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HRMS High resolution mass spectrometry 

HPLC High performance liquid chromatography 
1H Proton  

H2 Hydrogen  

ILs Ionic liquids  

InCl3 Indium(III)Chloride 

i-Pro Isopropyl  

ICP-OES Inductively coupled plasma-optical emission 
spectroscopy 

KBr Potassium bromide 

KMnO4 Potassium permanganate 

kJ Kilo Joule 

Kg Kilo gram 

K2CO3 Potassium carbonate 

LA Levulinic acid  

LE Levulinic ester 

MgO Magnesium oxide 

MeOH Methanol 

Me2SO2 Methylsulfonylmethane 

Me2S Dimethylsulfur 

m Multiplate 

mm Milimeter 

MF 5-Methylfurfural 

mg Miligram 

MHz Mega Hertz 
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MIBK Methylisobutylketone 

min Minute 

mL/μL Mililiter/Microliter 

mmol Milimole  

MPV Meerwein-Pondorf-Verley 

MPa Mega Pascal 

MTMF 5-((methylthio)methyl)-2-furfural 

NaCl Sodium chloride 

NaOCl Sodium hypochloride 

NaOH Sodium hydroxide 

NMe3 Trimethylamine 

NMP N-methyl pyrrolidine  

NHC N-Heterocyclic carbene 

NH3 Sodium azide 

Na2SO4 Sodium Sulfate  

NaHCO3 Sodium hydrogen carbonate 

NMR Nuclear magnetic resonance 

Ni(OH)2 Nickel hydroxide 

OBMF 5,5-oxy(bis-methylene)-2-furfuraldehyde 

O2 oxygen 

N2 Nitrogen 

Pd Palladium 

PG Propyl guaiacol 

ppm Parts per million 

p-TSA   p-Toluene sulfonic acid  

PeD Pentane diol 

Pr Propyl 

Py-FTIR Pyridine Fourier Transform Infrared spectroscopy 

RON Research Octane Number 

RI Refractive index 

rt Room temperature 
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RuCl3 Ruthenium tri-Chloride 

s Singlet 

SEM Scanning electron microscopy 

SPB Sec-butyl phenol 

Si Silicon 

SnCl4·5H2O Tin chloride penta hydrate 

Sn-Mont Tin montmorillonite 

Sn(OH)4 Tin hydroxide 

SnO2 Tin oxide 

TMS-Cl Trimethylsilylchloride  

t Triplet 

t Time 

T Temperature 

TEM Transmission electron microscopy 

THF Tetrahydrofuran 

THFA Tetrahydrofurfuryl alcohol 

TLC Thin layer chromatography 

TPD Temperature programmed desorption 

θ Theta 

U.S. United States 

UV Ultra violate 

u unit 

wt Weight 

XPS X-ray photo electron microscopy 

XRD X-ray diffraction 

ZnCl2 Zinc(II)chloride 

ZrOCl2 ·8 H2O Zirconium (IV) oxychloride octahydrate 

ZrO(OH)2 Zirconium hydroxide 

ZrO2 Zirconium oxide 
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GENERAL REMARKS 

All the reactions were carried out in a oven dried glass apparatus.  

1) Speciality chemicals and A. R. Grade dried solvents were procured from 

authentic suppliers like Aldrich (US), Alfa Aesar (US), Chem Labs and Thomas 

Baker (India) etc.  

2) TLC plates were purchased from Merk and Loba, India.  

3) 60-120, 100-200 and 230-400 mesh sized silica was utilized for the column 

chromatography using ethyl acetate in pet ether as a mobile phase. 

4) Conversion of substrates and yield of products were calculated by liquid 

analysis using Thermo Scientific GC (FID detector and a capillary column HP5) 

and Agilent HPLC (column: Hi-Plex USP L17, detector: RI and mobile phase: 

millipore water with 0.6 mL/min flow; for carbohydrates analysis and column: 

Poroshell 120 EC-C18 2.7 µm, detector: UV and mobile phase: 0.1 % acetic acid 

in Millipore water: acetonitrile (85:15, v/v) with 0.6 mL/min flow; for yield 

calculation of dehydration product).  

5) Products were characterized by 1H-NMR and 13C-NMR using CDCl3 (0.01 % 

TMS) and DMSO-d6 (0.01 % TMS) as solvents on 50 and 200 MHz frequency 

Bruker instrument.  

6) The confirmation of the products was carried out using QP-Ultra 2010 GC-MS 

Shimadzu instrument on a RTX-5 column using helium as a carrier gas, in EI 

mode and at ionization source temperature of about 200 oC.  

8) Micromeritics chemisorbed 2120 instrument was used for measuring BET 

surface area, CO2-TPD and NH3-TPD analysis.  

9) Functional group characterization of various compounds and catalysts was 

done on Perkin Elmer frontier FT-IR instrument in ATR (PIKE make) mode at 

room temperature.  

10) Pyridine-FTIR was done using Harrick Diffuse reflectance praying mantis 

assembly with temperature controller (30-850 oC) attached with Perkin Elmer 

frontier under 150 mL/min flow of nitrogen as a carrier gas.  
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11) Wide angle X-ray diffraction (WAXRD) were recorded on a PAnalytical 

PXRD model X-Pert PRO-1712, using Ni filtered Cu-Kα radiation (λ= 0.154 nm) 

as a source (current intensity, 30 mA; voltage, 40 kV) and a Xcelerator detector.  

12) TEM analysis was carried out with JEOL, JEM-2100 LaB6 operated at high 

tension up to 200 kV with electron wavelength 2.5 pm.  

14) ICP-OES carried out on Thermo Fisher instrument.  

15) EDAX for determining the weight % of elements was studied on AMTEK 

make EDAX connected with the JEOL SEM machine. 
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Catalytic conversion of renewable carbohydrates and 
furans into valuable chemicals 
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The thesis entitled “Catalytic conversion of renewable carbohydrates and 
furans into valuable chemicals” is divided into two parts with a total of seven 
chapters. Chapter 1 deals with the general introduction of biorefinery and 
literature on conversions of biomass derived carbohydrates and furans into 
advanced furan derivatives. Then Chapters 2, 3 and 4 are included under section-
I, which is focused on “Carbohydrate conversion to furan derivatives.” Chapter 2 
involves the direct synthesis of 5-(Acetoxymethyl)furfural (AcMF) from 
carbohydrates over Sn-Mont catalyst. Chapter 3 describes the production of 5-
((methylthio)methyl)-2-furfural (MTMF) and 2,5-Difromylfuran (DFF) directly 
from carbohydrates over Sn-Mont and H2SO4 respectively, in DMSO. Chapter 4 
deals with “Carbohydrate dehydration followed by C-C bond forming reactions” 
and is subdivided into three sections as 4.1, 4.2 and 4.3. Section 4.1 deals with the 
production of diesel fuel precursors from carbohydrates and 2-methylfuran. 
Section 4.2 describes the production jet fuel precursors from carbohydrates via 
dehydration-aldol condensation reaction sequence while; section 4.3 presents the 
Friedel-Crafts alkylation over Zr-Mont catalyst for the production of diesel fuel 
precursor. Section-II is focused on “C-O and C-C bond forming reactions of 
bioderived aldehydes.” In this section, Chapter 5 discusses the etherification 
reactions of the bioderived aldehydes and it is subdivided into two sections as 5.1 
and 5.2. Section 5.1 is on self etherification of 5-(hydroxymethyl)furfural (HMF) 
over Sn-Mont catalyst and the section 5.2 is on cascade reductive etherification of 
bioderived aldehydes over Zr-based catalysts. Chapter 6 demonstrates the C-C 
bond forming reactions between furans and bioderived aldehydes in presence -
SO3H functionalized ionic liquids. In Chapter 7 conclusions and future scope of 
this work is discussed. 
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1. Introduction  

Valorisation of carbohydrates and furans to the advanced chemicals is a hot topic 

nowadays because of its potential to develop sustainable processes in near future. 

In the area of carbohydrates conversion, isomerisation of the glucose like 

carbohydrates without using mineral acids is a key challenge [1]. This can be 

surmounted by developing metal exchanged montmorillonite having suitable 

Lewis and Brønsted acid strengths as catalysts [2]. In this work, a novel strategy 

involving integrated/direct production of diesel fuel precursors from 

carbohydrates was developed using Sn-Mont catalyst in formic acid medium. 

Formic acid was employed as a co-catalyst as well as a reactive solvent. The 

biphasic solvent system containing MIBK: H2O+DMSO were also developed for 

the dehydration of carbohydrates over Sn-Mont catalyst which facilitated the easy 

separation of HMF. The HMF formed in MIBK could undergo aldol condensation 

over CaO to form jet fuel precursor. Apart from that the pure HMF was converted 

into important ether derivatives over metal exchanged montmorillonite catalysts. 

These ethers have applications in polymers and fuel additives [3, 4]. Further, the 

hydroxyalkylation-alkylation of furfural with furan was explored over SO3H 

functionalised ionic liquids and a method for clean isolation of condensation 

product was also developed [5]. 

2. Statement of problem 

The selective conversion of oxygen rich biomass to value-added chemicals is the 

key issue for development of fossil-independent chemical technologies for the 

production of fuel additives and chemicals. 5-(Hydroxymethyl)furfural (HMF) is 

an important and a versatile platform molecule in the biorefinery. Although 

several technologies are available for the production of HMF, its isolation and 

purification is still a biggest challenge due to its solubility in water making it 

difficult to extract from the aqueous solution. During distillation at high 

temperature, unwanted impurities were formed which results in significant loss of 

HMF yield. On the other hand, although furfural is produced commercially but its 

long time stability is a major concern. Therefore, this work deals with direct 

conversion of carbohydrates to the desired products without isolation of unstable 

furfural derivatives. Similarly, conversion of furan to more stable and value added 
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products could be achieved by catalyst design and developing new reaction 

pathways.  

3. Objectives of Study 
 
The overall objective of the thesis is the conceptual development and optimization 

of environment friendly and cost efficient strategies that will enable the 

conversion of biomass derived molecules to value added products. The objectives 

of thesis are divided into two parts I and II. 

 

I. Based on carbohydrates utilization 

Direct/integrated conversion of carbohydrates (e.g. fructose, glucose, sucrose, 

xylose) into advanced furan derivatives (e.g. fuel additives and chemicals) 

without isolation of unstable intermediates (furfural derivatives). It will eliminate 

the tedious isolation and purification processes of furfural derivatives 

(HMF/furfural).  

To this end, the specific aims are as follows:  

 Development of catalysts possessing both Lewis and Brønsted acid sites, 

by simple preparation techniques. 

 Catalyst characterization and parametric study of reaction conditions in 

order to understand structure-property-reactivity relationships for the 

optimization of the carbohydrates dehydration reaction. 

 Careful selection of biphasic solvent system for dehydration of 

carbohydrates to HMF. Subsequent utilization organic phase for further 

conversion of in-situ formed HMF to advanced chemicals/fuel additives. 

 Development of integrated technologies for the production of advanced 

chemicals and fuel precursors from carbohydrates.  

 

II. Based on utilization of furan derivatives 

 To find out catalytic upgradation processes of pure HMF/furfural to 

advanced chemicals. 

 Development of cascade protocol for the conversion of HMF into fuel 

additives. 

 Development of sustainable technologies/processes for the upgradation of 

furan derivatives. 
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4. Methodology Used 

The prepared metal exchanged montmorillonite catalysts and other catalysts used 

in this work were thoroughly characterised using XRD, Py-FTIR, NH3-TPD, 

BET, EDS, SEM, TEM and ICP techniques. All the synthesized products and 

their structures were characterized and confirmed using advanced analytical and 

spectroscopic techniques such as high field NMR (1H and 13C), FTIR, HRMS.  

5. Sample results 

Chapter 1 

General Introduction 

Chapter 1 is focused on general introduction of biorefinery and literature on 

conversion of biomass derived carbohydrates and furans into advanced furan 

derivatives. 

Part-I: Carbohydrate conversion to furan derivatives 

The part-I of the thesis contains three chapters such as Chapter 2, 3 and 4. 

 

Chapter 2 

Direct synthesis of 5-(acetoxymethyl)furfural from carbohydrates  

In this chapter, we describe the direct and cascade synthesis of 5-

(acetoxymethyl)furfural from carbohydrates such as glucose, fructose and sucrose 

via cascade sequence involving isomerisation-dehydration-esterification over Sn-

Mont catalyst and in acetic acid as a reactive medium. The Sn-Mont catalyst was 

prepared by simply mixing of aq. SnCl4·5H2O and montmorillonite clay. The 

unique combination of Brønsted + Lewis acid sites present in Sn-Mont facilitates 

the isomerisation-dehydration-esterification of glucose like carbohydrates 

(Scheme 1). The critical features of the Sn-Mont catalyst is well characterised. 

The Sn-Mont shows phenomenal stability and recyclability. 
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Scheme 1 Direct synthesis of AcMF from glucose 

 
Chapter 3 

Direct production of 2,5-di(formyl)furan and 5-((methylthio)methyl)-2-

furfural from carbohydrates  

A direct conversion of carbohydrates to DFF and MTMF is demonstrated over 

H2SO4 and Sn-Mont catalysts, respectively (Scheme 2). The DFF was obtained in 

33-48 % and MTMF was obtained in 36-45 % from carbohydrates. DMSO was 

acted as solvents as well as sacrificial reagent for oxidation and thiomethylation. 

 

 

 

 

 

Scheme 2 Direct conversion of carbohydrates to DFF and MTMF 
 

Chapter 4 
Dehydration of carbohydrate followed by C-C bond forming reactions 

The Chapter 4 is organized in three section as follows: 

4.1 An integrated process for production of diesel fuel precursors from 

carbohydrates and 2-methylfuran over Sn-Mont catalyst 

An integrated production of diesel fuel precursors from carbohydrates is 

demonstrated using Sn-Mont and formic acid (Scheme 3). The Sn-Mont catalyst 

facilitates the isomerisation of glucose like carbohydrates to fructose and formic 

acid dehydrates in-situ generated fructose to 5-(formyloxymethyl)furfural and 

subsequently latter was treated with 2-methylfuran in same pot to afford diesel 

fuel precursor of C21 unit.   
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Scheme 3 Integrated conversion of carbohydrates to diesel fuel precursor 

4.2 Clean production of jet-fuel precursor from carbohydrates through an 

integrated dehydration and aldol condensation 

Jet-fuel precursor is produced cleanly in MIBK: H2O+DMSO biphasic solvent 

system via an integrated dehydration of carbohydrates over Sn-Mont followed by 

aldol condensation over CaO (Scheme 4). MIBK acted as a solvent for the 

extraction of product as well as a reactant. 80% recovery of MIBK could be 

possible from the reaction crude. 

 

 

 

Scheme 4 Integrated conversion of carbohydrates to jet fuel precursor. 
 

4.3 Friedel-Crafts alkylation over Zr-Mont catalyst for the production of 

diesel fuel precursors  

In this work, a novel strategy was developed for the direct production of diesel 

fuel precursors from carbohydrates and mesitylene, xylene or toluene using Zr-

Mont and formic acid (Scheme 5). Mesitylene acted as a solvent to extract product 

as well as reactant for FC alkylation reaction. 

 

 

 

 

Scheme 5 Direct conversion of glucose to diesel fuel precursor via FC alkylation 
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