INTERACTION INVOLVING ELEMENTARY EXCITATIONS
IN SOLID

(- L\ T A Thesis
submitted to the
University of Poona

for the award of

Doctor of Philosophy

T,
g 3 ( IN PHYSICS )

' S0274%

C

s O

by
GOPAL CHANDRA SHUKLA M. Sc.

Solid State and Molecular Physics Group
National Chemical Laboratory

Poona - 8, 1India.

(October 1966)



CONTENTS

Pages
Acknowledgements
Synopsis
PART 1
Chapter 1. Introduction to ferroelectric
phenomena 1-19
Chapter 2 Ferroelectricity in pervoskite
ferroelectricity in pervoskite
structure 20-52
A. Vibronic interaction 20-26
B. Case of Ti-O-Ti unit 26-32
C. Case of Ti- Og-octahedron 33-41
D. Collective oscillation of such
units 41 -52
E. Discussion of soft optical mode 40 - 52
PART 1I
Chapter 3 Introduction for spin wave 53-62
Chapter 4  Formulation of magnon-optical
phonon interaction 63 -97
A. Importance of such study 63 — 65
B. Formulation of the theory 65— 77
C. Phonon-magnon relaxation time 77-19
D. Calculation of relaxation frequency
for antiferromagnetic system 79 - 87
E. Calculation of relaxation frequency
for ferromagnetic system 87-92
F. Discussion and estimation of
relaxation frequency for Anti-
and ferromagnetic system 92 -94
Chapter 5 Concluding Remarks 95-97

References 98 — 104



ACKNOWLEDGEMENTS

I am deeply indebted to Dr.K.P.Sinha for his keen
interest, valuable guidance and constant encouragement
during the pursuit of this work. It is also a great
pleasure to ackrnowledge the useful collaborstion of my

colleagues of the Solid State and Molecular Fhysics Group.

I take the opportunity to thank the Council of
Scientific and Industrial Research, New Uelhi, for the
award of a fellowship which made this study possible and
the Director, National Chemical Laboratory, for allowing
me to submit this work in the form of a Thesis for

Ph.D. degree.

G- C  shoble



SYNOPSIS

The present dissertation deals with a theoretical
study of interactions involving certain element.ry excitations
in dielectrics and magneto~-dielectrics. The oldest concept
of elementary excitation came in connection with lattice
wave. Owing to strong coupling between the atoms, any local
disturbance is not localized but moves like a wave. In a
guantum description of lattide waves we visualize the crystal
as an assembly of independent harmonic oscillators which
exist in certain gquantum states of excitation. These
axcitations are referred to as phonons, characterized by s

'dafinit.o energy and direction of propagation.

Likewise, any local deviation from the coupled state
ol the spin systems\ i.e. ferro-, ferri- and autiferromagnet ic
systems) will not remain confined in the region as a result
of strong exchange forces. The corres onding propagation is
called spin waves. Following the analogy of lattice waves,
the spin waves too can be thought of as modes of propagation
in magnetically coupled systems. Wwhen the s;in waves are
quantized we refer to the state of excitations in terms of
a certain number of magnons. Like phonons, magnons are also

field quant.a?.

In the first part of the thesis, the effect of electron-
phonon coupling on the phase transformation, in particular

ferroelectric phase trausformation, is considered from
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microscopic considerations. The second part is devoted to
a study of interactions between spin wavef ( both optical
and acoustic modes ) quanta ( i.e. magnons ) and longitudinal

optical phonons.

It has been recently realized that phonons may play
an essential role in the ferroelectric phase transformation
( i.e. in BaTiOB). The main point in this ap roach is that
the structure should become unstable with respect to certain
vibrational modes at some tem;erature. 4his implies that the
frequency of this mode should vanish at the transition
temperature. However, uhere are several ambiguous f{eatures
in these theories. It is not yossible to predict the
transition. Also the origin aJ?wny the frequency becomes

imaginary in the harmonic approximation is not understood.

In the present dissertation, these gd hoc aspects are
done away with by starting caiculations from first principles.
It is conventional to assume that the electronic excited
states are far removed from the ground state and are accordiigly
ignored in the lattice dynamics of the system. 7his is
questiomable. Hence the role of electron-phonon coupling is
explicitely taken into account in constructing the micro-

scopic Hamiltonian of the system.

With special reference to tri-ionic units (ABz) and
octahedral units (Ti0g), which are relevant to 33T103 system,
it is shown by means of a canonical transformation, that

the odd vibrational mode becomes unstable owing to
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electron-vibration coupling. This model is then extended
to a three dimensional network of such units. In the study
of the collective oscillations of such a system anharmonic
interactions are also taken into account. The final result
shows that the effective transverse optical frequency

has the form

2
Wl " 2 _ A "

Wors ( ¥, |97 || « 8T (1)
where A is the matrix element connecting ground znd excited
states, IJ ) the energy separation, |v\| comes from
dipole-dipole interaction and | emanates from anharmonic

terms. The above expression has the desired form

Wepe X (T =T, ) (2)
The second part of the thesis deals with the inter-

actions of optical phonons with magnons. The study has been
confined to Antiferromsgnetic and Ferrimagnetic erystals. The
two sublattice model for antiferromagnetic spin waves and
ferrimagnetic spin waves forming a b.c.c. lattice was chosen
for the study. The formulation of the microscopic theory
for the phonon-magnon int eraction is quite alluring. The
interaction mechanism of acoustic phonons and magnons have
already been considered by various research workers. In the
present dissertation a microscopic theory of the interaction
of optical phonon and magnon is formulated. Here also the
mixing of the ex ited orbital states with the grounds states
of the magnetic ions due to crystal field oscillations is

taken into account.



Along with the diagonalization of the magnon part
of the Hamiltonian, the one phonon interaction terms for the
coupling between the longitudinal optieal phonons and magnons
( of all branches ) are obtained. It is found that the .
interaction processes are quite important in the relaxation
mechanism in the high temperature region i.e. ef—the—order 7 0K
of Einstein temperature. The calculation of phonon-magnon

relaxation time is reported.






1N RODUGCT

Despite a considerable amount of experimental and
theoretical investigation on ferroelectric crystals, our
knowledge of the origin of phase transformatiocn to the
{ferroelectric phase is still incomplete. The phenomenon
of ferrcelectricity was discovered in 1921 by \Ial:;uok1 in
an investigation of Rochelle salt. His results showed a
dielectric hysterisgs. Thus in analogy with ferroms; .etism
the above pheunomenon is called ferroelectricity. The
phenomenon of ferroelectricity is associated with special
types of erystals, which have built in permsnent electric
moments. However, with slight increase in temperature,
beyond the transition point, ferrcelectric crystals lose
their permanent moment. The important properties of

forroolcct.ricz 30k

crystals are: (a) dielectric hysterisis

(b) polar point group symmetry, (c) disappearance of hysterisis
at a certain point ( i.e. the Curie point ), (d) transition

at Curie point to a state of higher symmetry i.e. transition
from polar to non=polar or paraelectric phase, and (e) the
dielectric constant above the Curie point follows a Lurie-weiss
law, namely & =1 = C/‘l'-'l'c. where ¢ , T  refer Lo dielectric
constant and transition temp.rature respectively C bei g a
constant having the dimension of tempcrature. The spontaneous
polarization in the ferroelectric state is as.ociated with

spontaneous electrostrictive strain in the crystal; thus the



ferroelectric state has a lower symmetry than the paraelectric
or nonpolarized state. Therefore there is a change of crystal
symretry at the transition temperature. This implies that
ferroelectrics have a Curie temperature above which they are
non-polar. This is not an essential prerequisite because

a number of ferroelectrics are kuown to decompose before the

Curie temperature is attained.

The field of ferroelectrics is rapidly growing and a
large number of ferroelectrics has been discovered with a
variety of crystal symmetry. These may have simple
crystal structure ( e.g. aauo3 ) or complex one as in Rochelle
Salt., The nature of bonding betweern the constituent units
alsc varles in difierent systems. This may be ionic, covalent
or even intermolecular.5 The onset of the ferroelectric
rhase is connected with the ordering of permanent dipoles or

to the creation of new dipoles, or pseudo-dipoles, by the

displacement of the ions.

Ferroelectric crystals can be classified in various
ways. The most convenient one is due to Merz.b He
classified them into hard and soft ferroelectrics. Hard
ferroelectrics, in general, are grown at high tempcrature.
These are mechanically hard and insoluble in water, Further
they have high saturation polarization. Un the other hand,
soft ferroelectrics have smaller saturation polarization;
pervoskltgﬁs and a few metal oxides having similar structures

belong to former class.
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The present study is confined to the ferroelactric

7+8,9

crystals bel nging to pervoskite family, speciaily

to BaTiOB. The name pervoskite stems ;Ez;r the mineral
pervoskite CaTiOB. The gencral formula for  ervoskite
structure is ABOB. In this, A and B stand for mono- or
divaient metval and tetra- or pentavalent metal ions
respectively. The virgin pervoskite is cubic in nonpolar
state with the A atoms at cube corners, B atoms at body
centres and O atoms occupying the face-centred positions.
veometrically, the 4i-0 distance is V< times the B-0 distance.
The structure can be pictured as a set of aob octahedra
arranged in a simple cuvic pattern. These are linked together
by the sharing of the oxygen atoms, wherein A atoms occupy
the spaces between. The optical, mechaunical and electric

10,11,12 reveal the existance of the three

measuremants
ferroelectric phase changes. Above 120°C, it has a cubic
structure and non-polar state, between 120°C ard 0°C it is
polarized aloug the cube edge e.g. (001) direction and has a
tetragonal structure. From 0°C vo -70°C, it is orthorhombic,
the direction of polarization buing face-diagonal e.g. (011)
direction. #hile, below -70°C it is polarized along a vody
diagonal e.g. (111) direction and has rhombohedisl structure.
In all the three cases, the mechaunical deformation of the
erystai is proportional tvo the sguare of the polaiization
and expands in the direction of spontaneous polarization

and contracts at right angles to it. The crystal symuetry
connected with the lowering of temperature is in succession
0 c

C C.,» Barium titanate coustitutes, perhaps

h? Lv’ AN oV



the most iaeal system for the formulation of the theory of
the ferroelectric phase transformation. Its structure is
well-established and other physical ;roperties are thoroughly
studied. However, the real cause of the ferroelectric

vhase trausformation has proved to be elusive f{or guite
sometime. Theoretical studies on such systems have followed
two main chanuels., The first is concerned with thermo-
dynamic consideration and is independent of any particular
crystal model. The second is atomistic and is intimately
connected with the crystallographic properties as a function
of ¢t emperature. It will be noted that the octahedral

acructurc13’16

is of paramount importance in the understanding
of various physical properties associated with pervoskite and
related structures. Several phenomenological theories have
bee.. proposed for the occurrence of ferroelectricity in
pervoskite-like systems. In these theories emphasis has been
given on the variocus points such as (1/ the occurrence of

multiple minima‘d’23’£h ic the free energy function, (<) the

role of chemical bondiug,z {3) electronic polarization.‘3)33

The earlier theoretical studies exploited the close
analogy between ferromagnetism and ferroelsctricity. They

17 who first proposed

were inspihed by the work of P.weiss
an acceptable theory of ferromagnetism though somewhat gd hoc
in nature. Thus one postulates for the internal field for

ferroelectric and ferromagnetic systems relations:



F e E + !Btl ¥ (Bleetric case) )
i (1.1)
-« H + %l M (Magnetiec case) :
In Equ (1.1} E and H stand for the external field,
while P and M for the polarization of the sublattice per unit
volume. The term 5%* is called the Lorentz term. Von Hippel
named it as "bootstraps" term i.e. a term by which the
polarization is capable of pulling itself up by its owu
bootstraps. Convertionally this is a "coopsrative force”
term. This formula gave rise to " %& catastrophe” i.e.
many polar substances should be ferroelectric at their boilirng
point. This difficulty was, however, cleared by Onsager (130)
who pointed out its incorrectness for polar liquids.

The polarizgtion iW a ferrcelectric erystal can be
caused by one of the followin; three possibilities, namely
(a) rotating permane:t dipoles, (b) translational moticn
of the ion, (¢) electronic distortion of atoms or ions.

18

Barly theories about rotasting dipoles have lcng been

forgotten. The theory by Matthias and Hasona'g’zo starts
with a speciiic assumption for the internal field together
with the idea of rotating dipoles. Thus, this is an
incorrect theory. Slolonokiid1 has also provided a different

ground for its incorrectness.

Adopting the view that polarization results on account

of displacive motion of the ions in BaT103, Devonshirizz

progosed a phenomenological theory of ferroelectric phase
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transitiou in BaTiOB. Various other theories also exploit
the same mechanism of polarization. Among these, the

significant ones are those by dlator,‘B Gin:b‘rg,zh

anolonskiizs and Barrot‘o and snirobokov.‘7

g

Instead of
the <ucillat'.or‘é model for the potential energy of the atom,
Levonshire“? ssumed the form V(r) = ar® + brl. Fhysically
this implies that the dipole moment depends on the
displacement from the equilibrium position. Further, the
values of a and b are different for difierent ions and
these were evaluated by the Born model of ionic cry.ial.

The dipole moment is proportic:.al to a quantity - which
reyresents the effective charge. The partition function arnd
heuce the Helmholts free energy of the system is written down
in terms of the constants, a, b, 7 and field vector | which
were given its Lorentz value %1. Thus, Uevonshire expressed
the free energy of the crystal per unit volume by expressing
as a function of stress and ;olarization with the stress

set egual to zero. This function must co.form with Oh
symmetry ( non-polar state ) and the most gen-ral funetion

satisfying this condition is an arbitrary symmetric function

of ?:, ri and Pi . Thus, free energy can be expanded in
terms of polarisatldn‘ along as

P

R AU AR AL RS S LTI 8

W 2.2 - Ay * 6 6 6
¢f§12(Pny0PxP.ok.Py)0%§(Pxivxyoi’.)
(1.2)

5 s are the various coefficients.
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In Eqn (1.2) W' is s temp- rature dependent function
and is evaluated from experimental susce tibility data above the
Curie-point., For weak field having terms upto P“ in the

expansion A, W' is given by

w? I~ 1-' = ™ e N \1.3)

where X is the electric susceptibility.

The basic assumption of Devonshire's theory is that
this linear relation may be extrapolated below the Curie-point
Tc' Using the experimental value of Curie-point Tc’ the
extrapelated Curie temperature and the spontaneous polarizatiorn
f. at one temperature in the tetragonal phase, Devonshire was
able to account for the characterisvics of the three phase
transitions including the temperature dejendence of the
dielectric coustant and other physieal properties, Although
Devonshire's rhencmenological theory is able to explain

satisfactorily different ;roperties of BaTi0, with a

comparatively small number o. expansion yara:eterl, it is

an a pyroximation in the sense that a finite number of terms

are used iu the free energy. secoudly, the same free-energy

ex ansion fof both the cubic and tetragonal phase is used.

Also, the assumed complete ionic character of BaTiO3 is doubtiul.
Various investigat ions including x-ray as well as infra-red
spectra reveal that 801103 has an iutermedi:te character i.e.

it is uneither purely ionic nor ;urely cOValont.a'zg-Bz 3later
introduced two modifiestions over Devonshire's theory, namely,
(1) he took into account polarization of ions by distortion,

(2) he used the values of the intersnal ficld at the ion sites



determined from electronic calculations based on the actual
arrangements of ions rather than the Lorentz value of %1 for
all pesitions. Darret carried out a quantum mechanical

33

treatment following Slater's work. Wigner b

and Jayne's
theory proposes an electronic model for ferreelectrics
built of oxygen octrahedra. Un the supposition that excited
slectronic states lie close to the ground state, erystal
field mixing was corsidered ou account of dipole moment

operator, a step in the right direction.

In 1557, W. Kanzig pointed out in his review article
entitled "Ferroelectrics snd Antiferrcelectrics” that the
field had become broader rapidly but not deeper. Since that
time, a number of atudi:: on the properties of BaTlOB type

L)
ferroelectric crystalshovi® been made which explore the
possibilities of rclating, these properties in terms of Born
von Karman theory of lattice dynamics,

The present broad understanding is an outcome of the

31
theoretical studies by 'u‘ochran,35 Andor:on,36 Landauer et al

and Ginlburg.zk

They incorporated the concept of time-
varying polarization, instead of static one, and its relation

to lattice dynamics. A great many physical properties of a
erystal involve in some way the frequencies of the normal

modes of vibration of the system e.g. elastic constauts,

specific heat, dielectric constants ete. Experimental technicues
i.e. x-ray, slow neutren-scattering as well as Méssbauer effect

are important tools to verify the effects of lattice vibrat ions.



The condition for the stability of the crystal agalnst
small deformations, requires the reality of all the normal
mode frequencies. The limit of stability against a particular
mode of vibration is inferred as the correspounding frequency
tends to zero. This suggests that ferrcelectric phase
transition in certain crystalscan be associated with such an
instability or near-instability. Thus the f erro-electric
rhase-transformaticn is a problem in lattice dynamics, Cochran
noted that the anomaly of the dieleectric coustant should be
related to the ancmaly of the transverse optical mode in the
case of ferroelectric phase transformation. According to

1..yddano-:.im;hs-'l‘ollox'38 (L5T) formula

“2
6 L
—— = -+ / (‘QL)
€o w.ro

where Co * € stand for static dielectric coustant at mero

frequency and dieleetric coustant at high freguency respectively.

“T and L refer respectively to trau:verse aud lougitudinal
]

optical fregueucies.

This formuls was extended by Cochran35 to ionic crystals
of a more complicated nature i.e. Bn?103. The coefficients
of the dynamical matrix are assumed to vary with the
temperature in such a way that the transverse optical frequency
vanishes at the transition temperature as T Tc. This
arises from L3t>° relaticn and of the Curie-veiss law for

&, nﬁ-.ly/
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« 7T, — uro a (T 1° I (1.5)

Various othsr susgoation-39-h2 have been _ut forward for
the temperature dependence of optical mode and counseguently
verified by cxporimontal‘B-b7 workg. In the next section

we present the salient feature ol lattice dynam.cs.

CE _DINAMIC

The problem of lattice dYﬂaIICI‘B-so involves the
motion of very large, but finite, number of particles about
a set of ordered points. The network of these points
describes the crystal lattice and classically each particle
is sssumed to be at rest at its corresponding lattice point
at the absolute zero of temperature. Tiese particles { ions or
atoms ) are never guiescent but execute small oscilliations.
The collaective oseillations of such a system i.e. Lattice
dynamice of crystalline solids, was first correctly
formulated by Born and ¥on Karman. They assumed a number
of ap roximations, namely adiabatic ( Born-Cppenheimer
approximation ) and harmonic ap,roxiuations. The former is
related with the separation of eleectronic and nuclear motionu,
As the nuclei are 103 to 105 times heavier than the electrons,
«23; velocities are much smaller compared to the velocities
of the eleetrons. This in turn implies th:t electrons are
unable to notice the speed o. the nucleus and the nuclei can

be assumed to have arbitarily fixed coufiguration relative to
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eleetronic motion, Therefor. it is a fair apyroximation
1o treat the elsctroniemotion and nuclear vibration
separately. This is the celebrated Bora-Uppe.helmer
approximation. For iius validity the phonon energy ( ﬁwp )
has to be very small compared vo electrouic excitation

energy ('ﬁv. ) namely hwp <4 'hw..

On the otherhsnd, harmonic aprroximation restricts
the Taylor scriss development of the nuclear dis; lacements
upto quadratic terms. Veviation from adiabatic approximation
implies elsctron-phonon interaction, while deviation from

harmonic approximation implies phonon-phonon interaction,

In the standard method of lattice dynamics in the
harmonic ap, roximation, the Hamiltonian of the lattice system

has the form

H = }o + 3 ng.‘ii(t) + 8 E“’ K k') (gr\a k gu. ‘k'l
?E-a ;E
Lkt

(1.6a/

with

11 Py
@ gy k! \b<;ﬂ (1'5365“ (x"> (1.6b)

whers ﬁk is mass of the k"h kind of atom, g;u(t} is the

B o cartesian component of the displacement of the k‘h atom

in the lth unit cell, o« = x,y,sz. %; \i i.l is the
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coupling parameter i.e. the second derivative of the uclia,-
nuclear poteutial function @ ( By 4-1' ) evaluated at
equilibrium position in the absence of zero-point fluctuation.
Jometimes, the derivatives are evaluated st the mean
positions at T. Iiu this way the coupling parameters are
temperature dependent and this approximation is known as
pseudo~harmonic approximation. With the use of periodiec
boundary condition, the Hamiltonlan gives a set of eeupiw

Bquation aakg

A
uz(faa(k) B Z:_ Da!.(kkk.: gaﬁ(k': (1.7)
K'P

where

A
uur{k‘ék” - Pa-,.‘ulk" oxp (=2 kox(1) (1.8)

R 5

where SRu(k) is time-independent displacement and U, \kkk'}
define the dynamical matrix of order Jrx Jr as there are
r stoms in the primitive cell. The necessary coundition that +we

equations have a solution is that
‘u-w"l‘ - 0 (1.9)

where I is a unit matrix of order 3r x 3r . On account of

the hermitian character of the dynamical matrix all the roots
A

are real. The 3r functions !;(ﬁ} for each value of k may

be thought as the componernts of a multivalued function w(f).
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It can be easily shown that 3 frequencies or modes vanish
with the vanishing of the wave vector | g e+ Such modes
constitute the acoustic modes. The remaining 3r-) modes do
not vanish with the vanishing of the wave vector and are
called the optic:l modes. For a "general” Q vector which
cannot be transformed into itself by any point gro.p symmetry
of the erystal ( except identity trausformation ; all the

3r modes are difforeut.86 In case the wave vectors lie along The
symmetry axis or symumetry pLanegh%ynan1Cal matrix can be
factorized and equivalently a few of iius modes are degenerate.
Further, neglecting the constant term, the Hamiltonian (1.5)

cai be rewritten as

i

~1°21 . § 5 )
H= g E T + 3 E (ﬁ nts 1 _ls . ‘1.10)
l u' l l.l.'o 1

Here we have supposed that masses of all the atoms are same.
11 etc. are the momenta Conjugate to the displacement 531

satisfying the commutation relation

Let us introduce the following normal coordinate

transformation

X{ 1 .'13052 J
RS “ Eeq )
QP }

/ (Telc
/
igoag /
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whaere g is the propagation vector and [ the brauch
index.
The hermiticicy of gﬁl and £ glives

+ .
[ = » - = [ d - & P
—'i}f -q‘p y ! (_l_? _q-p an &mjjﬂ_ =1 \ 13)

€re -1

"

The eyclic boundary conditions are used. Also restricting

ourseives to the first Briliouin Zone (M.s.) we can write
. s
- ?) i - aea = - [
‘E né\g g l.ﬂl A lg~g'=k, Y 561’4'

Then “; is transformed to

1 Z "t D &< * : Y ’ \
Hh ﬁ ‘}_q})l_q_p""gp -‘q}J ;3}' i \101!‘)
qrP -
where
- . Aap
'qp M ;
} ,

) (1.15)
o_.o' !
-ig. (&)1 /
)
!

.va

Apq = €pq ;An' ¢

epq etc. are the eigenvectors of the dynamical matrix

Z:-/\n' ..

~1g(i0-8S
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With the helf of the relation (1.11) and (1.13, it

can be shown than

E‘ap’ "'s';'.'] - daa’ et

[ ] = [ ]

low, introduce the Boson creation and annihilation operators

(1.16)

—— N S B S W

b;p and bqp through the relations

dop = j—-\b’-b ), P = gﬂﬁ(b + 00 )L (1.17)
qpP zwqp aP —=qp ' ‘gqp -9P P’ F

These operators satisfy the commutation relations

+
[bqp' bf_l'P] * ggq_' Spp?

(1.18)

S e B S e’ W

~* *
ng' b%'P'] = [iqp’ bq'yi] -

Finally, making use of these second quantization representations,

we get the lattice Hamiltonian as
+ { ,
Hy R ’iqu (b by + &) (1.19)

with =b" b he oce tion number o or.
ngp qp"qp the upa r operat
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This has only positive integers as its eigenvalueyp.
The physical interpretation of (1.1y) impiies that the
Hamiltonian cousists of a system of non-iuteracting quanta

known as "rhonons™ each having an enargy‘ﬁwq and:brOpagatio

P
vector g.

4 few authors have carried out meassurements on
BaTiO3 to see the temperature de;, endence of the soft mode
as manifested by some physical ;roperties. It is well kuoown
that the temperature de.ende:ce of the dielsctric constant
is related w nonlinear effects. That is, the dielectric
counstant of a perfectly harmonic lattice does not depend upon
the temperature. In the earlier theories i.e. phenomenoclogical
theories of bevonshire, Slater aud related ones, the observed
temperature dependence of the dielectric counstant was
developed at constant volume as a result of the anharmonic

4 developed a theory

interaction between the ions. JSilvernman
of temperature dependence of the dielectric constant in which
in addition to this assumption of noulinearity, he cousidered
the collective motion of ions i.e. lattice dynamics of the
system rather than oI individusl ions. Further, as the
temperature dependence of the soft optical mode is w%atT-TC),
it implies thst below Tc( lee T LT, ) the system is
unstable. Following Born he assumed that the electronic
excited state is far removed from the ground state. He
formulated the rotential function for nuclear coordinates

which includes the harmonic instabiiities. The Hamiltonian for

the paraelectric phise of the system was taken to consist of
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seven terms. The first two terms are harmonic contribution

to the energy from optical and longitudinal modes other than the
unstable optical mode.qkkhird term arises as a contribution

of the unstable ojtical mode.‘m;ourth term owes its origin

to linear eleciric moment. The fifth term arises on account

of second order electric moment and third order jpotential Wwid~

a8 besides the coefficient %% has the form

r )
T eg + 8% (B® + %Y, (b, ¥ bo)
q 4 -9

further, last two terms arise from third order electric
moments and fourth order potential. By no means, it is clear
o o x elavavd
to the author #hxt howthe retwiis fiith term in the Ham.ltoniar,
bscawse, 9t has been pointed out by Anderson "only quantities
having zero total momentum ( i.e. uniform through the crystal |
have finite averages". This forbids the existence of these
terms which do not satisfy such c.nditions. Also there are
other difficulties a+eo present in this theory. Firstly, this
theory is unsuited to give a dissipative effects ag—or the
frequency dependent effects. Secondly, the very assumption
that electronic excited state is far removed from ground state

i3 unreasonable. This has been demonstrated by Jinha and

5inha . 52

Recently Gowley87 proposed a theory for ferroelectricity
which considers the asharmonic effects. According to him, the
temperature variation of the phonon frequency is caused by the

anharmonic character of the interatomic poteatial. Then his
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theory is based on the usual procedure i.e. expansion of
the potential function in various powers and subsequent
calculations for the shift and damping of frequency using
the many-body perturbation api roach. However, this theory
contains various drawbacks. Firstly, while the potential
function has been expressed in various powers of atomic
displacements, only first acharmonic terms of this expansion
were considered. Secondly/in case the frequency shift is
not small, perturbation method seems to be questionable.
Thirdly, the thecry is unable to predict the occurrence of
phase transition. This dt%;iciency is also inherent in

5555k and Sarma have

Cochran's theory. Hecently Boccara
proposed a self-congistent theory for phase transition which

is a problem of lattice dynamics. Their theory is macroscopic
one and they suppose a given form of interatomic potential
which has to manifest the prediction of transition at some
tem;erature. For this, they formulate an effective Hamiltonian
containing some unknown coefficients and then their theory runs

parallel to Landau's theory of phase transition. ‘his theory
is at best phenomenoclogical attempt in the right direction.

35 53,54

Finally, theories of Cochran”” and Boccara and Sarma

for ferroelectricity are, indeed, an improvement over
Devonahirc,22 dlatera3 and other related phenomenological
theories. MNevertheless, neither the lattice dynamical nor
the phenomenological theories predict the phase transition or
provide a correct variation of phonon frequency with
temperature. The reason behind this is that though lattice

dynamical approach is in right direction, they have neglected
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the influence of electronic state on the nuclear vibration
of the system. When due account is taken of this ei‘fm:t;,s5
the ad hoc supposition vanishes. This is the main theme

of the first part of the present thesis.






It was mentioned in chapter I that the basic
'mochanisn of ferroelectric phase transformation in BaT103

type crystal has not been understood clearly so far. Though

Anderson and Cochran related it with a problem in lattice

dynamics, they neglected the electronic influence on the

nuclear vibrations. The usual method of calculating the

structure and dynamics of a molecule consists 84 using the

Born-Oppenheimer approximation thereby separating the full

schrédinger equation into a nuclear wave equation as—well as awd

into electronic wave equation. Further, the approximate
solutions of these independent equations are obtained.

Jahn and Teller’® %% ghowed that an electronically degenerate
state of a nonlinear molecule ( or complex ) is unstable on
symmetry ground,alone ( except the Kramer's tvwo fold degeneracy
with respect to some asymmetric displacement which lifts
the degeneracy. In case, the coupling between electrons
and such displacements is sufficiently strong relative to
the zero-point energy of the associated vibrational modes,
the complex sustains a static distortion thereby occupying

59-61

a new configuration of minimum energy. On the otherhand,

if the gerc-point vibrational energy is comparable with the
energy barrier sepamating equivalent configurations, then

one gets a coupled motion of the electrons and the vibrat ional
modeéz.bk This latter situation is known as dynamical

65,60

Jahn-Teller effect. Moreover, the mixing of two or more

electronic states by a linear movement of the nuclei is not
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limited to degenerate electronic levels. Two close-lying
nondegenerate electronic states may be strongly coupled
vibronically. This pseudo Jahn-Teller effect has received

less attention in the literanurc.67°69

Although Jahn-Teller effect reveals various interesting
quantum mechanical effects, the iunterest will be confined to
a study of the aspect which deals with the phase-transformation
and in particular ferroelectric phase transformation. The
first application of Jahn-Teller destabilization for octa-
hedrally coordinated transition-metal complex was due to
Van Vlock.59 He considered an octahedral complex of the type
Mxe. whero.H stands for the transition-metal cation, surrounded
by a regular arrangements of anions i.e. 'ligands' X. Ilis
calculations were based on an ionic moocl unich considers the
a” configuration of ¥ as tightly bound and ligands providyxnéy_
‘erystal' field through Coulomb interaction. Generalization
of this concept for the situation for a large concentration
of Jahn-Teller cations in an esseutially cubic crystal field
leads to a cooperative transition to tetragonal symmetry.
Theories of such phase transformation have been given by Finch,

70 7

Sinha and Sinha, Wojtowiez ' and Kanamor1.72 However, the

covalency effect between central cation and ligands are

73,7k and receutly Pryce, Sinha and

iwportant in certain cases
Tanabe75 have worked ocut a theory which shows the importance

of this effect.

Crystalsbeing a gigantic molecule, the Jahn-Teller
effect ought to play an important role in their phase
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nranaformation76'77

and interest was shown to explain the
ferroelectric phase transformation with its application by
Englman78 and Sinha and Sinha.sz The latter authors bfing

out clearly the role of pseudo Jahn-Teller effect to show how

it can predict the ferrcelectric phase transition in pervoskite-

type ferroelectrics. This has received much atnontion.55'79

Following Jinha and Sinhasz let us consider the
representative pervoskite, namely 801103. In the paraelectric
phase it has the cubic structure with Ba** fon, T1"***ion
and 0°” ion, occupying the center, corner and center of the
edge respectively. BRach Tt iong bciag surraunded
octahedrally by 6 oxygen ions, while each oxygen iong by two
™% ions lying collinearly at distance + R and four Baz’
ions and eight Oz- ions, as in a cubic closed packed assembly
at distance RY2. Taking Z-axis along Ti-0-Ti, the four Baz’
jons lie at the corners of the sguare in the xy plane. Further
the role of large Baz’ ions dﬁ% to provide the overlap of
the charge cloud of these ions midkoxygen ions giving rise
to a deformation of the central oxygen charge and electrons
of this charge cloud try to make transition to such available
orbitals which have axial symmetry and point towards the
Ti*" ions. Such a deseription automatically takes into
account the covalency effect between oxygen and titanium.
Further, two atomistic deseriptions are possible to allow
such transition, for the oxygen ions. These are 1) the charge
ion transfer model and 2) the excitation model. It can be

shown that either model predicts the existence of two orbitals
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having opposite symmetry and energies close together.
e g_(0 d 4 (@
These walke referred ,\\//. and “fi or #5(0) and ¢ 10) on
charge transfer model and excitation model respectively.
coan 2t

Hence a situation of near degeneracy was shown and the role

of pseudo Jahn-Teller effect can not be ignored.

Let us analyse this in detail. In the case of
excitation model, the relative energies of the excitation
orbitals én the central ion dk determined by the energy levels
of the orbitals for a single excited electron and the crystal
field due to 2Ti**, 4Ba** and 80°” ions =¥3 given by

v, =cd% . Cgrztg .0

. ey c“r“tx‘+r;‘) (2e1.1)

)
L L b L

arl
where Y's are the normalized sphericsl harmonics of C's

denote the constants given by

of q
Cl’: = "’R'; ‘ qB‘ - 70 )

WDhou
with q = (Zo)xo, (Zo)x denot.ef the charge of the ion in

I

° " -

Co = 4 -%‘ ( 9py * V2;b. ¥ ZV‘QO / :
)

] n /

2 T 5 3 ( bagy - V2 ag, + 29, ) J
)
J (2e1.2)

o _ {x . X2 - 132 !

G m s (hay s ey - e
)
/

question and r is the radial coordinate of the electron

on the cental oxygen ion. Further, the crystal field
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effect on the excited electron i.e. equation (2.1.1) is
based on the approximation that the hole left behind (07)

in the crystal is the source of an effective positive charge
(+Ze). Also the excited electron has hydrogen like orbitals
in the absence of the crystal field. With these approximations,
the 3@, 3p and 3d orbitals lie clcse together and constant
term in eguation (2.1.1) i.e. C:Yg which is responsible to
stabilize the oxygen ion, affects all the level equally.
Thus, the effect of relative splitting is evaluated with the
help of other terms in equation (<.1.1/. A simple straight
forward calculation for the diagonal matrix elements of the
’ de’, 3d, o

shows that the 38 orbit:ls remain unaffected, whereas the Bd:g

orbitals 38, 3p,, 3Py. 3Py Bdi, dez-y" 3dxy
and 3pz orbitals are depressed and the rest are pushed up.
Denoting the energy levels of 3d'2 and'BP’ by ¢s(0} and

¢.(O), we observe that they lie close together within a
fraction of an electron volt i.e. ~ .5 ev. while other orbitalg
energies are comparatively very large and so the former
situation conforms to the case of near degeneracy of electronic

states,

Let us analyse, the other model i.e. ¢harge transfer
model for the case of Ti-0-Ti unit. In Ti*' ions the orbitals
upto 3p are filled and hence the available orbitals are 3d
onwards. Further, those orbitals which hawe the maximum overlap
with oxygen are important and with the Ti-0-Ti as z axis, these

suitable empty orbitals are Bd‘z on each Ti** ion. Lenoting
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this by ¢1 and likewise on the second ion ﬂz, we get two

molecular orbitals as a linear combination of these and are

given by
IR
S (2.1.3)
V2
b -9
—-.——-— “.1.“)
Y2

The first is symmetrical and other antisymmetrical with
respect to the reflection in the plane perpendicular to
Ti-0-Ti bond and passing through oxygen. As the overlap
between ¢‘ and ¢2 1.e.<§i1\ ¢;>. is negligible, both orbitals
have the same energy. Now, let us consider the orbital of
the oxygen ion from which an electron is transferred. On
symmetry consideraticns we take this to be 2pl and denote

by (po) orbital. This being an odd orbital mixes strongly
with the antisymmetrical orbital given by equation (<.1.4),

giving rise to two orthogonal molecular orbitals

?
Vg * gl;g—-g- (2.1.5)

g, -4, - 28 p
v, = =222 (2.1.6)

<
Y2(1-230)

S *© <:?1‘ ng} .

with
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ﬁ% and 4‘ are orthogonal to each oth.r and to p . Also,

on account of the overlap mixing the orvital energies of

ﬁﬁ nnd% *; will be slightly different. Thus either approach
showéf%ho two electronic state lie near enough for coupling
through vibration.

It has been mentioned in the introduction that
T4-0-Ti units as well as T106 octahedra are relevant for
studying the ionic dielectric BAT103. In the following
section it is shown gg;: how such units are liable to show
instabilities when electron-vibration coupling is considered.
Also, the study inclucdes the lattice dynamics of such units
taking cognizance of electronic as well as anharmonic
interactiomns involved in the problem. It is shown5S that the
Jahn-Teller like terms do indeed lead to exrressions suggesting
instabilities of certain modes ( optical ) which are eventually
stabilized as a result of anharmonic interactions. Further-
more the inclusion of electronic effects incorporates the
covalency terms which may be necessary in the chemical bonding

of the units.

2e2 Vibromic coupling in elementary units:

In this section, we consider the study of the coupling
of the low-lying excited electronic states with the ground
state of the elementary systems owing to certain vivrational
perturbations. The calculatia: is confined to pervoskite or
WOB type ferroelectries. The crystal structure of pervoskite

type system has alreadybeen discussed in the introduction.
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Here, we shall make note of the nearest neighbour

i ) ions. In

coordination of 0%~ and M ( i.e. Ti*" or
the cubic phase we have the collinear units e.g. Ti=0-Ti with
Ti-0 distance same on both sides of O and in the regular
octahedra. The main interest is to show that vibronic
effects ( electron - vibration coupling ) will lead to the
distortion of the units(either T1-0-Ti or Ti0,)resulting

in a dielectric dipole.

The case of triatomic unit

Let us consider the situation where we have two
electronic levels for the system namely, the symmetrical
state \*€> and the antisymmetrical state k+£>. The energy
separation is defined by

2J-E(+3)-E(+.) (2.2.1)

The problem then is to consider the coupling between the
states t44>and \4{> owing to antisymmetrical vibration.
First let us consider the static case of such a unit to
evaluate the energy matrix. We follow the work of Upik and

61 for the study of near degeneracy in a triatomic

Pryce
linear unit ( B-0-B). They showed the instability of the
system in symmetrical configuration and the distortion of
the system in such a way that the two B atoms move in one
direction and the ceantral atom in the opposite direction. The

Hamiltonian for the present system is written as
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H = H . + H + H

el v int / (ceze2)

where H.l is the one-electron term for the electron in
question including its kinetic and potential energies in the
field of ion cores while Hv represents the vibrational
energy operator for the system in the harmonic aprroximation

and has the form
H, = # z'_‘( P oead ), (24243

where N are the normal coordinates and k‘i the corresponding
momenta, and a the force constant. The temm Hint. represents

the electron-vibration coupling term

i i
H = V&g (Re2ob)
int z o | 5

with v . ( >V/3‘ )o and involves only electronic
coordinates as variables. The interest is confined to the
odd vibration only which couples the electronic states
H,s> and H,‘>. Treating the normal coordinates for odd
vibration {(, as a parameter in the static approximatlon/.

fho eigenvalues can be shown to be p

L = a‘qaz + IJZ + AZQ‘2 ’ (2.2.5)
‘f’u> (2.2.6)

with
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As noted by Upik and Pryce, the lower level will have two
minima, symmetrically disposed abo it N 0, if the

condition
2
a‘ Ua <11T ) (Ze2e71)

where the reduced mass is absorbed in the definition of Q‘,
is fulfilled. Then Q. has the value at the minima

2 2
m:m)z . (_:2_ - _;:7) . (2.2.8)
a

Thus, it is clear from equation (<2.2.8) that within the
harmonic approximation the transformation from undistorted to

2
distorted configuration will take place at w = + .

Now let us analyse the vibrational problem carefully.

\ :
The yroblem is to diagoxi‘}u the Hamiltonian (<.2.2).

It is expedient to recast the Hamiltonian (<.<2.3) so
that its relationship with the manifold of symmetrical state
H{'> ( ground state ) and antisymmetrical state l"@mxcit.ed
state ) is clear. The Hamiltonian described in terms of the
manifold of elactronic states H/.> and H/a>can be written as

ey B CRL ) Bl

| 2 2 2,
o R IR W ol

‘}‘> A“<~+'1 Q ¢ .\+'> A“<\))a\ W o+ (2.2.9)

+
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The Hamiltonian ( 2.2.9 ) brings out physically the role
played by symmetrical and antisymmetrical vibrations and in
turn thefe are like the projection operators acting on the

Hilbert space.

For the triatomic unit under consideratim the
vibrational modes of interest are the symmetrical vibration
( By ) and antisymmetrical vibration ("‘o ) mode. The
electron vibration coupling terms which survive assd couple»
the symmetrical \ri\ and antisymuetrical state H{a> through
V°Q° where VO = (ﬁv/z 4g), and has odd pariﬁy. It is
given by ( 2.4.6).

Let us now make use of a canonical transformation
in order to remove the electron vibration coupling term
occurring in first order of 4. The transformed Hamiltonian

is given by

Hy = e h et i iH,g - i[@, 3], .,] *eus

(2.2.10)

where S5 is defined by

R (I T R I

The quantity g is so chosen that the linear term in < is
eliminated from the transformed Hamiltonian. This is easily
done by msking use of the relation

17 E'l' 310 Hyw = O t2:2:12)



-3‘-

This implies that

g - -—n—— . (2.2-13)

(Fa B E;)

Thus with Aaa = Asa’ the transformed Hamiltonian upto

Harmonic and diagonal terms is

D RACAI AR

b ri Qi R Nt w§<§ )
2 -
H’ﬁ Ays (,’sl “o Hﬁ Mas <+’n
:; - ‘40‘.110)
{ By = Eg ) \ E - u.

A8 the interest lies in the vibrational problem let us take

the expectation value of the Hamiltouian with respect to
H)' or H">’ Thus 61%, lip -H,> sives

2
2(A_ )
Y1 92,220 L 1 |2 3 _ 2
Hyib =By v m (P Qg) v &P e {'o (_E_{‘;‘T}"‘o
a '8
(2e2.15)

Thus it is obvious that the frequency of the odd vibration is
modified as

2
; ZA
"3(.::) - (g; - —as > " (262 416)
b)

(E. v E.
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If the average is taken with respect to the state Ff€> §
it is seen that the effective frequency relation will have

a plus sign in place of ‘minus sign in (2.%.)() .

The analysis given above shows that if the system
is in the ground state having symmetrical elsectronic state
(B =B/ )%y 0, the effective frequency of the odd
vibration decreases ( c¢f (<2.2.16) /. OUn the otherhand, when
it is in the excited state E‘, the frequency will be pushed
up. This is a consequence of the electron-vibration coupling

incorporated in the treatment.

The electronic ground state is indeed totally
symmetrical r+;7 + Let us now examine the effective
frequency

. A°
wi(off) - (u‘: - -’ﬁ-,i) i 207
A2

The condition wi <i -T’f makes the effective frequency
imaginary which implies that instability develops in the
system. It has been pointed out before that this leads to
the distortion of the system in which the central atom moves
in one direction and the two extreme atoms in the opposite
direction. It has been already demonstrated that for the
Ti-0-Ti the condition wﬁ <LA34/ ,J, is obtained and one

expects the instability.

We shall now consider the electron-vibration coupling
in the octahedral unit ML6 where M is the metal ion ana
L stands for the ligand ion.
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oc ral it :

It is expedient to consider the problem with
the help of a specific example. The most appropriate
unit is the octahedral cluster TiO; with the Ti ion at
the center and each oxygen icn at the corners. The

various electronic configurations of the complex (T106)8-

have been discussed by luloon82

following the molecular

orbital apyroach. However, he has not considered the
electron-vibration coupling which seems to us to be of

central importance in the present problem. To understand

this, a discussion of the one electron molecular orbitals

and many electron states for the unit along with the vibrational
modes will be essential. The definitions and notations used
here are the same as those ziven by Van \llec:k,‘9 apik and

6o and Pryce, Sinha and Tanabo75 in a difierent context.

Pryce
The two ligand ions ( e.g. 0°") on the + x axis are
respectively numbered 1 and 4, the two on the + y axis 2 and
5 and the two on the + Laxis 3 and 6. If we started from
the ionic picture i.e. 'l'i."0 and 02' then the total number
of elsctrons to be accounted for .éﬁ as follows:

18(T4%*) + 6 x 10(0%”) = 78. Of these, 18 ( in 182

2s° 2p6 352 3p6 ) ean be regarded with sufficient accuracy
as completely located on u“’ centre and 6 x 4 = 24 are
located on oxygens ( in 132, é }*%  The remaining

#%# The hybridiszation of 2s and Zp orbitals of the ligand ion
will give two orbitals, which are designated as 9+ and O-
where, the former points towards the metal ion and the
latter in the diagonally opposite direction.
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electrons ( 36 ) would occupy orbitals which can ap roximately
be regarded as built up from the combination of 2s, 2p

orbitals on oxygen and 3d, 4s and 4p atomic orbitals on Tih*.

We shall refer to the appropriate hybrids ( sp )
of 28 and 2p orbitals on 0" which have end on overlap with
the metal ions as (C+ orbitals and the remaining 2p orbitals
as = orbitals. Here g and Jr respeciively refer to
those orbitals which have even and odd symmetry under rotation
by 180° about the axis joining the metal and ligand ions.
It should be noted that the bonding molecular orbitals involving
the o orbitals of the ligand are expected to be of lower
energy than those involving the = orbitals because the
orbital function overlaps more oun to the Ti and makes use of

its attractive field than the = orbitals.

Then in the increasing order of energy the molecular

orbitals are given as

b b b b

b
.18’ ‘1“: '8’ tZ"

n n
bur bauwr Y

a a a 'a
g’ g Y1wr Yn

a

Here the superscripts, b, n and a refer to bonding,
non-bonding and antibonding orbitals respectively; a;, e
and t are the group theoretical notations of the orbitals
( see Griffiths®’ ),
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In the absence of electron-vibration interactions
and for the regular octahedron, the ground electronic state

has the configuration,

1 b2 b4 b 6.b 6 ,b6.n 6 6
*P‘ ( A,;i>;>(a1g) (eg) (g, ) (v 07 (tg ) (t5,) cz" "

\2.3.’/

This accounts for all the electrons and the states
upto bonding and non-bonding orbitals are completely filled.
Let us now cunsider the excited states in which a single
electron is transferred from one of the bonding or non-bonding
{ predominantly ligand orbitals ) L orbitals to one of the
antibonding orbitals. Group theoretical.y various symmetry

states are possible ;83

)6 1

1y A2u L 1Fu'

1 1,
or 1, or r2‘> (2.3.2)

’...(z,u i (Ta, tha)”(e3)s

'...(c?u)6;(1u,‘i>.; (3,0%(e2); "1, or ’12;;> (2.3.3)
b,

with a similar expression for transition from (t.{u)

likewise we will have

n ., 1 1

1 1 ) )
T,, ©°F 1‘20 (2.3 ha)

!ooo\tzu) Y A“) %)\‘2‘1 5(..)’ ‘T1“ or 1r£“> R (dosol)b)
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ke now consider the variocus vibrational modes for the
octahedral unit MO,. There are fifteen normal coordinates
of wibration which belong to the following types of

representations:

T T. and Tzuo

1
g’ 1’ i’ g
From symmetry considerations alone we can see that the
various excited electronic states can couple with the ground
state \\h; 1A2;> via the vibrational perturbation having

aprropriate symmetry.

The Hamiltonian involving electron-vibration interaction
for the yresent problem is similar to (2.2.M,. The general

form can be written as

i = ; H(ﬁx» . 1<‘{“(r1‘)]
+ 8 ; \Piaoh“uiai
’;MJ»*'HK,:})‘(“> i i <f' ” ‘fk

\303-5)

where fl refers to the irreducible representation of the
octahedral group. Thus “f1 r: %> denotes the obh —
function belonging to the rl irreducible rejpresentation.

Q o likewise represents a similar vibrational mode
My
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i

and V! ) = lv— . (2.3.7)
M hb‘f{

It is clear from (2.3.7) that only those matrix elements will
survive for which the corresponding products representation

ri x rk x ra will contain the identity representation
ri on decomposition. In the present problem we are not
interested in a general situstion of (2.34). Our interest is
to see as to now this ground electronic state r*k( 1A1g;>
couples with the excited states via \1.3.6). Furthermore only
low lying excited electronic states will have any significant
vibronic dnteraction., The low lying electronic state of
symmetry T1u is of particular interest in the present problem.
Juch states, denoted by lf11}r1nz> , will couple with the
ground configuration H,,

g
synmetry T1u' Of these, the mode in which the positive ion

(1A“€>thrcugh the vibrational modes of

moves against two of the ligand ions in opposite directions
givesrise to the dipole moment. It is referred to as W1o mode

with one of the ('s called as |, ( See Koide and Prycoehl. This

Q
10
describes the rattling of the positive ion in the octahedron of

negative ions. The imjortance of coupling via this mode has

34 We shall therefore confine our

also been stressed by Orgel.
attention to the vibronic coupling of states {‘P8‘1A18 and
(\fu(1r1ut>via the appropriate vibrational modes T1u' At this

stage, we must consider the explicit forms of the normal
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coordinates. SlnceR there are two representations of type Tlu
their interactions have to be considered. This evaluation
involves certain assumptions about the forces between atoms.
such calculations based on valence force and central force
models have been carried ocut by Koide and Prycd?k We shall

use the final results.

M
The ratio of the masses of oxygen and Ti i.e. ﬁ§ = 3,
i

Thus the normal coordinates of present interest are
N Rt
Jr,, 0 =VB Y, Yg - 21, )

x Y -
6 (1, - AR X, = 2X, )

The corresgonding derivative of the potential function
( ef 2.3.7 ) can be easily deduced for an electrostatic
interaction between the ligand point ions and an electron of
the metal lon at distance r,, spart, namely q/'roi where q = Ze.

The method of Van Vleck is adopted here. e get

b - a e b 3-2 2
Vu’ - ‘b—%ug‘ ¥[—dy£ 4 RS { .k 5 zkrk )

° °
510, 33 .0 .2, 2_ L
+ 727{'& ?"k'% 3, Tir) 'krk}' .iZL
(2.3.8)

where Rb is the distance between the metal and ligand ion in

the undistorted octahedron gum



-39-

a -qq-h%

b = q 20 175 (2.3.9)

— S S S Wt Vo Qe Ve W

c = q139\"1%

The summation is over the k electrons of the central ion.
The other components namely, vuy and vux can be obtailied
by a ¢ycliic permutation of ("3'”" Although, the quantities
Vuz etc. have been deduced on an electrostatic model, the
general form is given in (<.3.p) will remain the same on other
models alsc, apart from t he change in the definitions of the
coefficients a, b, and ¢ evc. The polynomials involving
electronic coordinates etc. clearly indicate that the vibroanic
perturbations will mix excited electrozic states of Tlu symmetry
with the ground state. Thus, within the wanifobkd of ground
electronic state l,*é> and excited statves bif:> , the

Hamiltonian (2.3.5) can be written as :
e I G ) 5
. Z L ¥ -
toE Z(}(T“) ", *(r‘,‘u)>

@ ) P
+ zlhfs>A"ua ‘Tm'é'u’ Q(r“ : + CeC.  (R43.10)
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The transformation anslogous to (2.2.}l) can be used

now, where ,

3(oct) = 4 z;u“(l+:><h\ ““l“‘H'é <‘1’:l -4‘,‘u> (243.11)

with A
- g.u ‘
G - E——‘-.E ; A a - A a L (2.3."-}

Thus, the transformed vibrational Hamiltonian after towccna/
the expectation value over the ground electronic state, is

expressed as,

1 < 2
Hvib(gg) -k 7 ; (’1,u * ¥ Y4,a J
o« ITAT, )

:
) 2A
I2 - “ - Y
“(Ta ) * iw;'u. 'E"TT}( — ‘2'1‘“ ) (2.3.13)
1u u g Ty

Thus, we see that for the elementary octahedron also the

+
'\,'-o

vibronic interaction can render the effective frequency.

2
- 24
w? - (¥ - —geu® (203.14)
eff o+ (B, - g‘ )

0a®
2AT  a
imaginary ( i.e. w% { -ﬁ‘%g—r) : This instability
1u u 8
- will lead to a distortion of the system in which the metal

iong moves in either of the x, y, z directions with the
movement of the two ap:ropriate ligands in the opposite
direction. This will give a permanent dipole moment. This
seems to be possible in any of the three directions for the
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elementary octahedron., However, as has been discussed
earlier, the enviroument of oxygen ions in BaTiO3 is such

that only one of the directions ( say z ) will be preferred.

% far we have discussed the vibronic problem for the
elementary units, namely, Ti-0-Ti and Tiob. In the next
section we consider a lattice of such units and discuss the
vibrational problem of the lattice imncluding anharmonic terms

as well as vibronic interactions in the elementary units.

<ob COLLECTIVE OSCILLATIONS

In the previous sections, we have analysed the
vibratioaal problem of elementary units ( tri-ionic or
octahedral )} by taking account of the vibroniec coujpling
caused by some specific modes. This gav: rise to instability
of the modes i1 question. Let us now consider an assembly
of such units forming a lattice. In BaTiOB, the ’1‘106
octahedra are joined by their corners. This forms a three
dimensional network amd the large holes are occupied. by the
Ba** ions. Of course, in Ba'r:lO3 Ee Baz’ ions do play
some role in view of the large size and overlap with oxygen
ions, Perhaps in WOB type ferroelectrics ( or from structural
considerations in 3003 ) one has to c.nsider the lattice of
octahedra alone. We confine our attention to the vibrational
problem of the lattice made up of these units. For N such
units and including anharmonic terms the lattice Hamiltonian
is
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where the froquoncy, Wi) refers to the 1%P unit and its ),th

mode. Pl> B ‘l} and ql) are the normal coordinates of the
l"'h unit and its ‘gp mode. In the above, we have included
the translational mode of the individual units also in order
that the acoustical mode for the whole crystal is taken
properly into account. For present purposes, we shall be
interested in a etailed study of the modes which involve the
vibronic instability ( ef. equation (2.3.1%4)) and their
interactions with the acoustic mode contained in the third and

fourth order ausharmonic terms.

Let us introduce the transformation to lattice wave

normal coordinates, namely

3 ik

Gy T T g e ‘s

)

i

R )
Z:: o ©tC (2.4.2)
0a

e S N W’ W S W W S o’ St Wt
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where an and @ o are lattice modes corresjpounding to
the optical and acoustic modes of vibrations respectively;
are the propggation vectors and “1 is the

go’ (ga
1®® unit. The Hamiltonian (2.4.1) is

vector spanning the

transfermed to

=T i (atn *Ya o)

' oI i 9ot ¢ :
+ « “ t 4w B ( I r -'._K_)
1 n as g8 g8 0";9' AT. LA
!‘s,d—:" gﬂ
1 al
* ™ O Uy Qw W © ' " !
] !. f" 0_"" o:.nl 9:3,0:31) gn'f.vn
A(‘i + ‘%' 00,_:" * o';:" - K ) (2e4.3)

W = W
where X is a reciprocal lattice vector and W oo hl)*uh

-1 o%
Jd3
by = 2;: 8,1m® =

oo+ ghoeBy )

®08, ca PR =% %, len ®

1( 'Rh’ .Rh
. gt Mhtean
¢ =7 _C1,1+n' 1sh" len™

TR

”
as, Gi cl"fl"'

B 7R - B (2

The suffix s 1is used as a general symbol for optical (o)

or acoustical (a) modes. It is couvenient at this stage to
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g0 over to the second quantigation representation by using

the following transformations

RN S AR

J
s vVete - j
3 (2e4.5)
4 w )
8 8 \
| 4 s = i -—5—!! §;+ - b ) i
We get
4w
Bos §7 7R (oFeg e uDE )
1 (5)3/2 2t ot 8+,  ,.8'
R - (b3+b 20 (03, 3't)
™ T it
LSRR
'ﬂ & ' "
(bgn + b-c_-n)A( °:.+ 9_"1 g 0:8" - -l.(. )
'h 2 C " n" n'.’ " .
Y TR et
R
ny 1 L4 n
(g, +b®_ ¢, ) (657, +02g., IAlg* g1 sgr* gy " K

(2.4.0)

In proceeding further, we shall be guided by some physical
conditions ( selection rules ) and ap;roximations. First

we consider those cases where the reciprocal lattice vector
irvolved in the momentum conservation relations (ZS functions)
are zero ( K = O ). Thus it should be noted that only those

operator products will have non-zero finite averages which
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which represent processes with zero total momentum ( See
Lnd.raon)3.° In view of the selection rules derived by
85

Szigeti™” the third order terms with coefficients such as

B quc will not survive. Also, for a system

oaa’ Bomr ’
having center of symmetry, as in the present case, (bg*bg*)
i.e. 43 canuot enter in odd powers (1). This implies that

the coefficients Bogg‘ skould be zero.

Under these conditions the Hamiltonian (2.4.6) reduces

to
(o] ) )
Hy =H +H +H) « H +H, +H (2.be7)
where
iy =) :*ﬁw‘{( v3* b+ & ) (244 .8)
Hy = ; h wg.( bﬁ__’ bfg v 5 ) (2ebed)
Hy =t wg { bg* bg ¢ %) (244.10)
B
1 h.3/2 Zoo 04,0, .0+ ., 0 (1 a4_ 4+ |
Hy =% () s (b +b ) (BT +b ) (B +07 ") (2ebe11)

O af
“’o “c

¢
1h,2 9 (1%*4b°) (b%+b°*) (b2+b2" ) (b3 +b2*)
Hy = E@ S ;gl-, (bg"+b3) (bZ+b]") (b2 ) (b2 _+b3")
o

«
(2.4.12)
_1_1’:200 0,104 (0. 10% (10,004 (1,0, 0+
Hy = §{3) }:(4;572 (bg+bg*) (bg+bg ™) (BO+b2") (BJ+02")
o
c
+ —aﬂwg'wo (bgc-b:’)(bg#bg')kbgybg;)(bgr#bgf] (244.13)
&)
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The external field E . has not been introduced so far
in our Hamiltonian. We are for the moment interested in
the lattice dynamical problem without the iufluence of such
a field. For the present our primary interest is to see the
effect of interaction between acoustic modes osl the long
wavelength optical modes. The third order anharmonic terms
(ef. Bquation 2.4.11) can be eliminated, to a large extent,

by using the following canonical transformation
~-i3 is 3
Hpp = ¢ Ho o = Hr""@rrsl s = [Hx;Eir)".lJ
/

where

1 .a a+_,a,(,0+ .0, 0+ .0
8 = T % © (b =bgi (b "+b ) (b +b) , (2eboth)

The relevant commutation relations are

o» 3
Dord] = o fued, 5 = - § W8RG g0 g 0g

O+ .0, .0+, 0
(bg +b°)(b° +b°)

[105] = B e g 00 ' ¢

3/2
' . : 3/2 ‘d; . (nO* ., 0,0+ .0
R X —— Bg & (83751 (63" 4b)
o
(bg *+bg) (B3 +bg) (2.4.15)

The Comovvutator '[H:.S_] is non-disgonal. The commutators of
s will &’!’3]' EH:,SJ and fourth order anharmonic terms give
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terms of the ordorib1/ﬂh’ . These can be safely neglected.

We derive the value of G from the considerntioq/

Hy s+t [B, 8] = o, (2.4.16)

~

which gives

@ = B fg —r2 (2.4417)

a
Wy wo

B = U
whers 00 ©0,a

It may be noted that the canonical transformation
used here is diffirent frowm that of Silverman. Iu his

expression, the coefficient similar to U contains a factor
1

(w82 - (%)%

transformed Hamiltonian reduces to

. “akms use Of (‘-oho15) and ‘dob‘l?) thc

Et wa (b‘*b‘m + E:’ﬂ (b°’b mom°(b°*b°+i)

2
B
_1 52 % O+ 0, [,04,, 0, (,.0+ .0, (,0+ .0
7 @) —3— (o ) (63" +b2) (b3 +b3) (b "+b7)
WS OW
o ©

§ ©,1°) (5°*+b°) (b2+b2*) (b2 +b2*)
() 2: w%‘ (bg+bg) (bg"+by) (Bged ) (b2 +bg )

a

+ ( ) E ;?-ﬂ-:-_(b"’ +b )(b°‘+b°)(b°’+b°fl(b° ob°’

c
2 o+ .0 o+ , 0 04,0, ,, 0+ .0
N i (5" ewg) (674G (BGBG) (b5 b) . (20k18)
o
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The terms involving Bio and coo do not involve any summation
and are of ordor%I/N. Their signs are opposite and since
c ° is expected to be positive they will largely cancel

each other.

We shall thus consider the effect of the acoustic
and optical modes with ( g # 0 ) on the long wavelength
polar mode Wg by taking thermal averages as explained below.

We write the diagonal part of the Hamiltonian explicitly

Z'B wa. (b.* : Z;‘S w«r (bg: b + 8
. %Ei"oéﬂgz* = { “qa,0 <"<r>’ ; o (i X} ]

(2.4.19)

where we have ihtroduced the variavle x’ and ‘;oot.c. for

convenience. We shall, however, restrict the coupling

with the acoustical mode whose thermal average is given

~ 2
by ut-) - kBT/W:_- . Thus the effective frequency is

2
A kT
2 2 _ Ag, . B
Yerr = (”u R eza g, | > “a,0 "
"r /

(2.4.20)

where Jgu -4 (Eu-E‘) and W, 1is the frequency of the
optical mode of one unit ( i.e.(%2.2.2 )). Z is the number
of nearest units coupled to unit at 1. The term may have

its origin in the electrostatic interaction between dipoles.



-kg-

For a long range interaction it may have the form -inch
where L 1is the local Lorentz field parameter for ¢ = 0 .,
Foracubic system, L = 4 n/3 for transverse mode and L = - 8x/3
for longitudinal mode. This will give a negative contribution

for the trans¥erse mode.

Our ex;ression (2.4.20) diflers from a corresponding
relation 005 Silvox'mn51 in many wayl." First \hﬁ is positive.
The instability arises because of the terms -A:“ ’Jgu[
owing to vibronic interaction. This type of terms are discussed
for the first time here. The dipole-dipole interactiocn may
also give negative contribution. In the evenl wi is

outweighed by these negative terms, the stabilization comes

B L |
from 'y bo'i,o \_‘g:)z . The expression ( 2.4.20)
alsc gives the same r.u;arat.ure dependence as obtained by

:‘:i:L.lvex'mns7 although the factors are different,

2
u.“.u('r-'rc)

2,5 DISPERSION OF THE SOFT MOUE

In this section, we study the wave vector dependence
of the soft optical mode. This is carried out followins a
simplified picture. We have seen that only fourth order
anharmonic terms are significant. Thus we consider the two
modes, the soft optical and the gscoustic modes and their
interactions. The Hamiltonian 13/
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1 " | -
¥ ., @ -2 1O -6

which can be written as

2 .2 .2 2+ 1ol 2 2
H = (P +W° Q° ) P W o () (2,5.2)
%2 gao;a"lr.”(qa .fri-oqgl 5
P ¢
where now
Az
2 _ 2 - 2
Worrleg) = (“u ‘5“"“| ‘u(’ Bpied +§ Y Cm,en (+ g"->>

‘2.5.3)

If we confine our attention to the interaction between the

nearest neighbours only, then after taking the thermal average

<Q2!;> , We get

2
wiﬁ.(@) = wi - ‘A-&a-‘:r 2L E: ( cos(sy R)+ cos(g) &)
L)
. 2 k BT
ocoo(ﬁﬂ))*nz C“,mw p (2.5.4)
6,50 -

where R 4is the distance between two octshedra and U denotes
the coefficient for the dipole-dipole interaction. For

transverse oscillation it will be negative. The summation
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over .o in the last term of (<.5.4) is rather
complicated for a general t ree dimensional case. We shall
therefore write this result for a one dimensional chain of

elementsry octahedra.

Now w“. = L a smz ‘o’;‘ ) with ¢ as the force constant

R = Za, a being the distance between a metal ion and a

ligand ion, Further, we get

. \ Kol At n® kT
f{}:('m"i% - 5_% Z Zain(o—;ﬂ»_g_z .;Jx
0,58 L - e @ 3in“(Ta J

2
cos (G—B al
k.T
=40 Y B cos® (g al (2.5.5)
Jeo

Finally, putting 2 U = = |v| the one dimensional model

gives
A2
2 - Wl -~ u “
Wopr Z_.,H“ JL Y E cos” (55 al
gu o
’ Z BT cos® kg-;aj (245.6/
where [ = bCkB/G

The temperature dependence of the fregquency can now

be written for O ™ 0 as
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W (0) = B(T=T) 3
)
where ) (2.5.7)
2 i
T -(Ty-k“om-wz)/s )
¢ 8»“‘ b

The variation of iirf on g5 at any particular
temperature is given by ( 2.5.6)., This is given in Fig.1,
for arbitrary values of the parameters involved. We get the
same sort of dependence as obtained by Silverman although
our functions are different from his. As in his case, the

agreement# with the results of meloy"5 is reasonably good.
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Certain magnetically coupled crystalline solids
carry permanent magnetic moment. There is growing interest
in such systems, because these are of considerable importance
owing te their physical properties. The ordered magnetic

88,89 considerations

behaviour mnaﬁu from electrodynamic
tied up with quantum statistics of like quantum particles

( electrons in this case ). Various theoretical models deal
with different aspects ofmagnetic behsxviour. Inspite of

our considerable progress in the understanding of the

importance of exchange and correlation phenomena in magnetically
ordered systems ( spin-systems), there is need to explore a

few unsolved aspects, namely, the interaction of longitudinal

optical phonon with magnons via exchange effects.,

The basic concept of the quantum mecnanical direct
exchange interaction between two non-singlet like atoms was
proposed by Heiunborgw in 1928. This theory springs from
the Heitler-London's celebrated theory of chemical bond and
it explains the ferromagnetism very well., This formed the
basis of suusequent theoretical studies on ferri-, ferro- and
antiferromagnetism. This model supposes a certain number of
unpaired electrons present in paramagnetic atoms of the erystal.
The electron spins are assumed to be localized at each
lattice site. This theory clearly brings out how the ordinary
Coulomb interaction among electrons leads to strong coupling

between the electron spins showing exchange effect if proper
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cognigance of the exclusion principle is taken. However,
this theory contains two serious defects. Firstly, the
simple Heitler-London description has been utilized in

the formulation of the theory which dces not manifest the
periodicity of the lattice. Secondly, he arbitrarily

assumed a Gaussian distribution of states of a given magnetic

moment.

These are two approaches for the study of exchange

mechanism. There are 1) determinantal method due to -‘Slat'.ex‘71

92,93

and 2) spin operator method due to Dirac. Following

Dirac, the spin dependent energy for interacting electron

is given ‘.,91.-96
Hyy ™= }"‘ Jyj 3484 ’_ (3.1)
L 94

where ‘_.51 stands for the spin operator for the electron in
1*® orbital. Further, let ¥, and Y Dbe the localized

atom ¢ orbitals satisfying the following equations '

" 2 ”
S S : - -
(‘%i 7;:) \I/.(i) Ea‘l"au)

)
)
)
] {3.2)
)
N ]
F - )
2,.1_ - Lo .
(‘ ”Jb) foldl . By Ypld) ,)
L2 L 2 2 .3
where ‘4  or 'g and = 48 o - Ze_ stand for
Zm m Yin Y.jl’.v ‘

the kinetic energy and potential energy operators for the
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electrons i or j and m and Ze refer to mass of the electron
and charge of the ion-core respectively. Also Yia ) Yib
denote the o¥ distance of the 1"h or Jt'h electron from the
ions a or b, while Ea and Eb represent the energy
associsted with them. In terms of these functions, the

exchange integral takes the following form

iy <b'-rf§ bn> -2 s, 6(V(b>

N S M B W S S

with . {3.3)
v . - 28 | zé
Y i
ia Jjb
and

%ab ~ <‘l">EJ\/:~fb doy

In the case of orthogonal orbitals, the overlap integral

i.e. S.b vanishes and the exchange integral consists of

only one term which is always positive, being the self energy
*

of the overlap charge e \k (1) %ti). This stabilises

the ferromagnetic state ( the triplet state). On the other-

e
hand, in cass of non-orthogonal orbitals, the sign of J:I. is

governed by the relative magnitude and if the second t.ori
dominates, it gives rise to antiferromagnetic coupling

( stability of the singlet state ). Juch states exist in
most of the insulators and they have total nagnot.i*onent

zero due to the anti-paraliel spin aligument.

Another noteworthy contribution to the magnetic

ordering, namely, the coucept of ferrimagnetism was proposed
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by Néel in 1948. Aecording to him, ferrimagnets, like
antiferromagnets, have sub-lattice with anti-parallel spins
except that they have nonvanishing resultant megnetic moment
which may be attributed to one or more of the following
causes: i) unequal spins, 1i) unequal g factors, 1iii) unequal
number of atoms in the different sublattices. These
substances occur in various forms and coustitute an important
class of magnetic materials. The present study is confined
to antiferro- and ferrimagnetic insulators. Among the
notable ferrimagnets, the systeams A(32)0b97'98 in which A
is a divalent metal ion such as an’, Coz’, Niz’, Fcz’ , ete
and B is a trivalent metal ion ( i.e. Fe°* 5 ot )
constitutes an important class. These compounds exist in
spinel structure with A and B ions surrounded by four or six
oxygzens in tetrahedral or octahedral positions respectively.
Further the unit cell which contains eight formula unit,

has cubic symmetry (li‘<:l3-—0;’l 9’ In the case of iuverse
splinel, the A site ions and half of the B site ions exchange
positions and the resulting structure is represented by
B(AB)Oh. On the otherhand, we ahallatgo int erested in the
rutile type antiferromagnets. The general formula for such
system is AB, where A stands for the magnetic ion (eation)
and B for anion. In such system magnetic ions form a body
centred tetragonal lattice. Jpecific examples are Mufk)

FeF,

9 COFQ‘ etc.

These masgnetic systems are endowed with a definite spin
ordering in the ground state at the absolute zero of temperature.

With a slight increase in the temperature, spin systems are
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excited ,ever—the—ground state. inhese low lying spin
excitations govern many physical properties of the magnetic

systems. The quantized unit of spin-excitation is termed

a8 magnon.

Magnons :

A realistic approach to the spin wave was formulated
by Blachmo in 1932, He formulated the spii wave as a
sin—usoidal disturbance in an ordered spin system with a
single spin reversal. On account of the exchange interaction
the spin-excitation is not localized and its consequent motion
is termed as spin wave. He showed that ferromagnets have this
cha racter. However, he neglected the interaction between the

spin waves.

A alternative formulation of the spin wave was proposed

o1 They essestielly rederived

Bloch's result and spin wave interaction was also included

by Holstein and Frimakoff.

in their treatment. This formulation of spin wave has received
a wide attenmtion because it represents a simple picture of
spin wave. However, it has been eriticized for its poor
convergence and more rigorous treatments have followed this

102 Mor1103 108 The

namely /t.hoso due to Dyson, and Oguchi.
Holstein and Primakoff (HP) treatment of magnons involves a
series of transformations on the spin-Hamiltonian to recast
it into a harmonic oseillator- Hamiltonian which, at once,
provides the dispersion relation for magnons. Also the

magnetization were expressed taobt.h“: expansion of the creation
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and annihilation opera tors of magnons,And an expansion of
the Hamiltonian in terms of these operators was formulated.
The quadratic term in these operators of the Hamiltonian
gave the diagonal part while those involving three or more

operators exhibit transition between magnon states.

Let us consider a body centered cubic ferromagnet

having for its J.t'h

sit.ol 3 the spin operator and J the
magnitude of the spin. MNow, it is convenient to consider

the following combination of the components of the spin

operators:
z x y )
) (3e4)
: )

The eigenstate of the operators ny and SI is given by

n R n seee I - ‘305;
't 1 N ‘fﬁl

with corresponding eigenvalues ny and my res;*:octivély.
The latter possess the values S5, 3-1, .... -3 while former
takes only the il.tegral values O, 1 ... 25, which is the
measure of the difference between the Z component of the

spin at the 1B

site and its maximum value. This is termed
as the spin deviation. The operators defined above are

endowéd with the following properties
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n
-1 -
5 Yo, = VRS LTS 7" ) Fi1ag

_ (3.6)
ST - Y25 Y (1- o)
1 ¥n, Bl 23 +°1+1
A
o | ‘fhl = | ﬁPnl,
with the commutation relations
z hd h A

(50 %] = £ by 3’
)
J (3.7)
}
)}

[si: sa] - 2s® S1a)
where gln is the K¥onecker S.M.

Generally the study involving spin wave interactions
a—l& neatly described in terms of second quantization
formulation or the number operator formalism. Thus we
visualize the quasi-particles associated with the spin waves
denoted by n+ and a which represent the creation and
annihilation operators for such quasi-particies. These

operavors are given by

a{ +nl = (nl + 1)i +“1»1

{3.8)

e e N W™ Vo W W

3
.l *nl - (nl) }‘nl-'

With the aid of (3.6) and (3.8) we get
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(3.9)

e N e S W W W W W

Use of (3.7) yields the commutation relationg
+
El"'J = S - {3.10)

The exchange Hamiltonian for a ferromagnet given by

(3.1) takes the form in terms of these operators as

v ;i * + - + - +
Hex = C + z Jij S (‘1 a; * aja; - azay aja; J
)

+ higher order terms, with ar ‘1<25

(3.11)

Owing to strong exchange forces the spin deviation will
not be localized at a particular site Ri , but will have wave
like motion. It was shown by Bloch and Uyson that in the
case of only one spin wave, this turns out to be an exast
eigenstate of the Hamiltonian. However, in case there are
more than one spin wgve in the lattice, their interactions
make the Hamiltonian non-diagonal. Consequently, the
Hamiltonian consists of two parts, one quadrﬂtic 4in quasi -

particle operators and the other contains higher order terms.
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Let us introduce the fourier transforms to the

reciprocal space defined by

i k.8,

‘1'?‘&"2;_‘ a,

(3.12)

N e Nt St W Vo W Wt

R D S

where N is the number of sites in the crystal and k , the
wave-vector of the quasi-particle called magnon., The use

of periodic boundary conditicn implies

ik.R .
: e 1« NA(K) (3.13)
where
Akl = 0 for k #£0
= 1 for k =0

The ianverse transformati.ns are given by

1 -ik.R)
a N E B ay
+ - 1 15'-}-‘-], "
‘E ﬁ E e ‘1

The operators 15 and a; satisfy the comamutation relation

[a& ’ I;.IJ - g&. (3.15)

(3.14)

e M Mo W W W
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other commutators being zero. This explains that magnons
are bosons. In terms of these operators, the diagonal

part of the Hamiltonian is given by
Hy = 5 ‘hwE ( a; a + ) (3.16)

whoro’hwk represents the energy of the magnon with wave

vector k and takes different expression for different

105,106

systems. For a cubic ferromagnet it has the form

L Ry

Ze ~ (3.7)
h

'bwk - 2JSZ(1-T£)

\
J Ty
Whte R A vk naonodt nighbone Veckor -

108,109

Also for antiferromgnot1o7 or ferrimagnet it has

the form (o~ Ww Jovwa, Lo e ip«\éh& Q)ervxfw\m{(vn)

t"k = 2J3ka (22-)7t { antiferromagnet ) (3.18)
and

B = kg K (3.19a)
and

T, =20y lsA'SB’ Z + kgdck” a* (3.19b)
where

4d, nS,S
kgS; = ']'SA"ABH-
A~ |
for the ferrimagnetic magnon modes.

In these expressionsJ is a measure of exchange inter-
action. 2 dcnot.o;:;xaarut neighbours. 8§, SA’ SB measure spin
quantum numberd. In analogy with lattice system, the upper
frequeney branch i.e. (3.19b) is called optical magnon mode.






A large number of crystals is kuown to possess long
range ordering of spin-configuration. Yhese may be ferri-,
ferro=- or antiferromagnetically coupled. Also certain
crystals sustain the long-range ordering of the electric
dipole moment configurati n of the elementary cell. These
may be ferro- or antiferrcelectric. ‘urther, the possibility

110-115 of magnetic and electrical ordering

of' the coexistence
in erystals seem plausible while retaining the separate
existence of magnetic and dielectric ordering. It is well
known that magnetic ordering is determined by the exchange
interaction, while electric ordering owes to classical
electrostatic interaction of dipoles of the elementary units,
‘hese interactions cause the displacement of ions as a whole
as well as the displacements of external (| valence / electrons

relative to nuclei,

In such systems the paramegnetic cations, which
contain localized magnetic electrons are distributed in
speclal crystallographic positions in the matrix of diamagnetic
anions, which in turn are located on special lattice points.
At absolute zero of temperature these atoms lie at their
equilibrium positions coupled by elastic forces. In addition
to this arrangement, the magnetic ions are ordered in a

particular fashion owing to diroctgo 116,117 or

116122

, indirect

super-exchange forces.

Obviously, at a finite temperature collective modes

ouchps lattice waves and s in waves exist in these systems.
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The corresponding quasi-particles or elementary excitations
are known as phonons ( both acoustic and optical ) and magnons
( also acoustic and optical). 7Thus iu this low temperature

region, we can speak of a magnetic cryaba189

harbouring a
c¢loud of phonons and magnons. In the harmonic approximstion,
both of these particles are non-interacting. However, there
are processes which do indeed bring about phonon-phonon,

magnon-magonon and phonon-magnon interactions.

#%hen the crystal is not subjected to any external
perturbation the totality of quasi particles find themselves
in a state of equilibrium distribution which can be
characterized by one temperature. It is possible to disturb
this situation either by exciting the spin system or the
lattice system. In the event, phonon-phonon and maguon-
magnon interactions are faster than phonon-magnon inter-
actions, the above external perturbation would lead to
-different equilibrium:distributions of the phonons and
magnon systems. One can then characterize them by two
different temperatures namely, the lattice teuperature Tl
and the spin temperature T'. If these temperatures differ-
then energy will flow from one system to another. To explain
this phenomenon, an understanding of ths various mechanisms
of phonon-magnon interaction is essential. These interactions
sovern thermodynamic and transport properties of the magnetic
crystals. Recently Sinha and Upachyaya'°2*'Y7 joshi and

Sinha,109 in a series of papers, have formulated a microscopic
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mechan.sm of phono:n-magnon interacticns in ferro-, ferri-
and antiferroma netic erystals. However, these studies
were confined to interaction of magnons ( acoustic or
optical ) with the acoustic phonons and th: relaxation times
and thermal conductivities of‘tow systems were considered
in detail in the low temperature rogion.'zs

At somewhat higher temperatures, say above 10°K
optical lattice modes will also be excited and owing to
the ioanic nature of the system one would expzect a .-easonably
strong electron-optical phonon interaction#s In the
present study, a microscopic formulation of the mechanism
of optical phono:-magnon interactions in antiferro- and
ferri-magnetic ionic dielectric is proposed. Also a study
of the relaxation times associazted with the flow of energy

from the spin systems to lattice or vice-versa is considered.

L.z Formulation of Interaction Hamiltonian'<®

Let us consider a magnetic erystal in which the
paramagnetic cations are located on two otherwise equivalent
sublattices which interpenetrate to form body-centered cubic
lattice. Bach paramagnetic cation, which carries a few
localized unpaired electrons, i in turn surrounded by a given
number of ligand ions ( anions ) in fixed geometrical
configuration e.g. tetrashedral or cctahedral or other
arrangement as prescribed by the cerystal structure of the

system. Thus the nearest heighboury of each paramagnetic
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ion is a diamagnetic ligand anion. However, the nearest
paramagnetic ion lies on the other magnetic subxattice.
The Hamiltonian for the total system is written as

H = uL + H. + Hol + H12 + Rz + Han ) (4e2.¢)

where BL is the lattice Hamiltonisn and in the second
+
)

quantization representation involving phonon creation (bq
is

and annihilation (bq ) operators can be written as
ig

- —K - 3,
H z v%(b&bg.*a)

R s + ,
Z:‘Evga(bg.b&#n)O "‘ﬁ: w (b b +3)

% 9% % .

‘l}o“.Z)

where wq is the mode branch frequency and a the
s
corresponding propagation vector. In equation (4.<4.2) the

acoustic and optical modes terms have been written separately;
hence the suffixes a ( for acoustic / and o ( for optical).
H. is the one electron Hamiltonian inclusive of the kinetic
energy and the potential energy operators for the situation

when the atoms are in their undisplaced positions, namely
J

2
P
Hy = Z; 2%.. . ;”‘h -a; (he2.3)
;0

where 8: denotes the lattice equilibrium position and iy is

th

the coordinate of the 1 electron.
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For the study of the behaviour of magnetic electrons
which are localized at their respective iong cores, the

unperturbed eigenfunctions ;’Jl are the solutions of
x .0 o
[5—.- + U (xr - & ) + ¥V ] ¢l¢—' By ¢ltf (Lhe2els)

where V° is the static crystal field of other atoms. is

Hol
the electron lattice Hamiltonian. In the present work, we
are interested in the coupling with optical phonons only.
Interaction processes involving acoustic phonons have been

already considered by various uorkers.w5’107'109

Furthermore, the attention is cunfined to magnetic
electrons-optical phonon interactions. For this purpose,
the relevant electrorphonon coupling term involving

longitudinal optical mode and an electron of atom at R;

can be written following Sinha and Sinha'?? as well as
Krishnamurthy and Sinba.‘z" These are electron lattice

interaction potential due to erystal field oscillations and
can be roiriztm in a convenient form which invclves the
relative displacements Xﬁh between the ion n and any

other 1 or m as follows

V e z;_‘ (%%h‘)ﬁgh (4e2.5)
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where

with

€o

Further

<—bﬁ"‘> o - [q.z"’l + i':";’% mifu"’

2,° Ry

where Rh is the distance from metal ion at n to ancther

ion in question. 3, r stand for the coordinates of the

(he2.6)

(be2.7)

electron at n. jAlso, the plus sign arises due to inter-

action with the cation and minus for the anion.

Thus with

the help of (4.2.6) and (4.2.7), (L.2.5) can be written as



-69-

Thus the electron optical phonon coupling form of
present intercst will have the form

. ig’&l +
= 4 b ¢‘o
H.lo :qo g, fh\x,y,z,}ih) e (b%o b_go) (he2.9)
with
2% ( sz-rz)
'f(x,y:,Rh ) = z 2 [T * : + --J (4e2.10)
- hen & “n

where n stands for the nearest neighbour.

Following the earlier work on the acoustic phonons
and magnon interaction the effect of l-l«l is taken as
(<)
perturbation on the one electron functions .h._. The perturbed

one electron functions are then given by

i - P * RS . (Le2a11)

where

5 -<?,i¢- ’H"l‘ol ¢“’>

1 - AE]}
and ¢ is the excluv2d orbital connected by the
perturbation H.Lo and AEl} is the energy denominator. In
equation (4.2.1) Hy, 1s the two body Hamiltonian which is
responsible for the exchange and Coulomb interaction effects.
H. and Han are the Zeeman and anisotropy energies. In

formulating the effective exchange interaction terms comprising
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direct, indirect or transfer process, we make use of one
electron orbitals of the type (4.2.11). These will give us
exchange terms involving ‘thr’ and other involving, in
addition, one or two 2\'_ and one or two phonon operators etc.
Thus with this in mind the Hamiltonian (L.<.1) is rewritten

(Lecde13)

where H; 1is the lattice Hamiltonian given by (4.<.2) and
H = Coust + 2 JAB E 21, * S8
n

> (H»HA)gA/’B ; slu- (H-Hg) &3l z: ssz,

(Le2414)

where JAB is the effective exchange integral between two
neighbouring atoms at sublattice A and B respectively at
absolute zero temperature. &> &y, SIA’ SlB are the
spectroscopic splitting factors and spin quantum numbers at
respective sites. /LB is the Bohr magneton. For Hint’ the

attention is confined to one phonon process and it has the form

Lol o 1q .8
B W0'-1 + . .
Hing = ; Th ‘c(i AT, ) y e {0q, =g, 214 3np
. H A qo - -

(D S E T ey

e,

X Sle_s_.B ("-2.15)
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where fy, represent the matrix element of (4.2.1V)
connecting orbitals sets ¢lf and qg( with a similar
definition for fﬁ-. J:: etc., ah® the affecting exchange
integral betwsen atom lA and my and involve one excited
orbital e.g. qR‘_ . The various terms in the Hamiltonian
discussed so far represent a general situation. For
describing the antiferro-magnetic two sub-lattice system,
it is assumed that 8, " &p and SlA = - 518’ when they are
unequal, the case is for the ferrimagnets. For convenience
in caleculations, it is assumed that the matrix elements of
the type JQI £y /A§1) are some psrazeters which are the
same for all paramagnetic atoms. This is denoted by e
Thus the simplified form of interaction Hamiltonian can'be

written as

o

o
% L Yely :
Tg ¢ & ; E (e . )‘bqo-b-qolélA'éhB
’ q° i -

(Le2.16)

Let us now go over to the spin wave representations by

making use of the following transformations

1 +ik. i

£ _a . [ks Xe™
S1a “1xa * 1SlyA (\Ny z:: ¢ g
K

* -1k . R +
"y - - - ﬂ ==l p
S1a = S1xa " 153y, (N e (Le2.17a)

bp i
e aa,

— e S N S o N W S W S

=i

z
Sia =3y
k,k'



RCGh g
s:s-(H* Z;-"dg.&' %

) “i(k=-k') .8
& 2 = "' m o+
Sy " 3g + iy e dkdt'

(4.2.17b)

S S e o W N W W W W

In terms of these operators, the various terms of the spin

Hamiltonian (4.2.13) becomeg

- & y 4.+
Hm 2 JAB‘SASB) Z .Yk\.E?! + fgdk)

+ -
+ 2,5 Zk: 2(S,dyd, + Sgaja, |

.(H+HA)3A/LB Z ';S'E - (H-HB)quB Zd;% (he2.18)

#ik.
where Yk = % ¥ (be2.19)

- ‘ : ‘4 o ot
Hint ﬁ— g, ¢ ‘L; :ESA% k=g, + DB‘.‘S‘E’SO)“”%)
%
3 4.4+ I
+ (3,35) Mg agdic,q * 'l‘dl“'-qo_)j (4.2.20)

z being the number of nearest paramagnetic neighbours for a
given magnetic ion and 3; is correséonding distance. It is

seen that H. is not diagonal in terms of spin wave operators.

In order to diagonalise this and to write the interaction
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terms in the same representat ion we make use of the following

canonical transformations

3 +
5 ° “5"“’195*”5_'1““%

a, = ?g coh h 95 + ﬂg sin h 93

\Loz 021 )

d; = a; sin h 9£,+ ﬁk cos h 95

e e S S S W B W N’ W Vo W W S

+ +

dk = ag sin h GK - f&k cos h'uL‘.
where n;, ak and L‘l;, and ﬂ‘sk now represent the creation and
annihilation operators for the two types of quasi-particles
corresponding to two magnon modes. In order that the
non-diagonal terms in these operators vanish we must have

~LJAB(S. S,) Say
Tan h(20, ) = AR __ Kk (he2e22)

k ol G
2JAB (3, +35) + ‘“’“A"AAB (H “B"BAB

- 1 ‘
2(&ASB) Tk

LR

. , (he2.23)
(aA *SB)

Now, let us write down the various terms of the Hamiltonian

separately for the antiferro- and ferrimagnetics

Antiferromsgmetic case: (I 3A| = ISBI - 3)
H(ant iferro) = Hy + H‘(at) + Hy o (af) (Le2e2l)

where the spin Hamiltonian is now diagonal and takes the

form
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Hy(af) = };:’hg; (§£§_+k) + E;Z‘Ey;(ﬁgﬁﬁoa: (he2.25)
where

]
= &A"‘)Z - 'iriJ * oWy (4e2.26a)

”’I+

.(af) _ ot + o s
* Ouae ¢ Px Prmq, Pq, " Pk “keg, bsé] (bhe2.27)
where
(af) S2 ! .
A-'—‘So x e g, [\li_%oﬂ&)blnh\ﬁk_go¢9x)*(1*730)
Gosh(éi&_go* 9& j (4e2.28a)
‘af) - ) ) ) \
sinh(9y_ +9y {] (he2.28b)
(af) (af) ~
G = 228
kg, A‘_‘qo (4 )



-75-

Ferrimagmetic case: |3, # sy
H(ferri), = HL + Hn(forri) - Hin‘(forril (4e2.29)

where, the spin Hamiltonian i.e. H.(forri) is diagonal and

takes the form
a
- + Fia*s \ / y o
un‘r.rri) E ‘ﬁ'k \a_k.a_k- + Q)+ E 'E'K“'Eb-g*tl \‘00‘ 03\))
K K

Thus it is evident that the spin wave spectrum splits up
into two bfanches with energies *“':,p which are given after

neglecting the external and anisotropy fields and a constant

term by
4J, 3,3 5
@ L& ABYA"B ,2 2
E_lg = ‘hw!. W k"a (4.2.31a)

| M,.8.8. , .
B - Poa - BTA'B .2 2 , |
B Tw 20,52 |s, sp| * Ao X (be2.31b)

where use has been made of the long wavelength approsimation
i.e. k.& (1, "a" being the lattice constant. Magnons
belunging to the first braunch ;; are termed as 'Acoustic !
magnons while those belonging to second branch Ei are 'optical'
magnons and these have energy much higher than those of the

acoustic magnons
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(f) ot
Hy, o (forri) = (; kg%, Lg%, '

(1) v o__ b
* Ba, "k k-a, %, "k ka2

(£) .+ + (4.2.32)
+ cigo (;-;3_:903 + ,,Eak_sobsgj , (Le2o32)

where

, | "
#ﬁ (e;)g, ["E-so"k“b Sg)"sin B(By o +8) )

’”"slo’ (Sge0s b 8 Cos h gk-s“’s:\sm“ksmh?r.ao)]
(be2.33a)
(f) ki ~ '
BKQO - ﬁ (e;ig, [(15_30*%)(3‘83) Cosh(® '.Slo*el‘. )
+(197g ) (35008nd, s1ndp_; + 8 51ahd, CoshG_ls_so)J (4.2.33b)

' i
c-g:,- ﬁ (e;lg, [(Yrso LHS Syl bin(or'qo* 95 )

+(147, ) (3, Cosh®, Cosd
2

C) (Lo
k-a, + Sy8inh ksm“k-.qo)_] (he2.33c)

.
The operator forms for oue phouon procoau(Oquat.ima (heco27)

and kh.z.BZ))aro similar to those obtained earlier in the case
of antiferro and ferrimagnetic crystals for magnon-acoustic
phonon interacticns ( Upadhyaya and Sinhaw5’1o7

and :.ii.nhamy ) e

and Joshi
The main difference arises in the form of

coefficients, ( cf., equation (4.<.27) and (MZ.BH,)uhoro
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now we get plus signs in terms suchtﬁri#Yk)31nh£9;+9k) etc.,
This may give a different wave vector ;op;ndonce for—ihc
interaction term. If we examine the operators form closely
we shall see that certain terms which are unimportant for
acoustic phonons, will be significant for optical phonons in
view of their high energy. Thus processes such as “L”Ltg°§ib
will be important in the case of optical phonons, whereas they
are discarded for acoustic chonons in that these were not
expected to conserve energy. However, the energy will be
congerved for optical ;honons in certain range. Un the
otherhand, interaction between acoustic magnons and optical
phorons will be unimportant for the preseut case. lor example,
the process a‘f;;goﬁgo involves scatiering of au acoustic

magnon with the emission of an optical phonon. Energetically,
this process seems to be unlikely. Likewise, the third

process would also be ruled out. Thus in the following, we
shall consider the energy transfer effects between spin and
lattice systems on the basis of the second process. The results
for antiferromagnetic and ferrimagnetic crystsls are given

separately.

4.3 Phonon-Magnon R t T

The magnon-magnon awé phonon-phonon relaxation processes
are known to be much faster than phonorn-magnon processes., One
can therefore assume that left to its own device each system
can attain equilibrium distribution in a short time. Let us
start with a situation when the magnon system is at a slightly
higher temperature (T = T ) thau th’bhonon (Tp). Energy will

flow from the magnon to the phonon system, the optical phonons
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receiving i§ through coupling terms formulated in the
previous section. The excited phonons will come to the
equilibrium by gaining energy from the spin system. According
to time-dependent perturbation theory, the probability of

transition from a state 1¢1> with energy E;, to a state
l¢f> with energy E, is

2 &
e = F (R lyg|  O(By-Eg)

where (Hp)if is the matrix element of the perturbing
potential H between l¢j> and l¢f Accordingly the

ki iAgv
transition for the above processes are given by

W (nh.ni.go Ngo___? (n!--ﬂ(ni_ﬂo-H(NgoﬂJ)

= ,ﬁl'BJ |2 (n,)(n! J(N +1)<§(E +E! -hw_ )
k' kg, g, k kg, 9o

W Cnﬁ’ni‘-'ﬂo’ N%,_é (n£+1)(ng_g°+1)(Ngo-1))

2
- g iBj [ ) g e (g ) §(B B -

h
kq, kg, *1 gy O 1B Bicg ™ Mg

where 0, nf{, Ng-o respectively represent the occupation

numbers of magnons associated with energies hwl((”, hw’({?') and
optical phonon of energy'h’wgo. The §-functions ensure the
conservation of energy. Thus the gain in energy by the optical

phonons is given by
9,
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The time rate of change of the distribution function is
related to the transition probabilities of the various magnon-
optical phonon processes. As explained in the last section,
we shall consider onliy processes which are expected to

conserve energy. Thus

4= Qag ; so\ao/a.

-

28— (3% | 01y cal®) 3 in
- 5 > b }B “‘k-q (n}” 01;
Ak_ So Z E'QO‘ | .LSQ

l"’

k1 (<) ) "'C gl gl2) _
(ny *1)(1! %91;\1*4 ) (B, k-g, ﬁwﬂoi

where né*j" represent the magunon occupation numbers. The
above i: a general expression ap.licable to both ferri or
antiferromagnetic systems. The superseript (Jj) denotes either
afl or [ according to the system under consideration. To
proceed further it will be convenient to present the calculation

for antiferro- and ferrima netic systems separately.

Leb Antiferromsgunetic case

Here the two magnon modes are degenerate in the absence
of the 4eeman terms. For interaction with the optical phouons
only those processes are important which involve the creaticn

or destruction of two magnons one from each branch along with
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the destruction or the creation of an optical phonon. Thus,
we congider the middle term in the interaction term of
equation (4.2.27). Now we substitute the appropriste Bose

distribution function for magnons and phonons i.e.

»

né‘“ - [O_XP (:—:T} - 1]“
Yoo T {"‘p (%%2) ) 'j'

Then, writing AT = 'r-TL and expanding the terms in

\LO‘O.‘I

————— —

Taylor's series to first order in T, we get

.. 2 2
. ; 2_! A_‘I: Z \Swgo) IB‘f .H'So/kBT
‘af) T Th 2 ™ X iﬂo’
x ! § (E_+E “hwg_
‘hwg /KT 8, /k.T E, _ K k=q,
(o 20'UB°y (0 X B Lq) (e -‘iﬂoh’r-n
(hobo2)

low in the long wavelength approximation i.e. 1_(.:3: << 1,
i.e. I = 1 - 5_‘:2/:, we get

, . 9% 2 | L
ar) L 4B ot [ {1 -2gTi% (kg )% rag

kqy ) “;;oh ¢ k| k=g

v 2(gd - i - (5-90)2:] (hobad)
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For the optical phonon we t.reat'?iwqo = kBaE a constant
energy as is usually done. Then changing summation over

k and g, vo integration we get

2 o2 8g/T
A - 2n A; Na3 k e
*(af) H

T¢ 52!)3 :

Blf 2

kg,

B, /k.T E kT
KB q)(e k-gof

dy S(EEEL_QO ~kg95 )

\L-L-hl

\ e e ¥

where do = gidg k%dk 5108, 5109949, daqod¢ af . (L.ke5)

The dispersion relatisn for magnon in antiferromagnets has

the form

EE = kaac a k (4eh.0)

The 8 ~function is expanded in the fellowing manner to

facilitate integration over the angle variable

g\& ’xk-qo-kBgE) - 8 (kBOCag + kBQCa k=q -RBBE>

| R Dtk + Jk=q) “A ) (hebe7al
C

where /\ ® g (4e7.7b)
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(4ebo7a, simplifies to

£, 0 : 3
K™+ - cos 9
1 1 5 k =2 ,< bo | 5":2\
kpa®g Vg, VZkq, Xy A

Here we write

C°'°£ﬂo = Cos 9, Cos dq + 3in Gk ain Gq Cos (¢Kf¢

- =0 - -0

and with x = cos(ﬁk-ﬁq ) the function becomes

-0

’1 : ér[ia-x)‘ + é]
kBaQS ]quo Sinuk SiquO

2L 2 . : .
where a = (k oqc)/ \2kq, aineg?ineq) - lCot®

k

and d = (k- /VZkq, 5in®, 51ne
(+]

(bebo8)

)

%o

\bobod)

Cots )
0

The result after the integration over angular variuble is

[Biﬁg \ ‘ lk-qq| k dkdg,

Glaf) = D = ~
F ™ B /KT
(e X B o) (e X207 By
with
2,27 i n ArE P/
D ol 8 . - e
S (OJ) a (:73— -EEB %;ygazgg77—

(e -1)

(4ehe10)

(helia11)
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The limits are determined by 3ﬂ-function. This gives
f&-gok + !{_ - A , (lbo‘bo1da)
or  q° - 2kq Cose + 2k° -3¢ = 0 (Lele12b)

Solving for q, we have

q = 2k Cos ® =+ .\{kz Cos%0 + ()?-zkz ) (Lekot2e)

Only positive values of q are allowed. This implies
k2 60329 + §-2k2) 7 0

or kz(CanO -2 ) + )? Yy 0

or -k?(1+8in%0) + N S0

. 2 <
or Kk L . . Z. —%— (beba13)

1+ Sin29
Thus the limits of q, are o/ 9, & k and those of

k are 0 [ k M2

Integration over 9 yields

t-% K2 2iPen Pib-siic® + 23 k0 ) ak

d(af"D( 7T E T
(¥ B _ ) (k-2 B _

1)

J

(hobo1d)



- 8l -

iw E,
Changing to the dimensiona} variables —p— -'7]
B
we have -
A/T <
bod 2,030k 3., 2m5 b_ 25,7
. (o1 -2a3n e whsfr oy 5eET$'7§T.f) a1
Claf) = e f T ‘ 3

ave, - fe =1, (e

-1
(Lelo15)
9o, .8 D
JAN
with €« 3, Fode ae 0 - o,

(e -1l)a Bc

Integration yields
L
C 3 5 NS
o ' B4 T 1 \ 2
=D T . = A-. -£
wlatd ( ¢ @ 4’{ log(1__m '3 AF

c

+z-ze°5-z.e'A/T ( F +1) -2e -3 A/T\ 3 - 1:}

2
- BQ.A/T( % B 7 +2) +0=3e /1'-3 1‘ - -— 0&)*-6.-§}

2
9. 5 /T 5
£, T - A
g Bl gt -4 g
c



.6
7
-6.-A/'r\ 5+ 2%1‘4.2%3-#6—(%21-%4*12\1/*740
T T T r

5 b o5,3 2
- O.A/Ti(%g - %fL . 3%?‘ - egﬁa o LA - g2y +74094§]

For the situation 9E>> T, we can approximate (L.5.17) as

L > a’
RA IPLI SR o3 oF T ok
2
4LO7 5 5 50, 6 6
g 1° (1 S 8 ,
* g‘d . 5-2 (5 fg + 24 g‘;-;g(a To + 1&(9

, ' 4 7 ,
i 'f-% 57 (,"..;17 +7zo):] (bebe17a)

(af) =} L% 323 ) -5 (et
i A28 A ER o B A
c c c c c



. X \lA—; T A l(ég : 120?6)
2 5 5 o [+]
g o2 o2 c e %
| P/
X 1,%7 . 159;'73-] (Leks17b)
¢ e

Further in case T4< Gc, in {4.5.17b) higher powe:s of ;2-
c
can be neglected and it simplifysito

2 & B Ar S Ca
Qlaf) = (¢16)(3e,) (7h- ) == = S
N Tt 03 Mk g 52_ T 2
{e -1}
(Lehot8)
Thus
. i o8 9g/T
. AT B e
Qlaf) = (.16)3%(e,) (% ) (bobo19)
— J B T° o /T 2
m c e 1)
Now the relaxation frequency 1/T§p is given by
21 1
Q(E- + C + % )
L= = B , (boke19)
Tsp A
where 0‘, cLa’ (:L° are respectively the specific heat

contribution arising from the spin system, acoustic lattice

and optical lattice modes. Tuese have the following expressiong ,
For the EBinstein model c¢he optical mode specific heat iz given
oy

. .20
—§E7T- " (Lol 20a)
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and the Yebye model for acoustic mode gives

T )3

Cla = 23k Nkg ( ;; " (behe20b)

where °p is the Debye temperature.
c, = LRk (T) : (bebo20e)

These expre sions are valid in the low temperature regions.

Now b' is much smallier than cLo and CL‘. Thig we get

1\ 1 ;
the form with g for the study of optieal
l‘y E’I..o\‘> %54L

interaction,
R 2 .8
1 -2 s5(e ) e -9, /T
s . Ax0 h J E 1 B ,
(af) % ( ;:? : * o) 10 ¢
'T;p s ¢

(beboll)

b.5 Ferrimagnetic Case

For two sublattice ferrimagnets, we have two magnon
modes, which are referred to as 'acoustic' ( c¢f. equation
(Le2.318) ) and 'optical' ( cf. equation (L.2.31b) ; modes.
In the magnon-optical phonon interaction terms ( ¢f. equation
(be2432) ), we ignore the role of aco stic magnons. Thus the
necessary terms involve pure optical or optical-acoustic

magnon operators. The explicit forms of the coefficients
2 (L)
éﬁgo
given by

and gégi under the long wave length approximation are
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(f) 4 2 2 2
B - T .
lkﬂo‘ Ba® ( k” - kg5 %) (he5a1)
where
45,3 )
% |54%|
< 2
L £ . 2 2 ) 2
‘Ah—qo) ) \b-k.qo\ - - ( k N {‘-q°| ) ’ (L.SCB)
where
nala®( el q?) ,
325735(8,+5)
©oT ?“% .A - .&IB eyt (boSek)
% {bA - S

Let us now consider the calculation for the process
involving (4.5.1) i.e. middle term of (4.3.22). The

expression for the heat flow is given by

2 o,/T
f B a pB .
2 B -

3 .(f) =« 22 1 (f‘ 3) k QZJ‘ k%\ , dT&r‘;!ﬂsk-% kg% |

) 3;3 ‘E : B E * s § v.Fl
2 \gp3 8./T B, /koT £ /kT

. (e F «1j(e % B y)j(e % B .4,

(be5.7)

where Eia) and Ei”) are given by (L.2.31a) and (L.<.3<b)

respectively.

As before ~function is removed by integration over
the angle variable. Further, from the energy conservation

relation we get the relation
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kz + 'E"_qo‘z - § = 0 (L.s.s)
where

< - ] \ GE -1

S -

(Le5.9)

———— N

-s5|*

The limits of integration over %0 and K are thus taken

with the help of (4.5.8). The siE;ificant range is given by
0 ¢ a ¢ k and 0 L k& AN2

Integration over q gives

3. (F) = G © (X - at) a ( )
Q a - ‘005010
e J’ Eg/kyT £r /bg?
(e -1)(e -1)
where 2
¢ = o4 ok -L-!gl— (be5.11)
IA g: -3571- 5.

Making use of the dimensionless variable

we get
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AT __"2
. ) (T 4 >‘ 9 < 7 )
Q) = 0(F) g - (L5012
i . K (:‘ -1)(5;, -1)
with
A 2 29.. 9.,
T T Gy ad § e o

It is clear from the g -function condition that the energy

conservation condition is satisfied for OE > 90
o..
B
G- o

‘urther, the role of the optical phonon will be

important at somewhat elevated temperatured. Thus we consider
the range, say 10°k {1( 3, - 9‘%7‘-‘*“"
. o (aRyaal 8./T

L) = (i) 8§ E il .
o B T # % (’sA-sal (o B y)2

5 W3 < -
3’5' %{(gﬁ.-r) - g%ﬁ (4e5.13)

In the situation T( 9, the second term in the

bracketted expression car be neglected .

This gives
VR ss/r "
A B
(Le5.14)
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For the situation 93‘7 Oc which is under consideration

here, the scattering of optical phounons with the pure acoustic
and optical magnon modes involving two magnon Raman processes
will not conserve energy. That this is so even for the optieal

modes can be seen from the interaction terms, namely,

£ gt b + C. C. 51
0
The corresponding energy conservation condition demands

202 [3,-35] + kg0, [5-9°|‘ a*=2J2 |5, -kBeckzaz-'ﬁuqo -0

hwg C]
az(Jk-qJ 2 kz) - kggzﬂ - -g% (45.16)

This cannot be satisfied for the situation noted above.
thoroforo we do not consider q In this evenl, the relaxatiocn
Gbis ‘T;p is given by the process calculated above and we
have

3..(1)
1 . 1
fater = ~wr (o

1
+ (Le5.17)
L a;">:

where C;  and C;  are given by (4.4.20a! and (L.4.20D)

respectively.

Further the spin specific heat can be easily calculated
using the dispersion relation for the acoustic branch (4.2.31a)

thus
dBE

6 =
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and
x

B,

E » E —— \L.5.18)
8 «
E! /kB'r

(e -1)
After a simple calculation we obtain for a b,c.c. crystal

c i IR )3/2 (be5419)
8 18469 o o

Arguing similar to the antiferromagnetic case, we get for
the relaxation troquwcy/
. 5 o pall oo -9 /T
1 I J.11 ";\"BWA’”A' 9 B

d
- 2% 3
Top 0/ = » .o, - %,2 oA 5, " T

(445.20)

L.6 DISCUSSICH

In the foregoing sections, we have given maguon-optical
phonon interaction processes in antiferro- and ferrimagnetic
crystals. For the calculation of the relaxation frequencies
we counfined our attention only to those processes which are
likely to conserve energy. For both types of systems, ihe
important terms involved the splitting of an optical phonon
into two magnons. Other intersctiom terms are not expected
to be important for 8;% 9, . For this reason, we select

those system which have low Oc values, It is apparent that
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the optical magnon modes will be excited in the low
temperature region say 10 to 30°K, for crystals having
low Oc. In order to estimate the results of theoretical

calculation we select the following systems as typical

examples:
Antiferromagnetic case: MnF,

This is an ideal antiferro magnetic system consisting
of two interpenetrating body centered tetragonal lattice of
magnetic ions. Based on some earlier work (Upadhyaya and
°inh;yz the following values of the relevant parameters are

chosen
S = % H (e,) = 10.8 dynes/em, ©. = 200°K
5 J y ’ -] ’
Oc = 3=°K, TN = 67°K

- With these values, the Variation of 'r;h?) with
temperature in the interval 10°K to 30°K is given in Pudée-I

and Figl.

o
The value of ‘?CiTET) at 10°K turns out to be

1-337:106 see”! | The corresponding value of -

involving acoustic phonons is 10° See™! as ..u;::f.d earlier.
This shows that interaction with acoustical phonons dom . nates
at 10°K. However, as temperature increases, the role of
optical phonons become quite apprecizble. Thus as 30°K

1

Tlp

2.818x109 300-1
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FIG-2- MAGNON- OPTICAL PHONON RELAXATION FREQUENCY OF MnF,
VERSUS TEMPERATURE WITH 6E=200°K-
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In some earlier studies involving acoustic phonons
(Joshi and a’inha‘)o,B -ferrit.u( € g MnfoZOA ) were chosen
for conparison. However, SC for this system is of the order
of 783°K and optical magnon modesare not likely to be
excited in the temperature region of interest. For present
purposes we select the ferrimagnetic chromates ACrZOL where A

2

is either an’, Fe" or Coz’ crystalysing in the normal

spinal structure.

For all these systems the value of the parameter

QC < 10U°K., The following values of the varicus parameters
were  taken .

3
Fevrzoh i SA =<, Oy =2 Oc: = 3.
OE = 200°K or 250°K, OC = 100°K,

(el 1077 dynes/sec.

1 :
The Var?ation of ﬁ:;T?) with temperature is shown

tnu$¢b&.4ii~i;§'figurcs 8 and 4. The value for -%r7at 10°K

1 ap

is of the o{dcr of 1.564 x 10“ Jec for OE ~ £50°K and

. x10PAe
7.215 for 95 ~200°K, Here again the acoustic phonons seem
to be more important as seen from earliier calculation.

However, at 30°K the values of 'T—-%?T reaches 109 sec”t,
8p

The above calculations show that optical phonons~-
magnon interaction processes are quite important at
temperature above 10°K. Below this, the acoustic phonons

scattering processes dominates.,



10 15 20 25 30 35
T (°K)

FIG-3- MAGNON- OPTICAL PHONON RELAXATION FREQUENCY OF FeCr?_O4
VERSUS TEMPERATURE WITH OE=200°K-
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FIG-4- MAGNON - OPTICAL PHONON RELAXATION FREQUENCY OF F'-'eCl‘204
VERSUS TEMPERATURE WITH GE=2500K.
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In the first part of the thesis, a microscopic theory
for the ferroelectric phase transformation in pervoskite
type structure has been formulated. It has been recently
realized that lattice dynamics may play an essential role
in the ferroelectric phase transformation ( i.e. in daTiOB).
lhe main point in this approach is that the structure should
become unstable with respect to eertain vibrational modes
at some temperature. According to this approach, the region
where Kk = 0, is responsible for the ferroelectric phase
and the region where k| = n/a is respousible for the
antiferroelectric phase, k being the propagation vector of
transverse lattice vibrational modes. The frequency of this
particular mode ( i.e. soft-mode, is temperature dependent

being of the form w% G(T-Tc).

However, the idea of relating lattice dynamics and
phase transitions in pervoskites suffers from two drawbacks.
Firstly, below fc, wg is negative which, in turn, implies
that the system is unstable in the harmonic approximation.,
Also, it is not possible to predict the transition. These
ad hoe aspects are done away i!éﬁftaking into account
vibronic interactionifor such systems. Also, the following

remarks can be made regarding the present work.

1. It mesolves the difficulty concerning the ionic character

of the system because the treatment automatically takes into

"account the covalency effect.
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TiOg
2. The importance 4—od octahedron structure is invariably

connected with the occurrence of ferroelectricity in BaT103
and related structures. Matthias proposed the hypothesis
that all substances are ferroelectric which have aﬁ atom or
ion with a closed shell surrounded by oxygen octahedron in
the manner of the structure of BaTiOB, provided the dimeunsion
of the octahedron approximatodfz definite size. w~imilar
conclusions were derived by Smolenskii and Kozhevhikova.

3’
KNbOB, LaFoO3, PbZrOB, no03, and WOB, conform to ferroelectrics

Thus substances LiTuOB, NaTIOB, KTaOB, RbTaO3, LiNbOB, NaNbO

with vurie points ranging from a few degrees absolute to
nearly $UU0°K. Thus the oxygen octahedron structure seems
to be a necessary element for producing ferroelectricity in
pervoskite structures., lThe present work gives a quantum

mechanical justification of the above propositions.

3+ The preseunt theory of ferroelectric phase transformations
may be extended to explore the phase transformations in solids
ad a result of instability of certain vibrational modes

arising from vibronic interacticns.

In the second part of the thesis a microscopic
formaiation of the o, tical phono«=-magnon i:teraction in
antiferro~- and ferrimagznetic systems has been presented
following earlier work of the acoustic phonon-magnon inter-
-action. Also, a study of the relaxation times associated
with the flow of energy from the spin systems to lattice or

vice-versa is considered. The study reveals interesting
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points, namely, the optical phonon~magnon relaxation
processes are dominated Ly acoustic phonon-magnon processes
at very low temperature < 10°K bup th the increase of
temperature optical phonon e?;&uﬁoxu;\.bocoma quite
appreciable. further, luch:nudy can be utilized to explore

some properties of magnets - dielectrics.

In our calculaticns, we have assumed, as & customary,
that there is no dispersion of the optical mode i.e. h"lo
is constant. rhu_s » we have disregarded a few interaction
processes whichwrulﬁll the condition of energy

conservation. Perhaps, the dispersion' reiation
P 2 + B

2
° 9%

where the coefficieit B may have plus or minus sign, may

make the other processes plausible.
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