"Towards the total synthesis of 15-Hydroxygeldanamycin, KOSN-1633 and Herbimycin A."

A THESIS
SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY)

TO
PUNE UNIVERSITY

BY
Mr. RAMBABU DAKARAPU

Dr. Mukund K. Gurjar

(Research Guide)

DIVISION OF ORGANIC CHEMISTRY
NATIONAL CHEMICAL LABORATORY
PUNE-411008
INDIA
March 2009

DEDICATED TO $\mathcal{M Y P A R E N T S , ~}$
 BROTHFER \& SISTER my late aunt And

Jyothi.......

DECLARATION

The research work embodied in this thesis has been carried out at National Chemical Laboratory, Pune under the supervision of Dr. M. K. Gurjar, Ex. Deputy Director and Head, Division of Organic Chemistry, National Chemical Laboratory, Pune - 411008. This work is original and has not been submitted in part or full, for any degree or diploma of this or any other university.

Division of Organic Chemistry
National Chemical Laboratory
Pune-411008
(Rambabu Dakarapu)
Candidate

March 2009

CERTIFICATE

The research work presented in thesis entitled "Towards the total synthesis of 15Hydroxygeldanamycin, KOSN-1633 and Herbimycin A." has been carried out under my supervision and is a bonafide work of Mr. Rambabu Dakarapu. This work is original and has not been submitted for any other degree or diploma of this or any other University.

Pune-411008
March 2009
(Dr. M. K. Gurjar)
Research Guide

Acknowledgements

First of all, I would like to express my sincere thanks to my teacher, philosopher and research supervisor Dr. M. K. Gurjar, Division of Organic Chemistry, NCL Pune for offering me the opportunity and ample resources to pursue this research project. His guidance and constant encouragement has been very inspiring.

I owe my most sincere gratitude to Dr. C. V. Ramana for his guidance and unabated perseverance, which has played a key role in the success of this thesis.

I am highly thankful to Dr. D. K. Mohapatra for his sincere efforts and patience in guiding me in my early days of research career.

I am also thankful to Dr. R. D. Wakharkar, Mr. I. Shivakumar, Dr. R. A. Joshi, Dr. M. N. Desmukh and Dr. S. Hotha for timely help and discussions.

I gratefully acknowledge the training and support extended by my senior colleagues Dr. Siddhartha, Dr. Sankar, Dr. Joseph, Dr. Sridhar, Dr. Srinivas, Dr. Nagaprasad, Dr. Ekambram, Dr. Mahesh, Dr. Smriti, Dr. Sukhen, Dr. Manjusha, Dr. Dhananjoy, Dr. Ramdas, Dr. Seetaram, Dr. Sumanth, Dr. Susheel, Soumitra, Anuj, Tushar, Bhagwat, Bhargava, Sahoo, Kulbhushan, Gorakh, Sabita, Hasibur, Rita, Ramesh, Raghupathi, Kiran, Pradip, Chinmoy, Bhaskar, Indu, Abhijit during the tenure of my Ph.D life. I would like to express thanks to all my colleagues Sharad, Ganesh, Rosy, Debabrata, Giri, mondal, Sunil, Rahul, Pitambar, Vilas, Yadagiri, Mangash, Sachin, Shyam, Ajay, Sridhar, Yogesh, a special thanks to my telugu friends Venkateshan, E.V.V.Ramesh, Srinivas Rao, Sudhakar, N. Ramesh, Venkata Krishna, Sree...R, Nandha kishore for their cooperation and friendly attitude.

I extend my thanks to all technical staff of NCL for their assistance. I sincerely thank Dr. Rajmohan, Dr. Mrs. Puranic Dr. Gonnade and Mrs. Shanthakumari for their help. I also thank HPLC people Dr. Bhide, Dr. Mrs. Shelke and Mrs. Kunte for their sincere efforts in carrying out experiments. My honest thanks to Mrs. Raphel, Mrs. Kulkarni, and all other DOC office staff for their cooperation.

My warm thanks are due to my College teachers Tuator sir, Prof.Dr. Chandra mouli, Prof. Dr. Appa rao, Dr. Rajeswar Rao, Dr. Rajitha who introduced me to the fascinating field of chemistry. A special thanks to my Project Leader and my teacher Dr. Manojit Pal for his constant encouragement, inspiration and valuable guidance. I would like to thank all my D.R.F friends (B.V. Rao, K.S.Rao, P.S., kumara Swami, Sreekanth, ramesh, ravi, Indu, Parminder for all time helpful discussions and cooperation.

It's a pleasure to thank all my friends at NCL and GJ hostel for their cheerful company, which made my stay at NCL memorable one. I would like to thank my M. Sc. classmates Rajesh, rajareddy and ravi for their valuable help at all times.

It is impossible to express my sense of gratitude for my parents and all my relatives in mere words. Whatever I am and whatever I will be in future is because of the goodwill and unstinted support that I have received from them. Their constant encouragement, altruistic sacrifices and support made me achieve this goal.

Finally, I thank Director, National Chemical Laboratory Pune for providing infrastructural facilities to complete my work successfully. I am also thankful to CSIR, New Delhi for the financial assistance in the form of fellowship.

- Rambabu Dakarapu.

Contents

Page No.
Abstract i-ix
Section I: Towards the total synthesis of Herbimycin A
Introduction 1
Present work 35
Experimental 68
Spectra 117
References 159
Section II: Towards the total synthesis of 15- Hydroxygeldanamycin
Introduction and Present work 170
Experimental 186
Spectra 208
References 222
Section III: Towards synthesis of key fragment of KOSN 1633
Introduction and Present work 223
Experimental 229
Spectra 240
References 247
List of Publications 248

General Remarks

- ${ }^{1} \mathrm{H}$ NMR spectra were recorded on AV-200 MHz, MSL-300 MHz, AV-400 and DRX-500 MHz spectrometers using tetramethylsilane (TMS) as an internal standard. Chemical shifts have been expressed in ppm units downfield from TMS.
- ${ }^{13} \mathrm{C}$ NMR spectra were recorded on AV-50 MHz, MSL-75 MHz, and DRX125 MHz spectrometers.
- EI Mass spectra were recorded on Finngan MAT-1020 spectrometer at 70 eV using a direct inlet system.
- Infrared spectra were scanned on Shimadzu IR 470 and Perkin-Elmer 683 or 1310 spectrometers with sodium chloride optics and are measured in cm^{-1}.
- Optical rotations were measured with a JASCO DIP 370 digital polarimeter.
- Melting points were recorded on Buchi 535 melting point apparatus and are uncorrected.
- All reactions were monitored by Thin Layer chromatography (TLC) carried out on 0.25 mm E-Merck silica gel plates ($60 \mathrm{~F}-254$) with UV light, I2 and anisaldehyde inthanol as development reagents.
- All solvents and reagents were purified and dried by according to procedures given in Vogel's Text Book of Practical Organic Chemistry.
- All reactions were carried out under Nitrogen or Argon atmosphere with dry, freshly distilled solvents under anhydrous conditions unless otherwise specified. Yields refer to chromatographically and spectroscopically homogeneous materials unless otherwise stated. All evaporations were carried out under reduced pressure on Buchi rotary evaporator below $40^{\circ} \mathrm{C}$.
- Silica gel (60-120) used for column chromatography was purchased from ACME Chemical Company, Mumbai, India.

List of abbreviations

Ac	-	Acetyl
$\mathrm{Ac}_{2} \mathrm{O}$	-	Acetic anhydride
AcOH	-	Acetic acid
AIBN	-	2,2'-Azobisisobutyronitrile
$\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{SMe}_{2}$	-	Borane-dimethyl sulfide complex
BnBr	-	Benzyl bromide
$n-B u L i$	-	n-Butyl lithium
m-CPBA	-	m-Chloroperbenzoic acid
DCC	-	Dicyclohexylcarbodiimide
DDQ	-	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DIAD	-	Diisopropyl azodicarboxylate
DIEA	-	Diisopropyl ethylamine
2,2-DMP	-	2,2-Dimethoxypropane
DMF	-	Dimethylformamide
DMSO	-	Dimethylsulfoxide
DMAP	-	4-Dimethylaminopyridine
TEA	-	Triethylamine ($\mathrm{Et}_{2} \mathrm{~N}$)
Im	-	Imidazole
LAH	-	Lithium aluminium hydride
LiHMDS	-	Lithium hexamethyl disilazane
LDA	-	Lithium diisopropylamine
MeI	-	Methyl iodide
MsCl	-	Methanesulfonyl chloride
NaOAc	-	Sodium acetate
Pd / C	-	Palladium on Carbon
PivCl	-	Trimethylacetyl chloride

$\mathrm{PMB}-\mathrm{Cl}$	-	p-Methoxybenzyl chloride
Py	-	Pyridine
$\mathrm{PPh}_{3}(\mathrm{TPP})$	-	Triphenylphosphine
PPTS	-	Pyridinium p-toluenesulfonate
TBSCl	-	tert-Butyldimethylsilyl chloride
$p-\mathrm{TSA}$	-	p-Toluenesulfonic acid
TBAF	-	Tetra- n-butylammonium fluoride
TBAI	-	Tetra-n-butylammonium iodide
$\mathrm{Tf}_{2} \mathrm{O}$	-	Trifluoromethanesulphonic anhydride

The thesis entitled "Towards the total synthesis of 15-Hydroxygeldanamycin, KOSN1633 and Herbimycin A." consists of one chapter which is subdivided into 3 sections; section-I describes our approach towards the total synthesis of Herbimycin A.where as section-II describes our efforts towards the synthesis of 15 -Hydroxygeldanamycin. The final section deals with synthetic approach for the key fragment of KOSN-1633.

Section-I: Towards the total synthesis of Herbimycin A:

Introduction

Geldanamycin was isolated (from streptomyces hygroscopicus var. geldanus) in 1970 by workers at Upjohn and the structure was determined by Rinehart and co-workers shortly thereafter. Geldanamycin belongs to benzoquinone anasamycin family. Benzoquinone containing ansa-bridged macrocyclic lactams have a significant range of antitumor, antibacterial, antifugal and antiprotozoa activies. Hsp90-geldanamycin complex were studied by X-ray crystallography, absolute stereochemistry was determined by its total synthesis by Andus et.al. The greatest drawback of biologically active geldanamycin is its cytotoxicity and low solubility in water for any formulation that can be used to administer it. To rectify this problem, derivatization of geldanamycin with ionisable or polar groups was explored. The 17-allyl amino geldanamycin prepared in this context, was currently in phase-II clinical trial.

Figures A and B
Other important members of this family are Herbimycin A, 15Hydroxygeldanamycin and KOSN-1633 which exhibit reduced cytotoxicity against

SKBr3 cancer cells. Herbimycin A was isolated in 1979 from the fermentation broth of streptomyces hygroscopicus strain AM-3672, The 15-Hydroxygeldanamycin was formed as the major product when geldanamycin was added to the fermentation with streptomyces hygroscopicus AM-3672 and a minor compound, a tricyclic geldanamycin (KOSN-1633) was isolated. It has been established that the OH at 15 -position of geldanamycin does not interfere in binding with Hsp90 but increase the lypophilicity of it. The structure of 15-hydroxy geldanamycin was elucidated by comparing the similarities of its spectral data with that of geldanamycin which are similar in all aspects $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{HSQC}\right.$, and COSY) except at the 15 - position. The stereochemistry of $15-\mathrm{OH}$ group was assumed to be the same as in herbimycin A. The cytotoxicity of 15hrdroxygeldanamycin is same as that of reblastatin and 20 times lower than that of geldanamycin. KOSN-1633 is two fold less cytotoxic than 15-hydroxygeldanamycin. The potential biological activity and interesting structural complexities of this class of compounds prompted us to under take the total synthesis of these target molecules.

Herbimycin A R,R'=OCH3,R"=H 15-Hydroxygeldanamycin $\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{OH}, \mathrm{R}=\mathrm{OCH}_{3}$

Reblastatin
Figure 2

Retrosynthetic analysis:

Herbimycin A R,R'= $\mathrm{OCH}_{3}, \mathrm{R}=\mathrm{H}$
15-Hydroxygeldanamycin $\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{OH}, \mathrm{R}^{\prime \prime}=\mathrm{OCH}_{3}$

13
12

Evan'santialdol

Scheme 1: Retrosynthesis of Herbimycin A and 15-hydroxy geldanamycin

As shown in the retrosynthetic scheme the critical fragment A can be prepared via Evan's anti aldol ${ }^{3}$ protocol from aldehyde 9 and carbohydrate precursor 8

Synthesis of fragment-A (5) for Herbimycin A:

Synthesis of aldehydes-10:
Scheme 2:

Synthesis of aldehyde-10 started with triol-11 obtained from D-glucose in two steps, followed by selective protection and acid catalyzed rearrangement ,which on epoxidation gave epoxide. Regioselective opening of this epoxide followed by protection and strong acid hydrolysis to afford required (carboaldehyde) compound 10.

Conversion of aldehyde-10 to Oxazolidinone derivative- 8:

Scheme 3:

Chiral auxillary-15 was acylated using chloroacetylchloride and subsequently converted to the wittig precursor-16. Olefination of aldehyde-10 using this $\mathbf{1 6}$ afforded 17, the double bond of which was reduced using $10 \% \mathrm{Pd} / \mathrm{C}$ to provide desired compound 8.

Synthesis of the Masked Quinone fragment (compound 20 and 21):

Compound 20 was prepared from 4-methoxyphenol in three steps, 4methoxyphenol was on o-farmylation then on nitration followed by methylation give
nitroarylaldehyde 20 and the aldehyde 19, which on bromination followed by methylation gives 21. the nitro aldehyde (20) was reduced to give amino product 22.

Evan's aldol and synthesis of intermediate 5:

Scheme 4:

Evan's Aldol, using Oxazolidinone derivative $\mathbf{8}$ on aldehyde $\mathbf{9}$ afforded the condensed product 23. Reductive cleavage of the chiral auillary followed by deoxygenation of the resulting alcohol provided the key intermediate 25, which was subsequently manipulated to intermediate-5.

Section-II

Synthesis of fragment-A (5a) for 15-Hydroxygeldanamycin:

Synthesis of the Masked Quinone fragment (9):
Scheme 5:

Compound-9 was prepared from veratraldehyde in five steps; veratraldehyde was converted into phenol under acid catalysed Dakin reaction, which on methylation using dimethyl sulphate and base furnished trimethoxy compound. This was selectivily formylated, followed by nitration to give 9 in good yield, the compound 29 which was brominated to afford compound 30. compound 9 was reduce to give Boc protected compound 31.
Evan's aldol and synthesis of intermediate 5a:

Scheme 6:

Evan's Aldol, using compound 8 on aldehyde 9 afforded the condensed product 32 which shows a rare restricted conformational isomerism. Reductive cleavage of the chiral auillary followed by deoxygenation of the resulting alcohol provided the key intermediate 34, which was subsequently manipulated to intermediate-5a.

Section-III

Synthesis of fragment-A (5b) for KOSN-1633:

Retrosynthetic analysis:

Scheme 7:

Figure 4: Retrosynthesis of KOSN-1633
As shown in the retrosynthetic scheme the critical fragment A can be prepared via Evan's anti aldol protocol from aldehyde $\mathbf{9}$ and carbohydrate precursor $\mathbf{8}$

Evan's aldol and synthesis of intermediate $5 b$:

Scheme 8:

The Evan's anti aldol product under heating condition in HMPA to afford dimerized product. Reductive cleavage of the chiral auxillary followed by selective protection which was on heating condition to afford dimerised product 40 not a cyclized product .

Kinetic controlled on Evan's adduct for formation of intermediate 5b:

Scheme 9:

The Evan's anti aldol product on reductive cleavage of the chiral auxillary followed by functional group manipulation to afford compound 43. this triol compound was selectivily monoprotected followed base catalysed cyclization to afford bicyclic product $\mathbf{4 5}$, which was subsequently manipulated to intermediate $\mathbf{5 b}$.

Section-I: Towards the total synthesis of Herbimycin A

Section-I: Towards the total synthesis of Herbimycin A

INTRODUCTION :

ANTITUMOR ACTIVITIES:

Richert et. al. first found that the protease inhibitor N -a-tosyl-L-lysyl chloromethylketone (TLCK) inhibited $\mathrm{p} 60^{\mathrm{v}-\mathrm{src}}$ and induced the reversion of the cell morphology of avian sarcoma virus-transformed fibroblasts to normal. During the course of searching for natural products converting the morphology of Rous sarcoma virusinfected rat kidney cells to normal, an active constituent produced by Streptomyces sp . (MH237-CF8) was identified as herbimycin A^{1}, a benzoquinoid anasmycin which had previously been isolated as a herbicide. ${ }^{2}$ Two other benzoquinoid ansamycins, macbecin and geldanamycin, were also found to induce the phenotypic change from srctransformed to normal morphologies, and to reduce the intracellular phosphorylation of $\mathrm{p} 60^{\text {v-sc } 3}$. The immune complex formed by mixing the herbimycin-A treated cell extracts with monoclonal antibody against $\mathrm{p} 6 \mathrm{O}^{\mathrm{v} \text {-src }}$ was inactive in vitro as measured by autophosphorylation. However, the immune complex produced from untreated cell extracts was active in vitro in the presence of herbimycin A, suggesting that the benzoquinoid ansamycins might not directly act on the $\mathrm{p} 60^{\text {src }}$ tyrosine kinase in situ . ${ }^{3}$

Herbimycin A (1) $\quad \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{OMe}$
Herbimycin B (1a) $R_{1}=H, \quad R_{2}=H$
Herbimycin C (1b) $\mathrm{R}_{1}=\mathrm{H}, \quad \mathrm{R}_{2}=\mathrm{OMe}$

Geldanamycin

Macbecin I

Figure 1. structure of novel natural products, Herbimycin (A-C), Geldanamycin, Macbecin I

In order to further probe the inhibitory specificity of tyrosine kinase oncogenes by herbimycin A, the effectiveness of herbimycin A to reverse the morphology of chicken and mammalian cells transformed by various oncogenes was investigated (Table 1). ${ }^{4,5}$.

Oncogene	Cell Transformed ${ }^{\text {a }}$	Morphological reversion
Src........................	NRK	+ +
	NIH/3T3	+ +
	3 Y 1	$++$
	Field vole	$++$
	DDD	+
Fps. abl.	3 Y 1	+ +
	NIH/3Y3	$+$
	Balb/c	+ +
raf.........................	NIH/3Y3	-
K-ras.......................	NRK	\pm
H-ras.......................	NIH/3Y3	-
	3 Y 1	-
myc.....................	3 Y 1	-
	C3H10T1/2	\pm
	A431	+

${ }^{\text {a }}$ NRK, normal rat kidney; NIH/3Y3, Swiss mouse fibroblast; 3Y1, Fisher rat fibroblast; DDD, mouse fibroblast ascites tumor; Balb/c and C3H10T 1/2, mouse embryonic fibroblast; A 43, human epidermoid carcinoma

Table1. Effects of Herbimycin A on the Morphology of Mammalian cells Transformed by variousOncogenes. ${ }^{4}$

It was demonstrated that this antibiotic was effective for cells transformed by the PTK oncogenes src, yes, fps, ros, $a b l$, erbB, and was unable to reverse the transformed morphologies induced by the non-PTK oncogenes ras, raf and myc. Herbimycin A also caused src-expressed cells to become sensitive to contact inhibition but did not affect rasexpressing cells. ${ }^{6}$ Yamaki et.al. ${ }^{7}$ found that geldanamycin and herbimycin \mathbf{A} inhibited the expression of c-myc and stimulated the expression of the p53 tumor suppressor gene. Treatment of src-transformed cells with herbimycin A resulted in a reduction in the phosphotyrosine content of total cellular proteins, 36 K protein phosphorylation, and autophosphorylation of the tyrosine-416 of p60 ${ }^{\mathrm{v} \text {-src. }} .^{4,8}$ Measurement of the rate of p60 src synthesis and degradation showed that herbimycin A accelerated the degradation of p60 ${ }^{\text {src } .8}$ In addition, herbimycin A was recently shown to inhibit p60 ${ }^{\text {v-src }}$ irreversibly in an in vitro immune complex kinase assay $\left(\mathrm{IC}_{50}=7 \mu \mathrm{~g} / \mathrm{ml}\right)$. Addition of a sulfhydryl compound
abolished its inhibitory activity. ${ }^{9}$ On the contrary, recent studies using the HT-29 human colon adenocarcinoma cell line showed that growth and p60 ${ }^{\mathrm{v} \text {-src }}$ inhibition were reversible following removal of herbimycin $\mathrm{A} .{ }^{10}$

Induction Of Differentiation:

The human chronic myelogenous leukemic (CML) cell line K562 and leukemic cells of patients with CML with an accompanying chromosomal translocation (t9; 22) express a structurally altered c-abl protein (p120 ${ }^{\mathrm{c}-a b l}$) with elevated tyrosine kinase activity. ${ }^{11,12}$ A non-cytotoxic concentration of herbimycin A was found to induce erythroid differentiation of K562 concomitant with a rapid reduction in the tyrosine phosphorylation of $\mathrm{p} 120^{\mathrm{c}-a b l}$ but not of other human myeloid leukemia cell lines (HL-60, THP-1, and U937). In addition, K562 cells were the most sensitive to the cytotoxic effect of herbimycin $\mathrm{A}\left(\mathrm{IC} 50=9.5 \times 10^{-2} \mu \mathrm{M}\right)$ among the human leukemia cell lines tested $\left(\mathrm{IC}_{50}\right.$ $>1 \mu \mathrm{M}) .{ }^{13}$ Kondo et al. ${ }^{14}$ also found that Herbimycin A could induce endoderm differentiation of murine embryonal carcinoma (F9) cells and terminal erythroid differentiation of murine erythroleukemia (MEL) cells. These results suggest that tyrosine phosphorylation may play an important role in the regulation of tumor cell differentiation. A non-toxic concentration of herbimycin A also enhanced the cytotoxicity of adriamycin or 1- β-D-arabinofuranosylcytosine against K562 cells. ${ }^{13}$

Heat shock proteins:

Cancer is a disease characterized by genetic instability. Although identification of novel therapeutic agents via molecular targeting offers the promise of great specificity coupled with reduced systemic toxicity, specific inhibition of individual proteins or signaling pathways faces the potential peril of being subverted by the inherent genetic plasticity of cancer cells. If one assumes that cancer cells are always under moderate to severe stress of one type or another, an approach to this apparent dilemma might be to target the basic machinery that allows cancer cells to adapt so successfully to stress. Cells respond to stress by increasing synthesis of a number of molecular chaperones (also known as heat shock proteins, or Hsps, because they were first observed in cells exposed to elevated temperature).

The heat shock response was first described in $1962{ }^{15}$, and heat shock proteins (HSPs) are named for their increased synthesis after heat shock that is contrary to the reduced synthesis of most cellular proteins under these conditions. In addition to heat, these proteins are modulated by nutrient deprivation, and oxidative and other stresses where protein denaturation might otherwise occur. ${ }^{16,17}$ Many HSPs form multimolecular complexes that act as molecular chaperones binding other proteins, denoted as client proteins. These complexes play a regulatory role in the fate of proteins in several different ways including: folding of proteins in the cytosol, endoplasmic reticulum and mitochondria; intracellular transport of proteins; repair or degradation of proteins partially denatured by exposure to various environmental stresses; control of regulatory proteins; and refolding of misfolded proteins. ${ }^{18,19}$ HSPs differ in their cellular localization and functions and mammalian HSPs have been classified into several families according to their molecular size: Hsp90, Hsp70, Hsp60 and Hsp40, and the small HSPs such as Hsp27 ${ }^{16,17}$ (Table 2).

Name	Localization	Function		
Hsp104	Cytoplasm			
Hsp90 α, β	Cytoplasm	Releases proteins from aggregates Prevents protein aggregation, helps protein stabilization and protein trafficking, facilitates activation of many regulated protein		
GRP94	Endoplasmic reticulum	Quality control of protein processing in the endoplasmic reticulam.		
TRAP/Hsp 75	Mitochondria Cytoplasm	Unknown Prevents protein aggregation, helps protein folding		
Hsp70			\quad	Endoplasmic
:---				
GRP78,BiP				
reticulum	\quad	reticulum		
:---				

Table 2: The name, localization and function of some of the better characterized heat shock proteins.

Hsp90:

Hsp90 is one of the most abundant cellular chaperone proteins. It functions in a multi-component complex of chaperone proteins that may include $\mathrm{p} 60 / \mathrm{Hop}, \mathrm{p} 50^{\mathrm{cdc} 37}$, Hsp40/HDJ2, p23, Hsp70 and one of a variety immunophilins. ${ }^{18,19}$ It accounts for $1-2 \%$ of total protein in unstressed cells and increases to $4-6 \%$ of cellular proteins under stress. Unlike other chaperones, Hsp90 distinguishes itself in that most of its known clients are protein kinases or transcription factors involved in signal transduction (Table 2). ${ }^{18,19,20}$

These include ligand-dependent transcription factors such as steroid hormone receptors, ligand-independent transcription factors such as MyoD, tyrosine kinases such as p185 ${ }^{\text {erbB2 }}$ (Her-2/neu), serine/ threonine kinases such as Cdk-4 and Raf-1, and mutant transcription factors such as p53.

In humans, there are two Hsp90 isoforms in the cytosol, Hsp90 α and Hsp90 β. These proteins are closely related. They are both induced by stress and no differences in their activities have been identified. ${ }^{21}$ Hsp90 is a phosphorylated homodimer containing two to three covalently bound phosphate molecules on each monomer. Hsp90 contains a highly conserved ATP binding domain near its N-terminus and the chaperoning activity of Hsp90 requires both the binding and hydrolysis of ATP at this site. ${ }^{22-24}$ A second nucleotide binding site appears to be present near the C-terminus, but this is less well characterized. ${ }^{25-27}$ The C-terminus is also the main region for dimer interaction and for the binding of $\mathrm{p} 60^{\mathrm{HOP}}$ and immunophilins. The binding of ATP at the N -terminal site alters the conformational state of Hsp90 and affects its interactions with client proteins and co-chaperones. Benzoquinone Ansamycin members compete with ATP/ADP in the nucleotide binding pocket, resulting in disruption of the Hsp90 function and degradation of Hsp90 client proteins by the ubiquitin-dependent proteasome pathway . ${ }^{28,29}$

Molecular chaperones are proteins that are responsible for maintaining the correct folding, function and stability of client proteins. Of these, heat shock protein 90 (Hsp90) has recently emerged as a focus of interest because of its role in regulating proteins that are responsible for malignant transformation

Regulation of Hsp90 function:

Functional analysis has revealed that the amino and carboxyl termini of Hsp90 are separated by a charged region. The dynamic interrelationship of these domains,
coordinated by nucleotide and co-chaperone binding, determines the conformation of the chaperone and, thus, its activation state. Association of Hsp90 with client proteins is regulated by the activity of the N-terminal ATPase domain, which binds and hydrolyses ATP to mediate a series of association-dissociation cycles between Hsp90 and client substrates. The activity of Hsp90 is further regulated by binding of co-chaperones, which promote the interconversion of the ATP- and ADP-bound states and modulate the formation of client-specific complexes. ${ }^{31-33}$ Recent evidence suggests that in several tumor cell lines, Hsp90 might be exclusively complexed with co-chaperones in a state of high affinity for ATP/ADP or ligands of this regulatory pocket (i.e. ATPase inhibitor drugs), whereas in normal tissues, Hsp90 might exist primarily in a latent, uncomplexed, low affinity state. ${ }^{34,35}$ Although no direct experimental evidence has yet been presented, post-translational modifications of Hsp90 might also regulate the 'activation' state of Hsp90 complexes. Overall, these observations suggest that Hsp90 is present in cells in equilibrium between a low chaperoning activity 'latent state' and an 'activated state', with increased chaperoning efficiency (see Figure 2). The shift in equilibrium might be dictated by the amount of 'stress' on the system, such as mutated and dysregulated proteins, hypoxia or a low nutrient concentration environment. Thus, the effects of inhibiting Hsp90 function could depend more on the 'activity' and degree of involvement of the co-chaperone-protein-Hsp90 complexes and less on its cellular levels. Collectively, the above data suggest that Hsp90 inhibitor concentrations can be identified that will disrupt crucial chaperone functions in a transformed cell but that might not be toxic to normal cells.

Figure 1. Hsp90 exists in an equilibrium between an 'activated state' prevalent in transformed cells and a 'latent state' predominant in normal cells. The activation state of the chaperone is regulated by co-chaperones and, possibly, post-translational modifications. These co-chaperones include heat-shock protein 70 (Hsp70), Hsp70-organizing protein (Hop), p23, cdc37, immunophilins and Aha1. The composition of the complexes is client-protein-specific and dependent on its maturation state. The figure schematically depicts Hsp90 and its possible interaction partners and does not represent timely complexes.

Identification of Hsp90 as a Target for Geldanamycin and Herbimycin:

v-Src is a tyrosine specific kinase that is involved in several signal transduction pathways that regulate cell growth and proliferation. ${ }^{36}$ Geldanamycin (GDA, Fig. 1) and Herbimycin (HB) were shown to abolish Src kinase activity in whole cell assays, ${ }^{37}$ but were unable to directly inhibit the kinase activity of the purified recombinant protein. ${ }^{38}$ It was hypothesized that GDA and HB were inhibiting Src kinase activity indirectly by binding to a Src associating protein and thereby abolishing Src's activity in vivo. To identify this putative protein, Whitesell and Neckers ${ }^{39}$ conducted an affinity isolation experiment using GDA immobilized on agarose beads. The beads were incubated with reticulocyte lysate, and a 90 kDa protein was isolated and shown to be specific for GDA binding. The protein identified was Hsp90. Upon further evaluation, these researchers demonstrated that Src protein levels decreased as the concentration of GDA was increased, which strongly correlated with the decrease in Src kinase activity previously observed in whole cell assays. Evidence gathered from this early experiment suggested that Hsp90 was interacting with Src and inhibition of Hsp90 by GDA disrupted its chaperone function for the maturation of not only Src but also other newly synthesized kinases. It was proposed that GDA could serve as a tool for studying other Hsp90-
dependent maturation processes. Since this seminal study, many researchers have sought to identify additional Hsp90 substrates by the use of GDA, which has led to elucidation of more than 100 Hsp90-dependent client proteins and partial characterization of the Hsp90-mediated protein folding process.

The Hsp90-Mediated Protein Folding Process:

Double-stranded DNA is transcribed into messenger RNA, which is then translated by the ribosome into single-stranded polypeptides containing the encoded amino acids. When nascent polypeptides exit the ribosome, the amino acid side chains have potential to interact with one another and cause aggregation, unless other proteins are present to prevent this process. Aggregation is prevented by the expression of chaperones, which bind to newly formed peptides and prevent deleterious interactions. In addition to their role as protein stabilizers, chaperones also facilitate the folding of nascent polypeptides into biologically active three-dimensional structures. As a result of their key role of transforming linear peptides into tertiary and quaternary structures, chaperones are considered essential for the second half of the genetic code. ${ }^{40}$

Cellular stresses, such as elevated temperatures, abnormal pH , nutrient unavailability, and malignancy, result in the denaturation of folded proteins as well as the increased synthesis of new proteins. Under these conditions, heat shock proteins (Hsps) are overexpressed to refold denatured proteins back into their biologically active conformation. ${ }^{41-43}$ Some Hsps such as Hsp90 are expressed under normal conditions, but upon exposure to cellular stress they are overexpressed to assist in this renaturation process. ${ }^{44}$ Thus, Hsps act as buffers to minimize the number of misfolded proteins and maximize the amount of functional proteins. Any alteration in this buffering capacity can have devastating effects on cell viability. ${ }^{45,46}$

The Hsp90-mediated protein folding pathway has not been fully resolved, but evidence suggests that a variety of co-chaperones, immunophilins, and partner proteins are involved in the conformational maturation of nascent polypeptides into biologically active native structures (Fig. 2). Hsp70 binds to and stabilizes newly synthesized proteins co-translationally or post translationally in an ATP- and Hsp40-dependent reaction to prevent aggregation. ${ }^{40}$ Hsp70/ADP-protein complexes can be stabilized by the binding of

HIP (Hsp70 interacting protein) or dissociated by the interaction of BAG homologs, which stimulate exchange of ATP for ADP and polypeptide release. Hsp70-protein complexes then bind HOP (Hsp70-Hsp90 organizing protein). HOP contains highly conserved tetratricopeptide repeats (TPRs) ${ }^{47,48}$ that are recognized by both Hsp70 and Hsp90, promoting the union of Hsp70-protein complexes and Hsp90 (2.1, Fig. 2). ${ }^{49}$ In the case of telomerase ${ }^{50}$ and steroid hormone receptors, ${ }^{51}$ the client protein is transferred from the Hsp70 system to the Hsp90 homodimer (2.2) with concomitant release of Hsp70, HIP, and HOP. At this stage, co-chaperones and partner proteins in concert with immunophilins providing cis/trans peptidylprolyl-isomerase activity (FKBP51, FKBP-52, or CyP-40), ${ }^{52,53}$ or protein phosphatase 5 bind to form a heteroprotein complex.

Figure3. The Hsp90-mediated protein folding process
(2.3). The activated multiprotein complex binds ATP to the N-terminus of Hsp90, and the ATPdependent dimerization of the N-terminal domains results in the "clamping'" of Hsp90 around the bound client protein (2.4). ${ }^{54,55}$ The proto-oncogenic protein Cdc37 is present in Hsp90 complexes containing protein kinase clients, but rather than being released, it remains associated with the kinase client after Hsp90's ATP-dependent N terminal clamping. ${ }^{56}$ The co-chaperone p23 is also recruited to Hsp90 at this stage, which promotesATP hydrolysis and stabilization of Hsp90's 'clamped"' highaffinity clientbound conformation (2.5). The ensemble of Hsp90 and its cohorts promote the folding of the bound client into its three-dimensional structure, and subsequently release the protein (2.6) through an as yet uncharacterized process that appears to be stimulated by p23. ${ }^{57}$

The model represented above reflects a simplified account of the Hsp90 protein folding process; however, it should be pointed out that more than 20 associated proteins have been shown to be involved in some aspect of the maturation process for various client proteins.

Hsp90 expression is upregulated in tumor cells ${ }^{58,59}$ and mutational analyses of Hsp90 havedemonstrated eukaryotic organisms to be dependent upon Hsp90 for survival. Moreover, cancer cells have been shown to be particularly sensitive to molecules that inhibit Hsp90 function. ${ }^{60}$ Consequently, Hsp90 has emerged as an exciting target for the development of cancer chemotherapeutics. Most inhibitors of Hsp90 exert their activity by binding to the N-terminal ATP binding pocket and inhibiting Hsp90's ATPase activity. The energy normally derived from ATP hydrolysis is used to elicit a conformational change within Hsp90 that clamps Hsp90 around the bound client protein, and facilitates proper folding of the protein substrate. However, when a non-hydrolyzable inhibitor is present, Hsp 90 is unable to clamp around the bound client protein, which usually results in ubiquitination of the protein substrate and subsequent proteasomemediated hydrolysis of the client. ${ }^{61}$ In addition, some Hsp90-dependent proteins such as erbB2, telomerase, and constitutively activated forms of Hck, Lck, and v-SRC are unstable in their mature conformation. These proteins require Hsp 90 function to maintain their active conformation, and inhibition of Hsp90 stimulates their rate of turnover.

Proteins that rely on Hsp90 for stability, such as erbB2, are generally degraded much more rapidly ($\sim 2 \mathrm{hr}$) than those that interact with Hsp90 transiently during conformational maturation such as AKT, which requires $\geq 24 \mathrm{hr}$ before knockdown of the client protein is observed. ${ }^{62}$ GDA-induced depletion of protein kinases, which require Hsp90 during their initial maturation, is primarily because of the rapid turnover of nascent kinase chains that are unable to properly fold.

Figure4: Proposed mechanism of Hsp90-mediated activation, its inhibition by geldanamycin, and protein degradation in the U-PS. The Ubiquitin-proteasome system is exemplified by the U-box E3 ubiquitin ligase CHIP, which is complexed with a chaperone bound substrate and an E2ubiquitin conjugating enzyme. An important substrate of CHIP is the oncogenic growth factor receptor HER2. After ubiquitin-tagging substrates are degraded in the 26 S proteasome. The proteasome consists of a catalytic core 20 S , and two 19 S regulatory units. Hsp90, heat shock protein 90; Hsp70, heat shock protein 70; Hsp40, heat shock protein 40; p50cdc 37, heat shock protein 90 binding protein $; 23$, Hsp binding protein; TRP, tetratrico peptide repeat, a protein domain that binds Hsp90; CHIP, carboxyl terminus of Hsc70-interacting protein= U-box type E3 UBIQUITIN LIGASE; Ub, ubiquitin; ATP, adenosine triphosphate; Raf-1, HER2/NEU, AKT and hTERT are Hsp90 client proteins.

INHIBITORS OF THE N-TERMINAL ATP BINDING DOMAIN:

Originally, GDA was believed to be a peptide mimic of a protein substrate bound to Hsp90 when the first co-crystal structure was solved. ${ }^{63}$ Although this interpretation was later determined incorrect, key interactions between GDAand bovine Hsp90 were
observed, and subsequent studies by Pearl and co-workers ${ }^{64}$ with yeast Hsp90 confirmed that GDA was binding to an ATP binding pocket in the N-terminus of Hsp90. ${ }^{64}$ Confusion over the presence of an ATP binding pocket was the result of mammalian Hsp90's low ATPase activity, ${ }^{65}$ which was not observed prior to solution of the first cocrystal structure. ${ }^{64}$ Later studies confirmed that mammalian Hsp90 did in fact have inherent ATPase activity, albeit a low rate of hydrolysis. ${ }^{66}$ The yeast homolog, Hsp82, produces a substantially higher rate of enzyme-catalyzed hydrolysis ${ }^{67}$ and consequently has been used for high-throughput screening to identify new Hsp90 inhibitors that decrease Hsp90's inherent ATPase activity.

Geldanamycin and Radicicol Bind to the Hsp90 N-Terminal ATP

Binding Domain:

Although the entire three-dimensional structure of Hsp90 remains unknown, the N-terminal ATP binding pocket was found to have strong similarity to the ATP binding region of DNA gyrase, ${ }^{68,69}$ based upon the "compacted" conformation of the bound nucleotide diphosphate and complimentary amino acids. The highly conserved Nterminal region of Hsp90 contains an ATP binding motif, which is unique compared to other ATP-dependent enzymes because ATP is bound to Hsp90 in a bent conformation as opposed to the typical extended conformation (Fig. 5). ${ }^{64,70}$ Only eukaryotic enzymes MutL ${ }^{71}$ and histidine kinase ${ }^{72}$ are known to bind ATP in this manner. In addition, type II

Figure 5 A: Co-crystal structure of ADPNP(green) bound to DNA gyrase. B: Cocrystal structure of ADP (green) bound to the Hsp90 N-terminal domain.
topoisomerases (DNA gyrase) ${ }^{73}$ found in bacteria also bind ATP in this bent conformation(Fig. 3A). ${ }^{65}$ The co-crystal structure of GDA bound to yeast Hsp90 revealed the Guinine moiety of GDA to occupy the phosphate region of the binding pocket and to facilitate five hydrogen bonding interactions with the protein (Fig. 4A). ${ }^{64}$ Another compound, radicicol (RDC), was also found to be an Hsp90 inhibitor, ${ }^{74}$ and when the cocrystal structure of this molecule bound to yeast Hsp90 was solved (Fig. 4B), ${ }^{64}$ it was observed that the resorcinol ring of RDC did not bind to the diphosphatebinding region. Instead, the 2,4-diphenol occupied the region that normally bound the adenine ring of ATP, producing three important hydrogen-bonding interactions with the binding pocket. In contrast to the Guinine ring ofGDA, only one hydrogen bond was formed between the oxirane of radicicol and the peptide pocket. Pearl and co-workers determined the Kd of GDA and RDC to be 1,200 and 19 nM , respectively. ${ }^{64}$ Data obtained from isothermal titration calorimetry showed that binding of GDA to Hsp90 resulted in an entropic penalty, whereas binding of RDC elicited a favorable entropic change. The entropic penalty exhibited by GDA is believed to result from the bending of GDA in the active site which is distorted from that of GDA in its native crystallographic form. ${ }^{75,76}$ In contrast, RDC binds in the same conformation as its native crystal structure. ${ }^{77}$

Geldanamycin Derivatives:

The co-crystal structure of GDA bound to Hsp90 suggested that the 17-methoxy group pointed away from the chaperone's binding pocket and that modification of this molecule at the 17 -position would likely have little effect on the binding of GDA to Hsp90. This fortuitous observation paved theway for the development of two GDA analogs that are currently in clinical trials. Although GDA produced promising biological responses in a number of cancer cell lines, this molecule was found to produce toxicity unrelated to Hsp90 inhibition. ${ }^{78}$ Additionally, GDA was poorly water soluble and new derivatives of GDAwere difficult to prepare since the total synthesis of this natural product had not yet been reported. Studies by Dikalov and co-workers ${ }^{79}$ showed that GDAwas a substrate for flavin-dependent reductases and upon incubation with these enzymes, the GDAquinone was transformed into a semiquinone. Semiquinones are known to react with molecular oxygen to produce superoxide radicals that can cause
toxicity or even cell death in a mechanism completely independent of Hsp90 inhibition. ${ }^{80}$ In order to stabilize the quinone and reduce its redox-active potential, investigators incorporated stronger electron-donating groups into the 17-position of GDA. Derivatives of GDAwere prepared

Figure 6 : Co-crystal structure of GDA (yellow) and radicicol (RDC) (magenta) bound to yeast Hsp90.
and evaluated in several murine xenograft models to determine that 17-allylamino-17desmethoxygeldanamycin (17-AAG, Fig. 5) behaved significantly better than GDA. ${ }^{81}$ However, this molecule still produces hepatotoxicity and has serious formulation difficulties. ${ }^{82}$ Initial clinical studies with 17 -AAG have been very promising and early data suggests that Hsp90 inhibitors can be administered without severely compromising the patients health by undesired side effects. ${ }^{83,84}$ Additional derivatives of GDA incorporating various linkers and attachments to the 17-position were recently reported by scientists at Conforma Therapeutics, but no in vivo data has been reported. ${ }^{85}$ Researchers at Kosan Biosciences hoped to improve the solubility of 17-AAG by incorporation of an extra tertiary amine, which led to the development of 17-desmethoxy-17-N,N-dimethylaminoethylaminogeldanamycin (17-DMAG, Fig. 5). 17-DMAG has demonstrated activity against mouse-human xenografts, and is reported to be more potent and more soluble than 17-AAG with excellent oral bioavailability. ${ }^{86}$ Clinical studies with 17-DMAG are currently underway and preliminary results are expected in the very near future.

Development of second generation Hsp90 inhibitors:

On the basis of more recent clinical experience, the limited efficacy observed in the initial phase 1 trials of 17AAG was probably due to a lack of patient enrichment for those most likely to benefit and suboptimal target inhibition due to the requirement for intravenous dosing and the off-target toxicities of 17AAG and its DMSO formulation. These findings have catalyzed future efforts directed at both improving the delivery of 17AAG and identifying novel scaffolds with improved pharmacologic and toxicity profiles.

17-AAG and 17-DMAG Binding Studies:

One of the most intriguing observations made by researchers who solved the first co-crystal structure of GDA bound to Hsp90 was the fact that the amide bond resided in the cis-orientation ${ }^{63}$ and that GDA did not bind Hsp90 in a conformation similar to its native crystal structure. ${ }^{75,76}$ Instead, GDA bound to Hsp90 in a 'cup" shaped conformation that projected the carbamate and quinone ring away from the apex of the bound molecule (Fig. 6). In its native crystalline state, GDA is found in an extended and relatively planar conformation containing a trans amide bond. ${ }^{75}$

Computational studies by researchers atKosan Biosciences suggested that uponGDAbinding to Hsp90, the quinone ring is folded over to fit into the phosphate binding site, which then stimulates isomerization of the amide bond from trans to cis. ${ }^{82}$ Based on these studies, they suggested that a GDA analog containing a predisposed cisamide bond in the ground state would result in a cup shaped molecule that could more easily bind to the open form of Hsp90 without substantial energy loss resulting from isomerization of the amide bond. They propose that a molecule containing a conformationally biased cis-amide bond could enhance Hsp90 binding more than 1,000fold. Subsequent computational and experimental studies by researchers at the National Institutes of Health led to identification of two amino acids that are in close proximity to the amide bond and are believed to be responsible for $\mathrm{Hsp90}$-catalyzed isomerization of GDA's amide bond. ${ }^{87}$ In these studies, they mutated Lys112 and Ser113 to alanine, and determined whether GDA could displace Hsp90 immobilized on an ATP-Sepharose column. The rationale for these two mutants is based on the hypothesis that both Lys112 and Ser113 can hydrogen bond with the amide oxygen of trans-GDA.

Figure 7: The chemical structuresof17-AAG and DMAG. Superimposed cocrystal structures of 17-DMAG (cyan) and GDA (yellow) bound to human Hsp90.

Figure 8: Superimposed bound conformations of 17-DMAG (teal) and GDA (yellow).
and that isomerization occurs through a mechanism similar to keto-enol tautomerization. Binding studies confirmed that GDA had low affinity for the Hsp90 S113A mutant, whereas radicicol could bind with equal affinity when compared to the wild-type chaperone. It is proposed that in the normal Hsp90-catalyzed reaction with ATP that both Lys112 and Ser113 bind to the a-phosphate of ATP and act as a 'gatekeeper'' to restrict access to particular conformations of ATP into the Hsp90 binding pocket.

Application of Hsp90 inhibitors in the treatment of cancer patients :

Though useful as biologic probes for studying the role of Hsp90 in mediating transformation, the natural products Geldanamycin (GDA) and radicicol (RD) have several pharmacologic limitations, including poor solubility, limited in vivo stability, and off-target toxicities that have precluded their use as drugs. ${ }^{88}$ GDA proved too toxic for human use ${ }^{89}$ but 17-AAG, a carbon-17 substituted derivative, retains activity against Hsp90 but with a more favorable toxicity profile. ${ }^{90}$ 17-AAG entered human clinical testing in 1999 and has been evaluated in phase 1 trials using weekly, twice weekly (days 1, 4), daily $\times 5$ (21 day cycle), and daily $\times 3$ (14 day cycle) schedules. ${ }^{91-95}$ In these trials, the toxicity of 17-AAG was dose dependent and schedule dependent with hepatic toxicity being more prominent with daily administration schedules. 17-AAG has limited solubility and, therefore, in order to formulate this drug for human use, the Cancer Therapy Evaluation Program (CTEP) that sponsored the initial phase 1 trials developed a dimethyl sulfoxide (DMSO), egg-phospholipid vehicle. Notably, many of the toxicities (anorexia, odor) observed in the phase 1 setting were probably attributable to the DMSO in this formulation. Pharmacokinetic studies incorporated into these phase 1 trials suggest that serum concentrations significantly greater than those required for depletion of Hsp 90 clients in cell culture and xenograft model systems could be achieved with acceptable toxicity. Peripheral blood mononuclear cell studies and limited tumor biopsies showing degradation of Raf-1 and upregulation of Hsp70 suggest that at least partial target modulation was achieved. ${ }^{91-95}$ However, minimal efficacy (primarily stable disease in melanoma, renal, and prostate cancers) was observed in the phase 1 trials and no patients in these trials achieved either a complete or partial response by Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Notably, these phase 1 trials were not enriched with those patients predicted by the preclinical experience to be most likely to respond (for example, patients with HER2-amplified breast cancer). ${ }^{95}$

Drug	Sponsor	Adminstration	Status
17AAG (DMSO/EPL formulation)	NCI/Kosan	Intravenous	Phase 1/2
KOS-953 17AAG, tanespimycin)	Kosan	Intravenous	Phase 1/2
CNF-1010 (17AAG)	Biogen Idec	Intravenous	Phase 1
IPI-504	Infinity	Intravenous	Phase 1
KOS-1022 (17DMAG, alvespimycin $)$	Kosan	Intravenous	Phase 1
KOS-1022 (17DMAG, alvespimycin)	Kosan	Oral	Phase 1
CNF-2024	Biogen Idec	Oral	Phase 1
SNX-5422	serenex	Oral	Phase 1

Table 3: Hsp90 inhibitor trials in cancer

Previous synthesis:

Kuniaki Tatsuta. et.al. approach for the total synthesis of Herbimycin

A: First total synthesis of Herbimycin A was reported by Kuniaki Tatsuta et.al. in 1991; ${ }^{96}$ by assembling ansa fragment 2 lithiated chellated controlled with aryl aldehydes 3 , in which the ansa fragment was prepared from methyl α - D -mannopyranoside 4.

Scheme 1

The epoxide 5 was prepared from methyl-D-mannopyranoside in five steps sequence. The crucial step for the synthesis for ansa chain was the regioselective epoxide-ring opening by using disiamylborane- NaBH_{4} system which gave regioisomers in required isomers 6:1 in ratio. After benzylation of free hydroxyl, de- O-tritylation gave primaryalcohol 7, which on swern oxidation and Grignard reaction ($\mathrm{MeMgBr},-78^{\circ} \mathrm{C}$) in one pot and subsequent oxidation gave the methyl ketone.

After Wittig methylation of methyl ketone, the resulting Olefin-9 underwent smooth hydolysis and reduction to afford diol 10. The diol 10 was stereoselectively hydroborated to afford required triol 11 in 83% along with 16% yield of the C10 epimer (Scheme 1). After benzylidenation of resulting triol was transformed into 12 in a regular protection deprotection sequence followed by Dess-Martin oxidation to provide the C9aldehyde, which was subjected to the Corey-Schlessinge olefination conditions followed by oxalic acid work up to give the (E)-unsaturated aldehyde 13.

Scheme 2

14
The compound having the correct $\mathrm{C} 6 / \mathrm{C} 7$ steoreocenter was envisioned to be available through the addition of γ-alkoxyallyl organometallic reagent to aldehyde $\mathbf{1 3}$ under Brown's conditions to give desired 14 in 76% yield along with the separable diastereomeric syn-diol (13\%). The synthesis of the required ansa-chain aldehyde 2 was completed by protection deprotection and subsequent oxidation (Scheme 2).

The coupling of the above aldehyde 2 and the aromatic chromophore 3 was achieved by addition of $\mathbf{2}$ to the lithiated reagent prepared from $\mathbf{3}$ and $n-\mathrm{BuLi}$ to produce the desired coupling product-16 (70\%) along with the undesired C15-epimer (17) (Scheme 3).

O-Methylation of desired couplied product-16 followed by selective oxidative cleavage of olefin to afford the C5-aldehyde 16a which was transfored to the target Herbimycin A by Still's olefination and a subsequent three step sequence 1. DIBAL reduction 2) PDC oxidation. 3) three carbon wittig olefination to afford 17. Exposure of 17 to acidic and basic conditions to furnish the amino acid, which was on cyclized in a mixed anhydride way to produce 19-membered macrolactum 18. Finally, deprotection protection subsequent oxidative de-o-methylation gave the target molecule (Herbimycin A) (Scheme 4).

James S. Panek. et.al. approach for the total synthesis of Herbimycin A:

James S.Panek et.al in $2004{ }^{97}$ reported the second total synthesis of Herbimycin A.

The Panek's group started the synthesis of Herbimycin A with TBS protection of the known primary alcohol in $\mathbf{2 1}$. Followed by methylation of secondaryalcohol using Meerwein's reagent to give protected derivative. Removal of the silicon protecting group at C10 was followed by debenzylation of the C11 hydroxy group gave diol. The 1,2- diol was subjected to an oxidative cleavage reaction to yield aldehydes 22, which was subjected to a second crotylation to afford the syn-homoallylic ether 24 (Scheme 5).

Scheme 6

Compound-24 was subjected to dihydroxylation, followed by cleavage of diol to afford an aldehyde which on wittig olefination with the stabilized ylide $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Et}$ in toluene gave the (E)-Olefin. The ester was reduced with DIBAL-H to the alcohol, which on Swern oxidation afforded aldehyde 25. Using Brown's asymmetric allylboration technology, they constructed the C6-C7 syn-stereocenters from 25 with the γ-methoxyallyl organoborane reagent derived from (-)- α-pinene.

Protection of the C7 hydroxyl group as a TBS ether allowed incorporation of the carbomate toward the end of the synthesis. The installation of the C2-C5 (E,Z)- dienoate began with trans-formation of the terminal olefin in 26 to the aldehydes. In a two reaction sequence, the aldehyde was obtained with dihydroxylation followed by oxidative cleavage. The C4-C5 (Z)-olefin was then established by a Horner-Emmons olefination reaction using the Still-Gennari phosphonate to afford the (Z)- α, β-unsatured ethyl ester as a single isomer.

Reduction of the ester with DIBAL-H followed by Swern oxidation provided the α, β-unsatured aldehyde. the synthesis of the (E,Z)-dienoate was completed by installation of the C2-C3 trisubstituted (E)-olefin employing similar conditions used earlier to install the C8-C9 trisubstitued (E)-Olefin 27 (Scheme 6).

The aryl nitro group of 27 was reduced under the mild conditions developed by Lalancette which was followed by saponification of the ester to give the advanced intermediate. Macrolactonisation by using BOPCl and DIPEA as a base afforded 28. Completion of the synthesis of Herbimycin A was accomplished by deprotection of the C7-silyl ether with TBAF in THF to provide secondary alcohol which on carbamate
formation, followed by oxidation of the dimethoxy aromatic core to the quinine with CAN, afforded synthetic Herbimycin A (Scheme 7).

Janine Cossy et.al. approach for the total synthesis of Herbimycin A:

Janine Cossy et.al. in 2007^{98} reproted the third total synthesis of Herbimycin A, by keeping allyl titanation reaction as a important step to assemble ansachain with the aryl group.
Scheme 8

Hydroxyester 29 was transformed to aldehyde 30 in four steps which includes protection of the primary alcohol as a TBDPS ether, reduction of ester function by DIBAL-H to yield the corresponding aldehyde, homologation of the aldehyde to $\mathbf{3 0}$ in two steps using the methoxymethylphosphonium ylide followed by an acidic hydrolysis of the enol ether intermediate. Aldehyde $\mathbf{3 0}$ was then subjected to enantioselective allyltitanation with the highly face-selective (S,S)-I complex to afford the homoallylic alcohol 31. After methylation of the secondary alcohol in 31, the terminal double bond was isomerized by treatment with the second-generation Grubbs' catalyst GII in the presence of the N -allyl-N-tritylamine and diisopropylethylamine resulting in the formation of allylic ether 32 (Scheme 8).

Scheme 9

After oxidative cleavage of olefin 32 and treatment of the resulted aldehyde with the (Z)-crotylboronate allowed the control of the C10 and C11 stereocenters. Alcohol 33 on mehtylation and oxidative cleavage afforded an aldehydes, which under Corey-Schlessinger olefination conditions afforded the α, β-unsatured aldehyde 34. At this stage, the control of the C6-C7 stereocenters was examined by addition of the (Z)- γ methoxy allylborane, derived from (-)- α-pinene and developed by Brown; aldehyde 34 led to the desired syn-product, which was directly protected to produce the TBDMS ether. The selective deprotection of the primary alcohol, without affecting the secondary TBDMS ether at C 7 , was achieved by using $\mathrm{NH}_{4} \mathrm{~F}$ in methanol and the resulted primary alcohol was then oxidized to the corresponding aldehyde 36 by using Dess-Martin periodinane (Scheme 9).

The organolithium reagent issued from 37 which was obtained by halogen-metal exchange using n -BuLi, followed by reacted with aldehyde 36 to provide the two epimers at C15, 38 and $\mathbf{3 8}$ ', in a $1.6 / 1$ ratio (Scheme 10).

After separation, the major epimer was methylated at C 15 and N -deprotected to give aniline 38. The compound 38 was transformed to the desired unsaturated lactone $\mathbf{4 0}$ in four steps. In order to perform the RCM, the aniline was protected with a deactivating group like N, N-biscarbamate. After deprotection of the hydroxyl group at C 7 followed by esterification using acryloyl chloride, the obtained dienic ester-39 was subjected to RCM using Grubb's catalyst from where unsatured lactone 40 was isolated. The transformation of $\mathbf{4 0}$ to the (E,Z)-conjugateddiene $\mathbf{4 1}$ was achieved in two steps. At first, the lactone $\mathbf{4 0}$ was reduced to the corresoponding lactol using DIBAL-H and resulting lactol was treated with the stabilized wittig reagent $\mathrm{PPh}_{3}=\mathrm{C}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Et}$ in toluene to afford the (E, Z)-diene 41 (Scheme 11).

After deprotection of the aniline, and saponification of the ester, the treatment of the nonpurified seco acid with (BOPCl) and DIPEA afforded the macrocycle 42. Completion of Herbimycin A synthesis was accomplished by formation of the carbamate at C 7 with trichloroacetylisocyanate and $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$ followed by oxidation of the dimethoxy aromatic core to the quinine ring system with CAN (Scheme 12).

Synthesis of Advanced Fragments of Herbimycin A

James Kallmerten et. al.approach for synthesis of C11-C18 Fragment:
James Kallmerten et.al in $1993{ }^{99}$ synthesized the C11-C18 fragment, in which the [2.3] Wittig rearrangement of a glucose derived tertiary allylic ether 49 establishes the key structural and stereochemical elements of an advanced Herbimycin A intermediate.
Scheme 13

Preparation of iodopyranose 47 initiated with glucopyranose 44, prepared in three steps from commercially available 1,2:5,6-di-O-isopropylidene- α-D-glucofuranose 43. Regioselective O-methylation of 44 and oxidation of the resulting C 4 alcohol with $\mathrm{SO}_{3^{-}}$ pyridine complex afforded ketone. Treatment of ketone with $\mathrm{MeLi}-\mathrm{Me}_{2} \mathrm{CuLi}$ Complex in $\mathrm{Et}_{2} \mathrm{O}$ was accompanied by the expected equatorial addition, yielding the desired axial tertiary alcohol 45 . Deprotection of $\mathbf{4 5}$ and oxidation of the resulting diol furnished the sensitive aldehyde; subsequent treatment with methyl Grignard reagent afforded diol 46. Finally, diol 46 was transformed to iodoalcohol 47 by mesylation and treatment of the resulting sulfonate with tetrabutylammonium iodide in benzene. Iodide 47 was obtained as a single diasteremer (Scheme 13).

Iodide 47 was rapidly consumed upon treatment with Zn dust in ethanol; interestingly. the anticipated product of reduction, aldehyde (A), was not isolated. underwent cyclization to yield lactol 48 as a $3: 1$ mixtuxe of anomers. Finally, reduction of 48 and mono-benzylation of the resulting diol afforded tertiary allylic alcohol. alkylation of the potassium alkoxide of tertiary allylic alcohol with chloromethyl oxazoline, followed by treatment of the resulting ether 49 with lithium diisopropylamide and subsequent $[2,3]$ sigmatropic rearrangement afforded a single product 50 . O-Methylation of 50 followed by reductive cleavage of the oxazoline system afforded 51, corresponding to the fully-functionalized $\mathrm{C}_{11}-\mathrm{C}_{18}$ subunit of the Herbimycin ansa system (Scheme 14).

Stephen F. Martin et. al. approach for synthesis of C3-C21 Fragment:

Stephen F. Martin ${ }^{100}$ synthetic strategy was specifically designed to provide the opportunity to develop the stereoselective union of two complex fragments related to 58 and 59 to give trisubstituted alkenes. The hydropyrans 58 and 59 would then be accessible from the furans and 52, respectively. the successful implementation of his strategy for the preparation of $67 \mathbf{a}$, which incorporates the $\mathrm{C}(3)-\mathrm{C}(21)$ segment of herbimycin A

The synthesis commenced with the reaction of the known aldehyde 52, which was prepared in two steps from S-ethyl lactate, with 2-furyllithium to furnish a separable mixture (11:1) of epimeric diols, from which $53(\mathrm{R}=\beta-\mathrm{OH})$ could be isolated. The addition of 2-furylmagnesium bromide to 52 proceeded with similar diastereoselection, The diol derived from 53 was oxidatively processed to give an intermediate hydropyranone that cyclized under dehydrating conditions to give 54. Methylation of the intermediate allylic alcohol gave the methyl ether 55. Acid-catalyzed rupture of the bicyclic ketal 55 in methanol gave a single methyl glycoside that was oxidized under Swern conditions to provide 56. the ketone 56 was treated with excess hydrazine to give the corresponding hydrazone, which was allowed to react with iodine in the presence of a large excess of $\mathrm{Et}_{3} \mathrm{~N}$ to give 57 (Scheme 15).

Scheme 16

The metal-halogen exchange of 57 leads to form 58 and the initial reaction of 58 with 59 were conducted at $-95^{\circ} \mathrm{C}$ to avoid possible β-elimination of 58 to produce an allene; an excess of 57 was required to ensure complete consumption of the aldehyde 59. Although the reactants were combined at $-95^{\circ} \mathrm{C}$, it was necessary to warm the reaction slowly to $50{ }^{\circ} \mathrm{C}$ to allow the addition to occur. In this fashion, a mixture (4:1) of epimeric alcohols 60a, 60b was obtained. The allylic alcohols 60a, 60b were converted to the corresponding xanthates, which were not isolated but were thermally isomerized via [3,3]-sigmatropic rearrangement $\mathbf{6 0}$ to give a mixture (1.6:1) of the allylic dithiocarbonates 61a, 61b .Reduction of the mixture of 61a, 61b under radical conditions with $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$ afforded a mixture (17:1) containing the desired E-alkene 62 as the major product together with the disubstitnted alkene 63 (Scheme 16).

Scheme 17

Selective removal of the silyl protecting group from the hemiacetal moiety at $\mathrm{C}(15)$ of 62a to give 64 was achieved using fluoride reagent $n-\mathrm{Bu}_{4} \mathrm{NF} / \mathrm{HOAc}$. 65 was converted into the BIPSOP-protected aniline 66. The anion generated from 66 by metal-halogen exchange added to the lactol 64 in the presence of TMEDA gave, after partial hydrolysis of the BIPSOP group, a mixture (5.5:1) of 67a and $\mathbf{6 7 b}$ (Scheme 17). One may envisage elaborating 67a into Herbimycin A (1) via reactions closely related to those recently reported by Tatsuta. ${ }^{96}$

Glenn C. Micalizio et. al. approach for synthesis of C5-C15 Fragment:

Glenn C. Micalizio et.al. ${ }^{101}$ studies revealed that a diastereoselective pentynylation (68 to 72), in conjunction with a titanium alkoxide-mediated regioselective reductive coupling (72 to 74) can provide general and flexible access to complex polyketides.

Myers' alkylation of the Roche iodide 68, followed by LAB reduction $\left(\mathrm{BH}_{3} . \mathrm{NH}_{3}, \mathrm{LDA}\right.$, THF) of the amide provided the stereochemically defined primary alcohol 70 (dr 9:1). Oxidation to the aldehyde (Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), followed by a double asymmetric pentynylation with the allenylstannane $71\left(\mathrm{BF} 3 . \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}\right)$ provided the homopropargylic alchol 72 which was converted to C5-C15 OF Herbimycin A as shown in (Scheme-18).

Janick Ardisson et. al. approach for synthesis of C1-C7, C8-C15, and

C16-N22 Fragments of the Herbimycin:

Janick Ardisson et.al. ${ }^{102}$ synthetic plan involved the convergent approach. His group prepared the C8-C15 fragment by using Hoppe Crotylation and sharpless epoxidation as key steps. The C1-C7 fragment was constructed by employing Shen's reaction conditions. Where as the $\mathrm{C} 16-\mathrm{N} 22$ fragment was prepared by regular functional group manipulations.

Synthesis of C8-C15 fragment of Herbimycin A

Scheme 19

The elaboration of southern C8-C15 sub-unit started from the commercially available hydroxy-ester 76; classical transformations gave ester 77 which was converted to the α, β-unsaturated aldehyde 78 in 6 steps. Elaboration of the $\mathrm{C} 15-\mathrm{C} 8$ skeleton was
initiated by an enantioselective Hoppe crotylation of aldehyde 78 to afford the pure vinyl carbamate 79, followed by treatment with t-BuLi provided acetylenic derivative $\mathbf{8 0}$.

Inversion of the C11 center of compound $\mathbf{8 0}$ was achieved under Mitsunobu conditions. Stereoselective Sharpless epoxidation of $\mathbf{8 1}$ using D-(-)-diethyltartarate gave epoxide 82. followed by Reduction of $\mathbf{8 2}$ under DIBALH/THF conditions furnished the anti-1,3-diol 83. Subsequent methylation of 83 was carried out using $n-\mathrm{BuLi} / \mathrm{MeI}$ to furnish dimethoxyderivative 84 (Scheme 19).

Synthesis of C1-C7 Fragment of Herbimycin A

Scheme 20

Isopropylidene glyceraldehyde $\mathbf{8 5}$ was transformed into $\mathbf{8 6}$ by applying CoreyFuchs method. Compound $\mathbf{8 6}$ was transformed to alcohol $\mathbf{8 7}$ which was converted into the corresponding 1,1-dibromo-alkene derivative 88. The compound 88 and $\mathbf{8 9}$ under Shen's conditions $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right.$ or $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2} / \mathrm{CuI} /$ diisopropylethylamine, in toluene or DMF at $80^{\circ} \mathrm{C}$] afforded excepted enyne 90 (Scheme 20).

Synthesis of C16-N22 Fragment of Herbimycin A

Scheme 21

The Northern fragment 94 was prepared from commercially available diiodocompound $\mathbf{9 1}$ in three steps. Mono-nitration of $\mathbf{9 1}$ under classical conditions led to nitro-aldehyde 92. Applying Baeyer-Villiger oxidation on 92 provided the excepted diphenol derivative 93. The last step for the preparation of C16-N22 Northern fragment 94 (Scheme 21) was achieved by methylation of $\mathbf{9 3}$ by means of $\mathrm{KOH} / \mathrm{MeI}$ in DMF at 20 ${ }^{\circ} \mathrm{C}$ for 4 h .

PRESENTWORK

Present work:

Herbimycin A, Geldanamycin, Macbecin I belong to ansamycin benzoquinone class of natural products, containing ansa-bridged macrocyclic lactam connected to meta position of the Benzoquinone. Herbimycin A, geldanamycin and its derivaties were isolated from fermentation broth of streptomyces hygroscopicus AM-3672. ${ }^{1}$ Herbimycin A has a significant range of antitumor, antibacterial, antifungal, antiprotozoa activities, herbicidal, antiangiogenic, antiviral, antitabocco mosaic virus ${ }^{2 a}$ and antitumor activities ${ }^{2}$. Though it was isolated in 1979, only three total synthesis of Herbimycin A are reported in the literature ${ }^{96-98}$. Also one formal synthesis and few synthesis of advanced fragments have been reported ${ }^{99-102}$. The challenging structural complexity along with the significant biological properties of Herbimycin A and its derivaties motivated us to take up the synthesis of these molecules in our laboratory.

Herbimycin A (1) $\quad \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{OMe}$
Herbimycin B (1a) $R_{1}=H, \quad R_{2}=H$
Herbimycin C (1b) $\mathrm{R}_{1}=\mathrm{H}, \quad \mathrm{R}_{2}=\mathrm{OMe}$

Geldanamycin

Macbecin I

Figure 1. structure of novel natural products, Herbimycin (A-C), Geldanamycin, Macbecin I
The structure and absolute configuration of Herbimycin A was determined by its ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectroscopic analysis and single crystal X-ray analysis. ${ }^{2 b, c}$ The absolute stereochemistry was determined by its first total synthesis by Tatsuta et. al in 1991. ${ }^{96}$ Critical structural features of Herbimycin A are as follows: (I) Seven stereogenic centers ($6 S, 7 S, 10 S, 11 R, 12 S, 14 S, 15 R$). (II) an aliphatic ansa-bridged chain bonded to meta position of suitably substituted benzoquinone. (III) Carbamate at C-7. (IV) an isolated trisubstituted ($8 E$)-double bond. (V) 2E, 4Z-diene. (VI) 19- membered macrocyclic lactam along with a benzoquinone ring system

Retrosynthetic analysis:

Figure 9. Retrosynthetic strategies for Herbimycin A
Our synthetic plan for Herbimycin A, as depicted in Figure-9, involves two strategies; first strategy involves a bond disconnection at C-8 and C-9 which leads to an opened dicarbonyl precursor 95 which can give the target molecule-1 through MacMurry cyclization/ coupling. Int-95 can be assembled from the two fragments A (97) and B by inter molecular amidation. Our 2nd strategy reveals that a cross metathesis of crucial fragments $C(98)$ and D will leads to critical Int- 96 which would provide target- $\mathbf{1}$ through intramolecular Buchwald amidation. We decided to take advantage of the chirality present in sugar molecules to construct the critical Fragments [A (97) and C (98)] bearing

5 stereocenters. Thus we envisaged that Fragments (A and C) can be derived from suitably substituted Int-99 or 100 by keeping zinc mediated reductive elimination (Vasselar-Bernet reaction).

Fragment A (97) $\mathrm{R}=\mathrm{NH}_{2}$

$\iint_{\mathrm{R}=\mathrm{Br}}^{\text {Fragment } \mathrm{C}(98)}$

Int-99, $\mathrm{R}=\mathrm{NO}_{2}$ for Fragment A Int-100 R = Br for Fragment C

Figure 10. Retrosynthetic strategy for advanced right hand segment (99 and 100)
The key intermediates (99 and 100) can be obtained by chemical manipulation using Evan's anti aldol reaction as a key step (for construction of C14 methyl and C15 hydroxyl). We have visualised oxazolidinone derivative 101 as an important intermediate in our synthesis which could be obtained in two path ways. First via coupling of
oxazolidinone 105 and carbohydrate derived acid 104, which could be prepared by homologation of aldehyde 106. In the second path way, using Horner-WardsworthEmmons reaction for assembling the aldehyde 106 with the oxazolodinone phosphonate 107. The aldehydes 106 can be obtained from D- Glucose by chemical manipulations as shown in Figure 10.

Synthesis of aldehyde-106 (Scheme 22):

Once we have zeroed on plan and the retrosynthesis, our synthesis started with the conversion of D-Glucose into epoxide-16 as shown in Scheme-22.

D-Glucose was converted into triol-109 in good yield following two step sequence as reported in the literature. ${ }^{103}$ The primary hydroxyl group of triol 109 was selectively protected as its benzyl ether by chelation controlled manner using dibutyltin oxide, $\mathrm{BnBr}, \mathrm{Bu}_{4} \mathrm{NBr}^{104}$ in toluene to afford monobenzyl ether 110 in 88% yield (Scheme 22). The product was confirmed by its spectral and other analytical data. Di-tosylation of 110 by using tosyl chloride in pyridine, and catalytic DMAP gave 111 which was confirmed from its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The ${ }^{1} \mathrm{H}$ NMR spectrum showed two sharp singlets at $\delta 2.37$ and 2.42 ppm each one integrating for three protons of the methyl groups attached to tosyl aromatic ring. The aromatic protons resonated at $\delta 7.09$ to 7.86 ppm integrating for eight protons confirmed the formation of di-tosyl derivative 111.

After having suitably protected di-tosyl derivative 111, our first key step towards construction of basic skeleton of (C13-C8) Herbimycin A was the acid mediated ring isomerization (acid catalysed rearrangement) which would give rearranged product 108. ${ }^{105}$ This type of rearrangement was first observed by J. Defay in carbohydrate system. ${ }^{105 c}$ This methodology was further explored in the total synthesis of complex natural products like Jasmine B, central ring F of Halichondrin B. ${ }^{105 b}$ Mechanistically, during the rearrangement, C-2 Hydroxy of glucose attacks the O-Ts group on C-5 in a $\mathrm{S}_{\mathrm{N}} 2$ fashion to afford the rearranged product 108 , which was characterized by the presence of only one tosyl methyl peak at $\delta 2.49 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. The ${ }^{13} \mathrm{C}$ NMR spectrum further supported the assigned the structure 108. Molecular ion peak at $m / z 475.25[\mathrm{M}+\mathrm{Na}]^{+}$was observed in ESI-MS spectrum, which corroborated the predicted structure.

This rearranged product 108 was then transferred into the desired epoxide 112 using sodium methoxide in methanol in 96% yield. The chemical shifts due to tosyl group were departed. Molecular ion peak at $m / z 303.39[\mathrm{M}+\mathrm{Na}]^{+}$was observed in the ESI-MS spectrum confirmed the structure 112.

Having Epoxide-112 in hand, our next target was the stereoselective opening of the epoxide ring present in 112, which would provide us the desired opened intermediate 113. Our initial attempts for the stereoselective opening of the epoxide using the more common reagents $\mathrm{Me}_{2} \mathrm{CuLi}$, MeLi or MeMgBr failed to give us the desired product; all these cases gave mixture of epoxide opened isomers along with unreacted starting material. Fortunately this conversion was successfully achieved using modified Gillman reagent (methyl magnesium chloride and CuCN in THF) which afforded the critical
intermediate 113 in 80% yield ${ }^{106}$. The structure was confirmed by its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral analysis. In ${ }^{1} \mathrm{H}$ NMR spectrum, the new methyl peak appeared in the upfield region of the spectrum at $\delta 1.1 \mathrm{ppm}(\mathrm{J}=6.6)$ integrating for three protons. In the ${ }^{13} \mathrm{C}$ NMR spectrum the Methyl-carbon resonance at $\delta 15.12 \mathrm{ppm}$ indicate the formation of the 113. In the ESI-MS spectrum the presence of the molecular ion peak at $m / z 319.47$ $[\mathrm{M}+\mathrm{Na}]^{+}$further confirmed that observation. The exclusive stereo and regioselectivity observed under modified Gilmann condition can be explained by the fact that the α-face of the epoxide was blocked at one side by the $-\mathrm{CH}_{2} \mathrm{OBn}$ group and hence allows the attack of the reactive nucleophile (Me^{\ominus}) only from β face of epoxide (Scheme 23).

The regioselectivity of $\mathbf{1 1 3}$ was further confirmed by extensive ${ }^{1} \mathrm{H}$ NMR studies (NOESY) of the acetyl derivative 114 which was obtained by treating 113 with acetic anhydride in pyridine (Scheme 24). The NOESY analysis of 114 showed a strong NOE between $\mathrm{C} 4-\mathrm{Me}$ and acetals OMe group and also between acetyl-Me and benzylic methylene which clearly support the cis relationship.

Scheme 25

Having Intermediate-113 in hand, our next target was to convert it into the desired aldehyde-106, which was achieved by two simple manipulations. Int-113 was protected as its Bn -ether $\mathbf{1 1 5}$ by using $\mathrm{BnBr} / \mathrm{DMF}$ at $0{ }^{\circ} \mathrm{C}$ condition, followed by deprotection of the acetal under acidic condition using TFA:Water to provid aldehyde 106, which without any further purification was used in the next step (Scheme 25).

Synthesis of Oxazolidinone derivative 101 via Route-A:

After successfully achieving the synthesis of the critical aldehydes Int-106; we next focussed our efforts for synthesis of Int-101; which can be derived from aldehydes106 following 2 routes as described below.

We first planned to try out Route \mathbf{A} which involves the preparation of Int-104 (acid-104); accordingly aldehyde-106 was treated with 2-carbon stable Wittig ylide in toluene under reflux condition to afford olefin-117 in 77\% yield (Scheme26).

Scheme 26

The structure of Wittig product-117 was elucidated by its ${ }^{1} \mathrm{H}$ NMR spectrum, in which new methyl signal resonances at $\delta 1.07 \mathrm{ppm}$ integrating for three protons, methylene signal resonances at $\delta 4.20 \mathrm{ppm}$ integrating for two protons and the characteristic olefinic protons appeared as doublet at $\delta 6.07,6.92 \mathrm{ppm}$ integrating for two protons and rest of protons appears at excepted chemical shift values. The structure
was further confirmed by its ${ }^{13} \mathrm{C}$ NMR spectrum, in which new methyl carbon appeared at $\delta 16.41 \mathrm{ppm}$, methylene carbon peak located at $\delta 60.47 \mathrm{ppm}$ and characteristic olefinic carbon resonances at $\delta 121.2,146.4 \mathrm{ppm}$ was observed. Molecular ion peak at m / z 433.49 for $[\mathrm{M}+\mathrm{Na}]^{+}$was observed in the ESI-MS spectrum was an additional support for unsaturated ethyl ester 117.

The unsaturated ethyl ester 117 was reduced by treating with nickel borohydride in dry methanol to afford saturated ester 118. The structure was confirmed by disappearance of olefinic proton peaks in ${ }^{1} \mathrm{H}$ NMR and the rest of the spectrum was in complete agreement with the assigned structure. Saturated ester 118 was saphonified by using LiOH in water:dioxane in $2: 1$ ratio to furnish acid 104 in 80% of yield (Scheme 27). The spectroscopic data were in good agreement with the assigned values along with the appearance of broad peak at $3390 \mathrm{~cm}^{-1}$ in IR spectrum which indicated acid functionality. Molecular ion peak at $m / z 407.47[\mathrm{M}+\mathrm{Na}]^{+}$was observed in the ESI-MS spectrum indicates it's formation.

Synthesis of Oxazolidinone derivative-101:

Oxazolidinone-105 was prepared starting from D-Phenylalanine following literature procedure. ${ }^{107}$

Scheme 28

Accordingly, D-phenylalanine was reduced to D-phenylalanol with sodium borohydride and iodine in THF followed by treatment of the amino alcohol with diethyl
carbonate and $\mathrm{K}_{2} \mathrm{CO}_{3}$ at $80{ }^{\circ} \mathrm{C}$ to get oxazolidinone 105. All the spectral and other analytical data were in good agreement with reported values (Scheme 28). ${ }^{107}$

Scheme 29

104

The next step was the coupling of Oxa-105 and acid $\mathbf{- 1 0 4}$ which would give us the critical Int-101. This was affected by converting the acid-104 into its mixed anhydride using NEt_{3}, Piv-Cl followed by coupling with lithium salt of oxazolidinone which was prepared insitu using n-BuLi. Following this procedure we could get the desired coupled product-101, but unfortunately the yield was very low (Scheme 29). ${ }^{108}$ The structure of oxazolidinone derivative 101 was confirmed by its ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectral study. In the ${ }^{1} \mathrm{H}$ NMR spectrum, in which peaks corresponding to benzylic protons of oxazolidinone resonating at $\delta 2.68,3.26 \mathrm{ppm}$ as a doublet of doublet integrating for two protons while all other protons of the oxazolidinone were appeared at assigned values. In the ${ }^{13} \mathrm{C}$ NMR spectrum showed benzylic methylene carbon resonating at $\delta 37.96 \mathrm{ppm}$, other oxazolidinone peaks appeared at their respective chemical shift values. Molecular ion peak at $m / z \quad 566.65[\mathrm{M}+\mathrm{Na}]^{+}$was observed in the ESI-MS spectrum was an additional support for oxazolidinone derivative 101.

Synthesis of Oxazolidinone derivative-101 via Route-B:

As the yield of Int-101 following route-A was very low, we then attempted routeB for the preparation of Int-101. Accordingly Oxa- 105 was acylated using $n-\mathrm{BuLi}$ /chloroacetylchloride to afford chloroacetyl derivative-119 in good yield. ${ }^{109}$

Scheme 30

The Spectral data revealed that the methylene protons of chloroacetyl group resonated at $\delta 4.28 \mathrm{ppm}$ as a singlet integrating for two protons in ${ }^{1} \mathrm{H}$ NMR spectrum.

The methylene carbon resonating at $\delta 66.8 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR spectrum further supported the product 119. In order to convert Int-119 to our desired phosphonate ester-107, it was refluxed with trimethyl phosphite which provided the phosphonate ester-107 in good yield ${ }^{110}$ (Scheme 30). ${ }^{1} \mathrm{H}$ NMR of 107 showed signals at $\delta 3.81,3.82 \mathrm{ppm}$ integrating for six protons due to localized methoxy groups. The methoxy carbons were resonanced at δ 53.16 ppm in ${ }^{13} \mathrm{C}$ NMR spectra which further confirmed the structure of phosphonate 107. Molecular ion peak at $m / z 350.51$ for $[\mathrm{M}+\mathrm{Na}]^{+}$was observed in ESI-MS spectrum further support the formation of the phosphonate 107.

After oxazolidinone phosphonate 107 was prepared successfully, our next task was to assemble phosphonate ester-107 with aldehyde $\mathbf{1 0 6}$ under Horner Wadsworth Emmons reaction conditions which would afford us the conjugated oxazolidinone 116.

Scheme 31

To achieve this, oxazolidinone phosphonate 107 was treated with aldehyde 106 in presence of LiCl and DIPEA to provide conjugated oxazolidinone 116 in 88% of yield (Scheme 31). The structure of conjugated oxazolidinone 116 was confirmed from its ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral study. The ${ }^{1} \mathrm{H}$ NMR spectrum showed that the characteristic oxazolidinone benzylic protons were resonated at $\delta 2.73,3.35 \mathrm{ppm}$ as doublet of doublet integrating for two protons, methylene group of oxazolidinone $\mathrm{H}-5,5$, were located at $\delta 4.10 \mathrm{ppm}$ as a triplet integrating for one proton and at $\delta 4.3 \mathrm{ppm}$ as a doublet integrating for one proton, $\mathrm{CH}_{2}-\mathbf{C H}-\mathrm{NH}, \mathrm{H}-4$ of oxazolidinone appeared at δ $4.58-4.60 \mathrm{ppm}$ as a multiplet integrating for one proton and significant olefinic protons resonances at $\delta 7.17,7.35 \mathrm{ppm}$ as a doublet of doublet integrating for two protons. All other protons were appeared at their expected chemical shifts. The ${ }^{13} \mathrm{C}$ NMR spectrum further supported the assigned structure of 116. For instance, the characteristic olefinic carbons resonated at $\delta 120.43,148.36 \mathrm{ppm}$ corroborated the structure of 116. Molecular
ion peak at $m / z 564.48[\mathrm{M}+\mathrm{Na}]^{+}$in ESI-MS spectrum was an additional support for the conjugated oxazolidinone 116.

Scheme 32

The conjugated oxazolidinone 116 was hydrogenated by using $10 \% \mathrm{Pd} / \mathrm{C}$ at 60 psi for 6 h to afford oxazolidinone derivative 101 (Scheme 32) in 79% of yield. ${ }^{110 \mathrm{~b}}$ All the spectroscopic and analytical data of this compound compared well with the product prepared by earlier route A. The present strategy, delivered us the required key intermediate-101 in two steps with good yields starting with aldehydes-106.

Synthesis of Masked Quinine Aldehyde 102:

Having successfully arrived at the critical fragment A. our next objective was to synthesize the substitueted aldehyde $\mathbf{1 0 2}$ for the important Evan's anti Aldol reaction.

Accordingly, aldehyde 102 was prepared following literature procedure. ${ }^{112} p$ Methoxy benzaldehyde under acid catalysed Dakin rearrangement afforded p-methoxy phenol-103. ${ }^{111}$ ortho-formylation of $\mathbf{1 0 3}$ under Reimer-Tiemen reaction conditions using CHCl_{3} and NaOH as base provided 120. Nitration of aldehyde 120 using HNO_{3} : AcOH
in 1:1 ratio provided nitroaldehyde 121, which on methylation using MeI and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF afforded masked quinine nitro aldehyde 102 (Scheme 33). ${ }^{112}$ The structure of masked quinine nitro aldehyde 102 was determined by its spectroscopic and other analytical data (including M.P) which were in complete agreement with the reported values. ${ }^{112}$

With the two key intermediates required for aldol reaction in hand, the stage was set for the crucial Evan's asymmetric anti-aldol reaction to generate the two new stereogenic centers.

Evans anti aldol reaction : A brief overview

The aldol reaction is one the most powerful tool for formation of carbon-carbon bond reactions which lead to architecturing of complex intermediates with highly functionalized and stereoselective isomers. Even though good results are obtained from organocatalytic methods, the most generaliz methods are still in the area of research for construction of complex natural products. In that sense, auxillary based aldol reactions are the best known methods till today. This auxillary based aldol reactions will give high yields along with high stereoselectivity. A number of methods are available for syn-aldol adducts; amongst these reactions, Evans chiral auxillary based aldol reactions are the best known method. But a very few well known methods are reported in the literature for anti-aldol adducts, such as Abiko-Masamune norephedrine- based auxillary reactions which generally give fruitful results but not applicable to all systems. ${ }^{114,115}$
Abiko-masamune

1. $(\mathrm{c}-\mathrm{Hex})_{2} \mathrm{BCl}$,

The first efficient stereoselestive anti aldol reactions are reported by Heathcock et. al., ${ }^{116}$ Crimmins et.al. ${ }^{117}$ via boron-enolate and titanium-enolates by using stoichiometric amount of lewis acids. But in these reactions excess Lewis acid is required for complexation to the aldehydes. The explanation proposed for getting anti products that aldehyde is complexed to a lewis acid and these reactions go through an open
transition state. Similar results were reported by our group ${ }^{118}$ by keeping chirality in both partners for the aldolreaction. Other methods like Paterson method also give satisfactory selectivity with good yield, but it is only applicable to lactate derived ketones. Glycolate reactions provide another useful method but has limited applications. Other methods like Oxapyron boron enolates, selone auxillaries, chiral tin lewis acid catalysed reaction are little success in this regard. ${ }^{119}$ A few methods for the formation of anti-aldol adducts are also reported by using stoichiometric addition of metals.

Heathcock

Crimmins

Gurjar. et.al

Paterson

 $+$

1. $(\mathrm{c}-\mathrm{Hex})_{2} \mathrm{BCl}$,
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NEt}$

2.

. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{pH} 7$
$\mathrm{CH}_{3} \mathrm{OH}, \mathrm{O}^{\circ} \mathrm{C}$

From all these, it is evident that currrently a good generalized method for the enantioselective formation of anti-aldol adducts is still not available. Evans and coworkers reported the first example of metal-catalysed aldol reactions by using both standard oxazolidinone ${ }^{113 a}$ and thiazolidine thione ${ }^{113 b}$ based auxiliaries. This is the most reliable method, in which magnesium halides catalyses the direct aldol reaction of chiral
N-acyloxazolidinones, N-acylthiazolidinethiones with aldehydes to give Evans anti aldol adducts with satisfactory yields and with high diastereoselectivity in the presence of an amine base and chlorotrimethylsilane. This methodology is applicable only to nonenolizable aldehydes, since self condensation of the aldehydes in those cases competes with the desired aldol reaction. It has been proven that this methodology is also applicable to sterically croweded, slow enolisable aldehydes. ${ }^{113 c}$ The diastereoselectivity of this reaction depends considerably on both the structure of the aldehydes and the nature of the donor group on the part of the auxillary. When aliphatic imide reacts with aromatic aldehydes the product form in high yields and with high diastereoselectivies.

The control experiments indicate that the oxazolidinone-magnesium complex reacts with triethyl amine, yielding magnesium enolate, which adds reversibly to the aldehydes, forming the magnesium aldolate, this aldolate intermediate is silylated and thus the metal source $\left(\mathrm{MgCl}_{2}\right)$ is released and can proceed on to catalyse further reaction cycle. The mechanistic path way reveals mainly two points: enolate diastereoface selectivity and anti aldol diastereoselection. The enolate face selectivity observed for the N -acyloxazolidinone-derived magnesium enolate is fully consistent with a chelatecontrolled process leading to the formation of non-Evans anti aldol adduct from the (Z)metal enolate which will proceed by the boat-like transition state A. ${ }^{113 \mathrm{a}}$

Proposed catalytic cycle for the magnesium halide-catalysed aldol reaction
The thiazolidine thione auxillary based magnesium halide (MgBr_{2})-catalysed aldol reactions affords opposite diastereomers of Evans anti aldol adduct compare to N acyloxazolidinone. This anti aldol adducts are formed because of the N -acylthiazolidinethione-derived magnesium enolate exhibit the opposite face selection during these reactions proceeding through transition sate B (non-chellated). ${ }^{\text {II3b }}$

cat. MgBr_{2}. $\mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, TMSCl, EtOAc, $23^{\circ} \mathrm{C}$

Evans anti aldol adduct

Synthesis of Evans' anti aldol adduct 122:

Scheme 34

Our first attempt was the Evan's anti aldol reaction between the carbohydrate derived oxazolidinone 101 with highly substituted arylaldehyde 102 by using standard Evan's anti aldol reaction condition ${ }^{113 a}$ to generate required chiral centers of the key fragment of Herbimycin A. This reaction condition using magnesium chloride as a chelating agent gives good distereoselectivity along with excellent yields. In the present case the oxazolidinone with chiral moiety would give the same results of the expected isomers in the course of the aldol reaction or will react in opposite way leading to other isomers. For instance, Oxazolidinone 101 was treated with anhydrous MgCl_{2}, triethylamine, benzaldehyde derivative $\mathbf{1 0 2}$ and chlorotrimethylsilane in dry ethylacetate as solvent at rt under nitrogen atmosphere for 20 h to give TMS ether derivative 122, and free hydroxyl compound 123, as a single isomer with excellent yield [light yellow color liquids and the aldol adducts $\mathbf{1 2 2}(\mathrm{OTMS}): \mathbf{1 2 3}(\mathrm{OH})$ in 1:1 ratio] (Scheme 34). The reaction occurs by following non chelated transition state through Z- enolate to produce non-Evans anti aldoladduct. The structure of the Evans anti aldol adduct was confirmed by extensive spectroscopic studies and other analytical data. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the OTMS aldol adduct showed characteristic OTMS protons resonances at $\delta 0.01 \mathrm{ppm}$ as a siglet integrating nine protons, benzylic proton resonated at $\delta 5.44 \mathrm{ppm}$ as a doublet of doublet of doublet integrating one proton and apprearence of new signal as doublet of doublet at $\delta 2.57 \mathrm{ppm}$ integrating one proton. The rest of the protons appeared at the expected chemical shift values. In the ${ }^{13} \mathrm{C}$ NMR spectrum showed OTMS carbon
appeared at $\delta 0.08 \mathrm{ppm}$, benzylic carbon resonances at $\delta 79.54 \mathrm{ppm}$ and new peak at δ 41.78 ppm was observed. In addition, the mass spectral analysis showed molecular adduct peak m / z at $849.34[\mathrm{M}+\mathrm{Na}]^{+}$in ESI-MS spectrum. The elemental analysis data also confirmed the structure of 122. The stereochemical assignment was done by similar reaction carried out in proceeding section II by using same oxazolidinone 101 with highly substituted arylaldehyde $\mathbf{1 2 4}$ under standard Evan's anti aldol reaction condition which afforded Evans' anti aldol adduct 123a, in which the stereocentral ambiguity confirmed from its single X-ray crystal structure analysis along with spectroscopic and other analytical data (Figure 9).

Scheme 35

Figure 9: Crystal structure of 123a (Evans' anti aldol adduct)

The aldol adduct $123(\mathrm{R}=\mathrm{H})$ was confirmed by extensive NMR studies. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 123 showed characteristic chemical shifts due to both fragments. The Benzylic proton appeared at $\delta 5.18 \mathrm{ppm}$ as doublet integrating for one proton. Rest of the protons had expected chemical shifts. The ${ }^{13} \mathrm{C}$ NMR spectrum further established the assigned structure of 123 In addition, the mass spectral analysis showed the molecular ion peak at $m / z 777.48$ for $[\mathrm{M}+\mathrm{Na}]^{+}$. The OTMS derivative was very unstable in nature and immediately converts into hydroxy aldol adduct even in CDCl_{3}, or mild acidic conditions.

123

Amongest the five stereocenters, in the aldol product- 122, the 12-hydroxy with S configuration is carried forward from the D-Glucose. The $10 S$-Methyl and $11 R$-OH created by the regioselective opening of epoxide and remaining two chiral centers ($14 S$ Methyl, $15 R-\mathrm{OH}$) generated by Evans' anti aldol reaction.

Our next target was to generate the required methyl group at $\mathrm{C}-14$ position of key fragment of Herbimycin A. To achieve this, at first the oxazolidinone moiety was reductively removed by using 2 M lithiumborohydride in THF and Evans' anti aldol adduct 123 was taken in a mixture of solvents (ether: methanol in a 10:0.4 ratio) to afford diol 124 as a sole product (Scheme 36). ${ }^{120}$ The product was confirmed by its ${ }^{1} \mathrm{H}$ NMR in which appearance of new methylene protons at $\delta 3.55 \mathrm{ppm}$ as a doublet integrating for two protons accounts for the $-\mathrm{CH}_{2} \mathrm{OH}$ group. The signal at at $\delta 71.25 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR spectrum was further confirmed the structure of 124.

Scheme 37

Once the reductive removal of Oxazolidinone afforded the primary alcohol 124. next objective was the deoxygenation of this primary alcohol, which would provide us the required Me-group. To achieve this target, we protected the primary OH group of Diol 124 as its Tosyl ether using $p-\mathrm{TsCl}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature which furnished the tosylate 125 in 78% yield. 125 was characterirised by the ${ }^{1} \mathrm{H}$ NMR spectrum; a signal at $\delta 2.40 \mathrm{ppm}$ due to $-\mathrm{CH}_{3}$ group and two $\mathrm{A}_{2} \mathrm{~B}_{2}$ doublets at $\delta 7.16$ and 7.67 ppm confirmed the presence of p-toluene sulphonyl group. The tosylate 125 was refluxed with NaI in mono-glyme for 2 h to afford the iodo derivative 126 which was confirmed with the help of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. For instance, the ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of up field peak at δ 1.99-2.13 ppm for methylene group. In the ${ }^{13} \mathrm{C}$ NMR spectrum showed new peak at $\delta 10.81 \mathrm{ppm}$ indicates it's formation. The iodo derivative 126 was exposed to $10 \% \mathrm{Pd} / \mathrm{C}$ and Boc anhydride in MeOH at 2 psi of hydrogen gas to afford product 127 with the desired Me-group at $\mathrm{C}-14$, and the reduction of the NO_{2} group on phenyl ring to the amine followed by protection (Scheme 37). The ${ }^{1}$ H NMR spectrum of 127 showed new doublet signal at up field region of the spectrum at $\delta 0.86 \mathrm{ppm}$ due to the newly generated Me-group integrating for three protons, at $\delta 1.53$ ppm integrating for nine protons represents Boc group, along with broad singlet at $\delta 6.89$ ppm was attributed to $\mathrm{N}-\mathrm{H}$ proton. In the ${ }^{13} \mathbf{C}$ NMR spectrum appearance of peak at δ
14.66 ppm for methyl carbon and a new peak due to Boc methyl carbon resonance at δ 28.32 ppm indicates it's formation. In addition, the mass spectral analysis showed molecular ion peak at $m / z 658.64[\mathrm{M}+\mathrm{Na}]^{+}$gave additional support for product 127. The spectroscopic and elemental data confirmed the structure of $127 .{ }^{121}$

Our next target was converting Int-127 to Vassela-Bernet precursor. To achieve this, we tried the deprotection of primary benzyl group of 127 by using $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH at 60 psi which afforded primary alcohol $\mathbf{1 2 8}$ with very low yield. Several other unidentified side products formed during the reaction. Unfortunately to our destiny, Other debenzylation methods like Raney Ni mediated reaction were also unsuccessful leading to decomposition of starting material.

To overcome this critical manipulation step at an advanced stage of the synthesis, we redesign our strategy by changing the protecting group from benzyl to other easily removable protecting groups like TBS in the early stage. The Bn-group of 101 were deprotected using strong Lewis acid like TiCl_{4} in dichloromethane at $0{ }^{\circ} \mathrm{C}$ which afforded dioloxazolidinone derivative 129. ${ }^{122}$ The structure of 129 was confirmed by its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, in which appearance of only five protons in the aromatic region corresponding to oxazolidinone phenyl moiety. The primary OH group of 129 was selectively protected as its tosylate derivative $\mathbf{1 3 0}$ by using p- TsCl and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
at room temperature, $\mathbf{1 3 0}$ was confirmed from its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral anlysis. The free hydroxyl group present in monotosyl derivative 130 was then converted into the corressponding TBS ether with TBS-Cl and Imidazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ to furnish 131. The ${ }^{1} \mathrm{H}$ NMR spectrum of 131 showed the characteristic peaks of TBS group with the expected values. Refluxing tosyl derivative 131 with NaI in glyme for 2 h afforded iodoproduct 132 which was confirmed from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Scheme 38). The ${ }^{1} \mathrm{H}$ NMR spectrum showed peaks in up field region of the spectrum at $\delta 2.76 \mathrm{ppm}$ and 3.02 ppm as a doublet of doublet integrating for two protons attributed to methylene group and all other protons signals appeared at their respective chemical shift values. In the ${ }^{13} \mathrm{C}$ NMR spectrum appearance of peak at $\delta 9.82 \mathrm{ppm}$ further confirmed the structure of 132 .

We attempted the preparation of $\mathbf{1 3 4}$ following 2 routes. First, OTs derivative-131 was coupled with aldehydes $\mathbf{1 0 2}$ under Evan's Anti aldol conditions in the presence of anhydrous $\mathrm{MgCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$ and TMSCl in dry EtoAc to afford the aldol adduct $\mathbf{1 3 3}$ as its TMS ether 133, as a single isomer with excellent yield (Scheme 39). The OTMS aldol adduct 133 was confirmed by extensive ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral analysis. The aldol adduct showed presence of characteristic benzylic hydroxyl group protected as TMS ether, which were appeared as a singlet at $\delta 0.01 \mathrm{ppm}$ integrating for nine protons. Other significant peak due to benzylic proton resonated at $\delta 5.62 \mathrm{ppm}$ integrating one proton and appearance of new peak at $\delta 2.26 \mathrm{ppm}$ as a doublet of doublet integrating one proton
was confirmed the structure of 133. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the benzylic carbon resonances at $\delta 80.69 \mathrm{ppm}$ and appearance of new peak at $\delta 42.88 \mathrm{ppm}$ gave strong support for aldol adduct and other spectroscopic data were in good agreement with the assigned values. In addition, the mass spectral analysis showed a molecular ion peak at $m / z 938.82[\mathrm{M}+\mathrm{Na}]^{+}$further support for that observation. The tosyl group of 133 converted to its iododerivative by refluxing with NaI in glyme for 2 h to afford iodoproduct 134. The structure of the iodoproduct 134 confirmed by it's ${ }^{1} \mathrm{H}$ NMR spectrum, in which a signal due to methylene appeared at $\delta 2.59$ and 3.13 ppm and all other proton signals appeared at their respective chemical shift values. The alternative approach was coupling of iododerivative-132 with aldehydes-102 under the same-anti Evan's aldol condition also afforded us the product-134. It's spectroscopic and elemental analysis data exactly matched with the data of 134 which was prepared by the earlier method (Scheme 39).

Our next aim was the reductive cleavage of iodoproduct 134 under VasselaBernet reaction conditions ${ }^{123}$ to reach our target of getting Key fragment (C8-N22) of Herbimycin A.

A BRIEF INTRODUTION TO VASELLAR REACTION:

The area of complex natural products synthesis demands for new synthetic methods with economical and high yield. Vassela-Bernet reaction was one of the good method for preparing olefinic carbonyl compounds by using very cheaper and less toxic zinc metal on the haloderivative of carbohydrate moieties. ${ }^{123}$ The reaction proceeds through the reductive cleavage of carbohydrate based haloderivatives which was first observed by Vassela. These olefinic carbonyl intermediates were very useful for construction of carbasugars, ${ }^{124}$ fused heterocyclised products by cycloaddition, ${ }^{123}$ barbier reaction on carbonyl group leading to olefins useful for RCM, enyne metathesis ${ }^{125}$ and synthesis of other compounds ${ }^{126}$.

Figure 10: General strategy for Vasella reaction

Even though the Vassela-Bernet reactions usually results in olefinic carbonyl compounds, In our present strategy we planned to utilize this reaction for arriving at the chiral hydroxy olefinic intermediate which can be transformed into Key fragment of the Herbimycin A. it successful, this would be the first case for this type of transformation using the vassela-Bernet reaction.

Figure 11: Our modification for Vasella reaction

Subjecting, our advanced iodo-intermediate 134 to vasellar reaction by treating with $\mathrm{Zn} / \mathrm{NH}_{4} \mathrm{Cl}$ in MeOH , unfortunately resulted in complete decomposition of the starting material (Scheme 40). This results drawn our attention towards finding out the factors responsible for the decomposition of Evan's anti aldol adduct 134 under vasselaBernet reaction condition.

Figure 12: lodoaldol adduct
Careful analysis of aldol adduct 134 reveals that three groups namely the iodo group on the carbohydrate moiety, the nitro group on the aromatic ring and the oxazolidinone moiety are in antiperiplanar position to each other. These 3 groups in the
same molecule could be responsible for decomposition. Also, the nitro group on the aryl moiety underwent reduction leading to amino group and further decomposition.

Accordingly, we planned to do controlled experiments to test the compatibility of int-134; following our new strategy we planned to reduce the nitro group prior to the Vassela-Bernet reaction.

Scheme 41

140

According to our new strategy, we prepared the di-TBS protected oxazolidinone 137 from diol 129 using TBS-Cl and Imidazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 137 showed the characteristic peaks for two TBS groups and rest of the spectral data were in good agreement with excepted values. Under standard Evans anti aldol reaction conditions these two synthons 137 and aryl aldehyde 102 were coupled which afforded Evan's anti aldoladducts, 138 (TMS ether) and free hydroxyl compound 139 as single isomer [OTMS: OH in a 1:1 ratio] (Scheme 41). The structures of Evans' antialdol adducts were confirmed by extensive study of spectral data and other analytical analysis. For instance, the characteristic benzylic proton appeared as doublet at $\delta 5.40$ ppm integrating for one proton, observation of new peak at $\delta 2.31 \mathrm{ppm}$ as a doublet of doublet integrating for one proton. Rest of the proton signals appeared at their respective chemical shift values. The di-TBS Evans adduct 138 was exposed to activated zinc, catalytic $\mathrm{NH}_{4} \mathrm{Cl}$ in dry MeOH to afford a very low percentage of 140 along with unidentified materials. Similar results were observed by treating 138 with $10 \% \mathrm{Pd} / \mathrm{C}$ in
methanol at 2 psi hydrogen atm. These results indicated that the nitro group present in the aromatic moiety may be responsible for the decomposition of aldol adducts.

When iodo derivative 132 was treated with activated Zn and catalytic $\mathrm{NH}_{4} \mathrm{Cl}$ in MeOH , with in 0.5 hr the starting material was disappeared and a new compound was formed which converted into another product under prolonged reaction condition. The unstable intermediate was isolated and characterized and all the spectral data supported structure of the intermediate 141.

Scheme 42

For instance, the ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic olefinic protons deshielded and appeared at $\delta 5.02-5.06,5.72-5.79 \mathrm{ppm}$ as multiplets integrating for three protons. all other proton signals appeared at their respective chemical shift values. The characteristic resonances at $\delta 115.12,139.89 \mathrm{ppm}$ were due to olefinic carbons observed in the ${ }^{13} \mathrm{C}$ NMR spectrum. In the mass spectral analysis showed a molecular ion peak at $m / z 484.64[\mathrm{M}+\mathrm{Na}]^{+}$and other analytical data was supporting the structure of hydroxyl olefine 141. This hydroxy olefinic intermediate 141 readily undergoes transformation into a stable product which was characterized to be 142. All the spectral data supported the assigned structure. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 142 , the peaks due to oxazolidinone were departed and significant olefinic protons were appeared at $\delta 4.91-4.98$ and 5.63 ppm in the down field region of spectrum. The peaks at $\delta 115.17$ and 139.93 ppm were due to olefinic carbons in the ${ }^{13} \mathrm{C}$ NMR spectrum was observed. The IR absorption at $1640,1776 \mathrm{~cm}^{-1}$ were attributed to lactone carbonyl functionality of 142 . Mass spectral analysis showed a molecular ion peak at $m / z 307.64$ for $[\mathrm{M}+\mathrm{Na}]^{+}$gave additional support for lactone $\mathbf{1 4 2}$ formation.

All these results from the controlled experiments indicated that under VasselaBernet condition, in the presence of the oxazolidinone moiety the substrate under goes reductive cleavage leading to lactone formation.

To confirm the role of the NO_{2} group (on the phenyl ring) in this kind of decomposition, we planned to keep a Bromo group instead of the NO_{2} group and then try the vassela reaction. Accordingly, bromo-aldehyde 144 was prepared as shown in (scheme 43) following literature procedure. ${ }^{13}$

Scheme 43

2-hydroxy-5-methoxy benzaldehyde 120 was converted its bromo derivative using $\mathrm{Br}_{2} / \mathrm{AcOH}$ to afford 143 which was methylated using $\mathrm{DMS} / \mathrm{KOH}$ to furnish 144 (Scheme 43). The structure of 3-bromo-2, 5-dimethoxybenzaldehyde was confirmed by comparing its spectral and other analytical data with reported one. ${ }^{13}$

Scheme 44

132

$145 \mathrm{R}=\mathrm{TMS}$,
$146 \mathrm{R}=\mathrm{H}$

Coupling of 132 and aldehydes 144 under Evan's anti aldol condition proceeded satisfactorily to afford the coupled adduct 145, 146 (Scheme 44). The structures of Evans' anti aldol adducts were confirmed by extensive study of speactral data and other analytical data.

When Iodo-adduct 146 was subjected to Vassela-Bernet reaction by treating with $\mathrm{Zn} / \mathrm{NH}_{4} \mathrm{Cl}$ in MeOH again similar results are observed and we could isolate the unstable hydroxyl olefinic intermediate 147 along with the more stable reductive cleavage biproduct lactone-148.

Scheme 45

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR and elemental analysis supported the structure of 147. For instance, the ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic olefinic protons deshielded and appeared at $\delta 4.9-5.07,5.61-5.68 \mathrm{ppm}$ as a multiplets integrating for three protons. all other proton signals appeared at their respective chemical shift values. The characteristic resonance at $\delta 115.83,142.51 \mathrm{ppm}$ were due to olefinic carbons was observed in the ${ }^{13} \mathrm{C}$ NMR spectrum. The IR absorption at $1599 \mathrm{~cm}^{-1}$ was attributed to olefin functionality of 147. In the mass spectral analysis showed a molecular ion peak at $\mathrm{m} / \mathrm{z} 801.72$ for $[\mathrm{M}+\mathrm{Na}]^{+}$and other analytical data was supporting the Olefinic product 147 (Scheme 45).

Figure 13: Revised lodoaldol adduct
From the above controlled experiments we concluded that: the oxazolidinone moiety has to be removed and the C14 methyl group has to be created prior to the Vassela-Bernet reaction which should be carried out at the end of the synthetic sequence.

We replaced the NO_{2} group of aryl moiety to the Bromo group due to its sustainability in the above controlled experiments.

Scheme 46

137

144

$149 \mathrm{R}^{\prime}=\mathrm{TBS}, \mathrm{R}=\mathrm{TMS}$,
$150 R^{\prime}=T B S, R=T M S$,
150a R' $=O H, \quad R=T M S$,

Figure13a: Crystal structure of Evan's anti aldol adduct 150a

Accordingly, oxazolidinone 137 was coupled with aldehyde 144 under standard Evan's anti aldol condition to provide the adducts 149 (TMS ether) and $150(\mathrm{OH})$. The Evan's anti aldol adducts OTMS ether derivative 149, and free hydroxyl compound 150 was obtained as a single isomer [(light yellow color liquid), $\mathbf{1 4 9}$ (OTMS) : $\mathbf{1 5 0}(\mathrm{OH})$: 150a in a 1:1: 0.1 ratio)] (Scheme 46). The spectroscopic data were in good agreement with the assigned values.

Scheme 47

The oxazolidinone was reductively removed by using lithiumborohydride to afford primary alcohol 151 . The spectroscopic data of 151 were in good agreement with the assigned structure (Scheme 47). The primary OH of diol 151 was then selectively protected as its Tosyl ether using p-TsCl and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature which furnished the tosylate derivative 152. The tosyl derivative 152 was refluxed with NaI in glyme for 2 h to afford iododerivative 153 which was confirmed from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the methylene proton was in shielded and appeared in the up field region of the spectrum at $\delta 3.38 \mathrm{ppm}$ integrating two protons and all other proton signals appeared at their respective chemical shift values. In the ${ }^{13} \mathrm{C}$ NMR spectrum a methylene carbon resonances at $\delta 11.42 \mathrm{ppm}$ was further confirmed the structure of 153.

Our next target was the reduction of iodo group of 153 which would afford the Me-derivative 154. this transformation was successfully accomplished using $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH at 2 psi H_{2} atm with in 30 mins which afforded 154 with out disturbing the Bromo group on the phenyl ring. It's ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and other analytical data supported the structure of 154 . In the ${ }^{1} \mathrm{H}$ NMR spectrum of 154 , the new methyl group protons were shielded and appeared as doublet at $\delta 0.71 \mathrm{ppm}$ integrating for three protons and all other proton signals appeared at their expected chemical shifts. The TBS groups of 154
was removed by treating with TBAF in THF at rt to afford 155 (Scheme 47). The structure of the 155 was confirmed by it's ${ }^{1} \mathrm{H}$ NMR spectrum in which the peaks due to TBS groups were departed.

After having advanced key intermediate 155 with all the stereocenters with appropriate substituents, we went ahead and converted alcohol 155 into the desired iodosubstrate 100 as described below (Scheme-48) to try the critical Vassela-Bernet reaction which would provide us the Key Fragment (C8-C21) of Herbimycin A.
Scheme 48

The primary hydroxyl group of triol 155 was selectively protected as its TBS ether 156 using TBSCl followed by protection of the two hydroxyl groups as their methyl ether derivatives 157, which showed the appearence of characteristic TBS group peaks, two methoxy protons resonanced at $\delta 3.24,3.36 \mathrm{ppm}$ as singlets integrating for six protons in the ${ }^{1} \mathrm{H}$ NMR spectrum confirming the structure of 157. Deprotection of TBS group of 157 was achieved by using TBAF in THF resulted in clean convertion to primary hydroxyl product 158 , which was converted into tosylate 159 whose structure was confirmed from the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and Mass spectral analysis. The tosyl derivative 159 was converted into iodo derivative 100 by refluxing with NaI in glyme for 2 h ; the structure of $\mathbf{1 0 0}$ was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral studies. For instance, the ${ }^{1} \mathrm{H}$ NMR spectrum showed the appearene of a doublet in the up field region
of specturm at δ 1.99-2.12 ppm for methylene group. In the ${ }^{13} \mathbf{C}$ NMR spectrum showed resonances at $\delta 9.42 \mathrm{ppm}$ due to methelene carbon further confirmed the product $\mathbf{1 0 0}$.

Having 100 in hand, the stage was set for Vassela-Bernet reaction, which would complete our synthetic campaign and would give us the Key fragment of Herbimycin-A.

Scheme 49

To our ought most satisfication, 100 under standard Vassela condition using $\mathrm{Zn} / \mathrm{NH}_{4} \mathrm{Cl}$ in MeOH afforded us the expected and desired hydroxyl olefin- $\mathbf{1 6 0}$ with excellent yield. (Scheme 49). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR and other analytical data supported the structure of $\mathbf{1 6 0}$. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the characteristic olefinic protons in a deshielded region and appeared as multiplets at $\delta 4.99$ and 5.75 ppm . The rest of the protons were identified at their appropriate positions. In the ${ }^{13} \mathrm{C}$ NMR spectrum characteristic olefinic carbons resonance at $\delta 114.3,141.41 \mathrm{ppm}$ further supported the assigned the structure of $\mathbf{1 6 0}$. In the $I R$, absorption at $1599 \mathrm{~cm}^{-1}$ was attributed to olefinic functionality of $\mathbf{1 6 0}$. The mass spectral analysis showed a molecular ion peak at $m / z 455.26$ for $[\mathrm{M}+\mathrm{Na}]^{+}$and other analytical data was supporting the structure of key fragment 160. The free hydroxyl group present in 160 was then converted into as the corresponding methyl ether 98 by using NaH and MeI in DMF. The ${ }^{1} \mathrm{H}$ NMR spectrum, in which singlet at 3.32 ppm due to methoxy group were localized and rest of the protons had expected chemical shifts. The ${ }^{13} \mathrm{C}$ NMR spectrum further established the assigned structure of $\mathbf{9 8}$.

In conclusion, we have successfully synthesized the C8 to N22 of Herbimycin A includes Evan's anti aldol reaction for construction of C14-Methyl, C-15 Hydroxy group and utilizing Vassela-Bernet reaction for constration of key fragment of Herbimycin A.

EXPERIMENTAL

(1R)-2-(Benzyloxy)-1-((6S,6aR)-2,2-dimethyl-6-(tosyloxy)tetrahydrofuro[2,3-d][1,3]dioxol-5-yl)ethyl 4-methylbenzenesulfonate(111)

To a solution of the monobenzyl compound $\mathbf{1 1 0}(10 \mathrm{~g}, 32.2 \mathrm{mmol})$ in anhydrous pyridine (25 mL) at $0-5^{\circ} \mathrm{C}, p-\mathrm{TSCl}(11.77 \mathrm{~g}, 80.6 \mathrm{mmol})$ was slowly added over 2 -h slowly. The mixture was stored for 3 days at room temperature. excess pyridine was removed by distillation to give thick residue, washed with water, and the solution partitioned between dichloromethane and water. The organic layer was washed with brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel by using EtOAc-hexane (1:6) to give as a colourless liquid 111 ($17.5 \mathrm{~g}, 88 \%$). $\mathrm{R}_{f} 0.5$ (35% ethyl acetate/hexane).

$$
\begin{aligned}
& \text { Mol. Formula } \quad: \mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{10} \mathrm{~S}_{2} \\
& {[\alpha]_{D}{ }^{25}} \\
& \text { : -9.15 (} c=1.0, \mathrm{CHCl}_{3} \text {) } \\
& \text { IR (} \left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,1020.1215,1719,3020,3436 \mathrm{~cm}^{-1} \\
& { }^{1} \mathbf{H} \text { NMR }: \delta 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.58 \\
& \left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad(\mathrm{s}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{dd}, J=2.5,5.9, \mathrm{~Hz} \text {, } \\
& 1 \mathrm{H}), 4.79(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d} \text {, } \\
& J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.34(\mathrm{~d}, J=8.03 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\
& 7.71 \text { (d, } J=8.03 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.03 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} \text {. } \\
& { }^{13} \text { C NMR } \quad: \delta 21.42\left(\mathrm{q}, \mathrm{Ts}^{2}-\mathrm{CH}_{3}\right), 26.13\left(\mathrm{q}, \mathrm{Ts}^{2}-\mathrm{CH}_{3}\right), 26.38\left(\mathrm{q}, \mathrm{CH}_{3}\right) \text {, } \\
& \text { (} 125 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {) } 67.81\left(\mathrm{t}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 72.55\left(\mathrm{t}, \mathrm{CH}_{2}\right), 76.68(\mathrm{~d}, \mathrm{CH}), 77.19(\mathrm{~d} \text {, } \\
& \text { CH), } 80.68 \text { (d, CH), } 82.06 \text { (d, CH), } 104.13 \text { (d, CH), } 112.47 \text { (} \mathrm{s} \text {, } \\
& \text { C), } 127.04 \text { (d, CH), } 127.71 \text { (d, CH), } 127.97 \text { (d, CH), } 129.28 \text { (d, } \\
& \text { CH), } 129.89 \text { (d, CH), } 132.37 \text { (} \mathrm{s}, \mathrm{C} \text {), } 134.16 \text { (} \mathrm{s}, \mathrm{C}), 137.56 \text { (} \mathrm{s} \text {, } \\
& \text { C), } 144.28 \text { (} \mathrm{s}, \mathrm{C} \text {), } 145.34 \text { (} \mathrm{s}, \mathrm{C} \text {) ppm. } \\
& \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \quad: 641.60[\mathrm{M}+\mathrm{Na}]^{+} \text {. } \\
& \text { Elemental Analysis Calcd.: C, 58.24; H, 5.54; S, } 10.37 \text { \% } \\
& \text { Found: C, 58.25; H, 5.56; S, } 10.39 \text { \% }
\end{aligned}
$$

(2R, 3S, 4R, 5S)-5-((Benzyloxy)methyl)-tetrahydro-4-
hydroxy-2-(dimethoxymethyl)furan-3-yl4methylbenzenesulfonate (108).

To a solution of the ditosylcompound $\mathbf{1 1 1}(17 \mathrm{~g})$ in anhydrous methanol at 0$5^{\circ}, 5 \mathrm{~mL}$ acetyl chloride was slowly added over a 30 min period. The mixture was refluxed for 3 days. Methanol was removed under reduced pressure to give thick residue (108), which was proceed for next step with out purification. $\mathrm{R}_{f} 0.33$ (25% ethyl acetate/hexane).

Mol. Formula	: $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{~S}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: $+10.18\left(c=2.9, \mathrm{CHCl}_{3}\right)$
IR (CHCl_{3}) v	: 667, 1020.1216, 1633, $3390 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR	$: \delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{t}, \mathrm{J}=4.3$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$\begin{aligned} & \mathrm{Hz}, 2 \mathrm{H}), 4.29-4.38(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{~d}, J=7.2,2 \mathrm{H}), 4.58(\mathrm{~d}, J= \\ & 4.33,2 \mathrm{H}), 4.88(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.85 \\ & (\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR	$: \delta 20.86\left(\mathrm{q},{\left.\mathrm{Ts}-\mathrm{CH}_{3}\right), 51.94\left(\mathrm{q}, \mathrm{CH}_{3}\right), 53.88\left(\mathrm{q}, \mathrm{CH}_{3}\right), 67.79(\mathrm{t}, ~}_{\text {, }}\right.$
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	CH_{2}), $73.08\left(\mathrm{t}, \mathrm{CH}_{2}\right), 76.36(\mathrm{~d}, \mathrm{CH}), 77.07(\mathrm{~d}, \mathrm{CH}), 77.90(\mathrm{~d}$, CH), 84.48 (d, CH), 100.51 (d, CH), 127.01 ($\mathrm{s}, \mathrm{C}), 127.15$ (d, CH), 127.73 (d, CH), 129.12 (d, CH), 132.53 (s, C), 136.43 (s , C), 144.38 (s, C) ppm.
ESI-MS (m / z)	: $475.25[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 58.39; H, 6.24; S, 7.09 \%
Found: C, 58.40; H, 6.26; S, 7.08 \%

1R, 2S, 4R, 5R)-2-((Benzyloxy)methyl)-4-(dimethoxymethyl)-3,6-dioxa-bicyclo[3.1.0]hexane (112).

To a freshly prepared solution of sodium methoxide ($0.62 \mathrm{~g}, 26.1 \mathrm{mmol}$) in methanol (to a anhydrous solution of methanol at $0^{\circ} \mathrm{C}$ add pinchs of sodium were added carefully and maintained same temperature until it dissolve), at $0-5^{\circ} \mathrm{C}$
compound $\mathbf{1 0 8}(12 \mathrm{~g}, 26.5 \mathrm{mmol})$ in methanol solution was added slowly over an 45 min. after completion of reaction ice was added slowly and remove methanol under reduced pressure to afford residue which was partitioned between EtOAc and water. The organic layer was washed with brine, dried, and concentrated. The residue was purified on silica gel by eluting with EtOAc-hexane (1:7) to give epoxide (112) (7.1 $\mathrm{g}, 96 \%$) as a syrup. $\mathrm{R}_{f} 0.5$ (25% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+54.83\left(c=2.8, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,1089.1216,1719,3018,3436 \mathrm{~cm}^{-1}$
${ }^{1}{ }^{1}$ N NMR $\quad: \delta 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{q}$,
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.05(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.16-7.26 (m, 5H) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 55.44(\mathrm{~d}, \mathrm{CH}), 56.74\left(\mathrm{q}, \mathrm{CH}_{3}\right), 56.94\left(\mathrm{q}, \mathrm{CH}_{3}\right), 68.62(\mathrm{t}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{2}\right), 73.52\left(\mathrm{t}, \mathrm{CH}_{2}\right), 76.65(\mathrm{~d}, \mathrm{CH}), 78.05(\mathrm{~d}, \mathrm{CH}), 104.97(\mathrm{~d}$, $\mathrm{CH}), 127.73(\mathrm{~d}, \mathrm{C}), 128.33(\mathrm{~d}, \mathrm{CH}), 137.88(\mathrm{~s}, \mathrm{C}) \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 303.39[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 64.27; H, 7.19 \%
Found: C, 64.30; H, 7.22 \%
(2R, 3R, 4R, 5R)-5-((Benzyloxy)methyl)-tetrahydro-2-(dimethoxymethyl)-4-methylfuran-3-ol (113).

A solution of $3 \mathrm{M} \mathrm{CH} 3{ }_{3} \mathrm{MgCl}$ in THF ($121 \mathrm{~mL}, 364 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{CuCN}(1.1 \mathrm{~g}, \mathrm{~m} . \mathrm{mol})$ in a 45 mL of dry THF under argon at $0^{\circ} \mathrm{C}$. After calu. 10 min a clear yellow solution was obtained. This was stirred and a solution of epoxide $112(8.5 \mathrm{~g}, 30.35 \mathrm{mmol})$ in 7 mL of dry THF was slowly added, and the evolution of gas was noted during this addition. The solution was warmed to $20^{\circ} \mathrm{C}$ and stirred for 3 h , and then 10 mL of 5% water in THF was slowly added at $0^{\circ} \mathrm{C}$, followed by 10 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was partitioned between 50 mL of water and 70 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was washed with 5% aqeous NaHCO_{3}, dried and concentrated. The residue was purified by filtered through
silica gel EtOAc-hexane (1:5) to give 113 ($7.2 \mathrm{~g}, 80 \%$), $\mathrm{R}_{f} 0.33$ (30% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+12.64\left(c=3.4, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{3}\right) v \quad: 667,1027.1216,1275,1475,1721,3016,3417 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{brs}$ $\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad, \mathrm{OH}\right), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{qd}, J=3.16,10.5 \mathrm{~Hz}$, 2 H), $3.76-3.83(\mathrm{~m}, 3 \mathrm{H}), 4.34(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{q}, J=$ $12.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20-7.32 (m, 5H) ppm.
${ }^{13}$ C NMR $\quad: \delta 15.07\left(\mathrm{q}, \mathrm{CH}_{3}\right), 42.98(\mathrm{~d}, \mathrm{CH}), 53.92\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.70(\mathrm{q}$, ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) CH_{3}), $71.60\left(\mathrm{t}, \mathrm{CH}_{2}\right), 73.41\left(\mathrm{t}, \mathrm{CH}_{2}\right), 77.63(\mathrm{~d}, \mathrm{CH}), 82.94(\mathrm{~d}$, CH), 83.70 (d, CH), 105.62 (d, CH), 127.57 (s, C), 128.30 (s, C), 137.99 (d, CH) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 319.47[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 64.84; H, 8.16\%
Found: C, 64.86; H, 8.17\%
(2R, 3R, 4S)-5-((Benzyloxy)methyl)-tetrahydro-2-(dimethoxymethyl)-4-methylfuran-3-yl acetate (114).

The epoxide opened product $113(100 \mathrm{mg}, 0.3 \mathrm{mmol})$ was dissolved in acetic anhydride (5 mL) and pyridine (2 mL). This solution was stirred for overnight at room temperature. The excess pyridine was removed under reduced pressure, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel by eluting with EtOAc-hexane (1:6) to give acetate derivative 114 (98 mg , 86%) as a syrup. $\mathrm{R}_{f} 0.5$ (25% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-20.75\left(c=1.0, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 668, 712, 1071,1275, 1724, 2401,3020, $3439 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 1.1(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{q}, J=7.2 \mathrm{~Hz}$,
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1 \mathrm{H}\right), 3.43(\mathrm{~s}, 6 \mathrm{H}), 3.56(\mathrm{dd}, J=4.5,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{q}, J=$
$4.5,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{qt}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{qt}, J=5.41 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28-7.32 (m, 5H) ppm.
$\begin{array}{ll}{ }^{13} \mathbf{C} \text { NMR } & : \delta 14.97\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.08(\mathrm{~d}, \mathrm{CH}), 42.53(\mathrm{q}, \text { acetlyCH} 3), 54.72 \\ \left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) & \left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.79\left(\mathrm{q}, \mathrm{CH}_{3}\right), 70.77\left(\mathrm{t}, \mathrm{CH}_{2}\right), 73.46\left(\mathrm{t}, \mathrm{CH}_{2}\right), 80.74 \\ & (\mathrm{~d}, \mathrm{CH}), 81.91(\mathrm{~d}, \mathrm{CH}), 84.44(\mathrm{~d}, \mathrm{CH}), 104.94(\mathrm{~d}, \mathrm{CH}), 127.62 \\ & (\mathrm{~d}, \mathrm{CH}), 128.35(\mathrm{~d}, \mathrm{CH}), 138.29(\mathrm{~s}, \mathrm{CH}), 170.43(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{ppm} . \\ & \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \\ & : 361.16[\mathrm{M}]^{+} .\end{array}$
Elemental Analysis Calcd.: C, 63.89; H, 7.74 \%
Found: C, 63.91; H, 7.76 \%

2R, 3R, 4S, 5R)-3-(Benzyloxy)-5-((benzyloxy)methyl)-tetrahydro-2-(dimethoxymethyl)-4-methylfuran

 (115).

The epoxide opened product $113(8.2 \mathrm{~g}, 27.7 \mathrm{mmol})$ in dry DMF (30 mL) was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(60 \%$ dispersion in oil, $1.59 \mathrm{~g}, 69.1 \mathrm{mmol}$) was added portionwise at $0^{\circ} \mathrm{C}$. After 25 min , benzyl bromide $5.6 \mathrm{~g}(32.7 \mathrm{mmol})$ was added. After 3 h , the reaction mixture was worked up to give the residue, which was purified on silica gel by eluting with EtOAc-hexane (1:14) to give $\mathbf{1 1 5}$ ($9.8 \mathrm{~g}, 91 \%$) as a syrup. $\mathrm{R}_{f} 0.6$ (5% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5}$

$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+15.54\left(c=2.0, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 698, 713, 1075,1273, 1719, $29333436 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.18(\mathrm{q}, J=6.7,13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, J=4.92 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{dd}$, $J=5.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=6.7,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}$, 2H), 7.28-7.31 (m, 10H) ppm.
${ }^{13}$ C NMR $: \delta 15.50\left(\mathrm{q}, \mathrm{CH}_{3}\right), 43.08\left(\mathrm{q}, \mathrm{CH}_{3}\right), 54.76\left(\mathrm{q}, \mathrm{CH}_{3}\right), 56.23(\mathrm{q}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{OCH}_{3}\right), 71.33\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.98\left(\mathrm{t},{\left.\mathrm{Bn}-\mathrm{CH}_{2}\right), 73.36\left(\mathrm{t}, \mathrm{Bn}-\mathrm{CH}_{2}\right) \text {, }}^{2}\right.$ 83.43 (d, CH), 84.10 (d, CH), 86.71 (d, CH), 105.3 (d, CH), 127.41 (d, Bn-CH), 127.48 (d, Bn-CH), 127.75 (d, Bn-CH),
128.29 (d, Bn-CH), 138.34 (s, CH), 138.61 (s,)ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 409.45[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 71.48; H, 7.82 \%
Found: C, 71.51; H, 7.84 \%
(E)-Ethyl3-((2S,3R,4S,5R)-3-(benzyloxy)-5-((benzyloxy)methyl)-tetrahydro-4-methylfuran-2yl)acrylate (117).

A mixture of aldehydes $\mathbf{1 0 6}(0.56 \mathrm{~g}, 1.64 \mathrm{mmol})$ and two carbon stable wittig yielide were taken in toluene (10 mL) and refluxe for 3 h . The reaction mixture was concentrated to remove toluene to give yellow residue. Purification was done by using silica gel EtOAc-hexane (1:3) to give $117(0.52 \mathrm{~g}, 77 \%)$ as a liquid. $\mathrm{R}_{f} 0.63$ (10% ethyl acetate/hexane).

Mol. Formula	: $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5}$
$[\alpha]^{25}$: $+10.52\left(c=2.08, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v	: 668, 1026,1215, 1719, 2400, 3020, $3436 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.07$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.26,7.02 \mathrm{~Hz}, 3 \mathrm{H})$,
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	2.25 (dq, $J=6.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$
	(d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{dt}, J=3.6,8.26 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (q, $J=$
	$7.1,14.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.51$ (dd, $J=3.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (d, $J=1.8$
	$\mathrm{Hz}, 2 \mathrm{H}), 4.59$ (s, 2H), 6.07 (dd, $J=1.5,15.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$
	(dd, $J=5.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.34$ (m, 10H) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 14.05,60.47,61.44,63.15,72.11,72.65,73.41,78.69$,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$83.73,89.92,121.20,128.33,128.43,130.12,133.64,135.06$,
	146.37, 158.70, 170.91 ppm .
ESI-MS (m / z)	: $433.49[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis	Calcd.: C, 73.15; H, 7.37 \%
	Found: C, 73.17; H, 7.38 \%

Ester $118(0.3 \mathrm{~g}, 0.73 \mathrm{mmol})$ was taken in a mixture of dioxane and water $1: 1$ ($5 \mathrm{~mL}: 5 \mathrm{~mL}$) ratio anhydrous lithium hydroxide was added at $0^{\circ} \mathrm{C}$. After 1 h , completion of reaction, volatiles were removed by rotary evaporation. The water layer was extrated with 10 mL portions of ethylacetate (three times). The combined organic phase was dried over sodiumsulfate and concentrate. The resultant crude residue was filtered through silica gel EtOAc-hexane (2:1) to get $104(0.25 \mathrm{~g}, 89 \%)$ as a syrup. R_{f} 0.8 (75% ethyl acetate/hexane).

Mol. Formula	: $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: -3.65 ($\left.c=1.3, \mathrm{CHCl}_{3}\right)$
IR (CHCl_{3}) v	: 667, 1070, 1274, 1634, 1712, 3019, $3390 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	: $\delta 1.1(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{dt}, J=6.7,14.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.18$ (dq, $J=6.7,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 (dt, $J=8.3,15.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.41(\mathrm{t}, J=6.08 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=5.04 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{dq}, J$ $=3.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{qn}, J=3.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H})$, 4.58 (s, 2H), 7.28-7.31 (m, 10H) ppm.
${ }^{13} \mathrm{C} \text { NMR }$	
(125 MHz, CDCl_{3})	$\mathrm{CH}), 71.28\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.26\left(\mathrm{t}, \mathrm{CH}_{2}\right), 73.35\left(\mathrm{t}, \mathrm{CH}_{2}\right), 81.53(\mathrm{~d}$, $\mathrm{CH}), 83.06(\mathrm{~d}, \mathrm{CH}), 90.1(\mathrm{~d}, \mathrm{CH}), 127.65(\mathrm{~d}, \mathrm{CH}), 128.34(\mathrm{~d}$, CH), 138.2(s, C), 138.1(s), 178.6 (s,) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 407.47[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 71.85; H, 7.34 \%
Found: C, 71.86; H, 7.37 \%
(R)-4-Benzyl-3-(2-chloroacetyl)oxazolidin-2-one (119).

119
To a solution of Oxazolidinone $105(8.5 \mathrm{~g}, 48.02 \mathrm{mmol})$ in 40 mL of tetrahydrofuran at a $-78^{\circ} \mathrm{C}$ was added ($31 \mathrm{~mL}, 48.02 \mathrm{mmol}$, 1equiv, 1.6 M in hexane) n butyllithium, followed by $6.5 \mathrm{~g}(4.6 \mathrm{~mL}, 57.5 \mathrm{~m} . \mathrm{mol}, 1.2 \mathrm{equiv})$ of chloroccetyl chloride. The resulting bright yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , and then the cooling bath was removed. After 20 min , the reaction was quenched by the addition of 100 mL of saturated aqueous ammonium chloride solution and volatiles were removed by rotary evaporation. The residue was extrated with 20 mL portions of methylene chloride (three times). The combined organic phase was dried over sodiumsulfate and concentrate. The resulting dark yellow oil was filtered through silica gel EtOAc-hexane (1:14) to give $\mathbf{1 1 9}(10.6 \mathrm{~g}, 87 \%)$ as a syrup, which crystallized. $\mathrm{R}_{f} 0.33$ (25% ethyl acetate/hexane); mp $41-44^{\circ} \mathrm{C}$.
Mol. Formula $: \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClNO}_{3}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-44.61\left(c=1.45, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 755,1020,1216,1719,1781,3025,3401 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 2.82(\mathrm{dd}, J=9.48,13.39 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=3.28,13.39$
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{Hz}, 1 \mathrm{H}\right), 4.28(\mathrm{dd}, J=3.92,7.07 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{dt}, J=3.67$, $6.95 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 7.19-7.35(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta 37.03\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.58\left(\mathrm{t}, \mathrm{CH}_{2}\right), 54.95(\mathrm{~d}, \mathrm{CH}), 66.80(\mathrm{t}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{2} \mathrm{Cl}\right), 127.08(\mathrm{~d}, \mathrm{CH}), 128.6(\mathrm{~d}, \mathrm{CH}), 129.05(\mathrm{~d}, \mathrm{CH}), 134.5$ (s), 153.01 (s, CH), 165.7 (s,) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 276.21[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 56.81; H, 4.77; N, 5.52 \%
Found: C, 56.80; H, 4.79; N, 5.53 \%

Dimethyl2-((R)-4-benzyl-2-oxooxazolidin-3-yl)-2oxoethylphosphonate (107).

The compound $119(10.2 \mathrm{~g}, 40.31 \mathrm{mmol})$ was taken in a 12 mL of trimethoxyphosphite and refluxed for 3 h and after consumption of the starting material most of the trimethoxyphosphite was remove by distillation under reduced pressure to give residue. The resultant dark yellow residue was filtered through silica gel MeOH-DCM (1:12) to give 107 ($12.5 \mathrm{~g}, 95 \%$) as a syrup liquid. $\mathrm{R}_{f} 0.33$ (2% Methnaol/dichloromethane) .
Mol. Formula : $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{P}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-29.95\left(c=2.1, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right) v \quad: 756,1036,1216,1703,1782,2401,3018,3444 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 2.82(\mathrm{dd}, J=9.48,13.39 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=3.28,13.39$
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{app}$ sext, $J=13.8 \mathrm{~Hz}, 2 \mathrm{H}) 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.82$ ($\mathrm{s}, 3 \mathrm{H}$), $4.28(\mathrm{dd}, J=3.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.47 (dd, $J=3.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta 32.16\left(\mathrm{t}, \mathrm{CH}_{2}\right), 34.81\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.59\left(\mathrm{t}, \mathrm{CH}_{2}\right), 53.16(\mathrm{q}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 2 \mathrm{CH}_{3}\right), 55.43(\mathrm{~d}, \mathrm{CH}), 66.04\left(\mathrm{t}, \mathrm{CH}_{2}\right), 127.37(\mathrm{~d}, \mathrm{CH}), 128.96$ (d, CH), 134.99 (s), 153.32 ($\mathrm{s}, \mathrm{C}==\mathrm{O}$), 164.73 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 350.51[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 51.38; H, 5.54; N, 4.28 \%
Found: C, 51.39; H, 5.56; N, 4.26 \%
(S)-4-Benzyl-3-((E)-3-((2R, 3R, 4S, 5R)-3-
(benzyloxy)-5-((benzyloxy)methyl)-tetrahydro-4-methylfuran-2-yl)acryloyl)oxazolidin-2-one (116).

The oxazolidinonephosphate $107(7.5 \mathrm{~g}, 22.93 \mathrm{mmol})$ was added to a stirred solution of anhydrous lithium chloride ($0.998 \mathrm{~g}, 23.54 \mathrm{mmol}$) in dry acetonitrile in a flame dried two neck RBF. To this ethyldiisopropylamine ($2.5 \mathrm{~g}, 3.44 \mathrm{~mL}$, 19.35
$\mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. After 30min, aldehyde $\mathbf{1 0 6}(6.6 \mathrm{~g}, 19.35 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}$ was added slowly at $0^{\circ} \mathrm{C}$. After 1 h , ice water was added to the reaction mixture, extracted with ethylacetate (with 20 mL , three times), dried over sodiumsulfate and concentrate to get a crude residue, which on purification over silica gel column chromatography using EtOAc-hexane (1:5) to afford 116 ($9.2 \mathrm{~g}, 88 \%$) as a syrup. $\mathrm{R}_{f} 0.4$ (25% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{6}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-26.61\left(c=1.0, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 667, 1072, 1274, 1684, 1780, 2400, 3020, $3390 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 1.02(\mathrm{~d}, J=6.89 \mathrm{~Hz}, 3 \mathrm{H}), 2.22(\mathrm{dq}, J=6.8,13.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 2.73(\mathrm{dd}, J=9.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=3.5,13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.54 (d, $J=4.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.58 (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.8 (qn, $J=$ $4.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.3(\mathrm{~d}, J=4.31 \mathrm{~Hz}$, 1 H,$), 4.45$ (dd, $J=6.36,11.15 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.6(\mathrm{~m}$, 2 H), 7.12 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, $J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 11 \mathrm{H}), 7.35(\mathrm{dd}, J=1.6,15.4 \mathrm{~Hz}$, 1H) ppm.
${ }^{13}$ C NMR $: \delta 15.82\left(\mathrm{q}, \mathrm{CH}_{3}\right), 37.77\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.41(\mathrm{~d}, \mathrm{CH}), 55.29(\mathrm{~d}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}\right), 66.11\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.04\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 73.37(\mathrm{t}$, CH_{2}), 82.09 (d, CH), 83.72 (d, CH), 90.05 (d, CH), 120.43 (d, CH olefinic), 127.31(d, CH), 127.82(d, CH), 128.93(d, CH), $129.41(\mathrm{~d}, \mathrm{CH}), 135.25$ (s, C), 137.7 (s, C), 138.22 (s, C), 148.36 (d, CH olefinic), 153.13 (s, C), 164.7 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 564.45[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 73.18; H, 6.51; N, 2.59 \%
Found: C, 73.19; H, 6.54; N, 2.57 \%
(S)-3-(3-((2R, 3R, 4S, 5R)-3-(Benzyloxy)-5((benzyloxy)methyl)-tetrahydro-4-methylfuran-2-yl)propanoyl)-4-benzyloxazolidin-2-one (101).

The conjugated oxazolidinone $116(9.1 \mathrm{~g}, 40.31 \mathrm{mmol})$ taken in dry ethylacetate (500 mL) in hydrogenation flask was treated with $10 \% \mathrm{Pd} / \mathrm{C}$ under 60 psi
of hydrogen for 6 h . After completion of reaction the mixture was filtered through celite, concentrate to get residue which on purification over silica gel column chromatography using EtOAc-hexane (1:5) to afforded 101 ($7.2 \mathrm{~g}, 79 \%$)as a liquid. $\mathrm{R}_{f} 0.4$ (25% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{6}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-23.71\left(c=0.9, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v \quad: 667,1070,1273,1603,1713,1779,3019,3436 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.9-2.02(\mathrm{~m}, 2 \mathrm{H}),, 2.15(\mathrm{hept}, J=$
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 7.05,14.11 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.68(\mathrm{dd}, J=9.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dt}, J$ $=7.72,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dt}, J=7.72,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}$, $J=3.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (t, $J=5.86 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (dt, $J=$ $5.86,19.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{dq}, J=4.02,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01$ (ddd, $J=4.5,9.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, 4.55-4.57 (m, 4H), 4.60 (dt, $J=4.02,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.35$ (m, 13H) ppm.
${ }^{13}$ C NMR $\quad: \delta 16.71\left(\mathrm{q}, \mathrm{CH}_{3}\right), 28.62\left(\mathrm{t}, \mathrm{CH}_{2}\right), 32.02\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.96(\mathrm{t}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{2}\right), 42.73(\mathrm{~d}, \mathrm{CH}), 55.23(\mathrm{~d}, \mathrm{CH}), 66.04\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.69(\mathrm{t}$, CH_{2}), 72.19 (t, CH2), 73.37 ($\mathrm{t}, \mathrm{CH}_{2}$), $81.58(\mathrm{~d}, \mathrm{CH}), 82.95(\mathrm{~d}$, CH), 90.11 (d, CH), 127.66 (d, CH), 128.33 (d, CH), 128.93 (d, CH), 129.43 (d, CH), 135.49 (s), 138.21 (s), 153.35 (s), 172.91 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 567.65[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 72.91; H, 6.86; N, 2.58 \%
Found: C, 72.93; H, 6.88; N, 2.59 \%
(4R)-4-Benzyl-3-((2S,3R)-2-(((3R,4S,5R)-3-
(benzyloxy)-5-(benzyloxymethyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-(2,5-
dimethoxy-3-nitrophenyl)-3-
(trimethylsilyloxy)propanoyl)oxazolidin-2-one (122).

Aldol adduct :

The oxazolidinone derivative $\mathbf{1 0 1}(285 \mathrm{~g}, 0.52 \mathrm{mmol})$ was treated with $\mathrm{MgCl}_{2}(5 \mathrm{mg}, 0.052 \mathrm{mmol})$, triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde $102(132 \mathrm{mg}, 0.631 \mathrm{mmol})$ and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}$, $0.789 \mathrm{mmol})$ in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica ($2 \mathrm{~cm} \times 10 \mathrm{~cm}$) with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel (230-400) by eluting with EtOAC-hexane (1:12) to give TMS ether derivative 122 (38 mg), and free hydroxyl compound $\mathbf{1 2 3}(36 \mathrm{mg}$), as a single isomers with excellent yeild (light yellowcolor liquid).OTMS:OH in a 1:1 ratio $\mathrm{R}_{f} 0.2$: 0.5 (10% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Si}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-2.45\left(c=1.34, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,1053,1215,1620,1701,1774,2401,3019,3436 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.01(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.75 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{brs}, 1 \mathrm{H}), 1.55$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (dd, $\left.J=3.3,13.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.94$ (hex, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25
(ddd, $J=4.5,11.2,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=11.1,13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.47(\mathrm{~m}, 3 \mathrm{H}), 3.52(\mathrm{dt}, J=$ $3.1,6.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.83-3.86 (m, 1H), $3.89(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{q}, ~ J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.43$ (q, $J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.51-4.55(\mathrm{~m}, 1 \mathrm{H}), 5.44$ (appd, 1H), 7.10-7.35 (m, 17H) ppm.
${ }^{13}$ C NMR $\quad: \delta 0.07\left(\mathrm{q}, \mathrm{CH}_{3}\right), 15.75\left(\mathrm{q}, \mathrm{CH}_{3}\right), 29.63\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.13(\mathrm{t}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{2}\right), 41.80(\mathrm{~d}, \mathrm{CH}), 55.92\left(\mathrm{q}, \mathrm{CH}_{3}\right), 56.05\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.34(\mathrm{~d}$, $\mathrm{CH}), 65.70\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.20\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.76\left(\mathrm{t}, \mathrm{CH}_{2}\right), 73.34(\mathrm{t}$, CH_{2}), $79.55(\mathrm{~d}, \mathrm{CH}), 83.23(\mathrm{~d}, \mathrm{CH}), 87.97(\mathrm{~d}, \mathrm{CH}), 109.69(\mathrm{~d}$, CH), 119.76 (d, CH), 127.04 (d, CH), 127.25 (d, CH), 127.61 (d, CH), 128.31 (d, CH), 128.84 (d, CH), 129.35 (d, CH), 136.08 (s, C), 137.99 (s, C), 140.14 (s, C), 153.72 (s, C), 155.23 (s, C), 174.29 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 849.34[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 65.35; H, 6.58; N, 3.39 \%
Found: C, 65.38; H, 6.59; N, 3.43 \%
(4R)-4-Benzyl-3-((2S,3R)-2-(((3R,4S,5R)-3-
(benzyloxy)-5-(benzyloxymethyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-(2,5-
dimethoxy-3-nitrophenyl)-3-
hydroxypropanoyl)oxazolidin-2-one (123).

Mol. Formula : $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{11}$
$[\alpha]_{\mathrm{D}}{ }^{25}$
$:+2.62\left(c=2.3, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{3}\right) v$
: 668, 1052, 1216, 1620, 1700, 1774, 2926, $3449 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 0.97(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{dq}, J=$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\quad 3.01,5.7,14.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.60(\mathrm{~s}, 1 \mathrm{H}) 1.92$ (hex, $J=6.7 \mathrm{~Hz}$, 1 H), 2.24 (ddd, $J=4.2,9.7,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (dd, $J=9.3$, $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=3.01,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{t}, J=7.01$ $\mathrm{Hz}, 1 \mathrm{H}), 3.39-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.80(\mathrm{~m}, 2 \mathrm{H})$, 3.76 (dd, $J=6.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.31$ (q, $J=11.4$, $19.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{q}, \mathrm{J}=11.1,19.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.28(\mathrm{~m}, 17 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $: \delta 15.79\left(\mathrm{q}, \mathrm{CH}_{3}\right), 32.36\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.67\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.96(\mathrm{~d}$,
$\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}\right), 45.28(\mathrm{~d}, \mathrm{CH}), 55.92\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.99\left(\mathrm{q}, \mathrm{CH}_{3}\right), 63.31(\mathrm{~d}$, $\mathrm{CH}), 66.13\left(\mathrm{t}, \mathrm{CH}_{2}\right), 70.67(\mathrm{~d}, \mathrm{CH}), 72.15\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.70(\mathrm{t}$, CH_{2}), $73.43\left(\mathrm{t}, \mathrm{CH}_{2}\right), 79.58(\mathrm{~d}, \mathrm{CH}), 83.27(\mathrm{~d}, \mathrm{CH}), 88.57(\mathrm{~d}$, CH), 109.38 (d, CH), 118.79 (d, CH), 125.24 (d, CH), 127.17 (d, CH), 127.32 (d, CH), 127.63 (d, CH), 127.75 (d, CH), 128.17 (d, CH), 128.26 (d, CH), 128.36 (d, CH), 128.80 (d, CH), 128.98 (d, CH), 129.43 (d, CH), 135.36 ($\mathrm{s}, \mathrm{C}), 137.88$ (s , C), 139.33 (s, C), 143.64 (c, C), 144.96 (c, C), 154.41 (s, C), 155.31 (s, C), 174.93 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 777.48[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 66.83; H, 6.14; N, 3.71 \%
Found: C, 66.85; H, 6.16; N, $3.72 \quad$ \%
(1R,2R)-2-(((2S,3R,4S,5R)-3-(Benzyloxy)-5-((benzyloxy)methyl)-tetrahydro-4-methylfuran-2-yl)methyl)-1-(2,5-dimethoxy-3-nitrophenyl)propane-1,3-diol (124).

A mixture of the aldol adduct $123(220 \mathrm{mg}, 0.29 \mathrm{mmol}), 10 \mathrm{~mL}$ of drydiethylether and anhydrous methanol $(0.04 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$. Lithium borohydrate (2.0 M in THF, $0.51 \mathrm{~mL}, 1 \mathrm{~m} . \mathrm{mol}$) was added dropwise, and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with $15 \% \mathrm{NaOH}$ and then concentrated in vacuo. The aqueous layer was extracted with ether and the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by flash chromatography gave 124 ($105 \mathrm{mg}, 62 \%$) of diol. $\mathrm{R}_{f} 0.5$ (30% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{9}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+1.95\left(c=3.8, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{3}\right) v \quad: 668,1051,1216,1619,1752,2402,3019,3434 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{dd}, J=6.7,10.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1.81(\mathrm{ddd}, J=1.8,6.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ (hex, $J=6.8 \mathrm{~Hz}$, 1H), 2.86 (ddd, $J=5.75,9.5,23.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (brs, 1H), $3.37(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.75(\mathrm{dd}, J=4.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.11$ (dd, $J=5.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.13 (ddd, $J=2.5,5.5,12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{q}, ~ J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.54-4.60$ $(\mathrm{m}, 2 \mathrm{H}), 5.21(\mathrm{dd}, J=4.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 10 \mathrm{H}), 7.38(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta 16.38\left(\mathrm{q}, \mathrm{CH}_{3}\right), 32.65\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.00(\mathrm{~d}, \mathrm{CH}), 42.39(\mathrm{~d}$,
$\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{CH}\right), 55.77\left(\mathrm{q}, \mathrm{CH}_{3}\right), 62.63\left(\mathrm{q}, \mathrm{CH}_{3}\right), 62.70\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.16(\mathrm{~d}$, $\mathrm{CH}), 71.25\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.25\left(\mathrm{t}, \mathrm{CH}_{2}\right), 73.18\left(\mathrm{t}, \mathrm{CH}_{2}\right), 80.44(\mathrm{~d}$, CH), 82.71 (d, CH), 90.39 (d, CH), 108.46 (d, CH), 118.83 (d, CH), 127.47 (d, CH), 127.52 (d, CH), 127.59 (d, CH), 127.67 (d, CH), 127.81 (d, CH), 128.23 (d, CH), 128.29 (d, CH), 128.80 (d, CH), 128.83 (d, CH), 128.90 (d, CH), 137.86 (s, C),
140.67 (s, C), 143.43 (s, C), 144.01 (s, C), 155.10 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 604.53[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 66.08; H, 6.76; N, 2.41 \%
Found: C, 66.10; H, 6.79; N, 2.44\%
(2R,3R)-2-(((3R,4S,5R)-3-(Benzyloxy)-5-(benzyloxymethyl)-4-methyltetrahydrofuran-2-yl)methyl)-3-(2,5-dimethoxy-3-
nitrophenyl)-3-hydroxypropyl 4-
 methylbenzenesulfonate (125)

To a stirred solution of $\mathbf{1 2 4}(0.35 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.66 \mathrm{mmol})$ and DMAP (10 mg), in dichloromethane (30 mL) was added p-toluenesulfonyl chloride ($97 \mathrm{mg}, 0.66 \mathrm{mmol}$), at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h at room temperature, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel by using EtOAc-hexane (2:1) to afford monotosyl compound 125 ($0.345 \mathrm{mg}, 78 \%$)as a syrup. $\mathrm{R}_{f} 0.8$ (75% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{39} \mathrm{H}_{45} \mathrm{NO}_{11} \mathrm{~S}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+7.2\left(c=0.87, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right) v \quad: 666,755,1051,1216,1603,1746,3065,3376 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{ddd}, J=7.3,14.4,21.5 \mathrm{~Hz}$, $\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1 \mathrm{H}\right), 1.80(\mathrm{dd}, J=7.3,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{hex}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.67$ $(\mathrm{m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{dd}, J=3.5,9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15$ (dt, $J=5.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (s, 2H), 4.53 (q, $J=$ $11.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.16 (t, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.32 (brs, 1 H), $7.16-$ $7.38(\mathrm{~m}, 14 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$: \delta 16.28\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.51\left(\mathrm{q}, \mathrm{CH}_{3}\right), 31.84\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.32(\mathrm{~d}$, $\mathrm{CH}), 42.00(\mathrm{~d}, \mathrm{CH}), 53.68\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.89\left(\mathrm{q}, \mathrm{CH}_{3}\right), 62.53(\mathrm{~d}$, $\mathrm{CH}), 67.57\left(\mathrm{t}, \mathrm{CH}_{2}\right), 69.55\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.40\left(\mathrm{t}, \mathrm{CH}_{2}\right), 73.24(\mathrm{t}$, CH_{2}), $80.53(\mathrm{~d}, \mathrm{CH}), 82.85(\mathrm{~d}, \mathrm{CH}), 90.46(\mathrm{~d}, \mathrm{CH}), 109.05(\mathrm{~d}$, CH), 118.40 (d, CH), 127.16 (d, CH), 127.48 (d, CH), 127.68
(d, CH), 128.29 (d, CH), 128.92 (d, CH), 129.74 (d, CH), 132.59 (s, C), 135.91 (s, C), 137.98 (s, C), 139.43 ($\mathrm{s}, \mathrm{C})$, 143.40 ($\mathrm{s}, \mathrm{C}), 144.12$ (s, C), 144.78 ($\mathrm{s}, \mathrm{C}), 155.12$ ($\mathrm{s}, \mathrm{C})$, 159.19 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 758.66[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 63.66; H, 6.16; N, 1.90 \%
Found: C, 63.68; H, 6.19; N, 1.91 \%
(1R,2S)-3-((3R,4S,5R)-3-(Benzyloxy)-5-
((benzyloxy)methyl)-tetrahydro-4-methylfuran-2-yl)-2-(iodomethyl)-1-(2,5-dimethoxy-3-nitrophenyl)propan-1-ol (126).

A mixture of $125(0.325 \mathrm{~g}, 0.44 \mathrm{mmol})$ and $\mathrm{NaI}(790 \mathrm{mg}, 5.3 \mathrm{mmol})$ taken in a glyme was reflux for 2 h , after complition of reaction, glyme was removed under reduced pressure to get residue which was purified on silica gel by eluting with EtOAC-hexane (1:3) to give iododerivative $126(0.26 \mathrm{mg}, 85 \%)$ as a colorless liquid. $\mathrm{R}_{f} 0.4$ (25% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{32} \mathrm{H}_{38} \mathrm{INO}_{8}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-12.81\left(c=1.7, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 668, 1051, 1216, 1533, 1620, 1728, 3018, $3435 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{ddd}, J=7.1,10.7,18.7 \mathrm{~Hz}$,
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1 \mathrm{H}\right), 1.92(\mathrm{dd}, J=6.7,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (hex, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.11(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=2.5,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.37(\mathrm{dd}, J=6.1,10.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H})$, 3.66 (dt, $J=4.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (s, 3H), 4.01 (dt, $J=5.5,13.1,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.60(\mathrm{q}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34$ (m, 12H) ppm.
${ }^{13}$ C NMR $: \delta 10.81\left(\mathrm{t}, \mathrm{CH}_{2}\right), 16.22\left(\mathrm{q}, \mathrm{CH}_{3}\right), 35.50\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.07(\mathrm{~d}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}\right), 42.79(\mathrm{~d}, \mathrm{CH}), 55.99\left(\mathrm{q}, \mathrm{CH}_{3}\right), 62.77\left(\mathrm{q}, \mathrm{CH}_{3}\right), 69.61(\mathrm{~d}$, $\mathrm{CH}), 71.30\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.50\left(\mathrm{t}, \mathrm{CH}_{2}\right), 73.32\left(\mathrm{t}, \mathrm{CH}_{2}\right), 80.58(\mathrm{~d}$, CH), 82.92 (d, CH), 90.23 (d, CH), 109.11 (d, CH), 119.17 (d,

CH), 127.55 (d, CH), 127.63 (d, CH), 127.78 (d, CH), 127.86 (d, CH), 128.36 (d, CH), 128.49 (d, CH), 137.87 (s, C), 138.05 (s, C), 139.38 (s, C), 143.61 (s, C), 144.41 ($\mathrm{s}, \mathrm{C}), 155.29$ ($\mathrm{s}, \mathrm{C})$ ppm.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 714.39[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 55.58; H, 5.54; N, 2.03 \%
Found: C, 55.61; H, 5.53; N, 2.06 \%
tert-Butyl 3-((1R, 2S)-3-((3R, 4S, 5R)-3-(benzyloxy)-5-(benzyloxymethyl)-4-methyltetrahydrofuran-2-yl)-1-hydroxy-2-methylpropyl)-2,5-
 dimethoxyphenylcarbamate (127).

A mixture of the iodocompound $126(0.21 \mathrm{~g}, .303 \mathrm{mmol})$ and $(\mathrm{BOC})_{2} \mathrm{O}$ in dry methanol $(10 \mathrm{~mL})$ was treated with $\mathrm{Pd} / \mathrm{c}(10 \%)$ under hydrogen atmosphere (2 psi) at r.t for 6 h . After completion of reaction, the mixture was filtered through celite, concentrated to get residue which on purification over silica gel column chromatography using EtOAc-hexane (1:6) to afforded 127 ($90 \mathrm{mg}, 47 \%$) as a liquid. $\mathrm{R}_{f} 0.6$ (20% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{37} \mathrm{H}_{49} \mathrm{NO}_{8}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-41.32\left(c=0.3, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 667, 756, 1056, 1216, 1604, 1717, 2401, 3017, $3429 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.29$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad(\mathrm{m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 2.07-2.22(\mathrm{~m}, 2 \mathrm{H}), 3.15($ brs, 1 H$), 3.35$ (dt, $J=5.6,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=5.01 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 3.71(\mathrm{dt}, J=5.01 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.10(\mathrm{~m}$, $1 \mathrm{H}), 4.52-4.56(\mathrm{~m}, 4 \mathrm{H}) 4.93(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 10 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=2.7$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

[^0]CH_{2}), 81.13 (d, CH), $82.80(\mathrm{~d}, \mathrm{CH}), 91.08(\mathrm{~d}, \mathrm{CH}), 103.05(\mathrm{~d}$, CH), 106.59 (d, CH), 127.52 (d, CH), 128.29 (d, CH), 132.24 (s, C), 136.38 (s, C), 138.14 (s, C), 139.20 (s, C), 152.64 (s, C), 156.25 (s, C) ppm.

ESI-MS (m / z) : 658.64[M+Na] ${ }^{+}$.
Elemental Analysis Calcd.: C, 69.90; H, 7.77; N, 2.20 \%
Found: C, 69.92; H, 7.79; N, 2.24 \%
(R)-3-(3-((2R, 3R, 4R, 5R)-Tetrahydro-3-hydroxy-5-(hydroxymethyl)-4-methylfuran-2-yl)propanoyl)-4-benzyloxazolidin-2-one (129).

To a solution of dibenzylcarboxazolidinone $101(9.6 \mathrm{~g}, 17.67 \mathrm{mmol})$ in dichloromethane $\mathrm{TiCl}_{4}(2.1 \mathrm{~mL}, 176.7 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. After complition of reaction (3h), the reaction mixture was poured into icewater, extracted with dichloromethane, washed with saturated sodium bicarbonate solution, dried over sodiumsulfate and concentrate to get crude residue 129 ($3.6 \mathrm{~g}, 56 \%$), which was proceed for next step with out further purification. $\mathrm{R}_{f} 0.8$ (70% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{6}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+33.30\left(c=5.3, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) v \quad: 666,756,1049,1290,1698,1778,3417 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 1.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{q}, J=7.23,13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 2.05($ brs, 1 H$), 2.06(\mathrm{q}, J=6.93,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=$ $9.7,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dt}, J=7.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dt}, J=$ $7.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dt}, J=4.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{qn}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66$ (dt, $J=4.7,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, $J=5.1$, $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (m, 2H), 4.19 (dd, $J=6.7,15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.20 (dd, $J=8.7,16.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (d, $J=7.23 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

[^1]CH), 127.24(d, CH), 128.86 (d, CH), 129.32 (d, CH), 135.19 (s), 153.55 (s), 173.19 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 386.75[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 62.80; H, 6.93; N, 3.85 \%
Found: C, 62.79; H, 6.95; N, 3.88 \%
((2R,3R,4R,5S)-5-(3-((R)-4-Benzyl-2-oxooxazolidin-
3-yl)-3-oxopropyl)-4-hydroxy-3-
methyltetrahydrofuran-2-yl)methyl 4methylbenzenesulfonate (130).

To a stirred solution of $129(3.5 \mathrm{~g}, 9.64 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.47 \mathrm{~mL}, 10.6 \mathrm{mmol})$, and DMAP (50 mg), in dichloromethane (30 mL) was added p-toluenesulfonyl chloride $(1.54 \mathrm{~g}, 10.6 \mathrm{mmol})$, at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h at room temperature, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel by using EtOAc-hexane (2:1) to afford $\mathbf{1 3 0}$ (3.9 g , 78%) as a liquid. $\mathrm{R}_{f} 0.8$ (75% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{~S}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-29.55\left(c=0.75, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v}: 666,758,1097,1290,1703,1780,3400 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.93(\mathrm{q}, J=7.2,13.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 2.03(\mathrm{q}, J=6.9,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.76$ (dd, $J=9.7$, $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dt}, J=7.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dt}, J=7.2$, $17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (dt, $J=4.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 (brs, 1 H), $3.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dt}, J=4.7,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (dd, $J=5.1,8.9,1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=6.9,15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18$ (dd, $J=8.7,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.67$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$) ppm.
${ }^{13}$ C NMR : $\delta 14.74\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.58\left(\mathrm{q}, \mathrm{CH}_{3}\right), 27.42\left(\mathrm{t}, \mathrm{CH}_{2}\right), 31.57(\mathrm{t}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{2}\right), 37.71\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.2(\mathrm{~d}, \mathrm{CH}), 55.16(\mathrm{~d}, \mathrm{CH}), 66.21(\mathrm{t}$, CH_{2}), $70.45\left(\mathrm{t}, \mathrm{CH}_{2}\right), 80.34(\mathrm{~d}, \mathrm{CH}), 81.58(\mathrm{~d}, \mathrm{CH}), 82.16(\mathrm{~d}$,

CH), 127.25 (d, CH), 127.9 (d, CH), 128.88 (d, CH), 129.35 (d, CH), 129.82 (d, CH), 135.23 (s, C), 144.84 (s, C), 153.45 (s , C), 173.13 (s, C), ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 540.58[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 60.33; H, 6.04; N, 2.71 \%
Found: C, 60.35; H, 6.06; N, 2.74 \%
((2R,3S,4R,5S)-5-(3-((R)-4-Benzyl-2-oxooxazolidin-
3-yl)-3-oxopropyl)-4-(tert-butyldimethylsilyloxy)-3-methyltetrahydrofuran-2-yl)methyl 4methylbenzenesulfonate (131).

A mixture of $130(3.5 \mathrm{~g}, 6.76 \mathrm{mmol})$, imidazole $(0.515 \mathrm{~g}, 8.46 \mathrm{mmol})$, TBDMSCl $(1.27 \mathrm{~g}, 8.46 \mathrm{mmol})$ and DMAP (54 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was stirred for 6 h at room temperature. After completion of the reaction, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. The residue was purified on silica gel by eluting with EtOAc-hexane (1:4) to give TBS ether derivative 131 ($3.1 \mathrm{~g}, 74 \%$), as a colorless liquid. $\mathrm{R}_{f} 0.5$ (30% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{32} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{SSi}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-42.07\left(c=2.0, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 667,1076,1253,1703,1781,2400,3023 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.72$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad(\mathrm{dq}, J=6.7,8.7,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84$ (hex, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.91-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=9.7,13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{dt}, J=6.7,14.7,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dq}, J=6.1$, $8.7,17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (dd, $J=3.1,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (t, $J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.96-$ $3.97(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.12(\mathrm{~m}, 1 \mathrm{H})$, 4.57-4.63 (m, 1H), 7.15-7.29 (m, 7H), 7.73 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$ ppm.

[^2]CH_{2}), 37.75 (t, CH_{2}), 43.93 (d, CH), 55.24 (d, CH), 66.17 (t, CH_{2}), 70.60 (t, CH_{2}), 80.68 (d, CH), 82.54 (d, CH), 83.02 (d, CH), 127.25 (d, CH), 127.99 (d, CH), 128.91 (d, CH), 129.41 (d, CH), 129.84 (d, CH), 132.86 (s, C), 135.45 (s, C), 144.73 (s, C), 153.45 (s, C), 172.91 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 654.66[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 60.83; H, 7.18; N, 2.22 \%
Found: C, 60.85; H, 7.20; N, 2.20 \%
(R)-4-Benzyl-3-(3-((2S,3R,4S,5R)-3-(tert-butyldimethylsilyloxy)-5-(iodomethyl)-4-methyltetrahydrofuran-2-yl)propanoyl)oxazolidin-2one (132).

A mixture of $\mathbf{1 3 1}(3 \mathrm{~g}, 4.75 \mathrm{mmol})$ and $\mathrm{NaI}(8.5 \mathrm{~g}, 57.05 \mathrm{mmol})$ was taken in a glyme (12 mL). After Refluxing the reaction mixture for 2 h , the volaties removed under reduced pressure to get residue which was purified on silica gel by eluting with EtOAC-hexane (1:3) to give iododerivative 132 ($2.2 \mathrm{~g}, 79 \%$), as a colorless liquid. R_{f} 0.4 (25% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{INO}_{5} \mathrm{Si}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-32.11\left(c=1.55, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right) v \quad: 668,1052,1258,1703,1782,3025 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}$,
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 3 \mathrm{H}\right), 1.8(\mathrm{hex}, J=7.2,21 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{q}, J=5.1,11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=8.9,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{q}, J$ $=5.8,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=5.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J$ $=5.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=5.8,12 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~m}$ 2 H), 3.85 (qn, $J=3.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (dd, $J=9.4,14 \mathrm{~Hz}$, 2H), 4.18-4.20 (m, 1H,), 4.69 (dq, $J=3.2,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (d, $J=\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta-4.33\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.17\left(\mathrm{q}, \mathrm{CH}_{3}\right), 9.82\left(\mathrm{t}, \mathrm{CH}_{2}\right), 16.35(\mathrm{q}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{3}\right), 17.87(\mathrm{~s}, \mathrm{C}), 25.73\left(\mathrm{q}, \mathrm{CH}_{3}\right), 27.76\left(\mathrm{t}, \mathrm{CH}_{2}\right), 32.11(\mathrm{t}$, CH_{2}), $37.89\left(\mathrm{t}, \mathrm{CH}_{2}\right), 47.80(\mathrm{~d}, \mathrm{CH}), 55.21(\mathrm{~d}, \mathrm{CH}), 66.17(\mathrm{t}$,
CH_{2}), 82.23 (d, CH), 83.01 (d, CH), 83.24 (d, CH), 127.31 (d, CH), 128.94 (d, CH), 129.41 (d, CH), 135.38 (d, CH), 153.43 (s, C), 172.88 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 610.39[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 51.10; H, 6.52; N, 2.38 \%
Found: C, 51.12; H, 6.51; N, 2.36 \%
($(2 R, 3 S, 4 R)-5-((S)-3-((R)-4-B e n z y l-2-o x o o x a z o l i d i n-~$ 3-yl)-2-((R)-(2,5-dimethoxy-3-
nitrophenyl)(trimethylsilyloxy)methyl)-3-
oxopropyl)-4-(tert-butyldimethylsilyloxy)-3-
methyltetrahydrofuran-2-yl)methyl 4-
methylbenzenesulfonate (133)

Oxazolidinone 131 ($332 \mathrm{~g}, 0.52 \mathrm{mmol}$) was treated with $\mathrm{MgCl}_{2}(5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde 102 (133 mg , 0.631 mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica ($2 \mathrm{~cm} \times 10 \mathrm{~cm}$) with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative 133 (398 mg) as single isomer with 83% yeild (light yellowcolor liquid). R_{f} values shows 0.2 (10% ethyl acetate/hexane).
Mol. Formula $\quad \mathrm{C}_{44} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{SSi}_{2}$
$[\alpha]_{D}{ }^{25}$
: -100.5 ($c=0.25, \mathrm{CHCl}_{3}$)
IR $\left(\mathbf{C H C l}_{3}\right) v \quad: 666,760,1051,1252,1598,1701,1780,3064,3436 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta-0.24(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 0.95$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (d, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.27(\mathrm{~s}, 1 \mathrm{H}), 1.35(\mathrm{dd}, J=2.8,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 1.73 (q, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dt}, J=4.6,14.1,26.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dd}, J=11.1,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{t}, \mathrm{J}=7.79$ $\mathrm{Hz}, 1 \mathrm{H}), 3.48-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.98$ (dd, $J=2.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=2.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$
(t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{td}, J=2.7$, $10.1,18.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.34$ (m, $8 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta-4.77\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.36\left(\mathrm{q}, \mathrm{CH}_{3}\right), 0.07\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.70(\mathrm{q}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{3}\right), 17.67(\mathrm{~s}, \mathrm{C}), 21.59\left(\mathrm{q}, \mathrm{CH}_{3}\right), 25.52\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.11(\mathrm{t}$, $\left.\mathrm{CH}_{2}\right), 38.33\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.88(\mathrm{~d}, \mathrm{CH}), 55.77\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.91(\mathrm{q}$, $\left.\mathrm{CH}_{3}\right), 62.71(\mathrm{~d}, \mathrm{CH}), 65.89\left(\mathrm{t}, \mathrm{CH}_{2}\right), 70.88\left(\mathrm{t}, \mathrm{CH}_{2}\right), 80.56(\mathrm{~d}$, CH), 80.69 (d, CH), 110.05 (d, CH), 119.46 (d, CH), 127.09 (d, CH), 127.85 (d, CH), 128.87 (d, CH), 129.32 (d, CH), 129.82 (d, CH), 132.51 (s, C), 135.97 (s, C), 140.10 (s, C), 143.24 (s, C), 144.85 ($\mathrm{s}, \mathrm{C}), 153.74$ ($\mathrm{s}, \mathrm{C}), 155.29$ ($\mathrm{s}, \mathrm{C})$, 174.09 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 938.82[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 57.74; H, 6.83; N, 3.06 \%
Found: C, 57.76; H, 6.84; N, 3.07 \%
(4R)-4-Benzyl-3-((2S, 3R)-2-(((3R, 4S, 5R)-3-(tert-butyldimethylsilyloxy)-5-(iodomethyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-(2,5-
dimethoxy-3-nitrophenyl)-3-
(trimethylsilyloxy)propanoyl)oxazolidin-2-one (134).

Oxazolidinone 132 ($308 \mathrm{mg}, 0.52 \mathrm{mmol}$) was treated with MgCl_{2} ($5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde $102(132 \mathrm{mg}$, 0.631 mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm})$ with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative 134 ($406 \mathrm{mg}, 89 \%$), as single isomer with excellent yeild (light yellowcolor liquid). $\mathrm{R}_{f} 0.2$ (10% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{37} \mathrm{H}_{55} \mathrm{IN}_{2} \mathrm{O}_{10} \mathrm{Si}_{2}$

$[\alpha]_{\text {D }}{ }^{25}$: -0.82 ($\left.c=2.9, \mathrm{CHCl}_{3}\right)$
IR (CHCl_{3}) v	: 667, 758, 1053, 1252, 1605, 1698, 1776, 2401, $3088 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR	: $\delta-0.17(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 12 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.7$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$\mathrm{Hz}, 3 \mathrm{H}), 1.32$ (dq, $J=3.3,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{q}, J=7.6,14.5$
	$\mathrm{Hz}, 1 \mathrm{H}), 2.28(\mathrm{td}, J=3.7,13.7,25.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=$
	$10.8,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ (dd, $J=6.25,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (dd,
	$J=4.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=7.7 \mathrm{~Hz}$,
	$1 \mathrm{H}), 3.57$ (dd, $J=2.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.86$
	($\mathrm{s}, 3 \mathrm{H}), 3.91$ (s, 3 H), 4.12 (dd, $J=2.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (dd, J
	$=8.27 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=7.9,10.5 \mathrm{~Hz}, 1 \mathrm{H})$,
	$5.38(\mathrm{~d}, J=7.27 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	: δ-4.69 (q, CH_{3}), $-4.27\left(\mathrm{q}, \mathrm{CH}_{3}\right), 0.08\left(\mathrm{q}, \mathrm{CH}_{3}\right), 10.87\left(\mathrm{t}, \mathrm{CH}_{2}\right)$,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$15.39\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.73$ ($\left.\mathrm{s}, \mathrm{C}\right), 25.60\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.34\left(\mathrm{t}, \mathrm{CH}_{2}\right)$,
	38.31 (t, CH2), 46.10 (d, CH), 47.60 (d, CH), 55.93 ($\left.\mathrm{q}, \mathrm{CH}_{3}\right)$,
	62.69 (d, CH), 65.89 (t, CH_{2}), 80.39 (d, CH), 81.63 (d, CH),
	82.61 (d, CH), 110.06 (d, CH), 119.50 (d, CH), 127.13 (d,
	$\mathrm{CH}), 128.92$ (d, CH), 129.36 (d, CH), 136.02 (s, C), 140.07 ((s,
	C), 143.23 ($\mathrm{s}, \mathrm{C}), 144.39$ (s, C), 153.47 ($\mathrm{s}, \mathrm{C}), 155.27$ ($\mathrm{s}, \mathrm{C})$,
	173.95 (s, C) ppm.
ESI-MS (m / z)	: $893.66[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis	Calcd.: C, 51.03; H, 6.37; N, 3.22 \%
	Found: C, 51.05; H, 6.39; N, 3.25 \%

(R)-4-Benzyl-3-(3-((2S,3R,4S,5R)-3-(tert-butyldimethylsilyloxy)-5-((tert-butyldimethylsilyloxy)methyl)-4-methyltetrahydrofuran-2-
 yl)propanoyl)oxazolidin-2-one (137).

A mixture of diol 129 ($3.2 \mathrm{~g}, 8.81 \mathrm{mmol}$), imidazole ($1.79 \mathrm{~g}, 26.44 \mathrm{mmol}$), $\operatorname{TBDMSCl}(3.98 \mathrm{~g}, 26.44 \mathrm{mmol})$ and DMAP (54 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was stirred for 6 h at roomtemperature. After completion of the reaction, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. The residue was purified on silica gel by eluting with EtOAC-hexane (1:4) to give TBS
ether derivative 137 ($4.5 \mathrm{~g}, 86 \%$), as a colorless liquid. $\mathrm{R}_{f} 0.5(20 \%$ ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{31} \mathrm{H}_{53} \mathrm{NO}_{6} \mathrm{Si}_{2}$
$[\alpha]_{\mathrm{D}}{ }^{25}$
: - 41.24 ($c=0.65, \mathrm{CHCl}_{3}$)
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v \quad: 668,756,1077,1254,1604,1701,1782,2400,3020 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.08$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{dq}, J=5.4,9.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$
(q, $J=7.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=9.7$, $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dq}, J=6.3,8.9,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dq}, J=$ $5.6,9.2,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=3.1,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dt}, J=5.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.71(\mathrm{~m}$, $3 \mathrm{H}), 4.16$ (q, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.16(\mathrm{~m}, 1 \mathrm{H}), 7.21$ (d, $J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR
: $\delta-5.40\left(\mathrm{q}, \mathrm{CH}_{3}\right),-5.36\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.27\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.11(\mathrm{q}$, ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) CH_{3}), $-3.65\left(\mathrm{q}, \mathrm{CH}_{3}\right), 15.83\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.80(\mathrm{~s}, \mathrm{C}), 18.29(\mathrm{~s}, \mathrm{C})$, $25.58\left(\mathrm{q}, \mathrm{CH}_{3}\right), 25.68\left(\mathrm{q}, \mathrm{CH}_{3}\right), 25.86\left(\mathrm{q}, \mathrm{CH}_{3}\right), 27.45\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 32.27 ($\mathrm{t}, \mathrm{CH}_{2}$), $37.76\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.81(\mathrm{~d}, \mathrm{CH}), 55.07(\mathrm{~d}, \mathrm{CH})$, $65.06\left(\mathrm{t}, \mathrm{CH}_{2}\right), 66.02\left(\mathrm{t}, \mathrm{CH}_{2}\right), 82.21(\mathrm{~d}, \mathrm{CH}), 82.97(\mathrm{~d}, \mathrm{CH})$, 83.76 (d, CH), 127.18 (d, CH), 128.83 (d, CH), 129.33 (d, CH), 135.31 (s, C), 153.29 (s, C), 172.95 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 614.48[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 62.90; H, 9.02; N, 2.37 \%
Found: C, $62.91 ;$ H, 9.03 ; N, 2.39 \%
(4R)-4-Benzyl-3-((2S, 3R)-2-(((3R, 4S, 5R)-3-(tert-butyldimethylsilyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-(2,5-
dimethoxy-3-nitrophenyl)-3-
(trimethylsilyloxy)propanoyl)oxazolidin-2-one
 (138).

Oxazolidinone 137 ($311 \mathrm{mg}, 0.52 \mathrm{mmol}$) was treated with MgCl_{2} ($5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde 102 (133 mg ,
0.631 mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm})$ with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative $138(263 \mathrm{mg})$, and free hydroxyl compound 139 (58 mg), as single isomer with excellent yeild (light yellowcolor liquid). The aldol adducts $\mathbf{1 3 8}$ (OTMS) : $\mathbf{1 3 9}(\mathrm{OH})$ were gave in a 5:1 ratio of yield and show $\mathrm{R}_{f} 0.2$: 0.5(10% ethyl acetate/hexane) on the TLC plate.

Mol. Formula $\quad: \mathrm{C}_{43} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Si}_{3}$

$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-5.95\left(c=5.7, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,760,1078,1251,1604,1694,1737,1783,3019 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $: \delta-0.28(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}), 0.76$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (s, 9H), $0.84(\mathrm{~s}, 9 \mathrm{H}) 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.43(\mathrm{~m}$, 1 H), 1.74-1.82 (m, 1H), 2.31 (ddd, $J=3.9,13.2,16.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.61(\mathrm{dd}, J=11.1,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{qn}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.92$ $(\mathrm{s}, 3 \mathrm{H}), 4.10(\mathrm{dd}, J=2.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.67$ (ddd, $J=3.1,8.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.53-7.55(\mathrm{~m}, 1 \mathrm{H})$. ppm.

${ }^{13} \mathbf{C}$ NMR	$: \delta-5.53\left(\mathrm{q}, \mathrm{CH}_{3}\right),-5.37\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.85\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.25(\mathrm{q}$,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\left.\mathrm{CH}_{3}\right), 0.02\left(\mathrm{q}, \mathrm{CH}_{3}\right), 15.59\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.66(\mathrm{~s}, \mathrm{C}), 18.30(\mathrm{~s}, \mathrm{C})$,
	$25.53\left(\mathrm{q}, \mathrm{CH}_{3}\right), 25.84\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.02\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.39\left(\mathrm{t}, \mathrm{CH}_{2}\right)$,
	$43.23(\mathrm{~d}, \mathrm{CH}), 45.73(\mathrm{~d}, \mathrm{CH}), 55.87\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.98\left(\mathrm{q}, \mathrm{CH}_{3}\right)$,
	$62.72(\mathrm{~d}, \mathrm{CH}), 65.55\left(\mathrm{t}, \mathrm{CH}_{2}\right), 65.76\left(\mathrm{t}, \mathrm{CH}_{2}\right), 69.92(\mathrm{~d}, \mathrm{CH})$,
	$80.44(\mathrm{~d}, \mathrm{CH}), 84.42(\mathrm{~d}, \mathrm{CH}), 110.20(\mathrm{~d}, \mathrm{CH}), 119.41(\mathrm{~d}, \mathrm{CH})$,
	$127.09(\mathrm{~d}, \mathrm{CH}), 128.85(\mathrm{~d}, \mathrm{CH}), 129.35(\mathrm{~d}, \mathrm{CH}), 136.04(\mathrm{~s}, \mathrm{C})$,
	$140.21(\mathrm{~s}, \mathrm{C}), 143.26(\mathrm{~s}, \mathrm{C}), 144.46(\mathrm{~s}, \mathrm{C}), 153.66(\mathrm{~s}, \mathrm{C})$,
	$155.29(\mathrm{~s}, \mathrm{C}), 174.23(\mathrm{~s}, \mathrm{C}) \mathrm{ppm}$.

Elemental Analysis Calcd.: C, 59.01; H, 8.06; N, 3.20 \%
Found: C, 59.04; H, 8.08; N, 3.22 \%
(4R)-4-Benzyl-3-((2S, 3R)-2-(((3R, 4S, 5R)-3-(tert-
butyldimethylsilyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-(2,5-
dimethoxy-3-nitrophenyl)-3-
hydroxypropanoyl)oxazolidin-2-one (139).

Mol. Formula $\quad: \mathrm{C}_{40} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Si}_{2}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+2.49\left(c=2.0, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) v \quad: 668,837,1053,1252,1620,1702,1778,2401,3020,3453$ cm^{-1}
${ }^{1} \mathbf{H}$ NMR $\quad: \delta-0.08(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.84$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad(\mathrm{s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{dq}, J=3.2,14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.64(\mathrm{brs}, 1 \mathrm{H}), 1.82-1.84(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, \mathrm{J}=3.9$, $10.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=9.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J$ $=3.3,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{qn}, J=4.34,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{ddd}, J=5.5$, $9.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{dd}, J=2.1$, $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{ddd}, J=3.3,7.5$, $10.5,1 \mathrm{H}), 4.64(\mathrm{ddd}, J=3.3,7.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H})$, 7.17-7.19 (m, 2H) 7.28-7.32 (m, 5H) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta-5.53\left(\mathrm{q}, \mathrm{CH}_{3}\right),-5.45\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.57\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.22(\mathrm{q}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{3}\right), 15.42\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.68(\mathrm{~s}, \mathrm{C}), 18.25(\mathrm{~s}, \mathrm{C}), 25.55(\mathrm{q}$, $\left.\mathrm{CH}_{3}\right), 25.80\left(\mathrm{q}, \mathrm{CH}_{3}\right), 31.67\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.76\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.18(\mathrm{~d}$, $\mathrm{CH}), 44.15(\mathrm{~d}, \mathrm{CH}), 55.80\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.68\left(\mathrm{q}, \mathrm{CH}_{3}\right), 63.02(\mathrm{~d}$, $\mathrm{CH}), 65.37\left(\mathrm{t}, \mathrm{CH}_{2}\right), 65.95\left(\mathrm{t}, \mathrm{CH}_{2}\right), 70.72(\mathrm{~d}, \mathrm{CH}), 80.53(\mathrm{~d}$, CH), 80.95 (d, CH), 84.34 (d, CH), $109.40(\mathrm{~d}, \mathrm{CH}), 118.56$ (d, CH), 127.15 (d, CH), 128.77 (d, CH), 129.30 (d, CH), 135.28 ($\mathrm{s}, \mathrm{C}), 139.36(\mathrm{~s}, \mathrm{C}), 143.38(\mathrm{~s}, \mathrm{C}), 144.81$ ($\mathrm{s}, \mathrm{C}), 153.92(\mathrm{~s}, \mathrm{C})$, 155.13 (s, C), 174.99 (s, C) ppm.

ESI-MS (m / z) $: 825.95[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis
Calcd.: C, 59.82; H, 7.78; N, 3.49 \%
Found: C, 59.85; H, 7.79; N, 3.50 \%
(R)-4-Benzyl-3-((4S,5R,6S)-5-(tert-
butyldimethylsilyloxy)-4-hydroxy-6-methyloct-7-enoyl)oxazolidin-2-one (141).

141

A mixture of iodocompound $132(0.2 \mathrm{~g}, 0.34 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{mg}$, catalytic) in a dry methanol, activated zinc ($0.22 \mathrm{~g}, 3.4 \mathrm{mmol}$), was added at $0^{\circ} \mathrm{C}$. After complition of reaction, the mixture was filtered through celite, concentrate the oganic layer to get residue. The residue was purified on silica gel by eluting with EtOAC-hexane (1:5) to give hydroxyl fragment 141 ($0.11 \mathrm{~g}, 67 \%$), as a colorless liquid. $\mathrm{R}_{f} 0.5$ (40% ethyl acetate/hexane).
Mol. Formula
$[\alpha]_{\mathrm{D}}{ }^{25}$
IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{v}$
${ }^{1} \mathbf{H}$ NMR
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
: $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Si}$
: -8.64 (c=4.0, $\left.\mathrm{CHCl}_{3}\right)$
: 668, 756, 1089, 1215, 1626, 1763, 2400, 2928, $3454 \mathrm{~cm}^{-1}$
: $\delta 0.09$ (s, 6H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.00-$
$2.07(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}$, $J=3.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=3.2,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.64$ $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=2.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{qn}, J=6.7,1 \mathrm{H})$, $4.15-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{t}, J=8.27 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dt}, J=2.2$, $7.38 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{brs}, 1 \mathrm{H}), 5.72-5.79(\mathrm{~m}$, $1 \mathrm{H})$, 7.18-7.36 (m, 5H) ppm.
${ }^{13} \mathbf{C} \mathbf{N M R}$
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta-4.44\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.20\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.82\left(\mathrm{q}, \mathrm{CH}_{3}\right), 18.13(\mathrm{~s}, \mathrm{C})$, $20.65\left(\mathrm{t}, \mathrm{CH}_{2}\right), 25.89\left(\mathrm{q}, \mathrm{CH}_{3}\right), 28.72\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.28\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 41.82 (d, CH), $53.74(\mathrm{~d}, \mathrm{CH}), 69.58\left(\mathrm{t}, \mathrm{CH}_{2}\right), 75.27(\mathrm{~d}, \mathrm{CH})$, $81.46(\mathrm{~d}, \mathrm{CH}), 115.12\left(\mathrm{t}, \mathrm{CH}_{2}\right), 127.14(\mathrm{~d}, \mathrm{CH}), 128.90(\mathrm{~d}$, CH), 128.96 (d, CH), 129.34 (d, CH), 135.86 ($\mathrm{s}, \mathrm{C}), 139.89$ (d , CH), 159.51 (s, C), 177.23 ($\mathrm{s}, \mathrm{C}) \mathrm{ppm}$.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 484.64[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 65.04; H, 8.51; N, 3.03 \%
Found: C, 65.06; H, 8.52; N, 3.04 \%

(S)-5-((1R,2S)-1-(Tert-butyldimethylsilyloxy)-2-

 methylbut-3-enyl)dihydrofuran-2(3H)-one (142).

A mixture of iodocompound $132(150 \mathrm{mg}, 0.25 \mathrm{mmol})$, and $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{mg})$ in a dry methanol, activated zinc $(0.167 \mathrm{~g}, 2.57 \mathrm{mmol})$, was added at $0^{\circ} \mathrm{C}$. after complition of reaction, the mixture was filtered through celite concentrate the oganic layer to get residue. The residue was purified on silica gel by eluting with EtOAChexane (1:6) to give lactone 142 ($62 \mathrm{mg}, 87 \%$), as a colorless liquid. $\mathrm{R}_{f} 0.5$ (20% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-21.88\left(c=2, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{3}\right) v: 668,838,1077,1254,1640,1701,1776,1782,2448,3081$
cm^{-1}
${ }^{1}{ }^{1}$ H NMR $\quad: \delta 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.97$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad(\mathrm{dd}, J=7.3,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=$ $5.9,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=5.9,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J$ $=2.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{td}, J=2.3,7.6,15 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}$, 1 H), 4.98 (dd, $J=2.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dq}, J=8.3,18.8 \mathrm{~Hz}$, 1H) ppm.
${ }^{13}$ C NMR : $\delta-4.41\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.16\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.94\left(\mathrm{q}, \mathrm{CH}_{3}\right), 18.17(\mathrm{~s}, \mathrm{C})$,
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $20.62\left(\mathrm{t}, \mathrm{CH}_{2}\right), 25.92\left(\mathrm{q}, \mathrm{CH}_{3}\right), 28.76\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.89(\mathrm{~d}, \mathrm{CH})$, 75.24 (d, CH), 81.46 (d, CH), 115.17 (t, CH_{2}), 139.93 (d, CH), 177.24 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 307.64[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 63.33; H, 9.92 \%
Found: C, 63.38; H, 9.93 \%
(4R)-4-benzyl-3-((2S, 3R)-3-(3-bromo-2,5-
dimethoxyphenyl)-2-(((3R, 4S, 5R)-3-(tert-
butyldimethylsilyloxy)-5-(iodomethyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-
(trimethylsilyloxy)propanoyl)oxazolidin-2-one (145).

Oxazolidinone 132 ($308 \mathrm{mg}, 0.52 \mathrm{mmol}$) was treated with MgCl_{2} ($5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde 144 (154 mg , 0.631 mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{~m} . \mathrm{mol}$) in 6 mL of ethylacetate at $23^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica ($2 \mathrm{~cm} \times 10 \mathrm{~cm}$) with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative 145 (256 mg) and free hydroxyl compound $146(52 \mathrm{mg})$, as single isomers with excellent yeild (light yellowcolor liquids and $\mathbf{1 4 5}(\mathrm{OTMS}): \mathbf{1 4 6}(\mathrm{OH})$ in a 5:1 product ratio, their R_{f} values are in the 0.2: 0.5(10% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{37} \mathrm{H}_{55} \mathrm{BrINO}_{8} \mathrm{Si}_{2}$
$[\alpha]_{D}{ }^{25}$
$:+9.34\left(c=2.9, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v: 668,758,1049,1252,1600,1699,1775,2401,3019,3088$ cm^{-1}
${ }^{1} \mathbf{H}$ NMR $\quad: \delta-0.22(\mathrm{~s}, 3 \mathrm{H}) 0.04(\mathrm{~s}, 12 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.7$ $\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{Hz}, 3 \mathrm{H}\right), 1.32(\mathrm{dq}, J=2.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 2.3(\mathrm{dt}$, $J=3.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=11.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (dd, $J=6.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=4.3,10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=2.7$, $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $4.11(\mathrm{dd}, J=2.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}$, 1 H), 4.78 (dt, $J=3.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (appeareddoublet, $J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.39$ (m, 5H) ppm.
${ }^{13} \mathbf{C}$ NMR $: \delta-4.76\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.33\left(\mathrm{q}, \mathrm{CH}_{3}\right), 0.12\left(\mathrm{q}, \mathrm{CH}_{3}\right), 10.81(\mathrm{t}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{2}\right), 15.42\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.73(\mathrm{~s}, \mathrm{C}), 25.63\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.26(\mathrm{t}$,
CH_{2}), $38.44\left(\mathrm{t}, \mathrm{CH}_{2}\right), 46.04(\mathrm{~d}, \mathrm{CH}), 47.72(\mathrm{~d}, \mathrm{CH}), 55.66(\mathrm{q}$, $\left.\mathrm{CH}_{3}\right), 55.91\left(\mathrm{q}, \mathrm{CH}_{3}\right), 56.62(\mathrm{~d}, \mathrm{CH}), 61.24(\mathrm{~d}, \mathrm{CH}), 65.85(\mathrm{t}$, CH_{2}), $80.60(\mathrm{~d}, \mathrm{CH}), 81.25(\mathrm{~d}, \mathrm{CH}), 82.89(\mathrm{~d}, \mathrm{CH}), 112.79(\mathrm{~d}$, CH), 118.64 (s, C), 118.83 (d, CH), 127.08 (d, CH), 128.90 (d, CH), 129.37 (d, CH), 136.17 (s, C), 138.02 (s, C), 148.05 (s , C), 153.52 (s, C), 156.39 (s, C), 174.62 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 927.72[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 49.11; H, 6.13; N, 1.55 \%
Found: C, 49.11; H, 6.13; N, 1.55 \%
(4R)-4-Benzyl-3-((2S, 3R)-3-(3-bromo-2,5-
dimethoxyphenyl)-2-(((3R, 4S, 5R)-3-(tert-
butyldimethylsilyloxy)-5-(iodomethyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-
hydroxypropanoyl)oxazolidin-2-one (146).

146

Mol. Formula $\quad: \mathrm{C}_{34} \mathrm{H}_{47} \mathrm{BrINO}_{8} \mathrm{Si}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-8.85\left(c=3.3, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 667, 771, 1048, 1218, 1603, 1776, $3139 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta-0.15(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.7$
(500 MHz, CDCl_{3}) $\mathrm{Hz}, 3 \mathrm{H}$), 1.33 (dq, $J=3.4,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58$ (brs, 1H), 1.73$1.78(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=4.2,11.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}$, $J=9.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=6.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (dd, $J=4.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=3.8,14.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.31-3.34 (m, 1H), 3.44 (dd, $J=7.26,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63-3.67 ($\mathrm{m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{dd}, J=2.1,8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (ddd, $J=3.1,8.5,11.2,1 \mathrm{H}$), 4.71 (dd, $J=4.5,9.45 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=2.7,1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.7,1 \mathrm{H}) 7.14-7.27(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta-4.54\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.28\left(\mathrm{q}, \mathrm{CH}_{3}\right), 10.73\left(\mathrm{t}, \mathrm{CH}_{2}\right), 15.28(\mathrm{q}$, ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\left.\mathrm{CH}_{3}\right), 17.77(\mathrm{~s}, \mathrm{C}), 25.64\left(\mathrm{q}, \mathrm{CH}_{3}\right), 31.70\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.74(\mathrm{t}$, $\left.\mathrm{CH}_{2}\right), 44.72(\mathrm{~d}, \mathrm{CH}), 47.62(\mathrm{~d}, \mathrm{CH}), 55.68\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.77$
$\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.74(\mathrm{~d}, \mathrm{CH}), 66.11\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.38(\mathrm{~d}, \mathrm{CH})$, 80.60 (d, CH), 81.73 (d, CH), 82.77 (d, CH), 112.05 (d, CH), 117.50 (s, C), 118.44 (d, CH), 127.15 (d, CH), 128.85 (d, CH), 129.44 (d, CH), 135.48 (s, C), 137.37 (s, C), 148.47 (s, C), 154.13 (s, C), 156.36 (s, C), 175.12 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 855.48[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 49.04; H, 5.69; N, 1.68\%
Found: C, 49.05; H, 5.70; N, 1.69 \%
(4R)-4-Benzyl-3-((2S, 5R, 6S)-2-((R)-(3-bromo-2,5-dimethoxyphenyl)(trimethylsilyloxy)methyl)-5-(tert-butyldimethylsilyloxy)-4-hydroxy-6-methyloct-7-enoyl)oxazolidin-2-one (147).

147

A mixture of iodocompound $145(0.10 \mathrm{~g}, 0.11 \mathrm{mmol})$, and $\mathrm{NH}_{4} \mathrm{Cl}$ (catalytic) in a dry methanol treated with activated zinc $(0.082 \mathrm{~g}, 2.51 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 30 min . after complition of reaction, the mixture was filtered through celite, concentrated the oganic layer to get residue which was purified on silica gel by eluting with EtOAChexane (1:4) to give hydroxyl olefinic compound 147 ($0.08 \mathrm{~g}, 93 \%$), as a colorless liquid. $\mathrm{R}_{f} 0.4$ (20% ethyl acetate/hexane).

Mol. Formula $\quad \mathrm{C}_{37} \mathrm{H}_{56} \mathrm{BrNO}_{8} \mathrm{Si}_{2}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-18.96\left(c=0.6, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 668, 1049, 1252, 1600, 1699, 1775, 3019,3088 cm^{-1}
${ }^{1}$ H NMR $\quad: \delta-0.22(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 12 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9$
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{Hz}, 3 \mathrm{H}\right), 1.77-1.86(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.39(\mathrm{~m}$, 1 H), 2.68 (dd, $J=9.5,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (dd, $J=5.3,8.5 \mathrm{~Hz}$, 1H), 2.98 (m, 1H), 3.16 (dd, $J=6.7,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ (dd, J $=4.07,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 4.06-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=5.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}$,
$J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H}), 4.9-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.68(\mathrm{~m}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=3.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=3.01 \mathrm{~Hz}, 1 \mathrm{H}) 7.17$ (m, 5H) ppm.

(4R)-4-Benzyl-3-((2S, 3R)-3-(3-bromo-2,5-dimethoxyphenyl)-2-(((3R, 4S, 5R)-3-(tert-
butyldimethylsilyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-
(trimethylsilyloxy)propanoyl)oxazolidin-2-one
 (149).

Oxazolidinone 137 ($311 \mathrm{mg}, 0.52 \mathrm{mmol}$) was treated with MgCl_{2} (5 mg , 0.052 mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde 144 (154 $\mathrm{mg}, 0.631 \mathrm{mmol}$) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica ($2 \mathrm{~cm} \times 10 \mathrm{~cm}$) with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative 149 (258 mg), and free hydroxyl compound 150 (51 mg), as single isomer with excellent yeild (light yellowcolor liquid). The aldol adducts $\mathbf{1 4 9}$ (OTMS) : $\mathbf{1 5 0}(\mathrm{OH})$ were gave in a 5:1 ratio of yield and show $\mathrm{R}_{f} 0.2: 0.5(10 \%$ ethyl acetate/hexane).

Mol. Formula	: $\mathrm{C}_{43} \mathrm{H}_{70} \mathrm{BrNO}_{9} \mathrm{Si}_{3}$
$[\alpha]_{\text {D }}{ }^{25}$: +3.35 ($\left.c=1.8, \mathrm{CHCl}_{3}\right)$
IR (CHCl_{3}) v	: 668,760, 1078, 1251, 1604, 1694, 1737, 1783, $3019 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR	: δ-0.29 (s, 3H), -0.02 (s, 3H), -0.01 (s, 6H), 0.01 (s, 9H), 0.78
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$(\mathrm{s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.46(\mathrm{~m},$
	$1 \mathrm{H}), 1.71-1.86(\mathrm{~m}, 1 \mathrm{H}), 2.37$ (ddd, $J=4.8,12.3,16.8 \mathrm{~Hz}, 1 \mathrm{H})$,
	2.65 (dd, $J=11.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ (qn, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$,
	3.47-3.60 (m, 5H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.23(\mathrm{~m}$,
	$2 \mathrm{H}), 4.65$ (s, 1H), 4.72 (ddd, $J=3.1,10.1,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$
	(d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=3.1 \mathrm{~Hz}$,
	1H), 7.31-7.43 (m, 5H) ppm.
${ }^{13} \mathrm{C}$ NMR	: δ-5.53 (q, CH_{3}), $-5.35\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.92\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.33(\mathrm{q}$,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	CH_{3}), $0.07\left(\mathrm{q}, \mathrm{CH}_{3}\right), 15.60\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.68$ (s, C), 18.31 ($\left.\mathrm{s}, \mathrm{C}\right)$,
	$25.60\left(\mathrm{q}, \mathrm{CH}_{3}\right), 25.86\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.02\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.50\left(\mathrm{t}, \mathrm{CH}_{2}\right)$,
	43.30 (d, CH), 45.60 (d, CH), 55.60 (q, $\left.\mathrm{CH}_{3}\right), 55.96$ (q, $\left.\mathrm{CH}_{3}\right)$,
	61.29 (d, CH), 65.67 (t, CH_{2}), 80.09 (d, CH), 80.58 (d, CH),
	84.46 (d, CH), 112.65 (d, CH), 117.09 (s, C), 118.92 (d, CH),
	127.04 (d, CH), 128.83 (d, CH), 129.36 (d, CH), 136.18 ($\mathrm{s}, \mathrm{C})$,
	138.16(s, C), 148.05(s, C), 153.68 (s, C), 156.41(s, C), 174.91
	($\mathrm{s}, \mathrm{C}) \mathrm{ppm}$.
ESI-MS (m/z)	: $932.21[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis	Calcd.: C, 56.81; H, 7.76; N, 1.54 \%
	Found: C, 56.82; H, 7.77; N, 1.56 \%

(4R)-4-Benzyl-3-((2S, 3R)-3-(3-bromo-2,5-dimethoxyphenyl)-2-(((3R, 4S, 5R)-3-(tert-
butyldimethylsilyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-
hydroxypropanoyl)oxazolidin-2-one (150).

$\begin{array}{ll}\text { Mol. Formula } & : \mathrm{C}_{40} \mathrm{H}_{62} \mathrm{BrNO}_{9} \mathrm{Si}_{2} \\ {[\alpha]_{\mathrm{D}}{ }^{25}} & :-10.31\left(c=0.8, \mathrm{CHCl}_{3}\right)\end{array}$

IR ($\left.\mathrm{CHCl}_{3}\right) \mathrm{v}$	$\begin{aligned} & : 668,837,1072,1252,1601,1701,1776,2401,3064,3475 \\ & \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR	: $\delta-0.10$ (s, 3H), -0.02 (s, 6H), -0.01 (s, 3H), 0.83 (s, 9H), 0.85
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	($\mathrm{s}, 9 \mathrm{H}$) 1.06 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.49$ (dq, $J=3.25,14.1 \mathrm{~Hz}$,
	$1 \mathrm{H}), 1.60$ (brs, 1 H), 1.75-1.92 (m, 1H), 2.43 (ddd, $J=4.4$,
	$11.1,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (dd, $J=9.8,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.38$
	$(\mathrm{m}, 2 \mathrm{H}), 3.48$ ($\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (d, $J=5.54 \mathrm{~Hz}, 2 \mathrm{H})$,
	$3.60-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.77$ (s, 3 H), 3.89 (s, 3 H), 4.10 (dd, $J=2.8$,
	$9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, ~ J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{ddd}, J=2.8,8.1$,
	$10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (ddd, $J=2.8,7.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (d, $J=$
	$8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, ~ J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$,
	7.31-7.43 (m, 5H) ppm.
${ }^{13} \mathrm{C}$ NMR	: δ-5.48 (q, $\left.\mathrm{CH}_{3}\right),-5.38\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.58\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.23(\mathrm{q}$,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	$\left.\mathrm{CH}_{3}\right), 15.51\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.75$ (s, C), 18.33 ($\left.\mathrm{s}, \mathrm{C}\right), 25.63$ (q ,
	CH_{3}), $25.87\left(\mathrm{q}, \mathrm{CH}_{3}\right), 31.60$ (t, CH_{2}), $37.84\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.40$ (d,
	$\mathrm{CH}), 44.39$ (d, CH), 55.63 ($\left.\mathrm{q}, \mathrm{CH}_{3}\right), 55.79$ ($\left.\mathrm{q}, \mathrm{CH}_{3}\right), 61.69$ (d,
	$\mathrm{CH}), 65.54\left(\mathrm{t}, \mathrm{CH}_{2}\right), 65.99\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.12(\mathrm{~d}, \mathrm{CH}), 80.68$ (d,
	CH), 80.87 (d, CH), 84.41 (d, CH), 111.99 (d, CH), 117.48 (s,
	C), 118.45 (d, CH), 127.13 (d, CH), 128.81 (d, CH), 129.43 (d,
	$\mathrm{CH}), 135.49$ (s, C), 137.44 (s, C), 148.45 ($\mathrm{s}, \mathrm{C})$, 154.12(s, C),
	156.36 (s, C), 175.39 (s, C) ppm.
ESI-MS (m / z)	: $861.38[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis	Calcd.: C, 57.40; H, 7.47; N, 1.67 \%
	Found: C, 57.42; H, 7.49; N, 1.68 \%

Table 1. Crystal data and structure refinement for 150a.

Identification code	150a
Empirical formula	$\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{Br} \mathrm{N} \mathrm{O}_{9} \mathrm{Si} .0 .5$ (C6H6)
Formula weight	761.79
Temperature	297(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, C2
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=18.302(5) \mathrm{A} & \text { alpha }=90 \text { deg. } \\ \mathrm{b}=11.886(5) \mathrm{A} & \text { beta }=101.492(7) \mathrm{deg} . \\ \mathrm{c}=18.350(5) \mathrm{A} & \text { gamma }=90 \text { deg. } \end{array}$
Volume	3912(2) A^3
Z, Calculated density	$4,1.294 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$1.133 \mathrm{~mm}^{\wedge}-1$
$\mathrm{F}(000)$	1604
Crystal size	$0.29 \times 0.05 \times 0.02 \mathrm{~mm}$

Theta range for data collection	2.06 to 25.00 deg.
Limiting indices	$-21<=\mathrm{h}<=21,-14<=\mathrm{k}<=14,-21<=1<=21$
Reflections collected / unique	$13875 / 6803[\mathrm{R}(\mathrm{int})=0.0733]$
Completeness to theta $=25.00$	99.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9777 and 0.7347
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	$6803 / 133 / 437$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.165
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0911, \mathrm{wR} 2=0.1839$
R indices (all data)	$\mathrm{R} 1=0.1075, \mathrm{wR} 2=0.1924$
Absolute structure parameter	$0.052(16)$
Largest diff. peak and hole	0.780 and -1.044 e. $\mathrm{A}^{\wedge}-3$

(4R)-4-Benzyl-3-((2S, 3R)-3-(3-bromo-2,5-dimethoxyphenyl)-2-(((3R, 4S, 5R)-3-(tert-butyldimethylsilyloxy)-4-methyltetrahydrofuran-2-yl)methyl)-3-hydroxypropanoyl)oxazolidin-2-one (150a).

Mol. Formula : $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{BrNO}_{9} \mathrm{Si}$
$[\alpha]_{D}{ }^{25}$
: -9.72 ($c=1.1, \mathrm{CHCl}_{3}$)
IR ($\left.\mathbf{C H C l}_{3}\right)_{v}: 668,837,1072,1252,1601,1701,1776,2401,3064,3475$ cm^{-1}
${ }^{1}{ }^{1}$ H NMR $\quad: \delta-0.12(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}$,
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $3 \mathrm{H}), 1.56(\mathrm{dq}, J=3.25,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.43$ (ddd, $J=4.4,11.1,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=$ $9.8,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{~d}, \mathrm{~J}=5.54 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.92$

$$
\begin{aligned}
& \text { (} \mathrm{s}, 3 \mathrm{H} \text {), } 4.14(\mathrm{dd}, J=2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\
& 4.58 \text { (ddd, } J=2.8,8.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71 \text { (ddd, } J=2.8,7.5 \text {, } \\
& 10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\
& 7.24(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.43(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} . \\
& { }^{13} \text { C NMR } \quad: \delta-4.66\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.31\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.81\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.73(\mathrm{~s}, \mathrm{C}) \text {, } \\
& \text { (} 125 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {) } 25.60\left(\mathrm{q}, \mathrm{CH}_{3}\right), 31.62\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.75\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.63(\mathrm{~d}, \mathrm{CH}) \text {, } \\
& 44.55(\mathrm{~d}, \mathrm{CH}), 55.65\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.72\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.37(\mathrm{~d}, \mathrm{CH}) \text {, } \\
& 64.25\left(\mathrm{t}, \mathrm{CH}_{2}\right), 65.66\left(\mathrm{t}, \mathrm{CH}_{2}\right), 72.08(\mathrm{~d}, \mathrm{CH}), 80.77(\mathrm{~d}, \mathrm{CH}) \text {, } \\
& 84.25 \text { (d, CH), } 112.09 \text { (d, CH), } 117.57 \text { (} \mathrm{s}, \mathrm{C}), 118.52(\mathrm{~d}, \mathrm{CH}) \text {, } \\
& 127.17 \text { (d, CH), } 128.85 \text { (d, CH), } 129.41 \text { (d, CH), } 135.41 \text { (s, C), } \\
& 137.33 \text { (s, C), } 148.48 \text { (} \mathrm{s}, \mathrm{C} \text {), } 154.17 \text { (} \mathrm{s}, \mathrm{C} \text {), } 156.41 \text { (} \mathrm{s}, \mathrm{C} \text {), } \\
& 175.71 \text { (s, C) ppm } \\
& \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \quad: 744.58[\mathrm{M}+\mathrm{Na}]^{+} \text {. } \\
& \text { Elemental Analysis Calcd.: C, 56.50; H, 6.69; N, } 1.94 \text { \% } \\
& \text { Found: C, 56.52; H, 6.70; N, } 1.92 \text { \% }
\end{aligned}
$$

(1R, 2R)-1-(3-Bromo-2,5-dimethoxyphenyl)-2(((2S, 3R, 4S, 5R)-3-(tert-butyldimethylsilyloxy)-5-((tert-butyldimethylsilyloxy)methyl)-4-
 methyltetrahydrofuran-2-yl)methyl)propane-

1,3-diol (151).

A mixture of the aldol adduct $150(2.5 \mathrm{~g}, 2.98 \mathrm{mmol}), 10 \mathrm{~mL}$ of drydiethylether and anhydrous methanol (0.04 mL) were cooled to $0{ }^{\circ} \mathrm{C}$. Lithium borohydrate (2.0 M in THF , 0.51 mL mmol) was added dropwise, and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with $15 \% \mathrm{NaOH}$ and then concentrated in vacuo. The aqueous layer was extracted with ether, and the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by flash chromatography gave diol 151 ($1.32 \mathrm{~g}, 66 \%$). $\mathrm{R}_{f} 0.5$ (30 \% ethyl acetate/hexane).

$$
\begin{aligned}
& \text { Mol. Formula } \quad: \mathrm{C}_{30} \mathrm{H}_{55} \mathrm{BrO}_{7} \mathrm{Si}_{2} \\
& {[\alpha]_{D}{ }^{25}} \\
& \text { : -8.87 (} c=1.6, \mathrm{CHCl}_{3} \text {) } \\
& \text { IR (} \left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,758,1048,1254,1600,2400,3064,3400 \mathrm{~cm}^{-1} \\
& { }^{1}{ }^{1} \text { H NMR } \quad: \delta 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s} \text {, } \\
& \left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 9 \mathrm{H}\right), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{ddd}, J=6.2,10.3,16.2 \\
& \mathrm{Hz}, 1 \mathrm{H} \text {), } 1.81 \text { (dd, } J=7.5,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-2.01(\mathrm{~m}, 1 \mathrm{H}) \text {, } \\
& 2.13(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.62 \\
& (\mathrm{~m}, 1 \mathrm{H},), 3.63-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{brs}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.77 \\
& \text { (} \mathrm{s}, 3 \mathrm{H} \text {), } 3.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14 \\
& \text { (t, } J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=3.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.01 \\
& \mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} \text {. } \\
& { }^{13} \text { C NMR }: \delta-5.44\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.20\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.03\left(\mathrm{q}, \mathrm{CH}_{3}\right), 15.56(\mathrm{q} \text {, } \\
& \left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{3}\right), 17.84(\mathrm{~s}, \mathrm{C}), 18.25(\mathrm{~s}, \mathrm{C}), 25.69\left(\mathrm{q}, \mathrm{CH}_{3}\right), 25.84(\mathrm{q} \text {, } \\
& \mathrm{CH}_{3} \text {), } 32.79 \text { (t, } \mathrm{CH}_{2} \text {), } 43.09 \text { (d, CH), } 43.24(\mathrm{~d}, \mathrm{CH}), 55.69(\mathrm{q} \text {, } \\
& \left.\mathrm{CH}_{3}\right), 61.13\left(\mathrm{q}, \mathrm{CH}_{3}\right), 63.39\left(\mathrm{t}, \mathrm{CH}_{2}\right), 64.87\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.87(\mathrm{~d} \text {, } \\
& \text { CH), } 81.42 \text { (d, CH), } 83.45 \text { (d, CH), } 83.87 \text { (d, CH), } 112.58 \text { (d, } \\
& \text { CH), } 117.03 \text { (s, C), } 117.34 \text { (d, CH), } 138.56 \text { (s, C), } 147.57 \text { (} \mathrm{s} \text {, } \\
& \text { C), } 156.26 \text { (} \mathrm{s}, \mathrm{C} \text {) ppm. } \\
& \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \quad: 685.43[\mathrm{M}+\mathrm{Na}]^{+} \text {. } \\
& \text { Elemental Analysis Calcd.: C, 54.28; H, } 8.35 \text { \% } \\
& \text { Found: C, 54.30; H, } 8.34 \text { \% }
\end{aligned}
$$

(2R, 3R)-3-(3-bromo-2,5-dimethoxyphenyl)-2(($(2 S, 3 R, 4 S, 5 R)$-3-(tert-butyldimethylsilyloxy)-5-((tert-butyldimethylsilyloxy)methyl)-4-methyltetrahydrofuran-2-yl)methyl)-3-
 hydroxypropyl-4-methylbenzenesulfonate (152).

To a stirred solution of $\mathbf{1 5 1}(1.25 \mathrm{~g}, 1.88 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.315 \mathrm{~mL}, 2.26$ mmol), and DMAP (25 mg) in dichloromethane (25 mL) added p-toluenesulfonyl chloride $(0.33 \mathrm{~g}, 2.26 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 6 h at room temperature, followed by wash with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and
concentrated and the residue was purified on silica gel by using EtOAc-hexane ($2: 1$) to afford 152 ($1.12 \mathrm{~g}, 73 \%$)as a syrup. $\mathrm{R}_{f} 0.8$ (75% ethyl acetate/hexane).

Mol. Formula	: $\mathrm{C}_{37} \mathrm{H}_{61} \mathrm{BrO}_{9} \mathrm{SSi}_{2}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: -14.73 ($\left.c=0.51, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)$: 667, 759, 1035, 1219, 1601,1738, 2934,3419 cm-
${ }^{1} \mathrm{H}$ NMR	$\delta 0.03$ (s, 3H), $0.02(\mathrm{~s}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.86$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	($\mathrm{s}, 9 \mathrm{H})$ 0.92-0.93 (m, 3H), 1.17 (brs, 1 H), 1.72-1.78 (m, 2H),
	2.07 (brs, 1H), 2.33 (s, 3H), 3.27-3.29 (m, 2H), 3.48-3.59 (m,
	$5 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~m}, 2 \mathrm{H}), 7.19$
	(d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	: $\delta-2.57\left(\mathrm{q}, \mathrm{CH}_{3}\right), 15.31\left(\mathrm{q}, \mathrm{CH}_{3}\right), 19.07\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.41(\mathrm{~s}, \mathrm{C})$,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	26.29 (q, CH_{3}), 33.08 (t, CH_{2}), 49.10 (d, CH), 49.74 (d, CH),
	56.37 (q, $\left.\mathrm{CH}_{3}\right), 61.99\left(\mathrm{q}, \mathrm{CH}_{3}\right), 64.46\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.00\left(\mathrm{t}, \mathrm{CH}_{2}\right)$,
	71.54 (d, CH), 82.23 (d, CH), 84.11 (d, CH), 85.16 (d, CH),
	113.84 (d, CH), 118.15 (s, C), 118.55 (d, CH), 127.04 (d, CH),
	129.93 (d, CH), 140.92 (s, C), 141.88 (s, C), 143.50 (s, C),
	149.46 (s, C), 157.93 (s, C) ppm.
ESI-MS (m / z)	: $857.30[\mathrm{M}+\mathrm{k}]^{+}$.
Elemental Analysis	Calcd.: C, 54.33; H, 7.52 \%
	Found: C, 54.35; H, 7.53 \%

(1R, 2S)-1-(3-bromo-2,5-dimethoxyphenyl)-3($(2 S, 3 R, 4 S, 5 R)$-3-(tert-
butyldimethylsilyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)-4-

methyltetrahydrofuran-2-yl)-2-
(iodomethyl)propan-1-ol (153).

A mixture of $\mathbf{1 5 2}(1 \mathrm{~g}, 1.22 \mathrm{mmol})$ and $\mathrm{NaI}(1.49 \mathrm{~g}, 14.6 \mathrm{mmol})$ taken in a glyme was Reflux for 2 h . after complition of reaction, glyme was removed under reduced pressure to get residue which was purified on silica gel by eluting with EtOAC-hexane (1:3) to give iododerivative $153(0.842 \mathrm{~g}, 89 \%)$, as a colorless liquid. $\mathrm{R}_{f} 0.4$ (25 \% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{30} \mathrm{H}_{54} \mathrm{BrIO}_{6} \mathrm{Si}_{2}$

$[\alpha]_{\text {D }}{ }^{25}$: -17.52 (c = 1.4, $\left.\mathrm{CHCl}_{3}\right)$
IR (CHCl_{3}) v	: 668, 758, 838, 1048, 1254, 1599, 2400, 3018, $3435 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR	$: \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.08$ (s, 3H), 0.11 (s, 3H), 0.88 (s, 9H), 0.90
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	($\mathrm{s}, 9 \mathrm{H}$) 1.04 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20$ (ddd, $J=6.7,10.5,17.2$
	$\mathrm{Hz}, 1 \mathrm{H}), 1.6(\mathrm{brs}, 1 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{dt}, J=5.6,$
	$9.8,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dt}, J=6.7,9.8,14.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.56$ (q,
	$J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=6.7$,
	$10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), 3.81 (s, 3H), 5.03 (t, J = 5.2 Hz,
	$1 \mathrm{H}), 6.97$ (d, $J=3.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=3.01 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	: δ-5.40 (q, CH3), -5.37 (q, CH3), -4.01 (q, CH_{3}), $11.42\left(\mathrm{t}, \mathrm{CH}_{2}\right)$,
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	15.41 (q, CH_{3}), 17.89 (s, C), 18.28 (s, C), 25.80 (q, CH_{3}),
	25.84 (q, CH3), 34.95 (t, CH2), 42.98 (d, CH), 43.12 (d, CH),
	55.72 (q, $\left.\mathrm{CH}_{3}\right), 61.16\left(\mathrm{q}, \mathrm{CH}_{3}\right), 65.00\left(\mathrm{t}, \mathrm{CH}_{2}\right), 70.47(\mathrm{~d}, \mathrm{CH})$,
	81.27 (d, CH), 83.52 (d, CH), 83.76 (d, CH), 112.62 (d, CH),
	117.21 (d, CH), 117.72 (s, C), 137.43 (s, C), 147.83 (s, C),
	156.23 (s, C) ppm.
ESI-MS (m / z)	: $797.39[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis	Calcd.: C, 46.57; H, 7.03 \%
	Found: C, 46.58; H, 7.05 \%

(1R, 2S)-1-(3-Bromo-2,5-dimethoxyphenyl)-3($(2 S, 3 R, 4 S, 5 R)$-3-(tert-
butyldimethylsilyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)-4-

methyltetrahydrofuran-2-yl)-2-
methylpropan-1-ol (154).

The iodocompound $153(0.72 \mathrm{~g}, 0.93 \mathrm{mmol})$ in dry methnol (30 mL) was treated with $10 \% \mathrm{Pd} / \mathrm{c}$ under hydrogen atmosphere (2 psi) at rt . for 1 h . After completion of reaction, the mixture was filtered through celite, concentrated to get residue which on purification over silica gel column chromatography using EtOAchexane (1:6) afforded $154\left(0.510 \mathrm{~g}, 85 \%\right.$) as liquid. $\mathrm{R}_{f} 0.6(20 \%$ ethyl acetate/hexane).

$$
\begin{aligned}
& \text { Mol. Formula } \quad: \mathrm{C}_{30} \mathrm{H}_{55} \mathrm{BrO}_{6} \mathrm{Si}_{2} \\
& {[\alpha]_{D}{ }^{25}} \\
& \text { : -18.43 (} c=0.4, \mathrm{CHCl}_{3} \text {) } \\
& \text { IR (} \left.\mathbf{C H C l}_{3}\right) v \quad: 668,756,838,1047,1215,1600,2400,3019,3434 \mathrm{~cm}^{-1} \\
& { }^{1} \text { H NMR } \quad: \delta 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s} \text {, } \\
& \left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 9 \mathrm{H}\right), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{brs}, 1 \mathrm{H}) \text {, } \\
& \text { 1.59-1.61 (m, 2H), 1.89-2.00 (m, 1H), 2.03-2.16 (m,1H), 3.21 } \\
& (\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.59(\mathrm{~m}, 1 \mathrm{H}) \text {, } \\
& 3.60-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=4.1 \\
& \mathrm{Hz}, 1 \mathrm{H}), ~ 6.93-6.97(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} \text {. } \\
& { }^{13} \mathbf{C} \text { NMR }: \delta-5.42\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.09\left(\mathrm{q}, \mathrm{CH}_{3}\right),-3.97\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.74(\mathrm{q} \text {, } \\
& \text { (} 125 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {) } \mathrm{CH}_{3} \text {), } 15.51\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.89(\mathrm{~s}, \mathrm{C}), 18.27(\mathrm{~s}, \mathrm{C}), 25.73(\mathrm{q} \text {, } \\
& \mathrm{CH}_{3} \text {), } 25.84\left(\mathrm{q}, \mathrm{CH}_{3}\right), 37.17(\mathrm{~d}, \mathrm{CH}), 37.54\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.22(\mathrm{~d} \text {, } \\
& \mathrm{CH}), 55.67\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.02\left(\mathrm{q}, \mathrm{CH}_{3}\right), 65.02\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.14(\mathrm{~d} \text {, } \\
& \text { CH), } 82.32 \text { (d, CH), } 83.67 \text { (d, CH), } 83.85 \text { (d, CH), } 112.57 \text { (d, } \\
& \text { CH), } 116.83 \text { (} \mathrm{s}, \mathrm{C} \text {), } 116.97 \text { (d, CH), } 138.80 \text { (} \mathrm{s}, \mathrm{C} \text {), } 147.54 \text { (} \mathrm{s} \text {, } \\
& \text { C), } 156.01 \text { (} \mathrm{s}, \mathrm{C} \text {) ppm. } \\
& \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \quad: 670.53[\mathrm{M}+\mathrm{Na}]^{+} \text {. } \\
& \text { Elemental Analysis Calcd.: C, 55.62; H, } 8.56 \text { \% } \\
& \text { Found: C, 55.63; H, } 8.58 \text { \% }
\end{aligned}
$$

(3R, 4R, 5R)-2-((2S, 3R)-3-(3-bromo-2,5-dimethoxyphenyl)-3-hydroxy-2-
methylpropyl)-5-((tert-
butyldimethylsilyloxy)methyl)-4-

methyltetrahydrofuran-3-ol (156).

A mixture of $153(0.45 \mathrm{~g}, 1.07 \mathrm{mmol})$, imidazole $(0.87 \mathrm{~g}, 1.28 \mathrm{mmol})$, TBDMSCl $(0.194 \mathrm{~g}, 1.28 \mathrm{mmol})$ and DMAP $(5 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred for 6 h at room temperature. After completion of the reaction, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to get residue, which was purified on silica gel by eluting with EtOAC-hexane (1:4) to give TBS ether derivative 156 ($0.48 \mathrm{~g}, 89 \%$), as a colorless liquid. $\mathrm{R}_{f} 0.5$ (30% ethyl acetate/hexane).

$$
\begin{aligned}
& \text { Mol. Formula } \quad \mathrm{C}_{24} \mathrm{H}_{41} \mathrm{BrO}_{6} \mathrm{Si} \\
& {[\alpha]_{D}{ }^{25}} \\
& \text { : -8.11 }\left(c=0.22, \mathrm{CHCl}_{3}\right) \\
& \operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v \quad: 669,755,1047,1253,1600,2400,3019,3436 \mathrm{~cm}^{-1} \\
& { }^{1} \text { H NMR } \quad: \delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~d} \text {, } \\
& \text { (} 500 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {) } \quad J=6.7 \mathrm{~Hz}, 3 \mathrm{H} \text {), 1.61-1.63 (m, 2H), 2.05-2.17 (m, 2H), } 2.58 \\
& \text { (brs, 1H), } 2.95 \text { (brs, 1H), } 3.47 \text { (t, } J=6.7 \mathrm{~Hz}, 1 \mathrm{H} \text {), 3.61-3.69 } \\
& (\mathrm{m}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{dq}, J=2.7,5.7,9.1 \mathrm{~Hz} \text {, } \\
& 1 \mathrm{H}), 5.03(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.00(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} \text {. } \\
& { }^{13} \text { C NMR } \quad: \delta-5.48\left(\mathrm{q}, \mathrm{CH}_{3}\right),-5.40\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.52\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.06(\mathrm{q} \text {, } \\
& \left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{3}\right), 18.32(\mathrm{~s}, \mathrm{C}), 25.87\left(\mathrm{q}, \mathrm{CH}_{3}\right), 36.90(\mathrm{~d}, \mathrm{CH}), 37.99(\mathrm{t} \text {, } \\
& \left.\mathrm{CH}_{2}\right), 43.52(\mathrm{~d}, \mathrm{CH}), 55.70\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.12\left(\mathrm{q}, \mathrm{CH}_{3}\right), 65.21(\mathrm{t} \text {, } \\
& \mathrm{CH}_{2} \text {), } 71.29 \text { (d, CH), } 83.28 \text { (d, CH), } 83.41 \text { (d, CH), } 84.26 \text { (d, } \\
& \mathrm{CH} \text {), } 112.61 \text { (d, CH), } 116.87 \text { (s, C), } 117.07 \text { (d, CH), } 138.81 \text { (} \mathrm{s} \text {, } \\
& \text { C), } 147.59 \text { (s, C), } 156.06 \text { (s, C) ppm. } \\
& \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \quad: 557.40[\mathrm{M}+\mathrm{Na}]^{+} \text {. } \\
& \text { Elemental Analysis Calcd.: C, 54.02; H, } 7.75 \text { \% } \\
& \text { Found: C, 54.04; H, } 7.76 \text { \% }
\end{aligned}
$$

(2R, 3S, 4R, 5S)-5-((2S, 3R)-3-(3-Bromo-2,5-
dimethoxyphenyl)-3-methoxy-2-methylpropyl)-tetrahydro-4-methoxy-3-methylfuran-2-yl)methoxy)(tert-
 butyl)dimethylsilane (157).

The diol product $156(0.45 \mathrm{~g}, 0.844 \mathrm{mmol})$ in dry DMF (8 mL) was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(60 \%$ dispersion in oil, $0.84 \mathrm{~g}, 2.11 \mathrm{mmol})$ was added portion-wise at $0^{\circ} \mathrm{C}$. After 25 min , iodo methane $0.3 \mathrm{~g}(0.13 \mathrm{~mL}, 32.7 \mathrm{mmol})$ was added. After 3 h , the reaction mixture was worked up to give the residue, which was purified on silica gel by eluting with EtOAc-hexane (1:6) to give 157 ($0.392 \mathrm{~g}, 82 \%$) as liquid. $\mathrm{R}_{f} 0.5$ (25% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{26} \mathrm{H}_{45} \mathrm{BrO}_{6} \mathrm{Si}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+7.35\left(c=1.8, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v \quad: 667,758,837,1049,1254,1599,1730,2401,3010,3472 \mathrm{~cm}^{-1}$

```
\({ }^{1} \mathbf{H}\) NMR \(\quad: \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10\)
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
    (d, \(J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{ddd}, J=3.3,9.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58\)
    (ddd, \(J=4.5,10.1,14.6 \mathrm{~Hz}, 1 \mathrm{H}\) ), 1.99-2.08 (m, 2H), 3.13 (t, \(J\)
    \(=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dt}, J=5.2,10.4\)
    \(\mathrm{Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, \mathrm{J}=5.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=5.2,10.4\)
    \(\mathrm{Hz}, 1 \mathrm{H}\) ), 3.77 (s, 3H), 3.80 (s, 3H), 3.87-3.93 (m, 1H), 4.43 (d,
    \(J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=3.1 \mathrm{~Hz}\),
    1H) ppm.
\({ }^{13}\) C NMR \(: \delta-5.36\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.00\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.34\left(\mathrm{q}, \mathrm{CH}_{3}\right), 18.31(\mathrm{~s}\), \(\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{C}\) ), \(25.89\left(\mathrm{q}, \mathrm{CH}_{3}\right), 36.34(\mathrm{~d}, \mathrm{CH}), 37.80\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.07(\mathrm{~d}\), \(\mathrm{CH}), 55.73\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.29\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.81\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.24(\mathrm{q}\), \(\mathrm{CH}_{3}\) ), 65.01 (t, \(\mathrm{CH}_{2}\) ), 80.45 (d, CH), 81.84 (d, CH), 84.07 (d, CH), 93.45 (d, CH), 112.28 (d, CH), 117.08 (s, C), 117.41 (d, CH), 136.95 (s, C), 149.18 (s, C), 156.19 (s, C) ppm.
ESI-MS (m/z) : \(585.75[\mathrm{M}+\mathrm{Na}]^{+}\).
Elemental Analysis Calcd.: C, 55.60; H, 8.08 \%
Found: C, 55.61; H, 8.10 \%
```

(2R, 3S, 4R, 5S)-5-((2S,3R)-3-(3-Bromo-2,5-dimethoxyphenyl)-3-methoxy-2-methylpropyl)-tetrahydro-4-methoxy-3-methylfuran-2yl)methanol (158).

To a solution of TBSether $157(0.35 \mathrm{~g}, 0.623 \mathrm{mmol})$ in THF (15 mL) was added tetrabutylammonium fluoride (1.0 M in $\mathrm{THF}, 1.56 \mathrm{~mL}, 1.55 \mathrm{mmol}$) and stirred for 3 h at room temperature. The reaction mixture was quenched with water, extracted with ethylacetate, dried (over NaSO_{4}) and concentrated to get a crude residue, which on purification over silica gel column chromatography using EtOAchexane (1:4) afforded 158 ($0.232 \mathrm{~g}, 83 \%$) as a colorless liquid. $\mathrm{R}_{f} 0.7$ (25% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{BrO}_{6}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+39.66\left(c=0.75, \mathrm{CHCl}_{3}\right)$

IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 666,756,1048,1215,1599,1731,2400,3019,3468 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR
: $\delta 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.96-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{brs}, 1 \mathrm{H}), 3.06-3.28(\mathrm{~m}, 1 \mathrm{H})$, $3.24(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.58(\mathrm{~m}$, $1 \mathrm{H}), 3.63-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.94-3.98$ $(\mathrm{m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=3.02 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=3.02 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta 14.09\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.76\left(\mathrm{q}, \mathrm{CH}_{3}\right), 36.36(\mathrm{~d}, \mathrm{CH}), 37.57(\mathrm{t}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{2}\right), 40.84(\mathrm{~d}, \mathrm{CH}), 55.72\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.29\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.61$ ($\mathrm{q}, \mathrm{CH}_{3}$), $61.18\left(\mathrm{q}, \mathrm{CH}_{3}\right), 63.27\left(\mathrm{t}, \mathrm{CH}_{2}\right), 80.91(\mathrm{~d}, \mathrm{CH}), 81.85$ (d, CH), 84.03 (d, CH), $93.40(\mathrm{~d}, \mathrm{CH}), 112.26(\mathrm{~d}, \mathrm{CH}), 117.09$ (s, C), 117.42 (d, CH), 136.79 (s, C), 149.08 ($\mathrm{s}, \mathrm{C}), 156.20$ (s , C) ppm .

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 470.27[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 53.70; H, 6.98 \%
Found: C, 53.71; H, 6.99 \%
(2R, 3S, 4R, 5S)-5-((2S,3R)-3-(3-Bromo-2,5-dimethoxyphenyl)-3-methoxy-2-methylpropyl)-tetrahydro-4-methoxy-3-methylfuran-2-yl)methyl4-methylbenzenesulfonate (159).

To a stirred solution of $158(0.2 \mathrm{~g}, 0.44 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.07 \mathrm{~mL}, 0.54 \mathrm{mmol})$ and DMAP (10 mg) in dichloromethane (10 mL) was added p-toluenesulfonyl chloride $(0.78 \mathrm{~g}, 0.54 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h at room temperature, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel by using EtOAc-hexane (1:5) to afforded 159 (0.226 $\mathrm{g}, 85 \%$) as liquid. $\mathrm{R}_{f} 0.5(30 \%$ ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{27} \mathrm{H}_{37} \mathrm{BrO}_{8} \mathrm{~S}$

$[\alpha]_{D}{ }^{25}$
$:+2.63\left(c=1.0, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right) v \quad: 666,755,1047,1216,1599,2401,3015 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.40$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (ddd, $J=3.2,8.9,13.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.55 (ddd, $J=4.8,10.8,14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}$, 1 H), $3.22(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dt}, J=5.3,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.77 (s, 6H), 3.80-3.85 (m, 1H), 4.01 (d, $J=5.3,2 \mathrm{H}), 4.40(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 13.79\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.81\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.51\left(\mathrm{q}, \mathrm{CH}_{3}\right), 36.32(\mathrm{~d}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}\right), 37.86\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.70(\mathrm{~d}, \mathrm{CH}), 55.70\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.25(\mathrm{q}$, $\left.\mathrm{CH}_{3}\right), \quad 57.71\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.14\left(\mathrm{q}, \mathrm{CH}_{3}\right), 70.40\left(\mathrm{t}, \mathrm{CH}_{2}\right), 80.89$ (d, CH), 81.22 (d, CH), $81.59(\mathrm{~d}, \mathrm{CH}), 92.71(\mathrm{~d}, \mathrm{CH}), 112.22$ (d, CH), 117.04 (s, C), 117.28 (d, CH), $127.85(\mathrm{~d}, \mathrm{CH}), 129.71$ (d, CH), 132.90 (s, C), 136.79 (s, C), 144.66 (s, C), 149.00 (s , C), 156.14 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 625.47[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 53.91; H, 6.20 \%
Found: C, 53.93; H, 6.24 \%
(2S, 3R, 4R, 5R)-2-((2S, 3R)-3-(3-Bromo-2,5-dimethoxyphenyl)-3-methoxy-2-methylpropyl)-tetrahydro-5-(iodomethyl)-3-methoxy-4methylfuran (100).

A mixture of $159(0.2 \mathrm{~g}, 0.33 \mathrm{mmol})$ and $\mathrm{NaI}(0.598 \mathrm{~g}, 3.9 \mathrm{mmol})$ taken in a glyme was Reflux for 2 h , after complition of reaction, glyme was removed under reduced pressure to get residue which was purified on silica gel by eluting with EtOAC-hexane (1:5) to give iododerivative $\mathbf{1 0 0}(0.152 \mathrm{~g}, 82 \%)$ as a colorless liquid. $\mathrm{R}_{f} 0.6$ (25% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{BrIO}_{5}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+8.26\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 666, 756, 1048, 1215, 1599, $3016 \mathrm{~cm}^{-1}$
${ }^{1}{ }^{1}$ H NMR $\quad: \delta 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.44$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad(\mathrm{ddd}, J=3.2,8.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.12$
(m, 2H), 3.19-3.23 (m, 2H), 3.25 ($\mathrm{s}, 3 \mathrm{H}$), 3.33 (t, $J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 4.01(\mathrm{dt}, J=3.5,10.1,1 \mathrm{H}), 4.44(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR
: $\delta 9.42\left(\mathrm{t}, \mathrm{CH}_{2}\right), 14.05\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.64\left(\mathrm{q}, \mathrm{CH}_{3}\right), 36.51(\mathrm{~d}$,
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\mathrm{CH}), 37.95\left(\mathrm{t}, \mathrm{CH}_{2}\right), 45.20(\mathrm{~d}, \mathrm{CH}), 55.79\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.37(\mathrm{q}$, CH_{3}), $57.80\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.37\left(\mathrm{q}, \mathrm{CH}_{3}\right), 81.16(\mathrm{~d}, \mathrm{CH}), 81.63$ (d, CH), 83.28 (d, CH), 93.46 (d, CH), 112.30 (d, CH), 117.13 (s , C), 117.37 (d, CH), 136.92 ($\mathrm{s}, \mathrm{C}), 149.08$ ($\mathrm{s}, \mathrm{C}), 156.21$ ($\mathrm{s}, \mathrm{C})$ ppm.
ESI-MS (m / z) : $579.43[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 43.11; H, 5.43 \%
Found: C, 43.14; H, 5.45 \%
(1R, 2S, 4S, 5R, 6S)-1-(3-Bromo-2,5-
dimethoxyphenyl)-1,5-dimethoxy-2,6-dimethyloct-7-en-4-ol (160).

A mixture of iodocompound $\mathbf{1 0 0}(0.14 \mathrm{~g}, 0.25 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}$ (catalytic) in a dry methanol was treated with activated zinc $(0.164 \mathrm{~g}, 2.51 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 30 min. after complition of reaction, the mixture was filtered through celite, concentrated the oganic layer to get residue which on purification over silica gel by eluting with EtOAC-hexane (1:4) to give hydroxyl olefinic compound $\mathbf{1 6 0}(0.86 \mathrm{~g}, 79$ $\%$) as a colorless liquid. $\mathrm{R}_{f} 0.4$ (20% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{BrO}_{5}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+76.08\left(c=0.75, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v: 667,757,1048,1216,1599,1639,1734,2401,2933,3468$ cm^{-1}
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{bs}$, $\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1 \mathrm{H}\right), 1.47-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=6.8,1 \mathrm{H}), 2.02-2.08(\mathrm{~m}$, $1 \mathrm{H}), 2.42$ (qn, $J=4.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, \mathrm{J}=4.7,6.7,1 \mathrm{H})$, $3.25(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (m, 3H), $4.42(\mathrm{~d}, J=4.7,1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.2,17.8 \mathrm{~Hz}, 2 \mathrm{H})$,
5.75 (ddd, $J=10.2,17.8,1 \mathrm{H}), 6.86(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$) ppm.
$\begin{array}{ll}{ }^{13} \text { C NMR } & : \delta 14.02\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.05\left(\mathrm{q}, \mathrm{CH}_{3}\right), 35.50\left(\mathrm{t}, \mathrm{CH}_{2}\right), 35.88(\mathrm{~d}, \\ \left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) & \mathrm{CH}), 40.15(\mathrm{~d}, \mathrm{CH}), 55.74\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.35\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.95(\mathrm{q}, \\ & \left.\mathrm{CH}_{3}\right), 61.24\left(\mathrm{q}, \mathrm{CH}_{3}\right), 70.81(\mathrm{~d}, \mathrm{CH}), 82.50(\mathrm{~d}, \mathrm{CH}), 88.59(\mathrm{~d}, \\ & \mathrm{CH}), 112.52(\mathrm{~d}, \mathrm{CH}), 114.34\left(\mathrm{t}, \mathrm{CH}_{2}\right), 117.18(\mathrm{~s}, \mathrm{C}), 117.39(\mathrm{~d}, \\ & \mathrm{CH}), 136.45(\mathrm{~s}, \mathrm{C}), 141.41(\mathrm{~d}, \mathrm{CH}), 149.09(\mathrm{~s}, \mathrm{C}), 156.14(\mathrm{~s}, \\ & \mathrm{C}) \mathrm{ppm} . \\ \text { ESI-MS }(\mathrm{m} / \mathrm{z}) & : 455.26[\mathrm{M}+\mathrm{Na}]^{+} . \\ \text {Elemental Analysis } & \text { Calcd.: C, } 55.69 ; \mathrm{H}, 7.24 \% \\ & \text { Found: C, } 55.72 ; \mathrm{H}, 7.25 \%\end{array}$

1-Bromo-2,5-dimethoxy-3-((1R, 2S, 4S, 5R, 6S)-
1,4,5-trimethoxy-2,6-dimethyloct-7-enyl)benzene (98).

The alcohol product $160(0.045 \mathrm{~g}, 0.104 \mathrm{mmol})$ in dry DMF (8 mL) was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(60 \%$ dispersion in oil, $0.084 \mathrm{~g}, 2.11 \mathrm{mmol}$) was added portion-wise at $0^{\circ} \mathrm{C}$. After 25 min , iodo methane 0.03 g ($0.013 \mathrm{~mL}, 32.7 \mathrm{mmol}$) was added. After 3 h , the reaction mixture was worked up to give the residue, which was purified on silica gel by eluting with EtOAc-hexane (1:6) to give 98 ($0.038 \mathrm{~g}, 82 \%$) as a syrup. $\mathrm{R}_{f} 0.5(25 \%$ ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{BrO}_{5}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+24.39\left(c=0.25, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) v \quad: 667,757,1048,1216,1599,1639,1734,2933,3468 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.44$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad(\mathrm{ddd}, J=2.2,10.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67$ (ddd, $J=3.5,10.2,14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.97-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dq}, J=6.7,14.3,21.5 \mathrm{~Hz}$, 1 H), 3.14 (dd, $J=3.03,7.63 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22 (dd, $J=6.97,10.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.23 ($\mathrm{s}, 3 \mathrm{H}$), 3.32 ($\mathrm{s}, 3 \mathrm{H}$), 3.47 ($\mathrm{s}, 3 \mathrm{H}$), 3.77($\mathrm{s}, 3 \mathrm{H}$), $3.81(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{~d}, J=4.3,1 \mathrm{H}), 4.99(\mathrm{~d}, J=16.9,23.2 \mathrm{~Hz}$,
$2 \mathrm{H}), 5.75$ (ddd, $J=10.2,17.8,1 \mathrm{H}), 6.86(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.01 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR : $\delta 13.50\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.66\left(\mathrm{q}, \mathrm{CH}_{3}\right), 33.48\left(\mathrm{t}, \mathrm{CH}_{2}\right), 35.46(\mathrm{~d}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{CH}\right), 40.46(\mathrm{~d}, \mathrm{CH}), 55.70\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.05\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.40(\mathrm{q}$, $\left.\mathrm{CH}_{3}\right), 60.60\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.21\left(\mathrm{q}, \mathrm{CH}_{3}\right), 80.75(\mathrm{~d}, \mathrm{CH}), 82.53$ (d, CH), 84.57 (d, CH), $112.38(\mathrm{~d}, \mathrm{CH}), 114.51\left(\mathrm{t}, \mathrm{CH}_{2}\right), 117.06$ (d, CH), 117.29 (s, C), 136.99 (s, C), 141.32 (d, CH), 149.08 (s, C), 156.07 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 468.41[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 56.63; H, 7.47 \%
Found: C, 56.66; H, 7.48 \%

SPECTROSCOPIC DATA

${ }^{1} \mathbf{H}$ NMR Spectrum of Rearranged product 108 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of Rearranged product 108 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of Epoxide-112 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Epoxide Opened Product 113 in $\mathrm{CDCl}_{3} / \mathbf{C C l}_{4}$

${ }^{1} \mathbf{H}$ NMR Spectrum of Ac-Acetal 114 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathbf{C}$ NMR Spectrum of Ac-Acetal 114 in $\mathrm{CDCl}_{3} / \mathrm{CCl}_{4}$

${ }^{1} \mathrm{H}$ NMR Spectrum of Bn-Acetal 115 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of Bn-Acetal 115 in $\mathrm{CDCl}_{3} / \mathbf{C C l}_{4}$

${ }^{1} \mathbf{H}$ NMR Spectrum of Conjugated ester 117 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of Conjugated ester 117 in CDCl_{3}

${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum of Acid 104 in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR Spectrum of Acid-104 in $\mathrm{CDCl}_{3} / \mathrm{CCl}_{4}$

${ }^{13} \mathrm{C}$ NMR Spectrum of Chloro acetyl Oxazolidinone 119 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of Conjugated Oxazolidinone 116 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of Conjugated Oxazolidinone 116 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of Di-Bn Oxazolidinone 101 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Di-Bn Oxazolidinone 101 in $\mathrm{CDCl}_{3} / \mathrm{CCl}_{4}$

${ }^{1} \mathbf{H}$ NMR Spectrum of Di-Bn Aryl Nitro Evans adduct-OTMS 122 in $\mathbf{C D C l}_{3}$

${ }^{13}$ C NMR Spectrum of Di-Bn Aryl Nitro Evans adduct-OTMS 122 in $\mathbf{C D C l}_{3}$

${ }^{13}$ C NMR Spectrum of Di-Bn Aryl Nitro Evans adduct-OH 123 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathbf{H}$ NMR Spectrum of Diol-124 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Diol-124 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of Iodo product-126 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of Deiodo-NH-Boc-127 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Deiodo-NH-Boc-127 in $\mathrm{CDCl}_{3} / \mathrm{CCl}_{4}$

${ }^{1} \mathrm{H}$ NMR Spectrum of Diol Oxazolidinone-129 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Diol Oxazolidinone-129 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of MonoTosyl Oxazolidinone-130 in $\mathbf{C D C l}_{3}$

${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum of Tosyl-TBS Oxazolidinone-131 in $\mathrm{CDCl}_{\mathbf{3}}$

${ }^{13} \mathbf{C}$ NMR Spectrum of Tosyl-TBS Oxazolidinone-131 in CDCl $\mathbf{3}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of Iodo-TBS Oxazolidinone-132 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of Iodo-TBS Oxazolidinone-132 in CDCl_{3}
(
${ }^{1} \mathbf{H}$ NMR Spectrum of Tosyl-TBS Aryl Nitro Evans adduct-OTMS 133 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathbf{C}$ NMR Spectrum of Tosyl-TBS Aryl Nitro Evans adduct-OTMS 133 in $\mathbf{C D C l}_{3}$

${ }^{1}$ H NMR Spectrum of Iodo-TBS Aryl Nitro Evans adduct-OTMS 134 in $\mathbf{C D C l}_{3}$

${ }^{13}$ C NMR Spectrum of Iodo-TBS Aryl Nitro Evans adduct-OTMS 134 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathbf{H}$ NMR Spectrum of Di-TBS Oxazolidinone-137 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of Di-TBS Oxazolidinone-137 in CDCl_{3}
(
${ }^{1} H$ NMR Spectrum of Di-TBS Aryl Nitro Evans adduct-OTMS 138 in CDCl $_{3}$

${ }^{13}$ C NMR Spectrum of Di-TBS Aryl Nitro Evans adduct-OTMS 138 in $\mathbf{C D C l}_{3}$

${ }^{1} H$ NMR Spectrum of Di-TBS Aryl Nitro Evans adduct-OH 139 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of Di-TBS Aryl Nitro Evans adduct-OTMS 139 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathbf{H}$ NMR Spectrum of Hydroxy Olefine-141 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Hydroxy Olefine-141 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of lactone-142 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of IodoTBS Aryl Bromo Evans adduct-OTMS 145 in CDCl $_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum of IodoTBS Aryl Bromo Evans adduct-OTMS 145 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of olefinic product 147 in CDCl_{3}
(
${ }^{13} \mathrm{C}$ NMR Spectrum of olefinic product 147 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of Di-TBS Evans anti aldol adduct-OTMS 149 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of Di-TBS Evans anti aldol adduct-OTMS 149 in CDCl_{3}
(
${ }^{1} \mathrm{H}$ NMR Spectrum of Evans anti aldol adduct-OH 150 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Evans anti aldol adduct-OH 150 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of Diol 151 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Diol 151 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of tosyl derivative 152 in MeOD_{4}

${ }^{13} \mathrm{C}$ NMR Spectrum of tosyl derivative 152 in MeOD_{4}

${ }^{13} \mathrm{C}$ NMR Spectrum of iodo derivative 153 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of Deiodo product 154in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Deiodo product 154 in CDCl_{3}

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of TBS-protected 157 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of TBS-protected 157 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of Tosylate 159 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Tosylate 159 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of Iodo product 100 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of Iodo product 100 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of hydroxy olefin 160 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of hydroxy olefin 160 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of final fragment 98 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of final fragment 98 in CDCl_{3}

REFERENCES

Reference:

1. Y. Uehara, M. Hori, T. Takeuchi, and H. Umezawa, Jpn. J. Cancer Res., 76, 672 (1985).
2.S.Omura, Y. Iwai, Y. Takahashi, N. Sadakane, A. Nakagawa, H. Oiwa, Y. Hasegawa and T. Ikai, J. Antibiot., 32, 255 (1979).
2. Y. Uehara, M. Hori, T. Takeuchi, and H. Umezawa, Mol. Cell Biol. , 6, 2198 (1986) .
3. Y. Uehara, Y. Murakami, S. Mizuno, and S. Kawai, Virology, 164, 294 (1988) .
4. Y. Murakami, S. Mizuno, M. Hori, and Y. Uehara, Cancer Res., 48, 1587 (1988) .
5. K. Suzukake-Tsuchiya, Y. Moriya, M. Hori, Y. Uehara, and T.Takeuchi, J. Antibiot., 42, 1831(1989).
6. H. Yamaki, S.M.M. Iguchi-Ariga, and H. Ariga,J. Antibiot., 42, 604 (1989) .
7. Y. Uehara, Y. Murakami, Y. Sugimoto, and S. Mizuno, Cancer Res., 49, 780 (1989) .
8. Y. Uehara, H. Fukazawa, Y. Murakami, and S. Mizuno, Biochem. Biophys. Res. Commun., 163, 803 (1989).
9. R. Garcia, N.U. Parikh, H. Saya, and G.E. Gallick, Oncogene, 6, 1983 (1991).
10. J.B. Knopka and O.N. Witte, Biochim. Biophys. Acta, 823, l(1985).
11. J.B. Knopka, S.M. Watanabe, J. W. Singer, S. J. Collins, and O.N. Witte, Proc. Natl. Acad. Sci.USA, 82, 1810 (1985).
12. Y. Honma, J. Okabe-Kado, M. Hozumi, Y. Uehara, andS. Mizuno, CancerRes., 49,331 (1989).
13. K. Kondo, T. Watanabe, H. Sasaki, Y. Uehara, and M. Oishi, J. Cell Biol., 109, 285 (1989).
14. Ritossa F. A new pufing pattern induced by temperature and DNP in Drosophila. Experimentia 1962; 18: 571-573.
15. Morimoto RI, Kline MP, Bimston DN, Cotto JJ. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 1997; 32: 17-29.
16. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 2002; 295: 1852-1858.
17. Young JC, Moarefi I, Hartl FU. Hsp90: a specialized but essential proteinfolding tool. J Cell Biol 2001; 154: 267-273.
18. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 1997; 18: 306-360.
19. Richter K, Buchner J. Hsp90: chaperoning signal transduction. J Cell Physiol 2001; 188: 281-290.
20. Hickey E, Brandon SE, Sadis S et al. Molecular cloning of sequences encoding the human heat-shock proteins and their expression during hyperthermia. Gene 1986; 43: 147-154.
21. Stebbins CE, Russo AA, Schneider C et al. Crystal structure of an Hsp90geldanamycin complex: targeting of a protein chaperone by an antitumar agent. Cell 1997; 89: 239-250.
22. Prodromou C, Roe SM, O’Brien R et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 1997; 90: 65-75.
23. Grenert JP, Sullivan WP, Fadden P et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 1997; 272: 23843-23850.
24. Garnier C, Lafitte D, Tsvetkov PO et al. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J Biol Chem 2002; 277: 12208-12214.
25. Soti C, Racz A, Csermely P. A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a Cterminal binding pocket. J Biol Chem 2002; 277: 7066-7075.
26. Marcu MG, Chadli A, Bouhouche I et al. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATPbinding domain in the carboxyl terminus of the chaperone. J Biol Chem 2000; 275: 37181-37186.
27. Whitesell L, Mimnaugh EG, De Costa B et al. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994; 91: 8324-8328.
28. Smith DF, Whitesell L, Nair SC et al. Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 1995; 15: 6804-6812.
29. Hernandez MP, Chadli A, Toft DO. HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem 2002; 277: 1187311881.
30. Wegele, H. et al. (2004) Hsp70 and Hsp90-a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol. 151, 1-44.
31. Mosser, D.D. et al. Molecular chaperones and the stress of oncogenesis. Oncogene, 2004, 23, 2907-2918, .
32. Kamal, A. et al. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med. 2004, 10, 283-290.
33. Kamal, A. et alA high affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature . 2003, 425, 407-410.
34. Vilenchik, M. et al. Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem. Biol. 2004,11, 787-797.
35. Jove R, Hanafusa H. Cell transformation by the viral src oncogene. Annu Rev Cell Bio 1987;3:31-356.
36. Uehara Y, Murakami Y, Mizuno S, Kawai S. Inhibition of transforming activity of tyrosine kinase oncogenes by herbimycin A. Virology 1988;164:294-298.
37. Whitesell L, Shifrin SD, Schwab G, Neckers LM. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res 1992;52:1721-1728.
38. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein Hsp90- pp60v-src heteroprotein complex formation by benzoquinone ansamycins: Essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci 1994;91:8324-8328.
39. Frydman J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu Rev Biochem 2001;70:603-649.
40. Lindquist S, Craig SE. The heat shock proteins. Annu Rev Genet 1988;22:631-677.
41. Watson K. Microbial stress proteins. Adv Microb Physiol 1990;31:183-223.
42. Lathigra RB, Butcher PD, Garbe TR, Young DB. Heat shock proteins as virulence factors of pathogens. Curr Top Microbiol Immunol 1991;167:125-143.
43. Ferrarini M, Heltai S, Zocchi MR, Rugarli C. Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 1992;51:613-619.
44. Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998;396:336-342.
45. Knight CA. Chaperones as buffering agents? Science 2002;296:2348-2349.
46. Carrello A, Ingley E, Minchin RF, Tsai A, Ratajczak T. The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and HOP is located in the dimerization domain of Hsp90. J Biol Chem 1999;274:2682-2689.
47. Das AK, Cohen PTW, Barford D. The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein-protein interactions. EMBO J 1998;17:1192-1199.
48. Murphy PJM, Kanelakis KC, Galifniana MD, Morishima Y, Pratt WB. Stoichiometry, abundance, and functional significance of the Hsp90/Hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J Biol Chem 2001;276:3009230098.
49. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of Hsp90 and p23, but not Hsp70, with active human telomerase. J Biol Chem 2001;276:15571-15574.
50. Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D. The assembly of progesterone receptor- Hsp90 complexes using purified proteins. J Biol Chem 1998;273:32973-32979.
51. Chen S, SullivanWP, Toft DO, Smith DF. Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52, and FKBP51 with Hsp90. Cell Stress Chaperones 1998;3:118-129.
52. Ratajczak T, Carrello A. Cyclophilin 40 (CyP-40), mapping of its Hsp90 binding domain and evidence that FKBP52 competes with CyP-40 for Hsp90 binding. J Biol Chem 1996;271:2961-2965.
53. Prodromou C, Panaretou B, Chohan S, Siligardi G, O’Brien R, Ladbury JE, Roe SM, Piper PW, Pearl LH. The ATPase cycle of Hsp90 drives a molecular '‘clamp’’ via transient dimerization of the N -terminal domains. EMBO J 2000;19:4383-4392.
54. Chadli A, Bouhouche I, Sullivan W, Stensgard B, McMahon N, Catelli MG, Toft DO. Dimerization and N -terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90. Proc Natl Acad Sci USA 2000;97:12524-12529.
55. MacLean M, Picard D. Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 2003;8:114-119.
56. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery. Exp Biol Med 2003;228:111-133.
57. Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH. Structural and functional analysis of the middle segment of Hsp90: Implications forATP hydrolysis and client protein and cochaperone interactions. Mol Cell 2003;11:647-658.
58. Cardenas ME, Sanfridson A, Cutler SN, Heitman J. Signal-transduction cascades as targets for therapeutic intervention by natural products. Trends Biochem Sci Tech 1998;16:427-433.
59. Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-tumor agent: Its molecular target and biochemical activity. Invest New Drugs 1999;17:361-373.
60. Eleuteri AM, Cuccioloni M, Bellesi J, Lupidi G, Fioretti E, Angeletti M. Interaction of Hsp90 with 20S proteasome: Thermodynamic and kinetic characterization. Proteins: Struc Funct Genet 2002;48:169-177.
61. Maloney A, Clarke PA, Workman P. Genes and proteins governing the cellular sensitivity to Hsp90 inhibitors: A mechanistic perspective. Curr Cancer Drug Targets 2003;3:331-341.
62. Stebbins CE, Russo AA, Scneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of Hsp90- Geldanamycin Complex: Targeting of a protein chaperone by an antitumor agent. Cell 1997;89:239-250.
63. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 1999; 42:260-266.
64. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 1997;90:65-75.
65. Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury P, Piper PW, Pearl LH. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone InVivo.EMBOJ 1998;17:4829-4836
66. Richter K, Muschler P, Hainzl O, Buchner J. CoordinatedATP hydrolysis by the Hsp90 dimer. J Biol Chem 2001;276:33689-33696.
67. Holdgate GA, Tunnicliffe A, Ward WHJ, Weston SA, Rosenbrock G, Barth PT, Taylor IWF, Paupit RA, Timms D. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: A Thermodynamic and Crystallographic Study. Biochemistry 1997;36:9663-9673.
68. Lewis RJ, Singh OMP, Smith CV, Skarzyknski T, Maxwell A, Wonacott AJ, Wigley DB. The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. EMBO J , 1996;15:1412-1420.
69. Chene P. ATPases as drug targets: Learning from their structure. Nature Rev Drug Disc 2002;1:665-673.
70. Ban C, Yang W. Crystal structure and ATPase activity of MutL: Implications for DNA repair and mutagenesis. Cell 1998;95:541-552.
71. Bilwes AM, Quezada CM, Croal LR, Crane BR, Simon MI. Nucleotide binding by the histidine kinase CheA. Nature Struct Biol 2001;8:353-360.
72. Shen G, Yu XM, Blagg BSJ. Synthesis of photolabile novobiocin analogues. Bioorg Med Chem Lett 2004;14:5903-5906.
73. Schulte TW, Akinaga S, Soga S, SullivanW, Stensgard B, Toft D, Neckers LM. Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biological activities with geldanamycin. Cell Stress Chaperones 1998;3:100-108.
74. Schnur RC, Corman ML. Tandem [3,3]-sigmatropic rearrangements in an ansamycinstereospecific conversion of an (S)-allylic alcohol to an (S)-allylic amine derivative. J Org Chem 1994;59:2581-2584.
75. Rinehart KL, Shield LS. Chemistry of the ansamycin antibiotics. Fortschr Chem Org Naturst 1976;33: 231-307.
76. Cutler HG, Arrendale RF, Springer JP, Cole PD, Roberts RG, Hanlin RT. Monorden from a novel source, Neocosmospora tenuicristata: Stereochemistry and plant growth regulatory properties. Agric Biol Chem 1987;51:3331-3338.
77. Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 1995;36:305-315.
78. Dikalov S, Landmesser U, Harrison DG. Geldanamycin leads to superoxide formation by enzymatic and non-enzymatic cycling. J Biol Chem 2002;277:2548025485.
79. Dikalov S, RumyantsevaGV, PiskunovAV,Weiner LM. Role of Quinone-iron (III) interaction inNADPHdependent enzymatic generation of hydroxyl radicals. Biochemistry 1992;31:8947-8953.
80. Schulte TW, Neckers LM. The benzoquinone ansamycin 17-allylamino-17demethoxygeldanamycin binds to Hsp90 and shares important biological activities with geldanamycin. Cancer Chemother Pharmacol 1998;42:273-279.
81. Jez JM, Chen JC-H, Rastelli G, Stroud RM, Santi DV. Crystal structure and molecular modeling of 17- DMAG in complex with human Hsp90. Chem Biol 2003;10:361-368.
82. Banerji U. Preclinical and clinical activity of the molecular chaperone inhibitor 17allylamino, 17- demethoxygeldanamycin in malignant melanoma. Proc Am Assoc Cancer Res 2003;44:677.
83. Sausville EA. Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr Cancer Drug Targets 2003;3:377-383.
84. Le Brazidec J-Y, Kamal A, Busch D, Thao L, Zhang L, Timony G, Grecko R, Trent K, Lough R, Salazar T, Khan S, Burrows F, Boehm MF. Synthesis and biological
evaluation of a new class of geldanamycin derivatives as potent inhibitors of Hsp90. J Med Chem 2004;47:3865-3873.
85. Egorin MJ, Lagattuta TF, Hamburger DR, Covey JM, White KD, Musser SM, Eiseman JL. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethox- HSP90 INHIBITORS * 335 ygeldanamycin (NSC 707545) in CD2F1 mice and fischer 344 rats. Cancer Chemother Pharmacol 2002;49:7-19.
86. Lee Y-S, Marcu MG, Neckers LM. Quantum chemical calculations and mutational analysis suggest heat shock protein 90 catalyzes trans-cis isomerization of geldanamycin. Chem Biol 2004;11:991-998.
87. Neckers, L. (2006) Using natural product inhibitors to validate Hsp90 as a molecular target in cancer. Curr. Top. Med. Chem. 6, 1163-1171.
88. Supko, J.G. et al.Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother. Pharmacol. 1995 36, 305-310
89. Schulte, T.W. and Neckers, L.M. The benzoquinone ansamycin 17- allylamino-17demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother. Pharmacol. 1998, 42, 273-279
90. Banerji, U. et al. Phase I pharmacokinetic and pharmacodynamic study of 17allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies.
J. Clin. Oncol. 2005, 23, 4152-4161
91. Goetz, M.P. et al. Phase I trial of 17-allylamino-17 demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol. 2005, 23, 1078-1087
92. Grem, J.L. et al. Phase I and pharmacologic study of 17-(allylamino)-17demethoxygeldanamycin in adult patients with solid tumors. J. Clin. Oncol. 2005, 23, 1885-1893
93. Ramanathan, R.K. et al. () Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin. Cancer Res. 2005, 11, 3385-3391
94. Solit, D.B. et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin. Cancer Res. 2007, 13, 1775-1782
95. Bagatell, R. et al. Phase I pharmacokinetic and pharmacodynamic study of $17-\mathrm{N}$ -allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin. Cancer Res. 2007, 13, 1783-1788.
96. (a) Nakata, M.; Osumi, T.; Ueno, A.; Kimura, T.; Tatsuta, K. Tetrahedron Lett. 1991, 32, 6015-6018. (b) Nakata, M.; Osumi, T.; Ueno, A.; Kimura, T.; Tatsuta, K. Bull. Chem. Soc. Jpn. 1992, 65, 2974-2991.
97. Carter, K. D.; Panek, J. S. Org. Lett. 2004, 6, 55-57.
98. Sophie Canova, Veronique Bellosta, Antony Bigot, Patrick Mailliet, Serge Mignani, and Janine Cossy Org. Lett. 2007, 9, 145-148.
99. Jill E. Eshelman, Janet L. Epps and James Kallmerten Tetrahedron Lett. 1993, 34, 749-752.
100.Stephen F.Martin, Chris Limberakis, Laurence E. Burgess and Michael Hartmann Tetrahedron. 1999, 55, 3561-3572.
100. Justin K. Belardi and Glenn C. Micalizio Org. Lett. 2006, 8, 2409-2412.
101. Sylvie Cetonze-Audureau Francois-Hugues Poree Jean-Francois Betzer, Jean-Daniel Brion, Ange Pancrazi, Janick Ardisson SyNLETT 2005, No.6, pp 0981-0985.
(103) Schmidt; O.T. Methods in Carbohydrate Chemistry vol-II, 1963, 318.
(104) Andre Lubineau and Yves Queneau, ; Tetrahydron 1989, 45, 6691-6712.
(105) (a) Hong-Wu Yu.; Hu-Yi Zhang.; Zhen-Jun Yang.; Ji-Mei Min.; Ling-Tai Ma.; LiHe Zhang.; Pure\&Apl. Chem., 1998, 70, 435-438. (b) Karl Blumberg.; Anthony Fuccello. ; and Theodorus Van Es. ; Carbohyd. Res., 70 (1979) 217-232. (c) J. Defaye, D. Horton ET M. Muesser. ; Carbohyd. Res., 20 (1971) 305-318. (d) Arthur J. Cooper,; Wenxi Pan,; Robert G. Salomon.; Tetrahedron Lett. 1993, 34, 8193-8196.
(106) (a) Thomas R. Webb,; Hiroaki Mitsuya,; and Samuel Broder,; J. Med. Chem. 1988, 31, 1475-1479.
(107) James R. Gage and David A. Evan's, Organic synthesis, coll. Vol 8, pp 528; Vol. 68, p. 77 and p83.
(108) (a) Robert N. Ben,; Arturo Orellana,; Prabhat Arya.; J. Org. Chem., 1998, 63, 4817-4820 (b) T. k. Chakraborty,; V. R. Suresh.; Tetrahedron Lett. 1998, 39, 7775-7778.
(109) (a) David A. Evans,; Ann E. Weber,; J. Am. Chem. SOC. 1987, 109, 7151-7157. (b) Ahmed. Abdel-Magid,; Lendon N. Pridgen,; Drake S. Eggleston,; Ivan. Lantos,; J. Am. Chem. Soc., 1986, 108, 4595-4602. (c) Kende,A S,; Kawamura, K,; Orwat, M J,; Tetrahedron Lett. 1989, 30, 5821.
(110) (a) Daniel Romo,; Robert M. Rzasa,; Helene A. Shea,; Kaapjoo Park,; Joseph M. Langenhan,; Luo Sun,; Alexander Akhiezer,; Jun O. Liu,; J. Am. Chem. Soc., 1998, 120, 12237-12254. (b) Chris A Broka,; Jurg Ehrler,; Tetrahedron Lett. 1991, 32, 5907-5910.
(111) (a) Malelene Nikaido,; Robert Aslanian,; Frank Scavo,; Paul Helquist,; J. Org. Chem. 1984, 49, 4740-4741.
(112) Leon Rubenstein,; J. Chem. Soc.; 1925, 1998-2004.
(113) (a) Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392-393 (b) David A. Evans,; C. Wade Downey,; Jared T. Shaw,; Jason S. Tedrow,; Org. Lett. 2002, 4, 1127-1130.
(114) Peterson, I; Wallace, D, J.; Cowden, C. J.; Synthesis. 1998, 639-652.
(115) Atsushi Abiko,; Ji-Feng Liu,; Satoru Masamune,; J. Am. Chem. Soc., 1997, 119 , 2586-2587.
(116) Walker, M. A.; Heathcock, C. H.; J. Org. Chem. 1991, 56, 5747-5750.
(117) Crimmins, M. T.; King. B. W.; Tabet, E.A.; Chaudhury, K.; J. Org. Chem, 2001, 66, 894-902.
(118) Debendra K. Mohapatra, Dhananjoy Mondal, Mukund S. Chorghadeb, Mukund K. Gurjar.; Tetrahedron. Lett. 2006, 47, 9215-9219.
(119) Crimmins, M. T.; McDougall, P. J.; Org. Lett. 2003, 5, 591-594.
(120) Michael T. Crimmins and Allison L. Choy,; J. Am. Chem. Soc. 1999, 121, 5653. Michael T. Crimmins and Kyle A. Emmitte,; J. Am. Chem. Soc. 1999, 121, 5653.
(121) G.V. Smith and F. Notheisz, Heterogeneous Catlysis in Organic Chemistyr, Academic Press, New York, 1999, pp- 71-79.
(122) Mukund K. Gurjar,;Ravi Nagaprasad,; C. V. Ramana,; Tetrahedron Lett. 2003, 44, 2873-2875.
(123) von Bruno Bernet,; Andrea Vasella Helvetica Chimicata, 1979, 62,1990.
(124) Huib Ovaa,; Jeroen D. C. Codse,; Bas Lastdrager,; Herman S. Overkleeft, Gijs A. van der Marel,; Jacques H. van Boom,; Tetrahedron Lett. 1999, 40, 5063-5066.
(125) Carina Storm Poulsen and Robert Madsen J. Org. Chem. 2002, 67, 4441-4449. (b) Hyldtoft, L.; Madsen, R. J. Am. Chem. Soc. 2000, 122, 8444.(c) Hyldtoft, L.; Poulsen, C. S.; Madsen, R. Chem. Commun. 1999, 2101. (d) Skaanderup, P. R.; Madsen, R. Chem. Commun. 2001, 1106.(e) Boyer, F.-D.; Hanna, I. Tetrahedron Lett. 2001, 42, 1275. (f) Boyer, F.-D.; Hanna, I.; Nolan, S. P. J. Org. Chem. 2001, 66, 4094.
(126) Masami Nakane, C. Richard Hutchinsonand, in part, Harold Gollman Tetrahedron Lett.1980,21,1213-1216. (b) Walter Hummer, Eric Dubois, Tibor Gracza, Volker Jager,; Synthesis, 1997, 634.(c). Alois Furstner, Denis Jumbam, Judith Teslic, and Hans Weidmann,; J. Org. Chem. 1991,56, 2213-221

Section-II:Towards the total synthesis of 15- Hydroxy geldanamycin

INTRODUCTION AND PRESENT WORK

Section-II:Towards the total synthesis of 15- Hydroxy

geldanamycin

Introduction:

Geldanamycin was isolated (from streptomyces hygroscopicus var. geldanus) in 1970 by workers at Upjohn and the structure was determined by Rinehart and co-workers shortly thereafter ${ }^{1}$. Geldanamycin belongs to benzoquinone anasamycin family. Benzoquinone containing ansa-bridged macrocyclic lactams have a significant range of antitumor, antibacterial, antifugal and antiprotozoa activies. Hsp90-geldanamycin complex were studied by X-ray crystallography, ${ }^{2}$ absolute stereochemistry was determined by its total synthesis by Andus et.al. ${ }^{3}$ The greatest drawback of biologically active geldanamycin is its cytotoxicity and low solubility in water for any formulation that can be used to administer it. To rectify this problem, derivatization of geldanamycin with ionisable or polar groups was explored. The 17-allyl amino geldanamycin prepared in this context, was currently in phase-II clinical trial ${ }^{4}$.

Isolation and Characterization of 15-Hydroxygeldanamycin

The 15 -Hydroxygeldanamycin ${ }^{5}$ was formed as the major product when geldanamycin was added to the fermentation with streptomyces hygroscopicus AM-3672 along with a minor compound, a tricyclic geldanamycin (KOSN-1633) ${ }^{5}$ was isolated. It has been established that the -OH group at 15 -position of geldanamycin does not interfere in binding with Hsp90 but increase the lypophilicity of it. The structure of 15hydroxy geldanamycin was elucidated by comparing the similarities of its spectral data with that of geldanamycin which are similar in all aspects (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, HSQC, and COSY) except at the 15 - position. High-resolution MS measurements for 15-hydroxy
geldanamycin were consistent with a formula of $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10}$ for a monohydroxylated geldanamycin. However, signal for $\mathrm{C}-15$ methylene were absent in its ${ }^{1} \mathrm{H}$ NMR; instead a new doublet at 4.58 ppm for a methine group was observed. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (except for the quaternary carbons) were assigned from multiplicity-edited HSQC and COSY. Chemical shifts for the quaternary carbons were assigned by comparison with those of geldanamycin. The stereochemistry of $15-\mathrm{OH}$ group was assumed to be the same as in Herbimycin A.

Biological Activity Of Ansamycin family members and its derivatives:

compounds	SKBr3 IC $_{50}$
Geldanamycin	37
Herbimycin A	160
Reblastatin	600
15-hydroxygeldanamycin	710
KOSN-1633	1533
KOSN-1645	2559
KOSN-1646	3163

Table 1: Cytotoxicity of geldanamycin analogues against SKBR3 cell line.
The cytotoxicity of 15 -hydroxygeldanamycin is same as that of reblastatin and 20 times lower than that of geldanamycin. ${ }^{5}$ Though it was isolated in 2004, no attempt has yet been made to prepare this molecule. The unusual structural parameters coupled with cytotoxic activity of 15 -hydroxygeldanamycin motivated us towards the total synthesis.

Herbimycin A R,R'=OCH ${ }_{3}, \mathrm{R}^{\prime \prime}=\mathrm{H}$ 15-Hydroxygeldanamycin $\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{OH}$, R"=OCH 3
Figure $\mathbf{- 1 4}$ structure of novel natural products and its derivatives

Retrosynthetic analysis:

Figure 15. Retrosynthetic strategy for advanced right hand segment

Our Retrosynthetic strategy for synthesis of the architechurally complex natural product, as depicted in Figure 15 is very similar to that of the Herbimycin A (previous section) and includes two strateges; first one involves intermolecular amidation of fragments A and B to get II, followed by RCM approach which would lead to our target molecule. Second strategy deals with assembling of the key fragments A and B by crossmetathesis which would result III, followed by intramolecular amidation to provide the target molecule. The key fragment A would be obtained by functional group manipulation using Evans anti aldol reaction of int-101 and aryl aldehyde 165 or 166. The int-101 can be obtained by chemical manipulation of D-Glucose.

Once the retrosynthetic plan was finalized, started our synthesis by preparing the masked quinine 165 as described below (Scheme-50).

Synthesis of Masked Quinone Aryl Aldehyde 165:

Synthesis of masked quinine aryl aldehyde 165 was achieved following reported methods. ${ }^{3}$ p-Methoxy benzaldehyde, under acid catalysed Dakin rearrangement afforded p-methoxy phenol 168. ${ }^{6}$

Scheme 50

Ortho-formylation of $\mathbf{1 6 8}$ under Reimer-Tiemen reaction conditions using CHCl_{3} and NaOH provided aryl aldehyde 169. Nitration of aldehyde 169 by using HNO_{3} : AcOH in $1: 1$ ratio to afford nitroarylaldehyde 170, which on methyaltion by using MeI
and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF afforded masked quinine arylaldehyde 165 (Scheme 50). The structure of 165 was determined by its ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and other analytical data including M.P. are in complete agreement with the reported values. ${ }^{3}$

The other fragment for the Evan's anti aldol reaction was already in hand (101, prepared in the previous section). Having both the key intermediates for aldol reaction in hand, we then attempted asymmetric Evans' anti aldol reaction under reported/standard conditions.

Synthesis of Key fragment of 15-Hydroxygeldanamycin:

Our first attempt was the Evan's anti aldol reaction between the carbohydrate derived oxazolidinone (101) with highly substituted arylaldehyde (124) by using standard condition. ${ }^{7}$

Using this reaction condition, oxazolidinone (101) was treated with MgCl_{2}, triethylamine, benzaldehyde (124) and chlorotrimethylsilane in dry ethylacetate at rt for 20h to give TMS ether derivative (123a), and free hydroxyl compound (123b), as a single isomer with excellent yield (light yellow color liquids and the aldol adducts 123a (OTMS) : (123b) OH in $1: 1$ ratio) (Scheme 35). The OTMS aldol adduct was confimed from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. In which, the characteristic OTMS protons resonances at $\delta 0.01 \mathrm{ppm}$ integrating nine protons, benzylic proton was appeared as multiplet at $\delta 5.65$ ppm integrating one proton. Rest of the spectrum complete agreement with the excepted values. ${ }^{13} \mathrm{C}$ NMR Spectrum showed -OTMS carbon resonance at $\delta-0.21 \mathrm{ppm}$ and benzylic carbon appeared at $\delta 79.34 \mathrm{ppm}$ indicating the assigned structure. In addition, the mass spectral analysis showed m / z at $879.78[\mathrm{M}+\mathrm{Na}]^{+}$which further confirmed it's formation. The elemental data also confirmed the structure 123a. Finally the
stereochemical assignment was completed from its single X-ray crystal analysis (Figure 9). The OH aldol adduct ($\mathbf{1 2 3 b}$) showed the characteristic benzylic proton resonance at δ 5.26 ppm integrating for one proton and rest of the protons had expected chemical shift values in the ${ }^{1} \mathrm{H}$ NMR spectrum. The ${ }^{13} \mathrm{C}$ spectrum showed characteristic benzylic carbon resonance at 71.30 ppm . All other chemical shift values appeared at their respective positions. In addition, the mass spectral analysis showed an $\mathrm{m} / \mathrm{z} 808.2[\mathrm{M}+\mathrm{Na}]^{+}$was corroborated the structure of 123b. The 123a (OTMS) aldol adduct was unstable which was immediately transformed into $\mathbf{1 2 3 b}(\mathrm{OH})$ aldol adduct in CDCl_{3} or mild acidic conditions.

Figure 9: Crystal structure of 123a (Evans' anti aldoladduct).
Observation of restricted conformational isomers:

Figure10:High Temperature NMR Experiments on Evans' anti aldol adduct (123a).

A very interesting observation was made from the ${ }^{1} \mathrm{HNMR}$ experiments of the TMS derivative of Evans anti aldol adduct showing broad signal for benzylic protons and oxazolidinone methylene protons along with a slightly less-broad signal for the aromatic protons in the ${ }^{1} \mathrm{H}$ NMR Spectrum. Two sets of signal patteren were observed in the ${ }^{13} \mathrm{C}$ NMR spectrum. These phenomena were attributed to dynamic effects, and indeed, a temperature-dependent ${ }^{1} \mathrm{H}$ NMR study of OTMS aldol adduct 123a revealed that at higher temperature the benzylic protons sharpened to the doublet with a coupling constant ($J=10.7 \mathrm{~Hz}$). The oxazolidinone methane and methylene protons were sharpened and merged. Other proton signals did not changed at higher temperature. These results indicated that the presence of rigid conformers and hence these dynamic effects were assigned to a restricted $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ rotation resultant due to restricted conformational isomers.

Figure 11:Conformers of OTMS ether derivative of Evans' anti aldol adduct.
This type of observation due to presence of rigid conformers like 123a and 123c at room temperature as shown above figure 11. This was further confirmed by extensive NMR studies including COSY, NOESY experiments. Fortunately we were able to isolate one of conformer and obtained the single X-ray analysis which showed that the aryl moiety was perpendicular to C-OTMS group, and it was rigidly surrounded by benzyl groups of densly functionalized carbohydrate moiety and oxazolidinone moiety. This type of restricted environment leads to arrest one of the stable conformer; where as the other less stable conformer (due to spatial interactions between nitro group and benzyl group of carbohydrate moiety and due to less availability of this conformer we couldn't isolate it). Similar type of observation was reported by Mulzer. et.al. in the synthesis of advanced fragment of kendomycin. ${ }^{8}$

Table 4 :List of Aldol adducts showing restricted conformational isomers:

No | Oxazolidinone (A) |
| :--- | :--- | :--- |
| derivative |

coses)

All the above oxazolidinone derivatives were prepared in the previous section-I

S.No	R	$\mathrm{R} \prime$	X	R '’= OTMS	remark
1.	Bn	Bn	NO_{2}	$\sqrt{ }$	
2.	Ts	TBS	NO_{2}	$\sqrt{ }$	
3.	Ts	Ts	NO_{2}	x	
4.	Iodo	TBS	NO_{2}	$\sqrt{ }$	
5.	TBS	TBS	NO_{2}	$\sqrt{ }$	
6.	Iodo	TBS	Br	$\sqrt{ }$	
7.	TBS	TBS	Br	$\sqrt{ }$	

For further confirmation, we prepared different types of aldol adducts (Table 4) by applying same reaction conditions to different coupling synthons. All these aldol adducts showed similar splitting patteren in ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum. These observations evidently confirmed that these aldol adducts exhibit restricted conformational isomers (may be called as atropisomers).

Syntheis of advanced fragment of 15-hydroxy geldanamycin:

Having Evans anti aldol adduct with all required stereocenters $10 S, 11 R, 12 S$, $14 S, 15 R$ in hand, our next endeavor was to construct the key fragment of 15-hydroxy geldanamycin.

Scheme 53

123a
To achieve this target, the oxazolidinone of Int-125 was reductively removed with 2M lithiumborohydride in THF to afford $\mathbf{1 7 6}$ as a sole product (Scheme 53). The product was confirmed by its ${ }^{1} \mathrm{H}$ NMR in which appearance of new methylene protons as a multiplet at $\delta 3.55$ and rest of the protons were in good agreement with the excepted values.The ${ }^{13} \mathrm{C}$ NMR spectrum showed a new peak at $\delta 71.18 \mathrm{ppm}$ which further supported the structure of $\mathbf{1 7 6}$.

Scheme 54

2.AIBN, TBTH,
reflux, 14hrs

The next critical transformation was deoxygenation of $\mathbf{1 7 6}$ which would result in the formation of methyl group at C -14 of key fragment. For this prupose, we applied Barton deoxygenation method, in which 176 was converted into a thiocarbonyl diimidazole derivative in dry toluene which was converted into 177 via radical scissoring method using $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN; unfortunately the yield of $\mathbf{1 7 7}$ was very low.

Scheme 55

To overcome this problem, we redesigned our strategy, in which the primary hydroxyl group of $\mathbf{1 7 6}$ was selectively protected as its Tosyl ester $\mathbf{1 7 9}$ by using $\mathrm{p}-\mathrm{TsCl}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature which was confirmed by ${ }^{1} \mathrm{H}$ NMR. A signal at δ 2.37 ppm due to $-\mathrm{CH}_{3}$ group and two $\mathrm{A}_{2} \mathrm{~B}_{2}$ doublets at $\delta 7.22$ and 7.79 ppm confirmed the presence of P-toluene sulphonyl group. The structure was further confirmed by the ${ }^{13} \mathrm{C}$ NMR spectrum. The tosylate $\mathbf{1 7 9}$ was refluxed with NaI in glyme for 2 h to afford iodo derivative 180 which was confirmed with the help of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. For instance, the ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of new peak in the up field region of spectrum at $\delta 1.70-1.95 \mathrm{ppm}$ for methylene group and rest of the protons appeared at their expected chemical shifts. The ${ }^{13} \mathrm{C}$ NMR spectrum showed new peak at $\delta 14.48 \mathrm{ppm}$ due to methylene carbon which confirmed the structure of $\mathbf{1 8 0}$. The iodo product 180 was hydrogenated by exposed to $10 \% \mathrm{Pd} / \mathrm{C}$ and Boc anhydride in MeOH to afford $\mathrm{NH}-\mathrm{Boc}$ protected compound 181 with low yield (Scheme 55). The ${ }^{1} \mathrm{H}$ NMR spectrum of 181 showed doublet at $\delta 0.98 \mathrm{ppm}$ integrating for three protons, which was assigned to the newly created methyl group, a sharp singlet at $\delta 1.53 \mathrm{ppm}$ integrating for nine protons for Boc group, a broad singlet appeared at 6.80 ppm due to $\mathrm{N}-\mathrm{H}$ proton resonance integrating
for one proton and rest of the protons were complete agreement with excepted chemical shift values. In the ${ }^{13} \mathbf{C}$ NMR spectrum the appearance of methyl group resonance at δ 15.96 ppm , tert-methyl carbon of Boc group at $\delta 28.37 \mathrm{ppm}$ further confimed the structure of 181. In addition, the mass spectral analysis showed an $m / z 688.54[\mathrm{M}+\mathrm{Na}]^{+}$ for molecular ion which supported the structure of $\mathbf{1 8 1} .{ }^{9}$

Figure 5: lodoaldol adduct
Figure 5: Revised lodoaldol adduct
From our experience the previous section, we decided to replace the NO_{2} group with a bromo group and remove the oxazolidinone moiety from the Evan's anti-aldol product and convert it the desired C-14 methyl group prior to attempting the VasselaBernet reaction.

Synthesis of Aryl Bromo Aldehyde 183:

According to redesigned strategy we prepared 3-bromo-2,5-dimethoxy benzaldehyde by reported method. ${ }^{10}$.

Scheme 56

3-Bromo-2,5-dimethoxybenzaldehyde from 182 was prepared from aldehydes (25) by using bromine in $\mathrm{AcOH}, \mathrm{AcONa}$. Methylation using dimethyl sulphate and KOH as a base afforded required product 183 in quantitative yield (Scheme 56). The structure of 3-bromo-2,5-dimethoxybenzaldehyde was confirmed by comparing its spectral and other analytical data with reported data.

Under Evans anti aldol conditions oxazolidinone 137 was coupled with aldehydes 183 to afford the Evan's anti aldol adduct OTMS ether derivative 175 (Scheme 24). The ${ }^{1}$ H NMR spectrum of OTMS aldol adduct 175 , showed characteristic trimethyl silane peak at $\delta 0.01 \mathrm{ppm}$ integrating for nine protons, the characteristic benzylic proton resonating at $\delta 5.52 \mathrm{ppm}$ and rest of the spectrum was in complete agreement with the excepted values. The characteristic trimethyl silane carbon resonance at $\delta-0.19 \mathrm{ppm}$, the characteristic benzylic carbon resonance at $\delta 84.70 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectra. The structure was further supported by the mass spectrum with the highest molecular ion peak at $m / z 961.18[\mathrm{M}+\mathrm{Na}]^{+}$. The elemental analysis data further confirmed the structure 175.
Scheme 58

Our next obtective was the reductive removal of oxazolidinone moiety of 175 which was successfully achieved by using 2 M lithiumborohydride in THF to provide us primary alcohol 184. The diol 184 was confirmed by ${ }^{1} \mathrm{H}$ NMR and other analytical data. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methylene group was deshielded and appeared as a multiplet at $\delta 3.64 \mathrm{ppm}$ integrating for two protons. All other peaks were in complete agreement with the assigned structure (Scheme 58). The primary hydroxyl of 184 was selectively protected as Tosyl ester by using $p-\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to furnish tosylate derivative 185 which was confirmed from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The tosylate 185 was refluxed with NaI in glyme for 2 h to afford iododerivative 186 whose structure was confirmed from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. For instance, in the ${ }^{1} \mathrm{H}$ NMR spectrum showed that the methylene protons were shielded and appeared in the up field region of the spectrum at $\delta 2.40 \mathrm{ppm}$ integrating for two protons. All other protons signals appeared at their respective chemical shift values. The structure was further confirmed from ${ }^{13} \mathrm{C}$ NMR spectral study.

The iododerivative 186 was exposed to $10 \% \mathrm{Pd} / \mathrm{c}-\mathrm{H}_{2}$ in methanol to give exclusively the methyl derivative 187. The spectroscopic and other analytical data were
in good agreement with the assigned structure 187, for instance the ${ }^{1} \mathrm{H}$ NMR spectrum of 187 showed the methyl group was shielded and appeared in the up field region of the spectrum as doublet at $\delta 0.71 \mathrm{ppm}$ integrating for three protons and rest of the protons appeared at excepted chemical shift values. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the methyl carbon resonated at $\delta 15.63 \mathrm{ppm}$ which confimed its structure (Scheme 58). Further work is in progress in our lab, to construct the crucial fragment of 15-hydroxygeldanamycin.

In conclusion, the critical part of the synthesis towards the key fragment of 15hydroxy geldanmycin was completed by using Evans anti aldol reaction for construction of critical stereocenters C14-Methyl and C15-Hydroxy groups and rare restricted conformational isomerism was observed in the Evans anti aldol adduct.

EXPERIMENTAL

Experimental section: Analytical data of 15-Hydroxy Geldanamycin

Table 1. Crystal data and structure for 123a

Identification code	DiBn-Evan's anti OTMS- 123a
Empirical formula	$\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Si}$
Formula weight	857.02
Temperature	$297(2) \mathrm{K}$
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P212121
Unit cell dimensions	$\mathrm{a}=9.171(3) \mathrm{A}$ alpha $=90$ deg. $\mathrm{b}=17.037(6) \mathrm{A}$ beta $=90 \mathrm{deg}$.
Volume $=29.504(12) \mathrm{A}$ gamma $=90$ deg.	
Z, Calculated density	$4610(3) \mathrm{A}^{\wedge} 3$
Absorption coefficient	$4,1.235 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
F(000)	$0.113 \mathrm{~mm} \wedge-1$

Crystal size
Theta range for data collection

Limiting indices
Reflections collected / unique
Completeness to theta

Absorption correction
Max. and min. transmission

Refinement method

Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$

Final R indices [I>2sigma(I)]
R indices (all data)

Absolute structure parameter
Largest diff. peak and hole
$0.55 \times 0.05 \times 0.03 \mathrm{~mm}$
2.39 to 23.00 deg.
$-10<=\mathrm{h}<=10,-18<=\mathrm{k}<=14,-28<=1<=32$
$22886 / 6413[\mathrm{R}(\mathrm{int})=0.1387]$
$=23.00 \quad 99.8 \%$

Semi-empirical from equivalents
0.9972 and 0.9404

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
6413 / 304 / 557
1.087
$R 1=0.1083, w R 2=0.2061$
$\mathrm{R} 1=0.1823, \mathrm{wR} 2=0.2350$
-0.5(5)
0.388 and -0.277 e. $\mathrm{A}^{\wedge}-3$
(R)-4-benzyl-3-((2S,3R)-2-(((2S,3R,4S,5R)-3-
(benzyloxy)-5-(benzyloxymethyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-(2,3,6-
trimethoxy-5-nitrophenyl)-3-
(trimethylsilyloxy)propanoyl)oxazolidin-2-one (123a).

Oxazolidinone 101 ($285 \mathrm{mg}, 0.52 \mathrm{mmol}$) was treated with $\mathrm{MgCl}_{2}(5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde 124 ($151 \mathrm{mg}, 0.631$ mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm})$ with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get
residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative 123a (262 mg), and free hydroxyl compound 123b (61 mg), as a single isomers with excellent yeild (light yellowcolor liquid). OTMS : OH in 5:1 ratio, $\mathrm{R}_{f} 0.2: 0.5$ (10% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Si}$

$[\alpha]_{D}{ }^{25}$
 $:+3.49\left(c=1.5, \mathrm{CHCl}_{3}\right)$

IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 667,756,1079,1216,1250,1604,1693,1779,2400,3019 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.01(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{dd}, J=6.7,3 \mathrm{H}), 1.32-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.93$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad($ hex, $J=6.7,1 \mathrm{H}), 2.25-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=10.9,1 \mathrm{H}), 3.44-$ $3.51(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.86$ $(\mathrm{m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{dd}, J=6.7,10.7,1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $4.02(\mathrm{~s}, 3 \mathrm{H}), 4.07-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{dd}, \mathrm{J}=10.7,17.3,1 \mathrm{H})$, 4.42 (d, $J=10.7,1 H), 4.52(\mathrm{q}, ~ J=10.7,17.3,2 \mathrm{H}), 4.61-4.67$ (m, $1 \mathrm{H}), 5.65(\mathrm{ddd}, J=10.2,22.7,48.0,1 \mathrm{H}), \quad 7.06-7.40(\mathrm{~m}, 16 \mathrm{H})^{2}$ ppm.

[^3]: $\delta-0.21\left(\mathrm{q}, \mathrm{TMS}-\mathbf{C H}_{3}\right),-0.16\left(\mathrm{q}, \mathrm{TMS}-\mathbf{C H}_{3}\right), 15.58\left(\mathrm{q}, \mathbf{C H}-\mathbf{C H}_{3}\right.$ (6)), 15.74 ($\mathrm{q}, \mathrm{CH}-\mathrm{CH}_{3}(6)$), 31.89 ($\mathrm{t}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}$), 31.99 (t , -$\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}$ (7)), 38.63 ($\mathrm{t}, \mathrm{Ph}-\mathbf{C H}_{2}$), 41.72 (d, $\mathbf{C H}-\mathrm{CH}_{3}(3)$), 41.80 (d, O=C-CH-CH2 (8)), 55.72 (d, Oxazolidinone CH_{2} - CH (10)), $56.00\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 56.12\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 61.38\left(\mathrm{q},-\mathrm{OCH}_{3}\right)$, $61.72\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 63.58\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 64.31\left(\mathrm{~d},-\mathrm{OCH}_{3}\right), 65.41(\mathrm{t}$, HCO-CH2OBn (5)), 70.14 (d, -CH-CHO- $\mathrm{CH}_{2} \mathrm{OBn}-(4)$), 70.21 (d, - $\mathrm{CH}-\mathrm{CHO}-\mathrm{CH}_{2} \mathrm{OBn}-(4)$), 72.61 ($\mathrm{t}, \mathrm{PhCH}_{2}-\mathrm{O}$), 73.31 ($\mathrm{t}, \mathrm{PhCH}_{2^{-}}$ O), 79.34 (d, aryl-CH-OTMS (9)), 79.54 (d, aryl-CH-OTMS (9)), 83.49 (d, $\left.{ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(1)\right), 86.79$ (d, CHO-CHOBnCHCH_{3} (2)), 86.95 (d, CHO-CHOBn- CHCH_{3} (2)), 108.28 (d, ArylCH), 108.63 (d, Aryl-CH), 127.00 (d, CH), 127.29 (d, CH), 127.53 (d, CH), 128.13 (d, CH), 128.82 (d, CH), 129.38 (d, CH), 131.28 (s, C), 136.13 (s, C), 138.06 (s, C), 138.47 (s, C), 138.53 (s, C), 146.81 (s, C), 148.09 (s, C), 148.63 (s, C), 149.45 (s, C), 151.85 (s, C), 153.48 ($\mathrm{s}, \mathrm{C}), 153.84(\mathrm{~s}, \mathrm{C}), 176.81(\mathrm{~s}, \mathrm{C})^{1,2} \mathrm{ppm}$.

Hint : 1) In the ${ }^{13} \mathrm{CNMR}$ spectrum shows peak splitting indicates that " q " represents CH_{3}, " t " represents CH_{2}, "d" represents CH and "s" represents quatarnary carbon to make differeniate carbons which will appear in the DEPT Experiments.
2). In the ${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C N M R}$ spectrum shows corresponding peaks in double splitting patteren indicates the presence of restricted conformational isomers.

ESI-MS (m / z) : $879.78[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd : C, 64.47; H, 6.59; N, 3.27 \%
Found: C, 64.48; H, 6.60; N, 3.29 \%
(R)-4-benzyl-3-((2S,3R)-2-(((2S,3R,4S,5R)-3-(benzyloxy)-5-(benzyloxymethyl)-4-methyltetrahydrofuran-2-yl)methyl)-3-hydroxy-3-(2,3,6-trimethoxy-5-nitrophenyl)propanoyl)oxazolidin-2-one (123b).

Mol. Formula $\quad: \mathrm{C}_{43} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{12}$
$[\alpha]_{D}{ }^{25}$
:-25.76 ($c=2.2, \mathrm{CHCl}_{3}$)
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v \quad: 667,1053,1216,1536,1620,1696,1776,3018,3452 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR
$: \delta 0.96(\mathrm{~d}, J=6.75,3 \mathrm{H}), 1.21-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{q}, J=6.7$,
(500 MHz, CDCl_{3})
${ }^{\mathbf{1 3}} \mathbf{C}$ NMR
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1 H), 2.33 (ddd, $J=4.4,9.7,13.5,1 \mathrm{H}), 2.76$ (dd, $J=9.5,13.5$, $1 \mathrm{H}), 3.23(\mathrm{t}, J=3.24,1 \mathrm{H}), 3.33(\mathrm{dd}, J=3.2,8.5,1 \mathrm{H}), 3.38-3.39$ $(\mathrm{m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=5.7,1 \mathrm{H}), 3.82(\mathrm{dd}, J=3.01$, $5.7,1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=6.7,1 \mathrm{H}), 4.30(\mathrm{q}$, $J=11.1,19.5,2 \mathrm{H}), 4.38(\mathrm{q}, J=11.1,19.5,2 \mathrm{H}), 4.47-4.55(\mathrm{~m}$, $1 \mathrm{H}), 4.78(\mathrm{dt}, J=2.1,11.07,1 \mathrm{H}) 5.26(\mathrm{t}, J=11.01,1 \mathrm{H}), 7.04-$ 7.31 (m, 15H), 7.33 (s, 1H) ppm.
$: \delta 15.84\left(\mathrm{q}, \mathrm{TMS}-\mathbf{C H}_{3}\right), 32.78\left(\mathrm{t}, \mathrm{CH}-\mathbf{C H}_{2}-\mathrm{CH}(7)\right), 37.82(\mathrm{t},-$ $\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Ph}$), 42.00 (d, $\mathbf{C H}-\mathrm{CH}_{3}$ (3)), 44.44 (d, $\mathrm{O}=\mathrm{C}-\mathbf{C H}-\mathrm{CH}_{2}$
(8)), 56.15 (d, OxazolidinoneCH2-CH-(10)), 56.36 (q, $-\mathrm{OCH}_{3}$), $61.60\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 63.31\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 66.04\left(\mathrm{t}, \mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}\right.$ (5)), 71.03 (d, aryl-CH-OH (9)), 72.18 ($\mathrm{t}, \mathrm{PhCH}_{2}-\mathbf{O}$), 72.62 (t , $\mathrm{PhCH}_{2}-\mathbf{O}$), 73.44 (t, Oxazolidinone $\mathbf{C H}_{2}$ - CH (11)), 79.70 (d, $\left.\mathrm{CHCH}_{3}-\mathrm{CHO}-\mathrm{CH}_{2} \mathrm{OBn}(4)\right), 83.32$ (d, ${ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(1)$), 88.62 (d, CHO-CHOBn- CHCH_{3} (2)), 109.10 (d, ArylCH), 127.09 (d, CH), $127.22(\mathrm{~d}, \mathrm{CH}), 127.61(\mathrm{~d}, \mathrm{CH}), 127.69(\mathrm{~d}, \mathrm{CH}), 128.27$ (d, CH), 128.35 (d, CH), 128.79 (d, CH), 128.91 (d, CH), 129.58 (d, CH), 129.92 (s, C), 135.64 (s, C), 137.84 (s, C), 137.99 (s, C), 148.08 (s, C), 152.48 (s, C), 154.57 (s, C), 175.63 (s, C) ppm.

ESI-MS (m / z) : $807.89[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd : C, 65.80; H, 6.16; N, 3.57\%
Found: C, 65.81; H, 6.18; N, 3.58\%
(1R,2R)-2-(((2S,3R,4S,5R)-3-(benzyloxy)-5-((benzyloxy)methyl)-tetrahydro-4-methylfuran-2-yl)methyl)-1-(2,3,6-trimethoxy-5-nitrophenyl)propane-1,3-diol (176).

The aldol adduct $125(1.8 \mathrm{~g}, 2.1 \mathrm{mmol}), 10 \mathrm{~mL}$ of drydiethylether and anhydrous methanol (0.04 mL) were added cooled to $0{ }^{\circ} \mathrm{C}$. Lithium borohydrate (2.0 M in THF , 0.51 mL , mmol) was added dropwise, and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with $15 \% \mathrm{NaOH}$ and then concentrated in vacuo. The aqueous layer was extracted with ether, and the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by flash chromatography gave 176 ($0.92 \mathrm{~g}, 64 \%$) of alcohol. $\mathrm{R}_{f} 0.5(30 \%$ ethyl acetate/hexane).
Mol. Formula
: $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{NO}_{10} \mathrm{Si}$
$[\alpha]_{\mathrm{D}}{ }^{25}$
$:+3.38\left(c=1.2, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right) v \quad: 668,1051,1216,1619,1752,2402,3019,3434 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 0.04(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.55$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad($ brs, 1 H$), 2.12(\mathrm{hex}, J=6.7,1 \mathrm{H}), 2.76-2.78(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.35$ $(\mathrm{m}, 1 \mathrm{H}), 3.51-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.89$ $(\mathrm{m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.19-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.44(\mathrm{~m}, 2 \mathrm{H})$, 4.52-4.55 (m, 2H), 5.17-5.32 (m, 1H), $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.34(\mathrm{~m}$, 10H) ppm.

```
\({ }^{13} \mathbf{C}\) NMR \(\quad: \delta 0.09\left(\mathrm{q}\right.\), TMS- \(\left.\mathbf{C H}_{3}\right), 16.39\left(\mathrm{q}, \mathrm{CH}-\mathrm{CH}_{3}(\mathbf{6})\right), 32.05(\mathrm{t}, \mathrm{CH}-\)
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\left.\mathbf{C H}_{2}-\mathrm{CH}(7)\right), 41.59\) (d, \(\mathbf{C H}-\mathrm{CH}_{3}\) (3)), 41.94 (d, O=C-CH-
    \(\left.\mathrm{CH}_{2}(\mathbf{8})\right), 55.98\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 61.30\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 63.58\left(\mathrm{t},-\mathrm{CH}_{2}-\mathrm{CH}\right.\)
    (10)), 71.18 ( \(\left.\mathrm{t}, \mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(5)\right), 72.19\) ( \(\mathrm{t}, \mathrm{PhCH}_{\mathbf{2}} \mathbf{- O}\) ), 73.31 ( t ,
    \(\mathrm{PhCH}_{2}-\mathrm{O}\) ), 79.68 (d, \(\mathrm{CHCH}_{3}\) - \(\mathbf{C H O}-\mathrm{CH}_{2} \mathrm{OBn}-(4)\) ), 82.86 (d,
    \({ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(1)\) ), 89.27 (d, CHO-CHOBn- \(\mathrm{CHCH}_{3}\) (2)),
    108.27 (d, ArylCH), 127.26 (d, CH), 127.58 (d, CH), 128.31 (d, CH ), 138.18 ( \(\mathrm{s}, \mathrm{C}\) ) ppm.
```

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 706.08[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd : C, 63.23; H, 7.22; N, 2.05 \%
Found: C, 63.25; H, 7.23; N, 2.03 \%

(2R,3R)-2-(((2S,3R,4S,5R)-3-(benzyloxy)-5-

 (benzyloxymethyl)-4-methyltetrahydrofuran-2-yl)methyl)-3-(2,3,6-trimethoxy-5-nitrophenyl)-3(trimethylsilyloxy)propyl 4-methylbenzenesulfonate (179).

To a stirred solution of $\mathbf{1 7 6}(0.8 \mathrm{~g}, 1.3 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.22 \mathrm{~mL}, 1.57 \mathrm{mmol})$, and DMAP (20 mg), in dichloromethane (20 mL) was added p-toluenesulfonyl chloride (0.23 $\mathrm{g}, 1.57 \mathrm{mmol}$), at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h at room temperature, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel by using EtOAc-hexane (2:1) to afford 179 ($0.728 \mathrm{~g}, 79 \%$) as a syrup liquid. $\mathrm{R}_{f} 0.8$ (75% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{43} \mathrm{H}_{5} \mathrm{NO}_{12} \mathrm{SSi}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+13.38\left(c=1.2, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) $v \quad: 666,754,1071,1268,1598,1785,2927,3525 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.06(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.52(\mathrm{~m}$,
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1 \mathrm{H}\right), 1.99(\mathrm{hex}, J=6.7,1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.94$ $(\mathrm{t}, J=10.5,1 \mathrm{H}), 3.18(\mathrm{brs}, 1 \mathrm{H}), 3.41-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.22-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.38(\mathrm{~m}, 2 \mathrm{H})$, 4.49-4.60 (m, 3H), $5.14(\mathrm{dd}, J=10.5,38.2,1 \mathrm{H}), 7.22-7.41(\mathrm{~m}$, 13 H), 7.79 (d, $J=8.01,2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\mathbf{C H}_{3}$), 31.17 ($\mathrm{t}, \mathrm{CH}-\mathbf{C H}_{2}-\mathrm{CH}(7)$), 41.35 (d, $\mathbf{C H}-\mathrm{CH}_{3}$ (3)), 42.63 $\left(\mathrm{d}, \mathrm{O}=\mathrm{C}-\mathbf{C H}-\mathrm{CH}_{2}(\mathbf{8})\right), 56.22\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 61.50\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 63.21$ (q, $\left.-\mathrm{OCH}_{3}\right), 67.68\left(\mathrm{~d}, \mathrm{CHCH}_{3}-\mathrm{CHO}-\mathrm{CH}_{2} \mathrm{OBn}-(4)\right), 68.63$ (t , OTs- $\mathrm{CH}_{2}-\mathbf{C H}$ (10)), 71.61 (t , HCO- $\mathrm{CH}_{2} \mathrm{OBn}$ (5)), 71.88 (t , $\mathrm{PhCH}_{2}-\mathrm{O}$), 73.26 ($\mathrm{t}, \mathrm{PhCH}_{2}-\mathbf{O}$), 79.57 (d, aryl-CH-OTMS (9)), 82.52 (d, $\left.{ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(1)\right), 90.34$ (d, CHO-CHOBnCHCH_{3} (2)), 108.77 (d, ArylCH), 127.56 (d, CH), 127.64 (d, $\mathrm{CH}), 127.93$ (d, CH), 128.30 (d, CH), 128.37 (d, CH), 129.81 (d, CH), 130.47 (s, C), 132.98 ($\mathrm{s}, \mathrm{C}), 138.04$ (s, C), 138.18 (s, C), 144.66 (s, C), 146.89 (s, C), 148.19 (s, C), 152.24 (s, C) ppm.

ESI-MS (m / z) : $861.05[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd : C, 61.63; H, 6.61; N, 1.67 \%
Found: C, 61.65; H, 6.62; N, 1.66 \%
(1R,2S)-3-((3R,4S,5R)-3-(benzyloxy)-5-
((benzyloxy)methyl)-tetrahydro-4-methylfuran-2-yl)-2-(iodomethyl)-1-(2,3,6-trimethoxy-5-nitrophenyl)propan-1-ol (180)

A mixture of $\mathbf{1 7 9}(0.55 \mathrm{~g}, 0.72 \mathrm{mmol})$ and $\mathrm{NaI}(1.29 \mathrm{~g}, 8.62 \mathrm{mmol})$, was taken in a glyme. Reflux the reaction mixture for 2 h , after complition of reaction mixture remove glyme under reduced pressure to get residue which was purified on silica gel by eluting with EtOAC-hexane (1:3) to give iododerivative $180(0.412 \mathrm{~g}, 87 \%)$, as a colorless liquid. $\mathrm{R}_{f} 0.4$ (25% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{33} \mathrm{H}_{40} \mathrm{INO}_{9}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-63.51\left(c=1.0, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 667,755, 1071, 1215, 1577, 2400, 3018, $3545 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.88(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.18($ brs, 1 H$), 1.50(\mathrm{ddd}, J=2.3,10.5$,
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 13.5,2 \mathrm{H}\right), 1.70(\mathrm{ddd}, J=2.3,10.513 .7,1 \mathrm{H}), 1.95$ (hex, $J=6.7$,
$1 \mathrm{H}), 3.13(\mathrm{~d}, J=11.4,1 \mathrm{H}), 3.18(\mathrm{dd}, J=5.01,11.05,1 \mathrm{H}), 3.30$ $(\mathrm{dq}, J=3.7,6.2,10.01,1 \mathrm{H}), 3.35-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dd}, J=$ $3.01,10.5,1 \mathrm{H}), 3.79$ ($\mathrm{s}, 3 \mathrm{H}$), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.93$ (dd, $J=3.01,10.5,1 \mathrm{H}), 4.41(\mathrm{q}, J=11.2,2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{t}, J$ $=10.5,1 \mathrm{H}), 7.19-7.29(\mathrm{~m}, 10 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 14.48\left(\mathrm{t}, \mathrm{I}-\mathrm{CH}_{2}\right.$ - CH (10)), $15.98\left(\mathrm{q}, \mathrm{CH}-\mathrm{CH}_{3}(\mathbf{6})\right), 35.14(\mathrm{t}$,
(125 MHz, CDCl_{3})

ESI-MS (m / z) : $745.59[\mathrm{M}+\mathrm{Na}]^{+}$.

Calcd : C, 54.93; H, 5.59; N, 1.94\%
Found: C, 54.94; H, 5.61; N, 1.95 \%

tert-butyl 3-((1R,2S)-3-((2S,3R,4S,5R)-3-
 (benzyloxy)-5-(benzyloxymethyl)-4-
 methyltetrahydrofuran-2-yl)-1-hydroxy-2-methylpropyl)-2,4,5-
 trimethoxyphenylcarbamate (181).

The iodocompound $180(0.35 \mathrm{~g}, 0.485 \mathrm{mmol})$ was taken in dry methnol in 50 mL RBF , to this $10 \% \mathrm{Pd} / \mathrm{c}$ (catalytic) and BOCanhydride $(0.25 \mathrm{~mL})$ was added and maintained at 2 psi of hydrogen (balloon) for 6 h . After completion of reaction mixture was filtered through celite, concentrate to get residue which on purification over silica gel column chromatography using EtOAc-hexane (1:6) to afford 181 ($0.138 \mathrm{~g}, 43 \%$) as a syrup liquid. $\mathrm{R}_{f} 0.6$ (20% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{38} \mathrm{H}_{51} \mathrm{NO}_{9}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+41.32\left(c=0.6, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{3}\right) v \quad: 668,1067,1216,1599,1693,2401,3017,3434 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.98(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.22-1.28(\mathrm{~m}, 2 \mathrm{H})$,
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1.53(\mathrm{~s}, 9 \mathrm{H}), 2.04(\mathrm{hex}, J=6.7,1 \mathrm{H}), 2.11-2.19(\mathrm{~m}, 1 \mathrm{H}), 3.10$
(brs, 1H), $3.26(\mathrm{t}, J=5.05,1 \mathrm{H}), 3.41-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$,
$3.77-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 4.01(\mathrm{dt}, J=4.01,10.08,1 \mathrm{H})$, $4.48(\mathrm{~s}, 2 \mathrm{H}) 4.51(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.69$ ($\mathrm{s}, 1 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 15.96\left(\mathrm{q}, \mathrm{CH}-\mathbf{C H}_{3}(\mathbf{6})\right), 16.41\left(\mathrm{q}, \mathbf{C H}_{3}-\mathrm{CH}(\mathbf{1 0})\right.$), $28.37(\mathrm{q}$, ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\quad \mathrm{Boc}-\mathrm{CH}_{3}$), 37.55 (d, $\mathbf{C H}-\mathrm{CH}_{3}(\mathbf{3})$), 42.63 (d, $\mathrm{O}=\mathrm{C}-\mathbf{C H}-\mathrm{CH}_{2}(\mathbf{8})$), $55.99\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 61.08\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 61.64\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 71.65(\mathrm{t}$, $\left.\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(5)\right), 72.10$ ($\mathrm{t}, \mathrm{PhCH}_{2}-\mathrm{O}$), 73.24 ($\mathrm{t}, \mathrm{PhCH}_{2}-\mathrm{O}$), 74.32 (d, aryl-CH-OTMS (9)), 80.28 (d, $\mathrm{CHCH}_{3}-\mathbf{C H O}-\mathrm{CH}_{2} \mathrm{OBn}-$ (4)), 82.38 (d, ${ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(1)$), 91.23 (d, CHO-CHOBnCHCH_{3} (2)), 103.02 (d, ArylCH), 127.57 (d, CH), 128.37 (d, CH), 129.10 (d, CH), 138.43 (s, C), 139.45 ($\mathrm{s}, \mathrm{C}), 142.05$ (s, C), 149.16 (s, C), 152.86 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 688.74[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd : C, 68.55; H, 7.72; N, 2.10 \%
Found: C, 68.56; H, 7.74; N, 2.11 \%
(4R, 5R)-5-(((3R, 4S, 5R)-3-(Benzyloxy)-5-((benzyloxy)methyl)-tetrahydro-4-methylfuran-2-yl)methyl)-4-(2,3,6-trimethoxy-5-nitrophenyl)-2,2-dimethyl-1,3-dioxane (178).

To the diol compound $176(0.1 \mathrm{~g}, 0.163 \mathrm{mmol})$ in a dimethoxypropane added p-toluenesulphonicacid (catalytic) and maintained stirring at room temperature. After completion of reaction, neutralize the reaction mixture with triethylamine and remove DMP under reduce pressure to give residue which was purified by passing through silica gel column chromatography using EtOAc-hexane (1:8) to afford acetonide 178 ($0.078 \mathrm{~g}, 82 \%$) as a syrup liquid. $\mathrm{R}_{f} 0.6$ (15% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{8}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+41.32\left(c=1.6, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v \quad: 666,757,1067,1217,1578,1736,2926 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.98(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.19(\mathrm{brs}, 1 \mathrm{H}), 1.21-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}$,
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 3 \mathrm{H}\right), 1.51(\mathrm{~s}, 3 \mathrm{H}), 2.02($ hex, $J=6.7,1 \mathrm{H}), 2.89-2.99(\mathrm{~m}, 1 \mathrm{H})$,
$3.21(\mathrm{t}, J=6.7,1 \mathrm{H}), 3.40(\mathrm{~d}, J=4.80,2 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{dd}, J=4.78$, $11.5,1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}) 4.33$ (d, $J=11.6,1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 5.05$ (appd, 1H), 7.06 (d, $J=6.5,2 \mathrm{H}), 7.16-7.27(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $: \delta 16.60\left(\mathrm{q}, \mathbf{C H}_{\mathbf{3}}(\mathbf{6})\right), 19.03\left(\mathrm{q}, \mathbf{C H}_{3}\right), 29.74\left(\mathrm{q}, \mathbf{C H}_{3}\right), 31.52(\mathrm{t}$, ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\left.\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}(7)\right), 33.08$ (d, $\mathrm{O}=\mathrm{C}-\mathbf{C H}-\mathrm{CH}_{2}(8)$), 42.19 (d, $\mathbf{C H}-$ $\left.\mathrm{CH}_{3}(3)\right), 56.05\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 61.52\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 63.50$ (d, aryl-CH-OTMS (9)), 65.66 (t, - $\mathbf{C H}_{2}-\mathrm{CH}(10)$), 69.82 ($\mathrm{q},-\mathrm{OCH}_{3}$), 71.39 ($\mathrm{t}, \mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}$ (5)), 72.41 ($\mathrm{t}, \mathrm{PhCH}_{2}-\mathrm{O}$), 73.28 (t , $\mathrm{PhCH}_{2}-\mathrm{O}$), 79.46 (d, CHCH_{3} - $\mathrm{CHO}-\mathrm{CH}_{2} \mathrm{OBn}-(4)$), 82.76 (d, ${ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(\mathbf{1})$), 89.59 (d, CHO-CHOBn- CHCH_{3} (2)),
99.02 (s, Acetonide C), 108.67 (d, ArylCH), 127.57 (d, CH), 129.78 (s, C), 138.42 (s, C) ppm. : $674.54[\mathrm{M}+\mathrm{Na}]^{+}$.
ESI-MS (m / z)
Calcd : C, 66.34; H, 6.96; N, 2.15\%
Found: C, 66.36; H, 6.97; N, 2.17 \%
((2R,3S,4R,5S)-5-((S)-3-((R)-4-benzyl-2-oxooxazolidin-3-yl)-3-oxo-2-((R)-(2,3,6-trimethoxy-5-nitrophenyl)(trimethylsilyloxy)methyl)propyl)-4-(tert-butyldimethylsilyloxy)-3-methyltetrahydrofuran-2yl)methyl 4-methylbenzenesulfonate (171).

Oxazolidinone 131 ($331 \mathrm{~g}, 0.52 \mathrm{mmol}$) was treated with $\mathrm{MgCl}_{2}(5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde 124 ($151 \mathrm{mg}, 0.631$ mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm})$ with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative 171 ($442 \mathrm{mg}, 89 \%$)as a single isomers with excellent yeild (light yellowcolor liquid). $\mathrm{R}_{f} 0.2$ (10% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{45} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{SSi}_{2}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-8.19\left(c=1.4, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 667, 756, 1079, 1215, 1599, 1694, 1776,2400, $3020 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $: \delta-0.39-0.34(\mathrm{~s}, 3 \mathrm{H}), 0.01-0.06(\mathrm{~s}, 12 \mathrm{H}), 0.72(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{dd}$,
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad J=6.7,3 \mathrm{H}\right), 1.21-1.29(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, 2.67 (dq, $J=5.6,10.9,1 \mathrm{H}), 3.53-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.91-4.08(\mathrm{~m}$, $4 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{t}, J=8.1,1 \mathrm{H})$, 4.76-4.79 (m, 1H), 5.54 (ddd, $J=9.9,20.3,34.9,1 \mathrm{H}$), 7.30-7.34 (m, 5H), 7.37-7.41 (m, 2H), $7.49(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=7.78,2 \mathrm{H})$
ppm.
${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta-5.01(\mathrm{q}$, TBS-CH3 $),-4.97\left(\mathrm{q}\right.$, TBS- $\left.\mathbf{C H}_{3}\right),-4.61(\mathrm{q}$, TBS-CH3$),-$ 4.56 (q, TBS $-\mathrm{CH}_{3}$), $-0.20\left(\mathrm{q}\right.$, TBS- $\left.\mathbf{C H}_{3}\right),-0.16\left(\mathrm{q}\right.$, TMS- $\left.\mathbf{C H}_{3}\right)$, 14.63 (q, $\left.\mathrm{CH}-\mathrm{CH}_{3}(6)\right), 14.70\left(\mathrm{q}, \mathrm{CH}-\mathrm{CH}_{3}(6)\right), 17.69$ (s, C), 21.59 (q, TBS-CH3), 25.49 (q, TBS- $\mathbf{C H}_{3}$), 25.56 (q, TBS- $\mathbf{C H}_{3}$), 31.17 (t, CH-CH2-CH (7)), 31.21 (t, CH-CH2-CH (7)), 38.81 (t, -$\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Ph}$), 38.86 ($\mathrm{t},-\mathrm{CH}-\mathbf{C H}_{2} \mathrm{Ph}$), 41.47 (d, $\mathbf{C H}-\mathrm{CH}_{3}$ (3)), 43.09 (d, CH-CH3 (3)), 48.84 (d, $\mathrm{O}=\mathrm{C}-\mathbf{C H}-\mathrm{CH}_{2}$ (8)), 49.00 (d, $\mathrm{O}=\mathrm{C}-\mathrm{CH}-\mathrm{CH}_{2}(\mathbf{8})$), 55.66 (d, Oxazolidinone $\mathrm{CH}_{2}-\mathrm{CH}$ (10)), 55.90 $\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 56.30\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 61.36\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 61.52\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$, $63.46\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 64.46\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 65.67$ (t, HCO-CH2OBn (5)), 70.40 (d, aryl-CH-OTMS (9)), 70.48 (t, Oxazolidinone $\mathbf{C H}_{2}$ - CH (11)), 77.20 (d, -CH-CHO-CH2OBn-(4)), 80.01 (d, -CH-CHO$\mathrm{CH}_{2} \mathrm{OBn}-(4)$), 80.07 (d, $\left.{ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(1)\right), 80.13$ (d, ${ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(\mathbf{1})$), 80.83 (d, CHO-CHOBn- CHCH_{3} (2)), 80.99 (d, CHO-CHOBn-CHCH 3 (2)), 108.77 (d, ArylCH), 112.85 (d, ArylCH), 127.13 (d, CH), 127.91 (d, CH), 128.89 (d, CH), 129.36 (d, CH), 129.82 (d, CH), 131.20 (s, C), 131.42 (s, C), 132.66 (s, C), 136.04 (s, C), 138.15 (s, C), 139.60 (s, C), 144.81 (s, C), 147.01 ($\mathrm{s}, \mathrm{C}), 148.03$ ($\mathrm{s}, \mathrm{C}), 149.27$ ($\mathrm{s}, \mathrm{C}), 149.56$ (s, C), 152.04 (s, C), 153.43 (s, C), 154.31 (s, C), 176.27 (s, C) ppm.

Hint: In the ${ }^{\mathbf{1}} \mathbf{H}$ and ${ }^{13} \mathbf{C N M R}$ spectrum shows corresponding peaks in double splitting patteren indicates the presence of restricted conformational isomers.
ESI-MS (m / z) : 968.63[M+Na] ${ }^{+}$.
Elemental Analysis Calcd: C, 57.18; H, 6.82; N, 2.96 \%
Found: C, 57.19; H, 6.84; N, 2.97 \%
(R)-4-benzyl-3-((2S,3R)-2-(((2S,3R,4S,5R)-3-(tert-butyldimethylsilyloxy)-5-(iodomethyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-(2,3,6-trimethoxy-5-nitrophenyl)-3-
(trimethylsilyloxy)propanoyl)oxazolidin-2-one (172).

Oxazolidinone $132(308 \mathrm{~g}, 0.52 \mathrm{mmol})$ was treated with $\mathrm{MgCl}_{2}(5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde $124(151 \mathrm{mg}, 0.631$ mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm})$ with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative 172 ($421 \mathrm{mg}, 90 \%$) as a single isomers with excellent yeild (light yellowcolor liquid). $\mathrm{R}_{f} 0.2$ (10% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{38} \mathrm{H}_{57} \mathrm{IN}_{2} \mathrm{O}_{11} \mathrm{Si}_{2}$

$$
[\alpha]_{\mathrm{D}}{ }^{25} \quad:-9.14\left(c=0.2, \mathrm{CHCl}_{3}\right)
$$

$$
\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) v \quad: 667,758,1053,1252,1698,1776,3088 \mathrm{~cm}^{-1}
$$

$$
{ }^{1} \mathbf{H} \text { NMR } \quad: \delta-0.29-003(\mathrm{~s}, 3 \mathrm{H}), 0.01-0.06(\mathrm{~s}, 12 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{t}, J
$$

$$
\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=6.7,3 \mathrm{H}\right), 1.25-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{hex}, J=6.7,1 \mathrm{H}), 2.26(\mathrm{dq}, J
$$

$$
=4.3,12.1,16.2,1 \mathrm{H}), 2.68(\mathrm{dd}, J=10.5,22.7,1 \mathrm{H}), 3.18(\mathrm{ddd}, J
$$

$$
=1.6,7.2,9.4,1 \mathrm{H}), 3.33(\mathrm{dd}, J=3.8,10.3,1 \mathrm{H}), 3.44-3.51(\mathrm{~m}
$$

$$
1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=12.3,1 \mathrm{H}), 3.67-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.94-4.08(\mathrm{~m},
$$ 9H), 4.07-4.09 (m, 1H), $4.16(\mathrm{dd}, J=2.7,9.03,1 \mathrm{H}), 4.35(\mathrm{t}, J=$ $8.3,1 \mathrm{H}), 4.89(\mathrm{q}, J=8.3,1 \mathrm{H}), 5.55(\mathrm{ddd}, J=9.8,17.4,27.9$, $1 \mathrm{H}), 7.29-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

[^4]: $\delta-4.93(\mathrm{q}$, TBS-CH3 $),-4.90\left(\mathrm{q}\right.$, TBS- $\left.\mathbf{C H}_{3}\right),-4.51\left(\mathrm{q}\right.$, TBS- $\left.\mathbf{C H}_{3}\right)$, -4.42 ((q, TBS-CH3), -3.63 (q, TBS-CH3), -0.41 (q, TMS-CH3), 0.15 ($\mathrm{q}, \mathrm{TMS}-\mathrm{CH}_{3}$), 10.86 ($\mathrm{t}, \mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(5)$), 10.90 ($\mathrm{t}, \mathrm{HCO}-$ $\left.\mathbf{C H}_{2} \mathrm{OBn}(5)\right), 15.36$ (q, $\left.\mathrm{CH}-\mathrm{CH}_{3}(6)\right), 15.44$ (q, $\mathbf{C H}-\mathbf{C H}_{3}(\mathbf{6})$),
17.76 (s, C), $25.56(\mathrm{q}$, TBS-CH3$), 25.62(\mathrm{q}$, TBS-CH3$), 31.34$ (t, $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}$ (7)), 31.51 (t, CH-CH2-CH (7)), 38.81 (t , - $\mathrm{CH}-$ $\mathbf{C H}_{2} \mathrm{Ph}$), 38.87 ($\mathrm{t},-\mathrm{CH}-\mathbf{C H}_{2} \mathrm{Ph}$), 41.18 ($\mathrm{d}, \mathbf{C H}-\mathrm{CH}_{3}(3)$), 41.59 (d , $\mathbf{C H}-\mathrm{CH}_{3}$ (3)), 47.88 (d, $\mathrm{O}=\mathrm{C}-\mathbf{C H}-\mathrm{CH}_{2}(8)$), 47.93 ($\mathrm{d}, \mathrm{O}=\mathrm{C}-\mathbf{C H}-$ $\mathrm{CH}_{2}(\mathbf{8})$), $55.84\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 55.94\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 56.31(\mathrm{~d}$, Oxazolidinone $\left.\mathrm{CH}_{2}-\mathbf{C H}(10)\right), 61.39$ ($\mathrm{q},-\mathrm{OCH}_{3}$), 64.41 (d, $\left.\mathrm{OCH}_{3}\right), 61.48\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 63.49\left(\mathrm{~d},-\mathrm{OCH}_{3}\right), 65.73(\mathrm{t}$, Oxazolidinone $\mathrm{CH}_{2}-\mathrm{CH}$ (11)), 70.61 (d, aryl-CH-OTMS (9)), 70.71 (d, aryl-CH-OTMS (9)), 77.25 (d, -CH-CHO-CH2OBn(4)), 80.65 (d, $\left.{ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(1)\right), 80.72$ (d, ${ }_{2} \mathrm{HC}-\mathrm{HCO}-$ $\mathrm{CH}_{2} \mathrm{OBn}(1)$), 83.26 (d, CHO-CHOBn- CHCH_{3} (2)), 108.75 (d, ArylCH), 108.83 (d, ArylCH), 127.15 (d, CH), 128.85 (d, CH), 128.93 (d, CH), 129.41 (d, CH), 131.24 ($\mathrm{s}, \mathrm{C}), 131.39$ ($\mathrm{s}, \mathrm{C})$, 136.11 (s, C), 138.10 (s, C), 139.53 (s, C), 147.05 (s, C), 148.01 (s, C), 149.29 (s, C), 149.51 ($\mathrm{s}, \mathrm{C}), 152.03$ ($\mathrm{s}, \mathrm{C}), 153.23$ (s, C), 154.35 (s, C), 176.37 (s, C) ppm.

Hint: In the ${ }^{\mathbf{1}} \mathbf{H}$ and ${ }^{13} \mathbf{C N M R}$ spectrum shows corresponding peaks in double splitting patteren indicates the presence of restricted conformational isomers.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 923.25[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd : C, 50.66; H, 6.38; I, 14.09; N, 3.11 \%
Found: C, 50.67; H, 6.39; I, 14.11; N, 3.13 \%
(R)-4-benzyl-3-((2S,3R)-2-(((2S,3R,4S,5R)-3-(tert-butyldimethylsilyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)-4-methyltetrahydrofuran-2-yl)methyl)-3-(2,3,6-trimethoxy-5-nitrophenyl)-3-(trimethylsilyloxy)propanoyl)oxazolidin-2-one (173).

Oxazolidinone $137(311 \mathrm{~g}, 0.52 \mathrm{mmol})$ was treated with $\mathrm{MgCl}_{2}(5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde 124 ($152 \mathrm{mg}, 0.631$ mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm})$ with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative $\mathbf{1 7 3}$ ($416 \mathrm{mg}, 87 \%$) as a single isomers with excellent yeild (light yellowcolor liquid). $\mathrm{R}_{f} 0.2(10 \%$ ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{44} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Si}_{3}$

$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-16.31\left(c=0.77, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,757,1078,1251,1604,1693,1735,1780,2401,3021$ cm^{-1}
${ }^{1} \mathbf{H}$ NMR $\quad: \delta-0.29-0.35(\mathrm{~s}, 3 \mathrm{H}), 0.01-0.09(\mathrm{~s}, 18 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H}), 0.85-$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 086(\mathrm{~m}, 9 \mathrm{H}), \quad 0.94(\mathrm{~d}, J=6.7,13.9,3 \mathrm{H}), 1.26-1.35(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dq}, J=5.7,16.7$, $1 \mathrm{H}), 3.33-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.71(\mathrm{~m}, 2 \mathrm{H})$, 3.88-3.99 (m, 9H), 3.99-4.04 (m, 4H), 4.18-4.23 (m, 1H), 4.71 (t, $J=7.9,1 \mathrm{H}$), 5.55 (ddd, $J=10.1,17.4,23.9,1 \mathrm{H}$), 7.327.41 (m, 5H), $7.50(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

[^5]$: \delta-5.50(\mathrm{q}$, TBS-CH3$),-5.36\left(\mathrm{q}\right.$, TBS- $\left.\mathbf{C H}_{3}\right),-5.30(\mathrm{q}$, TBS-
$\mathbf{C H}_{3}$), $-5.09\left(\mathrm{q}, \mathrm{TBS}-\mathrm{CH}_{3}\right),-5.04\left(\mathrm{q}, \mathrm{TBS}-\mathbf{C H}_{3}\right),-4.58(\mathrm{q}$, TBS-CH3 $),-4.45\left(\mathrm{q}, \mathrm{TBS}-\mathbf{C H}_{3}\right),-0.21\left(\mathrm{q}, \mathrm{TMS}-\mathbf{C H}_{3}\right),-0.17$ (q, TMS-CH3), $15.58\left(\mathrm{q}, \mathrm{CH}-\mathrm{CH}_{3}(6)\right), 15.67\left(\mathrm{q}, \mathrm{CH}-\mathrm{CH}_{3}(6)\right)$, 17.73 (s, TBS-C), 18.34 (s, TBS-C), 25.53 (q, TBS-CH3), 25.59 (q, TBS-CH3 $), 25.88$ (q, TBS-CH3 $), 31.21$ (t, $\mathbf{C H}-\mathbf{C H}_{2}{ }^{-}$ CH (7)), 31.38 (t, CH-CH2-CH (7)), 38.81 (t, -CH-CH2 $\mathbf{-}$), 38.89 (t, -CH-CH2Ph), 40.84 (d, CH-CH3 (3)), 41.23 (d, CH$\left.\mathrm{CH}_{3}(3)\right), 43.28$ (d, $\mathrm{O}=\mathrm{C}-\mathbf{C H}-\mathrm{CH}_{2}(8)$), 43.31 (d, $\mathrm{O}=\mathrm{C}-\mathbf{C H}-$ $\mathrm{CH}_{2}(\mathbf{8})$), $55.86\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 56.29\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 61.38(\mathrm{q},-$ OCH_{3}), 61.42 ($\mathrm{q},-\mathrm{OCH}_{3}$), 63.53 (d, OxazolidinoneCH2-CH (10)), $64.42\left(\mathrm{q},-\mathrm{OCH}_{3}\right), \quad 65.56$ (t, Oxazolidinone $\mathbf{C H}_{2}-\mathrm{CH}$
(11)), 65.70 (t , Oxazolidinone $\mathrm{CH}_{2}-\mathrm{CH}$ (11)), 70.59 (d, aryl-CH-OTMS (9)), 79.82 (d, - aryl-CH-OTMS (9)), 80.05 (d, CH-CHO- $\mathrm{CH}_{2} \mathrm{OBn}-(4)$), 80.68 (d, $\left.{ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(1)\right)$, 80.76 (d, ${ }_{-2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(\mathbf{1})$), 84.74 (d, CHO-CHOBn$\left.\mathrm{CHCH}_{3}(2)\right), 108.69$ (d, Ar-CH), 108.72 (d, Ar-CH), 127.11 $(\mathrm{d}, \mathrm{CH}), 128.87(\mathrm{~d}, \mathrm{CH}), \quad 129.40(\mathrm{~d}, \mathrm{CH}), 131.52(\mathrm{~s}, \mathrm{C})$, 136.14 (s, C), 138.05 (s, C), 139.57 (s, C), 147.08 (s, C), 147.99 (s, C), 149.53 (s, C), 152.07 (s, C), 153.36 (s, C), 154.43 (s, C), 176.37 (s, C), 176.75 (s, C) ppm.

Hint: In the ${ }^{\mathbf{1}} \mathbf{H}$ and ${ }^{13} \mathbf{C N M R}$ spectrum shows corresponding peaks in double splitting patteren indicates the presence of restricted conformational isomers.

ESI-MS (m / z) : $927.92[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd : C, 58.37; H, 8.02; N, 3.09 \%
Found: C, 58.38; H, 8.04; N, 3.11 \%

Oxazolidinone $189(310 \mathrm{~g}, 0.52 \mathrm{mmol})$ was treated with $\mathrm{MgCl}_{2}(5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde 124 ($173 \mathrm{mg}, 0.631$ mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm})$ with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane
(1:12) to give OH-Evan's 174 ($398 \mathrm{mg}, 94 \%$) as a single isomers with excellent yeild (light yellowcolor liquid). $\mathrm{R}_{f} 0.4$ (10% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{Si}_{2}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-11.91\left(c=3.2, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v: 667,758,872,1070,1251,1604,1696,1736,1784,2402,3020$ cm^{-1}
${ }^{1}$ H NMR $\quad: \delta 0.86(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.20(\mathrm{ddd}, J=2.7,6.7,14.7,1 \mathrm{H}) 1.22-$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.24(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 2.00-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=4.6$, $11.5,15.5,1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}, J=9.5,13.7$, $1 \mathrm{H}), 3.42(\mathrm{dd}, J=3.3,13.7,1 \mathrm{H}), 3.53$ (ddd, $J=3.3,6.7,9.5,1 \mathrm{H})$, $3.78(\mathrm{q}, J=6.07,1 \mathrm{H}), 3.83-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}), 4.11-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.76-$ $4.83(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{t}, \mathrm{J}=11.3,1 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 9 \mathrm{H}), 7.51(\mathrm{~s}$, $1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3,2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C} \mathbf{N M R} \quad: \delta 14.75\left(\mathrm{q}, \mathrm{CH}-\mathbf{C H}_{\mathbf{3}}(\mathbf{6})\right), 21.62\left(\mathrm{q}, \mathrm{Ts}-\mathrm{CH}_{3}\right), 28.82\left(\mathrm{q}, \mathrm{Ts}-\mathrm{CH}_{3}\right)$, $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 31.02\left(\mathrm{t}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}(7)\right), 37.87$ ($\mathrm{t},-\mathrm{CH}-\mathbf{C H}_{2} \mathrm{Ph}$), 41.10 (d, CH$\left.\mathrm{CH}_{3}(3)\right), 44.30\left(\mathrm{~d}, \mathrm{O}=\mathrm{C}-\mathrm{CH}-\mathrm{CH}_{2}(8)\right), 56.00\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 56.43$ (d, OxazolidinoneCH2-CH (10)), $61.66\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 63.21(\mathrm{q},-$ OCH_{3}), 66.78 (t , $\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}$ (5)), 69.78 (t , Oxazolidinone $\mathrm{CH}_{2}-\mathrm{CH}$ (11)), 71.37 (d, aryl-CH-OTMS (9)), 79.12 (d, -CH-CHO-CH2OBn-(4)), 81.03 (d, ${ }_{2} \mathrm{HC}-\mathrm{HCO}-$ $\mathrm{CH}_{2} \mathrm{OBn}$ (1)), 86.45 (d, CHO-CHOBn- CHCH_{3} (2)), 109.53 (d, ArylCH), 127.14 (d, CH), 128.71 (d, CH), 129.86 (d, CH), 129.94 (d, CH), 133.15 (s, C), 135.62 (s, C), 145.10 ($\mathrm{s}, \mathrm{C}), 145.32$ (s, C), 148.20 (s, C), 154.46 (s, C), 163.93 (s, C), 176.06 (s, C) ppm.

ESI-MS (m / z) : $936.55[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd : C, 56.57; H, 5.30; N, 3.07 \%
Found: C, 56.58; H, 5.32; N, 3.08 \%
(R)-4-benzyl-3-((2S,3R)-3-(3-bromo-2,5,6-
trimethoxyphenyl)-2-(((2S,3R,4S,5R)-3-(tert-
butyldimethylsilyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)-4-
methyltetrahydrofuran-2-yl)methyl)-3-
(trimethylsilyloxy)propanoyl)oxazolidin-2-one (175).

175
MeO

Oxazolidinone $137(310 \mathrm{~g}, 0.52 \mathrm{mmol})$ was treated with $\mathrm{MgCl}_{2}(5 \mathrm{mg}, 0.052$ mmol), triethylamine ($106 \mathrm{mg}, 0.146 \mathrm{~mL}, 1.05 \mathrm{mmol}$), benzaldehyde 183 ($173 \mathrm{mg}, 0.631$ mmol) and chlorotrimethylsilane ($85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{mmol}$) in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm})$ with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel 230-400 by eluting with EtOAC-hexane (1:12) to give TMS ether derivative 175 ($448 \mathrm{mg}, 91 \%$) as a single isomers with excellent yeild (light yellowcolor liquid). $\mathrm{R}_{f} 0.2$ (10% ethyl acetate/hexane).
Mol. Formula $\quad: \mathrm{C}_{44} \mathrm{H}_{72} \mathrm{BrNO}_{10} \mathrm{Si}_{3}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+4.48\left(c=2.25, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v: 667,758,872,1070,1251,1604,1696,1736,1784,2402,3020$ cm^{-1}
${ }^{1}$ H NMR $\quad: \delta-0.33(\mathrm{~s}, 3 \mathrm{H}),-0.05-0.03(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 6 \mathrm{H})$, $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 0.69(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.30-1.37(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.73$ (m, 1H), 2.28 (dt, $J=4.7,12.7,1 H), 2.68(\mathrm{dd}, J=$ $11.2,13.1,1 \mathrm{H}$), 3.38 (ddd, $J=4.3,9.7,14.0,1 \mathrm{H}), 3.52-3.54$ (m, $3 \mathrm{H}), 3.62(\mathrm{dd}, J=4.7,12.7,1 \mathrm{H}), 3.68(\mathrm{dd}, J=6.7,11.2,1 \mathrm{H})$, 3.87 (s, 3H), 3.86-3.88 (m, 1H), 3.92 (s, 3H), 4.01 (s, 3H), 4.11 $(\mathrm{d}, J=8.3,1 \mathrm{H}), 4.19(\mathrm{q}, J=7.8,8.3,1 \mathrm{H}), 4.70(\mathrm{t}, J=7.8,1 \mathrm{H})$ 5.52 (ddd, $J=10.8,22.8,34.1,1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.35(\mathrm{~m}$, 5H) ppm.

[^6]15.58 ($\mathrm{q}, \mathrm{CH}-\mathrm{CH}_{3}(6)$), 15.64 ($\mathrm{q}, \mathrm{CH}-\mathrm{CH}_{3}(\mathbf{6})$), 17.78 ($\mathrm{s}, \mathrm{TBS}-\mathrm{C}$), 18.36 ($\mathrm{s}, \mathrm{TBS}-\mathrm{C}$), 25.62 ($\mathrm{q}, \mathrm{TBS}-\mathbf{C H}_{3}$), 25.68 ($\mathrm{q}, \mathrm{TBS}-\mathbf{C H}_{3}$), 25.90 (q, TBS- $\mathbf{C H}_{3}$), 31.31 ($\mathrm{t}, \mathrm{CH}-\mathbf{C H}_{2}-\mathrm{CH}$ (7)), 31.56 (t, CH$\mathbf{C H}_{2}-\mathrm{CH}$ (7)), 38.83 ($\mathrm{t},-\mathrm{CH}-\mathbf{C H}_{2} \mathrm{Ph}$), 38.90 ($\mathrm{t},-\mathrm{CH}-\mathbf{C H}_{2} \mathrm{Ph}$), 40.83 (d, CH-CH ${ }_{3}$ (3)), 40.90 (d, CH-CH (3)), 43.35 (d, O=C$\mathbf{C H}-\mathrm{CH}_{2}(\mathbf{8})$), 43.46 ($\mathrm{d}, \mathrm{O}=\mathrm{C}-\mathbf{C H}-\mathrm{CH}_{2}(\mathbf{8})$), 55.72 ($\mathrm{q},-\mathrm{OCH}_{3}$), 55.89 (q, - OCH_{3}), 56.26 (d, OxazolidinoneCH C_{2} - $\mathrm{CH}(\mathbf{1 0)}$), 61.05 $\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 61.13\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 61.83\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 62.10(\mathrm{q},-$ OCH_{3}), 65.51 (t , $\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn} \quad$ (5)), $65.80 \quad(\mathrm{t}$, Oxazolidinone $\mathbf{C H}_{2}-\mathrm{CH}$ (11)), 70.78 (d, $\mathrm{CHO}-\mathbf{C H O B n}-\mathrm{CHCH}_{3}$ (2)), 71.79 (d, CHO-CHOBn- CHCH_{3} (2)), 79.77 (d, -CH-CHO$\mathrm{CH}_{2} \mathrm{OBn}-(4)$), 80.85 (d, $\left.{ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(1)\right), 80.89$ (d, ${ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}(\mathbf{1})$), 84.70 (d, aryl-CH-OTMS (9)), 84.88 (d, aryl-CH-OTMS (9)), 116.22 (d, ArylCH), 116.50 (d, ArylCH), 127.05 (d, CH), 128.84 (d, CH), 129.42 (d, CH), 130.74 (s, C), 136.28 (s, C), 147.06 (s, C), 148.75 (s, C), 149.04 (s, C), 149.19 (s, C), 150.86 (s, C), 153.35 (s, C), 176.77 (s, C) ppm.
Hint: In the ${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C N M R}$ spectrum shows corresponding peaks in double splitting patteren indicates the presence of restricted conformational isomers.

ESI-MS (m / z)
Elemental Analysis
: $961.18[\mathrm{M}+\mathrm{Na}]^{+}$.
Calcd : C, 56.27; H, 7.73; Br, 8.51; N, 1.49 \%
Found: C, 56.28; H, 7.75; Br, 8.52; N, 1.50 \%
(2R,3R)-3-(3-bromo-2,5,6-trimethoxyphenyl)-2-(((2S,3R,4S,5R)-3-(tert-butyldimethylsilyloxy)-5-((tert-butyldimethylsilyloxy)methyl)-4-methyltetrahydrofuran-2-yl)methyl)-3-(trimethylsilyloxy)propan-1-ol (184).

The aldol adduct $175(1.2 \mathrm{~g}, 1.2 \mathrm{mmol}), 10 \mathrm{~mL}$ of drydiethylether and anhydrous methanol (0.04 mL) were cooled to $0^{\circ} \mathrm{C}$. Lithium borohydrate (2.0 M in THF , 0.51 mL mmol) was added dropwise, and the mixture was stirred for 2 h at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with $15 \% \mathrm{NaOH}$ and then concentrated in vacuo. The aqueous layer was extracted with ether, and the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by flash chromatography gave 184 ($0.612 \mathrm{~g}, 63 \%$) of alcohol. $\mathrm{R}_{f} 0.5(30 \%$ ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{34} \mathrm{H}_{65} \mathrm{BrO}_{8} \mathrm{Si}_{3}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+4.66\left(c=0.95, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) v \quad: 667,756,1062,1252,1559,1654,1718,2402,3378 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta-0.19(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$, $\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 9 \mathrm{H}\right), 1.01(\mathrm{~d}, J=6.75,3 \mathrm{H}), 1.30-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.93(\mathrm{~m}, 1 \mathrm{H}$), 2.72-2.76 (m, 1H), 3.30(s, 1H), 3.51-3.53 (m, 1H), 3.53-3.70 $(\mathrm{s}, 5 \mathrm{H}), 3.73-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 5.08-5.21$ $(\mathrm{m}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $: \delta-5.39\left(\mathrm{q}\right.$, TBS- $\left.\mathbf{C H}_{3}\right),-4.40\left(\mathrm{q}\right.$, TBS- $\left.\mathbf{C H}_{3}\right),-4.23\left(\mathrm{q}\right.$, TBS-CH $\left.\mathbf{C H}_{3}\right)$, $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad-0.06\left(\mathrm{q}, \mathrm{TMS}-\mathbf{C H}_{3}\right), 15.77\left(\mathrm{q}, \mathrm{CH}-\mathbf{C H}_{3}(\mathbf{6})\right.$), 17.79 ($\mathrm{s}, \mathrm{TBS}-\mathrm{C}$), 18.33 (s, TBS-C), 21.61 (s, TBS-C), 25.73 (q, TBS- $\mathbf{C H}_{3}$), 25.92 (q, TBS-CH3), 31.91 (t, $\mathrm{CH}-\mathbf{C H}_{2}-\mathrm{CH}$ (7)), 41.67 (d, $\mathbf{C H}-\mathrm{CH}_{3}$ (3)), $43.39\left(\mathrm{~d}, \mathrm{O}=\mathrm{C}-\mathbf{C H}-\mathrm{CH}_{2}(8)\right), 56.01\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 60.92(\mathrm{q},-$ $\left.\mathrm{OCH}_{3}\right), 61.82\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 63.66\left(\mathrm{t}, \mathrm{CH}_{2}(\mathbf{1 0})\right), 64.78$ ($\mathrm{t}, \mathrm{HCO}-$ $\mathbf{C H}_{2} \mathrm{OBn}$ (5)), 69.17 (d, aryl-CH-OTMS (9)), 77.31 (d, -CH-CHO-CH2 $\mathrm{OBn}-(4)$), 80.52 (d, ${ }_{-2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}$ (1)), 83.63 (d, CHO-CHOBn- CHCH_{3} (2)), 115.79 (d, ArylCH), 127.88 (s, C), 128.19 (s, C), 129.77 (s, C) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 787.96[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd: C, 53.31; H, 8.55 \%
Found: C, 53.32; H, 8.56 \%
(2R,3R)-3-(3-bromo-2,5,6-trimethoxyphenyl)-2-(((2S,3R,4S,5R)-3-(tert-butyldimethylsilyloxy)-5-((tert-butyldimethylsilyloxy)methyl)-4-methyltetrahydrofuran-2-yl)methyl)-3hydroxypropyl 4-methylbenzenesulfonate (185).

185

To a stirred solution of diol $184(0.75 \mathrm{~g}, 1.08 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.18 \mathrm{~mL}, 1.29 \mathrm{mmol})$ and DMAP (20 mg), in dichloromethane $(30 \mathrm{~mL})$ was added p -toluenesulfonyl chloride $(0.189 \mathrm{~g}, 1.29 \mathrm{mmol})$, at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h at room temperature, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel by using EtOAc-hexane (2:1) to afford $185(0.826 \mathrm{~g}$, 92 \%)as a syrup liquid. $\mathrm{R}_{f} 0.8$ (75 \% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{41} \mathrm{H}_{71} \mathrm{BrO}_{10} \mathrm{SSi}_{3}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-19.34\left(c=0.4, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 667, 756, 1066, 1252, 1598, 1666, 1731, 2401, 3017, $3453 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}$, $\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 9 \mathrm{H}\right), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.56$ (ddd, $J=1.6,9.8$, $14.3,1 \mathrm{H}), 1.94$ (hex, $J=6.7,1 \mathrm{H}), 2.34-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, $3.05(\mathrm{dt}, J=7.2,13.4,1 \mathrm{H}), 3.32(\mathrm{t}, J=7.2,1 \mathrm{H}), 3.46(\mathrm{dt}, J=5.2$, $9.7,1 \mathrm{H}$), $3.64(\mathrm{dq}, J=5.5,10.5,16.4,2 \mathrm{H}), 3.74(\mathrm{dq}, J=1.6,6.7$, $10.6,1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, 4.00-4.06 (m, 1H), $5.07(\mathrm{t}, J=9.5,1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.3,2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.3,2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $: \delta-5.41\left(\mathrm{q}, \mathrm{TBS}-\mathbf{C H}_{3}\right),-4.37\left(\mathrm{q}, \mathrm{TBS}-\mathrm{CH}_{3}\right),-4.18\left(\mathrm{q}, \mathrm{TBS}^{2} \mathbf{C H}_{3}\right)$, $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad-0.19\left(\mathrm{q}, \mathrm{TMS}-\mathbf{C H}_{3}\right), 15.74\left(\mathrm{q}, \mathrm{CH}-\mathbf{C H}_{\mathbf{3}}(\mathbf{6})\right.$), 17.79 ($\mathrm{s}, \mathrm{TBS}-\mathrm{C}$), 18.27 (s, TBS-C), $21.46\left(\mathrm{q}, \mathrm{Ts}-\mathbf{C H}_{3}\right), 25.69$ ($\mathrm{q}, \mathrm{TBS}-\mathbf{C H}_{3}$), 25.85 (q, TBS-CH3), 32.20 (t, $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}$ (7)), 43.65 (d, $\mathbf{C H}-\mathrm{CH}_{3}$ (3)), 43.86 (d, O=C-CH-CH2(8)), 56.11 ($\mathrm{q},-\mathrm{OCH}_{3}$), 61.06 (q , OCH_{3}), $61.66\left(\mathrm{q},-\mathrm{OCH}_{3}\right), 64.33$ (t, HCO-CH2OBn (5)), 65.10 (t , -OTs-CH ${ }_{2}$-CH (10)), 72.04 (d, aryl-CH-OTMS (9)), 77.32 (d, -$\left.\mathrm{CH}-\mathrm{CHO}-\mathrm{CH}_{2} \mathrm{OBn}-(4)\right), 80.48$ (d, ${ }_{2} \mathrm{HC}-\mathrm{HCO}-\mathrm{CH}_{2} \mathrm{OBn}$ (1)),
83.65 (d, CHO-CHOBn-CHCH 3 (2)), 116.05 (d, ArylCH), 125.87 (d, CH), 128.06 (d, CH), 129.60 (d, CH), 130.58 (s, C), 148.84 (s, C), 149.61 (s, C) ppm.

ESI-MS (m / z) : $943.22[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd : C, 53.51; H, 7.78 \%
Found: C, 53.53; H, 7.79 \%

SPECTROSCOPIC DATA

(
${ }^{1} \mathrm{H}$ NMR Spectrum of 123a in CDCl_{3}

${ }^{13} \mathbf{C N M R}$ Spectrum of 123 a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2 3 b}$ in CDCl_{3}

${ }^{13} \mathbf{C N M R}$ Spectrum of 123 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 176 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 176 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 178 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 178 in $\mathrm{CDCl}_{3} / \mathrm{CCl}_{4}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 179 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 179 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 180 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 180 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 181 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 181 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 171 in CDCl_{3}
]

${ }^{13}$ CNMR Spectrum of 171 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of172 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 172 in $\mathbf{C D C l}_{3}$
(

${ }^{13}$ CNMR Spectrum of 173 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 174 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 174 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 175 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 175 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 184 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 184 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 185 in CDCl_{3}

Reference:

(1) (a) De Boer, C.; Meulman , P. A.; Wnuk, R, J.; Peterson, D, H, J. Antibiot. 1970, 23, 442. (b) Rinehart, K, L.; Sasaki,K.; Slomp, G.; Grostic, M, F.; Olson, E, C. J. Am. Chem. Soc.1970, 92, 7591.
(2) (a) Whitesell, L.; Mimnaugh, E. G.; De Costa, B.; Myers, C. E.;Neckers, L. M.Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 8324. (b) Schulte,T. W.; An, W. G.;Neckers, L. M. Biochem. Biophys. Res. Commun. 1997,239, 655. (c) Stebbins,C. E.; Russo, A. A.; Schneider, C.; Rosen, N.; Hartl,F. U.; Pavletich, N. P. Cell 1997, 89, 239.
(3) (a) Andrus, M. B.; Meredith, E. L.; Simmons, B. L.; Sekhar, B. B. V. S.; Hicken, E. J. Org. Lett. 2002, 4, 3549. (b) Andrus, M. B.; Meredith, E. L.; Hicken, E. J.; Simmons, B. L.; Glancey, R. R. J. Org. Chem. 2003, 68, 8162. (c) Hua-Li Qin and James S. Panek. Org. Lett. 2008, 10, 2477-2479.
(4) Uehara, Y. Curr. Cancer Drug Targets 2003, 3, 325-330.
(5) Zhihao Hu, Yaoquan Liu, Zong-Qiangtian, Wei Ma, Courtney M Starks, Rika Regentin, Peter Licari, David C. Myles and C.Richard Hutchinson. J. Antibiot. 2004, 57, 421-428.
(6) Malelene Nikaido,; Robert Aslanian,; Frank Scavo,; Paul Helquist,; J. Org. Chem. 1984, 49, 4740-4741.
(7) (a) Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392-393 (b) David A. Evans,; C. Wade Downey,; Jared T. Shaw,; Jason S. Tedrow,; Org. Lett. 2002, 4, 1127-1130.
(8) Harry J. Martin, Martina Drescher, Hanspeter Kählig,Sabine Schneider, and Johann MulzerAngew. Chem. Int. Ed. 2001, 40, 3186-3188.
(9) G.V. Smith and F. Notheisz, Heterogeneous Catlysis in Organic Chemistyr, Academic Press, New York, 1999, pp- 71-79.
(10) Hua-Li Qin and James S. Panek. Org. Lett. 2008, 10, 2477-2479.

Section-III: Towards synthesis of key fragment of KOSN 1633

INTRODUCTION AND PRESENT WORK

Section-III: Towards synthesis of key fragment of KOSN 1633

Introduction:

In the search of most potent and biologically active molecules that deliver a drug, to cure different types of cancers. It has been identified that the geldanamycin was more potent biologically active Hsp90 inhibitor. ${ }^{1}$ The greastest draw back is its low solubility and more cytotoxic. To rectify this problem, derivatisation of geldanamycin was necessary to improve lipophilicity and reduce cytotoxicity of it. For this purpose, different types of geldanamycin derivatives were obtained from direct microbial bioconversion and a genetically engineered geldanamycin producer were isolated and characterized. In this regard, 17-hydroxymethyl-17-demethoxygeldanamycin and 17-formyl-17-demethoxy-18-O,-dihydrogeldanamycin were isolated from S. hygroscopicus NRRL 3602/ Pkos279-78. another important geldanamycin derivative was KOSN-1633 (Figure 21). ${ }^{2}$ All these geldanamycin derivatives exhibit reduced cytotoxicity against SKBr3 Cancer cells. KOSN-1633 has significantly two-fold less cytotoxic than 15 hydroxygeldanamycin. ${ }^{2}$

17-Formyl-17-demethoxy-18-0,21-Odihydrogeldanamycin
(KOSN-1645)

17-Hydroxymethyl-
17-demethoxygeldanamycin
(KOSN-1646)

Figure-21: structures of KOSN-1633, KOSN-1645, KOSN-1646

Present Work:

Characterization of KOSN-1633

The tricyclic geldanamycin (KOSN-1633) ${ }^{1}$ was isolated as a minor isomer-I when geldanamycin was added to the fermentation broth of the S. hygroscopicus AM3672. The structure of KOSN-1633 possess (I) a tricyclic core (II) cyclization between

C15-OH and C11-OH leads to form highly substitueted tetrahydropyran of ansachain attached to the metaposition of benzoquinone (III) along with 17-O-demethylation of 15hydroxy geldanamycin. A molecular formula of $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{9}$ was established for KOSN1633 from ${ }^{13} \mathrm{C}$ NMR spectrum and high resolution mass spectral data (ESI TOF MS m/z 567.2303, calculated for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$567.2313. carbon-hydrogen connectivity was established using the multiplicity-edited HSQC spectrum, while gsCOSY and ctHMBC data allowed tracing of the carbon-oxygen skeleton. The molecular formula indicates that KOSN-1633 contains one carbon fewer than geldanamycin, and the proton NMR spectrum lacks the 17-methoxy signal displayed by geldanamycin ($\delta 4.12$). the molecular formula also indicates an additional element of unsaturation with respect to geldanamycin, which is accounted for by a cyclic ether joining carbons 11 and 15. The location of this ether linkage is confirmed by an HMBC connecting H-15 ($\delta 4.51$) and C-11 ($\delta 7.41$). One and two-dimensional NMR data are consistent with the rest of the structure being identical to geldanamycin.

Retrosynthetic analysis:

KOSN-1633-I

Fragment $\mathrm{B}, \mathrm{R}{ }^{\prime \prime}=\mathrm{OH}$ or NH_{2}

II $\mathbf{R 1}=\mathbf{N H}_{2}, \mathbf{B r}$ $\mathbf{R}_{\mathbf{2}}=\mathbf{O H}, \mathrm{NH}_{2}$

Figure 22: Retrosynthesis of KOSN-1633

$102 \mathrm{X}=\mathrm{OCH}_{3}$ or H

As a part of our continuing efforts towards the total synthesis of these class of compounds and the unique structural features motivated us to take up the synthesis of critical fragment of KOSN-1633. The Retrosynthetic plan has been illustrated in Figure: 22, which involved the bond disconnection at C1-N22 resulting int-II, further intramolecular Buchwald reaction or intramolecular lactonization would lead to target molecule-I. The crucial Int-II can be obtained by assembling key fragments A and B through crossmetathesis. The critical fragment-A can be prepared by using Evans anti aldol protocol from aldehyde-102 and carbohydrate precursor-101.

Synthesis of pyranofuranose derivative :

We envisaged that, synthesizing the suitably substituted pyranofuranose ring attached to the aryl ring could be the most challenging endevour in the total synthesis of this target molecule.

To achieve the desired target, we started with the synthesis of ditosyl derivative-190 from ealier synthesized dioloxazolidinone derivative-129 by using TsCl , imidazole, and catalytic DMAP in DCM at rt. The ditosylate oxazolidinone-190 was confirmed from it's ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectral studies. The characteristic signals of two tosyl groups were observed in ${ }^{1} \mathrm{H}$ NMR spectrum, at $\delta 2.40,2.43 \mathrm{ppm}$ due to $-\mathrm{CH}_{3}$ groups and four $\mathrm{A}_{2} \mathrm{~B}_{2}$ doublets at $7.16,7,18,7.67$ and 7.68 ppm confimed the structure of 190 (Scheme-59).

191

With the two key intermediates 101 and aldehydes 102 required for asymmetric anti aldol reaction were in hand, our next task was the Evan's anti aldol adduct by appling standard Evan's anti aldol reaction conditions by using MgCl_{2}, triethyl amine as base, chlorotrimethyl silane and dry ethyl acetate. ${ }^{3}$ This experiment afforded the OTMS aldol adduct-191 as a single isomer with excellent yield. The aldol adduct was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectral analysis.

Once we have the key int-191 with desired stereocenters in hand, our next objective was to make pyranofuranose core. To achieve this, the Evans anti aldol adduct was heated in dry HMPA for 6h. unfortunately, the experiment did not provide us the desired product rather provided an unexcepted dimerised product-192. The dimerised
product was formed may be due to presence of bulky oxazolidinone group in the Evans aldol adduct. So we then changed our strategy, accordingly oxazolidinone was removed by reductive hydrolysis using lithium borohydride in dry THF at $0{ }^{\circ} \mathrm{C}$ to give hydrolysed product-193 (Scheme-62). The structure of hydrolysed product-193 was confirmed from its ${ }^{1} \mathrm{H}$ NMR in which the peaks due to oxazolidinone were deported and rest of the protons appeared at their excepted chemical shift values. The ${ }^{13}$ C NMR spectral studies further confirmed the structure of 193.

Selective protection of primary alcohol of 193 by using TBDMSCl, imdazole in DCM to afforded TBS ether-194. The structure of 194 was confirmed by it's ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra. 194 under HMPA/ $80{ }^{\circ} \mathrm{C}$ condition again failed to give the desired pyranofuranose product, instead afforded a dimerised product 195 as a sole product.

The main cause for this observation is not yet clear; but may be due to bulky tosyl groups present in the aldol adduct. So we redesigned our synthetic strategy again and try the cyclization by keeping free hydroxyl group.

Synthesis of Pyranofuranose unit:

Accordingly, the benzylic OH group of triol-197 was selectively protected as tosylate- $\mathbf{1 9 8}$ by using $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, in DCM at r.t. The structure of $\mathbf{1 9 8}$ was confirmed from spectral and other analytical data.

At this stage the the tosylate derivative- 198 was treated with strong base (NaH in DMF) which fortunately affored the expected pyranofuranoside as a sole product-199. The structural conformation was done by extensive spectral studies (including ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, COSY, NOESY spectral studies) of its methyl derivative-200, which was prepared by using iodomethane, strong base NaH in DMF at $0^{\circ} \mathrm{C}$. Further work was going on in our laboratory to complete the total synthesis of KOSN-1633.

EXPERIMENTAL

Experimental section: Analytical data of KOSN-1633

((2R,3S,4R,5S)-5-(3-((R)-4-benzyl-2-oxooxazolidin-3-yl)-3-oxopropyl)-3-methyl-4-(tosyloxy)tetrahydrofuran-2-yl)methyl 4methylbenzenesulfonate (190).

To a stirred solution of diol-129 (3.2 g, $8.81 \mathrm{~m} . \mathrm{mol}), \mathrm{Et}_{3} \mathrm{~N}(3.68 \mathrm{~mL}, 26.44$ $\mathrm{m} . \mathrm{mol}$), and DMAP (30 mg), in dichloromethane (30 mL) was added p-toluenesulfonyl chloride ($3.86 \mathrm{~g}, 26.44 \mathrm{~m} . \mathrm{mol}$), at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 12 h at room temperature, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel by using EtOAc-hexane (1:4) to afford di-tosyl derivative-190 ($5.2 \mathrm{~g}, 88 \%$) as a syrup liquid. $\mathrm{R}_{f} 0.5$ (25% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{10} \mathrm{~S}_{2}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-25.69\left(c=1.4, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{3}\right) v \quad: 667,1019,1216,1701,1781,2400,3025,3436 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.95(\mathrm{~d}, J=6.8,3 \mathrm{H}), 1.79(\mathrm{qn}, J=7.5,14.4,1 \mathrm{H}), 1.87(\mathrm{dq}, J=$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$6.7,18,1 \mathrm{H}$), 2.18 (hex, $J=7.3,14.1,1 \mathrm{H}$), 2.44 (s, 3H), 2.46 (s, 3H), $2.74(\mathrm{dd}, J=9.8,13.3,1 \mathrm{H}), 2.88(\mathrm{dt}, J=7.5,17.1,1 \mathrm{H})$, 2.95 (dt, $J=7.5,17.1,1 \mathrm{H}), 3.27$ (dd, $J=3.1,13.1,1 \mathrm{H}), 3.74$ (q, J $=5.1,9.3,1 \mathrm{H}), 3.93(\mathrm{qn}, J=4.45,8.9,1 \mathrm{H}), 4.01(\mathrm{ddd}, J=4.26$, $10.7,2 \mathrm{H}), 4.17(\mathrm{dd}, J=9.1,16.7,2 \mathrm{H}), 4.33(\mathrm{t}, J=5.37,1 \mathrm{H})$, 4.65 (ddd, $J=3.2,6.9,12.7,1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.04,2 \mathrm{H}), 7.25-$ 7.29 (m, 1H), 7.32-7.38 (m, 6H,), 7.76 (d, $J=8.34,2 H$), $7.80(\mathrm{~d}$, $J=8.34,2 \mathrm{H}) \mathrm{ppm}$.

[^7]133.28 (s, C), 135.29 (s, C), 144.95 (s, C), 145.23 (s, C), 153.37 (s, C), 172.29 (s, C) ppm.

ESI-MS (m / z) $: 694.52[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 59.00; H, 5.55; N, 2.09 \%
Found: C, 59.03; H, 5.57; N, 2.06\%

((2R,3S,4R)-5-((S)-3-((R)-4-benzyl-2-oxooxazolidin-

 3-yl)-2-((R)-(2,5-dimethoxy-3-nitrophenyl)(hydroxy)methyl)-3-oxopropyl)-3-methyl-4-(tosyloxy)tetrahydrofuran-2-yl)methyl 4methylbenzenesulfonate (191).

Oxazolidinone derivative-190 (332g,0.52m.mol) was treated with MgCl_{2} ($5 \mathrm{mg}, 0.052 \mathrm{~m} . \mathrm{mol}$), triethylamine $(106 \mathrm{mg}, 0.146 \mathrm{~mL}, ~ 1.05 \mathrm{~m} . \mathrm{mol}$), benzaldehyde- 102 ($133 \mathrm{mg}, 0.631 \mathrm{~m} . \mathrm{mol}$) and chlorotrimethylsilane $(85 \mathrm{mg}, 0.10 \mathrm{~mL}, 0.789 \mathrm{~m} . \mathrm{mol}$) in 6 mL of ethylacetate at $23{ }^{\circ} \mathrm{C}$ for 20 h . The yellow slurry was pushed through a plug of silica $(2 \mathrm{~cm} \times 10 \mathrm{~cm}$) with 100 mL of diethyl ether. The ether solution was concentrated in vacuo to get residue. The residue was purified on silica gel $230-400$ by eluting with EtOAC-hexane (1:12) to give free hydroxyl aldol adduct-191 ($0.411 \mathrm{~g}, 94 \%$), as a single isomer with excellent yeild (light yellowcolor liquid). $\mathrm{R}_{f} \quad 0.5$ (10% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{42} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{~S}_{2}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-24.62\left(c=0.3, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right) v \quad: 668,1051,1216,1694,1778,2402,3022,3454 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 0.76(\mathrm{~d}, J=6.75,3 \mathrm{H}), 1.72(\mathrm{dq}, J=3.3,14.3,1 \mathrm{H}), 2.03(\mathrm{q}, J=$
(500 MHz, CDCl_{3})
$6.7,2 \mathrm{H}), 2.23(\mathrm{td}, \mathrm{J}=3.9,10.5,24,1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}$, $3 \mathrm{H}), 2.58(\mathrm{dd}, J=9.5,13.6,1 \mathrm{H}), 3.23(\mathrm{dd}, J=2.3,13.5,1 \mathrm{H})$, 3.51-3.55 (m, 1H), 3.81 ($\mathrm{s}, 3 \mathrm{H}), 3.86-3.88(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $4.04(\mathrm{dd}, J=2.3,9.1,1 \mathrm{H}), 4.21(\mathrm{t}, J=8.2,1 \mathrm{H}), 4.31(\mathrm{t}, J=7.3$, $1 \mathrm{H}), 4.61(\mathrm{td}, J=2.7,7.1,17.3,1 \mathrm{H}), 4.70(\mathrm{t}, J=8.7,1 \mathrm{H}), 5.18$
$(\mathrm{dd}, J=7.2,9.1,1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2,2 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 7 \mathrm{H})$, 7.38 (d, $J=8.1,2 \mathrm{H}$), 7.70 (d, $J=8.1,2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1,2 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR $: \delta 14.09\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.26\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.53\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.58(\mathrm{q}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{3}\right), 31.17\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.71\left(\mathrm{t}, \mathrm{CH}_{2}\right), 40.67(\mathrm{~d}, \mathrm{CH}), 43.85(\mathrm{~d}$, $\mathrm{CH}), 55.38(\mathrm{~d}, \mathrm{CH}), 55.92\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.30(\mathrm{~d}, \mathrm{CH}), 63.08(\mathrm{q}$, $\left.\mathrm{CH}_{3}\right), 66.06\left(\mathrm{t}, \mathrm{CH}_{2}\right), 69.65\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.01(\mathrm{~d}, \mathrm{CH}), 78.88(\mathrm{~d}, \mathrm{CH})$, 80.76 (d, CH), 86.09 (d, CH), 109.29 (d, CH), 118.67 (d, CH), 127.19 (d, CH), 127.72 (d, CH), 127.90 (d, CH), 128.80 (d, CH), 129.26 (d, CH), 129.86 (d, CH), 129.95 (d, CH), 132.46 (d, CH), 132.94 (s, C), 135.15 (s, C), 139.14 (s, C), 143.46 (s, C), 144.92 (s, C), 145.07 (s, C), 145.35 (s, C), 153.94 (s, C), 155.18 (s, C), 174.77 (s, C) ppm.

ESI-MS (m / z) : $905.45[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 57.13; H, 5.25; N, 3.17 \%
Found: C, 57.15; H, 5.26; N, 3.19 \%
(3R,4S,5R)-5-((((2S,3R,4S)-5-((S)-3-((R)-4-benzyl-2-oxooxazolidin-3-yl)-2-((R)-(3-bromo-2,5-dimethoxyphenyl)(hydroxy)methyl)-3-oxopropyl)-3-methyl-4-(tosyloxy)tetrahydrofuran-2-
yl)methoxy)methyl)-2-((R)-3-((R)-4-

benzyl-2-oxooxazolidin-3-yl)-2-((S)-(3-
bromo-2,5-
dimethoxyphenyl)(hydroxy)methyl)-3-oxopropyl)-4-methyltetrahydrofuran-3-
yl 4-methylbenzenesulfonate (192).

The aldol adduct- $191(0.14 \mathrm{~g}, 0.15 \mathrm{mmol})$ was taken in a HMPA and maintained temperature at $80^{\circ} \mathrm{C}$ for 6 h . the reaction mixture was worked up to give the residue, which was purified on silica gel by eluting with EtOAc-hexane (1:8) to give $192(0.12 \mathrm{~g}$, 50%)as a syrup liquid. $\mathrm{R}_{f} 0.5$ (30% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{70} \mathrm{H}_{78} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{21} \mathrm{~S}_{22}$

$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+11.65\left(c=0.2, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,759,1048,1216,1599,1729,2400,3017 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.81(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.78(\mathrm{dq}, J=3.2,6.7,14.3,2 \mathrm{H}), 2.18$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad($ hex, $J=6.7,1 \mathrm{H}), 2.31(\mathrm{ddd}, J=4.5,10.3,14.4,1 \mathrm{H}),, 2.47(\mathrm{~s}$, $3 \mathrm{H}), 2.55$ (dd, $J=9.8,13.4,1 \mathrm{H}), 3.24(\mathrm{dd}, J=3.1,13.5,1 \mathrm{H})$, 3.44 (dd, $J=6.1,11.5,1 \mathrm{H}), 3.50(\mathrm{dd}, J=4.1,11.5,1 \mathrm{H}), 3.53-$ $3.56(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=6.1,10.7$, $1 \mathrm{H}), 4.07(\mathrm{dd}, J=2.5,9.2,1 \mathrm{H}), 4.17(\mathrm{t}, J=8.2,1 \mathrm{H}), 4.40(\mathrm{t}, J=$ $6.7,1 \mathrm{H}), 4.65-4.70(\mathrm{~m}, 2 \mathrm{H}), 5.2(\mathrm{~d}, J=6.1,1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.1$, 2 H,), 7.25-7.35 (m, 5H), 7.38 (d, $J=8.1,2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1$, 2H) ppm.

[^8]ESI-MS (m / z)
Elemental Analysis
Calcd.: C, 55.78; H, 5.22 ;N, 1.86\%
Found: C, 55.79; H, 5.24; N, 1.88\%

((2R,3S,4R)-5-((2R,3R)-3-(2,5-dimethoxy-3-

 nitrophenyl)-3-hydroxy-2-(hydroxymethyl)propyl)-3-methyl-4-
(tosyloxy)tetrahydrofuran-2-yl)methyl 4-
 methylbenzenesulfonate (193).

The aldol adduct-191 ($0.35 \mathrm{~g}, 0.39 \mathrm{~m} . \mathrm{mol}), 10 \mathrm{~mL}$ of drydiethylether and anhydrous methanol $(0.04 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$. Lithium borohydrate (2.0 M in THF , 0.51 mL 1quiv) was added dropwise, and the mixture was stirred for 2 h at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with $15 \% \mathrm{NaOH}$ and then concentrated in vacuo. The aqueous layer was extracted with ether, and the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by flash chromatography gave of diol 193 ($0.186 \mathrm{~g}, 66 \%$). $\mathrm{R}_{f} 0.5$ (30% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{13} \mathrm{~S}_{2}$

$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+1.71\left(c=0.96, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,1051,1216,1694,1778,2402,3022,3454 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR $\quad: \delta 0.93(\mathrm{~d}, J=6.75,3 \mathrm{H}), 1.58(\mathrm{dq}, J=5.6,14.7,19.4,1 \mathrm{H}), 1.73$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(dd, $J=2.3,8.2,1 H$), 1.76 (br.s, 1H), 1.99-2.02 (m, 1H), 2.18 (q, $J=6.7,13.9,1 \mathrm{H},), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.71$ (br.s, 1H), $3.48(\mathrm{dd}, J=3.1,11.1,1 \mathrm{H}),, 3.63(\mathrm{dd}, J=2.3,1.1,1 \mathrm{H}$), $3.71(\mathrm{qn}$, $J=4.9,8.1,1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~d}, J=4.4,1 \mathrm{H})$, 4.02-4.04 (m, 2H), $4.25(\mathrm{t}, \mathrm{J}=5.8,1 \mathrm{H}), 5.14$ (br.s, 1 H), 7.32-7.37 (m, 6H), 7.72-7.80 (m, 4H) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 14.79\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.55\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.58\left(\mathrm{q}, \mathrm{CH}_{3}\right), 31.22\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 41.38(\mathrm{~d}, \mathrm{CH}), 41.78(\mathrm{~d}, \mathrm{CH}), 55.95\left(\mathrm{q}, \mathrm{CH}_{3}\right), 62.38\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, 62.69 ($\mathrm{t}, \mathrm{CH}_{2}$), $69.34\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.81(\mathrm{~d}, \mathrm{CH}), 80.33$ (d, CH), 80.53 (d, CH), 89.50 (d, CH), 108.54 (d, CH), 118.76 (d, CH), 127.68 (d, CH), 127.78 (d, CH), 129.89 (d, CH), 129.97 (d, CH), 132.53 (s, C), 133.09 (s, C), 140.53 (s, C), 143.51 ($\mathrm{s}, \mathrm{C}), 143.98$ (s, C), 145.13 (s, C), 145.43 (s, C), 155.20 (s, C). ppm.

ESI-MS (m/z) : $732.86[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 54.15; H, 5.54; N, 1.97 \%
Found: C, 54.17; H, 5.57; N, 1.98 \%
((2R,3S,4R)-5-((2R,3R)-2-((tert-
butyldimethylsilyloxy)methyl)-3-(2,5-dimethoxy-
3-nitrophenyl)-3-hydroxypropyl)-3-methyl-4-
(tosyloxy)tetrahydrofuran-2-yl)methyl 4-
 methylbenzenesulfonate(194).

A mixture of diol-193 ($0.15 \mathrm{~g}, 0.211 \mathrm{~m} . \mathrm{mol}$), imidazole ($0.015 \mathrm{~g}, 0.232 \mathrm{~m} . \mathrm{mol}$), TBDMSCl $(0.035 \mathrm{~g}, 0.23 \mathrm{~m} . \mathrm{mol})$ and DMAP $(14 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was stirred for 6 h at room temperature. After completion of the reaction, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. The residue was purified on silica gel by eluting with EtOAC-hexane (1:4) to give TBS ether derivative- $194(0.132 \mathrm{~g}, 76 \%)$, as a colorless liquid. $\mathrm{R}_{f} 0.5(30 \%$ ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{38} \mathrm{H}_{53} \mathrm{NO}_{13} \mathrm{~S}_{2} \mathrm{Si}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-2.85\left(c=2.1, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{3}$) v : 666, 1051, 1216, 1719, 3020, $3412 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=7.2,3 \mathrm{H}), 1.59(\mathrm{dq}, J=$
$\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 5.6,16.6,1 \mathrm{H},\right), 1.74(\mathrm{dd}, J=7.1,14.4,1 \mathrm{H}$,), 2.02-2.07(m,2H), 2.18 (q, $J=7.1,14.4,1 \mathrm{H}$), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J$
$=3.97,11.3,1 \mathrm{H}), 3.64(\mathrm{dd}, J=2.5,11.3,1 \mathrm{H}), 3.71(\mathrm{qn}, J=5.1$, 8.5, 1H), 3.79 (s, 3H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.08(\mathrm{~m}, 3 \mathrm{H}), 4.25(\mathrm{t}, ~ J$ $=5.75,1 \mathrm{H}), 5.14(\mathrm{~d}, J=4.45,1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.72-7.80$ ($\mathrm{m}, 4 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta-3.63\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.86\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.95(\mathrm{~s}, \mathrm{C}), 21.61\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $25.61\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $), 25.76\left(\mathrm{q}, \mathrm{CH}_{3}\right), 31.36\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.42(\mathrm{~d}, \mathrm{CH})$, $41.83(\mathrm{~d}, \mathrm{CH}), 56.02\left(\mathrm{q}, \mathrm{CH}_{3}\right), 62.48\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.73\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, 69.34 (t, CH2), 71.93 (d, CH), 80.38 (d, CH), 80.62 (d, CH),
89.45 (d, CH), 108.61 (d, CH), 118.82 (d, CH), 127.87 (d, CH), 129.94 (d, CH), 130.02 (s, C), 132.60 (s, C), 133.14 (s, C), 140.52 (s, C), 143.57 (s, C), 144.02 (s, C), 145.17 (s, C), 145.47 (s, C), 155.27 (s, C) ppm.

ESI-MS (m / z) : $845.98[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 55.39; H, 6.48; N, 1.70 \%
Found: C, 55.40; H, 6.50; N, 1.71 \%
(3S,4R,5S)-2-((2R,3R)-3-(3-bromo-2,5-
dimethoxyphenyl)-2-((tert-
butyldimethylsilyloxy)methyl)-3-
hydroxypropyl)-5-((((2R,3S,4R)-5-((2S,3S)-3-
(3-bromo-2,5-dimethoxyphenyl)-2-((tert-
butyldimethylsilyloxy)methyl)-3-

hydroxypropyl)-3-methyl-4-
(tosyloxy)tetrahydrofuran-2-
yl)methoxy)methyl)-4-
methyltetrahydrofuran-3-yl 4-
methylbenzenesulfonate (195).

The compound $194(0.12 \mathrm{~g}, 0.14 \mathrm{mmol})$ was taken in a HMPA and maintained temperature at $80^{\circ} \mathrm{C}$ for 6 h . the reaction mixture was worked up to give the residue, which was purified on silica gel by eluting with EtOAc-hexane (1:8) to give-195 (0.11 g , 54%)as a syrup liquid. $\mathrm{R}_{f} 0.5$ (30% ethyl acetate/hexane).

Mol. Formula $: \mathrm{C}_{62} \mathrm{H}_{92} \mathrm{Br}_{2} \mathrm{O}_{17} \mathrm{~S}_{2} \mathrm{Si}_{2}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+7.41\left(c=0.25, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,759,1048,1216,1599,1729,2400,3017 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.61-1.63$
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad(\mathrm{m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{dq}, J=2.5,8.5,14.3,1 \mathrm{H}), 2.11-$ $2.5(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{qn}, J=6.7,1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=$
$5.1,11.5,1 \mathrm{H}), 3.61(\mathrm{dd}, J=5.1,11.5,1 \mathrm{H}), 3.67(\mathrm{dt}, J=5.2$, $7.2,2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 4.08(\mathrm{dq}, J=2.8,5.2,11.1,1 \mathrm{H}), 4.30(\mathrm{t}$, $J=5.5,1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.6,1 \mathrm{H}), 5.10(\mathrm{dd}, J=5.2,15.6,1 \mathrm{H})$, 7.35-7.37 (m, 4H), $7.79(\mathrm{~d}, J=8.3,2 \mathrm{H}) \mathrm{ppm}$.

ESI-MS (m / z) $: 438.42[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 53.59; H, 6.67 \%
Found: C, 53.61; H, 6.69 \%
(3S,6R)-5-(3-bromo-2,5-dimethoxyphenyl)-hexahydro-2-(methoxymethyl)-3,6-dimethyl-2H-furo[3,2-b]pyran (200).

The compound $198(0.12 \mathrm{~g}, 0.21 \mathrm{mmol})$ in dry DMF (8 mL) was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(60 \%$ dispersion in oil, $0.01 \mathrm{~g}, 0.25 \mathrm{mmol})$ was added portion-wise at $0^{\circ} \mathrm{C}$. After 1 h , again remaining $\mathrm{NaH}(60 \%$ dispersion in oil, $0.01 \mathrm{~g}, 0.25 \mathrm{mmol})$ was added portionwise at $0{ }^{\circ} \mathrm{C}$ followed by iodo methane $0.03 \mathrm{~g}(0.016 \mathrm{~mL}, 0.25 \mathrm{mmol})$ was added. After 3 h , the reaction mixture was worked up to give the residue, which was purified on silica gel by eluting with EtOAc-hexane (1:7) to give 200 ($0.058 \mathrm{~g}, 67 \%$) as a syrup liquid. $\mathrm{R}_{f} 0.5$ (20 \% ethyl acetate/hexane).

Mol. Formula $\quad: \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BrO}_{5}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-9.53\left(c=0.7, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{3}\right)_{v} \quad: 668,759,1048,1216,1599,1729,2400,3017 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.90(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.31(\mathrm{ddd}, J=5.1$,
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
8.7, 14.1, 1H), 1.57 (ddd, $J=5.1,8.7,14.1,1 \mathrm{H}), 1.91-1.99(\mathrm{~m}$, $1 \mathrm{H}), 2.12(\mathrm{q}, J=6.7,1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{dt}, J=2.1,6.7,10.1,2 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H})$, $4.36(\mathrm{~d}, J=5.3,1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.1,1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.1,1 \mathrm{H})$ ppm.
$\begin{array}{ll}{ }^{13} \mathbf{C} \text { NMR } & : \delta 9.93\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.18\left(\mathrm{q}, \mathrm{CH}_{3}\right), 35.40\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.41(\mathrm{~d}, \mathrm{CH}), \\ \left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) & 41.53(\mathrm{~d}, \mathrm{CH}), 55.76\left(\mathrm{q}, \mathrm{CH}_{3}\right), 57.40\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.16\left(\mathrm{q}, \mathrm{CH}_{3}\right),\end{array}$
73.54 (t, CH2), 79.90 (d, CH), 81.56 (d, CH), 82.64 (d, CH), 83.11 (d, CH), 112.15 (d, CH), 117.11 (s, C), 117.42 (d, CH), 136.83 (s, C), 149.05 (s, C), 156.27 (s, C) ppm.

ESI-MS (m / z) : 437.09[M+Na] ${ }^{+}$.
Elemental Analysis Calcd.: C, 54.95; H, 6.55 \%
Found: C, 54.96; H, 6.57 \%

SPECTROSCOPIC DATA

${ }^{13}$ CNMR Spectrum of di-Tosyl oxazolidinone 190 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of di-Tosyl aldol adduct 191 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 192 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 192 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of di-Tosyl aldol adduct 195 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 200 in CDCl_{3}

${ }^{13}$ CNMR Spectrum of 200 in CDCl_{3}

Reference:

(1) Uehara, Y. Curr. Cancer Drug Targets 2003, 3, 325-330.
(2) Zhihao Hu, Yaoquan Liu, Zong-Qiangtian, Wei Ma, Courtney M Starks, Rika Regentin, Peter Licari, David C. Myles and C.Richard Hutchinson. J. Antibiot. 2004, 57, 421-428.
(3) (a) Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392-393 (b) David A. Evans,; C. Wade Downey,; Jared T. Shaw,; Jason S. Tedrow,; Org. Lett. 2002, 4, 1127-1130.

List of Publications

1. "Towards synthesis of subunits (C8-C21) of Herbimycin A and 15-Hydroxy geldanamycin by applying Anhydrous $\mathbf{M g C l}_{2}$ catalysed Non-Evan's anti aldol reaction: Observation of a rare restricted conformational isomers" (manuscript under revision)
M.k.Gurjar, Rambabu Dakarapu, Narendra Tripathy, and Rajesh Gonnade.
2. "A Rare restricted Conformational isomerism exhibited by Carbohydrate derived Non-Evans anti aldol adducts" (manuscript under revision).
M.k.Gurjar, Rambabu Dakarapu, Narendra Tripathy, and Rajesh Gonnade.
3. "Synthetic studies towards Central core of KOSN-1633 (synthesis of Pyranofuranose C8-C22 Fragment)" (manuscript under revision). M.k.Gurjar, Rambabu Dakarapu, Narendra Tripathy, and Rajesh Gonnade.

[^0]: ${ }^{13}$ C NMR $: \delta 14.66\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.52\left(\mathrm{q}, \mathrm{CH}_{3}\right), 28.32\left(\mathrm{q}, \mathrm{CH}_{3}\right), 36.93(\mathrm{~d}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}\right), 37.84\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.15(\mathrm{~d}, \mathrm{CH}), 55.55\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.18(\mathrm{q}$, CH_{3}), $71.37\left(\mathrm{t}, \mathrm{CH}_{2}\right), 71.54(\mathrm{~d}, \mathrm{CH}), 72.43\left(\mathrm{t}, \mathrm{CH}_{2}\right), 73.28(\mathrm{t}$,

[^1]: ${ }^{13}$ C NMR $: \delta 14.87\left(\mathrm{q}, \mathrm{CH}_{3}\right), 27.92\left(\mathrm{t}, \mathrm{CH}_{2}\right), 31.97\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.30(\mathrm{t}$, $\left.\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \mathrm{CH}_{2}\right), 42.34(\mathrm{~d}, \mathrm{CH}), 55.12(\mathrm{~d}, \mathrm{CH}), 63.13\left(\mathrm{t}, \mathrm{CH}_{2}\right), 66.22(\mathrm{t}$, CH_{2}), 82.34 (d, CH), 82.72 (d, CH), 83.94 (d, CH), 125.20 (d,

[^2]: ${ }^{13}$ C NMR $\quad: \delta-4.33\left(\mathrm{q}, \mathrm{CH}_{3}\right),-4.19\left(\mathrm{q}, \mathrm{CH}_{3}\right), 15.45\left(\mathrm{q}, \mathrm{CH}_{3}\right), 17.81(\mathrm{~s}, \mathrm{C}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad$), $21.59\left(\mathrm{q}, \mathrm{CH}_{3}\right), 25.68\left(\mathrm{q}, \mathrm{CH}_{3}\right), 27.74\left(\mathrm{t}, \mathrm{CH}_{2}\right), 32.13(\mathrm{t}$,

[^3]: ${ }^{13} \mathrm{C}$ NMR
 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^4]: ${ }^{13}$ C NMR
 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^5]: ${ }^{13}$ C NMR
 (125 MHz, CDCl_{3})

[^6]: ${ }^{13} \mathrm{C}$ NMR
 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 $: \delta-5.50\left(\mathrm{q}, \mathrm{TBS}-\mathrm{CH}_{3}\right),-5.34(\mathrm{q}$, TBS-CH3$),-4.84\left(\mathrm{q}\right.$, TBS- $\left.\mathbf{C H}_{3}\right)$, -4.58 (q, TBS-CH3), -4.39 (q, TBS- $\mathbf{C H}_{3}$), $-0.19\left(\mathrm{q}\right.$, TMS- $\left.\mathbf{C H}_{3}\right)$,

[^7]: ${ }^{13}$ C NMR $: \delta 15.05\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.55\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.60\left(\mathrm{q}, \mathrm{CH}_{3}\right), 26.68\left(\mathrm{t}, \mathrm{CH}_{2}\right)$,
 (125 MHz, CDCl_{3}) $31.55\left(\mathrm{t}, \mathrm{CH}_{2}\right), 37.66\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.76(\mathrm{~d}, \mathrm{CH}), 55.10(\mathrm{~d}, \mathrm{CH})$, 66.17 (t, CH_{2}), $69.39\left(\mathrm{t}, \mathrm{CH}_{2}\right), 80.66(\mathrm{~d}, \mathrm{CH}), 81.06(\mathrm{~d}, \mathrm{CH})$, 88.77 (d, CH), 127.22 (d, CH), 127.82 (d, CH), 127.87 (d, CH), 129.00 (d, CH), 129.34 (d, CH), 129.94 (d, CH), 131.06 (s, C),

[^8]: ${ }^{13}$ C NMR
 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

