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Abstract 

 

The leading edge of the global problem of antibiotic resistance necessitates novel therapeutic 

strategies. Herein is described a systems biology approach to study antibiotic resistance in 

Chromobacterium violaceum. Differential features of genotype and metabolic phenotype in 

response to antibiotics and antibiotic selection pressures were identified. This novel model 

integrated/ driven approach identified metabolic supplementation strategies for killing antibiotic 

resistant pathogens using benign metabolites. Controlled laboratory evolutions established 

chloramphenicol and streptomycin resistant pathogens of Chromobacterium. These resistant 

pathogens showed high growth rates and required high lethal doses of antibiotic. Growth and 

viability testing identified malate, succinate, pyruvate and oxoadipate as re-sensitising agents for 

antibiotic therapy. Resistant genes were catalogued through whole genome sequencing. 

Intracellular metabolomic profiling identified violacein as a potential biomarker for resistance. 

The temporal variance of metabolites captured the linearized dynamics around the steady state 

and correlated to growth rate. Genome-scale models provide a comprehensive yet concise 

representation of biochemical reaction networks and their functional states. ATP maintenance, 

substrate uptake and growth yields were used as constraints and allowed definition of susceptible 

and resistant populations in silico. Such a constraints-based flux balance model was used to 

identify changes in metabolic flux distributions and synthetic lethality of susceptible and 

resistant in silico strains. The resistant pathogen rewired its metabolic networks to compensate 

for disruption of redox homeostasis. We foresee the utility of such scalable workflows in 

identifying metabolites for clinical isolates as inevitable solutions to mitigate antibiotic 

resistance.  
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Chapter 1 

Introduction 

 

“This is the book I never intended to write.” 

     - Kevin Brown, Penicillin Man 

 

“The thoughtless person playing with penicillin is morally responsible for the death of the 

man who finally succumbs to infection with the penicillin-resistant organism. I hope this 

evil can be averted” 

     - Sir Alexander Fleming, 1945 

 

   “If we are not careful, we will be soon in a post-antibiotic era” 

-Tom Rieden, CDC director, 2013 

 

Revolutions cause paradigm shifts.  The discovery of Penicillin by Alexander Fleming 

in 1928 qualified as a revolution (Thomas Kuhn) as it changed the world-view on the 

treatment of infection. It changed the way the medical profession viewed infectious 

disease in that humanity was considered no longer vulnerable to death by bacterial 

pathogens. However, Fleming in his Nobel lecture predicted the emergence of penicillin 

resistant microbes when exposed to sub lethal concentrations. Today, almost a century 

later, we are dangerously at its helm. 
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1.1. Motivation 

10 million deaths by 2050 will be attributed to antimicrobial resistance alone, far 

more than that of diseases including cancer. At present about 700,000 die from drug 

resistant infections as stated in a review led by Jim O’Neill, formerly chief economist at 

Goldman Sachs, on behalf of the British government and the Wellcome Trust. 

Antibiotics, once considered miracle drugs, are now undervalued by our society, 

receiving only a fraction of yearly revenue compared to that of next generation anti-

cancer drugs hence as a consequence major pharmaceutical companies are exiting from 

the antibiotic research and development sector hindering novel antibiotic development. 

The Food and Drug Administration (FDA) approved drugs in the market are exponential 

decreasing, so the shelf life of existing antibiotics needs to be extended. Adding up is 

another complication of self-prescribing and Over the counter (OTC) sale in country like 

ours which adds up to the ineffectiveness of antibiotics and development of resistance. 

One in five does not believe antibiotic resistance is a serious issue, one in four do not 

complete the prescribed dosage and one in ten self-medicate. National awareness of the 

potential threat posed by the loss of effective therapies to treat bacterial infections has 

increased significantly due to well-publicized reports from the World Health Organization 

(WHO, 2014), and national governments of countries including the UK, the USA, Canada 

and Australia, among others (Butler et al., 2017). We are being pushed into a human 

health era where we will face the same risks as before Alexander Fleming discovered 

penicillin in 1928, a “post-antibiotic” era, common infections would be able to kill again. 

Albert Alexander, a British policeman in 1941 was scratched by a rose thorn and 

succumbed to Staphylococcus aureus and Streptococci sepsis. In 2017, Gennifer 

Gonzales of California spent around USD 2,50,000 in the emergency room (ER) for 

cellulitis treatment that is supposed to be uncomplicated and be treated in the outpatient 

setting with oral antibiotics. A question that arises is can post genomic era subvert the 

onset of a “post-antibiotic era” or the “antibiotic apocalypse”?  

Till date only a handful of research articles have looked at systemic level changes as a 

function of antibiotic resistance. High throughput technologies such as next generation 

genome sequencing (NGS) of antibiotic-sensitive and -resistant isolates are powerful 

tools to understand the mode of action of antimicrobial drugs and delineate the link 

between genotype, dynamics of metabolism, antibiotic resistance and growth phenotype. 

These generate catalogues of virulence and pathogenic genes yet, antibiotic resistance 

remains a serious health concern. There is thus an urgent need for novel approaches to 
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understand survival strategies and integrated predictive models for hypothesis generation 

and discovery of how to re-sensitize antibiotic resistant populations. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Antibiotic resistance a multifactorial societal issue. *as per KAP study 

discussed in Chapter 6 of this thesis. 
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1.2. Overall objective and specific aims 

 

The main objective of this thesis is to delineate the systems level changes and 

metabolic dynamics of a zoonotic pathogen Chromobacterium violaceum under antibiotic 

selection pressures. To satisfy this objective, certain specific aims were put forth in the 

context of the systems biology paradigm to study antibiotic resistance (Figure 1.2) and 

include:  

 

 Development of a controlled model system through laboratory evolution 

 Delineating the genetic basis through whole genome sequencing 

 Delineating the metabolic basis  through metabolite profiling 

 Building genome-scale models flux balance models to integrate acquired data 

 Delineating compensatory mechanisms in resistant populations   

 

The thesis aims to understand how interaction between genome sequence changes, 

enzymopathies, growth and metabolism of a pathogen shapes death and survival of the 

pathogen in various antibiotic scenarios. 

 

The underlying hypothesis is that identifying compensatory mechanisms of antibiotic 

resistant pathogens through metabolic reprogramming will set the stage for upcoming 

metabolite based treatment strategies to mitigate antibiotic resistance. 
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1.3. Systems Biology Paradigm 

In this post genomics era huge “omics” datasets are generated and each gene is assigned a 

biological function and the information is used to generate hypothesis and elucidate the 

metabolic networks. Further the huge information generated is translated into a mathematical 

representation using constraints based modeling (CBM), one of several approaches published 

in literature so far. CBM helps in modeling large scale data using flux balance analysis. 

 

 

 

 

 

 

Figure 1.2: Systems Biology paradigm 

In this thesis I explore the paradigm of systems biology in the context of antibiotic 

resistance. The methods developed herein help us not only to understand mechanism of 

resistance but also provide solutions in terms of metabolic environment designs to re-

sensitize resistant population of C. violaceum.  The antibiotic resistant strains of 

Chromobacterium violaceum were developed under controlled laboratory environment 

using adaptive laboratory evolution (ALE) followed by investigation of systemic changes 

at molecular level in the bacterium. The molecular components under focus were the 

enzympopathies as an effect of changes in gene or DNA sequence. Out of 4.75 Mega 

bases of the genome 13 variations resulted in changes in only 6 open reading frames 

(ORF). To understand genotype phenotype relationship as a result of these genetic 

variations growth rates, violacein synthesis and other phenotypic changes were 

investigated which were correlated to increased growth realted to antibiotic resistance. 

Systemic changes at metabolomic level were also investigated to understand the impact of 

genotype-phenotype relationship and the associated metabolic reprogramming. The data 

generated was integrated into a core model representing central metabolism and further 

into a genome-scale model, that were used to predict growth phenotype observed. This 

iterative experimentation comprising (reductionist approach) and integration of 

heterogenous data types into flux balance models (systems based approach) predicted 

physiological changes resulting in the emergent antibiotic resistance phenotype. 
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1.4. Chromobacterium violaceum 

 

Figure 1.3: Chromobacterium violaceum a model organism 

 

Chromobacterium violaceum is a gram-negative β-proteobacterium discovered in 

1881. Primarily a zoonotic neglected pathogen, opportunistic in humans can convert the 

essential amino acid tryptophan to violacein, a blue-violet, non-diffusible pigment of 

interest with a wide range of well documented antibiotic properties (Durán and Menck, 

2001). C. violaceum is found in water and soil of tropical and sub-tropical regions of the 

world and is incompetent in surviving in cold temperature. C. violaceum is also 

considered a good candidate for polyhydroxyalkanoates (PHA) production (Bhubalan et 

al., 2010; Kolibachuk et al., 1999; Steinbüchel and Schmack, 1995) and bioleaching of 

gold (Campbell et al., 2001) due to cyanogenic property. It can also be used for 

environmental remediation along with other bacteria for decontamination of sites 

contaminated with toxic metals such as arsenic and uranium and also for removal of Gold 

and Copper from electronic scrapped wastes. C. violaceum is also known for the 

production of a new class of anti-cancer drugs, histone deacetylases (HDACs)inhibitors, 

Romidepsin, several antibiotics and anti-blood coagulant currently being used in 

pharmaceutical industry. C. violaceum tightly regulates the production of secondary 
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metabolites through quorum sensing (QS) including violacein biosynthesis, cyanide 

biosynthesis and degradation, elastase production, chitinase production and biofilm 

formation. But, the regulatory pathway is not completely understood. Quorum sensing is 

a process of bacterial cell to cell communication in which cells produce, detect, and 

respond to extracellular signal molecules called autoinducers. Using quorum sensing, 

bacteria modulate their gene expression and respond to changes in cell density and 

environment. The quorum sensing system of C. violaceum comprises five components: 

the LuxI and LuxR homologue, CviI and CviR, Acyl homoserine lactones (AHLs) that 

are the autoinducers in gram negative bacteria and some target genes like chitinases, 

exoproteases, virulence factors along with an upstream CviR binding site for promoter 

recognition as reported upstream of vioA (Stauff and Bassler, 2011). CviI synthesizes the 

AHLs and CviR is the quorum sensing receptor. It has also been reported that a 20-bp 

Lux box-like palindromic sequence, Cvi box sequence in the VioA- promoter region 

represents the binding site of the CviR/AHL complex and regulates violacein biosynthesis 

(Morohoshi et al., 2010). Another striking observation was that the regulation of violacein 

by AHLs was different for different strains of C. violaceum. C. violaceum ATCC 12472 

produces several AHLs, but violacein production in strain VIR07 (cviI knockout strain of 

ATCC 12472) is induced by long chain (C10- C16) AHLs and particularly enhanced by 

C10-AHL whereas it was lower or negligible in the presence of short-chain (C4–C8) 

AHLs (Morohoshi et al., 2010, 2008). In case of C. violaceum ATCC 31532 violacein 

biosynthesis was induced by short chain (C4–C8) AHLs in the mutant CV026 (cviI Tn5 

mutant of ATCC 31532) and inhibited by (C10–C14) long chain AHLs (Mcclean et al., 

1997). Although, CviR/C6-HSL and CviR/C10-HSL complexes can equally activate 

transcription of vioA independently in E. coli (Morohoshi et al., 2010). It has been 

reported that the affinity of AHL for the CviR protein to form CviR-AHL complex was 

almost independent of N-acyl chain length, but played a crucial role in binding with RNA 

polymerase (Swem et al., 2009).  

C. violaceum also presents itself as an emerging opportunistic pathogen, with around 

150 cases worldwide (Yang and Li, 2011) of which 20 cases have been reported in India 

(Appendix 1.2). Cases of infection with high mortality rate worldwide could be due to 

various survival strategies of C. violaceum against antibiotics along with superoxide 

dismutase and catalase activities to escape phagocytic attack of the host defense. 

Horizontal gene transfer has endowed genes to different strains of Chromobacterium 

violaceum which helps it in environmental adaptation. Thus with the genome sequencing 
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of C. violaceum in 2003 (Haselkorn et al., 2003) ,there is a need to develop a functional 

genome scale model as has been developed for multiple pathogens (Chavali et al., 2008; 

Jamshidi and Palsson, 2007; Raghunathan et al., 2010, 2009a). This would enable the 

understanding of this organism not only for metabolic engineering of violacein but also 

for its pathogenic implications, interaction with host/environment and design potential 

treatment strategies. 

Chromobacterium violaceum is known to have beta lactamases activity (Farrar and 

O’dell, 1976) that is primarily active against first – generation cephalosporins, ampicillin 

and penicillin. It is also resistant to p-chloromercuribenzoate, vancomycin, rifampin and 

ceftriaxone (Fantinatti-Garboggini et al., 2004; Farrar and O’dell, 1976; Lima-Bittencourt 

et al., 2011, 2007, Aldridge et. al., 1988; Berkowitz and Metchock, 1995; Martinez et al., 

2000).  

C. violaceum has been reported sensitive to aminoglycosides including streptomycin, 

chloramphenicol, doxycycline, trimethoprim-sulfamethoxazole, cloxacillin, gentamicin, 

imipenem (Taylor, 2009, Berkowitz and Metchock, 1995, Midani and Rathore 1998) and 

only cefotetan among the cephalosporins (Durán and Menck, 2001). C. violaceum 

infection can also be cured by tetracyclines (Moss and Ryall, 1981) as well as 

ciprofloxacin, norfloxacin and perfloxacin (Aldridge et al., 1988).  

Resistance to a variety of antibiotics makes the treatment of C. violaceum infections 

difficult. Minimum inhibitory concentrations (MICs) of different antibiotics against 

Chromobacterium violaceum reported in literature have been tabulated in Appendix 1.1. 

More than 150 medical cases of C. violaceum infection have been reported across the 

globe. Some of these cases become fatal due to incorrect treatment, nature of infection or 

delay in the identification of cause of infection. 

 

1.5. Antibiotics chloramphenicol and streptomycin 

As discussed in previous section, C. violaceum is known to be susceptible to 

chloramphenicol and streptomycin and no resistant isolates have been reported in 

literature so far. Both the antibiotics act on the translational ribosomal machinery of the 

cell yet chloramphenicol is a bacteriostatic antibiotic whereas streptomycin is bactericidal 

in nature. These antibiotics provide selection pressure for adaptation of growth and 

evolution of resistance. 
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Figure 1.4: Antibiotics used in this study and their mechanism of action 

 

The p-nitroaromatic broad spectrum antibiotic Chloramphenicol (chl) has been used 

extensively to treat life-threatening infections due to Haemophilus influenzae and 

Neisseria meningitidis; its mechanism of action is the inhibition of protein biosynthesis. It 

is naturally produced by Streptomyces. After decades of limited use, it has been the focus 

of renewed interest due to the lack of new antibiotic agents and the appearance of 

resistance caused by the indiscriminate use of current antibiotics. In fact, at present a 

number of multi-resistant clinical isolates from pathogenic bacteria are still sensitive to 

chloramphenicol, a fact that could be attributed to the limited use of this antibiotic in 

developed countries. Thus, chloramphenicol is being reconsidered as an option for 

treatment of certain infections in critically ill patients. The most common mechanism of 

resistance to chloramphenicol in bacteria is its enzymatic inactivation by acetylation 

mainly via acetyltransferases (Schwarz et al., 2004) or, in some cases, by 

chloramphenicol phosphotransferases (Mosher et al., 1995) or nitroreductase (Smith et 

al., 2007). Resistance to chloramphenicol may also be due to target site 

mutation/modification (Montero et al., 2007), decreased outer membrane permeability 

(Burns et al., 1989), and the presence of efflux pumps that often act as multidrug 

extrusion transporters, thereby reducing the effective intracellular drug concentration 

(Daniels and Ramos, 2009; Fernández et al., 2012). 

Streptomycin (strep), an aminoglycoside antibiotic, has been shown to interact 

directly with the small ribosomal subunit (Carter et al., 2000). The mechanism of action 

involves irreversible binding to the ribosomal protein S12 and 16S rRNA domain, which 

are the constituents of the 30S subunit of the bacterial ribosome and play a vital role at 

the ribosome accuracy center (Carter et al., 2000). Through this interaction, streptomycin 
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interferes with translational proofreading and thereby inhibits protein synthesis. A 

number of mutations in the rpsL gene encoding the S12 polypeptide generate resistance to 

streptomycin (Agarwal et al., 2011; Barnard et al., 2010; Han et al., 2003; Kenney and 

Churchward, 1994; Levin et al., 2000; Paulander et al., 2009; Springer et al., 2001; 

Sreevatsan et al., 1996). 

 

1.6. Antibiotic resistance 

There are many ways of defining antibiotic resistance. The one used in this thesis is 

the uncontrolled growth of pathogens even in the presence of drugs, especially at 

concentrations of drugs that are generally therapeutic. So as a result, antibiotic resistance 

occurs when the drug has lost its ability to kill or retard pathogen growth in other words 

uncontrolled growth of pathogens in the presence of therapeutic levels of antibiotic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Mechanisms of antibiotic resistance adapted from Allen et al., 2010 

 

Bacteria have been developing resistance to antibiotics from the time they have been 

in use; even Alexander Fleming, warned about the possibility when he accepted his Nobel 

Prize in 1945. Antibiotics are characterized by their chemical composition and mode of 

action. The main targets for action in bacteria include the bacterial cell wall, cell 

membrane, DNA, RNA and protein biosynthesis and enzymatic pathways (Brooks et al., 

2001). There are several mechanisms (Figure 1.5) well documented (Allen et al., 2010; 

Andersson, 2003; Davies, 1994; Livermore, 2003) for development of antibiotic 
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resistance in bacteria which include decrease in antibiotic permeability due to changes in 

outer membrane proteins, RND or other efflux pumps, resistance mutation in the 

antibiotic target, drug inactivation by different mechanisms such as enzyme hydrolysis of 

antibiotics (beta-lactamases), antibiotic-binding proteins (penicillin binding proteins) or 

enzymes modifying an antibiotic (acetyltransferases), expression of  metabolic pathways 

that bypass the reaction inhibited by the drug, or expression of altered enzymes that are 

less affected by the drug. The resistance phenotypes are not always predictable from 

genotypes alone i.e. the origin of drug resistance may be genetic or non-genetic. The 

acquisition of drug resistance is a complex phenomenon that involves changes in various 

cellular hierarchical layer including the genome, transcripts and metabolites. The possible 

strategy to understand the complex dynamics is to analyze various “omics” data and then 

to integrate them into a network model to predict essential phenotypes for drug resistance. 

 

1.7. Dynamics of cell metabolism 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Dynamics of Energy Metabolism adapted from Federowicz et al., 2014 
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Antibiotics inhibit major consumers of cellular energy output, so may have important 

consequences on bacterial metabolism (Lobritz et al., 2015). Metabolism is the sum total 

of all reactions occurring in a cell including catabolism and anabolism. Growth and 

energy generation are two principal (competing) dimensions of cell function and 

proliferation (Federowicz et al., 2014; Fuhrer and Sauer, 2009; Schuetz et al., 2012). One 

is to convert sources of energy in the environment into forms of energy useful for the 

organism. The second principal is to synthesize small molecules needed for cell growth or 

biomass generation from nutrients present in the environment. This duality of cell 

function, orchestrated by metabolic networks, is critical for survival and governs 

resistance. For most carbon substrates, nearly 60 reactions of the central carbon 

metabolism provide the building blocks and energy at appropriate rates and 

stoichiometry’s to fuel around 300 anabolic reactions (Fuhrer and Sauer, 2009). Redox 

homeostasis is important to effectively harness reducing power produced through the 

catabolism of various substrates and to utilize this power in the anabolism of cellular 

components such as DNA, lipids and proteins. Under aerobic condition, the primary role 

of the redox cofactor NADH is respiratory ATP generation via oxidative phosphorylation 

whereas the role of NADPH drives anabolic reductions. Oxidative phosphorylation is 

oxidation of electron donors to transfer electrons to NAD+ or NADP+ that are further 

passed through ETC to terminal acceptor and generate ATP through the process of 

chemiosmosis. Anabolism utilizes ATP to drive reactions for production of biomass. 

1.8. Resistance phenotypes not always predictable from genotypes alone: Antibiotic 

resistance and cell metabolism 

Figure 1.7: Research time line related to this thesis work 
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Significant amount of literature is available that links antibiotic resistance to specific 

genes (Fani et al., 2011; Renzoni et al., 2011; Stoesser et al., 2013), gene expression 

(Suzuki et al., 2014), respiration (Lobritz et al., 2015), and even metabolome (Dörries et 

al., 2014). Metabolic regulation and gene expression modulation are now recognized as 

major players in antibiotic resistance (Derewacz et al., 2013; Dörries et al., 2014; 

Martínez and Rojo, 2011; Suzuki et al., 2014). Specific metabolites have been associated 

with varying degrees of killing antibiotic tolerant pathogens (persisters) by stimulating 

proton motive force (PMF) and increasing antibiotic uptake (Allison et al., 2011; Peng et 

al., 2015; Su et al., 2015). Promoting tricarboxylic acid cycle (TCA)/Krebs cycle by 

glucose/alanine activation that subsequently also increase PMF stimulating uptake of 

antibiotic have initiated death in multi-drug resistant Edwardisiella tarda (Peng et al., 

2015). Research elucidating killing mechanisms for such resistance strains are upcoming 

wherein researchers have worked to increase the PMF and hence drug uptake (Allison et 

al., 2011) or increase TCA which in turn increases PMF (Peng et al., 2015).  

Before 2011 majority of the research reported the differential substrate utilization 

patterns observed as a function of antibiotic resistance but there wasn’t any focus 

towards studying or investigating complex relationship between genetic and metabolic 

pathways and antibiotic resistance. Rather overall gene expression, transcriptomic or 

proteomic analysis was used to investigate bacterial response to environmental 

perturbation by antibiotics but its downstream effect on the cell phenotype or 

metabolism was not fully looked at. Rifampin resistant mutant of Bacillus subtilis, 

mutant in rpoB, better utilized beta-glucosides (Perkins and Nicholson, 2008) whereas 

fosfomycin was reported to be useful for treating Listeria infections as it was hyper-

susceptible in vivo due to metabolic adaptation for using nutrients inside its host cell 

(Chico-Calero et al., 2002; Scortti et al., 2006). Stenotrophomonas maltophilia mutant 

overexpressing MDR efflux pump SmeDEF were reported to be more proficient in 

utilizing gentibiose, dextrin, mannose and formic acid whereas utilization of amino acids 

such as alanine, serine or proline was impaired (Alonso and Martinez, 2000).  

Michael A. Kohanski, Daniel J. Dwyer and James J. Collins were one of the pioneers 

to investigate more than the drug-target relationship of antibiotics and investigate 

downstream cellular response and effected biochemical pathways in response to 

antibiotic stress/resistance (Kohanski et al., 2007, 2010). In the following years (post 

2011) more emphasis and attention was paid to understand the complex relationship 

between metabolism and antibiotic resistance. Fructose or alanine and/or glucose 
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restored susceptibility of Multidrug-Resistant E. tarda to kanamycin (Bhargava and 

Collins, 2015; Peng et al., 2015; Su et al., 2015) activation of tricarboxylic acid cycle 

(TCA) was reported to produce NADH that generates PMF and increased uptake of the 

antibiotics. S. aureus was treated with several antibiotics and the metabolome was 

studied and it was reported that each antibiotic affected intracellular levels of TCA 

intermediates(Dörries et al., 2014). Ciprofloxacin altered the pool of nucleotides and 

peptidoglycan precursors whereas erythromycin increased intermediates of the pentose 

phosphate pathway and lysine and vancomycin and ampicillin resulted in overall 

decrease in central metabolite levels. Researchers also linked antibiotic efficacy to 

cellular respiration (Lobritz et al., 2015) and reactive oxygen species (ROS) generation 

(Dwyer et al., 2014) among other investigations.  

 

1.9. Constraints based modeling and Flux balance analysis 

Metabolism is the most conserved cellular process in a living organism.  It is defined 

as the sum total of biochemical reactions mostly catalyzed by enzymes, involved in 

sustenance of life in any living organism. It may have many alternative routes to reach a 

particular metabolic goal. Systems level mathematical representation of metabolism is 

based on the assumption of metabolism as a network. In other words metabolic network 

is a cascade of biochemical reactions which involves biotransformation of an initial 

molecule into a product. Such representations of living organisms with respect to their 

metabolism have been a prominent tool to analyze and predict the cellular phenotype of 

a biological system and to ultimately apply engineering principles to design cellular 

metabolic processes that achieve a desired objective (i.e. cellular engineering). Such 

mathematical representations make use of the widely available genomic data along with 

high throughput “omics data” to predict a particular phenotype.  

Since 1995, when the first genome was sequenced, rapid sequencing technologies 

along with detailed biochemical, enzymatic and omics data in electronic databases on 

microbial metabolism have led to reconstruction of metabolic networks at the genome 

scale (Feist et al., 2009; Price et al., 2004; Thiele, Ines; Palsson, 2010). This 

advancement have also led to combining various cellular components along with their 

biochemical interactions to formulate a mathematical description of the sum total of such 

interactions, identify and apply constraints that the resulting network operates under, and 

apply optimization principles to evaluate and predict a particular phenotype under a 

particular environment (Orth et al., 2010). Therefore, in order to accurately predict such 
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physiological characteristics the mathematical representations of metabolic models also 

need refinement and validation using such advanced data. By comparing the in silico 

phenotype with the in vivo or in vitro results, the quality and accuracy of the metabolic 

model can be improved. In other terms recent advances in omics and genetic engineering 

technologies have resulted in novel techniques to interrogate and manipulate biological 

processes at a systems level for cellular engineering and allied fields (Mahadevan and 

Henson, 2012). Since the first genome scale metabolic model was published (Edwards 

and Palsson, 1999), numerous mathematical models of metabolism have been developed 

for prokaryotes and eukaryotes (Kim et al., 2012). These models have been used for a 

range of applications starting from cellular engineering for production of value added 

products like itaconate, lovastatin (Liu et al., 2013) and polyhydroxyalkanoates 

(Puchałka et al., 2008), investigating biofilm formation (Xu et al., 2013), predicting drug 

targets and biomarkers for cancer (Jerby and Ruppin, 2012) and quite recently linking 

virulence factors to metabolism (Bartell et al., 2017). These models, systems biologists 

can also apply to (1) Reannotation of genes, (2) generate and test new hypotheses, (3) 

assess the nutritional requirements of the organism and approximate its environmental 

niche, (5) identify missing enzymatic functions in the annotated genome, (6) engineer 

desired metabolic capabilities in model organisms, (7) growth profile followed by 

adaptive evolution and on different media and (8) symptoms of different 

enzymopathologies, etc. 

All of the biological information available in a metabolic network can be translated 

into mathematical terms through stoichiometric matrix. All genome-scale metabolic 

network models published till date are structural and stoichiometric models, which 

incorporate reaction stoichiometry but do not require any knowledge of kinetic 

parameters. While they do not allow the analysis of non-equilibrium dynamics, 

stoichiometric models have been found very useful for predicting the metabolic 

capabilities in steady state (Oberhardt et al., 2008; Reed et al., 2003; Riemer et al., 

2013).  

The earliest mathematical representation of microbial metabolism utilized Monod 

kinetics and involved only substrate, product and biomass concentrations. Structured 

mathematical representation of metabolism that only considered cellular compartments 

was in early 1980s when one of the first intracellular models of Escherichia coli was 

developed by Domach. The concept of a cellular objective was first proposed in the 

context of linear programming in E. coli for acetate production and overflow metabolism 
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(Majewski and Domach, 1990) which was later extended to the central metabolic 

network of E. coli by Varma and Palsson (Varma and Palsson, 1994), who first 

developed the flux balance analysis approach where the cellular objective was assumed 

to be maximization of growth rate. The advancement in genome sequencing technologies 

and bioinformatics made biology a data rich field which emphasized the need for 

systems level analysis and a change in the mathematical representation approach of 

metabolism. Traditional approaches for mathematical representation included kinetic 

(dynamic approach required detailed information about kinetic constants along with 

detailed information about enzymes rates and metabolites), stochastic and cybernetic 

approaches but these cannot be extended to genome scale networks due to large number 

of parameters and computation complexities. So for such large mathematical 

representations, constraint based modeling is used (Price et al., 2004). 

A range of methods to interrogate the large-scale metabolic networks using linear 

optimization techniques collectively known as constraint-based modeling (CBM) were 

developed (Price et al., 2004). It is an approach to analyze a metabolic system under 

quasi steady state condition (Wodke et al., 2013). We assume that metabolic dynamics 

are under a quasi-steady state, as metabolism occurs in a much faster rate compared to 

regulation and cell division. The stoichiometric coefficients of the metabolites or 

compounds in the associated reactions are typically represented in a stoichiometric 

matrix, S with its rows corresponding to the metabolites and the columns representing 

the chemical transformations that the gene products (enzymes) catalyze. This is how the 

biochemistry and the genetics of a cell are interpreted into a mathematical form for 

model development and further assessment. So we reach a homogenous system of linear 

equations, where consumption of a metabolite equals production and the solution lies in 

the null space of S. In CBM approach, constraints are applied on the various metabolic 

pathways to characterize the cellular behavior or phenotype of the living system. The 

constraints are based on enzyme capacity, reaction stoichiometry and thermodynamics 

feasibility associated with directionality of reactions. Methods based on this approach 

include Flux Balance Analysis (FBA), Flux Variability Analysis (FVA), Minimization of 

Metabolic Adjustment (MOMA) and the toolbox developed under constraint based 

approaches includes COBRA. Constraint-based reconstruction and analysis (COBRA) 

toolbox is for quantitative prediction of cellular behavior using a constraint-based 

approach (Becker et al., 2007). It allows predictive computations of both steady-state and 

dynamic optimal growth behavior, the effects of gene deletions; and robustness analyses. 
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The initial step of CBM approach involving FBA is a mathematical method for 

analyzing the metabolic capacity of a cell. The objective of FBA is to find out the set of 

metabolic fluxes that maximizes (or minimizes) the growth rate of a target metabolite (or 

any other objective function), given some known available nutrients (Varma and 

Palsson, 1994; Wodke et al., 2013). The success of FBA can be seen in the ability to 

accurately predict the growth rate of the prokaryote E. coli when cultured in different 

growth media (Edwards et al., 2002), define precise minimal media for the culture of S. 

typhimurium (Raghunathan et al., 2009b) and accurate prediction of essential genes in 

minimal and rich media for A. terreus (Liu et al., 2013). 

This approach and the related computational developments allowed the construction 

of the first genome-scale models of Escherichia coli (Edwards and Palsson, 2000) and 

Saccharomyces cerevisiae (Forster, 2003) in the early 2000s. Subsequently, 

experimental results from chemostats validated many predictions of the E. coli genome-

scale model, including the optimal growth rate (Ibarra et al., 2002). These results 

suggested that the use of a suitably chosen cellular objective might be sufficient to 

overcome the lack of metabolic regulation represented in genome-scale models. 

However, recently it has been shown that a combination of growth maximization and 

minimization of adjustment from a reference metabolic state might be a more 

appropriate objective function for capturing the intracellular flux distribution (Cheung et 

al., 2013). Recent genome scale metabolic model for E. coli (Riemer et al., 2013) and 

yeast (Österlund et al., 2013) have also been reconstructed based on the same approach 

after which the yeast model was used as a framework for integration of transcriptome 

and fluxomic data for four different conditions whereas in the E. coli model reaction 

centric view of flux distribution was replaced by metabolite centric view for a number of 

currency metabolites to fully characterize the energy metabolism and identify model 

refinement potential with respect to NADPH metabolism. 
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1.10. Overall methodology 

 

 

 

Figure 1.9: Overall methodology followed in this doctoral thesis work 
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1.11. Summary of work 

In this work, metabolites have been identified that stimulate antibiotic action and 

death of streptomycin and chloramphenicol resistant population of the pathogen 

Chromobacterium violaceum. Primarily a zoonotic pathogen, it is opportunistic in 

humans and converts the essential amino acid tryptophan to violacein, a blue-violet 

pigment. Chromobacterium violaceum is sensitive to aminoglycosides, chloramphenicol, 

and tetracycline and resistant to ampicillin, penicillin, and first-generation cephalosporins. 

The overall objective is to understand the compensatory mechanisms of antibiotic 

resistant populations of C. violaceum against the imbalance created due to antibiotic as a 

selection pressure using systems biology approach. The specific aims in order to reach the 

objectives are to understand the genetic basis of antibiotic resistance, changes in 

dynamics of metabolism and other phenotypes in order to delineate the link between 

genotype, dynamics of metabolism, antibiotic resistance and growth (Phenotype). The 

work has been divided into seven chapters.  

As a fundamental basis for systems biology approach the first chapter of thesis 

provides an introduction to the system under study along with the global scenario of 

antibiotic resistance in addition to literature evidence that emphasizes on the fact that 

there is lack of research relating already available content of antibiotic resistance 

genes/virulence factor catalogues to set the stage for upcoming strategies to mitigate 

antibiotic resistance.  

Second chapter provides the detailed description of how the antibiotic resistant C. 

violaceum (ChlR and StrpR) were generated followed by the genotypic profiling by Ion 

Torrent PGM Platform. The variants confirmed after whole genome sequencing have also 

been discussed in this chapter. Out of 4431 open reading frames (ORFs), variation in only 

6 ORFs resulted in acquisition of resistance against the two different antibiotics. 

Conventional mutations were observed in ChlR in the repressor of a multidrug efflux 

pump, acrR whereas variation in different levels of hierarchy were observed in case of  

StrpR pointing towards a systemic change in the two resistant populations. Sequence to 

structure to function to phenotype correlations were made for the variants using ab-initio 

models generated by ROBETTA software and visualized using PyMol.  

Third chapter focusses on phenotypic and metabolomics profiling using various 

methods including API-MALDI and HR-MS for the intracellular metabolites in the three 
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different population of C. violaceum. It also includes violacein estimation, minimum 

inhibitory concentration (MIC) estimation and kinetic profiling of growth parameters. 

Further, growth profiling of the three different strains, in the presence and absence of 

antibiotics with 30 different added carbon or nitrogen sources were assessed for the effect 

on growth kinetic parameters. The results include differential phenotype identified in the 

evolved strains ChlR and StrpR with 30% increase and 35% decrease in the violacein 

amounts. Differential temporal variation of metabolites provided in this chapter suggests 

metabolic reprogramming as a survival strategy against antibiotics. Out of the 30 

substrates, maleate, succinate, 2-oxoadipate and pyruvate resulted in re-sensitization of 

the resistant strains.  

Chapter 4 discusses the central carbon metabolism model iDB147, developed in this 

work that has prediction accuracy of 90%. Flux Balance Analysis (FBA) was used to 

make several predictions and various sensitivity parameters pointed towards the 

importance of NADH and NADPH in the biomass yield (growth). Also, flux variability 

results are included which show that forced flux through reactions such as alpha 

ketoglutarate dehydrogenase (AKGDH) and malate dehydrogenase (MDH) is critical for 

survival of the pathogen.  

The whole genome scale model (GSM) of C. violaceum, iDB858 is discussed in fifth 

chapter. The overall methodology of developing a functional GSM model from an initial 

automated draft reconstruction is described along with the extensive manual curation 

done for the refinement and increase prediction accuracy and applicability of the model. 

iDB858 was used to predict phenotype after being validated using existing BIOLOG 

legacy data. The methods used included FBA, FVA and single gene/reaction deletion 

analysis among others. iDB858 had a prediction accuracy of 86%. As it is an 

opportunistic pathogen, gene lethality was used to identify potential drug targets.  

Sixth chapter discusses a public health perspective towards the serious problem of 

antibiotic resistance using a knowledge attitude practice (KAP) study in the Indian setup. 

An analysis of 504 respondents confirmed the need for a multi-pronged intervention to 

combat antibiotic resistance.  

Chapter seven concludes the thesis with significant findings and future scope.    
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Chapter 2 

Towards a Genetic Basis for 

Antibiotic Resistance in 

Chromobacterium violaceum 

 

“Evolution is a tinkerer” 

-Francois Jacob  

 

“Our genomes are catalogues of instructions from all kinds of sources in nature, filed for 

all kinds of contingencies” 

- Lewis Thomas 

 

2.1.  Introduction 

Evolution drives the diversity and unity of life. Evolution works across all hierarchies 

and scales of living systems: Molecular, Cellular, Organismal, Population and Ecological. 

The ability to maintain a particular state can be altered by evolutionary processes, and the 

interactions can lead to emergent properties. Evolution shapes our understanding not just 

of where we come from and where we are going, but also how we interact with the 

environment. For instance, can wild species adapt in time to cope with the changes we 

have imposed on the climate? And can we keep up with the 'evolutionary arms race' 

between superbugs and antibiotics? 
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Figure 2.1: Graphical abstract of this chapter 

 

Antibiotics and their resistance genes are the task forces in a biological warfare. As 

described in the previous chapter, there are several mechanisms for development of 

antibiotic resistance in bacteria that have been well documented in literature. All these 

mechanisms more or less involve genetic modification or variation at different levels of 

cellular proteins ranging from outer membrane proteins, efflux pumps or other associated 

antibiotic targets to metabolic bypass proteins or alternative enzymes less affected by the 

antibiotic. The emergence of such genetic mutations in the bacterial genome is one of the 

major factors underlying evolution of bacteria under the selection pressure of antibiotic in 

the environment. Also, the literature suggests that C. violaceum is naturally susceptible to 

many antibiotics including chloramphenicol, streptomycin, ciprofloxacin, etc. and 

resistant to ampicillin, penicillin, cephalosporins as discussed in Chapter 1. In this study 

two antibiotics chloramphenicol and streptomycin were used for adaptive laboratory 

evolution (ALE) of C. violaceum under controlled conditions. 
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Adaptive laboratory evolution (ALE) has been widely used, more so in last 25 years 

to gain insights into the basic mechanisms of molecular evolution and adaptive changes 

that accumulate in microbial populations during long term selection under specific growth 

conditions, in this case presence of an antibiotic. This adaptive potential of 

microorganisms is increasingly explored in biotechnology by adaptive laboratory 

evolution experiments (Blum et al., 2016). Post genomic era having advanced in 

transcripts and economical next-generation sequencing technologies has resulted in many 

recent studies, which successfully applied this technique in order to engineer microbial 

cells for biotechnological applications. ALE has been utilized to make production strains 

more efficient by making them tolerant to the metabolic product (Hu et al., 2016) by 

activating cryptic gene or inactive pathways (Wang et al., 2016) or by enabling growth on 

non-native substrates (Lee and Palsson, 2010). In addition, ALE experiments can improve 

our understanding of fundamental evolutionary principles that might help us solve rising 

global challenges of undesirable adaptations like drug resistances in microbial pathogens 

(Jahn et al., 2017). One way to analyze the acquisition of de novo mutations conferring 

antibiotic resistance is adaptive laboratory evolution. Usually, ALE experiments focus on 

the adaptation to specific physical or chemical factors such as temperature (Sandberg et 

al., 2014) or antibiotic tolerance (Lázár et al., 2013; Toprak et al., 2012).  

The advent of next generation sequencing (NGS) has been due to the need for high 

throughput whole genome sequences. NGS employs micro and nano technologies that 

allows massive parallel sequencing, reduce sample size and costs. NGS machines like the 

Ion Torrent Personal Genome Machine (PGM) or the Illumina MiSeq apparatus makes 

bacterial whole-genome sequencing (WGS) feasible (Quail et al., 2012). The Ion 

Torrent
TM

 PGM utilizes a small chip for detection of released hydrogen ions emitted 

during DNA polymerization. The Ion Torrent instrument was first marketed in February 

2010 by Life Technologies Incorporated (Thermo Scientific) and is capable of sequencing 

megabases of raw sequence reads on a single chip. It is a scalable, fast run analysis (less 

than 3 hours) approach with a rate of correct SNP calling higher (82%) than that of 

Illumina (68 – 76%) and is the fastest sequencing system on the market (Rothberg et al., 

2011).  

This chapter discusses the successful whole-genome sequencing of two independent 

C. violaceum mutant strains selected for in vitro resistance to chloramphenicol (ChlR) 

and streptomycin (StrpR) respectively. All genetic changes have been confirmed using 

Sanger sequencing and delineated during the evolution of antibiotic resistance after next 
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generation sequencing using Ion Torrent
TM

 PGM platform. The objective of this chapter 

is to delineate the genetic basis that results in antibiotic resistance in Chromobacterium 

violaceum for the antibiotics chloramphenicol and streptomycin. 

 

2.2. Materials and Methods 

2.2.1. Adaptive Laboratory Evolution 

The detailed Adaptive Laboratory Evolution (ALE) workflow is well described in 

Figure 2.1. Chromobacterium violaceum strain ATCC 12472
T
 was obtained from the 

American Type Culture Collection Center (ATCC), USA. The wild type C. violaceum 

was routinely cultured on Luria-Broth (LB, Hi-Media-M575) and maintained at 30°C 

with continuous aeration in a shaker incubator set at 180 rpm. C. violaceum was tested to 

be susceptible to low concentrations of both antibiotics (Chloramphenicol: MIC 8 μg/mL 

and Streptomycin: MIC 10 μg/mL in liquid culture and 60 μg/mL in agar plates). 

Antibiotic resistant strains of C. violaceum were evolved separately under controlled 

laboratory environments using the two antibiotics, chloramphenicol (chl) and 

streptomycin (strep) at sub-lethal concentrations (10 μg/mL) on Luria Bertani agar (LBA) 

plates. Clonal purification by repeated sub-culturing of the colonies obtained on LBA 

plates with antibiotic (10 μg/mL) resulted in single colonies. These colonies were cultured 

in LB with antibiotic (10 μg/mL) and further cryopreserved in 50% glycerol and all 

further experiments including phenotypic profiling discussed in Chapter 3 were done by 

thawing the frozen vials and sub-culturing in LB with antibiotic (10 μg/mL) at 30°C with 

continuous aeration in a shaker incubator set at 180 rpm until mentioned otherwise. 

 

2.2.2. Confirm and characterize genetic changes using whole genome sequencing 

using Ion torrent platform 

In order to extract genomic DNA for whole genome re-sequencing, ChlR and 

StrpR cultures were revived from previously cryopreserved glycerol stocks on LBA 

plates with respective antibiotic at 30°C. These cultures have been previously tested for 

all the phenotypic traits as described in the results section. A single colony from LBA was 

cultured in LB broth at 30°C, 180 rpm and mid – log phase cells were harvested for 

genomic DNA extraction using the DNeasy Blood and Tissue Kit (Qiagen, USA) 

according to the manufacturer's instructions. The quality of the genomic DNA was 

assessed for RNA contamination using A260/A280 ratio and visualized on agarose gel. 

The DNA was also quantitated using Qubit before library preparation.  
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Figure 2.2: Overall methodology followed in the genomic profiling 

 

2.2.3. Capillary sequencing for confirmation of variants 

All NGS identified sequence variations were confirmed by Sanger sequencing. 

Primers (Appendix 2.2) were designed to amplify around 200 to 600 bp amplicons such 

that the nucleotide of interest (of the 121 variants) was at a position for easy read during 

Sanger sequencing. Amplification and sequencing was performed by Eurofins Genomics 

India Pvt. Ltd.  

 

2.2.4. In silico Structure - Function analysis of the mutation acquired 

Ab-initio models were made using ROBETTA server (Kim et al., 

2004) (http://robetta.bakerlab.org) except for RpsL (homology modeling was used) and the 

models generated were checked for various parameters for model assessment, such as 

Ramachandran Plots using PROCHECK. Finally, visualization and manipulation of the 

three dimensional models were performed using the software PyMOL (Schrödinger, LLC, 

2015). In addition 3DLigandSite (Wass et al., 2010) was used to get a better 

understanding of the structure-function change post mutation/variation. 

 

2.3. Results and Discussion 

2.3.1. Evolved population ChlR and StrpR 

    The schema for the workflow followed in this study (Figure 2.1) involved the 

evolution of Chromobacterium violaceum strain ATCC 12472
T
 (C. violaceum or WT) 

http://robetta.bakerlab.org/
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Figure 2.3: MIC estimation 

using E-strips (a) or liquid 

broth dilution method (b) 
Figure 2.3: MIC estimation 

using E-strips (a) or liquid broth 

dilution method (b) 

from a small inoculum onto Luria Bertani agar (LBA) plates chloramphenicol (chl) and 

streptomycin (strep), both targeting protein translation at the ribosomal subunit level. To 

provide strong evolutionary pressure while maintaining a sizeable population, the 

concentration of antibiotic was chosen such that no more than 60% of growth was 

inhibited. Once defined this sub-lethal concentration (SLC), of the antibiotic (10 μg/mL) 

was not varied throughout the evolution as well as other experiments until specified. The 

adaptive evolution continued for about 3 weeks and when the first positive trait appeared, 

these colonies were cultured multiple times on LB agar plates with the respective 

antibiotics followed by colony purification. Multiple clones that were evolved in parallel 

were colony purified. Broth cultures of the respective antibiotic resistant population, 

ChlR resistant to chloramphenicol and StrpR resistant to streptomycin, were used for 

Minimum Inhibitory concentrations (MIC) calculations. One of the parallel lines of 

evolved clones resistant to antibiotics was further used in genotypic, phenotypic and 

metabolic profiling studies as will be discussed in this thesis in different chapters. 

 

2.3.2. Genome sequencing of ChlR and StrpR  

      Genome sequences were obtained for the two evolved populations, ChlR and 

StrpR, using Ion Torrent PGM
TM

 (Life Technologies) NGS using the 314
TM

 chip with 

mean read length of 180 and 188 base pairs respectively. Coverage details for ChlR and 

StrpR samples are given in Table 2.1. The sequencing data analysis for ChlR and StrpR 

samples showed 86% and 84% of the bases read were of ≥ Q20 quality respectively. For 

a b 
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77.07% of ChlR and 71.3% of StrpR samples the genome base coverage was 20x and for 

18.61% and 10.01% coverage was 100x. The assemblies and comparative analysis against 

NCBI sequence of C. violaceum (accession number NC_005085) were also performed 

and variants were identified. A total of 121 variants, 64 for ChlR and 57 for StrpR were 

identified. Of these, 41 variants were common among both the populations and 23 and 16 

unique variants. The genome sequence data generated for the current study is available in 

SRA repository (http://www.ncbi.nlm.nih.gov/sra/?term=SRP072862) and assigned the 

identifier SRP072862. 

Table 2.1: Coverage details for whole genome sequencing 

 

 

 

 

In order to see how genotype was shaping the growth phenotype of the resistant 

populations, we re-sequenced the whole genome using capillary sequencing. All the 

variants present in the two resistant populations (ChlR and StrpR) were analyzed and 

primers were designed for all of them and PCR amplification followed by capillary 

sequencing was performed for the three strains (WT, ChlR and StrpR) using all of the 160 

primers. Only 14 sequence variations were confirmed which belonged to 8 genes, as 

shown in Appendix 2.1. The sequence changes were seen to affect the protein structure 

and function in silico. 

 

2.3.3. Altered genotypes and in silico protein function 

In order to see how the altered genotype was shaping the growth phenotype of the 

resistant populations the sequence changes were analyzed to see the effect on the protein 

structure and function in silico. 

 

As discussed above fourteen sequence changes were confirmed using capillary 

sequencing. The ChlR population acquired mutations in marC (Haselkorn et al., 2003) 

and the transcription repressor acrR of the tripartite AcrAB-TolC multidrug efflux pump 

(Elkins et al., 2010; Li et al., 2008; Okusu and Nikaido, 1996). Mutations in marC were 

silent substitutions.  
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The repressor protein suffered 

premature truncation after translation of 

141 amino acids and a non-synonymous 

substitution R60L resulting in altered 

domain that is involved in ligand 

binding for repression. acrR which 

codes for the local transcription 

repressor of the tripartite AcrAB-TolC 

multidrug efflux pump, had two 

mutations, a frameshift insertion and a 

SNP which resulted in amino acid 

change at 60th position from Arginine 

(R) to Leucine (L) and premature 

termination of the protein after 141 

amino acid residues. The overexpression 

of this efflux pump has been well 

documented to be responsible for 

intrinsic antibiotic resistance to 

chloramphenicol in E. aerogenes 

(Ghisalberti et al., 2005), 

fluoroquinolone in S. typhimurium 

(Olliver et al., 2004) and K. pneumoniae 

(Schneiders et al., 2003) as well as 

multiple antibiotic resistance in E. coli 

(Okusu and Nikaido, 1996). Frameshift 

insertions in acrR in case of ampicillin 

resistant clinical isolates of H. influenza 

have been reported (Kaczmarek et al., 2004) whereas mutation at 45th amino acid residue 

has been reported in case of clinical isolates resistant to ciprofloxacin in E. coli (Webber 

et al., 2005). Frameshift mutation in acrR has been reported in several cases resulting in 

antibiotic resistance (Dean et al., 2005; Pradel et al., 2002; Schneiders et al., 2003; Wang 

and Dzink-Fox, 2001). There are studies in E. coli isolates that reveal the role of acrR 

mutations in high-level fluoroquinolone resistance in the absence of mar mutations also 

(Wang and Dzink-Fox, 2001).  Analysis of the crystal structure of AcrR of E. coli (PDB 

Figure 2.4: Ab initio model of AcrR for wild 

type (WT) and mutated (MUT) protein 

Table2.2: Amino acid sequence information 

for AcrR protein 
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ID – 2QOP:A) which has a 40% identity and 64% similarity to C. violaceum acrR (Li et 

al., 2008) suggests that on truncation of the protein after 141 amino acid residues, out of 

the 9 helices present in the protein, the eighth and ninth helix involved in dimer formation 

to bind to the operator site for repression, are deleted hence preventing repression of the 

efflux pump and hence efflux of the drug.  

In case of the StrpR population, a non-synonymous substitution R86S was detected in 

rpsL, coding for the 30S ribosomal protein S12 (Agarwal et al., 2011; Carter et al., 2000; 

Demirci et al., 2013; Panecka et al., 2014) along with deleterious mutations in kdpD, 

encoding for the sensor kinase of the two-component signal transduction system (TCS) 

(Freeman et al., 2013) and pabC, encoding the pyridoxyl 5’ phosphate (PLP)–dependent 

enzyme 4-amino-4-deoxychorismate lyase catalyzing 4-aminobenzoate or para-amino 

benzoate (PABA) biosynthesis (Green et al., 1992; Ye et al., 1990). Ab initio models built 

using ROBETTA and ligand binding analysis using 3DLigandSite 

(http://www.sbg.bio.ic.ac.uk/3dligandsite) showed that the mutated KdpD and PabC 

proteins truncated after 682 and 226 amino acids respectively resulting in loss of critical 

ligand binding or sensory domains.  

The gene rpsL codes for a 30S ribosomal protein S12 

which is known to have a critical role in the recognition of 

cognate tRNA (Agarwal et al., 2011) and contributes in the 

fidelity of mRNA decoding (Demirci et al., 2013) for 

maintaining translation accuracy and proper ribosomal 

function.  As a result of mutation, the 86th amino acid 

residue Arginine (R) is replaced by Serine (S). Alignment of 

other rpsL homologues from E. coli and S. typhimurium 

indicate that the arginine at position 86 is highly conserved, 

further evidence that mutation at such a region is critical for 

alteration in the protein function. It is well documented that 

resistance to streptomycin is often conferred by mutations in 

this gene. Escherichia coli S12 protein is known to have 

around 20 different kinds of substitutions including R86S to 

confer either streptomycin resistance (SmR) or streptomycin 

dependence (SmD) (Edgar et al., 2012; Timms et al., 1992; Toivonen et al., 1999). The 

same mutation, R86S, has been reported, in case of M. smegmatis responsible for 

Figure 2.5: Homology 

model of RpsL for wild 

type (WT) and mutated 

(MUT) protein 
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chromosomally acquired streptomycin resistance (Kenney and Churchward, 1994). In M. 

tuberculosis as well, point mutations in rpsL have been reported to be responsible for 

streptomycin resistance in various geographical isolates (Sreevatsan et al., 1996).  Also, 

there have been experiments reporting such above mentioned point mutations in the gene 

which are responsible for “error-restrictive” translation phenotype (Agarwal et al., 2011). 

It is presumed that the error prone translation or misreading as a result of streptomycin 

binding maybe “treated” by such hyper-accurate mutations in the S12 protein (Demirci et 

al., 2013).  

The gene pabC encodes the pyridoxyl 5’ phosphate (PLP) – dependent enzyme 4-

amino-4-deoxychorismate lyase that catalyzes 

the second step in PABA biosynthesis (Green et 

al., 1992; Ye et al., 1990). The 270 amino acid 

long enzyme is responsible for the formation of 

4-aminobenzoate (PABA) along with the release 

of pyruvate during folate biosynthesis (Figure 

2.2). Frameshift deletion in this gene results in 

premature termination of the protein after 226 

amino acid residues. This enzyme has been 

documented to be an essential enzyme for the 

growth of Gram-negative bacteria, including 

important pathogens such as Pseudomonas 

aeruginosa. The absence of the enzyme in humans and its essentiality in various microbes 

suggests that inhibition of PabC offers the possibility of new therapies targeting a range 

Figure 2.6: 3DLigandSite 

representation of the ligand binding 

residues (blue) including Ser238 

Figure 2.7: Ab initio model of PabC for wild type (WT) and mutated (MUT) protein 
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Figure 2.8: Schematic representation of the hypothesis, dark 

arrows represents higher flux towards violacein synthesis 

of microbial infections and structural studies provide useful data to assess the potential of 

this protein for such early stage drug discovery.  On performing BLASTp against the 

PDB protein database, we found that the PabC protein of C. violaceum shares maximum 

homology with the PabC protein of P. aeroginosa PAO1, PDB ID 2Y4R (43% identity) 

(O’Rourke et al., 2011). On sequence comparison, out of the crucial 24 amino acid 

residues involved in the active site, 7 residues which are strictly conserved among PabC 

of P. aeruginosa, E. coli, L. pneumophila and T. thermophilus (Phe27, Thr29, His43, 

Arg46, Gly199, Lys140 and Arg202 in pabC_P.aer) are also conserved in C. violaceum 

with the exception of His43. Ser237 and Asn236 which interact with the PLP phosphate 

using main chain and side chain groups are also conserved in C. violaceum protein. Other 

residues which interact directly or indirectly with the Lys140-PLP adduct include Phe92, 

Glu173, Val175, Phe176, Ser177, Asn178, Val197, Val200 and Met201 of which 

residues 175, 176, 200 and 201 are replaced with Threonine, Methionine, Alanine and 

Valine, respectively. Further, of those which contribute to the organization of the active 

site or that participate in solvent mediated interactions between the protein and the 

cofactor, Glu28, Leu139 and Gln147 are replaced by Arginine, Valine and Serine 

respectively whereas His141, Arg144, and Glu161 remain conserved. The sequence and 

structural analysis further shows that truncation as a result of deletion results in premature 

termination after 226 amino acids in case of C. violaceum which is homologous to the 

loss of amino acid from 225th residue in case of P. aeruginosa protein. This presumably 

shows at sequence level, the loss of two crucial amino acid residues important for the 

interaction of PLP cofactor with the enzyme. Also, at structural level it seems that there is 

partial loss of Domain II with 2 alpha helices (α7 and α8) and one beta sheet (β8) 

truncated. The PLP cofactor is covalently bound to Lys140 that is in domain II and also 

the active site is formed in a cleft formed between 

the two domains. So overall the truncation may result 

in deactivation of the enzyme.  

We hypothesize that this loss of function 

mutation results in the carbon flux diversion towards 

aromatic amino acid biosynthesis instead of folate 

biosynthesis and hence directly increases violacein 

production in C. violaceum.  
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The gene kdpD codes for the sensor kinase of the two-component signal 

transduction system (TCS). Mutation results in premature termination after 682 amino 

acids. The TCS regulatory protein functions in K+ homeostasis and also plays a crucial 

role in virulence and intracellular survival of pathogenic bacteria, including 

Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, 

Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. 

(Freeman et al., 2013; Parish et al., 2003).  

The KdpD protein, which has a 

cytosolic sensor domain and C-terminal 

histidine kinase activity, spans the bacterial 

cell membrane, while the other Kdp proteins 

have an exclusively cytosolic location 

(Puppe, 1995). In Escherichia coli, the Kdp-

ATPase is a high-affinity K+ uptake system 

and its expression is activated by the KdpDE 

two-component system in response to K+ 

limitation or salt stress (Walderhaug et al., 

1992). However, information about the role 

of this system in many bacteria still remains 

obscure. Homologue of Kdp protein 

sequences are found to be widely distributed 

among Gram-negative bacteria (e.g., E. coli, Salmonella enterica serovar Typhimurium 

LT2, and Clostridium acetobutylicum) and Gram-positive bacteria (e.g., Bacillus cereus 

E33L, Alicyclobacillus acidocaldarius, and Mycobacterium tuberculosis). Recently using 

whole genome sequencing, in case of V. cholera, resistant mutants against a particular 

antimicrobial active structure, vz0825, were reported to have SNP in the gene VC_A0531 

(GenBank: AE003853.1) which encodes for KdpD protein 

(Sergeev et al., 2014). Quite recently it was reported that 

streptomycin induces K+ and glutamate efflux before 

decrease in viability of cells (Iscla et al., 2014) and also 

the cytoplasmic C-terminal domain of the Escherichia coli 

KdpD protein, that is found to be truncated in StrpR, 

functions as a K+ sensor (Rothenbücher et al., 2006).  

Figure 2.10: The ∆C499-

894 protein functioned as a 

K+ Sensor adapted from 

Rothenbücher et al., 2006 

Figure 2.9: Ab initio model of KdpD 

for wild type (WT) and mutated (MUT) 

protein  
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2.4. Conclusion  

Continuous exposure to the antibiotics at concentrations slightly lower than the MIC, 

resulted in resistance to the antibiotics.  This adaptive evolutionary phenomenon allowed 

growth on agar plates at high antibiotic concentrations (MIC: 200 μg). Out of 4431 ORFs 

variation in only 6 ORFs resulted in acquisition of resistance. Classical mutation was 

observed in ChlR in the repressor of a multidrug efflux pump. Variations in genes that 

impact different levels of cellular or molecular hierarchy were observed in case of  StrpR. 

In all eight genetic variations resulted in acquired antibiotic resistance against two 

antibiotics that had different mechanism of action. The resistance phenotypes are not 

always predictable from genotypes alone. Drug resistance is a function of genetic 

variation along with metabolic, regulatory and environmental perturbations. Also, 

acquisition of antibiotic resistance is a complex phenomenon that involved changes in 

different levels of cellular hierarchy including genome, transcripts and metabolites. 
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Chapter 3 

Metabolic Dynamics and 

Phenotypic Profiling of Antibiotic 

Resistant Population 

 

 

“The essential thing in metabolism is that the organism succeeds in freeing itself from all 

the entropy it cannot help producing while alive” 

- Erwin Schrödinger, What is Life? 

 

 

3.1. Introduction 

Darwin’s Theory of Evolution combined with the recognition that the body 

chemistries of many disparate species were remarkably similar led Claude Bernard to 

develop his theory of the Milieu Intérieur: “The constancy of the internal environment is 

the condition of a free and independent existence”. This permanence is due to integrated 

regulatory mechanisms. This control was eventually termed homeostasis (by behaviorist 

Walter Cannon) to describe the physiologic processes that, in aggregate, maintain the 

constancy of the internal chemistries, as well as blood pressure, body temperature, and 

energy balance.  
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Metabolic plasticity is an evolutionary “save all ships” response to antibiotic 

challenge. This chapter discusses the differential metabolic dynamics and phenotypic 

profiles of ChlR and StrpR compared to WT population. The phenotypic characteristics 

investigated in this work include Minimum inhibitory concentrations (MICs), growth rate, 

violacein synthesis, NADH and Proton motive force (PMF). Differential metabolic 

dynamics is assayed using high resolution liquid chromatography techniques including 

LCHRMS with MS/MS and AP-MALDI. Different variants of LC-MS have been 

successfully used to study the effect of antibiotic on the metabolome of certain bacteria 

(Dörries et al., 2014; Derewacz et al., 2013; Nandakumar et al., 2014). 

Of the different phenotypic characteristics assessed in C. violaceum population the 

one used by clinicians as gold standards is Minimum inhibitory concentration (MIC) 

calculation (Riedel et al., 2014; Andrews, 2001). One of the distinguishing phenotypic 

characteristics of C. violaceum is the violet pigment violacein. Violacein is known to 

have antibacterial, antitumoral, antiviral, trypanocidal and antiprotozoan properties 

(Durán et al., 2016). Violacein biosynthesis in C. violaceum involves five genes, vioA to 

vioE, assembled in an operon (August et al., 2000; Balibar and Walsh, 2006; Sánchez et 

al., 2006; Shinoda et al., 2007; Hoshino, 2011). The operon is positively regulated by the 

CviI/R quorum sensing system. The main precursor metabolite for the synthesis of 

violacein is the amino acid tryptophan (Demoss and Evans, 1959) and the amount of 

violacein produced is directly proportional to amount of L-tryptophan present when it is 

limiting (Demoss and Evans, 1959). Production of violacein is also used as 

microbiological assay for L-tryptophan (Sebek, 1965). In the presence of VioC, oxygen 

and NADPH, deoxyviolaceinic acid is formed from protodeoxyviolaceinic acid which is 

converted to deoxyviolacein in a non-enzymatic pathway in the presence of oxygen. If 

VioD acts on protodeoxyviolaceinic acid before VioC, in the presence of NADPH and 

molecular oxygen, then it forms protoviolaceinic acid. VioC synthesizes violaceinic acid 

which later gets converted into violacein by spontaneous oxidative decarboxylation. In 

the absence of VioC, VioD and NADPH, protodeoxyviolaceinic acid gets converted into 

prodeoxyviolacein in the presence of oxygen spontaneously. Therefore the two major 

bottlenecks that may modulate violacein biosynthesis are availability of the substrate 

tryptophan and the cofactor NADPH. 

Promoting Tricarboxylic acid cycle (TCA)/Krebs cycle by glucose and/or alanine 

activation subsequently increases PMF and NADH stimulating higher antibiotic 

kanamycin induced death in multi-drug resistant Edwardisiella tarda (Peng et al., 2015). 
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Additionally specific metabolites have been associated with varying degrees of killing 

antibiotic tolerant pathogens (persisters) by stimulating proton motive force (PMF) and 

increasing antibiotic uptake (Allison et al., 2011; Peng et al., 2015). In this Chapter we 

also discuss the NADH estimation and PMF for the different population of C. violaceum.  

 

3.2. Materials and Methods 

3.2.1. Minimum Inhibitory Concentration (MIC) determination 

Antibiotic susceptibilities were determined with EzyMIC
TM

 Strips (HiMedia 

Laboratories, India) on Müller-Hinton agar plates using the manufacturer's instructions. 

The MICs were further determined using broth micro-dilution method for C. violaceum 

(at 30°C, 180 rpm) according to the dilution method described previously (Wiegand et 

al., 2008).  

 

3.2.2. Effect of varying concentration of antibiotics on growth profiles and growth 

rate estimation 

All strains were profiled for growth by varying concentrations of antibiotics at 30°C, 

180 rpm. Exponential-phase cultures were prepared at 30°C, 180 rpm using a shaker 

incubator and further used to inoculate 3 mL of LB to an initial OD600 of 0.1. Antibiotic 

stock solutions were added to yield desired concentrations of the antibiotic ranging from 

0 to 256 μg/mL. Cultures were incubated in a shaker incubator at 30°C, 180 rpm and 

bacterial cell densities were estimated hourly using a spectrophotometer. Growth profile 

assays for each C. violaceum strain were performed in triplicate using independent starter 

cultures and antibiotic stocks. Growth rate was estimated graphically from growth curves 

by plotting the natural log values of OD600 for each time point and determining the slope 

by linear regression. A minimum of four time points were used to determine the growth 

rate. 

 

3.2.3. Preparation of Intracellular Metabolite Extracts  

For performing metabolomics experiments, the three different populations of C. 

violaceum were inoculated (10% inoculum of overnight starter culture) and incubated in a 

shaker incubator at 30°C, 180 rpm for 30 hours (hr). 2 mL of cell cultures were harvested 

at the end of 0, 6, 12, 18, 24 and 30 hr by centrifugation at 12000g at 4°C for removal of 

extracellular media. The following steps were carried out on ice. The pellets were 

reconstituted with ice-cold ethanol for quenching as well as maximal extraction of 
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metabolite features as used in previous study (Meyer et al., 2010; Letisse and Lindley, 

2000). For collecting the extracts, the suspension was centrifuged at 14000 g at 4°C. The 

intracellular extracts were aliquoted (100 µL) and immediately stored at -80°C till further 

use. 

 

3.2.4. Spectrophotometric analysis 

The intracellular as well as extracellular extracts were used for violacein estimation 

with BioPhotometer (Eppendorf) by comparing to standard calibration graphs for 

quantitation purpose as previously described (Blosser and Gray, 2000).  

 

3.2.5. LC-MS analysis of Intracellular Metabolites 

The intracellular extracts were dried in centrivap (Labconco) at 4 °C, followed by 

reconstitution in 100 µL of 10% water in acetonitrile containing 4 µM atorvastatin 

(internal standard). 10 µL of each sample was pooled to prepare a technical quality 

control (QC) sample. Metabolic profiling of samples was carried out on HPLC-HESI-

HRMS. The separation was achieved on Sequent ZIC-HILIC column (100 mm*2.1 

mm*5 µm, Merck Millipore) column using HPLC consisting of Accela quaternary 

gradient pump, a degasser and Accela autosampler (Thermo Fisher). The column was 

maintained at 45 °C using column oven (PerkinElmer). The mobile phase for elution 

consisted of 0.1% formic acid in deionized water (Mobile phase ‘A’) and 0.08% formic 

acid in acetonitrile (Mobile phase ‘B’). Gradient was set with 5% of mobile phase A (0-

5.0 min, 300 µL/min), 13% A (15.0, 300 µl/min), 45% A (20.0 min, 300 µL/min), 90% A 

(23.0 min-25.0 min, 300 µL/min), 5%A (27.0-32.0 min, 700 µL/min).  Heated 

electrospray ionization (HESI) source was used as an interface between LC and HRMS 

instruments. The spray voltage of the source was set at 3.7 kV with capillary temperature 

300 °C, sheath gas 45 units, auxiliary gas 10 units, heater temperature 390 °C and S-lens 

RF at 50 units.  The data was acquired in range of 70-1050 m/z at resolution of 70,000 

FWHM with AGC target 1e6 and injection time of 120 ms. Two technical replicates, each 

of 5 µL sample volumes were injected during analysis in both positive and negative ion 

mode. A total of 7 quality control (QC) samples were run at beginning, intermittently and 

end of the run.  
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3.2.6. LC-MS Data analysis 

For data analysis, the Qual browser module of Xcalibur (Thermo) was used for 

manual inspection of presence of metabolite of interest through accurate mass - extracted 

ion chromatogram (AM-XIC).  A mass extraction window (MEW) of 20ppm around 

monoisotopic m/z of possible adduct was used to generate the XIC. After establishing the 

retention time (Rt) and peak width of respective metabolites as well as internal standard 

(IS), Tandem Mass Spectrometry (MS/MS) was carried out in respective ion modes to 

confirm their identities. The MS/MS data was analyzed using fragment search tool in 

METLIN (Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio 

DE, Abagyan R, 2005) data base (http://metlin.scripps.edu) and Mass frontier 7.0. A data 

processing method from processing setup module of Xcalibur software was prepared to 

integrate and generate area under peak data. The peak areas of metabolites were 

normalized to the area response of uniformly spiked internal standard, atorvastatin 

(ATV). This ratio is representative of the intracellular metabolite concentration 

(abundance) after taking into consideration the dilution factor for each sample extract. 

Principal component analysis (PCA) was used to get an overview of the data and to 

reduce the high dimension of the data set. For each metabolite, we calculated the temporal 

variation, using the coefficient of variation (CV): 

CV  = σ/μ           (Equation 3.1) 

where σ and μ are the standard deviation and mean of the measurements across the time 

points respectively. 

 

3.2.7. AP-MALDI of intracellular metabolites 

It was also estimated on Thermo Q-Exactive mass spectrometer (MS) coupled with an 

atmospheric pressure - matrix-assisted laser desorption/ionization (AP-MALDI) source 

equipped with a solid state Nd:YAG laser operating at 355 nm. A mixture of 2,5-

dihydroxybenzoic acid (2,5-DHB) and 2-cyano-4-hydroxycinnamic acid (CHCA) was 

used as a matrix for the analysis. Samples were mixed with internal standard (2,4-

diamino-6-methyl-1,3,5-triazine) before spotting on MALDI target plate in 6 replicates. 

The instrument was operated in full MS scan mode within m/z 50-750 at resolution 

35,000 FWHM. Spray voltage at 2.5 kV, capillary temperature at 250 ºC, AGC target of 

1e6 and 500 µs injection time were optimized before beginning analysis. Laser fluence 

was optimized at 70% and PDF value of 100 µs was used with automated rastering 

motion chosen for data acquisition.  

http://metlin.scripps.edu/
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3.2.8. AP-MALDI Data Analysis 

Data analysis was performed with Thermo XCalibur Qual Browser, mMass (Strohalm 

et al., 2008) for qualification and in-house software MQ v 5.0 (www.ldi-ms.com) for 

quantification (Bhattacharya et al., 2014) with a chosen MEW of 20 ppm. 

 

3.2.9. Growth profiling on different exogenous carbon and nitrogen sources 

C. violaceum was cultured overnight, then diluted to a density of 0.002 (OD600), 

mixed with an equal volume of LB that contains different metabolites at a final 

concentration of 2 mg/mL, except for lactate which was at a concentration of 0.27 

mg/mL. C. violaceum was cultured in 96-well flat-bottom plastic microplates at 30 °C for 

30 hr with or without antibiotic pressure. 30 different metabolites were tested in 

biological triplicates. The plates were monitored for growth, biomass and violacein using 

iMark™ Microplate Absorbance Reader (BIO-RAD) at 550 nm and 655 nm at regular 

time intervals. The amount of violacein and dry cell weight were determined using 550 

nm and 655 nm readings and compared to standard calibration graphs for quantitation 

purpose. Different conditions were tested wherein one set had the respective antibiotics, 

to which the strains were resistant, from zeroth time point (t0) and in the other set, 

antibiotic was added 6 hr (t6) post inoculation. After 30 hr the t6 set of plates were used 

to plate fresh LBA plates without any antibiotic to analyze viable colonies after the 30 hr 

incubation period. Growth rates were measured for the overall 30 hr duration experiment 

in four different phases:  pre-6 hr phase, post 6 hr phase, overall growth rate and a 

maximum growth rate. Same phase wise analysis for biomass and violacein was also 

performed. Curve fitting, visualization and analysis of the different plots for this 

experiment were done using GraphPad Prism Version 6.01 (GraphPad Software, San 

Diego California USA, www.graphpad.com). Nonlinear curve fitting was done using 

Gompertz growth equation (Zwietering et al., 1990) for the growth data points (Appendix 

3.1). All the heat maps were generated using MATLAB platform (Figure 3.3). 

 

3.2.10. Effect of acyl homo serine lactones on growth profiles and violacein 

C. violaceum was cultured overnight, then diluted to a density of 0.002 (OD600), 

mixed with an equal volume of LB broth that contains different acyl homoserine lactones 

(AHLs) at a final concentration of 0.36 μM. C. violaceum was cultured in 96-well flat-

bottom plastic microplates at 30 °C for 37 hr without shaking with or without antibiotic 

pressure. Nine different acyl homo serine lactones were tested in biological triplicates. 

http://www.ldi-ms.com/
http://www.graphpad.com/
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The AHLs included in this study were N-butanoyl-L-homoserine lactone (C4-HSL), N-

hexanoyl-L-homoserine lactone (C6-HSL), N-heptanoyl-L-homoserine lactone (C7-

HSL), N-octanoyl-L-homoserine lactone (C8-HSL), N-decanoyl-L-homoserine lactone 

(C10-HSL), N-dodecanoyl-L-homoserine lactone (C12-HSL), N-tetradecanoyl-L-

homoserine lactone (C14-HSL), N-butyryl-L-homocysteine thiolactone  (C4 cytl) and N-

3-oxo-hexanoyl-L-homoserine lactone (3-0-c6). The plates were monitored for growth, 

biomass and violacein using iMark™ Microplate Absorbance Reader (BIO-RAD) at 550 

nm and 655 nm at regular time intervals. Different conditions were tested where in one 

set the respective antibiotics to which the strains were resistant were added and in the 

other no antibiotic was added. After 37 hr of incubation the amount of violacein and dry 

cell weight were determined using 550 nm and 655 nm readings and compared to 

standard calibration graphs for quantitation purpose.  

 

3.2.11. Effect of antibiotic resistance on heterologous violacein phenotype 

Different E. coli strains with or without antibiotic resistance were transformed with 

recombinant plasmid with the violacein operon from C. violaceum (Accession number 

AF172851) inserted into pUC19 vector (Thermo Fisher scientific Cat. no. SD0061) 

double digested with KpnI/PstI with ampicillin resistance. The strains used included E. 

coli K12, E. coli K12 ∆trpR Kan
R
, E. coli K12 ∆trpR and E.coli Lemo21 (DE3). The trpR 

gene, responsible for regulating L-tryptophan expression is knocked out in ∆trpR strains 

resulting in constitutive expression of L-tryptophan, one of them included kanamycin 

resistance while the other was cured of the kanamycin resistance from the genome. E.coli 

Lemo21 (DE3) contains the plasmid pLemo expression vector driven by T7 RNA 

polymerase and requires chloramphenicol (30 µg/mL) for maintenance.  

 

Table 3.1: Strains used to study the effect of antibiotic resistance on heterologous 

violacein phenotype 

Strain Genotype Remarks 

E. coli K-12 MG1655 F- lambda- ilvG- rfb  50 rph-1 
Wild type strain no 

antibiotic resistance 

E. coli K-12 MG1655 ∆trpR F- lambda- ilvG- rfb  50 rph-1 
Prevent feedback 

inhibition 

E. coli K-12 MG1655 ∆trpR Kan
R
 F- lambda- ilvG- rfb  50 rph-1 Kanamycin resistance 

E. coli  limo21(DE3) 
fhuA2 [lon] ompT gal (λ DE3) 

[dcm] ∆hsdS/ pLemo(Cam
R
) 

Chloramphenicol 

resistance 
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Luria–Bertani (LB) medium was used for all the growth, knockout, transformation 

and violacein estimation experiments. Ampicillin at a final concentration of 100 µg/mL 

concentration was used for the transformation experiments for selection and growth of 

recombinant plasmid containing strains. Luria–Bertani agar (LBA) was used for colony 

selection and purification. Kanamycin at a final concentration of 15 µg/mL was used for 

in the knockout experiments for the selection of transformants. All experiments were 

performed in triplicates until mentioned otherwise. The starting strain for ∆trpR knock 

out was E. coli K-12 MG1655. The knockout was constructed by homologous 

recombination with PCR amplified fragments using the lambda Red recombinase system  

(Datsenko and Wanner, 2000) using the Quick and Easy E.coli Gene Deletion Kit (Gene 

Bridges) as per the manufacturer's protocol. Primers 

ATATGCTATCGTACTCTTTAGCG and TGGCGCTGAGTCCGTTTCATAAT were 

designed containing sequences surrounding the ORF, and these were used to amplify a 

kanamycin resistance gene flanked by FRT sites. After the induction of pREDET protein 

synthesis, transformation of PCR product containing FRT cassette into E. coli was done 

using electroporation. The genomic ORF was replaced by the kanamycin gene through 

homologous recombination, and this gene insert was later removed with an FLP 

recombinase, using pFLP706, leaving a small scar region in place of the original ORF. 

The kanamycin resistance gene was not excised after the final gene replacement for E. 

coli K12 ∆trpR Kan
R
, making it kanamycin resistant. To confirm the genotypes of the 

knockout strains, primers flanking each knockout site were designed and used to amplify 

genomic DNA. Amplified fragments were run on a 2% agarose gel with EtBr, and the 

length of the fragments indicated whether the genes were knocked out (~600 bp), 

contained the kanamycin insert (~1800 bp), or remained as the wild-type gene.  

Transformation of the E. coli strains with the recombinant plasmid was done by 

electroporation as per Eppendorf Eporator® protocol (Protocol No. 4308 915.514 – 

04/2002). Briefly, 2.5 mL of fresh overnight culture of E.coli K12 and E.coli K12 ΔtrpR 

was inoculated into 500 mL of LB medium. The culture was incubated at 37 °C with 

shaking to an O.D 600 of 0.5 to 0.6. The culture was then incubated on ice for 15 min and 

then transferred to pre-chilled sterile 50 mL centrifuge tubes. Cells were harvested by 

centrifugation at 5,000 g at 4°C for 20 min. The cell pellet was re-suspended in 5 mL 

sterile ice cold water. Cells were washed twice with original culture volume of ice cold 

water and centrifuged as above. Supernatant was discarded and cells were mixed in the 

remaining liquid. These cells were immediately used by aliquotting 100 µl cells into 
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sterile pre-chilled micro centrifuge tubes. (If freezing the cells for later use, add 40 mL of 

ice-cold 10% glycerol, mix and centrifuge for 10 min, at 5,000xg and 2-4 °C. Re-suspend 

the cells in ice-cold 10% glycerol to a final concentration of approximately, 2 x 10
11

 

cells/mL. Aliquot 40-300 µl cells into pre-chilled centrifuge tubes and quick freeze on dry 

ice and store at –80 °C).  

Briefly, 50 ng/mL of recombinant plasmid was added to 40 µl of each electro 

competent cells of E.coli K12, E.coli K12 ΔtrpR, E.coli Lemo21 (DE3) separately in 

sterile micro-centrifuge tubes and properly mixed. This mixture was transferred to a pre-

chilled electroporation cuvette. The cells were electroporated at voltage of 1,700V. After 

electroporation they were immediately mixed with 1 mL medium and 200 μl of 

tryptophan and transferred to a sterile micro- centrifuge tube with micropipette. Cells 

were incubated at 37°C with moderate shaking for 60 min and 100 µl was plated on LBA 

plates containing ampicillin (100 µg/mL) agar plates and were kept for overnight 

incubation at 37°C. Isolated violet transformed colonies were picked up and streaked on 

LBA plates containing ampicillin (100 µg/mL) agar plates for colony purification. The 

transformed colonies were confirmed for presence of plasmid using PCR, restriction 

digestion and sequencing. Upon confirmation, transformants were cultured in LB with 

ampicillin and further cryopreserved in 25% glycerol.  

Loop-full culture of the transformed cells from glycerol stock was streaked on LBA 

agar plate with respective antibiotics and incubated overnight to obtain isolated colonies 

of the cells. 5 mL fresh LB medium containing ampicillin (100 µg/mL) in a sterile 50 mL 

tubes (in triplicates)  was inoculated with single isolated colony from the LBA and 

incubated for 16 hr at 37°C on a rotary shaker incubator. This was used as an inoculum 

for the violacein estimation of the transformed strains. Fresh LB containing ampicillin 

was inoculated with 10% pre-inoculum (in triplicates) and incubated at 37°C on a rotary 

shaker incubator for 24 hr. 2 mL culture sample was harvested for spectrophotometric 

estimation of violacein as discussed in previous section of this chapter. The sample was 

centrifuged at 12000g at 4°C for removal of extracellular media. The supernatant was 

collected separately and the pellet was re-suspended in equal volumes of absolute cold 

ethanol to dissolve the violacein with frequent vortexing to dissolve the crude violacein in 

ethanol followed by centrifugation at 12,000 g for 10 min at 4°C. Supernatant was 

collected and the amount of violacein was estimated with BioPhotometer (Eppendorf) by 

comparing to standard calibration graphs for quantitation purpose as previously described 

(Blosser and Gray, 2000). 
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3.2.12. NADH and NAD Measurements  

NAD/NADH levels of C. violaceum cultures (WT, ChlR and StrpR) were measured 

using a commercially available kit (MAK037, Sigma Chemical, St. Louis, MO, United 

States) according to the manufacturer's instructions. NAD total (NAD and NADH) or 

NADH levels are quantified in a colorimetric assay at 450 nm using iMark™ Microplate 

Absorbance Reader (BIO-RAD). The estimation was performed for four substrates - 

Glucose, Pyruvate, Succinate and 2-oxoadipate (2oxoADP). 

 

3.2.13. Membrane potential measurements  

BacLight Bacterial Membrane Potential Kit (B34950, Invitrogen) was used to 

measure changes in proton-motive force (PMF) induced by different metabolites 

according to the manufacturer's instructions. Stationary cells cultured in presence of 

different metabolites were diluted to 10
6
 CFU/mL and stained with 10 μL of 3 mM 

DiOC2 (3), followed by incubation for 30 min. Samples were analyzed using a BD 

LSRFortessa SORP cell analyzer flow cytometer (Becton Dickinson, San Jose, CA) with 

settings optimized according to the BacLight kit manual. Filters used to detect were FITC 

and Texas Red dye, FSC threshold, 1,000; recorded events, 100,000. FSC and SSC 

outliers were gated out by visual inspection before data acquisition. The green/red mean 

fluorescence intensity (MFI) was detected through a 488−530/610 nm bandwidth band-

pass filter, respectively. The membrane potential was determined and normalized as the 

intensity ratio of the red fluorescence (a membrane potential- dependent signal) and the 

green fluorescence (a membrane potential-independent signal). Proton ionophore (CCCP) 

was uses as a control as it eradicates the proton gradient, eliminating bacterial membrane 

potential. The measurements were performed for five substrates - Glucose, Pyruvate, 

2oxoADP, Maleate and Succinate. Relative PMF was determined in test samples 

compared to positive control samples (with glucose) and negative control samples 

(+CCCP). 
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3.3. Results and Discussion 

3.3.1. Evolution of antibiotic resistance and fitness  

Figure 3.1: Growth rate estimation for C. violaceum populations  

We first analyzed that growth rates and kinetic profiles of the resistant populations 

support evolution towards fitness on both antibiotics. The effect of varying antibiotic 

concentration on growth rate was studied (Figure 3.1). The growth rates of the 

chloramphenicol resistant (ChlR) population was reduced to 50% at 32 μg/mL 

chloramphenicol, while the streptomycin resistant population (StrpR) growth rate was 

lowered down to just 15% of that without antibiotic. At even 10 μg/mL of streptomycin 

the growth rate of the StrpR population was reduced by only 10%. The growth rate 

exponentially decreased with increasing concentration of the antibiotic in the wild type 

and evolved resistant populations (ChlR and StrpR). The resistant populations improved 

in growth rate and biomass yield substantially even in the presence of higher 

concentrations of antibiotic in contrast to the wild-type (WT). Surprisingly, no fitness 

costs associated with the acquired resistance were observed in the absence of antibiotics. 

Table 3.2: MIC estimation for 11 different antibiotics for C. violaceum 

 Antibiotic 

(μg/mL) 

Wild 

Type 
Chl

R
 Strp

R
 

Penicillin(Pen) >256 >256 >256 

Ampicillin(Amp) >256 >256 >256 

Ticarcillin(Ti) 240 240 240 

Piperacillin/Tazobactam 

(PTZ) 
32 >256 32 

Ceftriaxone >256 >256 >256 

Amikacin 4 4 4 

Gentamicin 1 1 1 

Streptomycin 60 5 120 

Chloramphenicol 8 >256 8 

Ciprofloxacin 0.006 0.008 0.008 

Co-trimoxazole 0.5 1 1 

Figure 3.2: Differential MIC for WT, ChlR and StrpR for PTZ 
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 Next, we assessed broad-spectrum antibiotic susceptibility for ChlR and StrpR 

populations via estimation of MIC on 11 different antibiotics (Table 3.2). The 

chloramphenicol evolved population, ChlR, had an MIC much greater than the wildtype, 

being able to resist high titers of 256 μg/mL of chloramphenicol. The streptomycin 

evolved population, StrpR was able to resist twice the amount of antibiotic as the 

wildtype reaching a titer of 120 μg/mL. StrpR populations showed low MICs for 

chloramphenicol indicating higher sensitivity. Only the ChlR population showed cross-

resistance to Piperacillin/Tazobactam (PTZ) combination (Figure 3.2). Similar trends 

were observed when MIC values were estimated by broth dilution method (Figure 2.3) for 

chloramphenicol (>256 μg/mL) and streptomycin (120 μg/mL) and were represented as 

percentage viability of the cells. 

 

3.3.2. Effect of exogenous metabolites and antibiotics on growth 

A systematic evaluation of benign microenvironment metabolites in excess of being 

limiting (Appendix 3.1) showed unique fitness landscapes and associated costs for the 

evolved and wild type populations (Figure 3.3). Wild type C. violaceum (WT) does not 

show capacity to utilize citrate, oxalate and glyceraldehyde-3-phosphate. Streptomycin 

(bactericidal) showed a more profound effect on growth, unable to support growth on 

50% of the substrates tested while chloramphenicol (bacteriostatic) affected growth on 

only 7/30 (23%) of the substrates. The ChlR and StrpR populations showed fitness costs 

associated with growth on 13 and 17 substrates respectively. StrpR populations showed 

lag for extended period of times on many substrates (consistent with mutations discussed 

in the next section). Lowered fitness is observed on glycolytic intermediates like fructose-

1,6-diphosphate and other TCA cycle intermediates. Strikingly, the ChlR population 

recorded almost no growth and viability on organic acids maleate (C3), pyruvate (C3), 

succinate (C4) and 2-oxoadipate (C6) even in the presence of chloramphenicol antibiotic 

(Figure 3.3d and 3e). The StrpR population exhibited similar growth patterns with the 

only exception of D-malate (C3) also being able to re-sensitize the resistant population. 

The null post treatment viability count  (Figure 3.3c and 3f) make them ideal candidates 

for antibiotic therapy for resistant populations. 
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Table 3.3: Altered kinetic parameters represented as growth rates and time lag for C. 

violaceum (WT, ChlR and StrpR) on multiple micro-environment metabolites. 

 
Growth Rates (hr

-1
)  Time Lag (hr) 

Metabolites WT+chl WT+strep WT ChlR StrpR  WT+chl WT+strep WT ChlR StrpR 

Glucose 0.00 0.00 0.71 0.21 1.80    3 9.5 2 

Glucose-6-phosphate 0.09 0.01 1.08 0.77 2.23  3 3 2 3.5 2 

Glyceraldehyde 3-phosphate 0.00 0.00 0.00 0.00 0.00  
     

Fructose 1,6-bisphosphate 0.00 0.01 1.14 0.23 0.25   3 1.5 6 10 

Fumarate 0.00 0.06 1.55 0.21 0.27   3 1.5 12 13.5 

Maleic acid 0
d
 0.00 0.60 0

a
 0

c
   

 
1 

  
D-Malic acid 0.08 0.01 0.67 1.89 0

b
  2.5 15.5 1.5 0 

 
Succinate 0.00 0.00 1.00 0

a
 0

b
  

  
2.5 

  
Oxalic acid 0.00 0.00 0.00 0.00 0.00  

     
2-Oxoadipic acid 0.04 0.00 0.62 0

e
 0

c
  0 

 
0 

  
Malonic acid 0.11 0.03 1.08 0.45 0.17  2.5 2.5 1.5 2 18 

Pyruvate 0.41 0.00 0.58 0
e
 0

b
  4 

 
2.5 

  
Citric acid 0.00 0.00 0.00 0.00 0.00  

     
Isocitric acid 0.46 0.00 1.31 0.32 0.32  10 

 
3.5 3.5 12.5 

L-Lactic acid 0.29 0.00 0.99 1.05 0.16  3 
 

4.5 4.5 18 

Ketoglutaric acid 0.15 0.09 0.19 0.24 0.04  0 0 3.5 0 21 

L-Arabinose 0.00 0.00 0.88 0.54 0.29  
  

3.5 3.5 13.5 

Mannose 6-Phosphate 0.18 0.00 1.08 0.98 1.68  3 
 

2.5 3.5 2.5 

Ribose 5-phosphate 0.28 0.00 0.86 0.33 0.18  2.5 
 

2.5 6 6 

3-phosphoglyceric acid 0.29 0.26 0.28 0.40 0.18  2 2 0 6 6 

L-Tryptophan 0.00 0.00 0.53 0.23 1.92  
  

2 2 2 

L-Alanine 0.21 0.00 0.96 0.28 0.36  2.5 
 

2.5 6 3.5 

L-Valine 0.28 0.00 0.74 0.33 0.14  2 
 

2 6 6 

L-Aspartate 0.27 0.20 0.19 0.41 0.18  2.5 2.5 0 6 10 

L-Glutamine 0.00 0.00 0.83 1.15 0.26  
  

2.5 3.5 13 

L-Glutamate 0.52 0.16 1.28 1.12 0.23  3 3 3 3 12.5 

Mannitol 0.24 0.00 1.00 0.98 0.20  3 
 

2 3.5 8.5 

D-Sorbitol 0.24 0.00 0.58 0.40 0.25  12.5 
 

2.5 6 9.5 

Glycerol 0.00 0.00 0.78 0.28 1.99  
  

2.5 9.5 2.5 

L-Ascorbic acid 0.00 0.18 0.81 0.23 0.27  
 

3 3 6 12 

Luria Bertani 0.00 0.00 0.47 0.37 1.69  3 3 1.5 3 3 
Zero growth rates are represented in bold. a - t6 initial till 180 min ; b - t0 initial till 180 min ; 

c - t0 first 60 min ; d - 3 to 18 hr growth; e - growth after 24 hr. 
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3.3.3. The  

 

 

 

3.3.3. The metabolic phenotype of resistant populations 

3.3.3.1. Differential Violacein levels in resistant populations 

 

 

 

 

 

 

 

Figure 3.4: Violacein quantitation for the three populations across time 

 

Accumulation of violacein was observed after 6 hr of growth. Violacein showed 

differential abundances in the three populations with >30% increase in StrpR and ~35% 

reduction in ChlR populations. Extracellular violacein (supernatant) was observed to be 

higher in case of ChlR. 

Figure 3.3: Heat map 

showing effect of different 

metabolites on biomass, 

growth and viability for the 

three populations – WT, 

ChlR and StrpR. a) 

Exponential growth rates b) 

Maximum biomass after 30 

hr (as cell dry weight). c) 

Viability (log 10 CFU/mL) 

after 48 hr in the absence of 

antibiotics on rich LB media 

plates. d) to f) Inset showing 

effect of four metabolites 

maleate, succinate, pyruvate 

and 2-oxoadipate re-

sensitizing ChlR and StrpR 

against antibiotics. 

a b c 

d e f 
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Figure 3.5: LC-MS time profiles of metabolites showing significant differences (a - f) 

as well as negligible changes (g - h) among the three populations 

3.3.3.2. Differential metabolic dynamics: LC-MS analysis 

To determine the fundamental genotype-phenotype relationship and establish a 

metabolic basis for antibiotic resistance, intracellular metabolomics profiles were 

measured using mass spectrometry (LC-HRMS with MS/MS). Including both ion modes, 

total 126 metabolites were screened. At the end of the analysis, 59 metabolites were 

finally selected based upon qualification criteria of mass accuracy, MS/MS confirmation, 

elution profile, reproducibility of response of technical QC samples and biological 

relevance. Relative abundance was calculated by normalizing metabolite peak area 

response with that of internal standard (metabolite of interest peak area/internal standard 

peak area). This ratio is representative of the intracellular metabolite concentration 

(abundance) after taking into consideration the dilution factor for each sample extract 

across the three different populations of C. violaceum. All the LC-MS and AP-MALDI 

time profiles (Figure 3.5, 3.10 to 3.12, 3.15 and 3.16) were plotted as relative abundance 

on Y-axis and time point on X-axis.  
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a b c d 

e f g h 

To understand the spread and skewness of the metabolomics data obtained for the three 

different populations (WT, ChlR and StrpR), the data was represented using box and 

whiskers plots as explained for Guanosine in Figure 3.6a. Such representation showed 

that the metabolite relative abundance levels in the three populations span three orders of 

magnitude intracellularly (Appendix 3.3). 4-aminobenzoate (PABA), succinate, 

hypoxanthine and leucine/isoleucine vary significantly in their magnitude whereas 

glutamine, aspartate, guanosine and methyl-malonate vary slightly.  

 

 

 

 

 

To validate that the metabolism is different in the wild type (WT) and resistant strains 

(ChlR and StrpR), Principal Component Analysis (PCA) of quantitative features of 

metabolites of intermediary metabolism extracted from LC-HRMS data was performed. 

Score plots of principal components for both biological replicates, show trends that 

showcase maximum separation of data with respect to different time points (PC1) and 

also clustering of data points based on susceptibility or resistance to antibiotic (PC3). 

Figure 3.6b: Box and whiskers plot for metabolites showing significant differences (a - f) as well 

as negligible changes (g – h) among the three populations 

Figure 3.6a: Box and 

whiskers plot explained 

using guanosine as an 

example 
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Differential expression of features exhibited by ChlR was captured by PC3 in both the 

biological replicates (Figure 3.8). A significant difference after 6 hr time point in scores 

of ChlR shows a distinct deviation in metabolic behavior in comparison to the other two 

populations studied. The ChlR strain shows separation from the WT and the StrpR 

populations in terms of intermediary core metabolism on glucose as also identified 

through flux balance modeling that will be discussed in Chapters 4 and 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: PCA plots of PC1 versus PC3 for both biological replicates for all three population 

shows differential features of ChlR compared to WT and StrpR for 12 hr fractions and onwards 

Figure 3.8: PCA score trends for PC1 (a and b) and PC3 (c and d) for both 

biological replicates for all three population 

Biological replicate 1                                                Biological replicate 2 

Biological replicate 1                                  Biological replicate 2 

c 

a b 

d 
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The significant metabolites 

after almost 30 hr of growth 

include deoxyviolacein, 

xanthine and β-cyanoalanine 

while the metabolites in the 

early hours of growth include 

core metabolite candidates like 

fumarate, maleate, malate, 

succinate and pyruvate (Figure 

3.9). 

 

 

 

The metabolite abundances also show oscillatory behavior with varying amplitude, 

period and phase lag. Leucine (Figure 3.5d), lysine and proline (Figure 3.10a and d) had a 

characteristic oscillatory behavior with a period of 12 hr; also there is phase lag in WT 

compared to resistant populations. Certain metabolites such as arginine and adenosine 

(Figure 3.10b and e) showed negligible changes. Intermediate of violacein biosynthesis 

pathway, prodeoxyviolacein (Figure 3.10 c) was seen to increase linearly only in ChlR 

whereas it was very low for the other two i.e. WT and StrpR. The presence of 

prodeoxyviolacein, a precursor only in ChlR potentially explains the lowered violacein 

through limited availability of cofactor NADPH since tryptophan levels are similar 

(Figure 3.11e).  

 

 

 

 

 

 

 

 

 

Figure 3.9: PCA plots showing metabolites with higher loading values for PC1 

show higher variance across time points 

Figure 3.10: LC-MS time profiles of metabolites showing phase lag 

a b 

e f 

c d 
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Figure 3.12: LC-MS time profiles of metabolites representing nucleotides 

Chloramphenicol was detected only in ChlR intracellular extracts confirming the 

uptake of the antibiotic by the resistant population. Additional metabolites that showed 

differential behavior in case of the three populations WT, ChlR and StrpR were are 

malate, pyruvate, indole, tryptophan and cyanoalanine. Malate accumulated in case of 

StrpR from 24 hr whereas pyruvate showed significant accumulation in case of StrpR. 

Indole accumulation was observed to be significant in case of ChlR. Tryptophan 

accumulation was higher in case of WT and ChlR population when compared to StrpR.  

 

Increased recycling of nucleotides through salvage pathways was reflected in high 

levels of adenosine, xanthine and hypoxanthine in the resistant populations (Figure 3.12). 

8-oxoguanine, a major oxidized base lesion formed by reactive oxygen species, was 

higher in the StrpR population indicating potential oxygen radical effects. 

 

Figure 3.11: Differential LC-MS 

time profiles of metabolites 
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Figure 3.13: Heat map 

for relative abundance 

and temporal variation 

for all three 

populations. a) LC-MS 

time profiles of 

metabolites in Y axis 

and 6 time points on X 

axis followed by a 

column representing 

temporal variation. 

b) Average intracellular relative 

abundance for metabolites showing 

significant changes in ChlR and 

StrpR normalized to WT. c) 

Temporal variation of selected 

metabolites. 

The linearized dynamics around the steady-state level of metabolites is captured by 

the temporal variation (TV, Figure 3.13). Low TV indicating potential growth limitation 

was observed in malate, glucose, glyceraldehyde-3-phosphate and uracil across all 

populations. Phenylalanine and methionine are potentially growth limiting (low TV) in 

ChlR while pyruvate only in StrpR.  Tyrosine and serine are less growth limiting (high 

TV) in the resistant populations than the wild type. Pyruvate and malate showed low 

average intracellular abundance or had low TV in the resistant populations.  

 

 

 

 

 

 

 

 

 

 

 

As discussed above profiling various metabolic phenotypes for the three different C. 

violaceum populations we found certain differences and tried to correlate and reach 

certain trends (Figure 3.14) for the metabolites that showed promise in re-sensitization 

and killing. ChlR and StrpR have low relative abundance of pyruvate compared to WT in 

addition to low temporal variation in StrpR. Relative abundance of succinate was found to 

be low for ChlR compared to WT. Temporal variation for maleate was low for all three 

strains and relative abundance is low in ChlR. 

 

 

 

 

Figure 3.14: 3D plots correlating growth, relative abundance and temporal variance of metabolites  

a b c 

WT                                                          ChlR                                                    StrpR 
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Figure 3.16: API-MALDI time profiles of other metabolites 

3.3.3.3. Differential metabolic dynamics: AP-MALDI analysis 

Intracellular metabolic profiles were also determined at multiple time points using 

AP-MALDI Mass spectrometry. Tryptophan levels peaked at 12 hr and correlated to 

violacein dynamics. Differential time profiles of violacein were identified in ChlR and 

StrpR strains and Prodeoxyviolacein was detected only in ChlR population.  

 

Characteristic oscillatory 

profiles were detected in resistant 

populations for Lysine, 

Methionine, Phenylalanine and 

Glucose; concentrations lower in 

wild type. Wild type susceptible 

population showed highest levels 

of Valine and no accumulation of 

one carbon metabolites such as 

S-Adenosyl homocysteine 

(SAH), S-Adenosyl methionine 

(SAM) and Methionine. 

 

Figure 3.15: AP-MALDI time profiles of metabolites 

representing violacein pathway intermediates (a - d and 

f) along with the Violacein biosynthetic pathway (g) 

adapted from Duran et. al., 2012 
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Figure 3.17: Total violacein produced by WT normalized to amount of violacein in the 

absence of AHL. X-axis shows the different AHLs used and Y- axis represents 

normalized violacein values. 

Figure 3.18: Total violacein produced by ChlR and StrpR normalized to WT (a,b) 

and normalized to that in absence of AHL (c,d) in presence (right) or absence (left) 

of antibiotic. X-axis shows the different AHLs used and Y- axis represents 

normalized violacein values. 

  

3.3.3.4. Effect of acyl homo serine lactones on violacein and growth 

As reported in literature WT C. 

violaceum ATCC 12472 showed a 

stimulatory response when long chain acyl 

homoserine lactones (AHL/HSL) (C10 – 

C14) were added to the media in 

comparison to short chain AHLs (C4 – C8).  

 

ChlR and StrpR showed differential violacein secretion response towards the AHLs 

with ChlR showing the highest amounts of violacein in extracellular media in presence of C4 

AHL (around 3.4 fold in the presence of chloramphenicol) whereas StrpR showed similar 

effect for C14 AHL (4 fold in presence of streptomycin). But on comparison of total 

violacein being produced C14 AHL induced maximum amount of violacein for both the 

Figure 3.15: Effect of AHLs on total violacein.  

a b 

c d 
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Figure 3.19: Heat Map of a) WT normalized, b) double normalized data for violacein 

(mmol/gDCW, violet) in intracellular (intra) and extracellular (extra) extracts, c) growth 

rate (grayscale, hr
-1

) and d) biomass formation (yellow to green, grams). In each pair 

experiment without antibiotic is represented on the left and with antibiotic on the right 

hand side. 

resistant strains (12% increase for ChlR and 83% for StrpR) and a trend for higher violacein 

for StrpR and lower for ChlR was observed independent of antibiotic being added in the 

media or the type of AHL except for C4, C6 and C14 AHLs. In case of C4 and C6 ChlR was 

capable of producing total violacein similar to WT. In case of C14 AHL ChlR produced 12% 

more than that of WT. For normalizing the strain specific violacein produced in the absence 

of any exogenous AHL a double normalization was performed (Figure 3.15) that highlighted 

the differential violacein features better for ChlR and StrpR. In the absence of antibiotic, we 

see differential violacein profiles in case of four AHL that include C6, C7, C8 and C10 acyl 

chains whereas in the presence of antibiotic we see differential violacein profiles in case of 

five AHL that include C6, C7, C8, C12 and C4cyTL acyl chains. These results definitely 

show differential behavior of the resistant population of ChlR and StrpR in comparison to 

WT and need to be further investigated. Similar trends were observed for growth rate and  

biomass. 

c 

a b 

d 
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Figure 3.20: Violacein 

estimation in different E. coli 

strains with the violacein 

operon 

Figure 3.21: Culture of different 

E. coli strains with the violacein 

operon 

3.3.3.5. Effect of antibiotic resistance on heterologous violacein phenotype  

There have been two reports (Ahmetagic and Pemberton, 2010, 2011) suggesting the 

increased heterologous expression of violacein gene cluster along with alpha amylase 

(amyA) gene and urease gene cluster in antibiotic resistant mutants of E.coli. The 

antibiotics that resulted in selection of violacein overproducing strains belonged to the 

group of aminoglycosides, rifamycin and 

lincosamides (Ahmetagic and Pemberton, 2011, 

2010). Chloramphenicol was involved in the study 

yet did not yield in a violacein overproducing 

strain. To further test and confirm the hypothesis 

that chloramphenicol resistance reduces the 

violacein phenotype whereas aminoglycosides such 

as kanamycin and streptomycin increase the 

phenotype and put forth the theory as a potential 

drug resistance biomarker we successfully 

transformed all the strains with the violacein operon 

containing plasmid. E.coli K12 ∆trpR Kan
R
 showed 

highest violacein production among all the strains. 

Kanamycin resistant strain, E.coli K12 ∆trpR Kan
R
 

showed around 30% higher violacein whereas 

chloramphenicol resistant, E.coli lemo21 (DE3) 

strain showed 30% lower violacein production. The 

amount of violacein could increase by two fold for 

E.coli K12 ∆trpR Kan
R
 Rec in the presence of 

glucose.  

 

3.3.3.6. Effect of different metabolites on redox capacity of C. violaceum 

To establish experimental correlation of redox capacity to effect of antibiotics on C. 

violaceum we estimated the NADH/NAD levels in the presence of the candidate 

metabolites that showed promise in re-sensitizing antibiotic resistant population of C. 

violaceum. The metabolism of these substrates after their uptake, all involve the use of the 

cofactor couple NAD/NADH (Fuhrer and Sauer, 2009). By experimental quantitation of 

the NAD/NADH levels we found out that in the presence of glucose as the carbon source 

there was an increase in NAD levels (decrease in NADH) in the presence of the antibiotic 
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Figure 3.23: NAD and NADH 

estimation for the different 

population of C. violaceum in 

the presence of pyruvate 

Figure 3.22: NAD and NADH 

estimation for the different 

population of C. violaceum in 

the presence of glucose 

chloramphenicol whereas there was a decrease of 

NAD levels (increase in NADH) in the presence of 

streptomycin in the media in C. violaceum wild type 

population. The ChlR and StrpR population have 

evolved to counteract the effect of changes in 

NAD/NADH levels and hence maintain 3.5 fold 

higher NADH in ChlR and 2.5 fold higher NAD in 

StrpR respectively to grow “happily” on glucose in 

the presence of antibiotic. Therefore, the 

NAD/NADH ratio maintained in glucose for wild 

type is 0.25, for ChlR is 0.28 and for StrpR it is 2.47.  

On the substrate pyruvate, WT maintains a NAD/NADH ratio of 0.73, i.e. the NADH 

is 1.5 fold more than NAD levels. Compared to levels in glucose it shows that there is an 

increase in NAD levels (in glucose NADH is four fold of NAD levels for WT). In case of 

ChlR (+/- antibiotic) NADH is around 8 fold of NAD levels that shows a disequilibrium 

in the ratio of NAD/NADH (0.13 on pyruvate as opposed to 0.28 on glucose) required for 

maintenance of redox homeostasis for the functioning of the cell. In case of StrpR, for 

functioning on glucose it maintained a NAD/NADH ratio of 2.472 which was not the case 

on pyruvate as the ratio went down to 0.833, where in NADH was only 1.2 fold of NAD 

levels compared to NAD being 3 fold of NADH levels in case of growth on glucose. In 

the absence of antibiotic streptomycin StrpR was still 

able to maintain a higher NAD level (NAD was 2 

fold of NADH levels) similar to that in glucose but on 

addition of antibiotic in the presence of pyruvate 

creates a failure to maintain the redox homeostasis 

required for “happy” growth on pyruvate. The 

NAD/NADH ratio on pyruvate for wild type is 0.73, 

for ChlR is 0.131 and for StrpR is 0.833 compared 

to 0.25, 0.28 and 2.47 respectively in glucose on 

which they grow “happily” in the presence of 

antibiotic.  
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Figure 3.24: NAD and NADH 

estimation for the different 

population of C. violaceum in 

the presence of succinate 

Figure 3.25: NAD and NADH 

estimation for the different 

population of C. violaceum in 

the presence of 2-Oxoadipate 

In case of substrate succinate, WT maintains a 

NAD/NADH ratio of 0.373, i.e. NADH is 3 fold more 

than NAD levels. Compared to levels in glucose it 

shows that there is an increase in NAD levels (in 

glucose NADH is four fold of NAD levels for WT). In 

case of ChlR in presence of chloramphenicol NADH 

is around 26 fold of NAD levels that shows a high 

disequilibrium in the ratio of NAD/NADH (0.04 on 

succinate as opposed to 0.28 on glucose) required for 

maintenance of redox homeostasis for the 

functioning of the cell. In the absence of antibiotic 

chloramphenicol ChlR was still able to maintain a 

higher NADH level (NADH was 4 fold of NAD levels) similar to that in glucose but on 

addition of the antibiotic in the presence of succinate creates a failure to maintain the 

redox homeostasis required for “happy” growth on succinate. In case of StrpR, for 

functioning on glucose it maintained a NAD/NADH ratio of 2.472 which was not the case 

on succinate as the ratio went down to 0.563, where in NADH was only 1.8 fold of NAD 

levels compared to NAD being 3 fold of NADH levels in case of growth on glucose. In 

the absence of antibiotic streptomycin StrpR had even higher NADH levels (NADH was 

13 fold of NAD levels). Presence or absence of antibiotic in the presence of succinate 

creates a failure to maintain the redox homeostasis required for “happy” growth of StrpR 

on succinate. The NAD/NADH ratio on succinate for wild type is 0.37, for ChlR is 0.04 

and for StrpR is 0.56 compared to 0.25, 0.28 and 2.47 respectively in glucose on which 

they grow “happily” in the presence of antibiotic.  

In case of substrate 2-Oxoadipate (2oxoADP), we 

were not able to measure the redox capacity of WT. 

Commenting on the redox capacity of the evolved 

population of C. violaceum ChlR and StrpR we saw a 

similar trend of failure to maintain the required 

NAD/NADH ratios in the presence of 2oxoADP as a 

substrate for growth. In case of ChlR in presence of 

chloramphenicol NADH is around 3 fold of NAD 

levels that shows disequilibrium in the ratio of 
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NAD/NADH (0.38 on 2oxoADP as opposed to 0.28 on glucose) required for maintenance 

of redox homeostasis for the functioning of the cell. In the absence of antibiotic 

chloramphenicol ChlR the NAD/NADH ratio was equal but on addition of the antibiotic 

in the presence of 2oxoADP creates a failure to maintain the redox homeostasis required 

for “happy” growth on 2 oxoADP. In case of StrpR, for functioning on glucose it 

maintained a NAD/NADH ratio of 2.472 which was not the case on 2 oxoADP as the 

ratio went down to 0.128, where in NADH was 8 fold of NAD levels compared to NAD 

being 3 fold of NADH levels in case of growth on glucose. In the absence of antibiotic 

streptomycin, StrpR had very high NADH levels. Presence or absence of antibiotic in the 

presence of 2 oxoADP creates a failure to maintain the redox homeostasis required for 

“happy” growth of StrpR on 2 oxoADP. The NAD/NADH ratio on 2oxoADP for ChlR is 

0.38 and for StrpR is 0.13 compared to 0.28 and 2.47 respectively in glucose on which 

they grow “happily” in the presence of antibiotic. 

Overall the results suggest that in order to grow on pyruvate, succinate and 2-

oxoadipate a critical NAD/NADH ratio has to be maintained and failure to maintain the 

critical NAD/NADH ratio in the evolved population of C. violaceum ChlR and StrpR on 

these substrates make them vulnerable to such antibiotic and substrate combinations. 

Another trend observed was that the total NAD/NADH pools were increased compared to 

WT in each of the substrates so definitely there was an effort towards changing the 

NAD/NADH ratios. Evolved population failed to reach the critical ratio needed to survive 

the added effect of introduction of antibiotic, candidate metabolites that modulate the 

redox capacity of the cell and the metabolic reprogramming as an effect of evolution to be 

resistant to the respective antibiotic. 

Figure 3.26: NADH and NAD experimental values attained for the three different strains 

using three different metabolites – Glucose, Pyruvate and Succinate. Mean ± S.D. for 

triplicate samples represented. 

 

 

a b c 
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Figure 3.27: Membrane potential 

(PMF) estimation for the different 

population of C. violaceum in the 

presence of glucose 

3.3.3.7. Effect of different metabolites on membrane potential  

To understand the correlation between redox capacity and proton motif force (PMF) 

in case of the three population of C. violaceum – WT, ChlR and StrpR under the influence 

of the candidate metabolites Glucose, Pyruvate, 2-oxoadipate, Maleate and Succinate we 

assessed the membrame potental under different 

conditions/combinations. In case of glucose we 

observed there was a significant increase in the 

membrane potential (10 fold of that without 

antibiotic) in the presence of the antibiotic 

chloramphenicol in case of WT population 

whereas in case of additional of streptomycin 

antibiotic to WT the membrane potential in the 

presence and absence of CCCP (proton 

ionophore) had only a difference of 26% (1/3
rd

 of 

that without antibiotic). This shows a marked 

difference in the effect of the two antibiotics on 

membrane potential (PMF) of the cell, one increasing it by ten fold (chloramphenicol) 

and the other decreasing it by 3 fold (streptomycin) compared to that of wild type 

growing on glucose. As a coping/evolutionary mechanism for the resistant population we 

observed that there was a decrease in the PMF for ChlR in the presence of 

chloramphenicol compared to in the absence of chloramphenicol (1.15 compare to 1.43) 

which in turn were lower than that for WT (3.55). On the contrary in case of StrpR it tried 

to compensate for reduction in PMF as an effect of streptomycin by having higher PMF 

irrespective of presence or absence of the antibiotic for StrpR (3.04 or 4.43) around that 

of WT.  

For three other substrates – Pyruvate, Succinate and Maleate we observed a similar 

trend wherein the ratio between the test samples (-CCCP) and the negative control 

(+CCCP) range between 0.73 to 1.26. In other words for these three substrates the 

variation of the PMF is merely ±30% compared to depolarized membrane potential. In 

case of pyruvate the lowest and the highest changes in PMF were observed in case of WT 

in presence of chloramphenicol (0.74) and in presence of streptomyicn (1.26). In case of 

succinate the lowest and the highest changes in PMF were observed in case of WT in 

absence of antibiotic (0.84) and ChlR in presence of chloramphecniol (1.22). In case of 

maleate the lowest and the highest changes in PMF were observed in case of WT in 
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Figure 3.28: Membrane potential (PMF) estimation for the different population of C. 

violaceum in the presence of three substrates – pyruvate, succinate and maleate 

Figure 3.29: Membrane potential (PMF) 

estimation for the different population of 

C. violaceum in the presence of 2-

Oxoadipate 

presence of chlorampheciol (0.73) and StrpR in presence of streptomycin (1.16). These 

results suggests that the three substrates Pyruvate, Succinate and Maleate definitley do 

not show significant increase in PMF which may result in higher uptake of antibiotic and 

eventually killing the cell as reported earlier (Allison et al., 2011; Su et al., 2015; Peng et 

al., 2015) but there is more to the killing mechanism than just merely changes in the PMF 

of the cell population.  

In case of 2 oxoADP the observations regarding PMF were different compared to the 

other three substrates discussed above. For WT in the absence of antibiotic the PMF was 

lower compared to that in the presence of glucose (1.38 compared to 3.55). ChlR in 

presence of chloramphenicol had a PMF of 2.33 and StrpR in presence had a PMF of 1.8 

compared to 1.38 for WT in absence of antibiotic. There was an increase in the PMF for 

ChlR and StrpR in the presence or absence of 

antibiotic compared to WT in the presence of 

2 oxoADP which may be responsible for 

higher uptake of the antibiotic that eventually 

may lead to killing in addition to other causes 

for the re-sensitization in case of growth on 2 

oxoADP for the resistant population of C. 

violaceum.  

 

3.4. Conclusion 

Differential phenotype identified in the evolved strains – ChlR and StrpR. Differential 

temporal variation of metabolites suggests metabolic reprogramming as a survival 

strategy against antibiotics. Maleate, Succinate, 2-oxoadipate and Pyruvate result in re-

sensitization of resistant strains. Phenotypic plasticity and metabolic reprogramming 

identified in the resistant populations.  

  

a b c 
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Chapter 4 

Understanding Emergence of 

Antibiotic Resistance through 

Integrated Model of Central 

Metabolism 

 

 “The application of mathematics to natural phenomena is the aim of all science, because 

the expression of the laws of phenomena should always be mathematical” 

-Claude Bernard, An introduction to the study of experimental medicine, 1865 

 

“Pathology is physiology with obstacles”  

- Rudolf Virchow 

 

4.1. Introduction 

Evolution is a powerful optimizer especially in systems like bacteria with large 

populations and small generation times. An integral part of systems biology approach 

towards any problem is the analysis and interpretation of metabolic networks. The 

assumption being that metabolic network is a cascade of biochemical reactions that 

involve conversion of a reactant molecule into a product. Such metabolic network models 

have been extensively used to analyze and predict the cellular phenotype of a biological 

system and to ultimately apply engineering principles to design cellular metabolic 
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processes that achieve a desired objective like cellular engineering for production of 

polyhydroxyalkanoates (Puchałka et al., 2008), predicting drug targets for cancer (Jerby 

and Ruppin, 2012) or correlate virulence factors to metabolism (Bartell et al., 2017). 

The model used in this chapter is a small model of central metabolism (159 

reactions) that has been tailored to represent metabolism of Chromobacterium violaceum. 

Although there are advantages of using GSMs, small-scale models offer certain 

advantages. The main advantage of using a model of central metabolism is that it 

represents all the core processes that are required for growth and energy production, the 

two principle dimensions of life. Another advantage is that it can be tailored by addition 

of subsystems of reactions that are specific to the pathogen under consideration. 

Reactions are conserved across species like more prevalent pathogens like the ESKAPE 

pathogens (http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-

needed/en/) but also more notorious ones like Francisella, Neisseria etc. This makes the 

concepts derived from such models potentially scalable and increases overall applicability 

of the study. Also, the indispensability of the metabolic core for growth makes it prone to 

several existing antibiotics. This makes select bacterial enzymes in the core attractive and 

critical targets in the research of antibiotic resistance and drug-target discovery (Almaas 

et al., 2005).  

In this chapter, growth rate is used as a reasonable proxy for ‘fitness’ in bacterial 

populations being explored. We have assumed that the cell’s ability to survive and to 

grow has led to the evolutionary selection of its optimal growth in a particular set of 

conditions under antibiotic selection pressure. In our work we define fitness in terms of 

the absolute growth rate of the pathogen in a specific environment. On evolution of 

resistance the microbe clearly benefits in the presence of the antibiotic (increased growth 

rate). One would expect the resistant bacterium suffer a cost of resistance (i.e. a reduction 

in fitness) when the antibiotic is absent (reduced growth rates in the absence of 

antibiotic). We thus define fitness costs in this study as lowering in the growth rates seen 

in the absence of antibiotic on many carbon sources. Reduced growth rates could 

potentially arise due to complex changes in bacterial physiology, metabolic shifts, and 

differential metabolite utilization related to metabolic burden, changes in bacterial 

virulence, energetic burden to fitness gain (Martínez and Rojo, 2011; Perkins and 

Nicholson, 2008). We attempt to understand the metabolic basis for such a decrease in 

growth rates or fitness cost in silico by delineating the interplay between constraints and 
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objectives, in the context of stoichiometric growth optimality using constraints based 

modeling (CBM) and Flux balance analysis (FBA) as discussed in Chapter 1.  

Evolutionary optimality has been linked to FBA in 2002 (Ibarra et al., 2002). If we 

want to predict the growth rate in a flux balance model, we have to specify the input rate. 

FBA simply finds the highest yield Y such that the growth rate is maximal at the specified 

input rate. So, even though a rate is maximized in FBA (μ in Eq 1), it is through the yield 

Y that this is achieved. The underlying biological assumption is that metabolic efficiency 

(high yield) is the strategy through which the organism reaches its maximal growth rate. 

Also, growth is calculated in the flux balance model by optimizing an artificial reaction 

that represents biomass composition that essentially represents the drain on biosynthetic 

precursors in a stoichiometric amount needed to make 1g biomass.  

μ = Y . Vin,substrate                                       (Equation 4.1) 

Where μ is the specific growth rate (units h−1), Vin,substrate is the uptake rate of the 

growth substrate (units mmol h−1 gDW−1), and Y is the yield of biomass with respect to 

the substrate (units gDW mmol−1). 

The sensitivity of an FBA solution is indicated by two parameters shadow prices and 

reduced costs (Schellenberger et al., 2011). They are assessed in order to understand the 

effects of changing biomass, ATPM, metabolites and reactions of the different 

populations of C. violaceum. Shadow prices are the derivative of the objective function 

with respect to the exchange flux of a metabolite. They indicate how much the addition of 

that metabolite will increase or decrease the objective. Reduced costs are the derivatives 

of the objective function with respect to an internal reaction with 0 fluxes, indicating how 

much each particular reaction affects the objective. In addition to the primal solution 

(optimal fluxes), the linear programming solver provides the corresponding dual solution 

i.e., shadow price and reduced cost for the FBA problem. Reduced costs assigned to 

nutrient uptake fluxes give us an indication of the growth-limiting compounds in the 

medium. To understand the stoichiometric optimality of growth we calculated the yields 

of biosynthetic precursors and cofactors that eventually constrain the biomass molar 

yield. Since yields are substrate specific, we calculate a shadow price scaled in terms of 

substrate units that tell the relative importance of the precursor intermediate in achieving 

that biomass yield. Three additional sensitivity parameters were also assessed for the core 

model that included scaled reduced costs, logarithmic sensitivity and gamma redox. 

Logarithmic sensitivity measures the percentage change in biomass yield in response to 

percentage change in precursor requirement. Gamma redox is the difference between the 
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shadow prices for the redox couplets (Acevedo et al., 2014). It is an index of available 

reducing capacity available to the cell and whether it is limiting or in excess for biomass 

formation. A positive value suggests available reducing capacity in excess of the optimal 

demand for growth whereas negative represents growth limitation. A positive value 

doesn’t necessarily indicate accumulation but also suggests metabolic rewiring into 

overflow metabolism. 

Within the optimality-preserving variability at one condition, evolution favors flux 

distributions that minimize adjustments to other environmental conditions (Schuetz et al., 

2012). Pareto optimality analysis (Cheung et al., 2013; Heinken et al., 2013; Nagrath et 

al., 2007, 2005; Schuetz et al., 2012) was named after its proposer Vilfredo Federico 

Damaso Pareto (1848-1923), French-born Italian engineer and a founder of welfare 

economics. It is also called 80/20 principle, Pareto's Law, or principle of imbalance. In 

this analysis the assumption made involves the observation where a large number of 

factors or agents contribute to a result, the majority (80%) of the result is due to the 

contributions of a minority (20%) of factors or agents. It is however a heuristics principle, 

and has not been proved as a scientific law. Pareto optimality is a versatile tool for flux 

balance analysis (FBA), allowing exploration of competing objective functions (Schuetz 

et al., 2012) or competing constraints (Cheung et al., 2013). Biological systems have 

evolved to operate over a range of conditions that may require competing objectives or 

constraints, and such competition may be explored by using Pareto optimality analysis. 

Pareto surface formed from three objective functions (minimization of total flux, 

maximization of ATP yield and maximization of biomass yield) has been used to better 

describe 
13

C–MFA flux measurements (Schuetz et al., 2012) or to account for 

maintenance costs of NADPH and ATP in plant cell and better predict metabolic 

phenotypes under stress conditions (Cheung et al., 2013). Further it has also been used to 

explain B. thetaiotaomicron and mouse mutualistic growth (growth dependencies) using 

integrated models (Heinken et al., 2013) or to correlate growth rate, and virulence factor 

production capacities in P. aeruginosa during chronic cystic fibrosis lung infection 

(Oberhardt et al., 2010). Pareto front analysis was used to understand the sensitivity and 

trade off that exists between the cofactors NADH, NADPH, ATP in the context of growth 

optimality. 
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4.2. Materials and Methods 

4.2.1. Constraints based modeling of C. violaceum central metabolism: Network 

reconstruction 

Stoichiometric network analysis based on the constraint-based modeling framework 

has been proven to be a valuable tool to study cellular metabolism and phenotypic 

capabilities of many organisms (Varma and Palsson, 1994).  In the small-scale central 

metabolic model of C. violaceum presented here, a manually curated stoichiometric 

network reconstruction and model that allows probing special characteristics of this 

bacterium. It was done using available literature data (Balibar and Walsh, 2006; 

Creczynski-pasa and Antônio, 2004; Demoss and Happel, 1959; Ryan et al., 2008) as 

well as information from databases such as KEGG, Biocyc, Metacyc. Further information 

from the in-house developed whole genome scale model of C. violaceum (discussed in 

Chapter 6) was also used to compile the violacein biosynthesis reaction list, including 

reaction stoichiometry, reversibility, sub-cellular localization, and gene locus/loci for 

each reaction comprising core metabolism. The biomass equation for the model was also 

modified in order to take into account for tryptophan contribution towards biomass 

production. For all simulations maximization of the biomass equation was fixed as the 

objective function until mentioned otherwise. The model was initially validated using a 

set of 10 substrate utilization BIOLOG GN2 plate data existing in literature (Lima-

Bittencourt et al., 2011; Martin et al., 2007; Young et al., 2008).  

Further a set of constraints that define the antibiotic susceptible WT and differentiated 

the evolved populations (ChlR and StrpR) were determined. The constraints used in 

different simulations included (i) Substrate (Glucose) uptake rates (ii) Growth yields (iii) 

Violacein secretion (iv) ATP maintenance costs associated with molar growth yields of 

each strain as discussed (Table 4.2). The specific growth rates were calculated using 1g 

biomass as the basis. The growth yields thus calculated were compared across the three 

strains. The goal of the simulations was to understand the flux distribution in silico and 

the sensitivity of growth yield to various precursors with specific reference to the 

cofactors NADH, NADPH and ATP. Constraints based flux balance analysis (FBA), as 

described in the following section, was used to simulate for growth (maximize biomass 

objective function) and violacein production. Constraints-based methods were used to 

perform a comparative analysis between the susceptible and resistant populations to 

understand the connections between metabolism and resistance. 
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Implementation of the central metabolic reconstruction for C. violaceum and 

constraints-based analysis was done using COBRA Toolbox 2.0.2 (Schellenberger et al., 

2011) with MATLAB v 7.11, (R2010b) and TOMLAB/CPLEX v7.7 optimizer. 

MATLAB codes for all referenced COBRA functions are available at the COBRA’s 

website (https://opencobra.github.io/).  

 

4.2.2. Flux Balance Analysis and Associated Sensitivity Parameters 

Flux-balance analysis (FBA) is a method for assessing the systemic properties and 

cell behaviors of a metabolic genotype. In short the primal FBA problem, Equation 4.2 

describes the steady-state mass balances of the biochemical reaction network (Orth et al., 

2010; Price et al., 2004) 

Maximize Z=cT v                                      (Equation 4.2) 

Subject to S.v = 0     

vLB ≥v ≥vUB  

where c, v, vLB, and vUB are vectors of length n, and S is the m x n stoichiometric 

matrix. Mathematically, the S matrix acts as a linear transformation between the vector 

that defines fluxes through n reactions in the biochemical network and the vector of the 

time derivatives of the concentrations of m metabolites involved in these reactions. The 

fundamentals of FBA have been widely reviewed (Acevedo et al., 2014; Feist et al., 2009; 

Reed et al., 2006; Schellenberger et al., 2011). 

The function optimizeCbModel(), in COBRA toolbox was used for maximization of 

pathogen growth or biomass by fixing the objective function to be the biomass equation 

in the model.  

Shadow prices and reduced costs (Schellenberger et al., 2011) - were also assessed. In 

the COBRA Toolbox, shadow prices and reduced costs can be calculated by 

FBAsolution.y, the vector of m shadow prices and the vector of n reduced costs is 

FBAsolution.w. 

Scaled reduced costs (Maarleveld et al., 2013) and Logarithmic sensitivity coefficient 

(Varma and Palsson, 1993) were also calculated as shown in Equation 4.3 and 4.4 which 

better assess the sensitivity taking into account the substrate and growth yield. The 

logarithmic sensitivity coefficient (Di) represents the sensitivity of each precursor yield to 

its biosynthetic demand whereas scaled reduced costs (Wi) are used to assess the limiting 

reactions. 
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     Wi  = (vi.wi)/Z                                                   (Equation 4.3) 

     Di = dX/dM .dM                                                                       (Equation 4.4) 

In Equation 4.3 vi is the flux through a particular reaction having a wi reduced cost 

associated with it. Z is the objective function value, in this case being biomass. Similarly, 

in Equation 4.4 dX/dM is the associated shadow price to a particular metabolite and dM is 

the coefficient of the metabolite in the objective function equation. 

Another sensitivity parameter, gamma redox, the difference between the shadow 

prices for the redox couplets (NADH/NAD) and (NADPH/NADP) were calculated 

(Acevedo et al., 2014). 

γredox(NADH/NAD) =γ
NADH -γNAD            (Equation 4.5) 

γredox(NADPH/NADP)  =γ
NADPH - γNADP 

           (Equation 4.6) 

 

4.2.3. Flux Variability Analysis 

Flux variability analysis (FVA) was utilized to investigate the resulting space of 

feasible flux distributions (Mahadevan and Schilling, 2003). FVA can be set up in 

COBRA toolbox using the function fluxVariability(). One can thus determine the 

minimum and maximum flux value that each reaction in the model can take up while 

satisfying all constraints on the system for a specific objective. The objectives under 

consideration for this study include optimal growth. These will be considered as forced or 

fixed fluxes. Differences in these unique forced fixed rates in resistant populations as 

compared to wild type indicate metabolic reprogramming. To highlight the differences 

between the antibiotic sensitive and resistant populations, we classified reactions in the 

network based on their minimum and maximum flux values and assigned categories that 

reflect their rigidity or flexibility. Nine categories can thus be mapped onto the flux 

variability map based on the magnitude and direction of the flux (Table 4.1) ranging from 

category 1 for forward direction (positive fixed) fixed flux, i.e. minimum and maximum 

flux values were same, a non-zero positive value to category 9 wherein the minimum and 

maximum flux was zero (blocked). Specific attention was paid to reaction rates that were 

uniquely determined (i.e. if upper and lower boundaries as computed by FVA coincide; 

Categories 1 and 4). Changes between such rigid fluxes (1 and 4) to more variable flux 

capabilities (2,3,5,6,7 and 8) would reprogram the metabolic network by either changing 

the direction of equilibrium or modulating magnitude and span of the reaction rates. 
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Table 4.1:  Nine Categories defined for FVA analysis 

Category 
Flux through the 

reaction 
Min Max Flexible/Rigid 

1 Positive fixed +a +a Rigid 

2 Positive variable +b +a Flexible 

3 Zero to positive 0 +a Flexible 

4 Negative fixed -a -a Rigid 

5 Negative variable -a -b Flexible 

6 Negative to zero -a 0 Flexible 

7 Negligible small
†
 small

†
 Flexible 

8 Reversible -a +a Flexible 

9 Blocked 0 0 Rigid 

 

 

4.2.4. Dynamic Flux Balance Analysis 

Dynamic flux balance analysis (dFBA) was utilized to qualitatively predict the 

outcomes of growth in batch culture conditions matching our experimental condition 

(Varma and Palsson, 1994). The resistant populations ChlR and StrpR needed to be 

assessed for the onset of overflow metabolism and secretion patterns as observed in FVA 

simulations. The dFBA can be set up in COBRA toolbox using the function 

dynamicFBA() (S A Becker et al., 2007). It is an implicit iterative process wherein at 

each iteration; FBA is used to simulate for growth, nutrient uptake and by-product 

secretion rates using an initial concentration for nutrients, which are in turn used to 

calculate biomass and nutrient concentrations in the culture at the end of the step. The 

same values are used to calculate maximum uptake rates of nutrients for the next time 

step. 

 

4.2.5. Pareto front analysis using NADPH and NADH oxidases 

The Pareto front, the set of Pareto optimal solutions identified by constraining the 

glucose consumption rate, violacein secretion rate and the biomass production rate to 

experimental values and maximizing the fluxes through the generic ATPase (ATPM), 

NADPH oxidase and NADH oxidase reactions. Analysis of Pareto fronts and trade-off 

between ATP, NADH and NADPH maintenance reactions (NADH oxidase and NADPH 

oxidase, not generally present in C. violaceum) was performed to understand the 

a,b >0; -a, -b<0 and a>b, †-0.001>small<0.001 
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modulation of NADH/NAD ratios or NADPH/NADP ratios in growth. A reaction 

representing each, the NADH oxidase and NADPH oxidase (water forming) with the 

right balance of protons and oxygen were added to the model based on a recent report that 

uses a NADH oxidase enzyme system to delineate the role of NADH imbalance and show 

decoupling of electron transfer via ETC and proton pumping for ATP synthesis (Titov et 

al., 2016). These reactions essentially act as drain reactions if there is excess NADH or 

NADPH in the system. 

 

4.3. Results and Discussion 

4.3.1. Network Reconstruction of central metabolism of C. violaceum 

To delineate a metabolic basis for the emergent resistance, the heterogeneous 

components of resistant genomes and elucidated metabolic physiology were integrated 

into a constraints-based flux balance model. A central metabolic network reconstruction 

represented by the genotype of C. violaceum iDB149 was developed (Figure 4.1 and 4.2). 

The network reconstruction represents the core metabolism for the pathogen including 

glycolysis, pentose phosphate pathway, TCA cycle, electron transport and basic amino 

acid metabolism. Although, primarily a generic reconstruction of central metabolism, it 

includes the virulence factor metabolism, tailoring it to mirror C. violaceum metabolism. 

It includes detailed amino acid metabolism of specifically tryptophan, due to its direct 

connection with the production of violacein, a virulence factor specific to this pathogen. 

A biomass equation was defined as a drain on metabolites present in intermediary 

metabolism and macromolecules in the precursor biomass based on E. coli and 

Chromobacterium legacy data. This biomass composition is kept constant throughout the 

analysis and between strains.  
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Figure 4.1: The core model iDB149 visualization using Escher 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Model statistics and subsystem wise classification for iDB149 
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4.3.2. Flux balance analysis and associated sensitivity parameters 

Molar growth yields calculated based on experimental glucose utilization data and the 

maximum growth yield for C. violaceum (Table 4.2) was used to estimate the growth-rate 

independent energy ATP maintenance flux (Varma and Palsson, 1994)  (vATPM) that 

represents the energy required to sustain basal cellular activities. The value fitted from 

growth yield curves differed for the wild type and the resistant populations due to varying 

molar growth yields (Table 4.2). The differential violacein phenotype (represented as a 

production/secretion rate constraint) calculated from experimental data was used to define 

resistant populations in silico. Based on the sensitivity analysis of violacein production 

and growth yields, a trade-off exists between the production of violacein and biomass 

production. Fixing this biosynthetic demand as a critical constraint in the model, growth 

rates (via growth yields) predicted for both resistant ChlR, StrpR and WT populations 

were consistent with experimental data. The experimental rates used for the simulations 

were from the exponential growth phase of the three different populations of C. 

violaceum. With these constraints determined by experiments, the wild type model was 

tested for prediction of carbon source utilization patterns using experimental legacy data 

(Lima-Bittencourt et al., 2011; Martin et al., 2007; Young et al., 2008) of Biolog™. The 

model being a core metabolic model was validated for utilization of carbon sources that 

had transporters included and growth against a small subset of substrates was accurate. 

Further, the sensitivity of the yields to different biosynthetic demands, maintenance and 

changes in fluxes were probed. Shadow prices in the solution of the linear optimization 

problem of Flux balance analysis (FBA) define the sensitivity of the objective function 

with respect to each constraint indicating the utility of the metabolite in accelerating 

growth. Growth, as an objective in FBA, is defined as multiple simultaneous demands on 

precursors to make macromolecules related to biomass. In this context, a scaled shadow 

price for metabolites and scaled reduced costs for reactions that account for substrate and 

the growth yield are better sensitivity indicators (Table 4.3). In order to understand the 

effects of changing biomass composition, a logarithmic sensitivity coefficient (Varma and 

Palsson, 1993) that represents the sensitivity of each precursor yield to its biosynthetic 

demand was calculated for each of the 14 precursors of biomass. The logarithmic 

sensitivity for cofactor NADH is the lowest in the ChlR populations followed by StrpR 

and differ from wild type at molar yields. The 25% decrease in scaled shadow price 

values indicate that a compensation for that particular cofactor must have taken place 

during evolution resulting in a higher yield of that cofactor in the evolved strains for the 
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already achieved higher growth and biomass yield. The logarithmic coefficients show that 

NADH and NADPH as compared to ATP may potentially play a role in increase in 

biomass yields through changing biomass composition. The reduced costs of each 

reaction indicate their significance in increasing the objective (growth). The alpha-keto 

glutarate dehydrogenase (AKGDH) reaction in the ChlR strain while the isocitrate lyase 

(ICL) reaction in the StrpR strain have scaled reduced costs associated with them.  

 

Table 4.2: Constraints used in this study for simulation of growth for the three different 

populations of C. violaceum using iDB149 

Units for Glucose uptake rate and Violacein secretion rate are mmol/gDW/hr whereas hr
-1

 for 

Biomass and gDW/mmol of glucose for Molar growth yield 

 

 Table 4.3: Sensitivity parameters assessed using FBA - Scaled shadow prices, Logarithmic 

sensitivity and Maximum reduced costs 

 
Metabolite 

Maximum 

Precursor Yield (M) 

Shadow price 

in BOF 

(dX/dM) 

Coefficient in 

BOF (dM) 

Scaled 

shadow price 

(SSP) 

Logarithmic 

sensitivity 

(LS) 

WT 

NADPH 0.004 -0.0079 13.028 -1.36E-04 -0.1024 

NADH 0.0061 -0.003 -3.547 -7.95E-05 0.0107 

ATP 0.0056 -0.0097 59.81 -2.37E-04 -0.5784 

ChlR 

NADPH 0.0034 -0.0054 13.028 -5.56E-05 -0.07 

NADH 0.0101 2.09E-18 -3.547 6.48E-20 -7.40E-18 

ATP 0.0034 -0.0108 59.81 -1.11E-04 -0.643 

StrpR 

NADPH 0.0009 -0.008 13.028 -1.11E-05 -0.1043 

NADH 0.0017 -0.0031 -3.547 -8.04E-06 0.0109 

ATP 0.0013 -0.0099 59.81 -1.93E-05 -0.5895 

 
Reaction ID Reaction Name WT CHLR STRPR 

Maximum 

Scaled 

Reduced 

Cost 

AKGDH 2-Oxoglutarate dehydrogenase 0 -8.11E-07 0 

EX_o2(e) Oxygen Exchange 0 1.106 0.683 

ICL Isocitrate lyase 0 0 -4.86E-07 

PGL 6 - Phosphogluconolactonase 0 -8.11E-07 -4.86E-07 

SUCCt3 Succinate transporter 0 -8.11E-07 -4.86E-07 

PPNDH Prephenate dehydratase 0 -8.11E-07 0 

GLCt2 Glucose Transporter 0 -8.11E-07 -4.86E-07 

Rxnvio8 Reaction 8 of Violacein Synthesis 0 -6.56E-08 -2.81E-08 

 

Model Glucose uptake rate Violacein secretion rate Molar growth yield ATPM Biomass 

WT 9.99 1.49 0.0312 6.24 0.23 

ChlR 10.532 0.673 0.0314 9.74 0.327 

StrpR 12.777 0.702 0.0504 5.69 0.644 
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4.3.3. Differential metabolic dynamics prediction using Flux Variability analysis  

Flux variability analysis (FVA) assesses the entire range of cellular function and the 

redundancy of optimal phenotypes. Applying FVA to identify reaction rates that can be 

uniquely determined allow us to explore the immutable or rigid metabolic state of the cell 

at maximal specific growth rate consistent with experimental data. Some reactions can be 

assigned fixed values, while the remaining calculable fluxes remain within the extreme 

bounds (Table 4.4). Uniquely computed reaction rates that are forced or fixed fluxes 

(coinciding upper and lower bounds) define metabolic rigidity and govern the plasticity of 

growth phenotype. Differences in these unique forced fixed rates in resistant and 

susceptible populations overall flux distribution indicate compensatory metabolic 

reprogramming as response to perturbations by the antibiotic. The constraints-based 

model identified two major features based on alternate optima predictions.  

 

Table 4.4: FVA results showing category change in resistant strains as a function of 

antibiotic that involve redox cofactor balancing 

Reaction ID Reaction Formula WT ChlR StrpR 

HEX1 atp[c] + glc-D[c]  -> adp[c] + g6p[c] + h[c] 1 7 7 

PYK adp[c] + h[c] + pep[c]  -> atp[c] + pyr[c] 7 1 1 

AKGDH akg[c] + coa[c] + nad[c]  -> co2[c] + nadh[c] + succoa[c] 1 7 1
a
 

MDH mal-L[c] + nad[c]  <=> h[c] + nadh[c] + oaa[c] 1 7 1
a
 

FUM fum[c] + h2o[c]  <=> mal-L[c] 1 7 1
a
 

SUCOAS atp[c] + coa[c] + succ[c]  <=> adp[c] + pi[c] + succoa[c] 4 7 4
a
 

ACKr ac[c] + atp[c]  <=> actp[c] + adp[c] 7 4 4 

PFL coa[c] + pyr[c]  -> accoa[c] + for[c] 7 1 7
b
 

PTAr accoa[c] + pi[c]  <=> actp[c] + coa[c] 7 1 1 

GLCt2 glc-D[e] + h[e]  -> h[c] + glc-D[c] 1 7 7 

ACt2r ac[e] + h[e]  <=> ac[c] + h[c] 7 4 4 

FORti for[c]  -> for[e] 7 1 7
b
 

EX_ac(e) ac[e]  <=> 7 1 1 

EX_for(e) for[e]  <=> 7 1 7
b
 

The color map indicates categories.  

a – StrpR/WT flux fold is 0.52, b – StrpR/WT flux fold is 0.32) 

 

Firstly, the resistant populations showed rigid flux distribution in secretion of 

overflow metabolites acetate and formate (Table 4.3). The onset of overflow metabolism 

and the details of secretion patterns were probed further using dynamic flux balance 

analysis (Figure 4.3). Both the resistant populations identified acetate as a common 

overflow metabolite. Dynamic FBA (dFBA) qualitatively identified secretion of acetate 
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and formate in that order in the ChlR population as indicated in the FVA and ethanol on 

lowering the oxygen uptake rates. 

 

 

 

 

 

 

 

 

 

Figure 4.3: Dynamic FBA results for the three different populations of C. violaceum 

 

The second major feature included reactions changing the rigid flux distribution in the 

wild type to a more flexible flux in the resistant populations. The reactions included 

alpha-keto glutarate dehydrogenase (AKGDH) and 

malate dehydrogenase (MDH) (Table 4.3). These 

change from a rigid flux configuration to more 

flexible one that potentially could modulate the 

direction and magnitude of flux involving NADH. 

The significance of alpha-keto glutarate (AKG) in 

the growth of the resistant populations is also 

supported by the high logarithmic sensitivity with 

respect to growth (Table 4.3). In order to probe this 

further, we looked at the Gamma redox, γredox and logarithmic sensitivity during 

experimental conditions (Table 4.5) and identified NADH and NADPH to limit growth in 

the ChlR strain while ATP was also growth limiting in the StrpR strain. Thus, disruption 

of redox homeostasis through NADH/NAD ratios and biomass precursor anabolism 

through NADPH/NADP ratios were identified as central to antibiotic action by FVA and 

sensitivity/shadow price analysis (Tobias Fuhrer and Sauer, 2009).  

 

 

 

 

Table 4.5: Gamma Redox 

 



 

Antibiotic Resistance and central metabolism | 79 

Figure 4.4: Robustness 

analysis for ChlR and StrpR 

of the NADH or NADPH 

oxidase versus ATP 

maintenance (ATPM) flux 

4.3.4. In silico prediction of NAD/NADH balance and redox homeostasis 

 

 

FVA, as discussed in the previous section, showed metabolic flux redistribution 

associated with antibiotic resistance in reactions involving NADH. An experimental 

compartment-specific manipulation of the NAD+/NADH ratio has been reported wherein 

water forming NADH oxidase is introduced to investigate the redox imbalance in 

mammalian cells and decouple redox imbalance and ATP synthesis deficiency (Titov et 

al., 2016). We have included two pseudo reactions – a NADH oxidase and a NADPH 

oxidase reaction into the model and performed a Pareto front analysis of the relationship 

between the two oxidase and ATP maintenance in the system. We found that NADH 

oxidase is an essential constraint to lower the growth rates of the resistant populations to 

that of wild type. On probing the relation to ATPase (representing ATP maintenance, 

ATPM) by a Pareto front analysis, the differential relation for ChlR and StrpR was 

established. To reduce the growth of the ChlR strain to the wildtype molar yield we 

identified NADH oxidase as a critical constraint. 

For StrpR, however, both NADH and NADPH oxidases were needed. This is also 

suggested by γredox analysis (Table 4.5), which identified both NADH and NADPH as 

growth limiting in StrpR and only NADH as growth limiting in ChlR. At molar growth 

yields this suggests that excess NADH yields are indeed responsible for the excess 

growth associated with the resistance to chloramphenicol, while both NADH and 

NADPH yields play a role in StrpR. The rigidity of the flux held through AKGDH and 

MDH reactions was restored, when these constraints were added. Experiments confirmed 

an increase in NADH levels (Figure 3.23) in the ChlR population. For the StrpR 

population the NAD levels go up, seen in the molar yield simulations that show a 2 fold 

increase in flux through the NADH16 reaction that is the quinone associated conversion 

of NADH to NAD. 
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4.4. Conclusion 

Model representing core metabolism of C. violaceum had 90% prediction accuracy 

and FBA related sensitivity parameters showed NADH and NADPH play a critical role in 

biomass yield. FVA showed reactions including AKGDH, MDH with forced flux in WT 

were redirected in case of ChlR and StrpR and failure to maintain a rigid core leads to re-

sensitization. Also, a threshold of NADH/NAD is critical for survival and failure to 

compensate for cofactor imbalance results in killing of the resistant population under 

influence of certain metabolites in the medium. The results in this chapter are all under 

the condition for growth on glucose, where C. violaceum independent of susceptible or 

resistant population they grow optimally. To further extend the redox homeostasis to the 

candidate metabolites and elucidate many more hypothesis and predictions against the 

resistant population of C. violaceum as well as understand this opportunistic pathogen as 

a system itself there is a requirement for a genome scale metabolic model of C. violaceum 

that we will be discussing in the following chapter. 
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Chapter 5 

Genome Scale Metabolic 

Reconstruction of C. violaceum 

 

“The ultimate test of understanding a simple cell, more than being able to build one, 

would be to build a computer model of the cell, because that really requires 

understanding at a deeper level”                                     

-- C.A.Hutchison 

   

“How often have I said to you that when you have eliminated the impossible, whatever 

remains, however improbable, must be the truth?” 

- Sherlock Holmes 

 

5.1. Introduction 

Understanding the complex relation between the genotype and phenotype of an 

organism is a fundamental part of systems biology research. Genome-scale 

reconstructions provide a mechanistic link between genotype and phenotype. This chapter 

includes genome scale mathematical representations of C. violaceum metabolism for 

analyzing and manipulating metabolism to understand the relationship between antibiotic 

resistance and metabolism using a systems approach along with all supporting 

experimental data generated so far and discussed in previous chapters of this thesis.  

Starting with a brief introduction to mathematical representation, the approaches and 
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steps involved for reconstruction of a genome-scale mathematical model with respect to 

metabolism have also been discussed. This chapter aims to identify genome wide 

metabolic features for C. violaceum and their correlation, if any to antibiotic resistance 

and re-sensitization using already existing antibiotics along with metabolite 

supplementation. How integration of the mathematical model along with experimental 

high throughput data proves to be beneficial for the overall quality of the model being 

applied for analyzing genotype to phenotype relationship and generate hypothesis to solve 

the serious problem of antibiotic resistance and been discussed in detail. 

 

 

 

Figure 5.1: Reconstruction of genome scale metabolic model 

 

 

As per the protocol for reconstruction of genome-scale metabolic models (GSMM) 

(Thiele, Ines; Palsson, 2010) it involves five-step process: (1) Initial reconstruction of a 

draft model built from gene annotation data coupled with information from databases that 

store various enzyme data such as ligand molecules (cofactors, substrates, products, 

inhibitors and activators), reaction formulae and metabolic pathways: KEGG, EXPASY, 

BRENDA, BioCyc, TIGR Microbial database, etc. and literature articles; (2) 
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Reconstruction of the model, and refinement and validation (iteratively) of the model 

through comparison of its predictions to in vivo or in vivo phenotypic information from 

literature references; (3) conversion of all the knowledge achieved to a mathematical 

representation (analyzed with a constraint-based approach); (4) Identification and filling 

up of gaps and (5) simulation and visualization of the predicted model. There has been a 

convention for naming GSMMs proposed by Reed et al. (2003), given as iDB858 (Figure 

5.1) where 'i' refers to an in silico model; it is followed by the initials (DB) of the first 

author of the model; then the number of genes included in the model are indicated (858). 

Any lower-case letters following the number of genes indicate that slight modifications 

were made to the model.  

Once a functional genome scale metabolic model for C. violaceum with quality prediction 

accuracy was generated it was further used for model simulations, hypothesis generation 

and other predictions. Some of the methods used for model simulations and predictions 

including FBA, FVA, dFBA, Pareto front analysis, etc. have already been discussed in the 

previous chapter so to avoid redundancy reference to sections in Chapter 4 will be made 

wherever required. 

 

5.2. Materials and Methods 

5.2.1. Genome Annotation  

The complete genome sequence and annotation of C. violaceum ATCC 12472 

(GenBank accession number) (Haselkorn et al., 2003) are freely available online at 

National Center for Biotechnology Information 

(NCBI) (http://www.ncbi. nlm.nih.gov). The genome 

sequence for C. violaceum was imported into the 

RAST server (http://rast.nmpdr.org/) for gene calling 

and annotation with subsequent manual inspection 

and curation (Figure 5.2). This information was used 

in the metabolic reconstruction and validation 

processes, as described in the following section. 

 

 

 

Figure 5.2: Details of job submitted to RAST Server 
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5.2.2. Reconstruction of C. violaceum metabolic network 

Figure 5.1 provides an overview of the genome-scale metabolic reconstruction 

pipeline of C. violaceum. The three major steps involved in developing a genome-scale 

metabolic model are (i) producing an initial draft reconstruction, (ii) manual curation and 

(iii) validation with experimentally observed results (Thiele, Ines; Palsson, 2010). The 

latter two steps are iteratively repeated in order to train the model to better describe the 

observed metabolic processes. We then identified and removed thermodynamically 

infeasible cycles (e.g. cycles resulting in free ATP production) and mass- and charge-

balanced all reactions. The resulting model was then tested by comparing model 

predictions to available BIOLOG data (Lima-Bittencourt et al., 2011; Martin et al., 2007; 

Young et al., 2008) (amino acid requirement and carbohydrate utilization data). Reactions 

manually identified, were only added when sufficient evidence and information was 

available from experimental data, NCBI, KEGG, MetaCyc, BioCyc, BRENDA and 

SEED databases. 

 

5.2.3. Initial Draft Reconstruction 

Our reconstruction of a whole metabolism model for C. violaceum is based on an 

initial network obtained from the Model SEED server (http://www.theseed.org/models/) 

(Henry et al., 2010), an automated pipeline that generates genome-scale metabolic models 

directly from genome annotations. An initial draft genome-scale reconstruction of C. 

violaceum was built by submitting the whole genome sequence to the SEED Server. 

Genome-scale metabolic draft model was generated using the RAST server and the 

Model SEED database (Aziz et al., 2012; Henry et al., 2010). We modified the objective 

function of the SEED reconstruction to improve the biological interpretation of biomass 

as the objective function that in turn improves the solutions generated. After modifying 

the nutrient and biomass composition of the model to accurately capture the boundary 

conditions that define the overall phenotype, the internal network was curated.  

 

5.2.4. Manual Curation for accurate biomass prediction 

The initial draft reconstruction downloaded from Model SEED, was not able to 

generate biomass using minimal media or a richer chemically defined media. 27 

precursors of biomass not forming in silico were identified through manual curation. The 

manually added reactions begin with “rDB” prefix in the model.  

 

http://www.theseed.org/models/
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Table 5.1: Confidence score assigned during manual curation of the reconstruction 

obtained from SEED server 

Score Evidence Type of Evidence 

1.1 
Gene is not present in CV but reaction essential for biomass production. Gene with known 

function is present in unrelated organism. 

Homology in phylogenetically un-

related organism 

1.2 
Enzyme not present in CV but indirect biochemical evidence of existence of the reaction is 

present.  <30%. 
Homology 

1.3 
Inferred from homology (as per UNIPROT data).  Gene present in CV but very low match 

with other organism. 30% < 1.3 < 60%. 
Homology 

1.4 
Gene present in CV and reaction essential for biomass production. Gene with known 

function present in related organism. 

Homology in phylogenetically related 

organism 

1.5 

Gene present in CV and reaction essential for biomass production. Gene with known 

function present in well-known organism – E. coli, Neisseria, franscisella, Pseudomonas, 

Ralstonia, etc. >60% 

Homology 

1.6 
Homology based evidence with a sequence homology =>95% with other protein with 

known crystal structure, function or biochemical evidence 

Homology based Biochemical 

evidence 

2.1 
Physiological (phenotypic) evidence of utilization/uptake of the protein in CV (different 

structure growth, BIOLOG, etc.) 
Physiological 

2.2 
Protein has been identified based on MS/ LC-MS/ MALDI. Evidence of uptake or 

utilization of compound, phenotypic evidence 
Physiological 

3.1 Cloning, expression and over-expression Genetic evidence 

3.2 Gene deletion studies Genetic evidence 

4.1 Biochemical evidence in very closely related species of CV. Ex: CV026. Biochemical 

4.2 Enzyme present and evidence of the reaction catalyzed in CV Biochemical 

 

5.2.5. Translation to BiGG database format and consistency check 

There is a critical need for widely acceptable and clear standards for representing 

constraint-based models for extended applicability of such models and rapid improvement 

in the quality of reconstructed metabolic models (Ebrahim et al., 2015; Ravikrishnan and 

Raman, 2015). The SEED reactions and metabolites were matched with KEGG reaction 

IDs represented in KEGG database (http://www.kegg.jp/) or to the IDs available on BiGG 

database (http://bigg.ucsd.edu/). The gene and reaction annotations in KEGG were 

compared to that of the draft reconstructions and all the gene annotations were converted 

from peg IDs to the respective CV gene IDs. This process made it easy to compare the C. 

violaceum model with already existing BiGG Models, one of the major datasets of such 

models in the systems biology research community. Various consistency checks were also 

performed such as for directionality, occurrence of blocked genes, gaps, orphan 

metabolites as well as mass and charge balance.  

 

5.2.6. Biomass composition 

Biomass biosynthesis was set as a linear combination of the macromolecules protein, 

DNA, RNA, lipid, peptidoglycan and LPS, which were considered to account for the 

overall biomass composition. A detailed calculation of the biomass composition and its 
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assembly using legacy data is mentioned in Table 5.2 and available as Appendix 5.1. The 

breakup of the equation is given in Appendix 5.2 

 

5.2.7. Flux Balance Analysis 

Constraints based flux balance analysis (FBA) as described in Chapter 4, section 

4.2.2, was used to simulate for growth (maximize biomass objective function) and 

violacein production.  

 

5.2.8. Validation of the metabolic model 

Validation of the metabolic model was performed in part by simulating for growth on 

metabolites that are potential carbon and nitrogen sources. The predictions were validated 

using published BIOLOG legacy data. The number of positive and negative predictions 

gives an insight into the predictive accuracy of the model. Additional simulation for 30 

exogenous metabolites (Ex-mets) was predicted to check for model accuracy for growth, 

violacein and cyanide phenotype/production. 

 

5.2.9. Metabolic model of WT, ChlR and StrpR population 

A set of constraints that define the antibiotic susceptible WT and differentiated the 

evolved populations (ChlR and StrpR) were determined. The constraints used in different 

simulations included (i) Substrate (Glucose) uptake rates (ii) Growth yields (iii) Violacein 

secretion (iv) ATP maintenance costs associated with molar growth yields of each strain 

as discussed (Table 5.11). The specific growth rates were calculated using 1g biomass as 

the basis. The growth yields thus calculated were compared across the three strains. The 

goal of the simulations was to understand the flux distribution in silico and the sensitivity 

of growth yield to various precursors with specific reference to the cofactors NADH, 

NADPH and ATP.  

 

5.2.10. Flux variability analysis 

To highlight the differences between the antibiotic sensitive and resistant populations, 

we classified reactions in the network based on their minimum and maximum flux values 

post FVA analysis and assigned categories that reflect their rigidity or flexibility as 

discussed in our earlier work (Banerjee et al., 2017) and in Chapter 4, section 4.2.3. 

Differences in unique forced fixed rates to variable or negligible rates in resistant 

populations as compared to wild type potentially indicate metabolic reprogramming. 
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5.2.12. NADH oxidase simulations to understand Redox homeostasis 

The Pareto front, the set of Pareto optimal solutions were identified by constraining 

the glucose consumption rate, violacein secretion rate and the biomass production rate to 

experimental values and maximizing the fluxes through the generic ATPase (ATPM) and 

NADH oxidase reaction (NOX). Analysis of Pareto fronts and trade-off between ATP and 

NADH maintenance reactions (NADH oxidase, not generally present in C. violaceum) 

was performed to understand the effect of modulation of NADH/NAD ratios on growth of 

the three different population of C. violaceum. A reaction representing the NADH oxidase 

(water forming) with the right balance of protons and oxygen was added to the model 

based on a recent report that uses a NADH oxidase enzyme system to delineate the role of 

NADH imbalance and show decoupling of electron transfer via ETC and proton pumping 

for ATP synthesis (Titov et al., 2016). This reaction essentially acts as a drain if there is 

excess NADH in the system and is denoted in the model as “NADHox” represented as 

follows: 

 

2 h_c + 2 nadh_c + o2_c -> 2 h2o_c + 2 nad_c 

 

FVA analysis was performed in order to understand the influence of addition of NOX 

to the resistant population and how it may help ease the redox imbalance created as an 

effect of resistance to the antibiotic chloramphenicol and streptomycin respectively. Also, 

similar analysis was also performed by assigning the same ATP maintenance for all three 

populations and constraining NOX in order to attain the experimental biomass for ChlR 

and StrpR models.  

 

5.2.13. Gene essentiality and Synthetic lethal genes in C. violaceum 

Computationally single gene deletion study is performed by the function 

singleGeneDeletion() by deleting one gene at the time and then using the gene protein 

relationships (GPRs) to find the corresponding reactions and removing them. The 

removal of a reaction i from the network is performed by bounding the flux through that 

reaction to zero (i.e., vi,min = vi,max = 0) and optimizing for an objective function, often 

the biomass reaction. If the maximal value for biomass production is zero, then the gene 

is predicted to be lethal or essential for C. violaceum. In silico virulent genes are those 

that are non-essential for C. violaceum growth whereas essential genes will be deemed 

avirulent and attenuated genes would be those that result in lower growth than the wild 
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type (Raghunathan et al., 2009a). Deleting two genes simultaneously using the function 

doubleGeneDeletion() allows the determination of synthetic lethal genes. Using the 

relative growth rate data (growth rate ratio between the wild type and knockout) obtained, 

we identified synthetic lethal or synthetic sick interactions between genes in the model.  

 

5.3. Results and Discussion 

5.3.1. Genome scale reconstruction and model statistics 

The draft reconstruction was obtained from Model SEED based on genome sequence 

of ATCC 12472 strain submitted by the Brazilian National Genome Sequencing 

Consortium (Haselkorn et al., 2003) and contained 1303 reactions, 1144 metabolites and 

892 genes.  Of the 4407 protein coding genes only 61.3% could be assigned a putative 

function of which 20% were included in the draft model. It was transformed into a 

functional predictive genome scale model with 1255 reactions and 971 metabolites and 

848 genes representing C. violaceum metabolism. The curation involved systematic 

literature mining for available information on C. violaceum metabolism. Data mining 

through PubMed search engine resulted in about 750 research articles (Figure 5.3) of that 

472 papers provided direct or indirect evidence for gene protein reaction relationships and 

were utilized in the model curation process.  

The SEED in silico C. violaceum was unable to produce twenty six out of 74 biomass 

precursors reported in literature (Creczynski-pasa and Antônio, 2004; Demoss and 

Happel, 1959) with glucose as the sole carbon source. A total of 69 reactions (Appendix 

5.3) were added in order to have a functional biomass equation to represent growth in the 

GSM of C. violaceum. 
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Seven reactions were added to lipopolysaccharide biosynthesis, 6 reactions were 

added to fatty acid metabolism and KDO2 lipid biosynthesis subsystems. Five reactions 

were added to four subsystems namely riboflavin metabolism, thiamine metabolism, 

folate biosynthesis and porphyrin metabolism. Purine metabolism, glyoxylate and 

dicarboxylate metabolism, nicotinate and nicotinamide metabolism needed four missing 

reactions in order to form biomass. Other subsystems that were missing one or two 

reactions and were gap filled included terpenoid biosynthesis, biotin metabolism, fatty 

acid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, urea cycle and 

Figure 5.4. The Model SEED server used to build the initial draft reconstruction 

Figure 5.3. Literature mining for manual curation  
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metabolism of amino groups, vitamin B6 metabolism, glycine, serine and threonine 

metabolism, TCA cycle, ubiquinone biosynthesis, glutathione metabolism, spermidine 

biosynthesis (urea cycle), glycolysis/ACP, aminosugar metabolism, lysine biosynthesis 

and peptidoglycan biosynthesis. Twenty two reactions were added to account for 

synthesis of the fatty acids and phosphoglycerides unique to C. violaceum in fatty acid 

biosynthesis and glycerolipid and glycerophospholipid metabolism subsystem in the 

model based on legacy data (Kampfer et al., 2009; Young et al., 2008).  A total of 143 

new reactions added with a prefix of “rDB” and 20 new metabolites were added with 

“mDB” prefix and the average confidence score for the model was 1.45. In order to 

account for all the constituents of biomass composition specific to C. violaceum and to 

replace components representing other organisms (for example B. subtilis cardiolipin) we 

modified the biomass formulation based on experimental evidence for C. violaceum and 

N. meningitidis wherever possible (Table 5.2 and Appendix 5.1 and 5.2). The model 

statistics for iDB858 is presented in Figure 5.6.  

 

Table 5.2: Biomass composition of C. violaceum 

  

 

 

 

 

 

 

 

 

 

5.3.2. In silico representation of metabolic genome features of Chromobacterium 

violaceum  

In 2003, the C. violaceum ATCC 12472 genome sequencing project was executed by 

the Brazilian National Genome Sequencing Consortium that included 25 sequencing 

laboratories, 1 bioinformatics center, and 3 coordination laboratories spread across Brazil 

(Haselkorn et al., 2003). Of the 4407 protein coding genes only 61.3% could be assigned 

a putative function whereas 21.6% were identified as conserved hypothetical proteins and 

17.1% other hypothetical proteins. On comparison with other sequenced organisms, C. 

Component % Dry Weight Organism 

Protein
1
 41.33 N.meningitidis 

RNA
2 17.64 C.violaceum 

DNA
3 7.57 C.violaceum 

Phospholipids
1
 6.64 N.meningitidis 

Peptidoglycan
3
 0.06 C.violaceum 

Lipopolysaccharide
3
 4.42 C.violaceum 

Putrescine
4
 0.231 C.violaceum 

Spermidine
4
 0.003 C.violaceum 
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violaceum has been reported to be most similar to (17.4%) Ralstonia solanacearum 

(Haselkorn et al., 2003), a free living phytopathogen, similarities being in the Clusters of 

Orthologous Groups (COG) involved in environmental interactions such as inorganic ion 

transporters, that were absent in Neisseria meningitidis predicting C. violaceum to be free 

living rather than a commensal. C. violaceum genome was phylogenetically most similar 

to N. meningitidis serogroup A (9.75%), latter known to be a serious human pathogen 

capable of causing serious disease (Baart et al., 2007). Most of them belonged to COG 

from ribosomal structure, biogenesis and translation. C. violaceum was proposed to be 

well adapted to glucose, nitrogen, phosphate and amino acid starvation and is resistant to 

toxic agents such as hydrogen peroxide, arsenic (Carepo et al., 2004), UV radiation, 

oxidative damage due to presence of several ORFs that act in response to such stress like 

pho regulon, peptide utilization and heat shock related ORFs. Around 251 genes 

incorporated in the model had direct literature evidence. The model iDB858 was able to 

predict the physiology of C. violaceum as discussed in literature. 

 

  

Model Feature SEED iDB858 

Reactions 1303 1330 

Internal Reactions 1185 966 

Exchanges 118 189 
Metabolites 1144 1004 

Genes 892 858 
Subsystems 306 72 

Table 5.3: Model characteristics 

Figure 5.5: Stochiometric matrix for iDB858. Each nonzero value represented by a dot. 
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Figure 5.6: Model statistics and subsystem wise classification for iDB858 

a 

b 

c 
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5.3.2.1. Central Carbon Metabolism 

The in silico C. violaceum, iDB858, was able to synthesize all the necessary amino 

acids for its survival and was also able to synthesize cyanide (Michaels and Corpe, 1965). 

As previously reported (Banerjee et al., 2017) during aerobic growth on glucose it was 

able to use glycolysis, tricarboxylic acid and glyoxylate cycle to produce cellular energy 

required for cell survival. The model was able to utilize amino acids, lipids and 

acetonitrile as sole carbon sources (Chapatwale 1988). The latter was utilized by the 

presence of homologous nitrilase (CV_2097) that allowed utilization of nitriles 

compounds such as indole acetonitrile, benzonitrile, phenylacetonitrile as suggested in 

literature (A. Acharya, 1997). All the genes required for nucleotide salvage pathway were 

accounted for in the model. 

Table 5.4: Physiological characteristics successfully predicted by iDB858 

Physiological function In silico Experimental Reference 

Lactate utilization + Ron Taylor 2009 

Acetonitrile utilization + Chapatwale 1988 

Glycerol utilization 
 

In house 

Violacein production + 
Lichstein and Van de Sand 

1945 

Cyanide 

production 

Glucose + 

Michaels and Corpe, 1965 Succinate + 

Glutamate ++ 

 

In glycolysis pck, agp, crr, ascF, eutG, pdc genes were absent but ppc gene, CV_0055 

was present in addition to CV_2491. In TCA pfo, mqo, pck genes were absent. In PPP 

kdgK, ghrB, gnd, gcd, genes were absent. Absence of talB (transaldolase) was 

compensated by talc (CV_2247) transaldolase activity. In pyruvate metabolism pck, mqo, 

pdc (pyruvate decarboxylase), aldA, hchA, ldhA, lldA (lactate dehydrogenase, 1.1.2.3), 

lldD, poxB, pfo, yccX, eutD, maeA, mhpF (1.2.1.10, acetaldehyde-CoA dehydrogenase II, 

NAD-binding) genes were absent but CV_2491 and dld (CV_3027 – D-lactate 

dehydrogenase) were present and adhE (CV_1137) replaced mhpF function in the model.   

All the respiratory complexes (Complex I to V) were present in the model as reported 

in literature. Electrons entered the respiratory chain through NADH dehydrogenase (EC 

1.6.5.3, 14 genes nuoA to nuoN) or succinate dehydrogenase (EC 1.3.5.1, sdhA to sdhD) 

and were transferred to the cytochrome bc1 or cytochrome c reductase (EC 1.10.2.2, petA, 

petB and petC) complex through ubiquinones. The quinone system in the model was 
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represented by ubiquinone Q-8 (Whistance et al., 1969). Two types of terminal 

cytochrome oxidase (EC 1.9.3.1) were reported (Creczynski-pasa and Antônio, 2004) in 

C. violaceum, SoxM was represented by coxA (CV_0600), coxB (CV_0599) and coxC 

(CV_0603) whereas FixN was represented by CV_1171, CV_1172, CV_1173 and 

CV_1174 based on homology. SoxM type (aa3 type) worked under normal aerobic 

conditions whereas the FixN oxidases were involved under micro-aerophillic conditions 

(Castresana, 2001) that may allow colonization of oxygen-limited environments. Another 

terminal oxidase, cytochrome bd oxidase was also reported in C. violaceum known to 

play a role in oxidative stress and to create electrochemical membrane gradient for 

energetic requirements (Castresana, 2001). Cyanide formation in C. violaceum is a 

distinguishing feature among violacein producing bacteria. In general, cyanide binds with 

the respiratory electron chain molecule and inhibits respiration and kills the cells. 

Therefore, there must be an evolved respiratory system that is resistant to cyanide 

production as reported (Niven et al., 1975). cioA (CV_3658), a cyanide insensitive 

terminal cytochrome oxidase in the respiratory electron transport (Tay et al., 2013) and 

cioB (CV_3657) were genes present in in silico C. violaceum model homologous to the 

cytochrome bd (1.10.3.14) oxidases and may belong to cyanide insensitive oxidases 

(CIO) as observed in Pseudomonas aeruginosa (Zlosnik et al., 2006) suggesting terminal 

branching of the respiratory system in C. violaceum with one pathway resistant to cyanide 

inhibition (or azide, CO inhibition) while the other being sensitive (Niven et al., 1975). C. 

violaceum being a facultative anaerobe reactions involving nitrate (denitrification) or 

fumarate as terminal electron acceptors for growth under anaerobic conditions were 

present that convert glucose into  acetic acid and formic acid under anaerobic condition 

(Creczynski-pasa and Antônio, 2004). 

 

5.3.2.2. Cyanide Formation 

Cyanide is produced by C. violaceum (Sneath, 1953) as a secondary metabolite that 

has application in pharmaceuticals industry to gold recovery from electronic scrap 

materials (Campbell et al., 2001; Carepo et al., 2004; Michaels and Corpe, 1965; 

Natarajan and Ting, 2014). Cyanide formation in C. violaceum is also used as a 

distinguishing feature among violacein producing bacteria. Culture conditions such as pH, 

temperature  regulate cyanide production (Macadam and Knowles, 1984). 
14

C studies 

have showed carbon atom of cyanide being derived from glycine (Brysk et al., 1969). In 

silico model of C. violaceum was able to produce small amounts of cyanide without any 



 

Genome Scale Metabolic Model of C. violaceum | 95  

 

additives in the media with either only glucose or succinate as carbon source and 

ammonium salts as nitrogen source. Glutamate on the other hand served as both carbon 

and nitrogen source with best cyanide yield (Michaels and Corpe, 1965) (refer to Table 

5.4). The reactions involved in utilization of cyanide to form β-cyanoalanine (Brysk et al., 

1969; Macadam and Knowles, 1984) and β -cyano-α-amino butyric acid were added to 

the model along with other reactions shown in Table 5.5. There is no inhibition of 

cytochrome c oxidase with the level of cyanide produced (Tay et al., 2013). 

 

Table 5.5: Reaction information for the cyanide biosynthesis module 

Reaction ID Reaction Name KEGG RID Reaction Formula 

rDB00166_c 
glycine:acceptor 

oxidoreductase 
R05704 

gly_c + 2 nadph_c  -> co2_c + 2 

nadp_c + hcn_c 

rDB00167_c cyn_rxn2 R06614 
HC00955_c  <=> h2o_c + 

3Aprop_c 

rDB00168_c 
γ-Amino-γ-cyanobutanoate 

aminohydrolase/nitrilase 
R01887 

2 h2o_c + acybut_c  <=> glu__L_c 

+ nh4_c 

rDB00169_c 
α-Aminopropiononitrile 

aminohydrolase/Nitrilase 
R03542 

2 h2o_c + aprop_c  <=> ala__L_c 

+ nh4_c 

rDB00170_c cyn_rxn5 R01410 hcn_c  -> aprop_c 

rDB00171_c cyn_rxn6 R01650 hcn_c  -> acybut_c 

rDB00172_c cyn_rxn7 R03524 cys__L_c + hcn_c  -> HC00955_c 

rDB00173_c cyn_rxn8 R01267 HC00955_c  -> asn__L_c 

rxn02792_c 
(5-Glutamyl)-peptide:amino-

acid 5-glutamyltransferase 
R03971 

h_c + glu__L_c + 3Aprop_c  -> 

co2_c + h2o_c + HC01700_c 

rxn02791_c 
(5-Glutamyl)-peptide:amino-

acid 5-glutamyltransferase 
R03970 

glu__L_c + HC00955_c  <=> 

h2o_c + HC01577_c 

 

5.3.2.3. Violacein biosynthesis 

Violacein, an important bis-indole compound (indolocarbazole) obtained from 

bacteria with antioxidant activities has great potential as a drug exhibiting antibacterial, 

antitumoral, antiviral, trypanocidal and antiprotozoan properties (Durán et al., 2016). The 

main precursor metabolite for the synthesis of violacein is tryptophan (Demoss and 

Evans, 1959). Violacein biosynthetic pathway has a five gene vioABCDE operon 

structure (August et al., 2000; Balibar and Walsh, 2006; Hoshino, 2011; Sánchez et al., 

2006; Shinoda et al., 2007). The operon is reported to be negatively regulated by VioS 

(Devescovi et al., 2017) and it is positively regulated by the CviI/R quorum sensing 

system. The first step is the oxidative dimerization of two molecules of tryptophan to 

indole-3-pyruvic acid (IPA) imine catalyzed by flavoenzyme L-tryptophan oxidase, VioA 

(CV_3274) in presence of oxygen (Füller et al., 2016). This step is also critical for 
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biosynthesis of two other medically relevant bis-indole compounds rebeccamycin, an 

antiproliferative agent and staurosporine, a protein kinase inhibitor. IPA imine formed in 

the previous step described above, is converted to protodeoxyviolaceinic acid by VioB 

(CV_3273) and VioE (CV_3270). This is followed by the hydroxylation activity of VioD 

(CV_3271) and VioC (CV_3272) to form violacein and deoxyviolacein. In the reaction 

involving VioA, H2O2 is formed that doesn’t inhibit the functioning of the VioA rather 

stimulates higher production of protodeoxyviolacein. The flavin dependent oxygenases 

VioC and VioD work in simultaneous manner. In the presence of VioC, oxygen and 

NADPH, deoxyviolaceinic acid is formed from protodeoxyviolaceinic acid that is 

converted to deoxyviolacein in a non-enzymatic pathway in the presence of oxygen. If 

VioD acts on protodeoxyviolaceinic acid before VioC, in the presence of NADPH and 

molecular oxygen, then it forms protoviolaceinic acid. VioC synthesizes violaceinic acid 

which later gets converted into violacein by spontaneous oxidative decarboxylation. In 

the absence of VioC, VioD and NADPH, protodeoxyviolaceinic acid gets converted into 

prodeoxyviolacein in the presence of oxygen spontaneously. The reactions (Table 5.6) 

involved in the violacein biosynthesis as discussed above have been added to the model. 

The robustness analysis of different control reactions including oxygen uptake, NADPH 

demand, ATP demand and tryptophan demand were studied on two different objective 

functions biomass and violacein production as shown in Figure 5.7.  

Figure 5.7: Robustness analysis to understand metabolite limitation on biomass and 

violacein formation in iDB858 in glucose. Flux on the axes is represented as 

mmol/gDCW/hr and biomass is represented in grams. 

 

The slope for different control reactions suggested that availability of the substrate 

amino acid tryptophan and the cofactor NADPH were the major bottlenecks in violacein 

biosynthesis pathway in iDB858 as suggested in literature. 
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Table 5.6: Reaction information for the violacein biosynthesis module 

Reaction ID Reaction Name KEGGID Reaction Formula 

rDB00091_c 
Tryptophan 2-

monooxygenase 
R11119 

o2_c + trp__L_c  -> h_c + h2o2_c + 

mDB_2i3ip_c 

rDB00092_c PDVnate synthesis R11131 
2 mDB_2i3ip_c  -> co2_c + nh4_c + 

mDB_pdvnate_c 

rDB00093_c 
Protodeoxyviolaceinate, 

NADPH:o2 oxidoreductase 
R11134 

h_c + nadph_c + o2_c + mDB_pdvnate_c  

-> h2o_c + nadp_c + mDB_pvnate_c 

rDB00094_c 
Protoviolaceinate, NADPH:o2 

oxidoreductase 
R11135 

h_c + nadph_c + o2_c + mDB_pvnate_c  

-> h2o_c + nadp_c + mDB_vnate_c 

rDB00095_c 
Violacein spontaneous 

synthesis 
R11136 

h_c + o2_c + mDB_vnate_c  -> co2_c + 

h2o_c + mDB_vio_c 

rDB00096_c 
Protodeoxyviolaceinate, 

NADPH:o2 oxidoreductase 
R11374 

h_c + nadph_c + o2_c + mDB_pdvnate_c  

-> h2o_c + nadp_c + mDB_dvnate_c 

rDB00097_c 
Deoxyviolacein spontaneous 

synthesis 
R11133 

h_c + o2_c + mDB_dvnate_c  -> co2_c + 

h2o_c + mDB_dvio_c 

rDB00098_c 
Prodeoxyviolacein 

spontaneous synthesis 
None 

h_c + o2_c + mDB_pdvnate_c  -> co2_c 

+ h2o_c + mDB_prodvio_c 

rDB00099_c Diffusion of violacein None h_c + mDB_vio_c  -> h_e + mDB_vio_e 

rDB00100_c 
Diffusion of 

prodeoxyviolacein 
None mDB_prodvio_c  -> mDB_prodvio_e 

rDB00101_c Diffusion of deoxyviolacein None 
h_c + mDB_dvio_c  -> h_e + 

mDB_dvio_e 

EX_vio_e Violacein Exchange None mDB_vio_e  <=> 

EX_dvio_e Deoxyviolacein Exchange None mDB_dvio_e  <=> 

EX_prodvio_e Prodeoxyviolacein Exchange None mDB_prodvio_e  <=> 

 

5.3.2.4. Macromolecular Biosynthesis 

The cell envelope of C. violaceum similar to N. meningitidis and E. coli consists of an 

outer membrane, a peptidoglycan and a cytoplasmic (inner) membrane. The outer 

membrane has an asymmetrical organization in which the outside layer is primarily 

composed of lipopolysaccharide (LPS) (Wheat et al., 1963; Whiteside and Corpe, 1969) 

and proteins whereas the inside membrane contains phospholipids. Bacterial lipids in C. 

violaceum like in all gram negative bacteria including S.marcescens, E. aerogenes and E. 

coli contains phosphatidylethanolamine (PE) as the major phosphoglycerides, and lesser 

amounts of phosphatidylglycerol (PG), phosphatidic acid (PA) and 

diphosphatidylglycerol (cardiolipin, CL) (Randle et al., 1969). The overall phospholipid 

composition used in the model was 76.6% PE, and 17.9% PG, 4.6% CL and 0.9% PA 

based on legacy data (Kampfer et al., 2009; Randle et al., 1969). Metabolic reactions for 

lipids used for various cellular functions including triacyglycerol, phospholipids and 
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lipopolysaccharides were also included in the model. The fatty-acid biosynthesis 

subsystem in the model was curated using the template from E. coli. All genes, except for 

a homolog of the E. coli β-hydroxyacyl-acyl carrier protein (ACP) dehydrase FabA and 

FabB (3-oxoacyl-[acyl-carrier-protein] synthase I, 2.3.1.41), were present in the model in 

addition to CV_2194, a hypothetical protein (enoyl-[acyl-carrier protein] reductase II, 

1.3.1.9). Homologs to E. coli glycerol-3-phosphate acyltransferase (PlsB) were not found 

so absent in the model on the other hand PlsX homolog CV_3417 and CV_3688 

homologous to PlsY were present in iDB858. The unique fatty acid compositions for C. 

violaceum containing cycloheptane rings (Kampfer et al., 2009; Young et al., 2008) were 

also added in the model. The glycerophospholipid and glycerolipid metabolism were 

modified accordingly using reactions from E. coli iAF1260 (Feist et al., 2007) and 

Burkholderia reconstructions (Bartell et al., 2014) based on gene sequence similarity.  

The lipopolysaccharide (LPS) and peptidoglycan of C. violaceum are known to be 

responsible for activating host immune cells and the induction of inflammatory cytokines 

during bacterial infection, resulting in septic shock (Ghosh et al., 2014). Two type III 

secretion systems (T3SSs) encoded in three gene clusters (Chromobacterium 

pathogenicity islands Cpi-1, Cpi-1a and Cpi-2) are thought to be one of the most 

important virulent factors (Alves De Brito et al., 2004; Miki et al., 2010) and Cpi-1/-1a 

T3SS are involved in the formation of necrotic lesions in the liver (Miki et al., 2010). LPS 

consists of three parts: a lipid A part containing unique hydroxy fatty acid chains, a core 

oligosaccharide containing 3-deoxy-D-manno-octulosonate (KDO) and heptoses, and a 

specific polysaccharide (somatic O-antigen). C. violaceum lipid A has been reported to be 

structurally different compared to other Enterobactericeae like Salmonella and E. coli 

(Hase and Reitschel, 1977). In contrast to two phosphate groups that are largely free, in 

C. violaceum lipid A they are substituted each by a distinct, non-acylated, amino sugar. 

The glycosidically linked phosphate group was shown to be substituted by a glucosaminyl 

residue. This area, therefore, contains the structure of a glucosaminyl-1 -phosphoryl-1-

glucosaminide. The ester-linked phosphate group was found to be substituted by a 4-

aminoarabinosyl residue. All genes involved in the biosynthesis of the lipid A of LPS are 

present in iDB858 including lpxB (CV_2209) and lpxD (CV_2206) except for lpxM 

(myristoyl-acyl carrier protein (ACP)-dependent acyltransferase) that is absent in all 

betaproteobacteria (Opiyo et al., 2010). These genes are known to be related to virulence 

and pathogenicity in C. violaceum (Ghosh et al., 2014). The specific polysaccharide or O-

antigen has been reported to be composed of D-glycero-D-mannoheptose and D-
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fucosamine (Maclennan and Davies, 1957) along with galactose, glucose, glucosamine 

(Crumpton and Davies, 1958). Peptidoglycan degree of cross-linking and O-acetylation 

appeared to be associated with the genetic background of the strains and was found to be 

quite similar to N. meningitidis. The percentage of O-acetylation per disaccharide was on 

average 14.7% compared to 33% in N. meningitidis (Weadge et al., 2005). Other studies 

show that peptidoglycan structures are recognized by the innate immune system (Alves 

De Brito et al., 2004). Several studies have shown that a direct correlation exists between 

the extent of O- acetylation and susceptibility to lysozyme-catalyzed hydrolysis of 

peptidoglycan to protect the bacterium from a host immune response (Weadge et al., 

2005). In our model genes including CV_4346 and CV_4349 were present that are known 

to be related to virulence and pathogenicity in the peptidoglycan biosynthesis subsystem.  

C. violaceum has strong ability to adapt to stress condition due to presence of 

different types of transporter proteins. 25% of extracellular proteins have been reported to 

be involved in transport or metabolism (Ciprandi et al., 2013; Grangeiro et al., 2004).  

 

5.3.3. SEED Draft model limitations 

Although the genome of C. violaceum has no missing components in the biosynthetic 

pathways of all 20 amino acids and the purine/pyrimidine, the SEED reconstruction 

(http://www.theseed.org/models/) (Henry et al., 2010) did not reflect this feature. 

Pathways with gaps and missing reactions included lysine, phenylalanine, tyrosine and 

tryptophan biosynthesis and glycine, serine and threonine metabolism pathways. 

Biosynthesis and metabolism of all 20 amino acids along with purine pyrimidine 

nucleotides were found to be complete in C. violaceum genome. C. violaceum does not 

require any amino acids for its growth (Demoss and Happel, 1959). Many genes were not 

identified, annotated or miss-annotated. In case of lysine biosynthesis a lumped reaction 

had to be added for the conversion of L-aspartate semialdehyde to meso-2,6-

diaminopimelate (rDB00050_c) in order to form lysine in the reconstruction. For arginine 

biosynthesis reaction (rDB00003_c) was added for formation of arginine (glutamate and 

2acetamido-5-oxopentanoate to oxoglutarate and N-acetylornithine). Tryptophan 

metabolism in C. violaceum is unique as compared to other bacteria due to its oxidative 

conversion to natural bis-indole compound violacein (Duran, M., Alario A. F., 2010; 

Durán et al., 2016; Füller et al., 2016) through a five gene violacein operon (August et al., 

2000; Balibar and Walsh, 2006; Hoshino, 2011) which will be discussed in another 

section. In the SEED reconstruction the reaction that converts chorismate to prephenate 
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Figure 5.8. Gene, enzyme and reaction information of chorismate mutase as in KEGG database 

(Chorismate mutase or prephenate dehydratase, CV_2355, pheA) was missing (Figure 

5.9) although indirect evidence (Ronau et al., 2013) supports its occurrence in the 

network for biosynthesis of phenylalanine, tyrosine and biomass formation. In case of 

glycine, serine threonine metabolism we added a reaction (rDB00029_c) for linking 1-

amino-2-propanol to aminoacetone. Synthesis of variety of cofactors and vitamins were 

also complete with the exception of pantothenate and biotin biosynthesis. Vitamin B12 

was represented by Vitamin B12 coenzyme adenosylcobalamin (adocbl_c) in the model 

and was synthesized by iDB858 and is also included in the biomass equation as suggested 

in literature to be important for cellular functioning (Demoss and Happel, 1959). This 

merely reiterates the fact that although automated draft reconstructions for metabolic 

models are a great starting point, detailed manual curation is a necessity for complete 

reconstructions that can be translated to models that can simulate cell function accurately. 
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Figure 5.9. Screen shot showing the missing chorismate mutase (red circle) in ModelSEED 

server 
 

 

5.3.4. Metabolic capacity validation of iDB858 based on BIOLOG GN2 plate 

phenotype 

The metabolic reconstruction and modeling process as summarized in Figure 5.1 is an 

iterative process. With the biomass objective function, a genome-scale reconstruction 

model was converted into a model that could compute the growth/respiration phenotypes 

of C. violaceum in several C/N sources. We used the model to predict growth on different 

compounds used as sole carbon and nitrogen sources and compared the simulation results 

with high-throughput phenotypic microarray experimental data (Biolog
TM

) (Lima-

Bittencourt et al., 2011; Martin et al., 2007; Young et al., 2008). Inconsistencies between 

simulation results and Biolog data were then used to refine the model by adding 36 

missing reactions supported by literature; iDB858 was able to predict metabolic 

phenotypes of C. violaceum with a prediction accuracy of 89% (Table 5.7).  

 

Table 5.7: BIOLOG in silico prediction accuracy 

Total Substrates 95 

Not in Model 38 

Present in Model 57 
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True Positive 37 

True Negative 12 

False Positive 2
*
 

*
Glycerol and Formate 

False Positive 4
#
 

#
D-serine, Uridine, 2-Aminoethanol, Cis-aconitate 

False Negative 2
#
 

#
Leucine, Glucose-1-phosphate 

* Experimental evidence exists, # Conflicting literature evidence 

 

Table 5.8: In silico prediction for the 57 BIOLOG GN2 plate substrates 

Substrate 
Lima-Bittencourt 

et al., 2011 

Young et 

al., 2008 

Martin et 

al., 2007 
iDB858 Biomass 

Sucrose + 
 

+ + 1.973 

D-mannose + + 
 

+ 0.987 

D-trehalose + + 
 

+ 1.973 

L-phenylalanine + + 
 

+ 0.922 

L-threonine + + 
 

+ 0.608 

Inosine + + 
 

+ 0.689 

Thymidine + + 
 

+ 0.888 

D, L-a-glycerol 

phosphate 
+ + 

 
+ 0.574 

D-glucose-6-

phosphate 
+ + 

 
+ 1.051 

N-acetyl-D-

glucosamine 
+ 

  
+ 1.169 

D-cellobiose + 
  

+ 1.973 

D-fructose + 
  

+ 0.981 

a-D-glucose + 
  

+ 0.987 

D, L-lactic acid + 
  

+ 0.413 

Succinic acid + 
  

+ 0.472 

D-alanine + 
  

+ 0.383 

L-alanine + 
  

+ 0.440 

L-alanylglycine + 
  

+ 0.646 

L-asparagine + 
  

+ 0.467 

L-aspartic acid + 
  

+ 0.440 

L-glutamic acid + 
  

+ 0.432 

Glycyl-L aspartic 

acid 
+ 

  
+ 0.675 

Glycyl-L glutamic 

acid 
+ 

  
+ 0.657 

L-histidine + 
  

+ 0.440 

a-Cyclodextrin + 
  

+ 5.920 

Dextrin + 
  

+ 5.920 

Glycogen + 
  

+ 3.946 

L-arabinose + 
  

+ 0.614 

D-arabitol + 
  

+ 0.682 
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D-psicose + 
  

+ 0.987 

Turanose +   + 1.973 

L-ornithine + 
  

+ 0.608 

L-proline + 
  

+ 0.564 

L-serine + 
  

+ 0.374 

D-gluconic acid + 
  

+ 0.860 

b-Hydroxybutyric 

acid 
+ 

  
+ 0.525 

Urocanic acid + 
  

+ 0.485 

D-serine - + 
 

+ 0.348 

Uridine - + 
 

+ 0.679 

2-Aminoethanol - + 
 

+ 0.334 

Cis-aconitic acid + - 
 

+ 0.656 

Formic acid
*
 - 

  
+ 0.054 

Glycerol
*
 - 

  
+ 0.571 

L-leucine
#
 + - 

 
- 0.000 

Citric acid - - + - 0.000 

a-D-glucose-1-

phosphate
#
 

- + 
 

- 0.000 

a-Keto butyric 

acid 
- 

  
- 0.000 

a-Keto glutaric 

acid 
- - 

 
- 0.000 

c-Amino butyric 

acid 
- - 

 
- 0.000 

Putrescine - 
  

- 0.000 

D-galactose - 
  

- 0.000 

m-Inositol - 
  

- 0.000 

Maltose - 
  

- 0.000 

D-mannitol - 
  

- 0.000 

Acetic acid - 
 

- - 0.000 

D-sorbitol - 
  

- 0.000 

Propionic acid - 
  

- 0.000 

* Experimental evidence exists, # Conflicting literature evidence 

 

5.3.5. Growth prediction accuracy using iDB858 based on in house Carbon Nitrogen 

source utilization phenotype  

We also tested another 30 metabolites (Ex-mets) added in excess, C. violaceum was 

able to utilize 27 and did not utilize three substrates – citrate, oxoadipate and 

glyceraldehyde-3-phosphate. Growth for 24 out of the 27 exogenous metabolites tested 

were predicted successfully (88.9 % accuracy) using iDB858 (Table 5.9). Five substrates 

were false negative (mannitol and sorbitol – contradicting legacy data, L-tryptophan, L-
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valine and L-glutamine not working even at -1000 input of substrate). C. violaceum does 

not utilize citrate, oxalic acid and glyceraldehyde-3-phosphate. 

 

Table 5.9: Overall in silico prediction accuracy of iDB858 for Ex-mets 

 

 

 

 

 

 

 

 

In order to understand the behavior of C. violaceum we further simulated for growth 

and cyanide production using experimental data. Out of the 29 substrates, the model 

predicted growth on 20 substrates (ca. 69% prediction accuracy). Only four out of 29 

substrates had less than 60% prediction accuracy (Table 5.10). 

 

Table 5.10: In silico prediction accuracy of iDB858 for the 29 Ex-mets 

 Mets Growth Violacein Cyanide % Prediction Accuracy 

Glc 0.967 0.0007 0.006 62.9 

g6p 1.033 0.0007 0.006 95.6 

g3p 0 0.0009 0.000 100.0 

Fdp 1.082 0.0005 0.005 94.9 

Fum 0.853 0.0005 0.005 54.9 

Male 0.421 0.0009 0.009 69.8 

D-Mal 0.827 0.0006 0.006 77.2 

Succ 0.920 0.0008 0.008 91.9 

2oxoadp 0.704 0.0022 0.021 85.6 

MLO 0.561 0.0007 0.007 52.1 

Pyr 0.667 0.0004 0.004 84.3 

Cit 0.000 0.0005 0.000 100.0 

Icit 1.292 0.0000 0.000 98.6 

Lact 0.827 0.0007 0.007 83.4 

Kga 0.258 0.0005 0.005 62.5 

Ara 0.587 0.0004 0.004 66.5 

m6p 1.033 0.0007 0.006 95.9 

r5p 0.652 0.0007 0.007 75.5 

3pg 0.397 0.0005 0.005 60.3 

Trp 0.000 0.0007 0.000 0.0 

Ala 0.419 0.0008 0.015 43.8 

Val 0.000 0.0007 0.000 0.0 

Total Substrates 30 

Not in Model 1 

Present in Model 29 

True Positive 22 

True Negative 2 

False Negative 5
*
 

*
Mannitol, Sorbitol,  

Tryptophan, Valine and Glutamine 
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Asp 0.208 0.0007 0.013 89.2 

Gln 0.000 0.0007 0.000 0.0 

Glu 0.389 0.0005 0.009 30.4 

Man 0.000 0.0006 0.000 0.0 

Sbt 0.000 0.0007 0.000 0.0 

Glyc 0.544 0.0006 0.006 69.8 

Ascb 0.570 0.0006 0.006 70.4 

 

5.3.6. Representing Antibiotic resistant populations of C. violaceum 

Of the major constraints imposed on FBA models is synthesis of biomass of specific 

composition and thus involves tracking mass flow of elements (carbon, nitrogen, 

phosphorus, oxygen and sulfur) through the metabolic network. FBA also balances 

energy and reducing equivalents. Thus energy demands and maintenance costs need to be 

taken into account for accurate yield/flux predictions. Many of the energy-requiring 

transport reactions for substrate uptake necessary for growth (biomass synthesis) are 

included with defined ATP stoichiometry defined by the proton: ATP stoichiometry of 

the ATPases. There is also a cost of maintaining the instantaneous steady state, 

irrespective of whether the system is growing i.e, the non-growth associated ATP 

maintenance. Maintenance costs can be assessed for antibiotic resistant strains based on 

varying the flux of a generic ATPase in the model until the carbon consumed by the 

model matches that measured experimentally (Varma and Palsson, 1994; Poolman et al., 

2009). However, this method assumes that maintenance costs can be described entirely in 

terms of ATP expenditure, even though maintenance processes such as antioxidant 

metabolism and the re-synthesis of lipids require substantial amounts of reducing 

equivalents. 

 The maintenance requirement adds up the ATP energy requirements for biomass 

synthesis and violacein yields. The ATP maintenance requirements for the wildtype C. 

violaceum (WT) growing on glucose with violacein secretion decreased the maintenance 

costs (45%) for biomass synthesis from 12.59 to 6.96 ATP per g of biomass. As a 

consequence if the violacein demand decreases, the ATP maintenance costs would 

increase. For wild type and resistant strains (ChlR and StrpR) and experimental 

conditions described here (Table 5.11), the non-growth associated maintenance 

requirement was determined to be 6.96, 10.67 and 6.77 mmol of ATP per g of biomass 

respectively. This indicates lower violacein yields (as observed) for ChlR. Although 

StrpR had similar ATP maintenance costs, increased experimental yields of violacein 

indicate reprogramming of metabolism to account for that. 
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The model iDB858 prediction of growth for WT was off by 19% (under-predicted) 

and over predicted for ChlR and StrpR at a single optimal oxygen uptake rate in all the 

three populations. Thus modulation of violacein yields and energy maintenance costs may 

be a metabolic signature of the action of these antibiotics.  

 

Table 5.11: Experimental conditions used to define the three different population of C. 

violaceum 

Model 
Glucose 

uptake rate
#
 

Violacein 

secretion rate
#
 

Molar 

growth yield
#
 

ATPM 
Biomass  

(in-silico) 

Biomass 

(in-vitro)
#
 

Oxygen 

uptake rate 

WT 9.99 1.49 0.0312 6.96 0.25 0.31 21.58 

ChlR 10.53 0.673 0.0314 10.67 0.68* 0.33 9.91 

StrpR 12.78 0.702 0.0504 6.77 0.92* 0.64 17.03 

 

 

Similarly the ATP maintenance requirements to achieve molar growth yields for C. 

violaceum wild type population in three other substrates pyruvate, succinate and D-malate 

under experimental conditions were calculated. The ATM maintenance scaled to the 

carbon equivalence for the substrates and was 3.62 for pyruvate, 4.94 for succinate and 

2.6 for D-malate (Table 5.12).  

 

Table 5.12: Experimental condition used to define wild type growth on different 

substrates 

Substrate 
Model VSR

*
 ATPM

#
 

Molar growth 

yield
*
 

Oxygen uptake 

rate
#
 

Pyruvate WT 0.013 3.62 0.0092 1.927 

Succinate WT 0.019 4.94 0.0117 2.7222 

D-malate WT 0.027 2.6 0.0153 1.9392 

* Experimental values # determined in silico 

 

Table 5.13: Experimental condition used to define resistant population growth on 

different substrates 

Substrate Model VSR
*
 

Molar growth 

yield
*
 

Time of 

growth (hr) 
ATPM

#
 

In silico Molar 

growth yield
#
 

Oxygen 

uptake rate
#
 

Pyruvate 
ChlR 0.013 0.0182 After 24 5.3 0.00027 2.2308 

StrpR 0.013 0.0157 <3 3.36 0.0106 1.8797 

Succinate 
ChlR 0.019 0.0160 <3 7.57 0 0 

StrpR 0.019 0.0150 <3 4.73 0.0128 2.6849 

D-malate ChlR 0.027 0.0282 0 – 24 3.99 0.0079 2.19 

# Experimental values 

*Constrain oxygen to lower the biomass predicted to match experimental biomass 
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StrpR 0.027 0.0205 <3 2.53 0.0157 1.9263 

* Experimental values # determined in silico  

Using biomass, transport and maintenance costs as constraints allows one to predict 

the fluxes through central metabolism that provide carbon skeleton for biomass and also 

energy (ATP) and redox production. Although synthesis of biomass consumes energy, 

there are other substantial energy drains in the cell, including the cost of transporting ions, 

metabolites and macromolecules, and the cost of cell maintenance. Both of these costs are 

potentially higher in microbial systems evolved to antibiotics, and therefore also have a 

substantial effect on maintenance costs and potentially flux distributions in central 

metabolism. 

Moreover, a comparison of CV cells evolved or adapted under antibiotic selection 

pressures conditions highlights substantial differences in the ATP and reducing equivalent 

costs of cell maintenance in these antibiotic resistant populations. This leads to the 

suggestion that antibiotic stress may be considered as a condition that leads to an increase 

in cell maintenance costs. Adding energy-linked transporters for nutrient uptake and for 

intracellular transport of metabolites, virulence factor violacein synthesis facilitated a 

more comprehensive analysis of the energy costs of biomass synthesis in the model. 

 

5.3.7. Redox coupled metabolic flux redistribution a function of antibiotic 

perturbation 

Describing evolutionary situations requires optimal designs that often cope with 

interacting constraints like biomass/energy and redox. To give a good account of these 

selective forces, a Pareto or Multi Objective Optimization (MOO) approach can be useful. 

Previously (Banerjee et al., 2017) flux variability analysis (FVA) was used to show two 

major features as a function of antibiotic perturbation. First being the rigid flux through 

overflow metabolism (acetate and formate) and second being flexible flux through 

reactions that maintained a rigid flux in case of the wild type population that were 

involved in redox and energy homeostasis. Changes between resistant and susceptible 

populations overall flux distribution indicated compensatory metabolic flux redistribution 

due to antibiotic selection pressure. In this study, as explained in the Methods section, we 

use FVA to answer two questions. First, whether the above features observed in a core 

metabolic model extended to a genome scale model and secondly, whether these features 

are a function of antibiotic or the resistance developed to the antibiotic or any other cause. 

Focus would mainly be on changes in flux space with respect to that in wild type model 
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(WT) either to a uniquely determined (i.e. if upper and lower boundaries coincide), 

negligible or a flexible flux through reactions. 

5.3.7.1. Effect of Antibiotic on C. violaceum metabolic network  

 To understand the effect of the antibiotics chloramphenicol and streptomycin on C. 

violaceum cellular metabolism the flux distribution profiles of iDB858 were delineated 

using FVA. The perturbation in feasible metabolic flux distributions in the presence of 

chloramphenicol (WT+chl) and streptomycin (WT+strep) were analyzed (Table 5.14 and 

5.15). Each scenario is limited by the experimental data reflecting growth limiting 

substrate and the growth yields in the presence of these antibiotics as discussed earlier. 

The distinguishing features of altered metabolism in WT in presence of 

chloramphenicol include overflow metabolism via secretion of acetate and formate. The 

rewiring of pyruvate formate lyase (PFL) to act in a unidirectional manner potentially 

leads towards accumulation of formate. Fumarate reductase (FRD7), in the presence of 

chloramphenicol carries a very negligible flux (contrary to 2.5 fold reduction in 

WT+strep). Experimentally measured proton motive force (PMF) is 10 fold higher 

measured in Chapter 3 (Figure 3.27) in the presence of chloramphenicol through potential 

disruption of the lipid bilayer and increased proton pumping through formate and acetate 

(Páez et al., 2013). 

 Fumarate reductase (FRD7) represents TCA as well as oxidative phosphorylation and 

is involved in relaying electrons towards cytochrome oxidase that would eventually create 

a PMF/ electrochemical membrane gradient for ATP synthesis. The failure of FRD7 to 

remain a control node in the presence of chloramphenicol indicates the continued use of 

O2 as terminal electron acceptor. The corresponding ETC complex, represented by 

cytochrome oxidase bo3 carries a 12 fold lower flux compared to WT. Therefore the ATP 

synthesis is potentially less dependent on the conventional ETC-PMF and relies on 

substrate-level phosphorylation via glycolysis to pyruvate (and fermentation to acetate 

and formate). The turning on of AckA is known to increase proton pumping and 

membrane potential. 

 In the presence of streptomycin however, higher ammonia and cyanide are produced 

and siphoned off to make more glutamate and glycine as seen experimentally and varied 

folate metabolism (through increased PABA). Lysine, methionine, histidine correlated to 

the altered function (via mutation) of the PLP utilizing PabC. Glutamate efflux 

(experimental data & SOTA reaction directionality) has been implicated previously in 
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streptomycin induced decreased cell viability (Iscla et al., 2014). ATP generation is 

almost three fold lower through the ETC-PMF route similar to that of WT. These results 

are validated by the metabolite profiling data. 

 The increased flux towards tetrahydrofolate synthesis with co-synthesis of formate 

(FTHFD) is potentially rechanneled through the folate pathway instead of formate 

secretion. The flux through these reactions and pathways are correlated with downstream 

urea cycle and cyano-amino metabolism indicating potential cyanide based respiration 

inhibition. Other metabolic processes related to electron transport chain are functional but 

decreased in the presence of streptomycin. The PMF in this scenario is 3-fold lower than 

in the absence of antibiotic. 

Around 5% (68) of the total reactions including 11 redox coupled reactions spanning 

16 different subsystems showed differential flux distribution for the antibiotic presence. 

These 11 redox coupled reactions (involving NADH/NADPH) show that there is 

increased accumulation of NADH in the presence of streptomycin as compared to 

chloramphenicol that was confirmed by experimental quantitation of NAD/NADH levels 

(Banerjee et al., 2017). This could potentially lead to pseudo-hypoxia even in the 

presence of normal oxygen levels. These changes observed in silico as well as in vitro, 

confirms modulation of flux involving NADH. The PMF is a third of that observed in the 

wild type (Figure 3.27, Chapter 3) and correlates well to the 3 fold decrease in unique 

flux held by the cytochrome oxidase bo3 reaction. 

Table 5.14: FVA analysis results to show the effect of chloramphenicol on WT 

Subsystem Reaction ID Reaction Formula WT WT+chl 

Glycolysis PYK adp_c + pep_c  -> atp_c + pyr_c 0.0005 0.76 

TCA Cycle FRD7 
succ_c + q8_c  <=> fum_c + 

q8h2_c 
5.13 

-0.00039 

to 

0.00019 

Oxidative 

phosphorylation 

cytochrome oxidase 

bo3 ubiquinol-8  

2.5 h_c + 0.5 o2_c + q8h2_c  -> 

h2o_c + 2.5 h_e + q8_c 
31.22 2.61 

Pyruvate 

metabolism 

PFL 
accoa_c + for_c  <=> coa_c + 

pyr_c 

-10.84 

to 0.23 
-0.45 

PTAr 
h_c + accoa_c + pi_c  -> actp_c + 

coa_c 
0.0001 1.53 

ACKr 
actp_c + adp_c  -> h_c + atp_c + 

ac_c 
0.0001 1.53 

 

EX_for for_e  <=> 0.0001 0.45 

EX_ac ac_e  <=> 0.0001 1.53 

a 

b 
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Table 5.15: FVA analysis results to show the effect of streptomycin on WT 

Subsystem Reaction ID Reaction Formula WT WT+strep 

TCA Cycle 

AKGDH 
coa_c + nad_c + akg_c  -> co2_c + 

nadh_c + succoa_c  
0.05 1.10 

FUM mal__L_c  <=> fum_c + h2o_c  -5.31 -3.14 

MDH 
nad_c + mal__L_c  <=> h_c + nadh_c + 

oaa_c  
5.72 2.04 

Oxidative 

phosphorylation 

cytochrome oxidase 

bo3 ubiquinol-8 

2.5 h_c + 0.5 o2_c + q8h2_c  -> h2o_c + 

2.5 h_e + q8_c  
31.22 10.03 

Pyruvate metabolism 

PFL accoa_c + for_c  <=> coa_c + pyr_c  
 -10.84 

to 0.23 

 -1.88 to 

1.1 

PPS 
atp_c + h2o_c + pyr_c  -> h_c + pi_c + 

pep_c + amp_c  
0.0002 0.15 

Purine metabolism 
ATP carbamate 

phosphotransferase 

atp_c + co2_c + nh4_c  <=> h_c + adp_c 

+ cbp_c  
0.17 1.10 

Folate biosynthesis 
MTHFD 

nadp_c + mlthf_c  <=> nadph_c + 

methf_c  
0.41 1.10 

FTHFD h2o_c + 10fthf_c  -> h_c + for_c + thf_c  0.22 1.10 

Glutamate metabolism ASPTA asp__L_c + akg_c  <=> oaa_c + glu__L_c  -0.63 -1.10 

Glycine, Serine and 

Threonine metabolism 

PSERT 
akg_c + pser__L_c  <=> glu__L_c + 

3php_c  
-3.54 -1.10 

GHMT 
gly_c + h2o_c + mlthf_c  <=> ser__L_c + 

thf_c  
-0.46 -1.10 

Arginine and proline 

metabolism 

PRO1x 
h_c + nadh_c + 1pyr5c_c  -> nad_c + 

pro__L_c  
0.35 0.002 

SOTA 
akg_c + sucorn_c  <=> sucgsa_c + 

glu__L_c  
4e-5 1.10 

SGSAD 
h2o_c + nad_c + sucgsa_c  -> 2 h_c + 

nadh_c + sucglu_c  
4e-5 1.10 

SGDS 
h2o_c + sucglu_c  <=> succ_c + 

glu__L_c  
4e-5 1.10 

AST 
arg__L_c + succoa_c  -> h_c + coa_c + 

sucarg_c  
4e-5 1.10 

Urea cycle and 

metabolism of amino 

groups 

ARGSL argsuc_c  -> fum_c + arg__L_c  0.07 1.10 

ARGSS_1 
atp_c + asp__L_c + citr__L_c  -> ppi_c + 

argsuc_c + amp_c  
0.07 1.10 

AGGPR 
nadph_c + acg5p_c  -> pi_c + nadp_c + 

acg5sa_c  
0.08 1.10 

OCBT 
cbp_c + orn_c  -> 2 h_c + pi_c + 

citr__L_c  
0.07 1.10 

ORNTAC glu__L_c + acorn_c  <=> orn_c + acglu_c  0.08 1.10 

ACGK 
h_c + atp_c + acglu_c  -> adp_c + 

acg5p_c  
0.08 1.10 

ACOTA glu__L_c + acg5sa_c  -> akg_c + acorn_c  0.08 1.10 

Cyanoamino Metabolism 

glycine:acceptor 

oxidoreductase 

gly_c + 2 nadph_c  -> co2_c + 2 nadp_c + 

hcn_c  
0.28 1.10 

cyn_rxn6 hcn_c  -> acybut_c  0.28 1.10 

  NH4+ Exchange nh4_e  <=>  -6.28 1.09 
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5.3.7.2. Compensatory metabolic reprogramming as a survival strategy in resistant 

population: Rebalance Redox cofactors 

The metabolic reprogramming associated with the impact of antibiotic selection 

pressures was analyzed by FVA using customized models to represent WT, ChlR and 

StrpR (Table 5.16 and 5.17). In case of ChlR, the three unique reactions that change 

direction were PFL, FRD7 and ICL. PFL, responsible for converting pyruvate and CoA to 

formate and AcCoA, had the ability to work reversibly in WT but resolves to 

unidirectional flux in ChlR model shifting the equilibrium towards accumulation of 

formate and offset overflow metabolism. ICL, the bifurcation point in TCA that results in 

flux through the glyoxylate shunt is non-functional. The TCA cycle is completely 

functional in ChlR with increased flux through regulatory control node ICDH, resulting in 

increased flux through SUCOAS increasing SuccoA and ADP and reduced succinate 

accumulation as reported earlier in LCMS data (Banerjee et al., 2017). Thus, the flux 

through oxidative phosphorylation related cytochrome oxidase is reduced by 50%. This 

could potentially contribute to the reduction of membrane potential by half (Chapter 3 

Figure 3.27) as captured by FACS analysis using the Baclight Kit. Lowering flux through 

MDH may redirect partly the flux to the malate pyruvate shuttle increasing the flux 

through acetate producing ACK and PTA reactions. 

The iron related oxygen oxidoreductase reprogrammed to increase Fe
+2

 indicates 

higher use of the Fe
+2

 ion for pyruvate metabolism. Iron homeostasis or metabolism has 

been recently implicated as one of the mechanisms that play a critical role in the 

antibiotic mediated cell death as well as evolution of de novo antibiotic resistance (Yeom 

et al., 2010; Martínez and Rojo, 2011; Méhi et al., 2014). In our analysis we observed 

FeII oxygen oxidoreductase had a very low flux and in the opposite direction in both the 

resistant population when compared to WT. Fenton reaction will not be favored due to 

such shift in equilibrium towards Fe
2+

 and prevent further DNA damage and sequence 

changes. 

StrpR had a uniquely determined flux though NADH producing reaction 

Acetaldehyde dehydrogenase (ACALD) as well as acetate metabolism (ACKA, PTAr). 

StrpR also shows accumulation of L-malate, succinate and small amounts of pyruvate. In 

the StrpR population in silico, the glyoxylate shunt (ICL, MALS) is potentially 

functional, albeit at a 10 fold lower rate as compared to WT. The upper half of the TCA is 

functional and the flux through the control node AKGDH is higher. Taken together this 
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indicates high levels of succinate as compared to wildtype as observed in previous LCMS 

data.  

Differences in unique forced fixed rates in resistant and susceptible populations 

indicate compensatory metabolic reprogramming as a response to antibiotic perturbation 

at genome scale. Both the resistant populations resort on overflow metabolism towards 

acetate. ICL, the glyoxylate shunt enzyme implicated in pathogenesis and persistence in 

Salmonella and resistance in Mycobacterium (Dunn et al., 2009) shunts isocitrate by 

bypassing part of the TCA cycle. The glyoxylate shunt functions in case of StrpR but 

TCA continues through oxidative branch in case of ChlR. In case of StrpR higher flux 

through pyrimidine metabolism is represented by cytidylate kinase (CYTK1) that 

correlated well with previously published LCMS data showing higher average relative 

abundance of cytosine and adenosine in StrpR (Banerjee et al., 2017). 

Since the flux through the cytochrome oxidase does not completely account for the 

increase in membrane potential, acetate metabolism may also contribute to the PMF in the 

StrpR population. 

The lowered oxygen uptake rates and the increased flux towards NADH, represents a 

state of pseudohypoxia. In vitro phosphorylation of enzymes consuming PYR and ACE 

(PDH) is regulated by the NAD+/NADH ratio. Lower NAD+/NADH ratios increase PDH 

phosphorylation. In the presence of chloramphenicol, when the ChlR population was 

growing on glucose the resistant population maintained the NAD/NADH ratio at 0.28 

while in the presence of streptomycin, the StrpR population maintained the NAD/NADH 

ratio at 2.47. This validates the prediction of increased overflow metabolism related to 

combined yields of acetate and formate in ChlR. Potentially, the PDH must be completely 

dephosphorylated in the ChlR as compared to StrpR to evoke such a response. The 

NAD/NADH ratios in the wildtype were around 0.25 for glucose and pyruvate, while it 

was 0.73 for succinate and oxoadipate. The ChlR strain shows major 7 fold reduction 

indicating high levels of NAD recycling provided by pyruvate. The fact that StrpR also 

has a similar NAD/NADH ratio as wildtype indicates, that some other factor coming into 

play apart from redox transfer of electrons. Concurrently, PMF/membrane potential are 

higher for the resistant populations in pyruvate as compared to the wildtype. This 

suggests potential incapability to maintain ATP homeostasis under these conditions and 

an eventually complete decoupling of electron transfer and ATP synthesis. Similar results 

were observed for succinate, maleate and 2-oxoadipate. 
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Table 5.16: FVA analysis results to show compensation in case of ChlR 

Subsystem Reaction ID Reaction Formula WT ChlR 

Glycolysis PYK adp_c + pep_c  -> atp_c + pyr_c 0.001 1.44 

TCA 

SUCOAS 
atp_c + coa_c + succ_c  -> adp_c + 

pi_c + succoa_c 
4e-5 0.07 

MDH 
nad_c + mal__L_c  <=> h_c + 

nadh_c + oaa_c 
5.72 0.22 

ICDHyrb 
nadp_c + icit_c  <=> h_c + 

mDB_oxasucc_c + nadph_c 
0.00005 0.0038 

Oxidative 

phosphorylation 

cytochrome 

oxidase bo3 

2.5 h_c + 0.5 o2_c + q8h2_c  -> 

h2o_c + 2.5 h_e + q8_c 
31.22 14.42 

Pyruvate 

metabolism 

PTAr 
h_c + accoa_c + pi_c  -> actp_c + 

coa_c 
0.0001 11.78 

ACKr 
actp_c + adp_c  -> h_c + atp_c + 

ac_c 
0.0001 11.78 

PFL accoa_c + for_c  <=> coa_c + pyr_c -10.84 to 0.23 -9.58 

PPC 
co2_c + h2o_c + pep_c  -> 2 h_c + 

pi_c + oaa_c 
0.0001 0.60 

Glyoxylate and 

dicarboxylate 

metabolism 

ICL icit_c  <=> succ_c + glx_c 5.09 -0.004 

Purine metabolism ADK2 
h_c + amp_c + pppi_c  -> ppi_c + 

adp_c 
0.0007 0.001 

Pyrimidine 

metabolism 
CYTK1 atp_c + cmp_c  -> adp_c + cdp_c 0.06 0.08 

Porphyrin and 

chlorophyll 

metabolism 

FeII oxygen 

oxidoreductase 

4 h_c + o2_c + 4 fe2_c  <=> 2 

h2o_c + 4 fe3_c 
0.00005 -0.0007 

Extracellular 

Transport 

EX_ac_e ac_e  <=> 0.0001 11.82 

EX_for_e for_e  <=> 0.0001 9.80 

 

Table 5.17: FVA analysis results to show compensation in case of StrpR 

Subsystem Reaction ID Reaction Formula WT StrpR 

Glycolysis/Gluconeogene

sis 
PYK adp_c + pep_c  -> atp_c + pyr_c 0.001 1.61 

TCA Cycle 

AKGDH 
coa_c + nad_c + akg_c  -> co2_c + 

nadh_c + succoa_c 
0.05 0.14 

MDH 
nad_c + mal__L_c  <=> h_c + 

nadh_c + oaa_c 
5.72 1.58 

Oxidative 

phosphorylation 

cytochrome oxidase 

bo3 ubiquinol-8 

2.5 h_c + 0.5 o2_c + q8h2_c  -> 

h2o_c + 2.5 h_e + q8_c 
31.22 28.42 

Pyruvate metabolism 

PTAr 
h_c + accoa_c + pi_c  -> actp_c + 

coa_c 
0.0001 11.76 

ACKr 
actp_c + adp_c  -> h_c + atp_c + 

ac_c 
0.0001 11.76 

ACALD 
acald_c + coa_c + nad_c  <=> h_c + 

accoa_c + nadh_c 
0.0007 0.002 

PFL accoa_c + for_c  <=> coa_c + pyr_c 
-10.84 

to 0.23 

-14.53 

to 0.59 

MALS accoa_c + h2o_c + glx_c  -> h_c + 5.10 0.51 

b 
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coa_c + mal__L_c 

ME2 
nadp_c + mal__L_c  -> co2_c + 

nadph_c + pyr_c 
4.69 0.00004 

PPC 
co2_c + h2o_c + pep_c  -> 2 h_c + 

pi_c + oaa_c 
0.0001 0.54 

Glyoxylate and 

dicarboxylate metabolism 
ICL icit_c  <=> succ_c + glx_c 5.09 0.50 

Pyrimidine metabolism CYTK1 atp_c + cmp_c  -> adp_c + cdp_c 0.06 0.16 

Porphyrin and chlorophyll 

metabolism 

FeII oxygen 

oxidoreductase 

4 h_c + o2_c + 4 fe2_c  <=> 2 

h2o_c + 4 fe3_c 
0.00005 -0.001 

Extracellular Transport EX_ac_e ac_e  <=> 0.0001 11.85 

 

5.3.8. Redox homeostasis critical for survival against antibiotics: NADH oxidase 

 Since the ETC performs two coupled functions (i) Redox transfer of electrons from 

NADH to molecular oxygen and (ii) conversion of the free energy of the electromotive 

force into a proton gradient. Involvement of the ETC as discussed in the previous sections 

could mean (i) an excess of reducing equivalents (termed reductive stress or 

pseudohypoxia, which includes stalling of NAD+-coupled reactions) or (ii) a reduced 

proton gradient (impairing pH and voltage- coupled processes, including ATP synthesis 

by the F1Fo-ATP synthase). Hence there is a need for dissecting the redox function of the 

ETC from its proton pumping function. If ETC is dysfunctional, glycolysis is capable of 

compensating for the lack of ATP production, but it is net redox-neutral. NAD+ recycling 

is key for cell growth, because many biosynthetic pathways produce NADH as a by-

product. 

 NADH oxidase or NOX has been reported to have a potential as a valuable tool for 

investigating redox metabolism (Vemuri et al., 2006, 2007) and may allow for decoupling 

the role of redox imbalance and ATP synthesis deficiency in antibiotic resistance (Titov 

et al., 2016). An in silico tool  (H2O producing NADH Oxidase) as previously discussed 

(Banerjee et al., 2017) was used to manipulate the NAD/NADH ratio in WT, ChlR and 

StrpR. Since converting NADH to NAD+, NOX also consumes protons and oxygen, 

Oxygen consumption (OUR) must increase in the presence of this oxidase. The flux 

through NOX indicates excess 13.2 and 10.31 mmol NADH per gDCW of biomass 

required to be recycled for redox balance in case of ChlR and StrpR respectively (Table 

5.18). More flux through NOX for ChlR correlates to presence of more NADH for no 

change in growth rate coupled with no significant effect on the uptake of glucose. OUR in 

ChlR and StrpR strains increased by 170% and 86% respectively. In the absence of NOX, 

the reduced apparent OUR tend to indicate pseudo-hypoxia as reported in some systems 
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(Gomes et al., 2013). Also it was observed that even though the ATPM for StrpR is quite 

similar to that of WT (6.77 compared to 6.96) it requires a significant amount of flux 

(10.31) through NOX in order to mimic experimental growth condition in StrpR at 

optimal oxygen. This suggests decoupled redox homeostasis and PMF, in case of StrpR. 

 To further investigate decoupled redox balance and ATP synthesis at genome scale 

level we looked at FVA in the three populations (WT, ChlR and StrpR) in presence of 

NOX. The results provided an insight into the NAD+ recycling associated metabolic 

reprogramming in the resistant populations.  

 Based on the feasible flux distributions, the resistant populations behaved very similar 

to the wild type. Redox coupled reactions MDH and ME2 along with PPC, OAADC 

reactions that result in accumulation of OAA (Table 5.19, yellow) changed category in 

ChlR and StrpR towards NAD recycling through NOX addition similar to the surviving 

WT. Reactions (Table 5.19, bright red) that were unique to ChlR approached similar flux 

distribution similar to WT in the presence of NOX indicating once again a redox cycling 

as a mechanism for growth. This represents the reprogramming of metabolism in resistant 

populations to survive in the presence of antibiotic and grow like WT in the absence of 

the antibiotic. 

 Overflow metabolism was indicated yet again by PFL, formate transport and 

exchange, the glyoxylate shunt enzyme ICL, L-malate accumulating MALS, SucCoA 

accumulation through SUCOAS, accumulation of citrate through CS, oxidative 

phosphorylation by FRD7, and redox coupled AKGDH. In case of StrpR the introduction 

of NOX helps the model revert back to WT-like phenotype but for ChlR the ATPM as 

well as NOX play an important role. This again confirms our hypothesis of decoupled 

ETC and ATP synthesis in case of StrpR and not in ChlR scenario. No succinate 

accumulation in ChlR as compared to very high levels in StrpR contributed by a 

functional glyoxylate shunt. So there is an implicit requirement of pyruvate (also seen 

through directionality of PYK in both resistant populations) through acetate formate 

fermentation to promote cell growth by recycling NAD+ from NADH. 

 Taken together, we show that attributing the cell maintenance costs to consumption of 

both ATP (ATPM) and reducing equivalents (NOX) has a substantial effect on the 

predicted flux distributions and allows one to account for experimentally determined 

fluxes for evolved antibiotic resistant populations. NAD recycling may thus be the key for 

increased cell growth in the resistant populations, because many of the biosynthetic 
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pathways utilized may produce NADH as a byproduct. ATP hydrolysis contributes to 

optimizing membrane potentials. These in silico constructs thus allow for dissection of 

the relative contributions of redox imbalance and ATP insufficiency to antibiotic 

resistance pointing towards reductive stress or pseudo- hypoxia and disruption of ATP 

homeostasis to kill them. 

Table 5.18: Constrains used for NADH oxidase simulations for ChlR and StrpR 

 

Model 
Glucose 

uptake rate 

Violacein 

secretion rate 
ATPM 

Biomass Oxygen 

uptake rate 
NOX 

(in-silico) (in-vitro) 

ChlR 10.53 0.673 10.67 
0.68 0.33 9.91 0 

0.68 0.33 26.53 13.2 

StrpR 12.78 0.702 6.77 
0.92 0.64 17.03 0 

0.92 0.64 31.7 10.31 

 

Table 5.19: Selected reactions from Flux variability analysis post NADH oxidase 

addition to ChlR and StrpR models of C. violaceum 

Subsystem Reaction ID WT ChlR
#
 StrpR

#
 ChlR

@
 StrpR

@
 

ChlR

Nox
#
 

StrpR

Nox
#
 

ChlR 

Nox
@

 

StrpR

Nox
@

 

TCA Cycle 

MDH 2 1 1 2 1 2 2 2 2 

CS 1 7d 1 7d 1 1 1 1 1 

SUCOAS 7d 1 7d 1 7d 7d 7d 7d 7d 

FRD7 2 8 2 8 2 2 2 2 2 

AKGDH 3 7d 3 7d 3 3 3 3 3 

Pyruvate 

metabolism 

ME2 3 7d 7d 7d 7d 3 3 3 3 

PPC 7d 1 1 2 1 7d 7d 7d 7d 

OAADC 3 7d 7d 7d 7d 3 3 3 3 

PFL 8 5 8 5 8 8 8 8 8 

MALS 1 7d 1 7d 1 1 1 1 1 

Glyoxylate & 

dicarboxylate 

metabolism 

ICL 1 4 1 4 1 1 1 1 1 

Glutathione 

metabolism 

AMPTASECG 7b 5 4 7b 4 4 4 7b 4 

glutathione 

hydralase 
7b 5 4 7b 4 4 4 7b 4 

Extracellular 

Transport 
Ex_for_e 7d 1 7d 2 7d 7d 7d 7d 7d 

# – using their respective ATPM values, @ – using the WT model ATPM. Yellow or red 

colors in the Reaction ID column signify common to ChlR and StrpR or unique to ChlR 

model respectively. Pale red indicates reactions when WT ATPM is used for ChlR model. 
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5.3.9. Gene Essentiality and Synthetic lethality 

Single and double gene deletion analyses were performed to understand the effects of 

gene deletion or enzymopathies on the metabolic network of C. violaceum using the 

genome scale model iDB858 and classified into virulent, avirulent and attenuated genes 

depending on the essentiality towards growth of C. violaceum (Table 5.20). 191 virulent 

genes were minimally required for survival of in silico C. violaceum in glucose medium 

under aerobic condition that included pabC. A total of 644 genes were found to be 

avirulent and 23 attenuated genes that resulted in 36% to 98% reduction in growth. Gene 

essentiality for biomass precursors was also analyzed as shown in Figure 5.11a. 

We identified conditional essential genes for C. violaceum in glucose and five other 

C-source metabolites (pyruvate, succinate, maleate, D-malate and 2-oxoadipate, Table 

5.21). These metabolites also showed re-sensitization of the resistant population ChlR and 

StrpR to the respective antibiotic. A total of 191 genes were found to be essential for 

glucose as well as the other 5 substrates that belonged to different subsystems (Figure 

5.10). Nine genes, essential for growth, were condition independent and were identified 

during growth on the five substrates (Table 5.21, Figure 5.11b). These included five 

genes from the glycolytic pathway and gene that supports anaplerotic replenishment of 

pyruvate. There were 3 additional genes essential for growth on 2-oxoadipate that 

belonged to TCA, tryptophan metabolism and valine, leucine and isoleucine degradation 

subsystem. 

Table 5.20: Single gene deletion analysis for glucose under aerobic condition 

 

 

 

 

 

 

 

 

 

Category GR Ratio Genes 

Attenuated 0.36 to 0.98 23 

Virulent genes 0 191 

Avirulent genes 0.99 to 1 644 

Figure 5.10: Subsystems wise classification of 

essential genes common to all the substrates 
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Figure 5.11: Single Gene deletion (SGD) 

analysis. a) Heat map for single gene deletion 

analysis for biomass precursors. b) Cluster 

heat map of conditionally essential genes for 5 

candidate metabolites along with glucose.  

Double gene deletion (DGD) analysis (Figure 5.12) led to identification of 186 genes 

in 518 combinations resulting in synthetic lethal (SL) and sick (SS) interactions (Table 

5.22). CV_0939, tpiA had the highest interaction/connectivity. The analysis of the 

synthetic lethal and sick interactions predicted in silico showed that 101 genes involved 

only in synthetic lethal pairs belonged majorly to porphyrin metabolism, phenylalanine, 

tyrosine and tryptophan biosynthesis and purine metabolism. 39 genes involved uniquely 

in synthetic sick interactions belonged majorly to oxidative phosphorylation and TCA.  

Two of the SL pairs involved genes CV_1071, sucA, 2-oxoglutarate dehydrogenase E1 

component with CV_1075 or CV_1076 that are involved in SUCOAS reaction of TCA. 

CV_1071 is involved in utilization of 2oxoadipate (2oxoADP) and involves 

NAD/NADH. This may explain 2oxoADP as a candidate metabolite for re-sensitization 

of ChlR and StrpR. This analysis would help in predicting drug targets that would 

otherwise be extremely challenging to test experimentally (possible pairs based on 858 

genes - 7,36,164). 
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Figure 5.12: Heat map showing double gene 

deletion analysis on glucose under aerobic 

condition. 

 

 

Table 5.21: Selected genes from single gene deletion analysis for six metabolites 

including glucose and candidate metabolites that re-sensitize ChlR and StrpR 

Gene 

Deleted 

Growth Rate Ratio (KO/WT) 
Reaction ID Subsystem 

Glc Pyr Succ D-mal 2oxoADP Male 

CV_0187 0.94 0 0 0 0 0 FBA 

Glycolysis 

CV_0189 0.82 0 0 0 0 0 PGK 

CV_2427 1 0 0 0 0 0 FBP 

CV_3459 0.90 0 0 0 0 0 ENO 

CV_0939 0.94 0 0 0 0 0 TPI 

CV_3709 1 0 0 0 0 0 PPS 
Pyruvate 

metabolism 

CV_1071 0.99 0.99 0.99 0.99 0 0.99 rxn00441 TCA Cycle 

CV_3918 1 1 1 1 0 1 GLUTCOADH 
Tryptophan 

metabolism 

CV_2720 0.99 0.99 0.99 0.99 0 0.99 HACD9 
Val, Leu and Ile 

degradation 

 

 

 

 

 

 

 

 

Table 5.22: Double gene deletion analysis for glucose under aerobic condition 

Synthetic Lethal Pairs 101 

SL genes 79 

Synthetic Sick Pairs 158 

SS Genes 57 

Highest connectivity 6, 15 

Lowest connectivity 1 
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Figure 5.13: Double Gene deletion (DGD) analysis. a) Pie charts showing subsystem 

classification of unique genes involved in Synthetic Lethal (a) and Synthetic Sick pairs c) 

Synthetic lethal interactions for genes with 2 or more connectivity wherein dots represent 

the genes. 

 

 

 

 

 

 

 

 

 

 

 

 

5.5. Conclusion 

A whole genome-scale metabolic model of Chromobacterium violaceum, iDB858 was 

generated that predicted growth potential accurately (86% prediction accuracy) using a 

combination of in-house growth phenotyping and BIOLOG legacy data for validation. 

c 
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Experimental growth yields were predicted accurately on glucose. Similar to a small 

model representing central metabolism (Chapter 4), FVA shed light on importance of 

redox balance. The impact of chloramphenicol on growth of WT highlights overflow 

metabolism whereas streptomycin results in some overflow in addition to ammonia, 

cyanide and glutamate production. There was increased accumulation of NADH in 

presence of streptomycin compared to that in presence of chloramphenicol that matched 

our experimental data discussed in Chapter 3, Section 3.3.3.6. In case of the resistant 

population ChlR and StrpR, both resort on overflow metabolism along with accumulation 

of malate, succinate and pyruvate in case of StrpR. The carbon flux through TCA is 

diverted through the glyoxylate shunt in case of StrpR but continues to oxidative branch 

in ChlR. Several redox coupled reaction carried unique values of flux pointing towards 

the critical role the redox homeostasis plays in maintaining viability and cellular function 

in the resistant population. The flux distributions in the presence of NOX in silico show 

that NAD+ recycling may be the key for the survival of ChlR and StrpR.  

Integration of heterogeneous data into such models would allow one to predict 

physiology. Thus, constraints-based flux balance analysis of genome-scale models can be 

used to understand emergent phenomena like antibiotic resistance. 
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Chapter 6 

Antibiotic Resistance – A Public 

Health Perspective 

 

“Health care is vital to all of us some of the time, but public health is vital to all of us all 

of the time” 

- C. Everett Koop 

 

“The major reason we are seeing antibiotic resistance is overuse of antibiotics in the 

population for illnesses that don’t require antibiotics” 

-Bob Harrison 

 

"To live, to err, to fall, to triumph, to recreate life out of life." 

 - James Joyce; 

 

 

6.1. Introduction 

Antimicrobial resistance is a global multifaceted phenomenon that necessitates 

stewardship and surveillance to control its spread even after emergence. It is one of the 

principal public health problems of the 21st century that threatens the effective 

prevention and treatment of an ever-increasing range of infections. 
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Figure 6.1: Interventions needed against antibiotic resistance, a multifactorial problem, in 

India. They not only include government enactment but also active participation of 

healthcare practitioners and general public. 

 

The antibiotic era has been remarkably short and the miracle of these drugs is slipping 

away. Life without antibiotics is unimaginable in a world that has had cheap and plentiful 

supply since World War II.  Antibiotics are societal drugs (Sarkar and Gould, 2006) and 

are used not only treat primary infections but are also a staple in modern medicine. 

Antimicrobial resistance is a threat that ranks along with climate change and terrorism 

(Laxminarayan et al., 2013). Antibiotic resistance occurs when an antibiotic has lost its 

ability to control bacterial growth effectively even in therapeutic concentrations. This 

phenomenon can turn back the clock on decades of progress into modern medicine and 

return us to a pre-antibiotic era. The WHO currently projects 700 deaths per day and 

predicts that by 2050, ten million deaths will be attributed to antimicrobial resistance 

alone, a number far greater than that for cancer (O’Neill, 2014). The portfolio 

management decisions of major pharmaceutical companies have also led to drying up of 

the antibiotic discovery pipeline (Butler et al., 2017) a catastrophe of huge proportions. 

The World Health Assembly adopted a global action plan in 2015 on antimicrobial 

resistance that outlines five main objectives (http://www.who.int/antimicrobial-

resistance/global-action-plan/en/). The scope of the threat necessitates action and 

solutions to be implemented at several levels of society. 
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Figure 6.2: Causes of antibiotic resistance, a multifactorial problem, in India. This 

chapter focusses primarily on the ones encircled in red 

 

Antimicrobial resistance is thus a multifactorial problem (Figure 6.2) and the social 

context in India plays a major role. Ranking high is the lack of regulation and policy with 

respect to the prescription, over-the counter (OTC) sales(Morgan et al., 2011; Reardon, 

2014) and environmental disposal (Diwan et al., 2009; Fick et al., 2009; Gothwal and 

Shashidhar, 2015) of antibiotics. The situation is exacerbated by the uncontrolled use in 

livestock and animal products (Van Boeckel et al., 2015), poor health systems and lack of 

containment of infections (John et al., 2011; Kumar et al., 2013). Basic hygiene is also 

compromised by open defecation and lack of sustainable sanitation (Dasgupta et al., 

2015). There seems to be an  irrational antibiotic use in the country (Laxminarayan and 

Chaudhury, 2016), and a lack of any AMR surveillance (Reardon, 2014; WHO, 2014) at 

the local or national level. This can lead to prolonged sickness, extended treatment and 

unaffordable health care, among other problems.  

Since 2011, major interventions have been put into action by the government at the 

community level to tackle the problem of antibiotic resistance. The Jaipur Declaration, 

(http://www.searo.who.int/entity/world_health_day/media/2011/whd-

11_amr_jaipur_declaration_.pdf, 2011) signed in September 2011 followed by the 

Chennai Declaration (Ghafur et al., 2012) in August 2012, implement  policies regulating 
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antibiotic use in India (Table 6.1). Before 2012, there was also no functioning national 

antibiotic policy to restrict OTC dispensing of antibiotics without prescription. March 

2014 witnessed the adoption at the federal level of Schedule H1 in the Drugs and 

Cosmetics Act, which restricts the sale of 46 OTC drugs, including antibiotics and anti-

TB drugs (Hazra, 2014). Among other actions taken by the government, “Medicines with 

the Red Line” media campaign was launched during the 3 day international conference on 

antimicrobial resistance in February 2016 (Travasso, 2016). Recently the first version of 

guidelines for standardized national treatmentwas issued by the National Centre for 

Disease Control, Government of India for the practitioners for rationalised use of 

currently available antibiotics and the effective management of patients for common 

infectious diseases (Dutta, 2017; National Treatment Guidelines for Antimicrobial use in 

Infectious Diseases, 2016). On the contrary, regulation of antibiotic residues in animal 

food produce remains in a grey area with standards existing for seafood and honey but not 

for poultry (Laxminarayan and Chaudhury, 2016). 

There are many hurdles to overcome antimicrobial resistance. Firstly, India remains 

the world’s largest consumer of antibiotics amongst BRICS countries (Van Boeckel et al., 

2014) (Brazil, Russia, India, China, and South Africa) with per capita usage increasing by 

37% in the last decade (Ganguly et al., 2011; Laxminarayan and Chaudhury, 2016) 

(Figure 6.3). The need exists to impose a delicate balance in increasing access for 

appropriate indications and decreasing the excessive inappropriate use of antibiotics for 

coughs, colds, and diarrhoea (Chatterjee et al., 2015). Thus, amongst the many hurdles to 

overcome AMR, poor national surveillance (WHO, 2014) and a general lack of 

knowledge regarding rational use of antibiotics rank the highest in the Indian 

subcontinent. 
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Table 6.1: National Policies and Campaigns against Antibiotic misuse and Resistance 

 Date Features 

Jaipur Declaration on 

Antimicrobial Resistance 
6 September 2011 

Health ministers of WHO’s South-East Asia urged to governments to 

develop national antibiotic policies and enforce regulations on the use 

of antimicrobial agents. 

Chennai Declaration 
August 2012 

 

Indian Medical Societies including government policymakers, MCI, 

ICMR, the Drug Controller General of India, and WHO discussed a 

five year roadmap of actions critical to containing resistance 

domestically and to forge consensus around the necessary steps 

(Ghafur et al., 2012). 

March 2014 saw adoption at the federal level of the Schedule H1 to 

the Drugs and Cosmetics Act, which restricts the sale of 46 over-the-

counter drugs including antibiotics. 

“Medicines with the Red 

Line” public awareness 

campaign 

February 2016 

Indian Health Minister launched the campaign on identifying 

prescription drugs, now being marked with a red line and curb self- 

medication. 

National Treatment 

Guidelines for Common 

Infectious Diseases, 1.0 

Version 

19 February 2016 

National Centre for Disease Control under Ministry of Health and 

Family Affair, Government of India has published the 1
st
 version of 

national treatment guidelines to enhance appropriate usage of 

antimicrobials for common infectious diseases. 

 

Figure 6.3: Trends in antibiotic consumption in India, 2000 – 2010. Source: CDDEP. 

ResistanceMap Washington DC: Center for Disease Dynamics, Economics & Policy; 2015 

[August 20, 2015]. http://www.resistancemap.org. 

 

 

http://www.resistancemap.org/
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The Knowledge, Attitude and Practice (KAP) survey tools were developed in the 

1950s in the fields of family planning and population studies in third world countries 

(Vandamme, 2009). In the last five years, three studies that focused on the general 

population showed varied levels (13% (Kumar et al., 2015) to 100% (Ahmad et al., 

2015)) of self-medication of which 32% were antimicrobials (Keshari et al., 2014).  

Antibiotic re-use and shared prescriptions were also high (ca. 30%) and more than half 

the cohort stopped taking the medicine once the symptoms subsided (Aishwaryalakshmi 

et al., 2012). The urban population was more aware (Ahmad et al., 2015) of the rational 

use of medicines, expiry dates and disposal mechanisms as opposed to rural populations 

(Shah et al., 2011). Most of the ignorance in the latter demographic was propagated due 

to lack of information and knowledge and non-availability of health care facilities (Phalke 

et al., 2006) rather than financial costs. Antibiotics (amoxiciliin and co-amoxiclav, 

roxithromycin, azithromycin, ciprofloxacin, cefixime and levofloxacin) (Bhanwra, 2013; 

Chinnasami et al., 2016; Keshari et al., 2014; Parakh et al., 2013; Savkar et al., 2015) and 

paracetamol (Kasabe et al., 2015; Keshari et al., 2014) were commonly bought over the 

counter from chemists to get relief from fever, cold and cough. Only 20% of the pregnant 

women attending village clinics (Adhikari et al., 2013) used prescriptions to buy 

antibiotics. Only 20-30% of the population cohorts (Chinnasami et al., 2016) on an 

average  were aware of the use of antibiotics in bacterial versus viral infections. A higher 

grade of education was correlated with high KAP score as 90% of postgraduates, 84.1% 

of graduates and only 67% of high school matriculates had the highest KAP score 

(Agarwal et al., 2015). 

India, with a population of more than 1.34 billion (as of July 2017) marked by cultural 

diversity, and emerging from varied socio-economic backgrounds, requires assessments 

across different strata of the community. In this study we use a KAP survey as a tool for 

the educational diagnosis of antibiotic use and misuse within a select cohort of the Indian 

population to evaluate the public health issue of AMR. 

 

6.2. Materials and methods 

6.2.1. Study Design and Population  

This study was a 7-week cross-sectional questionnaire based survey conducted in 

June - July 2016 as part of a CSIR 800 project. 504 respondents belonging to different 

demographic strata of Indian society were targeted that included but were not restricted to 

CSIR - NCL students, scientists, and other staff, chemists and businessmen. Individuals 
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less than 18 years and above 75 years of age were excluded along with those individuals 

who did not give verbal consent. Individuals who were unable to answer the questions 

due to some barriers were excluded along with pregnant women. 

 

6.2.2. Study Questionnaire 

A semi-structured questionnaire was developed following WHO guidelines (Wood 

and Tsu, 2008) on KAP survey focusing on antibiotic use and misuse. The questionnaire 

was modified to accommodate the current policies and campaigns started by the Indian 

government (Ghafur et al., 2012; Hazra, 2014; Travasso, 2016) and in order to suit the 

target population. The annual income stratification was done with the updated 

Kuppuswamy′s socio-economic status scale (Oberoi, 2015). Stratification based on 

literacy included illiterates (no education at all), less than primary education (less than 8
th

 

class education), primary to secondary education (8
th

 to 12
th

 class education), 

undergraduates, graduates and postgraduates. The questionnaire included a total of 35 

questions, 26 close-ended questions pertaining to the responders’ knowledge, attitude and 

practices regarding the antibiotic use and self-medication. The knowledge section 

consisted of 14 questions followed by 5 questions pertaining to Attitude and finally 7 

questions in the Practice section. Nine open–ended questions relating to the demographic 

details of the participants were also included. The questionnaire covered the following 

aspects a) standard demographic data to assess any correlation between respondent 

demographic characteristics and antibiotic use practices; b) the respondent’s attitude and 

behavior towards regulated use of antibiotics and antibiotic resistance; c) self-medication; 

d) information about medicines given to them by pharmacists; e) obtaining prescriptions 

and having them filled. Response options included True/False, Yes/No and 5 point Likert 

scale (strongly disagree - disagree - undecided - agree - strongly agree) wherever 

appropriate and the first question had multiple choices.  

The above mentioned pre-tested questionnaire was administered by two different 

approaches (Figure 6.4). The questionnaire was uploaded on Google forms and the link 

(http://goo.gl/forms/wFi1VjfyHYbVo35I3) was provided to the respondents through 

official emails or social media. The questionnaire was made available in English and 

Marathi to target the local population. The study was explained to the respondents and 

informed consent was obtained from each participant. Participants either filled in the 

questionnaire independently or were read the questions and answers were recorded for 

them. In order to achieve generalizability of the sample, a survey was performed using 

http://goo.gl/forms/wFi1VjfyHYbVo35I3
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members of the general public at different study sites (e.g. shopping malls, supermarkets, 

housing societies, CSIR – NCL reception, cafeteria, different departments, shopping 

complex, medical center, etc.). Please refer to questionnaire in Appendix 6.1. The 

received questionnaires were checked for completeness of data and satisfaction with the 

inclusion and exclusion criteria. Simple pedagogical tools and descriptive statistics were 

used to generate percentages and proportions.  

 

6.2.3. Statistical Analysis 

The data was analyzed by using simple descriptive statistics to generate frequencies, 

percentages and proportions. Data were further summarized by appropriate statistical tests 

using GraphPad Prism 6, version 6.01 for Windows, (GraphPad Software Inc., San 

Diego; 2007).  

 

Figure 6.4: Methodology followed in this study. 
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6.3. Results and Discussion 

This is the first of a kind study done with a moderate size dataset (>500) involving the 

general population of India and is comparable to two studies of similar sample sizes of 

around 500, conducted in rural areas of Maharashtra (Phalke et al., 2006) and another 

undertaken in households of the Sonipat city, Haryana (Kumar et al., 2015), which 

focused on reporting utilization practices in the households rather than antibiotic use. 

Although bigger data-sets have been reported they are in a certain subtype of population; 

e.g., 1121 dental and paramedical students (Tevatia et al., 2016), 872 parents (Agarwal et 

al., 2015) and 656 pregnant women visiting village clinics (Adhikari et al., 2013). No 

study exists on the general population or a cross section of society and hence a holistic 

sample set has been addressed in this study.  

 

6.3.1. Demographics 

The demographics of the 504 respondents are presented in Table 6.2, where 66.5% 

belonged to Maharashtra. The age, education and professional/employment status was 

analysed. 98% of the study group was below the age of retirement (60 years). The dataset 

consisted of students and salaried individuals in similar ratio (~40%). Within the set there 

were 196 employed people of whom 40 are graduates, 75 postgraduates and among the 

professionals there were 7 chemists and 6 clinicians.  

The overall results (Figure 6.5a) convey that of the 504 respondents, 8% of the 

respondents had the correct knowledge, 12% had the correct attitude and 23% followed 

the correct practice for rational antibiotic use. Only 4 (<1%) respondents had the correct 

knowledge, attitude and practice towards rational antibiotic use and AMR; they were all 

postgraduates (PG).  

Table 6.2: Demographic details of all 504 respondents 

Gender Occupation 

Male 252 (50.0) Student 
200 

(39.7) 

Female 252 (50.0) Salaried 
196 

(38.9) 

Age Business 24 (4.8) 

18 – 20 21 (4.2) Professional 43 (8.5) 

21 – 30 286 (56.7) House wife 12 (2.4) 

31 – 40 114 (22.6) Retired 9 (1.8) 

41 – 50 34 (6.7) Doctor 6 (1.2) 

51 – 60 39 (7.7) Others 14 (2.8) 

61 – 75 10 (2.0)  
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Educational Qualification Annual Income (₹) 

 Less than 20,000 36 (8.2) 

Illiterate 13 (2.6) 20,000 – 1,00,000 
128 

(29.0) 

Less than Primary 28 (3.6) 
1,00,000 – 

5,00,000 

172 

(39.0) 

Primary to 

Secondary 
28 (3.6) 

5,00,000 – 

10,00,000 
72 (16.3) 

Undergraduate 34 (6.7) 
More than 

10,00,000 
33 (7.5) 

Graduate 94 (18.7) 
Family member in health 

related field 

Postgraduate 288 (57.1) 
 

Others 19 (3.8) Yes 
129 

(26.0) 

  No 
368 

(74.0) 

 

6.3.2. Knowledge 

The respondents were tested on their knowledge of the use of antimicrobials in viral 

and bacterial infections, purchase of OTC and prescription drugs including the recently 

introduced red line drugs (Figure 6.5) and AMR were presented. Overall the correct 

knowledge about antibiotic use and resistance was observed only in 39 out of 504 

individuals that included 33 postgraduates. With respect to profession, 19 students, 11 

salaried and 4 professionals belonged to this group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Overall KAP score and 

response to the first question of the 

knowledge section of the KAP survey. 
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The postgraduates had the highest score (13.6±2.8 out of 17) and illiterates (no 

education at all) had the lowest score (5.8±3.1). Students (13.4±3) outperformed other 

professionals. Out of 504 respondents, 15 individuals thought the red line on the medicine 

strip or package has no purpose, of which 11 belonged to the postgraduate community. 

Overall 63% respondents were unaware that the red line indicated prescription drugs that 

included 71% of undergraduates (UG), 58.5% of graduates (G) and 55% of postgraduates 

(PG). Overall 31% were unaware that bacterial infection is not the cause for common 

cold and cough, 28% of postgraduates and 38% graduates belonged to this group. Almost 

half of the respondents (47%) were unaware that antibiotics cannot cure viral infections 

but only bacterial infection. 55% of the graduates belong to this group along with 27% of 

postgraduates. 86% of respondents who received only school education were unaware of 

the same. 90% of the respondents who had only received school education lacked the 

knowledge about differences between commonly used antibiotics and OTC medicines 

along with 17% of postgraduates and 32% of graduates. Illiterates had no idea about the 

red line or about the specificity of antibiotics towards bacterial infection. They neither 

could differentiate between OTC and antibiotics, nor were aware about consequences of 

indiscriminate use of antibiotics. 69.2% of illiterates believed common cold and flu is 

caused by change in climate and more than 60% believed paracetamol is an antibiotic. 

None of the respondents who had received less than primary education were aware of the 

red line. Around half of the undergraduate respondents believed that antibiotics are 

prescribed to reduce pain and inflammation compared to 83.2% postgraduates who 

disagreed. On an average 61% of illiterates and school pass outs believed that antibiotics 

were prescribed for pain or inflammation. 22% of the 504 respondents either did not 

comment or disagreed that AMR is a serious problem posed by our society locally or 

globally. Six out of seven illiterates, three out of four school pass outs, one in ten 

postgraduates, one in five graduates and all undergraduates belonged to this group. 

The knowledge of ineffectiveness of antibiotics on irrational use was least in 

undergraduates (51.5%) and highest in postgraduates (90.6%). The awareness about the 

medical cost burden was significantly higher (91%) compared to that of other 

repercussions associated with injudicious and indiscriminate use of antibiotics (55%) in 

the study group.  
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6.3.3. Attitude 

The attitude (Figure 6.6) towards falling sick and the consumption/prescription of 

antibiotics defined the tendency of the population to contribute towards AMR. A total of 

59 respondents (11%) showed the correct attitude; this included 41 postgraduates, 12 

graduates and 2 undergraduates. Based on profession 28 students, 14 salaried 

respondents, 8 professionals and 4 businessmen belonged to this group. None of the 

illiterates were aware of their contribution to antibiotic resistance by consuming 

antibiotics. Postgraduates including businessmen once again had the highest average 

score (3.1±1.3 out of 5) whereas lowest was (1.5±1.3) for illiterates. More than 23% in 

each group disagreed that they contribute to AMR by taking antibiotics while more than 

79% of illiterates and school pass outs remained undecided. One in five (PG) to one in 

four (G) of the highly educated group believed that skipping a dose does not contribute to 

AMR and was within the range documented in studies i.e. 21.3% – 31% (Rekha et al., 

2014) but was far less than that documented in study performed in the rural areas of 

Maharashtra (Phalke et al., 2006), 36% of school pass outs believed the same whereas 

62% illiterates remain undecided. One fourth of the study group believed that skipping a 

dose does not contribute to ABR that included 53.6% of those who had less than primary 

education, 36% respondents of primary to secondary educated individuals, 19.4% of 

postgraduates and 22% of graduates. Again the undecidedness of less educated 

respondents was highlighted through responses of 61.5% of illiterates and 36% of school 

pass outs being unaware of the consequences of skipping a dose. 
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Figure 6.6: Responses to the attitude section of the KAP survey. 

 

6.3.4. Practice 

Practices (Figure 6.7 and 6.8) here measure the concrete action of popping pills in 

response to falling sick with or without consulting the doctor. Highest consumers of 

antibiotics (Figure 6.3) were the educated population. 58.8% of undergraduates, 75.5% of 

graduates and 69.1% of postgraduates belonged to this category compared to 30.8% of 

uneducated respondents. The average frequency of antibiotic use was 23% similar to 

statistics available for India (Morgan et al., 2011). Postgraduates had the highest average 

score (7.1±2.0 out of 9) and illiterates had the lowest (4.3±1.4). Retired respondents also 

reflected good practice with an average score of 7.2±2.1 compared to an average score of 

5.9±2.2 for the salaried group of individuals. The 115 individuals who had the correct 

practice consisted of 89 postgraduates, 10 graduates, 7 undergraduates and one from each 

group that had received primary and secondary education respectively. This group 

included 66 students, 25 salaried, 7 professionals, 4 each of retired and doctors and 2 

businessmen. One in four people in this study would stop taking antibiotics once they felt 

better and did not complete the full course (Figure 6.7), this proportion was higher for 
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illiterates (62%) and individuals with less than primary education (75%) along with 

53.6% from the primary to secondary education group which concurred with the scores 

reported by Aishwaryalakshmi et. al.(Aishwaryalakshmi et al., 2012) Additionally, 16% 

of postgraduates and 24% each of undergraduates and graduates had the same practice 

and did not complete the full course. 11% of undergraduates and postgraduates saved 

antibiotics for future use.  

 

Figure 6.7: Responses to the practice section question 1 of the KAP survey. 
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Figure 6.8: Responses to the practice section questions 2 to 5 of the KAP survey. 

 

There wasn’t any clear understanding of how unused antibiotics were disposed in the 

under educated population, which is consequently a major societal concern as reported 

previously (Shah et al., 2011). This calls for spreading awareness regarding appropriate 

disposal of unwanted medicines. Medicating friends or relatives was prevalent 

independent of the level of literacy as 23% of illiterates and graduates practiced sharing 

their medicines with friends or family along with 10% of postgraduates and 12% of 

undergraduates. In this study, 14.5% did not practice completion of the full course of 

prescribed medicines which is in accordance with Agarwal et. al. (Agarwal et al., 2015) 

This cluster of individuals included 54% of illiterates, 61% of individuals with less than 

a 

c b d 

f e g 
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primary education, 6% of postgraduates and 15% of undergraduates and graduates. 9.7% 

individuals were found to self-medicate in this study that was relative to the proportions 

obtained by Kasabe et. al. for the patients category in the Pune region (Kasabe et al., 

2015). More than 7% of the illiterates, postgraduate, individuals with primary to 

secondary education belonged to this group along with 17.7% of undergraduates, 14% of 

graduates and 21% of individuals with less than primary education. 31.5% of illiterates 

and individuals with less than primary education along with 2% of postgraduates, 3% of 

undergraduates, 6.4% of graduates and 14.3% of individuals with schooling between 

primary and secondary education did not check the expiry date before consumption of 

antibiotics. One in five bought medicines without a medical receipt and tended to start an 

antibiotic course by calling a doctor without a proper medical examination (Figure 6.8). 

The 20% of respondents who bought antibiotic without a prescription consisted of 13% of 

postgraduates, 29% of undergraduates and graduates and 40% of individuals with less 

than primary education. 46% of illiterates agreed and the same proportion disagreed on 

buying antibiotics without prescriptions/medical receipts.  

The percentage of the population buying antibiotics over the counter is alarming and 

shows severe laxity resulting in calls for stringent policies to restrict even the supply 

system of antibiotics from chemist to consumers as suggested in earlier reports (Kalra et 

al., 2015). The 22% of respondents who started antibiotic courses after calls to the doctor 

without a proper medical examination included 31.9% of graduates, 19% of 

postgraduates, 25% of illiterates and undergraduates, and 12.5% of school pass outs. 

65.5% of respondents had consumed antibiotics in the last year similar to that reported in 

a 2016 study (Chinnasami et al., 2016). 

In the KAP survey questionnaire, five questions (KQ1, KQ4, KQ11, AQ4 and PQ1e, 

Refer Appendix 6.1) critically decided the respondent’s status towards antibiotic 

stewardship. None of the adults who had only received education in school knew the 

correct answer. Our study highlights the definitive influence of education on the prudent 

use of antibiotics, as the proportion of correct responses increased from 9% in 

undergraduates to 11% in graduates to 21% in postgraduates respectively.   

The correlational statistics (Table 6.3) suggests that, if we categorize based on 

literacy, postgraduates had a moderate positive correlation (p-value ≤ 0.0001) whereas 

school pass outs had a weak to moderate negative correlation between Knowledge and 

Attitude (K-A). If categorization was based on profession, better correlation was observed 

between K-A, Knowledge and Practice (K-P) and Attitude and Practice (A-P) for salaried 
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individuals (strong for K-P) in comparison to students. House wives showed, moderate (if 

not statistically significant) negative correlation between K-A. Based on gender, males 

had a moderate positive correlation, better for A-P in contrast to females, who had a 

moderate positive correlation (better than males) for K-A and a strong  positive 

correlation for K-P.  

 

Table 6.3: Correlational Statistics for all 504 respondents 

 
Variable (n) K-A K-P A-P 

B
as

ed
 o

n
 L

it
er

ac
y

 

Illiterate (13) 0.030 0.077 0.199 

Less than Primary (28) -0.183 0.150 0.295 

Primary to Secondary (28) -0.270 0.128 0.041 

Undergraduate (34) 0.398
a
 0.369

a
 0.367

a
 

Graduate (94) 0.277
b
 0.203 0.316

b
 

Postgraduate (288) 0.329
d
 0.257

d
 0.398

d
 

Others (19) 0.477
a
 0.576

b
 0.223 

B
as

ed
 o

n
 P

ro
fe

ss
io

n
 

Student (200) 0.383
d
 0.250

c
 0.370

d
 

Salaried (196) 0.488
d
 0.505

d
 0.441

d
 

Business (24) 0.390 0.425
a
 0.503

a
 

Professional (43) 0.288 0.264 0.439
b
 

House wife (12) -0.331 0.214 0.546 

Retired (9) 0.385 0.127 0.476 

Doctor (6) 0.000 -0.114 -0.218 

Others (14) -0.222 0.621
a
 0.150 

G
en

d
er

 

Male (252) 0.411
d
 0.391

d
 0.446

d
 

Female (252) 0.444
d
 0.510

d
 0.395

d
 

Footnotes: 
a
P ≤ 0.05, 

b
P ≤ 0.01, 

c
P ≤ 0.001 and 

d
P ≤ 0.0001 

Interpretation of findings from this survey should be done cautiously as there are 

limitations to the study including the size and location of the population. The study 

revealed a higher knowledge, awareness and practice in individuals that were educated at 

least till higher secondary level. The study also revealed unawareness amongst 30-40% of 

this cross section of society to the difference between bacterial and viral infections and 

the futility of using antibiotics for the latter. The majority didn’t realize the problem with 

skipping a dose or incomplete courses of prescribed antibiotics. The red line was not 

identified by a majority of the population and neither could it identify the global threat 

posed by AMR. One in five believed antibiotic resistance was not a serious issue. One in 
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four individuals stopped taking the antibiotics once they felt better. One in ten people 

self-medicated on a regular basis; including one in five undergraduate and one in seven 

graduate degree holders. 

Figure 6.9: Handout distributed to the respondents post KAP study. 

 

We strongly recommend implementation of educational programs for 

primary/secondary schools in the country. There is utmost need for proper statutory 

antibiotic control policies restricting availability of drugs to the public. Educational 

programs should make healthcare practitioners aware including pharmacists/chemists and 

consumers alike. Safe practices need to be reiterated. Students and salaried employees 

must be educated about dangers of self-medication and indiscriminate use of drugs. 
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Minor ailments can be relieved with OTC medications such as Paracetamol or with some 

other traditional or herbal medicines, without physician consultation. Instructional and 

educational campaigns among different classes of Indian society using short videos, 

printed handouts (Figure 6.9, were distributed after this study was conducted) and other 

pedagogical tools are critical. Private firms and pharmacists should be involved as 

partners for creating awareness among communities for rational use and resistance to 

antibiotics. Currently, there is a huge market and policy failure that allows the sale of 

drugs without a prescription. To address the threat of AMR, our study underscored the 

importance of education and prudent use of antibiotics in human medicine. It is critical to 

develop strategies comprising measures related to information, education and surveillance 

across the varied populations in India. Antibiotic stewardship activities in hospitals, 

clinics and nursing homes are critical along with imposition of good sanitation and 

hygiene. Coordination between the health sector and the animal husbandry/poultry sector 

is also essential. In any ecological system, including in the case of antibiotics, pressure 

causes evolution. In the light of resultant development of resistance and therapeutic 

failures, research programs to develop quick diagnostics and extending shelf life of 

existent antibiotics need to be funded. Government needs to formulate a comprehensive 

plan to deal with AMR and invest or find aid in state of the art diagnostics and new drugs. 

Non-adherence to such practices is a major public health issue. 

 

6.4. Conclusion 

In conclusion our study of 504 individuals is a first of a kind for the general 

population that sheds light on the knowledge, attitude and practices regarding antibiotic 

use and resistance among Indians belonging to varied income strata, different professions 

and educational background. The results brings to light the fact that the interventions and 

awareness campaigns should not be only educational but multipronged to tackle the 

serious societal issue of antibiotic resistance within the Indian society with special 

reference to its 800 million citizens. One needs to sound the alarm and educate each 

citizen about the scope and threat of AMR. Battling resistant bugs mandates the prudent 

use of antibiotics. 
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Chapter 7 

Conclusion and Future Scope 

 

“I would rather have questions that can’t be answered than answers that can’t be 

questioned” 

- Richard Feynman 

 

"The significant problems we face cannot be solved at the same level of thinking with 

which we created them" 

-Albert Einstein 

 

The genotype- phenotype relationship is fundamental to biological systems. The work 

described in this dissertation is a systems biology approach to studying Chromobacterium 

violaceum metabolism and its role in antibiotic resistance. This thesis explored the 

differential features of genotype and metabolic phenotype in response to antibiotics and 

antibiotic selection pressures. Dynamics of cell metabolism was shaped by cell 

architecture and environment and delineated using heterogeneous data types. Genome 

wide elucidation of DNA sequence, systemic phenotypes helped understand the 

molecular components and their interaction. Since biological systems are complex and 

more than the sum of their parts and new properties are known to emerge as an effect of 

interactions a model driven model-integrated approach was used. Constraints-based flux 

balance modeling identified the weakest link that can break the resistance phenotype. 

Thus, in this thesis I have advanced the current understanding of antibiotic resistance and 
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its connections to metabolism and developed scalable methods to identify candidates to 

re-sensitize resistant pathogens to antibiotics. 

 

7.1. Recapitulation 

A broad recap of some of the main concepts described and realized in this thesis is 

discussed here. 

 

 Eight genetic variation in different levels of protein hierarchy resulted in 

acquired antibiotic resistance against two completely different antibiotics.  

 Genetic variations were detected in genes including the local repressor of 

AcrAB drug efflux pump and S12 ribosomal protein rpsL.  

 Phenotypic plasticity and metabolic reprogramming was identified in the 

resistant populations and the fitness costs associated results in re-sensitization 

using 4 different substrates.  

 Nine fold higher growth rates and 1.3 fold increase in violacein point towards 

phenotypic plasticity of the evolved strains.  

 Temporal variation of metabolites suggest metabolic reprogramming as a 

survival strategy against antibiotics Successful genotype to phenotype 

correlations were identified, some obvious but some non-obvious.  

 iDB147 shed light on the nature, flexibility and rigidity of the core metabolism 

and helped us understand redox homeostasis is critical for survival of C. 

violaceum.  

 A genome scale model for C. violaceum, iDB858 was developed that shed 

light on to the emergent properties including but not limited to restriction of 

flux through different reactions (in silico enzymopathies) and perturbation of 

the reducing equivalents and PMF resulting in re-sensitization of the resistant 

populations when supplemented with candidate metabolites that take 

advantage of these enzymopathies and redox imbalance. 

 

Apart from the above, many different correlations emerged as a result of integrative 

analysis of the heterogeneous data types in the context of a small and large scale model. 

Firstly correlation was observed in case of the repressor of a multi drug efflux pump, 

acrR (Chapter 2, section 2.) with extracellular violacein and prodeoxyviolacein as 
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observed in metabolomics high resolution mass spectrometry data (Chapter 3, section 

3.3.3.3). Secondly correlation was observed in between the variant of rpsL (Chapter 2, 

section 2.) that leads to hyper-accurate phenotype with longer lags observed for different 

substrates (Ex-mets) in case of StrpR that bears the mutation (Chapter 3, section 3.3.2). 

Thirdly, correlation of pabC variation that may result in diverting carbon flux towards 

more amino acid biosynthesis (Chapter 2 section 2.) with accumulation of methionine, 

ile/leu and alanine in StrpR compared to other two, amino acid pools are higher as 

observed in metabolomics high resolution mass spectrometry data (Chapter 3, Figure 

3.10 and 3.13). Fourth correlation is between PCA analysis of metabolomics data 

(Chapter 3, Figure 3.7 and 3.8) proving WT and StrpR to be behaving similarly 

compared to ChlR with model driven predictions and analysis that show that StrpR 

behaves more like WT but ChlR shows a completely different ATPM as well as FVA 

distribution (Chapter 4 and 5). Fifth correlation observed was between FVA that showed 

accumulation of pyruvate, malate and succinate in case of StrpR FVA (Chapter 5, 

Section 5.) with LCMS metabolomics profiles showing accumulation of significant 

amounts of pyruvate, succinate and malate in case of StrpR in comparison to the other 

two population data (Chapter 3, Figure 3.5). Finally the emergent property of redox 

imbalance as a function of antibiotic resistance development and decoupling between 

ETC and PMF was observed using experiments (Chapter 3, Figures 3.19 to 3.26) and 

proved by model simulations and predictions as explained in Chapter 4 and 5. 

 

7.2 Unknown Frontiers of Antibiotic resistance  

Some of the more global questions that are addressed in this thesis and yet need 

answers are:   

1. Will the post genomic era delay onset of the post-antibiotic era?  

2. Can metabolic changes modulate susceptibility of bacteria towards antibiotics?  

3. Is there a recipe of antibiotics and adjuvants that will treat infection without 

development of resistance? 

The answers to these questions and subverting this global crisis lies inadvertently in 

our abilities to measure and readout MICs of drugs, genomic features at different 

levels of molecular hierarchy and growth substrate preferences of clinically isolated 

resistant pathogens. The precision of tailoring specific microenvironments of the 

pathogen localization would predominantly dictate the future of personalized 

medicine and individualized therapy in infectious disease. 
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Figure 7.1. Emergent properties identified in this thesis work using a systems approach to 

counter antibiotic resistance 
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7.1.Future Scope and Directions 

The common practice of self-medication and the availability of counterfeit drugs have 

exacerbated drug resistance in the developing world which leads to consequent treatment 

complications and increased healthcare costs. If resistance to treatment continues to 

spread, our interconnected, high-tech world may find itself back in the dark ages of 

medicine, before today’s miracle drugs ever existed. The platform developed in this thesis 

may be used to identify and validate more candidate substrates for re-sensitization as well 

as used as a standard protocol for other pathogens in clinical settings. This will prove to 

be a scalable pipeline integrating growth, metabolite and MIC profiling and constraints-

based flux balance models for clinical isolates and extend it to the ESKAPE 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Such 

constraints-based models will help to understand differential dynamics of cell metabolism 

for susceptible and resistant bacteria and provide a systems level focus on mechanisms of 

resistance and open up novel avenues for personalized treatment and individualized 

therapy. In house OMICS data sets included in this thesis work can be further integrated 

with an additional layer of available gene expression data and ribosomal machinery 

information to predict other genotype- phenotype relationships under such conditions. 
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Appendices 

Appendix 1.1. Minimum inhibitory concentration reported for C. violaceum in literature 

Antibiotics 
Concentration 

(μg/ml) 
Susceptibility* 

Ampicillin >1024 Resistant 

Amikacin <2 Susceptible 

Amoxicillin-clavulanic acid 256 Resistant 

Cefepime <2 Susceptible 

Cefotaxime >128 Resistant 

Chloramphenicol 10 Susceptible 

Ciprofloxacin 0.006 Susceptible 

Co-trimoxazole 25 Susceptible 

Erythromycin 15 Susceptible 

Gentamicin <2 Susceptible 

Imipenem 1 Susceptible 

Kanamycin 4 Susceptible 

Nalidixic Acid <2 Susceptible 

Neomycin 10 Susceptible 

Norfloxacin 10 Susceptible 

Penicillin >32 Resistant 

Piperacillin/tazobactam 3 Susceptible 

Rifampicin 32 Intermediate 

Streptomycin 16 Susceptible 

Tetracycline <2 Susceptible 

Ticarcillin/clavulanate 32 Intermediate 

Trimethoprim/sulfamethoxazole 0.094 Susceptible 

Vancomycin 30 Intermediate 
*(Kothari et al., 2017; Lima-Bittencourt et al., 2011, 2007), (Xan et al., 2008)  
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Appendix 1. 2: C. violaceum infection cases in India 

 Year Location Age/Sex Clinical 

presentation 

Antibiotics 

given 

Outcome Reference 

1 1979 Andhra 

Pradesh 

4/M Septicemia 

Meningitis 

 Fatal Annapurna et 

al., 1979 

2 1987 Karnataka NB/M Meningitis  Fatal Shetty et al., 

1987 

3 2000 Karnataka 2yr 10 

months/F 

Diarrhea  Recovered Ballal et al., 

2000 

4 2002 Karnataka 2months/F Pustules, Ear 

Discharge, 

Septicemia and 

Meningitis 

 Fatal Chattopadhya

y et al., 2002 

5 2002 Karnataka 8 days Pustules, 

Septicemia, 

Meningitis and 

Multiple 

abscesses 

 Fatal Shenoy et al., 

2002 

6 2002 Chandigar

h 

6.5/M Septicemia, 

Pustules 

 Recovered Ray et al., 

2004 

7 2003 West 

Bengal 

24/M Abscess Leg  Recovered Dutta et al., 

2003 

8 2008 Kerala 6months/

M 

Septicemia, Skin 

Pustules, Broncho 

pneumonia 

 Recovered Vijayan et 

al., 2009 

9 2012 Vellore 40/M  PTZ later 

changed to 

meropenem 

Fatal Karthik et al., 

2012 

10 2012 Mumbai 11/F Multiple liver & 

splenic abscesses  

with skin lesions 

& 

cardiogenic shock 

PTZ and 

Gent; 

Ciprofloxaci

n later stages 

Recovered Saboo et al., 

2012 

11 2012 Tamil 

Nadu 

42/M Infection at the 

site of sutured 

scalp 

Gentamycin Recovered Kumar, 2012 

12 2013 Navi 

Mumbai 

10/M Septicemia Ceftriaxone, 

Amikacin  

and 

Metronidazo

le 

Fatal Kar et al., 

2013 

13 2014 Orissa 19/M UTI Ciprofloxaci

n 

Recovered Swain et al., 

2014 

14 2015 South 

India 

53/F Septicemia Imipenem, 

Ciprofloxaci

n, PTZ 

Recovered Madi et al., 

2015 

15 2016 Kerala 11month/

M 

Septicemia  Fatal Kamjarakkal 

et al., 2016 
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16 2016 Kerala 2.5/M Respiratory 

Distress, 

Hypotension, 

Shock 

 Fatal 

17 2016 Kerala 12/F   Recovered 

18 2016 Kerala 55/F Catheter related 

blood stream 

infection 

PTZ Recovered Balarama et 

al., 2016 

19 2017 Kerala 73/M UTI  Recovered Vincent et 

al., 2017 

20 2017 Madhya 

Pradesh 

2/M Chest abscess and 

ulceration 

Ceftriaxone, 

Amikacin, 

Meropenem 

 Ahmed et al., 

2017 
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Appendix 2.1: Summary of variants confirmed using Sanger sequencing post whole genome 

sequencing 

 

 

S.N. 
Gene 

locus 

Gene 

name 
Nucleotide change Type 

Amino acid 

change 
 

GENE 

STRETCH 
Gene detail 

1 CV_0436 acrR G179Ta SNP R60L  

456,438 -> 

457,085, 

648 bp / 

215 AA 

Transcription repressor of 

multidrug efflux pump 

  

 G375GATa INS 

Premature 

termination,  

141 AA 

 

 

acrAB operon, TetR (AcrR) 

family 

2 

 

CV_4365 

 

marC 

 

C4648G 

 

 

SNP 

 

No Change 

 

708,719 -> 

4,709,366 

 

multiple drug resistance protein 

3 CV_4191 rpsL G117Tb SNP R86S  

4,519,516 

<- 

4,519,887, 

372 bp / 

123 AA 

30S ribosomal protein S12 

4 CV_3410 pabC A147deletionb DEL 

Premature 

termination, 

 226 AA 

 

3,703,561 

<- 

3,704,373, 

813 bp / 

270 AA 

4-amino-4-deoxychorismate 

lyase 

5 CV_1596 kdpD G167deletionb DEL 

Premature 

termination, 

 682 AA 

 

1,719,330 

<- 

1,722,017, 

2688 bp / 

895 AA 

2 component regulatory protein 

sensor kinase. Osmosensitive 

K+ channel histidine kinase 

KdpD (EC 2.7.3.) 

6 CV_0066 CV_0066 G655C* SNP P219A  

75,121 <- 

76,422, 

1302 bp / 

433 AA 

Hypothetical protein 

7 Nt CDS nt cds 1263524* SNP   

between 

CV_1197 

and tRNA 

Ser 

Cv_1197 - 

polysaccharide/polyol 

phosphate ABC transporter 

ATPase 

8 CV_0464 CV_0464 

A4273C* 

G4274A* 

T4276A* 

C4277G* 

G4278C* 

C4344G* 

SNP 

SNP 

SNP 

SNP 

SNP 

SNP 

Synonymous  

478,148 -> 

483,712, 

5565 bp / 

1854 AA 

Hypothetical protein, 

Homologous to Fibronectin 

type III domain protein 
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Appendix 2.2. List of primers used for confirmation of variants after whole genome sequencing. 

Abbreviations: Tm - Melting temperature; GC% - Percentage GC content; FW - Forward Primer; REV - 

Reverse Primer; ncX_FW - Non Coding Region Forward Primer numberX,  ncX_REV - Non Coding Region 

Reverse Primer number X. 

 

S.NO Sequence Name Sequence 
No.Of 

Bases 
Tm GC% amplicon size (base pairs) 

1 0066_FW CTGTTCCTCCCGCTCCG 17 59.44 70.59 452 

2 0066_REV TCAACGCCGACACGCTG 17 60.73 64.71 
 

3 0112_FW TGATTGATGTCGCGCCGTAT 20 60.25 50 489 

4 0112_REV GGTAGTCGAGGCGATGAAGG 20 59.97 60 
 

5 0189_FW CATTATCCCCGATGGCGCTT 20 60.61 55 431 

6 0189_REV CAAGAACGTGGCGGAAGTG 19 59.43 57.89 
 

7 0436_FW GTTCAGCGAGCAGGGC 16 57.92 68.75 428 

8 0436_REV CCACCGCCACTTCGTCC 17 60.42 70.59 
 

9 0464_FW GGACGGCAAGACCAGCAATA 20 60.39 55 427 

10 0464_REV GTAGGTGGTGGCGTTGAGAG 20 60.39 60 
 

11 nc1_FW CGGAAGTGAAGAGCCTGGTG 20 60.67 60 427 

12 nc1_REV AAGTGCCGTTGCCATCCTT 19 60.23 52.63 
 

13 0570_FW GAGGTCAGGTTGGATGCGAT 20 59.82 55 567 

14 0570_REV GCAGGATACGGGACAGGAAA 20 59.46 55 
 

15 nc2_FW GACGGGATGTTGCGGACTAT 20 59.9 55 536 

16 nc2_REV CATCGTGGTGGGACTCTTGG 20 60.39 60 
 

17 0740_FW TCGAAGGAGAAATCGACGCC 20 60.18 55 386 

18 0740_REV CACTACATGGGCACCTCCAC 20 60.39 60 
 

19 0877_FW CGCTGGAAATGACCGACGTG 20 61.96 60 410 

20 0877_REV CATCATCTGGCGGTAGTCCC 20 59.97 60 
 

21 nc3nd4_FW CGTGAAAGGGCGGTGTTCTA 20 60.32 55 477 

22 nc3nd4_REV CGATGAAGGGCGGAATGGG 19 60.89 63.16 
 

23 1080_FW GCCCGAGACCAAGGACAAG 19 60.38 63.16 329 

24 1080_REV CGGTATTCGCCACTTGCTTC 20 59.63 55 
 

25 nc5_FW CAGAGCACCGAGTCCATCAA 20 59.75 55 301 

26 nc5_REV CCTCCTGGCTGGGAAACATC 20 60.39 60 
 

27 nc6_FW GCGTCATTTCATCGTTCGGG 20 59.97 55 332 

28 nc6_REV GGCTGCCTTCGGAACAAAAC 20 60.32 55 
 

29 1199_FW AACACGCTCTTGGGGATGG 19 60 57.89 372 

30 1199_REV TATCTCTTCCGTCAGCACGC 20 59.9 55 
 

31 1261_FW CTGCTTGACCCGAGGCTAAT 20 59.82 55 516 

32 1261_REV GAAATTCTCGTCCAGGCGCT 20 60.74 55 
 

33 nc7_FW CAGGGGACGGGGAGGAT 17 59.66 70.59 396 

34 nc7_REV CAGGCGATTGGTCAGGGAAA 20 60.32 55 
 

35 1296_FW GGCAATGGCGAGGACTTC 18 58.5 61.11 403 

36 1296_REV TGCCAGATGATGGTTCCGAC 20 60.11 55 
 

37 1301_FW TGGACAGTGGCAGCAAGG 18 59.89 61.11 488 

38 1301_REV AGTCGTGTAATAAGGCAGCAC 21 58.38 47.62 
 

39 nc8_FW TGGTTAGAGCACCACCTTGAC 21 59.93 52.38 504 

40 nc8_REV GAACAGCTCCTTGACGGCAT 20 60.67 55 
 

41 1596_FW CGCCTCGTCCTGTATGGA 18 58.48 61.11 492 

42 1596_REV GCCAAGGTGATGCTGTTCAT 20 58.82 50 
 

43 nc9_FW CGTCCTCGATGGCTGTACG 19 60.3 63.16 486 

44 nc9_REV GTCTGCTCCAGCTCGGTATG 20 60.25 60 
 

45 1872_FW TTGGGCGTGTTGATCTCTGG 20 60.32 55 419 

46 1872_REV ACCTCTGCTGTTCAAGACTCG 21 60 52.38 
 

47 1994_FW TTCGTCTACCCGATGTTCCG 20 59.55 55 413 

48 1994_REV ACGCTCCACAGCCACATATC 20 60.18 55 
 

49 nc10_FW TGCTTTCGGCATTCTTGTGG 20 59.4 50 512 

50 nc10_REV TTGAGCGAGGTCACTTTCCC 20 59.97 55 
 

51 2377_FW CGAGGGGCTGGAAATCAG 18 57.45 61.11 405 

52 2377_REV TTAGTAGGCAGGGCGAAGTC 20 59.18 55 
 

53 2560_FW AACGAGGAAACCGACGACAA 20 59.9 50 465 

54 2560_REV GAAGAACGAGTACCACGGCA 20 60.04 55 
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55 nc11_FW GCCATTTCAGGTGCGTCATC 20 59.9 55 471 

56 nc11_REV AATGCGCTGGCGAAGTTTTT 20 59.97 45 
 

57 2789_FW CCGCCCTGCATCAACAAGTA 20 60.68 55 478 

58 2789_REV CCACGTAGTTCCACACCAGG 20 60.32 60 
 

59 nc13_FW AGTTGATGCACGAAACAAAGC 21 58.27 42.86 512 

60 nc13_REV TTGTGGCAAGACCCTGCG 18 60.59 61.11 
 

61 nc14_FW TATCAGCCACAGACCAAGCC 20 59.75 55 545 

62 nc14_REV GGTATCGGAAGAGGAGAGCG 20 59.41 60 
 

63 3076_FW ACATACTGGCGGATCACTCG 20 59.61 55 498 

64 3076_REV CAACACCCACACGGTAATCG 20 59.21 55 
 

65 3101_FW TGCCAGGACATCAATACCCG 20 59.82 55 383 

66 3101_REV TCCAGCACATAGGCGTGT 18 58.61 55.56 
 

67 3351_FW TTACTCCCCGAAACCACAGA 20 58.28 50 294 

68 3351_REV CTGTTCAACGACGACCAGAT 20 57.93 50 
 

69 3458_FW GAGCACGCCAACAATACCCT 20 60.68 55 554 

70 3458_REV CCTTCACCAGCAGCGAGTT 19 60.3 57.89 
 

71 nc15_FW GCGATGTACCAGGCCAAGAT 20 60.18 55 463 

72 nc15_REV CAAGGAAGCGGACAGGAAGT 20 59.96 55 
 

73 3519_FW GATCCGAACCGCCTCACC 18 60.2 66.67 453 

74 3519_REV GATGAATTGCTGGTTGGCCG 20 60.18 55 
 

75 3561_FW GAGGTGGGTTCGACGATGAC 20 60.46 60 461 

76 3561_REV GGGTGTCTGCCTCGTAGATG 20 59.9 60 
 

77 nc16_FW GGTCCCCCAGAAATACCTGC 20 60.11 60 475 

78 nc16_REV GGCTACCTGAACGGTGTTGA 20 59.97 55 
 

79 4028_FW ATGGAGATGTGGGCTGCAAA 20 59.96 50 305 

80 4028_REV TCGTGGTGGTTCAAAGCGAT 20 60.25 50 
 

81 4102_FW GCTCTGGAACACGGTATGC 19 58.62 57.89 563 

82 4102_REV GGAGGAAAGGCGGTGGATTT 20 60.32 55 
 

83 4129_FW CTATGGTGTTCAGCACGAAGC 21 59.61 52.38 418 

84 4129_REV ACCTGAGTACCGAATGACCG 20 59.18 55 
 

85 4192_FW CGGTCACTTCGTCGGTCT 18 59.05 61.11 415 

86 4192_REV ATCGCCGCCCAGTCCAT 17 61.19 64.71 
 

87 4384_FW CGTGCGTGAAAAGCCGTATC 20 60.25 55 471 

88 4384_REV TTGTCGTCCATCTCGTCCAG 20 59.47 55 
 

89 4284_FW CAGGAGCCTTACTTCGGCAA 20 60.04 55 404 

90 4284_REV AAGGTTTCGGTGTGGTCGTT 20 60.11 50 
 

91 0464b_FW CAGCGTGTCGTCCTCGTATG 20 60.86 60 402 

92 0464b_REV CTGCTGGCGGTGGTGTC 17 60.74 70.59 
 

93 4010_FW CGATACGCCTGAACCCATCA 20 59.9 55 485 

94 4010_REV CGCACTCCAGCAGATTGAAG 20 59.27 55 
 

95 nc17_FW AGCTGACTTCACTGCCAAGC 20 60.89 55 416 

96 nc17_REV AGATCGACCCCAATCTGTGC 20 59.82 55 
 

97 nc18_FW TCCTGTCGTGCTCGCTTG 18 60.05 61.11 402 

98 nc18_REV ATTCCAGCGTCCCAGCTTAC 20 60.11 55 
 

99 1137_FW GTCGAGGATGTAACGGCTCC 20 60.25 60 421 

100 1137_REV GCAGGTCTTCTCGTCCTTGT 20 59.68 55 
 

101 0662_FW ACTCCAACCACAAGAAAACCAC 22 59.24 45.45 402 

102 0662_REV GCCAGATTGACGACGGTG 18 58.53 61.11 
 

103 3410_FW AAAGGCGAAGGCGTCCAGAT 20 62.19 55 305 

104 3410_REV GATCCGGCGATACAGGAAGG 20 60.04 60 
 

105 2590_FW CTGCAATTCCTGGGGATGGA 20 59.74 55 409 

106 2590_REV GCATGAGCGGTAAGTACGGT 20 60.18 55 
 

107 1471_FW GCTTCCGCTTCCAGATCCTT 20 60.11 55 420 

108 1471_REV CCTATCGCACTGAGCCTGTT 20 59.82 55 
 

109 1071_FW GCTGGATTACCGCATGACCT 20 60.18 55 389 

110 1071_REV GCAGCGTGGTGAACTTGTC 19 59.72 57.89 
 

111 1144_FW ATGTACCAGCCGTCCAGCTC 20 61.96 60 433 

112 1144_REV TGAACAACATCCAGAAAGGCG 21 59.12 47.62 
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113 1962_FW GTACTCGTCGCCCAACCTG 19 60.45 63.16 372 

114 1962_REV ACGTCCTCGCAGTGTTTCAG 20 60.6 55 
 

115 1063_FW GGACGATGGAATATCCGACCA 21 59.38 52.38 415 

116 1063_REV ACATGCCGAGAAACTCCCTG 20 60.04 55 
 

117 nc19_FW TTCGATGTACGTTGCTGTCA 20 57.57 45 583 

118 nc19_REV CAAGTTTGATGCTGGAGCGG 20 59.83 55 
 

119 nc20_FW CGACGGCCTGTTGCAGA 17 60.01 64.71 369 

120 nc20_REV CTGGTCTACCTGTGCTACGC 20 60.18 60 
 

121 nc21_FW ATCTGCGACGAACTGGGC 18 60.13 61.11 449 

122 nc21_REV GGGGTGTTCCTGCTGGTC 18 59.97 66.67 
 

123 4309_FW CGGGTAAAAGCAAGCGGC 18 59.82 61.11 400 

124 4309_REV CTGGCGCTGACCGAGATG 18 60.58 66.67 
 

125 0962_FW GGTTCCAGCCATTGCAGCTT 20 61.54 55 469 

126 0962_REV TTCAGACCAAGACCGCTCAG 20 59.68 55 
 

127 1470_FW CGCTACTGGACAGCGTCAC 19 60.8 63.16 443 

128 1470_REV CAACGCCAAAACCGTCTCG 19 60.08 57.89 
 

129 4191_FW GATTACTTGGGACGCTTGGC 20 59.27 55 424 

130 4191_REV TTTCTGGAGGCGTGTTGCTT 20 60.47 50 
 

131 0004nc22_FW CGACGTGTAAGGGTGTAGGG 20 59.83 60 462 

132 0004nc22_REV GGGGTGCAGCTCTTTCTGAT 20 60.03 55 
 

133 0560_FW CTTGACCGTGGAGCTGGAG 19 60.08 63.16 412 

134 0560_REV GCGACACCAAGACCTCGAT 19 59.78 57.89 
 

135 0772_FW AGCTTTTCATCGCCTCCAGT 20 59.67 50 419 

136 0772_REV GCTGATTGCCCGTTTCAAGC 20 60.73 55 
 

137 0816_FW CCACCGAGGACGAGCAGTA 19 61.04 63.16 400 

138 0816_REV GGGATTTCTATCATCGCGCC 20 58.92 55 
 

139 0821_FW CGCCCGACATGGAGGAT 17 58.76 64.71 491 

140 0821_REV GCCAGCCTCGACTACGC 17 60.26 70.59 
 

141 nc23_FW CGATTTCGTCCAAGGCTATCTG 22 59.2 50 411 

142 nc23_REV AAAGCGAACAAGCTGTCCCA 20 60.47 50 
 

143 1114_FW CTTTCAGCTCCTCCACCAGC 20 60.68 60 415 

144 1114_REV AAGAATCGTGGGACGGCTAC 20 59.82 55 
 

145 nc24_FW GTTGGCTTGATGCGGTTGC 19 60.73 57.89 440 

146 nc24_REV AAGTGGGAAGGCGAGTTGAAG 21 60.54 52.38 
 

147 nc25_FW ACTACGGCTACTACATCGTGC 21 59.67 52.38 423 

148 nc25_REV CAAGGTGGACAGCTATTCCG 20 58.34 55 
 

149 1299_FW TTCCGCCTTCATCTTCAGGA 20 58.72 50 407 

150 1299_REV GCCGCAAGTACACCTTCCTC 20 61.02 60 
 

151 0304_FW GTAAGCTGGGACGCTGGAAT 20 60.11 55 990 

152 0304_REV CGGGATGGCCGTTTTTCTTT 20 59.4 50 
 

153 0700_FW CAATCATGCCCCTCGCACTA 20 60.18 55 1272 

154 0700_REV GCCCAGTTTCGGCATTTTCA 20 59.68 55 
 

155 2729_FW TCTCCTCCTCCCGTCAACTT 20 59.89 55 880 

156 2729_REV CTGAGCGGGCTGGAAAAATG 20 59.83 55 
 

157 1455_FW GCCAGTCCAGATTGTTCGGA 20 60.04 55 607 

158 1455_REV GAGGAAAGGCGGAAAATCGC 20 59.9 55 
 

159 4365_FW AAGCCTCTACAATCTGCGGG 20 59.82 55 722 

160 4365_REV TGTGGCAGAAATGGGGTTCG 20 60.89 55 
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Appendix 3.1. Growth profiles for WT, ChlR and StrpR using 30 different C/N substrates (Ex-mets). a) 

Antibiotic added to media from the beginning (t0). b) No antibiotic added and c) Antibiotic added after 6 hours 

(t6) showing WT with chloramphenicol and streptomycin, (WT_t6chl and WT_t6strep, respectively), ChlR 

with chloramphenicol added to the media and StrpR with streptomycin added to the media. Plots made using 

GraphPad Prism v6.01 and n = 3. 
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Appendix 3.2: Metabolic time profiles for the three population of C. violaceum showing oscillatory or linear 

behavior with varying amplitude, period and phase lag during growth on glucose across sensitive and resistant 

populations. The central carbon metabolism network is drawn for quick correlation. Solid blue squares show 

all amino acids. Yellow rounded rectangles show nucleotides. Fructose-1,6-biphosphate (1,6-FDP), D-ribose-

5-phosphate (R5P), D-erythrose-4-phosphate (E4P), glycerate-3P (3PG), phosphoenolpyruvate (PEP), pyruvate 

(PYR). All the values were normalized to the internal standard (Refer material and methods for details). Graph 

legends: Blue – WT, Red – ChlR, Green – StrpR. Means ± S.D and n ≥ 2. 
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Appendix 3.3: To understand the spread and skewness of the metabolomic data obtained for the three different 

populations, we have made box and whiskers plots. gives us a lot of information about the data ranging from 

differential spread, three orders of magnitudes, etc. 
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Appendix 5.1: Calculation of biomass composition using legacy data 

Overall Composition 

Component % Dry Weight Reference Notes 

Protein 71 (Baart et al., 2007) 
Using Neisseria values as no clear literature 

found for C.violaceum. 

RNA 30.3 (Herbert, 1961) 
Exponential cells of c. violaceum in complex 

medium contains RNA % as 30.3. 

DNA 13 (Wheat et al., 1963)   

Phospholipids 11.4 (Baart et al., 2007) 
Using neisseria values as no clear literature 

found for C.violaceum. 

Peptidoglycan 0.1 (Wheat et al., 1963)  

Lipopolysaccharide 7.6 

(Crumpton and 

Davies, 1958; 

Wheat et al., 1963) 

Average values between 7.61 and 7 % 

PHB 38 
(Kolibachuk et al., 

1999) 

98% PHB formed with the yield of 38% of 

dry weight with glucose as carbon source 

Putrescine 0.4 
(Busse and Auling, 

1988) 
C. violaceum values 

Spermidine 0.004 
(Busse and Auling, 

1988) 
C. violaceum values 

Energy (mmol 

ATP/gDCW) 
59.81 (Feist et al., 2007) E. coli values 

Component % Dry Weight 
Organism 

(Reference)  

Protein 41.33 N.meningitidis 
 

RNA 17.64 C.violaceum 
 

DNA 7.57 C.violaceum 
 

Phospholipids 6.64 N.meningitidis 
 

Peptidoglycan 0.06 C.violaceum 
 

Lipopolysaccharide 4.42 C.violaceum 
 

PHB 22.12 C.violaceum 
 

Putrescine 0.231 C.violaceum 
 

Spermidine 0.003 C.violaceum 
 

Total 100 
  

 

DNA Composition  

Reference - Haselkorn R, Artur L, Bataus M, Batista S, Teno C: The complete genome sequence of 

Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci 

U S A 2003, 100:11660–11665. 

DNA % Prevalence MW (g/mol) Relative Weight/mol % (by weight) mmol/gDW 

dATP 17.6 487.151 85.74 17.75 0.028 

dGTP 32.4 503.15 163.02 33.75 0.051 

dTTP 17.6 478.136 84.15 17.42 0.028 

dCTP 32.4 463.125 150.05 31.07 0.051 

 
Total 

 

Sum of Rel 

Weight/mol 
Total 

 

 
100 

 
482.96 100 
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Explanation:     

The 64.8% GC content is split evenly between dGTP and dCTP. MWs taken from ChEBI website. 

The relative weights/mol are the % prevalances multipled by the molecular weights.  

% by weight is calculated by divding the relative weights/mol by the sum of the relative 

weights/mol. 

mmol/gDW is calculated by:  

(% by weight/100)*(X grams of DNA/gDW)*(1/molecular weight)*(1000 mmol/mol) 

 

 

RNA Composition 

Reference - ORF DNA sequences (proxy for RNA) for C. violaceum used from Haselkorn et. al 

2004 

 

RNA 
% 

Prevalence 
MW (g/mol) Relative weight/mol 

% (by 

weight) 
mmol/gDW 

ATP 18.00 503.15 90.57 18.24 0.064 

GTP 32.00 519.149 166.13 33.46 0.114 

UTP 18.00 480.108 86.42 17.41 0.064 

CTP 32.00 479.124 153.32 30.88 0.114 

 
Total 

 

Sum of Rel 

Weight/mol 
Total 

 

 
100 

 
496.43 100 

 
Explanation 

MWs taken from ChEBI website. The relative weights/mol are the % prevalances multipled by 

the molecular weights. % by weight is calculated by divding the relative weights/mol by the sum 

of the relative weights/mol. 

mmol/gDW is calculated by:  

(% by weight/100)*(X grams of RNA/gDW)*(1/molecular weight)*(1000 mmol/mol) 
 
 

     Protein Composition 

Protein sequence for C. violaceum ATCC 12472 was downloaded from Uniprot Proteome ID - 

UP000001424 

       
Amino Acid Count 

% 

Prevalence 

MW 

(g/mol) 

Relative 

Weight/mol 
% (by weight) mmol/gDW 

Alanine (A) 174329 12.49 89.09 11.13 8.77 0.407 

Arginine (R) 95825 6.87 175.212 12.03 9.48 0.224 

Asparagine (N) 40011 2.87 132.12 3.79 2.98 0.093 

Aspartic acid 

(D) 
75976 5.44 132.1 7.19 5.67 0.177 

Cysteine (C) 14379 1.03 121.16 1.25 0.98 0.034 

Glutamate (E) 75054 5.38 146.12 7.86 6.19 0.175 

Glutamine (Q) 61225 4.39 146.14 6.41 5.05 0.143 

Glycine (G) 117225 8.40 75.06 6.31 4.97 0.274 

Histidine (H) 30530 2.19 155.15 3.39 2.67 0.071 

Isoleucine (I) 61630 4.42 131.17 5.79 4.56 0.144 

Leucine (L) 160400 11.49 131.17 15.08 11.88 0.374 

Lysine (K) 50092 3.59 146.19 5.25 4.13 0.117 

Methionine (M) 34257 2.45 149.21 3.66 2.89 0.080 
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Phenylalanine 

(F) 
48018 3.44 165.19 5.68 4.48 0.112 

Proline (P) 69184 4.96 115.13 5.71 4.50 0.161 

Serine (S) 78774 5.65 105.09 5.93 4.67 0.184 

Threonine (T) 59258 4.25 119.19 5.06 3.99 0.138 

Tryptophan (W) 20482 1.47 204.22 3.00 2.36 0.048 

Tyrosine (Y) 34649 2.48 181.19 4.50 3.54 0.081 

Valine (V) 94136 6.75 117.15 7.90 6.23 0.220 

 
Sum Total 

 

Sum of Rel 

Weight/mol 
Total 

 

 
1395434 100 

 
126.93 100 

 
Explanation 

MWs taken from ChEBI website. The relative weights/mol are the % prevalances multipled by the 

molecular weights. % by weight is calculated by divding the relative weights/mol by the sum of the 

relative weights/mol. mmol/gDW is calculated by: 

(% by weight/100)*(X grams of protein/gDW)*(1/molecular weight)*(1000 mmol/mol) 

        

Polyamine Composition 

Reference - Busse J, Auling G: Polyamine Pattern as a Chemotaxonomic Marker within the 

Proteobacteria. Syst Appl Microbiol 1988, 11:1–8. 

Polyamine umol/gDW mmol/gDW 

MW 

(g/mol) % dry weight 

Putrescine 44.1 0.0441 90.2 0.397782 

Spermidine 0.3 0.0003 148.32 0.00445 

Cadaverine 7.3 0.0073 104.23 0.076088 

1,3-diaminopropane 5.6 0.0056 74.15 0.041524 

2 hydroxyputrescine 23.2 0.0232 104.18 0.241698 

   

Total 0.761541 

     Peptidoglycan Composition 

Peptidoglycan % dry weight MW (g/mol) mmol/gDW 
  

n subunit 0.06 1983.21 0.000293 
  

n-1 subunit 0.06 993.12 0.000586 
  

      
Model Information 

    
Code Name Charged Formula MW 

  

cpd15665_c 
Peptidoglycan polymer 

(n subunits) 
C80H125N16O42R 1983.21 

  

cpd15666_c 
Peptidoglycan polymer 

(n-1 subunits) 
C40H63N8O21R 993.12 
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Lipopolysaccharide Composition 

Reference - Hase S, Reitschel ET: The chemical structure of the lipid A component of 

lipopolysaccharides from Chromobacterium violaceum NCTC 9694. Eur J Biochem 1977, 

75:23–34. 

Lipid A is the representative component of LPS in the E. coli model. We have done the same here. 

    
New_metabolite C. violaceum Lipid A C91H165N4O33P2 

 

  
MW (g/mol) 

 
C 91 12.01 1092.91 

H 165 1.01 166.65 

N 4 14.01 56.04 

O 33 16 528 

P 2 30.97 61.94 

   
1905.54 

Lipopolysaccharide % dry weight MW (g/mol) 
mmol/g

DW 

LPS 4.42 1905.54 0.023215 

                   

                   

                         
Fatty Acid Composition Part 1 

Reference - Kämpfer P, Busse HJ, Scholz HC. Int J Syst Evol Microbiol 2009 and Young C-

C, Arun a B, Lai W-A, Chen W-M, Chou J-H, Shen F-T, Rekha PD, Kämpfer P. Int J Syst 

Evol Microbiol 2008 

 
Fatty acid C H O 

MW 

(g/mol) 

% 

Prevalence 

of Total FA 

in C. 

violaceum 

% 

Over

all 

Preva

lence 

Weighted 

MW (g/mol)  

Unsaturated 

fatty acid 

16:1 16 29 
0.

5 
229.408 35.8 36.95 84.75529928 Palmitoleate 

18:1 18 33 0 249.462 15 15.48 38.61640867 
omega-7-cis-

octadecenoic acid 

Saturated 

fatty acid 

12:0 12 23 0 167.316 5.6 5.78 9.669448916 dodecanoic acid 

14:0 14 27 0 195.37 1.7 1.75 3.42754386 
tetradecanoic acid or 

myrisitic acid 

16:0 16 31 0 223.424 23.9 24.66 55.1066419 
hexadecanoic acid or 

palmitic acid 

Cyclopropa

ne fatty acid 
17:0cyc 17 31 0 235.435 1.7 1.75 4.130438596 

Cycloheptadecanoic 

acid 

B-hydroxy 

FA 

 (only LPS) 

10:0-3OH 10 19 1 155.261 5.2 5.37 8.331859649 3-hydroxydecanoate 

12:0-2OH 12 23 1 183.315 3 3.10 5.675386997 2-hydroxydodecanoate 

12:0-3OH 12 23 1 183.315 5 5.16 9.458978328 3-hydroxydodecanoate 

Sum 
 

96.9 100 

Average 

Fatty Acid 

MW 
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Lipids 

% 

Preval

ance 

Specifi

c 

Lipids 

% 

Prev

alan

ce 

Overa

ll % 

Preva

lance 

Num

ber 

of C 

Num

ber 

of H 

Nu

mb

er 

of 

O 

Nu

mb

er 

of 

P 

Nu

mb

er 

of 

N 

Nu

mb

er 

of 

FA 

MW 

(g/mol) 

Relat

ive 

Weig

ht/m

ol 

% by 

weig

ht 

mmol/g

DW 

Phosp

holipi

ds 

100 

PE 76.6 76.60 1791 3001 432 50 50 2 34135.7 

2614

7.9 73.42 0.001427 

PG 17.9 17.90 1841 3001 532 50 0 2 35635.8 

6378.

8 17.91 0.000334 

CLPN 

(DPG) 4.6 4.60 3532 6547 882 100 0 4 67107.4 

3086.

94 8.67 8.57E-05 

 

  PA 0.9 0.90 

 

    

 

Total 

 

100 Total Sum Total 

100 

 

99.10 

3561

3.7 100 

 

Fatty Acid Composition Part 2 

Reference - Kämpfer P, Busse HJ, Scholz HC. Int J Syst Evol Microbiol 2009 and Young C-

C, Arun a B, Lai W-A, Chen W-M, Chou J-H, Shen F-T, Rekha PD, Kämpfer P. Int J Syst 

Evol Microbiol 2008 

Lipids 

% 

Preva

lence 

Head 

Group 

% 

Prev

alen

ce 

MW 

(g/mol

) 

Number 

of Fatty 

Acids 

Fatty 

Acid 

% 

Preva

lence 

Over

all % 

Prev

alenc

e 

MW 

(g/mol) 

Relati

ve 

MW/

mol 

% 

by 

weig

ht 

mmol/

gDW 

Phosph

olipids 
100 

phosphat

idylethan

olamine 

(PE) 

76.6 269.15 2 

PE 

12:0 
6.69 5.12 603.78 30.94 4.11 0.0045 

PE 

14:0 
2.03 1.56 659.89 10.27 1.36 0.0014 

PE 

16:0 
28.55 

21.8

7 
716.00 

156.6

1 

20.7

9 
0.0193 

PE 

16:1 
42.77 

32.7

6 
727.97 

238.5

0 

31.6

7 
0.0289 

PE 

18:1 
17.92 

13.7

3 
768.07 

105.4

4 

14.0

0 
0.0121 

PE 

17:0cy

c 

2.03 1.56 740.02 11.51 1.53 0.0014 

phosphat

idylglyce

rol (PG) 

17.9 300.16 2 

PG 

12:0 
6.69 1.20 634.79 7.60 1.01 0.0011 

PG 

14:0 
2.03 0.36 690.90 2.51 0.33 0.0003 

PG 

16:0 
28.55 5.11 747.01 38.18 5.07 0.0045 

PG 

16:1 
42.77 7.66 758.98 58.11 7.72 0.0067 

PG 

18:1 
17.92 3.21 799.08 25.63 3.40 0.0028 
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PG 

17:0cy

c 

2.03 0.36 771.03 2.80 0.37 0.0003 

cardiolip

in 

(CLPN) 

4.6 508.22 4 

CLPN 

12:0 
6.69 0.31 

1177.4

8 
3.62 0.48 0.0003 

CLPN 

14:0 
2.03 0.09 

1289.7

0 
1.20 0.16 0.0001 

CLPN 

16:0 
28.55 1.31 

1401.9

2 
18.41 2.44 0.0012 

CLPN 

16:1 
42.77 1.97 

1425.8

5 
28.05 3.72 0.0017 

CLPN 

18:1 
17.92 0.82 

1506.0

7 
12.42 1.65 0.0007 

CLPN 

17:0cy

c 

2.03 0.09 
1449.9

6 
1.35 0.18 0.0001 

   
99.1 

  

small 

% of 

other 

FAs 

300.0

0   
Sum 

  

        
99.1 

 

753.1

8   
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Appendix 5.2: Biomass equation of iDB858 

 
Mets Type of Met  Coefficient 

1 thr__L_c AA L-Threonine 0.16293 

2 gly_c AA Glycine 0.31790 

3 atp_c NUC ATP 59.81000 

4 dctp_c NUC dCTP 0.07863 

5 coa_c VIT&CO Coenzyme A 0.003097 

6 arg__L_c AA L-Arginine 0.26227 

7 h2o_c Ions H2O 59.81000 

8 nad_c VIT&CO NAD 0.003097 

9 dttp_c NUC dTTP 0.04423 

10 met__L_c AA L-Methionine 0.09140 

11 ala__L_c AA L-Alanine 0.47288 

12 nadp_c VIT&CO NADP 0.003097 

13 val__L_c AA L-Valine 0.25432 

14 mg2_c Ions Magnesium 0.003097 

15 mqn8_c VIT&CO Menaquinone 8 0.003097 

16 gtp_c NUC GTP 0.17558 

17 ribflv_c VIT&CO Riboflavin 0.003097 

18 glu__L_c AA L-Glutamate 0.20266 

19 dgtp_c NUC dGTP 0.07863 

20 lys__L_c AA L-Lysine 0.13511 

21 asp__L_c AA L-Aspartate 0.20664 

22 ser__L_c AA L-Serine 0.21458 

23 sheme_c VIT&CO Siroheme 0.003097 

24 fe2_c Ions Fe2+ 0.003097 

25 ctp_c NUC CTP 0.17558 

26 pro__L_c AA L-Proline 0.18677 

27 k_c Ions Potassium 0.003097 

28 zn2_c Ions Zinc 0.003097 

29 udcpdp_c PEPTIDO Bactoprenyl diphosphate 0.00059 

30 peptido_CV_c PEPTIDO Peptidoglycan polymer (n subunits) 0.00059 

31 cys__L_c AA L-Cysteine 0.03974 

32 so4_c Ions Sulfate 0.003097 

33 q8_c VIT&CO Ubiquinone-8 0.003097 

34 gln__L_c AA L-Glutamine 0.16690 

35 datp_c NUC dATP 0.04423 

36 gthrd_c VIT&CO GSH 0.003097 

37 spmd_c POLYNH2 Spermidine 0.00030 

38 leu__L_c AA L-Leucine 0.43712 

39 tyr__L_c AA L-Tyrosine 0.09537 

40 thf_c VIT&CO 5,6,7,8-Tetrahydrofolate 0.003097 

41 his__L_c AA L-Histidine 0.08345 

42 fad_c VIT&CO Flavin adenine dinucleotide oxidized 0.003097 

43 amet_c VIT&CO S-Adenosyl-L-methionine 0.003097 

44 5mthf_c VIT&CO 5-Methyltetrahydrofolate 0.003097 

45 utp_c NUC UTP 0.09876 

46 10fthf_c VIT&CO 10-Formyltetrahydrofolate 0.003097 

47 cobalt2_c Ions Co2+ 0.003097 
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48 asn__L_c AA L-Asparagine 0.10729 

49 ptrc_c POLYNH2 Putrescine 0.04410 

50 trp__L_c AA L-Tryptophan 0.05563 

51 pydx5p_c VIT&CO Pyridoxal 5-phosphate 0.003097 

52 phe__L_c AA L-Phenylalanine 0.13114 

53 adocbl_c VIT&CO Adenosylcobalamin 0.003097 

54 thmpp_c VIT&CO Thiamine diphosphate 0.003097 

55 ile__L_c AA L-Isoleucine 0.16690 

56 pheme_c VIT&CO Protoheme 0.003097 

57 2dmmq8_c VIT&CO 2-Demethylmenaquinone 8 0.003097 

58 fe3_c Ions Fe3+ 0.003097 

59 cl_c Ions Chloride 0.003097 

60 mn2_c Ions Mn2+ 0.003097 

61 cu2_c Ions Cu2+ 0.003097 

62 ca2_c Ions Calcium 0.003097 

63 colipa_c LPS core oligosaccharide lipid A 0.02321 

64 pe120_c PLIPID Dodecanoylphosphatidylethanolamine 0.00452 

65 pe140_c PLIPID Tetradecanoylphosphatidylethanolamine 0.00137 

66 pe160_c PLIPID Phosphatidylethanolamine_dihexadecanoyl 0.01927 

67 pe161_c PLIPID Phosphatidylethanolamine_dihexadec-9enoyl 0.02886 

68 pe181_c PLIPID Phosphatidylethanolamine_dioctadec-11-enoyl 0.01209 

69 pe170cyc_c PLIPID pe170cyc 0.00137 

70 pg120_c PLIPID Phosphatidylglycerol_didodecanoyl 0.00106 

71 pg140_c PLIPID Phosphatidylglycerol_ditetradecanoyl 0.00032 

72 pg160_c PLIPID Phosphatidylglycerol_dihexadecanoyl 0.00450 

73 pg161_c PLIPID Phosphatidylglycerol_dihexadec-9-enoyl 0.00675 

74 pg181_c PLIPID Phosphatidylglycerol_dioctadec-11-enoyl 0.00283 

75 pg170cyc_c PLIPID pg170cyc 0.00032 

76 clpn120_c PLIPID clpn120 0.00027 

77 cpd15792_c PLIPID clpn140 0.00008 

78 cpd15791_c PLIPID clpn160 0.00116 

79 clpn161_c PLIPID clpn161 0.00173 

80 clpn181_c PLIPID clpn181 0.00073 

81 clpn170cyc_c PLIPID clpn170cyc 0.00008 

1 ppi_c Ions Diphosphate 0.4846 

2 h_c Ions H+ 59.81000 

3 adp_c NUC ADP 59.81000 

4 pi_c Ions Phosphate 59.81000 
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Appendix 5.3: List of reactions added to iDB858 in order to form biomass 

Reaction ID Reaction name GPR 

rDB00002_c Chorismate mutase/prephenate dehydratase (CV_2355) 

rDB00003_c Acetylornithine aminotransferase (CV_1496) or (CV_2256) 

rDB00004_c erythronate-4-phosphate dehydrogenase (CV_3789) 

rDB00005_c (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (CV_3538) 

rDB00006_c Isoprenyl transferase (CV_2691) or (CV_2200) 

rDB00007_c GAP filling rxn in Riboflavin metabolism '' 

rDB00008_c Acid phosphatase (CV_3525) or (CV_4286) 

rDB00009_c Exopolyphosphatse (CV_1262) 

rDB00010_c Non-canonical purine NTP pyrophosphatase (CV_0926) 

rDB00011_c oxidoreductase protein (CV_3210) 

rDB00012_c GMP synthase (CV_3465) or (CV_3746) 

rDB00013_c Hydroxymethylpyrimidine kinase (CV_0151) 

rDB00014_c Hydroxymethylpyrimidine kinase (CV_0151) 

rDB00015_c Dihydrofolate reductase (CV_1028) 

rDB00016_c formyltetrahydrofolate synthetase (CV_1925) 

rDB00017_c phosphoribosylglycinamide formyltransferase (CV_3616) 

rDB00018_c Aminomethyltransferase (CV_3431) 

rDB00019_c 
5-methyltetrahydrofolate-homocysteine S-

methyltransferase 

(CV_3429) and 

(CV_0528 or CV_1074 

or CV_2037) and 

(CV_3431) 

rDB00020_c glycoaldehyde dehydrogenase '' 

rDB00021_c glycolate dehydrogenase (CV_1724) 

rDB00022_c glycerate dehydrogenase (CV_3789 or CV_1724) 

rDB00023_c phosphoglycerate dehydrogenase (CV_1724) 

rDB00024_c Pimeloyl-acp methyl ester esterase '' 

rDB00025_c Pimeloyl-acp methyl ester esterase (CV_4380) 

rDB00026_c precorrin-3B synthase '' 

rDB00027_c precorrin-6A synthase (CV_1565) 

rDB00028_c Cobalt-precorrin-7 (C5)-methyltransferase (CV_1562) 

rDB00029_c threonine-phosphate decarboxylase (CV_2728) 

rDB00030_c ATP: L-threonine O-phosphotransferase (CV_1537) 

rDB00031_c Riboflavin kinase (CV_3570) 

rDB00032_c quinolinate synthetase (CV_3678) 

rDB00033_c nicotinamise-nucleotide amidase (CV_2370) 

rDB00034_c NADP pyrophosphate (CV_2905) 

rDB00035_c ATP: NMN adenyltransferase (CV_0519) 

rDB00036_c 2-oxoglutarate synthase 

(CV_1071) and 

(CV_0528 or CV_1074 

or CV_2037) and 

(CV_1072) 

rDB00037_c Lumped rxn for menaqunone formation '' 

rDB00038_c glutamate-cysteine ligase (CV_4276) 

rDB00039_c Carboxynospermidine synthase '' 
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rDB00040_c pyruvate decarboxylase 
(CV_0586) or (CV_0587) 

or (CV_3889) 

rDB00041_c oleoyl-ACP hydrolase '' 

rDB00042_c 
Palmitoyl-CoA : electron-transfer flavoprotein 2, 3-

oxidoreductase 

(CV_1785) or (CV_2723) 

or (CV_3816) 

rDB00043_c 
Myristoyl-CoA :  electron-transfer flavoprotein 2, 3-

oxidoreductase 

(CV_1785) or (CV_2723) 

or (CV_3816) 

rDB00044_c 
Lauroyl-CoA : electron-transfer flavoprotein 2, 3-

oxidoreductase 

(CV_1785) or (CV_2723) 

or (CV_3816) 

rDB00045_c 
Decanoyl-CoA  : electron-transfer flavoprotein 2, 3-

oxidoreductase 

(CV_1785) or (CV_2723) 

or (CV_3816) 

rDB00046_c 
Octanoyl-CoA : electron-transfer flavoprotein 2, 3-

oxidoreductase 

(CV_1785) or (CV_2723) 

or (CV_3816) 

rDB00047_c 
Hexanoyl-CoA : electron-transfer flavoprotein 2, 3-

oxidoreductase 

(CV_1785) or (CV_2723) 

or (CV_3816) 

rDB00048_c N-acetyl-D-glucosamine 1-phosphate 1,6-phosphomutase (CV_3795) 

rDB00049_c oleoyl-ACP hydrolase '' 

rDB00050_c lumped rxn for lysine biosynthesis '' 

rDB00051_c phophomethylpyrimidine synthase (CV_0235) 

rDB00052_c Thiamine Kinase '' 

rDB00053_c GAP filling rxn in Peptidoglycan biosynthesis 

(CV_0834) and 

(CV_2562) and 

(CV_3586) and  

(CV_4360) and 

(CV_4349) and 

(CV_1125 or CV_3094) 

rDB00054_c UDP-3-O-acyl-GlcNAc deactylase (CV_4337) 

rDB00055_c UDP-3-O-acyl-glucosamine N-acyltransferase (CV_2206) 

rDB00056_c UDP-2, 3-diacylglucosamine hydrolase (CV_3186) 

rDB00057_c KDO transferase (CV_0225) 

rDB00058_c KDO transferase (CV_0225) 

rDB00059_c GAP filling rxn in lipopolysaccharide biosynthesis '' 

rDB00060_c 
D-glycero-alpha-D-manno-heptose 1, 7-bisphosphate 7-

phosphatase 
(CV_1657) 

rDB00061_c GAP filling rxn in lipopolysaccharide biosynthesis '' 

rDB00062_c GAP filling rxn in lipopolysaccharide biosynthesis '' 

rDB00063_c GAP filling rxn in lipopolysaccharide biosynthesis '' 

rDB00064_c GAP filling rxn in lipopolysaccharide biosynthesis (CV_3880) 

rDB00065_c glycosyltransferase (CV_0817) 

rDB00066_c GAP filling rxn in lipopolysaccharide biosynthesis '' 

rDB00067_c Hydrogenobyrinate-acid-a, c-diamide : cobalt cobalt-ligase (CV_1571) 

rDB00068_c Oxygen insensitive nadph nitro reductase/ FMN reductase (CV_3500) 

rDB00069_c Sink needed for 4-Hydroxy-benzylalcohol to leave system '' 

rDB00133_c 5,6-dimethylbenzimidazole synthase CV_1555 
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Appendix 5.4: Selected reactions showing changes in FVA of WT in absence of 

antibiotic (WT) and presence of chloramphenicol (WT+chl) for C. violaceum 

SUBSYSTEM BIGGID CHEMICAL FORMULA WT 
WT

+chl  

Glycolysis or 

Gluconeogenesis 

HEX1 atp_c + glc__D_c  -> adp_c + g6p_c 1 7d 
 

PYK adp_c + pep_c  -> atp_c + pyr_c 7d 1 
 

TCA Cycle 

AKGDH 
coa_c + nad_c + akg_c  -> co2_c + nadh_c + 

succoa_c 
3 7d 

 

FRD7 succ_c + q8_c  <=> fum_c + q8h2_c 2 7c 
 

FUM mal__L_c  <=> fum_c + h2o_c 4 7b 
 

MDH nad_c + mal__L_c  <=> h_c + nadh_c + oaa_c 2 7a 
 

CS accoa_c + h2o_c + oaa_c  -> h_c + coa_c + cit_c 1 7d 
 

Oxidative 

phosphorylation 

cytochrome oxidase 

bo3 ubiquinol-8 2.5 

protons 

2.5 h_c + 0.5 o2_c + q8h2_c  -> h2o_c + 2.5 h_e 

+ q8_c 
2 1 0.08 

Pyruvate 

metabolism 

PFL accoa_c + for_c  <=> coa_c + pyr_c 8 5 0.1 

MALS 
accoa_c + h2o_c + glx_c  -> h_c + coa_c + 

mal__L_c 
1 7d 

 
ME2 nadp_c + mal__L_c  -> co2_c + nadph_c + pyr_c 3 7d 

 
PTAr h_c + accoa_c + pi_c  -> actp_c + coa_c 7d 1 

 
ACKr actp_c + adp_c  -> h_c + atp_c + ac_c 7d 1 

 
OAADC h_c + oaa_c  -> co2_c + pyr_c 3 7d 

 

Purine 

metabolism 

ADK1 atp_c + amp_c  -> 2 adp_c 2 1 0.0005 

ATP carbamate 

phosphotransferase 

atp_c + co2_c + nh4_c  <=> h_c + adp_c + 

cbp_c 
1 7a 

 
NDPK8 atp_c + dadp_c  -> adp_c + datp_c 3 7d 

 
Pyrimidine 

metabolism 
NDPK2 atp_c + udp_c  -> adp_c + utp_c 2 7a 

 

Folate 

biosynthesis 

MTHFD nadp_c + mlthf_c  <=> nadph_c + methf_c 1 7a 
 

FTHFD h2o_c + 10fthf_c  -> h_c + for_c + thf_c 1 7a 
 

Glutamate 

metabolism 
ASPTA asp__L_c + akg_c  <=> oaa_c + glu__L_c 4 7b 

 
Glycine, Serine 

and Threonine 

metabolism 

PSERT akg_c + pser__L_c  <=> glu__L_c + 3php_c 4 4 0.0005 

GHMT gly_c + h2o_c + mlthf_c  <=> ser__L_c + thf_c 4 7b 
 

Arginine and 

proline 

metabolism 

PRO1x h_c + nadh_c + 1pyr5c_c  -> nad_c + pro__L_c 3 7d 
 

P5CR 
h_c + nadph_c + 1pyr5c_c  -> nadp_c + 

pro__L_c 
3 7d 

 
Glyoxylate and 

dicarboxylate 

metabolism 

ICL icit_c  <=> succ_c + glx_c 1 7c 
 

Nitrogen 

metabolism 

Carbonic acid hydro-

lyase 
co2_c + h2o_c  -> h_c + hco3_c 1 7a 

 

Urea cycle and 

metabolism of 

amino groups 

ARGSL argsuc_c  -> fum_c + arg__L_c 1 7a 
 

ARGSS_1 
atp_c + asp__L_c + citr__L_c  -> ppi_c + 

argsuc_c + amp_c 
1 7a 

 
AGGPR nadph_c + acg5p_c  -> pi_c + nadp_c + acg5sa_c 1 7a 

 
OCBT cbp_c + orn_c  -> 2 h_c + pi_c + citr__L_c 1 7a 

 
ORNTAC glu__L_c + acorn_c  <=> orn_c + acglu_c 1 7a 
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ACGK h_c + atp_c + acglu_c  -> adp_c + acg5p_c 1 7a 
 

ACOTA glu__L_c + acg5sa_c  -> akg_c + acorn_c 1 7a 
 

Cyanoamino 

Metabolism 

glycine:acceptor 

oxidoreductase 
gly_c + 2 nadph_c  -> co2_c + 2 nadp_c + hcn_c 1 7a 

 
γ-Amino-γ-

cyanobutanoate 

aminohydrolase/nitrila

se 

2 h2o_c + acybut_c  <=> glu__L_c + nh4_c 1 7a 
 

cyn_rxn6 hcn_c  -> acybut_c 1 7a 
 

Glycerolipid and 

Glycerophospholi

pid metabolism 

G3PD glyc3p_c + fad_c  -> dhap_c + fadh2_c 3 7d 
 

sn-Glycerol-3-

phosphate NADP 2-

oxidoreductase 

h_c + nadph_c + dhap_c  -> glyc3p_c + nadp_c 3 7d 
 

sn-Glycerol-3-

phosphate NAD 2-

oxidoreductase 

h_c + nadh_c + dhap_c  -> nad_c + glyc3p_c 3 7d 
 

Transport via 

ABC 

Orthophosphate-ABC 

transport 
atp_c + h2o_c + pi_e  -> h_c + adp_c + 2 pi_c 1 7a 

 

Extracellular 

Transport 

Exchange for_e  <=> 7d 1 
 

EX_ac_e ac_e  <=> 7d 1 
 

 

Appendix 5.5: Selected reactions showing changes in FVA of WT in absence of 

antibiotic (WT) and presence of streptomycin (WT+strep) for C. violaceum 

SUBSYSTEM BIGGID CHEMICAL FORMULA WT 
WT+

strep  

TCA Cycle 

AKGDH 
coa_c + nad_c + akg_c  -> co2_c + nadh_c 

+ succoa_c 
3 3 20.73 

FUM mal__L_c  <=> fum_c + h2o_c 4 5 0.59 

MDH 
nad_c + mal__L_c  <=> h_c + nadh_c + 

oaa_c 
2 2 0.36 

Oxidative 

phosphorylation 

cytochrome oxidase 

bo3 ubiquinol-8 2.5 

protons 

2.5 h_c + 0.5 o2_c + q8h2_c  -> h2o_c + 

2.5 h_e + q8_c 
2 1 0.32 

Pyruvate metabolism 

PFL accoa_c + for_c  <=> coa_c + pyr_c 8 8 0.27 

PPS 
atp_c + h2o_c + pyr_c  -> h_c + pi_c + 

pep_c + amp_c 
7d 1 

 

Purine metabolism 
ATP carbamate 

phosphotransferase 

atp_c + co2_c + nh4_c  <=> h_c + adp_c + 

cbp_c 
1 1 6.63 

Folate biosynthesis 
MTHFD nadp_c + mlthf_c  <=> nadph_c + methf_c 1 1 2.67 

FTHFD h2o_c + 10fthf_c  -> h_c + for_c + thf_c 1 1 5 

Glutamate metabolism ASPTA asp__L_c + akg_c  <=> oaa_c + glu__L_c 4 5 1.75 

Glycine, Serine and 

Threonine metabolism 

PSERT 
akg_c + pser__L_c  <=> glu__L_c + 

3php_c 
4 5 0.31 

GHMT 
gly_c + h2o_c + mlthf_c  <=> ser__L_c + 

thf_c 
4 5 2.39 

Arginine and proline PRO1x h_c + nadh_c + 1pyr5c_c  -> nad_c + 3 3 0.005 
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metabolism pro__L_c 

SOTA 
akg_c + sucorn_c  <=> sucgsa_c + 

glu__L_c 
7d 1 

 

SGSAD 
h2o_c + nad_c + sucgsa_c  -> 2 h_c + 

nadh_c + sucglu_c 
7d 1 

 
SGDS h2o_c + sucglu_c  <=> succ_c + glu__L_c 7d 1 

 
AST 

arg__L_c + succoa_c  -> h_c + coa_c + 

sucarg_c 
7d 1 

 

N2-succinyl-L-

arginine 

iminohydrolase 

decarboxylating 

2 h_c + 2 h2o_c + sucarg_c  -> co2_c + 

sucorn_c + 2 nh4_c 
7d 1 

 

Urea cycle and 

metabolism of amino 

groups 

ARGSL argsuc_c  -> fum_c + arg__L_c 1 1 16.65 

ARGSS_1 
atp_c + asp__L_c + citr__L_c  -> ppi_c + 

argsuc_c + amp_c 
1 1 16.65 

AGGPR 
nadph_c + acg5p_c  -> pi_c + nadp_c + 

acg5sa_c 
1 1 14.25 

OCBT cbp_c + orn_c  -> 2 h_c + pi_c + citr__L_c 1 1 16.65 

ORNTAC glu__L_c + acorn_c  <=> orn_c + acglu_c 1 1 14.26 

ACGK h_c + atp_c + acglu_c  -> adp_c + acg5p_c 1 1 14.25 

ACOTA glu__L_c + acg5sa_c  -> akg_c + acorn_c 1 1 14.25 

Cyanoamino 

Metabolism 

glycine:acceptor 

oxidoreductase 

gly_c + 2 nadph_c  -> co2_c + 2 nadp_c + 

hcn_c 
1 1 4 

cyn_rxn6 hcn_c  -> acybut_c 1 1 4 

   
1 1 4 

Extracellular Transport NH4+ Exchange nh4_e  <=> 4 1 
 

 

Appendix 5.6: Selected reactions from Flux variability analysis for WT, ChlR and StrpR 

at experimental constraints 

Subsystem 
Reaction 

ID 
Reaction Formula WT 

ChlR StrpR 

Cat 
Fold 

change 
Cat 

Fold 

change 

Glycolysis or 

Gluconeogenesis 

HEX1 atp_c + glc__D_c  -> adp_c + g6p_c 1 7d  7d 
 

PYK adp_c + pep_c  -> atp_c + pyr_c 7d 1  1 
 

TCA Cycle 

AKGDH 
coa_c + nad_c + akg_c  -> co2_c + 

nadh_c + succoa_c 
3 7d  3 2.56 

SUCOAS 
atp_c + coa_c + succ_c  -> adp_c + 

pi_c + succoa_c 
7d 1  7d 

 
FRD7 succ_c + q8_c  <=> fum_c + q8h2_c 2 8  2 0.12 

MDH 
nad_c + mal__L_c  <=> h_c + nadh_c 

+ oaa_c 
2 1 0.04 1 0.28 

CS 
accoa_c + h2o_c + oaa_c  -> h_c + 

coa_c + cit_c 
1 7d  1 0.1 

ICDHyrb 
nadp_c + icit_c  <=> h_c + 

mDB_oxasucc_c + nadph_c 
7d 1  7d 

 

ICDHyra 
h_c + mDB_oxasucc_c  -> co2_c + 

akg_c 
7d 1  7d 
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Oxidative 

phosphorylation 

cytochrome 

oxidase 

bo3 

ubiquinol-8 

2.5 h_c + 0.5 o2_c + q8h2_c  -> h2o_c 

+ 2.5 h_e + q8_c 
2 1 0.46 1 0.91 

cytochrome 

oxidase bd 

menaquinol

-8 

2 h_c + mql8_c + 0.5 o2_c  -> h2o_c + 

mqn8_c + 2 h_e 
3 7d  7d 

 

Pyruvate 

metabolism 

PTAr 
h_c + accoa_c + pi_c  -> actp_c + 

coa_c 
7d 1  1 

 
ACKr actp_c + adp_c  -> h_c + atp_c + ac_c 7d 1  1 

 
ACALD 

acald_c + coa_c + nad_c  <=> h_c + 

accoa_c + nadh_c 
7a 2  1 

 

PFL accoa_c + for_c  <=> coa_c + pyr_c 8 5 0.27 8 1.37 

MALS 
accoa_c + h2o_c + glx_c  -> h_c + 

coa_c + mal__L_c 
1 7d  1 0.1 

ME2 
nadp_c + mal__L_c  -> co2_c + 

nadph_c + pyr_c 
3 7d  7d 

 

PPC 
co2_c + h2o_c + pep_c  -> 2 h_c + 

pi_c + oaa_c 
7d 1  1 

 

OAADC h_c + oaa_c  -> co2_c + pyr_c 3 7d  7d 
 

Pyruvate Alanine 

Serine 

Interconversions 

D-Amino 

acid 

dehydrogen

ase 

h2o_c + fad_c + ala__D_c  <=> pyr_c 

+ nh4_c + fadh2_c 
7b 7b  4 

 

Glyoxylate and 

dicarboxylate 

metabolism 

ICL icit_c  <=> succ_c + glx_c 1 4  1 0.1 

Glutathione 

metabolism 

AMPTASE

CG 

h2o_c + cgly_c  <=> gly_c + 

cys__L_c 
7b 5  4 

 
glutathione 

hydralase 

h2o_c + gthrd_c  <=> glu__L_c + 

cgly_c 
7b 5  4 

 
Purine 

metabolism 
ADK2 

h_c + amp_c + pppi_c  -> ppi_c + 

adp_c 
7a 2  1 

 
Pyrimidine 

metabolism 
CYTK1 atp_c + cmp_c  -> adp_c + cdp_c 1 2 1.3 2 2.56 

Porphyrin and 

chlorophyll 

metabolism 

FeII 

oxygen 

oxidoreduc

tase 

4 h_c + o2_c + 4 fe2_c  <=> 2 h2o_c + 

4 fe3_c 
7a 7b  4 

 

Reductive 

carboxylate cycle 

(CO2 fixation) 

ACS 
h_c + atp_c + ac_c + coa_c  -> ppi_c + 

accoa_c + amp_c 
1 7d  7d 

 

Extracellular 

Transport 

EX_ac_e ac_e  <=> 7d 1  1 
 

EX_for_e for_e  <=> 7d 1  7d 
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Appendix 6.1: KAP study questionnaire distributed to the respondents  

 

Knowledge माहिती 

1. The red line as shown on the medicine package picture, indicates that 

औषध पॅकेज वर लाल line काय दर्शवते ? 

a. Anticancer drugs     e. Drugs only for adult use   

ककश रोग औषधे                प्रौढ वापरासाठी औषधे 

b. Anti-inflammatory drugs    f.  Drugs having side effects 

दाि औषधे                साइड इफेक्ट्स दणेारे औषधे 

c. One time use drugs     g. No Purpose 

एक वेळ वापर औषधे              कािी अर्श नािी  

d. Prescription drugs     h. Do not know 

डॉक्टटराांनी साांहगतलेली औषधे                                       नािी माहिती 

 

True 

 False 

  सत्य

 असत्य 

 

2. If taken too often, antibiotics are less likely to work in the future. 

खूप वेळा घेतले तर, antibiotics भहवष्यात काम करण्याची र्क्टयता कमी आिे 

3. Antibiotics can cure bacterial infection.    

Antibiotics हजवाणू infection बरा करू र्कतात.                                                

4. Antibiotics can cure viral infections. 

 Antibiotics व्िायरल इन्फेक्टर्न्स बरा करू र्कतात. 

5. Bacteria are germs that cause cold and flu. 

Bacteria मुळे सदी आहण खोकला िोतो. 

6. Penicillin and Azithromycin are antibiotics. 

7. Aspirin (Disprin) is an antibiotic. 
8. Paracetamol is an antibiotic.  
9. Antibiotics are indicated to reduce any kind of pain and inflammation. 

Antibiotics कोणत्यािी प्रकारचे वेदना आहण दाि कमी करतात. 
10. Antibiotics can kill “good bacteria” present in our body.  

Antibiotics "good bacteria" आपल्या र्रीरातील चाांगले जीवाणू नष्ट करु र्कतात. 
 

(Rate between 1 to 5, Strongly agree, somewhat agree, undecided, disagree and strongly 

disagree) 

(1 ते 5 दरम्यान दर, ठामपणे, सिमत हनणशय घेतलेला नािी, र्ोडी सिमत, न जुळणे आहण जोरदार असिमत) 

11. Antibiotic resistance is an important and serious public health issue faced by the world 

Antibiotic resistance या जगासाठी एक मित्वाची सावशजहनक आरोग्य समस्या आिे 

12. Antibiotic resistance is an important and serious public health issue in our country 

Antibiotic resistance आपल्या देर्ात एक मित्वाची सावशजहनक आरोग्य समस्या आि े
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13. Antibiotic resistance is an important and serious public health issue faced in Maharashtra 

Antibiotic resistance मिाराष्ट्रात एक मित्त्वपूणश आहण गांभीर सावशजहनक समस्या आिे 

14. Indiscriminate and injudicious use of antibiotics can lead to    True 

 False 

अहत आहण अवैचाररक Antibiotics वापराचे काय िोऊ र्कत े    सत्य

 असत्य  

a. Ineffective treatment  

कुचकामी उपचार       

b. Increased antibiotic efficacy 

वाढलेली Antibiotic गुण 

c. Emergence of bacterial resistance 

Bacterial resistance उदय 

d. Additional burden of medical cost to the patient 

रुग्णाला अहतररक्त वैद्यकीय खचश भार 

Attitude दहृष्टकोन 

(Rate between 1 to 5, Strongly agree, somewhat agree, undecided, disagree and strongly disagree) 

(1 ते 5 दरम्यान दर, ठामपणे, सिमत हनणशय घेतलेला नािी, र्ोडी सिमत, न जुळणे आहण जोरदार असिमत) 

1. When I have a cold, I should take antibiotics to prevent getting a more serious illness. 

मला सदी आि,े तेव्िा मी एक अहधक गांभीर आजार टाळण्यासाठी Antibiotics घ्यावे. 
2. When I get fever, antibiotics help me to get better more quickly. 

मला ताप असेल तवे्िा antibiotics मला लवकर बर चाांगले िोण्यासाठी मदत करतात. 
3. Whenever I take an antibiotic, I contribute to the development of antibiotic resistance. 

जेव्िा पण antibiotic घेतो तवे्िा antibiotic resistance वाढतो . 
4. Skipping one or two doses does not contribute to the development of antibiotic resistance. 

एक ककां वा दोन डोस नािी घेतल्याने कािी फरक पडत नािी. 
5. Antibiotics are safe drugs, hence they can be commonly used. 

Antibiotics सुरहित औषधे आिते, म्िणून त ेसामान्यतः वापरू र्कता. 

Practice सराव 
(Rate between 1 to 5, Strongly agree, somewhat agree, undecided, disagree and strongly disagree) 
(1 ते 5 दरम्यान दर, ठामपणे, सिमत हनणशय घेतलेला नािी, र्ोडी सिमत, न जुळणे आहण जोरदार असिमत) 

1. The doctor prescribes a course of antibiotics. After taking 2 – 3 doses I start feeling better.  

डॉक्टटराांनी antibiotic कोसश ददली आि.े 2 - 3 डोस नी मला बरां वाटायला लागय. 
a. I stop taking the further treatment? 

मी आणखी उपचार र्ाांबवतो. 
b. I save the remaining antibiotics for the next time I get sick. 

उवशररत antibiotics पुढील आजारा साठी सुरहित ठेवतो. 
c. I discard the remaining leftover medication. 

मी उवशररत औषध ेफेकून दतेो. 
d. I give the leftover antibiotics to my friend/roommate if they get sick. 

मी उवशररत औषधे आपल्या हमत्ाांना त्याांचा आजारा साठी देतो. 
e. I complete the full course of treatment. 

मी उपचाराचा पूणश कोसे करतो. 
 

2. I take antibiotics only when prescribed by the doctor. 

जेव्िा डॉक्टटर हलहून देतात, तेव्िाच मी antibiotics घेतो. 
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3. I check the expiry date of the antibiotic before use. 

वापरण्या पूवी मी expiry date तपासतो. 
4. I buy antibiotics without a medical receipt. 

मी डॉक्टटराांच्या  पावती हर्वाय antibiotics खरेदी करतो . 
5. I have, at times started an antibiotic therapy after a simple doctor call, without a proper 

medical examination. 

योग्य तपासणी न करता, फकत फोन वर डााँक्टटर र्ी बोलल्यावर antibiotic therapy सुरू केली. 
6. Have you used antibiotics in the last year?      Yes        

No 

मी गले्या वषी प्रहतजैहवक वापर केला आि.े       िोय              

नािी 
7. If yes, how many times?  

िोय, दकती वेळा? 
□ 1-2 
□ 3-5 
□ > 5 

 
1. Name ___________________________________  2. Age 

नाव             वय 

3. Sex   4. Marital Status   5.Employment   

ललांग              वैवाहिक हस्र्ती           रोजगार 

6. Educational Qualification  

र्ैिहणक पात्ता     

7. Annual Income (Rs.) 

वार्षशक उत्पन्न (रुपये) 

Less than 20,000 More than 20,000 to 1,00,000  More than 1,00,000 to 5,00,000 

20,000 कमी जास्त 20,000 पेिा जास्त, 1,00,000 हून कमी 1,00,000 पेिा जास्त, 5,00,000 हून कमी  

More than 5,00,000 to 10,00,000              More than 10,00,000 

5,00,000 पेिा जास्त, 10,00,000 हून कमी                10,00,000 पेिा अहधक 

 

8. Place (City) 

स्र्ान (र्िर) 

9. At least one family member (parents, children, husband or wife) works in a               Yes           
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दकमान एक कुटुांब सदस्य (आई, वडील, मुले, पती ककां वा पत्नी) एक आरोग्य िेत्ात कायश करते                   िोय          

नािी 

10. Signature 

स्वािरी 
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