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ABSTRACT
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ABSTRACT

The efficiency of a liquid-liquid extraction process
is intimately connected with the methads »>f phase dispersion
and the rates of mass transfer in and out of the dispersed
phase, It is now generally recognized that extraction from

a dispersed drop occurs in three stages during its lifetime

(1) mass transfer during the formatisn of drops,

(2) mass transfer during the travel of the dispersed
drops through the continuous medium, and

(3) mass transfer during coalescence (collapse) of

the drops.

The transfer processes occurring during formation and
collapse are referred to as end-effects. ¥nile a vast
amount of literature has accumulated on nass transfer during
the steady-state drop rise period, the information availaole
on mass transfer connected with the end-effects is fragmen-

tary.

Of the few attempts made to formulate extraction
models for mass transfer during drop formation, the one
assuming uniform spherical growth (expanding rigid spnere
model) appears to have met with consideraole success. A

recent approach is based on the stretening and renewal of



surface elements to account for the behaviour of different
parts of a growing drop. A noteworthy feature of the
existing theories is that they all lead to simple final
equations which are strikingly identical, and which can be

Dt, Y2
E =d, (T2
f -=-= (2:50)

The values of &, for the different models vary from about

put in the form

1.5 to 6.

No theory has yet been formulated, however, which can
predict the mass transfer coefficient during drop formation
with any degree of accuracy. The present investigation was

undertaken with three specific objectives :

(1) to develop a model for the hydrodynamics of drop
growth;

(2) by using (1) to predict the mass transfer coefficient
during drop formationj and

(3) to examine the proposed conceptual model using mass
transfer data collected in a simple conventional

apparatus.

The internal circulation created in a growing drop is
induced by the jet momentum at the orifice, in contrast to
the circulating patterns in a stable but moving drop which
are created by the mobile spherical liquid-liquid interphase.

(2)



Thus the circulation within a growing drop (which is immis-
cible with the continuous phase and which is assumed to be
ideal) can be attributed to the streamline motion set up
inside it due to an injection velocity. These streamlines
must necessarily be closed because of containment. The
induced circulation 1s essentially independent of any vis-
cous drag due to the velocity of growth of the drops(as
against the predominant role of viscous drag in the

case of Hadamard's model (29)),

At any instant the internal streamline kinematics
can be likened to the lines of the magnetic field inside a
spherical loss-less cavity oscillating in TE;,; mode, the
cavity being assumed to be fed through a small aperture.
This permits one to solve the problem on hand in terms of
its electromagnetic analogue (spherical microwave cavit&

in the dominant mode) by making the following identification:

Electromagnetic Hydrodynamic
1) H (magnetic field) V (velocity)
2) Magnetic lines of force Streamlines
3) div H=0 div V=20 (3.19)

Boundary condition :

Radial component

-

Hr =0 Vp =0 (3.20)
at r = a at r = a

(3)
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The kinematic analogy arrived at in the foregoing
section must not be taken too literally. In point of fact,
the electromagnetic analogue (the spherical microwave
cavity) admits of infinitely many modes as solution, while
in the case of internal circulation in the drop in question
it is only the TElOl-like streamline pattern which is perti-
nent. It is believed that the analogy 1is fairly exact for
this dominant mode. Dynamically, the two problems are
completely dissimilar in that the inertia-force relations
are different. However, in both the cases the trajectory
of a descriptive point can be expressed in parametric form
involving space co-ordinates only, which are similar in the
two cases. This 1in itself ensures a geometric similarity
between the two analogues. The physical plausibility of
the above kinematic similarity for TEjgj-like mode is self-

evident.

Based on this analogy between hydrodynamic stream-
lines and the magnetic force lines, theoretical equations
have been developed which make it possible to estimate the
streamline function of a growing drop. According to this

model the centre of circulation is given by

re = 0:609a -—= (3:41)

where r, is the centre of circulation and a is the instan-

taneous radius of the growing drop. The experimental
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observations reported by Heertjes et al. (17) provide excel-
lent support to this prediction and justify the proposed
model.

Using the streamline function thus computed, the
average time of circulation inside a drop has deen calculated
by programming on an IBM-7044 computer. Then, from
Einstein's equation which relates the mean square deviation
for a given time with effective diffusivity, it has been
possible to estimate the mass transfer coefficient inside a
circulating drop. The final equation obtained for the mass
transfer coefficient of a growing drop is remarkably simple

and is given by the single parameter equation,

k; = 001V,
But since V, =V
k,; = O'O1Vh ——— (4-40)

where ky 1s the mass transfer coefficient, V, is the velocity
at the instantaneous centre of the growing drop, and Vy is

the injection velocity.

Using 4 binary systems at 25°C. experiments were con-
ducted in a simple conventional set-up, to obtain mass trans-
fer data in both the directions - from and to the drops.

Mass transfer efficiency was determined by using an automatic

potentiometric titrator. It was ensured that the solvents
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used were of extremely high purity as determined by several
physical measurements. Comparison of the experimental
mass transfer coefficients with those obtained from the

mathematical model showed remarkably good agreement.
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CHAPTER - 1

MASS TRANSFER FROM SINGLE DROPS

1.1 INTRODUCTION

Liquid=-liquid extraction is an important industrial
operation in which two immiscible liquids are contacted with
each other with the object of effecting the transfer of the
desired component from one phase to the other. In this
operation, one phase is invariably dispersed in the form of
fine drops into the other phase, thus ensuring intimate con-

tact between the phases.

A vast volume of literature exists on liquid-liquid
extraction in general, but most of the results have been
presented in the form of equations based on average values
of the mass. transfer coefficient, In recent yeérs, however,
attempts have been made to study the mechanism of extraction

in a more fundamental manner.

It can easily be visualised that the mechanism of
solute transfer involves three distinct stages of extraction
in the life time of a given drop. The period over which
drop formation occurs constitutes the first stage of extrac-

tion, The second stage covers the period over which the
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drop falls or rises through the continuous phase. This
stage begins at the instant the drop is detached from the
tip and ends when 1t strikes the interphase at the opposite
end of the column. The third and the final stage of
extraction covers the remaining period in the 1life time of
the drop, and consists of the process of the drop crossing
the interphase at which it arrives at the end of the second
stage. An authoritative review of drop phenomena as they
affect liquid-liquid extraction has been presented by
Kintner (34). The present work is concerned with the mecha-
nism of extraction during drop formation (first stage of

extraction).

1.2 SURVEY OF TECHNIQUES FOR DETERMINING MASS TRANSFER IN
A FORMING DROP

Whitman, Long and Wang (1) made early studies of mass
transfer from spray droplets, which indicated that there are
three distinct periods or stages in the life time of drops
and bubbles : formation, free fall,and coalescence. They
investigated the absorption of carbon dioxide by forming
drops of water in a small column of constant height. A
series of drops was formed at a fixed formation rate at the
top of the column and collected under a kerosene seal at the
bottom. This was repeated for several series of drops,
each series having a different formation time. A plot of

formation time vs. the total amount of gas absorbed per unit
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volume of drop gave a straight line. Extrapolation of the
1ine to zero formation time gave the amount of gas absorbed
during the free fall of the drops. Assuming this to be
constant (for a given column height), the gas absorbed
during formation was calculated by substracting this con-
stant value from the total amount absorbed. The conclu-
sions reached were ¢ (1) the rate of absorption during the
formation of the drop is constant, (2) the amount of absorp-
tion during a fall of fixed height is constant and indepen-
dent of the time of formation, and (3) the amount of absorp-
tion during this fall is always much greater than that during

formation.

Sherwood, Evans and Longcor (2) studied the transfer
of acetic acid from dispersed drops of methyl isobutyl
ketone and benzene to a continuous aqueous phase in columns
of varying heights. For a given height of column, a series
of drops was formed at a constant rate at the bottom of the
column and collected in a measuring burette at the top. The
total acid extracted during drop formation, rise and coales-
cence was measured. The so-called end-effect (which presu-
mably includes drop formation and coalescence) was determined
by plotting the logarithm of the fraction unextracted (based
on the concentration of the solvent phase) against column
height. The resulting straight line was extrapolated to
zero column height to give an end-effect of approximately

40% of the total material transferred.
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The results indicated considerable agitation in the
interior of each drop, and showed that a large portion of

the extraction occurred during the formation of the drop.

Licht and Conway (4) confirmed the existence of three
stages of extraction during the life time of a drop as postu-
lated by Whitman et al., (1), and were among the first to
attempt an experimental separation of stages 1 and 2 from
stage 3. For this purpose two columns were used, the first
being essentially similar to that employed by Sherwood et al.
(2) in which stages 1 and 3 were estimated by extrapolation to
zero column height. The second column was provided with an
additional stop-cock at the bottom which was closed as soon as
the last droplet had passed through it, and it was assumed that
by this procedure the third extraction stage was eliminated.
Then, by an extrapolation procedure similar to that for Column 1,
it was believed that mass transfer during stage 1 could be esti-
mated. From the data obtained by extracting acetic acid from
aqueous drops dispersed in ethyl acetate, methyl isobutyl ketone

and isopropyl ether, the following results were obtained :

per cent extracted

Ethyl Methyl Isopropyl
acetate isobutyl ether
ke tone
Stages 1 and 3 29 2l 12

Stage 1 17 8 53



For the methyl isobutyl ketone-acetic acid system, Sherwood
et al, (2) obtained a value of 40% for stages 1 and 3 as
against 21% by the present investigators. This discrepancy
was believed to be due to the fact that the continuous and

dispersed phaseswere interchanged in the two studies.

It was also found that the fraction extracted during
drop formation was independent of drop diameter in the range
0.383 - 0,451 cm., and of formation time greater than 1 sec.
Further the overall transfer coefficient for stage 1 was

found to be inversely proportional to drop size.

In another investigation similar to that of Sherwood
et al. (2), West et al, (3) attempted to reproduce the results
of the water-acetic acid-benzene system and, based on three

other independent studies (5, 6, 7), it was concluded that

(11)

approximately 14-20% of extraction occurred during drop forma-~

tion as against 40% obtained by Sherwood et al. The discre-
pancies between the results of the two investigations were
attributed to differences in the purity of the benzene used
with resultant differences in some important physical proper-
ties. This was subsequently confirmed (8) when it was
observed that the discrepancies were due primarily to the

use of Tygon tubing in the feed system of the apparatus.

When impurities are extracted from the Tygon tube, they tend
to concentrate at the water-benzene interface, thus setting

up interfacial barriers to transfer which account for the
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reduced extraction efficiency. However, the efficiency could
be raised many-fold by the addition of small quantities of
different alcohols (to the solvent) which tend to displace or

destroy any such interfacial barriers.

In contrast to the speculation of Sherwood et al. (2)
West and collaborators (3) postulated that the dispersed drops

are internally stagnant.

Licht and Pansing (9) used the same columns as those
employed by Licht and Conway (4) and extracted acetic acid
from water with methyl isobutyl ketone as the continuous phase.
Acetic acid was also extracted from perchloroethylene with
water as the continuous phase. From the data obtained over a
25-fold range of drop formation time (0.4 - 10.0 sec.), it was
concluded that the amount of extraction occurring during drop
formation is so small that experimental results do not detect
the variation with drop formation time. This observation up-
holds the earlier results of Licht and Conway (4) according to
wlich the extraction efficiency during drop formation is inde-

pendent of formation time when the latter exceeds 1 sec.

The work of Licht and Pansing (9) is significant in
that for the first time the straight line extrapolation method
of Sherwood et al. (2) to obtain the end-effect has been modi-
fied. According to their data, the linear relationship is
restricted to a given range of column heights only, and fails

as the height approaches zero which i1s the region of interest.
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Garner and Skelland (10) investigated the diffusion of
acetic acid from droplets of nitrobenzene falling into a con-
tinuous water phase. The steady fall (o; rise) period was
practically eliminated by restricting it to 4-5 mm., and it
was assumed that the extraction occurred exclusively during
drop formation, This analysis obviously has neglected the

mass transfer during drop collapse.

These investigators varied the formation time from 2 to
50 sec. (again a 25-fold variation but with higher formation
times), and observed a 2-fold improvement in mass transfer.
This result apparently contradicts the earlier observation of
Licht and collaborators (4, 9) who had concluded on the basis
of studies with formation times not exceeding 10 sec. that any
improvement in mass transfer with increasing formation time

would be undetectable.

For a given outer diameter of the dispersing nozzle and
time of formation, the fraction extracted during formation was
found to increase with decreasing internal diameter of the
nozzle, This was attributed to increased turbulence resulting
from greater linear flow rate of liquid into the growing drop

with nozzles of smaller internal diameter.

The overall transfer coefficient during formation was
observed to fall rapidly as the formation time was increased
to about 20 sec., beyond which it became nearly constant with

further increase in formation time. It must ‘be recognized
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that this refers to the mass transfer coefficient and not to
the actual mass transfer as in previous cases. Thus, while
the actual mass transfer will increase with increase in the
time of drop formation, the mass transfer coefficient must

decrease up to a point, after which it remains constant due

to essentially molecular diffusion.

Coulson and Skinner (11) transferred propionic and
benzoic acids from their solutions in water to benzene drops,
and measured the transfer coefficient during drop formation
by forming and immediately withdrawing the drops to the side
outlet in a specially designed apparatus. The benzene enter-
ed the apparatus through a needle valve and formed a drop on
the tip of a nozzle, Before the drop was detached from the
nozzle tip, it was forced out of the system by the hydrostatic
head of the continuous phase through a suitable side tube.
This cycle was repeated holding the time of formation constant
until sufficient liquid had been collected for analysis. The
apparatus was operated manually and was found to be suitable
for times of formation greater than 3 sec. only. For more
rapid drop formation an automatic apparatus was developed.

The drops were formed and removed by fluctuating the pressure

at the top of the column through a small piston pump.

Extraction was found to increase over a formation and
withdrawal time range of 0.515 to 14.1 sec., but for times

greater than 5 sec. the increase was very small. Assuming
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that the transfer rate was the same during formation and sub-
sequent withdrawal, they showed that the overall mass trans-
fer coefficient based on the average area exposed during drop
formation time is inversely proportional to formation time.
However, it was found to be independent of drop size, in con-
trast to the observation of Licht and Conway (4) that it was
inversely proportional to drop size. These investigators
support the internal circulation theory mentioned earlier (2)
by postulating a certain "degree of circulation" within the

forming dropse.

The results and conclusions presented by these workers
should be analysed in the light of the following fact. In
all the studies in which mass transfer during drop formation
was measured by extrapolation or by any technique other than
drop formation and subsequent withdrawal, the mass transfer
occurs in two stages : during unsteady state drop formation,
and during the unsteady state approach to steady state drop
rise. In the results reported by Coulson and Skinner (11),
the second éffect is evidently ignored since the drop is with-
drawn immediately after formation., These results therefore

do not have a common basis with the other published data.

In contrast to the indirect determination of the mass
transfer during drop formation in liquid-liquid systems, in
the case of gas absorption :t has been found possible to

measure the mass transfer directly during drop formation. Work
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in this area, although not specifically related to liquid-
liquid extraction, should be applicable to the study of the

mechanism of mass transfer in forming drop.

Dixon and Russell (12) used a technique in which water
drops were allowed to form at the tip of a nozzle, absord COg,
and then fall through a short column of the gas before being
trapped under a kerosene seal (this being the most suitable
liquid for 002). They concluded that the very high absorp-
tion rates of drops having short formation times are mainly
due to the internal turbulence produced by the jet of water
from the capillary which reduces the resistance to diffusion
at the surface, i.e. reduces the effective film thickness. To
account for the increased mass transfer during drop formation,
an empirical "degree of turbulence" was introduced based on
the orifice dimensions, and the drop volume. The similarity
between this conclusion and the earlier conclusions (2, 10, 11)

with respect to liquid-liquid extraction may be noted.

Further, as in the case of liquid-liquid extraction,
reported by Coulson and Skinner (11), the absorption was found
to be inversely proportional to formation time. The results
of these investigators also uphold the observation of Garner
and Skelland (10) that for nozzles of constant outer diameters,
but varying internal diameters, the mass transfer increases
with decreasing internal diameter, provided the drop formation

time is held constant.
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In a subsequent study Dixon and Swallow (13) presented
an interesting method for eliminating mass transfer during
drop collapse. Instead of a kerosene seal they investigated
the use of different ba;riers such as : (a) a stream of inert
gas moving across the collection chamber; (b) a mass of foam
closing the base of the chamber; and (c) a liquid film stret-

ching across the bottom of the chamber.

Groothuis and Kramers (14) developed an experimental
method by which the amount of gas absorbed could be measured
continuously at any instant during drop formation. The time
of formation was varied between 1 and 40 sec. Drops were
formed at the tip of a capillary in an enclosed volume contain-
ing pure 50, The amount of gas absorbed was determined by
the measurement of pressure or volume change, It may be noted
that, as in the method of Coulson and Skinner (11), the mass
transfer during growth alone was measured. This fact prooably
explains the higher values obtained by Dixon and Russell (1l2)

which included the mass transfer during drop release.

The experimental technique used enabled them to deter-
mine for the first time the mass transfer as a function of
time (continuously) for a given formation time. Their results
clearly confirm the earlier conclusion that the transfer coeffi-

cient is inversely proportional to the formation time.

An interesting feature of this work was the study of

the relationship between mass transfer and jet action. A

o4l
éé ’ =

Ob\. %)/ ;/_[UU)
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criterion was developed for establishing the influence of Jet
action, according to which the rate of mass transfer begins

to increase due to jet action when

§ -V "9y
yn ) 40-50 ———(11)

Rusin (15) used a photographic technique to study the
mechanism of extraction of coloured solute - picric acid -
from a drop of toluene forming in water. " Relationships were
developed to relate the darkness of a photographic image of
the drop to the total amount of extracted acid and to the
distribution of this acid over the surface at any instant during

drop formation.

This study 1s interesting in that it provides for the
first time a method (which is gquite ingenious) for measuring
the mass transfer at any instant during drop formation in liquid-
liquid extraction. (Note : the method of Groothuis and
Kramers (14) was for gas absorption.) The results have shown
that the instantaneous mass transfer coefficient is inversely
proportional to the diameter of the drop during 1its growth.
This study also does not include the second stage of unsteady

state mass transfer (i.e. during drop release) mentioned earlier.

Heertjes and Denie (26) studied a system of isobutanol

drops in a continuous water phase. The drop was formed in
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such é way that the time of formation was independent of the
frequency of the drop formation. In the experiments the final
drop volume was kept constant. A short spray column with one
capillary and a small surface of coalescence was used to keep
mass transfer during drop rise and at the interface of coales-

cence as small as possible.
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CHAPTER - 2

EVALUATION OF EXISTING MODELS

In chapter 1 the various reported methods of measuring
mass transfer during drop formation were discussed and certain
significant results were highlighted. In the present chapter,
almost all the theoretical models proposed for mass transfer
during drop formation are examined and compared after reducing
them to a common efficiency basis. This may be regarded as
an extension of the work of Popovic et al. (22), who compared

a few of the models on the basis of total mass transfer.

Apart from the empirical methods to determine the mass
transfer coefficient, theoretical attempts through the solution
of the unsteady state molecular diffusion equations have been
made. Newman (20, 21) has solved the unsteady state molecular

diffusion eqﬁation for a spherey, on the assumption that there
Ais no internal mixing and that the sphere is stagnant with a
uniform initial concentration, constant diffusivity and a
parabolic concentration profile after a time. A series solu-
tion was proposed in terms of the Fourier number'(_eél)bé.
This solution cannot be used for mass transfer in aqgrowing

drop because at moderate drop formation times the interior
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of the drop cannot be assumed to be stagnant. The first
acceptable theories of mass transfer during drop formation

can be traced to the penetration theory proposed by Higbie (16).

2.1 COMPARISON OF MODELS

A gas diffuses through a liquid according to Fick's
(or Graham's) law which, for unidirectional mass transfer, is

given by

_ _dc
dN = —DA (dx ) dt o)
oc _ o 3%c
at ax2 —-———=(22)

Neglecting heat and surface effects and dilatation, and assu-
ming the diffusivity to be constant and depth infinite, the

concentration at any time t is given by

2
P, | = =2
Tt om0
—-—— (2:3)
x
and the integrated mass transfer '~ at ' any time t by
1
N'= 2(c*—c,) [ 2 &

°t\ Tt --— (2:4)



This equation can be put in the standard form

L *
N = kL (c Co) —— (2-5)

where

1
D \2
- 2()

and N' is the diffusion flux.

In order to apply the above equation to the present

problem the following assumptions were made :

(1) Mass transfer takes place by unsteady state diffusion
into a semi-infinite medium, i.e. the velocity of dif-
fusion is small as compared to the velocity of drop
growth.

(2) The concentration at the interface (¢*) is the satura-
tion concentration.

(3) The diffusion coefficient (based on c¢*) in the direc-
tion of mass flow remains constant. ,

(4) Mass transfer does not change the volume of the drop.

(5) The volumetric flow rate of growth of the drop remains
constant.

(6) The influence of satellite drops formed can be neg-

lected.

(7) The mass transfer takes place across a plane into a

(22)



medium (continuous phase) having an area equivalent
to that of the spherical drop.

(8) The drop is spherical throughout its history up to
detachment.

Equation (24) has been used as a starting point by
almost all the investigators for estimating mass transfer
during drop formation. When this equation 1s applied to a
single forming drop, obviously a term will have to be intro-
duced for the changing area available for unsteady state
mass transfer during drop formation. Thus, according to

digbie's penetration theory (16),

1
s
D 2
N'"=(c*-¢c )A[—
? </J’t /) -——— (2:6)

where N" is the mass transferred per unit time across the
exposed surface of a single drop, and may be appropriately
termed as the "drop flux" ( gm./sec.(single drop) ) to dif-
ferentiate it from the flux N' (gm./sec.cm.z). The equa-
tions proposed by different investigators are based on dif-
ferent assumptions in averaging the area (A) and the dura-
tion for which this area is exposed to mass transfer.

These equations have been brought to a common efficiency

basis in the following paragraphs through the equation,

A= npt === (2:7)

(23)
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where the drop area is expressed as a function of time.

By combining Equations (£.6) and (2.7) Licht and
Pansing (9) derived the equation,

2q —1

ety s (2 (%
-—= (2-8)

The total mass transfer (N) over time t can then be obtained

from
t

N =/N"dt
s (245

o

which gives

f, 2q +1
2 “ (
N= — —C,) p( )
2q +1 ——=(2-10)

As pointed earlier, Popovic et al. (22) have used
equations of the form represented by Equation (2.10) to com-
pare the different models. Since the efficiency of mass
transfer is a significant quantity, which expresses the appro-
ach of a mass transfer operation to equilibrium conditions,
expressions are derived below for the efficiency of mass
transfer during drop formation for the different models

proposed.
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The efficiency is given by

c, —C
E = —
€7 —Co ——— (2-11)
By definition
N
— = (¢, —~cC,)
v L _——— (2-12)

Substituting Equation (2.12) in (2.11),

N

E= —1——
vic*=c,)

—-—= (2:13)

Dividing both sides of Equation (2,10) by v, transferring
(c¢* = ¢, ) to the left hand side of the equation and then

combining with Equation (2.13),

/ eq+i
2q+1 v m t

—-—=(214)

Baird (19) drew attention to the equation proposed
by Ilkovic (18) and fully derived by MacGillavry and Rideal
(23). The equation which was used to estimate the diffu-
sion controlled current in a dropping-mercury cathode, is
based on a model in which a sphere expands at a constant

volume rate and the penetration depth is small compared
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with the sphere radius. In this equation it is assumed that
resistance to diffusion is restricted to either of the phases.

According to the Ilkovic model the drop flux during drop forma-
tion is given by

N = (31)1/2(&—%) (_71%)'/2' Alt)

t’/z —-——=(2-15)

Substituting Equation (2.7) for area (A)

v op (£) %0 (2 )2 (T2

-—-— (2-16)

The total mass transfer over a period t is then obtained from

Equation (2.9)

2 2 D \“ (———ZqH)
& I-L]= _& po D)2 2
N=(3) st o p(7)%

=== (217

The efficiency of mass transfer is obtained by combining this
equation with Equation (2.13)

2q+1
1 1
E =(1 2_2 ._e(g)’%,( 2 )

k. 2q+1 v \TT ——= (2-18)
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Heertjes et al. (17) assumed that the velocity of dif-
fusion is small compared to the velocity of drop growth and

the time dependent area was averaged in the following manner.

A
, ot
_w 2)/2 dA
= (c C°)(TT T2
A=0 ——= (2:19)

t=0
Differentiating Equation (2.7)

q-1

dA = gpt -—— (2-20)

Combining Equation (2.19) and (2.20)

(20
N"=(c*~c,) PQ(#)vZ/t( 2 )
=0

-_—— (2-21)
which on integration gives
2q !
. 24 ( ’2
N = 2q-1 %) P(T -—— (2-22)

The total mass transfer up to time t is obtained by combining

Equations (2.9) and (2.22) and integrating :
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2q+1
A 4 ) ( /2 (
- ~c, v
(4q _) P TT) _———(2:23)

The efficlency of mass transfer can be obtained along lines

similar to that for Equation (2.14)

/ 291
4q p(o)’z (—2
E=—— —(=) t
4q - m

-—=-= (2-24)
Coulson and Skinner (11) assumed that during the forma-
tion of a drop, the extraction takes place over the average

area of the drop given by

t
A dt

A, = | —

av. t

——=— (2-25)
)

which on combination with Equation (2.7) gives

t

q-1
Agy, = P [ T dt
-—= (2-26)

]

Then, from Equations (2.6) and (2.26),
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N"= (c* -c)p(T,)/z ,// —1dt

—-—— = (2:27)

which on integration gives

— == (2-28)

eg-1
U {291
" p /D)\? (2 )
N"= (c*-c,) 7 (—77) t

By methods similar to those described earlier, the following

equations can be obtained for N and E :

2

== (c*

2q +1

—c) £ (77)/2 (qu)

—-—=—= (2-29)

E =

1 2q+1
.ﬂ._’-(ﬂ)/z 2
29+1 q v \ 17 t ——= (2:-30)

Groothuis and Kramers (14) have argued that the mass
transfer should depend on the duration for which the surface
1s exposed for the diffusion of the solute from one phase to
the other. In other words, any area increase during the

growth of a drop produces fresh surface and there is no mixing
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between areas of different ages. If any area dA 1is formed
at time, t, the rate of mass transfer throughout that area

at any time t; (where tet Lt ) is given by

1
o L B 2)/2 dA
N = (c"=c,) (TT (t,-t)f/z -== (2-31)

Expressing dA in terms of Equation (2.20)

ot q-1
" - D \2 t dt
Vot an (g 21—t
; g (1= /t,) -——— (2-32)

This equation can be put in the form,

1 1, (2q-)
N"-2/(1-y2)q-1dy'(c"—co) ap (FD) 2t 2
o ——=(2-33)

where
1
y=(1-"% )%
1

-1 q-1 _
¢! =(1—y?3 971 g

1

dt = —2yt, dy ) ——— (2-34)
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In this equation tl represents the drop formation time for

one set of experiments and is therefore a constant.

For a constant value of q the integral

!

/( 1 --yz)q-1 dy

o

is a constant. Taking tl as a variable and integrating
kquation (2.33) and writing t instead of tl, the correspond-

ing total mass transfer may be obtained.

49 ’ 1 b (2q+1)
q q- D \72
N = 2q+1/(1—y2) dy(c*—co)p(ﬁ) t 2

; -—-(235)

The efficiency of extraction is then given by

1 1, 2q+1
_ _49 - .3(2)2( 2 )
E = 2q+1/“ y©) dy v (T t

2]

=== (2-36)

Two different mechanisms of mass transfer to a growing
drop were examined by Heertjes and Denie (26). The first
mechanism is based on stretching of the surface - the inter-

facial film is assumed to be uniformly stretched over the
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drop surface as the drop grows. The second mechanism descri-
bes the growth of a drop by additions of fresh elements to

the surface.

The theory for the first mechanism is based on the work
of Ilkovic (18) and extended by MacGillavry and Rideal (23).
Baird (19) and Beek and Kramers (27) have drawn attention to
this mechanism. The efficiency was defined for the continu-

ously forming drop (by neglecting the so-called rest drop) as

1 1
3 - ( —7-)/2 2 [P V%
STRETCHING 3 77”2 2

THEORY e -—-(2:37)

The theory for the second mechanism is based on that
given by Heertjes et al. (17), and Sawistowski and Goltz (28),
and the time of contact defined by Groothuis and Kramers (14)
has been retained. The efficiency for the continuously

forming drop (neglecting the rest drop part) again was defined

as
Y
£ 4 Dt,\72
SURFACE 11, r2
RENEVAL t
THEORY -—- (2-38)

In another model, Michels’(25), 1t was assumed that
bubble growth was spherical with its centre moving. The

volumetric rate growth was constant producing radial motion
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in the continuous phase. The drop growth was not accompanied
by tangential motion of its surface. The diffusion layer was
assumed to be stretched by the moving interface, the biggest
stretching occurring at the front of the spheres and the small-

est at the rear. The following equation for N was developed

7,
1617 3\% Yo
N 7 (4”_) (7+ 6 cos W)

1 2 7,
(c*~c,) 4 (DT1)72 (2173t 7
———(2-39)

If N has to be measured over a time interval tey then t = tg,
Making this change in Equation (2.39) and rewriting it in

terms of efficiency

1 1 1
E = 0495(7+6 cos W)2 2(DT1)72 2 2
—=-=-(2-40)

which, after simplification gives

1
. Dt, 72

E = 0495 (7+6 cos w')2 = 2—’)
LACERRS ———(2-41)
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where
cosw' = 1 for the front of the bubble
cosw' = 0 for the equator of the bubble
cos w' = -1 for the reat of the bubble

The value of E will obviously vary with the region of the

bubble considered.

2.2 GENERALIZED EQUATION FOR EFFICIENCY

The different equations for the efficiency of mass trans-
fer derived in the previous section can be put in a single
generalized form, The constants of these equations will be
different for the different models proposed. A meaningful
comparison of the models can then be made from the magnitudes

of these constants.

Equations (2.14), (2.18), (2.24), (2.30) and (2.36) can

be written as

. (2q+1)
-, P /D)2 2
o=y v (TT) ¢ ———=(2-42)

in which p and q can be evaluated as follows.

Since the volumetric rate of growth of the drops is
constant, and since it is assumed that the drop is spherical

throughout its history up to detachment,



dv
—_— C
dt ——— (2-43)
since
3 3
v = (4TTr2)7%2 (471)-’2-‘;—"
and
3
7/
v=1C A2 ——— (2.44)
where C and Cl are constants.
From Equations (2.43) and (2.44)
av _ N
dt —C, dt (A”72) [
3
/d(A/2)= szdt
——— (2-45)
3y integratihg Equation (2.45) and rearranging
2
- 7
A= Cy3t73 —ui=  [2:46)

(35)
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and

- 2,2
p= 4T r” t;’3 ——— (2-47)

where A = 47T rfz

Substituting for p, q and v, Equation (2.42) becomes

v
D 2. ., 2 7
E =3a (—-) rrlt3 %
1A ——— (2-48)
Equation (2.48) expresses E as a function of any time instant
t and the drop formation time tee If E has to be measured

over a time interval of tf then t = tf and Equation (2.48)

becomes

1
3 Dt' /2
E-a 2 (D)
T 72 re

—=— = (2-499)
which on simplification gives
th bé
E=a,(—)
r —== (2-50)

f

where

“ = 3 o
T 72

—-—— = (2-51)
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The values of &, for the different models are summarized

in Table (2.1).

TASLE (2.1)

VALUES OF THE CONSTANT @2 FOR THE DIFFERENT
' MODELS PROPOSED

Authors xz Reference
Licht and Pansing 1.451 (9)
Ilkovic 2.215 (18)
Heertjes, Holve and Talsma 5.803 (17)
Coulson and Skinner 2.175 (11)
Groothuis and Kramers 2,570 (14)

Heertjes and Denie

1) Surface stretching theory 1.692 (26)
€) Surface renewal theory 2.275
Michels
Cos wW'= 1 3.030 (25)
Cos wW'= 0 2.220
Cos WwW'= -1 0.832
Haritatos and Liberman 2.495 (24)
Least squares value from the present 5.142
work.*

* This is presented and discussed in Chapter - 6.
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CHAPTER - 3

HYDRODYNAMICS OF DROP GROWTH

In this chapter a theory is developed for the hydro-
dynamics of drop growth based on an analogy between Maxwell's
electromagnetic field equations and Euler's equations for in-
compressible fluids. Using this similarity the stream func-
tion of the growing drop is determined. This information is
subsequently made use of in the next chapter for predicting

the mass transfer coefficient.

3.1 KINEMATIC SIMILARITY BETWEEN THE MAXWELL AND EULER
EQUATIONS

The problem of mass transfer to and from a spherical
drop of liquid (A) injected through a submerged nozzle into a
continuous phase (B) - immiscible with (A) - requires for its
solution as a first step, complete knowledge of the velocity
distribution (internal circulation) inside the spherical drop
(a). The internal circulation can be readily seen to be

ascribable to

(1) the finite injection velocity at the nozzlej
(2) the tangential viscous drag all along the interface

between the liquid drop (A) and the continuous phase
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(B), through which the drop is made to rise with an
appreciable velocity which varies in the course of

drop formation.

The exact hydrodynamical treatment of the non-stationary
boundary value problem comprising both the mechanisms listed
above is extremely difficult, primarily because of the chang-
ing boundary condition (varying drop diameter), and also
because of the complexity of the geometric considerations
attending the submerged nozzle. It is possible, however, to
arrive at a reasonable solution in a closed form under certain
simplifying assumptions. The streamline pattern due to the
viscous drag can, for instance, be calculated by assuming the
drop to have an average diameter and rise through the continu-
ous phase with an average velocity, both of which can be compu-
ted in terms of time of formation and injection rate, and
directly using the Hadamard-Rybczinski solution (29, 31).
Averaging, of course, is to be done with a weighting factor

appropriate to the problem.

For reasons which will be made clear in the text to
follow, the contribution to the total internal circulation
induced by the viscous drag (Hadamard-Rybczinski mechanism)
is relatively small for the problem on hand, and hence we are
led to consider the internal circulation caused by the finite
injection velocity. A semi-phenomenological treatment of

the latter can be given on the following lines. At the very
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outset, it may be noted that while viscosity (of both conti-
nuous and dispersed phases) enters the Hadamard-Rybczinski
scheme in an essential way since it is exclusively responsible
for the induced circulation, it appears in the present mecha-
nism only as a dissipative factor, and as such can be neglected
in the first approximation. This amounts to assuming the
liquids to be ideal, and regarding the continuous phase as
merely providing containment. As regards the changing boundary
condition, i.e. the varying drop diameter, it is not possible
to assume an average drop diameter (as could be done in the
case of the Hadamard-Rybczinski mechanism) because of its in-
compatibility with the incompressibility of the liquid (A)
injected at a non-zero rate through the nozzle. One can,
however, and this is crucial to the present treatment, make use
of the mathematical artifice of adiabatic stepwise solution, in
which one solves the problem of flow for an instantaneous
boundary condition, i.e. instantaneous drop diameter, and then
allows the boundary condition (drop diameter) to vary with

time as a parameter. This artifice is justified if the total
time of formation is large compared with the characteristic

time of circulation.

In the following, a semi-phenomenological solution of
the problem of internal circulation for the given injection
velocity is obtained under the above mentioned simplifying
assumptions., In order to do this, use is made of a striking

kinematic analogy which exists between the present problem and
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a certain electromagnetic problem having a well known solu-
tion. It is observed that the streamline pattern inside

the drop is similar to the magnetic lines of force in a loss-
less microwave cavity (spherical) oscillating in TE) oy mode -
the dominant mode. The essential nature of the kinematic
analogy can be best understood in terms of the similarity of
the differential equations and the boundary conditions govern-
ing the two analogues, namely the Maxwell field equations of
electromagnetism and Euler's field equations of hydrodynamics.
The two sets of equations can be summarized for later reference
and completeness as follows, The electromagnetic field is
completely defined in terms of the field quantities,‘ﬁ,'g,'ﬁ,
E, and current sources, 3, and charges,g y which satisfy the

vector differential equations

> a8
SUlL & at ——= (3-1)
- - 3D
curl H = J + ——
ot -—= (32)
div B = 0 s
div 5=f -——— (3-4)

and in a homogeneous isotropic medium we have the additional

relations
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- —
D = KE —=—=  (35)
- —
B = M H —-——= (3-6)
J = 6F ———. 13:7)
In the rationalised MKS system of units we have,
E. = electric intensity, volts per m.
? = magnetic induction, webers per m.
T). = electric displacement, coulombs per m?
—H. = magnetic intensity, amp. per m.
? = current density, amp.per m‘?
o = electric conductivity, 1/ohm-m.
K = K, K° = electric inductive capacity of medium
M = M M, = magnetic inductive capacity of medium
K, = dielectric constant
My = permeability
K, =.8.854 x 10712 farad per m.
Mo, = 4T x 1007 = 1,257 x 10°° henry per m

P = charge density, coulombs per m=

= = 8 .
1/ /Ko:""o 2,998 x 10° m.per sec

In addition one has the continuity equations 1ndicating charge

conservation

= ({3 8]
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For the solution of an electromagnetic problem, the above

equations are to be supplemented by boundary conditions

appropriate to the problem.

Euler's equations of hydrodynamics of incompressible,

ideal fluid flow can be expressed in terms of the field quan-

tities,v, P, and the fluid density 9 as,

oV

— - 1
31 +(Vgrad) V = ?graq P

or in its equivalent form,

a -> -> —
TS (curl V) = curl (V x curl V)

In stationary state (no change with time)

iEO

at

Thus, Equation (3 - 10) reduces to

curl ( Vx curl _\7) =0

-=-= (39)

- == (3:10)

——=(311)
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and the continuity equation,

28 4 aivigV) = o

ot —-———- (3-12)
reduces to
. —
div V= 0 -——= (3-13)

For an incompressible fluid (i.e. constant‘f ) the above

equations, together with the appropriate boundary conditions,

completely define the flow.

The kinematic analogy of interest is formally based
on the realisation that the field quantities, v and 7?, both
satisfy very similar differential equations and, of course,

satisfy exactly the same boundary conditions.

In the first place it is noted that :

div V = 0 (3.14)
-—
div H = 0 (3.15)
and the boundary conditions
n.V = 0
n.H = 0

where n 1is the unit vector normal to the bounding surface,
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which in the case of a spherical drop is the interfacial
surface; while in the case of a microwave cavity, the per-
fectly conducting wall, Further we have from Maxwell's

equation

—

— a -
| =€ —|/— +
curl H Gat J

-
when there is no current inside the cavity, J = 0, Thus,

- AE
curl H = € at ——— (3-16)

—
Taking the cross product on both sides with H and then

taking curl we get,

curl (ng: curl ﬁ)= € curl (H x :tE )
=j W € curl (ﬁx E) -_——(3-17)

where w 1is the circular frequency of the field oscilla-
tions assumed to be cisoidal. The right hand side of

Equation (3.17) has a time average zero for fields bounded
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in space as in the case of the spherical cavity. This
follows from the fact that for electromagnetic fields boun-
ded in space, the vectors, E and 'E, are in quadrature,
i.e. have a relative phase lag of 135 . This permits us

to rewrite Equation (3.16) in an averaged sense as,
— —
curl (H x curl H) = 0 - == (3-18)

which is exactly the same as Equation (3.11) if we replace

it by v. Still another way of arriving at Equation (3.18)
would be to take the low frequency limit of Equation (3.17).
The above treatment establishes the kinematic similarity of
the two problems. This permits us to solve the problem on
hand in terms of its electromagnetic analogue (spherical
microwave cavity in the dominant mode) by making the follow-

ing identifications:

Electromagnetic Hydrodynamic
1) H (magnetic field) v (velocity)
2) Magnetic lines of force Streamlines
3) div H=0 div V=0 (3.19)

Boundary condition
Radial component

Hr = 0 r (3.20)

at r = a at r

<
I
o

"
[
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The kinematic analogy arrived at in the foregoing
section must not be taken too literally. In point of fact,
the electromagnetic analogue (the spherical microwave cavity)
admits of infinite number of modes as solution, while in the
case of internal circulation in the drop in question it is
only the TE101-like streamline pattern which is pertinent.

It 1s believed that the analogy is fairly exact for this
dominant mode. Dynamically, the two problems are completely
dissimilar in that the inertia-force relations are different.
However, in both the cases the trajectory of a descriptive
point can be expressed in parametric form involving space
co-ordinates only, which are similar in the two cases. This
in itself ensures a geometric similarity between the two
analogues. The physical plausibility of the above kinema-
tic similarity for TEIOI-like mode 1s self-evident.

3.2 VELOCITY DISTRIBUTION INSIDE THE DROP

- —e
Based on the previous analogy, V = H, one can

arrive at the velocity distribution in the drop by solving
Maxwell's equations for TE101 mode, inside a spherical loss-

less cavity with perfectly conducting walls.

The axially symmetric TE-modes can be obtained in

the usual spherical co-ordinate systems as (30) :

B
Ey,= —-

1
P = P, (cos 6) me/z(Kr)

-==(3-21)
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B, P, (cos®)

Ho = - =2 2s [nZnsy,ke)=KeZ, g tke) ] L
BynZy 41, (Kr) . )

H, = 3 [cos 6 P, (cos 8)—F,, (cos ©)
jw,u.r /2(sin 6) -—=(3-23)

where Z, , 4 1s half integral Bessel function; Pi (cos 6 ),
the Legendre function of first kind of order n. Bhy Ky W

are certain constants which will be eliminated.

For the TE,j mode (the dominant mode) n = 1; one thus

obtains
C'sin © ( sin Kr
Eg= ks Kr cos Kr) --= (3-24)
2jnC'cos 6 sin Kr
= — cos Kr
r . Kr Kr ) —-——- (3-25)
NP 2
jn C'sin 6 (Kr) =1
H‘9 = 2 2 sin Kr + cos Kr
K™r Kr
-—— (3-26)
where K 1is given by the boundary condition,
H__ = 0
r=a
or
tg Ka = Ka (3.27)
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the principal solution pveing Ka = 4.5, where a is the radius

of the sphere.

The constant, J q C', can ve evaluated in terms of

—
the value of H at the centre, r = 0.

From Equation (3.25), one obtains for the field Hy

at the centre (r = 0)

sin Kr
T—cos Kr)
H, = lim H,=-2]11C' S =
K r
6 =0
r—20
or
H, = jrlc' ——— (3-28)

Equations (3.25) and (3.26) can now be rewritten as

2H, cos 6 sin Kr
H. = ( — Cos Kr)
r K22 Kr ——= (3-29)
2
in 6 (Kr) =1
H, =- A, sin ( sin Kr + cos Kr)
= k22 Kr ——— (3-30)
H, = 0 —-——— (3-31)

—

—
Hence, replacing H by V everywhere, the radial and

tangential components of velocity at any point (r, © ) can
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be obtained as,

y 2V° cos 6 sin Kr K )
o —ig—s [ ——— ~
rir,0) Kr Kr os e ———1(332)
. 2
7 _ V, sin®© y (Kr) -1 i K)
9 (",e) K2r2 Kr sin I‘+COS r o (333)
Vw, = 0 ——— (3-34)

wnere K 1is given by Equation (3.27).

3.3 DETERMINATION OF CENTRE OF CIRCULATION

From the streamline configuration corresponding to
TElOl mode, it can be seen that the locus of the centres of

circulation is a circle which lies in the equatorial plane
m
e = '/

and has a radius,rc. The latter can be determined from the

condition that Vr = 0
v = 0
at r = T,y radial distance of centre of

circulation. One gets,

77/2 sin Kr,

- 22
r(r,®) K " Krc

2V° cos

—Ccos Krc)=0
- == (3-35)
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Vo sinTha s (K, )?-1

% = sin Kr. + cos Kr ) =0
6 (r,8) 2.2 c c
K-r, Kr,
— == (3-36)
Equation (3.35) is identically satisfied for all r, as
cos7lé = 0, Equation (3.36) gives
2
(Kr,)"—=1
sin Kr, + cos Krc) = 0
Kr, sirvias (HRE)
and
e & Kr.
g RKre = 2 — .
1= (Kr, ) LSS
having the principal solution
Kre = 274 -—=(3-39)
k is given by Equation (3.27)
4-5
K a ——=—1(3-40)

Substituting Equation (3.40) in Equation (3.39) r, can be
obtained

e = 0:'609a -———(3-41)
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The theoretical determination of the centre of circu-
lation based on the foregoing model derives excellent support
from the experimental findings of Heertjes et al. (17). In
order to separate the contribution of mass transfer during
drop formation from that taking place during coalescence,
they formed the drop one mm. above the liquid surface, and
using a photographic technique observed that in some cases a
small bubble of air was trapped in the drop. From photo-
graphic analysis it was found that the entrapped air bubbole
was always stagnant in the equatorial plane and the maximum
distance of this bubole from the centre of the drop was

found to be 0.6a where a 1s the radius of the drop.

Now, from general principles of mechanics, the
minimum potential energy state is the one favoured by the
system left to itself. For a given total energy, partly
kinetic and partly potential, the minimum potential energy
corresponds to the maximum kinetic energy. For an inhomo-
geneous system having species of two different densities the
above considération forces the denser of the two towards the
region of higher velocity and conversely the lighter towards
the region of lower velocity. In the experiments referred
to above the air bubble corresponds to the lighter of the
two components, and is accordingly forced towards the
region of minimum velocity, which in this case corresponds
to the centre of circulation. One is, therefore, led to

the conclusion that the air bubble trapped must come to
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rest at the centre of circulation which is at 0.6 a from the
centre in the equitorial plane. The above phenomenon is, in

fact, only a manifestation of the virial theorem of Clausius.

In the light of the foregoing reasoning, the agree-
ment between the theoretical prediction based on the proposed
model and the experimental evidence as to the location of

centre of circulation justifies the correctness of the model.

In this connection it may be recalled that the centre
of circulation, as obtained by Hadamard-Rybezinski (29, 31)
by solving the boundary value problem for a spherical drop
falling through an immiscible continuous medium, is 0.7la
from the centre. In this model, however, the internal cir-
culation was assumed to be set up exclusively by the viscous
drag all along the interface, while in the present analysis
the internal circulation has been attributed to the injection

velocity at the nozzle.

3.4 DETERMINATION OF THE STREAM FUNCTION Y

To complete the hydrodynamics of internal cecirculation
in the drop, we proceed to determine the stream function,
which is subsequently needed for computing the average time
of circulation., The stream function is related to the radial

and tangential velocity components, V Vg, by the following

r?
differential equations,
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y 1 oy
e(r,08) r sin@ ar -——— (3-42)
v B 1 -1 4
rir,8)  r25ine 36 ——— (3-43)
where
_ V,sin® (—’)" 45 45
Ve(re)‘ B 2.5 sin— r+cos—a—r
4.5 il
~a | d ——= (3.44)
4.5
v 2V,sin © sin —g—r
= —cos—
r(r,®) (4.5 i 2 45,—
a " —— (3-45)

Following Fourier method of separation of variables, and

noting that there is no @ variation,

Y, ) = Rt 6o —== (3-46)
Substituting in Equation (3.43),
vr(r,e) =

. 45
1 a@ 2V,cos@ [ sin—g=r 4.5
Fe s:neR’ 4.5 4-5 cosTgr

)L

-—= (347)
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Equating the 69 part of Equation (3.47)

1 8b

sine~¥—=2cose

36 = 2cos 06 sin6 36

. 2
e(e)-' sin“~ 6 —-——= (3-48)
Equating the radial part of Equation (3.47)
V, sinﬁr
a 4-5
zR(f)— - a5 —cos —5-r
( a v a
sinﬁ
r 4-5 a
(%2) ) o
- —— (3-49)

On substituting Equations (3.48), (3.49), (3.46) the stream

function reduces to

V,sin“@ sin a ' 4.5
yl = 2 = CO0S r
(r,0) 4-5 4_~5r a
a ) a

——-(3-50)

It can be easily verified that the stream function (3.50)

satisfies the other equation [(3.44)] and the solution is
therefore consistent.
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The different streamlines are given by the parametric

equation

l?u(r,e) o ——— (3-51)

and lie in the meridional plane, where C ranges between
Cmax and Cpyp. The bounds, Cmax and Cmin, can be arrived
at from the following considerations, C decreases monoto-
nically from Cmax’ corresponding to the vanishing streamline

at the centre of circulation, to C corresponding

min ?
the outermost streamline describing a semi-circle. The
streamline distribution in the drop for different values of

C 1s shown in Fig. (3.1).

Determination of cmin and Cmax

Cmin can be determined directly from the fact that
the outermost streamline has as its part the radial line
6 = 0 and hence from Bquation (3.50), the corresponding

value of C  1is equal to zero,

min —e— = (3:52)

Cmax can oe determined by maximizing C with res-

)
pect to © and r 3 accordingly we put 6 = /2 and obtain

the conditions

. 4-5
ac _ ) sin a r

—cos 5 r =0
ar or 4-5

= e ASX)
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| 1

FIG.(3-1).
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INSTANTANEOUS STREAMLINE PROFILES IN
A GROWING DROP.
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(4-5r),
oc _ _ 1 a .. 45 4-5
ar -~ 7 25 SR r +cos a2 !

--(3-54)

Equation (3.54) is solved to yield r = 0.809a which coincides

with the centre of circulationj the corresponding value of

“max 1s
sin2:73
Cmax (4 5) [ & rs cos 2.73-7
1:063
Cmax - 4 5 0 a
Cmax = 0-0525 V, a?
04£C.£0-0525 V, a® ——— (355)

3.5 LEVALUATION OF THE TIME OF CIRCULATION OVER THE STRHAMLINE

Determination of the effective mass transfer coefficient
involves an expression for the average time of circulation for
the streamlines., The time of circulation along a streamline
defined by Equation (3.51),

w(r,e) =cC

75 ds
tc VvV

is given by
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where ds 1is a line element along the prescribed streamline,

72
2 2
ds = [(dr) + (rde)_] - —=—(3-57)

and V(r, 0) is a velocity at the point,

2 2 72
v(r,e) ¥ [vr(r,e) - ve(r,e)J

———1(3-58)

where Vr(r, o) and Ve(r,o y are given by Equation (3.32)

and (3.33).

The expression could be put in a convenient form in

terms of normalised variables as follows. Putting,

X = Kr = —4£r
a —_———(3-59)
in the expréssions for Vr and Ve one obtains
2
" — Yir,e) (4'5)
(x,8) Vo a ——-1(3-60)

_ in2 sin x _
W(x,e) = sin~ 6 [ p cos x] C

——=—1(3-61)
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where l,U(x 6) is a normalised stream function and

O £ C £ 1-063

Normalised velocity components are given by

v — Vrtre) — 2co0s6 [ sin x — cos x
- r(x,8) v, x2 X e
v, ' 2_
' — Ye(r,8) _ _sin 6 St S
Vo(x, 8) = A 2 [ ~sinx + cos x
- i {363 )

also for the line element

1
a 2 27] 72
ds = 2—5 [(dx) + (x de)J

— ——(3-64)

From the above can be obtained

Yo
V=V Vl e + V‘2
0 r(x,e) 6 (x,0) ——=—(3-65)

the time of circulation t, reduces to

1
/2
o1 e [tax)? + (xae)’]
¢ VO 4-5 [V:Z + v12 1/2

rix,e) 6(x,8) ———(3-66)
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or

(2}
o<|°-
(2]

——— (3-67)

with

1
/.
jls N [ (ax)? + (xde)?]
= ) 2 2 -:]3’
v + v, z
[-NLG) 6(x,8) ——— (3-68)

where O, 1s a dimensionless parameter corresponding to the

streamlines (y(r'e) = C

Now for the purpose of numerical computation of the
above integral, a normalised dimensionless time of half circu-

lation is defined by

C/2

1
?S [(dx)2+ (xde)2_7 L
2
[Vr'(x,e) Yo (x e)_7/2

——=—=1(3-69)

In terms of t;i , the actual time of half circulation tc{

can be expressed as

1
el \(/j ECERRY ———=(3-70)
2 o €72



(62)

tct

The weighted average of the half time of circulation
——=(371)

is thus given by

t'

t =1.4d
C1/2 9 Vo C'/Z
where 273
1
X x dx
d/’tcbé( ) 21T
0, =2 -
c}z 273
/27Txdx
0
273
22‘/‘té1/ (x) x dx
. 2
273 —_——— (3-72)
(0]
thus the weighted average of the total time of circulation ?c
is given by
t =21 -2 4d 5 = 4d -
e 2t"/2 A t"/z A7 e . 8. F3)
where
2:73
0:536 9
==3 téy/ (x) x dx -?"
e ——=—(3-74)
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Numerical evaluation of integral (3.69) and (3.72)

yields
tc = 178
thus
- 17-8
o, =—9—"~2—'2 ———=(3-75)
and
d
t, =2~ — ——1(3-76)
(]

&, is a dimensionless quantity and in the present case serves
as a correlation parameter between experimental and theore-
tical observations. The integrations involved, however, can-
not be performed explicitly, and as such they were performed

on an 13M 7044 computer.
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SCHEMATIC DIAGRAM FOR WEIGHTED AVERAGING



CHAPTER -4

ESTIMATION OF MASS TRANSFER COEFFICIENT
FOR FORMING DROP
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CHAPTER - 4

BSTIMATION OF MASS TRANSFmr COEFFICIENT FOR FORMING DROP

In this section an expression is derived for the mass
transfer coefficient in the presence of internal circulation
making use of the modified treatment of Handlos and Baron (32)
which 1s presumably free from any parameter that must be deter-
mined empirically from experiments. The mechanism proposed
by them is essentially based on the eddy diffusion model in
which a droplet of constant diameter d of known dispersed
phase viscosity,,uo, is seen to fall with a known velocity, V,
through a continuous phase of viscosity;/;c,while the continu-
ous phase resistance to diffusion is assumed to be vanishingly
small. Further, a fully developed circulation pattern is
assumed to be developed which is approximated by a system of
coaxial tori rotating en-bloc with an average time of circula-
tion (Fig. 4.1). It 1s further assumed that there is a ran-
dom radial vibration superimposed upon the laminar flow caus-
ing, thereby, an admixing of adjacent streamlines. This
eddy diffusion mechanism is presumed to be responsible for
the radial mass transfer. At this stage, they assumed an
effective eddy diffusivity, Eﬂ given by the Einstein equation

for the two dimensional flow
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c ———1(4-1)

where 7% is the mean squared radial displacement during the
average time of circulation. The above is true in the limit-
ing case of complete mixing of one element of fluid in the
characteristic time of circulation, that is, time for one

complete circulation.

The average time of circulation Ec was obtained by
Kronig and Brink (33) for the Hadamard-Rybczinski (29, 31)
streamline pattern by solving the corresponding Fourier-

Poisson equation, the relation being

-—=(4-2)

Solution of the two-dimensional diffusion equation with B
as the effective diffusion coefficient having radial depen-
dence, subject to appropriate boundary conditions, yielded in

their case an effective mass transfer coefficient

o 000375V

P (,+ﬂ
M ——= (4-3)
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It is easily appreciated that the above model does not answer
the problems imposed by the forming drop in that the drop dia-

meter is varying continuously.

The internal circulation is not due to the viscous
drag and as such the Hadamard-Rybczinski streamline cannot be
used for calculating the average time of circulation as done

by Kronig and Brink.

One can, however, solve this problem by the method of
stepwise adiabatlc solution referred to earlier. Accordingly
it can be assumed that the streamline pattern of internal cir-
culation as deduced in Chapter 3 will hold for any instantane-
ous drop diameter, and the average time of circulation for the
streamline can be computed. This average time is then substi-
tuted in the eddy diffusion equation in place of the average
time as computed by Kronig and Brink (33).

The diffusion equation governing the mass transfer is
then solved, using the above eddy diffusion coefficient, for
the proper boundary conditions (i.e. changing drop diameter).
Thus the effect of mass injection is taken into account only
to the extent that it provides the internal circulation, and
changes the surface area available for mass transfer. The
rest of the treatment proceeds along a line similar to that
of Handlos and Baron (32). The mathematical treatment is

as follows :
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(FIG. 4-1)

A schematic drawing of a droplet having an instantane-
ous diameter d 1is shown in Fig. (4.1), in which the stream-
line pattern of the TE101 mode is replaced, as shown in the
left half of the figure, by a system of tori with a maximum
cross sectional radius of d/4 shown on the right half of
the figure. On the assumption of a random radial motion,
the mean squared displacement 22 of the descriptive element
initially at the radial distance, q y in course of one com-
plete circulation period, can be easily deduced from the
following phase - space arguments. The differential proba-
bility, P(q)dvl, of the elemental volume initially at radial



(68)

distance, 71 , to be found in an annulus,'lz' + ZL A Tl' )
after one complete circulation time, is equal to the frac-

tional volume of the annulus. That 1is

W it 2Tn'dn'
P(rz) d'rl —
/16
‘ ' 3211' dn’
P(’I) d’] i ——dz_ ——=1(4-4)

where d 1is the instantaneous drop diameter or

P (y) dy' = 2y'dy' ———1(45)
47
Yy = 74 -—=(46)
Yy 1is a dimensionless variable whose value is given by

Ot y £ 1
d
L L —
@S9 =3

The mean squared displacement is

1
2 2 , , ——= (4:7)
b 4 =fz (y) P (y) dy

o
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with

Zz(y)-% (y' y) -——— (4-8)

on integration, one obtains,

- 2
2 (y) = L (6y%— 8y + 3)

96 ——= (49)
The characteristic time for average displacement
(which is the same as the average circulation time) is given

from the previous calculation[@quation (3.75&

Thus, the effective diffusivity, E'(y), is given by

' v,
E (y) = ——— = = .—— (6y —8y+ 3)

2
65 (6y —8y +3) ——— (4-10)

The differential mass balance on'the system within
the torus is described by the diffusion equation in two dimen-

sion.
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ac(n) -
—ﬁ— = djv [E' (y) gradc (11)] ———(4-11)

Where the argument,q, was retained in c(q) to emphasise
the exclusive radial dependence of concentration. In the
polar co-ordinates, preferred because of the symmetry of
the problem and the boundary conditions, the continuity

equation can be rewritten as,

3c 16 1 38 [ Voyd 2 ac
3t 42 vy 9y | 7eg 6y T8y+3) G- | — (442
9c _ 16 1. 8 [ VoY 2_ 3¢ | ——-(a13)
N d y-dy 768 (6y“—8y + 3) 3y

where use is made of the fact that the derivatives on the right
hand side are all at a given instant of time i.e. (t = const.).
This justifies taking d outside the sign of differentiation
with respect to y (= 47l/d) even though d 1is now a func-
tion of time, This amounts to treating t and y as inde-
pendent variables. The obvious advantage of this choice of
variables is the fact that the boundary of the growing toroid

is given by y =1 for all values of t,

In deducing Equation (4.13) we have made use of a

relation from vector analysis (no phi variation )
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|18

= q ‘aq

-2
(11 A’l ) + 36 (Ag) e Faae

for any vector A 1in polar co-ordinates (q »0). Equation
(4.13) is to be solved for the boundary condition. Since
it is assumed that the continuous phase resistance is negli-
gible for the mass transfer taking place from the dispersed
phase to the continuous phase, the concentration at the dis-
persed phase boundary is zero at any instant ¢ > 0. Also,
initially at time t = O, the concentration at any point in-
side the drop will be equal to the initial (inlet) concen-

tration c,. Thus,

c=0 at 71=-Td or y=1

o
I~
<
In

for t = O —-——— (4-15)

The explicit time dependence of d 1is known from the volu=-

metric rate of inflow, Qy

Q = 5—:- —d—(ﬂds) = Const.

v dt 6 (4-16)
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or

1
d= St’3 —_— (4-17)

where s 1s a constant given by
1
s (so,)/s
m

Equation (4.13) is separable and we can write

ey = Tt Yy ——— (4-18)
dc al (t)
Syt DAL

dt Y(y) at ———1(4-19)

ac Y,
(y,t) _ al(y)
Tt) dy - ——(4:20)

ay

Substituting Equations(4.17), (4.19) and (4.20) in Equation
(4.13)

1 :
sts alw)_ 1 16_3[\“ (622 3) aY(gj

Tit) 9 Y v 9y | 768 3y

-—— (4:21)

After rearranging Equation (4.21) one can write
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8
- t”s altt) _ 1 -i[;(ey"-syﬁ) a}’(y)

Vo T(t) 9t yYiy) O

-——(4-22)
1
s t7n al(t)
48-2-. =3. - —
vo T(t) a(t) -—=(4-23)
—~— 2 [ y(6y?~8y+3) aY(”)J -—
yYly) ©Y 9y ———(4-24)

where A\ represents any one of an infinite number of

eigen values.

Equation (4.23) can be easily integrated:

altt)_ _ AV, /gt_

Tit) 48s t’s

AVo 3 .2
in T(t) = - 285 2 t’3 + In const. ot diR8)

T(t) = Const. exp. [ (323 /)J

Equation (4.24) is an eigen value equation exactly the same

- —=—(4-26)

as the one solved by Handlos and Baron (32).
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Let Y, and A, be the n-th eigen function and
eigen value respectively of Equation (4.24),. The total
solution can be written down as the linear combination of
the eigen solution of Equation (4.24) multiplied by the

appropriate time dependent function as obtained from (4.26)

we have

@ MVo 2,
= —_ 173
“ty, ) ) ;[AnYn exp( 325 ¢ )] =i e WDF )

where An is a constant to be evaluated from the boundary
conditions, From the general properties of the eigen
value problems each successive eigen value in Equation
(4.27) 1is larger than the preceding one. Handlos and
Baron have shown that the second eigen value is already
large enough compared to the first to be neglected. Hence

we retain only the lowest eigen value, this being
A, =288
obtained by the Ragleigh-Ritz method.

Now the ratio of the mass of solute in the drop at

time t to that at time zero is given by

M(t) < _ A Vo %3
M (o) =2;An . ( 325 !

———(4-28)
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Taking only the first eigen value in Equation (4.28) one

obtains

2 ALV 2
M(t)'= 2 A exp (_ M t/3)

M (o) 1 32S ———(4-29)

We define the film coefficient by the following material

balance equation

d dv
gr (v ci) =k (ciin —ci ) A+ gt Cie  ———(4-30)
where

v = 1nstantaneous volume of the drops

A = 1instantaneous area of the drop

ci = 1nside concentration at time t

c1 i = concentration at the interface

yin
s = the inlet (initial) concentration
cy at t =0

One gets from Equation (4.30) after differentiation

dc. dv
i dt

(Cio =Ci) ——_(4-31)
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As the inside concentration does not change appreciably

during the formation time, the second term on the right hand

side can be neglected, giving

dc; k
*ap = (ciin —Ci )A - ——(4-32)
where
% d
A_ = g AND k'. Ci,in =0

Equation (4.32) can be written as

d. de _ _ .

6 dt i ——— (4-33)

In the above equation, substituting for d in Equation (4.17)

and solving, one gets

c t
de _ _ 6ki [ dt
c S t"3 ——=(4-34)
Co o
2
In ¢c—=1In ¢, = —Sik,- t/3 - —=—1(4-35)
2
< = exp —§9-k,- t’3
=0 ———(4-36)
c M(t)
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Combining Equation (4.36) with Equation (4.29) one gets

2
-y . AT/ t 73
S i 32-S ——— (4:37)
k >‘1vo
i 288 ——— (4-38)

where Ay = 2.88. Thus

2-88
ki 288 Yo LRy —_——— (4-39)

Equation (4.39) expresses the effective mass transfer coeffi-
cient in terms of fluid velocity V, at the instantaneous
centre of the drop. As discussed later in Chapter 6, V°
can reasonably be approximated by Vy, the nozzle velocity

which is known. Thus
k; =001V, = 0-01 Yy ———(4-40)

Equation (4.40) will be made use of in Chapter 6 for comparison
of experimental mass transfer rates with the theoretical pre-

diction.
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CHAPTER - §

EXPERIMENTAL

In Chapter 4 equations were developed based on the
proposed conceptual model for estimating the average mass
transfer coefficient during drop formation. From this
equation it is possible to calculate ky without experimental
data. The purpose of the present chapter is to indicate a
procedure for estimating ki from experimental data, followed
by a description of the experimental procedure and a tabulated

presentation of the data obtained.

5.1 EVALUATION OF THE AVERAGE MASS TRANSFER COEFFICIENT k4

FOR A FORMING DROP FROM EXPERIMENTAL DATA

The experimental data were obtained in the form of an

extraction efficiency ET defined as

o Moo st o [ 558 )

where MT is the net mass transferred per drop at any time ¢t

and My is the theoretical maximum mass transfer than can take



(79)

place after an infinite time of contact (i.e. mass transfer

at equiliorium). Thus,

tmax

M, = N" dt

ps == (52)

n
where N is the drop flux expressed as (gm-mole/sec. per drop).
The average mass transfer coefficient for a forming drop is

given by the equation

MT = k,- ¢ AAVt -——— (53)
Expressing the average area Aav in terms of an appropriate

integral the following equation results,

t

max

MT = k'. Ac /Adt
———1(54)

o

In this equation if the integral can be evaluated, then all

other factors being known, k can be estimated. The proce-

i
dure for evaluating the integral is given below.

In the experimental programme organised for determining
ki y the volumetric flow rate of the liquid through the nozzle

was held constant for a given run, i.e.
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dv

W = Const. = VN AN —_———(5-5)

By writing the volume in terms of the radius and rearranging,

the following equation results :

walld - r%dr
WAN - ——(56)

dt =

Substituting Equation (5.6) in Equation (5.4) and suitably

altering the boundary conditions, we obtain

te
Mr = kl. Ac (477) / r4 dr
VNAN
5 ——=1(57)
2 5
41T r.
My =k, & ( A) vk
WAN ———(58)

3
which can be written in terms of gm. transferred per cm. as

(47T)2 re M -3
e =~ K Ao s —f 10
W AN v -———(59)
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The mass transfer at infinite time of contact, again

expressed in terms of gm./cm.s,is given by

M = ¢* M 10 — ——(5-10a)
-3 —_—— = (5-10D)
Substituting Equation (5.29) and (5.10a) (5.10b) respectively

in Equation (5.1) and expressing v 1in terms of the radius

and simplifying, we obtain

12 T Ac 2
E, = — k : r
TG 2 A Te® e ——— (5-110)
12 T Ac 2
E, = £k, - r
T 5 1AM ¢, f — — = (5-11b)

which on further simplification gives

k., = 01326 A,V —S: T
i2 ' NN 2
Ac rf

———1(512a)

k 0-1326 A,V Yo £
U N'NAc r? - ——(512 b)
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It will be noticed that kqy calculated from Equations
(5.12a) and (5.12b) has the dimensions of cm./sec. which is in
keeping with the definition of ky.

In order to obtain ky; from Equations (5.12a) and
(6.12b) the values of ¢, , ¢®* and Ac should be known,
ANy Vy and Ty being parametric constants for a given system
and flow rate. ET can be experimentally determined. The
calculation of Ac is based on the direction of transfer,
i.e. whether the transfer takes place from the forming drop
to the continuous phase or vice versa. The following equa-
tions for Ac can easily be developed for the two cases

based on dispersed phase resistance :

Case l. Mass transfer from drop to continuous phase :

2co —c,

Ac =
2 ——— (5-13)

Case 2. Mass transfer from continuous phase to drop :

*
2¢ =G,

Ac = 2 ———(5-14)

Equations for directly calculating ki from experi-
mental data and the parametric constants of a system can then
be obtained by combining kquations (5.12b) and (5.13) for

Case 1 and Equations (5.12a) and (5.14) for Case 2. Thus,
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2c, Er
Casei. k, =0:1326 AV, 2¢c, -c, rfz -———(5-15)
2c" Er
Case2. k;, =0:1326 AV, x_. 2
i 2ct ¢, rg -—=(5-16)

5.2 DESCRIPTION AND OPERATION OF THE EXPERAIMENTAL ASSEMSBLY

This section 1s concerned with the description of the
experimental set-up used for determining the mass transfer co-
efficients during drop formation, and with the operation of
this assembly. The purity of the chemicals used and the ana-

lytical technique employed are also discussed.
5.2.1 Description

The experimental set-up used in this study was of the
conventional type and had the following broad features (Fig. 51):
arrangements for constant feed of the continuous and disper-
sed phasesj nozzle for drop formation; and an arrangement

for withdrawing the drops immediately after formation.

The extraction was carried out in a glass column 75 mm.
i. dia. x 550 mm. height. This was a double-walled column (1)

in which the annular space (2) was used for circulating a
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thermostatic liquid for maintaining the temperature inside the
column at any desired value. The bottom of the column was
provided with an inlet for the dispersed phase, and to this in-
let was attached a nozzle (3) machined from stainless steel.
The internal diameter of the nozzle used was 1.9 mm. with a 45°

taper; It was machined to ensure a sharp and well defined edge.

The column was fed at the top with the continuous phase
which was continuously withdrawn at the bottom and collected in
a vessel (5) through a jack leg. A constant flow rate of this
phase was ensured through the use of a Mariotte bottle (4) and

was measured with a differential manometer (6).

The dispersed phase was also fed from a Mariotte bottle
(7) and it entered the nozzle through two double-surface heat
exchangers (8) made of glass. The rate of the dispersed phase
was accurately controlled by a fine needle valve (9), and the
constancy of the rate was ensured through the differential

manometer (10),

In order to maintain the entire system at a constant
temperature (in this case 25°C.) water from thermostat (11)
was circulated by an immersion pump both through the annular
space of the extraction column and the two heat exchangers used

in the dispersed phase line.

The object of the present experimental study being the

measurement of mass transfer during drop formation, an inverted
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FIG. (51). EXPERIMENTAL SET-UP.




(86)

funnel (12) was held in position at a suitable distance from
the nozzle tip in order to minimize the mass transfer during
steady rise and drop coalescence. As soon as the drop was
released from the nozzle tip, it entered the funnel where coal-
eéscence occurred, and it was therefore necessary to keep the
surface of coalescence as small as possible in order to elimi-
nate the third stage of mass transfer occurring in an experi-
mental column. The second stage could be effectively mini-
mized by maintaining as smalla distance as possible between the
funnel and nozzle tip. It was found that both these could be
achieved by maintaining a distance of 12 mm. between the nozzle
tip and funnel and by using a funnel with a coalescence surface

of 32 sq. mm,

In order to ensure that the experiments were carried
out under conditions where impurities from the set-up did not
enter the system, the entire assembly was constructed of
glass including the connecting lines except nozzle (3) and
needle valve (9) which were made of stainless steel. Conta=-
mination froh the connecting plastic rubber tubings was avoided
by ensuring face to face contact between the glass tubings.

The use of stop-cock grease was also avoided.

5.2.2 Operation

Since mass transfer from drops is extremely sensitive
to impurities, it was ensured that the experimental assembly

was cleaned and dried before work was commenced. This was
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accomplished by washing the entire equipment successively with
tap water, detergent, tap water, dilute sulphuric acid, tap
water, and double distilled water. It was then dried under
vacuum., The continuous and the dispersed phases were mutually
saturated and stored together for at least a month in a well-

cleaned glass container before use.

The run was commenced by adjusting the flow of the
continuous phase from the Mariotte bottle at a constant rate
of 100 ce. per min. corresponding to the velocity of the con-
tinuous phase equal to 0.377 mm. per sec. The flow was such
that there was no disturbance and the liquid was continuously
removed from the bottom through the jack let as described
earlier, The rate of the continuous phase flow was measured
by collecting a known volume of the liquid. Although the
differential manometer was accurately calibrated before the
commencement of the runs, the actual rate was also determined
by measuring the time required for collecting a known volume

in order to provide a double check on the flow rate.

The dispersed phase flow was also started so that
drops were continuously released from the nozzle into the
inverted funnel. Periodic counting of the drops ensured that
the rate of drop formation was constant. As in the case of
the continuous phase, this was checked by collecting and
measuring 100 drops in a receiver and comparing the flow rate

obtained with the rates read from the number of drops per unit
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time and the differential manometer reading.

The circulation of water from the thermostat was now
commenced so that the entire system was maintained at a tempe-~
rature of 25.0 + 0,20°C. Steady conditions were reached

after aoout 2-3 hours depending on the flow rates.

After steady conditions had been obtained the liquid
was collected in the microburette, and 10 cc. of this was
diluted with 100 cec. of distilled water and titrated against
standard KOH using a deckman automatic titrator (type-XK). The
automatic titrator was provided with standard glass electrode,
a reference electrode and an efficient high speed stirrer. The
delivery tip of the microburette was immersed in the liquid very
close to the stirrer. The analytical technique was accurate

to within * 0.1%.
Materials used :

Two solvents were used as the dispersed phase (drop
phase), benzene and toluene. Rectified grade toluene was
purified three times with conc. H2304 to remove any traces
of thiophene. It was then washed repeatedly with water, once
with 10% NA2003 solution, and again with water. It was
distilled in an all-glass 24 inch distillation column packed
with 1/8" glass helices (equivalent to 20 theoretical plates).
The first 100 cc. of the product and the last 100 cc. were
discarded. The fraction in the boiling point range
107 - 108°C. was collected.
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Senzene of BDH rectified grade was purified in the
same way as mentioned above and the boiling point range of

78,5 - 79.5°C, was collected.

The water used for the continuous phase (and for other

purposes during the experiments) was of glass distilled grade.

Analar grade solutes (acetic acid and propionic acid)

were used.

5.3 EXPERIMENTAL DATA

Experimental data were collected for the following

four systems 3

Acetic acid - toluene - water
Acetic acid - benzene - water
Propionic acid - toluene - water
Propionic acid - benzene - water

By carrying out experiments for both the directions of trans-
fer for a given system, it was possible to organize 8 series
of experiments, The results obtained are summarized in
Tables (6.1) through (5.8), which also include the Qalues of
the constant ,[3, and the theoretical mass transfer coeffici-
ent, ky . A comparison of the experimental and theoretical
values 1s made in Chapter 6. A sample calculation of ky

is given below.
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Calculation of ki

The procedure for computing the mass transfer coeffi-
cient , ky, from the experimental data is demonstrated for run
No.O80 of Table (5.5) for the system propionic acid - toluene -
- water, the direction of transfer being from the continuous

to the dispersed phase, using Equation (5.18).

2 c* ET

2¢* - Ct Te
where
Ay = 0.0 &
N - ] 2835 cm.
Vn = 1.145 cm./sec,
¢* = 0.346 gm.mole/litre
¢ty = 0.04960 gm.mole/litre
ET = 0,1433
rf = 0.260 cm.
Substituting these values in the above equation
2x0.346 0.1433
kiz(exp.) = 0.1326 X 0.02835 X 1.145 ®
2x0,346-0,04960 0,0678
= 0,0098 cm./sec.
ki(theoretical) = 0,01 Vy
kyo(exp.) = B Vy SR R

il
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where [3 is the experimental constant whose theoretical

value is 0,01

kyo(exp.) 0.0098
[3 = 0,01 —m——— = 0,01 —m
k4 (theor) 0.,01145

0.00855

>
"
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CHAPTER -~ 6

DISCUSSION

6.1 KINGMATIC SIMILARITY

The theoretical model proposed in this study is predi-
cated on the kinematic similarity between the streamlines of
circulation in a forming drop and the field pattern in a
spherical microwave cavity oscillating in TElOl mode. The
kinematic analogy in turn is based on the similarity of the
field equations governing the field variables in the two cases
(velocity and the magnetic field respectively). While the
kinematic similarity is by no means complete in that the dyna-
mical features of the problem are not taken into account,
nevertheless the significant points of similarity are covered

in this phenomenological treatment.

For the completeness of any kinematic similarity, the
boundary conditions must be reproduced in the model (Equations

(3.11),(3.18)). This is indeed the case in the present treatment.

The circumstance of the changing boundary conditions
(varying drop diameter) has been treated in the proposed model
by making use of the mathematical orifice of stepwise adiabatic

solution, which is justifiable in the present case as the time
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of one complete circulation in the drop is small compared to
the total life of the forming drop. Thus the field equa-
tions contain the drop diameter as a time dependent parameter.
It may be emphasised that the kinematic similarity envisaged
here tgkes full cognizance of the fact that the field quanti-
ties inside the microwave cavity have a high frequency time
dependence while the flow in the forming drop is relatively
quasi-static. That we are still able to compare the inst-
antaneous streamlines in the two cases derives from the fact
that the streamline can be expressed in a parametric form
involving space co-ordinates only. This resultant separa-
bility of space and time dependence of the field quantities

forms the conceptual basis of the present treatment.

A significant point of departure from the earlier
treatments based on the conventional Hadamard-Rybczinski
model is in respect of the inclusion of the viscous effects.
It may be noted that in the Hadamard model the internal cir-
culation is exclusively the result of tangential viscous
drag exerted by the continuous phase along the surface of
the moving drop, and as such forms the core of the treatment.
In particular, in the 1limit, the dispersed phase viscosity

approacning zero, no internal circulation will be set up.

In the present model, which is apparently the only
model proposed for a growing drop, viscous effects are of

secondary importance. The internal circulation is exclusively
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due to the momentum impulse generated by the injection velo-
city. In point of fact, viscous forces have a deleterious
effect on the internal circulation (which tends to reduce

the value of Vo). The contrariness of the role of viscosity

in the two models is noteworthy.

In the development of the model it is apparent that
the important parameter is the velocity (Vo) at the instan-
taneous centre of the forming drop. Since Vo cannot be
experimentally determined, it should be expressed in terms
of the velocity at the nozzle (Vy) which is known. The
exact determination of the ratio V,/V, appears to be well
nigh impossible. It 1s, however, known from the solution
of an analogous problem of an infinitesimally small submerged
nozzle injecting a liquid vertically in an infinite medium(35) of
the same liquid, that there is a finite depth of penetration
in the direction of injection. It is reasonable to assume,
for physical dimensions small compared to the penetration
depth, that the velocity along the direction of injection is
constant (i.e. equal to the injection velocity). In the

present case, this amounts to assuming Vo = V without

n
significant loss of accuracy. Moreover the containment of
the streamlines inherent in the present case tends to further

equalise the velocities.

6.2 MASS TRANSFER

The theoretical model discussed in the foregoing

section enables one to estimate the average time of circulation.
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This has been done by previous investigators for the uniform
moving drop on the basis of the Hadamard-Rybczinski model of
internal circulation induced by the viscous drag. The subse-
quent use of this time of circulation in the estimation of
the mass transfer coefficient has generally followed the
treatment given by Handlos and Baron, in which one obtains

an expression for the effective diffusivity from Einstein's
equation. In the present work, while the average time of
circulation has been calculated by an entirely new theoretical
model, the basic tenets of the Handlos-Baron treatment have
been retained in deriving the effective mass transfer coeffi-

cient.

The final expression for the mass transfer coefficient
is strikingly similar to the one obtained by Handlos and
Baron, in spite of the fact that in the present case the drop
diameter is continually changing (since it involves a forming
drop), while Handlos and Baron considered the case of a moving

drop, the diameter of which is necessarily constant.

The viscosity dependent factor appearing in Handlos-
Baron expression is inherent in the very mechanism responsible
for the circulation, while in the present analysis it 1is a
dissipative factor which 1s considered non-essential to the

treatment .

It may be noted that the mass transfer coefficient

derived is independent of the specific properties of the
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liquid. This is to be anticipated in view of the kinematic
treatment employed in which the constitutive properties are
not involved. An extension of this treatment to the non-
ideal case must include the effects of viscosity, which can
be accomplished phenomenologically by introducing a damping
factor involving viscosity. However, this has not been
attempted in the present treatment since, as shown in the
next section, the idealised model adequately represents the

experimental data.

6.3 T&sT OF THE MODEL

The equation developed from the proposed conceptual

model can be put in the general form

ki = ﬁ Vn

The value of /3 has been theoretically estimated to be 0,01
in Chapter 4. Based on the experimental values of the mass
transfer coefficient, including both the directions of trans-
fer, presented in Tables (5.1) to (5.8) of Chapter 5, the
values of /3 have been calculated for each of the 144 runs
recorded in these tables. These values vary from about
0.005 to 0,01. The average value of [5 was then calcula-

ted by plotting kj(exp.) vs. V  and determining the slope

n
by the method of least squares. Thus,

/3 = 0,00623

Standard deviation = 0,0001562
of the slope
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In order to provide a visual comparison of the experi-
mental and theoretical mass transfer coefficients, a plot of

ki(theoretical) VS, ki(exptl.) is presented in Fig. (6.1).

Considering the fact that the proposed model is a com-
pletely hypothetical one, involving kinematic similarity with
an entirely different physical system, the correspondence
between the theoretical (0.01) and experimental (0,00623)
values of [3 should be regarded as highly satisfactory.

In Chapter - 2 all the existing models were brought to
a common efficiency basis for comparison, and the values of

the resulting equation

1
Dt, \%2
S =0e |2
f

obtained from different models were summarized in Table (2.1).
In order to compare the value of &, obtained from the present
experimental programme with those reported this was estimated
from the equation given above using the data presented in
Tables (5.1) to (5.8) and by employing the method of least

squares. Thus,

a, = §5.142
Standard deviation = 00,0865

It will be seen from Table (2.1) that this value 1is only sli-
ghtly lower than that calculated from the model of Heertjes et

al, (17), but is higher than those predicted from the other
models listed.
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NOMENCLATURE

Instantaneous area of mass transfer (cm.2)
Average area of mass transfer (cm.<)
Expansion coefficient of the n-th term

Internal cross sectional area of the nozzle
(cm.=)

Radius of microwave cavity (or drop) (cm.)
Magnetic induction (webers/m.)

?odal)constant of Equations (3.21), (3.22) and
3.23

Constants of Equations (3.51), (2.43), (2.44)
(2.45) and (2.46) '
Constant of Equations(3.24), (3.25) and (3.26)
1/ (K, m, )1’2 = 2,998 . 108 (m./sec.)
Concentration (gm.mole/lit.)

Initial or inlet concentration (gm.mole/lit.)
Actual mass transferred (gm.mole/lit.)
Equilibrium concentration (gm.mole/lit.)

Concentration at radial distance ul from
centre of circulation (gm.mole/lit.)

Inside concentration at time, t (gm.mole/lit.)
Concentration at the interface (gm.mole/lit.)
Inlet concentration at t = 0 (gm.mole/lit.)

Concentration at the end of drop formation
time, ty (gm.mole/lit.)
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Diffusion coefficient (cm.“/sec.)
Electric displacement (coulombs/m.<)
Instantaneous diameter of the drop (cm.)
Inner diameter of the nozzle (cm.)
Efficiency of mass transfer

Electric intensity (volts/m.3)

Effective eddy diffusivity (em.%/sec.)

Efficiency of mass transfer defined by
Equation (5.1)

Azimuthal component of ET

Magnetic intensity (amp./m.)

Constant defined by Equation (3.28)

Radial component of ﬁ’

Meridian component of T

Current density (amp./m.%)

Constant of kquations (3.22) through (3.28)

Magnitude of wave vector; also K = KpKg =
electric inductive capacity of medium

8.854 . 10712 (farad/m.)

Dielectric constant

Effective mass transfer coefficient (cm./sec.)
Effective mass transfer coefficient for the
direction of transfer from dispersed to con-
tinuous phase (cm./sec.)

Effective mass transfer coefficient for the
direction of transfer from continuous to
dispersed phase (em./sec.)

Liquid phase mass transfer coefficient (cm./sec.)

Molecular weight (gm./mole)
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Mp = Net mass transferred at any time, E

Moo = Net mass transferred at infinite time

M(t) = Mass of solute at time t 1in the drop

M(o) N Mass of solute at time t = O in the drop

N . Net mass transferred up to time t (gm.mole)
N' = Diffusion flux (gm.mole/sec.cm.2)

s Drop flux (gm.mole/sec.(single drop) )
P = Pressure (kg./cm.<)
1
P (cos @)

P( 'rl )d'rl

I

Legendire function of first kind of order n

Differential pronapnility of an elemental
volume at radial distance q from the centre
of circulation

P = Constant of squation (2.7)

Qu - Volumetric rate of inflow (cm.3/sec.)

q = Constant of =quation (2.7)

r = Radius of the drop; also radial co-ordinate

To = Instantaneous centre of circulation

re = Final radius of the drop (cm.)

S = Constant defined by Equation (4.17)

t = Time (sec.)

te = Time of circulation along the streamline
corresponding to parameter C

tct = Actual time of half circulation along the
streamline y =¢C

té% = Normalised dimensionless time of half circu-
lation along the streamline y =¢C

:cf = Weighted average of half-time of circulation
along the streamline v = C

;c - 2 tcf

te = Time of formation (sec.)



Ye ¥ =

Yn =
2
72

1]

(Zn+é)(Kr)

Greek letters
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Velocity (cm./sec.)
Velocity of liquid at the nozzle (cm./sec.)

Velocity at the instantaneous centre of the
drop

Radial component of velocity
Theta component of velocity
Phi component of velocity
Volume of the drop (cm.3)

Linear distance of diffusion (cm.); also
dimensionless variable defined by Equation
(3.59)

Parameter defined by Equation (2.34); also
dimensionless variable defined by Equation
(4.6)

n-th eigen function

Radial displacement

Mean squared radial displacement

Half integral Bessel function

Constant defined by Equations (2.14), (2.18),
(2.24), (2.30) and (2.36). Note : The
definitions of &, are different in the
different model equations mentioned above
Constant defined by Equation (2.51)

Constant defined by Equation (3.68)

Weighted average of

Proportionality constant of Equation (5.17)
(theoretical value : 0,01)

n-th eigen value
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Radial distance from the centre of circula-
tion; also a constant of Equations (3.c4),
(3.25) and (3,26)

Viscosity (gm./cm.sec.); also = 4,
magnetic inductive capacity of medium

Mo =
Viscosity of continuous phase (gm./cm.sec.)
4 77 1077 = 1.257 10"6 (henry/m.)
Viscosity of dispersed phase (gm./cm.sec.)
Permeability

Stream function

Phi co-ordinate

Theta co-ordinate

Density of the liquid (gm./gm.3); also
charge density (coulombs/m.*<)

Electric conductivity (1/ohm.m.)

Circular frequency of the field oscillation
in microwave cavity (1/sec.)

Angular position in spherical co-ordinates
(radians) (see reference (25) )
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