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Abstract

We present three different frameworks for studying the dynamics of flexible non-concatenated

ring polymers constrained by an array of obstacles. All the frameworks are developed for an

array of fixed obstacles, as in the case of gel, and extended to the case of dynamic obstacles, as

in the case of melts and semi-dilute solution. The frameworks, viz.

• Pom-Pom Ring (PPR)

• Blob-Spring (BS)

• Fractal-Gate (FG)

are based on three different approaches to dynamics of polymers.

The PPR framework is based on a coarse-grained mean-field approach to dynamics of

polymers in the presence of topological constraints. In formulating the PPR framework the

similarity of the static structure of the flexible ring polymer in an array of fixed obstacles to

that of the ideal randomly branched polymer is exploited using aspects of the pom-pom model

for branched polymers. The topological constraints are handled via the mean-field tube model

framework. Based on the PPR formulation we obtain expressions for curvilinear diffusion co-

efficient, self-diffusion coefficient, spectrum of relaxation times and dynamic structure factor.

The scaling exponents for the molecular weight dependence of diffusion coefficient and the

longest relaxation time obtained using the formulation are shown to be in agreement with previ-

ously proposed scaling arguments. Further, the framework is utilized to build a molecular theory

of linear viscoelasticity for ring polymers in both an array of fixed obstacles and melt of ring

polymers. The linear viscoelastic predictions of the theory are shown to be in close agreement

with experiments on melt of ring polymers in the terminal regime. However, the PPR frame-

work based molecular theory does not capture the self-similar dynamics of ring polymers and

consequently the power law slopes of gain modulus, at the intermediate frequencies, observed

in experiments.
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The BS framework is based on a coarse-grained fluctuations approach to dynamics of flex-

ible polymers. In formulating the BS framework ideas developed for the study of dynamics of

unentangled fractal polymers is extended to model dynamics of flexible ring polymers in an

array of fixed obstacles. The extension is achieved by incorporation of the appropriate friction

coefficient to describe the perpetual evolution of the perimeter of a ring polymer as it undergoes

Brownian motion in a topologically constrained environment. The framework being based on

dynamics of fractal polymers is intrinsically self-similar. The scaling exponents for the molec-

ular weight dependence of self-diffusion coefficient and spectrum of relaxation times obtained

based on the framework are shown to be in agreement with the previously proposed scaling

arguments. The framework is utilized to derive a constitutive relation and the predictions of the

relation are compared with the experimental data on linear viscoelastic response of a melt of

ring polymers. The linear viscoelastic response based on the constitutive relation is shown to

be in qualitative agreement with experiments on melt of rings.

The FG framework is based on the judicious combination of the fluctuations approach to

dynamics of fractals and mean-field approach of handling entanglements. In this the fluctua-

tions approach to dynamics is worked out for an arbitrary section composed of m-blobs with

a different friction coefficient from that of BS model. The center of mass of the m-section of

chain undergoing such fluctuations is considered to be constrained in a tube corresponding to the

trunk of the chain section. The dynamics of the m-section chain is governed by the combination

of the fluctuations and 1-D diffusion of the center of mass of the m- section out of the gate of its

confinement. Such a combination of dynamics of the chain is shown to yield a molecular weight

dependence of curvilinear-diffusion coefficient, relaxation spectrum and longest relaxation time

in agreement with previously proposed scaling arguments. Self-similarity in dynamics is con-

sidered as a natural consequence of the simultaneous operation of this dynamics at all length

scales. It is argued that there are several such sections diffusing from the gates of confinement

in the chain and the contribution of the sections to the viscoelastic response is weighted by the

number fraction of gates in the chain. The linear viscoelastic response of the chain is then ob-

tained as the superposition of the responses of the sections of the chain. In all these frameworks

we have assumed that the ring chain has a Cayley tree structure in the obstacle environment and

we have not explicitly accounted for interpenetration of loops of the ring chain.

The addition of ring polymers to a solution of non-concatenated ring polymers beyond the

threshold concentration causes introduction of topological constraints. Under such conditions
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the change in concentration influences both the static structure and dynamics of ring polymers

in a way different from that of linear polymers. Consequently, the diffusion coefficient of ring

polymers in a topologically constrained environment can be expected to be different from that

of linear polymers. The connection between the dynamics of a flexible ring polymer and its

static structure in a topologically constrained environment is elucidated in the PPR, BS and FG

frameworks. Here, we present scaling arguments for the concentration and molecular weight

dependence of self-diffusion coefficient of ring polymers in semi-dilute solutions, and show

that contrary to expectations these scaling relations are identical to what is known for linear

polymers. At higher concentrations excluded volume interactions arising from possibilities of

segmental overlap can become effective for large ring polymers. In this regime the diffusion

coefficient of large ring polymers shows a relatively weaker dependence on concentration and

molecular weight.

In a topologically constrained environment the static structure and size of a flexible non-

concatenated ring polymer (macrocycle) is known to differ from that of linear polymers. In

condensed states such as melt or concentrated solution, ring polymers assume compact confor-

mations (R ∼ N ν with ν ≈ 0.4) as compared to that of linear polymers with the same degree of

polymerization (ν = 0.5). Upon substituting some of the ring polymers with linear polymers,

the ring polymers swell because of local relaxation of the non-concatenation constraint. In the

limit of infinite dilution the size of the ring polymer is expected to scale as R ∼ N0.5. We

consider ring-linear blends as ideal semi-dilute solutions of ring polymers in linear polymers

and present a scaling argument to capture the size transition. We argue that the size of the ring

polymer remains the same as that in Θ-solvent up to the overlap concentration, C∗
r . Beyond C∗

r

the size of the ring shrinks according to R ∼ Cβ
r , where β = 2ν − 1 = −0.2 for ν = 0.4.
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Chapter 1

Introduction

1.1 Motivation

It is known that many characteristics of crystalline, glassy and fluid states of polymers rely

on the special properties generated by the ends of molecules (McLeish, 2003). For instance

crystalline polymers almost inevitably have defects due to presence of chain ends and the defects

result in local (dislocations, grain boundaries) and global (bending, twisting) distortions of the

molecular symmetry with pronounced implications on mechanical and optoelectronic properties

(Kübel et al., 2000). The glass transition temperature of polymeric systems is known to be

dependent on the number of chain ends in the system. In a dense melt of polymers the ends are

known to play an important role in the relaxation of mechanical stresses when it is subject to a

strain (McLeish, 2003).

• A natural question of fundamental interest is: What would be the dynamic response of

systems composed of polymers without chain ends - ‘endless’ ring chains?

DNA often naturally occurs in the ring form (called plasmid DNA) and is characterized by

the technique of gel electrophoresis (Wasserman and Cozzarelli, 1986). Although the technique

has been widely used, the dynamics of plasmid DNA through a gel environment is not well

understood. This is in part because of complications that arise in the study of electrophoretic

mobility of a plasmid DNA molecule due to its semi-flexible and polyelectrolytic nature. It

has been suggested that a flexible ring polymer in any given environment is a convenient

model system to start with for understanding the mobility of molecules like DNA (Roovers

and Toporowski, 1983). Recent advances in the understanding of concentrated solutions and
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melt of ring polymers continue to indicate that these systems possess particular fascination as

they promise to furnish yet another class of entangled fluids qualitatively different from linear

and branched polymeric systems (McLeish, 2003). More importantly the dynamics of a large

ring polymer in an array of fixed obstacles in itself is a poorly understood problem in polymer

dynamics. Development of frameworks for studying the dynamics of flexible ring polymers

in the presence of obstacles is thus of considerable importance both from a fundamental and

application perspective.

The rheological response of a polymeric fluid is connected to the macromolecular archi-

tecture of the polymers constituting the fluid. For example, it is known that for a polymeric

fluid composed of chains made of chemically identical monomers the linear and branched ar-

chitecture compositions exhibit strikingly different flow behavior even in viscometric flows. We

expect that this is a consequence of influence of the chain-architectural aspects on static and dy-

namic behavior at a molecular level. Further, the response of the polymeric fluid is also strongly

dependent on the density of the chains in the fluid. For example, it is known that the dynamic

response of a dilute solution of polymers is very different from that of a dense system like a

melt or semi-dilute solution. We expect this to be the consequence of confinement effected by

the presence of other chains on statics and dynamics of any given polymer chain in a dense

system like that of a melt.

Based on these observations we consider topological constraints that arise in a polymeric

system to be of two types viz.:

• Internal: Corresponding to the macromolecular architecture such as enchainment and

branching.

• External: Corresponding to the confinement of the polymer effected due to presence of

other chains/obstacles in its environment.

The study of rheological response on the basis of molecular theory requires formulation of

frameworks that can capture the influence of both internal and external topological constraints.

Although rheological response is sensitive to the macromolecular architecture, it is seen

to be quite insensitive to the shape of the segmental size or the constructing unit of the polymer.

In fact the macroscopic viscosity of linear polymer chains is known to depend on the average

coil size of the chain rather than on the shape of the constructing unit (Doi and Edwards, 1986).

In order to capture this universality of the response of polymers a coarse-grained picture of the
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Figure 1.1: Bead-Spring coarse-graining of a polymer chain

polymer as Brownian beads connected by springs is used to understand the dynamics of poly-

mers (Fig:1.1). The coarse graining allows for the macromolecular architecture to be retained

while the microscopic details are lumped together into few parameters, like the Kuhn length or

persistence length, specifying segmental characteristics.

While the intrinsic architecture can be captured in the bead-spring coarse graining the

effect of external topological constraints has to be incorporated through rigorous inter-chain

interactions or mean-field interactions. The tube model framework has been the most suc-

cessful mean-field framework for handling external topological constraints (McLeish, 2003).

According to this model the external topological constraints on the polymer can be thought of

as constraints that confine the polymer in a tube which restricts mobility in the lateral direc-

tion (Fig:1.2). The section of polymer thus confined laterally is however free to move along its

length through 1-D diffusion a dynamics known as reptation.
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Figure 1.2: Schematic of tube model

1.2 Problem Statement

A linear polymer chain can be considered as a Gaussian chain in both a Θ-Solvent and its melt

(see section 2.1). In the case of linear polymer chains, such an uncomplicated static structure,

not influenced by presence of obstacles in the environment, makes it easier to fit it into the tube

model framework. The application of the concept of reptation is relatively straightforward and

highly successful for modeling the dynamics of topologically constrained linear polymers. The

reptation dynamics studies have enabled a better understanding of the viscoelastic response of

the linear polymeric systems on a coarse grained mean-field molecular theory basis (Doi and

Edwards, 1986). Several sophisticated models based on the reptation idea have been developed

in the recent past by incorporation of additional relaxation modes (see section 2.2). In the

case of structures such as star, branch and rings understanding the Brownian dynamics and

consequently the viscoelastic response on a molecular theory basis is complicated by:

• Complexity of the static structures; in the case of rings the static structure is influenced

by the presence of obstacles (Khokhlov and Nechaev, 1985).

• The application of the tube model and associated dynamics for branched polymers is far

from straightforward and has required an ingenious conceptualization viz., the Pom-Pom

polymer, first proposed by McLeish and Larson (1998), to extract the dynamics from such

an architecture.
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• In the case of rings the absence of free ends, which play an important role in the relaxation

mechanism for linear and branched chains, leads to concerns regarding application of

reptation or pom-pom dynamics for ring polymeric systems (Roovers, 1988).

The present work is aimed at developing coarse-grained mean-field frameworks for study-

ing dynamics of ring polymers in a topologically constrained environment. The models have

three main objectives:

• Obtaining expressions for dynamic properties such as diffusion coefficient and the relax-

ation spectrum of a non-concatenated ring polymer in the presence of external topological

constraints.

• Building constitutive relations to predict the viscoelastic response of such ring polymeric

systems.

• Capturing the transition effected by introducing external topological constraints on prop-

erties like size, longest relaxation time and diffusion coefficient in ring polymeric sys-

tems.

1.3 Scope

The scope of the present work is to develop rigorous frameworks to model the dynamics of flex-

ible non-concatenated rings in an obstacle environment. Specifically, we develop three frame-

works:

• Pom-Pom Ring (PPR)

• Blob-Spring (BS)

• Fractal-Gate (FG)

for modeling the dynamics of ring polymers in a topologically constrained environment. We

restrict our attention to unknotted flexible ring polymers in the presence of obstacles around

them. By flexible we mean that the Kuhn length, b, of the ring chain is much smaller than the

linear dimension, a, of the obstacle. At the same time, the ring is constrained because its size

R is much larger than a. Thus we consider the dynamics in the limit b << a << R. There are

two types of obstacles we pay attention to:
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• Fixed array of obstacles similar to that of gel.

• Melt/Semi-dilute solution where the obstacles can be dynamic and the average linear

dimension of the obstacle is a fit parameter.

Having derived expressions for the dynamic properties of ring polymers from the coarse-grained

mean-field frameworks, we use them to explore the effect of concentration on size, longest

relaxation time and diffusion coefficient of ring polymers in semi-dilute solutions. The effect of

concentration on the size of a ring polymer in a ring-linear blend is also explored by considering

the linear polymer as a solvent for the ring chain.

In chapter 3 we give a reptation interpretation to dynamics of ring polymer in a fixed array

of obstacles. The reptation interpretation of the dynamics is then combined with aspects of

pom-pom model to formulate the PPR framework. The PPR framework thus formulated is then

used to derive expressions for diffusion coefficient, relaxation time and dynamic structure factor

for a ring polymer in an array of obstacles. Based on the dynamics we develop a constitutive

relation to describe the linear viscoelasticity of a ring polymer in a fixed array of obstacles and

extend it to the case of melt of ring polymers. Further we consider modifications arising in

dynamics due to finer corrections of contour length fluctuations in the reptation interpretation.

Finally, we compare the predictions of the PPR model with the scaling model of Obukhov et al.

(1994) and experimental results of ring polybutadiene KPBD34B3 (Roovers, 1988) and discuss

some of the limitations of the model.

In chapter 4 we give a fluctuation interpretation to dynamics of ring polymer in a fixed

array of obstacles. The fluctuation interpretation of the dynamics is then combined with aspects

of dynamics of polymeric fractals to formulate the BS model. We also present arguments which

can be used to view the dynamics of polymeric fractals in terms of predominant length scale

dynamics of the Cayley tree ring chain. The BS model is then used to derive expressions for

diffusion coefficient and relaxation time for a ring polymer in an array of obstacles. Based on

the dynamics we develop a constitutive relation to describe the linear viscoelasticity of ring

polymer in a fixed array of obstacles and extend it to the case of melt of ring polymers. Finally,

we compare the predictions of the BS model with the experimental results of ring polybutadiene

KPBD34B3 (Roovers, 1988) and discuss some of the limtitations of the model.

In chapter 5 we suggest a combination of fluctuation and mean-field approach of handling

entanglements to dynamics of ring polymer in a fixed array of obstacles. The framework is bulit
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in three steps. First, the fluctuation dynamics of an arbitrary section of the polymeric fractal is

worked out with a friction coefficient different from that used in the BS model. In the second

step we work out the dynamics of the center of mass of such a fluctuating section diffusing

out of a tube of confinement. In the third step the principle of self-similar dynamics is used

to generalize the results for all the length scales in the chain and the viscoelastic response is

obtained as the the superposition of the response of the sections of the chain. In working out

the superposition the number density of tubes in the system is used as a weighting function and

is worked out based on the density of Gates associated with the Cayley tree fractal structure.

In chapter 6 we present scaling arguments for elucidating the effect of concentration on

statics and dynamics of ring polymers in semidilute solution strating from both Θ and good

solvent conditions, First we discuss the effect of concentration on the size of a ring polymer

followed by its effects on longest relaxation time in the semi-dilute solution. We combine the

results of size and relaxation time dependence on concentration to yield the effect of concen-

tration on diffusion coefficient. We also discuss the effect of volume fraction/concentration of

ring polymers in a ring-linear blend on the size of the ring polymer in the blend. Finally, we

compare the results of the scaling predictions with simulation results and experiments on diffu-

sion of cyclic DNA in a semidilute solution using the three different models we have presented

in the earlier chapters.
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Chapter 2

Review of Literature

2.1 Statics

Highly flexible polymers when looked at a sufficiently large scale appear as a random walks

(Doi and Edwards, 1986). A flexible linear polymer chain in a Θ-solvent viewed at a large

length scale can be considered as an ideal random walk in 3-D with each step of the walk (bond

of the chain) having a Gaussian distribution. The problem of getting the end-to-end vector prob-

ability distribution for this polymer chain is analogous to the problem of finding the probability

distribution of the position of a particle in a general random flight with Gaussian distribution of

displacements. Chandrasekhar (1943) in his classic paper titled ‘Stochastic Problems in Physics

and Astronomy’ has worked out the probability distribution of the position in a general random

flight with Gaussian distribution of displacements. Based on this analogy an exact solution to

end-to-end vector distribution can be obtained for any value of number of steps N associated

with the polymer chain. The chain model obeying the statistics as worked out based on the

analogy is known as the Gaussian chain model. The Gaussian chain is thus a coarse-grained

picture of the real chain. Each step of the Gaussian chain is a statistical segment known as the

Kuhn segment.

In a good solvent due to favorable solvent monomer interactions the chain is expected to

swell. The chain in this case can be represented by a different kind of random walk that is not

allowed to intersect. Such a random walk is known as self-avoiding walk (SAW) and is known

to have complex mathematical properties that can be investigated using different numerical and

analytical approaches (de Gennes, 1979; Doi and Edwards, 1986). In a dense system like that of

the melt the situation is expected to be complicated due to increased density and consequently
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stronger interactions between monomers. However, it was shown through self-consistent field

arguments that the linear polymer chain in 3-D in a dense system obeys the ideal random walk

statistics (de Gennes, 1979). Thus, the statistics of a linear polymer chain in its melt can be

understood based on the Gaussian chain model.

In section 1.1 we briefly discussed the two kinds of topological constraints, viz. internal

and external, in polymeric systems. Either type of constraints can modify the physical properties

of statistical systems consisting of chain-like objects (Nechaev, 1998). Our concern in this

section is to understand the effect of the introduction of internal topological constraint of chain

closure (as in a ring) and external topological constraints like obstacles on the statistics of this

ring chain. Efforts to understand the statics of topologically constrained ring chain have been

made based on analytical theory, computer simulation and experimental studies. We discuss

the key efforts to understand the effect of the internal topological constraint of chain closure

and the effect of external topological constraints on the ring chain in sections 2.1.1 and 2.1.2

respectively.

2.1.1 Effect of Internal Topological Constraint

The statistics of a ring chain in a Θ-solvent was worked out by Zimm and Stockmayer (1949).

They showed that the radius of gyration of the ring chain consisting of NK Kuhn segments is

given by NKb2/12 - a value exactly half that of the linear chain in a Θ-solvent. Although the

chain dimensions are smaller, the scaling exponent, ν, connecting the size of the ring chain,

R, to the degree of polymerization remains the same as that of linear chains. Higgins et al.

(1979) reported small-angle neutron scattering (SANS) experiments in support of the general

theoretical approach of Zimm and Stockmayer (1949) to the problem of conformational statis-

tics of flexible ring chains. However, the poly(dimethyl siloxane) ring polymers used in these

experiments were of relatively low molecular weight. Recently the reduction in chain size and

the similarity in scaling exponents have been verified through SANS and light scattering exper-

iments for telechelic polystyrene ring polymer in the molecular weight range of 20K − 600K

(Ohta et al., 2006). However, they report a slightly higher ratio of radius of gyration of ring to

linear polymer ≈ 0.8 as opposed to the ratio of half expected from the Zimm and Stockmayer

(1949) approach.

The deviation from the Zimm and Stockmayer (1949) predictions may be due to the fact

that they do not consider the global topological constraint of non-knotting in working out the
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Figure 2.1: Schematic of the non-knotting topological constraint

chain statistics. Cates and Deutsch (1986) pointed out that the global configuration of a ring

polymer is restricted to a single knot-type and any change of knot-type involves breaking and

reforming of bonds of a polymer which is forbidden (see Figure 2.1). des Cloizeaux (1981) ar-

gued that this topological constraint acts in a way similar to that of short-range excluded volume

interactions based on consideration of linking numbers of two curves. Deutsch (1999) explored

the statics of isolated ring polymers using off-lattice simulations with purely topological inter-

actions and without excluded volume. The off-lattice simulations showed that for rings with

N = 512 repeat units the scaling exponent of size with number of repeat units for a ring with-

out excluded volume is about ≈ 0.55 whereas the scaling exponent was ≈ 0.59 for N = 1024

and N = 2028. The result has been verified by simulations of Brown et al. (2001) based on

Shaffer’s algorithm. The scaling exponent close to that of linear SAW for large ring polymers

even in the absence of excluded volume interaction is an outcome of purely topological interac-

tions. In a good solvent the ring chain is expected to swell due to the onset of excluded volume

interactions in addition to the topological interactions. In this case des Cloizeaux (1981) argues

that a long flexible ring chain in a good solvent has size scaling R ∼ N ν with the exponent

ν ≥ νSAW .
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2.1.2 Effect of External Topological Constraint

An ideal flexible ring polymer, of size Rdil in dilute solution, composed of Kuhn segments

of length b, when introduced into an array of fixed obstacles, of linear dimension a, takes a

collapsed conformation when b << a << Rdil (Khokhlov and Nechaev, 1985). The lattice

equivalent to the ideal flexible ring polymer in the obstacle environment is a random walk in a

cubic lattice in the presence of obstacles (Khokhlov and Nechaev, 1985; Nechaev, 1998). Such

a random walk is equivalent to a closed random walk on a dual lattice without obstacles which

has the form of a simple tree known as the Cayley tree (see Figure 2.2) (Khokhlov and Nechaev,

1985; Nechaev, 1998). The structure arising out of the closed random walk on a Cayley tree

is known as a lattice animal/tree structure and resembles that of a randomly branched polymer

(see Figure 2.3).

Each node of the Cayley tree is attributed a coordinate i, which is the smallest number of

steps required to return from a given node to the origin (Figure 2.2). A closed random walk has

to have equal distances moved from and to the origin. Thus, for a N step closed random walk on

a Cayley tree the “average” coordinate i is of the order of N1/2 steps from the origin (Khokhlov

and Nechaev, 1985). The spatial size of the ideal ring in the array of fixed obstacles corresponds

to a random walk of i steps on the Cayley tree and hence is of order ∼ ai1/2 ∼ aN1/4. Nechaev

(1998) used the above model of a polymer chain in an array of obstacles to work out the detailed

statics of a ring chain in an array of fixed obstacles. The mean-square radius of gyration of a

ring polymer in an array of fixed obstacles without excluded volume interactions (ideal) is given

by (Nechaev, 1998):
〈
R2

g

〉
=

z

z − 2

√
2π

8
a2
√

N (2.1)

where, z is the coordination number of the Cayley tree lattice and a is the step size of the lattice.

It is seen that the ring chain in an array of fixed obstacles without excluded volume in-

teractions has a size scaling similar to that of an ideal randomly branched polymer (Khokhlov

and Nechaev, 1985; Nechaev, 1998). This correspondence in size scaling is expected since the

Cayley tree lattice animal structure and the randomly branched polymers are known to belong

to the same universality class. The exact correspondence of universality class between the Cay-

ley tree lattice animal and the branched polymer was shown through field theory arguments by

Lubensky and Isaacson (1979). They derived the critical exponent of Cayley tree lattice animal

above an upper critical dimension dc = 8 and showed that it is in agreement with the the Zimm
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Figure 2.2: Cayley tree mapping of an array of fixed obstacles

Figure 2.3: Lattice tree structure of a ring polymer in an array of fixed obstacles
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and Stockmayer (1949) result of ν = 1/4 for randomly branched polymers.

In the case of large rings in the fixed array of obstacles excluded volume interactions

remain active as the network cannot adjust its density to screen out the interactions (Cates and

Deutsch, 1986). Parisi and Sourlas (1981) showed that in a good solvent a branched polymer of

the same universality class as the lattice animal in 3−D would have a size exponent ν = 1/2 .

The branched polymers in this case are intrinsically considered to have annealed branch points,

i.e., the position of the branch points are allowed to fluctuate (Gutin et al., 1993). The Cayley

tree lattice animal structure of a ring chain in a fixed array of obstacles clearly belongs to

the annealed branched polymer universality class. Gutin et al. (1993) considered branched

polymers with quenched (the position of branch point is fixed) and annealed branch points and

showed that they belong to different university classes.

A Flory-type estimate of the size scaling of branched polymers with quenched branch

points can be achieved based on the balance between the the excluded volume contribution

and the elastic contribution to the free energy (Gutin et al., 1993; Daoud et al., 1983). The

excluded volume contribution is considered to depend on the repulsive interaction between

monomers and consequently increases the size R. If c is the local concentration of monomers,

the repulsive energy per unit volume is proportional to the pairs present, i.e. c2 (de Gennes,

1979). In a d dimensional system the internal monomer concentration is given by cint ≈ N/Rd.

The repulsive energy per chain is obtained by integration of the repulsive energy per unit volume

over the volume of the chain Rd and is given by (de Gennes, 1979):

Frep ≈ Tυ(T )c2
intR

d = Tυ(T )
N2

Rd
(2.2)

where υ is a positive quantity having the dimensions of volume known as the excluded volume

parameter. The elastic contribution to free energy comes from the entropic consideration that

swelling reduces entropy and consequently increases free energy. Thus, the elastic contribution

tries to keep the chain in a conformation close to the ideal chain conformation for the chain and

resists deviations from the ideal size R0. The elastic contribution to the free energy is taken

analogous to the Flory-type derivation for linear polymers and is given by:

Fel ≈ T
R2

R2
0

(2.3)

where R is the size of the chain and R0 is the unperturbed size of the chain.

The total free energy of the system can be written as the sum of the excluded volume and
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the elastic contributions (Gutin et al., 1993; Daoud et al., 1983):

F ≈ Tυ(T )
N2

Rd
+ T

R2

R2
0

(2.4)

The minimization of the free energy between the opposing elastic and excluded volume inter-

actions with respect to the size yields a size scaling of R ∼ Nν where ν = 5/[2(d + 2)] in

agreement with that obtained by Isaacon and Lubensky (1980). The exponent ν becomes equal

to the classical theory result of Zimm and Stockmayer (1949) at the upper critical dimension of

dc = 8. The exponent ν = 1/2 for d = 3 a result in agreement with the exact solution of Parisi

and Sourlas (1981) and MC simulations of Redner (1979).

A Flory-type estimate of the size scaling for the case of branched polymers with annealed

branch points is different from that of the case of quenched branch points. The stretching of

the chain in the annealed branch point branched polymer causes rearrangement of branches and

changes the characteristic number of bonds between the ends of the branched chain. The free

energy contribution due to the change of number of bonds L between two arbitrary fixed ends

of the branched polymer has two parts (Gutin et al., 1993):

• Elastic part which resists swelling and increase in R for any given L as it decreases

entropy given by TR2/L

• Rearrangement entropy associated with the rearrangement of branches and consequently

the change of L given by TL2/N

The combination of the free energy contributions due to change in number of bonds with

that of the excluded volume free energy contribution yields the free energy of the annealed

branched polymer:

Fann ≈ Tυ(T )
N2

Rd
+ T

R2

L
+ T

L2

N
(2.5)

The free energy thus obtained has to be minimized with respect to both L and R. The mini-

mization yields the scaling of L and R with the degree of polymerization N given by L ∼ Nρ

and R ∼ N νann with:

ρ =
d + 6

3d + 4
(2.6)

νann =
7

3d + 4
(2.7)

It can be seen that at the critical dimension dc = 8 the exponent νann = 1/4 remains unperturbed

and ρ = 1/2. The νann = 1/4 is in agreement with the Nechaev statistics for ideal rings in an
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array of fixed obstacles discussed earlier. Further the ρ = 1/2 suggests the existence of a

structure in the ideal Cayley tree ring with its contour length composed of the order of N1/2

segments.

The array of fixed obstacles environment discussed so far is akin to a gel where the cross-

links in the network act as obstacles confining a chain. In a dense system like melt the ring

polymer chain is expected to be confined as a consequence of the density of the system although

the obstacles are no longer fixed as in the case of cross-links in a gel. Klein hypothesized three

different possible static configurations of a larger flexible ring in a dense system like that of

the melt (see Figure 2.4). The first subdivision in Klein hypothesis corresponds to the states of

enclosing of obstacles viz threaded and non-threaded states. If the ring chain encloses parts of

other chains then it is considered to be threaded by other chains as in Figure 2.4(a). If the ring

does not enclose parts of other chains it is considered to be non-threaded as in Figure 2.4(b) and

(c). The non-threaded state can be further subdivided into ramified and non-ramified states. The

ramified state corresponds to the ring being spread out with its structure similar to that of star

polymer as in Figure 2.4(b). The non-ramified structure corresponds to that of a double-folded

sausage like structure of a ring chain 2.4(c).

It is seen that Klein hypothesis on statics does not explicitly account for the additional

topological constraint that arises in the system of melt of rings. This additional topological

constraint in the melt of rings is non-concatenation, i.e., the concatenation of any two rings

neighbors is prohibited as it involves breaking and reforming of bonds (see Figure 2.5)(Cates

and Deutsch, 1986). Cates and Deutsch (1986) conjectured that the rings in a melt of rings

possibly do not obey Gaussian statistics due to the non-concatenation constraint.

A Flory-type estimate of the size of a ring chain in its melt was presented by Cates and

Deutsch (1986) based on the argument that the topological constraint of non-concatenation tries

to squeeze the ring chains which is opposed by the elastic contribution which resists deviations

from the ideal size. The quantification of free energy loss due to non-concatenation constraints

was done based on the argument that the presence of a ring neighbor to a ring chain causes loss

of a degree of freedom (Cates and Deutsch, 1986). If the ring in a melt is of size R then the

number of neighbors in the ring in d dimensions would scale as Rd/N . Thus, the free energy

penalty that squeezes the rings due to the presence of these neighbors is given by TRd/N .

The elastic contribution to free energy which opposes the squeezing is given by TN/R2. The
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Figure 2.4: Klein hypothesis on the structure of a ring in a melt (Klein, 1986) (a) enclosing
obstacles (threaded ring) (b) non-obstacle-enclosing ramified structure with large loops (c) non-
obstacle-enclosing non-ramified structure

Figure 2.5: Schematic of the non-concatenation topological constraint
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combination of the free energies yields:

F ≈ T
Rd

N
+ T

N

R2
(2.8)

The minimization of the free energy with respect to size R yields R ∼ N2/(d+2) (Cates and

Deutsch, 1986). For d = 3 this yields R ∼ N2/5 a scaling which lies between that of an ideal

ring in an array of fixed obstacles and an ideal Gaussian chain.

Müller et al. (1996) investigated the influence of strong interaction between neighbor-

ing ring chains through computer simulations using the bond fluctuation algorithm (Carmesin

and Kremer, 1988) for chains up to N = 512 statistical segments at a volume fraction of

φ = 0.5 and showed that ring chains in the melt are more compact than Gaussian chains.

They did a systematic finite-size analysis of the average ring size R ∼ N ν and showed that it

yields an exponent ν ≈ 0.39 ± 0.03 in agreement with the Flory-type free energy arguments

of Cates and Deutsch (1986). Further, the normalized static structure factor from the simula-

tions, S(q)/N , expressed as a function of the characteristic variable Rgq showed an apparent

self-similar power-law regime with a fractal dimension of 1/ν = 1/0.4. The Gaussian fractal

dimension of 2 was ruled out by their structure factor data.

Brown et al. (2001) carried out a computer simulation study of the influence of topological

constraints on statics and dynamics of both isolated ring polymers and ring polymers in melt.

The study was based on a modified bond fluctuation model proposed by Shaffer (1994, 1995)

specially designed to simply switch the topological interactions “on” and “off” and ascertain

their effects globally. Based on the study they concluded that for isolated ring polymers the

absence of topological constraints leads to Gaussian scaling of the ring polymer size R2
g ∼ N

whereas they are present in much more compact conformations in the melt of rings with R2
g ∼

N0.83 a scaling in agreement with that of Müller et al. (1996) simulations.

Müller et al. (2000) also investigated the influence of persistence length on the structure

of ring polymers in their own melt by means of dynamical MC simulations. These simulation

were aimed at identifying the regime in which the ring chains behave like lattice animals in a

self-consistent network of topological constraints imposed by neighboring rings. They showed

that the increase of the persistence length is an effective route to obtain lattice animal structure.

Further they plotted the density distribution of the ring around its center of mass and observed

that when the Cates and Deutsch (1986) conjecture is obeyed the density near the center de-

creased with ∼ N−0.2. When the persistence length was tuned to obtain more compact lattice

animal structures the density near the center was seen to become independent of N for a smaller
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value of N . They also observed that the asymptotic value of the density near the center reached

for stiffer rings was small. Based on these observations they argued that the density of other

rings in the correlation hole of a given ring is larger for stiffer rings and there is a possibility

of similar strong overlap for large flexible rings. We understand based on these ideas that a

very long flexible ring can indeed take a compact lattice animal conformation in its own melt

an understanding we implicitly use in our models.

2.2 Dynamics

The connection between the chain structure of a polymer chain and a dynamic property like

viscosity of a polymer solution was first discussed by Hermans (1943). He proposed that the

continuous change of shape of polymers in a solution may be described by a diffusion process.

To this end he considered the distribution of the distance between ends of a polymer chain to be

maintained by a force. The force was used to study the diffusion of an end with respect to the

other end when the distribution is affected by a streaming flow. He arrived at a new distribution

for the distance between chain ends and used it to determine the viscosity and the birefringence

corresponding to the flow. The developments in dynamics of dilute solution of polymers has

this fundamental idea as the starting point although they vary in the approach to modeling the

diffusion process.

We have already mentioned in section 1.1 about the coarse-graining of a polymer chain

into a set of beads connected by springs. Such a chain is known as a Rouse chain or a Rouse-

Zimm chain, the names being associated with the authors of two landmark papers in polymer

kinetic theory (Rouse, 1953; Zimm, 1956). It is natural to model the motion of the polymer

chain by Brownian motion of the beads of the chain as was first proposed by Rouse (1953).

Consequently the equation of the motion of the chain can be described either by the Smolu-

chowski equation:
∂Ψ

∂t
=

∑
n

∂

∂Rn

·Hnm ·
[
kBT

∂Ψ

∂Rm

+
∂U

∂Rm

Ψ

]
(2.9)

or the Langevin equation:

∂

∂t
Rn(t) =

∑
m

Hnm ·
(
− ∂U

∂Rm

+ fm(t)

)
+

1

2
kBT

∑
m

∂

∂Rm

·Hnm (2.10)

for the motion of a collection of interacting Brownian particles subject to a potential field U and

hydrodynamic interaction governed by the mobility tensor Hnm (Doi and Edwards, 1986). The
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Smoluchowski equation describes the time evolution of the conformational distribution of the

Brownian particles, Ψ, while the Langevin equation describes the time evolution of position,

Rn, of the Brownian particle.

In the Rouse model, the hydrodynamic interaction and the excluded volume interaction

are disregarded and the mobility tensor and the interaction potential are written as (Doi and

Edwards, 1986):

Hnm =
I

ζ
δnm (2.11)

U =
3kBT

2b2

N∑
n=2

(Rn −Rn−1)
2 (2.12)

Based on the harmonic potential field expression (2.12) and the delta correlated hydrodynamic

interaction expression (2.11) the continuous form of Langevin equation can be written as (Doi

and Edwards, 1986):

ζ
∂Rn

∂t
= k

∂2

∂n2
Rn + fn (2.13)

where k = 3kBT/b2. In our model approaches we have used this Langevin description of

dynamics of a polymer chain with implicit Rouse assumptions.

The extension of the results from the dynamics of the dilute solution to the melt is expected

to be difficult due to the many chain effects in the melt. For the case of melt of low molecular

weight linear chains the Rouse model discussed earlier gave a fair prediction of the dynamic

properties owing to the fact that the hydrodynamic interactions are screened in a dense system

like that of the melt. However, it was observed that beyond a critical molecular weight of the

chain, M ≥ Mc, the dynamics of the linear chains changed drastically to give a (ZSV) as

∼ M3.4 (Ferry, 1980) as opposed to the ∼ M scaling expected from the Rouse dynamics. The

understanding of this dynamic response of melt of linear chains was arrived at on the basis

of the fundamental ideas of de Gennes (1971) and Doi and Edwards (1978a,b,c, 1979). We

review these ideas briefly here as they are of key value in understanding the effect of external

topological constraints on dynamics of polymeric systems.

de Gennes considered the motion of a single polymer molecule performing wormlike

displacements inside a strongly cross-linked polymer gel. In a classical scaling argument de

Gennes considered that the polymer chain consisting of gas of non-interacting ‘kinks’ or length-

defects along its contour. He argued that as these kinks diffuse along the contour of the chain

they cause the 1-D diffusion of the chain along its contour. This type of motion was called
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‘reptation’ by de Gennes after the latin reptare, to creep (Doi and Edwards, 1986). Based on

the idea he showed that there are two characteristic time scales that are associated with such

dynamics:

• The equilibration time for the defect concentration ∼ M2.

• The time required for the complete renewal of the chain conformation ∼ M3

Further he conjectured that the idea of reptation in fixed obstacles can be extended to the case

of melts.

Doi and Edwards combined the mathematical formulation of entanglement effect on the

entropy of very long flexible molecules developed by Edwards (1967a,b) with the de Gennes

(1971) idea of reptation to study the dynamics of long flexible linear molecules in concentrated

systems like the melt. The formulation involves two significant simplifications:

• The many-body problem of the topological constraints arising due to chain interactions is

simplified into a tube mean-field.

• The dynamics of the chain can be visualized as a simple 1-D diffusion of a polymer chain

in a tube mean-field.

Based on the combination of these ideas they arrived at a constitutive relation which showed that

the ZSV in such a system scales as the time required for the renewal of the chain conformation

and thus scales as ∼ M3 a value close to that observed in experiments.

We have already mentioned the success of this simplification in understanding dynamics

of entangled polymeric systems and its specific application to linear chain systems in section

1.2. However, the immediately noticeable shortcoming of the first order reptation theory is that

it predicts that the ZSV scales as M3 while numerous experiments give ZSV ∼ M3.4 (Ferry,

1980). It was suggested that with the complete suppression of the transverse motion the rep-

tation dynamics may provide only an upper bound to the the viscosity and certain transverse

motions through the tube mesh may be important for chains of intermediate molecular weights

(Graessley, 1980). The transverse motions are expected to be faster processes that reduce the

viscosity relative to the asymptotic limit. However, the fast process become less important for

high molecular weight chains so the viscosity in the intermediate molecular weights increases

faster than the asymptotic M3 limit to meet it from below (Milner and McLeish, 1998). It
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was suggested that the M3.4 scaling of viscosity observed reflects this approach to the asymp-

totic limit of the reptation process in the intermediate molecular weights (Graessley, 1980).

Doi (1983) identified the fast process as contour length fluctuations, i.e., the fluctuation-driven

stretching and contraction of the chain and showed that its incorporation gives the M3.4 scaling

for the viscosity in the intermediate molecular weight regime of 10Mc ≤ M ≤ 100Mc.

In arriving at the results discussed so far it is seen that the nature of the tube is not explic-

itly considered. Klein (1978) noted that the strands of the tube mesh of the tube model are parts

of other chains which diffuse similarly and hence the lifetime of each entanglement forming the

tube is in itself comparable with the disengagement time for the entire chain. This is strictly true

only in the case of monodisperse systems. In a polydisperse system this is clearly not the case

since the disengagement time of shorter chains is lower than the long chains and consequently

these chains can release the constraints on the longer chain before the longer chains disengage

from the tube of confinement through reptation. The release of constraints by the shorter chains

allows parts of the longer chain to relax through transverse motions. Marrucci (1985) con-

sidered such release of constraints to cause an increase in the diameter of the confining tube

a relaxation mechanism termed as tube dilation and worked out the corrections based on this

idea. This model served as an inspiration to develop more rigorous ideas of ‘double reptation’

independently developed by Tsenoglou (1991) and des Cloizeaux (1990a,b). In fact the des

Cloizeaux (1990a) double reptation model has been shown to describe quantitatively the linear

viscoelastic response of melts containing two molecular weights of the same homopolymer.

Although advance models (Likhtman and McLeish, 2002; Rubinstein and Colby, 1988) with

superior accounting of the effects of constraint release have been developed the des Cloizeaux

double reptation idea has been found to be easier to implement (Pathak et al., 2004).

2.2.1 Effect of Internal Topological Constraint

Kramer (1944) generalized Hermans (1943) formulation of the dynamics of a linear macro-

molecule to the case of macromolecules of architectures like branched and ring polymers. The

dynamics of ring polymers in dilute solution with hydrodynamic interactions was first explored

by Bloomfield and Zimm (1966). They considered the ring chain as a Gaussian coil and did

perturbation calculations for dynamics of the ring chain. Fukatsu and Kurata (1966) worked

out the dynamics of ring macromolecules in solution through a different approach and arrived

at similar results as Bloomfield and Zimm (1966). They predicted that the ratio of intrinsic
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viscosities of ring chain solution to that of the linear chain solution is 0.5 in the free-draining

limit and 0.645 in the non free-draining case.

Ring molecules were less familiar at the time of work of Zimm and Stockmayer (1949)

and interest in their dynamics was suppressed till the time when the interest was rekindled

by the experimental work of Roovers and Toporowski (1983); Roovers (1985a). Weist et al.

(1987) rederived and extended some of the results of the previous investigators without the

restriction of the asymptotic limit of N = ∞where N is the number of beads in the bead-spring

model of the ring polymer chain. Further they obtained the complete constitutive equation, the

relaxation spectrum, and viscometric properties for a dilute solution of Hookean-spring rings

without hydrodynamic interactions. The results of Weist et al. (1987) was extended to the case

of Hookean-spring rings with hydrodynamic interactions by Liu and Öttinger (1987). Both

these works pointed out to dynamics of a ring chain similar to that of the Rouse/Zimm linear

chain with only the alteration of the relaxation spectrum of the ring chain effected by the chain

closure constraint.

2.2.2 Effect of External Topological Constraint

We have already discussed reptation in a tube model, its success and the improvements achieved

by incorporation of additional relaxation modes for systems composed of linear chains in sec-

tion 2.2. We also discussed the difficulties associated with applying the tube model and reptation

dynamics to the case of systems composed of branches and ring chains in section 1.2. However,

the kink-defect diffusion mechanism employed in the development of the idea of reptation of

a confined linear polymer has been found to be useful in developing scaling models for a con-

fined ring chain (Cates and Deutsch, 1986; Rubinstein, 1986; Obukhov et al., 1994). Thus, it

is illustrative to look at the kink-defect diffusion mechanism as first applied to the motion of a

confined linear chain and consider its extension to the case of the confined ring chain.

Consider a linear chain made up of N segments containing kink-defects of stored length

a. Consider that initially there exists a gradient of density of defects in the chain and as the

defects diffuse from the center of the chain towards the ends the chain attains an equilibrium

density of defects. The entire chain has this equilibrium density of defects after a certain time

viz. the equilibration time. The defects have to move a distance of order of the contour of

the chain ∼ N and consequently a mean-square distance of ∼ N2 to diffuse out of the ends.

The local diffusion jump is independent of the length of the chain and can be considered as a

22



constant, Dloc. Thus, the equilibration time of the defects is given by the mean-square distance

over which the defects have to move to diffuse out of the ends divided by the diffusion constant

associated with the local diffusion process, i.e., τR ∼ N2. This equilibration time corresponds

to the Rouse relaxation time of the chain.

The number of defects in such a chain is expected to be proportional to the contour length

of the chain L ∼ N . When a single defect moves by a distance a it causes a segment along the

contour length to have a mean-square displacement a2. Such a motion of a segment in the chain

causes the center of mass of the entire chain to have a mean-square displacement of (a/N)2. In

the chain there are N such non-interacting defects and consequently the mean-square motion of

the center of mass due to the simultaneous motion of all the defects is given by:

∆sc.o.m ∼ N
( a

N

)2

∼ a2

N
(2.14)

This entire motion happens in the time scale of relaxation τ0 of the stored length a. The curvi-

linear diffusion coefficient of the chain is thus given by:

Dc ∼ ∆sc.o.m

τ0

∼ N−1 (2.15)

The longest relaxation time of the chain is the time taken for the chain to completely diffuse out

of its original tube of confinement along the chains contour L and is thus given by:

τrep ∼ L2

Dc

∼ N3 (2.16)

Thus we obtain the N3 scaling of the longest relaxation time. The self-diffusion coefficient of

the chain can then be worked out based on the idea that in the time scale τrep the linear chain

moves through a spatial distance of the order of its radius of gyration and hence:

D ∼ R2
g

τrep

∼ N−2 (2.17)

We have already seen in section 2.1.2 that a ring chain in the presence of an array of

fixed obstacles takes a collapsed Cayley tree structure. Cates and Deutsch (1986) considered

the diffusion of kink-defects in such a Cayley tree ring chain and worked out the self-diffusion

coefficient of an excluded volume ring with R ∼ N1/2 scaling as D ∼ N−2. They argued that in

the equilibration time scale ∼ N2 although a single kink-defect moves along the entire contour

of the chain it moves a spatial distance of only the size of the Cayley tree chain R. Thus the

mean-square displacement of the center of mass of the chain in the time scale of equilibration
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τR is given by R2/N2. Considering that the equilibration time of defects in rings is the same as

that of linear chains they arrived at at a scaling of the center of mass diffusion coefficient due to

single kink-defect as:

D0 ∼ R2

N2τR

∼ R2

N4
(2.18)

They argued that the number of kink-defects is proportional to the perimeter of the chain N and

all these kink-defects diffuse over the time scale of equilibration τR and consequently the center

of mass diffusion coefficient due to the diffusion of all the kink-defects is given by:

D ∼ ND0 ∼ R2

N3
∼ N2ν(d)−3 (2.19)

where, ν(d) is the size exponent of the Cayley tree ring in d dimension. This yields for an

excluded volume Cayley tree chain in d = 3 with R ∼ N1/2 a diffusion coefficient scaling as

D ∼ N−2 a scaling identical to that of the ideal linear chain in expression (2.17). This yields

for an ideal Cayley tree chain with R ∼ N1/4 a diffusion coefficient scaling as D ∼ N−5/2 a

result independently arrived at by Nechaev et al. (1987) and Rubinstein (1986).

The Cates and Deutsch (1986) scaling result for diffusion coefficient, expression (2.19),

can be arrived at by an alternate argument as envisaged by Rubinstein (1986). He considered

that the motion of all the kink-defects along the perimeter of the chain contribute to the center

of mass motion in a way similar to that of the motion of kink-defects along contour of the linear

chain (Rubinstein, 1986). This yields the longest relaxation time of the ring chain to be the

same as that of the linear chain, i.e τr ∼ N3, as the only difference between the linear and the

ring chain is in the geometry of the contour which does not affect the kink-defects diffusion

contribution to the center of mass motion. In this time scale τ the center of mass undergoes

a mean-square displacement of the order of its size and hence the self-diffusion coefficient is

given by:

D ∼ R2

τ
∼ N2ν(d)−3 (2.20)

An insightful refinement of the contribution of the diffusing kink-defects to the center of

mass motion in a Cayley tree ring chain was proposed by Obukhov et al. (1994). They pointed

out that the kink-defect diffusion mechanism in the earlier works (Cates and Deutsch, 1986;

Rubinstein, 1986) fails to account for the evolution of the shape of the perimeter as the kink-

defects move around it. Further they argued that such a variability of shape of the perimeter can

serve to alter the density of kink-defects in the system and consequently alter the mechanism of

kink-defect diffusion and its contribution to the center of mass motion of the chain. In order to
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Figure 2.6: Division of a section of a Cayley tree ring into trunk, branches and leaves

understand this difference in mechanism they suggested a shift in focus from the local effect of

kink-defect diffusion which causes perpetual changes of conformation to its effect on the most

durable feature associated with any section of the polymer.

In order to aid this shift of focus they first divided the Cayley tree structure of the ring

chain into substructures viz., trunk, branches and leaves (see Figure 2.6). They argued that the

kink-defect diffusion first rearranges the leaves, then the branches and finally the trunk. Further

they divided the kink-defect diffusion effects into two distinct parts:

• Diffusion within the branches and leaves which do not contribute to the center of mass

motion of the chain.

• Diffusion along the trunk which leads to center of mass motion of the chain.

The branches and leaves were thus considered to act as reservoirs of kink-defects while the

dynamical evolution of the trunk causes the center of mass motion of the chain. Consequently

a shift of focus to the dynamical evolution of the durable feature, i.e., the trunk of the chain and

the refinement of the contribution of the kink-defect diffusion to center of mass motion of the

chain section was achieved.

Based on this refined idea Obukhov et al. (1994) considered a general section of the Cayley

tree ring between two points P and Q consisting of n segments (see Figure 2.6). They argued
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that the portion of the lattice tree corresponding to the section can be divided into trunk and

branches where the trunk is a random walk of length m ∼ n1/2. When a single defect moves by

a distance ‘a’ it causes a segment along the trunk to have a mean-square displacement a2. Such

a motion of a segment in the chain causes the center of mass of the section to have a mean-

square displacement of (a/n)2. In the trunk there are m such non-interacting defect reservoirs

and consequently the mean-square motion of the center of mass due to the simultaneous motion

of all the defects is given by:

∆sc.o.m ∼ m
(a

n

)2

(2.21)

This entire motion happens in the time scale of relaxation τ0 of the stored length a. The curvi-

linear diffusion coefficient of the chain is thus given by:

Dc(n) ∼ ∆sc.o.m

τ0

∼ n−3/2 (2.22)

Considering the entire ring chain its trunk contains M ∼ N1/2 and has a Dc(N) ∼ N−3/2.

The longest relaxation is the time taken for the complete reorientation of the trunk of the ring

chain and is given by:

τr ∼ M2

Dc(N)
∼ N5/2 (2.23)

Thus we obtain the N5/2 scaling of the longest relaxation time. The self-diffusion coefficient of

the chain can then be worked out based on the idea that in the time scale τr the ideal ring chain

moves through a spatial distance of the order of its radius of gyration Rg ∼ N1/4 and hence:

D ∼ R2
g

τr

∼ N−2 (2.24)

We hence forward refer to the Obukhov et al. (1994) scaling arguments described in fair detail

as Duke-Obukhov-Rubinstein (DOR) scaling arguments.

Obukhov et al. (1994) studied the dynamics of ring chain based on the numerical simu-

lations through variant of the repton model (Rubinstein, 1987; Duke, 1989). In this study the

motion of ring chain of Na segments in a lattice of obstacles was investigated with the use of a

certain set of rules for defect motion (see Obukhov et al. (1994) for details of the rules). The

equilibrium statistics based on this model yielded the radius of gyration of the chain scaling as

R ∼ N ν
a with ν = 0.28 ± 0.02 for Na > 100 - a value close to the Nechaev (1998) results for

ideal Cayley tree ring chains of ν = 0.25. In dynamics the relaxation behavior of the chain was

investigated by determining the fraction, f , of the original lattice tree bonds that remain after a

time t and it was found that:

26



• The substantial fraction of the chain relaxed quickly which is expected due to the fast

relaxation of branches and leaves.

• At long times there is a single exponential decay corresponding to this fraction given

by f = f0 exp(−t/τr) where τr ∼ N2.6±0.1
a and f0 ∼ N0.5±0.1

a . These results are con-

sistent with the DOR scaling results for longest relaxation time equation (2.23) and the

consideration of a predominant length scale of order N0.5
a respectively.

The diffusion coefficient scaling, D ∼ N−2.1±0.1
a , was also found to be consistent to that of

the results of the DOR scaling expression (2.24). Further, the curvilinear transport of a chain

segment was investigated and it was found that the average mean-square displacement of the

segment along the contour is related to the time scale of motion by 〈l2〉 ∼ tγ where γ =

0.8± 0.04. Obukhov et al. (1994) pointed out that inversion of equation (2.23) for an arbitrary

section of the chain with a contour length, l, is expected to yield l ∼ t2/5 a result in concurrence

with this simulation result. We can consider this final result as an indication of the similarity of

dynamics of the Cayley tree ring at all length scales.

Note: Although the kink-defect diffusion mechanism scaling arguments have been employed to

understand the dynamics of such Cayley tree rings the problem of equilibration of defects has

not been considered explicitly. This is probably due to the absence of free ends which play an

important role in such equilibration.

So far we have discussed scaling models for dynamics of Cayley tree rings in an obstacle

environment. In the rest of this section we discuss ideas that can be considered as a relevant

aid to developing rigorous frameworks for entangled Cayley tree ring polymers. Klein (1986)

conjectured that the dynamics of the ramified structure of a ring in a melt (see Figure 2.4) is

similar to that of a star polymer and hence is likely to have diffusion coefficients comparable

to that of entangled star polymers as arrived at in the light of tube model. In section 2.1.2 we

have already discussed the correspondence of the universality class of the Cayley tree structure

and randomly branched polymers which have annealed branch points. We have also seen in

section 2.1.2 that according to Müller et al. (2000) simulations large ring polymers in a melt of

identical ring chains are likely to have a lattice tree like structure. Thus, it is useful to review

the application of tube model to branched polymers in our quest for formulation of rigorous

frameworks for the addressing the entangled dynamics of a Cayley tree ring chains.

In section 1.2 we briefly mentioned the ingenious conceptualization of Pom-Pom polymer
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worked out by McLeish and Larson (1998) for application of tube model to study the dynamics

of branched polymers. In the Pom-Pom polymer model McLeish and Larson (1998) considered

an idealized molecules that has a single back bone with multiple branches emerging from both

ends. In a melt of such a polymer the branches and the backbone are entangled with surrounding

molecules and are thus confined in a tube. In order to study the dynamics of such an entangled

chain, McLeish and Larson (1998), considered how an ensemble of mutually entangled pom-

pom polymers reconfigure the orientation by escaping from their orignal tube constraints. They

argued that in such a polymer the backbones do not relax initially as the branch points act as

effective pinning points to the motion of the backbone. However, the branch arms of the chain

are free to relax through deep retractions known as ‘breathing modes’ which occur by random

formation of unentangled loops (Pearson and Helfland, 1984).

The branch points of the chain remain pinned till the arms relax completely through the

‘breathing modes’ after which the arms essentially act like solvents. Thus, the effective friction

to curvilinear diffusion of the chain is located at the branch points rather than distributed along

the chain. Based on this physical idea McLeish and Larson (1998) calculated the diffusion

coefficient of the branch point by noting that the branch point moves a distance of order a

into the tube of constraints in the time scale of relaxation of the arm, τarm and hence Dc =

(1/2)a2/τarm. Considering the presence of qn such arms to linearly increase the drag on the

branch point they used the Einstein argument to calculate the drag as:

ζb =
kBT

Dc

= 2kBT
τarm

a2
qn (2.25)

Based on this modification of friction and considering that relaxation of the backbone happens

when the branch point diffuses in a dilated tube of constraints to traverse a mean-square distance

between the branch points, L2, they arrived at the relaxation time of the backbone to be of the

order τb ∼ L2qnτarm. The relaxation time thus obtained was used in a single relaxation mode

expression for the relaxation modulus (McLeish and Larson, 1998).

2.2.3 Polymeric Fractals

Polymers are known to be self-similar (fractal) objects, i.e., the conformation of the smaller

sections of a polymer chain when magnified look the same as the conformation of the whole

chain (Rubinstein and Colby, 2003). Such fractal objects are known to have non-integer dimen-

sions associated with them (Muthukumar, 1985). In order to understand the idea of non-integer
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dimensions we first consider the idea of dimensions from an abstract perspective. A point is a

dimension less object, a line an one dimensional object and a plane a two dimensional object.

If we take a point and consider an arbitrary continuous translation of it in space according to a

certain rule which specifies the location of the point at each moment we obtain a line. A line

thus obtained is composed of infinite point locations in space. A plane can similarly be obtained

by translation of the line and is composed of infinite lines.

We can continue this operation of adding infinite number of lower dimensional objects to

obtain a higher dimensional object. In our arguments so far we have just considered adding

infinity of lower dimension objects to arrive at an integer dimensional higher dimension object

but not explicitly mentioned the kind of infinity of these objects we have added. We note

that there are several kinds of infinities that exist and the specific kind of addition we have

considered so far corresponds to the infinity of set of real number of objects. However, it is

possible to add other kind of infinities of points or lines. An illustration of a different kind of

infinity corresponds to that of a Cantor ternary set (WIKIPEDIA, 2009) obtained by an iterative

operation that removes an open middle one-third of real numbers between two real numbers, i.e.,

if we start with the closed set of real numbers [0,1] then the operation removes values between

the open set (1/3, 2/3) leaving the set [0,1/3] and [2/3,1] in the first iteration and removes values

between (1/9, 2/9) and (7/9, 8/9) in the second iteration and so on. The set of values generated

by such an iterative operation can be shown to be infinite but the values in the set are sparse in

contrast to the values in the set of real numbers and the infinity corresponding to this sparsely

populated set is different from the infinity of set of real number. Adding as many points or lines

as there are values in a Cantor ternary set corresponds to adding a different kind of infinity. In

such a case we obtain objects with non-integer dimensionality. The structures of our concern,

the Gaussian chain and the Cayley tree, are such objects.

The geometrical structure of such fractal objects is characterized by their fractal dimen-

sionality df – the exponent that relates the mass of a given structure to the spatial size of the

structure: (Muthukumar, 1985):

M ∼ Rdf (2.26)

The fractal dimension is associated with the volume of the fractal object through the size R and

does not contain information about the internal connectivity of the object. The idea of spectral

dimension was introduced to take into consideration the scaling properties of both volume and

connectivity in calculation of density of states in a fractal object (Alexander and Orbach, 1982;
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Muthukumar, 1985). The topological structural properties of the fractals are hence character-

ized by the spectral (fracton) dimensionality ds, which is defined by (Muthukumar, 1985):

Nt ∼ tds/2 (2.27)

where Nt is the number of distinct sites in the fractal visited by a random walk up to a time t.

Although the fractal dimension is known for a large class of fractal objects the exact value of ds

is known only for a limited class of such objects.

Muthukumar (1985) presented a theoretical study of the screening of hydrodynamic in-

teractions and the viscosity of solutions of arbitrarily branched polymers. In this study the

general problem was posed as a study of dynamics of polymeric fractals and a scaling relation

for the spectral dimension in terms of the fractal dimension for an arbitrarily branched polymer

was obtained. We have already seen in section 2.2 concerning discussion on Rouse chain that

the equation of motion for a segment depends on the potential force exerted on the segment.

This force depends on the nature of the branching, structure of the fractal and consequently

on the distribution function of the position vectors of the various cross link junctions, Pc(Ri).

Muthukumar argued that although the distribution function Pc(Ri) is different for every fractal

the global dynamical features of the polymeric fractal can be worked out based on the potential

of the mean force acting on a segment instead of working on with the microscopic cross-link

distributions.

In order to achieve this he considered a linear Gaussian chain and considered the equation

of motion of a segment, s, of a chain of lengths L, similar to that of Rouse Langevin description

expression (2.13). For this chain the original equation of motion postulated by Rouse (Rouse,

1953) in terms of the Fourier components given by:
(

ζ
∂

∂t
+

3kBT

l
q2

)
R(q, t) = f(q, t) (2.28)

was arrived at by using the probability distribution of the Gaussian chain in terms of Fourier

components written as:

P (R) = ℵ exp

(
−3

2

∫
dq

2π

R2(q)

〈R2(q)〉
)

(2.29)
〈
R2(q)

〉
= lq−2 (2.30)

where, the Fourier components R(q) are given by:

R(q) =

∫ L

0

ds exp(iqs)R(s) (2.31)
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and the Fourier variable q = 2πp/L is inversely proportional to the total length and conse-

quently the mass of the linear chain.

The average in the expression (2.30) scales as the square of mass of the chain since q ∼
L−1. We can consider this average to be composed of two contributions (a) corresponding to

that of the mean-square size of the object (b) corresponding to the mass of the object. Since the

mean-square end-to-end distance of a Gaussian chain is proportional to L ∼ L2ν with ν = 1/2

the size contribution is given by ∼ q−2ν . The mass contribution to the average is always given

by q−1 ∼ M . For the Gaussian chain which is self-similar at all length scales the average can be

written as 〈R2(q)〉 = lq−(2ν+1) and consequently the equation of motion in terms of the Fourier

component can be written as (Muthukumar, 1985):
(

ζ
∂

∂t
+

3kBT

l
q2ν+1

)
R(q, t) = f(q, t) (2.32)

Muthukumar (1985) proposed that the equation of motion of any branched fractal object without

excluded volume interactions can be written in the form of equation (2.32) where the term

containing q2ν+1 accounts for the potential of mean force on the fractal object.

In deriving an expression for the spectral dimension in terms of the fractal dimension

Muthukumar (1985) conjectured that the generalized Rouse equation for branched polymers

can be written as: (
ζ

∂

∂t
− 3kBT

l
∇2

s

)
R(s, t) = f(s, t) (2.33)

where, ∇s is the generalized Laplacian in ds dimensional space. In addition considering that a

general Rouse mode variable qs can be defined to be the Fourier conjugate variable to arc length

in the space of spectral dimension, ds, he proposed that equation (2.33) transforms to:
(

ζ
∂

∂t
+

kBT

l
q2
s

)
R(qs, t) = f(qs, t) (2.34)

Comparing expressions (2.32) and (2.34) he arrived at a relationship between spectral and frac-

tal dimensions given by:
2

ds

=
2

df

+ 1 (2.35)

The relationship (2.35) is arrived at based on several conjectures and the rigorous defence

of the conjectures is beyond the scope of the present work. However, we consider the validity of

the relationship (2.35) for polymeric fractals of our concern as a measure of correctness of the

conjectures and hence briefly consider its validity for the Gaussian and the Cayley tree chain. In

the case of Gaussian chain it is known that they have a fractal dimension df = 2 (Muthukumar,
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1985; Rubinstein and Colby, 2003). According to the relationship (2.35) the spectral dimension

of the Gaussian chain is given by ds = 1 – a result in agreement with that reported by Alexan-

der and Orbach (Alexander and Orbach, 1982). From the size scaling, R ∼ N1/4, of the ideal

Cayley tree ring structure it is clear that they have a fractal dimensionality df = 4. The spectral

dimension of this chain using expression (2.35) is calculated to be ds = 4/3 – a result that

was recently shown to be correct for critical percolation on Cayley trees (Barlow and Kumagai,

2005) and generic ensembles of infinite trees (Durhuus et al., 2007).

Note: The spectral dimension of a fractal object appears to be independent of the space di-

mension d on which the fractal object is generated by means of a random walk (Alexander and

Orbach, 1982; Meakin and Stanley, 1983). The generating function associated with the ‘num-

ber of distinct sites visited’ expression (2.27) is known to be related to the Laplacian in random

geometry applications (Durhuus et al., 2007). Thus the spectral dimension may be considered

as the appropriate dimension for writing a generalized Rouse equation of form (2.34).

We can also analyze the dynamics of polymeric fractals framework developed by Muthuku-

mar (1985) in terms of its relationship to viscoelastic response of branched polymers. In order

to carry out this analysis we consider the microscopic expression for stress in a polymeric sys-

tem which depends on the correlations between the Fourier components of position and can be

shown to be given by:

σαβ =
c

N

∑
q

3kBT

l
q2ν+1 〈Rα(q, t)Rβ(q, t)〉 (2.36)

where, c/N is a measure of density of chains in the system. The Fourier component correlations

for any branched fractal object without excluded volume interaction can be obtained using the

equation of motion (2.32). Based on the solution to expression (2.32) for simple shear flow the

relaxation modulus of an hyperbranched polymer can be shown to be given by:

G(t) =
c

N
kBT

∑
q

exp

(
− t

τq

)
(2.37)

where,τq = (lζ/6kBT )q−(2ν+1). The complex modulus corresponding to the relaxation modulus

expression (2.37) can be shown to be:

G∗(ω) =
c

N
kBT

∑
q

[
iωτq + ω2τ 2

q

1 + ω2τ 2
q

]
(2.38)

The melt rheology of hyperbranched polyesters has been shown to be accurately modeled
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by expression, arrived at by Rubinstein et al. (1989), given by (Suneel et al., 2002):

G∗(ω) =
dsG0

2
iω

∫ εx

εN

(ε/εx)
(ds/2)−1

iω + ε

dε

εx

(2.39)

where, G0 is the unrelaxed shear modulus, ε is the inverse of the relaxation time, εN and εx

are long and short time cutoffs corresponding to the relaxation time of the entire polymer chain

and the sections between branch points respectively. It can be shown that the expression (2.38)

arrived at from the dynamics of polymeric fractals framework is similar to the expression (2.39)

used in the modeling of melt rheology of hyperbranched polyesters. Thus, the dynamics of

polymeric fractals framework may be considered as a useful starting point for looking at dy-

namics of the Cayley tree ring chain.

2.3 Viscoelasticity and Diffusion

We have already mentioned in section 2.2.1 the triggering of interest in dynamics of ring poly-

mer by the work of Roovers and Toporowski (1983); Roovers (1985a,b, 1988); Roovers and

Toporowski (1988). Roovers and Toporowski (1983) prepared narrow molecular weight ring

polystyrene (PS) through anionic polymerization and used the techniques of ultracentrifugation

sedimentation and gel permeation chromatography to monitor the purity of rings. It was shown

that polymers of molecular weights up to 45× 105 could be synthesized using the experimental

protocol. They further pointed out that the the probability of knot formation and concatenation

in the synthesis protocol is marginally small (Roovers and Toporowski, 1983). The rheologi-

cal characterization of a melt of polystyrenes synthesized indicated that the loss modulus, G′′,

of the ring chain was always lower than that of the linear polymers over the entire frequency

regime (Roovers, 1985b). Based on this observation and the relation between plateau modulus

G0
N , loss modulus G′′ and loss modulus contribution from the glassy state, G′′

s , Roovers and

Toporowski (1983) argued that the plateau modulus for ring melt should be half that of the lin-

ear melt and hence the rings are not as effectively entangled as linears. This can be considered

as the first experimental indication for the altered structure of a ring chain in its melt.

The synthesis of rings was extended to the formation of polybutadiene (PBD) rings (Roovers

and Toporowski, 1988) which are known to have an entanglement molecular weight smaller

than that of PS and hence are expected to entangle even at relatively low molecular weights

as compared to PS. Roovers (1988) in his paper on viscoelastic properties of ring PBD made

several interesting observations:
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• G′ and G′′ values of the ring melt about 5 times lower than that of the corresponding

linear melt – an indication of weak entanglement effects in ring melts.

• The zero-shear viscosity (ZSV) of ring PBD sample KPBD34B3 about an order of mag-

nitude lower than the linear melt composed of PBD of about the same molecular weight

– an indication of faster dynamics of rings.

• ZSV of ring-linear blends of PBD shows a steep change in viscosity due to linear contam-

ination and a maxima in viscosity with varying fraction of linear chains – an indication

of rapid slowing of dynamics due to compatibility of ring and linear chains

These observations established ring polymers as a class of entangled fluids different from that

of the linear chains.

McKenna and co-workers carried out extensive rheological measurements on melts of

macrocyclic polystyrene chains over a broad range of molecular weights from below the criti-

cal molecular weight for entanglement Mc to well above this value. Two of their main research

papers McKenna et al. (1987, 1989) are summarized here. In their earlier paper McKenna et al.

(1987) reported the temperature and molecular weight dependence of ZSV of several fractions

of macrocyclic polystyrene samples synthesized in different laboratories, and have compared

their results with those obtained independently by Roovers (1985b) at around the same time.

The dilute solution properties of these macrocyclic polystyrene fractions were first extensively

measured by size exclusion chromatography, light scattering and limiting solution viscosity. It

was found that most of the macrocyclic chains showed g = [ηc] / [ηl] = 0.66 at or near the theta-

condition. Here [ηc] and [ηl] are respectively the limiting viscosities of solutions of cyclic and

linear polystyrene chains. The experimentally observed value of g is in agreement with theoreti-

cal expectations for cyclic polymers. Also at these conditions the molecular weight dependence

of the limiting viscosity, as defined by the Mark-Howink exponent, for the macrocycles was the

same as that for the linears namely 0.5. They further noticed that the exponent for the Roovers

rings was 0.46. They attributed this lower value to the possibility that the Roover rings were

knotted since they were prepared by cyclization at below theta-temperature. Assuming that

the dilute solution properties are a true reflection of the purity of macrocycles, McKenna et al.

(1987) proceeded to measure their ZSV in melt state. This was done by using the highly sen-

sitive Plazek rheometer that is coupled with an essentially frictionless magnetic bearing and a

highly sensitive strain measurement tool. This enabled them to impose very small strain rates
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and thereby measure ZSV with great precision. They observed that the temperature dependence

of the ZSV of macrocycles and linears were similar to within measurement errors and could be

fitted to the Vogel exquation. Further, the molecular weight dependence of the ZSV was also

identical for the macrocycles and linears at both below and above the entanglement molecular

weight Mc, which was also observed to be indistinguishable for macrocycles and linears. The

ZSV data could be fitted by the following equation:

log η0 = logA +
B

T − T∞
+ s log Mw (2.40)

The value of the exponent s was seen to be equal to 3.4 for both chain architectures.

The actual value of ZSV of macrocycles was a factor of two lower than for linears of similar

molecular weights for M < Mc. Above Mc the ZSV was observed to be only slightly lower

than for linears of similar molecular weights. In comparison the Roover rings had lower ZSV

and a stronger, almost exponential, increase in ZSV with molecular weight. It was argued by

McKenna et al. (1987) that the lower ZSV of Roover rings was because of their highly knotted

topology while the stronger dependence on molecular weight was a result of contamination with

linear chains. The latter was indeed confirmed by Roovers in a later paper.

In a subsequent paper McKenna et al. (1989) reported refined results on the dilute solu-

tion properties and creep compliance in melt state of the same polystyrene macrocycles obtained

from various sources. The macrocycles were characterized by (i) gel permeation chromatogra-

phy for molecular weight distribution, (ii) static light scattering for weight average molecular

weight, (iii) theta temperature by measuring the second virial coefficient, and (iv) intrinsic vis-

cosity. While for most macrocycles the intrinsic viscosities were found to be nearly 0.66 times

that of linear counterparts and showed a M0.5
w dependence, both of which are in agreement with

theory, there were some macrocyclic fractions for which the intrinsic viscosities were almost

identical to their linear counterparts. However theta temperature measurements for all macro-

cycle fractions showed that θrings = 28.5◦C while that for linears was 34◦C. The depression

of the theta-temperature for rings compared to linears is in agreement with theoretical predic-

tions. These results showed that while all fractions seemed to show ‘ring-like’ features the

dilute solution properties cannot be considered as a guaranteed indicator of purity of the ring

samples. In other words, the dilute solution properties of rings are not highly sensitive to the

presence of a small amount of linear contamination. Such contamination is inevitable in the

synthesis procedure of macrocycles by ring closure in dilute solution. Coupling between chain

ends occurs predominantly for individual molecules (intra-chain) in dilute solutions resulting
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in rings. However, inter-chain coupling leading to long linear chains cannot be entirely ruled

out. Also there is a statistical chance of deactivation of the chain ends resulting in short lin-

ears. McKenna et al. (1989) showed that creep compliance of melt state could be a sensitive

probe for detecting the presence of linear contaminants. The presence of linear chains causes

a lowering of compliance in the rubbery regime compared to pure macrocycles. Further, they

measured the ZSV of the macrocycle fractions once again and found that the ‘good’ fractions

(in terms of purity) showed a slightly higher exponent of 3.9 instead of the previously measured

value of 3.4. Also the value of Mc for the macrocycles was found to be twice that of linears,

a result that is again different than their previously reported result (McKenna et al., 1987). In

other words they reported that the value of plateau modulus of their macrocycles was a factor

of two lower than that for linear chains, which was in agreement with the Roovers data. Finally,

they also carefully prepared blends of macrocyclic and linear polystyrenes and measured their

ZSV. They observed that the ZSV of blends was a very strong function of the composition of

linears. Specifically they observed that ηblend/ηlinears ≈ φ5.6
linear.

We have already discussed in detail the DOR scaling arguments describing the dynamics

of ring polymer in an array of fixed obstacles in section 2.2.2. Based on these scaling argu-

ments, Rubinstein and Colby (Rubinstein and Colby, 2003) proposed a constitutive relation for

describing the linear viscoelastic response of a melt of such ring chains as (Problem 9.32 of the

Polymer Physics book):

G(t) ∼ c

Ne

kBT
(τ0

t

)2/5

exp

(
− t

τr

)
(2.41)

This constitutive relation has recently been shown to be successful in modeling the linear vis-

coelastic response of ring PS (Kapnistos et al., 2008). Our derivation of this relation is out-

lined below. Assuming self similar dynamics, a ring chain is considered to be comprised of

p = 1, 2, ..., N independent relaxation modes; the pth mode corresponds to relaxation of N/p

blobs and has a relaxation time given by:

τp ∼ τ0

(
N

p

)5/2

(2.42)

The stress relaxation modulus at time τp is expected to be proportional to the thermal energy and

the number density of blobs, and is thus given by G(τp) ∼ kBT (p/N). A simple substitution

for p from the mode-relaxation time equation (2.42) gives:

G(τp) ∼ kBT

(
τ0

τp

)2/5

(2.43)
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This suggests that for any time t < τ1 the relaxation modulus would scale as G(t) ∼ t−2/5.

Including now the exponential decay term representing the stress decay due to relaxation of the

entire ring chain, we arrive at the relation (2.41). A more detailed discussion of the the idea of

relaxation of a ring chain in an array of fixed obstacles and melts as proposed by Kapnistos et

al is deferred to the chapter 5.

Among polymers DNA is rather unique in that it is naturally found in a number of differ-

ent topological forms, including linear, supercoiled circular, relaxed circular, knotted circular

and branched (Robertson and Smith, 2007c). The method of observing dynamics of DNA by

fluoroscently staining the DNA molecule embedded in a background of unstained DNA was

first suggested by Chu (1991). The first such observation of reptation like dynamics of a DNA

molecule in an entangled DNA solution was carried out by Perkins et al. (1994) using fluo-

rescent microscopy to directly observe the motion of the stained DNA. This study established

DNA molecules as an excellent system for studying polymer dynamics. Since then fluorescent

microscopy of stained DNA molecules has been used extensively to probe the effect of topolog-

ical constraints on polymer dynamics of linear chain systems (Teixeira et al., 2007). Robertson

and Smith (2007b,c) were the first to investigate the effect of topology of a circular DNA on

its diffusion. In a series of experiments they measured the diffusion coefficients of linear and

relaxed circular DNA molecules by tracking the Brownian motion of single molecules with

fluorescence microscopy.

In studying the effect of length and concentration on diffusion coefficient Robertson and

Smith (2007b,c) considered four different systems (a) linear tracers surrounded by linear molecules

(L−L) (b) circular tracers surrounded by linear molecules (C−L) (c) linear tracers surrounded

by circular molecules (L−C) and (d) circular tracers surrounded by circular molecules (C−C).

In their measurements they found that for DNA molecules of 6 kbp and 11 kbp the diffusion

coefficient D of the tracers was largely insensitive to the topology. However for 25 kbp and

45 kbp circular DNA surrounded by linear molecules are slowed down considerably and dif-

fuse 100 times slower than the circular tracer surrounded by circular molecules (Robertson and

Smith, 2007c). Largest diffusion coefficients were reported for the system of circular tracers

surrounded by circular molecules and a decrease of diffusion coefficient was effected by ad-

dition of linear molecules. Linear tracers surrounded by linear molecules was found to have

an order of magnitude slower diffusion coefficient than circular tracers surrounded by circular

molecules.
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The observations can be neatly summarized by the relationship DC−C > DL−C >>

DL−L >> DC−L (Robertson and Smith, 2007b). Based on these observations Robertson and

Smith (2007c) proposed that the free ends of molecules play a critical role in generating en-

tanglements that retard diffusion and the strongly hindered diffusion of circular DNA molecule

is caused by threading of the ends of the molecules through the ring chain. The increase in

viscosity of ring chains with addition of linear chains reported by Roovers (1988) may be un-

derstood on the basis of the strong influence of such threading. Further, for the case of L − L,

L − C and C − C Robertson and Smith (2007b) reported a cross over of diffusion coefficient

from a scaling consistent with the Rouse model to a scaling consistent with the reptation model

D ∼ L−2C−1.75 at ∼ 6 times the molecular overlap concentration. It is interesting to note that

the concentration scaling of diffusion coefficient D for L− L and C − C are identical in spite

of the difference of order of magnitude in their values.

Based on the observation that DC−C > DL−C Robertson and Smith (2007c,b) supported

the Klein (1986) conjecture that constraint release would be negligible in circular melts. They

also found the concentration threshold to be insensitive to topology while viscoelasticity exper-

iments in the case of ring melts indicate that ring chains in a melt are less effectively entangled.

The way to reconcile this anomaly is to consider an intermediate regime of concentrations

where topological constraints are not active in compacting rings. The structure of the circular

molecule is collapsed when the concentrations goes beyond this regime wherein topological

constraints become active leading to compaction and consequently to a faster diffusion mecha-

nism with considerable contributions to relaxation through release of constraints. In chapter 6

we focus on the scaling arguments for diffusion coefficients of C − C systems to gain a better

understanding of these observations.

In an interesting follow up of their diffusion studies Robertson and Smith (2007a) mea-

sured the forces confining a single molecule embedded within a concentrated solution of long

relaxed circular DNA using optical tweezers. In order to determine the confining force a probe

in the concentrated solution was subjected to different values of transverse displacements at

different rates and the induced force on the probe was measured. The force versus displacement

curve thus obtained from these measurements was used to construct the potential per unit length

confining the transverse displacements and a characteristic confining distance was determined

from this potential. Robertson and Smith (2007a) observed that the confinement distance of

circular DNA ac is less than the confinement distance associated with the linear DNA al and is
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given by ac = 0.75al. They also observed a non-linear force for large displacement of the probe

in circular DNA as opposed to that of linear DNA which showed a linear response. This points

out to compaction of the circular DNA and a non-Gaussian structure of circular molecules in a

concentrated system.

The relaxation of the confinement effects was carefully probed in these experiments and it

was observed that confinement effects decayed rapidly in circular DNA as compared to linear

DNA (Robertson and Smith, 2007a). However, the time scale of persistence of the confine-

ment field was much larger than Rouse time scale of relaxation of the circular DNA. Based

on these observations they concluded that there exists a tube like confinement field similar to

that of linears in circular chains however the time scale associated with this confinement field

is much smaller than that associated with the linear chain. Interestingly they also pointed out

for displacements larger than the length scale of confinement the confining force of the circular

polymers was much smaller than that of the linear polymers. The PPR framework developed in

chapter 3 considers a tube like confining field for the ring chains which is in fact shown to be

short lived than that of the linear chain.
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Chapter 3

Pom-Pom Ring Model: Mean Field

Approach to Ring Dynamics

3.1 DOR Scaling Arguments: Reptation Interpretation

Scaling arguments for dynamics of ring polymers in an array of fixed obstacle (gel) have been

worked out for both ideal (Obukhov et al., 1994) and excluded volume (Cates and Deutsch,

1986) rings. These arguments are based on the kink-diffusion picture discussed in section 2.2.2

wherein a polymer in an array of obstacles diffuses due to motion of ‘length defects’ or kinks

along its contour. The consequent diffusional motion of a linear chain along its contour is

similar to that of a snake (reptile) and was termed as ’reptation’ by de Gennes (1971). In the

kink-diffusion mechanism for dynamics of a linear chain the number of kinks in the chain is

considered to be proportional to the contour length of the chain and diffusion of each kink has

a specific contribution towards the center of mass motion of the polymer chain.

In the case of ring chains we have seen that there are two different approaches for kink-

diffusion based scaling arguments (see section 2.2.2). The difference in the two approaches

can be seen to arise in terms of contribution of diffusion of each kink towards center of mass

motion of the chain. Cates and Deutsch (1986) propose a linear like kink-diffusion mechanism

in which the diffusion of all the kinks along the contour of the chain contribute to the center of

mass motion. Obukhov et al. (1994) argue that the kink-diffusion mechanism for ring chains

is different from that of linear chains as opposed to Cates and Deutsch (1986). They propose a

distinct mechanism of kink-diffusion for ring chains wherein all the kinks along the contour do

not contribute to the center of mass motion (see section 2.2.2).
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There arise differences in the scaling results for ring chains due to (a) variations in static

configuration and (b) due to the mechanism of kink-diffusion. For an ideal ring polymer in

an array of fixed obstacles the DOR scaling arguments yields diffusion coefficient, D ∼ N−2,

and longest relaxation time, τd ∼ N5/2 (Obukhov et al., 1994). A linear like diffusion of

kinks for an ideal ring polymer in an array of fixed obstacles yields D ∼ N−5/2 and τd ∼ N3

(Nechaev et al., 1987). For an excluded volume ring in an array of fixed obstacles both the

scaling arguments yield diffusion coefficient, D ∼ N−2, and longest relaxation time, τd ∼ N3

(Cates and Deutsch, 1986).

We do intuitively expect that the absence of free ends could cause local accumulation of

kinks and hence is likely to alter the kink-diffusion mechanism on a global level and consider

the DOR scaling arguments as a basis for the PPR framework. We have seen that the mech-

anism of kink-diffusion according to DOR scaling hinges on the Cayley-tree structure of the

ring polymer (see section 2.2.2). The relaxation of branches and leaves is fast and causes only

local rearrangements which do not contribute to the center of mass motion while the relaxation

of trunk by diffusion along its contour causes center of mass motion. A reptation interpretation

can be given to the DOR scaling arguments considering that this diffusion of the trunk along its

contour is similar to the reptation of a linear chain with the difference that the trunk has a mod-

ified friction associated with it due to the presence of loops along its contour. The dynamics of

the trunk, the most predominant length scale, effected through its diffusion governs the longest

relaxation times of the system (Figure 3.1).

3.2 Pom-Pom Ring Framework

We formulate the Pom-Pom Ring (PPR) framework based on reptation interpretation of the

DOR scaling model. Based on the formulation we predict the dynamics and viscoelastic re-

sponse of ring polymers in topologically constrained environment. Following the DOR scaling

the PPR formulation considers the ring chain in a fixed array of obstacles to assume a Cayley-

tree structure which can be broken down to substructures viz. trunk, branches and leaves with

the relaxation of different substructures happening at different time scales. However, the dy-

namics of different substructures are coupled in a specific way. In arriving at this coupling we

consider that for an ideal ring of N = NK/Ne blobs with each blob composed of Ne Kuhn

segments in an array of fixed obstacles there exists a characteristic length scale that constitutes
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Figure 3.1: Trunk, branch and leaf structures of a lattice tree

the primary trunk of the Cayley-tree structure. The primary trunk of the ring Cayley-tree can

be unambiguously determined (Obukhov et al., 1994) and is the most endurable hypothetical

structure among the substructures of the ring Cayley-tree. Further, the leaves and branches of

the Cayley-tree constitute loops that are attached to the primary trunk at loop points, similar to

branches attached to branch points in a branched polymer (Figure 3.2). Given the similarity of

the lattice-tree structure to the randomly branched polymer we may now invoke the pom-pom

model to describe the dynamics of the ring polymer.

According to the pom-pom model for branched polymers the branches, if entangled, relax

through an arm retraction mechanism, which is the only mechanism allowed by a constrict-

ing branch point, and the relaxation times are exponentially dependent on the arm molecular

weight (McLeish and Larson, 1998; Klein, 1986). Shorter branches, not so entangled, may

relax through Rouse modes (Karayiannis and Mavrantzas, 2005). The relaxation of entangled

backbone of the branched polymer is constrained by the presence of branch points and can

happen only after the relaxation of the branch arms. Thus, the branches add substantially to

the friction of the backbone and in the case of the pom-pom model the friction is essentially

located at the ends of the backbone (McLeish and Larson, 1998; Karayiannis and Mavrantzas,

2005). In the case of the ideal ring polymer we assume that the primary trunk of the self-similar
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Figure 3.2: Model chain for studying dynamics of the ring chain in an array of fixed obstacles

lattice-animal/Cayley-tree is entangled with the array of obstacles, while the loops take a much

more collapsed conformation and are hence not entangled and their dynamics is entirely Rouse

like. This assumption is valid if the loops are small and therefore not sufficiently entangled. At

any point of time for a trunk segment to move, it requires that the loop attached to the specific

trunk segment, relaxes completely and allows for the loop point to move. Thus, the dynamics

of the trunk may be affected in a way similar to that of the backbone of the branched polymer.

The loops act as frictional constraints for the motion of the trunk.

The primary trunk, viewed in light of the closed random walk on the Cayley tree, can be

identified with the steps leading to the ‘average’ coordinate i, of the closed random walk, which

is of order of N1/2 steps (see section 2.1). This means that if there is a random walk of N steps

with each step of length a then the predominant length scale, i.e., the primary trunk, has a length

of order N1/2a. We consider that there are Ne Kuhn segments associated with the length scale

a and with assumption of Gaussian statistics at this length scale we have Ne = a2/b2, where b

is the Kuhn length of the polymer. The assumption of Gaussian statistics at the length scale a

is valid for an ideal chain if the topological constraints are considered to be ineffective at the

length scale a. The length of the primary trunk is thus given by:

LP = N1/2a =

(
NK

Ne

)1/2

a = N
1/2
K b (3.1)

In this the trunk is a hypothetical mass less object defining the predominant length scale in the
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framework. The number of loops accommodated on the hypothetical primary trunk is expected

to be proportional to the number of steps in the primary trunk and is of order N1/2. Consider-

ing the mass of the ring chain to be entirely contained in the loops an average loop would be

composed of Nloop = N/N1/2 = N1/2 blobs.

On the basis of the physical picture described above we formulate the Pom-Pom Ring

(PPR) framework for studying dynamics of ring polymers. First, we formulate a modified

primitive chain for the ring polymer as follows:

1. The primitive chain is constituted by the primary trunk of the lattice tree composed of

N1/2 blobs with a constant contour length, LP , given by expression (3.1).

2. Each segment of the primitive chain has attached to it a loop. On an average each loop

contains N1/2 blobs. We assume that the loops are unentangled because of their collapsed

conformation

3. The primitive chain is entangled and can move along itself with a curvilinear diffusion

coefficient determined from dynamics of a modified Rouse chain.

4. The primitive chain has the conformation of a random walk, i.e., the tangents at different

points along the trunk are uncorrelated.

Second, using the pom-pom analogy (McLeish and Larson, 1998), the diffusion coefficient

of a loop point, Dloop, is given by Dloop ∼ a2/τloop, where τloop ∼ a2(N1/2)2ζblob is the longest

Rouse relaxation time of the loop attached to the loop point. Using the Einstein argument the

drag on a loop point is given by:

ζloop =
kBT

Dloop

u Nζblob (3.2)

where ζblob is the friction coefficient of a single blob in the loop. Thus, the modified Rouse

chain which constitutes the primitive chain has each of its segments having a friction coefficient

of order Nζblob.

The friction coefficient of a blob, ζblob, can be derived from the understanding that it con-

sists of Ne unentangled Kuhn segments (beads), which are undergoing the usual Rouse or Zimm

dynamics depending on the environment in the pore of the array of obstacles. Assuming Rouse

dynamics for the beads, the longest relaxation time, τ0, of the blob scales as ∼ b2N2
e ζ . The

blob of characteristic length a relaxes in time τ0. The diffusion coefficient of the blob is given
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by Dblob ∼ (a2/τ0) ∼ 1/Neζ . From the Einstein argument the blob friction coefficient can be

obtained using the scaling for blob relaxation time and is given by:

ζblob =
kBT

Dblob

u Neζ (3.3)

where, ζ is the friction coefficient of a single Kuhn segment.

In the above arguments we have reduced the structure of the ring polymer to its primary

hierarchical level consisting of a primary trunk of N1/2 blobs having N1/2 number of loops

attached to it, each consisting of, on an average, N1/2 blobs. In other words we have not

explicitly invoked the self-similar structure of the lattice tree. We show in Appendix (A.5)

that if the relaxation of the lattice tree ring chain is assumed to occur in a hierarchical manner

with the larger substructures relaxing only after the smaller substructures attached to them have

relaxed, then such an explicit accounting of the lattice tree structure, while invoking the Einstein

argument and the modified Rouse dynamics consistently at each hierarchical level, indeed gives

a friction coefficient of a primary trunk segment scaling as Nζblob. The current framework is

thus self-consistent. However, in the rest of the discussion we will concern ourselves only with

the description of the dynamics of the primary trunk.

3.3 Diffusion Coefficient and Relaxation Spectrum

3.3.1 Curvilinear Diffusion Coefficient

In the Cayley tree structure of the ring chain the trunk is an hypothetical structure determined

by the relative positions of the loops (see Figure 3.2). The PPR framework facilitates a view

of the dynamics of the ring chain through the dynamics of the primary trunk of the Cayley tree

confined in the tube of obstacles. In this view point the rearrangement of a loop can be thought

of as equivalent to the motion of the ring chains trunk along its contour. Such a motion of the

trunk along its contour has a curvilinear diffusion coefficient associated with it.

To determine the curvilinear diffusion coefficient of the primitive chain (trunk) we begin

with the dynamics of the modified Rouse chain constituting the primitive chain. We start with

the force balance, i.e., the Langevin equation, for the nth bead of the chain experiencing an

effective friction of ζeff = ζloop,

ζeff
∂Rn

∂t
= keff

∂2Rn

∂n2
+ fn (3.4)
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where, Rn is the position coordinate of the nth blob. The left hand side of equation (3.4) is

the friction force on the blob, the first term on the right hand side corresponds to the entropic

spring force on the blob and fn is the stochastic force on the blob. In the PPR formulation loops

are considered to contribute only to the friction of the primitive chain and the potential between

blobs is not affected by the presence of loops. The primitive chain being a Gaussian has an

effective spring constant given by keff = 3kBT/a2. However, the effective friction coefficient

is given by ζeff = ζloop as argued in the previous section.

From fluctuation-dissipation theorem we have the moments of the stochastic force (fn)

experienced by the modified Rouse bead given by:

〈fn(t)〉 = 0

〈(fnα(t)fnβ(t′))〉 = 2ζeffkBTδ(n−m)δαβδ(t− t′)
(3.5)

We decouple the set of equations (3.4), n = 1, 2, ..., N1/2, using the normal coordinate trans-

formation ( Appendix equations (A.1) to (A.4) with ν = 1/4). The decoupled equations (A.7)

and (A.8) are solved to determine the modified Rouse modes and the relaxation spectrum.

The diffusion coefficient of the modified Rouse chain is defined by:

DP = lim
t→∞

1

6t

〈
(RG(t)−RG(0))2

〉
(3.6)

where, RG is the position of the center of mass of the chain. The position of the center of mass

of the chain corresponds to the zeroth Rouse mode, X0:

RG =
1

N1/2

N1/2∫

0

dn Rn = X0 (3.7)

Thus, the diffusion coefficient is given by:.

DP = lim
t→∞

1

6t

∑
α

〈
(X0α(t)−X0α(0))2

〉
(3.8)

From the solution to the zeroth normal mode equation (A.10) we obtain (see Appendix A

equation (A.10)):
〈
(X0α(t)−X0α(0))2

〉
=

1

ζ2
0

∫ t

0

dt 〈f0α(t)f0α(t)〉 (3.9)

Using the fluctuation-dissipation theorem (3.5) and the normal coordinates (A.2) we obtain the

correlation of the center of mass stochastic force:

〈f0α(t)f0β(t′)〉 = 2ζ0kBTδαβδ(t− t′) (3.10)
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Using the stochastic force correlation (3.10) and ζ0 = N1/2ζeff = N1/2ζblob in equation (3.9)

we obtain the mean square displacement of the center of mass (expression for friction ζ0 is

obtained from Appendix A section A.2 using ν = 1/4):

〈
(X0α(t)−X0α(0))2

〉
= 2

kBT

N1/2ζeff

δααt (3.11)

Substituting equation (3.11) in equation (3.8) we obtain

DP =
kBT

N1/2 ζeff

(3.12)

Using ζeff = ζloop = Nζblob we have:

DP =
kBT

N3/2ζblob

=
a

b

kBT

N
3/2
K ζ

(3.13)

where we have used expression (3.3) for ζblob. The diffusion coefficient, DP , obtained from

the modified Rouse dynamics of the trunk, can be considered to correspond to the diffusional

rearrangement of all the loops along the contour of the trunk. The DOR scaling arguments

(Obukhov et al., 1994) have N1/2 kinks diffusing over a linear dimension, a, to give the center

of mass curvilinear diffusion coefficient scaling as N1/2(a/N)2 ∼ N−3/2, a scaling satisfied by

equation (3.13).

3.3.2 Relaxation Spectrum and Self-Diffusion Coefficient

The higher order modified Rouse modes correspond to the rearrangements of parts of the prim-

itive chain. This can be considered to be associated with the loop rearrangements along parts of

the contour of the trunk. The higher order modified Rouse modes can be determined from the

decoupled normal mode equations (see Appendix A equation (A.15)), p = 1, 2, .... The mod-

ified Rouse relaxation spectrum for the primitive chain is given by (see Appendix A equation

(A.18)):

τp =
1

p2

1

3π2

a4

b2

ζ

kBT
N2 =

1

p2

1

3

b2

π2

ζ

kBT
N2

K (3.14)

The relaxation spectrum (3.14) is same as the Rouse relaxation spectrum for a linear chain (Doi

and Edwards, 1986).

We now consider the case where the primitive chain of length LP = N1/2a = N
1/2
K b is

confined in a tube formed by the array of obstacles and relaxes by reptation dynamics similar to

that of a linear chain. The reptation dynamics of a chain is tracked through the time evolution
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of the time correlation function:

φ(s, s′; t) =
〈
(R(s, t)−R(s′, 0))2

〉
(3.15)

where, R(s, t) is the position vector of a bead at a curvilinear distance s along the primitive

chain at time t. Analogous to the Doi and Edwards (1986) formulation, for linear polymers, the

curvilinear diffusion coefficient of the PPR primitive chain is given by the diffusion coefficient

of the modified Rouse chain DP . The evolution of the correlation function (3.15) is governed

by the one dimensional diffusion equation given by (Doi and Edwards, 1986):

∂

∂t
φ(s, s′; t) = DP

∂2

∂s2
φ(s, s′; t) (3.16)

The associated initial and boundary conditions for this equation are given by (Doi and

Edwards, 1986):

φ(s, s′; 0) = a|s− s′| (3.17)
∂

∂s
φ(s, s′; t)|s=Lp = a (3.18)

∂

∂s
φ(s, s′; t)|s=0 = −a (3.19)

The initial condition is based on the consideration that the primitive chain is Gaussian at time

t = 0 and the mean square distance between two points on the Gaussian chain is proportional

to |s − s′|. The boundary conditions are flux conditions at the primitive chain ends and have

been discussed by Doi and Edwards (1986).

We use the curvilinear diffusion coefficient of the PPR primitive chain given by equation

(3.13) to determine the self-diffusion coefficient and longest relaxation time of the ring polymer

in a fixed array of obstacles as (Appendix A section A.3 with ν = 1/4):

D =
1

3

b2

a2

kBT

N2ζ
=

1

3

a2

b2

kBT

N2
Kζ

(3.20)

τd =
1

π2

a4

b2

ζ

kBT
N5/2 =

1

π2

b3

a

ζ

kBT
N

5/2
K (3.21)

The self-diffusion coefficient corresponds to the diffusion of center of mass of the ring chain

over a length scale of the size of the ring chain, R, which causes the primitive chain to com-

pletely relax its orientation. The longest relaxation time corresponds to the time taken for this

diffusion. According to the DOR scaling arguments (Obukhov et al., 1994) the longest relax-

ation time of the trunk of the lattice tree structure scales as τ ∼ N5/2, a scaling satisfied by
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equation (3.21). The ring diffuses and moves a distance of order of its size, R, in this time. The

self diffusion coefficient of the ring given by R2/τ ∼ N−2 has a scaling satisfied by equation

(3.20).

3.4 Dynamic Structure Factor

A direct measure of the dynamics of entangled chains is assessable via the technique of neu-

tron spin echo (NSE) (McLeish, 2002b). NSE is a neutron scattering technique that exploits

the neutrons intrinsic angular momentum, or spin, to access extremely high-resolution inelastic

scattering. In this experiment polarized neutrons are guided through identical magnetic fields

before and after scattering. Due to inelastic scattering the neutrons stay either longer or shorter

in the second magnetic field altering the polarization of the scattered neutrons. Thus the energy

transfer in the scattering is coded into the spin of the scattered neutrons and the energy and the

momentum of the individual neutrons may be independently recorded. Fourier transformation

of the energy transfer gives the time-dependent correlation. The final intensity depends on the

motion of the scattering centers. Both coherent and incoherent signals may be independently

accessed (McLeish, 2002b). The coherent signals provide information on single-segment dif-

fusion and the incoherent signals provide information on segment-segment correlations. The

dynamic structure factor based on coherent signals is given by (McLeish, 2002b; Doi and Ed-

wards, 1978a):

g(k, t) =
1

L2
P

LP∫

0

ds

LP∫

0

ds′ 〈exp [ik. (R(s, t)−R(s′, 0))]〉 (3.22)

The dynamic structure factor, g(k, t), extracted from the time correlation measurements, can be

determined from the reptation picture. In this case the evolution of structure factor corresponds

to evolution of the hypothetical trunk of the ring polymer. Based on the reptation formulation

we obtain g(k, t) as (Doi and Edwards, 1978a):

g(k, t) =
∑

p

2µ

α2
p(µ

2 + α2
p + µ)

sin2 αp exp

(
−4

DP tα2
p

L2
P

)
(3.23)

where,

µ =
k2

12
LP a (3.24)

αp are the positive solutions of the equation:

αp tan αp = µ (3.25)
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There are two limits at which the dynamic structure factor can be obtained:

• For µ << 1, i.e., k2LP a << 1 we focus at large wavelength limit and a length scale

larger than the size of the polymer chain and g(k, t) is given by:

g(k, t) = exp(−Dk2t) (3.26)

• For µ >> 1 , i.e., k2LP a >> 1 we focus at a smaller length scale than the size of the

polymer chain and g(k, t) is given by:

g(k, t) =
12

k2aLP

ψ(t) (3.27)

where, ψ(t) is the fraction of chain in the original tube at time t (see Appendix equation (A.31)).

In this formulation since we are concerned with only the motion of the longest length scale, i.e,

the entangled primary trunk, equation (3.27) above is applicable for magnitude of wave vectors

in the range N−1/2 < k2 < N−1/4.

3.5 Constitutive Relation

In frequency sweep experiments the stress response of the system is explored as a function

of frequency at a given constant strain amplitude. The low frequency regime, also known as

the terminal regime, corresponds to the long time response of the system. The high frequency

regime corresponds to the short time response of the system. The response of the system at

different time scales is expected to be connected to the response of the constituent polymer

chains in the system at these time scales. From a reductionist point of view a constitutive relation

connecting the stress and deformation in the system can be obtained based on understanding of

the dynamics of the constituent polymer chain at long and short times. The dynamics of the

polymer chain in turn is understood in terms of the dynamics of the coarse-grained primitive

chain.

When a polymer chain is subjected to a stress the short time response of the chain is

dictated by the dynamics of small sections of the primitive chain. Below the obstacle linear

dimension, a, the primitive chain does not experience the effect of constraints and motion of

the sections of the chain below this length scale is described by the modified Rouse dynamics

discussed in section (3.3.1). The time scale of relaxation associated with the length scale, a, is
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the same as the time taken for the coarse-grained Rouse blob to have an average mean square

displacement of a2. Based on the modified Rouse formulation the time taken for this mean

square displacement of the blob along the trunk is given by (use ν = 1/4 in Appendix equation

(A.42)):

τe =
π

12

a4

b2

ζ

kBT
N =

π

12
a2 ζ

kBT
NK (3.28)

For times t > τe the primitive chain starts encountering obstacles and hence dynamics is no

longer governed by modified Rouse dynamics beyond this time scale. For length scales longer

than linear dimension of the obstacle, a, the response of the polymer chain to an applied stress

is dictated by the cooperative motion of the primitive chain through reptation (see sections 3.3.2

and A.3).

The stress in the system at any point of time is proportional to the orientation memory of

the chain and the density of oriented chains. The orientation memory for the primitive chain

is expressed in terms of the tangent vector correlations along the primitive chain. The density

of the primitive chains in the system is given by cPb/N
1/2, where, cPb = cP /Ne is the con-

centration of blobs along the trunk of the Cayley tree ring and cP is the concentration of Kuhn

segments along the trunk. The product of the density of the oriented primitive chains in the sys-

tem and the orientation memory yields the microscopic expression for the stress tensor given

by:

σαβ =
cPb

N1/2
keff

N1/2∫

0

dn

〈
∂Rnα

∂n

∂Rnβ

∂n

〉
(3.29)

The stress response of the system has to be obtained in two steps because of the distinct

dynamics scenario at different length scales. For time scales t < τe the stress response is

obtained from modified Rouse dynamics and for t > τe the reptation picture is invoked. For the

case t < τe, we may use normal coordinates to simplify equation (3.29) and obtain:

σαβ =
cPb

N1/2

∑
p

kp 〈XpαXpβ〉 (3.30)

We now impose a homogeneous deformation gradient ῡ(r, t) = ¯̄κ(t).r. Under such a deforma-

tion the Langevin equation for the pth normal coordinate, Xp, becomes:

∂Xp

∂t
= −kp

ζp

Xp +
1

ζp

fp + ¯̄κ(t).Xp (3.31)

From the Langevin equation (3.31) we obtain the equation for the correlation 〈XpαXpβ〉 as:

∂

∂t
〈XpαXpβ〉 = −2

kp

ζp

〈XpαXpβ〉+ 4
kBT

ζp

δαβ + καµ 〈XpµXpβ〉+ κβµ 〈XpαXpµ〉 (3.32)
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Equation (3.32) can be solved to obtain 〈XpαXpβ〉 for any given homogeneous deformation

gradient. For homogeneous shear where ¯̄κ(t) is given by:



0 κ(t) 0

0 0 0

0 0 0




we have the equation for the xy component of the correlation given by:

∂

∂t
〈XpxXpy〉 = −2

kp

ζp

〈XpxXpy〉+ κ(t)
〈
X2

py

〉
(3.33)

Considering that under the imposed deformation the chain conformation remains close to

its equilibrium conformation, we have
〈
X2

py

〉
= kBT/kp, using which the solution to equation

(3.33) is obtained as:

〈XpxXpy〉 =
kBT

kp

t∫

−∞

dt1 exp

(
−2

(t− t1)

τp

)
κ(t1) (3.34)

Substituting equation (3.34) in equation (3.30) we obtain:

σxy =
cPb

N1/2
kBT

∑
p

t∫

−∞

dt1 exp

(
−2

(t− t1)

τp

)
κ(t1) (3.35)

The phenomenological expression for stress tensor in terms of the relaxation modulus is given

by:

σxy(t) =

t∫

−∞

dt1G(t− t1)κ(t1) (3.36)

Comparing equation (3.35) with equation (3.36) we obtain:

G(t) =
cPb

N1/2
kBT

∑
p

exp

(
−2

t

τp

)
(3.37)

For the case t > τe the reptation picture is invoked wherein the stress memory in the

system at any time corresponds to the fraction of the chain in the original tube at that time (see

Appendix section (A.3)). From the reptation formulation the fraction of chain in a given tube,

ψ(t), and the associated relaxation modulus, G(t), are given by (Doi and Edwards, 1986):

ψ(t) =
8

π2

∑

p(odd)

1

p2
exp

(
−p2 t

τd

)
(3.38)

G(t) = G0ψ(t) (3.39)
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At time t = τe the modified Rouse dynamics expression (3.37) gives the relaxation mod-

ulus G(τe):

G(τe) =
cPb

N1/2
kBT

∑
p

exp

(
−2

τe

τp

)
(3.40)

Moving from a discrete to continuous representation in terms of p we have:

G(τe) =
cPb

N1/2
kBT

∞∫

0

dp exp

(
−2

τe

τp

)
(3.41)

Evaluation of the integral in expression (3.40) using expression (3.14) for the relaxation spec-

trum yields:

G(τe) =
cPb√
2π

kBT =
cP

Ne

√
2π

kBT (3.42)

From reptation dynamics expression (3.39) the relaxation modulus at time t = τe is given by

G(τe) = G0ψ(τe). For large N we can see from equations (3.21) and (3.28), that the time scale

τe << τd, which makes it reasonable to assume that ψ(τe) = 1. By comparison of G(τe) from

modified Rouse dynamics and reptation we determine the value of the constant G0 as given in

equation (3.43). Then the expression for relaxation modulus for time t = τe is given by equation

(3.44):

G0 =
cP√
2π

kBT
b2

a2
(3.43)

G(t) =
4
√

2

π3
cP kBT

b2

a2

∑

p(odd)

1

p2
exp

(
−p2 t

τd

)
(3.44)

where, we have used Ne = a2/b2.

In the case of linear polymers a similar derivation of constitutive relation has been done

based on the Rouse and reptation dynamics by Doi and Edwards (1986). The final expression

for constant G0 and the relaxation modulus G(t) are given by:

G0 = ckBT
b2

a2
(3.45)

G(t) =
8

π2
ckBT

b2

a2

∑

p(odd)

1

p2
exp

(
−p2 t

τd

)
(3.46)

In the linear chain expressions (3.45) and (3.46) the prefactor 1/
√

2π which naturally arises

in the derivation of G0 is uniformly dropped. If the prefactor 1/
√

2π is similarly dropped in

expressions (3.43) and (3.44) for ring chain we obtain:

G0 = cP kBT
b2

a2
(3.47)

G(t) =
8

π2
cP kBT

b2

a2

∑

p(odd)

1

p2
exp

(
−p2 t

τd

)
(3.48)
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In our calculations we drop the prefactor 1/
√

2π for ring chains in order to be consistent with

the Doi and Edwards (1986) formulation for linear chains.

3.6 Melt of Ring Polymers

The analysis for the fixed array of obstacles worked out in the previous sections can be extended

to the scenario of melt of ring polymers. The extension of the analysis is achieved on the basis

of the assumption that the structure of a ring chain in its melt can be described as consisting of a

longest characteristic length scale (the primitive chain) having fast relaxing friction-contributing

loops attached to it. Based on scaling arguments and computer simulations (Cates and Deutsch,

1986; Müller et al., 1996, 2000) the size of the ring chain in melt, R, is determined to be of order

∼ N ν , where ν can lie between the extremes of 1/4 and 1/2 (see section 2.1.2). The primitive

chain and the modified Rouse chain of the PPR framework can be appropriately modified with

the change in static structure. In the case of rings in a melt environment since R ∼ Nνa, where

ν can lie between 1/4 and 1/2, the characteristic length scale, i.e, the length of the primitive

path is expected to be of order N2νa. Considering that there are Ne Kuhn segments associated

with the length scale a and the chain obeys Gaussian statistics at this length scale we have

Ne = a2/b2. The length of the primary trunk is given by:

LP = N2νa =

(
NK

Ne

)2ν

a = N2ν
K

b4ν

a4ν−1
(3.49)

The number of loops along the primary trunk is of order N2ν as it is expected to be propor-

tional to the length of the primary trunk. Considering the mass of the ring chain to be entirely

contained in the loops an average loop would be composed of ∼ N/N2ν = N1−2ν blobs.

We formulate a modified primitive chain for the ring polymer in a melt as follows:

1. The primitive chain is constituted by the primary trunk of the lattice tree composed of

N2ν blobs with a constant contour length, LP , given by expression (3.49).

2. Each segment of the primitive chain has attached to it a loop. On an average each loop

contains N1−2ν blobs. We assume that the loops are unentangled because of their col-

lapsed conformation.

3. The primitive chain is entangled and can move along itself with a curvilinear diffusion

coefficient determined from dynamics of a modified Rouse chain.
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4. The primitive chain has the conformation of a random walk i.e. the tangents at different

points along the trunk are uncorrelated.

It can be shown that the modified primitive chain has a curvilinear diffusion coefficient

given by (see Appendix A.2):

DP =
kBT

N2−2νζblob

=
(a

b

)2(1−2ν) kBT

N2−2ν
K ζ

(3.50)

while the relaxation spectrum of the modified Rouse chain remains the same as given by ex-

pression (3.14). We use the curvilinear diffusion coefficient of the PPR primitive chain given

by equation (3.50) to determine the longest relaxation time of the ring polymer in a melt as (see

Appendix A.3):

τd =
1

π2

a4

b2

ζ

kBT
N2ν+2 =

1

π2

b4ν+1

a4ν

ζ

kBT
N2ν+2

K (3.51)

The self-diffusion coefficient of the primitive chain remains the same as given by expres-

sion (3.20).

Note: In case of the excluded volume ring in an array of fixed obstacles since R ∼ N1/2 (Cates

and Deutsch, 1986) the trunk is expected to be composed of N blobs. The excluded volume

ring formulation can be thought of as a trunk composed of N loops each containing one blob.

Equation (A.11) of Appendix A.2 shows that for this case indeed ζloop = ζblob. The structure of

the excluded volume ring is expected to be similar to that of the non-obstacle-enclosing non-

ramified structure of a ring hypothesized by Klein (1986) (Figure 2.4). For this structure we

would expect dynamic scalings similar to that of linear chains because the structure is like that

of a double folded ring and the dynamics is expected to be like that of reptation of a double

folded linear chain (Klein, 1986). Monte Carlo simulations by Cates and Deutsch (1986) con-

firms that dynamic scalings for excluded volume rings in a fixed array of obstacles is similar to

that of linear chains.

In melt the linear dimension a of the obstacle corresponds to the entanglement length

scale and is determined from the entanglement molecular weight; an experimentally obtained

parameter in the tube model. The entanglement molecular weight is obtained from the plateau

modulus, G0, data and for linear polymers can be calculated using the expression of form (Fet-

ters et al., 2006):

Me =
ρmNAkBT

G0
(3.52)

From entanglement molecular weight the average number of Kuhn segments present between

entanglements, Ne, can be calculated. The primitive chain formulation intrinsically assumes
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and requires a Gaussian structure between entanglements according to which a2 = Neb
2. As

long as Ne remains the same for ring polymers and linear polymers the entanglement spacing a

for them remains the same.

If we consider, cPb, the concentration of number of blobs lying along the trunk of the ring

chain then the number of trunks per unit volume in the melt is cP /(N2ν) since the trunk contains

N2ν blobs. The number of rings per unit volume is given by the concentration of number of

blobs per unit volume divided by the number of blobs per ring, cb/N . Considering that the

number of trunks should be the same as number of rings we equate the number of trunks and

number of ring chains:
cPb

N2ν
=

cb

N
=

c

NeN

cP

Ne

=
cb

N1−2ν
=

c

N1−2ν
K

(
b

a

)4ν (3.53)

where, c is the concentration of Kuhn segments in the chain. Substituting for cP in equation

(3.48) we obtain:

G(t) =
8

π2

c

N1−2ν
kBT

b2

a2

∑

p(odd)

1

p2
exp

(
−p2 t

τd

)

=
8

π2

c

N1−2ν
K

kBT
b4ν

a4ν

∑

p(odd)

1

p2
exp

(
−p2 t

τd

) (3.54)

It is clear from the above expression that the density is diluted by a factor of order 1/N1−2ν

when we consider only density of blobs along the trunk of the ring chain. Thus we expect the

viscoelastic response of the ring melt to be smaller than the response of linear melt by a factor

of order 1/N1−2ν .

The zero shear viscosity (ZSV) is proportional to the product of the relaxation time and

the value of modulus at the relaxation time (Rubinstein and Colby, 2003). Based on the Doi

and Edwards (1986) formulation the ZSV is then given by:

η0 ≈ G0τd (3.55)

(ZSV) measurements on polybutadiene rings of MW 6.0 × 104g/mol indicate that the ZSV of

ring melt is approximately 10 times lower than that of the corresponding linear melt (Roovers,

1988). This lowering of viscosity can be shown to be caused by density dilution associated with

the relaxation response of the ring chain. The ratio of ZSV of a ring melt to that of linear melt

is given by:
η0r

η0l

=
G0

r

G0
l

τdr

τdl

(3.56)
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where subscripts r and l denote the values associated with the ring chain and the linear chain

respectively.

The ratio G0
r/G

0
l can be obtained using expressions (3.47), (3.45) and (3.53) as:

G0
r

G0
l

=
1

N1−2ν
K

b4ν−2 a2
l

a4ν
r

(3.57)

The relaxation time for linear chains is given by (Doi and Edwards, 1986):

τdl =
1

π2

b4

a2
l

ζ

kBT
N3

K (3.58)

The ratio τdr/τdl is obtained using expressions (3.51) and (3.58) as:

τdr

τdl

=
1

N1−2ν
K

b4ν−2 a2
l

a4ν
r

(3.59)

Thus for large NK , given ν < 1/2, we have τdr < τdl. Using expressions (3.57) and (3.59) in

equation (3.56) the ZSV ratio between melt of ring and melt of linear is given by:

η0r

η0l

=
1

N
2(1−2ν)
K

b8ν−4 a4
l

a8ν
r

(3.60)

We have already seen that beyond the time τe the primitive chain starts encountering ob-

stacles and the entanglement dynamics of the chain has to start beyond this time scale. In the

absence of obstacles the chain would relax through Rouse dynamics and the longest relaxation

time of the chain would be given by τ1. The ratio τ1/τe can be considered as a measure of the

strength of confinement of the chain. Using the expressions (A.19) and (A.42) in the Appendix

we obtain the ratio as:
τ1

τe

=
4

π3

b8ν

a8ν
N4ν

K (3.61)

According to the expression (3.61) the ratio τ1/τe for ν < 1/2 scales weakly as N4ν
K in compar-

ison to the scaling of N2
K for linear chains. This implies a weaker strength of confinement in

a ring chain melt as compared to that of linear chain melt. Simulations of Müller et al. (1996)

indicates an entanglement crossover in a dense system of ring chains at higher values of NK as

compared to a dense system of linear chains; a signature of weaker strength of confinement in

a ring chain melt.

3.7 Contour Length Fluctuations

The first assumption in the PPR formulation is that the primitive chain has a constant contour

length. In reality, the contour length of the primitive chain fluctuates with time, and the fluc-

tuation sometimes plays an important role in various dynamical processes (Doi and Edwards,
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1986). Contour length fluctuation (CLF) reduces the disengagement time (longest relaxation

time) for the primitive chain from its tube of confinement and hence reduces the viscosity.

Thus, we expect the theory based on the PPR formulation to over-predict relaxation time and

viscosity. In the PPR formulation the longest relaxation time scaling, without CLF, is given by

τd ∼ L̄2
P /DP . The average contour length is L̄P = N2ν

K b4ν/a4ν−1 and the curvilinear diffusion

coefficient is DP ∼ N2ν−2
K . This yields τd ∼ N2ν+2

K b4ν+2/a4ν for the ring without CLF. Given

that the trunk is a Gaussian chain made up of N2νNe = N2ν
K N1−2ν

e Kuhn segments it can be

shown that the average of fluctuation of the length of its contour is given by (Doi and Edwards,

1986):

∆L̄P =
1√
3
N2ν

K

b2ν

a2ν−1
(3.62)

The relaxation time is reduced by CLF corrections and is given by (Doi and Edwards, 1986):

τCLF
d '(L̄P −∆L̄P )2

DP

τCLF
d '

(
N2ν+2

K b4ν+2

a4ν
− 2√

3

N ν+2
K b2ν+2

a2ν
+

N2
Kb2

3

)
ζ

kBT

(3.63)

In equation (3.63) the first term corresponds to the scaling without CLF corrections the

second and third terms correspond to corrections effected by CLF. It can be seen that CLF

induced corrections are significant for finite NK and with the increase in the value of NK the

corrections become less significant. Further, CLF introduced corrections are expected to be

considerable in the case of more collapsed ring when the trunk has longer loops associated with

it. For example, consider the comparison between the case of ν = 2/5 and ν = 1/4 we have:

τCLF
d '

(
N

14/5
K b4

a2
− 2√

3

N
12/5
K b3

a
+

N2
Kb2

3

)
ζ

kBT

(
ν =

2

5

)

τCLF
d '

(
N

5/2
K b18/5

a8/5
− 2√

3

N
9/4
K b14/5

a4/5
+

N2
Kb2

3

)
ζ

kBT

(
ν =

1

4

) (3.64)

As the ring becomes more collapsed it can be seen that the exponent of NK in the second term

(correction term) approaches the exponent in the first term.

3.8 Results and Discussion

The PPR framework based expressions for the curvilinear diffusion coefficient, self-diffusion

coefficient and longest relaxation time for an ideal ring in an array of fixed obstacles, are in

good agreement with the DOR scaling (Obukhov et al., 1994) (see Table 3.1). The framework
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Quantity Scaling (Obukhov et al., 1994) PPR

Curvilinear diffusion coefficient. ∼ N−3/2 DP = kBT
ζ

N
−3/2
k

Self-diffusion coefficient. ∼ N−2 D = 1
3

kBT
ζ

a2

b2 N−2
K

Longest relaxation time ∼ N5/2 τd = 1
π2

b3

a
ζ

kBT
N

5/2
K

Table 3.1: Comparison between the DOR scaling and the expressions derived using the PPR
framework.

is general in the sense that as long as the static structure of the ring can be described in terms

of a longest characteristic length scale, viz., the primary trunk, and collapsed loops attached to

it, appropriate modifications can be incorporated into the framework in terms of the size of the

trunk and the loops. The longer the trunk the larger would be the number of loops associated

with it but the smaller would be the size of the loops.

The scaling relations of the dynamic quantities appropriately change with the change in

static structure (Table 3.2). In general our interest in this chapter was restricted to studying the

dynamics of the longest length scale of the ring structure. The primary trunk was modeled as

a modified Rouse chain for which the fast relaxing loops associated with it contribute only to

the friction of the trunk. The Rouse chain bead friction was modified to incorporate the extra

friction contributed by the loops based on the pom-pom picture using Rouse dynamics for the

relaxation of loops instead of arm retraction.

For an unentangled ring in its melt, the scaling exponent of the radius of gyration with

molecular weight from th Cates and Deutsch (1986) conjecture is expected to be ν = 0.4. In this

case the diffusion coefficient derived from the modified Rouse dynamics scales as D ∼ N−1.2

(see Table 3.2) and the Rouse relaxation time scales as ∼ N2. This appears to be in agreement

with recent simulation studies on unentangled rings in melt (Müller et al., 2000; Hur et al.,

2006). Note that for a swollen ring chain for which R ∼ N1/2, we recover the linear-like

scaling for the various parameters in Table 3.2.

We find that the theoretical predictions of plateau modulus, relaxation times and ZSV by

the PPR framework vary sharply with exponent ν (Table 3.3). Since there is some uncertainty
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Quantity Scaling from PPR

Number of trunk segments N2ν
K

Number of loop segments N1−2ν
K

Rouse bead friction/τe N
2(1−2ν)
K

Curvilinear diffusion coefficient N2ν−2
K

Self diffusion coefficient N−2
K

Longest relaxation time N2ν+2
K

Plateau modulus N2ν−1
K

Viscosity N4ν−2
K

Table 3.2: Scaling relationships for a ring with its Rg ∼ N ν

regarding the exact value of ν for a melt of rings, we have attempted to compare the PPR

predictions of linear viscoelastic variables with experimental data for various values of ν. In

particular, we have chosen the rheological data of Roovers (1988) on polybutadiene (PBD)

polymers. We specifically utilized the data of two samples: a linear PBD (sample KPBD34PC,

MW = 5.7 × 104g/mol, η0 = 6.7 × 105P ) and a ring PBD (sample KPBD34B3, MW =

6.0× 104g/mol, η0 = 6.3× 104P ). This particular ring sample was free of linear contaminant

that could potentially have substantially altered the rheology of ring melts (Roovers, 1988).

The linear and the ring PBDs have similar molecular weight and polydispersity, however, the

ZSV and the plateau modulus of the ring sample were lower than those for the linear sample

(Roovers, 1988).

In order to compare PPR theory predictions with experimental data we need parameters

concerning chain dimensions and entanglement spacing for PBD. The molecular parameters

a ≈ 44.5Å, b ≈ 11.3Å, M0 = 175.9 were obtained from Fetters et al. (1996) for the PBD-62

sample (see also Table II of Fetters et al. (2006)). This linear PBD contains 62% 1, 2 microstruc-

ture which is similar to the 63% 1, 2 microstructure in Roovers PBD sample. We obtained the

concentration (c) of Kuhn segments per unit volume in the melt by using (c = ρmNA/M0) where

ρm is the melt density tabulated for PBD-62 (Fetters et al., 2006) and NA is the Avogadro num-

ber. The ring is expected to have a collapsed structure as compared to the linear chain in a

melt of rings (Müller et al., 2000, 1996; Cates and Deutsch, 1986), which implies ν ≤ 1/2.
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Quantity Experiments PPR PPR

ar = al ar = 0.7al

(ν = 0.25) (ν = 0.25)

Ratio of plateau modulus
(

G0
Nr

G0
Nl

)
0.15 0.21 0.3

Ratio of relaxation times
(

τdr
τdl

)
0.63 0.21 0.3

Ratio of ZSV
(

η0r
η0l

)
0.094 0.044 0.09

(ν = 0.33) (ν = 0.33)

Ratio of plateau modulus
(

G0
Nr

G0
Nl

)
0.15 0.33 0.53

Ratio of relaxation times
(

τdr
τdl

)
0.63 0.33 0.53

Ratio of ZSV
(

η0r
η0l

)
0.094 0.11 0.53

(ν = 0.4) (ν = 0.4)

Ratio of plateau modulus
(

G0
Nr

G0
Nl

)
0.15 0.54 0.95

Ratio of relaxation times
(

τdr
τdl

)
0.63 0.54 0.95

Ratio of ZSV
(

η0r
η0l

)
0.094 0.29 0.9

Table 3.3: Comparison between PPR formulation based ratios for different ν and scenarios (a)
ar = al (b) ar = 0.7al with ratios from Roovers (1988) PBD experiments.
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Figure 3.3: Fit of DE theory to linear PBD sample KPBD34PC (Roovers, 1988)

Also, experiments on plasmid DNA indicate that the tube size associated with the ring chain is

smaller than that of linear chain (Robertson and Smith, 2007a). This leads us to consider two

distinct scenarios for prediction of viscoelastic response of rings – (a) the entanglement spacing

ar < al and (b) the entanglement spacing same as that of linear polymers ar = al. In addition to

parameters concerning chain dimension and entanglement spacing we need friction coefficient,

ζ , of the Rouse bead. This was obtained by fitting the predictions of Doi and Edwards (1986)

theory to experimental data of Roovers (1988) linear sample KPBD34PC for the viscosity (see

Fig. 3.3). The bead friction coefficient ζ = 1.4 × 10−9Nsm−1 obtained from the fit was used

in PPR framework based calculations for ring PBD. It is seen that the crossover predictions for

linear chains is approximately twice that of experiment with this friction coefficient. Thus, the

longest relaxation time (taken as the inverse of the crossover frequency in the experimental data)

is under-predicted an indication that the friction value obtained may be lower than the actual

value.

We find that the predictions of the ZSV ratios are in close agreement with the experi-

mental data for ν = 0.25 for modified entanglement spacing scenario and ν = 0.33 without

modification of entanglement spacing. The experimental ring-linear ratios of the plateau mod-
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Figure 3.4: Comparison of PPR formulation based viscoelastic response predictions (ν = 0.25
and a = 31.15Å) to ring PBD sample KPBD34B3 (Roovers, 1988)

ulus are overpredicted by the PPR model predictions. It is seen that the crossover predictions

for ring chains is approximately thrice that of experiment with the friction coefficient obtained

from Doi and Edwards (1986) theory. The longest relaxation time (taken as the inverse of the

crossover frequency in the experimental data) is under-predicted similar to the case of linear

chain predictions using the Doi and Edwards (1986) model. Figure 3.4 and Figure 3.5 show

the comparison between the experimental frequency data and the PPR predictions for the two

scenarios, modified entanglement spacing (ν = 0.25) and without modification of entanglement

spacing (ν = 0.33), respectively. The predictions of the PPR model in the terminal regime are

encouragingly close to the experimental data for both cases.The PPR model predictions are seen

to increase with decrease in a as shown in Figure 3.6 for ν = 0.33 and a = 31.15Å. The PPR

model predictions are seen to increase with increase in ν as shown in Figure 3.7 for ν = 0.4

and a = 44.5Å. The PPR model predictions are expected to approach linear chain predictions

for ν = 1/2 and a = 44.5Å.

We have compared our predictions with only one experimental rheological data set of

Roovers (1988) that is believed to be obtained for a melt of pure rings having no linear con-
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Figure 3.5: Comparison of PPR formulation based viscoelastic response predictions (ν = 0.33
and a = 44.5Å) to ring PBD sample KPBD34B3 (Roovers, 1988)
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Figure 3.6: Comparison of PPR formulation based viscoelastic response predictions (ν = 0.33
and a = 31.15Å) to ring PBD sample KPBD34B3 (Roovers, 1988)
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Figure 3.7: Comparison of PPR formulation based viscoelastic response predictions (ν = 0.4
and a = 44.5Å) to ring PBD sample KPBD34B3 (Roovers, 1988)

taminants that could otherwise dramatically affect the rheological behavior. The comparison

indicates that depending on the scenario adopted, with respect to the modification of entangle-

ment spacing, the PPR framework gives reasonable predictions of the ZSV ratio and frequency

sweep experimental data but for different values of the static scaling exponent ν. The use of

Cates and Deutsch (1986) conjecture, supported by the results of early simulations by Müller

et al. (1996), exponent ν = 2/5 over-predicts the viscoelastic response. In a more recent work

of Müller et al. (2000) it is argued that use of a general exponent ν lying between 1/4 and 1/2

is more appropriate. Such a general exponent ν will be compatible with both the scenarios.

In the PPR framework the chain is considered to remain a Gaussian at the length scale

of entanglement. This requires that the number of Kuhn segments between entanglements Ne

for rings decreases with decrease in entanglement spacing ar. Experiments on DNA indicate

that the ar for ring macromolecule are smaller than that of the linear (Robertson and Smith,

2007a). This implies Ne is smaller for the ring chain and hence there are more entanglements

for a ring chain than a linear chain with the same degree of polymerization. There is an apparent

contradiction that although the ring chain takes a collapsed structure it has more entanglements
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than that of a linear chain. For the ring chain in the melt this anomaly can be understood in light

of the Müller et al. (2000) simulations on the influence of length of rings on its structure which

indicate that long rings are in fact both compact and at the same time have more neighbors in

their correlation hole resulting in a tightly double folded Cayley tree structure.

The Cayley tree structure of a ring is a fractal self-similar structure and it is expected to

have self-similar dynamics at all length scales. However, in the PPR formulation we consis-

tently consider hierarchical relaxation and break down the dynamics to fast relaxing loops and

slow relaxing trunk. The loops intrinsically are considered to be unentangled and consequently

relaxing through Rouse dynamics while the trunk waits till the loops relax before relaxing via

a 1-D diffusional motion. Invoking such a hierarchical relaxation mechanism does not address

the simultaneous relaxation of all the substructures and consequently the PPR formulation does

not predict dynamic self-similarity. Thus, the predictions of dynamics obtained from this for-

mulation are valid only in the terminal regime of a ring chain which has an entangled primary

trunk and unentangled loops as is the case of Roovers (1988) PBD sample. It is observed that

the Roovers (1988) PBD sample and in the more recent experiments on PS by Kapnistos et al.

(2008) there is an absence of plateau modulus and there is a power-law dependence of relax-

ation modulus which can be considered as a signature of dynamic self-similarity. The PPR

framework is inadequate to predict the power-law dependence of the visoelastic response in the

intermediate frequency regime.
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Chapter 4

Blob-Spring Model: Fluctuations

Approach to Ring Dynamics

4.1 DOR Scaling: Fluctuation Interpretation

In chapter 3 section 3.1 we discussed the DOR scaling (Obukhov et al., 1994) and used the

reptation interpretation of the scaling arguments to build the PPR framework. An alternative

fluctuation interpretation of the DOR scaling arguments is presented in this section. In the

DOR scaling the authors proposed that the perpetual evolution of perimeter through motion of

kinks drives the dynamics of a ring. The Cayley tree-like structure of the ring polymer in the

array of obstacles was broken down into trunk, branch and leaf substructures. It was argued that

kink rearrangements in the branches and leaves occur much more rapidly than fluctuations kink

rearrangements along the trunk and the long time dynamics of the ring polymer was considered

to be governed by slow relaxation of the trunk. Thus in the DOR model, dynamical parameters

for a ring are estimated from examining the kink rearrangements in the Cayley-tree structure.

In the fluctuation interpretation of DOR scaling arguments we consider such rearrange-

ments of the kinks as corresponding to fluctuations of the Cayley tree polymeric fractal. Thus,

the perpetual evolution of the perimeter of the polymeric fractal happens through fluctuations

of the fractal object and causes the diffusion of the ring chain. The fluctuations in the leaves

and branches can be considered to be dissipative and non-contributing to the center of mass mo-

tion. The fluctuations of the trunk of the ring chain can be considered to govern the long time

dynamics and center of mass diffusion of the ring chain. In order to work out the consequences

of fluctuations of the Cayley tree polymeric fractal it is illustrative to start with a brief idea of
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fluctuations in the Gaussian chain model.

The Gaussian chain model of a polymer is known to be a fractal object, i.e., it exhibits

statistical-similarity of structure at different length scales. In structure-property relationships,

from a reductionist viewpoint, we consider the structure of the object as governing its dynamic

response. Based on this viewpoint the self-similarity of structure implies self-similarity of dy-

namics. In the case of the Gaussian chain it is known to have a fractal dimensionality df = 2

(see section 2.2.3). The Gaussian chain is often represented by a mechanical model of beads

connected by harmonic springs. The fluctuation dynamics of such a bead-spring chain without

hydrodynamic interactions is explored through the Rouse (1953) formulation. The relaxation

spectrum in the Rouse formulation is given by (Doi and Edwards, 1986):

τp =
1

3

b2

π2

ζ

kBT

(
NK

p

)2

(4.1)

where, the relaxation time τp corresponds to the relaxation of the NK/p section of the chain.

The relaxation time of any such section of the chain according to expression (4.1) is seen to

scale as the square of the number of segments in the section (NK/p)2. This is indicative of the

dynamic self-similarity of the Gaussian chain at different length scales.

The effect of the dynamic self-similarity on the viscoelastic response of the Gaussian chain

can be understood based on the scaling arguments of Rubinstein and Colby (2003). According

to this argument the Gaussian chain is considered to relax through p = 1, 2, ... independent

relaxation modes; the pth mode corresponds to relaxation of N/p blobs and has a relaxation

time given by τp ∼ τ0(N/p)2. A simple rearrangement of the relaxation time scaling yields:

p

N
∼

(
τ0

τp

)1/2

(4.2)

The stress relaxation modulus at time τp is expected to be proportional the number density of

stress storing structures, (cb/N)p, and to the thermal energy, kBT ,:

G(τp) ∼ cb

N
p kBT (4.3)

The substitution for p/N from expression (4.2) into equation (4.3) gives G(τp) ∼ (τ0/τp)
1/2.

This suggests that for any time t < τ1 the relaxation modulus would scale as G(t) ∼ t−1/2.

Including the exponential decay term representing the stress decay due to relaxation above the

time scale t > τ1, we obtain:

G(t) ∼ cb kBT
(τ0

t

)1/2

exp

(
− t

τ1

)
(4.4)
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The relaxation modulus expression (4.4) suggests that a power law decay of stress is expected

at time scales t < τ1 for a system composed of Gaussian chains.

The Cayley tree structure of the ring chain, in an array of fixed obstacles, is a fractal struc-

ture with fractal dimensionality df = 4. Analogous to the Gaussian chain the self-similarity

of the Cayley tree ring chain structure implies self-similarity of dynamics at different length

scales. According to the DOR scaling longest relaxation time of the ring chain in an array of

fixed obstacles is given by τN ∼ N5/2. Dynamics self-similarity implies any section of the

chain composed of n segments has a longest relaxation time given by τn ∼ n5/2. Simulations

by Obukhov et al. (1994) show that the mean square length of chain that has passed through

a pore in an array of obstacles at any given time t is given by 〈l2〉 ∼ t4/5 – a result indicating

dynamic self-similarity. Scaling arguments analogous to that presented for the relaxation mod-

ulus of system of Gaussian chains is expected to yield a power law decay of stress for t < τN

for a system composed of Cayley tree ring chains (see section 2.2.2). We show in this chapter

that based on the Blob-Spring (BS) framework a relaxation modulus with a power law decay of

stress at times t < τN and exponential decay of stress for long times can be obtained. In the

following section we develop the BS framework for the dynamics of a Cayley tree ring based

on the fluctuation iterpretation of DOR scaling.

4.2 Blob-Spring Model

We start by proposing that the N = NK/Ne blobs of a ring polymer are connected to each other

on a fractal polymeric skeleton by springs as shown schematically in Figure 4.1. The springs are

considered to be Gaussian and the spring constant associated with the springs between blobs

is k = 3kBT/a2. The skeleton has a fractal dimensionality df = 4, when R ≈ N1/4. The

dynamics of the skeleton can be modeled using the theory developed by Muthukumar (1985)

for unentangled fractal polymers (branched polymers). According to the theory the generalized

Rouse equation for a fractal polymer can be written as (see section 2.2.3):

ζp
eff

∂Rn

∂t
= k∇2

sRn + fn (4.5)

where, ∇2
s denotes the generalized Laplacian in the spectral dimension.
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Figure 4.1: Schematic of Blob-Spring represenation for a flxible ring polymer in an array of
fixed obstacles
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If the normal coordinates are defined in the spectral dimension by:

Rn = X0 + 2
∑
ps

Xp cos
(psπn

N

)
(4.6)

fn =
f0
N

+
1

N

∑
ps

fp cos
(psπn

N

)
(4.7)

Xp =
1

N

N∫

0

dn cos
(psπn

N

)
Rn (4.8)

fp = 2

N∫

0

dn cos
(psπn

N

)
fn (4.9)

then the Langevin equation in the conjugate space for the fractal polymer is given by:

ζ0
dX0

dt
= f0 (4.10)

ζp
dXp

dt
= −kpXp + fp (4.11)

where, ζ0 = Nζ0
eff , ζp = 2Nζp

eff and kp = 2Nkp
eff . In the expression ζ0

eff indicates the

effective friction coefficient associated with the blob functioning as a part of the entire ring

chain and ζp
eff indicates the effective friction coefficient associated with the blob functioning as

part of N/p section chain. The constant kp
eff reflects the fractal structure of the ring chain in the

array of obstacles.

The friction coefficients are determined by the blob rearrangement dynamics in the fractal

structure. The dynamics of the ring polymer in the array of obstacles happens through random

fluctuations which causes a shape evolution like that of amoeba (McLeish, 2002a). Of the

random fluctuations some fluctuations cause only local rearrangements that do not contribute to

the center of mass motion of the section under consideration. The number of fluctuations that

do not contribute to the center of mass motion is expected to be proportional to the size of the

section, i.e., the larger the section under consideration more the number of local rearrangements

that do not contribute to the motion of the chain section. Based on this physical idea the effective

friction for a blob in a section of the ring chain is given by:

ζ0
eff = Nζblob (4.12)

ζp
eff =

N

p
ζblob (4.13)

where, ζblob is given by expression (3.3) as discussed in section 3.2 of chapter 3.
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The constant kp
eff associated with the fractal skeleton is obtained from the conjugate

Langevin of Muthukumar (1985) and is given by:

kp
eff = k

(psπ

N

)2

= k
(pπ

N

)3/2

(4.14)

The fluctuation-dissipation theorem requires that the stochastic forces in equations (4.10) and

(4.11) satisfy:

〈(f0α(t1)f0β(t2))〉 = 2ζ0kBTδαβδ(t1 − t2) (4.15)

〈(fpα(t1)fqβ(t2))〉 = 2ζpkBTδpqδαβδ(t1 − t2) (4.16)

4.3 Trunk Fluctuations in Blob-Spring Model

Consider the rearrangement of the conjugate Langevin equation (4.11) as follows:

N

p
ζp
eff

dXp

dt
= −kπ

(pπ

N

)1/2

Xp +
fp
p

(4.17)

The Langevin equation in the form (4.17) can be considered as the intra-chain force balance

equation on the N/p section chain. The left hand side of the equation is the friction force on

the chain. The first term on the right hand side is the spring force and the second term is the

stochastic force on the section of the chain. The spring force term in the equation (4.17) is

related to the statistics of the primitive path (trunk) of the Cayley tree structure of the ring chain

and allows for the BS model to be viewed alternatively as a description of the fluctuations of

the trunk of the ring chain. In order to understand the relation we view the Cayley tree structure

of the ring polymer in an array of fixed obstacles in the light of Nechaev (1998) statistics.

The conditional probability that two sub-chains C1 and C2 with m and N −m segments

have a common primitive path k in the Cayley tree is given by (Nechaev, 1998):

P (k,m|N) '
(

N

2m(N −m)

)3/2

k2 exp

(
− k2N

N(N −m)

)
(4.18)

Using expression (4.18) the mean length of the primitive path 〈k(m)〉 can be determined to be:

〈k(m)〉 =
N∑

k=0

kP (k,m|N) ' 2√
π

√
2m(N −m)

N
(4.19)

The size distribution for the chain with a primitive path k is given by the Gaussian distribution:

P (R, k) =

(
3

2ka2

)3/2

exp

(
− 3R2

2ka2

)
(4.20)
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In case C1 and C2 have the same number of segments, N/2, then from expression (4.19)

〈k(m)〉 ∼ N1/2. Replacing k by 〈k(m)〉 in the equation (4.20) we have:

P (R, 〈k〉) '
(

3

2N1/2a2

)3/2

exp

(
− 3R2

2N1/2a2

)
(4.21)

We can extend this argument for a N/p section chain and the size distribution of the trunk of a

N/p section chain is given by:

P (RN/p, 〈k(N/p)〉) =

(
3

2(N/p)1/2a2

)3/2

exp

(
−

3R2
N/p

2(N/p)1/2a2

)
(4.22)

The Gaussian distribution allows for a mechanical representation of the primitive paths as

beads connected by harmonic springs (Doi and Edwards, 1986) whose potential energy is given

by:

U(RN/p) =
3

2(N/p)1/2a2
kBTR2

N/p (4.23)

The spring constant associated with the harmonic springs connecting two ends of the primitive

path of a N/p section can be deduced from expression (4.23) as:

kN/p =
3kBT

a2

( p

N

)1/2

= k
( p

N

)1/2

(4.24)

A comparison of the form of spring constant term in the expression (4.24) to that in the equation

(4.17) shows that they are similar. Thus, the BS model can indeed be viewed as a description of

the fluctuations of the trunk of the ring chain.

4.4 Diffusion Coefficient and Relaxation Spectrum

Using the BS framework we can determine the diffusion coefficient and relaxation spectrum of

the ring chain by considering the dynamics of the blobs connected in the fractal skeleton by

springs. Equation (4.10) is the center of mass motion governing equation. It is a first order

linear ordinary differential equation whose solution is given by:

X0 =
1

ζ0

∫ t

−∞
dt1f0(t1) (4.25)

The center of mass diffusion coefficient of the ring polymer is given by:

D = lim
t→∞

1

6t

〈
(X0(t)−X0(0))2

〉
(4.26)
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From the solution (4.25) and the fluctuation-dissipation equation (4.15) the correlation at the

right hand side of the equation (4.26) is given by:

〈
(X0(t)−X0(0))2

〉
=

kBT

ζ0

t (4.27)

Using the correlation expression (4.27), the effective friction expression (4.13) and blob friction

coefficient expression (3.3) in the diffusion coefficient expression (4.26):

D =
kBT

N2ζblob

=
a2

b2

kBT

N2
Kζ

(4.28)

In arriving at expressions (4.28) we have used N = Nk/Ne and a2 = Neb
2.

The dynamics of the intra chain sections of the blob chain is governed by the mode equa-

tion (4.11). The solution to mode equation is given by:

Xp =
1

ζp

∫ t

−∞
dt1 exp

(
−(t− t1)

τp

)
fp(t1) (4.29)

where, τp is the relaxation time associated with the N/p section ring chain. The expression

for relaxation time τp can be arrived at using equations (4.13), (3.3), (4.14) and the Gaussian

statistics a2 = Neb
2:

τp =
ζp

kp

=
π

3

a4

b2

ζ

kBT

(
N

pπ

)5/2

(4.30)

The longest relaxation time corresponds to the relaxation of the entire ring chain, i.e.,

p = 1 and is given by:

τ1 =
π

3

a4

b2

ζ

kBT

(
N

π

)5/2

(4.31)

The smallest relaxation time corresponds to the relaxation of a single section of the ring chain,

i.e., p = N and is given by:

τN =
π

3

a4

b2

ζ

kBT

(
1

π

)5/2

(4.32)

The scaling exponents of N in self-diffusion coefficient and the relaxation times obtained from

the BS model are the same as that of DOR model. Expression (4.30) indicates that the dynamics

is self-similar in terms of the relaxation time as it depends on the number of sections for any

given section of the chain in the same way.

4.5 Constitutive Relation

The microscopic expression for the stress tensor is given by (Doi and Edwards, 1986):

σαβ =
cb

N

∑
n

〈
∂U

∂Rnα

Rnβ

〉
(4.33)
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It can be inferred from Muthukumar arguments (Muthukumar, 1985) that for polymeric fractals

U is given by:

U =
k

2

N∑
n=2

(Rn −Rn−1)
2 (4.34)

in the spectral dimension. Combining the insights from equations (4.33) and (4.34) the micro-

scopic expression for the stress tensor according to the BS model can be written as:

σαβ =
cb

N
k

N∫

0

dn 〈∇sRnα∇sRnβ〉 (4.35)

where,∇s denotes gradient in the spectral dimension of the fractal network and cb is the number

density of the blobs that make up the ring polymer and is given by cb = c/Ne.

Using the normal coordinate transformation (4.6)-(4.9) the stress tensor expression is

given by:

σαβ =
cb

N

∑
ps

kps 〈XpαXpβ〉 (4.36)

where, kps = 2Nk(psπ/N)2. Equation (4.36) is appropriately modified in the conjugate space

and the stress tensor expression is given by:

σαβ =
cb

N

∑
p

kp 〈XpαXpβ〉 (4.37)

We now impose a homogeneous deformation gradient ῡ(r, t) = ¯̄κ(t).r. During such a

deformation the Langevin equation for the pth normal coordinate, Xp, becomes:

∂Xp

∂t
= −kp

ζp

Xp +
1

ζp

fp + ¯̄κ(t).Xp (4.38)

From the Langevin equation (3.31) we obtain the equation for the correlation 〈XpαXpβ〉 as:

∂

∂t
〈XpαXpβ〉 = −2

kp

ζp

〈XpαXpβ〉+ 4
kBT

ζp

δαβ + καµ 〈XpµXpβ〉+ κβµ 〈XpαXpµ〉 (4.39)

Equation (4.39) can be solved to obtain 〈XpαXpβ〉 for any given homogeneous deformation

gradient. For homogeneous shear where ¯̄κ(t) is given by:



0 κ(t) 0

0 0 0

0 0 0




we have the equation for the xy component of the correlation given by:

∂

∂t
〈XpxXpy〉 = −2

kp

ζp

〈XpxXpy〉+ κ(t)
〈
X2

py

〉
(4.40)
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Considering the system to be close to equilibrium we have
〈
X2

py

〉
= kBT/kp, using which

the solution to equation (4.40) is obtained as:

〈XpxXpy〉 =
kBT

kp

t∫

−∞

dt1 exp

(
−2

(t− t1)

τp

)
κ(t1) (4.41)

Substituting equation (4.41) in equation (4.37) we obtain:

σxy =
cb

N
kBT

∑
p

t∫

−∞

dt1 exp

(
−2

(t− t1)

τp

)
κ(t1) (4.42)

The phenomenological expression for stress tensor in terms of the relaxation modulus is given

by:

σxy(t) =

t∫

−∞

dt1G(t− t1)κ(t1) (4.43)

Comparing equation (3.35) with equation (3.36) we obtain:

G(t) =
cb

N
kBT

∑
p

exp

(
−2

t

τp

)
(4.44)

Continuous form of expression (4.44) can be written as:

G(t) =
cb

N
kBT

∫ ∞

0

dp exp

(
−2p5/2 t

τ1

)
(4.45)

By the variable transformation x = 2(tτ1)p
5/2 equation (4.45) becomes:

G(t) =
2

5

cb

N
kBT

(
1

2

)2/5 (τ1

t

)2/5
∫ ∞

0

dx x−3/5 exp(−x) (4.46)

The integral in expression (4.46) is a gamma function Γ[2/5] which takes a constant value. For

t < τ1 the relaxation modulus can thus be considered to have a power law scaling G(t) ∼ t−2/5.

The expression (4.44) can also be expanded in the form:

G(t) =
cb

N
kBT exp

(
−2

t

τ1

)[
1 + exp

(
−9.3

t

τ1

)
+ exp

(
−29.2

t

τ1

)
+ ...

]
(4.47)

The higher order exponential decays in the expression (4.47) can be neglected for t > τ1. Thus,

the relaxation modulus can be approximated as:

G(t) ≈ 2

5

cb

N
kBT

(
1

2

)2/5 (τ1

t

)2/5

Γ

[
2

5

]
exp

(
−2

t

τ1

)
(4.48)
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4.6 Melt of Ring Polymers

The assumptions implicit to the DOR model for a ring in a fixed array of obstacles are (i)

excluded volume and hydrodynamic interactions are neglected, (ii) the ring follows the tree-like

statistics indicated above with a trunk of length Lp ≈ aNρ, where ρ = 1/2 (Gutin et al., 1993),

and (iii) different parts of a ring do not interpenetrate. The fluctuation approach to dynamics of

ring polymers in an array of fixed obstacles can be extended to the case of melt of rings. We

assume that:

• The ring polymer in its melt still has a lattice animal (self-similar) structure with its fractal

dimension df between 2 and 4, i.e., the size exponent in R ∼ N ν lies between 1/4 and

1/2.

• Hydrodynamic interactions are screened.

• Excluded volume interactions are neglected.

• For small ring polymers, i.e., in the absence of excluded volume interactions, the mean

length of the primitive path scales as 〈k〉 ∼ N2ν . For large ring polymers excluded

volume interactions due to increased possibility of segmental overlap causes the trunk

to stretch, and the mean length of the primitive path scales as 〈k〉 ∼ Nρ, where, ρ =

(2ν + 1)/3 (Gutin et al., 1993).

• The dynamics of the fractal structure can be described by dynamics of independent modes.

Simulations of Müller et al. (1996) supports the first assumption. The second assumption is

natural in dense systems like melt. The excluded volume interactions can be neglected under

the condition N < (b2/ar)1/(2−3ν), where r is the cross sectional area of the polymer chain

(Obukhov et al., 1994). This assumption can be accounted for by considering the stretching of

the trunk as mentioned in section (4.1). This leads to substituting ρ in place of the exponent 2ν

in all equations of the BS model, where ρ = (2ν + 1)/3 (Gutin et al., 1993). The assumption

of independent modes is the weakest assumption in a melt of ring polymers.

In a melt constant kp
eff associated with the fractal skeleton is obtained from the conjugate

Langevin of Muthukumar (1985) and is given by:

kp
eff = k

(psπ

N

)2

= k
(pπ

N

)2ν+1

(4.49)
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where, ν lies between 1/2 and 1/4. The relaxation time associated with the N/p section chain is

given by:

τp =
ζp

kp

=
π

3

a4

b2

ζ

kBT

(
N

pπ

)2ν+2

(4.50)

The expression for the relaxation modulus remains identical to equation (4.44) except that ex-

pression for τp in it is given by expression (4.50).

4.7 Results and Discussion

The implicit assumptions of the blob-spring model described above are the same as those made

for the DOR theory namely, (a) excluded volume and hydrodynamic interactions are neglected,

(b) excluded volume interactions arising from self avoiding structure of a lattice animal is ne-

glected, and (c) there are independent modes of relaxation. Of these assumptions, the first is

reasonable for a melt of rings. The second assumption holds when,N < (b2/ar)
1/(2−3ν) where r

is the cross-sectional area of a polymer chain (Obukhov et al., 1994). However, this assumption

can be easily corrected by accounting for the stretching of the trunk. This implies substituting ρ

in place of ν in all equations of the blob-spring model, and then calculating ρ as ρ = (2ν +1)/3

(Gutin et al., 1993). The third assumption is possibly the weakest when applied to the case of a

melt of rings.

We will however proceed to compare the predictions of the blob-spring model with exper-

imental data on the linear viscoelastic response of melt of Roovers PBD rings (Roovers, 1988).

Large deviations from predictions, if observed, could then suggest the importance of loop in-

terpenetration for these samples. An additional relaxation mode that may be of importance in

case of a melt of rings is that caused by release of constraints as the surrounding chains relax.

This can be expected to be important because of the wide spectrum of relaxation times expected

from equation (4.50).

The various molecular parameters of PBD used in our calculations are listed in chapter (3)

section (3.8). We have assumed a, the obstacle length scale, and ν, the inverse of the fractal

dimension to be variable parameters of the model. One of the values assumed for parameter a is

equal to the tube diameter of the linear polymers in melt state. Assuming r = 1nm, the criteria

N < (b2/ar)1/(2−3ν) was not satisfied for the PBD ring sample. This suggests that excluded

volume interactions from self avoiding structure of the rings might be important. The excluded

volume interactions are expected to change the exponent ν and they are taken into consideration
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as ν is an adjustable parameter in the model. The relaxation modulus was calculated from

equation (4.44), while the dynamic moduli were calculated from Fourier transform of equation

(4.44), which gives:

G′(ω) =
cb

N
kBT

N∑
p=1

ω2τ 2
p

4 + ω2τ 2
p

(4.51)

G′′(ω) = 2
cb

N
kBT

N∑
p=1

ωτp

4 + ω2τ 2
p

(4.52)

The model predictions based on equations (3.3), (4.51) and (4.52) for ring PBD melt of

molecular weight 6.0 × 104g/mol are shown in figures 4.2-4.4. We have considered the same

two scenarios as were considered for the PPR framework predictions viz. with modification

entanglement spacing (a ≈ 31.1Å) and without modification of entanglement spacing (a ≈
44.5Å). The comparison of BS model predictions for ν = 0.25 for the modified entanglement

spacing with the experimental data for the ring melt KPBD34B3 (Roovers, 1988) is shown

in figure 4.2. In figures 4.3-4.5 the comparison with ring melt KPBD34B3 (Roovers, 1988)

experiments is done for different ν and a as in the PPR framework. It is seen from these

predictions that BS model predicts the power-law relaxation modulus at higher frequencies.

However, there is severe under- prediction of the viscoeleastic response in the terminal regime.

It is clear that the viscosity, which corresponds to the loss modulus in the terminal regime,

of a melt of ring PBD as predicted by the BS model is much lower than the observed values.

Such an under prediction also indicates a strong under prediction of the relaxation times. This

can be considered as the effect of loop interpenetration or slowing down of the fluctuation

rearrangements of sections of the ring chain by confinement effects. The BS model based

on mode independent fluctuation dynamics is seen to be severely limited in capturing such

slowing down of dynamics. However, it can be shown that if the slowing down is considered to

increase the friction coefficient by a factor of Ne the BS model gives quantitatively comparable

predictions for both the terminal and high frequency regimes (see Figure 4.6).
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Figure 4.2: Comparison of Blob-Spring model based viscoelastic response predictions (ν =
0.25 and a = 31.15Å) to ring PBD sample KPBD34B3 (Roovers, 1988)
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Figure 4.3: Comparison of Blob-Spring model based viscoelastic response predictions (ν =
0.33 and a = 44.5Å) to ring PBD sample KPBD34B3 (Roovers, 1988)
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Figure 4.4: Comparison of Blob-Spring model based viscoelastic response predictions (ν =
0.33 and a = 31.15Å) to ring PBD sample KPBD34B3 (Roovers, 1988)
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Figure 4.5: Comparison of Blob-Spring model based viscoelastic response predictions (ν = 0.4
and a = 44.5Å) to ring PBD sample KPBD34B3 (Roovers, 1988)
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Figure 4.6: Comparison of Blob-Spring model with increased friction based viscoelastic re-
sponse predictions (ν = 0.33 and a = 31.15Å) to ring PBD sample KPBD34B3 (Roovers,
1988)
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Chapter 5

Fractal Gate Model: Fluctuations and

Mean Field Approach to Ring Dynamics

5.1 Fluctuations and Mean-Field in Ring Dynamics

In the DOR scaling arguments it was argued that over a time scale τ0 ∼ N2
e ζ/kBT , which is

the Rouse relaxation time of an unconstrained blob, each loop would release one kink into the

trunk. The statistics of the tree-like structure dictates that in a fixed array of obstacles there are

on an average N1/2 loops attached to a trunk which has a length of LP ≈ aN1/2. The frequency

of release of kinks into the trunk is therefore equal to N1/2/τ0 . In the time τ0 a kink diffuses

along the trunk over a length equal to the blob size, but the center of mass diffuses over a length

a/N . Hence the curvilinear diffusion coefficient of the center of mass along the trunk due to

motion of all kinks is estimated as DP ∼ (a/N)2(N1/2/τ0). The longest relaxation time, τ1, is

then calculated as the time required for the center of mass to diffuse over the entire trunk length

with the curvilinear diffusion coefficient estimated above. Thus, τ1 ∼ L2
P /DP ≈ τ0N

5/2 and

the center of mass diffusion coefficient in 3-D is given by D ∼ R2/τ1 ≈ (a2/τ0)N
−2.

Recent rheology experiments on high molecular weight ring polystyrene melts show a

power-law stress relaxation (Kapnistos et al., 2008). According to Kapnistos et al. (2008) argu-

ment all the loops in the system composed of m segments in the melt rearrange simultaneously

and loose their memory of their original conformation in a time scale τm ∼ τ0 m5/2. The re-

maining stress in the melt is kBT per segment composed of m segments. This corresponds to

the stress relaxation modulus of G(τm) ∼ kBT/(ϑm), where ϑ is the volume of a segment. By

substituting the time dependence of the the number of relaxing segments m ∼ (τm/τ0)
2/5 into
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the scaling expression for stress relaxation it is seen that G(τm) ∼ (τ0/τm)2/5. The self-similar

process continues till the whole ring chain has relaxed at the time scale of τN ∼ τ0 N5/2. At

longer times, t > τN , the relaxation modulus decreases exponentially with time and thus the

overall stress relaxation of melt is given by:

G(t) ∼ G0
(τ0

t

)2/5

exp

(
− t

τN

)
(5.1)

It is important to note that the argument here looks similar to the derivation of the relaxation

modulus for the Gaussian chain undergoing Rouse dynamics (see section 4.1).

According to Kapnistos et al. (2008) the expression (5.1) implicitly takes into account the

many-chain effects in the relaxation of the ring melt. This implies that constraint release in the

ring melt is accounted for implicitly in the expression for stress relaxation. In the same article

they suggested that for an ideal ring constrained in an array of fixed obstacles the relaxation

modulus would decay as G(t) ∼ t−1/5. Their argument was based on the concept of ‘gates’

which are pairs of obstacles that define the relative posisitons of loops on a trunk (see Figure 5.1)

and the rarrangement of such relative positions of the loops causes the center of mass diffusion

of parts of the ring. It is important to note that the dynamics of inherent constraint release

put forth by Kapnistos et al. (2008) is different from that of Rouse dynamics. This may be

considered illustrative of the fact that self-similarity in dynamics exhibited by two different

structures may not necessarily imply similarity of dynamics of the structures. We have already

seen the successes and limitations of the Pom-Pom Ring and the Blob-Spring approach in the

chapters 3 and 4 respectively. In this chapter we propose a judicious combination of fluctuations

and mean-field approach which incorporates into it the physical ideas of DOR scaling in order

to arrive at rigorous framework for understanding dynamics of rings in an obstacle environment.

Following Kapnistos et al. (2008), we assume that the relaxation of a non-concatenated

flexible ring chain in an array of fixed obstacles occur by the simultaneous relaxation of all

possible sections of a ring chain in a self similar manner. Relaxation of any given section is

modeled as a one dimensional diffusion of its center of mass along the contour of the trunk of

that section; the curvilinear diffusion coefficient is derived in a very specific and formal way

through the fractal Rouse dynamics. Relaxation of the section is deemed complete when the

centre of mass diffuses over the entire length of the trunk whereby it escapes from the gate where

it is attached to the rest of the ring chain. The net relaxation modulus is therefore written as

the superposition of relaxations of all sections weighted by the number fraction of each section.

There are thus three key steps in the derivation:
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• Derivation of the curvilinear diffusion coefficient by fluctuations of fractal Rouse chain.

• Derivation of the confinement memory of the trunk by diffusion in a mean-field.

• Estimation of the number fraction of any given section of the ring chain using the concept

of ‘gates’ of entanglement.

The next three sections provide the necessary derivations of quantities indicated above. We end

this contribution with a brief discussion about extending the model to the case of melt of rings.

5.2 Fractal Rouse Model

We start by proposing that any arbitrary closed section composed of m = mK/Ne blobs of

a ring polymer are connected to each other on a (hypothetical) fractal polymeric skeleton by

(hypothetical) springs as shown schematically in 4.1. The springs are considered to be Gaus-

sian and the spring constant associated with the springs between blobs is k = 3kBT/a2. The

dynamics of the skeleton can be modeled using the theory developed by Muthukumar (1985)

for unentangled fractal polymers (branched polymers) as in BS model. The generalized Rouse

equation governing the dynamics of such section of the chain is still given by equation (4.5).

If the normal coordinates for any arbitrary closed section of the ring chain are defined in

the spectral dimension by:

Rn = X0 + 2
∑
ps

Xp cos
(psπn

m

)
(5.2)

fn =
f0
m

+
1

m

∑
ps

fp cos
(psπn

m

)
(5.3)

Xp =
1

m

m∫

0

dn cos
(psπn

m

)
Rn (5.4)

fp = 2

m∫

0

dn cos
(psπn

m

)
fn (5.5)

then the Langevin equation in the conjugate space for the fractal polymer is given by:

ζ0
dX0

dt
= f0 (5.6)

ζp
dXp

dt
= −kpXp + fp (5.7)

85



where, ζ0 = mζ0
eff , ζp = 2mζp

eff and kp = 2mkp
eff . In the expression ζ0

eff indicates the

effective friction coefficient associated with the blob functioning as a part of the entire ring

chain and ζp
eff indicates the effective friction coefficient associated with the blob functioning as

part of N/p section chain. The constant kp
eff reflects the fractal structure of the ring chain in the

array of obstacles.

The friction coefficients are determined by the blob rearrangement dynamics in the fractal

structure. In the BS model we argued that of the random fluctuations in chain some fluctuations

cause local rearrangements that do not contribute to the motion of the section under considera-

tion and consequently increase the friction experienced by a blob of the chain section. However,

we also argued that the number of such fluctuations is proportional to the section of the chain

under consideration. According to the DOR sclaing the fast relaxing loops do not contribute

to the center of mass motion and the size of such fast relaxing loops in section composed of

m segments scales as ∼ m1/2. Based on this physical idea and considering that instead of the

friction being proportional to the size of the section m/p it is proportional to the size of fast

relaxing structures in the section, i.e., ∼ (m/p)1/2, the effective friction for a blob in a section

of the chain is given by:

ζ0
eff = m1/2ζblob (5.8)

ζp
eff =

(
m

p

)1/2

ζblob (5.9)

The friction coefficient of a blob, ζblob, can be derived from the understanding that it con-

sists of Ne unentangled Kuhn segments (beads), which are undergoing the usual Rouse or Zimm

dynamics depending on the environment in the pore of the array of obstacles. The Rouse diffu-

sion coefficient of a Ne segment Gaussian chain is given by (Doi and Edwards, 1986):

Dblob =
kBT

Neζ
(5.10)

From the Einstein argument the blob friction coefficient can be obtained as:

ζblob =
kBT

Dblob

= Neζ (5.11)

The constant kp
eff associated with the fractal skeleton is obtained from the conjugate

Langevin of Muthukumar (1985) and is given by:

kp
eff = k

(psπ

m

)2

= k
(pπ

m

)3/2

(5.12)
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The fluctuation-dissipation theorem requires that the stochastic forces in equations (5.6) and

(5.7) satisfy:

〈(f0α(t1)f0β(t2))〉 = 2ζ0kBTδαβδ(t1 − t2) (5.13)

〈(fpα(t1)fqβ(t2))〉 = 2ζpkBTδpqδαβδ(t1 − t2) (5.14)

Using the fractal Rouse framework we can determine the diffusion coefficient and relax-

ation spectrum of the m section of the ring chain by considering the dynamics of the blobs

connected in the fractal skeleton by springs. Equation (5.6) is the m section center of mass

motion governing equation the solution to which is given by:

X0 =
1

ζ0

∫ t

−∞
dt1f0(t1) (5.15)

The center of mass diffusion coefficient of the m segment section is given by:

DmR = lim
t→∞

1

6t

〈
(X0(t)−X0(0))2

〉
(5.16)

From the solution (5.15) and the fluctuation-dissipation relation (5.13) the correlation at the

right hand side of the equation (5.16) is given by:

〈
(X0(t)−X0(0))2

〉
=

kBT

ζ0

t (5.17)

Using the correlation expression (5.17), the effective friction expression (5.9) and blob friction

coefficient expression (5.11) in the diffusion coefficient expression (5.16):

DmR =
kBT

m3/2ζblob

=
a

b

kBT

m
3/2
K ζ

(5.18)

In arriving at expression (5.18) we have used expression (5.11) for ζblob, m = mk/Ne and a2 =

Neb
2. The molecular weight scaling of the curvilinear diffusion coefficient in equation (5.18) is

in agreement with the DOR scaling for curvilinear diffusion coefficient for the center of mass

of an m section of the chain.

The dynamics of the intra chain sections of the blob chain is governed by the mode equa-

tion (5.7). The solution to mode equation is given by:

Xp =
1

ζp

∫ t

−∞
dt1 exp

(
−(t− t1)

τp

)
fp(t1) (5.19)

where, τp is the relaxation time associated with the m/p section of the ring chain. The ex-

pression for relaxation time τp can be arrived at using equations (5.9), (5.11), (5.12) and the

Gaussian statistics a2 = Neb
2 and is given by:

τp =
ζp

kp

=
1

p2
π1/2 1

3π2

a4

b2

ζ

kBT
m2 (5.20)
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The longest relaxation time corresponds to the relaxation of the entire m section, i.e.,

p = 1 and is given by:

τ1 = π1/2 1

3π2

a4

b2

ζ

kBT
m2 (5.21)

The shortest relaxation time corresponds to the relaxation of a single section of the ring chain,

i.e., p = m and is given by:

τm = π1/2 1

3π2

a4

b2

ζ

kBT
= π1/2 1

3

b2

π2

ζ

kBT
N2

e (5.22)

It scales as ∼ N2
e and corresponds to the relaxation time of an unentangled blob of Ne Kuhn

segments.

It is also straightforward to show that due to dynamic self-similarity the center of mass

curvilinear diffusion coefficient and the longest relaxation time of the entire ring chain contain-

ing N blobs (or equivalently, Nk Kuhn segments) are given by:

DN =
kBT

N3/2ζblob

=
a

b

kBT

N
3/2
K ζ

(5.23)

τN =
1

p2
π1/2 1

3π2

a4

b2

ζ

kBT
N2 (5.24)

The scaling exponent of diffusion coefficient obtained from the fractal Rouse model is the same

as that of curvilinear diffusion coefficient corresponding to the center of mass of the ring chain

in the DOR scaling model and is different from the scaling for a linear Gaussian chain. Expres-

sion (5.24) indicates that the relaxation time in fractal ring chain is similar to that of the Rouse

relaxation time of a linear chain.

5.3 One Dimensional Diffusion

So far we have considered the influence of the array of fixed obstacles on the structure of the

ring chain and thereby on its dynamics. However, we can also expect the fixed obstacles to form

topological constraints akin to a tube and restrict the centre of mass motion of the ring chain.

We consider a section of the ring chain made of m blobs which is connected to the rest of the

chain through a pair of gates (Figure 5.1). The gates define the relative position of the m section

with respect to the rest of the ring. The m section is characterized by its fractal structure, i.e.,

a trunk and attached loops. The center of mass of the m section is not free to undergo random

fluctuations due to topological constraints, but is confined within a tube of length equal to the
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Figure 5.1: Gate of entanglement of a ring chain in an array of fixed obstacles

length of the trunk. The center of mass diffuses within the tube with a diffusion coefficient given

by equation (5.18) and when it travels a mean square distance equal to the square of the length

of the tube it ‘escapes’ the confinement and also the pair of gates thereby changing it relative

position with respect to the other sections of the ring chain. While the trunk of the m section as

in Figure 5.2 might appear at first instance like the branch of a branched polymer, it is actually

different in two aspects. First, it is not covalently pinned to the ring and second, the diffusive

motion of its center of mass within the tube does not occur against a free energy barrier since

the ring has already paid an entropic penalty when forced to double fold and meander through

the array of obstacles.

We can formulate the diffusion of the trunk along its contour analogous to the Doi-

Edwards formulation of reptation of a linear chain (Doi and Edwards, 1986). Let Ψ(ξ, t; s)

be the probability that the trunk moves a distance ξ while its ends have not reached the segment

s of the original trunk contour point. The probability satisfies the one dimensional diffusion

equation given by:
∂Ψ

∂t
= DmR

∂2Ψ

∂ξ2
(5.25)

with the initial condition

Ψ(ξ, 0; s) = δ(ξ) (5.26)

When ξ = s, the segment s is reached by the trunk and Ψ(ξ, t; s) vanishes. Similarly when

ξ = s−Lm, the tube segment s is reached by the other end of the trunk and Ψ(ξ, t; s) vanishes.

Here, Lm = am1/2 is the length of the trunk of the m section. This yields boundary conditions:

Ψ(ξ, t; s) = 0 at ξ = s and ξ = s− Lm (5.27)
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Figure 5.2: An m section of a ring chain is connected to the rest of the ring (grey) through a
pair of gates (black filled squares), which define its position relative to the other parts of the
ring chain. The m section is characterized by its trunk (thick dashed green line) and attached
loops (thin yellow lines). The center of mass of the m section (filled green circle) undergoes
one dimensional diffusion along the contour of its trunk due to the confining effect of the tube
(dotted lines).
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The solution to the one dimensional diffusion equation (5.25) subject to conditions (5.26)

and (5.27) is given by (Doi and Edwards, 1986):

Ψ(ξ, t; s) =
∑

p

2

L
sin

(pπs

L

)
sin

(
pπ(s− ξ)

L

)
exp

(
−p2 t

τd

)
(5.28)

where,

τm
d =

L2
m

DmRπ2
=

1

π2

a4

b2

ζ

kBT
m5/2 (5.29)

The time scale τm
d is the time taken for the center of mass of the m section to diffuse out of the

confinement. Note that for m = 1

τ 1
d = τ0 =

1

π2

a4

b2

ζ

kBT
=

3

π1/2
τm (5.30)

where, the last equality is derived from equation (5.22) and for m = N :

τN
d = τring =

1

π2

a4

b2

ζ

kBT
N5/2 (5.31)

where, τN
d is the longest relaxation time for the entire ring and its scaling with molecular weight

is in agreement with the DOR model.

The memory of the confinement of the m section trunk is lost over the time scale τm
d . For

the memory of the original segment s to remain, ξ can be anywhere between s − Lm and s, so

that:

ψm(s, t) =

∫ s

s−Lm

dξΨ(ξ, t; s) =
∑

p;odd

4

pπ
sin

(
pπs

Lm

)
exp

(
−p2 t

τm
d

)
(5.32)

The fraction of the confinement memory available at any given time t is given by:

ψm(t) =
1

Lm

∫ Lm

0

dsψ(s, t) =
∑

p;odd

8

p2π2
exp

(
−p2 t

τm
d

)
(5.33)

5.4 Constitutive Relation

The contribution of a m section to the relaxation modulus of the ring chain is related to the

fraction of confinement memory equation (5.33) and is given by:

Gm(t) = G0ψm(t) (5.34)

In equation (5.34) G0 is the modulus at time t = τe(τe < τ1), which is the time required for a

blob to move a distance of order of its size a, and at which time ψm(τe) = 1. τe is obtained from
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the relationship between time and average mean-square displacement of a blob in an m section

and is given by (see Appendix B.2):

τe =
π9/2

3× 44

(
Γ

[
3

4

])−4
a4

b2

ζ

kBT
u 1.7τm (5.35)

The relaxation modulus expression of fractal Rouse chain at τe can be shown to be (see

equation (B.33)):

G(τe) =
cb

m
kBT

∑
p

exp

(
−2

t

τp

)
(5.36)

Moving from discrete to continuous expression:

G(τe) =
cb

m
kBT

∫ ∞

0

dp exp

(
−2

t

τp

)
=

cb

m
kBT

√
π

8

√
τ1

τe

(5.37)

Using equation (5.35) and (5.21) in equation (5.37) we obtain:

G0 = G(τe) =
8√

2π5/2

(
Γ

[
3

4

])2

cbkBT u 0.5cbkBT (5.38)

Dynamic self similarity, as indicated by the simulations of Obukhov et al (Obukhov et al.,

1994), suggests that all sections of the ring chain m = 1, 2, ..N relax in a manner described

in the previous section 5.3. Unlike covalently connected branched polymers in which different

sections of the polymer relax in a hierarchical manner with the relaxation of larger structures

occurring only after smaller substructures attached to them have relaxed, the different sections

of a ring chain relax simultaneously since they are not pinned. Thus, the overall relaxation

modulus of the ring chain is given by the superposition of the relaxation moduli of all sections

weighted by the number fraction of such sections:

G(t) =
∑
m

nmGm(t) (5.39)

nm in equation (5.39) is the number fraction of m sections of the ring chain trapped in a pair of

gates. Another interpretation of equation (5.39) is that the stress in the system of a ring in fixed

obstacles is supported by gates. In a double-folded Cayley tree conformation of a ring chain the

positions of obstacles that divides the chain in to two closed loops having a common origin can

be considered as gates (Figure 5.1). If the double folded ring chain is collapsed to a single line

of highest density then the gate corresponds to an entanglement which divides the ring in to two

parts. The collapsed structure is similar to that of hyperbranched polymer and the gate can be

considered to be a bond that divides it into two parts (Figure 5.3). Withdrawal of sections of the

ring from their gates causes relaxation of the stress.
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Figure 5.3: Shown is a part of the double folded ring chain (in red) collapsed into lines so that
the structure resembles a hyperbranched polymer. An m section of the ring chain is shown in
dotted circle and is confined by the gates shown in red. The gate is equivalent to a bond of the
hyperbranched polymer that divides it into two parts of m and N −m segments.
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It now remains to calculate the number fraction of m sections of the ring chain entrapped

by a pair of gates. The fraction of such gates can be determined from the probability of finding

bonds in a hyperbranched polymer of segments that divides the polymer into two parts of m and

N −m segments (see Appendix B.4). The Cayley tree structure of the ring can be thought of as

formed by condensation polymerization of Az monomers, where z is the coordination number

of the Cayley tree lattice. In this case since the polymer molecules are composed of only A

groups the probability of finding an unreacted A group as a part of a m-mer is the same as that

of number fraction of m-mers associated with ABz−1 condensation polymerization and is given

by (see Appendix B.4):

um(ε) =
1√
2π

√
z − 1

z − 2
m−3/2 exp(−ε2m) (5.40)

for m >> 1. ε in equation (5.40) is the relative extent of reaction given by ε = (ϕ − ϕc)/ϕc,

where ϕ and ϕc are respectively the conversion and critical conversion for gelation; ε takes

values between 0 and -1. The probability of forming a hyperbranched N -mer that was formed

by reaction of two hyperbranched polymers composed of m and N −m segments respectively

is given by the product of the probability of finding an unreacted A group as part of an m-mer

and the probability of finding an unreacted A group as part of (N −m)-mer:

um|N−m(ε) = um(ε)× uN−m(ε)

=
1

2π

z − 1

z − 2
m−3/2(N −m)−3/2 exp(−ε2N)

(5.41)

for m >> 1 and N −m >> 1. Thus, the number fraction of gates associated with a ring chain

made up of loops of m segments is given by normalizing the probability:

nm =
um|N−m∑
m um|N−m

u
1

4
m−3/2 (5.42)

The constitutive equation for rings in an array of fixed obstacles is given by the combina-

tion of eqs. (5.34-5.39) and eq (5.42) and may be written as:

G(t) u
1

4

∑
m

m−3/2Gm(t) =
16√
2π9/2

(
Γ

[
3

4

])2

cbkBT

∫ N

1

dm m−3/2 exp

(
− t

τm
d

)
(5.43)

In writing equation (5.43) we have assumed that since the right hand side of equation (5.33)

is a rapidly converging series therefore only the first dominant term may be considered. Also,

the summation over m has been replaced by an integral over m and can be justified for large N

using the Taylor-Maclaurin approximation. It is worth noting that although the summation over
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m is assumed to be from m = 1 to N the expression for nm given in equation (5.42) cannot

really be used over the entire range m = 1, N . Considering τm
d = τ0 m5/2 and substituting

x = (t/τ0)m
−5/2 equation (5.43) can be written as:

G(t) u
32

5
√

2

1

π9/2

(
Γ

[
3

4

])2

cbkBT
(τ0

t

)1/5
∫ t/τ0

t/τring

dx x(1/5)−1 exp(−x) (5.44)

The integral is an incomplete gamma function −Γ
[

1
5
, t

τring

]
and for times t

τring
> 10 can be

approximated by 0.1 exp
(
− t

τring

)
which shows that the relaxation modulus is dictated by ex-

ponential decay of the stress memory of the largest length scale (primary trunk) of the ring

chain. The relaxation modulus expression can thus be approximated as:

G(t) u
32

50
√

2

1

π9/2

(
Γ

[
3

4

])2

cbkBT
(τ0

t

)1/5

exp

(
− t

τring

)

u 0.004cbkBT
(τ0

t

)1/5

exp

(
− t

τring

) (5.45)

The relaxation modulus expression is in agreement with the scaling proposed by Kapnistos et al.

(2008).

5.5 Comments on Melt of Rings

The following things are expected to change in going from rings in an array of fixed obstacles

to a melt of rings:

1. While large rings are expected to retain a lattice animal configuration in melt, their fractal

dimension can be anywhere between 2 < df < 4; the Cates and Deutsch argument gives

df = 5/2 and the same has been indicated by various simulations as described in section

2.1.2. Thus, the equations derived in sections 5.2–5.4 will have to be derived for a more

general fractal structure.

2. The value of Ne will be governed by the flexibility of the polymer, and need not be the

same as that for a linear chain.

3. Constraint release, which was irrelevant for the case of fixed obstacles, will become an

important relaxation mechanism since faster modes of neighboring chains will dynami-

cally relax the topological constraints of slower modes of any given chain.
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There are various theoretical treatments to account for constraint release in the case of entangled

linear chains (Marrucci, 1985; Tsenoglou, 1991; des Cloizeaux, 1990a,b). Following the tube

dilation approach of Marrucci (1985) the constitutive relation for a melt of ring may be written

as:

G(t) = G0

(∑
m

nmψm(t)

)2

(5.46)

In equation (5.46) the expression for nm is given by equation (5.42)) and the expression for

Gm(t) is given by equations (5.33)–(5.38) with:

G(τe) = G0 =
1

2
√

2

1

ν
1
2ν

1

π
ν+1
2ν

(Γ[1− ν])
1
2ν cbkBT (5.47)

and τm
d is given by:

τm
d =

L2
m

DmRπ2
=

1

π2

a4

b2

ζ

kBT
m2ν+2 (5.48)

The expression for G(τe) is obtained by a procedure similar to that elaborated in section 5.4

using the expression (B.20) for τe and expression (B.6) for τ1. The expression for τm
d is obtained

using Lm = m2νa and expression (B.4) for DmR.

In equation (5.48) ν = 1/df . Substituting in equation (5.46) and solving yields:

G(t) = $
(τ0

t

)1/(2ν+2)
[∫ (t/τ0)

(t/τring)

x(1/2(2ν+2))−1 exp(−x)

]2

(5.49)

where $ is given by:

$ = G0
4

π4

(
1

2ν + 2

)2

(5.50)

The integral in the expression (5.49) is an incomplete gamma function −Γ
[

1
4ν+4

, t
τring

]
and

for t
τring

> 10 can be approximated by an exponential decay 0.1 exp
(
− t

τring

)
. The long time

response can thus be shown to be an exponential decay so that an approximate constitutive

equation can be written in an asymptotic form as:

G(t) u
$

10

(τ0

t

)1/(2ν+2)

exp

(
− t

τring

)
(5.51)

For df = 4 we obtain:

G(t) u 3.2× 10−5cbkBT
(τ0

t

)2/5

exp

(
− t

τring

)
(5.52)

This equation is in agreement with that proposed by Kapnistos et al. (2008) except for the

prefactor.

96



The gain and loss modulus can be obtained from the expression (5.51) through the trans-

form:

G′(ω) = ω

∫ ∞

0

dt G(t) sin(ωt) (5.53)

G′′(ω) = ω

∫ ∞

0

dt G(t) cos(ωt) (5.54)

The exponential decay in the relaxation modulus is expected to yield G′(ω) ∼ ω2 and G′′(ω) ∼
ω at low frequencies ω << 1/τring. At small times, i.e., frequencies above the crossover

frequency ωc = 1/τring the power law decay is expected to be stronger than the exponential

decay and hence we consider only the transform of the power law decay given by:

G′(ω) ∼ G′′(ω) ∼ (ωτ0)
1/(2ν+2) (5.55)

The equations (5.55) suggest that for higher than the crossover frequency the gain and loss

moduli follow a power law frequency dependence. For df = 4 we have G′, G′′ ∼ ω2/5. Thus,

the high frequency behavior of rings is unlike linear entangled chains which show a constant

gain modulus (the so called plateau modulus) and a decreasing loss modulus after the crossover

frequency.
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Chapter 6

Scaling Arguments in Semi-Dilute Solution

6.1 Concentration Dependence of Size

It is known that a flexible ring polymer takes a collapsed conformation in a topologically con-

straining environment such as in a gel (Khokhlov and Nechaev, 1985; Obukhov et al., 1994) or a

melt of ring polymers (Cates and Deutsch, 1986; Müller et al., 1996; Brown and Szamel, 1998;

Müller et al., 2000; Arrighi et al., 2004; Gagliardi et al., 2005; Hur et al., 2006; Kawaguchi

et al., 2006; Suzuki et al., 2008). The collapse of a ring polymer in a melt environment is

triggered by the non-concatenation topological constraint (Fig 6.1). In a semi-dilute solution

we may expect the non-concatenation topological constraint to be activated at a concentration

where the ring ‘sees’ other rings. Consequently, the non-concatenation constraint can be ex-

pected to change the concentration dependence of size of a ring chain from that of a linear

chain.

We will define C∗ as the threshold concentration where transition from dilute to semi-

dilute regime happens, and C# as the overlap concentration above which topological constraints

are activated. In the semi-dilute regime, we may consider two cases:

• An unconstrained state between the threshold and the overlap concentrations, C∗ < C <

C#, where lack of sufficient ring chain neighbors prevents the collapse of ring chain.

• A topologically constrained state at higher concentrations C > C# where a given ring

chain is surrounded by many ring chain neighbors which causes the ring chain to take up

collapsed lattice-animal conformation due to the non-concatenation constraint (Cates and

Deutsch, 1986; Müller et al., 2000).
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Figure 6.1: Schematic of topological constraints associated with ring polymers

Since the segment density of a lattice-tree increases with mass, large ring polymers at high

concentration will experience interactions in order to avoid segment overlap events (Obukhov

et al., 1994). Therefore we also consider the cases of small and large ring polymers in the high

concentration range.

6.1.1 Θ-Solvent

The size of a ring polymer in a Θ-solvent under dilute conditions is given by (Zimm and Stock-

mayer, 1949):

R2
dil =

NKb2

12
(6.1)

As more ring polymers are dissolved in the solution a threshold is reached when the concentra-

tion of ring polymers in solution C∗ becomes nearly equal to the segment density of a single

chain. Thus,

C∗ ∼ NK

R3
dil

∼ N
−1/2
K b−3 (6.2)

At the overlap concentration C∗ the correlation length ξ, i.e., the mean distance between Kuhn

segments on neighboring ring chains, is of the order of the ring size Rdil. Beyond the overlap

concentration the solution enters the semi-dilute regime and ξ becomes smaller than Rdil. We

may then expect ξ to be independent of the number of Kuhn segments NK in a chain. The

concentration dependence of the correlation length is then given by:

ξ ∼ Rdil

(
C∗

C

)m

∼ N0
K (6.3)
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Substituting from equations (6.1) and (6.2) into equation (6.3) we obtain m = 1. Thus, the

correlation length depends inversely on the concentration:

ξ ∼ Rdil

(
C∗

C

)
(6.4)

Considering the ring chain to be composed of blobs of size ξ each made of Nb Kuhn segments

the structure of the ring can be examined at length scales < ξ and > ξ . Below the correlation

length the chain segments behave as if they are under dilute Θ-solvent condition so that ξ ∼
N

1/2
b b. From equation (6.4) we have:

Nb ∼ NK

(
C∗

C

)2

(6.5)

Above the correlation length scale a ring polymer on an average sees only ring neighbors. For

solution concentrations in the range C∗ < C < C# the non-concatenation constraints are weak

and consequently the size of ring polymers is given by:

R ∼ ξ

(
NK

Nb

)1/2

(6.6)

Substituting from equations (6.4) and (6.5) into equation(6.6) we get:

R ∼ Rdil (6.7)

i.e., the size of the ring is independent of the solution concentration. At higher concentrations

in the range C > C# the non-concatenation constraints become effective at length scale of the

order ξ. Ring polymers now take a lattice animal conformation at this length scale. We may

then consider a ring to be composed of N = NK/Nb blobs each of size ξ and having only ring

neighbors. The size of such a ring would be given by:

R ∼ ξ

(
NK

Nb

)ν

(6.8)

Here, ν is a general exponent lying between 1/4 and 1/2 (Müller et al., 2000). Substituting from

equations (6.4) and (6.5) into equation (6.8) we get:

R ∼ Rdil

(
C∗

C

)1−2ν

(6.9)

6.1.2 Good Solvent

The scaling relations for ring size in good solvent can be derived using the same arguments

presented in section 6.1.1. Thus, the ring size in dilute solution and the overlap concentration
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are given by:

Rdil ∼ N
3/5
K b (6.10)

C∗ ∼ NK

R3
dil

∼ N
−4/5
K b−3 (6.11)

The correlation length is given by:

ξ ∼ Rdil

(
C∗

C

)3/4

(6.12)

and the number of Kuhn segments in a blob of size ξ is given by:

Nb ∼ NK

(
C∗

C

)5/4

(6.13)

At concentrations above the overlap concentration and at length scale of the order ξ the ring

chain can be considered as being surrounded by only ring neighbors and therefore all excluded

volume interactions can be considered to be screened. For solution concentrations in the range

C∗ < C < C# the non-concatenation constraint are weak and the size of the ring is given by:

R ∼ ξ

(
NK

Nb

)1/2

(6.14)

Substituting from relations (6.12) and (6.13) into equation (6.14) we get:

R ∼ Rdil

(
C∗

C

)1/8

(6.15)

At higher concentrations in the range C > C# the non-concatenation constraint becomes effec-

tive and hence the size of the ring is given by:

R ∼ ξ

(
NK

Nb

)ν

(6.16)

Substituting from relations (6.12) and (6.13) into relation (6.16) gives:

R ∼ ξ

(
C∗

C

)(3−5ν)/4

(6.17)

6.2 Concentration Dependence of Relaxation Time

In the chapters 3, 4 and 5 we saw that dynamics of non-concatenated ring polymers in a topo-

logically constraining environment is different from that of linear polymers. In going from a

dilute solution to a semi-dilute solution we already saw the influence of topological constraints
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playing a role in altering the structure and consequently the size of the ring chain. Further,

on activation of the topological constraints the dynamics is expected to change from Zimm to

Rouse and at higher concentrations to the Cayley tree structure dynamics discussed in detail

in the previous chapters. It is useful to explore the concentration dependence of the longest

relaxation time as an aid to understand the influence of concentration on the dynamic response

of the ring polymer. Due to the difference in dynamic response of the ring polymer from that

of the linear polymer the concentration dependence of longest relaxation time of a ring chain in

semi-dilute solution is expected to be different from that of a linear chain.

6.2.1 Θ-Solvent

We start by looking at the dynamic response of a ring polymer in dilute regime. The relaxation

time as per Zimm dynamics is given by (Doi and Edwards, 1986; Liu and Öttinger, 1987):

τdil ' ηsb
3N

3/2
K√

3πkBT
(6.18)

In the semi-dilute regime it is known that the hydrodynamic screening length, ξH , is of the same

order as the correlation length ξ (Rubinstein and Colby, 2003). As the concentration increases

beyond the overlap concentration both the correlation length and the hydrodynamic screening

length decrease. The latter causes an alteration of the dynamic response and hence we expect

the relaxation time to show concentration dependence. In the semi-dilute regime the dynamics

of a ring chain is different at different length scales. Below a length scale of ξ the chain sees

dilute solution and hence hydrodynamic interactions are active. Above the length scale of ξ

a coarse grained chain sees only ring neighbors and hence the hydrodynamic interactions are

screened. For solution concentrations in the range C∗ < C < C# the relaxation time of a

coarse grained ring chain is given by:

τ ∼ τξ

(
NK

Nb

)2

(6.19)

Here τξ is the Zimm relaxation time of a blob of size ξ containing Nb Kuhn segments and is

given by:

τξ ' ηsb
3N

3/2
b√

3πkBT
' ηs√

3π
ξ3 (6.20)

where we have made use of the relation ξ ∼ N
1/2
b b . Substituting from relation (6.20) into

equation (6.19) and using relations (6.4) and (6.5) we get:

τ ∼ τdil

(
C∗

C

)−1

(6.21)
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At higher concentrations in the range C > C# coarse grained ring chains assume lattice-tree

conformation and their dynamics are governed by rearrangement of this structure as discussed

in the previous chapters. If the ring chains are small such that excluded volume interactions due

to segment overlap can be neglected then the longest relaxation time of such chains is given by:

τ ∼ τξ

(
NK

Nb

)2ν+2

(6.22)

The assumptions made in determining the longest relaxation time for the case of melt of ring

polymers are implicit in using equation (6.22) for estimating the longest relaxation time in semi-

dilute solution. Substituting Nb ∼ (ξ/b)2 and τξ from relation (6.20) into relation (6.22), and

using relations (6.4) and (6.5) we obtain:

τ ∼ τdil

(
C∗

C

)−(4ν+1)

(6.23)

Large ring chains would assume a self avoiding lattice-tree conformation for which the

molecular weight dependence of the size of the chain remains unchanged; however, the trunk

is stretched in a way similar to that in annealed branched polymers (Gutin et al., 1993) (see

section 2.1.2). The concentration and molecular weight at which stretching effects might be-

come relevant can be estimated by considering that stretching is activated when the ratio of

excluded volume of Kuhn segment pairs to the pervaded volume is greater than unity, i.e., when

N2
K(b2r)/R3 > 1 (Obukhov et al., 1994). Here, r is the cross-sectional radius of the chain and

b2r is the excluded volume of a Kuhn segment. Using relation (6.9) for R and relation (6.1) for

Rdil it can be shown that the stretching effects cannot be neglected when:

√
NK

(
C

C∗

)3(1−2ν)

>
b

r
(6.24)

In a melt of ring polymers the concentration can be written as Cmelt ∼ Ne/a
3, where, a is the

correlation length and Ne is the number of Kuhn segment in a blob of size a. Equation (6.24) is

then equivalent to the condition N > (b2/ar)1/(2−3ν).

The longest relaxation time of a self avoiding lattice-tree is given by:

τ ∼ τξ

(
NK

Nb

)2+ρ

(6.25)

where ρ = (2ν + 1)/3 (Gutin et al., 1993) (see section 2.1.2). Substituting Nb ∼ (ξ/b)2 and τξ

from relation (6.20) into relation (6.23) and using relations (6.4) and (6.5) we obtain:

τ ∼ τdil

(
C∗

C

)−(4ν+5)/3

(6.26)
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6.2.2 Good Solvent

The scaling relations for the longest relaxation time of a ring chain dissolved in a good solvent

in semi-dilute regime can be derived using the same arguments presented in section 6.2.1. The

relaxation time of a ring chain in a dilute solution of a good solvent is given by:

τdil ' ηs(bN
3/5
K )3

√
3πkBT

(6.27)

For solution concentrations in the range C∗ < C < C# the relaxation time of a coarse grained

ring chain is given by equation (6.20) where:

τξ ' ηs(bN
3/5
b )3

√
3πkBT

' ηs√
3π

ξ3 (6.28)

Here we have made use of the relation ξ ∼ N
3/5
b b. Substituting τξ from relation (6.28) into

relation (6.19), and using relations (6.12) and (6.11) we get:

τ ∼ τdil

(
C∗

C

)−(1/4)

(6.29)

At higher concentrations in the range C > C# the relaxation time of a small ring chain is given

by equation (6.22). Substituting Nb ∼ (ξ/b)5/3 and τξ from relation (6.28) into equation (6.22),

and using relations (6.11) and (6.10) we get:

τ ∼ τdil

(
C∗

C

)−(10ν+1)/4

(6.30)

Large ring polymers will experience excluded volume interactions due to segment overlap when

N2
K(b2r)/R3 > 1. Using equations (6.17) and (6.10) it can be shown that the excluded volume

interactions become important when:

N
1/5
K

(
C

C∗

)3(3−5ν)/4

>
b

r
(6.31)

The longest relaxation time of such a chain is given by equation (6.25). Substituting Nb ∼
(ξ/b)5/3 and τξ from relation (6.28) into equation (6.25), and using relations (6.12) and (6.10)

we get:

τ ∼ τdil

(
C∗

C

)−(5ν+4)/6

(6.32)
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6.3 Diffusion Coefficient

Diffusion studies on ring polymers aimed at understanding the effect of absence of chain ends

on polymer dynamics has been a subject of recent interest (Klein, 1986; Mills et al., 1987; Cos-

grove et al., 1992, 1996; Müller et al., 1996; Brown and Szamel, 1998; Müller et al., 2000;

Hur et al., 2006; Kawaguchi et al., 2006; Kanaeda and Deguchi, 2008). Diffusion of flexible

ring chains through a gel/cross-linked network can be considered as a model system for provid-

ing insights into diffusion of plasmid DNA in gel-electrophoresis and controlled drug delivery

systems. The diffusion coefficient of a ring polymer is given by:

D ∼ R2

τ
(6.33)

where, R2 is the mean size of the ring chain and τ is its longest relaxation time. The concentra-

tion dependence of size and relaxation time for a ring chain in semi-dilute solution, derived in

the previous sections, can be used in expression (6.33) to obtain the concentration dependence

of diffusion coefficient.

6.3.1 Θ-Solvent

We have used the relevant equations from sections (6.1.1) and (6.2.1) in expression (6.33) to

obtain the scaling relations for the diffusion coefficient shown in Table (6.1). In Table (6.1) we

have used ρ = (2ν + 1)/3 and:

Ddil ∼ R2
dil

τdil

'
√

3πkBT

ηsbN
1/2
K

(6.34)

6.3.2 Good Solvent

We have used the relevant equations from sections (6.1.2) and (6.2.2) in expression (6.33) to

obtain the scaling relations for the diffusion coefficient shown in Table (6.2). In Table (6.2) we

have used ρ = (2ν + 1)/3 and:

Ddil ∼ R2
dil

τdil

'
√

3πkBT

ηsbN
3/5
K

(6.35)

105



Regime R τ D ∼ R2/τ

Dilute Rdil ∼ N
1/2
K b τdil ∼ ηsb

3N
3/2
K√

3πkBT

√
3πkBT

ηsbN
1/2
K

(
C∗
C

)0

(C < C∗)

Semi-dilute Rdil τdil

(
C∗
C

)−1

Ddil

(
C∗
C

)

(C∗ < C < C#)

Small Ring Chain

Semi-dilute Rdil

(
C∗
C

)1−2ν

τdil

(
C∗
C

)−(4ν+1)

Ddil

(
C∗
C

)3

(C > C#)

Large Ring Chain

Semi-dilute Rdil

(
C∗
C

)1−2ν

τdil

(
C∗
C

)−(4ν+5)/3

Ddil

(
C∗
C

)(11−8ν)/3

(C > C#)
√

NK

(
C∗
C

)3(1−2ν)

> b
r

Table 6.1: Scaling relationships for ring polymers in Θ-solvent semi-dilute solution
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Regime R τ D ∼ R2/τ

Dilute Rdil ∼ N
3/5
K b τdil ∼ ηs(bN

3/5
K )3

√
3πkBT

√
3πkBT

ηsbN
3/5
K

(
C∗
C

)0

(C < C∗)

Semi-dilute Rdil

(
C∗
C

)1/8

τdil

(
C∗
C

)−1/4

Ddil

(
C∗
C

)1/2

(C∗ < C < C#)

Small Ring Chain

Semi-dilute Rdil

(
C∗
C

)(3−5ν)/4

τdil

(
C∗
C

)−(10ν+1)/4

Ddil

(
C∗
C

)7/4

(C > C#)

Large Ring Chain

Semi-dilute Rdil

(
C∗
C

)(3−5ν)/4

τdil

(
C∗
C

)−(5ν+4)/12

Ddil

(
C∗
C

)(11−8ν)/3

(C > C#)

N
1/5
K

(
C∗
C

)(13−10ν)/6

> b
r

Table 6.2: Scaling relationships for ring polymers in good solvent semi-dilute solution
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6.4 Ring-Linear Blends

A simple Flory-like free energy argument was used by Cates and Deutsch (Cates and Deutsch,

1986) to show the effect of the non-concatenation constraint on the size of a ring polymer (see

section 2.1.2). According to this argument the free energy of a ring polymer can be written as:

F (R) =
R3

NK

+
NK

R2
(6.36)

It is argued that one degree of freedom is lost due to presence of a ring neighbor contributing to

the non-concatenation constraint. The number of ring neighbors scales as R3/NK in pure melt

and hence degrees of freedom lost scales as R3/NK . The non-concatenation constraint being

compressive is balanced by the Gaussian free energy penalty against compression NK/R2. The

free energy minimization dF/dR = 0 yields R ∼ N
2/5
K .

In a melt of ring chain addition of a linear chain is expected to dilute the non-concatenation

constraint and consequently swell the ring chain. For determining the size dependence of a ring

chain on its concentration in a ring-linear blend we start the scaling arguments from the case of

small amount of ring chains in a melt of linear chains. A ring-linear blend at low concentration

of rings in a linear melt can be thought of as dilute solution of rings. Since the ring polymer

does not experience excluded volume interactions in a sea of linear chains its conformation

is identical to that in a Θ-solvent. At the threshold concentration C∗
r the concentration in the

solution is the same as the concentration of Kuhn segments within a single ring chain. This

concentration is given by the ratio of number of Kuhn segments in a single ring chain, NK , to

the pervaded volume of the ring chain in dilute solution,(Rdil)
3 ∼ N

3/2
K :

C∗
r =

NK

(Rdil)3
∼ NK

N
3/2
K

∼ N
−1/2
K (6.37)

At the threshold concentration, C∗
r , the correlation length, ξ, i.e., the mean distance be-

tween Kuhn segments on neighboring ring chains is of the order of the size of the ring chain,

Rdil. Beyond the threshold concentration C∗
r the ring-linear blend enters the semi-dilute regime

and the correlation length ξ becomes lower than that of the radius of gyration, Rdil. Further

we expect the correlation length to be independent of number of Kuhn segments in the chain,

NK , beyond the overlap threshold concentration. The correlation length dependence on the

concentration is then given by:

ξ = Rdil

(
C∗

r

Cr

)m

∼ N0
K (6.38)
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Using Rdil ∼ N
1/2
K , the scaling relationship for C∗

r given by equation(6.37) and noting that

Cr is independent of N we obtain m = 1. Thus, the correlation length scales inversely as the

concentration in the semi-dilute regime, ξ(Cr) ∼ (Cr/C
∗
r )−1.

Considering the ring chain to be composed of blobs of size ξ made of say, Nb, Kuhn

segments, the ring chain can be examined at length scales < ξ and of the order of∼ ξ. Below the

correlation length scale, ξ, we argue that the ring encounters on an average only linear neighbors

and the chain section in a blob of size ξ behaves as if it is under Θ-conditions. This gives the

correlation length ξ scaling as N
1/2
b . Given that ξ(Cr) ∼ (Cr/C

∗
r )−1 we have Nb ∼ (Cr/C

∗
r )−2.

For a coarse grained picture on length scales of the order of ξ we argue that ring on an average

only sees ring chain neighbors. The non-concatenation constraint becomes operational at this

length scale and hence the ring would appear to have a lattice-tree structure (Cates and Deutsch,

1986). As per the arguments in section 6.1.1 the non-concatenation constraints become active

at a concentration Cr > C#
r

At the length scale ξ we consider the ring to be composed of NK/Nb segments of length

ξ with only ring neighbors. Such a structure would have a size scaling as (NK/Nb)
νξ, where ν

is a general exponent lying between 1/4 and 1/2 (Khokhlov and Nechaev, 1985; Müller et al.,

2000). Noting that NK is independent of concentration, Nb ∼ (Cr/C
∗
r )−2 and ξ ∼ (Cr/C

∗
r )−1

we have (identical to relation (6.9)):

Rr ∼
(

C0
r

(Cr/C∗
r )−2

)ν (
Cr

C∗
r

)−1

∼
(

Cr

C∗
r

)2ν−1

(6.39)

In the case we use ν = 2/5, as indicated by the Cates and Deutsch argument (Cates and Deutsch,

1986), we obtain that in the semi-dilute regime the radius of gyration of a ring chain scales with

concentration of ring as (Cr/C
∗
r )−1/5.

We can follow a similar line of reasoning for the case of linear chains in a melt of ring

chains starting from a small fraction of linear chains up to the semi-dilute regime. In the semi-

dilute regime the linear chains can also be considered to be composed of blobs of size ξ. Due

to the absence of non-concatenation constraint the linear chain has the same scaling of the size

at length scales < ξ and of the order of ξ. This yields a size of the linear in the semi-dilute

regime scaling as (NK/Nb)
1/2ξ. Noting that NK is independent of concentration, Nb ∼ C−2

l

and ξ ∼ C−1
l we have:

Rl ∼
(

C0
l

C−2
l

)1/2

C−1
l ∼ C0

l (6.40)

It is observed from relation (6.40) that in the case of linear chains the radius of gyration is
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independent of concentration Cl. This is expected as the linear chains do not have a constraint

imposed with change of its neighbors unlike the ring chains.

A simple extension of relation (6.36) to the case of ring-linear blend in the limit of Cr >

C∗
r in the semi-dilute regime can be written as:

F (R)

kBT
= Φ

R3

NK

+
NK

R2
(6.41)

where, Φ is the fraction of ring neighbors of any given ring in a ring-linear blend. In a mean

field sense this is expected to be the same as the number fraction of rings in the system. We have

assumed in relation (6.41) that the entropic penalty scales linearly with the number fraction of

rings in the semi-dilute regime. The minimization of free energy relation (6.41) with respect to

R yields:

R ∼ N2/5Φ−1/5. (6.42)

The number fraction Φ is given by :

Φ =
nr

nr + nl

(6.43)

where, nr and nl are the number of ring and linear chains in the system respectively. The

density of a ring-linear blend made of ring and linear polymers of identical repeat units remains

unaltered with amount of ring and linear chains in the system. Considering density of system

remains constant we have the number density of the system a constant and hence nr + nl can

be considered constant for a given volume of the blend.

If nr + nl remains constant in the system, then we have from relation (6.43) (Φ/Φ∗) ∼
(nr/n

∗
r) ∼ (Cr/C

∗
r ), where, Φ∗ is the number fraction at threshold concentration. Using this in

relation (6.39) we have:

Rr ∼
(

Φ

Φ∗

)2ν−1

(6.44)

Comparing the scaling results in relation (6.44) for ν = 2/5 with the free energy based scaling

results in relation (6.42) we see that the results of free energy minimization corroborate with

the concentration scaling arguments.

6.5 Results and Discussion

Concentration dependence of the self diffusion coefficients of a ring polymer are shown schemat-

ically in figures 6.2 and 6.3, respectively, for the Θ-solvent and good-solvent cases. In these
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Regime R τ D ∼ R2/τ

Dilute R ∼ N
1/2
K b τ ∼ ηs(bN

1/2
K )3

√
3πkBT

√
3πkBT

ηsbN
1/2
K

(
C∗
C

)0

(C < C∗)

Semi-dilute bN
1/2
K τdil

(
C∗
C

)−1

Ddil

(
C∗
C

)

(C < C < C#)

Semi-dilute bN
1/2
K τdil

(
C∗
C

)−3

Ddil

(
C∗
C

)3

(C > C#)

Table 6.3: Scaling relationships for linear polymers in Θ-solvent semi-dilute solution

figures Cex indicates the threshold concentration above which excluded volume interactions due

to ring segment overlap are active. The concentration dependence of the diffusion coefficient

of a linear polymer in Θ-solvent and good-solvent cases are given in Table 6.3 and Table 6.4,

respectively, for comparative purpose. We observe that in the regimes C∗ < C < C# and

C > C# the concentration dependence of diffusion coefficients for ring polymers are identi-

cal to those for linear polymers. However, the presence of excluded volume interactions for

large ring polymers at high concentration causes the diffusion coefficient to decrease relatively

weakly with concentration for all ν > 1/4. We also note that by combining the equations for

C∗ [relations (6.2) and (6.11)] and Ddil [relations (6.34) and (6.35)] for small ring polymers

we obtain the molecular weight dependence of diffusion coefficient namely, D ∼ N−1
K in the

concentration range C∗ < C < C# and D ∼ N−2
K in the concentration range C > C# for

both θ-solvent and good solvent cases, which is similar to that for linear polymers. For large

ring polymers at high concentrations where excluded volume interactions can become relevant

we get N
(7−4ν)/3
K for both Θ-solvent and good solvent cases, which is a slightly weaker depen-

dence than for small ring polymers for all ν > 1/4. In figures 6.3 and 6.4, respectively, the

comparison of scaled self-diffusion coefficients and scaled radii of gyration of a ring in good

solvent obtained from MC simulations are shown to be in good agreement with the scaling

relationships.

We compare the relations summarized in Table 6.2 with the experimental data of Robert-
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Figure 6.2: Concentration dependence of diffusion coefficient for Θ-solvent
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Figure 6.3: Concentration dependence of diffusion coefficient in good-solvent. Points obtained
from MC simulations by Sachin Shanbhag.
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Figure 6.4: Comparison of the concentration dependence of size of a ring polymer in good-
solvent obtained from MC simulations by Sachin Shanbhag (points) and scaling arguments
(lines obtained using ν = 2/5 in Table 6.2).
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Regime R τ D ∼ R2/τ

Dilute R ∼ N
3/5
K b τ ∼ ηs(bN

3/5
K )3

√
3πkBT

√
3πkBT

ηsbN
3/5
K

(
C∗
C

)0

(C < C∗)

Semi-dilute Rdil

(
C∗
C

)1/8

τdil

(
C∗
C

)−1/4

Ddil

(
C∗
C

)1/2

(C < C < C#)

Semi-dilute Rdil

(
C∗
C

)1/8

τdil

(
C∗
C

)−3/2

Ddil

(
C∗
C

)7/4

(C > C#)

Table 6.4: Scaling relationships for linear polymers in Good solvent semi-dilute solution

son and Smith (2007b) on self diffusion coefficient of cyclic DNA of different chain lengths

(5.9-45 kbp) dissolved in aqueous buffer solution in the semi-dilute regime. The data shows

that the self diffusion coefficients of all cyclic DNAs scale as D ∼ L−nC−0.5 at lower concen-

trations, where L and C are the contour length and the concentration, respectively, of cyclic

DNA in the buffer solution and n ∼ 0.5 − 1. The concentration dependence is in agreement

with the prediction in the concentration range C∗ < C < C# reported in Table 6.2. Noting

that the contour length is proportional to the number of Kuhn segments, the observed molec-

ular weight scaling corresponds to either dilute or semi-dilute case. Above a concentration of

approximately C# ≈ 4C∗, being the overlap concentration, the diffusion coefficients for the 25

and 45 kbp cyclic DNAs scale as D ∼ L−mC−1.75 ; the observed values for the exponent m are

in the range 1-2. While the molecular weight dependence corresponds to somewhere between

Rouse regime (C∗ < C < C#) and topologically constrained regime (C > C#), the concentra-

tion dependence is in agreement with the prediction for a small ring in the concentration range

C > C#.

Considering the DNA to be composed of blobs, with each blob containing Nξ Kuhn seg-

ments, the diffusion coefficients of a linear chain under such conditions is given by Doi and

Edwards (1986) model:

Dlinear =
1

3

kBT

ζ

Nξ

N2
K

(6.45)

where, ζ is the friction coefficient of a Kuhn segment. Different expressions for the diffusion
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coefficient of ring chain can be got from the PPR model, BS model and FG model respectively

given by:

DPPR =
1

3
DP

a

LP

=
1

3

kBT

ζ

Nξ

N2
K

(6.46)

DBD =
kBT

ζ

Nξ

N2
K

(6.47)

DFG =
1

3
DN

a

LN

=
1

3

kBT

ζ

N4ν−1
ξ

N2
K

(6.48)

Using expression (6.45) and expressions (6.46), (6.47) and (6.48) we calculate below the diffu-

sion coefficients of linear and ring DNA of 45 kbp at 12C∗ and compare it with Robertson and

Smith (2007b) experimental data.

The maximum concentrations reached in DNA experiments of Robertson and Smith are

≈ 12C∗. The molecular weight between entanglement and the correlation length at 31C∗ are

reported to be respectively,1.45MDa and 0.4µm (Teixeira et al., 2007). Using the reported data

at 31C∗ and the concentration dependence of ξ as given in relation (6.12) we can estimate that

Nξ = ξ2/b2 ≈ 30 at 12C∗. Here we have assumed that cyclic DNA has the same Kuhn length

as that for linear DNA, which is reported by Teixeira et al. (2007) to be b = 0.132µm. The

same authors also report a fast relaxation time of 2.0 ± 0.5s for a λ-phage DNA molecule of

Rg = 0.73µm and NK = 167 for various concentrations in the entangled regime. Equating the

Doi and Edwards (1986) expression for the rotational Rouse relaxation time (which is one half

of the Rouse relaxation time) to 2.0 s we can estimate the segmental friction coefficient of the

DNA molecule to be ζ = 0.061s/µm2kBT .

Using the above estimated segmental friction coefficient the diffusion coefficient of a 45

kbp linear DNA at 12C∗ can be calculated using equation (6.45) to be ≈ 7 × 10−3µm2/s.

This prediction is found to be higher than the value measured experimentally by Robertson and

Smith (2007b) of ≈ 3.5 × 10−3µm2/s by a factor of ≈ 2. Therefore we correspondingly in-

crease the segmental friction coefficient by this factor in order to match the predicted diffusion

coefficient of linear polymers with the experimentally measured diffusion coefficient. Now as-

suming that the segmental friction coefficient for a cyclic DNA is the same as that for a linear

DNA, the diffusion coefficient of the cyclic DNA can be calculated using equation (6.46) to be

≈ 3.5× 10−3µm2/s – a value lower by a factor of ≈ 8 from that measured experimentally. We

can similarly calculate the cyclic DNA diffusion coefficient using equation (6.47) and (6.48)

respectively to be ≈ 1× 10−2µm2/s – a value lower by a factor of ≈ 3 and ≈ 9× 10−4µm2/s
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Figure 6.5: Comparison of concentration dependence of size in ring-linear blend scaling pre-
dictions with MC simulations by Sachin Shanbhag.

– a value lower by a factor of ≈ 30. It is observed that all the frameworks underpredict the

diffusion coefficient of cyclic DNA as measured in the experiments of Robertson and Smith

(2007b) at 12C∗.

Note: 45 kbp cyclic DNA is large enough to experience excluded volume interactions in a

strongly topologically constrained state (Obukhov et al., 1994). However, for a 45 kbp cyclic

DNA the predicted concentration at which excluded volume interactions could become rele-

vant in a semi-dilute solution is estimated from relation (6.31) to be C ≈ 32C∗, whereas the

maximum concentration used in the experiments is C ≈ 12C∗.

In Figure 6.5 we compare the scaling predictions of concentration dependence of ring

size in a ring-linear blend for system with two different N with MC simulations by Sachin

Shanbhag. In the ring-linear blend both the ring and the linear chain are of the same degree

of polymerization. The ring and linear chains with degree of polymerization N = 150 and

N = 300 are considered. For generating the master curve the ring size is scaled with dilute

solution size and the concentration is scaled with the threshold concentration.
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Appendix A

Pom-Pom Ring Framework

A.1 Normal Coordinates for df = 1/ν

Normal coordinates are defined by:

Rn = X0 + 2
∑

p

Xp cos
(pπn

N2ν

)
(A.1)

fn =
f0

N2ν
+

1

N2ν

∑
p

fp cos
(pπn

N2ν

)
(A.2)

Xp =
1

N2ν

N2ν∫

0

dn cos
(pπn

N2ν

)
Rn (A.3)

fp = 2

N2ν∫

0

dn cos
(pπn

N2ν

)
fn (A.4)

In the above equations ν is related to the fractal dimension of the Cayley-tree ring by df = 1/ν.

Thus, for an ideal ring in FO environment ν = 1/4 and for a melt of rings ν can lie between

1/4 and 1/2.

The transformation of left hand side and the first term of the right hand side of equation

(3.4) using normal coordinates (A.1) yields respectively:

∂Rn

∂t
=

∂X0

∂t
+ 2

∑
p

∂Xp

∂t
cos

(pπn

N2ν

)
(A.5)

∂2Rn

∂n2
= −2

∑
p

Xp
p2π2

N4ν
cos

(pπn

N2ν

)
(A.6)
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By equating coefficients of cos(pπn/N2ν) in equation (3.4) we obtain:

ζeff
∂X0

∂t
=

f0
N2ν

(A.7)

2ζeff
∂Xp

∂t
= −2keff

p2π2

N4ν
Xp +

fp
N2ν

(A.8)

A.2 Zeroth and Higher Rouse Modes for df = 1/ν

The zeroth Rouse mode equation (A.7) can be written as:

ζ0
∂X0

∂t
= f0 (A.9)

where ζ0 = N2νζeff and ζeff = ζloop is the friction coefficient associated with the primary trunk

segment. The solution of equation (A.9) gives the position of the center of mass of the chain

and is given by:

X0 =
1

ζ0

t∫

−∞

dt1f0(t1) (A.10)

In order to determine ζloop for Cayley tree chain with df = 1/ν and a trunk composed

of N2ν blobs we first determine that the loop is composed of N1−2ν blobs using arguments

similar to that in section 3.2. Using the pom-pom model analogy for loops composed of N1−2ν

blobs, the diffusion coefficient of a loop point, Dloop, is given by Dloop ∼ a2/τloop, where

τloop ∼ a2(N (1−2ν))2ζblob is the longest Rouse relaxation time of the loop attached to the loop

point. Using the Einstein argument the drag on a loop point is given by:

ζloop =
kBT

Dloop

u N2(1−2ν)ζblob (A.11)

where ζblob is the friction coefficient of a single blob in the loop. Thus, the modified Rouse

chain which constitutes the primitive chain has each of its beads having a friction coefficient of

order N2(1−2ν)ζblob and hence ζeff is given by:

ζeff = ζloop u N2(1−2ν)ζblob (A.12)

Using the stochastic force correlation (3.10) and ζ0 = N2νζeff in equation (3.9) we obtain

the mean square displacement of the center of mass:

〈
(X0α(t)−X0α(0))2

〉
= 2

kBT

N2νζeff

δααt (A.13)
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Using expression (A.13) in equation (3.8) the diffusion coefficient of the modified Rouse chain

with an effective bead friction N2(1−2ν)ζblob is given by:

DP =
kBT

N2−2νζblob

=
(a

b

)2(1−2ν) kBT

N2−2ν
K ζ

(A.14)

The decoupled equations for the higher normal modes are given by:

ζp
∂Xp

∂t
= −kpXp + fp (A.15)

where,

ζp = 2N2νζeff (A.16a)

kp = 2keff
p2π2

N2ν
(A.16b)

The solution to equation (A.15) is given by:

Xp(t) =
1

ζp

t∫

−∞

dt1 exp

(
−(t− t1)

τp

)
fp(t1) (A.17)

where, τp = ζp/kp.

Substituting for ζp and kp from equation (A.16) and using expression (A.12) for ζeff and

keff = 3kBT/a2 we have:

τp =
1

p2

1

3

a2

π2

ζblob

kBT
N2 =

1

p2

1

3π2

a4

b2

ζ

kBT
N2 (A.18)

where, we have used expression (3.3) for ζblob and the Gaussian statistics a2 = Neb
2. The

longest relaxation time for Rouse like relaxation of the trunk corresponds to the first Rouse

mode p = 1 and is given by:

τ1 =
1

3π2

a4

b2

ζ

kBT
N2 =

1

3

b2

π2

ζ

kBT
N2

K (A.19)

where, we have used N = NK/Ne. The shortest Rouse relaxation time of the trunk corresponds

to that of the single blob of the trunk, i.e., p = N1/2 mode and is given by:

τN1/2 =
1

3π2

a4

b2

ζ

kBT
N =

1

3

a2

π2

ζ

kBT
NK (A.20)

The correlation of the Rouse modes 〈Xpα(t)Xqβ(0)〉 determines the stress in the system.

In order to determine it we first obtain from equation (A.17):

〈Xpα(t)Xqβ(0)〉 =
1

ζ2
p

t∫

−∞

dt1

0∫

−∞

dt2 exp

(
−(t− t1)

τp

)
exp

(
t2
τq

)
〈fpα(t1)fqβ(t2)〉 (A.21)
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Using the fluctuation-dissipation theorem given by equation (3.5) and the normal coordinates

transformation equation (A.2) we obtain:

〈(fpα(t1)fqβ(t2))〉 = 2ζpkBTδpqδαβδ(t1 − t2) (A.22)

Using equation (A.22) in equation (A.21), we obtain:

〈(Xpα(t)Xqβ(0)〉 =
kBT

kp

δpqδαβ exp

(
− t

τp

)
(A.23)

A.3 Reptation of the trunk

The solution for equation (3.16) with the initial and boundary conditions, equations (3.17)-

(3.19) is given by (Doi and Edwards, 1986):

φ(s, s′; t) =a|s− s′|+ 2DP
a

LP

t

+ 4
LP a

π2

∑
p

1

p2

[
1− exp

(
−p2 t

τd

)]
cos

(
pπs

LP

)
cos

(
pπs′

LP

) (A.24)

where,

τd =
L2

P

DP π2
=

a2

π2

ζblob

kBT
N2ν+2 =

1

π2

b4ν+1

a4ν

ζ

kBT
N2ν+2

K (A.25)

where we have used LP = N2νa = N2ν
K b4ν/a4ν−1 and DP given by expression (A.14).

In the lim s′ → s we have φ(s, s; t) = 〈(R(s, t)−R(s, 0))2〉 the mean square displace-

ment of the blob on the sth position along the chain given by:

〈
(R(s, t)−R(s, 0))2

〉
= 2DP

a

LP

t+4
LP a

π2

∑
p

1

p2

[
1− exp

(
−p2 t

τd

)]
cos2

(
pπs

LP

)
(A.26)

It can be seen from equation (A.26) for t > τd we get diffusive behavior with diffusion constant

given by:

D = lim
t→∞

1

6t
φ(s, s; t) =

1

3
DP

a

LP

=
1

3

kBT

N2ζblob

=
1

3

a2

b2

kBT

N2
Kζ

(A.27)

In reptation the diffusive motion of the primitive chain determined by the evolution of

correlation function φ(s, s; t) causes the chain to move out of the original tube of confinement.

The original tube of confinement can be thought of as the orientational memory of the primitive

chain. At long times, t > τd, the diffusive motion causes the primitive chain to completely leave

the original tube and loose its orientation completely. At intermediate times, τe < t < τd, a part

of the primitive chain remains oriented within the original tube. The orientation of the primitive
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chain is related to the time correlation function G(s, s′; t), of the tangent vectors, u(s, t), given

by:

G(s, s′; t) = 〈u(s, t).u(s′, 0)〉 (A.28)

The time correlation function of the tangent vector G(s, s′; t) is in turn related to the time

correlation function φ(s, s′; t) by (Doi and Edwards, 1986):

G(s, s′; t) =
1

2

∂2

∂s∂s′
φ(s, s′; t) (A.29)

The correlation function G(s, s′; t) is non-zero when the tangent vectors u(s, t) and u(s′, 0)

are correlated and zero when the tangent vectors are uncorrelated. All the tangent vectors of the

primitive chain at time t, u(s, t), become uncorrelated with the original tube tangent vector at

s′, u(s′, 0), when any one end of the primitive chain passes the point s′ along the original tube.

The measure of correlation of all the tangent vectors at t, u(s, t), with the original tube tangent

vector at s′, u(s′, 0), is given by the integral of G(s, s′, t) over the contour of the primitive chain.

This measure of correlation can be considered as the probability that the original tube segment

s′ remains at time t, ψ(s′, t), and is given by:

ψ(s′, t) =
1

a

LP∫

0

dsG(s, s′; t) (A.30)

The fraction of original tube/orientation of the primitive chain that remains at time t is then

given by:

ψ(t) =
1

LP

LP∫

0

ds′ψ(s′, t)

=
8

π2

∑

p(odd)

1

p2
exp

(
−p2 t

τd

) (A.31)

A.4 Mean square displacement of the blob

The mean-square displacement of a blob in terms of the normal coordinates is given by:

〈
(Rn(t)−Rn(0))2

〉
=

〈
(X0(t)−X0(0))2〉

+

〈[
2
∑

p

(Xp(t)−Xp(0)) cos
(pπn

N2ν

)]2〉

−4

〈
(X0(t)−X0(0))

∑
p

(Xp(t)−Xp(0)) cos
(pπn

N2ν

)〉
(A.32)
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The underlined term in expression (A.32) corresponds to the cross correlations between dif-

ferent modes in the modified Rouse chain and vanish due to the linear independence of the

normal coordinates. Consequently, the mean square displacement of the modified Rouse blob

is composed of two contributions, viz., the center of mass contribution and the internal modes

contribution. Substituting equation (3.11) for the center of mass contribution in equation (A.32)

we obtain:

〈
(Rn(t)−Rn(0))2

〉
= 6DP t + 4

∑
p

〈
(Xp(t)−Xp(0))2

〉
cos2

(pπn

N2ν

)
(A.33)

We expect that, the time taken by a modified Rouse blob to have a mean square displace-

ment of order a2, is much smaller than the longest modified Rouse relaxation time τ1. For

t << τ1 the contribution of the internal modes for the displacement of the modified Rouse

blob dominates over the center of mass contribution. The underlined term of expression (A.33)

corresponds to the internal modes contribution and can be expanded to obtain:

4
∑

p

(Xp(t)−Xp(0))2 cos2
(pπn

N2ν

)

= 4
∑

p

(〈
Xp(t)

2
〉

+
〈
Xp(0)2

〉− 2 〈Xp(t).Xp(0)〉) cos2
(pπn

N2ν

) (A.34)

From equation (A.17) we have:

〈Xpα(t)Xqβ(t)〉

=
1

ζ2
p

t∫

−∞

dt1

t∫

−∞

dt2 exp

(
−(t− t1)

τp

)
exp

(
−(t− t2)

τq

)
〈fpα(t1)fqβ(t2)〉

(A.35)

Using expression (A.22) in equation (A.35) we obtain:

〈Xpα(t)Xqβ(t)〉

= 2
kBT

ζp

δαβδpq

t∫

−∞

dt1

t∫

−∞

dt2 exp

(
−(t− t1)

τp

)
exp

(
−(t− t2)

τq

)
δ(t1 − t2)

(A.36)

Expression (A.36) yields 〈(Xp(t))
2〉 = 3kBT/kp for all t and 〈Xp(t).Xp(0)〉 = (3kBT/kp) exp(−t/τp).

Substituting in equation (A.34) we obtain for t << τ1:

〈
(Rn(t)−Rn(0))2

〉
= 4N2ν a2

π2

∑
p

1

p2

[
1− exp

(
−p2 t

τ1

)]
cos2

(pπn

N2ν

)
(A.37)
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To obtain the average mean-square displacement of any segment of the chain we sum the

displacement of all the beads and divide it by the number of beads:

AverageMSD =
1

N2ν

N2ν∑
n=1

〈
(Rn(t)−Rn(0))2

〉

=4
a2

π2

∑
p

1

p2

[
1− exp

(
−p2 t

τ1

)] N2ν∑
n=1

cos2
(pπn

N2ν

) (A.38)

Moving from a discrete to continuous framework in n and p the summations are converted to

integrals:

N2ν∑
n=1

cos2
(pπn

N2ν

)
=

N2ν∫

0

dn cos2
(pπn

N2ν

)
(A.39)

∑
p

1

p2

[
1− exp

(
−p2 t

τ1

)]
=

∞∫

0

dp
1

p2

[
1− exp

(
−p2 t

τ1

)]
(A.40)

The average mean square displacement based on the continuous framework is given by:

AverageMSD = 2N2ν a2

π2

√
π

√
t

τ1

(A.41)

From equation (A.41) the time taken for a blob in the modified Rouse chain to have an average

mean square displacement of a2 is given by:

τe =
π

12

a4

b2

ζ

kBT
N2(1−2ν) =

π

12

a8ν

b8ν−2

ζ

kBT
N

2(1−2ν)
K (A.42)

and is obtained based on the relaxation time expression (A.19).

A.5 Friction of the hierarchical trunk

Consider for example a three tier hierarchical structure of the lattice tree. Hierarchy level 1

consists of a primary trunk of N1/2 blobs having as many primary loops attached to it, each of

which contains on an average N1/2 blobs. Hierarchical level 2 describes the fractal structure of

a primary loop, i.e., it consists of a secondary trunk of N1/4 blobs having as many secondary

loops attached to it, each of which contains on an average N1/4 blobs. At the hierarchical

level 3 each of the secondary loops is described as being composed of a tertiary trunk of N1/8

segments having as many loops attached to it, each of which contains N1/8 blobs. We will

follow consistently the argument that at any hierarchical level a trunk segment can undergo
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Brownian reorientational motions only after the loop attached to it has relaxed via its modified

Rouse dynamics.

If the friction coefficient of an individual blob is ζblob, then longest Rouse relaxation time

of the 3rd hierarchical level loops ∼ N1/4ζblob. This will then manifest itself as the friction

coefficient of the segment of the trunk of the 3rd hierarchical level, i.e., ζ(3) ∼ N1/4ζblob.

Thus the modified Rouse chain at the 3rd hierarchical level would consist of a chain containing

N1/8 blobs each having a friction coefficient of order N1/4ζblob. Proceeding similarly to the

next higher hierarchical level, the friction coefficient of a trunk blob of hierarchy 2 can be

calculated from the longest relaxation time of the modified Rouse chain of hierarchy 3. Thus,

ζ(2) ∼ (N1/8)2ζ(3) ∼ N1/2ζblob. The trunk of the second hierarchy level contains N1/4 blobs

each having a friction coefficient given by N1/2ζblob. It is then straightforward to calculate the

friction coefficient of a trunk blob on the 1st hierarchical level as being ζ(1) ∼ (N1/4)2ζ(2) ∼
Nζblob. Generalizing the above argument, it can be shown that for the ith level of hierarchy,

i = 1 being the primary trunk of N1/2 blobs, the friction coefficient of a trunk segment at that

hierarchical level is given by ζ(i) ∼ N (1/2)i−1
ζblob.
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Appendix B

Fractal Gate Framework

B.1 Fractal Rouse Model for df = 1/ν

The normal coordinates and the Langevin equation remain the same as that defined in section

5.1. However, the friction coefficients as determined by the blob rearrangement dynamics in the

fractal structure is modified to be consistent with the fractal exponent df = 1/ν. Considering

that instead of the friction being proportional to the size of the section m/p it is proportional to

the size of fast relaxing structures in the section, i.e., ∼ (m/p)1−2ν , the effective friction for a

blob in a section of the chain is given by:

ζ0
eff = m1−2νζblob (B.1)

ζp
eff =

(
m

p

)1−2ν

ζblob (B.2)

The constant kp
eff associated with the fractal skeleton is obtained from the conjugate Langevin

of Muthukumar (1985) and is given by:

kp
eff = k

(psπ

m

)2

= k
(pπ

m

)2ν+1

(B.3)

Using the correlation expression (5.17), the effective friction expression (B.2) and blob

friction coefficient expressions (5.11) in the diffusion coefficient expression (5.16):

DmR =
kBT

m2−2νζblob

=
(a

b

)4ν−2 kBT

m
3/2
K ζ

(B.4)

In arriving at expression (B.4) we have used expression (5.11) for ζblob, m = mk/Ne and a2 =

Neb
2.

125



The expression for relaxation time τp can be arrived at using equations (B.2), (5.11), (B.3)

and the Gaussian statistics a2 = Neb
2 and is given by:

τp =
ζp

kp

=
1

p2
π1/2 1

3π2

a4

b2

ζ

kBT
m2 (B.5)

The longest relaxation time corresponds to the relaxation of the entire m section, i.e., p = 1,

and is given by:

τ1 = π1−2ν 1

3π2

a4

b2

ζ

kBT
m2 (B.6)

The shortest relaxation time corresponds to the relaxation of a single section of the ring chain,

i.e., p = m and is given by:

τm = π1−2ν 1

3π2

a4

b2

ζ

kBT
= π1/2 1

3

b2

π2

ζ

kBT
N2

e (B.7)

It scales as ∼ N2
e and corresponds to the relaxation time of an unentangled blob of Ne Kuhn

segments.

It is also straightforward to show that due to dynamic self-similarity the center of mass

curvilinear diffusion coefficient and the longest relaxation time of the entire ring chain contain-

ing N blobs (or equivalently, NK Kuhn segments) are given by:

DN =
kBT

N2−2νζblob

=
(a

b

)4ν−2 kBT

N2−2ν
K ζ

(B.8)

τN =
1

p2
π1−2ν 1

3π2

a4

b2

ζ

kBT
N2 (B.9)

B.2 Mean square displacement of the blob

The mean-square displacement of a blob in terms of the normal coordinates (5.2–5.5) is given

by:

〈
(Rn(t)−Rn(0))2

〉
=

〈
(X0(t)−X0(0))2〉

+

〈[
2
∑
ps

(Xp(t)−Xp(0)) cos
(psπn

m

)]2〉

−4

〈
(X0(t)−X0(0))

∑
ps

(Xp(t)−Xp(0)) cos
(psπn

m

)〉
(B.10)

The underlined term in expression (B.10) corresponds to the cross correlations between dif-

ferent modes in the fractal blob chain and vanish due to the linear independence of the normal

126



coordinates. Consequently, the mean square displacement of the fractal Rouse blob is composed

of two contributions, viz., the center of mass contribution and the internal modes contribution.

Substituting equation (5.18) for the center of mass contribution in equation (B.10) we obtain:

〈
(Rn(t)−Rn(0))2

〉
= 6Dmt + 4

∑
p

〈
(Xp(t)−Xp(0))2

〉
cos2

(
f(p)πn

m

)
(B.11)

where we have tranformed variables from ps to p as per expression (4.14) so that f(p) = ps =

p(2ν+1)/2(m/π)(1−2ν)/2 is a function of p which always takes integer values.

We expect that, the time taken by a blob to undergo a mean square displacement of order

a2, is much smaller than the longest fractal Rouse relaxation time τ1. For t << τ1 the con-

tribution of the internal modes for the displacement of the blob dominates over the center of

mass contribution. The underlined term of expression (B.11) corresponds to the internal modes

contribution and can be expanded to obtain:

4
∑

p

(Xp(t)−Xp(0))2 cos2

(
f(p)πn

m

)

= 4
∑

p

(〈
Xp(t)2

〉
+

〈
Xp(0)2

〉− 2 〈Xp(t).Xp(0)〉) cos2

(
f(p)πn

m

) (B.12)

From equation (5.19) we have:

〈Xpα(t)Xqβ(t)〉

=
1

ζ2
p

t∫

−∞

dt1

t∫

−∞

dt2 exp

(
−(t− t1)

τp

)
exp

(
−(t− t2)

τq

)
〈fpα(t1)fqβ(t2)〉

(B.13)

Using expression (5.14) in equation (B.13) we obtain:

〈Xpα(t)Xqβ(t)〉

= 2
kBT

ζp

δαβδpq

t∫

−∞

dt1

t∫

−∞

dt2 exp

(
−(t− t1)

τp

)
exp

(
−(t− t2)

τq

)
δ(t1 − t2)

(B.14)

Expression (B.14) yields 〈(Xp(t))2〉 = 3kBT/kp for all t and 〈Xp(t).Xp(0)〉 = (3kBT/kp) exp(−t/τp).

Substituting in equation (B.12) we obtain for t << τ1:

〈
(Rn(t)−Rn(0))2

〉
= 4m2ν a2

π2ν+1

∑
p

1

p2ν+1

[
1− exp

(
−p2 t

τ1

)]
cos2

(
f(p)πn

m

)
(B.15)

To obtain the average mean-square displacement of any segment of the chain we sum the
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displacement of all the blobs and divide it by the number of blobs:

AverageMSD =
1

m

m∑
n=1

〈
(Rn(t)−Rn(0))2

〉

=
4

m2ν

a2

π2ν+1

∑
p

1

p2ν+1

[
1− exp

(
−p2 t

τ1

)] m∑
n=1

cos2

(
f(p)πn

m

) (B.16)

Moving from a discrete to continuous framework in n and p the summations are converted to

integrals:

m∑
n=1

cos2

(
f(p)πn

m

)
=

m∫

0

dn cos2

(
f(p)πn

m

)
(B.17)

∑
p

1

p3/2

[
1− exp

(
−p2 t

τ1

)]
=

∞∫

0

dp
1

p2ν+1

[
1− exp

(
−p2 t

τ1

)]
(B.18)

The average mean square displacement based on the continuous framework is given by:

AverageMSD = m2ν a2

π2ν+1

1

ν
Γ [1− ν]

(
t

τ1

)ν

(B.19)

From equation (B.19) the time taken for a blob in the fractal blob chain to have an average

mean square displacement of a2 is given by:

τe =
1

3
π

(2ν+1)(1−ν)
ν ν

1
ν (Γ [1− ν])−

1
ν

a4

b2

ζ

kBT
(B.20)

In arriving at the above result we have used the expression for τ1 given by expression (B.6) and

for the specific case of df = 1/ν = 4 reduces to:

τe =
π9/2

3× 44

(
Γ

[
3

4

])−4
a4

b2

ζ

kBT
(B.21)

.

B.3 Relaxation Modulus of the Fractal Rouse Chain

The microscopic expression for the stress tensor is given by (Doi and Edwards, 1986):

σαβ =
cb

m

∑
n

〈
∂U

∂Rnα

Rnβ

〉
(B.22)

It can be inferred from Muthukumar (1985) arguments that for polymeric fractals U is given by:

U =
k

2

m∑
n=2

(Rn −Rn−1)
2 (B.23)
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in the spectral dimension. Combining the insights from equations (B.22) and (B.23) the mi-

croscopic expression for the stress tensor according to the Blob-Spring model can be written

as:

σαβ =
cb

m
k

N∫

0

dn 〈∇sRnα∇sRnβ〉 (B.24)

where,∇s denotes gradient in the spectral dimension of the fractal network and cb is the number

density of the blobs that make up the ring polymer and is given by cb = c/Ne.

Using the normal coordinate transformation (5.2)-(5.5) the stress tensor expression is

given by:

σαβ =
cb

m

∑
ps

kps 〈XpαXpβ〉 (B.25)

where, kps = 2mk(psπ/m)2. Equation (B.25) is appropriately modified in the conjugate space

and the stress tensor expression is given by:

σαβ =
cb

m

∑
p

kp 〈XpαXpβ〉 (B.26)

We now impose a homogeneous deformation gradient ῡ(r, t) = ¯̄κ(t).r. During such a

deformation the Langevin equation for the pth normal coordinate, Xp, becomes

∂Xp

∂t
= −kp

ζp

Xp +
1

ζp

fp + ¯̄κ(t).Xp (B.27)

From the Langevin equation (B.27) we obtain the equation for the correlation 〈XpαXpβ〉 as

∂

∂t
〈XpαXpβ〉 = −2

kp

ζp

〈XpαXpβ〉+ 4
kBT

ζp

δαβ + καµ 〈XpµXpβ〉+ κβµ 〈XpαXpµ〉 (B.28)

Equation (B.28) can be solved to obtain 〈XpαXpβ〉 for any given homogeneous deformation

gradient. For homogeneous shear where ¯̄κ(t) is given by



0 κ(t) 0

0 0 0

0 0 0




we have the equation for the xy component of the correlation given by

∂

∂t
〈XpxXpy〉 = −2

kp

ζp

〈XpxXpy〉+ κ(t)
〈
X2

py

〉
(B.29)

Considering the system to be close to equilibrium we have
〈
X2

py

〉
= kBT/kp, using which

the solution to equation (B.29) is obtained as:

〈XpxXpy〉 =
kBT

kp

t∫

−∞

dt1 exp

(
−2

(t− t1)

τp

)
κ(t1) (B.30)
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Substituting equation (B.30) in equation (B.26) we obtain:

σxy =
cb

m
kBT

∑
p

t∫

−∞

dt1 exp

(
−2

(t− t1)

τp

)
κ(t1) (B.31)

The phenomenological expression for stress tensor in terms of the relaxation modulus is given

by:

σxy(t) =

t∫

−∞

dt1G(t− t1)κ(t1) (B.32)

Comparing equation (B.31) with equation (B.32) we obtain the contribution of the m section of

the ring chain to the Blob-Spring relaxation modulus as:

G(t) =
cb

m
kBT

∑
p

exp

(
−2

t

τp

)
(B.33)

B.4 Hyperbranched Polymers

We have seen that the ring polymer has a structure similar to that of randomly branched (hy-

perbranched) polymer. In this section the derivation of the results for hyperbranched polymers

used in obtaining the expression for density of gates in a Cayley tree is presented. The deriva-

tions are based on the understanding of formation of hyperbranched structures in condensation

polymerization of ABf−1 monomers which are composed of a single functional group of type

A and f − 1 functional groups of type B. In a condensation polymerization A reacts only with

B and vice versa and hence for f = 2 a linear chain structure is obtained and for f > 2 an

hyperbranched structure is obtained Rubinstein and Colby (2003). We derive the number frac-

tion of N -mers in a system and present its relationship to probability of formation of specific

structures.

B.4.1 Number Fraction of N -mers: nN(ϕ)

In order to derive the number fraction of N -mers, nN(ϕ),as a function of fraction of reacted B

groups ϕ we note that:

• There is only one unreacted A group per polymer molecule while there are several unre-

acted B groups per polymer molecule.

• The number of reacted A and B groups is the same and for a N -mer there are N − 1 of

these reacted groups.
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• The number of unreacted B groups is given by N(f − 1)− (N − 1) = N(f − 2) + 1

The probability that a N -mer is formed in the process is thus given by:

P (N) = PRB(N − 1)× PURB(N(f − 2) + 1) (B.34)

where PRB(N−1) is the probability of having N−1 reacted B groups and PURB(N(f−2)+1)

is the probability of having N(f−2)+1 unreacted B groups. In terms of the fraction of reacted

B groups PRB = ϕN−1 and PURB = (1 − ϕ)N(f−2)+1. The number fraction of N -mers in the

system is thus given by:

nN(p) = aN × ϕN−1 × (1− ϕ)N(f−2)+1 (B.35)

where aN is the number of ways the N monomers of the chain can be arranged to form a N -mer.

It is important to note that there exists a relationship between fractions of reacted B and

A groups which sets a limit to the validity of expression (B.35). In order to understand this

limit we consider the fractions of reacted A and B groups in a N -mer given by (N − 1)/N

and (N − 1)/(N(f − 1)) respectively. This indicates a simple relationship between fractions

of reacted A and B groups in the system given by ϕA = ϕ(f − 1). The fraction of unreacted

A groups in the system is thus given by 1 − ϕ(f − 1). According to this expression at ϕc =

1/(f − 1) the fraction of unreacted A groups vanishes and hence the reaction can no longer

proceed beyond this point. Thus, expression (B.35) is valid only for ϕ < ϕc, where ϕc is the

critical fraction of reacted B groups beyond which there are no free A groups available for

reaction.

B.4.2 Number Fraction of N -mers: nN(ε)

In order to explicitly account for the limit of validity it is useful to express the number fraction

of N -mers as a function of relative extent of reaction ε defined as:

ε =
ϕ− ϕc

ϕc

= ϕ(f − 1)− 1 (B.36)

The relative extent of reaction is the negative of the fraction of unreacted A groups and thus lies

between −1 ≤ ε < 0. If the fractions of reacted and unreacted B are expressed in terms of the

ε as:

ϕ =
1 + ε

f − 1
(B.37)

1− ϕ =
f − 2

f − 1

(
1− ε

f − 2

)
(B.38)
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then it can be shown that for sufficiently small negative values of ε the number fraction of nN(ε)

is given by:

nN(ε) = aN
(f − 2)N(f−2)+1

(f − 1)N(f−1)
exp(−ε2N) (B.39)

B.4.3 Derivation of aN

In obtaining aN we first note that there is a degeneracy of N ! arrangements in sequencing the N

monomers as they are indistinguishable. However, formation of the N -mer involves reaction of

the B groups and several ways of reacting the B groups. From the N(f−1) such B groups there

are as many number of ways of choosing the first B group. The number of ways of reacting

the second B group is (N(f − 1) − 1), the third B group is (N(f − 1) − 2) and in general

the number of ways of reacting the mth B group is given by (N(f − 1)− (m− 1)). Thus, the

number of ways of reacting N − 1 such B groups in order to result in an N -mer is given by:

NRB = N(f − 1)(N(f − 1)− 1)...(N(f − 1)− (N − 2)) =
[N(f − 1)]!

[N(f − 1)− (N − 1)]!
(B.40)

The number of ways of arrangement aN is obtained by the combination of degeneracy and the

number of ways of reacting B groups and is given by:

aN = NRB ÷N ! =
[N(f − 1)]!

N ![N(f − 1)− (N − 1)]!
(B.41)

For N >> 1 the factorial can be expressed using Stirling’s approximation and can be written

as:

N ! ≈
√

2πNNN exp(−N)

[N(f − 1)]! ≈
√

2πN(f − 1)(N(f − 1))N(f−1) exp(−N(f − 1))

[N(f − 2) + 1]! ≈ (N(f − 2) + 1)[N(f − 2)]!

≈ (N(f − 2))
√

2πN(f − 2)(N(f − 2))N(f−2) exp(−N(f − 2))

(B.42)

Using the Stirling’s approximation for the factorial as written in set of expressions (B.42) in

expression (B.41) we obtain:

aN ≈ 1√
2π

√
f − 1

f − 2
N−3/2 (f − 1)N(f−1)

(f − 2)N(f−2)+1
(B.43)
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B.4.4 Probability of Structures

By combining expressions (B.35) and (B.43) we arrive at an approximate expression for number

fraction of N -mers in ABf−1 condensation polymerization given by:

nN(ε) ≈ 1√
2π

√
f − 1

f − 2
N−3/2 exp(−ε2N) (B.44)

In the ABf−1 polymerization there is exactly one unreacted A group per molecule and thus

the number fraction given by expression (B.44) corresponds to the probability of finding an

unreacted A group that is part of an N − mer. In the condensation polymerization of Af

monomers since there are only A groups in the system the probability of finding an unreacted

A group as a part of an N -mer is the same as the number fraction of N -mers in the ABf−1

condensation polymerization. Thus, the probability of finding an unreacted A group as a part

of a m-mer in a system can be written as:

um(ε) ≈ 1√
2π

√
f − 1

f − 2
m−3/2 exp(−ε2m) (B.45)

Based on the probability of unreacted A groups associated with different structures we can

consider probability of formation of specific structures. For instance an N -mer can be formed

by reacting a m-mer with an (N−m)-mer and we can calculate the probability of forming such

a structure which was made starting from an m-mer and (N −m)-mer as:

um|N−m(ε) = um(ε)× uN−m(ε)

=
1

2π

f − 1

f − 2
m−3/2(N −m)−3/2 exp(−ε2N)

(B.46)
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