ENANTIOSELECTIVE SYNTHESIS OF BIOACTIVE
 MOLECULES VIA ASYMMETRIC HYDROXYLATIONS,
 AMINOALLYLATION AND SYNTHETIC METHODOLOGIES INVOLVING ACTIVATION OF C-H BONDS

A THESIS
SUBMITTED TO THE UNIVERSITY OF PUNE
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN
CHEMISTRY
By

TANVEER MAHAMADALI SHAIKH

UNDER THE GUIDANCE Dr. A. Sudalai

Chemical Engineering and Process Development Division
National Chemical Laboratory
Pune-411008, INDIA
November 2009

CERTIFICATE

Certified that the work incorporated in the thesis entitled "Enantioselective Synthesis of Bioactive Molecules via Asymmetric Hydroxylations, Aminoallylation and Synthetic Methodologies Involving Activation of

C-H Bonds" was carried out by the candidate under my supervision. Such material as had been obtained from other sources has been duly acknowledged in the thesis.

November 2009
Pune
(Dr. A. Sudalai)
Research Supervisor

NATIONAL CHEMICAL LABORATORY

DECLARATION

I here by declare that the thesis entitled "Enantioselective Synthesis of Bioactive Molecules via Asymmetric Hydroxylations, Aminoallylation and Synthetic Methodologies Involving Activation of C-H Bonds" submitted for the degree of Doctor of Philosophy in Chemistry to the University of Pune, has not been submitted by me to any other university or institution. This work was carried out at the National Chemical Laboratory, Pune, India.

November 2009
Tanveer Mahamadali Shaikh
Pune
CE \& PD Division
National Chemical Laboratory
Pune-411 008

CONTENTS

1.2.8	References	75	
CHAPTER II:	CONHYDRINE, (-)-SEDAMINE, (-)-ALLOSEDRIDINE, (S)BETAXOLOL AND (S)-METOPROLOL		
Section I	Enantioselective Synthesis of (+)- α-Conhydrine and (-)Sedamine via L-Proline Catalyzed α-Aminooxylation		
2.1.1	Introduction		79
2.1.2	Review of Literature		80
2.1.3	Present Work		93
2.1.3.1	Objective		93
2.1.4	Results and Discussion		94
2.1.4.1	Enantioselective Synthesis (+)- α-Conhydrine		94
2.1.4.2	Enantioselective Synthesis of (-)-Sedamine		100
2.1.5	Conclusion		108
2.1.6	Experimental Section		108
Section II	Enantioselective Synthesis of (-)-Allosedri Asymmetric Epoxidation		Sharpless
2.2.1	Introduction		124
2.2.2	Review of Literature		125
2.2.3	Present Work		128
2.2.3.1	Objective		128
2.2.3.2	Sharpless Asymmetric Epoxidation		129
2.2.4	Results and Discussion		131
2.2.5	Conclusion		142
2.2.6	Experimental Section		142
Section III	Asymmetric Synthesis of $\boldsymbol{\beta}$-Blockers: (S)-Betaxolol and (S)Metoprolol		
2.3.1	Introduction		152
2.3.2	Pharmacology		153
2.3.3	Review of Literature		153
2.3.4	Present Work		157

2.3.4.1	Objective	157
2.3.4.2	Kinetic Resolution	158
2.3.5	Results and Discussion	161
2.3.5.1	Asymmetric Synthesis of (S)-Betaxolol	161
2.3.5.2	Asymmetric Synthesis of (S)-Metoprolol (159)	165
2.3.6	Conclusion	169
2.3.7	Experimental Section	169
2.3.8	References	176
CHAPTER III	NaIO_{4} MEDIATED C-H ACTIVATION OF A AND OXIDATIVE FUNCTIONALIZATION C-O BONDS	KYLARENES $\mathbf{C - H}, \mathbf{C - B r},$
Section I	NaIO_{4}-Mediated $\quad \mathrm{C}-\mathrm{H}$ Activation of Oxyfunctionalization at the Benzylic Position	Alkylarenes:
3.1.1	Introduction	180
3.1.2	Review of Literature	181
3.1.3	Present Work	184
3.1.3.1	Objective	184
3.1.4	Results and Discussion	185
3.1 .6	Conclusion	192
3.1.7	Experimental Section	192
Section II	NaIO_{4}-Mediated Selective Oxidation of Benzylic Bromides and Alkylarenes to Benzoic acids in Water as Solvent	
3.2.1	Introduction	197
3.2.2	Review of Literature	198
3.2.3	Present Work	202
3.2.3.1	Objective	202
3.2.4	Results and Discussion	202
3.2 .6	Conclusion	208
3.2.7	Experimental Section	209

Section III	NaIO_{4}-Mediated Selective Oxidation of Benzylic alcohols: High Yield Preparation of Aromatic Aldehydes and Esters	
3.3.1	Introduction	213
3.3.2	Review of Literature	213
3.3.3	Present Work	223
3.3.3.1	Objective	223
3.3.4	Results and Discussion	223
3.3.5	Conclusion	231
3.3.6	Experimental Section	231
3.3.7	References	236
CHAPTER IV	HETEROGENEOUS CATALYSTS FOR TRANSFORMATION OF C-H, C-O AND C=C	OXIDATIVE BONDS
Section I	WO $_{3}$-Catalyzed Selective Oxidation of Alky Arylketones: High Yield Preparation of Benzoi	ylarenes and Acids
4.1.1	Introduction	239
4.1.2	Review of Literature	240
4.1.3	Present Work	243
4.1.3.1	Objective	243
4.1.4	Results and Discussion	243
4.1.6	Conclusion	250
4.1.7	Experimental Section	250
Section II	Titanium Superoxide: A Heterogeneous Aminobromination of Olefin	Catalyst for
4.2.1	Introduction	252
4.2.2	Review of Literature	252
4.2.3	Present Work	261
4.2.3.1	Objective	261
4.2.4	Results and Discussion	261
4.2.5	Conclusion	268
4.2.6	Experimental Section	268
4.2.7	References	274

ACKNOWLEDGEMENT

I wish to express my heartfelt gratitude towards my research supervisor Dr. A. Sudalai sir, whose knowledge and vast experience has inspired me at every stage of my tenure and helped me to achieve this target. His suggestions, criticisms and constant encouragement helped me immensely to grow as a chemist. My everlasting gratitude goes to him.

I thank Dr. B. D. Kulkarni sir, Deputy Director and Head, CE-PD division, for his help and support. My special thanks go to Dr. S. Gurunath for his constant encouragement and moral support. I thank Dr. Ganesh Pandey sir, Head, OCD and Drs. Suresh Iyer, S. N. Kotwal, R. A. Kulkarni, V. G. Kulakarni, S. S. Pardhy, Mrs. S. Mayadevi and S. A. R. Mulla for their help and support.

I am immensely thankful to my seniors Drs. Vinay, Iliyas, Gajanan, Abhimanyu, Shivakumar, Shriram, Srinivas Rao, Ramesh Kumar, Victor Paul, Arun for useful training in the initial phase of my career.
I would like to thank my teachers Zhipre sir, Shirsat, Mrs. Dange, Drs. Patil, Modi sir. I am also grateful to Dr. Md. Qudrathullah Principal, Poona College, Dr. G. M. Nazeruddin, Dr. Alamgir Shaikh, Dr. Rafique Sarkhwas, Dr. Ejazuddin Khan, Dr. Mrs. Mulla, Aziz Mohinuddin for inspiring me towards research.
I thank NMR group Dr. Rajmohan, Jima, Hilda and elemental analysis group for their help in obtaining the analytical data. I am very thankful to Dr. Mrs. S. S. Kulkarni her help in GC-MS analysis and Dr. Vilas Chavan his help in the HPLC analysis. I thank library staff, chemical stores, purchase staff, glass blowing section NCL for their cooperation. I thank PD office staff Mr. Bhosale, Mrs. Puranik and Mr. Kakade for their cooperation. I also thank PG section of Pune University and Dr. Mrs. R. Kusurkar for their cooperation and help. It's my privilege to thank the Director, NCL for giving me this opportunity and providing all necessary infrastructure and facilities. Financial assistance from CSIR, New Delhi is greatly acknowledged.
It's my pleasure to thank all my lab mates Pandurang, Emmanuvel, Shyla, Santhosh, Pratibha, Varun, Dayanand, Narsimha, Chaithanya, Senthil kumar, Dattatraya, Ashish, Venkat, Shukla, Ramachandra, Balaji, Shaheen, Vijay, Hari, Kuppu, Sawant, Divya,

Santosh, Satish, Deepali, Aparna, Nagesh, Nana, Rana for providing a cheerful atmosphere in the lab and in every aspect through out this research. I am very thankful to project students Alka, Mudassir, Baba, Ruchi and Charuta for helping me in this work. I thank my friends at NCL Bhargava, Raghupati, Bharat, Mehraj, Shafi, Sachin, Nagendra, Amrut, Swaroop, Deepak, Ravi, Nishant, Abhijeet, Sharad, Girish, Namdev, Imran, Muzahid, Suleman, Jayprakash, Tanpreet and Shivranjani for their help.

I acknowledge all my college friends Iqbal, Asgar, Shahbaj, Zubair, Rashid, Khalil, Shabir, Hamid, Hussain.

I thank Wasif for his support during my work. I am greatly indebted to all my childhood friends Pramod, Shivsharan and Pintoo.

I am indeed very grateful to my my parents whose constant love, care, support and encouragement have been the main force and motivation for me. The love and affection showered by my brother on me is magnanimous. My Bhabhi sisterin-law Mehjabeen always supports and encourage me. I have known Arshiya from my childhood days and got married to her. The love, dedication, support and encouragement I received from her helped me to complete this work. My brothers kid Naumaan, Izhaan and my daughter Tasmiya are angels and made my life more beautiful. I am very thankful to my sisters and my brotherin-law, Ishrat-Abdul Sattar, Yasmin-Ayub, Nasreen-Maqdum for their belief in my abilities and constant encouragement. My sister's kids Fahim, Mazhar, Farheen, Naeem, Azahar, Zulfin, Shazia, Sara, Ikra and Tanzim, Asim who always bought a smile on my face.

I wish to thank great scientific community whose achievements are constant source of inspiration for $m e$.

Tanveer Mahamadali Shaikh

ABBREVIATIONS

AD
Ac
Ar
bp
Bn
Boc
$(\mathrm{Boc})_{2} \mathrm{O}$
n-BuLi
Cbz
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
CHCl_{3}
$\mathrm{CH}_{3} \mathrm{CN}$
CuSO_{4}
DHQ
DHQD
DIBAL-H
DMF
DMSO
ee
Et
$\mathrm{Et}_{3} \mathrm{~N}$
$\mathrm{Et}_{2} \mathrm{O}$
EtOAc
EtOH
g
h
HCl
HPLC
$\mathrm{H}_{2} \mathrm{SO}_{4}$
IR
$\mathrm{K}_{2} \mathrm{CO}_{3}$
KF
KOH
LiAlH_{4}
M+
Me
MeOH
min
mL
mp
MS
NaBH_{4}
NaHCO_{3}
NaOH

Asymmetric Dihydroxylation
Acetyl
Aryl
Boiling Point
Benzyl
tert-Butoxycarbonyl
Di-tert-butyl dicarbonate
n-Butyl Lithium
Benzyloxy carbonyl
Dichloromethane
Trichloromethane
Acetonitrile
Copper(II) sulfate
Dihydoquinine
Dihydroquinidine
Diisobutylaluminium hydride
Dimethyl formamide
Dimethyl sulfoxide
Enantiomeric excess
Ethyl
Triethylamine
Diethyl ether
Ethyl acetate
Ethyl alcohol
Grams
Hours
Hydrochloric acid
High pressure liquid chromatography
Sulfuric acid
Infrared
Potassium carbonate
Potassium fluoride
Potassium hydroxide
Lithium aluminum hydride
Molecular ion
Methyl
Methyl alcohol
Minutes
Milliliter
Melting point
Mass spectrum
Sodium borohydride
Sodium bicarbonate
Sodium hydroxide
$\mathrm{Na}_{2} \mathrm{SO}_{4}$
$\mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{NH}_{4} \mathrm{OH}$
NMR
NBS
Pd / C
Pet. ether
Ph
PhNO
$p-\mathrm{TSA}$
THF
TLC
TBAF
TBHP
TBDMSCl

Sodium sulfate
Ammonium chloride
Ammonium hydroxide
Nuclear Magnetic Resonance
N -Bromosuccinimide
Palladium on activated charcoal
Petroleum ether
Phenyl
Nitrosobenzene
p-Toluene sulfonic acid
Tetrahydrofuran
Thin layer chromatography
Tetrabutylammonium fluoride
tert-Butyl hydroperoxide
tert-Butyldimethylsilyl chloride

GENERAL REMARKS

1. All solvents were distilled and dried before use.
2. Petroleum ether refers to the fraction collected in the boiling range $60-80^{\circ} \mathrm{C}$.
3. Organic layers after every extraction were dried over anhydrous sodium sulfate.
4. Column Chromatography was performed over silica gel (60-120 and 230-400 mesh).
5. TLC analyses were performed over aluminum plates coated with silica gel ($5-25 \mathrm{~m}$) containing UV active G-254 additive.
6. IR spectra were recorded on a Perkin-Elmer model 683 B or 1605 FT-IR and absorptions were expressed in cm^{-1}.
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker FT AV-200, AV-400 and AV-500

MHz instruments using TMS as an internal standard. The following abbreviations were used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br} \mathrm{s}=$ broad singlet, and dd $=$ doublet of doublet.
8. Mass spectra (MS) were recorded on an automated finnigan MAT 1020C mass spectrometer using ionization energy of 70 eV .
9. Optical rotations were carried out on JASCO-181 digital polarimeter at $25^{\circ} \mathrm{C}$ using sodium D light.
10. All melting points and boiling points are uncorrected and the temperatures are in centigrade scale.
11. Elemental analysis was done on Carlo ERBA EA 110B instrument.
12. The compounds, scheme and reference numbers given in each chapter refers to that particular chapter only.
13. The ligands $(\mathrm{DHQD})_{2}-\mathrm{PHAL},(\mathrm{DHQ})_{2}-\mathrm{PHAL},(\mathrm{DHQD})_{2}-\mathrm{AQN}$ were purchased from Aldrich.

Abstract

The thesis entitiled "Enantioselective Synthesis of Bioactive Molecules via Asymmetric Hydroxylations, Aminoallylation and Synthetic Methodologies Involving Activation of C-H Bonds" is divided into four chapters.

The title of the thesis clearly reflects the objective, which is to synthesize enantiomerically pure bioactive molecules and also to develop useful synthetic methodologies. Chapter 1 deals with enantioselective synthesis of (+)-Sertraline and (+)Lentiginosine using Sharpless Asymmetric Dihydroxylation (ADH) and aza-Cope rearrangement respectively. Chapter 2 describes the enantioselective synthesis of three alkaloids namely (+)- α-Conhydrine, (-)-Sedamine and (-)-Allosedridine. This chapter also describes a short synthesis of two β-blockers namely (S)-Betaxolol and (S)Metoprolol via Co-salen-catalyzed kinetic resolution of terminal epoxides. Chapter 3 presents NaIO_{4}-mediated C-H activation of alkylbenzenes, alkanes including oxidative functionalization of C-H, C-Br and C-O bonds. Chapter 4 describes the application of two heterogeneous catalysts for the oxidative functionalization of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ bonds of alkylarenes, arylketones and olefins respectively.

CHAPTER I

ENANTIOSELECTIVE SYNTHESIS OF (+)-SERTRALINE AND (+)-LENTIGINOSINE

This chapter is divided into two sections. Section I presents the synthesis of $(+)-$ Sertraline, an antidepressant drug while Section II describes the synthesis of (+)Lentiginosine, an anticancer drug.

Section I: A short Enantioselective Synthesis of (+)-Sertraline via Sharpless Asymmetric Dihydroxylation

$(+)$-Sertraline 1, a selective competitive inhibitor of synaptosomal serotonin uptake, is an important antidepressant ${ }^{1}$ drug discovered by Pfizer chemist Reinhard Sarges in 1970. This section describes an enantioselective synthesis of (+)-Sertraline via ADH ${ }^{2}$ of 1,1diaryl olefin. Our approach to the synthesis of (+)-Sertraline 1, commenced with 3,4-
dichlorobenzophenone 2, which was subjected to Wittig olefination to give 1,1-diaryl olefin 3, in 87% yield (Scheme 1). Asymmetric dihydroxylation $\left(\mathrm{K}_{2} \mathrm{OsO}_{4},(\mathrm{DHQD})_{2^{-}}\right.$ $\mathrm{AQN}, \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3},{ }^{\mathrm{t}} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1)$ of olefin $\mathbf{3}$ gave chiral diol $\mathbf{4}$ in 78% yield. Selective oxidation of primary alcohol in $\mathbf{4}$ was achieved with IBX in DMSO to give

7, $\mathrm{R}=\mathrm{Me}$
8, $\mathrm{R}=\mathrm{H}$

9

1, 88% ee

Scheme 1: Reaction conditions: (i) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}$, BuLi, THF, $-78-0{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (ii) $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (DHQD) $)_{2}-\mathrm{AQN}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6},{ }^{t} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), 24 h ; (iii) IBX, dry DMSO, $25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, dry benzene, $25^{\circ} \mathrm{C}$, 12 h ; (v) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}$; (vi) 6 N HCl , reflux, 23 h ; $\mathrm{ClSO}_{3} \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (vii) TiCl_{4}, excess MeNH_{2}, $\mathrm{Pd} / \mathrm{CaCO}_{3}, \mathrm{H}_{2}$, (50 psi).
aldehyde 5 in 85% yield. Aldehyde 5 was then subjected to Wittig olefination to give the α, β-unsaturated ester 6 in 90% yield. Hydrogenolysis ($\left.10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}\right)$ of ester 6 at the benzylic position led to the formation of saturated ester 7 in 62% yield.

Ester 7 was subsequently hydrolysed and cyclised under acidic conditions to give tetralone 9 with an overall yield of 68% and 88% ee. Finally, reductive amination $\left(\mathrm{TiCl}_{4}\right.$, excess $\mathrm{MeNH}_{2}, \mathrm{Pd} / \mathrm{CaCO}_{3}, \mathrm{H}_{2}(50 \mathrm{psi})$) of $\mathbf{9}$ afforded $\mathbf{1}$ in 35% yield and 88% ee.

Section II: Enantioselective Synthesis of (+)-Lentiginosine via aza-Cope Rearrangement

Hydroxylated indolizidine alkaloids are known to be the potential glycosidase inhibitors. $(+)$-Lentiginosine 10, a bicyclic azasugar, was isolated from the leaves of Astragalus lentiginosis ${ }^{3}$ in 1990 and found to exhibit amyoglucosidase inhibition ${ }^{4}$ activity $\left(\mathrm{IC}_{50}=\right.$ $0.43 \mathrm{mg} / \mathrm{L}$) including anticancer and anti HIV activities. Recently, Kobayashi etal. have reported a highly enantioselective synthesis of homoallylic primary amines via aza-Cope rearrangement. ${ }^{5}$ In this section we have made use of this rearrangement protocol for the synthesis of (+)-Lentiginosine $\mathbf{1 0}$.

Scheme 2: Reaction conditions: (i) Camphorsulfonic acid (10 mol\%), 1,2-dichloroethane, (1R,3R,4S)-3-allyl-3-amino-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (1equiv.), $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{AcOH}, 25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (ii) (Boc) $)_{2} \mathrm{O}$, DMAP (10 mol\%), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}$; (iii) NaH , allylbromide, dry DMF, $0-25^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (iv) Grubbs 2nd generation catalyst (10 mol\%), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20 \mathrm{~h}$, reflux; (v) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (20 psi), MeOH, $25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (vi) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; (vii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, $50^{\circ} \mathrm{C}, 14 \mathrm{~h}$; (viii) $\mathrm{OsO}_{4}, \mathrm{NMO},{ }^{\mathrm{t}} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; then TFA, 18 h ; (ix) LiAlH_{4}, THF, 12 h , reflux.

Synthesis of (+)-Lentiginosine 10 commenced with the readily available benzyl-protected acetaldehyde 11, which was subjected to aza-Cope rearrangement using Kobayashi protocol [CSA (10 mol\%), ($1 R, 3 R, 4 S$)-3-allyl-3-amino-1,7,7-trimethylbicyclo [2.2.1] heptan-2-one (1 equiv.), $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{AcOH}, 1,2$-dichloroethane] to give the homoallylic amine 12 in 87% yield and 95% ee (Scheme 2). The Ring Closing Metathesis (RCM)precursor 14 was prepared in two steps with an overall yield of 85% : Boc protection of amine $\mathbf{1 2}$ followed by its N -allylation using allyl bromide. The RCM strategy on $\mathbf{1 4}$ was employed using Grubbs 2nd generation catalyst to effect the construction of sixmembered dihydropyridine $\mathbf{1 5}$ in 80% yield. Catalytic hydrogenation of $\mathbf{1 5}$ afforded piperidine derivative 16 in 90% yield and 98% ee (determined from chiral HPLC analysis). Swern oxidation of alcohol 16 produced piperidine carboxaldehyde 17 which underwent Wittig olefination with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ to give the α, β-unsaturated ester $\mathbf{1 8}$ in 92% yield. A single-step transformation of ester 18 into diol 19 in 60% yield was achieved using Os-catalyzed dihydroxylation of olefin $\mathbf{1 8}$ followed by its treatment with TFA. LiAlH_{4} reduction of imide carbonyl in 19 was carried out to furnish (+)Lentiginosine 10 in 80% yield and 95% ee.

CHAPTER II

ENANTIOSELECTIVE SYNTHESIS OF (+)-A-CONHYDRINE, (-)-SEDAMINE, (-)-ALLOSEDRIDINE, (S)-BETAXOLOL AND (S)-METOPROLOL

This chapter is divided into three sections. While Section I presents the enantioselective synthesis of (+)- α-Conhydrine and (- -Sedamine via L-proline-catalyzed α aminooxylation, Section II describes the enantioselective synthesis of (-)-Allosedridine via Sharpless asymmetric epoxidation. Section III also presents the asymmetric synthesis of two β-blockers namely (S)-Betaxolol and (S)-Metoprolol using Co-salen-catalyzed phenolytic kinetic resolution of terminal epoxides.

Section I: Enantioselective Synthesis of (+)- α-Conhydrine and (-)-Sedamine via LProline Catalyzed α-Aminooxylation

Asymmetric synthesis with non-toxic metal salts has been of great importance in organic synthesis. Organocatalyst such as optically active proline, available cheap and
abundantly, has been employed as a universal catalyst because of its high utility in a variety of asymmetric organic transformations. Particularly, proline catalyzed α aminooxylation ${ }^{6}$ and α-amination of carbonyl compounds have emerged as powerful methods since chiral building materials can be synthesized in an effective manner with high enantiopurity.
$(+)-\alpha$-Conhydrine:
Hydroxylated piperidines represent a structural unit found in many biologically active alkaloids including (-)-Conhydrine 20, which was isolated from hemlock of poisonous plant Conium maculatum L. ${ }^{7}$

$\left.\begin{array}{l}30, R=B o c \\ 20, R=H\end{array}\right)$ xii
Scheme 3: Reactions conditions: (i) NaN_{3}, dry DMF, $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (ii) $(\mathrm{COCl})_{2}, \mathrm{DMSO}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iii) L-proline ($25 \mathrm{~mol} \%$), $\mathrm{PhNO}, \mathrm{CH}_{3} \mathrm{CN},-2{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; then MeOH , $\mathrm{NaBH}_{4}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iv) $\mathrm{CuSO}_{4}\left(30 \mathrm{~mol} \%\right.$), MeOH, 12 h ; (v) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$, 1 h ; (vi) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (vii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, \mathrm{Et}_{3} \mathrm{~N}, 25^{\circ} \mathrm{C} 5 \mathrm{~h}$; (viii) $(\mathrm{Boc})_{2} \mathrm{O}, ~ D M A P, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (ix) TBAF, THF, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (x) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (xi) excess EtMgBr, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (xii) TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

The synthesis of $(+)-\alpha$-Conhydrine $\mathbf{2 0}$ was started with monoprotected 1,6-hexanediol 21, which was subjected to $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} to produce azidoalcohol 22 in 90% yield (Scheme 3). The Swern oxidation of alcohol 22 gave aldehyde 23, which was
subsequently converted to azidodiol 24 in two steps: (i) L-proline-catalyzed asymmetric aminooxylation using PhNO as electrophile followed by in situ reduction of aldehyde with NaBH_{4} and (ii) reductive cleavage of aminoxy moiety with CuSO_{4} in MeOH that furnished the diol 24 in 61% overall yield. The selective protection of primary alcohol in diol 24 was achieved giving TBS ether 25 which was protected as its mesylate 26 in quantitative yield. The reductive cyclization $\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi})\right.$ followed by Boc protection of $\mathrm{N}-\mathrm{H}$ bond resulted in the formation of TBS ether 27 in 76% yield. The hydrolysis of $\mathbf{2 7}$ followed by its oxidation under Swern conditions produced aldehyde 29 in 90% yield. Grignard addition of EtMgBr onto aldehyde 29 gave the Boc protected Conhydrine 30, which was finally hydrolysed to (+)- α-Conhydrine 20 in high optical purity (98% ee).
(-)-Sedamine:
(-)-Sedamine 31 was isolated from Sedum acre ${ }^{8}$ and other species. ${ }^{9,10}$ It has been used for the treatment of respiratory illness such as asthma, bronchitis and pneumonia. ${ }^{11}$

Our synthesis of (-)-Sedamine 31 started with azido diol 24 (vide infra for its preparation) which was converted to amino compound 34 in three steps of acetonide protection of diol $\mathbf{2 4}$, reduction of azide function and Cbz protection of its amine function. Amino derivative $\mathbf{3 4}$ was subsequently converted to cyano compound $\mathbf{3 7}$ again in three steps of acetonide deprotection, selective mono tosylation of primary alcohol 35 and $\mathrm{S}_{\mathrm{N}} 2$ displacement of tosylate $\mathbf{3 6}$ with CN^{-}ion. The selective reduction $(1.2 \mathrm{M}$ DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) followed by its treatment with NaBH_{4} in MeOH produced 1,3-diol 38 in 70% yield. The TBS ether 39, prepared from 1,3-diol 38 via selective protection, was directly cyclized under basic conditions to give the piperidine derivative 40 in 76% yield, subsequently hydrolysis of TBS ether gave the piperidine alcohol 41. The removal of Cbz group and subsequently protection of Boc group followed by its oxidation under Swern conditions produced aldehyde 42 in 84% yield. Grignard addition of PhMgBr onto aldehyde 42 gave a diastereomeric mixture of Cbz protected alcohols 43 in 61\% yield (dr $=3.3: 1.6$) which were readily separated by column chromatography and the required isomer $\mathbf{4 3}$ was converted to Sedamine $\mathbf{3 1}$ on reduction with LiAlH_{4} (Scheme 4).

$\left.\begin{array}{l}43, R=B o c \\ 31, R=M e\end{array}\right)$ xiv

Scheme 4: Reaction conditions: (i) 2,2-dimethoxypropane, p-TSA (10 mol \%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12$ h; (ii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi})$, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 8 \mathrm{~h}$; (iii) $\mathrm{CbzCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C}, 10$ h ; (iv) excess of 80% aq. $\mathrm{AcOH}, 25{ }^{\circ} \mathrm{C} 18 \mathrm{~h}$; (v) $p-\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$, excess $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, 18 h ; (vi) $\mathrm{NaCN}, \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(3: 2), 0-25^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (vii) 1.2 M DIBAL-H; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; then $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 25$ ${ }^{\circ} \mathrm{C}$, 2 h ; (viii) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ix) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}$ then NaH (1 equiv.), THF, $40^{\circ} \mathrm{C}, 8 \mathrm{~h}$ (x) $3 \mathrm{~N} \mathrm{HCl} 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (xi) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi})$, $\mathrm{MeOH}, 25$ ${ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 91 \%$; then $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{I}_{2}(10 \mathrm{~mol} \%), 3 \mathrm{~h}($ xii $)(\mathrm{COCl})_{2}, \mathrm{DMSO}_{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (xiii) PhMgBr , dry THF, $-20^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (xiv) LiAlH_{4}, THF, $70^{\circ} \mathrm{C}, 15 \mathrm{~h}$.

Section II: Enantioselective Synthesis of (-)-Allosedridine via Sharpless Asymmetric

 Epoxidation(-)Allosedridine 44 was isolated from Sedum nudum..12 It has shown memory enhancingproperties and may be effective for the treatment of Alzheimer's disease. This section describes the synthesis of (-)-Allosedridine 44 via Sharpless asymmetric epoxidation. ${ }^{13}$ The synthesis of (-)-allosedridine 44 was started with mono protected 1,5-pentanediol 45, which was subjected to Swern oxidation conditions to give aldehyde 46 in 92% yield (Scheme 5). Allylic alcohol 48 was prepared in two steps: Wittig olefination of aldehyde 46 with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ furnished α, β-unsaturated ester 47 in 92% yield. The selective

$\left.\begin{array}{l}38, R=H \\ 39, R=T B S\end{array}\right) x i i$

x
55, R = NHCbz
$\left.\begin{array}{l}\text { 56, } \mathrm{R}=\mathrm{Cbz} \\ 44, \mathrm{R}=\mathrm{H}\end{array}\right) x$ vii

Scheme 5: Reaction condition: (i) $(\mathrm{COCl})_{2}$, $\mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ii) $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Et}$, dry benzene, reflux, 12 h ; (iii) 1.2 M DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$, 6 h ; (iv) $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{pr}\right)_{4}$, (-)-DIPT, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.5 \mathrm{M}$ TBHP in decane, $-23{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (v) Red- $\mathrm{Al}^{\circledR}(65 \%)$ in toluene, 1,2-dimethoxyethane, $25{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (vi) 2,2-dimethoxypropane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, p-TSA ($10 \mathrm{~mol} \%$), $25^{\circ} \mathrm{C}, 10 \mathrm{~h}$; (vii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (20 psi), MeOH, $25^{\circ} \mathrm{C}, 10 \mathrm{~h}$; (viii) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (b) NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 15$ h ; (ix) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (x) $\mathrm{CbzCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}$ (1:1) $25^{\circ} \mathrm{C}, 8 \mathrm{~h}$; (xi) excess 80% aq. $\mathrm{AcOH}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (xii) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ (xiii) (a) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (b) NaH (1 equiv.), THF, $40^{\circ} \mathrm{C}$, 10 h ; (xiv) $6 \mathrm{~N} \mathrm{HCl}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (xv) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (xvi) excess MeMgBr , THF, $-78{ }^{\circ} \mathrm{C} 4 \mathrm{~h}$; (xvii) 10% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 10 \mathrm{~h}$.
reduction of α, β-unsaturated ester 47 with 1.2 M DIBAL-H gave allylic alcohol 48 in 81\% yield. The Sharpless asymmetric epoxidation of allylic alcohol 48 gave chiral epoxy alcohol 49 in 85% yield and 97% ee (determined from chiral HPLC analysis). Regioselective reduction (Red-A1 ${ }^{\circledR}$, DME) of epoxy alcohol 49 resulted in the formation of 1,3-diol 50, which was protected as its acetonide 51 in 97% yield. Amino derivative 55 was prepared in three steps: hydrogenolysis of $\mathbf{5 1}$, reduction of azide function and Cbz
protection of its amine function. Acetonide function in amino derivative 55 was subsequently deprotected under acidic conditions to give 1,3-diol 38. The TBS ether 39 prepared from 1,3-diol 38 via selective protection, was directly cyclized under basic conditions to give piperidine derivative 40 in 62% yield. The hydrolysis of TBS ether 40 followed by its oxidation under Swern conditions produced aldehyde 42 in 90% yield. Grignard addition of MeMgBr onto aldehyde 42 gave a diastereomeric mixture of Cbz protected alcohols 56 in 85% yield $(\mathrm{dr}=3.2: 1.7)$ which were readily separated by column chromatography and the required isomer 56 was converted to $(-)$-allosedridine 44 on hydrogenation with $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}(20 \mathrm{psi})$.

Section III: Asymmetric Synthesis of $\boldsymbol{\beta}$-Blockers: (S)-Betaxolol and (S)-Metoprolol

β-Blockers are a group of compounds that competitively inhibit ${ }^{14}$ the effects of catecholamine at β-adrenergic receptors and have a diverse range of clinical applications. They lower blood pressure by slowing down the heart rate and decreasing the force of contraction of heart. ${ }^{15}$ (S)-Betaxolol 57 (trade name Betoptic) is a strong antiglaucoma agent while (S)-Metoprolol 58 (trade name Lopressor) is widely used in the treatment of angina hypertension.
The dynamic kinetic resolution of recemic epoxides with phenols is probably the most direct method to obtain enantiopure aryloxy alcohols [(Ar-O-CH2 $\left.(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{Cl}\right]$, which are the key structural units present in a variety of β-blockers. The cheaper and readily available (\pm)-epichlorohydrin renders kinetic resolution of its epoxide function with phenolic substrates as a potentially attractive route for the preparation of chiral epoxides using Co-salen complex as the chiral catalyst. ${ }^{16}$ Our synthesis of (S)-Betaxolol 57 and (S)-Metoprolol 58 started with commercially available phenolic ester 59, which was protected as its benzyl ether $\mathbf{6 0}$. Alcohol $\mathbf{6 1}$, obtained from LiAlH_{4} reduction of ester $\mathbf{6 0}$ was O-alkylated with (bromomethyl)cyclopropane and methyl iodide to produce the corresponding ethers 62 and 63 respectively in high yields (Scheme 6). Hydrogenolysis [$\left.10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi})\right]$ of ethers $\mathbf{6 2}$ and $\mathbf{6 3}$ resulted in the formation of phenols $\mathbf{6 4}$ and 65 respectively. Thus, the reaction of 2.5 equiv. of (\pm)-epichlorohydrin with 4-(2(cyclopropylmethoxy)ethyl)phenol 64 and 4-(2-methoxyethyl)phenol 65 in the presence
of $[(R, R)$-(salen) $\mathrm{Co}(\mathrm{OAc})]$ complex (0.044 equiv.) in tert-butyl methyl ether at $0-25{ }^{\circ} \mathrm{C}$ led to the isolation of (R)-1-(4-(2-(cyclopropylmethoxy)ethyl)phenoxy)-3-chloropropan-2-ol 66 and (R)-1-(4-(2-methoxyethyl)phenoxy)-3-chloropropan-2-ol 67 in 73 and 71\% yield respectively. The chlorohydrins 66 and 67 were then converted to epoxides 68 and $69\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{OK}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}\right)$. Finally, the chiral epoxides 68 and 69 were subjected to regiospecific ring opening with isopropylamine to afford (S)-Betaxolol and (S) Metoprolol in high optical purity.

$\left.\begin{array}{l}59, R=H \\ 60, R=B n\end{array}\right) i$
61, $\mathrm{R}=\mathrm{H}$
62, $\mathrm{R}=\square-\mathrm{CH}_{2} \xi$
63, $\mathrm{R}=\mathrm{CH}_{3}$

64, $\mathrm{R}=\mathrm{D}-\mathrm{CH}_{2}-$ §.
65, $\mathrm{R}=\mathrm{CH}_{3}$

68, $\mathrm{R}=D-\mathrm{CH}_{2}$ - ξ
69, $\mathrm{R}=\mathrm{CH}_{3}$

57, $\mathrm{R}=D-\mathrm{CH}_{2}-\xi$
58, $\mathrm{R}=\mathrm{CH}_{3}$

Scheme 6: Reaction conditions: (i) anhyd. $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $\mathrm{BnBr}, 0-60^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (ii) LiAlH_{4}, dry THF, $65^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (20 psi), MeOH, 12 h ; (iv) for betaxolol: NaH , dry DMF, (bromomethyl)cyclopropane, $0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; and for metoprolol: NaH, dry DMF, MeI, $0-25^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (v) 2.5 equiv. (\pm)-epichlorohydrin, (R, R)-Co-salen, tert-butyl methyl ether, MS $4 \mathrm{~A}^{\circ}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (vi) $\mathrm{K}^{t} \mathrm{OBu}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; (vii) isopropylamine, $\mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}$.

CHAPTER III
 NaIO_{4}-MEDIATED C-H ACTIVATION OF ALKYLARENES AND OXIDATIVE FUNCTIONALIZATION OF C-H, C-Br, C-O BONDS

Section I: NaIO_{4}-Mediated C-H Activation of Alkylarenes: Oxyfunctionalization at the Benzylic Position

The selective and efficient oxyfunctionalization of unreactive C-H bonds in hydrocarbons is challenging. In particular, oxidation at benzylic position of alkylbenzene assumes importance due to their oxygenated derivatives such as alcohols and carbonyl compounds that are useful as specialty chemicals in industry. ${ }^{17}$ This section describes a "transition metal free" method for the C-H activation of alkylarenes leading to C-X bonds (Scheme 7).

Scheme 7: Reaction conditions: (i) if $\mathrm{X}=\mathrm{Br}, \mathrm{OMe}$: alkylarenes $(10 \mathrm{mmol}), \mathrm{LiBr}(11 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{SO}_{4}(20 \mathrm{mmol}), \mathrm{MeOH}(15 \mathrm{~mL})$, $65^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (i) if $\mathrm{X}=\mathrm{OAc}$: alkylarenes (10 mmol), $\mathrm{LiBr}(11$ mmol), $\mathrm{NaIO}_{4}(25 \mathrm{~mol} \%)$, $\mathrm{AcOH}(15 \mathrm{~mL}), 9{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Thus, alkylarenes 70 in combination with $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{MeOH} / \mathrm{H}^{+}$undergo oxidation smoothly at the benzylic position to give a mixture of benzylic bromides 71 and benzylic methyl ethers 72. Surprisingly, high yields of benzyl acetates 73 were obtained when $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{AcOH}$ combination ${ }^{18}$ was used.

We have observed that NaIO_{4}-mediated oxidative bromination of cycloalkanes takes place with LiBr as bromide source. For example, cyclohexane 74 underwent oxidation moderately to produce trans-1,2-dibromocyclohexane 75 in 40% yield in a single step (Scheme 8).

Scheme 8: (i) cyclohexane (10 mmol), $\mathrm{LiBr}(22$ $\mathrm{mmol}), \mathrm{NaIO}_{4}(25 \mathrm{~mol} \%), \mathrm{AcOH}(15 \mathrm{~mL}), 80^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Section II: NaIO4-Mediated Selective Oxidation of Benzylic Bromides and

Alkylarenes to Benzoic acids in Water as Solvent

Carboxylic acids are of industrial importance since such carbonyl derivatives are versatile building blocks in pharmaceutical and polymer industries. ${ }^{19}$ In this section we describe a single-step "transition metal-free" oxidation of alkylarenes and benzylic bromides to the corresponding carboxylic acids in high yields with water as a solvent. ${ }^{20}$

76

77

78

$$
\begin{gathered}
\mathrm{R}=\text { alkyl, halogen }, \\
\mathrm{NO}_{2}, \text { etc }
\end{gathered}
$$

Scheme 9: Reaction conditions: (i) methylarenes (3 mmol), NaIO_{4} (3 $\mathrm{mmol}), \mathrm{LiBr}(3.3 \mathrm{mmol}) 2 \%$ aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL}), 95^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (ii) benzyl bromides $(3 \mathrm{mmol}), \mathrm{NaIO}_{4}(3 \mathrm{mmol}), 2 \%$ aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL}), 9{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$.

Thus, while oxidation of alkylarenes $\mathbf{7 6}$ to the corresponding carboxylic acids $\mathbf{7 7}$ has been achieved with $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$combination, benzylic bromides 78 were oxidized with $\mathrm{NaIO}_{4} / \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$to give the same carboxylic acids 77 in excellent yields (Scheme 9). Several alkylarenes and benzylic bromides with electron-donating and withdrawing groups underwent oxidation and produced the corresponding carboxylic acids 77. A noteworthy feature of the present method is the use of water as solvent and the products were isolated by simple filtration followed by crystallization.

Section III: NaIO ${ }_{4}$-Mediated Selective Oxidation of Benzylic alcohols: High Yield

 Preparation of Aromatic Aldehydes and EstersThe oxidation of primary aromatic alcohols to the corresponding carbonyl compounds is a fundamental reaction in organic synthesis. ${ }^{21}$ Also, direct conversion of alcohols or aldehydes to the corresponding carboxylic esters is often required in organic synthesis particularly in the synthesis of natural products. In general, the synthesis of carboxylic esters is achieved by the oxidation of alcohols to aldehydes or carboxylic acids followed by acid-catalyzed esterification with alcohols. However, the direct conversion of benzylic alcohols to aldehydes or esters minimizes the number of steps in organic synthesis. This section deals with a new procedure involving $\mathrm{NaIO}_{4} / \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$that oxidizes benzylic alcohols 79 to the corresponding benzaldehydes 80. Also, this section describes a one-pot conversion of benzylic alcohols to the corresponding aromatic esters $\mathbf{8 1}$ in excellent yields ${ }^{22}$ (Scheme 10).

Scheme 10: Reaction conditions: (i) benzyl alcohol (3 mmol), NaIO_{4} (3 mmol), 2% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(15 \mathrm{~mL}\right.$), $95^{\circ} \mathrm{C}$, 12 h ; (ii) benzyl alcohol (3 $\mathrm{mmol}), \mathrm{NaIO}_{4}(3 \mathrm{mmol}), \mathrm{LiBr}(3 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}(15 \mathrm{~mL}), 80$ ${ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

CHAPTER IV

HETEROGENEOUS CATALYSTS FOR OXIDATIVE
TRANSFORMATION OF C-H, C-O AND C=C BONDS

Section I: WO \mathbf{W}_{3}-Catalyzed Selective Oxidation of Alkylarenes and Arylketones: High Yield Preparation of Benzoic acids
 The oxidation of benzylic C-H bonds to the corresponding oxyfunctionalized products constitutes one of the most fundamental transformations in organic synthesis. ${ }^{19,}{ }^{21}$ In

particular, the direct conversion of methylarenes or aryl ketones to the corresponding benzoic acids assumes greater industrial importance as such carbonyl derivatives are versatile building blocks in pharmaceutical and polymer industries. This section describes a new practical method where in WO_{3} acts as a catalyst for the oxidation of methylarenes and for oxidative cleavage of arylketones to the corresponding benzoic acids in the presence of 70% aq. tert-butyl hydroperoxide (TBHP) as oxidant with 40% aq. NaOH as additive ${ }^{23}$ (Scheme 11).

Scheme 11: Reaction conditions: (i) methylarenes (3 mmol), $\mathrm{WO}_{3}(20 \mathrm{~mol} \%), 70 \%$ aq. TBHP (24 mmol), 40% aq. $\mathrm{NaOH}(24$ $\mathrm{mmol}), 80^{\circ} \mathrm{C}, 10 \mathrm{~h}$; (ii) aryl ketones (3 mmol), $\mathrm{WO}_{3}(10 \mathrm{~mol} \%)$, 70% aq. TBHP (12 mmol), 40% aq. NaOH (12 mmol), $80^{\circ} \mathrm{C}, 8$ h.

Several alkylarenes 76 and aryl ketones 82 with electron-donating as well as withdrawing groups underwent oxidation and produced carboxylic acids 77 in high yields. The important aspects of WO_{3}-catalyzed oxidation: free from organic solvents, benzoic acids were isolated in pure form without the need for column chromatographic purification, does not generate any hazardous waste, WO_{3} could be recovered by filtration.

Section II: Titanium Superoxide: A Heterogeneous Catalyst for Aminobromination of Olefin

The haloamination of olefins by the addition of two different functional groups in a single step is an important transformation. ${ }^{24}$ The vicinal haloamine functionality represents a useful structural moiety as well as versatile building blocks in organic and medicinal chemistry.

83
R = aryl, alkyl $\mathrm{R}^{1}=\mathrm{H}$, alkyl, $\mathrm{CO}_{2} \mathrm{R}^{\prime \prime}$

84
anti : syn > 99:1

Scheme 12: Reaction conditions: (i) olefin (3 mmol), $p-\mathrm{TsNH}_{2}(3.3 \mathrm{mmol})$, NBS (3 mmol), titanium superoxide ($10 \mathrm{wt} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 25^{\circ} \mathrm{C}, 14 \mathrm{~h}$.

This section describes a new heterogeneous catalytic method for the regiospecific bromoamination of olefins 83 catalyzed by titanium superoxide using NBS (Nbromosuccinimide) as bromine source and p-toluene sulfonamide as the nitrogen source ${ }^{25}$ (Scheme 12). The present method has been demonstrated for several olefins (aliphatic and aromatic) with electron-donating and -withdrawing groups that underwent bromoamination in high yields and diastereoselectivity ($>99: 1$). The protocol makes use of stable, reusable and readily accessible titanium superoxide as solid catalyst, which could be recovered by simple filtration.

References:

1. (a) Welch, W. M.; Harbert, C. A.; Koe, B. K.; Kraska, A. R. European Patent 30081, 1981; Chem. Abstr. 1981, 95, 209648; (b) Welch, W. M.; Kraska, A. R.; Sarges, R.; Koe, B. K. J. Med. Chem. 1984, 27, 1508.
2. Kolb H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
3. Pastuszak, I.; Molyneux, R. J.; James, L. F.; Elbein, A. D. Biochemistry 1990, 29, 1886.
4. Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed., 1998, 37, 2754.
5. Sugiura, M.; Mori, M.; Kobayashi, S.; J. Am. Chem. Soc. 2006, 128, 1103811039.
6. (a) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808; (b) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247; (c) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44, 8293.
7. Wertheim, T. Liebigs. Ann. Chem. 1856, 100, 328-330.
8. (a) Marion, L. Can. J. Res. 1945, 23B, 165; (b) Marion, L.; Lavigne, R.; Lemay, L. Can. J. Chem. 1951, 29, 347; (c) Franck, B. Chem. Ber. 1958, 91, 2803; (d) Franck, B. Chem. Ber. 1960, 93, 2360; (e) Fodor, G.; Butruille, D.; Huber, S. C.; Letourneau, F. Tetrahedron 1971, 27, 2055.
9. Kim, J. H.; Hart, H. T.; Stevens, J. F. Phytochemistry, 1996, 41, 1319.
10. (a) Wieland, H.; Koschara, K.; Dane, E.; Renz, J.; Schwarze, W.; Linde, W. Liebigs Ann. Chem. 1939, 540, 103; (b) Schopf, C.; Kauffmann, T.; Berth, P.; Bundshuh, W.; Dummer, G.; Fett, H.; Habermehl, G.; Wieters, E.; Wust, W. Liebigs Ann. Chem. 1959, 626, 150.
11. Gershwin, M. E.; Terr, A.; Clin. Rev. Allergy 1996, 14, 241.
12. (a) Strunzand, G. M.; Finlay, J. A. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, pp 89-174; (b) Buffat, M. G. P. Tetrahedron, 2004, 60, 1701.
13. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
14. Barrett, M. A. Beta-adrenoceptive agonists; in Recent Advances in Cardiology, ed. Churchill Livingstone, Edinburgh, London, 1973; p. 289.
15. (a) Howe, S. Nature 1966, 210, 1336; (b) Shiratsuchi, M.; Kawamura, K.; Akashi, T.; Ishihama, H.; Nakamura, M.; Takenaka, F. Chem. Pharm. Bull. 1987, 35, 3691.
16. Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 22, 274.
17. (a) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879-2932; (b) Hill, C. L. Activation and Functionalization of Alkanes; John Wiley: New York, 1989; (c) Labinger, J. A.; Bercaw, J. E. Nature, 2002, 417, 507-514.
18. Shaikh, T. M.; Sudalai, A.; Tetrahedron Lett. 2005, 46, 5587-5590.
19. (a) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxidations of Organic Compounds; Academic press: New York, 1981; (b) Cainelli, G.; Cardillo, G. Chromium Oxidations in organic Chemistry; Springer: Berlin, 1984; (c) Hudlicky, M. Oxidations in Organic Chemistry; American Chemical Society: Washington, DC, 1990.
20. Shaikh, T. M.; Emmanuvel, L.; Sudalai, L.; J. Org. Chem. 2006, 71, 5043-5046.
21. (a) Comprehensive Organic Transformations: A Guide to Functional Group Preparations; Larock, R. C., Ed.; Wiley-VCH: New York, 1989; (b) Fisher, C. H. J. Am. Chem. Soc. 1934, 56, 2056; (c) Kornblum, N.; Jones, W. J.; Anderson, G. J. J. Am. Chem. Soc. 1959, 81,4113 ; (d) Suzuki, S.; Onishi, T.; Fujita, Y.; Misawa, H.; Otetra, J. Bull. Chem. Soc. Jpn. 1986, 59, 3287.
22. Shaikh, T. M.; Emmanuvel, L.; Sudalai, A. Synth. Commun. 2007, 37, 2641-2646.
23. Shaikh, T. M.; Sudalai, A. Eur. J. Org. Chem. 2008, 4877-4880.
24. (a) Kemp, J. E. G. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 3, p 471; (b) Gao, G.-Y.; Harden, J. D.; Zhang, X. P. Org. Lett. 2005, 7, 3191; (e) Yeung, Y.-Y.; Hong, S.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310.

CHAPTER I

Enantioselective Synthesis of (+) Sertraline and (+)-Lentiginosine

Section I:

A Short Enantioselective Synthesis of (+)-Sertraline via Sharpless Asymmetric Dihydroxylation

1.1.1 Introduction

Selective serotonin reuptake inhibitors are a class of antidepressants used for the treatment of depression. ${ }^{1}$ Drugs are designed to allow serotonin, the neurotransmitter to be utilized more effectively. Low-level serotonin is currently seen as one of numerous neurochemical symptoms of depression. These low levels of serotonin can be caused by an anxiety disorder, because serotonin is necessary to metabolize stress hormones. A depressive disorder is believed to be caused by a chemical imbalance in the brain. Messages are passed between two nerve cells via a small gap between the cells. The nerve cells sending the information release neurotransmitters into that gap.

($\mathbf{\pm}$-1

(S)-(+)-1a

Fig. 1: Structures of sertraline

These neurotransmitters are recognized by receptors on the surface of the recipient cell, which relays the signal. Approximately 10% of the neurotransmitters are lost in this process, with the other 90% released from the receptors and taken up again by
monoamine transporters. Depression has been associated with a lack of stimulation of the recipient neuron at the synapse. To stimulate this cell, selective serotonin reuptake inhibitor (SSRI) block the reuptake of serotonin.

1.1.2 Pharmacology

$(+)$-Sertraline 1a, a selective serotonin reuptake inhibitor (SSRI), is an important antidepressant drug discovered by Pfizer chemist Reinhard Sarges in 1970. It is one of the highest selling drugs, sold under the trade name Zoloft ${ }^{\circledR}$. ${ }^{2}$ Medically, sertraline (1a) is used for the treatment of depression and anxiety but it is also prescribed for the treatment of obsessive-compulsive disorder, post-traumatic stress disorder, premenstrual dysphoric disorder, panic disorder and bipolar disorder. Administration of sertraline comes with side effects such as gastrointestinal complaints, nervousness and agitation, sexual dysfunction as well as weight gain mainly on long-term users.

1.1.3 Review of literature

Welch's approach (1984) ${ }^{3}$

In this route, the synthesis of recemic sertraline (\pm)-1 was achieved by following a simple sequence of reactions. Thus, α, β-unsaturated ester 4 was readily prepared by basecatalyzed Stobbe condensation of 3,4-dichlorobenzophenone $\mathbf{2}$ with diethylsuccinate $\mathbf{3}$. Ester 4 was then subjected to acid-catalyzed decarboxylation, followed by catalytic hydrogenation ($5 \% \mathrm{Pd} / \mathrm{C}$) to give the saturated acid 6. Acid 6 underwent cyclization under Friedel-Crafts' condition (anhyd. AlCl_{3}) to produce tetralone 7. Finally, reductive amination of tetralone 7 with methylamine $\left(\mathrm{MeNH}_{2}, \mathrm{TiCl}_{4} ; \mathrm{NaBH}_{4}, \mathrm{MeOH}\right)$ afforded (\pm) sertraline 1 (Scheme 1).

2
$+$

3

4
5

6

7

(\pm)-1

Scheme 1: $\mathrm{K}^{\mathrm{t}} \mathrm{OBu},{ }^{\mathrm{t}} \mathrm{BuOH}$, reflux, $16 \mathrm{~h}, 80 \%$; (ii) $48 \% \mathrm{HBr}$ in glacial AcOH , reflux, 26 $\mathrm{h}, 50 \%$; (iii) $5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm})$, EtOAc, $24 \mathrm{~h}, 100 \%$; (iv) SOCl_{2}, toluene, $110^{\circ} \mathrm{C}, 1.5$ h; anhyd. $\mathrm{AlCl}_{3}, \mathrm{CS}_{2}, 0-25{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 48 \%$; (v) $\mathrm{TiCl}_{4}, \mathrm{MeNH}_{2}$, toluene, $25^{\circ} \mathrm{C}, 17 \mathrm{~h}$; (vi) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0-25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$.

Quallich's approach (1992) ${ }^{4}$

Quallich et al. have reported the first asymmetric synthesis of (+)-sertraline 1a. The asymmetric reduction of γ-keto ester $\mathbf{8}$ with CBS catalyst constituting the key reaction in their approach gave the hydroxy ester 9 in quantitative yield and 88% ee. Alcohol 9 was mesylated and coupled with higher order phenyl cuprate to give butyrate $\mathbf{1 0}$ in 70% yield. The butyl ester $\mathbf{1 0}$ was directly cyclized to form tertralone $\mathbf{7}$ in the presence of triflic acid. Finally, transformation of 7 to $(+)$-sertraline 1a was achieved by reductive amination (Scheme 2).

8

9

10

Scheme 2: (i) BH_{3}, (S)-tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrollo [1,2C][1,3,2] oxazaborole (CBS), THF, $0{ }^{\circ} \mathrm{C}, 100 \%$; (ii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 20$ min.; (iii) $\mathrm{CuCN}, \mathrm{PhLi}, \mathrm{Et}_{2} \mathrm{O},-45{ }^{\circ} \mathrm{C}$, (iv) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, benzene, $70{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (v) TiCl_{4}, MeNH_{2}.

Corey's approach (1994) ${ }^{5}$

Corey et al. have reported the synthesis of (+)-sertraline (1a) by employing rhodiumcatalyzed asymmetric cyclopropnation reaction. Thus, the diazo butanoate $\mathbf{1 2}$ was subjected to asymmetric cyclopropanation with styrene 11 using proline derived catalyst 13 to afford cyclopropane ester 14 in 79% yield and 94% ee. The oxidation of styrenic $\mathrm{C}=\mathrm{C}$ of $\mathbf{1 4}$ with $\mathrm{KMnO}_{4} / \mathrm{NaIO}_{4}$ followed by esterification afforded malonyl ester $\mathbf{1 5}$. Treatment of $\mathbf{1 5}$ with cuprate reagent $\mathrm{Ar}_{2} \mathrm{CuLi}_{2} \mathrm{CN}$ (prepared from 3,4-dichlorophenyl iodide) led to ring opening of cyclopropane ring to give diester 16 in 82% yield. Hydrolysis of diester 16 with 6 N HCl followed by cyclization with chlorosulfonic acid gave tetralone 7; reductive amination of which resulted in the formation of $(+)$-sertraline (1a) (Scheme 3).

11

12

13

14

Scheme 3: (i) $10 \mathrm{~mol} \%$ of catalyst 13, pentane, $25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 79 \%$; (ii) $\mathrm{KMnO}_{4}, \mathrm{NaIO}_{4}$, $\mathrm{K}_{2} \mathrm{CO}_{3},{ }^{\mathrm{t}} \mathrm{BuOH}, 0.5 \mathrm{~h}, 25{ }^{\circ} \mathrm{C}, 83 \%$; (iii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Me}_{2} \mathrm{SO}_{4}$, acetone, $3 \mathrm{~h}, 97 \%$; (iv) BuLi , 3,4-dichlorophenyl iodide, $\mathrm{CuCN}, \mathrm{Et}_{2} \mathrm{O}, 15 \mathrm{~min}, 82 \%$; (v) 6 N HCl , reflux, 20 h then 1 N NaOH ; (vi) $\mathrm{ClSO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}, 84 \%$; (vii) reductive amination using MeNH_{2}.

Lautan's approach (1997) ${ }^{6}$

Lautan et al. have reported the synthesis of (+)-setraline (1a) via nickel -catalyzed regioand enantioselective ring opening of oxabicyclic alkene 17 in the presence of (R)-BINAP to give chiral alcohol $\mathbf{1 8}$ in 88% yield. The protection of alcohol $\mathbf{1 8}$ as its silyl ether followed by its Pd-catalyzed Stille coupling with (3,4-Cl $) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SnMe}_{3}$ gave 20 in 55% yield. Desilylation of $\mathbf{2 0}\left(\mathrm{Bu}_{4} \mathrm{NF}\right.$ in THF) followed by reduction of double bond using Crabtree's catalyst $\left\{\left[\operatorname{Ir}(\mathrm{COD}) \mathrm{pyPCy}_{3}\right] \mathrm{PF}_{6}\right\}$ produced 21 in 88% yield and 28:1 diastereoselectivity. The direct nucleophilic displacement of alcohol 21 with diphosphoryl azide (dppa) gave azide 22 in 88% yield. The catalytic reduction of azide 22 followed by N -carbethoxylation and its reduction with $\mathrm{LiAl}(\mathrm{OMe})_{3}$ afforded sertraline (1a) in 86% yield (Scheme 4).

Scheme 4: (i) $\mathrm{Ni}(\mathrm{COD})_{2}(14 \mathrm{~mol} \%)$, (R)-BINAP, 1.1 eq. DIBAL-H, toluene, $25^{\circ} \mathrm{C}, 88 \%$; (ii) TBDPSCl, imid., DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 86 \%$; (iii) $\mathrm{Br}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; then DBU, toluene, 83% (iv) $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}(5 \%)$, $\mathrm{AsPh}_{3}(20 \%),\left(3,4-\mathrm{Cl}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SnMe}_{3}, \mathrm{NMP}, 80{ }^{\circ} \mathrm{C}$, $1.5 \mathrm{~h}, 55 \%$; (v) TBAF, THF, $0{ }^{\circ} \mathrm{C}$; (vi) $\left[\operatorname{Ir}(\mathrm{COD}) \mathrm{pyPCy}_{3}\right] \mathrm{PF}_{6}(10 \mathrm{~mol} \%), \mathrm{H}_{2}(1000 \mathrm{psi})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$ (vii) dppa, DBU, THF, $88 \%, 98: 2$; (viii) (a) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{CH}_{3} \mathrm{CN}$, (ix) $\mathrm{LiAlH}(\mathrm{OMe})_{3}$, THF, reflux, $40 \mathrm{~h}, 86 \%$.

Chen's approach (1999) ${ }^{7}$

Chen et al. have achieved the synthesis of (+)-sertraline (1a) by the addition of Grignard reagent $\mathbf{2 4}$ onto α, β-unsaturated chiral carbamate $\mathbf{2 3}$ to prvide $\mathbf{2 5}$ in 90% yield. Reductive removal of chiral auxiliary in $\mathbf{2 5}$ using NaBH_{4} in THF- $\mathrm{H}_{2} \mathrm{O}$ gave alcohol 26. Alcohol 26 was transformed to iodoaldehyde 27 in 85% yield. Iodoaldehyde 27 on treatment with methylamine gave the corresponding imine 28 which was subjected to BuLi-mediated intramolecular ring closing so that a single diastereomer of (+)-sertraline (1a) was obtained (Scheme 5).

Scheme 5: (i) $\mathrm{CuBrSMe}_{2}$ (20 mol\%), THF, $-30^{\circ} \mathrm{C}, 90 \%$; (ii) NaBH_{4}, THF- $\mathrm{H}_{2} \mathrm{O}$; (iii) PPh_{3}, I_{2}, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $2 \mathrm{~N} \mathrm{HCl}, 85 \%$; (v) $2.0 \mathrm{M} \mathrm{MeNH}_{2}$ in THF, (vi) ${ }^{\mathrm{t}} \mathrm{BuLi}$, THF, toluene, $78{ }^{\circ} \mathrm{C}, 69 \%$.

Davies's approach (1999) ${ }^{8}$

Davies et al. have reported a formal synthesis of (+)-sertraline (1a) using rhodiumcatalyzed C-H insertion as the key step. The diazo ester $\mathbf{2 9}$ and cyclohexadiene $\mathbf{3 0}$ were exposed to intramolecular C-H insertion using Rh-catalyst 31 that resulted in the formation of α, β-unsaturated ester 32. Aromatization of 32 using DDQ followed by catalytic hydrogenation afforded saturated ester 33 in 52\% yield. Ester $\mathbf{3 3}$ was hydrolyzed and cyclized intramolecularly to produce tetralone 7 in 79% yield and 96% ee (Scheme 6).

Scheme 6: (i) $\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{DOSP})_{4}$, hexane, $23{ }^{\circ} \mathrm{C}, 59 \%$; (ii) DDQ , toluene; (iii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ $(20 \mathrm{psi}), \mathrm{EtOH}, 52 \%$; (iv) 6 N HCl , then $\mathrm{ClSO}_{3} \mathrm{H}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 79 \%$.

Chandrashekar's approach (2000) ${ }^{9}$

Chandrashekar et al. have achieved the synthesis of (+)-sertraline (1a) by employing chiral pool strategy. Thus, reduction of ester 34 with LiAlH_{4} gave alcohol 35, which was oxidized to aldehyde under Swern's conditions. Aldehyde on subsequent treatment with Wittig reagent namely $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2}$ Et to afforded α, β-unsaturated ester 36 in 72% yield. The complete reduction of α, β-unsaturated ester 36 gave the saturated alcohol 37. Oxidation of alcohol 37 with Corey's reagent (PCC) followed by its treatment with Grignard reagent, i.e 3,4-dichlorophenylmagnesium bromide, gave the secondary alcohol 38 in 83% yield. Alcohol 38 was cyclized intramolecularly with anhyd. AlCl_{3}, which generated 39 with a second chiral centre of separable diastereomers. The conversion of cis isomer 39 to (+)-sertraline (1a) was achieved via a known series of reactions namely debenzylation, Boc-protection, N -methylation and Boc-deprotection (Scheme 7).

Scheme 7: (i) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 80 \%$; (ii) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; then $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, $25^{\circ} \mathrm{C}, 15 \mathrm{~h}, 72 \%$; (iii) (a) $\mathrm{Mg}, \mathrm{MeOH}, 4 \mathrm{~h}$; (b) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 76 \%$; (iv) PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5 \mathrm{~h}$; (v) 3,4-dichlorophenylmagnesium bromide, THF, 5 h, 83%; (vi) $\mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}, 78 \%$ (vii) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{MeOH}, \mathrm{H}_{2}, 3 \mathrm{~h}$; then (Boc$)_{2} \mathrm{O}, 3 \mathrm{~h}$; (viii) NaH , MeI, THF, $6 \mathrm{~h}, 84 \%$; (ix) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 85 \%$.

Boultan's approach (2003) ${ }^{10}$

Boultan et al. have employed asymmetric hydrogenation as the key reaction. Diarylbutanoate salt 40 was prepared from 3,4-dichlorobenzophenone 2 by Wittig olefination. The compound $\mathbf{4 0}$ was subjected to asymmetric catalytic hydrogenation using rhodium-phane-phos catalyst 42 and $\mathrm{H}_{2}(120 \mathrm{psi})$ to afford enantio-enriched saturated ester $\mathbf{4 1}$ in quantitative yield and 90% ee. The synthesis of (+)-sertraline (1a) was completed by following the three-step reaction sequences of hydrolysis, cyclization and reductive amination (Scheme 8).

2
ii $\left\{\begin{array}{l}5, \mathrm{R}=\mathrm{H} \\ \mathbf{4 0}, \mathrm{R}=\mathrm{H}_{\mathrm{BuNH}}^{3}+\end{array}\right.$

Scheme 8: (i) $\mathrm{KOBu}^{\mathrm{t}}$, diethyl succinate, ${ }^{\mathrm{t}} \mathrm{BuOH}$; then $48 \% \mathrm{HBr}$, $\mathrm{AcOH}, 32 \%$; (ii) ${ }^{\mathrm{t}} \mathrm{BuNH}_{2}, \mathrm{EtOAc}, 99 \%$; (iii) [$\mathrm{RhCOD}^{2} \mathrm{BF}_{4}$, ligand 42, H_{2} (120 psi), MeOH ; (iv) 2 M $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{EtOAc}$; then $\mathrm{ClSO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 91 \%$; (v) $\mathrm{MeNH}_{2}, \mathrm{H}_{2}, \mathrm{MeOH}$.

Colberg's approach (2004) ${ }^{11}$

Colberg et al. have employed kinetic resolution of recemic (\pm)-sertraline (1) as the key step. α-Napthol 43 and 1,2-dichlorobenzene 44 were reacted in the presence of anhyd. AlCl_{3} under Friedel-Crafts alkylation conditions to give recemic (\pm)-tetralone 7 in 95% yield. Treatment of (\pm)-tetralone 7 with excess of methyl amine in ethanol furnished the corresponding imine, which was then subjected to reductive amination $\left[\mathrm{Pd} / \mathrm{CaCO}_{3}, \mathrm{H}_{2}\right.$ (50 psi)] to yield (\pm)-sertraline, $\mathbf{1}$ (cis:trans $20: 1$) with cis as the major isomer. The recemic sertraline, $\mathbf{1}$ was then treated with D-mandelic acid so that the cis isomer is resolved selectively in solid form (Scheme 9).

43

44

$(\pm)-7$

$(\pm)-1$

1a

Scheme 9: (i) AlCl_{3}; (ii) $\mathrm{MeNH}_{2}, \mathrm{EtOH}, 95 \%$; then $\mathrm{Pd} / \mathrm{CaCO}_{3}$ ($1 \% \mathrm{w} / \mathrm{w}$), H_{2} (50 psi), 40%; (iii) (D)-mandelic acid, EtOH , reflux then $-5^{\circ} \mathrm{C}, 36 \%$.

Lautens's approach (2005) ${ }^{12}$

Lautens et al. have reported the synthesis of (\pm)-sertraline (1) by employing Diels-Alder reaction between benzenediazonium-2-carboxylate 45, a benzyne-equivalent and dienyl ester 46 in 1,2-dichloroethane as solvent at $60^{\circ} \mathrm{C}$, to give the cycloadduct $\mathbf{4 7}$ in 78% yield. Cycloadduct 47 was hydrogenated and the benzyl group deprotected in one-pot using $10 \% \mathrm{Pd} / \mathrm{C}$ and $\mathrm{H}_{2}(4 \mathrm{~atm})$ to give acid 48 in 94% yield. The acid 48 was then subjected to Curtius rearrangement via the initial formation of acylazide $\left(\mathrm{ClCO}_{2} \mathrm{Et}\right.$, then NaN_{3}) followed by the addition of allyl alcohol at $90{ }^{\circ} \mathrm{C}$, which afforded allyl carbamate 49 in 65% yield. N -methylation and deprotection of allyl group in 49 resulted in the formation of (\pm)-sertraline 1 (Scheme 10).

Scheme 10: (i) 1,2-dichloroethane, $60^{\circ} \mathrm{C}, 78 \%$; (ii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (4 atm), $\mathrm{MeOH}, 94 \%$; (iii) $\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{NaN}_{3}, \mathrm{Et}_{3} \mathrm{~N}$, toluene, $25^{\circ} \mathrm{C}$; (iv) allyl alcohol (10 equiv.), toluene, $90^{\circ} \mathrm{C}, 65 \%$; (v) NaH , MeI, THF, 91%; (vi) $\operatorname{Pd}(\mathrm{OAc})_{2}$, $\mathrm{HNEt}_{2}, \mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}, 75 \%$.

Zhao's approach (2006) ${ }^{13}$

Recemic (\pm)-tetralone 7 was subjected to reduction using L-proline derived catalyst $\mathbf{5 0}$ and $\mathrm{Me}_{2} \mathrm{~S} \cdot \mathrm{BH}_{3}$ to give diasteromers 21 and 21a which were readily separated (in 94% yield and 97% ee). The oxidation of trans isomer 21 with PCC give the optically active $(+)$-tetralone 7, which was transformed to (+)-sertraline 1a via reductive amination $\left(\mathrm{MeNH}_{2}, \mathrm{TiCl}_{4}\right.$, Raney-Ni) (Scheme 11).

Scheme 11: (i) $\mathrm{Me}_{2} \mathrm{~S} \cdot \mathrm{BH}_{3}, 50$ ($5 \mathrm{~mol} \%$), THF, reflux, 42%; (ii) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$; (iii) $\mathrm{TiCl}_{4}, \mathrm{MeNH}_{2}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; then Raney $\mathrm{Ni}, \mathrm{H}_{2}, \mathrm{MeOH}$.

1.1.4 Present Work

1.1.4.1 Objective

As can be seen from the above synthetic studies, the literature methods in the synthesis of $(+)$-sertraline (1a) employ either chiral starting materials or expensive reagents involving longer reaction sequences, often resulting in poor product selectivities. The enantioselective synthesis of $(+)$-sertraline (1a) is thus undertaken to overcome some of the disadvantages associated with the reported methods.

The retrosynthetic analysis of (+)-sertraline (1a) is shown in Scheme 12. We envisaged that tetralone 7 could serve as a valuable intermediate for the asymmetric synthesis of $(+)$-sertraline (1a). The tetralone moiety 7 could be constructed by intramolecular
cyclization of unsaturated hydroxy ester 51 after saturation of the $\mathrm{C}=\mathrm{C}$ bond. The α, β unsaturated ester $\mathbf{5 1}$ can be thought to be obtained from diol 52, which in turn can be accessible from asymmetric dihydroxylation of styrene $\mathbf{5 3}$. Olefin $\mathbf{5 3}$ can be prepared from the corresponding aromatic ketone 2 via Wittig olefination. Since the synthetic strategy involves asymmetric dihydroxylation (ADH) as the key chiral inducing reaction, a brief account of ADH is given below.

1a

7

51

52

53

2

Scheme 12: Retrosynthetic analysis of (+)-sertraline

1.1.4.2 Asymmetric Dihydroxylation

In recent years much attention has been focused on the catalytic asymmetric synthesis. There are several methods to obtain enantiomerically pure compounds that include classical optical resolution, chromatographic separation of enantiomers, enzymatic resolution and asymmetric synthesis. ${ }^{14}$ It often has significant economic advantages over stoichiometric asymmetric synthesis for industrial-scale production of
enantiomerically pure compounds. All these asymmetric reactions crucially depend on ligand acceleration effect (LAE). ${ }^{15}$ Among all these reactions, Sharpless Catalytic Asymmetric Dihydroxylation (ADH) is one of the most important practical and widely used reactions in organic synthesis. It has become the most general method for the preparation of optically active vicinal cis-diols from activated as well as inactivated olefins. ${ }^{16}$

In 1936, Criegee et al. ${ }^{17}$ have found that addition of pyridine or any other tertiary amine to osmylation of olefins accelerates the rate of reaction considerably. A major breakthrough has occurred in the field of asymmetric oxidation when Sharpless ${ }^{16 \mathrm{~b}}$ et al.

Ligand Acceleration $=\frac{\text { Saturation rate with ligand }}{\text { Rate without ligand }}$
Scheme 13: Simplified mechanism of achiral and chiral dihydroxylation
demonstrated that asymmetric induction could be achieved when chiral amines were added to OsO_{4}-mediated asymmetric oxidation of olefins. Among the various ligands screened best results were obtained with ligands which were representatives of the cinchona alkaloid family, dihydroquinidine (DHQD) and dihydroquinine (DHQ). ${ }^{18} \mathrm{~A}$ number of recent methods employ chiral diamine ligands for the asymmetric osmylation
of olefins. The simplified mechanism of achiral and chiral dihydroxylation is given in

Scheme 13.

Mechanism of OsO_{4}-catalyzed dihydroxylation of olefin

In order to develop a catalytic method, several co-oxidants such as sodium or potassium chlorate, ${ }^{19}$ hydrogen peroxide, ${ }^{20}$ tert-butyl hydroperoxide ${ }^{21}$ and N -methylmorpholine N oxide (NMO) ${ }^{22}$ were introduced .

Fig. 2: Catalytic cycle for ADH using $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ as co-oxidant.
The idea to use these co-oxidants was to minimize the amount of toxic and costly osmium so as to make the process more economical. Sharpless et al ${ }^{23}$ have established that the most practical and suitable catalytic method is with NMO as co-oxidant but the ee's of the diol was less than those produced by the stoichiometric reactions (primary catalytic cycle) The reason was thought to be the involvement of second catalytic cycle (secondary catalytic cycle), which results in low or no ee at all. To improve the \%ee of
the chiral diol, the second catalytic cycle of AD should be avoided and this was achieved by employing the $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ as reoxidant and using biphasic conditions (Fig. 2). ${ }^{24}$

These conditions helped in protecting the organic osmate-(VI) monoglycolate ester (species A, Fig. 2) from inopportune oxidation prior to hydrolysis and thereby releasing the diol and ligand to the organic phase and osmium-(VI) to the aqueous phase. Subsequently, osmium-(VI) gets reoxidized and recycled into the catalytic cycle. Further improvement in the ADH was realized by the addition of methyl sulfonamide $\left(\mathrm{MeSO}_{2} \mathrm{NH}_{2}\right)$ to the reaction mixture. It also helps to accelerate the hydrolysis of the species \mathbf{A}, thus facilitating the dihydroxylation smoothly. Addition of methyl sulfonamide also allowed carrying out the reactions of 1, 2-ditri- and tetra- substituted olefins at $0{ }^{\circ} \mathrm{C}$, which improved the selectivity as well as \%ee. In order to develop the asymmetric version of the Os-catalyzed ADH reaction, Sharpless and coworkers have screened various chiral ligands and found out that the derivatives of cinchona alkaloids gave excellent results. Among all the 250 derivatives of cinchona alkaloid ligands screened, the bis-DHQ (54) or DHQD (55) ethers of phthalazine-1, 4-diol have proven to be the best for obtaining high enantioselectivities of the chiral diols (Fig. 3). ${ }^{25}$

(DHQ) $)_{2}$-PHAL (54)

(DHQD) 2_{2}-PHAL (55)

Fig. 3: Ligands for asymmetric dihydroxylation reaction
The recent studies have demonstrated the importance of enzyme-like binding pocket of the dimeric cinchona alkaloid for high enantioselectivity of the chiral diols. ${ }^{26}$ Sharpless et
al have shown that the facial selectivity for both ligands $\mathbf{5 4}$ and $\mathbf{5 5}$ is different, based on their ability to induce the ee into the diols.

Fig. 4: Enantioselectivity in ADH
This observation has led to the development of mnemonic model (Fig. 4) in which olefin with the constraints will be attacked either from the top (i.e. β) face in the presence of dihydroquinidine (DHQD) derivatives or from the bottom (i.e. α) face in the presence of dihydroquinine (DHQ) derived ligand.

1.1.5 Results and Discussion

Our synthesis of (+)-sertraline (1a) commences from benzaldehyde. The addition of arylmagnesium bromide 57, prepared from the corresponding 3,4-dichlorobromobenzene, onto benzaldehyde 56 furnished the corresponding benzylic alcohol 58 in 80% yield. The oxidation of alcohol 58 with pyridinium chlorochromate (PCC) gave the corresponding benzophenone 2 in 82% yield. Surprisingly, we have observed here an interesting result in which both the Grignard addition onto aldehyde 56 and oxidation of the corresponding alcohol took place simultaneously in a one-pot reaction when the Grignard reaction was conducted for 72 h (3 days) at $25^{\circ} \mathrm{C}$ (Scheme 14). This constitutes a direct single-step oxidation to obtain benzophenone 2 obtained in 65% yield.

Scheme 14: Unusual oxidation during Grignard reaction

Scheme 15: Reaction conditions: (i) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}$, BuLi , THF, -78 to $0{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 87 \%$; (ii) $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (DHQD) 2 - $\mathrm{AQN}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6},{ }^{\dagger} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1), 24 \mathrm{~h}, 78 \%$; (iii) IBX, dry DMSO, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (iv) $\mathrm{Ph}{ }_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, dry benzene, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$, 90%; (v) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 62 \%$; (vi) 6 N HCl , reflux, 23 h ; (vii) $\mathrm{ClSO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 68 \%$; (viii) $\mathrm{TiCl}_{4}, \mathrm{MeNH}_{2}$, Raney-Ni, H_{2}, (20 psi), 35%.

The Wittig olefination of benzophenone 2 ($\mathrm{n}-\mathrm{BuLi}, \mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}$, THF, $-78-0{ }^{\circ} \mathrm{C}$) gave olefin 53 in 87% yield (Scheme 15). Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a characteristic olefinic proton signal at $\delta 5.46(\mathrm{dd})$. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical carbon signal at $\delta 115.4$ due to benzylic quaternary carbon (Fig. 5).

Fig. 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of olefin 53

It has been well-established that ADH of 1,1-diaryl olefin using anthraquinone (AQN)and diphenylpyrimidine (PRY)- based ligands produces diols with $>90 \%$ ee as compared to phthalazine (PHAL)-based ligands. Thus, ADH of olefin 53 was carried out using
potassium osmate $\left[\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}\right]$ as the catalyst and $(\mathrm{DHQD})_{2}-\mathrm{AQN}$ as the chiral ligand, which resulted in the formation of the corresponding diol 52 in 78% yield. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra confirmed the disappearance of olefinic protons and carbons respectively. The appearance of a multiplet at $\delta 3.99-4.09$ in its ${ }^{1} \mathrm{H}$ NMR spectrum and a typical carbon signal at $\delta 77.7$ in its ${ }^{13} \mathrm{C}$ NMR spectrum are indicative of formation of diol function (Fig. 6).

Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of diol 52

The IBX oxidation (IBX, DMSO, $25^{\circ} \mathrm{C}$) of the primary hydroxyl group in diol $\mathbf{5 2}$ gave the corresponding aldehyde $\mathbf{5 9}$ in 85% yield. Its IR spectrum exhibited a broad band at $3453 \mathrm{~cm}^{-1}$ indicating the presence of hydroxyl group whereas the aldehydic carbonyl displayed a strong band at $1725 \mathrm{~cm}^{-1}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed a characteristic singlet at $\delta 9.92$ for aldehydic proton (-CHO) while the aromatic protons have displayed signals in the region $\delta 7.24-7.52$ as multiplets. Its ${ }^{13} \mathrm{C}$ NMR spectrum exhibited a typical carbon signal at $\delta 196.8$ corresponding to the carbonyl carbon (Fig. 7).

Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of aldehyde 59

The Wittig olefination $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}\right.$, benzene, $\left.25^{\circ} \mathrm{C}\right)$ of aldehyde 59 gave the α, β unsaturated ester 51 in 87% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a strong singlet at $\delta 3.74$ due to methoxyl proton a doublet of doublet at $\delta 6.17$ and 7.49 for olefin protons ($\mathbf{C H}=\mathbf{C H}-\mathrm{CO}_{2} \mathrm{Me}$) respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed typical signals at $\delta 77.8$ 119.5 and 143.5 due to quaternary benzylic carbon and α, β-unsaturated olefinic carbons $\left(-\mathbf{C H}=\mathbf{C H}-\mathrm{CO}_{2} \mathrm{Me}\right)$ respectively (Fig. 8).

Fig. 8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of α, β-unsaturated ester $\mathbf{5 1}$

Catalytic hydrogenation [$\left.10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}\right]$ of ester $\mathbf{5 1}$ was carried out. It underwent hydrogenolysis at the benzylic position as well as reduction of $\mathrm{C}=\mathrm{C}$ bond to produce the saturated ester $\mathbf{3 3}$ in 62% yield with complete retention of configuration at the benzylic position. ${ }^{27}$ Ester 33 was subsequently hydrolyzed in acidic conditions (6 N HCl , reflux, 23 h) to give the corresponding carboxylic acid $\mathbf{6}$, as confirmed by its IR, which exhibited a broad band at $1715 \mathrm{~cm}^{-1}$ due to the presence of carboxylic acid carbonyl function.

Fig. 9: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of tetralone 7

Carboxylic acid 6 was subsequently subjected to intramolecular Friedel-Crafts' cyclization $\left(\mathrm{ClSO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to furnish tetralone 7 in 68% yield and 88% ee. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a multiplet at δ 2.18-2.71 for $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - protons. A multiplet at $\delta 4.28(\mathrm{dd})$ is due to benzylic methine proton. Its ${ }^{13} \mathrm{C}$ NMR displayed a typical signal at δ 196.9 for benzylic ketone carbonyl and two signals at $\delta 143.8$ and 144.6 for the aromatic quaternary carbons (Fig. 9). Finally, a single-step reductive amination [TiCl ${ }_{4}$, excess MeNH_{2}, Raney-Ni, $\mathrm{H}_{2}(50 \mathrm{psi})$] of tetralone 7 afforded (+)-sertraline $\mathbf{1 a}$ in 35% yield and 88% ee. Sertraline 1a was recrystallized from chloroform and ethanol. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral values and melting point were found to be identical with the reported values ${ }^{13}$ (Fig. 10).

Fig. 10: ${ }^{1} \mathrm{H}$ NMR spectrum of $(+)$-sertraline (1a)

1.1.6 Conclusion

In summary, we have described an alternative, catalytic method for the enantioselective synthesis of (+)-sertraline (1a) that employs Sharpless asymmetric dihydroxylation of $1,1^{\prime}$ diaryl olefin as the key step and proceeds in 9 steps with an overall yield of 5.0% and 88% ee.

1.1.7 Experimental section

3,4-Dichlorophenyl(phenyl)methanol (58)

To a stirred suspension of magnesium ($1.0 \mathrm{~g}, 41.13 \mathrm{mmol}$) and few crystals of iodine in dry THF (100 mL), a solution of 4-bromo-1,2-dichlorobenzene ($5 \mathrm{~g}, 22.13 \mathrm{mmol}$) in 20 mL dry THF was added drop-wise at $25^{\circ} \mathrm{C}$. It was heated to reflux for 15 min and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. To this, a solution of benzaldehyde $(2.34 \mathrm{~g}$, in THF $10 \mathrm{~mL}, 22.05 \mathrm{mmol}$) was added drop-wise via syringe. After stirring at $0{ }^{\circ} \mathrm{C}$ for 10 min and at $25^{\circ} \mathrm{C}$ for 10 h a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the organic layers separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 40 \mathrm{~mL})$ and the combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using EtOAc and pet. ether (8:2) as eluant to yield alcohol 58.

Yield: 80%; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3305,2930,2812,1460,1230,1020,745,700,605 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.48(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 74.9,125.6,126.4,128.0,128.2,128.6,130.2,131.3,132.4,142.7$, 143.8; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}: \mathrm{C}, 61.68 ; \mathrm{H}, 3.98$; Cl, 28.01; Found. C, 61.52; H, 3.89 Cl, 27.99%.

3,4-Dichlorophenyl(phenyl)methanone (2)

To a stirred mixture of alcohol $58(5 \mathrm{~g}, 19.75 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ was added pyridinium chlorochromate $(\mathrm{PCC})(6.3 \mathrm{~g}, 29.23 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 5 min , the reaction mixture was then stirred for 6 h at $25^{\circ} \mathrm{C}$. After completion of the reaction monitored by TLC, it was filtered through a funnel, solvent was distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using EtOAc and pet ether (2:8) as eluent to give pure ketone 2.

Yield: $82.6 \%(4.1 \mathrm{~g}) ; \mathbf{m p}: 95-96{ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2980,2933,1710,1610,1554$, $1410,1398,974,845,738,690,{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 7.47-7.66(\mathrm{~m}, 5 \mathrm{H}), 7.76$ (dt, $J=1.6,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 128.4$, 128.9, 129.7, 130.3, 131.7, 132.8, 136.6, 137.1, 193.6; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$: C, 62.18; H, 3.21; Cl, 28.24; Found. C, 62.11; H, 3.19; Cl, 28.17%.

1,2-Dichloro-4-(1-phenylvinyl)benzene (53)

$n-\mathrm{BuLi}$ ($19.48 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane) was added drop-wise, to a stirred solution of methyltriphenylphosphonium iodide $(16.8 \mathrm{~g}, 41.56 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h and further cooled to $-40^{\circ} \mathrm{C}$. To this, a solution of [3,4-dichlorophenyl(phenyl)methanone] $2(7.0 \mathrm{~g}, 27.87 \mathrm{mmol})$ in THF (30 mL) was added drop-wise via syringe. The mixture was stirred for further 5 h , quenched by the addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the organic layer separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$. The combined organic layers was washed with water (50 mL), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent distilled off and the crude product purified by column chromatography over silica gel using EtOAc and Pet.ether (1:9) as eluent to afford olefin $\mathbf{5 3}$ as a colorless solid.

Yield: $87.1 \%(6.05 \mathrm{~g})$; mp: $98-99{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3100,2970,2933,2852,1604$, 1465, 1056, 930, 669; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.46(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ $(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 115.4,127.4,128.0,128.1,128.3,129.9,130.0,131.7,132.3,140.2$, 141.4, 147.9; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2}$: C, 67.49 ; $\mathrm{H}, 4.05$; $\mathrm{Cl}, 28.46$; Found. C, 67.39; H, 3.99; Cl, 28.21\%.

(R)-1-(3,4-Dichlorophenyl)-1-phenylethane-1,2-diol (52)

To a stirred mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.66 \mathrm{~g}, 12.04 \mathrm{mmol}), \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](3.96 \mathrm{~g}, 12.04 \mathrm{mmol})$, (DHQD-AQN) $(0.034 \mathrm{~g}, 1 \mathrm{~mol} \%)$ and methane sulfonamide $(0.381 \mathrm{~g}, 12.01 \mathrm{mmol})$ in water $(10 \mathrm{~mL})$ and tert-butanol $(10 \mathrm{~mL})$ mixture, was added $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mol} \%$, $0.0059 \mathrm{~g})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 min , olefin $53(1 \mathrm{~g}, 4.01 \mathrm{mmol})$ in tert-butanol (2 mL) was added. The reaction mixture was then stirred for 24 h at $25^{\circ} \mathrm{C}$. Reaction was quenched by addition of sodium sulfite and then stirred for further 0.5 h . The organic layer was separated and the aq. layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using EtOAc and pet. ether (4:6) as eluent to give pure diol 52 as a colorless solid.

Yield: $78 \%(0.88 \mathrm{~g}) ; \mathbf{m p}: 77-78{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-10\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3390$, $3062,1443,1371,1209,1082,904,818,756,691 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.00-$ $4.10(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 77.7,125.8,126.0,127.6,128.4,130.0,131.2$, 132.2,142.7, 144.3; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, 59.39 ; H, 4.27; Cl, 25.04; Found. C, 59.17; H, 4.31; Cl, 24.99\%.

(R)-2-(3,4-Dichlorophenyl)-2-hydroxy-2-phenylacetaldehyde (59)

To a solution of diol $52(2 \mathrm{~g}, 7.06 \mathrm{mmol})$ in dry DMSO $(16 \mathrm{~mL})$, was added 2iodoxybenzoic acid (IBX) $(3.99 \mathrm{~g}, 14.12 \mathrm{mmol})$ at $25{ }^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h , and then quenched with water $(5 \mathrm{~mL})$. The product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The organic phase was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product thus obtained was purified by column chromatography on silica gel using ethyl acetate and pet. ether (1:9) as eluent to give 59 as a gum.

Yield: $85 \%(1.68 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}^{25}=-16.7\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 698,1030,1136$, $1178,1380,1448,1466,1725,2853,2929,3453 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.40$ (brs, 1H), $7.22(\mathrm{dd}, J=1.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.51(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.92$ (s, 1H) ; ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 82.6,126.6,127.2,128.9,129.0,129.4,130.6$, 132.9, 133.2, 138.7, 139.5, 196.8; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, 59.81, H, 3.59; Cl, 25.22; Found. C, 59.77; H, 3.60; Cl, 25.19\%.
(R)-E-Methyl 4-(3,4-dichlorophenyl)-4-hydroxy-4-phenylbut-2-enoate (51)

To a solution of aldehyde $59(1.0 \mathrm{~g}, 3.55 \mathrm{mmol})$ in dry benzene $(25 \mathrm{~mL})$, was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(1.42 \mathrm{~g}, 4.26 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 h , and then quenched with water (5 mL). The product was extracted with EtOAc (3 x 20 mL) and washed with water (3 x 15 mL). The combined organic phase was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product thus obtained was purified by column chromatography on silica gel using ethyl acetate and pet. ether (1:9) as eluent to give unsaturated 51.

Yield: $90 \%(1.07 \mathrm{~g}) ;[\alpha]^{25}{ }_{\mathrm{D}}=-12.0\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3457,3063,2946$, 1713, 1652, 1377, 1170, 1130, 1030, 983, 918, 818, 700, 636; ${ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, CDCl_{3}): $\delta 2.54$ (brs, 1H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 6.21(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=2.6,9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $51.5,77.8,119.5,126.2,126.6,127.9,128.3,128.6,129.9,131.4,132.3,143.5,144.6$, 151.2, 166.8; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$: $\mathrm{C}, 60.55 ; \mathrm{H}, 4.18$; $\mathrm{Cl}, 21.03$; Found. C , 60.11; H, 4.21; Cl, 20.99\%.
(R)-Methyl 4-(3,4-dichlorophenyl)-4-phenylbutanoate (33)

To a solution of ester $\mathbf{5 1}(0.9 \mathrm{~g}, 2.66 \mathrm{mmol})$ in methanol (20 mL), was added $10 \% \mathrm{Pd} / \mathrm{C}$ $(60 \mathrm{mg})$ and stirred under hydrogen $(20 \mathrm{psi})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was further stirred at $25^{\circ} \mathrm{C}$ for 3 h , and the progress monitored by TLC. After completion of reaction, it was filtered through a Celite pad and washed with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phase was concentrated under vacuum. The crude product thus obtained was purified by column chromatography on silica gel using ethyl acetate and pet. ether (1:9) as eluent to give 33.

Yield: $62 \%(0.530 \mathrm{~g}) ;[\alpha]^{25}{ }_{\mathrm{D}}=-5.2\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right)\left[\mathrm{lit.}^{28 \mathrm{a}}[\alpha]^{25}{ }_{\mathrm{D}}:-6.1\left(c 1.12, \mathrm{CHCl}_{3}\right)\right]$; IR ($\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$): 2970, 2930, 1722, 1600, 1494, 1365, 1202, 680; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.22-2.38(\mathrm{~m}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.94(\mathrm{q}, J=7.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.31$ (m, 8H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 30.2,32.0,50.4,51.4,126.3,127.1,127.6$, 127.8, 128.4, 128.7, 129.7, 130.4, 132.5, 142.6, 144.5, 173.0; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, 63.17; H, 4.99; Cl, 21.94; Found. C, 63.21; H, 4.87; Cl, 21.50\%.

(S)-4-(3,4-Dichlorophenyl)-3,4-dihydronaphthalen-1(2H)-one (7)

To round bottom flask was charged with $33(0.3 \mathrm{~g}, 0.92 \mathrm{mmol})$ and $6 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ and the solution was heated at reflux. After 23 h the reaction was cooled and added $\mathrm{H}_{2} \mathrm{O}$ (20 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organics were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give corresponding acid $\mathbf{6}$ (245 mg). IR (neat, cm^{-1}): 2975, 2664, 1715, 1470, 1406.

The acid $6(245 \mathrm{mg})$ was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{ClSO}_{3} \mathrm{H}$ was added. After 2 h the solution was added to a saturated NaHCO_{3} solution (75 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$ followed by ether ($1 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by silica gel column chromatography EtOAc:pet. ether (3:7) gave tetralone 7.

Yield: $68.2 \%(157 \mathrm{mg})$; mp: $83-84{ }^{\circ} \mathrm{C}\left[\mathrm{lit.}^{5} 84{ }^{\circ} \mathrm{C}\right] ;[\alpha]^{25}{ }_{\mathrm{D}}=+62.3\left(c 1.1, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left[\mathrm{lit} .{ }^{5}\right.$ $\left.[\alpha]^{25}{ }_{\mathrm{D}}:+71.3\left(c 1.1, \mathrm{C}_{6} \mathrm{H}_{6}\right)\right]$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3019,2984,1715,1683,1599,1469$, 1329, 1284, 1132, 1030, 823, 756, 730, 676; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.16-2.33$ (m, 1H), 2.38-2.53(m, 1H), 2.56-2.77(m, 2H), $4.28(\mathrm{dd}, J=5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J$ $=2.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.50(\mathrm{~m}, 3 \mathrm{H}), 8.11(\mathrm{dd}, J=1.7,8.0 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.4,36.3,44.2,127.0,127.2,127.8,129.0,130.2$, 130.3, 130.6, 132.4, 133.5, 143.8, 144.6, 196.9; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}: \mathrm{C}, 66.00$; H, 4.15; Cl, 24.35; Found. C, 66.11; H, 4.32; Cl, 23.99\%.
(+)-Sertraline (1a)
A stirred solution of tetralone $7(0.6 \mathrm{~g}, 2.06 \mathrm{mmol})$ in a dry diethyl ether $(10 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. Then methylamine (1.5 mL , excess) was introduced via syringe, followed by the addition of $\mathrm{TiCl}_{4}(0.33 \mathrm{~mL}, 3.09 \mathrm{mmol})$. The reaction mixture was
allowed to warm to $25^{\circ} \mathrm{C}$ slowly and stirred overnight. After the reaction was complete, it was filtered through a pad of Celite and washed with ether ($3 \times 15 \mathrm{~mL}$). The combined filtrates were concentrated to give imine, which was taken up for further reaction without purification. Imine $(0.115 \mathrm{~g}, 0.37 \mathrm{mmol})$ formed in situ was dissolved in methanol (5 mL) and hydrogenated over Raney-Ni. The reaction was monitored by TLC, as the imine had disappeared. The catalyst was filtered and methanol evaporated. The residue was purified by column chromatography packed with silica gel to give $(+)$-sertraline $\mathbf{1 a}$.

Yield: $35 \%(40 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}^{25}=+32.9(c 1, \mathrm{MeOH})\left[\right.$ lit. $\left.{ }^{13}[\alpha]^{25}{ }_{\mathrm{D}}=36.5(c 1 \mathrm{MeOH})\right]$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3438,3019,2926,2749,1589,1468,1401,1215,1134,1028,669 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.88-2.32(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{brs}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=1.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.40(\mathrm{~m}, 5 \mathrm{H})$, 7.73 (dd, $J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{DMSO}_{6} 1: 1$) $\delta 26.0,29.8$, $33.5,47.4,58.5,126.7,127.2,129.9,132.5,132.8,133.0,133.6,138.5,139.3,143.2$, 149.9; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}: \mathrm{C}, 66.68, \mathrm{H}, 5.60 ; \mathrm{Cl}, 23.15$; $\mathrm{N}, 4.57$; Found. C, 66.42, H, 5.54; Cl, 23.66; N, 4.12\%.

Section II

Enantioselective Synthesis of (+)-Lentiginosine via aza-Cope Rearrangement

1.2.1 Introduction

A variety of alkaloids possessing a polyhydroxylated indolizidine structure have been isolated from natural sources, including plants and microorganisms. Some of them are excellent inhibitors of biologically important pathways, including the binding and processing of glycoproteins and show potent glycosidase inhibitory activities. ${ }^{29}$ Among naturally occurring polyhydroxylated indolizidines, lentiginosine ${ }^{30} \mathbf{6 0}$, swainsonine ${ }^{31} \mathbf{6 1}$ and catanospermine ${ }^{32} 62$ represent a potent R-glycosidase, R-mannosidase and amyloglycosidase inhibitors respectively and attracted the greatest attention in terms of both synthetic and biological point of view. These are good examples of dihydroxylated, trihydroxylated and tetrahydroxylated indolizidines respectively (Fig. 11).

lentiginosine (60)

swainsonine (61)

catanospermine (62)

Fig. 11: Structures of indolizidine alkaloids

To study the structure-activity relationships (SAR) in indolizidines, many stereoisomers and analogues have been synthesized and their biological activities tested. These analogues have been used as biochemical tools and are being examined as chemotherapeutic agents against diabetes, ${ }^{33}$ cancer ${ }^{34}$ and HIV. Their activity is believed to be the result of their ability to mimic the transition state involved in substrate
hydrolysis. (+)-Lentiginosine 60, a dihydroxylated indolizidine alkaloid, isolated from the leaves of Astragalus lentiginosis ${ }^{35}$ was proven to be a selective inhibitor of amyloglucosidase, an enzyme that hydrolyses 1,4-and 1,6- α-glycosidic linkages. ${ }^{36}$

1.2.2 Review of Literature

Literature search revealed that there are several reports available for the synthesis of $(+)-$ lentiginosine 60 that include chiral pool approach, enantioselective syntheses, etc some of which are described below.

Yoda's approach (1993) ${ }^{37}$

Yoda et al. have described the synthesis of (+)-lentiginosine (60) starting from TBS protected imide 63, derived from L-tartaric acid. The imide 63 on treatment with BnO-$\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{MgBr}$ afforded α-hydroxy lactam 64 in 85% yield. Reductive deoxygenation of 64 using $\mathrm{BF}_{3} \cdot \mathrm{OEt}$ and $\mathrm{Et}_{3} \mathrm{SiH}$ resulted in lactam 65 in 95% yield and 92% ee.

Scheme 16: (i) $\mathrm{BnO}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{MgBr}$, THF, $-78{ }^{\circ} \mathrm{C}, 85 \%$; (ii) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $78{ }^{\circ} \mathrm{C}, 95 \%$; (iii) $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$ then $\mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{H}, i-\mathrm{PrOH}$, 27%; (iv) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then NaH , THF, 90%; (v) $\mathrm{HCl}, \mathrm{MeOH}, 100 \%$; (vi) LiAlH_{4}, THF, reflux, 100%.

The compound $\mathbf{6 5}$ was subjected to "one-pot" deprotection of benzyl and MPM groups using ceric ammonium nitrate (CAN) and Pd / C respectively to give alcohol 66 in 27% yield. Alcohol 66 was converted into its mesylate followed by intramolecular cyclization afforded indolizidine 67 in 90% yield. Subsequent removal of TBS-ether and reduction of indolizidinone afforded (+)-lentiginosine 60 (Scheme 16).

Gurjar's approach (1994) ${ }^{38}$

Gurjar et al. have reported the synthesis of (+)-lentiginosine 60 using Sharpless asymmetric dihydroxylation of ester 70 as the key step. The synthesis begins with naturally occurring (S)-pipecolic acid 68, which was protected as its $\mathrm{N}-\mathrm{Cbz}$ followed by reduction of acid function using $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ giving alcohol 69 .

Scheme 17: (i) a) $\mathrm{CbzCl}, 4 \mathrm{~N} \mathrm{NaOH}, 25{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$; b) $2 \mathrm{M} \mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$, THF, $0-25^{\circ} \mathrm{C}$; (ii) a) py: SO_{3}, DMSO, $0-25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (b) $\mathrm{Ph}{ }_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, $25^{\circ} \mathrm{C}, 10$ h; (iii) AD-mix- $\alpha,{ }^{\mathrm{t}} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), $25{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (iv) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{NaOAc}$, $\mathrm{MeOH}, \mathrm{H}_{2}(1 \mathrm{~atm}), 12 \mathrm{~h}$; (v) $2 \mathrm{M} \mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$, THF, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

The oxidation of alcohol 69 under Parikh-Doering conditions $\left(\mathrm{SO}_{3}: \mathrm{py}\right)$ gave the corresponding aldehyde, which was subjected to Wittig olefination $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$ to produce α, β-unsaturated ester 70. The ester 70 was then subjected to Sharpless asymmetric dihydroxylation using AD-mix- α which resulted in chiral diol 71. Finally,
removal of Cbz group leads to the formation of indolizidinone 72, which on reduction with $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ furnished (+)-lentiginosine 60 (Scheme 17).

Brandi's approach (1995) ${ }^{39}$

Brandi et al. have commenced their synthesis from N-benzyl-3,4-dihydroxypyrrolidine 73, which was protected as its TBDPS-ether followed by debenzylation to give pyrrolidine 74 in 71% yield. The oxidation of pyrrolidine 74 using SeO_{2} and $\mathrm{H}_{2} \mathrm{O}_{2}$ gave the corresponding nitrone 75 in 58\% yield.

Scheme 18: (i) TBDPSCl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$; (ii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, 71 \%$; (iii) $\mathrm{SeO}_{2}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, acetone, $20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 53 \%$; (iv) sealed tube, benzene, $35^{\circ} \mathrm{C}, 8 \mathrm{~d}$; (v) xylene, refluxed, $100 \mathrm{~min}, 45 \%$; (vi) $\mathrm{NaBH}_{4}, \mathrm{TsNHNH}_{2}, 3 \mathrm{~A}^{\circ} \mathrm{MS}$, $\mathrm{MeOH}, 45 \%$; (vii) aq. $40 \% \mathrm{HF}, \mathrm{CH}_{3} \mathrm{CN}, 46 \mathrm{~h}, 85 \%$.

The reaction between nitrone 75 and methylenecyclopropane 76 underwent [3+2] cycloaddition to afford a $12: 1$ mixture of isooxazolidine 77 . The isooxazolidine 77 was heated in xylene to give di-radical 78 which readily underwent cyclization to produce
indolizidinone 79 in 45% yield. Subsequent reduction of carbonyl group followed by desilylation resulted in the formation of (+)-lentiginosine 60 (Scheme 18) in 85% yield.

Petrini's approach (1995) ${ }^{40}$

Petrini et al. have synthesized (+)-lentiginosine 60 from optically active nitrone 81, which was derived from L-tartaric acid. Stereoselective addition of Grignard reagent $\mathbf{8 2}$ onto nitrone $\mathbf{8 1}$ afforded hydroxylamine $\mathbf{8 3}$ in 82% yield. The reduction of hydroxylamine $\mathbf{8 3}$ with Raney-Ni followed by its treatment with $10 \% \mathrm{Pd} / \mathrm{C} / \mathrm{HCOONH}_{4}$ furnished amino alcohol 84 in 76% yield. Finally, cyclization of amino alcohol 84 with $\mathrm{PPh}_{3} / \mathrm{CCl}_{4}$ afforded indolizidine 85. Subsequent removal of MOM-ether under acidic conditions gave (+)-lentiginosine (Scheme 19).

Scheme 19: (i) THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 82 \%$; (ii) Raney-Ni, $\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}, 18 \mathrm{~h}$; (iii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCONH}_{4}, \mathrm{EtOH}, 2 \mathrm{~h}, 76 \%$; (iv) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CCl}_{4}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 88 \%$ yield; (v) 37% aq. $\mathrm{HCl}, \mathrm{MeOH}$, reflux, 3 h .

Wightman approach (1998) ${ }^{41}$

Wightman et al. also reported the synthesis of (+)-lentiginosine $\mathbf{6 0}$ starting from nitrone 81. The [3+2] cycloaddition of nitrone $\mathbf{8 1}$ with olefin $\mathbf{8 6}$ afforded cycloadduct $\mathbf{8 7}$ in $\mathbf{4 4 \%}$ yield. The reductive cleavage of $\mathrm{N}-\mathrm{O}$ bond was carried out with Zn in AcOH to furnish
lactam $\mathbf{8 8}$ in 83% yield. The lactam $\mathbf{8 8}$ was subjected to reduction using $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ to afford indolizidine 89, which on treatment with 1,1'-thiocarbonylimidazole in EDC gave imidazolylthiocarbonyl $\mathbf{9 0}$ in 80% yield. Finally, the radical deoxygenation of $\mathbf{9 0}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN followed by deprotection of MOM-ethers under acidic conditions produced (+)-lentiginosine 60 in 76\% yield (Scheme 20).

Scheme 20: (i) toluene, reflux, $4 \mathrm{~d}, 44 \%$; (ii) $\mathrm{Zn}, \mathrm{AcOH}, 6{ }^{\circ} \mathrm{C}, 83 \%$; (iii) $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$, EtOH , reflux; (iv) 1,1 '-thiocarbonyldiimidazole, EDC , reflux, 80%; (v) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux; (vi) 6 M aq. $\mathrm{HCl}, 76 \%$.

Ha's approach (2000) ${ }^{42}$

Ha et al. have achieved the synthesis of (+)-lentiginosine $\mathbf{6 0}$ commencing from imide 91, obtained from L-tartaric acid. Thus, N -(ω-iodobutyl) succinimide 91 was subjected to SmI_{2}-promoted reductive cyclization in the presence of catalytic amount of $\operatorname{tris}($ dibenzoylmethido $) \operatorname{iron}(\mathrm{III})\left[\mathrm{Fe}(\mathrm{DBM})_{3}\right]$, followed by its treatment with p-TSA to produce enamide $\mathbf{9 2}$ in 82% yield. The enamide $\mathbf{9 2}$ was then subjected to stereoselective
reduction with $\mathrm{Et}_{3} \mathrm{SiH}$, TFA to produce 67. Removal of TBS-ether followed by reduction of the resulting amide with LiAlH_{4} gave (+)-lentiginosine $\mathbf{6 0}$ (Scheme 21).

Scheme 21: (i) SmI_{2}, $\left[\mathrm{Fe}(\mathrm{DBM})_{3}\right]$, THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; then p-TSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~A}^{\circ} \mathrm{MS}, 3 \mathrm{~h}$, 82%; (ii) $\mathrm{Et}_{3} \mathrm{SiH}$, TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}, 93 \%$; (iii) $10 \% \mathrm{HCl}$ in $\mathrm{MeOH}, 3 \mathrm{~h}$; (iv) LiAlH_{4}, THF, refluxed, 4 h .

Greene's approach (2001) ${ }^{43}$

This approach describes the synthesis of $(+)$-lentiginosine $\mathbf{6 0}$ starting from chiral alcohol 93 which was subjected to O-alkylation followed by elimination to give ynol ether 94. Reduction of ynol ether 94 with LiAlH_{4} produced E-enol ether 95 in 81% yield, which was then subjected to cycloaddition using dichloroketene $\left(\mathrm{Cl}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}\right)$ promoted by Zn $\mathbf{C u}$ to afford cycloadduct $\mathbf{9 6}$ in 95:5 dr. The exposure of $\mathbf{9 6}$ under Tamura-Beckmann conditions $\left[\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, o-mesitylenesulfonyl hydroxylamine] followed by dechlorination gave the corresponding pyrrolidinone 97 in 82% yield. The indolizidine skeleton 99 was constructed from pyrrolidinone 97 through a sequence of reactions which include hydroboration-oxidation, mesylate formation and base-induced cyclization to afford indolizidine skeleton 99 in 88% yield and $>99: 1 \mathrm{dr}$. Cleavage of chiral auxiliary in 99 with neat trifluoroacetic acid gave hydroxyl indolizidinone $\mathbf{1 0 0}$ which was then
dehydrated using Martin sulfurane followed by Os-catalyzed dihydroxylation resulted in cis diol 72 in 70\% yield.

Scheme 22: (i) $\mathrm{KH}, \mathrm{Cl}_{2} \mathrm{C}=\mathrm{CHCl}$; then n - BuLi , 3-butenyl triflate; (ii) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, reflux, $1 \mathrm{~h}, \quad 81 \%$; (iii) $\mathrm{Zn}-\mathrm{Cu}, \quad \mathrm{Cl}_{3} \mathrm{CCOCl}, \mathrm{Et}_{2} \mathrm{O}, \quad 0{ }^{\circ} \mathrm{C}$; (iv) $\mathrm{Al}_{2} \mathrm{O}_{3}, O-$ mesitylenesulfonylhydroxylamine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~h}$; then $\mathrm{Zn}-\mathrm{Cu}, \mathrm{NH}_{4} \mathrm{Cl}, 11 \mathrm{~h}, 82 \%$; (v) 2.6M Sia ${ }_{2} \mathrm{BH}, \mathrm{H}_{2} \mathrm{O}_{2}$, THF, 5 h ; (vi) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then NaH , THF, DMF, 88%; (vii) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2{ }^{\circ} \mathrm{C}$, 3 h ; (viii) Martin sulfurane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 82 \%$; then $\mathrm{OsO}_{4},{ }^{\mathrm{t}} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ (3:1), trimethylamine N -oxide (TMAO), $25^{\circ} \mathrm{C}, 70 \%$; (ix) $\mathrm{Et}_{3} \mathrm{~N}, 2,4,6-$ triisopropylbenzenesulfonyl chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}, 91 \%$; (x) $\mathrm{Bu}_{4} \mathrm{NH}_{4} \mathrm{OAc}$, toluene, $0{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}, 70 \%$ (xi) LiAlH_{4}, THF, $20^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

Selective protection of one of hydroxyl group in 72 [$\mathrm{Et}_{3} \mathrm{~N}$, 2,4,6triisopropylbenzenesulfonyl chloride (TPBSCl)] gave 101 followed by nucleophilic
displacement in the presence of $\mathrm{Bu}_{4} \mathrm{NH}_{4} \mathrm{OAc}$ to afford $\mathbf{1 0 2}$ which was subjected to reduction using LiAlH_{4} which resulted in lentiginosine 60 (Scheme 22).

Sing's approach (2002) ${ }^{44}$

Sing et al. have commenced their synthesis from benzyl protected alcohol 103, derived from tartaric acid. The free hydroxyl group in 103 was protected as its tosylate. Its nucleophilic displacement with NaN_{3} followed by deprotection of TBS-ether afforded azido alcohol 104 in 95% yield. The oxidation of alcohol 104 under Corey-Kim's condition ($\mathrm{NCS}, \mathrm{Me}_{2} \mathrm{~S}$) furnished the corresponding aldehyde which on diastereoselective allylation using SnCl_{4} and allyltributyltin leads to the formation of syn homoallylic alcohol 105 in 70% yield. The homoallylic alcohol 105 was converted to its mesylate followed by reduction of azide group using LiAlH_{4}, resulted in intramolecular cyclization to produce pyrrolidine 107. Pyrrolidine 107 was acylated with

Scheme 23: (i) (a) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}$; then NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 60 \%$; (b) TBAF, THF, $8 \mathrm{~h}, 95 \%$; (ii) $\mathrm{NCS}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N},-25{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$; then SnCl_{4}, allyltributyltin, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 70 \%$; (iii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6 \mathrm{~h}, 92 \%$; (iv) LiAlH_{4}, THF, reflux, $12 \mathrm{~h}, 68 \%$; (v) acryloyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%$; (vi) 10 $\mathrm{mol} \%$ Grubbs catalyst, toluene, reflux, 24 h ; (vii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, 24 \mathrm{~h}$; then LiAlH_{4}, THF, reflux, $6 \mathrm{~h}, 97 \%$.
acryloyl chloride in $\mathrm{Et}_{3} \mathrm{~N}$ to provide the RCM precursor $\mathbf{1 0 8}$ which was subjected to RCM using Grubbs’ second generation catalyst to give the cyclized product 109. Finally, compound $\mathbf{1 0 9}$ was transformed to (+)-lentiginosine $\mathbf{6 0}$ in two steps: hydrogenation of benzyl group and double bond followed by reduction of imide function with LiAlH_{4} (Scheme 23).

Sha's approach (2003) ${ }^{45}$

Sha et al. have described the recemic synthesis of (\pm)-lentiginosine $\mathbf{6 0 a}$. Boc-protected hexahydro- 1 H -indol-3-one $\mathbf{1 1 0}$ was subjected to Luche reduction using $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}$ and NaBH_{4} to give a single diastereomer 111 which was then protected as its TBS-ether to afford 112 in 95\% yield.

Scheme 24: (i) $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 90 \%$; (ii) TBSCl, imid., DMF, 95%; (iii) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{~S}, 92 \%$; (iv) $\mathrm{LiBH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 91 \%$; (v) $p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$, DIAD, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{NaOH}, \mathrm{MeOH}, 55 \%$; (vi) TsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 60 \%$; (vii) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, then KOH , MeOH .

The TBS ether 112 was then subjected to ozonolysis to obtain the corresponding aldehyde 113, the LiBH_{4} reduction of which gave alcohol 114 in 92% yield. The
configuration of free secondary hydroxyl group in 114 was inverted under Mitsunobu condition $\left[p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right.$, DIAD] to afford alcohol 115 in 55% yield. The selective protection of primary alcohol in $\mathbf{1 1 5}$ as its tosylate, Boc-deprotection using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and cyclization in the presence of KOH in MeOH resulted in the formation of (\pm) lentiginosine 60a (Scheme 24).

Zhou's approach (2003) ${ }^{46}$

Zhou et al. have achieved the synthesis of (+)-lentiginosine 60 using Sharpless asymmetric dihydroxylation as the key step. The α, β-unsaturated ester 117, prepared from pyridine-2-caboxaldehyde, was subjected to asymmetric dihydroxylation using potassium osmate and (DHQ) $)_{2}$-PHAL as ligand to obtain diol 118 in 62% yield and 99.9% ee. One-pot reduction of pyridine ring followed by intramolecular cyclization using $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(10 \mathrm{~atm})$ led to formation of indolizidinones 72 and 72a in 43% overall yield. The required isomer 72 was however separated by recrystallization and subjected to reduction to give (+)-lentiginosine 60 (Scheme 25).

Scheme 25: (i) $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OH})_{4}\right](0.4 \mathrm{~mol} \%)$, $(\mathrm{DHQ})_{2}-\mathrm{PHAL}(3 \mathrm{~mol} \%)$, $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (3 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (5 equiv.), $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O}$:tert- BuOH (1:1), $24 \mathrm{~h}, 62 \%$; (ii) $10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{H}_{2}(10 \mathrm{~atm})$, $\mathrm{MeOH}, 24 \mathrm{~h}, 43 \%$; (iii) $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$, THF, $0-25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 75 \%$.

Raghavan's approach (2004) ${ }^{47}$

Raghavan et al. have reported the synthesis of (+)-lentiginosine $\mathbf{6 0}$ commencing from (R)-methyl-p-tolyl sulfoxide $\mathbf{1 1 9}$ which was condensed with α, β-unsaturated ester $\mathbf{1 2 0}$ in the presence of lithium diisopropylamide (LDA) to afford β-ketosulfoxide 121 in 70% yield. The β-ketosulfoxide $\mathbf{1 2 1}$ was subjected to reduction with DIBAL-H and ZnCl_{2} to give allylic alcohol 122, which on treatment with NBS and $\mathrm{H}_{2} \mathrm{O}$ resulted in the formation of bromohydroxylated product 123 in 85% yield.

124

Scheme 26: (i) LDA, THF, $-78{ }^{\circ} \mathrm{C}, 70 \%$; (ii) ZnCl_{2}, DIBAL-H, THF, $-78{ }^{\circ} \mathrm{C}, 91 \%$; (iii) NBS, $\mathrm{H}_{2} \mathrm{O}$, toluene, $25^{\circ} \mathrm{C}, 85 \%$; (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH, $0{ }^{\circ} \mathrm{C}$, 83%; (v) $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (8:1), reflux, 81%; (vi) CSA, 2,2-dimethoxypropane, acetone, $25{ }^{\circ} \mathrm{C}$, 87%; (vii) TFAA, $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, then NaBH_{4}, aq. $\mathrm{NaHCO}_{3}, 75 \%$; (viii) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}$, $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{EtOH}, 25{ }^{\circ} \mathrm{C}, 82 \%$; (ix) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$; (x) TFA: $\mathrm{H}_{2} \mathrm{O}$ (95:5), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}$; then $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \%$.

The bromohydroxylated product 123 on treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH afforded epoxide $\mathbf{1 2 4}$ which was then subjected to regioselective opening with NaN_{3} to give azido diol $\mathbf{1 2 5}$. The azido diol 125 was subsequently protected as acetonide to give acetonide 126 in 87% yield. The removal of chiral auxiliary from 126 using trifluoroacetic acid gave triol $\mathbf{1 2 7}$ in 75% yield. The azide group in $\mathbf{1 2 7}$ was then converted to Boc-protected amino-1,8-diol 128 by employing reduction with catalytic amount of $\mathrm{Pd}(\mathrm{OH})_{2}$ and resulted amine was protected with $(\mathrm{Boc})_{2} \mathrm{O}$ in ethanol. The selective protection of primary hydroxyl group in $\mathbf{1 2 8}$ as its tosylate $\mathbf{1 2 9}$ and Boc-deprotection followed by intramolecular cyclization produced (+)-lentiginosine 60 in 70\% yield (Scheme 26) .

Goti's approach (2005) ${ }^{48}$

Goti et al. have achieved the synthesis of (+)-lentiginosine $\mathbf{6 0}$ starting from nitrone $\mathbf{1 3 0}$ derived from tartaric acid. Addition of vinylmagnesium bromide onto nitrone $\mathbf{1 3 0}$ gave hydroxyl amine $\mathbf{1 3 1}$ in 96\% yield. The RCM precursor 134 was obtained in 71% yield from hydroxylamine $\mathbf{1 3 1}$ by employing indium and zinc catalyzed reductive cleavage of

Scheme 27: (i) $\mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{Et}_{2} \mathrm{O}, 96 \%$; (ii) $\mathrm{In}, \mathrm{Zn}, \mathrm{MeOH}, \mathrm{NH}_{4} \mathrm{Cl}$, reflux, 84%; (iii) HOBt, $\mathrm{DCC}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{H}, 71 \%$; (iv) Grubbs' catalyst I ${ }^{\text {st }}$ generation, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 60%; (v) LiAlH_{4}, THF, 62%; (vi) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$; then TFA, 74%.
$\mathrm{N}-\mathrm{O}$ bond followed by amidation with but-3-enoic acid using HOBt and DCC as dehydrating agents. Diene 134 was then subjected to RCM using Grubbs' second generation catalyst which resulted in the formation of lactam 135. Eventually, the synthesis was completed by the standard sequence of reactions: reduction of amide followed by catalytic hydrogenation of double bond and deprotection of tert-butyl ether with TFA (Scheme 27).

Spino's approach (2008) ${ }^{49}$

Spino et al. have achieved the synthesis of (+)-lentiginosine $\mathbf{6 0}$ commencing from chiral Boc-protected pyrrolidine 137. The stereoselective epoxidation of $\mathbf{1 3 7}$ using oxone produced the corresponding epoxide $\mathbf{1 3 8}$ in 89% yield. Deprotection of TBDPS ether $\mathbf{1 3 8}$ (tetrabutylammonium fluoride, THF) followed by protection of hydroxyl group as tosylate (p-toluenesulfonyl chloride, pyridine) afforded tosylate 139. The Boc group in tosylate $\mathbf{1 3 9}$ was deprotected under acidic conditions followed by its treatment with $\mathrm{Et}_{3} \mathrm{~N}$ led to the formation of cyclized product 140 in 63% yield. Finally, opening of epoxide 140 with aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ resulted in the formation of $(+)$-lentiginosine $\mathbf{6 0}$ in 71% yield (Scheme 28).

Scheme 28: (i) oxone, $\mathrm{NaHCO}_{3}, \mathrm{CF}_{3} \mathrm{COCH}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 89 \%$; (ii) TBAF, THF, then TsCl , pyridine, 85%; (iii) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{Et}_{3} \mathrm{~N}, 63 \%$; (iv) 10% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$, dioxane, 71%

Vankar's approach (2008) ${ }^{50}$

Vankar et al. have reported the synthesis of (+)-lentiginosine $\mathbf{6 0}$ commencing from epoxide 141 which was derived from D-glucose. The regioselective ring opening of epoxide 141 with allylmagnesium chloride resulted in the formation of homoallylic alcohol $\mathbf{1 4 2}$ in 95% yield. The hydroxyl group in $\mathbf{1 4 2}$ was subjected to deoxygenation under Barton condition $\left[\mathrm{PhOCSCl}, \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}\right]$ to give olefin 143 in 75% yield. Olefin 143 was treated with $10 \% \mathrm{HCl}$ in methanol to give the acetonide-deprotected acetal 144 in 98% yield. Subsequently, the free hydroxyl group in $\mathbf{1 4 4}$ was protected as

141
142
143

viii

148

Scheme 29: (i) allylMgCl, THF, - $20^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; (ii) PhOCSCl , pyridine, $0{ }^{\circ} \mathrm{C}$, 96%; (iii) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux, 75%; (iv) $10 \% \mathrm{HCl}$ in $\mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}, 98 \%$; (v) $\mathrm{NaH}, \mathrm{BnBr}$, THF, 97%; (vi) 3 N HCl , dioxane, reflux, 3 h ; (vii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0-25^{\circ} \mathrm{C}, 88 \%$ for two steps; (viii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 97 \%$; (ix) (a) $\mathrm{OsO}_{4}, \mathrm{NMO}, 20 \mathrm{~h}, 25{ }^{\circ} \mathrm{C}$; (b) NaIO_{4}, MeOH: $\mathrm{H}_{2} \mathrm{O}$ (6:1), $0{ }^{\circ} \mathrm{C}$; then NaBH_{4}, MeOH, $1 \mathrm{~h}, 90 \%$; (x) $\mathrm{BnNH}_{2}, 80{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}, 91 \%$; (xi) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}$; (xii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(5 \mathrm{~atm}), \mathrm{MeOH}, 24 \mathrm{~h}, 81 \%$.
its benzyl ether to give $\mathbf{1 4 5}$ in 97% yield. The acetal moiety in $\mathbf{1 4 5}$ was hydrolyzed using 3 M HCl in refluxing dioxane followed by reduction with NaBH_{4} produced diol 146 in 88% yield. Diol 146 was then treated with MsCl and $\mathrm{Et}_{3} \mathrm{~N}$ to give the corresponding dimesylate 147 in 96% yield. The double bond was oxidatively cleaved using OsO_{4} and NaIO_{4} followed by reduction with NaBH_{4} gave hydroxy derivative 148. Finally,
treatment of dimesylate $\mathbf{1 4 8}$ with benzylamine gave hydroxyl pyrrolididine derivative 149 which was converted to its mesylate. Catalytic hydrogenation with Pd / C and H_{2} (5 atm) gave (+)-lentiginosine 60 (Scheme 29).

1.2.3 Present Work

1.2.3.1 Objective

As can be seen from the above discussion, the literature methods for the synthesis of (+)lentiginosine (60) employ either chiral starting materials or expensive reagents involving more number of steps, resulting in poor yields. This section describes the enantioselective synthesis of (+)-lentiginosine by employing two approaches: L-proline catalyzed α aminooxylation and asymmetric $a z a$-Cope rearrangement as the chiral inducing reactions.

Retrosynthetic analysis

Retrosynthetic analysis of (+)-lentiginosine (60) is outlined in Scheme 30. Accordingly, $(+)$-lentiginosine is visualized to be prepared from α, β-unsaturated ester 150 via Os-

Scheme 30: Retrosynthetic analysis of (+)-lentiginosine (60)
catalyzed diastereoselective dihydroxylation. We further thought that the piperidine core in ester $\mathbf{1 5 0}$ can be constructed from 151 by Ring Closing Metathesis (RCM), which in turn may be obtained from the key amine intermediate 152. The key intermediate 152 can be thought to be synthesized by two routes of L-proline catalyzed α-aminooxylation and aza-Cope rearrangement; a brief account of both is presented below.

1.2.4.1 Proline-catalyzed α-aminooxylation

Optically active α-hydroxy aldehydes and ketones are important intermediates in organic synthesis as they are direct precursors to 1,2-diols. Because of this utility many methods have been developed for their preparation. The more prominent, well-established methods of enantioselective α-oxygenations include the use of Davis oxaziridine, ${ }^{51 \mathrm{a}}$ Sharpless dihydroxylation of enol ethers, ${ }^{51 \mathrm{~b}}$ manganese-salen epoxidation of enol ethers, and Shi epoxidation of enol ethers. ${ }^{51 \mathrm{~d}}$ It is only rather recently that direct catalytic, asymmetric variants have been reported. ${ }^{52}$ Most of these methods, however, require multiple manipulations and there is no direct method, nor catalytic asymmetric method for their synthesis from the corresponding aldehyde.

Organocatalysis is the catalysis of chemical transformations using a purely organic molecule, which is composed of mainly carbon, hydrogen, nitrogen, sulfur and phosphorus and does not contain any metals. The advantages of organocatalysts include their lack of sensitivity to moisture and oxygen, their ready availability, low cost, and low toxicity, which confers a huge direct benefit in the production of pharmaceutical intermediates when compared with transition metal catalysts. Organic molecules not only have ease of manipulation and a "green" advantage but also can be very efficient catalysts. Asymmetric organocatalysis has begun to catch up with the spectacular
advancements of enantioselective transition metal catalysis. In this connection, proline, an abundant, inexpensive amino acid available in both enantiomeric forms has emerged as a practical and versatile organocatalyst. ${ }^{53}$ Proline is equally efficient for α functionalization ${ }^{54}$ of aldehydes and ketones. When an aldehyde $\mathbf{1 5 5}$ without substitution at α-position was reacted with nitrosobenzene 156 in presence of L-proline in DMSO at ambient temperature, aminooxylation of the aldehyde takes place at α-position. The aminooxyl moiety undergoes hydrogenolysis with $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ or CuSO_{4} to give the corresponding diols 157 in very high enantioselectivities (Scheme 31).

Scheme 31: α-aminooxylation of aldehydes

The mechanism of the α-aminooxylation reaction is shown in Fig. 12. The observed enantioselectivitiy of the catalytic α-aminooxylation of aldehydes can be rationalized by invoking an enamine mechanism operating through a chair transition state where the Si face of an E-enamine formed from the aldehyde and L-proline approaches the less hindered oxygen atom of nitrosobenzene to provide a chiral α-aminoxyaldehyde with R configuration. Since proline is commercially available in both enantiopure forms, a one-

Fig. 12: Proposed mechanism of the α-aminooxylation reaction
pot sequential catalytic α-aminooxylation of aldehydes followed by in situ reduction with NaBH_{4} affords R - or S - configured 1,2-diol units (the secondary alcohol "protected" by an O-amino group) with excellent enantioselectivities and in good yields.

1.2.4.2 Asymmetric aza-Cope rearrangement

The Cope rearrangement is an extensively studied reaction involving [3,3]-sigmatropic rearrangement of 1,5-diene. Homoallylic primary amines are of great importance in organic synthesis because allylic $\mathrm{C}=\mathrm{C}$ can be readily converted to important building blocks. Homoallylic amines could be synthesized effectively by addition of allylic nucleophiles to $\mathrm{C}=\mathrm{N}$ electrophiles and efficient enantioselective methods including asymmetric catalysis was reported. However, most of those methods require removal of protecting group on the nitrogen to obtain primary amines, and direct routes for optically active homoallylic amines have been limited. Alternatively, allylboration of N-silylimines with chiral allylboron reagents reported by Istuno et al. ${ }^{55}$ and Brown et al. ${ }^{56}$ are applicable for only non-enolizable imines to give high enantioselectivities. Kobayashi et al. have recently reported α-aminoallylation of aldehydes with ammonia and
allylboronates for synthesis of homoallylic primary amines ${ }^{57}$ while selectivity was unsatisfactory. Further, their study into the allylation of hydroxyglycine ${ }^{58}$ have been found that β-branched allylglycines isomerized to the corresponding linear isomers via imine formation with glyoxylic acid, followed by 2-aza (or azonia)-Cope rearrangement. This type of sigmatropic rearrangement was first reported in 1950^{59} and later by Overmann and Kakimoto in 1979, found that [3,3]-sigmatropic shifts for iminium ion and named after then as a 2-azonia-Cope rearrangement. ${ }^{60}$ Recently, Kobayashi et al. have developed a highly enantioselective synthesis of homoallylic primary amines via 2-azonia-Cope rearrangement. The α-aminoketone 160 prepared from camphorquinone and allylboronic acid pinacol ester in ammonia to give 80% yield of reagent $\mathbf{1 6 0}$ (Scheme 32).

Scheme 32: Preparation of reagent 160

When an aldehyde 154a with a variety of substituent at α-position was subjected to asymmetric aza-Cope rearrangement using caphorquinone derived reagent $\mathbf{1 6 0}$ in presence of catalytic amount of camphorsulfonic acid (CSA) in 1,2-dichloroethane at ambient temperature followed by in situ imine hydrolysis with $\mathrm{OHNH}_{2} \cdot \mathrm{AcOH}$, aminoallylation (rearrangement) takes place at the electrophilic carbon of aldehyde to give 152a in very high ee and yield (Scheme 33).

Scheme 33: Asymmetric $a z a$-Cope rearrangement

The mechanisim of the $a z a$-Cope rearrangement is given in Scheme 34. The observed high enantioselectivity of the aza-Cope rearrangement attempted to isolate the rearranged product I and II. It was found that $\mathbf{I}(E)$ and II (Z) isomers was isolated by silica gel chromatography obtained in an $83: 17$ ratio. The two isomers were simply geometrical isomers of the $\mathrm{C}=\mathrm{N}$ double bond. Formation of (S)-152a with high enantiomeric excess from both isomers of $\mathbf{I}(E)$ and $\mathbf{I I}(Z)$ strongly supports that the rearrangement proceeded via chair-like transition state TS to give I (E) and II (Z) that is generated through isomerization of II (Z) under the acidic conditions. Finally, both isomers were converted to (S) - $\mathbf{1 5 2} \mathbf{a}$ with 96% ee by treatment with hydroxylamine.

154a

transition state (TS)

I (E)-major
II(Z)-minor

Scheme 34: Mechanistic pathway of aza-Cope rearrangement

1.2.5 Results and Discussion

1.2.5.1 Proline route:

Firstly, our synthesis of $(+$)-lentiginosine (60) had begun with the protected aldehyde 153, prepared from the corresponding monoprotected 1,3-propanediol followed by its selective oxidation with IBX in DMSO (Scheme 35). The proline-catalyzed α aminooxylation of aldehyde $\mathbf{1 5 3}$ involved a two-step reaction sequence: (i) reaction of aldehyde $\mathbf{1 5 3}$ with nitrosobenzene as electrophile in the presence of L-proline ($25 \mathrm{~mol} \%$) in $\mathrm{CH}_{3} \mathrm{CN}$ at $-20{ }^{\circ} \mathrm{C}^{54 \mathrm{a}}$ followed by reduction with NaBH_{4} in MeOH to give the crude aminooxy alcohol (ii) subsequent cleavage of aminooxy moiety with $30 \mathrm{~mol} \% \mathrm{CuSO}_{4}{ }^{61}$ to yield the chiral diol 161 in 54\% yield.

Scheme 35: Reaction conditions: (i) (a) L-proline ($25 \mathrm{~mol} \%$), $\mathrm{PhNO}, \mathrm{CH}_{3} \mathrm{CN},-23$ ${ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; then $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) CuSO_{4} ($30 \mathrm{~mol} \%$), $\mathrm{MeOH}, 12 \mathrm{~h}$, 54%; (ii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; (iii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 91 \%$ for two steps; (iv) $\mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{CuI}\left(40 \mathrm{~mol} \%\right.$), THF, $-40{ }^{\circ} \mathrm{C}, 92 \%$; (v) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $45 \mathrm{~min}, 94 \%$; (vi) NaN_{3}, DMF, $85{ }^{\circ} \mathrm{C}, 87 \%$; (vii) LiAlH_{4}, THF, $0-25^{\circ} \mathrm{C}, 93 \%$.

The formation of diol $\mathbf{1 6 1}$ was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum, which showed the appearance of typical signals at $\delta 3.51-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.74(\mathrm{~m}, 2 \mathrm{H})$ and 3.83-3.95 (m, 1H) corresponding to protons attached to diol oxygen atoms. Further, its ${ }^{13} \mathrm{C}$ NMR
spectrum showed characteristic carbon signals at $\delta 63.7,70.7,71.3$ and 73.2 corresponding to carbons attached to oxygen atoms (Fig. 13).

Fig. 13: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of diol 161

Selective mesylation of diol $161\left(\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\right)$ gave the corresponding mesylate, which on treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH yielded the terminal chiral epoxide $\mathbf{1 6 3} ;[\alpha]_{\mathrm{D}}{ }^{25}-5.3(c$ 4.5 , toluene). Its ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic proton signals at $\delta 2.61$ (dd, J
$=5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=4.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $3.15-3.22(\mathrm{~m}, 1 \mathrm{H})$ due to epoxide moiety. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed typical signals at $\delta 44.1$ and 50.7 corresponding to methylene and methine carbons respectively of epoxide 163 (Fig. 14).

Fig. 14: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of epoxide 163

Regioselective ring opening of epoxide $\mathbf{1 6 3}$ with vinylmagnesium bromide in the presence of $\mathrm{CuI}(40 \mathrm{~mol} \%)^{62}$ in THF at $-40^{\circ} \mathrm{C}$ gave homoallylic alcohol 164 in 92% yield. Two multiplets shown at $\delta 5.06$ and 5.71 integrating for one proton each, in its ${ }^{1} \mathrm{H}$

NMR spectrum are due to the presence of olefinic protons. This was further substantiated by the appearance of the typical carbon signals at $\delta 117.5$ and 134.2 in its ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 15).

Fig. 15: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of homoallylic alcohol 164

The nucleophilic displacement of mesylate $\mathbf{1 6 5}$, obtained from alcohol $\mathbf{1 6 4}$, with NaN_{3} in DMF at $80{ }^{\circ} \mathrm{C}$ yielded the corresponding azide $\mathbf{1 6 6}$ in 87% yield. Its IR spectrum has displayed a characteristic strong band at $2112 \mathrm{~cm}^{-1}$ for azide function. The selective reduction of azide function in $\mathbf{1 6 6}$ using LiAlH_{4} gave homoallylic amine $\mathbf{1 5 2}$ in 93\% yield and 95% ee; $[\alpha]^{25}{ }_{\mathrm{D}}=+7.4$ (c 1, CHCl_{3}). Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a broad singlet at $\delta 1.61$ due to $-\mathrm{NH}_{2}$ function and a multiplet appearing at $\delta 3.0-3.12(\mathrm{~m})$ due to
methine proton. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical signal at $\delta 50.2$ due to methine carbon attached to amine $\left(-\mathbf{C}-\mathrm{NH}_{2}\right)$ (Fig. 16). Its IR spectrum displayed characteristic absorption bands at 3418 and $3297 \mathrm{~cm}^{-1}$ (strong) due to primary amine function. Since the L-proline-based route for obtaining key intermediate 152 involved several steps, thus obtaining an overall reduced yield, an alternative strategy which focused on asymmetric $a z a$-Cope rearrangement of aldehyde leading to synthesis of homoallylic amine 152 was developed.

Fig. 16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of homoallylic amine 152

1.2.5.2 Aza-Cope rearrangement route

In the second route, an elegant synthesis of (+)-lentiginosine $\mathbf{6 0}$ has been achieved starting from benzyl protected acetaldehyde 154. Asymmetric aza-Cope rearrangement was performed on aldehyde 154 using Kobayashi protocol ${ }^{63}$ [(CSA ($10 \mathrm{~mol} \%$), chiral auxiliary $\mathbf{1 6 0}$ (1 equiv.), $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{AcOH}, 1,2$-dichloroethane] exclusively (S)-homoallylic amine 152 in 87% yield and 96% ee (Scheme 36).

Scheme 36: Reaction conditions: (i) camphorsulfonic acid (10 mol\%), ($1 R, 3 R, 4 S$)-3-allyl-3-amino-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (160) (1 equiv.), 1,2dichloroethane, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{AcOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 87 \%$; (ii) (Boc) $)_{2} \mathrm{O}$, DMAP ($10 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 95 \%$; (iii) NaH , allyl bromide, dry DMF, $0-25{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$, 88%; (iv) Grubbs' 2nd generation catalyst ($10 \mathrm{~mol} \%$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20 \mathrm{~h}$, reflux, 78%; (v) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}, 88 \%$; (vi) $(\mathrm{COCl})_{2}, \mathrm{DMSO}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; (vii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, $50^{\circ} \mathrm{C}, 14 \mathrm{~h}, 90 \%$; (viii) OsO_{4}, NMO, ${ }^{\mathrm{t}} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; then TFA, $18 \mathrm{~h}, 58 \%$; (ix) LiAlH_{4}, THF, reflux, $12 \mathrm{~h}, 82 \%$.

Homoallylic amine 152 was selectively protected as its Boc derivative [(Boc) $)_{2} \mathrm{O}$, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$] to give mono-Boc protected amine 167. A singlet at $\delta 1.42$ in its ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the presence of tert-butyl group $\left(-\mathrm{NH}-\left(\mathrm{CH}_{3}\right)_{3}\right)$. The display of a
broad singlet at $\delta 1.64$ further indicated the presence of NH proton (-NH-Boc). Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed characteristic signals at $\delta 28.2$ and 79.1 due to the [-NH-(C=O)-O-C- $\left(\mathrm{CH}_{3}\right)_{3}$] methyl and tertiary carbons respectively of tert-butyl group. Further, a typical signal at $\delta 155.4$ in its ${ }^{13} \mathrm{C}$ NMR spectrum is due to carbonyl carbon of the Boc moiety.

Fig. 17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of dihydropyridine 168

The N -allylation of $\mathbf{1 6 7}$ (allyl bromide, NaH) gave the RCM precursor $\mathbf{1 5 1}$ in 88% yield. Ring closing metathesis of diene 151 using Grubbs' second generation catalyst, (10
$\mathrm{mol} \%$) in refluxing dichloromethane proceeded smoothly to give dihydropyridine $\mathbf{1 6 8}$ in 78% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed a typical multiplet at $\delta 5.56-5.74$ for olefinic protons, confirming the formation of dihydropyridine 168. Its ${ }^{13} \mathrm{C}$ NMR displayed typical signals at $\delta 122.4$ and 123.1 for the $\mathbf{-} \mathbf{C}=\mathbf{C}$ - carbons present in dihydropyridine $\mathbf{1 6 8}$. The other signals appearing at $\delta 28.2,79.4,155.0$ and 72.9 are due to the protecting Boc and benzyl groups respectively (Fig. 17).

The hydrogenation of $\mathrm{C}=\mathrm{C}$ bond coupled with the removal of benzyl group in dihydropyridine $\mathbf{1 6 8}$ was achieved using $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi})$ to give piperidine alcohol 169 in 88% yield. The enantiomeric purity of alcohol $\mathbf{1 6 9}$ was determined to be 98% ee by HPLC analysis (Fig. 18).

Fig. 18: HPLC chromatogram of piperidine alcohol 169

The Swern oxidation of piperidine alcohol 169 produced piperidine carboxaldehyde $\mathbf{1 7 0}$, in 93% yield, which on Wittig olefination with stabilized Wittig salt $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$
gave α, β-unsaturated ester $\mathbf{1 5 0}$ in 90% yield. The IR spectrum of ester $\mathbf{1 5 0}$ showed a strong absorption band at $1730 \mathrm{~cm}^{-1}$ that corresponds to the presence of ester carbonyl moiety. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed two characteristic signals at $\delta 1.28(\mathrm{t}, J=7.0$ $\mathrm{Hz})$ and $4.17(\mathrm{q}, J=7.0 \mathrm{~Hz})$ corresponding to $-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ group. The olefinic protons of α, β-unsaturated ester have displayed signals at $\delta 5.77(\mathrm{dd}, J=2.1,13.7 \mathrm{~Hz})$ and 6.84 (dd, $J=4.0,12.0 \mathrm{~Hz}$). Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed carbon signals at $\delta 166.0$ and δ 154.8 due to carbonyl carbons of $-\mathrm{CO}_{2} \mathrm{Et}$ and Boc respectively (Fig. 19).

Fig. 19: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of α, β-unsaturated ester 150

The Os-catalyzed diastereoselective dihydroxylation of α, β-unsaturated ester $\mathbf{1 5 0}$ furnished the corresponding diol in situ in 87% yield, which on Boc deprotection followed by refluxing the crude mixture in EtOH produced indolizidinone $\mathbf{1 7 1}(\mathrm{dr}=3: 2)$. It was purified by column chromatography followed by repeated recrystallization ${ }^{46}$ gave a single diastereomer 171 in 58\% overall yield.

Fig. 20: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of indolizidinone 171

Its ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic multiplets at $\delta 3.02-3.07(\mathrm{~m})$ and 3.10-3.50 (m); while a characteristic carbon signal at $\delta 172.0$ in its ${ }^{13} \mathrm{C}$ NMR spectrum confirmed

Fig. 21: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(+)$-lentiginosine 60
the formation of diol with strained five-membered amide of indolizidinone 171 (Fig. 20). Finally, LiAlH_{4} reduction of indolizidinone carbonyl in $\mathbf{1 7 1}$ was carried out that
produced (+)-lentiginosine 60 in 82% yield, whose spectral values ($\mathrm{mp}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, $[\alpha]_{\mathrm{D}}$, etc) are in complete agreement with the reported values ${ }^{43,48}$ (Fig. 21).

1.2.6 Conclusion

In conclusion, a short enantioselective synthesis of (+)-lentiginosine 60 has been described based on asymmetric aza-Cope rearrangement and L-proline catalyzed α aminooxylation of aldehydes. Our route to (+)-lentiginosine emphasizes an organocatalytic and metal-free approach demonstrating a shortest route to key intermediate homoallylic amine 152 and should hold promise for the synthesis of similar alkaloids. The synthesis also involves RCM strategy for the construction of piperidine core.

1.2.7 Experimental section

(R)-3-(Benzyloxy)propane-1,2-diol (161)

To a pre-cooled $\left(-20{ }^{\circ} \mathrm{C}\right)$ acetonitrile $(50 \mathrm{~mL})$ solution of aldehyde $153(5.0 \mathrm{~g}, 30.4$ $\mathrm{mmol})$ and nitrosobenzene $(1.68 \mathrm{~g}, 15.7 \mathrm{mmol})$ was added L-proline ($0.49 \mathrm{~g}, 25 \mathrm{~mol} \%$). The reaction mixture was allowed to stir at the same temperature for 24 h , followed by the addition of $\mathrm{MeOH}(20 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(2.31 \mathrm{~g}, 60.9 \mathrm{mmol})$ to the reaction mixture, which was stirred for 20 min . After the addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the resulting mixture was extracted with EtOAc (3 x 60 mL) and the combined organic phases were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude aminooxy alcohol, which was directly used for the next step without purification. To a MeOH (50 mL) solution of the crude aminooxyalcohol was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.28 \mathrm{~g}, 5.1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 10 h at this temperature. After the addition of the phosphate buffer, the resulting mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 60 \mathrm{~mL})$ and the
combined organic phases were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude diol, which was then purified by column chromatography over silica gel using petroleum ether:EtOAc (6:4) to give diol 161 as a colorless oil.

Yield: $54 \%(1.5 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=+5.5\left(c 10, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 3684,3615,3472$, 3020, 2927, 2400, 1602, 1521, 1455, 1424, 1216, 1094, 1051, 929, 850, 770, 660; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 2.22(\mathrm{dd}, J=5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-$ $3.60(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.95(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 63.7,70.7,71.3,73.2,127.7,128.3,137.5$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 65.91; H, 7.74. Found: C, 65.89, H, 7.68\%.

(R)-2-(benzyloxymethyl)oxirane (163)

A solution of diol $161(1.5 \mathrm{~g}, 8.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was treated with methane sulfonyl chloride $(0.98 \mathrm{~mL}, 12.3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.29 \mathrm{~mL}, 16.48 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 35 min , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, washed with water and the combined organic phases were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude mesylate $\mathbf{1 6 2}$, which was subjected to epoxidation without further purification. To a solution of mesylate $162(1.96 \mathrm{~g}, 7.5 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ was added anhyd. $\mathrm{K}_{2} \mathrm{CO}_{3}(1.03 \mathrm{~g}, 7.5 \mathrm{mmol})$ and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . After the reaction was completed (monitored by TLC), the mixture was evaporated and the residue extracted with diethyl ether ($3 \times 80 \mathrm{~mL}$). The combined organic phases were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product, which was then purified by column chromatography over silica gel using petroleum ether:EtOAc (8:2) to give epoxide 163 as a colorless oil.

Yield: $91 \%(1.6 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=-5.3(c 4.5$, toluene $) ;$ IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 877,985,1216$, 1387, 1452, 1476, 3018, 3435; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.61$ (dd, $J=2.6,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.79(\mathrm{dd}, J=4.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=5.8,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{dd}, J=2.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 44.1,50.7,70.6,73.2,127.6,127.9,128.3,137.8$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 73.15; H, 7.37. Found: C, 73.20, H, 7.29\%.

(R)-1-(benzyloxy)pent-4-en-2-ol (164)

Vinyl bromide (6.44 M in THF, $6 \mathrm{~mL}, 38.36 \mathrm{mmol}$) was added slowly to $\mathrm{Mg}(0.4 \mathrm{~g}, 19.1$ $\mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min ; then cooled to -40 ${ }^{\circ} \mathrm{C}$ and $\mathrm{CuI}(0.52 \mathrm{~g}, 30 \mathrm{~mol} \%)$ was added. The resulting reaction mixture was stirred for 30 min at $-40{ }^{\circ} \mathrm{C}$ and a solution of epoxide $163(1.5 \mathrm{~g}, 9.14 \mathrm{mmol})$ in THF (25 mL) was added. After being stirred for 3 h , the mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with diethyl ether (3 X 80 mL), washed with brine and the combined organic phases were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product, which was then purified by column chromatography over silica gel using petroleum ether:EtOAc (7:3) to give alcohol 164 as a colorless oil.

Yield: $92 \%(1.6 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=-2\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 1243,1670,2930,3010$, 3415; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.21-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{bs}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=7.3$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.5(\mathrm{~s}, 2 \mathrm{H}), 5.06-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.71-5.92(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 37.8,69.5,73.2,73.8,117.5,127.6,128.3,134.2,137.8 ;$

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 74.97; H, 8.39. Found: C, $74.88, \mathrm{H}, 8.27 \%$.

(R)-1-(benzyloxy)pent-4-en-2-yl methanesulfonate (165)

To a stirred solution of alcohol $164(2.5 \mathrm{~g}, 13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ $(3.6 \mathrm{~g}, 26.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 10 min , methanesulfonyl chloride $(1.5 \mathrm{~g}, 19.5 \mathrm{mmol})$ was added drop-wise. The reaction mixture was then stirred for another 1 h at $0^{\circ} \mathrm{C}$ and brought to room temperature. After completion of the reaction as monitored by TLC, it was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ washed with water, brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to obtain crude mesylate 165 , which was purified by column chromatography using petroleum ether:ethyl acetate (6:4) to give pure mesylate $\mathbf{1 6 5}$ as a viscous liquid.

Yield: $94 \%(3.3 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}^{25}=-4.76\left(c 0.84, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 3085,3031,2867$, $2360,1647,1456,1357,1174,1116,910,781,705,649 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): δ $2.49(\mathrm{t}, J=6.6,13.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.0(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.51-4.58(\mathrm{q}, J=11.7$ $\mathrm{Hz}, 2 \mathrm{H}), 4.80-4.85(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.82(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 36.2,38.4,70.8,73.2,81.0,119.1,127.6,127.7,128.3$, 131.7, 137.2; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 57.76$; H, 6.71 ; S, 11.86. Found: C, 57.80, H, 6.69; S, 11.79\%.

1-[(S-2-azidopent-4-enyloxy)methyl] benzene (166)

To a stirred mixture of crude methane sulfonate ester $165(2 \mathrm{~g}, 7.3 \mathrm{mmol})$ in DMF (30 mL) was added sodium azide ($2.4 \mathrm{~g}, 37 \mathrm{mmol}$), and the reaction mixture was heated at 80 ${ }^{\circ} \mathrm{C}$ for 15 h . After completion of the reaction as monitored by TLC, it was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), washed with water, brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude
homoallylic azide, which was purified by column chromatography using petroleum ether:ethyl acetate (9:1) to give $\mathbf{1 6 6}$.

Yield: $87(1.4 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=-7.27\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 2959,2112,1650$, 1216, $640 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.26-2.33(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.61(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{~s}$, $2 \mathrm{H})$, 5.08-5.18 (m, 2H), 5.68-5.89 (m, 1H), 7.28-7.36 (m, 5H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 35.2,60.9,72.06,73.2,118.1,127.4,127.6,128.3,133.4,137.7$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 66.34 ; \mathrm{H}, 6.96 ; \mathrm{N}, 19.34$. Found: C, $66.29, \mathrm{H}, 6.89 ; \mathrm{N}, 19.30 \%$.

Proline route: (S)-1-(Benzyloxy)pent-4-en-2-amine (152)

To a stirred mixture of $\mathrm{LiAlH}_{4}(0.350 \mathrm{~g}, 9.21 \mathrm{mmol})$ in anhyd. THF $(20 \mathrm{~mL})$ was added homoallylic azide $\mathbf{1 6 6}(1 \mathrm{~g}, 4.60 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 10 h . After completion of the reaction as monitored by TLC, it was quenched with ice-cold water and 20% aq. NaOH . This crude mixture was passed through anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and washed thoroughly with EtOAc ($3 \times 50 \mathrm{~mL}$) and the solvent evaporated under reduced pressure to give the crude homoallylic amine, which was purified by column chromatography using $\mathrm{CHCl}_{3}: \mathrm{MeOH}(9: 1)$ to give $\mathbf{1 5 2}$ as colorless oil.

Yield: $93 \%(0.820 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=+7.40\left(c 1, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit}^{63}[\alpha]_{\mathrm{D}}{ }^{25}=+7.1\left(\mathrm{c} 1.14, \mathrm{CHCl}_{3}\right)\right\}$
Aza-Cope rearrangement: (S)-1-(Benzyloxy)pent-4-en-2-amine (152)
To a solution of chiral amine $\mathbf{1 6 0}(2.072 \mathrm{~g}, 10 \mathrm{mmol})$ and aldehyde $\mathbf{1 5 4}(1.5 \mathrm{~g}, 10 \mathrm{mmol})$ in 1,2- dichloroethane $(20 \mathrm{~mL})$ was added camphorsulfonic acid $(0.232 \mathrm{~g}, 10 \mathrm{~mol} \%)$ at 0 ${ }^{\circ} \mathrm{C}$. The mixture was stirred at the $0{ }^{\circ} \mathrm{C}$ for 24 h . Then, a solution of $\mathrm{HONH}_{2} \cdot \mathrm{AcOH}$ in methanol $\left[0.5 \mathrm{M}, 2 \mathrm{~mL}\right.$, prepared from $\mathrm{HONH}_{2} \cdot \mathrm{HCl}, \mathrm{NaOH}$ (solid, 1 equiv), and AcOH (1 equiv) in methanol] was added to the solution. After being stirred at $50^{\circ} \mathrm{C}$ for 3 h , the
mixture was cooled to $25^{\circ} \mathrm{C}$, acidified with 1 N aq. $\mathrm{HCl}(\mathrm{pH}=1)$. The mixture was washed with dichloromethane ($3 \times 50 \mathrm{~mL}$), basified with 6 N aqueous $\mathrm{NaOH}(\mathrm{pH}=10)$, and extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined solvent layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, filtered, and evaporated to give amine 152. The crude product was purified by column chromatography (pet ether: $\mathrm{EtOAc}=1: 1$) to give pure amine 152.

Yield: $87 \%(1.65 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=+7.1\left(c 1.46, \mathrm{CHCl}_{3}\right),\left\{\right.$ lit. $\left.{ }^{63}[\alpha]_{\mathrm{D}}{ }^{25}=+7.1\left(\mathrm{c} 1.14, \mathrm{CHCl}_{3}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 3418,3297,3020,1618,761,670 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.6$ $(\mathrm{s}, 2 \mathrm{H}), 1.96-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.30(\mathrm{~m}, 1 \mathrm{H}), 3.0-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{t}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42-3.48(\mathrm{dd}, J=4.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.67-5.87$ (m, 1H), 7.31-7.38 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 38.6,50.2,73.1,75.1,117.3$, 127.5, 128.2, 135.0, 138.1; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 75.35$; H, 8.96; N, 7.32. Found: C, 75.29, H, 8.91, N, 7.28\%.

tert-Butyl (S)-1-(benzyloxy)pent-4-en-2-ylcarbamate (167)

To a solution of amine $152(4 \mathrm{~g}, 20.9 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added dry $\mathrm{Et}_{3} \mathrm{~N}$ $\left(4.3 \mathrm{~mL}, 31.38 \mathrm{mmol},(\mathrm{Boc})_{2} \mathrm{O}(5.47 \mathrm{~g}, 25.2 \mathrm{mmol})\right.$ and DMAP $(0.255 \mathrm{~g}, 10 \mathrm{~mol} \%)$, and the reaction mixture stirred for 10 h . After completion of the reaction as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$, washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product, which was then purified by column chromatography over silica gel using petroleum ether:EtOAc (7:3) to give carbamate $\mathbf{1 6 7}$ as a colorless oil.

Yield: $95 \%(5.8 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=-5.81\left(c 0.86, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 3750,3690,3021$, 2928, 2357, 1708, 1425, 1216, 764, 670; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.42(\mathrm{~s}, 9 \mathrm{H})$, $1.64(\mathrm{brs}, 1 \mathrm{H}), 2.29-2.36(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.53(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.01-5.12$
$(\mathrm{m}, 2 \mathrm{H}), 5.65-5.86(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 28.2$, $36.3,49.8,71.0,73.0,79.1,117.5,127.5,128.2,134.4,138.0,155.4$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{C}, 70.07$; H, 8.65; N, 4.81. Found: C, $70.11, \mathrm{H}, 8.59 ; \mathrm{N}, 4.78 \%$.

tert-Butyl allyl-(S)-1-(benzyloxy)pent-4-en-2-ylcarbamate (151)

To a solution of $\mathrm{NaH}(0.494 \mathrm{~g}, 12.35 \mathrm{mmol})$ in dry DMF $(30 \mathrm{~mL})$ were added Boc protected amine $167(3 \mathrm{~g}, 10.29 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 15 min , allylbromide ($1 \mathrm{~mL}, 12.35$ mmol) was added drop- wise. The reaction mixture was then stirred for 6 h at $25^{\circ} \mathrm{C}$. After completion of the reaction as monitored by TLC, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 50 mL), washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product, which was then purified by column chromatography over silica gel using petroleum ether:EtOAc (9:1) to give $\mathbf{1 5 1}$ as a colorless oil.

Yield: $88 \%(3.0 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=+2.05\left(c 1.46, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 3780,3697,3633$, 3019, 2932, 2361, 1682, 1216, 1104, 762, 670; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.43(\mathrm{~s}$, $9 \mathrm{H}), 2.33$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.81(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.31(\mathrm{~m}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.99-5.11(\mathrm{~m}, 4 \mathrm{H}), 5.63-5.88(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 28.2,34.1,47.2,55.1,70.9,72.7,79.2,115.1,116.1,127.3,128.1$, 135.0, 136.0, 138.1, 155.4; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3}: \mathrm{C}, 72.47$; H, 8.82; N, 4.23. Found: C, 72.50, H, 8.79; N, 4.19\%.

(S)-tert-Butyl-6-(benzyloxymethyl)-5,6-dihydropyridine-1(2H)-carboxylate (168)

Olefin $151(1 \mathrm{~g}, 3 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and the solution was degassed by bubbling with argon for 10 min . Then, Grubbs' 2 nd generation ruthenium catalyst ($256 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added. The reaction mixture was stirred for 22 h at 50 ${ }^{\circ} \mathrm{C}$ and then cooled and solvent was evaporated to give the residue, which was then
directly purified by column chromatography over silica gel using petroleum ether:EtOAc (8:2) to give dihydropyridine $\mathbf{1 6 8}$ as a colorless oil.

Yield: $78 \%(0.720) ;[\alpha]_{\mathrm{D}}{ }^{25}=+20.0\left(c 1.14, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 3443,2978,1685$, 1413, 1227, 1115, 1028, 909, 698, 648; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.45(\mathrm{~s}, 9 \mathrm{H})$, $1.66-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.48(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.50(\mathrm{~m}, 3 \mathrm{H}), 4.05-.24(\mathrm{~m}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.56-5.74(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.2,28.2,40.4,45.9,68.7,72.5,72.9,79.4,122.4,123.1,127.3,128.1$, 128.9, 138.1, 155.0; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, 71.26; H, 8.31; N, 4.62. Found: C, 71.30, H, 8.29; N, 4.58\%.

(S)-tert-Butyl 2-(hydroxymethyl)piperidine-1-carboxylate (169)

Dihydropyridine 168 ($0.5 \mathrm{~g}, 1.65 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(25 \mathrm{~mL}), 10 \% \mathrm{Pd} / \mathrm{C}(38$ mg) was added and the mixture was stirred under $\mathrm{H}_{2}(20 \mathrm{psi})$ atmosphere for 8 h . The mixture was then filtered over Celite, washed with $\mathrm{MeOH}(2 \times 20 \mathrm{~mL})$ and the solvent was evaporated under reduced pressure to afford alcohol 169 , which was then purified by column chromatography over silica gel using petroleum ether/EtOAc (7:3) to give $\mathbf{1 6 9 .}$

Yield: 88\% (0.320 g); Chiral Column: CHIRALCEL OD-H, length $25 \times 4.6 \mathrm{~mm}$, wavelength: 230 nm , flow rate 1.0 mL per min. Mobile phase: 5% isopropyl alcohol in hexane; ee $=98 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-40.1\left(c 1, \mathrm{CHCl}_{3}\right),\left\{\mathrm{lit}{ }^{64}[\alpha]_{\mathrm{D}}{ }^{25}=-40.5\left(c 1, \mathrm{CHCl}_{3}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 3442,2940,2890,1655,1422,1370,1280,1170,1150,1060,1050,870 ;$
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.76(\mathrm{~m}, 6 \mathrm{H}), 2.11$ (brs, 1 H), 2.78$2.92(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.6(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.96(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 18.9,24.4,24.9,28.0,39.5,51.7,60.0,79.1,155.5$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 61.37 ; \mathrm{H}, 9.83, \mathrm{~N}, 6.51$. Found: C, $61.40, \mathrm{H}, 9.79, \mathrm{~N}, 6.49 \%$.

(S)-tert-Butyl 2-[E-2-(ethoxycarbonyl)vinyl] piperidine-1-carboxylate (150)

To a stirred solution of oxalyl chloride $(0.825 \mathrm{~g}, 6.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$, was added a solution of DMSO $(0.760 \mathrm{~g}, 9.72 \mathrm{mmol})$. The reaction mixture was stirred for 20 min . followed by the addition of a solution of alcohol $\mathbf{1 6 9}(0.7 \mathrm{~g}, 3.24$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After stirring for 1 h at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{~mL}, 12.96 \mathrm{mmol})$. The reaction mixture was then stirred for 20 min . followed by the addition of water (20 mL). The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the corresponding crude aldehyde $\mathbf{1 7 0}$ in 0.650 g , which was subjected to Wittig olefination without purification as follows. To a solution of aldehyde $\mathbf{1 7 0}$ in dry benzene $(20 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(1 \mathrm{~g}, 3.0 \mathrm{mmol})$ and the reaction mixture heated at $50{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction as monitored by TLC, it was cooled to $25^{\circ} \mathrm{C}$, extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), washed with water, brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product, which was then purified by column chromatography over silica gel using petroleum ether/EtOAc (8:2) to give the unsaturated ester $\mathbf{1 5 0}$ as a gum.

Yield: $90 \%(0.6 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}=-77.48\left(c 1.3, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 2940,2862,1730$, $1700,1665,1440,1410,1370,1310,1280,1270,1160,1050,870,770 ;{ }^{1} \mathbf{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.84(\mathrm{~m}, 6 \mathrm{H}), 2.73-2.87(\mathrm{~m}$, $1 \mathrm{H}), 3.97(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=$ $2.1,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=4.0,12.0 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,19.6$, $25.0,28.1,28.7,39.8,51.5,60.2,79.6,121.8,147.2,154.8,160.0$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{4}: \mathrm{C}, 63.58 ; \mathrm{H}, 8.89 ; \mathrm{N}, 4.94$. Found: C, $63.60, \mathrm{H}, 8.90, \mathrm{~N}, 4.89 \%$.

(1S,2R,8aS)-Hexahydro-1,2-dihydroxyindolizin-3(5H)-one (171)

To a solution of tert-butyl alcohol (5.0 mL) and water (5.0 mL) in THF (5 mL), 4methylmorpholine N -oxide $(0.39 \mathrm{~g}, 3.34 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(0.02 \mathrm{~g}, 0.1 \mathrm{M}$ solution in toluene, $5 \mathrm{~mol} \%$) were added and the mixture was stirred at room temperature for 15 min . A solution of ester $150(0.5 \mathrm{~g}, 1.76 \mathrm{mmol})$ in THF (3.0 mL) was added. After 24 h , the reaction mixture was treated with Florisil (2.0 g), and $\mathrm{NaHSO}_{3}(1.0 \mathrm{~g})$ and stirring continued for 1 h . The reaction mixture was diluted with EtOAc (20 mL), filtered through Celite and the filtrate distilled in vacuo to give a mixture of diols. This crude mixture of diol was stirred in 10 mL of TFA for (Boc deprotection) 10 h and evaporated solvent in vacuo followed by refluxing this mixture in ethanol for 6 h gave imide $\mathbf{1 7 1}$ as $3: 2$ ratio (80% combine yield, determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR). These compounds were separated by repeated recrystallization followed by flash column chromatographic purification on silica gel $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N}, 30: 68: 2\right)$ to give pure imide 171 in 58% yield.

Yield: $58 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+55.2(c$ 1, MeOH $),\left\{\right.$ lit. ${ }^{42}[\alpha]_{\mathrm{D}}{ }^{21}+52.3(c$ 1.99, MeOH) $\}$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 1685,1450,1365,1280,640 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 0.94-1.09$ $(\mathrm{m}, 1 \mathrm{H}), 1.12-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.91(\mathrm{~m}, 1 \mathrm{H}), 2.55-3.08(\mathrm{~m}, 1 \mathrm{H})$, 2.55-3.08 (m, 1H), $3.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(50 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 25.0,25.9,30.4,41.8,64.2,71.2,72.5,172.0$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}$, 56.13; H, 7.65; N, 8.18. Found: C, 56.20, H, 7.59, N, 8.20\%.

(+)-Lentiginosine (60)

To a stirred solution of $(0.1 \mathrm{~g}, 0.584 \mathrm{mmol})$ of imide $171 \mathrm{in} \mathrm{THF}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added lithium aluminum hydride $(0.044 \mathrm{~g}, 1.16 \mathrm{mmol})$. The suspended mixture was stirred at $65^{\circ} \mathrm{C}$ for 12 h , cooled to $0^{\circ} \mathrm{C}$, diluted with 2 mL of THF, and then carefully
treated successively with water, 10% aqueous NaOH . The resulting mixture was stirred for 1 h and filtered through pad of sodium sulfate and filtrate was concentrated under reduced pressure. The crude residue was then purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 8: 2\right)$ to give pure lentiginosine $\mathbf{6 0}$ as a colourless solid.

Yield: $82 \%(75 \mathrm{mg})$; mp. $103-105{ }^{\circ} \mathrm{C}\left[\right.$ lit. $\left.{ }^{47} \mathrm{mp} .103-104{ }^{\circ} \mathrm{C}\right] ; \quad[\alpha]_{\mathrm{D}}{ }^{25}=+3.0(c 0.4$, $\mathrm{MeOH})\left\{\right.$ lit. ${ }^{43}[\alpha]_{\mathrm{D}}{ }^{24}=+3.1(c 0.31, \mathrm{MeOH}) ;$ IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 3525,3515,3021,3012$, 2932, 2857, 1443, 1210, 1130; ${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): ~ \delta 1.15-1.89(\mathrm{~m}, 7 \mathrm{H}), 1.99-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=11.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{br} \mathrm{d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 23.9,24.8,28.4,53.5,61.1,69.4,76.5,83.8$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 61.12; H, 9.62; N, 8.91. Found: C, 61.20, H, 9.57, N, 8.78\%.

1.2.8 Reference:

1. (a) Pinder. R. M.; Bropden, R. N.; Speight. T. M.; Avery, G. S. Drugs, 1977, 13, 321; (b) Salama, A. I.; Insalaco, J. R.; Maxwell, R. A. J. Pharmacal. Exp. Ther. 1971, 178, 474; (c) Coppen, A.; Shaw, D. M.; Herzberg, B.; Maggs, R. Lancet II, 1967, 1178; (d) Carlsson, A.; Corrodi, H.; Fuxe, K.; Hokfelt, T. Eur. J. Pharmacal. 1969, 5, 357.
2. (a) Welch, W. M.; Adv. Med. Chem. 1995, 3, 113; (b) Sarges, R.; Tretter, J. R.; Tenen, S. S.; Weissman, A. J. Med. Chem. 1973, 16, 1003.
3. Welch, W. M.; Kraska, A. R.; Koe, K. J. Med. Chem. 1984, 27, 1508.
4. Quallich, G. J.; Woodwall, T. M. Tetrahedron, 1992, 48, 10239.
5. Corey, E. J.; Gant, T. G. Tetrahedron Lett. 1994, 35, 5537.
6. Lautens, M.; Rovis, T. J. Org. Chem. 1997, 62, 5246.
7. Chen, C-Y.; Reamer, R. A. Org. Lett. 1999, 1, 293.
8. Davies, H. M. L.; Stafford, D. G.; Hansen, T. Org. Lett. 1999, 1, 233.
9. Chandrashekhar, S.; Reddy, M. V. Tetrahedron, 2000, 56, 1111.
10. Boulton, L. T.; Lennon, I. C.; McCague, R. Org. Biomol. Chem. 2003, 1, 1094.
11. Taber, G. P.; Pfisterer, D. M.; Colberg, J. C. Org. Process. Res. Dev. 2004, 8, 385.
12. Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028.
13. Wang, G.; Zheng, C.; Zhao, G. Tetrahedron: Asymmetry, 2006, 17, 2074.
14. Johnson, R. A.; Sharpless K. B. In "Catalytic Asymmetric Synthesis" VCH Publishers (New York), 1993, Chap. 4, pp. 227-270.
15. (a) Jacobsen E. N.; Marko, I.; France, M. B.; Svendsen, J. S.; Sharpless K. B. J. Am.Chem. Soc. 1989, 111, 737; (b) Kolb, H. C.; Anderson, P. G.; Bennani, Y. L.; Crispino, G. A.; Jeong, K. S.; Kwong, H. L.; Sharpless, K. B. J. Am. Chem. Soc. 1993, 115, 12226.
16. (a) Kolb, H. C.; Van-Nieuwenhze, M, S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483; (b) Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263.
17. (a) Criegee, R.; Justus Liebigs Ann. Chem. 1996, 522, 75; (b) Criegee, R. Angew. Chem. Int. Ed. Engl. 1937, 50, 153; (c) Criegee, R.; Marchand, B.; Wannowias, H. Justus Liegs. Ann. Chem. 1942, 550, 99; (d) Sharpless, K. B.; Teranishi, A. Y.; Backwall, J. E. J. Am. Chem. Soc. 1977, 99, 3120; (e) Jorgensen, K. A.; Schiott, B. Chem. Rev. 1990, 90, 1483.
18. Gawley, R. A.; Aube, J. In "Principles of Asymmetric Synthesis" Elsevier Science (Oxford), 1996, Vol. 14, (Chap. 8), pp 314-350.
19. Hoffman, K. A. Chem. Ber. 1912, 45, 3329.
20. (a) Milas, N. A.; Sussman, S. J. Am. Chem. Soc. 1936, 58, 1302; (b) Milas, N. A.; Trepagnier, J. H.; Nolan, J. T.; Iliopulos, M. I. J. Am. Chem. Soc. 1959, 81, 4730.
21. Sharpless, K. B.; Akashi, K. J. Am. Chem. Soc. 1976, 98, 1986.
22. (a) VanRheenen, V.; Kelly, R. C.; Cha. D. Y. Tetrahedron Lett. 1976, 17, 1973; (b) Schneider, W. P.; Mclntosh, A. V. US 2769284, Nov. 6, 1956.
23. Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968.
24. Minato, M.; Yamamota, K.; Tsuji, J. J. Org. Chem. 1990, 55, 766.
25. Sharpless K. B.; Amerg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu. D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768.
26. Amerg, W.; Bennani, Y. L.; Chadha, R. K.; Crispino, G. A.; Davis, W. D.; Hartung, J.; Jeong, K. S.; Ogino, Y.; Shibata, T.; Sharpless K. B. J. Org. Chem. 1993, 58, 844.
27. Ishibashi, H.; Maeki, M.; Yagi, J.; Ohba. M.; Kanai, T. Tetrahedron, 1999, 55, 6075-6080.
28. (a) Aleksakis, A. Hajjaji, S. E.; Polet, D.; Rathgeb, X. Org. Lett. 2007, 9, 3393;
29. (a) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. Tetrahedron: Asymmetry 2000, 11, 1645-1680; (b) Elbein, A. D.; Molyneux, R. J. Alkaloid Glycosidase Inhibitors In ComprehensiveNatural Products Chemistry; Barton, D.; Nakanishi, K.; Meth-Cohn, O.; Eds.; Elsevier: Oxford, 1999; Vol. 3, p 129; (c) Sears, P.; Wong, C-H. Chem. Commun. 1998, 11611170; (d) Ganem, B. Acc. Chem. Res. 1996, 29, 340-347. (e) Dwek, R. A. Chem. Rev. 1996, 96, 683; (f) Kaushal, G. P.; Elbein, A. D. Methods Enzymol. 1994, 230, 316; (g) Look, G. C.; Fotsch, C. H.; Wong, C-H. Acc. Chem. Res. 1993, 26, 182-190; (h) Legler, G. Adv. Carbohydr. Chem. Biochem. 1990, 48, 319-384.
30. (a) Goti, A.; Cardona, F.; Brandi, A. Synlett. 1996, 761; (b) Goti, A.; Cardona, F.; Brandi, A.;

Picasso, S.; Vogel, P. Tetrahedron: Asymmetry 1996, 7, 1659; (c) Nukui, S.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Org. Chem. 1995, 60, 398; (d) Cordero, F. M.; Cicchi, S.; Goti, A.; Brandi, A. Tetrahedron Lett. 1994, 35, 949.
31. (a) Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Leworth, D. P.; Pryce, R. J.; Arnold, E.; Clardy, J. Phytochemistry 1981, 20, 811; (b) Nash, R. J.; Fellows, L. E.; Dring, J. V.; Stirton, C. H.; Carter, D.; Hegarty, M. P.; Bell, E. A. Phytochemistry 1988, 27, 1403.
32. (a) Platt, F. M.; Neises, G. R.; Reinkensmeier, G.; Townsend, M. J.; Perry, V. H.; Proia, R. L.; Winchester, B.; Dwek, R. A.; Butters, T. D. Science 1997, 276, 428; (b) Robinson, K. M.; Begovic, M. E.; Rhinehart, B. L.; Heinke, E. W.; Ducep, J.-B.; Kastner, P. R.; Marshall, F. N.; Danzin, C. Diabetes 1991, 40, 825; (d) Anzeveno, P. B.; Creemer, L. J.; Daniel, J. K.; King, C.-H.; Liu, P. S. J. Org. Chem. 1989, 54, 2539.
33. (a) Gross, P. E.; Baker, M. A.; Carver, J. P.; Dennis, J. W. Clin. Cancer Res. 1995, 1, 935.
34. (a) Ratner, L.; Heyden, N. V.; Dedera, D. Virology 1991, 181, 180; (b) Wikler, D. A.; Holan, G. J. Med. Chem. 1989, 32, 2084; (c) Karpas, A.; Fleet, G. W. J.; Dwek, R. A.; Petursson, S.; Namgoog, S. K.; Ramsden, N. G.; Jacob, G. S.; Rademacher, T. W. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 9229.
35. Pastuszak, I.; Molyneux, R. J.; James, L. F.; Elbein, A. D. Biochemistry 1990, 29, 1886.
36. (a) Pastuszak, I.; Molyneux, R. J.; James, L. F.; Elbein, A. D. Biochemistry 1990, 29, 1886; (b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Frignoli, R.; Goti, A.; Picasso, S.; Vogel, P. J. Org. Chem. 1995, 60, 6806.
37. Yoda, H.; Kitayama, H.; Katagiri, T.; Takabe, K. Tetrahedron: Asymmetry, 1993, 4, 1455.
38. Gurjar, M. K.; Ghosh, L.; Syamala, M.; Jayasree, V. Tetrahedron Lett. 1994, 35, 8871.
39. Brandi, A.; Cicchi, S.; Cordero, F. M.; Frignoli, R.; Goti, A.; Picasso, S.; Vogel, P. J. Org. Chem, 1995, 60, 6806.
40. Giovannini, R.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1995, 60, 5706.
41. McCaig, A. E.; Meldrum, K. P.; Wightman, R. H. Tetrahedron, 1998, 54, 9429.
42. Ha, D-C.; Yun, C-S.; Lee, Y. J. Org. Chem. 2000, 65, 621.
43. Rasmussen, M. O.; Delair, P.; Greene, A. E. J. Org. Chem. 2001, 66, 5438.
44. Chandra, K. L.; Chandrashekhar, M.; Singh, V. K. J. Org. Chem. 2002, 67, 4630.
45. Sha, C-K.; Chau, C-M. Tetrahedron Lett. 2003, 44, 499.
46. Feng, Z-X.; Zhou, W-S. Tetrahedron Lett. 2003, 44, 497.
47. Raghavan, S.; Sreekanth, T. Tetrahedron: Asymmetry, 2004, 15, 565.
48. Cardona, F.; Moreno, G.; Guarna, G.; Vogel, P.; Schuetz, C.; Merino, P.; Goti, A. J. Org. Chem. 2005, 70, 6552.
49. Lauzon, S.; Tremblay, F.; Gagnon, D.; Godbout, C.; Chabot, C.; Mercier-Shanks, C.; Perreault, S.; Deseve, H.; Spino, C. J. Org. Chem. 2008, 73, 6239.
50. Alam, M. A.; Vankar, Y. D. Tetrahedron Lett. 2008, 49, 5534.
51. (a) Davis, F. A.; Bang-Chi, C. Chem. Rev. 1992, 92, 919; (b) Morikawa, K.; Park, J.; Andersson, P.G.; Hashiyama, T.; Sharpless, K. B. J. Am. Chem. Soc. 1993, 115, 8463; (c) Adam, W.; Fell, R. T.; Stegmann, V. R.; Saha-Moller, C. R. J. Am. Chem. Soc. 1996, 118, 708; (d) Zhu, Y.; Tu, Y.; Yu, H.; Shi, Y. Tetrahedron Lett. 1998, 39, 7819.
52. Merino, P.; Tejero, T. Angew. Chem. Int. Ed. 2004, 43, 2995.
53. For a review of proline-catalyzed asymmetric reactions, see: (a) List, B. Tetrahedron 2002, 58, 5573; (b) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138; (c) Marigo, M.; Jorgensen, K. A. Chem. Commun. 2006, 2001.
54. (a) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44, 8293; (b) Zhong, G. Angew. Chem. Int. Ed. 2003, 42, 4247; (c) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem. Int. Ed. 2003, 43, 1112; (d) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808; (e) Cordova, A.; Sunden, H.; Bøgevig, A.; Johansson, M.; Himo, F. Chem. Eur. J. 2004, 10, 3673.
55. Itsuno, S.; Watanabe, K.; Matsumoto, T.; Kuroda, S.; Yokoi, A.; El-Shehawy, A. J. Chem. Soc., Perkin Trans. 1 1999, 2011.
56. Chen, G.-M.; Ramachandran, P. V.; Brown, H. C. Angew. Chem. Int. Ed. 1999, 38, 825.
57. For aminoallylation with ammonia: (a) Sugiura, M.; Hirano, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 7182; (b) Kobayashi, S.; Hirano, K.; Sugiura, M. Chem. Commun. 2005, 104.
58. Sugiura, M.; Mori, C.; Hirano. K.; Kobayashi, S. Can. J. Chem. 2005, 83, 937.
59. (a) Horowitz, R. M.; Geissman, T. A. J. Am. Chem. Soc. 1950, 72, 1518; (b) Przheval'skii, N. M.; Grandberg, I. I. Usp. Khim. 1987, 56, 814.
60. (a) Overman, L. E.; Kakimoto, M. J. Am. Chem. Soc. 1979, 101, 1310; (b) Overman, L. E. Acc. Chem.Res. 1992, 25, 352.
61. Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 6038.
62. Felpin, F.; Lebreton, J. J. Org. Chem. 2002, 67, 9192.
63. Sugiura, M.; Mori, C.; Kobayashi, S. J. Am. Chem. Soc. 2006, 128, 11038.
64. Sanchez-Sancho, F.; Herradon, B. Tetrahedron: Asymmetry, 1998, 9, 1951-1965

CHAPTER II

Enantioselective Synthesis of (+)- α-Conhydrine, (-)-Sedamine, (-)-Allosedridine, (S)-Betaxolol and (S)-Metoprolol

Section I

Enantioselective Synthesis of (+)- α-Conhydrine and (-)-Sedamine via L-Proline-Catalyzed Asymmetric α-Aminooxylation

2.1.1 Introduction

Piperidine is a core unit of many alkaloids, which are widespread in nature and occupy an important position in synthetic organic chemistry both as bioactive targets as well as useful synthetic intermediates used for the synthesis of complex molecules. The 1,2- and 1,3-amino alcohols are important functional groups present in a number of bioactive natural products such as alkaloids, ${ }^{1 a-c}$ amino sugars, ${ }^{\text {dd }}$ enzyme inhibitors, and antibiotics. ${ }^{2}$ The biological and physicochemical specificities of alkaloids are especially due to the properties of the amino alcohol functions. Also, in natural products and pharmaceuticals, the piperidine core is one of the most encountered and has been recognized as a privileged structure in medicinal chemistry. ${ }^{3}$ Indeed, over 12,000 discrete piperidine entities have been mentioned in clinical or preclinical studies over the past decade. ${ }^{4}$

(+)- α-conhydrine 1

(-)-sedamine 2

(-)-allosedamine 3

Fig. 1
$(+)$-Conhydrine (1) was isolated from seeds and leaves of the poisonous plant Conium maculatum L2 in 1856 and its structure was elucidated in 1933. (-)-Sedamine and (-)allosedamine have been isolated from Sedum acre ${ }^{3}$ and Lobelia inflata (also known as Indian tobacco) respectively. It has been used for the treatment of respiratory illnesses such as asthma, bronchitis and pneumonia ${ }^{5}$ (Fig. 1).

2.1.2 Review of literature

A: For the synthesis of (+)-conhydrine

Masaki's approach (1989) ${ }^{6}$

Masaki et al. have described the synthesis of (+)-conhydrine (1) via chiral pool approach starting from pyranoid acetal 4 which was derived from (S,S)-diethyl tartarate . Pyranoid acetal $\mathbf{4}$ was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol to give epoxide 5 in 92% yield. The epoxide 5 was then subjected to regioselective ring opening with $\mathrm{Me}_{2} \mathrm{CuLi}$ followed by protection of free hydroxyl group as its benzyl ether to afford 7 in 79% yield. The oxidative cleavage of pyranoid 7 was achieved using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in the presence of m - CPBA , followed by its treatment with $\mathrm{Et}_{3} \mathrm{~N}$ gave lactone $\mathbf{8}$ in 75% yield. Treatment of lactone $\mathbf{8}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH produced δ-hydroxy ester $\mathbf{9}$ in almost quantitative yield. The azido ester $\mathbf{1 0}$ obtained from δ-hydroxy ester $\mathbf{9}$ was then subjected to reductive cyclization

Scheme 1: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 92 \%$; (ii) $\mathrm{Me}_{2} \mathrm{CuLi}, \mathrm{Et}_{2} \mathrm{O},-5{ }^{\circ} \mathrm{C}, 90 \%$; (iii) NaH , $\mathrm{BnBr}, \mathrm{DME}, 15 \mathrm{~h}, 79 \%$; (iv) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 2h; (v) $\mathrm{Et}_{3} \mathrm{~N}, 0{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 75 \%$; (vi) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$, 2 h , quant.; (vii) $\mathrm{PPh}_{3}, \mathrm{HN}_{3}$, DEAD, benzene, $2 \mathrm{~h}, 75 \%$; (viii) (a) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$; (b) toluene, $120{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}, 82 \%$; (ix) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 25{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, 80%; (x) $5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}$, con. $\mathrm{HCl}, 88 \%$.
to produce lactam 11 in 75% yield. Lactam 11 was then converted to conhydrine $\mathbf{1}$ using standard reactions i.e. reduction of lactam and deprotection of benzyl group (Scheme 1).

Comin's approach (2000) ${ }^{7}$

Comin et al. have achieved the synthesis of (+)-conhydrine (1) starting from pyridine derivative 12, which was treated with chiral trans-2-(α-cumyl) cyclohexylchloroformate $[(+)-\mathrm{TCC}]$ followed by addition of allylmagnesium bromide to afford dihydropyridine 13 in 78% yield. The treatment of $\mathbf{1 3}$ with NaOMe and $10 \% \mathrm{HCl}$ resulted in dihydropyridone 14 in 80% yield. It was then treated with $n-\mathrm{BuLi}$ and benzyl chloroformate to give carbamate $\mathbf{1 5}$, which was subjected to conjugate reduction using Lselectride and its in situ treatment with (5-chloro-2-pyridyl)triflamide gave vinyl triflate
16.

Scheme 2: (i) [(+)-TCC], THF, toluene; (ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \mathrm{MgBr}, \mathrm{H}_{3} \mathrm{O}^{+}, 78 \%$; (iii) $\mathrm{NaOMe}, \mathrm{MeOH}$, refluxed then $10 \% \mathrm{HCl}, 80 \%$; (iv) $n-\mathrm{BuLi}, \mathrm{BnOCOCl}$; (v) Lselectride, N -(5-chloro-2-pyridyl)triflimide, 80%; (vi) $\mathrm{I}_{2}, \mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 70 \%$; (vii) $\mathrm{PtO}_{2}, \mathrm{H}_{2}, \mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{EtOAc}, 75 \%$; (viii) DBU, THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 99 \%$; (ix) KOH, EtOH, reflux, 79\%.

The treatment of triflate $\mathbf{1 6}$ with I_{2} and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ gave iodocyclocarbamate $\mathbf{1 7}$ in 70% yield. Dehydrohalogenation of iodocarbamate 17 with diaza-bicycloundecane (DBU) gave in enol carbamate 18. Catalytic hydrogenation of 18 in the presence of PtO_{2} and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ produced oxazolidinone 19 in 75% yield, which was treated with alcoholic KOH to afford conhydrine 1 in 79\% yield (Scheme 2).

Kumar's approach (2005) ${ }^{8}$

Kumar et al. have reported the synthesis of (+)-conhydrine (1) commencing from chiral aldehyde $\mathbf{2 0}$ derived from L-ascorbic acid. This aldehyde $\mathbf{2 0}$ on Grignard addition with ethylmagnesium bromide gave amino alcohol 21 in 73% yield. Debenzylation of $\mathbf{2 1}$ was carried out using $\mathrm{Pd}(\mathrm{OH})_{2}$ and in situ protection of amine function with $(\mathrm{Boc})_{2} \mathrm{O}$ furnished Boc-protected amino alcohol 22 in 83% yield. Amino alcohol 22 was treated with 2,2-dimethoxypropane in the presence of catalytic amount of p-TSA to afford alcohol 23 in 87% yield.

Scheme 3: (i) $\mathrm{EtMgBr}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 73 \%$; (ii) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}$, $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{EtOAc}, 12 \mathrm{~h}$, 83%; (iii) 2,2-dimethoxypropane, p-TSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25{ }^{\circ} \mathrm{C}, 87 \%$; (iv) (COCl$)_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (v) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}-\mathrm{CO}_{2} \mathrm{Et}$, THF, $24 \mathrm{~h}, 96 \%$; (vi) LiAlH_{4}, dry THF, $25{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 78 \%$; (vii) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 88\%.

Alcohol 23 was oxidized under Swern conditions followed by Wittig olefination gave the α, β-unsaturated ester 24, which on treatment with LiAlH_{4} resulted in saturated alcohol $\mathbf{2 5}$ in 78% yield. The saturated alcohol $\mathbf{2 5}$ thus produced was converted to conhydrine $\mathbf{1}$ by first converting to its mesylate and then Boc-deprotection with TFA in THF which induced an intramolecular cyclization to afford (+)-conhydrine (1) (Scheme 3).

Chang's approach (2006) ${ }^{9}$

Chang et al. have achieved the synthesis of (+)-conhydrine (1) commencing from chiral prolinol 26. The Swern oxidation of prolinol 26, followed by addition of ethylmagnesium bromide gave a single isomer of 27 in 90% yield. The alcohol 27 was protected as its benzyl ether (NaH , benzyl bromide) followed by desilylation and oxidation with PCC gave ketone 28 in 83% yield. Ketone 28 was subjected to oxidative cleavage with m CPBA and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ followed by reduction with LiAlH_{4} produced amino alcohol 29 in 94% yield. Protection of the alcohol 29 as its TBS ether followed by N-allylation provided $\mathbf{3 1}$ in 97\% yield.

26
27
28

viii $\left\{\begin{array}{l}29, R=H \\ 30, R=T B S\end{array}\right.$

Scheme 4: (i) $\left(\mathrm{COCl}_{2}, \mathrm{DMSO}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; (ii) $\mathrm{EtMgBr}, \mathrm{Et}_{2} \mathrm{O}, 90 \%$ for two steps; (iii) $\mathrm{NaH}, \mathrm{BnBr}, 86 \%$; (iv) TBAF, THF, 92%; (v) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 83 \%$; (vi) m-CPBA, $\mathrm{Na}_{2} \mathrm{CO}_{3}, 82 \%$; (vii) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 94 \%$; (viii) TBSCl , imid. 96%; (ix) NaH , allyl bromide, 97%; (x) TBAF, THF, 99%; (xi) PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 97 \%$; (xii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}, 82 \%$; (xiii) Grubbs' $2^{\text {nd }}$ generation catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$; (xiv) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, 94 \%$; (xv) $\mathrm{Na} / \mathrm{Hg}, \mathrm{MeOH}, 80 \%$.

The N -allyl derivative $\mathbf{3 1}$ on desilylation, oxidation and Wittig olefination gave the RCM precursor 32 in 82% yield, which was then subjected to ring-closing metathesis with Grubbs' second generation catalyst to produce dihydropiperidine 33 in 92% yield. The dihydropiperidine $\mathbf{3 3}$ thus produced was converted to $(+)$-conhydrine $\mathbf{1}$ by hydrogenation and reduction of $\mathrm{N}-\mathrm{Ts}$ bond with $\mathrm{Na} / \mathrm{Hg}$ (Scheme 4).

Sutherland's approach (2007) ${ }^{10}$

Sutherland et al. have achieved the synthesis of conhydrine $\mathbf{1}$ starting from (S)-glycidol 34, protected as its TBDMS ether, followed by regioselective ring opening of epoxide with methylmagnesium bromide in the presence of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ produced alcohol 35 in 90% yield. Alcohol 35 was protected as its MOM ether to give 36, deprotection of TBDMS ether followed by Swern oxidation and Horner-Wadsworth-Emmons (HWE) olefination generated α, β-unsaturated ester 37 in 86% yield. The selective reduction of ester functionality in $\mathbf{3 7}$ with DIBAL-H gave allylic alcohol 38, subsequent protection of hydroxyl function with trichloroacetonitrile gave allylic trichloroacetamide 39. Trichloroacetamide 39 was then subjected to asymmetric aza-Claisen rearrangement using $10 \mathrm{~mol} \%$ bis-(acetonitrile)palladium chloride to give erythro- and threo-allylic trichloroacetamide 40 and $\mathbf{4 0 a}(\mathrm{dr}=16: 1)$. The required isomer 40 was then subjected to hydrolysis using 2 M NaOH followed by acylation with 3-butenoyl chloride to give RCM precursor 41 in 72% yield. Finally, ring closing metathesis of $\mathbf{4 1}$ using Grubbs' first generation catalyst gave δ-lactam 42, which was transformed to $(+$)-conhydrine $\mathbf{1}$ via hydrogenation and deprotection of MOM ether (Scheme 5).

Scheme 5: (i) TBDMSCl, imidazole, THF, 88%; (ii) $\mathrm{MeMgBr}, \mathrm{CuBr} \cdot \mathrm{SMe}_{2}$, THF, 90%; (iii) MOMBr, $\left.\mathrm{Et}^{(}{ }^{i} \operatorname{Pr}\right)_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 83 \%$; (iv) TBAF, THF, 59%; (v) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; then $(\mathrm{EtO})_{2} \mathrm{POCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{DBU}, \mathrm{LiCl}, \mathrm{CH}_{3} \mathrm{CN}, 86 \%$; (vi) DIBAL-H, $\mathrm{Et}_{2} \mathrm{O}, 95 \%$; (vii) $\mathrm{Cl}_{3} \mathrm{CCN}$, DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (viii) $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$, toluene, $\mathrm{dr}=16: 1,55 \%$; (ix) $(\mathrm{Boc})_{2} \mathrm{O}, 2 \mathrm{M} \mathrm{NaOH}, 74 \%$; (x) $\mathrm{ClCOCH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 52 \%$; (xi) Grubbs' $1^{\text {st }}$ generation catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$; (xii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, $\mathrm{EtOAc}, 98 \%$; then $6 \mathrm{M} \mathrm{HCl}, 100 \%$.

Chattopadhyay's approach (2009) ${ }^{11}$

Chattopadhyay et al. have synthesized (+)-conhydrine (1) starting from D-mannitolderived alcohol $\mathbf{4 3}$, which was protected as its benzyl ether $\mathbf{4 4}$; subsequent treatment with $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in methanol gave diol 45 in 92% yield. The diol 45 was subjected to selective monomesylation followed by its treatment with base gave epoxide 46 in 75% yield. This on treatment with Grignard reagent (OTHP- $\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{MgBr}\right)$ in the presence of $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$ gave alcohol 47 in 78% yield. The alcohol 47 was subjected to invertive azidation with diphenylphosphoryl azide (DPPA) in the presence of diethyl azodicarboxylate (DEAD) to furnish the corresponding azide; followed by its treatment with pyridinium p-toluenesulfonate (PPTS) gave azido alcohol 48 in 92% yield. Azido
alcohol 48 was converted into the corresponding amine 49 by a one-pot catalytic hydrogenation in the presence of $(\mathrm{Boc})_{2} \mathrm{O}$. The selective protection of primary hydroxyl group in 49 as its mesylate and subsequently deprotection of Boc group using TFA in THF resulted in (+)-conhydrine 1 (Scheme 6).

48, $R=H$

Scheme 6: (i) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{THF}, \Delta, 86 \%$; (ii) $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \Delta, 92 \%$; (iii) $\mathrm{K}_{2} \mathrm{CO}_{3}, p$ - TsCl , pyridine, $\mathrm{MeOH}, 75 \%$; (iv) $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$, Mg , $\mathrm{THPO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Br}$, THF, 78%; (v) PPh_{3}, DPPA, DEAD, THF, 84\%; (vi) PPTS, $\mathrm{MeOH}, 92 \%$; (vii) $10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{H}_{2},(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{EtOAc}, 91 \%$; (viii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}$ then TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 67 \%$.

B: For the synthesis of (-)-sedamine:

Lebreton's approach (2002) ${ }^{12}$

Lebreton et al. have reported the synthesis of (-)-sedamine 2 starting from ketone $\mathbf{5 0}$, which was subjected to asymmetric reduction using (+)-DIP-Cl in THF to give homoallylic alcohol 51. It was protected using (Boc$)_{2} \mathrm{O}$ in presence of DMAP to give carbamate 52, which subsequently underwent intramolecular diastereoselective iodolactonization in presence of IBr to give iodocarbonate 53 in 85% yield.

Iodocarbonate 53 upon exposure to a basic methanolic solution gave the syn-epoxy alcohol 54 in 96% yield. Syn-epoxy alcohol 54 was treated under Mitsunobu's condition using DEAD and p-nitrobenzoic acid to give the desired anti epoxy alcohol 55, protected as its TBS ether to produce 56.

Scheme 7: i) (+)-DIP-Cl, THF, $-35^{\circ} \mathrm{C}, 84 \%$; (ii) (Boc) ${ }_{2} \mathrm{O}$, DMAP, $\mathrm{CH}_{3} \mathrm{CN}, 90 \%$; (iii) $\overline{\mathrm{IBr}, ~ P h M e},-85{ }^{\circ} \mathrm{C}, 85 \%$; (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 96 \%$; (v) $\mathrm{PPh}_{3}, \mathrm{DEAD}, p$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$, THF, 92%; (vi) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH, 77%; (vii) TBDMSCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}$, 96%; (viii) CuI, allylmagnesium bromide, $\mathrm{Et}_{2} \mathrm{O}$, $-40{ }^{\circ} \mathrm{C}, 91 \%$; (ix) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$; (x) MeNH_{2}, DMF, $\mathrm{H}_{2} \mathrm{O}, 83 \%$; (xi) (Boc) ${ }_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; (xii) $\mathrm{Cy}_{2} \mathrm{BH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, 90 \%$; (xiii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$; (xiv) 1% conc. $\mathrm{HCl}, \mathrm{MeOH}, 94 \%$.

Regioselective ring opening of epoxide with allylmagnesium bromide in presence of CuI afforded alcohol 57, which was converted to its mesylate 58 in 88% yield. Displacement
of the mesylate group in $\mathbf{5 8}$ with methyl amine resulted in $\mathbf{5 9}$ in 83% yield, its subsequent treatment with $(\mathrm{Boc})_{2} \mathrm{O}$ produced Boc-protected amine $\mathbf{6 0}$. The olefin functionality in $\mathbf{6 0}$ was then subjected to hydroboration-oxidation using dicyclohexylborane in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaOH to give the terminal alcohol $\mathbf{6 1}$, which was converted to its mesylate $\mathbf{6 2}$ in 88% yield. The deprotection of Boc group in $\mathbf{6 2}$ resulted in intramolecular cyclization readily to produce (-)-sedamine 2 (Scheme 7).

Riva's approach (2003) ${ }^{13}$

Riva et al. have synthesized (-)-sedamine 2 and (-)-allosedamine $\mathbf{3}$ by using enzymecatalyzed kinetic resolution as the key step. Accordingly, the synthesis commenced from

Scheme 8: (i) Lipase PS, $\mathrm{AcOCH}=\mathrm{CH}_{2}$, hexane, $20^{\circ} \mathrm{C}, 190 \mathrm{~min} ., 45 \%$; (ii) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) PhMgBr , THF, $-20^{\circ} \mathrm{C}$; (iv) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux.
recemic Boc-protected piperidine alcohol 63, which was subjected to enzyme-catalyzed resolution using Lipase LS in the presence of vinyl acetate to give the chiral Boc protected piperidine alcohol 63a and its acetate 64 in 45% yield. The Boc-protected
piperidine alcohol 63a was oxidized under Swern conditions followed by addition of phenylmagnesium bromide to produce separable diastereomeric mixtures of $\mathbf{6 6}$ and $\mathbf{6 6 a}$ in 2:3 ratio, which on reduction with LiAlH_{4} afforded (-)-sedamine 2 and (-)allosedamine 3 (Scheme 8).

Crook's approach (2004) ${ }^{14}$

Crook et al. have described the synthesis of (-)-sedamine $\mathbf{2}$ commencing from naturally availabe (-)-lobeline 67, which was protected as its TBS ether using TBSCl in presence of DMAP to give TBS-protected lobeline $\mathbf{6 8}$ in 91% yield. This on further treatment with Troc- Cl in presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded 69 in quantitative yield. Bromo compound 71 was obtained from 69 by employing a four-step reaction sequence, which includes $\mathrm{OsO}_{4}{ }^{-}$ catalyzed dihydroxylation followed by cleavage of diol to give the corresponding aldehyde, reduction of aldehyde using NaBH_{4} and treatment of the resulting alcohol with PPh_{3} and CBr_{4}.

Scheme 9: i) TBSCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 91 \%$; (ii) TrocCl, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 100 \%$; (iii) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}$, dioxane: $\mathrm{H}_{2} \mathrm{O}$; (iv) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 70 \%$; (v) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$; (vi) $\mathrm{Zn}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$; (vii) conc. HCl , $\mathrm{EtOH}, 100 \%$.

The removal of Troc group using zinc in acetic acid induced in situ intramolecular cyclization to give adduct 72, followed by deprotection of TBS ether under acidic conditions resulted in the formation of (-)-sedamine 2 (Scheme 9).

Raghavan's approach (2004) ${ }^{15}$

Raghavan et al. have reported the synthesis of (-)-allosedamine $\mathbf{3}$ commencing from chiral amino alcohol 73, which was protected as its acetate $74\left(\mathrm{Ac}_{2} \mathrm{O}\right.$, pyridine). The nucleophilic displacement of nosylate $\left(\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right.$ - ONS$)$ with amine 74 gave the intermediate $\mathbf{7 5}$ in 90% yield. The sulfoxide $\mathbf{7 5}$ was converted to triflic acetate $\mathbf{7 6}$ using trifluoroacetic anhydride in presence of $\mathrm{Et}_{3} \mathrm{~N}$, which on hydrolysis with aq. NaHCO_{3} afforded aldehyde 77. Wittig olefination of 77 gave ester 78 in 75% yield. The ester 78 was then subjected to ring closing metathesis using Grubbs' first generation catalyst to give dihydropiperidine 79 in 80% yield. Deprotection of $\mathrm{N}-\mathrm{Ts}$ group using $\mathrm{Na}-\mathrm{Hg}$ in

Scheme 10: (i) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 96 \%$; (ii) $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}$ - ONS , $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, $2 \mathrm{~h}, 90 \%$; (iii) (a) TFAA, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}, 0{ }^{\circ} \mathrm{C}, 50 \mathrm{~min}$; (b) aq. $\mathrm{NaHCO}_{3}, 0{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$; (iv) $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}, \mathrm{PhH}, 25{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 75 \%$; (v) Grubbs' catalyst, toluene, reflux, $16 \mathrm{~h}, 80 \%$; (vi) $\mathrm{Na}-\mathrm{Hg}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$, MeOH, reflux, $6 \mathrm{~h}, 78 \%$; (vii) $\mathrm{Pt} / \mathrm{C}, \mathrm{H}_{2}$, AcOEt, $25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90 \%$; (viii) 37% aq. $\mathrm{HCHO}, \mathrm{NaCNBH}_{3}, \mathrm{AcOH}$, $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 70 \%$.
presence of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ gave piperidine 80 in 78% yield. The synthesis of (-)-allosedamine 3 was completed by following a two-step reaction sequence which includes hydrogenation and reductive alkylation (Scheme 10).

Singh's approach (2007) ${ }^{16}$

Singh et al. have reported the synthesis of (-) sedamine $\mathbf{2}$ and (-)-allosedamine $\mathbf{3}$ starting from naturally occurring (S)-aspartic acid $\mathbf{8 2}$, which was esterified $\left(\mathrm{SoCl}_{2}, \mathrm{MeOH}\right)$ to

viii $\left\{\begin{array}{l}89, R=T B S \\ 90, R=H\end{array}\right.$
91

2

3

Scheme 11: (i) (a) $\mathrm{SOCl}_{2}, \mathrm{MeOH}, 0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, 0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 94 \%$; (ii) LiAlH_{4}, THF, $0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 85 \%$; (iii) ADDP, n-Bu P , toluene, $0-25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 82 \%$; (iv) TBSCl, imidazole, THF, $0-25{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$; (v) allylmagnesium bromide, THF- $\mathrm{Et}_{2} \mathrm{O}$ (1:1), $-78-25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 98 \%$; (vi) $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$, THF, $-10-25^{\circ} \mathrm{C}, 8 \mathrm{~h}$, then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, 0-$ $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 82 \%$; (vii) DIAD, $\mathrm{Ph}_{3} \mathrm{P}$, THF, $0-25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 80 \%$; (viii) TBAF, THF, $25^{\circ} \mathrm{C}, 6$ h, 99%; (ix) $\left(\mathrm{COCl}_{2}, \mathrm{DMSO}_{2} \mathrm{Et}_{3} \mathrm{~N},-78-25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 95 \%\right.$; (x) PhMgBr, THF-Et ${ }_{2} \mathrm{O}$ (1:1), $-78-25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (xi) Na, naphthalene, THF, $0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; then $\mathrm{NaHCO}_{3}, \mathrm{CbzCl}, 2 \mathrm{~h}$; (xii) LiAlH_{4}, THF, reflux, 16 h .
give diester, followed by protection of amine as its tosylate $\mathbf{8 3}$ in 94% yield. The LiAlH_{4} reduction of $\mathbf{8 3}$ afforded diol $\mathbf{8 4}$, its subsequent treatment with 1,1 '-(azodicarbonyl) dipiperidine [ADDP] and tert-butyl phosphine resulted in selective formation of aziridine, which was followed by protection of hydroxyl group as its TBS ether that gave N-tosylaziridine 86 in 82% yield. Regioselective ring opening of N -tosylaziridine $\mathbf{8 6}$ with allylmagnesium bromide gave olefin 87 , which was subjected to hydroboration-oxidation to give the alcohol $\mathbf{8 8}$ in 82% yield. Alcohol $\mathbf{8 8}$ readily underwent intramolecular cyclization under Mitsunobu conditions (DIAD, triphenyl phosphine) to give piperidine moiety 89. Desilylation yielded piperidine-2-ethanol 90 in 99% yield, which was oxidized under Swern conditions to give aldehyde 91, followed by the addition of phenylmagnesium bromide to give syn:anti diastereomeric mixture of $\mathbf{9 2}$ and $\mathbf{9 2 a}$ that could be separated by column chromatography. The synthesis of (-)-sedamine 2 and (-)allosedamine 3 was completed (the cleavage of $\mathrm{N}-\mathrm{Ts}$ bond, Cbz protection and reduction with $\left.\mathrm{LiAlH}_{4}\right)($ Scheme 11).

Stoltz's approach (2008) ${ }^{17}$

Stoltz et al. have described the synthesis of (-)-sedamine 2 using Pd-catalyzed kinetic resolution of benzylic alcohol as the key step. Addition of anion derived from HornerEmmons reagent $\mathbf{9 6}$ to aldehyde 94 followed by hydrolysis of the resulting methyl enol ether provided $(\pm)-95$ in 82% yield. Reduction of ketone $(\pm)-95$ with DIBAL-H in toluene at $-78{ }^{\circ} \mathrm{C}$ gave benzylic alcohol (\pm) - 66 , which was then subjected to Pd-catalyzed kinetic resolution using sparteine complex 98 in presence of air to produce alcohol (-)-66 and ketone (-)-97 in 94% yield and 81% ee respectively. The Boc-protected alcohol (-)-66 was reduced using LiAlH_{4} to give (-)-sedamine in 89% yield (Scheme 12).

Scheme 12: (i) n-BuLi, THF, $-78-23{ }^{\circ} \mathrm{C}$, then $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$, acetone, 82%; (ii) DIBALH , toluene, $-78-42{ }^{\circ} \mathrm{C}, 78 \%$, (iii) $\mathrm{PdCl}_{2}\left(7 \mathrm{~mol} \%\right.$), (-)-sparteine ($9 \mathrm{~mol} \%$), MS $3 \mathrm{~A}^{\circ}$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{CHCl}_{3}$, air, $30^{\circ} \mathrm{C}$, (iv) LiAlH_{4}, THF, $65^{\circ} \mathrm{C}, 89 \%$.

2.1.3 Present Work

2.1.3.1 Objective

Even though several methods are reported for the synthesis of (+)-conhydrine (1) and (-)sedamine (2), several of them suffer from drawbacks such as: use of chiral starting materials, involvement of expensive reagents and also formation of mixture of products. Hence, the synthesis of (+)-conhydrine (1) and (-)-sedamine 2, starting from readily available starting materials and making use of catalytic enantioselective reactions, is highly desirable. The use of catalytic enantioselective reactions are particularly advantageous from synthetic point of view as both the stereoisomers can be synthesized from the same prochiral substrate. In this chapter, the synthesis of $(+)$-conhydrine (1) and (-)-sedamine 2 employing proline-catalyzed α-aminooxylation reaction has been described.

2.1.4 Results and discussion

Retrosynthetic analysis for the synthesis of (+)-conhydrine (1) and (-)-sedamine (2) is shown in Fig. 2.

Fig. 2: Retrosynthetic analysis of (+)-conhydrine and (-)-sedamine

The secondary alcohol moiety in (+)-conhydrine (1) can be obtained by the addition of ethylmagnesium bromide onto aldehyde 94, which may be derived from diol 99 via intramolecular reductive amination. The diol 99 can in turn be obtained from 6-azidohexanal 100 via L-proline catalyzed α-aminooxylation. Similarly (-)-sedamine 2 can be synthesized by the addition of phenylmagnesium bromide onto aldehyde 101, which may be derived from amino 1,3-diol $\mathbf{1 0 2}$ using intramolecular cyclization. The 1,3-diol $\mathbf{1 0 2}$ can be envisaged from azido 1,2-diol 99.

2.1.4.1 Enantioselective synthesis (+)- α-Conhydrine

The synthetic scheme for (+)- α-conhydrine (1), wherein L-proline-catalyzed α aminooxylation ${ }^{18}$ of aldehyde constitutes a key step for the introduction of chirality, is presented in Scheme 13.

$x i<\begin{aligned} & 109, R=B o c \\ & 1, R=H\end{aligned}$

Scheme 13: Reactions conditions: (i) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; then NaN_{3}, dry DMF, $80^{\circ} \mathrm{C}, 16 \mathrm{~h}, 80 \%$; (ii) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$; (iii) L-proline ($25 \mathrm{~mol} \%$), $\mathrm{PhNO}, \mathrm{CH}_{3} \mathrm{CN},-20^{\circ} \mathrm{C}, 24 \mathrm{~h}$; then $\mathrm{MeOH}, \mathrm{NaBH}_{4}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iv) CuSO_{4} ($30 \mathrm{~mol} \%$), $\mathrm{MeOH}, 12 \mathrm{~h}, 61 \%$; (v) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95$; (vi) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (vii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, \mathrm{Et}_{3} \mathrm{~N}, 25^{\circ} \mathrm{C} 5 \mathrm{~h}$; then $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{I}_{2}\left(10 \mathrm{~mol} \%\right.$), $3 \mathrm{~h}, 76 \%$; (viii) TBAF, THF, $0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 92 \%$; (ix) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$; (x) excess EtMgBr, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 3$ h, 87%; (xi) TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1), 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 86 \%$.

6-Azidohexan-1-ol (104) was obtained from 1,6-hexanediol 103 in two steps by following simple organic transformations i.e. selective monotosylation followed by nucleophilic displacement with NaN_{3}, in overall 80% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed typical triplets at $\delta 3.23$ and 3.64 corresponding to $\mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{~N}_{3}$ protons respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic peaks at $\delta 51.1\left(\mathrm{CH}_{2} \mathrm{OH}\right)$ and $62.2\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right)$. Azidoalcohol 104 was then subjected to Swern oxidation $\left[(\mathrm{COCl})_{2}\right.$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$] to obtain the corresponding aldehyde $\mathbf{1 0 0}$, which was converted to the azido diol 99 in 61% yield via a 2 -step reaction sequence: (i) L-proline-
catalyzed asymmetric α-aminooxylation using nitrosobenzene as the oxygen source followed by reduction of aldehyde function with NaBH_{4} and (ii) cleavage of aminooxy moiety ($\mathrm{N}-\mathrm{O}$ bond) with CuSO_{4} in methanol; $[\alpha]^{25}$ d: +33.5 (c $0.5, \mathrm{CHCl}_{3}$). The formation of diol 99

99

Fig. 3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of azido diol 99
was confirmed by the appearance of typical signals at $\delta 1.39-1.69(\mathrm{~m}), 1.98$ (br. s) and 3.66 (br. d) in its ${ }^{1} \mathrm{H}$ NMR spectrum. Further, its ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic peaks at $\delta 66.6$ and 72.0 , corresponding to the carbons attached to oxygen atoms (Fig. 3). The primary hydroxyl group in diol 99 was then protected (TBSCl,
imidazole) selectively to give tert-butyldimethylsilyl ether $\mathbf{1 0 5}$ in 95% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ether $\mathbf{1 0 5}$ showed two singlets at $\delta 0.06(6 \mathrm{H})$ and $0.89(9 \mathrm{H})$ corresponding to the dimethyl and tert-butyl protons of TBS group respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed carbon signals at $\delta-5.4$ and 25.8 that correspond to the methyl and tert-butyl carbons in the silyl protecting group.

Fig. 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of piperidine 107

The secondary hydroxyl group in TBS ether $\mathbf{1 0 5}$ was then converted to the corresponding mesylate 106 in situ, which underwent reductive cyclization with $10 \% \mathrm{Pd} / \mathrm{C}$ and $\mathrm{H}_{2}(20$ psi). This was followed by its treatment with $(\mathrm{Boc})_{2} \mathrm{O}$ and $\mathrm{I}_{2}(10 \mathrm{~mol} \%)^{19}$ that resulted in chiral Boc-protected piperidine 107 in 76% yield. The formation of piperidine 107 was confirmed by the signals at $\delta 3.57(\mathrm{dd}, J=6.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=8.4,9.6 \mathrm{~Hz}$, 1 H), 3.97 (br. d, $J=12.10 \mathrm{~Hz}, 1 \mathrm{H}$) in its ${ }^{1} \mathrm{H}$ NMR spectrum. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at $\delta 39.8,51.5$ and 60.7 corresponding to carbons attached to nitrogen and oxygen atoms respectively (Fig. 4).

The deprotection of TBS ether in $\mathbf{1 0 7}$ (TBAF, THF) afforded piperidine alcohol $\mathbf{1 0 8}$ in 92% yield and 98% ee determined by chiral HPLC. The primary hydroxyl group in piperidine alcohol 108 was oxidized using Swern's condition to give aldehyde 94 in 90% yield. The aldehyde $\mathbf{9 4}$ was then treated with ethylmagnesium bromide to afford the Bocprotected $(+)$-conydrine $\mathbf{1 0 9}$ as a single diastereomer in 87% yield. The Boc group in $\mathbf{1 0 9}$ was deprotected under acidic conditions to furnish $(+)$ - α-conhydrine $(\mathbf{1}),[\alpha]^{25}{ }_{D}=+8.7(\mathrm{c}$ $0.85, \mathrm{EtOH}),\left\{\mathrm{lit}{ }^{24 \mathrm{c}}[\alpha]^{20}{ }_{\mathrm{D}}=+8.9(\mathrm{EtOH})\right\}$.

Fig. 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(+)-\alpha-$ conhydrine (1)

2.1.4.2 Enantioselective synthesis of (-)-Sedamine

The complete synthetic sequence for (-)-sedamine (2), wherein the intermediate diol 99 derived from L-proline-catalyzed α-aminooxylation reaction has been utilized as a key intermediate, is presented in Scheme 14.

Scheme 14: (i) 2,2-dimethoxypropane, p-TSA (10 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 98 \%$; (ii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi})$, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 95 \%$; (iii) $\mathrm{CbzCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}$ (1:1), 25 ${ }^{\circ} \mathrm{C}, 7 \mathrm{~h}, 92 \%$; (iv) excess 80% aq. $\mathrm{AcOH}, 25^{\circ} \mathrm{C} 18 \mathrm{~h}, 98 \%$; (v) $p-\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, 15 h ; (vi) $\mathrm{NaCN}, \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ (3:2), $0-25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 89 \%$; (vii) 1.2 M DIBAL-H; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; then $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 83 \%$; (viii) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (ix) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}, 45 \mathrm{~min}$. then NaH (1 equiv.), THF, $50^{\circ} \mathrm{C}, 8 \mathrm{~h}$; then 3 N HCl in MeOH $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 68 \%$; (x) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 91 \%$; then $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{I}_{2}(10$ $\mathrm{mol} \%$), $3 \mathrm{~h}, 95 \%$; (xi) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 84 \%$; (xii) $\mathrm{PhMgBr}, \mathrm{THF}$, $-78^{\circ} \mathrm{C}, 4 \mathrm{~h}, 61 \%$; (xiii) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 70^{\circ} \mathrm{C}, 8 \mathrm{~h}, 78 \%$.

Our synthesis of (-)-sedamine (2) commenced from diol 99, which was protected as its acetonide 110 (2,2,-dimethoxypropane, p-toluenesulfonic acid) $)^{20}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed two singlets at $\delta 1.33$ and 1.38 that correspond to dimethyl protons of acetonide moiety. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed typical signals at $\delta 25.4,26.7$ and 108.5 corresponding to the dimethyl and quaternary carbons of the acetonide group respectively (Fig. 6).

Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of acetonide $\mathbf{1 1 0}$

Reduction of azide function in $\mathbf{1 1 0}$ under catalytic hydrogenation [10\% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi})$ in $\left.\mathrm{MeOH}, 25^{\circ} \mathrm{C}\right]$ produced amine 111 in 95% yield. The amine protection $[\mathrm{CbzCl}(1.5$ eq) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(1: 1)\right]$ afforded Cbz -protected ${ }^{21}$ amine $\mathbf{1 1 2}$ in 92% yield. Removal of acetonide group in 112 (an excess of 80% aq. AcOH) afforded diol 113. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 1 3}$ showed the disappearance of acetonide group.

Fig. 7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of diol 113

The formation of diol $\mathbf{1 1 3}$ was further confirmed by two broad singlets at $\delta 2.74$ and 2.90 in its ${ }^{1} \mathrm{H}$ NMR spectrum corresponding to $-\mathrm{CHOH}-\mathrm{CH}_{2} \mathrm{OH}$ protons of diol and further
substantiated by the signals at $\delta 66.3$ and 71.8 in the downfield region of its ${ }^{13} \mathrm{C}$ NMR spectrum that correspond to the carbons attached to oxygen atoms (Fig. 7).

The diol $\mathbf{1 1 3}$ was then transformed to cyano derivative $\mathbf{1 1 4}$ in two-steps: selective mono tosylation ${ }^{22}$ of primary alcohol and $\mathrm{S}_{\mathrm{N}} 2$ displacement of the tosylate with CN^{-}ion to give nitrile $\mathbf{1 1 4}$ in 89% yield.

Fig. 8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of nitrile 114

Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed a multiplet at $\delta 3.15-3.24$ for methylene protons of the carbon attached to nitrile $\left(-\mathrm{CH}_{2} \mathrm{CN}\right)$. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a characteristic peak at $\delta 117.8$ that corresponds to nitrile carbon $\left(-\mathrm{CH}_{2} \mathbf{C N}\right)($ Fig. 8). The IR spectrum of $\mathbf{1 1 4}$ showed a strong absorption bands at 2249 and $3378 \mathrm{~cm}^{-1}$ due to the presence of $\mathrm{C} \equiv \mathrm{N}$ and O-H groups respectively. The selective reduction of nitrile $\mathbf{1 1 4}$ (1.2 M DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to aldehyde in situ followed by its treatment with NaBH_{4} in MeOH produced 1,3-diol $\mathbf{1 1 5}$ in 83% yield. The primary alcohol function in 1,3-diol $\mathbf{1 1 5}$ was selectively protected as its TBS ether (TBSCl, imidazole) to give 116, followed by the conversion of the secondary free hydroxyl group to its mesylate, which underwent intramolecular cyclization under basic conditions ${ }^{23}$ to give the piperidine derivative 117. The treatment of TBS ether with 3 N HCl in MeOH produced piperidine alcohol 118. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed typical multiplets at $\delta 1.37-1.74(\mathrm{~m}, 7 \mathrm{H}), 1.89-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.68-$ $2.82(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.55(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{bd}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-$ $4.51(\mathrm{~m}, 1 \mathrm{H})$ characteristic of piperidine ring. This was further ascertained by the typical signals at $\delta 46.7$ and 58.3 corresponding to methylene $\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ and methine (-CHNCbz) carbons in its ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 9).

Fig. 9: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 1 8}$

At this stage, we turned our attention to the stereoselective construction of secondary hydroxyl functionality of (-)-sedamine (2). To achieve this, we converted alcohol $\mathbf{1 1 8}$ into the corresponding Boc-protected alcohol 63 in one-pot [catalytic hydrogenation followed by its treatment with $\left[(\mathrm{Boc})_{2} \mathrm{O}\right.$ and $\left.\mathrm{I}_{2}\right]$. Then, piperidine-2-ethanol 63 was subjected to oxidation under Swern condition to give the corresponding aldehyde $\mathbf{6 5}$ in 84% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a triplet at $\delta 9.73$ corresponding to aldehydic
proton (-CHO), further substantiated by the appearance of the corresponding carbonyl carbon signal at $\delta 199.8$ in its ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 10).

Fig. 10: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of aldehyde $\mathbf{6 5}$

Finally, the addition of PhMgBr to aldehyde $\mathbf{6 5}$ resulted in mixtures of syn and anti alcohols in $2: 1$ ratio and 90% yield. However, these diastereomers were readily separated by simple column chromatography. The major isomer (61% isolated yield) was subjected to reduction with LiAlH_{4} to give (-)-sedamine $\mathbf{2}$ in 86% yield. The spectral data of $\mathbf{2}$ were in complete agreement with the reported values. ${ }^{12,14}$ For example, the ${ }^{1} \mathrm{H}$ NMR spectrum
of 2 displayed a singlet at $\delta 2.50$ corresponding to the methyl protons and a doublet of doublet at $\delta 4.89(\mathrm{dd}, J=2.8,10.7 \mathrm{~Hz}, 1 \mathrm{H})$ corresponding to benzylic methine protons. The aromatic protons had displayed multiplets at $\delta 7.28-7.39$. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed the presence of methyl carbon ($\delta 39.9$) as well as the methine benzylic carbon attached to oxygen ($\delta 73.3$) (Fig. 11).

Fig. 11: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (-)-sedamine 2

2.1.5 Conclusion

In conclusion, we have achieved an efficient synthesis of $(+)-\alpha$-conhydrine (1) (overall yield $25.0 \%, 98 \%$ ee) and (-)-sedamine (2) (overall yield $31.5 \%, 94 \%$ ee). Both the synthesis involved L-proline-catalyzed α-aminooxylation as the key chiral inducing reaction. The synthetic strategy described herein has significant potential for the synthesis of a variety of other biologically important piperidine alkaloids.

2.1.6 Experimental section

6-Azidohexan-1-ol (104)
To a stirred solution of 1,6-hexanediol $103(7.2 \mathrm{~g}, 60.9 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(8.4 \mathrm{~mL}, 60.9$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$ was added p-toluenesulfonyl chloride (11.0 g, 57.8 mmol). After stirring for 1 h at $0^{\circ} \mathrm{C}$, the reaction mixture was poured into ice water (150 mL), washed with aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \%)$, saturated aq. NaHCO_{3} and brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was distilled off under reduced pressure to give the crude product $(12.0 \mathrm{~g})$. The crude tosylate $(6.0 \mathrm{~g}, 22.0 \mathrm{mmol})$ was then dissolved in DMF $(110 \mathrm{~mL})$ followed by the addition of sodium azide $(5.7 \mathrm{~g}, 88.1 \mathrm{mmol})$. The reaction mixture was then heated at $80^{\circ} \mathrm{C}$ for 15 h followed by quenching it with the addition of water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and the combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using pet. ether:EtOAc (90:10) as eluent to yield pure azido alcohol 104 in 80% yield.

Yield: $80 \%(2.52 \mathrm{~g})$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3228,2105,1452,1338,1225,1110,1040,935$, 784; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.33-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.64(\mathrm{~m}$, $4 \mathrm{H}), 3.26(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
25.1, 26.3, 28.5, 32.2, 51.1, 62.2; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 50.33 ; \mathrm{H}, 9.15 ; \mathrm{N}, 29.35$;

Found. C, 49.99; H, 9.30; N, 29.02\%.

(R)-6-Azidohexane-1,2-diol (99)

Swern oxidation: To a stirred solution of oxalyl chloride $(\mathrm{COCl})_{2}(4.4 \mathrm{~g}, 34.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, was added a solution of DMSO ($3.7 \mathrm{~mL}, 52.3 \mathrm{mmol}$). The reaction mixture was stirred for 20 min . followed by the addition of a solution of 6-azidohexan-1-ol (104) $(2.5 \mathrm{~g}, 17.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. After stirring for 1 h at -78 ${ }^{\circ} \mathrm{C}$, the reaction was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}(9.7 \mathrm{~mL}, 69.8 \mathrm{mmol})$. The reaction mixture was then stirred for 30 min . followed by the addition of water $(70 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60$ $\mathrm{mL})$. The combined organic layer was washed with water ($3 \times 30 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the corresponding crude aldehyde $\mathbf{1 0 0}$.
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.31-1.65(\mathrm{~m}, 6 \mathrm{H}), 2.31-2.48(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=6.6$, $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.75(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$.
$\boldsymbol{\alpha}$-Aminooxylation: Aldehyde $\mathbf{1 0 0}(2.0 \mathrm{~g}, 14.16 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{~mL})$ and the solution was cooled to $-20^{\circ} \mathrm{C}$ followed by the addition of nitrosobenzene $(1.44 \mathrm{~g}$, 13.45 mmol) and L-proline ($407 \mathrm{mg}, 25 \mathrm{~mol} \%$). After 24 h , the reaction mixture was warmed to $0^{\circ} \mathrm{C}$, followed by dilution with anhyd. methanol (20 mL) and addition of $\mathrm{NaBH}_{4}(1.07 \mathrm{~g}, 28.3 \mathrm{mmol})$. The reaction was quenched after 20 min . by pouring of the reaction mixture into a vigorously stirred biphasic solution of $\mathrm{Et}_{2} \mathrm{O}$ and aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated, and the aqueous phase was extracted with EtOAc (3 x 100 mL). The combined organic phases were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product which was dissolved in $\mathrm{MeOH}(40 \mathrm{~mL})$ followed by the
addition of $\mathrm{CuSO}_{4}(0.675 \mathrm{~g}, 4.2 \mathrm{mmol})$. After stirring for 24 h at $25^{\circ} \mathrm{C}$, the reaction mixture was quenched by the addition of a solution of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The organic layer was separated and the aqueous phase was extracted with EtOAc (3×30 $\mathrm{mL})$. The combined organic phases were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product which was purified by column chromatography over silica gel using pet. ether:EtOAc (60:40) as eluent to give pure diol 99 in 61% yield.

Yield: $61 \%(0.780 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+33.5\left(c 0.5, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3127,3020,2115$, $1540,1452,1330,1212,1125,1035,932,775,669,{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.39-$ $1.39(\mathrm{~m}, 6 \mathrm{H}), 1.98(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=6.3,2 \mathrm{H}), 3.33-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{br} \mathrm{d}, J=11.0$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 22.8,28.8,32.4,51.3,66.6,72.0$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 45.27; H, 8.23; N, 26.40; Found. C, 45.41; H, 8.17; Cl, 25.98\%.

(2R)-1-((tert-Butyl)dimethylsilyloxy)-6-azido-hexan-2-ol (105)

To a stirred solution of diol $99(2.0 \mathrm{~g}, 12.5 \mathrm{mmol})$ and imidazole $(1.0 \mathrm{~g}, 15.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $\operatorname{TBDMSCl}(1.89 \mathrm{~g}, 12.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using pet. ether:EtOAc (95:5) as eluent to give TBS-ether $\mathbf{1 0 5}$ in 95% yield.

Yield: $95 \%(3.26 \mathrm{~g}) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3305,2930,2812,1460,1230,1020,745,700$, 605; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.64(\mathrm{~m}, 6 \mathrm{H}), 2.44$ (br d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.58-3.69(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$, CDCl_{3}): $\delta-5.47,18.23,22.78,25.8,28.8,32.1,51.29,67.11,71.4$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$: C, 52.71 ; H, 9.95; N, 15.37; Found. C, 52.66 ; H, 10.01; N, 15.29%.
(2S)-tert-Butyl-2-(tert-Butyl)dimethylsilyloxymethyl)-piperidine-1-carboxylate (107)
To a stirred solution of TBS ether $\mathbf{1 0 5}(2.5 \mathrm{~g}, 9.14 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.78 \mathrm{~mL}, 12.7$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added methanesulfonyl chloride $(0.707 \mathrm{~mL}, 9.14$ mmol) drop-wise using a syringe. After stirring at $0^{\circ} \mathrm{C}$ for 0.5 h , the mixture was poured into ice-water (40 mL), washed with aqueous NaHCO_{3}, and brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was distilled off under reduced pressure to give the crude mesylate (3.2 $\mathrm{g})$, which was added to a stirred suspension of $10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.27 \mathrm{~mL}$, $12.6 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ under hydrogen atmosphere $\left(\mathrm{H}_{2}, 20 \mathrm{psi}\right)$ at $25^{\circ} \mathrm{C}$. After 7 h, the mixture was filtered through a pad of celite and rinsed with $\mathrm{MeOH}(3 \times 30 \mathrm{~mL})$. The combined organic layer was concentrated under reduced pressure and the crude product $(2.0 \mathrm{~g}, 8.7 \mathrm{mmol})$ was stirred with $(\mathrm{Boc})_{2} \mathrm{O}(2.0 \mathrm{~mL}, 8.7 \mathrm{mmol})$ and $\mathrm{I}_{2}(220 \mathrm{mg}$, $10 \mathrm{~mol} \%$) for 3 h and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and washed with water followed by aq. sodium thiosulphate to give the crude 107 , which was purified by column chromatography using pet. ether:EtOAc (9:1) as eluent to give the pure TBS ether $\mathbf{1 0 7}$. Yield: $76 \%(2.3 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}-35.8\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3442,2812,1650$, $1020,745,700,605 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.21-1.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.49-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}$, $J=6.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=8.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{br} \mathrm{d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{br}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta-5.41,18.1,19.0,24.4,25.2,25.8,28.4,39.9,51.5$, 60.7, 79.0, 155.1; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{NO}_{3}$ Si: C, 61.96 ; H, 10.70; N, 4.25; Found. C, 60.99; H, 10.79; N, 4.58\%.

(S)-tert-Butyl 2-(hydroxymethyl)piperidine-1-carboxylate (108)

To a stirred solution of carbamate $\mathbf{1 0 7}(1.5 \mathrm{~g}, 4.5 \mathrm{mmol})$ in THF was added a solution of tetrabutylammonium fluoride (TBAF) $(1.19 \mathrm{~g}, 1 \mathrm{M}$ in THF, 4.5 mmol$)$ at $0^{\circ} \mathrm{C}$ and stirred for 8 h . The reaction mixture was quenched by the addition of water and the organic phase was separated. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using pet. ether: $\operatorname{EtOAc}(7: 3)$ as eluent to give piperidine alcohol 108 as a gum in 92% yield.

Yield: $92 \%(0.897 \mathrm{~g})$; Chiral Column: CHIRALCEL OD-H, length $25 \times 4.6 \mathrm{~mm}$, wavelength: 230 nm , flow rate 1.0 mL per min. Mobile phase: 5% isopropyl alcohol in hexane; ee $=98 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-40.1\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right),\left\{\right.$ lit. $\left.{ }^{24 \mathrm{a}}[\alpha]_{\mathrm{D}}{ }^{25}-40.5\left(c \quad 1, \mathrm{CHCl}_{3}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3} \mathrm{~cm}^{-1}\right): 3442,2940,2890,1655,1422,1370,1280,1170,1150,1060,1050,870$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.76(\mathrm{~m}, 6 \mathrm{H}), 2.11$ (brs, 1 H), 2.78$2.92(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.6(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.96(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 18.9,24.4,24.9,28.0,39.5,51.7,60.0,79.1,155.5$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 61.37 ; \mathrm{H}, 9.83, \mathrm{~N}, 6.51$. Found: C, $61.40, \mathrm{H}, 9.79, \mathrm{~N}, 6.49 \%$.

(S)-tert-Butyl 2-formylpiperidine-1-carboxylate (94)

To a stirred solution of oxalyl chloride $(\mathrm{COCl})_{2}(0.625 \mathrm{~mL}, 7.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25$ $\mathrm{mL})$ at $-78{ }^{\circ} \mathrm{C}$, was added a solution of DMSO $(0.77 \mathrm{~mL}, 10.86 \mathrm{mmol})$. The reaction mixture was stirred for 20 min . followed by the addition of a solution of (S)-tert-butyl 2-(hydroxymethyl)piperidine-1-carboxylate (108) $(0.780 \mathrm{~g}, 3.64 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}(2.01$
$\mathrm{mL}, 14.49 \mathrm{mmol})$. The reaction mixture was then stirred for 30 min . at $25^{\circ} \mathrm{C}$ followed by the addition of water $(100 \mathrm{~mL})$. The organic phase was separated and the aq. phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The combined organic layer was washed with water ($3 \times 30 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the corresponding crude aldehyde which was purified by column chromatography over silica gel using pet. ether:EtOAc (7:3) as a eluent to give piperidine aldehyde 94 as colorless gum in 90% yield.

Yield: $90 \%(0.7 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}-77.8\left(c \quad 1.21, \mathrm{CHCl}_{3}\right),\left\{\right.$ lit. $\left.^{24 \mathrm{~b}}[\alpha]_{\mathrm{D}}{ }^{25}-77.9\left(c \quad 1.49, \mathrm{CHCl}_{3}\right)\right\}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2980,2940,2872,1740,1702,1485,1411,1372,1280,1250,1167$, 1051, 1002, 1062, 871, 778; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.16-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}$, $9 H), 1.50-1.62(\mathrm{~m}, 3 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.87$ (brs, 1H), 3.80-3.93 (brs, 1H), 4.40-4.53 (brs, 1 H), $9.49(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.8,23.3,24.6,28.1$, 41.7, 42.9, 60.4, 61.4, 80.1, 155.0, 155.6, 200.8; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 61.95$; H, 8.98; N, 6.57; Found. C, 62.01; H, 8.70; N, 6.45\%.

(+)-Conhydrine (1)

A freshly prepared Grignard reagent (EtMgBr) from ethylbromide $(0.62 \mathrm{~g}, 5.68 \mathrm{mmol})$ and $\mathrm{Mg}(0.165 \mathrm{~g}, 6.82 \mathrm{mmol})$ in diethyl ether $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise to a solution of amino aldehyde $94(0.5 \mathrm{~g}, 2.34 \mathrm{mmol})$ in diethyl ether (7 mL). After stirring at this temperature for 2 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ was added and the mixture was extracted with diethyl ether ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. After flash chromatography using pet.ether/ EtOAc, (6:4), the compound 109 $(0.5 \mathrm{~g})$ was obtained as a colorless oil. To a solution of $\mathbf{1 0 9}(100 \mathrm{mg}, 0.411 \mathrm{mmol})$ in dry
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added trifluoroacetic acid ($1 \mathrm{~mL}, 8.77 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 12 h . After completion of reaction, it mixture was washed with aq. NaHCO_{3} and the mixture extracted with dichloromethane (3 x 10 mL) and aq. layer extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give the crude product which was purified by silica gel column chromatography using $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:6) as eluent to give $(+)$-conhydrine, $\mathbf{1}$.

Yield: $86 \%(50 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{25}+8.7(c \quad 1.72, \mathrm{EtOH}),\left\{\right.$ lit. $\left.^{24 \mathrm{c}}[\alpha]_{\mathrm{D}}{ }^{25}+8.9(\mathrm{EtOH})\right\} ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right.$, $\left.\mathrm{cm}^{-1}\right): 3280,3110,2971,2945,2815,1422,1348,1250,1106,1062,1005,972,940,811$; ${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.57(\mathrm{~m}, 7 \mathrm{H}), 1.62-1.89(\mathrm{~m}$, $1 \mathrm{H}), 2.47$ (brs, 2H), 2.65-2.72 (m, 1H), 2.73-2.88 (m, 1H), 3.12-3.31 (m, 1H), 3.40-3.57 $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 10.0,24.3,25.5,25.9,29.9,47.3,60.4,75.9$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 67.09$; H, 11.96; N, 9.78; Found. C, 66.99; H, 11.89; N, 9.85\%.

(-)-Sedamine 2

(R)-4-(4-Azidobutyl)-2,2-dimethyl-1,3-dioxolane (110)

To a mixture of azido diol $99(2.5 \mathrm{~g}, 15.7 \mathrm{mmol})$, 2,2-dimethoxypropane ($7.7 \mathrm{~mL}, 62.2$ $\mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added p-TSA ($0.27 \mathrm{~g}, 10 \mathrm{~mol} \%$) and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction as monitored by TLC, it was neutralized with triethylamine, concentrated and purified by silica gel chromatography using pet. ether:EtOAc (9:1) as eluent to yield 110 as an oil Yield: $98 \%(3.07 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}-20.0\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2984,2939,2864$, 2091, 1738, 1457, 1371, 1247, 1216, 1151, 1055, 853; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$1.33(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.70(\mathrm{~m}, 6 \mathrm{H}), 3.27(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.44-3.53(\mathrm{~m}, 1 \mathrm{H})$, 3.98-4.12 (m, 2H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 22.8,25.4,26.7,28.6,32.9,51.0,69.1$, 75.5, 108.5; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 54.25; H, 8.60; N, 21.09; Found. C, 54.50; H, 8.32; N, 20.98\%.

4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)butan-1-amine (111)

To a stirred mixture of azide $\mathbf{1 1 0}(2.8 \mathrm{~g} 14.0 \mathrm{mmol})$ in dry methanol $(20 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg})$, filled with $\mathrm{H}_{2}(20 \mathrm{psi})$ and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 8 h . After completion of the reaction as monitored by TLC, mixture was filtered through a pad of celite and rinsed with $\mathrm{MeOH}(3 \times 30 \mathrm{~mL})$. The combined organic layer was concentrated under reduced pressure to give the crude amine 111, which was purified by column chromatography using $\mathrm{CHCl}_{3}: \mathrm{MeOH}(9: 1)$ to give pure amine $\mathbf{1 1 1}$ as a colorless oil.

Yield: $95 \%(2.32 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}-16.7\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3420,2980,2932$, 2860, 1632, 1559, 1460, 1364, 1251, 1055, 856, 605; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.68(\mathrm{~m}, 6 \mathrm{H}), 2.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.53(\mathrm{~m}, 1 \mathrm{H})$, 3.72 (br s, 2 H), 3.97-4.14 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.7,25.3,26.6,31.0$, 32.9, 40.6, 69.0, 75.4, 108.3; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 62.39; H, 11.05; N, 8.08; Found. C, 62.52; H, 10.97; N, 7.99\%.

Benzyl 4-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)butylcarbamate (112)

To a stirred solution of amine $\mathbf{1 1 1}(2 \mathrm{~g}, 11.5 \mathrm{mmol})$ in a mixture of water $(15 \mathrm{~mL})$ and dichloromethane (15 mL), potassium carbonate $(3.19 \mathrm{~g}, 23.0 \mathrm{mmol})$ was added. After 15 min, benzyl chloroformate ($1.97 \mathrm{~mL}, 13.85 \mathrm{mmol}$) was introduced with the help of syringe and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 7 h . After completion of the
reaction, organic layer was decanted separately and the aqueous layer extracted with dichloromethane (3 x 20 mL). The combined organic layer was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated in vacuo and the residue purified by column chromatography using pet.ether:EtOAc (7:3) to give pure carbamate $\mathbf{1 1 2}$ as a colorless oil.

Yield: $92 \%(3.25 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}-19.0\left(c 2.1, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3347,3035,3063$, 2977, 2936, 2867, 1710, 1535, 1450, 1367, 1244, 1052, 853, 736; ${ }^{1} \mathbf{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.59(\mathrm{~m}, 6 \mathrm{H}), 3.18(\mathrm{dd}, J=6.1,12.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.43-3.52 (m, 1H), 3.97-4.11 (m, 2H), 4.78 (brs, 1H), $5.08(\mathrm{~s}, 2 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.8,25.5,26.7,29.7,32.9,40.6,66.3,69.2,75.6,108.5$, 127.8, 128.3, 136.4, 156.3, Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{4}: \mathrm{C}, 66.43$; H, 8.20; $\mathrm{N}, 4.56$; Found. C, 66.51; H, 7.97; N, 4.49\%.

Benzyl (R)-5,6-dihydroxyhexylcarbamate (113)

A solution of acetonide $112(3.0 \mathrm{~g}, 9.75 \mathrm{mmol})$ and 80% aq. AcOH $(15 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 18 h . After completion of reaction, acetic acid and water was removed under reduced pressure and the crude mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), washed with water $10 \% \mathrm{NaHCO}_{3}$. The combined organic layer was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo. The residue was purified by column chromatography using pet.ether:EtOAc (5:5) to give pure diol $\mathbf{1 1 3}$.

Yield: $98 \%(2.55 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+18\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3401,2941,1640$, 1527, 1340, 1066, 1028, 698; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.33-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.98$ (brs, 1H), 2.74 (brs, 1H), (2.90 (brs, 1H), $3.16(\mathrm{t}, J=6.0,12.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.42(\mathrm{~m}$, $1 \mathrm{H}), 3.55-3.71(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
$22.4,29.5,32.2,40.5,64.6,66.3,71.8,126.7,127.2,127.8,128.2,128.3,136.3,140.8$, 156.6; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 62.90; H, 7.92; $\mathrm{N}, 5.24$; Found. C, 63.02; H, 7.58; N, 5.41\%.

Benzyl (R)-6-cyano-5-hydroxyhexylcarbamate (114)

To a stirred solution of diol $113(1.5 \mathrm{~g}, 5.61 .3 \mathrm{mmol})$ and triethylamine $(0.858 \mathrm{~mL}, 6.1$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$ was added p-toluenesulfonyl chloride $(1.1 \mathrm{~g}, 6.1$ mmol) portion-wise using solid addition funnel. After stirring at $-20-0{ }^{\circ} \mathrm{C}$ for 15 h the reaction mixture was poured into ice water (30 mL), washed with 20% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$, saturated aq. NaHCO_{3}, brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo to give mono tosylate. The crude tosylate ($1 \mathrm{~g}, 2.37 \mathrm{mmol}$) was taken up in $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(3: 2 \mathrm{v} / \mathrm{v}, 15 \mathrm{~mL})$, cooled at $0^{\circ} \mathrm{C}$ and $\mathrm{NaCN}(0.697 \mathrm{~g}, 14.2 \mathrm{mmol})$ was added. The mixture was slowly allowed to warm to room temperature. After stirring for 18 h , it was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and water, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by column chromatography using pet.ether:EtOAc (7:3) to give pure cyano compound 114 as a colorless oil.

Yield: $89 \%(0.585 \mathrm{mg} ;)[\alpha]_{\mathrm{D}}{ }^{25}+21.5\left(c 1.1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3378,3066$, 2936, 2860, 2249, 1704, 1525, 1453, 1254, 1134, 1024, 746, 695; ${ }^{1} \mathbf{H}$ NMR (200 MHz , CDCl_{3}): $\delta 1.28-1.64(\mathrm{~m}, 6 \mathrm{H}), 2.46(\mathrm{brd}, J=2.1,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.87($ brs, 1 H$), 3.15-3.224$ $(\mathrm{m}, 2 \mathrm{H}), 3.83-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=5.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 22.1,25.7,29.2,35.5,40.4,66.3,66.8,117.8,127.6,127.8$, 128.2, 136.3, 156.5; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 65.20; H, 7.30; N, 10.14; Found. C, 65.39; H, 7.12; N, 9.98\%.

Benzyl (R)-5,7-dihydroxyheptylcarbamate (115)

To a stirred solution of nitrile $114(1.0 \mathrm{~g}, 3.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise DIBAL-H ($4.7 \mathrm{~mL}, 4.7 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes). After 5 h , aq. HCl $(10 \%, 10 \mathrm{~mL})$ was added and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , before being allowed to warm to room temperature. After 30 min , aq. $\mathrm{HCl}(10 \%, 20 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(6 \times 30 \mathrm{~mL})$. The organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure to give the crude aldehyde. The aldehyde (0.86 g) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ at room temperature and solution cooled to $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(380 \mathrm{mg}, 10.0 \mathrm{mmol})$ was added in portions. After being stirred at room temperature for 3 h , the mixture was concentrated. The residue was partitioned between ethyl acetate $(40 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic layer was washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using pet.ether:EtOAc (1:1) to afford diol 115.

Yield: $83 \%(0.720 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+18.7\left(c \quad 1.04, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2980,2940$, $2872,1740,1702,1485,1411,1372,1280,1250,1167,1051,1002,1062,871,778 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.24-1.69(\mathrm{~m}, 8 \mathrm{H}), 2.66(\mathrm{brs}, 2 \mathrm{H}), 3.18(\mathrm{dd}, J=6.0,12.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.54-3.92(\mathrm{~m}, 3 \mathrm{H}), 4.89(\mathrm{brs}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.4,29.6,36.9,38.3,40.7,60.7,66.4,70.7,127.9,128.1,128.3,136.5$, 156.6; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 64.03; H, 8.24; N, 4.98; Found. C, 63.97; H, 8.16; N, 5.01\%.

Benzyl (R)-5-hydroxy-7-(tert butyldimethylsilyloxy)heptyl carbamate (116)

To a stirred solution of diol $115(1.0 \mathrm{~g}, 3.5 \mathrm{mmol})$ and imidazole $(290 \mathrm{mg}, 4.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{TBDMSCl}(0.536 \mathrm{~g}, 3.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, solvent distilled off under reduced pressure and crude product purified by column chromatography over silica gel using pet.ether:EtOAc (80:20) as eluent to give TBS ether 116 in 85% yield.

Yield: $85 \%(1.2 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+21.8\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.07(\mathrm{~s}$, $6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.57(\mathrm{~m}, 8 \mathrm{H}), 3.18(\mathrm{dd}, J=6.3,11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.63(\mathrm{~m}, 1 \mathrm{H})$, 3.76-3.82(m, 1H), 3.85-3.90(m, 1H), $4.81($ brs, 1 H$), 5.06(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta-5.4,18.1,22.6,25.9,29.7,29.9,37.0,38.3,40.9,62.9$, $66.5,71.9,128.0,128.1,128.4,136.7,156.3$.

(S)-Benzyl 2-(2-hydroxyethyl)piperidine-1-carboxylate (118)

To a stirred solution of TBS ether $116(1 \mathrm{~g}, 2.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.527 \mathrm{~mL}, 3.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added methanesulfonyl chloride $(0.195 \mathrm{~mL}, 2.5 \mathrm{mmol})$ drop-wise using a syringe. After stirring at $0{ }^{\circ} \mathrm{C}$ for 0.5 h , the mixture was poured into ice-water (30 mL), washed with aqueous NaHCO_{3}, brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was distilled off under reduced pressure to give the crude mesylate $(1.2 \mathrm{~g})$. To a stirred solution of crude mesylate $(1 \mathrm{~g}, 2.11 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ in THF $(200 \mathrm{~mL})$ was added a suspension of $\mathrm{NaH}(84 \mathrm{mg}, 2.11 \mathrm{mmol}$ in THF $(10 \mathrm{~mL})$ over a period of 15 min . After stirring for 1 h at that temperature, the mixture was warmed to $50{ }^{\circ} \mathrm{C}$ and stirred for another 2 h . It was then quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was stirred in 3 N HCl in MeOH for 2 h at $25^{\circ} \mathrm{C}$ then quenched with cold water (5
mL) and the aqueous layer was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layer was washed with saturated NaHCO_{3}, brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using pet.ether:EtOAc (1:1) to afford pure alcohol 118.

Yield: $68 \%(0.45 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}-18.5\left(c \quad 1, \mathrm{CHCl}_{3}\right)$, IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3427,2940,2864$, $1674,1497,1429,1351,1265,1172,1054,755,698 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.37-1.74(\mathrm{~m}, 7 \mathrm{H}), 1.89-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.82(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.55$ (m, 1H), 4.05 (bd, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.51(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ $(\mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.7,25.1,28.7$, $32.0,38.9,46.7,58.3,67.0,127.5,127.7,128.2,136.3,156.3$ Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, 68.42; H, 8.04; N, 5.32; Found. C, $68.39 ; \mathrm{H}, 7.98 ; \mathrm{N}, 5.27 \%$.

(S)-tert-Butyl 2-(2-hydroxyethyl)piperidine-1-carboxylate (63)

To a solution of alcohol $118(0.4 \mathrm{~g}, 1.5 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}$ $(30 \mathrm{mg})$ and stirred under hydrogen atmosphere (20 psi) at $25^{\circ} \mathrm{C}$. After 5 h , the mixture was filtered through a pad of celite and rinsed with $\mathrm{MeOH}(3 \times 30 \mathrm{~mL})$. The combined organic layer was concentrated under reduced pressure and the crude product (196 mg) was stirred with $(\mathrm{Boc})_{2} \mathrm{O}(0.349 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and $\mathrm{I}_{2}(38 \mathrm{mg}, 10 \mathrm{~mol} \%)$ for 3 h and this crude mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and washed with water followed by aq. sodium thiosulphate to give crude $\mathbf{6 3}$ which was purified by column chromatography using pet. ether:EtOAc (9:1) as eluent to give the pure Boc alcohol 63.

Yield: $95 \%(0.33 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}-19.2\left(c \quad 1, \mathrm{CHCl}_{3}\right),\left\{\mathrm{lit.}^{24 \mathrm{~d}}[\alpha]_{\mathrm{D}}{ }^{25}-18.9\right.$ (c 1, $\mathrm{CHCl}_{3}, 95 \%$ ee) $\}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3434,2935,2864,1688,1419,1391,1254,1164,1254,1142$, 1052, $711 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.48-2.09(\mathrm{~m}, 8 \mathrm{H}), 2.58-2.72(\mathrm{~m}$,

1H). 3.30 (bt, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{brd}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.51$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 19.0,25.3,28.2,29.0,32.1,39.0,45.8,58.3$, 79.7, 155.9; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 62.85; H, 10.11; N, 6.11; Found. C, 62.77; H, 9.98; N, 6.27\%.

(S)-tert-Butyl 2-(formylmethyl)piperidine-1-carboxylate (65)

To a stirred solution of oxalyl chloride $(\mathrm{COCl})_{2}(0.224 \mathrm{~mL}, 2.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, was added a solution of $\mathrm{DMSO}(0.278 \mathrm{~mL}, 3.92 \mathrm{mmol})$. The reaction mixture was stirred for 20 min . followed by the addition of a solution of (S)-tert-butyl 2-(2-hydroxyethyl)piperidine-1-carboxylate (63) (0.3 g, 1.3 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.728 \mathrm{~mL}$, 5.22 mmol). The reaction mixture was then stirred for 30 min . at $25^{\circ} \mathrm{C}$ followed by the addition of water $(25 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with water ($3 \times 30 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the corresponding crude aldehyde which was purified by column chromatography over silica gel using Pet. ether:EtOAc (7:3) as eluent to give piperidine aldehyde 65 as a colorless oil in 84% yield. Yield: $84 \%(0.250 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}-51.1\left(c 0.9, \mathrm{CHCl}_{3}\right)$, IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2980,2872,1741$, 1700, 1480, 1411, 1372, 1160, 1055, 872, 770; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.45$ (s, $9 H), 1.50-1.76(\mathrm{~m}, 6 \mathrm{H}), 2.53-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{bd}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.83(\mathrm{bs}, 1 \mathrm{H}), 9.73(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 18.5,24.9$, 28.0, 28.5, 38.9, 44.2, 45.3, 79.3, 154.1, 199.8; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 63.41 ; \mathrm{H}$, 9.31; N, 6.16; Found. C, 63.28; H, 9.45 ; N, 5.99\%.

(S)-tert-Butyl 2-((S)-2-hydroxy-2-phenylethyl)piperidine-1-carboxylate (66)

To a solution of $\operatorname{PhMgBr}(0.398 \mathrm{~g}, 2.19 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of aldehyde $\mathbf{6 5}(250 \mathrm{mg} 1.09 \mathrm{mmol})$ in THF (5 ml) under nitrogen atmosphere. The solution was allowed to warm up to $-20^{\circ} \mathrm{C}$ and was left stirring for 4 h . The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the corresponding diastereomeric mixture (90% yield, 305 mg) of syn and anti alcohol $(\mathrm{dr}=2: 1)$ which was purified by column chromatography pet.ether:EtOAc (7:3) as eluent to give major isomer 66 in 61% yield.

Yield: $60.6 \%(185 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{25}-128.3\left(c \quad 1.5, \mathrm{CHCl}_{3}\right),\left\{\right.$ lit. $^{17}[\alpha]_{\mathrm{D}}{ }^{25}-127.2\left(\mathrm{c} \mathrm{1}, \mathrm{CHCl}_{3}\right.$, 94.2\% ee) $\}$; IR ($\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$): 3410, 2943, 1685, 1410, 920, $740,{ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.57-1.89(\mathrm{~m}, 7 \mathrm{H}), 2.12-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.88-4.02 (m, 2H), 4.41 (brs, 1H), 4.68-4.81 (m, 1H), 7.21-7.38 (m, 5H); ${ }^{13}$ C NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.99,25.3,28.4,29.1,39.2,40.2,48.2,72.3,79.6,125.6,127.1,128.2$, 144.7, 155.3; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}$: C, 70.79 ; H, 8.91; N, 4.59; Found. C, 70.67; H, 8.77; N, 4.72\%.

(-)-Sedamine (2)

To a solution of $\mathrm{LiAlH}_{4}(31 \mathrm{mg}, 0.81 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added a solution of tert-butyl carbamate $\mathbf{6 6}(125 \mathrm{mg}, 0.40 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The reaction was heated to $70^{\circ} \mathrm{C}$ under nitrogen atmosphere for 8 h , then cooled to $0{ }^{\circ} \mathrm{C}$ and carefully quenched by the sequential addition of water $(0.2 \mathrm{~mL}), 15 \%(\mathrm{w} / \mathrm{v})$ aq $\mathrm{NaOH}(0.2 \mathrm{~mL})$. The resulting mixture was filtered over a pad of Celite and anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to remove solids, rinsing
with ethyl acetate. The mixture was concentrated under reduced pressure and the resulting oil was purified by column chromatography to provide (-)-sedamine 2.

Yield: $78 \%(70 \mathrm{mg}) ; \mathrm{mp} .58-59{ }^{\circ} \mathrm{C}\left\{\right.$ lit. $\left.{ }^{14} \mathrm{mp} .58-60{ }^{\circ} \mathrm{C}\right\} ;[\alpha]_{\mathrm{D}}{ }^{25}-89.2(c \quad 0.86, \mathrm{EtOH})$, $\left\{\right.$ lit. $\left.{ }^{14}[\alpha]_{\mathrm{D}}{ }^{25}-89.4(\mathrm{c} 0.9, \mathrm{EtOH})\right\} ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3367,3060,2928,2851,1450,1264$, 1061, 752, 659; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.30-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.80(\mathrm{~m}, 6 \mathrm{H})$, 2.05-2.18 (m, 1H), 2.50 (s, 3H), 2.54-2.68 (m, 1H), 2.98-3.09 (m, 2H), $4.89(\mathrm{dd}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.80 (brs, 1 H), 7.28-7.39 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.8,22.2$, 26.2, 39.3, 39.9, 52.7, 61.4, 73.3, 125.1, 127.1, 128.2, 145.5; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$: C, 76.67; H, 9.65; N, 6.39; Found. C, 76.59; H, 9.72; N, 6.27\%.

Section II

Enantioselective Synthesis of (-)-Allosedridine via Sharpless Asymmetric Epoxidation

2.2.1 Introduction

The piperidine moiety is frequently found in the structures of many drug candidates and constitutes a large family of compounds that exhibit a broad spectrum of biological activities of medicinal interest. ${ }^{25}$ Particularly, alkaloids bearing a substituted piperidine ring have been the objective of considerable synthetic efforts. ${ }^{26}$ The sedum alkaloids are an extensive family of 2-substituted and 2,6-disubstituted piperidine, many of which contain the 1,3-aminoalcohol moiety; for example, (-)-allosedridine (119), (+)-sedridine (120), (-)-halosaline (122) (Fig. 12). Allosedridine was isolated from Sedum nudum ${ }^{27}$ which shows memory-enhancing properties and may be effective for the treatment of Alzheimer's disease. ${ }^{28}$ Due to the importance in its biological activity, allosedridine $\mathbf{1 1 9}$ became an ideal target for development of asymmetric synthetic methodology and a number of synthetic methods have been reported in the literature. ${ }^{28-32}$

(-)-Allosedridine (119)

(+)-Coniine (121)

(+)-Sedridine (120)

(-)-Halosaline (122)

Fig. 12: Structures of piperidine alkaloids

2.2.2 Review of literature

Momose's approach (1997) ${ }^{29}$

Momose et al. have achieved the synthesis of (-)-allosedridine (119) by employing Sharpless asymmetric dihydroxylation as the key step. Thus, olefin $\mathbf{1 2 3}$ was subjected to asymmetric dihydroxylation using AD-mix- β to give a mixture of diols $\mathbf{1 2 4}$ (98% ee) and 124a (47% ee) in 74% and 14% yield respectively. The diol 124 was converted to its epoxide $\mathbf{1 2 5}$ under basic conditions followed by regioselective ring opening of epoxide $\mathbf{1 2 5}$ with super-hydride to produce 126 in 77% yield. The resulting Cbz-protected amino alcohol $\mathbf{1 2 5}$ was then subjected to catalytic hydrogenation to afford (-)-allosedridine $\mathbf{1 1 9}$ in 99\% yield (Scheme 15).

Scheme 15: (i) AD-mix- β (DHQ) $)_{2}$-PYR, 74%; (ii) $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{3}$, PPTS, $\mathrm{CH}_{3} \mathrm{COBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, 77 \%$; (iii) super hydride ${ }^{\circledR}$, (iv) $\mathrm{Pd}(\mathrm{OH})_{2}$, H_{2}, MeOH, 95%.

Davis' approach (2003) ${ }^{30}$

Davis et al. have developed a new methodology involving condensation of sulfinimines with potassium enolate and applied the same to the synthesis of (-)-allosedridine 119. Aldehyde 128 was condensed with (S)-p-toluene sulfinamide 127 in the presence of
$\mathrm{Ti}(\mathrm{OEt})_{4}$ to produce sulfinimine $\mathbf{1 2 9}$ in 54% yield. Treatment of $\mathbf{1 2 9}$ with potassium enolate $\mathbf{1 3 0}$ gave the corresponding β-amino Weinreb amide 131 in 76% yield and 95% de. Reaction of amide $\mathbf{1 3 1}$ with 5 equiv. of MeMgBr gave the methyl ketone 132, which was subjected to stereoselective reduction with $\mathrm{LiAlH}(\mathrm{O}-\mathrm{t}-\mathrm{Bu})_{3}$ in THF to give syn 1,3aminoalcohols $\mathbf{1 3 3}$ in 34% yield and 99% ee. The acyclic 1,3-aminoalcohol $\mathbf{1 3 3}$ was cyclized by stirring with NaH in the presence of 18-crown-6 (30 mol\%) to give hydroxyl piperidine $\mathbf{1 3 4}$ in 71% yield. The oxidation of sulfinyl group in $\mathbf{1 3 4}$ to the corresponding tosylate 135 was achieved using m-CPBA followed by reductive cleavage of the sulfonamides using Na in liq. NH_{3}, which afforded (-)-allosedridine 119 (Scheme 16).

Scheme 16: (i) $\mathrm{Ti}(\mathrm{OEt})_{4}, 54 \%$; (ii) THF, $-78{ }^{\circ} \mathrm{C}, 76 \%$, (iii) MeMgBr (5 equiv.) THF, -$78-25^{\circ} \mathrm{C}, 77 \%$; (iv) $\mathrm{LiAlH}(\mathrm{O}-\mathrm{t}-\mathrm{Bu})_{3}$, THF, 34%; (v) m-CPBA, 74%; (vi) Na , liq. NH_{3}, 70\%.

Riva's approach (2005) ${ }^{31}$

Riva et al. also achieved the synthesis of (-)-allosedridine 119 and (+)-sedridine $\mathbf{1 2 0}$ starting from Boc-protected piperidine aldehyde 65, (see section I for its preparation).

Thus addition of methylmagnesium bromide to aldehyde $\mathbf{6 5}$ produced 1:1 diastereomeric alcohols 136 and 137 in 61\% yield. After separation of diastereomers 136 and 137, the cleavage of Boc-group using TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave (-)-allosedridine 119 (59\%) and (+)sedridine 120 (75\%) (Scheme 17).

Scheme 17: (i) MeMgBr, THF, $-78^{\circ} \mathrm{C}, 1: 1,61 \%$; (ii) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Hou's approach (2008) ${ }^{32}$

Hou et al have achieved the synthesis of (-)-allosedridine 119 by employing crossmetathesis of 6-chloro-1-hexene 139 and methyl acrylate 138 to generate α, β-unsaturated ester $\mathbf{1 4 0}$ in 80% yield. Olefin $\mathbf{1 4 0}$ was then subjected to intramolecular Michael addition with chiral amine 141 in presence of phase-transfer catalyst $\left(\mathrm{Bu} \mathbf{4}_{4} \mathrm{NBr}\right)$ to give piperidines 142 and 142a in 2:1 diastereomeric ratio. Piperidine ester 142a was further converted to Weinreb amide $\mathbf{1 4 3}$, which was treated with MeMgCl in THF to afford methyl ketone 144. The diastereoselective reduction of ketone 144 via chelation control using ZnCl_{2} and NaBH_{4} resulted in 99% yield of $14: 1$ syn:anti amino alcohol 145 , which on hydrogenolysis generated (-)-allosedridine 119 (Scheme 18).

Scheme 18: (i) Grubbs' $2^{\text {nd }}$ generation catalyst ($5 \mathrm{~mol} \%$), 80%; (ii) NaI , $\mathrm{Na}_{2} \mathrm{CO}_{3}$, (R)- α-phenethylamine (141), $\mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{CH}_{3} \mathrm{CN}, 82 \%$; (iii) AlMe_{3}, $\left(\mathrm{CH}_{3} \mathrm{O}\right) \mathrm{CH}_{3} \mathrm{NH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$; (iv) $\mathrm{MeMgCl}, \mathrm{THF}, 25{ }^{\circ} \mathrm{C}$, 1.5 h ; (v) $\mathrm{ZnCl}_{2}, \mathrm{NaBH}_{4}, \mathrm{MeOH}$; (vi) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$.

2.2.3 Present Work

2.2.3.1 Objective

In recent years there has been an increased interest in the synthesis of optically active piperidine alkaloids. We find from the literature that the synthesis of (-)-allosedridine (119), generally involves use of chiral starting materials. As a part of our research program directed towards expanding the synthetic utility of piperidine alkaloids we became interested in applying Sharpless asymmetric epoxidation for the synthesis of (-)allosedridine (119).

Retrosynthetic analysis of (-)-allosedridine 119 shows that piperidine alcohol 118 emerges as the key intermediate, which could be obtained from Cbz-protected amino 1,3diol 115 by an intramolecular cyclization. The precursor 115 can be prepared from epoxide 146, which in turn could be obtained from allylic alcohol 147 by the Sharpless asymmetric epoxidation (Fig. 13).

Fig. 13: Retrosynthetic analysis of (-)-allosedridine 119

2.2.3.2 Sharpless asymmetric epoxidation

Asymmetric epoxidation of allylic alcohols is one of the leading areas of investigation in synthetic organic chemistry, mainly due to the fact that very high enantioselective induction for a wide range of substrates is possible using several classes of reagents. Today, the most successful asymmetric epoxidation reaction is the titanate-mediated epoxidation of allylic alcohols, or Sharpless epoxidation, ${ }^{33}$ which enables the achievement of an enantiomeric excess of more than 90% in most cases. The Sharpless epoxidation is a popular laboratory and industrial process due to its both enantioselective and catalytic nature. The reaction mixture includes a titanium tetraalkoxide, a chiral tartrate diester, an allylic alcohol substrate, and an alkyl hydroperoxide as the oxidant. The consistency of the reaction is remarkable, excellent enantiofacial selectivity is realized for allylic alcohol substrates of widely varying structure. In addition to being able to asymmetrically oxidize prochiral substrates to products of predictable absolute configuration, the reaction is extremely sensitive to preexisting chirality in selected positions of the allylic alcohols. For example, kinetic resolution of racemic secondary
allylic alcohols is very efficient since it can be used for generating chiral allylic alcohols as well as trans-epoxyalcohols in high enantiomeric excess.

Selection of the proper chirality in the starting tartrate esters and proper geometry of the allylic alcohols allows one to establish both the chirality and relative configuration of the product (Scheme 19).

Scheme 19: The Sharpless epoxidation reaction

Since its discovery in 1980, the Sharpless expoxidation of allylic alcohols has become a benchmark classic method in asymmetric synthesis. One factor that simplifies the standard epoxidation reaction is that the active chiral catalyst is generated in situ, which means that the pre-preparation of the active catalyst is not required.

Fig. 14: Structure of dinuclear Ti-tartrate complex
It is believed that the species containing equal moles of Ti and tartrate is the most active catalyst. It promotes the reaction much faster than $\mathrm{Ti}(\mathrm{IV})$ tetraalkoxide alone and exhibits
selective ligand-accelerated reaction. ${ }^{34}$ Sharpless suggested that epoxidation was catalyzed by a single Ti center in a dimeric complex with a C_{2} symmetric axis (Fig. 14). ${ }^{35}$

2.2.4 Results and Discussion

Scheme 20: (i) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DMF}, 5 \mathrm{~h}, 90 \%$; (ii) $(\mathrm{COCl})_{2}$, $\mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 89 \%$; (iii) $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, $90^{\circ} \mathrm{C}$, $12 \mathrm{~h}, 92 \%$; (iv) AlCl_{3} ($10 \mathrm{~mol} \%$), $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 81 \%$; (v) $\mathrm{Ti}(\mathrm{Oi} \text {-pr) })_{4}$, (-)-DIPT, $4 \mathrm{~A}^{0} \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.5 \mathrm{M}$ TBHP in decane, $-20^{\circ} \mathrm{C}, 24 \mathrm{~h}, 85 \%$; (vi) Red- Al^{\circledR} (65%) in toluene, THF, $-20-25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 86 \%$; (vii) 2,2-dimethoxypropane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, p-TSA ($10 \mathrm{~mol} \%$), $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 97 \%$; (viii) 10% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 7 \mathrm{~h}, 85 \%$; (ix) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (b) NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 15 \mathrm{~h}, 87 \%$; (x) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (xi) $\mathrm{CbzCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(1: 1) 25^{\circ} \mathrm{C}, 7 \mathrm{~h}, 89 \%$; (xii) excess 80% aq. $\mathrm{AcOH}, 25^{\circ} \mathrm{C}$, 18 h ; (xiii) TBSCl , imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (xiv) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 45 min ; (b) NaH, THF, $40^{\circ} \mathrm{C}, 10 \mathrm{~h}$; then 3 N HCl in $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 67 \%$; (xv) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; then MeMgBr , THF, $-78{ }^{\circ} \mathrm{C}$; (xvi) 10% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}$.

The complete synthetic sequence for (-)-allosedridine 119 wherein the Sharpless asymmetric epoxidation of allylic alcohol constitutes a key step for the introduction of chirality, is presented in Scheme 20.

Our synthesis of (-)-allosedridine 119 started with commercially available 1,5pentanediol 148, which was selectively benzylated $(\mathrm{BnBr}, \mathrm{NaH})$ to give the benzylated 1,5-penatanediol 149. The primary alcohol function in 148 was then oxidized

Fig. 15: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of aldehyde $\mathbf{1 5 0}$
under Swern conditions to provide the corresponding aldehyde 150. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a typical triplet at $\delta 9.75$ for the aldehydic proton while its ${ }^{13} \mathrm{C}$ NMR
spectrum displayed a characteristic signal at $\delta 202.5$ due to the aldehydic carbon (-CHO) (Fig. 15). Its IR spectrum showed a strong stretching vibration band at $1725 \mathrm{~cm}^{-1}$ for the carbonyl function.

Aldehyde 150 on Wittig olefination with $\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Et}$ in benzene at $80^{\circ} \mathrm{C}$ produced α, β-unsaturated ester 151 in 92% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum

Fig. 16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ester 151
showed typical signals at $\delta 1.27(\mathrm{t}, J=7.2,3 \mathrm{H})$ and $\delta 4.16(\mathrm{q}, J=7.0,14.2,2 \mathrm{H})$ that correspond to $-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ethyl group. It showed two multiplets at $\delta 5.75-5.84(\mathrm{~m}, 1 \mathrm{H})$
and 6.86-7.01 (m, H) for the olefinic protons $\left(-\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, Its ${ }^{13} \mathrm{C}$ NMR spectrum showed two typical carbon signals at $\delta 138.3$ and 148.6 (olefinic carbons) and $\delta 166.3$ (carbonyl carbon) (Fig. 16). The IR spectrum of ester 151 showed a strong stretching vibration at $1715 \mathrm{~cm}^{-1}$ for the ester carbonyl function.

The selective reduction of ester function in $\mathbf{1 5 1}$ was achieved with LiAlH_{4} in presence of $\mathrm{AlCl}_{3}(10 \mathrm{~mol} \%)$ in dry diethyl ether ${ }^{36}$ to give allylic alcohol 147 in 91% yield.

Fig. 17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of allyl alcohol 147

Its IR spectrum showed a strong absorption band at $3385 \mathrm{~cm}^{-1}$ for the $\mathrm{O}-\mathrm{H}$ stretching vibrations. The formation of allylic alcohol 147 was also confirmed by the disappearance of ester carbonyl group in its IR spectrum and appearance of typical multiplets at $\delta 4.04$ $4.48(\mathrm{~m}, 2 \mathrm{H})\left(-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}\right)$ and $\delta 5.52-5.74(\mathrm{~m}, 2 \mathrm{H})\left(-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}\right)$ integrating for two protons for allylic group in its ${ }^{1} \mathrm{H}$ NMR spectrum. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed further peaks at $\delta 129.3$ and 132.0 for the olefinic carbons (Fig. 17). Allylic alcohol 147 was then subjected to Sharpless asymmetric epoxidation ${ }^{37}$ using (-)diisopropyl tartarate [(-)-DIPT] to furnish the corresponding chiral epoxide 146 in 85% yield. Its optical purity was determined by HPLC analysis to be 97% ee (Fig. 18).

Fig. 18: HPLC chromatogram of epoxide 146

Its ${ }^{1} \mathrm{H}$ NMR spectrum showed characteristic proton signals at $\delta 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.52-3.63 (m, 1H) and $3.85(\mathrm{bd}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$ for the epoxide function. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed typical peaks at $\delta 55.7$ and 58.4 corresponding to methine carbons of epoxide moiety (Fig. 19).

Fig. 19: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of epoxide 146

Our next task was to construct 1,3-diol 152 from epoxide 146. In order to achieve this transformation with high regioselectivity and yield, a strategy involving Red-Al ${ }^{\circledR}$, originally published by Kishi et al., was undertaken. ${ }^{38}$ Thus, epoxide $\mathbf{1 4 6}$ was treated
with Red- Al^{\circledR} in THF at $-20{ }^{\circ} \mathrm{C}$ to give diol 152. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed typical signals at $\delta 2.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$ and $\delta 3.68-3.88(\mathrm{~m}, 3 \mathrm{H})$ due to OH protons and methylene and methine protons respectively $(-\mathrm{CHOHCH} 2 \mathrm{OH})$. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed carbon signals at $\delta 61.1$ and 70.2 due to methylene and methine carbons respectively (Fig. 20).

Fig. 20: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1,3-diol 152

1,3-Diol 152 was then protected as its acetonide 153 upon treatment with 2,2dimethoxypropane in presence of catalytic amounts of p-toluenesulfonic acid. Two singlets at $\delta 1.35$ and 1.45 integrating for three protons each in its ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the formation of acetonide 153 . Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed typical signals at $\delta 19.1,21.5$ and 97.9 due to methyl and quaternary carbons of isopropylidene group respectively (Fig. 21).

Fig. 21: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of benzyl ether 153

At this stage, deprotection of the benzyl group in 153 was required. This has been achieved under catalytic hydrogenation conditions [$\left.\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}\right]$ that
provided primary alcohol 154 in 85% yield. The formation of alcohol 154 was confirmed by the disappearance of methylene and aromatic protons signal ($\delta 4.4(\mathrm{~s}, 2 \mathrm{H})$ and 7.26 $7.33(\mathrm{~m}, 5 \mathrm{H}))$ in its ${ }^{1} \mathrm{H}$ NMR spectrum. A broad singlet at $\delta 4.8$ in its ${ }^{1} \mathrm{H}$ NMR spectrum is due to hydroxyl group. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical peak at $\delta 69.6$ due to carbon attached to oxygen of primary alcohol. The IR spectrum of alcohol $\mathbf{1 5 4}$ displayed a broad absorption band around $3000 \mathrm{~cm}^{-1}$ indicating the presence of hydroxyl group.

Fig. 22: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of carbamate 154

The hydroxy group in $\mathbf{1 5 4}$ was then converted to its mesylate followed by its $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} produced the corresponding azide $\mathbf{1 5 5}$ in 87% yield over two steps. The formation of azide $\mathbf{1 5 4}$ was confirmed by IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. For example, its IR showed a strong absorption band at $2091 \mathrm{~cm}^{-1}$ due to the presence of azide group. Reduction of azide $\mathbf{1 5 5}$ using $10 \% \mathrm{Pd} / \mathrm{C}$ in methanol and $\mathrm{H}_{2}(20 \mathrm{psi})$ resulted in the formation of primary amine 156 in good yield, which was then protected as its benzyl carbamate 157 in 96% yield. The formation of carbamate 157 was confirmed by the appearance of signals at $\delta 5.07(\mathrm{~s}, 2 \mathrm{H})$ and $7.28-7.35(\mathrm{~m}, 5 \mathrm{H})$ due to methylene and aromatic protons respectively of carbamate moiety in its ${ }^{1} \mathrm{H}$ NMR spectrum. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed peaks at $\delta 66.5$ due to methylene and at $\delta 128.0,128.1,128.4$ and 136.6 due to aromatic ring carbons. Further, the characteristic carbonyl carbon of carbamate peak displayed at $\delta 156.2$ in its ${ }^{13} \mathrm{C}$ NMR spectrum. (Fig. 22).

Treatment of acetonide 157 with 80% of aq. AcOH gave the corresponding 1,3-diol 115 in 97% yield. The synthesis of piperidine-2-ethanol 118, the key intermediate, was quickly attempted in the subsequent additional steps. Selective protection of diol $\mathbf{1 1 5}$ (TBSCl , imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) furnished silyl protected alcohol 116 followed by conversion of its free secondary hydroxyl group to its mesylate. The mesylate, without purification, was subjected to cyclization intramolecularly under the suspension of NaH in THF, followed by acidic work-up which produced piperidine alcohol 118 in 67% yield. The alcohol 118 was then subjected to Swern oxidation to give the corresponding aldehyde, which on treatment with excess methylmagnesium bromide gave the diastereomeric mixture of syn and anti alcohols ($\mathrm{dr}=2: 1$) in 85% combined yield. These diastereomers were separated by flash column chromatography to give a major isomer 126 in 55%
isolated yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed characteristic signals at $\delta 1.17(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H})$ and $4.51(\mathrm{br} \mathrm{d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$ due to methyl and methine protons and further substantiated by the typical signals at $\delta 18.9$ and 67.4 in the downfield region of its ${ }^{13} \mathrm{C}$ NMR spectrum that correspond to the methyl and methine carbons attached to oxygen atom respectively.

Fig. 23: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (-)-allosedridine 119

The major isomer 126 was then hydrogenated to give (-)-allosedridine 119. The spectroscopic data of $\mathbf{1 1 9}$ was in full agreement with those reported in the literature. ${ }^{32}$ Its
${ }^{1} \mathrm{H}$ NMR spectrum showed all the expected peaks. For example: its ${ }^{1} \mathrm{H}$ NMR spectrum showed typical signals at $\delta 1.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.70(\mathrm{~m}, 7 \mathrm{H}), 1.73-1.81(\mathrm{~m}$, $1 \mathrm{H}), 2.68-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.78-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.27(\mathrm{~m}, 1 \mathrm{H}), 4.01-4.16(\mathrm{~m}, 1 \mathrm{H})$ and 4.55 (br s, 2H). Its ${ }^{13} \mathrm{C}$ NMR spectrum showed the characteristic signals at $\delta 57.3$ and 68.4 due to carbons of secondary amine and alcohol respectively (Fig. 23).

2.2.5 Conclusion

An enatioselective synthesis of (-)-allosedridine (119) has been achieved in 97% ee by employing Sharpless asymmetric epoxidation using (-)-DIPT as the chiral ligand for the induction of chirality in a highly diastereoselective manner. The protocol also demonstrates the synthetic utility of intramolecular cyclization of aminoalcohol $\mathbf{1 1 6}$ to give piperidine core 118, which can be utilized for synthesis of several piperidine alkaloids.

2.2.6 Experimental section

5-(Benzyloxy)pentan-1-ol (149)

To a solution of $\mathrm{NaH}(4.6 \mathrm{~g}, 115.2 \mathrm{mmol})$ in dry $\mathrm{DMF}(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $1,5-$ pentanediol $148(10 \mathrm{~g}, 96.0 \mathrm{mmol})$ in $(20 \mathrm{~mL})$ dry DMF over 20 min . The resulting mixture was stirred for an additional 15 min and then benzylbromide ($11.4 \mathrm{~mL}, 96.0$ mmol) was added dropwise. The reaction was allowed to warm to room temperature and stirred for 5 h . After completion, the reaction mixture was quenched with cold water (30 $\mathrm{mL})$ and the aq. phase was extracted with EtOAc ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with water followed by brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude compound was purified by
column chromatography using petroleum ether/EtOAc (6:4) to afford mono protected alcohol 149 as a colorless liquid.

Yield: $90 \%(16.8 \mathrm{~g})$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3625,3413,3015,2938,2865,2401,1952,1705$, 1495, 1452, 1362, 1211, 1080, 950, 932, 771; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.38-1.67$ (m, 6H), 1.73 (brs, 1H), $3.47(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) 4.49(\mathrm{~s}, 2 \mathrm{H})$, 7.28-7.34 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.1,29.1,32.1,61.9,70.0,72.5$, 127.2, 127.3, 128.0, 138.1; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 74.19; H, 9.34; Found. C, 73.99; H, 9.45\%.

5-(Benzyloxy)pentanal (150)

To a stirred solution of oxalyl chloride $(13.2 \mathrm{~mL}, 154.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$, was added a solution of dry DMSO $(16.4 \mathrm{~mL}, 231.1 \mathrm{mmol})$. The reaction mixture was stirred for 20 min followed by the addition of solution of 5-(benzyloxy)pentan-1-ol $149(15.0 \mathrm{~g}, 77.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. After stirring for 1 h at $-7{ }^{\circ} \mathrm{C}$, the reaction was quenched with the addition of $\mathrm{Et}_{3} \mathrm{~N}(42.9 \mathrm{~mL}, 308.8 \mathrm{mmol})$. The reaction mixture was then stirred for 30 min followed by the addition of water $(70 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layer was washed with water (3 x 50 mL), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the corresponding aldehyde $\mathbf{1 5 0}$.

Yield: $89.8 \%(13.3 \mathrm{~g})$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3453,2929,2853,1725,1466,1448,1380$, 1178, 1030, 698; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.56-1.82(\mathrm{~m}, 4 \mathrm{H}), 2.34-2.49(\mathrm{~m}, 2 \mathrm{H})$, $3.48(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 5 \mathrm{H}), 9.75(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.7,28.9,43.3,69.5,72.7,127.4,127.5,128.2,138.2,202.5 ;$

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 74.97; H, 8.39; Found. C, 75.01 ; H, 8.43\%.

(E)-Ethyl 7-(benzyloxy)hept-2-enoate (151)

To a stirred solution of $\mathrm{Ph}_{3} \mathrm{PCH}=\mathrm{CO}_{2} \mathrm{Et}(35.3 \mathrm{~g}, 101.4 \mathrm{mmol})$ in benzene $(120 \mathrm{~mL})$, was added aldehyde $\mathbf{1 5 0}(13.0 \mathrm{~g}, 67.6 \mathrm{mmol})$ in $(30 \mathrm{~mL})$ benzene and heated at $90^{\circ} \mathrm{C}$. After 12 h , the solvent was removed under reduced pressure and the crude product was purified by column chromatography using petroleum ether/EtOAc (8:2) to afford α, β-unsaturated ester 151 as a colorless oil.

Yield: $92 \%(16.1 \mathrm{~g}) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2935,2858,1715,1655,1453,1367,1309,1266$, 1196, 1042, 983, 736, 697, ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.27(\mathrm{t}, J=7.0,14.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.45-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.26(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=6.0, \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7.1,14.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 5.76-5.85(\mathrm{td}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0,24.4,28.9,31.6,59.8,69.6,72.6,121.2,127.2$, 127.3, 128.1, 138.3, 148.6, 166.3; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 73.25 ; \mathrm{H}, 8.45$; Found. C, 73.19; H, 8.51\%.

(E)-7-(Benzyloxy)hept-2-en-1-ol (147)

To a suspension of $\mathrm{LiAlH}_{4}(3.2 \mathrm{~g}, 85.7 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(110 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere was added dropwise a solution of $\mathrm{AlCl}_{3}(3.8 \mathrm{~g}, 28.5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$. The reaction mixture was stirred at the same temperature for 30 min . To this stirred suspension, ester $151(15.0 \mathrm{~g}, 57.17 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added dropwise over a period of 15 min and the mixture stirred at $0^{\circ} \mathrm{C}$ for 1 h . It was quenched with ice-water and filtered through Celite. The residue was washed with ethyl acetate. The combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the crude compound was purified by column chromatography using petroleum ether/EtOAc (8:2) to afford allylic alcohol $\mathbf{1 4 7}(2.0 \mathrm{~g})$ as a colorless oil.

Yield: $81 \%(10.2 \mathrm{~g})$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3385,2932,2857,1454,1364,1095,1027,971$, 735, $697 ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.38-1.69(\mathrm{~m}, 5 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 5.52-5.74(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 25.5,29.0,31.7,63.0,69.9,72.6,127.3,127.4,128.1,129.3$, 132.0, 138.2; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 76.33 ; H, 9.15; Found. C, 76.47 ; H, 9.01%.

((2S,3R)-3-(4-(Benzyloxy)butyl)oxiran-2-yl)methanol (146)

To a stirred suspension of powdered $4 \AA$ molecular sieves (5 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, titanium tetraisopropoxide $(2.37 \mathrm{~mL}, 7.80 \mathrm{mmol})$ was added under nitrogen atmosphere. The reaction mixture was cooled to $-20{ }^{\circ} \mathrm{C}$ and (-)-diisopropyl tartrate $(1.87 \mathrm{~mL}, 8.97$ $\mathrm{mmol})$ added and stirred for 20 min , after which allyl alcohol $147(8.6 \mathrm{~g}, 39.0 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added and the mixture stirred for 30 min . To the above solution, anhyd. tert-butyl hydroperoxide in decane ($5.5 \mathrm{M} 14.2 \mathrm{~mL}, 78.07 \mathrm{mmol}$) was added dropwise over 30 min and stirred at $-20^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (monitored by TLC), it was quenched with water (50 ml) at $20^{\circ} \mathrm{C}$ and then allowed to warm to room temperature. A solution of $\mathrm{NaOH}(30 \%)$ in brine (20 ml) was added and the mixture was stirred vigorously for 45 min at room temperature and then diluted with dichloromethane $(100 \mathrm{ml})$. The layers were allowed to separate and the inhomogenous aqueous layer was extracted with dichloromethane ($3 \times 100 \mathrm{ml}$). The combined organic extracts were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo to leave a pale yellow liquid. The crude compound was purified by column chromatography using petroleum ether/EtOAc (8:2) to afford epoxide 146.

Yield: $85 \%(7.86 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+25.1\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3416,2935,2861$, 1453, 1365, 1027, 737, 698; ${ }^{1}$ H NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.46-1.72(\mathrm{~m}, 6 \mathrm{H}), 2.13(\mathrm{br}$
$\mathrm{s}, 1 \mathrm{H}), 2.85-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{br} \mathrm{d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.6,29.3,31.2$, 55.7, 58.4, 61.6, 69.9, 72.8, 127.4, 127.5, 128.2, 138.3; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 71.16; H, 8.53; Found. C, 71.22 ; H, 8.47%.

(R)-7-(Benzyloxy)heptane-1,3-diol (152)

To a solution of epoxide $\mathbf{1 4 6}(4 \mathrm{~g}, 16.9 \mathrm{mmol})$ in dry THF $(70 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added a $65 \mathrm{wt} \%$ solution of sodium bis(2-methoxyethoxy)aluminum hydride $\left(\right.$ Red- Al^{\circledR}) in toluene $(6.84 \mathrm{~g}, 33.85 \mathrm{mmol})$ dropwise under nitrogen. After stirring at room temperature for 12 h, the solution was diluted with ether and quenched with $5 \% \mathrm{aq} . \mathrm{HCl}$ solution. After further stirring at room temperature for 30 min , the white precipitate formed was removed by filtration and the filtrate washed with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude compound was purified by column chromatography using petroleum ether/EtOAc (8:2) to afford diol 152.

Yield: $86 \%(3.50 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+10.0\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3381,2335,2861$, 1453, 1097, 1051, 735, 697; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.32-172(\mathrm{~m}, 8 \mathrm{H}), 2.82(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.88(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (50 MHz, CDCl_{3}): $\delta 22.1,29.5 .37 .3,38.2,61.1,70.2,71.2,72.8,77.2,127.5$, 127.6, 128.3, 138.2; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 70.56; H, 9.30; Found. C, 70.39; H, 9.44\%.
(R)-4-(4-(Benzyloxy)butyl)-2,2-dimethyl-1,3-dioxane (153)

To a stirred mixture of diol $152(3 \mathrm{~g}, 12.58 \mathrm{mmol}$), 2,2-dimethoxypropane (6.17 mL , $50.35 \mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added p-toluenesulfonic acid $(0.216 \mathrm{~g}, 10$ $\mathrm{mol} \%$) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction as monitored by TLC, it was neutralized with triethylamine, concentrated and purified by silica gel chromatography using pet. ether:EtOAc (9:1) as eluent to yield $\mathbf{1 5 3}$ as an oil. Yield: $97 \%(3.4 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+8.6\left(c 1.1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3610,3019,2400$, $1716,1646,1523,1456,1381,1215,1097,929,758,669 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl $_{3}$): $\delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.70(\mathrm{~m}, 8 \mathrm{H}), 3.45(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.84(\mathrm{~m}$, $2 \mathrm{H}), 3.93(\mathrm{ddd}, J=3.2,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.1,21.5,29.5,29.9,31.1,36.1,59.7,68.5,70.0,72.7,97.9,127.3$, 127.4, 128.1, 138.4; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}$: C, 73.34; H, 9.41; Found. C, 72.99; H, 9.67\%.

4-((R)-2,2-Dimethyl-1,3-dioxan-4-yl)butan-1-ol (154)

To a stirred mixture of $\mathbf{1 5 3}(3.0 \mathrm{~g} 10.7 \mathrm{mmol})$ in dry methanol $(20 \mathrm{~mL})$ was added 10% $\mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$, and the mixture exposed to $\mathrm{H}_{2}(20 \mathrm{psi}), 2-3$ drops $\mathrm{Et}_{3} \mathrm{~N}$ and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 7 h . After completion of the reaction as monitored by TLC, mixture was filtered through a pad of celite and rinsed with $\mathrm{MeOH}(3 \times 30 \mathrm{~mL})$. The combined organic layer was concentrated under reduced pressure to give the crude alcohol 154 which was purified by silica gel chromatography using pet. ether:EtOAc (6:4) as eluent to yield 154 as an oil.

Yield: $85 \%(1.7 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+24.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3502,3054,2930$, $2103,1734,1541,1427,1382,1265,1201,1111,1052,950,945,860,731,{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.64(\mathrm{~m}, 8 \mathrm{H}), 3.63(\mathrm{t}, J=6.1 \mathrm{~Hz}$,
$2 \mathrm{H}), 3.75-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.93-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.8(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 21.4, 31.9, 36.8, 38.4, 49.3, 59.7, 61.6, 69.6, 95.8; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 63.80$; H, 10.71; Found. C, 63.74; H, 10.91\%.

(R)-4-(4-Azidobutyl)-2,2-dimethyl-1,3-dioxane (155)

To a stirred solution of alcohol $154(1.7 \mathrm{~g}, 9.03 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.88 \mathrm{~mL}, 13.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$ was added methanesulfonyl chloride $(0.768 \mathrm{~mL}, 9.93 \mathrm{mmol})$. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the reaction mixture was poured into ice water (150 mL), washed with aqueous NaHCO_{3}, brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was distilled off under reduced pressure to give the crude product. The crude mesylate (2.40 $\mathrm{g}, 9.0 \mathrm{mmol})$ was then dissolved in DMF $(40 \mathrm{~mL})$ followed by the addition of sodium azide $(2.9 \mathrm{~g}, 45.0 \mathrm{mmol})$. The reaction mixture was then heated at $80{ }^{\circ} \mathrm{C}$ for 15 h followed by quenching it with the addition of water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and the combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent distilled off under reduced pressure and the crude product purified by column chromatography over silica gel using pet. ether:EtOAc (95:5) as eluent to yield pure $\mathbf{1 5 5}$. Yield: $87 \%(1.6 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+12.5\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2984,2939,2864$, 2091, 1738, 1457, 1371, 1247, 1216, 1151, 1055, 853; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.67(\mathrm{~m}, 8 \mathrm{H}), 3.26(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.85(\mathrm{~m}, 2 \mathrm{H})$, 3.87-3.94 (m, 1H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 20.8,25.4,31.2,34.2,39.5,47.5,66.9$, 71.6, 102.8; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 56.32; H, 8.98; N, 19.70; Found. C, 56.51; H, 9.01; N, 19.15\%.

Benzyl 4-((R)-2,2-dimethyl-1,3-dioxan-4-yl)butylcarbamate (157)

To a stirred mixture of $\mathbf{1 5 5}(1.5 \mathrm{~g} 7.02 \mathrm{mmol})$ in dry methanol $(20 \mathrm{~mL})$ was added 10% $\mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$, and the reaction mixture exposed to $\mathrm{H}_{2}(20 \mathrm{psi})$, stirred at $25^{\circ} \mathrm{C}$ for 6 h . After completion of the reaction as monitored by TLC, it was filtered through a pad of celite and rinsed with $\mathrm{MeOH}(3 \times 30 \mathrm{~mL})$. The combined organic layer was concentrated under reduced pressure to give the crude amine 156.

The crude amine $156(1.3 \mathrm{~g}, 6.94 \mathrm{mmol})$ was dissolved in a mixture of water $(15 \mathrm{~mL})$ and dichloromethane $(15 \mathrm{~mL})$ followed by the addition of potassium carbonate $(1.91 \mathrm{~g}, 13.88$ $\mathrm{mmol})$. After 15 min benzyl chloroformate ($1.49 \mathrm{~mL}, 10.45 \mathrm{mmol}$) was introduced with the help of syringe and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 7 h . After completion of the reaction, organic layer decanted separately and the aqueous layer was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated in vacuo and the residue was purified by column chromatography using pet.ether:EtOAc (7:3) to give pure 157 as a colorless oil.

Yield: $89.6 \%(2.0 \mathrm{~g}) ;[\alpha]_{\mathrm{D}}{ }^{25}+15\left(c 0.7, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3347,3035,3063$, 2977, 2936, 2867, 1710, 1535, 1450, 1367, 1244, 1052, 853, 736; ${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.65(\mathrm{~m}, 8 \mathrm{H}), 3.13-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.87(\mathrm{~m}$, $2 \mathrm{H}), 3.92-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.2,22.1,29.7,30.0,31.2,36.0,40.9,59.8,66.5,68.6,98.1,128.0$, 128.1, 128.4, 136.6, 156.2;

Benzyl (R)-5,7-dihydroxyheptylcarbamate (115)

A solution of acetonide $157(2.0 \mathrm{~g}, 6.22 \mathrm{mmol})$ and 80% aq. AcOH $(20 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 18 h . After completion of reaction, acetic acid and water were removed under reduced pressure and the crude mixture extracted with EtOAc (3 x 20 mL) and washed
with water $10 \% \mathrm{NaHCO}_{3}$. The combined organic layer was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo. The residue was purified by column chromatography using pet.ether:EtOAc (5:5) to give pure diol 115 as a gum.

Yield $=96 \%(1.6 \mathrm{~g})$
For experimental procedure and spectral details of compounds, $\mathbf{1 1 5}$ to $\mathbf{1 1 8}$ please refer section I of this chapter.

(S)-Benzyl 2-((R)-2-hydroxypropyl)piperidine-1-carboxylate 126

To a stirred solution of oxalyl chloride $(0.195 \mathrm{~mL}, 2.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$, was added a solution of DMSO $(0.242 \mathrm{~mL}, 3.41 \mathrm{mmol})$. The reaction mixture was stirred for 20 min . followed by the addition of solution of (S)-benzyl 2-(formylmethyl)piperidine-1-carboxylate $149(300 \mathrm{mg}, 1.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was quenched with the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.633 \mathrm{~mL}, 4.55 \mathrm{mmol})$. It was then stirred for 30 min followed by the addition of water (10 mL). The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with water ($3 \times 10 \mathrm{~mL}$), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the corresponding aldehyde 150. Then aldehyde 150 ($290 \mathrm{mg}, 1.10 \mathrm{mmol}$) was dissolved in dry THF (20 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. After 15 min , a solution of excess MeMgI in THF was added dropwise using syringe. The solution was finally allowed to warm at $0{ }^{\circ} \mathrm{C}$ and then left stirring for 4 h . The reaction mixture was finally quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc (3 x 20 mL). The organic layer was washed with water followed by brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the corresponding mixture of syn and
anti $(\mathrm{dr}=3.2: 1.7)$ in 85% combined yield. These diastereomers were separated by flash chromatography and $\mathbf{1 2 6}$ were obtained as a major isomer isolated in 55% yield.

Yield: $55 \%(170 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{25}-29.8\left(c\right.$ 2.2, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3446,2934,1684$, 1560, 1424 672; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17$ ($\mathrm{d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.20-1.29 (m, $1 \mathrm{H}), 1.39-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.98(\mathrm{t}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.77(\mathrm{~m}, 1 \mathrm{H}), 3.50($ br s, 1 H$)$, $4.04(\operatorname{br~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{br} \mathrm{d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{br} \mathrm{q}, 2 \mathrm{H})$, 7.30-7.57 (m, 5H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 18.9,22.0,25.3,29.2,39.2,47.5,63.5$, 67.4, 127.8, 128.1, 128.4, 136.3, 156.8; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 69.29; H, 8.36; N, 5.05; Found. C, 68.97; H, 8.65; N, 4.99\%.

(-)-Allosedridine (119)

A suspension of alcohol $126(110 \mathrm{mg}, 0.39 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OH})_{2}(10 \mathrm{mg})$ in methanol $(2 \mathrm{~mL})$ was stirred at $25{ }^{\circ} \mathrm{C}$ for 7 h under a $\mathrm{H}_{2}(20 \mathrm{psi})$ atmosphere. After completion of the reaction as monitored by TLC, the mixture was filtered through a pad of celite and rinsed with $\mathrm{MeOH}(3 \times 10 \mathrm{~mL})$. The combined organic layer was concentrated under reduced pressure to give 119.

Yield: $90 \%(62 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{25}-16.4(c 1.2, \mathrm{MeOH}),\left\{\right.$ lit. $\left.^{31 \mathrm{~b}}[\alpha]_{\mathrm{D}}{ }^{25}-16.18(c 1.55, \mathrm{MeOH})\right\}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3689,3676,2920,1650,1431,1362,1331,1050,790,635 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.70(\mathrm{~m}, 7 \mathrm{H}), 1.73-1.81(\mathrm{~m}, 1 \mathrm{H})$, 2.68-2.77 (m, 1H), 2.78-3.01 (m, 1H), 3.20-3.27 (m, 1H), 4.01-4.16 (m, 1H), $4.55(\mathrm{br} \mathrm{s}$, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.4,24.3,24.9,32.5,43.2,45.5,57.3,68.4$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 67.09$; H, 11.96; N, 9.78; Found. C, 66.99; H, 12.01; N, 9.83\%.

Section III

Asymmetric Synthesis of $\boldsymbol{\beta}$-Blockers: (S)-Betaxolol and (S)-Metoprolol

2.3.1 Introduction

The members of a pair of enantiomers often show different pharmacological and metabolic characteristics. ${ }^{39}$ Thus one enantiomer may act as a very effective therapeutic drug while the other could be highly toxic. Betaxolol (158) and metoprolol (159) (Fig. 24), very important drugs in this series are used widely for the treatment of angina, hypertension and open angle glaucoma respectively ${ }^{40}$. They are also known to exhibit lower blood pressure, by slowing down the heart rate and increase life expectancy after the heart attack. Although these drugs possess one stereogenic carbon center, they are generally administered as racemates. The biological activity in a racemic drug often resides in a single enantiomer. ${ }^{41}$ For instance, the (S)-isomers of betaxolol (158) and metoprolol (159) are associated with β-blocking activity, while the (R)-isomers are responsible for adverse side effects. ${ }^{42}$ The synthesis of drugs in enantiomerically pure form is very important for pharmaceutical industries due to increased demand for more effective and safe single isomers. In the market betaxolol (158) is sold under trade names "Betaoptic" or "Kerlone" while metoprolol (159) as "Lopressor".

(S)-Betaxolol, 158

(S)-Metoprolol, 159

Fig. ${ }^{\prime 24}$

2.3.2 Pharmacology

To examine the physiological effects of betaxolol, ${ }^{43}$ a β_{1}-adrenergic receptor blocker commonly used in the treatment of glaucoma, on retinal ganglion cells and to evaluate its potential to elicit responses consistent with a neuroprotective agent against ganglion cell degeneration and betaxolol lead to reducing neurotoxic effects in ganglion cells, which are the most susceptible retinal neurons to glutamate-induced damages under ischemic and glaucomatous conditions. Therefore, betaxolol (158) has the potential to be a neuroprotective agent against retinal degeneration in patients with disorders mediated by such mechanisms. Metoprolol (159) is also a β_{1}-selective adrenergic receptor blocking agent. In vitro and in vivo animal studies have shown that it has a preferential effect on β_{1}-adrenoreceptors located in cardiac muscle and it also inhibits β_{2}-adrenoreceptors located in the bronchial and vascular musculature. ${ }^{44}$

2.3.3 Review of literature

Scilimati's approach (1995) ${ }^{45}$

Scilimati et al. have reported the synthesis of (S)-betaxolol 158 using enzymatic kinetic resolution of chloro alcohol (\pm) - $\mathbf{1 6 0}$ in presence of vinyl acetate as acyl donor to give (R)-chloro alcohol 160a in 83% yield. The chloro alcohol 160 a was then subjected to nucleophilic displacement with isopropyl amine under basic medium $(10 \% \mathrm{NaOH})$ to afford (S)-betaxolol 158 in 91% yield and 60% ee. The enantiomeric excess was drastically increased to 91% ee, when it was recrystalised in diethyl ether (Scheme 21).

Scheme 21: (i) Lipase (SP 435-L); vinyl acetate, $\mathrm{MeO}^{\mathrm{t}} \mathrm{Bu}$; 83%; (ii) i- $\mathrm{PrNH}_{2}, 10 \% \mathrm{NaOH}, 83 \%$, 91\% ee.

Joshi's approach (2005) ${ }^{46}$

Joshi et al. have achieved the synthesis of betaxolol 158 by using hydrolytic kinetic resolution as the key step. The commercially available 4-(2-hydroxyethyl)phenol $\mathbf{1 6 2}$ was selectively benzylated (benzyl bromide, KOH) to afford the benzylated ether 163, which on treatment with allyl bromide under basic conditions gave 164 in 98% yield. The olefin 164 was subjected to Simon-Smith cyclopropanation (diethylzinc, diiodomethane) to give cycloproyl derivative $\mathbf{1 6 5}$ in 95% yield. Subsequently, its debenzylation (Raney-Ni, H_{2}) gave phenol 166 which was alkylated (allyl bromide, KOH) to afford allyloxy derivative 167 in 95% yield. The olefin 167 was subjected to epoxidation using m-CPBA to give (\pm)-epoxide 168, which on Jacobsen's HKR using (R,R)-salen-Co(OAc) 170 as catalyst produced (S)-epoxide 168 in 43% yield and 99% ee. The regioselective ring opening of epoxide with isopropyl amine resulted in (S)-betaxolol 158 in 76\% yield (Scheme 22).

Scheme 22: (i) benzyl bromide, $\mathrm{KOH}, \mathrm{THF}, 90 \%$; (ii) allyl bromide, $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}, \mathrm{DMSO}, 40^{\circ} \mathrm{C}$, 98%; (iii) $\mathrm{Et}_{2} \mathrm{Zn}, \mathrm{CH}_{2} \mathrm{I}_{2}$, hexane, $0{ }^{\circ} \mathrm{C}, 95 \%$; (iv) Raney nickel, $\mathrm{MeOH}, \mathrm{H}_{2}$ (65 psi), 86%; (v) allyl bromide, KOH , THF, 95%; (vi) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$; (vii) (R,R)-salen Co (III)-170, $43 \%, 99 \%$ ee; (viii) isopropylamine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 76 \%$.

Muthukrishnan's approach (2007) ${ }^{47}$

Muthukrishnan et al also have described the synthesis of (S)-betaxolol 158 and (S)metoprolol 159 by employing hydrolytic kinetic resolution as the key step. Epoxide (\pm)171 was subjected to Jacobsen's HKR using (R,R)-salen-Co(OAc) 170 as catalyst to give (S)-epoxide $\mathbf{1 7 1}$ in 98% yield. Epoxide (\mathbf{S})-171 was alkylated (MeI, KOBu^{\dagger}) to produce iodo alcohol 173, which on treatment with isopropyl amine produced (S)-metoprolol 159 in 97% yield. The synthesis of (S)-betaxolol 158 was achieved by the alkylation of
epoxide (S)-171 (bromomethylcyclopropane, $\mathrm{KOBu}^{\text {t }}$) to give $(\mathrm{S}) \mathbf{- 1 6 8}$, followed by its nucleophilic ring opening with isopropyl amine (Scheme 23).

Scheme 23: (i) (R,R)-salen $\mathrm{Co}(\mathrm{III})-\mathbf{1 7 0}$, i- PrOH , (ii) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{KO}^{\mathrm{t}} \mathrm{Bu}, \mathrm{N}, \mathrm{N}$-dimethylacetamide, 98%; (iii) isopropylamine, $\mathrm{H}_{2} \mathrm{O}$, reflux, 97%; (iv) bromomethylcyclopropane, $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}, \mathrm{N}, \mathrm{N}-$ dimethylacetamide, 96%; (v) isopropylamine, $\mathrm{H}_{2} \mathrm{O}$, reflux, 96%.

Liu's approach (2008) ${ }^{48}$

Liu et al have described the synthesis of (S)-betaxolol 158 and (S)-metoprolol 159 by using non-enzymatic kinetic resolution (NKR) as the key step. The β-amino alcohol 174 or $\mathbf{1 7 5}$ was subjected to kinetic resolution using a chiral reagent $\mathbf{1 8 0}$ (derived from sugar) in the presence of p-toluenesulphonic acid to give (S)-isomer of β-amino alcohol 178 (47.8% yield and 99% ee) or 179 (47% yield and 99% ee) respectively. The synthesis of (S)-betaxolol 158 was achieved from β-amino alcohol 178 in one pot by employing sequential reactions of amine protection, o-alkylation and hydrolysis. The alkylation of 179 with isopropyl bromide in presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded (S)-metoprolol 159 (Scheme 24).

Scheme 24: (i) 180, methanol, TsOH. $5^{\circ} \mathrm{C}$; (ii) (a) toluene, phenyl aldehyde, TsOH; (b) DMF, NaH , cyclopropylmethyl bromide; (c) $10 \% \mathrm{HCl}$, isopropanol; (d) $10 \% \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, toluene; (iii) isopropyl bromide; $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux, 96%.

2.3.4 Present Work

2.3.4.1 Objective

All the reported methods described above for the synthesis of β-blockers suffer from drawbacks such as use of expensive enzymes and resolving agents, low overall yields, low optical purity, etc. In order to develop a new route for the asymmetric synthesis of (S)-betaxolol 158 and (S)-metoprolol 159 with good optical purity and yield, we have decided to make use of Co-catalyzed phenolic kinetic resolution of terminal epoxides as the key reaction. A general retrosynthetic analysis for β-blockers \mathbf{A} is presented in Fig. 25. We envisaged that chiral halohydrine \mathbf{B} could serve as the key intermediate for the synthesis of β-blockers via epoxide opening with amine. We also thought phenolic
kinetic resolution of (\pm)-epichlorohydrin with $\mathrm{Ar}-\mathrm{OH} \mathbf{C}$ would result in the formation of chiral halohydrins with good enantioselectivities.

Fig. 25: Retrosynthetic analysis for the β-blockers

A brief account of Co-catalyzed asymmetric kinetic resolution of terminal epoxides is described as follows.

2.3.4.2 Kinetic Resolution

Resolution strategies have always played a central role in the preparation of optically active compounds. Resolutions fall broadly into three classes: (i) Classical resolutions involve the use of stoichiometric amount of chiral resolving agent. (ii) Chiral chromatography generally relies on the use of chiral stationary phases to resolve enantiomers contained in a mobile phase, and in principal it can be carried out on analytical or preparative scale. (iii) Kinetic resolution involves the use of a chiral catalyst or reagent to promote selective reaction of one enantiomer over the other giving a mixture of enantioenriched starting material and product, the desired component is then isolated (Fig. 26).

$$
\mathrm{S}_{\mathrm{s}}+\mathrm{S}_{\mathrm{R}}+\text { reagent } \xrightarrow{\text { chiral catalyst }} \mathrm{S}_{\mathrm{s}}+\mathrm{P}_{\mathrm{R}} \xrightarrow{\text { separation }} \mathrm{S}_{\mathrm{s}} \text { or } \mathrm{P}_{\mathrm{R}}
$$

Fig. 26: kinetic resolution

If the undesired resolution byproduct can be racemized or otherwise converted back to the desired enantiomer, then this can improve the yield, and therefore the practicality of the resolution process. In some special circumstances, it is possible to induce substrate racemization under the conditions of resolution. It then becomes possible in principle to convert essentially 100% of the racemate to the desired product. Such process constitutes a very special subclass of kinetic resolution known as dynamic kinetic resolutions. Kinetic resolutions are particularly attractive, because of the need for only small amounts of chiral "resolving agent". In kinetic resolutions, enantiomers of a racemic substrate (S) react at different rates to form a product (P) that may or may not be a chiral.

2.3.4.3 Kinetic resolution of terminal epoxides via highly enantioselective ring opening with phenols:

Enantiopure α-aryloxy alcohols (181) are valuable targets in asymmetric synthesis and as key synthetic intermediates in a variety of pharmaceutically important compounds. ${ }^{49}$ In principle, access to these building blocks may be provided by several routes, including asymmetric reduction of aryloxy ketones ${ }^{50}$ or the ring opening of enantiopure terminal epoxides with phenols. Of these, the latter is probably the most versatile and direct, but available methods for the addition of phenols to epoxides are extremely limited.

The ready accessibility of terminal epoxides in racemic form renders kinetic resolution of terminal epoxides with phenols a potentially attractive route to $\mathbf{1 8 1}$ (Fig. 27). The high selectivities obtained in the recently reported hydrolytic kinetic resolution of terminal epoxides with catalyst $\mathbf{1 7 0 b}^{51}$ suggested that (salen)Co(III) complexes might also serve as effective catalysts for the enantioselective addition of phenols to epoxides. This
strategy has proven successful and the kinetic resolution of epoxides with phenols has been reported, with the isolation of 1-aryloxy 2-alcohols (181) in high ee's and yields.

Fig. 27: Kinetic resolution of terminal epoxides with phenols

Reaction of 2.2 equiv of (\pm)-epoxide with phenol (ArOH) in the presence of (salen) $\operatorname{Co}(\mathrm{OAc})$ complex $\mathbf{1 7 0 b}$ (0.044 equiv) in tert-butyl methyl ether (TBME) led to 61% conversion of phenol after 55 h at room temperature, with 1 -aryloxy 2 -alcohols generated in 94% ee. Encouraged by the observation of high enantioselectivity in this reaction, a variety of reaction parameters with the goal of identifying a more reactive system has been evaluated. The identity of the counter ion for the (salen)cobalt complex proved to be important in this context, with the perfluoro tert-butoxide complex displaying superior reactivity. Thus, the use of complex $\mathbf{1 7 0} \mathbf{c}$ under conditions otherwise identical to those outlined above resulted in 80% conversion of phenol in 18 h and formation of 1-aryloxy 2-alcohols (181) as the major product in 96% ee. Small amounts of 1,2-diol were also generated, presumably as a result of epoxide hydrolysis with adventitious water, but this pathway could be suppressed easily by the inclusion of 3 A molecular sieves in the reaction mixture.

2.3.5 Results and Discussion

2.3.5.1 Asymmetric synthesis of (S)-betaxolol

The synthesis of (S)-betaxolol 158 commenced from methyl ester 182, which was prepared from commercially available 4-hydroxyphenylacetic acid on simple esterification (Scheme 25).

183, $R=B n$

Scheme 25: (i) anhyd. $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $\mathrm{BnBr}, 0-60{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}, 80 \%$; (ii) LiAlH_{4}, dry THF, $65^{\circ} \mathrm{C}$, $8 \mathrm{~h}, 88 \%$; (iii) NaH , dry DMF, bromomethylcyclopropane, $0-25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 85 \%$; (iv) $10 \% \mathrm{Pd} / \mathrm{C}$, H_{2} (20 psi), MeOH, $12 \mathrm{~h}, 88 \%$; (v) 2.5 equiv. (\pm)-epichlorohydrin, (R, R)-Co-salen 170c, tertbutyl methyl ether, MS 3 A , $-15{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 74 \%$; (vi) $\mathrm{K}^{t} \mathrm{OBu}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 92 \%$; (vii) isopropylamine, $\mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 99 \%$.

Phenol 182 was protected as its benzyl ether $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, benzyl bromide) to give $\mathbf{1 8 3}$ in 80% yield. The formation of benzyl ether $\mathbf{1 8 3}$ was confirmed by the appearance of a singlet at $\delta 5.04(2 \mathrm{H})$ and multiplets at $\delta 7.31-7.43(\mathrm{~m} \mathrm{5H})$ due to benzylic methylene and aromatic protons respectively in its ${ }^{1} \mathrm{H}$ NMR spectrum. Further, its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical signal at $\delta 69.8$ corresponding to benzylic methylene carbon.

Reduction of ester $\mathbf{1 8 3}$ with LiAlH_{4} resulted in the formation of primary alcohol 184, which was subsequently alkylated (bromomethylcyclopropane, NaH) to obtain the corresponding alkyl ether $\mathbf{1 8 5}$ in 85% yields.

Chloroform-d

Fig. 28: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ether 185

The formation of ether $\mathbf{1 8 5}$ was confirmed, in its ${ }^{1} \mathrm{H}$ NMR spectrum, by the appearance of characteristic signals at $\delta 0.19(\mathrm{q}, J=4.7,10.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.50-0.54(\mathrm{~m}, 2 \mathrm{H})$ and $1.03-$
$1.09(\mathrm{~m}, 1 \mathrm{H})$ due to cyclopropyl, methylene and methine protons respectively. It was further substantiated by the appearance of typical carbon signals at $\delta 3.0$ and 10.6 in its ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 28).

The deprotection of benzyl group in ether $\mathbf{1 8 5}$ under hydrogenation condition $[10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{H}_{2}(20 \mathrm{psi})$] was achieved to afford phenol 166. The phenolytic kinetic resolution of $\mathbf{1 6 6}$ with (\pm)-epichlorohydrin (2.5 equiv.) in the presence of (R,R)-Co(III)-salen $\mathbf{1 7 0 c}$ as catalyst afforded optically active chloroalcohol 160a in 74\% yield.

Fig. 29: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of chloroalcohol 160a

Its ${ }^{1} \mathrm{H}$ NMR spectrum showed typical signals at $\delta 1.83$ (brs) (-OH), 3.68-3.81 (m, 2H) ($\left.\mathrm{CH}_{2} \mathrm{Cl}\right)$ and 3.98-4.09 $(\mathrm{m}, 2 \mathrm{H}), 4.11-4.24(\mathrm{~m}, 1 \mathrm{H})$ corresponding to the hydroxyl and the methylene protons of propyl moiety. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at δ $45.7\left(-\mathrm{CH}_{2} \mathrm{Cl}\right), 68.4(-\mathrm{CH}(\mathrm{OH})-)$ and $69.7\left(-\mathrm{CH}_{2} \mathrm{O}-\mathrm{Ar}\right)$ corresponding to methylene and methine carbons of the propyl moiety (Fig. 29).
Chloroformed

158

Chloroform-d

Fig. $30{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (S)-betaxolol 158

The choroalcohol 160a on treatment with $\mathrm{KOBu}^{\mathrm{t}}$ gave the corresponding chiral epoxide 168 in 92% yield. The regiospecific ring opening of epoxide 168 with isopropyl amine in the presence of water at $50{ }^{\circ} \mathrm{C}$ resulted in the formation of (S)-betaxolol 158 in 99% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed a typical doublet at $\delta 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H})$ corresponding methyl protons. Multiplets at $\delta 3.89-3.94(\mathrm{~m}, 2 \mathrm{H})$ and $3.96-4.05(\mathrm{~m}, 1 \mathrm{H})$ indicate the presence of methylene protons of the aminoalcohol moiety. Further, its ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic carbon signals at $\delta 22.6,48.4$ and 49.8 due to the isopropyl carbon and carbons attached to nitrogen atom respectively. The spectral data obtained for (S)-betaxolol 158 were in full agreement with the values reported in the literature (Fig. 30).

2.3.5.2 Asymmetric synthesis of (S)-metoprolol (159)

Our synthesis of metoprolol 159 started from alcohol 184 , which on methylation $\left(\mathrm{CH}_{3} \mathrm{I}\right.$, NaH) gave the methyl ether, 186 in 89% yield (Scheme 26).

Scheme 26: (i) NaH , dry DMF, MeI, $0-25^{\circ} \mathrm{C}, 89 \%$; (ii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi}), \mathrm{MeOH}, 10 \mathrm{~h}$, 90%; (iii) 2.5 equiv. (\pm)-epichlorohydrin, (R, R)-Co-salen 170c, tert-butyl methyl ether, MS 3 $\mathrm{A}^{\circ},-15^{\circ} \mathrm{C}, 24 \mathrm{~h}, 71 \%$; (iv) $\mathrm{K}^{t} \mathrm{OBu}$, THF, $0^{\circ} \mathrm{C}, 90 \%$; (v) isopropylamine, $\mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}$.

The debenzylation of $\mathbf{1 8 6}$ under hydrogenation conditions [$10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(20 \mathrm{psi})$] was achieved to obtain phenol 187, which was then subjected to phenolytic kinetic resolution with (\pm)-epichlorohydrin (2.5 equiv.) in the presence of (R, R) $-\mathrm{Co}(\mathrm{III})$-salen $\mathbf{1 7 0 c}$ as the chiral catalyst to afford optically active chloroalcohol 188 in 71% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed typical signals at $\delta 3.69-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.09(\mathrm{~m}, 2 \mathrm{H})$ and 4.12$4.23(\mathrm{~m}, 1 \mathrm{H})$ due to the corresponding methylene and methine protons respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed carbon signals at $\delta 45.8\left(-\mathrm{CH}_{2} \mathrm{Cl}\right), 68.5(-\mathrm{CH}(\mathrm{OH})-)$ and $69.8\left(-\mathrm{CH}_{2} \mathrm{O}-\mathrm{Ar}\right)$ for the methylene and methine carbons respectively (Fig. 31).

Fig. $31{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of chloroalcohol 188

The choroalcohol $\mathbf{1 8 8}$ was then converted to the corresponding epoxide $\mathbf{1 8 9}\left(\mathrm{KOBu}^{t}\right)$ in 90% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed an upfield shift in the δ value for the methylene and methine protons [3.28-3.32(m, 1H), 3.53(t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.95(\mathrm{t}, J=$ $5.4 \mathrm{~Hz} 1 \mathrm{H}) ; 4.15(\mathrm{dd}, J=3.4,10.9 \mathrm{~Hz}, 1 \mathrm{H})$] of epoxide moiety. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed typical carbon signals at $\delta 44.6$ and 50.0 corresponding to the methylene and methine carbons of epoxide moiety (Fig. 32).

Fig. $32{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of epoxide $\mathbf{1 8 9}$

The regiospecific ring opening of epoxide 189 with isopropyl amine in the presence of water at $50{ }^{\circ} \mathrm{C}$ resulted in the formation of (S)-metoprolol 159 in 99% yield. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a doublet at $\delta 1.07(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H})$ corresponding to the isopropyl carbons. Further, its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at $\delta 22.7$ and at $\delta 48.8$, 49.3 due to the isopropyl group and carbons attached to nitrogen atom respectively (Fig. 33).

Fig. $33{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (S)-metoprolol 159

2.3.6 Conclusion

In conclusion, we have successfully applied Co-catalyzed kinetic resolution of terminal epoxides for the enantioselective synthesis of (S)-betaxolol (158) (99\% ee) and (S)metoprolol (159) (99\% ee). The reactions are rapid and require a relatively low amount of an inexpensive Co-catalyst. The high enantiopurity and yields, less number of steps render our approach a good alternative to the known routes reported in the literature.

2.3.7 Experimental Section

Methyl 2-(4-(benzyloxy) phenyl) acetate (183)

To a solution of methyl 2-(4-hydroxyphenyl) acetate $\mathbf{1 8 2}$ (5.0 g, 30.10 mmol) in dry acetone $(40 \mathrm{~mL})$ was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(4.15 \mathrm{~g}, 30.10 \mathrm{mmol})$ at room temperature. After 15 min . benzyl bromide ($3.5 \mathrm{~mL}, 30.10 \mathrm{mmol}$) in 5 mL acetone was added very carefully. The reaction mixture was refluxed for 8 h at $60^{\circ} \mathrm{C}$. After completion of the reaction, as monitored by TLC, acetone was evaporated on a rotatory evaporator. The residue was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) washed with water ($3 \times 20 \mathrm{~mL}$) and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layers were concentrated under reduced pressure and the product was purified by column chromatography using pet.ether:ethyl acetate $(90: 10)$ to give benzyl ether 183 .

Yield: $80 \%(6.2 \mathrm{~g})$; colorless oil IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3452,3033,2925,2854,2360,1735$, $1612,1512,1456,1242,1167,1076,1016,819,698,617 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 2H), $7.31(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 40.2,51.8,69.8,114.8,126.2,127.3$, 127.8, 128.0, 128.5, 130.2, 136.9, 157.8, 172.0; Anal. Calcd for: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, 74.98; H, 6.29; Found C, 75.01, H, 6.05\%.

2-(4-(Benzyloxy) phenyl)ethanol (184)

A suspension of $\mathrm{LiAlH}_{4}(1.48 \mathrm{~g}, 39.01 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. To this, a solution of methyl 2-(4-(benzyloxy)phenyl)acetate $183(5 \mathrm{~g}, 19.50 \mathrm{mmol})$ in 15 mL dry THF was added slowly at $0^{\circ} \mathrm{C}$ over a period of 20 min and then stirred for 8 h at $65{ }^{\circ} \mathrm{C}$. Then the reaction mixture was cooled to room temperature and quenched with $20 \% \mathrm{NaOH}$ followed by EtOAc (5 mL) and extracted with EtOAc (3 x 50 mL) and organic layers were washed with water (3 x 20 mL), dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure. The crude product was purified by column chromatography pet.Ether:EtOAc (70:30) to give 2-(4-(benzyloxy)phenyl)ethanol 184.

Yield: $88 \%(3.9 \mathrm{~g}) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3452,3018,2945,2877,2399,2380,1610,1510$, 1380, 752, 669; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.29-7.44 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 38.1, $63.5,69.8,114.8,127.2,127.7$, 128.4, 129.8, 130.7, 136.9, 157.5; Anal. Calcd for: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.92 ; \mathrm{H}, 7.06$; Found C, 78.66, H, 6.99\%.

1-((4-(2-(Cyclopropylmethoxy)ethyl)phenoxy)methyl)benzene (185)

To a solution of sodium hydride $(0.425 \mathrm{~g}, 10.51 \mathrm{mmol})$ in dry DMF $(30 \mathrm{~mL})$ was added 2-(4-(benzyloxy)phenyl)ethanol $184(2.0 \mathrm{~g}, 8.76 \mathrm{mmol})$ and the reaction mixture was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$ and then (bromomethyl)cyclopropane ($1.0 \mathrm{~mL}, 10.51$) was added drop-wise. The reaction mixture was stirred for 10 h at $25^{\circ} \mathrm{C}$. After the completion of the reaction, as monitored by TLC, it was quenched with water and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), washed with water followed by brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layers were concentrated under reduced pressure to give alkylated
product 185 , which was purified by the column chromatography using pet. ether: EtOAc (90:10) as eluent.

Yield: $85 \%(2.1 \mathrm{~g})$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2923,2864,2360,2343,1716,1616,1512,1456$, $1288,1265,1238,1108,748 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): 0.19(\mathrm{q}, J=4.7,10.3 \mathrm{~Hz}$, $2 \mathrm{H}), 0.50-0.54(\mathrm{~m}, 2 \mathrm{H}), 1.03-1.09(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 3.0,10.6,35.5,69.9,71.8,75.5,114.7,127.3,127.8,128.5,129.8$, 131.2, 137.1, 157.2; Anal. Calcd for: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.82 ; \mathrm{H}, 7.85$; Found C , 80.71, H, 7.79\%.

4-(2-(Cyclopropylmethoxy)ethyl)phenol (166)

A solution of benzyl ether $185(1.5 \mathrm{~g}, 5.3 \mathrm{mmol})$ was dissolved in MeOH followed by the addition of $10 \% \mathrm{Pd} / \mathrm{C}(80 \mathrm{mg})$ to it. The reaction mixture was stirred under hydrogen atmosphere (20 psi) for 12 h . After completion of the reaction, monitored by TLC, it was filtered through celite pad, and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography over silica gel using pet.ether: EtOAc (70:30) as eluent to give pure product $\mathbf{1 6 6}$.

Yield: $88 \%(880 \mathrm{mg})$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3431,2923,2864,2360,2343,1716,1616$, $1515,1456,1288,1265,1238,1108,831,748 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.14-0.22$ $(\mathrm{m}, 2 \mathrm{H}), 0.47-0.56(\mathrm{~m}, 2 \mathrm{H}), 0.95-1.15(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 3.1,10.4,35.2,71.8,75.7,115.3,129.8$,
129.9, 154.4; Anal. Calcd for: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, 74.97; H, 8.39; Found C, 73.98, H, 8.88\%.

(R)-1-(4-(2-(Cyclopropylmethoxy)ethyl)phenoxy)-3-chloropropan-2-ol (160a)

To a stirred mixture of (R,R)-Co complex 170c ($0.0100 \mathrm{~g}, 0.044$ equiv.), (\pm)epichlorohydrin ($0.960 \mathrm{~g}, 10.4 \mathrm{mmol})$, tert-butyl methyl ether $(0.15 \mathrm{~mL})$ and $3 \AA$ molecular sieve (150 mg) at $-15{ }^{\circ} \mathrm{C}$ was added phenol 166 ($800 \mathrm{mg}, 4.16 \mathrm{mmol}$). The reaction was stirred at $-15{ }^{\circ} \mathrm{C}$ until GC analysis indicated complete conversion of phenols, at which time pyridinium p-toluenesulfonate ($52 \mathrm{mg}, 5 \mathrm{~mol} \%$) was added. The reaction mixture was filtered through a pad of silica and washed with 50% EtOAc/hexanes (25 mL). The filtrate was concentrated in vacuo to give the crude product, which was purified by chromatography using pet.ether:EtOAc (70:30) as eluent to give chloroalcohol 160a.

Yield: $74 \%(870 \mathrm{mg}) ;[\alpha]^{25}{ }_{\mathrm{D}}:-1.6\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3600,3212,3065$, 2995, 2900, 2825, 1610, 1511, 1423, 1412, 1366, 1275, 1237, 1175, 1077, 1037, 810; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.14-0.22(\mathrm{~m}, 2 \mathrm{H}), 0.47-0.56(\mathrm{~m}, 2 \mathrm{H}), 0.93-1.14(\mathrm{~m}, 1 \mathrm{H})$, $1.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 3.68-3.81 (m, 2H), 3.98-4.09 (m, 2H), 4.11-4.24 (m, 1H), $6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 3.0,10.5,35.3,45.7,68.4,69.7,71.6$, $75.5,114.3,129.8,131.6,156.6$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClO}_{3}: \mathrm{C}, 63.26 ; \mathrm{H}, 7.43 ; \mathrm{Cl}$, 12.45; Found: C, 63.41; H, 7.33; Cl, 12.38\%.
(S)-2-((4-(2-(Cyclopropylmethoxy)ethyl)phenoxy)methyl)oxirane (168)

To a solution of chloroalcohol $160 \mathrm{a}(0.5 \mathrm{~g}, 1.75 \mathrm{mmol})$ in dry THF $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added potassium tert-butoxide ($394 \mathrm{mg}, 3.5 \mathrm{mmol}$) and stirred for 1 h , diluted with $\mathrm{H}_{2} \mathrm{O}$
$(10 \mathrm{~mL})$ and extracted with ether $(3 \times 20 \mathrm{~mL})$. The collected organic layers were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated in vacuo to afford chiral epoxides $\mathbf{1 6 8}$ in high yield.

Yield: $92 \%(410 \mathrm{mg}) ;[\alpha]^{25} \mathrm{D}:+2.03\left(c 1, \mathrm{CHCl}_{3}\right),\left\{\left[\mathrm{lit}^{47}[\alpha]^{25} \mathrm{D}:+2.05\left(c 1, \mathrm{CHCl}_{3}\right)\right]\right\} ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3070,3014,2920,2855,1722,1610,1575,1510,1452,1372,1290,1240$, 1166, 1070, 1022, 935, $826 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.14-0.22(\mathrm{~m}, 2 \mathrm{H})$, $0.47-0.56(\mathrm{~m}, 2 \mathrm{H}), 0.95-1.12(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.86-$ $2.91(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ $(\mathrm{dd}, J=5.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=3.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ $\left.(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)\right): \delta 2.9,10.5,35.3,44.6,50.1,68.7,71.6$, 75.5, 114.4, 129.7, 131.6, 156.8; Anal. Calcd for: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 72.55; H, 8.12; Found: C, 72.63; H, 7.99\%.

(S)-Betaxolol (158)

A solution of epoxide $(\mathrm{S}) \mathbf{- 1 6 8}(0.3 \mathrm{~g}, 1.2 \mathrm{mmol})$ in 2-propylamine $(2.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2-$ 3 drops) was refluxed until TLC showed the reaction had gone to completion (12 h). Removal of the solvent yielded the crude (S)-betaxolol 158 as a free base.

Yield: $99 \%(370 \mathrm{mg}) ;[\alpha]^{25}{ }_{\mathrm{D}}:-7.39\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right),\left\{\left[\mathrm{lit}^{48}[\alpha]^{25}{ }_{\mathrm{D}}:-7.40\left(c 1, \mathrm{CHCl}_{3}\right)\right]\right\}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3297,3043,2978,2864,1612,1555,1468,1370,1244,1176,1091$, 930, 870; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.14-0.21(\mathrm{~m}, 2 \mathrm{H}), 0.47-0.56(\mathrm{~m}, 2 \mathrm{H}), 0.87-$ $1.04(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.65-2.91(\mathrm{~m}, 5 \mathrm{H}), 3.26(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=7.3,14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.96-4.05(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.9,10.5,22.6,35.3,48.4$,
49.8, 68.1, $69.9,71.6,75.4,114.3,129.7,131.5,156.7$; Anal. Calcd for: $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3}$: C, 70.32; H, 9.51; N, 4.56; Found: C, 70.32; H, 9.51; N, 4.56\%.

1-((4-(2-Methoxyethyl)phenoxy)methyl)benzene (186)

To a solution of sodium hydride $(0.297 \mathrm{~g}, 7.42 \mathrm{mmol})$ in dry DMF $(25 \mathrm{~mL})$ was added alcohol $\mathbf{1 8 4}(1.5 \mathrm{~g}, 6.1 \mathrm{mmol})$ and the reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ and then methyl iodide ($0.770 \mathrm{~mL}, 12.38 \mathrm{mmol}$) was added drop-wise. The reaction mixture was stirred for 6 h at $25^{\circ} \mathrm{C}$. After the completion of the reaction, as monitored by TLC, it was quenched with water and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$) and washed with water followed by brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layers were concentrated under reduced pressure to give the methyl ether 186, which was purified by the column chromatography using pet. ether: EtOAc (90:10).

Yield: $89 \%(1.41 \mathrm{~g}) ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2921,2860,2357,2340,1712,1611,1510,1230$, 1176, 748; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.43$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.2,58.4,69.7,73.7,114.6,127.2,127.7$, 128.4, 129.6, 131.1, 137.1, 157.2; Anal. Calcd for: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, 79.31; H, 7.49; Found C, 78.98, H, 7.62\%.

4-(2-Methoxyethyl)phenol (187)

To a solution of benzyl ether $186(1.0 \mathrm{~g}, 4.12 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added 10% $\mathrm{Pd} / \mathrm{C}(60 \mathrm{mg})$. The reaction mixture was stirred under hydrogen atmosphere (20 psi) for 10 h . After completion of the reaction, as monitored by TLC, the reaction mixture was then filtered through celite pad, and the filtrate was concentrated under reduced pressure.

The crude product was purified by column chromatography over silica gel using pet.ether: EtOAc (70:30) as eluent to give pure phenol 187.

Yield: $90 \%(570 \mathrm{mg})$; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3429,2920,2860,2341,1722,1621,1502$, 1451, 1264, 831; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, $3.56(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 35.0, 58.4, 74.0, 115.3, 129.8, 154.4; Anal. Calcd for: $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.03$; $\mathrm{H}, 7.95$; Found $\mathrm{C}, 70.98, \mathrm{H}, 8.02 \%$.

(R)-1-(4-(2-Methoxyethyl)phenoxy)-3-chloropropan-2-ol (188)

For experimental details, see the procedure given for compound 160a
Yield: $71 \%(578 \mathrm{mg}) ;[\alpha]^{25}$ D -0.9 , (c 1, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3051,3000,2915$, $2851,1720,1625,1510,1430,1366,1252,1080,932,826 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 2.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.34(\mathrm{~s}, 3 \mathrm{H}) ; 3.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.69-3.79(\mathrm{~m}, 2 \mathrm{H}) ; 4.02-$ $4.09(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.23(\mathrm{~m}, 1 \mathrm{H}) ; 6.82(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.12(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 35.2,45.8,58.5,68.5,69.8,73.7,114.4,127.6,128.3$, 129.8, 131.8, 156.7; Anal. Calcd for: $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClO}_{3}$ requires C, 58.90; $\mathrm{H}, 7.00 ; \mathrm{Cl}, 14.49$; Found C, 58.91, H, 6.99; Cl, 14.57\%.

(S)-2-((4-(2-Methoxyethyl)phenoxy)methyl)oxirane (189)

To a solution of chloroalcohol $188(3 \mathrm{mmol})$ in dry THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added potassium tert-butoxide ($0.673 \mathrm{~g}, 6 \mathrm{mmol}$) and the mixture stirred for 1 h , diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with ether $(3 \times 20 \mathrm{~mL})$. The collected organic layers were washed with brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated in vacuo to afford chiral epoxide 189 in high yield.

Yield: $90 \% ;[\alpha]^{25}{ }_{\mathrm{D}}:+11.8$, (c 1, MeOH); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3068,3011,2915,2845$, $1718,1601,1521,1452,1372,1290,1240,1152,1070,935,826 ;{ }^{1} \mathbf{H} \mathbf{~ N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.70-2.90(\mathrm{~m}, 4 \mathrm{H}) ; 3.28-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}) ; 3.53(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$; 3.95 (t, $J=5.4 \mathrm{~Hz} 1 \mathrm{H}) ; 4.15(\mathrm{dd}, J=3.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.11$ $(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 35.3,44.6,50.0,58.5,68.7,73.8$, 114.5, 129.7, 131.5, 156.9; Anal. Calcd for: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, 69.21; H, 7.74; Found C, 69.33, H, 7.62\%.

(S)-Metoprolol (159)

For experimental details, see the procedure given for compound 158.
Yield: $99 \% ;[\alpha]^{25}{ }_{\mathrm{D}}:-8.09\left(c\right.$ 1, $\left.\mathrm{CHCl}_{3}\right) ;\left\{\mathrm{lit.}^{47}[\alpha]^{20}{ }_{\mathrm{D}}:-8.10\left(c 1, \mathrm{CHCl}_{3}\right\} ;\right.$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right): 3300,3012,2988,2852,1602,1577,1510,1462,1382,1295,1244,1221,1172,1088$, 927, 820,$752 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.07(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.65-2.90(\mathrm{~m}, 5 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.98-4.05$ $(\mathrm{m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $22.7,35.1,48.8,49.3,58.5,68.2,70.5,73.7,114.3,129.6,131.2,157.0$; Anal. Calcd for: $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires C, 67.38; H, 9.42, N, 5.24; Found C, 67.42, H, 9.70, N, 4.99\%.

2.3.8 References:

(a) Reetz, M.T.; Angew. Chem. Int. Ed. Engl. 1991; 30, 1531; (b) Ohfune Y. Acc. Chem. Res. 1992, 25, 360; (c) Yokomatsu, T.; Yuasa, Y.; Shibuya, S.; Heterocycles, 1992, 33, 1051; (d) Golebiowski, A.; Jurczak, J.; Synlett, 1993, 241.
(a) Umezawa, H.; Aoyagi, T.; Morishima, H.; Matsuzaki, M.; Hamada, M.; Takeuchi, T.; J. Antibiot. 1970, 23, 259; (b) Aoyagi, T.; Tobe, H.; Kojima, F.; Hamada, M.; Takeuchi, T.; Umezawa, H.; Amastatin, J. Antibiot. 1978, 31, 636; (c) Gante, J. Angew. Chem. Int. Ed. Engl. 1994, 33, 1699.

Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988, 31, 2235.

Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679.
Gershwin, M. E.; Terr, A. Clin. Rev. Allergy Immunol. 1996, 14, 241.
Masaki, Y.; Imaeda, T.; Nagata, K.; Oda, H.; Ito, A.; Tetrahedron Lett. 1989, 30, 6395.
Comins, D. L.; Williams, A. L. Tetrahedron Lett. 2000, 41, 2839.
Pandey, S. K.; Kumar, P.; Tetrahedron Lett. 2005, 46, 4091.
Chang, M-Y.; Kung, Y-H.; Chen, S-T. Tetrahedron, 2006, 62, 10843.
Sutherland, A.; Jamieson, A. G. Org. Lett. 2007, 9, 1609.
Roy, S.; Sharma, A.; Mula, S.; Chattopadhay, S. Chem. Eur. J. 2009, 15, 1713.
Felpin, F-X.; Lebreton, J. J. Org. Chem. 2002, 67, 9192.
Angoli, M.; Barilli, A.; Lesma, G.; Passarella, D.; Riva, S.; Silvani, A.; Danieli, B. J. Org. Chem. 2003, 68, 9525.

Zheng, G.; Dwoskin, L. P.; Crooks, P. A. J. Org. Chem. 2004, 69, 8514.
Raghavan, S.; Rajender, A. Tetrahedron Lett. 2004, 45, 1919.
Bisai, A.; Singh, V. K. Tetrahedron Lett. 2007, 48, 1907.
Krishnan, S.; Bagdanoff, J. T.; Ebner, D. C.; Rantohul, Y. K.; Tamber, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 13745.
(a) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Angew. Chem Int. Ed. 2003, 43, 1112; (b) Brown, S. P. ; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808.

Varala, R.; Nuvula, S.; Adapa, S. R. J. Org. Chem. 2006, 71, 8283.
Gurjar, M. K.; Kumar, V. S.; Rao, B. V. Tetrahedron, 1999, 55, 12563.
Cinquin, C.; Bortolussi, M.; Bloch, R.; Tetrahedron, 1996, 52, 6943.
Fernandes, R. A.; Kumar, P. Tetrahedron: Asymmetry, 1999, 10, 4349.
(a) Fuhshuku, K-i.; Mori, K. Tetrahedron: Asymmetry, 2007, 18, 2104; (b) Huang, P. Q.; Guo, ZQ.; Ruan, Y.-P. Org. Lett. 2006, 8, 1435.
(a) Sanchez-Sancho, F.; Herradon, B. Tetrahedron: Asymmetry, 1998, 9, 1951; (b) Stehl, A.; Seitz, G.; Schulz, K. Tetrahedron, 2002, 58, 1343; (c) Masaki, Y.; Imaeda, T.; Nagata, K.; Oda, H.; Ito, A. Tetrahedron Lett. 1989, 30, 6395.
(a) Gilligan, P. J.; Cain, G. A.; Christos, T. E.; Cook, L.; Drummond, S.; Johnson, A. L.; Kergaye, A. A.; McElroy, J. F.; Rohrbach, K. W.; Schmidt, W. K.; Tam, S. W. J. Med. Chem. 1992, 35, 4344; (b) Yang, S. S.; Cragg, G. M.; Newman, D. J.; Bader, J. P. J. Nat. Prod. 2001, 64, 265; (c) Kennelly, E. J.; Flynn, T. J.; Mazzola, E. P.; Roach, J. A.; McCloud, T. G.; Danford, D. E.; Betz, J. M. J. Nat. Prod. 1999, 62, 1385; (d) Mill, S.; Hootele', C. J. Nat. Prod. 2000, 63, 762.

Eibein, A. D.; Molyneux, R. In Alkaloids; Chemical and Biological perspectives; Pelletier, S. W., Ed.; John Wiley and Sons: New York, 1987; Vol. 57, p 1
(a) Strunzand, G. M.; Finlay, J. A. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, pp 89-174; (b) Buffat, M. G. P. Tetrahedron, 2004, 60, 1701.
(a) Micel, K.-H.; Sandberg, F.; Haglid, F.; Norin, T. Acta Pharm. Suec. 1967, 4, 97; (b) Micel, K.H.; Sandberg, F.; Haglid, F.; Norin, T.; Chan, R. P. K.; Craig, J. C. Acta Chem. Scand. 1969, 23, 3479.

Takahata, H.; Kubota, M.; Momose, T. Tetrahedron Lett. 1997, 38, 3451
Davis, F. A.; Prasad, K. R.; Nolt, N. B.; Wu, Y. Org. Lett. 2003, 5, 925
(a) Passarella, D.; Barilli, A.; Belinghieri, F.; Fassi, P.; Riva,S.; Sacchetti, A.; Silvani, A.; Danieli, B. Tetrahedron: Asymmetry, 2005, 16, 2225; (b) Takahata, H.; Kubota, M.; Ikota, N. J. Org. Chem. 1999, 64, 8594.
Chen, L-J.; Hou, D-R. Tetrahedron: Asymmetry, 2008, 19, 715
(a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974; (b) Martin, V. S.; Woodward, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237.

Woodward, S. S.; Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 106.
(a) Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 113; (b) Potvin, P. G.; Bianchet, S. J. J. Org. Chem. 1992, 57, 6629.

Yadav, J. S.; Reddy, C. S. Org. Lett. 2009, 11, 1705.
(a) 33; (b) Chattopadhyay, S.; Pattenden, G. J. Chem. Soc. Perkin. Trans. 1, 2000, 2429.

Finan, J. M.; Kishi, Y.; Tetrahedron Lett. 1982, 23, 2719.
(a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835; (b) Seyden-Penne, J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis; Wiley: New York, 1995, p 306; (c) Zhong, Y. W.; Tian, P.; Lin, G. Q. Tetrahedron: Asymmetry, 2004, 15, 771; (d) Faber, W. S.; Kok, J.; De, L. B.; Feringa, B. L. Tetrahedron, 1994, 50, 4775; (e) Carrillo, L.; Badia, D.; Dominguez, E.; Anakabe, E.; Osante, I.; Tellitu, I. J. Org. Chem. 1999, 64, 1115.
(a) Teerlink, J.; Massie, B. Am. J. Cardiol. 1999, 84, 94, (b) Messerli, F. H.; Grossman, E. Drugs 2001, 61, 1531; (c) Ellison, K. E.; Gandhi, G. Drugs 2005, 65, 787; (d) Baran, D.; Horn, E. M.; Hryniewicz, K.; Katz, S. D. Drugs 2000, 60, 997.
(a) Klibanov, A. M. Acc. Chem. Res. 1990, 23, 114; (b) Wang, C. H. Science 1989, 244, 1145; (c) Yamada, H.; Shimizu, S. Angew. Chem. Int. Ed. Engl. 1988, 27, 622.
(a) Berrospi, A. R.; Leibowitz, H. M. Arch. Opthalmol. 1982, 100, 943; (b) Hussain, S. S.; AboulEnein, H. Y.; Al-Dhakan, A.; Hannan, M. Toxicology 1989, 12, 77.
(a) Riddell, J. G.; Shanks, R. G. Clinical Pharmacology and Therapeutics 1985, 38, 554; (b) Chidlow, G.; Melena, J.; Osborne, N. N. Br J Pharmacol. 2000, 130, 759.
Feuerstein, G.; Liu, G-L.; Yue, T-L.; Cheng, H-Y.; Hieble, J. P.; Arch, J. R. S.; Ruffolo, R. R.; Ma, X-L. Eur. J. Pharm. 1998, 351, 341.
Bono, G, D.; Scilimati, A. Synthesis, 1995, 699.
Joshi, R. A.; Garud, D. R.; Muthukrishnan, M.; Joshi, R. R.; Gurjar, M. K. Tetrahedron: Asymmetry, 2005, 16, 3802.

Muthukrishnan, M.; Garud, D. R.; Joshi, R. R.; Joshi, R. A. Tetrahedron, 2007, 63, 1872.
Zhang, J-Y.; Liu, H-M.; Wang, X-J.; Wang, P.; Zheng, J-X. Chirality, 2009, 21, 745.
(a) Wright, J. L.; Gregory, T. F.; Heffner, T. G.; MacKenzie, R. G.; Pugsley, T. A.; Meulen, S. V.; Wise, L. D. Bioorg. Med. Chem. Lett. 1997, 7, 1377; (b) Baker, N. R.; Byrne, N. G.; Economides, A. P.; Javeld, T. Chem. Pharm. Bull. 1995, 1045; (c) Kirkup, M. P.; Rizvi, R.; Shankar, B. B.; Dugar, S.; Clader, J.; McCombie, S. W.; Lin, S.; Yumibe, N.; Huie, K.; Heek, M.; Compton, D. S.; Davis, H, R.; McPhail, A. T. Bioorg. Med. Chem. Lett. 1996, 6, 2069.
(a) Takahashi, H.; Sakuraba, S.; Takea, H.; Achiwa, K. J. Am. Chem. Soc. 1990, 112, 5877; (b) Gooding, O.; Colin, B.; Cooper, G.; Jackson, D. J. Org. Chem. 1993, 58, 3681; (c) Yuan, R.; Watanabe, S.; Kuwabata, S.; Yoneyama, H. J. Org. Chem. 1997, 62, 2494.
(a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936; (b) Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121, 6086.

CHAPTER III

NaIO_{4}-Mediated C-H Activation of Alkylarenes and Oxidative Functionalization of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{Br}$, C-O bonds

Section I

NaIO_{4}-Mediated C-H Activation of Alkylarenes: Oxyfunctionalization at the Benzylic Position

3.1.1 Introduction

A powerful new class of reactions are emerging that introduce oxidized functionality directly into aliphatic or aromatic $\left(\mathrm{sp}^{3}\right) \mathrm{C}-\mathrm{H}$ bonds. The direct oxidation of benzylic $\mathrm{C}-\mathrm{H}$ bonds constitutes one of the most fundamental transformations in organic synthesis. ${ }^{1}$ Particularly, the benzylic acetoxylation is of great interest from both academic as well as industrial viewpoint as the target product benzyl acetate is widely used in perfumery, food and chemical industries. The importance of aromatic oxyfunctionalized compounds as raw materials has an increasing significance due to the changes in the refinery processes. The chemoselective oxidation of alkylarenes to produce specific oxygenated derivatives is of great importance. The benzylic C-H bond exhibits highest reactivity due to its low dissociation energy as compared to other alkyl C-H bonds, the order of reactivity is benzylic C-H $(\sim 85 \mathrm{k} . \mathrm{cal} / \mathrm{mol})>$ tertiary C-H $(\sim 91 \mathrm{k} . \mathrm{cal} / \mathrm{mol})>$ secondary CH $(\sim 94 \mathrm{k} . \mathrm{cal} / \mathrm{mol})>$ primary C-H $(\sim 98 \mathrm{k} . \mathrm{cal} / \mathrm{mol})$. As a result, benzylic C-H oxidations are complicated due to several competing reactions resulting in a range of oxygenated products. Thus, the development of new catalytic process for such raw materials is indeed more and more attractive. A benzylic oxygenated derivative assumes importance such as alcohols and carbonyl compounds being useful as specialty chemicals in industry. ${ }^{2}$ Generally, $\mathrm{C}-\mathrm{H}$ activation at benzylic position is achieved using a variety of transition metal salts as catalysts or oxidation under high pressure. However, several drawbacks are
associated with these processes which include: (i) the toxicity of some transition metals, (ii) stoichiometric reaction conditions and (iii) non-generality.

3.1.2 Review of literature

Bryant's approach (1968) ${ }^{3,4}$

Bryant et al. have developed an efficient, liquid-phase, catalytic process for the benzylic oxidation, based on the stoichiometric reaction of toluene with palladium(I1) acetate, potassium acetate in acetic acid at $100^{\circ} \mathrm{C}$. The benzyl esters isolated in 92.5% along with 6.0\% of benzylidene diacetate and a trace of benzaldehydes (Scheme 1).

Scheme 1: (i) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{KOAc}, \mathrm{AcOH}, 100^{\circ} \mathrm{C}$

Same author has again reported another method to prepare benzyl esters 5, which are produced catalytically at moderate temperatures from methylbenzenes $\mathbf{4}$ in a liquid phase process employing a homogeneous palladium-stannous acetate catalyst and O_{2} (1 atm) (Scheme 2).

Scheme 2: (i) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Sn}(\mathrm{OAc})_{2}, \mathrm{O}_{2}, \mathrm{AcOH}, 100{ }^{\circ} \mathrm{C}$

Bergman's approach (1978) ${ }^{5,6}$

Bergman et al. have reported TeO_{2}-catalyzed acetoxylation of alkylarenes using lithium bromide at high temperature to form the corresponding mixture of substituted benzyl acetates 6 \& 7 (Scheme 3).

Scheme 3: (i) $\mathrm{TeO}_{2}, \mathrm{LiBr}, \mathrm{AcOH}, 120^{\circ} \mathrm{C}$

The same author has reported a TeO_{2} or $\mathrm{Te}(\mathrm{OH})_{6}$-catalyzed oxidation of alkyl substituted aromatic and aliphatic substrates to give acetoxymethylated product. In the acetoxymethylation reaction TeO_{2} apparently slowly oxidized the solvent, HOAc , to a reactive species for e.g., acetoxycarbene, which attacked the aromatic compound. In the side-chain acetoxylations, $\mathrm{Te}(\mathrm{OH})_{6}$ oxidized bromide ions to Br_{2}, which caused benzylic bromination (Scheme 4).

Scheme 4: (i) $\mathrm{TeO}_{2}, \mathrm{Te}(\mathrm{OH})_{6}, \mathrm{LiBr}, \mathrm{AcOH}, 160{ }^{\circ} \mathrm{C}$

Beek's approach (1978) ${ }^{7}$

Beek et al. have employed Cobalt(III) acetate in catalytic amount for aerobic acetoxylation of alkylarenes in acetic acid solution. Under anaerobic conditions the
substituted toluenes were first converted into benzyl acetate and subsequently into benzaldehydes (Scheme 5).

$\mathrm{R}=\mathrm{alkyl}, \mathrm{Br}, \mathrm{OMe}, \mathrm{CO}_{2} \mathrm{H}$
Scheme 5: (i) $\mathrm{Co}(\mathrm{OAc})_{2}, \mathrm{O}_{2}, \mathrm{AcOH}, 93^{\circ} \mathrm{C}$

Okada's approach (1981) ${ }^{8}$

Okada et al. have developed the liquid-phase oxidation of methylbenzenes catalyzed by a catalyst system composed of cobalt(II) and copper(II) acetates and NaBr which was carried out in acetic acid solvent at $150{ }^{\circ} \mathrm{C}$. However, ring-bromination observed in case of electron donating methylbenzenes (Scheme 6).

Kaneda's approach (2002) ${ }^{9}$

Kaneda et al. have described a method to prepare Pd clusters by treatment of palladium carbonyl acetate cluster, $\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAc})_{4} \cdot 2 \mathrm{AcOH}$, with metal nitrates, e.g. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$, in the presence of 1,10-phenanthroline. Pd cluster showed a high catalytic activity for the oxidative acetoxylation of toluene to give benzyl acetates in the presence of molecular oxygen (Scheme 7).

Scheme 7: (i) $\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAc})_{4} \cdot 2 \mathrm{AcOH}, \mathrm{AcOH}, 90^{\circ} \mathrm{C}$.

Martins's approach (2009) ${ }^{10}$

Martin et al. have developed $\mathrm{Pd}-\mathrm{Sb}$ supported acetoxylation with supports such as TiO_{2}, $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$ and ZrO_{2} are applied at constant $\mathrm{Pd}(10 \mathrm{wt} \%)$ and $\mathrm{Sb}(8 \mathrm{wt} \%)$ contents. Catalytic performance of these solids is evaluated for the gas phase acetoxylation of toluene to benzyl acetate in $>90 \%$ conversion (Scheme 8).

1
2

Scheme 8: (i) $\mathrm{Pd}-\mathrm{Sb}_{\mathrm{SiO}}^{2}$, $\mathrm{AcOH}, \mathrm{O}_{2}, 75 \%$.

3.1.3 Present Work

3.1.3.1 Objective

From the above discussion it is clear that although there are many methods available for the oxidation of alkylarenes, several of them suffer from certain drawbacks such as low yields, poor regioselectivity, use of toxic metal salts or exotic reagents. This section describes a new method which involves the C-H oxidation of alkanes and alkylarenes into their corresponding oxygenated derivatives using NaIO_{4} as the oxidizing agent and lithium bromide as the bromide source with acetic acid as solvent.

3.1.4 Results and discussion

In our initial studies, we have found that sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ oxidizes alkali metal halides efficiently in aqueous medium in halogenating of alkenes and aromatics at $25^{\circ} \mathrm{C}$ and thus producing the corresponding halo derivatives with excellent regio and stereoselectivity. ${ }^{11}$ In this regard, we envisioned that at high temperatures, the oxidative process should result in the formation of benzylic halides. On investigation, we have found that $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{H}^{+}$combination oxidatively functionalizes the $\mathrm{C}-\mathrm{H}$ bonds of alkylarenes. ${ }^{12}$ Thus, when toluene was heated with lithium bromide (1.1 equiv) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (2 M equiv) in the presence of catalytic $\mathrm{NaIO}_{4}\left(25 \mathrm{~mol} \%\right.$) in MeOH at $65^{\circ} \mathrm{C}$, the corresponding benzylic bromide 14 and methyl ether 15 were obtained as a mixture in moderate yields (Scheme 9).

1
$R=M e$, alkyl, etc.

14, $X=B r$; yield $=36 \%$
15, $X=$ OMe; yield $=43 \%$

Scheme 9: (i) $\mathrm{NaIO}_{4}(25 \mathrm{~mol} \%), \mathrm{LiBr}(5.5 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{MeOH}, 6{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

In order to establish the scope of this reaction, a variety of alkylarenes were screened and the results are presented in Table 1. Surprisingly, no reaction took place when other halide sources such as $\mathrm{NaBr}, \mathrm{NaI}, \mathrm{LiCl}$ and KI were employed. In the absence of NaIO_{4}, no reaction took place; lowering the molar ratio of NaIO_{4} also resulted in reduced yield. In the case of isobutylbenzene it may be noted that the corresponding methyl ether $\mathbf{1 5}$ was obtained as the sole product (42\%), whereas only benzylic-bromo compound 14 (31\%) was obtained when acetonitrile was used as solvent.

Table 1: NaIO_{4}-mediated oxidative bromination and methoxylation of alkylarenes with metal halides ${ }^{\text {a }}$

Entry	Substrate	Metal halide	Solvent	Temp (${ }^{\circ} \mathrm{C}$)	Yield (\%) ${ }^{\text {b }}$	
					14	15
a	Toluene	LiBr	MeOH	65	47	36
		LiBr	$\mathrm{CH}_{3} \mathrm{CN}$	80	31	-
		NaBr	MeOH	65	NR	-
b	Ethylbenzene	LiBr	MeOH	65	36	43
c	p-Xylene	LiBr	MeOH	65	45	30
d	Isobutylbenzene	LiBr	MeOH	65	-	42

${ }^{\text {a }}$ Conditions: substrate (10 mmol), $\mathrm{NaIO}_{4}\left(25 \mathrm{~mol} \%\right.$), metal bromide (11 mmol), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(0.5 \mathrm{~mL}, 20 \mathrm{mmol})$, solvent (15 mL), 24 h .
${ }^{\mathrm{b}}$ Isolated yield after chromatographic purification.

The ${ }^{1} \mathrm{H}$ NMR spectrum of benzyl methyl ether (15a) displayed two singlets at $\delta 3.42$ and $\delta 4.49$ due to methoxyl $\left(-\mathrm{OCH}_{3}\right)$ and benzylic methylene protons respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic peaks at $\delta 57.5$ and $74.2\left(\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{OCH}_{3}\right)$ due to methyl and benzylic methylene carbons respectively.

Reaction condition was optimized so that good selectivity to product was achieved when milder acid like acetic acid was used in place of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{SO}_{4}$ (Scheme 10). Table 2 shows the scope of NaIO_{4}-mediated oxidative bromination/acetoxylation of several alkylbenzenes and arenes with LiBr in glacial acetic acid as solvent. Interestingly, high yields ($60-87 \%$) and selective acetoxylation at the benzylic position were observed with all the alkylarenes studied except for 4-nitrotoluene (Table 2, entry f), where in the

Scheme 10: (i) alkyl arene (3 mmol), NaIO_{4} (25 $\overline{\mathrm{mol} \%}$), $\mathrm{LiBr}(3.1 \mathrm{mmol}), \mathrm{AcOH}, 90-110{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Table 2: NaIO_{4}-mediated oxidative acetoxylation of alkylarenes with $\mathrm{LiBr}^{\mathrm{a}}$

Entry	Substrate 1	$\begin{gathered} \mathrm{Temp}^{\mathrm{b}} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	Product ${ }^{\text {c }}$ 2	Yield ${ }^{\text {d }}$ (\%)
a	Toluene	110		$\begin{gathered} 87 \\ \left(31,{ }^{\mathrm{e}} 83,{ }^{\mathrm{f}} 37^{\mathrm{g}}\right) \end{gathered}$
b	Ethylbenzene	90		85
c	p-Xylene	100		75
d	Isobutylbenzene	110		80
e	4-Bromotoluene	110		60
f	4-Nitrotoluene	110		80
g	4-Chlorotoluene	110		80
h	Methyl 4-methyl benzoate	110		66
1	4-tert-Butyltoluene	110		60

[^0]corresponding benzyl bromide was obtained as the sole product. We observed that both
LiBr and NaIO_{4} were required in the oxidation of the alkylarenes at the benzylic position.

Also when the quantity of NaIO_{4} was reduced to $5 \mathrm{~mol} \%$, the yield of benzyl acetate was reduced considerably (9%). Furthermore, p-toluic acid failed to undergo oxidative bromination at the benzylic position.

Fig. 1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2-methyl-1-phenylpropyl acetate 2d

The formation of benzylic acetates was confirmed from ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and IR spectra. For example, the ${ }^{1} \mathrm{H}$ NMR of 2-methyl-1-phenylpropyl acetate (2d) displayed a singlet at $\delta 2.08$ (s) for methyl protons of acetate $\left(-\mathrm{OCOCH}_{3}\right)$ and a doublet at $\delta 5.48$ (d)
for benzylic protons thereby establishing occurrence of benzylic C-H oxidations. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical signals at $\delta 21.2$ and 169.9 for methyl and carbonyl carbons $\left(-\mathrm{O}-\mathrm{COCH}_{3}\right)$ respectively (Fig. 1). The IR spectrum of 2d displayed a strong absorption band at $1740 \mathrm{~cm}^{-1}$ indicating the presence of carbonyl group of acetate.

Table 3 shows the results of NaIO_{4}-mediated oxidative bromination of alkanes with LiBr as the bromide source. Surprisingly, cyclohexane underwent oxidative bromination to produce trans-1,2-dibromocyclohexane in 28% isolated yield. Notably, a higher isolated

Table 3: NaIO_{4}-mediated oxidative halogenation of alkanes using $\mathrm{LiBr}^{\mathrm{a}}$

yield (40\%) of trans-1,2-dibromocyclohexane was obtained when 2.1 equiv of LiBr were employed (Entry a). However, in the case of cyclopentane (Table 3, entry d), only
monobromocyclopentane was obtained in 37% yield. Interestingly, when linear alkanes such as n -octane and n -heptane were subjected to oxidative bromination with equimolar

LiBr , a mixture of three bromoalkanes in the ratio $1: 1: 1$ was obtained (confirmed by GCMS), which were difficult to isolate in pure form.

3.1.5 Mechanism

Our earlier studies ${ }^{11}$ had shown that 1 equiv. of NaIO_{4} was sufficient to oxidize 8 equiv. of Br^{-}ions, as can be seen from (Scheme 11).

Scheme 11: Steps involving in LiBr oxidation with NaIO_{4}

Voltage vs. $\mathbf{A g} / \mathbf{A g C l}_{\mathbf{g}} \mathbf{C l}$ erence

Fig. 2: Cyclic voltagram of LiBr oxidation with NaIO_{4}
The cyclic voltagram (Fig. 2) of LiBr oxidation with NaIO_{4} shows one oxidation peak at $\mathrm{Ep}_{\mathrm{a}}=0.565 \mathrm{~V}$ and three reduction peaks at $\mathrm{Ep}_{\mathrm{c}}=0.720 \mathrm{~V}, 0.490 \mathrm{~V}$ and 0.390 V . The
comparison of this value with the literature values revealed that the reaction involves four steps. Hence, only $30 \mathrm{~mol} \%$ of NaIO_{4} was required to bring about 100% conversion. From the above facts and the evidence provided by the cyclic voltammetry study, the proposed reaction pathway for benzylic C-H oxidation is shown in Scheme 12. The following experiments were carried out: (i) when benzyl bromide was refluxed with either glacial acetic acid or methanol in the absence of NaIO_{4}, no reaction took place. However, addition of $25 \mathrm{~mol} \%$ of NaIO_{4} to the reaction mixture produced benzyl acetate in 72% yield. A further increase in the molar ratio of $\mathrm{NaIO}_{4}(>30 \mathrm{~mol} \%$) did not produce any significant increase in yield.

Scheme 12: Plausible mechanism for the formation of benzyl acetate from toluene

This probably indicates that the first step involves bromination at the benzylic position. (ii) KIO_{3} and NaI have been found to be effective in mediating the transformation of benzyl bromide, thus producing benzyl acetate in 47% and 16% yield, respectively. (iii) A cyclic voltammogram study revealed that Br_{2} generated in situ oxidation of LiBr with NaIO_{4}, is probably responsible for rapid bromination of the alkyl benzenes to produce
bromo derivatives. Finally, benzyl bromide is solvolyzed with AcOH and a rate enhancement in solvolysis was observed with the addition of either $\mathrm{IO}_{4}^{-}, \mathrm{IO}_{3}{ }^{-}$or I^{-}salts.

3.1.6 Conclusion

In conclusion, we have described a simple and efficient NaIO_{4}-mediated oxidative bromination as well as acetoxylation procedure that allows the transformation of alkylbenzenes into their corresponding benzyl acetates in excellent yields. A novel feature of the present catalytic process is that cyclohexane could be converted directly into trans-1,2-dibromocyclohexane in a single step in 40\% isolated yield.

3.1.7 Experimental Section

Typical experimental procedure for the preparation of benzylic acetates

To a stirred mixture of alkylbenzene (10 mmol) and $\mathrm{LiBr}(11 \mathrm{mmol})$ in glacial acetic acid $(15 \mathrm{~mL}), \mathrm{NaIO}_{4}(25 \mathrm{~mol} \%)$ was added and reaction mixture heated to $90-110{ }^{\circ} \mathrm{C}$. The progress of the reaction was monitored by TLC. After completion of the reaction, it was diluted with water (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with a dilute solution of sodium thiosulfate, $5 \% \mathrm{NaHCO}_{3}$ and brine then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product, which was purified by column chromatography (silica gel, petroleum ether and ethyl acetate (9:1) as eluent to afford the pure benzylic acetates.

Benzyl acetate (2a)

Yield: 87%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3014,2921,1741,1640,1350,1240$, 1020, 940, 820, 750, 690, ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, 7.30-7.60 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.9,66.1,128.2,128.5,135.9,170.4 ;$

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 71.98; H, 6.71. Found: C, $71.65 ; \mathrm{H}, 6.69 \%$.

1-Phenylethyl acetate (2b)

Yield: 85%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3010,2980,1745,1620,1310,1240$, 1105, 1020, 940, 752, 680, ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.05$ $(\mathrm{s}, 3 \mathrm{H}), 5.87(\mathrm{q}, J=7.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 21.4, 22.5, 72.4, 126.4, 128.1, 128.7, 142.1, 170.0; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 73.15; H, 7.37. Found: C, 73.66; H, 7.29\%.

4-Methylbenzyl acetate (2c)

Yield: 75%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3010,1742,1640,1250,1120,1010$, 860, 830, 670; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.5$, 20.9, 65.8, 128.2, 128.9, 132.8, 137.5, 170.0; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 73.15$; H , 7.37. Found: C, 73.23; H, 7.40\%.

2-Methyl-1-phenylpropyl acetate (2d)

Yield: 80%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3008,1740,2980,1610,1310,1240$, $1100,1010,940,760,690,{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.20(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 18.8,19.0,21.2,33.8,81.0,127.3,127.9,128.4$, 140.0, 169.9; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 74.97; H, 8.39. Found: C, 74.86 ; H, 8.40\%.

4-Bromobenzyl acetate (2e)

Yield: 60%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3010,1745,1640,1410,1280,1100$, 1020, 860, 830, 750, 680; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl $_{3}$): $\delta 2.01(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 7.14$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.5,65.8$,
122.2, 128.9, 132.8, 137.5, 170.0; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}$: C, 47.19 ; $\mathrm{H}, 3.96$; Br , 34.88. Found: C, $47.21 ; \mathrm{H}, 3.84 ; \mathrm{Br}, 34.90 \%$.

4-Chlorobenzyl acetate (2g)

Yield: 80%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3012,1740,1642,1410,1280,1105$, 1020, 860, 830, 755, 680, ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl $_{3}$): $\delta 2.01(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 7.10$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.5,68.0$, 128.2, 128.9, 132.9, 137.5, 170.2; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$: C, $58.55 ; \mathrm{H}, 4.91$; Cl , 19.20. Found: C, $58.42 ; \mathrm{H}, 4.89 ; \mathrm{Cl}, 19.18 \%$.

Methyl 4-(acetoxymethyl)benzoate (2h)

Yield: 66\%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3014,1728,1612,1440,1240,1020$, 940, 820, 680; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, $7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.0$, 52.1, 67.0, 127.2, 129.3, 130.2, 144.8, 166.1, 170.0; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{C}, 63.45$; H, 5.81. Found: C, 63.39; H, 5.72\%.

4-tert-Butylbenzyl acetate (2i)

Yield: 60%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3009,1741,1620,1220,1120,1015$, 880, 860, 680; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H})$, $7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.7$, 31.4, 40.6, 67.8, 125.2, 126.4, 138.1, 148.0, 170.1; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 75.69; H, 8.80. Found: C, 75.55; H, 8.52\%.

Typical experimental procedure for the preparation of benzylic methyl ethers

To a stirred mixture of alkylbenzene (10 mmol) and $\mathrm{LiBr}(11 \mathrm{mmol})$ in methanol (15 $\mathrm{mL}), \mathrm{NaIO}_{4}(25 \mathrm{~mol} \%)$ was added conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$ and the reaction mixture heated
to $70-80{ }^{\circ} \mathrm{C}$. The progress of the reaction was monitored by TLC. After completion of the reaction, it was diluted with water $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The combined organic layers were washed with a dilute solution of sodium thiosulfate, 5% NaHCO_{3} and brine then dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product, which was purified by column chromatography (silica gel, petroleum ether and ethyl acetate (9:1) as eluent to afford benzylic ethers in pure form.

1-(Methoxymethyl)benzene (15a)

Yield: 36%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3015,2980,1610,1420,1160,1100$, 980, 950, 900, 780, 730; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.42(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.32-$ $7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 57.5, 74.2, 127.3, 128.0, 138.0; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 78.65 ; \mathrm{H}, 8.25$. Found: C, $78.54 ; \mathrm{H}, 8.62 \%$.

1-(1-Methoxyethyl)benzene (15b)

Yield: 43%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3010,2970,1605,1420,1160,980,950$, 780,$730 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.44(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}$, $J=6.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.2,56.6,80.0$, 126.5, 127.7, 128.7, 129.1, 130.1, 134.5, 144.0; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 79.37$; H , 8.88. Found: C, 79.40; H, 8.79\%.

1-(Methoxymethyl)-4-methylbenzene (15c)

Yield: 30%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3016,2942,1600,1205,1160,1040$, 840, 750; ${ }^{1} \mathbf{H}-$ NMR (200 MHz, CDCl_{3}): $\delta 2.51(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 7.27-$ 7.39 (m, 5H); ${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 21.5,58.11,74.89,128.12,129.3,135.6$, 137.3; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 79.37$; H, 8.88. Found: C, $79.40 ; \mathrm{H}, 8.79 \%$.

1-(1-Methoxy-2-methylpropyl)benzene (15d)

Yield: 42%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$: 3012, 2980, 1612, 1420, 1160, 980, 950;
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.85-$ $2.02(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~d}, J=7.0 \mathrm{~Hz} 1 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.6,18.0,33.8,92.0,127.3,127.9,128.4,140.0$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 80.44 ; \mathrm{H}, 9.82$. Found: C, 80.39; H, 9.78\%.

1,2-Dibromocyclohexane (16a)

Yield: 40%; yellow colored liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2942,2882,1425,1420,1180$, $1001,900,840,822,671,652 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}): $\delta 1.35-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.77-$ $2.04(\mathrm{~m}, 4 \mathrm{H}), 3.71-3.79(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.3,31.3$, 55.1; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}$: C, 29.78; H, 4.17, Br, 66.05. Found: C, 29.80; H, 4.09, Br, 66.12%.

Chlorocyclohexane (16b)

Yield: 60\%; liquid; IR ($\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$): 2962, 2878, 1422, 1420, 1176, 1012, 900, 840, 820, 670, 652; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.20-1.98(\mathrm{~m}, 6 \mathrm{H}), 2.01-2.22(\mathrm{~m}, 4 \mathrm{H})$, 3.98-4.12 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.5,25.7,37.3,60.8$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}: \mathrm{C}, 60.76$; H, 9.35, Cl, 29.89. Found: C, 60.80 ; H, 9.41, Cl, 29.77\%.

Bromocyclopentane (16d)

Yield: 37%; liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right):$ 2952, $2860,1428,1420,910,720 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.6-2.2(\mathrm{~m}, 8 \mathrm{H}), 4.01-4.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.2$, 37.8, 53.6; Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}: \mathrm{C}, 40.30$; H, 6.09 , Br, 53.62. Found: C, 40.29; H, 6.11, Br, 53.59\%.

Section II

NaIO_{4}-Mediated Selective Oxidation of Benzylic Bromides and Alkylarenes to Benzoic acids in Water as Solvent

3.2.1 Introduction

Aryl carboxylic acids are important intermediates because these derivatives constitute versatile building blocks in pharmaceutical and polymer industries. ${ }^{13}$ They are also present in some drug compounds such as naproxen (17), plavix (18) and ibuprofen (19), etc. (Fig. 3). Further, the oxidation of methylarenes to the corresponding carboxylic acids constitutes one of the most fundamental transformations in organic synthesis. ${ }^{14}$ While in literature, carboxylic acids are prepared by oxidation of benzylic alcohol or benzaldehydes, the conversion of a $-\mathrm{CH}_{3}$ to -COOH is carried out routinely by a variety of metal-oxo species, enzymes and autoclave oxidations. The laboratory-scale benzylic oxidations are generally carried out with a large excess of metal oxidants such as chromium and manganese reagents. However, the metal residues are environmentally undesirable and often provide problems during reaction and work-up. There are reports of the direct, one-step oxidation of aromatic compounds with peracids in the presence of acid catalysts.

Naproxen (17)

Plavix (18)

Ibuprofen (19)

Fig 3: Drugs with aryl carboxylic acid moiety

However, such methods for the oxidation of alkylarenes are not satisfactory in terms of yields and show other disadvantages such as lack of regioselectivity, the need for high pressure and temperature, the undesired side products and the difficulty in handling.

3.2.2 Review of Literature

Friedman's approach (1965) ${ }^{15}$

Friedman et al. have reported the oxidation of various mono- and polysubstituted methylarenes in water using $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ as a catalyst giving the corresponding carboxylic acids in good yields (Scheme 13).

$\mathrm{R}=$ alkyl, $\mathrm{NO}_{2}, \mathrm{Cl}, \mathrm{Br}, \mathrm{F} \quad$ yields $=75-99 \%$

Scheme 13: (i) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{O}, 250^{\circ} \mathrm{C}, 18 \mathrm{~h}$.

Sam's approach (1972) ${ }^{16}$

Sam et al. have described the oxidation of methylarenes, olefins and benzylic alcohols to the corresponding carboxylic acids with KMnO_{4} in presence of dicyclohexyl-18-crown-6 23 and benzene as solvent. By this method, aliphatic substrates like cyclohexene 21 are also converted in to adipic acid 22 in quantitative yields (Scheme 14).

Scheme 14: (i) KMnO_{4}, cat. 23, benzene, $25^{\circ} \mathrm{C}, 72 \mathrm{~h}$.

Sasson's approach (1986) ${ }^{17}$

Sasson et al. have reported liquid phase oxidation of various methylarenes with electronwithdrawing substituents to the corresponding carboxylic acids in excellent yields using $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and aq. NaOCl . While in case of electron-donating methylarenes mixture of the corresponding carboxylic acid and ring chlorination was observed (Scheme 15).

Scheme 15: (i) $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaOCl},(5 \mathrm{~mol} \%) \mathrm{TBAB}, 1,2$-dichloroethane.

Santamaria's approach (1989) ${ }^{18}$

Santamaria et al. have reported a selective and mild photochemical oxidation procedure for the benzylic oxidations with 9,10-dicyanoanthracene (DCA) in the presence of methyl viologen $\left(\mathrm{MV}^{2+}\right)$ an electron relay. The reaction was carried out with a 500 W high pressure mercury lamp and oxygen bubbling (Scheme 16).

Scheme 16: (i) $h v, \mathrm{O}_{2}, \mathrm{DCA}, \mathrm{MV}^{2+}$.

Shi's approach (2001) ${ }^{19}$

Shi et al. have reported the oxidation of various benzylic halides to the corresponding carboxylic acids in good yields with sodium tungstate as an efficient and eco-friendly catalyst. Mechanistically, it was proposed that benzylic halides were first oxidized to
benzyl alcohols and then to the desired benzoic acids by Baeyer-Villiger pathway (Scheme 17).

Scheme 17: (i) $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O},\left[\mathrm{CH}_{3}\left(\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}\right)_{3} \mathrm{~N}\right]^{+} \mathrm{HSO}_{4}^{-}$, $4 \mathrm{~A}^{\circ} \mathrm{MS}, 90^{\circ} \mathrm{C}$.

Sen's approach (2003) ${ }^{20}$

Sen et al. have reported the oxidation of various methylarenes to the corresponding carboxylic acids in excellent yield using nitrogen oxide as oxidant and selenium as catalyst (Scheme 18).

26

27
yield $=38 \%$

Scheme 18: (i) $\mathrm{Se}(5 \mathrm{wt} \%), \mathrm{NO}: \mathrm{O}_{2}(1: 1)$.

Pauls approach (2004) $\mathbf{)}^{21,22}$

In this approach Paul et al have reported microwave induced oxidation of various alkylarenes to the corresponding carboxylic acids in good yield with urea-hydrogen

peroxide complex (UHP) as the stoichiometric oxidant. The reaction proceeded smoothly with both electron-donating and -withdrawing substrates under solvent-free conditions (Scheme 19).

Same author described zinc oxide catalyzed oxidation of various alkylbenzenes, naphthalene and 1,2,3,4-tetrahydronaphthalene in air using microwave irradiation or conventional heating in the presence of N, N-dimethylformamide (Scheme 20).

30
$\mathrm{R}=$ alkyl, $\mathrm{NO}_{2}, \mathrm{OH}, \mathrm{OMe}$

Scheme 20: (i) ZnO, DMF, MW, Δ.

Espenson's approach (2005) ${ }^{23}$

Espenson et al. have reported the autooxidation of p-xylene to terphthalic acid with $\mathrm{Co}(\mathrm{OAc})_{2}$ and $\mathrm{Mn}(\mathrm{OAc})_{2}$ as catalysts in strong acid such as trifluoroacetic acid, ptoluenesulfonic acid (Scheme 21).

32
Scheme 21: (i) $\mathrm{Co}(\mathrm{OAc})_{2}, \mathrm{Mn}(\mathrm{OAc})_{2}, \mathrm{HBr}, \mathrm{TFA}, 150-225$
${ }^{\circ} \mathrm{C}, 85 \%$.

Barrett's approach (2003) ${ }^{24}$

Barrett et al. have reported a novel method for the oxidation of various methyl arenes to the corresponding carboxylic acids in good yield using $\mathrm{Bi}(\mathrm{OTf})_{2}$ as catalyst and tert-butyl hydroperoxide as oxidant. While various alkylarenes $\mathbf{3 3}$ under similar reaction conditions were selectively oxidized to the corresponding ketones 34 (Scheme 22).

1

33

34

Scheme 22: (i) Bi , t - BuOOH , picolinic acid, pyridine:AcOH (9:1), $100^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

3.2.3 Present Work

3.2.3.1 Objective

Although there are many methods available in the literature for the oxidation of methylarenes and alkylarenes, many of these methods suffer from several disadvantages such as use of heavy metal catalysts, hazardous metal waste, high pressure and temperature. The literature reference for the oxidation of benzylic halides to the corresponding carboxylic acids is scarce. ${ }^{19}$ In this section we describe, a transition metal free catalyst for the oxidation of methylarenes and benzylic bromides with $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$ combination ${ }^{25}$ to carboxylic acids.

3.2.4 Results and Discussion

In continuation of our interest on NaIO_{4}-mediated oxidations described in earlier section, this section presents a new method of direct oxidation of alkylarenes that produces the corresponding benzylic acetates mediated by $\mathrm{NaIO}_{4} / \mathrm{LiBr}$. During our mechanistic investigations, we found that the reaction proceeded through benzylic bromide as intermediate, which was subsequently oxidized by NaIO_{4} to liberate bromine and benzyl cation; solvolysis of the latter gave benzylic acetates. ${ }^{12}$ With this background, we thought
that solvolysis of the benzyl cation with water, instead of acetic acid should give benzylic alcohol.

Unprecedented transformation

Indeed an unprecedented transformation occurred when toluene (1) was subjected to oxidation under the same reaction conditions $\left(\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}\right)$giving 4bromobenzoic acid (20) in 60% isolated yield instead of the expected unsubstituted benzyl alcohol. We also found a similar observation when producing benzyl bromide (14) was subjected to oxidation it gave 4-bromobenzoic acid in 79% yield respectively. Additionally, 2-methoxybenzyl bromide under the same reaction conditions gave 5-bromo-2-methoxybenzaldehyde in 18\% yield. It may be explained that the intermediate benzyl alcohol, formed by solvolysis, probably underwent nuclear bromination at the para position with Br_{2} before itself being oxidized to carboxylic acids (Schemes 23 and 24).

Scheme 23: (i) $\mathrm{NaIO}_{4}, \mathrm{LiBr}, 2 \%$ aq. $\mathrm{H}_{2} \mathrm{SO}_{4}, 95^{\circ} \mathrm{C}$, 18 h ; (ii) NaIO_{4}, 2% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}, 95^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

To explain this observation, the following experiments have been carried out: (1) when 2nitrotoluene was subjected to oxidation under this reaction condition, 2-nitrobenzoic acid (54\%) was obtained, as a side-chain oxidized product; (2) o-xylene under the same experimental condition gave only 4-bromo-1,2-dimethylbenzene, a ring-brominated product; (3) a simple competitive experiment was carried out with a mixture of toluene and 2-chlorotoluene where we obtained only 4-bromo- and 2-chlorobenzoic acids
respectively. Notably, we observed that the electrophilic ring bromination was observed only in electron rich methylarenes with an unblocked, sterically favorable para position. However, the presence of electron-withdrawing groups such as $\mathrm{Br}, \mathrm{Cl}, \mathrm{NO}_{2}$, etc. probably deactivates the ring and also facilitates the oxidation of the intermediate species thereby shortening their lifetime thus resulting in no ring bromination. ortho Bromination was not observed possibly because of the steric nature of the bromonium ion.

Encouraged by this result, we subjected a variety of methylarenes (1) having both electron-donating and -withdrawing groups to oxidation with NaIO_{4} (1 equiv) and LiBr (1 equiv) in 2% aq $\mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL})$ at $95^{\circ} \mathrm{C}$ and successfully obtained carboxylic acids (20) in good yields (Table 4). The use of excess NaIO_{4} (1.2 equiv) did not improve the yield considerably. The yields were found to be higher in the case of methylarenes with electron-withdrawing groups $\left(\mathrm{NO}_{2}, \mathrm{Cl}\right)$. When highly activating substituents $\left(\mathrm{NH}_{2}, \mathrm{OH}\right)$ are present, electrophilic ring bromination took place preferentially. Attempts to improve the yields further by using a combination of solvents $\left(t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right.$, $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$, etc.) were not fruitful. When LiBr was replaced by other halogen sources such as NaCl or KI, no reaction took place. Another interesting feature is that, although methyl groups were selectively oxidized to the corresponding carboxylic acids, benzylic methylene groups were oxidized to ketones; the over oxidation of benzylic methylenes to carboxylic acids with carbon C-C bond cleavage a common feature noticed in the case of transition-metal oxides was not observed here (entries m and n, Table 4).

The formation of carboxylic acids 20a-n was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR spectroscopy. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0 e}$ showed signals at $\delta 1.35$ (s) for tert-butyl protons $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right.$-) and $\delta 7.43$ (d) and 7.94 (d) for aromatic protons
respectively. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical signal at $\delta 30.5$ for $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right.$-) tertbutyl group and $\delta 167.6$ for carbonyl carbon of carboxylic acid ($\left.-\mathrm{CO}_{2} \mathrm{H}-\right)$ (Fig. 4).

Fig. 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4-tert-butylbenzoic acid (20e)

To study its scope, we subjected several benzylic bromides to oxidation with $\mathrm{NaIO}_{4} / \mathrm{H}^{+}$ conditions. Indeed, such oxidations of benzylic bromides with NaIO_{4} produced the corresponding carboxylic acids in high yields (71-89\%). Although a variety of reagents are known to oxidize ${ }^{19}$ organic halides to aldehydes, only a few direct one-step

Table 4: $\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated oxidation of alkylarenes and benzylic

 bromides in acidic medium ${ }^{\text {a }}$

[^1]conversion of benzylic bromides to the corresponding carboxylic acids are known. As can be seen from Table 4, several benzylic bromides with both electron-withdrawing and -donating groups underwent oxidation with $\mathrm{NaIO}_{4} / \mathrm{H}^{+}$condition to give the corresponding carboxylic acids in excellent yields. Secondary benzylic bromides were also oxidized to give the corresponding ketones in excellent yields (entries m and n, Table 4). The use of a substoichiometric amount of $\mathrm{NaIO}_{4}(50 \mathrm{~mol} \%)$ generally gave poor yields of carboxylic acids except in the case of bromodiphenylmethane (entry n), which gave a comparable yield of benzophenone (83%) due to the easy oxidizability of the $\mathrm{C}-\mathrm{Br}$ bond. However, benzyl chloride was resistant to undergo oxidation under the reaction conditions, probably because of the higher bond strength of the $\mathrm{C}-\mathrm{Cl}$ bond. KIO_{3} was also found to oxidize benzylic bromides to give benzoic acids in high yields (entry d, Table 4). The prolonged oxidation of 4-methylbenzyl bromide led to successive oxidation of benzyl bromide as well as methyl groups to give 4% terephthalic acid (entry f, Table 4).

3.2.5 Mechanism

We observed that oxidation of methylarenes to carboxylic acids proceeds via intermediates such as benzyl bromide, benzyl alcohol and benzaldehydes in that order respectively as confirmed by GC-MS analysis, in the oxidation of toluene with $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{H}^{+}$combinations (Scheme 24). Following the concept of side-chain bromination of alkylarenes using metal halide in the presence of an oxidizing agent ${ }^{6,26 a}$ $\left(\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{TeO}_{2}\right.$, etc. $)$ as reported by others and us, ${ }^{12}$ we believe that NaIO_{4} oxidizes LiBr in the presence of acid to liberate molecular bromine that brominates the side chain of alkylarenes to give the corresponding benzylic bromides (eqs. 1-3). Similar to inorganic

$$
\begin{align*}
& 8 \mathrm{Br}^{-}+\mathrm{NaIO}_{4}+8 \mathrm{H}^{+} \longrightarrow 4 \mathrm{Br}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}^{-}+\mathrm{Na}^{+} \tag{1}\\
& 4 \mathrm{ArCH}_{3}+4 \mathrm{Br}_{2} \longrightarrow 4 \mathrm{ArCH}_{2} \mathrm{Br}+4 \mathrm{HBr} \text { (2) } \tag{2}\\
& \mathrm{ArCH}_{3}+2 \mathrm{Br}^{-}+(1 / 4) \mathrm{NaIO}_{4}+2 \mathrm{H}^{+} \longrightarrow \mathrm{ArCH}_{2} \mathrm{Br}+(1 / 4) \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HBr}+(1 / 4) \mathrm{Na}^{+} \tag{3}\\
& 8 \mathrm{ArCH}_{2} \mathrm{Br}+\mathrm{NaIO}_{4}+8 \mathrm{H}^{+}+8 \mathrm{H}_{2} \mathrm{O} \longrightarrow 8 \mathrm{ArCH}_{2} \mathrm{OH}+4 \mathrm{Br}_{2}+\mathrm{I}^{-}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+} \tag{4}\\
& \mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br} \tag{5}\\
& \mathrm{ArCH}_{2} \mathrm{OH}+\mathrm{Br} \longrightarrow \mathrm{Ar} \dot{\mathrm{C}} \mathrm{HOH}+\mathrm{HBr} \tag{6}\\
& \mathrm{Ar} \dot{\mathrm{C}} \mathrm{HOH}+\mathrm{Br}_{2} \longrightarrow \mathrm{ArCHO}+\mathrm{Br}+\mathrm{HBr} \tag{7}\\
& \mathrm{ArCHO}+\mathrm{Br}^{-} \longrightarrow \mathrm{ArCO}+\mathrm{HBr} \tag{8}\\
& \mathrm{ArCO}+\mathrm{Br}_{2} \longrightarrow \mathrm{ArCOBr}+\mathrm{Br} \text {. } \tag{9}\\
& \mathrm{ArCOBr}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{ArCO}_{2} \mathrm{H}+\mathrm{HBr} \tag{10}
\end{align*}
$$

Scheme 24: Mechanism for oxidation of alkylarenes to benzoic acids
halides (LiBr), benzylic bromides are solvolyzed with water in the presence of NaIO_{4} in acidic medium at elevated temperature $\left(95^{\circ} \mathrm{C}\right)$ to give benzylic alcohols (eq. 4). The fact that the reagent $\mathrm{NaIO}_{4} / \mathrm{H}^{+}$alone did not oxidize secondary alcohols, whereas the $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{H}^{+}$combination did, led to our belief that benzylic alcohols were directly oxidized to the corresponding carboxylic acids with Br_{2} via a free radical pathway ${ }^{26 \mathrm{~b}}$ (eqs 5-10).

3.2.6 Conclusion

In conclusion, we have shown, for the first time, an unprecedented oxidation at the benzylic position coupled with nuclear bromination when toluene, benzyl bromide were subjected to oxidation with $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{H}^{+}$at $95^{\circ} \mathrm{C}$ to give 4-bromobenzoic acid in up to 79% yield. We have thus developed a mild procedure for the direct conversion of methylarenes and benzyl bromides to the corresponding carboxylic acids in high yields using $\mathrm{NaIO}_{4} / \mathrm{LiBr} / \mathrm{H}_{2} \mathrm{SO}_{4}$ conditions.

3.2.7 Experiment Section

Procedure for the oxidation of Alkylarene

To a mixture of alkylarene $(3 \mathrm{mmol}), \mathrm{NaIO}_{4}(3 \mathrm{mmol})$ and $\mathrm{LiBr}(3.3 \mathrm{mmol})$ was added 2% aq $\mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL})$. The reaction mixture was heated at $95^{\circ} \mathrm{C}$ (using an oil bath) for 18 h . The reaction mixture was then cooled to room temperature and extracted with ethyl acetate (40 mL x 3), and the combined organic phase was washed with saturated sodium thiosulfate solution, water, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give the crude product; it was washed with cold n-hexane and recrystallized to afford a pure product.

Procedure for the oxidation of benzylic halide

Benzylic halides were subjected to the same reaction conditions as given above but without the use of LiBr .

4-Bromobenzoic acid (20a)

colorless solid; mp: $252-253{ }^{\circ} \mathrm{C}$, $\left[\right.$ lit. $\left.{ }^{27} \mathrm{mp}: 251-253{ }^{\circ} \mathrm{C}\right]$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3020,1700$, $1640,1340,1320,1200,1051,1012,942,860,840,760 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 126.9, 129.9, 131.0, 131.3, 166.6; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrO}_{2}$: C, $41.82 ; \mathrm{H}, 2.51, \mathrm{Br}$, 39.75. Found: C, 41.79; H, 2.49, Br, 39.69\%.

4-Chlorobenzoic acid (20b)

colorless solid; mp: 238-240 ${ }^{\circ} \mathrm{C}$, $\left[\right.$ lit. $\left.{ }^{27} \mathrm{mp}: 238-241{ }^{\circ} \mathrm{C}\right]$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3015,1705$, 1610, 1415, 1301, 1140, 1032, 930, 870, 820, 790; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CD ${ }_{3} \mathrm{OD}$): $\delta 7.39$ $(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 128.3$,
129.5, 130.9, 138.0, 166.5; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2}$: C, $53.70 ; \mathrm{H}, 3.22 ; \mathrm{Cl}, 22.64$. Found: C, 53.68; H, 3.19; Cl, 22.58\%.

2-Chlorobenzoic acid (20c)

colorless solid; mp: $138-140{ }^{\circ} \mathrm{C}$, $\left[1 \mathrm{lit} .^{27 \mathrm{~b}} \mathrm{mp}: 142{ }^{\circ} \mathrm{C}\right]$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3010,1710,1410$, $1315,1050,905,740,690,660 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 6.94-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.59$ $(\mathrm{dd}, J=1.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 126.8,128.6,131.4,131.9$, 135.1, 135.4, 166.4; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2}$: C, $53.70 ; \mathrm{H}, 3.22$; $\mathrm{Cl}, 22.64$. Found: C, 53.69; H, 3.19; Cl, 22.59\%.

4-Nitrobenzoic acid (20d)

Yellow colored solid; mp: 237-239 ${ }^{\circ} \mathrm{C}$, [lit. $\left.{ }^{27 \mathrm{c}} \mathrm{mp}: 236-239{ }^{\circ} \mathrm{C}\right]$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3020$, 2985, 1700, 1610, 1530, 1400, 1340, 1310, 1005, 920, 840, 800, 730; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.31-8.43(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 123.2,130.5$, 136.5, 151.6, 166.7; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}$: C, 50.31 ; H, 3.02; N, 8.38. Found: C, 50.29; H, 3.11; N, 8.40\%.

4-tert-Butylbenzoic acid (20e)

colorless solid; mp: $162-164{ }^{\circ} \mathrm{C}$, $\left[\right.$ lit. $\left.{ }^{27 \mathrm{~d}} \mathrm{mp}: 163-164{ }^{\circ} \mathrm{C}\right]$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3012,1700$, 1600, 1340, 1210, 1110, 940, 840, 780, 710; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.35(\mathrm{~s}$, 9H), $7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 30.5,34.3,124.6,127.5,128.9,155.5,167.6$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 74.13; H, 7.92. Found: C, 74.09; H, 7.88\%.

4-Methylbenzoic acid (20f)

colorless solid; mp: $177-179{ }^{\circ} \mathrm{C}$, $\left[\right.$ lit. $\left.{ }^{27} \mathrm{mp}: 176-178{ }^{\circ} \mathrm{C}\right]$; $\mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3105,1700$, 1600, 1340, 1280, 1100, 940, 850, 760; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 2.45(\mathrm{~s}, 3 \mathrm{H})$,
$7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 20.1$, 126.8, 127.6, 128.2, 144.6, 170.6; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$: C, 70.57; H, 5.92. Found: C, 70.49; H, 5.89\%.

3,4-Dichlorobenzoic acid (20g)

Yellow colored solid; mp: 207-208 ${ }^{\circ} \mathrm{C}$, $\left[\right.$ lit. $\left.{ }^{27 \mathrm{e}} \mathrm{mp}: 208-209{ }^{\circ} \mathrm{C}\right]$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3012$, $2671,1710,1520,1400,1340,1305,1100,1050,920,850,760,740 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}(200$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 128.8,130.4,131.0,131.2,131.8,136.0,165.5$;

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, 44.02; $\mathrm{H}, 2.11 ; \mathrm{Cl}, 37.12$. Found: $\mathrm{C}, 44.11 ; \mathrm{H}, 2.09 ; \mathrm{Cl}$, 37.10%.

2,3-Dichlorobenzoic acid (20h)

Yellow colored solid; mp: $168-170{ }^{\circ} \mathrm{C},\left[\mathrm{lit} .{ }^{27 \mathrm{f}} \mathrm{mp}: 164{ }^{\circ} \mathrm{C}\right]$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3020, 1700, $1510,1400,1330,1120,1050,930,860,760 ;{ }^{1} \mathbf{H}$ NMR ($\left.200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.56(\mathrm{t}, J$ $=8.0,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 126.2,127.0,127.7,131.4,132.5,132.7,165.4$; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, 44.02; $\mathrm{H}, 2.11 ; \mathrm{Cl}, 37.12$. Found: C, $44.09 ; \mathrm{H}, 2.15 ; \mathrm{Cl}, 37.07 \%$.

3-Nitrobenzoic acid (20i)

Yellow colored solid; mp: $139-140{ }^{\circ} \mathrm{C},\left[\mathrm{lit} .{ }^{27 \mathrm{c}} \mathrm{mp}: 142{ }^{\circ} \mathrm{C}\right]$; $\mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3015,1712$, 1640, 1460, 1420, 1300, 1280, 1130, 910, $720,{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.85(\mathrm{t}, J$ $=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 8.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 123.6,127.2,130.3,132.3,135.2,147.7,165.4$; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}$: C, $50.31 ; \mathrm{H}, 3.02 ; \mathrm{N}, 8.38$. Found: C, $50.29 ; \mathrm{H}, 3.06 ; \mathrm{N}, 8.33 \%$.

4-Phenylbenzoic acid (20j)

colorless solid; $\mathbf{m p}: 226-227^{\circ} \mathrm{C}$, $\left[\mathrm{lit} .{ }^{27 \mathrm{~g}} \mathrm{mp}: 228{ }^{\circ} \mathrm{C}\right]$; IR ($\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3102,2510,1700$, 1680, 1400, 1340, 1280, 1010, 940, 860, 760, 680, ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CD ${ }_{3} \mathrm{OD}$): $\delta 7.80-$ $8.05(\mathrm{~m}, 7 \mathrm{H}), 8.47(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 126.5,126.8$, 127.9, 128.7, 129.6, 129.9, 139.3, 144.4, 167.3; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 78.77; H, 5.09. Found: C, 78.69; H, 5.11\%.

4-Fluorobenzoic acid (20k)

Brown coloured solid; mp: 182-183 ${ }^{\circ} \mathrm{C},\left[\mathrm{lit} .^{27 \mathrm{~h}} \mathrm{mp}: 185{ }^{\circ} \mathrm{C}\right]$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3010,2912$, $1700,1600,1415,1310,1200,1110,920,840,760,640 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.15(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.10-8.17(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 115.7,115.3$, 125.7, 132.8, 166.5, 170.6; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{FO}_{2}$: C, $60.01 ; \mathrm{H}, 3.60 ; \mathrm{F}, 13.56$. Found: C, $60.08 ; \mathrm{H}, 3.57$; F, 13.49%.

p-Terphthalic acid (201)

colorless solid; $\mathbf{m p}:>300^{\circ} \mathrm{C} ; \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3010,2982,2652,1706,1340,1280,1121$, 1105, 942, 780, 740; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, DMSO-d d_{6}): $\delta 8.2(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (50 MHz , DMSO- d_{6}): $\delta 129.4,134.3,166.6$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}: \mathrm{C}, 57.84 ; \mathrm{H}, 3.64$. Found: C, 57.79 ; H, 3.66\%.

Acetophenone (20m)

Liquid; IR (neat, cm^{-1}): 3012, 2992, 1730, 1600, 1410, 1315, 1210, 935, 760, 680; ${ }^{1} \mathbf{H}$
NMR (200 MHz, CDCl_{3}): $\delta 2.58(\mathrm{~s}, 3 \mathrm{H}), 7.40-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.91-7.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$
NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.5,128.2,128.5,133.0,137.1$, 197.9; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}: \mathrm{C}, 79.97$; H, 6.71. Found: C, 79.91; H, 6.64\%.

Section III:

NaIO_{4}-Mediated Selective Oxidation of Benzylic alcohols: High Yield Preparation of Aromatic Aldehydes and Esters

3.3.1 Introduction

The oxidation of primary aromatic alcohols to the corresponding carbonyl compounds is a fundamental reaction in organic synthesis. ${ }^{28}$ Also, direct conversion of alcohols to the corresponding aldehydes or carboxylic esters is often required in organic synthesis particularly in the synthesis of natural products. ${ }^{29}$ The processes for the preparation of aldehydes and esters are widespread in industries for synthesis of a variety of endproducts such as fragrances, monomers, plasticizers etc, many of which are classed as high production volume (HPV) chemicals. In addition, applications to lower volume, high-value pharmaceutical and fine chemicals targets are prominent, and often require more stringent coupling protocols to achieve the desired chemo- and stereoselectivity. The conventional method for the synthesis of carboxylic esters involves oxidation of aldehydes to carboxylic acids followed by esterification with alcohols catalyzed by either acid or base. However, the direct conversion of benzylic alcohols to aldehydes or esters minimizes the number of steps in organic synthesis.

3.3.2 Review of literature

Literature survey revealed that there are numerous methods are available for the direct transformation of alcohols into the corresponding aldehydes. Among them, PCC, PDC Dess-Martin reagent, IBX and TPAP, and Swern oxidations are common and extensively employed. However, the direct transformation of alcohols into esters has been achieved
using a very few reagents such as NaBrO_{2}, Oxone, $\mathrm{Ca}(\mathrm{OCl})_{2}$. Some of the recent developments on these reactions are discussed below.

Harfenist's approach (1956) ${ }^{30}$

Harfenist et al. have described the MnO_{2}-mediated oxidation of benzylic alcohol 21 to afford corresponding benzaldehydes $\mathbf{2 2}$ in good yields. Several electron-donating and withdrawing substituents and the aliphatic allylic alcohols were smoothly oxidized to give the corresponding α, β-unsaturated aldehydes (Scheme 25).

Scheme 25: (i) $\mathrm{MnO}_{2}, \mathrm{Et}_{2} \mathrm{O}, 47 \mathrm{~h}, 87 \%$.

Corey's approach (1972) ${ }^{31,32}$

Corey et al. have reported that N -iodosuccinimide (NIS) and $\mathrm{Me}_{2} \mathrm{~S}$-mediated oxidation of primary as well as secondary alcohols to the respective aldehydes or ketones in good yields. The reaction proceeds with formation of sulfoxonium ion which on treatment with base undergoes elimination to form a carbonyl compound (Scheme 26).

A stable and mild reagent pyridinium chlorochromate 27 for the oxidation of variety of alcohols to carbonyl compounds with high yield. Reagent can be prepared by reaction of pyridine and CrO_{3} in acidic medium (Scheme 27).

Scheme 27: (i) PCC (19), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}, 100 \%$.

Blair's approach (1977) ${ }^{33}$

Blair et al. have described a halogen-amine complex 1,4-diazabicyclo [2.2.2]octane-2 Br_{2} for the oxidation of benzylic alcohol to benzaldehydes in excellent yields. However, this reagent is selectively oxidizes secondary alcohol to ketone in presence of primary alcohols (Scheme 28).

Scheme 28: (i) 1,4-diazabicyclo [2.2.2]octane $\cdot 2 \mathrm{Br}_{2}$ $\mathrm{CH}_{3} \mathrm{CN}$, reflux, $18 \mathrm{~h}, 96 \%$.

Swern's approach (1978) ${ }^{34}$

Swern et al. have reported a versatile reagent for oxidation of primary, secondary, allylic, benzylic, hindered and bicyclic alcohols to the corresponding carbonyl compounds using activator DMSO and oxalyl chloride (Scheme 29).

Scheme 29: (i) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}, 100 \%$.

Martin's approach (1983) ${ }^{35}$

Martin and Dess together have reported a new readily accessible hypervalent-iodine reagent 32. It is efficient for oxidation of variety of primary and secondary alcohols to the corresponding aldehydes and ketones respectively. The workup procedure is remarkably simple, and the conditions for reaction are very mild (Scheme 30).

Scheme 30: Dess-Martin periodinane (32), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20 \mathrm{~min}, 91 \%$.

White's approach (1987) ${ }^{36}$

White et al. have described a new mild reagent for the oxidation of various primary and secondary alcohols to carbonyls using tetra-n-propylammonium per-ruthenate (TPAP) or tetra-n-butylammonium per-ruthenate (TBAP) and N-methylmorpholine N -oxide as oxidant (Scheme 31).

33

34

Scheme 31: (i) TPAP, NMO, $4 \mathrm{~A}^{\circ} \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 91 \%$.

Einhorn's approach (1996) ${ }^{37}$

Einhorn et al. have described 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) catalyzes efficient oxidation of primary alcohols to aldehydes by N-chlorosuccinimide, in a biphasic dichloromethane-aqueous pH 8.6 buffer. A variety of aliphatic, benzylic, allylic alcohols are readily oxidized to aldehydes, while secondary alcohols underwent oxidation with lower efficiency (Scheme 32).

Scheme 32: (i) TEMPO, NCS, TBACl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}, 100 \%$.

Feringa's approach (1997) ${ }^{38}$

Feringa et al. have reported that oxidation of benzylic alcohols to benzaldehydes proceeded with dinuclear manganese (IV) catalyst (40). The reaction rate is faster when $\mathrm{H}_{2} \mathrm{O}_{2}$ or TBHP is used as oxidant with high selectivity (Scheme 33).

Scheme 33: (i) Catalyst (40), $\mathrm{H}_{2} \mathrm{O}_{2}$ or TBHP, $\mathrm{Me}_{2} \mathrm{CO}, 30 \mathrm{~min}$.
Toma's approach (2000) ${ }^{39}$
Toma et al. have described oxidation of benzyl alcohol to benzaldehydes using a heterogeneous KMnO_{4} supported copper sulfate pentahydrate as catalyst. Application of ultrasonic irradiation leads to shorter reaction time (Scheme 34).

Scheme 34: (i) $\mathrm{KMnO}_{4} / \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$.

Kaneda's approach (2000) ${ }^{40}$

Kaneda et al. have reported a heterogeneous Ru^{3+}-exchanged hydroxyapatite (RuHAP) catalyzed oxidation of various primary and secondary alcohols to corresponding aldehydes and ketones respectively (Scheme 35).

Scheme 35: (i) RuHAP, O_{2}, toluene, $80^{\circ} \mathrm{C}, 95 \%$ by GC.

Nicolaou's approach (2001) ${ }^{41}$

Nicolaou et al. have described a novel method for the direct and selective oxidation of benzylic and other activated alcohols to corresponding aldehydes and ketones with 2iodoxybenzoic acid (IBX) (22) as catalyst (Scheme 36).

1

$R=3,5-\mathrm{OMe}, 2,5-\mathrm{OMe}, \mathrm{Br}$, etc. \quad yields $=62-95 \%$

Scheme 36: IBX (22), DMSO, $85^{\circ} \mathrm{C}, 12 \mathrm{~h}, 85 \%$.

Mizuno's approach (2002) ${ }^{42}$

Mizuno et al. have reported a heterogeneous liquid phase oxidation of benzylic alcohols to benzaldehydes with benzoic acid as side product using [(n$\left.\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]_{4} \mathrm{H}\left[\mathrm{SiW}_{11} \mathrm{Ru}^{\text {III }}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{O}_{39}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ catalyst. Also, this catalyst is efficient for oxidation of alkanes to the corresponding aldehydes (Scheme 37).

Scheme 37: (i) $\left.\left(\mathrm{nC}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]_{4} \mathrm{H}\left[\mathrm{SiW}_{11} \mathrm{Ru}^{\text {III }}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{O}_{39}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}, 120 \mathrm{~h}, 81 \%$.

Brown's approach (2002) ${ }^{43}$

Brown et al. have developed OsO_{4} as catalyst and Cu complex as co-catalyst. A new method for the oxidation of variety of aromatic and aliphatic alcohols to the corresponding carbonyl compounds in good yield (Scheme 38).

Scheme 38: (i) OsO_{4}, quinuclidine (50), $\mathrm{Cu}^{\mathrm{II}}$-2ethylhexanoate, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{O}_{2}, 97 \%$.

White's approach (2003) ${ }^{44}$

White et al. have developed zeolite-confined nanometer sized $\mathrm{RuO}_{2}\left(\mathrm{RuO}_{2}\right.$-FAU) a green, selective and efficient catalyst for aerobic oxidation of various primary and secondary alcohols to the corresponding aldehydes and ketones in high yield (Scheme 39).

Scheme 39: (i) RuO_{2}-FAU, $\mathrm{O}_{2}, 80^{\circ} \mathrm{C}, 99 \%$.

Trudell ${ }^{45}$ et al. have reported a new method for the oxidation of alcohols and ketones to the corresponding aldehydes and ketones using $10 \mathrm{~mol} \%$ of chromium (III) acetylacetone $\mathrm{Cr}(\mathrm{acac})_{3}$ and periodic acid $\mathrm{H}_{5} \mathrm{IO}_{6}$ as oxidant.

Punniyamurthy et al. ${ }^{46}$ have described oxidation of benzylic alcohols to aldehydes and ketones using $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ at $100{ }^{\circ} \mathrm{C}$. Secondary alcohols underwent oxidation chemoselectively to ketones.

Konwar's approach (2004) ${ }^{47}$

Konwar et al. has reported a new alternative system for the oxidation of secondary alcohols to ketones with DMSO/ $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{I}_{2} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ in hydrated. The system also selectively oxidizes the secondary alcoholic groups to the corresponding ketones in the presence of primary alcoholic groups present within the same molecule in moderate to very good yields at reflux temperature (Scheme 40).

Scheme 40: (i) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{I}_{2}$, DMSO, $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{CN}, 80^{\circ} \mathrm{C}, 45 \%$.

Ragauskas's approach (2005) ${ }^{48}$

Ragauskas et al. have reported a room-temperature aerobic oxidation of primary alcohols to aldehydes catalyzed by the three-component system acetamido-TEMPO/Cu$\left(\mathrm{ClO}_{4}\right)_{2} /$ DMAP in the ionic-liquid [bmpy] PF_{6} has been developed, and the catalysts can be recycled and reused for five runs without any significant loss of catalytic activity (Scheme 41).

Scheme 41: (i) $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$, TEMPO-acetamido, DMAP, O_{2}, [bmpy] $\mathrm{PF}_{6}, 75-92 \%$.

Esters

Kageyama's approach (1983) ${ }^{49 \mathrm{a}}$

Kageyama et al. have reported a method for oxidation of primary alcohol to the corresponding ester using sodium bromite $\left(\mathrm{NaBrO}_{2}\right)$ in good yields (Scheme 42).

Scheme 42: (i) NaBrO_{2}, aq. $\mathrm{AcOH}, 25^{\circ} \mathrm{C}, 91 \%$.
Yoshida et al. ${ }^{49 \mathrm{~b}}$ have reported the oxidation of primary alcohols to the corresponding esters using $\operatorname{Pd}(\mathrm{OAc})_{2}$ as catalyst in the presence of base. The remarkable selectivity achieved with this reagent is an attractive feature of this method.

McDonald's approach (1993) ${ }^{50}$

McDonald et al. have described oxidation of benzylic alcohols to the corresponding methyl etser using calcium hypochlorite in good yield. Primary aliphatic alcohols also underwent oxidation; reaction is light sensitive (Scheme 43).

Scheme 43: (i) $\mathrm{Ca}(\mathrm{OCl})_{2}, \mathrm{AcOH}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{MeOH}$, $4 \mathrm{~A}^{0} \mathrm{MS}$, dark, $86-89 \%$.

Ishii's approach (1995) ${ }^{51}$

Ishii et al. have reported oxidation of primary alcohols to the ester using NaBrO_{3} combined with NaHSO_{3}. However, aromatic alcohols fail to form esters (Scheme 44).

Scheme 44: (i) $\mathrm{NaBrO}_{3}, \mathrm{NaHSO}_{3}, \mathrm{H}_{2} \mathrm{O}, 76 \%$.

Lee's approach (1998) ${ }^{52}$

In this approach, esterification of aromatic primary alcohols was carried out with potassium permanganate using phase transfer catalyst (TDA-1) at room temperature. A variety of aromatic alcohols were converted to respective Tishchenko-like dimeric benzoate esters (Scheme 45).

Scheme 45: (i) KMnO_{4}, tris[2-methoxyethoxy)ethyl] amine (TDA-1), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Schulze's approach (2005) ${ }^{53}$

Schulze et al. has reported an efficient method for the oxidation of alcohols with the catalytic amounts of sodium chloride in combination with oxone allows the conversion primary aliphatic alcohols to symmetric esters (Scheme 46).

Scheme 46: (i) Oxone, $\mathrm{NaCl}, 85 \%$.

3.3.3 Present Work

3.3.3.1 Objective

Several reports for alcohols to aldehydes transformation have been reported. These methods usually require harsh conditions and are not cost-effective. In addition, these transformations generally involve an oxidative pathway and require more than stoichiometric amount of oxidants coupled with long reaction times. Also these reagents are unsatisfactorily for alcohols containing electron-withdrawing groups. Since formation of minor amounts of acids often complicates the oxidative process. This section describes a new procedure involving $\mathrm{NaIO}_{4} / \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$combination that oxidizes benzylic alcohols to the corresponding benzaldehydes. Also, in this section describes a one-pot conversion of benzylic alcohols to the corresponding aromatic esters is described.

3.3.4 Results and discussion

In our earlier section, we have described that NaIO_{4}-mediated oxidations and observed that alkylarenes or benzylic bromides solvolyzed to give oxyfunctionalized product either benzylic acetate or benzoic acid. When benzyl alcohol was subjected to oxidation with NaIO_{4} (1 equiv) in the presence of acidic medium without LiBr , benzaldehyde 22 was exclusively obtained in 79% yield with no formation of benzoic acid. In this regard, we envisioned that replacing water with alcohol should result in the formation of esters. During this investigation, we found that $\mathrm{NaIO}_{4}-\mathrm{LiBr}-\mathrm{H}^{+}$combination oxidatively
transform aromatic alcohols directly to the corresponding aromatic esters 57 in high yields (Scheme 47).

Scheme 47: Reaction conditions: (i) benzyl alcohol (3 mmol), $\mathrm{NaIO}_{4}(3 \mathrm{mmol}), 2 \%$ aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL}), 9{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (ii) benzyl alcohol (3 mmol), $\mathrm{NaIO}_{4}(3 \mathrm{mmol}), \mathrm{LiBr}(3 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$ $(15 \mathrm{~mL}), 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$.

To study the generality of the reaction, a variety of primary benzylic alcohols were subjected to oxidation with $\mathrm{NaIO}_{4} / \mathrm{H}^{+}$conditions, and the results are presented in Table 5. Among the various solvents screened, $\mathrm{H}_{2} \mathrm{O}$ was found to give the best results. However, secondary benzylic alcohols as well as aliphatic alcohols were resistant to oxidation under the reaction conditions. As can be seen, the method worked exceedingly well in the case of aromatic alcohols with electron-withdrawing groups such as halo, nitro, etc. Unfortunately, reaction in the case of benzylic alcohols with electron-donating substitutent as well as aliphatic alcohols did not proceed smoothly. The formation of benzaldehydes 22a-j was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-NMR and IR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 2 g}$ showed signals at $\delta 10.11$ (-CHO) for aldehydic proton. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical signal at $\delta 189.64$ for the aldehyde carbonyl (-CHO) carbon (Fig. 5). Its IR spectrum showed a strong band at $1720 \mathrm{~cm}^{-1}$ confirming the formation of aldehyde function.

Table 5: Oxidation of Benzylic alcohols to Benzaldehdyes by NaIO_{4} in acidic medium ${ }^{\text {a }}$
Entry
${ }^{a}$ Reaction conditions: alcohol (3 mmol), $\mathrm{NaIO}_{4}(3 \mathrm{mmol}), 2 \%$ aq $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water (15 mL), $95{ }^{\circ} \mathrm{C}, 8 \mathrm{~h} ;{ }^{b}$ Isolated yields after column chromatographic purification; ${ }^{c}$ Yield by GC; ${ }^{d}$ 2-Pyridinemethanol was employed for oxidation.

Fig. 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3-nitrobenzaldehyde (22g).

Mechanism

A probable pathway for the oxidation of primary benzylic alcohols to the corresponding aldehydes in the absence of LiBr is shown in (Scheme 48). The species \mathbf{A} formed by
reaction of benzyl alcohol with NaIO_{4} undergoes oxidation to give benzaldehydes. As further oxidation of aldehydes to acids was not observed, we conclude that NaIO_{4} was not capable of oxidizing aldehydes to carboxylic acids.

Scheme 48: Possible pathway for the oxidation of alcohol to aldehydes

Direct oxidation of benzylic alcohols to esters

The NaIO_{4}-mediated oxidation of alkylarenes led to high yield preparation of benzoic acids, formed via the oxidation of their respective benzyl alcohols and aldehydes when the reaction was carried out in water. In this regard, we envisioned that replacing water with alcohol should result in the formation of esters. During this investigation, we found that $\mathrm{NaIO}_{4}-\mathrm{LiBr}-\mathrm{H}^{+}$combination oxidatively transforms aromatic aldehydes directly to the corresponding aromatic esters in high yields ${ }^{54}$ (Scheme 49).

Scheme 49: (i) NaIO_{4} (3 mmol), LiBr (3 mmol), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$, $\mathrm{MeOH}(9 \mathrm{~mL})$, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$.

In order to establish the scope of this reaction, a number of aromatic aldehydes were subjected to oxidation and the results are presented in the Table 6. As can be seen from Table 6, aromatic aldehydes with electron-donating as well as electron-withdrawing

Table 6: Direct conversion of benzylic alcohols to aromatic esters ${ }^{\text {a }}$
Entry

[^2]```
at }65\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ with aq. }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}(0.85\textrm{N},1\textrm{mL})
```

substituents on the nucleus underwent oxidative esterification smoothly to give their corresponding aromatic esters in $71-89 \%$ yields. In the case of substrates with electrondonating groups, the reaction proceeded at $25{ }^{\circ} \mathrm{C}$ while the substrates with electronwithdrawing groups, except 4-chloro aromatics, required higher temperature $\left(65^{\circ} \mathrm{C}\right)$ to achieve excellent conversions. For 4-methoxybenzyl alcohol, the oxidative esterification


Fig. 6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 7 g}$
occurred along with nuclear bromination when 2 molar equivalents of LiBr was used (entry d). We also observed that use of sub-stoichiometric amount of $\mathrm{NaIO}_{4}$ (25-40 $\mathrm{mol} \%$ ) resulted in poor yields of esters ( $<40 \%$ ). All the aromatic esters synthesized were systematically characterized from IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 7} \mathbf{g}$ showed a singlet at $\delta 4.0$ (s) due to methoxyl protons $\left(-\mathrm{CO}_{2} \mathrm{CH}_{\mathbf{3}}\right)$ of ester moiety. Its ${ }^{13} \mathrm{C}$ NMR spectrum displayed signals at $\delta 52.5$ and 164.7 due to the methoxyl and carbonyl group ( $-\mathrm{CO}_{2} \mathrm{CH}_{3}$ ) of ester moiety (Fig. 6).

Among the several solvent combinations screened, a mixture of $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{SO}_{4}(9: 1,10$ mL ) gave the highest yield of esters. Control experiments have shown that both $\mathrm{NaIO}_{4}$ and LiBr are needed to produce esters. Ethanol was also found to give ethyl esters (entry b) while other alcohols such as 2-propanol and benzyl alcohol have failed to give their respective esters probably due to steric hindrance. Aliphatic alcohols or aldehydes were found to be inactive under the reaction conditions, which may be a limitation of this process. Replacing LiBr with other halide sources like tetrabutylammonium bromide or NaBr also brought about this conversion with comparable yield while KI and NaCl failed.


Scheme 50: proposed radical pathway for the direct esterification of aromatic aldehydes and benzylic alcohols.

Based on the observations that no traces of acetal or carboxylic acid was identified in the present study as well as from our earlier work on $\mathrm{NaIO}_{4} / \mathrm{LiBr}$ mediated reactions, ${ }^{33}$ a probable mechanism ${ }^{46}$ for the oxidative esterification of aromatic aldehydes and benzylic alcohols has been given in Scheme 50. Initially, LiBr is oxidized by $\mathrm{NaIO}_{4}$ in the presence of acetic acid to liberate bromine. Thus, the liberated bromine probably generates bromine radical which then initiates the propagation step by adding to the aldehyde to produce acyl radical. This acyl radical further reacts with bromine to form acylbromide, which upon hydrolysis furnish the corresponding esters.

### 3.3.5 Conclusion

In conclusion we have developed a new reagent system comprising $\mathrm{NaIO}_{4} / \mathrm{LiBr}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ for the direct conversion of aldehydes and alcohols to their corresponding methyl and ethyl esters. The reaction is believed to proceed via radical pathway.

### 3.3.6 Experimental Section

## Procedure for the oxidation of primary benzylic alcohols (21a-j)

To a mixture of benzylic alcohols ( 3 mmol ) and $\mathrm{NaIO}_{4}(3 \mathrm{mmol})$ was added $2 \%$ aq $\mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL})$. The reaction mixture was heated at $95{ }^{\circ} \mathrm{C}$ (using an oil bath) for 12 h . Progress of the reaction was monitored by TLC. The reaction mixture was then cooled to room temperature and extracted with ethyl acetate ( $40 \mathrm{~mL} \times 3$ ), and the combined organic phase was washed with saturated sodium thiosulfate solution and water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give crude product, which was purified by column chromatography packed with silica gel using $n$-hexane and ethyl acetate (9:1) as eluent to afford pure aldehydes.

## Benzaldehyde (22a)

Yield: 79\%; colorless liquid; IR (neat, $\mathrm{cm}^{-1}$ ): 3073, 2827, 2745, 1715, 1696, 1012, 720; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 7.52-7.80(\mathrm{~m}, 5 \mathrm{H}), 9.89(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 128.9, 129.6, 134.3, 136.4, 190.1; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}: \mathrm{C}, 79.22$; H, 5.70. Found C, 79.10 ; H, $5.63 \%$.

## 4-Bromobenzaldehyde (22b)

Yield: $83 \%$; colorless solid; mp: $58-59{ }^{\circ} \mathrm{C}$, [lit. $\left.{ }^{55 \mathrm{a}} \mathrm{mp}: 59-60{ }^{\circ} \mathrm{C}\right]$; IR (neat, $\mathrm{cm}^{-1}$ ): 2910, $2842,1705,1600,1140,1010,840,820 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 129.6,130.8$, 132.3, 135.0, 190.8; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrO}: \mathrm{C}, 45.44 ; \mathrm{H}, 2.72$; Br, 43.19. Found C, 45.67; H, 2.43; Br, 43.22\%.

## 4-Chlorobenzaldehyde (22c)

Yield: $80 \%$; colorless solid; mp: $46-47^{\circ} \mathrm{C},\left[\mathrm{lit} .{ }^{55 \mathrm{~b}} \mathrm{mp}: 47^{\circ} \mathrm{C}\right]$; IR (neat, $\mathrm{cm}^{-1}$ ): 3080,2815 , 2720, 1710, 1602, 1389, 1200, 1005, 820, ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.51(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 129.3,130.8$, 137.7, 140.8, 190.6; Anal. Calcd for. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}: \mathrm{C}, 59.81$; H, 3.59, Cl, 25.22. Found C, 59.90; H, 3.32, Cl, 25.36\%.

## 4-Fluorobenzaldehyde (22d)

Yield: 77\%; colorless liquid; IR (neat, $\mathrm{cm}^{-1}$ ): 3060, 2940, 1712, 1600, 1510, 1343, 1140, 750,$715 ;{ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.21(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.96(\mathrm{q}, J=5.4 \mathrm{~Hz}$, 2H), $9.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 116.1,116.4,132.1,132.3,133.0,168.2$, 190.3; Anal. Calcd for. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{FO}$ : C, 67.74; H, 4.06. Found C, 67.52 ; H, 3.99\%.

## 4-Methylbenzaldehyde (22e)

Yield: 78\%; colorless liquid; IR (neat, $\mathrm{cm}^{-1}$ ): 2810, 2700, 1705, 1600, 1120, 1110, 720; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $9.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.8,129.6,129.7,134.2,145.4,191.7$; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}: \mathrm{C}, 79.97 ; \mathrm{H}, 6.71$. Found C, $79.45 ; \mathrm{H}, 6.69 \%$.

## 4-Nitrobenzaldehyde (22f)

Yield: $67 \%$; colorless solid; mp: $105-106{ }^{\circ} \mathrm{C}$, [lit. $\left.{ }^{55 \mathrm{c}} \mathrm{mp}: 106{ }^{\circ} \mathrm{C}\right]$; IR (neat, $\mathrm{cm}^{-1}$ ): 2932, 2860, 1706, 1605, 1430, 1320, 1200, 840, 810, 760, ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.06(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) 10.15(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 124.2, 130.4, 140.0, 151.1, 190.2; Anal. Calcd for. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3}: \mathrm{C}, 55.63$; H, 3.33; N, 9.27. Found C, 55.58; H, 3.42; N, 9.33\%.

## 3-Nitrobenzaldehyde (22g)

Yield: $65 \%$; colorless solid; mp: $58-59{ }^{\circ} \mathrm{C}$, [lit. $\left.{ }^{55 \mathrm{~d}} \mathrm{mp}: 58^{\circ} \mathrm{C}\right]$; IR (neat, $\mathrm{cm}^{-1}$ ): 2972, 2952, $1720,1610,1445,1225,820,745,637 ;{ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 7.76(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.20-8.25(\mathrm{td}, J=1.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.45-8.51(\mathrm{dddd}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{t}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 10.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 124.1,128.3,130.2,134.5,137.2,148.6$, 189.5; Anal. Calcd for. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3}: \mathrm{C}, 55.63$; H, 3.33; N, 9.27. Found C, 55.59; H, 3.42; N, 9.41\%.

## 2-Chlorobenzaldehyde (22h)

Yield: 71\%; colorless liquid; IR (neat, $\mathrm{cm}^{-1}$ ): 3060, 2820, 2720, 1710, 1602, 1389, 1200, 1015, 826; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl $_{3}$ ): $\delta 7.45-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$

NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 127.2,129.3,130.5,132.5,135.0,137.8$, 189.5; Anal. Calcd for. $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClO}: \mathrm{C}, 59.81 ; \mathrm{H}, 3.59 ; \mathrm{Cl}, 25.22$. Found C, $59.79 ; \mathrm{H}, 3.60 ; \mathrm{Cl}, 25.41 \%$.

## 4-Methoxybenzaldehyde (22i)

Yield: $21 \%$; colorless liquid; IR (neat, $\mathrm{cm}^{-1}$ ): $2860,2752,1715,1610,1500,1250,1120$, 1005, 812; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl $_{3}$ ): $\delta 3.92(\mathrm{~s}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 124.3,128.5,130.3,134.6,137.4$, 148.7, 189.6; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$ : C, 70.57 ; H, 5.92. Found C, 70.60 ; H, $5.88 \%$.

## Typical experimental procedure (57a-j)

To a 50 mL round bottom flask charged with aromatic aldehyde ( 3 mmol ), lithium bromide ( 3 mmol ) sodium metaperiodate ( 3 mmol ), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL}$ ) in methanol ( 9 mL ) was added at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred for 18 h and then excess solvent was removed under reduced pressure. The residue was extracted with ethyl acetate, and the organic phase was washed with water, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the organic layer gave crude ester, which was subjected to column chromatographic purification using hexane/ethyl acetate (19:1) as eluent to obtain pure aromatic esters.

## Methyl benzoate (57a)

Yield: 98\%; colorless liquid; IR (neat, $\mathrm{cm}^{-1}$ ): 715, 750, 1140, 134, 1510, 1600, 1732, 2940, 3060; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.87(\mathrm{~s}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 51.2,128.3,129.2,130.7,133.1$, 148.1, 165.6; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$ : C, 70.57; H, 5.92. Found C, $70.52 ; \mathrm{H}, 5.97 \%$.

## Ethyl benzoate (57b)

Yield: 82\%; colorless liquid; IR (neat, $\mathrm{cm}^{-1}$ ): 715, 755, 1040, 1314, 1520, 1600, 1730, 2942, 3055; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.31(\mathrm{t}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.13(\mathrm{q}, J=7.5 \mathrm{~Hz}), 7.32-7.42$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
14.1, 60.7, 128.1, 128.9, 129.5, 133.3, 166.4; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}: \mathrm{C}, 71.98$; $\mathrm{H}, 6.71$.

Found: C, 71.52 ; H, 6.57\%.

## Methyl 4-chlorobenzoate (57c)

Yield: 91\%; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 1127,1265,1146,1510,1510,1733,2304$, 2971, 3049; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.89$ (s, 3 H ), 7.83 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.94 (d, $J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 51.9,128.6,129.5,130.9,139.2,165.6$; Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$ : C, $56.32 ; \mathrm{H}, 4.14$. Found: C, $56.28 ; \mathrm{H}, 4.19 \%$.

## Methyl 4-methoxybenzoate (57d)

Yield: $85 \%$; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 1145,133,1510,1603,1723,2940,3060$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}$, $J=10.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 51.7,55.3,113.5,122.4,131.5,163.2$, 189.5; Anal. Calcd for. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$ : C, 65.05; H, 6.07. Found: C, $65.12 ; \mathrm{H}, 6.01 \%$.

## Methyl 4-bromobenzoate (57e)

Yield: $87 \%$; colorless liquid; IR (Neat, $\mathrm{cm}^{-1}$ ): 712, 1236, 1413, 1651, 1739, 2118, 2876, 3062; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $): \delta 3.91(\mathrm{~s}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C - N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 52.1,127.9,129.0,131.0,131.6,165.9$; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2}$ : C, 44.68; H, 3.28; Found C, $44.62 ; \mathrm{H}, 3.24 \%$.

## Methyl 4-fluorobenzoate (57f)

Yield: $80 \%$; colorless liquid; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 720,937,1172,1270,1431,1619,1737$, 2989, 3079, ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 3.91(\mathrm{~s}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.1,116.2,129.8,131.7,165.2,163.9$; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2}$ : C, $62.34 ; \mathrm{H}, 4.58$. Found: C, $62.39 ; \mathrm{H}, 4.55 \%$.

## Methyl 2-nitrobenzoate (57g)

Yield: $78 \%$; yellow colored liquid; $\mathbf{I R}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 715,750,1140,134,1510,1600$, 1732, 2940, 3060; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( 2 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$ ): $\delta 4.0(\mathrm{~s}, 3 \mathrm{H}), 7.66(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.40-$ $8.43(\mathrm{~m}, 2 \mathrm{H}), 8.87(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.6,124.3,127.2$, 129.52, 131.7, 135.1, 148.1, 164.7; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$ : C, 53.04; H, 3.89; N, 7.73. Found: C, 53.03; H, 3.93; N, 7.78\%.

## Methyl 3-nitrobenzoate (57i)

Yield: $79 \%$; yellow solid; mp: $78-79{ }^{\circ} \mathrm{C}$, [lit. $\left.{ }^{55 \mathrm{e}} \mathrm{mp}: 78{ }^{\circ} \mathrm{C}\right]$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 715,750$, 1140, 134, 1510, 1600, 1735, 2940, 3060; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.85(\mathrm{~s}, 3 \mathrm{H}), 7.52$ $(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.30(\mathrm{~m}, 2 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.3$, 124.3, 127.7, 129.7, 129.9, 131.9, 133.1, 164.9; Anal. Calcd for. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$ : C, 53.04; H, 3.89 ; N, 7.73. Found: C, 53.03; H, 3.93; N, 7.78\%.

## Methyl 4-nitrobenzoate (57j)

Yield: $82 \%$; yellow colored solid; mp: $95-96{ }^{\circ} \mathrm{C},\left[1 \mathrm{lit}{ }^{55 \mathrm{e}} \mathrm{mp}: 96{ }^{\circ} \mathrm{C}\right]$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 1112$, 1253, 1440, 1612, 1728, 3038; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.97(\mathrm{~s}, 3 \mathrm{H}), 8.16-8.30(\mathrm{~m}$, 4H); ${ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 52.5,123.4,130.6,135.4,150.8,164.8$; Anal. Calcd for.
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$ : C, 53.04 ; H, 3.89; N, 7.73; Found: C, 53.09; H, 3.83; N, 7.71\%.

### 3.3.7 References

1. (a) Shilov, A. E.; Shul_pin, G. B. Chem. Rev. 1997, 97, 2879; (b) Hill, C. L. Activation and Functionalization of Alkanes; John Wiley: New York, 1989; (c) Crabtree, R. H. J. Chem. Soc., Dalton Trans. 2001, 2437; (d) Schreiner, P. R.; Fokin, A. A. Chem. Rec. 2004, 3, 247; (e) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
2. (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633; (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
3. Bryant, D. R.; McKeon, J. E.; Ream, B. C. Tetrahedron Lett. 1968, 30, 3371.
4. Bryant, D. R.; McKeon, J. E.; Ream, B. C. J. Org. Chem. 1968, 33, 4123.
5. Bergman, J.; Engman, L. Tetrahedron Lett. 1978, 35, 3279.
6. Bergman, J.; Engman, L. J. Org. Chem. 1982, 47, 5191.
7. Hendriks, C. F.; Beek, H. C. A.; Heertjes, P. M. Ind. Eng. Chem. Prod. Res. Dev. 1978, 17, 256.
8. Okada, T.; Kamya, Y. Bull. Chem. Soc. Jpn. 1981, 54, 2724.
9. Ebitani, K.; Choi, K-M.; Mizugaki, T.; Kaneda, K, Langmuir, 2002, 18, 1849.
10. Benhmid, A.; Narayana, K. V.; Martin, A.; Lucke, B.; Chem. Commun. 2004, 2118.
11. Dewkar, G. K.; Narina, S. V.; Sudalai, A. Org. Lett. 2003, 5, 4501-4504.
12. Shaikh, T. M.; Sudalai, A. Tetrahedron Lett. 2005, 46, 5589.
13. (b) Cainelli, G.; Cardillo, G. Chromium Oxidations in organic Chemistry; Springer: Berlin, 1984; (c) Hudlicky, M. Oxidations in Organic Chemistry; American Chemical Society: Washington, DC, 1990.
14. (a) Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: New York, 1991; Vol. 7.; (b) Hudlicky, M. Oxidations in Organic Chemistry, ACS Monograph 186; American Chemical Society: Washington, DC, 1990; (c) Handbook of Reagents for Organic Synthesis: Oxidizing and Reducing Agents; Burke, S. D., Danheiser, R. L., Eds.; John Wiley and Sons: Chichester, UK, 1999.
15. Friedman, L.; Fishel, D. L.; Shechter, H. J. Am. Chem. Soc. 1965, 30, 1453.
16. Sam, D. J.; Simmons, H. E. J. Am. Chem. Soc. 1972, 4024.
17. Sasson, Y.; Zappi, G. D.; Neumann, R. J. Org. Chem. 1986, 51, 2880.
18. Santamaria, J.; Jroundi, R.; Riguady, J. Tetrahedron Lett. 1989, 30, 4677.
19. Shi, M.; Feng, Y-S. J. Org. Chem. 2001, 66, 3235.
20. Remias, J. E.; Sen, A. 2003, J. Mol. Cat. A. 2003, 201, 63-70.
21. Paul, S.; Nanda, P.; Gupta, R. Synlett. 2004, 531.
22. Gupta, M.; Paul, S.; Gupta, R.; Loupy, R. Tetrahedron Lett. 2005, 46, 4957.
23. Saha, B.; Espenson, J. H. J. Mol. Catal. A: 2005, 241, 33-38.
24. Bonvin, Y.; Callens, E.; Larrosa, I.; Henderson, D. A.; Oldham, J.; Burton, A. J.; Barrett, A. G. M. Org. Lett. 2005, 7, 4549.
25. Shaikh, T. M.; Emmanuvel, L.; Sudalai, A. J. Org. Chem. 2006, 71, 5043.
26. (a) Mestres, R.; Palenzuela, J. Green Chem. 2002, 4, 314; (b) Amati, A.; Dosualdo, G.; Zhao, L.; Bravo, A.; Fontana, F.; Minisci, F.; Bjorsvik, H. R. Org. Process Res. Dev. 1998, 2, 261.
27. (a) Dictionary of Organic Compounds. vol. 2, 936; (b) Dictionary of Organic Compounds. vol. 2, 1289; (c) Dictionary of Organic Compounds. vol. 5, 4758; (d) Dictionary of Organic Compounds. vol. 2, 1161; (e) Dictionary of Organic Compounds. vol. 3, 2022; (f) Dictionary of Organic Compounds. vol. 3, 2021; (g) Dictionary of Organic Compounds. vol. 1, 781; (h) Dictionary of Organic Compounds. vol. 4, 3173.
28. (a) Hill, C. L. Advances in Oxygenated Processes; Baumstark, A. L., Ed.; JAI Press: London, 1988; Vol. 1, p 1.
29. (a) Corey, E. J.; Gilman, N. W.; Ganem, B. E. J. Am. Chem. Soc. 1968, 90, 5616; (b) Sundararaman,
P. Walker, E. C.; Djerassi, C. Tetrahedron Lett. 1978, 19, 1627; (c) Garegg, P. J.; Olcson, L.; Oscarson, S. J. Org. Chem. 1995, 60, 2200; (d) Ogawa, T.; Matsui, M. J. Am. Chem. Soc. 1976, 98, 1629.
30. Harfenist, M.; Bavley, A.; Lazier, W. A. J. Org. Chem. 1956, 1608.
31. Corey, E. J.; Kim, C. U. J. Am. Chem. Soc. 1972, 7586.
32. Corey, E. J.; Suggs, W. Tetrahedron Lett. 1975, 31, 2647.
33. Blair, L. K.; Baldwin, J.; Smith, W. C. J. Org. Chem. 1977, 42, 1816.
34. Omura, K.; Swern, D. Tetrahedron, 1978, 34, 1651.
35. Dess, D. B.; Martin, J. C.; J. Org. Chem. 1983, 48, 4156.
36. Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc. Chem. Commun. 1987, 1625.
37. Einhorn, J.; Einhorn, C.; Ratajczak ,F.; Pierre, J-L. J. Org. Chem. 1996, 61, 7452.
38. Zondervan, C.; Hage, R.; Feringa, B. L. Chem. Commun. 1997, 419.
39. Meciarova, M.; Toma, S.; Heribanova, A. Tetrahedron Lett. 2000, 56, 8561.
40. Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2000, 122, 7144.
41. Nicolaou, K. C.; Baran, P. S.; Zhong, Y-L. J. Am Chem. Soc. 2001, 123, 3183.
42. Yamaguchi, K.; Mizuno, M. New. J. Chem. 2002, 26, 972.
43. Muldoon, J.; Brown, S. N. Org. Lett. 2002, 4, 1043.
44. Zhan, B-Z.; White, M. A.; Sham, T-K.; Pincock, J. A.; Doucet, R. J.; Rao, K. V. R.; Robertson, K. N.; Cameron, T. S. J. Am. Chem. Soc. 2003, 125, 2195.
45. Xu, L.; Trudell, M. L. Tetrahedron Lett. 2003, 44, 2553.
46. Velusamy, S.; Punniyamurthy, T. Org. Lett. 2004, 6, 217.
47. Gogoi, P.; Sarmah, G. K.; Konwar, D. J. Org. Chem. 2004, 69, 5153.
48. Jiang, N.; Ragauskas, A. J. Org. Lett. 2005, 7, 3689.
49. (a) Kageyama, T.; Kawahara, S.; Kitamura, K.; Ueno, Y.; Okawara, M. Chem. Lett. 1983, 1097; (b) Tamaru, Y.; Yamada, Y.; Inou, K.; Yamamoto, Y.; Yoshida, Z-I. J. Org. Chem. 1983, 43, 1286.
50. McDonald, C. E.; Nice, L. E.; Shaw, A. W.; Nestor, N. B. Tetrahedron Lett. 1993, 34, 2741.
51. Takase, K.; Masuda, H.; Kai, O.; Nishiyama, Y.; Sakaguchi, S.; Ishii, Y. Chem. Lett. 1995, 871.
52. Rankin, K. N.; Liu, K.; Hendry, J.; Yee, H.; Noureldin, N. A.; Lee, D. G. Tetrahedron Lett. 1998, 39, 1095.
53. Schulze, A.; Pagona, G.; Giannis, A. Synth. Commun. 2005, 1147.
54. Shaikh, T. M.; Emmanuvel, L.; Sudalai, A. Synth. Commun. 2007, 37, 2641.
55. (a) Dictionary of Organic Compounds. vol. 2, 930; (b) ibid. vol. 2, 1282; (c) vol. 5, 4749; (d) vol. 5, 4448; (e) vol. 5, 4758;

## CHAPTER IV

Heterogeneous Catalysts for Oxidative Transformation of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ Bonds

## Section I

## WO $_{3}$-Catalyzed Selective Oxidation of Alkylarenes and Arylketones: High Yield Preparation of Benzoic acids

### 4.1.1 Introduction

The name benzoic acid originates from benzoin, a balsamic resin obtained from a South Asian plant called styrax. The extraction of benzoic acid was carried out by Scheele in 1775 and its structure was determined by Liebig and Wohler in 1832. The initial production methods were developed in the late 1800s. They were based on the hydrolysis of benzotrichloride or the decarboxylation of phthalic anhydride. Also, a variety of substituted benzoic acids are widely used in the pharmaceutical industry as drug intermediates for the synthesis of antirheumatics, antimalarials, tranquilizers etc., in agrochemicals as herbicides and in polymer and dye-stuff industries as modifiers for resins and dye sensitizer respectively. ${ }^{1}$

The oxidation of benzylic $\mathrm{C}-\mathrm{H}$ bonds to the corresponding oxy-functionalized products constitutes one of the most fundamental transformations in organic synthesis. ${ }^{2}$ The conventional method for the preparation of carboxylic acid involves oxidation of alcohols or aldehydes catalyzed by either acid or toxic metals. However, stoichiometric use of metallic oxidants generally cause problems associated with either environmental pollution or difficult separation of the metal reagent from the products. In contrast, the direct method of conversion of methylarens or aryl ketones to carboxylic acids holds promise in organic synthesis.

### 4.1.2 Review of Literature

Literature survey revealed that there are various methods available for the direct transformation of methylarenes into the corresponding carboxylic acids, which has been discussed under section II of Chapter 3. Direct transformation of methylarenes into the corresponding benzoic acids has been achieved using a variety of oxometal oxidants ${ }^{3}$ such as $\mathrm{KMnO}_{4}, \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{CrO}_{3}, \mathrm{CeO}_{2}, \mathrm{TiO}_{2}$ or $\mathrm{NaIO}_{4}$ in stoichiometric amounts and $\mathrm{Co}(\mathrm{OAc})_{2},{ }^{4} \mathrm{Cu}-\mathrm{Fe},{ }^{5} \mathrm{ZnO},{ }^{6} \mathrm{MnCO}_{3},{ }^{7} \mathrm{AlBr}_{3},{ }^{8} \mathrm{FeCl}_{3}{ }^{9}$ and more recently $\mathrm{Ni}^{\mathrm{II}}(\mathrm{TPA}),{ }^{10}$ $\mathrm{RuCl}_{3},{ }^{11} \mathrm{CuCl},{ }^{12}$ and $\mathrm{Bi}^{13}$ salts in catalytic amounts. Among non-oxometal oxidants, urea hydrogen peroxide, $\mathrm{HNO}_{3}, \mathrm{HBr}$, and $\mathrm{CBr}_{4}-\mathrm{PPh}_{3}$ are commonly used. ${ }^{14}$ Some of the recent developments on oxidation of aryl ketones to carboxylic acids are discussed below. ${ }^{15-19}$

## Moriarty's approach (1987) ${ }^{15}$

Moriarty et al. have reported a method for the oxidative cleavage of acetophenones, $\alpha$ hydroxyacetophenones, deoxybenzoin, benzoin, and benzil using catalytic amount of hypervalent iodo compound 3 in wet benzene at room temperature to give the corresponding benzoic acids. Also, the method has been demonstrated for the oxidative cleavage of cyclohexanone and dimedone to give adipic acid and 3,3-dimethylglutaric acid respectively (Scheme 1).


Scheme 1: (i) cat. 3, benzene, water, $90 \%$.

## Sudalai's approach (1999) ${ }^{16}$

Our group has reported a mild and efficient catalytic method for the C-C bond cleavage of aryl ketones to the corresponding carboxylic acids in good yields using a catalytic amount of $\mathrm{Re}_{2} \mathrm{O}_{7}$ in presence of $70 \%$ tert-butyl hydroperoxide (TBHP) as oxidant. The method showed excellent yields for electron-donating substrates (Scheme 2).


Scheme 2: $\mathrm{Re}_{2} \mathrm{O}_{7}$ ( $6 \mathrm{~mol} \%$ ), TBHP (8equiv.), $\mathrm{AcOH}, 100{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 25-72 \%$.

## Ashford's approach (2001) ${ }^{17}$

Ashford et al. have developed a novel method for converting methyl aryl ketones to the corresponding carboxylic acids using oxone ${ }^{\circledR}\left(2 \mathrm{KHSO}_{5} \cdot \mathrm{KHSO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}\right)$ in presence of acetone $: \mathrm{H}_{2} \mathrm{O}$. The protocol demonstrates for the oxidative cleavage of 1,3-dicarbonyl compounds and $\alpha$-hydroxy ketones in excellent yields (Scheme 3).


Scheme 3: (i) Oxone ${ }^{\circledR}, \mathrm{NaHCO}_{3}$, acetone $+\mathrm{H}_{2} \mathrm{O}, 97 \%$.

## Bjorsvik's approach (2004) ${ }^{18}$

Bjorsvik et al. have reported a new catalytic oxidation method for the preparation of aromatic carboxylic acids from methyl aryl ketones using $m$-dinitrobenzene $\mathbf{5}$ as catalyst. The method is an alternative to the haloform reaction. The novel features of this protocol
are: (i) no any harmful side products; (ii) use of green oxidants $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} .1 .5 \mathrm{H}_{2} \mathrm{O}_{2}\right)$ (Scheme 4).


Scheme 4: (i) cat. 5, t-BuOH, $\mathrm{K}^{\mathrm{t}} \mathrm{OBu}, \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}_{2}, 80{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$, $73 \%$.

## Shinozuka's approach (2006) ${ }^{19}$

Shinozuka et al. have described an efficient and practical method for the preparation of 4-amino-substituted benzoic acids in high yields in two steps. The method consists of the aromatic substitution of fluoro with amines $\mathbf{6}$ or 7, followed by simultaneous basic hydrolysis to give benzoic acids 2 (Scheme 5).


Scheme 5: 6 or 7, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}, 100{ }^{\circ} \mathrm{C}$; (ii) NaOH , DMF, $\mathrm{H}_{2} \mathrm{O}, 100^{\circ} \mathrm{C}, 99 \%$.

### 4.1.3 Present Work

### 4.1.3.1 Objective

Although there are many methods available in the literature for oxidation of alkyl arenes, several of them suffer from certain drawbacks like low yields, cumbersome experimental procedures, use of expensive air and moisture sensitive or highly toxic catalysts. Moreover, many of these procedures often require an excess of reagents, long reaction times, expensive heavy metal salts and ionic liquids. Little information is available on the oxidative cleavage of aryl ketones. Hence, there arises a necessity to develop an efficient procedure for the oxidation of methylarenes or aryl ketones to the corresponding benzoic acids, which are industrially useful chemicals.

### 4.1.4 Results and Discussion

### 4.1.4.1 Oxidation of methylarenes

Table 1 shows the results of $\mathrm{WO}_{3}$-catalyzed oxidation of 4-bromotoluene as a model substrate to the corresponding 4-bromobenzoic acid with $70 \%$ TBHP as oxidant in the presence of NaOH as additive. When $70 \%$ TBHP (1 equiv.) and $40 \% \mathrm{NaOH}$ (8 equiv.) was used, the corresponding 4-bromobenzoic acid was obtained only in $27 \%$ yield. A larger amount of TBHP (4 equiv.) resulted in an improved yield up to $36 \%$. When the reaction was performed with an even larger concentration of TBHP (8 equiv.) and $\mathrm{WO}_{3}$ ( $5 \mathrm{~mol} \%$ ), 4-bromobenzoic acid was obtained in moderate yield (42 \%). Also, when the quantity of NaOH was reduced to 9 or 15 mmol , the product was obtained in 15 or $57 \%$ yield, respectively. Thus, optimal reaction conditions comprised $\mathrm{WO}_{3}$ ( $20 \mathrm{~mol} \%$ ), $70 \%$ TBHP ( 8 equiv.), and $40 \% \mathrm{NaOH}$ (8 equiv.) as additive. This gave 4-bromobenzoic acid in $89 \%$ isolated yield. The use of other tungsten-based catalysts like $\mathrm{Na}_{2} \mathrm{WO}_{4}$ and $\mathrm{H}_{2} \mathrm{WO}_{4}$
gave poor yields of the product ( $<15 \%$ ). Also, the reaction failed when $\mathrm{H}_{2} \mathrm{O}_{2}$ (aq. $30 \%$ or $50 \%$ ) was used as the oxidant. Control experiments showed that, in the absence of NaOH , no reaction took place.

Table 1: $\mathrm{WO}_{3}$-catalyzed oxidation of 4-bromotoluene to 4-bromobenzoic acid. ${ }^{\text {(a) }}$

| Entry | $\mathbf{W O}_{3}$ <br> $[\mathrm{~mol} \%]$ | $\mathbf{7 0 \%}$ TBHP <br> $[\mathrm{mmol}]$ | $\mathbf{4 0 \%} \mathbf{~ N a O H}$ <br> $[\mathrm{mmol}]$ | Yield $^{(\mathbf{b )}}$ <br> $[\%]$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 20 | 3 | 24 | 27 |
| 2 | 20 | 12 | 24 | 36 |
| 3 | 5 | 24 | 15 | 42 |
| 4 | 20 | 24 | 9 | 15 |
| 5 | 20 | 24 | 15 | 57 |
| $\mathbf{6}$ | $\mathbf{2 0}$ | $\mathbf{2 4}$ | $\mathbf{2 4}$ | $\mathbf{8 9}$ |

Reaction condition: (a) (i) 4-bromotoluene ( 3 mmol ), $\mathrm{WO}_{3}, 70 \%$ TBHP, $40 \% \mathrm{NaOH}, 80^{\circ} \mathrm{C}, 10 \mathrm{~h}$; (ii) acidified with 6 N HCl . (b) Isolated yield and product was characterized by m.p. and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy.

For understanding the scope and generality of this oxidation method, several methylarenes were subjected to oxidation (Scheme 6) under the optimized conditions, and the results are presented in Table 2. Alkylarenes with electron-withdrawing as well as electron-donating substituents underwent oxidation readily to produce the corresponding benzoic acids in excellent yields. It is noteworthy that for substrates with polymethyl groups, one of the methyl groups is selectively oxidized to give monocarboxylic acid (Table 2, entries d and i). However, $\alpha$-picoline failed to undergo oxidation under the reaction conditions.


Scheme 6: (i) (a) methylarene ( 3 mmol ), $\mathrm{WO}_{3}(20 \mathrm{~mol}-\%$ ), $70 \%$ TBHP ( 24 mmol ), $40 \% \mathrm{NaOH}(24 \mathrm{mmol}), 8{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}$; (b) acidified with 6 N HCl .

Table 2: $\mathrm{WO}_{3}$-catalyzed oxidation of methylarenes to benzoic acids with $70 \%$ TBHP. ${ }^{\text {(a) }}$

| Entry | $\mathrm{Ar}-\mathrm{CH}_{3}(8)$ | $\begin{gathered} \mathrm{Ar}_{\mathrm{Ar}} \mathrm{CO}_{2} \mathrm{H}(2), \\ \text { Yield }^{(b)} \% \end{gathered}$ |
| :---: | :---: | :---: |
| a | $\mathrm{C}_{6} \mathrm{H}_{5}$ | 85 |
| b | $4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$ | 89 |
| c | $4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$ | 84 |
| d | $4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$ | 78 |
| e | $2-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$ | 71 |
| f | $4-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}$ | 85 |
| g | $4-t \mathrm{Bu}-\mathrm{C}_{6} \mathrm{H}_{4}$ | 74 |
| h | $4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$ | 93 |
| i | 3,5-Me ${ }_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$ | 72 |
| j | $2,3-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$ | 75 |
| k | $2,4-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$ | 83 |
| 1 | $3,4-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$ | 80 |
| m | 2-methylnaphthalene | 70 |

(a) (i) methylarene ( 3 mmol ), $\mathrm{WO}_{3}(20 \mathrm{~mol} \%$ ), $70 \%$ TBHP (3 $\mathrm{mL}, 24 \mathrm{mmol}$ ), $40 \% \mathrm{NaOH}(24 \mathrm{mmol}), 80^{\circ} \mathrm{C}, 10 \mathrm{~h}$; (ii) acidified with 6 N HCl . (b) Isolated yields and products were characterized by m.p. and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy.

The formation of carboxylic acids 2 was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectroscopy. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2} \mathbf{j}$ showed signals at $\delta 7.56(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H})$ for aromatic
protons. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed a typical signal at $\delta 165.4$ for carbonyl carbon of carboxylic acid (- $\left.\mathrm{CO}_{2} \mathrm{H}-\right)$ (Fig. 1). Its IR spectrum showed a broad stretching vibration $1700 \mathrm{~cm}^{-1}$ due to the presence of carboxylic acid functional group.


Fig. 1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2,3-dhichlorobenzoic acid (8j)

### 4.1.4.2 Oxidation of aromatic ketones

When we extended the present methodology to aryl ketones, we observed that the corresponding benzoic acids (Scheme 7) were formed in high yields, and the results are
presented in Table 3. Thus, acetophenone underwent oxidative cleavage with $\mathrm{WO}_{3}$ (10 mol- $\%$ ) and $70 \%$ TBHP (4 equiv.) and $40 \% \mathrm{NaOH}$ as additive to give benzoic acid in $89 \%$ yield. The reaction was found to be general with other acetophenones as well. When 4-methylacetophenone was subjected to oxidation, $p$-toluic acid was obtained selectively in $83 \%$ yield, whereas propiophenone gave benzoic acid in $95 \%$ yield (Table 3, entry 3 ).


1
2

Scheme 7: (i) (a) $\mathrm{WO}_{3}$ ( $10 \mathrm{~mol} \%$ ), $70 \%$ TBHP ( 12 mmol ), $40 \%$ $\mathrm{NaOH}(12 \mathrm{mmol}), 8{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$; (b) acidified with 6 N HCl .

Table 3: $\mathrm{WO}_{3}$-catalyzed oxidative $\mathrm{C}-\mathrm{C}$ bond cleavage of alkyl aryl ketones. ${ }^{(\mathrm{a})}$

| Entry | Alkyl aryl ketones | Benzoic acids <br> $\mathbf{1}$ | Yield $^{(\mathbf{b})}$ <br> $(\%)$ |
| :---: | :---: | :---: | :---: |
| 1 | acetophenone | benzoic acid | 89 |
| 2 | 4-methylacetophenone | p-toluic acid | 83 |
| 3 | Propiophenone | benzoic acid | 95 |
| 4 | 4-bromoacetophenone | 4-bromobenzoic acid | 95 |
| 5 | 2,4-dichloroacetophenone | 2,4-dichlorobenzoic acid | 92 |
| 6 | 4-nitroacetophenone | 4-nitrobenzoic acid | 84 |
| 7 | 4-methoxyacetophenone | 4-methoxybenzoic acid | 85 |
| 8 | 4-fluoroacetophenone | 4-fluorobenzoic acid | 93 |
| 9 | 4-chloroacetophenone | 4-chlorobenzoic acid | 94 |

[^3]Upon oxidation, acetophenones with both electron-withdrawing and electron-donating substituents gave the corresponding benzoic acids in high yields. The halo-substituted acetophenones also underwent facile oxidation to give the benzoic acids in high yields.

### 4.1.4.3 Oxidation of Alkylarenes

Interestingly, alkylarenes when subjected to oxidation with $\mathrm{WO}_{3}(20 \mathrm{~mol} \%)$ and $70 \%$
TBHP (2 equiv.), in the absence of base, exhibited an unusual product selectivity
(Scheme 8).


Scheme 8: (i) (a) $\mathrm{WO}_{3}$ ( $20 \mathrm{~mol}-\%$ ), alkyl arenes ( 3 mmol ), $70 \%$ TBHP ( 6 mmol ), $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Table 4: The effect of base in $\mathrm{WO}_{3}$-catalyzed benzylic $\mathrm{C}-\mathrm{H}$ oxidation. ${ }^{(\mathrm{a})}$

| Entry | Substrate (9) | Yield $^{\mathbf{b}}$ \% |  |
| :---: | :---: | :---: | :---: |
|  |  | alcohol $^{\mathbf{c}}$ (10) | ketone $^{\text {d }} \mathbf{( 1 1 )}$ |
| 1 | ethyl benzene | 35 | 48 |
| 2 | 4-bromoethyl benzene | 35 | 40 |
| 3 | indane | 43 | 58 |
| 4 | tetraline | 40 | 51 |
| 5 | fluorene | 48 | 55 |

(a) alkylarene ( 3 mmol ), $\mathrm{WO}_{3}(20 \mathrm{~mol} \%), 70 \% \mathrm{TBHP}(6 \mathrm{mmol}), 8{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$. (b) Isolated yield and products were characterized by m.p. and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. (c) No base was added. (d) $40 \% \mathrm{NaOH}(0.6 \mathrm{~mL}$ ) was used.

For example, ethylbenzene on oxidation with the $\mathrm{WO}_{3} / \mathrm{TBHP}$ combination gave either acetophenone $\mathbf{1 1}$ or benzylic secondary alcohol $\mathbf{1 0}$ in moderate yields (48 and $35 \%$,
respectively) depending upon whether NaOH was used or not; the remaining substance was unreacted ethylbenzene. Other alkyl arenes such as indane, tetraline, fluorene, and so on have exhibited similar behavior in terms of product selectivities as well as yields (Table 4).

### 4.1.5 Mechanism

The catalytic cycle for the oxidative process is shown in Scheme 9. In the case of methylarenes and aryl ketones, it was observed that no oxidation took place in the absence of base. However, upon the addition of $\mathrm{NaOH}, \mathrm{WO}_{3}$ became homogeneous and readily reacted with TBHP to produce a metal peroxo species, $\mathbf{A}$; the evidence for its formation came from its typical IR absorption bands at 495,640 , and $950 \mathrm{~cm}^{-1} .{ }^{20}$ The metal peroxo species A then probably undergoes $\mathrm{C}-\mathrm{H}$ insertion at benzylic $\mathrm{C}-\mathrm{H}$ bond of alkylarenes to give the benzylic alcohols. Although none of the benzylic alcohols were isolated during the oxidative process, its formation as an intermediate has been suggested, as 4-nitrobenzyl alcohol when subjected to oxidation [WO 3 ( $20 \mathrm{~mol} \%$ ), $70 \%$ TBHP (8 molar equiv.), no base] gave 4-nitrobenzoic acid (57 \%). For aryl ketones, it is established ${ }^{21}$ that formation of $\alpha$-hydroxyacetophenones followed by its facile oxidative cleavage gave benzoic acids.


Scheme 9: Plausible mechanism for $\mathrm{WO}_{3}$-catalyzed benzylic C-H oxidation of methylarenes.

### 4.1.6 Conclusion

We have developed a new catalytic method consisting of $\mathrm{WO}_{3} / \mathrm{TBHP} / \mathrm{NaOH}$ for the oxidation of methyl arenes and alkyl aryl ketones to the corresponding benzoic acids in high yields. Oxidation of alkylarenes to the corresponding secondary alcohols or ketones is dependent upon whether we use alkali or not. In the present protocol benzoic acids were isolated in pure form without the need for column chromatographic purification.

### 4.1.7 Experimental section

Spectral data: vide infra of section II of the Chapter-3 for spectral details.

## Typical procedure for oxidation of methylarenes:

To a mixture of toluene ( 3 mmol ), $\mathrm{WO}_{3}(20 \mathrm{~mol} \%)$, and $\mathrm{TBHP}(70 \%, 24 \mathrm{mmol})$ was added $\mathrm{NaOH}(40 \%$ in water, $24 \mathrm{mmol}, 2.4 \mathrm{~mL}$ ). The reaction mixture was then heated at $80^{\circ} \mathrm{C}$ (using oil bath) for 10 h , cooled to room temperature, and acidified by using icecold $\mathrm{HCl}(6 \mathrm{~N})$. The mixture was extracted with ethyl acetate ( $3 \times 40 \mathrm{~mL}$ ), and the combined organic phase was washed with saturated brine solution, dried with anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give pure benzoic acid.

## General procedure for oxidation aryl alkyl ketones:

To a mixture of aryl alkyl ketone ( 3 mmol ), $\mathrm{WO}_{3}(10 \mathrm{~mol} \%)$, and TBHP $(70 \%, 12 \mathrm{mmol})$ was added NaOH ( $40 \%$ in water, $12 \mathrm{mmol}, 1.2 \mathrm{~mL}$ ). The reaction mixture was then heated at $80^{\circ} \mathrm{C}$ (using oil bath) for 8 h , cooled to room temperature, and acidified by using ice-cold $\mathrm{HCl}(6 \mathrm{~N})$. It was extracted with ethyl acetate ( 3 x 40 mL ), and the combined organic phase was washed with saturated brine solution, dried with anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give pure benzoic acid.

## General procedure for oxidation of alkylarenes:

To a mixture of alkylarenes ( 3 mmol ) and $\mathrm{WO}_{3}(20 \mathrm{~mol} \%)$, was added TBHP $(70 \%, 6$ mmol ). The reaction mixture was then heated at $80^{\circ} \mathrm{C}$ (using oil bath) for 12 h . Progress of the reaction was monitored by TLC. The reaction mixture was then cooled to room temperature and extracted with ethyl acetate ( $3 \times 20 \mathrm{~mL}$ ), and the combined organic phase was washed with saturated brine solution, dried with anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give the crude product, which was purified by column chromatography packed with silica gel ( $n$-hexane/ethyl acetate, 9:1) to afford pure secondary benzylic alcohol.

## Procedure for oxidation of alkylarenes to benzylic secondary ketones:

Alkylarenes were subjected to oxidation as mentioned above with NaOH ( $40 \%$ in water, $0.6 \mathrm{~mL}, 6 \mathrm{mmol}$ with respect to substrate) to give benzylic secondary ketones.

## Section II

## Titanium superoxide: a heterogeneous catalyst for anti-Markovnikov aminobromination of olefins

### 4.2.1 Introduction

The fuctionalization of olefins by the addition of two different functional groups in a single step provides access to wide range of functional group manipulation in organic synthesis. Variety of reactions such as aminohydroxylation, halohydration, haloazidation, azidohydroxylation and haloamination are some of the examples of this kind of synthetic transformation. The vicinal haloamine functionality presents a very useful structural moiety in synthetic organic chemistry as the halo functionality can be replaced by a variety of nucleophiles such as azido $\left(\mathrm{N}_{3}\right)$, cyano (CN), acetate (OAc), alkoxy (OR), amino (NHR), thio (SR), etc. thereby providing a new class of functionalized reactive intermediates in organic synthesis. On treatment with base the vicinal haloamines can be converted to the corresponding aziridines, which are important building blocks in organic synthesis. Thus, the vicinal haloamines represents a very useful class of compounds in organic synthesis. ${ }^{22}$

### 4.2.2 Review of Literature

Literature search revealed that even though the initial work has been started in the late thirties, the progress on direct haloamination of olefins has been quite tardy. Most of these methods, which involve use of $\mathrm{N}, \mathrm{N}$-dihalo sulfonamides or carbamates as halogen and amine sources, are described below.

## Kharasch's approach (1939) ${ }^{23}$

Kharasch et al. have studied the addition of sulfonamides $\mathbf{1 2}$ and $\mathbf{1 3}$ to styrene to give the corresponding bromoamine (Scheme 10).


Scheme 10: (i) $25^{\circ} \mathrm{C}$, stirring.

## Terauchi's approach (1967) ${ }^{24}$

Terauchi et al. have studied the reaction between $N, N$-dihalosulfonamide with cyclohexene and styrene; cyclohexene gave many addition products such as cis and trans-2-halo-1- benzenesulfonamidocyclohexanes 15a and $\mathbf{b}$,


Scheme 11: (i) reflux 10 min . then $50^{\circ} \mathrm{C}$ for 30 min ; (ii) $5 \% \mathrm{NaOH}$.
trans-1,2-dihalocyclohexane (16), 1,3-cyclohexadiene (17), 1-cyclohexene-3-one (18) and benzene sulfonamide (19) (Scheme 11).

## Danither's approach (1968) ${ }^{25}$

In this approach, the addition of $\mathrm{N}, \mathrm{N}$-dichlorosulfonamides to olefins and conjugated dienes has been examined. The reaction of these reagents with propylene and styrene gave high yields of $N$-chloro- $N$-( $\beta$-chloroalkyl)sulfonamides 20 which have predominantly anti-Markovnikov orientation (Scheme 12).


Scheme 12: (i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}$

## Zwierzak's approach (1981) ${ }^{\mathbf{2 6}}$

Diethyl $\mathrm{N}, \mathrm{N}$-dibromophosphoramidate (DBPA, 21) and $t$-butyl $\mathrm{N}, \mathrm{N}$-dibromocarbamate (22), prepared from $t$-butyl carbamate, was added to phenyl ethylenes and terminal olefins to give $N$-bromo adducts, which were reduced in situ $\left(\mathrm{NaHSO}_{3}\right)$ to give diethyl- N ( $\beta$-bromoalkyl)phosphoramidates and $\beta$-bromo- $N$-Boc-amines respectively (Scheme 13). The addition followed anti-Markovnikov fashion.


Scheme 13: (i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; (ii) $12 \%$ aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}, 5-10{ }^{\circ} \mathrm{C}$; (iii) HCl , benzene; (iv) $\mathrm{Br}_{2}$ (2 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$; (v) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux.

## Bach's approach (2000) ${ }^{27}$

2-Alkenyloxycarbonyl azides $\mathbf{2 3}$ underwent an efficient intermolecular aminochlorination with TMSCl catalyzed by $\mathrm{FeCl}_{2}$ to furnish the corresponding 4-(chloromethyl)oxazolidinones 24-25 in 60-84\% yield (Scheme 14).


Scheme 14: (i) $\mathrm{FeCl}_{2}, \mathrm{TMSCl}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.

## Li's approach (2001) ${ }^{28}$

Recently, Cu or Zn -catalyzed aminochlorination of cinnamic esters 26 has been developed producing vicinal haloamine derivatives 27 in 52-85\% yields and $>95 \%$ regioand stereoselectivities. ${ }^{28 a} N, N$-dichloro- $p$-toluenesulfonamide was used as chlorine as well as nitrogen source (Scheme 15).


Scheme 15: (i) $\mathrm{TsNCl}_{2}, 4 \AA \mathrm{MS}, \mathrm{CuOTf}$ or $\mathrm{ZnCl}_{2}$ ( $8 \mathrm{~mol} \%$ ), $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$; (ii) $\mathrm{Na}_{2} \mathrm{SO}_{3}$.

Same authors have developed a new regio- and stereoselective aminohalogenation of cinnamic esters using the combination of $2-\mathrm{NsNCl}_{2} / 2-\mathrm{NsNHNa} \quad(\mathrm{Ns}=$ nitrobenzenesulfonyl) as the nitrogen and chlorine sources respectively and CuOTf as catalyst (Scheme 16). ${ }^{28 b}$


Scheme 16: (i) $2-\mathrm{NsNCl}_{2} / 2-\mathrm{NsNHNa}$, CuOTf (10 $\mathrm{mol} \%$ ), $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$; (ii) aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$.

Li et al. ${ }^{28 \mathrm{c}}$ have used Pd-complex 28 for aminohalogenation of cinnamic esters has been developed using $p-\mathrm{TsNCl}_{2}$ as the nitrogen and chlorine sources (Scheme 17).


Scheme 17: (i) $\mathrm{TsNCl}_{2}$, Pd-catalyst 14 ( $8 \mathrm{~mol} \%$ ), $\mathrm{CH}_{3} \mathrm{CN}$; (ii) aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$.
$N$-Chloro- $N$-sodium-sulfonamide was found to react with olefins in the presence of copper catalyst to give vicinal haloamine derivative. (Scheme 18). ${ }^{28 d}$

( $\pm$
anti:syn = >95

regioslectivity >95:1
Scheme 18: (i) $o-\mathrm{NsNClNa}$, CuOTf ( $10 \mathrm{~mol} \%$ ), $\mathrm{CH}_{3} \mathrm{CN}$; (ii) aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$.

Li et al. ${ }^{28 e}$ have also used ionic liquid butylmethylimidazolium tetrafluoroborate [bmim $]\left[\mathrm{BF}_{4}\right]$ to reduce the amount of catalyst loading ( $6 \mathrm{~mol} \%$ of CuOTf ) and enhance the rate of the aminohalogenation of cinnamic esters using $p-\mathrm{TsNCl}_{2}$ as the nitrogen and chlorine sources (Scheme 19).


Scheme 19: (i) $\mathrm{TsNCl}_{2}$, CuOTf ( $6 \mathrm{~mol} \%$ ), [Bmim] $\left[\mathrm{BF}_{4}\right], \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$; (ii) aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$.

Li et al. ${ }^{28 f}$ have also developed the asymmetric aminohalogentation of chiral $\alpha, \beta$ unsaturated N -acyl 4-alkyloxazolidinones 29 using $\mathrm{TsNCl}_{2}$ and CuOTf as the catalyst in ionic liquid $[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$ to give the corresponding chiral aminohalogens 30 in up to $72 \%$ yield and 75\% diastereomeric ratio (Scheme 20).


Scheme 20: (i) $4 \AA$ Á $\mathrm{MS}, \mathrm{CuOTf}$ ( $8 \mathrm{~mol} \%$ ), $\mathrm{TsNCl}_{2}$, [Bmim] $\left[\mathrm{BF}_{4}\right]$; (ii) $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (aq.)

The same group has developed the aminochlorination of arylmethylene cyclopropanes and arylvinylidine cyclopropanes using $\mathrm{FeCl}_{3}$ as the catalyst and $\mathrm{TsNCl}_{2}$ as the nitrogen and chlorine sources (Scheme 21). ${ }^{28 g}$



31


Scheme 21: (i) $\mathrm{TsNCl}_{2}, \mathrm{FeCl}_{3}(20 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$; (ii) $\mathrm{TsNCl}_{2}$, $\mathrm{FeCl}_{3}$ (20 mol\%), $\mathrm{CH}_{3} \mathrm{CN},-15{ }^{\circ} \mathrm{C}$

## Yoon's approach (2003) ${ }^{29}$

Yoon et al. have developed syn- $\beta$-amino- $\alpha$-bromination of unsaturated phosphonates $\mathbf{3 3}$ under typical Sharpless asymmetric aminohydroxylation conditions using Os-catalyst, (DHQD) $)_{2}$-PHAL as the ligand and excess $N$-bromoacetamide (Scheme 22).


Scheme 22: (i) $\mathrm{BrNHCOCH}_{3}, 4 \% \mathrm{~K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}, 5 \%(\mathrm{DHQD})_{2^{-}}$ PHAL, LiOH, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, 0-4{ }^{\circ} \mathrm{C}$

## Sudalai's approach (2003) ${ }^{30}$

Our group has reported recently a new synthetic procedure for aminohalogenation of olefins for the preparation of vicinal haloamine derivatives in high yields $\mathbf{2 5}$ and $\mathbf{2 6}$ by using $\mathrm{Cu}, \mathrm{Mn}$, or V catalysts with $p$-toluenesulfonamide $\left(\mathrm{TsNH}_{2}\right)$ and N bromosuccinimide (NBS) as nitrogen and bromine sources respectively. Unprecedented
regio- and stereoselectivity (anti:syn $>99: 1$ ) towards the aminohalogenation process was observed for olefinic substrates as well as for transition metal catalysts (Scheme 23).


Scheme 23: (i) $\mathrm{TsNH}_{2}, \mathrm{NBS}, \mathrm{Mn}$ (II) salen, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{TsNH}_{2}, \mathrm{NBS}$, $\mathrm{CuI}, \mathrm{MnSO}_{4}$ or $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$.

## Chemler's approach (2004) ${ }^{31}$

Intramolecular aminobromination of olefins 27 catalyzed by palladium(II) salts using copper (II) halides as the halogen source has been reported (Scheme 24).


Scheme 24: (i) $\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}(10 \mathrm{~mol} \%), \mathrm{CuBr}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{THF}, 0-25^{\circ} \mathrm{C}$

## Minakata's approach (2006) ${ }^{32}$

In this method, a new synthetic procedure for the aminochlorination of olefins for the synthesis of vicinal chloroamine derivatives using a combination of chloramine- T and carbon dioxide (10 atm.) is described (Scheme 25).


Scheme 25: (i) $\mathrm{TsN}(\mathrm{Cl}) \mathrm{Na}, \mathrm{CO}$ (10 atm.), PhH, $25^{\circ} \mathrm{C}$; (ii) $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (aq.)

## Wang's approach (2007) ${ }^{33}$

Wang et al. have developed a practical and scaleable route for the regio- and diastereoselective synthesis of vicinal chloramines from electron-deficient olefins and Chloramine-T promoted by Bronsted acids in water. The novel features of this protocol: the use of water as a solvent, reaction conditions are mild, ecofriendly, and broadly applicable for the aminochlorination of various electron-deficient olefins including $\alpha, \beta$ unsaturated ketones, cinnamates, and amides (Scheme 26).


Scheme 26: (i) $\mathrm{H}_{2} \mathrm{SO}_{4}$, triethylbenzylammonium chloride, $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$

## Yadav's approach (2009) ${ }^{34}$

A variety of alkenes are converted into the corresponding $\alpha$-fluoroamides in high yields by selectfluor ${ }^{\mathrm{TM}}$ in the presence of $10 \mathrm{~mol} \%$ of $\mathrm{InF}_{3}$ in nitrile solvent. While $\alpha-$ bromoamides are obtained with NBS in the presence of $10 \mathrm{~mol} \%$ of $\mathrm{InBr}_{3}$ under similar conditions (Scheme 27).


Scheme 27: $\mathrm{InF}_{3}$, selectfluor ${ }^{\mathrm{TM}}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$.

### 4.2.3 Present Work

### 4.2.3.1 Objective

Although there are many direct methods available in the literature for haloamination of olefins, they suffer from certain drawbacks like low yields, multi-step reaction sequences, cumbersome experimental procedures and the use of $\mathrm{N}, \mathrm{N}$-dihalo sulfonamides or carbamates as the nitrogen as well as bromine sources. Our aim was to develop a catalytic, mild and efficient method for the aminobromination of olefins using a heterogeneous catalyst and $N$-bromosuccinnimide (NBS) and $p$-toluenesulfanamide $\left(\mathrm{TsNH}_{2}\right)$ as the bromo and amine sources respectively.

### 4.2.4 Results and discussion

Recently, in our laboratory, we have reported the preparation of titanium superoxide (32) by treating $\mathrm{H}_{2} \mathrm{O}_{2}$ with titanium tetraisopropoxide $\left(\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)\right)_{4}$ in dry methanol. ${ }^{35}$ Titanium superoxide was filtered as a yellow-colored solid and its structure was proposed to have polymeric Ti oxide matrix as shown in Fig. 2.

$$
\begin{aligned}
& \mathrm{Ti}(\mathrm{OR})_{4}+50 \% \text { aq. } \mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow[25^{\circ} \mathrm{C}, 2 \mathrm{~h}]{\mathrm{MeOH}} \\
& \mathrm{R}={ }^{i} \mathrm{Pr}, \mathrm{nBu}
\end{aligned}
$$



Fig. 2: Preparation of titanium superoxide

We have thoroughly characterized the generation of superoxide species $\mathbf{3 2}$ on the hydrated titanium matrix by various spectroscopic techniques such as FTIR, Raman spectroscopy, XRD, ESR, TG/DTA, and chemical analysis as follows. Its IR spectrum showed characteristic absorption bands at 3720 (w), 3665 (w), and 3450 (s) $\mathrm{cm}^{-1}$
indicating the presence of vibrational modes of coordinated water molecules at $\mathrm{Ti}^{4+}$ site and of surface Ti-OH groups. The other IR absorption bands at 1027 (s) and 1157 (m) indicate the presence of superoxide radical ion in the solid material. It also has IR absorption bands in the range of $900-538(\mathrm{~m}) \mathrm{cm}^{-1}$ corresponding to the presence of Ti-OTi linkages. An intense line at $900 \mathrm{~cm}^{-1}$ in the Raman spectrum of the catalyst $\mathbf{3 2}$ further confirmed the presence of Ti-O-Ti linkages. The other weak Raman lines observed in the range of $1025-1119 \mathrm{~cm}^{-1}$ has been assigned for the $\mathrm{O}_{2} \cdot$ species.

A sample of $\mathbf{3 2}$ dried at $25{ }^{\circ} \mathrm{C}(3 \mathrm{~mm} \mathrm{Hg})$ showed characteristic ESR signals at $\mathrm{g}_{1}=$ 2.024, $\mathrm{g}_{2}=2.009$ and $\mathrm{g}_{3}=2.003$ (Fig. 3), which strongly suggest the presence of unpaired electrons of the stable superoxide radical anion generated by the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ over Ti-matrix. However, the characteristic ESR signals disappeared when its ESR was recorded at $90^{\circ} \mathrm{C}$.


Fig. 3: ESR spectrum of titanium superoxide 32 at 298 K.

During the course of our study on further application of titanium superoxide in organic synthesis, ${ }^{35}$ we have now found that olefins can be regiospecifically aminobrominated using $p-\mathrm{TsNH}_{2}$ and NBS as nitrogen and bromine sources under ambient conditions. For instance, when styrene 33 was subjected to bromoamination, the corresponding antiMarkovnikov product, 25, was formed in $81 \%$ yield; whereas the commercially available $\mathrm{TiO}_{2}$, under similar conditions, gave the expected Markovnikov product, 26 in $30 \%$ yield (Scheme 28).


Scheme 28: titanium catalyst ( $10 \mathrm{wt} \%$ ), $p-\mathrm{TsNH}_{2}$ (1.1 equiv.), NBS (1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 14 \mathrm{~h}$.

Encouraged by this result, it was of interest to screen several other titanium salts such as titanium silicalite (a zeolite), $\mathrm{TiCl}_{4}$ and titanium isopropoxide under similar reaction conditions; the results of which are presented in Table 5. Remarkably, titanium superoxide gave the anti-Markovnikov product $\mathbf{2 5}$ in $81 \%$ yield whereas all other titanium salts furnished the expected Markovnikov product, $\mathbf{2 6}$ with low yields.

Among several solvents screened, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was found to be more suitable for titanium superoxide- catalyzed aminobromination of olefins. Thus, the optimal condition for the aminobromination of olefins turned out to be: olefin ( 3 mmol ), $p-\mathrm{TsNH}_{2}(3.3 \mathrm{mmol})$, NBS ( 3 mmol ) and titanium superoxide ( $10 \mathrm{wt} \%$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient conditions.

Table 5: Titanium-catalyzed regiospecific aminobromination of styrene ${ }^{a}$

| No. | Catalyst | Solvent | Yield (\%) ${ }^{\text {b }}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 25 | 26 |
| 1 | no catalyst | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |  | 17 |
| 2 | $\mathrm{TiO}_{2}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | - | 38 |
| 3 | titanium silicate | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | - | 23 |
| 4 | $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | - | 24 |
| 5 | titanium superoxide | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 81 | - |
| 6 | titanium superoxide | $\mathrm{CHCl}_{3}$ | 61 | - |
| 7 | titanium superoxide | EDC | 58 | - |
| Reaction conditions: ${ }^{\text {a }}$ olefin ( 3 mmol ), $p-\mathrm{TsNH}_{2}(3.3 \mathrm{mmol}), N-$ bromosuccinimide ( 3 mmol ), titanium catalyst ( $10 \mathrm{wt} \%$ ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 20 mL ), $25^{\circ} \mathrm{C}, 14 \mathrm{~h}$; ${ }^{b}$ isolated yield after chromatographic purification. |  |  |  |  |

In order to establish its scope, various olefins were subjected to aminobromination; the results of which are presented in Table 6. It is evident that several styrenic substrates including indene underwent the aminobromination regiospecifically to produce the corresponding anti-Markovnikov products. No trace of Markovnikov products was, however, observed in the crude product sample (as confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and GC analysis). Interestingly, electron-rich olefins gave relatively higher yields of products as compared to electron-deficient olefins. This may be ascribed to the benzylic radical, which abruptly increases its reactivity, thereby resulting in high yields of the aminobrominated product. Also aliphatic olefins underwent aminobromination smoothly to give 1, 2-bromoamines in good yields. After the reaction was complete, solid titanium superoxide was recovered by simple filtration, which on subsequent reuse with styrene as
substrate was found to catalyze the aminobromination process with moderate yield (58\%). Notably, substrates like indene, cyclohexene and cyclooctene gave the corresponding aminobrominated products with high anti-selectivity > 99:1 (Table 6, entries $\mathrm{j}, 1 \& \mathrm{~m})$.

Table 6: Titanium superoxide-catalyzed aminobromination of olefins ${ }^{a}$

| No | Substrate |
| :--- | :--- |
| styrene |  |

k 1-octene
1 cyclohexene
m cyclooctene
n vinylcyclohexane





66

72
$>99: 1$

63

Reaction conditions: ${ }^{a}$ olefin ( 3 mmol ), $p-\mathrm{TsNH}_{2}$ ( 3.3 mmol ), $N$-bromosuccinimide ( 3 mmol ), titanium superoxide ( $10 \mathrm{wt} \%$ ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~mL}\right.$ ), $25^{\circ} \mathrm{C}, 14 \mathrm{~h}$;
${ }^{b}$ products were characterized by m.p., IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and elemental analysis;
${ }^{c}$ isolated yield after chromatographic purification;
${ }^{d}$ Yield in parenthesis refers to use of recovered catalyst.



Fig. 4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of bromoamine 25b

The structures of regioisomers 25 were confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. For example, compound 25b showed singlets at $\delta 2.30(\mathrm{~s}, 3 \mathrm{H})$ and 2.41 ( s , $3 \mathrm{H})$ for methyl protons; $\delta 3.49-3.64(\mathrm{~m}, 2 \mathrm{H})$ for homobenzylic protons; and $\delta 4.49(\mathrm{dd}, J$ $=6.3,12.5 \mathrm{~Hz}, 1 \mathrm{H})$ for benzylic protons. Further a doublet at $\delta 5.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$ is due to $\mathrm{N}-\mathrm{H}$ proton. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed typical carbon signals at $\delta 36.4$ and 57.9 for the homobenzylic and benzylic carbons respectively (Fig. 4).

### 4.2.4.1 Mechanism

A plausible mechanistic pathway is outlined in Fig. 5 to explain the formation of antiMarkovnikov product. Firstly, $p$-toluenesulfonamide reacts with NBS to form $p$-TsNH$\mathrm{Br}^{3}$ followed by its interaction with titanium superoxide which facilitates the polarization of the NH-Br bond homolytically. Since the catalyst possesses a stable radical, interaction of which with $p$-Ts-NHBr probably generates $p-\mathrm{TsNH}^{\bullet}$ radical, which in turn adds on to styrene regiospecifically at the homobenzylic position to form benzylic radical. The
recombination of this radical with $\mathrm{Br}^{\bullet}$ radical leads to anti-Markovnikov product. The radical pathway proposed here has been supported by the trapping experiment with TEMPO, ${ }^{36,37}$ which failed to produce the corresponding haloamine. In the case of other titanium salts, the formation of Markovnikov product $\mathbf{2 6}$ can be reasoned on the basis of the formation of bromonium ion followed by its preferential opening at the benzylic position with $p$-toluenesulfonamide.


Fig 5: Titanium superoxide catalytic cycle for bromoamination process

### 4.2.5 Conclusion

In conclusion, we have described a titanium superoxide-catalyzed regiospecific aminobromination of olefins to give exclusively anti-Markovnikov products in high yields using $p-\mathrm{TsNH}_{2}$ and NBS as amine and bromine sources respectively under ambient conditions. The protocol makes use of stable and readily accessible titanium superoxide as solid catalyst for the aminobromination process.

### 4.2.6 Experimental section

## Preparation of titanium superoxide:

aq. $50 \% \mathrm{H}_{2} \mathrm{O}_{2}(5.98 \mathrm{~g}, 0.175 \mathrm{~mol})$ was added slowly to a solution of titanium isopropoxide ( $5.0 \mathrm{~g}, 0.0175 \mathrm{~mol}$ ) in anhydrous $\mathrm{MeOH}(50 \mathrm{ml})$ over 40 min under $\mathrm{N}_{2}$ with stirring at room temperature. The yellow precipitate formed was collected by filtration on a sintered funnel, washed with anhydrous methanol and dried at room temperature. Yield: 3.94 g (98 \%).

## Typical experimental procedure for aminobromination of styrene (25a)

To a stirred solution of styrene $(0.312 \mathrm{~g}, 3.0 \mathrm{mmol})$, titanium superoxide $(0.030 \mathrm{~g}, 10 \mathrm{wt}$ $\%)$ and $\mathrm{p}-\mathrm{TsNH}_{2}(0.564 \mathrm{~g}, 3.3 \mathrm{mmol})$ in 25 mL of dry dichloromethane was added NBS $(0.534 \mathrm{~g}, 3.0 \mathrm{mmol})$ slowly using a solid addition funnel. The reaction mixture was stirred further at $25^{\circ} \mathrm{C}$ for 14 h . When TLC showed the completion of the reaction, the catalyst was filtered off and the filtrate was diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 x 3 mL ) and washed with brine. The organic layer was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product, which was purified by column chromatography packed with silica gel using pet ether and EtOAc as eluents to afford the pure bromoaminated product 25a.

## 2-Bromo-2-phenyl-N-tosylethanamine (25a)

Yield: $81 \%$; mp: $113-114{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3252,2985,2930,1655,1593,1590$, $1461,1340,1153,1086,710,662 ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.50-$ $3.58(\mathrm{~m}, 2 \mathrm{H}), 4.85-4.99\left(\mathrm{~m}\right.$, simplifies to triplet with $J=7.12 \mathrm{~Hz}$ on $\mathrm{D}_{2} \mathrm{O}$ exchange, 2 H ), 7.24-7.33 (m, 7 H ), $7.71(\mathrm{~d}, J=8.41 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.4,49.8$, 52.4, 126.8, 127.5, 128.7, 129.7, 136.6, 138.0, 143.6; MS m/z (rel. intensity): 354 ( ${ }^{+}$,
1), 184 (30), 155 (35), 118 (20), 105 (20), 91 (100), 77 (20), 65 (25); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 50.86 ; \mathrm{H}, 4.55 ; \mathrm{Br}, 22.56 ; \mathrm{N}, 3.95 ; \mathrm{S}, 9.05$; Found C, 50.83; H,4.50; Br, 22.58; N, 3.81; S, 9.12\%.

## 2-Bromo-2-p-tolyl-N-tosylethanamine (25b)

Yield: $86 \%$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3268,2954,2922,2851,1597,1460,1377,1215,1161$, 759, 669; ${ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.64(\mathrm{~m}, 2 \mathrm{H})$, $4.49(\mathrm{dd}, J=6.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.06(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=1.7,6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.1,21.5$, $36.4,57.9,126.6,127.2,129.2,129.4,134.7,137.0,137.9,143.2$; Anal. Calcd for: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S}$ requires C, 52.18; H, 4.93; Br, 21.70; N, 3.80; S, 8.71; Found: C, 51.99; H, 5.07; Br, 21.81; N, 3.77; S, 8.94\%.

## 2-Bromo-2-(4-methoxyphenyl)-N-tosylethanamine (25c)

Yield: $67 \%$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3246,2923,2854,1595,1461,1336,1265,1163,1091$, 1027, 812,$676 ;{ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{q}, J=2.8,6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{q}, J=6.1,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.02$ (dd, $J=1.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=1.7,6.7$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 21.5,36.4,55.1,57.7,113.9,127.2,127.9$, 129.4, 129.7, 137.0, 143.2, 159.4; Anal. Calcd for: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{3} \mathrm{~S}$ requires C, 50.01; H , 4.72; Br, 20.79; N, 3.64; S, 8.34; Found: C, 49.99; H, 4.86; Br, 20.68; N, 3.82; S, 7.99\%.

## 2-Bromo-2-(4-bromophenyl)-N-tosylethanamine (25d)

Yield: 69\%; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3253,2954,2923,2854,1596,1458,1319,1151,1091$, 825, 765, 565; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.56(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta 21.6,49.5,51.2,123.0,127.0,128.5,129.3,129.8,131.6,132.0,136.8,137.3$, 143.7; Anal. Calcd for: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}$ requires C, 41.59 ; H, 3.49; Br, 36.89 ; N, 3.23; S, 7.40; Found: C, 41.61; H, 3.71; Br, 36.68; N, 2.99; S, 7.65\%.

## 2-Bromo-2-(2-chlorophenyl)-N-tosylethanamine (25e)

Yield: $69 \%$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3284,3018,2925,2854,1598,1456,1419,1334,1215$, 1161, 1093, 757, 669, 549; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.68(\mathrm{~m}$, $2 \mathrm{H}), 4.92(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.40(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.4,47.7,48.6,126.9,127.4$, 128.8, 129.7, 129.8, 133.1, 136.9, 143.4; Anal. Calcd for: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrClNO}_{2} \mathrm{~S}$ requires C, 46.35; H, 3.89; Br, 20.56; Cl, 9.12; N, 3.60; S, 8.25; Found C, 46.41; H, 3.96; Br, 20.71; Cl, 8.99; N, 3.55; S, 8.15\%.

## 2-Bromo-2-(4-fluorophenyl)-N-tosylethanamine (25f)

Yield: $78 \%$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3281,3016,2922,2853,1599,1456,1419,1334,1215$, 1161, 1093, 757, 669; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.56(\mathrm{q}, J=6.1,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.06-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( 50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 21.5,36.3,57.5,115.3,115.7,127.2,128.4,128.6,129.5,133.6,137.0,143.6 ;$

Anal. Calcd for: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrFNO}_{2} \mathrm{~S}$ requires C, $48.40 ; \mathrm{H}, 4.06 ; \mathrm{Br}, 21.47 ; \mathrm{F}, 5.10 ; \mathrm{N}, 3.76$; S, 8.61; Found C, 48.55; H, 3.98; Br, 21.62; F, 4.97; N, 3.82; S, 8.70\%.

## 1-(4-Chloromethylphenyl)-1-bromo-2-(p-toluenesulfonamido)ethane (25g)

Yield: $67 \%$; mp: $111-112{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3284,3018,2925,2854,1598,1456$, 1419, 1334, 1215, 1161, 1093, 757, 669, 549; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.43$ (s, $3 \mathrm{H}), 3.51-3.62(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.83\left(\mathrm{t}, J=7.23 \mathrm{~Hz}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, 1 \mathrm{H}\right)$,
$4.92(\mathrm{t}, J=7.23 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.72(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.4,45.3,49.7,51.7,126.8,127.9,128.9,129.7,136.6,138.1,138.8$, 143.7; MS m/z (rel. intensity): $403\left(\mathrm{M}^{+}, 1\right), 219$ (10), 184 (100), 155 (80), 139 (15), 130 (30), 117 (30), 103 (25), 91 (85); Anal. Calcd for: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrClNO}_{2} \mathrm{~S}$ requires C, 47.72; H , 4.25; Br, 19.84; Cl, 8.80; N, 3.48; S, 7.96; Found C, 47.62; H, 4.10; Br, 19.86; Cl, 8.66; N, 3.41; S, 7.89\%.

## 2-Bromo-2-phenyl-N-tosylpropan-1-amine (25h)

Yield: 30\%; IR ( $\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$ ): 3269, 2954, 2925, 2854, 1598, 1460, 1377, 1215, 1161, 759, 662; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.60(\mathrm{~d}, J=1.8,6.4$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 21.4,25.1,43.2,60.5,126.0,126.9,127.6$, 128.2, 129.2, 139.3, 140.8, 142.7; Anal. Calcd for: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S}$ requires C, 52.18; H , 4.93; Br, 21.70; N, 3.80; S, 8.71; Found C, 52.26; H, 5.01; Br, 21.83; N, 3.77; S, 8.69\%.

## 2-Bromo-1,2-diphenyl-N-tosylethanamine (25i)

Yield: $61 \%$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3252,2985,2930,1655,1593,1590,1461,1340,1153$, 1086, 710, 662; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 4.72-4.80(\mathrm{~m}, 1 \mathrm{H}), 5.21$ (dd, $J=6.0 .21 .7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.01-7.26(\mathrm{~m}$, $10 \mathrm{H}), 7.43(\mathrm{dd}, J=3.4,8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.4,58.1,63.1$, 127.0, 127.1, 127.6, 127.7, 127.8, 127.9, 128.0, 128.2, 128.3, 128.4, 128.6, 129.1, 136.4, 137.0, 137.1, 142.9; Anal. Calcd for: $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 58.61 ; \mathrm{H}, 4.68 ; \mathrm{Br}$, 18.57; N, 3.25; S, 7.45; Found C, 58.74; H, 4.55; Br, 18.61; N, 3.41; S, 7.37\%.

1-Bromo-2,3-dihydro-N-tosyl-1H-inden-2-amine (25j)

Yield: $80 \%$; mp: $136-137{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3274,3020,1598,1429,1340,1215$, 1161, 1093, 767, 752, 667, ${ }^{1}$ HNMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.47$ (s, 3H), 2.74-2.87 (dd, $J$ $=16.10,10.21 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-23.04(\mathrm{dd}, J=6.13,16.10 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.99(\mathrm{~m}, 1 \mathrm{H}), 5.13$ $(\mathrm{d}, J=5.55 \mathrm{~Hz}, 1 \mathrm{H}), 5.35\left(\mathrm{~d}, J=10.20 \mathrm{~Hz}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, 1 \mathrm{H}\right), 7.19-7.37(\mathrm{~m}$, $6 \mathrm{H}), 7.83(\mathrm{~d}, J=8.36 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.5,36.4,56.3,59.5$, 125.0, 127.1, 127.6, 129.7, 137.4, 139.4, 140.5, 143.7; MS m/z (rel. intensity): $365\left(\mathrm{M}^{-1}\right.$, 1), 286 (30), 196 (15), 155 (20), 130 (100), 115 (25), 103 (40), 91 (38); Anal. Calcd for: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}$ requires C, $52.47 ; \mathrm{H}, 4.40 ; \mathrm{Br}, 21.82 ; \mathrm{N}, 3.82 ; \mathrm{S}, 8.76$; Found C, 52.38; H, 4.48; Br, 21.79; N, 3.81; S, 8.74\%.

## ( $\pm$ )-trans-1-(p-Toluenesulfonamido)-2-bromocyclohexane (25I)

Yield: 65\%; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3276,2926,2862,1596,1446,1321,1159,1093,813$, 661; ${ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 1.19-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.88(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.34(\mathrm{~m}$, 2H), $2.44(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{ddd}, J=4.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $21.5,23.1,24.8,32.2,35.2,54.6,58.1,127.2,129.4,137.3,143.1$; Anal. Calcd for: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S}$ requires C, 46.99; H, 5.46; Br, 24.05; N, 4.22; S, 9.65\%; Found C, 47.01; H, 5.55; Br, 23.99; N, 4.39; S, 9.72\%.

## ( $\pm$ )-trans-1-( $p$-Toluenesulfonamido)-2-bromocyclooctane (25m)

Yield: $72 \%$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3280,3020,2929,2860,1598,1444,1328,1215,1159$, 1091, 757,$669 ;{ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.27-1.83(\mathrm{~m}, 10 \mathrm{H}), 1.92-2.34(\mathrm{~m}, 4 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.77(\mathrm{~d}, 8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.5,24.9,25.3,25.6$, 31.8, $32.0,59.3,60.9,127.5,129.4,136.8,143.2$; Anal. Calcd for: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrNO}_{2} \mathrm{~S}$
requires C, $50.00 ; \mathrm{H}, 6.15 ; \mathrm{Br}, 22.18$; N, 3.89 ; S, $8.90 \%$; Found C, $49.98 ; \mathrm{H}, 6.51$; Br, 22.21; N, 3.79; S, 8.61\%.

## 2-Bromo-2-cyclohexyl-N-tosylethanamine (25n)

Yield: $63 \%$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3275,3010,2922,2858,1596,1434,1321,1220,1162$, 1080; ${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.96-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.78(\mathrm{~m}, 5 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $3.12-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.92(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (dd, $J=3.7,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=2.8,8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $21.5,25.6,25.8,25.9,29.2,29.6,30.6,41.4,47.3,62.1,127.0,129.6,129.7,136.8$, 143.4; Anal. Calcd for: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrNO}_{2} \mathrm{~S}$ requires C, $50.00 ; \mathrm{H}, 6.15 ; \mathrm{Br}, 22.18$; N, 3.89; S, 8.90\%; Found C, 49.98; H, 6.51; Br, 22.21; N, 3.79; S, 8.61\%.

### 4.2.7 References

1 a) L. S. Vondervoort, S. Bouttemy, F. Heu, K. Weissenböck, P. L. Alsters, Eur. J. Org. Chem. 2003, 578; (b) T. Maki, Y. Suzuki in Ullmann's Encyclopedia of Industrial Chemistry (Ed.:W. Gerhartz), 5th ed., VCH, 1985, vol. A3, p. 555; (c) J. Opgrande, E. E. Brown, M. Hesser, J. Andrews, in Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed., Wiley, New York, 2004, vol. 3, p. 625; (d) P. Benz, R. Muntwyler, R. Wohlgemuth, J. Chem. Technol. Biotechnol. 2007, 82, 1087; (e) G. W. Parshall, S. D. Ittel, Homogeneous Catalysis, Wiley, New York, 1992.
2 (a) D. Dyker (Ed.), Handbook of C-H Transformations, Wiley-VCH, Weinheim, 2005; (b) R. A. Sheldon, J. K. Kochi in Metal-Catalyzed Oxidation of Organic Compounds, Academic Press, New York, 1981; (c) S. D. Burke, R. L. Danheiser, Handbook of Reagents for Organic Synthesis: Oxidizing and Reducing Agent, Wiley, Chichester, U. K. 1999; (d) G. A. Olah, D. G. Parker, N. Yoneda, Angew. Chem. Int. Ed. Engl. 1978, 17, 909; (e) J. Eames, M. Watkinson, Angew. Chem. Int. Ed. 2001, 40, 3567; (f) F. Kakiuchi, N. Chatani, Adv. Synth. Catal. 2003, 345, 1077.
3 (a) K. B. Wiberg in Oxidation in Organic Chemistry, Academic Press, New York, 1965, Part A, p. 69; (b) G. Cainelli, G. Cardillo in Chromium Oxidations in Organic Chemistry, Springer, New York, 1984, p. 23; (c) D. J. Sam, H. E. Simmons, J. Am. Chem. Soc. 1972, 94, 4024; (d) L. Friedman, D. L. Fishel, H. Shechter, J. Org. Chem. 1965, 30, 1453; (e) J. Muzart, Tetrahedron Lett. 1987, 28, 2131; (f) S. Yamazaki, Org. Lett. 1999, 1, 2129; (g) E. Baciocchi, G. C. Rosato, C. Rol, G. V. Sebastiani, Tetrahedron Lett. 1992, 33, 5437; (h) T. M. Shaikh, L. Emmanuvel, A. Sudalai, J. Org. Chem. 2006, 71, 5043; (i) W. S. Trahanovsky, L. B. Young, J. Org. Chem. 1966, 31, 2033; (j)
R. H. Reitsema, N. L. Allphin, J. Org. Chem. 1962, 27, 27; (k) D. G. Lee, U. A. Spitzer, J. Org.Chem. 1969, 34, 1493; (1) Q. Z. Shi, J. G. Wang, K. Cai, Synth. Commun. 1999, 29, 1177.
(a) E. Modica, G. Bombieri, D. Colombo, N. Marchini, F. Ronchetti, A. Scala, L. Toma, Eur. J. Org. Chem. 2003, 15, 2964; (b) R. A. Sheldon, I. W. C. E. Arends, Adv. Synth. Catal. 2004, 346, 1051; (c) B. Saha, J. H. Espenson, J. Mol. Catal. A 2005, 241, 33; (d) A. Gizli, G. Aytimur, E. Alpay, S. Atalay, Chem. Eng. Technol. 2008, 31, 409; (e) T. W. Bastock, J. H. Clark, K. Martin, B. W. Trenbirth, Green Chem. 2002, 4, 615; (f) N. Hirai, N. Sawatari, N. Nakamura, S. Sakaguch, Y. Ishii, J. Org. Chem. 2003, 68, 6587; (g) F. Yang, J. Sun, R. Zheng, W. Qui, J. Tang, M. He, Tetrahedron 2004, 60, 1225.
(a) Y. Sasson, G. D. Zappi, R. Neumann, J. Org. Chem. 1986, 51, 2880; (b) Y. Sasson, A. E.-A. Quntar, A. Zoran, Chem.Commun. 1998, 73; (c) S. I. Murahashi, Y. Oda, T. Naota, T. Kuwabara, Tetrahedron Lett. 1993, 34, 1299.
12 J. M. Lee, E. J. Park, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2008, 130, 7824.

## Lett. 2005, 7, 4549.

4 (a) S. Paul, P. Nanda, R. Gupta, Synlett 2004, 531; (b) S.-I. Hirashama, A. Itoh, Synthesis 2006, 1757; (c) T. Sugai, A. Itoh, Tetrahedron Lett. 2007, 48, 9096; (d) B. Srinivasan, S. B. Chandalia, Indian J. Technol. 1971, 9, 274.
(a) Y. Lu, H. Yin, H. Wu, H. Liu, T. Jian, Y. Wada, Catal.Commun. 2006, 7, 832; (b) R. Vijayalakshmi, M. Jayachandran, C. Sanjeeviraja, Curr. Appl. Phys. 2003, 3, 171; (c) L. Farrugia, M. L. H. Green, J. Chem. Soc., Chem. Commun. 1975, 416.

21 Y. Ogata, Y. Sawaki, M. Shiroyama, J. Org. Chem. 1977, 42, 4061.
22 Kemp, J. E. G.; in "Comprehensive Organic Synthesis" Trost, B. M., Ed., Pergmon, Oxford, 1991,
vol. 7, p 469.

Kim, S. H. Org. Lett. 2000, 2, 2249; (c) Wei, H. -X.; Kim, S. H.; Li, G. Tetrahedron 2001, 57, 3869; (d) Wei, H. -X.; Kim, S. H.; Li, G. Tetrahedron 2001, 57, 8407; (e) Kotti, S. R. S. S.; Xu, X.; Wang, Y.; Headley, A. D.; Li, G. Tetrahedron Lett. 2004, 45, 7209; (f) Xu, X.; Kotti, S. R. S. S.; Liu, J.; Cannon, J. F.; Headley, A. D.; Li, G. Org. Lett. 2004, 6, 4881; (g) Li, Q.; Shi, M.; Timmons, C.; Li, G. Org. Lett. 2006, 8, 625.

Sudalai, A. Indian J. Chem. B 2005, 44, 1530.
Kharasch, M. S.; Priestley. H. M. J. Am. Chem. Soc. 1939, 61, 3425.
(a) Terauchi, H.; Takemura, S.; Ueno, Y. Chem. Pharm. Bull. 1975, 23, 640; (b) Terauchi, H.; Ando, Y.; Takemura, S.; Ueno, Y. Chem. Pharm. Bull. 1967, 15, 1193.

Danither, F. A. Butler, P. E.; J. Org. Chem. 1968, 12, 4336.
(a) Zawadzki, S.; Zwierzak, A. Tetrahedron 1981, 37, 2675; (b) Zwierzak, A.; Klepacz, A. Tetrahedron Lett. 2001, 42, 4539.

Bach, T.; Schlummer, B.; Harms, K. Chem. Commun. 2000, 287.
(a) Li, G.; Wei, H. -X; Kim, S. H.; Neighbors, M. Org. Lett. 1999, 1, 395'; (b) Li, G.; Wei, H. -X;

Qi, X.; Lee, S. -H.; Kwon, J. Y.; Kim, Y.; Kim, S. -J.; Lee, Y. -S.; Yoon, J. J. Org. Chem. 2003, 68, 9140.

Thakur, V. V.; Talluri, S. K.; Sudalai, A. Org. Lett. 2003, 5, 861.
Manzoni, M. R.; Zabawa, T. P.; Kasi, D.; Chemler, S. R. Organometallics 2004, 23, 5618.
Minakata, S.; Yoneda, Y.; Oderaotoshi, Y.; Komatsu, M. Org. Lett. 2006, 8, 967.
Wu, X-L.; Wang, G-W. J. Org. Chem. 2007, 72, 9398.
Jadav, J. S.; Reddy, B. V. S.; Chary, D. N.; Chandrakanth, D. Tetrahedron. Lett. 2009, 50, 1136.
(a) Dewkar, G. K.; Nikalje, M. D.; Sayyed, I. A.; Paraskar, A. S.; Jagtap, H. S.; Sudalai, A. Angew.
(a) Connolly, T. J.; Baldovi, M. V.; Mohtat, N; Scaiano, J. C. Tetrahedron Lett. 1996, 37, 4919.
(a) Kim, T-H.; Dokolas, P.; Feeder, N.; Giles, M.; Holmes, A. B.; Walthar, M. Chem. Commun. 2000, 2419; (b) Beckwith, A. L. J.; Bowry, V. W.; Moad, G. J. Org. Chem. 1988, 53, 1632.

## PUBLICATIONS

1. $\mathrm{NaIO}_{4}$-mediated C -H activation of Alkylbenzenes and alkanes with LiBr. Tanveer M Shaikh, A. Sudalai, Tetrahedron Lett. 2005, 33, 5589-5592.
2. Titanium Superoxide catalyzed selective oxidation of phenols to p-quinones with aq. $\mathrm{H}_{2} \mathrm{O}_{2}$. G. K. Dewkar, Tanveer M Shaikh, S. Pardthy, S. S. Kulkarni, A. Sudalai, Ind. J. Chem. Section B, 2005, 44, 1530-1532.
3. $\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated diastereoselective dihydroxylation of olefins: A catalytic approach to the prevost-woodward reaction. Emmanuvel, L., Tanveer M Shaikh, Sudalai, A. Org. Lett. 2005, 7, 5071-5074.
4. $\mathrm{NaIO}_{4}$-mediated selective oxidation of alkylarenes and benzylic bromides/alcohols to carbonyl derivatives using water as solvent. Tanveer M Shaikh., Emmanuvel, L., Sudalai, A. J. Org. Chem. 2006, 71, 5043-5046.
5. $\mathrm{NaIO}_{4} / \mathrm{LiBr}$-mediated direct conversion of benzylic alcohols and aromatic aldehydes to aromatic esters. Tanveer M Shaikh, Emmanuvel, L., Sudalai, A. Synth. Commun. 2007, 37, 2641-2646.
6. $\mathrm{WO}_{3} / 70 \% \mathrm{TBHP} / \mathrm{aq}$. NaOH : An Efficient Catalytic Combination for the Selective Oxidation of Methylarenes and Alkylaryl ketones to benzoic acids. Tanveer M Shaikh, A. Sudalai, Eur. J. Org. Chem. 2008, 33, 4877-4880.
7. Titanium superoxide: a heterogeneous catalyst for aminobromination of olefins. Tanveer M Shaikh, P. Karabal, S. Gurunath, Sudalai, A. Tetrahedron Lett. 2009, 50, 2815-2817.
8. Highlights in current synthetic organic chemistry on "Titanium superoxide: a heterogeneous catalyst for aminobromination of olefins". Tanveer M Shaikh, P. Karabal, S. Gurunath, Sudalai, A.. Synfacts 2009, 9, 1009.
9. A concise enantioselective synthesis of (+)-lentiginosine. Tanveer M Shaikh, A. Sudalai, Tetrahedron: Asymmetry, 2009, 20, 2287-2292.
10. $\mathrm{H} \beta$ - zeolite: an efficient, reusable catalyst for one-pot synthesis of isatins from anilines. Victor Paul, Tanveer M Shaikh, A. Sudalai. (Communicated to Acta. Chim. Slov.2009).
11. A short Enantioselective synthesis of (+)- $\alpha$-conhydrine and (-)-sedamine via L-proline catalyzed $\alpha$-aminooxylation. Tanveer M Shaikh, A. Sudalai (Communicated to Eur. J. Org. Chem., 2009).
12. A short enantioselective synthesis of (+)-sertraline via Sharpless asymmetric dihydroxylation. Tanveer M Shaikh, A. Sudalai (Manuscript under preparation).

13 Enantioselective synthesis of (-)-allosedridine via Sharpless asymmetric epoxidation Tanveer M Shaikh, A. Sudalai (Manuscript under preparation).


[^0]:    ${ }^{\text {a }}$ Conditions: substrate ( 10 mmol ), $\mathrm{NaIO}_{4}(25 \mathrm{~mol} \%), \mathrm{LiBr}(11 \mathrm{mmol})$, glacial acetic acid ( 15 mL ), 24 h .
    ${ }^{\mathrm{b}}$ Oil bath temperature.
    ${ }^{\text {c }}$ All products were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, GC-MS and IR.
    ${ }^{\mathrm{d}}$ Isolated yields after column chromatographic purification.
    ${ }^{e}$ Yield corresponds to when $20 \mathrm{~mol} \%$ of LiBr was used.
    ${ }^{\mathrm{f}}$ Yield corresponds to the use of $\mathrm{Br}_{2}$ (2 equiv) as the halogen source. However, in the absence of $\mathrm{NaIO}_{4}$, only benzyl bromide ( $60 \%$ ) was formed.
    ${ }^{\mathrm{g}}$ Yield corresponds to the use of NaBr (1.1 equiv) as halide source.

[^1]:    ${ }^{a}$ See Experimental Section for procedure. ${ }^{b}$ Isolated yield. ${ }^{c} 50 \mathrm{~mol} \%$ of $\mathrm{NaIO}_{4}$ and LiBr were employed. ${ }^{d} \mathrm{KIO}_{3}$ (1.2 equiv) was employed as the oxidant. ${ }^{e}$ Terephthalic acid was obtained in $4 \%$ yield. ${ }^{f}$ Methyl ester is hydrolyzed to form terephthalic acid. ${ }^{g}$ Reactions were not done. ${ }^{h}$ Yield was $83 \%$ with $50 \mathrm{~mol} \%$ of $\mathrm{NaIO}_{4} .{ }^{i}$ Corresponding ketones were obtained.

[^2]:    ${ }^{\mathrm{a}}$ Alcohol (3 mmol), $\mathrm{NaIO}_{4}(3 \mathrm{mmol}), \mathrm{LiBr}(3 \mathrm{mmol})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$, methanol (9 $\mathrm{mL}), 25^{\circ} \mathrm{C}, 18 \mathrm{~h} ;{ }^{\mathrm{b}}$ After purification by column chromatography; ${ }^{\mathrm{c}}$ ethanol was used as the solvent; ${ }^{\text {d }}$ Yield of the methyl 3-bromo-4-methoxybenzoate when 2 equiv. of LiBr used; ${ }^{\text {e }}$

[^3]:    (a) (i) alkyl aryl ketone ( 3 mmol ), $\mathrm{WO}_{3}(10 \mathrm{~mol} \%), 70 \%$ TBHP ( $1.5 \mathrm{~mL}, 12 \mathrm{mmol}$ ), $40 \% \mathrm{NaOH}(12 \mathrm{mmol}), 8{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$; (ii) acidified with 6 N HCl . (b) Isolated yields and products were characterized by m.p. and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy.

