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Abstract

Abstract

Coupled cluster(CC) [1] method has evolved as the most accurate and reliable com-

putational method for energy and energy derivatives. The first main focus of this thesis

is to develop and implement the coupled cluster(CC) method for the accurate calculation

of magnetic properties of molecules. Second focus is on the implementation of higher

order correction in Λ-FSMRCC method for first order property.

The single reference coupled cluster(SRCC) method has been successful in describ-

ing energy, gradients and molecular properties around equilibrium geometry [2–5]. The

method is non-variational and it has built in size-extensivity and size-consistency prop-

erty. However, SRCC gives accurate energy even at the truncated level, most often we

are interested in obtaining the energy differences and derivatives. The analytic response

approach for energy derivatives in SRCC context was developed first by Monkhorst [5].

The non-variational SRCC response approach did not have a (2n+1) rule [6] inherent

in it. As a result, the evaluation of the energy derivatives turns complicated, that is the

expression for the first order energy derivative involves the derivative of the first order

wave function. However, the dependence of derivative amplitudes with respect to differ-

ent perturbation can be avoided with the help of an additional perturbation independent

amplitudes. This is known as Z-vector approach, which was first introduced in config-

uration interaction (CI) method by Handy and Schaefer [7]. Later this technique was

implemented in the context of CC by Bartlett and coworkers [3]. Z-vector technique

simplified the CC response approach, in particular for gradients. However, extension of

this technique to higer derivatives is tedious. On the other hand, Jorgensen et al [4] pro-

posed a conceptually different approach called constrained variational approach(CVA).

In CVA, the Lagrangian is constructed with SRCC equations as constraints. The form of

the Lagrangian is

=(Θ) = 〈φ0|e−T ĤeT |φ0〉+
∑
q 6=0

λq〈φq|e−T ĤeT |φ0〉. (1)

x
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The variation of Lagrangian with respect to Lagrange multipliers (λq) gives SRCC

amplitude equations, while variation with respect to cluster amplitudes gives equations

for Lagrange multipliers. It is known that both the approaches are equivalent. A major

advantage of CVA is, being variational it satisfies (2n+1) rule for cluster amplitudes and

(2n+2) rule for Lagrange multipliers. This approach can easily be extended for higher

order properties.

The thrid approach is a fully variational approach. This was implemented for energy

derivatives by Bartlett and coworkers and Pal and coworkers. In this approach, form of

the functional is very important. Various functionals exists in literature namely, expecta-

tion value CC (XCC) [8], Unitary CC (UCC) [9] and extended CC (ECC) [10]. XCC and

UCC were studied for energy and energy derivatives. Pal and coworkers implemented

variational response approach with XCC and ECC functionals [11, 12]. Among these

ECC method proposed by Arponen [10] is based on the double similarity transformation

and has been very efficient for molecular property evaluation of closed shell molecules.

The functional form of ECC is

E = 〈φ0|eΣ̃e−T̃ ĤeT̃ e−Σ̃|φ0〉DL. (2)

The double similarity transformed energy functional leads to double linking of the

functional after the additional transformation on the right vectors. The double linking

of the left vectors and the connectedness of the Hamiltonian to the right vector ensures

natural termination of the series and the size-extensivity in the equation of the cluster

amplitudes. The amplitudes are obtained by varying energy functional with respect to

right and left vectors. Despite being size-extensive, ECC is not quite useful for energy.

This is because it contains double the number of coupled cluster amplitudes as well

as number of equations as compared to single reference CC. But due to its variational

nature, Hellmann-Feynman theorem holds and (2n+1) rule is applied for evaluating re-

sponse properties. The response properties in ECC are pursued extensively by Pal and

coworkers [12].

The single reference based methods despite of being size-extensive and size-consistent,
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fails to describe the quasi-degenerate situations such as potential energy surfaces at bond-

breaking/bond-stretching regions, open shell atomic states and low-lying excited states

of molecules has led to the multi reference(MR) based theories [13, 14]. The multi-

determinantal or multi-reference based methods well describe quasi-degeneracy through

the pre-chosen model space consisting of important determinants. Among the multi-

reference methods, effective Hamiltonian based MRCC methods, provide multiple roots

via diagonalization of the effective Hamiltonian within the model space. This subclass

mainly spans two approaches: namely the Hilbert space (HS) MRCC [13] and Fock-

space (FS) MRCC [14]. Both differ in the nature of ansatz used for the wave-operator

and both the methods are size-extensive, and hence are suitable for different types of sit-

uations. FSMRCC is based on the concept of a common vacuum and assumes a valence

universal wave operator to describe the various states, which are generated by addition

and/or removal of electron to/from the common vacuum, usually the closed-shell RHF

configuration. FS methods are suitable for the difference energy calculations and thus

describe ionized, electron-attached, or excited states of a closed-shell system [15].

A response approach similar to Monkhorst’s non-variational CC is developed and

implemented for FSMRCC method by Pal [16]. This was not pursued because of the

explicit dependence of the first order derivative cluster amplitudes in the first order prop-

erty. To solve this problem, a Z-vector type approach was attempted by Ajitha and Pal

[17], but this proved satisfactory in eliminating wave-function derivatives only in limited

cases. Along the lines of SRCC, the constrained variation approach based on Lagrange

multipliers has been developed in MRCC framework (Λ-MRCC) [18]. This was also

pursued independently by Szalay and coworkers [19]. Though in principle Szalay’s ap-

proach can be used for general model spaces, this was implemented only for complete

model spaces. But the one proposed by Pal and coworkers has been applicable for gen-

eral incomplete model spaces. The Λ-FSMRCC method was implemented successfully

for electric based properties of doublet states as well as the excited states of molecules

[20].
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It is well known that triple excitations in SRCC contribute to the energy from fourth

order onwards. So far different version of the SRCC method with full or partial in-

clusion of triples with increasing precision have been developed for energy [21]. The

non-iterative triples are routinely used for high accuracy with an economical treatment

of triples. The full inclusion of triples is expensive, though in the SRCC it has been

implemented by Bartlett and co-workers for energy. The perturbative treatment of the

quadruple excitations has also been attempted in single reference context [22]. There

are several implementations of the full and partial inclusion of the triples within the

Fock space MRCC [23]. Pal and co-workers included non-iterative triples for ionization

potential and excitation energies, within Fock space MRCC scheme and Bartlett and co-

workers included full triples correction for excitation energies. However, to improve the

accuracy of the molecular properties of the outer valence as well as some of the inner

valence states, it is important to include the effect of triples. However, inclusion of full

triples is computationally expensive. This limits the applicability of the method to small

molecules or to moderate basis sets. The non-iterative triples based on perturbative order,

does not guarantee the improvement of molecular properties towards the Full CI (FCI),

due to oscillatory nature of the perturbation series.

As we know, many important molecular properties are defined as the derivatives of

the molecular energy [24]. The second derivative of energy with the magnetic field is

termed as the molecular susceptibility. The second derivative of the molecular energy

with the nuclear magnetic moment and the magnetic field is termed as the nuclear mag-

netic resonance(NMR) shielding constant.

The evaluation of magnetic properties are not straight forward like electric based

properties because of two factors. First, the nature of the magnetic field is purely imagi-

nary and hence the finite-difference procedures using the complex wavefunction for cal-

culating the magnetic properties are highly undesirable. We need the analytical method

for magnetic properties calculation. The method should efficiently include the fact that

the matrix representation of the imaginary quantities is antisymmetric. Secondly, the
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electric field interacts with the charged particles (electron and nuclei) and adds a scalar

potential to the Hamiltonian operator. However, magnetic field interacts with the mag-

netic moments generated by the movement of the charged particles and hence adds a

vector potential to the Hamiltonian. A vector potential is a vector function from which

the magnetic field is derived. This vector potential is not uniquely defined since the gra-

dient of any arbitrary scalar function may be added to the vector potential and leave the

field unchanged (gauge invariance). Hence a proper gauge should be chosen or the gauge

independent atomic orbitals(GIAO) [25] should be used to eliminate this problem.

The motivation of this thesis is to evaluate the magnetizabilities and NMR shielding

constants using these highly effecient methods for closed and open-shell molecules. The

first attempt of GIAO in ECC method is also presented. Along with this, the new im-

plementation of partial triples for the dipole moment of doublet radicals in Lagrangian

formulation of FSMRCC (Λ-FSMRCC) response method has also been presented.

The thesis is organized as follows:

CHAPTER I : This chapter includes a brief overview of many-body methods starting

from Hartree-Fock approach. Eventually, in this chapter evaluation of magnetic proper-

ties using various correlated methods are presented in details. This involves the insight of

the coupled-cluster methods both single reference based and multi-reference based and

its energy derivatives. We also discuss the correlated methods used in the literature for

magnetic properties evaluation such as perturbation theory, linearized coupled cluster(L-

CC), multiconfigurational self-consistent-field (MCSCF), CCSD, CCSD(T) and equation

of motion CC (EOMCC).

CHAPTER II : This chapter presents calculation of the nuclear magnetic shield-

ing constant using ECC approach. We present the results for the HF, BH, CO and N2

molecules using standard atom-centered Gaussian basis functions and choosing proper

gauge as origin. The results reflect the importance of correlation corrections for the

shielding constant.

CHAPTER III : This chapter deals with the details of the FSMRCC method and
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Lagrangian technique method for properties. Along with the details, first implementation

of the recently developed FSMRCC response approach for magnetizabilities is discussed.

The FSMRCC treats dynamic and static correlation in a very extensive manner. We report

pilot application of the dia-magnetizability of NO, NO2, OH and BH2 radicals. We also

report preliminary applications of the paramagnetic magnetizability of the NO radical.

Standard atom-centered Gaussian basis functions have been used and this allowed us to

study the gauge-dependence of the magnetizabilities.

CHAPTER IV : This chapter says the importance of triples correction to the FSM-

RCC method. The new implementation of partial triples for the dipole moment of dou-

blet radicals in Lagrangian formulation of FSMRCC (Λ-FSMRCC) response method has

been presented. We have implemented a specific scheme of non-iterative triples, in ad-

dition to singles and doubles scheme, which accounts for the effects appearing at least

at the third order in dipole moments. The method is applied to the ground states of OH,

OOH, HCOO, CN, CH, NH2 and PO radicals.

CHAPTER V : In this chapter we present implementation of GIAO-ECC method.

The test results are presented for HF, BH and N2 molecules. The shielding tensors ob-

tained with and without GIAO are presented and compared. The summary of the present

thesis is presented. The future perspective in this field is given, which will lead the

pavement for the evaluation of other properties.
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Chapter 1

————————————————————

A brief Overview: Ab-initio methods and

molecular magnetic properties

————————————————————

1.1 Introduction

Chemistry is the science dealing with construction, transformation and proper-

ties of molecules. Theoretical chemistry is the subfield where mathematical methods are

combined with fundamental laws of physics to study processes of chemical relevance.

Theoretical chemistry has attained significant improvements in past few decades. A very

important conceptual advance in theoretical field was achieved by the exploitation of the

variation principle, which led to the formulation of Hartree-Fock(HF) equations. The

HF method gives 99% of the total energy, and still not accurate enough to describe many

chemical phenomena or properties of interest. This paved the way for “many electron”

methods like configuration interaction(CI), many body perturbation theory(MBPT) and

coupled cluster (CC) methods [1]. All these methods are grouped as single-reference
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methods(SR). Among all these, coupled cluster [2, 3] method has gained a special at-

tention due to its size-extensivity, size-consistency and the correct treatment of electron

correlation effects. The double similarity transformed single reference based CC known

as extended CC (ECC) has been extensively developed and used for molecular proper-

ties. However, for quasi-degenerate cases SR methods fails. The restricted open-shell

(RO)- based CC methods, which uses linear operator have been successful in describ-

ing the quasi-degenerate cases. Though in single reference framework, selected triples

and quadruple level excitations have been considered for quasi-degenerate cases, multi-

determinantal or multi-reference coupled cluster (MRCC) [4–10] methods have emerged

as the method of choice to take into account the quasi-degenerate molecular systems.

Analytical evaluation of accurate properties using this method is more demanding due

to the successive evaluation of higher derivatives. In this thesis we present the analytical

evaluation of magnetic properties using CC method.

Unlike the electric properties, the evaluation of magnetic properties is not so straight-

forward. Hamiltonian of the system in the presence of external magnetic field depends on

the gauge of the magnetic vector potential [11, 12]. Various attempts were made earlier

at self-consistent field (SCF) [13] level as well as correlated levels [14] to eliminate the

problem of gauge-variance of magnetic properties to some extent by using extended basis

set of field-independent atomic orbitals, so that the results are almost gauge-invariant at

the complete basis set limit. However, computationally this approach is quite time con-

suming, since the basis set required for reasonably accurate results is quite big even for

small molecules. To eliminate the gauge problem various other studies have been pro-

posed by making use of field-dependent orbitals. This starts with the work of Kutzelnigg

on individual gauge for localized orbitals (IGLO) [15]. For several reasons the gauge-

including atomic orbitals (GIAO) approach [16, 17] has become the standard method for

quantum chemical applications. This solution to the gauge problem was first advocated

by London [16] in the context of magnetic susceptibilities and later used by Hameka

[18], Ditchfield [19] and others for chemical shifts [20].
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The aim of the present chapter is to give a brief over-view of ab-initio methods and

their development for properties. In particular, the literature towards chemical shieldings

and susceptibilities are discussed. A brief discussion on importance and developments

of higher order amplitudes are also presented.

1.2 Basis of quantum Chemistry

Electronic structure of atoms and molecules are studied by solving time-independent

Schrödinger equation proposed in 1926. In Dirac notation Schrödinger equation is writ-

ten as

H|ψ〉 = E|ψ〉. (1.1)

In this form it is easy to demonstrate that the expectation value of the above Hamiltonian

gives energy. For a system of interacting electrons and nuclei, Ĥ in au is [1]

H = −1

2

∑
i

∇2
i −

1

2

∑
A

1

MA

∇2
A−

∑
i

∑
A

ZA
riA

+
∑
i

∑
j>i

1

rij
+
∑
A

∑
B>A

ZAZB
RAB

. (1.2)

Where i indexes the electrons, A indexes the nuclei. By introducing Born-Oppenheimer(BO)

approximation [21], the above Hamiltonian is simplified. Born-Oppenheimer approxi-

mation states that, since the nuclei are approximately 1800 times as massive as electrons,

they can be considered as stationary points, and electrons move in their constant potential

field. Under this the second term in eq.1.2 is zero, since the nuclei have no kinetic energy,

and the last term is constant, since the distance between the nuclei will not change. Thus

eq.1.2 is reduced to

H = −1

2

∑
i

∇2
i −

∑
i

∑
A

ZA
riA

+
∑
i

∑
j>i

1

rij
. (1.3)

H =
∑
i

h(i) +
∑
j>i

g(ij) (1.4)

h(i) = −1

2
∇2
i −

∑
A

ZA
riA

; g(ij) =
∑
i

1

rij
(1.5)
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where h(i) is one electron term and g(ij) is two electron term. If the two-electron terms

g(ij) were absent, H would be a sum of terms each depending only on the coordinates

of one electron. Then H would be additively separable. Its eigenfunctions would be just

products of eigenfunctions of the one-particle Hamiltonian h(i) and its eigenvalues are

sums of eigenvalues of h(i). Unfortunately, H contains the two-electron repulsion terms

g(ij) and they are by no means small and cannot be simply neglected.

1.3 Many-electron wave function and molecular Hamiltonian

Another technique used to simplify Schrödinger equation is called the orbital approxi-

mation, where the many-electron wave function is written as the product of one-electron

wave functions. Many-electron wave function for N electron system is written as

Ψ = Ψ1(1)Ψ2(2)Ψ3(3)...ΨN(N). (1.6)

This product form is known as Hartree [22] product and Ψi is called spacial orbital. Ac-

cording to Born interpretation of the wave function, the spacial probability density is

|Ψ|2dτ , where dτ is an element of volume. If the wave function is written as a Hartree

product, then this probability density must be the product of the squares of the individual

orbitals. According to probability theory, this can only be true if the probability repre-

sented by the individual orbitals are independent of one another. Hartree product is also

known as the independent-electron wave function.

1.4 Antisymmetry and the Slater method

According to Pauli’s exclusion principle, no two electrons in an atom can have the same

set of quantum numbers. Since electrons have spin quantum number of±1/2, this means

each orbital can have two electrons with one up-spin and one down-spin. This condition

arises naturally, if we assume the nature of the wave function to be antisymmetric i.e.,
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the wave function changes sign when the two electronic coordinates are interchanged

Ψ(x1, ..., xi, ..., xj, ..., xN) = −Ψ(x1, ..., xj, ..., xi, ..., xN). (1.7)

It is apparent from the Hartree form of the wave function 1.6 that it is not antisym-

metric. Although various ways to expand the antisymmetric wave function are available,

ubiquitous in quantum chemistry is the expansion in terms of Slater determinant.

Ψ(x1, x2, ..., xN) =
1√
N !
‖ χi(x1), χj(x2), ..., χk(xN) ‖ (1.8)

where χi’s are spin orbitals. Here the rows are labeled by electrons and columns are la-

beled by spin orbital. Slater determinant incorporates exchange correlation, which means

that the motion of two electrons with parallel spins is correlated. This is known as Fermi

hole. The concept of Fermi hole emerges from the Fermi-Dirac statistics obeyed by elec-

trons and according to this, probability of finding two electrons with parallel spin at the

same point in space is zero. This is an important feature of many-electron wave function.

Another feature is the presence of coulomb hole. The concept of coulomb hole emerges

from the coulombic repulsion of electrons, which leads to probability of finding two

electrons at the same point in space is zero. Within the single determinant description,

the motion of electrons with parallel spins is correlated but the motion of electrons with

opposite spins is not. However, the Fermi hole also includes the corresponding Coulomb

hole to some extent.

1.5 Glimpse of Hartree-Fock method

If it was possible to write the Hamiltonian in eq.1.3, as the sum of one-electron terms,

then the solution of the Schrödinger’s equation would be a simple task by separation

of variables. As the Hamiltonian depends on 1
rij

, which means that we must know the

instantaneous relative positions of two electrons. Therefore, the full Hamiltonian cannot

be written as the sum of one-electron Hamiltonians. However, the best solution within the
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class of simple independent particle model wave function can be obtained by a spherical

averaging of inter electronic interactions. This is known as the Hartree Fock potential.

Happrox =
∑
i

[
1

2
∇2
i + V (i)] (1.9)

where, V (i) is some average potential resulting from the field of other electrons from the

system. As written, this approximate Hamiltonian does not explicitly include electron

correlation, which is the instantaneous interaction of pairs of electrons. This V (i) in-

cludes the classical coulomb and exchange potentials. The N -electron expectation value

of this Hamiltonian with antisymmetrized single determinant in eq.1.8 gives

〈Ψ|H|Ψ〉 =
N∑
i

〈i|h|i〉+
1

2

N∑
i 6=j

[〈ij|ij〉 − 〈ij|ji〉]. (1.10)

where the following one- and two-electron integrals occur. One-electron integral is

〈i|h|i〉 =

∫
χ∗i (1)h(1)χi(1)dτ. (1.11)

The two-electron Coulomb-integral part is

〈ij|ij〉 =

∫
χ∗i (1)χ∗j(2)

1

r12

χi(1)χj(2)dτ. (1.12)

The two-electron exchange-integral part is

〈ij|ji〉 =

∫
χ∗i (1)χ∗j(2)

1

r12

χj(1)χi(2)dτ. (1.13)

Coulomb-integral corresponds exactly to the classical Coulomb interaction between two

charge distributions. The exchange interaction has no classical analogue and is a conse-

quence of the antisymmetry requirement to the quantum mechanical wave function.

To find the best spin orbital, one has to apply variation principle to the wave function

and vary the energy expectation value in eq.1.10 with Ψ as a functional of the occupied

orbitals χi. This is achieved through minimization of the Lagragian defined as,

£ = 〈Ψ|H|Ψ〉+
∑
i,j

εij[〈χi|χj〉 − δij] (1.14)
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with respect to the spin orbitals χi. The minimum of this functional is obtained by vary-

ing the spin orbitals χi. The coefficients εij is the Lagragian multipliers. By performing

variation, one arrives at the following one-particle pseudo eigenvalue equation

f̂ |χi〉 = εi|χi〉. (1.15)

Here, χi; i = 1, 2..., N are orthonormal set of spin orbitals, εi is orbital energy and f̂ is

the effective one-electron operator called as Fock operator.

f̂(1) = h(1) +
N∑
j

[Jj(1)−Kj(1)] (1.16)

Where Jj and Kj are coulomb and exchange terms

Jj(1)χi(1) =

∫
χ∗j(2)χj(2)

1

r12

χi(1)dx2 (1.17)

Kj(1)χi(1) =

∫
χ∗j(2)χi(2)

1

r12

χj(1)dx2 (1.18)

The equation 1.15 is the Hartree-Fock(HF) equation which plays the role of a one-

electron Schrödinger equation for the orbitals χi. The main features of the HF equation

is follows. The HF equation is an integro-differential equation. Since the Coulomb and

exchange operators have to be determined by solving HF equation, iterative procedure

called Self-consistent field method(SCF) is used to solve HF equation. The ground state

of the N electron system is obtained if the energetically lowest HF orbitals are occupied

in Ψ. Generally, one distinguishes between occupied orbitals as those orbitals occupied

in Ψ, which are used to construct J andK operators and virtual orbitals which are not oc-

cupied in Ψ. The virtual orbitals are not optimized orbitals, since the energy expectation

value does not depend on them at all. They are however frequently used for electroni-

cally excited states. The eigenvalues εi of the HF equation are called orbital energies.

The orbital energies of the occupied orbitals can be identified by the Koopmans theorem

The Koopmans’ theorem states that the orbital energy of the i-th occupied orbital is equal

to the negative value of the energy necessary to remove one-electron from orbital (Ion-

ization potential). Likewise, electron affinities can be related to energies of unoccupied

orbitals.
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If all the electrons are paired in the HF determinant, the corresponding method is

referred to as closed-shell or restricted HF (RHF) method. If there are one or more un-

paired electrons, it is referred to as restricted open-shell Hartree-Fock (or ROHF) method.

On the other hand, use of unrestricted set of orbitals results in unrestricted HF (UHF)

method. The RHF theory has few shortcomings. First, it can not always provide the

proper dissociation of molecules. For example, the dissociation of the H2 molecule,

where “dissociation catastrophe” occurs because the separated hydrogen atoms cannot

be described using doubly occupied orbitals. Because in this case H2 tends to dissociate

in H+ and H−. This problem does not occur in the UHF method. However, this has the

disadvantage that it does not give pure spin states. Second, the HF wave functions takes

care of Fermi hole, but not able to account the Coulomb hole. This can be taken care of

by higher level theories, which includes electron correlation.

The essence of HF approximation is that it involves replacement of the complicated

many-electron problem by an effective one-electron problem in which electron repulsion

is treated in an average way. This leads to a simple picture of molecular orbital (MO)

theory with electrons occupying different orbitals. HF theory is a common starting point

for many more advanced theoretical methods, some of them are outlined in the next

section.

1.6 Correlation energy and configuration interaction

The Hartree-Fock method is an approximation to the exact solution of the Schrödinger

equation. In many cases, for yielding accurate results one has to go beyond the HF

method. All effects beyond the HF level are called as “correlation” effects. It arises due

to the fact that HF method is still an effective one-particle (or mean-field) method and

can not fully account for instantaneous electron repulsion. The correlation energy of a

system as defined by Lowdin [23] is the difference between the exact energy eigenvalue

9
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of the N -electron Hamiltonian and the SCF energy

Ecorr = E − ESCF . (1.19)

The conceptually simplest method to account for correlation effects is the method of

configuration interaction (CI).

Here the main idea is based on the lemma, that the N -electron wave function is

constructed as linear combination of Slater determinants.

Ψ(x1, x2, ..., xN) =
∞∑
I=1

CIφI(x1, x2, ..., xN) (1.20)

where CI’s are linear coefficients, which are determined by the variational optimiza-

tion(linear variation) of the expectation value of the energy

∂

∂CI

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

= 0. (1.21)

It is possible to rewrite Eq.1.20 in terms of the reference φ0 and different excited deter-

minants obtained from systematically replacing increasing number of occupied orbitals

in φ0 by virtual orbitals.

Ψ = φ0 +
∑
a,r

Cr
aφ

r
a +

∑
a>b,r>s

Crs
abφ

rs
ab + ... (1.22)

This is the form of the CI wave function. Here the orbital labels a, b... refer to occupied

orbitals and r, s, ... refer to unoccupied orbitals in the reference determinants. φra, φ
rs
ab, ...

are singly, doubly etc, excited determinants. They differ from the lowest energy spin

orbital φ0 by single, double etc excitations. These excitations are obtained by replacing

the spin orbital χa by χr for singly excited determinants and χa, χb by χr, χs for doubly

excited determinants etc. The orbitals used in the above expansion are often chosen to

be HF orbitals, and reference determinant φ0 is then the corresponding HF determinant.

Although such a choice is not necessary, it is convenient and leads faster convergence in

cases where the HF determinant is really dominant one. The restriction on the summation

10
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takes care of the appearance of the given excited determinant once in the function. Here

the intermediate normalization convention 〈Ψ|φ0〉 = 1 has been used.

These linear variation method for evaluating coefficients are equivalent to an eigen-

value problem for the coefficients and the energy.

HC = EC (1.23)

where H is the Hamiltonian matrix with the elements Hij = 〈i|Ĥ|j〉, and C is the coeffi-

cent matrix. When all possible excited determinants within a given basis set are included,

it is referred to as the Full-CI(FCI) method. The eq.1.23 corresponds to a standard Her-

mitian eigenvalue problem of linear algebra. This is therefore solved by diagonalizing

the Hamiltonian matrix in the usual manner. Since we are interested in only few of its

lowest eigenvalues, the complete diagonalization of the Hamiltonian matrix is not re-

quired. Selected eigenvalues of the Hamiltonian can be determined by iterative methods.

Several authors used Davidson’s [24] iterative diagonalization scheme to compute few

lower lying eigenvalues and eigenvectors of CI matrix. This method bypasses the need

of complete diagonalization of FCI matrix by using matrix-vector product of the Hamil-

tonian with a trial vector.

If this expansion in eq.1.22 is carried out to all possible excitations (FCI), leads to

an exact solution of Schrödinger’s equation in the space spanned by the basis set. For

FCI wave functions, the number of excited determinants increases rapidly with the num-

ber of electrons and with the number of orbitals. Hence for practical calculations it is

not possible to include all excitations as the FCI becomes quickly intractable with the

increase in number of electrons. A useful approximations can be obtained by truncating

at the different levels. Due to Brillouins theorem, the singly excited configurations alone

cannot improve the ground state of the wave function, although, they can lead to excited

states. The most common truncations of CI are double excitations (CID), and single and

double excitations (CISD). These are specially suited for states where the reference de-

terminant is dominant(ground state), and recovers a significant portion of its correlation
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energy within the given basis set.

Apart from the large configurational space problem, truncated CI suffers from two

important criteria namely size consistency and size extensivity which any quantum me-

chanical method should satisfy. The size consistency signifies the proper description at

dissociation limit and size extensivity is related to the proper scaling of energy with re-

spect to the size of the system. These two concepts are discussed in detail in the next

section.

1.7 Size-consistency and size-extensivity

As stated earlier, any approximate many body method should satisfy two important crite-

ria, namely size consistency and size extensivity [1, 25–27]. As defined by Pople and co-

workers [25], a method is size consistent if energy of a molecule is the sum of energies of

its fragments at non-interacting limit. In other words, if a system has N non-interacting

monomers with energy ei, its total energy will be Nei. This means, if a system consists

of two non-interacting fragment A and B, (or if AB molecule dissociates in to A and B

at infinite separation) then the energy should be additively separable

EAB = EA + EB, (1.24)

and the wave function should be multiplicatively separable

ΨAB = ΨAΨB. (1.25)

The concept of size extensivity is related to size consistency. It accounts proper scaling

of the energy with the number of particle i.e. with the size of the system. Unlike size

consistency, which is a property of infinite separation of the fragments of the system,

size extensivity is a more general mathematical concept that hold at any situation. If a

method is not size extensive, the error in calculated energy will scale as Nm, where m is

either less than 1 or greater than 1 and N is the number of particles present in the system.
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In the former case, the correlation energy per particle decreases as the number of particle

N increases and becomes zero as N → ∞. In the later case, the correlation energy per

particle becomes infinity as N →∞. Therefore, it results unphysical behavior in energy

calculations. It can be easily shown that the wave functions obtained from any truncated

CI calculations are not multiplicatively separable and hence the energies of the fragments

are not additively separable.

1.8 Perturbation Theory

A different systematic procedure for finding the correlation energy, which is not varia-

tional is perturbation theory (PT). Since the correlation energy can be considered as a

small perturbation on the HF energy, the full Hamiltonian can be written in the following

way:

H = H0 + λH(1) (1.26)

where H0 is zeroth order Hamiltonian, λ is an ordering parameter which varies between

zero and unity, and H(1) is the perturbation.

Among the various perturbation approaches e. g. Rayleigh-Schrödinger perturbation

theory(RSPT) [1, 28], Brillouin-Wigner perturbation theory (BWPT) [28] and Van-Vleck

perturbation theory [29], the conceptually simplest one is RSPT. Since the Hamiltonian

depends on perturbation, the eigenfunctions and eigen vaules also becomes perturba-

tion dependent. The exact eigenfunctions and eigenvalues of a non-degenerate state are

expanded as Taylor series expansions around λ = 0

Ψi(λ) = Ψ
(0)
i + λΨ

(1)
i +

λ2

2!
Ψ

(2)
i + ...+

λn

n!
Ψ

(n)
i + ... (1.27)

Ei(λ) = E
(0)
i + λE

(1)
i +

λi
2!
E

(2)
i + ...+

λn
n!
E

(n)
i + ... (1.28)

By substituting the above expressions in the corresponding Schrödinger equation and

equating the co-efficients of λ one gets the perturbation corrections to energy order by
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order. The zeroth order energy is expectation value of the zeroth order Hamiltonian over

the unperturbed function

E
(0)
i = 〈Ψ(0)

i |H0|Ψ(0)
i 〉. (1.29)

At first order in the perturbation, BWPT and RSPT theories are equivalent. However,

BWPT extends more easily to higher orders, and avoids the need for separate treatment

of non-degenerate and degenerate levels. For each unperturbed eigen state a pair of

complimentary projection operators are defined as P0 = |Ψ0〉〈Ψ0| and Q0 = 1 − P0.

A little manipulation of Schrödinger equation with these operators leads to following

BWPT expression for energies

E
(1)
i = 〈Ψ(0)

i |H(1)|Ψ(0)
i 〉 (1.30)

E
(2)
i = 〈Ψ(0)

i |H(1)RH(1)|Ψ(0)
i 〉. (1.31)

Where R is the resolvent

R =
Q0

E −H0

(1.32)

Equations 1.30 and 1.31 contains the unknown exact energy in the denominator and

hence iterative method is adopted to solve these equations.

In RSPT the unknown energy in the denominators of the BWPT expansion is avoided

and this enables a size-consistent theory. The resolvent is R0 = Q0

E
(0)
i −H0

. The corrections

in the energy are,

E
(1)
i = 〈Ψ(0)

i |H(1)|Ψ(0)
i 〉 (1.33)

E
(2)
i = 〈Ψ(0)

i |H(1)R0H
(1)|Ψ(0)

i 〉 (1.34)

E
(2)
i =

∑
n6=i

〈Ψ(0)
i |H(1)|Ψ(0)

n 〉〈Ψ(0)
n |H(1)|Ψ(0)

i 〉
E

(0)
i − E

(0)
n

(1.35)

The efficiency and convergence of the perturbation series depends on the choice of

zeroth order Hamiltonian H0. For the quick convergence of the perturbation series one

needs a wise choice of H0 and the small H1. Different perturbation theory differ in ex-

plicit expressions for E(n)
i and Ψ

(n)
i . If H0 is chosen as the sum of Fock operators, i.e.,
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H0 =
∑

i f̂(i) in the RSPT, the partitioning is known as Moller-Plesset (MP) partition-

ing scheme. In this case, Ψ
(0)
0 (the HF wave function) is the zeroth order function for

the ground state, E(0)
0 is the zeroth order energies which is the sum of energies of the

occupied HF orbitals, and Ψ
(0)
n , n 6= 0 are the different excited determinants as in CI

expansion. The Second-order MPPT (also known as MP2 method) for energy recovers

considerable fraction of correlation energy for closed-shell atoms and molecules.

The main idea behind the Van Vleck PT [29] is that a unitary transformation U is

applied in order to construct an effective Hamiltonian which exhibits, to a certain order

in the perturbation, the same eigen energies as the original Hamiltonian but only connects

almost degenerate levels. Originally the Van Vleck PT is used to treat modifications on

diatomic molecules caused by vibrations and rotations of the nuclei [29]. Since then the

formalism has found many applications in both chemistry and physics and experienced

various modifications [30].

1.9 Second quantization

Second quantization method was first introduced by Dirac in his treatment of quantiza-

tion of radiation field. This method takes care of the antisymmetry of electronic wave

functions in a more elegant way than the Slater method. It is very useful for explaining

the coupled cluster and related many-body methods. In the second quantization formal-

ism the expansion of a determinant into N ! terms is bypassed. Instead, the antisymmetry

is taken care of by defining creation operators a†i and annihilation operators ai.

The creation operator a†k creates an electron on the spin orbitals χk. An annihilation

operators ai annihilates or removes an electron from the spin orbital χi if the later was

occupied. So, if a creation operator a†i operating on the N electron determinant without

the spin orbital χi creates N + 1 electron state:

ai†|χj, χk, χl〉 = |χi, χj, χk, χl〉 (1.36)
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An annihilation operator ai annihilates an electron from the N electric state which con-

tains spin orbital χi generates N − 1 electron state:

ai|χi, χj, χk, χl〉 = |χj, χk, χl〉 (1.37)

The creation-annihilation operator shares the adjoint relation ak = (ak†)†. The cre-

ation and annihilation operators satisfies the various algebraic properties. The anti-

commutation relation between them is given below:

a†ia
†
k + a†ka

†
i ≡ [a†i , a

†
k]+ = 0 (1.38)

aiak + akai ≡ [ai, ak]+ = 0 (1.39)

a†iak + aka
†
i ≡ [a†i , ak]+ = δik (1.40)

Let us define the concept of an abstract mathematical entity called vacuum state.

It is the state that contains no electron and is denoted by |vac〉. The vacuum state is

normalized to unity 〈vac|vac〉 = 1 and orthogonal to any other state. Any N electron

state can be obtained by acting creation operators on vacuum. Fock space is a linear

vector space spanned by determinants with different number of electrons. This can also

be visualized as the direct sum of Hilbert spaces with different number of electron. Any

N electron Fock space can be constructed as a†ia
†
j...a

†
N |vac〉.

In second quantization, the Hamiltonian is expressed in terms of these creation-

annihilation operators and hence the dependence on number of electrons is eliminated.

The expectation values of such operator between functions of a Fock space are deter-

mined by applying the concept of normal ordering and Wick’s theorem [31]. The concept

of normal ordering is used to evaluate the matrix elements of second quantized operators

between any two Fock space determinants. The generalized Wick’s theorem states that

any time order operator string can be written as normal ordered form plus sum of all pos-

sible contractions. In normal ordering, all annihilation operators are placed at the right of

the creation operators. When a commutation/anti-commutation is performed between a

pair of creation and annihilation operators, two terms arise. One that doest not contain the
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pair of creation-annihilation operators is known as contraction term. In the second term

the creation and annihilation operator pair is commuted/anti-commuted. The states of

many particle system between which the expectation values to be calculated are written

as a string of creation-annihilation operators acting on the vacuum. The above expressed

correlation methods e.g. CI, MBPT are re-expressed in terms of second quantization.

The diagrammatic technique was introduced by Feynman [32] in the context of quantum

field theory and later on applied to many electron problem. The diagrammatic represen-

tation of the Wick theorem bypasses the cumbersome algebraic formulation of many-

body methods. The diagrammatic representation of the corresponding energy terms and

amplitude equations not only simplify the formulation but monitor the size extensivity.

1.10 Coupled cluster

The coupled cluster (CC) methods form another popular approach to the problem of

constructing correlated wave functions. The CC theory has been employed for decades

in the physics community, particularly in the area of nuclear physics by Cöester and

Kümmel [2] to deal with double magic atomic nuclei. It was originally introduced into

the quantum chemistry community by Čížek and Paldus [3] in the late 1960’s. These

early formulations used Feynman-like diagrams and the notation of second quantization

to aid in the derivation of programmable CC equations. Both Feynman diagrams and sec-

ond quantization concepts were alien to quantum chemists, it was Hurley [33] to present

derivation of CC theory in terms accessible to chemists. Despite Huley’s derivation, the

use of second quantization and diagrammatic theory is still beneficial in the efficient

derivation of CC equations. The use of these efficient derivation tools is so important to

CC theory because, unlike CI theory in which the core problem is the diagonalization

of the Hamiltonian matrix with elements given by Slater’s rules and in which individual

methods only differ in the basis functions used to construct this matrix, standard CC the-

ory requires the iterative solution of algebraic equations which must be re-derived with
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each change in method.

There are many differences between CI and CC theory. In CI theory, the wave func-

tion may be written as a linear combination of all excited states relative to a chosen

reference configuration eq.1.22. Using the second quantization operators, the operator

Ĉn can be written which, when acted on the reference, generates a linear combination of

all possible n-tuply excited configurations:

Ĉn = (
1

n!
)2

n∑
ij...ab...

cab...ij... a
†
aa
†
b...ajai (1.41)

The cab...ij... coefficients are the CI coefficients for the configurations produced by the action

of the string of creation and annihilation operators on the reference. Making use of these

excitation operators, the CI wave function is given by equation

ΨCI = (1 + Ĉ)|φ0〉. (1.42)

where

Ĉ = Ĉ1 + Ĉ2 + ... =
N∑
n

Ĉn. (1.43)

In this notation, it is possible to construct any CI wave function which is truncated solely

on the basis of excitation level by including only the desired Cn excitation operators in

C. The CC method employs an excitation operator T̂ which is identical in form to the Ĉ

operator of CI theory,

T̂ = T̂1 + T̂2 + ... =
N∑
n

T̂n. (1.44)

with

T̂n = (
1

n!
)2

n∑
ij...ab...

tab...ij... a
†
aa
†
b...ajai (1.45)

but instead of acting on the reference in a linear fashion, the T̂ operator of CC theory

acts exponentially:

ΨCC = eT̂ |Φ0〉. (1.46)
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The tab···ij··· coefficients in the T̂n operators are known as cluster amplitudes. Analogous

to CI theory, an excitation truncated CC method may be constructed by including only

the desired excitation operators within T̂ . For example, the popular CCSD method is

realized when only the T̂1 and T̂2 operators are included within T̂ . There are various

theoretical basis for employing the exponential formalism instead of remaining with the

linear ansatz of CI theory. The interesting thing is that the exponential approach produces

a method which is both size consistent and size extensive, provided the reference function

possesses these qualities, even when T̂ is truncated at a chosen excitation level.

Having established that the CI and CC formalisms differ primarily in the method in

which the excitation operators Ĉ and T̂ operate on the reference, linearly for CI and expo-

nentially for CC, the next step is to examine how one derives the working CC equations.

Beginning from the universal starting point, the Schrdinger equation, one substitutes in

the form of the CC wave function given by eq 1.46 and finds

ĤeT̂ |Φ0〉 = EeT̂ |Φ0〉. (1.47)

Projecting through on the left by the reference, |Φ0〉, one can obtain an expression

for the energy

〈Φ0|ĤeT̂ |Φ0〉 = E〈Φ0|eT̂ |Φ0〉 = E, (1.48)

provided one employs the technique of intermediate normalization and sets the overlap

between the reference and the CC wave function i.e., 〈Φ0|ΨCC〉 equal to unity. Obtain-

ing an energy expression is only the first step, however one must also determine all of

the cluster amplitudes which define the wave function with this energy. In order to ac-

complish this, one must left-project eq 1.48 by the excited determinants produced by the

action of the T̂ operator:

〈Φab···
ij··· |ĤeT̂ |φ0〉 = E〈Φab···

ij··· |eT̂ |Φ0〉. (1.49)

For example, one can produce an equation for the specific amplitude tabij by left-projecting

by the |Φab
ij 〉 excited determinant. The resulting equation is non-liner and depends upon
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other cluster amplitudes. However, these equations are exact, and if one were able to

solve them with the full T̂ operator, one would indeed obtain the full CI energy and wave

function.

The CC method depends upon the action of the exponential excitation operator eT̂ on

the reference. The excitation operator is expanded as the power series

eT̂ = 1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ · · · . (1.50)

As a matter of fact, the equivalence of eT̂ and this power series is commonly used in the

various arguments employed to justify the exponential ansatz. From eq.1.48 one get

E = 〈Φ0|Ĥ|Φ0〉+ 〈Φ0|ĤT |Φ0〉+ 〈Φ0|Ĥ
T̂ 2

2!
|Φ0〉+ 〈Φ0|Ĥ

T̂ 3

3!
|Φ0〉+ · · · (1.51)

from which one can find another benefit of the exponential formalism. The Hamiltonian

operator only includes one- and two- particle operators, and thus, according to Slater’s

rules, matrix elements of the Hamiltonian between determinants which differ by more

than two spin orbitals must vanish. Therefore, the fourth and subsequent terms in the

above expansion, in which the T̂ operator is raised to the third or higher power and

can thus produce only triply or higher excited determinants when operated upon the

reference, must also vanish and the energy expression is truncated to

E = 〈Φ0|Ĥ|Φ0〉+ 〈Φ0|ĤT |Φ0〉+ 〈Φ0|Ĥ
T̂ 2

2!
|Φ0〉. (1.52)

This is a natural truncation of the CC equations due to the nature of the Hamiltonian and

also applies to the amplitude equations, although the exact range of allowed powers of T̂

will vary from that seen for the energy expression. Therefore, in practical CC derivations,

theorists exploit a bit of mathematical experience and multiply eq 1.48 through on the left

by e−T̂ . Subsequent left-projection by the reference and excited determinants produces

the following new set of energy and amplitude equations:

E = 〈Φ0|e−T̂ ĤeT̂ |Φ0〉 (1.53)

〈Φab···
ij··· |e−T̂ Ĥ T̂ |Φ0〉 = E〈Φab···

ij··· |e−T̂ eT̂ |Φ0〉 = E〈Φab···
ij··· |Φ0〉 = 0 (1.54)
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respectively. Notice that the introduction of the e−T̂ operator cancels out its eT̂ counter-

part in the amplitude equations and guarantees that the right hand side vanishes, taking

any dependence of the amplitudes on the energy with it. The similarity transformed

Hamiltonian, e−T̂ ĤeT̂ , employed in the above energy and amplitude equations is not

a Hermitian operator; therefore, the energy equation does not satisfy any variational

conditions where the energy is derived from the Average Value Theorem. Despite this

disadvantage, which is considered to be small by a number of theorists, the use of this

similarity transformed Hamiltonian has as a second benefit which makes this formula-

tion of the CC equations both practical and desirable. The e−T̂ ĤeT̂ operator may be

expanded as a linear combination of nested commutators

e−T̂ ĤeT̂ = Ĥ+[Ĥ, T̂ ]+
1

2!
[[Ĥ, T̂ ], T̂ ]+

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ]+

1

4!
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ]+ · · ·

(1.55)

according to the Campbell-Baker-Hausdorff formula.

While the expansion of the similarity transformed Hamiltonian given above in equa-

tion 1.55 may not, at first glance, appear to be simple but the sequence of nested commu-

tators naturally truncates due to the structure of the electronic Hamiltionian. The second

quantized form of the Hamiltonian includes strings containing at most a total of four

general-index creation and annihilation operators. When one evaluates the commutator

between the Hamiltonian and the T̂ operator, one replaces one of these operators by a

Kronecker delta function. This reduces the number of available general-index opera-

tors in the Hamiltonian by one. Thus, the sequence of nested commutators in eq.1.55

must truncate after the five terms explicitly written. Using this truncated Hausdorff ex-

pansion, it is possible to obtain analytic expressions for the commutators which may be

inserted into both the energy and amplitude equations. Finally, these equations may then

be reduced into expressions that depend only on the amplitudes and the known one- and

two-electron integrals.
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1.11 Different cluster approximations

The method which uses the cluster operator in eq.1.44 is known as full CC (FCC) and

is equivalent to FCI. Obviously the number of cluster operators are same as CI opera-

tors. However, the simplicity of CI is lost due to the exponential nature of CC function

and hence it is never used in practice. Unlike truncated CI, CC is known to be size-

consistent and size-extensive at any level of truncation because of its exponential nature.

The most commonly used CC ansatz is to define T = T1 + T2 leading to singles and

doubles (SD) approximation by Purvis and Bartlett [34]. This model consider the effect

of disconnected triple excitations, but it neglects the connected triple excitations. The

importance of connected triples is demonstrated by the complete fourth-order MBPT

calculations [35] for energy, chemical reactivity and molecular properties. The inclusion

of connected triples within the CC scheme is considered very early after the introduc-

tion of the CC approach by Paldus, Cizek, and Shavitt [36]. There are various models

like CCSDT-1a, CCSDT-1b, CCSDT-2, CCSDT-3 are developed to reach full CCSDT

model [37]. The details of all these models are compared in reference [38]. The main

goal of the approximate model is to obtain the results closer to FCI with a computational

efforts that is as small as possible. The non-approximated coupled cluster models only

provide a feasible hierarchy for small systems due to their fast increasing computational

cost: CCSD(N6), CCSDT(N8), etc., where the number in parentheses denotes the scal-

ing with the number of orbitals. The perturbative correction in the CCSD(T) model [39]

is used successfully in obtaining static molecular properties. CCSD(T) scales asN7. The

quadruple excitations are also taken care perturbatively CCSDT(Q) and fully CCSDTQ

[40]. There are methods which emphasizes only on molecular properties rather than the

total energies because the accuracy of total energies does not assure accuracy of molec-

ular properties. The second order CC model known as CC2 [41] is an approximation to

CCSD and CC3 [42] is an approximation to CCSDT.
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The complexity of the implementation of CC methods grows rapidly with the excita-

tion rank of the cluster operator. At most pentuple excitations are derived and coded in a

“traditional way” [43]. However, the implementations of higher excitations with proper

computational scaling is developed in two ways. One involves an automatic generation

of Fortran (or other language) code for each particular case, which is then compiled and

linked into the final program [44]. Second way is the string-based CC approach, which

implements contractions of tensors with arbitrary number of indices within one (human-

written) code [45]. Both approaches are able to achieve proper computational scaling and

take advantage of the antisymmetry of amplitudes and spin symmetry for any CC exci-

tation level. Approximate non-iterative schemes of general order and analytic gradients

using the string approach are implemented by Kally and coworkers [46].

1.12 Alternate single reference(SR) CC approaches

The traditional CC method just discussed is known as normal coupled cluster (NCC)

method. The implicit formulation of this method is non-variational. In this version the

proof of size extensivity is more transparent. The nonvariational CC has been extensively

applied for the calculation of electronic energies. However, the nonvariational nature

makes it computationally unattractive for energy derivatives. Alternate way to simplify

the problem is to solve the CC ansatz variationally. The advantage of variational CC is

that, here, Hellmann-Feynman theorem and (2n+ 1) rule holds. This makes the method

attractive for higher energy derivative. These stationary methods includes expectation

value functional (XCC), unitary CC (UCC) and extended CC (ECC). We will review

these mothods in the following subsections.
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1.12.1 Expectation value and Unitary coupled cluster ansatz

One of the attempt in formulating the stationary theory is via the expectation value type

hermitian functional

E =
〈Φ0|eT

†
HeT |Φ0〉

〈Φ0|eT †eTΦ0〉
(1.56)

This functional is referred as expectation value coupled cluster (XCC) [47, 48]. The

T operators are hole-particle creation operators like in NCC, the T † being conjugate of

T , indicate hole-particle destruction. The practical implementation of this functional is

impossible because both the numerator and denominator are infinite series in T † and T .

Moreover, this functional does not exhibit the connected nature of energy as in NCC. Pal

et al. [48] used linked cluster theorem and showed that the numerator can be decom-

posed into a connected term multiplied by a disconnected term. The disconnected term

exactly cancels the denominator. Therefore, the connected form of the functional which

is suitable for carrying out the variation is

E = 〈Φ0|eT
†
HeT |Φ0〉conn. (1.57)

It can be seen that the functional is a nonterminating, but hermitian series in cluster

amplitudes and thus has to be truncated for any practical application. Various truncation

schemes were employed in the literature to truncate this functional. Pal et. al. [47] used

polynomial truncation based on fixed power of T † and T . Bartlett and co-workers [49]

used perturbative arguments for the truncation.

An another stationary CC scheme proposed by Kutzelnigg [50] following Van Vleck

[51] and Primas [52] formalism is based on the unitary ansatz, referred as unitary CC

(UCC). The exact correlation function has the form

Ψ = eσ|φ0〉. (1.58)

where σ is anti hermitian σ = −σ†. The special choice of σ is σ = T − T †. With this

wave function, the energy functional becomes,

E = 〈φ0|e−σHeσ|φ0〉 (1.59)
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This functional is connected due to BCH expansion of e−σHeσ. However, the expansion

leads to an infinite series and need to be truncated for practical implementations. Pal et.

al. [47] showed that the UCC functional in eq.1.58 is identical with the XCC functional

in eq.1.57.

These stationary CC methods, however, were not pursued extensively due to some

inherent drawbacks. Unlike the standard variational methods, these truncated energy

functional does not lead to any upper bound of calculated energy. Although the en-

ergy functional is connected, the differentiations of this functional with respect to cluster

amplitudes lead to disconnected terms in the amplitude equations. Consequently, the

disconnected terms bring in an inherent error of size-extensivity into the theory.

1.12.2 Extended coupled cluster

Extended coupled cluster (ECC) proposed by Arponen [53] is an alternate stationary

coupled cluster method which uses the double similarity transformation in the energy

functional

E = 〈φ0|eΣe−THeT e−Σ|φ0〉. (1.60)

Here, Σ is an deexcitation operator and eΣ|Φ0〉 = 0. This functional terminates nat-

urally depending of the rank of the T and Σ operators. This functional can be vari-

ationally optimized with respect to cluster operators Σ and T . However, it generates

some disconnected terms in the amplitude equations while differentiations leading to

size-inextensivity in the energy value. Arponen and Bishop [54] arrive at double linked

type functional by transforming T

E = 〈φ0|eΣe−T̃HeT̃ e−Σ|φ0〉DL. (1.61)

Here DL means double linking which means that T̃ is linked to Hamiltonian due to BCH

(e−T̃HeT̃ ), Σ operator is connected to either at least with one Hamiltonian vertex or with

two distinct T̃ vertex. Alternately, eq.1.61 can be expressed as

E = 〈φ0|eΣ[HeT̃ ]L|φ0〉DL. (1.62)
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∂E

∂σ
= 0;

∂E

∂t̃
= 0. (1.63)

The equations of Σ and T̃ are obtained by making the energy stationary with respect to t̃

and σ. The double linking ensures the connectedness of terms in the equations of Σ and

T̃ , there by ensuring the size-extensivity. Piecuch [55] and Gordon and co-workers [56]

used the method to study the molecular bond breaking. Piecuch and Bartlett [55] tested

size-extensivity of ECCM.

1.13 Equations of motion CC

The equation of motion CC (EOMCC) provides a straightforward and general path to

calculate energy differences. In EOMCC formalism, Rowe’s [57] equation is solved for

excitation operators Ωk. The electronic states, different from ground (or reference) state

are parameterized in a linear fashion as

Ψk = ΩΨ0 = Ωke
TΨ0, (1.64)

where Ωk is a linear operator. The method is also called as the coupled cluster linear

response theory (CCLRT). The Ωk may change the number of particles, and by making

different choices for the set of Ωk, different sectors of Fock space are made accessible.

The operator Ωk is a sum of operators with odd number of electron creation and de-

struction operators such that the final state is N ± 1 electron state. In case of excitation

energy (EE) the excitation operator is formed from a set of equal number of creation and

annihilation operators. The eigenvalue equation obtained in EOMCC is

[H̄,Ωk]c|0〉 = ωkΩk|0〉. (1.65)

Here, H̄ = e−THeT and ωk = Ek − E0. As mentioned above EOMCC gives the energy

difference directly by solving the EOMCC eigenvalue equation of H̄ i.e.diagonalization

of H̄ in the excited manifold generated by Ωk . Bartlett et. al. [58] proposed EOMCC for

the calculation of difference energies. Since the equations are not fully linked, the cor-

responding excitation energies are not size extensive. The second drawback of EOMCC
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method is that since it diagonalizes a non-Hermitian Hamiltonian H̄ , one may encounter

complex eigenvalues in the eigenvalue spectrum. The EOM-CC methods and are now,

very commonly used for ionisation potential, electron affinity and EE calculations [59–

61]. Recently Nooijen et. al. [62] proposed a similarity transformed EOMCC method to

over come the size-extensivity problem in EOMCC. For one valence problem EOMCC

and FSMRCC are equivalent. However, such equivalence breaks down for excited state.

EOMCC contains certain unlinked diagrams which are associated with charge-transfer

separability [63]. The spin-flip EOMCC method has also been introduced as a clever

way to describe the multi reference states [64].

1.14 Static and Dynamic correlation

In the design of the configuration spaces smaller than that of FCI, it is important to dis-

tinguish between static and dynamic correlation. Static correlation or nondynamical is

treated by retaining, in the dominant configurations in FCI expansion as well as those

configurations that are nearly degenerate with the dominant configurations. These con-

figurations selected for an adequate description of static correlation are referred to as

the reference configurations of the CI wave function. The configuration space spanned

by the reference configurations are called the reference space. Dynamical correlation is

subsequently treated by adding the wave function configurations generated by excitations

out of the reference space to the dominant configuration.

1.15 Quasidegeneracy and multi-reference methods

The SR methods are suitable for the description of closed-shell atomic states and near

equilibrium ground states of closed-shell molecules where the single determinant domi-

nates Φ. A major portion of electron correlation in such states is accounted in the mean-

field description used for finding this dominant determinant. The remaining part of short

range electron correlation is referred as dynamical or external correlation. The dynamical
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[65] correlation arises due to somewhat weak interaction of various excited determinants

with this dominant determinant and contributes to correlation energy of the state. There

are many cases in chemistry are dominated by several determinants. The cases such as

degenerate or quasi-degenerate systems (excited states of molecules and potential energy

surfaces, bond breaking processes, reactive chemical phenomena, and so on) involves

more than one configurations or multi-configurations (MR). A quasi-degenerate state is

characterized by a significant amount of non-dynamical electron correlation arising due

to strong interaction between the dominant determinants.

The first MR correlated method to be implemented was MRCI [66, 67] (due to its

conceptual simplicity) but it has still not been devoid of the size-consistency problem

that is inherent to all variational approaches. Therefore, in the past decade, there has

been much effort involved to develop MR MBPT [68, 69] and MR CC [7] methods that

are assumed to treat electron correlation from the secondary space more effectively than

CI methods do. The common obstacles of both MR approaches are (i) the choice of an

appropriate reference space and (ii) the problem of intruder states.

1.15.1 Multi-reference configuration interaction (MRCI)

The MRCI method is the straightforward extension to the SR-CI method. This method

has been implemented first by Buenker and Peyerimhoff [66]. In this method the ref-

erence is taken as the linear combination of several interacting dominant configurations

known as model space. The MRCI wave-function is constructed as a linear combina-

tions of all distinct excited determinants generated by carrying out excitations on each

determinant within the model space. The MRCI-SD wave function is written as the com-

bination of excited determinants obtained from the set of reference functions φR. The

normalized reference and MRCI wave functions for state n is

Ψ
(n)
ref =

∑
R

CRnφR (1.66)
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ΨMRCI−SD =
∑
R

CRnφR +
∑
S

CSφS +
∑
D

CDφD. (1.67)

Here φS and φD are singly and doubly excitations obtained out from the set of refer-

ence functions {φR}. Solving MRCI is also similar to SRCI. The combining coefficients

in eq.1.67 are determined by applying the variational principle leading to diagonaliza-

tion of the Hamiltonian matrix evaluated between different determinants. The problem

of size inconsistency of truncated CI-methods is not solved by taking more references.

The modern MRCI treatments make use of spin-adapted configuration state functions

(CSF) in place of determinants along with the efficient rules developed for evaluation of

coupling coefficients entering the Hamiltonian matrix elements. To achieve efficiency,

they further employ the direct CI method proposed by Roos [70] in combination with

the graphical methods of unitarty and symmetric group approaches. The works by vari-

ous authors Meyer [71] and Knowles and coworkers [72, 73] and Werner and coworkers

[73, 74] uses internally contracted configurations. Various methods like multireference

averaged coupled-pair functional (MR-ACPF) method of Gdanitz and Ahlrichs [75], the

multireference averaged quadratic coupled cluster (MR-AQCC) method of Szalay and

Bartlett, [76] and the multireference self-consistent self-consistent CI (MR-SCSCCI)

method of Malrieu and coworkers [77] emerged to fulfill the size-consistency require-

ment.

1.15.2 Multiconfigurational self consistent field (MCSCF)

In MCSCF the wave function [78] is written as a linear combination of determinants,

whose expansion coefficients are optimized along with molecular orbitals.

|Ψ〉 =
∑
i

Ciφi (1.68)

The MCSCF wave function is well suited for the system involving degenerate or nearly

degenerate configurations, where static correlation is important. Such states are usually

encountered in the description of reaction process involving bond breaking, even some-

times in ground state geometry. Unlike RHF wave function, the MCSCF wave function
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gives a balanced description of the potential energy surfaces of ground state hydrogen

atoms. The most difficult part in handling the MCSCF wave function is in the addition

of configuration spaces. That has been elegantly taken care in the generalized form of

MCSCF called complete active space SCF (CASSCF).

Aanother MCSCF model is based on a partitioning of the subspace of active orbitals.

This is known as restricted active space (RAS) SCF. Here the active orbitals are parti-

tioned into three subgroups [79]. In the first subspace, usually called RAS1, the number

of electron holes is restricted, in the second subspace (RAS2), all occupations are al-

lowed, in the third subspace (RAS3), the number of electrons is restricted. RASSCF

function may provide a good approximation to the corresponding CASSCF function us-

ing a much smaller set of configurations. More frequently, it is applied to provide a

coarse description of dynamical correlation effects by including extended set of active

orbitals in the RAS3 subspace.

1.15.3 CASSCF

The CASSCF wave-function as zeroth-order reference function was developed and suc-

cessfully applied by Roos and coworkers [80]. In CASSCF the basic quantity of interest

is the molecular orbitals. The starting point is an orthonormal orbital space φi(r); i =

1, ...,m. The MO’s are obtained as expansion in a set of atom-centered basis function

(the linear combination of atomic orbitals)(LCAO method), m being the number of such

functions. The MO space is further divided into the inactive, active and external orbitals.

The inactive and active subspaces constitute the occupied spaces, while the external or-

bitals are unoccupied. The CASSCF wave function is formed as a linear combination

of configuration state functions(CSF). The configuration state functions are constructed

by considering doubly occupied orbitals as inactive orbitals and the remaining electrons

occupy the active orbitals. Using these electrons and orbitals, a full list of CSF’s which

have the required spin and space symmetry is constructed. The CASSCF wave function

is written as a linear combination of all these CSF’s, comprising a complete expansion
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in the active orbital subspace.

Unlike CI method, in CASSCF the energy is optimised with respect to expansion

coefficients and MO’s. During the optimization the core orbitals are kept frozen. This

reduces the computational effort. By replacing the core electrons by effective core poten-

tial (ECP), CASSCF can be extended to systems containing several heavy atoms. When

active space comprises all the orbitals in the system, the FCI wave function is recovered.

For the case of empty active space the MCSCF reduces to HF. The MCSCF model may

be regarded as a combination of HF model and FCI model.

There are cases where a larger number of active orbitals are needed. In such cases

the restricted form of the CASSCF wave function may be used.

1.15.4 Multi-reference perturbation theory (MRPT)

The MRPT is classified in to two categories. In the first one the perturbative effec-

tive Hamiltionian is constructed over the defined model spaces. The diagonalisation of

this Hamiltionian yields approximate energies and approximate wave-functions of one or

more states having their zeroth-order components within the model space. They are com-

monly known as perurb-then-diagonalise type of approaches and also known as quasi-

degenerate perturbation theory (QDPT) by Brandow [68]. The second category is the

straight extension of the SR perturbation theory where the zeroth order wave function

qualitatively describing the desired state is first constructed by diagonalizing the Hamil-

tonian over the model space, usually through a multi-configuration self-consistent field

(MCSCF) calculation. This is then used to construct the zeroth order Hamiltonian, which

then defines perturbation. The perturbative expansion over zeroth order wave function is

used to obtain the corrections to the wave function and energies at various order. This

is a state-specific approach (one state at a time), usually referred to as diagonalize- then-

perturb approach by Wolinski [69]. Of course, the diagonalize then perturb approach or

the perturb then diagonalize approach will yield the same result at infinite order but the

results at low order may differ significantly.
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The so called ’perturb then diagonalize’ approaches involve works by Robb and

coworkers [81], Freed and coworkers [82], Nakano [83], Davidson [84], Malrieu and

coworkers [85], works by Mukherjee and coworkers [86], Finley [87], Angeli et al. [88]

and others. There are schemes developed without an effective operator by several authors

Davidson [89], PT formulations worked out by Wolinski, Pulay, Murphy and Messmer

[90], the complete active space second-order PT (CASPT2) methodology by Roos and

coworkers [91], studies by Werner, Dyall and Mitrushenkov [92], the multi reference

Moller-Plesset (MRMP) methodology of Hirao and coworkers [93], works by Rosta and

Surjan [94], the n-electron valence state perturbation theory (NEV-PT) framework of An-

geli et al. [95] and the recent multi configuration perturbation theory (MCPT) [96] and

several others.

An another approach called as generalized Van Vleck PT (GVVPT) [97] is a subspace-

specific variant of multireference perturbation theory. This approach is contrast to most

computationally feasible MRPTs or QDPTs which accounts for the interaction of the per-

turbed model space functions of interest with the unperturbed complementary states. Per-

haps most importantly, GVVPT avoids completely the notorious intruder state problem,

even when considering excited electronic states. As a consequence, GVVPT potential

energy surfaces of both ground and excited states are rigorously continuous. Recently,

analytical evaluation of dipole moments is acheived through Lagrangian technique by

Pal, Hoffmann and coworkers [98].

A main difficulty of MRPT lies in the choice of the zeroth-order Hamiltonian In

multi-reference cases, the zeroth-order Hamiltonian is in general non-diagonal. As a

result, a set of linear equations have to be solved to determine the first-order wave func-

tion. The issue of zeroth-order Hamiltonian in diagonalize-then-perturb type of MRPT

approaches has been a subject of numerous detailed studies. This is also related to the

size-consistency aspects of the method.
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1.15.5 Multi-reference CC methods (MRCC)

The single reference based approach is well suited for nondegenerate or closed shell sys-

tems and only in limited cases for quasidegenerate situations. The ground states of open

shell radicals are described by SRCC based on the restricted open shell HF determinant.

Similarly in some cases excited states are described accurately by the SRCC method.

On the other hand, to introduce nondynamical correlations systematically in the wave

function, a general solution is to start from a multideterminantal model space consisting

of dominant determinants. Subsequent introduction of dynamical correlation through

the exponential wave operator is the basis of the class of multireference CC methods

(MRCC) [4–8]. In recent years, this class of methods are studied for the description

of excited states, ionized states, and potential energy surfaces (PES), where the nondy-

namical correlation is likely to be important. The traditional MRCC uses an effective

Hamiltonian route [99], which is investigated extensively in recent years. The effec-

tive Hamiltonian is constructed within a model space (corresponding states of interest).

The effect of orthogonal complement to the model space is folded into the model space

through the wave operator for the construction of an effective Hamiltonian. The standard

and commonly used effective Hamiltonian is the Bloch effective Hamiltonian. The ef-

fective Hamiltonian method can provide the energies of multiple states at a time and this

advantage can be exploited in many situations. The effective Hamiltonian methods can

be further classified into valence-universal or Fock space (FS) [4, 106, 107] and valence-

specific or Hilbert space types (HS) [109, 110]. The valence universal type is based on a

common vacuum with respect to which holes and particles are defined. These holes and

particles are further subdivided into active and inactive subsets. The active subset is the

one that contained in the model space determinants. This approach works well when the

model space determinants contain a small number of active holes and particles. This class

is well suited for ionized or low lying excited states. However, for the PES, the model

space determinants usually do not satisfy this feature and the valence specific type, where
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each determinant acts separately as vacuum, is more suitable for PES calculations. This

is called as HSMRCC. However, for a general problem of PES, the effective Hamiltonian

method, which provides the energies of a multiple of states still suffers from the intruder

state problem. The state specific MR (SSMR) theory by Malrieu and co-workers [100],

Mukherjee and co-workers [101, 102], and Masik et al. [103], pertaining to the descrip-

tion of a single state (i.e, one state at a time) has emerged as a more attractive formulation

to take care of intruder state problem. The state-specific multi-reference CC (SS-MRCC)

method of Mahapatra et al. [102] uses CAS and it is rigorously size-extensive. SS-type

approaches are classified into those that employ genuine MR CC equations, represented

primarily by MkCC (Mukherjee et al. MR CC [101, 102]), KB-MRCC (using Kucharski

and Bartlett coupling [104]), and by the BW-MRCC (Brillouin Wigner MR CC [105])

methods, as well as by a large group of approaches that are essentially of a SR-type, but

employ some MR CC ideas in accounting for higher-than-pair clusters.

1.16 Fock-space multi-reference coupled-cluster method

The FSMRCC theory was originally formulated by Kutzelnigg [106], Mukherjee [4] and

Lindgren [107], and applications to atoms were made by Kaldor and co-workers [8]. First

molecular applications of FSMRCC theory at singles and doubles level were presented

in a few important papers published in the late 1980’s [5, 6, 108].

In the Fock-space, the model space determinants contain h-holes and p-particles dis-

tributed within a set of what are termed as active holes and active particles, usually around

the fermi level. We denote the above p-active particle, h-active hole model space deter-

minant by {Φ(p,h)
i }. Thus, the model space of a (p, h) valence Fock-space is written

as

|Ψ(p,h)
(0)µ >=

∑
i

C
(p,h)
iµ |Φ(p,h)

i > (1.69)
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The projection operator for model space is defined as

P (p,h) =
∑
i

|Φ(p,h)
i >< Φ

(p,h)
i | (1.70)

The orthogonal component of the model space, i.e. the virtual space is defined as

Q = 1− P (1.71)

The dynamical electron correlation arises due to comparatively weak interactions of the

model space configurations with the virtual space configurations. This interaction is

brought in through a universal wave operator Ω which is parameterized such that the

states generated by its action on the reference function satisfy the Schrödinger equation.

To generate the exact states for the (p, h) valence system, the wave operator must gen-

erate all valid excitations from the model space. Subsequently, Ω should contain cluster

operators T̃ (p,h) which are defined as follows

T̃ (p,h) =

p∑
k=0

h∑
l=0

T (k,l) (1.72)

The superscripted bracket in the right hand side of the above expression indicates that the

cluster operator T is capable of destroying exactly k active particles and l active holes, in

addition to creation of holes and particles. The T̃ (p,h) operator subsumes all such lower

T (k,l) operators. Using these operators, the Ω is defined as follows.

Ω = {eT̃ (p,h)} (1.73)

The brace-bracket in eq.1.73 indicates normal ordering of the cluster-operators. The

Schrödinger equation for the manifold of quasi-degenerate states can be written as

H|Ψ(p,h)
i > = Ei|Ψ(p,h)

i > (1.74)

which leads to,

HΩ(
∑
i

C
(p,h)
iµ Φ

(p,h)
i ) = EµΩ(

∑
i

C
(p,h)
iµ Φ

(p,h)
i ) (1.75)
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The effective Hamiltonian for (p, h) valence system can be defined such that∑
j

(H
(p,h)
eff )ijCjµ = EµCiµ

(H
(p,h)
eff )ij = 〈φ(k,l)

i |Ω−1HΩ|φ(k,l)
j 〉 (1.76)

which can be written as

H
(p,h)
eff = P (p,h)Ω−1HΩP (p,h). (1.77)

The form of the inverse of Ω, in general may not be well defined. Hence, above definition

is seldom used to obtain the effective Hamiltonian. Instead, the Bloch-Lindgren approach

is commonly used to define the effective Hamiltonian. The Bloch equation is just the

generalized form of Schrödinger equation.

HΩP = ΩHeffP (1.78)

The Bloch-Lindgren approach not only eliminates the requirement of Ω−1, but also pro-

vides an important criterion the effective Hamiltonian must fulfill. The effective Hamil-

tonian is, in general, non-hermitian. The Bloch projection approach is used to obtain Ω

and the effective Hamiltonian. This involves left projection of above equation by P and

Q.

P (k,l)(HΩ− ΩH
(k,l)
eff )P (k,l) = 0

Q(k,l)(HΩ− ΩH
(k,l)
eff )P (k,l) = 0

;∀k = 0, . . . , p; l = 0, . . . , h (1.79)

The normalization condition is specified indirectly through parameterization of Ω. In

case of complete model spaces (CMS), the intermediate normalization is commonly em-

ployed i.e. PΩP = P .

The diagonalization of the effective Hamiltonian within the P space gives the ener-

gies of the corresponding states and the left and the right eigen vectors.

H
(p,h)
eff C(p,h) = C(p,h)E
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C̃(p,h)H
(p,h)
eff = EC̃(p,h) (1.80)

C̃(p,h)C(p,h) = C(p,h)C̃(p,h) = 1 (1.81)

Because of normal ordering, the contractions amongst different cluster operators within

the exponential are avoided, leading to partial hierarchical decoupling of cluster equa-

tions. This is commonly referred to as sub-system embedding condition (SEC). The

lower valence cluster equations are completely decoupled from the higher valence clus-

ter equations because of SEC. Hence, the Bloch equations (1.79) are solved progressively

from the lowest valence (0, 0) sector upwards up to (p, h) valence sector.

The applications of FSMRCC were done using a model space of 1-active hole and 1-

active particle, which automatically included the lower one-valence FS sectors of 1-active

hole (0,1) or 1-active particle (1,0) sectors. These one valence sectors, by definition are

complete model spaces. However, 1h-1p sector denoted as (1,1) sector is not CMS.

However it was shown that this is a special case of quasi-complete model space [5, 111].

For general model space, it was shown by Mukherjee [112] that valence-universality

of the wave operator was sufficient to guarantee the linked cluster theorem, but it was

important that the condition of intermediate normalization need to be relaxed. Thus, the

P -space projection equation explicitly involved PΩP term. However, for the special

case of (1,1) sector, PΩP term effectively behaves as a model space projector only and

thus the (1,1) sector equations behave as CMS equations. This was a simplification which

was exploited in actual calculations.

It was important to recognize that for (1,1) sector, starting with the ground state

RHF as vacuum, the wave function contained T (1,1) operator, which generates the RHF

determinant. However, as an additional simplification, the excitation energy calculations

did not involve the calculation of T (1,1) amplitudes [5].
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1.17 Linear response method for molecular properties

Molecular properties are specific for a given electronic state which is described as the

“response” of the molecular system to an external perturbation. In the presence of small

time-independent perturbation ζ , the Hamiltionian is a function of this perturbation and

which can be expanded as a Taylor series of ζ . However, for small perturbation the

higher order derivatives of Hamiltionian are negligible. Hence the Hamiltonian is a linear

function of ζ

Ĥ(ζ) = Ĥ(0) + ζÔ (1.82)

where Ĥ(0) is a total electronic Hamiltonian in the absence of perturbation and Ô is a

proportionality constant. The resulting method of obtaining derivative eigenfunctions

and eigenvalues is referred as “Linear response” (LR).

In the presence of perturbation, the wave function and the energy parameters be-

comes dependent on perturbation and can be expressed in terms of Taylor series expan-

sion. Hence the properties are obtained as the derivatives of energy. For the case of

electric field as perturbation, the first order quantity is called as dipole moment, second

order quantity is polarizability etc. For chemists, certainly NMR shieldings and spin-

spin coupling constants are of greater interest. However, theory also allows calculation

of magnetizabilities, spin-rotation constants, rotational g tensors [113] as well as pa-

rameters that can be obtained from ESR spectroscopy [114]. All these properties are

expressed in terms of second derivatives, arises from magnetic field as perturbation.

In principle, derivatives of the energy can be computed in a rather straightforward

manner using finite-differentiation or finite-field (FF) technique (numerically). In FF

method, the Schrödinger equation for the system of interest at various field values are

obtained.
dE

dx
≈ E(∆x)− E(−∆x)

2∆x
(1.83)

where ∆x is an approximate chosen step size. This method requires very accurate eval-

uation of wave function and energy, although, no computational developments are re-
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quired. Furthermore, it is very difficult to use FF for higher derivatives and also handling

of magnetic properties is less straightforward, as the computation requires the capability

of dealing with complex wave function parameters. The alternative to numerical differ-

entiation is analytical differentiation. This means that first an analytic expression for the

corresponding derivative is deduced and then implemented within a computer code for

the actual computation of the corresponding property. It is known that the exact wave

function follows the Hellmann-Feynman theorem (HFT). The Hellmann-Feynman theo-

rem states the identity of the derivative and expectation value expression for first order

properties:
dE

dζ
= 〈Ψ|∂H

∂ζ
|Ψ〉. (1.84)

The theorem can be generalized for higher order derivatives. The generalized Hellmann-

Feynman theorem says that with the knowledge of wave function and its derivatives

up to n-th order, one can obtain analytically, the response properties up to (2n + 1)-

th order. This is the famous (2n + 1)-rule used in the context of analytical response

properties. For a general non-exact wave function, the HFT and its generalized form are

not applicable. However, if the wave function is obtained variationally, it can be easily

shown that the wave function obeys the generalized HFT. Hence, in electronic structure

theories, emphasis is given on stationarity of the wave functions. HFT does not hold for

approximate wave functions with which we are generally dealing in quantum chemistry.

However, it holds for a few special cases such as, for example, in HF theory at the

complete basis set limit. For approximate wave functions the derivative expressions are

usually the preferred choice.

1.18 Linear response in SRCC theory

The linear response approach to SRCC was initiated by Monkhorst [115]. In the presence

of uniform external field (ζ) the SRCC energy and amplitude T becomes perturbation

dependent and expanded in terms of Taylor series expansion. The expressions for the
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derivatives of energy and wave functions are obtained by differentiating eq.1.53 and 1.54

with respect to ζ up to desired order. Without the orbital relaxation, the expressions for

first derivatives of correlation energy and cluster amplitudes are respectively,

E
corr(1)
0 = 〈φ0|[(ÔeT )c + (HNe

TT (1))c]|φ0〉 (1.85)

0 = 〈φI |[(ÔeT )c + (HNe
TT (1))c]|φ0〉 (1.86)

From eq.1.85, it is apparent that for getting energy derivative, response of the amplitudes

T (1) is required. This is obtained by solving the eq.1.86. This needs to be solved for

every mode of perturbation, which is a clear disadvantage. This disadvantage arises due

to the fact that SRCC theory is non-variational (or non-stationary) theory, and it does

not have advantages of the generalized Hellmann-Feynman theorem and (2n+1)-rule of

variational theories.

To circumvent this problem of the dependence of wave function derivative in the en-

ergy derivative expression, Bartlett and co-workers [116] introduced Z-vector technique

in SRCC context. This is based on Dalgarno’s interchange theorem [117]. The idea

of Z-vector was taken from Handy and Schaefer who used the technique for analytical

derivatives of CI method. The eq.1.85 and eq.1.86 are written in a different from

E
corr(1)
0 = Y TT (1) +Q(Ô) (1.87)

0 = AT (1) +B(Ô) (1.88)

where,

Y TT (1) = 〈φ0|(HNe
TT (1))c|φ0〉

Q(Ô) = 〈φ0|(ÔeT )c|φ0〉

AT (1) = 〈φI |(HNe
TT (1))c|φ0〉 ; B(Ô) = 〈φI |(ÔeT )c|φ0〉

We introduce a perturbation independent vector ZT as

ZTA = Y T . (1.89)
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Substitution of eq.1.88 and eq.1.89 in eq.1.87 leads to

E
corr(1)
0 = ZTB(Ô) +Q(Ô), (1.90)

which is independent of wave function derivative. Thus, one has to solve only one extra

set of perturbation independent amplitudes, i.e. the Z-vectors, defined by eq.1.89, in

addition to the cluster amplitudes, making the procedure of obtaining first derivatives of

energy more efficient.

An another attractive method to eliminate the dependence of T (1) is pursued by Jor-

gensen and co-workers [118–120] for SRCC derivatives which automatically incorpo-

rates the benefits of Z-vector technique to all orders. This approach, known as con-

strained variation approach, involves construction of a functional with undetermined La-

grange multipliers λq corresponding to SRCC equations as follows.

=(ζ) = 〈φ0|e−T ĤeT |φ0〉+
∑
q 6=0

λq〈φq|e−T ĤeT |φ0〉. (1.91)

Optimization of the above functional leads to the same equations as SRCC equations and

with λq equations similar to Z-vector in eq.1.89. In this formulation, obtaining derivative

expressions for higher order is quite transparent. While the cluster amplitude derivatives

obey the (2n+ 1)-rule, the derivatives of Lagrange multipliers obey (2n+ 2)-rule [118,

121]. Koch and coworkers have used this approach to obtain efficient expressions for up

to third-order molecular properties [121].

1.19 Linear response to stationary CC

As we discussed, the stationary CC method enjoys the advantage of being variational

and hence HFT holds. This makes the evaluation of higher derivatives simple. The

response approach in XCC and UCC framework was developed by Pal [122] and ex-

tensively used for obtaining static properties [123–125] of molecules. Here the energy

functional and the response of the functional is expressed in terms of the CC amplitudes

41



Chapter I Introduction

and their derivatives. These amplitudes and derivatives are obtained by imposition of the

stationarity of the functional and functional derivatives. This stationarity ensures that in

the final formula of the first derivative of energy, the first derivative amplitudes do not

appear.

The energy functional and cluster amplitudes in the presence of external fields can

be expressed as Taylor’s series around the external field. The different derivatives of

the functional and the cluster operators are denoted as E(i) and T (i). The equations

to determine the cluster amplitudes and their derivatives are defined by making E(i)

stationary with respect to T (j) amplitudes in general for i ≥ j. Pal and coworkers showed

[122–124] that, if cluster amplitudes and their derivatives are truncated to uniform degree

then ∂E(i)

∂t(j)
= 0, provides identical set of equations for a fixed value of (i-j). Hence, the

following set of equations
∂E(i)

∂t(0)
= 0; i = 1, 2, 3... (1.92)

are sufficient to calculate all the cluster amplitudes and their derivatives. While, the XCC

and UCC functionals suffer from loss of size-extensivity due to disconnected terms in

cluster equations, the double-linked form of ECC functional ensures the size-extensivity

even for the energy derivatives. ECC has therefore, emerged as a state-of-the-art method

for obtaining molecular properties. Pal and co-workers extensively used ECCSD re-

sponse for molecular electric properties [126, 127]. Recently, Pal and coworkers at-

tempted ECC response for obtaining magnetizabilities [128]. In this thesis we attempted

the ECC response for obtaining molecular shielding constants, which is discussed in

chapter II.

1.20 Linear response to FSMRCC

Naturally the energy derivatives of the FSMRCC was the next important development in

quantum theory. The essential difference in implementing energy derivatives in FSM-

RCC, a opposed to the SRCC, arises from the fact that the FSMRCC is an effective
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Hamiltonian approach providing multiple roots via diagonalization. Initial developments

by Pal and co-workers involved explicit differentiation of Bloch equation with respect to

uniform external field. In presence of time-independent uniform external field, the pa-

rameters Υ = {H(p,h)
eff , C(p,h), C̃(p,h), E,Ω} become perturbation dependent and can be

expanded in Taylor series of ζ .

Υ(ζ) = Υ(0) + ζΥ(1) +
1

2!
ζ2Υ(2) +

1

3!
ζ3Υ(3) + . . . (1.93)

The differentiation of the Bloch equations following left projections by model space

and virtual space configurations with respect to ζ yields the equations for wave function

derivatives and the derivative effective Hamiltonian.

P (k,l)(H(1)Ω(0) +H(0)Ω(1) − Ω(1)H
(k,l)(0)

eff − Ω(0)H
(k,l)(1)

eff )P (k,l) = 0 (1.94)

Q(k,l)(H(1)Ω(0) +H(0)Ω(1) − Ω(1)H
(k,l)(0)

eff − Ω(0)H
(k,l)(1)

eff )P (k,l) = 0 (1.95)

;∀k = 0, . . . , p; l = 0, . . . , h

The equations are linear in the perturbation dependent quantities. It is interesting to

note that the homogeneous parts of the Ω derivative equations are identical to the linear

homogeneous part of the undifferentiated cluster equations. The SEC transparently holds

at every order. The method provides multiple roots of derivative effective-Hamiltonian

which can be obtained simultaneously by solving following equations.∑
i

{(H(1)
eff )jiC

(0)
iµ + (H

(0)
eff )jiC

(1)
iµ } = E(1)

µ C
(0)
jµ + E(0)

µ C
(1)
jµ (1.96)

However, due to its non-variational nature, the method does not obey the generalized

Hellman-Feynman theorem for energy derivatives. Therefore, the evaluation of nth order

energy derivatives demands the knowledge of cluster amplitudes and their derivatives up

to nth order and is thus not a practicable approach.

In lines of Z-vector formalism in SRCC, Pal and co-workers proposed Z-vector tech-

nique for FSMRCC response [129]. Ajitha and Pal [129] proposed a perturbation in-

dependent set of amplitudes Z such that for every Q(p,h)T (p,h)P (p,h) sector amplitude,
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there is a corresponding P (p,h)Z(p,h)Q(p,h) amplitude and the derivative effective Hamil-

tonian equation can be written in terms of these Z vectors using Dalgarno’s interchange

theorem. However this worked only in the case of diagonal assumption of the effective

Hamiltonian. In the lines of SRCC, the Lagrange approach for energy derivatives was

introduced in FSMRCC context by Szalay [130] and was applicable for CMS. Later, Pal

and co-workers [131] independently formulated a conceptually simple Lagrange vari-

ation based approach for general incomplete model spaces (IMS) and showed that the

functional simplifies to the one proposed by Szalay if applied for CMS and QMS. The

above method of Pal and co-workers provides response of a specific root of the multiple

roots of FSMRCC. One has to project a single desired state (root of effective Hamilto-

nian) for doing constrained variation. In FSMRCC context, the energy of a specific state

of the (p, h) FS sector is given by

Eµ =
∑
ij

C̃
(p,h)
µi (Heff)

(p,h)
ij C

(p,h)
jµ (1.97)

We construct the Lagrangian to minimize the energy expression given above, with the

constraint that the MRCC equations [Eqs (1.79,1.81)] are satisfied for the state µ.

= =
∑
ij

C̃
(p,h)
µi (Heff)

(p,h)
ij C

(p,h)
jµ

+

p∑
k=0

h∑
l=0

{P (k,l)Λ(k,l)P (k,l)P (k,l)[HΩ− ΩH
(k,l)
eff ]P (k,l)

+P (k,l)Λ(k,l)Q(k,l)Q(k,l)[HΩ− ΩH
(k,l)
eff ]P (k,l)}

+Eµ[
∑
ij

C̃
(p,h)
µi C

(p,h)
jµ − 1] (1.98)

The Λ’s in the above equation are the undetermined Lagrange multipliers obtained by

applying stationarity condition on the Lagrangian = with respect to the cluster ampli-

tudes of the corresponding sectors. The stationarity condition on = with respect to the

Λ vectors yields the MRCC equations for the cluster amplitude. Obviously, the cluster-

amplitudes are completely decoupled from the Λ vectors. The Λ vectors follow the partial
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sector wise decoupling exactly in the reverse SEC, i.e., the Λ vectors of the highest sector

are totally decoupled from the lowest ones. The lowest sector Λ vectors are coupled with

the Λs of all the higher sectors through the inhomogeneous part of the linear equations.

The eigen vectors and effective Hamiltonian can be obtained by applying stationarity

condition on the = with respect to each other. In case of CMS and IMS, since the effec-

tive Hamiltonian can be explicitly defined in terms of the cluster amplitudes, the above

method simplifies to the one proposed by Szalay.

The Lagrangian defined in eq.(1.98) can be differentiated with respect to the field

ζ to obtain the Lagrangians at different order. The energy derivatives follow (2n + 1)

rule with respect to the Ω amplitudes and (2n + 2) rule with respect to Λ amplitudes.

There is a (2n + 1) rule for the eigen vectors C̃(0,1) and C(0,1) for evaluation of energy

derivatives. The first order properties can thus be obtained simply with the knowledge of

Ω and Λ amplitudes only. For second order properties, we differentiate the Lagrangian

(eq.1.98) twice with respect to the external field. However, the expensive evaluation of

wave-function derivatives for each mode of perturbation is avoided in Λ-FSMRCC. This

feature becomes more prominent while obtaining higher order properties like polariz-

ability and first hyper-polarizability. The electric properties using Λ-FSMRCC method

was successfully implemented for the dipole moment [132] and polarizability [133] of

the doublet radicals as well as excited states [134] of molecules.

It may be pertinent to note that studies have been carried out to compute energy

derivatives using methods which are related to MRCC. EOMCC derivatives for property

calculation was initiated and implemented first by Stanton [135] and then by Stanton and

Gauss [136, 137]. Analytic energy derivatives for ionized states were described by Stan-

ton and Gauss [137] in EOMCC formalism. Subsequently, analytic second derivative for

excited state was also introduced by Stanton and Gauss [136]. Gradients using STEOM-

CC were implemented by Nooijen and coworkers [138] using Lagrange undetermined

multipliers. In STEOMCC method, two more Z-vector like quantities are required to

be evaluated for the response of the S± coefficients to the perturbation along with the
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Lagrange multipliers (Λ). The role of Λ is equivalent in both cases. In this thesis we dis-

cussed the Λ-FSMRCC for magnetic properties in chapter-III. Further triples correction

to this method is discussed in chapter-IV.

1.21 Motivation behind molecular magnetic property study

Although quantum chemists have spent most of their effort in searching for good wave

function and energies, the aim of a quantum chemical calculations is often neither the

wave function nor the energy, but rather some physical properties or to phrase it more

physically, the response of a system to an external perturbation [11, 12]. The perturbation

can be external electric field, magnetic field or nuclear displacement. Depending on the

field type properties are characterized. For the case of magnetic field as perturbation one

obtains magnetizabilities, NMR shieldings, spin-spin coupling constants etc [11]. The

evaluation of magnetic properties are not straight forward like electric based properties

because of two factors. First, the nature of the magnetic field is purely imaginary and

hence the finite-difference procedures using the complex wave function for calculating

the magnetic properties are highly undesirable. We need the analytical method for mag-

netic property calculations. The method should efficiently include the fact that the matrix

representation of the imaginary quantities is antisymmetric. Secondly, the electric field

interacts with the charged particles (electron and nuclei) and adds a scalar potential to

the Hamiltonian operator. However, magnetic field interacts with the magnetic moments

generated by the movement of the charged particles and hence adds a vector potential to

the Hamiltonian. This thesis is focused on magnetic properties because of the challenges

posed by it and also less available studies for the evaluation of these properties. The

closed shell method ECC, which is very useful for higher order property evaluation is

used for magnetic property studies, also the FSMRCC method is used for the studying

open-shell system property evaluation. These two highly efficient methods should be

able to handle various situations involving magnetic field. In the following subsections
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we will discuss the above mentioned issues and some already available methods for the

magnetic property evaluation.

1.21.1 Magnetic properties as energy derivatives

The electronic energy in the presence of an external magnetic field B and nuclear mag-

netic moment MK , around zero field and and zero magnetic moments is expressed as

E(B,M) = E0 +
1

2
BE(20)B +

1

2

∑
K

BE
(11)
K MK + · · · (1.99)

where

E(20) =
d2E(B,M)

dB2
|B=0,M=0 → ξ (1.100)

is the representation of the magnetizability (ξ) and

E
(11)
K =

d2E(B,M)

dBdMK

|B=0,M=0 → σ (1.101)

is the representation of the shielding tensor (σ). These properties have two contributions,

one is dia magnetic and another is from para magnetic contributions. For linear and

symmetric top molecules the isotropic shielding constants are defined by

σ̄ =
1

3
(σ‖ + 2σ⊥) (1.102)

where σ‖ refers to the component along the major molecular axis and σ⊥ is the compo-

nent in the direction perpendicular to it. Anisotropies are given by

∆σ = σ‖ − σ⊥. (1.103)

All these properties are second order quantities. Other properties like spin-spin rota-

tion constant, g-tensors etc, also be expressed using energy derivatives (Chapter V). In

this thesis we are focused on the magnetizability and shielding constants.
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1.21.2 Molecular Hamiltonian in magnetic field

Unlike electric perturbation, magnetic perturbation is associated with a change in mo-

mentum in the kinetic energy part of Hamiltonian H [12].

p→ π = p+
e

c
A (1.104)

where e is elementary charge, c is speed of light and A is vector potential. All quantities

are in Gaussian system of units. The vector potentialA, is the vector function from which

the field is derived. The magnetic field is uniquely defined through A

B = ∇× A. (1.105)

The vector potential is not uniquely defined since the gradient of any scalar function(f )

may be added and leave the field unchanged (∇×∇f ≡ 0). It is convention to select it

as

A =
1

2
B × r. (1.106)

The vector potential shown above satisfy the Coulomb gauge condition (∇.A = 0). With

eq.1.104 the H is

H =
p2

2m
+

e

mc
A.p+

e2

2mc2
A2 + V (r). (1.107)

The Hamiltonian differ from the true Hamiltonian by the presence of two terms, one is

first order in magnetic induction B (via A), the second is second order (viaA2). Inserting

the explicit form of vector potential in eq.1.106, the H is

H = − ~
2m
∇2 − ie~

2mc
B.(r ×∇) +

e2

8mc2
[(B.B)(r.r)− (B.r)(B.r)] + V (r). (1.108)

Here, the first term is the unperturbed kinetic energy term.

1.21.3 The gauge origin problem

The problem of gauge invariance (gauge-origin independence) arises in the magnetic

properties calculation because of the use of vector potential A for the description of
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the magnetic interactions in the Hamiltonian. The Hamiltonian in the presence of the

magnetic field does not contain the field B directly, but rather its vector potential. If A

is given B can be constructed eq.1.105. However the converse is not true. The reason is

the ∇ operator in eq.1.105 which allows to add the gradient of any scalar function to A

without changing the corresponding magnetic field. If A satisfies eq.1.105 with a given

B, then A′ with an arbitrary scalar function χ,

A′ = A+∇χ (1.109)

also satisfies eq.1.105. Hence A is determined up to the gradient of an arbitrary ’gauge

function’. All physical observables should be independent of gauge function. The ma-

jor problem in quantum chemical calculation of magnetic properties, as pointed out by

Kutzelnigg [139] is that the exact solution to the Schrödinger equation satisfies the re-

quirement of gauge invariance. The gauge invariance is not necessarily ensured for ap-

proximate solutions of the Schrödinger equation.

The main problem with the gauge-dependence of the results which are computed is

that they are no longer uniquely defined. The computed values for magnetic properties

depend on a parameters which can be chosen in an arbitrary manner. In all practical

calculations the results are gauge independent only when a complete basis is used. The

choice of gauge is very important for calculations. For an external homogeneous mag-

netic field of strength B, a possible choice of the vector potential is

A(r) =
1

2
B × (r −R) (1.110)

whereR is a fixed point in space, called the ’gauge origin’. For atoms there is a ’natural’

gauge origin namely R = (X, Y, Z) = 0. In molecules there is, however, no natural

gauge origin and it is very important to choose the proper gauge origin. One can have

unique results by simply fixing the gauge origin to the center of mass of the considered

molecule. Of course, such a choice would guarantee unique results, but on the other

hand it does not resolve the fundamental problem connected with the gauge problem
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in the computation of magnetic properties. There are methods developed to eliminate

the gauge dependence in the magnetic property calculations, which are discussed in the

following sections.

1.21.4 Local gauge origin methods

In local gauge origin methods or distributed gauge origin methods, the gauge invariance

is eliminated by using more than one gauge origin for the external magnetic field. In

this method the molecule is partitioned into local fragments and for each fragment the

gauge origin is individually chosen in an optimal way. If the local fragments is assigned

to the various atoms in the molecule, the corresponding nuclear position is good choice

for local origin. For understanding local gauge origins, it is important to introduce gauge

transformations. A shift of gauge origin from Ro to R′o is achieved via gauge transfor-

mation. The corresponding equations for one electron system are

Ψ→ Ψ′ = exp(−Λ(r))Ψ (1.111)

Ĥ → Ĥ ′ = exp(−Λ(r))Ĥexp(Λ(r)) (1.112)

The gauge factor is defined by

Λ(r) =
ie

2c~
[(R′o −Ro)×B].r. (1.113)

Expansion of the HamiltonianH ′ using Hausdorff formulaH ′ = H+[H,Λ]+1
2
[[H,Λ],Λ]+

... shows that H ′ is indeed the Hamiltonian with the gauge origin at R′o instead of Ro.

Local gauge origins are introduced by the more general gauge transformations of the

following kind ∑
A

exp(ΛA(r))P̂A (1.114)

where P̂A is a suitable projector on the local fragment A and exp(ΛA(r)) a gauge trans-

formation to the origin chosen for A. The above eq.1.114 is suitable to define the

local fragment at the one electron level. The individual gauge for localized orbitals
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(IGLO) [15, 140] by Kutzelnigg and Schindler, and local origin (LORG) [141] scheme

of Bouman and Hansen are based on individual gauges for molecular orbitals. However,

standard HF orbitals are usually delocalized, they are not well suited for local origin ap-

proach. Therefore Kutzelnigg [15] introduced localized orbitals and defined individual

gauges for them.

1.21.5 The GIAO ansatz

Having seen that localized orbitals are not more suitable choice, it is more natural to work

with atomic orbitals(AOs) and to assign each of them an individual gauge origin. This

choice of local gauge origins leads to what is nowadays known as the gauge-including

atomic orbital approach (GIAO) [16, 18–20]. This is sometimes called as London atomic

(LAO) approach.

In GIAO ansatz, local gauge origins for atomic orbitals |χµ〉 is chosen. The meaning

of this is that the corresponding nucleus at which the atomic orbital is centered is chosen

as the “natural” gauge origin. Within the concept of local gauge origins, the GIAO ansatz

is based on the following gauge transformation

∑
µ

exp(Λµ(r))P̂µ. (1.115)

The projector on |χµ〉 defined by P̂µ =
∑

µ |χν〉S−1
µν 〈χν | . The gauge factor given by

Λµ(r) =
ie

2c~
[(Rµ −Ro)×B].r (1.116)

where Ro is the initial gauge origin in the Hamiltionian and Rµ is the center of the basis

function |χµ〉. This gauge factor given above shifts the gauge origin from Ro to Rµ.

It is convenient to attach the additional phase factors to the AO’s to describe GIAO

ansatz. The calculation of magnetic properties are carried out with the following pertur-

bation dependent basis functions

|χµ(B)〉 = exp(− ie

2c~
(B × [Rµ −Ro]).r|χµ〉 (1.117)
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instead of the usual field independent functions |χµ(0)〉. This field dependent basis func-

tions are represented as gauge-including atomic orbitals or London orbitals. There are

various advantages involved in GIAO. This first provides unique results and ensures the

fast basis set convergence, as for each AO the corresponding optimal gauge is used.

When AO’s depend on perturbation, the corresponding coefficients are also depend on

perturbation. One need to solve coupled-perturbed HF for obtaining coefficent deriva-

tives.

1.22 Coupled-Perturbed HF

Although a calculation of the wave function response can be avoided for the first deriva-

tive, it is necessary for higher derivative. The first derivatives of the coefficients are

obtained by solving Coupled Perturbed Hartree-Fock equations [142]. For HF wave

function, an equation of the change in the MO coefficients may also be formulated from

the HF equation

F (0)C(0) = S(0)C(0)ε(0). (1.118)

The superscript (0) here denotes the unperturbed system. Expanding F, C, S and ε, ma-

trices in terms of a perturbation parameter (e.g. F = F (0) + λF (1) + λ2F (2) + · · · ) and

collecting all the first order terms gives first order CPHF equations,

(F (0) + S(0)ε(0))C(1) = (F (1) + S(0)ε(1) + S(1)ε(0))C(0). (1.119)

The orthonormality condition becomes

C†(1)S(0)C(0) + C†(0)S(1)C(0) + C†(0)S(0)C(1) = 0. (1.120)

The F (1) in eq.1.119 is given as

F (1) = h(1) +G(1)D(0) +G(0)D(1) (1.121)

where h is the one-electron(core) matrix, D is the density matrix andG is the tensor con-

taining the two-electron integrals. The S(1), h(1) and G(1) quantities are (first) derivatives
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of overlap, one- and two-electron integrals over basis functions. When the Fock matrix

is diagonal, then the derivatives of Fock matrix are also diagonal.

The density matrix is given as a product of MO coefficients

D(0) = C†(0)C(0);D(1) = C†(1)C(0) + C†(0)C(1) (1.122)

The stationary orbitals, in the presence of a perturbation, is given by a unitary trans-

formation of the unperturbed orbitals

C(1) = C(0)U (1). (1.123)

On simplifying the eq.1.119, using C†(0)S(0)C0) = 1 and C†(0)F (0)C0) = E one obtains

EU (1) − U (1)E = C†(0)S(1)C(0)E − C†(0)F (1)C(0) + E(1) (1.124)

This equation is a CPHF equation in matrix form. The CPHF equations are linear and

can be determined by standard matrix operations. The size of the U matrix is the number

of occupied orbitals times the number of virtual orbitals, which is generally quite large.

Solving the CPHF equation requires U matrix, which in turn used for the construction

of derivative Fock matrix. Hence CPHF equations are normally solved by iteratively

[143]. The CPHF equations may be formulated either in an atomic orbital or molecular

orbital basis. Although the latter has computational advantages in certain cases, the

former is more suitable for use in connection with direct methods (where the atomic

integrals are calculated as required). There will be one CPHF equation to be solved for

each perturbation. If it is an electric or magnetic field, there will in general be three

components (Fx, Fy, Fz), if it is a geometry perturbation there will be 3N (actually only

3N-6 independent) components, N being the number of atoms.

The CPHF procedure may be generalized to higher order. Extending the expan-

sion to second-order allows derivation of an equation for the second-order change in the

MO coefficients, by solving a second-order CPHF equation etc. Pople and coworkers

[144] developed an efficient method for solving CPHF equations, which made second
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derivative calculations practicable for SCF and unrestricted SCF wave functions. The

CPHF method is extended to restricted openshell HF cases also[145]. The CPHF method

is equivalent to the random phase approximation (RPA) [146] or the Time-dependent

Hartree-Fock (TDHF) [147] for static calculations within a given basis.

1.23 Coupled-Perturbed MCSCF

The Coupled-Perturbed MCSCF (CPMCSCF) have been formulated [148] and MCSCF

second derivatives are applied by various groups [149]. The CPMCSCF simultaneous

equations provide the derivatives of both MO and CI coefficients with respect to pertur-

bations. The equations are obtained by differentiating the variational conditions on both

the CI and MO spaces.

The MCSCF wave function is written as,

|MC〉 =
∑
µ

C(0)
µ |µ〉 (1.125)

satisfies the condition

E
(0)
MC =

〈MC|Ĥ|MC〉
〈MC|MC〉

=Min
µ,C

〈µ,C|H|µ,C〉
µ,C|µ,C〉

. (1.126)

with respect to the MO and CI coefficients. Expressions for the MCSCF molecular prop-

erties are

E
(0)
MC = 〈MC|Ĥ(0)|MC〉 (1.127)

E
(1)
MC = 〈MC|Ĥ(1)|MC〉 (1.128)

E
(2)
MC = 〈MC|Ĥ(2)|MC〉+ 〈MC|[µ(1), Ĥ(1)]|MC〉 (1.129)

+2〈MC|Ĥ(1)|C(1)〉 − 2E
(1)
MC〈MC|C(1)〉. (1.130)

The normalization of the wave function 〈MC|MC〉 = 1 is assumed. The first order

CPMCSCF equations are required for constructing second order CPMSCF equations.
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There are methods developed for the calculation of shielding constants at the MCSCF

level. The two approaches mainly developed are GIAO [150] and IGLO [151] approxi-

mations. For the identical MCSCF references, the results obtained in the MCSCF-GIAO

and IGLO approaches are similar.

1.24 Magnetic properties from CC method

In common gauge origin calculation for ξ, the only needed integrals are

∂hµν
∂Bα

=
1

2
〈χµ|((r −Ro)× p)α|χν〉 (1.131)

and
∂2hµν
∂Bα∂Bβ

=
1

4
〈χµ|δαβ(r −Ro)

2 − (r −Ro)β(r −Ro)α|χν〉. (1.132)

The gauge-origin independence is achieved by using the following explicitly magnetic

field dependent basis functions:

χµ(B) = exp(− i
2

(B × (Rµ −Ro)).r)χµ(0) (1.133)

where χµ(0) is standard field-independent basis functions, Rµ is center of the basis func-

tion χµ, Ro as the global gauge origin and r as the coordinates of the electron.

A general formula for σN can be obtained by first differentiating the energy E with

respect to mN and then with respect to B. A computationally convenient expression for

σN is

σN(CCSD) =
∑
µν

Dµν
∂2hµν

∂Bi∂mNj

+
∑
µν

∂Dµν

∂Bi

∂hµν
∂mNj

(1.134)

where µ, ν are atomic orbital indices, Dµν is one-particle density of CC gradient theory,

Dµν =
∑
p,q

C∗µpDpqCνq (1.135)

The elements of Dµν are determined by the t amplitudes that are solutions of the usual

CCSD equations. The Dµν has two two contributions, one is from amplitude part and the
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second is from orbital response part. The most computationally demanding requirement

is a knowledge of the perturbed density matrix. Since the derivative of the density matrix

(amplitude part) involves derivative of coefficient, one need to solve CPHF equations to

obtain U matrices. The orbital response part of the perturbed density is obtained from

the first order Z-vector equations.

1.25 Brief overview on available methods for the calculation of mag-

netic susceptibilities and NMR shieldings

The use of London orbitals in ab initio calculations are pioneered by Hameka [152] in

the 1950s and 1960s and by Ditchfield [153] in the 1970s. Efficient implementations are

presented, first for self-consistent field (SCF) shieldings by Wolinski, Hinton, and Pulay

[154]. The use of London orbitals has now become widespread, and Hiker et al. pre-

sented a direct program for the calculation of nuclear shielding constants [155]. The cor-

related shieldings are calculated by Gauss et. al. [156] at the second-order Moller-Plesset

(MP2) and MP3 level and by Ruud et al. [157] at the multiconfigurational self-consistent

field (MCSCF) level. Stanton and Gauss [158] calculated shielding at CCSD, CCSD(T)

and CCSDt-n levels. Using various density functional theory (DFT) approximations, the

NMR parameters are studied by Salsbury and Haris [159], Cheeseman et al [160] and by

various authors [161]

Ruud, Helgaker, and co-workers have presented calculations of magnetizabilities at

the SCF [162] and MCSCF levels. The multi-configuration IGLO is proposed and stud-

ied by Kutzelnigg et al [163]. Cybulski and Bishop reported, set of small molecules,

large-scale magnetizability calculations at MP2 and MP3 levels as well as using the

linearized CC doubles model (L-CCD) [164]. Magnetizabilities of some hydrocarbons

are done using IGLO calculations [165]. GIAO MCSCF program is able to calculate

magnetizabilities of relatively large molecules accurately with modest basis sets [166].

Magnetizabilities calculations using CC level theory is achieved by Gauss et al. [167].
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The magnetizability is studied using DFT method considering various functionals and its

performance also argued by many authors [168].

1.26 Objective and Scope of the thesis

The ECC and FSMRCC methods are well studied for electric properties. Our plan of

this thesis is to develop these methods for the magnetic based properties calculation.

We also implement a non-iterative triples correction to FSMRCC method for dipole mo-

ment. The ECC method is used here to study the nuclear magnetic shielding. The proper

gauge as origin and standard atom centered basis functions are chosen to carry out the

study. Considering small molecules as a study, the analysis are done, which is included in

the chapter-II. The shielding values obtained are carefully compared with the CASSCF

method, choosing reasonably larger active spaces. In this thesis FSMRCC method for

magnetizability study of radicals is implemented. The FSMRCC method, which is suit-

able for doublet radicals are tested for few small radicals. The standard atom centered

basis functions are used along with the proper choice of gauge origin. The calculations

are performed in two different gauge origins. From our calculations, it is reflected that

the center of mass is a more suitable gauge for magnetic properties studies. The results

obtained are compared against the CASSCF values. In chapter-III the details of magne-

tizability calculations are given. Along with the magnetic properties study we have also

presented a partial triples correction to FSMRCC method for properties. The triples are

taken order wise and amplitudes up to third order are considered. The dipole moment

obtained from this method is correct up to third order. This method has been tested with

some radicals. The results are compared against the FCI and finite-field approaches.

The details and results are presented in chapter-IV. In the last chapter we give the fu-

ture perspective in the field of magnetic properties using these methods and higher order

corrections to other properties. We also give the importance of including GIAO’s for

chemical shieldings under ECC method.
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Chapter 2

————————————————————

Chemical shielding of closed-shell molecules

using Extended Coupled-cluster theory

————————————————————

In this chapter we report calculation of the nuclear magnetic shielding constant using

extended coupled cluster response approach. We present the results for the HF, BH,

CO and N2 molecules. These results show importance of correlation corrections for the

shielding constant.
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2.1 Introduction

The single-reference coupled-cluster (SRCC) theory [1–7] is one of the most

accurate and widely used electronic structure method for studying ground state energy,

properties and spectroscopy of closed-shell molecules at the equilibrium geometry [6, 8–

10, 10–16]. Due to its in-built size-extensivity and size-consistency property SRCC has

been accepted as the state-of-the-art method for electronic structure and properties of

atoms and molecules. Energy derivatives obtained through analytic response approach

were first developed by Monkhorst [8]. Traditional CC response approach based on

non-variational method did not have a (2n + 1)- rule inherent in it. As a result, the

expression for the first order energy derivative involves the first derivative of the wave

function with respect to the external perturbation. This means one needs to evaluate

wave function derivatives with respect to all modes of perturbation for the first order

property. This problem was overcome by Bartlett and co-workers [16, 20]. They imple-

mented the idea of algebraic Z-vector method introduced by Handy and Schaefer [18]

based on Dalgarno’s interchange theorem [19]. The method is known as the Z-vector

technique. This development made the non-variational CC method viable for the com-

putation of energy derivatives, using only one extra set of perturbation-independent vari-

ables, solved through a linear equation. This and the subsequent developments by Bartlett

and coworkers [15, 16, 20] substantially facilitated efficient implementation of molecular

energy gradients for SRCC, and significantly contributed to its success in quantum chem-

istry. However, Z-vector type of approach turned out to be a tedious job for higher-order

properties such as Hessian’s, polarizabilities, etc. On the other hand, a conceptually dif-

ferent approach, using a constrained variation method (CVM), proposed by Jørgensen

and coworkers [21, 22] was more useful. This approach is based on the formation of

Lagrangian functional which is easily applicable to higher order energy derivatives [23–

25]. Constrained variation approach involves recasting of the standard SRCC equation

in a stationary framework by introducing an extra set of de-excitation amplitudes. It was
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shown that this method includes the Z-vector method as a zeroth-order result and trans-

parently extends its benefits to higher-order properties. Parallel to these developments,

Pal [26] proposed a fully stationary response approach. In this approach choice of the en-

ergy functional is very important. Initial implementation was based on the expectation-

value (XCC) functional [27–29]. The XCC functional, however, is a non-terminating

series and the stationary equations resulting from the functional were truncated to a fixed

power in cluster amplitudes contain disconnected terms. Bartlett and co-workers [30, 31]

used the truncation scheme based on the order of perturbation for the XCC and Unitary

CC (UCC) functional. This scheme of truncation leads to connected series, however, it

is computationally expensive to implement this approach beyond third order of perturba-

tion.

Extended coupled cluster (ECC) functional based on a double-similarity transforma-

tion of the Hamiltonian is other energy functional implemented by Pal and co-workers

[32–34]. The ECC functional developed by Arponen and co-workers [35–37], uses bi-

orthogonal vectors and is shown by Arponen to have a special double-linking structure.

Linear form of the left amplitudes gives SRCC equations when differentiated with re-

spect to the left amplitudes. This double linking structure of the bi-orthogonal or ECC

functional not only ensures natural termination of the series, but also provides fully con-

nected amplitude equations, even when truncated to a fixed power in number of cluster

amplitudes. Being variational, method enjoys the advantage of (2n + 1)-rule i.e. it sat-

isfies Hellmann Feynman theorem. The natural termination of the functional occurs at

high order and for the practical purpose needs to be truncated. CC response approach is

extensively used for the electric properties [30–34], however, there are not many reports

on magnetic properties [25, 38]. Magnetic response property calculations are not straight

forward like electric response properties. The Hamiltonian of the system in the presence

of external magnetic field depends on the gauge of the magnetic vector potential. Proper

gauge origin should hence be chosen for the evaluation of the magnetic properties [39].
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Various attempts were made earlier at the SCF level [39–43] as well as correlated lev-

els [44–50] to eliminate the problem of gauge-variance of magnetic properties to some

extent. Recently Manohar et al [38], reported the ECC response for magnetizability

of the closed shell molecules. GIAO-based techniques have been implemented for the

coupled-cluster singles and doubles (CCSD) [51] method as well as for the CCSD(T)

approach [49] in which triple excitation effects are approximated based on perturba-

tive guidelines. Coupled-cluster calculations of NMR shifts have been very successful

in achieving experimental accuracy especially when partial triples are included. While

CCSD and CCSD(T) appear to be the best approaches for highly accurate calculations in

most cases but it is computationally very expensive. However, when system is dominated

by non-dynamic correlation, it is important to use multi-determinantal based theory like

multi-configurational SCF (MCSCF) [44, 45].

In this chapter we report the shielding constant for the closed shell molecules using

extended coupled cluster response approach. In the following sections we discussed the

theory of the shielding constant and CC response approach, results and discussion and

conclusion of this work.

2.2 Theory

The theory of nuclear magnetic resonance (NMR) and electron paramagnetic resonance

(EPR) [25, 52] parameters is the study of an atom or a molecule in external homoge-

neous magnetic field of different origin. Inclusion of electron correlation effects is very

important for the accurate prediction of nuclear magnetic shielding constants and the re-

lated NMR chemical shifts. At least for molecular calculations with atom-centered basis

functions, center of mass represents the preferred choice of gauge origin. Nuclear mag-

netic shielding tensor is a mixed second-order energy derivative. Calculation of NMR

chemical shifts thus requires evaluation of a second derivative of the energy with re-

spect to the magnetic field and nuclear magnetic moment. The perturbation involved is a
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imaginary perturbation, transforming the real wave function of the unperturbed molecule

into complex field-dependent wave-function. Thus, magnetic properties, unlike electric

properties and other second-order quantities, cannot be computed easily using numerical

differentiation techniques. Hence, development of analytic response approach for the

calculation of magnetic properties was necessary and represented the main bottleneck in

the development of correlated schemes for the calculation of chemical shifts.

The Hamiltonian in the presence of a magnetic field can be written as

H = H0 +
∑
j

∂H

∂Bj

Bj +
∑
N

∑
i

∂H

∂mN
i

mN
i +

∑
N

∑
i

∑
j

∂2H

∂Bj∂mN
i

Bjm
N
i + · · ·

(2.1)

H0 is the usual field-free, non-relativistic Hamiltonian of a molecule and the pertur-

bation contributions are given by

∂H

∂Bj

=
1

2

∑
k

((rk −Ro)× Pk)

(2.2)

∂H

∂mN
i

= α2
∑
k

((rk −RN)× Pk)i/ | rk −RN |3

(2.3)

∂2H

∂Bj∂mN
i

=
α2

2

∑
k

(rk −Ro)(rk −RN)δij − (rk −Ro)i(rk −RN)j/ | rk −RN |3

(2.4)

Here rk and pk are the position and momentum operators for the kth electron, Ro is

the gauge origin, RN represents the position of the Nth nucleus and α is fine structure

constant.
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The tensor element of NMR shielding constant can be computed as the corresponding

second derivative of the electronic energy

σNij =

(
∂2E

∂mN
i ∂Bj

)
B=0;mN

i =0

(2.5)

Similar to the magnetizability, shielding constant also has diamagnetic and paramagnetic

component. In the case of closed shell molecule the diamagnetic nuclear spin -electron

orbit operator contributes to the shielding constant. Diamagnetic contribution can be ob-

tained through expectation value approach. For the paramagnetic shielding constant we

need the response of the wave function. Thus, we need to get the derivative of the CC

cluster amplitudes with respect to the nuclear magnetic moment first, then we evaluate

the derivative of the cluster amplitudes with respect to the magnetic field. Only, after

having obtained both the derivative cluster amplitudes we can get the paramagnetic con-

tribution for the shielding constant. For the calculation of NMR shielding we have used

fully variational CC response approach based on extended coupled cluster functional.

Variational methods satisfy Hellman -Feynman theorem which is very useful for the

higher order properties. This Means, with the help of first order response wave-function

we can calculate the properties up to third order. The form of the energy functional in

ECC is

E0 = 〈φ0 | eS(HeT )L | φ0〉DL (2.6)

where, L means linked and DL is double linked. This makes functional naturally ter-

minating and we never end up with disconnected diagrams for the amplitude equations.

Thus the properties obtained using this functional are size-extensive. Though the func-

tional is naturally terminating it terminates at quite high order and needs truncation for

the practical application. We have used the singles and doubles (CCSD) approximation.

Thus, within CCSD approximation we have included all the terms for the one and two

body H̄ = ((HeT )conn,open)in the energy as well as derivative energy functional. We can

see that we have two set of amplitudes S and T . Thus, the price one pays to get terminat-

ing series is double the number of amplitudes as well as double the number of equations.
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To get the equation for the cluster amplitudes we differentiate energy expression with re-

spect to t as well as s. For the derivative amplitude equations we differentiate derivative

energy expression with respect to the unperturbed t and s amplitudes only. For the details

of the ECC response see refs. [32–34].

The cluster amplitudes of S and T operators as well as those of the derivative S(1)

and T (1) operators are obtained using a stationary condition. The double-linked nature

of the functional guarantees that the terms generated by the deletion of a vertex from

the energy/energy derivative diagram remains connected. Thus, the stationary equations

resulting from the variation of the functional with respect to the cluster amplitudes are

themselves connected. This yields the equations for the amplitudes of the cluster opera-

tors S and T , denoted as s(0) and t(0). The following set of equations are solved to obtain

the above amplitudes: (2.7)

δE

δt(0)
= 0;

δE

δs(0)
= 0

The functional, at the stationary point, Estat , has a simplified structure, due to the sta-

tionary condition of cluster amplitudes. To obain the derivative amplitude equations, one

makes the derivative energy functional E(1) stationary with respect to the ground state

s(0) and t(0) amplitudes. This explicit derivative functional depends on the amplitudes

s(0) ,t(0), s(1) and t(1). Thus, the equations

δE(1)

δt(0)
= 0;

δE(1)

δs(0)
= 0 (2.7)

provide us with the equation for s(1) and t(1) amplitudes. The double-linked structure

of the E(1) leads to the connectivity of the terms in the equations for derivative cluster

amplitudes. The resulting higher order properties (up to first hyper-polarizability) are

thus fully size-extensive.
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2.3 Results and Discussion

In this section we report the shielding constants for some closed shell molecules using

extended coupled cluster method. The nuclear magnetic shielding constant σ can be

defined as the second derivative of the energy with respect to the external magnetic field

B and a nuclear magnetic moment mN . In the perturbation formulation, the shielding

constant can be written in terms of a diamagnetic and paramagnetic contribution, where

the former is calculated as an expectation value of the diamagnetic shielding operator

(DS) while the latter is calculated as a response property of the paramagnetic spin-orbit

(PSO) and orbital Zeeman (LG) operators. It is known that electron correlation and basis

set plays an important role in the accurate determination of nuclear magnetic shielding

constants. Here, absolute values of shielding constants are reported. In particular, for

magnetic properties it is very important to have large basis sets to counter gauge origin

problem. Thus, a basis of at least valence triple zeta quality is chosen. It is interesting

to study the shielding constants for molecules with multiple bond. Nitrogen and carbon

monoxide are interesting systems for the study of magnetic shielding constants. In this

section shielding constants for HF, BH, N2 and CO molecules are reported. For BH and

N2, the cc-pVXZ (X=QZ,5Z) basis without g and h functions are used. For Hydrogen

fluoride and carbon monoxide molecules the cc-pVTZ and cc-pVQZ basis sets are used

for our studies. The results are compared with the MCSCF values obtained using the

DALTON program [53]. Also the results are compared against the available experimental

values.

2.3.1 Boron hydride

For boron hydride cc-pVQZ and cc-pV5Z basis without g and h functions are used for

the calculations. The bond distance of 1.2328Å is used. The MCSCF calculations in the

same basis using 4 electrons and 15 active orbitals as our CAS space are performed.

In Boron, the effect of electron correlation is large for the paramagnetic component
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Table 2.1: Nuclear magnetic shielding constants values BH
Basis Method σdxx σdzz σpxx σ̄

cc-pVQZ 11B SCF 214.01 198.81 -708.31 -263.26
ECC 214.03 199.53 -625.08 -207.52
MCSCF 214.09 199.71 -570.47 -171.02

cc-pV5Z 11B SCF 214.01 198.82 -713.08 -266.43
ECC 214.01 199.50 -634.66 -213.03
MCSCF 214.09 199.71 -573.88 -173.30

FCI a -170.08
Extrapolated FCI -183.08

cc-pVQZ 1H SCF 17.77 33.63 2.53 24.75
ECC 18.19 33.66 2.15 24.90
MCSCF 18.28 33.69 2.33 24.97

cc-pV5Z 1H SCF 17.72 33.64 2.83 24.90
ECC 18.11 33.65 2.41 24.89
MCSCF 18.22 33.69 2.60 25.12

FCI a 24.60
Extrapolated FCI 24.90

Results in ppm
a see Ref.[54]
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of shielding than the diamagnetic shielding component. For the case of Boron in BH

molecule, in comparison with SCF, electron correlation reduces paramagnetic compo-

nent of the shielding constant by 11% in ECC and almost by 20% in MCSCF method.

For BH the full configuration interaction (FCI) results available for triple zeta plus basis

as well as extrapolated FCI value [54] are reported. These results are obtained using a

large basis set. Though, the FCI results are not in the basis we have used but it can be

used to get the qualitative trend of the correlated shielding values compared to SCF. The

coupled cluster level calculation overestimates the shielding constant compared to FCI

value. With larger basis it is enhanced. The same trend is observed for FCI as well as

MCSCF. Table-2.1 reports the results for the shielding constant of 11B and 1H in BH. For
1H we observed that the ECC values are in good agreement with the MCSCF as well as

extrapolated FCI values.

2.3.2 Hydrogen fluoride

Hydrogen fluoride is an another system studied for the shielding constant. Here, cc-

pVTZ and cc-pVQZ basis is used without any g functions. In Table-2.2, the results for

the diamagnetic and paramagnetic components of the shielding constants of Fluorine as

well as Hydrogen in HF are reported. Here too the results are compared with the exper-

imental [55, 56] as well as MCSCF results obtained using 4 electrons and 10 orbitals.

With increase in basis set paramagnetic component of the shielding is reduced and total

shielding constant value is in good agreement with the experimental shielding constant.

The CC results are in good agreement with the MCSCF results. For 1H in hydrogen

fluoride good results are obtained compared to experimental value [57] for both the basis

sets. For hydrogen, change in shielding constant is very small as basis set convergence

is almost reached.
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Table 2.2: Nuclear magnetic shielding constants values of HF
Basis Method σdxx σdzz σpxx σ̄

cc-pVTZ 1H SCF 8.77 44.13 12.04 28.59
ECC 8.88 44.46 12.29 28.93
MCSCF 9.82 44.44 12.14 29.45

cc-pVQZ 1H SCF 8.48 44.07 11.67 28.13
ECC 9.49 44.34 11.80 28.98
MCSCF 9.49 44.37 11.73 28.96

1H Expta 28.5±0.2

cc-pVTZ 19F SCF 481.88 481.75 -112.36 406.93
ECC 481.90 481.52 -115.07 405.06
MCSCF 481.98 481.74 -111.84 407.03

cc-pVQZ 19F SCF 481.81 481.69 -104.21 412.29
ECC 481.89 481.48 -106.91 410.64
MCSCF 481.97 481.81 -104.04 412.99

19F Exptb 410±6
Results in ppm
asee Ref. [55]
bsee Ref. [56]
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Table 2.3: Nuclear magnetic shielding constants values of N2

Basis Method σdxx σdzz σpxx σ̄

cc-pVQZ 15N SCF 362.67 338.70 -681.46 -99.62
ECC 363.02 339.56 -591.47 -39.11

MCSCF 362.96 339.30 -618.42 -57.21

cc-pV5Z 15N SCF 361.89 338.71 -639.82 -108.38
ECC 362.77 339.57 -588.77 -37.48

MCSCF 362.73 339.31 -621.60 -59.48

15N Expa -61.6±2
Rsults in ppm
a see Ref.[57]

2.3.3 Nitrogen dioxide

The 15N shielding is studied in cc-pVQZ and cc-pV5Z basis without any g and h func-

tions. The MCSCF results are obtained using rather small active space of 4 electrons and

6 orbitals. It can be seen that the paramagnetic component of the shielding constant is

reduced considerably by electron correlation in coupled cluster method for both the basis

sets, whereas in MCSCF it is not so. In fact, as we go from cc-pVQZ to cc-pV5Z basis

coupled cluster reduces the paramagnetic component of the shielding, although in MC-

SCF it increases. Compared to experiment, coupled cluster underestimates the shielding

constant, whereas MCSCF value is in good agreement with the experiment. Discrepancy

of the CC could be attributed to the relaxation missing at the CCSD level. Inclusion

of partial triples may improve results. MCSCF introduces relaxation which may be the

reason why MCSCF despite of using a smaller space in calculations, provides a closer

values to the experimental results.
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2.3.4 Carbon monoxide

In Table-2.4 shielding constants for 13C and 17O in cc-pVTZ and cc-pVQZ basis without

any g functions are reported. The results are compared with the MCSCF results obtained

using 10 electrons and 12 active orbitals. It can be seen from the Table-2.4, that the para-

magnetic component of the shielding for 13C is reduced in both the basis sets by almost

10% due to electron correlation. ECC as well as MCSCF predicts positive shielding con-

stant, whereas SCF gives negative shielding constant. Thus, effect of electron correlation

is seen to be important for 13C. However, neither ECC nor MCSCF is closer to the exper-

imental results. For the 17O shielding constant is reduced in ECC and MCSCF compared

to SCF, which is considerably emphasizing on the effect of electron correlation.
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Table 2.4: Nuclear magnetic shielding constants values of CO
Basis Method σdxx σdzz σpxx σ̄

cc-pVTZ 13C SCF 297.77 271.10 -459.78 -17.64
ECC 298.13 272.66 -417.48 11.32
MCSCF 298.30 272.74 -413.48 13.52

cc-pVQZ 13C SCF 297.12 271.03 -461.58 -7.77
ECC 298.28 272.62 -422.65 7.97
MCSCF 299.68 272.63 -419.55 9.05

13C Expta 0.6±0.9

cc-pVTZ 17O SCF 430.54 410.46 -754.65 -74.25
ECC 430.93 410.08 -681.87 -30.60
MCSCF 430.98 410.00 -689.43 -36.11

cc-pVQZ 17O SCF 431.95 410.48 -760.49 -83.50
ECC 430.47 410.18 -682.94 -31.58
MCSCF 430.45 410.24 -639.30 -39.07

17O Expta -42.3±17.2
Results in ppm
a see Ref.[58]
b see Ref.[59]
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2.4 Conclusion

In this chapter we report the shielding constants for the Hydirdes BH and HF along

with multiple bonded systems N2 and CO. Accuarate calculation of shielding constant

is by far more challenging as values for the shielding are very sensitive to the basis set

chosen and electron correlation effects. We see that for the 1H in HF and BH basis set

limit is almost reached and hence shielding constant is closer to the experimental or FCI

value. However, for other cases we have not reached the basis set limit. In particular,

for multiple bonded systems it might be useful to choose basis sets with more tight S

functions. Partial inclusion of triples might improve results.
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Chapter 3

————————————————————

Magnetizability of doublet radicals using Fock

space multi-reference coupled cluster method

————————————————————

In this chapter we report the first implementation of the recently developed Fock-space

multi-reference coupled cluster (FSMRCC) response approach for magnetizabilities. The

FSMRCC treats dynamic and static correlation in a very extensive manner. We report pi-

lot application of the dia-magnetizability of NO, NO2, OH and BH2 radicals. We also

report preliminary applications of the paramagnetic magnetizability of the NO radical.

Standard atom-centered Gaussian basis functions have been used and this allowed us to

study the gauge-dependence of the magnetizabilities.
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3.1 Introduction

Single reference coupled cluster (SRCC) [1–4] has been accepted as the state-of-

the-art method for the electronic structure calculations. It has been successfully imple-

mented for the energy, energy gradients [5, 6], molecular properties [7–9] and for po-

tential energy surfaces. In general, SRCC very successfully introduces dynamic electron

correlation, which keeps electrons apart. However, for cases where several configura-

tions are likely to make nearly equal contribution to the exact wave-function i.e bond

breaking situations or in excited states, single reference CC fails. Multi-reference based

CC (MRCC) [10–12] have been regarded as the methods of choice in such situations to

take care of non-dynamic electron correlation in an effective manner. Among the MR

based methods, effective Hamiltonian methods [13, 14] provide multiple solutions at a

time. Effective Hamiltonian is defined over a small primary space of interest in such

a way that diagonalization of it gives the exact eigen-values and the associated eigen-

functions are the zeroth order approximation for the exact eigen functions. This space

is known as reference space or model space. This class of methods can be further sub-

divided into two variants as Hilbert space (HS) [15, 16] and Fock Space (FS) [17–19]

methods. Choice of model space and the wave operator play a central role in MR based

methods. Hilbert space MRCC assumes different vacuum for different configurations

in the model space. A cluster operator Tµ is associated for each of the model space

determinant φµ acting as a vacuum. The Fock space is based on the concept of a com-

mon vacuum, which is usually a closed-shell restricted Hartree-Fock determinant. With

respect to this vacuum, holes and particles are defined, which are further sub-divided

into active and inactive holes and particles. Fock space method is suitable for the differ-

ence energy calculations and thus describes ionized, electron-attached or excited states

of a closed shell system, whereas Hilbert space based method is suitable for the poten-

tial energy surface calculations. In addition to the effective Hamiltonian-based methods,

state-selective multi-reference CC methods [20] have also been developed, which are
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appropriate for potential energy surface calculations.

SRCC based methods like Equation of motion (EOM) CC [21, 22], symmetry adapted

cluster expansion configuration interaction (SACCI) [23, 24] method restricted open-

shell (RO) based CC methods [25] have also been successful in describing some quasi

degenerate problems. For one valence problem, EOMCC, SACCI and FSMRCC are

equivalent. However, for higher valence this equivalence no longer holds.

Each of the above methods has its own merit and demerit which gives different win-

dow for their applicability in real problems. It is well known that the intruder state

problem is one of the major drawbacks for the effective Hamiltonian based methods.

To avoid the problem of intruder states incomplete or quasi complete model spaces can

be used. Independent partitioning technique [13]. is another way to get rid of intruder

states problem. Within a complete model space, this can be avoided with the proper

choice of the active orbital. FSMRCC, EOMCC and SACCI have been successfully used

for the difference energy calculations [26, 27]. However, for the linear response there

are very few implementations. The initial linear response in SRCC was proposed by

Monkhorst [28] and subsequently made more efficient by Bartlett and co-workers using

Z-vector technique [7, 29]. Around the same time, Jorgensen and co-workers [30] im-

plemented constrained variational approach to obtain the same response equations. Pal

and co-workers [31, 32] used the fully variational approach using different functionals.

However, the variation based multi-reference variants for the response approach have

been developed only recently. The derivatives using EOM-CC based methods, which

are equivalent for one valence problem to the FSMRCC, were developed by Stanton and

Gauss [33]. Initially, Pal and co-workers [34] implemented Z-vector method for the Fock

space based coupled cluster. Later, Pal and co-workers [35, 36] proposed a more efficient

constrained variational approach for Fock space as well as Hilbert space for a single root

at a time for a general model space. Szalay [37] also proposed a constrained variational

approach for a complete model space within FSMRCC framework. For a complete model
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space both the approaches are equivalent. Pal and co-workers [38, 40] implemented La-

grangian based FSMRCC linear response approach for dipole moment and polarizability

for the doublet radicals of one valence problem as well as excited states more recently.

Though the response approach was tested for electric properties of closed and open

shell molecules there are very few applications for the magnetic properties [41, 42]. The

imaginary perturbation and the gauge-dependence of the properties make it complicated

to implement. Gauss and co-workers [43] have recently implemented gauge-independent

magnetizabilities using CC for closed shell molecules. Pal and co-workers [44] used

extended coupled cluster method to calculate the magnetizabilities of the closed shell

molecules without any gauge dependence. In this chapter, we report pilot applications of

the dia-magnetic magnetizability of the ground states of NO, NO2, BH2 and OH doublet

radicals and perpendicular component of the paramagnetic magnetizability of the NO

radical using different gauges.

3.2 Review of FSMRCC Response Theory

The FSMRCC theory [10, 12, 17, 26] and the Lagrangian formulation within FSMRCC

have been described in detail in various articles [36, 38, 40]. However, for the com-

pleteness of the chapter, we briefly discuss the FSMRCC theory here. The FSMRCC

method is based on the concept of a common vacuum. We choose an N-electron RHF as

a vacuum. With respect to this vacuum, holes and particles are defined, which are further

divided into active and inactive space. Thus, a general model space contains m-active

particles and n-active holes. The model space function can be written as

|Ψ(m,n)
(0)µ >=

∑
i

C
(m,n)
µi |Φ(m,n)

i > (3.1)

where, C(m,n)
µi ’s are the model space coefficients. The correlated wave function for the

µth state can be written as

|Ψ(m,n)
µ >= Ω|Ψ(m,n)

(0)µ > (3.2)
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The universal wave operator Ω is such that the states generated by its action on the

reference space satisfy Bloch equation. The wave operator is defined as

Ω = {eT̃ (m,n)} (3.3)

The curly bracket denotes normal ordering of the operators within it [39]. The cluster

operator T̃ (m,n) can be expressed as

T̃ (m,n) =
m∑
k=0

n∑
l=0

T (k,l) (3.4)

T (k,l) is capable of creating holes and particles in addition to destroying specifically k-

active particles and l-active holes. Thus, T̃ (m,n) amplitudes contain all the lower valence

amplitudes and give additional flexibility to the theory. For a specific problem of zero

active particle and one active hole, we write the Schrodinger equation for the quasi-

degenerate states as

H|Ψ(0,1)
µ > = Eµ|Ψ(0,1)

µ >

which leads to

HΩ(
∑
i

C
(0,1)
µi |Φ

(0,1)
i ) > = EµΩ(

∑
i

C
(0,1)
µi |Φ

(0,1)
i ) > (3.5)

Projection operator for model space is defined as

P (0,1) =
∑
i

|Φ(0,1)
i >< Φ

(0,1)
i | (3.6)

The complementary space operator Q is 1 − P . The effective Hamiltonian(Heff ) is

defined commonly through the Bloch equation.

P (0,1)(HΩ− ΩH
(0,1)
eff )P (0,1) = 0

Q(0,1)(HΩ− ΩH
(0,1)
eff )P (0,1) = 0

(3.7)

Because of normal ordering, the contractions amongst different cluster operators within

the exponential are not possible. This leads to decoupling of the equations of different
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sectors. The equations for the cluster amplitudes are solved, starting from the lowest

valence sector upwards. This is also known as subsystem embedding(SEC) condition.

Similar to the Lagrange formulation of linear response approach of SRCC, Szalay

[37] developed a response approach for the multi-reference methods. Though this ap-

proach can in principle, be applied for general model space, this has been implemented

to complete model spaces. In this approach response of a specific root out of multiple

roots of the effective Hamiltonian is targeted. Thus, one has to project a single desired

root of the Heff out of various roots for variation. We construct the Lagrangian and min-

imize the energy expression with the constraint that the MRCC(i.e. Bloch equations) are

satisfied for a specific µth state.

= =
∑
ij

C̃
(0,1)
µi (Heff )

(0,1)
ij C

(0,1)
jµ

+
∑
ji

Λ
(0,1)
ji < φ

(0,1)
j |(HΩ− ΩHeff )|φ(0,1)

i >

+
∑
α

∑
i

Λ
(0,1)
αi < φ(0,1)

α |(HΩ− ΩHeff )|φ(0,1)
i >

+
∑
ji

Λ
(0,0)
ji < φ

(0,0)
j |HΩ|φ(0,0)

i > +
∑
α

∑
i

Λ
(0,0)
αi < φ(0,0)

α |HΩ|φ(0,0)
i >

−Eµ

(∑
ij

C̃
(0,1)
µi C

(0,1)
jµ − 1

)
(3.8)

Where φ(0,1)
i , φ(0,1)

j , φ(0,0)
i and φ(0,0)

j are the functions in P space. φ(0,1)
α and φ(0,0)

α are

functions in Q space. Λ
(0,1)
ji and Λ

(0,0)
ji are the Lagrange multipliers defined within P-space

for the (0,1) and (0,0) sectors respectively. Similarly, Λ
(0,1)
αi and Λ

(0,0)
αi are the Lagrange

multipliers from P to Q-space for the (0,1) and (0,0) sectors respectively. However, in

case of complete model space (CMS), effective Hamiltonian has an explicit expression

in terms of cluster operators. As a result, the closed part of the Lagrangian multipliers

vanishes. Thus, the second and fourth terms of eq (3.8) vanish, simplifying Lagrangian
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to:

= =
∑
ij

C̃
(0,1)
µi (Heff )

(0,1)
ij C

(0,1)
jµ

+
∑
α

∑
i

Λ
(0,1)
αi < φ(0,1)

α |(HΩ− ΩHeff )|φ(0,1)
i >

+
∑
α

∑
i

Λ
(0,0)
αi < φ(0,0)

α |HΩ|φ(0,0)
i >

−Eµ

(∑
ij

C̃
(0,1)
µi C

(0,1)
jµ − 1

)
(3.9)

Differentiation of eq 3.9 with respect to Λ results in expression for cluster amplitudes,

i.e., the Bloch equation. Differentiation of eq 3.9 with respect to the T amplitudes leads

to equation for Lagrange multipliers. It is seen that the equation for cluster amplitudes

is decoupled from the Λ amplitude equation. The Λ equations are however coupled with

those of the cluster amplitudes T . In the presence of the external field, the Lagrangian

and the parameters Heff, C, C̃, E,Ω,Λ become perturbation dependent. The differentia-

tion of the Lagrangian with respect to unperturbed cluster amplitude leads to equation

for the Lagrangian multipliers. Similarly differentiation of the Lagrangian with respect

to unperturbed Lagrange multipliers leads to equation for cluster amplitudes. Cluster

amplitudes follow (2n+ 1) rule whereas Lagrange multipliers satisfy (2n+ 2) rule. Thus

with the help of first derivative of cluster amplitudes and Lagrange multipliers , one

can obtain energy derivatives up to second order i.e. polarizability. Lagrangian for the

first and second order properties for one valence hole are presented in references [40]

and [38] under singles and doubles approximation. Along similar line, the one valence

particle problem can be solved.

3.3 Computational details

The diamagnetic magnetizability is obtained as expectation values of the second moment

integrals. The corresponding operator is written as

99



Chapter III FSMRCC magnetizability

χdαβ = −1

4

∑
i

[(ri −RG)]2δαβ − (riα −RGα)((riβ −RGβ). (3.10)

The magnetic moment operator for a closed shell molecule is defined as

µmα =
1

2

∑
i

l̂iα (3.11)

where, liα is the αth component of the angular momentum operator for the ith electron.

Then, energy can be written as

E(B) = E0 −
1

2
B.χp.B − 1

2
B.χd.B + ... (3.12)

where χd and χp are diamagnetic and paramagnetic magnetizability tensors, respectively.

The diamagnetic susceptibility is obtained as

χdαβ = Tr(Hd
αβD0) = 〈φ0|χ̂dαβ|φ0〉 (3.13)

and

χpαβ = Tr[Hp
αD(µmβ )] (3.14)

where D0 and Dm
µ are the perturbed and unperturbed densities, respectively. We ob-

tain the density using field-independent cluster amplitudes, Lagrange multipliers, and

model space coefficients and then calculate the diamagnetic magnetizability as trace of

the product of density with the second moment operator. However, for the paramagnetic

susceptibilities, we need the derivative of the cluster amplitudes and effective Hamilto-

nian. We have, however, included only the orbital response part in our implementation

and not the spin contribution. In the present application, we have used singles and dou-

bles truncation of the Lagrange multipliers and cluster amplitudes.

In the presence of the magnetic field, Hamiltonian of the system is not uniquely

defined. Because of complex potential and gauge dependence of the Hamiltonian, com-

putation of the magnetic properties is not so simple. However, the problem of gauge

can be partially taken care by using the proper gauge origin, i.e., center of mass coordi-

nates. There are various attempts at SCF and correlated level to eliminate the problem of
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gauge dependence using large basis set, so that we get nearly complete basis limit results.

However, this is not computationally feasible. Methods are developed for the evaluation

of gauge-independent properties. Gauge including atomic orbital (GIAO) approach by

London [45], individual gauge for localized orbitals (IGLO) by Van Wulen and Kutzel-

nigg [46], and second-order polarization propagator (SOPPA) of Geertsen [47] are some

of the methods. Recently, Kollwitz and Gauss [48] have implemented GIAO at the cou-

pled cluster singles and doubles level for the calculation of magnetizability and nuclear

shielding of closed-shell molecules. However, there is no report of calculation of mag-

netic properties of open-shell molecules. In the next section, we report the study of the

diamagnetic magnetizabilities of various radicals using moderate basis sets. The RHF

configuration of the cation/anion of the radical is chosen as vacuum. With respect to the

vacuum, we have defined a few active particles/holes and the model space of the radicals

consists of one particle/hole FS. To compare our results, we performed a relatively more

extensive complete active space (CAS) SCF calculation in the same basis as well as at

the same gauge origin using DALTON code [49]. We will describe the CAS for each

application later.

3.4 Results and discussion

The Λ-FSMRCC method is used successfully for studying magnetizabilities. The mag-

netizabilities of NO2, OH, BH2 and NO radicals and perpendicular component of the

paramagnetic part are studied and compared against the CASSCF method. The details

are given in following sections.

3.4.1 NO2 radical

To study the magnetizabilities of NO2 doublet radical, we choose RHF of NO2 as our

vacuum and thus the radical is studied as electron attached state of NO2. With respect

to this vacuum, we chose two active particles which are close lying in energies of our
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Table 3.1: Diamagnetic magnetizabilities of NO2 radical

Basis Gauge Method X Y Z

cc-pVTZ CM Λ-FSMRCC -6.56 -24.43 -23.34
CASSCF -6.60 -24.44 -23.36

N atom Λ-FSMRCC -6.87 -24.64 -23.53
CASSCF -7.01 -24.85 -23.36

cc-pVDZ CM Λ-FSMRCC -6.51 -24.44 -23.34
CASSCF -6.55 -24.45 -23.36

N atom Λ-FSMRCC -6.90 -24.83 -23.35
CASSCF -6.96 -24.86 -23.36

Results in au

interest. Here center of mass is one of the gauge, and the other gauge was chosen to be

at N atom. The molecule lies in the XZ plane. For the gauge at the N atom, we placed N

along the Z-axis at 0.8875 au, whereas the two oxygen atoms are placed along the X-axis

at ±2.0814 au For the center of mass as gauge, coordinates were chosen accordingly so

that the center of mass is at the origin. The ground-state electronic structure of the ni-

trogen dioxide is [core]3a2
12b2

24a2
13b2

21b2
15a2

11a2
24b2

26a0
1. We have studied the diamagnetic

components of the NO2 radical using cc-pVDZ and cc-pVTZ basis sets. For cc-pVTZ

basis, we have chosen five electrons and eight orbitals as our active space. On the other

hand, for the cc-pVDZ basis, we chose five electrons and six orbitals as active space.

The Table-3.1 gives the results for the NO2. We can see that all the three components of

the diamagnetic magnetizability of NO2 are in good agreement with CASSCF results for

center of mass as gauge. However, there is some slight deviation between FSMRCC and

CASSCF when we chose nitrogen as our gauge.
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Table 3.2: Diamagnetic magnetizabilities of OH radical

Basis Gauge Method X Y Z

aug-cc-pVTZ CM Λ-FSMRCC -2.84 -2.80 -2.34
CASSCF -2.63 -2.87 -2.29

O atom Λ-FSMRCC -2.88 -2.85 -2.34
CASSCF -2.87 -2.90 -2.29

aug-cc-pVDZ CM Λ-FSMRCC -2.75 -3.03 -2.41
CASSCF -2.63 -2.87 -2.27

N atom Λ-FSMRCC -2.79 -3.07 -2.41
CASSCF -2.66 -2.90 -2.27

Results in au

3.4.2 OH radical

For OH radical, the bond distance of 0.97953 Å was considered. The coordinates were

chosen such that in one case, center of mass is at the origin, while for second gauge

molecule is symmetrically places around the origin. We start with RHF of hydroxide

anion as vacuum and choose the degenerate π HOMOs as active orbitals. Electron de-

tachment from these active orbitals results in doublet 2Π state of OH radical. We have

studied this radical using aug-cc-pVDZ as well as aug-cc-pVTZ basis. The gauge origin

was chosen at the center of mass and at the oxygen atom. Table-3.2 gives the results for

the OH radical. We compare our results with the CASSCF results obtained with the CAS

space of five electrons and nine active orbitals. It can be seen that for a given gauge with

the better basis set diamagnetic magnetizability value enhances. It is observed that in a

given basis, there is a marginal change in the diamagnetic magnetizability of this radical

with the gauge origin.
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Table 3.3: Diamagnetic magnetizabilities of BH2 radical

Basis Gauge Method X Y Z

aug-cc-pVDZ CM Λ-FSMRCC -5.72 -4.86 -3.36
CASSCF -5.72 -4.85 -3.32

Origina Λ-FSMRCC -6.54 -4.86 -4.82
CASSCF -6.54 -4.84 -4.14

a Origin is at the mid point of the H-O-H bond
Results in au

3.4.3 BH2 radical

In Table-3.3, we report the results for the BH2 radical. To obtain the diamagnetic mag-

netizability of BH2, we start with BH+
2 as a vacuum. Hence, the model space of BH2 can

be expressed as one particle FS. In the case of BH2 molecules for both the gauge choices,

molecule was placed in the YZ plane. For the choice of the gauge at the origin, boron

atom is placed along the Y-axis at 0.924714 au and the two hydrogens are placed along

the Z-axis at ±2.02910 au. For the gauge at the center of mass, we choose the coordi-

nates such that center of mass is at the origin. The ground-state electronic structure of

BH2 is 1a2
12a2

11b2
23a1

1. With respect to the vacuum, we choose two active particles for our

study. We have studied this radical in aug-cc-pVDZ basis in two different gauges. One

of the gauges is the center of mass, whereas the other one is at the origin of the molecule.

In case of Λ-FSMRCC, the magnetizability is enhanced as we go from center of mass

to gauge origin to molecular origin. The CASSCF results obtained with three active

electrons in three active orbitals. Our results are in good agreement with the CASSCF

results.
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Table 3.4: Diamagnetic magnetizabilities of NO radical

Basis Gauge Method X Y Z

aug-cc-pVTZ CM Λ-FSMRCC -8.41 -8.40 -3.79
CASSCF -8.42 -8.41 -3.78

N atom Λ-FSMRCC -13.42 -13.44 -3.80
CASSCF -13.46 -13.45 -3.78

aug-cc-pVDZ CM Λ-FSMRCC -8.35 -8.57 -3.85
CASSCF -8.51 -8.36 -3.80

N atom Λ-FSMRCC -13.55 -13.38 -3.85
CASSCF -13.56 -13.40 -3.80

Results in au

3.4.4 NO radical

The ground-state electronic structure of the nitrous oxide is 1σ2
g1σ

2
u2σ

2
g2σ

2
u3σ

2
g1π

4
u1π

1
g .

The basis sets used are aug-cc-pVTZ and aug-cc-pVDZ. We have studied the molecule

using center of mass and the N atom as gauges. The bond distance of 1.15077Å is used

for the NO radical. The coordinates are chosen in a way that the center of mass is at

the origin in one case, whereas for the second gauge center of the molecule is at the

origin. To study the NO radical, we start with NO+ as our vacuum. For , NO+ the

sigma orbital in the virtual space is comparable in energy with the doubly degenerate

π orbital (LUMO). Therefore, we choose σ and π as active orbitals. With respect to

this vacuum, NO radical can be seen as one active particle problem. Table-3.4 gives

magnetizabilities of NO doublet radical in two different basis sets at both the gauge

origins. We observe that for a given basis, diamagnetic susceptibility along the molecular

axis, i.e., Z direction is invariant to the gauge. It can be seen that the absolute values of

the magnetizability are enhanced as we go from center of mass gauge to nitrogen atom
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Table 3.5: Paramagnetic magnetizabilities of NO radical

Basis Gauge Method X Y

aug-cc-pVTZ CM Λ-FSMRCC 3.98 8.25
CASSCF 5.88 6.93

N atom Λ-FSMRCC 9.60 8.25
CASSCF 10.52 11.58

aug-cc-pVDZ CM Λ-FSMRCC 4.65 1.91
CASSCF 6.33 7.52

N atom Λ-FSMRCC 9.60 5.60
CASSCF 8.75 9.92

Results in au

as our gauge origin. We have chosen three electrons as active electrons and 11 orbitals

as active once for our calculation of CASSCF results for comparison. In aug-cc-pVTZ

basis, the FSMRCC and CASSCF results are in good agreement for both the gauges.

However, for the aug-cc-pVDZ basis, center of mass gauge has some discrepancy be-

tween CASSCF and FSMRCC. This could be because of the poor basis set. In general,

there is a good agreement between the FSMRCC and CASSCF results.

Table-3.5 reports the perpendicular component of the paramagnetic magnetizability

of the NO radical. To obtain the paramagnetic magnetizability of the NO radical, we

use NO+ as our vacuum. The NO+ being a closed-shell system and we do not have the

spin component in the magnetic moment. However, because NO is a linear molecule,

we expect that the spin component of the magnetic moment will align itself along or

opposite direction to the magnetic field. Thus, only the z-component of the paramagnetic

magnetizability will be affected by the spin part of the magnetic moment. We do not

expect the contribution of spin magnetic moment to be large compared with the orbital

contribution in the perpendicular direction. Hence, we report only the perpendicular
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component of the paramagnetic magnetizability, which is obtained using only orbital part

of the magnetic moment. Although the basis is not good enough for the paramagnetic

properties, it is only for preliminary application we are presenting. From the table, it

appears that N atom as a gauge is more reliable for paramagnetic properties.

3.5 Conclusion

In this chapter, we have studied the diamagnetic magnetizabilities of doublet radicals us-

ing the recently developed stationary FSMRCC method. We have studied NO, NO2, OH

and BH2 radicals starting from their corresponding cation/anion as a vacuum. We com-

pare our results with the MCSCF results obtained with a CAS space, which is relatively

larger than the corresponding model space for the FSMRCC. We have studied each of

the molecules in two different gauges. Except, for the NO radical, we observe that the

gauge does not change the magnetizability values much for other radicals. We observe

that FSMRCC results obtained with a relatively smaller model space are in good agree-

ment with the MCSCF results for most of the molecules. For comparison, the MCSCF

method is used

107



Chapter III FSMRCC magnetizability

References

[1] J. Cizek, Adv. Quantum Chem. 14, 35 (1969); J. Cizek, J. Chem. Phys., 45,

4256 (1966); J. Cizek and J. Paldus, Int. J. Quantum Chem. 5, 359 (1971).

[2] R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981); R. J. Bartlett, J.

Phys. Chem. 93, 1697 (1989).

[3] F. Coester, Nucl. Phys. 7, 421 (1958); F. Coester and H. Kummel, Nucl.

Phys., 17, 477 (1960).

[4] R. J. Bartlett, in Modern Electronic Structure Theory, edited by D. R.

Yarkony, (World Scientific, Singapore, 1995) pp. 1047.

[5] L. Adamowicz, W. D. Laidig and R. J. Bartlett, Int. J. Quantum Chem.

S18, 245 (1984).

[6] G. B. Fitzgerald, R. J. Harrison and R. J. Bartlett, Int. J. Quantum Chem.

85, 5143 (1986).

[7] E . Salter, G. Trucks and R. J. Bartlett, J. Chem. Phys. 90, 1752 (1989); H.

Sekino and R. J. Bartlett, Int. J. Quantum Chem. S18, 255 (1984)

[8] J. Noga and R. J. Bartlett, J. Chem. Phys. 96, 7041 (1987).

[9] H. J. Monkhorst, Int. J. Quantum Chem. S11, 421 (1977).

[10] D. Mukherjee and S. Pal, Adv. Quantum Chem. 20, 291 (1989)

[11] J. Paldus, in Methods of Computational Molecular Physics edited by S.

Wilson, G. H. F. Dierckson, NATO ASI series B, (Plenum Publishing Cor-

poration, New York, 1992) Vol. 293, pp 99.

[12] W. Kutzelnigg, J. Chem. Phys. 77, 3081 (1981); ibid, 80, 822 (1984); W.

Kutzelnigg and S. Koch, J. Chem. Phys. 79, 4315 (1983).

108



Chapter III FSMRCC magnetizability

[13] P. Durand and J. P. Malreiu, Adv. Chem. Phys. 67, 321 (1987).

[14] V. Hurtubise and K. F. Freed, Adv. Chem. Phys. 83, 465 (1993).

[15] B. Jeziorski and H. J. Monkhorst, Phys. Rev. A. 24, 1968 (1982).

[16] B. Jeziorski and J. Paldus, J. Chem. Phys. 90, 2714 (1989); L. Meissner, J.

Chem. Phys. 103, 8014 (1995).

[17] D. Mukherjee, R. K. Moitra and A. Mukhopadhyay, Mol. Phys. 33, 955

(1977).

[18] D. Mukherjee, Pramana 12, 203 (1979); D. Mukherjee, R. K. Moitra and

A. Mukhopadhyay, Indian. J. Pure. Appl. Phys. 15, 613 (1977).

[19] R. K. Moitra and D. Mukherjee, J. Phys. B 12, 1 (1979); M. A. Haque and

D. Mukherjee, J. Chem. Phys. 80, 5058 (1984); R. Offermann, W. Ey and

H. Kummel, Nucl. Phys. A. 273, 349 (1976); R. Offermann, Nucl. Phys. A.

273, 368 (1976); W. Ey, Nucl. Phys. A. 296, 189 (1978)

[20] S. Das, N. Bera, S. Ghosh and D. Mukherjee, J. Mol. Struct.

(THEOCHEM) 771, 79 (2006); U. S. Mahapatra, B. Datta, B. Bandy-

opadhyay and D. Mukherjee, Adv. Quantum Chem. 30, 163 (1998); U.

S. Mahapatra, B. Datta and D. Mukherjee, Mol. Phys. 94, 157 (1998).

[21] M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 3629 (1995); S. R.

Gawlitsky, M. Nooijen and R. J. Bartlett, Chem. Phys. Lett. 248, 189

(1996); J. Geertsen, M. Rittby and R. J. Bartlett, Chem. Phys. Lett. 164,

57 (1989); J. F. Stanton and R. J. Bartlett, J. Chem. Phys 98, 7029 (1993);

D. C. Comeau, and R. J. Bartlett, Chem. Phys. Lett. 207, 414 (1993).

[22] M. Nooijen, and R. J. Bartlett, J. Chem. Phys. 106, 6441 (1997); ibid, 106,

6449 (1997); ibid, 107, 6812 (1997).

109



Chapter III FSMRCC magnetizability

[23] H. Nakatsuji, Chem. Phys. Lett. 59, 362 (1978); ibid, 67, 329 (1979); M.

Ehara and H. Nakatsuji, J. Chem. Phys. 99, 1952 (1992).

[24] H. Nakatsuji and K. Hirao, J. Chem. Phys. 68, 2053 (1978); ibid, 68, 4279

(1978).

[25] M. Urban, P. Neogrady, and I. Hubac, in Recent Advances in Coupled-

cluster Methods, editted by R. J. Bartlett, (World Scientific, Singapore,

(1997)), pp. 275.

[26] S. Pal, M. Rittby, R. J. Bartlett, D. Sinha, and D. Mukherjee, J. Chem.

Phys. 88, 4357 (1988); ibid, Chem. Phys. Lett. 137, 273 (1987); ibid, 142,

575 (1987).

[27] N. Vaval, K. B. Ghose, S. Pal, and D. Mukherjee, Chem. Phys. Lett. 209,

292 (1993); N. Vaval, S. Pal and D. Mukherjee, Theor. Chem. Acc. 99, 100

(1998).

[28] N. C. Handy, and H. F. Schaefer III, J. Chem. Phys. 81, 5031 (1984).

[29] G. Fitzgerald, R. J. Harrison and R. J. Barlett, J. Chem. Phys. 85, 5143

(1986); 90, 1752 (1989).

[30] T. Helgaker and P. Jorgensen, Adv. Quantum. Chem. 19, 183 (1988); H.

Koch, H. J. A. Jensen, P. Jorgensen, T. Helgaker, G. E. Scuseria and H. F.

Schaefer III, J. Chem. Phys. 92, 4924 (1990).

[31] S. Pal, M. D. Prasad and D. Mukherjee, Pramana 18, 261 (1982); S. Pal,

M. D. Prasad and Mukherjee, Theor. Chim. Acta. 62, 523 (1983); ibid,

66, 311 (1984); S. Pal, Theor. Chim. Acta. 66, 151 (1984); S. Pal and K.

B. Ghose, Curr. Sci. 63, 667 (1992); K. B. Ghose, P. G. Nair and S. Pal,

Chem. Phys. Lett. 211, 15 (1993); N. Vaval, K. B. Ghose, P. G. Nair and S.

Pal, Proc. Indian. Acad. Sci. 106, 387 (1994).

110



Chapter III FSMRCC magnetizability

[32] N. Vaval, K. B. Ghose and S. Pal, J. Chem. Phys. 101, 4914 (1994); N.

Vaval and S. Pal, Phys. Rev. A. 54, 250 (1996); N. Vaval, A. B. Kumar and

S. Pal, Int. J. Mol. Sci. 2, 89 (2001); N. Vaval, Chem. Phys. Lett. 318, 168

(2000).

[33] J. F. Stanton and J. Gauss, J. Chem. Phys. 101, 8938 (1994).

[34] D. Ajitha and S. Pal, Phys. Rev. A. 56, 2658 (1997); D. Ajitha, N. Vaval

and S. Pal, J. Chem. Phys. 110, 2316 (1999); D. Ajitha and S. Pal, Chem.

Phys. Lett. 309, 457 (1999); ibid, J. Chem. Phys. 114, 3380 (2001).

[35] K. R. Shamsundar and S. Pal, J. Mol. Sci. 3, 710 (2002).

[36] K. R. Shamsundar, S. Asokan and S. Pal, J. Chem. Phys. 120, 6481 (2004).

[37] P. G. Szalay, Int. J. Quantum Chem. 55, 151 (1994).

[38] P. U. Manohar, N. Vaval and S. Pal, J. Mol. Struct. THEOCHEM, 768, 91

(2006).

[39] I. Lindgren, Int. J. Quantum Chem. S12, 33 (1979).

[40] P. U. Manohar, and S. Pal, Chem. Phys. Lett. 438, 321 (2007).

[41] T. Helgaker, M. Jaszunski and K. Ruud, Chem. Rev. 99, 293 (1999); J.

Gauss and J. F. Stanton, J. Chem. Phys. 104, 2574 (1996); K. Ruud, T.

Helgaker, K. L. Bak, P. Jorgensen and H. J. A. Jensen, J. Chem. Phys., 99,

3847 (1993).

[42] T. Helgaker and P. Jorgensen, J. Chem. Phys. 95, 2595 (1991); K. Ruud,

T. Helgaker, K. L. Bak, P. Jorgensen and Olsen, J. Chem. Phys. 192, 157

(1995).

[43] J. Gauss, K. Ruud and M. Kallay, J. Chem. Phys. 127, 74101 (2007).

111



Chapter III FSMRCC magnetizability

[44] P. U. Manohar, N. Vaval and S. Pal, Chem. Phys. Lett. 387, 442 (2004).

[45] F. London, J. Phys. Radium. 8, 397 (1937).

[46] C. Van Wulen and W. Kutzelnigg, Chem. Phys. Lett. 205, 563 (1993).

[47] J. Geertsen, Chem. Phys. Lett. 188, 326 (1992).

[48] M. Kollwitz and J. Gauss, Chem. Phys. Lett. 260, 639 (1996).

[49] T. Helgaker, H. J. Aa Jensen, P. Jorgensen, J. Oslen, K. Ruud, H. Agren,

A. A. Auer, K. L. Bak, V. Bakken, O. Christiansen, S. Coriani, P. Dahle, E.

K. Dalskov, T. Enevoldsen, B. Fernandez, C. Hattig, A. Hald, A. Halkier,

H. Heiberg, H. Hettema, D. Jonsson, S. Kirpeker, R. Kobayashi, H. Koch,

K. V. Mikkelsen, P. Norman, M. J. Packer, T. B. Pedersen, T. A. Ruden, A.

Sanchez, T. Saue, S. P. A. Sauer, B. Schimmelpfenning, K. O. Sylvester-

Hvid, P. R. Taylor, O. Vahtras, DALTON a molecular electronic structure

program, Release 1.2, (2001).

112



Chapter 4

————————————————————

Effect of triples to dipole moments in

Fock-space multi-reference coupled cluster

method

————————————————————

In this chapter, we present the new implementation of partial triples for the dipole mo-

ment of doublet radicals in Lagrangian formulation of Fock-space Multi-reference cou-

pled cluster (Λ-FSMRCC) response method. We have implemented a specific scheme of

non-iterative triples, in addition to singles and doubles scheme, which accounts for the

effects appearing at least at the third order in dipole moments. The method is applied to

the ground states of OH, OOH, HCOO, CN, CH, NH2 and PO radicals.
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4.1 Introduction

Single reference coupled cluster (SRCC) [1–7] has been accepted as the state-

of-the-art method for the electronic structure calculations. It has been successfully im-

plemented for the energy, gradients, molecular properties and potential energy surfaces

[8–18]. In general, SRCC introduces dynamic electron correlation, which keeps elec-

trons apart. It is well known that triple excitations in SRCC contribute to the energy

from fourth order onwards. So far different version of the SRCC method with full or

partial inclusion of triples with increasing precision have been developed [19–24] for

energy. The non-iterative triples are routinely used for high accuracy with a economi-

cal treatment of triples. The full inclusion of triples is expensive, though in the SRCC

it has been implemented by Bartlett and co-workers [21] for energy. The perturbative

treatment of the quadruple excitations has also been attempted [23, 25] in single refer-

ence context. However there are cases which involve several configurations which make

nearly equal contribution(quasi-degenerate) to the exact wave function, i.e., bond break-

ing situations of the ground state or in excited state, where single reference CC fails. The

restricted open-shell (RO)- based CC methods [26], which uses linear operator have been

successful in describing the quasi-degenerate cases. Though in single reference frame-

work, selected triples and quadruple level excitations [27, 28] have been considered for

quasi-degenerate cases [29, 30], multi-determinantal or multi-reference coupled cluster

(MRCC) methods have emerged as the methods of choice to take into account the quasi-

degenerate molecular systems [31]. Among the multi-reference methods, the effective

Hamiltonian [32–34] based MRCC methods provide multiple roots via diagonalization

of the effective Hamiltonian within the model space. This subclass mainly spans two

approaches: namely the Hilbert space (HS) MRCC [35–37] and Fock-space (FS) MRCC

[38–44]. HSMRCC assumes different vacua for different configurations in the model

space with same number of electrons and a state-universal wave operator to introduce

the model space to virtual space excitations. The method is suitable for potential energy
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surface (PES) studies [31] and the situations involving curve crossing. However for PES,

state selective MRCC method developed by Mukherjee and co-workers [45, 46] has been

found to be more attractive in recent years from the point of view of circumventing the

problem of intruder states. The FSMRCC theory was originally formulated by Kutzel-

nigg [38], Mukherjee [39–41] and Lindgren [42], and applications to atoms were made

by Kaldor and co-workers [43]. The FSMRCC applications to molecules were performed

by Pal et al [44]. FSMRCC is based on the concept of a common vacuum and assumes

a valence universal wave operator to describe the various states, which are generated by

addition and/or removal of electron to/from the common vacuum, usually the closed-

shell RHF configuration. FS methods are suitable for the difference energy calculations

and thus describe ionized, electron-attached, or excited states of a closed-shell system.

However, both these methods suffer from the problem of intruder states. This problem

can be avoided with the help of intermediate Hamiltonian [33] based formulation both in

Fock space [47, 48] as well as Hilbert space [49, 50].

The important feature of both the multi-reference formulations is their size-extensivity.

On the other hand, in equation of motion(EOMCC) [51–57] or linear response CC(CCLR)

method [58–60] use a linear operator for an excited state, but an exponential operator

for the ground state. The EOMCC method has been extensively developed for ion-

ized [53, 54], electron attached [55] and excited state [51] problems. The similarity

transformed EOMCC method (STEOMCC) which is size extensive was developed by

Nooijen and co-workers [61, 62]. For one valence problem EOMCC and FSMRCC are

equivalent. However, such equivalence breaks down for excited state. EOMCC contains

certain unlinked diagrams which are associated with charge-transfer separability [61].

The spin-flip EOMCC method has also been introduced as a clever way to describe the

multi reference states [63]. The symmetry-adapted cluster expansion configuration in-

teraction (SACCI) [64, 65] and method of moments coupled cluster(MMCC) [66, 67]

have also been successful in describing some quasi-degenerate problems. There are sev-

eral implementations of the full and partial inclusion of the triples within the Fock space

115



Chapter IV Λ-FSMRCCSD(T*)

[68–71] MRCC. Pal and co-workers included non-iterative triples for ionization poten-

tial [68, 69] and excitation energies [70], within Fock space MRCC scheme and Bartlett

and co-workers included full triples correction for excitation energies [71]. The full

triples correction to excitation energies in intermediate Hamiltionian Fock space CC has

been pursued currently by Musial et al [72]. The inclusion of iterative and non-iterative

triples in EOMCC [73–77] and state-selective approaches [78, 79] for energy calcula-

tions has also been attempted. The perturbative triples corrections to EOM-IP-CCSD

was introduced by stanton and Gauss [80]. Recently, perturbative triples correction to

EOM-EA-CCSD has been done by Manohar et al [81]. The selected set of triples de-

fined through the active orbitals in EOMCCSD (EOMCCSDt) has also been attempted

[82]. Recently, Krylov et al. employed the non-iterative perturbative triples correction to

spin flip EOMCC (SF-EOMCC) method for excitation energies [83]. The non-iterative

energy corrections to MMCC for excitation energy has been achieved by Piecuch et al

[84].

Formulation of energy derivatives using multi-root CC methods is a challenging task.

The response theory has been a valuable theoretical tool to study molecular properties

[85, 86] . Along lines of non variational CC (NVCC) response approach of Monkhorst, a

response approach was developed for Fock-space MRCC formulation [87, 88] and imple-

mented for FSMRCC based dipole moments of various ionized/electron attached states

as well as excited states. This method explicitly calculates the first derivatives of all clus-

ter amplitudes [89, 90] and thus was not a satisfactory approach. Extending the idea of

the Lagrange multipliers for the specific root of the effective Hamiltonian, Pal and co-

workers developed the response approach within the MRCC framework Λ-MRCC). This

approach was formulated for the Hilbert space [91] as well as Fock space [92] MRCC

methods. This formulation is very general and can be implemented in any method. Re-

cently this was implemented for the Generalized van Vleck perturbation approach [93].

Szalay [94] independently formulated similar approach based on Lagrange multipliers

for the Fock space MRCC method. Though in principle, Szalay’s approach can be used
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for general model spaces, this was implemented only for complete model spaces [95].

Λ-FSMRCC method was successfully implemented for the dipole moment [96] and po-

larizability [97] of the doublet radicals as well as excited states [98] of molecules. The

initial implementation was within singles and doubles (Λ-FSMRCCSD) approximation.

Response theory for molecular properties has been pursued by Jorgensen et. al in LR-CC

formalism [99]. Theory for analytic energy derivatives in EOMCC method was proposed

by Stanton [100] and implemented by Stanton and Gauss [101, 102]. Nooijen and co-

workers implemented gradients in STEOMCC [103, 104], using Lagrange multipliers.

Analytic gradients for SF-EOMCC model at singles and doubles level has also been pro-

posed recently [105].

However, to improve the accuracy of the molecular properties of the outer valence as

well as some of the inner valence states, it is important to include the effects of triples.

However, inclusion of full triples is computationally expensive. This limits the applica-

bility of the method to small molecules or to moderate basis sets. Hence, partial inclu-

sion of the triples is more practicable and this has been implemented in this work. Since,

triples are added on the basis of perturbative order, it does not guarantee that inclusion

of triples will improve molecular properties towards the Full CI (FCI), due to oscillatory

nature of the perturbation series. Analytical derivatives for CCSD with various levels of

triples excitations has been analyzed long ago [106, 107]. Gauss et al [108] implemented

analytical gradients for the CCSDT model. Recently, parallel calculation of CCSD(T)

has been achieved for analytic first and second derivatives [109]. In the context of SRCC,

the importance of triples to the dipole moment has also been analyzed [110]. Triples ex-

citation in linear response CC method for excited state properties were studied iteratively

[111].

The FSMRCC theory [38, 40–42, 44, 112] and the Lagrangian method in FSMRCC

[92, 96, 97] are given in details in the introduction of this thesis. The review of the

above are also discussed in chapter 3 of this thesis. With this beginning, let us move on

to the triples correction to FSMRCC first order properties. In this chapter, we present
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the first implementation of partial triples corrections to the response properties for La-

grange based formulation within Fock space multi-reference coupled cluster method (

Λ-FSMRCC) for first order electric property. We have implemented the terms coming

from triples whose contribution is at the fourth order in energy and at least up to third

order in dipole moment.

4.2 Implementation of the partial triples in Λ-FSMRCC method

In this section, we will present the contribution of triples to the dipole moment, whose

origin is beyond the singles and doubles approximations in FSMRCC scheme. Here we

will discuss the first implementation of non-iterative triples in T and Λ-amplitudes to

the dipole moment in FSMRCC response. The triples amplitudes are generated as and

when used. Since there are several schemes for the inclusion of triples in the literature

for SRCC, first we will discuss the specific scheme implemented in this chapter for (0,0)

sector. The approach implemented here uses canonical orbitals and the orbitals are not

allowed to change with the perturbation and hence this approach is a non-relaxed ap-

proach. We solve T (0,0)
1 and T (0,0)

2 amplitudes excluding V T (0,0)
3 in a completely iterative

manner, which is CCSD approximation. Using these amplitudes of T (0,0)
1 and T

(0,0)
2 ,

T
(0,0)
3 amplitude is calculated non-iteratively from V T

(0,0)
2 and V T (0,0)

2 T
(0,0)
2 . The T (0,0)

1

and T (0,0)
2 amplitudes are solved iteratively including the term V T

(0,0)
3 . The inclusion

of V T (0,0)
3 term in singles and doubles amplitude equation updates the CCSD equations.

Even though V T
(0,0)
3 term is third order, considering the term in T

(0,0)
3 equation will

make the method iterative. Hence, this term is not included in this scheme. The term

V T
(0,0)
2 contributes at the second order, V T (0,0)

2 T
(0,0)
2 contributes at the third order in

perturbation.

In the implementation of the MRCCSD(T*)/CCSD(T*) approximation, we construct

an intermediate operator H̄ given by H̄ = exp(−T (0,0))Hexp(T (0,0))) and truncate up

to one(F̄ ), two(V̄ ) and three body(W̄ ) parts. For the construction of H̄ we use CCSD
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approximation without including the amplitudes of triples i.e. T (0,0)
3 . Heff under this

approximation is

Heff = P (0,1)(F̄ + F̄ T
(0,1)
1 + V̄ T

(0,1)
2 + F̄ T

(0,1)
2 + V̄ T

(0,1)
3 )P (0,1) (4.1)

The Fock space Bloch equations for the T (0,1)
1 , T (0,1)

2 and T (0,1)
3 amplitudes are as

below

Q
(0,1)
1 (F̄ + F̄ T

(0,1)
1 + V̄ T

(0,1)
2 + F̄ T

(0,1)
2 + V̄ T

(0,1)
3 − T (0,1)

1 Heff )P
(0,1) = 0 (4.2)

Q
(0,1)
2 (V̄+F̄ T

(0,1)
2 +V̄ T

(0,1)
1 +V̄ T

(0,1)
2 +W̄T

(0,1)
2 +V̄ T

(0,1)
3 +F̄ T

(0,1)
3 −T (0,1)

2 Heff )P
(0,1) = 0

(4.3)

Q
(0,1)
3 (W̄ + W̄T

(0,1)
2 + F̄ T

(0,1)
3 + V̄ T

(0,1)
2 − T (0,1)

3 Heff )P
(0,1) = 0 (4.4)

It can be seen that V̄ T (0,1)
3 is the only term contributing to the singles and doubles am-

plitude equation along with Heff . It is easy to see that W̄ cannot contribute to Heff .

The equations 4.2 and 4.3 are first solved fully excluding the terms which involve T (0,1)
3

amplitude, which is CCSD approximation . Using these amplitudes eq 4.4 is solved non-

iteratively. In eq 4.4, we want to be accurate up to third order. Hence we include in the

term T
(0,1)
3 Heff only T (0,1)

3 F̄ . After solving T (0,1)
3 , we again solve the equations 4.2 and

4.3 iteratively. Here the effect of T (0,1)
3 appears via V̄ T (0,1)

3 and F̄ T (0,1)
3 .

We now consider the triples correction to the Λ amplitudes and then to the overall

dipole moment. The Λ equations are like the conjugates of the T amplitude equations

and hence the terms in T equations appear in Λ equations also. It should be mentioned

here, that unlike in T amplitude equations, here we first solve for the (0,1) sector and

then for the (0,0) sector due to reverse decoupling in Λ equations.

First, the Λ amplitudes in singles and doubles approximation are solved iteratively

for both (0,1) and (0,0) sector. With these Λ amplitudes the Lagrangian for triples is

constructed. During the construction, the singles and doubles(SD) terms remain as such.
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The Lagrangian with the triples correction is given by,

= = SD + V̄ T
(0,1)
3 CC̃ + Λ

(0,1)
3 V̄ T

(0,1)
2 + Λ

(0,1)
3 W̄T

(0,1)
2 + Λ

(0,1)
3 F̄ T

(0,1)
3 + Λ

(0,1)
2 V̄ T

(0,1)
3

+Λ
(0,1)
2 F̄ T

(0,1)
3 − Λ

(0,1)
2 T

(0,1)
2 (V̄ T

(0,1)
3 ) + Λ

(0,1)
1 V̄ T

(0,1)
3

Λ
(0,0)
3 V T

(0,0)
2 + Λ

(0,0)
2 V T

(0,0)
3 + Λ

(0,0)
1 V T

(0,0)
3 + Λ

(0,0)
3 FT

(0,0)
3 + Λ

(0,1)
3 W̄T

(0,0)
2

+Λ
(0,1)
3 V T

(0,0)
3 + Λ

(0,1)
3 V T

(0,0)
2 (4.5)

The C̃ and C are left and right eigen vectors of the Heff. The Lagrangian in eq 4.5 is

differentiated with respect to T (0,1)
3 to get the equation for Λ

(0,1)
3 . The equation defining

the Λ
(0,1)
3 amplitude is given in eq 4.6.

< P (0,1)|V̄ CC̃ + Λ
(0,1)
3 F̄ − Λ

(0,1)
2 T

(0,1)
2 V̄ + Λ

(0,1)
1 V̄ + Λ

(0,1)
2 V̄ |Q(0,1) >= 0 (4.6)

The Lagrangian in eq 4.5 is differentiated with respect to T
(0,1)
2 to get the equation for

Λ
(0,1)
2 . The Λ

(0,1)
2 equation is given by

SD+ < P (0,1)|Λ(0,1)
3 V̄ + Λ

(0,1)
3 W̄ |Q(0,1) >= 0 (4.7)

The eq 4.6 is solved non-iteratively to obtain Λ
(0,1)
3 . The connected terms in Λ

(0,1)
3 am-

plitude equation are considered in this approximation. Thus, Λ
(0,1)
3 amplitude is obtained

from the terms V̄ CC̃, Λ
(0,1)
2 V̄ , Λ

(0,1)
1 V̄ and Λ

(0,1)
2 T

(0,1)
2 V̄ . These contribute at the first

order, second order and third order respectively. The Λ
(0,1)
3 amplitude is also obtained

from the second order F̄ containing term Λ
(0,1)
3 F̄ . After obtaining Λ

(0,1)
3 , its effect on

Λ
(0,1)
2 appears through the third order terms Λ

(0,1)
3 V̄ and Λ

(0,1)
3 W̄ . The equation for Λ

(0,1)
2

amplitude, eq 4.7 is solved fully by taking in to account the Λ
(0,1)
3 terms calculated above.

For solving (0,0) sector Λ
(0,0)
3 amplitude is obtained first. Here too the equation for

Λ
(0,0)
3 is obtained by differentiating the Lagrangian in eq 4.5 with respect to T

(0,0)
3 . The

terms appear after the differentiation with respect to T
(0,0)
3 are given in eq 4.8.

< P (0,0)|Λ(0,0)
3 F + Λ

(0,0)
2 V + Λ

(0,0)
1 V + Λ

(0,1)
3 V |Q(0,0) >= 0 (4.8)
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The equation for Λ
(0,0)
2 is obtained from differentiating eq 4.5 with respect to T

(0,0)
2 . The

Λ
(0,0)
2 equation with triples correction is given by

SD+ < P (0,0)|Λ(0,0)
3 V + Λ

(0,1)
3 V + Λ

(0,0)
3 V T

(0,0)
2 |Q(0,0) >= 0 (4.9)

The eq 4.8 is solved non-iteratively to obtain Λ
(0,0)
3 . Λ

(0,0)
3 ’s are obtained by taking the

direct contribution from the second order term Λ
(0,0)
2 V and the third order terms Λ

(0,0)
1 V

and Λ
(0,1)
3 V . Also F containing term Λ

(0,0)
3 F contributes to Λ

(0,0)
3 equation at second or-

der. It should be noted that due to reverse decoupling Λ(0,1) involving terms Λ
(0,1)
3 V T

(0,0)
2

and Λ
(0,1)
3 V T

(0,0)
3 appear in Λ(0,0). After obtaining Λ

(0,0)
3 , its effect on Λ

(0,0)
2 equation is

incorporated through the third order terms Λ
(0,0)
3 V , Λ

(0,1)
3 V and Λ

(0,0)
3 V T

(0,0)
2 . The eq

4.9 is solved fully by taking in to account of Λ
(0,0)
3 terms calculated above. Finally, the

triples contribution to E(1) are given in eq 4.10, where Ô is the explicit derivative of

Hamiltonian with respect to external field.

E
(1)
triples = Λ

(0,1)
2 ÔT

(0,1)
3 + Λ

(0,0)
2 ÔT

(0,0)
3 (4.10)

These triples corrected Λ and T amplitudes are used for the evaluation of dipole

moments in (0,0) and (0,1) sector. The term V T
(0,0)
2 T

(0,0)
2 in T (0,0)

3 equation will thus

have higher effect on the dipole moment, while the other triples correcting terms will

affect the dipole moment at third order. The third order terms which appear in the dipole

moment are Λ
(0,1)
2 ÔT

(0,1)
3 and Λ

(0,0)
2 ÔT

(0,0)
3 . Hence the final dipole moment is corrected

at least up to third order in triples.

4.3 Results and discussion

We have implemented the contribution of triples partially to the FSMRCC singles and

doubles scheme (FSMRCCSD(T*)). To test our code we chose small systems as a case

study. We present our results and discussion on them in this section. The code is tested

against the non-relaxed finite field approach. The systems studied are OH, OOH, HCOO,

CN, CH, PO and NH2 radicals.
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Table 4.1: Dipole moments of 2Π OH radical
BASIS Λ-FSMRCCSD(T*) Λ-FSMRCCSD EOMCCSD(unrelaxed) b Full CI c

cc-pVDZ 0.682 0.634 0.639 0.663
cc-pVTZ 0.682 0.645 ... ...
cc-pVQZ 0.684 0.645 ... ...

Results in au
a Req = 1.85104 a0
b see Ref.[96]
c see Ref.[113]

4.3.1 OH radical

We report the dipole moment of hydroxy radical at the equilibrium geometry in Table-

4.1. We start with the closed shell configuration of OH− anion as a vacuum. The HOMO

of OH− is two fold degenerate in nature. The degenerate HOMO’s are chosen as ac-

tive holes of the Fock space (0,1) sector. The removal of an electron from one of these

HOMO’s lead to degenerate doublet 2Π of hydroxy radical. In Table-4.1 we report

the dipole moment of hydroxy radical in cc-pVXZ(X=D,T,Q) basis. The calculated FCI

and available EOMCCSD dipole moments in cc-pVDZ basis are also presented. The

Λ-FSMRCCSD values shows that the dipole moment is converged from cc-pVDZ to

cc-pVQZ. Whereas, the Λ-FSMRCCSD(T*) produces a marginal change in dipole mo-

ment. It is observed that the Λ-FSMRCCSD dipole moment in cc-pVDZ basis is 0.634

au, whereas the Λ-FSMRCCSD(T*) increases the dipole moment (0.682 au) towards the

FCI value of 0.663 au [113]. Though triples exceeds the FCI dipole moment, the quali-

tative trend towards FCI dipole moment is obtained. With the higher order triples it may

improve further.

4.3.2 CN radical

The dipole moments of the CN radical are presented in the Table-4.2. We start with the

cyanide anion which is closed shell with the ground state geometry 2Σ+. Removal of
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Table 4.2: Dipole moments of 2Σ+ state of CN radical
BASIS ROHFb Λ-FSMRCC

CCSD CCSD(T) CCSD CCSD(T*)

cc-pVDZ 0.522 0.476 0.427 0.497
(0.437)c (0.489)c

aug-cc-pVDZ 0.510 0.558

CBS LIMIT d 0.559±0.001
Expe 0.57±0.03

Results in au
a Req = 2.21512 a0
b Results obtained from ACES II package
c Relaxed finite-field values
d see Ref.[114]
e see Ref.[116]

an electron from the cyanide anion gives CN radical. The studies are carried out with

one active hole. Since the dipole moment of the CN radical is important in astrophysics,

there are various theoretical calculations [114, 115] to achieve the experimental accuracy.

In Table-4.2 we report the dipole moment obtained using our method in cc-pVDZ and

aug-cc-pVDZ basis sets. For cc-pVDZ basis we also report the finite field dipole mo-

ment values using ROHF CC and FSMRCC within singles and doubles approximation

as well as with partial triples. The values presented in parenthesis denote the finite field

FSMRCC results. Observation of the various levels of theory [114, 115] says that it is

necessary to have augmented basis sets for the dipole moment calculations of CN radical,

which is clearly reflected in the Table-4.2. It has been observed so far that only beyond

the double zeta with augmentation, dipole moment close to CBS limit (0.559±0.001 au)

[114] and experimental(0.57 ±0.03au) [116] value is attained. In our method, as we go

from cc-pVDZ basis to aug-cc-pVDZ basis, Λ-FSMRCCSD gives dipole moment values

of 0.427 au and 0.510 au respectively. Thus, with augmented basis at the CCSD level

is close to the reported CBS limit as well as experimental dipole moment. The inclu-

sion of triples improves the dipole moment values to 0.497 au for cc-pVDZ basis and
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Table 4.3: Dipole moments of OOH and HCOO radical
STATE DIRECTION Λ-FSCCSD(T*) Λ-FSCCSD FF-FSCCSD(T*) EOMCCSD a

ȮOH
2A2 X -0.588 -0.557 -0.571

Y -0.713 -0.669 -0.692
Total 0.924 0.870 0.897

1A2 X -0.402 -0.369 -0.387
Y -0.717 -0.676 -0.694

Total 0.822 0.770 0.795

HCOȮ
2B2 Y 0.965 0.909 0.979 1.004
2A1 Y 0.835 0.786 0.842 ...

Results in au
a see Ref.[101]

0.558 au for aug-cc-pVDZ basis respectively. It can be seen that the qualitative trend re-

mains same in both the basis sets i.e triples correction increase the dipole moment values.

However, in ROHF-CC approach the trend is opposite to that of Λ-FSMRCC. ROHF-CC

results are obtained using finite field approach which inlcudes relaxation effects. To test

the effect of relaxation we have done finite field relaxed FSMRCC calculation. Here too,

we get the same trend as we obtained from the analytic non-relaxed approach. Thus the

difference in trends of dipole moment in Λ-FSMRCC and ROHF-CC may arise due to

combination of the way triples are included and the treatment of dynamic correlation.

4.3.3 OOH and HCOO radical

The dipole moments for the non-linear molecules such as hydroperoxy and formyloxy

radical at the equilibrium geometry

were studied using the double zeta basis set of Huzinaga Dunning [117, 118] with a

set of uncontracted polarized functions. The description of the geometries for these radi-

cals are given in appendix A. The center of mass coordinates are used and the molecules
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are kept along the X,Y direction and the dipole moments for each direction is obtained

and presented in Table-4.3. Since there is no FCI or experimental dipole moment avail-

able for these systems, we report the relaxed finite field FSMRCC(FF-FSMRCC) dipole

moments. We start with the RHF of hydroperoxide anion as vacuum. The electronic

configuration of RHF of hydroperoxide anion is

[core], 3a1
2, 4a1

2, 5a1
2, 1a2

2, 6a1
2, 7a1

2, 2a2
2

Removal of an electron from one of the two highest occupied orbitals results in near-

degenerate states ( 2A2 and 2A1) of hydroperoxy radicals. The dipole moments of

the radical along two orthogonal directions (X and Y) have been presented in Table-

4.3. We also report the FF-FSMRCC calculations for the system. In this case, the

Λ-FSMRCCSD(T*) predicts the lower dipole moment than one obtained from the FF-

FSMRCCSD(T*).

The dipole moments of the first two low-lying near-degenerate states of formyloxy

radical at the equilibrium geometry are given in Table-4.3. We start with the RHF of

formate anion as vacuum. Removal of an electron from the formate anion results in

formyloxyl radical, the near degenerate low-lying states of which, have the electronic

configuration

[core], 3a1
2, 2b2

2, 4a1
2, 5a1

2, 3b2
2, 1b1

2, 1a2
2, 6a1

2, 4b2
1

and

[core], 3a1
2, 2b2

2, 4a1
2, 5a1

2, 3b2
2, 1b1

2, 1a2
2, 6a1

1, 4b2
2

The dipole moments along the H-C bond axis for these states, denoted by 2B2 and
2A1 have been reported. The EOMCC result [101] for the ground state has also been

reported. We have also mentioned the finite field dipole moment obtained by the FF-

FSMRCCSD(T*) in Table-4.3, which stays close to the dipole moment obtained from

the Λ-FSMRCCSD(T*) method.
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Table 4.4: Dipole moments of CH radical
BASIS Λ-FSMRCCSD(T*) Λ-FSMRCCSD Full CI

cc-pVDZ Req 0.575 0.582 0.548
Sadlej Req 0.547 0.540 ...
Expa 0.57±0.023

cc-pVDZ Rdis 0.061 0.100 0.074
Sadlej Rdis 0.084 0.111 ...

Results in au
a see Ref.[121].
Req = 2.11648 a0.
Rdis=3.1660 a0.

4.3.4 CH radical

The CH radical can be considered as the electron attached state of the corresponding

cation CH+. The RHF configuration of CH+, 1σ22σ23σ2 is chosen as a vacuum. The

degenerate LUMO’s are chosen as active particles. For CH+ we report the dipole mo-

ment at the equilibrium as well as at the stretched geometry i.e., at 1.5 Re. Table-4.4

reports the results for the CH radical in cc-pVDZ [119] and Sadlej [120] basis along the

direction of molecular axis. We compare the dipole moment obtained from cc-pVDZ

basis with the FCI dipole moment and the dipole moment obtained from Sadlej basis

with experimental [121] value. At the equilibrium geometry the dipole moment value is

reduced in Λ-FSMRCCSD as well as in Λ-FSMRCCSD(T*) as we go from cc-pVDZ to

Sadlej basis. However, at the stretched geometry, the dipole moment is increased with

the basis set. In cc-pVDZ basis, at the equilibrium geometry the Λ-FSMRCCSD dipole

moment value is 0.582 au, which is reduced by the triples correction (0.575 au). The

Λ-FSMRCCSD(T*) dipole moment (0.575 au) is closer to the FCI(0.548 au) value. At

the stretched geometry the Λ-FSMRCCSD gives 0.100 au, the inclusion of the triples

reduces it to 0.061 au, which is approaching towards the FCI value of 0.074 au. This em-

phasizes the importance of inclusion of the triples for the calculation of dipole moment at

the stretched geometry. Similar trend is observed for the Sadlej basis too. However, even
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Table 4.5: Dipole moments of PO radical
BASIS ROHF b Λ-FSMRCC

CCSD CCSD(T) CCSD CCSD(T*)

cc-pVDZ 0.777 0.726 0.708 0.750
Exp d 0.740±0.028

Results in au
a Req = 2.78357a0
b Results obtained from ACES II package
d see Ref.[122]

at the equilibrium geometry with the inclusion of partial triples the dipole moment value

approaches towards FCI. This shows the importance of the triples even at the equilibrium

geometry.

4.3.5 PO radical

The dipole moment of PO radical, which is difficult to be predicted by the single refer-

ence method, has been studied using FSMCCSD and FSMRCCSD(T*). The RHF con-

figuration of PO− has been taken as the vacuum. The calculations are carried out with

one active hole. The dipole moment value of PO radical obtained using cc-pVDZ basis in

FSMRCCSD is 0.708 au and FSMRCCSD(T*) is 0.750 au. The dipole moment obtained

from the FSMRCCSD(T*) method, as can be seen from the Table-4.5, is slightly over

estimated. However, inclusion of triples improves the accuracy towards the experimental

value of 1.88±0.07 debye [122](0.740±0.028 au). The finite filed relaxed ROHF-CCSD

and ROHF-CCSD(T) are performed in the same basis using ACES-II package [123].

The opposite trend in the inclusion of triples is observed for ROHF based CCSD and

CCSD(T). This difference in trends in the inclusion of dipole moment of triples in Λ-

FSMRCC and ROHF-CC could be due to combination of the way triples are included

and the treatment of dynamic correlation.
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Table 4.6: Dipole moments of NH2 radical
BASIS Method X Z Total Full CI Exp a

DZV SD 1.199 0.947 2.146
SD(T*) 1.262 0.993 2.255 2.428

cc-pVDZ SD 0.930 0.734 1.663
SD(T*) 1.026 0.979 2.005

1.82(5)
cc-pVTZ SD 0.970 0.767 1.737

SD(T*) 1.051 0.822 1.873

aug-cc-pVDZ SD 0.615 0.486 1.101
SD(T*) 0.653 0.520 1.173

Results in au, a see Ref.[124]

4.3.6 NH2 radical

The Λ-FSMRCCSD(T*) method discussed above is used to study the ground state dipole

moment of an important doublet radical NH2. We performed the calculations using four

different basis, DZV, cc-pVDZ, cc-pVTZ and aug-cc-pVDZ. The dipole moments ob-

tained are presented in Table-4.6. We compared our results with experimental dipole

moment of NH2 radical [124]. We observed that for cc-pVDZ and cc-pVTZ basis re-

sults are better with Λ-FSMRCCSD(T*) than Λ-FSMRCCSD and close to experimental

value. For DZV basis set the dipole moment is away from experimental value. We per-

formed FCI calculation using this basis and we observed that the dipole moment with

triple correction is close to FCI value(2.428 debye). The Λ-FSMRCCSD dipole moment

is away from the FCI in this case.

In the case of aug-cc-pVDZ basis, as can be seen that the Λ-FSMRCCSD(T*) dipole

moment is quite off from the experimental value. However, the results improve with

triples than Λ-FSMRCCSD. Thus all the results emphasize the importance of triples for

the accurate calculation of the dipole moment of the doublet radicals.
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Table 4.7: Dipole moments of ClO radical in Debye
BASIS Λ-FSMRCC ROHF Non-relaxedb ROHF Relaxedb

CCSD CCSD(T*) CCSD CCSD(T*) CCSD CCSD(T*)

cc-pVDZ 1.051 1.418 1.160 1.166 1.131 1.153

cc-pVTZ 1.081 1.147 1.148 1.152 1.112 1.150

Exp 1.297 D

MRCI 1.275 D
a Cl-O bond distance is 3.1898 Bohr

b Obtained from ACES II

Table 4.8: Dipole moments of SF radical in Debye
BASIS Λ-FSMRCC ROHF Non-relaxedb ROHF Relaxedb

CCSD CCSD(T*) CCSD CCSD(T*) CCSD CCSD(T*)

cc-pVDZ 1.027 1.127 1.046 1.049 1.128 1.062

cc-pVTZ 0.892 1.064 0.895 0.878 0.895 0.878

Exp 0.87±0.05 D

CISD 1.106 D

CEPA-3(SD) 0.968 D

a S-F bond distance is 1.600575Å

b Obtained from ACES II
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4.4 ClO and SF radicals

The dipole moment values for the ClO radical in Table-4.7, shows that the inclusion of

partial triples i.e. Λ-FSMRCCSD(T*) converge the dipole moment values toward the

experimental value, hence the inclusion of triples lead to more accurate results. Even

though in case of the cc-pVDZ basis the triples correction goes beyond the predicted

experimental value, its basic trend is in the right direction. ROHF also predicts the same

trend in the triples correction. On the other hand, in case of the SF radical in Table-4.8,

the CCSD value of 0.892D is already in good agreement with the experimental value

of 0.87D. On including the partial triples it overestimates the dipole moment value to

1.064D. The triples correction in the ROHF calculation is seen to match fairly well with

the predicted experimental dipole moment. However, the CISD and CEPA-3(SD) results

are in better agreement with that of Λ-FSMRCCSD(T*). In case of the SF radical, it is

seen that the ROHF and FSMRCC triples addition follow opposite trend. A probable

reason could be the way, the effect of triples have been implemented in both the methods

and the different manner in which the dynamical correlation has been taken into account.

4.5 Conclusions

In this chapter we presented the implementation and the results for the recently devel-

oped Lagrange based Fock-space multi-reference coupled cluster response approach with

the inclusion of partial triples for electric properties of the doublet radicals. The results

for the ȮH , ĊH and NH2 radical indicate that the Λ-FSMRCCSD(T*) perform better

than Λ-FSMRCCSD and tend towards FCI. In particular, when the dipole moments of

the Λ-FSMRCCSD and Λ-FSMRCCSD(T*) are compared at the 1.5Re for the CH rad-

ical, we can observe that the inclusion of triples leads to more accurate results than the

Λ-FSMRCCSD results. At stretched geometries, where the multi-reference description

is required, inclusion of the triples provides better results. From the dipole moment of

OH radical using cc-pVDZ, TZ, QZ basis sets, it is observed that at the Λ-FSMRCCSD
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level dipole moment saturates at 0.645 au whereas with the inclusion of triples it is 0.684

au which tends to the FCI dipole moment of 0.663 au. Though it is slightly over esti-

mated, compared to the FCI it gives qualitatively correct trend. Also, the non-relaxed

EOMCCSD shows dipole moment of 0.639 au which is closer to the Λ-FSMRCCSD

value. The results of the analytic Λ-FSMRCCSD(T*) are compared with the finite field

dipole moments for OOH and HCOO molecules. In both the cases, it is observed that

the analytic Λ-FSMRCCSD(T*) shows qualitatively correct trend as does the finite field

dipole moment. However, it should be mentioned here that the finite field method has

explicit relaxation through the orbital rotation whereas the analytic method implemented

does not include the explicit relaxation effects. The calculations are performed for CN

radical using cc-pVDZ and aug-cc-pVDZ basis sets. Augmented basis set helps to get

the results closer to the basis set limit. Inclusion of the non-iterative triples improves

dipole moment by about 9%. The inclusion of the triples indicates the dipole moment

closer to the experimental as well as basis set limit value. Another radical where we have

analysed the importance of triples excitation is PO. We observe that the triples excitation

found to improve the result for cc-pVDZ basis. ROHF based CCSD and CCSD(T) calcu-

lations are performed to analyse the way triples improve the dipole moment for CN and

PO radicals. It has been observed that the way the triples contributes to dipole moment

is opposite to that of the FSMRCC method. This can be due to the different way the

triples are taken in FSMRCCSD(T*) method and the different treatment of the dynamic

correlation. Thus, all the results emphasize the importance of triples for the accurate

calculation of the dipole moment for the doublet radicals.
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Chapter 5

————————————————————

GIAO-ECC and Future aspects

————————————————————

In this chapter we present the implementation of the gauge including atomic or-

bital ansatz in extended coupled cluster method (GIAO-ECC) for the shielding constants.

The preliminary results are presented for HF, BH and N2 molecules. Along with this the

future direction on the present thesis work is also presented.
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5.1 Introduction

The main goal of this thesis is to develop coupled cluster based method to study

molecular magnetic properties. Much of the interest in the field of molecular magnetic

properties focuses on the parameters encountered in magnetic resonance [1, 2]. These

parameters include nuclear magnetic resonance (NMR) shielding constants, gyromag-

netic ratio or g−values, spin-spin coupling constants and hyperfine coupling constants.

All these properties are second-order quantities. Among all these, the importance of the

NMR shielding constants is wide spread due to its importance in the chemical appli-

cations. Generally, the magnetic properties evaluation is not so straightforward mainly

because of two reasons [3]. First, due to the imaginary character of the magnetic per-

turbation magnetic properties cannot be treated in a trivial manner. Second difficulty

in the accurate evaluation of molecular magnetic properties stems from the fact that, in

general, the use of approximate wave functions leads to an unphysical dependence on the

so called gauge origin of the magnetic vector potential A. The magnetic field B appears

in the Hamiltonian in the form of the vector potential A whose origin is called gauge

origin, which is not fixed. The results are independent of the gauge origin only when

the complete basis sets are used. But, in most of the cases, we use finite basis for the

calculation.

Various attempts have been employed at the SCF and correlated levels to elimi-

nate this gauge dependence. However, computationally this approach is quite expen-

sive, due to the basis set required for reasonably accurate results is quite big even for

small molecules. Various other approaches have been extensively studied to eliminate the

gauge-dependence of the magnetic properties by making use of field dependent orbitals.

This includes the ‘individual gauge for localized orbitals (IGLO)’ method of Kutzelnigg

[4], ‘second-order polarization propagator approximation (SOPPA)’ of Geertsen [5] and

other approaches like local origin method (LORG) [6] and random phase approximation

[7].
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A satisfactory approach to treat gauge origin problem was proposed by London [8]

imposing gauge-origin independence in his study of molecular diamagnetism by attach-

ing field-dependent complex phase factor to the atomic orbitals (AO’s). This method is

known as gauge-including atomic orbital (GIAO) ansatz, widely used for NMR chemical

shieldings [9–11]. The use of these orbitals for the calculation of NMR chemical shift

via electron correlation is now widespread [12–18] and often preferred due to the more

rapid convergence of the properties with respect to the size of basis employed.

These GIAO or London orbitals are used by Hameka for calculating the magnetic sus-

ceptibility and shielding constants of H2 [9]. Ditchfield employed London orbitals in ab

initio calculations of shielding constants [10]. The GIAO method has been incorporated

at self-consistent field (GIAO-SCF) level by Wolinski et al. [19] and Haser et al. [20].

The electron correlation effects are important for the accurate prediction of nuclear mag-

netic shielding constants and chemical shifts. Gauss formulated and implemented GIAO

in second order many-body perturbation theory (GIAO-MBPT(2)) [21] and Cybulski and

Bishop presented conventional MBPT(2) calculations for chemical shifts and magnetic

susceptibilities [22]. The electron correlation effects of the nuclear magnetic chemical

shifts using GIAO-MBPT(3) are investigated by Gauss [23]. The multi-configuration

level (GIAO-MCSCF) chemical shift calculations are carried out by Ruud et al. [24, 25]

Among the various methods, the coupled cluster (CC) method [26, 27] emerged as

the most promising tool to treat electron correlation, due to its size-extensivity. In the

single reference framework, the GIAO-CC is developed successfully by Gauss et al. at

the singles and doubles (CCSD) [28] and triples level [29–31]. The CC calculations on

NMR shielding have been very successful in achieving experimental accuracy especially

when the partial triples are included [31].

Arponen and Bishop developed [32] the extended coupled cluster functional (ECC)

which uses the bi-orthogonal vectors. Arponen showed that the special double linking

structure of the energy functional leads to natural truncation of the series. However,

the natural truncation of the series occurs at higher order and for the practical purpose
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needs to be truncated. Due to its double linking structure of the functional, the amplitude

equations are connected even when truncated to a fixed power in number of cluster am-

plitudes. Variational nature of ECC enjoys the advantage of (2n+1)-rule. The shielding

tensor is formally a second order property. The ECC method, with inbuilt (2n+1)-rule,

takes care of second order property evaluation naturally. The ECC response approach is

extensively used for the electric properties [33, 34]. However, not many reports on mag-

netic properties. Recently, ECC method is used for evaluating susceptibility [35] and

chemical shielding tensors [36] with atom centered Gaussian orbitals. In this chapter, we

present the first implementation of GIAO’s in ECC method for shielding constants. In

section 5.2, the GIAO-ECC theory and its implementation are presented. The results and

conclusions are given.The future direction of this thesis work is outlined at the end of the

chapter.

5.2 GIAO-ECC Theory

The work implemented in this section uses the GIAO’s for ECC method. The GIAO

ansatz for calculating NMR parameter uses the following field-dependent basis functions

χµ(B) = exp[− i

2c
(B ×Rµ).r]χµ(0) (5.1)

where, χµ(0) is the usual field-independent AO’s, Rµ is their center and c is speed of

light. The nuclear magnetic shielding tensor σ of a nucleus N is defined by the mixed

second-order energy derivative with respect to the magnetic fieldB and nuclear magnetic

moment mN

σNji (SCF ) = (
d2E(SCF )

dBidmNj

). (5.2)

A general formula for σN can be obtained by first differentiating the energy E with

respect to mN

∂E

∂mNj

=
∑
µν

D(SCF )
µν

∂hµν
∂mNj

(5.3)
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where, Dµν are elements of an effective one-particle density matrix and hµν the one-

electron part of the Hamiltonian. The final expression for σN is obtained by differentiat-

ing eq.5.3 with respect to B

σNji (SCF ) =
∑
µν

D(SCF )
µν

∂2hµν
∂Bi∂mNj

+
∑
µν

∂D
(SCF )
µν

∂Bi

∂hµν
∂mNj

. (5.4)

The labels µ, ν, ... mention the AO’s. From the above expression, we can observe that

the knowledge of both the unperturbed and perturbed one particle densities are needed

for the evaluation of the shielding tensor.

In eq.5.4, the first term provides the diamagnetic contribution and part of the para-

magnetic contribution to the shielding tensor. The second term provides exclusively the

paramagnetic contribution to the shielding. The derivatives of the one-electron Hamil-

tonian integrals in eq. 5.4 includes the derivatives of h and contributions due to the

derivatives of the AO basis functions with respect to the external field

∂〈µ|h|ν〉
∂Bi

= 〈∂χµ
∂Bi

|h|ν〉+ 〈µ| ∂h
∂Bi

|ν〉+ 〈µ|h|∂χν
∂Bi

〉 (5.5)

with
∂χµ
∂Bi

= − i

2c
(Rµ × r)jχµ(0) (5.6)

The derivatives of the one-electron Hamiltonian h are defined as

∂h

∂Bi

= − i

2c
(r ×∇)j (5.7)

∂h

∂mNj

= − [(r −RN)∇]j
|r −RN |3

(5.8)

and
∂2h

∂Bi∂mNj

=
1

2c2

r.(r −RN)δij − ri(r −RN)j
|r −RN |3

(5.9)

where, RN is the coordinates of the nucleus N .

The magnetic perturbation is imaginary in character, due to which the first derivative

integrals are imaginary and therefore antisymmetric with respect to the bra-ket permu-

tations. The second derivative integrals are real and have the same symmetry as the
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undifferentiated integrals, except that in the two-electron integrals we cannot permute

the labels of each electron independently. The two-electron derivative integrals are an-

tisymmetric only with respect to a simultaneous permutation of the two labels of each

electron. The symmetry of two-electron derivative integrals in Mulliken notation is

(µν|ρσ)(1) = (ρσ|µν)(1) = −(νµ|σρ)(1) = −(σρ|νµ)(1).

The symmetry of two-electron derivative integrals in Dirac notation is

〈µρ|νσ〉(1) = 〈ρµ|σν〉(1) = −〈νσ|µρ〉(1) = −〈σν|ρµ〉(1).

Therefore, the derivative two-electron integrals have a lower permutational symmetry

than the corresponding undifferentiated integrals.

The density at SCF level is given by,

D(SCF )
µν =

∑
p,q

c∗µpDpqcνq. (5.10)

The density times the integral in eq.5.9 gives the diamagnetic part of the shielding. The

density times the integral in eq.5.7 gives the part of paramagnetic shielding, which is

coming from the derivative Hamiltonian. For obtaining another part of paramagnetic

contribution, the derivative of the density is needed. The construction of the derivative

density at the SCF level requires the derivative of the coefficients, which is obtained

from the coupled-perturbed Hartree-Fock equations (CPHF). The derivative of density is

defined as
∂Dµν(SCF )

∂Bi

=
∑
p

∑
i

(UBi
pi
∗c∗µpcνi + c∗µicνpU

Bi
pi ) (5.11)

where, the MO coefficients are parameterized using UBi
pi ’s

∂cµp
∂Bi

=
∑
q

UBi
pq cµq. (5.12)

The occupied-virtual block UBi
ai is obtained as solution of the CPHF equations, while the

occupied-occupied and virtual-virtual blocks are chosen though the overlap matrix i.e,

UBi
ij = −1/2SBiij (5.13)
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and

UBi
ab = −1/2SBiab . (5.14)

Using this, the one-electron derivative density is constructed. The derivative of the den-

sity with field B and the angular momentum integral in eq.5.8 gives another part of

shielding contribution.

In GIAO-ECC method, the form of energy functional in ECC method is

E(ECC) = 〈φ0|eS(HeT )L|φ0〉DL (5.15)

where, L means linked and DL is double linked. In the presence of magnetic field pertur-

bation (λ), the functional and the amplitudes t and s depends on the perturbation,

E(λ) = 〈φ0(λ)|eS(λ)(H(λ)eT (λ))L|φ0(λ)〉DL (5.16)

The ECC shielding tensor is obtained by differentiating ECC energy with respect to B

and mN

σNji (ECC) =
∑
µν

D(ECC)
µν

∂2Hµν

∂Bi∂mNj

+
∑
µν

∂D
(ECC)
µν

∂Bi

∂hµν
∂mNj

. (5.17)

The cµi’s are molecular orbital (MO) coefficients. The main difference between the

GIAO-SCF and GIAO-ECC lies in the definition of the density matrix. In general, den-

sity Dpq is separated in to two parts. One is response of the amplitude part D(amp)
pq and

the other is orbital relaxation effect from response of the orbitals D(orb)
pq .

The amplitude part of the density is obtained by solving the ECC equations. The

stationary equations resulting from the variation of the functional with respect to the

cluster amplitudes are themselves connected. This yields the equations for the amplitudes

of the cluster operators S and T , denoted as s(0) and t(0). The following sets of equations

are solved to obtain the amplitudes

∂E

∂t
= 0;

∂E

∂s
= 0. (5.18)
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The density at the ECC level is constructed using these s and t amplitudes. The occupied-

occupied and virtual-virtual block of density is given as

D
(ECC)
ij =

∑
a

tai s
j
a +

∑
k

∑
a,b

tabiks
jk
ab +

∑
k

∑
a,b

tabiks
j
as
k
b +

∑
k

∑
a,b

tai t
b
ks
jk
ab (5.19)

and

D
(ECC)
ab =

∑
i

tbis
i
a +

∑
c

∑
i,j

tbcijs
ij
ac +

∑
c

∑
i,j

tacij s
i
as
j
c +
∑
c

∑
i,j

tbit
c
js
ij
ac (5.20)

The second derivative integrals ∂2hµν/∂Bi∂mNj are immediately multiplied with DECC
µν

to give the diamagnetic contribution of σd. The first derivative integral eq.5.7 multiplied

with DECC
µν to give a part of paramagnetic shielding tensor σp. This part is coming from

the derivative of the Hamiltonian i.e kinetic energy term eq.1.108. We are adding it to

paramagnetic part of the shielding tensor. The required integrals are extracted from the

Hondoplus package of version-5 [37].

For obtaining the other part of σp, the derivative of the density at the ECC level is

needed. Hence, the derivative of the amplitudes s(1) and t(1) are required. The clus-

ter amplitudes of S and T operators as well as their derivative S(1) and T (1) operators

are obtained using a stationary condition. To obtain the derivative amplitude equations,

one makes the derivative energy functional E(1) stationary with respect to s(0) and t(0)

amplitudes
∂E(1)

∂t(0)
= 0;

∂E(1)

∂s(0)
= 0. (5.21)

Because of the field dependence of the Hamiltonian in eq.5.16, the one, two- particles

integrals and also the coefficients depend on the field. In E(1) the CPHF contribution is

taken care. The amplitude contribution to the derivative density D(1)(amp) for occupied-

occupied, virtual-virtual, occupied-virtual and virtual-occupied blocks are constructed

using S, T , S(1) and T (1). The perturbed amplitude part of the density matrix D(1)(amp)

at ECC level is obtained from the solution of CPHF-ECC equations. The perturbed

off-diagonal part of the density i.e. occupied-virtual and virtual-occupied blocks con-

tributes to orbital relaxation part D(1)(orb). The occupied-virtual and virtual-occupied
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blocks D(1)
ia

(ECC) and D(1)
ai

(ECC) are obtained by the solution of the first order Z-vector

equations,

∑
me

D(1)
me

(orb)[2〈ma|ei〉−〈ma|ie〉+δimδea(fae−fmi)]−D(1)
me[2〈ae|im〉−〈ae|mi〉] = −Xia,

(5.22)∑
me

D(1)
em

(orb)[2〈ie|am〉−〈ie|ma〉+δimδea(fea−fim)]−D(1)
em[2〈im|ae〉−〈im|ea〉] = −Xai,

(5.23)

where, fpq are matrix elements of the Fock operator and 〈pq|rs〉 are two-electron inte-

grals. The quantities Xia and Xai are interpreted as the gradients of the energy with

respect to rotations amongst the molecular orbitals and are defined as

X
(1)
ai =

∑
mne

Γaemn(−2〈ie|mn〉+ 〈ie|nm〉) + 2
∑
efm

Γefim〈ef |am〉 − Γefmi〈ef |am〉)(5.24)

+
∑
me

Dme(2〈im|ae〉 − 〈im|ea〉) +
∑
me

D∗em(2〈ie|am〉 − 〈ie|ma〉),

X
(1)
ia =

∑
mef

Γfeim(2〈ma|ef〉 − 〈ma|fe〉) +
∑
mne

〈mn|ie〉(−2Γaemn + Γaenm) (5.25)

+
∑
me

Dme(2〈ma|ei〉 − 〈ma|ie〉) +
∑
me

D∗em(2〈ae|im〉 −D∗em〈ae|mi〉).

The total D(1)(ECC) is obtained by adding the amplitude derivative density part with

orbital derivative density part

D(1)(ECC) = D(1)(amp) +D(1)(orb) (5.26)

Thus, the obtained D(1)(ECC) is multiplied by the angular momentum integrals to get the

σp shielding tensor at the ECC level. The implemented GIAO-ECC ensures the results

do not depend on the choice of the gauge origin.
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Table 5.1: The calculated absolute shieldings (σ in ppm) using GIAO-ECC ansatz in
cc-pVDZ basis

MOLECULE ATOM SCFa CCSDa ECC EXPσ0
b EXPσe c FCI d

HF H 29.5 30.4 32.7 28.5 ± 0.2 29.2 ± 0.5

F 423.5 427.0 419.2 410 ± 6 419.7± 6

BH H 24.5 24.8 23.3 24.60

B -257.3 -167.3 -229.8 -170.08

N2 N -79.5 -22.0 -26.3 -61.6 ±0.5 -59.6 ±1.5

a obtained using cfour program package
b The experimental σ0 from Ref. [38] for HF, Ref. [39] for N2
c σe using ro-vibrational corrections [38]
d Ref. [40]

5.3 Results and discussions

In this section the absolute shieldings, shielding anisotropy and the comparison of our

methodology without GIAO is presented.

5.3.1 Absolute shieldings

The preliminary test results of GIAO-ECC shielding constants are presented for HF, BH

and N2 in Table 5.1. The cc-pVDZ basis is used for the calculations. For HF molecule the

equilibrium bond distance of 0.9169 Å is chosen. The shielding obtained for H atom by

GIAO-ECC method is 32.7 ppm. This is quite large compared to the experimental value

without ro-vibrational corrections (28.5 ± 0.5) as well as with ro-vibrational corrections

(29.2 ± 0.5) [38]. It is observed from the calculation that the correlation for H must

be small, because SCF itself is able to predict the shielding closer that the experimental
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value. Further, the CCSD and ECC are overestimating the shielding for H atom. The

shielding constant for F atom obtained by GIAO-ECC is 419.2 ppm. This is close to

the experimental value with ro-vibrational corrections (419.7 ± 6 ppm). The CCSD and

SCF shielding values are 427.0 ppm [38] and 423.5 ppm respectively. For F atom the

importance of correlation is very clear from the values presented. The results shows

that the CCSD is not improving towards the experimental value, but ECC does improve

towards the experimental limit.

Our second case study is BH molecule. The B-H bond distance of 1.2328 Å is chosen.

The GIAO-ECC shielding value is 23.3 ppm for H atom. The CCSD and SCF values for

this atom are 24.8 and 24.5 ppm respectively. For B atom, we find that the GIAO-ECC

shielding value is -229.8 ppm , whereas, the SCF and the CCSD shielding values are -

257.3 and -167.3 ppm. The full CI (FCI) shielding constant [40] for B and H are -170.08

and 24.60 ppm respectively.

We also implemented our methodology to study the shielding value of multiple bonded

system N2 using cc-pVDZ basis. The N-N bond distance of 1.0943 Å is used. The GIAO-

ECC shielding value is -26.3 ppm, whereas, the experimental value is -61.6 ± 0.5 ppm

[39]. The SCF and CCSD values are -79.5 and -22.0 ppm respectively. The results indi-

cate that for multiple bonded systems, the cc-pVDZ basis is not good enough to predict

the shielding.

In Table 5.2 we presented the basis set convergence study of shielding constant for HF

molecule. We started with DZ basis and added polarization functions for the construction

of DZP basis. For constructing DZ+(2p,2d), we added 2p functions to H atom and 2d

functions to F atom in DZ basis. Similarly, the TZ+(2p,2d) is also constructed. The

polarization functions are given in appendix A. For H atom with DZ basis, the shielding

constant obtained is 32.1 ppm. It can be seen from the results that, with the addition

of p function, shielding constant for H atom is reduced to 29.8 ppm. However, with

the addition of further p and d functions, the shielding of H is increased to 30.8ppm.

Triple zeta basis reduced the value to 31.61 ppm. Here too, further addition of p and d
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Table 5.2: GIAO-ECC shielding constants of H and F in HF (in ppm)

BASIS H F

DZ 32.1 368.9

DZP 29.8 411.20

DZ+(2p,2d) a 30.8 397.1

TZ 31.61 365.1

TZ+(2p,2d) a 33.1 412.3

Expb 29.2±0.5 419 ±6

a Pople (2d,2p) polarization is taken.
b The experimental σ0 obtained from Ref. [38].

functions to TZ, increases the values to 33.1 ppm, which is away from the experimental

values of 29.2±0.5 ppm. Thus we see that shielding constant has a oscillatory behavior

with increasing the basis set.

In the case of F also we observe oscillating behavior of shielding constant as we go

from DZ, DZ+p and to DZ+(2p,2d) basis. From DZ to TZ basis, shielding constant is

reduced from 368.9 ppm to 365.1 ppm. Further addition of 2p+2d function increases

it to 412.3 ppm. Thus, we do not have any definite conclusion for the convergence of

shielding constant, we plan to do more extensive study in the future.

5.3.2 The shielding anisotripies

The shielding anisotropies (∆σ) for HF in cc-PVDZ basis are presented in table 5.3.

We observed that for H, the anisotropy by ECC is 16.7 ppm, whereas, the CCSD gives

anisotropy value of 21.1 ppm. The anisotropy of F atom is 94.8 ppm by ECC. The

anisotropy obtained by CCSD for this case is 82.2 ppm. The experimental value is 93.8
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Table 5.3: The calculated shielding anisotropies (∆σ in ppm) using GIAO-ECC ansatz
in cc-pVDZ basis

MOLECULE ATOM SCFd CCSDd ECC EXP

HF H 21.9 21.1 16.7

F 88.1 82.2 94.8 93.8a

BH H 13.7 13.2 15.5

B 684.2 550.2 642.9

N2 N 627.8 542.7 534.0 601.3b, 603 ±28c

a Ref. [38]
b Ref. [41]
c Ref. [42]
d obtained using cfour program package

ppm [38]. We found satisfactory shielding and anisotropy value for F atom.

The anisotropy obtained by ECC for N atom in N2 case is 534.0 ppm. The SCF and

CCSD values are 627.8 and 542.7 ppm respectively. The experimental anisotropy in this

case is 601.3 [41]/603 ±28[42]. For this system, the CCSD and ECC underestimates the

anisotropy, when compared to experimental value. This may be due to the fact that the

basis is not good for triply bonded system. For the case of H atom in BH molecule, the

GIAO-ECC anisotropy is 15.5 ppm compared to the SCF value 13.7 ppm and the CCSD

value 13.2 ppm. For the B atom in BH, the anisotropy is 642.9 ppm compared to the SCF

value 627.8 ppm and CCSD value 542.7 ppm. Since, there is no benchmark is available

for BH anisotropy, we cannot conclude its behavior with our methodology.
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Table 5.4: The calculated absolute ECC shieldings in cc-pVDZ with and without GIAO
ansatz

MOLECULE ATOM GAUSSIAN’S GIAO ANSATZ EXPb FCIc

HF F 391.5 419.2 419±6

H 28.6 32.7 29.2±0.5

BH H 25.9 23.3 24.60

B -72.4 -229.8 -170.08

a all results are in ppm

b σ0 obtained from Ref. [38].

c Ref.[40]

5.3.3 Comparison of the ECC shieldings with and without GIAO ansatz

We compared the absolute shielding obtained using the standard atom centered Gaussian

with our recently implemented GIAO-ECC methodology. The calculations are carried

out using the cc-pVDZ basis. For the calculations without GIAO, the center of mass is

chosen as the Gauge origin. The results are presented in Table-5.4. The results for H

with and without GIAO in HF shows, the shielding value of 419.2 ppm and 391.5 ppm

are obtained. With GIAO ansatz, the results are close to the experimental value of 419±6

ppm [38]. For H atom, the shielding with GIAO is 32.7 ppm, whereas, without GIAO

it is 28.6 ppm. The experimental value for H is 29.2±0.5 ppm [38] . The another case

study is BH molecule in cc-pVDZ basis. Here, The shielding tensor for H atom using

GIAO ansatz is 23.3 ppm, whereas without GIAO is 25.9 ppm. The FCI value is 24.60

ppm [40]. For B atom, without GIAO, the shielding value is surprisingly low with this

basis (-72.4 ppm), whereas in GIAO ansatz, the shielding tensor is -229.8 ppm. The

154



Chapter V GIAO-ECC

FCI value for B is -170.08 ppm [40]. This study actually proves the statements made

in the chapter II, that larger basis sets and center of mass is the preferred choice for the

calculations without GIAO.

5.4 Conclusion

In conclusion, the GIAO-ECC method has been implemented in this chapter. The code

is tested for few molecular systems in cc-pVDZ basis. The results are compared with the

SCF, CCSD and the experimental values. The results are quite satisfactory. Ideally, for

getting better shieldings and anisotropies, one should go for larger basis sets. Particularly,

a very good basis should be chosen for multiple bonded systems. The comparison of

the ECC shielding with and without GIAO methodology is performed. The presented

values prove the importance of GIAO ansatz for the shielding calculations. The results

presented for HF, BH and N2 in this chapter are only preliminary results. Because of the

constraints in the software we are using for the integrals, currently, we are not able to

include F functions. A more extensive study will be performed on this in future.
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Future direction of the thesis
In this thesis, we studied the susceptibility and magnetic shielding by using the com-

mon Gauge origin with atom centered Gaussian orbitals. This has been quite satisfactory

for small systems. To take care of the so called Gauge origin problem, magnetic shield-

ing tensors using GIAO ansatz have been studied. To incorporate the importance of the

higher order excitations in FSMRCC method, the partial triples have been done for dipole

moments. However, the present thesis work put forth the following future research.

• The GIAO-ECC method presented in the above section can be used for the evalu-

ation of magnetic susceptibilities.

• Properties other than NMR are less used and the development on these proper-

ties are current field. Methods to evaluate g− tensors are less because of the

less available methods for the study of open-shell properties. The Λ−FSMRCC

method which have used for predicting open-shell susceptibilities can be used for

g−tensors. The g−tensors is

g =
1

µB
(
∂2E

∂B∂S
)B;S=0. (5.27)

The theoretical clue for the evaluation of g−tensors, as proposed by Gauss et. al

[43], is

g = geI + ∆gpso + ∆gdso + ∆grms (5.28)

where, the g−tensors is split in to various components, like free electron value(ge),

paramagnetic spin-orbit (∆gpso), diamagnetic spin-orbit (∆gdso) and relativistic

mass correction (∆grms) terms. The quantum chemical calculation of the elec-

tronic g-tensor requires the evaluation of one true second-order contribution (∆gpso)

and of two first-order contributions (∆gdso and ∆grms) for which the perturbed

Hamiltonian is second order.

• In chapter-IV we studied triples correction to the first order properties. In the same
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spirit the inclusion of triples excitations can be pursued in FSMRCC for the cal-

culation of the higher order properties. For getting the higher order property, say,

polarizability or second order magnetic properties, the derivative of the amplitudes

at the T (0,0) and T (h,p) level is needed. Since we have included triples excitation

in T (0,1) and T (1,0) amplitudes, the excited state properties need only the triples

contribution from T (1,1) sector.
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“We ought to consider the present state of this universe as the effects of its previous

state and as the cause of that which is to follow. An intelligence that, at a given instant,

could comprehend all the forces by which nature is animated and the respective situation

of the beings that make it up, if moreover it were vast enough to submit these data to

analysis, would encompass in the same formula the movements of the greatest bodies of

the universe and those of the lightest atoms. For such an intelligence nothing would be

uncertain, and the future, like the past, would be open to its eyes.”

- Pierre Simon De Laplace

(1814)



Appendix

The Geometries
All the geometries reported here are in atomic units.

Molecule Atom X Y Z
OH H 0.00000 0.00000 1.85104

O 0.00000 0.00000 0.00000

OOH H -1.60075 -1.66668 0.00000
O1 1.27888 -0.01807 0.00000
O2 -1.17802 0.12308 0.00000

HCOO H 0.00000 2.96725 0.00000
C 0.00000 0.88855 0.00000
O1 -1.98007 -0.42700 0.00000
O2 1.98007 -0.42700 0.00000
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Appendix

Pople polarization functions
(p,d)

HYDROGEN
P 1

1 1.000000 1.000000

FLOURINE
P 1

1 0.0740000 1.000000
D 1

1 0.9000000 1.000000

(2p,2d)

HYDROGEN
P 1

1 1.500000 1.000000
P 1

1 0.375000 1.000000

FLOURINE
D 1

1 2.3960000 1.000000
D 1

1 0.8750000 1.000000
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