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Foreword

A multitude of developments in mass spectrometry (MS) methodology are at the helm

of post genomic scientific pursuits such as proteomics, metabolomics and lipidomics.

Significant advancements in MS instrumentation have also helped in enabling sensitive

and accurate measurement of molecules from complex biological systems. It is now

possible to comprehensively delineate metabolite profiles resulting from cellular pro-

cesses and trace dynamics using high-resolution mass spectrometry (HRMS). Most often

gas and liquid chromatography (GC / LC) coupled with HRMS are the methods of

choice for qualitative metabolomics profiling. LC-triple quadrupole (LC QqQ MS with

unit resolution) is subsequently used for quantitative metabolite analysis by selectively

monitoring ion reactions. High resolution accurate mass (HR-AM) based workflows for

HRMS data have of late shown significant promise in enabling simultaneous Qual/Quant

metabolomics analysis utilizing the full spectrum of the HRMS data. However, using

HR-AM quantitation with other non-chromatography based direct MS analysis has largely

been unexplored in comparison. There is a significant need for algorithmic development,

especially for non-chromatography based direct MS analysis, to fully realize the potential

of HRMS metabolomics data in various applications. This is also vital for potential

scalable translation of analyses to the ‘market’ as well as the ‘clinic’.

Metabolic profiles generated using HRMS also hold potential in deducing functional

insights of cellular dynamics. Although these metabolic profiles are essentially collective

downstream effect of contribution from various catabolic and anabolic metabolic reac-

tions, progressive analysis methods such as constraints based metabolic network analysis

enable deciphering the mechanistic interplay. Furthermore, HRMS offers the advantage

of analyzing targeted metabolic profiling data in retrospective manner extending its

application domain to support any hypothesis resulting from the metabolic modeling
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pursuits. Metabolic modeling with genome scale models also enables spanning multi-

ple molecular hierarchies in the cell through the classical central dogma for molecular

biology (CD). Synergetic nature of analysis workflows of metabolic measurements and

modeling offer a systems-level perspective to discover emergent properties that can be

difficult to accomplish independently.

Existing LC-MS approaches require elaborate sample pre-processing and lengthy chro-

matographic time. A major resulting drawback is the extremely low throughput that

has so far hindered the widespread adaptation of quantitative MS. Although direct MS

methods such as laser desorption ionization HRMS offer increased throughput, their

wider use is severely hindered by the lack of validated quantitative data processing tools.

Currently available software tools either come bundled with MS instruments with support

for only specific file formats / selective analytes or are geared only towards specific

workflows (for example proteomics, metabolomics, or lipidomics profiling). Also, data

handling in the majority of data processing tools for quantitative analysis is pegged

with chromatography-based workflows leaving little room for those exploring direct

HRMS measurements devoid of chromatography. The first part of this dissertation

describes the development of an algorithmic tool that comprehensively supports high

throughput data processing as well as targeted metabolite quantitation following direct

HRMS workflows. In the second part of dissertation comprehensive, accurate and reli-

able extraction of differential metabolic features from LC HRMS data in an untargeted

manner was showcased. Additional efforts to integrate HRMS metabolic profiles for

system-level metabolic network analysis, to discover new biological insights and gen-

erate hypothesis, have also been explored and constitute the latter part of the dissertation.
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CHAPTER 1

Introduction

Schematic of metabolomic analysis using HRMS



2 Introduction

1.1 Metabolomics, available analytical methods and

challenges for data analysis

Metabolites are small chemical molecules that characterize the functional state of cellular

biochemical activity. They are involved in various metabolic reactions that are essential

for growth, maintenance and normal functioning of cell. Application for metabolites as

biomarkers of disease diagnosis has a long history (1500-2000 BC).1 Rapid technological

development in early 20th century provided modern researchers with tools to investigate

the hierarchy of metabolic involvement in biochemical reaction network and also to eluci-

date their role in diseased states.2 The information flow from DNA to protein through

ribonucleic acid (RNA), presented as classical central dogma for molecular biology (CD),

is more rigorously controlled through epigenetic regulations and post-translation mod-

ifications. In contrast, dynamics of biochemical reactions and their end products are

most predictive of cellular phenotype.3,4 This also forced to conceptually change CD

by introducing metabolites while respecting the information relationship from DNA to

metabolic profiles, which is also termed as ‘omics cascade’.5,6(Figure 1.1)

Increasing interests in metabolic profiling gave rise to various terminologies for ‘omics’

technologies, such as, metabolome - A complete set of metabolites in an organism7,

metabonomics - quantitation of metabolic responses to pathophysiological stimuli or

genetic modifications in a cell8, metabolic foot-printing - extracellular metabolite profiling

to investigate their secretion or uptake by cell, and so on. In general metabolomics is the

generic acronym used, which encompasses all these studies and defines comprehensive

characterization of metabolites in a biological system.

Global profiling of metabolites is challenging owing to their varied chemical classes,

sampling complexities, diverse abundancies and dynamic biotransformations. Dramatic

development in analytical technologies over the past few decades however began enabling
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researchers to measure individual biomolecules from biofluids involved in biochemical

reactions. Analytical platforms such as nuclear magnetic resonance (NMR)8, Fourier

transform infrared spectroscopy (FT-IR)9,10 and mass spectrometry (MS)11–13 have been

deployed for metabolic profiling with varying degrees of success. Of these, MS-based

technologies, often with gas or liquid chromatography (GC or LC) as a ‘front-end’, have

seen a significant increase in adaptation due to their versatile, sensitive, and selective

detection along with analytical robustness.14 Mass spectrometry offers significant advan-

tages over other analytical platforms and enables efficient qualitative and quantitative

metabolomics analysis.

Figure 1.2 shows a generic workflow of MS based metabolic investigation.14 There are

several important considerations in metabolomics investigations in addition to the choice

of a specific MS platform or analyzer. There are various published reports that discuss

elaborate details of sample harvesting, handling, storage, processing, derivatization and

extractions that are vital prior to MS analysis.3,14,15 Chromatographic resolution of

metabolites based on their physio-chemical characteristics following introduction into

an analytical separation column is an important aspect in most MS-based analytical

protocols (other than direct MS workflows). Metabolites generally elute at different

time points based on their retention time (RT) that depend on differential partitioning

Figure 1.1 Omic cascade and improved central dogma of biology.
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Figure 1.2 Experimental workflow for MS based metabolic analysis.

between the stationary and mobile phases. Chromatographic method development that

includes selection of optimal column and separation chemistries usually precedes actual

analysis. The methods are generally validated using reference standards and isotopically

labelled metabolite analogs, especially in targeted metabolomics approaches, prior to

adaptation with metabolites extracted from biological samples. Subsequently metabolites

are ionized into the gas phase with the help of online injection as small aliquots and

resolved along their respective mass-to-charge ratio (m/z) in the mass analyzer. At

this stage, evaluating sample matrix effects to attain optimal ionization efficiencies and

minimization of ion suppression / enhancement is crucial. At end of this elaborate

workflow, mass spectral profiles are acquired and strategies to qualify and quantify

analytes are adapted. However, most biological samples could potentially contain a large

pool of metabolites, intermediates and / or degradation or biotransformation product

peaks that could challenge the capabilities of a lower resolution mass analyzer.

In a typical global metabolomics study, constituting both quantitative and qualita-

tive workflow, LC-MS is most widely used mass spectrometry technology on account

of its ability to separate and detect broad range of compounds. Other hyphenated

technologies such as GC-MS13, CE-MS16 have also contributed significantly to the field

of metabolomics with continued method advancements. Technologies that use alternative

ionization to ESI such as, MALDI17, DART18, DI and DESI19 in tandem with newer

generation HRMS have evolved and are increasingly finding their applicability to unique

metabolite analysis contexts - mass spectral imaging being a case in point. From a global
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metabolic profiling perspective, these technologies suffer from limitations such as ion

interferences from isobaric and closely matched metabolites, signal interference from

matrix sources and in some cases insufficient reproducibility.

Development of high-resolution mass spectrometry (HRMS) with magnetic sector or

Fourier transform - ion cyclotron resonance (FT-ICR) mass analyzers helped address

resolution challenges of complex samples including those from biological sources. With

mass resolving power of >50000 FWHM, it is now feasible to resolve biomolecules at

mass spectral level with highly improved mass accuracy where isobaric interferences are

generally at a minimum.20 However applications of HRMS until recently, were limited to

qualitative workflows, on account of its lower scan rate that affected scan resolution of

chromatographic runs. Prohibitive costs of HRMS instruments were yet another factor.

Modern HRMS instruments (with TOF and Orbitrap mass analyzers and relatively

‘affordable’ benchtop models) with their fast scan rates allows acquisition of enough

data points across a chromatographic peak and use extracted ion chromatogram (XIC)

for quantitation.21–23 A growing list of articles and review publications illustrate such

analysis workflows made feasible with HRMS. Applications of HRMS in Qual / Quant

approach have been demonstrated in food safety analysis24, organic contaminant analysis

in environmental sciences25, clinical biomarker studies26 and metabolic fingerprinting22,23

to name a few. It is now theoretically possible to separate and resolve several hun-

dreds of metabolites from each individual sample aliquot that can be reliably measured

and quantitatively determined. But as a consequence, data complexity resulting from

both chromatographic separation and HRMS based spectral profile generation increase.

Coupling HRMS platforms with direct MS approaches such as direct analysis in real

time (DART) or matrix-assisted laser desorption ionization (MALDI) interfaces offers

high-throughput and enables newer frontiers of analysis, but yet require support with data

analysis.18,27 A representative example is of mass spectral imaging (MSI), using direct
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MS platform, that offers opportunity to investigate molecular interactions from intact

sample surfaces, which would be challenging to achieve using traditional chromatographic

approaches.

An ever increasing list of application portfolio that utilizes Qual/Quan HRMS toolbox,

either direct MS or in conjunction with chromatography, brings about significant ‘data’

analysis and interpretation challenges. Development and adaptation of appropriate data

handling and analysis methods is indeed crucial across all metabolomics workflows. Lack

of streamlined data analysis tools to support such diverse analytical approaches including

direct MS, hinders the pace of development using HRMS based strategies. The work

described in this dissertation is an attempt to address some of these challenges through

the development of complimentary tools that offer cross platform data analysis to fully

exploit the Qual/Quan capabilities of HRMS data. The first part of the dissertation

describes the development and benchmarking of ‘MQ’ - a modular high throughput

platform tool for comprehensive qualitative and quantitative analysis using direct HRMS

analysis. MQ has successfully been used for several metabolomics analysis contexts in

the recent past and a fully evolved (and thoroughly tested). The academic version of

MQ can be accessed at www.ldi-ms.com.

The breadth of analyte coverage achievable from individual HRMS scans also make it

amenable for implementing advanced meta-analysis, to gain invaluable fundamental

insights of cellular mechanisms. There is a growing list of published literature report-

ing global metabolic profiling that offer cellular functional insights using HRMS based

workflows.6,15,28–32 Such functional interpretations can be commonly achieved using mul-

tivariate analysis tools.15,33–35 Interrogation using metabolic network modeling that can

benefit not only from metabolic coverage but quantitative accuracies of HRMS, offers the

next paradigm for a systems-level understanding and integration across multi-omics data.

The second part of this dissertation showcases the use of HRMS based metabolic profiles

www.ldi-ms.com
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Data import

Filtering

Feature 
detection Deisotoping

Alignment

Normalization Identification

Data analysisData analysis

Qualitative

Multivariate 
analysis

Classification

Quantitative Univariate
Regression fit

Figure 1.3 Data analysis workflow for processing of mass spectrometry data.

to formalize metabolic reconstruction models of cancer cell lines. Consistency of the in

silico predictions with cellular metabolic phenotypes along with statistical interpretations

made using multivariate tools, helped evaluate the model’s performance.

The remainder of this introductory chapter provides an overview of relevant data pro-

cessing and analysis methods that form the background for the work described in this

dissertation. Various open source data analysis tools exist that employ different strategies

for data treatment and are indeed useful for HRMS based metabolomics analysis. Appli-

cability of such alternative algorithms is also discussed while keeping different analytical

platforms in context. Available routes for data interpretations following data processing

discussed subsequently.

1.2 Overview of data processing methods

Various data pre-processing methods are generally useful for processing HRMS data

prior to qualitative interpretation and quantitative analysis. Specific steps for the data

pre-processing essentially involve filtering, feature detection, deisotoping, alignment and

normalization followed by data interpretation (Figure 1.3). Filtering methods help remove

data interference coming from noise or baseline signal. Feature detection extracts the

signal counts for each probable peak from data. In virtue of differing isotopic compositions
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of compounds, cluster of peaks are observed in spectra. Deisotoping methods group

such cluster of peaks with the specific peak for monoisotopic counterpart. Alignment

involves identification of peaks specific to metabolites across various samples processed.

Normalization deals with signal count correction for systematic variation, in order for

their comparison across other samples from the study. A detailed overview of these data

processing steps implemented in various tools is described below.

An appropriate workflow for data pre-processing should account for different sources

of variations arising from experimental or technical inputs and should be adaptive on

parameters, which depends on, (i) analytical method for chromatographic separation,

(ii) analytical platform used, (iii) experimental design, (iv) subsequent data interpretation

methods. Several tools and software packages that offer most of the data pre-processing

cascade have been made available by various research groups in recent past. A list

of open-source software tools designed to address different steps from data processing

and analysis workflow, is provided in Table 1.1. Some tools are designed for handling

proteomic data exclusively although a few of these could potentially be applicable to

metabolomics analysis as well, as they share various pre-processing steps.36,37 Several of

the tools are specially designed for metabolomics data processing and interpretations.38,39.

Whereas, there are other tools, which can be applied to any sort of LC-MS data.40–42

Besides these, there are few tools that specifically cater to a specific step of analysis

showcased in Figure 1.3.43,44

Available tools for data processing include both commercial and open-source alternatives.

Though both types of these software tools follows similar strategy for data processing,

as illustrated in Figure 1.3, the open-source tools provides transparency about the

algorithm used, flexibility for developers to supplement new methods along with support

for orthogonal list of data sources from different vendors.
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1.2.1 Data conversion in platform independent format

With a range of available MS platforms, a number of proprietary data formats exist.

For processing of data with freeware/open-source alternatives, data will need to be

converted into platform independent formats, such as netCDF, mzXML, mzML etc. Most

of the vendor specific software tools provide inbuilt support for conversion of proprietary

formats into a compact binary data format, netCDF, widely used for storing experimental

data. (http://www.unidata.ucar.edu/software/netcdf/) In addition, freely available

interface libraries for netCDF are provided for common programming languages such

as C, Fortran, Java, Python, IDL, MATLAB, R, C++, Ruby, and Perl. This facilitates

further development of tools providing analysis solution in a platform independent

manner.

An attempt to standardize a common data format, mzXML, for all types of MS data was

made by Seattle Proteome Center (SPC) in Trans Proteomic Pipeline (TPP) software

solution.56 Besides the proteomics related set of analysis tools, an array of data converters

were made available by the project for transforming different MS instrument specific

formats into mzXML. A more recent project, ProteoWizard57, provides a unified solution

for data conversion from most of the vendor specific formats (for AB Sciex, Agilent,

Bruker, Shimadzu, Thermo-Scientific and Waters) to mzXML and mzML. This conversion

tool is also integrated in TPP software package.

Most of the open-source data processing tools support aforementioned MS data formats.

Adapting and implementing such common data formats offers an opportunity to perform

cross-platform comparison of any study and help identify better suited platform required

for a complex study such as metabolomics.

http://www.unidata.ucar.edu/software/netcdf/
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1.2.2 Data filtering

In any data analysis workflow, the downstream resultant conclusions on processed data

critically depend on the quality of input data. Like most of the instrumental signals,

chromatographic MS data is constituted by signal, noise and background (Figure 1.4).

Various strategies are followed for reducing the effect of these non-informative features

that facilitates peak detection, in reducing false positive predictions and would help in

improving quantitative information of data.58

While performing a batch acquisition of samples, baseline drift caused by chemical noise,

is commonly observed distortion in MS analysis. Collective sources of such signals

are clusters of matrix molecules from samples, interferences from solvents or buffers or

impurities build up on the separation column.59,60 A simple two-step process is typically

followed for baseline removal: (i) fitting baseline profile, (ii) subtraction of this fitted

response from raw signal. Different approaches for baseline estimation includes, regression

fit through the peak bases of smoothed spectral segments,61 non-linear filter like top-hat

operator with small window size,62 Savitzky-Golay filter with lower order polynomial63

or iterative asymmetric least-square regression.64 Estimated baseline also serves as the

threshold level for calculation of noise from MS data.

In addition to the chemical noise, the MS data is also affected by random noise that

arises mainly from detector. Like any electrical instrument there are various sources of

noise in data apart from the contributions coming from physico-chemical nature of ions.

The influence of these different sources vary with types of MS detectors used for study

warranting careful evaluation of method used for de-noising. Traditional signal processing

methods such as moving average window65, moving median filter66,67 and polynomial

fitting following Savitzky-Golay method63 transforms spectral signal by reducing noise

interference. A mathematical representation of filtering process, commonly referred as
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Figure 1.4 Different components of typical analytical signal. (a) observed signal response;
(b) expected signal for analyte elution; (c) background signal profile; and (d) noise. (Image
source: Ref 58)

‘convolution’, is shown in the following equation:

s(t) =
L
2∑

w=− L
2

F (t)y(t + w) (1.1)

where s denotes processed signal value for data position t, F is the filter function with

processing window length of L and y represents the raw data vector. The primary

drawback of following such transformations is distortion of signal response value for the

peak, which affects quantitative performance of the data. In order to circumvent this,

other approaches that deal with noise by selectively filtering noise component were made

available. Such methods either differentiate significant peaks based on user parameters

like, peak width, slope threshold and use remaining data point for noise estimation67 or

follow an inverse approach to estimate noise signal levels first following methods such as,

average/median response of low abundant signal values from spectra,68 median absolute
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(a) XIC scan of m/z bins (b) Peak detection from
both dimensions

(c) Fitting isotope model

Figure 1.5 Different strategies of feature extraction for separation based HRMS data. (a) Chro-
matograms generated from 2D MS data is represented. Horizontal lines schematically showcases
bins created along m/z direction, (b) Features identified by considering peak profiles along
both the time and m/z dimensions, (c) An isotopic model is fit to the data along m/z direction
following RT values within threshold. (Image adapted from review article by Katajamaa et.al.
that discusses recent literature related to LC-MS data handling72)

deviation within specified window,40 and linear regression model fitted to signal counts

of noise peaks.69 Owing to the heteroscedastic nature, i.e. unequal variance across the

range of values, of the noise observed in MS data more sophisticated algorithms such as,

wavelet transformation70 and variance-stabilizing normalization methods35 have shown

to handle noise characteristics more efficiently.

Open-source tools MetAlign47, MZmine42 and OpenMS37 provide filtering options as

a processing step for correcting noise interference such as Moving mean, Savitzky-

Golay, Binomial and Gaussian low-pass filter. Among other tools listed in Table 1.1,

MAVEN38, XCMS40 integrate feature detection and filtering in a single step. For

baseline correction MZmine provides various method implementations available under

Bioconductor packages71 through interface with R platform for statistical analysis.
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1.2.3 Feature detection

Data structure for chromatographic and direct ionization MS

Feature detection is a crucial step in data processing for any data analysis workflow.

It involves identification of signals associated with true metabolite ions, avoid false

positive detection in the presence of noise or non specific peaks and provide quantifiable

information for respective metabolites. Different workflows for metabolomics involving

direct ionization or chromatography separation based MS analysis lead to differential

treatment of raw data for feature extraction. Raw data for direct ionization MS analysis

represents mass spectral profile with ion signal response of constituent metabolites.

Feature extraction from such data, extracts lists of m/z for metabolite ions and their

signal responses. Whereas in case of LC-MS or GC-MS, a series of mass spectra acquired

at successive RT are stored in raw data. Considering the added dimension of separation,

the output from feature extraction data processing consists of an additional vector of

data information with RT value for each pair of m/z and signal response of metabolite

ions. Different strategies for extraction of features are illustrated in Figure 1.5.72

XIC scan of m/z bins A simpler strategy of slicing m/z dimension as shown in

Figure 1.5a yields list of ion chromatogram towards chromatographic direction for each

extracted m/z bins. Such XICs can be further processed independently using different

peak annotation methods. This approach has successfully been employed for various

studies successfully and is featured by a few open-source software tools.40,65 Selection

of optimum bin width parameter for m/z slicing becomes a challenging task and also a

limitation in applying this strategy. A broader bin width results in merging of co-eluting

peaks that have m/z value within a half of the bin width parameter, whereas narrower

bin width for a lower resolution MS data results in multiple feature being selected for

same metabolite ion in consecutive bins. With current generation HRMS instruments,
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the optimal bin width for efficient feature extraction needs to be compressed to a very

narrow value leading to an explosion in number of bins studied as opposed to the total

metabolites practically present per spectral profile.

Peak detection from both dimensions Another straightforward approach for fea-

ture detection in LC-MS or GC-MS based data follows peak finding in both directions

- m/z followed by chromatographic domain (Figure 1.5b). Although this methodology

is computationally intensive, depending upon the algorithm chosen for peak finding in

both directions, various available open-source tools exercise this approach because of

its simplicity in implementation and efficiency in terms of coverage in feature extrac-

tion.38–40,42,45

Fitting isotope model In an alternative approach, isotopic model fit of individual

features detected was used as an added level of scrutinization for feature extraction

(Figure 1.5c). Use of generic mass-dependent isotope pattern (with consecutive peak

list separated by ∼1 Da) may assist in reducing the false positive feature detection and

hence improve quality of data.73 Application of such a concept has shown to provide

improved quality of feature extraction assisting in peptide sequence annotation74 along

with complex lipidome characterization and its quantitative analysis.75 Although open

source tools such as, MapQuant74 and Isoconv73 use such isotopic clusters for improved

feature extraction, usage is limited to heavier molecules with m/z above 1000 Da.73

Approaches for peak detection

Numerous algorithms for extraction of peak profiles from MS data have surfaced in

last few decades. A recent review76 details various available peak detection algorithms,

their pitfalls and mathematical underpinnings that can assist in identifying suitable

robust method for feature extraction from high-throughput studies such as metabolomics.
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Owing to Gaussian nature of peaks in both the dimensions (m/z and time domain), peak

extraction algorithm following a common or combination of various strategies can be

employed in each direction. Commonly used approaches for peak detection are based

upon (i) ion intensity threshold; (ii) template (usually Gaussian) function correlation

and (iii) wavelet transform techniques.

Use of ion intensity threshold The ion intensity threshold level is a simple approach,

also termed as S/N based method, which uses ion response cut-off value for peak

identification. This cut-off or noise value is either user defined or identified statistically

using methods mentioned before.40,62,68,69 Based on defined cut-off value, peaks are

identified by scanning for local maximum within specific window along any dimension

that qualifies the cut-off threshold. This approach has advantages of simplicity in

implementation, faster performance and minimal user inputs. The major drawback of

this method is its disregard for peak quality/shape. Also, sensitivity to noise estimation

method may lead to vulnerability with erroneous peak prediction.

Correlation with template function Considering the Gaussian response of peaks

in either dimension, scanning for a Gaussian function, i.e. matching filter function, with

characteristic peak width equivalent to a predefined resolution would provide accurate

peak selection.40,42 Based upon a correlation threshold value with the template function,

peaks can be characterized. Unlike intensity threshold based method, use of template

function limits the false positive results for peak identification. However, the presence of

high frequency noise can influence the correlation value and affect peak identification.

This can be controlled using smoothing filter with larger window size before feature

detection. Similarly, peak shape abnormalities caused by improper optimization of

chromatographic condition or aberrations from ionization process, further contributes to

false negative results in peak detection. Strategies that employ convolution of multiple
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filter functions, such as Gaussian-Exponential function67,77 - termed as exponentially

modified gaussian (EMG) distribution and Gaussian-Gaussian function,78 were showcased

as alternate template functions. Although feasible, the need for selecting such data

treatment or use of alternative methodology, which is dependent as per case basis, makes

this task further tedious.

Wavelet transformation Sophisticated techniques such as wavelet transformation

were used as a solution that indirectly adapts the fitting function as per the data. For

MS data analysis both continuous wavelet transform (CWT)40,79 and discrete wavelet

transform (DWT)67 have been explored successfully. In brief, a mother wavelet function

is translated at different m/z or RT locations and simultaneously scans for a range

of wavelet scaling (frequency) values, generating daughter wavelets with varying peak

width. An array of wavelet coefficient values were identified from this, providing index of

matching score for daughter wavelets with data peaks. As an example, following wavelet

transformation on chromatographic data results into time-frequency representation of the

spectrum, in case of CWT, or dyadically discretized wavelet frequency representation, in

case of DWT. Such representations provide characteristic information for spectral peaks,

such as peak width and area based on scale and coefficient values respectively, along with

peak positions. Flexibility to choose different mother wavelet function in addition to its

scaling for varying peak width asserts this method with higher efficiency and robustness

for feature extraction. Other advantages offered by wavelet method include insensitivity

towards noise in data, with application of scale threshold for high-frequency noise, and

also towards baseline drift from data.79 A comparative performance evaluation of this

method for mass spectral data demonstrated improved peak detection using CWT in

comparison to publicly available peak detection algorithms.79,80 With the complexity of

algorithm, this method demands higher computational power and tuning large number of

method parameters, which is difficult for a person having little expertise or understanding
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Table 1.2 Molecular adducts observed in positive and negative ion mode MS sources operating
at atmospheric pressure (such as ESI, MALDI, DART, DESI etc.)

Molecular adduct

Positive mode
Exact Mass shifta

Molecular adduct

Negative mode
Exact Mass shifta

[M + H]+ 1.00728 [M − H]− -1.00728

[M + Li]+ 7.01546 [M − H + H2O]− 17.00329

[M + NH4]+ 18.03383 [M + F ]− 18.99895

[M + H + H2O]+ 19.01784 [M − H + CH3OH]− 31.01894

[M + Na]+ 22.98922 [M + Cl]− 34.96940

[M + H + CH3OH]+ 33.03349 [M + HCOO]− 44.99820

[M + K]+ 38.96316 [M + NO2]− 45.99345

[M + H + CH3CN ]+ 42.03383 [M + CH3COO]− 59.01385

[M + H + H2O +
CH3OH]+

51.04406 [M + NO3]− 61.98837

[M + Na + CH3CN ]+ 64.01577 [M + Br]− 78.91888

[M + Ag]+ 106.90455 [M + HSO4]− 96.96011

[2M + H]+ - [M + H2PO4]− 96.96962

[2M + Na]+ - [M + CF3COO]− 112.98559

[2M + K]+ - [M + I]− 126.90503

[3M + Na]+ - [2M − H]− -

[3M + K]+ -

aExact mass shift value defines shift in m/z peak from exact mass of metabolite.

Adaptation from citation ref 81.

about the technique. Very few open source tools provide wavelet based feature extraction

method following both DWT67 as well as CWT40,42,79 strategies.
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1.2.4 Deconvolution of data

Owing to the high sensitivity and ability to capture high resolution data with modern

HRMS instruments, the resultant data not only contains metabolic information alone

but is also accompanied with additional spectral peaks that can be a characteristic of

the analytical workflow. Typically in a soft ionization source, such as electrospray ioniza-

tion (ESI) that is commonly used with LC-MS studies, an array of ions may be generated

on account of (i) different adducts formation, (ii) fragmentation and (iii) isotopic clusters

for individual metabolite compound. A list of possible adduct ions observed in positive

and negative ion mode MS acquisition using atmospheric ionization (API) sources such

as ESI, DART, MALDI and DESI etc. have been listed in Table 1.2. An extended list of

in-source fragmentation behavior observed in relation with various functional groups of

metabolites and the expected mass shift from metabolite adduct ion peak is illustrated

in ref 81. Typically for isotopic clusters, a rigorous workflow is followed, which involves

iterative identification of elemental composition for each selected monoisotopic peak

corresponding to strict mass accuracy constrains and simulation of isotopic patterns for

identified elemental composition.43 But these approaches become unfavorable for higher

masses, given the exponential increase in number of chemical formulas constituted using

different combinations of elements from CHONSP (roughly 7 × 109 molecular formulas

possible for mass ≤ 1500 Da43). Similarly, simulation of isotopic pattern for higher mass

becomes computationally expensive for routine algorithms, such as binomial expansion,43

or even modern adaptations of polynomial expansion and Fourier transformation based

method.82 Such issues were handled in past for peptide related compounds, with either

the use of statistical occurrence of amino acids from various database entries for peptide

sequences - definition of averagine molecule83 or least square fitting of relative intensity

for isotopic peaks as function of monoisotopic masses of compounds.73 Such approaches

work better within a limited range of masses (∼1000 Da - 2000 Da). With increasing
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mass, the uncertainty for estimation increases to larger extent.73

While performing metabolic annotation based upon complete features for all ions, such

redundant number of peaks for ions on account of different adducts, fragment ions or

isotopic clusters originating from a single metabolite molecule may contribute to false

positive predictions. Dispersion of quantitative features per metabolite into various ions

leads to attenuation of sensitivity offered. By deconvoluting the data, such issues can be

circumvented.

Common strategy for deconvolution is based on a simple concept that all ions originating

from same metabolite should have similar RT value i.e. they elute out simultaneously in a

chromatographic separation run.72 All such ions with RT values within specified tolerance

limit are grouped together. Though on account of various analytical reasons, such as

inefficient separation method for metabolites, complexity of biological sample, network

of metabolites participating sharing a common pathway, structural isomers etc., different

metabolites can share similar RT values or observed in proximal region within given

tolerance limit. Using statistical similarity measures like Pearson’s correlation coefficient

for scan-by-scan signal intensity variation across XICs for grouped ions, such issues can

be circumvented. Open source tool MAVEN38 provides this approach that assigns a

metric for identified isotopic peaks using cut-off criterion over correlation statistics to

handle unrelated peaks grouping. Decon2LS84 is another software tool, which works with

spectral data and deconvolutes redundant features by following an algorithm, THRASH85.

The algorithm follows a linear interpolation model based upon averagine molecule to

estimate isotopic distribution. Subsequently, isotopic clusters are deleted to retain only

monoisotopic peaks for each metabolite. Since, elemental composition for averagine

molecule has been defined specifically with peptides in consideration, the applicability of

this tool for metabolomics data becomes limiting. MapQuant74 provides an alternative

approach for deconvolving isotopic peaks following a tree data structure. Peak clusters
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were fitted with a binomially distributed sum of 2-D Gaussian functions as shown in

eqn 1.2.

f(m, r; A, r0, m0, σm, σr, c, z) = A
∑

i

B(i; c, p)
2πσmσr

e
− (r−r0)2

2σ2
r e

−
(m−(m0+ i

z ))2

2σ2
m (1.2)

Here, the parameters that define this bivariate function of m/z (m) and retention time

(r) are: total abundance of isotopic cluster (A), RT centroid (r0) and m/z (m) for

monoisotopic peak, standard deviation for Gaussian peak along RT dimension (σr) and

m/z dimension (σm), number of carbon in molecule (c), charge state (z) and finally,

binomial distribution function

B(i; c, p) =
(

c

i

)
p(c−i)(1 − p)i

with natural isotopic abundance (p) for carbon-13 (13C). Such a method efficiently helps

to deconvolve isotopic clusters even if there are peak groups with intertwined isotopic

clusters.

1.2.5 Peak alignment and retention time correction

In a routine untargeted analysis, also used for targeted approach, set of detected peaks

for metabolites are grouped together based upon their characteristic response in different

class of samples. Parameters like RT for chromatographic elution of metabolites and

matching of exact mass for metabolites of interest are used for such grouping. Shifts in

the RT dimension along with m/z direction must be accounted for before grouping such

features towards metabolite annotations. In a chromatographic experiment, RT shifts

can arise due to (i) column performance or column aging, (ii) temperature or pressure

variations and (iii) sample matrix effect with varying range of concentration and salt

contents. Though, drifts along m/z dimension are generally smaller and can be controlled
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with use of internal calibration during spectral acquisition. Given the non-linear nature

of RT shifts,40 alignment becomes a necessary task before further downstream analysis

for chromatographic analysis. Typically, two approaches are followed for correction in

RT shifts,

1. Use of raw data for generating RT mapping using a reference standard (Chro-

matogram alignment),

2. Metabolite features clustering after peak detection, with bi-dimensional proximity

criteria along RT and m/z dimension (Peak alignment).

A commonly followed technique involves addition of internal standard mixture with all

the samples. Detected features for these can be used to linearly shift metabolic features

in the neighbourhood. But such a technique poses two further difficulties such as, use

of linear response correction for non-linear behavior and possibility of competitive ion

suppression effects with the presence of additional internal standards mix. Therefore,

many of the open source data analysis tools follow practice of identifying a reference

template, which may be evolved iteratively for improving alignment.38,40,42

A simpler approach is to carryout pairwise mapping of total ion chromatogram (TIC),

which is known as correlation optimized warping (COW).86 Since each feature from

TIC may represent many metabolites, using only uni-dimensional TIC based correction

may lead to alignment of non-specific features. Hence, similar methods like continuous

profile model (CPM), which divides m/z dimension into four segments, may still not

work efficiently.87

A second approach of alignment follows clustering of detected peak features. Since, feature

detection helps reduce the data size, this method is computationally less demanding.

This technique has been applied in several fashions such as (i) pairwise matching,88

(ii) matching across set of replicates,89 (iii) successively matched across all runs against

first run,42,47 and (iv) matched against an adaptive reference template with iterative
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cycle.38,40,42 The reference set of features used were adapted following different criteria,

which are specific to software packages, like XCMS identify a group of well behaving

peaks that are observed in almost all samples and preferably without any other conflicting

features in neighborhood,40 whereas in case of MZmine’s Random Sample Consensus

(RANSAC) method, an average profile peaklist that is iteratively evolving over cycles

of alignment is used. Since this approach follows bi-dimensional matching across both

m/z and RT dimensions, selection of appropriate threshold over both these dimensions

for clustering becomes very critical. In case of MetAlign,47 the RT width used for

matching features becomes progressively smaller till it reaches to a lower limit equivalent

to peak-width for feature. Another important aspect is the model structure used for

Figure 1.6 Retention time correction profile for a set of 53 LC-MS analyses runs. Retention
time deviation towards positive region indicates that the RT for sample was higher than median
RT and vice versa.
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alignment. Considering the non-linear nature of RT shifts, most of the tools/methods

follow a single non-linear model fit for RT differences from median point of clustered

features.38 Whereas XCMS offers a local regression fit (LOESS) method that follows local

segmented low-order polynomial fits, which offers robustness against local perturbations

as well. A comparative study for performance evaluation of alignment algorithms from

Xalign (MET-Xalign),48 msInspect,53 MZmine,42 OpenMS,37 SpecArray and XCMS40

shows that the algorithms for XCMS and MZmine perform better for metabolomics

data.90 Figure 1.6 shows non linear profile for alignment model using LOESS method

of XCMS for a set of LC-HRMS profiles of sample extracts for Gram-negative bacteria,

Chromobacterium violaceum.

1.2.6 Metabolite annotation

Analyte annotation is an important feature for any algorithm for MS-based metabolomics

analysis platform and GUI. Considering the biological complexity in metabolomics study,

accurate annotation of unknown metabolites (subsequent to data filtering and feature

detection) is a challenging task. In comparison with GC-MS based workflow, metabo-

lite identification from LC-MS becomes further challenging given the list of variables

involved in a study such as instrumental parameters, different types columns, separation

conditions and fragmentation mechanism employed etc. With current developments in

modern HRMS instruments with improved mass accuracy, perennial increase in wealth

of information about fragmentation profiles studied over last few decades and databases

resources along with novel algorithmic development, the task of metabolic annotation

has become reasonably feasible. Common strategy for metabolic identification involves:

• the use of tandem MS data for screening of specific fragments ions, neutral loss

and precursor ion relation through database search or with standard sample run,
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• mass accuracy-based confirmation while using HRMS instruments such as Orbitrap

or FT-ICR.

A comprehensive overview of annotation process along with basic information about MS

data is reported for detailed understanding.81 This report provides brief introduction

about available database resources and tools for analysis.

A list of commonly used mass spectral libraries is listed in Table 1.3. In general, while

scanning for metabolite features through databases, the experimental spectra is matched

against reference spectra from database and a matching score is estimated for each

feature. Stein et. al.91 have compared different algorithms for spectral matching such

as, dot-product function, which measures the cosine angle between spectral features

represented as vectors, probability-based matching system that uses peak occurrence

statistics, Euclidean distance etc. The dot-product function with square root intensity

scaling was found to be better method for ranking metabolite features in spectral

matching.

Various databases listed in Table 1.3 provide information for matching accurate mass

(m/z), fragmentation product (MS/MS) along with the details about ionization mode,

ion type and various ionization interfaces such as electrospray ionization (ESI), electron

ionization (EI), chemical ionization (CI) etc. Because of the data complexity with the

presence of different adduct ions, neutral loss fragments and isotopic clusters, spectral

matching becomes a difficult task even with the higher mass accuracy offered by HRMS

instruments. Use of isotopic clusters to discern elemental formula have been considered

as an approach for metabolite annotation.43 A systematic approach with the help of

set of rules for filtering false positive hits from database matching, which includes

matching of isotopic abundances as well, has been reported by Kind et. al.92,93 Further,

online database tool MZedDB44 has provided facility to process information related to

neural loss, adduct information for each chemical structure. MZmine package provide
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Table 1.3 Available database resources for mass spectral library

Database name Availability Web address

NIST 14 Commercial access http://www.nist.gov/srd/nist1a.cfm

NIST MSMS Library Commercial access http://www.nist.gov/srd/nist1a.cfm

Wiley Registry of Mass
Spectral Data

Commercial access http://onlinelibrary.wiley.com/book/10.
1002/9780470175217

FiehnLib Download possible http://fiehnlab.ucdavis.edu/projects/
FiehnLib/index.htm

GolmMetabolome
Database

Download possible http://gmd.mpimp-golm.mpg.de/

Human metabolome
database (HMDB)

Download possible http://www.hmdb.ca/

KEGG ligand database Download possible http://www.kegg.jp/kegg/ligand.html

Madison metabolomics
consortium database
(MMCD)

Download possible http://mmcd.nmrfam.wisc.edu/

Manchester metabolomics
database (MMD)

Download possible http://dbkgroup.org/MMD/

MassBank Download possible http://www.massbank.jp/

ReSpect Download possible http://spectra.psc.riken.jp/

LipidBank Web access only http://www.lipidbank.jp/

METLIN Web access only http://metlin.scripps.edu

an interface to search m/z list, along with adduct and fragment information across

various online chemical compound databases such as, HMDB, METLIN, and KEGG

etc. Similarly, output results from XCMS analysis are linked with METLIN database

queries for list of peaks identified. Apart from mass information, biological interactions

and relationship network can also used as a measure of metabolite detection.94,95 Few

open-source packages offer this approach for untargeted profiling of metabolites in a

high-throughput manner.96,97 An extensive list of tools, which assist in identification of

metabolites is reported in review by Yi et. al.98

http://www.nist.gov/srd/nist1a.cfm
http://www.nist.gov/srd/nist1a.cfm
http://onlinelibrary.wiley.com/book/10.1002/9780470175217
http://onlinelibrary.wiley.com/book/10.1002/9780470175217
http://fiehnlab.ucdavis.edu/projects/FiehnLib/index.htm
http://fiehnlab.ucdavis.edu/projects/FiehnLib/index.htm
http://gmd.mpimp-golm.mpg.de/
http://www.hmdb.ca/
http://www.kegg.jp/kegg/ligand.html
http://mmcd.nmrfam.wisc.edu/
http://dbkgroup.org/MMD/
http://www.massbank.jp/
http://spectra.psc.riken.jp/
http://www.lipidbank.jp/
http://metlin.scripps.edu
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1.3 Downstream processing of metabolomics MS data

On the basis of different objectives for a given metabolomics analysis, the longitudinal

data involving vast amount of metabolite data obtained through HRMS workflow can be

handled with different linear or non-linear data analysis methods. Typically, the processed

data obtained through data analysis workflow represented in Figure 1.3 is given in a matrix

format with linked information about m/z , ion response and RT index for chromatographic

analysis. Various statistical tools with visualization support (optional) can be used to

extract further in-depth information about data structure. MetaboAnalyst39 is a web

based tool, specifically targeted for metabolomics analysis, analyses XCMS processed

data to draw further conclusions. Apart from routine multivariate statistical approaches

for sample classification or functional characterization using quantitative metabolomics

profile, other hyphenated analysis tools with applications in metabolic engineering have

also surfaced in recent past.99 In this section a brief introduction about methods used is

illustrated. For more comprehensive list of data analysis/transformation methods readers

are advised to consult other reviews.98–100

1.3.1 Extraction of metabolite features

Various biological experiments are aimed at identifying key list of metabolites involved

or affected with specific experimental treatment. This can be achieved by studying

statistical features of metabolite or with the help of optimization problem to discern list

of optimal metabolite lists relevant to the experimental design. Data analysis approaches

for this are either (i) metabolite ranking or (ii) metabolite selection.101
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Metabolite ranking

Common interest in carrying out metabolite ranking is to distinguish highly important list

of metabolites with strong relevance towards the biological variations. Routine approach

for metabolite ranking involves variable ranking based on partial least square (PLS) or

PCA,102 loading or factor weights (LW),103 variable importance on projection (VIP),104

regression coefficient (RC)105 and selectivity ratio (SR).106 A comparative performance

study conducted with clinical samples suggest better efficiency using VIP in comparison

with LW and RC.107 Since these methods uses different approaches for ranking of variables,

the results generated may also be different. A recent report by Yun et. al.108 employed

aggregation of ranked orders generated using different methods.

Metabolite selection

In a similar fashion like metabolite ranking, selecting set of features is also of interest for

certain studies. The methods used for metabolite ranking can be extended for selection

of metabolites as well with the help of threshold criteria. Using an objective function to

evaluate the predictive efficiency of selected metabolites list towards class of sample, a

classification model can be generated. The performance measure for this can be obtained

with the help of classical bootstrapping method (with re-sampling of data points) or with

the help of cross validation (CV) error estimations. In order to avoid over-fitting of the

data, care must be taken to employ appropriate performance evaluation strategies such

as re-sampling CV dataset and size distribution across training data and test data. An

alternate approach with increased robustness of analysis was employed in the form of

random forest (RF)109 and model population analysis for variable selection (MPA).110

These strategies involves sampling of the dataset into n sub-datasets following Monte

Carlo sampling (MCS), and evaluation of classification model developed for each subsets.
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Further, these approaches categorize variables on the basis of their contribution for

prediction error as informative, uninformative or interfering.

1.3.2 System level understanding of metabolic physiology

Rapid development in the field of metabolomics was made feasible with availability of

global metabolic profiling following HRMS workflows. With increased accuracy of cellular

physiology, depicted by cellular metabolome in comparison to its predecessor ‘omics’

technologies (genomics or proteomics), metabolomics has already paved its way in clinical

disease diagnostic applications.111,112 But unlike other ‘omics’ platforms with established

databases and analysis workflows, metabolomics is still an evolving field with potential

showcased by only few analytical strategies. Metabolic network analysis is one such

strategy that utilizes metabolic profiling data to dictate in depth mechanistic perspective

of cellular physiology.113,114 Most routinely used metabolic network analysis approaches

are, (a) metabolic flux analysis (MFA) and (b) flux balance analysis (FBA) following

flux constraints identified using metabolic profiling.

In MFA, systematic tracing of stable isotope labeled (usually 13C) metabolites’ fate in

metabolic pathway is studied. Distribution of isotopomers across metabolic pathways fol-

lowing differential carbon-carbon transitions provides mechanistic differences across case

studies.115 Such MFA based strategies were shown to assist in applications involving yeast

species selection based on efficient aerobic fermentation on glucose or in designing metabol-

ically engineered strains for overexpression of transaldolase and transketolase.116,117 A

list of freeware tools for MFA such as, SUMOFLUX118, PFA toolbox119 and many others

can be found at http://fiehnlab.ucdavis.edu/staff/kind/metabolomics/flux-analysis.

In case of FBA, an optimal flux solution for a selected biological function is identified for a

metabolic network stoichiometry having additional experimentally calculated constraints.

This is achieved using linear programming (LP) approach for estimation of flux solution

http://fiehnlab.ucdavis.edu/staff/kind/metabolomics/flux-analysis
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space for all participant reactions under pseudo-steady state condition. The additional

experimentally defined constraints are extracellular efflux/uptake rate of targeted list

of metabolites. Hence, FBA solution offers a global system-level perspective of possible

intracellular metabolic physiology for a system while using very few targeted list of

extracellular metabolic profiles. Such versatility offered by FBA led to the development

of its various supplement methods (constraints-based methods) with different applica-

tion.99 Minimization of Metabolic Adjustment (MOMA) is one such supplementary FBA

method, which aims to find feasible flux distribution nearest to original FBA solution

in response to a gene knockout.120 Alper et. al.121 have showed increased lycopene

production from an already high producing strain of E.coli with application of MOMA.

Another such constraints based method is synthetic lethal analysis (to identify cell/tissue

specific) based strategies to control cellular survival in the presence of cellular mutational

profile.122 Many published reports have shown application of synthetic lethal analysis in

devising therapeutic strategies for cancer treatment.123,124 Additionally, for interrogation

of network’s structural interactions over long-range pathway nodes, constraints based

approaches of flux variability analysis (FVA) or uniform random sampling of steady-state

flux space can be availed. FVA estimates steady state flux range for each reaction for a de-

fined optimal flux through objective reaction. Whereas, random flux sampling populates

flux for each reaction randomly within the solution space defined by FVA such that the

constraints imposed by steady state of system and optimal flux through objective reaction

are respected. This enables unbiased appraisal of metabolic network structure, allowing

functional readout of tightly interlinked list of reactions. Taken together, these methods

illustrate network-wide effects of changes in an experimentally identified phenotypic state

with possible impact on cascade of downstream network reactions. Most of these analyses

can be achieved by open-source freeware tool, Constraints Based Reconstruction and

Analysis (COBRA) toolbox for MATLAB and Python language platform.125
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2.1 Introduction

Contemporary high-resolution mass spectrometry (HRMS) provide millidalton (mDa)

level resolution and mass-to-charge ratio (m/z) measurement within a few parts per

million (ppm) accuracy of the exact mass as opposed to nominal mass based analysis on

conventional low resolution mass spectrometry (MS) platforms. It is now theoretically

possible to accurately profile and qualify a few thousands of distinct metabolites from

diverse biological sources within a single HRMS scan. HRMS coupled to a chromato-

graphic front end (gas chromatography (GC) or liquid chromatography (LC)) is usually

the preferred choice for metabolomic analysis.13,32 Various chromatography-free direct

and ambient ionization methods used in conjunction with HRMS analyzers further aid

in measurements that offer analysis directly from sample surfaces along with higher

throughput.18 Mass spectral imaging (MSI) using direct ionization methods has shown

potential to obtain mechanistic and molecular insights at a cellular, organ and systemic

level.126

Analysis of HRMS data for diverse applications requires efficient algorithmic tools to

extract and process relevant information from raw data. A common data analysis

pipeline followed for processing HRMS data is represented in Figure 2.1. Various propri-

etary and a few open source tools that can support HRMS data analysis are currently

available.40,42,127–130 (Refer Table 1.1 in Chapter 1 for brief list of available tools and

supported platform) Usually proprietary softwares for data analysis come bundled with

mass spectrometry instruments and support only specific file formats. Inherent raw data

inflexibilities can at times be limiting especially if one were to work across platforms

from different manufacturers. A few open-source tools such as mMass127,128, MZmine42,

XCMS40, Mascot129 and TOPP130 are also available. Some of these tools do not include

options for absolute quantitation and are geared towards particular workflows (for example
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proteomics, metabolomics, and lipidomics profiling). Also, data handling in the majority

of data processing tools for quantitative analysis is pegged with chromatography-based

workflows leaving little room for those exploring direct HRMS measurements devoid of

chromatography. Most of the available open source tools were developed using Python,

C++ or R platform depending upon different features offered such as the availability of

numerical or statistical libraries and modular structure making it flexible to integrate

in third party applications. Availability of Java based open source tools for MS data

analysis is limited although the Java platform is powered with many more features and

has an array of libraries for numerical or multivariate analysis along with recent active

development of Mass Spectral Development Kit (MSDK) (https://msdk.github.io/).

Herein, we report ‘MQ’, an algorithm developed using Java platform that attempts to

support high throughput HRMS-based targeted metabolite quantitation workflows subse-

quent to global metabolomic profiling and qualification. MQ has been developed in our

group with a broad perspective to aid qualitative and quantitative HRMS data analysis

for direct MS analysis, especially to support MALDI-MS workflows. The algorithm has

been continuously improvised, rigorously tested and benchmarked vis-à-vis proprietary

Xcalibur™(Thermo Scientific) software that is code of federal regulations compliant (CFR,

FDA). Herein, we describe various features of MQ and showcase a comparative study

for the assessment of its quantitative performance in direct ionization and LC-HRMS

metabolomic analysis for a targeted set of analytes. Preliminary versions of MQ were

previously used in quantitative non-chromatographic laser desorption ionization mass

spectrometry-based analysis workflows112,131.

Availability and implementation: Freely available on web (for academic use only)

at, http://www.ldi-ms.com/services/software. Software is accompanied by example

files and user manual. MQ is implemented in Java and supported on Linux and Mi-

crosoft Windows system having Java runtime environment (JRE) pre-installed. Ad-

https://msdk.github.io/
http://www.ldi-ms.com/services/software
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ditional details and processed data used for this dissertation work can be found at

http://bit.ly/dissertationDataAG.

Credits towards sample preparation: Samples for S-adenosylmethionine (SAM),

S-adenosine-L-homocysteine (SAH) and atorvastatin were obtained from collaborative

experiments with research colleagues Dr. Nivedita and Ijaz. Mammalian cell culture

medium and extracellular sample extracts for two neuronal cancer cell lines (U87MG

and NSP) were obtained from cell culture experiments performed by Rupa as a part of

collaborative study with Dr. Anu Raghunathan.

2.2 Materials and Methods

2.2.1 Chemicals

LC-MS grade methanol and acetonitrile was procured from J.T.Baker (India). SAM,

SAH, trifluoroacetic acid (TFA), verapamil ((RS)-2- (3,4-dimethoxyphenyl)-5-2-prop-2-

ylpentanenitrile) and 2, 5-dihydroxy benzoic acid (2, 5-DHB) were purchased from Sigma-

Aldrich. Melamine (2, 4, 6-triamino-1, 3, 5-triazine) was purchased from Loba Chemie

(India). Atorvastatin ((3R,5R)-7-[2-(4-Fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-

propan-2-ylpyrrol-1-yl]-3,5- dihydroxyheptanoic acid) was obtained as gratis sample from

Mylan Laboratories limited, Hyderabad, India. Deionized water with specific resistance

18.2 MΩ cm-1 was obtained from Milli-Q unit (Merck Millipore). Mammalian cell culture

medium composed of DMEM (Sigma-Aldrich, D6046) supplemented with MEM Non-

essential amino acids solution (Sigma-Aldrich, M7145), was used as standard mixture for

all amino acids. All the chemicals used in this study were of analytical grade.

http://bit.ly/dissertationDataAG
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2.2.2 LC-HRMS based quantitative analysis of amino acids

The LC-HRMS instrumentation consisted of autosampler (Accela Open Autosampler,

Thermo Scientific) and liquid chromatograph (Accela 1250, Thermo Scientific) in tandem

with the Q-Exactive (Thermo Scientific) high resolution mass spectrometer equipped

with a heated electrospray ionization (HESI) interface. Instrument operation and data

acquisition was performed using the ‘Xcalibur™’ platform software (Thermo Scientific).

A C18 Hypersil gold column (10 cm x 2.1 mm x 3.0 µM) by Thermo Scientific was used

for eluting the samples prior to the ESI. The mass analyzer was operated in positive ion

mode and data was acquired in triplicates within a mass range of 60-900 m/z at 70,000

FWHM resolution.

For quantitative analysis, mammalian cell culture medium and extracellular sample

extracts for two neuronal cancer cell lines (U87MG and NSP) that were characterized

in a parallel published study132, were utilized. Cell culture medium standard mixture

was serially diluted to generate calibration curves for the ranges reported in Table 2.2.

A total of 10 calibration levels and 2 quality control (QC) samples were used. To

investigate differential metabolic exchange profile, sample extracts from every 24 hr were

pooled across cellular culture growth over 7 days. A 100 µL of such sample extract

was mixed with 400 µL of chilled methanol (previously stored in -80°C). The solution

was thoroughly mixed for 2 mins followed by centrifugation for 15 mins at 5000 rpm

(4°C). The tubes were carefully removed, 300 µL of supernatant was withdrawn and

transferred into a fresh tube. A two-step serial dilution of supernatant was performed

using 50 % acetonitrile in water. In the first step, 50 µL of supernatant was thoroughly

mixed with 450 µL of diluent. This solution was further diluted by mixing 100 µL of

sample solution with 400 µL of diluent. These samples along with standard mix were

uniformly spiked with the 2 µM solution of verapamil as internal standard to evaluate

the performance and for data normalization. The solutions were thoroughly mixed and
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were then analyzed on LC-HRMS system. Following the acquisition, the raw data was

analyzed using proprietary ‘Quan-browser’ module from Xcalibur™. Separately, data

analysis using MQ was carried out as outlined below.

Figure 2.1 Detailed workflow for HRMS Data analysis.
Highlighted aspects are featured in MQ

2.2.3 MALDI Q-TOF MS based quantitative analysis of biomarker

metabolites

For generating MALDI Q-TOF MS data, a standard solution of SAM and SAH was

prepared in methanol : water (1:1, v/v). For generating calibration curves, standard

solutions were serially diluted to obtain the predetermined calibration levels and QCs as

shown in Table 2.3. An internal standard (IS) solution consisting of 5.34 µM melamine

was uniformly spiked in all the samples before analysis to evaluate the performance and

for data normalization. To carry out MALDI Q-TOF MS analysis, previously prepared

standards were mixed in 1:1 ratio with 10 mg/ml of 2,5-DHB matrix solution, which

was separately prepared in acetonitrile : 0.1% TFA in water (1:1, v/v). All samples

were spotted on the MALDI target plate by dispensing 1 µL of matrix-analyte mixture

in 4 replicates for each of the calibrants. The data was acquired on Waters Synapt

HDMS™MALDI Q-TOF instrument in positive ion mode.
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2.2.4 Quantitative analysis of atorvastatin using AP-MALDI

HRMS

Quantitative analysis of atorvastatin was performed on Q-Exactive (Thermo Scientific)

mass spectrometer equipped with an atmospheric pressure (AP) matrix-assisted laser

desorption ionization (MALDI) (AP-MALDI) source from Mass Tech Inc. USA. The

instrument was operated in positive ion mode and the data was acquired within a mass

range of 200-600 m/z at 70,000 FWHM resolution. 100 µM stock solutions of atorvastatin

were prepared in methanol : water (1:1, v/v). The stock solution was serially diluted to

prepare predetermined calibration levels and QCs. 2, 5-DHB (10 mg ml-1) was prepared

in acetonitrile : 0.1% TFA (1:1, v/v) and used as the MALDI matrix. 1.5 µL of matrix

was spotted on MALDI target plate. Samples premixed with 0.5 µM verapamil, used as

an internal standard, were subsequently spotted on dried matrix layer. Following the

acquisition, the raw data was analyzed using MQ.

2.3 Overview of MQ

MQ features key aspects of data analysis as depicted in Figure 2.1 and includes a graph-

ical user interface (GUI). Several modules within MQ have been designed to enable

peak qualification, feature extraction, relative as well as absolute quantification, and

untargeted analysis. Modules namely ‘Spectrum viewer’, ‘Isotopic confirmation’, ‘Quan

calibration’, ‘Quan prediction’, ‘Relative quantitation’, ‘Database query’ and ‘Multivari-

ate analysis - PCA’ are bundled into a single platform, as shown in Figure 2.2, to aid

seamless user experience. An overview of HRMS data analysis workflow using MQ is

illustrated in Figure 2.3. Various aspects of data processing using MQ are described below.
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Figure 2.2 Screenshot for MQ user interface with available data analysis modules

2.3.1 Data preprocessing

For data analysis with MQ, time averaged HRMS data is used as input data source

in generic ASCII format (spectral m/z , intensity list) or mzXML format (common

open source format developed by Seattle Proteome Center). Data analysis using time

averaged MS spectrum serves as common platform for chromatography-based as well

as direct MS-based approaches. LC-HRMS data can be considered as a stack of mass

spectra acquired over a period of chromatographic run time. It contains details of ions

detected during the process, generating significantly large datasets of information. In a

typical LC-HRMS based quantitative analysis peak area, estimated as an extracted ion

chromatogram (XIC), is used as a quantitative parameter. This is usually a response

of ion current observed from an elution profile specific to an analyte of interest. For

quantitative estimations using MQ, this multidimensional data (ion current over the m/z
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range as a function of LC runtime) is transformed into an averaged two dimensional

mass spectral profile over a specific LC runtime. An averaged HRMS data profile was

found to preserve the quantitative features specific to analyte peaks from sample. This

approach was benchmarked against Xcalibur™(Thermo Scientific), which follows XIC

based quantitative workflow.

Supporting module for generating average MS profile spectra from encrypted manu-

Figure 2.3 Schematic of HRMS data processing steps using MQ

facturer specific file format is provided as an accompanying file conversion tool in MQ.

File conversion using this tool is a two-step process. First the instrument specific file

formats are converted to their respective MS1 (MS level 1) profiles using ‘MSConvert’

module from ProteoWizard package133. In the second stage, the MS1 profile data is

averaged using in-house built tool ‘MSAvg’, written in Perl scripting language and GNU

Octave environment, to generate two dimensional mass spectral profiles. Owing to the

non-homogeneity in distribution of m/z positions across each scan, MSAvg identifies a list

of unique m/z data entries from all mass spectral scans acquired in a chromatographic

run. While averaging each scan, an interpolated spectral profile is generated using these

unique m/z lists as input key for linear interpolation. For such interpolation, the spectral
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profile needs to be acquired in profile mode, which also imposes as a limitation for its

inflexibility towards centroid data. The final averaged mass spectral profile is used for all

qualitative and quantitative analysis under different modules of MQ.

2.3.2 Spectrum viewer

Direct visual analysis of MS spectrum is often the quickest way for evaluating various

qualitative checks such as presence/absence of a peak, mass accuracy (measured in ppm),

signal intensity in ion counts, and the peak width. Spectrum viewer module of MQ offers

direct visual analysis with additional options of optimizing peak finding criteria and

subsequent database search. The spectrum viewer incorporates many user friendly and

handy features such as, zoom-in/out, m/z value and intensity annotation. Additional

options for spectra exporting (plot graphics to clipboard), saving spectra in image (png)

format, and ‘properties’ option for improving visual attributes can also be availed. Users

can also generate a list of peaks from the spectrum through optimization of ‘Peak

finding criteria’ filters. Peaks can be qualified based upon signal to noise ratio (S/N),

relative percentage intensity with respect to the highest or base peak, mass extraction

window (MEW) within a set ppm and peak width. A convenient database search option

is also available in the same window where annotated metabolite list or user created

databases can be quickly referred. Additionally, in order to perform a high-throughput

database query, a separate database search module is also available featuring similar

‘Peak finding criteria’ filters. Facility to add list of peaks generated from the spectrum

viewer module as a user entry into database is possible.
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2.3.3 Peak detection

Various methods for peak detection from MS data have been reported in last few decades.

A recent review76 provides an account on available feature extraction method along

with their limitations. Few popular software tools such as, MZmine42 and XCMS40

follows fitting of a template (Gaussian or Exponentially Modified Gaussian) function

with given mass resolution setting for peak qualification. Various mass analyzers show

varying response for ion distribution (resolution) at different m/z region31. This leads to

difficulty in following template function based approach befitting for data from diverse

list of MS instruments. MQ uses two step method for feature extraction. In the initial

step, first derivative downward zero-crossing over method as peak picking algorithm with

constraints over the slope threshold value is used98. First derivative spectra are subjected

to moving average window (with width equivalent to half of MEW specified in ppm)

smoothing. This helps in removing minor kinks that are a result of noise from the data,

and increases computational efficiency in peak searching in such areas. Post smoothing

first derivative spectra are subjected to peak finding for downward zero-crossing points,

which essentially represents the highest point in a peak. Detected peaks are qualified

based upon amplitude threshold and slope threshold, which keeps peak kurtosis in check.

Slope threshold is defined based upon user specified peak width value as 0.5*(peak width

points)-2, whereas amplitude threshold is based upon user defined filters such as S/N

or relative percentage intensity to the base peak. Subsequently, in the second step a

Gaussian function is fitted to the ion distribution observed in the proximity of peak. For

this, a second order polynomial function is fit to log transformed ion count response

for a set of points within a user defined MEW (in ppm) of peak that helps to capture

Gaussian behavior of mass spectral profile. Peak area and peak intensity are estimated

from this Gaussian function as area under the curve or based upon peak amplitude value

estimation for polynomial fit, respectively.
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2.3.4 Qualitative confirmation of analytes using RAID

Natural abundance for heavier isotopes of various elements leads to characteristic relative

abundance for isotope intensity distribution (RAID) of analyte peaks, which is specific to

elemental compositions. Various reports in past decade highlighted significance of RAID

over and above mass accuracy offered by ultra-high resolution MS in characterization of

analytes assertively92,134. In case of complex and large molecules, prediction of RAID

becomes more complicated and computationally intensive82,135. In a recent publication,

a web based tool for Molecular Isotopic Distribution Analysis (MIDAs) was developed

with two improved algorithms for RAID calculation based on polynomial and Fourier-

transform methods, having better performance in comparison to published tools for

RAID estimation82. In MQ, an implementation of polynomial based algorithm from

MIDAs web tool for fine grained RAID (used with high-resolution MS) estimation has

been incorporated. Provision for adjustable mass accuracy and customizable isotopic

abundances are salient features making it amenable to adapt for different experimental

designs, such as isotopic labeling.

In brief, RAID estimation following polynomial based method involves multiplication of

polynomial expressions for each element. These polynomial expressions are constituted

from observed natural isotopic abundance values for each element. For fine grained

RAID estimation, polynomial expansion was achieved following multinomial theorem

with constraints over allowable exponent for individual isotope abundances in each

element. These constraints are function of natural abundance of isotopes and elemental

composition of analyte. Further details of algorithm can be found in article by Alves G.

et al.82.

With the provision of aforementioned algorithm in MQ for RAID estimation, screening

and qualification of analyte with user specified elemental composition can be achieved

from given mass spectrum. Confidence measure for qualification is provided as estimates
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of mass accuracy and percentage error in peak intensity for calculated heavier isotopic

peak against observed peak.

2.3.5 Quantitative analysis

Quantitative analysis in MQ can be carried out based upon peak area or peak intensity.

A weighted or non-weighted quantitative model with a linear/quadratic regression model

fit can be generated for response curves extracted from peak areas or intensity values.

Additionally, support for regression model fit for log transformed data is also offered.

This can be used for adjusting varying instrumental responses and for fitting regression

models of analytes whose concentration ranges vary over several orders of magnitude

that usually affect their linear responses.

Calibration models for absolute quantitation can be generated under ‘Quan-calibration’

module. Here, users can create and utilize a data library consisting of analytes and

corresponding monoisotopic masses. An array of parameters can be specified for feature

extraction and regression fit for list of analytes. These parameters are, analyte adduct

ion(s), MEW (in ppm), weighted/non-weighted calibration model, m/z of internal stan-

dard used (optional), and spectral file names for the calibrants along with replicates.

These parameters for a specific analysis project can be saved in a data library file. A

least-square regression fit for all the analytes of interest is then generated that allows

high-throughput simultaneous quantification in a single batch processing step. Adduct

specific regression data is provided as an output. The best fitting adducts and models can

then be selected based on regression statistics such as, slope, %RSD of technical replicates

and intercept. Calibration models generated through ‘Quan-calibration’ module should

be loaded in ‘Quan-prediction’ module to process the samples.

Relative quantification module allows direct comparison of internal standard normalized

analyte responses across samples. Input parameters such as, m/z list for analyte ions, an
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internal standard adduct ion m/z , and MEW are required for processing. The output of

relative quantitation provides the absolute and internal standard normalized peak area

or intensity of analytes along with mass accuracy in ppm.

2.3.6 Untargeted profiling and multivariate analysis

MQ supports untargeted profiling and feature extraction using multivariate analysis in a

metabolomics study. Data generated through full-scan HRMS has a multidimensional

profile that poses a challenge for untargeted analysis. Unsupervised multivariate analysis

is an unbiased means to identify a signature set of metabolites, which can be accounted

as discriminative features. We have incorporated principal component analysis (PCA) as

linear and unsupervised method for multivariate analysis of metabolomics data. PCA

orthogonally transforms input spectral data by rotating the variables in coordinate

space such that newly formed variables (Principle component factors- PC) should have

maximum relevance with the variance within data. These transformations are a result

of projecting original data points onto PC space identified by linear combination of the

original variables, and thus it does not lead to loss of information. Additionally, a detailed

analysis of these PC would help in identifying relevant list of analyte peaks, which holds

higher coefficient values for linear combinations. These set of peaks are responsible for

features represented by respective PC. For this multivariate analysis input variable data

is provided either in terms of identified peak list with the use of ‘Peak finding criteria’

as mentioned in ‘Spectrum viewer’ module or intensity response for list of metabolites

obtained by database query. Additional available set of parameters are: MEW for m/z

grouping and normalization of peak intensity response using internal standard.
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2.4 Results and Discussion

The performance of MQ was evaluated by simultaneous quantification of multiclass

analytes that includes amino acids, metabolite biomarkers and pharmaceutical drug.

The set of these three case studies was chosen to establish performance scaling for

handling and analysis of data generated from varied analytical complexity, in addition to

benchmarking using proprietary data analysis software.

A conventional chromatographic quantitative workflow for LC-HRMS analysis of a set of

amino acids from biological matrix was used for comparison of data analysis using MQ

and Xcalibur™(Thermo Scientific) software. Acquired data in native format with LC

profiles was used as input for Xcalibur™based quantitative analysis, where peak area

represented an area under curve of ion response observed from a chromatographic elution

profile specific to an analyte of interest. In case of MQ, as discussed before, average mass

spectral profile was used as input dataset for analysis. The accuracy and efficiency of

quantitative workflows in MQ was evaluated at different levels of data processing such

as, data conversion, identification of peak, peak integration, calibration curve fitting

and unknown prediction. The calibration curves were examined in terms of %RSD of

technical replicates, intercept, slope and regression coefficient (r2).

Evaluation of quantitative characteristic preserved by MSAvg, post data transformation

of LC-HRMS data into two dimensional mass spectral profiles, is showcased in Table 2.1.

A test sample representing a dilution level from calibration solutions of mammalian cell

culture medium standard mixture was used for this comparison. Although the peak

area estimated by Xcalibur™for LC-HRMS data was different in comparison to peak

area, for respective list of analytes, estimated from averaged mass spectral profile using

MQ. A significant Pearson’s correlation coefficient for a pairwise comparison across these

different modes of peak area estimation was observed. This represents merits of preserved
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linear dependency of ion abundance with signal count for data transformed using MSAvg

(Table 2.1). Further these peak areas were evaluated following sample test for equal

variance (F-test). Significantly low estimated F-test statistic (in comparison to F-critical

value of 0.0256) and p-value for rejection of null hypothesis, ratifies the unhindered

quantitative nature of peak response following data transformation (Table 2.1).

Further, the output results of absolute quantitation of metabolites using MQ following

LC-HRMS analysis is shown in Table 2.2. Results reported contain the comparison of

slope and linear regression coefficients obtained for the calibrations processed using MQ

and Xcalibur™. Regression coefficients of above 0.9 r2 indicate excellent linearity for

the calibration curves within the used concentration range of 0.025 - 19.98 µM, that are

estimated in close proximity, by both MQ and Xcalibur™. The slopes for both the cases

were also a close match largely and indicate similar responses and sensitivity for the

methods. Two sets of QC samples to cover the broad calibration range were used to test

the calibrations generated. The results obtained were reported as percentages relative to

the expected recovery of 100%. The recoveries for all the amino acid QC samples for both

the higher and lower concentration ranges were quite close to the expected recoveries and

well within a generally acceptable precision of 15% relative standard deviation (%RSD).

The data for proline shows greater deviation between MQ and Xcalibur™data. Most

significantly, the recoveries obtained for the rest of the amino acid QC samples using

MQ and Xcalibur™were strikingly similar. This is in spite of the fact that input for

Xcalibur™was native raw data format, while for MQ it was transformed into averaged

spectrum format. These results clearly establish that the spectral averaging preserves the

quantitative characteristics of the data and benchmarks both qualitative and quantitative

analysis using MQ.
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Table 2.1 Statistical evaluation of quantitative features preserved post data transformation
into two dimensional mass spectral profile

Mean peak
area

(MQ)

Mean peak
area

(Xcalibur™)

Pearson
correlation(r2)

F-test
statistics

F-test
P value

Ala 7.90E+05 2.30E+07 0.9900 9.17E-11 1.83E-10

Arg 2.73E+06 1.87E+08 0.9974 2.47E-09 4.94E-09

Asn 2.39E+05 1.67E+07 0.9678 1.45E-09 2.90E-09

Asp 4.49E+05 3.22E+07 0.7993 4.42E-11 8.83E-11

Cyst 4.23E+05 2.90E+07 0.9999 3.94E-09 7.87E-09

Glu 4.08E+05 2.77E+07 0.9894 1.27E-09 2.55E-09

Gln 8.40E+06 5.70E+08 0.997 1.12E-09 2.24E-09

Gly 1.15E+06 7.31E+07 0.9995 1.97E-10 3.93E-10

His 1.33E+06 9.16E+07 0.9997 1.50E-09 2.99E-09

Leu 4.06E+07 2.78E+09 0.9815 8.11E-10 1.62E-09

LYS 4.31E+06 2.95E+08 0.9999 1.05E-09 2.10E-09

MET 1.97E+06 1.35E+08 0.9995 1.15E-09 2.31E-09

PHE 6.22E+06 4.25E+08 0.9904 2.29E-09 4.59E-09

Pro 3.43E+06 7.34E+07 0.9982 5.34E-10 1.07E-09

Ser 1.22E+06 8.23E+07 0.9997 5.88E-10 1.18E-09

Thr 4.01E+06 2.77E+08 0.9989 7.31E-10 1.46E-09

Try 4.59E+05 3.12E+07 0.9996 4.47E-09 8.93E-09

Tyr 2.14E+06 1.47E+08 0.9993 2.43E-09 4.86E-09

Val 2.12E+07 9.58E+08 0.9714 1.04E-09 2.07E-09
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MQ was further tested successfully for the analysis of data acquired using chromatog-

raphy free direct ionization source, MALDI coupled with TOF MS for metabolite dis-

ease biomarkers (S-adenosylmethionine: SAM, S-adenosylhomocysteine: SAH) and

AP-MALDI coupled with Q-Exactive HRMS for pharmaceutical drug (Atorvastatin).

SAM and SAH concentration levels are considered as a measure for cellular DNA methyla-

tion capacity and have been implicated in various pathological disorders136,137. Whereas,

atorvastatin is one of the most prescribed drugs belonging to the ‘statin’ class for treating

high cholesterol levels. The calibration models were successfully generated and recoveries

of QC samples were also estimated. Table 2.3 summarizes the quantitative information

obtained from MQ data processing subsequent to data acquisition. The calibration

ranges were within the concentration range of 0.5 to 10 µM for SAM, SAH analysis and

1 to 10 µM for atorvastatin. Calibration curves with excellent linearity were obtained

with regression coefficient of above 0.9 r2 for all three analytes. Two QC samples, which

cover higher and lower concentration range of calibration model, were used to estimate

quantitative performance using measures of percentages recovery and percentage relative

standard deviation for the estimations. For most of the QC samples % recovery obtained

were closer to expected recovery concentration and with estimation precision below 15%

in terms of %RSD. For SAM and SAH, % recovery estimated for lower concentration

range QC was lower, especially with a higher deviation across replicates for SAM. This

can be attributed to the spot-to-spot variations commonly observed in MALDI analysis,

which can be improved using startegies like stable isotope labelling. Nonetheless, these

results showcase the applicability of MQ for quantitative estimation of analytes using

chromatography free direct ionization sources. Previously, MQ based quantitation of

analytes from complex matrices such as plasma, urine and food matrix using MALDI

based direct MS methods have also been reported.112,131

In addition, to showcase the specificity and sensitivity offered by MQ for feature selection
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Table 2.3 Quantitative information obtained from MQ data processing subsequent to MALDI-
HRMS analysis of various analytes

Analyte Ion
(m/z)

Calibration
range

(in µM)
Slope Regression

QC sample 1 QC sample 2

µM
%

Recovery
(% RSD)

µM
%

Recovery
(% RSD)

SAMa 399.1395 0.75-10 0.054 0.97 2.5 78 (22.5) 8 110 (10.4)

SAHa 385.1286 0.75-10 0.237 0.93 2.5 73 (10.9) 8 116 (12.2)

Atorvastatinb 559.2603 1-10 0.089 0.96 3.5 100
(12.62) 7.5 102 (5.3)

Note: aBiomarker metabolites analysed using Waters Synapt HDMS™MALDI Q-TOF.
bPharmaceutical drug analysed using Q-Exactive (Thermo Scientific) equipped
with AP-MALDI from Mass Tech Inc. USA.

and quantitative estimation of metabolites from complex biological matrix, extracellular

milieu from a glioblastoma cancer cell line U87MG and its phenotypically different

subpopulation of neurospheroidal (NSP) cell line was analyzed. LC-HRMS data of cell

culture samples was used for comparative evaluation of relative quantitative estimations

across the two cell lines (U87MG/NSP), for a set of amino acids, using relative quantita-

tion module of MQ and ‘Quan browser’ module from proprietary software Xcalibur™.

The results for this analysis are illustrated in Figure 2.4. As expected all the amino

acids showed a comparable estimation of relative quantitative profiles, across MQ and

Xcalibur™. These results further illustrates application of MQ for reliable quantitative

analysis of metabolites from a complex biological matrix, with the help of time averaged

mass spectral profile of LC-HRMS data.
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Figure 2.4 Quantitative performance of MQ in comparison to proprietary software Xcal-
ibur™for a list of metabolites from cell culture samples. Analyte names are specified as three
letter codes for amino acids. Cystine is the oxidised dimer form of amino acid cysteine.

2.5 Conclusion

Significant mass resolution offered by modern mass analyzers has encouraged the appli-

cation of full scan mode MS analysis for reliable metabolite feature annotation along

with qualitative and quantitative analysis. In order to accomplish this, a rigorous set of

constraints that take into account high mass accuracies for peak qualification along with

naturally present isotopic peak distributions are widely accepted criteria31,92,134. MQ

incorporates the efficient MIDAs algorithm82 for relative isotopic abundance confirmation

towards this end. A high-throughput database query workflow and PCA based multi-

variate clustering analysis can further benefit qualitative metabolic profiling. MQ offers

flexibility with features such as, (a) availing mzXML and ASCII input data formats that

are independent from proprietary raw data, (b) user configurable parameters for peak

feature detection and (c) compatibility with both chromatography based and direct mass

spectrometry methods. Seamless Qual-Quan integration is feasible using MQ through the

benchmarked quantitative module that caters to both relative and absolute quantitation.

Applications beyond the experimental scenarios showcased in this chapter are possible

and include broad areas of food, pharmaceutical and clinical analysis.





CHAPTER 3

NEST: Tool for high-throughput

estimation of S/N from HRMS data

Schematic for high-throughput S/N estimation using NEST
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3.1 Introduction

Chromatography-free mass spectrometry methods using ambient and direct ionization

sources have found use in a several applications such as pharmaceutical characterization,

bio-molecular identification, forensic studies, food contaminant analysis and targeted

metabolite analysis.30,73,81,112 Together coupled with high resolution analyzers such as

time of flight mass analyzer (TOF), reliable and in some cases, semi-quantitative analysis

is also feasible. In an analysis coupled with chromatography, background signal response

in proximity of the resolved chromatographic peak, constituting mostly chemical noise

based ion current response, is generally used for the determination of signal to noise

ratio (S/N) and determining the limits of detection.69,72 Direct MS analysis necessitates

appropriate approaches for S/N determination in the absence of chromatographic separa-

tion.

Broadly mass spectral noise specific to a mass spectrometer can be attributed to: (a)

white noise, which is also termed as electrical noise, and is independent of signal response,

(b) shot noise, which is also known as Poisson noise, due to the discrete nature of signal

response, and (c) chemical noise, which originates from matrix ions forming weakly

bound complexes of analyte ions with solvent molecules.138 The amount of contribution

from these three sources could vary as per different mass analyzers. TOF analyzer

data shows confluence of all the three with strong influence of chemical noise, whereas

FT-MS analyzer like, Orbitrap, has minimal chemical noise in comparison to shot noise

along with thermal noise from preamplifier.139,140 Mass spectral noise poses as one of

major limiting factor in reliable detection as well as quantitation of trace level analytes.

Various approaches for S/N ratio estimation ranges from a simple visual discrimination,

variance from background signal69 to complex fitting of signal or noise model to mass

spectrometry data.138 These methods provide variable performance for different type of
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analyzer and hence it becomes difficult for their orthogonal usage when one is performing

a comparative analysis. Apart from fitting specific analytic equation to mass spectral

profile, numerical estimation of noise can be an alternative.85

Various reports discussing different strategies for estimation of mass spectral noise,

adapted for diverse set of mass analyzers, can be found in existing literature.138,141,142 A

common approach is to use either maximum peak-to-peak signal deviation or median

absolute deviation (MAD) in the baseline response for a selected region with low peak

density143 or across mass range of analysis.144 But such estimations can be an over

estimate for the background noise when using the maximum amplitude of background

variation in specified region. They can be skewed sometimes because of the stochastic

nature of electronic noise, and inapplicable to newer generation Fourier transform mass

spectrometry (FT-MS), where the acquisition software removes background signal and

replace it with zero-padding.142 A different approach for estimation of S/N using spectral

data, has been demonstrated earlier.85 The underlying assumption was that selected

spectral region is abundant with background peaks for accurate estimation. Though, this

strategy could fairly estimate noise and baseline values of the spectral profile from data

originating from most mass analyzers, it suffers for data with less intense background

response or sparsely distributed background peaks.

Herein, we present NEST, an algorithmic implementation of this strategy to offer workflow

automation, using open source GNU Octave language. Adaptation and benchmarking of

the algorithm for non-chromatographic direct high resolution mass spectrometry analysis

workflows is demonstrated using dimethyl arginine as an example.85

Availability and implementation: Freely available on web at (for academic use

only): http://bit.ly/NEST-MS. NEST is implemented in GNU Octave and supported

on Linux and Microsoft Windows system having GNU Octave platform installed. Ad-

ditional details and processed data used for this dissertation work can be found at

http://bit.ly/NEST-MS
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http://bit.ly/dissertationDataAG.

Credits towards sample preparation: Samples for simulated urine matrices repre-

sentative of normoglycemic and proteinuric conditions were obtained from collaborative

experiments with research colleague - Dr. Nivedita.

3.2 Materials and Methods

3.2.1 Chemicals

Commercial standards of ultrapure 2,5-dihydroxybenzoic acid (2,5-DHB), NG, NG’-

dimethyl L-arginine di (p–hydroxyazobenzene – p’-sulphonate) salt (SDMA), NG, NG-

dimethyl arginine hydrochloride (ADMA), potassium chloride, sodium chloride, urea,

citric acid, potassium phosphate, creatinine, sodium hydroxide, sodium bicarbonate,

bovine serum albumin (BSA), LC-MS grade acetonitrile (ACN), methanol and trifluo-

roacetic acid (TFA) were purchased from Sigma Aldrich. Ascorbic acid was purchased

from Loba Chemie (India). Sulfuric acid was purchased from Merck. Deionised water with

specific resistivity 18.2 MΩ cm−1 was collected from SG ultrapure water unit (Germany).

3.2.2 Sample preparation

In order to represent biological complexity, simulated urine matrices representative of nor-

moglycemic and proteinuric conditions were prepared according to a previously published

protocol.145 For preparing proteinuric simulated urine samples, BSA in concentrations

of 350 µg protein/mg creatinine was added to simulated urine matrix. The prepared

samples were aliquoted and stored at -20°C.

Stock solutions of ADMA, SDMA and 2,5-DHB was prepared in 50% acetonitrile (0.1%

TFA). Mixture of 4 µM ADMA and SDMA was prepared in three different tubes and

evaporated to dryness. 100 µL of different simulated matrices were added to the different

http://bit.ly/dissertationDataAG
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tubes and 300 µL of ice cold methanol was added to each of these tubes. The simulated

matrices were diluted 10 and 50 times with acetonitrile: water (0.1% TFA).

3.2.3 MALDI mass spectrometry (MS) based analysis of simu-

lated matrix

Cross-platform comparative analysis were performed on Waters Synapt HDMS with

the matrix-assisted laser desorption ionization (MALDI) ionization source operated in

reflectron V-positive ion mode and AB Sciex 5800 MALDI TOF/TOF mass spectrometer.

For Synapt, detector voltage of 1750 V was used following manufacturer recommended

detector sensitivity test. Optimized laser source (Nd:YAG, 355 nm) energy was used

for all acquisition of spectra. Root mean square mass accuracy was maintained within

5ppm by instrument calibration with PEG (mixture of PEG 200, 600 and 1000) before

acquisition for samples.

1 µL of matrix was spotted on individual wells of MALDI target plate and dried in

air. All the simulated matrices and their dilutions were spotted on an AB Sciex 96-well

MALDI-TOF/TOF target plate pre-spotted with matrix. Only normoglycemic simulated

urine matrix was also spotted on Waters 96-well MALDI Q-TOF target plate pre-spotted

with matrix.

3.3 Results and Discussion

3.3.1 Algorithm for estimation of noise using NEST

Detailed description of the S/N estimation has been previously reported.85 The spectral

profile is transformed into a paired list of m/z and ion abundances in either profile mode

or centroid mode (needed for FT-MS data) to process data using the current algorithm.

The following user defined parameters are required by the algorithm, (a) m/z of peak
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of interest, (b) m/z extraction window (MEWpeak) size represented in ppm for signal

identification, (c) m/z range (MEWbackground) for noise estimation, and (d) bin size for

density profiling of the peak intensities in the defined MEWbackground. A subset of the

paired list of m/z and ion abundances in the proximity of peak of interest are extracted

within the MEWbackground. This subset list is processed to identify the S/N for peak of

interest by the following equation:

S

N
= 1

n
(s − b) (3.1)

Here, s denotes signal response for peak of interest, while b and n denote the baseline

intensity and noise intensity within MEWbackground. Figure 3.1a, illustrates the estimation

of s within the specified 50 ppm MEWpeak and 4 Da MEWbackground. A cumulative

distribution function profiling the number of ion abundances having a signal response

equal or below a given intensity value was estimated for the above ranges (Figure 3.1b

- solid blue line). First derivative transformation of this distribution function, which

provides the probability density function of ion abundance, is also depicted (Figure 3.1b

- dashed red line). This is also a representation of the frequency of occurrence of the ion

abundances under consideration. The highest point in this probability density function is

a measure for the baseline intensity b, while the peak distribution of probability density

function, FWHM of peak, denotes noise intensity n. The signal-to-noise ratio can thus

be calculated by following Equation 3.1.

3.3.2 Benchmarking with other methods

Performance of NEST was evaluated vis-à-vis methods and tools currenty available either

as freeware or instrument specific software. These are US pharmacopeia method146,

MALDI-Quant tool’s S/N estimation method, mMass feature annotation tool, Data

Explorer™(AB Sciex tool for instrument data analysis) feature annotation tool.
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(a) Spectral region of interest (b) Density profile for the baseline in-
tensity

Figure 3.1 Data processing for estimation of S/N for peak of interest. (a) Mass spectral
window showing analyte peak of interest. Highlighted dashed lines represent user specified mass
extraction window (in ppm) for peak selection along with background signal used for analysis
(bottom horizontal) line. (b) Density profile for the baseline intensity. Solid blue line represents
cumulative distribution profile for ion abundances for the baseline noise. The dashed red line
denotes the frequency of occurrences for ion abundance over the range of values studied.

All these methods utilize different approaches to estimate noise and S/N ratio and hence

such study will provide a rigorous outlook for benchmarking our method. In brief, the US

pharmacopeia method146 calculates noise as difference in observed maxima and minima

of background ion intensity signal in proximity of analyte peak spanning at least 5 times

of its FWHM. MALDI-Quant utilizes R platform base median absolute deviation (MAD)

method that estimates median of the absolute deviation from median of ion intensity

values. Open source mMass calculates S/N ratio with Equation 3.1, by estimating ion

intensity for analyte peak signal and baseline signal from spectral noise as median of all

data points that can be tuned by user set parameters. Data Explorer™annotates peaks

in similar fashion by using background signal from user specified trace of spectral region

to estimate root mean square (RMS) noise. Amongst these, for the US pharmacopeia

published method, one needs visual determination of the background maxima and minima,

making it susceptible to user-to-user variation. In the case of MALDI-Quant, estimation

of a single noise signal value per spectra is performed. But, shot noise component of

signal noise is proportional to square root of the analyte signal intensity. Hence, spectra
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that consist of peaks with intensity spanning over multiple orders of magnitude, such

peaks could influence noise intensity in proximal m/z range. It would thus be apt to

estimate noise based on background signal in the vicinity of analyte peak of interest.

3.3.3 Estimation of S/N of dimethyl arginine

Matrix effects in samples of biological origin present a challenge in the accurate mea-

surement of metabolites endogenously present. Dimethyl arginine is a marker for renal

insufficiency and is present in urine. In the case of urine from renal subjects, the presence

of protein and potential binding of the metabolite might influence the signal and pose

difficulty in comparisons with normal subject samples. In such cases, appropriate dilution

with or without solid phase extractions are used to optimize the S/N. The algorithm

developed herein can serve as a useful tool in such method optimization especially for

direct mass spectrometry analysis.

Towards this end, MALDI MS of dimethyl arginine spiked at physiologically relevant

concentrations in simulated urine was performed. Surrogate urine was prepared as per

existing protocols and protein content was added separately to simulate the diseased

condition. A series of 2 dilutions levels on the samples (10x dilution and 50x dilution)

were studied. Noise and S/N estimations using this algorithm described have been

showcased in Figure 3.1 (A and B) with comparisons using existing methods / algorithms

(Figure 3.2). All these methods show enhanced S/N across dilution levels from both types

of samples, which can be attributed to lowered matrix effects. As expected, dilution of

urine samples results in an increase in S/N value for the dimethyl arginine. This can be

attributed to the ion suppression effect of ion source. Owing to the biological complexity

with biomolecules ranging in different concentration levels, analytes present in trace

concentrations have to compete for ionization from other pool of biomolecules leading to

ion suppression or enhancement effects. Dilution of samples would address such undue
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(a) Simulated normoglycemic urine
samples

(b) Simulated proteinuric urine sam-
ples

Figure 3.2 Effect of different levels of dilution on noise and S/N values for dimethyl arginine
from two classes of simulated urine samples. (a) Normoglycemic (NGU), (b) Proteinuric (PU).
Dilution levels: 10x dilution – green (NGU), yellow (PU), 50x dilution – blue (NGU), red (PU).
Scatter plot at the top represents average noise estimated from replicate samples with standard
deviations as error bars. Box plot at the bottom represents average S/N estimation showcasing
minima, 1st quartile, median, 3rd quartile and maxima from replicate samples.

ion suppression effects. These trends can be seen in Figure 3.2 from S/N estimation using

all methods. DataExplorer™estimates higher noise values (∼1) leading to lower S/N

values compared to other methods. As a measure of performance evaluation using these

methods, we have compared the standard deviation of predictions from replicate samples

across different methods. It can be observed that the deviation in predicted signal noise

value is higher for US pharmacopeia method as a result of stochastic nature of baseline

noise in addition to manual errors from user interventions. For S/N estimation, a higher

variation in calculated values for 50x proteinuric sample sets was observed for US pharma-

copeia and mMass tool. Similar higher variations can be observed for 50x normoglycemic

urine mix sample sets for S/N estimation following methods from US pharmacopeia,

MassQuant and mMass tool. Overall, performance of NEST for S/N estimation was

found to be at par with publicly available data anlysis tools, such as MALDI-Quant and
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Table 3.1 Comparison of S/N and noise value estimation across different MS platforms for
normoglycemic simulated urine samples

Average RSD

AB SCIEX TOF/TOF
S/N 1.03 47.81

Noise 0.39 21.8

Waters Synapt G1
S/N 170.08 46.44

Noise 12.60 13.92

mMass. Consistency of noise estimations across replicates (Figure 3.2), having minimal

variance, and amenability to use in high-throughput manner using batch mode, makes it

a versatile tool for analyst pursuing analytical method development.

For a cross platform comparison, we have analyzed data generated using AB Sciex 5800

series MALDI TOF/TOF MS instrument and Waters Synapt G1 HDMS instrument

in tandem with MALDI ion source. As a case study, dimethyl arginine mix in normo-

glycemic simulated urine matrix was analyzed using both of these instruments and results

are illustrated in Table 3.1. The estimated values for S/N along with noise were an

order higher in case of data generated using Waters Synapt instrument compared to AB-

Sciex TOF/TOF instrument. The difference in the instrument architecture for analyzer

and especially detectors relating to differential sensitivity and ion signal response can

be expected. This might lead to the altered estimates for noise and subsequent S/N values.

3.4 Conclusion

Advancements in high-resolution mass spectrometry have enabled high-throughput anal-

ysis by benefitting from analyte coverage over a broad mass range from individual scan.
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Thus increased opportunities to explore direct mass spectrometry approaches devoid of

chromatography can be observed in recent past. In order to offer at par accuracy and

robustness with such chromatography-free analytical workflows consideration towards

adaptation of data analysis strategies is equally important. NEST offers automation for

high-throughput signal-to-noise ratio estimation for chromatography-free high-resolution

mass spectrometry (HRMS) data in MS platform independent fashion. The current algo-

rithm performs well in comparison to the estimation following various freeware software

tools along with instrument specific proprietary data analysis tools. Signal-to-noise ratio

forms the primary criteria in reliable analyte feature annotation and hence becomes

vital for both qualitative as well as quantitative workflows. An automated tool such as

NEST not only offers ease of evaluation of novel direct MS workflows but also a method

consistent across various MS platforms that makes it a better alternative method for

reliable feature extraction post NEST’s integration into any open source data analysis

tools.





CHAPTER 4

Interfacing HRMS data with

genome-scale metabolic modeling

Integrative analysis using multi-omic data for system-level interrogation
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4.1 Introduction

The need to develop tools for personalized medicine and individualized therapy is height-

ened especially for diseases like cancer where heterogeneity plays a big role. The metabolic

coverage offered by high-resolution mass spectrometry (HRMS) based quantitative work-

flow offers a means to differentiate diseased phenotype from normal cells. But for

development of efficient and selective treatment strategies, reprogrammed metabolic

networks can be exploited. Although, HRMS based metabolic profiling can be availed

to decipher metabolic reprogramming, quantitation of complete metabolome becomes

increasingly complex. In order to accelerate the pace of therapeutic research, a number

of computational tools have been developed. Constraints based modeling (CBM) using

genome scale metabolic (GSM) network reconstructions of human metabolism have

recently gained interest for formalizing potential novel targets for cancer treatment.123,124

CBM takes into account mass balance, thermodynamic constraints and context specific

‘omics’ data, which is crucial for building system specific contextualized GSM model that

can offer interrogation of specific targets for therapy. Amongst other omic platforms,

metabolic profiling using HRMS have been exploited to build context specific models

that were validated with growth or metabolic phenotypes.114,147,148 The simplicity and

flexibility of interrogating constraints based models with an ever-increasing list of data

acquisition methods extends their application domain from measurement tools to tools

used to discern functional or mechanistic insights of cellular metabolism for cellular

engineering or individualized therapy.149 In this chapter, constraints based metabolic

models were built for glioblastoma cancer cell lines U87MG and a phenotypically different

subpopulation, neurospheroidal (NSP) cell line, using HRMS based metabolic temporal

profiles as context specific constraints. These models were evaluated for their phenotypic

predictions. Further, flux sampling analysis predicted characteristic metabolic network
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reprogramming for the differential growth and maintenance needs of U87MG and NSP

cancer cell lines. Since the number of reactions participating in GSM network exceeds

the number of metabolites, making it an underdetermined system, the optimal solution

for any system constrained using metabolic uptake/secretion profiles alone, is not unique.

Additional ‘omics’ data platforms such as ‘genomics’, can also be integrated into GSM

models to further reduce flux space offered by optimization process.

One purpose of developing these methods is to accurately predict context-specific intra-

cellular metabolic flux distribution and the other is to develop tissue specific models for

multi-cellular organisms and probe computational phenotypes. These tend to provide

holistic as well as mechanistic understanding of metabolism and can be extended to

different levels of cellular architecture using interpretations from molecular portraits.

Several algorithms have been developed for the incorporation of gene expression data into

flux balance models. These include (a) Gene Inactivity Moderated by Metabolism and Ex-

pression (GIMME) algorithm150, (b) Integrative Metabolic Analysis Tool (iMAT)151,152,

(c) Metabolic Adjustment by Differential Expression (MADE)153, (d) E-Flux154, and

(e) Probabilistic Regulation Of Metabolism (PROM)155. Based on the gene expression

data, thresholds are set to tightly constrain reactions in the metabolic network reconstruc-

tion. The flux cone is thus capped by changing the upper bound on a reaction based on a

Boolean representation that functionally connects the reactions to the genes/transcripts.

For the GIMME, iMAT, and MADE algorithm, gene expression levels in the data are

reduced to binary states (by setting the upper bounds of a reaction to some large constant

or zero), the E-Flux method however attempts to directly incorporate mRNA levels

or transcript abundance data as maximum feasible rates of reactions in the FBA opti-

mization problem. Although, E-Flux represents a more physiologically accurate reaction

activity gradient than other parallel algorithms, the use of a direct linear relationship

between transcript abundances and corresponding reaction rates, lacks a biological mech-
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anistic basis. PROM is a method that integrates regulatory and metabolic networks.

It calculates the probability of a metabolic target gene being expressed relative to the

activity of its regulating transcription factor from a large dataset of gene expression

data, and the flux maxima of the metabolic reaction associated with the metabolic target

gene is constrained by a factor of this probability. All the algorithms are based on the

assumption that mRNA transcript levels are a strong indicator for the level of protein

activity.

We have developed an algorithm ScalEX to integrate gene expression data in an upgraded

human metabolic reconstruction RECON1156 and represent cancer cell lineages for 9

different tissues from NCI-60 panel (Table 4.4). ScalEX contextualize upper bounds on

the reaction flux to shrink solution space with the aid of global gene expression profile

parsed through a non-linear function. The non-linear function involves a scaling exponent

that is contextualized and can thus define the cell type or lineage. Such application

of constraints to the flux balance problem allows the optimality criterion to predict

growth rates for cancer cells, determine flux distribution patterns, identify rigidity of the

networks and ultimately explain the heterogeneity of all cell lineages. Comparisons of

in silico model predictions with experimental data for growth rate of cell line models

from NCI-60, were used as primary validations. These results are just representative of

the wide spectrum of applications plausible with in silico system level models that can

eventually fill a critical need for predictive models of tumor growth, proliferation and

metabolic outcomes in personalized medicine.

Availability and implementation: Freely available on web at (for academic use only):

http://bit.ly/ScalEXcode. ScalEX is implemented in Perl, GNU Octave and Python. It

is supported on Linux and Microsoft Windows system having respective command-line

interface for Perl, GNU Octave and Python installed. Additional details and processed

data used for this dissertation work can be found at http://bit.ly/dissertationDataAG.

http://bit.ly/ScalEXcode
http://bit.ly/dissertationDataAG
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Credits towards project supervision and sample preparation: Bulk of research

work described in this chapter was performed under supervision of Dr. Anu Raghunathan.

Extracellular sample extracts for two neuronal cancer cell lines (U87MG and NSP) were

obtained from cell culture experiments performed by Rupa as a part of collaborative

study with Dr. Anu Raghunathan.

4.2 Materials and Methods

4.2.1 CBM models for cancer cell line U87MG and NSP using

LC-HRMS based metabolic profiles

Sample extraction for metabolic profiling using LC-HRMS

Extracellular cell culture extracts, growth statistics and exome sequencing based genomic

variants were obtained for two neuronal cancer cell lines (U87MG and NSP) that were

characterized in a parallel published study.132 Cell line for U87MG (HTB-14; Human

Glioblastoma Multiforme from ATCC; IC50T MZ : 745.6 µM ) and its phenotypically

different subpopulation of neurospheroidal (NSP) cell line (IC50T MZ : 1039 µM) were

treated with 10 µM dosage of alkylating agent temozolamide (TMZ). Growths of these cell

lines were profiled via cell count over a period of 216 hours (9 days). In case of genomic

variants based on exome sequencing profile for both cell lines, functional characterization

was achieved using web tool Oncotator157 (http://portals.broadinstitute.org/oncotator/),

for annotation of mutations into synonymous or non-synonymous category. For LC-

HRMS based temporal quantitative profiling of extracellular metabolites, samples were

harvested every 24 hours over a period of seven days. A 100 µL of sample extract was

mixed with 400 µL of chilled methanol (previously stored in -80°C). The solution was

thoroughly mixed for 2 min followed by centrifugation for 15 min at 5000 rpm (4°C).

http://portals.broadinstitute.org/oncotator/
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The tubes were carefully removed, 300 µL of supernatant was withdrawn and transferred

into a fresh tube. A two-step serial dilution of supernatant was performed using 50%

acetonitrile in water. In the first step, 50 µL of supernatant was thoroughly mixed with

450 µL of diluent. This solution was further diluted by mixing 100 µL of sample solution

with 400 µL of diluent. 10 µL of sample solution for each time point was pooled for

meta-analysis post LC-HRMS metabolic profiling, with the help of multivariate statistical

tools. All the solutions were thoroughly mixed before analysis using LC-HRMS system.

LC-HRMS based metabolic profiling

The LC-HRMS instrumentation consisted of autosampler (Accela Open Autosampler,

Thermo Scientific) and liquid chromatograph (Accela 1250, Thermo Scientific) in tandem

with the Q-Exactive (Thermo Scientific) high resolution mass spectrometer equipped

with a heated electrospray ionization (HESI) interface. Instrument operation and data

acquisition was performed using the Xcalibur™platform software (Thermo Scientific). A

C18 Hypersil gold column (10 cm x 2.1 mm x 3.0 µM) by Thermo Scientific was used

for eluting the samples prior to the ESI. The mass analyzer was operated in positive

ion mode and data was acquired in triplicates within a mass range of 60-900 m/z at

70,000 FWHM resolution. For quantitative analysis, mammalian cell culture medium

standard mixture (composed of DMEM - Sigma-Aldrich, D6046, supplemented with

MEM Non-essential amino acids solution - Sigma-Aldrich, M7145) was serially diluted to

generate calibration curves for the ranges reported in Table 2.2. A total of 10 calibration

levels and 2 quality control (QC) samples were used. These samples and standard mix

along with extracellular sample extracts were uniformly spiked with the 2 µM solution of

verapamil as internal standard to evaluate the performance and for data normalization.

The solutions were thoroughly mixed and were then analyzed on LC-HRMS system.
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Following the acquisition, the raw data was analyzed using proprietary ‘Quan-browser’

module from Xcalibur™for quantitative estimations.

Generation of core cancer metabolic model for U87MG and NSP

A published model for central core metabolism148 consisting of 382 reactions, that are

highly conserved in cancer, was used to build U87MG and NSP specific models. The

model consisted of reactions involved in metabolic functions such as, biomass precursor

synthesis, core energy metabolism, co-factor transfer and regeneration reactions, and rel-

evant pathways for high secretion/uptake metabolites etc. Neuronal cell specific biomass

composition was determined for U87MG and NSP to define biomass macromolecular

composition as conversion of individual metabolite precursors into biomass, as illustrated

for neuronal cancer cell line in previously published article from Prof. Palsson’s research

group.148 This biomass reaction was also constrained using experimental growth rates

of 0.021 hr−1 and 0.0096 hr−1 for U87MG and NSP, respectively. Systemic effects of

Figure 4.1 Illustrative workflow of building context specific metabolic models for U87MG and
NSP
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genomic variants on cellular metabolism are well known.158,159 In order to incorporate

enzymopathic effects of system specific unique mutations for these two cell lines, a list of

reactions were identified (as shown in Table 4.1), following gene-protein-relation having

genes with mutations. Such intracellular reaction’s flux bounds was constrained following

Equation 4.1.160

newVi,max = vi,min + vi,min − vi,max

4 (4.1)

In Equation 4.1, vi,min and vi,max represent feasible flux range in each reaction from an

unaltered model system, identified using flux variability analysis (FVA). Models for

both these cell lines were further contextualized using metabolic footprinting data from

LC-HRMS based analysis. By making use of the quantitative metabolic estimations

for a list of 21 metabolites (see Figure 4.2), rates of nutrient uptake/release were

calculated by plotting the concentrations (µM/gDCW) over time. The slope of the

curve was used to calculate the maximum flux through respective exchange reactions as

showcased in a published research study.148 Figure 4.1 illustrates schematic representation

of contextualized model developed using various phenotypic information, discussed above

for U87MG and NSP cancer cell lines. These contextualized models were evaluated

following their in-silico phenotypic predictions using constraints based methods such as,

flux balance analysis and uniform random flux sampling of flux solution space.

4.2.2 Genome scale metabolic models contextualized using gene

expression constraints

The development of gene expression integrated ScalEX model of human metabolism

primarily requires (i) the human metabolic network reconstruction (ii) a flux balance

model with environmental conditions and (iii) gene expression data sets for a particular
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Figure 4.2 Exchange profiles of U87MG and NSP cell lines for list of metabolites. To illustrate
differential uptake profiles, concentration profiles are max-normalized across each row. Analyte
names were specified as three letter code of amino acids. Glc and Lac represents profiles for
glucose and lactate, respectively.
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Figure 4.3 Schematic pipeline for ScalEX algorithm. GEmax defines maximum gene expression
intensity while GImin is minimum gene expression intensity from gene expression data. α and
β in mathematical transformation function defines scaling constant and exponent, respectively.
Following sections describes α and β in detail.
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cell type/lineage. A pipeline for ScalEX algorithm implemented using Perl scripting

language, is represented in Figure 4.3. Any additional information regarding exhibited

phenotypes and objectives that are biologically or clinically relevant, are useful to validate

the model.

Gene expression data processing

The gene expression data sets accessed from NCBI-GEO databases are processed to rescale

the gene expression intensities. The gene expression intensities are normalized within a

particular data set to the maximum absolute expression value in the data set. Such a

normalization, essentially a linear transformation on the original gene expression data set,

results in rescaled values in the range [0,1]. If the Xmin and Xmax are the minimum and

maximum values, respectively, for gene expression intensity in the microarray dataset,

the new values will be scaled in the range [Xmin / Xmax , 1]. This makes comparisons

across data sets and microarray platforms feasible and allows for accurate interpretations.

Considering the specificity and sensitivity of gene expression profiling methods, the

interpretation of ‘zero’ intensity may be related to measurement sensitivity of method in

contrast to the gene actually being turned off. Hence, to avoid such misinterpretations

we have replaced zero intensity values by the minimum observed absolute gene expression

intensity. These normalized values from the array are then scaled to the upper bound of

the possible flux using a transformation function defined by ScalEX as discussed in the

following subsection.

Scaling mRNA levels to reaction flux

ScalEX as the name suggests implements a scaling function that correlates the observed

gene expression intensity/mRNA abundance to the maximum velocity of the enzyme

catalyzed reaction i.e. maximum flux (upper bound vj) that the catalyzed reaction can
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carry. The maximum flux, Vi,max is scaled to the mRNA transcript/gene expression data

using an exponential scaling function (as shown in Equation 4.2), with a scaling constant

‘α’ and a scaling exponent ‘β’.

Vi,max = α(Xi)β (4.2)

In Equation 4.2, Xi is the gene expression intensity of gene i, which codes for enzyme

that catalyzes reaction j.

Calculation of scaling parameters

The scaling exponent ‘β’, is a conditional metabolic-transcript fraction (quite akin to

a mole fraction of chemical species). It defines the theoretical metabolic expression

potential of any cell based on its gene expression under given micro-environmental

conditions. Thus, the exponent β is defined as the ratio of the so-called total metabolic

gene expression to the total gene expression of cells.

β =
∑n

i=1 Xmeti∑m
i=1 Xi

(4.3)

Xmet = gene expression of metabolic function

The exponent β thus reflects a non-linear regulation transposed on gene expression, on

account of post transcriptional and post translations effects and dictate the tacit relation

between mRNA and Vmax.

Empirical value is set for ‘α’ as 10, defining the two orders of magnitude difference from

the scaling exponent. The scaling constant α, can be considered as reflective of kcat

values of the enzyme, which is known to have median value of 10 across prokaryotes and

eukaryotes organisms.161.

Apart from the non-linear relationship represented by Equation 4.2, between mRNA
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abundance level and Vmax, empirical studies for alternative linear relationship function

(instead of exponential, multiplication of β with gene expression) and different values

for α ranging over orders of magnitude, were also carried out. It was observed that

the transformation function represented by Equation 4.2 with α = 10 shown better

performance.

Using Boolean expressions of gene protein reaction relation to define flux

Boolean rules represent the gene protein reaction relation (GPR), that essentially specify

gene combinations necessary and/or sufficient for a protein catalyzed reaction to be

functional or to carry flux in a cell. The simplest case of a one to one relation between

gene and reaction as for phosphoglucose isomerase PGI, which can be reflected as,

“2821.1 ⇒ PGI”

PGI ≡ PGI

GPRs are Boolean logic expressions that can be written using standard operators AND

and OR. Thus for multi-gene proteins, protein complexes and isozymes, GPR relationships

are complex and are utilized for scaling mRNA abundances accordingly for catalyzed

reaction rates. Intuitively, the AND operator will be limited by the lowest expressing

gene and hence reduces the capping vector to the minimal expression value amongst the

genes required for function, while the OR operator increases the capping vector to include

activity of all isozymes. The GPR for succinate dehydrogenase in human indicates 4

subunits coded by transcripts 6389.1 (SdhA), 6392.1 (SdhB), 6391.1 (SdhC) and 6390.1

(SdhD) to form the functional protein SDH. So, the rule would be
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“SdhA and SdhB and SdhC and SdhD ⇒ SDH”

“6389.1 AND 6392.1 AND 6391.1 AND 6390.1 ⇒ SDH”

The gene expression of SDH would be proportional to that of the subunit lowest in

abundance.

XSDH ≡ MIN{XSdhA, XSdhB, XSdhC , XSdhD}

The AND operation between transcripts would thus be represented by a minimization

filter.

When either gene can independently decide activity, like isozymes, the OR operation is

used as in Glyceraldehyde 3 phosphate dehydrogenase.

“2597.1 or 26330.1 ⇒ GAPDH”

XGAP DH ≡ XGAP DH1
⋃

XGAP DH2

The OR operation is thus implemented as a union filter.

All multi operation expressions defining complex GPRs follow a combination of rules,

e.g., “(3030.1 AND 3032.1 ) OR 38.1 ⇒ ACACT1”

4.2.3 Constraints based approaches for interrogation of metabolic

reconstruction models

Flux balance analysis (FBA)

FBA is a modeling formalism based on stoichiometry and linear optimization that com-

putes capabilities of metabolic networks. Material balance can be written around a
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system comprising such networks. The consequence of the quasi steady-state assumption

(due to metabolic transients being rapid as compared to cell growth or environmental

changes) is that all metabolic fluxes that lead to the formation or degradation of a

metabolite must be balanced, leading to the flux balance equation

dX

dt
= S · v = 0 (4.4)

wherein S is a m × n stoichiometric matrix of the reactions, m is the number of the

metabolites, n is the number of fluxes, and v is the flux vector of the network. The

elements in S matrix correspond to the stoichiometric coefficients of the reactions. Equa-

tion 4.4 is typically an under determined system of linear equations (more unknown fluxes

than metabolites) and has innumerable possible solutions. When a biologically relevant

objective function is used, only the solution that gives the maximum or minimum value

is relevant and is obtained using the following linear program,

max{vobj}

subject to,

S · v = 0 (4.5)

vmin
i ≤ vi ≤ vmax

i (4.6)

In addition to the mass balance constraints defined by Equation 4.5, upper bound (vmax
i )

and lower bounds, (vmin
i ) are imposed through Equation 4.6, to enforce thermodynamic

reversibility and certain cell-environment characteristics (uptake/secretion rates).

Based on ScalEX, additional constraints are imposed via these bounds on intracellular

maximum reaction rates calculated through the mRNA abundance data. The maximum
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reaction rates calculated using Equation 4.2 are applied to the model based on the

reaction thermodynamics for reversible (Equation 4.7) and irreversible (Equation 4.8)

reactions.

− α(Xi)β ≤ vi ≤ α(Xi)β (4.7)

0 ≤ vi ≤ α(Xi)β (4.8)

The constraints file thus generated using ScalEX can be fed to an updated Human

Recon1 FBA model. Such FBA model for different cancer cell lineages was implemented

in MATLAB R2012b (The MathWorks Inc., Natick, MA, USA). The linear program

was solved with the Tomlab (Tomlab Optimization Inc., Seattle, WA) CPLEX linear

programming solver.

Flux Variability Analysis (FVA)

Plurality of solutions exists for the FBA problem, since the cell can choose multiple flux

distributions to result in a unique objective function. FVA identifies the set of feasible

fluxes at the optimal objective. The method calculates the minimum and maximum

allowable fluxes through each reaction using a double optimization linear programming

approach for each reaction of interest. (Equations 4.5, 4.6).

The FVA problem, an extension of the FBA, is set up as

maxv{vi}/minv{vi}

subject to,

S · v = 0
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vobj ≥ γZ0

vmin
i ≤ vi ≤ vmax

i

where vobj is an optimal solution for (Equation 4.4). γ is a control parameter to define

the problem with respect to the default optimal state (γ = 1) or alternate sub-optimal

network states (0 ≤ γ < 1).

The non-uniqueness of the FBA solution allows calculation of a range of flux that is

feasible for each reaction, thus defining the rigidity and plasticity of the network.

Uniform random sampling of reaction flux

Similar to FVA, properties of metabolic flux states can be deciphered by random sampling

of feasible flux space within the enclosing parallelepiped solution space.160 This can be

achieved by choosing a random point uniformly along each edge of parallelepiped following

Monte Carlo sampling. Equation 4.9 illustrates how random points are chosen within

the solution space.

αi = αi,min + Rn(αi,max − αi,min) (4.9)

In Equation 4.9, Rn is a random number chosen between 0 and 1 while αi,max and αi,min

defines the flux range of feasible flux state along each reaction vector identified using

FVA. These points can then be further compared to the set of constraints imposed on a

constrained based metabolic model, in order to verify whether the random point falls in

solution space.

Solution sampling in this manner not only offers insights about plasticity of metabolic

network but offers latent information about metabolic flux states such as, co-regulated

list of trans-acting metabolic reactions. Additionally, information about rewiring of

metabolic network imposed by system specific constraints can also be elucidated by
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inspecting the population distribution of random sampling for each reaction.160

Flux sampling for U87MG and NSP cell line models was carried out using a Markov

Chain Monte Carlo method of Artificial centering Hit-and-Run (ACHR) Sampler from

COBRA toolbox. Faster mixing and better coverage for irregularly shaped solution

space are the attributes that makes ACHR smapler a better choice over other available

sampling methods. The initial point for the sampler was chosen amongst 1000 warmup

point identified by combining random and orthogonal point. A total of 50000 randomly

distributed sampling points were computed with 1000 iterations between each stored

point. Distribution of individual reaction flux values across the sampling population was

represented as a histogram of feasible flux value and associated frequency in the convex

polytope of solution space. Comparison of such flux distributions across both models for

U87MG and NSP enabled shortlisting of possible metabolic network rewiring pertaining

to these cancer cell models.

4.2.4 Meta-analysis of differential metabolic LC-HRMS profile

For extraction of global metabolic features from LC-HRMS data, publicly available tools,

MZmine2 (http://mzmine.github.io/)42 and XCMSonline (https://xcmsonline.scripps.edu)41

were utilized as described below. For this analysis, metabolic profiles for time pooled

samples of U87MG and NSP cell lines were utilized.

Untargeted systems-level metabolic profiling using MZmine2

For analyte peak feature extraction using MZmine2 (ver 2.30) from LC-HRMS data of

cancer cell lines, HRMS profiles were reduced to centroid mode. Optimal peak picking

parameters with intensity cut-off of 1.0e4 and m/z shift tolerance of 2.5 ppm were used to

generate chromatograms with minimum peak width of 20 secs. Following Savitzky-Golay

smoothing with filter width of 5, these chromatograms were subjected to deconvolution

http://mzmine.github.io/
https://xcmsonline.scripps.edu
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using the local minimum search algorithm. Criteria of 20% minimum relative height,

minimum RT range of 6 secs and maximum peak width of 90 secs were used. Isotopic

peaks and duplicate peaks were removed using tolerance over m/z of 2.5 ppm and RT of

6 secs. To correct any linear or non-linear deviation in RT, RANSAC aligner was used

with over 5 iterations of alignment.

These aligned features were subjected to unsupervised clustering using principal compo-

nent analysis (PCA) to identify differential metabolites across the two cancer cell lines. An-

notations of these extracted features were achieved using an online database search module

within MZmine. Features were queried against the human metabolome database (HMDB)

with mass accuracy of 10 ppm. Annotated features were further mapped to human

metabolic pathway with the help of MetaboAnalyst (http://www.metaboanalyst.ca/)39

using KEGG reference pathway database.

Untargeted metabolic profiling using XCMSonline

Centroided LC-HRMS data was utilized for feature extraction using XCMSonline. Wavelet

transformation based centWave method was used with a 5 ppm tolerance for m/z and

10 to 90 secs chromatographic peak width range. For chromatogram integration, peak

limits were found using a mexican hat based filter with a S/N threshold of 6. Followed

by RT correction using obiwarp method, peak density chromatograms were aligned using

tolerance for RT of 5 secs and 0.015 Da width of m/z slices, as grouping criteria.

Similar to MZmine, XCMS online also offers PCA method to evaluate the extracted

analyte features in a graphical manner to easily identify similar and dissimilar samples,

thus highlighting the variability in the multivariate data set. For annotation of features

and their pathway mapping, XCMS online makes use of Metlin database from within

their web interface. A search criterion of 10 ppm mass accuracy was used.

http://www.metaboanalyst.ca/
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Multivariate analysis of targeted list of metabolites using MetaboAnalyst

For exploratory statistical analysis of metabolic profiles, multivariate analysis tools were

employed with the help of web interface tool, MetaboAnalyst (http://www.metaboanalyst.ca/)39.

Metabolite concentration estimates of time pooled samples for a list of metabolites shown

in Figure 4.2, were used for this analysis. To address the skew in concentration data and

the large range of different metabolites, standard normal variate correction was applied.

Processed data was analyzed using chemometric tools such as, PCA and partial least

square discriminant analysis (PLS-DA) from statistical analysis section of MetaboAnalyst

interface.

4.3 Results and Discussion

4.3.1 Differential metabolic phenotype for cancer cell line U87MG

and NSP

By virtue of quantitative accuracy and analyte coverage offered by HRMS, its application

in metabolic profiling of clinical and biological samples has been widespread.14,26,88,99,132

Extensive list of tools offering statistical interpretations, functional mapping and methods

for variable ranking are available for comprehensive data analysis (refer Table 1.1 for few

open-source tools). Such tools, either make use of targeted list of metabolic quantitative

profiles or extract metabolic features in an untargeted manner. We have made use of two

such popular open-source data analysis tools, MZmine42 and XCMSonline41 for untargeted

metabolic feature extraction and statistical interpretation. Additionally, quantitation

of selected metabolites (shown in Figure 4.2) allowed delineation of differential profiles

across the two cancer cell lines, U87MG and NSP.

http://www.metaboanalyst.ca/
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Statistical clustering of cancer cell lines using targeted metabolic profiles

The temporal quantitative estimation of a selected set of metabolites (Figure 4.2) were

used to estimate cell specific exchange rate constraints for metabolic network models. In

order to evaluate the metabolites in this set that had differential significance, we made use

of supervised clustering algorithm of PLS-DA. Figure 4.4a illustrates the projection score

plot using PLS-DA model with distinct clustering of samples for U87MG and NSP. It is

noteworthy, that PLS-DA models are developed with emphasis on increasing covariance

across input variables (metabolite concentrations) and sample group (U87MG and

NSP). Hence, the weighted sum of squared correlations across partial least square (PLS)

components and input variables, rank metabolites according to their importance in

discriminating the sample groups. The variable importance on projection (VIP) scores

of the input variables for the PLS-DA model are shown in Figure 4.4b. Apart from

glucose and lactate, VIP scores for arginine and malic acid were found to be significant

indicating the potential impact of these metabolites’ differential consumption profiles to

heterogeneity in the two cancer cell lines.

Untargeted metabolic profiling of U87MG and NSP using LC-HRMS data

Functional characterization of both cancer cell lines was obtained following untargeted

metabolic profiling of LC-HRMS data. To ascertain extraction of maximum feasible

list of features, MZmine2 and XCMSonline were utilized. Although, number of features

extracted by both methods were significantly different, with XCMSonline identifying

416 features while MZmine2 extracting 3309 features, Figure 4.5 shows distinct clusters

of both cancer cell lines, even with application of unsupervised clustering method of

PCA. Following putative annotation of extracted features using public online databases,

pathway mapping was carried out to identify likely affected list of pathways. Table 4.2

illustrates mapped pathways for putatively annotated metabolic features having differen-
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Table 4.2 Functional analysis of untargeted features extracted for U87MG and NSP

Pathway
Overlapping

metabolites found
p-value

Using MZmine2

Tyrosine metabolism 2 0.014

Selenoamino acid metabolism 1 0.054

Cysteine and methionine metabolism 1 0.13

Purine metabolism 1 0.21

Using XCMSonline

Ketolysis 2 0.1

Nicotine degradation III 2 0.1

tRNA charging 3 0.17

4-aminobutyrate degradation 3 0.17

Nicotine degradation IV 4 0.24

Urea cycle 5 0.32

tial metabolite levels across the two cell lines. It is noteworthy that irrespective of the

analysis method, the predominant pathways involved reactions for cofactor and nucleotide

metabolism. These results corroborate with differential growth and co-factor demands

across these two cell lines (as shown in Table 4.3). To investigate further mechanistic

network reprogramming across the two cell lines, we have developed constraint based

context specific metabolic network models for both cancer cell lines. The results of the

validation against experimental data sets are discussed in the following sections.
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Table 4.3 Phenotypic predictions of co-factor demands for U87MG and NSP cell line model

U87MG model NSP model

Experimental observations (hr−1)

Growth 0.021 0.0096

Model predictions (mM gDCW−1 hr−1)

NADH 33.1639 26.4382

NADPH 31.8479 25.3376

ATP 100.7259 83.1454

4.3.2 Core metabolic models for cancer cell line U87MG and

NSP

Beyond the genetic heterogeneity, perceived as common characteristic in most cancer cells

transformation, metabolic reprogramming has also been proposed as a cancer hallmark.162

Typically metabolic reprogramming manifests as altered uptake of nutrients and their

eventual metabolic fate. A systematic investigation of metabolic pathway that regulates

these differential traits can be accomplished using constraints based metabolic model

analysis. With application of various phenotypic constraints, as illustrated in Figure 4.1,

context specific models developed for U87MG and NSP cell lines were used to compute

phenotype related to cellular metabolism.

Typically an excess of cofactors production, such as NADH, NADPH and ATP over

growth and energy demands are known to be related to metabolic flexibility.148 The in

silico representation of U87MG and NSP showed variable demand of co-factors (NADH,

NADPH and ATP). As shown in Table 4.3, models predicted an excess of co-factor

production for U87MG vis-à-vis NSP, consistent with their differential growth rates.
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(a) PLS-DA score plots using targeted list of metabolite estimations. Green
markers for U87MG and red markers for NSP data point. Variance con-
tributed by each component is shown in bracket, next to axis title.

(b) VIP scores of PLS-DA model for input variables. Heatmap shows
concentration levels of these metabolites.

Figure 4.4 Supervised clustering of metabolic profiles using PLS-DA method
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(a) PCA score plot for features extracted using MZmine2. Red: U87MG,
Blue: NSP

(b) PCA score plot for features extracted using XCMSonline. Red: U87MG,
Cyan: NSP

Figure 4.5 Unsupervised clustering using PCA for untargeted features extracted using
MZmine2 and XCMSonline
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Figure 4.7 Differential metabolic rewiring in folate metabolism across U87MG and NSP cell
line models observed using uniform random flux sampling

differentiate phenotypes across the two cell types. This highlights the need for addressing

the mechanism at the whole genome scale level to drive any further therapy regimes.

4.3.3 Context specific genome scale metabolic model using ScalEX

Although the core model was helpful in formalizing context specific models, a genome scale

model would help address redundancy and mechanistic basis of a rewired metabolism. An

effort to reduce this redundancy by constraining intracellular reactions was carried out

by developing an in house algorithm ScalEX. ScalEX uses gene expression data as input

and generates list of constraints for all reactions catalyzed by enzymes linked through

GPR for the model.
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Table 4.4 Spearman rank correlations achieved by ScalEX in predicting growth rates for
individual tissue specific cell-line models from NCI-60

Tissue type
No. of

cell lines

Calculated

β value

Correlation

coefficient

Significance of

correlation

(p-value)

Breast 6 0.09735 0.429 4.19E-01

CNS 6 0.09706 0.886 3.33E-02

Colon 7 0.09823 0.964 2.78E-03

Lung 9 0.09753 0.733 3.11E-02

Leukemia 6 0.09703 0.543 2.97E-01

Melanoma 9 0.09804 0.786 2.79E-02

Ovarian 7 0.09714 0.771 1.03E-01

Prostrate 2 0.09756 1.000 1.00E+00

Renal 8 0.09729 0.714 5.76E-02
Note: Higher p-value for correlation estimate in case of models built for Prostrate tissue is on account of
only 2 cell line data availability under NCI-60 panel.

Evaluation of model predictions for cell-specific models with different lineages

For establishing validations of models built using ScalEX, a list of tunor cell line’s data

from NCI-60 panel was utilized. An array of models for 60 tumor cell lines were built using

published gene expression data (Accession ID: GSE5846) as an input for ScalEX along

with additional constraints for secretion and uptake profiles for a list of 23 metabolites

from published literature148,165. The estimated metabolic-transcript fraction was found to

vary within a small range for the cancer cell lines (Table 4.4). However, with application

of this metabolic-transcript fraction as scaling exponent (β) along with scaling constant

(α) from Equation 4.2, transformation of individual metabolic gene expression values

into reaction flux constraints was achieved in context specific manner. The fact that this

panel is constituted by cell lines from a list of 9 tissue types (as illustrated in Table 4.4),
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Table 4.5 Spearman rank correlations in predicting growth rates for all tumor cell-line specific
models from NCI-60.

Method
Correlation

coefficient

Significance of

correlation

(P value)

ScalEX 0.444 4.24E-04

ScalEX + Exch 0.783 2.48E-13

iMAT -0.07 0.59

Eflux 0.43-0.44 3.6E-04

PRIME 0.69 1.2E-09
Note: List of different algorithms employed for generating context specific models are listed in first column.
‘ScalEX’ represents constraints identified using ScalEX algorithm, whereas ‘ScalEX + Exch’ defines
models having constraints from both ScalEX and metabolite exchange rates identified experimentally

having significant differences in phenotypic and metabolic architecture, offers robust

evaluation of model performance. Besides, NCI-60 tumor cell lines have been used as

model cell lines for cancer studies, which provides plethora of phenotypic information for

validations and also in improving model’s behavior.

Here, correlations comparing growth rate predictions from models against experimental

values were used as a measure of evaluation. Table 4.5 shows Spearman’s rank correlations

(with p-value of significance < 1E-04) comparing growth rates for experimental and

model predictions. The results showed improved performance of models constrained

using ScalEX and experimental exchange rates, in comparison with other published tools

such as, iMAT, Eflux and PRIME, which also utilizes gene expression data to constrain

GSM models for flux balance analysis (Table 4.5).

Further investigation of model’s performance for individual tissue types revealed that

models of cell line for tissue types, Breast and Leukemia shows poor correlations for in

silico growth rate predictions in comparison to experimental observations (Table 4.4).

As mentioned before, primary assumption for FBA of quasi steady state reckons that the
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metabolic interplay events in comparison to cellular growth or environmental conditions,

are short lived and hence can be considered to be at steady state. But for cancer cells

the transient genetic regulations, dictated by various factors including environmental

inputs and/or stress, may not be uniform with diversity of cell population within a tumor.

And this may affect the model’s performance, built using gene expression data as input.

Nevertheless, cell line models for colon tumour samples with 7 candidate gene expression

dataset showed significant correlations of growth rate predictions (Spearman R=0.964,

p-value=2.78E-03), as shown in Table 4.4.

4.4 Conclusion

Advances in HRMS technologies have enabled overall throughput of metabolomic anal-

ysis. With simultaneous Qual/Quan capabilities, scope of metabolic profiling based

applications has widened from basic biochemical investigations to clinical diagnostic

analysis. The amount of data generated demands advanced computational strategies to

capitalize on these merits. Although targeted and untargeted metabolic features can

be analyzed using functional analysis tools and help identify differentiating features,

but a mechanistic biological basis cannot be delineated using such tools. Here we have

showcased application of constraints-based modeling (CBM) with use of metabolic recon-

struction network constrained using such metabolic profiles. Context specific models were

developed using metabolic exchange profiles for in house cancer cell lines U87MG and

its phenotypically variant sub-population, NSP. Metabolic reprogramming, associated

with differential phenotypic behavior in presence of drug, was delineated using model

predictions.

Expansion of poly-omic data available for various organisms has led to continuous expan-

sion of reconstruction models to genome-scale levels that are biochemically, genetically

and genomically (BiGG) structured.156 Such multi-omic nature for metabolic reconstructs
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can be availed for development of more context specific models using corresponding

‘omic’ data platforms. A similar attempt was showcased using constraints derived from

metabolic exchange rates along with ScalEX based constraints for intracellular reaction

using gene expression data.

All of these exercises, with their successful phenotypic validations, illustrate the growing

scope of applications for hyphenated methodologies such as, CBM in conjunction with

high-throughput multi-omic platforms. Similar efforts might help us get closer to the

ambitious goal of personalized medicine with more precise and effective method treat-

ments specific to each individual.



CHAPTER 5

Conclusion

Comprehensive workflow for metabolomic studies using HRMS
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Growing list of applications with use of HRMS in various scientific fields can be

attributed to its suitability for both targeted and untargeted analysis. Features like high

sensitivity, mass accuracy and dynamic range in full-scan acquisition mode enables a

variety of tasks, such as pre- and post-target analysis along with retrospective analysis.

These set of features aptly gear HRMS workflows for researchers pursuing metabolomic

analysis with emphasis on discovery of metabolite transformation products or untargeted

analysis. Moreover advancement in HRMS technologies and improved features has also

instigated development of direct mass spectrometry (MS) based analysis platform beyond

routine chromatography studies.

In these various research fronts, the development of robust data analysis tools and

methods supporting cross platform analysis becomes relevant. Work described in the

dissertation has attempted to address this challenge and capitalize on the advantages that

HRMS offers by developing/showcasing data analysis tools at different levels of hierarchy.

Developed tools, such as MQ/NEST (validated by proprietary/freeware software tools) or

hyphenated applications using CBM in conjunction with HRMS data (with experimental

validations) not only establish the robustness merits for HRMS data but also illustrate

broader perspective of applications made feasible using HRMS workflows.

It is noteworthy that there are few following aspects having greater importance in data

processing and analysis using HRMS data, which still needs to be addressed.

Effective parameter optimization strategy

Although various data analysis tools exists, such as XCMS40 and MZMine42, that offers

an array of algorithms for individual data pre-processing step, the effective coverage

of features extracted largely depends on parameters for these algorithms defined by

user. With diversity of analytical methods, developed for analytes with divergent

chemistry or by availing different analytical platforms with chromatography or non-
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chromatography front-end considerations, demand for specific data handling methods

with processing parameters tuned for analytical method in question is pertinent. Further,

the understanding of mathematical complexity of these data processing methods such as,

wavelet transformation filter or mexican hat filter, necessitates a data analysis expert

to effectively choose such user input parameters. For a routine analytical practitioner,

to make the most of these advanced data analysis tools, strategies for optimization of

data processing method parameters is equally essential as much as analytical method

optimization. Tools like, IPO166 that offers automated optimization of such method

parameters can be availed to ease this process. However applicability of IPO166 is

restricted to data analysis following offline version of XCMS. A systematic sensitivity

analysis of different data processing methods in response to user input parameters might

help formalize list of guidelines that effectively benefit in better use of such data analysis

tools.

Analyte feature annotation

Accurate feature annotation of HRMS data for untargeted analysis has always been

challenging. Redundancy of analyte features on virtue of different adduct ions, neutral loss,

in source fragments and isotopic peaks increases the complexity of this task. Although,

with the help of literature sourced information and consideration towards analyte peaks

deconvolution using criteria of common retention time or isotopic peaks cluster, offers an

alternative to resolve such data complexity. But more often such deconvolution strategy

follows generic understanding of isotopic peaks clustering or generic list of neutral loss

fragments led mass differences.73 Essentially such data deconvolution strategies lead

to excessive filtering of data and affects features annotation contrariwise. A recently

published review article offers critical evaluation of various feature annotation methods

available for analytical community.167 Alternative strategies with application of Markov
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Chain principle to estimate probability of accurate metabolite annotation have been

discussed.167 Similar strategies can also be extended with application of machine learning

approaches such as neural networks or random forest classifiers, that have established

their classification performance since long.109 Having an accurate metabolite annotation

methodology, exclusively using the full scan MS spectrum, will not only utilize throughput

of HRMS but can benefit in terms of ease for integration of HRMS data with system

level modeling approaches discussed in this dissertation. Any such cellular functional

interpretations can further be evaluated against HRMS data in retrospective manner,

employing true potential of HRMS to use.

Advancement in MS instrumentation and expanding analysis method spectrum each year,

have led to increased application domain to more and more feasible fields of study. New

methods capable of handling such novel platforms, extracting maximum potential using

contemporary analysis methods are expected to rise. Such conglomeration of benefits

offered by analysis platforms and data analysis methods holds the potential in bridging

the gap between bench side analytical-academic efforts to the clinical applications for

guiding effective translational efforts.
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