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ABSTRACT 

 

Mathematical modeling is needed in all fields of science and engineering 

systems. It is defined as the task of development of mathematical relation(s) 

between the dependent/ output/ response and independent/ input/predictor 

variables in a way such that these are capable of predicting accurately the value(s) 

of the former. For example, there exists a relation between Cetane number 

(output) and the biodiesel fuel properties such as flash point, higher heating value, 

kinematic viscosity and density (predictors). In engineering systems, there exist a 

number of influential process variables and parameters that need to be related to 

the variables defining the performance of the system, quality of the product, etc.  

Having developed an acceptable and practically usable mathematical 

model of a system, it can be used to optimize its performance.  This is achieved 

by employing optimization strategies. Optimization is the task of determination of 

the best solution(s) from among multiple possible ones that would either 

maximize (minimize) a certain pre-defined profit (loss) function. Typical 

optimization objective in chemical engineering/technology are for example, 

minimization of operational costs of a process or maximization of yield, etc.  

A sensibly accurate, robust, and reliable mathematical process model 

saves experimental and operating costs significantly while the optimization 

improves process performance. Owing to these advantages, a great deal of effort 

has been expended over the last five decades toward mathematically modeling of 

chemical and biochemical systems. 

Modeling paradigms: There exist a number of modeling approaches such 

as phenomenological, stochastic, Monte Carlo, cellular automata, statistical, 

empirical and black-box. Among these phenomenological and empirical models 

are widely used in practice. The phenomenological or ‘‘first principles’’ models 

can be constructed from the knowledge of mass, momentum, and energy balances, 

as well as from other chemical engineering principles such as thermodynamics. 
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To acquire the necessary information for phenomenological modeling is in 

general time-consuming, costly, tedious, and often requires extensive 

experimentation. A common feature of most chemical/biochemical/polymer 

systems is their non-linear behavior which leads to complex nonlinear models that 

in most cases are not amenable to analytical solutions; and thus, computationally 

intensive numerical methods must be utilized for obtaining their solutions.  

The above-described multiple difficulties encountered during the 

construction and solution of the phenomenological models necessitate exploration 

of alternative modeling formalisms. A commonly employed alternative to the 

phenomenological process modeling is empirical modeling. Traditionally, this 

approach entails construction of single or multi-variable linear/nonlinear 

regression models from the process data. Here, first principles underlying the 

process are not invoked and modeling is done exclusively using the historical 

process data.  A fundamental deficiency of the empirical modeling approach is 

that the model structure (form) must be specified a priori. Fulfilling this requisite, 

especially for nonlinear processes is a time-consuming and cumbersome task 

since it requires choosing heuristically a suitable model form from numerous 

alternatives. It is thus seen that due to the difficulties associated with the 

phenomenological and empirical modeling, there exists a need for approaches that 

do not require detailed knowledge of first principles underlying a process and at 

the same time do not require pre-specification of the process data fitting function.  

In recent years, state-of-the-art computational intelligence (CI) based 

methodologies, namely, Artificial Neural Networks (ANNs), Support Vector 

Regression (SVR), Genetic Programming (GP), Fuzzy Logic (FL) and Genetic 

Algorithm (GA) have offered a number of attractive avenues for modeling and 

optimization of engineering processes. These CI-based methods have numerous 

attractive properties to overcome a number of drawbacks of the traditional 

phenomenological and empirical modeling techniques. Accordingly, in the 

present thesis ANNs, SVR, and GP formalisms have been employed for modeling 
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chemical and biochemical systems. Also, GA has been used in obtaining optimal 

conditions for a reaction involving Photocatalytic Degradation of Pharmaceutical 

Pollutants.  

Each of the above stated CI-based formalism possesses some unique 

features making them useful in certain specific modeling tasks in chemical and 

biochemical systems presented in this thesis. The thesis is organized in seven 

chapters. A brief overview of each chapter is provided below. 

Chapter 1 provides a brief outline of the contents of the thesis along with 

its rationale. The chapter introduces the types of models, their advantages and 

disadvantages over the others in brief. This chapter also gives the motivation to 

the application of CI-based formalisms along with its importance to chemical and 

biochemical engineering systems. The chapter also addresses the application of 

CI-based methodologies to solve complex real-world problems in brief along with 

their application areas.  

Chapter 2, we introduce the CI-based modeling and optimization methods. 

This chapter provides a comprehensive report of the conventional methods such 

as phenomenological, empirical, etc. of modeling chemical and biochemical 

processes. Further it also gives the advantages and drawbacks of these methods. 

The chapter also lays the foundation for adopting computational intelligence-

based methods and other traditional methodologies for modeling and optimization 

of chemical and biochemical processes employed in this thesis. The 

methodologies are classified according to their areas of application such as 

Modeling Methodologies, for example, Multilayer perceptron (MLP) neural 

networks, genetic programming (GP), and support vector regression (SVR); 

Optimization Methodology, for an example, Genetic algorithm (GA). The chapter 

also gives Principal Component Analysis (PCA) as a Dimensionality reduction 

method and Steiger's z- test for model discrimination.  
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Chapter 3 presents the development of artificial neural networks (ANN), 

support vector regression (SVR) and genetic programming (GP) based models for 

predicting the photo catalytic degradation (PCD) rate constants from experimental 

and structural inputs. The models, are developed for three pharmaceutical 

pollutants considered here namely, Ciprofloxacin, Naproxen, and Paracetamol. To 

develop the stated models four experimental conditions were considered: time of 

exposure of pharmaceutical pollutant to the solar radiation, pH of wastewater, 

concentration degradation during the measured time, and the ratio of degraded 

concentration to the initial concentration of the pollutant. In the model’s input 

space, the three pharmaceutical pollutants were differentiated using a number of 

attributes related to their molecular structures. This imparted the model’s wider 

applicability.  The molecular structural parameters were considered as model 

inputs in addition to the above stated four reaction condition parameters. The 

structural parameters were obtained from Screening Assistant 2 software package 

and represent the following: number of aromatic atoms, number of atoms, number 

of bonds, molecular weight, number of heavy atoms, unit stripped logarithm of 

the solubility, sum of atomic polarizabilities, number of hydrophobic atoms, 

topological surface area, logarithm of the octanol/ water partition coefficient 

obtained from linear atom type model, Weiner path, number of rings, logarithm of 

the octanol/ water partition coefficient of the given structure , molecular 

refractivity and number of moles.  

A sensitivity analysis (SA) was performed to rank the structural inputs 

according to their influence on the model output. This way top ten most 

significant parameters were identified. In this study, PCA was performed on the 

fourteen-dimensional input space consisting of the four experimental parameters 

and the ten influential structural parameters selected accordingly to the SA. The 

MLP-, GP- and SVR-based models predicting the rate constant of the PCD, 

proposed in this study, exhibit an excellent prediction accuracy and generalization 

performance.  
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Additionally, the chapter also presents few results of optimization with the 

objective of obtaining maximum possible degradation of pollutants under milder 

conditions. 

In Chapter 4, the Artificial Intelligence based models have been 

introduced for the prediction of cetane number of biofuels. It is well-known that 

the fuel properties of biodiesel, namely, cetane number (CN), kinematic viscosity 

(KV), density (D) and higher heating value (HHV), play an important role in its 

deployment for the combustion process. This chapter presents the development of 

exclusively data driven models using two Artificial Intelligence (AI)-based 

formalisms, namely, GP and MLP for predicting the cetane number (CN) of 

biofuels. For predicting CN of biofuels two separate inputs (predictors) are 

employed- fatty acid methyl ester (FAME) composition and fuel properties. Using 

the relevant data, two types of CN prediction models are developed in this study: 

(a) Type I models: FAME composition - 171 biodiesel samples from various 

research articles and, (b) Type II models: Properties of biofuels - 67 biodiesel 

samples from various resources.  

The CN prediction accuracy and generalization performance of the AI-

based models show that the FAME composition-based GP and MLP models 

exhibit an excellent prediction and generalization performance. The type II 

models i.e. Fuel property-based models exhibit a reasonably good prediction 

accuracy and generalization performance. 

 In Chapter 5, CI-based formalisms have been proposed to predict coal's 

ash fusion temperatures for the global coal ash samples data from different 

geographies/ territories. The ash fusion temperatures (AFTs) are significant 

characteristics of coal ashes and used routinely in the operations of coal-based 

gasification and combustion processes. Various known models developed for 

predicting the corresponding AFT values from the chemical composition of coal 

ashes are complex, tedious, costly, time-consuming, and belonging to mostly a 
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single geographical region. A study of an extensive coal ash chemical 

composition database from different geographies for each ash phase namely, 

Initial Deformation Temperature (IDT), Softening Temperature (ST), 

Hemispherical Temperature (HT) and Flow Temperature (FT) shows the 

nonlinear relationships between the AFT and weight percentages of some of the 

chemical and mineral constituents. These nonlinearities are captured using three 

computational intelligence (CI) based exclusively data-driven formalisms, 

namely, genetic programming (GP), multi-layer perceptron (MLP) neural 

network, and support vector regression (SVR) to develop the models for the 

prediction of four AFTs.  In this study the GP possesses several novel and 

attractive characteristics though it remains much less utilized data-driven 

modeling technique compared to ANNs and SVR. The predictors for developing 

the data-driven models are the major oxide constituents of the chemical and 

mineral composition of the coal ash namely, SiO2, Al2O3, Fe2O3, CaO, MgO, 

TiO2, and K2O+Na2O. Here PCA have been used to reduce the seven-dimensional 

input space of the AFT models and the pruned dataset was used in the modeling. 

In the results, the relationships between the seven oxides in the coal ashes and the 

corresponding AFTs give nonlinear forms by all the four best fitting GP-based 

models. This study further compares the performance of GP, MLP and SVR 

models in predicting IDT and ST magnitudes and that of HT and FT values. The 

CI-based models developed in this study have a potential due to their high AFT 

prediction accuracy and generalization performance with wider applicability for 

predicting the AFT values of coal ashes from different geographies in the world.   

Chapter 6 reports a study of prediction of initial deformation temperatures 

(IDT) of Indian coals using CI- based models. IDTs refers to the temperature at 

which ash just initiates to flow.  The currently mined coals in India have a high 

ash content which are largely used in the power generation industry. This study 

presents the models for IDT magnitudes for Indian coals with inherently high ash 

content. The CI-based models developed for IDTs here are likely to be useful in 
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operating coal-based thermal power stations in India. The contents of the seven 

major oxides found in coal ashes (i.e. SiO2, Al2O3, Fe2O3, CaO, MgO, TiO2, 

Na2O+K2O), were used as inputs. The experimental data on Indian coals were 

sourced from Central Institute of Mining and Fuel Research (CIMFR), Dhanbad, 

India.  Three CI-based modeling formalisms, namely MLPNN, SVR and GP were 

employed to develop IDT prediction models. The IDT prediction accuracy and 

generalization performance of these models was evaluated for three CI-based 

modeling formalisms- MLPNN, SVR and GP in terms of CC and RMSE values. 

In this study, the SVR-based model was found to be superior as compared to GP 

and MLPNN-based models.  

Finally, Chapter 7   concludes   and   summarizes   the   principal findings 

of the studies presented in the thesis and provides suggestions for the future work. 
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1.1 RATIONALE AND SIGNIFICANCE OF THE STUDY  

Chemical reactions/reactors/plants convert raw materials or chemicals into 

useful valuable forms/products. The chemical industry encompasses numerous 

sub-areas; the major ones are as given below. 

 

 Bulk chemicals 

 Petroleum, petrochemicals and coal/coke-based industry 

 Detergents 

 Dyes, dyestuff, and paints 

 Fertilizers 

 Insecticides and pesticides 

 Resins, polymers, plastics, and synthetic rubber 

 Synthetic fibers and filaments 

 Biotechnology and pharmaceuticals 

 Food Manufacturing 

 Electronics  

 Energy generation  

 Specialty chemicals 

The size of the global chemical industry in revenue terms in the year 2017 was 

USD 4,378 billion.  In the above industries some of the important jobs chemists 

and chemical engineers perform are: 

 Invent, design, and develop new processes and products, 

 Construct equipment, instrument and facilities for safe, environment 

friendly and economical process operation  

 Plan and operate facilities. 

 Control and optimize the process for efficient, cost-effective and profitable 

use of the resources 

In all these activities modeling of reactions/ reactors/ processes plays an important 

role. 
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“The objective of modeling is to construct, from theoretical and empirical 

knowledge of a process, a mathematical formulation which can be used to predict 

the steady-state or dynamic behavior of the process (Constantinides, 1987).”  

Modeling can also be considered as  

“The task of development of mathematical relationship(s) between the 

dependent/ output/ response and the independent/ input/ predictor variables/ 

parameters variables of a process in a manner such that these in a generalized 

way are capable of predicting accurately the value(s) of the former.” 

 

Mathematical modeling pervades all fields of science, engineering and 

technology. It provides a description of a system/process by employing the 

mathematical language, principles and procedures. The mathematical model of a 

process is at best an approximation of the phenomena underlying the real process. 

In general, models get complex (multiple variables interacting either in a linear or 

a nonlinear manner) as they describe microscopic phenomena.  Typically, the 

dynamic behavior of a chemical process is described in terms of ordinary and/or 

partial differential equations, which may be augmented with algebraic equations. 

In the present-day chemical reactions/reactors/plants there exists a number 

of influential process variables and parameters that need to be accounted for 

during modeling. The principal advantage of modeling are as follows:  

 To replace as much as possible the expensive hardware or laboratory 

analyzers with less expensive and easier-to-maintain software.  

 An accurate reactor/ reaction/ process model can be used for predicting 

process performance under varying sets of operating conditions. This 

helps significantly in the design, development, optimization and control of 

the chemical processes and saves the efforts involved in conducting 

experiments.  

In chemical engineering/technology, process models are used mainly for 

following purposes: 
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• Steady-state and dynamic process modeling  

• Process optimization  

• Process monitoring 

• Process identification 

• Soft-sensor development 

• Model based nonlinear process control  

• Fault detection and diagnosis 

• Nonlinear principal component analysis 

 

Commonly, models for chemical processes involve following inputs (predictor/ 

causal variables and parameters) and outputs (dependent/ response) variables. 

 

Inputs:  

 Reactant, catalyst, promoter, and inhibitor concentrations, inlet 

temperature, thermodynamic and kinetic parameters, etc. 

Outputs: 

 Conversion, yield, turn over number, process temperature, operating 

cost, etc. 

 

1.2 COMMONLY EMPLOYED PROCESS MODELING PARADIGMS   

AND A NEED FOR THEIR ALTERNATIVES   

There exist a number of modeling approaches such as phenomenological, 

stochastic, cellular automata, statistical, Monte Carlo, empirical, and black-box 

for modeling of chemical and chemical engineering/technology systems. Among 

these phenomenological and empirical are widely used in practice. The 

phenomenological (also termed ‘‘first principles’’ or “mechanistic”) models can 

be constructed from the knowledge of the physico-chemical phenomena 

underlying the system under consideration. This typically involves taking in 

consideration the mass, momentum, and energy balances, physical property 
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relationships, as well as other chemical engineering principles such as 

thermodynamics.  The advantages of the first principles models are: (a) Their 

structure can be interpreted in terms of the phenomena they describe, and (b) they 

can be used in extrapolation and scale-up. On the other hand, first principles 

models suffer from following drawbacks (Czop et al., 2011; Nandi et al., 2002).  

 Their development involves a significant amount of experimental 

effort and the associated costs and time for securing the mechanistic 

and other information and data such as kinetic parameters and heat and 

mass transfer coefficients.  

 The modern-day chemical processes are often complex and nonlinear 

and consists of a plethora of interconnected equipment. This poses 

significant difficulties in getting a good understanding of their steady-

state and dynamic behavior, which is needed for the development of 

phenomenological models.  

 A large number of chemical and chemical engineering/technology 

systems behave in a nonlinear manner. Rather, nonlinear behavior is a 

law rather than an exception for these systems.  This results in 

multivariable nonlinear models involving ordinary and partial 

differential equations that in most cases cannot be solved analytically. 

In such cases computationally intensive numerical methods are needed 

for their solutions.  

 Complexity of a mechanistic model varies with the underlying 

assumptions and, therefore, these must be must be outlined 

beforehand. 

 

Owing to the difficulties in developing first principles models, an 

alternative namely empirical modeling is commonly employed in process 

modeling. Most often this approach comprises constructs single or multi-variable 
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linear/nonlinear models using corresponding regression techniques and the 

process data. It may be noted here that unlike first principles modeling, the 

empirical modeling rarely invokes the actual physico-chemical phenomenon 

underlying the chemical process. That is, modeling is conducted exclusively using 

the historical process data.  The major drawback of the empirical process 

modeling is that the specific structure (form) of the data-fitting function (model) 

needs to specified before estimation of the function parameters could be 

attempted (Nandi et al., 2002). Invariably, owing to the nonlinear and complex 

nature of the modern-day chemical processes, pre-specification of the data-fitting 

function turns out to be a time-consuming, and cumbersome task especially since 

it comprises selecting by trial and error a suitable model form from a large 

number of alternatives (Nandi et al., 2001).  

Owing to the difficulties pertaining to the phenomenological and empirical 

modeling approaches there arose a need for methods that do not (a) require the 

detailed knowledge of the physic-chemical phenomena underlying a process, and 

(b) compel pre-specification of the linear/nonlinear form of the data-fitting 

function.  

 

1.3 COMMON PROCESS OPTIMIZATION PARADIGMS AND A NEED 

FOR THEIR ALTERNATIVES   

Optimization is the task of determination of the best solution(s) from 

among multiple possible ones that would either maximize (minimize) a certain 

pre-defined profit (loss) function. Optimization is done to determine what values 

of process inputs should be used to obtain the desired process output. Like 

calibration, optimization involves substitution of an output value for the response 

variable and solving for the associated predictor variable values. The process 

model is again the link that ties the inputs and output together. Typical 

optimization objective in chemical sciences and engineering/technology are, for 

example, (a) minimization of operational costs of a process, (b) maximization of 
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product quality and quantity, (c) minimization of energy costs during process 

operation, (d) maximization of conversion/yield and selectivity of the desired 

product, and (e) minimization of resources such as raw materials/ feed, labor and 

utilities. 

A reasonably accurate model saves experimental and operating costs 

significantly while optimization of model improves process performance leading 

to, for example, minimization of operating cost, energy savings, reduction in 

pollution, better product quality etc. Consider, for instance, a typical furnace or a 

boiler system wherein process optimization involves determination of the 

optimum operating and feed conditions so as to obtain maximum heat energy 

from minimum amount of reactants/fuel/feed. In order to conduct this 

optimization, an accurate boiler model that predicts the heat energy as a function 

of the operating and feed conditions is necessary.  

Conventionally, process optimization is conducted using deterministic 

gradient based algorithms. These algorithms such as the widely employed 

gradient descent and conjugate gradient need computation of the derivative of the 

objective function (to be minimized/maximized) at each step towards an optimal 

solution. Most of these algorithms also suffer from following drawbacks.  

(a) Invariably, in the case of nonlinear objective functions, these methods get 

stuck into a local minimum instead of reaching the global minimum on the 

objective function surface.  

(b) Require the objective function to be smooth, differentiable and 

continuous. 

Since more often than not, the optimization problems encountered in chemical 

engineering / technology consists of nonlinear objective functions possessing 

multiple minima, the standard gradient descent based deterministic function 

maximization/minimization algorithms do not yield optimum solutions. Also, 

while the objective function may be continuous and differentiable, there is no 
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guarantee that it will be smooth. Owing to these difficulties in respect of the 

conventionally used gradient descent methods there was a need to explore 

alternative methods that are lenient towards the nature of the objective function 

and capable of reaching the deepest or the global minimum on the objective 

function surface. 

In recent years, state-of-the-art computational intelligence (CI) based 

methodologies, namely, Artificial Neural Networks (ANNs), Support Vector 

Regression (SVR), Genetic Programming (GP), Fuzzy Logic (FL) and Genetic 

Algorithm (GA) have offered a number of attractive features for modeling and 

optimization of chemical, biochemical and polymer processes. These methods 

have several attractive properties and overcome a number of drawbacks of the 

conventional phenomenological and empirical modeling techniques as also 

commonly used gradient based optimization methods.  

The principal tenets of the modern day’s chemical industry practice 

involve safe, “Green”, energy efficient production with improved productivity.  

Prediction of the steady-state and dynamic reaction/reactor/process behavior, 

prediction of the phase diagrams, preventative maintenance and asset 

management, optimization of process conditions, soft-sensor development, load 

forecasting and fault detection and diagnosis, are some of the techniques available 

for improving the productivity of today’s chemical plants.  A brief description of 

these tasks is given below (Krishnan, 2017; Tambe et al., 1996). In a number of 

these tasks, the state of art artificial/computational intelligence formalisms namely 

ANNs, GP, SVR and GA, have been utilized for performing modeling and 

optimization.  

1. Prediction of the steady-state and dynamic process behavior: An 

enormous amount of steady-state and dynamical data regarding the 

process operating (input) conditions (temperatures, reactant and catalyst 

concentrations, flow-rates, etc) and the corresponding performance 

(output) variables (conversion, selectivity, yields, etc) are measured and 
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archived. These data can be used to establish appropriate linear/nonlinear 

mathematical relationships between the operating conditions (predictors) 

and the corresponding performance (response) variables using a variety of 

artificial and computational intelligence formalisms.  These models can be 

developed online as also offline and subsequently used in tasks such as 

process optimization, fault detection and diagnosis and model-based 

control. 

2. Phase diagram prediction: Using models describing the phase diagram, 

it is possible to predict the conditions at which   thermodynamically 

distinct phases occur, and also coexist at an equilibrium. 

3. Preventative Maintenance and Asset Management: Multiple sensors 

are fitted on the chemical process equipment such as reactors, 

compressors, boilers and heat exchangers which measure a continuous 

stream of data that gets archived.  Big data analytics which utilizes various 

techniques including artificial intelligence ones makes use of the stated 

data for identifying/classifying   patterns and thereby predict beforehand 

the potential malfunctions/breakdowns   of the equipment and prevent 

equipment failures. 

4. Process optimization: The goal of process optimization is determination 

of values of process inputs (operating variables & parameters) to be used 

in the process operation to obtain an optimal process performance.  Some 

optimization goals in process engineering are maximization of conversion 

and or product yield, maximization of conversion and or product yield, 

maximization of process profit, minimization of operating loss, 

minimization of production cost, and minimization of selectivity of the 

undesirable products/energy requirement. In recent years artificial 

intelligence-based methods have been extensively employed in performing 

process optimization. 
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5. Soft-sensors: Soft-sensors are inferential mathematical models capable of 

continuous estimation of properties that are infrequently measured in a 

laboratory or where online property measurement is not possible. Their 

advantages are: (i) lower maintenance and capital investment of analyzers, 

(ii) operate the plant “without-being-in-dark” between lab measurements, 

and (iii) reduced lab sampling frequency. In a typical chemical plant, a 

number of dynamic operations take place concurrently. This poses 

difficulties in selecting the optimal operating conditions.  The state of the 

art “Smart” technologies utilizes soft sensors for enabling control of the 

nonstandard process variables to improve energy efficiency. 

6. Load Forecasting: Artificial/computational intelligence methods have 

been used to forecast the demand of power and energy requirement of 

chemical plants that varies depending upon the time of the day, season, 

weather conditions, etc.  Typically, the historic demand-supply data are 

used to develop load forecasting models which are significantly useful 

also in planning the inventory of the raw-materials such as oil, natural gas, 

coal, air, water, metals, minerals, etc. necessary to fulfill the demand of 

power and energy. 

7. Fault detection and diagnosis: Chemical processes comprise a complex 

network of equipment handling and processing materials, and energy. 

Over time, the process performance degrades albeit slowly owing to the 

wear and tear of the process equipment and components. It is extremely 

important to detect and diagnose faulty/abnormal process behavior from 

the viewpoint of plant and personnel safety as well as avoiding 

catastrophic events and associated economic loss. In recent years, artificial 

neural networks have found a niche in performing fault diagnosis and 

detection (FDD) in chemical processes. Specifically, their tremendous 

power in recognizing patterns in the data is exploited for conducting FDD. 

ANNs can efficiently perform pattern recognition (clustering) and this 
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ability is used to differentiate between the “normal” and “abnormal” 

process behavior based upon the sensor data.  

The major advantages of the AI/CI-based modeling methods are as follows 

 They are exclusively data-driven methods, that is, modeling is conducted 

on the basis of historical, and/or current process data.  Unlike 

phenomenological modeling, the data-driven modeling does not require 

information such as mass, momentum, and energy balances, physical 

property relationships, and thermodynamics and therefore model 

development needs mush less efforts and time.  

 Given adequate and representative process data (example set) consisting 

of predictor (model inputs) and response (model outputs) variables, ANNs 

are capable of approximating the relationships between the inputs and 

the output to an arbitrary degree of accuracy (Girosi and Poggio, 1990). 

 While ANNs and SVR are ideal for approximating nonlinear input-out 

relationships, GP can efficiently model both linear as well as nonlinear 

inter-dependencies.     

 Unlike commonly employed regression models, it is not necessary to pre-

specify the form (structure) of the ANN, SVR and GP based models thus 

saving the time-consuming and tedious trial-and-error approach involved 

in the selection of the data-fitting model. 

The data driven models also have some negative features although the 

advantage stated above outweighs them: (a)  a large number of unknown 

parameters may be associated with the data-driven models, which need to be 

estimated from the process data (termed “example set”) consisting of the predictor 

and response variables, (b) in general,  these models cannot be used for 

extrapolation since being exclusive data-driven, their prediction and 

generalization performance is  reliable only in the  range of the predictor-response 

variable data considered in the model development; this essentially means that the 
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data-driven models are good for interpolation, (c) being black-box models, it is 

difficult to interpret the structure and parameters of the ANN and SVR models in 

terms of the example data or the physico-chemical phenomena that they describe, 

and (c) the structure of a data-driven model is subjective; that is different data-

driven modeling paradigms can come up with  process models possessing 

different forms (structures) with variable number of related parameters although 

their prediction and generalization performance is comparable. 

Owing to their numerous advantages, in the present thesis ANNs, SVR, 

and GP formalisms have been employed for modeling selectively chemical and 

biochemical systems. Also, GA has been used in obtaining optimal conditions for 

a reaction involving Photo-catalytic Degradation of Pharmaceutical Pollutants. 

The characteristic features of the CI-based modeling methods used in the thesis 

are provided below. 

 

1.3.1 Artificial neural networks  

Artificial neural networks (ANNs) are devised on the basis of the 

functioning of the naturally occurring network of neurons in the human brain. 

Specifically, these are based on the concept that a highly interconnected system of 

simple processing elements (called neurons or node) can approximate complex 

nonlinear relationships existing between input and output variables to an arbitrary 

degree of accuracy (Patel et al., 2006). The ANN paradigm namely Multilayer 

Perceptron Neural Networks used in the thesis is an exclusively data-driven 

nonlinear function approximation technique. This means that the phenomenal 

information processing capability of MLP arises from its multilayer architecture 

housing artificial neurons (processing elements/nodes) that are linked using 

weighted synaptic connections. When the flow of information occurs in forward 

direction only, it is a feed-forward structure MLP. Most often, it contains three 

layers namely input, hidden, and output layers. It is also possible to consider 

multiple hidden layers in an MLP architecture. Each node in its hidden layer 
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processes incoming information using logistic sigmoid, a nonlinear transfer 

function to compute the output. The much-desired nonlinear input-output 

mapping capability of an MLP is due to the said nonlinear processing performed 

by its hidden layer nodes.  Given an example data, consisting of input and the 

corresponding output vectors, an MLP can learn intricate nonlinear input-output 

relationships. The training or learning is directed using a appropriate learning 

algorithm (such as the error-back-propagation algorithm (Rumelhart et al., 1986) 

that optimizes the interlayer connection weights such that the error between MLP 

computed output and its desired (target) magnitude (known as prediction error) is 

minimized. The notable features of MLP can be summarized as:  

 It can be developed solely from the process input output data without 

invoking process phenomenology. 

 Even multi-input multi output relationships (MIMO) can be 

approximated easily. 

 The MLP-based models possess generalization ability owing to which 

the model can accurately predict the outputs corresponding to a new set 

of inputs that were not part of the data used for constructing the MLP 

model.  

 The MLP-based models are robust and fault tolerant. They can, 

therefore, recall full patterns from incomplete, partial or noisy patterns. 

 The MLPs can process information in parallel, at high speed, and in a 

distributed manner.  Their notable application domains can be listed as: 

nonlinear function approximation, supervised pattern recognition and 

image processing. 

 MLPs have shown remarkable progress in the recognition of visual 

images, handwritten characters, printed characters, speech and other PR 

based tasks. 
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 Control Systems: A large class of computer products, chemical plants, 

robots, space science and technology, military applications, mechatronics 

etc. are the current examples of MLPs applications in today's scenario.  

A representative tabulation of MLP applications in chemical engineering/ 

technology is provided in Table 1.1.  

Table 1.1: A representative survey of ANN/MLP–, SVR-, GP-, and GA-based 

modeling and classification applications 

CI 

Formalism 

Application Reference 

ANNs/ MLPs 

 

 

 Modeling of catalytic manufacturing 

process 

Chitra (1993) 

Nonlinear multivariate calibration Bos et al (1993) 

Prediction of brewing fermentation Syu et al (1994) 

Modeling of coke fractionators Blaesi and Jensen 

(1992) 

Identification of gases Niebling (1994) 

Estimation of GCV of coal Patel et al (2007) 

Modeling of High Ash Coal 

Gasification in a Pilot Plant Scale 

Fluidized Bed Gasifier 

Patil-Shinde et al (2014) 

Counter-propagation Neural Networks 

for Fault Detection and Diagnosis 

Vora et al (1997) 

Prediction of All India Summer 

Monsoon Rainfall Using Error-back-

propagation Neural Networks 

Venkatesan et al (1997) 

Modeling and monitoring of batch 

processes using PCA assisted GRNN 

Kulkarni et al (2003) 
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   MLPs exhibit a phenomenal capability to predict situations from past 

trends. In addition to Chemical engineering MLP neural networks have been 

utilized for example in meteorology (Mielke, 1984), stock market (Hassan et al., 

2007), banking (Li and Ma, 2010) and econometrics (Kuan and White, 1994) with 

high success rates.  

 

1.3.2 Support vector regression 

Support vector machine (SVM) is a statistical learning-based formalism 

for conducting supervised nonlinear classification (Vapnik, 1995).  To conduct 

the alleged classification, SVM maps the coordinates of the objects into a high 

dimensional feature space using nonlinear functions (termed features or kernels) 

wherein two classes can be separated with a linear classifier as done typically. 

Support vector regression utilizes same principles albeit for performing a 

nonlinear regression.  That is, it attempts to find a multiple input – single output 

(MISO) function with following attributes: (a) it is located with the maximum 

deviation from all the training data, and (b) is as flat as possible. A function with a 

small weight vector assures its flatness.  The salient features of the SVR are given 

below (Sharma and Tambe, 2014).  

 The problems to find the solution in presence of multiple local minima can 

be avoided by SVR. For this task, SVR minimizes a quadratic function with 

a single minimum. 

 Assures good generalization ability, robustness of the solution and 

sparseness of the regression function, and an automatic control of the 

solution complexity. 

 A precise understanding of support vectors, play a foremost role in defining 

the regression function assists in the exposition of the regression model in 

terms of the training data. 

The noteworthy applications of SVMs can be seen to solve various real-world 

problems: 

https://www.sciencedirect.com/science/article/pii/S0957417406001291#!
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 SVMs are helpful in information science, library science and computer 

science for text and hypertext categorization. 

 The hand-written characters/ signatures can be recognized using SVM  

 The SVM algorithm has been widely applied in the medical, biological, 

environmental and other sciences.  

 SVM have been proved best for images classification. 

 In some applications of soft sensors SVM have proved best performance 

results. 

 

The significant applications of SVM/ SVR in chemical engineering/ technology 

are specified in Table 1.2   

Table 1.2: A representative survey of SVR-based modeling and classification 

applications 

CI 

Formalism 

Application Reference 

SVM/ SVR Soft-sensor development - fed-batch 

bioreactor 

Desai et al (2006) 

Catalyst Development Valero et al (2009) 

Applications of SVR in chemistry Ivanciuc (2007) 

Analysis of LDA time-series Gandhi et al (2008) 

Modeling and Optimization of pilot 

plant study of cumene synthesis 

Nandi et al (2004) 

Forecasting of coal seam gas content 

using SVR based on particle swam 

optimization 

Meng et al (2014) 

High Ash Char Gasification in 

Thermo-Gravimetric Analyzer and 

Prediction of Gasification 

Performance Parameters  

Patil-Shinde et al (2016) 

https://en.wikipedia.org/wiki/Text_categorization
https://en.wikipedia.org/wiki/Handwriting_recognition
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A novel modeling approach to 

optimize oxygen-steam ratios in coal 

gasification process 

Arabloo et al (2015) 

Selecting Predictor Variables and 

Modeling in Process Identification 

Verma et al (2016) 

Optimization Techniques for 

Improving the Performance of 

Information Retrieval System 

Badhe et al (2014) 

 

1.3.3 Genetic Programming 

Genetic Programming (GP), belongs to a class known as “evolutionary 

algorithms” that follow the principal tenet—commonly paraphrased as “survival 

of the fittest” — of Darwin’s theory of evolution along with the genetic 

propagation of characteristics.  Initially, GP was proposed [Koza, 1992] to 

develop automatically computer programs doing pre-specified tasks. It’s another 

application known as “symbolic regression (SR),” is of interest to this study.  The 

novel attribute of the GP-based SR is, provided an example data set having 

function inputs and the corresponding outputs, it has the capability of searching as 

also optimizing the specific structure (form) of an appropriate linear or nonlinear 

data-fitting function and all the related parameters.  And, unlike MLP neural 

network and SVR formalisms, the GP approach performs the stated search and 

optimization without making any assumptions about the structure of the linear or 

nonlinear data-fitting function. GP is a CI-based exclusively data-driven modeling 

paradigm, for automatically generating computer programs that perform pre-

defined tasks (Koza, 1990). Another important application of GP is known as 

“symbolic regression (SR)” which is used in the thesis for modeling purposes. 

The characteristics of GP based SR are given below. 

 Generates an initial population of candidate expressions/models with pure 

stochastic manner. That is, unlike similar techniques performing data-driven 

modeling, namely multilayer perceptron (MLP) neural network, and support 
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vector regression (SVR), GPSR does not make any assumptions about the 

form and parameters of the data-fitting models/expressions. 

 Perpetually, GPSR searched models are parsimonious (i.e. lesser 

complexity) than the analogous MLP and SVR models. Therefore, these 

models are easier to use, grasp, and deploy in a practical setting.   

 The automatic search and optimization of the form and parameters of the 

data-fitting function performed by GPSR obviates the trial and error 

approach allied with the conventional linear or nonlinear regression 

analysis.  

The GPs applications are wide worthy found in today's real-world scenario: 

 GP have been used for selection of predictor variables and modeling in 

process identification 

 It works better in coal/ coal gas applications where most the data is 

observed as nonlinear. 

 GP applications are found to best suitable in thermodynamics such as vapor-

liquid equilibrium (VLE). 

 The quantitative structure property relationship (QSPR) is powerful 

analytical method for breaking down a molecule into a series of numerical 

values describing its relevant chemical and physical properties (e.g. charge 

density, hydrophobic surface area, etc.). While modeling the QSPR, GP 

have proved best results as it models, searches the optimized space and 

gives the best result.  

 Apart from these GP have deep applications in the field of - 

Nanotechnology, Chemical Kinetics, Control Engineering, Bioinformatics, 

Gene Expression Profiling Analysis, Financial Mathematics, Economics, 

Deep Space Network, Civil and Mechanical Engineering, Marketing Mix 

Analysis, Multimodal Optimization, Multidimensional Systems, Wireless 

sensors, Quality control, etc. 

A brief representative survey of GP-applications in chemical engineering/ 

technology is provided in Table 1.3 below. 
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Table 1.3: A representative survey of GP-based modeling and classification 

applications 

CI 

Formalism 

Application Reference 

GP Softsensor Model for Styrene 

Polymerization Process and its 

Application in Model based Control 

Ghugare et al (2016) 

Prediction of HHV of coals of 

different ranks and from diverse 

geographies 

Ghugare and Tambe 

(2017) 

Optimization of Glucose to Gluconic 

Acid Fermentation 

Cheema et al (2002) 

Non-linear principal components 

analysis using genetic programming 

Hiden et al(1998) 

Fault Detection Zhang et al (2005) 

Robust soft sensors based on 

integration of genetic programming, 

analytical neural networks, and 

support vector machines 

Kordon et al. (2002) 

Selecting Predictor Variables and 

Modeling in Process Identification 

Verma et al (2016) 

Genetic programming-based models 

for prediction of vapor-liquid 

equilibrium 

Patil-Shinde et al 

(2018) 

 

1.3.4 Evolutionary and Genetic Algorithms   

Evolutionary algorithms: Evolutionary algorithms are based upon the theory of 

biological evolution, namely that proposed by Charles Darvin in 1859.  It is a 

branch of artificial intelligence termed “evolutionary computation.”  EAs have 
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found numerous applications for solving complex nonlinear optimization 

problems. Given an objective function, the said optimization typically involves 

finding optimal values of the decision variables such that the objective function is 

maximized/minimized. There exist mainly three types of EAs; these are: 

 Genetic algorithms 

 Evolutionary programming 

 Evolutionary strategies 

Although their applications differ, the underlying implementation are similar. To 

begin, an EA generates a random population of candidate solutions to the given 

optimization problem. This is unlike the classical gradient based optimization 

methods which works on a single solution towards finding an optimal one. Next, 

the population is subjected to a selection process in which those members of the 

population which are in inferior in fitness are eliminated, while the fitter 

individuals are permitted to not only survive to the next generation but also 

produce offspring candidate solutions using an operation termed “crossover.” This 

is akin to the “survival of the fittest” principle of Darwinian evolution theory. The 

fitness of a candidate solution essentially represents how well the solution fares at 

the optimization task, that is, objective function maximization/minimization. 

Typically, fitness of a candidate solution is computed using a fitness function. The 

offsprings candidates may be subjected to mutation which completes one cycle of 

evolutionary process. The iteration continues by subjecting the offspring to the 

fitness evaluation, crossover and mutation until a best solution is searched. 

Two major benefits of the evolutionary algorithms are (a) they are well-

suited for solving nonlinear optimization problems with multiple minima, and (b) 

invariably they provide a solution which corresponds to the global minimum. In 

the present thesis, genetic algorithms have been employed for obtaining optimal 

solutions for a problem involving Photocatalytic Degradation of Pharmaceutical 

Pollutants. A detailed description of GAs is provided below.  
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GA (Goldberg, 1989) are evolutionary algorithms based on the principles 

of “Darwinian evolution” of biologically evolving species and propagation of 

genetic characteristics from one generation to the next. Their application area is 

stochastic nonlinear optimization that has a number of advantages over the 

traditional gradient-based optimization methods. Specifically, GA can be used for 

maximization/minimization of an objective function that is not smooth, 

differentiable and continuous. Another important characteristic of GA is that they 

need measurements of objective function only, and not the measurements (or 

direct calculation) of the gradient (or higher order derivatives) of the objective 

function.  

The applications of GA are Linguistic analysis, Protein folding, vehicle 

routing problem, software engineering, Filtering and signal processing, Mobile 

communications infrastructure optimization, etc. Most of the GAs applications are 

similar to GP; the difference is that GAs are bit string operations while GPs are 

tree structures.   

A representative survey of the CI–based modeling and classification applications 

in chemical and biochemical engineering is tabulated below.  

Table 1.4: A representative survey of GA-based modeling and classification 

applications 

CI 

Formalism 

Application Reference 

GA Function Optimization DeJong (1975); Petridis 

et al (1998) 

System Identification Das and Goldberg 

(1988) 

Chemical flow-shop sequencing Cartwright and Long 

(1993) 

Solving non-convex trim loss problem Ostermark (1999) 

https://en.wikipedia.org/wiki/Optimization_(mathematics)
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Biodegradable iron chelates for H2S 

abatement 

Hamid et al (2014) 

Optimization Techniques for 

Improving the Performance of 

Information Retrieval System 

Badhe et al (2014) 

 

As can be seen, each of the above stated CI-based formalism possesses some 

unique features making them useful in certain specific modeling tasks in chemical 

and biochemical systems presented in this thesis. 

 

1.4 BRIEF SUMMARY OF THE THESIS 

The thesis is organized in seven chapters. A brief overview of each 

chapter is provided below. 

Chapter 1: Abstract of the thesis/Introduction 

This chapter provides a brief outline of the contents of the thesis along with its 

rationale. 

Chapter 2: Computational Intelligence based Modeling and Optimization 

methods  

This chapter provides a detailed account of the conventional methods such 

as phenomenological, empirical, etc of modeling chemical and biochemical 

processes and their advantages and drawbacks. The chapter also gives the 

rationale for adopting computational intelligence-based methods for modeling and 

optimization of chemical and biochemical processes. Next, the chapter presents 

the state-of-art computational intelligence based and other traditional 

methodologies employed in the thesis. The methodologies are classified according 

to their areas of application: 
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1. Modeling Methodologies: Multilayer perceptron (MLP) neural networks, 

genetic programming (GP), and support vector regression (SVR). 

2. Optimization Methodologies: Genetic algorithm (GA). 

3. Dimensionality Reduction Method: Principal Component Analysis (PCA). 

4. Statistical method for model discrimination:  Steiger's z- test. 

Chapter 3: Prediction of Rate Constant of Photocatalytic Degradation of 

Pharmaceutical Pollutants by machine learning based 

formalisms 

This chapter presents the development of artificial neural networks (ANN) 

and genetic programming (GP) based models for predicting the photo catalytic 

degradation (PCD) rate constants from experimental and molecular structural 

inputs. The models, are developed for three pharmaceutical pollutants, namely, 

Ciprofloxacin, Naproxen, and Paracetamol. To predict the rate constant of the 

PCD of pharmaceuticals the stated models use following four experimental 

conditions: time of exposure of pharmaceutical pollutant to the solar radiation, pH 

of wastewater, concentration degradation during the measured time, and the ratio 

of degraded concentration to the initial concentration of the pollutant. 

The MLP- and GP-based models predicting the rate constant of the PCD, 

proposed in this study, exhibit an excellent prediction accuracy [correlation 

coefficient (CC) > 0.9] and generalization performance. The machine learning 

based modeling strategy introduced here can be fruitfully used in the development 

of models for a variety of other pharmaceutical degradation reactions.  

In addition to the modeling the chapter also reports a few results of 

optimization that has been performed with the objective of obtaining maximum 

possible degradation of pollutants under milder conditions.  

Chapter 4: Prediction of Cetane number of biofuels using Artificial 

Intelligence based models 
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It is well-known that the fuel properties of biodiesel, namely, cetane 

number (CN), kinematic viscosity (KV), density (D) and higher heating value 

(HHV), play a significant role in its utilization for the combustion process. 

Accordingly, this chapter presents the development of exclusively data driven 

models predicting the Cetane Number (CN) of biofuels. The models are 

constructed using two Artificial Intelligence (AI)-based formalisms, namely, GP 

and MLP and employ fatty acid methyl ester (FAME) composition and fuel 

properties as inputs (predictors). The carbon chain length and degree of 

unsaturation are two significant factors of FAME that affect the property of CN of 

biodiesel (Tong et al., 2011) and thus contribute to the ignition quality of the 

biodiesel (Sivaramakrishnan and Ravikumar, 2012). 

Based on the relevant data, two types of CN prediction models developed in this 

study using following inputs:  

 Type I models: FAME composition—Capric (C10:0), Lauric (C12:0), 

Myristic (C14:0), Palmitic (C16:0), Palmitoleic (C16:1), Stearic (C18:0), 

Oleic (C18:1), Linoleic (C18:2), Linolenic (C18:3), Arachidic (C20:0), 

Paullinic (C20:1) and Erucic (C22:1). 

 Type II models: Properties of biofuels, namely density (kg/l), flash point 

(°C), higher heating value (MJ/kg) and kinematic viscosity (mm2/s).  

 

For developing the two types of AI-based models, a dataset consisting of 

FAME composition and fuel properties of 171 and 67 biodiesel samples, 

respectively, and the corresponding CNs was compiled from various research 

articles (Ahmad et al., 2014; Martı´nez et al., 2014; Miraboutalebi et al., 2016). 

Principal component analysis (PCA) was performed on the twelve-dimensional 

input space of the FAME composition-based GP and MLP-based models with a 

view to reduce the input dimensionality of the models. In the case of fuel 

property-based models the input dimensionality was not high and therefore PCA 

was not performed on the input space of the corresponding models.  
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The CN prediction accuracy and generalization performance of the AI-

based models indicate the following. 

(a) FAME composition-based GP and MLP models exhibit an 

excellent prediction accuracy [correlation coefficient (CC) > 0.9 

and root mean squared error (RMSE) < 5] and generalization 

performance. 

(b) Fuel property-based models exhibit a reasonably good prediction 

accuracy and generalization performance [CC > 0.8 and RMSE < 

4] for both training and test set data.  

The notable characteristics of this study is that (i) to our knowledge as 

gained from the current literature, biodiesel property based nonlinear CN 

prediction models have been developed for the first time, and (ii) the novel GP 

method has been employed for the first time for developing CN prediction 

models.  The AI-based models introduced here due to their excellent prediction 

and generalization performance have the potential to replace the existing biofuel 

Cetane Number prediction models in practical applications. 

Chapter 5: Prediction of Coals Ash Fusion Temperatures using 

computational intelligence-based models 

The ash fusion temperatures (AFTs) are important characteristics of coal 

ashes and used routinely in the operations of coal-based combustion and 

gasification processes to avoid/lessen occurrences of undesired slagging and 

fouling phenomena and their deleterious effects such as pressure drop, channel 

burning, corroding of furnace components, and unstable operation. Various 

models (predominantly linear) have been developed for predicting the 

corresponding AFT values from the chemical composition of coal ashes. 

However, estimation of AFT from chemical composition is a complex and 

relationship between the numbers of interacting factors is precisely unknown, 

thus, the stated approach becomes tedious, costly and time-consuming.    Also, the 

stated AFT prediction models are based on the data from coals belonging to 
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mostly a single geographical region although coal properties widely based upon 

their geographical origin. A scrutiny of an extensive coal ash chemical 

composition database for each ash phase namely, Initial Deformation 

Temperature (IDT), Softening Temperature (ST), Hemispherical Temperature 

(HT) and Flow Temperature (FT) suggests that the relationships between the AFT 

and weight percentages of some of the chemical and mineral constituents could be 

nonlinear.  For capturing these nonlinearities and thereby developing models 

possessing better AFT prediction accuracies, this work uses three computational 

intelligence (CI) based exclusively data-driven formalisms, namely, genetic 

programming (GP), multi-layer perceptron (MLP) neural network, and support 

vector regression (SVR) for developing models for prediction of four AFTs.  

Among three CI-based methods, the GP possesses several novel and attractive 

characteristics; yet it remains much less utilized data-driven modeling technique 

compared to ANNs and SVR. A notable feature of this study is that a large 

number of chemical and mineral constituents data and the corresponding AFT 

values pertaining to the global as well as Indian coal ashes have been utilized in 

the model development. These characteristics have imparted a wider applicability 

to the CI-based models. The inputs to the models are the major oxide constituents 

of the chemical and mineral composition of the coal ash namely, SiO2, Al2O3, 

Fe2O3, CaO, MgO, TiO2, and K2O+Na2O. The seven-dimensional input space of 

the AFT models was reduced by using the principal component analysis and the 

pruned dataset was used in the modeling. All the four best fitting GP-based 

models developed in this work for the prediction of four ash phase temperatures 

possess nonlinear forms. This result clearly shows that the relationships between 

the seven oxides in the coal ashes and the corresponding AFTs are nonlinear. A 

comparison of the prediction accuracy and generalization performance of the 

three CI-based models shows that (a) the performance in predicting IDT and ST 

magnitudes of GP, MLP and SVR models is comparable, and (b) the performance 

of the MLP based models, in the case HT and FT predictions, is better than GP 

and SVR models. Therefore the CI-based models developed in this work have a 
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potential due to their wider applicability, high AFT prediction accuracy and 

generalization performance for predicting the AFT values of coal ashes from 

different geographies in the world.   

 

Chapter 6: Prediction of Initial Deformation Temperatures of Indian coals 

using computational intelligence-based models 

The property that governs the deposition of ash in various coal-utilizing 

process equipment is termed ash fusion temperature (AFT).  The phenomena 

responsible for the said ash deposition are termed slagging and fouling.  One of 

the four commonly used AFTs in practice is termed Initial deformation 

temperature (IDT). It refers to the temperature at which ash just begins to flow.  

In India, the currently mined coals have a high ash content and these coals are 

predominantly used in the power generation industry. It is therefore important to 

develop models predicting IDT magnitudes specifically for Indian coals with 

intrinsically high ash content. Such models are expected to be useful in operating 

coal-based thermal power stations in India. With this objective, computational 

intelligence (CI) based IDT prediction models were developed in this study 

wherein the contents of the seven principal oxides found in coal ashes (i.e. SiO2, 

Al2O3, Fe2O3, CaO, MgO, TiO2, Na2O+K2O), were used as predictors. The 

experimental data on Indian coals were sourced from Central Institute of Mining 

and Fuel Research (CIMFR), Dhanbad, India.  These data correspond to 91 coal 

ash samples and contain information of the above stated seven oxides and the 

corresponding IDTs.  Three CI-based modeling formalisms, namely MLPNN, 

SVR and GP were employed to develop IDT prediction models. The IDT 

prediction accuracy and generalization performance of these models was 

evaluated in terms of coefficient of correlation (CC) and root mean square error 

(RMSE) values pertaining to the experimental and model predicted magnitudes of 

the IDT of Indian coal ashes. Among the three models constructed using the GP, 

MLPNN and SVR methods, the IDT model prediction and generalization 
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performance of the SVR-based model was found to be superior to the 

corresponding GP and MLPNN-based models.  

 

Chapter 7: Conclusions 

This chapter summarizes the principal findings of the studies presented in 

the thesis and provides suggestions for the future work.  
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Abstract 

 

Modern chemical processes are complex in character with numerous 

reactors, unit processing equipment, raw materials, controllers, etc. Also, it is 

absolutely essential to operate them efficiently, cost-effectively, causing 

minimum or no damage to the environment, and at the same time manufacturing 

products that are safe to use and of high quality.  Process modeling and 

optimization plays an important role in achieving these objectives. There are a 

number of different strategies for modeling and optimization of chemical 

reactions, reactors and processes. These include phenomenological, stochastic, 

Monte Carlo, cellular automata, statistical, empirical and computational 

intelligence-based ones. Each of these methods possesses certain advantages and 

drawbacks. Since they overcome some serious deficiencies of the commonly used 

phenomenological modeling and optimization methods, in this thesis, state-of-the-

art exclusively data-driven computational intelligence (CI) based methods have 

been employed for modeling and optimization of chemical and biochemical 

systems. The  modeling methods used are artificial neural networks (ANNs), 

support vector regression (SVR) and genetic programming (GP), while genetic 

algorithms (GA) have been used for process optimization. This chapter provides a 

detailed account of these methods, with a view of presenting their origin, 

functional aspects, implementation procedure and applications. 

The methodologies described here are classified according to their areas of 

application: 

1. Modeling Methodologies: 

 Multiple input – single output (MISO) and Multiple input – 

multiple output (MIMO) data-driven modeling: Multilayer 

perceptron neural networks (MLPNN), genetic programming 

(GP), and support vector regression (SVR). 

2. Optimization Methodology: Genetic algorithm (GA). 

In addition to the CI methods, the studies presented in the thesis employ a method 

known as Principal Component Analysis (PCA) for reducing the dimensionality 
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of the data used as model inputs. Accordingly, a short description of PCA is also 

provided in this chapter.  Also presented in this chapter are the statistical 

measures namely coefficient of correlation (CC) and root mean square error 

(RMSE) and a test termed Steiger's z-test that are used to measure the 

performance of the individual models and to discriminate between multiple 

models and select the best one. 
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2.1 PROCESS MODELING  

The knowledge of the “cause-and-effect” relationships is vital in the 

solution of problems in all fields of endeavor (Tambe et al., 1996). The first phase 

of modeling of any scientific/engineering/technology system comprises collection 

of the information and systematic knowledge of the system (Naddeo et al, 2008). 

It entails the a priori knowledge regarding a given phenomenon that comes from 

the analysis of all possible linkages with other phenomena and physical laws, 

preceding the modeling. In process modeling, the a priori knowledge about the 

system is of significant importance although its availability is always limited by 

the complexity of the physical/chemical system (Buchacz and Zolkiewski, 2007). 

Even if the physical and/or chemical principles underlying a system are known, it 

is usually difficult to formulate the specific relationships and obtain particular 

values of the parameters such as the kinetic rate constants, heat and mass transfer 

coefficients and relevant thermodynamic quantities. The extent of the a priori 

knowledge available for modeling decide the following: (i) the final type of the 

model that is possible to be developed, (ii) model accuracy, (iii) the type of 

algorithm to be used in model construction, (iv) the complexity of the model and, 

(v) the cost of model construction (Tambe et al., 1996).  

On the basis of their temporal behavior, two types of chemical process 

models are commonly developed, namely, steady-state and dynamic models. A 

steady-state model describes the time-invariant behavior of a chemical process.  

On the other hand, dynamic models describe the time-dependent behavior of the 

process and in general are more complex to solve than the steady-state models. 

These models are used in the control system design for analyzing the process 

response for monitoring the disturbances, set-point changes, etc. as also for 

tuning the controllers. Depending upon the quantum of the a priori knowledge 

available about the system, either a first principles or an empirical is constructed. 

Commonly, process models are constructed using phenomenological and 

data-driven (empirical) approaches. 
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2.1.1 Phenomenological Modeling Approach 

The phenomenological modeling approach, also termed as "first-

principles" or “mechanistic” modeling approach, describes the process behavior 

in terms of the appropriate mass, momentum and energy balance equations 

collectively with the pertinent chemical engineering principles. Such models 

contain a number of system parameters and quantitatively articulate the cause-

and-effect relationships in the form of algebraic or differential or algebraic-

differential equations. For example, a phenomenological model for a non-

isothermal continuous stirred tank reactor (CSTR) (Carberry, 2001; Dutta, 2017) 

uses information such as the reactant inlet concentration(s), kinetic rate 

constants, flow rates, etc.  to compute the magnitudes of the outlet temperature 

and concentration. In the first principles modeling approach, a mathematical 

model describing the physico-chemical phenomena underlying in the process is 

first formulated and the model fitting is conducted by estimating the values of the 

unknown model parameters by utilizing actual process input-output data.  For 

data- fitting purposes, the linear / nonlinear regression techniques based on the 

least squares’ minimization formalisms are commonly employed. 

 

The distinct advantages of the phenomenological process models are: (i) 

they account for the underlying physico-chemical phenomena as closely as 

possible, and (ii) can be used in extrapolation (scale-up) i.e., a phenomenological 

model can be utilized even outside the range spanned by the experimental process 

input-output data used in the model fitting. A significant drawback of this type 

of modeling is that in most real-life situations the complete understanding of 

the physico-chemical phenomena is not available thus making the model 

development a tedious, costly and difficult task. Moreover, most chemical 

processes behave nonlinearly and multiple nonlinear dependencies exist between 

system/process variables. Such models cannot be solved using analytical 

techniques and, therefore, require rigorous computationally intensive numerical 

methods for their solutions.  
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 2.1.2 Empirical Modeling Approach 

The empirical approach to process modeling involves construction of a 

single or multi-variable linear/nonlinear regression models.  Here, an 

approximate or a random guess is made regarding the structure of the data-

fitting function and its parameters are ascertained using a suitable 

linear/nonlinear parameter estimation method and the process data. Empirical 

modeling approach is relatively less tedious compared to the first principles 

modeling although the guesswork for choosing an appropriate fitting function 

and the consequent parameter estimation does involve a trial and error procedure. 

The critical task of specifying the structure (form) of the fitting function 

requires multiple trials particularly when the relationships between model inputs 

and the outputs are nonlinear.  The reason for numerous trials is that a large 

number of fitting functions compete for the data-fitting. Additional constraint of 

an empirical model is its validity being limited over the ranges of the data used in 

its construction. That is, in general these models are poor at extrapolation and 

therefore cannot be used in scale-up. Also, empirical modeling requires a 

statistically well distributed data for them to possess good prediction accuracy 

and generalization performance. A model possessing good generalization ability 

is capable of predicting outputs accurately for new sets of inputs that were not 

part of the dataset used in the model construction. The most significant 

advantage of the empirical modeling approach is that a detailed knowledge of 

the physico-chemical phenomena underlying the process behavior is not required 

in the model construction thus saving the enormous efforts required in obtaining 

the related information.  

2.1.3 Alternative modeling approaches 

The above-stated limitations of the phenomenological and empirical 

modeling approaches necessitated a paradigm shift in the approach towards 

modeling of scientific and engineering/technology systems. Specifically, the 

new modeling approach should possess the following attributes so as to prove 
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its suitability when phenomenological and empirical modeling are found to be 

infeasible. 

 A m ethod that doesn't call for an in-depth knowledge of the 

physicochemical phenomena underlying a process; that is, it should 

be essentially process data-driven. 

 The modeling formalism should not require pre-specifying the 

form (structure) of the data-fitting function. Ideally, it should 

automatically choose the form of the data-fitting function without 

making any assumptions about the form. 

 The method should be capable of developing models possessing 

good prediction accuracy, and equally importantly an excellent 

generalization capability. 

Post-1980s, a number of Computational Intelligence (CI) based 

approaches possessing above-stated attributes were proposed and these have 

offered an attractive alternative not only for   modeling of chemical 

systems/processes but also for their optimization. A wide variety of engineering 

problems exist for which phenomenological and conventional empirical modeling 

poses difficulties. For such problems, the CI-based approaches can bring efficient 

and speedy solutions. The CI-based modeling approaches possess following 

advantages. 

(i) The models are constructed exclusively from the process data 

consisting of the dependent (also termed model 

outputs/response variables) and independent variables (termed 

model inputs/predictor/causal variables) without invoking the 

first principles underlying the system/process. 

(ii) Being robust they can handle the system/process uncertainties 

(noise) efficiently.  

(iii) They are particularly suitable for modeling complex nonlinear 

systems/processes.  
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(iv) These methods do not require explicit specification of the form of 

the data-fitting function.  

Owing to their above-stated several attractive characteristics, in the 

present thesis steady-state models have been developed of chemical and 

biochemical systems using computational intelligence methods. 

2.2 PROCESS OPTIMIZATION 

 

 All chemical processes can be improved to various extents and therefore 

scientists, engineers and technologies strive to optimize them. In chemical 

engineering/technology optimization typically finds applications in process design 

and operation, product and model development, real-time (online) optimization, 

etc. The task of process optimization refers to optimizing process operating 

variables and parameters in a manner such that while satisfying the imposed 

constraints, specific measures of process performance are significantly improved. 

In actual process optimization practice, an objective function representing the 

performance measure is either maximized or minimized. The essential attributes 

of chemical process optimization are as follows (Biegler, 2010). 

(a) A typical optimization tasks involves maximization of, for 

instance, reaction conversion, yield, selectivity's of the desired 

product and profit, or minimization of the operating cost, energy 

requirement, selectivity of the undesired product, etc. For example, 

optimization of a typical distillation column operation comprises 

determination of the optimum column-operating and feed 

conditions in order to acquire maximum product yield from 

minimum amount of reactants in feed, minimum reboiler energy 

and reflux.  

(b) A predictive model describing the behavior of the process and 

possessing good prediction accuracy and generalization 

performance is essential. This model, which represents the 

objective function can be phenomenological, empirical or black-
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box (exclusively data-driven one such as CI-based). Often, a 

solution to an optimization problem needs to satisfy a constraint.  

(c) Depending upon the optimization task, the decision variables 

appearing in the objective function are optimized such that the 

function is maximized or minimized while satisfying the imposed 

constraints. The constraints essentially specify feasible regions of 

system operation. Often, process optimization provides multiple 

sets of operating variables, leading to an improved process 

performance.  

2.2.1 Conventional Methods of Process Optimization 

    The two types of process optimization methods are namely deterministic 

and stochastic. In the case of unconstrained multi-variable optimization 

problems, the following conventional deterministic optimization methodologies 

are used (Edger et al., 2001). 

 Gradient based methods: Newton’s method, Cauchy’s steepest 

descent method, Generalized Reduced Gradient (GRG), Nelder-

Mead algorithm simplex method, sequential linear programming 

(SLP), sequential quadratic programming (SQP), and Levenberg-

Marquardt (LM) method. 

 Direct search methods:  Simplex search, Pattern search, Conjugate 

direction. 

Among these, the gradient-based methods are employed commonly. In 

their implementation, the solution to an optimization problem is represented in the 

form of a vector consisting of the values of decision variables at which the 

gradient of the objective function with respect to the decision variables becomes 

zero. Thus, gradient computation is an integral feature of such optimization 

methods. The gradient-based methods are iterative. For example, the Newton’s 

method requires computing the first as well as the second order gradient (in the 
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form of a matrix termed “Hessian” of second order partial derivatives) of the 

objective function with respect to the individual decision variable.  A majority of 

the above-stated gradient based optimization methods, suffer from the following 

disadvantages. 

 The objective function to be maximized/minimized needs to be 

continuous, smooth, and differentiable over the feasible region of 

the decision variables. 

 For a constrained optimization problem, a feasible region must be 

of convex shape. 

 Computation of the gradients (either first order and/or second order) 

at each step is computationally expensive. 

 Higher probability of solutions getting get stuck in a local optimum, 

thus leading to a sub-optimal solution. 

 Convergence to a solution depends on the chosen initial 

conditions/guess. 

 Ineffective in treating discrete search space problems. 

In a number of real-life optimization problems—especially those 

involving objective functions derived using exclusively data-driven modeling 

methods such as the computational intelligence-based ones—the objective 

functions are nonlinear, noisy, and non-smooth. In such cases, the conventional 

deterministic gradient based optimization   methodologies   are found to be 

inefficient and unsuitable, which necessitates exploration of alternate strategies 

for process optimization.   

In the last two decades stochastic optimization algorithms have found 

ever growing applications in almost all scientific and engineering/technology 

branches as also finance and business. They posses several attractive attributes 

and thus have emerged as a smart alternative to the deterministic optimization 

methods. Many of these methods have now become “industry standard” 

approaches for solving challenging optimization problems (Spall, 2004).  
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A majority of the stochastic optimization methods are not gradient based. 

A noteworthy feature of the stochastic optimization technique is that emphasis is 

given on sampling the search space as widely as possible while trying to locate 

the promising regions for further search. This is achieved by searching the 

solution space randomly. Thus, implementation of stochastic optimization 

methods involves random (probabilistic) step(s). In contrast to the conventional 

deterministic optimization techniques, which operate on a single candidate 

solution, the stochastic methods function on a population of candidate solutions. 

The size of the population depends on the specific problem under consideration. 

These characteristics makes it possible for the stochastic techniques to search 

several areas of the solution space simultaneously.  In their implementation, 

randomly generated initial population of solutions is constantly refined to find 

improved solutions.  

A number of computational intelligence (CI) based stochastic 

optimization techniques have been proposed, such as genetic algorithms (GA) 

(Goldberg, 1989; Holland, 1975), memetic algorithms (Moscato, 1992; 

Rechenberg, 1989), particle swarm (Kennedy and Eberhart, 1995), differential 

evolution (Aluffi-Pentini et al., 1985) and recent artificial immune systems (AIS) 

(De Castro and Zuben, 2002; Jerne, 1974). The stochastic optimization 

techniques have following advantages (Nandi et al., 2001; Spall, 2004). 

 They are well-suited for dealing with noisy objective functions or 

highly nonlinear, high dimensional systems for which classical 

deterministic methods of optimization are unsuitable. 

 Can efficiently solve optimization problems involving non-

differentiable, discontinuous and noisy objective functions as also 

those involving discrete search spaces. 

 They need measurements of the objective function only, and not the 

measurements (or direct evaluation) of the gradient (or higher order 

derivatives) of the objective function.   
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 Invariably, for problems involving minimization, converge to the 

global minimum or the deepest local minimum on the objective 

function surface. 

A significant drawback of the stochastic optimization methods is that since they 

work upon a population of candidate solutions simultaneously, their 

implementation is computationally expensive. This drawback can be easily 

overcome by employing parallel processing computers since a number of steps in 

their implementation are amenable to parallelization.  

In the present thesis, a widely used stochastic optimization technique, 

namely, Genetic Algorithm (Goldberg, 1989; Holland, 1975) has been employed 

for the optimization of the photo-catalytic degradation of pharmaceutical 

pollutant process (See Chapter 3).  A detailed description of GA is provided in 

Section 2.5. 

2.3 CI-BASED MODELING METHODOLOGIES  

Owing to their several attractive features, three CI-based modeling 

methodologies, namely Artificial Neural Networks (ANNs), Genetic 

Programming (GP), and Support Vector Regression (SVR) have been used 

extensively for reaction/process modelling in this thesis. In what follows, a 

detailed description of their origin, functional attributes and applications is 

presented. 

2.3.1. Artificial Neural Networks (ANNs)  

Artificial neural networks are information-processing formalisms based 

on the mechanisms followed by the highly interconnected network of the 

cellular structure of the human brain. The billions of cells forming this 

network are known as neurons. Figure (2.1) shows the basic structure of a 

biological neuron. Individually, a neuron performs simple signal processing; 

however, the neural network formed by billions of neurons possesses immense 

information processing capability that forms the basis of the human intelligence 
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and other brain functions. This intelligence imparting ability of the biological 

neural network is copied in an ANN in an oversimplified manner. ANNs can be 

viewed as computational algorithms   mimicking   the   behavior   of   a 

biological   neural   network   for accomplishing various tasks such as 

classification, function approximation, nonlinear principal component analysis 

(NPCA), noise reduction, clustering, pattern recognition, and memory 

association. 

 

The artificial neuron works in a manner analogue to a biological neuron. 

As shown in Figure (2.1), signals coming in through various inlet connectors, 

known as dendrites, are summed in the nucleus of the cell. The summed signal is 

further propagated through the axon connectors to the downstream neurons. The 

axons of a neuron are connected to hundreds of downstream neurons through a 

separating nerve cell gap called the synapse. A synapse acts as an activation 

function for the electrochemical signals that are transferred onwards.  The 

information processing/transfer that occurs within the network essentially takes 

place via the electrochemical signals. The signal received by the connected 

downstream neurons is processed in a similar fashion by each linked neuron.  

These numerous neurons working in assembly of the network finally generate the 

processed signal at the output nodes of the network. 

 

Figure 2.1: A biological neuron. 
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Figure 2.2: An artificial neuron 

An artificial neuron (also termed processing element or node) and the 

information flow (via signals) associated with it is depicted in Figure 2.2, where 

𝑥1,𝑥2,𝑥3,, … . , 𝑥𝑁 are the 'N' inputs to the neuron and 𝑤1,𝑤2,𝑤3,, … . , 𝑤𝑁 are the 

weights attached to the input signals. As shown in the figure, if an N-dimensional 

input vector, 𝑋 = [𝑥1,𝑥2,𝑥3,, … . , 𝑥𝑁]𝑇, is presented to the neuron, then each of the 

input 𝑥𝑖   is weighed by a weight 𝑤𝑖   and is passed to the summing junction. In 

order to fire the neuron a unity input with a weight 'b', known as bias is also fed 

to the summing junction. Here, all the weighed inputs are summed according to 

Eqn. (2.1) and the resulting output is transformed by an appropriate transfer 

function (known as an activation/ threshold function) to produce the desired 

output 'y'. 

𝑦 =  ∑ 𝑤𝑖
𝑁
𝑖=1 𝑥𝑖 + 𝑏                                            (2.1) 

 

It is the use of nonlinear transfer functions that imparts ANNs their ability 

of nonlinear classification/regression. The commonly used transfer functions are 

logistic sigmoid, hyperboloid tangent and linear and Gaussian functions. 
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Table 2.1: Well-known Artificial Neural Network architectures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Commonly, ANNS are classified on the basis of how the information 

flow occurs in their structure. Accordingly, they are classified either as “feed-
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occurs in a single (i.e. forward) direction from the input layer to the output layer 

whereas in the second category, inter-layer or intra-layer feedback loops are 

present. Table (2.1) lists various types of ANNs along with their information 

flow and learning modes (Tambe et al., 1996). 

2.3.1.1 Multilayer perceptron (MLP) neural networks 

An ANN termed Multilayer Perceptron Neural Network (MLPNN) is the 

most widely employed ANN for performing exclusively data-driven nonlinear 

function approximation. The unique information processing capability of MLP 

arises from its multilayer structure housing artificial neurons (processing nodes/ 

elements) that are linked using weighted synaptic connections. When a MLP 

possess a feed-forward arrangement meaning the information flow take place only 

in the forward direction. Generally, it contains three layers namely input, hidden, 

and output layers (see Figure 2.3). In some cases, MLPNN also houses multiple 

hidden layers in its structural design. Every node in its hidden layer processes 

incoming information using a nonlinear transfer function, for example the logistic 

sigmoid and hyperbolic tangent (tanh), to calculate its output. The much-desired 

nonlinear input-output mapping ability of a MLPNN is due to the said nonlinear 

processing performed by its hidden layer nodes.  Given an example data, 

consisting of the inputs (independent/predictor/causal variables) and the 

corresponding outputs (dependent/response variables), an MLPNN is capable of 

learning complex nonlinear input-output relationships. This training (learning) is 

performed by employing an appropriate learning algorithm [e.g. error-back-

propagation algorithm (Rumelhart et al., 1986) , the conjugate gradient algorithm 

(Moller,1993) and Levenberg-Marquardt method (Levenberg,1944;  Marquardt, 

1963)]  that updates the weights on the connections linking the inter-layer nodes  

such that a measure of  the error (termed  “prediction error”) between the MLPNN 

computed outputs and their desired (target) magnitudes  is minimized. A detailed 

description of the MLPNNs is available at numerous books (e.g. Bishop, 1995; 

Tambe et al., 1996; Zurada, 1992). The reviews and research articles (see for 

https://en.wikipedia.org/wiki/Donald_Marquardt
https://en.wikipedia.org/wiki/Donald_Marquardt
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example, Rumelhart et al., 1986 and Zhang et al., 1998). For the sake of brevity 

an in-depth description of MLP training is provided below.  

 
 
 
Figure 2.3: Schematic of a single hidden layer multiple input-single output 

(MISO) MLP network 

An MLPNN works in the either of the following two modes: 

 

1.  Training/learning Mode: This step is implemented after readying the 

dataset known as the “example set” comprising the inputs and the 

corresponding outputs/targets to be fitted using the MLPNN. The 

network training can be performed using either on-line or batch mode. 

In the case of on-line training mode, a single input-output example 

(data-point) from the dataset is used to compute the outputs of the 

hidden and the output layer nodes and the MLPNN weights are updated 

on the basis of the corresponding prediction error. This procedure is 

repeated for all the input-output examples in the example set multiple 

times till the MLPNN endowed with the desired regression abilities 

(good prediction accuracy and generalization performance) is secured. 

In the batch mode operation, all the input-output examples in the 

example set are presented successively to the MLPNN, and the mean 
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prediction error is calculated, which is utilized for the weight updation. 

This procedure is repeated till an MLPNN model with the above-stated 

regression abilities is obtained. The most widely used weight adjustment 

algorithm is known as “error-back-propagation (EBP)” algorithm 

proposed by Rumelhart et al. (1986).  It is based on the generalized 

delta rule. The field of ANN virtually exploded with a huge number of 

applications after this algorithm was proposed.  

2.  Prediction Mode: Once the training mode is successful, the trained 

MLPNN model can be used to predict the outputs of a new set of inputs. 

This input set is not a part of the original set used in the training mode. 

The ability of accurately predicting the outputs of the input set used in 

training is termed “recall” ability while the ability to accurately predict 

the outputs of a new input set is called “generalization” ability. It is at 

most important that the trained MLPNN is capable of generalization. 

2.3.1.2 Error-back-propagation (EBP) Algorithm for Training MLPNN 

Consider a single hidden layer multiple input-single output (MISO) MLP 

network as shown in Figure 2.3. The MISO example data set that is available for 

training the MLP network model is given as: 

𝐽 =   (𝒙𝒓, 𝑦𝑟)                                        (2.2) 

It consists of R input-output patterns (r = 1, 2,…, R); x (= [x1 , x2,…, xM]T) refers 

to an M-dimensional vector of independent variables/ predictors, and the 

corresponding scalar output 𝑦𝑟. An overview of the generalized delta rule and 

EBP-algorithm based training of an MLPNN is given below.  

According to the generalized delta rule, the weights of MLPNN are adjusted in 

proportion to the negative of the error gradient. i.e, 

                                                         
ij

k
ij

w

E
w




                                             (2.3) 
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                                                             ttt ijijij ww1w                              (2.4) 

where,  

ijw  =  magnitude  by which any  weight  between units i and j in two successive 

layers  is to be changed,    = learning rate ( 01  ) and  kE   = prediction error  

dependent  error function evaluated when k th input  pattern is applied  to the 

network function defined as         
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1

)ˆ(
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klklk yyE                               (2.5) 

Irrespective whether the destination neuron j belongs to the hidden or an output 

layer, the weight updation rule follows the same basic principle given as:  tjiw  

[

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒  𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑡,   (𝑤ij (𝑡)]
] = [

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 
𝑟𝑎𝑡𝑒,

]×[
𝑆𝑐𝑎𝑙𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 

𝑤. 𝑟. 𝑡.
𝑖𝑡ℎ 𝑛𝑜𝑑𝑒

] ×  [
𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑗𝑡ℎ 

𝑛𝑜𝑑𝑒
]  

                                                                                                                            (2.6) 

Error-back-propagation (EBP) based stepwise procedure of MLPNN 

training 

Step 1.  Initialize hidden and output layer weights to small random values, e. g., 

between -1 and +1. The MLP architecture contains N, M, and S number 

of inputs, hidden and output nodes. The logistic sigmoid transfer function 

is considered at both hidden and output later nodes.   

Step 2.  Apply kth input pattern 𝒙𝑘 = [𝑥𝑘1, 𝑥𝑘2,…, 𝑥𝑘𝑅] to the network input layer.  

Step 3.  Compute the weighted-sum of inputs (activation level) for the individual 

nodes in the hidden layer according to  

                                                        Mjxwnet ki

N

i

h

ji

h

kj ,...,2,1;
0


                     

 (2.7) 
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where,  𝑛𝑒𝑡𝑘𝑗
ℎ denotes the weighted-sum of inputs for the hidden node j 

when kth input pattern is presented to the network. 

Step 4.  Transform the weighted-sum using the logistic sigmoid transfer function 

to compute the hidden node outputs as 

                                                        Mj
net

y
h

kj

h

kj ,...,2,1;
)exp(1

1
ˆ 


               (2.8) 

Step 5.   Compute the weighted-sum of inputs for the individual output layer 

nodes (𝑙 = 1,2, … , 𝑆)  as 

                                                    Slywnet h

kj

M

j

o

lj

o

kl ,...,2,1;ˆ
0




                            (2.9) 

Step 6.  Transform the net activations of the output layer units using the logistic 

sigmoid transfer function. They form the network outputs. 

                                                       
Sl

net
y

o

kl

o

kl ,...,2,1;
)exp(1

1
ˆ 




               (2.10) 

Step 7.  Compute the scaled-error for the output layer units as 

                                                        Slyyyy o

klklklkl

o

kj ,...,2,1);ˆ1(ˆ)ˆ(      (2.11) 

where 𝑦𝑘𝑙   refers  to the desired output of neuron l when input vector 𝒙𝑘  

is applied to the input nodes. 

Step 8.  Compute the scaled-error for the neurons in the hidden layer according to 

                                                     Mjwyy o

lj

S

l

o

klkjkj

h

kj ,...,1,0;)ˆ1(ˆ
1

 


         (2.12) 

Step 9.  Update the weights between the output and hidden layer nodes as 

             SlMjtwtwytww o

lj

o

lj

h

kj

o

kl

o

lj

o

lj ,...,2,1;,...,1,0)];1()([)(    (2.13)
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Step 10. Update the weights between hidden and input layers as given below 

             
MjNitwtwxtwtw h

ji

h

jiki

h

kj

h

ji

h

ji ,...,2,1;,...,2,1)];1()([)()1(  
                                                                                  

 (2.14) 

Step 11. Repeat steps (2-10) with all the input patterns over several iterations till            

the preselected convergence criterion is satisfied.          

 

2.3.1.3 Securing an MLPNN model with best prediction and 

generalization performance 

The prediction and generalization ability of a MLPNN model is examined 

using three statistical metrics, namely coefficient of correlation (CC), root mean 

square error (RMSE) (%), and mean absolute percent error (MAPE). These are 

calculated using the desired output values and the subsequent model predicted 

output magnitudes. The RMSE is evaluated as follows:                                                                                                                                                                                                                                               

                                                  RMSEr = √∑ (yr−ŷr)2R
r=1

R
                          (2.15) 

where, 𝑅𝑀𝑆𝐸𝑟 (𝑟 = 1,2, … . , 𝑅) refers to the RMSE pertaining to the R input-

output patterns.  

The MAPE and CC are evaluated according to the following expressions 

(2.16) and (2.17) respectively. 

                         𝑀𝐴𝑃𝐸𝑟(%) =
1

𝑅
∑ |

𝑦𝑟−�̂�𝑟

𝑦𝑟
| × 100𝑅

𝑟=1                  (2.16)                   

𝐶𝐶𝑟 =  
∑ (𝑦𝑟−𝑦𝑟)(�̂�𝑟− �̂�𝑟

′)𝑅
𝑟=1

√∑ (𝑦𝑟−𝑦𝑟)
2𝑅

𝑟=1
√∑ (�̂�𝑟− �̂�𝑟

′)
2𝑅

𝑟=1

 (2.17) 

 where, r denotes the index of the input-output patterns in the range (𝑟 =

1,2, … . , 𝑅); 𝑀𝐴𝑃𝐸𝑟 and 𝐶𝐶𝑟 refers to the MAPE and 𝐶𝐶 values pertaining to the 

R input-output patterns (𝑟 = 1,2, … . , 𝑅) respectively; yr and 𝑦
𝑟
 are the 
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corresponding desired (target) output value and its mean value respectively; �̂�𝑟 

and �̂�𝑟
′ are the magnitudes of the model predicted output and its corresponding 

mean value respectively when rth input pattern is used to calculate the output of 

the rth model predicted output. 

The following factors related to the network structure and the EBP-

specific training algorithm need to be chosen judiciously for securing an MLPNN 

model possessing good prediction accuracy and generalization capability. 

 Structural factors: (i) number of hidden layers, (ii) number of 

nodes/neurons in each hidden layer, and (iii) the transfer function at 

hidden layer nodes. 

 Error Back Propagation training algorithm related parameters: learning 

rate (η), training cycles and momentum coefficient (μ).  

Commonly, these factors are varied systematically and the effect of this 

variation on the prediction accuracy and generalization performance of the 

network model is rigorously assessed. The set of factors and parameters leading to 

an MLPNN model with optimal prediction and generalization performance is 

selected. The greater details of the MLPNN training procedure and the related 

issues have been provided for example, in Zurada (1992), Bishop (1994) and 

Tambe et al. (1996).  

During training of an MLPNN, it is observed that as the number of 

training cycles increases, the magnitude of CC increases with an associate 

decrease in the RMSE value.  However, training an MLPNN over a large number 

of iterations has a drawback that despite resulting in high CC and low RMSE 

magnitudes, the resultant model is incapable of predicting correctly the outputs of 

a new set of inputs. This phenomenon is known as “overtraining” owing to which 

the MLPNN performs poorly at generalization (ability to predict correctly outputs 

of new set of inputs). Similar loss of generalization is witnessed if there exists 

more-than-necessary number of nodes/neurons in the hidden layer (s) of an 

MLPNN architecture, which is known as “over-parameterization.” The result of 
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overtraining and/or over-parameterization is an “overfitted” MLPNN model 

unsuitable for any use since it does not possess the much-desired generalization 

capability. The loss of generalization by an over-trained MLPNN model occurs 

since it captures the micro details such as noise in the data, at the cost of learning 

smooth trends in the data.  

Over-fitting can be avoided by partitioning the available example dataset 

into training, and test subsets. The training set is utilized to train the MLPNN 

model while the test set is used for checking the generalization performance of 

network at each iteration. In some cases, an additional set termed “validation set” 

is carved out from the example set and used in validating the model being 

trained. During training, the above-stated MLPNN’s structural and EBP 

algorithm related parameters are optimized in a manner such that the (a) the 

coefficient of correlation (CC) magnitudes pertaining to both training and test 

sets are high and comparable, and (b) the MAPE/ RMSE magnitudes pertaining to 

both training and test sets are low and comparable while the validation set is used 

to assess the generalization capability of the network.  

Owing to its phenomenal nonlinear function approximation capability, 

MLPNNs have been employed exhaustively in all science and 

engineering/technology branches as also finance and economics.  A 

representative list of the most recent applications of MLPNN in chemical and 

biochemical areas is given in Table 2.2.  

Table 2.2: Modern chemical engineering/technology applications of multi-

layered perceptron neural network  

 

SN MLP Application Study Reference 

1 Steady-state and 

dynamic process 

modeling/prediction 

 Prediction of solubility of N-

alkanes in supercritical 

CO2 using RBF-ANN and 

MLP-ANN 

Abdi-Khanghaha   

et al. (2018) 

https://www.sciencedirect.com/science/article/pii/S2212982017307291#!
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 Use neural networks for 

problem solving 

Chitra (1993) 

 Forecasting of ozone level in 

time series using MLP model 

with a novel hybrid training 

algorithm 

Wang and Lu 

(2006) 

 Annual electricity consumption 

forecasting by neural network 

in high energy consuming 

industrial sectors 

Azadeh (2008) 

 Application of steady-state and 

dynamic modeling for the 

prediction of the BOD of an 

aerated lagoon at a pulp and 

paper mill: Part II. Nonlinear 

approaches 

Patricia et al. 

(2004) 

 Prediction of heat capacities of 

ionic liquids using chemical 

structure-based networks 

Harooni et al. 

(2017) 

 Comparative post fatigue 

residual property predictions of 

reinforced and unreinforced 

poly (ethylene terephthalate) 

fibers using artificial neural 

networks 

Averett et al. 

(2010) 

 Seed yield prediction of sesame 

using artificial neural network 

Emamgholizadeh 

et al. (2015) 

 Neural network modeling for 

predicting brewing 

fermentations for predicting brewing fermentations 

Syu et al. (1994) 

https://www.sciencedirect.com/science/article/pii/S0196890408000526#!
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2 Process Monitoring  The use of a multilayer 

perceptron (MLP) for modeling 

the phenol removal by 

emulsion liquid membrane 

Messikha N. et 

al. (2017) 

 Neural modeling of chemical 

plant using MLP and B-spline 

networks 

Lightbody et al. 

(1997) 

 A neural network approach to 

analyzing multi-component 

mixtures 

Broten and 

Wood (1993) 

 The use of artificial 

intelligence combiners for 

modeling steel pitting risk and 

corrosion rate 

Chou et al. 

(2017) 

 Estimation of gross calorific 

value of coals using artificial 

neural networks 

Patel et al. 

(2007) 

 Modeling and monitoring of 

batch processes using PCA 

assisted GRNN 

Kulkarni et al 

(2004) 

3 Model based 

nonlinear process 

control 

 Neural for modeling and 

control of reactive distillation, 

IFAC proceedings volumes 

Engell and 

Dadhe (2001) 

 Implementation of neural 

network predictive control to a 

multivariable chemical reactor 

Yu and Gomm 

(2003) 

 Robust nonlinear control with 

neural networks 

Ramasamy et al. 

(1995) 

 Hydroxylation of phenol to Tendulkar et al. 

https://www.sciencedirect.com/science/article/pii/S2213343717303044#!
https://www.sciencedirect.com/science/article/pii/S0016236106002961#!
https://www.sciencedirect.com/science/journal/14746670
https://www.sciencedirect.com/science/article/pii/S1474667017329646#!
https://www.sciencedirect.com/science/article/pii/S1474667017329646#!
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dihydroxybenzenes:  

Development of artificial 

neural-network-based process 

identification and model 

predictive control strategies for 

a pilot plant scale reactor 

(1998) 

 Modeling of coke fractionators Blaesi J. and 

Jensen B. (1992). 

 Prediction of all India Summer 

monsoon rainfall using error-

back-propagation neural 

networks 

Venkatesan et al 

(1997) 

4 Process 

Identification 

 Fischer–Tropsch synthesis with 

Co/SiO2–Al2O3 catalyst and 

steady-state modeling using 

artificial neural networks 

Sharma et al. 

(1998) 

 Neural networks for the 

identification of MSF 

desalination plants 

Selvaraj et al. 

(1995) 

 Fluid property predictions with 

the aid of neural networks 

Lee and Chen 

(1993) 

 A numerical correlation 

development study for the 

determination of Nusselt 

numbers during boiling and 

condensation of R134a inside 

smooth and corrugated tubes 

Balcilar et al. 

(2013) 

 Data processing by neural 

networks in quantitative 

chemical analysis 

Bos et al. (1993) 
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 Identification of gases with 

classical pattern-recognition 

methods and artificial neural 

networks and artificial neural networks 

Niebling (1994) 

5 Process 

optimization 

 Artificial chemical reaction 

optimization of neural 

networks for efficient 

prediction of stock market 

indices 

Nayak et al. 

(2017) 

 Correction of mass spectral 

drift using artificial neural 

networks 

 Goodacre et al. 

(1996) 

 Hybrid modeling of 

fermentation processes: A 

Study on the use of modular 

neural networks for modeling 

cells reaction kinetics 

Perest et al. 

(2004) 

 Utilization of apricot seed in 

(CO) combustion of lignite 

coal blends blends: Numeric optimization, empirical modeling and uncertainty estimation 

Buyukada and 

Aydogmus 

(2018) 

6 Fault detection and 

diagnosis (FDD) 

 Optimum parameters for fault 

detection and diagnosis system 

of batch reaction using multiple 

neural networks 

Tan et al. 

(2012) 

 Counter-propagation neural 

networks for fault detection 

and diagnosis 

Vora et al (1997) 

 A novel fault diagnosis 

technique for photovoltaic 

systems-based on ANNs  diagnosis technique for photovoltaic systems based on artificial neural networks 

Chine et al. 

(2016) 

https://pubs.acs.org/author/Goodacre%2C+Royston
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 Fault detection and isolation 

for PEM fuel cell stack with 

independent RBF model with independent RBF model 

Kamal et al. 

(2014) 

 Model selection and fault 

detection approach based on 

Bayes decision theory: 

Application to changes 

detection problem in a 

distillation column 

Chetouani 

(2014) 

7 Quantitative 

structure-activity/ 

property 

relationships 

(QSAR/ 

QSPR) 

 Determination of binary 

diffusion coefficients of 

hydrocarbon mixtures using 

MLP and ANFIS networks 

based on QSPR method 

Abbasi and 

Eslamloueyan 

(2014) 

 Chemometrics tools in 

QSAR/QSPR studies: A 

historical perspective 

Yousefinejad 

and 

Hemmateenejad 

(2015) 

 Assessment for multi-endpoint 

values of carbon nanotubes: 

Quantitative nanostructure-

property relationship modeling 

with norm indexes 

Wang et al. 

(2017) 

 QSPR prediction of the 

solubility of CO2 and N2 in 

common polymers 

Golzar et al. 

(2013) 

8 Soft-sensor 

development 

 Application of soft computing 

techniques to multiphase flow 

measurement: A review 

Yan et al. (2018) 

 Soft-sensing estimation of Canete et al. 

https://www.sciencedirect.com/science/article/abs/pii/S0952197613002054#!
https://www.sciencedirect.com/science/article/pii/S0957582013000116#!
https://www.sciencedirect.com/science/article/pii/S0169743913002372#!
https://www.sciencedirect.com/science/article/pii/S0169743913002372#!
https://www.sciencedirect.com/science/article/pii/S0169743915001641#!
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plant effluent concentrations in 

a biological wastewater 

treatment plant using an 

optimal neural network 

(2016) 

2.3.2. Support Vector Regression (SVR) 

Support vector regression is derived from the Support vector machine 

(SVM) formalism, which is a statistical learning-based methodology to perform 

supervised nonlinear classification (Vapnik, 1995). Towards performing the stated 

classification, SVM first maps the coordinates of the objects (example data) into a 

high dimensional feature space. This is done by employing nonlinear functions 

termed kernels or features. Mapping into a high dimensional space has an 

advantage that in this space it is easier to separate two classes with the help of a 

linear classifier as done in common practice. The SVR formalism uses same 

concepts but for conducting nonlinear regression (function approximation).  In 

essence, it tries to secure a multiple input – single output (MISO) function 

possessing following characteristics. 

(i) Its location is such that it deviates maximally from all training data. 

(ii) The shape of the function is as flat as possible. A function with a small 

weight (parameter) vector assures its flatness.   

Using an example data set 𝐺 = (𝒙𝑟 , 𝑦𝑟)𝑟=1
𝑅  that consists of R input-output patterns 

(r = 1, 2,…, R); x (= [x1 , x2,…, xM]T) refers to an M-dimensional vector of 

independent predictors/ variables, and 𝑦𝑟 denotes the scalar output,  the SVR 

formalism aims at approximating a function f(x).  Here, the aim is to map the 

input data, (𝒙𝑟)𝑟=1 
𝑅 , nonlinearly into a high dimensional feature space (Φ) and 

perform a linear regression in the Φ-space as given by:  

 𝑦𝑟 = 𝑓(𝒙𝑟) = 𝒘 ∙ Φ(𝒙𝑟) + 𝑏  (2.18) 
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where w is the vector of function coefficients, b is a real-valued constant 

representing the threshold value and Φ(𝒙𝑟) refers to a set of nonlinear 

transformations. A loss function (LF) is defined and used for estimating the 

quality of the regression performed by the SVR. The commonly used LF is known 

as “ε-insensitive” function defined as: 

 

  |𝑦𝑟 − 𝑓(𝒙𝑟)|𝜀   =  {
0     

|𝑦𝑟−𝑓(𝒙𝑟)|−𝜀
 
𝑖𝑓|𝑦𝑟 − 𝑓(𝒙𝑟)| ≤ 𝜀 

otherwise 
                (2.19)  

Consider Figure 2.4 showing the principle employed by the SVR algorithm 

wherein it tries to position a tube of radius ε around the nonlinear regression 

function. The tube encloses a region is termed an “ε-insensitive zone”; here 𝜀 

essentially denotes the tolerance to the deviation from the fitted function. In this 

formulation, errors are defined as the deviations larger than  𝜀. The coefficient 

vector (w) and constant b appearing in equation 2.18 are estimated from the 

training data. It is done by minimizing an empirical risk function (ERF). In simple 

terms, the empirical risk signifies the prediction error pertaining to the training 

data. It is termed “empirical” since it is evaluated using a part of the data 

surrogate for the true distribution. The ERF is defined as:  

  𝑅𝑒𝑚𝑝(𝒘) =  
1

2
 ||𝒘||2+

𝐶

𝑁
   ∑    |𝑦𝑟 − 𝑓(𝒙𝑟)𝑅

𝑟=1 |𝜀           (2.20) 

where, C denotes the regularization constant, which determines the trade-off 

between the training data set error and complexity of the model. A detailed 

account of the SVR and its implementation can be found in e.g., Vapnik, 1995, 

and Ivanciuc, 2007. Here, we present the final form of the SVR-based regression 

function given as: 

   𝑓(𝒙, 𝒘) =  𝑓(𝒙, 𝝀, 𝝀∗) = ∑   𝑓(𝝀𝒓
∗ − 𝝀𝑟)𝐾 (𝒙𝒓, 𝒙 ) 𝑅

𝑟=1  +  𝑏     (2.21) 

where 

 R refers to the number of training data points 
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 𝐾(𝒙𝑟, 𝒙 ) refers to the kernel function representing the dot product in the 

feature space (Φ); 

 λr, λr* (>0) are the coefficients (Lagrange multipliers) satisfying the 

condition λr λr* = 0 (r = 1, 2,…, R).   

The vector w is represented in terms of the Lagrange multipliers λr and λr*.  

In equation (2.20), only a few of the coefficients, (λr* − λr), possess non-

zero magnitudes, and the respective input vectors, 𝒙𝒓, are known as “support 

vectors (SVs).”  These are the important data points in the training set that signify 

the most enlightening observations squeezing the information content of the 

training set. It may be noted that the observations lying close to the prediction by 

the SVR model and located within the limit defined by the ε-tube are ignored and 

thus the ultimate model is determined on the basis of only the support vectors.  

 

Figure 2.4: Schematic presentation of support vector regression using ε-

insensitive loss function. 

The salient features which make the SVR an attractive method for developing 

exclusively data-driven MISO models are specified below (Sharma and Tambe, 

2014).  
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 The method minimizes a quadratic function possessing a single 

minimum. This feature avoids difficulties allied with finding a 

solution in the presence of multiple local minima. 

 It ensures good generalization ability and sparseness of the 

regression model, robustness of the solution, as also an automatic 

control of the solution complexity. 

 Provides an explicit knowledge of the support vectors that are 

crucial in defining the regression function; the knowledge of SVs 

helps in the understanding of the regression model in terms of the 

training data. 

Owing to their several attractive features the SVM/SVR methodologies have 

been used in various process engineering tasks. A representative listing of these 

studies is presented in Table 2.3. 

Table 2.3: Selective chemical engineering/technology applications of support 

vector regression 

S

N 

SVR Application Study Reference 

1 

 

4 

Steady-state and 

dynamic process 

modeling/predictio

n 

 Daily natural gas consumption 

forecasting based on a structure-

calibrated support vector 

regression approach 

Bai and Li 

(2016) 

 Prediction of 0API values of crude 

oils by use of 

saturates/aromatics/resins/asphalte

nes analysis: Computational-

intelligence based models 

Goel et al. 

(2016) 

 Rotary drying process modeling 

and online compensation compensation 

Wang et al. 

(2015) 

 SVR-based prediction of point gas Gandhi et al 
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hold-up for bubble column reactor 

through recurrence quantification 

analysis of LDA time-series 

(2008) 

 Real-time product quality control 

for batch processes based on 

stacked least-squares support 

vector regression models based on stacked least-squares support vector regression models 

Zhang et al. 

(2012) 

2 Process Monitoring  Simulation of subcooled flow 

boiling with an SVR based 

interphase mass transfer model 

Dong et al. 

(2017) 

 Just-In-Time statistical process 

control: Adaptive monitoring of 

vinyl acetate monomer process 

Kano et al. 

(2011) 

 Online sensor for monitoring a 

microalgal bioreactor system 

using support vector regression 

Nadadoor et 

al. (2012) 

 Evaluation using online support-

vector- machines and fuzzy 

reasoning. Application to 

condition monitoring of speeds 

rolling process process machines and fuzzy reasoning. Application to condition monitoring of speeds rolling  process 

Bouhouche et 

al. (2010) 

3 Model based 

nonlinear process 

control 

 Adaptive nonlinear model 

predictive control using an on-

line support vector regression 

updating Strategy  using an on-line support vector regression updating Strategy 

Wang et al. 

(2014) 

 High ash char gasification in 

thermo-gravimetric analyzer and 

prediction of gasification 

performance parameters using 

computational intelligence 

Patil-Shinde 

et al (2016) 
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formalisms 

 Nonlinear multivariable 

modeling of locomotive proton 

exchange membrane fuel cell 

system proton exchange membrane fuel cell system 

Li et al. 

(2014) 

 Multi-parametric Metamodels 

for model predictive control of 

chemical processes control of chemical processes 

Shokry et al. 

(2011) 

 A novel unified correlation 

model using ensemble support 

vector regression for prediction 

of flooding velocity in randomly 

packed towers 

Liu et al 

(2014) 

4 Process 

Identification 

 Black-box identification of a 

pilot-scale dryer model: A 

support vector regression and an 

imperialist competitive 

algorithm approach  model: A support vector regression and an imperialist competitive algorithm approach 

Sałat et al. 

(2017) 

 Using machine learning 

algorithms to predict the 

pressure drop during evaporation 

of R407C 

Khosravi et 

al. (2018) 

 Computational intelligence-

based models for prediction of 

elemental composition of solid 

biomass fuels from proximate 

analysis prediction of elemental composition of solid biomass fuels from proximate analysis 

Ghugare et 

al. (2017) 

 Development of support vector 

regression (SVR)-based 

correlation for prediction of 

Gandhi et al. 

(2007) 

https://www.sciencedirect.com/science/article/pii/S1359431117366863#!
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overall gas hold-up in bubble 

column reactors for various gas–

liquid systems 

5 Process 

optimization 

 Support vector regression 

modelling and optimization of 

energy consumption in carbon 

fiber production-line 

Golkarnarenj

i et al. (2018) 

 

 Hybrid process modeling and 

optimization strategies 

integrating neural networks/SVR 

and genetic algorithms: study of 

benzene isopropylation on H-

beta catalyst isopropylation on H-beta catalyst 

Nandi et al. 

(2004) 

 Optimization techniques for 

improving the performance of 

information retrieval system 

Badhe et al 

(2014) 

 Forecasting of coal seam gas 

content by using support vector 

regression based on particle 

swarm optimization support vector regression based on particle swarm optimization 

Meng et al 

(2014) 

 A novel modeling approach to 

optimize oxygen-steam ratios in 

coal gasification process 

Arabloo et al 

(2015) 

 Simulation and optimization of a 

full-scale Carrousel oxidation 

ditch plant for municipal 

wastewater treatment 

Xie et al. 

(2011) 

 Prediction of silicon content in 

hot metal using support vector 

regression based on chaos 

Tang et al. 

(2009) 
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particle swarm optimization vector regression based on chaos particle swarm optimization 

6 Fault detection and 

diagnosis (FDD) 

 Bond graphs for the diagnosis of 

chemical processes 

Bouamama et 

al. (2012) 

 DICA enhanced SVM 

classification approach to fault 

diagnosis for chemical processes 

Monroy et al. 

(2009) 

 Dynamic fault prognosis for 

multivariate degradation process 

Wang et al. 

(2018) 

7 Quantitative 

structure-activity/ 

property 

relationships 

(QSAR/QSPR) 

 Nonlinear QSAR models with 

high-dimensional descriptor 

selection and SVR improve 

toxicity prediction and 

evaluation of phenols on 

Photobacterium phosphoreum 

Zhou et al. 

(2015) 

 Support vector regression based 

QSPR for the prediction of some 

physicochemical properties of 

alkyl benzenes prediction of some physicochemical properties of alkyl benzenes.  

Yang (2005) 

 Application of QSPR for 

prediction of percent conversion 

of esterification reactions in 

supercritical carbon dioxide 

using least squares support 

vector regression 

Esteki et al., 

(2005) 

 Boosting support vector 

regression in QSAR studies of 

bioactivities of chemical 

compounds support vector regression in QSAR studies of bioactivities of chemical compounds 

Zhou et al. 

(2006). 

 

8 

 

Soft-sensor 

development 

 A deep learning-based data 

driven soft sensor for 

Gopakumar 

et al. (2018) 

https://www.sciencedirect.com/science/article/pii/S1570794609700458#!
https://www.sciencedirect.com/science/article/pii/S1369703X18301359#!
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bioprocesses for bioprocesses 

 A nonlinear soft sensor based on 

modified SVR for quality 

estimation in polymerization quality estimation in polymerization 

Lee et al. 

(2003) 

 Robust soft sensors based on 

integration of genetic 

programming, analytical neural 

networks, and support vector 

machines 

Kordon et al. 

(2002) 

 A Bayesian inference based two-

stage support vector regression 

framework for soft sensor 

development in batch 

bioprocesses 

Yu J. (2012) 

 DoE framework for catalyst 

development based on soft 

computing techniques 

Valero et al. 

(2009) 

 Soft-sensor development for fed-

batch bioreactors using support 

vector regression  bioreactors using support vector regression 

Desai et al. 

(2006) 

 

2.3.3. Genetic programming (GP)  

Genetic Programming is a member of the stochastic optimization 

strategies termed “evolutionary algorithms” that follow the “survival of the 

fittest” principle of the Darwin’s theory of evolution along with the genetic 

propagation of characteristics.  In its original form, GP was proposed by Koza 

(1992) for automatically generating computer codes that would do pre-specified 

tasks. Genetic programming’s second application, termed “symbolic regression 

(SR),” has been exploited in the studies presented in this thesis.  The novel feature 

https://www.sciencedirect.com/science/article/pii/S0098135412000828#!
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of the GP-based SR (GPSR) is that given an example data set containing inputs 

(independent/predictor variables) and the corresponding outputs 

(dependent/response variables), it possesses a striking capability of searching as 

also optimizing an appropriate structure (form) of a linear or nonlinear data-fitting 

function and all the parameters related with it.  More importantly, the GP 

approach performs the affirmed search and optimization without making any 

assumptions about the structure of the linear or nonlinear data-fitting function.  

The details of the exclusively data-driven modeling problem solved by the GPSR 

are provided below.  

             Consider a multiple input - single output (MISO) dataset, 𝐺 =

 (𝒙𝑟 , 𝑦𝑟)𝑟=1
𝑅  that consists of R input-output patterns (r = 1, 2,…, R); x (= [x1 , 

x2,…, xM]T) refers to an M-dimensional vector of independent 

variables/predictors,  and 𝑦𝑟 is the corresponding scalar output. The task of the 

GPSR is to secure a suitable linear or nonlinear function (f) as given below that 

best fits the dataset, G: 

                                                  𝑦 = 𝑓(𝑥1, 𝑥2 … , 𝑥𝑀; 𝛽)                                   (2.22) 

where β denotes an L-dimensional vector of function parameters, 

 𝛽 = [𝛽1, 𝛽2, … , 𝛽𝐿]T.   

To search and optimize the form of the data-fitting function, f, and the 

related parameters (𝛽), GPSR starts to mimic a natural evolution step rather in a 

abstract manner. It stochastically generates an initial population of 𝑁pop number 

of candidate (probable) solutions (mathematical expressions/ models) to the 

symbolic regression problem defined in Eq. (2.22). Commonly, tree structures are 

used for articulating these candidate solutions. Each one of these trees is 

constructed randomly using function and terminal nodes.  While the first type of 

nodes represents mathematical operators, the ones belonging to the latter type 

define predictors (input/independent variables, {xr}) and parameters,  𝛽,  of a 

candidate expression. The operator set comprises addition, subtraction, 
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multiplication, division, logarithm, exponentiation, and trigonometric operators. 

In GPSR, it is necessary that each candidate solution is evaluated for its ability 

(fitness) in fulfilling the given data-fitting task. This is done using a fitness 

function that computes a score (termed fitness score/ value) measuring how well a 

candidate solution is fitting the example set data.  In the succeeding step, 

candidate solutions breed among themselves in frequency, which is directly 

proportional to their fitness. This is known as “crossover” operation that produces 

two new offspring (i.e., new candidate solutions).  As in Natural evolution, the 

new offspring may be subjected to mutation, whereby their genetic material 

(contents of the tree) is altered randomly, albeit to a small extent.  The above 

stated process of crossover and mutation is iterative, adaptive and open ended 

(McConaghy, 2010). Over time, the best candidate solutions (i.e., possessing high 

fitness) will survive.  A typical step wise GPSR implementation procedure is 

given below. The corresponding flow-chart is depicted in as follows Figure 2.5. 

 

Figure 2.5: A brief algorithm of genetic programming 
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(i)  Initialization: This step randomly generates an initial population of 𝑁pop 

number of mathematical expressions (candidate solutions) of different 

structures and lengths. The different approaches used for this random 

generation are, half (ramped half-and-half) and full initialization 

(Khandelwal et al., 2017; Langdon et al., 2008).  

(ii) Fitness evaluation: Fitness score of each candidate solution is 

determined to measure how accurately it predicts the target outputs 

specified in the example (training) dataset. The fitness of a solution can 

be evaluated using the following mathematical formula: 

     𝑆𝑟 =
1

1+𝑅𝑀𝑆𝐸𝑟
  where  𝑟 = 1,2, … . , 𝑁pop  (2.23) 

 Here, 𝑆𝑟  is the fitness score of the rth candidate (instantaneous or 

present moment) solution. 

(iii) Selection: In this step, a pool of candidate solutions (termed parent 

pool) is formed to undergo crossover operation. Here, from the current 

population of candidate solutions, parents are selected based on their 

high fitness scores relative to other candidates. There exist several 

methods of selection such as Roulette-wheel selection, tournament 

selection, and lexicography parsimony pressure selection (Karakus, 

2011). Upon forming the parent pool, its constituents are ranked 

according to their fitness scores. 

(iv) Crossover: It is the most vital genetic operator since it produces 

offspring candidate solutions. It is performed as described below.  

(a)  Choose randomly two candidate solutions (parents) from the 

ranked parent population. 

(b)  Splice each parent tree from the chosen pair at a randomly 

selected node into two segments.  
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(c)  Mutually exchange the spliced segments between the parents 

and join them to produce two offspring trees (expressions). This 

crossover procedure is iterated until a specified number of 

offspring (= Npop) are generated.  

(v) Mutation: This genetic operator introduces random changes in the 

structure of the offspring candidate solution trees formed in the 

previous step. In mutation, a function (terminal) node is interchanged 

by another one of the similar types. Mutation helps in maintaining the 

genetic diversity in the offspring population and thereby broadens the 

search for good data-fitting models as well as prevents the premature 

convergence of the GPSR run. The mutated offspring population 

represents a new generation of candidate solutions and thus the 

generation index increases by unity. 

(vi)   Termination:  Perform Steps (ii) to (v) iteratively until either of the 

following two termination criteria (stopping condition) is satisfied: 

(a)  GPSR has evolved over a pre-specified number of maximum 

generations. 

(b) The best candidate solution (expression) in the population 

possessing highest fitness score does not change appreciably 

over several generations. 

A schematic diagram of tree structures and the genetic operations is given 

in Figure 2.6.  
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    Figure 2.6:  (a) Illustration of a tree structure, (b) two parent trees undergoing 

crossover operation, (c) two offspring trees post-crossover, (d) 

mutation operation on two offspring trees. 

In this figure, panel (a) shows a typical tree structure representing an 

expression “(x1√7) *(x1 - x3)”. The crossover and mutation are illustrated in panels 

(b) and (c), respectively. Greater details of the GPSR method and its 

implementation procedure can be found in Poli et al. (2008), Ghugare et al. 

(2014), Vyas et al. (2015), and Goel et al. (2015). It may be noted here that 

compared to ANNs and SVR, the GP formalism, despite its several attractive and 

novel features, has been employed infrequently for performing data-driven 
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modeling. A representative list of GPSR applications in chemical 

engineering/technology area is provided in Table 2.4. 

Table 2.4: Selected Chemical engineering/technology applications of genetic 

programming 

SN GP application Study Reference 

1 Steady-state and 

dynamic process 

modeling/prediction 

 Artificial intelligence-based 

modeling of high ash coal 

gasification in a pilot plant 

scale fluidized bed gasifier 

Patil-Shinde et al. 

(2014) 

 Modeling of vaporization 

enthalpies of petroleum 

fractions and pure 

hydrocarbons using genetic 

programming 

Parhizgar et al. 

(2013) 

 Toward genetic 

programming (GP) 

approach for estimation of 

hydrocarbon/water 

interfacial tension 

Rostami et al. 

(2017) 

 Prediction of HHV of coals 

of different ranks and from 

diverse geographies 

Ghugare and 

Tambe (2017) 

 Prediction of reactivity 

ratios in free radical 

copolymerization from 

monomer resonance–

polarity (Q–e) parameters: 

genetic programming-based 

models. 

Shrinivas et al. 

(2016) 

https://www.sciencedirect.com/science/article/pii/S092041051300274X#!
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2 Process Monitoring  A novel approach for 

estimation of solvent 

activity in polymer 

solutions using genetic 

programming 

Tashvigh et al. 

(2015) 

 Real-time monitoring of 

thin film microstructure in 

chemical vapor deposition 

using a modified moving 

horizon estimation 

 Xiong and 

Gallivan (2008) 

3 Model based 

nonlinear process 

control 

 Multi-gene genetic 

programming based 

predictive models for 

municipal solid waste 

gasification in a fluidized 

bed gasifier 

Pandey et al. 

(2015) 

 PID based nonlinear 

processes control model 

uncertainty improvement by 

using Gaussian process 

model 

Chan et al. (2016) 

 Non-linear principal 

components analysis using 

genetic programming 

Hiden et al(1998) 

 Modeling and temperature 

control of rapid thermal 

processing 

Dassau et al. 

(2006) 

 Automated nonlinear model 

predictive control using 

genetic programming 

Grosman and 

Lewin et al. (2002) 

https://www.sciencedirect.com/science/article/pii/S1474667016406476#!
https://www.sciencedirect.com/science/article/pii/S1474667016406476#!
https://www.sciencedirect.com/science/article/pii/S1474667016406476#!
https://www.sciencedirect.com/science/article/pii/S0098135405003029#!
https://www.sciencedirect.com/science/article/pii/S0098135401007803#!
https://www.sciencedirect.com/science/article/pii/S0098135401007803#!
https://www.sciencedirect.com/science/article/pii/S0098135401007803#!
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4 Process 

Identification 

 Consider genetic 

programming for process 

identification 

Kulkarni et al. 

(1999) 

 Process identification using 

genetic programming: a 

case study involving 

fluidized catalytic cracking 

(FCC) unit 

Nandi et al. (2000) 

 Identification of algebraic 

and state space models 

using genetic programming 

Tun and 

Lakshminarayan 

(2004) 

 Genetic programming-based 

models for prediction of 

vapor-liquid equilibrium 

Patil-Shinde et al 

(2018) 

 Use genetic programming 

for selecting predictor 

variables and modeling in 

process identification 

Verma et al. (2016) 

 The detection of caffeine in 

a variety of beverages using 

Curiepoint pyrolysis mass 

spectrometry and genetic 

programming 

Goodacre and 

Gilbert et al. (1999) 

5 Process 

optimization 

 Process structure 

optimization using a hybrid 

disjunctive-genetic 

programming approach 

Yuan et al. (2009) 

 Genetic programming 

assisted stochastic 

optimization strategies for 

Cheema et al 

(2002) 

http://books.google.com/books?hl=en&lr=&id=_0L9YnSgOYsC&oi=fnd&pg=PA195&dq=info:S83ok64YJDUJ:scholar.google.com&ots=nR1aBqjnCq&sig=HOaRDGCEeRaNaZPzeo6ca5noscM
http://books.google.com/books?hl=en&lr=&id=_0L9YnSgOYsC&oi=fnd&pg=PA195&dq=info:S83ok64YJDUJ:scholar.google.com&ots=nR1aBqjnCq&sig=HOaRDGCEeRaNaZPzeo6ca5noscM
http://books.google.com/books?hl=en&lr=&id=_0L9YnSgOYsC&oi=fnd&pg=PA195&dq=info:S83ok64YJDUJ:scholar.google.com&ots=nR1aBqjnCq&sig=HOaRDGCEeRaNaZPzeo6ca5noscM
http://books.google.com/books?hl=en&lr=&id=_0L9YnSgOYsC&oi=fnd&pg=PA195&dq=info:S83ok64YJDUJ:scholar.google.com&ots=nR1aBqjnCq&sig=HOaRDGCEeRaNaZPzeo6ca5noscM
http://books.google.com/books?hl=en&lr=&id=_0L9YnSgOYsC&oi=fnd&pg=PA195&dq=info:S83ok64YJDUJ:scholar.google.com&ots=nR1aBqjnCq&sig=HOaRDGCEeRaNaZPzeo6ca5noscM
http://pubs.rsc.org/en/results?searchtext=Author%3ARoyston%20Goodacre
http://pubs.rsc.org/en/results?searchtext=Author%3ARichard%20J.%20Gilbert
http://pubs.rsc.org/en/results?searchtext=Author%3ARichard%20J.%20Gilbert
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optimization of glucose to 

gluconic acid fermentation 

 A novel approach for 

modeling and optimization 

of surfactant/polymer 

flooding based on Genetic 

Programming evolutionary 

algorithm 

Bahrami et al. 

(2016) 

 Soft-computing models for 

soot-blowing optimization 

in coal-fired utility boilers 

Pena et al. (2011) 

6 Fault detection and 

diagnosis (FDD) 

 Feature generation using 

genetic programming with 

application to fault 

classification. 

Guo et al. (2005) 

 Fault detection using 

genetic programming 

Zhang et al (2005) 

 Simulation-based fault 

propagation analysis: 

Application on hydrogen 

production plant 

Gabbar et al. 

(2014) 

7 Quantitative 

structure-activity/ 

property 

relationships  

(QSAR/QSPR) 

 A genetic programming-

based QSPR model for 

predicting solubility 

parameters of polymers 

 Koç D. and  Koç 

M.  (2015) 

 Genetic programming based 

quantitative structure–

retention relationships for 

the prediction of Kovats 

retention indices 

Goel et al. (2015) 

https://www.sciencedirect.com/science/article/pii/S0169743915000878#!
https://www.sciencedirect.com/science/article/pii/S0169743915000878#!
https://www.sciencedirect.com/science/article/pii/S0169743915000878#!
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8 Soft-sensor 

development 

 Biomass inferential sensor 

based on ensemble of 

models generated by genetic 

programming 

Kordon et al. 

(2004) 

 Softsensor Model for 

Styrene Polymerization 

Process and its Application 

in Model based Control 

Ghugare et al 

(2016) 

 Soft-sensor development for 

biochemical systems using 

genetic programming 

Sharma and Tambe 

et al. (2014) 

2.4 GUIDELINES FOR IMPLEMENTATION OF CI-BASED MODELING 

METHODS  

In what follows, guidelines for developing exclusively data-driven CI-

based models are given. These are useful in developing models possessing 

excellent prediction and generalization performance.  

1. Before implementation of a CI based modeling method, it is necessary to 

ensure that the quantum of the data available is sufficient for training, and 

testing the model. It may be noted that bigger the size of these sets, higher 

is the probability of obtaining a model with good prediction accuracy and 

generalization capability. It is absolutely necessary that the available data 

are statistically well-distributed and cover the ranges of practical interest. 

Here, it is important to note that data-driven nonlinear models are 

incapable of accurate extrapolation beyond the ranges of the data used in 

their training. Thus, additional data in the regions of interest need to be 

collected and fresh model should be built rather than attempting the stated 

extrapolation. 

2. It needs to be examined before employing CI-based methods whether the 

modeling task on hand can be achieved using conventional methods. For 
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example, it is simple and easy to employ algebraic methods to develop 

linear models. If the form of a nonlinear model to be developed is known a 

priori then it is advisable to use nonlinear regression methods such as the 

Levenberg-Marquardt’s nonlinear regression method (Levenberg, 1944; 

 Marquardt, 1963) to estimate its parameters than to develop a CI-based 

model. 

3. Non-analyzed and non-preprocessed data can lead to suboptimal models 

possessing poor prediction accuracy and generalization ability and 

therefore analysis and processing of raw data are necessary (Freeman, 

1999). Such a preprocessing includes normalization and/or denoising of 

data, and outlier removal. It is also necessary to analyze the data forming 

the input space of the models to examine if the inputs are correlated. 

Typically, linear and nonlinear principal component analyses are 

performed to identify linearly and nonlinearly correlated inputs. Such 

analyses assist in (a) reducing the dimensionality of the input space if 

correlated inputs are indeed present, and (b) reducing the computational 

load in developing the model. Additionally, proper data representation 

methods must be employed. For example, continuous versus indicator 

variables, representation of time-windowed data, de-trending, encoding 

inputs, filtering etc.  

4. The data pre-processing and analysis performed by the model developer 

and the related methods must be understood fully by the end user. This is 

required for the optimal usage of the developed models and knowing their 

strong and weak attributes. The developer must avoid an over-fitted model 

since such a model is of no practical utility. It is therefore important for 

the developer to be well-versed with the methods for the detection and 

prevention of the over-training and over-parameterization that causes the 

over-fitting of a CI-based model. 

5. In the case of an MLPNN, although it is capable of mapping multiple 

input – multiple output (MIMO) functions, it is not advisable to do so. It 

https://en.wikipedia.org/wiki/Donald_Marquardt
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may be noted that in MIMO function approximation, the weights (function 

parameters) between the input and hidden layer nodes remain same for all 

outputs. Only the weights between the hidden and output layer change for 

each output. This essentially indicates that to perform MIMO mapping, the 

MLPNN has to learn to map more than one nonlinear functional 

relationship while using the same set of input-to-hidden layer weights. 

This constraint affects the ability of the MLPNN in constructing a model 

with good prediction and generalization performance. Thus, it is advisable 

to use as many multiple input – single output (MISO) models as the 

number of outputs since it allows not only the weights between hidden and 

output layers to be different but also those between input and the hidden 

layers of the MLPNN. This of course increases the modeling effort but the 

improved prediction and generalization ability of the resultant models 

justify the efforts. 

6. As a basic principle, the developer must strive to build parsimonious 

models. Such models are less complex since they have less number of 

terms and parameters in their structure. All other things being equal, a 

parsimonious model is known to fare well at the generalization when 

compared with its more complex counterpart. In the case of an MLPNN, 

complexity of the model can be minimized by using as few hidden layers 

and units in each one of them as possible. While developing an SVR 

model, a model with reduced complexity can be constructed by restricting 

as much as possible the number of support vectors which are the most 

informative data points. In GPSR, a parsimonious model can be developed 

by limiting the depth of the trees representing the candidate solutions and 

using fewer operators.  

7. It has been witnessed that no single type of CI-based models (MLPNN, 

SVR, GP and their variants) are found to be superiorly performing in all 

application. Therefore, it is advisable that separate optimal models are 
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built using all three methods and the best performing one among them is 

chosen for the use.  

 

2.5 GENETIC ALGORITHMS 

Genetic algorithms (GA) is a stochastic optimization paradigm that 

belongs to the class of evolutionary algorithms. In this thesis, GA has been 

utilized in obtaining optimized conditions for the photocatalytic degradation of 

pharmaceutical pollutants (see Chapter 3). A detailed description of GA is 

presented in the ensuing paragraphs. 

Genetic algorithms (Goldberg, 1989; Holland, 1975) are the most widely 

used stochastic optimization algorithms. Similar to the genetic programming, GAs 

are also based on the Darwinian principles of the “survival of the fittest” and the 

genetic propagation of characteristics over successive generations, followed in 

the biological evolution of species. The difference between the GP and GA is 

that while the former performs symbolic regression and used in data-driven 

modeling, GA is mainly used for function minimization/ maximization.  

GAs have been a great success in solving problems involving very large 

search spaces.  GA broadly works in the framework, wherein it considers the 

environment as an objective function to be maximized/minimized and the 

individuals in the environment as candidate solutions in the search space 

(Goldberg, 1989). In the context of the study presented in this thesis, a candidate 

solution represents decision variables appearing in the objective function, which 

are to be optimized by the GA in a manner such that the objective function is 

minimized/maximized. In function maximization tasks, the objective function 

may represent reaction conversion, yield, profit etc while in the function 

minimization task, the function may refer to the financial loss in process 

operation, selectivity of the undesired products, etc.  
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Having developed an optimal CI-based model (𝑓∗), in the next phase the 

model’s input space representing process operating variables (𝒙) can be 

optimized using the GA formalism. Consider for example, an optimization task 

involving of maximization of an objective function as defined below. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑦𝑑 =  𝐺[𝑓∗(𝒙, 𝜎)] subject to constraints;  𝑥𝑛
𝑙𝑜𝑤𝑒𝑟 < 𝑥𝑛 < 𝑥𝑛

𝑢𝑝𝑝𝑒𝑟                                                                                                   

 (2.24) 

where 𝑦𝑑 denotes a process performance variable, 𝐺 denotes an objective 

function expressed in terms of a CI-based model. It is assumed that the form 

of the nonlinear𝑓∗, magnitudes of the elements of the parameter vector (𝜎), 

and 𝑥𝑙𝑜𝑤𝑒𝑟 and  𝑥𝑢𝑝𝑝𝑒𝑟  are known.  

The step-wise procedure of GA towards fulfilling the above-stated 

optimization task is described below. 

Step 1  (Initialization): Form an initial population of size Npop of candidate 

(probable) solution strings (chromosomes) whose elements (binary 

digits or real numbers) are chosen randomly. Set the generation counter 

to zero. Each chromosome in the population is of the same length and 

has as many segments (formed by bits or real values) as the decision 

variables to be optimized by the GA.  

Step 2 Evaluate fitness of each chromosome in the population using a pre-

specified fitness function. Fitness function assigns a score to the 

candidate solution, which is directly proportional to the ability of the 

solution to fulfill the task of objective function maximization/ 

minimization.  

Step 3  (Selection): A pool of parent chromosome (of size Npop) strings is 

formed in this step. The selection of these strings is done using 

algorithms such as the weighted Roulette-Wheel algorithm (Bäck and 

Schwefel, 1993; De Jong, 1975). This step in an oversimplified manner 

mimics the “survival of the fittest” principle of Darwinian evolution. In 
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essential feature of the selection step is to form a pool of relatively fitter 

chromosomes (parents) from the current population of chromosomes. 

The probability of a string getting selected in the parent pool is directly 

proportional to its fitness value. It is possible that multiple copies of 

fitter chromosomes are included in the parent pool. The formation of 

parent pool is to select fitter chromosomes for offspring production. 

Step 3  (Crossover): Crossover is the most important step of GA. It is 

responsible for generating offspring with genetic material that is 

different than the parents. It is performed as follows: (a) choose 

randomly a chromosome pair from the parent pool, (b) randomly select 

a crossover point along the length of each parent chromosome and slice 

the strings at this point to generate two substrings per parent, (c) 

exchange the substrings mutually between the parent strings and join 

them to obtain two offspring. 

Step 4:  Repeat step 3 until the total number of offspring generated equals Npop 

following which the offspring population is merged with the parent 

population. This gives a post-merger population with 2 × Npop number 

of chromosomes. 

Step 5  (Mutation): Nature imparts mutation (introducing small changes in the 

genetic material) while creating offspring. GA mimics this operation by 

mutating elements of each of the 2 × Npop number of offspring strings 

randomly where the probability of mutation (Pmut) is kept small. During 

mutation, the top-ranking string in the parent population is excluded so 

as not to lose it. Next, each of the 2N chromosomes are evaluated using 

the fitness function and these are ranked beginning with the 

chromosome with the highest fitness score following which the lower 

half of the 2N-sized population is discarded. The resulting population of 

size Npop forms the new generation (population) of candidate solutions 

and thus the generation index is increased by unity. 
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Step 6:  Repeat steps 3-5 until convergence is achieved. Convergence is reached 

when one of the following two conditions are met: (a) GA has evolved 

over the pre-specified number of generations, and (b) the fitness score 

of the best solution in the population no longer increases over 

successive generations. The solution possessing highest fitness score 

forms the best solution of the particular GA run. Multiple runs with 

systematic variation in the GA parameters such as crossover and 

mutation probabilities, and length of the chromosomes, need to be 

conducted for obtaining an overall optimal solution. Since the 

converged solution also depends upon the initial randomly generated 

population of candidate solutions, this set also needs to be initialized 

differently by varying the random number generator seed multiple 

times.     

A flowchart of the genetic algorithm operation is depicted in Figure 2.7. It 

may be noted that being stochastic procedures a number of variants to the basic 

GA presented here have been proposed. These variants yield better performance 

in specific cases.  
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Figure 2.7: Flow diagram representing genetic algorithm operations  

 

Table 2.5 presents some representative applications of the GA method in 

chemical/ biochemical engineering.  

NO 

YES 

Gen = 1 

Selection of parent 

pool 

        Start 

Population Initialization (Npop) 

Evaluate and assign a fitness of 

each chromosome using pre-

specified fitness function 

Stopping 

Criterion met? 

     End 

Gen = Gen + 1 

Mutation (Pmut) 

    Crossover 
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Table 2.5: Selected representative studies of GA applications in chemical/ 

biochemical engineering  

SN GA Application Study Reference 

1 Steady-state and 

dynamic process 

modeling/prediction 

 Mathematical modeling of 

continuous ethanol 

fermentation in a membrane 

bioreactor by pervaporation 

compared to conventional 

system: Genetic algorithm 

Esfahanian et al. 

(2016) 

 Modeling and optimization 

using artificial intelligence 

strategies 

Hamid et al (2014) 

 Adaptive genetic 

programming for steady-

state process modeling 

Grosman and  

Lewin (2004). 

2 Process Monitoring  Automatic generation of 

interlock designs using 

genetic algorithms 

Lepar et al. (2017) 

 Genetic algorithms for 

feature selection of image 

analysis-based quality 

monitoring model: An 

application to an iron mine 

Chatterjee and 

Bhattacherjee 

(2011) 

3 Model based 

nonlinear process 

control 

 Filtered predictive control 

design using multiobjective 

optimization based on 

Araujo and Coelho 

(2017) 

https://www.sciencedirect.com/science/article/pii/S0098135404002613#!
https://www.sciencedirect.com/science/article/pii/S0098135404002613#!
https://www.sciencedirect.com/science/article/abs/pii/S0952197610002265#!
https://www.sciencedirect.com/science/article/abs/pii/S0952197610002265#!
https://www.sciencedirect.com/science/article/abs/pii/S0952197610002265#!
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genetic algorithm for 

handling offset in chemical 

processes 

 A genetic algorithm-based 

approach to intelligent 

modeling and control of pH 

in reactors 

Mwembeshi et al. 

(2004) 

 Solving a nonlinear non-

convex trim loss problem 

with a genetic hybrid 

algorithm hybrid algorithm 

Ostermark (1999) 

 Application of nonlinear 

multivariable model 

predictive control to 

transient operation of a gas 

turbine and NOX emissions 

reduction 

Pires et al. (2018) 

4 Process 

Identification 

 Genetic algorithm for fuel 

spill identification 

Lavine et al. 

(2001) 

 Discrete-time parameter 

estimation with genetic 

algorithms 

Das and Goldberg 

(1988) 

 Genetic algorithms 

combined with discriminant 

analysis for key variable 

identification 

Chiang and Pell  

(2004) 

https://www.sciencedirect.com/science/article/pii/S0959152403000295#!
https://www.sciencedirect.com/science/article/pii/S0959152403000295#!
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5 Process 

optimization 

 Experimental investigation, 

modeling and optimization 

of membrane separation 

using artificial neural 

network and multi-objective 

optimization using genetic 

algorithm 

Soleimani et al. 

(2013) 

 A hybrid neural-genetic 

multi-model parameter 

estimation algorithm 

Petridis (1998) 

 A comparison of three 

diversity indices based on 

their components of 

richness and evenness 

DeJong (1975) 

 The removal of arsenite [As 

(III)] and arsenate [As(V)] 

ions from wastewater using 

TFA and TAFA resins: 

Computational intelligence-

based reaction modeling and 

optimization 

Patil-Shinde et al. 

(2016) 

 Simultaneous optimization 

of chemical flow-shop 

sequencing and topology 

using genetic algorithms 

Cartwright and 

Long (1993) 

 Optimization of Desai et al. (2006) 



93 
 

fermentation media for 

exopolysaccharide 

production from 

Lactobacillus plantarum 

using artificial intelligence-

based techniques 

6 Fault detection and 

diagnosis (FDD) 

 Fault prediction based on 

dynamic model and grey 

time series model in 

chemical processes 

Tian et al . (2014) 

 Optimal features selection 

for designing a fault 

diagnosis system 

Ardakani et al. 

(2016) 

7 Quantitative 

structure-activity/ 

property 

relationships 

(QSAR/QSPR) 

 Application of quantitative 

structure-property 

relationship analysis to 

estimate the vapor pressure 

of pesticides 

Goodarzi et al. 

(2016) 

 Modeling physico-chemical 

properties of (benzo) 

triazoles, and screening for 

environmental partitioning 

Bhhatarai and 

Gramatica (2011) 

8 Soft-sensor 

development 

 Improving the efficiency of 

dissolved oxygen control 

using an on-line control 

system based on a genetic 

algorithm evolving FWNN 

Ruan et al. (2017) 

https://www.sciencedirect.com/science/article/pii/S0043135410007682#!
https://www.sciencedirect.com/science/article/pii/S0043135410007682#!
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software sensor 

 A comparative study of 

three evolutionary 

algorithms for surface 

acoustic wave sensor 

wavelength selection 

Li and Heinemann 

(2007) 

 

2.6 REDUCTION OF DIMENSIONALITY OF THE PREDICTOR SPACE 

In a typical chemical process operation, very large amount of data 

comprising values of the operating and performance variables, and raw material 

and product quality attributes/analyses are routinely generated and archived. 

These data inherently contain instrumental and/or measurement noise. In many 

instances process data are also correlated linearly or nonlinearly, which leads to 

redundancy. Thus, it becomes necessary to preprocess the data to reduce the noise 

(if not eliminate it completely) and perform the analysis of correlations so that the 

correlated variables could be ignored leading to the reduction in the 

dimensionality of the data. The advantage of dimensionality reduction is that (a) it 

helps in constructing parsimonious (less complex) models possessing a good 

generalization capability, and (b) it reduces the computational effort and time 

involved in developing the model. A widely used linear dimensionality reduction 

technique is known as Principal Component Analysis (PCA). The techniques used 

for performing nonlinear dimensionality are, for example, auto-associative and 

Sammon’s neural networks (Lerner et al., 1999). In the studies presented in this 

thesis, linear PCA has been used for reducing the dimensionality of the predictor 

(input) space of the CI-based models. In what follows, the PCA method is 

described in brief. An in-depth description of the PCA is provided for instance by 

Geladi and Kowalski (1986), Iyer et al. (2003), Abdi and Williams (2010), and 

Sharma et al. (2014). 

https://www.sciencedirect.com/science/article/pii/S0925400507001165#!
https://www.sciencedirect.com/science/article/pii/S0925400507001165#!
https://www.sciencedirect.com/science/article/pii/S0925400507001165#!
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2.6.1 Principal Component Analysis  

Principal Component Analysis (PCA) was introduced in the year 1901, by 

a statistician, Karl Pearson, while proposing a formulation (Pearson, 1901) for 

determining the closest fitting lines and planes for a system of points in a 

specified space. It was subsequently established that PCA is more appropriate for 

the analysis of variance for the modeling of the response data (Fisher and 

MacKenzie, 1923). The concept of “percentage of variance captured” in the PCA 

was popularized by Hotelling (1933). PCA (Geladi and Kowalski, 1986) is the 

most widely used linear dimensionality reduction technique that extracts linear 

relationships existing among the variables of a dataset. It is  a multivariate, 

statistical technique that can be used to examine data variability and frequently 

applied to the datasets that are large, difficult to interpret, and where complex 

inter-relationships between variables are difficult to identify and visualize (Kozub 

and MacGregor, 1992).  

In PCA, the new variables derived, called Principal Components (PCs) or 

factors, are computed from the linear combinations of the original variables. The 

first principal component accounts for the highest variability in the data; each 

succeeding PC accounts for as much of the still outstanding variability as possible 

(see Figure 2.8). Thus, in theory, it is possible to have an infinite number of PCs 

with each accounting for less data variability than the previous one (Dong and 

McAvoy, 1996). Choosing, the first few PCs, which are lesser in number than the 

number of original data variables and accounting for a large portion of the data 

variability (say 95% or more) to represent the original data set allows 

compression of the information content and consequently dimensionality 

reduction. 

Procedurally, PCA begins by finding   the eigenvalues   and eigenvectors 

of the sample   covariance or correlation matrix. The eigen value essentially 

represents the standard sample variance of the projected data points. The 

eigenvectors corresponding to the largest eigenvalues (PCs) are used to 
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reconstruct a large fraction of the variance of the original data. Thus, PCA 

generates PCs as a set of “pseudo-variables” or “latent variables,” which   are   

linearly independent (uncorrelated) orthogonal variables (Nomikos and 

MacGregor, 1994). PCA determines the linear mapping between the variables in 

the original dataset in a low dimensional space in a manner such that the variance 

of the data in the low dimensional representation is maximized.  This is done by 

decomposing the original   dataset   comprising   the   linearly   correlated   

variables into a PCA transformed variable set defining the eigenvectors of the 

covariance of the data.  

 

Figure 2.8:  An illustration of principal component analysis. Given a data 

bounded in an ellipse, PCA derives two principal components, one in 

the direction of maximum variation in the data and the second in the 

direction of lesser variation. 

To illustrate the principles of the PCA method, consider a two-

dimensional matrix, 𝑆(𝐼, 𝐽), consisting of 𝐼 measurements of 𝐽 variables. The PCA 

decomposes this matrix, into matrices of latent variables and the corresponding 

parameters or loadings as given by,  

   𝑆 = 𝑇𝑃′ + 𝐸                                     (2.25) 
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where, 𝑆 is a mean-centered (mean = 0) matrix and the variance is scaled to unity. 

This indicates that the standard deviation of each element of every column is 

unity; 𝑇(𝐼, 𝐽) refers to the matrix of 𝐽 principal component scores; i.e. each of the 

column matrix of  𝑇 represents a PC; 𝑃′denotes the transpose of the loading 

matrix, 𝑃(𝐽, 𝐽), and 𝐸 refers to the residuals. The first 𝑀 principal component 

scores account for a large amount of variance in the dataset, and, therefore, the 

original matrix  𝑆 can also be written as 

 𝑆 =  ∑ 𝑡𝑘 (𝑃𝑘)′ +𝑀
𝑘=1 𝐸′                                   (2.26) 

where, tk denotes an I-dimensional k
th 

score vector, Pk refers to the transpose of 

the k
th 

J-dimensional loading vector, Pk,  and E is the residual matrix. It is thus 

witnessed that the original S  (I, J) data matrix is now represented in terms of a 

smaller matrix. The sum of squares of elements of the score vector 𝑡𝑘  is related to 

the Eigen value of that vector (known as 'trace'), which is a measure of the 

variance captured by the k
th 

PC. It also shows that a larger Eigen value is 

indicative of more significant respective PC.  

Principal component analysis has proven to be an excellent method for 

feature extraction and data reduction in large datasets and has been used in a 

variety of chemical/ biochemical process engineering tasks as listed in Table 2.6. 

Table 2.6:  Recent chemical/ biochemical engineering applications of principal 

component analysis (PCA) 

SN PCA Application Study Reference 

1 Process Monitoring  Local and global principal 

component analysis for 

process monitoring 

Yu (2012) 

 Modeling and monitoring of 

batch processes using 

principal component analysis 

Kulkarni et al. 

(2004) 

https://www.sciencedirect.com/science/article/pii/S1369703X03002213#!
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(PCA) assisted generalized 

regression neural networks 

(GRNN) 

 Statistical analysis of the 

physico–chemical data on the 

coastal waters of Cochin 

Iyer et al (2003) 

2 Process 

Identification 

 Experimental determination 

by principal component 

analysis of a reaction 

pathway of biohydrogen 

production by anaerobic 

fermentation 

Lara et al. (2008) 

 Descriptive and multivariable 

analysis of the physico-

chemical and biological 

parameters of Sfax 

wastewater treatment plant 

Ouali et al. (2009) 

 Analyzing adsorption data of 

erythrosine dye using 

principal component analysis 

Degs et al. (2012) 

3 Fault detection and 

diagnosis (FDD) 

 Fault detection of batch 

processes using multiway 

kernel principal component 

analysis 

Lee et al. (2004) 

 Dynamic model-based fault 

diagnosis for (bio)chemical 

batch processes 

Kerkhof et al. 

(2012) 

4 Quantitative 

structure-activity/ 

property 

 Highly correlating distance/ 

connectivity-based 

topological indices: 5. 

Shamsipur et al. 

(2008). 
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relationships 

(QSAR/QSPR) 

Accurate prediction of liquid 

density of organic molecules 

using PCR and PC-ANN 

 Development of QSPR model 

relating solvent structure to 

crystal morphology 

Haser et al. (2014). 

5 Soft-sensor 

development 

 Double locally weighted 

principal component 

regression for soft sensor 

with sample selection under 

supervised latent structure 

Yuan et al. (2016). 

 Developing a soft sensor for 

fineness in a cement ball mill 

Kavitha et al. 

(2014) 

 Data-driven Soft Sensors in 

the process industry 

Kadlec et al. 

(2009) 

 

2.7 STATISTICAL METHOD FOR MODEL DISCRIMINATION 

In the studies presented in this thesis, several reaction/process models 

were developed using CI-based strategies, namely ANN, SVR and GP. Thus, it 

became essential to compare their prediction accuracy and generalization 

performance and choose the best model. At primary level, such a comparison was 

done using statistical measures, namely coefficient of correlation (CC), root mean 

square error (RMSE) and mean absolute percentage error (MAPE). In addition, an 

advanced test termed Steiger's z-test (Steiger, 1980) was performed for comparing 

rigorously the prediction accuracy and generalization performance of the multiple 

competing CI-based models. The task of the recognition of the best model in 

terms of a rigorous statistical comparison between the correlation coefficients of a 

pair of models is facilitated by this test.  
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2.7.1 Steiger’s z - test 

This test examines whether the two CCs corresponding to the predictions 

of a  pair of models are statistically significantly different or equivalent. It tests 

the null hypothesis (H0) that two CC magnitudes are not statistically different, that 

is, CCAB = CCBC, where subscripts A, B, and C, respectively designate the desired 

(target) output of the model ({y} values) and those predicted by the models J and 

K.  To afford the above-stated comparison, initially the z-scores are computed 

using Fisher's r-to-z transformation (Fisher, 1921) as follows: 

𝑧𝑖𝑗 =  
1

2
 ln [

1+ 𝐶𝐶𝑖𝑗

1− 𝐶𝐶𝑖𝑗

]                         (2.27) 

where 𝐶𝐶𝑖𝑗 denotes the correlation coefficient between the readings 'i' and 'j'. The 

covariance between two predictions 𝑦𝐵  and  𝑦𝐶 , denoted by ℎ is expressed as 

  ℎ = 𝑐𝑜𝑣 (𝐶𝐶𝐴𝐵, 𝐶𝐶𝐴𝐶)                   (2.28) 

If the Fisher's z-transformations of both correlation coefficients (𝐶𝐶𝐴𝐵, 𝐶𝐶𝐴𝐶) are 

expressed as 𝑧𝐴𝐵, and 𝑧𝐴𝐶  respectively, then Fisher's z-transformation value is 

expressed as 

  𝑧 =  
(𝑧𝐴𝐵 − 𝑧𝐴𝐶)√𝑁𝑅− 3

√2(1−ℎ 𝐶𝐶𝐵𝐶)
              (2.29) 

Here, 𝑁𝑅 is the total number of readings and 𝐶𝐶𝐵𝐶 is the correlation coefficient 

between the model predicted values of models B and C. If the normal distribution 

value of 'y' is defined as  ′𝑛𝑜𝑟𝑚𝑑𝑖𝑠𝑡′ and its absolute value be 𝑎𝑏𝑠[𝑧] then the 

population correlation matrix correlating with Fisher's z-transform is expressed as 

                                                 𝑝 = 2(1 − 𝑛𝑜𝑟𝑚𝑑𝑖𝑠𝑡(𝑎𝑏𝑠[𝑧]))                      (2.30) 

The significance of population correlation matrix value or 𝑝-value indicates 

acceptance or rejection of the null hypothesis (H0). If the 𝑝 magnitude is less than 

0.05, then the null hypothesis is rejected (at 95 % confidence level), meaning that 
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the models being compared are considerably different. On the other hand, 𝑝 > 

0.05 indicates acceptance of the null hypothesis thus meaning that the models 

under investigation are comparable and distinct. Consequently, it is possible to 

choose a model possessing higher prediction accuracy and generalization 

capability. 

 

2.8 CONCLUSION 

Conventionally, modeling of chemical, biochemical, polymer and other 

reactions/processes is performed using the phenomenological approach, which 

possesses certain drawbacks. Its alternative, namely empirical modeling 

implemented using a variety of linear and nonlinear regression methods also 

suffers from deficiencies. In the last three decades computational intelligence 

(CI) has provided multiple modeling approaches possessing certain advantages 

over the phenomenological and empirical modeling approaches. This thesis 

presents modeling studies wherein three CI-based methods namely multilayer 

perceptron neural networks (MLPNN), support vector regression (SVR) and 

genetic programming (GP) have been extensively used in the modeling of 

chemical and biochemical systems. Accordingly, this Chapter presents an 

overview of the stated three CI-based formalisms. Specifically, the Chapter 

covers their origin, operating principles, implementation procedure, and various 

applications in chemical engineering and technology.  The major applications of 

MLPNN, SVR and GP include modeling, control, monitoring, identification, 

soft-sensor development, quantitative structure –activity/property relationships 

and fault detection and diagnosis.  

Similar to the conventional modeling, the standard methods of process 

optimization such as the deterministic gradient based approaches suffer from 

certain serious deficiencies. A number of computational/artificial intelligence 

based stochastic optimization techniques have been proposed in the last three 

decades that overcome the deficiencies of the deterministic gradient based 

optimization methods. In the present thesis, a widely used stochastic optimization 
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method namely genetic algorithms (GA) that belongs to the artificial intelligence 

based evolutionary algorithms, has been employed for optimizing reaction 

conditions of a photocatalytic degradation of pharmaceutical pollutants (see 

Chapter 3).  Accordingly, an overview of GA method encompassing its origin, 

salient features, implementation procedure and chemical and biochemical 

applications, has been presented in this chapter.  

Invariably, process data contain variables that are correlated. Their 

presence results in enhanced computational load during modeling and 

redundancy. A widely utilized method for identifying linearly correlated 

variables in the data is known as principal component analysis (PCA). This 

method defines new variables based on the original data that are not linearly 

correlated. This ultimately helps in reducing the dimensionality of the dataset. In 

the present chapter, PCA has been presented for reducing the dimensionality of 

the input (predictor) space of the CI-based models (see Chapter 3, 5 and 6). 

Accordingly, a detailed description of PCA along with its applications has been 

provided in this chapter.  

In the various modeling studies presented in the thesis, it was necessary 

to compare the prediction accuracy and generalization capability possessed by 

the MLPNN, SVR and GP based models and choose the best one. In addition to 

the commonly used measures such as correlation coefficient (CC), and root mean 

square error (RMSE), an advanced statistical test known as Steiger’s z-test has 

been utilized for comparing the performances of the CI-based models. 

Accordingly, the stated test has been discussed elaborately in this thesis.  

To summarize, this chapter lays down a strong theoretical and practical 

foundation by presenting a comprehensive overview of the CI-based modeling 

and optimization as also model selection methods employed in the research 

studies presented in the subsequent chapters. 
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Abstract 

Personal and healthcare products affect the quality of the ambient water 

when these materials  come into the environment in the form of metabolites 

excreted by the animal and human populations or as effluents from hospitals, 

pharmacies, and chemical manufacturing facilities. These compounds are difficult 

to capture or confine and therefore pose a serious threat to the aquatic ecosystem, 

and human health.  Photocatalytic degradation (PCD) is seen to be an attractive 

and inexpensive method, when compared to the ones such as photo-Fenton 

oxidation, sonolysis, ozonation, and photolysis for the elimination of 

pharmaceutical compounds such as Ciprofloxacin, Naproxen, and Paracetamol 

from the wastewater. Owing to the underlying complex nonlinear 

physicochemical phenomena, the design and construction of a “first principles” 

model for predicting the rate constant of the PCD is a time-consuming, tedious 

and costly task. To subjugate the said difficulty, in this study, mathematical 

models predicting the rate constant of the PCD of the above-stated three 

pharmaceuticals have been developed using two computational intelligence (CI) 

based data-driven modeling methods, namely, genetic programming (GP) and 

artificial neural networks (ANNs). These models use process conditions and 

molecular structural parameters of the three pharmaceutical molecules as inputs to 

predict the magnitude of the PCD rate constant. Among the ANN and GP-based 

models, the latter was found to possess better prediction accuracy and 

generalization capability (CC > 0.973 and RMSE < 0.64).  Accordingly, the GP-

based model was subsequently used in optimizing the process conditions of the 

PCD of the three pharmaceutical molecules (Ciprofloxacin, Naproxen, and 

Paracetamol). The said optimization was performed using a stochastic nonlinear 

optimization method namely genetic algorithms (GA). Next, the GA-provided 

optimal process conditions were subjected to experimental validation. Here, all 

the optimal conditions were validated successfully. The CI-based PCD modeling 

and optimization strategies explored in this chapter can be fruitfully used for 

similar purposes with other pharmaceutical degradation reactions. 
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3.1 INTRODUCTION 

A huge increase in the human population and industrial activity in the last 

five to seven decades has resulted in a severe contamination of fresh water 

resources in some regions of the world. Thus, globally it has become necessary to 

protect the scarce sources of the fresh non-contaminated potable water to fulfill 

the ever-increasing demand from the widening human population. The presence 

of toxins and harmful chemicals discharged from the healthcare, and personal 

care products through metabolites excreted by the human beings, and disposals 

from hospitals, pharmacies, and chemical manufacturing industries, have made a 

large number of fresh water resources unfit for drinking, and domestic usage. 

Some of them are ciprofloxacin (CFX), Naproxen (NPX) and paracetamol 

(PARA). 

Therefore, the biodegradation of CFX have been studied using activated 

sludge process by Li and Zhang (2010). Recently, the studies on biodegradation 

of NPX have been reported by Ding et al. (2017) using enzymatic catalytic 

reactions. Similarly, biodegradation of paracetamol has been studied by Zhang et 

al. (2013).  In most of these studies shows the long-time duration (in days) is 

necessary for biodegradation of pharmaceutical pollutants. Additionally, the non-

biodegradable pharmaceutical pollutants present in the wastewater have posed a 

serious threat to the ecosystem, and human and animal health.  However, such 

pollutants are difficult to remove only by the conventional waste water 

purification processes as they are time-consuming, costly and need a large amount 

of chemicals, which are difficult to separate post-purification. This problem is 

well answered by the photo-catalytic degradation process. It is an advanced 

oxidation process with several advantages; it is also cost-effective.  

3.2 WHY PHOTOCATALYTIC DEGRADATION? 

The wastewater is characterized by a high organic load and a low 

biodegradability index (BOD5 /COD); this means that it is difficult to degrade it 

by the traditional treatments, such as the biological treatment. The wastewater 
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containing pharmaceutical pollutants typically has turbid color and oily touch; 

advanced oxidation processes (AOPs) are needed to degrade these complex 

molecules (Tchobanoglous et al., 2002). The AOPs are sub-categorized as 

Ozonation, Photo-Fenton Oxidation, Sonolysis, Photolysis, Sono Hybrid, Hybrid 

AOP, and Photo- catalytic degradation (PCD). The implementation, advantages, 

and disadvantages of each AOP are briefly stated below. 

3.2.1 Ozonation 

Ozone is unstable and degrades over a time frame ranging from a few 

seconds to 30 minutes. The rate of its degradation is a function of the water 

chemistry, pH, and water temperature (Dodd et al., 2006). An ozonation system 

includes passing dry, clean air through a high voltage electric discharge, which 

creates an ozone concentration of approximately 1% or 10,000 mg/L. The raw 

water is then passed through a venturi throat so as to create vacuum and pulling 

the ozone gas into the water. The air is then bubbled through the water being 

treated. 

 Advantages 

 Ozone affects over a wide pH range and rapidly reacts with the 

bacteria, viruses, and protozoans and possesses stronger germicidal 

properties than the chlorination.  

 Ozone has a very strong oxidizing efficiency over a short time 

interval. 

 The treatment does not add chemicals to the water. 

 Ozone can eliminate a wide variety of inorganic, organic and 

microbiological entities and accordingly taste, and odor issues.  

The microbiological agents include bacteria, viruses, and 

protozoans (such as Giardia and Cryptosporidium). 

 Disadvantages: 

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22George+Tchobanoglous%22&source=gbs_metadata_r&cad=4
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 Ozone oxidizes iron, manganese, and sulfur in the water to form 

insoluble metal oxides or elemental sulfur. Removal of these 

insoluble particles requires post-filtration. 

 Involves additional equipment and operational costs; also, not easy 

to find a professional well-versed in the ozone treatment and 

system maintenance. 

 Ozonation provides no germicidal or disinfection residual to inhibit 

or prevent regrowth. 

 Ozonation by-products are still being evaluated and it is possible 

that some by-products could be carcinogenic. These may include 

brominated by-products, aldehydes, ketones, and carboxylic acids.  

This is one reason why the post-filtration system must include an 

activated carbon filter. 

 The system may require pretreatment of the waste-water for 

reducing its hardness or addition of polyphosphate to prevent the 

formation of carbonate scale. 

 Ozone is less soluble in water, compared to chlorine, and, 

therefore, special mixing techniques are needed. 

 Potential fire hazards and toxicity issues associated with ozone 

generation. 

 

3.2.2 Photo-Fenton Oxidation 

The process that uses mainly iron as a catalyst is known by the reagent 

discovered by Fenton (Fenton, 1894). The ferrous iron (Fe++) initiates and 

catalyzes the decomposition of H2O2, resulting in the generation of the hydroxyl 

radicals.  These radicals via photo-reduction of the metal ions initiate the 

degradation process (Sun et al., 2009). The generation of the radicals involves a 

complex reaction sequence in an aqueous solution. Generally, Fenton’s oxidation 

process is characterized by pH adjustment, oxidation reaction, and neutralization 

and coagulation for precipitation.  
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 Advantages 

 H2O2 can act both as an OH scavenger and an initiator. 

 The organic substances can be removed at two stages that is 

oxidation and coagulation.  

 Disadvantages 

 Formation of a high concentration of anions in the treated 

wastewater. 

 Generation of large amounts of ferrous iron sludge.  

 

3.2.3 Sonolysis 

The disadvantage of the above-stated processes namely the generation of 

harmful by-products makes it necessary to explore alternative disinfectants and 

new treatment technologies. To this end, in recent years, ultrasound has emerged 

as a promising alternative disinfection technique (Bel et al., 2009). The science of 

ultrasound involves the study of the formation, impact, and applications of 

sonorous waves occurring at frequencies higher than 20 kHz; this frequency is the 

upper audibility threshold for the human ear. Ultrasound has been studied with 

reference to physical, chemical, medical, industrial, and environmental 

engineering applications.  

 Advantages  

 Simple, flexible design with low capital costs 

 Easy upgrading of the conventional treatment unit 

 The high efficiency of several bacteria inactivation 

 Oxidation of natural organic matter and degradation of chemicals 

pollutants 

 No production of conventional disinfection by-products  

 High synergy/improved efficiency in combination with 

conventional disinfection treatments (O3; Cl2; UV). 

 Disadvantages  
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 Design criteria still developing  

 The increase of water turbidity  

 Maintenance/replacement of ultrasound probe  

 Lack of remaining disinfection capacity  

 

3.2.4 Photolysis 

Addition of a photocatalyst accelerates the decrease of total organic 

content/loading (TOC) by photolytic and photocatalytic reactions. For example, 

the treatment of the swimming pool water by UV- LED radiation without the 

photo-catalyst showed no decrease of the TOC since no photolytic reaction took 

place. A slight decrease of the TOC can be observed when TiO2 was added, which 

means that UV-LEDs are capable to excite the photocatalyst TiO2 (Van Doorslaer 

et al., 2011). 

 Advantage 

 Efficient and effective due to the specific wavelength emitted by 

the radiation source. 

 Disadvantage 

 Produces unbalanced lethal hydroxyl radicals (OH*) which may 

impart erosion to vessel content.  

 

3.2.5 Sono Hybrid 

In brief, this process is a combination of Sono-catalysis, Sono-Fenton, and 

Sono-photo-catalysis. The experimental details of this method are provided by 

Chakma and Moholkar (2015). 

 Advantage 

 Highly effective in commercial wastewater treatment plants 

 Disadvantage 

 High operational and maintenance cost. 
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3.2.6 Hybrid AOP 

This process is a combination of the sonolysis, Fenton and, UV 

degradation processes. The process details of the hybrid-AOP are well explained 

by Tchobanoglous et al. (2002). 

 Advantage 

 Highly effective in commercial waste-water treatment plants; 

effects savings in the catalyst costs thereby operational cost is 

lowered.  

 Disadvantage 

 High operational cost and useful in commercial processes for 

dilute concentrations only. 

 

3.2.7 Photocatalytic Degradation 

Photocatalytic degradation (PCD) of organic pollutants is a promising 

technology since it directly degrades pollutants instead of transforming them. 

Moreover, this is done at ambient conditions. The principle of this process is an 

acceleration of the photoreaction in the presence of a catalyst (Belden et al., 

2007). 

 Advantages 

 Capable of removing a wide range of organic pollutants (such as 

pesticides, and herbicides) and micropollutants (such as endocrine 

disrupting compounds).  

 The use of solar radiation can be used to improve the design of the 

photo-reactor for reducing the cost of treatment.  

 Easier to scale up.  

 Disadvantage 

 Wide band gap (3.2eV), and need for an efficient and cost-

effective catalyst for high photon-efficiency to utilize wider solar 

spectra.  

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22George+Tchobanoglous%22&source=gbs_metadata_r&cad=4
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Currently, removal of the pharmaceutically-active micropollutants such as 

ciprofloxacin (CFX), naproxen (NPX), and paracetamol (PARA), from the 

wastewater up to a permissible limit is an issue of concern since commonly used 

wastewater treatment plants can not remove these micropollutants completely. 

Among the various above-described waste-water treatment methods the 

photocatalytic degradation (PCD)—since it has several attractive features, and no 

major disadvantages—is found to be an efficient and inexpensive pollutant-

removal approach when compared with  the other methods (Gebhardt and 

Schröder, 2007). Remediation of the CFX, NPX and PARA compounds has been 

studied by the photocatalytic degradation (Bhatkhande et al., 2001; Kamble et 

al.,2006). In several studies, TiO2 was used as an effective catalyst for the 

removal of pollutants from the wastewater successfully.  The performance of N-

doped TiO2 for the PCD of pharmaceutical pollutants, namely, Ciprofloxacin 

(CFX), Naproxen (NPX), and Paracetamol (PARA), was rigorously studied by 

Shetty et al. (2016) and Shetty et al. (2017).  This chapter presents the results of a 

study wherein (i) state-of-the art computational intelligence based mathematical 

models have been developed for the prediction of the PCD rate constant governed 

by the pseudo-first-order kinetics using the data collected by  Shetty et al. (2016; 

2017), (ii) the  best performing  CI-based model has been employed for 

optimizing the PCD process performance using a stochastic optimization method, 

namely genetic algorithms (GA), and (iii) the optimal process conditions provide 

by the GA have been validated successfully experimentally. 

3.3 EXPERIMENTAL METHODOLOGY 

In here, an overview of the experimental procedure that was used to 

conduct the photocatalytic degradation of pharmaceutical pollutants is provided. 

A detailed discussion of the PCD experimentation can be found in Shetty et al. 

(2017).  
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An annular borosilicate glass reactor was used as the photocatalytic 

reactor (see Figure 3.1) for performing the PCD of individual pharmaceutical 

pollutants using artificial and solar radiation. The source of artificial radiation was 

a visible tungsten lamp with the power output of 400 W. The de-ionized water 

was used to prepare an aqueous solution of each pharmaceutical pollutant and fed 

to the solution inlet as shown in Figure 3.1. The temperature of the reaction 

mixture was kept constant by supplying the cold/chilled water through the annular 

space between the lamp and bottle, and it was measured at regular intervals by the 

temperature indicator. The reactor assembly shown in Figure 3.1 can be 

surrounded by parabolic reflectors if the experiments need to be conducted in the 

presence of solar radiation.  

 

Figure 3.1: Schematic diagram of the experimental assembly of PCD of 

pharmaceutical pollutants  

In the photocatalytic experiments, N-doped TiO2 or Aeroxide® P-25 TiO2, 

was used as the effective photocatalyst (Lin et al., 2012; Shetty et al., 2016). In 
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each experimental run, 500 ml of the aqueous contaminated solution prepared 

using a single pharmaceutical pollutant was charged in the reactor (Shetty et al., 

2017). The air was sparged at the bottom of the reactor to provide the necessary 

oxidation and to keep the N-doped TiO2 catalyst in suspension via a ring sparger. 

Before exposing the reactor assembly to the artificial radiation, the solution was 

kept in a stirring condition in equilibrium for 15 min in the dark. The artificial 

radiation was observed to be more efficient to affect the degradation for 

Ciprofloxacin and Naproxen, while solar radiation was more effective for 

Paracetamol degradation (Desale et al., 2013; Shetty et al., 2016). 

The solution pH was adjusted using 0.1 N HClO4 and 0.1 N NaOH 

aqueous solutions. Batch adsorption experiments were carried out in a 100 C.C. 

stoppered conical flask. A 50 ml aqueous solution of 100 mg/L concentration of 

pollutant sample was used in the conical flask covered by the silver foil to avoid 

contact with the light. A known amount of the N-doped TiO2 was added to the 

flask and then the flask was kept on a rotary shaker at a speed of 250 rpm at 30°C 

(ambient temperature) for 24 h to arrive at the equilibrium. The residual 

concentration of the pollutant sample was analyzed by using the HPLC method. 

The technical details of the analytical procedure are given by Shetty et al. (2017). 

A total of 36 PCD experiments were conducted to study the effects of variation in 

the operating conditions on the magnitude of the rate constant pertaining to the 

PCD of each of the three pharmaceutical molecules. In these experiments, the 

initial concentrations of Ciprofloxacin, Naproxen and Paracetamol were 97.4 

mg/L, 98.0 mg/L and 108.0 mg/L, respectively. 

3.4 MODELING OF PHOTOCATALYTIC DEGRADATION PROCESS  

For designing a photocatalytic degradation process, an accurate 

knowledge of or a prediction method for the degradation rate constant is essential. 

Since performing experiments is costly, tedious, and time-consuming it is 

desirable to develop suitable mathematical models for the prediction of the stated 

rate constants. Among the two methods that are available for such a modeling, 
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namely, phenomenological (mechanistic) and empirical, the latter is less rigorous 

and inexpensive since unlike the first method, it does not require complete 

knowledge of the physicochemical phenomena underlying the reaction. 

Accordingly, we have employed computational intelligence (CI) based 

exclusively data-driven state-of-the-art methods namely genetic programming 

(GP) and artificial neural networks (ANNs) for modeling and optimization of the 

photocatalytic degradation process for the removal of ciprofloxacin (CFX), 

naproxen (NPX), and paracetamol (PARA) from the waste-water.  Specifically, 

the CI-based models predict the magnitude of the rate constant (Kc) for the PCD 

of ciprofloxacin, naproxen and paracetamol. The PCD experimental data used in 

the modeling and optimization are given in Shetty et al. (2016).  In the next step, 

the CI-based model possessing high prediction accuracy and generalization 

performance was used to obtain the optimal conditions for the PCD of 

ciprofloxacin (CFX), naproxen (NPX), and paracetamol (PARA).  

In this study, four experimental parameters, namely, pH, time of exposure 

of pharmaceutical pollutant to the solar radiation (min), the degraded 

concentration of pharmaceutical pollutant (mg/L), and the ratio of instantaneous 

concentration to initial concentration, have been considered as the predictor 

(input) space of the model. The other influential operational parameters that were 

kept constant and, therefore, not considered as model inputs are initial 

concentration of the pollutant (mg/L), solar intensity (W/m2), and catalyst 

loading (g/L), and the magnitudes of these parameters have been: 100 mg/L, 

815±10 W/m2, and 1 g/L, respectively. Since, a single comprehensive model was 

developed for predicting the rate constant for all the three pollutants, it was 

necessary that the input space of the model includes attributes that distinguish 

between the pollutants. This was achieved using the structural parameters of the 

pharmaceutical molecules (CFX, NPX, and PARA) provided by Screening 

Assistant 2 (Le Guillouxet al., 2012) software package. These parameters were 

considered as the additional (to the four experimental parameters) ones and are as 

follows: (i) number of aromatic atoms (b1), (ii) number of atoms (b2), (iii) number 



139 
 

of bonds (b3), (iv) molecular weight (b4), (v) number of heavy atoms (b5), (vi) unit 

stripped logarithm of the solubility (b6), (vii) sum of atomic polarizabilities (b7), 

(viii) number of hydrophobic atoms (b8), (ix) topological surface area (b9), (x) 

logarithm of the octanol/water partition coefficient obtained from linear atom 

type model (b10), (xi) Weiner path (b11), (xii) number of rings (b12), (xiii) 

logarithm of the octanol/water partition coefficient of the given structure (b13), 

(xiv) molecular refractivity (b14) and (xv) number of moles (b15).  

3.4.1. Sensitivity Analysis 

For ascertaining the extent to which the model output (rate constant, Kc 

expressed in unit as, 1/ min) is influenced by the individual independent factors 

molecular structural parameters (MSP), sensitivity analysis (SA) was performed. 

Such an analysis helps in understanding the behavior of the model and the 

coherence between a model and its output (Saltelli et al., 1999). Specifically, it 

ranks the inputs in the order of their influence on the model output (i.e., the rate 

constant, Kc). For performing SA, IBM SPSS package (2011), was used on the set 

of fifteen MSPs of the pharmaceutical pollutants, which have a distinct effect on 

the PCD. Only the first fourteen structural parameters (b1—b14) were considered 

in the SA since the number of moles (b15) was kept constant for all the three 

pharmaceutical molecules. The results of the SA shown in Figure 3.2 indicate that 

there exist two distinct groups of structural parameters with importance 

magnitudes of less than and greater than 20%, respectively. Thus, only those ten 

SPs with relatively high (>20%) importance values, namely, molecular 

refractivity (b14), Weiner path (b11), number of rings (b12), sum of atomic 

polarizabilities (b7), number of hydrophobic atoms (b8), unit stripped logarithm of 

the solubility (b6), number of bonds (b3), logarithm of the octanol/water partition 

coefficient obtained from linear atom type model (b10), logarithm of the 

octanol/water partition coefficient of the given structure (b13), and topological 

surface area (b9),were considered along with the four experimental parameters in 

the input space of the CI-based rate constant predicting models. 
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Figure 3.2: Sensitivity analysis of the structural parameters of the pharmaceutical 

molecules  

3.4.2. Principal Component Analysis (PCA) 

The principal component analysis (Geladi and Kowalski, 1986) was 

performed on the data set representing the model inputs. This was done for 

removing any linearly correlated inputs and thereby reducing the dimensionality 

of the input space of the CI-based models. The PCA described in detail in Chapter 

2 (section 2.6.1) is a multivariate statistical technique that employs an orthogonal 

transformation to convert a set of linearly correlated data into a set of linearly 

uncorrelated variables termed principal components (PCs). The first few PCs 

(which are lesser in number than the original input variables) that capture a major 

portion of the data variance can be selected as model inputs thereby reducing the 

dimensionality of the input space. The dimensionality-reduced dataset cuts down 

the computational load pertaining to the construction of data-driven models as 

also data redundancy.  
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In this study, RapidMiner software package (Mierswa et al., 2006) was 

used to perform PCA on the fourteen-dimensional predictor input space consisting 

of (a) the four experimental parameters namely, pH (x1), time (x2), degraded 

concentration of pharmaceutical pollutant (x3), and ratio of instantaneous 

concentration to initial concentration (x4), and (b) the ten influential structural 

parameters identified by the sensitivity analysis. The dataset consisting of 

fourteen inputs and the corresponding rate constant magnitudes is listed in Table 

3.1. Prior to performing PCA, all the listed inputs were normalized using “Z-

score” normalization procedure using the following equation.  

                       𝑥𝑟
𝑖 =

𝑥𝑟
𝑖 −�̅�𝑟

𝜎𝑟
; 𝑖 = 1,2, … , 𝑁𝑝; 𝑟 = 1,2, … , 𝑅                          (3.1) 

where �̂�𝑟
𝑖  denotes the normalized values of rth input variable (r = 1, 2, 

…,R); 𝑥𝑟
𝑖  denotes the ith value of the rth non-normalized input variable, xr; 𝑁𝑝 

represents the number of observations/ samples in the data set; R designates the 

number of inputs to PCA; �̅�r and σr represent the mean and standard deviation of 

xr. The mean and standard deviation formulas and their values used in the 

normalization procedure are given from Eq. 3.2 to 3.5. 

�̅�𝑟 =  
∑ 𝑥𝑟

𝑖𝑁𝑝
𝑖=1

𝑁𝑝
;  𝑖 = 1,2, … , 𝑁𝑝 ; 𝑟 = 1,2, … . , 𝑅                       (3.2) 

                                                                               

  𝜎𝑟  = √
∑ (𝑥𝑟

𝑖 −�̅�𝑟)
𝑁𝑝
𝑖=1

𝑁𝑝
;  𝑖 = 1,2, … , 𝑁𝑝   𝑟 = 1,2, … . , 𝑅   (3.3)                                                                            

where, 

x̅1 = 6.21,  x̅2 = 45.43,  x̅3 = 43.24,  x̅4 = 0.408,  x̅5 = 7.15,  x̅6 = 796.5,  x̅7 =

2.44, x̅8 = 39.49, x̅9 = 12.5, x̅10 = −2.90, x̅11 = 35.67, x̅12 = 1.68, x̅13 = 1.81,

x̅14 = 67.15                                                                                                       (3.4)              

 𝜎1 = 0.892, 𝜎2 = 38.01, 𝜎3 =  40.15, 𝜎4 = 0.368,  𝜎 5 = 0.843,  𝜎6 =

268.83, 𝜎7 = 0.843,𝜎8 = 4.75, 𝜎9 = 2.32, 𝜎10 =0.544, 𝜎11 = 5.138, 𝜎12 =

1.33, 𝜎13 =  1.02, 𝜎14 = 17.26                                                                      (3.5)
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Similar to the model’s inputs, the rate constant magnitudes (Kc) of the PCD 

reaction were normalized using the same technique; the corresponding mean and 

standard deviation values are 1.226 and 3.33, respectively. The magnitudes (%) of 

the variance in the example dataset captured by the fourteen principal components 

are as follows: PC1 - 45.7, PC2 – 40, PC3 – 7.6, PC4 – 6.5, PC5 – 0.3, and PC6 – 

PC14   0.0. As can be seen, the first four PCs have captured a large percentage (≈ 

99.7%) of the variance in the fourteen-dimensional normalized input space of the 

CI-based models to be developed. Accordingly, the first four PCs were 

considered in the GP and ANN based modeling instead of the original 14 inputs. 

Consequently, the dimensionality of the input space got reduced to only four and, 

thereby, decreasing the computational load in modeling substantially. The general 

formula for computing the scores of the principal components with maximum 

variance created in a PCA is given below: 

                           𝑃𝐶𝑛 = 𝑎11(�̂�1) + 𝑎12(�̂�2) + ⋯ + 𝑎1𝑟(�̂�𝑟)      (3.6) 

where,  

a11 = the regression coefficient (“weight”) for the first input variable, as used in 

creating the principal component 1 (PC1); other coefficients can be interpreted 

similarly. Using the weights obtained in PCA, the four PCA-transformed inputs 

are defined as below: 

 

14131211109

876543211

ˆ319.0ˆ332.0ˆ338.0ˆ329.0ˆ315.0ˆ076.0

ˆ315.0ˆ286.0ˆ38.0ˆ3.0ˆ129.0ˆ128.0ˆ11.0ˆ018.0

xxxxxx

xxxxxxxxPC





                    

 

(3.7) 

 

14131211109

876543212

ˆ246.0ˆ227.0ˆ217.0ˆ235.0ˆ252.0ˆ414.0

ˆ255.0ˆ292.0ˆ115.0ˆ276.0ˆ389.0ˆ391.0ˆ069.0ˆ04.0

xxxxxx

xxxxxxxxPC




                                                                                                                                                                          

 (3.8) 

 

14131211109

876543213

ˆ063.0ˆ063.0ˆ063.0ˆ026.0ˆ063.0ˆ023.0

ˆ022.0ˆ015.0ˆ042.0ˆ018.0ˆ156.0ˆ141.0ˆ637.0ˆ728.0

xxxxxx

xxxxxxxxPC





                                                                                                                                                     (3.9)
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14131211109

876543214

ˆ054.0ˆ053.0ˆ053.0ˆ013.0ˆ054.0ˆ028.0

ˆ01.0ˆ004.0ˆ029.0ˆ007.0ˆ097.0ˆ087.0ˆ71.0ˆ682.0

xxxxxx

xxxxxxxxPC





                                                                                                                                                  (3.10)

 

 

where �̂�𝑟; r = 1, 2, …, R, denote the normalized scores of the fourteen input 

variable values (xr). 
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Table 3.1:  Input Variables consists of Photocatalyst degradation experimental parameters and structural 

attributes of pharmaceutical molecules.

Pharmaceutical 

Pollutants 

Photocatalyst Degradation 

Experimental Parameters 

(Shetty et al., 2016) 

Structural Attributes of Pharmaceutical Molecules 

(Le Guilloux et al., 2012) 

    Kc , 

(1/ min) 

(Shetty 

et al., 

2016) 

Initial 

concent

ration 

in mg/L 

Percent 

degradat

ion 

obtained 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 

Ciprofloxacin 

 
4.5 

0.1 40.56 0.418 

8.70 1234 4 48.2 16 -2.74 45 1.04 1.37 72.88 

8.719 97.4 95.42 

 15 12.83 0.132 0.135 

30 4.46 0.046 0.103 

Naproxen 5.4 

0.1 38.55 0.393 

6.66 530 2 36.4 13 -3.55 32 3.29 3.04 46.53 

9.33 98.0 95.51 

15 11.15 0.114 0.145 

30 11.77 0.120 0.071 

45 8.91 0.091 0.053 

60 8.61 0.088 0.041 

90 5.50 0.056 0.032 

120 4.40 0.045 0.025 

Paracetamol 5.6 

0.1 102.7 0.951 

6.75 813 2 37.6 10 -2.35 34 0.43 0.83 84.5 

0.502 108.0 21.31 

15 99.01 0.917 0.0057 

30 96.02 0.889 0.0039 

45 95.36 0.883 0.0028 

60 95.39 0.883 0.0021 

90 86.11 0.797 0.0025 

120 84.98 0.787 0.0019 

Ciprofloxacin 7 

0.1 32.41 0.331 

8.70 1234 4 48.2 16 -2.74 45 1.04 1.37 72.88 

11.045 97.4 99.62 

15 11.14 0.114 0.1448 

30 2.65 0.027 0.1203 

45 1.24 0.013 0.097 

60 0.37 0.004 0.092 

Naproxen 7 

0.1 28.15 0.287 

6.66 530 2 36.4 13 -3.55 32 3.29 3.04 46.53 

12.474 98.0 99.11 

15 24.17 0.247 0.093 

30 16.36 0.167 0.0597 

45 14.17 0.145 0.0429 

60 3.51 0.036 0.055 

90 1.96 0.02 0.0435 

120 0.87 0.009 0.0394 

Paracetamol 7 

0.1 101.3 0.938 

6.75 813 2 37.6 10 -2.35 34 0.43 0.83 84.5 

0.6365 108.0 35.07 

15 97.67 0.904 0.0067 

30 93.53 0.866 0.0048 

45 89.69 0.830 0.0041 

60 84.60 0.783 0.004 

90 76.33 0.707 0.0039 

120 70.12 0.649 0.0036 
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For developing the CI-based models, the set consisting of PCA-

transformed data from 36 experiments was randomly split into two data subsets as 

follows: training set (75% data) and test set (25% data). The first data set was 

used to develop the model while the second one was used to assess the 

generalization ability of the model. 

3.4.3 Development of GP-based model predicting PCD rate constant 

Genetic programming (GP) is a computational intelligence (CI) based 

exclusively data-driven modeling paradigm proposed by Koza (1990) for 

automatically generating computer programs that perform pre-defined tasks. The 

other important application of GP is known as “symbolic regression (SR)”. The 

novelty of GP is that provided with an example set consisting of the independent 

(predictor/input) and dependent (response/output) variables, the GP searches and 

optimizes the form of an appropriate linear or a nonlinear data fitting function as 

also all the parameters associated with it. Additionally, GP can identify the key 

variables and determine their combinations (Patil-Shinde et al., 2016; Vyas et al., 

2015). For performing SR, GP uses the “survival of the fittest” and “genetic 

propagation of characteristics” principles of the Darwinian evolution. The origin, 

mechanism and implementation procedure of the GP is described in greater details 

in Chapter 2, section 2.3.3. 

3.4.3.1 Results and Discussion (GP-based modeling) 

The GP-based equation predicting the magnitude of the photocatalytic 

degradation constant (Kc) was developed using Eureqa Formulize (EF) software 

package (2009) (Schmidt and Lipson, 2009). A prominent attribute of the EF 

package for GP-based symbolic regression is that it has been optimized for 

generating parsimonious (i.e., with reduced complexity) models possessing good 

generalization ability. For avoiding premature convergence leading to the locally 

optimal or over-fitted solutions, the EF along with the standard selection, 

crossover, and mutation operations employs the age-fitness Pareto optimization 

technique (Vyas et al., 2015). During EF-based GP implementation, only those 

models possessing following characteristics are selected: (a) models containing all 
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the four principal components, i.e. PC1, PC2, PC3, and PC4 as inputs (predictors), 

(b) models with low complexity (smaller number of terms and parameters in the 

fitting function), and (c) low and comparable magnitudes of correlation 

coefficient (CC) and root mean square error (RMSE) for both the training and test 

set outputs. 

The EF package generates distinct mathematical expressions for different 

random number generator seeds, training and test set sizes, choice of the 

mathematical operators, error metrics and input normalization schemes. 

Accordingly, the effects of these attributes on the converged solutions were 

examined rigorously by varying them systematically to arrive at an overall 

optimal solution. The prediction accuracy and the generalization performance of 

the GP-based model were evaluated by computing the CC and RMSE values using 

the experimental (target) and the corresponding model-predicted values of Kc.  

The overall best GP-based model was selected on the basis of its high CC 

and low RMSE magnitudes pertaining to both training and test datasets. The 

optimal GP-based model for the prediction of rate constant Kc is given below.  

𝐾𝑐 = 115.6 × 𝑒𝑥𝑝(4.70𝑃𝐶1 + 7.41𝑃𝐶3𝑃𝐶4 − 2.37𝑃𝐶2
2 − 4.51𝑃𝐶3𝑃𝐶4

2) − 

               0.357 − 0.0044𝑃𝐶2                                                               (3.11) 

While all other EF attributes kept constant, the random number generator seed 

was changed 20 times before the optimal expression given in Eq. (3.11) could be 

obtained. For clarity, this optimal model searched by GPSR depicted in the form 

of the tree structure is given in Figure 3.3.   
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Figure 3.3.  Optimal GP-model presented in the form of a tree structure 

An important property of the GP-based symbolic regression is that it 

automatically selects predictors (model inputs) that affect the model output 

significantly (Patil-Shinde et al., 2016). The optimized form searched by the GP 

comprises these influential inputs and their combinations. It is thus clear that 

GPSR automatically (i.e. devoid of any a priori assumptions) makes the choice of 

the structure, predictors and their combinations, and magnitudes of the parameters 

of an optimal data-fitting model. In the present case study, the GPSR provided 

optimal expression (Eq. 3.11) has a nonlinear structure. It also indicates that the 

Kc magnitude has an exponential dependence on all the four principal components 

(PC1, PC2, PC3 and PC4). The choice of all four PCs as inputs, the exponential 

term, and seven parameters and their magnitudes are made exclusively by the 
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GPSR without any assistance from the model developer. A drawback of all data-

driven modeling strategies such as ANNs (Freeman and Skapura, 1991) and SVR 

(Vapnik, 1995), which is also shared by the GPSR is that it is difficult to interpret 

the structure and parameters of the fitted model for unraveling the physical and/or 

chemical phenomena underlying the system being studied. 

Table 3.2: Prediction accuracy and generalization performance of GP- and 

MLPNN-based models.  

Model CC RMSE 

Training set Test set Training set Test set 

GP-based model (Eq. 

3.11) 

0.998 0.973 0.215 0.008 

MLPNN-based Model 0.998 0.982 0.640 0.042 

  

Table 3.2 lists the values of the CC and RMSE in respect of the Kc predictions 

made by Eq. 3.11 and their corresponding experimental (desired/target) 

magnitudes in the training, and test sets. From the high ( 0.97) and comparable 

magnitudes of the CC as also low and comparable magnitudes of the RMSEs ( 

0.215) pertaining to the training, and test data, it is clear that the GPSR based 

model possesses an excellent Kc prediction accuracy and generalization capability. 

This observation is also supported by the parity plot shown in Figure 3.4 where it 

is seen that there exists a reasonably good match between the experimental and 

model predicted Kc values. 

 

Figure 3.4: Parity Plot of experimental versus GP-model of predicted rate 

constant (Kc) 
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The GP strategy/procedure adopted by Eureqa Formulize does not use the 

“k-fold cross validation” scheme for selecting the optimal model. Specifically, it 

uses the “single split training-test set” scheme for constructing the model and 

assessing its generalization ability. Thus, the k-fold cross-validation was 

performed using the optimal model selected by the Eureqa Formulize. The mean 

values of the CCs and RMSEs of the training and test datasets for k = 4 are: 

Training set: CC = 0.998, RMSE = 0.182; Test set: CC = 0.93, RMSE = 0.142. 

The high CC and low RMSE magnitudes for both the training and test sets in 

respect of the four-fold cross-validation clearly support the earlier result that the 

GPSR model (Eq.3.11) predicting Kc possesses an excellent prediction accuracy 

and generalization performance. 

The statistical metrics of the correlation coefficient (CC) used in this study 

to assess the prediction and generalization performance of the GPSR model 

specifies the strength and direction of the linear correlation between the 

experimental (target) and model-predicted Kc magnitudes. For perfect correlation, 

as indicated by CC = 1.0, the predicted and target values are identical. The 

consistent high values of CC (close to 1.0) in respect of the predictions of Kc by 

the GPSR model for both training and test sets indicate its high prediction 

accuracy and generalization capability.  

The RMSE is the standard deviation of the residuals (prediction errors), 

which are a measure of how far the data points are from the regression line. 

Alternatively, it is a measure of how spread out the residuals are or how 

concentrated the data is around the line of the best fit. The low values of RMSEs 

(≤ 0.215) relative to the experimental Kc range of [0.001998 - 12.4742] further 

supports the CC-based observation of high prediction accuracy and generalization 

ability possessed by the GP-based Kc prediction model. 

3.4.4 Development of ANN-based model predicting PCD rate constant 

The multilayer perceptron neural network (MLPNN) architecture was used 

to build an ANN-based PCD rate constant (Kc) prediction model. This model was 

developed using the same training and test sets as used for the development of the 
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GP-based model. It was trained using the error-back-propagation (EBP) 

algorithm (Rumelhart et al., 1986) available in RapidMiner data-mining suite 

(Rapid Miner, 2007). The input elements in the ANN-based models signify the 

principal components defined in equations (3.7) to (3.10) as shown in figure 3.5. 

A detailed discussion of the origin, functioning, and applications of the MLPNNs 

is provided in Chapter 2, section 2.3.1.1.   

 

Figure 3.5: The MLPNN used in this study showing inputs and output (Kc)  

3.4.4.1 Results and Discussion (ANN-based modeling) 

To construct an optimal MLPNN-based model, the effects of network’s 

structural parameters (i.e., the number of hidden layers, number of nodes/neurons 

in each hidden layer and type of transfer function) and the two EBP algorithm 

parameters, namely learning rate (η) and momentum coefficient (μ), on the 

model’s prediction accuracy and generalization ability were systematically 

examined. Also, the effect of random weight initialization was studied to obtain 

an MLPNN model that corresponds to the global or the deepest local minimum on 

the model’s nonlinear error surface. The prediction accuracy and the 

generalization performance of the optimal MLPNN-based Kc model have been 

assessed in terms of CC and, RMSE magnitudes (refer Table 3.2); these were 

computed with the target and the corresponding MLPNN-model predicted 

magnitudes of Kc (listed in Table 3.1). The particulars of the MLPNN 
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architecture, EBP-specific parameter values (η, ), and the sort of transfer 

functions used in getting the optimal MLPNN-based Kc prediction model are 

provided in Table 3.3. Figure 3.6 portrays a parity plot displaying the 

experimental Kc values and those predicted by the MLPNN-based model. In this 

plot, there exists a good agreement between the experimental and model-predicted 

Kc values with a little scatter.  

Table 3.3: Structural attributes and EBP algorithm parameters for optimal of 

MLPNN model 

ANN 

model 

output 

Number of 

nodes/neurons 

in the input 

layer  

Number of 

nodes/neurons  

in the hidden 

layer  

Error Back 

Propagation 

Algorithm Parameter 

Transfer 

function 

for hidden 

nodes/neurons 

Transfer 

function 

in output 

node/neuron Learning 

rate (η) 

Momentum 

(μ) 

Kc 4 6 0.3 0.2148 Logistic 

Sigmoid 

Identity 

 

 

Figure 3.6: Parity Plot of experimental versus an MLPNN-based model of 

predicted rate constant (Kc) 

3.5 OPTIMIZATION OF PCD PROCESS CONDITIONS  

In any process, it is important that its operation is optimized to achieve, for 

example, highest possible conversion/ yield/ selectivity of the desired product/ 

lowest possible operating temperature/profit or lowest possible energy 
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consumption/ operating cost/selectivity of the undesired product, etc.  

Accordingly, in the present study, the operation of the PCD process was optimized 

with a view to maximizing its performance. Specifically, the input space of the 

GP-based model—which forms the objective function to be maximized —was 

optimized with a view of maximizing the magnitude of the rate constant of the 

PCD reaction. The said optimization was conducted using the genetic algorithm 

stochastic optimization strategy described in-depth in Chapter 2, section 2.5.   

Genetic algorithms (GAs) (Goldberg 1989; Holland 1992) is the most 

widely employed artificial intelligence based stochastic nonlinear search and 

optimization method based on the natural selection and evolution behavior of 

biological species. Given an objective function, GA can efficiently and robustly 

search the decision variable space and obtain optimal values of the decision 

variables in a manner such that the objective function is maximized/minimized. 

The strategy is especially well-suited for solving problems involving very large 

search spaces (Goldberg, 1989; Davis, 1991). The major steps of GA 

implementation can be briefly described as follows: (a) generation of initial 

population of candidate solution strings using bits or real values, (b) evaluation of 

the candidate solutions and assignment of a fitness score to each string in the 

population, (c) formation of the parent pool of relatively fitter solution strings 

using a suitable method such as Roulette wheel selection (Lipowski and Lipowska, 

2012) (d) crossover operation to generate offspring strings, and (e) mutation 

operation over offspring strings to generate a new population of candidate solution 

that is usually fitter in terms of fulfilling the optimization objective function 

maximization/minimization. The GA procedure is iterative wherein the newly 

formed population of candidate solutions (offspring) is subjected to steps (b) to (e) 

till convergence is achieved. The above-stated procedure is repeated several times 

by varying the GA-specific parameter values such as the size of the candidate 

solution population, and crossover and mutation rates. The solutions obtained 

thereby were compared, and the one resulting in the highest magnitude of the rate 

constant (Kc) in respect of the PCD of the specific pharmaceutical pollutant was 

selected as an overall optimal solution. The salient features, advantages and 

https://www.sciencedirect.com/science/article/pii/S0378437111009010#!
https://www.sciencedirect.com/science/article/pii/S0378437111009010#!
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implementation details of the GA method are described, for example, in Deb and 

Goldberg (1991) and Nandi et al. (2001).  

3.5.1 GA-based optimization of the GP model 

The original input space of the GP-based model predicting the rate 

constant of the PCD of three different pharmaceutical pollutants viz. 

Ciprofloxacin, Naproxen, and Paracetamol contains four reaction operating 

variables, viz. pH of the solution (x1), reaction time (x2), the degraded 

concentration of pharmaceutical pollutant (x3), and the ratio of instantaneous 

concentration to initial concentration(x4). The structural attributes of individual 

pharmaceutical pollutant remain constant as they do not change with the operating 

conditions. Thus, in reality, only the set of four experimental parameters (x1 to x4) 

termed decision variables need to be optimized for maximizing the rate constant 

of the PCD of a specific pharmaceutical molecule. It must be noted here that 

while evaluating the objective function (Eq. 3.11) the molecular structural 

parameters (x5 to x14) of the specific pharmaceutical molecule undergoing PCD 

were kept constant.  

The GA-based optimization of the input space of the GP-based model was 

performed using an MS-Excel add-on termed MendelSolve (2018). For each of 

the three pollutant molecules, optimal PCD conditions were obtained separately. 

The GA-specific parameters that yielded the three overall best sets of optimized 

reaction conditions are:  population size (Npop) = 50, crossover rate (Rcr) =1, 

mutation rate (Rmut) = 0.03125 and the maximum number of generations (Ngen) = 

100.  

Following the above-described GA procedure, five sets of optimized PCD 

process conditions, which are expected to maximize the photocatalytic 

degradation rates were obtained. These are listed in Table 3.4. From the tabulated 

values, the following observations can be made. 

 The GA-searched and optimized best set of operating conditions in the 

case of Ciprofloxacin is capable of improving the extent of PCD from 

95.4% (best experimental PCD value listed in Table 3.1) to 99.76 %.  
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 In the case of Naproxen, the best solution provided by the GA is capable 

of improving PCD from 95.5% (best experimental PCD value as per 

Table 3.1) to 99.0 %. 

 For Paracetamol, the optimal set of process conditions is capable of 

increasing the PCD magnitude from 35.07 % (see experimental PCD 

given in Table 3.1) to 40.0%. The optimized degradation rate in the case 

of paracetamol is low when compared with that of Ciprofloxacin and 

Naproxen. The reason for this is that in general the PCD rate for 

Paracetamol is found to be lower than that for Ciprofloxacin and 

Naproxen. A detailed account of the degradation of paracetamol is 

provided by Desale et al. (2013).  

It may be noted that the optimized PCD conditions listed in Table 3.4 are 

simulated by genetic algorithm and these need to be validated experimentally. 

Accordingly, five PCD experiments were performed using the operating 

conditions listed in Table 3.4. The table also lists the PCD magnitudes obtained in 

the validation experiments. From the results of these experiments, it is noted that 

there exists only a marginal difference between the GA-maximized values (%) of 

the PCD and those observed in the corresponding validation experiments. The 

significance of this result is that the GA strategy has been successful in correctly 

providing the experimental conditions leading to maximization of the PCD of 

three pharmaceutical pollutants. It also indicates that the GP-based model used in 

the GA-based optimization has accurately captured the nonlinear relationship 

existing between the PCD conditions and molecular structural parameters and the 

PCD rate constant.    

 

 

 

 

 

 



155 

 

Table 3.4: GA-based optimized PCD operating conditions and results of their 

experimental validation. 
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GA 
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(%) 
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ntally 

Validated 

PCD  

 

 

 

(%) 

Ciprofloxacin 4.5 33.41 1.57 0.007 98.38 98.6 

7.0 58.68 0.227 0.022 99.76 97.52 

Naproxen 4.5 98.69 0.98 0.01 99.0 98.61 

7.0 99.45 0.98 0.01 99.0 98.02 

Paracetamol 7.0 39.84 64.8 0.6 40.0 41.78 

 

3.6 CONCLUSION 

The quality of the ambient water is affected adversely when personal and 

healthcare products enter the environment in the form of metabolites excreted by 

the animal and human populations and/or as effluents from hospitals, pharmacies, 

and pharmaceutical manufacturing facilities. In general, capture or even 

confinement of these compounds is difficult due to which they pose a serious 

threat to the aquatic ecosystem and human and animal health.  Photocatalytic 

degradation (PCD) is an effective and relatively inexpensive method, when 

compared to other approaches for the elimination/reduction of pharmaceutical 

compounds such as Ciprofloxacin (CFX), Naproxen (NPX) and Paracetamol 

(PARA) from the wastewater. Earlier, experiments have been conducted 

involving PCD of the said three pharmaceutical molecules (Shetty et al., 2016).  

In this study, exclusively data-driven models have been developed using two 

computational intelligence (CI) based data-driven methods namely Multilayer 

perceptron neural networks (MLPNN) and genetic programming (GP) for 

predicting the rate constant (Kc) of the N-doped TiO2 catalyzed photocatalytic 
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degradation (PCD) of CFX, NPX and PARA. The input space of the model 

consists of the PCD conditions as also the molecular structural parameters of the 

pollutants. Among the two types of modeling methods, the GP-based model was 

found to possess superior Kc  prediction and generalization performance. In the 

next step, the GP model was optimized to improve the PCD process. Specifically, 

a widely used CI-based stochastic optimization method namely genetic algorithm 

(GA) was used to obtain parameter values of the operating conditions of the PCD 

process leading to maximization of the rate constant magnitudes and thereby 

degradation of the three pharmaceutical compounds. Notably, the GA-based 

optimized conditions were successfully validated by conducting fresh PCD 

experiments.  The remarkable features of the study are as follows: (a) the GP-

based model proposed here can be used to assess the efficacy of TiO2 catalyst in 

removing pollutants (through the calculation of the rate constant) under different 

operating conditions, and (b) and the GP/MLPNN based modeling and GA based 

optimization approach employed in this study can be extended to photocatalytic 

degradation of other pollutants. The principal advantage of the GP-GA hybrid 

technique exemplified here is that modeling and optimization can be performed 

exclusively from the PCD data without invoking the detailed knowledge of 

physicochemical phenomena underlying the system.  
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Abstract 

 

An important parameter that indicates the quality of fuels—especially that 

of the liquid biofuels—is known as Cetane Number (CN). It measures the ignition 

delay time and quality of combustion in a compression-ignition engine. The 

determination of CN experimentally consists of a tedious and time-consuming 

procedure, which may also yield inaccurate results. To overcome the said 

difficulty, a number of linear and nonlinear models have been constructed for the 

prediction of CN of biofuels.  These models use the Fatty Acid Methyl Esters 

(FAME) composition and fuel properties as predictors (inputs). Towards 

developing models possessing improved and high prediction accuracy and 

generalization ability, the present study reports new models that have been 

developed using two artificial intelligence (AI) based state-of-the art data-driven 

formalisms, namely genetic programming (GP), and artificial neural networks 

(ANNs). The notable characteristics of these models are: (a) to our knowledge, 

which is based on a rigorous literature survey, the biodiesel property based 

nonlinear CN prediction models have been developed for the first time, and (b) 

the novel GP method, which by itself chooses a linear or a nonlinear data fitting 

model and its parameters has been employed for the first time for developing the 

CN prediction models.  The said property of the GP formalism assists in 

understanding the inherent dependencies between the predictors and the output 

(CN magnitude) of the model.  In the present study, two types of predictors have 

been used in the model development namely, (i) FAME composition, and (ii) 

biofuel properties (density, flash point, higher heating value, and kinematic 

viscosity).  The results of the modeling indicate that (a) the models using the 

FAME composition in their input space exhibit an excellent CN prediction 

accuracy [correlation coefficient (CC) > 0.9 and root mean squared error (RMSE) 

< 5.00] and generalization performance, and (b) the fuel property-based models 

exhibit a reasonably good prediction accuracy and generalization performance 

[CC > 0.8 and RMSE < 4], albeit inferior than the FAME based models. The AI-

based models introduced here due to their excellent prediction and generalization 

performance have a real potential to replace the existing models for predicting the 

Cetane Number of biofuels. 
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4.1 INTRODUCTION  

A large amount of hazardous gases that are emitted from the exhaust of 

automobiles has severely intensified the air pollution—causing a significant 

change in the environment (Bamgboye and Hansen, 2008).  Thus, it has become 

essential to mitigate the amounts of carbon dioxide and other harmful gases in the 

environment by reducing the usage of petroleum products and shifting the focus 

to an alternative energy in the form of “biofuels”. Biodiesel forms a major 

proportion of biofuels. It is derived from the vegetable oils or animal fats via the 

trans-esterification reaction in the presence of an alkali catalyst. There are various 

other routes to biodiesel production including the biochemical route involving 

enzymatic transesterification (Kumar et al., 2013). In this process, the fats or the 

triglycerides are converted into alkyl mono esters of the fatty acid by the reaction 

with an alcohol (methanol/ ethanol) in the presence of alkali-catalysts or enzymes, 

producing glycerol as a secondary product. The properties of the biodiesel are 

strongly dependent upon the specific raw material used in its production. In terms 

of chemistry, it is much less complex than the conventional petroleum-based 

diesels (Lopes et al., 2008). Moreover, about eleven percent of the biodiesel (is 

terms of oxygen by weight) blended with the petro-diesel is shown to result in a 

complete combustion, due to the higher Cetane number of the blend which makes 

the combustion smoother; also, the engine is less noisy (Tat and Gerpen, 2003). 

Thus, the biodiesel is an eco-friendly, alternative diesel fuel that can be 

manufactured from the domestic renewable resources such as the vegetable oils 

(edible or non-edible) and animal fats. It is used in running the diesel engines in 

cars, buses, trucks, construction equipments, boats, and generators, and in-home 

heating units. The huge popularity of the biodiesel worldwide is due to its much-

desired properties such as renewability, high biodegradability, fewer emissions, 

and higher Cetane number and flash point than the conventional diesel fuel 

(Knothe et al., 2003). Various types of edible and non-edible oils from, for 

example, rice bran, coconut, Jatropha curcas, castor, cotton seed, Karanja, and 

Mahua are available for the commercial biodiesel production. Biodiesel can be 

used as a fuel in automobiles in the pure form or blended with conventional petro-

diesel without any major modifications.  
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4.2 OBJECTIVE AND MOTIVATION OF THE PRESENT WORK 

It is well-known that the fuel properties of the biodiesel, namely, Cetane 

number (CN), density (D), kinematic viscosity (KV), and higher heating value 

(HHV), play a significant role in its utilization in the combustion process (Agarwal 

et al., 2010; Bajpai and Tyagi, 2006; Creton et al., 2010; Sivaramakrishnan and 

Ravikumar, 2012; Verduzco et al., 2012). The CN is not only the most important 

indicator of the performance of the internal combustion engine but also represents 

the dimensionless parameter for the diesel ignition quality. Specifically, it 

measures the readiness of the fuel to auto-ignite when injected into the engine. The 

carbon chain length and the degree of unsaturation are the two significant factors 

of fatty acid methyl esters that affect CN of the biodiesel (Tong, 2011). It has also 

been reported that there exists a relation between the CN and other biodiesel 

properties, namely, KV, D, HHV and flash point (FP) (Sivaramakrishnan and 

Ravikumar, 2012).  

The standards prescribed for the cetane number determination are: ASTM 

D613 (in the USA), and International Organization for Standardization (ISO) 

standard ISO 5165, in other countries (Knothe, 2005). Experimental procedure 

involved in the CN determination is complex, tedious and time-consuming; it may 

also yield inaccurate results necessitating repetition. It is thus necessary that fast 

and reliable methods are available for monitoring the quality of the biodiesel for its 

consumption in the internal combustion (IC) engine. In this respect, a 

mathematical model/correlation capable of predicting accurately the CN 

magnitudes is expected to be of significant utility. Therefore, the main goal of this 

work is to develop the state-of-the-art artificial intelligence (AI) based 

mathematical models for the prediction of the cetane number of biodiesels.  Here, 

the CN prediction is performed based on two types of inputs (predictors) namely, 

the composition of fatty acid methyl esters (FAME)(saturated and unsaturated) and  

physical properties of the biodiesel. The specific inputs used in the development of 

the models are:  

(I) FAME composition – Capric (C10:0, x1), Lauric (C12:0, x2), Myristic 

(C14:0, x3), Palmitic (C16:0, x4) Palmitoleic (C16:01, x5), Stearic  
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(C18:0, x6), Oleic (C18:01, x7), Linoleic (C18:02, x8)  Linolenic 

(C18:03, x9), Arachidic (C20:0, x10), Paullinic (C20:01, x11), Erucic 

(C22:01, x12). Here, the first number in the Carbon ratio for each of 

the FAME composition shown in bracketed value represents the 

number of carbon atoms present in the carbon chain and the second 

number shows the number of unsaturated bonds (usually double 

bonds), which often introduces a kink in the carbon chain (Kumar et 

al., 2013).  In an unsaturated FAME composition, double bonds play 

a vital role in the stability of biodiesel as they significantly affect the 

combustion characteristics of the biodiesel. A higher degree of 

unsaturation (higher number of double bonds present in the carbon 

chain) leads to a longer ignition delay, higher soot formation, higher 

NOx emissions, and greater heat release rates so as to significantly 

decrease the CN magnitudes of biodiesel (Benjumea et al., 2011). On 

the contrary, higher CN values have been reported in case of high 

molecular fatty acids (for example, palmitate and stearate fatty acids) 

with more saturated molecules. Thus, increase in carbon value in 

chain length with more saturated molecules increases CN value of the 

biodiesel (Bamgboye and Hansen, 2008). 

(II) Properties of biofuels: density (kg/l) (D), flash point (°C) (FP), higher 

heating value (MJ/kg) (HHV) and kinematic viscosity (mm2/s) (KV).  

For developing the AI-based models, two datasets consisting of the FAME 

composition and fuel properties of 171 and 67 biodiesel samples, respectively, and 

the corresponding CNs were compiled from various research articles (Ahmad et 

al., 2014; Ashwanikumar and Sharma,   2008; Atabani et al., 2013; Deka and 

Basumatary, 2011; Demirbas, 2009; Ejeh and Aderemi   2014; Eryilmaz et al., 

2016; Giakoumis, 2013; Jung et al., 2006; Isigigur et al., 1994; Kaya et al., 2009;  

Martı´nez et al., 2014; Menga et al., 2008; Miraboutalebi et al., 2016; Onga et al., 

2011; Peterson et al., 1997; Saloua et al., 2010; Saydut et al., 2008; 

Sivaramakrishnan and Ravikumar, 2012; Tong et al., 2011; Winayanuwattikun et 
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al., 2008; Yahya and Stephen, 1994). These datasets are tabulated in Tables 4.A 

and 4.B in Appendix 4 at the end of this Chapter.  

In this work, a novel AI-based exclusively data-driven formalism namely, 

genetic programming (GP) (Koza, 1992) has been used for the first time in the 

prediction of CN. The novelty of this method is it searches and optimizes both the 

configuration (form) and the related parameters of an appropriate linear or 

nonlinear data-fitting function without making any assumptions regarding the form 

and parameters. Additionally, the most widely used ANN architecture namely 

multi-layer perceptron (MLP) neural network has been used to develop the 

biodiesel CN predicting nonlinear models. 

The details of GP and MLP neural networks including their implementation and 

applications in chemical engineering/technology are presented in sections 2.3.3 

and 2.3.1.1, respectively.  

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Principal Component analysis  

Principal Component Analysis (PCA) is essentially a  multivariate 

technique (Geladi and Kowalski, 1986) that (a) analyzes and extracts the most 

important information in the form of linearly uncorrelated variables from a given 

dataset, and (b) simplifies and compresses the size of the dataset (Abdi and 

Williams, 2010). This extracted information is represented in terms of a set of new 

orthogonal variables called principal components (PCs), which are linear 

combinations of the original variables. Commonly, fewer PCs than the original 

dimension of the dataset capture a large amount of variance in the data; this allows 

usage of the lesser number of PCs as inputs than the number of original input 

variables thus effectively reducing the dimensionality the input data set. Such a 

dimensionality reduction decreases the computational load involved in the model 

development as also avoids data redundancy.  

In this study, PCA was performed on the twelve-dimensional FAME 

composition dataset with a view to reduce the dimensionality of the input space of 
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the GP and MLP-based models. The quantum of the variance addressed by the 

twelve principal components (PCs) are: PC1 (16.6%), PC2 (13.4%), PC3 (10.5%), 

PC4 (9.3%), PC5 (8.5%), PC6 (8.2%), PC7 (8.1%), PC8 (7.6%), PC9 (7.3%), PC10 

(5.9%), PC11 (4.5%) and PC12 (0.1%).  From these values, it is seen that (a) except 

PC11 and PC12, there is no drastic variation between the values of the variance 

captured by the successive PCs indicating no major redundancy in the data, and (b) 

the first nine PCs have cumulatively captured a relatively large percentage (≈ 

89.5%) of the data variance.  It is thus possible to use the first nine PCs as inputs 

for developing the GP and MLP based CN predicting models. This serves to 

reduce the input space of the models from twelve to nine dimensions. The PCA-

transformed nine PCs (model inputs) are defined below. 

 𝑃𝐶1 = 0.394�̂�1 +0.548�̂�2 + 0.34�̂�3 − 0.237�̂�4 + 0.036�̂�5 − 0.248�̂�6 −

0.51�̂�7 −  0.023�̂�8 + 0.127�̂�9 − 0.119�̂�10 + 0.089�̂�11 + 0.106�̂�12              (4.1) 

     

𝑃𝐶2 = −0.245�̂�1 − 0.271�̂�2 − 0.197�̂�3 + 0.037�̂�4 + 0.022�̂�5 − 0.346�̂�6 −

0.324�̂�7 + 0.636�̂�8 + 0.347�̂�9 − 0.264�̂�10 + 0.002�̂�11 + 0.078�̂�12              (4.2) 

 

𝑃𝐶3 = −0.129�̂�1 − 0.136�̂�2 − 0.195�̂�3 − 0.553�̂�4 + 0.051�̂�5 + 0.217�̂�6 −

0.076�̂�7 − 0.105�̂�8 + 0.274�̂�9 + 0.368�̂�10 + 0.439�̂�11 + 0.388�̂�12              (4.3)               

 

𝑃𝐶4 = −0.261�̂�1 − 0.128�̂�2 + 0.251�̂�3 + 0.393�̂�4 + 0.152�̂�5 − 0.332�̂�6 −

0.041�̂�7 − 0.261�̂�8 − 0.28�̂�9 − 0.124�̂�10 + 0.461�̂�11 + 0.435�̂�12                   (4.4) 

 

𝑃𝐶5 = 0.068�̂�1 +0.036�̂�2 + 0.008�̂�3 + 0.089�̂�4 − 0.962�̂�5 − 0.064�̂�6 +

0.055�̂�7 + 0.078�̂�8 − 0.016�̂�9 + 0.054�̂�10 + 0.158�̂�11 + 0.142�̂�12              (4.5) 

 

𝑃𝐶6 = −0.338�̂�1 − 0.114�̂�2 + 0.439�̂�3 + 0.042�̂�4 − 0.128�̂�5 + 0.222�̂�6 −

0.047�̂�7 − 0.365�̂�8 + 0.572�̂�9 − 0.244�̂�10 − 0.291�̂�11 + 0.07�̂�12                 (4.6) 

 

𝑃𝐶7 = 0.284�̂�1 +0.066�̂�2 − 0.443�̂�3 + 0.128�̂�4 + 0.02�̂�5 + 0.394�̂�6 −

0.044�̂�7 − 0.09�̂�8 − 0.03�̂�9 − 0.565�̂�10 − 0.071�̂�11 + 0.459�̂�12                    (4.7) 
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𝑃𝐶8  = −0.028�̂�1 + 0.003�̂�2 + 0.091�̂�3 − 0.121�̂�4 + 0.019�̂�5 − 0.208�̂�6 +

0.092�̂�7 + 0.113�̂�8 − 0.186�̂�9 + 0.302�̂�10 − 0.647�̂�11 + 0.605�̂�12              (4.8) 

𝑃𝐶9  = −0.288�̂�1 − 0.046�̂�2 + 0.374�̂�3 − 0.415�̂�4 − 0.064�̂�5 + 0.357�̂�6 −

0.068�̂�7 + 0.315�̂�8 − 0.507�̂�9 − 0.328�̂�10 + 0.047�̂�11 − 0.018�̂�12                (4.9) 

where �̂�𝑟; 𝑟 = 1,2, … , 12, denote the normal scores (standardized variables) of 

the twelve input variable values (𝑥𝑟). The input variables were normalized using 

‘Z-score’ method. 

                                      �̂�𝑟
𝑖 =

𝑥𝑟
𝑖 −�̅�𝑟

𝜎𝑟
; 𝑖 = 1,2, … , 𝑁𝑝   (4.10) 

where 𝑥𝑟
𝑖  denotes the ith value of the rth non-normalized input variable, xr; 𝑁𝑝 

represents the number of observations/ samples in the data set; �̅�𝑟 and 𝜎𝑟 refers to 

the mean and standard deviation of rth input variable computed using the 

corresponding values  {𝑥𝑟
𝑖  }, 𝑖 = 1 ,2, … , 𝑁𝑝 in the original example data set. The 

mean and standard deviation values used in the normalization procedures are 

given in Eqn. (4.11) and (4.12) respectively.  

�̅�1 = 0.042; �̅�2 = 5.169; �̅�3 =  3.396; �̅�4 = 12.89; �̅�5 = 1.095; �̅�6 = 8.56;  

�̅�7 = 36.21; �̅�8 = 23.53; �̅�9 = 4.086; �̅�10 = 1.151; �̅�11 = 1.21; �̅�12 = 1.146                                                                                                                  

 (4.11)                                                                   

𝜎1 = 0.358; 𝜎2 = 18.41; 𝜎3 = 11.87; 𝜎4 = 12.82; 𝜎5 = 8.31; 𝜎6 = 12.41; 

𝜎7 = 20.92; 𝜎8 = 22.2; 𝜎9 = 12.3; 𝜎10 = 5.09; 𝜎11 = 8.91; 𝜎12 = 8.60 (4.12)  

Similar to the FAME composition variables, the CN magnitudes were also 

normalized using the Z-score method and the corresponding mean and standard 

deviation values are 53.59 and 9.36, respectively. For developing the models 

possessing good CN prediction accuracy and generalization ability, the PCA-

transformed nine-dimensional experimental data set was split randomly, wherein 

75% data were used as the training set for developing the models while 25% data 

were used as the test set for assessing the generalization ability of the models. 
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In this study, the biofuel physical property data consisting of the 

magnitudes of the density (D), flash point (FP), higher heating value (HHV) and 

kinematic viscosity (KV) were not subjected to PCA since the four-dimensional 

input space formed by the stated properties was sufficiently small (=4) and 

therefore did not require PCA-based dimensionality reduction. 

 4.3.2 Development of GP-based models 

The two types of GP-based models using (a) the PCs derived from the 

FAME composition data, and (b) the fuel properties as inputs were developed 

using Eureqa Formulize (EF) software package (Schmidt and Lispon, 2009).  A 

noteworthy attribute of the EF package is that it has been optimized to construct 

models with lower complexity (parsimonious structure) possessing good 

generalization capability. For obtaining an overall best model, the GP-algorithm 

specific parameters were varied systematically and rigorously. The prediction 

accuracy and the generalization performance of each GP-based model were 

evaluated in terms of the coefficient of correlation (CC) and root mean squared 

error (RMSE) between the experimental and the corresponding model-predicted 

CN values.  The CC and RMSE values were computed separately for the training 

and test datasets. The criterion for selecting an overall best model was high (low) 

and comparable CC (RMSE) magnitudes in respect of both the training and test 

datasets. The GP models I (FAME composition based) and II (biofuel property-

based) thus obtained are given below (see Equations 4.13 and 4.14). The 

corresponding magnitudes of the training and the test set CCs and RMSEs are 

listed in Table 4.1. The parity plots pertaining to the experimental (desired) vis-à-

vis model-predicted CN values in respect of the predictions by GP-model I and II 

are depicted in Figures 4.1 and 4.2, respectively. 
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Table 4.1: Comparison of CN prediction accuracy and generalization 

performance of the AI-based models 

Model inputs Model Training set Test set 

CC RMSE CC RMSE 

 FAME 

composition  

GP- I 0.923 3.59 0.930 3.56 

MLP- I 0.962 2.58 0.936 3.39 

 Fuel 

properties 

GP- II 0.810 2.82 0.910 2.27 

MLP- II 0.817 2.82 0.811 3.70 

 FAME composition based optimal model (GP-model I) 

𝑦1 = 0.456𝑃𝐶4 + 0.375𝑃𝐶7 + 0.21𝑃𝐶1 + 0.142𝑃𝐶6 + 0.049𝑃𝐶5 − 0.463𝑃𝐶2 

       −0.276𝑃𝐶2𝑃𝐶3                                                 (4.13)  

 Biodiesel fuel properties-based optimal model (GP-model II) 

𝑦1 = 0.392𝐾𝑉2 + 0.427𝐾𝑉 × 𝐻𝐻𝑉 × 𝐹𝑃 +
−0.00738

𝐹𝑃−0.211
+

𝐴

(0.392+ (𝐴)2− 0.282𝐾𝑉)
−

  0.392                                                                                                  (4.14) 

     where  𝐴 = 0.280 + 𝐾𝑉 × 𝐻𝐻𝑉 − 𝐷 − 𝐻𝐻𝑉 × 𝐷                           (4.15) 

From the structure of the GP-model I, it is seen that it uses only the first 

seven principal components ignoring PC8 and PC9. The probable reason for the 

said omission is that the magnitudes of the variance in the FAME data captured by 

PC8 and PC9 are relatively small (7.6% and 7.3 %, respectively) and therefore, the 

respective PCs were ignored by the GP algorithm. 

 

Figure 4.1: Parity plot of the experimental versus GP-Model I predicted values of 

CN. 
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Figure 4.2: Parity plot of the experimental versus GP-Model II predicted values of 

CN. 

4.3.3 Development of MLP-based models 

 

Similar to the GP-models I and II, MLP neural network based models were 

developed using RapidMiner data mining package (Mierswa et al., 2006). The 

same training and test data sets as used in building the two GP models were 

employed for constructing the MLP-based models I and II.  These models were 

trained by the error-back-propagation algorithm (Rumelhart et al., 1986). Towards 

securing optimally performing models, the influence of MLP neural network’s two 

structural parameters (the number of hidden layers and number of nodes/neurons  

in each hidden layer) and two EBP algorithm specific parameters (learning rate 

and momentum coefficient) on the model’s pertaining to prediction and 

generalization performance was systematically examined. The details of the 

MLP’s structural and training algorithm specific that led to optimal models I and II 

are given in Table 4.2. 
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Table 4.2: Structural and training algorithm specific details of MLP-based CN 

prediction models 

Model No. of 

hidden 

layers 

NI 

 

NH  Learning 

rate, η  

Momentum 

coefficient, 

µ 

TF* 

(hidden 

layer) 

TF* 

(output 

Layer) 

 MLP- I 1 9 6 0.2416 0.1602 Logistic 

Sigmoid 

Linear 

 MLP- II 1 4 5 0.300 0.1005 Logistic 

Sigmoid 

Linear 

 TF*: Transfer function; NI, NH: Number of input and hidden nodes 

The CC and RMSE values pertaining to the predictions of MLP models I 

and II are listed in Table 4.1. From these values, it is seen that overall the 

prediction and generalization performance of FAME composition based models 

(i.e., GP-model I and MLP-model I) is excellent, while that of the biofuel property 

based models (GP-model II and MLP-model II) is reasonably good. Among the 

two FAME composition-based models, the performance of MLP-model I is 

marginally better than that of the GP-model I. Being the best model among the 

four AI-based ones, the MLP-model I has been selected to prepare the parity plot 

(see Figure 4.3) of the experimental versus model predicted CN magnitudes. In 

this figure it is seen that the MLP model has fitted the training and test data 

excellently with very little scatter. 

 

Figure 4.3: Parity plot of the desired versus MLP model I predicted CN magnitudes 
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4.3.4 Comparision of CN-based models 

A comparison of the AI-based models using FAME composition as input 

with their currently available counterparts proposed by Bamgboye and Hansen 

(2008), Borroto et al. (2014), Gopinath et al. (2009), Rodriguez et al. (2013) and 

Valdes et al. (1998) reveals that the AI-based models presented in this work using 

data of 171 biodiesel samples have yielded high and comparable prediction and 

generalization performance (see Table 4.3 below). It may however be noted that 

the FAME-based models for the prediction of CN of biodiesel presented in this 

study are based upon much higher number (=171) of biodiesel samples compared 

to the number of samples (51, 57, 38, 48, and 128) considered by the existing 

linear and nonlinear FAME-based models listed in Table 4.3. Since, the FAME-

based AI models presented in this study are based on higher number of data, their 

applicability is wider compared to the existing models. 

Table 4.3: A representative comparison of CN predicting correlations/models  

S

N 

Authors Type of 

Model 

Model 

inputs 

Sample 

size 

Statistical 

analysis# of 

model 

predictions 

1 Bamgboye and 

Hansen (2008) 

Linear 

Regressio

n 

FAME 

compositi

on 

 

51 

 

CC = 0.921 

Std. Error= 4.3  

2 Agarwal et al. 

(2010) 

Linear 

Regressio

n 

Biodiesel 

fuel 

properties 

10 

 

CC = 0.99 

R2 = 0.98 

 

3 Gopinath et al. 

(2009) 

Linear 

Regressio

n 

FAME 

compositi

on 

 

57 CC = 0.92,  

R2 = 0.85 

Prediction 

error = 8 %  

 

4 Borroto et al. 

(2014) 

ANN FAME 

compositi

on 

38 CC = 0.97 

MAE = 3 % 

 

5 Rodriguez et 

al. (2013) 

Back-

Propagati

FAME 

compositi

48 CC = 0.94,  

R2 = 0.91 
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on Neural 

Network 

on  

6 Valdes et al. 

(1998) 

ANN FAME 

compositi

on 

128 

 

CC = 0.92 

R2 = 0.82 

RMSE = 11.4 

% 

 

7 Sivaramakrishn

an and 

Ravikumar 

(2012) 

Linear 

Regressio

n 

Biodiesel 

fuel 

properties 

26 CC = 0.9 

R2 = 0.81 

RMSE = 7.21 

% 

 

# CC: Correlation coefficient; MSE: mean squared error; RMSE: Root mean 

squared error; R2: Variance 

A notable characteristic of GP-model II and MLP-model II is that these 

have been developed using a bigger data set (67 biodiesel samples) compared to 

the property based linear models by Sivaramakrishnan and Ravikumar (2012) (26 

biodiesel samples) and Agarwal et al. (2010) (10 biodiesel samples). Thus, the 

stated GP and MLP models have wider applicability than their linear counterparts. 

Additionally, the property-based GP and MLP models possess better CN 

prediction accuracy and generalization performance than the existing linear 

models.  

4.4 CONCLUSION 

Cetane number is an important parameter for the determination of the 

ignition quality of the biodiesel. Experimental determination of this number is 

complex, time consuming and often yields inaccurate results.  In this study, two 

exclusively data-driven artificial intelligence-based formalisms, namely, genetic 

programming (GP) and multilayer perceptron (MLP) neural networks were 

employed to develop models predicting CN of biodiesels. The GP and MLP 

methods were individually utilized to develop two types of CN prediction models, 

which respectively used fatty acid methyl esters (FAME) composition and 

biodiesel fuel properties as their inputs. The results of this study indicate that the 

FAME composition-based GP and MLP models pertaining to better prediction 

and generalization performance than the biodiesel property-based models. Among 
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the two FAME composition-based models, the MLP model has yielded 

marginally superior performance than the GP-based model. Since they are 

constructed using much larger number of biodiesel data, the FAME based AI 

models presented in this chapter possess wider applicability than the currently 

available linear and nonlinear CN prediction models for the biodiesel.  
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Appendix 4 

Table 4.A: Experimental CN and FAME composition data set 

Types of 

Biodiesel 

sources 

[Carbon 

chain 

length: 

double 

bonds] 

Capric 

 

 [10:00] 

 

 

(𝒙𝟏) 

Lauric 

 

 [12:00] 

 

 

(𝒙𝟐) 

Myristi

c 

[14:00] 

 

 
(𝒙𝟑) 

 

Palmiti

c 

[16:00] 

 

 
(𝒙𝟒) 

 

Palmito

leic 

[16:01] 

 

 

(𝒙𝟓) 

Stearic 

 

[18:00] 

 

 

(𝒙𝟔) 

Oleic 

 

[18:01] 

 

 

(𝒙𝟕) 

Linolei

c 

[18:02] 

 

 
(𝒙𝟖) 

Linolen

ic 

[18:03] 

 

 
(𝒙𝟗) 

Arachi

dic 

[20:00] 

 

 

(𝒙𝟏𝟎) 

Paullini

c 

[20:01] 

 

 

(𝒙𝟏𝟏) 

Erucic 

 

[22:01] 

 

 

(𝒙𝟏𝟐) 

Cetane 

Number  

 

 

 

(CN) 

Reference§ 

Annona 

reticulate 

Linn 

0 0 1 17.2 42 7.5 48.4 21.7 0 0 0 0 53.47 Tong et al. 

(2011) 

Mesua 

ferrea Linn 

0 0 0.9 10.8 0 12.4 60 15 0 0.9 0 0 55.1 Tong et al. 

(2011) 

Moringa 

oleifera Lam 

0 0 0 9.1 2.1 2.7 79.4 0.7 0.2 0 0 0 56.66 Miraboutalebi 

et al. (2016) 

Pterygota 

alata Rbr 

0 0 0 14.5 0 8.5 44 32.4 0 0 0 0 51.09 Miraboutalebi 

et al. (2016) 

Vallaris 

solanacea 

Kuntze 

0 0 0 7.2 0 14.4 35.3 40.4 0 1.8 0 0 50.26 Miraboutalebi 

et al. (2016) 

Mappia 

foetida 

Milers 

0 0 0 7.1 0 17.7 38.4 36.8 0 0 0 0 50.7 Miraboutalebi 

et al. (2016) 

Terminalia 0 0 0 19.7 0 2.4 37.3 39.8 0 0.6 0 0 49.6 Miraboutalebi 
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chebula Retz et al. (2016) 

Ziziphus 

mauritiana 

Lam 

0 0 0 10.4 0 5.5 64.4 12.4 0 1.8 2.6 1.7 55.37 Miraboutalebi 

et al. (2016) 

Joannesia 

princeps 

Vell 

0 0 2.4 5.4 0 0 45.8 46.4 0 0 0 0 45.2 Miraboutalebi 

et al. (2016) 

Lauric 0 100 0 0 0 0 0 0 0 0 0 0 61.4 Miraboutalebi 

et al. (2016) 

Myristic 0 0 100 0 0 0 0 0 0 0 0 0 66.2 Miraboutalebi 

et al. (2016) 

Palmitic 0 0 0 100 0 0 0 0 0 0 0 0 74.5 Miraboutalebi 

et al. (2016) 

Stearic 0 0 0 0 0 100 0 0 0 0 0 0 86.9 Miraboutalebi 

et al. (2016) 

Oleic 0 0 0 0 0 0 100 0 0 0 0 0 55 Miraboutalebi 

et al. (2016) 

Palmitoleic 0 0 0 0 100 0 0 0 0 0 0 0 51 Miraboutalebi 

et al. (2016) 

Linoleic 0 0 0 0 0 0 0 100 0 0 0 0 42.2 Miraboutalebi 

et al. (2016) 

Erucic 0 0 0 0 0 0 0 0 0 0 0 100 76 Miraboutalebi 

et al. (2016) 

Eicosanoic 0 0 0 0 0 0 0 0 0 0 100 0 64.8 Miraboutalebi 

et al. (2016) 
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Linolenic 0 0 0 0 0 0 0 0 100 0 0 0 20.4 Miraboutalebi 

et al. (2016) 

Soybean 0 0 0.1 10.5 0.1 3.7 23.2 48.9 1.2 0 0.3 0.1 47.2 Miraboutalebi 

et al. (2016) 

Inedible 

tallow 

0 0.1 2.1 23.9 2.8 19.5 38.5 6.4 0.3 0 0.5 0.1 61.7 Miraboutalebi 

et al. (2016) 

Moringa 

oleifera Lam 

0 0 0 9.1 2.1 2.7 79.4 0.7 0.2 0 0 0 56.7 Miraboutalebi 

et al. (2016) 

Pongamia 

pinnata P. 

0 0 0 10.6 0 6.8 49.4 19 0 0 2.4 0 55.8 Miraboutalebi 

et al. (2016) 

Vallaris 

solanacea K. 

0 0 0 7.2 0 14.4 35.3 40.4 0 0 0 0 50.3 Miraboutalebi 

et al. (2016) 

Aleurites 

moluccana 

0 0 0 5.5 0 6.7 10.5 48.5 28.5 0 0 0 34.2 Miraboutalebi 

et al. (2016) 

Euphorbia 

helioscopia 

L 

0 2.8 5.5 9.9 0 1.1 15.8 22.1 42.7 0 0 0 34.2 Miraboutalebi 

et al. (2016) 

Garnicia 

morella D. 

0 0 0 0.7 0 46.4 49.5 0.9 0 0 0 0 63.5 Miraboutalebi 

et al. (2016) 

Actinodaphn

e angust. 

0 87.9 1.9 0.5 0 5.4 0 0 0 0 0 0 63.2 Miraboutalebi 

et al. (2016) 

Melia 

azadirach 

Linn 

0 0 0.1 8.1 1.5 1.2 20.8 67.7 0 0 0 0 41.4 Miraboutalebi 

et al. (2016) 

Myristica 0 0 39.2 13.3 0 2.4 44.1 1 0 0 0 0 61.8 Miraboutalebi 
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malabarica 

L 

et al. (2016) 

Canola 0 0 0.1 5.2 0.2 2.5 58.1 28.1 0.4 0 1.6 0.4 55 Miraboutalebi 

et al. (2016) 

Lard 0 0.1 1.9 24.5 2.8 14.4 38.3 13.4 0.3 0 0.7 0.1 63.6 Miraboutalebi 

et al. (2016) 

Yellow 

grease 

0 0 1.1 17.3 2.2 9.5 45.3 14.5 1.3 0 1.3 0 52.9 Miraboutalebi 

et al. (2016) 

Linseed 0 0 0 5 0 2 20 18 55 0 0 0 52 Miraboutalebi 

et al. (2016) 

Wild 

mustard 

0 0 0.1 2.6 0.2 0.9 7.8 14.2 13 0 5.4 45.7 61.1 Miraboutalebi 

et al. (2016) 

Waste palm 

oil 

0 0 1 39 0.2 4.3 43.7 10.5 0.2 0 0.2 0 60.4 Miraboutalebi 

et al. (2016) 

Balanites 

roxburhii 

0 0 0 17 4.3 7.8 32.4 31.3 7.2 0 0 0 50.5 Miraboutalebi 

et al. (2016) 

Garnicia 

echinocarpa 

0 0 0 3.7 0 43.7 52.6 0 0 0 0 0 63.1 Miraboutalebi 

et al. (2016) 

Neolitsea 

umbrosa G. 

0 59.1 11.5 0 0 0 21 6.7 0 0 0 0 60.8 Miraboutalebi 

et al. (2016) 

Broussoneti

ap. Vent. 

0 0 0 4 0 6.1 14.8 71 1 0 0 0 41.2 Miraboutalebi 

et al. (2016) 

Salvadora 

oleoiles D. 

0 35.6 50.7 4.5 0 0 8.3 0.1 0 0 0 0 66.1 Miraboutalebi 

et al. (2016) 

Nephelium 0 0 0 2 0 13.8 45.3 0 0 34.7 4.2 0 64.9 Miraboutalebi 
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L. et al. (2016) 

Ziziphus 

maurit. L. 

0 0 0 10.4 0 5.5 64.4 12.4 0 0 2.6 1.7 55.4 Miraboutalebi 

et al. (2016) 

Jojoba 0 0 0 1.2 0 0 10.7 0.1 0.4 0 59.5 12.3 69 Miraboutalebi 

et al. (2016) 

Peanut 0 0 0.1 8 0 1.8 53.3 28.4 0.3 0 2.4 0 53 Miraboutalebi 

et al. (2016) 

Grape 0 0 0.1 6.9 0.1 4 19 69.1 0.3 0 0 0 48 Miraboutalebi 

et al. (2016) 

Sunflower 0 0 0 6 0.1 2.9 17 74 0 0 0 0 49 Miraboutalebi 

et al. (2016) 

Sample  

Mix-X   

0 0 0 11.53 0 13.36 60.67 0.62 0 0 0 0 57 Miraboutalebi 

et al. (2016) 

Sample 

Mix-Y 

0 0 0 40 0 5 45 7 0 0 0 0 50 Miraboutalebi 

et al. (2016) 

Sample 

Mix-Z 

0 0 0 23.93 0 19.54 38.54 6.43 0.32 0 0 0 54 Miraboutalebi 

et al. (2016) 

Rapeseed 0 0 1 3.5 0 0.9 64.1 22.5 8 0 0 0 46 Miraboutalebi 

et al. (2016) 

Rubber seed 0 0 0.2 12.5 0 8.3 27.8 37.7 13.4 0 0 0 51 Miraboutalebi 

et al. (2016) 

Cottonseed 0 0.1 1 20.1 0 2.6 19.2 55.2 0.6 0 0 0 52.1 Miraboutalebi 

et al. (2016) 

Jatropha 0 0 0.1 15.6 0 10.5 42.1 30.9 0.2 0 0 0 54 Miraboutalebi 

et al. (2016) 
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Karanja 0 0 0.1 9.9 0 7.8 53.2 19.1 0 0 0 0 52 Miraboutalebi 

et al. (2016) 

Jatropha: 

palm 50:50 

0 0.1 0.5 28.1 0 7.7 42.7 20.1 0.2 0 0 0 59 Miraboutalebi 

et al. (2016) 

Neem 0 0.8 0.5 18.2 0 20.1 41.3 16.4 0.3 0 0 0 58.7 Miraboutalebi 

et al. (2016) 

Palm 0 0.2 0.8 39.5 0 5.1 43.1 10.4 0.1 0 0 0 64 Miraboutalebi 

et al. (2016) 

Mahua 0 0 0.2 20.8 0 25.2 36.4 15.8 0.3 0 0 0 61.4 Miraboutalebi 

et al. (2016) 

Sunflower: 

coconut 

50:50 

0 20.3 10.5 9.3 0 4.3 19.4 32.6 0 0 0 0 54.6 Miraboutalebi 

et al. (2016) 

Beef tallow 0 0.1 2.5 23.3 0 19.4 42.4 2.9 0.9 0 0 0 58.8 Miraboutalebi 

et al. (2016) 

Jatropha: 

coconut 

50:50 

0 20.9 10.4 13.7 0 7.2 26.1 18.2 0.1 0 0 0 58 Miraboutalebi 

et al. (2016) 

Coconut 0 45.6 22.1 10.2 0 3.6 8.2 2.7 0 0 0 0 60 Miraboutalebi 

et al. (2016) 

Cannabis 

sativa Linn 

0 0 0 0 0 0 15 65 15 0 0 0 36.4 Miraboutalebi 

et al. (2016) 

Perilla 

frutescens 

Britton 

0 0 0 0 0 0 9.8 47.5 36.2 0 0 0 30.1 Miraboutalebi 

et al. (2016) 
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Joannesia 

princeps 

Vell 

0 0 2.4 5.4 0 0 45.8 46.4 0 0 0 0 45.2 Miraboutalebi 

et al. (2016) 

Illicium 

verum Hook 

0 0 4.4 0 0 7.9 63.2 24.4 0 0 0 0 50.7 Miraboutalebi 

et al. (2016) 

Moringa 

concanensis 

Nimmo 

0 0 0 9.7 0 2.4 83.8 0.8 0 0 0 0 56.3 Miraboutalebi 

et al. (2016) 

Quassia 

indica 

Nooleboom 

0 0 0 9 0 0 36 48 0 0 0 0 46.7 Miraboutalebi 

et al. (2016) 

Terminalia 

chebula Retz 

0 0 0 19.7 0 2.4 37.3 39.8 0 0 0 0 49.6 Miraboutalebi 

et al. (2016) 

Ziziphus 

mauritiana 

Lam 

0 0 0 10.4 0 5.5 64.4 12.4 0 0 0 0 55.4 Miraboutalebi 

et al. (2016) 

Pterygota 

alata Rbr 

0 0 0 14.5 0 8.5 44 32.4 0 0 0 0 51.1 Miraboutalebi 

et al. (2016) 

Princepia 

utilis Royle 

0 0 1.8 15.2 0 4.5 32.6 43.6 0 0 0 0 48.9 Miraboutalebi 

et al. (2016) 

Vallaris 

solanacea 

Kuntze 

0 0 0 7.2 0 14.4 35.3 40.4 0 0 0 0 50.3 Miraboutalebi 

et al. (2016) 

Mappia 

foetida 

0 0 0 7.1 0 17.7 38.4 0 36.8 0 0 0 50.7 Miraboutalebi 

et al. (2016) 
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Milers 

Mesua 

ferrea Linn 

0 0 0.9 10.8 0 12.4 60 15 0 0 0 0 55.1 Miraboutalebi 

et al. (2016) 

Aegle 

marmelos 

correa Roxb 

0 0 0 16.6 0 8.8 30.5 36 8.1 0 0 0 48.3 Miraboutalebi 

et al. (2016) 

Jatropa 

curcas Linn 

0 0 1.4 15.6 0 9.7 40.8 32.1 0 0 0 0 52.3 Miraboutalebi 

et al. (2016) 

Meyna 

laxiflora 

Robyns 

0 0 0 18.8 0 9 32.5 39.7 0 0 0 0 50.4 Miraboutalebi 

et al. (2016) 

Annonaretic

ulata Linn 

0 0 1 17.2 0 7.5 48.4 21.7 0 0 0 0 53.5 Miraboutalebi 

et al. (2016) 

Mimusops 

hexendra 

Roxb 

0 0 0 19 0 14 63 3 0 0 0 0 59.3 Miraboutalebi 

et al. (2016) 

Terminalia 

bellirica 

Roxb 

0 0 0 35 0 0 24 31 0 0 0 0 56.2 Miraboutalebi 

et al. (2016) 

Thevetia 

peruviana  

Merrill 

0 0 0 15.6 0 10.5 60.9 5.2 7.4 0.3 0 0 57.48 Miraboutalebi 

et al. (2016) 

Canarium 

commune 

Linn 

0 0 0 29 0 9.7 38.3 21.8 1.2 0 0 0 55.58 Miraboutalebi 

et al. (2016) 
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Celastrus 

paniculatus 

Linn 

0 0 0 25.1 0 6.7 46.1 15.4 3 0 0 0 51.9 Miraboutalebi 

et al. (2016) 

Vernonia 

cinerea Less 

0 0 8 23 0 8 32 22 0 3 0 0 57.51 Miraboutalebi 

et al. (2016) 

Putranjiva 

roxburghii 

0 0 0 8 0 15 56 18 0 3 0 0 54.99 Miraboutalebi 

et al. (2016) 

Calophyllu

m apetalum 

Wild 

0 0 0 8 0 14 48 30 0 0 0 0 51.57 Miraboutalebi 

et al. (2016) 

Calophyllu

m 

inophyllum 

Linn 

0 0 0 17.9 2.5 18.5 42.7 13.7 2.1 0 0 0 57.3 Miraboutalebi 

et al. (2016) 

Azadirachta 

indica 

0 0 0 14.9 0 14.4 61.9 7.5 0 1.3 0 0 57.83 Tong et al. 

(2011) 

Pongamia 

pinnata 

Pierre 

0 0 0 10.6 0 6.8 49.4 19 0 4.1 2.4 0 55.84 Tong et al. 

(2011) 

Sapindus 

trifoliatus 

Linn 

0 0 0 5.4 0 8.5 55.1 8.2 0 20.7 0 0 59.77 Miraboutalebi 

et al. (2016) 

Mimusops 

hexendra 

Robx 

0 0 0 19 0 14 63 3 0 1 0 0 59.32 Miraboutalebi 

et al. (2016) 



188 

 

Holoptelia 

integrifolia 

0 0 3.5 35.1 1.9 4.5 53.3 0 0 1.1 0 0 61.22 Tong et al. 

(2011) 

Balanites 

roxburghii 

Planch 

0 0 0 17 4.3 7.8 32.4 31.3 7.2 0 0 0 50.46 Miraboutalebi 

et al. (2016) 

Aphanamixi

s 

polystachya 

Park 

0 0 0 23.1 0 12.8 21.5 29 13.6 0 0 0 48.52 Miraboutalebi 

et al. (2016) 

Meyna 

laxiflora 

Robyns 

0 0 0 18.8 0 9 32.5 39.5 0 0 0 0 50.42* Miraboutalebi 

et al. (2016) 

Aleurites 

moluccana 

Wild 

0 0 0 5.5 0 6.7 10.5 48.5 28.5 0 0 0 34.18 Miraboutalebi 

et al. (2016) 

Euphorbia 

helioscopia 

Linn 

0 2.8 5.5 9.9 0 1.1 15.8 22.1 42.7 0 0 0 34.25 Miraboutalebi 

et al. (2016) 

Garcinia 

echinocarpa 

Thw 

0 0 0 3.7 0 43.7 52.6 0 0 0 0 0 63.1 Miraboutalebi 

et al. (2016) 

Garcinia 

morella Desr 

0 0 0 0.7 0 46.4 49.5 0.9 0 2.5 0 0 63.52 Miraboutalebi 

et al. (2016) 

Saturega 

hortensis 

0 0 0 0.4 0 0.4 12 18 62 0 0 0 25.46 Tong et al. 

(2011) 
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Linn 

Actinodaphn

e 

angustifolia 

4.3 87.9 1.9 0.5 0 5.4 0 0 0 0 0 0 63.2 Miraboutalebi 

et al. (2016) 

Litsea 

glutinosa 

Robins 

0 96.3 0 0 0 0 2.3 0 0 0 0 0 64.79 Tong et al. 

(2011) 

Neolitsea 

cassia Linn 

0.3 85.9 3.8 0 0 0 4 3.3 0 0 0 0 64.05 Tong et al. 

(2011) 

Neolitsea 

umbrosa 

Gamble 

1.7 59.1 11.5 0 0 0 21 6.7 0 0 0 0 60.77 Miraboutalebi 

et al. (2016) 

Swietenia 

mahagoni 

Jacq 

0 0 0 9.5 0 18.4 56 0 16.1 0 0 0 52.26 Miraboutalebi 

et al. (2016) 

Anamirta 

cocculus  

Wight & 

Hrn 

0 0 0 6.1 0 47.5 46.4 0 0 0 0 0 64.26 Miraboutalebi 

et al. (2016) 

Broussoneti

a papyrifera 

Vent 

0 0 0 4 0 6.1 14.8 71 1 3 0 0 41.25* Miraboutalebi 

et al. (2016) 

Argemone 

Mexicana 

0 0 0.8 14.5 0 3.8 18.5 61.4 0 1 0 0 44.45 Miraboutalebi 

et al. (2016) 

Salvadora 0.8 35.6 50.7 4.5 0 0 8.3 0.1 0 0 0 0 66.13 Miraboutalebi 
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oleoides 

Decne 

et al. (2016) 

Salvadora 

persica Linn 

0.1 19.6 54.5 19.6 0 0 5.4 0 0 0 0 0 67.47* Miraboutalebi 

et al. (2016) 

Nephelium 

lappaceum 

Linn 

0 0 0 0.2 0 13.8 45.3 0 0 34.7 4.2 0 64.86 Miraboutalebi 

et al. (2016) 

Madhuca 

butyracea 

Mac 

0 0 0 66 0 3.5 27.5 3 0 0 0 0 65.27 Miraboutalebi 

et al. (2016) 

Madhuca 

indica JF 

Gmel 

0 0 0.1 17.8 0 14 46.3 17.9 0 3 0 0 56.61 Miraboutalebi 

et al. (2016) 

Rhus 

succedanea 

Linn 

0 0 0 25.4 0 0 46.8 27.8 0 0 0 0 52.22 Miraboutalebi 

et al. (2016) 

Ervatamia 

coronaria 

Stapf 

0 0 0 24.4 0.2 7.2 50.5 15.8 0.6 0.7 0.2 0 56.33 Miraboutalebi 

et al. (2016) 

Basella 

rubra Linn 

0 0 0.4 19.7 0.4 6.5 50.3 21.6 1.1 0 0 0 54 Miraboutalebi 

et al. (2016) 

Corylus 

avellana 

0 0 0 3.2 3.1 0 2.6 88 2.9 0 0 0 54.5 Tong et al. 

(2011) 

Jatropa 

curcas Linn 

0 0 1.4 15.6 0 9.7 40.8 32.1 0 0.4 0 0 52.31 Tong et al. 

(2011) 
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Moringa 

concanensis 

Nimmo 

0 0 0 9.7 0 2.4 83.8 0.8 0 3.3 0 0 56.32* Miraboutalebi 

et al. (2016) 

Croton 

tiglium Linn 

0 0 11 1.2 0 0.5 56 29 0 2.3 0 0 49.9 Miraboutalebi 

et al. (2016) 

Princeptia 

utilis Royle 

0 0 1.8 15.2 0 4.5 32.6 43.6 0 0 0 0 48.94 Miraboutalebi 

et al. (2016) 

Aegle 

marmelos 

correa Roxb 

0 0 0 16.6 0 8.8 30.5 36 8.1 0 0 0 48.3* Miraboutalebi 

et al. (2016) 

APME 0 0 0 18.4 0.3 11.8 18.3 26.7 23.2 0.5 0.2 0.6 44* Miraboutalebi 

et al. (2016) 

PaME 0 0.1 1 42.8 0 4.5 40.5 10.1 0.2 0 0 0 54.6* Miraboutalebi 

et al. (2016) 

SME 0 0.1 0.1 10.2 0 3.7 22.8 53.7 8.6 0.3 0 0.1 37.9* Miraboutalebi 

et al. (2016) 

Manilkara 

zapotaseed 

oil 

0 0 0 13.27 0 2.8 64.15 17.92 1.86 0 0 0 52* Miraboutalebi 

et al. (2016) 

SBO 0 0 0 5.93 0.04 30.47 54.26 7.8 0.66 0.51 0 0 58.23* Miraboutalebi 

et al. (2016) 

SBOB 0 0 0 17.49 0.5 6.72 48.54 22.2 0.77 0.34 0 0 54.88* Miraboutalebi 

et al. (2016) 

Kenaf 

methyl 

0 0 0 17.5 0.5 1.7 24.5 41.3 0.4 0.4 0 0 54* Miraboutalebi 

et al. (2016) 



192 

 

esters 

Nephelium 

L. 

0 0 0 2 0 13.8 45.3 0 0 34.7 4.2 0 64.9* Miraboutalebi 

et al. (2016) 

Perilla 

frutescens 

Britton 

0 0 0 0 0 0 9.8 47.5 36.2 0 0 0 30.1* Miraboutalebi 

et al. (2016) 

Madhuca 

butyracea 

M. 

0 0 0 66 0 3.5 27.5 3 0 0 0 0 65.3* Miraboutalebi 

et al. (2016) 

Melia 

azadirach 

Linn 

0 0 0.1 8.1 1.5 1.2 20.8 67.7 0 0 0 0 41.37 Miraboutalebi 

et al. (2016) 

Myristica 

malabarica 

Lam 

0 0 39.2 13.3 0 2.4 44.1 1 0 0 0 0 61.85 Miraboutalebi 

et al. (2016) 

Urtica dioica 

Linn 

0 0 0 9 0 0 14.6 73.7 2.7 0 0 0 38.73 Miraboutalebi 

et al. (2016) 

Tectona 

grandis Linn 

0 0 0.2 11 0 10.2 29.5 46.4 0.4 0 2.3 0 48.31 Miraboutalebi 

et al. (2016) 

Garcinia 

combogia 

Desr 

0 0 0 2.3 0 38.3 57.9 0.8 0.4 0 0.3 0 61.5* Miraboutalebi 

et al. (2016) 

Garcinia 

indica 

Choisy 

0 0 0 2.5 0 56.4 39.4 1.7 0 0 0 0 65.16 Miraboutalebi 

et al. (2016) 
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Rape 0 0 0 4.9 0 1.6 33 20.4 7.8 0 9.3 23 55* Miraboutalebi 

et al. (2016) 

Broussoneti

a 

papyriferaV

ent 

0 0 0 4 0 6.1 14.8 71 1 0 0 0 41.3 Miraboutalebi 

et al. (2016) 

Myristica 

malabarica 

Lam 

0 0 39.2 13.3 0 2.4 44.1 1 0 0 0 0 61.8 Miraboutalebi 

et al. (2016) 

Anamirta 

cocculus 

Wight & 

Hrn 

0 0 0 6.1 0 47.5 46.4 0 0 0 0 0 64.26 Miraboutalebi 

et al. (2016) 

Peanut 0 0.02 0 11.91 0.08 2.99 39.99 40.69 0 1.28 0 3.19 48.86 Winayanuwatti

kun et al. 

(2008) 

Coconut 0 64.44 20.45 7.71 0.09 1.73 4.61 0.96 0 0.04 0 0 65.8 Winayanuwatti

kun et al. 

(2008) 

Rice bran 0 0.01 0.41 20.01 0.09 1.7 41.7 34.26 1.1 0.57 0 0.18 50.09 Winayanuwatti

kun et al. 

(2008) 

Palm 0 0.59 0.96 38.67 0.11 3.32 45.45 10.87 0.2 0.23 0 0.02 59.11 Winayanuwatti

kun et al. 

(2008) 
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Soybean  0 0.01 0.04 10.7 0.02 3.02 24.02 56.58 5.35 0.11 0 0.19 42.21 Winayanuwatti

kun et al. 

(2008) 

Sunflower 0 0 0.08 6.59 0.09 3.14 22.43 66.2 0.92 0.15 0 0.43 41.41 Winayanuwatti

kun et al. 

(2008) 

Corn 0 0 0.02 13.17 0.11 2.46 35.19 47.97 0.61 0.37 0 0.13 46.3 Winayanuwatti

kun et al. 

(2008) 

Cashew nut 0 0 0.07 10.36 0.19 9.04 63.38 16.17 0.29 0.67 0 0.07 54.03 Winayanuwatti

kun et al. 

(2008) 

Black 

sesame 

0 0 0 9.28 0.03 4.77 35.49 49.54 0.31 0.47 0 0.14 45.91 Winayanuwatti

kun et al. 

(2008) 

White 

Sesame 

0 0.02 0.02 9.01 0.07 4.62 41.14 44.38 0.23 0.42 0 0.11 46.92 Winayanuwatti

kun et al. 

(2008) 

Almond 0 0.4 0.19 6.3 0.4 1.13 68.74 22.63 0.22 0 0 0 50.54 Winayanuwatti

kun et al. 

(2008) 

Canola 0 0.06 0.07 4.65 0.13 1.64 65.93 21.16 5.16 0.93 0 0.26 52.98 Winayanuwatti

kun et al. 

(2008) 

Safflower 0 0.02 0.11 6.44 0.06 2.2 14.13 76.57 0.15 0.2 0 0.15 39.32 Winayanuwatti
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kun et al. 

(2008) 

Olive 0 0.03 0.02 11.37 0.63 2.58 80.46 4.17 0.56 0.21 0 0.01 55 Winayanuwatti

kun et al. 

(2008) 

Wild 

almond 

0 55.55 38.19 2.55 0.44 0.22 2.63 0.44 0 0 0 0 66.13 Winayanuwatti

kun et al. 

(2008) 

Mapok 0 0.14 1.55 23.56 0.14 8.82 43.38 19.55 0.04 0.58 0 2.24 56.35 Winayanuwatti

kun et al. 

(2008) 

White Silk 

Cotton 

0 0.06 0.16 24.19 0.21 4.15 26.3 42.03 1.73 0.39 0 0.69 49.52 Winayanuwatti

kun et al. 

(2008) 

Rubber 0 0.3 0.42 9.87 0.22 5.28 21.76 45.82 16.12 0.14 0 0.09 40.29 Winayanuwatti

kun et al. 

(2008) 

Castor bean 0 0.13 0.21 10.56 1.44 9.54 29.71 41.26 3.3 3.79 0 0.06 48.32 Winayanuwatti

kun et al. 

(2008) 

Physic nut 0 0.14 0.17 14.82 0.81 4.15 40.98 38.61 0.27 0.06 0 0 48.91 Winayanuwatti

kun et al. 

(2008) 

Tobacco 0 0 0 10.52 2.67 11.01 74.99 0.81 0 0 0 0 40.1 Winayanuwatti

kun et al. 
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(2008) 

Pomelo 0 0.01 0.14 25.24 0.17 4.25 24.53 43.32 2 0.27 0 0.11 49.29 Winayanuwatti

kun et al. 

(2008) 

Papaya 0 0.26 0.46 17.12 0.45 2.98 72.91 4.83 0.29 0.67 0 0.07 56.27 Winayanuwatti

kun et al. 

(2008) 

Rambutan 0 0.08 0.11 8.77 0.96 7.25 55.25 3.72 0.26 22.05 0 1.34 61.17 Winayanuwatti

kun et al. 

(2008) 

Pumpkin 0 0.01 0.18 20.53 0.07 6.51 38.68 32.96 0.22 0.28 0 0.6 51.87 Winayanuwatti

kun et al. 

(2008) 

Tangerine 0 0.01 0.03 21.67 0.39 4.03 20.99 48 4.45 0.24 0 0.05 46.48 Winayanuwatti

kun et al. 

(2008) 

Duea-kai 0 0.5 0.42 26.19 0.11 10.23 46.89 14.68 0.23 0.7 0 0.07 57.35 Winayanuwatti

kun et al. 

(2008) 

where * Test data 
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Appendix 4 

Table 4.B: Experimental CN versus the biodiesel fuel properties data set 

Types of 

Biodiesel 

sources 

Kinemat

ic 

Viscosity 

(mm2/s) 

(KV) 

Heating 

value  

 

(MJ/Kg) 

(HHV) 

Flash 

Point  

 

(°C) 

(FP) 

Density  

 

 

(kg/L) 

(D) 

Cetane 

Number 

 

(CN) 

Reference§ 

Waste Cooking 4.75 39.805 161.7 0.8806 56.2 Giakoumis 

(2013) 

Soybean 4.04 39.8 165 0.8857 42.6 Giakoumis 

(2013) 

Cottonseed 4.7 40.48 165.4 0.879 53.3 Giakoumis 

(2013) 

Soybean Methyl 

Ester 

3.891 39.77 188 0.886 54.8* Peterson et al. 

(1997) 

Sesame Seed 

Oil 

4.2 40.4 170 0.8672 50.48 Saydut et al. 

(2008) 

Chicken fat 4.81 39.89 162.2 0.8763 57 Giakoumis 

(2013) 

Olive 5.05 40.28 171 0.8812 58.9 Giakoumis 

(2013) 

Biodiesel from 

waste cooking 

oil 

5.3 42.65 195.85 0.897 54 Demirbas 

(2009) 

Methyl ester of 

Peanut seed oil 

4.42 40.1 166 0.8485 53.59 Kaya (2009) 

Soyabean 4.5 41.28 178 0.885 45* Giakoumis 

(2013) 

Yenice 

safflower seed 

methyl ester 

4.07 40.06 180 0.8878 49.8 Isigigur et al. 

(1994) 

High Oleic 

Sunflower 

4.74 40.47 167 0.8766 53.2 Martı´nez et al. 

(2014) 

Rapeseed 4.2 41.55 80 0.882 54 Sivaramakrishn

an and Ravi 

kumar (2012) 

Safflower 4.1 40.155 169.9 0.8838 51.8 Giakoumis 

(2013) 

Cynara 4.66 39.95 175 0.8857 43.2* Martı´nez et al. 
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Cardunculus (2014) 

Methyl Tallow 

ester 

4.994 39.961 187.8 0.878 61.8 Yahya and 

Stephen (1994) 

Rapeseed 4.42 40.32 177 0.8796 48.3 Martı´nez et al. 

(2014) 

Waste Cooking 

oil 

4.23 32.9 171 0.89 54.5 Menga et al. 

(2008) 

Calophyllum 

inophyllum 

biodiesel 

4 41.397 140 0.869 57* Onga et al. 

(2011) 

Canola Methyl 

Ester 

4.754 39.9 163 0.881 57.9 Peterson et al. 

(1997) 

Hazelnut 4.3 39.8 163.5 0.8779 53.8 Giakoumis 

(2013) 

Neem 4.72 39.96 162.5 0.8762 54.2* Giakoumis 

(2013) 

Hazelnut oil 

Methyl ester 

4.945 40.198 169 0.88 51.43 Eryilmaz et al. 

(2016) 

Methyl Soyoil 

Ester 

4.18 39.823 190.6 0.887 49.6 Yahya and 

Stephen (1994) 

Beef tallow 4.83 40.04 157.2 0.8743 60.9 Giakoumis 

(2013) 

Maclura Methyl 

ester 

4.66 40.05 180 0.889 48 Saloua et al. 

(2010) 

Soybean 4.29 40.02 158.8 0.8829 51.9 Giakoumis 

(2013) 

Rubber Seed oil 

FAME 

3.89 39.7 152 0.885 54 Ahmad et al. 

(2014) 

Jatropha 4.72 40.38 158.5 0.8787 55.7* Giakoumis 

(2013) 

Midwest 

Biofuels methyl 

soyate 

3.9 39.61 185 0.885 58.4 Peterson et al. 

(1997) 

Jatropha 

Biodiesel 

4.8 39.23 135 0.862 57 Onga et al. 

(2011) 

Methyl ester of 

jatropha Oil 

5.65 38.45 170 0.88 50 Ashwanikumar 

and Sharma 

(2008) 

Rapseed Ethyl 

ester 

6.17 40.51 185 0.876 64.9 Peterson et al. 

(1997) 
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Peanut 4.9 41.71 176 0.883 54 Sivaramakrishn

an and Ravi 

kumar (2012) 

Jatropha 

Biodiesel 

(Assam India) 

9.02 44.844 100 0.8981 43.3 Barua (2011) 

Nicotiana 

tabacum 

(tobacco) 

4.23 39.81 165.4 0.885 51.6* Atabani et al. 

(2013) 

Jatropha Curcas 4.46 40.32 188 0.8816 49.2* Martı´nez et al. 

(2014) 

Shea butter 

Biodiesel 

4.3 37.247 96 0.87305 46.8374 Ejeh and 

Aderemi (2014) 

Croton 4.48 40.28 174.5 0.8832 50.6 Giakoumis 

(2013) 

Rapeseed 4.63 40.335 164.4 0.8822 54.1* Giakoumis 

(2013) 

Pongamiapinnat

a (karanja) 

4.85 35.56 180 0.89 58* Atabani et al. 

(2013) 

Linseed 4.06 40.41 170.3 0.8915 51.3 Giakoumis 

(2013) 

Brassica 

Carinata 

5.31 40.13 177 0.8969 46.4 Martı´nez et al. 

(2014) 

Rice bran oil 

Methyl ester 

4.81 41.38 156.85 0.872 51.6 Peterson et al. 

(1997) 

Rice bran 4.7 40.475 157.8 0.8809 56.3 Giakoumis 

(2013) 

Rubber seed 4.79 40.35 158.3 0.8823 50.4 Giakoumis 

(2013) 

Coconut 2.78 38.985 127.7 0.8708 61 Giakoumis 

(2013) 

Corn 4.32 40.19 165.7 0.8822 52.5 Giakoumis 

(2013) 

Yellow 

Oleander 

Methyl ester 

4.33 44.986 75 0.875 61.5 Deka and 

Basumatary 

(2011). 

Rapseeed 

Methyl ester 

5.65 40.54 179 0.8802 61.8* Peterson et al. 

(1997) 

Canola 4.4 39.975 159 0.8816 54.8 Giakoumis 

(2013) 
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Karanja 5.04 40.275 163.6 0.8829 55.4* Giakoumis 

(2013) 

Sunflower 4.6 41.33 96 0.86 49 Sivaramakrishn

an and Ravi 

kumar (2012) 

Terminalia 

catappa 

4.3 36.97 90 0.873 57.1* Atabani et al. 

(2013) 

Jatropha curcas 

L. 

4.4 41.17 163 0.88 57.1* Atabani et al. 

(2013) 

Babassu 3.6 41.15 127 0.875 63* Sivaramakrishn

an and Ravi 

kumar (2012) 

Madhuca indica 

(mahua) 

3.98 39.4 129 0.916 51 Atabani et al. 

(2013) 

Soy Methyl 

ester 

4.891 36.921 160 0.883 50* Jung et al. 

(2006) 

Jatropha oil 

Methyl ester 

4.84 37.2 185.85 0.88 51.6 Banapurmatha 

et al. (2008) 

Palm 4.61 39.985 161.9 0.8747 61.2* Giakoumis 

(2013) 

Soybean Ethyl 

Ester 

4.493 39.96 171 0.881 52.7 Peterson et al. 

(1997) 

Palm 5.7 41.24 183 0.88 62* Sivaramakrishn

an and Ravi 

kumar (2012) 

Canola Ethyl 

Ester 

4.892 40.03 177 0.878 59.6 Peterson et al. 

(1997) 

Peanut 4.77 39.93 174.5 0.8829 54.9 Giakoumis 

(2013) 

Mahua 5.06 40.18 150.6 0.8745 56.9 Giakoumis 

(2013) 

Sunflower 4.55 40.42 161 0.8786 51 Martı´nez et al. 

(2014) 

Fish 4.3 40.55 162.6 0.8873 51 Giakoumis 

(2013) 

Terminalia 

belerica Robx. 

5.17 39.22 90 0.8828 53 Atabani et al. 

(2013) 

*  Test data 

 

https://www.sciencedirect.com/science/article/pii/S0960148107003746#!
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Abstract 

In the coal-based gasification and combustion processes, the mineral 

matter (predominantly oxides) contained in the coal, is left as an incombustible 

residue, termed ash.  Usually, ash gets deposited on the heat absorbing 

surfaces of the exposed equipment of the gasification/ combustion processes. 

These deposits lead to slagging or fouling and, therefore, reduced process 

efficiency. The ash fusion temperatures (AFTs) represent the range of 

temperature for the ash deposition. Accordingly, for operating, designing and 

optimizing coal-based processes, it is significant to have mathematical models 

predicting accurately the four types of AFTs namely initial deformation 

temperature, softening temperature, hemispherical temperature, and flow 

temperature. A number of linear and nonlinear models possessing varied AFT 

prediction accuracies and complexities are available. Their applicability is 

limited to a extent as most of coals are originating from a limited number of 

geographical regions. Consequently, this chapter presents computational 

intelligence (CI) based nonlinear models to predict the four AFTs wherein the 

composition of oxides present in the coal ash is used as the model input. The 

CI methods used in the modeling are genetic programming (GP), artificial 

neural networks (ANN), and support vector regression (SVR). The 

distinguished characteristics of this study are that models with a wider 

application potential, better AFT prediction accuracy and generalization 

performance, and reduced complexity, have been developed. Amongst the 

three types of CI-based models, GP and MLP based models have produced 

overall improved performance in predicting all four AFTs.  
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5.1 INTRODUCTION 

The major processes that use coal feedstock are gasification, 

combustion, and liquefaction. Coal is an intricate substance mainly containing 

carbon, hydrogen, nitrogen, oxygen, sulfur, and mineral matter that can be 

intrinsic and/or extraneous with widely divergent composition and forms 

(Ozbayoglu and Ozbayoglu, 2006).   

In coal-based processes, its mineral matter experiences a numerous 

complex physical and chemical transformations. These led to the formation of 

ash  that has a tendency of depositing on the heat-transfer surfaces and other 

exposed process equipment (Seggiani and Pannocchia, 2003). The phenomena 

responsible for this ash deposition are termed slagging and fouling.  Slagging 

produces considerably viscous or fused deposits of ash in zones that are 

directly exposed to the hottest parts of the boiler (radiant heat exchange). The 

consequence of fouling is deposition of species in the vapor form and their 

condensation on the surfaces due to the convective heat exchange. Such  

things particularly take place in the cooler parts of the boiler at temperatures 

below the melting point of the bulk coal ash (Seggiani and Pannocchia, 2003). 

The low temperature fusing coal ash promotes the clinker formation that 

usually deposits around the heat transfer pipes which result in corrosion of 

furnace components. It is well-known that ash clinkering may lead to pressure 

drop, channel burning, and an unstable gasifier operation (Van Dyk et al., 

2001). As a result, coal-based thermal power stations have to take periodic 

shut-downs to eradicate the clinker from the ash recovery shuts and heat 

transfer pipes (Yin et al., 1998). The occurrence of ash slag flows for example 

in the Integrated Gasification Combined Cycle (IGCC) and other slagging 

reactors is directly attributed to the creation of the liquid slag and to the stable 

solid crystalline phases (Patterson and Hurst, 2000; Skrifvars et al., 2004).  

The characteristic governing the behavior of ash in several coal-utilizing 

processes is termed ash fusion temperature (AFT). 

The AFT analysis consists of the determination of four temperatures 

signifying four stages (phases) in the melting of the ash. 
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(i)  Initial deformation temperature (IDT): Temperature at which the ash just 

begins to flow. 

(ii) Softening temperature (ST): It is that temperature when the ash softens and 

becomes plastic.  

(iii) Hemispherical temperature (HT): Represents the temperature yielding a    

hemispherically shaped droplet. 

(iv) Fluid temperature (FT): Refers to the temperature, at which the ash 

becomes a free-flowing fluid (Slegeir et al., 1988). 

The above-described four AFTs own following attributes and applications.  

 Specify the temperature range for a likely formation of deposits on the 

heat adsorbing surfaces of the process equipment (Ozbayoglu and 

Ozbayoglu, 2006). 

 Endow with vital clues to the extent to which the ash clinkering and 

agglomeration are likely to happen within the gasifier/combustor 

(Alpern et al., 1984; Seggiani, 1999; Van Dyk et al., 2001). 

 Are of specific significance to the process of all types of 

gasifiers/combustors (Bryers, 1996; Wall et al., 1998).  For example, to 

permit continuous slug tapping, it is essential that the working 

temperature in the entrained flow gasifier is greater than the flow 

temperature (Hurst et al., 1996). In the case of fluid-bed gasifiers, 

AFTs set the upper limit for the working temperature at which ash 

agglomeration is started (Song et al., 2010).  

 The boiler and furnace operators, and engineers in power stations 

regularly utilizes the knowledge of AFTs in power generation stations 

for predicting the melting and sticking behavior of the coal ash 

(Seggiani and Pannocchia, 2003). 

Conventionally, determination of the ash fusibility is performed using 

ASTM D1857 procedure. It includes monitoring cones or pyramids of ash—

prepared in a muffle furnace at 815 °C—in an oven operated under a reducing 

atmosphere and whose temperature is continuously increased steadily past 

1000 °C to as high as possible [preferably 1600 °C (2910 °F)]. It is commonly 
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witnessed that for a given coal, the AFT analysis conducted by different 

laboratories may vary by ±20 –100oC (Jak, 2002; Winegartner and Rhodes, 

1975).  

Since the knowledge of the AFTs is important in operating, designing, 

and optimizing coal-based processes, a number of mathematical models have 

been developed pertaining to their prediction.  It may be noted that the efforts 

to build models possessing higher prediction accuracies and generalization 

performance as also wider applicability still continue. The presently existing 

AFT prediction models have certain limitations as specified below. 

1. Most of the models have been constructed using data of coals from 

a few or a single geographical region. Since coals from different 

regions/countires show varying physical and chemical 

characteristics, the AFT models of coals from a single/few 

geographies possess limited applicability. 

2. A few of the AFT prediction models do study coals from various 

geographies (see, for example, Seggiani, 1999, and Seggiani and 

Pannocchia, 2003) and are endowed with reasonably good 

prediction accuracies. However, these are based upon a large 

number of predictors (input variables) and therefore are complex, 

which adversely affects their generalization ability. Also, it is 

costly and require tedious experimentation for compiling a large 

number of predictors. 

Accordingly, the principal aim of this work is to develop AFT 

prediction models that are with lower complexity (parsimonious), and 

applicable to coals from a large number of geographical regions. Towards the 

stated objective, this Chapter reports the results of the development of 

computational intelligence (CI) based models for the prediction of IDT, ST, 

HT, and FT. The three CI paradigms used in this modeling are genetic 

programming (GP), multi-layer perceptron neural network (MLPNN), and 

support vector regression (SVR).  The results of the CI-based modeling of 

AFT prediction models show that the GP and MLP based models predicting 

IDT, ST, HT, and FT have outperformed the prevailing linear models with 

relatively wider applicability and in terms of possessing better generalization 
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ability. Moreover, the GP and MLPNN based models need a lower number of 

inputs than the above specified models (Seggiani, 1999, and Seggiani and 

Pannocchia, 2003) thus requiring reduced cost and effort in collecting the 

predictor (model inputs) data.  

The rest part of this study is structured as follows. An overview of the 

currently available AFT prediction model is given in Section 5.2. A need for 

developing the data-driven nonlinear models is described in section 5.3. The 

“Results and discussion” section (5.4) presents (a) the CI-based models 

development pertaining to prediction accuracy of four AFTs, and (b) a 

comparison of the prediction accuracy and generalization performance of the 

CI-based models. Finally, “Concluding Remarks” summarize the principal 

findings of this work. 

 

5.2 OVERVIEW OF MODELS FOR PREDICTING AFTs  

Multiple studies have demonstrated that the chemical and mineral 

composition of the coal ash governs its melting behavior and fusion 

temperatures (Gray, 1987; Kucukbayrak et al., 1993; Vassilev et al., 1995; 

Vorres, 1979; Winegartner and Rhodes, 1975). As ash composition influences 

the AFT magnitudes and, thus, the coal-based process performance, it is 

absolutely necessary to establish quantitative relationships between the 

composition of the ash and the corresponding four AFTs. The AFT predicting 

models have following applications:  

(a)  Based upon the chemical and mineral composition of the coal ashes , 

the models present a method to calculate thermal properties of coal 

ashes (Seggiani, 1999), 

(b)  Offer a method to assess the outcome of an addition of minerals, such 

as CaO, to modify the slag behavior (Wall et al., 1998). Table 5.1 

represents a typical compilation of the existing AFT models.  

It is well-known that the high-temperature behavior of the coal slag, 

ash, and blends in gasification and combustion technologies are unable to 

predict precisely by the conventional approaches (Gray, 1987; Goni et al., 
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2003; Huggins et al., 1981; Lloyd et al., 1995; Wall et al., 1998; Yin et al., 

1998). 

Accordingly, a number of studies have been revealed using modeling 

methods such as statistical, regression, thermodynamic, and more recently 

artificial intelligence-based data-driven techniques for the prediction of the 

AFTs and thereby assessing the deposition characteristics of the coal ashes.  

Typically, these models use the mineral content of several oxides (expressed 

as weight percentages), for correlating with the AFT data obtained from the 

standard ash fusion tests. The stated models do not closely resemble the 

conditions in the real gasifiers/ combustors as they essentially simulate the ash 

formation under controlled conditions. However, the models compensate for 

the said deficiency by obtaining predictions under a consistent set of test 

conditions (Lolja et al., 2002). 

Table 5.1: A representative compilation of AFT predicting correlations/ 

models 

S

N 

Authors Type of 

Model 

Model inputs 

(Composition 

of ash 

constituents 

and other 

parameters) 

Predicted 

AFT 

Coal 

Region 

Statistical 

analysis# of 

model 

predictions 

1 Winega-

rtner and 

Rhodes 

(1975) 

Stepwise 

Regression 

FeO %, 

Fe2O3%, 

FeO×CaO %, 

Bases/Acids 

Ratios, silica 

value 

ST USA CC > 0.7 

2 Gray 

(1987) 

 

Multiple 

Regression 

Different 

combinations 

of metal 

oxides 

Reducing 

IDT and 

HT 

New 

Zealand 

R2 > 53% 

 

 

 

3 Rhine-

hart and 

Attar 

Thermody-

namic 

Modelling 

Metal and 

other (P2O5, 

TiO2, SO3) 

IDT, ST, 

FT 

US coals R2 > 0.67 
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(1987) oxides 

4 Kucuk-

bayrak 

et al. 

(1993) 

Least 

Square 

Regression 

Analysis 

Combinations 

of metal 

oxides 

HT Turkish 

lignite 

CC > 0.26 

5 Yin et 

al. 

(1998) 

Back-

Propagatio

n Neural 

Network 

SiO2, Al2O3, 

Fe2O3, CaO, 

MgO, TiO2, 

K2O+Na2O 

ST Chinese Average 

fractional 

error: 0.049 

6 Kahra-

man et 

al. 

(1998) 

Empirical 

models 

Al2O3, Fe2O3, 

CaO 

IDT, 

Spherical, 

FT 

Australian 

 

R2 > 0.84 

7 Seggiani 

(1999) 

Linear 

Regression 

49 parameters 

containing 

concentrations 

of nine metal 

oxides, their 

squares, and 

combinations 

of these 

values, acid, 

base, dolomite 

ratio and 

Silica value  

Reducing 

IDT, ST, 

HT, and 

FT for 

biomass 

and coal 

ashes 

American,  

African, 

Australian, 

German, 

Italian, 

Polish, 

Spanish, 

etc. 

CC range: 

0.84 – 0.92 

8 Lolja et 

al. 

(2002) 

Linear 

Regression 

Metal oxides, 

bases, acids, 

crystal 

components 

and fluxing 

agents 

IDT, ST, 

HT, FT 

Albanian 0.93 ≤ CC≤ 

0.95 

9 Jak 

(2002) 

Thermo-

dynamic 

Modelling 

(FACT 

Package) 

SiO2, Al2O3, 

Fe2O3, CaO 

IDT, 

Spherical, 

HT, FT 

Australian Liquidus 

Temperatur

e and AFT 

strongly 

correlated 
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10 Seggiani 

and 

Pannoc-

chia 

(2003) 

Partial 

Least 

Squares 

Regression 

11 to 13 

parameters 

containing 

concentrations 

of nine metal 

oxides in ash, 

and their 

various 

combinations 

Reducing 

IDT, ST, 

HT, FT 

American, 

African, 

Albanian, 

Australian, 

French, 

German, 

Italian, 

Polish, 

Spanish 

CC 

(training 

set) range: 

0.75 – 0.82; 

CC 

(validation 

set) range: 

0.76 – 0.84 

11 Ozbayo-

glu and 

Ozbayo-

glu 

(2006) 

Linear and 

Nonlinear 

Regression 

Chemical 

composition 

of ash and 

coal 

parameters 

ST, FT Turkey Regression 

Coefficient 

> 0.93 

12 Liu et 

al. 

(2007) 

Back 

Propagatio

n Neural 

Network-

Ant Colony 

Optimiza-

tion 

SiO2, Al2O3, 

Fe2O3, CaO, 

MgO, TiO2, 

K2O+Na2O 

ST Chinese Average 

Training 

(Test) error: 

1.55 (1.85) 

% 

 

13 Zhao et 

al. 

(2010) 

Least-

Squares 

Support 

Vector 

Regression 

SiO2, Al2O3, 

Fe2O3, CaO, 

MgO, TiO2, 

K2O, Na2O, 

SO3 

ST Chinese CC =0.927, 

MSE= 

0.0128 

14 Gao et 

al. 

(2011) 

Support 

vector 

regression 

by ACO 

Algorithm 

SiO2, Al2O3, 

Fe2O3, CaO, 

MgO, TiO2, 

K2O+Na2O 

ST China MSE = 

1.52, CC = 

0.999 

(training), 

and = 

0.9716 

(test) 

15 Karimi 

et al. 

(2014) 

Adaptive 

Neuro 

fuzzy 

Different 

combinations 

of metal 

IDT, ST, 

FT 

USA CC = 0.97, 

0.98 and 

0.99, 
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Inference 

System 

oxides respectively 

16 Miao et 

al. 

(2016) 

Back- 

Propagation 

Neural Net 

SiO2, Al2O3, 

Fe2O3, CaO, 

MgO 

ST Chinese - 

#  CC: Correlation coefficient; MSE: mean squared error; R2: Variance 

5.3   AFT DATA USED IN MODELING  

In the present work, the commonly employed weight percentages (wt 

%) of the eight major oxides appearing in the coal ashes (i.e. SiO2, Al2O3, 

Fe2O3, CaO, MgO, TiO2, Na2O+K2O), have been used as the predictors/model 

inputs of the four AFTs (Gao et al., 2011; Liu et al., 2007; Yin et al., 1998). 

Large datasets consisting the information of specified oxides composition and 

the related magnitudes of the four AFTs were compiled from a number of 

research articles, pertaining to the ash samples of coals from several countries, 

listed below  

1. IDT: Albania, Australia, China, Colombia, India, Indonesia, Russia, 

South Sumatra, South Africa, USA, Venezuela. 

2. ST: Australia, China, Colombia, Indonesia, Russia, South Africa, South 

Sumatra, USA, Venezuela. 

3. HT: Albania, Australia, Colombia, India, Indonesia, Russia, South 

Africa, South Sumatra, USA, Venezuela.  

4. FT: Albania, Australia, China, Colombia, India, Indonesia, Russia, 

South Africa, South Sumatra, USA, Venezuela. 

The data sets also contained data in respect of the Indian coal ashes, which 

were provided by Central Institute of Mining and Fuel Research (CIMFR), 

Dhanbad, India. The data sets containing of the seven model predictors, the 

related AFTs, and their sources are listed in Tables 5.A, 5.B, 5.C and 5.D in 

the APPENDIX 5 at the end of this chapter. Specifically, these four tables 

comprise the oxide composition and the related AFT data pertaining to the IDT 

(184 samples), ST (92 samples), HT (82 samples), and FT (94 samples), 

respectively.  Most of these data were collected by conducting experiments in 

the reducing conditions.  
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5.4 NEED FOR NONLINEAR AFT MODELS  

The regression studies, for example, by Lolja et al. (2002), Ozbayoglu 

and Ozbayoglu (2006), and Seggiani (1999), have reported that a linear 

dependence exists between the mineral composition of the coal ash and its 

AFTs. On the other hand, a number of studies such as those by Gao et al. 

(2011), Karimi et al. (2014), Liu et al. (2007), Miao et al. (2016) and Yin et al. 

(1998) (see Table 5.1) have proposed nonlinear AFT prediction models. In 

order to analyze the true nature (linear or nonlinear) of the dependencies 

between the oxide components in the coal ashes and the corresponding AFTs, 

cross-plots were prepared as shown in Figures 5.1 to 5.4. In here, values of the 

four AFTs (IDT, ST, HT, and FT) are plotted against the weight (%) values of 

the individual oxide. The observations drawn from the cross-plots are given 

below.  

 In the four panels, namely, 5.1a, 5.1b, 5.1c and 5.1g, an approximately 

linear relation is seen between the IDT and the weight percentages of 

SiO2, Al2O3, Fe2O3, and K2O+Na2O. However, since there exists a 

significant scatter in the corresponding data, a similar conclusion 

cannot be drawn from the cross-plots (panels 5.1d, 5.1e, and 5.1f) 

pertaining to the remaining three ash components (CaO, MgO, and 

TiO2).  

 Irrespective of the high scatter seen in all panels of Figure 5.2, there 

exists a strong probability of linear dependencies between the softening 

temperature and Al2O3 (panel 5.2b), Fe2O3 (panel 5.2c), MgO (panel 

5.2e), and TiO2 (panel 5.2f) whereas, most probably the individual 

relationships between the ST and SiO2 (panel 5.2a), CaO (panel 5.2d) 

and K2O +Na2O (panel 5.2g) are nonlinear.  

 The cross-plots in Figure 5.3 are suggestive of a high probability of 

nonlinear dependencies between HT and weight percentages of three 

ash components, viz. SiO2 (panel 5.3a), Al2O3 (panel 5.3b) and CaO 

(panel 5.3d); whereas, the relationships between HT and Fe2O3 (panel 

5.3c), MgO (panel 5.3e), TiO2 (panel 5.3f), and K2O+Na2O (panel 

5.3g), could be linear.  
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 It is possible to state with a high probability that in Figure 5.4, linear 

dependencies exist between the flow temperature (FT) and SiO2 (panel 

5.4a), Al2O3 (panel 5.4b), Fe2O3 (panel 5.4c), and K2O + Na2O (panel 

5.4g). However, in the remaining three panels, the relationships 

between FT and CaO (panel 5.4d), MgO (panel 5.4e) and TiO2 (panel 

5.4f), appear to be nonlinear.  

 

 

 

Figure 5.1: Cross-plots pertaining to weight percentages (wt %) of individual 

metal oxides vis-à-vis IDT  
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Figure 5.2: Cross-plots pertaining to weight percentages (wt %) of individual 

metal oxides vis-à-vis ST 
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Figure 5.3: Cross-plots pertaining to weight percentages (wt %) of individual 

metal oxides vis-à-vis HT 
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Figure 5.4: Cross-plots pertaining to weight percentages (wt %) of individual 

metal oxides vis-à-vis FT 

From the above-stated observations, it is evident that several potential 

cases exist of the nonlinear relationships between the four AFTs and the 

weight percentages of the individual oxides present in the coal ashes.  Hence, 

it becomes pertinent to explore nonlinear models for the prediction of the four 

AFTs since such models are anticipated to capture the oxide-AFT relationships 

in a manner better than the linear models and, thereby, make more accurate 

predictions. Towards this objective, three computational intelligence (CI) 

based purely data-driven modeling formalisms (GP, MLPNN and SVR) have 

been employed for the prediction of the four AFTs from the information of the 

mineral composition (oxides) of the coal ashes. The underlying basis for 

emerging multiple models for each AFT is to compare their prediction 

accuracy and generalization performances, and thus select the best performing 

one.   
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The general forms of the CI-based models developed in this study are 

given as: 

𝐼𝐷𝑇 = 𝑓1 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝛽IDT )                           (5.1) 

  𝑆𝑇 = 𝑓2 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝛽𝑆𝑇 )                             (5.2) 

 HT = 𝑓3 (x1, x2, x3, x4, x5, x6, x7, 𝛽HT )                            (5.3) 

  FT = 𝑓4 (x1, x2, x3, x4, x5, x6, x7, 𝛽FT )                            (5.4) 

where, IDT, ST, HT, and FT stand for Initial deformation temperature (0C), 

Softening temperature (0C), Hemispherical temperature (0C), and Fluid 

temperature (0C), respectively; 𝛽IDT, 𝛽ST, 𝛽HT, and 𝛽FT, represent the 

parameter vectors associated with the functions 𝑓1, 𝑓2, 𝑓3, and 𝑓4, respectively. 

The seven predictors (inputs) of the four AFT models are defined as: (i) 𝑥1: 

weight percentage (wt%) of SiO2, (ii) 𝑥2: wt% of Al2O3, (iii) 𝑥3:  wt% of 

Fe2O3, (iv) 𝑥4: wt% of CaO,  (v)  𝑥5: wt% of MgO, (vi)  𝑥6: wt% of TiO2, and  

(vii) 𝑥7: wt% of K2O+Na2O. 

 

5.5   RESULTS AND DISCUSSION 

5.5.1 Principal Component Analysis (PCA)   

While developing data-driven models, it is desirable to avoid correlated 

predictors/inputs since these cause redundancies and an unnecessary increase 

in the computational effort.  Thus, the seven predictors/inputs (𝑥1 − 𝑥7)  of 

IDT, ST, HT, and FT prediction models were subjected to the principal 

component analysis (PCA) (Geladi and Kowalski, 1986), which performs a 

transformation to get linearly uncorrelated variables. Therefore, only the first 

few principle components (PCs) that capture the maximum amount of variance 

in the data are selected as model inputs. This enables a reduction in the 

dimensionality of the model’s input space.  An in-depth description has been 

provided in Chapter 2, section 2.6.1. In this study, seven PCs were extracted 

from weight percentages of metal oxides in the coal ashes listed in the four 

tables in APPENDIX 5.     
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Prior to performing the PCA, the seven predictors in the example data 

for IDT, ST, HT and FT (listed in Tables 5.A, 5.B, 5.C and 5.D of APPENDIX 

5, respectively) were normalized using “Z-score” technique as given by, 

                                         �̂�𝑟
𝑖 =

𝑥𝑟
𝑖 −�̅�𝑟

𝜎𝑟
; 𝑖 = 1,2, … , 𝑁𝑝; 𝑟 = 1,2, … , 𝑅        (5.5) 

where, 𝑥𝑟
𝑖   signifies the ith value of the rth non-normalized input variable, 𝑥𝑟; R 

signifies the number of  inputs subjected to PCA (=7); 𝑁𝑝 represents the 

number of observations/ samples in the data set;  𝑥𝑟 denotes to the mean of 

 {𝑥𝑟
𝑖  }, 𝑖 = 1 ,2, … , 𝑁𝑝, and σ𝑟  denotes the standard deviation of  {𝑥𝑟

𝑖  }, 𝑖 =

1 ,2, … , 𝑁𝑝. Alike to the input variables, the values of the four model outputs, 

namely IDT (𝑦1),  ST (𝑦2),  HT  (𝑦3) and FT  (𝑦4) were also normalized as 

given below. 

                                �̂�𝑠
𝑖 =

𝑦𝑠
𝑖−  𝑦𝑠

𝜎𝑆
,  i = 1,2, … , 𝑁𝑝 ;  𝑠 = 1, 2, … , S                     (5.6) 

where, �̂�𝑠
𝑖 , and  𝑦𝑠

𝑖  respectively denote the ith normalized and non-normalized 

magnitudes of the Sth output variable (i.e., AFT), 𝑦𝑠; S denotes to the number 

of outputs (= the number of AFTs = 4);  𝑦
𝑠
 denotes to the mean of {𝑦𝑠

𝑖}, 𝑖 =

 1, 2, . . . , 𝑁𝑝 values in the example set, and σs  signifies the standard deviation 

of {𝑦𝑠
𝑖}, 𝑖 =  1, 2, . . . , 𝑁𝑝. The mean and standard deviation magnitudes of 

weight percentages of seven oxides (SiO2, Al2O3, Fe2O3, CaO, MgO, TiO2, 

and K2O+Na2O) and all four ash fusion temperature phases (IDT, ST, HT, and 

FT) used in the normalization procedure are given in Table 5.E in APPENDIX 

5.  Using the input data, the expressions of the PCs have been derived 

pertaining to the IDT, ST, HT and FT models are given in the next section. 

Table 5.2: Amount of variance addressed by the individual principal 

components (PCs) in the IDT, ST, HT and FT data sets 

*PCj represents the  jth principal component. 
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Table 5.2 addresses the amount of the variance captured by the seven 

PCs in the experimental oxides data. In Table 5.2, it is observed that the first 

five PCs have cumulatively captured  large percentages (> 95%) of variance in 

the oxides data pertaining to IDT, HT and FT. In the case of the oxides data for 

ST the cumulative amount of variance captured by the first four PCs is ≈ 92%, 

which is also sufficiently high.  This result suggests that since they capture a 

high percentage of variance in the oxides data, the first four PCs, can be 

considered as the predictors/inputs in the model pertaining to the predictions 

of ST; whereas in case of models pertaining to the predictions of IDT, HT and 

FT, first five PCs can be regarded as predictors. 

The prediction and generalization ability of a CI-based model were 

studied using three statistical metrics, namely coefficient of correlation (CC), 

root mean square error (RMSE), and mean absolute percent error (MAPE). 

Their details are given in Chapter 2 section 2.3.1.3  

The PCA-transformed variables were considered as the predictors in 

developing the GP-, MLPNN-, and SVR-based IDT, ST, HT, and FT 

prediction models. Before constructing and examining the generalization 

capability of CI-based models, the experimental data set for each AFT was 

randomly partitioned in 70:20:10 ratio into training, test, and validation sets. 

While the first set was used in training the CI-based models, the test and the 

validation sets were respectively used in testing and validating the 

generalization ability of the models.   

5.5.2 AFT Modeling using Genetic Programming 

The GP-based symbolic regression strategy explained in Chapter 2, 

section 2.3.3 was used in developing the four AFT prediction models. These 

models were constructed using Eureqa Formulize software package (Schmidt 

and Lipson, 2009). A noteworthy characteristic of this package is that it is 

tailored to search and optimize models possessing a low complexity and, thus, 

endowed with the much sought-after generalization ability. There are a 

number of procedural attributes that affect the final solution provided by the 

GP. These include the sizes and distribution of the training, test and validation 

sets, choice of the mathematical operators for constructing the candidate 
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solutions, and input normalization schemes. To get parsimonious models (i.e. 

of low complexity) having a good AFT prediction and generalization ability, a 

number of GP runs were conducted by rigorously varying each of the specified 

attributes. In each of the stated runs, post-convergence the solution possessing 

maximum fitness score was recorded. Among such multiple solutions, a model 

possessing following characteristics was chosen as an overall optimal solution 

(Sharma and Tambe, 2014): (a) high and comparable values of CCs, and small 

and comparable values of RMSE, and MAPE, pertaining to the model 

predictions in respect of the training, test, and validation set data, and (b) a 

model possessing a low complexity (i.e., containing a small number of terms 

and parameters in its structure).  

The GP-based overall best models for the four AFTs are given below 

wherein  𝐼𝐷�̂�,  𝑆�̂�, 𝐻�̂�,  and  𝐹�̂� , respectively refer to the normalized values 

of IDT, ST, HT, and FT (see Equations 5.7, 5.13, 5.18 and 5.24).   

(a) Model for predicting Initial deformation temperature (IDT) 

𝐼𝐷�̂� = 0.096𝑃𝐶1𝑃𝐶2 + 0.309𝑃𝐶4 
2 + (

𝑃𝐶1+ 𝑃𝐶5

𝑃𝐶3−1.426𝑃𝐶5−3.252 
) −

             0.096𝑃𝐶1𝑃𝐶4 
2 − 0.121𝑃𝐶3  − 0.199                    (5.7) 

where, 

𝑃𝐶1 =  −0.423�̂�1 − 0.375 �̂�2 +  0.343 �̂�3 +  0.427 �̂�4 +  0.366 �̂�5 −

              0.384 �̂�6 +  0.315 �̂�7                                                                          (5.8) 

 

𝑃𝐶2 =  0.406 �̂�1 − 0.119 �̂�2 −  0.709 �̂�3 +  0.163 �̂�4 +  0.474 �̂�5 −

              0.192 �̂�6 +  0.171 �̂�7                                                                              (5.9) 

 

𝑃𝐶3 =  0.373 �̂�1 − 0.479 �̂�2 +  0.120 �̂�3 −  0.389 �̂�4 −  0.405 �̂�5 −

              0.250 �̂�6 +  0.489 �̂�7                                                                (5.10) 

 

𝑃𝐶4 =  0.236 �̂�1 − 0.459 �̂�2 +  0.085 �̂�3 +  0.122 �̂�4 −  0.078 �̂�5 −

              0.314 �̂�6 −  0.779 �̂�7                                                        (5.11) 

 

𝑃𝐶5 =  0.064 �̂�1 − 0.539 �̂�2 − 0.003 �̂�3 +  0.252 �̂�4 +  0.023 �̂�5 +

              0.799 �̂�6 +  0.052 �̂�7                                                               (5.12) 
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The magnitudes of �̂�𝑟; r = 1,2,...,7 were evaluated using Eq. (5.5); the mean 

and standard deviation values pertaining to the IDT data are given in Table 5.E 

in APPENDIX 5 at the end of this Chapter.  

(b) Model for predicting softening temperature (ST) 

   𝑆�̂� = 0.261𝑃𝐶2 + 0.230𝑃𝐶1𝑃𝐶2 + 0.142𝑃𝐶1𝑃𝐶3 − 0.329𝑃𝐶4 −

              0.527𝑃𝐶1  − 0.261𝑃𝐶3𝑃𝐶4                                                      (5.13) 

where,   

 𝑃𝐶1 =  −0.494 �̂�1 − 0.394 �̂�2 +  0.356 �̂�3 +  0.535 �̂�4 +  0.325 �̂�5 −

              0.237 �̂�6 +  0.165 �̂�7                                                                (5.14) 

 

 𝑃𝐶2 =  −0.307 �̂�1 + 0.457 �̂�2 −  0.316 �̂�3 +  0.237 �̂�4 +  0.399 �̂�5 +

               0.596 �̂�6 +  0.161 �̂�7                        (5.15) 

 

 𝑃𝐶3 =  0.291 �̂�1 − 0.134 �̂�2 − 0.426 �̂�3 +  0.25 �̂�4 +  0.478 �̂�5 −

               0.228 �̂�6 − 0.611 �̂�7    (5.16) 

 

 𝑃𝐶4 =  0.328 �̂�1 − 0.362 �̂�2 − 0.523 �̂�3 + 0.153 �̂�4 −  0.012 �̂�5 −

              0.066 �̂�6 + 0.678 �̂�7                                                                 (5.17) 

 

In Eqns. (5.14) to (5.17), �̂�𝑟; r = 1,2,...,7 were calculated using Eq. (5.5);  the 

mean and standard deviation values pertaining to the ST  data are given in 

Table 5.E in APPENDIX 5. 

(c) Model for predicting hemispherical temperature (HT)  

   𝐻�̂� = 0.529 + (
0.736 𝑃𝐶4 

2 −𝑃𝐶1− 1.678−0.592𝑃𝐶5 − 0.578𝑃𝐶4𝑃𝐶5 

exp (0.397𝑃𝐶2𝑃𝐶3+0.358𝑃𝐶1𝑃𝐶2+ 0.358 𝑃𝐶1 
2 )         (5.18) 

where, 

  𝑃𝐶1 =  −0.44 �̂�1 − 0.486 �̂�2 +  0.375 �̂�3 +  0.421 �̂�4 +  0.25 �̂�5 −

                0.303 �̂�6 +  0.314 �̂�7                                                        (5.19) 

                                                                                                    

𝑃𝐶2 =  0.202 �̂�1 − 0.312 �̂�2 +  0.402 �̂�3 −  0.426 �̂�4 −  0.396 �̂�5 −

              0.522 �̂�6 +  0.299 �̂�7                                                           (5.20)                      
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𝑃𝐶3 =  − 0.549 �̂�1 + 0.277 �̂�2 +  0.54 �̂�3 −  0.25 �̂�4 −  0.26 �̂�5 +

             0.447 �̂�6 −  0.014 �̂�7                                                          (5.21)    

                        

𝑃𝐶4 =  −0.129 �̂�1 + 0.047 �̂�2 +  0.13 �̂�3 − 0.061 �̂�4 +  0.662 �̂�5 −

             0.017 �̂�6 −   0.723 �̂�7                                                          (5.22) 

                        

𝑃𝐶5 =  0.206 �̂�1 − 0.043 �̂�2 +  0.159 �̂�3 −  0.629 �̂�4 +  0.517 �̂�5 +

              0.054 �̂�6 +  0.515 �̂�7                                                           (5.23)  

                        

The magnitudes of �̂�𝑟; r = 1,2,...,7 in Eqns. (5.19) to (5.23) were computed 

using Eq. (5.5); the mean and standard deviation values pertaining  to the HT 

data are given in Table 5.E in APPENDIX 5 

(d) Model for predicting flow temperature (FT)  

  𝐹�̂� =  0.133𝑃𝐶1𝑃𝐶2 +  0.133𝑃𝐶4 
2 +

              0.0577𝑃𝐶1
2 (0.058𝑃𝐶1 

2) (𝑃𝐶5+0.133𝑃𝐶1+0.133𝑃𝐶4 
2 ) −  0.354 −

              0.133𝑃𝐶3 − 0.407𝑃𝐶1 (5.24) 

where, 

 𝑃𝐶1 =  −0.45 �̂�1 − 0.389 �̂�2 +  0.34 �̂�3 + 0.449 �̂�4 +  0.318 �̂�5 −

               0.41 �̂�6 +  0.244 �̂�7                                                          (5.25) 

                               

𝑃𝐶2 =  0.391 �̂�1 − 0.082 �̂�2 −  0.668 �̂�3 + 0.209 �̂�4 +  0.547 �̂�5 −

               0.222 �̂�6 +  0.05 �̂�7                                                            (5.26) 

                              

𝑃𝐶3 =  −0.013 �̂�1 + 0.176 �̂�2 −  0.007 �̂�3 − 0.3721 �̂�4 + 0.109 �̂�5 +

              0.055 �̂�6 +  0.903 �̂�7                                     (5.27)                  

                                

𝑃𝐶4 =  −0.474 �̂�1 + 0.726 �̂�2 −  0.055 �̂�3 + 0.152 �̂�4 +  0.41 �̂�5 +

              0.183 �̂�6 −  0.146 �̂�7                                                        (5.28)                          

                     

𝑃𝐶5 =  −0.056 �̂�1 −  0.33 �̂�2 −  0.1 �̂�3 +  0.378 �̂�4 +  0.049 �̂�5 +

             0.841 �̂�6 +   0.162 �̂�7                                                         (5.29) 
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In Eqns. (5.25) to (5.29), �̂�𝑟; r = 1,2,...,7 were calculated using Eq. 

(5.5); the mean and standard deviation values pertaining to the FT  data are 

given in Table 5.E in APPENDIX 5.  

It can be observed that, all the four GP-based models (Eqs. 5.7, 5.13, 

5.18 and 5.24) pertaining to the predictions of IDT, ST, HT and FT values, 

respectively have nonlinear structures (forms).  It can also be seen that, these 

models—via principal components—take into account concentrations of all 

eight principal metal oxides contained in the coal ashes. This result clearly 

shows that the relationships between the weight percentages of the eight metal 

oxides and the four AFTs are indeed nonlinear. Therefore, it can be inferred 

that nonlinear models are more suited for the AFT prediction than the linear 

ones. The CC, RMSE and MAPE values in respect of the AFT predictions 

made by the four GP-based models (Eqs. 5.7, 5.13, 5.18 and 5.24) for the 

training, test, and validation datasets are listed in Table 5.3. 

Table 5.3:  Results of the statistical analysis pertaining to the prediction and 

generalization performance of the GP-, MLP-, and SVR-based 

models predicting magnitudes of IDT, ST, HT, and FT 

 

 # The number of patterns in training, test and validation sets are: (a) IDT 

model: 129, 37, 18, (b) ST model: 68, 19, 10, (c) HT model: 57,17,8, (d) FT 

model: 66,19,9. 
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5.5.3 Multilayer Perceptron Neural Network (MLPNN) based AFT 

Models  

The MLPNN-based four AFT models were trained using error-back-

propagation (EBP) algorithm in RapidMiner data-mining suite (Mierswa et 

al., 2006; RapidMiner, 2007).  To obtain an optimal MLPNN model pertaining 

to the high AFT prediction, generalization and validation performance, its 

structural and EBP algorithm-specific parameters, viz. number of 

nodes/neurons in each hidden layer, the number of hidden layers, learning rate 

(η), and the momentum coefficient (), were varied in a systematic manner. 

The particulars of the MLPNN architecture, magnitudes of the EBP-algorithm 

specific parameters (η, ), and the type of transfer functions used in securing 

the optimal IDT, ST, HT and FT prediction models are given in Table 5.4 (also 

see Figure 5.5).  

 

Figure 5.5: A Figure of optimal MLPNN architecture with five Input 

Neurons, six hidden neurons and a single output node referring to 

the AFT (For ST Model the number of input nodes were four) 

The predictor nodes in the four MLPNN-based AFT models signify 

principal components computed by the oxide data sets given in Tables 5.A, 

5.B, 5.C and 5.D of APPENDIX 5. The prediction accuracy and the 
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generalization performance of the optimal MLPNN-based models were 

evaluated in terms of CC, RMSE and MAPE magnitudes (see Table 5.3). These 

statistical quantities were calculated using the experimental (target) and the 

corresponding model predicted values of the four AFTs. 

Table 5.4: Details of the MLPNN-based optimal models for the prediction of 

IDT, ST, HT, and FT 

 

5.5.4 SVR-based AFT Models 

Similar to MLPNN, the SVR-based models pertaining to AFT predictions 

were developed using RapidMiner data-mining suite (Mierswa et al., 2006; 

RapidMiner, 2007).  These models were built using the widely used -SVR 

algorithm wherein ANOVA and radial basis function (RBF) were used as the 

kernel functions. There are three basic parameters viz. kernel gamma (), 

regularization constant (C), and, the radius of the tube (ε) when ANOVA and 

RBF kernels are used in the framework of -SVR. For ANOVA kernel, an 

additional parameter namely kernel degree needs to be considered. To find 

four optimal SVR models pertaining to high prediction and generalization 
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ability, the stated parameters were varied systematically. The magnitudes of 

the stated -SVR parameters that led to optimal SVR models and the 

corresponding number of support vectors are given in Table 5.5.  Table 5.3 

lists the CC, RMSE, and MAPE magnitudes of the SVR-based model 

predictions of the four AFTs for training, test, and validation set data. The 

SVR models pertaining to the IDT, ST, HT and FT predictions are presented in 

APPENDIX 5, SVR Model 5. F.1, 5. F.2, 5. F.3, 5. F.4 respectively. 

Table 5.5: Details of the SVR-based optimal models predicting IDT, ST, HT, 

and FT 

 

5.5.5 Comparison of CI-based AFT prediction Models  

(a) Initial Deforming Temperature (IDT) prediction models 

It is observed in Table 5.3 that the CC magnitudes in respect of the IDT 

predictions by the GP-based model are sufficiently high (range: ~0.80 to 

~0.85). Alos, the corresponding MAPE values (range: ~ 2.20 to ~ 4.0) 

are low. These values show that the GP-based model has good prediction 

accuracy and the much-desired generalization ability pertaining to IDT 

predictions. It can also be seen in Table 5.3 that the CC, RMSE, and 

MAPE values in respect of the IDT predictions made by the GP model 

for training, test and validation set data are superior (high CC and low 

RMSE and MAPE values) to the corresponding values in respect of the 

predictions made by the MLPNN and SVR based models. Figure 5.6 

displays three parity plots wherein the GP-, MLPNN-, and SVR model 

predicted IDT values are plotted against the corresponding experimental 
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IDT values.  In all the three plots, a good match is seen between the 

experimental and model-predicted IDT values. It is also noticed in the 

panel (a) of Figure 5.6 that taken together the GP-model predictions for 

the training, test and validation data exhibit a lower scatter compared to 

the predictions by the MLPNN and SVR based models thus further 

supporting the inference of its superior performance based on the CC, 

RMSE and MAPE values.  

 

Figure 5.6: Plots pertaining to experimental IDT values vis-à-vis those 

predicted by the GP (panel a), MLPNN (panel b), and SVR 

based (panel c) models. 

(b) Softening Temperature (ST) prediction Models 

The CC, RMSE and MAPE values pertaining to the ST predictions made 

by the GP, MLPNN and SVR based models listed in Table 5.3 show the 

following. 

 There exists only a small variation in the ST prediction accuracy and 

generalization performance of the three CI-based models.   

 The overall prediction accuracy and generalization performance of 

the GP-based model is a tad better than the MLPNN- and SVR-based 

models.  This observation is also explicitly supported by the lower 

scatter seen in the ST predictions made by the GP-based model (see 

Figure 5.7 panel (a)), compared to the predictions of the other two 

models.  
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Figure 5.7: Plots pertaining to experimental ST values vis-à-vis those 

predicted by the GP (panel a), MLPNN (panel b), and SVR 

based (panel c) models. Hemispherical temperature (HT) 

prediction models.  

The observations made from the CC, RMSE and MAPE values of the HT 

predictions by the three CI-based models are given below. 

 The CC value in respect of the HT predictions by the GP-model 

considering the training set data (termed “recall” ability) is lower 

(0.803) than that of the corresponding MLPNN (0.926) and SVR 

(0.813) based models. The CC values in respect of the GP-model 

predictions for the test and validation sets (0.929, 0.953) are however 

higher than that for the MLPNN (0.894, 0.851) and SVR (0.800, 

0.804) based models. Higher CC values corresponding to the test and 

validation set data are suggest better generalization capability of the 

model, which is crucial for correctly predicting the HT values for a 

completely new set of inputs/predictors (that is those which are not 

part of the training set data). It is thus clear that the GP model for HT 

prediction has better generalization capability than the MLPNN- and 

SVR-based models. This conclusion is also supported by the parity 

plots depicted in Figure 5.8 where it is seen that although the 

predictions of the training set outputs by the GP model (shown by 

the “square” symbol) exhibit a higher scatter relative to the HT 

predictions by the MLPNN and SVR models, the GP-model 

predictions pertaining to the test and validation set data show lower 

scatter (better generalization capability) than the predictions by the 

remaining two models.  
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 The parity plots corresponding to predictions of the hemispherical 

temperature show that the MLPNN-based model has produced better 

prediction and generalization performance than the GP- and SVR-

based models. The predictions of HT by MLPNN model have also 

resulted in the higher (lower) magnitudes of the correlation 

coefficient (RMSE/MAPE) compared to the two other CI-based 

models.  

 

 Figure 5.8: Plots pertaining to experimental HT values vis-à-vis those 

predicted by the GP (panel a), MLPNN (panel b), and SVR 

based (panel c) models. 

(c) Fluid Temperature (FT) predicting models 

In general, the trends exhibited by the CC, RMSE and MAPE values 

computed using the FT predictions made by the three CI-based models 

are similar to those for the prediction of the hemispherical temperature, 

HT. Specifically, it is witnessed that although the recall capability of the 

GP-based model is a tad inferior to that of the MLPNN and SVR 

models, its much-desired generalization capability is better than the 

stated two models. In Figure 5.9, it can be seen that the parity plots 

shown by the GP-model is also witnessed this trend of better 

generalization. In this figure, it is clearly realized that the scatter in the 

points corresponding to the predictions in respect of the test and 

validation set data by the GP-based model is lesser than that for the 

corresponding predictions by the MLPNN- and SVR-based models.  
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Figure 5.9: Plots pertaining to experimental FT values vis-à-vis those 

predicted by the GP (panel a), MLP (panel b), and SVR based 

(panel c) models. 

For statistically comparing the AFT prediction accuracy and generalization 

performance of the CI-based models, the rigorous Steiger's Z-test (Steiger 

1980) was also performed.  This test scrutinizes whether the two correlation 

coefficients computed using the predictions of the same entity by two 

competing models are statistically equal. In particular, it tests the null 

hypothesis (H0) that statistically two CC magnitudes are equal, i.e., CCAB = 

CCAC. In the present study subscripts, A, B, and C, respectively refer to the 

experimental AFT magnitudes and those predicted by the models B and C.  In 

the case of CI-based models, the Steiger’s Z-test has been performed to 

examine the validity of the null hypothesis (CCAB = CCAC) in respect of the 

following three pairs of AFT magnitudes. 

1. [Experimental AFT (A) – GP model predicted AFT (B)] & 

[Experimental AFT (A) – MLPNN model predicted AFT (C)]  

2. [Experimental AFT (A) – MLPNN model predicted AFT (B)] & 

[Experimental AFT (A) - SVR model predicted AFT (C)]  

3. [Experimental AFT (A) –SVR model predicted AFT (B)] & 

[Experimental AFT (A) – GP model predicted AFT (C)] 

The results of the Steiger’s Z-test test are tabulated in Table 5.6 and 

indicate the following: (a) The performance of the GP-, MLPNN-, and SVR- 

based models pertaining to the predictions of the IDT and ST values are 

comparable, and (b) In the case of the models pertaining to the predictions of  

HT and FT, the performance of the MLP- based models is better than that of 

the GP- and SVR-based models.  
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Table 5.6: Results of the Steiger's Z-test (testing the null hypothesis H0, CCAB 

= CCAC) 

# df: degrees of freedom; z: test statistics; p: significance level 

The overall inferences that can be drawn from the results obtained above are 

as follows. Depending upon the relationship that exists between the oxide 

weight percentages (model inputs) and the corresponding AFT (model output), 

the GP formalism has an ability to search and optimize an appropriate linear or 

a nonlinear input-output model. The nonlinear forms fitted by the GP for 

predicting all four AFTs (Eqs. 5.7, 5.13, 5.18 and 5.24) are revealing that the 

relationships between the individual AFTs and concentrations of oxides in the 

coal ashes are nonlinear. 

 A comparison of the performance of the CI-based models developed in 

this study with the currently available high performing ones with 

relatively wider applicability (Seggiani and Pannocchia, 2003) show 

that: 

 The GP and MLPNN based models pertaining to the 

predictions of IDT, ST, HT, and FT have outperformed the 

corresponding currently available ones in terms of having 

better generalization ability. 
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 The GP and MLPNN based models require lower number of 

inputs/predictors (= 7) than those needed by the models 

proposed by Seggiani and Pannocchia (2003) that consider 13, 

11, 11 and 12 predictors, respectively for the prediction of 

IDT, ST, HT, and FT.  The GP-,  MLPNN-, and SVR-based 

models have used lower number of inputs/predictors, that 

reduced the effort and computational cost involved in 

compiling the input/predictor data. 

 In the present study, the root means square error (RMSE), which has 

the same units as the specific AFT measures the closeness between the 

models predicted AFT magnitudes and the corresponding 

experimentally measured ones.  It is an absolute measure of how well 

the model has fitted the example data and can be interpreted as the 

standard deviation of the unexplained variance. It is known that the 

reproducibility of the AFT magnitudes determined using the same 

instrument and measured by the same analyst differs by 30-50 °C. The 

corresponding variation between the measurements done at different 

laboratories is ~50-80 °C (Seggiani and Pannocchia, 2003).  In Table 

5.3, it is observed that the RMSE magnitudes pertaining to the IDT, ST, 

HT, and FT predictions by the GP-based models for the test and 

validation set data vary between 33.79 and 82.20. These magnitudes 

are essentially a measure of the generalization ability of the GP-based 

models. Considering the extent of the inherent variability in the 

experimental measurements of the AFT values, the stated RMSE 

magnitudes can be considered as reasonable and, therefore, indicative 

of good prediction and generalization performance of the GP-based 

models.  

 Owing to their compact size (parsimonisity), and ease of evaluation, 

the GP-based models are more convenient to use and deploy in the 

practical applications. Notwithstanding, the stated positive attribute of 

the GP-based models, in situations when the highest AFT prediction 

accuracy is required, the MLPNN-based models should be used 

preferentially for the prediction of HT and FT. 
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5.6 CONCLUSION 

In the coal-based processes such as combustion, gasification and 

liquefaction, the mineral matter in the coal, predominantly consisting of metal 

oxides, is left as an incombustible residue termed ash.  Often, in the stated 

processes the ash deposits on the heat absorbing surfaces of the exposed 

process equipment and lead to the undesirable slagging or fouling phenomena. 

This has adverse implications for the process equipment such as corrosion of 

the furnace components, pressure drop in the heat transfer equipment, burning 

of channels, and an overall unstable operation. There are four attributes 

namely Initial deformation temperature (IDT), Softening temperature (ST), 

Hemispherical temperature (HT) and Fluid temperature (FT) that form the 

important proerties of the coal ashes. These are comprehensively termed as 

ash fusion temperatures (AFTs) and indicate the temperature range over which 

the ash deposits are formed on the heat absorbing surfaces of the process 

equipment. The presently available models pertaining to the predictions of 

AFT are mainly linear although a detailed data analysis suggests that nonlinear 

models are more appropriate. Also, the existing models are applicable to coals 

belonging to a limited number of   geographical regions and, therefore, do not 

have wider applicability.  

To address the above-stated deficiencies of the prevailing AFT 

prediction models, this study has developed nonlinear models using three 

computational intelligence (CI) based exclusively data-driven formalisms, 

namely, genetic programming (GP), multi-layer perceptron neural network 

(MLP), and support vector regression (SVR). Additionally, a large dataset of 

coals ashes from multiple countries/geographies has been employed in the 

development of CI-based models. As a result, the models developed have a 

wider applicability than the existing models.  In this study, the prediction 

accuracy and generalization performance of the three CI-based models has 

been rigorously compared. The results of this comparison are given below.  

 In general, the performance of the GP-, MLPNN- and SVR-based 

models pertaining to the predictions of IDT and ST magnitudes is 

comparable. 
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 For predicting HT and FT magnitudes the MLPNN-based models are 

better suited than the GP- and SVR-based models. 

  Owing to their parsimonious (less complex) nature, the GP-based 

models are simple to understand and easy to apply. 

Since they are capable with good AFT prediction accuracy and generalization 

performance with wider applicability, the CI-based models developed in this 

study have a potential to be the preferred ones for predicting AFT magnitudes 

of coal ashes from different geographies in the world.  There were only a few 

observations pertaining to high ash coals in the data used in building the AFT 

models and therefore the models may not make accurate predictions of AFTs 

of coals containing high percentage of ash.  
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APPENDIX 5   

Table 5.A: Experimental data consisting of the oxide composition (wt %) and 

the corresponding magnitudes of Initial Deformation Temperature 

(IDT)  

SiO2 Al2O3 Fe2O3 CaO MgO TiO2 K2O + 

Na2O 

IDT Reference§ 

30.884 17.236 19.829 19.116 7.256 0.613 4.995 1050 Lolja et al. (2002) 

52.416 16.490 12.089 10.585 3.619 0.852 3.909 1090 Lolja et al. (2002) 

40.114 13.455 23.607 11.035 5.904 0.713 5.101 1040 Lolja et al. (2002) 

43.397 18.920 10.768 16.236 3.904 0.767 5.940 1100 Lolja et al. (2002) 

42.405 16.473 21.543 7.415 5.862 0.772 5.421 1070* Lolja et al. (2002) 

50.145 23.544 11.842 4.482 5.505 0.672 3.690 1080 Lolja et al. (2002) 

51.323 23.953 10.834 3.468 5.201 0.792 4.330 1080* Lolja et al. (2002) 

56.241 20.719 10.239 3.553 2.562 0.971 5.635 1080 Lolja et al. (2002) 

53.195 13.602 13.000 12.328 4.895 0.612 2.217 1060 Lolja et al. (2002) 

42.130 19.808 13.185 18.900 2.221 0.949 2.564 1100# Lolja et al. (2002) 

49.814 26.655 5.677 8.791 4.592 0.754 3.667 1140 Lolja et al. (2002) 

43.826 14.992 14.131 16.465 4.597 0.641 5.338 1080 Lolja et al. (2002) 

50.511 16.693 8.858 12.976 4.800 0.611 5.521 1100 Lolja et al. (2002) 

54.683 28.810 3.954 2.723 6.259 0.802 2.768 1320 Qiu et al. (1999) 

39.131 26.327 11.063 13.829 6.587 0.697 2.366 1200 Qiu et al. (1999) 

44.187 36.039 6.445 8.931 1.045 2.340 1.013 1335 Hanxu et al. (2006) 

48.512 36.358 4.861 5.840 0.772 2.019 1.638 1450* Hanxu et al. (2006) 

51.364 33.730 8.632 1.405 0.636 1.548 2.686 1425# Hanxu et al. (2006) 

48.019 23.324 23.171 1.321 0.863 1.016 2.286 1110 Vorres (1979) 

39.315 21.005 30.583 4.439 1.306 0.846 2.507 1110 Vorres (1979) 

49.916 18.771 21.145 6.040 1.071 0.819 2.237 1093 Vorres (1979) 

49.231 11.795 7.179 25.641 4.103 0.615 1.436 1126 Vorres (1979) 

38.847 20.250 26.129 7.544 1.252 0.894 5.085 917.77# Rees (1964) 

35.846 20.592 25.327 8.520 3.250 0.838 5.628 956.66 Rees (1964) 

35.704 20.633 26.501 8.095 2.306 0.961 5.800 933.88# Rees (1964) 

43.143 18.145 23.738 8.361 1.053 0.901 4.658 932.77* Rees (1964) 

46.622 19.034 23.186 4.246 1.025 0.994 4.894 924.44# Rees (1964) 

44.194 17.553 28.286 3.022 1.035 1.014 4.895 957.22# Rees (1964) 

35.004 16.109 31.145 13.426 0.970 0.776 2.569 909.44* Rees (1964) 

39.296 14.465 34.984 6.847 0.931 0.802 2.675 956.11 Rees (1964) 

44.525 17.275 23.643 7.906 1.007 1.051 4.592 957.22 Rees (1964) 

40.157 20.311 22.240 9.248 1.713 0.999 5.333 909.44 Rees (1964) 

47.261 19.653 16.650 11.832 0.863 0.829 2.913 1036.11 Rees (1964) 

47.763 20.072 12.984 14.325 0.937 0.913 3.006 986.11 Rees (1964) 

40.302 18.205 21.082 16.142 0.684 0.861 2.724 991.11 Rees (1964) 

35.282 20.400 30.310 9.430 0.765 0.972 2.841 1080.55* Rees (1964) 
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34.296 19.782 30.330 11.278 0.696 1.101 2.516 1077.77 Rees (1964) 

52.643 23.955 13.666 4.378 0.865 1.074 3.419 1147.77 Rees (1964) 

42.591 17.366 14.806 20.744 0.901 0.771 2.821 1071.66 Rees (1964) 

43.258 17.337 12.924 21.386 1.094 0.681 3.319 1114.44* Rees (1964) 

54.701 21.674 13.660 4.498 1.044 1.002 3.423 1147.77* Rees (1964) 

52.474 22.708 14.720 5.149 0.939 1.087 2.923 1114.44 Rees (1964) 

44.724 22.379 21.963 4.755 1.310 1.145 3.723 1155.55 Rees (1964) 

55.775 28.160 7.209 1.444 1.282 1.363 4.766 1237.22 Rees (1964) 

52.461 24.388 6.605 9.755 1.050 1.225 4.517 1089.44* Rees (1964) 

46.978 23.008 12.504 11.324 1.869 0.634 3.683 1038.88 Rees (1964) 

46.580 22.947 14.976 9.473 2.382 0.674 2.969 1038.88 Rees (1964) 

50.729 22.728 13.345 6.974 1.839 0.676 3.709 1141.66* Rees (1964) 

41.309 25.077 16.253 12.201 1.224 0.971 2.966 1149.44 Rees (1964) 

49.260 22.622 19.207 3.499 0.814 1.268 3.330 1160.00 Moreno (2008) 

48.412 20.275 20.460 7.904 0.119 0.998 1.832 1115.55* Moreno (2008) 

40.046 19.550 32.132 2.806 0.652 0.904 3.910 1093.33 Moreno (2008) 

55.435 29.577 6.752 2.265 0.790 1.612 3.571 1482.22 Moreno (2008) 

57.772 29.465 4.044 2.117 1.443 1.411 3.749 1482.22 Moreno (2008) 

62.087 25.120 4.792 3.453 1.116 0.956 2.476 1348.88* Moreno (2008) 

52.242 23.494 9.420 6.850 1.981 0.917 5.095 1260.00 Moreno (2008) 

63.583 22.641 6.445 1.908 1.397 0.897 3.129 1326.66 Moreno (2008) 

64.084 25.679 4.937 0.539 0.394 1.203 3.163 1482.22 Moreno (2008) 

50.117 19.456 20.780 5.277 0.835 0.907 2.628 1037.77 Moreno (2008) 

45.335 17.165 24.208 8.891 0.770 0.825 2.806 957.222 Moreno (2008) 

59.037 22.009 5.412 7.121 3.470 1.631 1.321 1004.44* Moreno (2008) 

48.642 19.057 5.159 14.214 4.759 1.263 6.907 1043.33 Moreno (2008) 

43.086 19.293 6.588 17.258 3.679 1.370 8.727 1093.33 Moreno (2008) 

39.008 19.441 20.057 14.823 4.515 0.787 1.368 1168.88 Moreno (2008) 

43.193 32.753 18.731 1.842 1.024 2.149 0.307 1280.00# Bryant et al.  (2000) 

50.563 32.344 12.078 1.842 1.024 1.842 0.307 1310.00 Bryant et al.  (2000) 

62.680 22.990 5.773 3.299 1.237 0.825 3.196 1240.00 Bryant et al.  (2000) 

62.613 26.533 4.422 0.402 0.804 1.206 4.020 1200.00 Bryant et al.  (2000) 

45.120 13.723 17.894 11.308 9.178 0.703 1.789 1160.00 Akiyama et al.  (2011) 

65.871 23.982 4.796 1.131 0.827 1.435 1.927 1334.00 Akiyama et al.  (2011) 

52.545 25.440 11.813 5.133 1.846 1.665 1.526 1220.00 Steyn and Minnitt (2010) 

49.697 25.608 11.306 9.919 2.763 0.691 0.015 1174.00* Bahrinet al.  (2009) 

36.782 23.103 18.161 14.713 2.299 2.184 2.759 1195.00 Matuszewski (2012) 

46.667 25.104 18.021 4.375 1.667 1.354 2.813 1200.00 Matuszewski (2012) 

44.572 23.779 24.270 3.412 0.746 1.098 2.122 1237.77 Matuszewski (2012) 

47.619 19.048 21.164 7.407 1.058 1.058 2.646 1201.11 Matuszewski (2012) 

38.725 18.899 6.029 24.928 7.420 1.391 2.609 1187.77 Matuszewski (2012) 

45.491 19.981 7.715 19.778 5.076 0.860 1.099 1225.55 Matuszewski (2012) 

43.896 15.388 6.410 18.017 8.276 0.726 7.287 1118.33# Matuszewski (2012) 

51.773 17.645 10.519 13.982 3.135 1.209 1.737 1177.77 Matuszewski (2012) 

58.438 28.861 5.823 0.512 0.205 2.487 3.674 1504.44 U.S.DOE (2001) 
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59.553 28.515 5.429 0.110 0.669 2.040 3.685 1393.33# U.S.DOE (2001) 

56.539 28.483 8.972 0.533 0.139 1.984 3.350 1241.66 U.S.DOE (2001) 

54.065 26.209 15.229 0.484 0.165 1.564 2.284 1365.55 U.S.DOE (2001) 

36.323 25.628 30.371 3.844 0.310 1.312 2.211 1065.00 U.S.DOE (2001) 

64.036 11.751 13.044 4.420 1.919 1.843 2.986 1166.11 U.S.DOE (2001) 

69.782 21.404 4.756 1.554 0.532 0.960 1.012 1414.00* Kim et al. (1994) 

54.398 20.033 6.718 13.448 2.519 0.906 1.978 1154.00* Kim et al. (1994) 

63.482 25.283 4.507 2.451 1.033 1.121 2.122 1373.00* Kim et al. (1994) 

55.254 20.434 15.221 4.379 1.512 1.043 2.158 1165.00 CEA Report (2012) 

58.924 33.944 1.612 1.501 1.007 1.491 1.521 1320.00 CEA Report (2012) 

74.467 16.322 4.080 1.632 1.224 0.755 1.520 1380.00 CEA Report (2012) 

73.755 18.439 4.098 1.024 0.615 0.840 1.229 1350.00 CEA Report (2012) 

59.024 31.583 4.636 0.879 0.455 2.020 1.384 1270.00# CIMFR 

59.572 28.740 6.426 1.508 0.442 1.649 1.649 1250.00* CIMFR 

58.722 23.656 8.929 2.939 1.281 1.139 3.285 1120.00 CIMFR 

62.037 24.247 6.458 2.628 0.809 1.132 2.648 1200.00 CIMFR 

61.681 26.187 5.630 1.340 0.453 1.612 3.072 1220.00 CIMFR 

61.679 27.043 4.875 1.822 0.723 1.466 2.341 1200.00# CIMFR 

55.756 26.835 9.385 2.893 1.155 1.963 1.942 1180.00 CIMFR 

66.078 24.923 4.023 1.633 0.575 1.129 1.613 1220.00 CIMFR 

58.874 26.892 7.623 1.861 0.654 1.770 2.313 1180 .00# CIMFR 

51.477 34.204 5.620 4.233 1.327 1.609 1.508 1240.00 CIMFR 

63.498 28.237 4.015 0.875 0.312 1.449 1.580 1210.00* CIMFR 

58.522 31.128 6.013 0.693 0.201 2.008 1.425 1280.00 CIMFR 

62.270 28.659 2.415 1.449 0.403 1.610 3.160 1220.00* CIMFR 

60.889 27.816 6.838 0.232 0.121 2.095 1.994 1260.00 CIMFR 

62.174 27.276 5.492 0.703 0.326 2.527 1.447 1220.00 CIMFR 

59.872 22.687 10.204 2.403 1.227 2.086 1.442 1240.00* CIMFR 

62.217 27.065 6.475 1.165 0.253 1.702 1.094 1240.00* CIMFR 

66.754 26.760 2.222 0.434 0.323 1.536 1.950 1280.00# CIMFR 

61.149 29.563 4.834 1.467 0.354 1.214 1.396 1340.00 CIMFR 

66.459 22.797 6.357 0.923 0.170 1.189 1.719 1320. 00 CIMFR 

60.348 25.638 9.636 0.966 0.483 1.690 1.217 1220.00 CIMFR 

59.162 24.158 12.801 0.401 0.110 2.085 1.273 1300.00* CIMFR 

52.000 27.691 15.048 0.642 0.102 3.179 1.294 1180.00 CIMFR 

61.773 27.762 6.800 0.230 0.100 2.283 1.042 1220.00 CIMFR 

59.097 29.700 6.662 0.698 0.121 2.345 1.355 1300.00 CIMFR 

61.380 24.597 8.482 1.164 0.455 2.753 1.134 1260.00 CIMFR 

61.375 28.189 6.897 0.609 0.264 1.625 0.995 1200.00 CIMFR 

60.646 29.900 4.825 1.481 0.655 1.451 1.017 1240.00 CIMFR 

58.201 26.385 11.045 0.865 0.744 1.851 0.895 1180.00 CIMFR 

59.703 26.735 9.460 0.666 0.474 1.896 1.039 1220.00 CIMFR 

64.371 26.411 6.395 0.170 0.080 1.441 1.111 1260.00 CIMFR 

62.428 25.386 8.074 0.992 0.223 1.862 1.002 1200.00 CIMFR 

64.258 27.446 4.431 0.696 0.151 1.938 1.060 1240.00* CIMFR 



244 
 

62.412 27.348 6.018 0.713 0.482 1.849 1.175 1200.00 CIMFR 

64.787 27.848 4.013 0.231 0.181 1.529 1.388 1230.00# CIMFR 

62.409 24.388 8.400 1.103 0.381 1.524 1.784 1230.00 CIMFR 

60.813 26.803 8.032 0.634 0.272 1.610 1.822 1250 .00# CIMFR 

65.086 26.581 3.047 1.172 0.387 1.712 1.957 1260.00 CIMFR 

61.844 27.247 6.635 0.111 0.101 2.094 1.943 1250.00 CIMFR 

62.853 24.824 8.007 0.110 0.110 1.525 2.549 1210.00* CIMFR 

63.143 24.478 6.061 1.346 0.557 1.619 2.762 1240.00 CIMFR 

60.756 24.515 8.081 2.015 0.638 1.499 2.461 1240.00 CIMFR 

65.463 24.127 4.803 1.675 0.441 1.685 1.805 1200.00 CIMFR 

59.049 23.815 12.881 0.989 0.424 1.937 0.878 1180.00* CIMFR 

59.628 19.071 9.105 7.269 1.960 1.825 0.996 1180.00 CIMFR 

64.442 22.992 5.669 2.373 0.791 1.298 2.394 1100.00 CIMFR 

60.632 21.901 8.621 3.518 1.132 1.646 2.438 1140.00* CIMFR 

61.651 24.333 4.905 3.912 1.239 1.802 2.069 1200.00 CIMFR 

64.143 22.793 6.878 1.894 0.881 1.621 1.742 1200.00 CIMFR 

64.978 24.714 6.435 0.493 0.211 1.611 1.541 1220.00 CIMFR 

65.837 26.132 2.032 1.778 0.691 1.463 2.022 1220.00 CIMFR 

63.642 23.285 5.287 4.176 1.151 1.141 1.263 1200.00* CIMFR 

63.051 26.205 5.473 0.142 0.061 1.868 3.137 1200.00# CIMFR 

62.699 26.033 4.675 0.173 0.092 1.793 4.471 1240.00 CIMFR 

68.281 21.807 6.095 0.326 0.142 1.628 1.659 1180.00 CIMFR 

66.554 22.881 6.513 0.194 0.061 1.631 2.100 1180.00 CIMFR 

59.795 14.665 11.745 6.786 1.544 1.849 3.341 1140.00 CIMFR 

64.180 20.761 9.261 0.494 0.212 1.614 3.450 1220.00* CIMFR 

66.549 20.515 8.037 1.178 0.423 1.289 1.984 1190.00 CIMFR 

60.551 28.212 6.029 1.157 0.584 1.771 1.671 1200.00* CIMFR 

70.551 19.243 5.679 0.843 0.356 1.626 1.656 1160.00 CIMFR 

59.059 25.008 7.058 4.781 1.414 1.996 0.509 1190.00 CIMFR 

61.359 21.744 6.941 2.965 0.961 1.963 3.997 1140.00 CIMFR 

63.844 23.608 4.467 0.997 0.234 1.628 5.180 1180.00 CIMFR 

64.176 17.360 10.186 1.704 0.439 1.960 4.113 1180.00 CIMFR 

67.294 22.025 4.022 0.605 0.222 1.290 4.526 1220 CIMFR 

68.401 19.043 4.842 1.304 0.303 1.456 4.629 1200 CIMFR 

66.080 25.947 4.032 0.788 0.232 1.374 1.516 1200 CIMFR 

66.713 19.129 10.085 1.157 0.364 1.455 1.081 1200 CIMFR 

67.061 25.022 4.399 0.802 0.170 1.603 0.912 1220 CIMFR 

63.661 27.378 5.631 0.342 0.081 1.934 0.957 1280 CIMFR 

66.151 25.268 4.807 0.331 0.130 1.766 1.525 1300 CIMFR 

61.503 26.212 6.835 1.913 0.221 1.852 1.450 1260 CIMFR 

65.106 27.388 3.212 0.695 0.191 1.571 1.822 1270 CIMFR 

66.403 23.872 5.110 1.270 0.881 1.311 1.086 1240 CIMFR 

66.865 25.034 3.637 1.084 0.537 1.499 1.307 1250* CIMFR 

59.201 23.128 10.173 3.354 1.019 1.182 1.876 1160 CIMFR 

59.258 25.624 8.606 2.249 0.709 1.273 2.188 1260 CIMFR 
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66.678 26.639 3.209 0.523 0.252 1.449 1.227 1280# CIMFR 

60.513 25.337 9.311 1.521 0.639 1.542 1.095 1220* CIMFR 

62.306 28.681 4.042 1.398 0.760 1.621 1.155 1270 CIMFR 

62.540 26.214 4.717 2.785 0.678 1.809 1.171 1280* CIMFR 

63.780 25.452 5.422 0.755 0.332 1.207 3.038 1220* CIMFR 

64.295 24.649 5.022 1.157 0.352 1.449 3.060 1230 CIMFR 

64.696 26.057 4.198 0.291 0.230 1.362 3.146 1240 CIMFR 

63.425 24.386 6.891 1.898 0.700 1.624 1.035 1220* CIMFR 

63.197 23.990 7.679 1.682 0.567 1.783 1.064 1180 CIMFR 

60.103 28.005 5.837 2.611 1.008 1.371 1.028 1250* CIMFR 

61.349 28.980 4.226 1.826 0.857 1.533 1.190 1240 CIMFR 

64.139 25.369 6.458 0.930 0.344 1.455 1.273 1230* CIMFR 

61.475 28.722 4.468 2.209 0.774 1.303 1.008 1240# CIMFR 

* Test data; # Validation data; § CIMFR:  Central Institute of Mining and Fuel 

Research, Dhanbad, India from where data were sourced. 
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APPENDIX 5   

Table 5.B: Experimental data consisting of the oxide composition (wt %) and 

the corresponding   magnitudes of Softening Temperature (ST)  

SiO2 Al2O3 Fe2O3 CaO MgO TiO2 K2O + 

Na2O 

ST Reference 

48.40 25.50 3.50 2.41 5.54 0.71 2.45 1350.00# Qiu et al. (1999) 

38.20 25.70 10.80 13.50 6.43 0.68 2.31 1380.00 Qiu et al. (1999) 

42.30 34.50 6.17 8.55 1.00 2.24 0.97 1360.00* Hanxu et al. (2006) 

42.00 36.90 3.21 1.93 0.44 2.08 0.54 1451.00 Hanxu et al. (2006) 

47.10 35.30 4.72 5.67 0.75 1.96 1.59 1500.00 Hanxu et al. (2006) 

50.10 32.90 8.42 1.37 0.62 1.51 2.62 1495.00 Hanxu et al. (2006) 

47.27 22.96 22.81 1.30 0.85 1.00 2.25 1343.00* Vorres (1979) 

37.64 20.11 29.28 4.25 1.25 0.81 2.40 1190.00 Vorres (1979) 

47.52 17.87 20.13 5.75 1.02 0.78 2.13 1182.00 Vorres (1979) 

34.76 18.12 23.38 6.75 1.12 0.80 4.55 993.88 Rees (1964) 

32.10 18.44 22.68 7.63 2.91 0.75 5.04 1016.66 Rees (1964) 

31.58 18.25 23.44 7.16 2.04 0.85 5.13 1005.55 Rees (1964) 

39.73 16.71 21.86 7.70 0.97 0.83 4.29 1013.33 Rees (1964) 

44.58 18.20 22.17 4.06 0.98 0.95 4.68 1024.44 Rees (1964) 

42.70 16.96 27.33 2.92 1.00 0.98 4.73 1024.44 Rees (1964) 

30.66 14.11 27.28 11.76 0.85 0.68 2.25 963.88 Rees (1964) 

36.73 13.52 32.70 6.40 0.87 0.75 2.50 1001.66* Rees (1964) 

41.11 15.95 21.83 7.30 0.93 0.97 4.24 1024.44 Rees (1964) 

35.39 17.90 19.60 8.15 1.51 0.88 4.70 1015.00 Rees (1964) 

42.18 17.54 14.86 10.56 0.77 0.74 2.60 1111.11 Rees (1964) 

41.31 17.36 11.23 12.39 0.81 0.79 2.60 1101.11 Rees (1964) 

34.18 15.44 17.88 13.69 0.58 0.73 2.31 1101.11 Rees (1964) 

32.29 18.67 27.74 8.63 0.70 0.89 2.60 1123.33 Rees (1964) 

30.53 17.61 27.00 10.04 0.62 0.98 2.24 1118.88 Rees (1964) 

50.50 22.98 13.11 4.20 0.83 1.03 3.28 1187.77 Rees (1964) 

35.93 14.65 12.49 17.50 0.76 0.65 2.38 1114.44* Rees (1964) 

35.58 14.26 10.63 17.59 0.90 0.56 2.73 1138.88* Rees (1964) 

52.42 20.77 13.09 4.31 1.00 0.96 3.28 1163.33# Rees (1964) 

49.73 21.52 13.95 4.88 0.89 1.03 2.77 1163.33# Rees (1964) 

51.54 25.79 25.31 5.48 1.51 1.32 4.29 1222.77 Rees (1964) 

55.24 27.89 7.14 1.43 1.27 1.35 4.72 1342.22 Rees (1964) 

47.97 22.30 6.04 8.92 0.96 1.12 4.13 1195.00 Rees (1964) 

42.98 21.05 11.44 10.36 1.71 0.58 3.37 1188.33 Rees (1964) 

42.83 21.10 13.77 8.71 2.19 0.62 2.73 1156.11* Rees (1964) 

48.01 21.51 12.63 6.60 1.74 0.64 3.51 1201.66 Rees (1964) 

40.09 17.54 18.60 11.16 1.03 1.00 2.25 1156.11* Rees (1964) 

41.59 18.64 22.48 7.10 1.20 1.00 2.15 1132.22 Rees (1964) 

39.70 17.74 25.20 7.72 0.98 0.86 2.29 1105.55 Rees (1964) 
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39.14 23.76 15.40 11.56 1.16 0.92 2.81 1186.66* Rees (1964) 

46.60 21.40 18.17 3.31 0.77 1.20 3.15 1197.22# Moreno (2008) 

44.65 18.70 18.87 7.29 0.11 0.92 1.69 1148.88 Moreno (2008) 

38.10 18.60 30.57 2.67 0.62 0.86 3.72 1115.55* Moreno (2008) 

52.63 28.08 6.41 2.15 0.75 1.53 3.39 1482.22 Moreno (2008) 

54.86 27.98 3.84 2.01 1.37 1.34 3.56 1482.22 Moreno (2008) 

58.43 23.64 4.51 3.25 1.05 0.90 2.33 1382.22 Moreno (2008) 

46.14 20.75 8.32 6.05 1.75 0.81 4.50 1293.33 Moreno (2008) 

60.97 21.71 6.18 1.83 1.34 0.86 3.00 1371.11 Moreno (2008) 

61.79 24.76 4.76 0.52 0.38 1.16 3.05 1482.22 Moreno (2008) 

49.20 19.10 20.40 5.18 0.82 0.89 2.58 1112.77# Moreno (2008) 

41.20 15.60 22.00 8.08 0.70 0.75 2.55 1037.77* Moreno (2008) 

45.60 17.00 4.18 5.50 2.68 1.26 1.02 1093.33* Moreno (2008) 

46.20 18.10 4.90 13.50 4.52 1.20 6.56 1087.77* Moreno (2008) 

30.58 14.60 4.07 23.63 3.08 1.06 4.31 1160.00 Moreno (2008) 

33.03 14.79 5.05 13.23 2.82 1.05 6.69 1110.00 Moreno (2008) 

34.21 17.05 17.59 13.00 3.96 0.69 1.20 1200.00 Moreno (2008) 

42.20 32.00 18.30 1.80 1.00 2.10 0.30 1470.00* Bryant et al.  (2000) 

49.40 31.60 11.80 1.80 1.00 1.80 0.30 1570.00 Bryant et al.  (2000) 

60.80 22.30 5.60 3.20 1.20 0.80 3.10 1330.00 Bryant et al.  (2000) 

26.00 11.40 12.20 29.60 5.00 0.80 5.50 1200.00 Bryant et al.  (2000) 

49.24 23.84 11.07 4.81 1.73 1.56 1.43 1250.00 Steyn and Minnitt (2010) 

32.80 12.40 24.70 16.50 12.30 0.26 0.35 1650.00 Bahrinet al.  (2009) 

79.70 18.49 0.39 0.57 0.07 0.24 0.53 1512.00* Bahrinet al.  (2009) 

77.60 19.60 1.52 0.76 0.09 0.25 0.11 1650.00 Bahrinet al.  (2009) 

71.40 15.38 11.30 0.57 0.17 0.58 0.59 1281.00 Bahrinet al.  (2009) 

42.90 16.50 1.30 22.00 16.50 0.25 0.44 1650.00 Bahrinet al.  (2009) 

29.10 6.75 37.70 15.10 10.10 0.20 0.19 1356.00* Bahrinet al.  (2009) 

49.10 25.30 11.17 9.80 2.73 0.68 0.02 1650.00 Bahrinet al.  (2009) 

37.60 34.73 1.73 6.15 5.43 6.68 5.77 1414.00 Bahrinet al.  (2009) 

39.24 43.62 1.45 5.40 3.21 3.29 2.69 1283.00 Bahrinet al.  (2009) 

41.18 30.53 1.73 7.17 4.75 8.32 4.32 1326.00 Bahrinet al.  (2009) 

36.26 41.52 3.90 6.67 5.00 3.58 1.81 1116.00 Bahrinet al.  (2009) 

23.58 46.98 3.36 11.73 7.00 4.41 1.66 1650.00* Bahrinet al.  (2009) 

78.80 16.07 0.01 0.06 0.95 2.11 1.26 1032.00 Bahrinet al.  (2009) 

32.00 20.10 15.80 12.80 2.00 1.90 2.40 1226.00 Matuszewski (2012) 

44.80 24.10 17.30 4.20 1.60 1.30 2.70 1232.00# Matuszewski (2012) 

41.80 22.30 22.76 3.20 0.70 1.03 1.99 1287.77 Matuszewski (2012) 

45.00 18.00 20.00 7.00 1.00 1.00 2.50 1237.77 Matuszewski (2012) 

33.40 16.30 5.20 21.50 6.40 1.20 2.25 1198.88 Matuszewski (2012) 

38.09 16.73 6.46 16.56 4.25 0.72 0.92 1234.44 Matuszewski (2012) 

35.06 12.29 5.12 14.39 6.61 0.58 5.82 1140.55@ Matuszewski (2012) 

44.10 15.03 8.96 11.91 2.67 1.03 1.48 1237.77# Matuszewski (2012) 

57.10 28.20 5.69 0.50 0.20 2.43 3.59 1532.22 U.S.DOE (2001) 

54.30 26.00 4.95 0.10 0.61 1.86 3.36 1357.22* U.S.DOE (2001) 
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53.00 26.70 8.41 0.50 0.13 1.86 3.14 1475.55 U.S.DOE (2001) 

52.54 25.47 14.80 0.47 0.16 1.52 2.22 1390.55 U.S.DOE (2001) 

35.15 24.80 29.39 3.72 0.30 1.27 2.14 1143.33 U.S.DOE (2001) 

59.40 10.90 12.10 4.10 1.78 1.71 2.77 1365.00 U.S.DOE (2001) 

74.20 15.78 3.45 1.69 0.50 0.80 0.94 1457.00# Kim et al. (1994) 

66.90 20.52 4.56 1.49 0.51 0.92 0.97 1478.00# Kim et al. (1994) 

49.23 18.13 6.08 12.17 2.28 0.82 1.79 1197.00# Kim et al. (1994) 

57.75 23.00 4.10 2.23 0.94 1.02 1.93 1474.00 Kim et al. (1994) 

32.58 27.49 21.23 4.11 1.85 0.25 1.11 1236.00 Kim et al. (1994) 

50.00 27.00 3.50 9.20 1.50 1.70 0.80 1450.00 CEA Report (2012) 

53.00 19.60 14.60 4.20 1.45 1.00 2.07 1200.00 CEA Report (2012) 

58.50 33.70 1.60 1.49 1.00 1.48 1.51 1550.00 CEA Report (2012) 

73.00 16.00 4.00 1.60 1.20 0.74 1.49 1450.00* CEA Report (2012) 

72.00 18.00 4.00 1.00 0.60 0.82 1.20 1450.00 CEA Report (2012) 

* Test data; # Validation data 
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Table 5.C: Experimental data consisting of the oxide composition (wt %) and 

the corresponding magnitudes of Hemispherical Temperature (HT)  

SiO2 Al2O3 Fe2O3 CaO MgO TiO2 Na2O + 

K2O 

RH Ref 

30.73 17.15 19.73 19.02 7.22 0.61 4.97 1070.00 CIMFR 

52.29 16.45 12.06 10.56 3.61 0.85 3.90 1150.00* CIMFR 

39.95 13.40 23.51 10.99 5.88 0.71 5.08 1070.00# CIMFR 

44.13 19.24 10.95 16.51 3.97 0.78 6.04 1150.00 CIMFR 

42.32 16.44 21.50 7.40 5.85 0.77 5.41 1100 .00* CIMFR 

50.01 23.48 11.81 4.47 5.49 0.67 3.68 1120.00 CIMFR 

51.21 23.90 10.81 3.46 5.19 0.79 4.32 1150.00 CIMFR 

48.43 12.71 17.54 3.44 15.51 0.34 1.65 1230.00 * CIMFR 

49.28 12.86 15.17 1.63 18.73 0.27 1.65 1280.00 CIMFR 

56.19 20.70 10.23 3.55 2.56 0.97 5.63 1160.00 * CIMFR 

53.23 20.02 9.01 6.81 3.50 0.25 6.88 1160.00 * CIMFR 

53.03 13.56 12.96 12.29 4.88 0.61 2.21 1120.00 CIMFR 

41.73 19.62 13.06 18.72 2.20 0.94 2.54 1170.00 CIMFR 

49.58 26.53 5.65 8.75 4.57 0.75 3.65 1190.00# Lolja et al. (2002) 

44.57 6.46 8.26 27.09 7.06 0.46 5.86 1290.00 Lolja et al. (2002) 

43.76 14.97 14.11 16.44 4.59 0.64 5.33 1110.00 Lolja et al. (2002) 

50.41 16.66 8.84 12.95 4.79 0.61 5.51 1120.00 * Lolja et al. (2002) 

47.27 22.96 22.81 1.30 0.85 1.00 2.25 1360.00 Vorres (1979) 

37.64 20.11 29.28 4.25 1.25 0.81 2.40 1280.00 Vorres (1979) 

47.52 17.87 20.13 5.75 1.02 0.78 2.13 1193.00 Vorres (1979) 

48.00 11.50 7.00 25.00 4.00 0.60 1.40 1171.00 Vorres (1979) 

46.60 21.40 18.17 3.31 0.77 1.20 3.15 1230.55 Moreno (2008) 

44.65 18.70 18.87 7.29 0.11 0.92 1.69 1182.22# Moreno (2008) 

38.10 18.60 30.57 2.67 0.62 0.86 3.72 1126.66 * Moreno (2008) 

52.63 28.08 6.41 2.15 0.75 1.53 3.39 1482.22# Moreno (2008) 

54.86 27.98 3.84 2.01 1.37 1.34 3.56 1482.22 Moreno (2008) 

58.43 23.64 4.51 3.25 1.05 0.90 2.33 1426.66 Moreno (2008) 

60.97 21.71 6.18 1.83 1.34 0.86 3.00 1410.00# Moreno (2008) 

61.79 24.76 4.76 0.52 0.38 1.16 3.05 1482.22 Moreno (2008) 

49.20 19.10 20.40 5.18 0.82 0.89 2.58 1148.88 Moreno (2008) 

41.20 15.60 22.00 8.08 0.70 0.75 2.55 1093.33 Moreno (2008) 

45.60 17.00 4.18 5.50 2.68 1.26 1.02 1126.66 Moreno (2008) 

46.20 18.10 4.90 13.50 4.52 1.20 6.56 1115.55 Moreno (2008) 

30.58 14.60 4.07 23.63 3.08 1.06 4.31 1171.11 Moreno (2008) 

33.03 14.79 5.05 13.23 2.82 1.05 6.69 1143.33 Moreno (2008) 

34.21 17.05 17.59 13.00 3.96 0.69 1.20 1210.00 * Moreno (2008) 

42.20 32.00 18.30 1.80 1.00 2.10 0.30 1490.00 Bryant et al.  (2000) 

49.40 31.60 11.80 1.80 1.00 1.80 0.30 1590.00 Bryant et al.  (2000) 
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60.80 22.30 5.60 3.20 1.20 0.80 3.10 1350.00 Bryant et al.  (2000) 

26.00 11.40 12.20 29.60 5.00 0.80 5.50 1200.00 Bryant et al.  (2000) 

41.10 12.50 16.30 10.30 8.36 0.64 1.63 1180.00 Akiyama et al.  (2011) 

62.90 22.90 4.58 1.08 0.79 1.37 1.84 1548.00 Akiyama et al.  (2011) 

49.24 23.84 11.07 4.81 1.73 1.56 1.43 1280.00 Steyn and Minnitt (2010) 

32.80 12.40 24.70 16.50 12.30 0.26 0.35 1650.00 Bahrinet al.  (2009) 

79.70 18.49 0.39 0.57 0.07 0.24 0.53 1650.00 Bahrinet al.  (2009) 

77.60 19.60 1.52 0.76 0.09 0.25 0.11 1650.00 Bahrinet al.  (2009) 

71.40 15.38 11.30 0.57 0.17 0.58 0.59 1296.00 * Bahrinet al.  (2009) 

42.90 16.50 1.30 22.00 16.50 0.25 0.44 1650.00 * Bahrinet al.  (2009) 

29.10 6.75 37.70 15.10 10.10 0.20 0.19 1367.00# Bahrinet al.  (2009) 

49.10 25.30 11.17 9.80 2.73 0.68 0.02 1650.00 Bahrinet al.  (2009) 

37.60 34.73 1.73 6.15 5.43 6.68 5.77 1466.00 Bahrinet al.  (2009) 

39.24 43.62 1.45 5.40 3.21 3.29 2.69 1352.00 * Bahrinet al.  (2009) 

41.18 30.53 1.73 7.17 4.75 8.32 4.32 1384.00 Bahrinet al.  (2009) 

36.26 41.52 3.90 6.67 5.00 3.58 1.81 1224.00 Bahrinet al.  (2009) 

23.58 46.98 3.36 11.73 7.00 4.41 1.66 1650.00 Bahrinet al.  (2009) 

78.80 16.07 0.01 0.06 0.95 2.11 1.26 1078.00 Bahrinet al.  (2009) 

32.00 20.10 15.80 12.80 2.00 1.90 2.40 1265.00 Matuszewski (2012) 

44.80 24.10 17.30 4.20 1.60 1.30 2.70 1271.00 Matuszewski (2012) 

45.00 18.00 20.00 7.00 1.00 1.00 2.50 1285.00 Matuszewski (2012) 

33.40 16.30 5.20 21.50 6.40 1.20 2.25 1204.44 Matuszewski (2012) 

38.09 16.73 6.46 16.56 4.25 0.72 0.92 1243.33 Matuszewski (2012) 

35.06 12.29 5.12 14.39 6.61 0.58 5.82 1162.77 Matuszewski (2012) 

44.10 15.03 8.96 11.91 2.67 1.03 1.48 1231.11 * Matuszewski (2012) 

19.60 5.74 52.70 8.69 3.41 0.12 6.26 1460.00 Kim et al. (2010) 

23.74 5.43 47.31 9.64 0.79 0.21 5.68 1485.00 Kim et al. (2010) 

34.18 6.30 29.87 14.82 2.62 0.14 4.16 1390.00 Kim et al. (2010) 

0.55 2.20 85.33 3.33 0.84 0.18 1.82 1500.00 * Kim et al. (2010) 

4.93 3.08 65.71 12.21 2.25 0.16 6.14 1470.00 * Kim et al. (2010) 

30.04 13.47 29.39 6.71 2.06 0.12 4.64 1480.00 Kim et al. (2010) 

52.67 17.75 12.97 6.86 2.76 0.26 6.71 1406.00 Kim et al. (2010) 

35.13 5.55 2.45 33.06 5.52 0.19 14.29 1325.00 Kim et al. (2010) 

36.38 8.54 3.94 30.15 7.41 0.22 5.26 1290.00 * Kim et al. (2010) 

74.20 15.78 3.45 1.69 0.50 0.80 0.94 1476.00# Kim et al. (1994) 

66.90 20.52 4.56 1.49 0.51 0.92 0.97 1499.00 Kim et al. (1994) 

49.23 18.13 6.08 12.17 2.28 0.82 1.79 1217.00# Kim et al. (1994) 

57.75 23.00 4.10 2.23 0.94 1.02 1.93 1498.00 Kim et al. (1994) 

32.58 27.49 21.23 4.11 1.85 0.25 1.11 1257.00 * Kim et al. (1994) 

50.00 27.00 3.50 9.20 1.50 1.70 0.80 1480.00 CEA Report (2012) 

53.00 19.60 14.60 4.20 1.45 1.00 2.07 1230.00 CEA Report (2012) 

58.50 33.70 1.60 1.49 1.00 1.48 1.51 1570.00 CEA Report (2012) 

73.00 16.00 4.00 1.60 1.20 0.74 1.49 1480.00 CEA Report (2012) 

72.00 18.00 4.00 1.00 0.60 0.82 1.20 1470.00* CEA Report (2012) 

*Test data; # Validation data 
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Table 5.D: Experimental data consisting of the oxide composition (wt %) and 

the corresponding magnitudes of Fluid Temperature (FT)  

SiO2 Al2O3 Fe2O3 CaO MgO TiO2 K2O + 

Na2O 

FT Reference§ 

30.88 17.24 19.83 19.12 7.26 0.61 4.99 1090.00* Lolja et al. (2002) 

52.42 16.49 12.09 10.59 3.62 0.85 3.91 1200.00 Lolja et al. (2002) 

40.11 13.46 23.61 11.04 5.90 0.71 5.10 1130.00 Lolja et al. (2002) 

43.40 18.92 10.77 16.24 3.90 0.77 5.94 1230.00 Lolja et al. (2002) 

42.40 16.47 21.54 7.41 5.86 0.77 5.42 1130.00 Lolja et al. (2002) 

50.15 23.54 11.84 4.48 5.50 0.67 3.69 1210.00 Lolja et al. (2002) 

51.32 23.95 10.83 3.47 5.20 0.79 4.33 1240.00 Lolja et al. (2002) 

56.24 20.72 10.24 3.55 2.56 0.97 5.64 1230.00 Lolja et al. (2002) 

53.19 13.60 13.00 12.33 4.90 0.61 2.22 1200.00 Lolja et al. (2002) 

42.13 19.81 13.19 18.90 2.22 0.95 2.56 1260.00 Lolja et al. (2002) 

49.81 26.66 5.68 8.79 4.59 0.75 3.67 1260.00* Lolja et al. (2002) 

43.83 14.99 14.13 16.46 4.60 0.64 5.34 1150.00* Lolja et al. (2002) 

50.51 16.69 8.86 12.98 4.80 0.61 5.52 1180.00* Lolja et al. (2002) 

54.68 28.81 3.95 2.72 6.26 0.80 2.77 1380.00# Qiu et al. (1999) 

39.13 26.33 11.06 13.83 6.59 0.70 2.37 1400.00* Qiu et al. (1999) 

51.36 33.73 8.63 1.40 0.64 1.55 2.69 1510.00 Hanxu et al. (2006) 

48.02 23.32 23.17 1.32 0.86 1.02 2.29 1437.00 Vorres (1979) 

49.92 18.77 21.14 6.04 1.07 0.82 2.24 1271.00* Vorres (1979) 

49.23 11.79 7.18 25.64 4.10 0.62 1.44 1232.00 Vorres (1979) 

38.85 20.25 26.13 7.54 1.25 0.89 5.08 1025.55 Rees (1964) 

35.85 20.59 25.33 8.52 3.25 0.84 5.63 1075.55 Rees (1964) 

35.70 20.63 26.50 8.09 2.31 0.96 5.80 1036.66* Rees (1964) 

43.14 18.15 23.74 8.36 1.05 0.90 4.66 1034.44 Rees (1964) 

46.62 19.03 23.19 4.25 1.02 0.99 4.89 1103.33# Rees (1964) 

44.19 17.55 28.29 3.02 1.03 1.01 4.90 1103.33 # Rees (1964) 

35.00 16.11 31.15 13.43 0.97 0.78 2.57 1015.00 Rees (1964) 

39.30 14.46 34.98 6.85 0.93 0.80 2.67 1015.00# Rees (1964) 

44.53 17.27 23.64 7.91 1.01 1.05 4.59 1054.44 Rees (1964) 

47.26 19.65 16.65 11.83 0.86 0.83 2.91 1163.33 Rees (1964) 

47.76 20.07 12.98 14.33 0.94 0.91 3.01 1154.44* Rees (1964) 

40.30 18.21 21.08 16.14 0.68 0.86 2.72 1154.44* Rees (1964) 

35.28 20.40 30.31 9.43 0.76 0.97 2.84 1208.88 Rees (1964) 

34.30 19.78 30.33 11.28 0.70 1.10 2.52 1206.66 Rees (1964) 

52.64 23.95 13.67 4.38 0.87 1.07 3.42 1243.33 Rees (1964) 

42.59 17.37 14.81 20.74 0.90 0.77 2.82 1232.22* Rees (1964) 

43.26 17.34 12.92 21.39 1.09 0.68 3.32 1156.66 Rees (1964) 

54.70 21.67 13.66 4.50 1.04 1.00 3.42 1202.22 Rees (1964) 

52.47 22.71 14.72 5.15 0.94 1.09 2.92 1177.22* Rees (1964) 
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44.72 22.38 21.96 4.76 1.31 1.15 3.72 1248.33 Rees (1964) 

55.78 28.16 7.21 1.44 1.28 1.36 4.77 1371.11 Rees (1964) 

52.46 24.39 6.61 9.76 1.05 1.22 4.52 1257.22 Rees (1964) 

46.98 23.01 12.50 11.32 1.87 0.63 3.68 1288.33 Rees (1964) 

46.58 22.95 14.98 9.47 2.38 0.67 2.97 1288.33 Rees (1964) 

50.73 22.73 13.35 6.97 1.84 0.68 3.71 1215.00 Rees (1964) 

41.31 25.08 16.25 12.20 1.22 0.97 2.97 1201.111 Rees (1964) 

49.26 22.62 19.21 3.50 0.81 1.27 3.33 1261.66 Moreno (2008) 

48.41 20.28 20.46 7.90 0.12 1.00 1.83 1254.44 Moreno (2008) 

40.05 19.55 32.13 2.81 0.65 0.90 3.91 1148.88* Moreno (2008) 

55.44 29.58 6.75 2.26 0.79 1.61 3.57 1482.22 Moreno (2008) 

57.77 29.47 4.04 2.12 1.44 1.41 3.75 1482.22* Moreno (2008) 

62.09 25.12 4.79 3.45 1.12 0.96 2.48 1482.22 Moreno (2008) 

52.24 23.49 9.42 6.85 1.98 0.92 5.10 1376.66# Moreno (2008) 

63.58 22.64 6.44 1.91 1.40 0.90 3.13 1476.66* Moreno (2008) 

64.08 25.68 4.94 0.54 0.39 1.20 3.16 1482.22* Moreno (2008) 

50.12 19.46 20.78 5.28 0.84 0.91 2.63 1193.33 Moreno (2008) 

45.33 17.17 24.21 8.89 0.77 0.83 2.81 1115.55 Moreno (2008) 

59.04 22.01 5.41 7.12 3.47 1.63 1.32 1148.88 Moreno (2008) 

48.64 19.06 5.16 14.21 4.76 1.26 6.91 1143.33 * Moreno (2008) 

39.01 19.44 20.06 14.82 4.52 0.79 1.37 1270.00 Moreno (2008) 

43.19 32.75 18.73 1.84 1.02 2.15 0.31 1540.00 Bryant et al.  (2000) 

50.56 32.34 12.08 1.84 1.02 1.84 0.31 1615.00 Bryant et al.  (2000) 

62.68 22.99 5.77 3.30 1.24 0.82 3.20 1410.00 Bryant et al.  (2000) 

62.61 26.53 4.42 0.40 0.80 1.21 4.02 1605.00 Bryant et al.  (2000) 

65.87 23.98 4.80 1.13 0.83 1.43 1.93 1570.00 Akiyama et al.  (2011) 

52.55 25.44 11.81 5.13 1.85 1.66 1.53 1320.00 Steyn and Minnitt (2010) 

49.70 25.61 11.31 9.92 2.76 0.69 0.02 1650.00 Bahrinet al.  (2009) 

36.78 23.10 18.16 14.71 2.30 2.18 2.76 1319.00 * Matuszewski (2012) 

46.67 25.10 18.02 4.38 1.67 1.35 2.81 1333.00* Matuszewski (2012) 

44.57 23.78 24.27 3.41 0.75 1.10 2.12 1332.22 Matuszewski (2012) 

47.62 19.05 21.16 7.41 1.06 1.06 2.65 1323.88 Matuszewski (2012) 

45.49 19.98 7.72 19.78 5.08 0.86 1.10 1258.88 Matuszewski (2012) 

51.77 17.64 10.52 13.98 3.13 1.21 1.74 1294.44 Matuszewski (2012) 

58.44 28.86 5.82 0.51 0.20 2.49 3.67 1537.77 U.S.DOE (2001) 

59.55 28.52 5.43 0.11 0.67 2.04 3.69 1463.88 # U.S.DOE (2001) 

56.54 28.48 8.97 0.53 0.14 1.98 3.35 1537.77 U.S.DOE (2001) 

54.06 26.21 15.23 0.48 0.16 1.56 2.28 1445.00* U.S.DOE (2001) 

36.32 25.63 30.37 3.84 0.31 1.31 2.21 1240.556 U.S.DOE (2001) 

64.04 11.75 13.04 4.42 1.92 1.84 2.99 1480.55 U.S.DOE (2001) 

69.78 21.40 4.76 1.55 0.53 0.96 1.01 1516.00 Kim et al. (1994) 

54.40 20.03 6.72 13.45 2.52 0.91 1.98 1243.00 Kim et al. (1994) 

63.48 25.28 4.51 2.45 1.03 1.12 2.12 1523.00 Kim et al. (1994) 

55.25 20.43 15.22 4.38 1.51 1.04 2.16 1260.00# CEA Report (2012) 

58.92 33.94 1.61 1.50 1.01 1.49 1.52 1620.00# CEA Report (2012) 
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74.47 16.32 4.08 1.63 1.22 0.75 1.52 1540.00 CEA Report (2012) 

73.76 18.44 4.10 1.02 0.61 0.84 1.23 1500.00 CEA Report (2012) 

58.72 23.66 8.93 2.94 1.28 1.14 3.28 1410.00 CIMFR 

59.05 23.82 12.88 0.99 0.42 1.94 0.88 1430.00 CIMFR 

59.63 19.07 9.10 7.27 1.96 1.83 1.00 1340.00 # CIMFR 

64.44 22.99 5.67 2.37 0.79 1.30 2.39 1430.00 CIMFR 

60.63 21.90 8.62 3.52 1.13 1.65 2.44 1360.00 CIMFR 

59.80 14.67 11.74 6.79 1.54 1.85 3.34 1310.00 CIMFR 

59.06 25.01 7.06 4.78 1.41 2.00 0.51 1380.00 CIMFR 

61.36 21.74 6.94 2.96 0.96 1.96 4.00 1410.00 CIMFR 

64.18 17.36 10.19 1.70 0.44 1.96 4.11 1400.00 CIMFR 

 *: Test data; #: Validation data; § CIMFR:  Central Institute of Mining and 

Fuel Research, Dhanbad, India, from where data were sourced. 
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APPENDIX 5   

Table 5.E: Mean and Standard deviation of oxide weight percentages (wt %) 

used in the normalization of the oxides and AFT data 

AFT 

model 

 SiO2 

wt (%) 

(x1) 

Al2O3 

wt (%) 

(x2) 

Fe2O3 

wt (%) 

(x3) 

CaO 

wt (%) 

(x4) 

MgO 

wt (%) 

(x5) 

TiO2 

wt (%) 

(x6) 

K2O+Na2O 

wt (%) (x7) 

y (OC)# 

IDT Mean 55.75 23.63 10.51 4.8 1.37 1.38 2.56 1189.36 

Std. dev. 9.53 4.61 7.32 5.50 1.69 0.48 1.47 113.36 

ST Mean 45.85 21.60 12.93 7.14 2.04 1.25 2.61 1264.87 

Std. dev. 12.01 7.14 8.99 5.80 2.57 1.13 1.48 179.17 

HT Mean 45.70 19.05 13.80 8.95 3.53 1.08 3.07 1314.96 

Std. dev. 14.69 8.39 14.27 7.73 3.61 1.26 2.10 169.95 

FT Mean 50.77 21.79 14.06 7.21 1.93 1.13 3.09 1300.42 

Std. dev. 9.30 4.69 8.03 5.75 1.70 0.44 1.41 158.02 

# y denotes the specific ash fusion temperature 

The mean values (�̅�𝑟) and standard deviations (𝜎𝑟) of AFTs are calculated as 

per the equations (5.30) and (5.31) respectively, given below. 

                      �̅�𝑟 =  
∑ 𝑥𝑟

𝑖𝑁𝑝
𝑖=1

𝑁𝑝
;  𝑖 = 1,2, … , 𝑁𝑝 ; 𝑟 = 1,2, … . , 𝑅                       (5.30) 

                     𝜎𝑟  = √
∑ (𝑥𝑟

𝑖 −�̅�𝑟)
𝑁𝑝
𝑖=1

𝑁𝑝
;  𝑖 = 1,2, … , 𝑁𝑝 ; 𝑟 = 1,2, … . , 𝑅      (5.31) 

   

 

 

 

 

 

 



255 
 

 

APPENDIX 5   

SVR Models 5.F: SVR models pertaining to the Ash Fusion Temperatures 

(AFTs) predictions 

5. F.1: SVR model pertaining to the Initial Deformation 

Temperature (IDT) prediction 

 𝐼𝐷�̂� =  -0.4782293782502961 * (pow((exp(-2.0 * (0.6249796012154752 - pc1) * 

(0.6249796012154752 - pc1)) + exp(-2.0 * (-3.0086738013710557 - pc2) * (-

3.0086738013710557 - pc2)) + exp(-2.0 * (-0.5132805311768492 - pc3) * (-

0.5132805311768492 - pc3)) + exp(-2.0 * (-0.3679991158006609 - pc4) * (-

0.3679991158006609 - pc4)) + exp(-2.0 * (-0.8503918051375732 - pc5) * (-

0.8503918051375732- pc5))),1.0))-1.8906674653578492*(pow((exp(-2.0*(-

0.7234797465934767 - pc1) * (-0.7234797465934767 - pc1)) + exp(-2.0 * 

(0.7093038060261255 - pc2) * (0.7093038060261255 - pc2)) + exp(-2.0 * 

(0.43893205970101024 - pc3) * (0.43893205970101024 - pc3)) + exp(-2.0 * 

(0.7718088160781258 - pc4) * (0.7718088160781258 - pc4)) + exp(-2.0 * (-

1.0583139659230756 - pc5) * (-1.0583139659230756 - pc5))), 1.0))- 0.7956968092437257 * 

(pow((exp(-2.0 * (0.368178417920692 - pc1) * (0.368178417920692 - pc1)) + exp(-2.0 * (-

1.5974136903002447 - pc2) * (-1.5974136903002447 - pc2)) + exp(-2.0 * 

(0.44933429361869115 - pc3) * (0.44933429361869115 - pc3)) + exp(-2.0 * 

(0.2923618758436084 - pc4) * (0.2923618758436084 - pc4)) + exp(-2.0 * (-

1.2461731099601343 - pc5) * (-1.2461731099601343 - pc5))), 1.0)) - 0.38468733516512377 

* (pow((exp(-2.0 * (1.4665349179369038 - pc1) * (1.4665349179369038 - pc1)) + exp(-2.0 * 

(1.358911950742573 - pc2) * (1.358911950742573 - pc2)) + exp(-2.0 * (-

0.16054090747582972 - pc3) * (-0.16054090747582972 - pc3)) + exp(-2.0 * 

(2.030709498061156 - pc4) * (2.030709498061156 - pc4)) + exp(-2.0 * 

(0.4737104336365257 - pc5) * (0.4737104336365257 - pc5))), 1.0))- 1.1816724156016745 * 

(pow((exp(-2.0 * (-0.8222581473749505 - pc1) * (-0.8222581473749505 - pc1)) + exp(-2.0 * 

(-0.6416554927981424 - pc2) * (-0.6416554927981424 - pc2)) + exp(-2.0 * (-

0.6909565112975972 - pc3) * (-0.6909565112975972 - pc3)) + exp(-2.0 * 

(0.2868559327333015 - pc4) * (0.2868559327333015 - pc4)) + exp(-2.0 * 

(0.4093456105054995 - pc5) * (0.4093456105054995 - pc5))), 1.0))+ 0.44991087865600987 

* (pow((exp(-2.0 * (-0.3197112012561222 - pc1) * (-0.3197112012561222 - pc1)) + exp(-2.0 

* (0.829359422770002 - pc2) * (0.829359422770002 - pc2)) + exp(-2.0 * 

(0.38417188865775154 - pc3) * (0.38417188865775154 - pc3)) + exp(-2.0 * 

(0.20095450585105593 - pc4) * (0.20095450585105593 - pc4)) + exp(-2.0 * (-

1.4052705953846751 - pc5) * (-1.4052705953846751 - pc5))), 1.0)) + 0.31956097369833397 

* (pow((exp(-2.0 * (-0.45870579925180843 - pc1) * (-0.45870579925180843 - pc1)) + exp(-

2.0 * (0.13459370317838007 - pc2) * (0.13459370317838007 - pc2)) + exp(-2.0 * 

(1.6022003154273965 - pc3) * (1.6022003154273965 - pc3)) + exp(-2.0 * (-

0.3583951355985099 - pc4) * (-0.3583951355985099 - pc4)) + exp(-2.0 * 

(1.0121647449117983 - pc5) * (1.0121647449117983 - pc5))), 1.0))+ 1.048444223568384 * 

(pow((exp(-2.0 * (1.3548772675448715 - pc1) * (1.3548772675448715 - pc1)) + exp(-2.0 * (-

2.4320911946977897 - pc2) * (-2.4320911946977897 - pc2)) + exp(-2.0 * (-

0.05460183514580577 - pc3) * (-0.05460183514580577 - pc3)) + exp(-2.0 * 

(0.26253791475361904 - pc4) * (0.26253791475361904 - pc4)) + exp(-2.0 * (-

0.3226465321951865 - pc5) * (-0.3226465321951865 - pc5))), 1.0))- 0.12758944921830406 

* (pow((exp(-2.0 * (0.9797138981230443 - pc1) * (0.9797138981230443 - pc1)) + exp(-2.0 * 

(1.176467871237364 - pc2) * (1.176467871237364 - pc2)) + exp(-2.0 * (-

0.5237066713755737 - pc3) * (-0.5237066713755737 - pc3)) + exp(-2.0 * (-

0.7024915945471241 - pc4) * (-0.7024915945471241 - pc4)) + exp(-2.0 * (-

1.7602935735835943 - pc5) * (-1.7602935735835943 - pc5))), 1.0)) 
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+ 0.1495357423225121 * (pow((exp(-2.0 * (1.9195869069872125 - pc1) * 

(1.9195869069872125 - pc1)) + exp(-2.0 * (2.0705611663740746 - pc2) * 

(2.0705611663740746 - pc2)) + exp(-2.0 * (-3.7519043717396667 - pc3) * (-

3.7519043717396667 - pc3)) + exp(-2.0 * (0.055852417854658463 - pc4) * 

(0.055852417854658463 - pc4)) + exp(-2.0 * (2.4136677601732526 - pc5) * 

(2.4136677601732526 - pc5))), 1.0))- 1.2172184145617744 * (pow((exp(-2.0 * 

(1.0174236501575316 - pc1) * (1.0174236501575316 - pc1)) + exp(-2.0 * (-

1.12074169563642 - pc2) * (-1.12074169563642 - pc2)) + exp(-2.0 * (1.6768154565281947 - 

pc3) * (1.6768154565281947 - pc3)) + exp(-2.0 * (-0.9011207121827194 - pc4) * (-

0.9011207121827194 - pc4)) + exp(-2.0 * (-0.14124257287243114 - pc5) * (-

0.14124257287243114 - pc5))), 1.0))+ 0.13368510889006355 * (pow((exp(-2.0 * (-

0.9537135665142016 - pc1) * (-0.9537135665142016 - pc1)) + exp(-2.0 * (-

0.5413637842912423 - pc2) * (-0.5413637842912423 - pc2)) + exp(-2.0 * (-

2.7460702573198192 - pc3) * (-2.7460702573198192 - pc3)) + exp(-2.0 * (-

1.9232156270420993 - pc4) * (-1.9232156270420993 - pc4)) + exp(-2.0 * (-

0.7161064514941698 - pc5) * (-0.7161064514941698 - pc5))), 1.0))- 0.02490307243702141 

* (pow((exp(-2.0 * (1.4636427746711345 - pc1) * (1.4636427746711345 - pc1)) + exp(-2.0 * 

(2.0630112395589144 - pc2) * (2.0630112395589144 - pc2)) + exp(-2.0 * 

(0.1362221264255667 - pc3) * (0.1362221264255667 - pc3)) + exp(-2.0 * (-

2.662740833671813 - pc4) * (-2.662740833671813 - pc4)) + exp(-2.0 * 

(1.5442825227539574 - pc5) * (1.5442825227539574 - pc5))), 1.0))+ 0.931309548534361 * 

(pow((exp(-2.0 * (-1.319266030336142 - pc1) * (-1.319266030336142 - pc1)) + exp(-2.0 * (-

0.5882451493447722 - pc2) * (-0.5882451493447722 - pc2)) + exp(-2.0 * (-

1.0788007284083023 - pc3) * (-1.0788007284083023 - pc3)) + exp(-2.0 * (-

0.8825161915615355 - pc4) * (-0.8825161915615355 - pc4)) + exp(-2.0 * 

(1.116805257102981 - pc5) * (1.116805257102981 - pc5))), 1.0))- 0.5012012781409488 * 

(pow((exp(-2.0 * (1.437625240530321 - pc1) * (1.437625240530321 - pc1)) + exp(-2.0 * (-

1.5312305274649929 - pc2) * (-1.5312305274649929 - pc2)) + exp(-2.0 * 

(1.0118718163099176 - pc3) * (1.0118718163099176 - pc3)) + exp(-2.0 * (-

1.2305525094996559 - pc4) * (-1.2305525094996559 - pc4)) + exp(-2.0 * (-

0.46319684888177665 - pc5) * (-0.46319684888177665 - pc5))), 1.0)) - 

1.2899288326801295 * (pow((exp(-2.0 * (0.9183753272479042 - pc1) * 

(0.9183753272479042 - pc1)) + exp(-2.0 * (-0.061871576361406104 - pc2) * (-

0.061871576361406104 - pc2)) + exp(-2.0 * (-0.1304078247905717 - pc3) * (-

0.1304078247905717 - pc3)) + exp(-2.0 * (0.5125232826877286 - pc4) * 

(0.5125232826877286 - pc4)) + exp(-2.0 * (0.10422468761514365 - pc5) * 

(0.10422468761514365 - pc5))), 1.0))+ 0.9502838799953855 * (pow((exp(-2.0 * (-

0.3353053913603851 - pc1) * (-0.3353053913603851 - pc1)) + exp(-2.0 * 

(1.5715466069091688 - pc2) * (1.5715466069091688 - pc2)) + exp(-2.0 * 

(1.9132352482794084 - pc3) * (1.9132352482794084 - pc3)) + exp(-2.0 * 

(2.4996072093387713 - pc4) * (2.4996072093387713 - pc4)) + exp(-2.0 * (-

0.3334810698177196 - pc5) * (-0.3334810698177196 - pc5))), 1.0))+ 1.2733612545031952 * 

(pow((exp(-2.0 * (1.3288412107554888 - pc1) * (1.3288412107554888 - pc1)) + exp(-2.0 * 

(0.10828833966609695 - pc2) * (0.10828833966609695 - pc2)) + exp(-2.0 * (-

1.3107280501935084 - pc3) * (-1.3107280501935084 - pc3)) + exp(-2.0 * 

(0.6977134235041241 - pc4) * (0.6977134235041241 - pc4)) + exp(-2.0 * 

(0.5294942742665419 - pc5) * (0.5294942742665419 - pc5))), 1.0)) + 1.0397074131047952 

* (pow((exp(-2.0 * (2.002804947328749 - pc1) * (2.002804947328749 - pc1)) + exp(-2.0 * 

(0.46272190213547704 - pc2) * (0.46272190213547704 - pc2)) + exp(-2.0 * 

(0.4609485832373895 - pc3) * (0.4609485832373895 - pc3)) + exp(-2.0 * (-

1.1032587697221352 - pc4) * (-1.1032587697221352 - pc4)) + exp(-2.0 * 

(0.07549424982275604 - pc5) * (0.07549424982275604 - pc5))), 1.0))+ 

0.2196471407551924 * (pow((exp(-2.0 * (0.8376633953274 - pc1) * (0.8376633953274 - 

pc1)) + exp(-2.0 * (0.7214110993768963 - pc2) * (0.7214110993768963 - pc2)) + exp(-2.0 * 

(-0.9768446387350148 - pc3) * (-0.9768446387350148 - pc3)) + exp(-2.0 * 

(1.401881678508821 - pc4) * (1.401881678508821 - pc4)) + exp(-2.0 * (1.348507523873152 

- pc5) * (1.348507523873152 - pc5))), 1.0))+ 1.8695652173913044 * (pow((exp(-2.0 * 

(0.7495555314952123 - pc1) * (0.7495555314952123 - pc1)) + exp(-2.0 * (-

1.2659851491839984 - pc2) * (-1.2659851491839984 - pc2)) + exp(-2.0 * 

(0.46180718067303445 - pc3) * (0.46180718067303445 - pc3)) + exp(-2.0 * (-
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0.7375057122251859 - pc4) * (-0.7375057122251859 - pc4)) + exp(-2.0 * (-

0.41023638043474425 - pc5) * (-0.41023638043474425 - pc5))), 1.0))- 

0.16824273284751876 * (pow((exp(-2.0 * (1.3295900248912609 - pc1) * 

(1.3295900248912609 - pc1)) + exp(-2.0 * (-1.1590918203217693 - pc2) * (-

1.1590918203217693 - pc2)) + exp(-2.0 * (1.2414623454275604 - pc3) * 

(1.2414623454275604 - pc3)) + exp(-2.0 * (-0.5321160680732857 - pc4) * (-

0.5321160680732857 - pc4)) + exp(-2.0 * (0.033927991886748284 - pc5) * 

(0.033927991886748284 - pc5))), 1.0))+ 1.1911127951469993 * (pow((exp(-2.0 * (-

0.1428138373352612 - pc1) * (-0.1428138373352612 - pc1)) + exp(-2.0 * 

(0.9259027831650705 - pc2) * (0.9259027831650705 - pc2)) + exp(-2.0 * 

(1.142507817689114 - pc3) * (1.142507817689114 - pc3)) + exp(-2.0 * 

(0.13428815974921687 - pc4) * (0.13428815974921687 - pc4)) + exp(-2.0 * (-

1.1515570241742061 - pc5) * (-1.1515570241742061 - pc5))), 1.0))- 1.2682966560221163 * 

(pow((exp(-2.0 * (-0.6272713337685498 - pc1) * (-0.6272713337685498 - pc1)) + exp(-2.0 * 

(-0.3547334194756257 - pc2) * (-0.3547334194756257 - pc2)) + exp(-2.0 * (-

0.8360148057069603 - pc3) * (-0.8360148057069603 - pc3)) + exp(-2.0 * (-

0.6580212637886858 - pc4) * (-0.6580212637886858 - pc4)) + exp(-2.0 * 

(0.8169045258260675 - pc5) * (0.8169045258260675 - pc5))), 1.0))+ 0.9384584963253777 * 

(pow((exp(-2.0 * (1.8099909444394253 - pc1) * (1.8099909444394253 - pc1)) + exp(-2.0 * 

(1.2349589222195292 - pc2) * (1.2349589222195292 - pc2)) + exp(-2.0 * 

(0.013061097888562878 - pc3) * (0.013061097888562878 - pc3)) + exp(-2.0 * (-

1.5333613398292425 - pc4) * (-1.5333613398292425 - pc4)) + exp(-2.0 * 

(0.25884681251589364 - pc5) * (0.25884681251589364 - pc5))), 1.0)) + 

0.9981423167729659 * (pow((exp(-2.0 * (-0.8519312281819134 - pc1) * (-

0.8519312281819134 - pc1)) + exp(-2.0 * (-0.9426573887483322 - pc2) * (-

0.9426573887483322 - pc2)) + exp(-2.0 * (-0.10821766918659066 - pc3) * (-

0.10821766918659066 - pc3)) + exp(-2.0 * (0.1990604195362753 - pc4) * 

(0.1990604195362753 - pc4)) + exp(-2.0 * (1.4382693931806791 - pc5) * 

(1.4382693931806791 - pc5))), 1.0))- 0.3385623479814199 * (pow((exp(-2.0 * (-

0.3911907986791449 - pc1) * (-0.3911907986791449 - pc1)) + exp(-2.0 * 

(0.41142853774388205 - pc2) * (0.41142853774388205 - pc2)) + exp(-2.0 * 

(0.8801720832721799 - pc3) * (0.8801720832721799 - pc3)) + exp(-2.0 * (-

1.2574169422324988 - pc4) * (-1.2574169422324988 - pc4)) + exp(-2.0 * 

(1.9596848106910578 - pc5) * (1.9596848106910578 - pc5))), 1.0))+ 1.1781984966148809 * 

(pow((exp(-2.0 * (0.4741544400940217 - pc1) * (0.4741544400940217 - pc1)) + exp(-2.0 * (-

1.8750004470821673 - pc2) * (-1.8750004470821673 - pc2)) + exp(-2.0 * (-

0.007406412163360328 - pc3) * (-0.007406412163360328 - pc3)) + exp(-2.0 * 

(0.24933637213053095 - pc4) * (0.24933637213053095 - pc4)) + exp(-2.0 * (-

1.007018249542925 - pc5) * (-1.007018249542925 - pc5))), 1.0))- 1.0230364248903814 * 

(pow((exp(-2.0 * (-0.47866574247905735 - pc1) * (-0.47866574247905735 - pc1)) + exp(-2.0 

* (0.7074148658177847 - pc2) * (0.7074148658177847 - pc2)) + exp(-2.0 * 

(1.7689850046381295 - pc3) * (1.7689850046381295 - pc3)) + exp(-2.0 * (-

2.001576930862287 - pc4) * (-2.001576930862287 - pc4)) + exp(-2.0 * (0.647905103890755 

- pc5) * (0.647905103890755 - pc5))), 1.0))- 1.4148192085561346 * (pow((exp(-2.0 * 

(1.415082440194339 - pc1) * (1.415082440194339 - pc1)) + exp(-2.0 * (-

0.953941381903367 - pc2) * (-0.953941381903367 - pc2)) + exp(-2.0 * 

(0.7469862815304837 - pc3) * (0.7469862815304837 - pc3)) + exp(-2.0 * (-

1.492787362270537 - pc4) * (-1.492787362270537 - pc4)) + exp(-2.0 * (-

0.02823923324093792 - pc5) * (-0.02823923324093792 - pc5))), 1.0))- 1.9402208752367123 

* (pow((exp(-2.0 * (1.7977503564553874 - pc1) * (1.7977503564553874 - pc1)) + exp(-2.0 * 

(-2.200262135950341 - pc2) * (-2.200262135950341 - pc2)) + exp(-2.0 * 

(0.09856976181816329 - pc3) * (0.09856976181816329 - pc3)) + exp(-2.0 * 

(1.2787349267348331 - pc4) * (1.2787349267348331 - pc4)) + exp(-2.0 * 

(0.24534436619214062 - pc5) * (0.24534436619214062 - pc5))), 1.0)) + 

0.012934500674523704 * (pow((exp(-2.0 * (0.7859877144943733 - pc1) * 

(0.7859877144943733 - pc1)) + exp(-2.0 * (-1.2099767182344687 - pc2) * (-

1.2099767182344687 - pc2)) + exp(-2.0 * (-2.229307909041825 - pc3) * (-

2.229307909041825 - pc3)) + exp(-2.0 * (-1.1302414729505748 - pc4) * (-

1.1302414729505748 - pc4)) + exp(-2.0 * (2.8478094247680334 - pc5) * 

(2.8478094247680334 - pc5))), 1.0))+ 1.824315016860721 * (pow((exp(-2.0 * (-
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0.69991913550904 - pc1) * (-0.69991913550904 - pc1)) + exp(-2.0 * (-0.5770183224299656 

- pc2) * (-0.5770183224299656 - pc2)) + exp(-2.0 * (-1.0869804191904973 - pc3) * (-

1.0869804191904973 - pc3)) + exp(-2.0 * (-1.8782077250767808 - pc4) * (-

1.8782077250767808 - pc4)) + exp(-2.0 * (-1.720137523421571 - pc5) * (-

1.720137523421571 - pc5))), 1.0))+ 0.44145082575680494 * (pow((exp(-2.0 * 

(1.3398837821684602 - pc1) * (1.3398837821684602 - pc1)) + exp(-2.0 * 

(1.4188426611979807 - pc2) * (1.4188426611979807 - pc2)) + exp(-2.0 * (-

2.7013820495623873 - pc3) * (-2.7013820495623873 - pc3)) + exp(-2.0 * 

(1.64111939321946 - pc4) * (1.64111939321946 - pc4)) + exp(-2.0 * (0.34273487022380905 

- pc5) * (0.34273487022380905 - pc5))), 1.0)) - 1.2114773096141542 * (pow((exp(-2.0 * (-

0.9998980459063925 - pc1) * (-0.9998980459063925 - pc1)) + exp(-2.0 * 

(0.3023648137017133 - pc2) * (0.3023648137017133 - pc2)) + exp(-2.0 * (-

0.16680743143778567 - pc3) * (-0.16680743143778567 - pc3)) + exp(-2.0 * 

(0.005297260419573907 - pc4) * (0.005297260419573907 - pc4)) + exp(-2.0 * (-

0.9215340255652208 - pc5) * (-0.9215340255652208 - pc5))), 1.0))- 0.25511181002762634 

* (pow((exp(-2.0 * (-0.7604036884903581 - pc1) * (-0.7604036884903581 - pc1)) + exp(-2.0 

* (-0.1903571737754973 - pc2) * (-0.1903571737754973 - pc2)) + exp(-2.0 * (-

2.1439065135842768 - pc3) * (-2.1439065135842768 - pc3)) + exp(-2.0 * (-

1.1804706485341157 - pc4) * (-1.1804706485341157 - pc4)) + exp(-2.0 * (-

1.4874031733009239 - pc5) * (-1.4874031733009239 - pc5))), 1.0))+ 0.38280407428067903 

* (pow((exp(-2.0 * (1.3819862710742987 - pc1) * (1.3819862710742987 - pc1)) + exp(-2.0 * 

(-2.510366370106826 - pc2) * (-2.510366370106826 - pc2)) + exp(-2.0 * (-

0.36949558841945435 - pc3) * (-0.36949558841945435 - pc3)) + exp(-2.0 * 

(0.48374966658366714 - pc4) * (0.48374966658366714 - pc4)) + exp(-2.0 * 

(0.24331201604320066 - pc5) * (0.24331201604320066 - pc5))), 1.0))+ 

0.059137137054607554 * (pow((exp(-2.0 * (0.3005481786566235 - pc1) * 

(0.3005481786566235 - pc1)) + exp(-2.0 * (-0.24614645462999427 - pc2) * (-

0.24614645462999427 - pc2)) + exp(-2.0 * (0.4802887074845427 - pc3) * 

(0.4802887074845427 - pc3)) + exp(-2.0 * (0.8947823881606074 - pc4) * 

(0.8947823881606074 - pc4)) + exp(-2.0 * (-0.31164642051828945 - pc5) * (-

0.31164642051828945 - pc5))), 1.0))- 0.6478293120307111 * (pow((exp(-2.0 * 

(0.7409007756356958 - pc1) * (0.7409007756356958 - pc1)) + exp(-2.0 * 

(1.505210233104074 - pc2) * (1.505210233104074 - pc2)) + exp(-2.0 * (-

1.211292396002696 - pc3) * (-1.211292396002696 - pc3)) + exp(-2.0 * (-

1.0840280013262154 - pc4) * (-1.0840280013262154 - pc4)) + exp(-2.0 * (-

1.8315956999409644 - pc5) * (-1.8315956999409644 - pc5))), 1.0))+ 1.8695652173913044 * 

(pow((exp(-2.0 * (0.7989792217569944 - pc1) * (0.7989792217569944 - pc1)) + exp(-2.0 * (-

1.0687002253363964 - pc2) * (-1.0687002253363964 - pc2)) + exp(-2.0 * 

(0.4690235536659604 - pc3) * (0.4690235536659604 - pc3)) + exp(-2.0 * 

(0.6834366460319818 - pc4) * (0.6834366460319818 - pc4)) + exp(-2.0 * 

(0.14744730514254903 - pc5) * (0.14744730514254903 - pc5))), 1.0))+ 

1.8695652173913044 * (pow((exp(-2.0 * (-0.4853599114219964 - pc1) * (-

0.4853599114219964 - pc1)) + exp(-2.0 * (0.6320243283706766 - pc2) * 

(0.6320243283706766 - pc2)) + exp(-2.0 * (-0.12882083356623392 - pc3) * (-

0.12882083356623392 - pc3)) + exp(-2.0 * (-1.8329611456616952 - pc4) * (-

1.8329611456616952 - pc4)) + exp(-2.0 * (-1.0765715985839077 - pc5) * (-

1.0765715985839077 - pc5))), 1.0)) + 1.8695652173913044 * (pow((exp(-2.0 * (-

0.6096327194362757 - pc1) * (-0.6096327194362757 - pc1)) + exp(-2.0 * 

(0.5885698632695061 - pc2) * (0.5885698632695061 - pc2)) + exp(-2.0 * 

(0.9851347529377144 - pc3) * (0.9851347529377144 - pc3)) + exp(-2.0 * (-

0.5284787934883101 - pc4) * (-0.5284787934883101 - pc4)) + exp(-2.0 * (-

1.0224902800157527 - pc5) * (-1.0224902800157527 - pc5))), 1.0))- 2.15 * (pow((exp(-2.0 * 

(-0.09829245276931184 - pc1) * (-0.09829245276931184 - pc1)) + exp(-2.0 * 

(1.0747602929685736 - pc2) * (1.0747602929685736 - pc2)) + exp(-2.0 * (-

1.2218657144756986 - pc3) * (-1.2218657144756986 - pc3)) + exp(-2.0 * 

(0.705595914460183 - pc4) * (0.705595914460183 - pc4)) + exp(-2.0 * 

(1.2093581134205564 - pc5) * (1.2093581134205564 - pc5))), 1.0))- 2.15 * (pow((exp(-2.0 * 

(-0.4929541598578989 - pc1) * (-0.4929541598578989 - pc1)) + exp(-2.0 * 

(0.6383911238387872 - pc2) * (0.6383911238387872 - pc2)) + exp(-2.0 * 

(0.7164101987899022 - pc3) * (0.7164101987899022 - pc3)) + exp(-2.0 * 
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(0.3217408004550902 - pc4) * (0.3217408004550902 - pc4)) + exp(-2.0 * (-

0.1567076957285209 - pc5) * (-0.1567076957285209 - pc5))), 1.0)) + 1.8695652173913044 

* (pow((exp(-2.0 * (-0.7432387953763673 - pc1) * (-0.7432387953763673 - pc1)) + exp(-2.0 

* (0.6236850156066523 - pc2) * (0.6236850156066523 - pc2)) + exp(-2.0 * 

(0.46751846385646484 - pc3) * (0.46751846385646484 - pc3)) + exp(-2.0 * 

(0.3945136928018495 - pc4) * (0.3945136928018495 - pc4)) + exp(-2.0 * (-

0.08066064018756429 - pc5) * (-0.08066064018756429 - pc5))), 1.0))- 2.15 * (pow((exp(-2.0 

* (0.9748641475924591 - pc1) * (0.9748641475924591 - pc1)) + exp(-2.0 * 

(0.22643208033140397 - pc2) * (0.22643208033140397 - pc2)) + exp(-2.0 * (-

0.1115560115016746 - pc3) * (-0.1115560115016746 - pc3)) + exp(-2.0 * (-

0.2735892846738488 - pc4) * (-0.2735892846738488 - pc4)) + exp(-2.0 * (-

1.3685510080343917 - pc5) * (-1.3685510080343917 - pc5))), 1.0))- 2.15 * (pow((exp(-2.0 * 

(1.8198794218009606 - pc1) * (1.8198794218009606 - pc1)) + exp(-2.0 * (-

0.9386633003465147 - pc2) * (-0.9386633003465147 - pc2)) + exp(-2.0 * 

(0.4101123387086363 - pc3) * (0.4101123387086363 - pc3)) + exp(-2.0 * (-

1.8016835798373312 - pc4) * (-1.8016835798373312 - pc4)) + exp(-2.0 * (-

0.5636798038906089 - pc5) * (-0.5636798038906089 - pc5))), 1.0)) + 1.8695652173913044 

* (pow((exp(-2.0 * (1.4895434319611935 - pc1) * (1.4895434319611935 - pc1)) + exp(-2.0 * 

(-0.1695193290126769 - pc2) * (-0.1695193290126769 - pc2)) + exp(-2.0 * (-

0.5191352539611838 - pc3) * (-0.5191352539611838 - pc3)) + exp(-2.0 * 

(1.159696341085127 - pc4) * (1.159696341085127 - pc4)) + exp(-2.0 * 

(0.6402377758434645 - pc5) * (0.6402377758434645 - pc5))), 1.0))+ 0.08469058526770479 

                                                                                                                            ... (5.32)      

where  𝐼𝐷�̂� refer to the normalized value of IDT; the magnitudes of PCs  in 

equation (5.32) are calculated using the equations (5.8) to (5.12). 
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5. F.2: SVR model pertaining to the Softening Temperature    

(ST) prediction 

𝑆�̂� =  10.0 * (exp(-0.011 * ((1.23021476198636 - PC1) * (1.23021476198636 - PC1) + 

(1.14201809221745 - PC2) * (1.14201809221745 - PC2) + (1.16809154021076 - PC3) * 

(1.16809154021076 - PC3) + (-0.250442970770229 - PC4) * (-0.250442970770229 - PC4)))) 

+ 7.721529939005738 * (exp(-0.011 * ((-1.69224952475161 - PC1) * (-1.69224952475161 - 

PC1) + (1.13675031961557 - PC2) * (1.13675031961557 - PC2) + (0.136547150448529 - 

PC3) * (0.136547150448529 - PC3) + (-0.72223447889088 - PC4) * (-0.72223447889088 - 

PC4)))) + 10.0 * (exp(-0.011 * ((-1.74070525109069 - PC1) * (-1.74070525109069 - PC1) + 

(0.455502395428974 - PC2) * (0.455502395428974 - PC2) + (-0.463639699591029 - PC3) * 

(-0.463639699591029 - PC3) + (-0.350429666149045 - PC4) * (-0.350429666149045 - 

PC4)))) + 9.999999999999998 * (exp(-0.011 * ((-1.67548528377675 - PC1) * (-

1.67548528377675 - PC1) + (0.113370635568498 - PC2) * (0.113370635568498 - PC2) + (-

0.689868561379388 - PC3) * (-0.689868561379388 - PC3) + (0.240550296040923 - PC4) * 

(0.240550296040923 - PC4)))) - 10.0 * (exp(-0.011 * ((1.21887582269466 - PC1) * 

(1.21887582269466 - PC1) + (-0.492259467454954 - PC2) * (-0.492259467454954 - PC2) + 

(-1.59390236364332 - PC3) * (-1.59390236364332 - PC3) + (0.170982974095913 - PC4) * 

(0.170982974095913 - PC4)))) - 10.0 * (exp(-0.011 * ((1.96013932642214 - PC1) * 

(1.96013932642214 - PC1) + (-0.931179306555024 - PC2) * (-0.931179306555024 - PC2) + 

(-0.667452959725247 - PC3) * (-0.667452959725247 - PC3) + (-0.873917204499567 - PC4) 

* (-0.873917204499567 - PC4)))) - 9.00277608956272 * (exp(-0.011 * ((0.323493327036093 

- PC1) * (0.323493327036093 - PC1) + (-0.551142796816673 - PC2) * (-0.551142796816673 

- PC2) + (-1.38054046113041 - PC3) * (-1.38054046113041 - PC3) + (-1.7103271646003 - 

PC4) * (-1.7103271646003 - PC4)))) - 10.0 * (exp(-0.011 * ((1.23369629098308 - PC1) * 

(1.23369629098308 - PC1) + (-0.213399006540639 - PC2) * (-0.213399006540639 - PC2) + 

(-1.34034515443713 - PC3) * (-1.34034515443713 - PC3) + (0.518267358452195 - PC4) * 

(0.518267358452195 - PC4)))) - 4.452221426081214 * (exp(-0.011 * ((0.711585313090217 - 

PC1) * (0.711585313090217 - PC1) + (-0.560738719942625 - PC2) * (-0.560738719942625 - 

PC2) + (-0.0867109272618593 - PC3) * (-0.0867109272618593 - PC3) + 

(0.114912512084976 - PC4) * (0.114912512084976 - PC4)))) - 10.0 * (exp(-0.011 * 

((0.77678651548445 - PC1) * (0.77678651548445 - PC1) + (-0.31502798512925 - PC2) * (-

0.31502798512925 - PC2) + (0.143763468984693 - PC3) * (0.143763468984693 - PC3) + 

(0.356740916881283 - PC4) * (0.356740916881283 - PC4)))) + 10.0 * (exp(-0.011 * 

((1.34736274642148 - PC1) * (1.34736274642148 - PC1) + (-0.699814658598038 - PC2) * (-

0.699814658598038 - PC2) + (-1.08392732994988 - PC3) * (-1.08392732994988 - PC3) + (-

1.02181656478666 - PC4) * (-1.02181656478666 - PC4)))) + 8.966885984435134 * (exp(-

0.011 * ((1.50991148437421 - PC1) * (1.50991148437421 - PC1) + (-0.643207144005209 - 

PC2) * (-0.643207144005209 - PC2) + (-0.895869935448295 - PC3) * (-0.895869935448295 

- PC3) + (-1.10500770123343 - PC4) * (-1.10500770123343 - PC4)))) - 10.0 * (exp(-0.011 * 

((-0.563199188986795 - PC1) * (-0.563199188986795 - PC1) + (-0.387728585163602 - PC2) 

* (-0.387728585163602 - PC2) + (-0.504681285917712 - PC3) * (-0.504681285917712 - 

PC3) + (0.293644099151864 - PC4) * (0.293644099151864 - PC4)))) - 10.0 * (exp(-0.011 * 

((-1.77895159744526 - PC1) * (-1.77895159744526 - PC1) + (0.239134158727805 - PC2) * 

(0.239134158727805 - PC2) + (-0.499665090001785 - PC3) * (-0.499665090001785 - PC3) + 

(0.600533899096768 - PC4) * (0.600533899096768 - PC4)))) - 10.0 * (exp(-0.011 * 

((1.40195327075401 - PC1) * (1.40195327075401 - PC1) + (0.380219358734338 - PC2) * 

(0.380219358734338 - PC2) + (1.82855658052048 - PC3) * (1.82855658052048 - PC3) + (-

0.0910666808645269 - PC4) * (-0.0910666808645269 - PC4)))) + 9.999999999999998 * 

(exp(-0.011 * ((-1.53406159561956 - PC1) * (-1.53406159561956 - PC1) + (-

0.469444437824621 - PC2) * (-0.469444437824621 - PC2) + (0.590497565355632 - PC3) * 

(0.590497565355632 - PC3) + (0.347185644580347 - PC4) * (0.347185644580347 - PC4)))) 

+ 10.0 * (exp(-0.011 * ((-0.0230665876369244 - PC1) * (-0.0230665876369244 - PC1) + (-

0.244335191133702 - PC2) * (-0.244335191133702 - PC2) + (-1.40245339694862 - PC3) * (-

1.40245339694862 - PC3) + (-0.0559426014688602 - PC4) * (-0.0559426014688602 - 

PC4)))) - 10.0 * (exp(-0.011 * ((-0.174769167731904 - PC1) * (-0.174769167731904 - PC1) 

+ (0.234574362092708 - PC2) * (0.234574362092708 - PC2) + (-0.3585832764023 - PC3) * 

(-0.3585832764023 - PC3) + (1.17714476357427 - PC4) * (1.17714476357427 - PC4)))) + 

10.0 * (exp(-0.011 * ((-2.09477041995102 - PC1) * (-2.09477041995102 - PC1) + 
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(0.559507747867692 - PC2) * (0.559507747867692 - PC2) + (-0.776504219103968 - PC3) * 

(-0.776504219103968 - PC3) + (0.606879563371099 - PC4) * (0.606879563371099 - PC4)))) 

+ 10.0 * (exp(-0.011 * ((-0.0379776798421314 - PC1) * (-0.0379776798421314 - PC1) + (-

0.749347146279755 - PC2) * (-0.749347146279755 - PC2) + (-0.696499689534873 - PC3) * 

(-0.696499689534873 - PC3) + (-1.08595056880636 - PC4) * (-1.08595056880636 - PC4)))) 

- 10.0 * (exp(-0.011 * ((0.181533453057431 - PC1) * (0.181533453057431 - PC1) + (-

0.93071588891874 - PC2) * (-0.93071588891874 - PC2) + (-0.164117744654376 - PC3) * (-

0.164117744654376 - PC3) + (-0.618675651019506 - PC4) * (-0.618675651019506 - PC4)))) 

+ 10.0 * (exp(-0.011 * ((0.409419665148064 - PC1) * (0.409419665148064 - PC1) + (-

0.768190969999876 - PC2) * (-0.768190969999876 - PC2) + (-0.392179322926475 - PC3) * 

(-0.392179322926475 - PC3) + (-0.286259634030824 - PC4) * (-0.286259634030824 - 

PC4)))) + 10.0 * (exp(-0.011 * ((-1.48858521223006 - PC1) * (-1.48858521223006 - PC1) + 

(0.298871188698009 - PC2) * (0.298871188698009 - PC2) + (-0.479923642216785 - PC3) * 

(-0.479923642216785 - PC3) + (0.450573538785118 - PC4) * (0.450573538785118 - PC4)))) 

+ 10.0 * (exp(-0.011 * ((-1.55238686861092 - PC1) * (-1.55238686861092 - PC1) + 

(0.335021304073101 - PC2) * (0.335021304073101 - PC2) + (-0.224592818164722 - PC3) * 

(-0.224592818164722 - PC3) + (0.748108375534561 - PC4) * (0.748108375534561 - PC4)))) 

+ 10.0 * (exp(-0.011 * ((0.0175791040018881 - PC1) * (0.0175791040018881 - PC1) + (-

0.0155242561150388 - PC2) * (-0.0155242561150388 - PC2) + (-0.548187286209886 - PC3) 

* (-0.548187286209886 - PC3) + (1.18032154004909 - PC4) * (1.18032154004909 - PC4)))) 

- 10.0 * (exp(-0.011 * ((1.20927955253359 - PC1) * (1.20927955253359 - PC1) + 

(1.0957890536542 - PC2) * (1.0957890536542 - PC2) + (-0.424703135994616 - PC3) * (-

0.424703135994616 - PC3) + (2.61629357993536 - PC4) * (2.61629357993536 - PC4)))) - 

10.0 * (exp(-0.011 * ((-2.67949391301711 - PC1) * (-2.67949391301711 - PC1) + (-

0.89455503026447 - PC2) * (-0.89455503026447 - PC2) + (1.38593480062983 - PC3) * 

(1.38593480062983 - PC3) + (1.08802514223279 - PC4) * (1.08802514223279 - PC4)))) - 

10.0 * (exp(-0.011 * ((-1.3079433963958 - PC1) * (-1.3079433963958 - PC1) + 

(3.41644207595301 - PC2) * (3.41644207595301 - PC2) + (0.215260966727677 - PC3) * 

(0.215260966727677 - PC3) + (-1.27514394384923 - PC4) * (-1.27514394384923 - PC4))))+ 

5.008925182037618 * (exp(-0.011 * ((1.12287130825826 - PC1) * (1.12287130825826 - 

PC1) + (0.700628251676151 - PC2) * (0.700628251676151 - PC2) + (-0.251297310277388 - 

PC3) * (-0.251297310277388 - PC3) + (-0.453418747963015 - PC4) * (-0.453418747963015 

- PC4)))) + 2.842127935677052 * (exp(-0.011 * ((1.74536940273848 - PC1) * 

(1.74536940273848 - PC1) + (0.875696563695493 - PC2) * (0.875696563695493 - PC2) + (-

1.04000676221927 - PC3) * (-1.04000676221927 - PC3) + (2.48455452414513 - PC4) * 

(2.48455452414513 - PC4)))) - 10.0 * (exp(-0.011 * ((0.0334222365791599 - PC1) * 

(0.0334222365791599 - PC1) + (-0.970589035965259 - PC2) * (-0.970589035965259 - PC2) 

+ (-0.452652391808868 - PC3) * (-0.452652391808868 - PC3) + (-0.254786525990694 - 

PC4) * (-0.254786525990694 - PC4)))) - 10.0 * (exp(-0.011 * ((-1.82798438391173 - PC1) * 

(-1.82798438391173 - PC1) + (3.17439449310042 - PC2) * (3.17439449310042 - PC2) + (-

0.327689141587259 - PC3) * (-0.327689141587259 - PC3) + (-0.76355227516701 - PC4) * (-

0.76355227516701 - PC4)))) - 10.0 * (exp(-0.011 * ((0.896589583214106 - PC1) * 

(0.896589583214106 - PC1) + (-1.02356627608125 - PC2) * (-1.02356627608125 - PC2) + (-

0.513694786250737 - PC3) * (-0.513694786250737 - PC3) + (-0.317522744152691 - PC4) * 

(-0.317522744152691 - PC4)))) - 10.0 * (exp(-0.011 * ((-0.330509432890552 - PC1) * (-

0.330509432890552 - PC1) + (-0.114759607575904 - PC2) * (-0.114759607575904 - PC2) + 

(1.19552994820281 - PC3) * (1.19552994820281 - PC3) + (-0.0366152951785867 - PC4) * (-

0.0366152951785867 - PC4)))) + 6.746479305677011 * (exp(-0.011 * ((4.20752103219153 - 

PC1) * (4.20752103219153 - PC1) + (1.33285222440913 - PC2) * (1.33285222440913 - 

PC2) + (0.164231584182479 - PC3) * (0.164231584182479 - PC3) + (1.94097657968963 - 

PC4) * (1.94097657968963 - PC4)))) - 10.0 * (exp(-0.011 * ((-0.785852989241174 - PC1) * 

(-0.785852989241174 - PC1) + (0.0140462566239975 - PC2) * (0.0140462566239975 - PC2) 

+ (0.393554773666952 - PC3) * (0.393554773666952 - PC3) + (-0.529063709775171 - PC4) 

* (-0.529063709775171 - PC4)))) + 10.0 * (exp(-0.011 * ((3.62540451398198 - PC1) * 

(3.62540451398198 - PC1) + (0.537420351897033 - PC2) * (0.537420351897033 - PC2) + 

(2.74033486327062 - PC3) * (2.74033486327062 - PC3) + (-1.35106971165229 - PC4) * (-

1.35106971165229 - PC4)))) - 8.190320002861124 * (exp(-0.011 * ((-1.68721483517694 - 

PC1) * (-1.68721483517694 - PC1) + (5.40742499843657 - PC2) * (5.40742499843657 - 

PC2) + (-1.36715287754979 - PC3) * (-1.36715287754979 - PC3) + (0.427853508701133 - 

PC4) * (0.427853508701133 - PC4)))) + 10.0 * (exp(-0.011 * ((-2.54765320295838 - PC1) * 
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(-2.54765320295838 - PC1) + (-1.90079839667525 - PC2) * (-1.90079839667525 - PC2) + 

(1.94142375429526 - PC3) * (1.94142375429526 - PC3) + (0.39028498793247 - PC4) * 

(0.39028498793247 - PC4)))) - 10.0 * (exp(-0.011 * ((-1.69657423107131 - PC1) * (-

1.69657423107131 - PC1) + (-2.12747852995009 - PC2) * (-2.12747852995009 - PC2) + 

(1.14886929023336 - PC3) * (1.14886929023336 - PC3) + (0.0603306253481178 - PC4) * 

(0.0603306253481178 - PC4)))) + 0.35936917167250976 * (exp(-0.011 * 

((3.10612987940629 - PC1) * (3.10612987940629 - PC1) + (2.24824538537725 - PC2) * 

(2.24824538537725 - PC2) + (5.00097585946766 - PC3) * (5.00097585946766 - PC3) + 

(0.243855040400053 - PC4) * (0.243855040400053 - PC4)))) + 10.0 * (exp(-0.011 * ((-

0.390008776024683 - PC1) * (-0.390008776024683 - PC1) + (-0.907868223859072 - PC2) * 

(-0.907868223859072 - PC2) + (0.230236633542902 - PC3) * (0.230236633542902 - PC3) + 

(0.929384804700769 - PC4) * (0.929384804700769 - PC4)))) + 10.0 * (exp(-0.011 * ((-

0.244604616889346 - PC1) * (-0.244604616889346 - PC1) + (-0.147673537432589 - PC2) * 

(-0.147673537432589 - PC2) + (1.51735784350833 - PC3) * (1.51735784350833 - PC3) + (-

1.08098173559071 - PC4) * (-1.08098173559071 - PC4)))) + 10.0 * (exp(-0.011 * ((-

1.27600901315776 - PC1) * (-1.27600901315776 - PC1) + (5.12733229073173 - PC2) * 

(5.12733229073173 - PC2) + (-1.71710821121203 - PC3) * (-1.71710821121203 - PC3) + 

(0.844355083314624 - PC4) * (0.844355083314624 - PC4)))) + 1.2218254297672049 

                                                                                                                            ... (5.33)   

where  𝑆�̂� refer to the normalized values of ST; the magnitudes of PCs in 

equation (5.33) are calculated using the equations (5.14) to (5.17). 
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5. F.3: SVR model pertaining to the Hemispherical 

Temperature (HT) prediction 

 𝐻�̂� =  0.10091889723756443 * (pow((exp(-0.098 * (-0.24330426808179723 - PC1) * (-

0.24330426808179723 - PC1)) + exp(-0.098 * (-0.48032849601574185 - PC2) * (-

0.48032849601574185 - PC2)) + exp(-0.098 * (-0.4582751827072967 - PC3) * (-

0.4582751827072967 - PC3)) + exp(-0.098 * (0.07790018099031398 - PC4) * 

(0.07790018099031398 - PC4)) + exp(-0.098 * (0.2899211689219697 - PC5) * 

(0.2899211689219697 - PC5))), 2.7))- 0.015333943107213081 * (pow((exp(-0.098 * 

(2.6623318781955123 - PC1) * (2.6623318781955123 - PC1)) + exp(-0.098 * (-

2.3100105997709557 - PC2) * (-2.3100105997709557 - PC2)) + exp(-0.098 * (-

1.847027970043396 - PC3) * (-1.847027970043396 - PC3)) + exp(-0.098 * (-

4.017484720947124 - PC4) * (-4.017484720947124 - PC4)) + exp(-0.098 * 

(0.9314719404292501 - PC5) * (0.9314719404292501 - PC5))), 2.7)) + 0.0191869328239112 

* (pow((exp(-0.098 * (-0.9145626719960867 - PC1) * (-0.9145626719960867 - PC1)) + exp(-

0.098 * (1.0084500300204007 - PC2) * (1.0084500300204007 - PC2)) + exp(-0.098 * (-

1.2749746960449873 - PC3) * (-1.2749746960449873 - PC3)) + exp(-0.098 * (-

0.14092265789287553 - PC4) * (-0.14092265789287553 - PC4)) + exp(-0.098 * 

(0.2746411120987484 - PC5) * (0.2746411120987484 - PC5))), 2.7))+ 

0.44015518035448586 * (pow((exp(-0.098 * (0.19842100431666673 - PC1) * 

(0.19842100431666673 - PC1)) + exp(-0.098 * (0.8205283840322323 - PC2) * 

(0.8205283840322323 - PC2)) + exp(-0.098 * (1.0942336164737463 - PC3) * 

(1.0942336164737463 - PC3)) + exp(-0.098 * (0.20088201312616139 - PC4) * 

(0.20088201312616139 - PC4)) + exp(-0.098 * (-0.13178395964591733 - PC5) * (-

0.13178395964591733 - PC5))), 2.7)) + 0.49031343844342246 * (pow((exp(-0.098 * (-

0.36292139414261393 - PC1) * (-0.36292139414261393 - PC1)) + exp(-0.098 * 

(0.8108874893261458 - PC2) * (0.8108874893261458 - PC2)) + exp(-0.098 * 

0.7730223382802965 - PC3) * (0.7730223382802965 - PC3)) + exp(-0.098 * 

(0.036420564818957335 - PC4) * (0.036420564818957335 - PC4)) + exp(-0.098 * 

(0.21188958216089857 - PC5) * (0.21188958216089857 - PC5))), 2.7))+ 

0.10392439856633578 * (pow((exp(-0.098 * (-0.8872331185997165 - PC1) * (-

0.8872331185997165 - PC1)) + exp(-0.098 * (-0.04651798635775228 - PC2) * (-

0.04651798635775228 - PC2)) + exp(-0.098 * (0.2818189526759598 - PC3) * 

(0.2818189526759598 - PC3)) + exp(-0.098 * (-0.6413862405230264 - PC4) * (-

0.6413862405230264 - PC4)) + exp(-0.098 * (0.31197380692218313 - PC5) * 

(0.31197380692218313 - PC5))), 2.7))- 0.03936365270872982 * (pow((exp(-0.098 * 

(2.816126109422459 - PC1) * (2.816126109422459 - PC1)) + exp(-0.098 * 

(1.216424668738208 - PC2) * (1.216424668738208 - PC2)) + exp(-0.098 * 

(2.5659724395189354 - PC3) * (2.5659724395189354 - PC3)) + exp(-0.098 * (-

0.4215421754628234 - PC4) * (-0.4215421754628234 - PC4)) + exp(-0.098 * 

(0.4280245015571141 - PC5) * (0.4280245015571141 - PC5))), 2.7))+ 

0.10904638860018348 * (pow((exp(-0.098 * (-1.1784494301572983 - PC1) * (-

1.1784494301572983 - PC1)) + exp(-0.098 * (0.18000581987747274 - PC2) * 

(0.18000581987747274 - PC2)) + exp(-0.098 * (0.8325626944280203 - PC3) * 

(0.8325626944280203 - PC3)) + exp(-0.098 * (0.709525347277057 - PC4) * 

(0.709525347277057 - PC4)) + exp(-0.098 * (-0.7163454388476432 - PC5) * (-

0.7163454388476432 - PC5))), 2.7))+ 0.08093306629327965 * (pow((exp(-0.098 * 

(0.13633605265697057 - PC1) * (0.13633605265697057 - PC1)) + exp(-0.098 * 

(0.08296077976645468 - PC2) * (0.08296077976645468 - PC2)) + exp(-0.098 * (-

0.3630250489847945 - PC3) * (-0.3630250489847945 - PC3)) + exp(-0.098 * 

(0.4533418598501077 - PC4) * (0.4533418598501077 - PC4)) + exp(-0.098 * (-

1.333261730549658 - PC5) * (-1.333261730549658 - PC5))), 2.7)) - 0.024580325901031225 

* (pow((exp(-0.098 * (-1.4497740382260942 - PC1) * (-1.4497740382260942 - PC1)) + exp(-

0.098 * (-3.543060023861607 - PC2) * (-3.543060023861607 - PC2)) + exp(-0.098 * 

(2.6055385404161133 - PC3) * (2.6055385404161133 - PC3)) + exp(-0.098 * (-

0.17273006763736126 - PC4) * (-0.17273006763736126 - PC4)) + exp(-0.098 * 

(1.0539406067422772 - PC5) * (1.0539406067422772 - PC5))), 2.7))- 0.19232534944363597 

* (pow((exp(-0.098 * (0.7327337035165653 - PC1) * (0.7327337035165653 - PC1)) + exp(-

0.098 * (-0.39531394456336794 - PC2) * (-0.39531394456336794 - PC2)) + exp(-0.098 * (-
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1.379030467220063 - PC3) * (-1.379030467220063 - PC3)) + exp(-0.098 * 

(0.5660197663995784 - PC4) * (0.5660197663995784 - PC4)) + exp(-0.098 * (-

2.758443793767156 - PC5) * (-2.758443793767156 - PC5))), 2.7))+ 0.5022488253463897 * 

(pow((exp(-0.098 * (-1.3009135885636098 - PC1) * (-1.3009135885636098 - PC1)) + exp(-

0.098 * (1.3658684277099082 - PC2) * (1.3658684277099082 - PC2)) + exp(-0.098 * (-

1.4862301849376662 - PC3) * (-1.4862301849376662 - PC3)) + exp(-0.098 * 

(0.10091690262625563 - PC4) * (0.10091690262625563 - PC4)) + exp(-0.098 * (-

0.3947624175669415 - PC5) * (-0.3947624175669415 - PC5))), 2.7))- 0.26272741386116844 

* (pow((exp(-0.098 * (-0.1184007708504788 - PC1) * (-0.1184007708504788 - PC1)) + exp(-

0.098 * (0.6201532886412443 - PC2) * (0.6201532886412443 - PC2)) + exp(-0.098 * 

(0.9909842848255979 - PC3) * (0.9909842848255979 - PC3)) + exp(-0.098 * 

(0.8583112544228613 - PC4) * (0.8583112544228613 - PC4)) + exp(-0.098 * (-

0.8284293681455501 - PC5) * (-0.8284293681455501 - PC5))), 2.7))+ 

0.03169968054575478 * (pow((exp(-0.098 * (1.3129876294043967 - PC1) * 

(1.3129876294043967 - PC1)) + exp(-0.098 * (-0.8962688862898223 - PC2) * (-

0.8962688862898223 - PC2)) + exp(-0.098 * (-0.10600422317027504 - PC3) * (-

0.10600422317027504 - PC3)) + exp(-0.098 * (0.3667835426134578 - PC4) * 

(0.3667835426134578 - PC4)) + exp(-0.098 * (-0.08883302611377125 - PC5) * (-

0.08883302611377125 - PC5))), 2.7))- 0.04309011785537282 * (pow((exp(-0.098 * 

(2.1634194485190896 - PC1) * (2.1634194485190896 - PC1)) + exp(-0.098 * 

(1.0421549020577168 - PC2) * (1.0421549020577168 - PC2)) + exp(-0.098 * 

(1.6192180272388075 - PC3) * (1.6192180272388075 - PC3)) + exp(-0.098 * (-

0.45890583489823056 - PC4) * (-0.45890583489823056 - PC4)) + exp(-0.098 * 

(1.2993368945886257 - PC5) * (1.2993368945886257 - PC5))), 2.7))+ 0.5305727061640492 

* (pow((exp(-0.098 * (0.34337258311415225 - PC1) * (0.34337258311415225 - PC1)) + 

exp(-0.098 * (0.1134827859130497 - PC2) * (0.1134827859130497 - PC2)) + exp(-0.098 * (-

0.5881286661144398 - PC3) * (-0.5881286661144398 - PC3)) + exp(-0.098 * (-

1.481057555295546 - PC4) * (-1.481057555295546 - PC4)) + exp(-0.098 * 

(1.5049000450005416 - PC5) * (1.5049000450005416 - PC5))), 2.7))- 5.289261912898404E-

4 * (pow((exp(-0.098 * (0.696170188233415 - PC1) * (0.696170188233415 - PC1)) + exp(-

0.098 * (-0.11248589400295197 - PC2) * (-0.11248589400295197 - PC2)) + exp(-0.098 * 

(0.03168322118119695 - PC3) * (0.03168322118119695 - PC3)) + exp(-0.098 * (-

0.10774679673462449 - PC4) * (-0.10774679673462449 - PC4)) + exp(-0.098 * 

(1.6434882738205092 - PC5) * (1.6434882738205092 - PC5))), 2.7))- 0.2274992826506121 

* (pow((exp(-0.098 * (-0.37450406609755615 - PC1) * (-0.37450406609755615 - PC1)) + 

exp(-0.098 * (0.6092000145682899 - PC2) * (0.6092000145682899 - PC2)) + exp(-0.098 * (-

0.0059955268446347946 - PC3) * (-0.0059955268446347946 - PC3)) + exp(-0.098 * 

(0.030624857914989385 - PC4) * (0.030624857914989385 - PC4)) + exp(-0.098 * (-

0.09090203984913423 - PC5) * (-0.09090203984913423 - PC5))), 2.7))+ 

0.13363000753449908 * (pow((exp(-0.098 * (0.9981627083262239 - PC1) * 

(0.9981627083262239 - PC1)) + exp(-0.098 * (-1.1155363905985134 - PC2) * (-

1.1155363905985134 - PC2)) + exp(-0.098 * (-0.46549560268553825 - PC3) * (-

0.46549560268553825 - PC3)) + exp(-0.098 * (-0.5562102844401146 - PC4) * (-

0.5562102844401146 - PC4)) + exp(-0.098 * (-2.171345971896689 - PC5) * (-

2.171345971896689 - PC5))), 2.7))- 0.00816795106717532 * (pow((exp(-0.098 * 

(0.6759011450079427 - PC1) * (0.6759011450079427 - PC1)) + exp(-0.098 * (-

0.16706099888156786 - PC2) * (-0.16706099888156786 - PC2)) + exp(-0.098 * (-

1.1875128250870457 - PC3) * (-1.1875128250870457 - PC3)) + exp(-0.098 * 

(3.397060828779145 - PC4) * (3.397060828779145 - PC4)) + exp(-0.098 * 

(3.136406538284857 - PC5) * (3.136406538284857 - PC5))), 2.7))+ 0.24256154445816777 * 

(pow((exp(-0.098 * (-1.0676721070445117 - PC1) * (-1.0676721070445117 - PC1)) + exp(-

0.098 * (-2.9703843749042376 - PC2) * (-2.9703843749042376 - PC2)) + exp(-0.098 * 

(2.17641048828956 - PC3) * (2.17641048828956 - PC3)) + exp(-0.098 * 

(1.6989013200542686 - PC4) * (1.6989013200542686 - PC4)) + exp(-0.098 * (-

0.8445123109601973 - PC5) * (-0.8445123109601973 - PC5))), 2.7))+ 

0.31729189116563866 * (pow((exp(-0.098 * (1.0557318039873917 - PC1) * 

(1.0557318039873917 - PC1)) + exp(-0.098 * (-0.8536343436709896 - PC2) * (-

0.8536343436709896 - PC2)) + exp(-0.098 * (-0.8100207344751506 - PC3) * (-

0.8100207344751506 - PC3)) + exp(-0.098 * (-0.29138681515014625 - PC4) * (-

0.29138681515014625 - PC4)) + exp(-0.098 * (0.5793598908437294 - PC5) * 
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(0.5793598908437294 - PC5))), 2.7))+ 0.061837330060731714 * (pow((exp(-0.098 * (-

1.4002398657995658 - PC1) * (-1.4002398657995658 - PC1)) + exp(-0.098 * (-

1.7732074232397323 - PC2) * (-1.7732074232397323 - PC2)) + exp(-0.098 * 

(1.4721316242794888 - PC3) * (1.4721316242794888 - PC3)) + exp(-0.098 * 

(0.32097584031188553 - PC4) * (0.32097584031188553 - PC4)) + exp(-0.098 * (-

0.2229851597807384 - PC5) * (-0.2229851597807384 - PC5))), 2.7))- 0.41911764705882354 

* (pow((exp(-0.098 * (0.7972238554274257 - PC1) * (0.7972238554274257 - PC1)) + exp(-

0.098 * (-0.8111983052747952 - PC2) * (-0.8111983052747952 - PC2)) + exp(-0.098 * (-

0.17336629251529476 - PC3) * (-0.17336629251529476 - PC3)) + exp(-0.098 * (-

1.4287312922375148 - PC4) * (-1.4287312922375148 - PC4)) + exp(-0.098 * 

(0.12670527412866694 - PC5) * (0.12670527412866694 - PC5))), 2.7))- 

0.4191176470588236 * (pow((exp(-0.098 * (-0.6999468936736798 - PC1) * (-

0.6999468936736798 - PC1)) + exp(-0.098 * (0.4192116954138775 - PC2) * 

(0.4192116954138775 - PC2)) + exp(-0.098 * (-0.5798386845787662 - PC3) * (-

0.5798386845787662 - PC3)) + exp(-0.098 * (-0.5703275718531158 - PC4) * (-

0.5703275718531158 - PC4)) + exp(-0.098 * (0.34484059293246044 - PC5) * 

(0.34484059293246044 - PC5))), 2.7))+ 0.6195652173913043 * (pow((exp(-0.098 * (-

0.9028254783978452 - PC1) * (-0.9028254783978452 - PC1)) + exp(-0.098 * (-

0.08356100109477506 - PC2) * (-0.08356100109477506 - PC2)) + exp(-0.098 * (-

0.013694857401745248 - PC3) * (-0.013694857401745248 - PC3)) + exp(-0.098 * (-

0.6162303415771668 - PC4) * (-0.6162303415771668 - PC4)) + exp(-0.098 * 

(0.5319968789597246 - PC5) * (0.5319968789597246 - PC5))), 2.7))- 0.41911764705882354 

* (pow((exp(-0.098 * (-0.08203391059556273 - PC1) * (-0.08203391059556273 - PC1)) + 

exp(-0.098 * (0.6960689449362187 - PC2) * (0.6960689449362187 - PC2)) + exp(-0.098 * 

(0.4126861271403178 - PC3) * (0.4126861271403178 - PC3)) + exp(-0.098 * (-

0.02156770696807815 - PC4) * (-0.02156770696807815 - PC4)) + exp(-0.098 * (-

1.0812206333142538 - PC5) * (-1.0812206333142538 - PC5))), 2.7))- 0.41911764705882354 

* (pow((exp(-0.098 * (0.9945065606206327 - PC1) * (0.9945065606206327 - PC1)) + exp(-

0.098 * (-0.10858553349491797 - PC2) * (-0.10858553349491797 - PC2)) + exp(-0.098 * (-

0.04253126834561452 - PC3) * (-0.04253126834561452 - PC3)) + exp(-0.098 * 

(0.015594366634567413 - PC4) * (0.015594366634567413 - PC4)) + exp(-0.098 * 

(1.0483254232875934 - PC5) * (1.0483254232875934 - PC5))), 2.7))+ 0.6195652173913043 

* (pow((exp(-0.098 * (-0.8741387427588942 - PC1) * (-0.8741387427588942 - PC1)) + exp(-

0.098 * (0.44806653707707406 - PC2) * (0.44806653707707406 - PC2)) + exp(-0.098 * (-

0.3631078146019596 - PC3) * (-0.3631078146019596 - PC3)) + exp(-0.098 * (-

0.15543841647181908 - PC4) * (-0.15543841647181908 - PC4)) + exp(-0.098 * (-

0.10989393872166346 - PC5) * (-0.10989393872166346 - PC5))), 2.7))+ 

0.6195652173913043 * (pow((exp(-0.098 * (0.04392782681741657 - PC1) * 

(0.04392782681741657 - PC1)) + exp(-0.098 * (0.5594544083198002 - PC2) * 

(0.5594544083198002 - PC2)) + exp(-0.098 * (0.3885945605909807 - PC3) * 

(0.3885945605909807 - PC3)) + exp(-0.098 * (-0.12477126895534217 - PC4) * (-

0.12477126895534217 - PC4)) + exp(-0.098 * (-0.4895894412636865 - PC5) * (-

0.4895894412636865 - PC5))), 2.7))- 0.41911764705882354 * (pow((exp(-0.098 * (-

0.20712231391588393 - PC1) * (-0.20712231391588393 - PC1)) + exp(-0.098 * 

(0.036880195125216154 - PC2) * (0.036880195125216154 - PC2)) + exp(-0.098 * (-

0.343999682611987 - PC3) * (-0.343999682611987 - PC3)) + exp(-0.098 * (-

1.1424327820413174 - PC4) * (-1.1424327820413174 - PC4)) + exp(-0.098 * 

(1.56218160356869 - PC5) * (1.56218160356869 - PC5))), 2.7)) - 0.4191176470588236 * 

(pow((exp(-0.098 * (-0.6274305934302018 - PC1) * (-0.6274305934302018 - PC1)) + exp(-

0.098 * (0.15575613171141378 - PC2) * (0.15575613171141378 - PC2)) + exp(-0.098 * 

(0.3081566095876752 - PC3) * (0.3081566095876752 - PC3)) + exp(-0.098 * 

(0.354485086009518 - PC4) * (0.354485086009518 - PC4)) + exp(-0.098 * (-

0.49551241846263816 - PC5) * (-0.49551241846263816 - PC5))), 2.7))- 

0.41911764705882354 * (pow((exp(-0.098 * (-0.11789058240511749 - PC1) * (-

0.11789058240511749 - PC1)) + exp(-0.098 * (0.7182796915744194 - PC2) * 

(0.7182796915744194 - PC2)) + exp(-0.098 * (0.31409362168139693 - PC3) * 

(0.31409362168139693 - PC3)) + exp(-0.098 * (-0.2095672890325668 - PC4) * (-

0.2095672890325668 - PC4)) + exp(-0.098 * (-0.16838485951651105 - PC5) * (-

0.16838485951651105 - PC5))), 2.7))+ 0.6195652173913043 * (pow((exp(-0.098 * (-

0.448382732758669 - PC1) * (-0.448382732758669 - PC1)) + exp(-0.098 * 



266 
 

(0.2503309479376489 - PC2) * (0.2503309479376489 - PC2)) + exp(-0.098 * (-

0.17753008063928702 - PC3) * (-0.17753008063928702 - PC3)) + exp(-0.098 * 

(1.0949097898648736 - PC4) * (1.0949097898648736 - PC4)) + exp(-0.098 * (-

1.5379647141567385 - PC5) * (-1.5379647141567385 - PC5))), 2.7))- 0.4191176470588236 

* (pow((exp(-0.098 * (-0.3439004663838459 - PC1) * (-0.3439004663838459 - PC1)) + exp(-

0.098 * (0.19469978924813322 - PC2) * (0.19469978924813322 - PC2)) + exp(-0.098 * (-

0.2439279944724757 - PC3) * (-0.2439279944724757 - PC3)) + exp(-0.098 * 

(0.6360550881011969 - PC4) * (0.6360550881011969 - PC4)) + exp(-0.098 * (-

0.6912134022326267 - PC5) * (-0.6912134022326267 - PC5))), 2.7))- 0.4191176470588235 

* (pow((exp(-0.098 * (0.30639683250173155 - PC1) * (0.30639683250173155 - PC1)) + 

exp(-0.098 * (0.7024369787194964 - PC2) * (0.7024369787194964 - PC2)) + exp(-0.098 * 

(0.4245924794757452 - PC3) * (0.4245924794757452 - PC3)) + exp(-0.098 * (-

0.17060309477667818 - PC4) * (-0.17060309477667818 - PC4)) + exp(-0.098 * (-

0.7373252278050881 - PC5) * (-0.7373252278050881 - PC5))), 2.7))+ 0.6195652173913043 

* (pow((exp(-0.098 * (1.0153856936848906 - PC1) * (1.0153856936848906 - PC1)) + exp(-

0.098 * (0.7474999520635012 - PC2) * (0.7474999520635012 - PC2)) + exp(-0.098 * 

(0.7650798204461697 - PC3) * (0.7650798204461697 - PC3)) + exp(-0.098 * (-

0.44414889788276946 - PC4) * (-0.44414889788276946 - PC4)) + exp(-0.098 * 

(0.3896164247598161 - PC5) * (0.3896164247598161 - PC5))), 2.7))- 0.41911764705882354 

* (pow((exp(-0.098 * (-1.222856629937907 - PC1) * (-1.222856629937907 - PC1)) + exp(-

0.098 * (-1.915903938916697 - PC2) * (-1.915903938916697 - PC2)) + exp(-0.098 * 

(1.544924327305037 - PC3) * (1.544924327305037 - PC3)) + exp(-0.098 * 

(1.0844975763675515 - PC4) * (1.0844975763675515 - PC4)) + exp(-0.098 * (-

0.28248195957500755 - PC5) * (-0.28248195957500755 - PC5))), 2.7))- 

0.4191176470588236 * (pow((exp(-0.098 * (0.29232377548813415 - PC1) * 

(0.29232377548813415 - PC1)) + exp(-0.098 * (0.874961851074236 - PC2) * 

(0.874961851074236 - PC2)) + exp(-0.098 * (1.1842398092030713 - PC3) * 

(1.1842398092030713 - PC3)) + exp(-0.098 * (-0.42895071524957146 - PC4) * (-

0.42895071524957146 - PC4)) + exp(-0.098 * (0.4746768671444466 - PC5) * 

(0.4746768671444466 - PC5))), 2.7))- 0.41911764705882354 * (pow((exp(-0.098 * (-

0.8736229079997044 - PC1) * (-0.8736229079997044 - PC1)) + exp(-0.098 * 

(1.4991921221184028 - PC2) * (1.4991921221184028 - PC2)) + exp(-0.098 * (-

0.9031900479780239 - PC3) * (-0.9031900479780239 - PC3)) + exp(-0.098 * 

(0.07806420519690872 - PC4) * (0.07806420519690872 - PC4)) + exp(-0.098 * (-

0.07518844052057602 - PC5) * (-0.07518844052057602 - PC5))), 2.7))- 

0.41911764705882354 * (pow((exp(-0.098 * (-1.3906848320055007 - PC1) * (-

1.3906848320055007 - PC1)) + exp(-0.098 * (0.6077581876980701 - PC2) * 

(0.6077581876980701 - PC2)) + exp(-0.098 * (-1.0808626963877783 - PC3) * (-

1.0808626963877783 - PC3)) + exp(-0.098 * (-0.22890751755183525 - PC4) * (-

0.22890751755183525 - PC4)) + exp(-0.098 * (0.5041389449055688 - PC5) * 

(0.5041389449055688 - PC5))), 2.7))+ 1.3477749024115757 

                                                                                                                            ... (5.34)   

where  𝐻�̂� refer to the normalized values of HT; the magnitudes of PCs in 

equation (5.34) are calculated using the equations (5.19) to (5.23). 

 

 

 

 



267 
 

 

5. F.4: SVR model pertaining to the Fluid Temperature (FT) 

prediction 

  𝐹�̂� = 0.47777143209305456 * (pow((exp(-1.0 * (0.9732039175972192 - PC1) * 

(0.9732039175972192 - PC1)) + exp(-1.0 * (1.4308095728478971 - PC2) * 

(1.4308095728478971 - PC2)) + exp(-1.0 * (-1.0897309535344422 - PC3) * (-

1.0897309535344422 - PC3)) + exp(-1.0 * (-0.7960126528289836 - PC4) * (-

0.7960126528289836 - PC4)) + exp(-1.0 * (-0.19323503614199544 - PC5) * (-

0.19323503614199544 - PC5))), 1.0))+ 0.8991213437276867 * (pow((exp(-1.0 * 

(1.1439406213837588 - PC1) * (1.1439406213837588 - PC1)) + exp(-1.0 * 

(1.6744736577523833 - PC2) * (1.6744736577523833 - PC2)) + exp(-1.0 * 

(1.1216799335077527 - PC3) * (1.1216799335077527 - PC3)) + exp(-1.0 * (-

0.47707726144145307 - PC4) * (-0.47707726144145307 - PC4)) + exp(-1.0 * 

(0.1748961889068372 - PC5) * (0.1748961889068372 - PC5))), 1.0))+ 

0.29466068399954837 * (pow((exp(-1.0 * (-0.0972149487917619 - PC1) * (-

0.0972149487917619 - PC1)) + exp(-1.0 * (-1.4351985169077643 - PC2) * (-

1.4351985169077643 - PC2)) + exp(-1.0 * (-0.38700516714156247 - PC3) * (-

0.38700516714156247 - PC3)) + exp(-1.0 * (0.1918369656442798 - PC4) * 

(0.1918369656442798 - PC4)) + exp(-1.0 * (-1.0099306574662568 - PC5) * (-

1.0099306574662568 - PC5))), 1.0))- 0.9188297013763417 * (pow((exp(-1.0 * 

(2.3976480753484486 - PC1) * (2.3976480753484486 - PC1)) + exp(-1.0 * 

(1.0368988953529834 - PC2) * (1.0368988953529834 - PC2)) + exp(-1.0 * 

(0.5767211858866957 - PC3) * (0.5767211858866957 - PC3)) + exp(-1.0 * 

(1.4881760682179535 - PC4) * (1.4881760682179535 - PC4)) + exp(-1.0 * 

(0.6745903835601345 - PC5) * (0.6745903835601345 - PC5))), 1.0))+ 1.1953149786392663 

* (pow((exp(-1.0 * (0.9301387359865164 - PC1) * (0.9301387359865164 - PC1)) + exp(-1.0 

* (1.3530518031362677 - PC2) * (1.3530518031362677 - PC2)) + exp(-1.0 * (-

0.46727910032544245 - PC3) * (-0.46727910032544245 - PC3)) + exp(-1.0 * 

(2.6265674470450087 - PC4) * (2.6265674470450087 - PC4)) + exp(-1.0 * (-

0.8284556635119927 - PC5) * (-0.8284556635119927 - PC5))), 1.0))- 0.7796051739444981 

* (pow((exp(-1.0 * (0.15632456719337343 - PC1) * (0.15632456719337343 - PC1)) + exp(-

1.0 * (1.4238653482576358 - PC2) * (1.4238653482576358 - PC2)) + exp(-1.0 * 

(0.5838400159040255 - PC3) * (0.5838400159040255 - PC3)) + exp(-1.0 * 

(1.3495247646140212 - PC4) * (1.3495247646140212 - PC4)) + exp(-1.0 * (-

1.0380806809955998 - PC5) * (-1.0380806809955998 - PC5))), 1.0))+ 

0.04033249960996687 * (pow((exp(-1.0 * (-0.9303307887236191 - PC1) * (-

0.9303307887236191 - PC1)) + exp(-1.0 * (0.1509440880408775 - PC2) * 

(0.1509440880408775 - PC2)) + exp(-1.0 * (1.6845832921948807 - PC3) * 

(1.6845832921948807 - PC3)) + exp(-1.0 * (0.3409767470554385 - PC4) * 

(0.3409767470554385 - PC4)) + exp(-1.0 * (-0.2746611489694111 - PC5) * (-

0.2746611489694111 - PC5))), 1.0))+ 0.3766429626998204 * (pow((exp(-1.0 * 

(0.6296979508671355 - PC1) * (0.6296979508671355 - PC1)) + exp(-1.0 * (-

1.4537391410275213 - PC2) * (-1.4537391410275213 - PC2)) + exp(-1.0 * 

(1.1994501407759919 - PC3) * (1.1994501407759919 - PC3)) + exp(-1.0 * (-

1.1432252745409386 - PC4) * (-1.1432252745409386 - PC4)) + exp(-1.0 * (-

0.27850056336738077 - PC5) * (-0.27850056336738077 - PC5))), 1.0))- 

0.43522932111417845 * (pow((exp(-1.0 * (0.44447838534296524 - PC1) * 

(0.44447838534296524 - PC1)) + exp(-1.0 * (-0.31150843846245224 - PC2) * (-

0.31150843846245224 - PC2)) + exp(-1.0 * (-0.6061541985548496 - PC3) * (-

0.6061541985548496 - PC3)) + exp(-1.0 * (-0.528799454157723 - PC4) * (-

0.528799454157723 - PC4)) + exp(-1.0 * (-0.3176245384439266 - PC5) * (-

0.3176245384439266 - PC5))), 1.0))+ 0.3460082126935699 * (pow((exp(-1.0 * 

(1.151901767903374 - PC1) * (1.151901767903374 - PC1)) + exp(-1.0 * 

(0.21605533047971254 - PC2) * (0.21605533047971254 - PC2)) + exp(-1.0 * (-

1.5691715283407133 - PC3) * (-1.5691715283407133 - PC3)) + exp(-1.0 * 

(1.0558785991020487 - PC4) * (1.0558785991020487 - PC4)) + exp(-1.0 * (-
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0.22467071206968584 - PC5) * (-0.22467071206968584 - PC5))), 1.0))- 

0.9342904702479011 * (pow((exp(-1.0 * (-1.2834876911139623 - PC1) * (-

1.2834876911139623 - PC1)) + exp(-1.0 * (0.7813920910236144 - PC2) * 

(0.7813920910236144 - PC2)) + exp(-1.0 * (-1.1212168639216762 - PC3) * (-

1.1212168639216762 - PC3)) + exp(-1.0 * (-1.4958537484911743 - PC4) * (-

1.4958537484911743 - PC4)) + exp(-1.0 * (-1.3723075318680424 - PC5) * (-

1.3723075318680424 - PC5))), 1.0))- 0.16435582977665916 * (pow((exp(-1.0 * (-

1.4074420372061258 - PC1) * (-1.4074420372061258 - PC1)) + exp(-1.0 * (-

0.5073500971615174 - PC2) * (-0.5073500971615174 - PC2)) + exp(-1.0 * 

(0.5408279051656457 - PC3) * (0.5408279051656457 - PC3)) + exp(-1.0 * 

(1.6518031682679775 - PC4) * (1.6518031682679775 - PC4)) + exp(-1.0 * (-

0.6727624080493384 - PC5) * (-0.6727624080493384 - PC5))), 1.0))- 0.9552631578947369 

* (pow((exp(-1.0 * (-1.38552781261835 - PC1) * (-1.38552781261835 - PC1)) + exp(-1.0 * (-

1.7039118055874325 - PC2) * (-1.7039118055874325 - PC2)) + exp(-1.0 * (-

0.959580874439717 - PC3) * (-0.959580874439717 - PC3)) + exp(-1.0 * 

(2.5140365049467843 - PC4) * (2.5140365049467843 - PC4)) + exp(-1.0 * 

(0.5867478831990992 - PC5) * (0.5867478831990992 - PC5))), 1.0))+ 0.6787628675964762 

* (pow((exp(-1.0 * (-1.1999024112742769 - PC1) * (-1.1999024112742769 - PC1)) + exp(-

1.0 * (0.4389567584553705 - PC2) * (0.4389567584553705 - PC2)) + exp(-1.0 * 

(1.049554380843094 - PC3) * (1.049554380843094 - PC3)) + exp(-1.0 * 

(0.6693681452375662 - PC4) * (0.6693681452375662 - PC4)) + exp(-1.0 * (-

0.329639545035936 - PC5) * (-0.329639545035936 - PC5))), 1.0)) - 0.5256029674169872 * 

(pow((exp(-1.0 * (-0.9552482113306603 - PC1) * (-0.9552482113306603 - PC1)) + exp(-1.0 

* (1.364503680267093 - PC2) * (1.364503680267093 - PC2)) + exp(-1.0 * (-

0.9776653490119238 - PC3) * (-0.9776653490119238 - PC3)) + exp(-1.0 * (-

2.565708036396036 - PC4) * (-2.565708036396036 - PC4)) + exp(-1.0 * (-

1.3318809159066576 - PC5) * (-1.3318809159066576 - PC5))), 1.0))- 0.9552631578947369 

* (pow((exp(-1.0 * (0.3282918736187309 - PC1) * (0.3282918736187309 - PC1)) + exp(-1.0 

* (-0.5250602578973824 - PC2) * (-0.5250602578973824 - PC2)) + exp(-1.0 * (-

0.3407074971760928 - PC3) * (-0.3407074971760928 - PC3)) + exp(-1.0 * 

(0.871994709500329 - PC4) * (0.871994709500329 - PC4)) + exp(-1.0 * (-

0.35722101318336463 - PC5) * (-0.35722101318336463 - PC5))), 1.0))- 

0.5230542321102395 * (pow((exp(-1.0 * (-1.0366900501389753 - PC1) * (-

1.0366900501389753 - PC1)) + exp(-1.0 * (0.149558715116471 - PC2) * 

(0.149558715116471 - PC2)) + exp(-1.0 * (-0.1750646001518295 - PC3) * (-

0.1750646001518295 - PC3)) + exp(-1.0 * (-0.5760705344658554 - PC4) * (-

0.5760705344658554 - PC4)) + exp(-1.0 * (0.8322818939902702 - PC5) * 

(0.8322818939902702 - PC5))), 1.0)) - 0.3174425454442844 * (pow((exp(-1.0 * (-

0.292920863564135 - PC1) * (-0.292920863564135 - PC1)) + exp(-1.0 * (-

0.10537266301463469 - PC2) * (-0.10537266301463469 - PC2)) + exp(-1.0 * (-

0.5178778770027747 - PC3) * (-0.5178778770027747 - PC3)) + exp(-1.0 * (-

0.6910816529965188 - PC4) * (-0.6910816529965188 - PC4)) + exp(-1.0 * (-

0.6409945384902461 - PC5) * (-0.6409945384902461 - PC5))), 1.0))+ 

0.10969713374958272 * (pow((exp(-1.0 * (0.8652159911255344 - PC1) * 

(0.8652159911255344 - PC1)) + exp(-1.0 * (-1.8749654987794884 - PC2) * (-

1.8749654987794884 - PC2)) + exp(-1.0 * (-0.45164580541178856 - PC3) * (-

0.45164580541178856 - PC3)) + exp(-1.0 * (0.13284208476456977 - PC4) * 

(0.13284208476456977 - PC4)) + exp(-1.0 * (-0.38017374270113063 - PC5) * (-

0.38017374270113063 - PC5))), 1.0))+ 0.17929311380708635 * (pow((exp(-1.0 * (-

1.832608841080855 - PC1) * (-1.832608841080855 - PC1)) + exp(-1.0 * 

0.34656580207609333 - PC2) * (0.34656580207609333 - PC2)) + exp(-1.0 * (-

0.19743898511416302 - PC3) * (-0.19743898511416302 - PC3)) + exp(-1.0 * 

(1.5277571080144192 - PC4) * (1.5277571080144192 - PC4)) + exp(-1.0 * (-

0.9477343926224424 - PC5) * (-0.9477343926224424 - PC5))), 1.0))- 0.31320329674879366 

* (pow((exp(-1.0 * (0.8369515780542807 - PC1) * (0.8369515780542807 - PC1)) + exp(-1.0 

* (1.6233114391238614 - PC2) * (1.6233114391238614 - PC2)) + exp(-1.0 * 

(2.1111688142720313 - PC3) * (2.1111688142720313 - PC3)) + exp(-1.0 * 

(0.2117951594490802 - PC4) * (0.2117951594490802 - PC4)) + exp(-1.0 * 

(2.079319098317639 - PC5) * (2.079319098317639 - PC5))), 1.0))+ 0.05095463080501894 * 

(pow((exp(-1.0 * (-1.9245530353164513 - PC1) * (-1.9245530353164513 - PC1)) + exp(-1.0 
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* (-0.5020852242900583 - PC2) * (-0.5020852242900583 - PC2)) + exp(-1.0 * 

(1.135912919610537 - PC3) * (1.135912919610537 - PC3)) + exp(-1.0 * 

(0.6426010467719301 - PC4) * (0.6426010467719301 - PC4)) + exp(-1.0 * 

(2.3316951932266003 - PC5) * (2.3316951932266003 - PC5))), 1.0)) + 0.3788221486028322 

* (pow((exp(-1.0 * (1.6324638855944151 - PC1) * (1.6324638855944151 - PC1)) + exp(-1.0 

* (1.124812688799096 - PC2) * (1.124812688799096 - PC2)) + exp(-1.0 * 

(0.705652474941605 - PC3) * (0.705652474941605 - PC3)) + exp(-1.0 * (-

0.35186984650975045 - PC4) * (-0.35186984650975045 - PC4)) + exp(-1.0 * 

(0.6635831928415263 - PC5) * (0.6635831928415263 - PC5))), 1.0))- 0.5021657480084027 

* (pow((exp(-1.0 * (-0.43042193921889327 - PC1) * (-0.43042193921889327 - PC1)) + exp(-

1.0 * (0.1605245640692602 - PC2) * (0.1605245640692602 - PC2)) + exp(-1.0 * (-

0.029736423542470285 - PC3) * (-0.029736423542470285 - PC3)) + exp(-1.0 * (-

1.57267661114413 - PC4) * (-1.57267661114413 - PC4)) + exp(-1.0 * (2.482091280189985 - 

PC5) * (2.482091280189985 - PC5))), 1.0))+ 0.11486580531304186 * (pow((exp(-1.0 * 

(1.4543567266402726 - PC1) * (1.4543567266402726 - PC1)) + exp(-1.0 * 

(1.896852527616768 - PC2) * (1.896852527616768 - PC2)) + exp(-1.0 * (-

2.573862825974282 - PC3) * (-2.573862825974282 - PC3)) + exp(-1.0 * (-

0.5737638021917664 - PC4) * (-0.5737638021917664 - PC4)) + exp(-1.0 * 

(1.1787506029022967 - PC5) * (1.1787506029022967 - PC5))), 1.0))- 0.5742527624164043 

* (pow((exp(-1.0 * (-1.301709367516012 - PC1) * (-1.301709367516012 - PC1)) + exp(-1.0 * 

(0.3941673487626199 - PC2) * (0.3941673487626199 - PC2)) + exp(-1.0 * 

(0.5271269262122992 - PC3) * (0.5271269262122992 - PC3)) + exp(-1.0 * (-

0.6644947899428104 - PC4) * (-0.6644947899428104 - PC4)) + exp(-1.0 * (-

0.8576655465124544 - PC5) * (-0.8576655465124544 - PC5))), 1.0)) - 0.3853229117066643 

* (pow((exp(-1.0 * (0.23863424153349827 - PC1) * (0.23863424153349827 - PC1)) + exp(-

1.0 * (1.1595686012221882 - PC2) * (1.1595686012221882 - PC2)) + exp(-1.0 * 

(1.2949231639099072 - PC3) * (1.2949231639099072 - PC3)) + exp(-1.0 * 

(0.7256832508864659 - PC4) * (0.7256832508864659 - PC4)) + exp(-1.0 * (-

1.1298787900674192 - PC5) * (-1.1298787900674192 - PC5))), 1.0))- 0.9552631578947369 

* (pow((exp(-1.0 * (-1.1701959824420312 - PC1) * (-1.1701959824420312 - PC1)) + exp(-

1.0 * (0.49607514793081675 - PC2) * (0.49607514793081675 - PC2)) + exp(-1.0 * (-

0.15580141465039807 - PC3) * (-0.15580141465039807 - PC3)) + exp(-1.0 * (-

0.8544271448601325 - PC4) * (-0.8544271448601325 - PC4)) + exp(-1.0 * (-

0.2993688169160095 - PC5) * (-0.2993688169160095 - PC5))), 1.0))+ 1.2964285714285715 

* (pow((exp(-1.0 * (-0.29425333365471273 - PC1) * (-0.29425333365471273 - PC1)) + exp(-

1.0 * (-0.7488441651924657 - PC2) * (-0.7488441651924657 - PC2)) + exp(-1.0 * 

(0.14099610327489845 - PC3) * (0.14099610327489845 - PC3)) + exp(-1.0 * 

(0.6496346416098849 - PC4) * (0.6496346416098849 - PC4)) + exp(-1.0 * (-

0.1382882121338554 - PC5) * (-0.1382882121338554 - PC5))), 1.0))- 0.9552631578947369 

* (pow((exp(-1.0 * (-0.2851745656656295 - PC1) * (-0.2851745656656295 - PC1)) + exp(-

1.0 * (0.3763749989194041 - PC2) * (0.3763749989194041 - PC2)) + exp(-1.0 * 

(0.8094528950374702 - PC3) * (0.8094528950374702 - PC3)) + exp(-1.0 * 

(0.039483764281568266 - PC4) * (0.039483764281568266 - PC4)) + exp(-1.0 * 

(0.4706106356598398 - PC5) * (0.4706106356598398 - PC5))), 1.0))- 0.9552631578947368 

* (pow((exp(-1.0 * (0.1079375013777528 - PC1) * (0.1079375013777528 - PC1)) + exp(-1.0 

* (1.0758838163494822 - PC2) * (1.0758838163494822 - PC2)) + exp(-1.0 * (-

1.1857959615458784 - PC3) * (-1.1857959615458784 - PC3)) + exp(-1.0 * (-

0.1673426540852874 - PC4) * (-0.1673426540852874 - PC4)) + exp(-1.0 * 

(0.026132426995135613 - PC5) * (0.026132426995135613 - PC5))), 1.0))- 

0.9552631578947369 * (pow((exp(-1.0 * (-0.8567603189085968 - PC1) * (-

0.8567603189085968 - PC1)) + exp(-1.0 * (-0.2065525506551554 - PC2) * (-

0.2065525506551554 - PC2)) + exp(-1.0 * (-0.6789980433962217 - PC3) * (-

0.6789980433962217 - PC3)) + exp(-1.0 * (0.7805257432069781 - PC4) * 

(0.7805257432069781 - PC4)) + exp(-1.0 * (0.58137923077997 - PC5) * (0.58137923077997 

- PC5))), 1.0)) + 1.2964285714285715 * (pow((exp(-1.0 * (-1.5652907673752117 - PC1) * (-

1.5652907673752117 - PC1)) + exp(-1.0 * (-0.8359016418916223 - PC2) * (-

0.8359016418916223 - PC2)) + exp(-1.0 * (-1.017777993456468 - PC3) * (-

1.017777993456468 - PC3)) + exp(-1.0 * (1.9509327153021803 - PC4) * 

(1.9509327153021803 - PC4)) + exp(-1.0 * (-0.13252562222272146 - PC5) * (-

0.13252562222272146 - PC5))), 1.0))- 0.06532142445417022 * (pow((exp(-1.0 * 
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(1.1385948292031338 - PC1) * (1.1385948292031338 - PC1)) + exp(-1.0 * 

(0.27622614275326085 - PC2) * (0.27622614275326085 - PC2)) + exp(-1.0 * (-

1.0513987281049189 - PC3) * (-1.0513987281049189 - PC3)) + exp(-1.0 * (-

0.4469489196549603 - PC4) * (-0.4469489196549603 - PC4)) + exp(-1.0 * 

(0.5538115528247464 - PC5) * (0.5538115528247464 - PC5))), 1.0))- 0.9552631578947369 

* (pow((exp(-1.0 * (0.6465439694433665 - PC1) * (0.6465439694433665 - PC1)) + exp(-1.0 

* (-0.9929036586973015 - PC2) * (-0.9929036586973015 - PC2)) + exp(-1.0 * (-

0.5882032312576566 - PC3) * (-0.5882032312576566 - PC3)) + exp(-1.0 * (-

0.9928659158903361 - PC4) * (-0.9928659158903361 - PC4)) + exp(-1.0 * (-

0.48783455954679106 - PC5) * (-0.48783455954679106 - PC5))), 1.0))- 

0.9552631578947369 * (pow((exp(-1.0 * (1.4517825283256496 - PC1) * 

(1.4517825283256496 - PC1)) + exp(-1.0 * (0.5418292645660471 - PC2) * 

(0.5418292645660471 - PC2)) + exp(-1.0 * (1.5007008415361978 - PC3) * 

(1.5007008415361978 - PC3)) + exp(-1.0 * (0.03930823178506545 - PC4) * 

(0.03930823178506545 - PC4)) + exp(-1.0 * (-0.008683332008600053 - PC5) * (-

0.008683332008600053 - PC5))), 1.0))+ 1.2964285714285715 * (pow((exp(-1.0 * 

(0.22574824254622178 - PC1) * (0.22574824254622178 - PC1)) + exp(-1.0 * (-

0.6585662026761424 - PC2) * (-0.6585662026761424 - PC2)) + exp(-1.0 * (-

0.6929471524300306 - PC3) * (-0.6929471524300306 - PC3)) + exp(-1.0 * (-

0.8958199537945392 - PC4) * (-0.8958199537945392 - PC4)) + exp(-1.0 * (-

0.9816645255815629 - PC5) * (-0.9816645255815629 - PC5))), 1.0)) - 0.9552631578947369 

* (pow((exp(-1.0 * (0.6537523248178476 - PC1) * (0.6537523248178476 - PC1)) + exp(-1.0 

* (-1.9950314458590697 - PC2) * (-1.9950314458590697 - PC2)) + exp(-1.0 * 

(0.6160899306812634 - PC3) * (0.6160899306812634 - PC3)) + exp(-1.0 * (-

0.6546021447882548 - PC4) * (-0.6546021447882548 - PC4)) + exp(-1.0 * (-

0.9870014981890274 - PC5) * (-0.9870014981890274 - PC5))), 1.0))+ 1.2964285714285715 

* (pow((exp(-1.0 * (-8.561881225052373E-4 - PC1) * (-8.561881225052373E-4 - PC1)) + 

exp(-1.0 * (0.6714910463407581 - PC2) * (0.6714910463407581 - PC2)) + exp(-1.0 * 

(1.85596515410265 - PC3) * (1.85596515410265 - PC3)) + exp(-1.0 * (-

0.8323829416023468 - PC4) * (-0.8323829416023468 - PC4)) + exp(-1.0 * (-

0.2642297217346937 - PC5) * (-0.2642297217346937 - PC5))), 1.0))- 0.9552631578947369 

* (pow((exp(-1.0 * (1.2870872327957699 - PC1) * (1.2870872327957699 - PC1)) + exp(-1.0 

* (-0.7176298204510407 - PC2) * (-0.7176298204510407 - PC2)) + exp(-1.0 * 

(1.5637092131071746 - PC3) * (1.5637092131071746 - PC3)) + exp(-1.0 * 

(0.41918135951579966 - PC4) * (0.41918135951579966 - PC4)) + exp(-1.0 * (-

0.2171541238408937 - PC5) * (-0.2171541238408937 - PC5))), 1.0))+ 1.2964285714285715 

* (pow((exp(-1.0 * (0.2879626400641941 - PC1) * (0.2879626400641941 - PC1)) + exp(-1.0 

* (0.7973900475155014 - PC2) * (0.7973900475155014 - PC2)) + exp(-1.0 * (-

1.3887646120942885 - PC3) * (-1.3887646120942885 - PC3)) + exp(-1.0 * (-

0.11168527347382246 - PC4) * (-0.11168527347382246 - PC4)) + exp(-1.0 * 

(1.052020672337765 - PC5) * (1.052020672337765 - PC5))), 1.0)) + 1.2964285714285715 * 

(pow((exp(-1.0 * (-1.261983898361134 - PC1) * (-1.261983898361134 - PC1)) + exp(-1.0 * 

(-0.10055088975537771 - PC2) * (-0.10055088975537771 - PC2)) + exp(-1.0 * 

(0.9126521869654228 - PC3) * (0.9126521869654228 - PC3)) + exp(-1.0 * 

(0.7409711073927905 - PC4) * (0.7409711073927905 - PC4)) + exp(-1.0 * 

(0.1215848945006455 - PC5) * (0.1215848945006455 - PC5))), 1.0))+ 1.2964285714285715 

* (pow((exp(-1.0 * (-0.4755842330651412 - PC1) * (-0.4755842330651412 - PC1)) + exp(-

1.0 * (0.2837031722132356 - PC2) * (0.2837031722132356 - PC2)) + exp(-1.0 * (-

0.19808748742718618 - PC3) * (-0.19808748742718618 - PC3)) + exp(-1.0 * (-

2.236245974343832 - PC4) * (-2.236245974343832 - PC4)) + exp(-1.0 * 

(2.4376731690228883 - PC5) * (2.4376731690228883 - PC5))), 1.0))+ 1.2964285714285715 

* (pow((exp(-1.0 * (-0.21719880581736847 - PC1) * (-0.21719880581736847 - PC1)) + exp(-

1.0 * (-1.2210608448644131 - PC2) * (-1.2210608448644131 - PC2)) + exp(-1.0 * (-

0.168235268320581 - PC3) * (-0.168235268320581 - PC3)) + exp(-1.0 * (-

0.1507108922402918 - PC4) * (-0.1507108922402918 - PC4)) + exp(-1.0 * (-

1.3529930054749602 - PC5) * (-1.3529930054749602 - PC5))), 1.0))+ 1.2964285714285715 

* (pow((exp(-1.0 * (-0.7186718684550352 - PC1) * (-0.7186718684550352 - PC1)) + exp(-

1.0 * (0.29873222577612685 - PC2) * (0.29873222577612685 - PC2)) + exp(-1.0 * 

(0.4250013915371853 - PC3) * (0.4250013915371853 - PC3)) + exp(-1.0 * (-

0.48018033109457026 - PC4) * (-0.48018033109457026 - PC4)) + exp(-1.0 * (-
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0.5815213892470266 - PC5) * (-0.5815213892470266 - PC5))), 1.0))- 0.9552631578947368 

* (pow((exp(-1.0 * (0.11269198465026975 - PC1) * (0.11269198465026975 - PC1)) + exp(-

1.0 * (-0.7492854650339129 - PC2) * (-0.7492854650339129 - PC2)) + exp(-1.0 * (-

0.3687733141027855 - PC3) * (-0.3687733141027855 - PC3)) + exp(-1.0 * (-

0.8773968082598453 - PC4) * (-0.8773968082598453 - PC4)) + exp(-1.0 * (-

0.8299320700509456 - PC5) * (-0.8299320700509456 - PC5))), 1.0))- 0.9552631578947369 

* (pow((exp(-1.0 * (-0.3854889203468838 - PC1) * (-0.3854889203468838 - PC1)) + exp(-

1.0 * (-0.29246045524449454 - PC2) * (-0.29246045524449454 - PC2)) + exp(-1.0 * 

(0.3979113173111659 - PC3) * (0.3979113173111659 - PC3)) + exp(-1.0 * (-

0.24221861556546842 - PC4) * (-0.24221861556546842 - PC4)) + exp(-1.0 * (-

0.6793362223390602 - PC5) * (-0.6793362223390602 - PC5))), 1.0)) - 0.9552631578947368 

* (pow((exp(-1.0 * (1.1502216857915553 - PC1) * (1.1502216857915553 - PC1)) + exp(-1.0 

* (-1.123369499172101 - PC2) * (-1.123369499172101 - PC2)) + exp(-1.0 * 

(1.6577688769653032 - PC3) * (1.6577688769653032 - PC3)) + exp(-1.0 * 

(0.2036884726443394 - PC4) * (0.2036884726443394 - PC4)) + exp(-1.0 * 

(0.03702708129704269 - PC5) * (0.03702708129704269 - PC5))), 1.0))+ 

1.2964285714285715 * (pow((exp(-1.0 * (-0.7843921175302312 - PC1) * (-

0.7843921175302312 - PC1)) + exp(-1.0 * (0.7602670946915685 - PC2) * 

(0.7602670946915685 - PC2)) + exp(-1.0 * (0.3255110693086585 - PC3) * 

(0.3255110693086585 - PC3)) + exp(-1.0 * (-0.9899756944433088 - PC4) * (-

0.9899756944433088 - PC4)) + exp(-1.0 * (-1.2348087489791395 - PC5) * (-

1.2348087489791395 - PC5))), 1.0))+ 1.2964285714285715 * (pow((exp(-1.0 * 

(1.0558078819753354 - PC1) * (1.0558078819753354 - PC1)) + exp(-1.0 * (-

0.006072845102713058 - PC2) * (-0.006072845102713058 - PC2)) + exp(-1.0 * (-

1.332130116304932 - PC3) * (-1.332130116304932 - PC3)) + exp(-1.0 * (-

0.391961813842165 - PC4) * (-0.391961813842165 - PC4)) + exp(-1.0 * 

(0.6166769436184407 - PC5) * (0.6166769436184407 - PC5))), 1.0)) + 1.2964285714285715 

* (pow((exp(-1.0 * (0.8967485009384014 - PC1) * (0.8967485009384014 - PC1)) + exp(-1.0 

* (-1.9284444394893696 - PC2) * (-1.9284444394893696 - PC2)) + exp(-1.0 * (-

0.7927479236630741 - PC3) * (-0.7927479236630741 - PC3)) + exp(-1.0 * 

(0.21281727018931376 - PC4) * (0.21281727018931376 - PC4)) + exp(-1.0 * 

(0.14135561619964995 - PC5) * (0.14135561619964995 - PC5))), 1.0))- 

0.9552631578947369 * (pow((exp(-1.0 * (-0.8467452185956604 - PC1) * (-

0.8467452185956604 - PC1)) + exp(-1.0 * (0.34306599045574926 - PC2) * 

(0.34306599045574926 - PC2)) + exp(-1.0 * (-1.3830724263112386 - PC3) * (-

1.3830724263112386 - PC3)) + exp(-1.0 * (-0.43273932948922533 - PC4) * (-

0.43273932948922533 - PC4)) + exp(-1.0 * (1.7277632662418494 - PC5) * 

(1.7277632662418494 - PC5))), 1.0))- 0.9552631578947368 * (pow((exp(-1.0 * 

(0.4059731238672119 - PC1) * (0.4059731238672119 - PC1)) + exp(-1.0 * 

(0.02210200021595946 - PC2) * (0.02210200021595946 - PC2)) + exp(-1.0 * (-

0.6752623687662617 - PC3) * (-0.6752623687662617 - PC3)) + exp(-1.0 * (-

0.34113147739545585 - PC4) * (-0.34113147739545585 - PC4)) + exp(-1.0 * 

(0.16758500361295633 - PC5) * (0.16758500361295633 - PC5))), 1.0))- 

0.9552631578947369 * (pow((exp(-1.0 * (-0.2725624660983987 - PC1) * (-

0.2725624660983987 - PC1)) + exp(-1.0 * (-0.10189209507332755 - PC2) * (-

0.10189209507332755 - PC2)) + exp(-1.0 * (0.30548600812497667 - PC3) * 

(0.30548600812497667 - PC3)) + exp(-1.0 * (-0.720093493669338 - PC4) * (-

0.720093493669338 - PC4)) + exp(-1.0 * (-0.6462028801143773 - PC5) * (-

0.6462028801143773 - PC5))), 1.0))- 0.9552631578947369 * (pow((exp(-1.0 * 

(0.796519083523312 - PC1) * (0.796519083523312 - PC1)) + exp(-1.0 * (-

0.9686272829261681 - PC2) * (-0.9686272829261681 - PC2)) + exp(-1.0 * 

(0.712105329065506 - PC3) * (0.712105329065506 - PC3)) + exp(-1.0 * (-

0.8194462607006237 - PC4) * (-0.8194462607006237 - PC4)) + exp(-1.0 * (-

0.09973937764419954 - PC5) * (-0.09973937764419954 - PC5))), 1.0))+ 

1.2964285714285715 * (pow((exp(-1.0 * (-1.1944556185512665 - PC1) * (-

1.1944556185512665 - PC1)) + exp(-1.0 * (0.4971107722000004 - PC2) * 

(0.4971107722000004 - PC2)) + exp(-1.0 * (1.1515798166202458 - PC3) * 

(1.1515798166202458 - PC3)) + exp(-1.0 * (-0.4286931846517899 - PC4) * (-

0.4286931846517899 - PC4)) + exp(-1.0 * (-0.7723715565084187 - PC5) * (-

0.7723715565084187 - PC5))), 1.0)) - 0.9552631578947368 * (pow((exp(-1.0 * 
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(0.9029139909544912 - PC1) * (0.9029139909544912 - PC1)) + exp(-1.0 * (-

1.276470307387063 - PC2) * (-1.276470307387063 - PC2)) + exp(-1.0 * 

(1.136718953620475 - PC3) * (1.136718953620475 - PC3)) + exp(-1.0 * (-

0.2711877354552425 - PC4) * (-0.2711877354552425 - PC4)) + exp(-1.0 * (-

0.32797667493727317 - PC5) * (-0.32797667493727317 - PC5))), 1.0))+ 

1.2964285714285715 * (pow((exp(-1.0 * (0.24891494823572066 - PC1) * 

(0.24891494823572066 - PC1)) + exp(-1.0 * (-0.7969793468633649 - PC2) * (-

0.7969793468633649 - PC2)) + exp(-1.0 * (-0.4758609622796306 - PC3) * (-

0.4758609622796306 - PC3)) + exp(-1.0 * (-0.6257646906283095 - PC4) * (-

0.6257646906283095 - PC4)) + exp(-1.0 * (-0.16972609196640884 - PC5) * (-

0.16972609196640884 - PC5))), 1.0))- 0.9552631578947369 * (pow((exp(-1.0 * (-

0.7697872501578359 - PC1) * (-0.7697872501578359 - PC1)) + exp(-1.0 * 

(1.0373149842379308 - PC2) * (1.0373149842379308 - PC2)) + exp(-1.0 * (-

0.9743468612773878 - PC3) * (-0.9743468612773878 - PC3)) + exp(-1.0 * 

(0.38426637071967534 - PC4) * (0.38426637071967534 - PC4)) + exp(-1.0 * 

(1.0961520584522266 - PC5) * (1.0961520584522266 - PC5))), 1.0))+ 1.2964285714285715 

* (pow((exp(-1.0 * (-1.5515915629082544 - PC1) * (-1.5515915629082544 - PC1)) + exp(-

1.0 * (-0.5979067829675345 - PC2) * (-0.5979067829675345 - PC2)) + exp(-1.0 * 

(0.8427765701029908 - PC3) * (0.8427765701029908 - PC3)) + exp(-1.0 * 

(0.4540689877224843 - PC4) * (0.4540689877224843 - PC4)) + exp(-1.0 * 

(0.9481086675737915 - PC5) * (0.9481086675737915 - PC5))), 1.0))+ 0.3585930005491796 

                                                                                                                          ... (5.35)   

where  𝐹�̂� refer to the normalized values of FT; the magnitudes of PCs in 

equation (5.35) are calculated using the equations (5.25) to (5.29). 
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Abstract 

The property that governs the deposition of ash in various coal-utilizing 

process equipment is termed ash fusion temperature (AFT).  The physico-

chemical phenomena underlying the said ash deposition that adversely affects 

the efficiency of coal-based processes are termed slagging and fouling.  One of 

the four commonly used AFTs in practice is termed Initial deformation 

temperature (IDT). It is that temperature at which the rounding of the tip of an 

ash cone is noted. It’s of particular concern since it represents the temperature 

where the ash first softens and therefore becomes sticky. In India, the currently 

mined coals have a high ash content (25-45%) and therefore are of low quality. 

These coals are predominantly used in the thermal power stations located 

widely India. Owing to the its importance in plant operation, it is necessary 

that a model with a good quality IDT prediction accuracy and generalization 

ability is available for design engineers and plant personnel. The best IDT 

prediction model developed for in Chapter 5 is found to be unsuitable for high 

ash Indian coals. Accordingly, computational intelligence (CI) based IDT 

prediction models have been developed in this study wherein the contents of 

the seven principal oxides found in coal ashes (i.e. SiO2, Al2O3, Fe2O3, CaO, 

MgO, TiO2, Na2O+K2O), were used as the predictors. The experimental data 

on Indian coals were sourced from Central Institute of Mining and Fuel 

Research (CIMFR), Dhanbad, India.  Specifically, three CI-based modeling 

formalisms, namely MLPNN, SVR and GP were employed to develop the IDT 

prediction models. Among these models, the IDT prediction accuracy and 

generalization performance of the SVR-based model was found to be superior 

to the corresponding GP and MLPNN-based models.  
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6.1 INTRODUCTION              

Coal is an important source for energy generation. As coal is combusted 

or gasified its mineral matter, typically in the form of oxides, is left as an 

incombustible deposit (residue), called ash. The nature and quantity of ash 

formed during combustion and gasification of coal is a significant factor 

influencing its utility, removal and storage, heat transfer processes, process 

efficiency, and operating and maintenance costs (Lolja et al., 2002).  

Ash fusion temperatures (AFTs) represent important properties 

indicating the suitability of a coal source for combustion, gasification and 

liquefaction purposes. The melting characteristics and fusion temperatures of 

the coal ash depends on the elemental and mineral compositions (Liu et al., 

2006; Thompson and Argent, 1999). There are two major phenomena namely 

slagging or fouling arising essentially from the deposition of ash in the 

operation of coal-based processes. These are responsible for the occurrence of 

ash clinkering and ash agglomeration on the heat absorbing surfaces of the 

exposed equipment (such as heat exchangers) of the coal utilizing processes. It 

is well-established that ash clinkering may result into an unstable gasifier 

operation along with channel burning and pressure drop (Van Dyk et al., 

2001). The major undesired effects of the slagging and fouling are frequent 

shut-downs and reduced process efficiency. A detailed discussion of slagging 

and fouling is already provided in Chapter 5 (section 5.1).  AFTs are good 

cross-line parameters (indicators) of the occurrence of slagging and fouling 

(Dyk et al., 2001; Seggiani, 1999) in the process operation. Therefore, it 

becomes important to predict the AFTs for designing, operating and 

optimizing coal-based processes.   

 Among the four AFTs, namely Initial Deformation Temperature (IDT), 

Hemispherical Temperature (HT), Softening Temperature (ST) and Fluid 

Temperature (FT), the first one is of special significance since it decides the 

type of coal and fusion range (difference between IDT and FT) (Lolja et al., 

2002; Ministry of coal, 2008). The IDT refers to the temperature at which the 

rounding of the tip of an ash cone is noted. It’s of particular concern since it 
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represents the temperature where the ash first softens and therefore becomes 

sticky (Gupta et al. 1998).  

The knowledge of IDT is useful in case of gasifiers using non-coking 

coals (Sharma et al., 2014). These coals have a tendency to form Char 

(Sengar, 2015); it is a high ash containing residue that remains after light gases 

(for example, coal gas), and tar have been driven out or released from a 

carbonaceous material during the initial stage of combustion, which is known 

as carbonization (Kumar and Gupta, 1994; Ministry of coal, 2008). The non-

coking coals, when subjected to gasification causes an uneven temperature 

distribution in reactor, and thereby transient pressure drop levels, resulting in 

an unstable gasifier operation and hence variable efficiencies in each operation 

(Dyk et al., 2001). Due to the high ash content in a non-coking coal, it does not 

possess any caking properties and as a result the IDT measurement are easier 

as compared to other ash fusion temperatures (AFTs) (Sengar, 2015). Another 

significant feature of IDT is that it shows a definite increasing or decreasing 

trend in coal carbonization processes. These trends are often used as predictive 

indicators of the occurrence of slagging, fouling, and abrasion during coal 

combustion. The increase or decrease of IDT is influenced by the variations in 

the weight percentages of metal oxides such as Fe2O3, Al2O3, SiO2, and CaO 

(Sharma A., 2014). Also, in the studies of blending of lignite coal ashes with 

metal oxides, IDT has been observed as the prime testing temperature among 

all AFTs (Acma et al., 2010; Mamoru et al., 1977). The reason of its prime 

importance is that the measurement of IDT takes lesser time, cost and energy 

as compared to all other AFTs.  

In India, coal-based thermal power stations generate close to 76.5% of 

the total energy produced in the country 

(https://en.wikipedia.org/wiki/Electricity_sector_in _India). The currently 

mined coals in India are non-coking (Ghosh and Chatterjee, 2012) and contain 

a high percentage of ash that varies between 25 and 45%. Thus, their heat 

capacity is low.  These coals are also used in industries such as cement, 

fertilizer, glass, ceramic, paper, chemical and brick manufacturing (Kumar and 

Patel, 2008; Ministry of coal, 2008, Singh, 1997). The comparatively higher 

ash content in Indian coals is due to the drift theory of formation of coal 

https://en.wikipedia.org/wiki/Electricity_sector_in_India
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deposits (Singh, 1997).  The coal seams formed according to the drift theory 

possess higher ash content than those which follow the in-situ theory of 

formation.  The usage of high-ash coals—since it affects the efficiency of the 

thermal power stations and therefore has tremendous cost implications for the 

manufacturer and the users—necessitates that a model possessing a good 

prediction ability and generalization performance is available for the 

prediction of their IDT.   

The Indian coals have been studied by several researchers (Mishra and 

Ghosh, 1996; Singh and Singh, 2000; Singh et al., 2013). These studies shows 

the lack of information on the fusibility of coals ash during combustion. The 

IDT regression models have been developed by Sharma et al., 2014 for limited 

37 coals samples collected from Meghalaya basin. Recently, the 

thermodynamic models of phase equilibria have been developed by 

Chakravarty et al., 2015. The limitations in the applicability of these models 

are that these models are less parsimonious, limited to a small sample range, 

and therefore difficult to deploy in practice.  

In Chapter 5, CI-based models have been developed for the prediction of 

all four AFTs, namely Initial Deformation Temperature (IDT), Hemispherical 

Temperature (HT), Softening Temperature (ST) and Fluid Temperature (FT) 

using data of coals from several countries. An exercise was performed to 

assess the applicability of the best performing MLPNN model for the IDT 

prediction developed in Chapter 5 to the high ash Indian coals. This test was 

conducted using the oxides and the corresponding IDT data of 91 number of 

high ash Indian coals listed in Table 6.A APPENDIX 6. For constructing and 

examining the generalization ability of these models, the experimental data set 

for IDT was randomly partitioned in 63:27:10 ratio into training, test, and 

validation sets. The results of the stated test are given in Table 6.1  
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Table 6.1: Comparison of MLPNN-model predicted IDT developed for Global 

coal with high ash Indian coals 

Dataset# Comparison values of 

MLPNN-model predicted 

IDT with high ash Indian 

coals 

MLPNN-model predicted 

IDT for Global coal  

(Chapter 5) 

CC RMSE  MAPE 

(%) 

CC RMSE  MAPE 

(%) 

Training 0.59 36.83 2.39 0.87 53.22 3.39 

Test 0.70 34.16 2.24 0.82 77.93 4.73 

Validation 0.83 28.97 2.01 0.76 38.78 2.66 

# The number of patterns in the training, test and validation sets have been 

57,25, and 9, respectively. 

 As can be seen from the above table, the MLPNN model is making poor 

IDT predictions for the Indian high ash coals. The “not-so-good” IDT 

prediction results obtained using the MLPNN model trained on the global coal 

data has prompted development of IDT prediction models exclusively for the 

high ash Indian coals. Accordingly, in this Chapter presents results of the 

development IDT models using three computational intelligence (CI) data-

driven modeling formalisms viz. Artificial Neural Networks (ANN), Support 

Vector Regression (SVR) and Genetic Programming (GP). The reasons for 

choosing these computational intelligence methods are already explained in 

Chapter 5 (section 5.4) and the details of their origin, implementation 

procedures and applications are provided in sections 2.3.1, 2.2.2 and 2.3.3 in 

Chapter 2.  Owing to the strong dependence of IDT on the oxide content in the 

coal ashes (Liu et al., 2006; Yin et al., 1998), the weight percentages (wt%) of 

eight oxides, namely, SiO2, Al2O3, Fe2O3, CaO, MgO, TiO2 and K2O+Na2O 

were used as the inputs of the three types of models developed in this work.  

6.2 DATA 

The experimental data of the mineral composition of 91 number of 

Indian coal ash samples along with the corresponding IDT [0C] values were 

sourced from Central Institute of Mining and Fuel Research (CIMFR), 
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Dhanbad, India. These are tabulated in Appendix 6 Table 6.A. The average 

wt% of ash content in the Indian coals vary in between the range, ~15 to ~55 

(Choudhury and Bhaktavatsalam, 1995). The wt% of the ash covered in the 

present data ranges from ~0.06 to ~70.55. 

6.3   RESULTS AND DISCUSSION 

6.3.1 Principal Component Analysis (PCA)   

To get rid of the correlated inputs (predictors) and thereby the data 

redundancy, and an unnecessary raise in the computational load, the input 

space of the CI-based models consisting of the weight percentages of the seven 

oxides (𝑥1 − 𝑥7)  listed in the Table in Appendix 6, were subjected to the 

principal component analysis (PCA) (Geladi and Kowalski, 1986). The 

purpose of PCA is to convert a set of linearly correlated variables into a set of 

linearly uncorrelated new variables (termed principal components) using 

orthogonal transformations. Next, only first few principle components (PCs)—

which are lesser than the number of original variables—capturing maximum 

variance in the data are chosen as predictors for developing the modeling thus 

bringing about a reduction in the dimensionality of the model’s input space.  In 

this work, seven PCs were extracted from the weight percentage values of the 

seven oxides listed in Table 6.A in Appendix 6.  Prior to the PCA, the wt% 

values of the seven metal oxides namely SiO2 (x1), Al2O3 (x2), Fe2O3 (x3), CaO 

(x4), MgO (x5), TiO2 (x6), and K2O+Na2O (x7) were normalized using "Z-

score" technique using equation (5.5). Similarly, the IDT values were 

normalized using equation (5.6). The mean and standard deviation values in 

conducting the normalization of the seven inputs (x1 to x7) and the IDT values 

are listed in Table 6.B in APPENDIX 6. The magnitude of the variance 

captured by each PC is given in Table 6.2. It is seen in Table 6.2 that a large 

percentage (≈ 92%) of variance in the oxide data pertaining to the high ash 

Indian coals has been captured by only the first four PCs.  This result shows 

that in CI-based modeling only first four PCs can be considered in place of the 

original seven inputs.  
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Table 6.2:  Percentage of variance (%) in the IDT data captured by seven PCs 

Data Set Variance (%) 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 

High Ash Indian coals  34.7 27.6 18.6 11.1 6.9 1.0 0 

 

The expressions of the first four PCs are given below 

76543211
ˆ088.0ˆ538.0ˆ539.0ˆ152.0ˆ403.0ˆ134.0ˆ457.0 xxxxxxxPC   

                                                                                                                                               (6.1)  

76543212
ˆ391.0ˆ254.0ˆ289.0ˆ491.0ˆ168.0ˆ515.0ˆ405.0 xxxxxxxPC 

 

                                                                                                                                               (6.2) 

76543213
ˆ336.0ˆ309.0ˆ23.0ˆ393.0ˆ55.0ˆ526.0ˆ071.0 xxxxxxxPC   

                                                                                                                                               (6.3) 

76543214
ˆ831.0ˆ008.0ˆ014.0ˆ077.0ˆ209.0ˆ314.0ˆ402.0 xxxxxxxPC      

                                                                                                                                               (6.4) 

where �̂�𝑟; r = 1,2,...,7 denote the normalized inputs (evaluated using Eq. 5.5 

given in Chapter 5) and the mean and standard deviation values given in Table 

6.B in Appendix 6.  

The above-stated four PCs were used as the inputs in developing the GP-

, MLPNN-, and SVR-based IDT prediction models. For constructing and 

examining the generalization ability of these models, the experimental data set 

consisting of the PCA-transformed inputs and the related IDT values was 

arbitrarily partitioned in 63:27:10 ratio into training, test, and validation sets. 

Here the first set was used for training the CI-based models; the test and the 

validation sets were used for testing and validating the generalization ability of 

the models. 
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6.3.2 GP-based modeling 

The GP-based IDT prediction model was built using Eureqa Formulize 

software package (Schmidt and Lipson, 2009). The GP procedure followed by 

this package is adapted to search and optimize models possessing low 

complexity and, thus, endowed with the much-desired generalization ability. 

The best converged solution provided by the GP is influenced by multiple 

factors that includes the size of the training set, tree depth, choice/selection of 

the mathematical operators, and input normalization schemes. To obtain a 

model with a good quality IDT prediction accuracy and generalization ability, 

a number of GP runs were performed by varying the stated influential 

attributes rigorously and systematically. The best converged solution (i.e., the 

one possessing the maximum fitness in the converged population of candidate 

solutions) obtained in each run was recorded and the overall best solution was 

selected on the basis of following criteria (Sharma and Tambe, 2014): (a) high 

and comparable values of correlation coefficients (CCs) with respect to the 

IDT predictions of the  training, test and validation set data, and (b) small and 

comparable values of RMSE, and MAPE, pertaining to the model predictions 

in respect of the training, test, and validation set data. The GP-based overall 

best model satisfying the stated conditions for the prediction of IDT of the 

high ash Indian coals is given below wherein 𝐼𝐷�̂� , refers to the normalized 

value of IDT. 

𝐼𝐷�̂� = 0.270𝑃𝐶1 +  0.228𝑃𝐶2 + (
0.049𝑃𝐶2𝑃𝐶3 − 0.025

𝑃𝐶4 − 0.143 − 0.242𝑃𝐶3 − 0.244𝑃𝐶1
3) 

              −0.321𝑃𝐶3 −0.030𝑃𝐶2𝑃𝐶3                                                            (6.5)  

As can be seen, the GP-based model (Eq. 6.5) has a nonlinear form.  

This is similar to the generalized IDT model for coals from multiple countries 

developed in Chapter 5 (Eq. 5.7). It may also be noted that Eq. 6.5 contains all 

the for PCs although the GP strategy has the ability to ignore the inputs that 

are not influential in correctly predicting the output (i.e. IDT). The weight 

percentages of all the principal oxides in the ashes of Indian coals are 

represented in the four PCs (see Eqs. 6.1 to 6.4); these results suggest that 

nonlinear relationships are better suited than the linear relationships for 
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predicting IDT magnitudes of the high ash Indian coals using the weight 

percentages of metal oxides present in ash. The CC, RMSE and MAPE values 

in respect of the IDT predictions made by the GP-based model for the training, 

test, and validation datasets are listed in Table 6.3. 

Table 6.3: Results of the statistical analysis pertaining to the prediction and 

generalization performance of the GP-, MLP-, and SVR-based 

models predicting magnitudes of IDT 

Dataset# Models 

GP MLPNN SVR 

CC RMSE  MAPE 

(%) 

CC RMSE  MAPE 

(%) 

CC RMSE  MAPE 

(%) 

Training  0.812 11.31 1.75 0.894 10.37 1.62 0.997 1.47 0.24 

Test  0.835 10.63 1.74 0.810 12.64 2.01 0.913 7.92 0.76 

Validation  0.950 8.20 1.38 0.898 14.10 2.14 0.959 8.43 1.22 

# The number of patterns in the training, test and validation sets have been 57, 

25, and 9, respectively.  

6.3.3 MLPNN- based models  

The MLPNN-based IDT model were trained using error-back-

propagation (EBP) algorithm (Rumelhart et al., 1986) available in RapidMiner 

data-mining suite (Mierswa et al., 2006; RapidMiner, 2007). The inputs for the 

MLPNN were the four principal components defined in Eqs. 6.1 to 6.4.  

Following structural parameters of the MLPNN and  the EBP  algorithm-

specific  parameters were changed methodically to attain the best model 

having a high IDT prediction accuracy and generalization and validation 

performance: number of  hidden layers, number of  nodes  in each  hidden 

layer, learning rate (η), momentum coefficient (), and initial distribution of 

MLPNN weights. Table 6.4 gives the details of the MLPNN structure, type of 

the transfer functions used at the hidden and output layer, and EBP-specific 

parameter values (η, ), that resulted in the optimal model. The CC, RMSE and 

MAPE values in respect of the IDT predictions made by the optimal MLPNN 

model are given in Table 6.3.  
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Table 6.4: Details of the MLPNN-based optimal model for the prediction of 

IDT 

Number of 

nodes/neurons 

in input layer 

(L) 

Number of 

nodes/neurons 

in the hidden 

layer (M) 

Error Back 

Propagation 

Algorithm Parameter 

Transfer 

function 

for 

hidden 

nodes 

Transfer 

function 

at 

output 

node 

Learning 

rate (η) 

Momentum 

(μ) 

7 6 0.333 0.08105 Logistic 

Sigmoid 

Identity 

 

6.3.4 SVR-based model 

Likewise, the MLPNN, the SVR-based IDT prediction model was constructed 

using RapidMiner data-mining suite (Mierswa et al., 2006; RapidMiner, 2007) 

wherein the widely used -SVR algorithm was employed; the kernel function 

employed was ANOVA. In SVR algorithm, the inputs (predictors) are first 

mapped nonlinearly in to a high-dimensional feature input space, wherein they 

are mapped linearly with the outputs. A detailed account of the origin, theory 

and applications of SVR are provided in Chapter 2, section 2.3.2. The -SVR 

training algorithm (Vapnik, 1995) and ANOVA kernel function employ four 

parameters namely regularization constant (C), kernel gamma (), kernel 

degree and, radius of the tube (ε), which were varied systematically and 

rigorously to reach an optimal SVR model having high IDT prediction and 

generalization performance. Table 6.5 gives the values of the above 

mentioned four -SVR and ANOVA parameters as also the number of support 

vectors that yielded the optimal SVR model.  The CC, RMSE, and MAPE 

magnitudes pertaining to the SVR model predictions of IDT for training, test, 

and validation set data are listed in Table 6.3. The SVR model pertaining to 

the IDT prediction is presented in APPENDIX 6, SVR Model 6. C. 
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Table 6.5: Details of the SVR-based model predicting IDT 

Kernel 

gamma 

(γ) 

Tube 

radius 

(ε) 

Regularization 

Parameter  

(C) 

Kernel 

Degree 

(δ) 

Number of 

support 

vectors 

Kernel 

function 

0.836 0.00025 1 4.5 53 ANOVA 

6.3.5 Comparison of CI-based models for IDT prediction   

In Table 6.3, it is noticed that the correlation coefficient (CC) 

magnitudes for the IDT predictions prepared by the SVR-based model for the 

training, test and validation data are high and fall in the (~0.91, ~0.99) range. 

The stated values are also higher than the corresponding CC values in the case 

of MLPNN (range: 0.81 - 0.89) and GP (range: 0.81 - 0.95) models. Moreover, 

the RMSE (range: 1.47 – 8.43) and MAPE values (range:  0.24 – 1.22) 

regarding the predictions by the SVR-based model are also lower than those 

for the MLPNN and GP based models.  Thus, all the three statistical measures 

(CC, RMSE, and MAPE) regarding the IDT predictions clearly signify that the 

SVR model have an excellent prediction and generalization performance and it 

has outperformed the MLPNN and GP-based models.  

A graphical comparison of the performance of the three CI-based models 

has also been made. Figure 6.1 depicts three parity plots wherein the GP-, 

MLPNN-, and SVR-model predicted IDT values are plotted against the 

corresponding experimental IDT values.  In panels (a) and (b) of the figure it is 

seen that there exists a reasonably good match between the experimental and 

model-predicted IDT values. However, in panel (c) of the figure, which 

corresponds to the predictions by the SVR model, it is noticed that the match 

between the model-predicted and experimental IDT values is the closest. This 

observation further supports the earlier inference (drawn on the basis of the 

CC, RMSE and MAPE values) that SVR model has outperformed the MLPNN 

and GP models.  
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In general, GP based models are simple to know and deploy in a 

practical setting. It can be seen in Table 6.3 that the CC values corresponding 

to the IDT predictions by the GP model are adequately high (range: ~0.81 to 

~0.95) although these are not as high as that for the SVR model. Similarly, the 

corresponding RMSE and MAPE magnitudes are reasonably low but still are 

higher than that for the SVR model predictions. These results suggest that the 

GP-based model though not the best CI-based model for predicting IDT of 

high ash Indian coals, can still be a potential candidate in situations where the 

ease of usage along with a reasonable prediction and generalization 

performance is a primary criterion for the model deployment.  

 

Figure 6.1: Plots pertaining to the experimental IDT values vis-à-vis those 

predicted by the GP (panel a), MLP (panel b), and SVR based 

(panel c) models. 

6.4 CONCLUSION 

The coals presently mined In India, contain high amount (25 – 45%) of 

ash. These low-quality coals are used predominantly in thermal power stations 

which produce close to 76 % energy generated in the country. In India coals 

are also used in cement, paper, steel, brick and other industries. The use of 

high ash coals aggravates the commonly experienced problem of slagging and 

fouling caused by the deposition of coal ash in the equipment (such as boilers 

and heat exchangers) of coal-utilizing industries. The occurrence of these 

phenomena adversely affects the process efficiency and thereby economics. 

Initial deformation of temperature (IDT) is one of the member of a group of 

temperatures termed ash fusion temperature (AFTs), which govern the 

deposition of ash in coal-based process equipment.  AFT represents the 

temperature when the ash first softens and therefore becomes sticky.  As one 

of the important indicators of slagging and fouling, IDT has certain advantages 
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namely (a) its measurement is easier as compared to the AFTs, and (b) it 

exhibits a definite increasing or decreasing trend which greatly assists in 

predicting the occurrence of slagging, fouling, and abrasion during the process 

operation. Owing to the importance of IDT in the design and operation of coal-

based processes, it was necessary that a mathematical model with a good 

quality IDT prediction accuracy and generalization ability is available for 

design engineers and plant personnel.  In Chapter 5, such a model has been 

developed using multi-layer neural networks (MLPNN) using the ash 

composition data of coals from various countries. However, this model made 

poor IDT predictions for the high ash Indian coals. To address the above-stated 

difficulty, in this study models have been developed using three computational 

intelligence (CI) based data-driven formalisms, namely, genetic programming 

(GP), multi-layer perceptron neural network (MLPNN), and support vector 

regression (SVR) for the prediction of IDT of high ash Indian coals. A 

rigorous comparison of performance of the three competing models shows that 

the SVR model possesses the best IDT prediction accuracy and generalization 

potential. The noteworthy feature of the SVR model presented here is that it 

can be used by the power stations and other industries using high ash Indian 

coals for accurately predicting the IDT magnitudes.  The knowledge of the 

IDT greatly assists in getting forewarned about the occurrence of slagging and 

fouling in the process equipment, which result in the reduced process 

efficiency.  
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APPENDIX 6   

Table 6.A: Experimental data consisting of the oxide composition (wt %) and 

the corresponding magnitudes of Initial Deformation Temperature 

(IDT)  

S. 

No. 

Model inputs (wt%) Model 

Output 

SiO2 

 

Al2O3 Fe2O3  TiO2 CaO MgO K2O+Na2O IDT 

(x1) (x2) (x3) (x4) (x5) (x6) (x7) 

1 59.02 31.58 4.63 2.02 0.87 0.45 1.38 1270 

2 59.57 28.74 6.42 1.64 1.50 0.44 1.64 1250$ 

3 58.72 23.65 8.92 1.13 2.93 1.28 3.28 1120^ 

4 62.03 24.24 6.45 1.13 2.62 0.80 2.64 1200 

5 61.68 26.18 5.63 1.61 1.33 0.45 3.07 1220 

6 61.67 27.04 4.87 1.46 1.82 0.72 2.34 1200 

7 55.75 26.83 9.38 1.96 2.89 1.15 1.94 1180^ 

8 66.07 24.92 4.02 1.12 1.63 0.57 1.61 1220 

9 58.87 26.89 7.62 1.77 1.86 0.65 2.31 1180^ 

10 51.47 34.20 5.62 1.60 4.23 1.32 1.50 1240 

11 63.49 28.23 4.01 1.44 0.87 0.31 1.57 1210 

12 58.52 31.12 6.01 2.00 0.69 0.20 1.42 1280 

13 62.26 28.65 2.41 1.61 1.44 0.40 3.15 1220 

14 60.88 27.81 6.83 2.09 0.23 0.12 1.99 1260 

15 62.17 27.27 5.49 2.52 0.70 0.32 1.44 1220 

16 59.87 22.68 10.2 2.08 2.40 1.22 1.44 1240^ 

17 62.21 27.06 6.47 1.70 1.16 0.25 1.09 1240$ 

18 66.75 26.76 2.22 1.53 0.43 0.32 1.94 1280 

19 61.14 29.56 4.83 1.21 1.46 0.35 1.39 1340 

20 66.45 22.79 6.35 1.18 0.92 0.16 1.71 1320$ 

21 60.34 25.63 9.63 1.68 0.96 0.48 1.21 1220 

22 59.16 24.15 12.8 2.08 0.40 0.11 1.27 1300^ 

23 51.99 27.69 15.0 3.17 0.64 0.10 1.29 1180^ 

24 61.77 27.76 6.80 2.28 0.23 0.10 1.04 1220 

25 59.09 29.70 6.66 2.34 0.69 0.12 1.35 1300 

26 61.37 24.59 8.48 2.75 1.16 0.45 1.13 1260^ 

27 61.37 28.18 6.89 1.62 0.60 0.26 0.99 1200 

28 60.64 29.89 4.82 1.45 1.48 0.65 1.01 1240^ 

29 58.20 26.38 11.0 1.85 0.86 0.74 0.89 1180^ 

30 59.70 26.73 9.45 1.89 0.66 0.47 1.03 1220^ 

31 64.37 26.41 6.39 1.44 0.17 0.08 1.11 1260 

32 62.42 25.38 8.07 1.86 0.99 0.22 1.00 1200^ 

33 64.25 27.44 4.43 1.93 0.69 0.15 1.05 1240 

34 62.41 27.34 6.01 1.84 0.71 0.48 1.17 1200 
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35 64.78 27.84 4.01 1.52 0.23 0.18 1.38 1230 

36 62.40 24.38 8.40 1.52 1.10 0.38 1.78 1230$ 

37 60.81 26.80 8.03 1.61 0.63 0.27 1.82 1250$ 

38 65.08 26.58 3.04 1.71 1.17 0.38 1.95 1260^ 

39 61.84 27.24 6.63 2.09 0.11 0.10 1.94 1250 

40 62.85 24.82 8.00 1.52 0.11 0.11 2.54 1210$ 

41 63.14 24.47 6.06 1.61 1.34 0.55 2.76 1240 

42 60.75 24.51 8.08 1.49 2.01 0.63 2.46 1240 

43 65.46 24.12 4.80 1.68 1.67 0.44 1.80 1200 

44 59.04 23.81 12.8 1.93 0.98 0.42 0.87 1180 

45 59.62 19.07 9.10 1.82 7.26 1.95 0.99 1180 

46 64.44 22.99 5.66 1.29 2.37 0.79 2.39 1100 

47 60.63 21.90 8.62 1.64 3.51 1.13 2.43 1140 

48 61.65 24.33 4.90 1.80 3.91 1.23 2.06 1200 

49 64.14 22.79 6.87 1.62 1.89 0.88 1.74 1200^ 

50 64.97 24.71 6.43 1.61 0.49 0.21 1.54 1220$ 

51 65.83 26.13 2.03 1.46 1.77 0.69 2.02 1220 

52 63.64 23.28 5.28 1.14 4.17 1.15 1.26 1200^ 

53 63.05 26.20 5.47 1.86 0.14 0.06 3.13 1200 

54 62.69 26.03 4.67 1.79 0.17 0.09 4.47 1240^ 

55 68.28 21.80 6.09 1.62 0.32 0.14 1.65 1180 

56 66.55 22.88 6.51 1.63 0.19 0.06 2.09 1180 

57 59.79 14.66 11.7 1.84 6.78 1.54 3.34 1140 

58 64.17 20.76 9.26 1.61 0.49 0.21 3.45 1220 

59 66.54 20.51 8.03 1.28 1.17 0.42 1.98 1190 

60 60.55 28.21 6.02 1.77 1.15 0.58 1.67 1200^ 

61 70.55 19.24 5.67 1.62 0.84 0.35 1.65 1160 

62 59.05 25.00 7.05 1.99 4.78 1.41 0.50 1190 

63 61.35 21.74 6.94 1.96 2.96 0.96 3.99 1140 

64 63.84 23.60 4.46 1.62 0.99 0.23 5.17 1180 

65 64.17 17.36 10.1 1.95 1.70 0.43 4.11 1180 

66 67.29 22.02 4.02 1.29 0.60 0.22 4.52 1220 

67 68.40 19.04 4.84 1.45 1.30 0.30 4.62 1200 

68 66.08 25.94 4.03 1.37 0.78 0.23 1.51 1200 

69 66.71 19.12 10.0 1.45 1.15 0.36 1.08 1200 

70 67.06 25.02 4.39 1.60 0.80 0.17 0.91 1220^ 

71 63.66 27.37 5.63 1.93 0.34 0.08 0.95 1280^ 

72 66.15 25.26 4.80 1.76 0.33 0.13 1.52 1300 

73 61.50 26.21 6.83 1.85 1.91 0.22 1.44 1260 

74 65.10 27.38 3.21 1.57 0.69 0.19 1.82 1270 

75 66.40 23.87 5.11 1.31 1.26 0.88 1.08 1240$ 

76 66.86 25.03 3.63 1.49 1.08 0.53 1.30 1250 

77 59.20 23.12 10.1 1.18 3.35 1.01 1.87 1160^ 

78 59.25 25.62 8.60 1.27 2.24 0.70 2.18 1260 

79 66.67 26.63 3.20 1.44 0.52 0.25 1.22 1280 
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80 60.51 25.33 9.31 1.54 1.52 0.63 1.09 1220 

81 62.30 28.68 4.04 1.62 1.39 0.75 1.15 1270 

82 62.53 26.21 4.71 1.80 2.78 0.67 1.17 1280^ 

83 63.78 25.45 5.42 1.20 0.75 0.33 3.03 1220 

84 64.29 24.64 5.02 1.44 1.15 0.35 3.05 1230^ 

85 64.69 26.05 4.19 1.36 0.29 0.23 3.14 1240 

86 63.42 24.38 6.89 1.62 1.89 0.70 1.03 1220^ 

87 63.19 23.99 7.67 1.78 1.68 0.56 1.06 1180$ 

88 60.10 28.00 5.83 1.37 2.61 1.00 1.02 1250 

89 61.34 28.98 4.22 1.53 1.82 0.85 1.19 1240^ 

90 64.13 25.36 6.45 1.45 0.92 0.34 1.27 1230^ 

91 61.47 28.72 4.46 1.30 2.20 0.77 1.00 1240^ 

     ^ Test data; $ Validation data 
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APPENDIX 6   

Table 6.B: Mean and Standard deviation of oxide weight percentages (wt %) 

used in the normalization of the oxides and IDT data 

 SiO2 

wt (%) 

(x1) 

Al2O3 

wt (%) 

(x2) 

Fe2O3 

wt (%) 

(x3) 

CaO 

wt (%) 

(x4) 

MgO 

wt (%) 

(x5) 

TiO2 

wt (%) 

(x6) 

K2O+Na2O 

wt (%) 

 (x7) 

IDT 

(OC)# 

Mean 62.52 25.37 6.51 1.67 1.47 0.51 1.87 1222.19 

Std. 

dev. 
3.23 3.09 2.46 0.34 1.31 0.38 0.97 42.68 
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APPENDIX 6   

SVR Model 6.C:  SVR model pertaining to the Initial Deformation 

Temperature (IDT) prediction 

𝐼𝐷�̂� =  - 0.0017934099824415061 * (pow((exp(-0.836 * (-0.3161524239882646 - pc1) * (-

0.3161524239882646 - pc1)) + exp(-0.836 * (-0.8576841902400439 - pc2) * (-

0.8576841902400439 - pc2)) + exp(-0.836 * (0.11584523230265795 - pc3) * 

(0.11584523230265795 - pc3)) + exp(-0.836 * (0.6356919885958912 - pc4) * 

(0.6356919885958912 - pc4))), 4.5)) + 3.7465783459379634E-4 * (pow((exp(-0.836 * 

(1.239600373940927 - pc1) * (1.239600373940927 - pc1)) + exp(-0.836 * (-

0.7518600341488825 - pc2) * (-0.7518600341488825 - pc2)) + exp(-0.836 * (-

0.021295991055272884 - pc3) * (-0.021295991055272884 - pc3)) + exp(-0.836 * (-

1.0178584003771907 - pc4) * (-1.0178584003771907 - pc4))), 4.5)) - 

0.001527369739231294 * (pow((exp(-0.836 * (0.3100795317173647 - pc1) * 

(0.3100795317173647 - pc1)) + exp(-0.836 * (-1.0552087176196738 - pc2) * (-

1.0552087176196738 - pc2)) + exp(-0.836 * (-0.797499203412895 - pc3) * (-

0.797499203412895 - pc3)) + exp(-0.836 * (1.3057712459323405 - pc4) * 

(1.3057712459323405 - pc4))), 4.5)) - 0.002180496343803871 * (pow((exp(-0.836 * 

(0.9235172960656939 - pc1) * (0.9235172960656939 - pc1)) + exp(-0.836 * (-

1.4147496663864565 - pc2) * (-1.4147496663864565 - pc2)) + exp(-0.836 * 

(1.201098907308331 - pc3) * (1.201098907308331 - pc3)) + exp(-0.836 * (-

2.6846512404088143 - pc4) * (-2.6846512404088143 - pc4))), 4.5)) - 0.01993569529858484 

* (pow((exp(-0.836 * (0.8739472300903176 - pc1) * (0.8739472300903176 - pc1)) + exp(-

0.836 * (0.053868553966073054 - pc2) * (0.053868553966073054 - pc2)) + exp(-0.836 * (-

0.9801417229266889 - pc3) * (-0.9801417229266889 - pc3)) + exp(-0.836 * (-

0.0749253797744924 - pc4) * (-0.0749253797744924 - pc4))), 4.5)) - 

0.002621721674837597 * (pow((exp(-0.836 * (0.6851259773920778 - pc1) * 

(0.6851259773920778 - pc1)) + exp(-0.836 * (-0.9881642164455552 - pc2) * (-

0.9881642164455552 - pc2)) + exp(-0.836 * (-1.2780362321403975 - pc3) * (-

1.2780362321403975 - pc3)) + exp(-0.836 * (-0.12199736973927593 - pc4) * (-

0.12199736973927593 - pc4))), 4.5)) - 0.0024665431523053284 * (pow((exp(-0.836 * (-

0.9047664607781067 - pc1) * (-0.9047664607781067 - pc1)) + exp(-0.836 * 

(1.1077829706160858 - pc2) * (1.1077829706160858 - pc2)) + exp(-0.836 * 

(0.5262878291205736 - pc3) * (0.5262878291205736 - pc3)) + exp(-0.836 * 

(0.564067654770551 - pc4) * (0.564067654770551 - pc4))), 4.5)) + 0.0038412798009185454 

* (pow((exp(-0.836 * (-0.22131756574657543 - pc1) * (-0.22131756574657543 - pc1)) + 

exp(-0.836 * (-0.28383757355362976 - pc2) * (-0.28383757355362976 - pc2)) + exp(-0.836 * 

(-0.23306132650262723 - pc3) * (-0.23306132650262723 - pc3)) + exp(-0.836 * 

(0.9914091272866141 - pc4) * (0.9914091272866141 - pc4))), 4.5)) - 

0.004782440462263265 * (pow((exp(-0.836 * (0.48177020141199706 - pc1) * 

(0.48177020141199706 - pc1)) + exp(-0.836 * (-0.6185150795792027 - pc2) * (-

0.6185150795792027 - pc2)) + exp(-0.836 * (-0.04686476101064932 - pc3) * (-

0.04686476101064932 - pc3)) + exp(-0.836 * (0.4109810338728228 - pc4) * 

(0.4109810338728228 - pc4))), 4.5)) - 0.004365579359484319 * (pow((exp(-0.836 * 

(1.1272544532900697 - pc1) * (1.1272544532900697 - pc1)) + exp(-0.836 * (-

0.21597589483580978 - pc2) * (-0.21597589483580978 - pc2)) + exp(-0.836 * (-

0.2659833440704244 - pc3) * (-0.2659833440704244 - pc3)) + exp(-0.836 * 

(1.2849056548226425 - pc4) * (1.2849056548226425 - pc4))), 4.5)) - 

0.0030426512441456737 * (pow((exp(-0.836 * (0.5095007284178883 - pc1) * 

(0.5095007284178883 - pc1)) + exp(-0.836 * (1.5668518943263279 - pc2) * 

(1.5668518943263279 - pc2)) + exp(-0.836 * (0.5845571259454397 - pc3) * 

(0.5845571259454397 - pc3)) + exp(-0.836 * (0.27775858788674274 - pc4) * 

(0.27775858788674274 - pc4))), 4.5)) - 0.003610214032883117 * (pow((exp(-0.836 * (-

0.865169687997901 - pc1) * (-0.865169687997901 - pc1)) + exp(-0.836 * 

(1.0352502473244263 - pc2) * (1.0352502473244263 - pc2)) + exp(-0.836 * 

(1.6157151038780542 - pc3) * (1.6157151038780542 - pc3)) + exp(-0.836 * 
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(1.0833745362960874 - pc4) * (1.0833745362960874 - pc4))), 4.5)) - 

0.004167523310420265 * (pow((exp(-0.836 * (-2.120942835800243 - pc1) * (-

2.120942835800243 - pc1)) + exp(-0.836 * (-0.05959713421007199 - pc2) * (-

0.05959713421007199 - pc2)) + exp(-0.836 * (-1.1459111483568185 - pc3) * (-

1.1459111483568185 - pc3)) + exp(-0.836 * (0.7425527818572352 - pc4) * 

(0.7425527818572352 - pc4))), 4.5)) + 0.00602453518955581 * (pow((exp(-0.836 * 

(0.2110174042197664 - pc1) * (0.2110174042197664 - pc1)) + exp(-0.836 * (-

0.653264227003972 - pc2) * (-0.653264227003972 - pc2)) + exp(-0.836 * 

(0.3124548800308624 - pc3) * (0.3124548800308624 - pc3)) + exp(-0.836 * (-

0.6215869761755202 - pc4) * (-0.6215869761755202 - pc4))), 4.5)) - 

0.0010237680816353408 * (pow((exp(-0.836 * (-1.7985328695209404 - pc1) * (-

1.7985328695209404 - pc1)) + exp(-0.836 * (0.5729156878712146 - pc2) * 

(0.5729156878712146 - pc2)) + exp(-0.836 * (-0.1097875536318003 - pc3) * (-

0.1097875536318003 - pc3)) + exp(-0.836 * (-0.8851442182289885 - pc4) * (-

0.8851442182289885 - pc4))), 4.5)) - 0.007681321821171909 * (pow((exp(-0.836 * 

(0.4134070246587206 - pc1) * (0.4134070246587206 - pc1)) + exp(-0.836 * 

(0.829211435113403 - pc2) * (0.829211435113403 - pc2)) + exp(-0.836 * (-

0.35004964263465016 - pc3) * (-0.35004964263465016 - pc3)) + exp(-0.836 * 

(0.3795477254809649 - pc4) * (0.3795477254809649 - pc4))), 4.5)) + 

0.016305260446174318 * (pow((exp(-0.836 * (1.322735710452216 - pc1) * 

(1.322735710452216 - pc1)) + exp(-0.836 * (-0.2931758190900727 - pc2) * (-

0.2931758190900727 - pc2)) + exp(-0.836 * (-0.8438387214524109 - pc3) * (-

0.8438387214524109 - pc3)) + exp(-0.836 * (0.7326144092748482 - pc4) * 

(0.7326144092748482 - pc4))), 4.5)) + 0.01687823701662612 * (pow((exp(-0.836 * 

(0.038432100329678254 - pc1) * (0.038432100329678254 - pc1)) + exp(-0.836 * 

(0.47612889161300437 - pc2) * (0.47612889161300437 - pc2)) + exp(-0.836 * 

(0.14844742323405097 - pc3) * (0.14844742323405097 - pc3)) + exp(-0.836 * 

(0.13325871045394966 - pc4) * (0.13325871045394966 - pc4))), 4.5)) - 

0.005101004522095592 * (pow((exp(-0.836 * (-0.07765034712582977 - pc1) * (-

0.07765034712582977 - pc1)) + exp(-0.836 * (-1.4999901117048753 - pc2) * (-

1.4999901117048753 - pc2)) + exp(-0.836 * (-0.29730509877668926 - pc3) * (-

0.29730509877668926 - pc3)) + exp(-0.836 * (0.0488806848030746 - pc4) * 

(0.0488806848030746 - pc4))), 4.5)) - 0.006662596185437997 * (pow((exp(-0.836 * (-

0.20413803371730396 - pc1) * (-0.20413803371730396 - pc1)) + exp(-0.836 * (-

0.008156923853899817 - pc2) * (-0.008156923853899817 - pc2)) + exp(-0.836 * 

(0.2915640023367995 - pc3) * (0.2915640023367995 - pc3)) + exp(-0.836 * 

(1.010260295597532 - pc4) * (1.010260295597532 - pc4))), 4.5)) + 0.0020687874668215583 

* (pow((exp(-0.836 * (-0.465937710451296 - pc1) * (-0.465937710451296 - pc1)) + exp(-

0.836 * (1.4378044123766707 - pc2) * (1.4378044123766707 - pc2)) + exp(-0.836 * 

(1.521604582969593 - pc3) * (1.521604582969593 - pc3)) + exp(-0.836 * 

(0.5100698683822472 - pc4) * (0.5100698683822472 - pc4))), 4.5)) - 9.687074536036598E-4 

* (pow((exp(-0.836 * (0.4107369108416689 - pc1) * (0.4107369108416689 - pc1)) + exp(-

0.836 * (-1.3931024894511097 - pc2) * (-1.3931024894511097 - pc2)) + exp(-0.836 * 

(0.9352991541145571 - pc3) * (0.9352991541145571 - pc3)) + exp(-0.836 * 

(1.1397801430731473 - pc4) * (1.1397801430731473 - pc4))), 4.5)) + 

0.011038614666537237 * (pow((exp(-0.836 * (-0.6735316983620093 - pc1) * (-

0.6735316983620093 - pc1)) + exp(-0.836 * (-0.43306149359186824 - pc2) * (-

0.43306149359186824 - pc2)) + exp(-0.836 * (-0.22121481995348824 - pc3) * (-

0.22121481995348824 - pc3)) + exp(-0.836 * (-0.4420737246405684 - pc4) * (-

0.4420737246405684 - pc4))), 4.5)) - 0.018899056663940324 * (pow((exp(-0.836 * 

(0.09000149425015841 - pc1) * (0.09000149425015841 - pc1)) + exp(-0.836 * 

(0.4749521636535863 - pc2) * (0.4749521636535863 - pc2)) + exp(-0.836 * (-

1.653785302251064 - pc3) * (-1.653785302251064 - pc3)) + exp(-0.836 * (-

0.04991100770321792 - pc4) * (-0.04991100770321792 - pc4))), 4.5)) - 

0.010129808573292369 * (pow((exp(-0.836 * (0.02217783961206232 - pc1) * 

(0.02217783961206232 - pc1)) + exp(-0.836 * (-0.45231816249093965 - pc2) * (-

0.45231816249093965 - pc2)) + exp(-0.836 * (-0.848732634165855 - pc3) * (-

0.848732634165855 - pc3)) + exp(-0.836 * (-0.7753627261311334 - pc4) * (-

0.7753627261311334 - pc4))), 4.5)) - 0.03534590725008338 * (pow((exp(-0.836 * 

(1.1501850043564068 - pc1) * (1.1501850043564068 - pc1)) + exp(-0.836 * (-
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0.4826482880188189 - pc2) * (-0.4826482880188189 - pc2)) + exp(-0.836 * (-

0.5952492993257168 - pc3) * (-0.5952492993257168 - pc3)) + exp(-0.836 * 

(0.5623246574375055 - pc4) * (0.5623246574375055 - pc4))), 4.5)) + 

0.012228895385219504 * (pow((exp(-0.836 * (0.35070826547623146 - pc1) * 

(0.35070826547623146 - pc1)) + exp(-0.836 * (0.5528757894385362 - pc2) * 

(0.5528757894385362 - pc2)) + exp(-0.836 * (-0.21481282460048534 - pc3) * (-

0.21481282460048534 - pc3)) + exp(-0.836 * (0.45595507629074544 - pc4) * 

(0.45595507629074544 - pc4))), 4.5)) - 0.0022027216856989607 * (pow((exp(-0.836 * (-

0.9152480465963996 - pc1) * (-0.9152480465963996 - pc1)) + exp(-0.836 * (-

1.2565996585962753 - pc2) * (-1.2565996585962753 - pc2)) + exp(-0.836 * 

(1.074946062481113 - pc3) * (1.074946062481113 - pc3)) + exp(-0.836 * (-

1.650134345135338 - pc4) * (-1.650134345135338 - pc4))), 4.5)) + 0.014795212490864462 

* (pow((exp(-0.836 * (0.8455618137235085 - pc1) * (0.8455618137235085 - pc1)) + exp(-

0.836 * (-0.6937651852125313 - pc2) * (-0.6937651852125313 - pc2)) + exp(-0.836 * (-

0.7232633646739206 - pc3) * (-0.7232633646739206 - pc3)) + exp(-0.836 * 

(0.877636669634845 - pc4) * (0.877636669634845 - pc4))), 4.5)) - 0.0036458665756994363 

* (pow((exp(-0.836 * (-0.4396164029561461 - pc1) * (-0.4396164029561461 - pc1)) + exp(-

0.836 * (-0.5083928572563903 - pc2) * (-0.5083928572563903 - pc2)) + exp(-0.836 * 

(0.28370700993188114 - pc3) * (0.28370700993188114 - pc3)) + exp(-0.836 * (-

0.4701040678518993 - pc4) * (-0.4701040678518993 - pc4))), 4.5)) - 

0.0031627707823654104 * (pow((exp(-0.836 * (0.7196385058840126 - pc1) * 

(0.7196385058840126 - pc1)) + exp(-0.836 * (-0.09282652861974415 - pc2) * (-

0.09282652861974415 - pc2)) + exp(-0.836 * (1.0088713011238495 - pc3) * 

(1.0088713011238495 - pc3)) + exp(-0.836 * (-0.31407547609800535 - pc4) * (-

0.31407547609800535 - pc4))), 4.5)) + 8.494710687717626E-4 * (pow((exp(-0.836 * 

(0.7579805256977026 - pc1) * (0.7579805256977026 - pc1)) + exp(-0.836 * (-

0.3053888541838141 - pc2) * (-0.3053888541838141 - pc2)) + exp(-0.836 * (-

0.8883598304618445 - pc3) * (-0.8883598304618445 - pc3)) + exp(-0.836 * (-

1.8256794916089014 - pc4) * (-1.8256794916089014 - pc4))), 4.5)) - 

0.007326340682299035 * (pow((exp(-0.836 * (1.1569050891518575 - pc1) * 

(1.1569050891518575 - pc1)) + exp(-0.836 * (-0.7533147214081971 - pc2) * (-

0.7533147214081971 - pc2)) + exp(-0.836 * (0.9639655197089163 - pc3) * 

(0.9639655197089163 - pc3)) + exp(-0.836 * (1.2682846845823617 - pc4) * 

(1.2682846845823617 - pc4))), 4.5)) - 0.007307349469651596 * (pow((exp(-0.836 * 

(0.20566630068167815 - pc1) * (0.20566630068167815 - pc1)) + exp(-0.836 * 

(1.5258054664268181 - pc2) * (1.5258054664268181 - pc2)) + exp(-0.836 * (-

1.035468746339954 - pc3) * (-1.035468746339954 - pc3)) + exp(-0.836 * (-

0.8895421870969775 - pc4) * (-0.8895421870969775 - pc4))), 4.5)) - 

0.005507824775975481 * (pow((exp(-0.836 * (-0.5529830410817818 - pc1) * (-

0.5529830410817818 - pc1)) + exp(-0.836 * (0.2961679692676845 - pc2) * 

(0.2961679692676845 - pc2)) + exp(-0.836 * (0.032004167038682974 - pc3) * 

(0.032004167038682974 - pc3)) + exp(-0.836 * (-0.9247014577465271 - pc4) * (-

0.9247014577465271 - pc4))), 4.5)) + 0.03134475986504505 * (pow((exp(-0.836 * 

(0.47968405385751955 - pc1) * (0.47968405385751955 - pc1)) + exp(-0.836 * 

(0.16881041514616996 - pc2) * (0.16881041514616996 - pc2)) + exp(-0.836 * (-

1.495013801436867 - pc3) * (-1.495013801436867 - pc3)) + exp(-0.836 * (-

0.23133071773050498 - pc4) * (-0.23133071773050498 - pc4))), 4.5)) + 

0.007813431108739827 * (pow((exp(-0.836 * (-0.2806561644899401 - pc1) * (-

0.2806561644899401 - pc1)) + exp(-0.836 * (-0.06301940890843201 - pc2) * (-

0.06301940890843201 - pc2)) + exp(-0.836 * (-0.8703463836423779 - pc3) * (-

0.8703463836423779 - pc3)) + exp(-0.836 * (0.3322462902349431 - pc4) * 

(0.3322462902349431 - pc4))), 4.5)) - 0.006682377895246377 * (pow((exp(-0.836 * 

(0.1807663662493949 - pc1) * (0.1807663662493949 - pc1)) + exp(-0.836 * 

(0.6472201278218913 - pc2) * (0.6472201278218913 - pc2)) + exp(-0.836 * 

(0.5642229028694529 - pc3) * (0.5642229028694529 - pc3)) + exp(-0.836 * 

(0.8398537002927383 - pc4) * (0.8398537002927383 - pc4))), 4.5)) + 

0.018780191706766557 * (pow((exp(-0.836 * (1.412226405135036 - pc1) * 

(1.412226405135036 - pc1)) + exp(-0.836 * (-0.48224855358548846 - pc2) * (-

0.48224855358548846 - pc2)) + exp(-0.836 * (-0.7819322265142984 - pc3) * (-

0.7819322265142984 - pc3)) + exp(-0.836 * (-1.0336783785448423E-4 - pc4) * (-
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1.0336783785448423E-4 - pc4))), 4.5)) + 0.00557986814482944 * (pow((exp(-0.836 * (-

0.4285202799745919 - pc1) * (-0.4285202799745919 - pc1)) + exp(-0.836 * 

(1.3545850254228406 - pc2) * (1.3545850254228406 - pc2)) + exp(-0.836 * 

(2.150584048925362 - pc3) * (2.150584048925362 - pc3)) + exp(-0.836 * 

(0.6786403243068435 - pc4) * (0.6786403243068435 - pc4))), 4.5)) + 

0.011892194114677677 * (pow((exp(-0.836 * (0.9399676019033102 - pc1) * 

(0.9399676019033102 - pc1)) + exp(-0.836 * (-1.0449904578157827 - pc2) * (-

1.0449904578157827 - pc2)) + exp(-0.836 * (0.272704500429088 - pc3) * 

(0.272704500429088 - pc3)) + exp(-0.836 * (0.9983529914838942 - pc4) * 

(0.9983529914838942 - pc4))), 4.5)) + 0.002876536713560682 * (pow((exp(-0.836 * 

(0.869162832924278 - pc1) * (0.869162832924278 - pc1)) + exp(-0.836 * 

(0.9236167147431259 - pc2) * (0.9236167147431259 - pc2)) + exp(-0.836 * 

(0.04883372540896253 - pc3) * (0.04883372540896253 - pc3)) + exp(-0.836 * 

(0.6066933291841611 - pc4) * (0.6066933291841611 - pc4))), 4.5)) - 

0.001439644382434863 * (pow((exp(-0.836 * (-3.495654594560473 - pc1) * (-

3.495654594560473 - pc1)) + exp(-0.836 * (-1.7641386765260283 - pc2) * (-

1.7641386765260283 - pc2)) + exp(-0.836 * (-0.6147987936883903 - pc3) * (-

0.6147987936883903 - pc3)) + exp(-0.836 * (1.2031566583085616 - pc4) * 

(1.2031566583085616 - pc4))), 4.5)) - 0.0012681801726392686 * (pow((exp(-0.836 * (-

1.5628514800904572 - pc1) * (-1.5628514800904572 - pc1)) + exp(-0.836 * 

(3.7155213535143488 - pc2) * (3.7155213535143488 - pc2)) + exp(-0.836 * 

(3.0290836441613935 - pc3) * (3.0290836441613935 - pc3)) + exp(-0.836 * (-

0.6681784901705634 - pc4) * (-0.6681784901705634 - pc4))), 4.5)) - 

0.001375428601705236 * (pow((exp(-0.836 * (1.010735956417599 - pc1) * 

(1.010735956417599 - pc1)) + exp(-0.836 * (0.1390403377435575 - pc2) * 

(0.1390403377435575 - pc2)) + exp(-0.836 * (0.854322732781934 - pc3) * 

(0.854322732781934 - pc3)) + exp(-0.836 * (-1.2405469548155705 - pc4) * (-

1.2405469548155705 - pc4))), 4.5)) + 0.08298037760916481 * (pow((exp(-0.836 * (-

0.04357233967172938 - pc1) * (-0.04357233967172938 - pc1)) + exp(-0.836 * 

(0.6346315603636001 - pc2) * (0.6346315603636001 - pc2)) + exp(-0.836 * (-

0.6112040094805213 - pc3) * (-0.6112040094805213 - pc3)) + exp(-0.836 * (-

0.5263951476153189 - pc4) * (-0.5263951476153189 - pc4))), 4.5)) - 

0.002462723323728153 * (pow((exp(-0.836 * (-0.5284655536146238 - pc1) * (-

0.5284655536146238 - pc1)) + exp(-0.836 * (0.22129986611639127 - pc2) * 

(0.22129986611639127 - pc2)) + exp(-0.836 * (0.09412021223473827 - pc3) * 

(0.09412021223473827 - pc3)) + exp(-0.836 * (0.7021663266577084 - pc4) * 

(0.7021663266577084 - pc4))), 4.5)) + 0.0012831592988290625 * (pow((exp(-0.836 * (-

2.01573016169638 - pc1) * (-2.01573016169638 - pc1)) + exp(-0.836 * 

(1.1515948224198211 - pc2) * (1.1515948224198211 - pc2)) + exp(-0.836 * (-

2.957369103395309 - pc3) * (-2.957369103395309 - pc3)) + exp(-0.836 * (-

2.067150115231318 - pc4) * (-2.067150115231318 - pc4))), 4.5)) + 8.181537833923074E-4 * 

(pow((exp(-0.836 * (0.13537667535004783 - pc1) * (0.13537667535004783 - pc1)) + exp(-

0.836 * (-0.9935223697434423 - pc2) * (-0.9935223697434423 - pc2)) + exp(-0.836 * 

(1.5064664780456531 - pc3) * (1.5064664780456531 - pc3)) + exp(-0.836 * 

(2.2260302777000196 - pc4) * (2.2260302777000196 - pc4))), 4.5)) + 

0.007605623822766256 * (pow((exp(-0.836 * (1.1575851732438371 - pc1) * 

(1.1575851732438371 - pc1)) + exp(-0.836 * (0.007897211969133613 - pc2) * 

(0.007897211969133613 - pc2)) + exp(-0.836 * (0.22905310404834275 - pc3) * 

(0.22905310404834275 - pc3)) + exp(-0.836 * (0.6142264448463629 - pc4) * 

(0.6142264448463629 - pc4))), 4.5)) - 0.0022011690676431044 * (pow((exp(-0.836 * (-

1.1632836339084873 - pc1) * (-1.1632836339084873 - pc1)) + exp(-0.836 * (-

0.9472874004376449 - pc2) * (-0.9472874004376449 - pc2)) + exp(-0.836 * (-

0.8697222040662933 - pc3) * (-0.8697222040662933 - pc3)) + exp(-0.836 * (-

0.3494909761509669 - pc4) * (-0.3494909761509669 - pc4))), 4.5)) + 

0.0029493005785105756 * (pow((exp(-0.836 * (-1.6265941595278162 - pc1) * (-

1.6265941595278162 - pc1)) + exp(-0.836 * (0.03603663127401795 - pc2) * 

(0.03603663127401795 - pc2)) + exp(-0.836 * (0.7812804982136997 - pc3) * 

(0.7812804982136997 - pc3)) + exp(-0.836 * (0.5494021732038121 - pc4) * 

(0.5494021732038121 - pc4))), 4.5)) + 0.0032683007145808793 * (pow((exp(-0.836 * 

(1.1191585237531723 - pc1) * (1.1191585237531723 - pc1)) + exp(-0.836 * (-
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0.3950825637570728 - pc2) * (-0.3950825637570728 - pc2)) + exp(-0.836 * 

(1.026893255204098 - pc3) * (1.026893255204098 - pc3)) + exp(-0.836 * (-

2.4775304990330724 - pc4) * (-2.4775304990330724 - pc4))), 4.5)) - 0.08703573385487168 

* (pow((exp(-0.836 * (0.005377189559608766 - pc1) * (0.005377189559608766 - pc1)) + 

exp(-0.836 * (0.5684290737649728 - pc2) * (0.5684290737649728 - pc2)) + exp(-0.836 * (-

0.5030394827995469 - pc3) * (-0.5030394827995469 - pc3)) + exp(-0.836 * (-

0.4217309432939644 - pc4) * (-0.4217309432939644 - pc4))), 4.5)) - 0.00349153229606815 

* (pow((exp(-0.836 * (-1.3904646154826095 - pc1) * (-1.3904646154826095 - pc1)) + exp(-

0.836 * (-1.4855040475579773 - pc2) * (-1.4855040475579773 - pc2)) + exp(-0.836 * (-

0.1811346039165674 - pc3) * (-0.1811346039165674 - pc3)) + exp(-0.836 * (-

1.1983341137190233 - pc4) * (-1.1983341137190233 - pc4))), 4.5)) + 

0.007420581151774166 * (pow((exp(-0.836 * (0.28238816803785177 - pc1) * 

(0.28238816803785177 - pc1)) + exp(-0.836 * (1.7173060303641612 - pc2) * 

(1.7173060303641612 - pc2)) + exp(-0.836 * (-0.47835304032328246 - pc3) * (-

0.47835304032328246 - pc3)) + exp(-0.836 * (-0.8238681008394209 - pc4) * (-

0.8238681008394209 - pc4))), 4.5)) + 0.0023980487389680077 * (pow((exp(-0.836 * 

(0.6534013790462456 - pc1) * (0.6534013790462456 - pc1)) + exp(-0.836 * 

(1.0317866531758357 - pc2) * (1.0317866531758357 - pc2)) + exp(-0.836 * 

(0.7396418131590212 - pc3) * (0.7396418131590212 - pc3)) + exp(-0.836 * (-

0.4134865573967652 - pc4) * (-0.4134865573967652 - pc4))), 4.5)) 

- 0.20657144623082332 

 

                                                                                                                              ... (6.6)  

where  𝐼𝐷�̂� refer to the normalized values of IDT; the magnitudes of PCs in 

equation (6.6) are calculated using the equations (6.1) to (6.4). 
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7.1 INTRODUCTION 

This chapter concludes the thesis by presenting (a) the importance of 

modeling and optimization in chemical and biochemical processes using the 

state-of-the-art computational intelligence (CI) based methodologies, (b) the 

principal results obtained in the studies described in Chapters 3 to 6 and the 

conclusions reached thereof, and (c) the future scope of the research area dealt 

with in this thesis. 

Chemical processes of various kinds transform raw materials/chemicals 

into useful and valuable forms or products.  The chemical industry 

encompasses numerous areas such as commodity chemicals, wood chemicals, 

petroleum, petrochemicals, specialty chemicals, surfactants, pigments, dyes, 

dyestuff, paints, plastics, polymers, resins, synthetic rubber, herbicides, 

fungicides, insecticides and pesticides, fertilizers, bio-chemicals, 

biotechnology and pharmaceuticals, food processing, electronics/ fuel cells, 

energy generation, etc. Some of the important tasks conducted by the chemists 

and chemical engineers/technologists are as given below. 

 Envisage, devise, and develop new chemical processes and 

products, 

 Design and fabricate/procure process equipment, appliances and 

services for safe, economical, and eco-friendly process operation. 

 Arrange and manage services, for example, inventory control in 

continuous running mode process plant, and related logistics. 

 Optimize the process operation for efficient, cost-effective and 

profitable use of the resources. 

Availability of a mathematical process model greatly assists in 

performing many of the above listed tasks. An accurate model provides vital 

information about the steady-state/dynamic process behavior and thus saves 

the time and cost of experimentation incurred in studying the influence of 

various process parameters and operating conditions. Models are also useful in 

process monitoring for control and fault detection and diagnosis as also 

monitoring the product quality. Modeling for process identification is 

necessary for instrumentation design and development of Programmable 
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Logic Controllers (PLC) or Distributed Control System (DCS). In dynamic 

process systems such as high temperature operations, pyrolysis of biomass and 

reactors/reactions operating under supercritical conditions, the soft-sensor 

models serve a critical purpose of providing information about difficult to 

monitor variables. The model-based control strategies have been found to 

yield better performance than the conventional proportional-integral-derivative 

(PID) control especially for processes exhibiting nonlinear dynamics such as 

nonisothermal continuous stirred tank reactor (CSTR). Process models are of 

significant utility in the detection and diagnosis of faults in chemical processes 

wherein they are used to learn the correct associations between the faults and 

the operating conditions.  

Among various approaches that are available for modeling, the 

phenomenological (also termed “first principles” or “mechanistic”) and 

empirical are widely used in process engineering practice. The 

phenomenological models are constructed from the knowledge of the mass, 

momentum, and energy balances, as well as other chemical engineering and 

thermodynamics principles. In general, obtaining the stated information is 

time-consuming, costly and tedious, and frequently requires extensive 

experimentation. The other approach namely empirical modeling that uses 

linear/nonlinear regression techniques requires that the model structure (form) 

is specified a priori. In general, satisfying this condition, especially for 

nonlinear chemical processes that are encountered frequently in practice, is a 

time-consuming and cumbersome task. The reason being it necessitates 

choosing by trial and error an appropriate mathematical form of a data-fitting 

model from numerous competing forms. Due to the above-stated difficulties in 

respect of the phenomenological and empirical modeling, there existed a need 

for modeling paradigms that do not require (a) a detailed knowledge of the 

first principles governing the process, and (b) pre-specification of the data 

fitting function. 

For any chemical process it is at most necessary that its operation is raw-

material and energy efficient, safe, economical, and environment-friendly. 

This requires that the process operation is optimized. It may be noted that for 

optimizing a process its model (phenomenological or empirical) is necessary.  
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In process engineering, the objectives of optimization are, for instance, 

maximization of process yield/selectivity/turn-over number, minimization of 

operational cost/ total product cost (TPC), and maximization of 

conversion/profit. Commonly, deterministic gradient based algorithms are 

used in process optimization. These need computation of the derivative of the 

objective function (to be minimized/maximized) at each step towards securing 

an optimal solution, which is computationally expensive. Also, they require 

the objective function to be smooth, continuous and differentiable; these 

conditions are often difficult to meet simultaneously in real practice.  

Moreover, gradient descent algorithms have a tendency to get stuck in to a 

local optimum instead of the global optimum on the objective function surface. 

This results in a sub-optimal solution. The above-stated deficiencies of the 

conventional deterministic optimization methods necessitated usage of 

alternative strategies that are not strict about the form of the objective function 

and at the same time provide a globally optimal solution.   

In recent years, a number of state-of-the-art computational intelligence 

(CI) based methods have offered themselves as attractive alternatives to the 

conventional modeling and optimization methods.  These methods have 

several attractive properties that overcome a number of deficiencies of the 

conventional phenomenological and empirical modeling techniques as also the 

commonly used deterministic gradient based optimization methods. 

Accordingly, in the present thesis three CI-based methodologies, namely, 

Artificial Neural Networks (ANNs), Support Vector Regression (SVR), and 

Genetic Programming (GP) have been employed for the modeling of selected 

chemical and biochemical systems. For optimization of a process, the widely 

used artificial intelligence (AI) based stochastic optimization method, namely 

Genetic Algorithm (GA), which overcomes the above-stated limitations of the 

gradient based methods has been employed. The studies presented in this 

thesis show the diversity of applications of the CI-based methods for modeling 

and optimization of chemical and biochemical systems. 
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7.2  SUMMARY AND PRINCIPAL RESULTS OF STUDIES 

PRESENTED IN THE THESIS 

This thesis is organized in seven chapters. Chapters 1 and 2 respectively 

provide the rationale and the salient features of the thesis and a detailed 

exposition of the origin, implementation and applications of the CI-based 

modeling and optimization methods employed in the thesis. The second 

chapter also details a well-known dimensionality reduction method, namely 

principal component analysis (PCA) that has been employed in this thesis for 

reducing the dimensionality of the input space of the CI-based models.  

Chapter 3 presents the development of Multilayer Perceptron (MLP) 

Neural Network- and GP- based models for predicting the rate constants of the 

photo-catalytic degradation (PCD) reaction for treating the water contaminated 

by the pharmaceutical pollutants. In this study, the reaction conditions and 

molecular structural property attributes have been used as the model inputs. 

The models were developed for three pharmaceutical pollutants, namely, 

Ciprofloxacin, Naproxen, and Paracetamol. In the models’ input space, the 

three pharmaceutical pollutants were differentiated using a number of 

attributes related to their molecular structures. In this work, PCA was 

performed on the fourteen-dimensional input space consisting of four 

experimental parameters and ten influential structural parameters of each 

pharmaceutical molecule.  The MLP- and GP-based models predicting the rate 

constant of the PCD, proposed in this study, exhibit an excellent prediction 

accuracy and generalization performance. In addition to the modeling, the 

chapter also reports results of the reaction optimization conducted using the 

genetic algorithm (GA) strategy. Here, the objective of optimization was to 

obtain maximum possible degradation of pharmaceutical pollutants in a 

contaminated water under milder conditions. The noteworthy features of this 

study are as follows.  

 For the first time, state-of-the-art CI-based exclusively data-driven 

models have been developed for computing the rate constant (Kc) for 

the photocatalytic degradation (PCD) of pharmaceutical pollutants 
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namely Ciprofloxacin (CFX), Naproxen (NPX) and Paracetamol 

(PARA). 

 The Genetic Programming (GP) based models predicting the rate 

constant of the photocatalytic degradation, proposed in this study 

exhibit an excellent prediction accuracy [correlation coefficient (CC) > 

0.9] and generalization performance than the corresponding MLPNN-

based models. 

 The optimum PCD reaction conditions given by the hybrid genetic 

programming - genetic algorithm (GP-GA) modeling-optimization 

method were validated successfully (less than ± 3 % deviation) by 

conducting fresh experiments.   

 The modeling and optimization strategy utilized in this study can be 

fruitfully used in the development of models and optimization of a 

wide variety of other pharmaceutical degradation reactions. 

In Chapter 4, the artificial intelligence-based models have been 

developed for the prediction of cetane number of biofuels. It is well-known 

that the fuel properties of biodiesel, namely, cetane number (CN), kinematic 

viscosity (KV), density (D) and higher heating value (HHV), play a significant 

role in its utilization for the combustion process. Accordingly, Chapter 4 

presents the development of exclusively data-driven models predicting the CN 

of biofuels. The models are constructed using two AI-based formalisms, 

namely, Genetic Programming (GP) and Multi-layer Perceptron (MLP) neural 

networks that employ the fatty acid methyl ester (FAME) composition and 

fuel properties as inputs (predictors). The carbon chain length and degree of 

unsaturation are two significant factors of FAME that affect the CN 

magnitudes of biodiesel and thus contribute to the ignition quality of the 

biodiesel. Based on the relevant data, two types of CN prediction models have 

been developed in this study using FAME composition of biodiesels (Type I 

models) and properties of biodiesels (Type II models). Experimental data 

corresponding to a large number of biodiesel samples were used in developing 

the two types of AI-based models. The Principal Component Analysis (PCA) 

was performed on the twelve-dimensional input space of the FAME 

composition-based GP- and MLP-based models with a view to reduce the 
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input dimensionality of the models. In the case of fuel property-based models 

the input dimensionality was not high and therefore PCA was not performed 

on the input space of the corresponding models. The noteworthy results of this 

study are given below.  

 FAME composition-based GP and MLP models exhibit an excellent 

CN prediction accuracy [correlation coefficient (CC) > 0.9 and root 

mean squared error (RMSE) < 4] and generalization performance for 

both training and test set data. The biodiesel property-based models 

exhibit a reasonably good prediction accuracy and generalization 

performance [CC > 0.8 and RMSE < 4], albeit inferior than the FAME 

based models, for both training and test set data.  

 The novel GP method has been employed for the first time to develop 

models for the CN prediction of biodiesels. 

The ash fusion temperature (AFT) is an important property of coals, the 

knowledge of which is significantly useful in predicting the occurrence of the 

undesired fouling and slagging phenomena in the equipment of the coal-based 

combustion, gasification and liquefaction processes. There exist AFT 

prediction models, which are based on the weight percentages of the chemical 

and mineral constituents (i.e., oxides) of the ashes of coals belonging to mostly 

a single geographical region although the coal ash properties diverge widely 

based on the geographical origin of coals. Most of these models are linear even 

though a close search of the corresponding data suggests that the relationships 

between the AFTs and the weight percentages of some of the chemical and 

mineral constituents could be nonlinear.  This indicates that nonlinear models 

could be better suited for the AFT prediction. Accordingly, in Chapter 5, CI-

based models have been proposed to predict the four components of AFT, 

namely, Initial Deformation Temperature (IDT), Softening Temperature (ST), 

Hemispherical Temperature (HT), and Flow Temperature (FT), of the coal 

ashes. The three CI-based exclusively data-driven formalisms used in the AFT 

modeling are Genetic programming (GP), Multi-layer Perceptron (MLP) 

Neural network, and Support Vector Regression (SVR).  The noteworthy 

characteristics of this study are as given below. 
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 The models developed have a wider applicability since the chemical 

and mineral composition and the related AFT data used in their 

construction pertain to coal ash samples from a large number of 

geographical regions globally.  

 All the four best fitting GP-based models for the prediction of four ash 

phase temperatures have nonlinear forms. Note that the GP method is 

capable of fitting either linear or nonlinear models. The fact that GP 

has fitted nonlinear models clearly shows that the relationship between 

the seven oxides in the coal ashes and the related AFTs is nonlinear 

and therefore linear models are not suitable for the prediction of AFT 

of coal ashes.  

 Most of the CI-based models possess better AFT prediction accuracy 

and generalization performance than the currently available models. 

 Since they are based upon lower number of inputs/predictors (weight 

percentages of oxides), the CI-based models are of reduced 

complexity when compared with the existing models that use more 

number of predictors. Models with reduced complexity are known to 

possess better generalization capability than their more complex 

counterparts. 

 Among the three types of CI-based models, GP and MLP-based 

models have yielded overall better performance in predicting all four 

AFTs.  

Owing to their high AFT prediction accuracy and generalization 

performance with wider applicability, the CI-based models developed in this 

work have a potential to be the preferred ones for predicting the AFT values of 

coal ashes from different geographies in the world.   

In India, the currently mined coals have a high ash content and therefore 

are low in quality. These coals are predominantly used in the thermal power 

stations across the country. Since AFT is a good indicator of slagging and 

fouling that take place in the equipment of coal-based thermal power stations, 
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it is important to develop the AFT prediction models specific to the Indian 

coals with intrinsically high ash content. Accordingly, Chapter 6 reports a 

study wherein CI-based models have been developed for the prediction of the 

initial deformation temperature (IDT) of Indian coals. The three CI-paradigms 

used in the modeling are GP, MLPNN and SVR. The remarkable features of 

this IDT modeling study are: 

 For the first time, CI-based models having high prediction accuracy 

and generalization capability have been developed for the prediction 

of IDT of high ash Indian coals.    

 Among GP-, MLPNN-, and SVR-based models, the SVR-based model 

[CC > 0.9, RMSE (range: 1.47 – 8.43) and MAPE values (range:  0.24 

– 1.22)] has been found to possess better IDT prediction and 

generalization performance.  

 The models can be significantly useful in Indian power generating 

stations for predicting the occurrence of the undesired and detrimental 

fouling and slagging phenomena in the process equipment. The 

mathematical models presented here can also be gainfully used by the 

design engineers and plant personnel of coal-based combustion, 

gasification and liquefaction processes. 

7.3 FUTURE RESEARCH SCOPE 

A large number of artificial/computational intelligence/machine 

learning applications in use presently or in the development arise from the 

exponentially increasing demand for the automation and intelligent decision 

making in all kinds of businesses and industries, including chemical 

processes. The benefits of automating critical tasks and decision making are, 

for example, enhanced efficiency, improved product quality or service, 

reduction in staff, removal of human error, and ultimately safe, energy 

efficient, economical, and environment friendly process operation. 

Artificial/computational intelligence (AI/CI) and machine learning (ML) will 

have tremendous influence on the automation and decision making in many 

different ways. 
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 The traditional chemical process operation is not fully automated or 

necessarily intelligent and thus AI/CI based modeling and 

optimization strategies will be increasingly used in recognizing, and 

learning patterns from the process related data  and applying the 

knowledge gained thereby to, for example, implementing better 

process control, detecting any process malfunction and timely 

intervention to avoid any related undesired events, devising conditions 

for energy and cost efficient, optimized and safe process operation, 

and raw material procurement and inventory  control.  Traditionally, 

all these are complex tasks that can be effectively automated using 

computers/machines equipped with AI/CI capability while ensuring 

intelligent decision making and corresponding actions. 

 The latest development in AI are deep artificial neural networks. 

These systems can have hundreds of layers in their architecture and 

possess tremendous ability to recognize and learn patterns in datasets 

containing millions/billions of observations. The deep ANNs have a 

huge potential, for example, in recognizing patterns in fluid flows, 

equipment noise, classifying products and quality control, detecting 

speedily off-spec products, and recognizing any unusual movement, 

radiation, odor, and noise in the vicinity of the process equipment.  

 In industries such as on-shore and off-shore hydrocarbon exploration 

and production that pose significant risk to workers, the AI-powered 

robots can be used to improve productivity, mitigate the risk and cost-

effectiveness.   

 The molecular structure - property/activity data can be used by AI 

systems to design and synthesis molecules/catalysts/enzymes with the 

desired properties.  

 Artificial intelligence can be used in biochemistry for discovering 

different reaction pathways to synthesize a specific bio-molecule. 

 In recent years, a technology known as Internet of Things (IOT) is 

gaining wide acceptance in all types of industries. It represents use of 
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computers, sensors, electronics and wireless connections to 

interconnect physical devices. In chemical industry, AI can be used to 

recognize patterns in the data from an IOT system for 

improving/optimizing process performance, improve product quality 

and yield rates, lower per batch costs, etc.  

 BASF has developed an AI-based state-of-the-art color matching 

system using artificial neural networks to prepare a perfect match of 

the car color selected by a customer. In future, AI based similar 

systems can be developed to prepare specific shades of paints for 

homes, perfumes, etc. demanded by clients. 

 AI-based smart manufacturing systems can be developed for 

predicting the demand for the commodities such as oil, gas and bulk 

chemicals, and also shortages in their supply.  

To summarize, the application potential AI/CI and ML paradigms in chemical 

engineering is limitless and bounded only by the human imagination. The 

stated technologies and the more recent ones such as Big data, cloud 

computing, and IOT are still in infancy and their impact on the chemical 

industry and R&D in Chemical sciences and engineering is difficult to fathom. 

What is however certain is that in future their applications will grow 

exponentially and almost certainly result in better, effective and safe-to-use 

chemical products including medicines, polymers, and bio-chemicals, and 

efficient, safe, and environment friendly chemical processes.   
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