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SYNOPSIS

3ince the Heisenberg's theory of a ferromagnet and

~ the Bloch's ide= of spin waves which represent the excitations
of a magnetic system, the magnetically ordered systems have
stimulated considerable interest among research workers.

Among the three uain types of ordered systems, namely, ferro-,
ferri- and antiferrocagnetics, we are interested in the ferri-~
magnevic crystals in the present dissertation. The simplest
ferrimagnetic system consists of two siuple cubic sublattices
which interpenetrate to form a body=-centred cubic lattice. The
spins of the atoms on sublattice A are oy, osite to and
different in magn¢ivude from the spins of the avoms on
sublattice b.

firstly, we give a general discussion of the exchange
coupling processes and other elementary excitations such as
the lattico vibrations and a review of the two different
.methods of treating the magnetically ordered system, i.e.,the
spin wave method and the CGreen function method. Then we
cslculate the spin wave spectrum of a ferrimagnet and the
rhonon-magnon interaction terms. By calculating the trsnsition
probsbilities snd the energy transfer from the phonon system
to the magnon system, we evaluate the phonon-magnon relaxation
time. The interaction terme ootained above are used to
calculate the low tomperature thersal conductivity of

ferrimagnets. This is found to agree well with the experimental



data available for some systems., The spin wave spectrum,
is also calculated by using the more rigorous Ureen function
method, which further gives the temperature dependence of

magnetization of a ferrimagnet.

Finally, we consider the scattering of neutrons by
magnons. The magnon system, considered to be in equilibrium,
is excited due to the interaction with the neutrons, thereby
causing scattering of neutrons in different directions, In
this interaction, since we have considered only writigal exbclal
transitions, only two magnon processes are considered. The
Scattering cross sections are evaluated in a few different
cases. The thesis concludes with a discussion of different
results obtsined and the merits and demerits of the different

methods used.
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NTRODUCTTI

In recent years, considerable interest has grown in
the physical properties of smagnetic compounds., Our main
interest lies in the erystalline solids which contain an
asgenbly of atoms or ions with permanent msgnetic moments.
Although the importance of the sxchange and correlation
phenomena related to certain spin dependent properties is
fully realized, these effects bave not been properly

understocde.

The fundsuwental concept of 8pin exchange emanates
from leisenberg's theory in 13728, This theory is an
aprllcation of the Heitler-London's celebrated theory of the
chemical bond and proved to be a brilliant step in the
explanation of ferromagnetism. In this model a c¢srtain
number of unpéirod electrons are assumed to be present in
each atom which are regularly spaced in a crystal. The
electronic spins are assumed to be localized at each lattice
site. It was shown in Heisenberg's theory that an exchange
effect leading to a strong couplin. between the electronic
spins would be caused by ordinary Coulomd interactions
among electrons when proper cognisance of the exclusion

principle is taken Imte-seseunt.

This, in effect, is a many electrom problem and,

in 1929, two methods were suggested to deal with it: the



dotoruinapal wethod developesd by Slator1

and the spin
operator method proposed by Dirnc.z In this approach,
Dirac showed that the spin dependent energy for interacting

electrons ~onn—bo—writtens. can be written ag> 0

Hex - .—-; Jijoéi'oij ’ (10’)
i,

where §i,1° the spin operator for the electron in the ith

orbital. Let Y, and Yo be the localized atomic orbitals
being respectively the solutions of

2 2
Py ze ;
G o T thefdd) o= By M),

)
ia )
)
) (1.2)
soig § G . )
\ 20 - er ) \Pb‘d) - E‘b \yb(‘“ y

where pi/Zm, pj/Zn “are the kinetic energy operators for

the electrons 1 and Jj, m is the gass of electron, ze is

ze ze”°
the charge of the ion core and = —— , - —— are the
Tia Tjo
potential energies. Here rta is the distance of the

electron i from the ion a and Tib that of the electron

J from the ion b. E , are the corresponding energles,
’

In terms of these wave functicns, the exchange integral, in

the general case, is given by
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gy = Lav/ :,“/ba) - 28, La/V/v) . {(1.3)
zgz - ze”
Here V = = Tn ;}:
and 8p = {a/b) = f‘g ¥y 4T

If we are dealing with orthogonal orbitals, the
overlap integral Sab = 0 and only the first term in (1.3)
survives, This term is always positive being the self
energy of the overlap charge GYi(iJV/b(i). This favours
ferromagretism ( the triplet state ). Howaver, if the
orbitals are non-orthogonal, the sign of JiJ would depend
on whether the first or the second term in (1.3) dominates
and when the second term dominates the antiferromagnetic
coupling ( the singlet state ) is favoured. This state was
actually found to exist in most of the insulators. In this
type of crystals the total magnetic moment is zero due to

the anti-parallel alignuent.

Another signiiicant development in ordered magnetic
systems is the concept of ferrimagnetiss due to Neéel in 1748,
According to Neel's idea, ferrizagnets also have sublattices
with anti-parallel spins but differ from antiferromzgnetis
in that the resultant magnetic moment is not zero as a
result of one or more of the following factors: (i) unegual

spins, (1i) unequal g factors, (4iii) unegual number of .



sites in the diflerent sublattices. These substances
constituce.an important class of magnetic materials and

occur in various forms.

The simplest ferrites are represented by the formula

A(B,)0,, where A is a divalent metal ion such as Mn**,

2’. Niz*, Fez’. etc. and B is a trivalent metal ion

( 8.8+, FoB* le These coupounds are known to exist in the

Co

spinel struczure.6’7 | The A4 sites are tetrahedraily
coordinated by four oxygen ions whereas the & ions are
surrounded octahedrally by six oxygens. Thewe are eight
formula units in one unit cell with the gubic sym-etry
Fd}n-OZ. In the inverse spinel, the A site ions and half
cof the B site ions exchange positions, the formula being
represented by B(AB)O&. Another structure of interest is
the general garnet structure which can-be dencted by the
foraula®"? §A3} [Bz] [03) 0,2+ A unit cell of this
structure also contains eight formula units and all the metal
ions are in highly special positions: ZLAZ* ions in the

¢ positions dod%?edrally surrounded by oxygen ions, 1683+
lons in 'a' sites surrounded octahedrally by oxygen lons
and ZLCL’ ions in 'd' sites each at the centra of a

tetiahedron of oxygen ions.

These magnetic materials ( ferro=-, antiferro~ and
ferrimagnetic ) have a definite spin ordering in the ground
State which is reslized only at the absolute zero of

temperature. If the temperature is slightly increaswsd,
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excitations in the spin system will be produced over the
ground state. The physical properties of a systeu are
governed by these low lying excitations. Thus, if we know
the energy spectrum of the elementary excitations of a
particular system, we can have a fairly clear idea of its
physical behavicur. Two important methods have been
developed to treat such problems: (a) the spinwave method,

and (b) the Green function method.

Ae MAGKONS:

Historically the concept of spin waves was introduced
by Bloch in 193<. He conceived of a spin wave as a single
spin reversal in an otherwise ordered system, which due to
the strong exchange interactions,does not remain localized
but is coherently distributed over the crystal lattice.

He was able to show that the low-energy excited states of
a ferrcmagnet would be of this character. In this theory,

the interactions between spin waves are negliected.

An altogether new technigue was suggested by Holstein
and ?rinakoff‘o (HP) to include the spin wave interactions
which was followed by a rigorous and satisfying treatment
by Dyson.11 They successfully defined a set of coordinates
which have the appesrance of the spin wave amplitudes and
which describe accurately cye quantum 8tate of the system.
Thus, let us consider a body centered cubic ferromagnet.

Let 5 be the magnitude of the spin and 3, the spin

1



operator for the site 1. Then it is convenient to
introduce the new operators in terms of the x, y and s

components of the operater 3, by

+
3-{ - 3: * L 3{ ’ ;
) (1.4)
)
-~ .
oy - 5 = 8t )

The eigenstate of the operators iy and s: is written as

YLA R Sesan b \kn ’ (1.5[

The corresponding eigenvalues being n, sad m, respectively.
&y takes the values 3, 5-1, ..., =5 and s which takes the
integral values, 0,1, ..., 23, obviously re,resents the
difference between the 2 componest of the spin at the ].th
8ite and ivs maximum value. This is known as the spin
deviation,

The operators defined in (1.4) have the properties

. ] - e ] ]
St¥e, = (29) (1=t ¥ (n) A

- 3 | PP WY |
St\kn‘ = (28)%(a ) (1—7§) \knt,, , (1.6)
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and satisfy the commutation relations

|5t °i] - 25 O1a »
(1.7)

——— —

o ~ e
&st. s, ] -« 28 éh ,
where él- is the Kronecker é-tunotxon.

In handling most of the problems concerning spin
wave interictions, it is expedient to work in the second
quantization formalisx or the number operator formalism,
Thus we conceive of the quasi-particles asscciisted with the
8pin waves and denote by a’ and a the creation and the
destruction operators res;pectively for these quasi-particles.

These operators are defined by

+ [
a; v = (ng +1 )%\ y )
1 ny 1 n‘_ﬂ )
) (1.8)
)
/

- ]
e | \fnt Loy ) \*nt-l :

Comparing (1.6) and (1.8) we obtain

*

: a, a
sp = @ (1o S E,

+ (1.9)
- i o 2La%d

S S St S

+ 2

=,
L



Using (1.7) we can ocbtain the comuutation relations for

these operators
(s vzl = 4y

The exchange Hamiltonian for a ferrcsagnet is given
by (1.1). This can now be written 4in teras of the new

operators as

;‘u"i'%
5

J ‘s's'oi‘(s’:foa's‘;}
Y1y %Y 15588

and assuming that a; - ay ( £3, we can expand the brackets
in equation (1.7) and obtain

Hyy = Comst. s ; 13 F (u + ..;‘J - ain; - IIIJ)
’
+ higher order terus. (1.11)

Now a spin deviation or disturbance will not remain
locaiized at a particular site &1, but will move throughout
the crystal like a wave due to the stroag exchange torcu.‘z
If there is only one spin wave present, it was shown by Bloch
and later by Dyoon"

the Hamiltonian. However, if there are more than one spin

that this will be an exact eigenstate of
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waves present in the lattice, interactions between them will
come into play and the Hamiltonian will no longer be
diagonal. The Hamiltonisn in this case splits up into two

parts; one quadratic and the other cuntalning higher order

terms in the operators s®<€ a and a’.

se will now introduce the Fourier transfo:ms to the
reciprocal space by

o |

"
=|
W |-
®
|
»
>
-
— N S N

(1.12)

»
[l 2
.

|..
L]

U

-
1>
s
»
> *

where X is the number of sites in the crystal and A the
wave vector cof the quasi-particle, now called as magnon. By

ueing the periodic boundary condition in the form of the
equat ion

1),
; o =8 - KA(A), (1.13)

where /(A ) = Qfor A 0, ILO(AN)=1for Qe

we obtain the inverse transformations
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(1.14)

1 2.4
+ 1 -2y .
a - — § e a °
A i : . :

The operators a, and a, satisfy the comsutation rules
which can be found from (1.10)

[;‘A ’ .;:] = C;\ a0 \1.15)

all other comzutators being zero. From these commutation
relations, it is clesr thst magnons are bosons. In terms of

these operators, the diagonal part of the Hamiltonian takes

the form

By, = Z 'n'i\l&l)’%), (1.16)
»

where hw, 1s the energy cf the magnon with wave vector A
and takes different ex;ressions for different systems. For

a cubic ferromagnet, this takes the fornu'“

fwy, = 2Jd8z (11 ), (1.17)

where J is the exchange integral J“ for nearest neighbours,
%2 i3 thelir nuaber and

i),
o o= %z;. LN ) (1.18)

where !h is the vector to the nearest neighbour.
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B. LHONONS:

Thus we have seen how the spin system at finite
temperatures can be likened to an assembly of spin waves.
The elementary excitutions of such a system are called
magnons. In crystal, there exists another elewentary
excitation, namely, the lattice waves. Lattice waves can
be pietured as follows: the ions in a orystal are never
quiescent; they execute samall oscilltions sbout their
equilibrium positions. But, since an ion is strongly coupled
to its neighbouring ions by elastic and other inter-ionic
forces, the small oscillation spreads in the form of a
disturbance through the erystal. This lesds to a collective
motion of the ions which gives rise to very im ortant
thersodynamic effects and produces interactions with other

entities such as electrons and spin waves.

Therefore, when we are considering all the interactions,
we should write the total Hamiltonian, instead of egquation
(1.1) sy by

H = HL. + Hol ’ (1.17)

where H ~1s the luttice hami.ltonian and H.l is the
electron Hamiltonian including the two=body interactions of
all types. Let us denote by 21,5 and al,b the momentum
and the displacement of the b-th ion in the l-th unit cell

( here L also denotes the vector to the unit cell from a
fixed origin and b the vector to the ion from a fixed ion in
the cell )., Then HL is explicitely given by ‘



- 12 =

- .
% \ ) Rl b* 21 b -V ’ “02\”

where =, 1s the mass of the b~th lon in the unit cell. The
two terms in (1.20) reyresent the kinetic ard the potential
energies of the ions res ectively. Now we expand the
potential energy in Taylor series as

1‘; ;\ B Lchl ) TR J ‘Birere....

(1.2%)

Substituting this in (1.20), we get

hye % Z;; { it' ! 2y R,

B e m WL A

(1.22)

Here also it 1s convenient to introduce second quantization by
dotl.xu.ng15
& '130*
.- (Bt (o* -b_ )
By,e \ 2y g_:!sv"sp‘sp T ’
' (1.23)
ig.1

] 3 +
1,0 " “2;5" i;%'v \Ogp*Pagp) ¢ '

L T T -
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where g and p are the wave vector and the branch number of
the lattice wave respectively, g‘” the polarisation vector
and vy the fregquency of the lattice wave. In terms of the
new operators, the Hamiltonian (1.22) becomes

:11” p ” %) + higher order terus, (1.28)

with & - b the occupation number operator which
i op . Pgp %gp = P

has only positive integers for its eigenvalues. From the
analogy of (1.24) with (1.10) we can interpret the lattice
vibrational field as consisting of s system of nonimteracting

particles called 'phonons', each haviug an energy nv”. The

operator b’ creates a phonon of wave vector g in branch p and

ap

bgp destroys such a phonon. The eigenfunctions of the

Hamiltonian (1.24) can be denoted in the nusber representation
By [eees N”....> and the above ope. tors then have
the properties

+*

Fl ‘
b” looooN”o.o.>. ‘l”"’ ’ooooh”"ooo.> N

(1.25)

bsp 'oooo"”oooo . ‘“”). ,oooo“”'i oooo> .

They also satisfy the boson commutation relastions

| PaptParer ] = Cgqr Sppe . (1.26)
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The #;yin wave metho! described in the first few pages
has ;roved to be of great use in describing the behaviocur
of the ordered magnetic systems, It gives a very clear
account of the low tewperature excitations of the system and
also gives expressions for magnetization which agree well
with the experimental observations. But the main drawback
of this method is that it is restricted to the low teasperature
reglion since the spin waves lose their meaning as the
temperature rises. At temperatures near the Curie point,
the molecular field method has been used to find the
magnetization and susceptibilivy, etc. However, in this
method, the correlstion between the transverse compone:sts of
the spins is ignored partly or wholly and consequently it
falls at low temperatures as well as above the Curie point.
For these reasons and in an attesmpt to formulate one single
theory which is valid throughout the temp rature range, the
Ureen function iethod, which was developed for problems in
field theory, was extended to statistical mechanics and

magnetisa,

This method 1s particularly useful owing to the
simplicity in its formulation and interpretation and when
combined with the spectral representations it provides a
powerful tool for attacking varicus types of problems. The
first application of the Oreen function method to ;roblems of
non=relativistic solid state t.hoory“ was in 1955 and was
thereafter developed by a number of asuthors in conneetion

with aifferent statistical problems. All these authors,
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however, restricted their discussions to the case T = 0,
untoubor:'7, for the first time, attempted to produce a method
suited to finite temperatures; he, however, considered oanly
time independent Ureen funetions. It was not long after
this that a complete generalization of this method was
achieved by several workers, some of which are mentioned in

the references ."’“

The Ureen functious can be defined in a variety of
ways dependling on the problem at hand, though the method of
treating them is more or less the same., Thus, if A(x) and
B(x') be any two operators, where x contains the spatial

coordinate X and the time coordinate t, then we can write
the following definitions for the “reen funct.ion:.zz

O (x,xt) = 10(e)(A(X)BIx' DD = LAx)3B(X"))) !

) (1.27)
* . , N
GL(x,x') = 18(e) ([a(x),B(x') ];};—"\,Q(X“B(x')» o )
Gy (x,x") = =49(~t) (A(x)B(x"))= ((ux);ma:')»l , :

; (1.28)
+ +
Oglx,x') = =to(=e) ([Alx),B(x") ] @ix)iBix' T,
Gglx,xt) = 4T Ax)B(x') = LAlx)iB(x"))) . (1.29)

(0, 4re {0,
Here 8(t) = z
(1, if¢ >0,
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For any operator P, (P) denotes the average over a grand
canonical ensemble,

~a/k,T
( P > - JLLP—'—B—L - Z-‘ Tr ‘ P .-'3 H )
~H/kyT '

Tr (o )

where H is the Hamiltonian, kB the Boltzmaun's constant
and T the temperature. The diflerent Green functions Gf,
0. and G° are known as 'retarded', 'advanced' and 'caglal'
Green functions respectively. The function of our interest

+*
is G; and we shall dencte it only by G in the following.

It i3 ex;edient to introduce the spectral functiom
JBA(S) which is the Fourier transform of the correlation
function of the two operators A(t) and B(o) ( we have

arbitrarily put t' « 0 ) by

o

(BHHA(:)}."'" - j"mm o"iBt g

o 27V Tr(e7PH pollit \gTiEE) it (4 5
where we have introduced an infinitesimal convergence factor
« in order to Ensure the convergence of the Fourier transfomm

and in the Heisenberg re;resentation,

AlE) = o Ae o
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The inverse transform of (1.30) is

oo
g8 = L f(n(u)uz)) dmemelel o G1an)
-0

llow we change the order of operation as follows:

(8llaie)y = z7Vpr ( o7FH pelfit yg"iHt
o z7Vrp ( 1Yy TiE PR 5 )
o z7Vpp ( oM JAH(E-18) | ~tH(v-1d) ;
= /alt = 45) B(0))
then
e
S B = g J(m-i.) 8(0)) edEEll

We can now distort the path of integration in the complex
t plane by the analyticity condition and obtain

o #4p
~0E )
N (a(a)B(0) ) oife=tislyy
~ coedp
-‘!‘ o
- = (A(;)l(0)> 0“"“""6&.
—_— oo

L9678
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Hence
) 7 .
o Tigle sy | e 1T M ()
—c
Combining equations (1.31) and (1.32) we have

(% 2 1) Jy,(8) =gt

<[A(t.) 800 ], il P
—Ton
Jince t varies from =co to v this integral splits up

into two parts in the following fora:

-

(o' %s1) vy, (2) = glp [ J. ale)s(o)y)y _ atlBetalt 4

Q?
- j {atedgaiody  otiE-tait a]

- % X A} B >> Beda ~ <<“B>>:;-1¢—]v (1.33)

where the Fourier transforas are defined by

((A{'>>"‘“ - rl- i’ «“'“BN’»r .i(EOLC)t dt,

i

(1.34)

N Sl Vo N W S S

a)l
U gy = T+ j (ate)ga(0)y), otiBiet 4,
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The relation (1.33) 4s very important for the calculation
of many properties. The equation of motion for the Green
functions follows from the definitions (1.27) and (1.28),

1 %t((us);uo:)) i -a(s)<[A.n]:)~<(KA(z:.u]-;sto))),._.

(1.35)

where o(t) is the Dirac's & =function.

ine fourier transfora of this equation ylelds:

B (ABYg = - 5{-([1\.8]:>o La18»; . (1.36)

Jince the spectral functions are related to <<“8>>3;1¢’
it is required to know only the Fourier transform of the
Ureen function. It is alsc seen that the Fourier transformed
oquation of motion is the same whether we start from the

advanced or the retarded Green function,

The study carried ocut in the present work is based on
these two methods; the spin wave method and the Green
function method. We have obtained the spin wave spectrum
of a ferrimagnet and the phonon-magnon relaxation time. The
matrix elements for the phonon-magnon interaction and the
transition probabilities are used to calculate the themmal
conduetivity ol ferrima netic insuiators at low tesperatures.
The spin wave spectrum is then calcuiated by Gree:n funection
method which als. gives the tem; erature de,endence of
magnetization. Finally, we have cousidered the interaction



of neutrons with magnetically ordered crystals. The
neutron-magnon interaction terms are formulated and the
neutron scattering oross sectiwns are calculated for

two-magnon Ramen processes including only orbital transition
of the crystal atoms.
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SN WAVE NSTHOD FOR FERRIMACIETISH

Ae Spin wave spectrum:

The method developed by Holstein and Primekof! and
outlined in chapter 1 is useful for calculating the low
energy excitations of the s;pin system, i.e., the spin wave
spectrum. We consider a ferrimagnetic system with the body
centred cubic structure. The two constituest sublattices
are dencted by A and B. Let two different types of
magnetic ions be situated at the lattice points of both the
sublattilcos A and B having & few unpaired d or f electrons
in addition to the clcsed shell. Let the spins be SA and SB
and the anisciropy fields at the two sites, “A and HB' The

total Hamiltonian of such a system can be written as

E = H ’u.loazou + K., (2.1)

an c

'
-

where HL is the lattice Hamiltunian and H.l is the
one-electron Hamiltonian

2
P
Hyy : .é.. ;U(;L-gn) : (2.2)
i o0

uc is the electron-electron Coulomd intersction of the fora

2

QP A b
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Hz is the Zeeman term and ll.n is the anisotropy energy.

In (2.2), pi/h is the kinetic energy of the i~th electron
and U(x;=R ) is the povestial energy at I, due to the

ion core at 5::' For the ;resent, we neglect the spin-orbit
intemetion, dipolar interaction between magnetic ions

and the anharSonic terms in lattice vibrations. A psrticular
i-th electron will be acted upon by the ;otential due to

all the ions of the erystal or the crystal field potential

v - ;U(;l-&).
- 1

Then, for the i=th electron, the Hamiltonlan ¢an ve

rewritten as

2
P o
e Boumev e e
with V = V° + R ’

80 that Vo is the static erystal field potestial and H!
represents the first and higher order terms in the Taylor
series ex,ansion of V in terms of the displacement “’Eh

oV | ) 2
H -; ( ;,-%h;o.mh ’i‘ E'ézh. (,ﬁm&, -

(2.4)
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Also, U(q-ﬂ:) represents the electrostatic potential
acting on the electron when the ion core to which the
electron belongs is in its equilibrium position,

Let us define the wave function ,’l.s a3 the solution
of

-2
\ﬂ- + Uiz -E]) ¢ vo] fas = B, - (2.5)

)
-

The eigenstates of the perturbed Ham ltonian (2,3) are

N0
e ’u N : Tzi%!:)-. FERS R (2.6)
o~

where the excited states are indicated by the Greek letters.
lhe wave functions ¢.ﬁ are orthogonal to esch other. We
now introduce the number operators Ags and A;_ for the
state \f;‘. It is then possible to write the total
Hamiltonian in the occujat ion number re;reseatation as

4 - ’ B 1

i HL'“Z’".n’E E.,;*“‘..;’Ez E

a, abe 65!
*

Aoy Apa{@sy Bs' /g, / €5, dsty AL Ay, H247)

where 3;6 is the perturbed electron energy and the operators
obey the following rules

+* -
Ag A * A Ay 'éu’

+*
A1 ‘1 ® u1 ’
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where the subseripts i, k include both the orbital index
8,0 ... and the spin index 6 ,6' ., PFor-wouedegoserate
orbitai staies, the following relations hold between these

operators and the spin operators:

A:(t)A.UHA:(')A.t-) - 1,
Kgl#) = N (=) - 28 .
Agleia (=) - 3,
Ay(=iA (+) - 5.

Now the tadrd term of (2.7) can be expanded by using (2.6)

for the state functions, so that it becones
I I
? ¥, ¢
1 L+ @
2 2; : Aactug! < (ﬁ.* : &A?a-)‘ "b’ : "2?!,','“’),\'
a [N o 4] v
'y "R
7812/ \Fe* Y —Lf!g').; Wt ) —gg;ﬁ) 6,>Acskd o - (2.8)
! 2

This expression contains the phonon-magnon interaction in

varicus orders.
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To oarry out sumsation ever &, §' , we allew them teo take
(¢) and (o) values, The operator part becomes

: AL AS Ay Ag b
€€
- No(e)myle) « 53 o: ¢ 53 85 ¢ Nle)nge)
e d (1 b 35..5 )
We consider the first order term invelving an excited erbital

;-Z t (8088 /60! LSl Ha(1ehs.m)
a,b

. ZZ:M“ (B0 et VDS (b 100/ 80
- ” 1 4 &o& )e

Using the expansion (2.,4) for H' upte first order, this
becomes

A%,

EAJ
; 4 LU ENNECE> Vi Q'ég (Se05)e (2.9)
=

wvhere we have dropped the constant fastors, independent of
spins,
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The total Hamiltonian can then be separated into three
parts, the lattice part, the pure magnon part and the

phonen-magnon interaction terms. Thus, for s fcrri-.gnot’?

A o H « By + Heo s

where
Hy o= 1'3"3 b 3 ) (2.10)
Y Z 2\ 8gp - (Kol g, P, ;slu
ne
- (H=H )88 }l : g (2.11)
Hipe ® gt “.J(ah).é_i,h“ (8,3 5 (2.12)
with

= AV e, BN, @)

“Vigy) = : <’JJ‘12/’ ’l><,'/ > . (2412a)

In the above, 1 and m run over the smagnetic ions of sublattices,

A and B respectively. K is the external magnetic field
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assumed vo Le along the z direction and ‘A.B the g~factors
for the two sublattices. In point of faet, our J,\B and
'J(ﬂhj contain in addition to the Heisenberg direct processes
as in (<2.11a) and (2.12a), the superexchange or indirect
processes also. Jor example the superexcharge transfer

process can be written as

PR WA VAYEN VA VS

AB U o

a/r1/sd{n/1/0

v

g > L/ /e

with V = ov/a,&, 3 T represents the electron transfer

operator and U is the corresponding energy dencm.nator.

The terms in (2.11) contain the excharge, Zeeman and
anisotropic interacticns of the s;in system and will give us
the spin wave spectrum. The term (2.12) re;rescnts the
spin=lattice interaction. At finite tomeratures, the
lattice is in a vibrutional statve produclng changes in the
interatomic distance L Q) The dependence of the exchange
integral on the iuteratomic distance 4y, causos the
spin-lattice iuteraction.

Kow we define the spin deviation operators for the
two sublattices
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- . » ‘ . - .
O Sty = (9f0 nt-) "

i n
S Sty v 230 el00 - i, (23

*
S, =81, "8y =1y 3

sep = (esgifag (1 -,3:- )y,
5. = (zs)‘(t-l:l-)‘d (2418)
z3 B % s ! ‘
- +
Sg * g ” dldl . "

Here ni, a and d;. d. sre the creation and annihilation
operators for tha spin deviations at sites 1 and m respectively,
8 m the spin devistion operator with positive integers for

’

its eigenvalues.

3ince the spin devistions do not remain localized at a
particular site but manifest themselves and s;reud over
the entire crystal lattice as an assesbly of s;pin waves with
dif ferent wavelengths,.it is advisable to define the Fourier

transforms of the above operators. Thus
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s, = t}:* :ﬁp (42:87) o, ,

S (28 ;oxp('lj.ég) a ,

o
[
.
o=~
=N

T e () 4,
n

& - (E 2 T e () 4, (2.15)
n

In teras of these operators, the spin wave Hamiltonian

(2+4) becomes

Hy = 20,0388 ar, (a,¢,¢a) d] )

—— — - -
.
—

- * \
+ 2JAB E l(S‘dl d)\ + 38‘_5 ‘.3 i

- * 0 Vi -
+ (HeH,) g, P, ; aA.}_ (H-tig)gy P ; aﬁaﬁ s

where v, is defined in (1.18). It is seen that this
Ha-ut.onzan is not diagomal in terams of the spin wave
operators. In order to diagonalize this part, wo make
use of the following canemical transformation-®

ay =2 cosh® +8}sinhd |,
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d - aéunhoé + fycoshd ,
dA = a, sin hIOA * a_,: cos h 9, , (2.16)

where & , @  and £}, £, ~Bow rejresent the ereation

and annihilstion operators for the two types of quasi-
particlies, the magnons. In order that the non-dia onal terms
in these operators vanish, we must have

UAB(SASB) "3_\.

tan b2 9, = (2.17)
- ZJ"S(SA’SB)O(BOHAMA p' =(E-H;)lgg P

The spin Hamiltonian now becomes diagonal and takes the

form
ok + Blata .
n = L AN %) + T (A0 e %) . (2.18)
L e b e

where it is evident that the spin wave spectrum splits wp
into two branches with energies ‘Sv:"q

which are given,
after neglecting the external and anisotropy flelds and a

constant term, by

(2.19)

B; - fiw . 2Ju'l(]8‘-8.‘) . M )\212,
- 18,-35|
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where wa have considered the long wavelength region in which
2\_.& {1 and 'a' 4is the lattice constant. Magnons
belonging to the first brangch 5, are said to be the
'acoustic' magnons and the dhpo?.“n relation, for our
system, is parabolic in wave vector. The second branch

B}; re;resents the 'optical' magnons whose energy is much

higher than those of the acoustic magnons.

B. on=ihonon ion

In order to obtain the interaction teras, the
Hamiltonian um‘ must be subjected to the same
transformations which are applied to the magnon part Ila.
After applying the spin wave transformations (<.13) and (2.14)

to Hu‘. (£e14) Decomes

, a
Hige = = 4 TR 0 ;;;-:1— ) z:,‘p *igy) (b7 b )
&

x [(SASB)* tald-nI%’) . (sAd:d- . sa‘i‘lj]

1g.8° "
x ‘.851 - .133.).“"

Now we apply the Fourier transformations (2.15) and the

canonical transformation (2.16) to the above expreassion,
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The summation over 1 and = is carried out by using the

interference conditions such as

A¥p 02" & T2 4

Also since the expressiocn is summed over X and g which
run through the first Brilliouin zone, we are allowed to

make such changes in the variables as
A > A =g or 14=—> =g, etc.

After some calculation we get,

> > K2
hg ' % Paeg B T %A Pxeq B!

*

‘ . o
20 ' 2 faea P T Fafaeg B )] SRS
with

- | - IS '
Arg D § (’L-g '5'”&38) sin h \05.2 -Ol )

’“-'QHSB cos h OA cos h Oh_s’ S‘ sin h 93. 3in e’l’ﬁl

b
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8& D 2(15.3 Y HSASB) cos h (Oz;'ﬂ A )

¢(1-(a)(sa cos h OA sin n a}__ﬂ-skmhoﬁm hO)-\_a)} .

c 'D]S(l

§
g -ul)(s‘ss) sin h (9 _ <8 )

= an =

N\

*»(1-1‘3)(8A cos h 0i cos h e.é's-sﬁ sin h Olsin h Ol.gi >

o-o-c(2021J

with D = - { ‘—&L ( i%- )‘ : g&-od(%) and we have
- h
dropred the polarization suffix p.

The Homiltonlan (<.20) shows ex;!icitly the interaction
of the acoustic and the optical =magnons with the scoustic
phonons. J‘hus the first term of (2.,20) involves interactions
of the acoustic phonons with the acoustic magnons and the
last term expresses the interaction of acoustic phonons with
optical magnons. These processes will conserve energy.
However, since the energy of the optical magnon is much higher
than that of the acoustic magnon, the strength of the last
term will depend on the excitation of the higher frequency
branch and at low temperatures;, its population density is
expected to be low. The processes connected with the second
terz of (2,20) which involves creation ( annihilation ) of

two magnons, one in the lower branch and the other in the .
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higher branch, with the annihilation ( ereation ) of an
acoustic phonon do not seem to be possible in the long

wavelength region in view of non-conscervation of energy.

Thus in further calculations we drop the second term
of (<.2V). The phonon system is considered to be at a lower
temperature 1‘1 and the magnon system at 1'.. 3ince the
ragnon-magnon relaxation time is known to be much smaller
than the phonon-magnon relaxsti o time, the uagnon=-system
can lisediately attain @quilibriusm and we will have ‘n-T,
the temperature of the crystal. Ihe excited phonons will
come to the equilibrium by gaining energy froa the spin systea.
According to time~dependent perturbation theory, the
probability of transition from a state \ﬁi/\ with energy B

i
to a state |J) with emergy E, is

x| 2 Simp oom |

whore (Hp)“ is the matrix element of the perturbing
potential H, between “1> and ”t)' Accordingly, the
transition probabilities for the above processes are given

by:

, m&’“&‘ﬁ"'l > (né-i )y (nh_sﬂ ) .(Naﬂ )

2
- & "u'a iy B, #1) (B _s1) ‘“‘a-a"a"‘z )y
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U‘(nx.n A=g? 8 > (n 01)(»A -1), (b =-1) )
T [Aag | iny st (m, ) (M) SUE o8 -5, ),
A 1TAg a=a' g 1 U
"n\.n'\.ﬂ.na B (n -’l ‘né.s").‘ha-" )
-2"{3 Iz \n'Hn' 1-1)(! ‘ou. +5 =5 )
A 1 "ag 29 A7 amg’?

=1),\k +1) )

(nA ,n A=g? 3 —> (n! 01),\11)\_3 q

’fl \ \ (n'ol)(n )(h *1) O (n. ‘83’.\ a) .

and n!

Here N.l is the distribution funection for phonons, n 3

A
the distribution functions for the magnous of lower and

higher branches respectively, The rate of energy transfer
from the magnon to the phonon system will be given by

1o eedy - ;1"’3 (CHYRIC Y
- g""ﬂit\mz{ (1) (y 91 0 1)

= (nyot)imy 2 (ug)} § (B goByoiy )

"CASIJZ %sn'ﬂ)(n -g! (Hgtt)= ﬂA)(nA.sol)\Ns)}c \3,35‘. -’abll

o-oo(“.z‘/
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These expressions are evaluated by writing down the

dif ferent Bose distribution functions with respective energy
parameters, writing AT = T =~ T, and expanding the terms

in Taylor's series to first order in AT, The final

expression for o is

2.2 A thwg) < -
AT ey P m g
+ FQa) [o, [ ookt S(E\*E B, )7; (2423)

with

&,
" E /T s;'/kr
F*"(2q) = L(ob “s -1)( e 272 By (e

E /k.T -1
Q/B°1)] .

Under the ap;roximation X.g £ 1, the constants Mg
and c& can be evaluated and to the lcwest order in wavelength,

they have the form

)2

e, 2 (8¢ L 4 .
- J 242
l.\,\‘ 1_9_, -‘:g( ) —A—?—' atets (2.24)
In the expression (2.23) for ¢, we change sumwation
over 2 and g to integrstion. To illustrate the procedure,
we will consider the first part comtaining |A19J2, denoting
it by ;. Thus

AT 12 - a
-5 ?Lg)’l ” .ﬂg.:.)_ Pl ’A*.Uz

k.T
x .,\/8 é ‘:-b)d‘v dl)

l’s P
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with
dy = q° sin @ dq 40 af
a e 4 '8
<
and d*: « N sin 0&0« dOA ddA o

€ i the Velesith op Sewma.
The o-function is expanded in the following manner to

facilitste integration over the angle v:riasbles:

\

I 8lg +ky-nl) = 9| igeaa®( rgi®- 2% k9598 |

—]—r eD - cos 9, )y

2ky® A °c‘ a9
(2.25)
with  kg®. = & J,.8,5, / ([8,=3,() (2425a)

and Os the Debye temperature of the crystal.
Here we write

Cos 0& - cos 9A cos & + sin 0& sin 03 cos (IA-JS)

ard with x = cos (Wh-ﬂai the J-=-function becomes

1

- . (b =x) ,
d%q.kaacn sin @, .sin 01
where
b 1 ‘23 o.aD - cos 9 cos ©_ ).
lme‘\.linﬁs PN z?c. A Q

The result after the integration over the angular variables .:
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2 T
« = F ﬂ PAF(Nq) o My dx dq

with

C

- ‘%51 szﬂﬂ (o] (5087 g2 a2,

\amane Y T o
#e introduce the following dimensionless variables

at this stage

and
e B

The limits of integraticm are obtained from the 15-tunction
condition (2.25)

-
-%Y . 255;\ - cos gl&

or
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The ranges of integration are therefore chosen to be

)2
L L e e

0o £ \ & e

The integration is performed in the low temperature limit
and including the second part of (2.23), we have

I e .U.!’! 1& (SA'SB,Z(.J)Z —I#b exp ( =7/4 )
2 4

kg9~ 8

2
L(5,=3.) 0,
-{ Teexp | = -—3&3—5— _¥ ,} (2426)

A"B

It can be seen t hat in the low teaperature region ( T below
10°K ) the second term in the curly bracket of (2.,20) which
arises owing to the interaction of phonons with the higher
magnon branch is negligible compared with the first. In the
calculation of the relaxation tise, we neglect this tera,
The relaxatian tiue 1s related to o by’

e 2 oyl ) (2.27)
‘an ar

where c. and c1 are the spin and lattice specific heats

of the ecrystal respectively. The lattice specific heat

is kgown to bo"

3
6 = Bhwg (F=07 .




The spin specific heat can be easily calculated using the
dispersion relation for the acoustic branch frou (<.17), thus

¢ - dE./dr

Y
and E - ————— ’
s g .;'«E:;:/l:al'.1

After simple calculations we obtain for & b.c.c. crystal

Nk o
c . i (= ,‘3/‘ R
- 18.69 %

Using these values, the zagnon=-phonon relaxation time is

given by
Lg’-« 143, +3g)% (%0)* . -
"'-p s’ 8% o)
8690 ¢ -,L:’/‘ v (B3 @ae

It is to be noted that, as in the case of a true
ferromagnot, there 1s an exponential factor nxp(-B‘r‘/chT) in
the exyression for 1/v.p; however, the .ther temperature

factors are diflerent in the preseant case.
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The spin wave spectrum derived in (2.17) for a
ferrimagnet is valid ouly nesr the absolute zero of
temperature. As the tesperature rises, lattice vibrations
come iuto play. Owing to their interaction with s,in waves,
the pure 8pin wave modes will no longer exist, and we must
picture the elementary excitvations as Deing coupled
spin=phonon wodes. The spin wave energy should therefore
be appropriately renormalized after tuking account of

these intersctins,

Similar calculations were first perforaed by rrbhlioh26

for eleetrons in the field of lattice vibrations and he
obtained the renormalization of the velocity of sound and
the ianteractica parameter. The ;rocedure here is based on
obtsining a canonical transtorﬁazion and then choosing the
transformation so thst the first order terms vanish., Ve

write the total Hamiltonian for our system as
H - HGOH1
where H, contains the diagonal spin and phonon parts,
*
Hy e B o T (e e k)
T= i

* 2
. E;:'ﬁyg ( §£ Eﬂ + 4)
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and H, is the interaction term involving acoustic branch of
magnons ( first term of eq. (2.20) )

+ * +

Now we define a canonicsl transformation by

2 i 2
- Ho + (H”i l“opb])’ -2' ("‘. QJ * eeeey (2.29)

where 35 1s suitably chosen as
S = ( 6 =,a5 b + 0 aja, b ) (2.30)
= 29 A A-g Aa 2239

with the constait s ‘CIA1 ard 0;1 to be determined by the
conditim

H, oz\Luo,s] - 0. (2431)

Using (2.30) for S and substituting in (2.31), we obtain

for the constants

1Am

. (2.23)
- (Byog *Bg °Ey) '

Now using 8 along with the above constants, we calculate
the remaining terz of (2.29), i.e., é[ﬂ,.s-] . It is seen
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that this gives us some additional diagonal terms in the
spin wave operators which will combine with H, to give the

renoraalized frequency. Thus

* " +*
Hy = z::'ngh \fb «, +3) - Z‘Z:: 1A&a “ﬁﬂ.‘f& f} «+ 1)
2 28

~ Vv *
. *Zg tlhyeg,g Oregig T Aag Oag! Cig)teLened)

(2.33)

"ooooo,

where, as before, <N8>. <b;ba) is the phonon

distribution funetion. From this equation, the rencrmalized

frequency becomes

r - - G - .
o ol 2L ) Mg ¢ 2 ;"&*a-s Avg,9 ‘&G_MKNQ
3 ¥
(2.34)

This expression can be evaluated by changing sumuation Mto

integration and noting the expressions for the parameters,

and { see eq. 2016 )

(8,+55) ,
Ah- -iv-k-‘ %)'(‘J)—-jd—q a“ .
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The expression has been integrated ir the low
teuperature approximations and for g.a {{ 1. The second

term of (2.34) only gives a teamperature-independent energy
shift, Thus, we have

(@ 2_6 4.5
(99)%(s, +3.)% k‘r 2
Tl - hw, As-si '° log (1 q-‘f‘ﬁ)\).

- - “nt e

(2.36)

o
where we have assumed ‘h\v >> k 1' and p = ;-9- .
D

A few conclusions can be drawn from the above
expression., The frequency of the s;in waves decreases with
the increase of teamperature and the dependence is 'l's. The
second term of (2.36) is expected to approach the first term
in magnitude before 100°K., Apparently, it shows that the
spin wave energy of the acoustic mode diminishes rapidly,
‘his only suggests that the acoustic magnon oranch, wahich we
have been considering, becomes unstable ne:r this temperature
and only the optical bmcmhy an important role at higher
temperatures. The M~depexndent factor

%1“(101%&%))

seens to be almost constant over the range of e 10% o

106 c-". A similar treatament of the optical branch Si may

improve the results at higher temperatures.



CHAPTER-3




-‘5-

TRANSPORT DUE TO SPIN WAVES

A. Thersmal Conductivity of Ferrimagnetic Insulators:

The phonou=-gagnon intemsction studied in the last
chajter is useful for studying the trasnport properties of
sagnetic solids. For msgnetically coicentrated systems

this intermuction 4s found to be the overriding process,

Cur ob_ect here is to study the thermal conductivivy
of simple magnetic ferrites. In the c+se of ferromagnetic
mwetsls, the conduction electron contribution Lo trans ore
phencsena suppresses the syin-phonon offlecrs., Howev.r,
in the case of antiferrcwagmetic and ferrim . netic
insulstors the conducticu electron contribution is almost
negligible and the spin wave contribution can be studied
in detail.

Thus, let us consider & simple b.c.c. ferrimagnet ,
as envisaged vefore, we consider a teaperature gradient
existl ng in the crystal. Jince, at low tempe:s tures,the
sagnon-magnon relax ti.n time is xiown to be much shorter
than the phonon-magnon relaxation time, we cous.der the
magnon system to be in equilibrius, and, as such the
magnons do not take part in the transport of the heat
curremt .27 Thus only phonons, having a w of the

occusation nusber, are supposed to be the carriers of heat.



.w-

In the equilibmation process, the phonon systea will relax
through different mechanisms such as the bound.ry seatteri:g,
wass defect and strain field scattering and spin wave

.““-.rill‘o
we thus start with the Hamilitonian

Hoody oB s B ool *H 4, (3.1
where the first wwo terss respectively stand for the diagonal
parts of the ;hoaon and the magnon Hamiltonians, Hp_,
- 4
represents phonon=phonon interaction and Hp_- and Hp -l
represent the phonon-magnon and phonon-defect teras
respectively. However, in the followirg treatment, we
have neglected the phonon-phonon or snharmonic teras,

restricting ourselves to the low temperature reglan. We are

considering ouly the acoustic branch of magnons and heunce

we take
HP_. - g An “3 aé_sb; - c-;: ‘&‘3'3 ) . (3.2)
also
LR 3:3-0“" { b;, R (3.3)
,

fhe coefficient ¥ X aris.rg froa various sources has been

giveun by Almnazg snd is

0% e MDA

ag’ “ & 4
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where M 4is the zass of the host atom, N the number of atoms
and '9 the angular phonon frequency corresponding to g.

S5 is given by

g e sf.(azos "

3

where s‘ is the contribution due to mass defect

"1'% 74'5’

LW belng the mass diflerence; S, arises {rom a difference

in elastic constants,
- ug
.‘)2 ® e v%- '

vwhere € = w/g3 is the velocity of waves; S5 is dus to an

elastic strain field arocund a point imperfection
Il
where . i85 a constant o the order of 3-4.

The phonon relaxation time 7 4is defined by the

Boltzmann's ejuation

; N N° -
°a_ a7

ot . ’ (3.4)

where Ao is the phonon distribution nuaber and ﬂ; its .
equilibrium value. The contribution to T due to boundary
and mass defect scattering is already known. Thun,27



—-—J— . A - ’ (305)
“T'(bound) E '

where ¢ is the sound velocity, 1 the dimensions of the
sample and UV a number. This is independent of the phonon

wave vector. Also 27

—_— = - 7S 30
—T’ ’ ’ \ )

where P 1s a ccustant and 42 is comvenie.tly defined in

terms of t.h"x.honon wave vector by

hw “he
q 9

Thus our main aim 1s to calculate the contribution due
to magnon intersction, "r'p.., froa (3.4).

As before ( see 2.<< ) the rate of change of the

occupastion number llg is given by

ok 2x
P_) - — \A \2 % (ayilny_ + 1) N _+1)

. . 3 \
- (nAOH(nZ\._SHAg)‘% o (EA_SOEQ-E)\). (3.8)

“hanging sumsation to integration and integrating out the
angle variables to eliminate the & =function as before, we ol
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( )"3 2 Nv
B Brky 9,qe°

Ex/k,T
t >p-u J“.*a\‘ Firg) x e s AdA,
(307)

where the various factors have been defined in chapter 2.
Now integrating over the =agnon wave vector AN the above

expression gives

2 2
h E v.(*)%(3,95,)%T
(1&) -4 4 A S
Jt/pm kg! rk 9. ¢ Nz*
o, ¢ xenf) .
x —=— g exp = . «10)
(e’=1) \1 LB f

IThe right hand side of the Boltzmanu's equatiocn (3.4) s
also obtained by using the phonon distribution funetion and

gives
Hq = ¥g 1 AT B e"
- . — . e (3u11)
Tp=n Tpea T kgt (e°= 1)

Therefore, oquatiig (3.10) and (3.11) ydeide we quv

1
Tp=a

- R. t(q) ’ (3.'&)

where 2 2
2
v (%J) (SA*SB) T

2
rkscﬂiu:
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and f(q) = qz(o‘-1)w§-nﬁ-“-ﬁ?{.

{o obtain the explicit q-dependesce of f(q), we expand it
in a faylor series in powers of g, v

£1g) = £(0) » qf (0) + Q%€ (0) * vuunes

Hetaining the lowest order term in this and changing over
to %, we get

- ‘\3 ‘3.13)
with

6kgv(®0)%(3,+43)% 12 axp ( -1/ )
“ - o (3a14)

ﬂizcjeéll.sz

Thus, it is seen that the maguon comtribution to the phonon
relaxation time varies as the third rower of the phonon wave
vector for a ferrimsgret.

The total relaxstion time is then given by
combining (3.5360,313 ) :

1

)

The thermal conductivity of a substance is directly related
to this phonon relaxation time 5’29

- A+ qa? + r\" . (3.15)
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8 /T
k¢ 13 ( o/ .
B l L e
ke =r—v— VTR ———, 4,
2v* B ¢ : (o= 1)°
)

which, with the help of (3.15), becomes

-9 /T
h ﬂ, \ D <
kg 1 b 8" ghe Thatbt
P = ——z——;— | - X ) Ce o1
< N ¢ \AN';H \,lil e =1)"
()

fhis integral, in general, cannot be eva.usted in a closed
fora. The integrution is therefore perforased praphically
in the temperature range 5°k to <5°Kk. The discussion and
Comparison with cxperi;ér;tal resud.ts is given in the

following section .30

B. Somparison with exyerimental results:

Although our theory is based -n a sim;le, two-
sublattice b.c.c. structure, no such ferrims net is xnown to
exist. lhe theory can however, be a;plied to complicated
systems while confining one's attention to the 'scoustic'
branches of phonons and zagnons and to low tes; e ature
regions. The insulating ferrites and garnets do indeed
Coustitute the next ideal systems for couparirg the results
with the theory. For this pur;yose, we nave chusen two systems,
Mangarese ferrite (unrozo‘) and yttrium iron garuet
(!3F0‘5’03012) {YIG).,
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In Mnrozo‘. both the cations at tetrahedral \xnz’)
and octahedral (Fe>*) sites have the configuration d’jm
655/2 state. The system therefore will not ;resent any
charge exchange effects. The tetrshedral (A) and the
octahedral (B) magnetic ion systems can be roughly
approximted to a two sublattice ferrimagnet with a
predominent A-B interaction. The various parameters

entering into J(3.14) have the following valuos}

V= .3 - ‘805‘ X ‘0.8)’ C.C,, S - 5/‘|

A
Sg = 2 x5/2 =5 o, = 380%,
o, = 783%%, N o= 55 x 1074k Ly,
2 = o, ‘ c = 105 cms ./sec.

Here Ob has been derived from the melting point
data" in that the low temperature specific heat results
for this material are not available. Also

(*0) = 3.33 x 10°° dynes,

A -2 X 1010 000-1. . V=2 x 108 IOG-‘.,

80 that
Q - 7.5 x 106 ‘l‘3 exp ( = /4 ) soc-'.
The theoretical curve drawn with these values of the

paremeters is shown along with the experimental points of
Douthett and Friodbor332 in fig. 1 in the temperature range



5°K o 45°K. As mentioned above, it is believed that
beyond 15°K the three phonon processes take over.

Another type of ferrimagnets, to wnich the present
calculations can e extended, are the maguetic garnets,
Here we have chosen ¥Yttrium iron garnet (YIG); the
experimental messurements of thersal conductivity of YIG are
reyorted by Don;hu.” In this system alsc, the magnotic
ions are distributed on two types of crystallogra;hic sites.
The cation sites are classified as a, ¢, d and accordingly
ths formula !gc) Poé‘) Foéd" 0“2 exrresses the
distribution. Here also, the io” ions are in 635/2 states
( 45 configuration ) and the ions at 'a' sites are coupled
antiferromagnetically to those of 'd' sites. In view of
the unequal nuzber of ions in the sublattices, we get a
ferrimagnetic system. For cowparison with experizemts,

we have set ocut the following values of the parameters:
v - n’ e (12,376 x IQ")3 G.Cs,
s‘ - 57 sa ® 7'5.
9. = 550°K, OD = 500°K,
[ = 3.8L3 x 105 “.o/'.‘o.
K = 92,27 x 107%0 gug,,
(%3/2) = 1.67% x 1077 dynes.

The theoretical curve ranging from 5°K to <5°K is shown
along with the expericental points in fig. 2. The agreement
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. Figure 1 Thermal conductivity of MnFe,0,- Experimental pownts of Douthess

ang Friedberg are shown alongside.
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;cc- to be satisfactory although deviations appesar in

the very low temperature region, i.e., below 5°K., Also
the conductivity peaks differ which obviously is owing to
the appearauce of the three-phonon processes at about 15°K,
Here also we have derived OU from the meiting point data
which compares favourably with the specific heat

measurements of 8h1no:ak13“ who finds OD of the same order.

In both the above cases, we have been guided by two
considerations in choosing the values of the parameters
‘J. A and F. First we choose a suitable value of ®J gy a
method of estization ocutlined by Sinha and Upadhyaya.'3»3!
After this choice of 'J. A and P are so cuosen that they
correspond to one point of the experimentsl curve. In each
case the value % chosen falls in the range which would
lesd to the right order of relaxstion time for the system.
In both the figures the agreemeant with theory is very good
in the region where spin wave contributions are expected

to be important, i.e.,around 10°k,
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The Green functiom theory for ferromagnetisa has been
develojed by several authors explaining the tom erature
dependence of -n(not.l.nuon”-"‘ y Susce;ptibility and
electrical ruuwm.y“ and has been extended to
anutorromgncua” and O more cowpliicated structures

38

such as simple spiral. In the ;resent worx, we extend

this theory to ferrimagnetism. Here we have ovaluated the
8pin wave spectrum and the low temperature de; endence of

magnetisation, which we cunsider in the following sections:

A: Spin Wave Jdpectrua:

“e start with the spin dependent Hamiltonian (2.11)

H o= 2 Z: J-m) 3),.5,5 = (HeH,)g, . : 3141
)

= (HeHp) 8y 1y ) Spep
=

where we have used the exchange integral J(l-m) between

the l-th and the m=-th atoms iustesd of J“. In this chapter
we nave used units in which "h = 1, We define the two
Ureen functicns corresponding to the two ‘ubhtbic..“

og (1,11 = L8], (05 . L)

- i 0(t)<L3IA(t). o115 sI.J> ,
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- : 7ot 231158 -
t(.’l ) =2 \QS.B(t). e 31">>

= 1 0(s) (|s2g(e), o 1tsn $11y ]> , (hat)

where 'a' is a real number. The equation of motion of

these functiocns will involve such commutators as

lHSIA' H;} and [S;B' Hj), which are found to be
ISIA’ H] - (H+H) g o 5],

¢ N o e
*R E Jli m)(sllAsnB S1a Suma ! o
YA

+ . +
Lsaps H) = CH -y gyu, 8
* + .
2 Z H(l=m) (S, . S35 = 87, Sazp )
[
Using these in the equation of motion (1.35), we obtain

138 63(1,11) = € (a)d(2)dy,, + (Bo, ) g, pg 02(1,11)

.2 }m: Jaem) {{(8y,, 855 =81, 8,503 o*L1aA S
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-
ola

F:\l.l') - (H-HB) &gty l':\-,l.')

.j' -
=25 Jmm) 84,5, ~ Si\ouapt ¢ "t sl D
T

as -
where Y(a) = <\SIA, o« L BA 3, A]\ . (Le3)

Equations (4.<) contain ureen functions of highor order and
we must have some criterion to decouple them. Lthe usual

decoupling approximation is due to Bogolyuoov and Iyabukovz“’,
2 \
Q\J: 33; EP), 77 { "1>\\"3 } B,

where & 18 some operator. This zeans that we neglect
the correlation belween the 3* operator c¢n the i-th site
ané the 5 operator on the j-th site. This decoupling

procedure was improved by Callon‘o +vho uses

@ sy B T GG B -« G5y s)) Lsgi 8,
\LQL)
where « 1is a parameter. An argusent based on a physical

criterion that at any tezperature (3'} - s should be

self consitently small leads to the value

“
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For our ferrimagnetic system with two sublattices, we

use
st 5 TSI 9y 5 G175 L555 BY (kes)

with

¢‘ or aB is o be used depending on whether the operator
s® which is split up into 8' and 8~ 4is for the sublattice

A or b. Recently, the deccupliin, procedure has been
uprond“ by setting up the equation of motion of the higher
order Ureen functicn lastead of decoupling it when it occurs
in the equstiocn of motion of the lowest order Ureen function.
This equation contains s still higher order Yreen furction
which is then approximted by an order of magnitude argument.
Another improvement of Callen's ap roximation is due to
Copeland and uouch"’ who take & = (3') X/ 2 8”'

and find that best agreement with experiments is obtained
when x = 3 giving « = (8® 3 / 2 s, However, as
fahir-khell and ter Hnr” put it, the procedure of
decoupling is at present far from being well understood.ssd
vhere we have used Callen's approximation.

How we Fourier transform the Ureen functions, in the

first stage, from time to energy variables by



1
Gp (L,1' ) = r of (1,11 ) ¢35 4o
J
- Lo
and
" )
Fz\m,l' ) - 'j l": (a,1') oTiit 8.

Using the deccupling equatian (L4.5) along with these
transforms, eguatims (L.2) give

.a el , . e 2a /2™ o* \))
uz{l,l') l B \dfﬂA)gA Ug + S J{lem) %2\5'33 ZGB\JIASDQ%_Q
T

- R0 1 ) - za, { 93 =\
§ Folmy Lty [J\l'ﬂ) { Z\JSA-\ CEA\ 2, "nbn_‘l
)

Qi) .
- Spbld, . 0, (L .6a)

| P

> 03,10 [ J(dem) ¢ 28, ph=ea (5T, 3200 - Phla,10)

| o fa fa® 2™ \)
 S-(H-Hlggp + J‘l'ﬂgi\-’,p 2“8<°1A313>%,] - J.

\L.6b)

In the second stage, we Fourier trausform the different

functions to the reciprocal lattice space by



HCSURE SIS 22'ea gio,
2

Fg (m,1') _%:.&;L) P2,
).

(4e7)

<C.31"A SI'A3;B> - % g‘i(--l' Jod %‘A:l) ’

S S S S S Do St Sl N St W Wt S S N

Jim=1') = %: .1(!’1')-- JiN.

With the use of these transforas, equations (0) now give us

two simultanecus equstions in the two Ureea functions

(5-4y) 08N -, (A AN - a0,
(48)

— s —

4,02 GRA) = (B=d,) FEAN =0

with

dy = (HoH, g, =208, HI10) - A% 5 A N, 0,
' e

£, = 2(3,% JQ) + i?; JA-N MG A, 00,

)
J
)
)
)
)
d HeHa ) Bait=2 (3. ) 9(0) = 28R Ty(\* A, (2',0) }
2 = HoHgleg =23y nZ‘-"ﬁ-‘b"'}
N )
)
£, = 2(5,592) + #;a(b-g\'J\fi\A-.u;. g s
These simultaneous equaticns are similuer to those obtalied
for the antiferromgnetic cnu” put there is a significant
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difierence in the energy parameters of (L.7). Jolving
these oquatins, we obtain

N =d A =d. )

G‘g‘l" < Sia) %tm,t_ 3 L_(Q)=d, } , )

2 (b, (QQ)=A () i1 EB=L\ 2 =4 (M) :
1{4.10)

©la) £, 1 1 {

';‘N T b % N }' )

(A (AI=O(N (B=D (A 2=4A)) |

where the energy expressions are

L2 =3 lc,»«, : %w,-«z)z T Q):zw}‘} : (4a11)

l{he above Green functions possess singularities and it is
well known that the poles of the Creen function give the

energies of the elementary oxoit.n.ionu"b

of the system
considered., Thus for our s;in wave system there are two
branches of the quasi-jarticle energy, A (N . We evaluate
thess in the low temperature limit. To :nko any further
progress one is forced to make certain a;; roximations owing

to the complexity of the parameters in equation (L.9). Firstly
we neglect all exchange interactions except between earest

neighbours, so that, for the systea considered

JQA) - J“Z: exp (L X0 ) = Jp2 o (4e12)

where Q is the vector to the nearest neighbour. JSecondly,

at low temperatures, we assume that the z-components of
spins are not much different from the total spin magnitude.
Thus
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(s“>_. S, ¢ {8,p> —> — 34+

The funetion ' (A, V) is the Fourier trs.sform of
{31, ";B> widch, iu effect, is the propagator of spin
deviation., As the tesperature teids to zero, the spins
will become more and more localized glving rise to

negligivle m'ou-oox'rd.nuon.‘7

Thus, for our purpose,
we can approximate ‘VF to zero. Lastly, we neglect the
anisotropy fields and the external field., These
approximations lead to a good deal of simplification of
the parameters in (4.7) and we have
dy = 259,52 » d = "23,d.p% ﬁ
I (he13)
£,(0) =23 Jnuw £,0) = ‘SBJAB"Q’ )

Using these expressions in (L4.11) we obtain

4, 8 .
AU = T,Ayf“-lx‘ o,

A B

) L My g2
AL2) = 20,58(18,=35|) + T,té-;ﬁrﬂ 2t .

These equations for the quasi-particle energies are identicsl

\Lelk)

o’ W By - S S Ve

with those obtained esriier by the spin wave .n«t'.m'.id‘23
(see (2.19)). Thus the spectrum of spin waves at low
tespe atures oon._iul of two distinet branches, the first
corresponds to the 'acoustic' mode and t.h; second to the
'Oﬁﬁl mode.
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B. Magnetization of vhe ferrimagnet:

_ Kow we are in a position to calculate the
mguetisation of the system. As discussed in the introduction
and enumerated in many cther unielu,“’“'w the Ffourier
trausforms “i(),a) of the correlation functions, which

are ¢alled the spectral density functions, are related

to the Ureen fusctions by

Qo a - a \
‘ I GE".‘L\) Gz-“\bl -1“ ;
W.oNal =1 o "°" 4B
¢™=* &/k,T ')
— o e B . 1 ;
)
1 (h.15)
o ' 5
’ F‘.‘.\b) - P‘-‘c‘b, -{8¢t ;
MWpilia) # 4 o dE, )
— 00

3/k.T
e B-l

where & 1is an infinitesimal factor. By using (4.10) for
the Ureen functions the above expressions can be integrated.

The procedure will be shown for “¥,(2,a).

By substituting (L.10) in (4.15) and putting ¢t = O

we obtain
o0
PN Ola) S Bkgt | 1§ A2,
a = ® -
0= 2n (A AN =D _(2)) {:.-A. (RT+1«

Aol =@,
- dg.
E=A_(A) - da
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The integration is easily performed by a standard theorem

Hx)y,
j”‘ dx i» Flal,

F—Lﬁ)_ ax = |

| Xx=atiu

where i indicates the princijai value of the integrsl.

Yarrying out the integratioun for Vf in a similer way, we

obtain
\{'G\_’\,a)
Sl
with
B2 - !

tial g, 2,

@ (a) Ay (2

M2 - a,

"

£ (A
-~

ﬁ\’l:: ‘L\_(h)

I:.O\LJ/E&T -
s B

-9

¢F\l\3

We define’

\j:’ta}

- B A =h_1)

;% :\H&»‘)
A
':ﬁ Y-_ ¢‘l‘4 ’

—

A

80 that (4.10) takes the form

\+\‘l

(‘D\Boo {) .

——

_—— e

N N T s S S

(Le16)

(417)

(418,

(L-"i

*Yherever the subseript is dropped, it csu be either G or 7.
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The quantity V(U) is directly related to magretization
and the magnetization, in turn, is related to | by the

equation ( see equaticm (52) of Sallon“o )

: (149)23*1 - (343 ’

which at low teaperatures, can be reduced by expanding in

powers of § to

(3,0 =8 + o (¥, (4420)

ihus our object is to evaluate Q;‘ and br which will

straightaway give the magnetization,

‘rom equations (4.14) it is seen that A_LA\) contalns
the large tera 2J“u° °B ) ('optical' braich). 3ince
this ajppears in the exponenstial in the denom.nator of (4.17)
it will give a negligible cont.rxmuvn""} as compared
to that due to the first teras of (L4.17) at low temperatures.
Now we use (L4.17) in (L.18) to evaluate § aud chaige

sumzation over ) to integration to obtain:

!\; - :—‘ X dAc —:."—m‘ ) - _[A‘-W_ B ' .
. -

At low temjeraturcs, the 2xX:Cngnbiaa term 2an be expanded as



.°°-

1 ~I>,/k T ~5/kgT
m— - e {1 =~e )
¢ B,y

i

NA=|

Using expression for i, the integral siaply reduces to

Uaussian integral and yields

s

;0.

N BN LT L L
673/2 EREN v

(Le21)

S5

N — N e P e S

3, -

2 (F3 0r¥?)
w325, -8, ¢

vwhere Oc is defined in (<.2%)

Writing the equation (L.2v) for the two sublattices

in the foru

43“) & SA B 3’0 ’

Ls:a) " -SB-QP '

we obtain
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(3,(Totad)> = (5,5 + &,

Yeen

6,0} (4 | kgT((3,=3 |)%3/2
= (475! 329972 % AB>A7B

(4.22)

fhis gives us the low temperature de; ende:rce of magnetization.
It cau be noted that this dejendence agrees well with that
obuinod" by the s.in wave merLhod for a b.c.c. ferrisagnet
and exhibits the f3/‘ de,endonce of mauguetization.

Thus we have evaluated expressions for the spin wave
frequencies (L.1L) anc the magnetization (L.<<). In both
the casos we haveo restricted the calcu.ations to the low
te perature region. As the teaperature rises the
correlation functions such as < $1a 3;8> can no longer

be neglected. In this case the egquations Luvolve such suzs as

; JA= X' ) MY, 0)
which are, in genvral ,difficult to solve without soze
specific ap roxizations. Nevertheless, the exact sgreemernt
of the expressions for the quasi-particle energies and
magnetization at low temperatures obtained here with those
of the spin wave theory is very encouwragiiy snd suggests a
strong possibility of extending this theory to high

tesperatures.
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1 T.SRING OF HEUTRONS

The preseat chapter is devoted to a topic ooyomt
difierent {ros those studied in the first few chapters.
However, there exists a great similarity between phonon=-
mgnon Anteraction and weutron-magnon interuction. In the
phonon-magnon interaction ( chapter 2 , we considered the
eiergy flow froa the spin systeam to the lattice or vice-
versal when one or the other is excited. In the present
chapter, we cousider the aaguetic systea to be in an
equilibrium state at a certain temperature and the neutrons

48 responsible for perturbing this system.

In recent years, the neutron scattering techuique
bas been exploited to furnish valuable information about
the spin dependent properties of magnetical.y ordered
systeams. The scatterii.g mechanisms of slow neutrons
involving nuclear and ssgnetic interactions with the atoms
have been studied by several aut.horl”'ﬁ. In the magnetic
scatiering two types of effects can arise owing to the spin
and the orbital states of the atoms. MNost of the theoretiesl
WOrk seems tc be confined to the study of interaction with
the spins alone and varicus authonsz'” have discussed
neutron scattering with s.in waves in exchange coupled
@ gnetic lattices, iu particular, iauvolving orne magnon

processes.
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However, the states of some paramagnetic atoms may
involve orbital transitions also in the course of such
intancaionl.5°’5’°’” In the present work we have taken
into account such orbital states which are admixed with
ground state of the atoms owing to their interaction with
neutrons in the formulation of the effective exchange
interaction., We will now consider the formulation of the
interscticn Hamiltonian and the neutron scattering

cross-sections for ferrimagnetics.

Ao & tion t interaction terms:

We consider a systea of magnetic atoms having
localized unpaired electrons in addition to the closed
shell configuration. Ihe sublatticea of the crystal,
assumed to be of the b.c.c. type, are duié{cd by the
running indices 1 a'nd m, the corresponding stoms having
unequal and opposite spin magnetic moments. Let us
consider a beam of slow neutrons incident on such a
ferrimagnetic crystal. The Hamiltonian of the system can
be written as

B o= 5 HyH +t;»ah*;ud, (5.1)
- e B N

where Hy is the Hamiltonian for a single atom, 'd' spans
both 1 and m, H describes

is the

heu is that of the neutrons, Hh

the exchange interucticn between atoms 1 and m. “nd
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Hamiltonian for the neutron-atom magnetic interaction

and includes both spin and orbital -omonuxso

Hnd - Bn. *“no ’ (5.2)

where un. pertains to interacticm with the s ins of the
atoms and Hno with the orbital moments. The indivicdual
eigeustates nd eigenvalues of the neutrons and the atomic

system are assumed to De knows, namely,

Hou |ks) = 555\50 ; 1543)

By 11> = By D
(5.4)

T Tt W S e

Hy 13> = 3y lmyy,

where |ks) 43 the wave function of the neutron with
wave vector Kk, s;in 6 and energy xk"' 3 711') and x5
are the eigenstates of the atoms 1 and m respectively with
gnergies 3“ and Bbi' ti' 4drdicating the initial
( here ground | state. ne reyresent the orbital states of

the stoms which are perturbed owing to inter.cti.n with

neutrons as

Qpk's' / B/ 1,k
) = Bt ) L E:t =711, (5.5)

where we are considering only the orbital inteructian Hno;

k' , €' are the wave vector and s;yin of the scattered
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neutron and h'f> the final state of the atom with energy
5“.. Also s denotes the electron spin. Now we
formulate the exchange Hamilt nian of the zagnetic lattice
in the presence of neutrons by making use of the st.tes

Xl..> and "b.> etc, Inis csn be written as

i; uln “8 ; ;v °;l°;-' 41:."'!:.'/“1-/'!::'1-.' “08%s' ~

(5.6)

where c:.. %0 represent the fermion creation and
annihilation operators for an electron in the orbital state

11,,)+ On making use of the perturbedstates (5.5, the
Hamiltonian can be written in termsof a pure exchange jart
and cthers .lnvolving exchange accompanied by neutron

scattering:

=T ﬁ :cz.o;.,.l“c.'cl.. - 2JAB'§u°§-d’°°“"" (5.7)

and

ill,k'.u/l /l‘,‘4><1: )8 ,/Ml /.I - P

. (-Ekcev/!nl/n‘i,kc}b(;:l.l’ ,/H! /l[ s 5

(1 JK's'/H_ /L ok‘)(l oy /R /m ) b }
" Y o ‘no i ﬂtl s lo’ Js’ fs j

x’];"."’\“ 2)59n ? (5.8)
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where As. =5 475 ¢ L8 = 5 =B p aic 7);‘ ,719.

are respectively the creation and annihilation operators for
the neutron .n the state )KA). Uther termss of (5.7) have
veen defined in previous chapters. In writliig the magnon=
neutron Hamilt.unian, u_n. we have already carried ocut
sum-ations over spin states s aud s8'. We use the neutron

wqve function
’&6) - 015"”:) (5.9)

and a typical matrix elemsent, say, that 4in the first tem

of (5.8) becomes

-i13.
(.J "k"s'/uno/'t'&{> - <.J'°"/uno/.t">‘ ol ’

where g = k-k'. Now we use the HOP'O operators which

leads to
= R a™ - ¢
314308 ¥ (5),525%510%8 * S150%ms5
" ] . P . +
(SASB) (uld.uld.) + Jkd.d. * 54808, (5.10)

Then we Fourier transfora the operators a, and dn to the
reciyrocal space and use the relatioans (5.9) and (5.10) in
(5.8). Summations over 1 or m give us certaii woment.m

conservation conditlons such as
Ek' s (A=2) = kk'zgq = O
for different terms. g is the difference between wave vectors

of the incident and the outgoing neutrons., Invoking the
canonical transformation as given in (2.16', (5.8, becomes



+ E;f x_};1 (11.5'/Hno/1‘,6>> "\;k . Yl)_c,e“:\ g
J

‘(S!: QAQ. <-J.x'/nn°/-t.6>

’ AJZ YM <11,.;v/ﬂn°/1t,4'>) ﬁ"'qkﬁai‘n "\

' (&t sy o (2576 tnof2g1 )

J
(511,

with

9 = <liu'.fl'/ul/.js’lis'> i
(5.12)

T

JZ - <lfl'.Jl'/Hll/.Jl’lil'>

The coupling constants are given by

, - ) .
}M (3‘83) “&‘8 sin h iib cos h 9&’2 + 1, cos h Ol sin h QA.Q)

+ (5, sin h OA sin h 0?.\.'3 * 38’1 cos h GA cos h 0&_3).
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. T
2(3A°B) (r cos h ?ﬁ cos h 8 _ +

gﬁi neg \ =g A sin h ?= sin h 0*‘3}

+ 205, cos h iil sin h ah"& * :}dr_Ll sin h aﬁ\ cos h eb"ﬂ)'

%&Q.. \é‘dn)‘\al_s ¢Os h 0: sin h 02’1 . ‘l sin h ‘ﬁ cos h Ox )

+ (3, cos h GA cos h = * Sa1 sin h éA sic h QK

A A=q 1 2 A=gq /s

- | ‘ 1
ﬁ&l \SASB) \12:2 cos h 0: 8in h Ql_& + 1, sia h a:_con h %ﬁf&l

+ (3,1 cos h dA cos h qA-g . 3

A'g gin n d)\ sin h 9)\_ Iy

B

: 2(3 ¢ )8 '
x& ® 243,3,) \ineg sin ‘b sin n ‘5-3' "\ ¢os h 65. cos h d"’s'

oZ(SAlq sin h ‘é cos h eﬁ‘ﬁ * 5, c08 h 9: sin h ﬁ:.si.

> e (S € t
Zva (3,35) (fyeg sin b d& G08 h 8, ¢+ r, cos h 8 sinhow

a9 P a |

{3,y sin ah sin h e

A'q g * Sg cos h e.’i cos h ai_

q)’

{5.13)

wher e 9, 1is defined in (2.17),
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In the neutron-magnon interaction tera, i.e., (5.11)
we have not iucluded the hermitian conjugate processes since
we are considering & particular incident neutron |k«) being
scattered to the state |k% /). The hermitian conjugate
processes of the sagnon operators are already taken into
account because of the suam over 2. BEquation (5.11, fully
describes the interaction of neutrons with =magnons involving
orbital transition of the magnetic atons. The exchange
integrals J, and J, defined i (5.12) are different since
these exchange integrals involve one excited orbital state

of one or the cther atoa.

B. Seattering eross section:

The scattering cross-section per unit range of euergy,
per unit solid shngle, is given in terms of the neutron-uagnon
56
interaction H-n by 5&.

< ' (
K!ﬁ'i' -_é{ \;!)ﬂ(y:/u‘n/i;)r C“K-Eh'mﬁ *‘mvé.gi. (5.14)

where a, is the mass of the neutron, 4 and f denote the
initial and the final statesof the crystal, x& is the kinetie
energy of the neutron of wave vector k.-anc-xa havs used
weiveda-which— N = 3,

Once again, restricting ourselves to low temperatures,

we consider only the 'acoustic' branch of magnons and, thus,
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we take for g only the first term of (5.11). This involves
mtrix elowents of the neutron-orvital moment intersction

of the type <11.6'/ln°/1‘.,6'> « These are evaluated

as follows.

“@ can write
fo = THErL
where Hy is the magnetic fiasld caused by the magnetic moment

f“n of the neutron, /51 being the orbital moment of the
atom. Then with r = X "X

i, = curl -&5—5- - -wrl(ax\?';).

By standard vector algebra
f s 1 a 1 21
curl(#n er)z k‘,‘;}n.V)VrolL\nV £ »
Now VPLl e -wmop,
80 that

H, * A.V %.V-:-,) - "}'-‘1’_“:: é‘s;_-.. (5.15)

This expression cun be written as

Ho * {-%E‘- 3 N}:‘-:Sg,-ﬂ}_ §= Gy dlel . (5016)
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The c.rly bracket above denotes the dipolar interaction
and for our puryose we neglect it here. J‘he zatrix elesent

can then be written as

Gur g 1geY =iy | Petfigec)

.- %(11,_.-/ By /igr6 ) (5.16)

The orbital and neutron magnetic moments are given by

(5.17)
ot

where m is the electronic mass, Lk, ‘the orbital angular

mozentum of atom 1 and 3'1 the neutron arng lar momentum,

& * - 1.9N. Therefore

24
ftn =t 28 T Ly

m.lnc
and
2>
(11"'/%o/1:"> - B .—:';2—411.'r'/5,§°/1,.4> .
en
H

-thg we can write

o .- L, -
& *3y R T I £ bySp ) oo
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The first term, L"Sn., does not give rise to any secattering
involving orbdbital transition and hesnce we drop it here. The

remaining part ,ives

(]1,6 /H /lt.»$> %’- g, .—:—c- x<11'° /.. 01,;3;/1:,6>
&

> - - - 2
g ._:_:‘2 {(11/1.,’/1,)0 135/ +Qy/ig /1y () sn/‘>f’
en

Since we are considering the incident neutrons with a
particular s;in, one or the other term of the curly bracket
will survive. If vhe incident neutron is suypossd to have

s;in +3%, we ;ol”

24>
(s et/ /1o = 3 &, ::'01- gu.,ox,u-,-x,n)} .
en
X ((h+d)(a=den )f

8' 2*" S L M )'.- -¥ .
- }_ ‘n .—ﬁz— \‘ ‘0 1 \a.' 1 *1)} ’ (5.18a)
en

where x, is the orbital magnetic quantum number of the
atom 1. Jimilarly

<'J’ "/“no/' '}' g'l "n

Z.KL )
i - L)
B C 2“‘2’“2”"‘ “4'”} « (5.18b)
Using these relations, the first term of Hop, of
(5.11) becomes



J
-gl‘n.—-—'-c-z— .ﬁ; %\L'O)l‘)(;'°x‘01)){ S N
243 o ¢ . )
o W 2 g (e !

Now we have to evaluate the matrix element of the neutron=
magnon interaction Hnn which ap,ears in the scattering
cross-secticn (5.14). Zhe combined states of neutrcs and

magnons can be written as

!Q) un l‘ﬁ P SN e D

ik'.r,
\fk'>' ° |o ,>... nz‘ , n)‘,z ...> .
Then
CRAWE DI Z; Hifng ¢ Aahg!
-Q;".gn 15._:;1
<...na’,n&2..., 01‘.'/. l",y‘ K A Tog /.‘ ,n—‘..15>

Here again, since the incident neutron state \1‘> 1s occu; le¢
and the final neutron state '0 )48 supty, the newron

operators will give ur.it.’. The magnon operators yield



(kM /ey = Z; (A,RM_ "y Ko !

ik, =k'. l
x S(n,\ol)(n)‘.s)}i © ReEps <y .

i{nerefore
(&0 (/i 508 )

- : “1*?.*.1'“2‘&)2 &uf_olnn&_“). (5.19)
A

The expression “1"&"2‘}3}2 is evaluated by using (5.13)
retaining terms upto lowest order in the wave vectors. This
ap roximation is of interest fo: the rare earth ions in

which case, the Af sbell has a small redius. Ve obtain

(AeFy sAoky )2 @ § P SN 2
1 ag 2N Y 73 . 7
where
H.1 -0 A' 2 _LS._A__A’L-L + 2%"&2 z JAJB.
N )
5 b2 o 3353 2.4 5
2.2, 2 (3575, #4575 +2< 157 +4,3,5.+335 38)
aanz‘ag “’ASB * 2*,‘23 AB ﬁ & A

(ii,k - Sp)

.Dd X' - -x.n.
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In evaluating the sum (5.19), we must utilize the
d-funetion of (5.14), i.e.,

‘)“k"k' -ty oy )
% (k%= 1?) ;
Fo—— —_— ¢ == = cos 0,\},
2)\qkg® a % 2 F2) -
%% bm gk, O a

where we convenlently choose the difference vector g to be

in the = direction withow loss of generality and 0‘a is the

angle between the naguon vector ) and the z axis. Tw, is
the ferrimagnetic acoustic mode oranch energy givean by :ho
first equation of (2.19). Also, we use the equilibrium
distribution function

‘ ‘bué/kar .
n& - B -1)

80 that
.1"; /kBr

(mas1)(my o) = ‘:h'é./"af-n(?' i'n’kﬂf:)

.-'ﬂwi‘s/ksr

in the low tesperature region.

Using the above results and changing sumation to
integration, (5.19) becomes:



Lire/h /16 ) {8/ fi'2)

.uzg

2.2 2
2 2
. N sin ) dﬂz‘. d’*{ a,ﬂ;l - &2(2)2oq -2 q cos e& ) g—}

2 .2
.‘5'5_\.-3/"37 q éi-ﬁz (k% =k'%) .

4o - cos ®
&MkuU? "

"'n\qkaac;‘, o

where v 4is the voluzme of the unit cell ( v = .3 ) and N

is their nuzber in the erystal.

The integration over 9, is easily carried out by
substituting x = cos 9, which eliminates the J =function
and gives

v ( 22 2)
». - PO S
';z}*"\“'i'ﬁ‘ iplaX=p%) &

v

! 22 % 22
= exp ( =kg® )0 ¢ -§ p%a”), ($.20)
qubéca
where'
. (K -k?)
i - .
2
&-kneca

Integrating this expression and substituting in the

equation (5.14) for the scattering cross-section, we obtairn

"It s hoped that there would be no confusion between this p
and the p defined after (2.36) which are quite different.
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2

d"s k! = )2 N a ‘ 2 2) T
- ( *
dgd Tl h!knecq""\; [ bl 33

% 2.2
c® @ T

This gives us the neutron scattering cross-section
a ferrimagnetic crystal at low temperatures taking into

account the orbital magnetic moments of the atoms.
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SONCLUDING REMARKS

In the foregol.g chapters, we have developed a theory
of interaction of magnons with different ageucies such .s
phonons and neutrons from the microscopiec point of view.
In particular we have considered ferrimagnetic crystals,
The magnon dispersion relations ovtained in chapter 2(2.19)
show a2 quadratic dependence on the wave veetor ;‘or a simple
b.c.c. forrizagnet. For more complicated lattices such as
magnetic spinels and garnets, the phonon-magnon interaction
terms get very involved. Uifferences in the acoustic spin
wave frequency arise ounly in the coefficients of 7ea2
in (2.19), uunly?,

B { 11 JapS,(85,48,,) 2.2
(magnecive) = BMH a
2 T 557 S - 3,
and>®

o 22
Tn, (YIG) 'Ti'" 5 Jpa = 8U,q = 3gy) Nat.

For u rough comparison of the relaxation time with avsilable
ex;erimental results, we choose the following values of the
paraseters in (2.28) for the relaxation time. Consider a

iy
systes with X = 5?:'§A-2. S5°2.5, 9 = 200°K, 8 = 200°%

D
and % ranging between 10'7 and 10'6 dyne. Then (2.38)
gives T . at 10°K in the range 107% 0 1077 sec. Although

the above is a tentative range of values, this {3 falirly
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close to the observed range in scme ayatems.59’°° The

range of values chosen for °J seeuws to be quite reasonabdie
for magnec;c spinels snd garnets, as seen by the estimates
made for other substancea.'3’31 It is to be noted that the
expression for ”Tép is quite sensitive to the magnitudes
of Gc and SD and for a comparison with a given system

one must use the a.propriate values,

The renomealization of the spin wave frequency shows
& very striking feuture, i.e., the spin wave frequency
decreases rapidly with temperature owing to the interaction
with lattice vibrations. A similar investigation of the
renormalization of the phonon energy in wmagnetically ordered
systems ( i.e., owing to the interaction with wa gnons ) can
be done and may iurnish some valuable information about the
temperature dependence of the ~“ebye temperature in such

systems.

The application of these calculations to thermal
conductivity is straightforward and the agreecent with
experimental results quite conclusive. Although deviations
appear in the conductivily peaks, one must bear in mind that
the original phonon-magnon interaction theory is meant for
two interpenetrating cubic sublattices of the magnetic ions.

It was hoped that the interaction mechanism involving 'acoustic'
modes of phonons and magnons will hold in low teuperature
regiorseven in the complicated lattices such as ferrites and
garnets. Although this hope has oeen largely fulfilled one
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could still desire a betier agreement. The discrepancies
may ve connected with the complicated ion sublattices as
well as the imperfections and defects of various kinds.

Perhaps the simple expression of defect scattering, Pﬁﬁ 5
is not capable of fully explaining the results. However,
the agreement in the region where spin wave contribution
is important strongly supports the mechsnism considered

here.

In chagter 4, the Ureen's function method is applied
to ferrimaznetisi, which gives'the s;iqﬁave spectrum and
the low temperature dependence of magnetization. 3ince
we have restricted ourselves to the low temperature region,
a good deal of simplification has been possible. *‘he theory
can be extended to cowmplicated ferrimagnets with many

sublattices and to high temperavures.

In the neutron-magnen interaction, we have considered
only the contribution from the orbital magnetic moments of
the ions, The interactiun of neutrons with spin magnetic

moments has been a subject of considerable interest in the
lasyaecade -nd in almost all of these calculations the
orbital moment was supposed to be guenched. However, as
ment ioned earlier, this a; roximation can not be made in vhe
case of rare earth icns. We believe that the additional
mechanism involving the orbital moment will im; rove the
agreement between experiment and theoretical prediction

incliuding only spin moment. Unfortunately, nsutron seattering
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cross-section data for rare earth ferrites or garnets does
not 8seem O be available although such experiments on rare
earth uetals have bLeen done. A similar theory could be
developed for ferro- and sntiferro-magnetic systems for
which the neutron scattsring data already existfand way

vrovide a check to the above statement.
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