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SYNCPS

The thesis comprises four chapters. The first chapter
is devoted to the study of the gen. ral sclid state theory,
wherein we have reviewed the c¢ynssics of the charge carriers,
their statistical distribution amoug the availadle quantum
states and thelir scattering mechanisas. In these discussions,

we have focussed our attention tw semiconductors.

In chapter 2, we consider the electronic motion in
polar semiconductors and their solid solutions. The systeus
chosen for the study are Lead Chalcogenides (Pbi group
where 1 is 5, 5e or Te j. Froam the physical properties of
the PbS group reviewed by Scanlon the imjportsnt points to
note are (1) the high mobility, (11) that the mobility seeus
to be inde,endent of the nature and concentration of the
carriers, (i1i) the teasperature dependeice of the wobility
1s of the fors | = [ T7", where n = 2.5 and this
behaviour is observed for a wide teaperature range from about
80°L vo 509°k, (iv: the solid solutiuns of the Pbs group
exist iu all projortions and the mobility of the charge
carriers in solia sclutionus depends ou the concentration of

one of the components of the alloy and on tem erasture.

After reviewin, the eurlier theories of mobility in
polar semiconductors and noting their inadequacy, we have

introduced unew ccncepts such as multiband conduction in
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thies chapter. It is envisaged that the inter-bund transition
of the charge carrier say play au important role in the
=0bility problex of the polar semiconductor. Juch
transitions are assisted by the lattice vibrational modes

ir the ¢ase Of pure cospounds and by the perturbling slloy
potential in solid solutions,

In chapter 3, the {nteracticn Hamiltonian has boen
formulated keejpirg in mind the aforementioned co.cepts,

nasely, the wultiband conduction for the foliowing tLwo Cases.

x8s88 1, ‘urg vospound:- The optical or polar wmodes iu

the restatrahien reglon are sssused Lo ve lajportant iu
effecticg an inter-band transition and LOth acowustic and
optical moces are taken into account for the scatteriug of
the charge carriers. It lo found that the two-phouon
»rocesses are important for the trausport ;robles in the

high tesyerature region.

Sase 2, solid Jolution:~ In the case of solid solutions

additional perturbaticns arising out of alloying effects are
adsuxed to csuse inter-band transition and the acoustic modaes
of lattice vibration scatters the charge carriers. It is found
that the oae phonon seatiering proces:es coupled with the
sodiflcations of the state functions Ly alloyluy effect are
important ir the mobility .robles of the s.lid soluticus.

The reluxstion times and thereby the mobilivy
eXpressicns are obtalined by solviug the uuﬁ«.mxz Soltzmann

transport equation. In the first case the mobility versus
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tecperuture relation is of the form | « por'5/2 in the
high tes;erature region ( T > @ © bein, the characteristic

te.perature ).

for the case 2 the wobil.ity expression .iun the low
te.perature region ( T > 50°Kk) 4s of the form P = pé'jt-yz
where Ué') 1s & function of the councentration of the

coaponents and it is given by

(8) . ¢
0
2 o <
b+ 284 2ty Fpy
r,s

Here a, b are constants; ‘r and t. being the
concentrations of the compoueites ( r and s ) of the solid

“1“‘0". .

A resultant mobility expression has been cbtained by
adaitior of reciprocal mobilities of the two cases mentioned
above.,

in chapter &4 we have given a discussion of the two
models, namely, continuum model and atomistic model which
have been utilised in chapter 3. Based on these two models,
the order cof magnitude of the mobility has been discussed

for the case 1.

It 1s ccncluded that the tex;erature cejendeuce as
well as the urder of sagiitude of the @obilivy of the charge

carriers are in very .cod sgreement with the obs:rved data.
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In the case 2, we have comjared the theory given {u
c¢hapter 3 with the experimental results on the PbTe = Pbse
system. The constants & and b were deterained {row
the ex;erimental graph of Joffe aud collaborstors. It is
300wL Lhat there is a close agreewsut between the ex,eriwental
data and the theoreticsl curve for the @obilicvy = couceutratiorn

dependence.

It 1s coicluded that the inter~band transition effects
in the polar semicorductors, whether caused by optical phouons
or alloying perturbation do indeed play an izportsnt role in
the trans;ort ;robleas.






GENERAL INTRODUCTION

33: (Slectrons and Holes)

In this chapter, the behsviour of electrons in
erystalline solids in general and semiconductors in

particular is considered.

In order t¢ understandé the various phenowena such
as electricai snd thermal conductivities etc. of solids,
it 1s necessary to consider the class of elementary carriers
of energy and charge namely electrons or holes. The electrouic
configuration of an atom consists of closed shells of electrons
88 we.l a5 valence elieotrons. It is known that oaly those
valence electrons which are free to move in & solid are

res;onsible for the conduction of heat and electricity.

Drdd" in 1900 gave the free electron gas theory for
a metal bDased on the principles of classical kinetic theory
of gases. Later Lorntlz dmproved the theory by taking into
account the statistical nature (Maxwell-Boltzuann Ltitistics)
of the electrons. A wave mechanical [ree electron theory for
metals was developed by 30-«rf.143 in 1928 on the assumption
that a valeance electron moves freely throughout the volume
of the crystal in an average constant potential due to the
rest of the valence electrons snd iou cores. The theory,

though crude, wss able Lo explain many of the exgerimental



facts approximately. However, with this model it is
difficult to understand as to why some of the crystalline
solids sre good conductors and others are insulators and
seaiconductors. This difficulty was removed by considering
the periodic nature of the potential of ion corgs in which

the electron is novlng."5 This leads to the band picture

of solids. The atomic states of the electron of the isolated
atoas spresd into allowed regicns of energy separated by
forbidden reglions because of the interaction of the ion cores
witn the electrous. The lower atomic like states spread into
narrower band compared to the higher ones. The various
quantus states of the bands are filled by the electrons
according to the rermi-Dirac distribution which can be written

1
£(8) = - (1.1)
o\ BTV /k,T |

The highest filled band is ocalled valence band and the first
incomplete band is csliled the conduction band. In general
these two bands are separated by a forbidden region of energy
called forbidden gap. But in metals the two bands may overlap,
thereby conduction electron can be found in the band
participating iu the conduction processes even at very low

tea erature. Let us consider an insulator snd a semiconductor.
In the case of semicouductors the gap is of the order of one
electroi. volt and heunce, electrons can Le therually excited

froa valencs bsnd to conduction band to participste in the
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coiduction processes. In the case of iusulators thermal
excitatiou of electrons is negligible owling to the lsrge band
63p, and electronu conduction phenomena will not occur even at
high tem eratures. This is the model of & solid proposed by
ulocnb in 1951, When an electron goes Lo a couduction band
the vacancy in the valence band may be considered as a

particle called a hole. This hole whose charge is equal and
opposite to that of an electron, moves in the op,osite direction
o that of an electron. Hence, the moticn of the holes
contributes to the hole couduction. [hese are the two particles
one deals with in a semiconductor thsory and s study of the
behaviour of these particles in a sealconductor 1s of vital

iaportance for the trsnsport processes.

Iv 1s difficult to determine the motion of all the
charge carriers in a perfect crystal. This is because of the
fact that both the valence electrons and the atomic nucled are
in motion at any finite tempersture. Some simplifying
assus;tions are uecessary to solve the prodlea aud one such
ap;roach 1s that of "Adiabatic apyroximation” . with its help the
probles can ve reduced to one dnvolving a single electron.

On this approach the one eleotron under cu.sideration is
supposed to move iu the field of the avomic ruclei and all

the cther electrons, averaged in a suitable manier over the
motions of these charges. Further, it 16 assused thet the
field in which the one slectron is moviug has the same kind of
pericdieity and symsetry as the erystal lattice and it can be



represented by
Vil = Vigped) (1.2)

where r 1& the position vector of the one electron and
d Dbeing the lattice veetor.® The motion of the electron
in the periodic lattice potential V[r) iz described by the

one electron Jchrondinger equation

2 m ¢ I -i-
v W » ._2_ ‘13 - V‘I) ': \#/5‘ - O “03)
a J

Bloch7 in (1928 demonstrated that the solution of the

equation (1.3) can be written in the fors

Vit - O < Upu:) (1.4)

now krown as Bloch states. Here X 1is a vector of the

‘de d,a, ’42&2"323° Here ga,, &, and 43 are three fixed
vectors called basic vectors, d,. dz and d3 are integers.
The s;ace described Ly these triad of vectors is called a
direct space in which the crystal lattice 1is defined.
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reciprocal op.co. and Uy'([) is the function having the
periodicity of the lattice. It can be show:. using the
translation periodicity of the lattice that k 4is the wave
vector of the electron and t 48 the band index. Also every
state of the electron has its wave vector. It is evident
frce the property of the bloch functions that the wave vectors
for the electronic states are arbitrary upto the addition of
the vectors of the reciprocal lattiice and it is represented

by k' =k + g where '] is the reciprocal lattice vector.
Any K Vector lying outlside the first Briilouin zone can

bLe brought inside the first zomne oy selecting a suitable
reciprocal lattice vector. The emergy functiou of the electron
is periodic in k and when all the Kk vslues are brought to

the central or first zone, we have what is kuown as reduced

----- -~ -~

it is convenient to think of a2 space called reciprocal
space described by a triad of basic vectors B,y B, and h)
waich are defined by the following relatiocns:
22 * 4, 4; * 4, 44 X &,
® ——, b, e, D, ®
A1°8, X 44 2 408, X2, 3 843, x3,
In the reciprocal space we define a vector
L. g'g‘ . ‘2!’2 . ;2&3 known as reciprocal lattice vector
which describes a reciprocal lattice. Here Ey» &, and ;3
ere integers.

L)

"Tbc reciprocal space can be divided into different regions
called Brillouin zones, inside esch of which the energy is a
coutlinuous function of the wave vector, k. The reglon about
the origin of the reciprocal lattice is called the central
zone or first Brillouin zone.
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one -cu-..’ The energy l“ in the reduced zone scheme
is mulvivalued and separates into branches or bands. A
snowledge of only onme branch of muitivalued function E Kt is
sufficient for finding the form of the energy band.

The number of states in a band is just the number of
k values in the first Briliouin szone, which is equal to the
total number of unit cells iu the erylul.s Zach k state
Can accommodate two electrons of opposite spins. Further, the
factor N(BZ)dE (N(E) being the deasity of states), wh.ch is
the number of states contsined between . he energy -ange 5 and
E + ¢C, gives a quantitative representation of the bsnd scheme.
Arnother important concept which 1s very useful is the Fermi
energy. In general this can be defined as that energy which
sejarates the occupled and unoccupied region of energy, by
olectrons iun k-space. In the case of pure seaiconductors
mathematically one can visualise from expression (1.1) as that
energy for wnich the occupational probabilivy is half, Thus
i the case of pure ses.conductors the Fermi level 51»‘ lies in
the aladle of vhe forbidden gap and for an impurity
Sea.conductor its position is decided by the impurity level,
the temperature and the distribution function. To know the
forz of the band one has to eclve the appropriate wave equation
for the electron and obtain the I versus k rol.nuon.a The
relation of the !‘cnlns

£%x?

B - ?— (1.5)

describes what is known as a parabolic band with m° as the



-7-

effective mass of the electron. This gives rise to constant
spherical energy surfaces in Xk space. This is the simplest
form that one can have for the energy band. However,
semiconductors do not p0ss08s such a siuple band structure

and it 4is ouly a simplifying assusption. All the real
semiconductors exhibit a complicated band structure, such as
ellipsoidal or spheroidal surfaces of coustant cnorgy.6 For
all transgort probleas in semicouductors one is iuntoerested
near the band extrema, nasely, the counduction bsnd ainimunm

or the valence band maximum. In the simple band model
discussed above both the band extrema occur at k = O and an
electron can undergo a giro\ot transition from valence band
maxisum to the conduction minimum, with the help of thermal or
opticsl energy. Gererally, in semiconductors these band extrema
do not occur at the saze value of k but at different K
values. Hence the direct uransition indicuted above is not

the only process, dut indirect transitions may a.so occur.b

It 13 clear from what has been said above that the
stucdy of the band structure of a semiconductor is of great
importance, which helps us to understand the trans;ort mechanisa
of charge carriers. The parameters that are to be determined
from bund structure calculations are the energy gap :“.‘, the
posit.ou of band extrems in K-space, the elfective mass of the
electrous and the holes, and fina.ly the fora of the 3 vs k
curve. Unce these parameters are determined, one can deduce

the nature of the band i.e. whether it ls nondegenerate,

degenerste, simple or multiply connected.



The mass of the eliectron in a crystul lattice is always
something different frow the [ree electron mass of an isolated
atom. In this context the actual mass of the electron iu the
periodic poteuntial of the orystal lattice is defined as an
effective mass of the electron and it arises due to the
dynsw.cs of the electron in a periodic potential. In the
simple band model of counstant spherical energy surface, we have

for the reciprocal effective mass

2

.

1 .
— - i?— x.Tf,: (1.6)

(3

w

In the case of a complicated band structure, the most general

relation for reciprocal effective mass can be written in the

tox'--s

1 1 '3
B, Hh* 2k s‘)

Thus for a complicuated baund structure the effective .ass
parameter is a tensor and for a simple band structure, the

expression (1.7) reduces to (1.6) which is a scalar quantity.

The expression for the density of state function N(E)

defined eariier can be written in the form

(g) __T.v : S a3 (1.8)
K(E - S— .



Here, the lutegral is to De tuken over the volume of the

k-space bounded by a surface of coustant energy L.

The energy gap E‘ can be determined f{row the thermal
or the optical measurements. The calculation of the band
structure is really a difficult task as it involves tedious
couputations. There exist excellient review .rt.tclug"o'"
where the sub ect is dealt with from variocus points of view.
In any cand structure calculstion one will depend heavily on
the group theoretical methods and the conclusions drawn from
such a calculation is of great value in the scattering
mechanisms of charge carriers to be discussed later in this

chapter.

It is a general procedure iu a band structure
colcuhuma Lo assume that the one electron poteuntial is known
and hence the one-electron solution. Then the provlem is
solved by deteraining the crystsl Iield ;otentisl in the
Hartree-Fock approxisation. The proviea of band structure is
essentially a problem of solviug the one-electron equation (1.3)
under the various methods of fiudiug the sclution k.Up. They
all involve expansion of the unknown function in sets of kunown
functicns nomely, plane waves, products of radial functions
and spherical harmonics, solution of atomic self-consistent
field problex etc. In each method of baund structure calculation
the boundary conditions and the remaining requirements on the

wave functions are different.



Wigner and Soitl'z in 1955 developed & wmethod of
calculat.ng the band structure now known as the ce.lular
method, The essentiul feature of this method is extreuwely
simple. The schrodinger equation for the oue electron is
solved in one atomic cell suvject to the boundary conditions
on the wave function and its derivitive which can be obtained
by Sloch's theorem. It is also assumed that the crystal field
potential is spherically symmetrical in any given polyhedral
cell. This method has been used in the band structure

calculation of Pbi semiconductor by Bell et al" in 1954,

) Another metnoc of interest is that due to Bloch7 in

1928, the 80 cullied tight=binding awethod, where the free atomic
states were used Lo construct the sloch states. It is to be
noted that the tight-biuding method applies to electrons thst
are tightly bound to their Own atoms, such as d-electrons in
the transicion wetals. However, ".munur“ and Mhu" have
discussed the inadequacy of the method for valeuce electrons

in metals. The difficulty with the tighi-binding method is
thst we are trying to represent a state of the electron in the

crystal environment in terms of free atom:.c states.

There are other ajp;roaches wherein better functions are
constructed to satisfy more realistic conditions that one
Comes across in a erystal lattice. These functions are
combinaticns of plene waves with a, ropriate boundary
corditions to suit the physical situstions. These are the
ucly&noun methods of plane wave. aorrtng'° in 1740 developed
a @ethod called orthoganalized plane wave (OP¥). This method



gives reasonably good results for simple metals. In
complicated cases, one has to supplement variational technigue
for the expectation value of the energy with the 0PW functions.
It has been shown by Parmenter' ® that the tight biiding

method discussed earlier goes over to the OFW method when the

tightly bound electroan becomes free.

The other way of improving the method of band structure
calculatiou 1s to look at the ,otential function of the lattice
ivself. oJselecting a constant ,otential in the inter-ionic
region and a spaerical atomic poteantial surrounding each ion a
method kuown as augmented plane wave (APW) was developed by
shur" in 1'9)7. Iz thies method the wave fumction consists
of two parts, namely, a sclution within the atom.c sphere
expanded in spherical harmonics and a plane wave iu the
inter~ionic region. This method in conjunction with the

18,19,20

recent matheamsticsl technigue has been proved to be a

powerful technique of band structure calculstion.

There 45 another mothod, which makes use of Wannier

fnncuoncz' { xo-ur."‘ Pu'un.23 and %Wain wright & P.runz‘).
This method is not 50 easy Lo handle as the mathematics involved

is difficule.

However, frow the above methods it is found thut the
calculated electronic energy levels ‘.ﬁ not in good agreement
with the experimental results. hus to get a closer agreement
between the calculated energy levels and the experimental result.

one has to do a self-consistent field calculation.
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In tho foregoing discussion of the band structure we
have considered the nature of the stationary electronic
states. It is interesting to coansider the influence of
external fields on these stationary electronic states. In the
periodic field of the crystal, the charge ¢ rrier moves with

a group velceity

-

1 B
® wmn ( wm— ) s
!5 : (e ) (1.7)

and its motion in the applied external field is described
by the tize-de,endent Jehrodinger's equation.

By * H) Yig, t) = 1t '-?_xyx L, t) (1.19)
‘ ' T

where (Ey t) 45 the electrouic wave function. H, is the
Hamiltonian in the absence of the external field and H' is the
Ham.ltonian for the externsl field of force. writing
- 52 vz
° P

one can get the effective wass equation of the electron as

-h? g2 4w 2UAE, ¢

\\ 2.‘ B ) \V‘t. ‘) - i h ‘:."

(1.11)

originally due to Wannier.*' Here 1/a° 1s given by the
expression (1.0).
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In the foregoing section, we have discussed the dynamics
of the charge carriers in a crystal lattice. Now we shall
consider the state of the crystal lattice at any finite
temperature. The ions of the lattice execute small
oscillations about their equilibrium ,osition. These ions
are coupled to one ancther by elastic forces and the small
displacoments from the equilibrius position acts as a
disturbance in the erystal lattice. OUne cau describe these
lattice displacements in terms of a wave pattern travelling
in the crystal lattice, called lattiice waves. GHach such wave
is charactserised by a wave vector 4 and a frequency w_ .
Here p 1is the mode branch number of the lattice wave.
Altercatively, the lattice vibrations can be represented as a
vibrational field in which the field variacles are the
displacements of the lons from their equilibriua positions.
In the lsnguage of quantum (ield theory this can also be
described as a cloud of quanta$ of the vibrational fileld,
known as "Phonons“. The Hamiltonian for the lattice

vibrational system can be written aus
/ 1 ~ :
H, = & ;‘-5 '\T!/ Bip Prp * ViR (1.12)
»

where 1 4is the vector of the origin of the cell to which the

atom belongs, b 1s the basls vector to the atow in the cell.
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Alo' is the displaced position of twhe (4, 2)"" atom from
the equilibrium position. The displacement

(
PeY -

5% T W R

”b is the mass of the ion in motionm, pl! is the momentum
operstor. The potential energy ““L Y ) can be ex;anded in

Taylor's series in terms of the various dis; lacements as

._2
) ol | .
V(&l.! ) - V° + 2 ? _,: ' ‘ Alo!\“ ml.;.ﬁl'!' e

S f: > OBy pe Oy piavpe CBpepe ¢ e
o3 10

Y ‘1013)

where we have rot.nln“ terma only upto second order in the
Taylor's exjansion. This 18 kuows ss the Harmonic ap; roximation.
Now the expression ( 1.12) can ce written within the frame

work of harsonic ap;roxisation,

H =43 ;&-ﬁ;) PrpePyip ¢ & S S OR1peCiueirpre ©Byopy
I A" 1p 13 I % 224'0 i't

SE v e “.“)

It is convenient to represent the operators p}! and \l‘-Ru
in terms of the new operators b’

n. .82 as
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S i T 194
\“l! 1 !ﬂi-) Z .a-!-" Yo (bﬂ.p ba.P)o
Sk

s!! ] ' . ig.d
( - ) g °.5.p “op (ba'p ko, ) o
’

Ph.
Cerren ('015)

Here .3 B, denotes the polarization vector. with the help
"0
of (1.15) the Hamiltonian (1.14) becomes

. 1
By = 3 b b e 3lhw o (1.16)
P

The expression (1.16) represents the Ham.ltonian for the

~

harmonic oscillator with N _= b b
9» 3¢ 9P

number operator with positive integers as eigen values. It

as the occupation

is evideat from the exgressicn (1.10) that the vibrstional
field of the latiice vibration can be regarded as a system of
non interscting Boson jarticles called phouons, each having
an energy hw b The operators b

b
3 3°’ gp
¢reation and annihilation operators, respectively and they

are xuown as phonon
satisfy the commutacion relations
» ( 4
['sr’ 's'P'J Y UN Y Han

In the above treatsent, we have cousidered a three =

dimensional lattice with more than one atom per unit cell. This
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model leads to polarisation and dispersi.u in the frequency
s;ectruz of the lattice vibravioun. For a cubic crystal with
the wave vector g of the lattice wave along a symametry axis,
the polarization direction way be fixed by symsetry arguments.
This will le«d to the notion of the longitudionsl and
transverse modes of vibration. For arbitrary 4, this type
of classification of the vibratiocnal mode is approximately
valid. The longitudinal mode is essentially a compressional
wave and the transverse wode is a shear wave. The presence

of more than one atom in the unit cell leads to two different
modes of vibration known as the acoustic and the optical modes.
In the acoustic mode the atows of the uni. cell move in the
same directionu and in the optical mode Lthey move iu the
opposite dirtctxan: The frequency of the acoustic mode tends
Lo Zerv as the wave vector S of the acoustic phonon tends to
zero. I, the Debye model the acoustic moae {rejuency 1is
proporticnal to 8, and can be put in the form YS. e C3, where
¢ is the velocity of the sound wave in the elastic coutinuum,
Thus, the acoustic vibrations in the long=wave length can be
treated as elastic waves of a coutinuum. For the optical modes
the fregquency lies in the infra-red region of the electro-

magnetic radiation,.

Further, when the atows of the unit cell are charged, the
counter motion of the atoms, causes a golarization in the
lattice aud the optical modes are then called as polar -odu.z’s
Th€se polar opticsl modes play an isporvant role in polsr

semiconductors.
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D. SCATIZRLNC MECHANLNG:

In order to understand the varicus electrical,thermal
and magnetic effects, it is essential to think of the role of
several types of lmperfections thet occur ir a real erystal.
In a perfectly crystalline #0lid the charge carrief move without
any resistance. The isperfections of the crystal restrict
the motion of the charge carriers. The iaperfecticns may owe
their origin to thersal effects (phonons), to impurity atoms,
oOr to the lattice disorder owing to the presence of the foreign
atoms Lo form solid solution ( alloying effect ) and other

deviations from the perfect periodicity.

In this section we consider the role of the first three
types of lattice imperfections on the motion of the charge
carriers. Now the dynamical system under consideration is the
electron and phonon systems in thersal equiliorium. These are
distributed according to their distribution functions, n°, i”
respectively. Under the influence of an external field the
equilibrium distribution function of the charge carriers will
change aud they relax back to their oquilivrium value by a
collision process and this process is described by the well

known Boltzmann trans;ort equation for the churge carriers in

the steady lht.b
fr | ¥
- o« LTad . d «18)
Ty, BTt e emp g A 1

n; is the new distribution function of the electrons

4% o4
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h being thoir veloeity, F is the external [leld. In the
diuuuion of s collision mechanisa it is usual to assume
that the rate of relaxation is proportional to the deviation
of the distribution function from the equilibrium velue and
to define a relaxation time T by means of the egquation

n - n:

o8\ s " Pk
| - - —— (1.19)

\O%/ Gei1

In the above discussion, it is assumed that the phonon distri-
bution will remain same at their equilibrium vslue. The
relaxation time ‘| 13 related to the probadbility of scatteriig
per unit clme frowm a state Kk o k' as shown Delow. Followliy

ﬁordhoh,zo one can reiate the transition probavility and
oo

—3 | y Dy weans of Lhe equation

ot/ eoll

’I.-.n‘ .

- | ® (k! ] - ) )
e/ ear [P(5* BB k") (Vomik)  =F (k' In(k) (1wa (k")) |k

DRI (‘.20)

where the transition probabilities

k'k) = 2(kk') = 3%1/", ™1 5‘;,2 "“‘u’Ey’.
cessee (1,21)

¢
and ¢ (z‘ - x‘,, is the S - function ensuring energy

conservation and (k' |H'| k) 4is the matrix element of the
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interaction Hawlltonisu which represents the interaction
energy between the electron and the scattering system. Further
it is convenient to introduce a quantity p called the charge

carrier mobility by means of the equation

e
e e— (onzlult.-uc ), (1.22)

where e 4s the charge and a' is the effective mass of the
charge carrier. Alternatively, B 438 the magnitude of the
average drift velocity of slectrons in unit electric field

and by coavention it is a positive quantity.

The relaxation time 1s in general a function of k and
explicitly cderencs ou the type of the scattering mechanisms
that arise in the crystal lattice. Hence, the scattering
@echaulom plays an importunt role in the mobility problem.

(1) Lavtice Joatberiug:

The thermal movicn of the ions about their equilibrius
pOsition introduces an acduitional potential -;V in cthe lattice.
This additional potential aay be considered as s sasall
perturbation and an electron in the state X can undergo
transition to & state X' Dby em.ssion or avsorption of a phonon .
By expanding the actual potential about the equilibrium value
in Taylor's series and retsluing only the linear term we can

represent additicnal potential u’

by = ST

= !
5 ‘Ao

{
o(.ﬁl’!
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Here Sv i3 a linear function of the displacesent vector

d 5‘1.3. This additional potential represents the total change
in the Haziltonian of the unperturbed system, when the lattice
ions are displaced. The matrix element of the scattering
process can be written as

”

Mik,k') = g “! \(igi; \‘«5. a . N, 85“ Kp™?
’ J

. 8 &re
qp.

phonon state functiomsin the occuration number .representation.

Here 'P; ¢ are electron state functicmsand (N

In order to write down the aspecific form of the matrix
eloment, we consider a slaplified model of & semiconductor
vamely, a non-degenerate semiconductor with constant sphericsi
energy surface and band extrema st k = O (staundard band wmodel).
for this model one can safely assuxe the lattice scattering
to be elastic. It can be shown that with the aid of the
conservation laws of energy and sosentum that an electron
interacts with the loagitudional acoustic modes and the maximum
value of the acoustic phonon wave vector that is effective in
the scattering process is equal to Sz k. Further, the
wave vectors of the electrons of imterest are s.all compared
to the dimensious of the Brilloius sone for semiconductors with
the above mentioned characteristics. Here it may be pointed
out that the transverse modes are unimgortant and may be
no;loct.od.n But in general transverse aodes do indeed

coutribute to the relaxation process. uhen the bund structure
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has the many-valley model founc iu netype Ge aud 51, Ssrdeen

and .wocuoy“

have developed a very couvenient and powerful
method of calculating the lattice scattering in non-polar
seniconductors. The aethod is based on the concept of a
deforsation potential and the effect of the dilation on the

band edges, centred at k = 0, can De expressed as
g, -8 - &4 O ; ( 1.23 )

where Ec and Ec are the co:duction bund edge snergies after
°
and vefore dilation respectively, Ay is the dilaticn snd
te is the deformation potential. The matiix elemornt for

the electron-phonon scattering is given by’

ihs‘l

@hivw % "

Kik,k') = k' |k e | Qg Eq col1e24)

where W is the wave vector of the acoustic phonou. Using
the form (1.<4) for the matrix element in (1.17) and (1.20),
it can be shown that the relaxation time
. o h
7, - oo('ozs’
8’ (20%)3/2 (kgT) €2 52

and the lattice mobility obeys a T /% 1av.

The acoustical modes also give rise to a polar type of
lattice scattering called plezoelectric scattering in a crystal
having charged atoms in the unit cell and lacking s centre of
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syasetry. This type of scattering will not arise as the systea

Lo Le considered in the precent thesis possesses a ceutre ol

symmetry.

Let us now consider tho role of optical modes of lattice
vibration in the relaxst.on processes. Fro. the dispersion
relation for the optical mode it is evident that the freguency
of the optical modes is high compared to that of the acoustic
mode. The longitudinal optical amode satlisfy the relation

h w, = k, 9, where ¥ is called tae charact ristic temperature
and kB is the Boltz=sun constant and W, iz the frequency of
the longitudinal ortical wode. froa the laws of the conservation
of energy and momeutua it follows that the optic.l modes are
able to interset with a:u elecuron having a wave vector modulus
k, « At temperatures T ¥ optical modes having wave vector

within the range 0U.4 ko ‘ PN ‘0 Can contribute to

q «
)
scattering. lu the case of Lhe non=polar optical aodes (pure

optical =modes), the metnod of deforzstion potential was
introduced by seits?' in 1948,  Following his dlscussion, we

Can write the matrix eiement of the optical mode scattering as

h & s

3o
& ! (1.27)

H‘k..'l b i 2 NKVw 3
2 KK |
\ So

where 3’ is the deformation potential for optical modes and
’30 is the optical mode frequency. At high texperature (T > 9)
the optical mode scattering gives rise Lo the sasme mobility
tecperature relation nsmely p « =3/ exceyt for a

numerical factor. But at low temperatures there is one

essontial difference arising froa tne dominating factor too/r-l,.
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when the atoms of the unit cell are charged, then the
optical modes of lattice vivration will introduce polarization
waves into the lattice. Following the thecory givean by
tronnchu the satrix element of the polar mode scatteriung can

be written as

]
N
“h
Wlk,k') = Lr 4 (1.28)
27w v
9% )
where
2
1 Y3 1 1
- e - - 1427)
Y Lr Yoo ‘o

Here £ snd (o @are the high frequency and static
dielectric constants repsectively. 'So is the polar wode
frequency. In the high temperature region i.e. T e,
the mobility is proportional to T ¥. At low tesmperaturs,

however, it o pro;orticral to | .0/1'

=1) as obtalued by
Frohlich. In Frohlich's formulstion a weak coupling vetween
electron and optical phonon was assumed ( coupling constant;

« <1). Howrath und Sondheimer’" 1n 1953 calculated in the
woak coupling limit a mobility expression for the whole
texperature region in a non-degenerate ssmiconductor and found
that iu the low tewperature region, their forsuls reduces to
Frohu.ch'on expression. Iu the intermediate cou,ling region
( 1< a3 ) Low and tuu”"‘ developed & theory for the

polar mode scattering process and the formation of
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Polaron® becomes noticeable in this region. As we are
interested in the weak=-coupiing region, the polaron formation

need not be considered in the present inveatigation.

(2) Jmpurity Jcattering:

Static iumperfections such as impurity atoms that may be
present in a crystal lattice are aleso effective in scsttering
the charge carriers. The iampurity atoms may be charged or
neutral. Obviously charged i:purity atoms play ao important
role in scattering the charge carriers and comparatively the

role of the neutral impurities is less significant.

Let us conaslder first the ioulzed impurivies distributed
randomly over the lattice sites. The coulomb field of the
impurity atoms scattere the electrou and the scattering can be
showii Lo Le elastic and anlsotroyic and scattering ot small
angles predominstes. It 1s found that uniess ons tzkes the
zodified coulomb potential for the impurity stoms, civergence
in the scattering cross section will occur. Also it is
reasonable to consider some modificsticns of the coulomb
potential for the iapurity -toms, as the atoms are ;resent in
the ¢rystal lattice. Conwell and uiukopt” have given a

zmethod for calculating the scattering process and ottained an

- i b A —

*an electron in an fonic lattice induces ionic polarizstion
and moves with the polarization waves. This single entity
of wn electron and its associated waves of ionie polarization
is called a polarcn.
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expression for the lmpurity mobility, By « 1'3/2 . In
deducing the oobility ex;resvion they have assumed that the
coulosb field ceases to be effective at a radius i equal
to half the mean distance detween impuriiy atoms. orooku,’b
llorrtu” and mx.‘lo’. have preseuted another ap,; roach to the
study of the scatteriug ,rocess by cowsideriig the screening
of the coulowd field due to the redistrivution of the charge
carriers. The form of the couloab pote.tlal is

“

-8 r
Vi ) = e A —:;-; (139,

A8 before a random distridution of the lwpurity atous was

Cousidered. Aguln & 13/2

law lfor the expression was noticed
with the difference in the logarithm.c teram in ilne mobiliuy

expression.

The above methods are based ou the doru ap,.roximetion,
hence it is valid only 4u the temjperature ragion waich are
sufficiently high. Further, the above theory is restricted to
a standard band model. Hodificutions in the mobilivy
expression will arise if one tskes note of the ceviation from
the spherical energy surface. The exsct calculstion of the
relaxation tiwe is difficult. However, devistions from TJ/Z
law for the ispurity aobility have boen noticed. Un numerical
integration it was found by 8ht.t.27 that the mobility expression
of droon” and Herring reyresents the experimentsl situation
provided the cuntribution of the logerithmic ters towards the

ten erature dejendence was taken iunto account.
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lieutral dmpurity atoas caun be Cunsidered as hydrogen
atoms in a dielectric medium. (he scatiori g cross section
his b eu given by ir;huoy” anc he found that the relaxation
tise is isotropic for spherical energy surfaces. The
relaxstion time is ilande;endent of the electron euergy and the

Lea,erature.

(3) Alloy scavveriug:

In the foregoing section, we have considered the role
a singie point duperfection in the scattering of the charge
carriers. when the iapurity concentration is high the methods
adozted in the previcus section seea to be unrealistic and one
bas to consider the role of the alloys in the scattering
processes. %e consider ounly substitutional alloys for
slaplicity as done by l.ordhunzb and m;o.‘o According to
Lhem the electrons =ove in au average potential subat.u.m.od
for the actual potentisl at the lattice site ard the i’c&;‘o‘
poteitial 4s treated as a porturbiog potentiasl. They found
that the sjuare of the satrix element of the perturbdblig
potential is pro,ortional to t.\ 1-1'. ), where t. is the

Coucentratlion of the s type atom in the ailoy.
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A EQLAL JERICOIBUCTORS:

i sealcunducti g oerystals two Lypes of forces are
im;ortant. They are (1) the classical coucept of coulomb
force betweeu the charges iliustrated by the polar bond in
iouie crystals aud (<) the quantum mechanical corcept of the
shariing of electrons leading to a covamlent vond. In genersl
both type of forces exist in a semiconducting crystal. If
the polur bond is dominant, the semiconductor is called a
polar semiconductor and if the covslent bond ie dominaut, it
is called a valence semicounductor. The eleaent sexi-
conductors of the IV group of the ,eriodic table nasely,
Germanium and Siiicou, are the well kuown exa=,les of valence
sewuiconductors, The lead coupounds FPbs, /bse and PbTe are

the typical exuw;ples of the polar semiconductors.

{he lead chalcogeuldes uoted above sre polar sesi-
Coiductors aud their physical ;roperties have been reviewed

L

by Jecanlion. fhe imporvant poluts Lo uote are the following:

1) They do unot forw exact stoichiometric comjouncs owing
to the polar character of the material urnd any deviations froam

stolenlometric produces an n=type or a P=type sealccnductor,
z) The energy gap is samall and is of the order Jul ev,

3) ihe ratiojof the effective sasses of the charge carrier

Lo the free electron mass vary from J.1 to J.5,
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L) They are classed as II - VI group semiconductors
and cryaulllu‘ ia the sodium chloride structure ( inter~

penetrating f. c. .

5/ [Ihe moollity of the chirge carriers is high and sceas
Lo be iudeyendent of thelir nuture snd concenirstion. The
teaporature dependence 1s of thet., = [ r" where n = 4,5,
The T =5/2 behaviour is ov.erved over a wide tesjerature range
from about 500°K to 80°k.

From the ex,erimental facts noted above it is evident
that the behaviour of the electrons in polar sem.coiductors is
much more co:plicrted than the conventlonal covalent sewi=
conductors., However, for the systea under considerution, it
is possible to undertake a2 theoreticsi investigation of the

electronic processes.

At this stage, it is essential to distisguish between
the system uunder cousideratiou and ancther clsss of polar
semiconductors ( e.g. N40) for waleh the band plcture is not
valid. In such semiconductors it is found that the electron
mobilivy is very iow |( 1 onz / volt=sec.) and the electrons
do not experience any reriodicivy of the polur lattice and one
has to take recourse to the locsliised wave functions of the
carriers. However, iz Pb5 system the Lund sicture resains
velid snd one would expect a stronger intersction of the

charge carriers with the polar isttice.

We have seen in the previcus section that in the high

tea crature region ( T >9 ) the acoustic mode scattering of



.29-

the electrun gives the law 1-3/2. aid the thecry vesed ou
the opticsl polar mode scatberiung shows the de,oideice as
7-1/2. for the mobility. On the other hznd frohlich=hott ¥
theory of scattering with the ;olar modes of vibraticus
suggests the temperature depende:ce U « &o‘/r-i). Evidentliy,
it 13 not possible to explain the mobility behavicur iu terms
of the scattering of the charge carriers inde, endently with
the scoustical or the optical wodes above the characteristie

tex;erature.

In order to explain the typicsl mobility dehaviocur
observed in the Pb3 family of ses conductors attes;ts have
boen made by Hirshars and uuru..l." Petrits snd soanlon‘L
by combining the reciprocal mobilities of the various
indejendent processes namely, the acoustic wode scattoering,
the optical mode scattering and the lonized iapurity scatiering,

etc. The expressioan for the reciprocsl mobility is given by

A 1%/2 oy P2 o (T ) (2.1)

Here the first torz is the contribution from the acoustic mode
scattering, the second term 1s due to the ilonized impurity
scattering and the third term is due to the polar modes of
lattice vibrations. Hirshara and Mnrnka-a‘3 have neglected
the reciprocal mobility coapared with the coutribution froa
the ionised impurity scsttering and determined the constants
A, B and C that occur in the expression (<.1) by fitting the
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equat.ion %O the ObLserved mobility value. sdallar aethnous
have been adopted by Petritz and .wnuon“‘ Lo analyse the
mobility data. They bave assumed thal the coutribution from
the io:ized iampurity sesttering process is unimportant 4in
the tesperature range of interest. Hence the mobility

expression is given by

c(9/1)8

( ¢y, X (9/1)

Here, as before, the first term arises from the acoustie
wode scattering and the second t erm is due Lo polar mode
sostvering (Frohlich-Mott®® and Howarth-soudneizer’®). It is
fournd that for © ~“200°K in the high temperature region
{ T> 9 ), vhe aobility expression (<.<) does not re;resent
the experisen.al sicvustion. However, li the low temperiture
range ( T < 9 ), the agreeasnt wss fair but the ex,erimental
Values are msuch lower than those , redicted by the theory. It
is evident frum the above theorles that by combiuin, the reciyrocsil
wobilities of the various scuttering processes, the experimencal

facts can not be explained satisfactorily.

The polar scattering theory alone does not seem to
explain the mobility behaviour as the function | 00/7 - 1) 1s
concave upward when plotted on a log-log scale, whereas the

experimental curve is concave downward.,

Tolpygo and Fedorehenko®® analysed the mobility problem
in e dlamond type mon-polar semiconductor§ invoking an
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additional deformation force induced by a hole and obtalued
a T."’/z law for the mobilivy expression at high tew;erature.

Juch an analysis is perbaps not a, ropriate for the polar

semiconductors under consideration.

In the previocus sectlion, we have considered the ch rge
carrier mobility behaviour of the ure polar semiconductors
and we found that it is yro,orticral to 'l‘-5/2. “e also
8aw that the earlier theories were unable to resclve the
difficulties escountered. Now, we shall cousicer, iu what
foilows, the behaviour of the churge carrierse in the solid

Solutions of the lead chalcogenide system.

The three compounds b3, Pbie and Pole ure isomorphous
aid they have a comaon cstion. OUne may expect solia soluticus
of these comjyowwis to exist in all ;ro;.aort.xm.o.“ Sxperimentsiiy,
it has veen estubiished that only /bi+Pb3e and Pbie+’bTe alloys

c¢an be prepared in all proportions.

It 1s i{:uteresting to consider the mobility behaviour
in the solic solutions of isoworpaocus compounds. This has
been studied in great detail by Lolomosts et nl.“' { The wmain
ph where
Kph is the lattice thermal oonducuvuy"‘). They have shown

idea of such & study was to incresse the ratio /&

that the mobility of the electrons or holes de,ends on the
concentration of one of the couponents of the alloys and on
temporature. Hence alloying effects do indeed play an
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iz, ortaut role in the mobility ,robleax. In the solid
solutions of Pbie+PbTe, the mobilicy iu the high tewpoerature
regioun is proportional to r'5/2. whereas in the low temperature
region it vartes as T/2 (1 5 500x). 48

liordhou“

calculated the alloy contributicn to the
residual resistance, considering the scattering of the charge
carriers by the random distribution of the alloy atoms over the
lattice sites, He found that the relaxation tise can e

expressed as
— - 6 £, (1 -1, ) &b (2.3)

where, 5 i3 the energy of the conduction electrons, 81 is a
teuperature independent factor which includes the strength of
the scattering sud the effective masses of the electrouns. For
ther=al scatleriug we have sseu esriier that the relaxation
Lime is given by,

- ci E (<o)

C2 is a parsmeter which deterwines the scatieriug strenygth and
effective mass of the electron. Herman, ulickman and

?arloator‘9

have considered in their review article, the
addition of reeiprocal mobilities of the independent processes,
namely, thermal and alloy scatteriig, to obtain a resultant

mobilivy.



Brooks’” obteined a T2 law for vne mobility
expression in the Ge = 51 alloy systea. The treatuent
cousists in repressnting the alloy potential function in
terms of the band energies of the ure eleweunts arranged at
racdom. The parameters in the =0bility exgyression were
calculated using oxperisental dats on Je and 3i. The equaliity
of the theraal mobility and disorder mobility for 8 A 351 in

Ce was predicted. This prediction has beea c.unflimed by
uuck-nw for 9 % 34 in Ge.

It is clear froas the discussions of the previous section,
that the earlier moouoou'“‘ of the mobility of charge
carriers in polar semiconductors are iiadequate. The entire
situation demands a radicsliy new line of thinking. In our
preseut stucy we inveke certalu new concepts awd cotain a
consistent theory of carrier mobiiity iu polar semiconductors

(Fbs group) and their solid solutions.

Let us consicer the mobility bLehavicur iu the pure cases,
nasely, Pb3, PbTe and Pbie. A knowledge of the band structure
of a semiconductor is of greaut importance in the understanding
of the transport properties of the substance. Thore are a
nusber of theoretical uleuhclonlu'” and experimentsl
uamnmta"’”'“ relating to the band structure of lead
chalcogenides. These show that the band structure differs from
the conventional covaleat semiconductors iu the sense that the
conduction and valeuce bands in the lead chalcogsnides may De
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eimilar. According to Bell et al.,'” in Fbs the full s awd
p bande derive from the 68 and 3p levels of Pb and 3 respecti-
verly and the first espty band arises from the Op levels of Pb.
This em;ty band has the same sym etry as the full valency p
band and furthermore, it overlaps with a bandé which has the
same sys.etry as the fulil s Dband. The differences in energy
between direct and indirect transition are not apprecisble and

Lo

they are within the range kDO ( secanlon; smirnov, Moizhes

and lom.m‘”: .

Thus from the band structure noted above, it is ap arent
that they will intersct strongl) with one another and with

latcice vibrations ( both acoustical and opticsl or polar modes).

The intersction of the carriers with the latiice vibratiocwu
would seem to be Of jarticular importance iu the interband
mixing. In this coutext it is hard 0 ima.ine that the carriers
belong strictly to ome pure band. rhonon assisted luter-band
mixing is more likely and will have an important role in the
transport pro,erties. There is incdeed an experimental
observation showing the therasl excitation of carriers into
higher bands.”®

In the first port.’7 we cousider the role of optical
wodes ( or polar wodes ) in the inter-bund transition and for
the scattericg both the rcles of scoustic and opticsl modes
are taken into account. This mechaniss is assuned iun the fourmal
develo,ment of the theory. The relevant relaxation tiwme and
the moblliity expressicas are derived assuning the spherical ewd
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perebodie band for the FbJ group. This seexs to be supjorted
by the recest work on PbS and Pble (8ir and pikus,>®

P‘lii (14 .1.’9 ’c

In the second p.n.“ we extend the theory to the case
of solid solutions of Pb3 group. The extenrsion resides in
taking into account additional perturbations owing to the
alloying effect. It is assumed thst such perturbations are
also capable of causing inter-band maixing of the carriers in
the solid solutions. From a simple crystal fleld aodeld
{ see wp,endix ) iv will be shown that the alloying effect does
indeed give rise vo ister=bund tracsitions. “e shall then
develop s theory of trans,ort of carriers iu thess solid
solutions whose orbital funcvions are modified owiig %o the
change iu the erystal potential as a result of alloying. The
relevant relaxation time and the =obillity expressicns are

derived under the same assumptions as done in the [irst case.
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(1) 2bs aroup.57

W6 co .sider s systom of the type MX erystallising in

cubic rock sult structure, where X is the =etal ion and

X is the anion, In the present systea under investigation
¥ ePb, LAe 3, 30 or Te. There will be one or more valence
electrons for each type of atom in addition to the closed
shelil of eslectrons. These valence electrons s re supposed

to move in the average periodic potential of the ion cores
and the other electrons. lence it is esse:xtially a one
electron problem. The Hamiltonian of the systes is

ot B * Hige (3.1}

Here u. 43 the electrunic part of the oue electron
Hamiltonisn and can be written as

- 32 2

B ~ +Vizg) (3.2)

2.2
where -.—h!-;‘— is the kinetie energy operstor, and

Vig) = Z Vo (£ -RD) ¢ ; V, (£ -8))  (3.3)
[

is the periocaic potential experieiced by an electrom at g
Comprising the potentisl due to the ion cores of the metal
ious snd anions while in their equilibrium positions ‘_d: and
3‘; respectively. H, 1s the lattice Hemiltonian expressed as
in equation (1.16).



- 37 -

hw
- J 0.
Hy Sq: - (b bs babs)
« T 4% o' b . (3.4)
> hwg iy 3 3
9

Here we have omitted the wode brauch numbser p as we cousider
only longitudanal modes in the calcuiations. Hyoe is the
intersctiocn Hamiltonisn which arises due to the vibration of
the atoms sround tae.r equilibrium positions. In effect, thnis
Constitutes the electron-lattice interaction terms. The

fact that the system under consideration coutalns two types

of stoms per unit cell, namely, one of ¥ type and another

4 type, helps us to separste the u‘m into two ;arts i.e.

By = P o (3.5)
Here, 7 1s the perturbation owing to the optical ( or polar )
modes of lattice vibrations and A refers to the perturbation
arising from the acousticsl mode. In order to get the
explicit form of P and A 4in (3.5) & specific model should be
counsidered., In the present theory we concider two models,
nawely (1) Atomistic model and (2) Continuum model.

Let us cousider the form of F and A in the atom.stic
model. In this wodel, we take into account the oscillations
of the nearest neighbour ions into sccount. For small
displacements, we can expand the potential snergy fuanction
around the equiliorius ;csitiouns of stome in Taylor's series
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as done in equation (1.13). Then the interaction term can

be written as

B - V' ‘ ) .J‘ * G '., \—21'—\‘ .\" LS
o asFenn (?Vk o B n§h' nlt “4p By ) o -

ooooco.(,ob’

Here, c“ is the relstive dispiacement vector aud is  dven

by OBy = (‘ign - Cj. where =&, @ are the nearest neighbour
atoms. we denote this by writiug h =« nn ( i.e. nearest
neighbours). We restrict our atteatiocn Lo the first term

in (3.0). Further, it is exjediest to exyress the relative
displacement ’\A in terss of the phonon creation and
annihilation operstors as given by (1.15).

Then

H - ?- ( ;' , . (;3
int p: %'k ° i

- 5 & ‘;k),. Oon | *XPU1qB ) & expliq.i ) (b°=u_ )
D?lln 3 g | J 4 2

0000000(307)

where

6, = * (pf~)

i q

and o” is the unit jolarigation vector assocluted with atom n.

la (347) che jlus sign refers to the optical wode and minus to
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we

the acoustical wode. M 1o the mass of the atoms M and X

assumed to be equal.

We make use of the approxization, namely,

SRR Y

i.e. they are parailel,

Hence the decowposition of (J.7) and (3.5) is obviocus.

%e will have

P2 g:_ S _ 5, FiraR) (e 3"'3? o ot G0uIm,
X (b =) sesisl)
Ao :4. %_,._ m gy Floig,) (of %08y = o Yot
( b;. - b_&) ceelded)
¥here

FlEa ) =+ 0 o2, 2, 25 (3.19)
R Tt

and 2, r stana for the electronic co~ordinates and §y, deuctes
the distance LDetwsen the nearest neighbours. The plus and
minus slgns refer tc the two situstions i.e. whether the
carrier interacts with the positive or ..egative ion. The
subseripts "o” and “a” in (3.8) and (3.9) stand fo:r the opticsl

ard scoustical wodes respectively.
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In the continuum model one can agalin write down the
explicit forms of P and A which zay Le more convenient for
calculations., Thus, we formslly write P anc A in (3.5) as

Poe ST b, (b etsox., o (3.11) -
2 "8y ' % % | '
S
i = ng.tb‘ ."3"-%.*3'" (3.12)
a
KN

where the coefficients P.‘lo and ‘3. may be functiocus of
both the phonon propagation vectors as well &5 the electron
coordinates st site n. In the Frohlica's formulation of the

polar .odus

(3.13a)

where 1/v 1s given by (1.29); V is the voluse of the
erystal. Similsrly, usiag the concept of deformation
potential introduced in the esriler chapter, we can urit.o’

h o
A& - \\2 (,, .& V/) %9 “da (3.138)

Therefore, the coefficieuts Pﬂo and AS. depend on the
model utii zed in the develoment of the theory and the
expressions (3.11) and (3.12) are purely formal in nature.
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For the forual development of the theory, we shall use
the fora ( J«11) and (3.12)., Further, we assume thu:t P
and A Can counect the atomic oroital states or wannier
functions of two bands either on the same atom or on the

neighobouring atoms.

We now consider the eigen-functions of the electronic

part of the Hamiltonisn. Thus for the uajperturbed problem

we have

Hy ﬁp - zy' ¢- (3.14)
where

beo  ® F"— O o B°E (3415)

as given by (1.4) except for the normaliszation factor 1/\V.
Here, t 4s the bund index and k 12 the ;ropsgation vector
of the electron,

Let us cousider the role of . It 15 sssumed that P 1is
a swsll perturostion and can cause iluter=-bind transitions of
the charge carriers. Using the first order jerturbition theory

the solution of the equation
( Hy P ) ‘P!. - zk (3.16)

is taken as

W bt ’ ¢ | ’ ' (3.17)
k e g ver P



where
P TX R Y
) t [
- N\ ‘ - "’/ ‘3 0‘8)
.’..'.E“'

p“l

and Al", is the energy denominator involved in the
tracsition. A perturbstion mixing of the states similasr to
(3.17) with the acoustical mode is perhaps not important in

polar semiconductors.

The trans,ort pro, ertlos can be determined by solving
the time = dependent Schrodinger's eguation as given by

(1.10) namely,
( '+Jh:1'

! ) ‘ - i h p— (3.19)

\ Ho ¢+ H

where uo 1s the Hamiltoniun of the unperturbed problem
and n' 15 a swsll perturbation whieh is taken to cause the

SCatteriug of tha charge carriers.

- 0 )

First we coisider the role of A i scattering. the
charge carriers from the state 4/‘ to ‘_U‘,. . The matrix

olement of the scuttering process is given by

Wk' R A ,)L ‘3.20,

Using the form given by (3.17) for Vi and lfk. we can
write (3.20) as
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in proceeding further, we utilise the expressiocus \3.11/,
(3.12) and (3.15). Thus the first term in (J.<1) can be written

as
Hyge(1) = (Fyay! & I

- S_ % Ugne PR 4 ‘Aq. (D;‘ 0-1 eI -bq. e _-!‘) 0“01.5'5-’

0000000‘302‘)

The integration in the egquation (J.<<) should be carried out
throughout the volume of the crystal using the fact that u‘;'o
possess the pericdieity of the latiice. The iuntegration
appearing 4o (3.<2) can be recduced to the integration over one
unit cell anc summatiocn over ail the celis., Thus the equation

(Je42) can ve written as
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. 1ik=k"=g )r
—_— —_— L J
Hype (4) -{v,_\u‘.‘ A u”> Tl e
%% ot
~L(k=k"+gq )T
bq. e & J‘ 000‘302})
where gJ runs over all the unit cells of the crystal. how,
wWe use the fact thut the aumber of allowed values of the wave
vectors is exsctly equai Lo the number of unit cells in the

whole crystal.

In simpliifying the expression (3.23), we util.se the
relation

— ol gery 3
e " -
r - v

) 2 #
) g

£
- g (30“)

where gfun arbitrary vector of the reciprocal lattice

including zero. Thus we get
E-k" -3 *- &
E-K vq -8

when g = O the ,rccess is kuow.. as "horsal process” and
when g F O it 1o known as "Umklapp process”. It cean be shown
thst {or the semicouductor wmodel chosen "unklspp processes” are

not important. Thus we cousider the Csoe when &= 0.

Therefore
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where the aymbol \(x,y) is the well known Lronecker delts and

WXy Yyl =1, x ey

SUx, y) = 0, x4dy

It follows froc (3.<5) that

5 - !" - & ~ J J
] 13.26),
-k +g, = 0 '

dimilarly, one can write the other terms in (J.«<1) as

Hygelil) = 77 fp.. /dy.z,,! ’""3'.\.
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The interference cunditions from (3.27) are

N ek - O K™ = g™ » - U

8% T - g, £ TR g, )
VR ; ()28,

/

k ~k"-g. =« 0 k -k"'oa. - 0 )

g (440) = 7 (frz' I T
- Z /ﬁ:g' /Uh.‘ .‘ Aﬂ. <uk't l (U‘l;o ' "‘ao U‘;g’
Sgrg,t” |

e

x| b g E'w" ) - R o U

x‘!;b;o /Nlggy K k' ) - b&. /gy K'~k )
L Y ‘,.")

with the interference Coudliticns, nsmely,

E -~k - g = 0 ' ~k"+g3 = 0

oR

)
)
)
1 (3e39)
)
)

0

kK ~Kk" - 3 ~ 2 k'k'uao
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sith the m;.étoronc. conditions, uamely,

‘nl -!u -so .o Lll .zn .ao .0
50 .h" -& - 0 OR L' -E-l,g. - 0
kK -k =g =0 k -k gy =0

{3.32)

N N S Nt St

ke write down the varicus interaction terms given above in
& convenient form by introducing the second quanuuuon
representation for fermions with the creation |( a ) and

annihilation |( .‘ } operators satisflylng the roLsuoua.M

a, a, + a. a - § )
P S k!
u!ai + 8, , 8 - 0 )
a’ a* o * * - V) ’
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and uclilising the varicus interference conditions related
to the conservations of propeagsation vectors. In this new
Fepresentations, the interacticn temms, namely, (3.25),

‘}027). (302” and (,03‘) become

N e— / i \ ! - v
Hw“i) P \\Ul.‘ Agal U“w | .5.3. .‘ o &
q
- .;’s. ’k’ﬂ. * ‘odﬂ QOO\BOJ)C)

where c.c, denotes com;lex conjugate term of the preceding

terms,
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Scattering with optical modes:

In what follows, we shall take up thefrole of opticsl
mode interaction in the scattering processes of the electron
froz the state \P! to "'»;k. + The matrix element of the

scattering processes is given by

\}«'&.. P \,'/s ,

- .

{‘5"" ¢ ? "‘1@.-"' e i'!‘ * 4"t‘-. ’5';'/
t

\\‘sntlri“‘;‘ ¢ ‘t:w f“. /_’h"‘. ’ ““/
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é‘r "kt £t T '4{' tt Ek*'s k'tY "¢
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Let us consider the first ters in (3.34). This can

be written in the second quantization representaction, as done

esriier for the acoustical cuse, as

N\

Hio(d) = <J‘,.'r i '5?-""

+ CeC.

" A AN | . . __®
é,\?s.‘ '39 Um’; ] .5’29.5 bﬂo .5’39..! b
R \3035.)

Here we ses that the interaction term has the ssue form as
(Jeld3a) except lor Pso in place of ‘8. and momsitum vector of
the optical modes lustead of the scoustical mode. Jimilarly,

w2 Can write down the cother terss in (3.34) zs follows:
utn‘(ll) -
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Lot us couslider the various terzs given in (3.33) and
(3s35)s The ter.s nuscered as (a) describe oue phouon ;rocesses

Aid are reyresented in Figs(i &3), Where the sosentus vector g
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Fig. 4-a | ;
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Fig. 4-d

SCATTER[NG PROCESSES (NORMAL PHOCESSES -
TWO PHONON PROCESSES) ON A CONSTANI
ENERGY SURFACE.

- - - NI -



denotes either an optical or an aeoustic phonon. The solid
line in tne diagram regrasents aun slectron aud the droken
line a phouon. Here, in the scatiering procCess, an
electron sakes a transition frow » state Kk w0 k ¢ g Dby

emission or absorytiocn of s phonou of wave vector g.

The terxs (b) and (c) descride two phoLdu rocesses
and are re resented in rigs.(2&L). Here, the eliectiron
undergoes an interband trsisition by emitilig or absorbliig
an optical phonon and it 1s scattered oy emission or
absorpti-n of au accustic ( 3.3.b,¢) or optical phoaon
{ 3.350,¢ )

The terms (d) describe three phouon yrocesses. These

processes are not cousicdered in the present investigation,

(2) PbJ group, Jjolid leugior.gw

In the preceding secticn, we have formulated the
interaction Hawiltonisn for pure 05 Lllke systems. In what
follows, we forsulate the interacti.n Hawiltowlian for the
case of the s0lic soiuti.n of /Do group. It is xknown that
3014d¢ solutions of homogencous coaposition with the erystal
structure ilsomorphous with Ma exist. rFurthoer we assuxe
that the anions in the solic soluction are arranged in s raundos
manner over the snion sites. Fsor the formal development
of the theory, the systea ¥i, . !t is selected, where ik is
the metal ion and A and Y represent the anions; f dJdeuotes

the concentration of Y iocus.
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The total Homiltoulan for the ene electron probles is

hép2 ° 9, - 0
I oZV.(ra_) ’:'x‘rﬂx’ IR IR
w x y
.............‘).}6'

EE L :
where = == 15 the klu.tic energy o eraior; Z Vo lE=i)
ie the poteitial at the electrun due tc the metasl lons at

equilivriuam position and Z v‘.’tp‘;:., ) reyresent the

Xy Y
8aue due Lo the anions. M.L ia the electrun lattice interactiown
Hamilitonian. "L is the lattice hamiltonian ex;re:sed as in
(1.10) and (J.4). 1o proceeding further, we shall first take

an aversge jotential at all anions which zay be repres:uted
“L,26

/ LN g / 1 1

where t. is the concentration of s type atom in the lattice.
liow the differonce:

v - L b'., \r&.,) i‘/“ fVe \E4)) (3.38)
X,y 3

is treated ss the perturbation which arises as a result of

alloying effect. The total periodic yotentlial csn be

expressed as

Vig) =

ol b

n ERQ) ¢ ;'1 (E=g3) (3.39)
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With these definitions the Hamiltonian ( 3.30) becowmes

H = “o + v“" * n“ + Hb \Jel;

Here H, = = £1°F/2m + V(L) is trested as the unperturbed

Hawiltonlan. The eigen functiocus ‘!‘- and elgen-values sl‘
Gre
of he Hsalitoulan ub %% glven by the equation
il * i WLy
v “OI . .
ﬂy - n/\VN&, s (3elkc)

As Lu the previous sectlion the electron~lattice interaction

teru can be written as
“.; - I e A (JL3)

where [ aud A are given by (3.11) and (3.12). %¥e now
coueider V") 56 & small porturbstion causiug inter-band
transition of the charge Carriers. A aixing of sloch's
functicnsmay be ;ossiole and such a mixing was invoked earlier
for Ge=5i allayo.°2 However no explicit calculation was
re.orted. %e cCan show on a siu;le crystal field model | see
aprendix ;) that the alloying effect can indeed cause such
transitions. Let us cousider as an example 2 Pb’° lon surrcunded
Ly an octahedron of ligsnds say six e . If we replace cone

58 by one Te  then the jerturbations viﬁ’ for this unit

Can be expressed as
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Z_ 2
Vii’ - FLELE g (&' = a0\ 12 . l!-it * eeel) (Jebl)
A ':th “ an

where ' 13 the efiective casrge of the impuricty ion anc
that of the virtual anion; 3, r are the co-ordinates of
the elsctron around e Centrsl fon (Pd'') and R, is the
duter-io:uic distacce. LU can se seen that (J.44L) adzixes
atozic s stuates with p or ¢ states. Here (3.4L) acts as
& sall perturbatiocn at the site of the metsl lon. similarly,
We Can have ;erturbation et the anlon site. e assume that alil

these carvurbations are invluded in V“".

[hus, we can write down the equation of perturbed

probles as
(Hy v“")w‘ - BV, (3.45)
whare
L "SI O (346
t
s Vi) . Yl ¥ i R 1% (3.47)

Digyy

in roceeding further, wo cousider the role of acoustic wode
of wibraticu in the scatieriug process. The role of optical
®oces of vibration seems to be unimportsnt as we are interested
in the low tempersture region ( 7 > 5 0°4 ). The satrix

elowent of the scatteriig process is given by
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“e shall now cunsider the various terass in (3.48)
sSeparstely. In simplifylng these terus, we utilize the
8x;ressions (3.38), (3.42) and (3.92). The first term of
(J«48) then becomes
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The second term
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In writiog down the variocus futeraction terms (J.4¥d) we have

utilized the relevant iuterfereuce conditions for the wave

vectors of the electrous and phonons under considerations.

These are:
k" = k ¢ % (3.50a)
K =k" § K =ksg (3.500)
k' =k S S (3.50¢)
k-!. .k-rv ) , 3 Nj
; k' = add 3 (35
TR B
Thus we can write
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Here all the terms describe one honon process asud can Le
re;reseunted by the same diaygrem (-..3.1&3 ) as glven earliler.

The first term re;resents eCattering of 5loch electrons by
acoustical phonons in the same band. The second and the third
teras are :he product of proce:zses i:nvolving iuter=band scCatteri:
owing to the crystsl fleld perturbation V"’) and acoustical
fhorions. These are second order terms, The last term 45 a

third order j;erturbition and it 13 bdelieved to be unimportant.

In the resent invesiigation, we coufine our attention to the

fi:st three terms.

Before concluding this section, it is expedient Lo write
down the diagonal part of both the electron and lattice

Hamilvonians 1. the sscond quantization repressataition as

- * ~ .
& ° 2_‘ Sk‘ a cakr . S" ﬁvg \bgbio %1. (3e52)
’

with 5. =« 5%k / 28° a8 given by (1.5); =° being the
effective mass of the earriers and C  1s the spin iadex for
the spin stages. The various operators occurring in (3.42),
(3.35) and (3.51) conueet the various eigen-states of the
Hamiltondisn (3.52). In the occupation number representation

these eigen-states are denoted by

to.oolntoo' h”oooo .~’, (3.53)
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where nh.‘ and N have the ususl meaning given in the

-1
eariler chapter.

It is expedient to note the eigen values of the electron

and the phono: ereation and snnihilation operators given byo’

h.../

Ix 9

O! .k[ creey 1’03. ceee

05('-0 )’ “eey i=u

* ,
.k ‘ “en nh 'o./ ‘ kl...’/

. . '

bsp e h”ooo\ (h”") e, .'\9;0‘. ves
[} eoe N _ees - K 8 evey N =1, ooy
g @t/ " Mo W@

Sra s \305"
-~ k-
Tes—sotiveiy. Here 0‘- (=1)'%, :!- VL By .
JoT

‘ooo nk R and R qu “ee are the electron

and phonon state functions ru,cc;uvoly iz the occupatian

number representation.

In the foregoing secticn, we have formulated the inter-
acticn ham.ltonian for the various interaction mechanisas for
the trans ort _roblem. In order tc solve the mobility probies
it i35 usual to usasume that a relsxstion time exists for the
processoes described by the interaction Hamiltonian formulated
in the jrevicus chapter. Heunce, we recall the definition of

the relaxation time (1.19) namely,



- 01 =~

-\ o
n, .\ TR

.—h) - - 5,, — . (3+55)

LUt/ net :

For the system under consideratin, it can be shown that

(3455) remains valid. The soluticn of the Boltzmann trans,ore
equation 1s then straight forward and l can be calculated.
For simplicity, we shall assume thst the applied field 4is in the
x-dtuction.b‘ Thus we can write the perturbed distribution
function as

° .
a, = 8% . % ke T (3.56)

where Kk 1o the x = couponent of thewave vector k and / . 18

a2 szall correction fzctor to the equilibrium distridbution
function n:

Also, we note that g = X8 ).

Jubstituting (3.56) in (3.55) we get

Fap
Wew © T W e
f_l_»LGmgs“ “e shall now calculate the rate of change

of charge carrier distribution functicn due to the collision
mechanisas. Froz the expression (1.20) it is clesr that the
|‘.‘n \
calculation of :‘_%7‘ wili liturn involve the
\¢ coll
calculation of the trensition probedilities of the varicus
processes enumerated in the earliier sectiocn.



- 62 -

Let us consider the interaction terms giveu by the
expression (3.33). The culoulation of the ,rocess (3.33a)
i.e. the scattering of electrons with acoustical phonon have
been reported oluvhcu."s A8 remsrked earlier such processes
do not seem to Le important for the systems under counsideration
in the high temperature region. Therefore we confine our
attention to the terms (3.33b) and (3.33¢). As a simplifying
assumption, we restrict ourselves tc the case of a two band

model, namely t and t'.

Now, we ¢an write down the net rate of chsnge of
distribution functicn for the charge carriers by substituting
for the square of the =atrix eleaest of the interaction

terss in the equatiom (1.20) as,

n

Tk p— 2

(?5/' net " li. P ":t' ‘\:'t.'A
9508,

‘,’. ‘.)(Ngoﬂutos.ﬂ) (n )“."l'go’s. %
2 O -h (w.  ew

O Uoag vg, e T B Mg )

. “"“L”"x-a.,-s.“"s, e

x C“l’&,’ﬂ.- ‘5 +h ('So . '8.)/

J=(o_)(1=n w JIN_ #1) (N
£ kma,te, 8, 8

(1-05) (nx.&'s.) (Hao) (ls‘d )-(n!) (1-n5_3°.a.) &hsoﬂ ) (K

gL SR SN

) (N H.\

+1)

/
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]
(1=n Pk ) (n, o)

0[(11‘)(:: koggog, ' ey g

.y JUE_ #1)(N_ )en
[ P R T T
-/
’.\:‘3 = - Tlw - w ) 1 R «58
Ve =g, ‘K % 2y (3.58)
This expression involves the uet rate of change of n‘h owing
to all types of processes described by (3.350) and (3.33¢).
This is essily seen from the four tyres of <= funetious

occurriug in (3.58). Alsc, 4in (3.58) the factor

‘\Ui" ‘so Ua.". p unl"‘l . Aﬁ. u!g'

AN 1

°o .a
Prer Mgy -
te!

will depend oun the model chosen for the caloulation, In
proceeding further, we chenge the sumsation over q, toan
integration as

.

Z?!T T ;'l, }q: dq, Sin B, 6B .ees (3.59)
-

Here, (g, 0.!. l.‘ ) are the polar coordinatee. The inte~-
gration over the angle 0.; can be performed using the
properties of the ¢ =functions oecurring in the expression
{3.58). Let us consider the funetion

T gy agy T TR g v )
This impliies

4 °ﬁ( * - J
w '3.,

Keggra, Tk %



Ihis can be further simplified as

-;;L. q:oq:OZR%WOFOZK%QCO‘oo?q.QOWO.O

-i(' w ) « 0
h .9._

L
hth.' W a
| — D - e— S =0 ee.(3.60
el A R e

where eko is the angle between 9, and k . In arriving at
(3.60) we nave made use of the relation (1.5) and neglected
the terms such ae q:. Zq..q. Cos 0“. and 2 tqo Cos oho in
as much as we always take very small values of q, aad the

direction g  is nearly normal to Kk vector. Further 4, is

taken along the polar axis. The last term in (3.60), namely,
L J

w can be neglected, if we note that

h k 9 =Y
' w n‘oq.
—_—a - - ¢fv. (3.61)
hkq hkq

where ¢ and v are the velocities of sound and of electron
respectively. This is supported by the fact that v "¢ in
the texperature region of our 1xzt.orcot..°" since the velocity
of sound is of the order 5 x 10° ca/sec. and that of the
electron 5.5 x 10° ‘l" ea/sec. Honce, from (3.60) we get

L
B w
9
- h kg 2k



Similarly the other ('. =functions in (3.58) give the
following relations

»

m W % )
Cos 9. (11) o ——32 }
E hkaq, 2k !
)
)
B )
n w q. )

Cos ® K (444) - - - — ) {3.63)
- h kq, 2k 3
)
)
cn &
cos 9 (1') e = A & — )
ak h kg 2K )

In order to eliminite the < =functions Iroax (3.58)

wWe note the ~fungtion yroperty, uamely,

(ax) - -1- (x) (3+04)

Further, we sioplify the terus in the square brackets in
(3+58). For example, le. us consider the first square
bracket, namely

“"‘h"‘h*s,m. u.aoontus.d) - nku-nl’so’S.)Ns., Ks.
00.0..0(3.°S)
We put
n o n® . A kxx£ )
X ‘ .. } (3.60)
s o h x f

'l'so’s, - nl’&,’ﬂ.’ . (Eeg va )y PO )



In the high temperature region one can saf@ly assume that

(¥ +1) ~ K = ¥
(3.67)

—— —

(ls.01)~ ’9.. Fg.

Here Y“o and Kq. denote the optical and acoustic phonon
oquilibriua distribution functions, respectively. In writing
the above expression, we have assuned that the phonon
distribution function does not change apprecisbly owlng to the
sc.ttering process considered here. Thus (3.65) bscomes

(R *qyy! 7(’503‘03. a4 k 27 rso rg. (3.68a)

Similarly, the siamplified expressions for other three square

brackets can be written respectively, as

A E T
A% ¥

oty Fgg vg = *x “x ;‘f;—qt- (3.68¢)
AW W

k. K, a9 Sy (3.684)

“”Q.,l . keg -3, x k 2

Aftor substituting (3.57) in (3.58) and integrating over
0.‘ , and using the approximations and simpiified forme for
the various terms given above we get,
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>

1 o “ | 2
'—qo N& ?“ ' “ 't ‘.

\-?T; n“.Z*.a.Y’ :;: h:

eI

l(k,oqu)%lmo.& ety ¢ ckx-q“)"'}_qo_q.-k; M

’“x'qox)’*k-goog.*x"; * “x‘qox) ;:r‘ogo-g.*x’\g q‘dq.dﬂ.k

Oo-l...coo.“’ob’)

For integration over “05 » We note the rolouono“
e 4 Cos 0“ (3.70)
k = k Cos @ (3.71)

and
Cos O.a = Cos 0.5 Cos Op + 3in “K Sin 0‘1 Cos f‘&
L (3.72)

Using (3.62) and (3.72) we get for Qux In the first square
bracket of ‘3069,

2 -
e 9
\: e [ﬁ 'ﬂo - 2—k! kaoq. Sin 0.5 Sin 0.8 Cos “.5
L (3.7},

Similsr expressions for x O8n e written with an
appropriste form of Cos 0.! given by (3.03). we further
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note that in the integration over 4“ » the terms involving
Cos ’ak in (3.72) vanisn. Also, bhoo; terms occurring with
n‘v%ﬂ—l .2 wi.l not be importsnt as in the final analysis
they will oecur in the forw multiplied by factors such as

>(~‘ Y

& .
( &‘ - ; (3.74)

Jueh terms will be small. This seems L0 be Jjustified
further Af we conasider the ratio

L]
& w hw hw
2
4 . —ﬁ- LG ] A’ — : ".75)
bk h x*/a” < kT 13
Thus within the above a.proximations the integration l.k yields,
on . 2k
X Lay h g
TV e T S E AT e
| %
o

-;: .
'q‘!’ Chagen Emn s, Yang e, VEeagm, Vi |

00000‘1070,

Ye now expand terms in laylor's series

like ‘)...k’% s,
namely
X, - XA +
l’ﬂo'ﬂ. h.‘ +h( '39 'ﬂ.)

- a) + h (-‘°0Ns.)'/~‘ * e (3.77)



Making use of the exjansions like (3.77), we can write
(3.76) 1. the form

’

l/ net v ﬂ‘ 3 c

1.9 a 2 <
fepthpry 999,

|
J
°

J"IVI

...‘..\3.78)

In writing dow:n the above oexpression, we have used the high

toaperature apyroxisation

_ kg T kgT
M ° El'—& an¢ W, - 5-%& (3.79)

In order to integrate over Qg we should kuow the specific

: 2
form of lP:‘. ‘:.‘! .

of the bands is such that the potestial due to polarisation

We firet assume thst the symi.otry

as well as the dilation waves can connect these two 0Dznds.

Fhus, on the continuus model,we can write for

2 2.2 2 2
2 " " h ‘d S
I’:t.' A:"I! o — ¢ e F] (3.80)
o '30( ! 'Q" feer Y

We now substitute (3.80) in (3.78) changing susm atiou over EW
to integration and integrating over Qo ANG G, We get

|y 8r2 %% (k1) /2a")3/2 2 4 ni

e/ . . £
L/ net h‘ °2 '2 .
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where q2"* 1s the upper limiv of Qg+ Comparing (3.81) with
the relation (3.57)

695 h k‘ X{ o)
0%, net - a 7 £ e
we get
' 612 (kgni5/2 (u%)3/2 gax g2 2
- e (3.83)
[ h‘ c2 '2 r/ = { ’
@ LT e
Hence
it (0) 4=5/2
D o o - vl r y (3+84)
©
where
b 2 2 2
rh* £ w [ A
(o) % ‘t"
uo - ’ ‘3085)

8y2 o £3 (@*)%/2 QLax xg/z -

Next we consider the interaction terss given by (3.35). The
first term (3.35a) deseribes the one phonon process involving
opticsl phonons. Such processes are not consicered in the
present iuovestigation as they have been deslt with cloosboro.5
fhe terss given by (3.350) and (3.35¢) descrive the two-phonon
processes as remarked in the earlier section. Here both the
rhonons ure opticsl phonons and we consider ouly these Serms in
the present calculation. However, frow thes terws we omit

those involving the simuitaneous creation or anainilation of
« o ®

b b b b
d &' T %

y OLC. as they will LOU COLSEIVe euergy.
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low, we restrict our attentiol. to the terms such as

(1) \ 7, .
Higg (991 = 5 Ore Fgr Upees “Vgeg Fo | U
‘T.—&'u ‘ sg ! i - % -
| e . . . ¢ 1
| Meggqg e, "ay T “kea,magtkle. sy 1T,
oonooo.oo"os‘))
and

(2) _ . ‘ : "
P (0=0) = = _/il;.‘ e&.’ Ugrge \/.'.5,‘. ‘o Ueed

int . \
l'a;g:

L - - . - -l_
ES I .5’89'9.3 .hbﬂob&', .5'80’3:,.5.,3 b;, ..__Js“'

ooooooooo\,od?)

The rate of chan,e of the distributiosn functionu of the charge
carriers ("nk /ot ,nn due to the interaction proces.es
given by (3.8C) and (3.87) 1o written as

>nk . “nm —

t net h

P ; <
tt' ere

>

804y

Y ,01."

x f(l-ah)tn! Ko, -a) -so)\.\ao -.

Y 01)\5&;)-:1&(1%

Bt L

x "(;‘;k.ao.g-:‘.hom -30-"3:’)‘

> ‘\‘-L ;\lo ')\- )(0\“.".‘\‘('-“

‘ ‘.‘o.% so ")‘u .,

e saitih
it s L
g, - b\ w - "0' i) ‘ 500000\39361

x 3\;1, K %

8,8
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In silaplifyleg the expression (3.85) further, we change the
susmation over q, %o iategration. For couveulouce, we express
the volume element appesring in the Litegration iu polar
coordinates q,, O ., 4, /+ The wave vector q) ©f oue of
the optical phonon is restricted to & swsll range from J to q;"".
Further we ¢ ake q; 8.0ig the polar axis. for optical wodes,
it 1s custosary to take the same {requency for sll the aodes

leee hw ehw, . It follows froam this thst & , e = &

and in the high tew, erature region we use,

W - -53-— - (k_o1 ). \3.89;
2 "go L
“ith these assumptions and approxisations inview, we siz;lify
the varicus terms occurring Ain (3.8%). Let us cousider the
8quare bracket terwms first, A8 doue in the acoustic pnouon

scatiering case, we can write

(1-1:5) ‘"’5’3 -s"“‘s,’""‘a;""s""‘s*a;a;"'so‘“ v o1
. -E-.. iﬂé i& ,.“x'qox’ ,{5.40_3‘; -k X kj (3ervi
and
\1-051(05_30’*;)\520)\:.&:01) - “5”.“5."30’:60'““30'”“.83 )
- -f: "'&,) Eﬂo :\lx°q°xj % P o S (3e71)

“e can sim;lify the Ce=fuucti.us under the above asswuptions
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S g -5 h (w =w
Vaegymag " B 0B g ;
e ¢ 5. ﬁd‘zu‘ 12 o l .’-’ L :2
) 3 - 8 > o8 (@ ’ N
‘5030-35 K \ a® |2 - xoll ﬁ‘kqo \C08%, 02!
R R R R R R \30")
and

Ek-h&- -w

Pe “-k.%‘ié - X

L

‘(8 - S \.‘ - G . e -
{ k=g *q! ‘l) ;1::;: (= Cos O —;‘rg-) (3.93)

Jubstituticg (3.70) to (3.93) in (3.88) and integrating cver

Ok Hid ’ok e get

"" - .A‘.
[OBy Ve 2k 2 _ 3
| — T3 > | A Ly N_, & 4, ¢
\NOCW net e BC k7 = | e’ “! S S © %o
L/
“re \30"‘
lo order to write down the s;ecific form of ""'t'.v.' Porel

Sppeariug 1u (Je7k) we follow the wetnod of deforsation
poteitial for optical modes developed by 301;::" {hus we

5 . s
Can write down ‘gpr T + « This is obvicus from

| e
matrix element (1.27) .
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Thus
[ong) by, V2 £h g n 33 (nex)d ) 5/2
,\_—.‘ . - r oo‘)o”)
L Ot/ net L) 12 h% 4 ‘:o fxsi" -
and
, Ved b33 2ax)3 (u*)3/2
—_ - . eel3e¥0)
) 12 b ¢ H:O‘.zig, »?
It is seen that the above also gives
§ o e ué” ?-5%/2 (3.97)
with
12 6% 0% Wbl W
plol . Jo ) (3.98
[+] Y2 5; “\RBT)S/Z\ "x)3 ‘..)5/‘
Avosistic model

In the precediag cslculsticas of relaxation time and
wobility we have cousidered a coutinuum wmodel for the inter-
action processes. In what follows, we cousider the interactioun
processes on the atomistic model. In this descrijtion the
perturbing potential caun be cousidered in t erms of the oscillatig

erystal fleld which the earrier at a site n will experience
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owing to the motion of its neigubouring ions. The interactiocn
terms are similar to one given in (3.35) except for the

following differeuces.

1) In deriving the ianteraction term for the present case,
we construct the Bloch™ soluticr of the unperturbed problem
with the help of astosic like functious namely, Un‘. Thus,

we get the Sloch's function of the fors

1
‘IG - ;:— b dnt. Ot Ledn \3e¥7)
n
Z2) The expresaion
Uiee 7410 e Poou e
Pyy Pooe = il B8 SR, 8
tt' “t'e D -
!
is now repiaced by
p . \ 2
VUne ?géiunt' Ve ?89'un&/
‘30'\»)
Seer

usel
3) In ottaining (2) we have/the form glven by (3.8) for optical

mOodes 80 that we can write down

\ / . <
X uu‘ P&! Un" v /un‘. l%\‘ Un‘ !
4 {
G 1L

Une &g o Firogy) U e Vnes| % Fir ) e,

. o

2

e ‘3.10‘1

- Fovr Forg|
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Thus the two phonon interaction terws can be written

with these chaunges, as

4

b o(0=0) = 4L % ¥
int ‘T- tt! sé

; t't ‘ﬂo
(e . e
T T AR T AL

n’ . ; ' '
emaig, "G ¢ kealen, “%a U,

+ C.C.

oo.o.oooo‘)o'v)zl

In accordance with the remurks msde earlior, we disregird
those terms which involve the sismultaneous creatlon and
annihilation of two phorous. Therefore we have to consicer

L Lo
culy second and third and their e.c. verms in (3.102).

Repesfirg the esrider calculations for the interaction terss
in (34132} under considerarion, we zet
- 8l LK

T i T
‘% uet h * &N ‘.90‘% - ; oe! ""'\ qg a4

D ) ‘}.‘U3I

2
Feer Ferel R

(' o k =
3

L L ‘3.‘0‘)
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Finally we get P = pi®) 175/2 (3.108)

where

34% ¢ »° hioﬂii‘, &

o) - (34100}
W N:.x,} ‘.0‘5/“‘, F 4

te' ‘o't

PbS Kr: P

we shall now obtain the relevant relaxstion time and
the mobility expressionsfor the solid solutlion of the 7bs group
semiconductors. We proceed in the same manner as in the
preceding cssec, namely, the pure PbJ group. Here also we
restrict our attention to & two band model for the system
under cw:sideration. Further the ‘hir?lf?om in the intersctiow
Ham.ltonian (3.51) is expected to be unimportant co.pared to
the first and second order terus. Hence, neglectiig the third
order ters in (3.51) we can write cdown the interaction
Ham.ltonian as

(¢l TR
- 4 2 rregmrer ey Vg
K ® 5 (Vpw A P . .
: u\p)
1) A U L (3.107)
* . .
g

Thus, we get for the rate of change of distribution
function of the charge carriers owing to the processes given
b’ ‘30'07)
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ALy o
on L. *n
Tk K K
— o~ - p—
":t/ net .
. 2
« 28 = . [ytp) 7
+ ;f‘ lv_l_"'nh"t." uh"t." .Ag‘ u‘t/‘
s,
U

! ‘\ 2
k'v‘ ‘3- J-k-‘:'l !

~

‘f “n-u‘mk_s‘xs‘-nh(i-uh_&ﬂs.d) ’ A(ah‘ﬂ.-‘l.hwﬂ.)

. (1-115)n5 .a.).\'a.uxp&-xs-bhs.)

’8.“8.’”15“."‘

L R ‘30108‘

In writing down (3.108) we have considered the coutribution
of second and third terms of (3¢107) as the Sazej heace the
appearance of factor 4. In order to ovtaln the ex;licitc
form of the teras 1 .cluded in the first curly brucket, we
asguune a randoams outribuuor."'” of the solute atoms of the

solid solution. Further we note that £, =1, where s io
Qe—
.

the type of atom in the solid solution.

Thua we have



\';;:""‘" 2
- /
| Ag '\u!n v l A&\ Ux‘/
' w-
L £§£‘ | ' ) , .2
- ’\'\UI" vr.v.- u‘.'o "> { uh‘" " Aﬂ. U&‘.\ |
r,s ‘

L ‘30‘0'1

For couvenlience in notation we write

Frs

5 (Oag [V Y | Bpmrg=> (3.119)

Here Vr and V. are atomic like potentialsof the stoums

r and s

res;ectively.

Further, using the relation (3.13b) we can write

2.2 1
b g -
{Ogmye Ag |Yge ¢ - )
- 4 2 '3. v )
/
., | (3.111)
hge )
e 5 A il ;
4 A, | S -

k't g, | B¢ )

2 w v

Sa
Here - ., refers to the deformation potential for scutteriug

by acoustic mode involving inter-band transitiocns and

4y 2

denotes the deformation potential for the jure phase 1 or i.

For exumple, the suffix 1 may stand for PbTe and 2 for Pb3e.
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Jubstituting (J«10%), (3e110) and (3111} 4n (3.1J8)
and changlng the susation over 3, tvo the corresgonding
integration we get,

—_ 2 2 2
~ d ‘ f t hit
\nh 2e v q.f m r’o ci'.2
Ot/ net h :5 | & K:'_ v 2V
/% |
x r-;;. ods nk d e K dﬂ.‘v
[ )
B ~:I 'ltl “l“'K‘S. % kn-nr&ms‘m
x 6( Kl‘ﬂ. - g!n -h '8‘ )
. ,n-s.._ l’ﬂ. n‘u-nh’s.) .&1
x Of s..& “3 +h -8. )} 7 eeeldetrz)

Following the zethod ado;ted in slaplifying (3.05) we get for
the sjuare bracket terms in (J.112),

“.‘K)nl'ﬂ. lﬂ. - nxﬂ-n‘.&“&a.ﬂ)
h s
N n® "ﬂ 'q. ) =7 ‘K’
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and
B T R
L
.c l‘.’. \ k‘ * Q.') -'lk “ e (34113)

The arguaents of the ¢ =function ¢an be written as

l“xq‘ B w
3!:8.-3‘;11"3‘- = { ;! ?;oc‘d‘;‘-; bk:

fesraen \3.1“,

Suvstizuting (3.113), (3.11%) in (3.112) and integrating over

0.‘ { for the elimination of J~funetion ) and J.g we geot,

22 S ¢.¢ 2"
. . L L RS %
. nx e s K"‘-k(ka‘n
| — ~ .: | p
\ ¢ o/ net el 4,2/ &= B° K cf
- 2k q'
x q. ‘Q‘ | = ;,—) R "o"’)
o

where the following sp;roxizations have bLoen made!

£ hw - “da



¢ being the velocity of sound. The final integration

over gq sives us

-hoky (132 g2 (@32

1)‘
k
S -
Ct  net & i h‘ o2
LR — | 2
/ 24"_“:-‘: 'ro hok
| 2 r,s X K
X |r + 8- —
\\. dl,l P 4 o
O Sgge
00.00.00'00\3.'171
Thus, we get,
(2 - — " 2
1 ¥2 (kBT)3/2 (10)3/2 2tqr ) £efs 'r.oJ
— = !’CZ l‘;l_
L % f cz h‘ ‘1.2 Eiv. /

essscssnee (30’16'

The mobility ex ressim I ecan be written as
B e — - pi®) 72 (3.119)
where

n:.’ -

Y2t Y2 @52 (€2 o A

000000‘30‘20)
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It follows from (3.120) theat when one or the other component
in the solid solution is zero, the exyression p(:)
;‘oducol to
o xtclpt
(pure) = (3.121)
(kgi¥/? y2 a*)3/2 2

9:"
5.2

In deriving the expression (3.129) we have assumed that the
effective mass of the charge Carriers n° resains ucchanged.
fhis 18 a;proximately true. Netx| we counsider the alloy
coucentration de;sxde.ces of band gap [\S“... ihe bund gap

is kuown o depend ou thehlloy concestraticn and can be
luferred from the theoretical work of Paruenter on Ue=ii snoya?5

i{hus, we assume the fora

NBgew = £ /\_la'?, . £, A\ l::.). (3.122)
Here :\.zé:l is the gap for the pure phase r ( say PbTe)

and /\Eé:.,, for the other coupone:t when pure. Further, we
note that the foru given in (3.122) reproduces the eox;crimental
de,endence on the alloy concentration for the systea Pble~ble

as observed by .stnnlou."6

It is helpful for later discussion to write down the
coubined result of the ;revious section with ths present
result. Thus, we can write dowu the sum total of the mobility,

1

- 1 P
T en e (3:123)
o o
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In the foregoing chapter, we have developed a theory
of carrier wobility ooth for Yoo group and their solic
soiuticns. we shall now discuss the various models adopted
in the calculation and estiwate the magnitude of the mobilivy
in a typ;ical case. 7or this purpose, we shall cousider the

two Cases separstely.

(1) £bs group
The theory developed in the preceding chapter shows
that the two phonon processes, one acoustical and other
optical as well as both optical give rise vo expreasiouns for
sobilivy of charge carriers havin, the right kind of

teaperature depoendence L.0.

g = plol g8z (Le1)

We note that both the coutinuum model wnd atomistic model
lead t0 the same texmerature de,endence of =obility, although
the tesgerature inde endent jart is slightly diflerent.

First, let us ccnsider the exyressions (3.84) and
(3.77) derived under the sssumption of the continuus model.
1o odtalning these expressions, we have assumed that oue of
the optical phonons assists the inter-band transitions. This
is because of the fact that the full band and empty band are
both sdmixtures of 8 and p bands in lead chalcogeuides.
Thus the sstrix slements connecting the two bunds seem to

be non serc for the situations considered above.



liow we shall consider some estimates of the expression

(3+84) for the sem.conductor Pb3. e utilize the following

Velues of the parameters is given oy JG«GLOh.b‘
(o = 1729 (- 1543 C w745
- ~
.l“. - 00’7 ev. n - -. (V.17)

where ay is the free electron mass.

From (1.29) we have
2 " S s
Y w - " c =5 x 107 ca/sec.

4 ‘o ~ Ca

Let us take the deformation potential td e 1 eV. Using the
sbOve values we zet I at rooxz tesperature of the order
10% °_2 / volt-sec. The observed value quoted by acunlonh‘
for Pb3, Pbse and PbTe is in the raige 10 to 10° az/volc--oc.
For more accurate estimate, we should .nsert the ;recise
figures for the baud gsp, the deforsation potential and the

offective mass. In fact, some recent pptical measuresents

ou rbs suggest the v.lnoa°6
(° « 140 (| A. Gelck )
(° o 17% ( 4. .emel )

Un us.og these values, one Can expect a alight wociflcation
in the estisstion of (U,
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However, we have taken q:“' e 10° ea”! n the
estimation of the mobility, but it is more ap,.ropriate to
use a ssaller value of q:‘x . Thus one would expect an

order of magnitude agreement between experiment and theory.

Now we consider the expression (3.77). In obtaining
this expression, we have assumed both the phonons participating
in the scattering processes as optical phonons. An estimate
of this expression is difficult in the sense that we do not
have any knowledge of jarameters 3 and g occurring io the
expression. Hencoe we do not estimate this expression and
leave this at this stage.

Lot us consider the mobility expression (3.105). In
order to obtain this we have utilized an atomistic model. For
the uxt.on;!uon mechanisa we have considered the two phonon
processes, wherein both the phonons are of optical type. The
value of the propagation vector of one of the phonon is taken
to be very small., This is done in order to solve approximately
the ;-tunccton part of integrstion which in our case involves

energy conservation terms such as

sl-tl"h"&,-'&',) - 0

The second reason is that for the “‘'reststrahlen” mode, which
interact strongly with the ionic lattice, the propagation
vector has a small value. Such modes are particularly
important for the interband transitions envisaged in the
present wWork. The inter-band transitions are caused by the
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perturbing potential owing vo the erystal field ocscillations
around sn stom. JSuch transitions sy be llikened to an
intra=atomic transition say frox @ state to p state.
Such configuration & x.ug owing to the erystal I[leld
oseilletion 4s signifiesnt and has an ismportsnt role in
©07,08,09

optical and smagnetic stucies of iosic solids. such

effects were found to be of uponn‘r in K40 type

semiconductors .70

The perturbing potentiul noted above can be obtained
by & erystsl fielé celculation for a pair of atoms Poi as
suggested by Sinha and sum.7° and is given by

Firiy) = 2 IQOzl \-2’ fé' } 12‘;?‘:)- . ..../,‘:
h

This potential connects the atomic states and the matrix
element

I o’ 3*'. vo e Koo fs non=serc.
. *h

The magnitude of ¥ is of the order of 10™% ¢ynes as

te!
suggested by Jinha and .str.h.-lo Assua.ng I“, - 10" dynes,
.-’"\.z“, e 0,37 eV ans “So w 0,008 oV to 0,02 eV ( the
corresyonding sinstein's teaperature of the solid belug,

100%K to 200°L J, we see that the room temperature mobility
value ranges from 102 to IOJ uzlvols-uc. Thus the atomistic

model gives s fairly satisfactory magnitude of the mobilivy.
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(2) by group solid solution

We next anslyse the mobility expression obtuiued in the
chapter 3 for the case of solid solutions of Pbs grouj .
For the theoreticsal analysis of the carrier wovility we have
invoked ifiver=oband transitions of che charge carriers owiig
0 the  erturbations csused Ly alloying effect. ue have
shown that the jerturbin, potential can bLe obts ined by a
erystal fleld caiculation ( see ap endix ) for the system
under consideration. Further we have assumed that the
perturbing potential acaixes the atomic states as csn be seen
froa {ts forw. Then we have considered one~phonon (acoustic
mode ) scattering of the charge earriers with orbital functions
@wodified owing to the change in the erystsl potential as a
result of alloying. We discuss the situation in the low and
high temperature rexions. ( Here low tempoerature refers to
region ~ 50°K and not in the liquic belium tes erature
region ). Io the low tesperature region the mobilivy
expression 1s of the fora U = u;"r"/“. AS the te.pemture
1s raised the optical modes get populated. Thus in the high
Lem; ersture region two=-phonon processes discussed in the
foregoing section will dominate and the mobility expression
vill be of the form ¥ = PSOr75/2. pnesy sivucicns
Gan be easily seen fro. the wmobility expression (3.123). In
order to have a clear insight into the two foras remarked
above let us rewrite the expression (3.123) in the form

U;l) U(O) r”/g

- 2. (&e2)
Ur ool 1 L e




If one sets the condition p“”‘!‘ / u‘sl in the above
one can naglect U“) in the dono.l.n.w’r of Ur. Thus one
gets, U - u"’r"/‘ On the other hand, setting the
eondition Ué”‘l’ & U:'). the mobility expression comes
out Lo be of the foras by = v‘(’o),-sl'&. This 1s inceed
the experimental. bohovlm.“ Further, in the solid
solution the magnitude of U},‘) £9083 down owling to the
presence of extra term iu the denominator of (3.120). Hence
the 1'-5/2 behaviour in solid solution should t.ke over at &
lower tem;erature thsu in the jure case. This is in

agreeusit with the exjperimental ‘fnet.o.‘8

Let us now analyse the concentration de, ende:nce of
mobility of charge earriers. ¥We coupare the ex.erimesntal
recults of solid solution (PbTe~Puse) given oy Joffe and
colhbontou“ with the theory as giveu by (3.117). The
two conponents of the system consicered are wiscible in all
proportions snd thersfore they coustitute a falrly ,ood
systes for the test of the theory. Further, as resarked
eariier we take the fors (3.122) for /\:“., in (3.119).

For couparison, we rewrite the mobility ex;ression
(3.117) as

er ( ¢? pb Aét"

. 32 *\5/2c2 <
{2 (kgT)"" (=) [td'.z’—":t.' s 2° L_tr:l’Fn

r,s

p;o) -

2

a
. oooo(bo})
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r,s
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where

\Lob)

———— — — ———

The band gap parsmeters for the pure systems were taken {rom
seanlor. % The values are D)S::.'.(Pbro) ® J.318 oV and
NEi2l(Pvse) = 0.283 e¥. The deforsation joteatisi
‘-,d‘\roro) and zd‘tn:n) wore 30 takeu that the results fitted
with the pure cases. The other jarazeters is the ex,ressiou

woich iuv.oive fgr | deforaation potentisl ior futerband

transition in solid solution) and ,r"a were cetermlined
froa the experisentsl point at 59 : 50 ratio. Infact we
have deteruined the whole factor t:. t?r.fz. Thus, we

éot all the constants iu the expression (4.3). kow setiing
the.e constants in (4.3), the mobllity of the charge carriers
have been calculated for different value of ‘r and .

The theoretical groph of mobility versus concentration of one
of the com;oneuts thus drawn 1s given along with the
ox;erimontsl polnts in Fig. (5) for p=type and n=type solid
solutions. The graph shows that the experimestal points lie
all along theoreticsl curve in very good agreesmest with

the theory developed.



Be COURGLUPLIC STMA LY

In the foregoeling chapters, we have cdeveloped a theory
of carrier mebilivy in polar semlconcuctors snd their asolid
solutions. The concept of inter-band transition of charge
carriers caused oy optical phouons or alioying ,erturb.tiocn
potential was introduced. The wmodified electrounic orbitais

were used in the scattering ;robliem.

In the pure case (Pb3 group) the role of both the
scoustic and the optical {(er polar-opticsl) modes for the
scattering processes were considered. In such a formulation,
We Came across processes involving one, two and three phonons.
Considering only two phonon processes l.volving one acoustic
and one optical as well as two optical phonons, we obtained
the mobility expression of the type § = ug°’r°’/2. The
r"’/’ law obtained theoretically 18 in very good agreement
with the experizentally observed temperature dejpendsuce of
sobility. For the two-phonon processes ( acousvic=-optical)
in the continuum approximation the room temporature vaiue of
the wobility is of the order 10% cm? / Volt=sec. =ne found
that for the two phonon processes iuvolving both opiical wodes
iu the coctinuum approxization, the estisation of the woolilvy
expression is somewhat diifficult iu as much as we GO LOL KuOw
the values of some of the parameters occurring iu the

wobility expression.

In the solid soluticn of Pos group ( eg. “bTe-Pbje) the
formulation in terms of the perturbed electronic states waich
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incorporstes the effect of inter-bard mixing owing to the
alloy perturbition leads to one yhonon ;rocess involvi. g
acoustic mode. The moLility tes,.ersture relavion 1s of the
fora U, = u:.),.-)/l iu the low tea, erature region aud

ur- u$0)7°5/2 ia the high tem;orature region. /his is in

very good agreeaent with the experimseiutal results. we have
aualysed the coucentration de,enderce of moblliity oy
deteruining come of the constants using Lhe ex erimectai
results given by Joffe et al., The theoretical curve (zobility
versus concentration of cne of the componewts ) crawn shows

the concentration dependence of the mobility. Further, it is
found that the experiwmentsl points lle all aloiy the

theoretical curve.

Thus, we conclude th.t {nter=b:nd trinsition effects in
the polar semiconductors, whether csused by optic 1 ;hounous
\ or polar =odes ) or by alloyiny effects { in the cise of
solid soluticns ) play an imjortunt role in the electronic

/TocCesses,
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Iu this sppendix, we shall derive the crystal field
pote:tial on a metal iom in cthe s0lid solution PbTe-Pbie
described by the model u,x,,,. For this purpose, we
follow the well kuown method of crystal fleld theory’' and
apply it to an octahedral cluster.

The atoas of the system are arrsaged in an octahedral
configuration, with the metal fon K at the centre. The
atoms X and Y are known as ligands and it is expedient to
denote their positions in terms of jolar coordinates (R, 0. 4.
These are six ligands around M with the coordinates.

ﬂlh. 0, 0), ‘%’ ®, 0 ), ‘%o */2, 0 ),

\ l.o '/2. '/2 )y “h' '/2’ x ), |\ "ho 0/‘0 3'/2 )

esccses (Ael)
respectively.

Let r Dbe the position vector of an electron of the
metal fon M. The electron moves iu the electrostatic field
Vir) producaed by the surrounding ligands. For sisplicity
we treat the ligands as point charges.

It is convenient to expand Vir) in & series of
norsalised spherical harmonics as

1
Vip) « T T & 2 e, B

(R.2)
Is0 we =1
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Here, the coefficisats c: can be expressed iu terms of
the assccisted Legesdre polyscaisis pf. Thus,

G g Ao o’ B D o4 o

where { 435 the charge of the ligand in question. The total
vslue of the coefficleats c‘: 1s obtained by sumsxing the
expression (A.3) over all point sources, using their

respective coordinates as given dy (A.1). The condition that
the potentisl V(r) must belong to the totally symmetric

repres ntation of the group of the unit (octshedral, determiies
as to whiceh C: Are Sero. Wo use the following values of

l and m.

1 «0,1,4,3, 4 3and me =1 to 1 (Aeb

We place a Te  iom at (R OU) ana Se  ions at the
remaluing five coordinates. Let the point charge correspondiug

to Te  De q'.

We shall now find the coelficients Cf for this
configuration. One can easily see that out of the different
values of 1 and m given above only the following coeffic.ents

survive:

1=0,m0  G§ =g2inT el aﬁn (Q'e52)

lel,ae) c

-0°
.
'

x Cos 9, c® o 8XX (,Vey)
2 / 1 o 2t
RS 7 . {355
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Thus substituting (A.5) in (AeZ) we get

Vigh = VP o (ST R 0 L (S )«
C—— e

— 0\ — 0 o J
* (> 02/ !2 . \/» (,3/1 13 r
— O —— ”‘\ 4 N -4
* ‘/ XL r * D l. r (!‘ * !‘ )
1 2 2 2 2
} o 1_. 2 2" - Z2(52"=3r°) .
- * (< -J) ( > 8 .
“1"‘-,, 2 R
h h

3 ,_;‘,A,,A,.s-b‘zyz)

seeses (AsD)

Here x, y, 2, are the coordinates of the electron ii the
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¢artesian systea. Similarly replacing se  ion by Te -
AL Other ccoordinates, we can Calculate the erystul fie.c

#Oteintial at the ;osition of the electru.
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