4}, THF

Bonini's approach (2006) ${ }^{36}$

Bonini et al. have described the synthesis of erythro-sphingosine (55) via the regioselective opening of the epoxide 86, prepared from cis-butene 1,4-diol via
asymmetric epoxidation, with NaBr in the presence of amberlyst-15 to obtain the bromohydrin 87 in almost quantitative yield. Displacement of the bromide in 87 with azide followed by its hydrogenation and protection of the amine group resulted in transamino alcohol 88. Protection of the amino alcohol with dimethoxy propane and controlled reduction of the ester with DIBAL-H gave the aldehyde 89. Reduction of aldehyde with NaBH_{4} and TBS protection of the resulting alcohol proceeded smoothly to give the corresponding silyl ether in 95% yield. The benzyl protection was removed under catalytic hydrogenation and the resulting alcohol was oxidized with $\mathrm{Py} / \mathrm{SO}_{3}$ to get the corresponding aldehyde 90. Finally, aldehyde 90 was transformed into the D-erythro-sphingosine (55) following standard synthetic sequences (Scheme 19).

Scheme 19: i) NaBr , Amberlyst-15, $-20^{\circ} \mathrm{C}$; ii) NaN_{3}, DMF, $25^{\circ} \mathrm{C}$; iii) $\mathrm{H}_{2} / \mathrm{Pd}$; iv) $\mathrm{Boc}_{2} \mathrm{O}$, EtOAc, $25^{\circ} \mathrm{C}$; v) 2,2-DMP, p-TsOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; vi) DIBAL, $-78{ }^{\circ} \mathrm{C}, 95 \%$; vii) NaBH_{4}, i-PrOH/THF, $25^{\circ} \mathrm{C}, 95 \%$; viii) TBDPSCl, Et ${ }_{3}$ N, DMAP, $25^{\circ} \mathrm{C}, 93 \%$; ix) $\mathrm{H}_{2} / \mathrm{Pd}$, MeOH, 25 ${ }^{\circ} \mathrm{C}, 93 \%$; x) $\mathrm{Py} / \mathrm{SO}_{3}$, DMSO, $0{ }^{\circ} \mathrm{C}, 85 \%$. xi) $n \mathrm{C}_{14} \mathrm{H}_{29} \mathrm{PPh}_{3} \mathrm{Br}, n \mathrm{nBLi}$, THF, $-78{ }^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$, 95% (Z/E, 30/70); xii) TFA: $\mathrm{H}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C}, 75 \%$.

2.2.3 Present Work

2.2.3.1 Objective

As can be seen from the above discussion, there are only a few reports on the synthesis of threo-sphingosine (56). Unfortunately, most of the reported methods for the synthesis of sphingosines (55-56), either employ chiral starting materials, expensive reagents or
involve longer reaction sequences coupled with poor product selectivity. The development of an efficient and catalytic route to sphingosines therefore continues to attract the attention of chemists. Hence, we thought to synthesize threo-sphingosine (56), using kinetic resolution via Sharplesss asymmetric epoxidation of allylic alcohol. The retrosynthetic analysis for the synthesis of threo-sphingosine (56) is shown in

Scheme 20.

We envisaged that the protected triol $\mathbf{9 1}$ could serve as a valuable intermediate for the asymmetric synthesis of threo-sphingosine (56). We anticipated that the long aliphatic chain could be attached by cross-metathesis of pentadec-1-ene and the allyl alcohol 92, which in turn could be prepared readily via regioselective opening of epoxide $\mathbf{9 3}$ with sulfur ylide. We presumed that the kinetic resolution of allyl alcohol $\mathbf{9 4}$ via epoxidation would result in the desired epoxide 93 (Scheme 20). Since the present strategy involves the regioselective ring opening of epoxide $\mathbf{9 3}$ with sulphur ylide as one of the key steps a brief account of it is discussed below.

Scheme 20: Retrosynthetic analysis of threo-sphingosine (56)

2.2.3.2 Chemistry of sulfur ylides

The chemistry of ylides attracted considerable interest in the early 1950s after Wittig has discovered the reaction of phosphonium ylides with carbonyl compounds giving rise to alkenes. Investigations carried out by Corey and Franzen extended the Wittig reaction
to sulfur ylides and initiated extensive studies of sulfonium ylides. ${ }^{37}$ The further development of the chemistry of these compounds demonstrated that they could be widely used in organic synthesis. Sulfur ylides contain a negatively charged carbon atom directly bound to a positively charged sulfur atom. In the general form, these compounds can be represented by two resonance structures, viz., ylide 95 and ylene 96 (Scheme 21).

Scheme 21: Resonance structures of sulfonium ylides

Sulfonium (95) and sulfoxonium (97) ylides containing two organic substituents at the sulfur atoms are most often used in organic synthesis. Sulfinyl ylides (98), sulfonyl ylides (99), thiocarbonyl ylides (100) and iminosulfuranes (101) are also well known. Sulfur ylides act as nucleophilic reagents; their reactivities being inversely proportional to their stability (Fig. 14).

97

98

99

101

100

Fig. 14: Commonly used sulfur ylides

Ylides are stabilized through the electron density delocalisation under the action of electron-withdrawing substituents at the carbanionic centre. The reactions of sulfur ylides with compounds containing $\mathrm{C}=\mathrm{X}$ bonds ($\mathrm{X}=\mathrm{O}, \mathrm{C}$ or N) gained wide acceptance in organic synthesis. These reactions proceed as the nucleophilic addition followed by

1,3-elimination of a sulfur-containing group to form epoxide, cyclopropane or aziridine, respectively (Scheme 22). ${ }^{38}$

Scheme 22: Nucleophilic addition of sulfur ylides

Due to their zwitterionic character, sulfonium ylides are also widely used in rearrangements generating new C-C bonds (often with high stereo- and regioselectivity).

Terminal, allylic and benzylic epoxides are smoothly converted directly to one carbon homologated allylic alcohols in good yields when treated with excess of dimethylsulfonium methylide. ${ }^{39}$ In these cases, reaction appears as an interesting stereochemical alternative to the less selective addition of vinyl Grignard to a carbonyl (Scheme 23).

Scheme 23: Stereoselective opening of epoxide with dimethylsulfonium methylide

In the last decade, interest in sulfur ylides was quickened owing to their successful use in asymmetric synthesis. A one-stage procedure, which has been developed recently for the synthesis of optically active epoxides and aziridines, represent a considerable achievement in this field.

2.2.4 Results and discussion

Our synthesis of threo-sphingosine (56) started with the opening of commercially available epoxy butene (105) with water in the presence of titanium superoxide as the reusable acidic catalyst (Scheme 24). For an elaborate discussion on these reactions, refer the present work under Section I, Chapter IV. The hydrolysis proceeded smoothly to produce the but-3-ene-1,2-diol (94) in excellent yields. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 4}$ showed characteristic signals at $\delta 5.81(\mathrm{~m})$ and $5.25(\mathrm{~m})$ corresponding to the terminal olefins. The signals for allylic methine proton and the methylene protons $\left(\mathrm{CH}_{2}=\mathrm{CH}-\right.$ $\mathrm{CH}-$ and $\left.-\mathrm{CH}_{2}-\mathrm{OH}\right)$ have appeared as multiplets at $\delta 4.12$ and 3.51 respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed typical signals at $\delta 136.7$ and 116.4 for the olefinic carbons and at $\delta 73.1$ and 66.0 corresponding to the methine and methylene carbons respectively (Fig. 15). The formation of diol was also confirmed from the IR spectrum of 94, which showed a broad signal at $3320 \mathrm{~cm}^{-1}$ due to the hydroxyl groups.

Fig. 15: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 94

Scheme 24: (a) $\mathrm{H}_{2} \mathrm{O}$, Titanium superoxide ($20 \mathrm{wt} \%$), $25^{\circ} \mathrm{C}$, quant.; (b) TBHP, D-(-)diethyl tartarate, $\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~A}^{\circ} \mathrm{MS},-2{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}, 43 \%$ (c) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 93 \%$; (d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~S}^{+} \mathrm{I}$, $n \mathrm{nBLLi}$, THF, $-20^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 82 \%$; (e) CSA, MeOH:CH ${ }_{2} \mathrm{Cl}_{2}$ (1:1), $0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; (f) Grubbs' catalyst ($10 \mathrm{~mol} \%$), Pentdec-1-ene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $10 \mathrm{~h}, 62 \%$; (g) PMB-Cl, NaH, DMF:THF ($1: 1$), $2 \mathrm{~h}, 0{ }^{\circ} \mathrm{C}$; (h) TBAF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} ; 83 \%$ over two steps; (i) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (j) NaN_{3}, DMF, $80{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 79 \%$ over two steps; (k) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$; (l) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C} 1 \mathrm{~h}$ then reflux $2 \mathrm{~h}, 82 \%$ over two steps.

The kinetic resolution of racemic diol 94 via Sharpless epoxidation ${ }^{40}$ was achieved using (-)-diethyl tartarate as the ligand and $\mathrm{Ti}(\mathrm{OiPr})_{4}$ as the catalyst to produce chiral epoxy alcohol $106[\alpha]_{\mathrm{D}}{ }^{25}+21\left(c 0.8, \mathrm{CHCl}_{3}\right)$ in 43% yield along with the diol $(R)-\mathbf{9 4}$ $[\alpha]_{\mathrm{D}}{ }^{25}+32\left(c 1.0, \mathrm{CHCl}_{3}\right) ;\left\{\right.$ lit. $\left.^{41}[\alpha]_{\mathrm{D}}{ }^{25}+35.5\left(c 1.2, \mathrm{CHCl}_{3}\right)\right\}$. The disappearance of the olefinic protons in the region of $\delta 5-7$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 6}$ confirmed the formation epoxide. Further, characteristic three signals at $\delta 2.61$ (dd), 2.72 (dd) and 2.92 (dd) correspond to the presence of terminal epoxide. Its ${ }^{13} \mathrm{C}$ NMR spectrum has shown four signals in the region $\delta 40-75$ indicating the formation of epoxide moiety.

The diol groups were protected as silyl ethers using TBS-Cl in the presence of imidazole at $0{ }^{\circ} \mathrm{C}$ to give $\mathbf{9 3}$ in 93% yield $\left\{[\alpha]_{\mathrm{D}}{ }^{25}-18.5\right.$ (c 1.0, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of disilyl ether $\mathbf{9 3}$ showed signals at $\delta 0.87$ and 0.05 due to ${ }^{t} \mathrm{Bu}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right)$ and methyl (Si- CH_{3}) groups respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed characteristic signals at $\delta 25.8,18.02$ and -4.24 corresponding to the TBS group (Fig. 16).

Fig. 16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 3}$

Silyl ether protected epoxide $\mathbf{9 3}$ was subjected to regioselective ring opening with trimethylsulfonium ylide at $-20^{\circ} \mathrm{C}$ to furnish the allylic alcohol 107 in 82% yield $\left\{[\alpha]_{\mathrm{D}}{ }^{25}-12\left(c\right.\right.$ 1.2, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. Surprisingly, this reaction failed when the TBS protection was replaced with p-methoxy benzyl ether and the starting material was recovered. The ${ }^{1} \mathrm{H}$ NMR of allylic alcohol $\mathbf{1 0 7}$ displayed characteristic signals for the terminal olefin at $\delta 5.88$ and 5.19 , which confirmed the formation of allylic alcohol. The allylic methine
proton and alkoxy protons have displayed signals at $\delta 4.28$ and $\delta 3.61$ respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed signals at $\delta 138.2$ and 115.7 corresponding to the olefinic carbons and at $\delta 74.5$ due to the allylic carbon respectively (Fig. 17). Further, a strong absorption at $3372 \mathrm{~cm}^{-1}$ in the IR spectrum of $\mathbf{1 0 7}$ confirmed the presence of hydroxyl group.

Fig. 17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 107

Selective deprotection of the primary alcoholic silyl ether group in $\mathbf{1 0 7}$ was achieved at 0 ${ }^{\circ} \mathrm{C}$ using $10 \mathrm{~mol} \%$ camphor sulfonic acid (CSA) to give diol $92\left\{[\alpha]_{D}{ }^{25}-25\right.$ (c 0.7, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. This reaction was found to be very fast. However, deprotection of both the silyl groups was observed if the reaction was carried out either at $25^{\circ} \mathrm{C}$ or for a prolonged reaction time. The ${ }^{1} \mathrm{H}$ NMR spectrum of diol 92 showed signals at $\delta 0.83$ and -0.02 corresponding to the silyl protection, which account for only one TBS group. Its ${ }^{13} \mathrm{C}$

NMR displayed characteristic signal at $\delta 137.6$ and 117 due the olefinic carbons and at δ 25.7, 18.0, and - 4.3 corresponding to the TBS group respectively (Fig. 18).

Fig. 18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 92

The terminal olefin in $\mathbf{9 2}$ was subjected to cross-metathesis with pentadec-1-ene in the presence of Grubbs' second generation catalyst ${ }^{42}$ to obtain the long chain diol 108 in 62% yield $\left\{[\alpha]_{\mathrm{D}}{ }^{25}+6.5\left(c 0.8, \mathrm{CHCl}_{3}\right)\right\}$. The cross-metathesis furnished exclusively the E-isomer and no trace of Z-isomer was observed. However, we observed that disilyl protected olefin $\mathbf{1 0 7}$ failed to furnish the cross-metathesis product even after 2 days \{Grubb's cat. $10 \mathrm{~mol} \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 45^{\circ} \mathrm{C}, 2$ days); probably due to the steric hindrance offered by the bulky t-Bu groups in the molecule. The ${ }^{1} \mathrm{H}$ NMR spectrum of the crosscoupled product $\mathbf{1 0 8}$ displayed characteristic signals at $\delta 5.6$ and 5.4 due to the internal olefin, which accounted for only two protons. The methylene protons of the long
aliphatic chain have appeared as multiplets in the region $\delta 1.15-1.30$, while the signal for methyl proton $\left(\mathrm{CH}_{3}-\mathrm{C}\right)$ has merged with ${ }^{t} \mathrm{Bu}$ group signal $\left.\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Si}\right)\right\}$ at $\delta 0.80$ (Fig. 19).

Fig. 19: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 108

The free alcoholic groups in $\mathbf{1 0 8}$ were then protected as PMB ether in the presence of NaH at $0{ }^{\circ} \mathrm{C}$ to give the corresponding PMB protected ether 91. Its ${ }^{1} \mathrm{H}$ NMR spectrum which showed characteristic two doublets at $\delta 6.84$ and 7.2 corresponding to $1,4-$ disubstituted aromatic ring and a singlet at $\delta 3.65$ due to the methoxy protons $\left(-\mathrm{OCH}_{3}\right)$. The deprotection of silyl group in $\mathbf{9 1}$ was achieved using tetrabutylammonium fluoride (TBAF) in THF at $0^{\circ} \mathrm{C}$ to give the corresponding alcohol 109. The disappearance of the signals at $\delta 0.83$ and -0.02 corresponding to the TBS group in the ${ }^{1} \mathrm{H}$ NMR spectrum of

109 confirmed the deprotection of silyl ether. The alkoxy protons ($-\mathrm{CH}_{2}-\mathrm{O}$ and (-CH-O) have shown signals at $\delta 4.22,3.61$ and 3.48 while the internal olefinic protons have displayed at $\delta 5.7$ and 5.39 respectively (Fig. 20).

Fig. 20: ${ }^{1} \mathrm{H}$ NMR spectrum of 109

Mesylation $\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\right)$ of the free OH group in 109 gave the mesylate 110 , which was subjected to $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} to give azide $\mathbf{1 1 1}$ with complete inversion of configuration. Although there was not much difference between the ${ }^{1} \mathrm{H}$ NMR spectra of alcohol $\mathbf{1 0 9}$ and azide 111, the $\mathbf{C}-\mathrm{N}_{3}$ carbon of $\mathbf{1 1 1}$ showed an upfield shift in the ${ }^{13} \mathrm{C}$ NMR spectrum. The IR spectrum of azide 111 had a strong absorption at $2110 \mathrm{~cm}^{-1}$ indicating the presence of azide group.

Oxidative deprotection of the PMB ethers in $\mathbf{1 1 1}$ using DDQ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ gave the azido diol 112, which was subjected to reduction with LiAlH_{4} to furnish threosphingosine 56 in 82% yield and 95% ee (determined by comparing the $[\alpha]_{D}$ value) $[\alpha]_{\mathrm{D}}{ }^{25}-2.7$ (c 1.0, CHCl_{3}), $\left\{\right.$ lit. ${ }^{27}[\alpha]_{\mathrm{D}}{ }^{25}-2.83$ (c 1.2, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and other spectral data were in complete agreement with the reported values. The ${ }^{1} \mathrm{H}$ NMR spectrum of threo-sphingosine (56) showed signals at $\delta 5.74$ and 5.39 due to the internal olefinic protons and at $\delta 2.87$ corresponding to the methine proton attached to amine functionality $\left(-\mathrm{CH}-\mathrm{NH}_{2}\right)$. The signals for alkoxy protons $\left(-\mathrm{CH}_{2}-\mathrm{O},-\mathrm{CH}-\mathrm{O}\right)$ have
appeared at $\delta 3.62$ and 4.05 respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed characteristic signals in the range $\delta 14-32$ corresponding to the long chain carbons and three signals at $\delta 56.5,63.4$ and 75.0 due to the carbons attached to heteroatoms respectively (Fig. 21).
TMS

Fig. 21: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 56

2.2.5 Conclusion:

The enantioselective synthesis of threo-sphingosine (56) has been achieved in 95% ee using kinetic resolution via Sharpless asymmetric epoxidation of but-3-ene-1,2-diol (94). The synthesis involves eleven steps and makes use of readily available reagents. This synthetic route has the potential to extend for the synthesis of other sphingolipids.

2.2.6 Experimental Section

But-3-ene-1,2-diol (94)

A 100 mL round bottomed flask was charged with epoxy butane (105) ($7 \mathrm{~g}, 100 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}(1.8 \mathrm{~g}, 100 \mathrm{mmol})$. To this mixture was added titanium superoxide $(1.4 \mathrm{~g}, 20$ $\mathrm{wt} \%$) at room temperature (For an elaborate discussion on these reactions, refer the present work under Section I, Chapter IV). The reaction was exothermic while addition of Ti-superoxide so that the mixture was cooled externally with cold water to keep the temperature below $40^{\circ} \mathrm{C}$. After stirring for 5 h at room temperature, ethyl acetate was added to the reaction mixture and filtered. The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to give the crude diol, which was purified by column chromatography to give $\mathbf{9 4}$ as colourless liquid. Yield: $99 \% ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.60(\mathrm{brs}, 1 \mathrm{H}), 3.29(\mathrm{brs}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=8.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ $(\mathrm{dd}, J=6.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta 66.0,73.2,116.4,136.7$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3320,2912,1213,1130$, Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$: C, $54.53 ; \mathrm{H}, 9.15$. Found: $54.48,9.19 \%$.

(R)-1-((R)-Oxiran-2-yl)ethane-1,2-diol (106)

To a two-necked round bottomed flask charged with $4 \mathrm{~A}^{\circ}$ molecular sieves in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-23{ }^{\circ} \mathrm{C}$ were added (-)-diethyl tartarate and $\mathrm{Ti}(\mathrm{OiPr})_{4}$. The resulting mixture was stirred at $-23{ }^{\circ} \mathrm{C}$ for 5 min and then TBHP was added drop-wise. The mixture was stirred at -23 ${ }^{\circ} \mathrm{C}$ for 30 min . Allylic alcohol $94(8.8 \mathrm{~g}, 100 \mathrm{mmol})$ was then added drop-wise and the resulting mixture was kept at $-23{ }^{\circ} \mathrm{C}$ for 20 h . It was then quenched with 15% aqueous NaOH solution and was brought to $0^{\circ} \mathrm{C}$ and stirred for 2 h . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography to obtain
pure $\mathbf{1 0 6}$ as colourless liquid. Yield: $43 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+21\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}) \delta 2.62(\mathrm{dd}, J=4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=4.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=$ $5.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=8.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=6.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 41.2,55.1,66.2,73.1 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3315,2915,1152$, 1130, 984; Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}$: C, 46.15; H, 7.75. Found: 46.21, 7.59\%.

Disilyl ether 93

To a solution of the diol $\mathbf{1 0 6}(4.16 \mathrm{~g}, 40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added imidazole ($5.44 \mathrm{~g}, 80 \mathrm{mmol}$) followed by tert-butyldimethyl silyl chloride ($12 \mathrm{~g}, 80 \mathrm{mmol}$) and stirred for 1 h at $0^{\circ} \mathrm{C}$. After the completion of the reaction it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography using petroleum ether: ethyl acetate (9:1) to obtain pure disilyl protected silyl ether $\mathbf{9 3}$ as colourless liquid. Yield: 93%; $[\alpha]_{\mathrm{D}}{ }^{25}$-18.5 (c 1.0, CHCl_{3}); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 2.65(\mathrm{dd}, J=4.2,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{dd}, J=4.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=5.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=$ $6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta-5.4,-4.7,-4.3,18.0,25.8,41.7,55.1,64.0$, 72.2; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2915,1175,1152,1132,915$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}_{2}: \mathrm{C}$, 54.53; H, 9.15. Found: 54.48, 9.19\%.

(3R, 4R)-4,5-bis(tert-Butyldimethylsilyloxy)pent-1-en-3-ol (107)

To a stirred suspension of trimethylsulfonium iodide ($8.568 \mathrm{~g}, 42 \mathrm{mmol}$) in dry THF $(150 \mathrm{~mL})$ was added $n-\operatorname{BuLi}(5.736 \mathrm{~g}, 1.6 \mathrm{M}$ hexane solution, 84 mmol$)$ at $-10^{\circ} \mathrm{C}$. After 30 min , epoxide 106 ($11.6 \mathrm{~g}, 35 \mathrm{mmol}$) in dry THF (30 mL) was introduced drop-wise and the reaction mixture was slowly warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h . After completion of reaction (monitored by TLC), the reaction mixture was quenched with water and extracted with diethyl ether (3 x 100 mL). The combined extracts were
washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was then purified by column chromatography using petroleum ether: ethyl acetate $(90: 10)$ to give allyl alcohol 107 as colorless oil. Yield: $82 \% ;[\alpha]_{D}{ }^{25}-12$ (c $\left.1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.07(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{~m}, 18 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=$ 6.1 Hz, 1H), $3.61(\mathrm{~m}, 3 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathbf{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta-5.3,-4.7,-4.2,18.3,25.9,63.0,72.374 .6,96.1,115.8,138.3$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3291,2912,1612,1132,1092$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{2}: \mathrm{C}, 58.90$; H, 11.05. Found: C, 58.88; H, 11.23\%.

(2R, 3R)-2-((tert-Butyldimethylsilyloxy)pent-4-ene-1,3-diol (92)

To a stirred solution of disilyl ether $107\left(8.65 \mathrm{~g}, 25 \mathrm{mmol}\right.$, in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ was added camphor sulfonic acid ($10 \mathrm{~mol} \%$) and stirred for 2 h . The reaction mixture was quenched with water and extracted with ethyl acetate. The combined extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was then purified by column chromatography using petroleum ether: ethyl acetate (6:4) to give 1,3-diol 92. Yield: 85%; $[\alpha]_{D}{ }^{25}-25$ (c 0.7, CHCl_{3}); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta-0.02(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=11.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=11.6,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta-5.1,-4.3,18.0,25.7,62.9,74.5$, 117.0, 137.6; IR ($\left.\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3312,3291,2962,1612,1132,1092$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 56.85 ; \mathrm{H}, 10.41 ; \mathrm{Si}, 12.09$. Found: C, $56.88 ; \mathrm{H}, 10.43 \%$.

(2R, 3R, E)-2-((tert-Butyldimethylsilyloxy)octadec-4-ene-1,3-diol (108)

To a solution of allylic alcohol $92(2.32 \mathrm{~g}, 10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added pentadec-1-ene ($8.4 \mathrm{~g}, 40 \mathrm{mmol}$) followed by Grubbs' second generation catalyst (10 $\mathrm{mol} \%, 1 \mathrm{mmol})$. The reaction mixture was refluxed at $45{ }^{\circ} \mathrm{C}$ for 18 h . After the completion of the reaction, as monitored by TLC, it was concentrated under reduced
pressure to obtain the residue, which was then purified by column chromatography using petroleum ether: ethyl acetate (7:3) to obtain pure cross-metathesis product 108.

Yield: $62 \% ;[\alpha]_{\mathrm{D}}{ }^{25}+6.5\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.03(\mathrm{~s}, 6 \mathrm{H})$, $0.81(\mathrm{~m}, 12 \mathrm{H}), 1.18(\mathrm{~s}, 22 \mathrm{H}), 1.98(\mathrm{~m}, 3 \mathrm{H}), 2.21$ (brs, 1H), $3.57(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H})$, $5.42(\mathrm{~m}, 1 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta-5.1,-4.9,14.2,18.7,22.8$, $25.8,29.1,29.3,29.5,29.6,29.8,32.0,33.9,63.0,76.4,79.8,127.4,134.4$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): 3311,2922,2912,1612,1141,1132$, 1092; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}$, 69.50; H, 12.15. Found: C, $69.45 ; \mathrm{H}, 12.11 \%$.

(2R, 3R, E)-1,3-bis(4-methoxybenzyloxy)octadec-4-en-2-ol (109)

An oven dried round bottomed flask was charged with diol $108(2.085 \mathrm{~g}, 5 \mathrm{mmol})$ and THF:DMF (1:1, 40 mL). The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ followed by addition of $60 \% \mathrm{NaH}$ in mineral oil ($240 \mathrm{mg}, 6 \mathrm{mmol}$) in one portion. After stirring for 5 min at the same temperature, p-methoxy benzyl chloride ($1.884 \mathrm{~g}, 12 \mathrm{mmol}$) was added dropwise via syringe. The reaction mixture was stirred for another 1 h at $0^{\circ} \mathrm{C}$ and 30 minutes at room temperature. After the completion of the reaction, as monitored by TLC, THF was removed under reduced pressure and extracted with ethyl acetate. The combined extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain crude protected triol 91.

Without further purification, the silyl ether 91 was dissolved in THF (20 mL) and to this mixture added TBAF (10 mL of 1 M solution in THF) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at the same temperature and then quenched with water. It was extracted with ethyl acetate and the combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain the crude product which was then purified by column chromatography using petroleum ether: ethyl acetate (90:10) to obtain pure 109. Yield: $83 \% ;[\alpha]_{D}{ }^{25}+8.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$;
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.29(\mathrm{~m}, 22 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 2.0(\mathrm{brs}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=8.2,31 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 6 \mathrm{H}), 4.19(\mathrm{dd}, J=8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, , $4.41(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H})$, $5.39(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 14.0,22.6$, $28.9,29.2,29.3,29.4,29.55,29.59,29.61,31.9,32.3,55.3,55.2,61.3,65.3,72.6,72.7$, $73.4,113.2,113.5,129.1,129.2,129.3,128.0,130.3,135.8,158.9,158.1 ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): 3325,2937,2856,2360,2331,1737,1612,1514,1460,1438,1363,1301,1247$, 1220, 1172, 1099, 1035, 821; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{5}$: C, $75.51 ; \mathrm{H}, 9.69$. Found: C, 75.45; H, 9.56\%.

(2R, 3R, E)-1, 3-bis(4-Methoxybenzyloxy)-2-azido octadec-4-ene (111)

To a solution of alcohol $\mathbf{1 0 9}(1.62 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(407$ $\mathrm{g}, 4 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 5 minutes methane sulfonyl chloride ($448 \mathrm{mg}, 4 \mathrm{mmol}$) was added drop-wise over a period of 5 min . The reaction mixture was stirred for another 1 h at $0{ }^{\circ} \mathrm{C}$ and brought to room temperature. After the completion of the reaction, as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to get crude methane sulfonate ester $\mathbf{1 1 0}$ in almost quantitative yield.

To a solution of crude mesylate $\mathbf{1 1 0}(1.94 \mathrm{~g})$ in DMF was added sodium azide (650 mg , 10 mmol) and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 7 h . After the completion of the reaction, as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to obtain the crude azido sphingosine 111, which was purified by column chromatography using petroleum ether: ethyl acetate (8:2). Yield: $79 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-5.4\left(c 1.0, \mathrm{CHCl}_{3}\right){ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.88(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 22 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 2.0(\mathrm{brs}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=8.2,31 \mathrm{~Hz}, 2 \mathrm{H}), 3.50$
$(\mathrm{m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 4.19(\mathrm{dd}, J=8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}) 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 5.73(\mathrm{~m}$, $1 \mathrm{H}), 5.39(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 14.0$, $22.6,28.9,29.2,29.3,29.4,29.55,29.59,29.61,31.9,32.3,55.3,55.2,61.3,65.3,67.3$, 72.6, 72.7, 113.2, 113.5, 129.1, 129.2, 129.3, 128.0, 130.3, 135.8, 158.9, 158.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2937,2856,2360,2331,2119,1737,1612,1514,1460,1438,1363$, 1301, 1247, 1220, 1172, 1099, 1035, 821; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 72.18; H, 9.09; N, 7.43. Found: C, 72.21; H, 9.36; N, 7.26\%.

Threo-Sphingosine (56)

To a solution of PMB ether ($565 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(9: 1,10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DDQ ($900 \mathrm{mg}, 4 \mathrm{mmol}$) in one portion and the reaction mixture was stirred for 1 h at the same temperature. After the completion of the reaction, as monitored by TLC, it was quenched with saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the azido sphingosine 112, whose azide group was reduced using LiAlH_{4} as follows. An oven dried two neck RB was charged with $\mathrm{LiAlH}_{4}(110 \mathrm{mg}, 3 \mathrm{mmol})$ and dry THF $(20 \mathrm{~mL})$ was added via syringe. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of crude azide $112(355 \mathrm{mg})$ in dry THF (2 mL) was added drop-wise maintaining the temperature below $10^{\circ} \mathrm{C}$. After the addition was complete, the reaction mixture was stirred at the same temperature for 1 h and then refluxed for 5 h to ensure the completion of the reaction. The reaction mixture was then quenched with ethyl acetate and filtered through cealite. The filtrate was concentrated under reduced pressure to get the crude sphingosine. The crude residue was purified by flash chromatography using ethyl acetate: methanol (9:1) to yield 56 as a white solid. Yield: 82%; mp: $84-85{ }^{\circ} \mathrm{C}$; (lit. $\left.{ }^{27} 86-87{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}-2.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$, $\left\{\mathrm{lit}{ }^{27}[\alpha]_{\mathrm{D}}{ }^{25}-2.83\left(c 1.2, \mathrm{CHCl}_{3}\right)\right\} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}$,
$3 \mathrm{H}), 1.23(\mathrm{~m}, 22 \mathrm{H}), 2.02(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H})$, $4.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=15.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.5,22.1,28.4,28.6,28.8,29.0,29.2,31.4,33.3,56.5,63.4,74.9$, 129.1, 135.0; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3325,3292,2912,2895,1642,1123,1112$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{NO}_{2}$: C, 72.19; H, 12.45; N, 4.68. Found: C, 72.22; H, 12.37; N, 4.53\%.

2.2.7 References

1 (a) von Euler, V. S.; Gaddum, J. H. J. Physiol. 1931, 72, 577; (b) Chang, M. M.; Leeman, S. E. J. Biol. Chem. 1970, 245, 4784; (c) Pernow, B. Pharmacol. Rev. 1983, 35, 85; (d) Naanishi, S. Physiol. Rev. 1987, 67, 1117; (e) Vaught, J. Life Sci. 1988, 43, 1419; (f) Lotz, M.; Vaughan, J. H.; Carson, D. A. Science 1988, 241, 1218;
(a) Baker, R.; Harrison, T.; Hollingworth, G. J.; Swain, C. J.; Williams, B. J. EP 0528 495A1, 1993; (b) Harrison, T.; Williams, B. J.; Swain, C. J.; Ball, R. G. Bioorg. Med. Chem. Lett. 1994, 4, 2545.
3 Desai, M. C.; Lefkowitz, S. L.; Thadeio, P. F.; Longo, K. P.; Snider, R. M. J. Med. Chem. 1992, 35, 4911.
(a) Perianan, A.; Snyderman, R.; Malfroy, B. Biochem. Biophy. Res. Commun. 1989, 161, 520; (b) Snijdelaar, D. G.; Dirksen, R.; Slappendd, R.; Crul, B. J. P. Eur. J. Pain 2000, 4, 121; (c) Datar, P.; Srivastava, S.; Coutinho, E.; Govil, G. Curr. Top. Med. Chem. 2004, 4, 75; (d) Lotz, M.; Vaughan, J. H.; Carson, D. A. Science 1987, 235, 893; (e) Moskowitz, M. A. Trends Pharmacol. Sci. 1992, 13, 307; (f) Takeuchi, Y.; Shands, E. F. B.; Beusen, D. D.; Marshall, G. R. J. Med. Chem. 1998, 41, 3609; (g) Swain, C. J. Prog. Med. Chem. 1998, 35, 57.
(a) Muñoz, M.; Rosso, M.; Pérez, A.; Coveñas, R.; Rosso, R.; Zamarriego, C.; Soult, J, A.; Montero, I. Invest. Ophthalmol. Vis. Sci. 2005, 46, 2567; (b) Miguel, M.; Marisa, R.; Rafael, C. Lett. Drug Des. Discov. 2006, 3, 323.
6 (a) Takahashi, K.; Nakano, H.; Fujita, R. Tetrahedron Lett. 2005, 46, 8927; (b) Lee, J.; Hoang, T.; Lewis, S.; Weissman, S. A.; Askin, D.; Volante, R. P.; Reider, P. J. Tetrahedron Lett. 2001, 42, 6223; (c) Liu, R. H.; Fang, K.; Wang, B.; Xu, M. H.; Lin, G, Q. J. Org. Chem. 2008, 73, 3307; (d) Huang, P, Q.; Liu, L, X.;

Wei, B, G.; Ruan, Y, P. Org. Lett. 2003, 5, 1927; (e) Davis, F. A.; Ramachandar, T.; Tetrahedron Lett. 2008, 49, 870.

Bhaskar G.; Rao, B. V.; Tetradedron Lett. 2003, 44, 915.
Tsai, M.-R., Chen, B.-F., Cheng, C.-C., Chang, N.-C. J. Org. Chem. 2005, 70, 1780.

Yoon, Y.-J.; Joo, J.-E.; Lee, K.-Y.; Kim, Y.-H.; Oh, C.-Y.; Ham, W.-H. Tetrahedron Lett. 2005, 46, 739

Oshitari, T.; Mandai, T. Synlett 2006, 3395.
Cherian, S. K.; Kumar, P. Tetrahedron: Asymmetry 2007, 18, 982.
Liu, R.-H., Fang, K., Wang, B., Xu, M.-H., Lin, G.-Q. J. Org. Chem. 2008, 73, 3307

Ager, D. J.; Anderson, K.; Oblinger, E.; Shi, Y.; Vander Roest, J. Org. Process Res. Dev. 2007, 11, 44.

Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993; Chapter 4.1.
(a) Collman, J. P.; Zhang, X.; Lee, V. J.; Uffelman, E. S.; Brauman, J. I. Science 1993, 261, 1404. (b) Jacobsen, E. N. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993; Chapter 4.2. (c) Fukuda, T.; Katsuki, T. Tetrahedron Lett. 1996, 37, 4389.
Tu, Y.; Wang, Z, X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806.
(a) Baumstark, A. L.; McCloskey, C. J. Tetrahedron Lett. 1987, 28, 3311. (b) Baumstark, A. L.; Vasquez, P. C. J. Org. Chem. 1988, 53, 3437.
Wang, Z, X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224.
(a) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741; (b) Mori, K.; Nukada, T.; Ebata, T. Tetrahedron 1981, 37, 1343.
(a) Schar, P.; Renaud, P. Org. Lett. 2006, 8, 1569; (b) Maio, W. A.; Sinishtaj, S.; Posner, G. H. Org. Lett. 2007, 9, 2673; (c) Sun, H.; Abboud, K, A.; Horenstein, N. A.; Tetrahedron 2005, 61, 10462.
(a) Hakomori, S. J. Biol. Chem. 1990, 5, 878. (b) Van Meer, G.; Buger, K. N. J. Trends Cell Biol. 1992, 2, 332.
(a) Hannun, Y. A.; Obeid, L. M. Trends Biochem. Sci. 1995, 20, 73. (b) Mathias,
S.; Pena, L. A.; Kolesnick, R. N. Biochem. J. 1998, 335, 465. (c) Birbes, H.; Bawab, S. E.; Obeid, L. M.; Hannun, Y. A. Adv. Enzyme Regul. 2002, 42, 113.
(a) Karlsson, K.-A. Trends Pharmacol. Sci. 1991, 12, 265. (b) Hannun, Y.; Bell, R. M. Science 1989, 243, 500. (c) Hannun, Y. Science 1996, 274, 1855. (d) Kolter, T.; Sandhoff, K. Angew. Chem., Int. Ed. 1999, 38, 1532. (e) Vankar, Y. D.; Schmidt, R. R. Chem. Soc. ReV. 2000, 29, 201. (f) Brodesser, S.; Sawatzki, P.; Kolter, T. Eur. J. Org. Chem. 2003, 2021.

For reviews of sphingosine/ceramide, see: (a) Liao, J.; Tao, J.; Lin, G.; Liu, D. Tetrahedron 2005, 61, 4715. (b) Koskinen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075. (c) Rai, A. N.; Basu, A. J. Org. Chem. 2005, 70, 8228. (d) Rai, A. N.; Basu, A. Org. Lett. 2004, 6, 2861. (e) Torssell, S.; Somfai, P. Org. Biomol. Chem. 2004, 2, 1643. (f) Milne, J. E.; Jarowicki, K.; Kocienski, P. J.; Alonso, J. Chem. Commun. 2002, 426. (g) Lee, J.-M.; Lim, H.-S.; Chung, S.-K. Tetrahedron: Asymmetry 2002, 13, 343. (h) Bittman, R.; Chun, J.; Li, G.; Byun, H.-S. Tetrahedron Lett. 2002, 43, 375. (i) Lees, W. J.; Gargano, J. M. Tetrahedron Lett. 2001, 42, 5845. (j) Duclos, R. I. Chem. Phys. Lipids 2001, 111, 111. (k) Schmidt, R. R.; Zimmermann, P. Tetrahedron Lett. 1986, 27, 481. (1) Ohashi, K.; Yamagiwa, Y.; Kamikawa, T.; Kates, M. Tetrahedron Lett. 1988, 29, 1185. (m) Sugawara, T.; Narisada, M. Carbohydr. Res. 1989, 194, 125. (n) Schmidt, R. R.; Zimmermann, P. Angew. Chem., Int. Ed. 1986, 25, 725. (o) Kiso, M.; Nakamura, A.; Tomita, Y.; Hasegawa, A. Carbohydr. Res. 1986, 158, 101.
(a) Kiso, M.; Nakamura, A.; Tomita, Y.; Hasegawa, A. Carbohydr. Res. 1986, 158, 101. (b) Zimmermann, P.; Schmidt, R. R. Liebigs Ann. Chem. 1988, 663.
(c) Hirata, N.; Yamagiwa, Y.; Kamikawa, T. J. Chem. Soc., Perkin Trans 1 1991, 2279. (d) Bettelli, E.; Chinzari, P.; D’Andrea, P.; Passacantilli, P.; Piancatelli, G.; Topai, A. Korean J. Med. Chem. 1996, 6, 339.
(a) Shirota, O.; Nakanishi, K.; Berova, N. Tetrahedron 1999, 55, 13643. (b) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. Chem. 1990, 55, 1439.

Enders, D.; Whitehouse, D. L.; Runsink, J. Chem. Eur. J. 1995, 1, 382.
(a) Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2000, 41, 10309. (b) Martin, C.; Prunk, W.; Bortolussi, M.; Bloch, R. Tetrahedron: Asymmetry 2000, 11, 1585.
(a) Li, S.; Pang, J.; Wilson, W. K.; Schroepfer, G. J., Jr. Tetrahedron: Asymmetry 1999, 10, 1697. (b) Lin, G.; Shi, Z. Tetrahedron 2001, 57, 5649. (c) Julina, R.; Herzig, T.; Bernet, B.; Vasella, A. Helv. Chim. Acta 1986, 69, 368.
Garner, P.; Park, J. M.; Malecki, E. J. Org. Chem. 1988, 53, 4395.
Chung, S. K.; Lee, J. M. Tetrahedron: Asymmetry 1999, 10, 1441.
Azuma, H.; Tamagaki, S.; Ogino, K. J. Org. Chem. 2000, 65, 3538.
Olofsson, B.; Somfai, P. J. Org. Chem. 2003, 68, 2514.
Lu, X.; Bittman, R. Tetrahedron Lett. 2005, 46, 1873.
Chaudhari, V. D.; Ajish Kumar, K. S.; Dhavale, D. D. Org. Lett. 2005, 7, 5805.
Righi, G.; Ciambrone, S.; Achille, C.; Leonelli, A.; Bonini, C. Tetrahedron 2006, 62, 11821.
(a) Corey, E. J.; Chaykovsky. M. J. Am. Chem. Soc. 1965, 87, 1353. (b) Franzen, V.; Mertz, S. C. Chem. Ber. 1961, 94, 2942.

Trost, B. M.; Melvin, L. S. Sulfur ylides, Emerging Synthetic Intermediates (New York; San-Fransico; London: Academic Press 1975.
(a) Alcaraz, L.; Harnett, J. J. ; Mioskowski, C.; Martel, J.P.; LeGall, T.; Shin, D.S.; Falck, J. R. Tetrahedron Lett. 1994, 35, 5449. (b) Baylon, C.; Heck, M.-P.; Mioskowski, C. J. Org. Chem. 1999, 64, 3354. (c) Davoille, R.J.; Rutherford, D.T.; Christie, S.D.R. Tetrahedron Lett. 2000, 41, 1255.
(a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. (b) Martin, V. S.; Woodward, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237.
Trost, B. M.; McEachern, E. J. J. Am. Chem. Soc. 1999, 121, 8649.
(a) Grubbs, R. H. Handbook of Metathesis; Wiley-VCH: Weinheim, 2003; Vols. 1-3. (b) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.

CFAPIER3

$\mathcal{N a I O}_{4}$-mediated dihydroxylation of olefins, iodination of aromatics and direct esterification of aldehydes

Section I

$\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated diastereoselective dihydroxylation of olefins: A catalytic approach to the Prevost-Woodward reaction

3.1.1 Introduction

Vicinal diols with syn and anti configurations are potential intermediates in the synthesis of several natural products, drugs and fine chemicals. ${ }^{1}$ The catalytic dihydroxylation of alkenes represents a unique method for the preparation of these 1,2 -diols with defined relative configuration. Several oxidants are now used for this purpose both in the laboratory and industry. For example, the syn dihydroxylation of alkenes is most often achieved using OsO_{4} or RuO_{4} as catalysts, which add from the less hindered diastereotopic face of alkene. ${ }^{2}$ Despite the synthetic utility, the toxicity and high cost of OsO_{4} and poor product-selectivity exhibited by KMnO_{4} and $\mathrm{RuO}_{4} / \mathrm{H}_{2} \mathrm{O}_{2}$ systems have prevented a successful application of these reagents on industrial scale. The syn dihydroxylation from the more hindered face can be effected using Woodward's procedure in which alkenes are treated with $\mathrm{I}_{2}-\mathrm{AgOAc}$ in AcOH containing water. ${ }^{3}$ On the other hand, anti dihydroxylation of an alkene is generally achieved using certain peroxy acids as well as I_{2}-silver benzoate in the absence of water (Prevost reaction). ${ }^{4}$

3.1.2. Review of literature

Literature search reveals that there are several reports available for the preparation of racemic as well as chiral 1,2-diols. Based on the reagents used, the dihydroxylation mehtods can be divided into the following three categories.

1. Prevost-Woodward type reaction
2. Metal oxide addition to olefin
3. Epoxide opening with oxygen nucleophiles

The above three types of dihydroxylation are briefly discussed below.

Prevost-Woodward type reaction

Prevost-Woodward reaction

The Prevost reaction ${ }^{4 \mathrm{~b}}$ and its Woodward modification ${ }^{3 \mathrm{a}}$ are important methods for the preparation of trans and cis 1,2-diols respectively with excellent yields. These reactions involve the treatment of an alkene with iodine and silver (I) carboxylate. Both reactions are considered to proceed through trans iodocarboxylate 2, which by interaction of neighbouring acyloxy group and displacement with water or acetoxy group results in the formation of syn or anti diol derivatives depending upon the reaction conditions (Scheme 1). The alkaline hydrolysis of these diol derivatives gives the corresponding trans and cis diols 3 and 4 respectively.

Scheme 1: i) a) $\mathrm{I}_{2}, \mathrm{PhCO}_{2} \mathrm{Ag}$ (2 equiv.), $\mathrm{AcOH}, 85^{\circ} \mathrm{C}$; b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$. ii) a) I_{2}, $\mathrm{PhCO}_{2} \mathrm{Ag}$ (1 equiv.), $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}, 85^{\circ} \mathrm{C}$; b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$.

Mechanistically, in the first step of the reaction iodine adds to cyclohexene (1) to form iodonium ion 5, which is opened with nucleophilic silver (I) carboxylate to give trans 2iodocyclohexyl acetate (2, Scheme 2). Iodo acetate 2 can be isolated in quantitative yield from the reaction by conducting the reaction at lower temperature and lesser equivalent of metal carboxylate. Neighboring group participation of the acetate group displaces the iodine to produce 1,3-dioxolan-2-ylium intermediate 6. Under anhydrous condition
(Prevost condition), acetate ion attacks the cyclic intermediate at C-4 position to furnish trans diacetate (7, route A). On the other hand, in the presence of water (Woodward condition), the intermediate is attacked by the water molecule at C-2 position to produce hydroxy acetate (9) with syn stereochemistry (route B).

Scheme 2: Mechanism of Prevost-Woodward reaction

Woodward noted ${ }^{5}$ that his modification of the Prevost reaction offers the opposite facial selectivity as compared to oxidation with OsO_{4} in the dihydroxylation of synthetic steroid intermediate 10. Here, the steric approach factors first direct the stereochemistry of the iodination which is followed by hydroxylation from the opposite face to furnish cis diol 12 whereas oxidation with OsO_{4} leads to the isomeric cis diol 14 by direct attack of OsO_{4} from the most accessible face via osmate ester 13 (Scheme 3).

10

11

12

Scheme 3: Comparison of facial selectivity between Woodward and OsO_{4} dihydroxylations

However, Prevost-Woodward reaction suffers from the following disadvantages
i) Woodward reaction affords only low yields of cis diols with tri- or tetra substituted olefins.
ii) Highly activated aromatic rings like 1-allyl phenol undergo aromatic iodination to give 2-allyl 6-iodophenol.
iii) The deactivated olefins like alkyl cinnamates are less reactive or unreactive under this reaction condition.
iv) Often sterically hindered olefins fail to produce the desired diol derivatives. For example, the olefin 15 gave the corresponding trans 1,2-diol 16 even in the presence of water (Woodward condition). The reason for non-participation of water was discussed in terms of sterical hindrance that prevents nucleophilic attack of water to the acetoxonium ion (Scheme 4). ${ }^{6}$

15

16

Scheme 4: Unprecedented Prevost reaction under Woodward condition

Since Prevost-Woodward reaction serves as a mild and efficient method to prepare diols, several modifications in the reagent system have been attempted. Several metal carboxylates like $\mathrm{Cu}, \mathrm{Bi}, \mathrm{Hg}$ (II) were employed as acetate sources and N bromoacetamide, $\mathrm{I}_{2}, \mathrm{Br}_{2}$, N -bromosuccinamide were screened as halogen sources. Some of the modifications are briefly discussed below.

Fenton's approach (1970) ${ }^{7}$

Fenton et al. found that when trans 2-N-phenylurethane cyclohexyl chloride (17) was heated in aqueous ethanol for 70 h in a sealed tube, cis-1,2-cyclohexane diol (4) was formed in 95% via dioxane intermediate 18. Aniline (19) was also separated as the by product (Scheme 5).

Scheme 5: i) aq. EtOH, $90^{\circ} \mathrm{C}$, sealed tube, $70 \mathrm{~h}, 95 \%$.

Buddrus' approach (1973) ${ }^{8}$

Iodine tris(trifluoroacete) was also found to oxidize olefins to diols. Thus, addition of olefin 20 to a solution of iodine tris(trifluoroacete) in pentane followed by hydrolysis resulted in the formation of vic-diol 22 in 50-70\% yields via diacetate 21 (Scheme 6).

Scheme 6: i) $\mathrm{I}\left(\mathrm{OCOCF}_{3}\right)$, pentane, $25^{\circ} \mathrm{C}$; ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$.

Granger's approach (1976) ${ }^{9}$

N-Bromoacetamide (NBA) had also been employed as the halogen source to obtain bromoacetoxy derivative. When deccalin derivative 23 was treated with N bromoacetamide (NBA) and silver (I) benzoate in wet acetic acid produced syn diol derivatives, which on hydrolysis produced cis-diol 24 (Scheme 7).

Scheme 7: (i) a) NBS, $\mathrm{PhCO}_{2} \mathrm{Ag}$ (1 equiv.), $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}, 85^{\circ} \mathrm{C}$; b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$.

Corey's approach (1976) ${ }^{10}$

Corey et al. reported an efficient method for the synthesis of syn diols that involves cyano acetic ester as the intermediate. Accordingly, reaction of the cyanoacetate ester 25 with excess of NaH generated the corresponding enolate, which underwent intramolecular nucleophilic displacement to form cyanoketone acetal 26. Hydrolysis using 1 N HCl produced the mono cyanoacetate 27 , which upon alkaline ester hydrolysis afforded cis diol 4 (Scheme 8).

Scheme 8: i) NaH (excess), THF, $0^{\circ} \mathrm{C}$; ii) $1 \mathrm{~N} \mathrm{HCl}, 25^{\circ} \mathrm{C}$; iii) aq. $\mathrm{KOH}, 80^{\circ} \mathrm{C}, 79 \%$.

Trainor's approach (1992) ${ }^{11}$

cis and trans Cyclohexane 1,2-diols ($\mathbf{4} \& 3$) were prepared from cyclohexene (1) by reaction with I_{2} and bismuth (III) acetate in wet and dry acetic acid respectively. Reaction using lesser amounts of $\mathrm{Bi}(\mathrm{OAc})_{3}$ under dry conditions gave the intermediate i.e trans 2 iodocyclohexyl acetate (2) (Scheme 9).

Scheme 9: i) a) $\mathrm{I}_{2}, \mathrm{Bi}(\mathrm{OAc})_{3}$ (2 equiv.), $\mathrm{AcOH}, 85^{\circ} \mathrm{C}$; b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$. ii) a) $\mathrm{I}_{2}, \mathrm{Bi}(\mathrm{OAc})_{3}$ (1 equiv.), $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}, 85^{\circ} \mathrm{C}$; b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$.

Welzel's approach (2000) ${ }^{12}$

Welzel et al. replaced silver (I) benzoate or acetate with mercuric (II) acetate to get diol derivatives even in hindered cholestane. Cholestane 28 was treated with mercuric (II) acetate and iodine in wet acetic acid at $85{ }^{\circ} \mathrm{C}$ to get syn diol derivatives. The diol derivatives are further hydrolyzed under basic conditions to obtain the diol 29 (Scheme 10).

Scheme 10: i) a) $\mathrm{I}_{2}, \mathrm{Hg}(\mathrm{OAc})_{2}$ (1 equiv.), $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}, 85^{\circ} \mathrm{C}$; b) aq. $\mathrm{KOH}, 50^{\circ} \mathrm{C}$.

Horiuch's approach (2006) ${ }^{13}$

Horiuch et al. used copper (II) acetate as a better alternative to silver (I) benzoate. The reaction of cholest-2-ene (30) with iodine and copper (II) acetate in acetic acid under refluxing conditions yielded diol derivatives 31 and 32 which upon hydrolysis furnished diol 33 (Scheme 11).

Scheme 11: i) a) $\mathrm{I}_{2}, \mathrm{Cu}(\mathrm{OAc})_{2}$ (1 equiv.), $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}, 85^{\circ} \mathrm{C}$; ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$.

3.1.2.2 Metal oxide addition to olefin

OsO_{4} catalyzes the cis-dihydroxylation of alkenes by hydrogen peroxide or related sources of oxygen atoms in the presence of water. In terms of mechanism, OsO_{4} adds to alkenes to afford cyclic osmate esters 35 which undergo hydrolysis to give the vic diol 36 (Scheme 12). ${ }^{2 \mathrm{c}}$

Scheme 12: OsO_{4}-catalyzed dihydroxylation of olefins

Lewis bases such as tertiary amines and pyridines were found to increase the rate of the reaction. This "ligand-acceleration" arises via the formation of adduct $\mathrm{OsO}_{4}-\mathrm{L}$, which
adds more rapidly to the alkene. If the amine is chiral, then the dihydroxylation can proceed with enantioselectivity (see Sharpless asymmetric dihydroxylation).

Since OsO_{4} is toxic and expensive, it is used in catalytic amounts. The osmium catalyst is regenerated by oxidizing agents, such as $\mathrm{H}_{2} \mathrm{O}_{2}$, N -methylmorpholine N -oxide (NMO) and $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$. These oxidizing reagents do not react with the alkenes on their own. Other sources of osmium tetroxide include potassium osmate(VI) dihydrate $\left(\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ and osmium (III) chloride hydrate $\left(\mathrm{OsCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right)$ which oxidize osmium (VI) to osmium (VIII) in the presence of above mentioned oxidants.

Despite its success, some problems still need to be solved. The oxidation is limited to electron-rich or mono-, di-, and in some cases, trisubstituted olefins. Furthermore, the osmium catalyst is toxic and very expensive. RuO_{4}, as a dihydroxylation catalyst, is most promising. In 1954, Djerassi introduced RuO_{4} in organic chemistry. Since then, it has mainly been used for the degradation of unsaturated organic compounds. However, in ethyl acetate/acetonitrile/water a very fast dihydroxylation of olefins using $7 \mathrm{~mol} \%$ of RuO_{4} was observed (Scheme 13). Longer reaction times resulted in the formation of fission products. Thus, treatment of olefin 34 with catalytic $\mathrm{RuCl}_{3}, \mathrm{NaIO}_{4}$ as reoxidant in ethyl acetate/acetonitrile/water solvent system in the presence of acid produced the corresponding diols 36 in excellent yields. The reaction proceeds via the cyclic ruthenium ester 37. ${ }^{2 \mathrm{j}}$

Scheme 13: RuO_{4}-catalyzed dihydroxylation of olefins

3.1.2.3 Epoxide opening with oxygen nucleophile

One of the simple and efficient methods to afford trans diols involves the epoxidation of olefin followed by regioselective ring opening of epoxides in the presence of Lewis acids such as $\mathrm{FeCl}_{3}, \mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{SnCl}_{4}$ (Scheme 14). Recently, organic molecules like CBr_{4} were also found to promote epoxide opening with water to afford trans diol. ${ }^{4 a}$

Scheme 14: i) m CPBA, $\mathrm{CHCl}_{3}, 25^{\circ} \mathrm{C}$; ii) Lewis acid, $\mathrm{H}_{2} \mathrm{O}$.

Freeman's approach (1954) ${ }^{14}$

Freeman et al. observed that when peroxy trifluoroacetic acid $\left(\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H}\right)$ was used for the epoxidation of olefin 39, the epoxide was opened with in situ liberated trifluoroacetic acid to produce acetoxy alcohol 42. Further, hydrolysis of 42 under basic condition produced trans- diol 41 (Scheme 15).

Scheme 15: i) $\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H}, \mathrm{CHCl}_{3}, 25^{\circ} \mathrm{C}$; ii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH .

Stock's approach (1960) ${ }^{15}$

Olefins were directly converted to trans diols with excellent yields by treating with a mixture of potassium peroxymonosulfate $\left(\mathrm{KHSO}_{5}\right)$, potassium hydrogen sulfate $\left(\mathrm{KHSO}_{4}\right)$ and potassium sulfate $\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)$. This reaction proceeds through epoxidation followed by opening with water under acidic condition (Scheme 16).

Scheme 16: i) $\mathrm{KHSO}_{5} . \mathrm{KHSO}_{4} . \mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$.

3.1.3. Present work

3.1.3.1 Objective

As can be seen from the above discussion, several methods exit in the literature for the preparation of vic diols. Although Prevost-Woodward reaction promises excellent yields, it suffers from drawbacks such as use of expensive metal carboxylates, stoichiometric amount of molecular halogen, and formation of large amount of organic and inorganic wastes. The OsO_{4}-catalyzed dihydroxylation is expensive including its toxicity and volatility while epoxide opening with water involves two purification steps. Hence, a new alternative, reagent system for the Prevost-Woodward, which produces 1,2-diols is desirable.

3.1.4 Results and Discussion

In our lab, we have quite recently reported that the $\mathrm{NaIO}_{4} / \mathrm{LiBr}$ combination oxidizes toluene under acidic conditions to benzyl acetate in excellent yield. ${ }^{16}$ During the study on mechanistic investigation, we further observed that the reaction proceeded through benzyl bromide and that its rate of solvolysis was enhanced by the addition of a catalytic amount
of NaIO_{4}. Surprisingly, when (1,2-dibromoethyl)benzene was subjected to this solvolysis, bromides at benzylic as well as homobenzylic positions underwent solvolysis to give regioisomers of diol derivatives $\mathbf{4 4 a} \mathbf{4} \mathbf{4} \mathbf{b}$ and $\mathbf{4 5}$ in excellent yield.

Encouraged by this result, we envisioned to prepare styrene diol directly from styrene (43) using a catalytic amount of $\mathrm{LiBr}(20 \mathrm{~mol} \%)$ and $\mathrm{NaIO}_{4}(30 \mathrm{~mol} \%)$ in AcOH at 95 ${ }^{\circ} \mathrm{C}$ and indeed obtained regioisomers of styrene mono- (44a, 44b) and diacetates (45) with the ratio $87: 5$ in 92% combined yield. This mixture was subjected to basic hydrolysis $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}\right)$ without separation to furnish 1-phenyl-1,2-ethanediol (46) in 87% yield (Scheme 16). Control experiments indicated that no dihydroxylation occurred in the absence of either LiBr or NaIO_{4}.

Scheme 16: (i) styrene (3 mmol), $\mathrm{NaIO}_{4}(30 \mathrm{~mol} \%), \mathrm{LiBr}(20 \mathrm{~mol} \%), \mathrm{AcOH}(5 \mathrm{~mL})$, $95^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}(4.5 \mathrm{mmol})$, $\mathrm{MeOH}(15 \mathrm{~mL}), 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Among other oxidants screened (entries $8-14), \mathrm{KIO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, and $\mathrm{PhI}(\mathrm{OAc})_{2}$ have exhibited comparable activity as that of NaIO_{4}. Lowering the amount of LiBr below 20 $\mathrm{mol} \%$ led to a sharp decline in the yield of the diol (entry 4, Table 1). We determined that $30 \mathrm{~mol} \%$ of NaIO_{4}, acting both as oxidant and as a source of water (thus providing
"wet" Woodward condition), is sufficient to convert 1 equiv. of styrene (43) to the corresponding diol 46.

Table 1: Effect of oxidant and halogen sources on catalytic dihydroxylation of styrene ${ }^{a}$

entry	oxidant ${ }^{b}$	halogen source ${ }^{c}$	yield of diol (\%) ${ }^{\text {d }}$
1	NaIO_{4}	NaCl	22
2	NaIO_{4}	KI	65
3	NaIO_{4}	NaBr	84
4	NaIO_{4}	LiBr	$87(53)^{f}$
5	NaIO_{4}	NBS	79
6	NaIO_{4}	Br_{2}	82
7	NaIO_{4}	PyHBr_{3}	78
8	KIO_{3}	LiBr	84
9	$\mathrm{V}_{2} \mathrm{O}_{5}$	LiBr	42
10	WO_{3}	LiBr	36
11	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	LiBr	85
12	oxone	LiBr	77
13	$m \mathrm{CPBA}^{e}$	LiBr	trace
14	$\mathrm{PhI}(\mathrm{OAc})_{2}$	LiBr	85

[^0]Several alkenes (aliphatic, styrenic, allylic, disubstituted alkenes, α, β-unsaturated alkenes, etc.) with electron-donating and -withdrawing groups underwent dihydroxylation (Table 2) and produced the corresponding diols in excellent yields with syn diastereoselectivity. All the prepared diols were thoroughly characterized by comparing the melting points, IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.

For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of 48a showed signals at $\delta 4.57$ and 3.47 corresponding to the methine $(-\mathrm{CH}-\mathrm{OH})$ and methylene $\left(-\mathrm{CH}_{2} \mathrm{OH}\right)$ protons respectively,

Fig. 1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 48a

Table 2: LiBr-Catalyzed Dihydroxylation of Olefins Using $\mathrm{NaIO}_{4}{ }^{a}$

[^1]while the signals for the methyl protons appeared at $\delta 2.2$ as singlet (Fig. 1). Its ${ }^{13} \mathrm{C}$ NMR displayed signals at $\delta 74.6$ and 67.9 for the methine carbons ($-\mathrm{CH}-\mathrm{OH}$). The syn selectivity is controlled by water, formed in situ from NaIO_{4} and AcOH , which attacks 1,3-dioxolon-2-ylium ion (C) at C-2 position (Scheme 18).

Fig. 2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 8 j}$

As expected, allyl bromide gave the triol due to successive solvolysis of 1,3-dibromide. Lower yield in the case of α, β-unsaturated ester may be ascribed to the slower rate of bromoacetoxylation. In the case of allyl alcohol, 3-butene-1-ol, cinnamyl alcohol and 4acetoxystyrene acylation was carried out instead of basic hydrolysis to get corresponding
triacetates. In another example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 8 j}$ showed signals at $\delta 3.89$ and 3.73 due to the methylene protons $\left(\mathrm{PhOCH}_{2}-\right.$ and $\left.-\mathrm{CH}_{2} \mathrm{OH}\right)$ whereas the signals for the methine protons $(-\mathrm{CHOH})$ appeared at $\delta 4.02$. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 8 j}$ displayed typical signals at $63.6,68.8$ and 70.6 for the aliphatic carbons (C-O) with oxygen substituents (Fig. 2). However, attempts to obtain anti diols, by removing water formed in situ using either molecular sieves (4 \AA) or anhydrous MgSO_{4} were not successful. Interestingly, anti diols were indeed obtained when $\mathrm{PhI}(\mathrm{OAc})_{2}$ was employed as the oxidant in stoichiometric amounts under the same reaction condition. Since no water is formed, acetic acid acts as the nucleophile and opens up the intermediate \mathbf{C} at \mathbf{C} 4 position to result in trans-diastereoselectivity (Scheme 18).

Table 3: LiBr-Catalyzed dihydroxylation of olefins using $\mathrm{NaIO}_{4}{ }^{a}$

No.	olefin (4)	product $(\mathbf{6})$	yield of diol (\%)	dr^{c} $($ anti:syn $)$
1	indene	$\mathbf{5 0 a}$	79	$100: 0$
2	cis-stilbene	$\mathbf{5 0 b}$	84	$100: 0^{\mathrm{d}}$
3	trans-stilbene	$\mathbf{5 0 c}$	87	$100: 0$
4	cyclohexene	$\mathbf{5 0 d}$	82	$77: 23$
5	β-methylstyrene	$\mathbf{5 0 e}$	85	$33: 67$

${ }^{a}$ Reactions were carried out following the general procedurebut with 1 equiv of $\mathrm{PhI}(\mathrm{OAc})_{2} ;{ }^{b}$ Isolated yield after chromatographic purification; ${ }^{c}$ Diastereomeric ratios were determined from GC; ${ }^{d}$ The corresponding anti-diol was formed.

The lower selectivity observed in the case of cyclohexene and α-methylstyrene can be explained in terms of $\mathrm{S}_{\mathrm{N}} 2$ displacement of bromide in \mathbf{B} by LiOAc (Table 3).

All the anti diols were systematically characterized from their ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and comparing the melting points.

Fig. 3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 0 a}$

For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of 50a displayed signals at $\delta 4.91(\mathrm{~d})$ and $4.43(\mathrm{~m})$ corresponding to the methine protons $(-\mathrm{CH}-\mathrm{OH})$. It also indicated that the bezylic protons $\left(\mathrm{Ar}-\mathrm{CH}_{2}-\right)$ remained unaffected displaying signals at $\delta 3.08$ and $2.87(\mathrm{dd})$. Its ${ }^{13} \mathrm{C}$ NMR
spectrum exhibited signals at $\delta 79.7$ and 79.0 due to the methine carbons $(-\mathrm{CH}-\mathrm{OH})$ whereas the signal for benzylic methylene carbon $\left(\mathrm{Ar}-\mathrm{CH}_{2}-\right)$ appeared at $\delta 36.5$ (Fig. 3).

3.1.6. Mechanism

Our earlier studies ${ }^{16}$ had shown that 1 equiv. of NaIO_{4} was sufficient to oxidize 8 equiv of Br^{-}ions, as can be seen from Scheme 17..

$$
\begin{array}{rl}
8 \mathrm{LiBr}+\mathrm{NaIO}_{4}+8 \mathrm{H}^{+} & \longrightarrow 4 \mathrm{Br}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{Br}^{-} & \longrightarrow \mathrm{Br}_{2}+2 \mathrm{e} \\
\mathrm{IO}_{4}^{-}+2 \mathrm{H}+2 \mathrm{e}^{-} & \longrightarrow \mathrm{IO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{IO}_{3}^{-}+6 \mathrm{H}+6 \mathrm{e}^{-} & \longrightarrow \\
\mathrm{I}_{2}+2 \mathrm{e} & \mathrm{fast} \\
\mathrm{I}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{I}
\end{array}
$$

Scheme 17: Steps involving in LiBr oxidation with NaIO_{4}

Voltage vs. $\mathrm{Ag} / \mathrm{AgCl}$ reference

Fig. 4: Cyclic voltagram of LiBr oxidation with NaIO_{4}

The cyclic voltagram (Fig. 4) of LiBr oxidation with NaIO_{4} shows one oxidation peak at $\mathrm{Epa}_{\mathrm{a}}=0.565 \mathrm{~V}$ and three reduction peaks at $\mathrm{Ep}_{\mathrm{c}}=0.720 \mathrm{~V}, 0.490 \mathrm{~V}$ and 0.390 V . The comparison of this value with the literature values revealed that the reaction involves four steps. Hence, only $30 \mathrm{~mol} \%$ of NaIO_{4} was required to bring about 100% conversion. From the above facts and the evidence provided by the cyclic voltammetry study, the proposed catalytic cycle for the LiBr catalyzed dihydroxylation is shown in Scheme 18. The halogens ($\mathrm{X}=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}$), generated in situ from alkali metal halides by oxidation with NaIO_{4} or $\mathrm{PhI}(\mathrm{OAc})_{2}$ rapidly undergo bromoacetoxylation with alkenes via bromonium ion \mathbf{A} to produce trans-1,2-bromoacetate derivative \mathbf{B}, which was isolated and characterized. The intermediate species \mathbf{C}, formed from \mathbf{B} in the presence of NaIO_{4}, assisted anchimerically by the acetate group, is opened either by water to give cishydroxy acetate or by acetic acid to give the trans diacetate with concomitant liberation of Br_{2} (Scheme 18).

Scheme 18: Proposed mechanistic pathway

Only organic halides with acetyl groups at the 2-positions were oxidized by NaIO_{4} or $\mathrm{PhI}(\mathrm{OAc})_{2}$. Octyl bromide failed to undergo oxidation under the same reaction condition. Hence, we believe that neighboring group participation by the acetate group makes the CBr bond more polar and thus facilitating the oxidation process.

3.1.7. Conclusion

Here, we have developed, for the first time, a new, practical and "metal-free" procedure for the dihydroxylation of alkenes catalyzed by LiBr using commercially available NaIO_{4} or $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidants in acetic acid to produce syn as well as anti diols respectively. The simplicity, environmental friendliness and readily accessible reagents make this system superior to other expensive and toxic $\mathrm{Tl}(\mathrm{I}), \mathrm{Ag}(\mathrm{I}), \mathrm{Bi}(\mathrm{III})$ and $\mathrm{Hg}(\mathrm{II})$ reagents.

3.1.8. Experimental section

General experimental procedure:

A mixture of olefin (3 mmol), $\mathrm{NaIO}_{4}(30 \mathrm{~mol} \%), \mathrm{LiBr}(20 \mathrm{~mol} \%)$ was taken in 25 mL round bottomed flask and glacial acetic acid (5 mL) was added. The reaction mixture was heated at $95{ }^{\circ} \mathrm{C}$ (using oil bath) for 18 h . The light yellow colored reaction mixture became purple in color after the completion of the reaction. The reaction mixture was then extracted with ethyl acetate $(30 \mathrm{~mL} \mathrm{x} 3)$ and the combined organic phase was washed with saturated aq. sodium thiosulfate solution, water and aq. NaHCO_{3}. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product, which was subjected to basic hydrolysis without purification.

The crude product as obtained above was stirred with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv.) in methanol (20 mL) at $25{ }^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, methanol was removed under
reduced pressure and the reaction mixture was extracted with ethyl acetate (30 mL x 3). The combined organic phase was washed with water and brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude diol, which was purified by column chromatography packed with silica gel using petroleum ether: ethyl acetate (7:3) as eluent to afford pure diol.

General procedure for the acetylation of polyols: (48d and 48o-r)

To the crude polyol was added acetic anhydride (1 mL) and pyridine (3 mL) and stirred at $90^{\circ} \mathrm{C}$ for 10 h . After completion of the reaction it was extracted with ethyl acetate and thoroughly washed with water and brine successively. Then the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude poly acetate, which was purified by column chromatography packed with silica gel using petroleum ether: ethyl acetate (9:1) as eluents to afford pure acetate derivatives.

1-Phenyl-1,2-ethanediol (46)

Yield: 87%; mp: $64-65{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.57(\mathrm{~m}, 2 \mathrm{H}), 4.51$ (brs, $2 \mathrm{H}), 4.69(\mathrm{dd}, J=3.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 59.0$, $73.3,125.5,126.8,126.9,140.9$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3412,2942,2896,1324,1156,992$;

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 69.54; H, 7.31. Found: C, 69.53; H, 7.29\%.

1-(4-Methylphenyl)-1, 2-ethanediol (48a):

Yield: 89%; mp: $76-77{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.22(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H})$, $4.58(\mathrm{dd}, J=4.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{brs}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.1,2 \mathrm{H})$;
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.1,67.9,74.5,126.1,129.0,137.1,137.6 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right.$,
cm^{-1}): 3423, 2931, 2897, 1329, 1141, 1002; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 71.02 ; \mathrm{H}, 7.96$. Found: C, 70.96; H, 8.09\%.

1-(4-Bromophenyl)-1, 2-ethanediol (48b):

Yield: 90%; mp: $81{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ and $\mathrm{DMSO}_{\mathrm{d}}^{6}$): $\delta 3.60(\mathrm{~m}, 2 \mathrm{H})$, $4.72(\mathrm{dd}, J=3.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ and $\mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 82.6,88.5,135.2,143.8,146.0,157.9$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3323,2935,2891,1299,1155,982$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}: \mathrm{C}, 44.27$; H, 4.19; Br, 36.81. Found: C, 44.26; H, 4.16; Br, 36.79\%.

1-(4-Acetoxyphenyl)-1, 2- diacetoxyethane (48c)

Yield: 78\%; gum; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 2.05$ (s, 3H), $2.10(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$ $4.27(\mathrm{~m}, 2 \mathrm{H}), 6.0(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 19.0,19.3,64.3$, $71.1,120.3,126.4,132.6,149.3,167.3,168.1,168.7$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3383,2912$, 2895, 1745, 1496, 1298, 1150, 971; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 60.50 ; \mathrm{H}, 5.94$; Found: C, 60.58; H, 5.79\%.

1-Phenyl-1, 2-propane-cis-diol (48d):

Yield: 84%; gum; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H})$, 4.10 (brs, 2 H), $4.2(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 5 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C} \mathbf{C N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 18.8$, 72.1, 79.5, 127.1, 127.9, 128.3, 141.3; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3392,2922,2897,1496,1352$, 1150; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}$: C, $71.50 ; \mathrm{H}, 7.33$. Found: C, $71.32 ; \mathrm{H}, 7.41 \%$.
meso-1,2-Diphenyl-1, 2-ethanediol (48e \& 50c)

Yield: 87%; mp: $98{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.04(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 7.050$ (m, 4H), 7.19 (m, 6H); ${ }^{13} \mathbf{C}$-NMR (50 MHz, CDCl_{3}): $\delta 78.6,126.9,127.3,140.7$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3392,2922,2912,1456,1272,1150$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}$, 78.48; H, 6.58. Found: C, 78.40; H, 6.60\%.

1,2-Diphenyl-1, 2-ethanediol (48f \& 50b)

Yield: 79%; mp: $116-117{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.79$ (brs, 2H), 4.61 (s, $2 \mathrm{H}), 7.06(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ and DMSO- $\left.\mathrm{d}_{6}\right): \delta 78.35$, 126.61, 127.02, 140.47; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3392,2922,2912,1456,1372,1150$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 78.48; H, 6.58. Found: C, 78.56; H, 6.71\%.

Indane-1, 2-cis-diol (48g)

Yield: 87%; mp: $108-109{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.72(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 2.79$ (brs, $1 \mathrm{H}), 2.90(\mathrm{dd}, J=3.6,16.42 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=5.7,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 4.91$ $(\mathrm{d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}\right.$, DMSO-d $_{6}$ and $\left.\mathrm{CDCl}_{3}\right): \delta 38.5,73.0,75.3,124.9,126.4,127.8,140.7,144.0 ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3412$, 2942, 2896, 1324, 1156, 992; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 71.98; H, 6.73. Found: C, 71.79 ; H, 6.65\%.

Tetrahydronaphthalene 1, 2-cis-diol (48h)

Yield: 79\%; mp: $100-102{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$): $\delta 1.85(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}$, $1 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}),, 3.82(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}),, 7.13(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR ($50 \mathrm{MHz}, \operatorname{DMSO}-\mathrm{d}_{6}$ and CDCl_{3}): δ 38.5, 73.0, 75.2, 124.9, 126.4, 127.7, 140.7, 144.0; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3372,2941,2893,1323,1151,992$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 73.14; H, 7.36. Found: C, 73.24; H, 7.33\%.

1-(Phenyl)-1, 2, 3-triacetoxy propane (48i)

Yield: 77\%; gum; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.05(\mathrm{~s}, 6 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, J$ $=4.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=4.0,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.4(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1H), $7.34(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.5,20.6,20.8,62.0,72.2,73.7$, 127.1, 128.6, 128.8, 169. 8, 170.1, 170.8 136.4; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2912,2895,1745$, 1496, 1213, 1150, 971; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 61.21; H, 6.17. Found: C, 61.35; H, 6.01\%.

3-(Phenoxy)-1, 2-propane diol (48j)

Yield: 80%; mp: $50-52{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 4.31($ brs 2 H$), 6.85(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 63.6,68.8,70.6,114.5,121.0,129.3,158.5 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3423,2931$, 2897, 2132, 1329, 1141, 1002; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}: \mathrm{C}, 64.27$; $\mathrm{H}, 7.21$. Found: C, 64.20; H, 7.09\%.

3-Phenyl-3-acetoxy-2-hydroxy methyl propionate (48k)

Yield: 65\%; gum; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.35(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 20.7,52.6$, $73.5,75.5,126.2,127.0,128.4,136.4,169.4,172.3 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3372,2912,2895$, 1745,1738, 1496, 1312, 1213, 1150, 975; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 60.49 ; \mathrm{H}, 5.92$. Found: C, 60.31; H, 5.77\%.

2-(4-Chlorophenyl)-propane-1, 2-diol (481)

Yield: 82\%; gum; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.45$ ($\mathrm{s}, 3 \mathrm{H}$), 2.69 (brs, 1 H), 3.07 (brs, $1 \mathrm{H}), 3.42(\mathrm{dd}, J=1.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}) 3.66(\mathrm{dd}, J=1.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=11.2 \mathrm{~Hz})$,
7.3 (m, 4H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 36.2,80.7,84.7,106.4,137.0,138.43,142.8$, 154.5; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3332,2932,2893,1393,1299,1155,981$; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClO}_{2}$: C, $57.91 ; \mathrm{H}, 5.90 ; \mathrm{Cl}, 18.99$. Found: C, $57.98 ; \mathrm{H}, 5.81 ; \mathrm{Cl}, 18.91 \%$.

1-Cyclohexyl-1, 2-ethane diol (48m)

Yield: 85\%; gum; ${ }^{1} \mathbf{H}-$ NMR (200 MHz, CDCl_{3}): $\delta 0.91-1.45(\mathrm{~m}, 6 \mathrm{H}) ; 1.59-1.87,(\mathrm{~m}, 5 \mathrm{H})$; 3.27 (brs, 2H), 3.33-3.51 (m, 2H); $3.64(\mathrm{dd}, J=2.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, CDCl_{3}): δ 26.1, 26.4, 28.6, 29.0, 40.7, 64.6, 76.3; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 66.61 ; \mathrm{H}$, 11.18. Found: C, 66.78; H, 11.29\%.

1, 2, 4-Triacetoxybutane (48n)

Yield: 91\%; gum; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.94(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, $6 \mathrm{H}), 4.09(\mathrm{~m}, 3 \mathrm{H}), 4.28(\mathrm{dd}, J=3.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 20.5,20.7,29.8,60.0,64.6,68.4,169.9,170.2,170.4$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2912$, 2895, 1745, 1496, 1150, 971; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 51.72; H, 6.94. Found: C, 51.66; H, 6.93\%.

1, 2, 3, 4-Tetraacetoxybutane (480)

Yield: 83%; gum; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.07-2.11(\mathrm{~m}, 9 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 4.21$ (m, 2H), $4.32(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.2,20.36,2.2,65.0,65.3,68.6$, 169.1, 169.3, 169.4, 169.6; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2911,2892,2868,1745,1496,1324,1210$, 1150, 971; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{8}$: C, 49.65; H, 6.25. Found C, 49.78; H, 6.14\%.

1, 2, 3-Triacetoxy propane (48p \& 48q)

Yield: $(48 \mathrm{q}=86 ; 48 \mathrm{r}=79 \%)$; gum; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.07(\mathrm{~s}, 6 \mathrm{H}), 2.09$ (s, 3H), $4.13(\mathrm{dd}, J=6.0,10.0 \mathrm{~Hz}, 2 \mathrm{H}) 4.28(\mathrm{dd}, J=4.0,12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ - NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.0,20.3,61.7,68.6,169.2,169.6$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right):$ 2912, 2896, 2867, 1743, 1495, 1323, 1213, 1158, 971, 891; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{6}$: C, 49.54; H, 6.46. Found: C, 49.69; H, 6.32\%.

Cyclohexane-1, 2-cis-diol (48r)

Yield: 86\%; mp: 92-93 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 6 \mathrm{H})$, 3.73 (m, 2H), 4.05 (brs, 2H); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.5,29.7,70.6$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): 3343,2992,2918,2896,2867,1495,1323,1213$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}$, 62.04; H, 10.41. Found C, 61.92; H, 10.36\%.

Cyclooctane-1, 2-cis-diol (48s)

Yield: 83%; mp: $75{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.52-1.91$ ($\mathrm{m}, 14 \mathrm{H}$), 2.76 (brs, 2H), $3.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.7,26.3,29.9,72.9$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right): 3321,2985,2918,2896,1463,1323,1213,1120$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 66.62$; H, 11.18. Found: C, 66.78; H, 11.03\%.

n-Oct-1, 2-diol (48t)

Yield: 84\%; mp: $30{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.89(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.41(\mathrm{~m}$, $10 \mathrm{H}), 3.02(\mathrm{brs}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0$, $22.5,25.6,29.4,31.8,33.0,66.5,72.2 ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3323,2981,2912,2893,1464$, 1324, 1213, 1120, 993; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 65.71 ; H, 12.40. Found: C, 65.78; H, 12.31%.

Indane-1, 2- cis-diol (50a)

Yield: 79%; mp: $182-183{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.76(\mathrm{dd}, J=8.1,15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.17$ (dd, $J=7.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 3 \mathrm{H})$, $7.36(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ and $\mathrm{DMSO}-\mathrm{d}_{6}$): δ 36.4, 79.0, 79.5, 122.7, 123.0, 125.0, 126.1, 137.8, 142.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3412,2942,2896,1324,1156,992$; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 71.98; H, 6.73. Found: C, 71.82; H, 6.78\%.

Section I

$\mathrm{NaIO}_{4} / \mathrm{KI} / \mathrm{NaCl}$: A new reagent system for iodination of activated aromatics through in situ generation of iodine monochloride

3.2.1 Introduction

Aromatic iodo compounds are important intermediates for the synthesis of various pharmaceutical and bioactive compounds. ${ }^{17}$ They are also useful in metal-catalyzed cross coupling reactions, such as Heck, Stille and Negishi reactions, which are utilized in C-C and $\mathrm{C}-\mathrm{N}$ bond formation. ${ }^{18}$ Iodo compounds are more expensive, less stable and their reactivity by one order of magnitude higher than that of the corresponding bromide compounds. However, direct iodination of aromatic compounds is difficult due to the low electrophilicity of molecular iodine compared to that of molecular chlorine and bromine. Further, iodination is reversible, hydrogen iodide (HI) generated in reaction tends to reduce the iodo compound to the starting material. It must, therefore, be removed from the reaction mixture as soon as it formed. This can be achieved by its neutralization with $\mathrm{NaHCO}_{3}, \mathrm{CaCO}_{3}$ or HgO . In the ideal situation, HI can be reoxidized to iodine by fuming sulfuric acid (oleum), nitric acid, iodic acid, $\mathrm{H}_{2} \mathrm{O}_{2}$, alkali persulphate, organic peroxyacids and other oxidizing agents. ${ }^{19}$

The most common oxidizing agents are iodine, hydrogen iodide, iodine monochloride, iodine monobromide, hypoiodous acid (HOI) alkalihypoiodite (KOI), alkylhypoiodite (ROI) and acylhypoiodites (RCOI). Phosphorous-based iodine reagents like phosphorous triiodide $\left(\mathrm{PI}_{3}\right)$, triphenyl phosphate diiodie $(\mathrm{PhO})_{3} \mathrm{PI}_{2}$, triphenoxyphosphonium iodide $(\mathrm{PhO}){ }_{3} \mathrm{P}^{+} \mathrm{MeI}^{-}$prepared from their components also act as iodinating agents. The important iodinating agents are N-iodosuccinimide and 1,3-diiodo-5,5-dimethyl hydantoin, which are prepared by iodination of N-H bond.

Almost all types of aromatic nuclei with electron withdrawing as well as donating substituents can be iodinated using molecular iodine in the presence of strong acid or oxidizing agents. For example, iodination of aromatic nucleus $\mathbf{5 1}$ is shown in the Scheme 19. In some cases, the iodinating agent is not iodine but acetyl hypoiodite, formed from iodine and acetic acid in the presence of an oxidizing agent.

Scheme 19: i) Reagents and conditions

1. $\mathrm{I}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Ag}_{2} \mathrm{SO}_{4}, 75-80 \%$
2. $\mathrm{I}_{2}, \mathrm{HNO}_{3}, 86 \%$
3. $\mathrm{I}_{2}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{AcOH}, 70 \%$
4. $\mathrm{I}_{2}, \mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}, \mathrm{H}_{2} \mathrm{SO}_{4}, 77 \%$
5. $\mathrm{I}_{2}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Ag}, 100 \%$
6. $\mathrm{I}_{2}, \mathrm{Tl}\left(\mathrm{OCOCF}_{3}\right)_{3}, 89 \%$.

The reaction conditions shown in Scheme 19 are applicable to most of the aromatic compounds having alkyl groups or substituents attached to the benzene rings. Depending on the nature of such substituents, milder or harsher conditions must be applied.

3.2.2 Review of literature

Literature search revealed that in addition to the above methods, there are also several other reagents for the efficient iodination of aromatic nucleus. Some of these methods are briefly discussed below.

Rozen's approach (1990) ${ }^{20}$

Rozen et al. have reported iodination of aromatic compounds 53 using in situ generated iodine monofluoride from I_{2} and F_{2} to form the corresponding iodoarenes 54. Even aromatic compounds with electron-withdrawing groups like $\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{CO}_{2} \mathrm{Et}$, etc underwent iodination with excellent yields (Scheme 20).

$$
\begin{array}{r}
\mathrm{R}=\mathrm{H}, \text { alkyl, OAc, OPh } \\
\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{Br}, \mathrm{CO}_{2} \mathrm{Et}
\end{array}
$$

Scheme 20: i) $\mathrm{I}_{2}, \mathrm{~F}_{2}, \mathrm{CFCl}_{3},-78^{\circ} \mathrm{C}$.

Ellervik's approach (1994) ${ }^{21}$

Ellervik et al. have employed iodine monochloride (ICl) for an efficient iodination of aromatics in the presence of Lewis acids like indium triflate or mercuric triflate to furnish iodo compounds with excellent yields (Scheme 21).

$$
\begin{aligned}
& \mathrm{R}=\mathrm{OMe}, \mathrm{NMe}_{2}, \mathrm{NH}_{2}, \mathrm{OH}, \mathrm{Me} \\
& \mathrm{R}_{1}=\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{Br}, \text { alkyl }
\end{aligned}
$$

Scheme 21: $\mathrm{ICl}, \operatorname{In}(\mathrm{OTf})_{3}, 1 \mathrm{~h}, 25^{\circ} \mathrm{C}$.

Zupan's approach (1996) ${ }^{22}$

Regioselective iodination of aromatic ethers have been carried out by Zupan and his coworkers using selectfluor (57) as oxidant and molecular iodine as iodine source at ambient conditions (Scheme 22).

Scheme 22: I_{2}, selectfluor, $\mathrm{CH}_{3} \mathrm{CN}, 22^{\circ} \mathrm{C}$.

Kashima's approach (1997) ${ }^{23}$

Kashima et al. have developed an efficient method for the regioselective aromatic iodination using iodine and nitrogen dioxide in the presence of catalytic sulfuric acid (Scheme 23).

Scheme 23: $\mathrm{I}_{2}, \mathrm{NO}_{2}$ (excess), $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CHCl}_{3}, 40-90^{\circ} \mathrm{C}, 10 \mathrm{~h}$.

Kim's approach (1999) ${ }^{24}$

A practical method for the iodination of aromatic compounds has been described by Kim et al. using a mixture of iodine and tetrabutyl ammonium peroxydisulfate as the oxidant under ambient conditions (Scheme 24).

$\mathrm{R}, \mathrm{R}_{1}=\underset{\text { aryloxy, halogen }}{\mathrm{H}, \text { alkyl, alkoxy, }} \quad$ yield $87-95 \%$
Scheme 24: $\left(n B u_{4} \mathrm{~N}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{I}_{2}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$.

Mukaiyama's approach (2000) ${ }^{25}$

Mukaiyama et al. have reported iodination of activated aromatics using a combination of iodine monochloride (ICl) and catalytic zinc oxide as the acid scavenger (Scheme 25).

Scheme 25: $\mathrm{ICl}, \mathrm{ZnO}$ (1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$.

Ruoho's approach (2002) ${ }^{26}$

Tetramethyl ammonium dichloro iodate $\left[\left(\mathrm{Me}_{4}\right) \mathrm{N}^{+} \mathrm{ICl}_{2}{ }^{-}\right]$has been employed by Ruoho et al. as an efficient and environmentally friendly reagent for the iodination of aromatic compounds under mild and solvent-free conditions (Scheme 26).

Scheme 26: $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{ICl}_{2}^{-}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5-45 \mathrm{~min}, 25^{\circ} \mathrm{C}$.

Broutin's approach (2002) ${ }^{27}$
N-Iodosuccinimide (58) as the iodine source along with catalytic trifluoroacetic acid has been employed for the mild and regioselective iodination of electron-rich aromatic compounds (Scheme 28).

Scheme 28: cat. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}$, reflux.

Skulski's approach (2002) ${ }^{28}$

Skulski et al. have described iodination of aniline derivatives 59 using urea-hydrogen peroxide addition complex (UHP) as the oxidant and molecular I_{2} as the halogen source under microwave irradiation (Scheme 29).

Scheme 29: Urea $\cdot \mathrm{H}_{2} \mathrm{O}_{2}$ complex, $\mathrm{I}_{2}, \mathrm{CHCl}_{3}$, microwave, 10 min .

Shiri's approach (2003) ${ }^{29}$

Direct and regioselective iodination of benzene, naphthalene and other activated aromatic compounds using iodine or sodium iodide in the presence of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} .1 .5 \mathrm{~N}_{2} \mathrm{O}$ / charcoal system has been achieved by Shiri et al. (Scheme 30).

Scheme 30: I_{2} or $\mathrm{NaI}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} .1 .5 \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2-24$ hrs

Vaghei's approach (2003) ${ }^{30}$

Iodination of activated aromatics have been carried out using N, N^{\prime} '-diiodo- N, N^{\prime} ' 1,2 ethane bis(p-toluene sulfonamide) (61) as the iodine source in the presence of trifluoroacetic acid (Scheme 31).

Scheme 31: Reagent 61, cat. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$.

Kulkarni's approach (2004) ${ }^{31}$

The mixture of ammonium iodide $\left(\mathrm{NH}_{4} \mathrm{I}\right)$ and oxone $\left(\mathrm{KHSO}_{5} \mathrm{KHSO}_{4} \mathrm{~K}_{2} \mathrm{SO}_{4}\right)$ was found to iodinate activated aromatics with high regioselectivity at ambient conditions. Mechanistically, it was proposed that oxone oxidized ammonium iodide to liberate electrophilic iodine (I^{+}) species (Scheme 33).

Vibhute's approach (2005) ${ }^{32}$

Vibhute et al. have studied the iodination of different aryl hydroxy ketones $\mathbf{6 2}$ using iodine and iodic acid $\left(\mathrm{HIO}_{3}\right)$ at ambient conditions. Iodic acid acts as oxidant as well as acid source (Scheme 34).

Scheme 34: $\mathrm{I}_{2}, \mathrm{HIO}_{3}, 30-40^{\circ} \mathrm{C}$, EtOH: $\mathrm{H}_{2} \mathrm{O}$.

3.2.3. Present Work

3.2.3.1 Objective

From the above discussion, it is clear that most of the reported methods for iodinations employ either toxic molecular iodine as the iodine source or expensive metal salts as oxidant. Some reports even mention new and commercially non-available reagents. Hence, a practical method, which should involve less toxic metal halide as the iodine source or the process is metal-free, will be of paramount importance. This section describes one such process which involves the iodination of activated aromatics using
NaIO_{4} as the oxidizing agent and potassium iodide as the iodine source in acetic acid as solvent.

3.2.4. Results and discussion

In connection with our interest on NaIO_{4} mediated oxidations, ${ }^{33}$ we thought of providing a cheaper method for producing 4-iodo-2-nitroaniline (65) using $\mathrm{NaIO}_{4} / \mathrm{KI}$ combination. It may be noted that 4-iodo-2-nitroaniline (65) is the starting material for 3,3',4,4'tetraaminobiphenyl (TAB), a monomer for fuel cell applications. ${ }^{34}$ When iodination of 2nitroaniline (64) was carried out with alkali metal iodides (KI or NaI) as the iodine source and NaIO_{4} as the oxidant in aq. AcOH , acting both as solvent and acid source, iodination occurred to give 65 in 55% yield. Surprisingly, when NaCl (2 equiv) was added to the reaction mixture, both the reactivity as well as the yield of 65 (98\%) increased significantly (Scheme 36). Comparable yield of 65 (95\%) was also achieved with molecular iodine as the iodine source. The ${ }^{1} \mathrm{H}$ NMR spectrum of 4-iodo-2-nitroaniline (65) displayed a singlet at $\delta 3.83$ for the NH_{2} protons and three signals at $\delta 6.66(\mathrm{~d})$, $7.55(\mathrm{~d})$ and $8.38(\mathrm{~s})$ corresponding to the aromatic protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a characteristic peak shifted to upfield at $\delta 74.96$ corresponding to the C-I bond (Fig. 5).

Reagent: $\mathrm{NaIO}_{4}-\mathrm{KI} \quad 55 \%$
$\mathrm{NaIO}_{4}-\mathrm{I}_{2}-\mathrm{NaCl} \quad 95 \%$
$\mathrm{NaIO}_{4}-\mathrm{KI}-\mathrm{NaCl} \quad 98 \%$
Scheme 36: Iodination using $\mathrm{NaIO}_{4}-\mathrm{KI}-\mathrm{NaCl}$ system

Fig. 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 65

Encouraged by this result, we screened several other oxidants which are known to oxidize alkali metal halides that liberate iodine and the results are shown in Table 4. The use of a catalytic amount of $\mathrm{NaIO}_{4}(30 \mathrm{~mol} \%)$ and $\mathrm{NaCl}(30 \mathrm{~mol} \%)$ was not fruitful in terms of yield. Also, when LiBr was employed as the additive, nuclear bromination was a competitive reaction resulting in the formation of 4-iodo-2-nitroaniline and 4-bromo-2nitroaniline in the ratio of 1:6.

Table 4: Iodination of 2-nitroaniline (64) ${ }^{\text {a }}$

No.	Oxidant $^{\mathrm{a}}$	iodine	additive	Yield $^{\mathrm{b}}(\%)$ of source
1	NaIO_{4}	KI	-	55
2	NaIO_{4}	KI	NaCl	98
3	KIO_{3}	KI	NaCl	98
4	KBrO_{3}	KI	NaCl	71
5	Oxone^{2}	KI	NaCl	47
6	HIO_{4}	KI	NaCl	87
7	$\mathrm{mCPBA}^{\mathrm{g}}$	KI	NaCl	56
8	$\mathrm{~V}_{2} \mathrm{O}_{5}$	KI	NaCl	32^{c}
9	NaIO_{4}	NaI	NaCl	84
10	NaIO_{4}	NBu NI	NaCl	82
11	NaIO_{4}	I	NaCl	95^{d}
12	NaIO_{4}	KI	NaF	58
13	NaIO_{4}	KI	LiBr	$100^{\mathrm{f}}(16: 84)^{\mathrm{e}}$
14	NaIO_{4}	KI	NCS	73

[^2]To establish the scope of the methodology, we subjected a variety of activated aromatic compounds to nuclear iodination and the results are shown in Table 5. As can be seen, activated aromatic compounds were converted to mono or poly-iodoaromatics in quantitative yields within a short period of time at $25^{\circ} \mathrm{C}$. The reaction of phenol with one molar equivalent of KI led to a mixture of mono and poly-iodinated products. The degree of poly-iodination is temperature dependent, but attempts to control iodination of phenol by conducting the reaction at $0{ }^{\circ} \mathrm{C}$ resulted in low conversion probably due to the fact
that NaCl was not oxidized at $0{ }^{\circ} \mathrm{C}$. Similarly, aniline and substituted anilines were extremely active and gave excellent yields of iodoaromatics. The formation of iodo compounds were systematically confirmed from ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra. For example, the ${ }^{1} \mathrm{H}$ NMR of 4-iodoanisole ($\mathbf{6 7 d}$) displayed a singlet at $\delta 3.77$ due to $-\mathrm{OCH}_{3}$ protons and other characteristic signals at $\delta 6.68(\mathrm{~d})$ and $7.55(\mathrm{~d})$ corresponding to $1,4-$ substituted aromatic protons. Its ${ }^{13} \mathrm{C}$ NMR showed typical signals at $\delta 55.2$ and 82.6 for the $-\mathrm{OCH}_{3}$ and \mathbf{C}-I carbons respectively (Fig. 6).

Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 7 d}$

When anilines with deactivating groups such as $\mathrm{NO}_{2}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{Cl}$ and I were subjected to the iodination, only mono-iodination took place. The reaction was exothermic; often the temperature of the reaction reached $50-55^{\circ} \mathrm{C}$ during the addition of KI. Easily oxidizable groups such as hydroxy, aldehyde or amine were not affected, but sulfides and ophenylenediamine, when subjected to the oxidation, gave sulfoxides and ring opened product, respectively. Also the method failed in the case of deactivated and weakly activated aromatic systems such as arenes and alkyl arenes.

Table 5: $\mathrm{NaIO}_{4} / \mathrm{KI} / \mathrm{NaCl}$-mediated iodination of activated arenes ${ }^{\mathrm{a}}$
No.
g

h

2

1

2

2

6

6
6
0.5

1
95

95

97

[^3]The proposed reaction pathway for the iodination is shown in Scheme 37. It has been established in our earlier studies ${ }^{33}$ that NaIO_{4} oxidizes metal halides (e.g. KI, NaCl$)$ in the presence of acid to liberate halogens $\left(\mathrm{I}_{2}, \mathrm{Cl}_{2}\right)$ (eqns. 1 and 2). Iodine monochloride, ${ }^{35}$ presumably formed from the liberated halogens, acts as the electrophile (eqns. 3-5). The formation of I-Cl was confirmed by the fact that styrene under the same reaction conditions yielded a mixture of 1-(1-chloro-2-iodoethyl)benzene (23\%) and 2-iodo-1phenylethylacetate (35\%).

Scheme 37: Proposed mechanistic pathway for the iodination

3.2.5. Conclusion

In conclusion, we have developed a simple protocol for the iodination of activated aromatic compounds using $\mathrm{NaIO}_{4} / \mathrm{KI} / \mathrm{NaCl}$ as a mild, inexpensive and selective iodinating agent. The methodology involves in situ generation of I-Cl acting as electrophile for iodination. A remarkable feature of this system is that even acid sensitive functionalities like anilines could be iodinated quantitatively.

3.2.6. Experimental section

General procedure for the mono iodination

To a mixture of aromatic compound (3 mmol), $\mathrm{NaIO}_{4}(3 \mathrm{mmol}), \mathrm{NaCl}(6 \mathrm{mmol})$ in 10 mL of $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}(9: 1)$ was added $\mathrm{KI}(3 \mathrm{mmol})$ slowly so that the temperature of the reaction mixture does not exceed $50^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for a period mentioned in Table 5 and poured over ice cold water. The solid was extracted with dichloromethane, washed twice with water, dried over anhydrous sodium sulfate and
concentrated under reduced pressure. The crude product obtained was purified by column chromatography.

2-Iodo-4-nitroaniline (65)

Orange powder; mp: $105{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, $)$, $8.04(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 80.2, 113.5, 127.0, 137.1, 139.6, 156.5; IR ($\left.\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3390,2940,1640,1600,1515$, 1470, 1330; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{IN}_{2} \mathrm{O}_{2}$: C, 27.29; H, 1.91; I, 48.97; N, 10.61. Found: C, 27.22; H, 1.95; I, 48.93; N, 10.67\%.

2,4-Diiodoaniline (67a)

Dark powder; mp: $94-96{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 78.6, 85.2, 117.9, 139.3, 147.2, 149.8; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3480,3393,1610,1470,1380$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}_{2} \mathrm{~N}$: C 20.89; H 1.46; I 73.58; N 4.06. Found: C 20.83; H 1.41; I 73.58; N 4.12\%.

2-Chloro 4-iodoaniline (67b)

Dark powder; mp: $82-84{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.07(\mathrm{br}, 2 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.3,2.05 \mathrm{~Hz}), 7.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 78.05,117.5,120.25,136.37,137.17,142.78$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3440,3391$, 2912, 1612, 1473, 1380; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClIN}: \mathrm{C}, 28.43 ; \mathrm{H}, 1.99 ; \mathrm{Cl}, 13.99$; I , 50.07. Found: C, 28.34; H, 1.89; Cl, 14.05; I, 50.17\%.

4-Iodoanisole (67d)

Colorless solid; mp: $46-48{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.93(\mathrm{~s}, 1 \mathrm{H}) ; \delta 7.55(\mathrm{~d}, \mathrm{~J}=$
$7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.4$,
82.8, 116.4, 138.2, 159.5; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{IO}: \mathrm{C}, 35.92$, H, 3.01, I 54.22. Found: C, 35.97, H, 3.06, I, 54.26\%.

1-Iodo-2-naphthol (67e)

Brown oil; ${ }^{1} \mathbf{H}$-NMR (200 MHz , acetone- d_{6}) $\delta 7.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta 94.3,117.4,123.0$, 124.9, 128.2, 128.6, 129.9, 130.5, 137.7, 152.36; IR (neat, cm^{-1}): 3500, 3380, 2940, 1620, 1600, 1470, 1380, 1220, 1170, 1150; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{IO}: \mathrm{C}, 44.47$; H, 2.61; I, 46.99. Found: C, 44.41; H, 2.65; I, 46.92\%.

2, 4, 6-Triiodophenol (67f)

Light brown solid; mp: $156-159{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (50MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 83.1,84.6$ 146.2, 154.5; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3440,2970,1430$, 1080; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{I}_{3} \mathrm{O}: \mathrm{C}, 15.27$; H, 0.64; I, 80.69. Found: C, 15.21; H, 0.69; I, 80.63\%.

2-Chloro-4,6-diiodo phenol (67g)

Colorless solid; mp: $145-146{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.97$ (brs, 1 H), $7.59(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 82.2,84.7$, 120.0, 137.6, 145.1, 151.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3452,2912,1612,1473,1380$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClI}_{2} \mathrm{O}: \mathrm{C}, 18.95 ; \mathrm{H}, 0.80 ; \mathrm{Cl}, 9.32$; I, 66.73. Found: C, $18.91 ; \mathrm{H}, 0.89 ; \mathrm{Cl}, 9.38$; I 66.81\%.

2, 6-Diiodo-4-nitrophenol (67h)

Yellow crystals; mp: $154-157{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$-NMR (200 MHz , acetone- d_{6}) $\delta 8.62(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ -
NMR (50 MHz, acetone-d ${ }_{6}$) $\delta 81.9,130.4,135.1,161.4 ;$ IR ($\left.\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3460,3085$,

1595, 1525, 1446, 1341, 1327; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{I}_{2} \mathrm{NO}_{3}: \mathrm{C}, 18.44$; H, 0.77 ; I, 64.93;
N, 3.58. Found: C, 18.41; H, 0.71; I, 64.93; N, 3.55\%.

4-Bromo-2, 6-diiodophenol (67i)

Colorless solid; mp: $125-126{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 5.76(\mathrm{~s}, 1 \mathrm{H}), 7.79$ (s, 2H); ${ }^{13} \mathbf{C}-$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 82.5,113.6,140.9,153.1$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3520$, 3085, 1595, 1446, 1327, 1123; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrI}_{2} \mathrm{O}: \mathrm{C}, 16.96 ; \mathrm{H}, 0.71 ; \mathrm{Br}, 18.81$; I, 59.75. Found: C, 16.91; H, 0.74; Br, 18.81; I 59.72\%.

1-(2-Hydroxy-3,5-diiodophenyl)ethanone (67j)
Colorless solid; mp: $85{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.65(\mathrm{~s}, 3 \mathrm{H}), 8.0(\mathrm{~s}, 1 \mathrm{H}), 8.2$ (s, 1H), $13.1(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.6,80.5,88.3,121.2,139.2,152.6$, 160.8, 203.1; IR ($\left.\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$: 3565, 2997, 1723, 1595, 1327, 1123; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrI}_{2} \mathrm{O}: \mathrm{C}, 16.96 ; \mathrm{H}, 0.71 ; \mathrm{Br}, 18.81$; I, 59.75. Found: C, $16.91 ; \mathrm{H}, 0.74 ; \mathrm{Br}, 18.81$; I 59.72\%.

Section III

$\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated direct conversion of aromatic aldehydes to aromatic esters

3.3.1 Introduction

The direct transformation of aldehydes into the corresponding esters ${ }^{36}$ under mild conditions is often required in organic synthesis especially in the synthesis of natural products. ${ }^{37}$ Esterification processes are widespread in the industrial synthesis of a variety of end-products such as fragrances, monomers, plasticizers etc, many of which are classed as high production volume (HPV) chemicals. In addition, applications to lower volume, high-value pharmaceutical and fine chemicals targets are prominent, and often require more stringent coupling protocols to achieve the desired chemo- and stereoselectivity. The conventional method for the synthesis of carboxylic esters involves oxidation of aldehydes to carboxylic acids followed by esterification with alcohols catalyzed by either acid or base. In contrast, the direct method of conversion of alcohols or aldehydes to carboxylic esters holds promise in organic synthesis as it minimizes the number of steps.

3.3.2 Review of literature

Literature survey revealed that there are various methods available for the direct transformation of aldehydes into the corresponding esters. Direct transformation of aldehydes into esters has been achieved using a variety of reagents such as $\mathrm{V}_{2} \mathrm{O}_{5} / \mathrm{H}_{2} \mathrm{O}_{2}$, oxone ${ }^{\circledR}$, $\mathrm{DMSO} / \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Br}_{2} / \mathrm{NaHCO}_{3}, \mathrm{O}_{3} / \mathrm{KOH}$, pyridinium hydrobromide perbromide, pyridinium dichromate, electrochemical method, TMSOTf/NBS/AIBN, S. $\mathrm{SnO}_{2} / \mathrm{SBA}-1-$ $\mathrm{H}_{2} \mathrm{O}_{2}$ and more recently acetone cyanohydrin. Some of the recent developments on this reaction are discussed below.

Gopinath's approach (2000) ${ }^{38}$

In Gopinath's approach, aldehydes, in the presence of methanol, undergo oxidative transformation to the corresponding esters upon treatment with catalytic amounts of vanadium pentoxide in combination with oxidant 30% hydrogen peroxide (Scheme 38).

Scheme 38: (i) $\mathrm{V}_{2} \mathrm{O}_{5}$ (cat.), $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 80^{\circ} \mathrm{C}, 100 \%$.

Sarvari's approach (2003) ${ }^{39}$

Sarvari et al. have found $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{MeSO}_{3} \mathrm{H}$ (AMA) as an extremely efficient reagent for the conversion of aromatic aldehydes and diols to the corresponding glycol monoesters 72. The reaction has shown direct excellent selectivity, which is an attractive feature of this method (Scheme 39).

Scheme 39: (i) $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MeSO}_{3} \mathrm{H}, 80^{\circ} \mathrm{C}, 4 \mathrm{~h}, 80 \%$.

Traivs's approach (2003) ${ }^{40}$

Travis et al. have developed a highly efficient, mild, and simple protocol for the oxidation of aldehydes to carboxylic acids utilizing oxone as the sole oxidant. Direct conversion of aldehydes in alcoholic solvents to their corresponding ester products has also been reported. These reactions may prove to be valuable alternatives to traditional
metal-mediated oxidations but it uses more than stoichiometric amounts of oxone (Scheme 40).

Scheme 40: (i) Oxone, MeOH, $18 \mathrm{~h}, 25^{\circ} \mathrm{C}, 96 \%$.

Onami's approach (2004) ${ }^{41}$

In this approach, the direct esterification of aldehydes and alcohols was carried out with pyridinium hydrobromide perbromide (PHPB) in water at room temperature. A variety of aldehydes were converted to their respective ester derivatives with alcohols such as methanol, 1,2-ethanediol and 1,3-propanediol. Further, a variety of aliphatic alcohols were also converted to the corresponding Tishchenko-like dimeric esters in good yields under the same reaction conditions (Scheme 41).

Scheme 41: PHPB, MeOH, $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 87 \mathrm{~h}, 94 \%$.

Budhewar's approach (2006) ${ }^{42}$

Budhewar et al. have developed a simple and mild procedure for the facile direct oxidative methyl esterification of aldehydes using molecular iodine in combination with (diacetoxyiodo)benzene in methanol. Oxidative esterification is induced by iodonium ion generated in situ by the chemical oxidation of molecular iodine with (diacetoxyiodo)benzene (Scheme 42).

Scheme 42: (i) $\mathrm{I}_{2}, \mathrm{PhI}(\mathrm{OAc})_{2}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 87 \%$.

Wolf's approach (2006) ${ }^{43}$

In this approach, aldehydes and siloxanes $\mathbf{7 4}$ form methyl esters in a single step through mild oxidative esterification in the presence of a palladium catalyst or afford secondary alcohols via TBAF-promoted arylation (Scheme 43).

Scheme 43: (i) PdCl_{2} (cat.), TBAF, $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 97 \%$.

Sudalai's approach (2007) ${ }^{44}$

Sudalai et al. have described a simple procedure for the single-step conversion of electron-deficient aldehydes into the corresponding esters on reaction with alcohols in excellent yields mediated by acetone cyanohydrin or NaCN and base (Scheme 44).

Scheme 44: (i) acetone cyanohydrin (5 mmol), $\mathrm{Et}_{3} \mathrm{~N}$ (7.5 mmol), alcohol (5 mL), $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Li's approach (2007) ${ }^{45}$

Li et al. have developed an oxidative esterification reaction between aldehydes and alcohols 38 catalyzed by a combination of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and InBr_{3} using TBHP as an oxidant (Scheme 45).

Scheme 45: (i) $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{InBr}_{3}$, TBHP, $100^{\circ} \mathrm{C}, 16 \mathrm{~h}, 91 \%$.

3.3.3 Present Work

3.3.3.1 Objective

Although several reports of transformation of aldehydes directly into esters in the presence of alcohols has been reported, these methods usually require harsh conditions and are effective for a limited range of substrates (electron-rich aldehydes and primary alcohols). In addition, these transformations generally involve an oxidative pathway and require more than stoichiometric amount of oxidants coupled with long reaction times. Also these reagents are unsatisfactory for aldehydes containing electron-withdrawing groups. Since formation of minor amounts of acids often complicates the oxidative process. This section describes a facile method for the direct conversion of electrondeficient aldehydes to esters mediated by NaIO_{4} and LiBr .

3.3.4 Results and discussion

Recently, we reported ${ }^{33}$ that NaIO_{4}-mediated oxidation of alkylarenes led to the high yield preparation of benzoic acids, formed via the oxidation of their respective benzyl alcohols and aldehydes when the reaction was carried out in water. In this regard, we envisioned that replacing water with alcohol should result in the formation of esters.

During this investigation, we found that $\mathrm{NaIO}_{4}-\mathrm{LiBr}-\mathrm{H}^{+}$combination oxidatively transforms aromatic aldehydes directly to the corresponding aromatic esters in high yields (Scheme 46).

Scheme 46: (i) $\mathrm{NaIO}_{4}(3 \mathrm{mmol}), \mathrm{LiBr}(3 \mathrm{mmol})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL}), \mathrm{MeOH}(9 \mathrm{~mL}), 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$.

In order to establish the scope of this reaction, a number of aromatic aldehydes were subjected to oxidation and the results are presented in the Table 6. As can be seen from Table 6, aromatic aldehydes with electron-donating as well as electron-withdrawing substituents on the nucleus underwent oxidative esterification smoothly to give their corresponding aromatic esters in 71-95\% yields. In the case of substrates with electrondonating groups, the reaction proceeded at $25{ }^{\circ} \mathrm{C}$ while the substrates with electronwithdrawing groups, except 4-chloro aromatics, required higher temperature $\left(65^{\circ} \mathrm{C}\right)$ to achieve excellent conversions. For 4-methoxy-benzyl alcohol, the oxidative esterification occurred along with nuclear bromination when 2 molar equivalents of LiBr was used (entry d). We also observed that use of sub-stoichiometric amount of NaIO_{4} (25-40 $\mathrm{mol} \%$) resulted in poor yields of esters ($<40 \%$). All the aromatic esters synthesized were systematically characterized from the IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the esters. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 8 d}$ displayed two typical signals at $\delta 3.86$ and 3.88 for the two $-\mathrm{OCH}_{3}$ protons while the aromatic protons have appeared at $\delta 6.91$ and 7.99. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic signals at $\delta 51.7$ and 55.3 for the methyl carbons $\left(-\mathrm{OCH}_{3}\right)$ and $\delta 189.5$ corresponding to the ester carbonyl group $(\mathrm{C}=\mathrm{O})($ Fig. 7).

Table 6: Direct conversion of benzylic alcohols or aldehydes to aromatic esters ${ }^{\text {a }}$
Entry
${ }^{\mathrm{a}}$ Aldehyde (3 mmol), $\mathrm{NaIO}_{4}(3 \mathrm{mmol}), \mathrm{LiBr}(3 \mathrm{mmol})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$, methanol $(9 \mathrm{~mL})$, $25{ }^{\circ} \mathrm{C}, 18 \mathrm{~h} ;{ }^{\mathrm{b}}$ After purification by column chromatography; ${ }^{\mathrm{c}}$ ethanol was used as the solvent; ${ }^{\mathrm{d}}$ Yield of the methyl 3-bromo-4-methoxybenzoate when 2 equiv. of LiBr used; ${ }^{\mathrm{e}}$ at $65{ }^{\circ} \mathrm{C}$ with aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.85 \mathrm{~N}, 1 \mathrm{~mL})$.

78d

Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7 8 d}$

In another example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 8 h}$ showed a signal at $\delta 4.0$ (s) for the methoxy protons $\left(-\mathrm{OCH}_{3}\right)$ and three signals at $\delta 7.67,8.41$ and 8.87 for the aromatic protons. In its ${ }^{13} \mathrm{C}$ NMR spectrum, the carbonyl group ($-\mathrm{C}=\mathrm{O}$) has appeared at $\delta 164.7$ while the methoxy carbon $\left(-\mathrm{OCH}_{3}\right)$ appeared at $\delta 52.6$ (Fig. 8).

Fig. 8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7 8 h}$

Among the several solvent combinations screened, a mixture of $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(9: 1,10 \mathrm{~mL})$ gave the highest yield of esters. Control experiments have proved that both NaIO_{4} and LiBr are needed to produce esters. Ethanol was also found to give ethyl esters (entry b) while other alcohols such as 2-propanol and benzyl alcohol have failed to give their respective esters probably due to steric hindrance. Aliphatic alcohols or aldehydes were found to be inactive under the reaction conditions, which may be a limitation of this process. Replacing LiBr with other halide sources like tetrabutylammonium bromide or NaBr also brought about this conversion with comparable yield while KI and NaCl failed.

$$
\begin{array}{rl}
\mathrm{ArCH}_{2} \mathrm{OH} \xrightarrow{[0]} \mathrm{ArCHO} \\
\mathrm{LiBr} \xrightarrow{[\mathrm{O}]} \mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br} \\
\mathrm{ArCHO}+\mathrm{Br} & \longrightarrow \mathrm{O} \\
\mathrm{Or} \cdot \\
\mathrm{Or} \cdot \mathrm{O}+\mathrm{HBr}_{2} & \mathrm{ArCOBr}+\mathrm{Br} \tag{5}\\
\mathrm{ArCOBr}+\mathrm{MeOH} & \longrightarrow \mathrm{ArCO}_{2} \mathrm{Me}+\mathrm{HBr}
\end{array}
$$

Scheme 47: proposed radical pathway for the direct esterification of aromatic aldehydes and benzylic alcohols.

Based on the observations that no traces of acetal or carboxylic acid was identified in the present study as well as from our earlier work on $\mathrm{NaIO}_{4} / \mathrm{LiBr}$ mediated reactions, ${ }^{33}$ a probable mechanism ${ }^{46}$ for the oxidative esterification of aromatic aldehydes and benzylic alcohols has been given in Scheme 47. Initially, LiBr is oxidized by NaIO_{4} in the presence of acetic acid to liberate bromine. Thus, the liberated bromine probably generates bromine radical which then initiates the propagation step by adding to the aldehyde to produce acyl radical. This acyl radical further reacts with bromine to form acylbromide, which upon hydrolysis furnish the corresponding esters.

3.2.4. Conclusion

In conclusion we have developed a new reagent system comprising $\mathrm{NaIO}_{4} / \mathrm{LiBr}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ for the direct conversion of aldehydes and alcohols to their corresponding methyl and ethyl esters. The reaction is believed to proceed via radical pathway.

3.3.5. Experimental

Typical Experimental Procedure

To a 50 mL round bottom flask charged with aromatic aldehyde (3 mmol), lithium bromide (3 mmol) sodium metaperiodate (3 mmol), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL}$) in methanol (9 mL) was added at $25{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 18 h and then excess solvent was removed under reduced pressure. The residue was extracted with ethyl acetate, and the organic phase was washed with water, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine and dried over anhydrous sodium sulphate. Concentration of the organic layer gave crude ester, which was subjected to column purification using hexane/ethyl acette (19:1) as eluent to obtain pure aromatic esters.

Methyl benzoate (78a)

Yield: 98\%; colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.87(\mathrm{~s}, 3 \mathrm{H}), 7.35-7.41(\mathrm{t}, \mathrm{J}=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 51.2$, 128.3, 129.2, 130.7, 133.1, 148.1, 165.6; IR (neat, cm^{-1}): 715, 750, 1140, 134, 1510, 1600, 1732, 2940, 3060; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}: \mathrm{C}, 70.57$; H, 5.92. Found C, 70.52 ; H, 5.97%.

Ethyl benzoate (78b)

Yield: 82%; colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.31(\mathrm{t}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.13$ $(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.32-7.42(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 14.1, $60.7,128.1,128.9,129.5,133.3,166.4$; IR (neat, cm^{-1}): 715, $755,1040,1314,1520,1600,1730,2942,3055$; Anal. Calcd for. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$: C, $71.98 ; \mathrm{H}, 6.71$. Found: C, 71.52; H, 6.57\%.

Methyl 4-chlorobenzoate (78c)

Yield: 91\%; colorless liquid; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.89(\mathrm{~s}, 3 \mathrm{H}), 7.80-7.85(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.96(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 51.9,128.6$,
$129.5,130.9,139.2,165.6$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 1127,1265,1146,1510,1510,1733,2304$, 2971, 3049; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$: C, 56.32; H, 4.14. Found: C, 56.28; H, 4.19\%.

Methyl 4-methoxybenzoate (78d)

Yield: 85%; colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.91$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 51.7,55.3$, 113.5, 122.4, 131.5, 163.2, 189.5; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 1145,133,1510,1603,1723,2940$, 3060; Anal. Calcd for. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$: C, 65.05; H, 6.07. Found: C, 65.12 ; H, 6.01%.

Methyl 4-bromobenzoate (78e)

Yield: 87\%; colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) : $\delta 3.91$ (s, 3H), 7.55-7.59 (d, $\mathrm{J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.1,127.9$, 129.0, 131.0, 131.6, 165.9; IR (Neat, cm^{-1}): 712, 1236, 1413, 1651, 1739, 2118, 2876, 3062;

Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2}$: C, 44.68; H, 3.28; Found C, 44.62; H, 3.24\%.

Methyl 4-cyanobenzoate (78f)

Yield: 85%; colorless solid; mp: $82{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.97(\mathrm{~s}, 3 \mathrm{H}), 7.74-$ $7.77(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.16-8.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.4$, $116.5,117.4,129.9,132.0,133.7,164.8 ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 1108,1281,439,1605,1729$, 1951, 2229, 2957; Anal. Calcd for. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{2}$: C, 67.06; H, 4.38; N, 8.69; Found: C, 67.29; H, 4.66 ; N, 8.31\%.

Methyl 4-fluorobenzoate (78g)

Yield: 80%; colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.91(\mathrm{~s}, 3 \mathrm{H}), 7.06-7.15(\mathrm{~d}, \mathrm{~J}=$ 8.1 Hz, 2H), 8.05-8.09 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.1,116.2$, 129.8, 131.7, 165.2, 163.9; IR ($\left.\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 720,937,1172,1270,1431,1619,1737,2989$, 3079; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2}$: C, 62.34; H, 4.58. Found: C,62.39; H, 4.55\%.

Methyl 2-nitrobenzoate (78h)

Yield: 78\%; yellow solid; mp: $121{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.0(\mathrm{~s}, 3 \mathrm{H}), 7.64-7.67$ $(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.40-8.43(\mathrm{~m}, 2 \mathrm{H}), 8.87(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ 52.6, 124.3, 127.2, 129.52, 131.7, 135.1, 148.1, 164.7; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 715,750,1140$, 134, 1510, 1600, 1732, 2940, 3060; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$: C, 53.04; H, 3.89; N, 7.73.

Found: C, 53.03; H, 3.93; N, 7.78\%.

Methyl 3-nitrobenzoate (78j)

Yield: 79%; yellow solid; mp: $121{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 3.85(\mathrm{~s}, 3 \mathrm{H}), 7.48-$ $7.56(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.30(\mathrm{~m}, 2 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $52.3,124.3,127.7,129.7,129.9,131.9,133.1,164.9 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 715,750,1140,134$, 1510, 1600, 1735, 2940, 3060; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$: C, 53.04; H, 3.89; N, 7.73. Found: C, 53.03; H, 3.93; N, 7.78\%.

Methyl 4-nitrobenzoate (78k)

Yield: 82%; yellow solid; mp: $93{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.97$ (s, 3H), 8.16$8.30(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.5,123.4,130.6,135.4,150.8,164.8 ; \mathbf{I R}$ $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 1112,1253,1440,1612,1728,3038$; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}: \mathrm{C}, 53.04 ; \mathrm{H}$, 3.89; N, 7.73; Found: C, 53.09; H, 3.83; N, 7.71\%.

3.3.7 References

1 (a) Hudlicky, M. Oxidations in Organic Chemistry, American Chemical Society, Washington DC, 1990, pp 174 (ACS Monograph Ser. 186). (b) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; WileyVCH: New York, WeinHein, 2000, p 357. (c) Haines, A. H; Comprehensive Organic Synthesis, vol. 7, Ist ed. Eds. Trost, B. M., Fleming, I., Pergamon: Oxford, 1991, pp 437.
B.; Wannowius, H. Justus Liebigs Ann. Chem. 1942, 550, 99. (c) Schroder, M. Chem. Rev. 1980, 80, 187. (d) Hentges, S.G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263. (e) Nomura, K.; Okazaki, K.; Hori, K.; Yoshii, E. J. Am. Chem. Soc. 1987, 109, 3402. (f) Coleman, J. E.; Ricciuti. C.; Swern, D. J. Am. Chem. Soc. 1956, 78, 5342. (g) Ogino, T. Tetrahedron Lett. 1980, 21, 177.
(h) Weber, W, P.; Shepherd, J, P.; Tetrahedron Lett. 1972, 13, 4907. (i) Ogino, T.; Mochizuki, K. Chem. Lett. 1979, 4. (j) Plietker, B.; Niggemann, M. J.Org. Chem. 2005, 70, 2402. (k) Chi Ming Ho, Wing-Yiu Yu, Chi-Ming Che. Angew. Chem. Int. Ed. 2004, 43, 3303.

3 (a) Woodward, R.B.; Brutcher, F. V. J. Am. Chem. Soc. 1958, 80, 209. (b)
Woodward, R.B. U. S. Patent, 2, 687, 435 (1954). (c) House, H. E.; Modern Synthetic Reactions, 2nd ed., pp. 439. Benjamin, Menlo Park, California, 1972.

4 (a) Plesnicar, B, Oxidations in Organic Chemistry (W. S. Trahanovsky, ed.), Part C, p. 211. Academic Press, New York, 1978. (b) Prevost, C. Compt. Rend. 1933, 196, 1129. ; Prevost, C. ibid 1933,197, 1661. (c) Prevost, C.; Wiemann, J. ibid. 1937, 204, 700. (d) Cambie, R. C.; Rutledge, P.S. Org. Synth. 59, 169.

5 Woodward, R. B.; Brutcher, F. V. J. Am. Chem. Soc. 1958, 80, 209.
6 Davey, C. W.; Mcginnis, E.L.; Meakim, G. D.; Pemberton, M. W.; Young, R. W. J. Chem. Soc. 1968, 2674.

7 Scott, F. L.; Fenton, D. F. Tetrahedron Lett. 1970, 11, 681.
8 Buddrus,J. Angew. Chem. Int. Ed. Engl. 1973, 12, 163.
9 Jasserand, D.; Girard, J. P.; Rossi, J. C.; Granger, R. Tetrahedron Lett. 1976, 17, 1581.

10 Corey, E.J.; Das, J. Tetrahedron Lett. 1982, 23, 4217.
11 Trainor, R. W.; Deacon, G. B.; Jackson, W. R.; Giunta, N. Austr. J. Chem. 1992, 45, 1265.

12 Hamm, S.; Hennig, L.; Findeisen, M, Müller, D, Welzel, P. Tetrahedron 2000, 56, 1345.

13 Utsukihara, T.; Yokoyama, Y.; Kaneko, K.; Yoshino, I.; Miyasaka, T.; Satoh, Y.; Kuniyoshib, M; Horiuchi, C. A. Bull. Fac. Sci., Univ. Ryukyus. 2006, 82, 77.

14 Emmons, W. D.; Pagano, A. S.; Freeman, J. P. J. Am. Chem. Soc. 1954, 76, 3472.
15 Kennady, R. J.; Stock, A. M. J. Org. Chem. 1960, 25, 1901.
16 (a) Dewkar, G. K.; Narina, S. V.; Sudalai, A. Org. Lett. 2003, 5, 4501. (b) Shaikh, T.
M.; Sudalai, A. Tetrahedron. Lett. 2005, 46, 5589.

17 (a) Colombetti, L. G. Principles of Radio Pharmacology; CRC Press: Boca Raton, 1979; vol.1, pp 189-250. (b) Seevers, R. H.; Counsell, R. E. Chem. Rev. 1982, 82, 575. (c) Sovak, M. Radiocontrast Agents. Handbook of Experimental Pharmacology; Springer: Berlin, 1993. (d) Merkushev, E. B. Synthesis 1988, 923.

18 Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
19 Sasson, Y. Formation of Carbon-Halogen Bonds (Cl, Br, I). In The Chemistry of functional Groups, Supplement D2: The Chemistry of Halides, Pseudo Halides and Azides, Part 2; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, 1995; pp 535-620.

20 Rozen, S.; Zamir, D. J. Org. Chem. 1990, 55, 3552.
(a) Johnsson, R.; Meijer, A.; Ellervik, U. Tetrahedron 2005, 61, 11657. (b) Hubig, S.
M.; Jung, W.; Kochi, J. K. J. Org. Chem. 1994, 59, 6233.

Zupan, M.; Iskra, J.; stavber, S. Tetrahedron Lett. 1997, 38, 6305.
Kashima, M.; Noda, y. Tetrahedron Lett. 1997, 38, 6225.
Yang, S. G.; Kim, Y. H. Tetrahedron Lett. 1999, 40, 6051.
Mukaiyama, T.; Kitagawa, H.; Matsuo, J. Tetrahedron Lett. 2000, 41, 9383.
Hajipour, A. R.; Arbabian, M.; Ruoho, A. E. J. Org. Chem. 2002, 67, 8622
Castanet, A. B.; Colobert, F.; Broutin, P. E. Tetrahedron Lett. 2002, 43, 5047.
Sosnowski, M.; Skulski, L. Molecules 2002, 7, 867
Firouzabadi, H.; Iranpoor, N.; Shiri, M. Tetrahedron Lett. 2003, 44, 8781.
Vaghei, R. G. Tetrahedron Lett. 2003, 44, 7529.
Krishna Mohan, K. V. V.; Narender, N.; Kulkarni, S. J. Tetrahedron Lett. 2004, 45, 8015.

32 Patil, B. R.; Bhusare, S. R.; Pawar, r. P.; Vibhute, Y. B. Tetrahedron Lett. 2005, 46, 7179.
(a) Dewkar, G. K.; Narina, S. V.; Sudalai, A. Org. Lett. 2003, 5, 4501. (b) Shaikh, T. M. A; Sudalai, A. Tetrahedron. Lett. 2005, 46, 5589. (c) Emmanuvel, L.; Shaikh, T. M. A.; Sudalai, A. Org. Lett. 2005, 7, 5071.

34 Sudhir, B.; Asif, M.; Ramesh kumar, C.; Sudalai, A.; Sivaram, S. US patent No. 6,979,749, B2, 2005; Chem. Abstr. 2005, 142, 7434.

35 Mohanakrishnan, A. K.; Prakash, C.; Ramesh, N. Tetrahedron 2006, 62, 3242.
36 Larock, R. C. Comprehensive Organic Transformation: VCH: New York, 1989; pp 840-841.
(a) Corey, E. J.; Gilman, N. W.; Ganem, B. E. J. Am. Chem. Soc. 1968, 90, 5616. (b) Sundararaman, P. Walker, E. C.; Djerassi, C. Tetrahedron Lett. 1978, 19, 1627. (c) Garegg, P. J.; Olcson, L.; Oscarson, S. J. Org. Chem. 1995, 60, 2200. (d) Ogawa, T.; Matsui, M. J. Am. Chem. Soc. 1976, 98, 1629.

38 Gopinath, R.; Patel, B. K. Org.Lett. 2000, 2, 577; (k) Sharghi, H.; Sarvari, M. H. Tetrahedron 2003, 59, 3627; Gopinath, R.; Paital, A. R.; Patel, B. K. Tetrahedron Lett. 2002, 43, 5123. Gopinath, R.; Barkakaty, B.; Talukdar, B.; Patel, B. K. J. Org. Chem. 2003, 68, 2944

39 Sharghi, H.; Sarvari, M. H. Tetrahedron 2003, 59, 3627;
40 Travis, B. R.; Sivakumar, M.; Hollist, G. O.; Borhan, B. Org. Lett. 2003, 5, 1031.
41 Sayama, S.; Onami, T. Synlett 2004, 2739.
42 Karade, N.N.; Budhewar, V.H., Katkar, A.N.; Tiwari, G.B. Arkivoc 2006, 11, 162 ;
43 Ekoue-Kovi, K.; Wolf, C. Org. Lett. 2007, 9, 3429.
44 Raj, I. V. P; Sudalai, A. Tetrahedron Lett. 2005, 46, 5589
45 Yoo, W.-J.; Li, C.-J.; Tetrahedron Lett. 2007, 48, 1033.
Amati, A.; Dosualdo, G.; Zhao, L.; Bravo, A.; Fontana, F.; Minisci, F.; Bjorsvic, H.R. Org. Process Res. Dev. 1998, 2, 261

CHAPIER 4

Ti-Superoxide catalyzed one-pot oxyfunctionalization of olefins and Pd-catalyzed Suzuki-type coupling reaction of ary/mercuric acetate with ary[6oronic acid

Section I

Titanium superoxide: An efficient, reusable catalyst for one pot oxyfunctionalization of olefin via epoxide opening

4.1.1. Introduction

Alkoxy alcohols are the important intermediates in organic synthesis and also present in some naturally occurring compounds such as fugimycin (1), rapamycin (2), etc (Fig. 1). ${ }^{1}$ Further, oxidation of the alcohol group is a common method for the preparation of α alkoxy ketones or aldehydes. The simple and straight forward method for the synthesis of alkoxy alcohols and diols is the ring opening of epoxides with alcohol or water in the presence of Lewis acid catalysts. ${ }^{2}$ The common Lewis acids used for this purpose include $\mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{SnCl}_{4}$, anhydrous FeCl_{3} etc. ${ }^{3}$ However, standard methods for the nucleophilic opening of epoxides are not always satisfactory and suffer from disadvantages such as high acidity, lack of regioselectivity, longer reaction time, non-catalytic reagent and difficulty in handling.

Fugimycin (1)

Rapamycin, (2)

Fig. 1: Naturally occurring 1,2-methoxy alcohols

The epoxide opening with water leads to the formation of diols, which are widely used in organic synthesis as intermediates and fine chemicals. In addition to epoxide opening, diols are readily obtained through Prevost-Woodward reaction or dihydroxylation of olefins using $\mathrm{OsO}_{4}, \mathrm{RuO}_{4}$ or RuO_{4} reaction (see chapter III).

4.1.2. Review of Literature

Literature search revealed that several methods exit for the preparation of β-alkoxy alcohols and 1,2-diols. Most of the methods describe the opening of epoxides in the presence of acid catalysts or organic molecule. Some of the methods reported in the recent time have been briefly discussed below.

Otera's approach (1988) ${ }^{4}$

Otera et al. have reported highly regioselective alcoholysis of epoxides $\mathbf{3}$ catalyzed by organotin phosphate condensates $(5, \mathrm{Sn}-\mathrm{P})$ to provide a variety of β-alkoxy alcohols 4 in good yields. The anti stereoisomers are solely produced in all the cases, indicating the coordinative pathway of the catalyst. The salient feature of this method is the recyclability of the catalyst without any appreciable decrease in the activity and the selectivities (Scheme 1).

Scheme 1: cat. 5, MeOH, hexane, reflux, 24 h .

Iranpoor's approach (1990) ${ }^{5}$

Iranpoor et al. have achieved the ring opening of epoxides with nucleophiles to obtain the corresponding β-alkoxy alcohols in excellent regioselctivity using catalytic amount of 2,3-dichloro-5,6-dicyano p-benzoquinone (DDQ) under neutral conditions in primary, secondary and tertiary alcohols as solvents. Thus, styrene oxide (6) furnished the corresponding alkoxy alcohol (9) with excellent yield and selectivity. The reaction is believed to proceed through single electron-transfer mechanism as shown in Scheme 2.

Scheme 2: DDQ (1 equiv.), MeOH, $25^{\circ} \mathrm{C}, 5-12 \mathrm{~h}$.

Masaki's approach (1993) ${ }^{6}$

In this approach, tetracycanoethylene, a π-acid, has been employed to catalyze alcoholysis of epoxide $\mathbf{1 0}$ under ambient conditions. The stereospecific anti opening and favorable chemoselectivity without affecting the acid sensitive groups like tetrahydropyran ether and ethylene acetal are the major advantages of this protocol (Scheme 3).

Scheme 3: Tetracycnoethylene, MeOH, $0-40^{\circ} \mathrm{C}$.

Iranpoor's approach (1994) ${ }^{7}$

Iranpoor et al. have described a catalytic, simple and mild method for the conversion of epoxides into their corresponding β-alkoxy alcohols in the presence of ferric chloride $\left(\mathrm{FeCl}_{3}\right)$ as the catalyst. The β-alkoxy alcohols were obtained with high stereo- and regioselectivity and in good to excellent yields (Scheme 4).

Scheme 4: cat. $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{R}_{1} \mathrm{OH}, 25^{\circ} \mathrm{C}$.

Iranpoor's approach (1996) ${ }^{8}$

Iranpoor et al. have observed that $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ absorbed on chromatographic silica gel could act as an efficient catalyst for alcoholysis, hydrolysis of epoxide. Accordingly, methanolysis of indene oxide (14) proceeded with high regioselectivity and excellent yield. They found that this protocol could also convert epoxides to their corresponding halohydrins in the presence of chloride and bromide ions (Scheme 5).

Scheme 5: $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O} . \mathrm{SiO}_{2}, 25^{\circ} \mathrm{C}$ or heat.

Kim's approach (2004) ${ }^{9}$

Kim et al. have achieved regioselective ring opening of epoxides to obtain β-alkoxy alcohols with good yields in the presence of indium trichloride $\left(\mathrm{InCl}_{3}\right)$ as catalyst. While the alcoholysis of styrene oxides produced $\mathrm{S}_{\mathrm{N}} 1$ type product, the alcoholysis of epoxides with heteroatom in the proximity predominantly produced $\mathrm{S}_{\mathrm{N}} 2$ type product (Scheme 6).

Scheme 6: cat. $\mathrm{InCl}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$.

Schneider's approach (2004) ${ }^{10}$

The catalytic desymmetrization of meso epoxides 17 via ring opening with methanol to obtain chiral β-methoxy alcohols 18 was achieved by Schneider et al. in the presence of $\mathrm{Sc}(\mathrm{OTf})_{3}$ and bipyridyl based chiral ligand 19 (Scheme 7).

17

18
ee upto 97%

19

Scheme 7: $\mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12-24 \mathrm{~h}$.

Yadav's approach (2005) ${ }^{11}$

In this approach, epoxides $\mathbf{1 2}$ underwent rapid ring opening with a range of alcohols and water in the presence of catalytic carbon tetrabromide $\left(\mathrm{CBr}_{4}\right)$ under mild and convenient conditions to produce the corresponding β-alkoxy alcohols 13 and 1,2-diols in high yields with high regioselectivity (Scheme 8).

Scheme 8: $\mathrm{CBr}_{4}, \mathrm{R}_{1} \mathrm{OH}, 6{ }^{\circ} \mathrm{C}$.

Bras' approach (2005) ${ }^{12}$

Bras et al. have described a simple method to obtain methoxy alcohols from the one-pot reaction of alkenes with oxone in methanol, in the absence of any additive or catalyst (Scheme 9). The use of other alcohols as solvents had shown that the efficiency of the process decreases with the steric hindrance of the alcohol. This is the only method available in the literature for the one-pot synthesis of alkoxy alcohols from olefin.

Scheme 9: Oxone, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}$.

Moghadam's approach (2007) ${ }^{13}$

Moghadam et al. have employed a new electron-deficient tin(IV)tetraphenyl phorphyrinato tetrafluoroborate $\left[\mathrm{Sn}^{\mathrm{IV}}(\operatorname{tpp})\left(\mathrm{BF}_{4}\right)\right]$ as an efficient catalyst for the alcoholysis, hydrolysis of epoxides. The results showed that replacing of $\mathrm{BF}_{4}{ }^{-}$with $\mathrm{Cl}-$ converts the $\operatorname{tin}(\mathrm{IV})$ phorphyrin to an efficient Lewis acid (Scheme 10).

Scheme 10: $\left[\mathrm{Sn}^{\mathrm{IV}}(\mathrm{tpp})\left(\mathrm{BF}_{4}\right)\right]$, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}$.

Dihydroxylation of olefins to obtain vicinal 1,2 diols had been extensively studied and several methods are available in the literature. The most often used method includes OsO_{4} catalyzed dihydroxylation, ${ }^{14}$ Prevost-Woodward reaction ${ }^{15}$ and hydroxy acetoxylation followed by hydrolysis. ${ }^{16}$ For an elaborate discussion on these reactions, refer the review of literature under Section I, Chapter III.

4.1.3. Present work

4.1.3.1 Objective

From the above discussion, it is clear that the synthesis of 1,2-alkoxy alcohols are generally achieved via opening of epoxides. However, a one-pot synthesis from olefin is rare probably due to the intolerance of the catalyst under oxidation condition. Hence, a stable metal catalyst, which can withstand oxidation conditions yet catalyzes the epoxide opening with nucleophiles, would have great relevance in the synthesis of fine chemicals.

4.1.4 Results and discussion

Recently, in our laboratory, we have reported the preparation of titanium superoxide (23) by treating $\mathrm{H}_{2} \mathrm{O}_{2}$ with titanium tetraisopropoxide $\left(\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}\right.$ in dry methanol. ${ }^{17}$ Titanium superoxide was filtered as yellow colored solid and its structure was proposed to have polymeric Ti oxide as shown in Fig. 2.

Fig. 2: Preparation of Titanium superoxide

We have thoroughly characterized the generation of superoxide species 23 on the hydrated titanium matrix by various spectroscopic techniques such as FTIR, Raman spectroscopy, XRD, ESR, TG/DTA, and chemical analysis as follows. Its IR spectrum showed characteristic absorption bands at 3720 (w), 3665 (w), and 3450 (s) cm^{-1} indicating the presence of vibrational modes of coordinated water molecules at Ti^{4+} site and of surface Ti-OH groups. The other IR absorption bands at 1027 (s) and 1157 (m) indicates the presence of superoxide radical ion in the solid material. It also has IR absorption bands in the range of $900-538(\mathrm{~m}) \mathrm{cm}^{-1}$ corresponding to the presence of Ti-OTi linkages. An intense line at $900 \mathrm{~cm}^{-1}$ in the Raman spectrum of the catalyst 23 further confirmed the presence of Ti-O-Ti linkages. The other weak Raman lines observed in the range of $1025-1119 \mathrm{~cm}^{-1}$ assigned for the O_{2} :

A sample of 23 dried at $25^{\circ} \mathrm{C}(3 \mathrm{~mm} \mathrm{Hg})$ showed characteristic ESR signals at $\mathrm{g}_{1}=$ 2.024, $\mathrm{g}_{2}=2.009$ and $\mathrm{g}_{3}=2.003$ (Fig. 3), which strongly suggest the presence of unpaired electrons of the stable superoxide radical anion generated by the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ over Ti-matrix. However, the characteristic ESR signals disappeared when its ESR was recorded at $90{ }^{\circ} \mathrm{C}$.

Fig. 3: ESR spectrum of 23 at 298 K.

During the study of its application in organic synthesis, we found that olefins can be oxyfunctionalized in one-pot via epoxide opening. Thus, treatment of olefin 24 with m chloroperbenzoic acid ($m \mathrm{CPBA}$) in the presence of MeOH at ambient conditions produced alkoxy alcohols 26 via epoxide 25 in good to excellent yields (Scheme 11).

Scheme 11: Titanium superoxide (23, $20 \mathrm{wt} \%$), $m \mathrm{CPBA}, \mathrm{CHCl}_{3}$: $\mathrm{MeOH}(9: 1), 25^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

Encouraged by this result, we subjected styrene to oxyfunctionalization with mCPBA in the presence of several alcohols like methanol, ethanol, isopropanol, etc. It was observed that sterically less hindered methanol produced the corresponding alkoxy alcohol in excellent yield while isopropanol gave poor yield (Table 1). The other titanium catalysts
screened for this transformation were found to be unsatisfactory in catalyzing the reaction.

Table 1: Screening of nucleophiles and catalysts ${ }^{\text {a }}$

S.No	Nucleophile $^{\mathrm{b}}$	Catalyst	Yield (\%) $^{\mathrm{c}}$
1	MeOH	Ti-superoxide	95%
2	EtOH	Ti-superoxide	89%
3	${ }^{i} \mathrm{PrOH}$	Ti-superoxide	32
4	${ }^{t} \mathrm{BuOH}$	Ti-superoxide	0
5	MeOH	TiO_{2}	24^{d}
6	MeOH	TiCl_{4}	16^{d}
7	MeOH	$\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$	35^{d}

${ }^{\text {a }}$ Reaction condition: styrene (3 mmol), catalyst, $m \mathrm{CPBA}$ (1 equiv.), CHCl_{3} : nucleophile ($9: 1$), $25{ }^{\circ} \mathrm{C}, 5 \mathrm{~h} ;{ }^{\mathrm{b}} 1 \mathrm{ml}$ of alcohol was employed in all the cases; ${ }^{\mathrm{c}}$ Isolated yield after column chromatographic purification; ${ }^{\mathrm{d}} 20 \mathrm{~mol} \%$ of catalyst was employed.

In order to study the scope of this reaction, we screened several styrenes with electrondonating as well as electron-withdrawing groups and the results are presented in Table 2. Methanolysis proceeded smoothly at $25^{\circ} \mathrm{C}$ to give alkoxy alcohols in excellent yields. In styrene derivatives nucleophilic methanol adds at the benzylic position due to its more electropositive nature. No trace of epoxide was isolated in the workup. This observation led to the conclusion that the epoxides formed in situ completely underwent regioselective opening with alcohol. Not only styrenes but also aliphatic olefins like cyclohexene and 1-octene underwent this reaction to produce the corresponding alkoxy alcohols (27-34).

Table 2: Oxyfunctionalization of olefins ${ }^{\text {a }}$
(
${ }^{\text {a }}$ Reaction condition: olefin (3 mmol), titanium superoxide ($20 \mathrm{wt} \%$), mCPBA (1.5 equiv.), CHCl_{3} : nucleophile (9:1), $25^{\circ} \mathrm{C}, 5 \mathrm{~h}$; ${ }^{\mathrm{b}}$ Isolated yield after column chromatographic purification.

All the alkoxy alcohols were systematically characterized from their ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of 27a showed a singlet at $\delta 3.31(\mathrm{~s})$ corresponding to the methoxy protons $\left(-\mathrm{OCH}_{3}\right)$ and two signals at $\delta 4.3$ and 3.6 for the methine (-CH-O) and methylene ($-\mathrm{CH}_{2} \mathrm{OH}$) protons respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed signals at $\delta 84.7$ due to the benzylic carbon and at $\delta 66.9$ and 56.5 for the methylene $\left(-\mathrm{CH}_{2} \mathrm{OH}\right)$ and methoxyl $\left(\mathrm{CH}_{3} \mathrm{O}-\right)$ carbons respectively (Fig.4). The IR spectrum of all the compounds showed a strong absorption band in the region of 3200$3500 \mathrm{~cm}^{-1}$ due to the presence of hydroxyl group.

Fig. 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 27 a

Interestingly, the internal olefins with aromatic rings like indene and β-methyl styrene produced exclusively one regioisomer with anti-selectivity. The formation of trans- β alkoxy alcohol 33a was confirmed from its ${ }^{1} \mathrm{H}$ NMR spectrum, which displayed characteristic peaks at $\delta 1.09(\mathrm{~d})$ and $\delta 3.28(\mathrm{~s})$ corresponding to the $\mathrm{C}-\mathbf{C H}_{3}$ and $\mathbf{O C H}_{3}$ protons respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 17.7$ for $\mathrm{C}-\mathrm{CH}_{3}$ carbon and at $\delta 56.9,70.5$ and 87.5 for the other aliphatic carbons respectively (Fig.5).

Fig. 5: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of 33a

After the successful preparation of several alkoxy alcohols, we anticipated that the replacement of alcohols with water would result in the formation of diols. Indeed, diols
were obtained in moderate yield due to the immiscibility of water. However, vigorous stirring required to obtain good yield of the diols. Our attempts to make the solvents miscible by adding phase transfer catalysts like $\mathrm{nBu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$resulted in the formation of halohydrin. Here, the oxidant $m \mathrm{CPBA}$ liberates Br_{2} from $\mathrm{nBu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$, which underwent bromohydroxylation in the presence of water.

Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 30c

All the diols were systematically characterized from their ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and comparing their melting points. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 0 c}$ showed signal at $\delta 3.89(\mathrm{~m})$ and $3.73(\mathrm{~m})$ for the methylene protons $\left(\mathrm{PhOCH}_{2}-\right.$ and $\left.-\mathrm{CH}_{2} \mathrm{OH}\right)$ respectively while the signal for methine proton $(-\mathrm{CHOH})$ appeared at $\delta 4.02$. Its ${ }^{13} \mathrm{C}$

NMR spectrum showed signals at $\delta 63.6,68.8$ and 70.6 for the aliphatic carbons (C-O) having oxygen substituents (Fig.6).

Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 32b

In another example, the ${ }^{1} \mathrm{H}$ NMR spectrum of 32b displayed signals at $\delta 3.64$ and 3.39 (m) corresponding to the CHO and $\mathrm{CH}_{2} \mathrm{O}$ protons respectively, whereas a multiplet at δ 1.28 corresponds to the long chain proton. Its ${ }^{13} \mathrm{C}$ NMR showed two signals at $\delta 72.2$ and 66.5 due to the two carbons having oxygen atoms and six signals in the region of $\delta 14.0$ 33.5 due to long chain carbons (Fig.7).

As expected, the internal olefins produced the corresponding trans-diols in moderate yields. Even trace of cis-diols were not observed in their ${ }^{1} \mathrm{H}$ NMR spectrum. After the completion of the reaction, the reaction mixture was dissolved with excess chloroform and the solid metal catalyst was separated by simple filtration. After drying at room temperature it was tested for its ability to catalyze oxyfuntionalization. The reaction proceeded smoothly with the recovered titanium superoxide without appreciable loss of activity and selectivity.

4.1.3.2 Mechanism

Mechanistically, the reaction may be expected to proceed through the following two routes; i) Lewis acid-coordination (route A) and ii) Single electron-transfer (route B). Since, the structure of the metal catalyst is believed to contain a radical, one may propose the electron-transfer mechanism as shown in route B . Theoretically, route B proceeds through carbocation 8 so that it should lead to the formation of both cis- and transalkoxy alcohols for internal olefins. In contrast, it has been experimentally found that cyclohexene produced the corresponding trans-alkoxy alcohols or diols exclusively. Further, route B requires stoichiometric amount of metal catalyst, which cannot be recycled. Because of the above reasons, we believe that the catalyst acts as a stable Lewis acid (35) than a single electron-transfer agent (Scheme 11).

Scheme 11: Possible mechanistic pathways

4.1.4. Conclusion

In summary, we have developed a novel one-pot procedure for the preparation of 1,2alkoxy alcohols and diols from olefin via titanium superoxide catalyzed ring opening of in situ generated epoxides. The metal catalyst was found to be stable under the reaction condition and can be recycled without any appreciable loss of activity. Excellent regioselectivity and stereoselectivity was achieved.

4.1.5. Experimental section

4.1.5.1. Preparation of titanium superoxide ${ }^{17}$

$50 \% \mathrm{H}_{2} \mathrm{O}_{2}(5.98 \mathrm{~g}, 0.175 \mathrm{~mol})$ was added slowly to a solution of $\mathrm{Ti}(\mathrm{OiPr})_{4}(5.0 \mathrm{~g}, 0.0175$ mol) in anhydrous MeOH (50 mL) over 40 min . under N_{2} with stirring at room temperature. The yellow precipitate that formed was collected by filtration on a sintered funnel, washed with anhydrous methanol, and dried under reduced pressure (3 mmHg) at $258{ }^{\circ} \mathrm{C}$ for 1 h . Yield: 3.94 g

4.1.5.2. General experimental procedure for the preparation of alkoxy alcohols

To a solution of alkene (3 mmol) in $\mathrm{CHCl}_{3}: \mathrm{ROH}(9: 1)$ at $25{ }^{\circ} \mathrm{C}$ was added m chloroperbenzoic acid (mCPBA) (4.5 mmol) and titanium superoxide ($20 \mathrm{wt} \%$ based on the substrate). The reaction mixture was stirred at the same temperature for 12 h . After the completion of the reaction, the solid 3-chlorobenzoic acid was dissolved in excess CHCl_{3} and filtered to get back the metal catalyst. The filtrate was washed with NaHCO_{3}, water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to obtain the crude alkoxy alcohols. Chromatographic purification of the crude product using silica gel and ethyl acetate:petroleum ether (1:9) as eluent gave the pure alkoxy alcohols.

4.1.5.3. General experimental procedure for the preparation of diols

To a solution of alkene (3 mmol) in $\mathrm{CHCl}_{3}: \mathrm{H}_{2} \mathrm{O}$ (9:1) at $25{ }^{\circ} \mathrm{C}$ was added mchloroperbenzoic acid (mCPBA) (4.5 mmol) and titanium superoxide ($20 \mathrm{wt} \%$ based on the substrate). The reaction mixture was stirred at the same temperature for 12 h . After the completion of the reaction, the solid 3-chlorobenzoic acid was dissolved in excess CHCl_{3} and filtered to get back the metal catalyst. The filtrate was washed with NaHCO_{3}, water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to obtain the crude alkoxy alcohols. Chromatographic purification of the crude product using silica gel and ethyl acetate: petroleum ether (1:9) as eluent gave the pure diols.

2-Methoxy-2-phenylethanol (27a)

Yield: 89%; Colorless liquid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.26-7.41 (m, 5 H), 4.32 (dd, $J=4.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.2,128.5,128.1,126.8,84.6,67.4,56.9 ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3420$, 3030, 2982, 2933, 1454, 1355, 1112; GC-MS m/z (rel. intensity) 152 (1, M+), 121 (100),

105 (16), 91 (41), 77 (44); Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 71.03; H, 7.95. Found: C, 71.12; H, 8.01\%.

2-Ethoxy-2-phenylethanol (27b)

Yield: 82%; Colorless liquid; ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.27-7.39 (m, 5 H), 4.42 (dd, $J=4.2 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{dd}, J=3.8 \mathrm{~Hz}$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.9,128.3,127.8$, 126.6, 82.7, 67.2, 64.3, 15.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3428,3033,2979,2873,1452,1347$, 1105; GC-MS m/z (rel. intensity) 166 (1, M+), 135 (100), 121 (3), 107 (63), 91 (12), 79 (54); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 72.26; H, 8.49. Found: C, 72.12; H, 8.31\%.

1-Phenyl-1,2-ethanediol (27c)

Yield: 65%; Colorless solid; mp: $64-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.57$ (m, 2H), 4.51 (brs, 2H), 4.69 (dd, $J=3.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (s, 5 H). ${ }^{13} \mathbf{C}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 59.02,73.33,125.15,126.08,126.96,140.93 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3426,2993$, 2954, 1453, 1380, 1099, 985; GC-MS m/z (rel. intensity) 166 (1, M+), 135 (100), 121 (3), 107 (63), 91 (12), 79 (54); Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}: \mathrm{C}, 69.54$; H, 7.31. Found: C, 69.53; H, 7.29\%.

2-(1-Methylethoxy)-2-phenylethanol (27d)

Yield: 80%; Colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}), 4.53$ (dd, $J=4.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.64(\mathrm{~m}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=4.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.6,128.3$, $127.8,126.7,79.9,69.4,67.4,23.4,21.2$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3426,3033,2973,2924$, 1453, 1380, 1099; GC-MS m/z (rel. intensity) 180 (1, M+), 149 (50), 121 (8), 107 (100),

91 (15), 79 (35); Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 73.30$; $\mathrm{H}, 8.95$. Found: C, 73.22; H , 8.81\%.

2-(4-Chlorophenyl)-2-methoxyethanol (28a)

Yield: 85%; Colorless liquid; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 7.32(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=4.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H})$, 2.36 (br s, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 136.8,133.8,128.7,128.2,84.0,67.1$, 56.9; IR (neat, cm^{-1}): 3436, 3004, 2937, 2913, 1454, 1112, 829; GC-MS m/z (rel. intensity) 186 ($8, \mathrm{M}+$), 151 (11), 141 (100), 125 (6), 113 (29), 77 (66); Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClO}_{2}$: C, 57.92; H, 5.94. Found: C, $57.95 ; \mathrm{H}, 5.99 \%$.

2-(4-Chlorophenyl)-2-ethoxyethanol (28b)

Yield: 79\%; Colorless liquid; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=4.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.52(\mathrm{~m}$, $2 \mathrm{H}), 2.57(\mathrm{dd}, J=4.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 137.6,133.7,128.7,128.1,82.0,67.2,64.6,15.2 ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3435$, 3031, 2976, 2874, 1491, 1091, 825; GC-MS m/z (rel. intensity) 200 (1, M+), 169 (100), 155 (3), 141 (84), 125 (13), 113 (20), 77 (41); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClO}_{2}$: C, 59.86; H, 6.53. Found: C, 59.88; H, 6.61\%.

1-(4-Chlorophenyl)-1,2ethanediol (28c)

Yield: 66%; Colorless solid; mp: $81{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ and $\mathrm{DMSO}-\mathrm{d}_{6}$): δ $3.60(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{dd}, J=3.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.34 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ and DMSO-d d_{6} : $\delta 82.67,88.59,135.29,143.83$, 146.0, 157.93; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}$: C, 44.27; H, 4.19; Br, 36.81. Found: C, 44.26; H, 4.16; Br, 36.79 \%.

2-Methoxy-2-(4-methylphenyl)ethanol (29a)

Yield: 92\%; Colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.16-7.26 (m, 4H), 4.28 (dd, $J=3.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J=3.7,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.7,135.1,129.1,126.7,84.5,67.2,56.6$, 21.0; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3426, 3022, 2929, 2871, 1447, 1351, 1115, 815; GC-MS m/z (rel. intensity) 166 (1, M+), 135 (100), 119 (14), 105 (12), 91 (30), 77 (4); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 72.26; H, 8.49. Found: C, $72.15 ; \mathrm{H}, 8.33 \%$.

2-Ethoxy-2-(4-methylphenyl)ethanol (29b)
Yield: 83%; Colorless liquid; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{dd}, J=3.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.56(\mathrm{~m}$, $2 \mathrm{H}), 2.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 137.7,136.0,129.2,126.7,82.7,67.4,64.3,21.1,15.3 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3438,3025$, 2977, 2929, 1448, 1339, 1098, 815; GC-MS m/z (rel. intensity) 180 (1, M+), 149 (100), 134 (9), 121 (57), 105 (31), 93 (39), 77 (18); Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 73.30; H, 8.95. Found: C, 73.22; H, 9.00\%.

1-(4-Methylphenyl)-1,2 ethanediol (29c):

Yield: 69%; Colorless gum; mp: $76-77{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.22(\mathrm{~s}, 3 \mathrm{H})$, $3.46(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{dd}, J=4.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.05$ $(\mathrm{d}, \mathrm{J}=8.1,2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.2,67.9,74.6,126.1,129.1,137.2$, 137.6; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3438,3015,2972,2923,1448,1339,1018,928 ;$ Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 71.02; H, 7.96. Found C, 70.96; H, 8.09%.

1-Methoxy-3-phenoxy-2-propanol (30a)

Yield: 89%; Colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.89$ $6.97(\mathrm{~m}, 3 \mathrm{H}), 4.12-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.00$ (br s, 1H); ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 158.5,129.5,121.0,114.5,73.6,69.0,68.9$, 59.2; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3424,3039,2932,2886,1598,1501,1458,1374,1250,1113$, 1040; GC-MS m/z (rel. intensity) 182 (35, M+), 136 (2), 119 (11), 108 (13), 94 (100), 77 (25); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 65.91; H, 7.74. Found: C, $65.98 ; \mathrm{H}, 7.65 \%$.

1-Ethoxy-3-phenoxy-2-propanol (30b)

Yield: 81\%; Colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.88$ $6.94(\mathrm{~m}, 3 \mathrm{H}), 4.12-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.93-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.37-3.39(\mathrm{~m}$, $1 \mathrm{H}), 1.18(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.6,129.8,129.5,121.0$, 114.6, 71.6, 69.0, 66.9, 15.1; IR ($\left.\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3428,3040,2978,2933,1597,1498$, 1458, 1381, 1247, 1115, 1044; GC-MS m/z (rel. intensity) 196 (41, M+), 136 (3), 119 (11), 103 (19), 94 (100), 77 (25); Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 67.32 ; \mathrm{H}, 8.22$. Found: C, 67.35; H, 8.32\%.

3-(Phenoxy)-1,2-propanediol (30c)

Yield: 65\%; mp: 50-52 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, \mathrm{~J}=$ $5.31 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{br}, \mathrm{s} 2 \mathrm{H}), 6.85(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$-NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 63.57,68.82,70.59,114.54,121.04,129.37,158.46 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right):$ 3424, 2915, 2889, 1598, 1501, 1458, 1374, 1295, 1250, 1117, 1044; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$: C, 64.27; H, 7.21. found C, 64.20; H, 7.09 \%.

trans-2-Methoxycyclohexanol (31a)

Yield: 89\%; Colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.44(\mathrm{~m}$, $1 \mathrm{H}), 2.90-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.57($ brs, 1 H$), 1.99-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.31$
(m, 4H); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 85.0,73.8,56.3,32.0,28.3,24.1,23.9 ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3440,2934,2862,1453,1102 ;$ GC-MS m/z (rel.intensity) $130(50, \mathrm{M}+$), 112 (13), 98 (32), 84 (46), 71 (100), 58 (23); Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 64.58$; H , 10.84. Found: C, 64.64; H, 10.72\%.
trans-2-Ethoxycyclohexanol (31b)
Yield: 83%; Colorless liquid; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 3.72$ (ddd, $J=7.1, ~ 9.3$, $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{ddd}, J=4.3,8.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 83.5,73.7,64.0,32.0,29.2,24.2,23.9,15.6 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3441,2974$, 2934, 2865, 1451, 1107; GC-MS m/z (rel. intensity) 144 (16, M+), 126 (2), 115 (8), 98 (32), 85 (100), 70 (68), 57 (80); Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 66.63$; H, 11.18. Found: C, 66.72; H, 11.34\%.

Cyclohexane-1, 2-trans-diol (31c)

Yield: 59\%; Colorless solid; mp: 92-93 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.30(\mathrm{~m}, 2 \mathrm{H})$, $1.61(\mathrm{~m}, 6 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.58,29.75$, 70.64. IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3359,2995,2967,1445,1167,992$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 62.04; H, 10.41. Found C, 61.92; H, 10.36 \%.

1-Methoxy-1-phenylpropan-2-ol (33a)

Yield: 95\%; Colorless liquid; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.09(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, 2.07 (brs, 1H), $3.28(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 17.7,56.9,70.5,87.5,127.5,127.7,128.1,138.1 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right.$, cm^{-1}): 3420, 3030, 2982, 2933, 1454, 1355, 1112; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 72.26 ; \mathrm{H}$, 8.49. Found: C, 72.19; H, 8.31\%.

1-Phenyl propan-1, 2diol (33b)

Yield: 72\%; Colorless gum; ${ }^{1} \mathbf{H}-$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}$), $3.74(\mathrm{~m}, 1 \mathrm{H}), 4.1(\mathrm{brs}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 18.8,72.2,79.6,127.1,127.7,128.1,141.3 ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3352,3015$, 2995, 2923, 1454, 1355, 986; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 72.26; H, 8.49. Found: C, 72.19; H, 8.31\%.

1-Methoxyoctan-2-ol (32a)

Yield: 85%; Colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.85(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.12-1.52(\mathrm{~m}, 10 \mathrm{H}), 2.95(\mathrm{brs}, 1 \mathrm{H}), 3.25-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.65-4.00(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,22.6,25.64,29.4,31.8,33.1,59.2,72.2,80.1$; EIMS: $m / z(\%)=160(\mathrm{M}+, 23), 145(10), 129(35), 111(100), 70(41), 42(21)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right)$ 3441, 2974, 2934, 2865, 1451, 1107; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}_{2}$: C, $67.45 ; \mathrm{H}, 12.58$. Found: C, 67.55; H, 12.64\%.

n-Oct-1, 2-diol (32b)

Yield: 62\%; gum; ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.89(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.41(\mathrm{~m}, 10 \mathrm{H})$, 3.02 (br, s, 2H), $3.39(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.02$, $22.59,25.64,29.42,31.81,33.06,66.54,72.23$; IR (neat, cm^{-1}): 3421, 3012, 2975, 1397, 1152, 962; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{C}, 65.71 ; \mathrm{H}, 12.40$. Found C, $65.78 ; \mathrm{H}, 12.31 \%$.

1-Methoxy-3-phenyl-2-propanol (34a)

Yield: 92\%; Colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.94-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, 1H); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.9,129.2,128.3,126.3,75.9,71.1,58.9,39.7$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3429,3033,2922,2898,1450,1125,1085 ;$ GC-MS m/z (rel. intensity) 166
(1, M+), 148 (45), 121 (29), 103 (40),92 (100), 75 (24); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 72.26; H, 8.49. Found: C, 72.22; H, 8.40\%.

1-Ethoxy-3-phenyl-2-propanol (34b)

Yield: 85%; Pale-yellow liquid; ${ }^{1} \mathbf{H}-$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20-7.31(\mathrm{~m}, 5 \mathrm{H})$, $3.95-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.56(\mathrm{~m}, 4 \mathrm{H}), 2.72-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.1,129.4,128.4,126.4,73.8,71.3,66.7$, 39.9, 15.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3436,3032,2977,2929,1450,1118 ;$ GC-MS m/z (rel. intensity) 162 (35, M+- $\mathrm{H}_{2} \mathrm{O}$), 133 (35), 121 (26), 103 (35), 92 (100), 77 (12), 61 (42); Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 73.30; H, 8.95. Found: C, 73.25; H, 9.01\%.

3-Phenyl propane-1,2-diol (34c)

Yield: 72%; Colorless solid; mp: $64-65{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.56$ (brs, $2 \mathrm{H}), 2.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.50(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J$ $=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 39.8,66.0,73.0,126.5,128.6,129.3,137.8$; IR (neat, cm^{-1}): 3230, 3029, 2923, 2862, 1495, 1456; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 71.02; H, 7.96. Found C, $71.06 ; \mathrm{H}, 8.01 \%$.

Section II

Phosphine ligand and base-free Pd-catalyzed Suzuki type crosscoupling reaction of arylboronic acids with aryl mercuric acetates

4.2.1. Introduction

The palladium-catalyzed Suzuki-Miyaura coupling of aryl halides with arylboronic acids or esters is one of the most powerful and versatile methods for the formation of $\mathrm{C}-\mathrm{C}$ bonds, in particular for the preparation of biaryl compounds. ${ }^{18}$ In recent years this reaction has been successfully applied in the synthesis of natural products (36-40) (Fig.
8), ${ }^{19}$ drugs ${ }^{20}$ and conducting polymers. ${ }^{21}$

36, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$, allocolchicine
37, $\mathrm{R}=\mathrm{OH}, \mathrm{N}$-acetyl colchinol

39, Pyridovericin

38, Steganacin

40, Eupomatilone 6

Fig. 8: Naturally-occurring biaryls

The massive interest for the Suzuki reaction can be explained by the impressively wide range of substrates' tolerance, relatively higher stability and less toxicity of boronic acids. The development of improved conditions for the Suzuki reaction has received much
recent attention due to the importance of biaryls that find applications in a range of pharmaceuticals, herbicides, as well as in conducting polymers and liquid crystalline materials.

Suzuki coupling

Initially, Akira Suzuki and co-workers reported ${ }^{22}$ in 1979 that reaction of an equimolar amount of (E)- 1-hexenyldisiamyl borane (41) in THF with (E)-1-bromo-2-phenylethene (43) in presence of base such as sodium methoxide, ethoxide, acetate and hydroxide and $1 \mathrm{~mol} \%$ of tetrakis(triphenylphosphine) palladium gave (E,E)-1-phenyl-1,3-octadiene (44) in good yields (Scheme 12). They also applied the same reaction for the synthesis of (E, Z)-dienes. Although the reactions proceeded smoothly, the results were unsatisfactory because the initially formed (E, Z) isomer underwent isomerization to the more stable $(E$, $E)$ isomer.

Scheme 12: $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, THF.

Reaction mechanism:

By analogy to the other cross-coupling reactions, the catalytic cycle of Suzuki coupling reaction involves the following three basic steps: 1) Oxidative addition, 2) Transmetallation and 3) Reductive elimination. ${ }^{23}$ A general catalytic cycle for the Suzuki coupling reaction is given in Fig. 9.

Fig. 9: Catalytic cycle for Suzuki coupling

The efficiency of palladium originates from its ability, when it is zerovalent, to activate C-X bonds ($\mathrm{X}=\mathrm{I}, \mathrm{Cl}, \mathrm{Br}, \mathrm{O}$) in 45 by an oxidative addition which provides an organopalladium (II) complex A prone to react with nucleophiles. ${ }^{24}$ A large variety of palladium(0) catalysts or precursors can be used for this reaction. $\operatorname{Pd}(0) \mathrm{L}_{4}$ where $\mathrm{L}=$ phosphine is most commonly used since they are air stable. Palladium (II) complexes along with a reducer are also used. Oxidative addition of 1-alkenyl, 1-alkynyl, allyl, benzyl and aryl halides to a $\operatorname{Pd}(0)$ complex gives a stable palladium (II) complex. The reaction proceeds with complete retention of stereochemistry for alkenyl halide and with inversion for allylic and benzylic halides. Oxidative addition is often the rate determining step in the catalytic cycle. The mechanism of the oxidative addition step is characterized by means of electrochemical techniques (as the metal is oxidized) such as steady state voltametry, transient voltametry, cyclic voltametry and reaction kinetics.

The transmetallation step between organopalladium (II) complex and organoboron compound does not usually proceed in the absence of base due to low nucleophilicity of
organic group on boron atom. However, the nucleophilicity can be enhanced by quarternization of boron with negatively charged bases giving the corresponding "borate" complex. It is reported that such "borate" complexes undergo clean coupling reaction with organic halide to give species $\mathbf{B} .{ }^{25}$ The transmetallation of primary alkyl borane to Pd occurs with retention of stereochemistry.

As the name implies reductive elimination involves the elimination or expulsion of a molecule from a transition metal complex. In the process of this elimination, the metal center is reduced by two electrons and a coordinatively unsaturated metal center is obtained. Reductive elimination takes place directly in the complex to expel biaryls 46 and palladium (0) species.

Applications of Suzuki coupling reaction:

Suzuki coupling reaction has huge applications in various fields of chemistry and few examples are outlined here to represent the diversity of this reaction.

Nonlinear optics (NLO) is the branch of optics that describes the behavior of light in nonlinear media. This branch of optics has become much more important in the context that one day photonics will replace electronics. In this connection, Suzuki reaction has been employed to synthesize the molecules, which have both electron donor and electron acceptor groups. Synthesis of one such molecule namely 1,8-di(hetero)arylnapthalene derivative 49 was achieved by Grahn et al. from boronic acid 47 using sequential Suzuki cross-coupling reaction (Scheme 13). ${ }^{26}$

Scheme 13: i) 4-nirto phenylboronic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, EtOH:toluene: $\mathrm{H}_{2} \mathrm{O}$, 74%; ii) 4-methoxy phenylboronic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, EtOH:toluene: $\mathrm{H}_{2} \mathrm{O}, 49 \%$.

Unnatural amino acids are gaining importance in the field of biochemistry as building blocks in designing peptide-based biologically active molecules. They are also used as conformational constraints, molecular scaffolds and pharmacologically active products. ${ }^{27}$ Analogues of homophenylalanines, such as 4-methoxyhomophenylalanine (53) have received particular attention as constituents of potential pharmaceuticals. Scheme 14 represents the synthesis of homophenylalanines from amino alcohol 50 via Suzuki coupling with phenyl boronic acid 51.

Scheme 14: i) 9-BBN, $\mathrm{PdCl}_{2}, \mathrm{NaOH}$, bromobenzene, $80^{\circ} \mathrm{C}$.

Recent advances and modifications in Suzuki coupling

Other than investigating synthetic application of Suzuki coupling reaction, scientists have also investigated various ligands and medium in which the reactions can be carried out. With the increasing interest in Green Chemistry processing research groups have recently
focused on the development of new polymeric support materials for catalysis in water. Uozumi and co-worker reported for the first time on the successful use of amphiphilic PEG-PS(poly(ethylene glycol) modified poly(styrene)) resin supported triphenyl phosphine palladium complexes in Suzuki coupling reactions in aqueous media under mild reaction conditions. ${ }^{28}$

Ionic liquids also play important role as liquid support in designing more mild and efficient protocol for Suzuki coupling, which gives stability and recyclability of the catalyst. A recent paper describes this reaction in 50% ethanol catalyzed by immobilized $\mathrm{Pd}(\mathrm{OAc})_{2}$ on reversed phase alumina with the aid of an ionic liquid (Pd-SILC). The Suzuki-Miyaura cross-coupling of 4-iodophenol immobilized on polystyrene-Wang resin with various arylboronic acids was significantly accelerated by the ionic liquid namely 1-butyl-3-methylimidazolium tetrafluoroborate $\left([\mathrm{bmim}]\left[\mathrm{BF}_{4}-\right]\right) .{ }^{29}$

One of the most challenging field is to design a " ligand free" catalytic system for this reaction as most of the ligands used are not only sensitive to air and/or moisture but also difficult to prepare. This goal is recently achieved by Liu and his group. They reported an aerobic ligand free Suzuki coupling reaction catalyzed by the in situ generated palladium nanoparticles in PEG-400 at $45{ }^{\circ} \mathrm{C} .{ }^{30}$ The research work is being carried out continuously to modify the reaction conditions as well as to analyze the scope of different ligands in the Suzuki coupling.

4.2.2. Review of literature

From its report in 1979, the Suzuki coupling reaction is the most investigated crosscoupling reaction. The amount of work done in this area is enormous. In Sci-finder the search for Suzuki coupling reaction, yields over 4000 papers. Research groups are still
working on the various aspects of this reaction and its applications. Few, interesting recent examples are briefly described below.

Genet's approach (1996) ${ }^{31}$

An efficient Suzuki cross-coupling between various arene diazonium tetrafluoroborates 54 and arylboronic acids 55 in the presence of catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ has been described by Genet et al. This reaction proceeded smoothly at ambient conditions and produced biaryls in excellent yields (Scheme 15).

Scheme 15: i) $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, dioxane, $20^{\circ} \mathrm{C}$.

Macmillan's approach (2003) ${ }^{32}$

Macmillan et al. have achieved the preparation of biaryls 58 through the Suzuki-type cross-coupling reaction between aryl trimethyl ammonium triflates 57 and arylboronic acids 51. The authors have described the use of Ni catalysts with various phosphine ligands (59-61) for this conversion (Scheme 16).

59

60

61

Scheme 16: i) $\mathrm{Ni}(0)$, ligand (59-61), CsF, dioxane, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Vogel's approach (2004) ${ }^{33}$

Vogel et al. have used aryl or alkenyl sulfonyl chloride $\mathbf{6 2}$ as new coupling partners for the Suzuki-Miyaura cross-coupling reactions with arylboronic acids 55 to obtain the corresponding biaryls 56 in excellent yields (Scheme 17). The authors also found that the reactivity of this reaction was little lower than iodoarene but higher than bromoarene.

Scheme 17: $1.5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$, ligand 63, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, THF, 15 h .

Yan's approach (2005) ${ }^{34}$

Yan et al. have reported the preparation of biaryls 58 in good yields via a fast and efficient Suzuki-type coupling reaction of sodium tetraphenyl borate $\mathbf{6 4}$ with iodanes 65. This reaction was carried out in water as the solvent and at ambient conditions. Interestingly, this reaction does n't require any metal catalyst or base (Scheme 18).

Scheme 18: $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$.

Mclaughlin's approach (2005) ${ }^{35}$

Suzuki-Miyaura cross-coupling between benzylic phosphates 66 and aryl boronic acids 55 to produce diarylmethane 67 has been studied by Mclaughlin et al. employing a simple catalytic system comprising $\mathrm{Pd}(\mathrm{OAc})_{2}$ and PPh_{3} in the presence of potassium phosphate or potassium carbonate as the base (Scheme 19).

yield: 67-99\%

$$
\begin{aligned}
& \mathrm{R}=\mathrm{H}, \text { alkyl, halogen, etc. } \\
& \mathrm{R}_{1}=\mathrm{Cl}, \mathrm{Me}, \mathrm{H}, \mathrm{OMe}, \text { etc. }
\end{aligned}
$$

Scheme 19: $\mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{~mol} \%), \mathrm{PPh}_{3}(4 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$, toluene, $90^{\circ} \mathrm{C}$.

Stefani's approach (2006) ${ }^{36}$

Potassium aryl trifluoroborate salts 69 and aryl tellurides 68 containing a variety of functional groups underwent $\operatorname{Pd}(0)$ catalyzed cross-coupling reaction to afford the corresponding biaryls 58 in good to excellent yields (Scheme 20).

$$
\begin{aligned}
& R=\begin{array}{l}
\text { aryl, naphthyl, furan, thiopene } \\
\text { pyridine, alkyl, etc. }
\end{array}
\end{aligned}
$$

4.2.3. Present work

4.2.3.1 Objective

From the above discussion, it is clear that several reports exit for the Suzuki cross-coupling reaction in the presence of various palladium salts or complexes under different reaction conditions. Yet, the search for a new and readily available coupling partner is desirable. This section describes the use of arylmercuric acetates as the coupling partner with the boronic acid in non-polar solvents to get biaryl compounds under ambient temperature.

4.2.4. Results and discussions

It has been reported in the literature that the reaction of arylboronic acid (51) with mercuric salt (70) in polar solvent such as methanol led to the isolation of diarylmercury (71). ${ }^{37}$ We found that when the same reaction was carried out in non-polar solvents like toluene in the presence of palladium salts as catalyst it took different course to give the cross coupled biphenyl (72) in good yield (Scheme 21).

Scheme 21: i) Phenylmercuric acetate (3 mmol), phenylboronic acid (3 mmol), catalyst ($5 \mathrm{~mol} \%$), solvent (5 mL), $25^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

In order to study this catalytic system in a systematic manner, several metal salts and solvents have been screened and the results are shown in the Table 3. Remarkably,
palladium salts were found to be extremely active and gave excellent yield of biphenyl over other metal complexes. The maximum yield of biphenyl was obtained with $\operatorname{Pd}(\mathrm{dba})_{2}$ whereas Pd / C gave poor yield. Other metals like Cu, Ni and Ru were found to be inactive. Among the solvents screened, toluene gave excellent yield while the more polar solvents like $\mathrm{MeOH}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}$ and dioxane resulted in diphenyl mercury as the major product. Another interesting feature of this reaction is that the base, which is typically an important requirement in palladium-catalyzed coupling reactions, was not required. In contrast, addition of organic bases increases the polarity of the system and thus resulted in the formation of diphenyl mercury in considerable amounts.

Table 3. Effect of catalyst and solvent on coupling reaction of phenylboronic acid with phenyl mercuric acetate ${ }^{\text {a }}$

Entry	Catalyst	Solvent	Yield of 72 (\%)
1	PdCl_{2}	toluene	82
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	toluene	90
3	$\mathrm{Pd}(\mathrm{dba})_{2}$	toluene	95
4	${\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}}^{\text {b }}$	toluene	93
5	$\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	toluene	trace
6	$\mathrm{RuH}_{2} \mathrm{CO}\left(\mathrm{PPh}_{3}\right)_{3}$	toluene	0
7	$5 \% \mathrm{Pd} / \mathrm{C}$	toluene	11^{c}
8	$\mathrm{Pd}(\mathrm{dba})_{2}$	DMF^{2}	14
9	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	87
10	$\mathrm{Pd}(\mathrm{dba})_{2}$	CHCl_{3}	78
11	$\mathrm{Pd}(\mathrm{dba})_{2}$	CCl_{4}	53
12	$\mathrm{Pd}(\mathrm{dba})_{2}$	dioxane 13	$\mathrm{Pd}(\mathrm{dba})_{2}$

${ }^{a}$ Reaction conditions. Phenylmercuric acetate (3 mmol), phenylboronic acid (3 mmol), catalyst ($5 \mathrm{~mol} \%$), solvent (5 mL), $25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h} ;{ }^{\mathrm{b}}$ Isolated yield by column chromatography.

Table 4: Pd- Catalyzed Suzuki-type cross-coupling reaction ${ }^{\text {a }}$ between arylmercuric acetate and arylboronic acid
(2)

[^4]With the optimized conditions in hand we subjected a variety of boronic acids with phenylmercuric acetate and the results are given in the Table 4. Substituted phenyl mercuric acetates were prepared following the known electrophilic mercuration methods. ${ }^{37}$ In all the cases a $<5 \%$ of homo-coupled product was also isolated. The biaryls were purified using column chromatography and systematically characterized by the ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$ NMR and IR spectroscopy techniques. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of 4 methoxy biphenyl showed a characteristic singlet at $\delta 3.72$ for the OCH_{3} proton. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed signal at $\delta 55.1$ due to the OCH_{3} carbon (Fig. 10).

Fig. 10: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7 2 j}$

Attempts to avoid the homo-coupled product by reducing the reaction temperature up to $\left(15^{\circ} \mathrm{C}\right)$ had no considerable effect. The cross-coupling reaction was successful only in the case of arylmercuric acetate and failed in the case of arylmercuric bromide or chloride. In the case of 4-chlorophenylmercuric acetate the boronic acid replaced only the mercuric acetate while the chlorine was unaffected. Easily oxidizable aldehyde group was found to be unaffected in this reaction condition. After the reaction the Pd-catalyst was deposited as black colored particle and mercury (II) as mercury metal.

One may expect the reaction to proceed through two different routes, i.e. i) normal Suzuki coupling mechanism of oxidative addition followed by aryl transfer and reductive elimination; ii) initial formation of diarylmercury followed by its dimerization ${ }^{37}$ catalyzed by palladium. Since dimerization requires high temperatures as well as highly polar solvents like $\mathrm{HMPA}, \mathrm{MeOH}, \mathrm{CH}_{3} \mathrm{CN}$, etc, we presume that the reaction might follow the Suzuki coupling pathway. The non-requirement of base may be ascribed to the acetate anion liberated from the phenylmercuric acetate, which acts as base and increases the nucleophilicity of the neutral boronic acid thus facilitating the transmetallation from boron to organopalladium. This assumption also explains the inactivity of arylmercuric halides towards arylboronic acid under the reaction conditions (Fig. 11).

Fig. 11: Proposed mechanistic pathway

4.2.5. Conclusion

In summary, we have described that arylmercuric acetates underwent smooth coupling with arylboronic acids in a non-polar solvent in the presence of palladium as catalyst under ambient conditions to give the corresponding biaryl compound. A remarkable feature of this system is that neither a base nor a phosphine ligand was required.

4.2.6. Experimental Section:

General procedure for the Pd- catalyzed coupling of arylmercuric acetates with

boronic acids:

To a mixture of arylmercuric acetate $(3 \mathrm{mmol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$ in toluene $(10 \mathrm{~mL})$ was added arylboronic acid (3 mmol) and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$. The reaction was monitored by TLC periodically. After the completion of the reaction it was extracted with ethyl acetate washed twice with water, brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography.

Biphenyl (72a):

Yield: 78\%; Colorless solid; mp: 68-70 ${ }^{\circ} \mathrm{C}\left\{\mathrm{lit}^{38}{ }^{38}{ }^{\circ} \mathrm{C}\right\} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.18-7.65 (m, 10H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}\right) \delta 127.2,127.3,128.8,141.3 ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$: 3008, 2986, 1602, 1424; Anal Calcd for $\mathrm{C}_{12} \mathrm{H}_{10}$: C, 93.46; H, 6.54. Found: C, 93.51; H, 6.60\%.

2-Phenylnaphthalene (72b):

Yield: 89%; Colorless solid; mp: $105{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-8.27(\mathrm{~m}$, 12H); ${ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 125.3,125.7,125.9,126.0,126.9,127.2,127.6$, 128.2, 130.0, 131.6, 133.8, 140.2, 140.8; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 668,688,758,770,820,860$, 892, 1076, 1216, 1452, 1496, 1598, 1948, 3106, 3058; Anal calcd for $\mathrm{C}_{16} \mathrm{H}_{12}: \mathrm{C}, 94.08 ; \mathrm{H}$, 5.92. Found: C, 94.29; H, 5.70\%.

1-Biphenyl-4-yl-ethanone (72c):

Yield: 78%; Colorless solid; mp: $119^{\circ} \mathrm{C}\left\{\right.$ lit. $\left.^{38} 120{ }^{\circ} \mathrm{C}\right\} ; ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $2.59(\mathrm{~s}, 3 \mathrm{H}), 7.40-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.97-8.01(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.3,127.0,128.0,128.7,135.6,139.6,145.4,196.8 ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$: 595, 668, 697, 756, 1007, 1216, 1267, 1358, 1604, 1680, 3019; MS (m/z, \% relative intensity): $196\left(\mathrm{M}^{+}, 51\right), 181$ (100), 153 (33), 152 (51), 76 (13), 43 (4); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 85.68$; H, 6.16. Found: C, 85.59; H 6.42\%.

3-Chlorobiphenyl (72d):

Yield: 86%; Colorless liquid; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.16-7.44(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 125.2,127.1,127.2,127.3,127.8,128.8,129.9,134.7,139.8$,
143.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 523,624,766,803,892,1014,1061,1114,1420,1604,1694$,

1766, 1810, 1884, 1957, 3033, 3086; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}: \mathrm{C}, 76.4 ; \mathrm{H}, 4.81 ; \mathrm{Cl}, 18.79$.
Found: C, 76.12; H, 4.95; Cl, 18.54\%.

4- ${ }^{\text {t }}$ Butyl biphenyl (72e):

Yield: 89%; Colorless solid; mp: $48{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 7.3-$ $7.64(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,141.3,138.6,129,127.3,127.2,127$, 126, 34.8, 31.7; IR ($\left.\mathrm{CHCl}_{3}\right) 2962,1486,1179,836,766$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18}$: C, 91.38 ; H, 8.62. Found: C, 90.23; H, 9.5\%.

Biphenyl-3-carbaldehyde (72f):

Yield: 75%; Colorless solid; mp: $53-54{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.9(\mathrm{~s}, 1 \mathrm{H})$, $8.01(\mathrm{~m}, 1 \mathrm{H}) 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1}} \mathbf{C} \mathbf{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 191.2,137.2,137.1,136.6,133.34,129.8,129.3,129.2,128.5,127.9,127.8$, 127.3; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ 2982, 2832, 1690, 1592, 1200, 720; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}$, 85.69; H, 5.53. Found: C, 85.72; H, 5.55.

4-Methylbiphenyl (72g):

Yield: 95\%; Gum; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.36(\mathrm{~s}, 3 \mathrm{H}), \delta 7.20-7.57(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.15,126.82,126.99,127.17,128.70,129.47,136.80,138.43$, 141.21; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 546,667,760,822,1038,1352,1598,1907,2589,2583,3065$; MS (m/z, \% relative intensity): $168\left(\mathrm{M}^{+}, 100\right), 167$ (68), 165 (22), 152 (20), 115 (6); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12}$: C, $92.81 ; \mathrm{H}, 7.19$. Found: C, $92.64 ; \mathrm{H}, 7.40 \%$.

2-Methoxybiphenyl (72h):

Yield: 82%; Gum; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.71(\mathrm{~s}, 3 \mathrm{H}), 6.75-7.49(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 55.3,111.3,120.8,121.62,126.6,127.7,128.4,128.5,129.4$, 130.7, 133.2, 138.6, 156.5; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 565,612,667,698,732,753,800,1028$,

1055, 1122, 1236, 1259, 1463, 1504, 1597, 2834, 2956, 3011, 3061; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 84.75 ; \mathrm{H}, 6.57$. Found: C, 84.85; H, 6.49\%.

4-Chlorobiphenyl (72i):

Yield: 74\%; Colorless gum; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.52(\mathrm{~m}, 4 \mathrm{H}), 7.4(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140,139.6,133.3,129,128.9,128.4,127.6,127.1 ; \mathbf{I R}$ $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 803,892,1061,1114,1420,1604,1694,1766,1810,1884,1957,2983$, 3033; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}: \mathrm{C}, 76.4 ; \mathrm{H}, 4.81$; Cl, 18.79. Found: C, 76.01; H, 4.23; Cl, 17.93\%.

4-Methoxybiphenyl (72j):

Yield: 81%; Colorless solid; mp: $87^{\circ} \mathrm{C}\left\{\right.$ lit. $\left.^{38} 89^{\circ} \mathrm{C}\right\} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 3.72$ (s, 3H), 6.85-7.46 (m, 9H); ${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 55.1,114.2,126.6,128.1$, 128.6, 133.7, 140.8, 159.1; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 566,703,776,845,1051,1130,1198,1304$, 1414, 1462, 1530, 1615, 2917, 2970, 3065; MS (m/z, \% relative intensity): $184\left(\mathrm{M}^{+}, 100\right)$, 169 (44), 141 (38), 115 (26), 63 (4); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 84.75 ; \mathrm{H}, 6.56$. Found: C, 84.55; H, 6.81\%.

4.2.7. References

1 (a) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; Wiley: New York, 1989; (b) Kino, T.; Halanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.;

Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1987, 40, 1249.
2 Smith, J. C. Synthesis 1984, 629.
3 Chini, M.; Chrotti, P.; Gardelli, C.; Macchia, F. Synlett 1992,673.
4 Otera, J.; Yashinaga, Y.; Hirakawa, K. Tetrahedron Lett. 1985, 26, 3219.
5 Iranpoor, N.; Boltork, I. M. Tetrahedron Lett. 1990, 31, 735.
6 Masaki, Y.; Ochiai, M.; Miura, T. Synlett 1993, 847.
7 Iranpoor, N.; Salchi, P. Synthesis 1994, 1152.

8 Iranpoor, N.; Tarrian, T.; Movahedi, Z. Synthesis, 1996, 1473.
9 Kim, B.H.; Piao, F.; Lee, E, J.; Kim, J. S.; Jun, Y. M.; Lee, B. M. Bull. Korean
Chem. Soc. 2004, 25, 881.
10 Schneider, C.; Sreekanth, A. R.; Mai, E. Angew. Chem. Int. Ed. 2004, 43, 5691
11 Yadav, J.S., Reddy, B.V.S., Harikishan, K., Madan, Ch., Narsaiah, A.V. Synthesis 2005, 2897
12 Bras, J. L.; Chatterjee, D.; Muzart, J. Tet. Lett. 2005, 46, 4741-4743
13 Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Baltork, I. M.; Taghavi, S. A. Catalysis Communications 2007, 8, 2087

14 (a) Criegee, R. Justus Liebigs Ann. Chem. 1936, 522, 75; (b) Schroder, M. Chem. Rev. 1980, 80, 187; (c) Hentges, S.G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263; (d) Plietker, B.; Niggemann, M. J. Org. Chem. 2005, 70, 2402

15 (a) Woodward, R.B.; Brutcher, F. V. J. Am. Chem. Soc. 1958, 80, 209. (b) Woodward, R.B. U. S. Patent, 2, 687, 435 (1954).

16 Plesnicar, B, Oxidations in Organic Chemistry (W. S. Trahanovsky, ed.), Part C, p. 211. Academic Press, New York, 1978.

17 Dewkar, G.K., Nikalje, M.D., Ali, I.S., Paraskar, A.S., Jagtap, H.S., Sudalai, A. Angew. Chem. Int. Ed. 2001, 40, 405.
18 (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.

19 (a) Bringmann, G.; Gunther, C.; Ochse, M.; Schupp, O.; Tasler, S. In Progress in the Chemistry of Organic Natural Products; Herz, W., Falk, H., Kirby, G. W., Moore, R. E., Eds.; Springer: New York, 2001; Vol. 82, pp 1-293. (b) Ding, K.; Wang, S. Tetrahedron Lett. 2005, 46, 3707.

Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N. Angew. Chem., Int. Ed. 1999, 38, 2096. (b) Ban, H.; Muraoka, M.; Ohashi, N. Tetrahedron. 2005, 61, 10081. (c) Kumar, P.; Pathak, P. K.; Gupta, V. K.; Srivastava, B. K.; Kushwaha, B. S. Asian J. Chem. 2004, 16, 558. (d) Gasparani, L.; Ongini, E.; Wenk, G. J. Neurochem. 2004, 91, 521.

21
(a) Krebs, F. C.; Jørgensen, M. Macromolecules 2002, 35, 7200.
(b) Collis, G. E.; Burrell, A. K.; Officer, D. L. Tetrahedron Lett. 2001, 42, 8733.

22 Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437.
23 Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.
24 (a) Gillie, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4933.
(a)Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic; New York, 1988. (b) Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994, 116, 6985.

26 Bahl, A.; Grahn, W.; Stadler, S.; Feiner, F.; Bourhill, G.; Brauchle, C.; Reisner, A.; Jones, P. G. Angew. Chem. Int. Ed. Engl. 1995, 34, 1485

27 Sabat, M.; Johnson, C. R. Org. Lett. 2000, 8, 1089-1092.
Uozumi, Y.; Danjo, H.; Hayashi, T. J. Org. Chem. 1999, 64, 3384.
(a) Miao, W.; Chan, T. H. Org. Lett. 2003, 5, 5003-5005. (b) Hagiwara, H.; Ko, K. H.; Hoshi, T.; Suzuki, T. Chem. Commun. 2007, 2838. (c) Revell, J. D.; Ganesan, A. Org. Lett. 2002, 4, 3071-3073.

30 Han, W.; Liu, C.; Jin, Z. Adv. Synth. Catal. 2008.
31 Darses, S.; Jeffery, T; Genet, J. P.; Brayer, J. L.; Demoute, J. P. Tetrahedron Lett, 1996, 37, 3857.

Blakey, S. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 6046.
Dubbaka, S. R.; Vogel, P. Org. Lett. 2004, 6, 95.
Yan, J.; Zhou, Z.; Zhu, M. Tetrahedron Lett. 2005, 46, 8173.
(a) McLaughlin, M. Org. Lett. 2005, 7, 4875. (b) Kuwano, R.; Yokogi, M. Org. Lett. 2005, 7, 945. (c) Kang, S.-K.; Ryu, H.-C.; Son, H.-J.; Synlett 1998, 771.

36 Cella, R; Cunha, R. L. O. R; Reis, A. E. S; Pimenta, D. C; Klitzke, C. F; Stefani, H. A. J.Org. Chem. 2006, 71, 244.
(a) Larock, R. C. Solvomercuration/Demercuration reagents in Organic Synthesis. Springer-Verlag, Berlin, 1986. (b) Larock, R. C. Organomercury Compounds in Organic Synthesis. Springer-Verlag, Berlin, 1985.

38 Cadogan, J. I. G.; Buckingham, J.; Macdonald, F. Dictionary of Organic Compounds. Chapman \& Hall, 1996.

List of Publications

1. $\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated Diastereoselective Dihydroxylation of Olefins: A Catalytic Approach to the Prevost-Woodward Reaction. Emmanuvel, L; Shaikh, T. M.; Sudalai, A. Org. Lett., 2005, 7, 5071.
2. NaIO_{4}-mediated selective oxidation of alkylarenes and benzylic bromides/alcohols to carbonyl derivatives using water as solvent. Shaikh, T. M.; Emmanuvel, L; Sudalai, A. J. Org. Chem. 2006, 71, 5043.
3. $\mathrm{NaIO}_{4} / \mathrm{KI} / \mathrm{NaCl}$: a new reagent system for iodination of activated aromatics through in situ generation of iodine monochloride. Emmanuvel, L; Shukla, R. K.; Sudalai, A. Gurunath, S.; Sivaram, S. Tetrahedron Lett. 2006, 47, 4793.
4. $\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated direct conversion of benzylic alcohols and aromatic aldehydes to aromatic esters. Shaikh, T. M.; Emmanuvel, L; Sudalai, A. Synth. Comm. 2006, 37, 2641.
5. Phosphine ligand and base-free, Pd- catalyzed oxidative cross-coupling reaction of arylboronic acids with arylmercuric acetates. Emmanuvel, L; Sudalai, A. Arkivoc 2007, 14, 126.

6 A short enantioselective synthesis of (+) -L-733,060 via Shi epoxidation of a homoallylic carboxylate. Emmanuvel, L; Sudalai, A. Tetrahedron Lett. 2008, 49, 5736.

7 A concise synthesis of (+)-febrifugine. Emmanuvel, L; Kamble, D. A.; Sudalai, A. (communicated to Tetrahedron: Asymmetry).
8 A new catalytic process for the preparation of high quality 3, 3'diaminobenzidine and their analogues. Shukla, R. K.; Emmanuvel, L; Sudalai, A. Gurunath, S.; Sivaram, S. US patent Filed

9 Enantioselective formal synthesis of (-)-epiquinamide. Emmanuvel, L; Sudalai, A. (Manuscript under preparation)

10 Oxyhalogens in Organic Chemistry (Review, Manuscript under preparation)

[^0]: ${ }^{a}$ Reaction conditions: (i) styrene (3 mmol), oxidant ($30 \mathrm{~mol} \%$ to 1 equiv.), halogen source ($20 \mathrm{~mol} \%$), $\mathrm{AcOH}(5 \mathrm{~mL}), 9{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}(4.5 \mathrm{mmol})$, $\mathrm{MeOH}(15 \mathrm{~mL}), 25^{\circ} \mathrm{C}, 24 \mathrm{~h} ;{ }^{b} \mathrm{NaIO}_{4}(30 \mathrm{~mol} \%) ; \mathrm{KIO}_{3}$ or $\mathrm{V}_{2} \mathrm{O}_{5}$ or WO_{3} or $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(50 \mathrm{~mol} \%)$; oxone or $m \mathrm{CPBA}$ or $\mathrm{Phl}(\mathrm{OAc})_{2}$ (1 equiv.); ${ }^{c}$ Halogen source ($20 \mathrm{~mol} \%$); ${ }^{d}$ Isolated yield; ${ }^{e} m$-Chloroperbenzoic acid; ${ }^{f} 10 \mathrm{~mol} \%$ LiBr employed.

[^1]: ${ }^{a}$ Reactions were carried out following the experimental procedure; ${ }^{b}$ Diastereomeric ratios were determined from ${ }^{1} \mathrm{H}$ NMR and GC; ${ }^{c}$ Isolated yield after chromatographic purification; ${ }^{d}$ Product was isolated as acetate after acetylation ($\mathrm{Ac}_{2} \mathrm{O}$, py) ; ${ }^{e}$ Time $36 \mathrm{~h} ;{ }^{f}$ At $80^{\circ} \mathrm{C}$ for $36 \mathrm{~h} ;{ }^{g}$ Hydrolyzed using $\mathrm{KOH}, \mathrm{MeOH} ;{ }^{h} 50 \mathrm{~mol} \%$ of NaIO_{4} employed; ${ }^{i} 1$ equiv of water was used (diastereoselectivity in the absence of water was syn:anti) 77:23); ${ }^{j}$ Corresponding syn-diol was formed.

[^2]: ${ }^{\text {a }}$ Reaction conditions: Molar equivalents of oxidant: iodine source: additive $=1: 1: 2$ unless otherwise stated, 10 mL of AcOH: $\mathrm{H}_{2} \mathrm{O}$ (9:1), $25{ }^{\circ} \mathrm{C}, 8 \mathrm{~h} ;{ }^{\mathrm{b}}$ Isolated yield by column chromatography; ${ }^{\mathrm{c}}$ Reaction was done at $60^{\circ} \mathrm{C}$. Yield at $25{ }^{\circ} \mathrm{C}$ was $5 \% ;{ }^{\mathrm{d}} 0.5$ equivalent of molecular iodine was used; ${ }^{\mathrm{e}} 4$ -iodo-2-niroaniline: 4-bromo-2-niroaniline in the ratio 1:6 were formed. Conversion was found by GC-MS; ${ }^{\mathrm{f}} m \mathrm{CPBA}=\mathrm{m}-$ chloroperbenzoic acid. NCS=N-chloro succinimide.

[^3]: ${ }^{\text {a }}$ Reaction condition for monoiodination: Substrate (3 mmol), $\mathrm{KI}(3 \mathrm{mmol}), \mathrm{NaIO}_{4}(3 \mathrm{mmol}), \mathrm{NaCl}(6$ mmol), 10 mL of AcOH: $\mathrm{H}_{2} \mathrm{O}(9: 1), 25^{\circ} \mathrm{C} ;{ }^{\mathrm{b}}$ Isolated yield by column chromatographic purification; ${ }^{\mathrm{c}}$ Diiodination was not observed even with 1.2 equiv. of KI. ${ }^{\mathrm{d}} \mathrm{KI}$ was added in portion to maintain the temperature around $50^{\circ} \mathrm{C}$.

[^4]: ${ }^{\text {a }}$ Reaction conditions: arylmercuric acetate (3 mmol), aryl boronic acid (3 mmol) $\operatorname{Pd}(\mathrm{dba})_{2}(5$ $\mathrm{mol} \%$), toluene (5 mL), $25^{\circ} \mathrm{C}, 3 \mathrm{~h} ;{ }^{\mathrm{b}} 5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ has been employed; ${ }^{\mathrm{c}}$ isolated yield by column chromatography.

