Synthetic Studies towards Montanine type of Amaryllidaceae Alkaloids Employing Intramolecular [3+2]-Cycloaddition of Non-Stabilized Azomethine Ylide

By RAVINDRA KUMAR

Research Supervisor
Dr. GANESH PANDEY

DIVISION OF ORGANIC CHEMISTRY NATIONAL CHEMICAL LABORATORY, PUNE 411 008, INDIA

December 2010

To

My Beloved Parents

And

Almighty

National Chemical Laboratory Division of Organic Chemistry (Synthesis)
~NCL
Pune - 411 008, INDIA

Dr. Ganesh Pandey

FNA, FNNASc, FASc

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "Synthetic Studies towards Montanine type of Amaryllidaceae Alkaloids Employing Intramolecular [3+2]-Cycloaddition of Non-Stabilized Azomethine Ylide" submitted by Mr. Ravindra Kumar was carried out by him under my supervision at the National Chemical Laboratory, Pune. Such material as obtained from other sources has been duly acknowledged in the thesis.

Date:
Dr. Ganesh Pandey
(Research Guide)

[^0]
DECLARATION

I hereby declare that the work presented in the thesis entitled "Synthetic Studies towards Montanine type of Amaryllidaceae Alkaloids Employing Intramolecular [3+2]-Cycloaddition of Non-Stabilized Azomethine Ylide" submitted for Ph. D. degree to the University of Pune, has been carried out by me at National Chemical Laboratory, Pune, under the supervision of Dr. Ganesh Pandey. The work is original and has not been submitted in part or full by me for any degree or diploma to this or any other University.

Date:

Division of Organic Chemistry,

National Chemical Laboratory,
Pune-411 008, India

Acknouledgements

This work has been completed with the generous help. support and encouragement of a number of peaple. I would like to thank every one of them from the bottom of my soul.

7 would like to express my deep sense of gratitude to my esteemed supervisor Dr. Ganesh Pandey for his erudite and meticulous superwision and never falling patience, which gave me constant encouragement and quidance. His painstaking efforts, immense insight, inspiring attitude, evolutionary ideas and enthusiasm enabled me to complete this research wark. His thought pronoking critical comments and keen insight in identifying warions facets of problems have been a source of enduring patience to me without which this work could neither gather substance nor assume the present form. His scholarship, humanity made my task a joy. His dedication, consistency and commitment have always been inspired me a lot. I shall always remain beholden to him.

7 must acknouledge the moral suppart, motivation and motherly affection showered by Dr. (Mrs.) S. R. Gadre. Special thanks are due to my seniar calleagues D_{r}. Shriniwas, Dr. Sanjay. Dr. Balakrishman, Dr. Kishor, Dr. Keshri and Alok Singh, Dr. Debasis (DG) for their constant encouragement.

7 gratefully acknouledge my seniars L. Srikant and Dr. Prabal Banerjee for teaching me the fine skill of experiments at the beginning of my study. I specially acknoculedge Dr. Prabal da, who actually initiated this project and for the nice callabaration we had during the beginning of this work. I also wish to acknowledgements Deepak and Nitesh for their kind assaciation during my mork.

My special thanks to all my colleagues Dr. Gumaste. Dr. Manisankar. Dr. (Mrs.) Asha. Smaroop, Amrut. Dr. Nishant. Rajender. Prasanna, Dharmendra. Sujit, Debasish Dey (DD), Deepak. Priyanka, Tukaram. Nitesh. Rajesh. Binoy. Animesh. Durga, Shiwa, Janakiram, Jagdish. Vinit. Ramakrishna and Bhushan for their constant suppart, and maintaining a friendly and cheerful research atmosphere. They made my working in the lab uery enjoyable. I acknowledge the seminar activity in our lab as well as out of the lale, which keeps the torch of knouledge alive. I am grateful to Dr. Nishant and ather calleques for helping me in bringing out the thesis.

Help from the spectroscopy groups of NCL is gratefully acknouledged. I sincerely thank Dr. Rajmahanan. Mrs. Santhakumari, Mrs, Kunte, Dr. (Mrs.) Visuas madam. Mr. Senthil and Dr. Sanawane for their kind cooperation. Dr. (Mrs.) Vedawati G. Puranik is also acknoculedyed for X-ray analysis.

7 would like to specially thank my friends Sunil Pandey and Dharmendra for their kind help, encouragement and suppart in all atmosphere and maintaining the brotherhood enuironment as home away from home. I mould like to thank all my friends and some of senior friendss Dr. Eseuar. Dr. (Mrs.) Daiynthi. Dr. Chandrakiran. Dr. Amit Patua, Dr. Mehrai. Dr. Arif. Dr. Pinak and D_{r}. (Mrs.) Kaur madam for their cheerful company, which made my stay at NCL. a memorable one. I want to thank my friends Rinku, Pappu. Praween. Mumni, Tunni, Rima and, Alok for being in my life and their generous help and encouragement.

Special acknouledgments to Mr. Pawarji for all kind of help he has provided. 7 am alsa thankful to all my teachers who have taught me the basic chemistry and inspired me to come upto this stage.

I don't have any words to express my feelings towards my mother who always remained as the source of inspiration to make my life meaningful. Her soul rest in heaven but still appears alive to light my life. I just can say "I miss you Ma from the bottom of my heart........farever." It is equally difficult to put into cuords my gratitude and love to my father, my elder brothers, Ajit, pappu and Pintu bhaiya, my sisters-in-laus Geeta. Bindu and Punam bhabhi, sisters, brother-in-laws, and all the family members for their blessings, love, care and continnous encouragements and suppart throughout my education. Sincere thanks to my wife Asha for her love, care, encouragement and suppart. I also mant to thank my wiece and nephews Shieram. Himanshu and Rahul for their love and affection and also for maintaining cheering atmosphere at my home.

Finally. I thank Dr. Ganesh Pandey. Head. Dicision of Organic Chemistry and Director, NCL. Pune for prouiding the infrastructural facilities to complete my work successfully. I am alsa thankful to CSIR. New Delhi for the financial assistance.

Contents

List of abbreviations i
Abstract of the thesis iii-xiv
Chapter 1. Introduction: 1-29

1. Section A: A brief account of Amaryllidaceae alkaloids and an introduction to montanine alkaloids 1-9
2. Section B: Stereoselective syntheses of
5,11-methanomorphanthridinealkaloids: Literature reports 10-29
1B.1. Introduction 10
1B.2. Synthetic strategies: Literature reports 10
1B.3. Our concept and protocol 25
3. References 27
Chapter 2. Synthetic Studies towards Montanine-type Amaryllidaceae
Alkaloids 30-66
4. Section A: Synthetic studies towards the stereoselective total synthesis of (\pm)-brunsvigine and related alkaloids 31-49
2A.1. Retrosynthetic plan and design 31
2A.2. Results and discussion 32
2A.3. Summary 49
5. Section B: Attempted alternative strategy towards the
Synthesis of (\pm)-pancracine, (\pm)-montanine and (\pm)-pancratinine
: Generation of new analogues 50-55
2B.1. Introduction 50
2B.2. Retrosynthetic analysis 50
2B.3. Results and discussion 51
2B.4. Summary 553. Section C: Development of Auxiliary based asymmetric 1,3-dipoar cycloaddition strategy for the synthesis of enantiopure
5,11-methanomorphanthridine skeleton 56-63
2C.1. Introduction 56
2C.2. Results and discussion 61
2C.3. Summary 63
6. References 64
Chapter 3. Experimental 67-145
3.1.Experimental procedures and spectral data 68
3.2.Spectra 95
3.3. Appendix 141
List of publications
Erratum

List of abbreviations

Ac	acetyl
Ar	aryl
aq	aqueous
AIBN	2,2'-Azobissobutyronitrile
bp	boiling point
$(\mathrm{Boc})_{2} \mathrm{O}$	Di-tert-butyl pyrocarbonate
$n-\mathrm{BuLi}$	n-butyl lithium
s-BuLi	s-butyl lithium
Cbz-	benzyloxycarbonyl
CSA	Camphor sulphonic acid
COSY	Correlation spectroscopy
DBU	1,8-diazabicylo[5.4.0]undec-7-ene
DDQ	4,5-Dichloro-5,6-dicyano-p-bezoquinone
DCC	dicyclohexylcarbodiimide
DCM	dichloromethane
DEPT	Distortionless enhancement polarization transfer
DIBAL-H	Diisobutylaluminium hydride
DIAD	Diisopropyl azodicarboxylate
DMAP	4-N, N-dimethylaminopyridine
DME	dimethoxyethane
DMF	N, N-dimethylformamide
ESI	Electrospray ionization
EI	Electron impact
g	gram
h	hour
HRMS	High-resolution mass spectroscopy
IBX	o-iodoxybenzoic acid
LDA	lithium diisopropylamide
LAH	lithium aluminium hydride
M	molar

m-CPBA	3-chloroperoxybenzoic acid
mL	millilitre
mmol	millimole
mp	melting point
MVK	Methyl vinyl ketone
MsCl	Methanesulphonyl chloride
NMR	Nuclear magnestic resonance
NMO	4-methylmorpholine N-oxide
NOESY	Nuclear Overhauser Enhancement
	spectroscopy
ORTEP	Oakridge thermal ellipsoid plot
TFA	trifluoroacetic acid
KHMDS	potassium hexamethyldisilazide
rt	room temperature
TBAF	Tetrabutylammonium fluoride
TBS	tert-butyldimethylsilyl
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl
TEA	triethyl amine
TsOH	p-toluene sulfonic acid
TsCl	p-toluene sulfonic chloride

Thesis Abstract

Synthetic Studies towards Montanine type of Amaryllidaceae Alkaloids
 Employing Intramolecular [3+2]-Cycloaddition of Non-Stabilized Azomethine
 Ylide

The present dissertation is divided into three chapters.
Chapter one: This chapter describes an overview of montanine alkaloids and the literature reports for their syntheses.

Section A: A brief account of Amaryllidaceae alkaloids and an introduction to

 montanine alkaloids.The Amaryllidaceae alkaloids constitute an important class of natural compounds, which have long been a source of attraction to contemporary organic and bio-organic chemist due to structural complexity, diversity, limited supply and wide range of promising biological activities. The 5,11-methanomorphanthridine alkaloids or montanine type of alkaloids having unique pentacyclic framework, belongs to Amaryllidaceae subclass, have been known to display anxiolytic, antidepressive, anticonvulsive and weak hypotensive activities. Owing to the unique pentacyclic framework and some important biological activities associated with these alkaloids, considerable attention has been drawn from synthetic chemists.

	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{3}}$	$\mathbf{R}^{\mathbf{4}}$	$\mathbf{R}^{\mathbf{5}}$	
$\mathbf{1}$	H	OH	OH	H	H	$(-)$-pancracine
$\mathbf{2}$	H	OH	H	OH	H	$(-)$-brunsvigine
$\mathbf{3}$	H	OMe	OH	H	H	$(-)$-montanine
$\mathbf{4}$	OMe	H	OH	H	H	$(-)$-coccinine
$\mathbf{5}$	H	OMe	OMe	H	H	$(-)$-manthine
$\mathbf{6}$	H	H	H	OH	OH	$(-)$-nangustine

(+)-montabuphine (7)

8a: Pancratinine $B(R=M e)$ 8b: Pancratinine $C(R=H)$

Figure 1: Representatives of montanine alkaloids

Section B: Stereoselctive syntheses of 5,11-methanomorphanthridine alkaloids:

Literature reports:

Although, there are many elegant approaches are known in the literature, these can be classified into three major categories viz a) Pictet-Spengler reaction, b) intramolecular amination and c) intramolecular radical cyclization approach (Figure 2). However, in all these strategies, synthesis is elaborated from a precursor having proper stereochemistry at $\mathrm{C} 4 \mathrm{a}, \mathrm{C} 11 \mathrm{a}$ and relative disposition of bridge methylene group of $\mathbf{9}$, which involved its construction in stepwise manner.

Figure 2: Summary of literature reports

Recently, our group has developed a conceptually new and short synthetic route towards the construction of 5,11-methanomorphanthridine framework employing intramolecular 1,3-dipolar cycloaddition reaction of the non-stabilized AMY (14) without starting with a precursor having fixed stereochemistry and was further elaborated to compound 16, an advance intermediate used by Overman in the total synthesis of pancracine (1).

Scheme 1: Formal synthesis of (\pm)-pancracine: Background of the present work
Chapter Two: This chapter illustrates the advancement of our original strategy for the synthesis of all other member of montanine alkaloids. It has been divided into three sections.

Section A: Synthetic studies towards the stereoselective total synthesis of (\pm)brunsvigine and related alkaloids.

Since there are varying oxygen functionality at C-2 and C-3 in the E-ring, it was essential for us to install a double bond (masked oxygen-functionality) in the Ering at requisite position. In this context, we envisioned $\mathbf{1 7}$ as an ideal and common precursor for the synthesis of all other members of montanine class of alkaloids, which in turn was visualized to be obtained from 18 employing either Mukaiyama type aldol reaction or Horner Wadsworth Emmons (HWE) reaction as described retrosynthetically in scheme 2.

Scheme 2: General retrosynthetic route for the synthesis of montanine alkaloid

Different approaches to obtain $\mathbf{1 7}$ were attempted and the failures / successes are presented in the chronological order of the development as described below:

2A. (A): $1^{\text {st }}$ generation approach: Intramolecular Mukaiyama-type aldol reaction:

At first, we initiated the synthesis of 17 employing an intramolecular Mukaiyama type aldol reaction from the 18 which was synthesized in 51% yield by the usual cycloaddition reaction of $\mathbf{2 0}$. Compound 20 was obtained in 27% overall yield starting from the 3-amino-1-propanol (21) through the sequence as outlined in Scheme 3.

Scheme 3: reagents and conditions: a) ($\left.\mathrm{Boc}_{2}\right)_{2} \mathrm{O}, E t_{3} \mathrm{~N}, \mathrm{DCM}, 0{ }^{\circ} \mathrm{C}-r t, 90 \%$; b) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OEt})_{2}$, PPTS, benzene, reflux, 86%; c) s-BuLi, TMEDA, THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{TMSCl}, 92 \%$; d) $p-\mathrm{TSA}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, rt, quant.; e) i) IBX, ethyl acetate, reflux, 10 h , 90\%; ii) ethylene glycol, p-TSA, benzene, Dean-Stark, overnight, quant.; f) i) TFA, DCM, $0{ }^{\circ} \mathrm{C}$-rt, 4 h, quant.; ii) $\mathrm{ICH}_{2} \mathrm{TMS}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, $10 \mathrm{~h}, 77 \%$; g) 25, $K_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, $8 \mathrm{~h}, 85 \%$; h) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, methyl vinyl ketone, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, $12 \mathrm{~h}, 65 \%$; i) $\mathrm{Ag}(\mathrm{I}) \mathrm{F}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 51 \%$.

As per our synthetic plan, we attempted the Mukaiyama type aldol reaction of 19 by treating it with TMSOTf (2 equiv.) in the presence of 2,6 -lutidine (3 equiv.) in THF at $-20{ }^{\circ} \mathrm{C}$. However, to our dismay, the expected $\mathbf{1 7}$ could not be obtained; instead we got a probable compound 30 (Scheme 4). This unanticipated failure led us to evaluate the classical acid / base catalyzed intramolecular aldol reaction from the unmasked aldehyde. In this context, deprotection of the dioxolane moiety of $\mathbf{1 8}$ was attempted initially under various mild reaction conditions viz; a) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{THF}, 0$ ${ }^{\circ} \mathrm{C}$; b) DDQ, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(9: 1)$, rt; c) TMSI, $\mathrm{CH}_{3} \mathrm{CN}$, however, none of the above mentioned reaction conditions produced anticipated aldehyde. Surprised with these observations, we stirred $\mathbf{1 8}$ with 3 N HCl in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (1:1) at room temperature which also, unfortunately, turned out to be an epimerized product 27. Ultimately, deprotection of dioxolane moiety of $\mathbf{1 8}$ could be achieved producing $\mathbf{2 8}$ in moderate yield (56\%) by refluxing it with 3 N HCl for 10 h .

Scheme 4: reagents and conditions: a) TMSOTf, 2, 6 -lutidine, $D C M,-20^{\circ} \mathrm{C}$-rt, 61%; b) $3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 8 \mathrm{~h}, 90 \%$; c) $3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, reflux, $10 \mathrm{~h}, 56 \%$.

Further, we tried various reaction conditions shown in table below, to effect aldol reaction involving 18, 27 or 28 but to our surprise, all attempts failed.

Starting material (SM)	Conditions	Inference
$\mathbf{1 8}$	$3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}$, overnight	$\mathbf{2 7}$
$\mathbf{1 8}$	$3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}$, reflux, 10 h	$\mathbf{2 8}$
$\mathbf{2 7}$	KHMDS, TMSOTf, THF, $-78^{\circ} \mathrm{C}$	S.M.
$\mathbf{2 7}$	$\mathrm{KHMDS}^{\circ} \mathrm{Bu}_{2} \mathrm{BOTf}^{\circ} \mathrm{DME},-78^{\circ} \mathrm{C}$	$\mathrm{S} . \mathrm{M}$.
$\mathbf{2 7}$	$\mathrm{LiHMDS}, \mathrm{TiCl}_{4}, \mathrm{DCM},-78^{\circ} \mathrm{C}$	$\mathrm{S} . \mathrm{M}$.
$\mathbf{2 8}$	$3 \mathrm{~N} \mathrm{HCl} / \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, reflux	Complex R.M.
$\mathbf{2 8}$	$\mathrm{CSA} / \mathrm{xylene}$, reflux	$"$
$\mathbf{2 8}$	$\mathrm{NaOMe} / \mathrm{methanol}, \mathrm{rt}$	$"$
$\mathbf{2 8}$	$\mathrm{KOH} / \mathrm{MeOH}, \mathrm{rt}$	$"$

2A. (B): $2^{\text {nd }}$ generation approach: Horner Wadsworth Emmons (HWE) Wittig
reaction: With these frustrating and unanticipated hurdles in obtaining 17 or 29 through aldol reaction, we evaluated to try out intramolecular HWE reaction from β ketophosphonate 19 as shown in Scheme 5. Synthesis of 19 was initially tried with 18 by treating it with diethyl chlorophosphonate in the presence of KHMDS at $-78{ }^{\circ} \mathrm{C}$, however, it gave the required product in poor yield (10\%). Therefore, we proceeded with compound 32 and its reaction with the lithium salt of diethyl methylphosphosphonate gave 19 in 92% yield (Scheme 5). Compound 32 was easily
synthesized (53% yield) in two steps starting from 26 using identical reaction sequence.

Scheme 5: reagents and conditions: a) $\mathrm{KHMDS}, \mathrm{ClPO}(\mathrm{OEt})_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}, 10 \%$; b) $\operatorname{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, Ethyl acrylate, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, 70%; c) $\mathrm{Ag}(\mathrm{I}) \mathrm{F}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}$, 53%; d) $\mathrm{CH}_{3} \mathrm{PO}(\mathrm{OEt})_{2}, n-\mathrm{BuLi}$, dry THF, $0{ }^{\circ} \mathrm{C}$ then 32, 92%; e) Oxalic acid, THF$\mathrm{H}_{2} \mathrm{O}$ (1:1), reflux, 10 h, 68%.

Attempted deprotection of the acetal moiety of $\mathbf{1 9}$ under a variety of acidic conditions ($3 \mathrm{~N} \mathrm{HCl} / \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, oxalic acid/THF- $\mathrm{H}_{2} \mathrm{O}$), to our surprise, resulted only the rearranged product 33 in 68% yield. These failures led us to conclude that during the deprotection of dioxolane, $\mathbf{1 8}$ as well as 19 either rearranges from five to seven membered ring to relieve strain or reaction stops at 27 with the epimerization at C11a centre which probably does not allow to form cyclic enone 17 as it would lead to conformationally strained system having three sp^{2} carbons in the E-ring with 'anti' stereochemistry at C11a and C4a.

2A. (C): $3^{\text {rd }}$ generation approach: Ring closing metathesis (RCM) approach: With the above disappointing results and conclusion in mind, we envisaged to install $\mathrm{C}_{2}=\mathrm{C}_{3}$ double bond by ring closing metathesis (RCM) of 35, easily synthesized from 32 (61% overall yield) as shown in scheme 6 . The mixture of diastereomers 35 was forwarded for the ring closing metathesis reaction utilizing original Grubb's reaction condition employing either $1^{\text {st }}$ or $2^{\text {nd }}$ generation catalyst in DCM or benzene (rt to reflux) which failed to give any cyclized product. However, we achieved the cyclized product 36:37 (2.5:1) in 93% combined yield by refluxing $\mathbf{3 5 . H C I}$ salt with using Grubb's $2^{\text {nd }}$ generation catalyst in benzene.

Scheme 6: reagents and conditions: a) i) Oxalic acid, THF- $\mathrm{H}_{2} \mathrm{O}$ (1:1), reflux, 24 h; ii) benzylidenediphenylphosphorane then aldehyde, $0{ }^{\circ} \mathrm{C}$ - rt, overnight, 60%; b) DIBAL-H, DCM, $-78{ }^{\circ} \mathrm{C}-\mathrm{rt}, 1 \mathrm{~h}, 96 \%$; c) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then TEA, quant.; d) Vinylmagnesium bromide, THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 6 \mathrm{~h}$, quant.; e) $A c_{2} \mathrm{O}, \mathrm{TEA}$, DMAP, DCM, $0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}, 94 \%$; f) 35.HCl, Grubb's $2^{\text {nd }}$ generation catalyst (10 mol\%), benzene, reflux, $12 \mathrm{~h}, 93 \%$.

At this stage we realized the potential of both diastereomers 36 and 37 for the synthesis of target natural products by functional group interconversions by exploiting the stereochemistry of allylic acetoxy functionality to direct the hydroxylation of double bond. In this context, we attempted first for the total synthesis of (\pm) brunsvigine (2) from the major diastereomer 36 (Scheme 7). Dihydroxylation of 36 gave diol 38 of required stereochemistry, which was protected as acetonide and then attempted for the installation of pivotal $\Delta^{1,11 a}$ double bond by refluxing it in toluene in the presence of DBU, failed to yield the desired 39. Therefore, acetate moiety was deprotected and reprotected as a mesylate and refluxed with DBU (2 days) to obtain 39 in 89% yield.

Scheme 7: reagents and conditions: a) OsO_{4}, trimethylamine N -oxide, pyridine, t -butanol- $\mathrm{H}_{2} \mathrm{O}, 18$ h, quant.; b) i) DMP, p-TSA, acetone, rt, 6 h, 95\%; c) NaOMe, MeOH, rt, 4 h, 91\%; d) i) MsCl, TEA, DMAP, DCM, $0{ }^{\circ} \mathrm{C}$ - rt, 5 h, quant.; ii) DBU, toluene, $110{ }^{\circ} \mathrm{C}, 2 \mathrm{~d}, 89 \%$; e). $\mathrm{HCl}_{(g a s)}, \mathrm{MeOH}, 30$ min., quant.; f) $A c_{2} \mathrm{O}, \mathrm{DMAP}$, pyridine, 20 h, 95\%.

The acetonide moiety of 39 was finally deprotected by passing $\mathrm{HCl}_{(\text {gas }}$ in its methanolic solution which afforded (\pm)-brunsvigine. HCl , which was transformed into
corresponding diacetate derivative 2a in 95% yield using standard protocol for the ease of purification and characterization.

After successful synthesis of (\pm)-brunsvigine (2), we visualized the scope of this strategy in the synthesis of the other members of this class of alkaloids such as pancracine (1) and (\pm)-montanine (2) from either one of the diastereomers ($\mathbf{3 6}$ or 37) through the intermediate $\mathbf{4 1}$ as shown in Scheme 8 is actively in progress.

Scheme 8: outline for the synthesis of (\pm)-pancracine (1) and (\pm)-montanine (2):

Section B: Attempted alternative strategy towards the synthesis of (\pm)pancracine, (\pm)-montanine and (\pm)-pancratinine: Generation of new analogues:

After successful total synthesis of (\pm)-brunsvigine (2) and realizing the potential of RCM approach for the construction of E-ring, we turned our attention towards developing an alternative approach for the synthesis of (\pm)-pancracine (1) and (\pm)-montanine (2) as well as newly isolated alkaloids (\pm)-pancratinine B ($\mathbf{8 a}$) and C (8b) through the common intermediate 42 as shown in reterosynthetic analysis in Scheme 9.

Scheme 9: An alternative approach for the synthesis of montanine alkaloids

The compound 44 was synthesized in 65% yield in two steps starting from 32. Before executing RCM reaction, the dioxalone moiety of 44 was attempted to deprotect under various acidic conditions, to our surprise, gave solely unprecedented and rearranged product 46 as a single diastereomer (Scheme 10).

Scheme 10: reagents and conditions: a) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}$, 89\%; b) Swern oxidation, $-78{ }^{\circ} \mathrm{C}$, quant.; c) $\mathrm{BrPPh}_{3} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{n}-\mathrm{BuLi}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 24 \mathrm{~h}, 65 \%$; d) Oxalic acid or 3 N HCl or $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1), 6-8 h, 87%; e) $\mathrm{Ac} c_{2} \mathrm{O}, \mathrm{TEA}$, DMAP, DCM, rt, 95%.

The mechanism of rearrangement may be rationalized through an intramolecular Prins type cyclization, which was further supported by isolating
corresponding 48 (76% yield) by performing the same reaction in excess of methanol at refluxed temperature. To the best of our knowledge, it would be the first intramolecular Prins cyclization reaction to provide this unique structural framework. This novel structure of $\mathbf{4 6}$ was finally confirmed by single X-ray crystallography of diacetate derivative 49. It consists of unique linearly fused pentacyclic core, analogous to 5,11-methanomorphanthridine framework except having five membered E-ring. Since, the rearranged product $\mathbf{4 6}$ was obtained in a single 'syn' diastereomeric form in good yields, this reaction has potential to be used to synthesize variety of analogues by varying the nucleophilic solvents $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{OR}\right)$.

Alternatively, we thought to proceed towards the synthesis of pancratinine B (8a) and C (8b) from 50 by following the protocol as shown in Scheme 11. It was envisaged that the regio- and stereoselective hydroxylation of $\mathbf{5 0}$ to $\mathbf{5 1}$ followed by intramolecular aldol could deliver pancratinine B (8a) directly (Scheme 11).

Scheme 11: Synthetic design for the synthesis of pancratinine B/C

Towards this planned strategy, $\mathbf{5 0}$ was synthesized from $\mathbf{1 3}$ and was subjected to regioselective oxidation under different conditions like m-CPBA, Davis oxaziridine etc.

Scheme 12: reagent and conditions: a) $P(O M e)_{3}, \mathrm{NaH}, \mathrm{t}-\mathrm{BuOH}, \mathrm{DMF}, O_{2}$, dry $T H F$, $-22{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 89 \%$; b) $(\mathrm{COCl})_{2}, \mathrm{DMSO},-78{ }^{\circ} \mathrm{C}$, then TEA, dry DCM, 90%.
α-hydroxylated product 52 was finally achieved successfully using triethylphosphite, $\mathrm{NaO}^{t} \mathrm{Bu}(\mathrm{NaH}$ and $t-\mathrm{BuOH})$ under dry oxygen balloon pressure in 89% yield (Scheme 12).

Attempt to oxidize primary alcohol moiety of 52 to corresponding aldehyde using Swern oxidation reaction condition surprisingly produced 53. It appears from this result that unlike our expectations the hydroxyl moiety in 52 is 'endo' oriented which due to close proximity with aldehydic functionality undergoes intramolecular cyclization through intermediate 53a producing 53 exclusively. This unexpected result led us to abandon our further synthetic endeavor in this regard.

Section C: Development of Auxiliary based asymmetric 1,3-dipoar cycloaddition

 strategy for the synthesis of enantiopure 5,11-methanomorphanthridine skeleton:Most of the asymmetric synthesis known for the montanine alkaloids is mainly based on chiral pool strategy and two recent reports have utilized organocatalytic approach for the formal synthesis of pancracine. We envisioned asymmetric intramolecular [3+2]-cycloaddition strategy for assembling 5,11methanomorphanthrodine structural framework, which would definitely be a new concept in this area through two ways viz; i) chiral auxiliary approach (A) and ii) catalytic asymmetric approach (B).

$\mathrm{X}_{\mathrm{c}}=\stackrel{\text { chiral Axuliary }}{\text { A }}$

B
$L^{*}=$ chiral ligand
$M=$ metal
M = metal

Figure 2: Asymmetric 1,3-dipolar cycloaddition

However, we will restrict our discussion in this dissertation only to chiral auxiliary approach as shown in scheme 13. The enantiopure natural as well as new synthetic analogues were visualized to be synthesized through a common chiral precursor 45 which was obtained by the usual cycloaddition reaction of 54 having
dipolarophile tethered with Evan's auxiliary, followed by removal of Evan's oxazolidinone auxiliary (Scheme 13).

Scheme13:reagents and conditions: a) 55, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 67%, b) $\left.\mathrm{Ag}(\mathrm{I}) \mathrm{F}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 24 \mathrm{~h}, \mathrm{c}\right) \mathrm{LiAlH}_{4}, \mathrm{THF}, \mathrm{rt}, 46 \%$ over two steps.

The asymmetric induction was determined at the alcohol stage. The optical purity ($63 \% e e$), was not up to the mark of our expectation but it was enough to derive us for further study using different substituted Evan's auxiliaries and some other auxiliaries such as camphorsaltam etc.

Chapter Three: Experimental

This chapter describes the detailed experimental procedures, tabulated spectral data and spectra of all new compounds.

Chapter 1

Chapter 1

Introduction

Chapter 1

Section A

A brief account of Amarylidaceae alkaloids and an introduction to montanine alkaloids

The alkaloids isolated from plants of Amaryllidaceae ${ }^{1-4}$ family have long been a source of structurally intriguing target molecules that continue to challenge the capabilities of contemporary organic synthesis. The Amaryllis family or Amaryllidaceae are one of the twenty most important alkaloid-containing plant family of herbaceous, perennials and bulbous flowering plants included in the monocot order Asparagales, taking its name from the genus Amaryllis. Plants of the Amaryllidaceae family, a group of monocotyledonous species, consist of approximately 1100 species in 85 genera that are distributed largely throughout the tropic and warm temperate regions of the world.

Plants of the Amaryllidaceae have attracted considerable attention due to their content of a wide range of interesting and structurally diverse alkaloids with interesting physiological effects, including antitumor, antiviral, acetylcholinesterase (AChE) inhibitor (e.g. for the treatment of Alzheimer's disease), immunostimulatory and antimalarial activities. These alkaloids include a large number of functional and structurally diverse group of bases. These compounds are known to be formed biogenetically by intramolecular oxidative coupling of norbelladines derived from the amino acids L-phenylalanine and L-tyrosine. Hence, these alkaloids represent a large group of isoquinoline alkaloids, which are produced almost solely by the members of the Amaryllidaceae family. As a result of extensive phytochemical studies on Amaryllidaceaous species, nearly 500 structurally diverse alkaloids have been isolated to date from the plants of this family and because of their pharmacological significance, much attention has been paid to their isolation, ${ }^{5}$ biology, and chemistry. ${ }^{6-8}$

Until recently, the members of Amaryllidaceae family have been classified mainly into eighteen principal subgroups on the basis of their structural framework, ${ }^{9-}$ ${ }^{14}$ which are tabulated below along with their source and pharmaceutical importance (Figure 1).
Belladine class of alkaloids: Constitutes a
group of 8 alkaloids
Biological activities: Anticholinergic
antiplasmodic action, mild sedative

 5	Galanthindole type of alkaloids: Constitutes more than 2 alkaloids Isolation source: Galanthus, Lycoris etc.
	Homolycorine class of alkaloids: Constitutes a group of more than 4 alkaloids Isolation source: Clivia, Galanthus, Haemanthus, Lycoris, narcissus etc. Biological activities: Antiviral, antineoplastic, hypotensive, insect antifeedant
	Galasine class of alkaloids: Constitutes a group of more than 7 alkaloids Isolation source: Galanthus, Hosta plantaginea etc.
	Montanine class of alkaloids: Constitutes a group of minimum 7 alkaloids Isolation source: Boophane, Haemanthus, Pancratium, Narcissus etc. Biological activities: Convulsive and weak hypotensive activities
	Cripowelline class of alkaloids: Group of 2 alkaloids Isolation source: Crinum powellii Biological activities: insecticidal activity

	Cherylline class of alkaloids: Constitutes a group of 2 alkaloids Isolation source: Crinum
 11	Buflavine class of alkaloids: Constitutes a group of 2 alkaloids Isolation source: Boophane flava Biological activities: Adrenolytic and antiserotonin properties
	Plicamine class of alkaloids: Constitutes a group of 6 alkaloids. Isolation source: Cyrtanthus, Galanthus Biological activities: Antineoplastic.
 13	Tazettine class of alkaloids: Constitutes a group of more than 10 alkaloids Isolation source: Crinum, Eucharis, Galanthus, Hymenocallis etc Biological activities: Antineoplastic
 14	Graciline class of alkaloids: Isolation source: Galanthus

	Augustamine class of alkaloids: Constitutes a group of 2 alkaloids Isolation source: Crinum
	Pancratistatin class of alkaloids: Constitutes a group of 10 alkaloids Isolation source: Crinum, Hisppeastrum, Hymenocallis etc Biological activities: Antiviral, antitumor, antifeedant
	Gracilamine class of alkaloids: Consists of only one alkaloid which is the first example of a pentacyclic dinitrogenous alkaloid isolated from this family.
 18	Hostasinine class of alkaloids: Constitutes only 1 alkaloid. Isolation source: Hosta plantaginea

Figure 1: Representative member of different class of amaryllidaceae alkaloids

Since the detailed discussion on all of these alkaloids is beyond the scope of the present dissertation, only the Montanine-type of Amaryllidaceae alkaloids has been focused.

Alkaloids listed below are the representative members of montanine type of alkaloids, sharing the unique and linearly fused bridged pentacyclic core structure called 5,11-methanomorphanthridine ring skeleton, differing only with the oxygen

Chapter 1

functionalities (hydroxyl vs methoxy) and their regio- and stereochemistry in the periphery of E-ring (Figure 2).

	R^{1}	R^{2}	R^{3}	R^{4}	R^{5}	
19	H	OH	OH	H	H	$(-)$-pancracine
20	H	OH	H	OH	H	$(-)$-brunsvigine
21	H	OMe	OH	H	H	$(-)$-montanine
22	H	OMe	OAc	H	H	$(-)$-O-acetylmontanine
23	OMe	H	OH	H	H	$(-)$-coccinine
24	H	OMe	OMe	H	H	$(-)$-manthine
25	H	OMe	H	OMe	H	$(-)$-manthidine
26	H	H	H	OH	OH	$(-)$-nangustine

(+)-montabuphine (27)

28a: Pancratinine $B(R=M e)$
28b: Pancratinine C $(R=H)$

Figure 2: Members of montanine type of alkaloids

Four members of this class (-)-montanine (21), (-)-coccinine (23), (-)manthine (24) and (-)-manthidine (25), were first isolated in 1955 by Wildmann and co-workers from various plant genus Haemanthus (Haemanthus montanus, H. coccineus, H. amarylloides, etc.), collected in South Africa. ${ }^{15}$ Shortly thereafter, (-)brunsvigine (20) was isolated from Brunsvigia cooperi Baker and Brunsvigia radulosa Herb in 1958. ${ }^{16,17}$ (-)-Pancracine (19) was mainly found as a minor alkaloid in Rhodophiala bifida, a plant which is indigenous to United States, along with major alkaloid (-)-montanine (21). ${ }^{18}$ It was also found in small quantity in Pancratium maritium and Narcissus poeticus along with other alkaloids.

The structural assignments of the 5,11-methanomorphanthridine alkaloids (montanine, coccinine and manthine) were initially done in 1960 by Wildman group, based on chemical degradations and interconversions method. ${ }^{17,18}$ The NMR studies of pancracine and brunsvigine were conveniently interpreted with their diacetyl derivatives due to poor solubility in common deuterated organic solvents. The correct structure and absolute configuration of (-)-brunsvigine (20) was unambiguously identified through NMR, CD and mass spectroscopy then finally with single crystal X-ray analysis of the O, O 'bis- p-bromobenzoate derivative. ${ }^{19}$

Chapter 1

$(+)$-Montabuphine (27), another member of this class of alkaloids with a β -5,11-methanomorphanthridine skeleton was found for the first time in the bulbs of Boophone flava ${ }^{20}$ growing in winter rainfall area of South Africa. The structure of montabuphine, having "exo" bridged methylene group, suggests that both enantiomeric forms of the framework can be encountered in this class.
(-)-Nangustine (26) is the most recently characterized member of this class and was isolated from the bulbs of Narcissus angustifolius, ${ }^{21}$ collected in Ukraine. The extensive NMR studies revealed that this compound differs from its congeners by possessing C3, C4-dihydroxy pattern rather than C2, C3 in the E-ring.

Very recently, in 2009, two new alkaloids were isolated from Pancratium canariense, collected in Europe, of similar core structure named pancratinine B (28a) and pancratinine $\mathrm{C}(\mathbf{2 8 b})$ whose structures were confirmed by extensive 1D, 2D NMR and X-ray diffraction studies. ${ }^{22}$ These compounds also differ from their congeners with respect to the position of double bond at $\mathrm{C} 1-\mathrm{C} 2$ rather than $\mathrm{C} 11 \mathrm{a}-\mathrm{C} 1$ and hydroxyl/methoxy functional groups at $\mathrm{C} 11 \mathrm{a}, \mathrm{C} 3$ rather than $\mathrm{C} 2, \mathrm{C} 3$ in the E -ring.

Biosynthetic labeling as well as chemical transformation studies has supported that the rare 5,11-methanomorphanthridine skeleton arises from the rearrangement of 9,10-ethanophenanthridine skeleton. ${ }^{15,17,18,23-26}$ This relationship is illustrated in Scheme 1 for the conversion of 11-hydroxyvittatine (normethylhaemanthidine, 29) to (-)-pancracine (19) and (-)-montanine (21) depending upon the method of hydrolysis used for this transformation (aqueous NaHCO_{3} or NaOMe).

Scheme 1: Biosynthetic pathway for the synthesis of montanine alkaloids

Chapter 1

This type of transformation is also supported by the construction of new analogues $\mathbf{3 2}$ from haemanthamine type alkaloids $\mathbf{3 0}$ in the presence of halogenating agents (Scheme 2). ${ }^{27}$

Scheme 2: Proposed mechanism for rearrangement of haemanthamine with SOX_{2}

These alkaloids are known to possess identical and important biological activities including anxiolytic, antidepressant, weak hypertensive and anticonvulsant type effect. ${ }^{20,21,28,29}$ For example, (-)-coccinine (23) shows convulsive action in high doses $\left[\mathrm{LD}_{50}=17.5 \mathrm{mg} / \mathrm{kg}\right.$ (in vivo, dog)], whereas weak hypertensive and convulsive activities are also reported for (-)-montanine (21) $\left[\mathrm{LD}_{50}=42 \mathrm{mg} / \mathrm{kg}\right.$ (in vivo, dog)]. It may be relevant to highlight that both these physiologically active alkaloids have methyl ether functionality at the $\mathrm{C}-2$ position.

The foregoing discussion in section B would mainly focus on surveying the reported syntheses of these alkaloids before the discussion of our development to put the dissertation in proper perspective.

Chapter 1

Section B

Stereoselective syntheses of 5,11-methanomorphanthridine alkaloids: Literature reports

1B.1. Introduction:

Several synthetic efforts have been devoted towards the synthesis of 5, 11methanomorphanthridine alkaloids. This framework consist of linearly fused pentacyclic ABCDE framework, in which stereospecific disposition of the C-12 bridge methylene group and regio- and stereo-controlled installation of the oxygenfunctionalities in the periphery of the E-ring are the critical elements in the total synthesis of these alkaloids and, therefore, a number of synthetic efforts have emerged to solve these challenging problems.

1B.2. Synthetic strategies: Literature reports:

The synthetic approaches developed for the total synthesis of 5,11methanomorphanthridine framework may be classified into following three main categories based on the key strategies involved in their syntheses.

Figure 3: Key steps involved in the synthesis of 5,11-methanomorphanthridine framework
I. Pictet-Spengler cyclization approach: This is one of the most common strategy, where C ring was constructed by Pictet-Spengler cyclization from suitably substituted 3-aryloctahydroindole (34), mostly at the later stage of the syntheses.

Chapter 1

II. Intramolecular amination: This strategy involves CD ring formation with concomitant installation of bridged methylene group from the intermediate 35 by N alkylation.
III. Intramolecular radical cyclization: This strategy involves D ring construction as a result of C11-C11a bond formation from intermediate $\mathbf{3 6}$ through radical cyclization.

All these reported strategies can be briefly summarized retrosynthetically as shown below in Scheme-3.

Scheme 3: Summary of literature reports

Some of the important strategies for the synthesis of these alkaloids are described herein schematically as under.
I. Pictet-Spengler cyclization approach: In this strategy, main effort is devoted on the synthesis of suitably substituted 3-aryloctahydroindole of type $\mathbf{3 4}$ followed by construction of C - ring by connecting N - and benzene ring through one carbon unit.
I.a. Sánchez's Approach: (Hetrocycles, 1985, 23, 3033) ${ }^{30}$

In 1985, Sánchez et al. reported the first synthetic effort towards the construction of 5,11-methanomorphanthridine structural framework using 3-

Chapter 1

aryloctahydroindoles 37 as a potent synthon through Pictet-Spengler cyclization reaction. Three routes were described for the synthesis of key 3-aryloctahydroindoles 37 as shown in Scheme 4.

Scheme 4: Sánchez's approach

The key steps in these approaches involved; Michael addition, reduction of $\mathrm{CN} / \mathrm{NO}_{2}$ and reductive cyclization using Urushibara's nickel (U-Ni) (Scheme 5).

Scheme 5: Sánchez’s protocol

Chapter 1

I.b. Overman's Approach: (J. Org. Chem. 1991, 56, 5005; 1993, 58, 4662) ${ }^{31}$

Overman et al. have utilized Lewis acid mediated tandem cationic aza-Cope rearrangement-Mannich cyclization strategy to construct hydroindolone (59) followed by Pictet-Spengler cyclization for the total synthesis of (\pm)-pancracine (19) in 17 steps and 7\% overall yield starting from cyclopentene (Scheme 6).

Scheme 6: Overman's approach: Total synthesis of (\pm)-pancracine

Same strategy was also utilized for the enantioselective total synthesis of (-)pancracine, ${ }^{31 \mathrm{~b}}$ which was accomplished in 13 steps and 14% overall yield following the identical set of reaction sequence, starting from the (S)-amino ketone 66.

Chapter 1

Compound 66 was available in enantiomerically pure form in three steps from cyclopentene oxide 65 (Scheme 7).

Scheme 7: Overman's approach: Total synthesis of (-)-pancracine

I.c. Ikeda's approach: (Synlett, 1998, 1246) ${ }^{32}$

Ikeda et al. have discovered a new stereoselective strategy for the synthesis of 3-arylhydroindoles (73) through 5-exo-trig radical cyclization of N -(2-cyclohexenyl)-α-aryl- α-(phenylthio)acetamides (72).

Scheme 8: Ikeda’s approach: Formal synthesis of (\pm)-pancracine

Chapter 1

The precursor $\mathbf{7 2}$ for radical cyclization, obtained by the coupling of $\mathbf{7 0}$ and $\mathbf{7 1}$ led to the formation of 75, which upon Pictet-Spengler cyclization afforded 5,11methanomorphanthridine skeleton 76, an advance intermediate for (\pm)-pancracine (19) (Scheme 8).
I.d. Pearson's Approach: (Angew. Chem. Int. Ed. 1998, 37, 1724) ${ }^{33}$

A non-natural enantiomer of (-)-coccinine (23) was synthesized by Pearson's group from readily available aryl(phenylethynyl)sulfane (81) in 20 steps. The key features of the synthesis involved; i) the intramolecular cycloaddition of the 2-azaallyl anion generated from 83 to produce perhydroindole 84 and ii) Pictet-Spengler cyclization of $\mathbf{8 4}$ to produce 5,11-methanomorphanthridine skeleton $\mathbf{8 5}$, which was further elaborated to (+)-coccinine by inversion of hydroxyl stereochemistry at C3 position (Scheme 9).

Scheme 9: Pearson's approach: Total synthesis of (+)-coccinine

Chapter 1

I.e. Sha's approach: (Org. Lett. 2001, 3, 2177; J. Org. Chem. 2008, 73, 7580) ${ }^{34}$

The first asymmetric total syntheses of (-)-brunsvigine (20) and (-)-manthine (24) were accomplished in 17 steps (with 12% overall yield) and 26 steps, respectively, by Sha et al. utilizing (-)-quinic acid (88) as a chiral starting material.

Scheme 10: Sha's approach: Total synthesis of (-)-brunsvigine (20) and (-)-

manthine (24)

Chapter 1

The key steps of their syntheses included i) stereocontrolled construction of bicyclic enone 92 by vinyl anion cyclization of Weinreb amide 91, ii) stereoselective addition of aryl Grignard to the perhydroindole 93, and iii) Pictet-Spengler cyclization of 95 and 100. The same intermediate 95 was utilized for the synthesis of both alkaloids (Scheme 10).

I.f. Banwell's approach:

Approach-1: (J. Chem. Soc., Perkin Trans. I, 2001, 1345) ${ }^{35}$

Banwell et al. have demonstrated a straight-forward strategy for the formal total synthesis of (\pm)-pancracine in 7 steps. The key features of their approach involved i) Michael addition of cyclohexane-1,3-dione (102) to β-nitrostyrene (101) for the introduction of the pivotal $\Delta^{1,11 a}$ double bond, ii) Mitsunobu-type intramolecular nucleophilic displacement of an allylic alcohol 105 by a tethered sulfonamide which produced key precursor $\mathbf{1 0 7}$ for Pictet-Spengler cyclization to provide 5,11-methanomorphanthridine framework 46 (Scheme 11).

Scheme 11: Banwell's approach: Formal synthesis of (\pm)-pancracine

Chapter 1

Approach-2: (Org. Lett. 2007, 9, 3503; Org. Lett. 2008, 10, 4693, Tetrahedron 2008, $64,6444)^{36}$

Banwell et al. have also reported another chemoenzymatic approach for the synthesis of (+)-brunsvigine, ${ }^{36 \mathrm{a}}(+)$-montabhuphine ${ }^{36 \mathrm{~b}}$ and (+)-nangustine, ${ }^{36 \mathrm{c}}$ starting from readily available and enzymatically derived cis-1,2-dihydrocatechols (109) (Schemes 12, 13 and 14). This strategy involved pivotal radical addition/elimination process for the regiocontrolled introduction of the $\Delta^{1,11 \text { a }}$ double bond as well as the synthesis of the key precursor ($\mathbf{1 1 6}$ or $\mathbf{1 2 3}$ or 129) for Pictet-Spengler cyclization.

Scheme 12: Total synthesis of (+)-brunsvigine (non-natural enantiomer)

Similar protocol was also utilized for the synthesis of (-)-montabuphine (27) starting from the same chiral source, cis-1,2-dihydrocatechols (109b). Regio- and stereo-selective epoxidation of 109b, reductive cleavage and Overman rearrangement of trichloroacetimidate $\mathbf{1 1 9}$ gave E-ring template for the title molecule.

Chapter 1

i) DIBAL-H, toluene, $-75-50^{\circ} \mathrm{C}$
$\begin{aligned} & \text { ii) MOMCI, DIPEA, DMAP } \\ & \text { iii) }\end{aligned} \quad 60 \%$

Scheme 13: Total synthesis of (+)-montabuphine

Banwell's group has extended this strategy for the synthesis of non-natural enantiomer of nangustine starting from intermediate $\mathbf{1 1 7}$ and by modifying E-ring template.

Scheme 14: Total synthesis of (+)-nangustine

Chapter 1

I.g. Chang's approach: (Hetrocycles 2005, 65, 1999) ${ }^{37}$

A straight forward approach has been utilized by Chang et al. for the synthesis of hexahydro- $1 H$-indole-3-one skeleton (131) through intramolecular aldol condensation of ketone 130, which was synthesized very easily from the commercially available trans-4-hydroxyproline (128). This strategy was applied for the synthesis of Banwell's intermediate ent-107, which on Pictet-Spengler cyclization gave non-natural enantiomer of pancracine (19) (Scheme 15).

Scheme 15: Chang's approach: Formal synthesis of (+)-pancracine
I.h. Hashimoto's approach: (Tetrahedron 2009, 65, 3069) ${ }^{38}$

Hashimoto et al. have developed a catalytic asymmetric route to formal synthesis of (-)-pancracine from 2-cyclohexen-1-one (Scheme 16). The key features of this synthetic strategy included i) one-pot $\mathrm{Rh}_{2}(R \text {-TCPTTL) })_{4}$ (133)-catalyzed sequential 1,4-hydrosilylation/enantioselective C-H amination of 2-cyclohexen-1-one (132) for the synthesis of 134, ii) N-alkylation of p-Ns-protected β-amino silyl enol ether 134 followed by intramolecular Mukaiyama aldol reaction/dehydration to construct azabicyclic enone 137 and iii) a regio- and stereocontrolled reductive deoxygenation of enone 137 with the migration of double bond to create C1-C11a double bond and the stereogenic center at C11 of 3-arylhexahydroindole 138 and iv) Pictet-spengler cyclization of $\mathbf{1 3 8}$.

Scheme 16: Hashimoto's approach: Formal synthesis of (-)-pancracine

I.i. Pansare's approach: $(\text { Org. Lett. 2010, } 12,556)^{39}$

Recently, Pansare et al. have developed an organocatalytic approach for the formal synthesis of (-)-pancracine (Scheme 17). The key steps are i) enamine-based, organocatalytic Michael addition on nitrostyrene (101) ii) intramolecular amination for stereoselective synthesis of cis- as well as trans-3-aryloctahydroindoles (143 and its 'trans' isomer) from enantiomerically enriched γ-nitroketones (141) and iii) PictetSpengler cyclization of $\mathbf{1 4 3}$.

Scheme 17: Pansare's approach: Formal synthesis of (-)-pancracine

Chapter 1

II. Intramolecular amination: This category encompasses the syntheses in which the crucial bridged methylene group was installed through intramolecular amination or N-alkylation reaction strategy.
II.a. Hoshino's approach: (J. Org. Chem. 1992, 57, 7285) ${ }^{40}$

The stereoselective total synthesis of montanine-type of alkaloids was accomplished by Hoshino et al. in 24 steps starting from cis-cyclohexanedicarboxylic acid anhydride 144 (Scheme 18). The key feature of this synthesis utilized i) stereoselective hydroboration-oxidation of olefin derived from 146 to 147, ii) intramolecular amination of 148 with sodium bis(2-methoxyethoxy)aluminium hydride (SMEAH) to obtain pentacyclic core skeleton 149, iii) conversion of $\mathbf{1 5 0}$ to allylic epoxide 151 by treatment with $\mathrm{PhSeCl} / \mathrm{MeOH}$ under ultrasonication followed by NaIO_{4} oxidation and iv) finally conversion of 149,151 and 152 to five alkaloids (montanine, coccinine, pancracine, brunsvigine, and O-acetylmontanine) in racemic form by simple functional group interconversions.

i) $\mathrm{MeSO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 5^{\circ} \mathrm{C}$
ii) $\mathrm{KOt}-\mathrm{Bu}, \mathrm{DMSO}$, rt
iii) BF_{3}. $\mathrm{OE}_{2}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{DCM}$

148
67\%
$\downarrow 30 \%$

150

151

\pm)-brunvigine (20)

Continue...

Chapter 1

Scheme 18: Hoshino's approach: Total synthesis of montanine-type of alkaloids
II.b. Weinreb's approach: (J. Am. Chem. Soc. 1997, 119, 2050; 1997, 119, 5773) ${ }^{41}$
$(-)$-Montanine, (-)-coccinine and (-)-pancracine were synthesized from readily available enantiomerically pure epoxy alcohol 154 in 25 steps (Scheme 19).

159
158
H_{2}, Lindlar catalyst
quinoline, MeOH
93%

OH $\quad \mathrm{OH} \quad$ i) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$

163

$\left\lvert\, \begin{aligned} & p \text {-TsOH, } \mathrm{CH}(\mathrm{OMe})_{3} \\ & \mathrm{MeOH}, 91 \% ;\end{aligned}\right.$

164
165

Scheme 19: Weinreb’s approach: Total synthesis of (-)-montanine, (-)-coccinine and (-)- pancracine

Chapter 1

The key features of their synthetic strategy included i) a stereospecific thermal imino ene cyclization of allenylsilane imine 158, derived from aldehyde 156 and iminophosphorane 157, to provide key precursor 159, ii) an intramolecular Heck reaction of bromo alkene $\mathbf{1 6 0}$ to form seven-membered ring and iii) intramolecular hydroamination reaction on $\mathbf{1 6 2}$ to install bridged methylene group.
III. Radical Cyclization: This category includes the stereoselective formation of C11-C11a bond as a key step through radical mechanism.
III.a: Hoshino's approach: (J. Chem. Soc. Perkin Trans. I, 1993, 101) ${ }^{42}$

Formal synthesis of racemic pancracine, montanine and coccinine were achieved through intramolecular radical cyclization of $\mathbf{1 7 0}$ as a key step. The reaction of 1,2,3,4-tetrahydro- N-(4-oxocyclohex-2-enyl)-4-phenylthioisoquinoline $\mathbf{1 7 0}$ with $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ led to 5,11-methanomorphanthridine-2-one 76 in 80% yield which was finally converted to 2,3-O-benzylidine 5,11-methanomorphanthridine $\mathbf{1 7 3}$. Compound $\mathbf{1 7 3}$ was converted into title alkaloids using the protocol described by the same group ${ }^{40}$ (Scheme 20).

Scheme 20: Hoshino's approach: Formal synthesis of montanine alkaloids

Chapter 1

III.b. Ikeda's Approach ${ }^{32}$: It can also be considered in this category as it involved radical cyclization strategy for the formation of D-ring, followed by Pictet-Spengler reaction as described in Scheme 8.

From this survey of literature, it becomes apparent that there are mainly three major routes known for the construction of the core pentacyclic 5,11methanomorphanthridine framework viz i) Pictet-Spengler cyclization, ii) intramolecular amination and iii) intramolecular radical cyclization. Moreover, all these strategies are elaborated from a precursor having proper stereochemistry at C-4a and/or C-11a and relative disposition of bridge methylene group, which involved its construction in stepwise manner. Although, considerable synthetic efforts are directed towards their syntheses, an efficient and conceptually new route has remained elusive.

1B.3. Our concept and protocol:

Recently, our group developed a conceptually new and short synthetic route towards the construction of 5, 11-methanomorphanthridine framework as outlined in the Scheme 21^{43} and was elaborated to compound 46, an advance intermediate used by Overman ${ }^{31}$ in the synthesis of pancracine (19).

Scheme 21: Formal synthesis of (\pm)-pancracine: Background of the present work

Chapter 1

The key feature of our synthetic strategy included stereospecific construction of CD ring of 5,11-methanomorphanthridine framework in a single operation through intramolecular 1,3-dipolar cycloaddition reaction of the non-stabilized AMY (175) starting without a precursor having fixed stereochemistry and the formation of single daistereomer in the key cycloaddition step. The stereo- as well as regio-chemistry for the formation of $\mathbf{1 7 6}$ was explained by the favorable "endo"- attack (A) of AMY 175 to dipolarophile due to steric reason (Scheme 21).

Generation of $\mathbf{1 7 5}$ utilized the concept developed in our group ${ }^{44}$ by sequential double desilylation from bis-trimethylsilylmethyl amine mediated by $\operatorname{Ag}(\mathrm{I}) \mathrm{F}$ as one electron oxidant (Figure 4).

Figure 4: Proposed mechanism for generation non-stabilized AMY

Objective of the present dissertation:

After successful utilization of [3+2]-cycloaddition strategy for the construction of 5,11-methanomorphanthridine framework and realizing the limitation of Overman's intermediate $\mathbf{4 6}$ for the synthesis of other members of this class of alkaloids, we turned our attention towards designing a general route which would allow the total synthesis of all other alkaloids of this class. The proceeding chapter would describe our exploration and progress in this endeavor.

Chapter 1

3. References:

1. Hoshino, O. In The Alkaloids; Cordell, G. A. Ed.; Academic Press: New York, 1998; Vol. 51, pp 362.
2. Martin, S. F. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1987; Vol. 30, pp 251.
3. Wildman, W. C. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1965, Vol. VI, p. 289.
4. Lewis, J. R. Nat. Prod. Rep. 1993, 10, 291.
5. N. Unver, Phytochem. Rev. 2007, 6, 125.
6. J. Bastida, R. Lavilla and F. Viladomat, In The Alkaloids, ed. G. A. Cordell, Elsevier Scientific Publishing, Amsterdam, 2006, vol. 63, p. 87.
7. A. Kornienko and A. Evidente, Chem. Rev. 2008, 108, 1982.
8. Y. Chapleur, F. Chretien, S. Ibn Ahmed and M. Khaldi, Curr. Org. Synth. 2006, 3, 341.
9. Jin, Z. Nat. Prod. Rep. 2003, 20, 606.
10. Jin, Z. Nat. Prod. Rep. 2005, 22, 111.
11. Jin, Z. Nat. Prod. Rep. 2007, 24, 886.
12. Unver, N. Phytochem. Rev. 2007, 6, 125.
13. Jin, Z. Nat. Prod. Rep. 2009, 26, 363.
14. Jin, Z. Nat. Prod. Rep. 2009, 26, 886.
15. Wildman, W. C.; Kaufman, C. J. J. Am. Chem. Soc. 1955, 77, 1248.
16. Dry, L. J.; Poynton, M. E.; Warren, F. L. J. Chem. Soc. 1958, 4701.
17. Inubushi, Y.; Fales, H. M.; Warnhoff, E. W.; Wildman, W. C. J. Org. Chem. 1960, 25, 2153.
18. Wildmann, W. C.; Brown, C. L. J. Am. Chem. Soc. 1968, 90, 6439.
19. Laing, M.; Clark, R. C. Tetrahedron Lett. 1974, 15, 583.
20. Viladomat, F.; Bastida, J.; Codina, C.; Campbell, W. E.; Mathee, S. Phytochemistry 1995, 40, 307.
21. Labrana, J.; Machocho, A. K.; Kricsfalusy, V.; Brun, R.; Codila, C.; Viladomat, F.; Bastida, J. Phytochemistry 2002, 60, 847.
22. Cedron, J. C..; Oberti J. C.; Braun, A. E.; Ravelo, A. G.; Arco-Aguilar, M. D.; Lopez, M. J. Nat. Prod. 2009, 72, 112.
23. Battersby, A. R.; Fales, H. M.; Wildwan, W. C. J. Am. Chem. Soc. 1961, 83, 4098.
24. Fuganti, C.; Ghiringhelli, D.; Grasselli, P. J. Chem. Soc., Chem. Commun. 1973, 430.
25. Wildman, W. C.; Olesen, B. J. Chem. Soc., Chem. Commun. 1976, 551.
26. Feinstein, A. I.; Wildman, W. C. J. Org. Chem. 1976, 41, 2447.
27. Cedron, J. C.; Braun, A. E; Ravelo, A. G.; Gutierrez, D.; Flores, N.; Bucio, M. A.; Hernandez, N. P; Nathan, P. J. Org. Lett. 2009, 11, 1491.
28. Southon, I. W.; Buckingham, J. Dictionary of the Alkaloids; Chapman \& Hall: New York, 1989; p. 229.
29. Schurmann da Silva, A. F.; de Andrade, J. P.; Bevilaqua, L. R. M.; da Souza, M. M.; Izquierdo, I.; Henriques, A. T.; Zuanazzi, J. A. S. Pharmacol., Biochem. Behav. 2006, 85, 148.
30. Sánchez, I. H.; Larraza, M. I.; Rojas, I.; Brefia, F. K.; Flores, h. J.; Jankowski, K. Hetrocycles 1985, 23, 3033.
31. a) Overman, L. E.; Shim, J. J. Org. Chem. 1991, 56, 5005; b) Overman, L. E.; Shim, J. J. Org. Chem. 1993, 58, 4662.
32. Ikeda, M.; Hamada, M.; Yamashita, T.; Ikegami, F.; Sato, T.; Ishibashi, H. Synlett 1998, 1246.
33. Pearson, W. H.; Lian, B. W. Angew. Chem. Int. Ed. 1998, 37, 1724.
34. a) Sha, C. -K.; Huang, S. -J.; Huang, C. -M.; Hong, A, -W.; Jeng, T. -H. Pure Appl. Chem. 2000, 72, 1773; b) Sha, C. -K.; Hong, A, -W.; Huang, C. M. Org. Lett. 2001, 3, 2177; c) Hong, A. -W.; Cheng, T. -H.; Raghukumar, V.; Sha, C. -K.; J. Org. Chem., 2008, 73, 7580.
35. Banwell, M. G.; Edwards, A. J.; Jolliffe, K. A.; Kemmer, M. J. Chem. Soc., Perkin Trans. 1 2001, 1345.
36. a) Banwell, M. G.; Kokas, O. J.; Willis A. C. Org. Lett. 2007, 9, 3503; b) Matveenko, M.; Banwell, M. G.; Willis A. C. Org. Lett. 2008, 10, 4693; c) Kokas, O. J.; Banwell, M. G.; Willis, A. C. Tetrahedron 2008, 64, 6444.
37. Chang, M. -Y.; Chen, H. -P.; Lin. C. -Y.; Pai, C. -L. Heterocycles 2005, 65, 1999.
38. Anada, M.; Tanaka, M.; Shimada, N.; Nambu, H.; Yamawaki, M.; Hashimoto, S. Tetrahedron 2009, 65, 3069.
39. Pansare, S. V.; Lingampally, R.; Kirby, R. L. Org. Lett. 2010, 12, 556.

Chapter 1

40. a) Hoshino, O.; Ishizaki, M. Chem. Lett. 1990, 1817; b) Ishizaki, M.; Hoshino, O.; Iitaka, Y. Tetrahedron Lett. 1991, 32, 7079; c) Ishizaki, M.; Hoshino, O. J. Org. Chem. 1992, 57, 7285; d) Hoshino, O.; Ishizaki, M.; Saito, K.; Yumoto, K. J. Chem. Soc., Chem. Commun. 1990, 420.
41. a) Jin, J.; Wienreb, S. M. J. Am. Chem. Soc. 1997, 119, 2050; b) Jin, J.; Wienreb, S. M. J. Am. Chem. Soc. 1997, 119, 5773.
42. Ishizaki, M.; Kurihara K-.; Tanazawa, E.; Hoshino, O.; J. Chem. Soc., Perkin Trans I 1993, 101.
43. Pandey, G.; Banerjee, P.; Kumar, R.; Puranik, V. G.; Org.Lett. 2005, 7, 3713.
44. a) Pandey, G.; Lakshmaiah, G.; Kumaraswamy, G. J. Chem. Soc., Chem. Commun. 1992, 1313; b) Pandey, G.; Lakshmaiah, G. Tetrahedron Lett. 1993, 34, 4861.

Section A

Synthetic studies towards the stereoselective total synthesis of (\pm)-brunsvigine and related alkaloids

In order to craft more versatile strategy to synthesize other members of montanine classes of alkaloids, we have revised our original strategy through the retrosynthetic design as described below:

2A.1: Retrosynthetic plan and design:

Since there are varying oxygen functionality at C-2 and C-3 in the E-ring, it was essential for us to install a double bond (masked oxygen-functionality) in the Ering at requisite position. In this context, we envisioned 184 as an ideal and common precursor for the synthesis of all the other members of the montanine class of alkaloids, which in turn was visualized to be obtained from 185 employing either Mukaiyama type aldol reaction or Horner Wadsworth Emmons (HWE) reaction. Compound $\mathbf{1 8 5}$ can be easily obtained through 1, 3-dipolar cycloaddition reaction of non-stabilized AMY generated from 186 (Scheme 22).

Scheme 22: General retrosynthetic route for the synthesis of montanine alkaloids

Chapter 2

2A.2: Result and discussion:

Different approaches to obtain $\mathbf{1 8 4}$ were attempted and the failures / successes are presented in the chronological order of the development as described below:

2A. 2 (A): $1^{\text {st }}$ generation approach: Intramolecular Mukaiyama-type aldol reaction:

At first, we initiated the synthesis of $\mathbf{1 8 4}$ employing an intramolecular Mukaiyama type aldol reaction ${ }^{1}$ from 185 which was synthesized in 51% yield by the usual cycloaddition reaction of 186. Compound 186 was obtained starting from the 3-amino-1-propanol (188) through the sequences as outlined in Scheme 23. The structure and stereochemistry of $\mathbf{1 8 5}$ was completely established by detailed ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D NMR spectral analyses.

Scheme 23: Synthesis of precursor 185

Reagents and conditions: a) (Boc) $)_{2} \mathrm{O}, E t_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 90 \%$; b) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OEt})_{2}$, PPTS, benzene, reflux, 86%; c) s-BuLi, TMEDA,THF, $-78^{\circ} \mathrm{C}$, then TMSCl, 92%; d) p-TSA, MeOH- $\mathrm{H}_{2} \mathrm{O}$, rt, quant.; e) i) IBX, ethyl acetate, reflux, $10 \mathrm{~h}, 90 \%$; ii) ethylene glycol, p-TSA, benzene, Dean-Stark, overnight, quant.; f) i) TFA, DCM, $0^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}$, quant.; ii) $\mathrm{ICH}_{2} \mathrm{TMS}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, $10 \mathrm{~h}, 77 \%$; g) 192, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 8 h, 85%; h) $\operatorname{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, methyl vinyl ketone, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, 12 h, 65%; i) $\mathrm{Ag}(\mathrm{I}) \mathrm{F}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 18 \mathrm{~h}, 51 \%$.

Chapter 2

The spectral data of $\mathbf{1 8 5}$ also compared well with previously synthesized corresponding benzoyl derivative 176. For example, the ${ }^{1} \mathrm{H}$ NMR showed a signal at δ $4.97(J=6.9,2.3 \mathrm{~Hz})$ as a doublet of doublet, integrating for one proton and two sets of multiplets at $\delta 3.85$ and 3.75 , integrating for a total of four protons, assigned to the acetal ($\mathrm{O}-\mathrm{C} \underline{\mathrm{H}}-\mathrm{O}$) and ethylenic acetal ($\left.-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right)$ protons, respectively. The ${ }^{13} \mathrm{C}$ NMR and DEPT experiment showed the presence of additional signals at $\delta 103.5$, 64.6 and 64.3 corresponding to ($\mathrm{O}-\underline{\mathrm{C}} \mathrm{H}-\mathrm{O}$) and ethylinic carbons, respectively.

As per our synthetic plan, we attempted the Mukaiyama type aldol reaction (Scheme 24) of $\mathbf{1 8 5}$ by treating it with TMSOTf (2 equiv.) in the presence of 2, 6lutidine (3 equiv.) in THF at $-20{ }^{\circ} \mathrm{C} .{ }^{2}$ However, to our dismay, the expected $\mathbf{1 8 4}$ could not be obtained; instead a compound which was tentatively assigned as 194 was obtained.

Scheme 24: Attempts for aldol reaction

Reagents and conditions: a) TMSOTf, 2, 6-lutidine, DCM, $-20^{\circ} \mathrm{C}$-rt, 61%; b) 3 N $\mathrm{HCl}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 8 \mathrm{~h}, 90 \%$; c) $3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, reflux, $10 \mathrm{~h}, 56 \%$.

The tentative structural assignment of $\mathbf{1 9 4}$ was based on the presence of three proton signals in the olefinic region at $\delta 8.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), \delta 7.02(\mathrm{~m}, 1 \mathrm{H})$ and δ $5.15(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$ assigned to ($-\mathrm{C} \underline{\mathrm{H}}=\mathrm{C}-\mathrm{CO}$), ($N-\mathrm{CH}-\mathrm{CH})$ and $(N-\mathrm{CH}-\mathrm{CH})$ proton, respectively, in the ${ }^{1}$ HNMR spectrum. Furthermore, the protons corresponding to $\mathrm{H}_{11 \mathrm{a}}, \mathrm{H}_{4 \mathrm{a}}$ and acetal moiety were found absent in the expected

Chapter 2

region. Since, the signal corresponding to methyl ketone was found intact at $\delta 2.01$, it suggested that the rearrangement may have taken place involving thermodynamic enolate.

This unanticipated failure led us to evaluate the classical acid / base catalyzed intramolecular aldol reaction ${ }^{3}$ from the unmasked aldehyde. In this context, deprotection of the dioxolane moiety of 185 was attempted initially under mild reaction conditions viz; a) ${ }^{4}$
 $\left.\left.\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C} ; \mathrm{b}\right)^{5} \mathrm{DDQ}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(9: 1), \mathrm{rt} ; \mathrm{c}\right)^{6} \mathrm{TMSI}, \mathrm{CH}_{3} \mathrm{CN}$, however, none of the above mentioned reaction conditions produced anticipated aldehyde. Surprised with these observations, we stirred 185 with 3 N HCl in THF- $\mathrm{H}_{2} \mathrm{O}$ (1:1) at room temperature which also, unfortunately, turned out to be an epimerized product 195 and not the expected aldehyde. The structure of 195 was elucidated based on detailed spectral analyses and confirmed by single crystal X-Ray crystallography.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 195 showed the same number of protons along with the characteristic peaks corresponding to methyl group and dioxolane moiety and the crucial protons $\left(\mathrm{H}_{4 \mathrm{a}}\right.$ and $\left.\mathrm{H}_{11 \mathrm{a}}\right)$ merging with other protons. Since, the expected change in their coupling constants could not be measured; we crystallized the product in ethanol and recorded X-ray diffraction data which finally proved its structure as 195. The mass spectrum also displayed the same molecular ion peak at $m / z 332.15(\mathrm{M}+\mathrm{H})$.

Ultimately, deprotection of dioxolane moiety could be achieved producing 196, presumably involving 195, in moderate yield (56\%) by refluxing 185 with 3 N HCl for 10 h . Aldehyde 196 was characterized by observing a characteristic absorption band at $1721 \mathrm{~cm}^{-1}$ in the IR spectrum and a low field ${ }^{1} \mathrm{HNMR}$ proton signal at $\delta 9.76(\mathrm{dd}, J=2.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$.

Further, we tried various reaction conditions (Table 1) to effect aldol reaction involving 185, 195 or 196 but to our surprise, all attempts failed.

Chapter 2

Table 1: Various attempts for aldol reaction

Starting material (SM)	Conditions	Inference
$\mathbf{1 8 5}$	$3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}$, rt, overnight	$\mathbf{1 9 5}$
$\mathbf{1 8 5}$	$3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}$, reflux, 10 h	$\mathbf{1 9 6}$
$\mathbf{1 9 5}$	KHMDS, TMSOTf, THF, $-78^{\circ} \mathrm{C}$	S.M.
$\mathbf{1 9 5}$	KHMDS, Bu ${ }_{2} \mathrm{BOTf}, \mathrm{DME},-78^{\circ} \mathrm{C}$	S.M.
$\mathbf{1 9 5}$	$\mathrm{LiHMDS}, \mathrm{TiCl}_{4}, \mathrm{DCM},-78^{\circ} \mathrm{C}$	S.M.
$\mathbf{1 9 6}$	$3 \mathrm{~N} \mathrm{HCl} / \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, reflux	Complex R.M.
$\mathbf{1 9 6}$	$\mathrm{CSA} /$ xylene, reflux	$"$
$\mathbf{1 9 6}$	$\mathrm{NaOMe} /$ methanol, rt	$"$
$\mathbf{1 9 6}$	$\mathrm{KOH} / \mathrm{MeOH}, \mathrm{rt}$	$"$

2A. 2 (B): $2^{\text {nd }}$ generation approach: Horner Wadsworth Emmons (HWE) Wittig reaction:

With these frustrating and unanticipated hurdles in obtaining 184 or 197 through aldol reaction, we evaluated to try out intramolecular HWE reaction ${ }^{7}$ from β ketophosphonate 187 (Scheme 22). The required 187 for carrying out intramolecular HWE olefination was initially attempted from 185 itself by quenching the corresponding enolate, generated by treating with KHMDS at $-78{ }^{\circ} \mathrm{C}$, with diethyl chlorophosphonate (Scheme 25). However, the required product 187 was obtained only in less than 10% yield. Therefore, we proceeded with slightly modified starting material 198 and its reaction with the lithium salt of diethyl methylphosphosphonate which gave 187 in 92% yield. Compound 198, in turn was easily synthesized in two steps, starting from 193 using identical reaction sequence as described for $\mathbf{1 8 5}$. The required ester derivative 199 was obtained in 70% yield by usual Heck coupling of 193 with ethyl acrylate and was characterized by the presence of α, β-unsaturated ester absorption band at $1706 \mathrm{~cm}^{-1}$ in the IR spectrum. Further support to the structure of 199 was also obtained from the ${ }^{1} \mathrm{H}$ NMR spectrum which showed two sets of doublets at $\delta 8.04$ and $6.16(J=15.6 \mathrm{~Hz})$, integrating for one proton each, for transolefinic protons. While the methylene protons of ethyl group $\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}\right)$ appeared as a quartet at $\delta 4.24(J=7.1 \mathrm{~Hz})$, the methyl peak appeared as a triplet at $\delta 1.31(J=$

Chapter 2

7.1 Hz). The ${ }^{13} \mathrm{C}$ spectrum of 199 showed corresponding carbon signal at $\delta 167.1$ for an ester carbonyl carbon.

Scheme 25: Synthesis of $\boldsymbol{\beta}$-ketophosphonate 187

Reagents and conditions: a) $\mathrm{KHMDS}, \mathrm{ClPO}(\mathrm{OEt})_{2}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 10 \%$; b) $\mathrm{Pd}(\mathrm{OAc})_{2}$, $\mathrm{PPh}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, Ethyl acrylate, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, 70%; c) $\mathrm{Ag}(\mathrm{I}) \mathrm{F}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 53 \%$; d) $\mathrm{CH}_{3} \mathrm{PO}(\mathrm{OEt})_{2}$, n-BuLi, dry THF, $0{ }^{\circ} \mathrm{C}$ then 198, 92%.

After complete characterization of 199, it was subjected to usual cycloaddition reaction in identical manner to obtain cycloadduct 198 in 53\% yield. Compound 198 was unambiguously confirmed by 1D and 2D NMR analyses as well as by single Xray (in ethyl acetate) crystallography.

Treatment of 198 (1 equiv.) with lithium salt of diethylmethylphosphonate (5 equiv.) at $-78{ }^{\circ} \mathrm{C}$ gave required 187 in 92% yield. The IR spectrum of $\mathbf{1 8 7}$ displayed characteristic absorption bands for ketonic carbonyl and $\mathrm{P}=\mathrm{O}$ bond at 1701 and 1247 cm^{-1}, respectively. Further support to the formation of phosphonate ester 187 was obtained by the ${ }^{1} \mathrm{H}$ NMR spectrum which revealed the sets of quartet and triplets at δ $4.14(J=7.0 \mathrm{~Hz})$ and $1.32(J=7.0 \mathrm{~Hz})$, respectively, which was assigned to two ethoxy group of phosphonate functionality. The newly generated methylenic protons adjacent to phosphonate $\left(\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{P}\right)$ appeared as a multiplet at δ 3.02-3.26, merging with four other protons. Similarly, the ${ }^{13} \mathrm{C}$ NMR spectrum displayed signals at $\delta 201.4$

Chapter 2

and 53.0 corresponding to carbonyl carbon and methylene carbon ($\left.\mathrm{CH}_{2}-\mathrm{PO}\right)$. The mass spectrum exhibited the molecular ion peak at $m / z 468.24[\mathrm{M}+\mathrm{H}]$.

To deprotect the dioxalone moiety, 187 was subjected to variety of acidic conditions, such as $3 \mathrm{~N} \mathrm{HCl} / \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, oxalic acid / THF- $\mathrm{H}_{2} \mathrm{O}$ but to our surprise the rearranged 200 was obtained in 68% yield along with some other unidentified product (Scheme 26).

Scheme 26: Attempts towards HWE reaction

Reagents and conditions: a) $3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (1:1), reflux, $10 \mathrm{~h}, 56 \%$ b) Oxalic acid, THF- $\mathrm{H}_{2} \mathrm{O}$ (1:1), reflux, $10 \mathrm{~h}, 68 \%$.

The structure of $\mathbf{2 0 0}$ was assigned on the basis of the appearance of three proton signals in the olefinic region at $\delta 7.53,7.1(\mathrm{~d}, J=7.5 \mathrm{~Hz})$ and 6.78 as a multiplet, integrating for one proton each, which were assigned to ($\mathrm{C}-\mathrm{CH}=\mathrm{CH}$), ($\mathrm{N}-$ $\mathrm{C} \underline{\mathrm{H}}=\mathrm{CH}$) and ($\mathrm{N}-\mathrm{CH}-\mathrm{CH}$), respectively. Similarly, ${ }^{13} \mathrm{C}$ NMR showed three carbon signals in the olefinic region at $\delta 135.6,131.4$ and 118.4. Furthermore, the protons corresponding to $\mathrm{H}_{11 \mathrm{a}}, \mathrm{H}_{4 \mathrm{a}}$ and acetal moiety were found absent in the expected region. The HRMS spectrum displayed a molecular ion peak at $\mathrm{m} / \mathrm{z} 405.12728$ confirming the formation of above skeleton rearrangement product, consistent with the molecular formula $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}$.

Mechanistically, this rearrangement may be rationalized by involving the thermodynamic enol- ether 202, followed by rearrangement either via Gröb type fragmentation ${ }^{8}$ or by involving azetidium salt intermediate 206 as shown in Scheme 27.

Scheme 27: Plausible mechanism for formation of rearrangement products

These failures led us to conclude that during the deprotection of dioxolane, both 185 as well as 187 either rearranges from five to seven membered ring to relieve strain or reaction stops at 195 with the epimerization at C11a centre which probably does not allow to form cyclic enone $\mathbf{1 8 4}$ because it would lead to conformationally strained system having three sp^{2} carbons in the E-ring with 'anti' stereochemistry at C 11 a and C 4 a .

2A. 2 (C): $3^{\text {rd }}$ generation approach: Ring closing metathesis (RCM) approach:

With the above disappointing results and conclusion in mind, we envisaged to install $\mathrm{C}_{2}=\mathrm{C}_{3}$ double bond by ring closing metathesis (RCM) of 209, easily obtainable from 198 as shown retrosynthetically in Scheme 28.

Scheme 28: Retrosynthetic plan for RCM approach

Chapter 2

With the above design, we started our new synthetic journey by installing double bond through Wittig olefination reaction of 198 (Scheme 29).

Scheme 29: RCM route

Reagents and conditions: a) i) Oxalic acid, THF- $\mathrm{H}_{2} \mathrm{O}$ (1:1), reflux, 24 h ; ii) benzylidenediphenylphosphorane then aldehyde, $0{ }^{\circ} \mathrm{C}$ - rt, overnight, 60%; b) DIBALH, DCM, $-78{ }^{\circ} \mathrm{C}-\mathrm{rt}, 1 \mathrm{~h}, 96 \%$; c) $(\mathrm{COCl})_{2}, ~ D M S O, D C M,-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then $T E A$, quant.; d) Vinylmagnesium bromide, THF, $0^{\circ} \mathrm{C}-r t, 6$ h, quant.; e) $A c_{2} O, T E A, D M A P$, DCM, $0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}, 95 \%$; f) 220.HCl, Grubb's $2^{\text {nd }}$ generation catalyst (10 mol\%), benzene, reflux, 12 h, 93\%.

Acetal moiety of $\mathbf{1 9 8}$ was deprotected with oxalic acid/THF- $\mathrm{H}_{2} \mathrm{O}$ (1:1) under controlled heating condition and corresponding aldehyde was subsequently subjected to one carbon Wittig olefination to get 210a. Since we could synthesize 210a only at the maximum 45% yield using methylenetriphenylphosphorane, generated in situ by the treatment of n-BuLi and methyltriphenylphosphonium bromide at $0{ }^{\circ} \mathrm{C}$ in THF, different other bases such as $\mathrm{NaNH}_{2}, \mathrm{NaH}$ were also screened. However, no improvement in the yield could be observed. Ultimately, 210b could be obtained in 60% yield using benzylidenetriphenylphosphorane (equivalent to one carbon Wittig) under similar reaction condition.

Success of olefination reaction was supported by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR studies. The IR spectrum showed a sharp characteristic absorption band at $1731 \mathrm{~cm}^{-1}$,

Chapter 2

indicating the existence of ester carbonyl functionality. The ${ }^{1} \mathrm{H}$ NMR spectrum showed two olefinic protons at $\delta 6.45(\mathrm{~d}, J=14.5,3.3 \mathrm{~Hz})$ and at $\delta 6.20-6.2$ as a multiplet, which were assigned to ($-\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}$) and ($-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}-$) protons, respectively. The five aromatic protons of phenyl ring appeared at $\delta 7.16-7.34$ as a multiplet. Similarly, in ${ }^{13} \mathrm{C}$ NMR spectrum, the five aromatic and two olefinic carbons appeared at $\delta 132.2,132.1,128.6,128.5,127.4,127.1$ and 126.1, respectively. The transformation was further supported by HRMS which showed a molecular ion peak at m / z at 391.17956 which was consistent with the molecular formula $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4}$. At this stage, we also noticed that the stereochemistry of $\mathrm{C}_{11 \mathrm{a}}$ was epimerized to thermodynamically more stable product, possibly, at the time acetal deprotection.

Since, reduction of $\mathbf{2 1 0 b}$ using 1 equiv. of DIBAL-H in dry toluene gave mixtures of desired aldehyde 212 and over-reduction product 211 along with some of the starting material; we thought to proceed with two step process. Thus, 210b was reduced first to alcohol 211 (96% yield) using DIBAL-H (2.2 equiv.) in dry dicholoromethane at $-78^{\circ} \mathrm{C}$.

The formation of $\mathbf{2 1 1}$ was confirmed by the IR spectrum by the disappearance of the characteristic ester carbonyl peak at $1731 \mathrm{~cm}^{-1}$ and appearance of a broad absorption band for hydroxyl functionality at $3421 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR did not show the signal corresponding to ethyl ester group in the expected region, instead additional signals corresponding to methylenehydroxy group ($-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$) were observed at $\delta 2.95$ and 2.40 as two sets of multiplets and at $\delta 62.9$ in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum respectively. The HRMS (EI) spectrum displayed molecular ion peak at m / z 349.17059.

Primary alcohol moiety of $\mathbf{2 1 1}$ was converted into corresponding aldehyde 212 quantitatively under standard Swern oxidation condition using oxalyl chloride and dimethylsulphoxide in dry dichloromethane at $-78^{\circ} \mathrm{C}$ followed by quenching with triethylamine at the same temperature.

In order to install another olefinic partner for ring closing metathesis, aldehyde 212 was straightway treated with vinylmagnesium bromide (1 M solution in THF) in dry THF at $0{ }^{\circ} \mathrm{C}$ which produced corresponding alcohol 213 quantitatively as a

Chapter 2

mixture of two diastereomers, however, their exact ratios could not be ascertained at this stage.

The hydroxyl moiety of 213, a proposed precursor for the RCM strategy, was protected as acetate 214 in 95% yield by employing standard protocol ($\mathrm{Ac}_{2} \mathrm{O} /$ TEA/DMAP (cat.)). ${ }^{1} \mathrm{H}$ NMR at this stage clearly indicated diastereomeric ratio as $2.5: 1$. The major diastereomer was isolated pure for characterization through IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and mass spectral analysis prior to our RCM reaction.

The IR spectrum of 214 showed characteristic absorption band for acetate carbonyl at $1738 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum displayed a sharp singlet at $\delta 1.98$ for acetate methyl and a doublet of doublet at $\delta 4.80(J=10.5,6.8 \mathrm{~Hz})$ for the methine proton (-CH-OAc). Similarly, in the ${ }^{13} \mathrm{C}$ NMR spectrum, twenty six carbons including the most downfield carbon at $\delta 169.7$ corresponding to acetate carbonyl were observed. The methylene and methyl carbons of acetate group appeared at $\delta 76.4$ ($\mathrm{CH}-\mathrm{OAc}$) and $21.2\left(\mathrm{CH}_{3}\right)$, respectively. The HRMS gave molecular ion peak at m / z 417.19417 confirming the molecular formula $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$.

Construction of E-ring: Ring Closing Metathesis:

As per our planned strategy, the mixture of both diastereomers of 214 were forwarded for ring closing metathesis reaction utilizing original Grubb's reaction condition employing either $1^{\text {st }}$ or $2^{\text {nd }}$ generation ${ }^{9}$ catalyst in DCM or benzene (room temperature to reflux) which failed to give any cyclized product. However, this observation was not very surprising to us as it is known ${ }^{10}$ that free / unprotected amine coordinates to the Ruthenium catalyst and reduces the catalytic activity. Fortunately, it is also known that ammonium salts are tolerated very well by the [Ru] catalyst. ${ }^{11}$ Therefore, metathesis of $\mathbf{2 1 4}$ was first examined in the presence of different acids such as $p-\mathrm{TSA},{ }^{12} \mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right){ }_{4}^{13}$ and HCl^{14} using Grubb's $1^{\text {st }}$ generation catalyst in DCM at room temperature to $40{ }^{\circ} \mathrm{C}$ but all the experiments delivered primarily starting material back even after 2-3 days. Finally, we conducted the same reaction using Grubb's $2^{\text {nd }}$ generation catalyst, either in DCM at $40^{\circ} \mathrm{C}$ or boiling benzene for 10-15 h which produced corresponding cyclized product $215: 216$ (2.5:1) in 93% yield.

Chapter 2

Both diastereomers 215 and 216 were isolated by flash column chromatography and were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral analyses. The C_{1}-OAc stereochemistry for both diastereomers was assigned on the basis of extensive COSY, NOESY NMR studies.

The ${ }^{1} \mathrm{H}$ NMR spectrum of major diastereomer 215 showed two newly generated olefinic protons at $\delta 5.90-5.93$ and 5.84 as two sets of multiplets, assigned to $\mathrm{H}_{3}\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}\right)$ and H_{2} proton $(\mathrm{CH}-\mathrm{CH}=\mathrm{CH})$, respectively. The methyl protons of acetate group shifted upfield and appeared at $\delta 1.54$ as a sharp singlet. Similarly, the ${ }^{13} \mathrm{C}$ NMR spectrum displayed a total of eighteen carbons including the most downfield signal at $\delta 170.4$ corresponding to acetate carbonyl. Two newly generated olefinic carbons appeared at $\delta 132.4$ and 127.0, respectively. The HRMS gave molecular ion peak at m / z 313.13631, consistent with the molecular formula $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$.

Since in deuterated chloroform, the $\mathrm{H}_{1}(\mathrm{CH}-\mathrm{OAc})$ and $\mathrm{H}_{11 \mathrm{a}}(-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}-$ OAc) protons merged with H_{2} and H_{4} proton, ${ }^{1} \mathrm{H}$ NMR and 2D NMR were recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ for better resolution to ascertain the exact stereochemistry at C_{1} and $\mathrm{C}_{11 \mathrm{a}}$. Now in the ${ }^{1} \mathrm{H}$ NMR spectrum, the two aromatic protons appeared separately at $\delta 6.50$ and 6.32 as two singlets which were appearing earlier as broad singlet in CDCl_{3}. The allylic proton ($\mathrm{C} \underline{\mathrm{H}}-\mathrm{OAc}$) and two olefinic protons appeared in the form of two sets of multiplets at δ 5.76-5.82 and 5.66-5.7, integrating for two and one protons, respectively. The methylenedioxy protons shifted upfield and resonated at $\delta 5.38$ as a singlet. The $\mathrm{C}_{11 \mathrm{a}}$ proton was resolved from one of the C_{4} proton which became convenient to study 2D NMR. The $\mathrm{H}_{4 \mathrm{a}}$ and $\mathrm{H}_{11 \mathrm{a}}$ methine protons appeared at $\delta 2.49$ $(\mathrm{td}, J=11.0,4.8 \mathrm{~Hz})$ and $1.71(\mathrm{dt}, J=11.0,3.5 \mathrm{~Hz})$. The relative stereochemistry of 215 was determined with the help of extensive 2D NMR study (Figure 5). Presence of NOESY cross peak between $\mathrm{H}_{11 \mathrm{a}}$ and H_{12} proton suggested that both are in 'endo' orientation. The absence of NOESY cross peak between $\mathrm{C}_{4 \mathrm{a}}$ and C_{1} proton suggested that acetate group is located in "exo" face.

Chapter 2

Figure 5: Stereochemical assignment of 215 and 216

Similarly, in the ${ }^{1} \mathrm{H}$ NMR spectrum of minor diastereomer 216 in $\mathrm{C}_{6} \mathrm{D}_{6}$, two newly generated olefinic protons appeared at $\delta 5.67(\mathrm{dt}, J=10.0,1.7 \mathrm{~Hz})$ and $\delta 5.56-$ 5.53 (multiplets) corresponding to H_{3} and H_{2} proton, respectively. The allylic proton ($\mathrm{CH}-\mathrm{OAc}$) appeared at $\delta 5.33-5.36(\mathrm{~m}, 1 \mathrm{H})$ and the methyl protons of acetate group as a singlet at $\delta 1.81$ which was found to be relatively upfield in comparison to isomer 215. The ${ }^{13} \mathrm{C}$ NMR spectrum showed two newly formed olefinic carbons at $\delta 129.9$ and 129.1 and methyl carbon at $\delta 21.22$.

The NOESY spectrum of 216 revealed the presence of NOe cross peak between C_{1} and $\mathrm{C}_{4 \mathrm{a}}$ proton, suggesting the 'syn' relative stereochemistry between each other (Figure 2) and the acetoxy group being in 'endo' position.

At this stage we realized the potential of both diastereomers 215 and 216 for the synthesis of target natural products by functional group interconversions by exploiting the stereochemistry of allylic acetoxy functionality to direct the hydroxylation of olefinic double bond. In this context, we attempted first the total synthesis of (\pm)-brunsvigine (20), an important member of this class.

Synthesis of (\pm)-brunsvigine (20):

In order to achieve the total synthesis of (\pm)-brunsvigine (20), the major diastereomer 215 was subjected to dihydroxylation using OsO_{4} / pyridine in ${ }^{t} \mathrm{BuOH}$ in the presence of trimethylamine N-oxide as a co-oxidant and obtained 217 quantitatively as a pure diastereomer as a white crystalline solid. The IR spectrum displayed a broad absorption band at $3385 \mathrm{~cm}^{-1}$ suggesting the presence of secondary hydroxyl functionalities in 217. The ${ }^{1} \mathrm{H}$ NMR (in $\mathrm{CD}_{3} \mathrm{OD}$) spectrum showed disappearance of olefinic protons and appearance of two new signals in the aliphatic

Chapter 2

region at $\delta 3.69-3.66$ and $\delta 3.62$ in the form of multiplet and broad singlet which were assigned to $(-\mathrm{CH}-\mathrm{OH})$ protons attached to hydroxyl functionality at C_{3} and C_{2} centre, respectively. Similarly, the ${ }^{13} \mathrm{C}$ NMR spectrum displayed a total of eighteen carbons with no signals corresponding to olefinic carbons $\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right)$. Two new signals in aliphatic region appearing at $\delta 72.6$ and 72.4 were attributed to C_{2} and C_{3} carbons. The HRMS with a molecular ion peak at $m / z 347.13667$ also supported the above transformation. The relative stereochemistry was finally confirmed by single crystal X-ray analysis (Scheme 30).

Scheme 30: Total synthesis of (\pm)-brunsvigine (20)

Reagents and conditions: a) OsO_{4}, trimethylamine N -oxide, pyridine, t-butanol- $\mathrm{H}_{2} \mathrm{O}$, 18 h, quant.; b) i) DMP, p-TSA, acetone, rt, 6 h, 95\%; c) NaOMe, MeOH, rt, 4 h, 91%; d) i) MsCl, TEA, DMAP, DCM, $0{ }^{\circ} \mathrm{C}$ - rt, 5 h, quant.; ii) DBU, toluene, $110{ }^{\circ} \mathrm{C}$, $2 d, 89 \%$; e). $\mathrm{HCl}_{\text {(gas) }}, \mathrm{MeOH}, 30$ min., quant.; f) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}$, pyridine, $20 \mathrm{~h}, 95 \%$.

Compound 217 was transformed to 218 in 95% yield by isopropylidine protection (2, 2-dimethoxypropane / p-TSA) of the vicinal dihydroxyl groups before installing the pivotal $\Delta^{1,11 a}$ double bond required to complete the total synthesis of $\mathbf{2 0}$. Initially attempt by using DBU^{15} at elevated temperature in benzene and toluene, failed to yield the desired 220. Therefore, acetate moiety was deprotected first and
mesylated, using $\mathrm{MsCl} / \mathrm{TEA}$ in the presence of catalytic amount of DMAP, and refluxed with DBU for 2 days in toluene to obtain 220 in 89% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 2 0}$ showed a doublet of doublet at $\delta 5.70(J=2.2,2.2 \mathrm{~Hz})$ which can be assigned to newly generated olefinic proton ($\mathrm{C}=\mathrm{CH}-\mathrm{CHOH}$). Similarly, the ${ }^{13} \mathrm{C}$ NMR displayed an olefinic carbon $\left(\mathrm{C}_{1}\right)$ and a quarternary cabon $(\mathrm{C}-\underline{\mathrm{C}} \mathrm{H}=\mathrm{CH})$ at $\delta 146.8$ and δ 155.6, respectively. The molecular ion peak at $m / z 327.14706$ in HRMS also confirmed the molecular formula of the product as $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$.

Finally, to complete the synthesis of 20, acetonide moiety of 220 was deprotected by passing HCl (gas) in its methanolic solution. Due to poor solubility of 20.HCl in common deutrated organic solvents, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were analyzed in $\mathrm{D}_{2} \mathrm{O}$ which showed no corresponding peaks to the methyl group of isopropylidine moiety confirming the acetonide deprotection step.

Detailed ${ }^{1} \mathrm{H}$ NMR spectral analyses of $\mathbf{2 0 .} \mathbf{H C l}$ were also carried out to confirm its structure. Two aromatic protons appeared as singlets at $\delta \quad 6.82$ and 6.71. The signals appearing at $\delta 5.95$ and $5.94(\mathrm{ABq} J=1.0 \mathrm{~Hz})$, integrating for two protons, were attributed to methylenedioxy protons. An olefinic proton (C-CH-CH$\mathrm{OH}, \mathrm{H}_{1}$) appeared at $\delta 5.95$ as a broad singlet. Two sets of doublets at $\delta 4.75$ (merged with $\mathrm{D}_{2} \mathrm{O}$ peak) and $4.45(J=15.6 \mathrm{~Hz})$, integrating for one proton each, were assigned to benzylic methylene group ($\mathrm{C}-\mathrm{CH}_{2}-N-, \mathrm{H}_{6}$). A signal at $\delta 4.17$ (app. $\mathrm{t}, J=3.9 \mathrm{~Hz}$) and (m, 4.12-4.09), integrating for one proton each, were attributed to ($\mathrm{CH}-\mathrm{CH}-\mathrm{OH}$, H_{2}) and $\left(\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{OH}, \mathrm{H}_{3}\right)$ protons, respectively. A benzylic proton $(\mathrm{C}-\mathrm{C} \underline{\mathrm{H}}-\mathrm{C}=\mathrm{CH}$, $\left.\mathrm{H}_{11}\right)$ appeared as a doublet at $\delta 3.97(J=2.8 \mathrm{~Hz})$. A multiplet at δ 3.76-3.71, integrating for one proton was assigned to $\left(\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}, \mathrm{H}_{4 \mathrm{a}}\right)$. The bridged methylene protons $\left(\mathrm{H}_{12}\right)$ appeared at $\delta 3.69(J=11.0 \mathrm{~Hz})$ and $3.56(J=11.0,2.0 \mathrm{~Hz})$ as a set of doublet and doublet of doublet (dd), respectively. The methylene protons ($\mathrm{CH}-\mathrm{CH}_{2}-$ $\left.\mathrm{CH}-\mathrm{OH}, \mathrm{H}_{4}\right)$ appeared as two sets of doublet of doublet of doublet (ddd) at $2.37(J=$ $8.5,5.2,3.3 \mathrm{~Hz})$ and $1.76(J=11.9,11.9,11.9 \mathrm{~Hz})$. The appearance of molecular ion peak at $m / z 287.11472$ in HRMS (EI) spectrum also supported the above chemical structure.

For further purification and characterization, 20.HCl was directly transformed into corresponding diacetate derivative 20a in 95\% yield, using acetic anhydride and

Chapter 2

triethylamine in the presence of catalytic amount of N, N-dimethylaminopyridine (DMAP) in pyridine. The diacetate derivative (20a) was confirmed by the appearance of a sharp absorption band for the acetate carbonyl at $1735 \mathrm{~cm}^{-1}$ in the IR spectrum. The ${ }^{1} \mathrm{H}$ NMR revealed the presence of two acetate groups by displaying two methyl signals at $\delta 2.08$ and 2.00. Similarly, two methine protons ($\mathrm{CH}-\mathrm{OAc}$) appeared upfield shifted at $\delta 5.47(\mathrm{dd}, J=4.0,4.0 \mathrm{~Hz})$ and $4.94(\mathrm{dt}, J=12.2,4.0 \mathrm{~Hz})$. In the ${ }^{13} \mathrm{C}$ NMR spectrum, a signal corresponding to acetate carbonyl at $\delta 170.45$ and two signals representing to two methyl carbons of acetate groups appeared at $\delta 21.0$ and 20.9. The molecular ion peak at $\mathrm{m} / \mathrm{z} 371.13504$ was found consistent with the assigned molecular structure.

The spectral data of compounds 220 and 20a (diacetate derivative) were found to be in excellent agreement with the values reported in literature. ${ }^{16}$ The comparative spectral data for 220 and 20a with reported ones are given in Table 2.

Table 2: Comparative data for compound 226 and 20a:

Compound (220) (Obs.)	Literature data for Compound 220
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.55(\mathrm{~s}$, $1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), \mathrm{AB}$ quartet at 5.89 and $5.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{dd}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.34$ and 3.78 (ABq, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.27 (ddd, J $=11.6,5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.30(\mathrm{~m}$, $1 \mathrm{H}), 3.12(\mathrm{dd}, J=10.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ $(\mathrm{m}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=10.8,1 \mathrm{H}), 2.28(\mathrm{~m}$, $1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~m}$, 1H) ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.6$ (C), 146.8 (C), 146.1 (C), 132.4 (C),	${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.54(\mathrm{~s}$, $1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), \mathrm{AB}$ quartet at 5.88 and 5.85 (d, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{dd}, J=$ $2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.48(\mathrm{~m}, 1 \mathrm{H}), \mathrm{AB}$ quartet at 4.33 and $3.77(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, 1 H), 4.26 (ddd, $J=11.6,5.6,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.33-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=$ $10.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08-3.03 (br s, 1H), 3.04 (d, $J=10.8,1 \mathrm{H}$), 2.28 (ddd, $J=$ $11.6,5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.34$ ($\mathrm{s}, 3 \mathrm{H}$), 1.32 (ddd, $J=11.6,11.6,11.6 \mathrm{~Hz}$, 1H) ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.5$ (C), 146.7 (C), 146.0 (C), 132.1 (C),

Chapter 2

124.5 (C), $112.3(\mathrm{CH}), 109.5$ (C), 107.2 124.4 (C), 112.2 (CH), 109.4 (C), 107.1 $(\mathrm{CH}), 106.8(\mathrm{CH}), 100.8\left(\mathrm{CH}_{2}\right), 73.9$ $(\mathrm{CH}), 71.8(\mathrm{CH}), 62.2(\mathrm{CH}), 61.0\left(\mathrm{CH}_{2}\right)$, $55.2\left(\mathrm{CH}_{2}\right), 45.4(\mathrm{CH}), 33.2\left(\mathrm{CH}_{2}\right), 27.9$ $\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{3}\right)$

HRMS (EI): m / z Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$: 327.14726; found 327.14706. $(\mathrm{CH}), 106.7(\mathrm{CH}), 100.7\left(\mathrm{CH}_{2}\right), 73.6$ $(\mathrm{CH}), 71.6(\mathrm{CH}), 62.0(\mathrm{CH}), 60.7\left(\mathrm{CH}_{2}\right)$, $55.0\left(\mathrm{CH}_{2}\right), 45.2(\mathrm{CH}), 33.0\left(\mathrm{CH}_{2}\right), 27.7$ $\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right)$

HRMS (EI): m / z found 327.1472

Compound 20a (Obs.)
Literature data ${ }^{16 \mathrm{~b}}$ for Compound 20a
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.54\left(\mathrm{~s},{ }^{1} \mathbf{H}\right.$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.51(\mathrm{~s}$, $1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.89$ and $5.86(\mathrm{ABq}, J$ $=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{bs}, 1 \mathrm{H}), 5.47\left(\mathrm{dd},{ }^{3} J\right.$ $=4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (ddd, $J=12.2$, $4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ and $3.87\left(\mathrm{ABq},{ }^{2} J\right.$
$=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.09$ and $3.06(\mathrm{ABq}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, 3H), 1.80 (ddd, $J=11.6,11.6,11.6 \mathrm{~Hz}$, 1H)
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5$ (CO), 170.0 (CO), 156.6 (C), 147.0 (C), 146.1 (C), 131.5 (C), 124.5 (C), 112.1 $(\mathrm{CH}), 107.5(\mathrm{CH}), 106.9(\mathrm{CH}), 100.8$ $\left(\mathrm{CH}_{2}\right), 68.8(\mathrm{CH}), 66.1(\mathrm{CH}), 63.0(\mathrm{CH})$, $61.2\left(\mathrm{CH}_{2}\right), 56.0\left(\mathrm{CH}_{2}\right), 45.4(\mathrm{CH}), 30.1$ $\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right)$

HRMS (EI): m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{6}$: 371.1369, found 371.13504 .
$1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H})$, AB quartet at 5.88 and $5.85(J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.54-5.52(\mathrm{~m}$, $1 \mathrm{H}), 5.45(\mathrm{dd}, J=4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (ddd, $J=12.2,4.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), \mathrm{AB}$ quartet at 4.30 and $3.80(J=16.8 \mathrm{~Hz}$, 1 H), 3.32-3.25 (br s, 1H), 3.27 (br s, 1H), AB quartet at 3.08 and $3.04(J=17.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, 1.99 (s, 3H), 1.71 (ddd, $J=12.0,12.0$, $12.0 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4$, $170.0,156.5,147.0,146.1,131.4,124.5$ (C), 112.1, 107.5, 106.9, 100.8, 68.8, 66.1, 63.0, 61.2, 56.0, 45.4, 30.2 , 21.0, 20.9

HRMS (EI): m / z : found 371.1372.

Chapter 2

Synthesis towards (\pm)-pancracine (19) and (\pm)-montanine (21):

After successful synthesis of (\pm)-brunsvigine (20), we visualized the scope of this strategy in the synthesis of other members of this class of alkaloids such as pancracine (19) and (\pm)-montanine (21) from either one of the diastereomers (215 or 216) through the intermediate 151 as shown in Scheme 31.

Scheme 31: outline for the synthesis of (\pm)-pancracine (19) and (\pm)-montanine

Towards transforming 215 to 151, it was envisaged that both 221, obtained by acetate hydrolysis of both $\mathbf{2 1 5}$ as well as 216, can deliver epoxide 151 depending on the sequence of epoxidation which on treatment with either $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{BF}_{3} . \mathrm{OEt}_{2} / \mathrm{MeOH}$ can produce either (\pm)-pancracine (19) or (\pm)-montanine (21), respectively. ${ }^{17}$

Synthesis towards (\pm)-coccinine (23), (\pm)-montabuphine (27):

In the similar manner, other members of this class was also visualized to be obtained from intermediate $\mathbf{2 1 6}$ through dihydroxylation of double bond by exploiting the stereochemistry of acetoxy group which would give diol of desired stereochemistry. Benzylidine protection of the cis-dihydroxy followed by regioselective cleavage is expected to give (\pm)-coccinine (23), (\pm)-montabuphine (27) as shown in scheme 32 .

Chapter 2

Scheme 32: Outline for the synthesis towards (\pm)-coccinine, (\pm)-montabuphine

The synthesis of all these alkaloids from the intermediates 215, 216 and 221 is in progress.

2A.3. Summary:

We have successfully revised our original strategy for the construction of 5 , 11-methanomorphanthridine framework employing 1,3-dipolar cycloaddition of nonstabilized AMY as a key step. Different protocols, such as Mukaiyama as well as simple aldol, HWE and RCM reactions were attempted to assemble E-ring with double bond at the requisite position. The initial failure in getting E-ring by proposed strategy either by Mukaiyama type aldol or HWE reaction was endorsed to skeleton rearrangement initiated by thermodynamic enolate formation followed by either Gröb type fragmentation or through azetidinium salt. Finally, RCM route was found to be proficient and general protocol for the construction of E-ring and it was elaborated to the total synthesis of (\pm)-brunsvigin. The route for the synthesis of other related alkaloids such as $((\pm)$-montabuphine, (\pm)-coccinine, (\pm)-montanine and (\pm) pancracine) is in progress from 215, 216 or 221.

The success of this strategy prompted us to evaluate the synthesis of newly isolated alkaloid (\pm) - pancratinine B and C. The forgoing section of this chapter will discuss our efforts in this venture.

Chapter 2

Section B

Attempted alternative strategy towards the synthesis of (\pm)-pancracine, (\pm)montanine and (\pm)-pancratinine: Generation of new analogues

2B.1. Introduction:

After successful total synthesis of (\pm)-brunsvigine (20) and realizing the potential of RCM strategy for the construction of E-ring, we turned our attention towards developing an alternative approach for the synthesis of (\pm)-pancracine (19) and (\pm)-montanine (21) as well as newly isolated alkaloids (\pm)-pancratinine B (28a) and $\mathrm{C}(\mathbf{2 8 b})$ by following the sequence as shown retrosynthetically in Scheme 33.

2B.2. Retrosynthetic analysis:

Compound 150 was recognized to be Hoshino's intermediate ${ }^{17}$ in the total synthesis of (\pm)-pancracine (19) and (\pm)-montanine (21). At the same time, we also conceived the idea that $\mathbf{1 5 0}$ can be transformed into (\pm)-pancratinine B/C ($\mathbf{2 8 a}$ and 28b) through stereoselective allylic oxidation. The advanced intermediate 150 in turn was proposed to be obtained through RCM of 223 ($3^{\text {rd }}$ generation).

28a; Pancratinine $B ; R=M e$
28b: Panctinine $C \cdot R=H$ 28b: Pancratinine C; $R=H$

223

224

Scheme 33: An alternative approach for the synthesis of montanine alkaloids

Chapter 2

2B.3. Result and discussion:

Towards our planned strategy, we began our synthesis with the reduction of ester moiety of cycloadduct 198 (Scheme 34) using LiAlH_{4} in dry THF at $0{ }^{\circ} \mathrm{C}$ which gave 225 as a white crystalline solid (in ethyl acetate) in 89% yield.

Scheme 34: Synthesis of 224

Reagents and conditions: a) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 89 \%$; b) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{DCM}$, $78^{\circ} \mathrm{C}$, then TEA quant. c) $\mathrm{Br} P \mathrm{Ph}_{3} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{n}-\mathrm{BuLi}, \mathrm{THF}$, then 226, $0^{\circ} \mathrm{C}-r t$, overnight, 65%.

The structure and relative stereochemistry of $\mathbf{2 2 5}$ was unambiguously confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D NMR spectral study and finally through single crystal X-ray analysis.

The alcohol moiety of $\mathbf{2 2 5}$ was transformed to an aldehyde 226 quantitatively through Swern oxidation which was confirmed by an IR absorption band at $1634 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$ and aldehydic - $\mathrm{CH} \delta 9.32(\mathrm{~d}, J=2.1 \mathrm{~Hz})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum.

One carbon Wittig olefination of 226 gave 224 in 65% yield. The success of the reaction was supported by observing additional five aromatic protons, in the ${ }^{1} \mathrm{H}$ NMR spectrum, at $\delta 7.16-7.35$ and two olefinic protons at $\delta 6.38(\mathrm{~d}, J=15.7 \mathrm{~Hz})$ and $\delta 6.14$ (ddd, $J=15.7,10.0,10.0 \mathrm{~Hz}$). The coupling constant $(J=15.7 \mathrm{~Hz})$ suggested 'trans' geometry for the double bond. Further support for the olefination reaction was also revealed through ${ }^{13} \mathrm{C}$ NMR spectrum.

Chapter 2

Now, the next task before executing RCM reaction was to deprotect the dioxalone moiety of 224 and perform vinylation reaction. Towards this end, all our efforts of deprotection under various acidic conditions failed. Attempt for deprotection by heating 224 either with i) Oxalic acid/THF/ $\mathrm{H}_{2} \mathrm{O}$, ii) 3 N $\mathrm{HCl} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ or iii) $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ for 6 to 8 h , gave solely unprecedented 227 as a single diastereomer which was fully characterized through extensive study of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and mass spectroscopic analysis (Scheme 35).
. Scheme 35: Attempts for acetal hydrolysis: Generation of new analogue

Reagents and conditions: a) $3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (1:1), reflux or Oxalic acid, THF$\mathrm{H}_{2} \mathrm{O}$ (1:1), or $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ reflux, $6-8 \mathrm{~h}, 87 \%$; b) $\mathrm{Ac}_{2} \mathrm{O}$, TEA, DMAP, DCM, $r t, 10 h, 95 \%$.

The rearranged product 227 was finally confirmed by single X-ray crystallography of the corresponding diacetate derivative 228. The novel structure of $\mathbf{2 2 8}$ consisting of unique linearly fused pentacyclic core, is analogous to 5,11-methanomorphanthridine framework except having five membered E-
 ring.

The mechanism of rearrangement may be rationalized through an intramolecular Prins type cyclization ${ }^{18}$ as shown in Scheme 36.

Chapter 2

Scheme 36: Synthesis of new analogues: Intramolecular Prins cyclization

This rationale for this mechanism was further obtained by isolating corresponding 231 (76%) by performing the same reaction in MeOH at refluxed temperature having 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ (6 to 8 h) (Scheme 37).

Scheme 37: Solvolysis in the presence of excess $\mathrm{MeOH} / \mathrm{H}^{+}$

Since, rearranged 227 was obtained in a single 'syn' diastereomeric form in good yields (Scheme 35), this reaction was considered to have potential for use to synthesize variety of other analogues by varying the nucleophilic solvents $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{OR}\right)$.

(5, 11-methanomorphanthridine skeleton)

New analogue ($\mathrm{R}=\mathrm{H}$; 227) ($\mathrm{R}=\mathrm{Me}$; 231)

Figure 6: Skeleton resemblance between natural product and synthetic analogues

At this stage, it may be appropriate to mention that to the best of our knowledge, this observed rearrangement through intramolecular Prins cyclization to provide this unique structural framework is new and novel.

Since our attempt to synthesize target molecules failed and produced purely unprecedented analogues of parent alkaloids, we thought to proceed towards the

Chapter 2

synthesis of pancratinine $B(28 a)$ and C (28b) from 232 by following the proposed protocol as shown in Scheme 38. It was envisaged that the regioselective hydroxylation of $\mathbf{2 3 2}$ via oxidation of corresponding enolate would deliver hydroxyl moiety from the 'exo' face due to steric repulsion between bridged methylene group and incoming oxygen electrophile producing 233 stereoselectively. Further functional group manipulation of $\mathbf{2 3 3}$ may produce $\mathbf{2 8 b}$.

Scheme 38: Synthetic design for the synthesis of pancratinine

Towards executing our proposed strategy for the synthesis of 28b, 232 was synthesized ${ }^{19}$ as shown in Scheme 39 and was subjected to regioselective hydroxylation via its thermodynamic enolate using either m-CPBA or Davis oxaziridine ${ }^{20}$ reagent, however, no reaction product could be observed. Finally, reaction using triethylphosphite / $\mathrm{NaO}^{t} \mathrm{Bu}$ under dry oxygen balloon pressure ${ }^{21}$ gave successfully α-hydroxylated product 234 in 89% yield (Scheme 39).

Scheme 39: Attempts towards the synthesis of pancratinine

Reagent and conditions: a) $P(\mathrm{OMe})_{3}, \mathrm{NaH}, \mathrm{t}$ - $\mathrm{BuOH}, \mathrm{DMF}, \mathrm{O}_{2}$, dry $\mathrm{THF},-22^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 89%; b) (COCl) $)_{2}$, DMSO, $-7{ }^{\circ}{ }^{\circ}$, then TEA, dry DCM, 90%.

Chapter 2

Attempt to oxidize primary alcohol moiety of $\mathbf{2 3 4}$ to corresponding aldehyde using Swern oxidation (oxalyl chloride, DMSO and TEA) reaction condition surprisingly produced 236. Oxidation using other oxidizing reagents such as IBX and DMP also produced the same product. It appears from this result that unlike our expectations the hydroxyl moiety in 234 is "endo" oriented which due to close proximity with aldehydic functionality undergoes intramolecular cyclization through lactonization (intermediate 235) producing 236 exclusively. This unexpected result led us to abandon our further synthetic endeavor in this regard.

2B.4. Summary:

We have attempted an alternative strategy towards the synthesis of (\pm)pancracine, (\pm)-montanine and (\pm)-pancratinine. The failure in the above proposed strategy was attributed to the skeleton rearrangement either by intramolecular Prinstype cyclization or lactonization. However, these observations led to the generation of purely new analogues of this class of alkaloids.

Chapter 2

Section C

Development of Auxiliary based asymmetric 1,3-dipoar cycloaddition strategy for the synthesis of enantiopure 5,11-methanomorphanthridine skeleton

2C.1. Introduction

Asymmetric 1, 3-dipolar cycloaddition of azomethine ylides (AMY) to a variety of alkenes has emerged as one of the most powerful strategy for the construction of enantiopure pyrrolidines ring system, ${ }^{22-24}$ an important building block in the syntheses of many natural products and pharmaceuticals. An intramolecular asymmetric 1,3-dipolar cycloaddition of azomethine ylide leads to the formation of enantiopure, inherently more complex, fused pyrrolidine ring system.

Most of the asymmetric approaches known for the synthesis of montanine alkaloids are mainly based on chiral pool strategy. ${ }^{25}$ Two recent reports have also utilized organocatalytic strategy for the formal synthesis of pancracine. ${ }^{26}$ Therefore, developing an asymmetric [3+2]-cycloaddition approach for assembling 5,11methanomorphanthridine structural framework would definitely be a new concept in this area.

In a quest to design a conceptually new and versatile route towards 5,11methanomorphanthridine alkaloids, we envisioned asymmetric intramolecular [3+2]cycloaddition strategy through two ways.
i) Chiral auxiliary approach (A)
ii) Catalytic asymmetric approach (B)

$\mathrm{X}_{\mathrm{c}}=$ chiral Axuliary

B
$\mathrm{L}^{*}=$ chiral ligand M = metal

Figure 7: Asymmetric 1,3-dipolar cycloaddition strategy

Chapter 2

However, we will restrict our discussion in this dissertation only to chiral auxiliary approach.

From the available literature ${ }^{22-24}$ in the area of intramolecular asymmetric cycloaddition of azomethine ylides to construct fused pyrrolidine ring system, it is apparent that chirality is induced either using chiral AMYs or chiral dipolarophiles or using chiral catalyst. The general representation of these strategies can be depicted as shown below (Figure 8):

(A)

Chiral dipolarophile based cycloaddition (Type II)
(B)
 Chiral AMY based cycloaddition (Type I)

(G)

(C)

(H)

(D)

(F)

Catalytic approach (Type III)

Figure 8: General representation of asymmetric 1, 3-dipolar cycloaddition of AMY

It is generally noticed that most common strategy for asymmetric intramolecular 1,3-dipolar cycloaddition have utilized chiral acyclic/cyclic azomethine ylide (Type I; A, B, C and D), derived from either chiral amine (G) or chiral aldehyde (H). Few examples are also known where chiral dipolaophiles have been used in combination with achiral dipole (Type II). The catalytic approach (Type III) is mostly restricted for the synthesis of isolated proline derivatives through intermolecular cycloaddition of stabilized azomethine ylides. Its intramolecular version is still in infancy and has great scope for further research in this direction.

To put our foregoing discussions in proper perspectives, few important examples from each category are highlighted below:

Chapter 2

The first example in this area may be traced Ogasawara group, ${ }^{27}$ in which diastereomerically pure cycloadduct 239 was synthesized, out of four possible isomers with all syn-stereochemistry, by intramolecular cycloaddition of a chiral nonstabilized azomethine ylide 238, produced by the thermolysis of aziridine 237. The high diastereofacial selectivity observed in this cycloaddition reaction is explained considering anti-azomethine ylide 238 as the reactive conformer in which the bulky benzyloxymethyl group takes the most stable six membered chair like arrangement to give all syn-239. This strategy was utilized for the synthesis of many natural products such as acromelic acid-A, (-)-Kainic acid, (-)-mesembrine etc. Furthermore, it was noticed by the same group ${ }^{28}$ that diastereoselectivity depends on the length of the alkyl chain between dipole and the dipolarophile (Scheme 40).

Scheme 40: Ogasawara's approach

Kanemasa et al. have reported ${ }^{29}$ excellent selectivity in an intramolecular cycloaddition of in situ generated chiral AMY 244 (Type I) by the reaction of methyl 2-phenyl-4-thiazolidine-carboxylate (242) and enones 243a-b to produce cycloadducts 245a-b, respectively (Scheme 41).

Scheme 41: Kanemasa's approach

Chapter 2

Similar reports (Type I) have appeared from Harwood's group ${ }^{30}$ in which the excellent diastereoselectivity was observed in the intramolecular cycloaddition of the in situ generated chiral azomethine ylide 248 from 246, yielding 249 as the only product (Scheme 42).

Scheme 42: Harwood's approach

An example of type II (E) cycloaddition, have involved the cycloaddition of 4-oxido-isoquinolinium betaine dipole (endocyclic non-stabilized AMY) with tethered chiral ene-nitrile 252 for the concise and asymmetric total synthesis of (+)-nominine (256). ${ }^{31}$ The optical induction in the cycloaddition step emerged from the existing quaternary stereocentre through transition states 252 and 253., respectively (Scheme 43).

Scheme 43: Peese's approach

Gong's group ${ }^{32}$ has recently reported a chiral phosphoric acid (Brønsted acid, 260) based organocatalytic asymmetric intramolecular 1,3-dipolar cycloaddition (type

Chapter 2

III) for the construction of substituted hexahydrochromeno[4,3-b]pyrrolidine derivatives 259 in high optical purity (up to 98 dr and $94 \% e e$). (Scheme 44)

Scheme 44: Gong's approach

From the above brief introduction, it appears that diastereofacial control in intramolecular asymmetric 1,3-dipolar cycloaddition involving either chiral azomethine ylides or chiral dipolarophiles is a subject of much discussion. In both categories the chiral centre, responsible for the asymmetric induction is localized and remains intact in the product. Therefore, the pitfall of these strategies is in the selection/designing of substrates of required stereochemistry in the product.

Although, literature is enriched with plenty of examples in intermolecular cycloaddition where dipolarophile is tethered with removable chiral auxiliaries giving moderate to good diastereoselectivities, only one examples can be found for intramolecular cycloaddition ${ }^{33}$ where camphorsultam is tethered with AMY (Type I, D) and produces poor diastereomeric excess (dr~50\%) (Scheme 45).

Scheme 45: Dogan's approach

Therefore, it appeared to us that chiral auxiliary approach, where dipolarophile is tethered with removable auxiliary, would be a conceptually attractive strategy to construct 225 in optically pure form, which can be transformed into natural products

Chapter 2

through the intermediate $215 / 216$ as well as other synthetic analogue 227 using functional group manipulation (Scheme 46).

Scheme 46: Synthetic plan for chiral 225

2C.2. Result and discussion:

The key precursor 264 was synthesized (67% yield) by usual Heck coupling of 193 with Evan's acryloyl oxazolidione 266. The compound 266 was prepared from Lphenyl alanine using literature procedure ${ }^{34}$

Scheme 47: Synthesis of chiral alcohol 225

Reagents and conditions: a) 266, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 12 h , 67%, b) $\left.\operatorname{Ag}(I) F, \mathrm{CH}_{3} \mathrm{CN}, r t, 24 \mathrm{~h}, \mathrm{c}\right) \mathrm{LiAlH}_{4}, \mathrm{THF}, r t, 6 \mathrm{~h}, 46 \%$ over two steps.

Chapter 2

Usual cycloaddition of 264 gave corresponding cycloadduct, however, in order to find out the enantiomeric excess (ee), crude mass was subjected to reduction using lithium aluminium hydride in dry THF to obtain 225 (46% yield) (Scheme 47). The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and mass spectral analysis of alcohol 225 matched completely with the corresponding racemic compound.

The asymmetric induction was determined ($e e=63 \%$) through enantiomer discriminating HPLC [Chiralcel OD-H (250x4.6 mm), mobile phase: Ethanol:Petroleum ether (10:90), Flow: $0.5 \mathrm{ml} / \mathrm{min}$ (280 psi); retention time (27 min and 30 min)]

The HPLC spectrum of racemic as well as chiral alcohol (225) has been displayed below for the determination of optical induction in our key step.

Chapter 2

Although, enantiomeric excess observed in this cycloaddition reaction can only be described as good ($e e=63 \%$), it is encouraging to tune the reaction using other sterically more hindered (like isopropyl, tert. butyl) auxiliaries.

2C.3. Summary:

We have unveiled our preliminary study of an asymmetric route for the stereospecific construction of 5,11-methonomorphanthridine alkaloids. This commending methodology not only holds promise to be extremely useful in the synthesis of natural product/non-natural targets, but also makes a new entry into the field of intramolecular asymmetric 1,3-dipolar cycloaddition. The study and optimization of asymmetric induction with different auxiliaries such as camphorsaltum etc. as well as different substituents on Evan's auxilairy is presently pursued in the group.

Chapter 2

4. References:

1. a) Mukaiyama, T.; Murakami, M. Synthesis 1987, 1043; b) Mukaiyama, T.; Hayashi, M. Chem. Lett. 1974, 15; c) For intramolecular version, see: Mukaiama, T. Org, React. 1982, 28, 238.
2. a) Murata, S.; Suzuki, M.; Noyori, R. Tetrahedron 1988, 44, 4259; b) Yokozawa, Y.; Nakai, T.; Ishikawa, N. Tetrahedron Lett. 1984, 25, 3987.
3. For recent reviews on aldol reactions, see: a) B. Alcaide, P. Amendros, Eur. J. Org. Chem. 2002, 1595 and references therein; b) C. Palomo, M. Oiarbide, J. M. Garcia, Chem. Eur. J. 2002, 8, 36.
4. Johnstone, C.; Kerr, W. J.; Scott, J. S. Chem. Commun. 1996, 341.
5. a) Tanemura, K.; Suzuki, T.; Horaguchi, T. J. Chem. Soc., Chem. Commun. 1992, 979; b) Oku, A.; Kinugasa, M.; Kamada, T.; Chem. Lett. 1993, 165.
6. Jung, M. E.; Andrus, W. A.; Ornstein, P. L. Tetrahedron Lett. 1977, 18, 4175.
7. For reviews of the HWE reaction. See: a) Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87; b) Kelly, S. E. Comp. Org. Syn. 1991, 1, 729; c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
8. Prantz, K.; Mulzer, J. Chem. Rev. 2010, 110, 3741 and references there in.
9. a) Grubbs, R. H. Handbook of Metathesis; Wiley-VCH, Germany, 2003, b) Grubbs, R. H.; Trnka, T. M. Ruthenium-Catalysed Olefin Metathesis in " Ruthenium in Organic Chemistry" (S. -I. Murahasi, ed.), Wiley-VCH, Germany, 2004.
10. a) S. Elango, T. -H. Yan, J. Org. Chem. 2002, 67, 6954; b) S. Elango, T. -H. Yan, Tetrahedron 2002, 58, 7335.
11. G. C. Fu, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1993, 115, 9856.
12. D. L. Wright, J. P. Schulte II, M. A. Page, Org. Lett. 2000, 2, 1847.
13. Q. Yang, W.-J. Xiao, Z. Yu, Org. Lett. 2005, 7, 871.
14. K. Shimizu, M. Takimoto, Y. Sato, M. Mori, J. Organomet. Chem. 2006, 691, 5466.
15. Elango, S.; Yan, T. -H. Tetrahedron 2002, 58, 7335.
16. a) Sha, C. -K.; Hong, A.-W.; Huang, C. -M. Org. Lett. 2001, 3, 2177; b) Hong, A. -W.; Cheng, T. -H.; Raghukumar, V.; Sha, C. -K. J. Org. Chem., 2008, 73, 7580.
17. a) Ishizaki, M.; Hoshino, O.; Iitaka, Y. Tetrahedron Lett. 1991, 32, 7079; b) Ishizaki, M.; Hoshino, O. J. Org. Chem. 1992, 57, 7285
18. For reviews, see: a) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375; b) Ojima, I. Tzamarioudaki, M.; Li, Z.; Donavan, R. Chem. Rev. 1996, 96, 635; c) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49; d) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067; e) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813; and f) Camera, C. A.; Pinto, A. C.; Vargas, M. D.; -Schpector, J. Z. Tetrahedron 2002, 58, 6135.
19. Pandey, G.; Banerjee, P.; Kumar, R.; Puranik, V. G.; Org.Lett. 2005, 7, 3713.
20. a) Davis, F. A.; Stringer O. D. J. Org. Chem. 1982, 47, 1774; b) Davis, F. A.; Vishwakarma, L. C.; Billmers, J. M.; Finn, J. J. Org. Chem. 1982, 49, 3241.
21. Gardner, J. N.; Carlon, F. E.; Gnoj, O. J. Org. Chem. 1968, 33, 3294.
22. Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
23. Karlsson, S.; Högsberg, H. -E. Org. Prep. Proced. Int. 2001, 33, 103.
24. Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484.
25. a) Overman, L. E.; Shim, J. J. Org. Chem. 1993, 58, 4662; b) Pearson, W. H.; Lian, B. W. Angew. Chem. Int. Ed. 1998, 37, 1724; c) Sha, C. -K.; Hong, A, W.; Huang, C. -M. Org. Lett. 2001, 3, 2177; d) Hong, A. -W.; Cheng, T. -H.; Raghukumar, V.; Sha, C. -K.; J. Org. Chem., 2008, 73, 7580; e) Chang, M. Y.; Chen, H. -P.; Lin. C. -Y.; Pai, C. -L. Heterocycles, 2005, 65, 1999; f) Banwell, M. G.; Kokas, O. J.; Willis A. C. Org. Lett. 2007, 9, 3503; g) Matveenko, M.; Banwell, M. G.; Willis A. C. Org. Lett., 2008, 10, 4693; h) Kokas, O. J.; Banwell, M. G.; Willis, A. C. Tetrahedron, 2008, 64, 6444; i) Jin, J.; Wienreb, S. M. J. Am. Chem. Soc. 1997, 119, 2050; j) Jin, J.; Wienreb, S. M. J. Am. Chem. Soc. 1997, 119, 5773.
26. a) Anada, M.; Tanaka, M.; Shimada, N.; Nambu, H.; Yamawaki, M.; Hashimoto, S. Tetrahedron., 2009, 65, 3069; b) Pansare, S. V.; Lingampally, R.; Kirby, R. L. Org. Lett. 2010, 12, 556.
27. Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Am. Chem. Soc. 1987, 109, 5523.
28. Hashimura, K.; Tomita, S.; Hiroya, K.; Ogasawara, K. J. Chem. Soc. Chem. Comтип. 1995, 2291.
29. Kanemasa, S.; Doi, K.; Wada, E. Bull. Chem. Soc. Jpn. 1990, 63, 2866.
30. a) Harwood, L. M.; Lilley, I. A. Tetrahedron Lett. 1993, 34, 537; b) Harwood, L. M.; Kitchen, L. C. Tetrahedron Lett. 1993, 34, 6603; c) Harwood, L. M.;

Lilley, I. A. Synlett. 1996, 1010; d) Drew, M. G.; Harwood, L. M.; Price, D.
W.; Choi, M. -S.; Park, G. Tetrahedron Lett. 2000, 41, 5077.
31. Peese, K. M.; Gin, D. Y. Chemistry, 2008, 14, 1654.
32. Song, Li. N.; Tu, J.; Xi-F.; Liu, B.; Chen, X.-H.; Gong, L-Z. Org. Biomol. Chem. 2010, 8, 2016.
33. Dogan, Ö.; Garner, P. Turk. J. Chem, 2000, 24, 59.
34. a) Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238. (b) Meyers, A. I.; McKennon, M. J. J. Org. Chem. 1993, 58, 3568. (c) Evans, D. A. Organic Synthesis; Wiley: New York, 1990; Vol. 68, pp 77. (d) Thom, C.; Kocienski, P. Synthesis 1992, 582.

Chapter 3

Chapter 3

General experimental methods:

All reactions requiring anhydrous conditions were performed under a positive pressure of argon using oven dried glassware $\left(110{ }^{\circ} \mathrm{C}\right)$, which were cooled under argon. Solvents for anhydrous reactions were dried according to Perrin et al. ${ }^{1}$ Benzene, DCM and triethylamine were distilled over CaH_{2} and stored over molecular sieves and KOH , respectively. THF was distilled over sodium benzophenoneketyl. Solvents used for chromatography were distilled at respective boiling points using known procedures. Petroleum ether, used in the column chromatography was distilled in $60-80^{\circ} \mathrm{C}$ boiling range.

All commercial reagents were obtained from Sigma-Aldrich and Lancaster Chemical Co. (UK). n-Butyllithium and s-butyllithium were titrated using diphenylacetic acid as an indicator. $\mathrm{TMSCl}, \mathrm{MsCl}$ and DBU were distilled before use. Progress of the reactions was monitored by TLC on pre-coated with silica gel 60. Compounds were visualized by heating after dipping in alkaline solution of KMnO_{4} and $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}(6.25 \mathrm{~g})$ in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(250 \mathrm{~mL})$. Column chromatography was performed on silica gel 60-120/ 100-200/ 230-400 mesh. Typical syringe and cannula techniques were used to transfer air and moisture-sensitive reagents.

All melting points were uncorrected in degree Celsius and recorded on Thermonik and Buchi melting point apparatus. IR spectra were recorded on a Perkin Elmer infrared spectrometer model 599-B and model 1620 FT-IR. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker ACF 200, Bruker AV 400 and Bruker DRX 500 instruments using deuteriated solvent. Chemical shifts are reported in ppm. Proton coupling constants (J) are reported as absolute values in Hz and multiplicity (br, broadened; s, singlet; d , doublet; t , triplet; dt, doublet of triplet; ddd, doublet of a doublet of a doublet; m, multiplet; td, triplet of doublet; dt, doublet of triplet). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker ACF 200, AV 400 and Bruker DRX 500 instruments operating at $50 \mathrm{MHz}, 100 \mathrm{MHz}$ and 125 MHz , respectively. ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to the central line of $\mathrm{CDCl}_{3}(\delta 77.0)$. Mass spectra were recorded on PE SCIEX API QSTAR pulsar (LC-MS), automated GC/MS with solid probe facility mass spectrometer and high resolution mass spectroscopy (HRMS) were recorded on MSI (U.K.) Autoconcept instrument with electron impact mode of

Chapter 3

ionization, obtained at an ionization potential of 70 eV . Microanalysis data were obtained using a Carlo-Erba CHNS-O EA 1108 Elemental Analyser at National Chemical Laboratory.

3.1. Experimental procedures and spectral data:

1. 1-(10-[1,3]Dioxolan-2-ylmethyl-4,5-methylenedioxy-9-aza-tricyclo[7.2.1.0*2,7*]

 dodeca-2,4,6-trien-11 α-yl)-ethanone (185):

A solution of $\mathbf{1 8 6}(2 \mathrm{~g}, 4.1 \mathrm{mmol})$ in 20 mL of dry acetonitrile was introduced dropwise over a period of 30 min . into an argon flushed 250 mL two necked flask containing a vacuum and flame dried $\operatorname{Ag}(\mathrm{I}) \mathrm{F}(2 \mathrm{~g}, 16.4 \mathrm{mmol})$ in 150 mL dry DCM . The color of the reaction mixture gradually turned to dark brown with concomitant deposition of silver mirror on the surface of the flask. The reaction was monitored periodically by TLC. After stirring for 18-20 h. the reaction mixture was filtered through a small plug of basic alumina and eluted with methanol. Solvent was evaporated to give a crude brown residue which was purified by silica gel column chromatography (eluent: acetone/petroleum ether $=2: 8 ; \mathrm{R}_{\mathrm{f}}=0.3$) to give cycloadduct (185), ($0.7 \mathrm{~g}, 51 \%$) as a white crystalline solid.

mp	: $154-156{ }^{\circ} \mathrm{C}$
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2958, 1708, 1483, 1359, 1139, 1039
${ }^{1} \mathrm{H}$ NMR	$6.37(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{dd}, \mathrm{J}=6.88$,
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \boldsymbol{\delta}$	$2.29 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ and 3.63 ($\mathrm{ABq}, ~ J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85$
	$(\mathrm{m}, 2 \mathrm{H}), 3.75$ (m, 2H), 3.53 (m, J = 8.7, 3.7 Hz, 1H), 3.33
	(d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (dd, $J=2.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$
	(d, $J=2.5,1 \mathrm{H}), 2.87$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (s, 3H),
	1.80 (br t, $J=11.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR	: 207.6, 146.3, 145.5, 134.9, 125.3, 106.6, 106.3, 103.5,
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \boldsymbol{\delta}$	$100.4,64.6,64.5,64.33,64.28,59.9,53.9,43.4,35.7,32.2$

Chapter 3

Mass: $\boldsymbol{m} / \mathbf{z} \quad: \quad$ ESI $332.1489(\mathrm{M}+\mathrm{H})^{+}$

Elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5}$ (185): C, 65.24 ; $\mathrm{H}, 6.39$; $\mathrm{N}, 4.23$; Found: C, 65.14; H, 6.47; N, 4.11
2. Preparation of 1-(4,5-methelenedioxy-9-aza-tricyclo[7.4.1.02,7]tetradeca-2,4,6,9,12-pentaen-13-yl)-ethanone (194):

To a 25 mL two necked jacketed flask compound $185(0.09 \mathrm{~g}, 0.27 \mathrm{mmol})$ was taken in 10 mL of dry DCM and cooled to $-20{ }^{\circ} \mathrm{C} .2$, 6-Lutidine ($0.19 \mathrm{~mL}, 1.63$ $\mathrm{mmol})$ and TMSOTf $(0.20 \mathrm{~mL}, 1.08 \mathrm{mmol})$ were added dropwise to the reaction mixture and stirred for 8 h . The reaction mixture was quenched with water and extracted with DCM ($3 \times 5 \mathrm{~mL}$). The combined organic layer was washed with NaHCO_{3} and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under reduced pressure to give a brown colored residue. The residue was purified by silica gel column chromatography (acetone/petroleum ether 3:7) to obtain $194(0.045 \mathrm{~g}$, 61%) as a gummy liquid.

${ }^{1} \mathrm{H}$ NMR	8.97 (d, J = 8.1 Hz, 1H), 7.02 (m, 1H), 6.46 (s, 1H),
$\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}$	6.42 (s, 1H), 5.79 (s, 2H), 5.15 (br t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$,
	4.21 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (m, 1H), 3.22 (br m,
	$1 \mathrm{H}), 2.52$ (br d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.01$ (s, 3H).

3. 1-(10-[1,3]Dioxolan-2-ylmethyl-4,5-methylenedioxy-9-aza-tricyclo[7.2.1.0*2,7*]

 dodeca-2,4,6-trien-11 β-yl)-ethanone (195):

Chapter 3

A mixture of $\mathbf{1 8 5}(0.1 \mathrm{~g}, 0.3 \mathrm{mmol})$ and $3 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$ in 3 mL of THF was allowed to stir at room temperature for 8 h . The solvent was evaporated under reduced pressure and whole residue was re-dissolved in DCM (10 mL) and washed with saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}, \mathrm{P}^{\mathrm{H}}>8$). The aqueous layer was washed with DCM ($3 \times 5 \mathrm{~mL}$) and combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Column chromatography of the crude reaction mixture with chloroform/methanol (9:1) afforded 0.09 g of 195 (90%) as a white solid.
mp $\quad: 165-167^{\circ} \mathrm{C}$
1H NMR : $6.38(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{dd}, J=5.43$, $\left.\left.\mathbf{(C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 3.30 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.26(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.87(\mathrm{~m}, 3 \mathrm{H})$, 3.63-3.75 (m, 3H), 3.24 (br d, $J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.06(\mathrm{~d}$, $1 \mathrm{H}), 2.11-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.74(\mathrm{~m}, 1 \mathrm{H})$.

4. (11 β-Acetyl-4,5-methylenedioxy-9-aza-tricyclo[7.2.1.0*2,7*]dodeca-2,4,6-trien-

10-yl)-acetaldehyde (196):

A mixture of $\mathbf{1 8 5} / \mathbf{1 9 5}(0.2 \mathrm{~g}, 0.6 \mathrm{mmol})$ and $3 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$ in 3 mL of THF was refluxed overnight. The solvent was evaporated under reduced pressure and whole residue was re-dissolved in $\mathrm{DCM}(8 \mathrm{~mL})$ and washed with saturated NaHCO_{3} solution ($2 \times 3 \mathrm{~mL}, \mathrm{P}^{\mathrm{H}}>8$). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Column chromatography of the crude reaction mixture with chloroform/methanol (9:1) afforded 196 ($0.13 \mathrm{~g}, 56 \%$).

$$
\begin{array}{lll}
\mathbf{I R} \boldsymbol{v}_{\max } \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{\mathbf{3}}\right) & : & 2921,1721,1342,1041 \\
& : & 9.76(\mathrm{dd}, J=2.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}, \\
{ }^{1} \mathbf{H} \mathbf{N M R} & & 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.26 \text { and } 3.91(\mathrm{ABq}, J \\
\left.\mathbf{(5 0 0 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} & =17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.72(\mathrm{~m}, 1 \mathrm{H}), \\
& & 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.77(\mathrm{~m}, 1 \mathrm{H}), \\
& (2.38-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})
\end{array}
$$

Chapter 3

5. Preparation of (E)-ethyl 3-(6-(((2-(1,3-dioxolan-2-yl)-1-trimethylsilyl)ethyl)

 ((trimethylsilyl)methyl) amino)methyl)benzo[d][1,3]dioxol-5-yl)acrylate (199):

To a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(2.53 \mathrm{~g}, 18.36 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.164 \mathrm{~g}, 0.73 \mathrm{mmol})$, $\mathrm{PPh}_{3}(0.385 \mathrm{~g}, 1.46 \mathrm{mmol})$ and compound $193(5 \mathrm{~g}, 9.18 \mathrm{mmol})$ in 30 ml dry $\mathrm{CH}_{3} \mathrm{CN}$, ethyl acrylate ($7.9 \mathrm{~mL}, 73.4 \mathrm{mmol}$) was added. The mixture was degassed several times with argon and refluxed for 12 h under argon atmosphere. The reaction mixture was cooled to room temperature, then diluted with DCM and washed with 0.1 N HCl ($3 \times 20 \mathrm{~mL}$) followed by brine. The organic layer was concentrated under reduced pressure and the residue was purified by column chromatography to obtain 199 in 70% yield as a pale yellow solid, eluting with ethyl acetate/petroleum ether (5:95).

mp	101-103 ${ }^{\circ} \mathrm{C}$
IR $\nu_{\text {max }} \mathrm{cm}^{-1} \mathrm{CHCl}_{3}$)	$\begin{aligned} : & 3054,2954,1706,1618,1504,1479,1402,1265,1178, \\ & 1041 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$	$8.04(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.16$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{ABq}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{dd}$, $J=5.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1,2 \mathrm{H}), 3.95-3.77(\mathrm{~m}$, $5 \mathrm{H}), 3.56(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=8.2,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25$ and $2.15(\mathrm{ABq}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-2.11(\mathrm{~m}$, $1 \mathrm{H}), 1.53-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, 9 H), 0.05 ($\mathrm{s}, 9 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$	$\begin{aligned} & 167.1,149.4,146.7,141.7,135.4,127.2,117.4,110.0, \\ & 105.5,103.8,101.2,64.7,64.5,60.2,56.2,49.5,44.7,30.6 \text {, } \\ & 14.3,0.55,-1.08 \end{aligned}$
Mass: m/z	: HRMS (EI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NSi}_{2} \mathrm{O}_{6}$: 507.24753, found 507.24753

6. (6R,7S,8S,9R)-ethyl 7-((1,3-dioxolan-2-yl)methyl)-5,7,8,9-tetrahydro-6,9methano [1,3]dioxolo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ benzo $[1,2-c]$ azepine-8-carboxylate (198):

Chapter 3

The experiment was performed using same procedure as described for $\mathbf{1 8 5}$, gave 198 in 53% yield as a white crystalline solid after silica gel column chromatography by eluting with 20% acetone/petroleum ether.
mp : $129-131{ }^{\circ} \mathrm{C}$

7. Diethyl (2-((6R,7S,8S,9R)-7-((1,3-dioxolan-2-yl)methyl)-5,7,8,9-tetrahydro-6,9methano [1,3]dioxolo[4',5':4,5]benzo[1,2-c]azepin-8-yl)-2-oxoethyl)phosphonate (187):

To a stirring solution of diethyl methyl phosphonate ($0.27 \mathrm{~mL}, 1.8 \mathrm{mmol}$) in dry THF (2 mL) was added n-BuLi in hexane $(0.85 \mathrm{~mL}, 1.6 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$ over a period of 15 minutes under argon. The resulting reaction mixture was stirred

Chapter 3

for additional 1 h at the same temperature. Compound $198(0.13 \mathrm{~g}, 0.36 \mathrm{mmol})$ in dry THF (2 mL) was added to the resultant reaction mixture drop wise and further allowed to run for another 1 h at $-78{ }^{\circ} \mathrm{C}$. After 1 h , it was allowed to warm up to room temperature over a period of 2 h . Saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to obtain brown thick residue which was purified by silica gel chromatography afforded 187 ($0.156 \mathrm{~g}, 92 \%$) as a brown thick paste (eluent 40% acetone/petroleum ether, $\mathrm{R}_{\mathrm{f}}=0.2$).

IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1} \mathbf{C H C l}_{3}$) : $2925,2851,1700.97,1607,1505,1485,1435,1399,1247$, 1182, 1038
${ }^{1}{ }^{1}$ H NMR : $\quad 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.01(\mathrm{dd}, J=7.1$, $\left.\left.\mathbf{(C D C l}_{3}, \mathbf{2 0 0 ~ M H z}\right) \boldsymbol{\delta} \quad 2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.26$ and $3.71(\mathrm{ABq}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-$ $4.06(\mathrm{~m}, 4 \mathrm{H}), 3.95-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.38$ (dd, $J=11.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (d, $J=13.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.12 (d, $J=13.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.11(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-$ 3.02 (m, 2H), 2.99-2.94 (m, 1H), 2.88 (d, J = $11.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.82-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 6H)
${ }^{13}$ C NMR : 201.4, 146.9, 146.0, 134.5, 124.8, 107.2, 106.5, 103.3, $\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 100.8,64.9,64.88,64.6,60.1,54.0,53.2,53.17,53.0,52.9$, 44.6, 44.2, 43.2, 36.0, 31.9, 29.7, 29.3, 22.7, 14.1.

Mass: $\boldsymbol{m} / \mathbf{z} \quad:$ ESI $468.24(\mathrm{M}+\mathrm{H})^{+}$

8. Diethyl(2-((6S,11S)-5,11-dihydro-6,11-methano[1,3]dioxolo[4',5':4,5] benzo

[1,2-c]azonin-10-yl)-2-oxoethyl)phosphonate (200):

To a stirring solution of $\mathbf{1 8 7}(0.150 \mathrm{~g}, 0.32 \mathrm{mmol})$ in THF: $\mathrm{H}_{2} \mathrm{O}(1: 1,6 \mathrm{~mL})$ was added oxalic acid $(0.4 \mathrm{~g}, 3.2 \mathrm{mmol})$ and heated at $80{ }^{\circ} \mathrm{C}$ for $6-8 \mathrm{~h}$. After the completion of the reaction, monitored by TLC, it was cooled down to room

Chapter 3

temperature, the volatile material was evaporated under reduced pressure, diluted with ethyl acetate, basified by slow addition of saturated NaHCO_{3}. The aqueous layer was partitioned in separating funnel and the aqueous layer was washed with ethyl acetate ($2 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, purified by column chromatography (eluent 60%, acetone/petroleum ether) to obtain the rearranged product $\mathbf{2 0 0}(88 \mathrm{mg}, 68 \%)$.

IR $\boldsymbol{v}_{\text {max }} \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{\mathbf{3}}\right): \quad 2983,1607,1504,1486,1439,1265,1243,1191,1038$
${ }^{1}$ H NMR : $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{br} \mathrm{d}, J=7.5,1 \mathrm{H}), 6.78(\mathrm{td}, J=7.5,3.8$
$\left.\left.\mathbf{(C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad \mathrm{Hz}, 1 \mathrm{H}\right), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.85$ and $5.84(\mathrm{ABq}, J$ $=1.3,2 \mathrm{H}), 4.27-4.15(\mathrm{~m}, 9 \mathrm{H}), 3.31(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.26(\mathrm{t}, 6 \mathrm{H})$
${ }^{13}$ C NMR $\quad: \quad 160.1,160.0,146.5,146.4,135.6,131.9,131.4,131.3$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \boldsymbol{\delta}$ 128.6, 118.6, 118.4, 109.3, 105.8, 100.8, 62.6, 62.4, 47.9, 47.4, 29.7, 16.2, 16.1

Mass: $\boldsymbol{m} / \mathbf{z} \quad: \quad$ HRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}: 405.13254$, found 405.12728

9. (6R,7S,8R,9R)-ethyl 7-cinnamyl-5,7,8,9-tetrahydro-6,9-methano[1,3]dioxolo [4',5':4,5]benzo[1,2-c]azepine-8-carboxylate (210b):

To a stirring solution of pure cycloadduct $198(1 \mathrm{~g}, 2.7 \mathrm{mmol})$ in THF $/ \mathrm{H}_{2} \mathrm{O}$ $(1: 1,50 \mathrm{~mL})$ was added oxalic acid $(3.5 \mathrm{~g}, 27.7 \mathrm{mmol})$ and the reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for approximately $24-30 \mathrm{~h}$. The reaction mixture was cooled to room temperature and THF was evaporated under reduced pressure at $45^{\circ} \mathrm{C}$, diluted with ethyl acetate and basified by slow addition of saturated NaHCO_{3} solution $\left(\mathrm{P}^{\mathrm{H}}>8\right)$ at 0 ${ }^{\circ} \mathrm{C}$. The organic layer was partitioned in separating funnel and the aqueous layer was again washed with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under reduced pressure which gave aldehyde as a brown colored residue and was forwarded as such to the Wittig olefination reaction.

Chapter 3

Wittig ylide was generated by slow addition of $n-\mathrm{BuLi}(1.6 \mathrm{~N}$ in hexane, 1.87 $\mathrm{mL}, 3 \mathrm{mmol})$ to the suspension of salt ($1.6 \mathrm{~g}, 3.78 \mathrm{mmol}$) in dry THF (12 mL) under the positive pressure of argon at $0{ }^{\circ} \mathrm{C}$. The appearance of orange color indicates the generation of ylide which was stirred at the same temperature for another 30 minutes and was introduced to the solution of aldehyde ($0.8 \mathrm{~g}, 2.5 \mathrm{mmol}$) in dry THF (3 mL) slowly over a period of 10 min . Reaction mixture was allowed to warm to room temperature and stirred for overnight before the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was partitioned and extracted with ethyl acetate (3x20 $\mathrm{ml})$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to obtain brown thick mass, which was purified by column chromatography by eluting with 20% acetone/petroleum ether to yield yellow paste compound 210 b ($0.66 \mathrm{~g}, 60 \%$).

$$
\begin{aligned}
& \text { IR } v_{\text {max }} \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{\mathbf{3}}\right): \quad 2929,1731,1502,1482,1232,1038 \\
& { }^{1} \text { H NMR : } 7.34-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.45(\mathrm{dd}, J=14.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s} \text {, } \\
& \left.\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0 ~ M H z}\right) \boldsymbol{\delta} \quad 1 \mathrm{H}\right), 6.4(\mathrm{~s}, 1 \mathrm{H}), 6.1-6.25(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{br} \mathrm{~s}, 2 \mathrm{H}), 4.25 \\
& \text { and } 3.76(\mathrm{ABq}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{q}, J=7.1,2 \mathrm{H}) \text {, } \\
& 3.48(\operatorname{app~q}, J=6.8,6.7, \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.18(\operatorname{app} \mathrm{dd}, J= \\
& 5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H} \text {), } 3.15 \text { (dd, } J=11.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J \\
& =11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{appt} \mathrm{t}, J=6.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.47 \\
& \text { (m, 1H), 2.50-2.22 (m, 2H), } 1.13 \text { (t, } J=7.03 \mathrm{~Hz}, 3 \mathrm{H}) \\
& { }^{13} \mathbf{C} \text { NMR } \quad: \quad 171.6,146.9,145.4,137.5,132.2,132.1,131.1,128.6 \text {, } \\
& \left.\mathbf{(C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right) \boldsymbol{\delta} \quad 128.5,127.4,127.1,126.1,108.3,106.4,100.6,66.3,60.9 \text {, } \\
& \text { 60.9, 55.7, 43.8, 39.7, } 14.2 \\
& \text { Mass: } \boldsymbol{m} / \mathbf{z} \quad: \quad \text { HRMS (EI) Calcd for } \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4} 391.17836 \text {, found } \\
& 391.17956
\end{aligned}
$$

10. ((6R,7S,8R,9R)-7-cinnamyl-5,7,8,9-tetrahydro-6,9-methano[1,3]dioxolo

 [4', $\left.5^{\prime}: 4,5\right]$ benzo [1,2-c]azepin-8-yl)methanol (211):

Chapter 3

To a stirring solution of $\mathbf{2 1 0 b}(0.5 \mathrm{~g}, 1.2 \mathrm{mmol})$ in dry DCM was added DIBAL-H (1.46 N in toluene, $2.1 \mathrm{~mL}, 3.2 \mathrm{mmol}$) slowly over a period of 10 min . at $78{ }^{\circ} \mathrm{C}$. After the completion of addition, the reaction mixture was allowed to warm to room temperature in 1 h . The reaction mixture was diluted with DCM, few drops of aqueous solution of Na, K - tartarate at $0{ }^{\circ} \mathrm{C}$ added and allowed to stir for another 1 h , dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and passed through the small pad of cellite, concentrated under reduced pressure to obtain the complete reduced product 211 as milky white paste ($0.43 \mathrm{~g}, 96 \%$).

IR $\boldsymbol{v}_{\text {max }} \mathbf{c m}^{\mathbf{- 1}}\left(\mathbf{C H C l}_{\mathbf{3}}\right): \quad 3421,3053,2926,2893,2307,1481,1265,1236,1039$
${ }^{1}$ H NMR : $7.37-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.33-6.19(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.26$ and $3.64(\mathrm{ABq}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=10.4,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.18(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=9.1,2.4 \mathrm{~Hz}$, 1 H), $3.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.9-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.29(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13}$ C NMR $\quad: \quad 146.5,145.4,137.5,131.8,131.7,128.4,127.9,127.0$, $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right) \boldsymbol{\delta} \quad 126.0,125.9,108.6,106.4,100.6,67.7,62.8,60.9,58.2$, 55.1, 42.1, 39.8

Mass: $\boldsymbol{m} / \mathbf{z} \quad: \quad$ HRMS (EI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3} 349.16776$, found 349.17059

11. (6R,7S,8R,9R)-7-cinnamyl-5,7,8,9-tetrahydro-6,9-methano[1,3]dioxolo [$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ benzo [1,2-c]azepine-8-carbaldehyde (212):

To a stirring solution of oxalyl chloride ($0.1 \mathrm{~mL}, 1.29 \mathrm{mmol}$) in DCM (2 $\mathrm{mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dry DMSO ($0.09 \mathrm{~mL}, 1.29 \mathrm{mmol}$) under argon. After 15 minutes, solution of the alcohol $211(0.3 \mathrm{~g}, 0.86 \mathrm{mmol})$ in dry DCM (2 mL) was added drop wise to the reaction mixture and stirred for another 2 h at the same temperature. Excess of TEA $(0.6 \mathrm{ml}, 4.3 \mathrm{mmol})$ was added to the reaction mixture and was gradually warmed to room temperature over 30 minutes. The resultant reaction mixture was diluted with DCM, extracted with water. The aqueous layer was washed

Chapter 3

with DCM ($3 \times 10 \mathrm{~mL}$) and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to obtain crude aldehyde. This residue was purified by flash chromatography by eluting with 20% acetone/petroleum ether which gave almost pure aldehyde $\mathbf{2 1 2}$ in quantitative yield.

IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{\mathbf{3}}\right): \quad 2953,2887,1714,1481,1340,1230,1140,1037$
${ }^{1}$ H NMR $\quad: \quad 9.33(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{~d}, J=$
$\left.\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 15.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.14(\operatorname{app} \mathrm{ddd}, J=$ $15.8,7.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ and $5.81(\mathrm{ABq}, J=1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.27$ and $3.74(\mathrm{ABq}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{appq}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{br} \mathrm{d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $2.8(\operatorname{app} \operatorname{td}, J=6.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.4(\mathrm{~m}, 1 \mathrm{H}), 2.2(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13}$ C NMR $\quad: \quad 201.8,147.2,145.9,137.3,132.5,132.1,130.0,128.5$, $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 127.2,126.8,126.1,125.5,108.0,106.9,100.8,67.6,65.0$, 60.7, 55.9, 43.1, 39.5

Mass: $\boldsymbol{m} / \mathbf{z} \quad: \quad$ ESI $348(\mathrm{M}+\mathrm{H})^{+}, 380.4[(\mathrm{M}+\mathrm{MeOH})+\mathrm{H}]^{+}$

12. 1-((6R,7S,8R,9R)-7-cinnamyl-5,7,8,9-tetrahydro-6,9-methano[1,3]dioxolo
 [4',5':4,5]benzo[1,2-c]azepin-8-yl)allyl acetate (214):

To a stirring solution of $2 \mathbf{2 1 2}(0.3 \mathrm{~g}, 0.86 \mathrm{mmol})$ in dry THF (3 mL), was added vinyl magnesium bromide (VMB, 1M in THF, $0.26 \mathrm{~mL}, 0.26 \mathrm{mmol}$) slowly at $78{ }^{\circ} \mathrm{C}$ over a period of 10 minutes under argon positive pressure. The resulting reaction mixture was stirred at room temperature for overnight before quenching with water. Aqueous layer was separated and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layer was washed with brine and concentrated under reduced pressure gave allylic alcohol 213 in quantitative yield. The compound 213 was forwarded for the acetate protection without purification.

To a stirred solution of $213(0.3 \mathrm{~g}, 0.86 \mathrm{mmol})$, DMAP (10 mg) and TEA $(0.18 \mathrm{~mL}, 1.29 \mathrm{mmol})$ in dry $\mathrm{DCM}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL}, 1 \mathrm{mmol})$

Chapter 3

drop wise. The reaction mixture was stirred for 6 h at room temperature. After the completion of the reaction, water (3 mL) was added and the reaction mixture was extracted with ethyl acetate. The combined organic layer was washed with brine, concentrated under reduced pressure to obtain a brown mass, which was purified by column chromatography gave 214 (94% combined yield). The data corresponding to major isomer as as noted below.

$$
\begin{aligned}
& \text { IR } \boldsymbol{v}_{\text {max }} \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{3}\right): \quad 3024,2977,1738,1503,1482,1372,1234,1038 \\
& { }^{1} \text { H NMR : } 7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=7.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\
& \left.\mathbf{(C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 7.20(\mathrm{dd}, J=7.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.36(\mathrm{~m}, 4 \mathrm{H}), 5.90 \\
& \text { (ABq, } 1.5 \mathrm{~Hz}, 2 \mathrm{H} \text {), } 5.82 \text { (ddd, } J=17.4,10.5,6.9 \mathrm{~Hz}, 1 \mathrm{H} \text {), } \\
& 5.27 \text { (dd, } J=16.0,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{dd}, J=10.4,6.8 \mathrm{~Hz} \text {, } \\
& 1 \mathrm{H}), 4.32 \text { and } 3.75(\mathrm{ABq}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.16 \text { (dd, } J= \\
& 11.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.8-2.87 \text { (} \mathrm{m} \text {, } \\
& 2 \mathrm{H}), 2.52 \text { (m, 1H), 2.33-2.41 (m, 2H), } 1.98 \text { (s, 3H) } \\
& { }^{13} \text { C NMR : 169.7, 147.1, 145.5, 137.6, 135.7, 135.5, 131.6, 130.7, } \\
& \left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right) \boldsymbol{\delta} \quad 128.5,128.3,127.1,126.1,118.8,108.7,106.6,100.8 \text {, } \\
& 76.4,69.5,61.1,59.1,55.4,41.94,40.2,21.2 \\
& \text { Mass: } \boldsymbol{m} / \mathbf{z} \quad: \quad \text { HRMS (EI) Calcd for } \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}: 417.19401 \text {, found } \\
& 417.19417
\end{aligned}
$$

13. (6R,6aS,10aR,11R)-5,6a,7,10,10a,11-hexahydro-6,11-methano[1,3]dioxolo

 [4',5':4,5]benzo[1,2-e]benzo[b]azepin-10-yl acetate (215/216):

The mixture of diastereomers (214, $0.2 \mathrm{~g}, 0.48 \mathrm{mmol})$ were dissolved in dry DCM (3 mL) and was saturated with dry HCl at $0{ }^{\circ} \mathrm{C}$ to obtain the hydrochloride salt of 214. After 30 min . at $0{ }^{\circ} \mathrm{C}, \mathrm{DCM}$ was removed under vacuum and freshly distilled benzene (50 mL) was added to the $\mathbf{2 1 4 .} \mathbf{H C l}$. The reaction mixture was degassed thoroughly for 10-20 min and Grubbs second generation catalyst ($80 \mathrm{mg}, 10$ $\mathrm{mol} \%$) was added in two lots and the reaction mixture was degassed again for 10 to 20 min and stirred for 1 h at room temperature followed by reflux for 8 h . After

Chapter 3

completion of the reaction, saturated solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added. The aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic layer were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then concentrated under reduced pressure to obtain a dark brown mass which was purified by flash column chromatography to obtain two diastereomers 215 and 216 in 93% combined yield. The less polar and minor diastereomer 216 (40 mg) was eluted with 2% methanol/dichloromethane and the more polar and major distereomer $215(100 \mathrm{mg})$ was eluted with $4-5 \%$ methanol/dichloromethane.

Spectral data for major diastereomer (215):

IR $v_{\text {max }} \mathrm{cm}^{-1} \mathrm{CHCl}_{3}$)	29
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \boldsymbol{\delta}$	$\begin{aligned} & 6.46(\mathrm{br} \mathrm{~s}, 2 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}), 5.73-5.60 \\ & (\mathrm{~m}, 2 \mathrm{H}), 4.22 \mathrm{and} 3.80(\mathrm{ABq}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{br} \mathrm{~d}, \\ & J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{td}, J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J \\ & =11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{dt}, J=17.0,4.9 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 2.2-2.1(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathrm{C} \text { NMR } \\ & \left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta \end{aligned}$	$170.4,146.4,145.5,132.4,131.3,127.0,108.9,106.9$, 100.7, 67.49, 61.9, 60.0, 58.6, 56.6, 40.1, 33.3, 20.7
Mass: m/z	: HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$: 313.13141, found 313.13631

Chapter 3

Spectral data for minor diastereomer (216):

IR $\boldsymbol{v}_{\text {max }} \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{\mathbf{3}}\right): \quad 2924,2554,1732,1485,1240$
${ }^{1}$ H NMR : $\quad 6.46(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.90(\mathrm{ABq}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.8-5.7(\mathrm{~m}$,
$\left.\left.\mathbf{(C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 1 \mathrm{H}\right), 5.55(\mathrm{dt}, J=10.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 4.22$ and $3.73(\mathrm{ABq}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{br} \mathrm{d}, J=11.2 \mathrm{~Hz}$, 1 H), 3.07 (d, $J=11.2,1 \mathrm{H}$), 2.98 (br s, 1H), 2.67 (td, $J=$ $11.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dt}, J=15.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.2-2.3$ (m, 2H), 2.12 (s, 3H)
${ }^{13}$ C NMR $\quad: \quad \delta 170.4,147.1,146.1,129.9,129.1,100.9,72.0,63.7,61.6$, $\left(\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{M H z}\right) \boldsymbol{\delta} \quad 57.8,57.7,39.2,31.9,21.2,57.7,39.2,31.9,21.2$
${ }^{1}$ H NMR : $6.70(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.53(\mathrm{~m}, 1 \mathrm{H})$, $\left(\mathbf{C}_{6} \mathbf{D}_{6}, \mathbf{5 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 5.40$ and $5.32(\mathrm{ABq}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.36-5.33(\mathrm{~m}, 1 \mathrm{H})$, 4.02 and $3.40(\mathrm{ABq}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{br} \mathrm{d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=11.2,1 \mathrm{H}), 2.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.52(\mathrm{td}, J$ $=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dt}, J=15.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (m, 1H), $1.85(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR $\quad: \quad 170.4,147.1,146.1,129.9,129.1,109.2,107.0,100.9$, $\left(\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{~ M H z) ~ \boldsymbol { \delta }} \quad 72.0,63.7,61.6,57.8,57.7,39.2,31.9,21.2\right.$

14. (6R,6aS,8R,9R,10R,10aR,11R)-8,9-dihydroxy-5,6a,7,8,9,10,10a,11-octahydro-

 6,11-methano[1,3]dioxolo[4',5':4,5]benzo[1,2-e]benzo[b]azepin-10-yl acetate (217):

Trimethylamine N-oxide dihydrate ($27 \mathrm{mg}, 0.24 \mathrm{mmol}$) was added to a solution of $215(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ in a mixture of $t-\mathrm{BuOH}(0.5 \mathrm{~mL})$, pyridine (30 $\mu \mathrm{L})$ and water $(30 \mu \mathrm{~L})$. The solution was stirred until all solids had dissolved and a crystal of OsO_{4} was added at room temperature. The resulting solution was stirred for

Chapter 3

8-10 h. A pinch of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to the reaction mixture and allowed to stir for additional 30 min . The solvent was removed by rotary evaporation; the residue was re-dissolved in DCM (5 mL) and partitioned with brine (2 mL). The aqueous layer was extracted with DCM ($2 \times 5 \mathrm{~mL}$), organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and recrystallized in ethanol to obtain $\mathbf{2 1 7}$ as a white crystalline solid as a single diastereomer.

mp	293-295 ${ }^{\circ} \mathrm{C}$
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3385, 3081, 2976, 2928, 1734, 1375, 1246, 1217
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \boldsymbol{\delta}$: $\quad 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.43(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.33$ and $4.03(\mathrm{ABq}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.64$ (m, 1H), $3.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.25-3.18 (m, 1H), $3.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.88$ (app q, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$
$\begin{aligned} & { }^{13} \mathrm{C} \text { NMR } \\ & \left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta \end{aligned}$: $\quad 172.0,149.2,148.5,132.2,125.7,110.7,109.0,103.2$, $72.6,72.3,71.2,62.7,62.6,60.7,54.1,42.0,36.1,21.4$
Mass: m/z	: HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{6}: 347.13689$, found 347.13667

15. (3aR,4aS,5R,12R,12aR,13R,13aR)-2,2-dimethyl-3a,4,4a,6,12,12a,13,13a-octahydro-5,12-methano[1,3]dioxolo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ benzo $[1,2-b][1,3]$ dioxolo $\left[4^{\prime}, 5{ }^{\prime}: 4,5\right]$ benzo[1,2-e]azepin-13-yl acetate (218):

To a solution of $217(50 \mathrm{mg}, 0.15 \mathrm{mmol}), p-\mathrm{TSA}(43 \mathrm{mg}, 0.22 \mathrm{mmol})$ and molecular sieves in dry acetone (0.5 mL) was added 2, 2-dimethoxypropane (0.1 mL , 0.8 mmol) at room temperature and the progress of the reaction was monitored by TLC. After completion of the reaction ($4-6 \mathrm{~h}$), volatile material was evaporated under

Chapter 3

reduced pressure and the residue was diluted with DCM and washed with water. The aqueous layer was extracted with $\mathrm{DCM}(3 \times 5 \mathrm{~mL})$ and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography (eluent; 8\% Methanol/dichloromethane), to obtain 218 as yellow paste ($50 \mathrm{mg}, 95 \%$).

IR $\mathbf{v}_{\max } \mathbf{c m}^{\mathbf{- 1}}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \quad: \quad 2928,2857,1745,1481,1374,1239,1070,1037$

16. (3aR,4aS,5R,12R,12aR,13R,13aS)-2,2-dimethyl-3a,4,4a,6,12,12a,13,13a-octahydro-5,12-methano[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,3]dioxolo[4',5':4,5] benzo[1,2-e]azepin-13-ol (219):

To a stirring solution of $\mathbf{2 1 8}(30 \mathrm{mg}, 0.077 \mathrm{mmol})$ in distilled MeOH was added $\mathrm{NaOMe}(20 \mathrm{mg}, 0.77 \mathrm{mmol})$ and allowed to stir for $4-6 \mathrm{~h}$ at room temperature. After the completion of the reaction, methanol was evaporated and the residue was redissolved in DCM and washed with water. The aqueous layer was extracted with DCM ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give white paste, which was purified by silica gel column

Chapter 3

chromatography (eluent 10\%, methanol/dichloromethane) to obtain pure alcohol 219 as a white sticky material in 91% yield.

IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & : \quad 3337,3018,2926,2399,2360,2333,1506,1485,1387, \\ & \quad 1240,1215,1068,1039 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \boldsymbol{\delta}$	$6.61(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{ABq}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.23$ and $3.77(\mathrm{ABq}, J=$ $16.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (br s, $1 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.38(\mathrm{app} \mathrm{dt}, J=10.0 \mathrm{~Hz}$, 1 H), 1.67 (ddd, $J=11.8,10.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.49 (s , $3 \mathrm{H}), 1.31$ ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathbf{1 2 5} \mathrm{MHz}\right) \boldsymbol{\delta}$: 147.4, 146.7, 130.4, 108.9, 108.0, 107.0, 101.2, 78.1, $74.5,68.5,61.6,58.8,58.1,57.0,40.4,37.2,28.3,26.3$
Mass: m/z	: HRMS (EI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{6}: 345.15762$, found 345.15728

17. (3aR,4aS,5R,12S,13aS)-2,2-dimethyl-3a,4,4a,6,12,13a-hexahydro-5,12methano [1,3]dioxolo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ benzo[1,2-b][1,3]dioxolo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ benzo $[1,2-$ e]azepine (220):

To a stirring solution of $219(10 \mathrm{mg}, 0.03 \mathrm{mmol})$, DMAP (2 mg) and TEA ($12 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) in dry $\mathrm{DCM}(1 \mathrm{~mL})$ was added mesyl chloride ($8 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was further stirred for 10 h at room temperature. The reaction mixture was diluted with water (1 mL) and extracted with DCM. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was forwarded for the next step without purification.

The residue (12 mg) was refluxed with freshly distilled DBU (0.04 mL) in dry toluene $(0.5 \mathrm{~mL})$ for 2 days at $110{ }^{\circ} \mathrm{C}$. After completion of the reaction, monitored by analytical HPLC, volatile material was evaporated and the residue was

Chapter 3

purified by flash chromatography (eluted with 3% methanol/dichloromethane) to obtain eliminated product 220 ($8 \mathrm{mg}, 89 \%$ yield).

IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2975, 2925, 2853, 1735, 1628, 1480, 1376, 1260, 1041
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \boldsymbol{\delta}$: $\quad 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{ABq}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.70(\mathrm{dd}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.34$ and $3.78(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{ddd}, J=11.6,5.6,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.33-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=10.8,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~d}, \mathrm{~J}=10.8,1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H})$, $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H})$
$\begin{aligned} & { }^{13} \mathrm{C} \mathrm{NMR} \\ & \left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta \end{aligned}$	$\begin{aligned} & : \quad 155.6,146.8,146.1,132.4,124.5,112.3,109.5,107.2, \\ & \quad 106.8,100.8,73.9,71.8,62.2,61.0,55.2,45.4,33.2, \\ & \\ & 27.8,25.3 \end{aligned}$
Mass: m/z	: HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}: 327.14706$, found 327.14726

18.

(6R,6aS,8R,9S,11S)-5,6a,7,8,9,11-hexahydro-6,11-methano[1,3]dioxolo [$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ benzo[1,2-e]benzo[b]azepine-8,9-diol.HCl (20.HCl):

To a stirring solution of $\mathbf{2 2 0}(10 \mathrm{mg}, 0.03 \mathrm{mmol})$ in dry methanol was passed HCl gas at $0{ }^{\circ} \mathrm{C}$ for 15 min . The reaction mixture was stirred at the same temperature for additional 1 h . The volatile material was evaporated under reduced pressure to obtain the HCl salt of $\mathbf{2 0}$ in quantitative yield.
${ }^{1}$ H NMR $\quad: \quad \delta 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 5.95$ and $5.94(\mathrm{ABq}, J=$
($\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}$) $\boldsymbol{\delta}$ $1.02 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 4.75$ merged with $\mathrm{D}_{2} \mathrm{O}$ peak, $4.45(\mathrm{~d}, J=15.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=2.75 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{bs}, 1 \mathrm{H}), 2.37$ (ddd, $J=8.5$,

Chapter 3

$5.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (ddd, $J=11.9,11.9,11.9 \mathrm{~Hz}$, 1H)

Mass: $\boldsymbol{m} / \mathbf{z}$
: HRMS (EI): m/z: Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5}$: 287.1158; found: 287.11472
19. (6R,6aS, 8R,9S,11S)-5,6a,7,8,9,11-hexahydro-6,11-methano[1,3]dioxolo [4',5':4,5]benzo[1,2-e]benzo[b]azepine-8,9-diyl diacetate (20a):

To a stirring solution of HCl salt of brunsvigine ($10 \mathrm{mg}, 0.028 \mathrm{mmol}$) and DMAP ($2 \mathrm{mg}, 0.016 \mathrm{mmol}$) in dry pyridine (2 mL) was added acetic anhydride (0.025 $\mathrm{mL}, 0.210 \mathrm{mmol}$) at room temperature and the resulting reaction mixture stirred for 20 h . Pyridine was evaporated under reduced pressure and residue chromatographed through silica gel column (eluted with 2-3\% methanol/chloroform) to obtain 20a in 95% yield as a white crystalline solid.

mp	183-185 ${ }^{\circ} \mathrm{C}$ (lit. $184{ }^{\circ} \mathrm{C}$)
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2932, 2875, 1735, 1528, 1482, 1241, 1048
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \boldsymbol{\delta}$	$: \quad 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.89$ and $5.86(\mathrm{ABq}, J=1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.55(\mathrm{bs}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.94 (ddd, $J=12.2,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ and 3.87 (ABq, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{ABq}$, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H})$ and $3.06(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{ddd}, J=$ $11.6,11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H})$
$\begin{aligned} & { }^{13} \mathrm{C} \text { NMR } \\ & \left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta \end{aligned}$	$\begin{aligned} & : \quad 170.5,170.0,156.6,147.0,146.1,131.5,124.5,112.1, \\ & \text { 107.5), 106.9, 100.8, 68.8, 66.1, 63.0, 61.2, 56.0, 45.4, } \\ & \text { 30.2, 21.0, 20.9 } \end{aligned}$
Mass: m/z	: HRMS (EI): m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{6}: 371.1369$, found 371.13504

20. (6R,6aS,10S,10aR,11R)-5,6a,7,10,10a,11-hexahydro-6,11-methano[1,3]dioxolo [4',5':4,5]benzo[1,2-e]benzo[b]azepin-10-ol (221):

The experimental procedure was the same as mentioned for 219, gave the allylic alcohol 221 in 90% yield.
IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{\mathbf{3}}\right): 3399,3020,1637,1481,1240,1385,1216,1036$
${ }^{1}{ }^{1}$ H NMR : $\quad 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.905 .88(\mathrm{ABq}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 5.84-5.76(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.27$ and $3.82(\mathrm{ABq}, J=$ $16.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{td}, J=11.0$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.62(\mathrm{dt}, J=4.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.1(\mathrm{dt}, J$ $=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $\quad: \quad 147.1,146.3,130.9,130.4,130.2,125.4,107.7,107.5$,
$\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 101.0,67.1,61.7,59.3,58.9,58.5,40.4,33.3$
Mass: $\mathbf{m} / \mathbf{z}(\%) \quad: \quad$ ESI $272.165(\mathrm{M}+\mathrm{H})^{+}$
21. ((6R,7S,8S,9R)-7-((1,3-dioxolan-2-yl)methyl)-5,7,8,9-tetrahydro-6,9-methano [1,3]dioxolo[4',5':4,5]benzo[1,2-c]azepin-8-yl)methanol (225):

To a suspension of LAH ($0.1 \mathrm{~g}, 2.77 \mathrm{mmol}$) in dry THF (10 mL) was added a solution of $\mathbf{1 9 8}(0.5 \mathrm{~g}, 1.38 \mathrm{mmol}$ dissolved in 3 mL dry THF) drop wise over a period of 30 min under argon at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirred for 4-6 h. After completion of the reaction, suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by drop wise addition of water (super saturated by $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and stirred for another 1 h at room temperature. The whole mass was taken into DCM and washed with water. The aqueous layer was extracted with DCM (3×20 mL) and combined organic layers were shaken with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The

Chapter 3

solvent was removed in vacuuo to obtained gummy mass which on column chromatography using methanol/dichloromethane (10\%) as eluent afforded $\mathbf{2 2 5}$ as a white solid ($0.4 \mathrm{~g}, 89 \%$).
mp : $168-170{ }^{\circ} \mathrm{C}$
IR $v_{\text {max }} \mathbf{c m}^{-1} \mathbf{C H C l}_{\mathbf{3}}$) : 3431, 3053, 2985, 1635, 1404, 1265, 1236, 1040
${ }^{1}{ }^{1}$ H NMR : $6.51(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.08(\mathrm{dd}, J=6.9$,
$\left.\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 2.6, \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22$ and $3.70(\mathrm{ABq}, J=16.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-$ $3.99(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.0,10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.29(\mathrm{td}, J=11.4,8.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, 1 H), 2.44-2.55 (m, 1H), 2.08 (br s, 1H), 1.58-1.85 (m, 2H)
${ }^{13}$ C NMR $\quad: \quad 146.2,145.7,135.9,125.2,107.1,106.5,104.0,100.6$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \boldsymbol{\delta}$
Mass: m/z $64.9,64.6,62.9,61.4,60.5,55.9,52.5,42.5,34.7$
: HRMS (EI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}$: 319.1419, found 319.1433
22. (6R,7S,8S,9R)-7-((1,3-dioxolan-2-yl)methyl)-5,7,8,9-tetrahydro-6,9-methano [1,3]dioxolo[4',5':4,5]benzo[1,2-c]azepine-8-carbaldehyde (226):

The experimental procedure was the same as mentioned for 212. The aldehyde $\mathbf{2 2 6}$ was used immediately for the next step without purification.

IR $\boldsymbol{v}_{\text {max }} \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{3}\right): 2921,1634,1486,1403,1248,1133,1036$
${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \boldsymbol{\delta}$
: $9.32(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.88$ (br s, 2H), 4.96 (dd, $J=5.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (d, $J=16.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75-3.94(\mathrm{~m}, 5 \mathrm{H}), 3.57(\mathrm{dt}, \mathrm{J}=7.4,13.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.33 (dd, $J=5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.1-3.2 (m, 2H), 2.87-2.95 ($\mathrm{m}, \mathrm{J}=9.2,6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04-2.17 (m, 1H), 1.68-1.81 ($\mathrm{m}, 1 \mathrm{H}$).

Chapter 3

Mass: m / \mathbf{z}
: ESI $318.3752(\mathrm{M}+\mathrm{H})^{+}\left(\right.$in $\left.\mathrm{CH}_{3} \mathrm{CN}\right), 350[\mathrm{M}+\mathrm{MeOH}+\mathrm{H}]^{+}$ (in MeOH)
23. (6R,7S,8S,9R)-7-((1,3-dioxolan-2-yl)methyl)-8-((E)-styryl)-5,7,8,9-tetrahydro-6,9-methano[1,3]dioxolo[4',5':4,5]benzo[1,2-c]azepine (224):

The experimental procedure for the generation of ylide was the same as described for 210b, except the reverse addition of ylide to the solution of aldehyde in dry THF at $0^{\circ} \mathrm{C}$, gave $\mathbf{2 2 4}$ as a brownish paste ($80 \mathrm{mg}, 65 \%$ yield).

IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \quad: \quad 2925,1501,1481,1240,1140,1039$
${ }^{1}{ }^{1}$ H NMR : $7.16-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, \mathrm{~J}=$
$\left.\left.\mathbf{(C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 15.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.14(\mathrm{dd}, J=15.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{br} \mathrm{s}$, 2 H), 5.07 (dd, $J=7.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ and 3.77 (ABq, J $=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 1 \mathrm{H})$, 3.28 (dd, $J=11.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13}$ C NMR $\quad: \quad 146.5,145.8,137.1,135.1,132.2,132.0,131.6,129.0$, $\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 128.7,128.5,127.4,107.3,106.6,104.3,100.7,65.2,65.0$, 64.7, 60.6,58.0, 53.0, 46.8, 36.9

Mass: $\mathbf{m} / \mathbf{z}(\%) \quad: \quad$ ESI $392.4835(\mathrm{M}+\mathrm{H})^{+}$
24. (6R,6aS,8R,9R,9aR,10R)-9-((S)-hydroxy(phenyl)methyl)-6a,7,8,9,9a,10-hexahydro-5H-6,10-methano[1,3]dioxolo[4',5':4,5]benzo[1,2-e]cyclopenta[b] azepin-8-ol (227):

Chapter 3

The mixture of $\mathbf{2 2 4}(50 \mathrm{mg})$ and $3 N \mathrm{HCl}(6 \mathrm{~mL})$ in THF was refluxed for 6-8 h. After disappearance of the starting material, monitored by TLC, it was cooled down to room temperature and evaporated under reduced pressure. The reduced mass was re-dissolved in ethyl acetate and neutralized with slow addition of saturated NaHCO_{3} solution $\left(\mathrm{P}^{\mathrm{H}}>10\right)$. The aqueous layer was separated and washed with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to give brown residue which on column chromatography gave pure rearranged product 227 (eluent: 5\% methanol/dichloromethane) as the sole diastereomer ($40 \mathrm{mg}, 87 \%$).

IR $\boldsymbol{v}_{\text {max }} \mathbf{c m}^{\mathbf{- 1}}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \quad: \quad 3350,2925,1483,1337,1235,1040$
${ }^{1}{ }^{1}$ H NMR $\quad: \quad 7.52-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.94$ and 5.92
$\left.\mathbf{(C D}_{\mathbf{3}} \mathbf{O D}, 400 \mathrm{MHz}\right) \quad(\mathrm{ABq}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ and
δ 4.18 (ABq, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.89$ (app $\mathrm{q}, J=9.0,8.5,1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (dd, $J=9.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.96(\mathrm{td}, J=9.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=2.5$, $1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13}$ C NMR $\quad: \quad 149.6,149.2,146.5,134.6,130.2,128.8,127.3,120.6$,
$\left.\mathbf{(C D}_{\mathbf{3}} \mathbf{O D}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \quad 108.4,108.1,103.2,72.9,70.5,69.5,60.2,58.3,52.6,52.3$,
δ
Mass: m/z
44.7, 40.1
: HRMS (EI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$: 365.16271, found 365.15957
25. (6R,6aS,8R,9R,9aR,10R)-9-((S)-acetoxy(phenyl)methyl)-6a,7,8,9,9a,10-hexahydro-5H-6,10-methano[1,3]dioxolo[4',5':4,5]benzo[1,2-
e]cyclopenta[b]azepin-8-yl acetate (228):

The experimental procedure is the same as mentioned for 214, gave $\mathbf{2 2 8}$ in 95\% yield.

Chapter 3

mp	$224-226{ }^{\circ} \mathrm{C}$
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3056,2928, 1737, 1781, 1238, 1638, 737
${ }^{1} \mathrm{H}$ NMR	$7.45-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.87 \text { and }$
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta}$	5.86 ($\mathrm{ABq}, ~ J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.82-5.87(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~m}$,
	$1 \mathrm{H}), 4.22$ and 3.67 (ABq, $J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44$ (app q, J
	$=8.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=11.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~d}$,
	$J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=8.8$,
	$9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.16$ (m, 1H), 2.12 ($\mathrm{s}, 3 \mathrm{H}), 1.91$ (s, 3H),
	1.88 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.40$ (m, 1H)
${ }^{13} \mathrm{C}$ NMR	170.6, 169.8, 146.3, 145.5, 139.5, 135.4, 128.7, 127.5,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \boldsymbol{\delta}$	$125.8,124.8,106.8,106.4,100.6,73.5,72.6,66.5,59.3$,
	53.1, 52.6, 51.4, 43.7, 37.0, 21.1, 20.8
Mass: m/z	HRMS (EI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{6}$ 449.18384, found
	449.18301

26. (6R,6aS,8R,9R,9aR,10R)-9-((S)-methoxy(phenyl)methyl)-6a,7,8,9,9a,10-hexahydro-5H-6,10-methano[1,3]dioxolo[4',5':4,5]benzo[1,2-e]cyclopenta[b] azepin-8-ol (231):

The solution of compound $224(0.1 \mathrm{~g}), 10 \% \mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$ in 5 mL methanol was refluxed for 6 h at $70{ }^{\circ} \mathrm{C}$. After completion of the reaction, it was cooled down to room temperature, methanol was evaporated and the residue was diluted with ethyl acetate and neutralized with saturated solution of NaHCO_{3} till the $\mathrm{P}^{\mathrm{H}}>8$. Aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated and purified by column chromatography to yield 231 in 76% yield.
${ }^{1}$ H NMR : $7.48-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.91$ and $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta}$ 5.90 (ABq, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.04$ (app q, $J=8.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-$ $3.59(\mathrm{~m}, 2 \mathrm{H}), 3.3(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ $(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=2.0$

Chapter 3

$\mathrm{Hz}, 1 \mathrm{H}), 1.97-1.89$ (m, 2H)
Mass: $\boldsymbol{m} / \mathbf{z} \quad: \quad$ ESI $380.2781(\mathrm{M}+\mathrm{H})^{+}$
27. 1-((6R,7S,9R)-8-hydroxy-7-(2-hydroxyethyl)-5,7,8,9-tetrahydro-6,9-
methano[1,3] dioxolo [4',5':4,5]benzo[1,2-c]azepin-8-yl)ethanone (234):

To the suspension of $\mathrm{NaH}(60 \mathrm{mg}, 3 \mathrm{mmol})$ in a mixture of dry $t-\mathrm{BuOH}(0.2$ mL) and dry DMF $(0.5 \mathrm{~mL})$ at ambient temperature, approximately one hour being taken to effect solution, trimethyl phosphate $(0.2 \mathrm{~mL})$ was added. The reaction mixture was cooled to $-25{ }^{\circ} \mathrm{C}$; by using the cooling bath of CCl_{4} and dry ice combination and oxygen was passed through it. A solution of $232(0.1 \mathrm{~g}, 0.3 \mathrm{mmol})$ in dry THF (1 mL) was added dropwise and the passing of oxygen was continued for 2-3 h maintaining the same temperature. After 2-3 h, solution of NaOH in methanol and water was added and allowed to stir for 1 h at room temperature, followed by addition of acetic acid, the mixture was poured into water. Ethyl acetate was added and extracted three times. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and finally purified through column chromatography to obtain 234 in 89% yield.
${ }^{1}$ H NMR $\quad: \quad 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=17.1$
$\left.\left.\mathbf{(C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \mathrm{Hz}, 1 \mathrm{H}\right), 3.91(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.02$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-2.00$ (m, 1H), $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.68(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13}$ C NMR : 209.0, 147.6, 146.4, 128.6, 124.9, 108.2, 106.8, 100.1, $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{M H z}\right) \boldsymbol{\delta} \quad 96.6,71.5,61.7,59.6,54.6,52.3,29.7$.

Mass: $\boldsymbol{m} / \mathbf{z} \quad: \quad$ ESI $306.21(\mathrm{M}+\mathrm{H})^{+}, 328(\mathrm{M}+\mathrm{Na})^{+}$

28. 1-((5R,5aS,8aS,9R)-7-hydroxy-5,5a,7,8,8a,10-hexahydro-5,9-methano[1,3] dioxolo[4',5':4,5]benzo[1,2-e]furo[3,2-b]azepin-5a-yl)ethanone (236):

Chapter 3

The experimental was performed under Swern oxidation condition as utilized for 212, gave lactol 236 in 90% yield.
${ }^{1}{ }^{1}$ H NMR : $\quad 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.89$ and $5.88(\mathrm{ABq}, J=1.4 \mathrm{~Hz}$, $\left.\left.\mathbf{(C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 2 \mathrm{H}\right), 5.66(\mathrm{br} \mathrm{d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.28$ and $3.86(\mathrm{ABq}, J=17.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=11.5,3.2 \mathrm{~Hz}$, 1 H), 3.03 (br s, 1H), $3.0(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.2(\mathrm{~s}, 3 \mathrm{H})$, 2.0-1.9 (m, 2H)
29. (4S,E)-3-(3-(6-(((2-(1,3-dioxolan-2-yl)-1-(trimethylsilyl)ethyl)((trimethylsilyl) methyl)amino)methyl)benzo[d][1,3]dioxol-5-yl)acryloyl)-4-benzyloxazolidin-2one (264):

This experiment was performed using same procedure as described for 199, except using 266 (1.2 equiv.), instead of ethyl acrylate.

$$
\begin{aligned}
& \text { IR } \boldsymbol{v}_{\text {max }} \mathbf{c m}^{\mathbf{- 1}}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \quad: \quad 2925,1778,1703,1600,1041 \\
& { }^{1} \text { H NMR : } \quad 8.22(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=15.4,1 \mathrm{H}) \text {, } \\
& \left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} \quad 7.05-7.27(\mathrm{~m}, 7 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 4.71 \\
& (\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~m}, 3 \mathrm{H}) \text {, } \\
& 3.53 \text { (d, } J=14.0 \mathrm{~Hz}, 1 \mathrm{H} \text {), } 3.28 \text { (dd, } J=13.4,3.0 \mathrm{~Hz} \text {, } \\
& 1 \mathrm{H} \text {), } 2.77 \text { (dd, } J=13.4,9.6 \mathrm{~Hz}, 1 \mathrm{H} \text {), } 2.32 \text { (br t, } J= \\
& 5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}) \text {, } \\
& 1.93 \text { (d, } J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}) \\
& { }^{13} \mathbf{C} \text { NMR } \quad: \quad 172.5,165.2,153.6,149.9,146.9,143.4,136.4,
\end{aligned}
$$

Chapter 3

$\left(\mathrm{CDCl}_{3}, \mathbf{1 2 5} \mathbf{M H z}\right) \boldsymbol{\delta}$
135.5, 129.5, 128.9, 127.4, 115.9, 109.9, 106.1, 103.9, 101.4, 66.1, 64.7, 64.6, 56.4, 55.4, 49.7, 44.7, 38.0, 30.5, 0.5, -1.0

Mass: $\boldsymbol{m} / \mathbf{z} \quad: \quad$ ESI $639(\mathrm{M}+\mathrm{H})^{+}$
30. ((6R,7S,8S,9R)-7-((1,3-dioxolan-2-yl)methyl)-5,7,8,9-tetrahydro-6,9-methano [1,3]dioxolo[4',5':4,5]benzo[1,2-c]azepin-8-yl)methanol (225):

This cycloaddition reaction was performed using identical procedure as described for $\mathbf{1 8 5}$ and the product was forwarded for the removal of Evan's auxiliary without purification. The crude cycloadduct was dissolved in dry THF and the resultant solution was introduced to the suspension of LiAlH_{4} in dry THF at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to stir at room temperature for 4 h . After completion of the starting material, as monitored by TLC, it was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution and stirred further for 1 h . The reaction mixture was filtered through small pad of celite, the solvent was evaporated the solvent and crude mass was purified by column chromatography to obtain chiral alcohol 225 (46% yield over two steps). The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and mass spectral analysis of alcohol 225 matched completely with the corresponding racemic compound.

Specific Optical Rotation: $[\alpha]^{27}{ }_{D}=+10.5(c 0.45, \mathrm{MeOH})$
[HPLC condition: Chiralcel OD-H (250x4.6 mm), mobile phase: Ethanol:Petroleum ether (10:90), Flow: $0.5 \mathrm{ml} / \mathrm{min}$ (280 psi); $e e=63 \%$; retention time (27 min and 30 min)]

Reference:

1. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, $3^{\text {rd }}$ Ed., Pergamon, New York, 1988.

Chapter 3

Spectra

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

$$
\begin{aligned}
& { }^{13} \mathrm{C} \text { NMR of } 199 \\
& \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \\
& \hline
\end{aligned}
$$

DEPT of 199
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

$\begin{gathered} \text { DEPT of 210b } \\ \left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \end{gathered}$

Chapter 3

COSYQF45

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

HSQC for 215

Chapter 3

Chapter 3

${ }^{13} \mathrm{C}$ NMR of 216
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Chapter 3

Chapter 3
$\cos y$

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3
${ }^{13} \mathrm{C}$ NMR of 220 $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

!

Chapter 3

Chapter 3

Chloroform-d

Chapter 3

Chapter 3

Chapter 3

${ }^{13} \mathrm{C}$ NMR of 225 ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$)

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

3.3. Appendix

Crystal Data: General: Data for all compounds were collected at room temperature on SMART APEX CCD Single Crystal X-ray diffractometer using Mo-K α radiation $(\lambda=0.7107 \AA)$ to a maximum θ range of 25.00°. The structures were solved by direct methods using SHELXTL.
i) X-ray crystal data and structure refinement values for 195

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5}$
Formula weight	331.36
Wavelength	$0.71073 \AA$
Crystal system, space group	Monoclinic, $\mathrm{P}_{1} / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=12.0026(11) \AA$
	$\mathrm{b}=5.7261(5) \AA \quad \beta=103.928(2)^{\circ}$.
	$\mathrm{c}=24.210(2) \AA$
Volume	$1615.0(2) \AA^{3}$
Z	4
Calculated density	$1.363 \mathrm{~g} / \mathrm{cc}$
Crystal size	$0.32 \times 0.15 \times 0.06 \mathrm{~mm}^{3}$
θ range for data collection	2.74 to 24.99°.
Reflections collected $/$ unique	$11122 / 2833$
Completeness to $\theta=24.99$	99.7%
Final R indices $[\mathrm{I}>2$ sigma $(\mathrm{I})]$	$\mathrm{R}_{1}=0.0522, \mathrm{wR} 2=0.1214$.

The compound (195) shows the conformation for $\mathrm{C} 4 \mathrm{a}, \mathrm{C} 11$ and C 11 a as S, R and R .

Chapter 3

ii) X-ray crystal data and structure refinement values for 198

Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{6}$	
Formula weight	361.38	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{C} 2 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=21.7203(18) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=14.5168(12) \AA$	$\beta=32.763(1)^{\circ}$.
	$\mathrm{c}=15.3294(13) \AA$	$\gamma=90^{\circ}$.
Volume	$3548.6(5) \AA^{3}$	
Z	8	
Density (calculated)	$1.353 \mathrm{~g} / \mathrm{cc}$	
Crystal size	$0.35 \mathrm{x} 0.17 \mathrm{x} 0.05 \mathrm{~mm}{ }^{3}$	
Reflections collected	8816	
Data / restraints / parameters	$3128 / 0 / 236$	
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0502, \mathrm{wR} 2=0.1287$	

The compound shows the conformation for $\mathrm{C} 4 \mathrm{a}, \mathrm{C} 11$ and C 11 a as S, R and S .

Chapter 3

iii) X-ray crystal data and structure refinement values for 217

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{6}$	
Formula weight	347.36	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=11.2290(10) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=7.5350(6) \AA$	$\beta=113.710(2)^{\circ}$.
	$\mathrm{c}=21.5650(17) \AA$	$\gamma=90^{\circ}$.
Volume	$1670.6(2) \AA^{3}$	
Z	4	
Density (calculated)	$1.381 \mathrm{~g} / \mathrm{cc}$	
Crystal size	$0.14 \times 0.06 \mathrm{x} 0.03 \mathrm{~mm} 3$	
Theta range for data collection	1.98 to 24.99°.	
Reflections collected	5858	
Data / restraints / parameters	$2308 / 0 / 229$	
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0609, \mathrm{wR} 2=0.1293$	

The compound (217) shows the conformation for $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4 \mathrm{a}, \mathrm{C} 11$ and C 11 a as R, R, R, S, R and R.

Chapter 3
iv) X-ray crystal data and structure refinement values for 225.

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}$	
Formula weight	319.35	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	Pc	$\alpha=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=6.5118(6) \AA$	$\beta=103.721(1)^{\circ}$.
	$\mathrm{b}=11.947(1) \AA$	$\gamma=90^{\circ}$.
	$\mathrm{c}=9.9902(9) \AA$	
Volume	$755.03(12) \AA^{3}$	
Z	2	
Density (calculated)	$1.405 \mathrm{~g} / \mathrm{cc}$	
Crystal size	$0.18 \times 0.16 \times 0.12 \mathrm{~mm}{ }^{3}$	
Reflections collected	3751	
Data / restraints / parameters	$2383 / 2 / 209$	
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0317, \mathrm{wR} 2=0.0784$	

The compound (225) shows the conformation for $\mathrm{C} 4 \mathrm{a}, \mathrm{C} 11$ and C 11 a as S, R and S .

Chapter 3

v) X-ray crystal data and structure refinement values for 228

Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{6}$	
Formula weight	449.49	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	P_{1}	
Unit cell dimensions	$\mathrm{a}=10.6779(8) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=8.8004(7) \AA$	$\beta=92.802(1)^{\circ}$.
	$\mathrm{c}=12.2050(9) \AA$	$\gamma=90^{\circ}$.
Volume	$1145.53(15) \AA^{3}$	
Z	2	
Density (calculated)	$1.303 \mathrm{~g} / \mathrm{cc}$	
Crystal size	$0.10 \times 0.03 \times 0.02 \mathrm{~mm}^{3}$	
Theta range for data collection	1.67 to 24.98°.	
Reflections collected	9292	
Completeness to theta $=24.98^{\circ}$	100.0%	
Final R indices $[\mathrm{I}>2$ sigma $(\mathrm{I})]$	$\mathrm{R} 1=0.0729, \mathrm{wR} 2=0.1397$	

The compound (228) shows the conformation for $\mathrm{C} 1, \mathrm{C} 2 \mathrm{C} 3 \mathrm{C} 4 \mathrm{a}, \mathrm{C} 11$ and C 11 a as S, R, R, S, R and R.

List of publications

1. Stereospecific route to 5, 11-methanomorphanthridine alkaloids via intramolecular 1,3dipolar cycloaddition of Non-stabilized Azomethine Ylide: Foral synthesis of (\pm)-pancracine Pandey, G.; Banerjee, P.; Kumar R.; Puranik V. G.; Org. Lett. 2005, 7, 3713-3716. 2. Synthetic studies towards the total synthesis of (\pm)-pancracine, (\pm)-montanine and (\pm)-brunsvigine employing intramolecular 1,3-dipolar cycloaddition of non-stabilized azomethine ylide.

Ganesh Pandey, Ravindra Kumar, Prabal Banerjee (manuscript under preparation)
3. Synthesis of synthetically unprecedented analogues of 5,11methanomorphanthridine alkaloids via intramolecular Prins cyclization.

Ganesh Pandey, Ravindra Kumar (manuscript under preparation)

Erratum

[^0]: Ph. 020-25902627/2281 (O), 25902417, 25883493 (R), Fax: 020-25902628
 E-mail: gp.pandey@ncl.res.in

