
 

 

Metabolic Reprogramming of the Cell: 
Investigating Systemic Signatures and 

Growth in Cancer 
 

 

Thesis Submitted to AcSIR 
For the Award of the Degree of 

DOCTOR OF PHILOSOPHY 
In 

BIOLOGICAL SCIENCES 

 

 

 
 

 

 
By 

SELVA RUPA CHRISTINAL I. 
10EB11A26062 

 
 

Under the guidance of 

DR. ANU RAGHUNATHAN 
(Research Supervisor) 

 
 

Chemical Engineering Division 
CSIR-National Chemical Laboratory 

Pune – 411008, India 

September 2018



 

i 
 

 

 

 

 

 

 

Metabolic Reprogramming of the Cell: 

Investigating Systemic Signatures and 

Growth in Cancer 

 

           

 

 

  

      By 

Selva Rupa Christinal I. 

 

 

 







iv 
 

 

 

 

 

 

 

 

The Road Not Taken 

 

Two roads diverged in a wood, and I–  

I took the one less traveled by,  

And that has made all the difference. 

     - Robert Frost 

 

 

 

 

 

 

 

 

 

 

 

 





vi 
 

 

 

 

 

 

 

 

 

Dedicated to….. 

 

My Beloved Father, Immanuel 

& 

My Dearest Brother, Selva Raj Jebadurai  

     

  

 

 

 

 

 

 

 

 

  



vii 
 

Acknowledgements 
All the world’s a stage, 

And all the men and women merely players; 
They have their exits and their entrances 

- William Shakespeare 

By God’s grace and countless blessings from my beloved father, Immanuel, and Brother, Selva 

Raj, I am able to complete my doctoral research and accomplished my Ph.D. with satisfaction and 

fulfillment.  

The hardest problems of pure and applied science can only be solved  
by the open collaboration of the world-wide scientific community. 

-Kenneth G. Wilson 
As stated, it is not only to solve the problems of applied sciences but also for the completion of a 

doctoral thesis, the open collaborations and discussions helped me a lot. My heartfelt and sincere 

gratitude is to Dr. Anu Raghunathan (Anu ma’am as how we address her!). As an advisor, she 

stood by my side in solving the research problems and gave her hand to strengthen me in all 

difficulties. I cherish and remember all the thoughtful discussions with her. The freedom that she 

has given us, starting from ordering the chemicals to designing the experiments (whether it is for 

the tryptophan project for E. coli knockout generation that is now published in BioSystems or for 

my complete doctoral research), it moulded me step by step to improve my thought-process as a 

researcher and as a student. As a beginner in systems biology, I had difficulties in integrating large 

datasets, analyzing and interpreting high-throughput data. Her motivation and many rounds of 

discussions made me learn how to handle heterogenous data types and do multi-tasking. Though I 

was thousands of miles away (actually countries apart!), she was right there via phone calls to offer 

her support. Dear Ma’am, many thanks for all the encouragement and kindly accept my token of 

appreciation and I hope to receive your continuous support in future. 

My profound gratitude is to Dr. Venkateswarlu Panchagnula for his research 

collaboration in acquiring LC-MS/MS data. He has offered his help in many situations. I am also 

thankful to Drs. Philip J. Day and Douglas Kell, with whom I worked in the UK for 6 months. 

They taught me different views in addressing research problems and Philip has been a very big 

support for me till date. It was truly a global experience and excellent international exposure and I 

got to interact with many scientists during my UK stay. I had a very supportive DAC – Drs. 

Venkat, Mugdha Gadgil, and Dhiman Sarkar. I am thankful for their support and inputs during 

my DAC meetings.  

My biggest acknowledgements and love to Ekta Sangtani, Deepak Chand, Prasenjit 

Bhoumik, Preeti Jain, Deepanwita Banerjee, Mayooreshwar Rajankar, Avinash Ghanate, Madhura 

Mohole and Priyanka Buddhiwant for their support. Deepa and Mayoor have been with me as lab-

mates throughout the journey; our joint efforts for lab establishments and the tea time with them are 

all worth mentioning. Many thanks to Avinash Ghanate and Dharmesh Parmer, for their help in 





 
ix 

 

Table of Contents 
Certificate ........................................................................................................................... ii 
Declaration of Authorship ................................................................................................. iii 
Preface ................................................................................................................................. v 
Acknowledgements .......................................................................................................... vii 
Table of contents ................................................................................................................ ix 
Abbreviations .................................................................................................................... xv 
List of Figures ................................................................................................................. xvii 
List of Tables .................................................................................................................... xix 

Thesis Abstract .................................................................................................................. 1 

Chapter 1: Introduction                                                                        3 

1.1. Cancer - "Uncontrolled growth" ................................................................................... 5 
1.2. Cancer Metabolism: An Emerging Cancer Hallmark................................................... 6 
1.3. Glioblastoma Multiforme ............................................................................................. 7 
1.4. Temozolomide - "DNA methylating drug" .................................................................. 8 
1.5. Oncometabolites - Epigenetics and DNA methylation............................................... 10 
1.6. Intra-tumor Heterogeneity and Drug Resistance ........................................................ 11 
1.7. Glioblastoma Multiforme: Systems perspectives ....................................................... 12 
1.8. Human Glioblastoma Multiforme - U87MG cell line ................................................ 13 
1.9. Cancer Associated Metabolic Changes and its Link to Temozolomide  
       Resistance ................................................................................................................... 14 
1.10. Hypothesis and specific aims ................................................................................... 15 
1.11. Overview of the thesis .............................................................................................. 16 

Chapter 2: Intra-Tumor Heterogeneity And Drug Response: How Differences Make 
Difference?                                                                                                                       19 

Abstract .............................................................................................................................. 20 
2.1. Introduction ................................................................................................................ 21 
2.2. Methods ...................................................................................................................... 24 

2.2.1. Cell culture ............................................................................................... 24 
2.2.2. Fluorescence microscopy ......................................................................... 25 
2.2.3. Flow cytometry ......................................................................................... 25 
 2.2.4. Sorting of cells by FACS and functional characterization using                                   

verapamil ................................................................................................. 25 
2.2.5. Growth/proliferation studies ..................................................................... 26 
2.2.6. Temozolomide dose-response curves ....................................................... 26 
2.2.7. In vitro differentiation of NSP .................................................................. 26 
2.2.8. Sample extraction, dilution and internal standard spiking for  

LC-MS/MS ................................................................................................ 27 



 
x 

 

2.2.9. Metabolomics profiling using liquid chromatography high 
resolution mass spectrometry (LC-HRMS) ............................................... 27 

2.3. Results ........................................................................................................................ 28 
2.3.1. Microscopy reveals distinct cell morphology of each population ............. 28 
2.3.2. FACS profiling identifies differential dye efflux properties in 

U87MG cells .............................................................................................. 29 
2.3.3. Differential growth kinetics of the side-population .................................. 31 
2.3.4. Dose-response parameters vary across cells for temozolomide ................ 33 
2.3.5. Quantitative exo-metabolite profiling identifies differential 

dynamics of nutrient uptake in the side-population ................................... 34 
2.3.6. Side-population NSP has the capability of differentiation into glial 

cell type ...................................................................................................... 37 
2.4. Discussion ................................................................................................................... 39 
2.5. Conclusions ................................................................................................................ 42 

Chapter 3: Candidate Gene Interaction Networks In  Glioblastoma                         43                                 

Abstract .............................................................................................................................. 44 
3.1. Introduction ................................................................................................................ 45 

3.1.1. Network analysis using PathwayStudio™ ................................................ 45 
3.1.2. Cancer candidate (CAN) genes and their role ........................................... 46 
3.1.3. ABC transporters and drug resistance ....................................................... 46 

3.2. Methods ...................................................................................................................... 47 
3.2.1. Selection of CAN genes using Pathway Studio™ (v11.0.5)  

analysis ....................................................................................................... 47 
3.2.2. RNA extraction and cDNA synthesis ........................................................ 47 
3.2.3. GeNorm analysis for stable reference gene identification ........................ 49 
3.2.4. Real-time PCR using SYBR green-I ......................................................... 50 
3.2.5. Real-time PCR using hydrolysis probe assay............................................ 51 
3.2.6. Gene expression of ABC transporters ....................................................... 51 

3.3. Results ........................................................................................................................ 52 
3.3.1. Network of cancer candidate (CAN) genes ............................................... 52 
3.3.2. Relative gene expression qPCR analysis of selected CAN genes ............. 52 
3.3.3. Network analysis of ABC transporter genes ............................................. 55 
3.3.4. mRNA abundances of ABC transporters genes ........................................ 56 

3.4. Discussion ................................................................................................................... 60 
3.5. Conclusions ................................................................................................................ 61 

 

Chapter 4: Exome Characterization: Towards Genetic Basis For Temozolomide 
Resistance                                                                                                                         63 

Abstract .............................................................................................................................. 64 
4.1. Introduction ................................................................................................................ 65 

4.1.1. Next generation sequencing ...................................................................... 65 



 
xi 

 

4.1.2. Exome sequencing ..................................................................................... 66 
4.1.3. Overall workflow of exome sequencing ................................................... 67 
4.1.4. Application of Exome sequencing in cancer research............................... 68 

4.2. Methods ...................................................................................................................... 68 
4.2.1. Genomic DNA extraction .......................................................................... 68 
4.2.2. Exome sequencing ..................................................................................... 68 
4.2.3. Functional annotations of Exome data ...................................................... 68 

4.3. Results ........................................................................................................................ 69 
4.3.1. Exome statistics ......................................................................................... 69 
4.3.2. Genomic variability across the sensitive and resistant cells...................... 70 
4.3.3. Distribution of SNPs in chromosomes ...................................................... 70 
4.3.4. Functional characterization of the identified exome variants .................... 70 
4.3.5. Homozygous and heterozygous variants ................................................... 73 
4.3.6. Transversions and transitions .................................................................... 73 
4.3.7. Metabolic genes with exome variants ....................................................... 76 

4.4. Discussion ................................................................................................................... 76 
4.4.1. Possible impact of homozygous variants on metabolism of  

temozolomide-sensitive and temozolomide-resistant cells ........................ 76 
4.5. Conclusions ................................................................................................................ 80 
 

 
Chapter 5: Phenotypic Plasticity of Growth and Respiration                                     81   

Abstract .............................................................................................................................. 82 

5.1. Introduction ................................................................................................................ 83 
5.1.1. Phenotypic and metabolic plasticity in cancer .......................................... 83 
5.1.2. Nutrient dependencies in cancer ................................................................ 84 

5.2. Methods ...................................................................................................................... 85 
5.2.1. Cell culture ................................................................................................ 85 
5.2.2. Phenotype microarray analysis .................................................................. 85 

5.3. Results ........................................................................................................................ 86 
5.3.1. Phenotypic plasticity defined by nutrient preferences for growth  

and respiration ............................................................................................ 86 
5.3.2. Euclidean clustering of growth and respiration rates ................................ 86 
5.3.3. Differential growth and respiration rates across U87MG and 

Neurospheres ........................................................................................... 87 
5.3.4. Nutrient preferences from 367 C/N sources .............................................. 90 
5.3.5. Differential profile in ions and hormones ................................................. 91 
5.3.6. Chemo-sensitivity of U87MG and NSP to 92 drugs ................................. 91 

5.4. Discussion ................................................................................................................... 93 
5.5. Conclusions ................................................................................................................ 95 
 
 



 
xii 

 

 

Chapter 6: Metabolic Dynamics And Reprogramming Of The Cell                         97 
 

Abstract .............................................................................................................................. 98 
6.1. Introduction ................................................................................................................ 99 

6.1.1. Metabolic phenotypes in cancer and regulation of epigenetics ................. 99 
6.2. Methods .................................................................................................................... 101 

6.2.1. Growth in different concentrations of Temozolomide ............................ 101 
6.2.2. Liquid chromatography-high resolution mass spectrometry (LC-

HRMS): Sample extraction, dilution and internal standard spiking ........ 101 
6.2.3. Standard preparation................................................................................ 102 
6.2.4. Metabolites profiling using LC-HRMS ................................................... 102 
6.2.5. Selection of metabolites for profiling ...................................................... 103 
6.2.6. Consumption and Release (CORE) clustering and Principle 

component analysis (PCA) ...................................................................... 104 
6.2.7. Variable Importance in Projection (VIP) scores using Partial Least 

Square Discriminant Analysis (PLSDA) ................................................. 104 
6.3. Results ...................................................................................................................... 104 

6.3.1. Quantitative metabolite profiling identifies key differences in the          
metabolic states of the cell in the presence of TMZ ................................ 104 

6.3.2. CORE clustering and PCA ...................................................................... 105 
6.3.3. Concentration profile across time............................................................ 105 
6.3.4. Key metabolites and their role in metabolic reprogramming .................. 112 

6.4. Discussion ................................................................................................................. 116 
6.5. Conclusions .............................................................................................................. 117 

 

Chapter 7: An Integrative Paradigm For Temozolomide  
Resistance: A Systems Approach                                                                                 119 
  

7.1. How does the expression of drug transporters impacts growth and 
susceptibility response to temozolomide?................................................................ 120 

7.2. How does modulating CAN gene expression impacts the response to  
alkylating drug TMZ? .............................................................................................. 121 

7.3. How do genomic alterations contribute to temozolomide resistance? ..................... 123 
7.4. Combinatorial role of CAN genes, ABC transporters, related exome and  

metabolism on temozolomide resistance .................................................................. 124 
7.5. Predictive constraints-based metabolic modeling of U87MG and NSP cells .......... 125 
7.6. Discussion ................................................................................................................. 130 
7.7. Conclusion ................................................................................................................ 132 

 

Chapter 8: Conclusions and Future Scope                                                                 133 

8.1. Recapitulation ........................................................................................................... 134 



 
xiii 

 

8.2. Unknown frontiers of chemotherapeutic resistance ................................................. 135 
8.3. Future scope and directions ...................................................................................... 136 
8.4. Single cell analysis ................................................................................................... 136 

 
Appendices ..................................................................................................................... 139 

A. Appendix A: (All the supplementary data generated in this doctoral research  
have been listed in the form of tables and figures) ..................................................... 139 

B. Appendix B: (Additional soft data) ............................................................................ 155 
C. Appendix C: (Contributions to other projects) ........................................................... 156 
 

Bibliography ................................................................................................................... 163 

List of Publications ........................................................................................................ 183 

Author’s curriculum vitae ............................................................................................ 189 

 

*****~~***** 

 

 

 

 

 

 

 

 

 

 



 
xv 

 

Abbreviations 
NSP Neurospheres 
Ala Alanine 
Arg Arginine 
Asn Asparagine 
Asp Aspartic acid 
Cys Cysteine 
Gln Glutamine 
Glu Glutamate 
Gly Glycine 
His Histidine 
Leu / Ile Leucine / Isoleucine 
Lys Lysine 
Met Methionine 
Phe Phenyl alanine 
Pro Proline 
Ser Serine 
Thr Threonine 
Trp Trptophan 
Tyr Tyrosine 
Val Valine 
Glc Glucose 
Lac Lactate 
TMZ Temozolomide 
GBM Glioblastoma Multiforme 
ASA Argininosuccinate 
OAA Oxalo acetic acid 
α-KGA Alpha-Ketoglutaric acid 
PEP Phosphoenolpyruvic acid 
3PG 3-Phosphoglyceric acid 
G6P Glucose-6-phosphate 
F6P Fructose-6-phosphate 
NAD Nicotinamide adenine dinucleotide 
ACMS 2-amino-3-carboxymuconate semialdehyde 
 

  



 
xvii 

 

List of Figures 
Figure 1.1. Overview of the thesis showing the integrative approach to address  

drug resistance .................................................................................................. 3 
Figure 1.2. Hallmarks of Cancer ......................................................................................... 6 
Figure 1.3. Types and clinical features of Glioblastoma ..................................................... 7 
Figure 1.4. Mechanism of temozolomide action and its resistance ..................................... 9 
Figure 1.5. Mechanisms that regulate the development, progression and maintenance 

of tumor heterogeneity ................................................................................... 11 
Figure 1.6. Systems approach for addressing temozolomide resistance ........................... 12 
Figure 1.7. Remarkable publications/reports that form the basis of this thesis ................. 13 
Figure 1.8. Morphology of U87MG cell line grown in DMEM ....................................... 14 
Figure 1.9. Objectives and work plan ................................................................................ 16 
Figure 2.1. Graphical abstract of Chapter 2 ...................................................................... 19 
Figure 2.2. Schematic showing heterogeneity in Glioblastoma Multiforme ..................... 23 
Figure 2.3. Heterogeneous cell population in U87MG as seen using microscopy. ........... 29 
Figure 2.4. FACS profiling of heterogeneity within U87MG cells. .................................. 30 
Figure 2.5. Growth profile of heterogeneous population in U87MG ................................ 32 
Figure 2.6. Dose-response curve for temozolomide .......................................................... 33 
Figure 2.7. Consumption and release profile for selected metabolites .............................. 35 
Figure 2.8. Quantitative exo-metabolite profiling of separated U87MG  

and neurospheres ............................................................................................ 36 
Figure 2.9. Redifferentiation capability of drug resistant side population cells. ............... 37 
Figure 2.10. NDX cells show distinct growth, dose-response and  

metabolic dynamics. ..................................................................................... 38 
Figure 2.11. Predicted cellular metabolism of U87MG and NSP ..................................... 40 
Figure 3.1. Graphical abstract of Chapter 3 ...................................................................... 43 
Figure 3.2. RNA analysis using Agilent 2100 Bioanalyser ............................................... 49 
Figure 3.3. GeNorm analysis for stable reference gene identification .............................. 50 
Figure 3.4. Network analysis of CAN genes ..................................................................... 53 
Figure 3.5. Relative gene expression analysis of CAN genes ........................................... 54 
Figure 3.6. Localization and distribution of ABC transporters in Human ........................ 56 
Figure 3.7. Interaction network generated using PathwayStudioTM

Figure 3.8. Relative gene expression for ABC transporters .............................................. 58 
. ................................. 57 

Figure 3.9. CAN genes and metabolism ............................................................................ 61 
Figure 4.1. Graphical abstract of Chapter 4 ...................................................................... 63 
Figure 4.2. Workflow for Exome sequencing using Ion proton system. ........................... 67 
Figure 4.3. Genomic DNA isolated from U87MG and Neurospheres (NSP). .................. 69 
Figure 4.4. Exome variants statistics ................................................................................. 71 
Figure 4.5. Chromosome-wise distribution of exome variants ......................................... 72 
Figure 4.6. Functional characterization of exome variants ............................................... 74 
Figure 4.7. Transversions and transitions .......................................................................... 75 



 
xviii 

 

Figure 4.8. Metabolic gene variants in Exome .................................................................. 76 
Figure 4.9. Signaling genes that majorly controls metabolism ......................................... 77 
Figure 4.10. Polyamines and cancer. ................................................................................. 78 
Figure 5.1. Graphical abstract of Chapter 5 ...................................................................... 81 
Figure 5.2. Metabolic pathways under nutrient-replete and  

nutrient-deprived conditions ........................................................................... 84 
Figure 5.3. PMM-1 to 4 analyses using growth (GR) and Respiration (Resp) rates ......... 88 
Figure 5.4. PMM-1 analysis of respiration (A) and growth (B) profiles........................... 89 
Figure 5.5. Analysis of chemo-sensitivity of U87MG and NSP. ...................................... 91 
Figure 5.6. Chemo-sensitivity profile for U87MG and Neurospheres .............................. 92 
Figure 5.7. Phenotypic microarray panels (PMM 1 to 14) ................................................ 94 
Figure 5.8. NADH theory of cancer energy metabolism. .................................................. 95 
Figure 6.1. Graphical abstract of Chapter 6 ...................................................................... 97 
Figure 6.2. Determinants of the tumor metabolic phenotype .......................................... 100 
Figure 6.3: Metabolites selected for quantification using LC-MS/MS analysis ............. 103 
Figure 6.4. Metabolite profiling in the absence and presence of  

drug (Temozolomide) ................................................................................... 106 
Figure 6.5. Metabolite concentration profile of U87MG and Neurospheres in  

the absence of temozolomide........................................................................ 107 
Figure 6.6. Metabolite concentration profile of U87MG and Neurospheres in  

the presence of 10 µM TMZ ......................................................................... 109 
Figure 6.7. Metabolite concentration profile of U87MG and Neurospheres in  

the presence of 100 µM TMZ. ...................................................................... 110 
Figure 6.8. Metabolite concentration profile of U87MG and Neurospheres in  

the presence of 10 µM TMZ ......................................................................... 111 
Figure 6.9. VIP score for metabolites profiled using LC-MS/MS analysis for  
 U87MG and NSP in the absence of temozolomide ...................................... 113 
Figure 6.10. PLS-DA component analysis scores plot. ................................................... 116 
Figure 6.11. Exo-metabolite profile of lactate, pyruvate, succinate and AKG. .............. 115 
Figure 6.12. Ornithine profiles from LC-MS/MS analysis. ............................................ 115 
Figure 6.13. Predicted metabolic state of NSP cells. ...................................................... 117 
Figure 7.1. The experimental datasets and their key inferences from Chapter 2 to 6 that 

are used for the integrative analysis in this chapter 7 .................................. 119 
Figure 7.2. ABCG transporter family and its linked transport of molecules................... 121 
Figure 7.3. Figure 7.3: Possible resistance mechanism of NSP cells derived from the 

inferences on LC-MS/MS and mRNA abundances datasets ........................ 122 
Figure 7.4. An Integrative paradigm for Temozolomide resistance ................................ 124 
Figure 7.5. Constraints-based metabolic models and their role in delineating  

cancer metabolism ........................................................................................ 125 
Figure 7.6. Generation of constraints-based core metabolic model of  

U87MG and NSP cells ................................................................................. 126 
Figure 7.7. Core model predictions ................................................................................. 126 



 
xix 

 

Figure 7.8. Metabolic reprogramming depicted based on the inferences from all the 
datasets in this thesis. ................................................................................... 131 

Figure 8.1. Integrative paradigm developed for cancer drug resistance from this  
study and its future scope on translational research. .................................... 133 

Figure 8.2. Encapsulation of samples with cells inside droplets. .................................... 136 
Figure 8.3. Fluorescence microscope image of droplets created for U87MG cells  

stained with Hoechst 33342 dye. .................................................................. 137 
Figure 8.4. Stability of droplets under varied temperature conditions. ........................... 137 

 

*****~~***** 

 

List of Tables 
Table 2.1. Growth parameters determined based on Gompertz growth fit in  

GraphPad Prism ................................................................................................ 32 
Table 2.2. Summary of dose-response analysis for TMZ.................................................. 34 
Table 2.3. Growth parameters for NDx cells..................................................................... 38 
Table 2.4. Dose-response summary for NDx cells ............................................................ 38 
Table 3.1. List of cancer candidate genes selected using Pathway Studio 11.0.5 ............. 48 
Table 3.2. Primers and probes designed for gene expression studies of reference 

genes (control genes) for GeNORM-based normalization of qPCR data ....... 49 
Table 3.3. Primers and probes designed for CAN genes ................................................... 51 
Table 3.4. List of ABC transporter genes profiled in this study ........................................ 58 
Table 4.1. Genes with homozygous variants in Exome of U87MG and NSP ................... 73 
Table 4.2. Percentage of heterozygous and homozygous variants .................................... 75 
Table 5.1. Differential drug response for U87MG and NSP ............................................. 93 
Table 7.1. Exome variants of genes that control metabolism. ......................................... 123 
Table 7.2. Differential flux distribution across U87MG and NSP in Flux  

variability analysis. ....................................................................................... 127 
Table 7.3. Details of the exome variants used as constraints. ......................................... 128 
 
 

*****~~***** 



 
 

 Abstract 
 

1 

Thesis Abstract 
he field of cancer research is caught in a data deluge by the advent of inexpensive 

genome-scale high throughput technologies. The complexity of a living system 

justifies the need for data acquisition at all molecular levels of cell hierarchy 

from DNA to metabolites.  However, just listing candidate genes (From genomic/ exome 

data), gene expression signatures (from transcriptomic data), or metabolites (from 

metabolomics data) are not enough to understand a complex, multi-hit, multifactorial 

emergent disease like cancer. Although there are many methods that exist to analyze 

individual data types, no method exists to integrate heterogeneous data-types into a 

platform or mathematical model and to let alone predict outcomes and cell behaviour. 

Glioblastoma, the most severe form of brain cancer is even more complex due to its 

inherent heterogeneity, as the only drug used to treat it is being rendered less useful due to 

chemoresistance. To understand the difference between cells of glioblastoma that are 

resistant or susceptible to temozolomide, we have isolated the resistant population of 

neurospheroidal cells (NSP) from an authenticated model cell line U87MG. These were 

further characterized extensively using whole exome sequencing, limited gene expression 

profiling, metabolite profiling, growth-resistance profiling and respiration phenotyping to 

understand the genotype and the differential phenotypes of its molecular components. 

Since biological systems are complex and their function is more than the sum of their parts, 

all the data were integrated to analyze the emergent properties resulting from the 

interaction. Such integrated analysis unravelled some of the mechanistic aspects of drug 

resistance to temozolomide, a methylating drug. To complement data-driven analysis, a 

predictive constraints-based flux balance model of human metabolism was used to develop 

context-specific models for U87MG and NSP. These models computed accurately the 

growth phenotypes of each cell and also predicted the metabolic reprogramming through 

varied flux distribution profiles. Such pipelines are scalable to other cancer types and can 

be translated to the clinical studies. The multidimensionality of probing such molecular 

portraits in heterogeneous tumor cells of patients has spurred on personalized medicine 

approaches and can lead the way to individualized therapy. 

************ 
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Chapter 1 

Introduction 
 

“All cancers are alike but they are alike in a unique way.” 

― Siddhartha Mukherjee, The Emperor of All Maladies: A Biography of Cancer 

 

 

Figure 1.1: Overview of the thesis showing the integrative approach to address drug resistance 
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he global understanding of metabolic reprogramming and its underpinnings in 

molecular cell hierarchies is critical to unravel the duality of cell function. 

Understanding the impact of growth and energy generation for survival of 

cancer necessitates a systems approach. On the one hand, drug resistance has become one 

of the most challenging problems to address in cancer relapse. On the other, the presence 

of stem-like cells that are drug resistant in most cancers, confound the analysis and 

therapy. These minor subpopulations need to be characterized to overcome resistance 

developed in the last stages of cancer. In this thesis, a systems biology approach has 

been implemented to understand the emergent properties of chemotherapeutic 

resistance in a Glioblastoma (brain tumor) cell line, U87MG, in vitro. This approach 

is scalable to other cancer cell-types and can also be used for clinical translation. 

1.1. Cancer - "Uncontrolled growth" 

Cancer is a multi-factorial disease (Warburg et al. 1923; Warburg 1956; Hanahan & 

Weinberg 2000; Hsu & Sabatini 2008; Kreeger & Lauffenburger 2009; Xue Xue 2012) 

that potentially links metabolism to its progression (Feron 2009; Muñoz-Pinedo et al. 

2012; Dang 2012; De Berardinis & Chandel 2016; Zielinski et al. 2017). Cancer cells 

reprogram their energy metabolism in order to satisfy their requirement for biosynthesis 

and growth (Ward & Thompson 2012; Daye & Wellen 2012; Hainaut & Plymoth 2012). 

Increased aerobic glycolysis, fatty acid synthesis, and glutamine metabolism have been 

already known in cancer metabolic reprogramming, yet the real importance have not yet 

been addressed (Wise et al. 2011; Duckwall et al. 2013; Altman et al. 2016).  

Metabolism in cancer is unique in a way that these cells consume more glucose 

compared to normal cells (Warburg et al. 1923; Hsu & Sabatini 2008; Vander Heiden et 

al. 2009) but use a small amount of it towards oxidative phosphorylation even in aerobic 

conditions. Cancer cells proliferate rapidly with a higher growth rate. Therefore, there is 

a need for more nutrients to drive the faster growth. This is supported by the oncogene-

directed metabolic reprogramming (Daye & Wellen 2012; Nieminen et al. 2013; Ríos et 

al. 2013). Recent findings suggest that metabolites themselves can be oncogenic (Losman 

& Kaelin 2013; Gaude & Frezza 2014) by altering cell signaling and blocking cellular 

differentiation. Cancer-associated genomic and metabolomic alterations have a direct 

impact on the cell growth and survival (Ramão et al. 2012). Thereby, the change in 

metabolism plays a key role and could be a potential marker in cancer. 

T 
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1.2. Cancer Metabolism: An Emerging Cancer Hallmark 

The metabolic properties of cancer cells diverge significantly from those of normal cells. 

One of the emerging hallmarks in cancer is that altered metabolism and energy regulation 

guides the cancer growth and progression (Figure 1.2) (Hanahan & Weinberg 2000; 

Hanahan & Weinberg 2011). 

 

Figure 1.2: Hallmarks of Cancer. Source: Originally published in Hallmarks of Cancer: 

The Next Generation, Cell, 646-674, © Elsevier, 2011 (Hanahan & Weinberg 2011).  

This metabolic regulation of growth is dependent on the availability of nutrients. Also, 

many of the oncogenes have an effect on the metabolism of cancer cells. Tumor cells, in 

contrast to normal cells, display increased metabolic rates, increased uptake rates (taking 

up nutrients) and metabolizing them in pathways that support growth and proliferation 

(Warburg et al. 1923; Hsu & Sabatini 2008; Dang 2012).  

To state, most of the previous work in tumor cell metabolism focused only on 

bioenergetics, in particular, increased glycolysis and suppressed oxidative 

phosphorylation (‘Warburg effect’). This altered energy metabolism is widespread in 

cancer cells of any origin contributing to the traits that have been already accepted as 

hallmarks in cancer (Hanahan & Weinberg 2000).  Hence, the changes in the regulation 

of metabolism and energy generation (aerobic glycolysis) simply define another 
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phenotype. The question whether the metabolism is a cause or effect can help with 

further delineation of cancer mechanisms. This would enable path towards personalized 

medicine through potential micro-environment tailoring.  

1.3. Glioblastoma Multiforme 

Glioblastoma multiforme (GBM), is the most common brain tumor (Zhang et al. 2011; 

Sottoriva et al. 2013; Qazi et al. 2017), and generally shows aggressive characteristics 

including a very high rapid growth rate (Broadley et al. 2011; Y. P. Ramirez et al. 2013; 

Yeung et al. 2013; Yuan et al. 2015). It is a Grade IV glioma (Kreth et al. 2010; Y. P. 

Ramirez et al. 2013; Y. Ramirez et al. 2013), the most malignant and comprises more 

than a half of all gliomas known so far (Figure 1.3). A lower grade glioma (such as grade 

I–II tumor) is well differentiated with some cellular anomalies. Grade III tumor is 

anaplastic, with increased cell density and display differences in cellular morphology 

(Maher 2001).  

Glioblastoma is derived from astrocytes and shows a very poor prognosis than any other 

tumors in brain. The main reason for this high morbidity is always believed to be its 

higher growth rate. The survival of GBM patient is approximately 1 year despite under 

the treatments including chemotherapy, radiotherapy, and surgery (Zhang et al. 2011; 

Zhao et al. 2013). Normally, the ATP production and neuronal activity in astrocytes are 

determined and maintained by the metabolic energy flow from lipolysis and glycolysis. 

 

Figure 1.3: Types and clinical features of Glioblastoma. 
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In contrast to neurons, astrocytes support the lactate production by aerobic glycolysis 

even in the oxygen replete conditions (Warburg effect), and ATP production by 

mitochondrial respiration through electron transport chain (Pasteur effect). Lactate was 

found to be involved in increasing growth by being an energy source (Lactate to Pyruvate 

shuttle) and also supports the memory formation by getting shuttled between the neurons 

and astrocytes. Hence, the inherent capability of astrocytes towards lactate secretion 

could eventually lead to a high rate of tumor formation by supporting glycolytic fluxes 

(Kim et al. 2015). Recent studies address the presence of a subset of cells with stem-like 

properties that are found in the final stages of the tumor. This subset of cells was often 

reported to show chemotherapy resistance and stated to be the key component for tumor 

relapse (Hirschmann-Jax et al. 2004; Persson & Weiss 2009; Golebiewska et al. 2011; 

Broadley et al. 2011; Bar 2011). The tumor microenvironment has been shown to be the 

major determinant for the molecular and phenotypic abnormalities of such cell types and 

in promoting the growth of resistant populations to sustain the treatment regimens. 

Understanding the reprogrammed metabolism based on the microenvironmental 

conditions and the interaction between different cell types within the tumor mass would 

definitely help to answer the questions on how metabolism modulates the aggressiveness 

and response to therapy. This would pave way for the innovative treatment regimens to 

target primary glioblastoma or potentially in cases of relapse. 

1.4. Temozolomide - "DNA methylating drug" 

Temozolomide (TMZ) is one of the alkylating agents used for chemotherapy in GBM 

(Friedman et al. 2000; Portnow et al. 2009; Wesolowski et al. 2010; Liu et al. 2012; Qian 

et al. 2013). Most of the alkylating agents are active in the resting phase of the cell, 

though they are considered to be cell cycle non-specific. TMZ is an orally administered 

drug that crosses the Blood Brain Barrier (BBB). It shows good uptake, distribution and 

tumor localization thus has the clinical approval.  

It is a prodrug that undergoes hydrolysis in neutral pH to MTIC (monomethyl triazene 5-

(3-methyltriazen-1-yl)-imidazole-4-carboxamide). This MTIC further reacts with water 

and gives 5-aminoimidazole-4-carboxamide (AIC) and a highly reactive 

methyldiazonium cation. This active form then methylates DNA (Figure 1.4). 

Predominantly, DNA is methylated at N7 positions of guanine in guanine-rich regions 

(70%), but TMZ also methylates N3 adenine (9%) and O6 guanine residues (6%) 

(Wesolowski et al. 2010; Zhang et al. 2011; Lee 2016). 
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Figure 1.4: Mechanism of temozolomide action and its resistance. 

The temozolomide concentration prescribed for patients is 150mg/m2. 75 mg/m2 for 42 

days followed by the initial maintenance dose of 150mg/m2 once daily for Days 1-5 of a 

28-day cycle of “Temodar” (the commercial name for temozolomide) is prescribed for 

patients with Glioblastoma for 6 cycles of chemotherapy. The clinical trials for 

confirming the activity of this drug was performed in the range starting from 300 µM to 

1500 µM in model systems of Glioblastoma including U87MG cell line as well (Huang 

et al. 2012; Johannessen et al. 2013).  

The half-life of temozolomide is approximately 1.8 hours. Temozolomide (TMZ) gets 

converted to MTIC and the active half-life of this metabolite (MTIC) is longer than 

TMZ. Both the active and inactive forms of TMZ are excreted through kidneys. The 

plasma levels of TMZ are monitored during the chemotherapy cycles. TMZ is prescribed 

once daily to maintain the dosage in the plasma and the circulation time gets affected by 

the food intake and the diet followed by the patients. Side effects include nausea and 

vomiting which are common among the patients and are usually mild to moderate. A 

limited number of patients (7%) have shown seizure and thrombocytopenia (Wesolowski 
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et al. 2010). 

1.5. Oncometabolites - Epigenetics and DNA methylation 

DNA methylation is a major epigenetic modification that has implications for various 

biological processes (Ulrey et al. 2005; Weisenberger 2014). This epigenetic 

modification in DNA is considered stable compared to other epigenetic mechanisms. 

DNA demethylation also has been studied and known to exist in certain stages of cellular 

function and destabilizes the programmed gene silencing by DNA methylation (Holohan 

et al. 2013). Many enzymes are proven to perform active DNA demethylation and 

multiple mechanisms are being characterized to understand the effect of demethylation.  

Most of the DNA modifying enzymes were shown to be dependent on metabolites such 

as NAD+, FAD, ATP, S-adenosylmethionine (SAM), α- ketoglutarate and acetyl-

coenzyme A that can influence the epigenetic activities. IDH1 and IDH2 mutants convert 

glutamine carbon to the oncometabolite 2-hydroxyglutarate to dysregulate epigenetics 

and cell differentiation (Ward & Thompson 2012). Hence, the nutritional state of the cell 

might have an important role in maintaining these nuclear activities. The interconnection 

between epigenetic dynamics and metabolism could contribute to the emergent properties 

of the resistant cell in the presence of DNA methylating drugs (Ulrey et al. 2005; Hsu & 

Sabatini 2008; Cantor & Sabatini 2012; Etchegaray & Mostoslavsky 2016).  

Profiling the metabolite levels in different conditions (in the presence or absence of the 

drug) would give us the clues to define whether or not the microenvironment controls the 

resistance. Detailing how DNA methylation is regulated would eventually broaden our 

understanding of epigenetic regulation, cell reprogramming and cancer resistance in case 

of DNA methylating drugs. Taken together, the question whether the epigenetic 

regulation by metabolism and downstream effects becomes the cause or effect will solve 

the puzzle in unveiling the resistance development for the drugs that target DNA. One 

such example for metabolites and their role in epigenetics can be addressed by the study 

of Ten-eleven translocation (TET) pathway (Carey et al. 2014; Scourzic et al. 2015).  

TET proteins are involved in DNA methylation or demethylation and are α-ketoglutarate-

dependent dioxygenases in the conversion of 5-methylcytosines (5-mC) to 5-

hydroxymethylcytosine (5-hmC), 5-formylcytosine and 5-carboxycytosine. Recently new 

pathways have been elucidated in the cytosine methylation and demethylation process in 

human. The α-ketoglutarate-dependent TET activity produces 5-hydroxymethylcytosine. 
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This can be an intermediate in either passive or active DNA demethylation. The 

biological relevance of TET inhibition by 2HG (2-hydroxyglutarate) has a strong genetic 

influence as well. Mutations of IDH1 or IDH2 are found to be responsible for the 

generation of 2-hydroxyglutarate (Wise et al. 2011; Losman & Kaelin 2013).  

1.6. Intra-tumor heterogeneity and drug resistance 

Tumor heterogeneity can be used to describe both inter-tumoral and intra-tumoral 

variability, including differential mutational patterns, intratumoral histological variation 

and intratumoral polyclonality (Furnari et al. 2015). GBM tumors display striking 

histological variation within the same mass of the population of cells (Figure 1.5). 

However, complete characterization has been not done yet. In GBM tumors, the complete 

genome-scale mutational profiles of the major and minor populations present within, are 

not yet known but, the overall mutational heterogeneity seems to be similar to those of 

most other cancer types (Parker et al. 2016; Qazi et al. 2017).  

 
Figure 1.5: Mechanisms that regulate the development, progression, and maintenance of 

tumor heterogeneity.  

Many reports exist about the presence of minority populations in the final stage cancer, 

responsible for drug resistance and relapse. These sub-populations possess various 

clinically important phenotypes such as the ability to metastasize and to resist and 
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survive chemotherapy (Hirschmann-Jax et al. 2004; Persson & Weiss 2009; Golebiewska 

et al. 2013). This phenotypic diversity can be a combined impact of both genetic and 

non-genetic influences. Also, recent advances in novel technologies have advanced the 

molecular understanding of main and sub-populations within and/or across cancers, 

enabling the identification of targets for better combination therapies and interventions.  

This is critical to diagnosis and treatment as the most abundant cell type might not 

necessarily predict the properties of mixed populations (Inda et al. 2014; Mathis et al. 

2017).  

1.7. Glioblastoma Multiforme: Systems perspectives 

Though Glioblastoma is known to be a highly aggressive and deadly brain tumor for 

more than a decade, there are very few improvements in the treatment regimens due to 

the complexity of the disease. This necessitates the development of a systems paradigm 

to address the drug resistance and tumor relapse. A systems approach as developed in this 

thesis, allow delineation of genotype to phenotype relationships fundamental to the 

biology of a cancer cell. These include primary phenotypes like growth and drug 

response that can be influenced by secondary phenotypes like respiration, metabolism, 

and nutrient preferences (Figure 1.6).  

 
Figure 1.6: Systems approach for addressing temozolomide resistance. 
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Some of the milestones in researches on Glioblastoma and cancer metabolism that 

showed the present status of this disease until the work discussed in this thesis 

commenced have been listed (Figure 1.7).  

 

Figure 1.7: Remarkable publications/reports that form the basis of this thesis (Warburg 
et al. 1923; Drummond & Phillips 1977; Haga et al. 2001; Hirschmann-Jax et al. 2004; 
Clark, Homer, O’Connor, Chen, Eskin, Lee, Merriman & Stanley F. Nelson 2010; 
Altschuler & Wu 2010). 

Also, how the systems approach benefits the understanding of drug (temozolomide) 

resistance in Glioblastoma has been highlighted. This complete thesis is based on the 

experimental and computational analysis of the cell line, U87MG that is well known as a 

model system of Glioblastoma in vitro. 

1.8. Human Glioblastoma Multiforme - U87MG cell line 

U87MG (HTB-14, Human Glioblastoma Multiforme from ATCC) has epithelial 

morphology and grows as adherent population of cells in vitro (Figure 1.8). This cell line 

has been authenticated in our study for the confirmation of 9 STR (Short tandem repeats) 

profile (Appendix A). Also, many reports highlight the use of U87MG as a model cell 

line for Glioblastoma (Günther et al. 2003; Clark, Homer, O’Connor, Chen, Eskin, Lee, 

Merriman & Stanley F Nelson 2010; Vacas-Oleas, 2013; Pei et al. 2014; Kim et al. 2015; 

Zou et al. 2017). 
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Figure 1.8: Morphology of U87MG cell line grown in DMEM. Microscopic image 
captured using an EVOS® FLoid® system, ThermoFisher Scientific at a magnification 
of 20X. 

1.9. Cancer-associated metabolic changes and its link to temozolomide resistance 

The reasons for the failures of conventional cancer treatments like radiation therapy and 

chemotherapy remain unanswered. Contributing factors include sub-optimal delivery of 

drugs to necrotic regions are also potentially less sensitive to ionizing radiation. An ideal 

response for treatment of cancer depends on the availability of the entire drug dosage at 

the site of tumor and low-toxicity to nearby healthy tissues. Minimizing side effects 

while maximizing tumor targeting is the need for current tumor therapeutic protocols. 

Such improvements may be achieved by looking at reprogrammed metabolism that 

contributes to drug response only in tumor cells. In the case of Glioblastoma, the 

chemotherapy is by using Temozolomide (Temodar™). This drug belongs to the class of 

alkylating drugs that target DNA and hence resistance is mostly related to resistance to 

DNA methylation. Many intermediate metabolites play a key role in the interplay 

between the epigenetic response (DNA methylation) and reprogrammed metabolism and 

may relate to induced resistance (Etchegaray & Mostoslavsky 2016).  

Acetyl-CoA, an intermediate in TCA (Tricarboxylic acid cycle/ Citric acid cycle), that is 

utilized as an acetyl group donor during the histone acetyltransferase-dependent 

acetylation of nucleosomal histones. NAD (Nicotinamide adenine dinucleotide) is 

another central metabolite that can be synthesized de novo from the amino acid, 

tryptophan. NAD+ functions as a cofactor for SIRT1 and SIRT6 that eventually 

deacetylate histones. This deacetylation of histone H3 modulates the expression of 

metabolic genes, thereby causing alterations in the key metabolic pathways such as 

glycolysis, gluconeogenesis, mitochondrial respiration, fatty acid oxidation, and 
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lipogenesis (Etchegaray & Mostoslavsky 2016). S-adenosylmethionine (SAM) is the 

third metabolite that is generated through the methionine biosynthesis pathway. It 

transfers methyl groups to both histone methyltransferases (HMTs) and DNA 

methyltransferases (DNMTs). S-adenosyl homocysteine (SAH), on the other hand, 

functions as a repressor of both DNMTs and histone lysine demethylases (KDMs) 

(Etchegaray & Mostoslavsky 2016). α-ketoglutarate (a-KG) is a key metabolite that is 

generated through the TCA cycle. This also functions as an obligatory cofactor for 

KDMs and ten-eleven translocation (TETs) enzymes. TETs oxidize DNA by catalysis of 

methylated cytosines into 5-hydroxymethylcytosine (5hmC) (Etchegaray & 

Mostoslavsky 2016). The involvement of these metabolites in DNA methylation and 

histone acetylation may play a key role in the temozolomide resistance. This highlights 

the importance of understanding the reprogrammed metabolism. 

1.10. Hypothesis and specific aims 

The main hypothesis proposed is that metabolic reprogramming in glioblastoma shapes 

the response to temozolomide and contributes to drug resistance/sensitivity. While doing 

so the following unanswered questions may be sorted. 

1. How does cancer-cell metabolism differ across drug sensitive and drug-resistant 

cells? 

2. Is metabolism a cause or effect in contributing to drug resistance? 

3. Is altered or preferential nutrient uptake a strategy for cell survival and 

resistance? 

4. Is drug resistance an emergent property of the cell or self-driven by 

microenvironment? 

To address these questions and validate the above hypothesis, this thesis explores the use 

of both reductionist and integrated approaches listed below to unravel differential 

phenotypes of the glioblastoma cell-line.  

i. Morphology and physiological features (Fluorescence microscopy and FACS 

profile) 

ii. Growth and drug response,   

iii. Genotyping (Exome sequencing),  

iv. Primary and Secondary phenotype (Phenotypic microarray; gene expression of 

CAN and ABC transporters genes using real-time qPCR), 
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v. Metabolite profiling in the presence and absence of drug (LC-MS/MS analysis).  

 

Figure 1.9: Objectives and work plan. 

1.11. Overview of the thesis 

This work presents an integrated analysis of a glioblastoma cell line, U87MG, to explore 

the inherent differential genotype-phenotype relationships in temozolomide sensitive 

and resistant cells. The heterogeneity of drug response was investigated using 

proliferation/growth kinetics, dose-response (Growth inhibition patterns), metabolite 

analysis (LC-MS/MS profile of key exo-and endo-metabolites in the presence and 

absence of drug), genotype analysis (Exome sequencing) and connected to observed 

differential cellular phenotypes (Phenotypic microarray and gene expression). To our 

knowledge, such poly-OMIC data integration has never before been performed in this 

way to describe GBM heterogeneity in addressing the reprogrammed metabolism 

towards resistance. 

Chapter 2 discusses the identification and characterization of intra-tumor 

heterogeneity and drug response. An authenticated U87MG glioblastoma cell line was 

investigated to identify a sub-population of neurospheroidal (NSP) cells within the main 

epithelial population (U87MG). The NSP cells sorted using Fluorescence Assisted Cell 

Sorting (FACS) showed varied morphology, 30% lower growth rates, 40% higher IC50 

values for temozolomide drug and could differentiate into the glial cell type (NDx). 

Metabolite profiling using HR-LCMS identified glucose, glutamine and serine in both 

populations and tryptophan only in U87MG as growth limiting substrates. Glycine, 
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alanine, glutamate, and proline were secreted by U87MG; however, proline and glycine 

were re-utilized in NSP. Exo-metabolite profiling identified differential metabolism of 

primary carbon sources glucose and derived pyruvate for U87MG; glutamine and derived 

glutamate metabolism in NSP.  

Chapter 3 summarizes the candidate gene interaction networks in Glioblastoma. 

The choice of genes for qRT-PCR was based on Pathway Studio™ analysis. A network 

was generated linking genes with selected functional biological processes to identify 

cancer candidate (CAN) genes. Network analysis was also carried out to understand the 

interactions between these CAN genes. Real-time qPCR was used to quantify and detect 

changes in the mRNA for the selected CAN genes and ABC transporters relative to 

housekeeping/ reference genes. The differential mRNA abundances (17 higher and 2 

lower for NSP) potentially contribute to the efficiency of drug and nutrient metabolite 

transport and efflux.  

Chapter 4 investigates the differential exome characterization of temozolomide 

sensitive and temozolomide resistant cells to delineate the genetic basis for 

temozolomide resistance. In addition to the statistical analysis of exome variants, the 

detailed functional analysis was done using the Oncotator web-tool. These were also 

analyzed in the context of models of human metabolism to understand the impact of 

identified mutations in signaling and regulatory regions in controlling metabolism. 

Altered metabolism and epigenetic profiles that may be potentially genotype driven were 

identified. 

Chapter 5 details the differential nutrient preferences and discussed the phenotypic 

plasticity of growth and respiration. The cellular energetics and pathways involved in 

the metabolism of U87MG and NSP cells that eventually define cell-specific metabolic 

fingerprints were delineated. Differential response to cytotoxic drugs, ions and hormones 

were also tested against the two cell types (U87MG and NSP) that allowed validation of 

the reprogrammed metabolism.  

Chapter 6 elaborates the metabolic dynamics and reprogramming of the cell in the 

presence of the drug, Temozolomide. The exo- and endo-metabolite levels in the two 

cell types (U87MG and NSP) were analyzed and quantified using LC-MS/MS in the 

presence and absence of the drug at varying concentrations. NSP cells were most likely 

glutamine-dependent for their survival and growth. CORE (Consumption and Release) 
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profile analysis and PCA (Principal Component Analysis) was performed to understand 

the exo- and endo- metabolite state of both the cell types (U87MG and NSP).  

Chapter 7 investigates the integrative paradigm developed for understanding 

temozolomide response, susceptibility vs resistance via a systems approach. In this 

chapter, all the experimental data (components) obtained using reductionism has been 

analyzed through integration to understand the drivers of drug resistance. Such analyses 

across molecular hierarchies in the cell have been delineated that would potentially help 

design combinatorial treatments by metabolite supplements to overcome drug resistance. 

Chapter 8 reflects on the conclusions of the thesis and highlights the future scope of 

this study. Although the existence of small minority populations with differential 

histology and dye efflux properties within cancer cell lines has been known for decades, 

the underlying biochemical physiology of how this shapes functional drug response is 

still incompletely understood.  

An integrative paradigm has been developed in this thesis to address temozolomide 

resistance acquired due to the presence of such minority population of cells. This pipeline 

thus developed is scalable and can be extended in single cell analysis and also helps in 

translating the bench side research to bedside for clinical implications. 

Taken together, the importance of characterizing drug-resistant sub-populations for 

growth and gene expression analysis, exome characterization and nutrient 

consumption/metabolism, is critical in understanding the differential dose-response 

curves, potency and efficacy parameters that can eventually help in better therapeutic 

response and drug regimens. The results strongly suggest the need for delineating 

metabolic preferences of sub-populations in addition to drug efflux and histological 

examination. Further, these datasets can be analyzed in the context of metabolic models 

to predict the impact of therapeutic regimens. This would lead the way towards 

overcoming drug resistance in cancer and drive the path towards personalized medicine 

and improved combinatorial therapies. 

 

*************** 
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Chapter 2 

Intra-Tumor Heterogeneity and Drug 
Response: How Differences  

Make Difference? 

 

“Cancer's life is a recapitulation of the body's life, its existence a pathological mirror of our 

own.” 

― Siddhartha Mukherjee, The Emperor of All Maladies: A Biography of Cancer 

 

 

 

 

Figure 2.1: Graphical abstract of Chapter 2. 

 

 

 

 

 

Morphology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fluorescence 

Microscopy 

 

 

 

 

 

 

 

 

 

FACS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth Profile 

 

 

 

 

 

 

 

 

 

 

 

Dose Response 

 

 

 

 

 

 

 

 

Differentiation 

Capability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metabolite 

Profile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

20 How differences make difference? | Chapter 2 

 

Abstract  

The criticality of therapeutic impact arising from tumor heterogeneity is indisputable. 

Clonal cell lines established as scalable cancer models are known to harbor cellular sub-

populations that mirror tumor heterogeneity. Functional characterization of heterogeneity 

unravels phenotypic plasticity that can be leveraged for desired drug responses. U87MG, a 

glioblastoma cell line, was investigated to identify side-populations of neurospheroidal 

(NSP) cells within the main epithelial population (U87MG) with varied morphology and 

sorted using Fluorescence Assisted Cell Sorting (FACS). The growth of NSP cells in the 

presence of 1 mM temozolomide indicated 40% higher IC50 values.  The maximum growth 

rate was 30% lower for NSP than U87MG cells. Metabolite profiling using HR-LCMS 

identified growth limiting substrates glucose, glutamine and serine in both populations and 

tryptophan only in U87MG. Glycine, alanine, glutamate, and proline were secreted by 

U87MG; however, proline and glycine were re-utilized in the NSP side-population. NSP 

cells could differentiate into the glial cell type (NDx) that had varied IC50 values and 

metabolic dynamics. Reprogrammed metabolism in the side-population potentially shaped 

epigenetics leading to temozolomide resistance in NSP cells. The highlights include: (i) 

Temozolomide (TMZ) resistant Neurospheroids (NSP) identified in U87MG cell line (ii) 

NSP shows varied dose response, 40% higher IC50 and 30% lower growth rate. (iii) Altered 

Glucose and Glutamine uptake in U87MG and NSP shape metabolic dynamics. 
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2.1. Introduction 

Origins and implications of heterogeneity in tumor manifest in vivo as multifactorial 

responses. Intra-tumor heterogeneity shapes responses for personalized medicine 

approaches and can limit therapeutic efficacy leading to resistance (Inda et al. 2014; Parker 

et al. 2015). Resistance to chemotherapy and other targeted therapies are known to 

dramatically reduce cancer remission rates (Hoey 2010). Evidence supports the presence of 

a small population of therapy-resistant cells in many cancer types that can eventually result 

in cancer recurrence (Turner & Reis-Filho 2012; Burrell et al. 2013). Therefore 

heterogeneity of cancer not only affects the quality of data but may also mask the 

interpretation of the cancer cell drug response (Sottoriva et al. 2013). More recently, 

metabolic reprogramming has been recognized as a hallmark with certain neo-metabolites 

including 2-hydroxyglutarate associated with a gain of function (Wise et al. 2011; Losman 

& Kaelin 2013). Although, the clinical relevance of human cancer-derived cell lines as 

model systems is highly debatable they are undoubtedly indispensable as preclinical tumor 

models to test therapeutic strategies (Qian et al. 2013; Gaspar et al. 2010; Seznec et al. 

2010; Angeles & Angeles 2010; Clark et al. 2010). The failure of cell culture models to 

reflect clinical patterns may also be due to unaccounted tumor micro-environments and 

dynamics of nutrients available (Persano et al. 2013; Cantor & Sabatini 2012). Researchers 

have demonstrated that human cancer cell lines harbour minority populations of putative 

stem-like cells (De Almeida Sassi et al. 2012; Broadley et al. 2011; Khan et al. 2013; 

Sharma et al. 2011; Persano et al. 2013; Cruz et al. 2012), molecularly defined by dye 

extrusion phenotypes  (Goodell 2005; Med 1996; Bhattacharya et al. 2003). These cancer 

stem cells (CSC) form integral parts of most tumors and have further advanced the concept 

of intra-tumoral heterogeneity (De Almeida Sassi et al. 2012; Grasbon-Frodl et al. 2007).  

Fundamentally, the CSC concept states that long-term tumor propagation, metastasis, and 

relapse depend on small populations of phenotypically-distinct cancer cells endowed with 

unique functional properties (Turner & Reis-Filho 2012; Burrell et al. 2013). These small 

populations are highly conserved (Golebiewska et al. 2011; Hirschmann-Jax et al. 2004; 

Golebiewska et al. 2013; Broadley et al. 2011) and have also been identified in human 

cancer-derived cell lines. Both, the clonal evolution models and the CSC hypothesis 

support the genesis and maintenance of side populations and their mechanistic role in 

chemotherapeutic resistance (Safa et al. 2015). Despite their potentially controversial 

origin, the presence of these cells (Figure 2.2) that form a sub-population is ratified. These 
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populations have largely been characterized for morphology and drug/dye extrusion 

properties, although detailed characterization of their dose-response relations does not exist 

(Marjanovic et al. 2013; Furnari et al. 2015). There is a need to understand the underlying 

biochemical, molecular and physiological signatures to tackle resistance. While these cell 

lines continue to be the basis of substantial biological insight, experimental inferences 

reflective of both the main and the side populations is inevitable. 

Glioblastoma multiforme (GBM) the most malignant among astrocytic tumors arising from 

the glia, is associated with poor prognosis (Brandes et al. 2008; Wrensch et al. 2002) and 

high levels of both macroscopic and microscopic heterogeneity (Parker et al. 2015). Due to 

phenotypic plasticity (Marjanovic et al. 2013) and potential switching between cell types 

via epigenetic regulation (Persano et al. 2013), maintaining a dynamic equilibrium between 

these differentiated and de-differentiated cell populations is critical. Glioblastoma has four 

distinct subtypes: proneural, neural, classical and mesenchymal based on gene expression 

patterns and correlates to clinical characteristics (Verhaak et al. 2010). High prevalence of 

mutations in isocitrate dehydrogenase isozyme (IDH1/2) (Li et al. 2013), indicates not only 

a key role in early gliomagenesis but also connections of altered metabolism and clinical 

outcomes. Due to its highly aggressive and plastic nature and poor therapeutic responses 

(Kohsaka et al. 2012; Wang et al. 2014), understanding the complex heterogeneity of GBM 

is of great interest. 

Temozolomide (TMZ) is an imidazotetrazine derivative of the alkylating agent dacarbazine 

and an anti-cancer prodrug of Temodar™, the primary oral alkylating agent used to treat 

GBM.  The therapeutic index is dependent on molecular markers like O
6
-methylguanine 

methyltransferase (MGMT) and/or lack of a DNA repair pathway in GBM cells, isocitrate 

dehydrogenase type 1 and type 2 (IDH1/2) mutation (Megova et al. 2014) and glioma 

cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP) (Noushmehr et 

al. 2010; Ostrom et al. n.d.). U87MG, a commonly studied (Angeles & Angeles 2010; 

Vacas-Oleas, 2013) grade IV glioma cell line, known to show sensitivity to temozolomide, 

has been analyzed and subjected to molecular/functional characterization over the last four 

decades (Pei et al. 2014; Bernhart et al. 2013). The whole genome sequence of U87MG has 

been delineated (Clark et al. 2010) and the sequence analysis of U87MG provides an 

unparallel level of mutational resolution compared to any cell line to date (Angeles & 

Angeles 2010). U87MG is wildtype for IDH1/IDH2 (Wise et al. 2011) in contrast to many 

gliomas whose hallmark is the production of a neo-metabolite 2 hydroxyglutarate (Losman 
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& Kaelin 2013; Wise et al. 2011). However, side-populations have not been identified and 

characterized phenotypically or functionally. 

 

Figure 2.2: Schematic showing heterogeneity in Glioblastoma Multiforme. (A) Clonal 

evolution theory: Epigenetic elements are conserved during evolution which results in 

somatic clonal evolution. (B) Cancer stem cell theory: A sub-population of cells in the 

intra-tumor region (which gains resistance to the drug) undergoes re-differentiation after 

treatment to give rise to cancer, thus having stemness characteristics. (C) Genetic 

heterogeneity: Any changes in the genetic makeup of the cells that give rise to two different 

cell types within tumors. (D) Phenotypic heterogeneity: Accounting for the complete effect 

of oncogenic mutations and tumor microenvironment on the morphology of the cells.  
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The Cancer Genome Atlas (TCGA) and Parsons et al. analyzed 20,661 protein-coding 

genes in 22 human GBM samples by using Sanger sequencing (Parsons et al. 2010). These 

Candidate Cancer Genes (CAN-Genes) included TP53, PTEN, CDKN2A, RB1, EGFR, 

NF1, PIK3CA, and PIK3R,  have been previously implicated in gliomas (Frattini et al. 

2013; Marjanovic et al. 2013). The methylation status of the MGMT may be causal in 

intra-tumoral chemotherapeutic heterogeneity observed in GBM and other cancers 

(Snuderl et al. 2011; Little et al. 2012).  

Receptor tyrosine kinases (RTKs) including EGFR, MET and PDGFRA have been 

identified with varying levels of amplification (Snuderl et al. 2011; Little et al. 2012; 

Szerlip et al. 2012). Intra-tumoral variation was observed in single-cell RNA sequencing 

and gene expression from five primary GBMs (Patel et al. 2014). There are many gene 

expression studies for selected signaling pathways like PPARG, JAK-STAT, EGFR, 

MGMT, and DNA repair enzymes and some metabolic genes like IDH1/IDH2, LDH, SDH 

that have been reported in the literature (Yeung et al. 2013; Szerlip et al. 2012; Kohsaka et 

al. 2012). However, none of these functional or molecular or physiological studies focuses 

on the side-population that could potentially exist. 

A side-population/ sub-population of neurospheroidal cells (NSP) that are morphologically 

distinct from epithelial cells were identified in U87MG (Grade-IV GBM cell line) and 

sorted using Fluorescence Assisted Cell Sorting (FACS). A detailed phenotypic and 

functional characterization of the side-population’s heterogeneous phenotype vis-a-vis the 

main tumor cell line population (U87MG) was performed.  

To our knowledge, this is the first study addressing the functional characterization in 

relation to growth/proliferation and metabolite profiling to understand nutrient uptake of 

side-population cells within a cell line. The differential growth kinetics of the two 

populations has also been delineated in addition to their differential response to the 

chemotherapeutic drug, Temozolomide. The glucose/ amino acid utilization profiles and 

differential metabolism is characterized using LC/MS.  

2.2. Methods 

2.2.1. Cell culture: U87MG cell line (HTB-14; Human Glioblastoma Multiforme) was 

cultured in DMEM (Dulbecco’s Modified Eagle’s Medium). Glucose (1 mg/mL) and L-

glutamine (0.584 mg/ml) with added 10% fetal bovine serum (FBS, Gibco
TM

, 
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ThermoFisher Scientific) and 1% non-essential amino acids (Sigma-Aldrich) was used. 

Cells lines were maintained at 37°C in a humidified atmosphere of 5% CO2/95% air. This 

cell line has been authenticated by STR profiling (Appendix A) to ensure the ATCC STR 

profiles (10 marker loci). Among 16 marker loci, 9 marker loci were used for the 

confirmation of authentication (Appendix A). After separation using FACS, NSP was 

initially maintained in neurobasal medium (Gibco
TM

, ThermoFisher Scientific) 

supplemented with B27 supplement (Gibco
TM

, ThermoFisher Scientific), 0.2 μg/mL of 

epidermal growth factor, EGF (ThermoFisher Scientific) and 0.2 μg/mL of basic fibroblast 

growth factor, bFGF (ThermoFisher Scientific). Further sub-culturing and passaging of 

NSP was carried out using the similar medium as U87MG to avoid any contribution from 

different micro-environments and delineating heterogeneity of molecular signatures. NSP 

were cultured as free-floating spheres in the appropriate low attachment T-75 flasks or 6 

well/24 well plates (Nunc
TM

, ThermoScientific
TM

). 

2.2.2. Fluorescence microscopy: Hoechst 33342 stain (ThermoFisher Scientific) at a 

concentration of 1 mg/mL was used for all fluorescence studies on EVOS® FLoid® cell 

imaging system (ThermoFisher Scientific).  The side-population assay exploits the 

excitation of Hoechst 33342 in the blue fluorescence range (351 to 364 nm with a 450/20 

band-pass filter) and emission in the red fluorescence (675-nm long-pass edge filter). The 

differential fluorescence intensity (390/40 nm excitation and 446/33 nm emission) reflected 

the varied Hoechst dye uptake by cells. 

2.2.3. Flow cytometry: The side-population assay as previously described (Goodell 2005) 

was performed with cells at 70% to 80% confluency. Cells were trypsinized, washed and 

resuspended in phosphate buffer saline (PBS) supplemented with 2% FBS to a final 

concentration of 10
6
 cells per milliliter. Cells were incubated at 37°C, with 5 µg/ml 

Hoechst 33342, in dark, for 120 minutes, with regular mixing at 30-minute intervals 

followed by incubation at 4°C. Propidium iodide (4 µM) was added for viability 

assessment. Efflux of Hoechst 33342 was determined using flow cytometry with BD FACS 

Aria III machine (BD Biosciences Ltd). Intensity data using the appropriate channels were 

collected in linear mode. 

2.2.4. Sorting of cells by FACS and functional characterization using verapamil: Cells 

with the ability to efflux Hoechst dye were characterized and sorted by their fluorescent 

profile into Hoechst high (Hoechst positive) and Hoechst low (Hoechst negative) using BD 

FACSAria III. Cells were suspended to 2-4 x 10
6
 cells per milliliters and sorted using 
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FACS. A two-way sort yielded both the main population (Hoechst high/U87MG) and side-

population (Hoechst low/NSP). Hoechst low FACs profile of cells was confirmed using 

Verapamil (a calcium channel blocker). All data were collected in linear mode and 

analyzed using BD FACSDiva™ software v6.1.3. Cells were displayed on dot plots gated 

on live cells, PI negative, and viewed in a Hoechst Blue versus Hoechst Red dot plot to 

capture the effect of Verapamil and to confirm the dye efflux.  

2.2.5. Growth/proliferation studies: Growth of the cells separated by FACS (U87MG and 

NSP) and the heterogeneous population (Het U87MG) were studied by monitoring their 

proliferation via cell count over a period of 216 hours (9 days). The initial seeding set the 

starting population (No) at ~10000 cells per well. The growth profile was studied in a 24 

well plate (Nunc tissue culture-treated) for ease of harvesting. Both U87MG and NSP cells 

were harvested every 24 hours and counted using hemocytometer based on trypan blue dye 

exclusion assay. Before counting, the NSP population was disaggregated by trypsinization. 

The growth curve was graphed with the number of cells on the Y-axis and time on the X-

axis. The data were fitted using Gompertz function using GraphPad Prism software and the 

growth parameters calculated. The same protocol was followed for the growth studies of 

NDx cells. 

2.2.6. Temozolomide dose-response curves: For dose-response experiments, we plated 

cells in four replicates at 20,000 cells per well in 96-well plates (Nunc
TM 

tissue culture 

treated, ThermoScientific
TM

) in full growth medium for 24 h and then treated them with 

different doses of TMZ in serial dilutions (0.05M to 5M) and tested them for cell viability 

using the MTT assay. Cell control (without TMZ treatment) in every individual replicate 

was considered as 100% viable, and the IC50 value was calculated as the dosage at which 

50% viable cells are present with respect to control cells in each representative replicate. 

Three biological replicates were performed with three technical replicates in each 

biological replicate on a 96-well plate (Nunc
TM 

tissue culture treated, ThermoScientific
TM

). 

2.2.7. In vitro differentiation of NSP: NSP were grown initially in DMEM followed by 

addition of N-2 supplement (Thermofischer Scientific Ltd). Growth factors, bFGF and 

EGF were reconstituted with 0.1% BSA solution at a concentration of 100 μg/mL.  20 μL 

from this working stock was added to 100 mL of complete medium. Unused portions were 

frozen and kept in aliquots until further use. All other conditions were maintained the same 

as used in the proliferation/growth study. The NDx cells were cultured separately by 

following the same method of culture of U87MG cells and frozen in cryo-vials for further 
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studies. 

2.2.8. Sample extraction, dilution and internal standard spiking for LC-MS/MS: The 

9 samples harvested during growth every 24 hours over a period of nine days were used for 

the metabolic profiling to understand nutrient uptake and kinetics.  Culture samples were 

thawed in an ice bath to aliquot 100µL of the sample for extraction. The aliquot was 

transferred into a fresh 1.5 mL centrifuge tube. 400 µL of chilled methanol (previously 

stored at -80°C) was added. The solution was thoroughly mixed for 2 min followed by 

centrifugation for 15 min at 5000 rpm (4°C). The tubes were carefully removed, 300 µL of 

supernatant was withdrawn and transferred into a fresh tube (Dilution level: 5X). A two-

step serial dilution of the supernatant was performed using 50% acetonitrile in water. In the 

first step, 50 µL of supernatant was thoroughly mixed with 450 µL of diluent (Dilution 

level: 50X). This solution was further diluted by mixing 100 µL of the sample solution 

with 400 µL of diluent (Dilution level: 250X). Before injection, 100 µL of the sample 

solution was mixed with an equal volume internal standard solution containing 4.4 µM 

verapamil in 50% acetonitrile in water with 0.2 % formic acid. Standard preparation: 

Standards of metabolites were prepared using chemically defined minimal essential media 

(MEM), non-essential amino acid media (NEAA). Stock solutions were serially diluted to 

generate the various calibration levels for quantitative estimations (Appendix B). 

2.2.9. Metabolomics profiling using liquid chromatography high-resolution mass 

spectrometry (LC-HRMS): Metabolic profiling of samples was carried out by Accela 

1250 ultra-performance liquid chromatography (UPLC) in tandem with Thermo Q-exactive 

high-resolution mass spectrometer (HRMS) using heated electrospray ionization (HESI) 

interface. The UPLC and MS were operated using Xcalibur (Thermo, Version 2.0) 

software platform, whereas HESI source parameters were set using Tune module (Thermo, 

version 2.1).  Samples were stored in a temperature controlled Accela autosampler 

maintained at 4°C during LC-HRMS analysis. A reverse-phase C18 hypersil gold column 

(10cm x 2.1mm x 3.0µm) was used for chromatography. The mobile phase consisted of 

0.1% formic acid in deionized water (Mobile phase ‘A’) and 0.1% formic acid in 

acetonitrile (Mobile phase ‘B’). The elution gradient was set as 70% of mobile phase A 

(0.0-2.5 min), 10% A (3.5-5.5 min), 70% A (5.5-8.0 min) with a constant flow rate at 1000 

µL/min.  

The HESI source spray voltage was set at 3.7kV with capillary temperature 300°C, sheath 
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gas 45 units, auxiliary gas 10 units, heater temperature 390°C and S-lens RF at 50 units.  

The mass spectrometer was set to m/z range of 60-900, resolution of 70,000 FWHM with 

automated gain control target 1e6 and maximum injection time of 50 ms. 5µL of samples 

was injected for analysis using the auto-sampler unit. The data was acquired in both 

positive and negative ion mode in two separate batches. Metabolomics data analysis was 

carried out by the Qual and Quan browser modules of Xcalibur (Thermo). [M+H]+ and 

[M-H]- ions were used for all sets of data analysis in positive and negative ion mode 

respectively.  

A Qual/Quan approach of data processing was employed. First, accurate mass-extracted 

ion chromatogram (AM-XIC) of various metabolites using 20 ppm mass extraction 

window (MEW) were generated and peaks were confirmed using MS/MS spectral peak 

matching. As the latter part of the Qual/Quan approach, the metabolites confirmed through 

the qualitative analysis were quantified in various intra- and extra-cellular samples using 

internal standard normalized linear regression models generated from standards. The detail 

of MS/MS confirmations, concentration ranges and regression fits of various metabolites is 

provided in Appendix B. 

2.3. Results 

The glioblastoma cell line U87MG contained a side-population (0.1%) of Hoechst-

effluxing cells. The side-population cells were confirmed with Verapamil, an ABC 

transporter L-type calcium channel blocker and inhibitor of Hoechst 33342 dye efflux. The 

separated populations were tested for morphological and phenotypic heterogeneity. 

Morphology was studied by microscopy for both cell types and also the ability of the 

spheroid cells to differentiate back into the glial cell type. Phenotypic heterogeneity was 

tested by comparing growth kinetics and the nutrient uptake from complex media in 

addition to the response to Temozolomide (Temodar™) used to treat glioblastoma.  

2.3.1. Microscopy reveals distinct cell morphology of each population. Under bright 

field microscopy, cultures of the separated U87MG showed characteristics of glial cells 

with epithelial cell morphology (Figure 2.3A). Neurospheres (NSP) were seen as small 

rounded cells that form floating aggregates in culture (Figure 2.3B). Fluorescent 

microscopy further suggested a difference in fluorescence intensity between the NSP and 

U87MG cells in the heterogeneous population (Figures 2.3C and 2.3D). This is indicative 

of potential efflux of the Hoechst dye by a small population of cells, the side-population 
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within the major population. 

 

Figure 2.3: Heterogeneous cell population in U87MG as seen using microscopy. (A) 

U87MG cells grown in DMEM medium, forming epithelial morphology with adherent 

profile (B) Separated NSP cells grown in low attachment surfaces as spheres (C) 

Fluorescence microscopy of a neurosphere from heterogeneous population before sorting 

using FACS; The difference in fluorescence intensity of dye uptake (Hoechst 33342 

staining) is shown in the blue fluorescence image. (D) Bright-field light microscopy 

merged image of C. All microscopic images were captured in an EVOS® FLoid® system, 

ThermoFisher Scientific. Scale bar: (A) and (B) at 20X magnification; (C) and (D) was 

captured with a scale of 100µM. 

2.3.2. FACS profiling identifies differential dye efflux properties in U87MG cells. To 

confirm differential dye uptake, flow cytometric analysis was performed and side-

population were identified, characterized as NSP. The side-population cells were detected 

in parental GBM cells, at a frequency of 0.1%. The NSPs were confirmed by use of 

Verapamil. The fluorescence profile (Figure 2.4A) of viable cell population allowed 

identification of the side-population that can be sorted further.  
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Figure 2.4: FACS profiling of heterogeneity within U87MG cells. (A) Initial screening for 

viable cells of U87MG cells: Cells were distinguished from debris using FSC (Forward scatter, 

related to cell size). (B) Propidium Iodide (PI) profile of U87MG cells: PI is mainly taken up by the 

dead cells. Gated cells were representative of viable cells. (C) Hoechst profile of U87MG cells: 

Hoechst Red versus Hoechst Blue was compared for the dot plot where the side-population of cells 

was gated. NSP cells were recognized as a small tail extending first on the left side of the GO/G1 

phase cells towards the lower “Hoechst Blue” signal. (D) Hoechst profile of U87MG in the 

presence of Verapamil: the cells were treated with Verapamil and analyzed for the blocking of dye 

efflux as a confirmation of side-population profile. In the presence of Verapamil, the gated side-

population decreases to a few cells confirming the blocking of dye efflux and this confirmation 

helped the sorting of NSP cells. 

The multi-step gating strategy was critical for characterizing the side-population and 

discriminating the main population. The flow-cytometric profile based on the forward 

scatter (FSC, indicative of cell size) and side scatter (SSC, indicative of cell granularity) 

allowed distinguishing viable cells from cell debris. To assure that a detected signal arose 

from single cells, cell doublets and aggregates were gated-out based on their properties 

displayed on the SSC area (SSC-A) versus FSC area (FSC-A) dot plot (Figure 2.4A). Dead 
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cells were recognized for their strong positivity for the dead cell discrimination marker, 

propidium iodide (Figure 2.4B). This gating strategy primarily allowed the definition of 

Hoechst profile of viable populations. Sub-population cells were recognized as a dim tail 

extending first on the left side towards the lower ‘‘Hoechst Blue’’ signal (Figure 2.4C). 

The mechanism of Hoechst dye uptake depended on the activation of the ABCG2 

transporter system and this can be inhibited by the use of the calcium channel blocker, 

Verapamil hydrochloride.  The side-population was confirmed based on Hoechst 33342 

efflux through the Verapamil-sensitive ATP-binding cassette (ABC) transporter, ABCG2 

(Figure 2.4D).  

2.3.3. Differential growth kinetics of the side-population 

The growth of cells with differential dye efflux capability was studied based on a ten-day 

experiment monitoring their proliferation (Figure 2.5). Viable counts of the specific cell 

type were graphed as a function of time and then fitted to the Gompertz model using 

GraphPad PRISM V4.0 (GraphPad Software, San Diego, CA, USA) to determine 

maximum specific growth rate (µmax), and maximum population density (Nmax).  

The Gompertz function used to model the growth kinetics of both the cell types was as 

follows:  

N(t) = No exp (ln(N(t)/No)
 [1 - exp(-kt)] 

where No defines the initial seeding density of the cells, Nt is the number of cells at time t, 

and k is the maximum specific growth constant (Table 2.1).  

The doubling times calculated from the growth rates (Table 2.1) were 35.12 and 47.05 

hours for the U87MG and the NSP populations respectively. This function unlike the 

traditional exponential model gives a better fit (Figures 2.5B and 2.5C) by the three 

parameters used and predicts decelerated growth towards the end by accounting for lack of 

resources or space. Thus the fitted Gompertz function reaches its horizontal asymptote for 

U87MG and NSP after 6.17 and 4.8 doublings respectively. The maximum specific growth 

rates calculated were 0.014 and 0.02 hr
-1

 for NSP and U87MG respectively. The NSP 

population growth rate is 30% lower than the main population and thus the maximum 

population density reached at the end of 216 hours was higher for U87MG as compared to 

NSP. The heterogeneous population had a growth rate of 0.02 hr
-1

 and a doubling time of 

36 hours. 
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Table 2.1: Growth parameters determined based on Gompertz growth fit in GraphPad Prism 

software 

Gompertz growth 

parameters 

Nmax 

(cell numbers) 

µMax (hr
-1

) 
R Squared Gompertz Monod’s 

Neurospheres 1.304*10
6
 0.01473 0.0145 0.9733 

U87MG 1.556*10
6
 0.01973 0.0219 0.9421 

Heterogeneous U87MG 1.383*10
6
 0.02316 0.0186 0.9690 

 

 

Figure 2.5: Growth profile of the heterogeneous population in U87MG. (A) Workflow 

used to obtain a homogeneous population of cells by FACS that were growth profiled. (B) 

The growth of the heterogeneous population of cells U87MG and (C) The growth profile 

(mean of 3 biological replicates) over 9 days for the separated NSPs & U87MG seeded at 

the same density and graphed using the cell count every 24 hours. The Gompertz growth 

kinetic model was fitted using GraphPad Prism. A comparison of (A), (B) and (C) shows 

differential lag times and U87MG was observed to have a higher growth rate as compared 

to NSP as indicated in the summary of growth kinetic parameters (Table 2.1). 
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2.3.4. Dose-response parameters vary across cells for temozolomide  

The objective of determining the dose-response curves for TMZ (Temodar), was to detect 

and analyze any potentially different growth inhibition patterns exhibited by the side-

population NSP. The dose-response of U87MG and NSP are varied as seen in the steepness 

of the dose-response curve (Figure 2.6), differences in maximum effect and the more 

classical drug potency measurements (IC50 and Emax).  
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Figure 2.6: Dose-response curve for temozolomide. The dose-response summary was 

graphed as cell viability (reported as % compared to control) against the concentrations for 

TMZ. (A) U87MG showed the IC50 value of 745.6 µM while (B) and NSP IC50 was 

calculated to be higher at 1,039 µM using a non-linear regression curve fit using GraphPad 

Prism. A detailed summary of all dose-response parameters is given in Table 2.  

The summary (Table 2.2) indicates IC50 values indicative of the potency of the drug, Emax 

values a measure of efficacy, Hill Slopes (HS) indicating effect per unit of drug and area 

under the curves (AUC) that reflect the overall response of the cell lines to the drug. All 

measurements were based on the estimation of % cell viability (run in quadruplicates) 

obtained from MTT assay after 24 hours incubation with TMZ. The incubation time was 

determined as 24 hrs after testing the time dependent effect of TMZ on NSP (Appendix A). 

A lower IC50 value for U87MG cells (745.6 µM) indicates the higher potency of TMZ 

against these cells (Figure 2.6A).  A higher IC50 for NSP (1039 µM) indicates a potential 

lower efficacy of the drug on these cells (Figure 2.6B). The fold resistance was calculated 

to be 40%. The Emax values for NSP are almost three-fold higher than that of U87MG 

indicating higher efficacy of TMZ on the main cell line as compared to the side-population 

(Table 2.2). However, an HS value of near 1 for NSP indicates a potentially higher 

efficacy, at least in culture. AUC combines potency and efficacy of a drug into a single 

parameter. AUC values were compared across U87MG and NSP exposed to the same 

range of TMZ concentrations indicate a higher impact of the drug on U87MG. 

A B 
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Temozolomide is potentially also shown to be efficacious in controlling the side-

population growth but only at concentrations that are 40% higher (indicated by fold 

resistance ratio 1.41). 

Table 2.2: Summary of dose-response analysis for TMZ. 

 

 

 

  

 

2.3.5. Quantitative exo-metabolite profiling identifies differential dynamics of 

nutrient uptake in the side-population  

LC-MS/MS was used to monitor the differential nutrient uptake of glucose and amino 

acids required for growth (Figures 2.7A, B, and C). Consumption of major nutrient glucose 

correlated with the release of by-product lactate consistent with the well-documented 

Warburg effect in transformed cells (Vander Heiden et al. 2009; Feron 2009; Warburg et 

al. 1923). The extent of the Warburg effect was also measured through estimation of the 

lactate secreted in relation to the glucose consumed. Glucose was taken-up linearly during 

growth of U87MG. The side-population NSP had a slight lag before glucose uptake and 

was consumed exponentially. Glucose influx is also seen to be differential between NSP 

and U87MG (Figure 2.7C). Among the amino acids, glutamine consumption (Figure 2.7D) 

was quantitatively the highest and closely mirrored glutamate secretion in the media. The 

nutrients that were completely depleted during the time frame growth as monitored in both 

U87MG and NSP were glucose, glutamine and serine although with varied dynamics 

(Figures 2.7D, E and F). Tryptophan was utilized completely by U87MG only indicating 

potentially different functional roles in NSP (Figure 2.7G). The maximum uptake rates of 

these amino acids in U87MG being highest in the first 24 hours decreasing several folds by 

the end of 96 hours (Figures 2.7D-H). NSP, however, seems to show maximum uptake of 

these amino acids in the 24-48hr time frame indicating a potential lag in the first 24 hours. 

Interestingly, the patterns of utilization seem to indicate a linear decrease of these nutrients 

for U87MG while NSP growth is supported through the exponential decrease of the same 

nutrients with a time delay of about 48 hours in their uptake corresponding to the end of 

the first observed doubling (Figures 2.8A, B). Ala, Glu, Gly, and Pro were secreted by the 

U87MG population as shown in a clade different from the rest of the metabolites that are  

Dose response 

summary 
U87MG Neurospheres 

IC50 (µM) 745.6 1039 

Emax 25.53 45.28 

Log 2 (Hill Slope) -1.95904 0 

AUC 53039 276836 
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Figure 2.7: Consumption and release profile for selected metabolites. Consumption and 

excretion rates of glucose, lactate, and amino acids by U87MG and NSP cells. Amino acids 

are ranked in descending order by absolute magnitude of their maximum uptake and 

release fluxes in U87MG (A, B). Each bar represents the slope from a linear fit of n = 3 

replicates ± SE. Standard three-letter abbreviations are used for amino acids. (C) Maximum 

uptake/release rate of Gln, Glc and Lac. Glc-glucose; Lac-lactate. Rapidly proliferating 

cells of U87MG/NSP in a culture consumed Gln (D) and (E) serine and (F) glucose in 

excess of other nutrients while only U87MG consumed (G) tryptophan in excess. U87MG 

utilized Gln at a faster rate compared to NSP cells. NSP cells were found not to utilize 

tryptophan until 144 hrs (6 days) of growth. Uptake of glucose was faster in U87MG and 

slower in NSPs. (H) Lactate release was found to be proportional to the utilized glucose 

concentration and was stable from 120 hrs in NSP cells.   
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Figure 2.8: Quantitative exo-metabolite profiling of separated U87MG and 

neurospheres. Normalized dynamics of LCMS-based concentration profiles of amino 

acids over time was plotted as a heat map for U87MG (A) and NSP (B). The heat map 

indicates the consumption/release of the amino acids in the extracellular medium over 

time. The profile varies across a scale of 0 to 1 wherein 1 corresponds to 

release/accumulation and 0 corresponds to the least value/uptake. The clustergram of 

U87MG (C) and NSP (D) shows the relative concentration of all amino acids in the 

external environment over time.   

all consumed (Figures 2.8C and D).  

This phenomenon has been seen in previously studied glioblastoma cells. The NSP 

population however only secreted alanine and glutamate.  Glycine and glutamate were 

secreted initially in fast dividing cells and then taken-up later suggesting a metabolic 

functional role for them in the NSP (Figures 2.8A and B). Several amino acids including 

Cys, Leu/Ile, Lys, Gly, Met, Phy, Ser, Thr, Tyr, and Val were utilized linearly in the first 

48 hours of growth only by U87MG (Figure 2.8A). NSP was observed to utilize these only 

after the first doubling (Figure 2.8B). Another feature distinct from U87MG was the 
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utilization of the amino acids Tyr, Trp, Val, Thr, Ser, Pro, Met, Phe, Lys, Leu/Ile, His in 

NSP cells somewhere between 120- 168 hours and continued until growth was monitored 

at 216 hours (Figures 2.8A and B). This indicated that the demand for these nutrients at 

that time may exceed the endogenous synthetic capacity in NSP and thus necessitate 

uptake.  

2.3.6. Side-population NSP has the capability of differentiation into a glial cell type 

The ability of the side-population to undergo differentiation and form specialized cell types 

was confirmed in an assay that provided growth factors for such differentiation (Figure 

2.9). The differentiated neurospheroidal cells (NDx) exhibited glial morphology and were 

adherent in contrast to the NSP (spheroidal) side-population. NDx cells showed a TMZ 

dose response in between NSP and U87MG, exhibiting an IC50 value of 817.5 µM and 

growth rate of 0.01634 hr
-1 

(Figures 2.10A, B and Tables 2.3 and 2.4).  

 

B 

C 

D 

Figure 2.9: Redifferentiation 

capability of drug resistant side 

population cells. (A) Experimental 

setup for study: 6 well plate 

containing the NSP in media 

supplemented with or without growth 

factors, bFGF and EGF. Column 1 in 

the plate contains media without 

growth factors as control for the 

experiment (B) Microscopic image of  

one NSP on day 1 (24 hours after 

seeding) and day 4 supplemented 

with media without EGF/bFGF; (C) 

Microscopic image of NSP on day 1, 

differentiating into adherent cells on 

day 4. (D) Microscopic image of 

another neurosphere (NSP cell) 

undergoing differentiation from day 1 

to day 4.  
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Table 2.3: Growth parameters for NDx cells. 

Growth parameters NDx cells 

Growth rate (hr 
-1

) 0.01634 

Nmax (cell numbers) 2.826*10
6
 

R square 0.9325 

 

Table 2.4: Dose-response summary for NDx cells. 

Dose-response summary NDx cells 

IC50 (µM) 817.5 

Emax 44.10 

Log 2 (Hill Slope) ~ -1.000 
AUC 83256 

   

 

 
Figure 2.10: NDX cells show distinct growth, dose-response, and metabolic dynamics. 

(A) The growth of NDx cells: Gompertz growth fit is used for calculating the growth 

parameters. Growth rate = 0.01634 hr
-1

. (B) Dose-response of NDx cells to TMZ: IC50 is 

found to be 817.5µM which is higher than U87MG and lesser than NSP. The complete 

dose-response summary is given in Table S2. (C) Heatmap of max normalized values of 

exo-metabolite concentration measured by LCMS analysis at every 24 hours of growth. 

The consumption and release of different metabolite profile differ from that of U87MG and 

NSP. (D) Clustergram of exo-metabolite concentration max normalized to time points to 

highlight the presence of highly concentrated metabolite in each time point. 
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The exo-metabolome analysis of growth samples also showed similarities to U87MG 

especially with respect to glucose and glutamine consumption. Serine, tryptophan and 

glutamate profiles mimicked NSP cells (Figure 2.10C, and D). 

2.4. Discussion 

Although the existence of small minority populations with differential histology and dye 

efflux properties within cancer cell lines has been known for decades (Golebiewska et al. 

2011; Hirschmann-Jax et al. 2004; Golebiewska et al. 2013; Broadley et al. 2011), the 

underlying biochemical physiology of how this shapes functional heterogeneity is still 

incompletely understood. Here we report the functional characterization of differential 

growth & proliferation of a cellular side-population isolated from the U87MG glioblastoma 

cell line. The identification of differential dose response and resistance of the side-

population to TMZ, a clinically approved DNA methylating drug to treat glioblastoma, 

highlights the need to unravel functional heterogeneity. The incredible genetic and 

histological heterogeneity of tumors seems to involve the common induction of a finite set 

of pathways to support core functions including anabolism, catabolism, and redox balance 

(Ros et al. 2012). This study revealed novel heterogeneity in the context of varied growth-

limiting nutrients and uptake rates in addition to micro-environmental changes. To our 

knowledge, such functional physiological responses have not been correlated to drug 

response till date for the side-population (NSP) of GBM cells. 

U87MG showed a high rate of glucose consumption indicated the flux via aerobic 

glycolysis to satisfy the bioenergetics of ATP demand (Figure 2.11) depicted by using 

LCMS metabolite profiles, resembled many cancer cell lines. The dynamic exo-metabolite 

profiles show higher utilization rates for glucose in U87MG cells and changes in metabolic 

fluxes occur in primary response to growth-factor signaling (AKT), independent of 

changes in ATP. Proliferating cells are in much greater need of reduced carbon and 

reduced nitrogen, as well as cytosolic NADPH for reductive biosynthetic reactions.  

The reprogramming of cellular metabolism toward macromolecular synthesis is critical to 

supplying enough nucleotides, proteins, and lipids for a cell to increase its total biomass 

and then divide to produce two daughter cells. Glucose and glutamine are rapidly 

consumed simultaneously by U87MG cells during proliferation suggesting the induction of 

the MYC transcriptional program. Glutamine conversion to AKG by glutamate 
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Figure 2.11: Predicted cellular metabolism of U87MG and NSP. The reprogramming of cellular metabolism towards macromolecular 

biosynthesis is shown. U87MG predominantly uses glucose (highlighted in blue) and glutamine (highlighted in red) simultaneously thus 

triggering aerobic glycolysis for bioenergetics demand and glutaminolysis for anaplerosis of TCA cycle. NSP cell population preferentially 

utilizes glutamine and concomitantly increases AKG even in the presence of glucose. This reprograms the TCA cycle.  
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dehydrogenase (GDH) or by transamination reactions, remove the α-amino group from 

glutamate transferring it to non-essential amino acids secreted from the cell, like; alanine, 

glycine, and proline via transaminases (as seen in Figure 2.8A for U87MG). The majority 

of acetyl-CoA in U87MG cells is derived from glucose, while OAA is derived from 

glutamine. 

Consistent with this hypothesis (Figure 2.11), activation of the tumor suppressor p53 

transcriptional program has been shown to be critical for cell survival following glucose 

depletion (Jones et al. 2005) that could potentially turn on adenylate kinases to meet ATP 

demand. This activity is required to maintain the TCA cycle under conditions when cells 

use citrate as a biosynthetic precursor of lipids, cholesterol and fatty acids via the AKT 

controlled ATP citrate lyase. Glutamine was utilized in excess of its nitrogen requirements 

and potentially used as intermediates in NSP cells in the presence of minimal amounts of 

glucose (Figure 2.11).  

Differential tryptophan metabolism suggests the role of this carbon source for fatty acid 

synthesis suggesting a source of NADPH (the electron donor for fatty acid synthesis) and 

anapleurosis to replenish TCA cycle of picolinate carboxylase activity in maintaining a 

balance between nicotinamide nucleotide synthesis and acetyl-CoA production that may 

further affect acetylation (Figure 2.11). The differentiated population NDx from NSP was 

closer to U87MG in its metabolite consumption patterns and growth profiles. Since TMZ is 

a DNA methylating drug, the potential effects of metabolism on epigenetics are critical in 

drug action and cell susceptibility. A reduction in flux through aerobic glycolysis reflective 

of higher NAD levels could possibly control the SIRTUIN family transcriptional repressors 

and silence chromatin via decreasing histone acetylation marks.  

The non-dependency on glutamine also suggests normal levels of methylation marks in 

U87MG. The high levels of AKG may potentially turn on high levels of the histone 

demethylases that prevent the methylation and thus increase the amount of drug (IC50) 

needed for cidal activity of the side- population. Further experiments are needed to be done 

to explore the implication of AKG in the demethylation of DNA and its effect on drug 

sensitivity. In line with this hypothesis, the side-population exhibited properties of 30-40% 

fold resistance (indicated by higher IC50 values) during the studied chemotherapeutic 

response to the drug.  

 



 

42 How differences make difference? | Chapter 2 

 

2.5. Conclusions 

The importance of characterizing sub-populations (NSP) within the main population 

(U87MG) is critical to understanding the contribution of each cell type to overall growth 

and metabolism of tumor cells.  The influence of the presence of sub-populations as those 

discussed in this chapter on drug dose-response, potency and efficacy may eventually help 

in better drug regimens and treatment strategies. Drug resistance of these side populations 

of cells characterized as neurospheres (NSP) in this Chapter 2 is further studied for its 

genotypic variations and also characterized for secondary phenotypes. The differential 

genotype-phenotype relations compared to the main population (U87MG) are delineated 

and discussed in subsequent chapters of this thesis. Moreover, the results strongly indicate 

the role of altered metabolism in NSP in addition to drug efflux as a driver for 

temozolomide resistance.  
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 Chapter 3 
 

43 

 

 

Chapter 3 

Candidate Gene Interaction 
Networks in Glioblastoma 

 
“Epigenetics doesn't change the genetic code, it changes how that's read”. 

- Bruce Lipton 

 
“DNA, like a tape recording, carries a message in which there are specific instructions for a 
job to be done”.  

–Arthur Kornberg 
 

 

 
Figure 3.1: Graphical abstract of chapter 3. 
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Abstract 

There is a need to profile ABC transporters along with candidate cancer (CAN) genes for a 

system-level understanding of drug resistance. This chapter 3 illustrates the use and 

application of network analysis guided real-time quantitative PCR (qPCR) to discern 

differential gene expression comparing drug-sensitive cells (U87MG) having the adherent 

state of growth to cells that are drug resistant (NSP) and forms spheroids. Patterns of gene 

expression by cells could yield the mRNA abundances of the key gene markers (CAN-

genes and ABC transporters) and help in characterizing drug resistance towards 

understanding the metabolic rewiring in the resistant cells. 

This chapter discusses our findings highlighting the variation in mRNA transcript 

abundances and differential expression of genes AKT1, TP53, PTEN, EGFR and MET 

across the populations identified from U87MG. Relative quantitation of gene expression 

measurements of ABC transporters in NSP showed two to three-fold variations as 

compared to U87MG. Differential mRNA abundance of AKT1, PTEN, PIK3CA 

controlling substrate uptake, and metabolism, drug efflux through ABC transporters, 

nutrient transport, and epigenetic control MDM2 are potentially critical in shaping DNA 

methylation effects of temozolomide mechanism, causing resistance.  
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3.1. Introduction 

Glioblastoma has four distinct subtypes: proneural, neural, classical and mesenchymal 

based on gene expression patterns and correlates to clinical characteristics (Verhaak et al. 

2010). However, little is known about the distinct phenotype and possible activation of 

genetic and cellular programs in the biology of minor populations, that distinguish them 

from major cell types in the tumor environment (Hirschmann-Jax et al. 2004; Bleau et al. 

2009). Microarray technology has proven to be very useful in the complete molecular 

characterization of tumor grades, thus generating evidence of a transition that is unique in 

every stage of cancer (Khodursky et al. 2000; Hoelzinger et al. 2005). Gene expression 

analysis not only helps in histopathological diagnosis known so far but also in identifying 

new signatures especially of non-characterized sub-population that causes drug resistance 

(Immanuel et al. 2018; Hoelzinger et al. 2005).  

It is also expected that molecular characterization of drug-resistant cells would eventually 

lead to the application of customized therapy to a particular tumor microenvironment. 

Increasingly gene expression signatures and detailed molecular characterization are 

routinely used in the clinic as prognostic markers to classify tumors and stratify patient 

risk/treatment groups. Adaptive signature design through gene expression profiling is being 

used to characterize the sensitivity of the patient to therapy. This association of gene 

expression is highly dependent on the purity of the tissue sampled and identification of 

genes with so-called static signatures.  

3.1.1. Network analysis using PathwayStudio™ 

Information about gene to protein function and cellular pathways is central to the system-

level understanding of human disease. The knowledge about the key cancer candidate 

(CAN) genes specific to each cancer type is routinely characterized and reported in 

numerous scientific publications. There is a huge need to bring the relevant information 

together using automated software systems to validate, organize and study pathway 

implications from legacy data.  

PathwayStudio™ is a web-based software and tool developed for analysis of molecular 

networks by text-mining from databases that contain the cancer candidate gene information 

(Nikitin et al. 2003). The choices of cancer candidate genes can be delineated by using this 

web-based software to rank the genes that are linked to glioblastoma with the highest 
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relevance to the published dataset. The unique feature of PathwayStudio is the inbuilt 

natural language processing module MedScan (Nikitin et al. 2003) that can convert the 

keywords of PubMed into pathway diagrams. Gene interaction networks also can be built 

by using the known legacy data that can benefit from addressing the effect of these genes 

on a network/pathway.   

3.1.2. Cancer candidate (CAN) genes and their role 

The Cancer Genome Atlas (TCGA) and Parsons et al. analyzed 20,661 protein-coding 

genes, in 22 human GBM samples, by using Sanger sequencing. These candidate cancer 

genes included TP53, PTEN, CDKN2A, RB1, EGFR, NF1, PIK3CA, and PIK3R, that 

have been previously implicated in gliomas  (Frattini et al. 2013). The methylation status of 

the MGMT may be causal in intra-tumoral chemotherapeutic heterogeneity observed in 

GBM and other cancers (Little et al. 2012; Szerlip et al. 2012). Receptor tyrosine kinases 

(RTKs) including EGFR, MET, and PDGFRA has been identified with varying levels of 

amplification (Snuderl et al. 2011; Szerlip et al. 2012; Little et al. 2012). Intra-tumoral 

variation was observed in single-cell RNA sequencing and gene expression from five 

primary GBMs (Patel et al. 2014).  

There are many gene expression studies for selected signaling pathways like PPARG, 

JAK-STAT, EGFR, MGMT, and DNA repair enzymes and some metabolic genes like 

IDH1/IDH2, LDH, SDH that have been reported in the literature (Yeung et al. 2013; 

Szerlip et al. 2012; Kohsaka et al. 2012). With the increased discovery of gene and protein 

expression signatures [4] and detailed molecular characterization to characterize the drug 

sensitivity, rigorous phenotyping of the subpopulations (NSP), in addition to morphology 

and drug efflux is critical to understand the resistance.  

3.1.3. ABC transporters and drug resistance 

One of the largest protein families is ABC (ATP-binding cassette) proteins and these 

transporter families are present in all living organisms ranging from microbes to humans 

(Higgins 2001; Štefková et al. 2004). This kind of widespread presence of these proteins 

suggests a fundamental role. Members of the ABC superfamily are involved in a broad 

spectrum of functions, including detoxification (ABCB1/MDR1, ABCC1/MRP1, ABCG2) 

(Chang 2003), defense mechanism against foreign substances and oxidative stress 

(ABCCs/MRPs), uptake and secretion processes (MDRs, MRPs), lipid metabolism 

(ABCA1, MDR3, ABCGs) and antigen presentation (ABCB2/TAP1 and ABCB3/TAP2) 
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(Szakács et al. 2008; Higgins 2001; Štefková et al. 2004; Vasiliou et al. 2009). ABC 

transporters with multidrug transporter function (ABCB1/MDR1, ABCC1/MRP1, 

ABCG2) are present in almost all tissue types by showing a good expression profile, 

proving their importance in cellular defense mechanism (Szakács et al. 2008). 44 ABC 

transporters are selected and profiled for mRNA abundances in this study that accounts for 

most of the drug transportation related to cancer.  

3.2. Methods 

3.2.1. Selection of CAN genes using Pathway Studio™ (v11.0.5) analysis: Pathway 

Studio 11.0.5 software from Elsevier (https://product.pathwaystudio.com/mammalcedfx/) 

was used to select specifically for CAN genes in silico. Initial pathways/networks (legacy 

data) implicated in GBM were reconstructed by specifying related key terms including 

oncoproteins. This resulted in deciphering sub-networks and pathways that included inter-

relationships with a confidence score of 3. To further validate networks and infer causal 

pathways filters were applied to include >25 references. This analysis resulted in a pathway 

containing 23 genes (Table 3.1) and 1 miRNA. These 23 genes were then expression 

profiled to quantitate relative mRNA abundance using qPCR. 

3.2.2. RNA extraction and cDNA synthesis: Cultured cells were counted using a c-chip 

hemocytometer (Labtech International Ltd, East Sussex, UK). Cells (10 x 106 cells) were 

centrifuged at 8000xg for 10 minutes, the supernatant was discarded and the remaining cell 

pellet was used for RNA extraction using the RNeasy mini-extraction kit (Qiagen, 

Manchester, UK). In the final step of the protocol, the column was placed on to a nuclease-

free 1.5 mL tube and 50 μL of RNase-free water (Thermofisher Scientific Ltd) was added 

to the membrane for RNA-elution. After 1 minute incubation at room temperature, 

followed by centrifugation for 1 minute at 8000xg, the eluted RNA samples were stored at 

-20°C for short-term storage and at -80°C for long-term storage. Quality of RNA was 

checked using RIN value (Figure 3.2) determined using Bioanalyzer (Agilent Pvt. Ltd). To 

remove any DNA contamination, a TURBO DNA-Free treatment (Ambion, Thermofisher 

Scientific Ltd.) was performed before cDNA synthesis. RNA was reverse transcribed using 

Superscript III (Thermofisher Scientific Ltd) using the manufacturer's protocol. The 

synthesized cDNA was stored at -20°C for further use. 

 

https://product.pathwaystudio.com/mammalcedfx/�
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Table 3.1: List of cancer candidate genes selected using Pathway Studio 11.0.5 

Gene 
Symbol 

Gene Name 
Human 

chromosome 
position 

Cell Localization 

AKT1 
V-akt murine thymoma viral 
oncogene homolog 1 

14q32.32 Nucleus; Cytoplasm; Cell membrane 

CDK4 Cyclin-dependent kinase 4 12q14 Membrane; Nucleus;  Cytoplasm 

CDKN2A 
Cyclin-dependent kinase inhibitor 
2A 

9p21 
Mitochondrion; Nucleoplasm; Nucleus; 
Cytoplasm; Nucleolus 

CXCR4 Chemokine (C-X-C motif) receptor 4 2q21 
Plasma membrane; Cell junction; Lysosome; 
Early endosome; Late endosome; Cell 
membrane 

EGFR Epidermal growth factor receptor 7p12 

Endosome membrane; Plasma membrane; 
Endosome; Golgi apparatus membrane; 
Nucleus; Endoplasmic reticulum membrane; 
Nucleus membrane; Secreted; Cell membrane 

H3F3A H3 histone, family 3A 1q42.12 Chromosome; Nucleus 

HIF1A 
Hypoxia inducible factor 1, alpha 
subunit (basic helix-loop-helix 
transcription factor) 

14q23.2 Nucleus; Cytoplasm 

IDH1 
Isocitrate dehydrogenase 1 
(NADP+), soluble 

2q33.3 Cytoplasm; Peroxisome; Mitochondria 

IDH2 
Isocitrate dehydrogenase 2 
(NADP+), mitochondrial 

15q26.1 Mitochondrion; Mitochondria 

L1CAM L1 cell adhesion molecule Xq28 Cell membrane 

MDM2 
MDM2 oncogene, E3 ubiquitin 
protein ligase 

12q14.3-q15 Nucleoplasm; Nucleus; Cytoplasm; Nucleolus 

MET Met proto-oncogene 7q31 Plasma membrane; Membrane; Secreted 

MGMT 
O-6-methylguanine-DNA 
methyltransferase 

10q26 Nucleus 

MIR21 MicroRNA 21 17q23.1 Cytoplasm 

NFKBIA 
Nuclear factor of kappa light 
polypeptide gene enhancer in B-cells 
inhibitor, alpha 

14q13 Nucleus; Cytoplasm 

PDGFRA 
Platelet-derived growth factor 
receptor, alpha polypeptide 

4q12 Plasma membrane; Cell membrane 

PIK3CA 
Phosphatidylinositol-4,5-
bisphosphate 3-kinase, catalytic 
subunit alpha 

3q26.3 Cytoplasm 

PIK3R1 
Phosphoinositide-3-kinase, 
regulatory subunit 1 (alpha) 

5q13.1 Cytoplasm 

PTEN Phosphatase and tensin homolog 10q23.3 Nucleus; PML body; Cytoplasm 

STAT3 
Signal transducer and activator of 
transcription 3 (acute-phase response 
factor) 

17q21.31 Nucleus; Cytoplasm 

TERT Telomerase reverse transcriptase 5p15.33 
Chromosome; Telomere; Nucleoplasm; 
Nucleus; PML body; Cytoplasm;Nucleolus 

TNFSF10 
Tumor necrosis factor (ligand) 
superfamily, member 10 

3q26 Membrane; Extracellular 

TP53 Tumor protein p53 17p13.1 
Mitochondrion matrix; Nucleus; PML body; 
Cytoplasm; Endoplasmic reticulum 

VEGFA Vascular endothelial growth factor A 6p12 Secreted; Extracellular; Cell membrane 
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Figure 3.2: RNA analysis using Agilent 2100 Bioanalyser. (A) Gel picture for RNA 
samples run using RNA Nano-chip from Agilent. Electrophorograms of RNA from 
Separated U87MG cells (B) and (C) NSP showing the predicted RIN values > 9.70.  

Table 3.2: Primers and probes designed for gene expression studies of reference genes 
(control genes) for GeNORM-based normalization of qPCR data 

3.2.3. GeNorm analysis for stable reference gene identification: Real-time qPCR was 

initially carried out on all three cell types (Parental U87MG, U87MG, and NSP) for 8 

Gene 
Symbol Gene Name Transcript Forward Primer Reverse Primer Probe 

Number 

GAPDH 
Glyceraldehyde 3-Phosphate 
Dehydrogenase 

NM_00204
6 

AGCCACATCGCT
CAGACAC 

GCCCAATACGACC
AAATCC 

60 

ACTB Beta-Actin 
NM_00110
1 

ATTGGCAATGAG
CGGTTC 

GGATGCCACAGGA
CTCCAT 

11 

B2M Beta-2 Microglobulin 
NM_00404
8 

TTCTGGCCTGGA
GGCTATC 

TCAGGAAATTTGA
CTTTCCATTC 

42 

HPRT1 
Hypoxanthine 
Phosphoribosyltransferase 1 

NM_00019
4 

TGACCTTGATTT
ATTTTGCATACC 

CGAGCAAGACGTT
CAGTCCT 

73 

RPL32 
RPL32 ribosomal protein 
L32 

NM_00099
4 

GAAGTTCCTGGT
CCACAACG 

GCGATCTCGGCAC
AGTAAG 

17 

SDHA 
Succinate dehydrogenase 
complex, subunit A 

NM_00416
8 

AGAAGCCCTTTG
AGGAGCA 

CGATTACGGGTCT
ATATTCCAGA 

69 

HMBS 
Hydroxymethylbilane 
Synthase 

NM_00019
0 

AGCTATGAAGGA
TGGGCAAC 

TTGTATGCTATCTG
AGCCGTCTA 

25 

RPL13
A 

RPL13 ribosomal protein 
L13 

NM_01242
3 

GAGGCCCCTACC
ACTTCC 

TGTGGGGCAGCAT
ACCTC 

28 
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reference genes (Table 3.2) selected based on a previous study (Vandesompele et al. 2002). 

The primers designed for all these reference genes were based on the Primer3web solutions 

(http://primer3.ut.ee/) and further validated for the primer-dimer formation and any non-

specificity using NCBI BLAST (Basic Local Alignment Search Tool) 

(http://www.ncbi.nlm.nih.gov/BLAST), in order to reduce the chance of primers binding 

non-specifically. The Cq values obtained from the qPCR were analyzed using the GeNorm 

software (Vandesompele et al. 2002), to calculate the stability of transcripts. Based on this 

data, GAPDH and RPL13A were selected as control genes (Figure 3.3) based on an 

average expression stability (M) value of less than 0.4 (Vandesompele et al. 2002). 

 

 

Figure 3.3: GeNorm analysis for stable reference gene identification. (a) Graph 
showing the average expression stability value (M) for all the 8 reference genes selected 
(Table 3.2). GAPDH and RPL13A were predicted to be highly stable among the selected 
genes. (b) Determination of the optimal number of control genes for normalization was 
carried out using GeNorm. These predictions showed that 2 reference genes, GAPDH and 
RPL13A were sufficient for the optimal normalization as control genes. 

3.2.4. Real-time PCR using SYBR green-I: Real-Time quantitative PCR (RT-qPCR) was 

used to quantify gene expression of selected CAN genes. All primers designed for this 

study were based on the Primer3web (http://primer3.ut.ee/) solutions and validated using 

NCBI BLAST (http://www.ncbi.nlm.nih.gov/BLAST), to reduce the chance of primers 

binding non-specifically. SYBR Green I was used as a reporter in the SYBR green assay to 

increase the sensitivity of detection. qPCR was run on a Light Cycler 480 instrument from 

Roche Applied Sciences. MIQE (Minimum Information for Publication of Quantitative 

http://primer3.ut.ee/�
http://www.ncbi.nlm.nih.gov/BLAST�
http://primer3.ut.ee/�
http://www.ncbi.nlm.nih.gov/BLAST�
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Real-Time PCR Experiments) (Bustin et al. 2009) guidelines were complied-with for all 

the protocols. 

Table 3.3. Primers and probes designed for CAN genes 

Gene 
Symbol Transcript Forward Primer Reverse Primer Probe 

No. 
Amplicon 
Size (bp) 

AKT1 
ENST00000349310.3| 
ENSG00000142208.11 

GGCTATTGTGAAGGAGGGTTG TCCTTGTAGCCAATGAAGGTG 69 108 

CDK4 
ENST00000257904.5| 
ENSG00000135446.11 

GTGCAGTCGGTGGTACCTG TTCGCTTGTGTGGGTTAAAA 25 82 

CDKN2A 
ENST00000304494.5| 
ENSG00000147889.10 

GTGGACCTGGCTGAGGAG TCTTTCAATCGGGGATGTCT 34 133 

CXCR4 
ENST00000241393.3| 
ENSG00000121966.5 

GGTGGTCTATGTTGGCGTCT ACTGACGTTGGCAAAGATGA 18 73 

EGFR 
ENST00000275493.2| 
ENSG00000146648.10 

GCCTTGACTGAGGACAGCA TTTGGGAACGGACTGGTTTA 69 72 

H3F3A 
ENST00000366815.3| 
ENSG00000163041.5 

GCCATCTTTCAATTGTGTTCG GGTACAGAGACCTCCTTACTTACCC 19 124 

HIF1A 
ENST00000337138.4| 
ENSG00000100644.10 

TTTTTCAAGCAGTAGGAATTGGA GTGATGTAGTAGCTGCATGATCG 66 66 

IDH1 
ENST00000345146.2| 
ENSG00000138413.9 

GGTGACATACCTGGTACATAACTTTG GTGTGCAAAATCTTCAATTGACTT 77 91 

IDH2 
ENST00000330062.3| 
ENSG00000182054.4 

TGGCAGTTCATCAAGGAGAA CAGTCTGGTCACGGTTTGG 42 91 

L1CAM 
ENST00000370060.1| 
ENSG00000198910.7 

CGATGAAAGATGAGACCTTCG AAGGCCTTCTCCTCGTTGTC 80 64 

MDM2 
ENST00000462284.1 
|ENSG00000135679.15 

GACTCCAAGCGCGAAAAC GGTGGTTACAGCACCATCAGT 68 89 

MET 
ENST00000318493.6| 
ENSG00000105976.9 

CAGAGACTTGGCTGCAAGAA GGCAAGACCAAAATCAGCA 42 73 

MGMT 
ENST00000306010.7| 
ENSG00000170430.9 

GTGATTTCTTACCAGCAATTAGCA CTGCTGCAGACCACTCTGTG 52 125 

NFKBIA 
ENST00000216797.5| 
ENSG00000100906.6 

GTCAAGGAGCTGCAGGAGAT ATGGCCAAGTGCAGGAAC 38 110 

PDGFRA 
ENST00000257290.5| 
ENSG00000134853.7 

AGGTGGTTGACCTTCAATGG TTTGATTTCTTCCAGCATTGTG 80 74 

PIK3CA 
ENST00000263967.3| 
ENSG00000121879.3 

CGAGATCCTCTCTCTGAAATCAC GAATTTCGGGGATAGTTACACAA 2 85 

PIK3R1 
ENST00000521381.1| 
ENSG00000145675.10 

AATGAACGACAGCCTGCAC CCGTTGTTGGCTACAGTAGTAGG 16 68 

PTEN 
ENST00000371953.3| 
ENSG00000171862.5 

TCCACAAACAGAACAAGATGCTA CGATTTCTTGATCACATAGACTTCC 6 129 

STAT3 
ENST00000264657.4| 
ENSG00000168610.9 

GAGCAGAGATGTGGGAATGG CGGTCTCAAAGGTGATCAGG 17 88 

TERT 
ENST00000310581.5| 
ENSG00000164362.14 

GCCTTCAAGAGCCACGTC CCACGAACTGTCGCATGT 19 61 

TNFSF10 
ENST00000241261.2| 
ENSG00000121858.6 

CCTCAGAGAGTAGCAGCTCACA GGCCCAGAGCCTTTTCAT 6 91 

TP53 
ENST00000269305.4| 
ENSG00000141510.8 

AGGCCTTGGAACTCAAGGAT CCCTTTTTGGACTTCAGGTG 12 85 

VEGFA 
ENST00000372067.3| 
ENSG00000112715.16 

TTAAACGAACGTACTTGCAGATG GAGAGATCTGGTTCCCGAAA 12 93 

3.2.5. Real-time PCR using hydrolysis probe assay: LNA hydrolysis probes were used 

in the qPCR assay to increase specificity and reduce primer dimer formation and detection. 

Probes were designed (Table 3.3) using the universal probe library assay design center 

from Roche Applied Science, Ltd. (http://www.universalprobelibrary.com). qPCR was run 

on a Light Cycler 480 and all the protocols followed MIQE guidelines similar to the SYBR 

Green assays. 

3.2.6. Gene expression of ABC transporters: Real-Time quantitative PCR (RT-qPCR) 

was used to quantify gene expression of ABC transporter gene array (ThermoFisher 

Scientific, TaqMan Array Human ABC Transporter Panel). This 96 well plate array 

consisted of duplicate wells with primers and hydrolysis probes for 44 ABC transporter 

http://www.universalprobelibrary.com/�
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genes having 4 housekeeping genes as control (primers and probes were optimized for its 

high specificity feature by the manufacturer). TaqMan probes were used as a reporter in the 

assay to increase the specificity in comparison to SYBR green dyes. 10 µl of reaction mix 

containing the synthesized cDNA from U87MG and NSP cells with TaqMan master mix 

was used in each well of the plate for the study. Gene expression profiling was run on a 

Light Cycler 480 instrument from Roche Applied Sciences. All the analyses were 

performed in the LCS480 1.5.1.62 software. 

3.3. Results 

3.3.1. Network of cancer candidate (CAN) genes: PathwayStudio™ web-based software 

was used that runs the in-built text-mining MedScan module to link the published data 

from PubMed to correlate it with the key terms specified by the user. The choice of genes 

for qRT-PCR was based on this Pathway Studio™ analysis. A network was generated 

linking genes with selected functional biological processes, regulatory networks and 

glioblastoma to identify CAN genes. References related to each selection were validated by 

enrichment analysis by ranking the genes based on the maximum number of references. 

The final prediction included 23 genes and 1 miRNA that are highly relevant to 

gliomagenesis (Figure 3.4A). Network analysis was also carried out to understand the 

interactions between these CAN genes (Figure 3.4A, B). 23 genes were selected (Table 

3.1) based on high confidence scores. The interaction network highlighted maximum 

interactions between AKT1, PTEN, TP53, VEGFA and STAT3 genes indicating the link to 

cell metabolism and uptake of nutrients as discussed in Chapter 2.  

3.3.2. Relative gene expression qPCR analysis of selected CAN genes: Real-time qPCR 

was used to quantify and detect changes in the gene expression for the selected 23 CAN 

genes relative to housekeeping/reference genes (Table 3.2). Of the workflows used, as 

expected, higher sensitivity was observed for the SYBR Green I workflow while the 

hydrolysis probe-based workflow demonstrated higher specificity. To compare across the 

cell types, relative quantification was computed using the delta-delta Cq method (ΔΔCq) 

and expression fold change represented as 2-(ΔΔCq). The qPCR assay results (Figures 3.5A, 

C) were reported for two biological replicates with three technical replicates within each 

experiment. Statistically significant variation in gene expression was observed for genes 

between the parental U87MG and NSP side-population (Figure 3.5A). Thus, heterogeneity 

of mRNA expression was established through the significant distinct gene expression  
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Figure 3.4: Network analysis of CAN genes. A) Prediction using Pathway Studio™ to 
select the most relevant candidate genes on (confidence score of 3) for gene expression 
analysis. 23 genes were selected as most critical to glioblastoma pathogenesis for 
validation. B) Interaction network generated to understand the possible interaction between 
the selected CAN genes. 
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signatures observed between the heterogeneous population and separated populations 

(Figure 3.5A). The differential mRNA abundances of signaling pathway controllers, 

histone deacetylases and methyl transferases potentially contribute to the varying dynamics 

of nutrient uptake during proliferation and could dictate indirectly changes observed in 

TMZ dose-response relation (increasing IC50 values and decreasing sensitivity).  

It is well known that p53 and PTEN play a pivotal role in tumor suppression and are both 

down-regulated (less mRNA level) in the U87MG cells with respect to NSP (Figure 3.5C).  

 

Figure 3.5: Relative gene expression analysis of CAN genes. A) Heatmap of relative 
gene expression of CAN genes with respect to heterogeneous population (parental 
U87MG) that shows the potential ramifications of expression signatures in side-
populations. (B) Network of interactions between the differentially expressed CAN genes: 
To study the interactions between the differentially expressed genes, in silico enrichment 
analysis were carried out and the pathway given. Highlighted entries are the genes showing 
lesser expression in NSP cells with respect to U87MG cells. (C) Relative gene expression 
of differentially expressed CAN genes between the separated population of U87MG and 
side-population NSP is shown.  
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Up-regulation (higher mRNA level) of AKT1 in U87MG with respect to NSP is evident in 

the differential glucose and amino acid uptake patterns as shown in Chapter 2. IDH1/IDH2 

over-expression (higher mRNA level) in the NSP population in comparison with U87MG 

indicates potential reprogramming of the pathways around AKG that could eventually 

cause downstream effects on the acetylation profiles. Increased PIK3CA (5 fold change) in 

NSP could potentially dictate changes involving phosphorylation governing differential 

nutrient uptake. VEGFA and MDM2 are also highly expressed (higher mRNA levels) in 

the resistant population NSP compared to U87MG. The cyclin-dependent kinase CDK4 is 

down-regulated as compared to U87MG indicating a potential cell cycle arrest that needs 

to be overcome for NSP to proliferate.  

Lowered H3F3A expression (lesser mRNA levels) in NSP indicates potential changes in 

histone acetylation patterns. The interaction network (Figure 3.5B) with highlighted entries 

shows the genes having more variations in their mRNA levels in NSP. These highlighted 

genes (Figure 3.5B) included H3F3A, AKT1, HIF1A, CDK4, EGFR and MET indicating a 

highly possible involvement of cell metabolism in defining the temozolomide resistance. 

Although the dysregulation of the NSP population is reported here with reference to the 

cancer cell line U87MG, it is plausible that such correlations may still hold when analyzed 

in the context of a normal cell as well. The primary goal of this part of the study was to 

highlight the potential of error due to the presence of sub-population of cells, in the 

interpretation of the gene expression signatures based on varied sampling strategies and 

also suggest contributing factors to the integrative analysis of the resistant phenotype. 

3.3.3. Network analysis of ABC transporter genes: 

To understand drug resistance, it is important to delineate the efficiency of drug 

transporters that are known for drug transport across the cell membrane. For further 

elucidation of the efficiency of drug transporters, primarily, the network interaction across 

the transporters and the drug/molecules is studied using PathwayStudio™ web tool. Initial 

network was generated to study the localization and distribution of the ABC transporters 

inside the cell. This network (Figure 3.6) shows the distribution of ABC transporters in the 

cell membrane, endoplasmic reticulum (ER), mitochondria and cytoplasm. This helps in 

understanding the localization of these transporters and how they will eventually affect the 

cell metabolism. Further, the interaction between these transporters and other molecules 

(Drug/metabolites/small molecules) were studied through pathway analysis. 
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Interaction networks were generated for 5 out of 7 families of ABC transporters. ABCE 

and ABCF have been identified recently and hence their entries are either less or not 

present in the analysis. ABCA, ABCB, ABCC, ABCD, and ABCG contribute majorly to 

the transport of drugs in human. Amongst all the 7 sub-families of ABC transporters (Table 

3.4), ABCB has the highest connectivity to the drugs and small molecules. 

 

Figure 3.6: Localization and distribution of ABC transporters in Human. ABC 
transporters are found in the cell membrane, endoplasmic reticulum, mitochondria and 
cytoplasm as shown in the network generated using PathwayStudio™. 

ABCA1 and ABCB1 are the most connected transporters in the pathway analysis of 

interaction networks (Figure 3.7). The molecules that are majorly connected to these 

transporters are provided in Appendix B. This interaction network highlights that these 

ABC transporters play an important role in the cell by mediating the transport of most of 

the key metabolites and drugs. ABCG2, the transporter of Hoechst dye and Temozolomide 

drug, also found to be interacting with many compounds in the network. 

3.3.4. mRNA abundances of ABC transporters genes: The gene expression of 19 out of 

the 44 ATP-binding cassette (ABC) transporters profiled was varied between NSP and 
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U87MG (Figure 3.8).  The differential mRNA abundances (17 higher and 2 lower for NSP) 

potentially contribute to the efficiency of drug and nutrient metabolite transport and efflux. 

 

Figure 3.7: Interaction network generated using PathwayStudio™ highlighting the 
potential transport of metabolites in addition to drugs. ABC transporters are involved in the 
influx/efflux of drugs/metabolites.  

 

Relative expression highlighted ABCB7 and ABCE1 to be lower for NSP with respect to 

U87MG. ABCC5 had the highest variation and showed a 10-fold increase in mRNA 

abundances. Maximum variation was seen in the ABCC subfamily. ABCG2, linked to 

TMZ transport and Verapamil, showed a 20% increase in mRNA in NSP cells. The varied 

abundance of transporters was also linked to metabolite transport in the network analysis 

and is provided in the table in Appendix B. 
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Figure 3.8: Relative gene expression for ABC transporters. The fold change 
(NSP/U87MG) has been plotted to show their differential mRNA abundances. 

Table 3.4: List of ABC transporter genes profiled in this study 

Gene Symbol Approved Name Synonyms Chromosome 
ATP-binding cassette transporters, subfamily A :   

 
ABCA1 ATP binding cassette subfamily A member 1 TGD 9q31 
ABCA2 ATP binding cassette subfamily A member 2 

 
9q34 

ABCA3 ATP binding cassette subfamily A member 3 
ABC-C, EST111653, 
LBM180 

16p13.3 

ABCA4 ATP binding cassette subfamily A member 4 FFM, ARMD2, CORD3 1p22 
ABCA5 ATP binding cassette subfamily A member 5 EST90625 17q24.3 
ABCA6 ATP binding cassette subfamily A member 6 EST155051 17q21 
ABCA7 ATP binding cassette subfamily A member 7 ABCX 19p13.3 
ABCA8 ATP binding cassette subfamily A member 8 KIAA0822 17q24 
ABCA9 ATP binding cassette subfamily A member 9 EST640918 17q24 

ABCA10 
ATP binding cassette subfamily A member 
10 

EST698739 17q24 

ABCA11P 
ATP binding cassette subfamily A member 
11, pseudogene 

EST1133530, FLJ14297 4p16.3 

ABCA12 
ATP binding cassette subfamily A member 
12 

DKFZP434G232, LI2 2q34 

ABCA13 
ATP binding cassette subfamily A member 
13 

FLJ33876, FLJ33951 7p12.3 

ABCA17P ATP binding cassette subfamily A member 17, pseudogene 16p13.3 
ATP-binding cassette transporters, subfamily B :   

 
ABCB1 ATP binding cassette subfamily B member 1 P-gp, CD243, GP170, ABC20 7q21.12 

TAP1 
transporter 1, ATP-binding cassette, sub-
family B (MDR/TAP) 

PSF1, RING4, D6S114E 6p21.3 
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Gene Symbol Approved Name Synonyms Chromosome 

TAP2 
transporter 2, ATP-binding cassette, sub-
family B (MDR/TAP) 

PSF2, RING11, D6S217E 6p21.3 

ABCB4 ATP binding cassette subfamily B member 4 MDR2, PFIC-3, GBD1 7q21 

ABCB5 ATP binding cassette subfamily B member 5 
EST422562, ABCB5beta, 
ABCB5alpha 

7p14 

ABCB6 ATP binding cassette subfamily B member 6 EST45597, umat, MTABC3 2q36 
ABCB7 ATP binding cassette subfamily B member 7 EST140535, Atm1p, ASAT Xq13.3 

ABCB8 ATP binding cassette subfamily B member 8 
EST328128, M-ABC1, 
MABC1 

7q36.1 

ABCB9 ATP binding cassette subfamily B member 9 EST122234 12q24 

ABCB10 
ATP binding cassette subfamily B member 
10 

EST20237, M-ABC2, 
MTABC2 

1q32 

ABCB11 
ATP binding cassette subfamily B member 
11 

ABC16, SPGP, PFIC-2, PGY4 2q24 

ATP-binding cassette transporters, subfamily C :   
 

ABCC1 ATP binding cassette subfamily C member 1 GS-X 16p13.1 
ABCC2 ATP binding cassette subfamily C member 2 DJS, MRP2, cMRP 10q24 

ABCC3 ATP binding cassette subfamily C member 3 
MRP3, cMOAT2, EST90757, 
MLP2, MOAT-D 

17q21 

ABCC4 ATP binding cassette subfamily C member 4 
MRP4, EST170205, MOAT-
B, MOATB 

13q31 

ABCC5 ATP binding cassette subfamily C member 5 
MRP5, SMRP, EST277145, 
MOAT-C 

3q27 

ABCC6 ATP binding cassette subfamily C member 6 
MRP6, EST349056, MLP1, 
URG7 

16p13.11 

CFTR 
cystic fibrosis transmembrane conductance 
regulator 

MRP7, ABC35, TNR-CFTR, 
dJ760C5.1, CFTR/MRP 

7q31.2 

ABCC8 ATP binding cassette subfamily C member 8 
HI, PHHI, SUR1, MRP8, 
ABC36, HHF1, TNDM2 

11p15.1 

ABCC9 ATP binding cassette subfamily C member 9 SUR2, CMD1O 12p12.1 

ABCC10 
ATP binding cassette subfamily C member 
10 

EST182763, MRP7, SIMRP7 6p12.3 

ABCC11 
ATP binding cassette subfamily C member 
11 

MRP8 16q12 

ABCC12 
ATP binding cassette subfamily C member 
12 

MRP9 16q12.1 

ABCC13 
ATP binding cassette subfamily C member 
13 

PRED6, C21orf73, ABCC13P 21q11.2 

ATP-binding cassette transporters, subfamily D :   
 

ABCD1 ATP binding cassette subfamily D member 1 
AMN, ALDP, 
adrenoleukodystrophy 

Xq28 

ABCD2 ATP binding cassette subfamily D member 2 ALDR, ALDRP 12q12 
ABCD3 ATP binding cassette subfamily D member 3 PMP70, ZWS2 1p21.3 
ABCD4 ATP binding cassette subfamily D member 4 PMP69, P70R, EST352188 14q24 
ATP-binding cassette transporters, subfamily E :   

 
ABCE1 ATP binding cassette subfamily E member 1 RLI, OABP 4q31 
ATP-binding cassette transporters, subfamily F :   

 
ABCF1 ATP binding cassette subfamily F member 1 EST123147 6p21.33 

ABCF2 ATP binding cassette subfamily F member 2 
EST133090, ABC28, M-
ABC1, HUSSY-18 

7q36.1 

ABCF3 ATP binding cassette subfamily F member 3 EST201864 3q27.1 
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Gene Symbol Approved Name Synonyms Chromosome 

ATP-binding cassette transporters, subfamily G :   
 

ABCG1 ATP binding cassette subfamily G member 1 ABC8 21q22.3 

ABCG2 
ATP binding cassette subfamily G member 2 
(Junior blood group) 

EST157481, MXR, BCRP, 
ABCP, CD338 

4q22.1 

ABCG4 ATP binding cassette subfamily G member 4 WHITE2 11q23 
ABCG5 ATP binding cassette subfamily G member 5 STSL 2p21 
ABCG8 ATP binding cassette subfamily G member 8 GBD4 2p21 

3.4. Discussion 

Chapter 3 provides key evidence for differences in measured gene expression within the 

GBM heterogeneous cell line U87MG. Our study underscores the significance and 

challenge of identifying heterogeneous populations as important to gene expression 

analysis. The mRNA abundances in the NSP cells possibly reflect metabolism in a 

microenvironment of low glucose and high glutamine (also supported by the data from 

Chapter 2). The differential growth factor signaling mediated by AKT1 that showed 

differential mRNA abundances is seen as a consequence of relatively low glucose levels in 

the microenvironment of NSP. The glutamine is converted to glutamate and AKG and the 

TCA may operate in the opposite direction and provides anaplerotic AKG to make 

glycolysis slower and reprogram it into ribose synthesis through PKM2 (Figure 3.9). AKG 

was shuttled through reductive carboxylation to shuttle NADPH equivalents needed for 

pyrimidine or fatty acid biosynthesis (Mazurek et al. 2005) events.  

The increased expression (high mRNA abundances) of IDH1 and IDH2 are a means to 

shuttle and derive more cytosolic NADPH needed to support pyrimidine/fatty acid 

synthesis. The simultaneous negative regulation of ACL by AKT1 lowers the acetyl CoA 

pool and hence the acetate potentially available for histone acetylation (reflected in the 

lower levels of histone acetylase H3F3A). The higher mRNA levels of cytokines STAT3 

turn on the transcriptional program of MYC and induce consumption of glutamine in NSP 

that is reflected in the metabolite profiles of the environment in Chapter 2. The MGMT 

levels are similar in the absence of TMZ. HIF1A also has differential mRNA abundances 

across the heterogeneous populations in comparison to the parental population. This 

highlights a differential regulation in the glycolysis of these two cell types that may 

contribute to the differential glucose uptake in the metabolite profile in the LC-MS/MS 

analysis of extracellular profiles. 19 out of the 44 ATP-binding cassette (ABC) transporters 

profiled, were varied between NSP and U87MG. Relative gene expression highlighted 
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ABCB7 and ABCE1 to be lesser in the expression for NSP with respect to U87MG. 

ABCC5 had the highest variation and showed a 10-fold increase in the gene expression.  

 

Figure 3.9: CAN genes and metabolism. Red arrows indicate the inferences from mRNA 

abundances profiled using qPCR and its influence on metabolism.  

In an overall comparison of mRNA abundances, the ABCC subfamily of ABC transporters 

had the maximum variations. ABCG2 that is linked to the transport of temozolomide and 

verapamil, showed 20% increased gene expression in NSP. Literature evidence for ABC 

transporters to be responsible for the transport for other metabolites are also existing 

(Sahoo et al. 2014). By complimenting to the transport of the key metabolites, ABC 

transports not only help in the drug efflux but also in the cell metabolism for the cell to 

survive in the selection pressure, thereby eventually increase the chances of cancer relapse.    

3.5. Conclusions 
The work described herein provokes a new insight into the drug resistance problem and 

highlights the potential role of cell metabolism along with drug efflux mechanism of the 

cells by profiling the CAN genes and ABC transporters. These results suggest that the 
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mRNA abundances of CAN genes potentially regulate the cell metabolism in addition to 

the differential mRNA abundances of ABC transporters. Also, these transporters that show 

a differential expression profiles in NSP may potentially not only transport drugs but also 

other metabolites like cholesterol critical for growth and proliferation. Hence, indicating 

that the drug resistance in NSP might be a combined effect of CAN genes, drug 

transporters, and metabolism. 
*********** 
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Chapter 4 

Exome Characterization: Towards 
Genetic Basis for Temozolomide 

Resistance 
 
“It is not the strongest of the species that survives, nor the most intelligent that survives. 
It is the one that is most adaptable to change”. 

- Charles Darwin 

“Only time and money stands between us and knowing the composition of every gene in 
the human genome”. 

-Francis Crick 

 
Figure 4.1: Graphical abstract of Chapter 4. 
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Abstract 

Genomic alterations play a vital role in oncogenesis, tumor progression and tumor response 

to therapy. Single nucleotide polymorphisms specific to certain cancer types become 

biomarkers that can drive precision medicine. The main focus of cancer systems biology is 

on unraveling genome sequence variation in the context of SNP databases to identify the 

heretofore unknown genetic basis of the multifactorial response. Targeted Exome (coding 

regions of the genome) Capture, a recent advancement in Next-Generation Sequencing 

(NGS), is cost effective and can be used to unveil these genomic alterations effectively 

without any further validation. In this chapter, U87MG and Neurospheres are exome 

characterized and the genetic alterations identified including the known SNPs in key 

signaling genes such as PTEN, TP53, KRAS, and MTOR and other INDELs by aligning 

the sequence to the human genome (hg19, build 37). The total number of variants 

identified from U87MG exome was 30,704 (SNPs - 97%; INDELs - 3%) and from NSP 

was 31,776 (SNPs - 96%; INDELs – 4%). Functional effect of these mutations has been 

analyzed using Oncotator (Oncotator v0.4.1.8) web-based tool which annotates point 

mutations and INDELs. This genomic and protein annotations include the identification of 

gene names, functional consequence (e.g. Missense, silent, Intron), PolyPhen-2 predictions, 

common SNP annotation from dbSNP, and cancer-specific annotations from resources 

such as COSMIC, Tumorscape, and published MutSig results. Further, the metabolic and 

non-metabolic genes were analyzed using the gene set from Recon 1 (Human metabolic 

reconstruction model). Thereby, this part of the thesis drives the way towards systems-level 

characterization using Exome sequencing for the better understanding of the genomic basis 

behind the temozolomide resistance.  
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4.1. Introduction 

Cancer is a complex disease, that involves genetic, epigenetic, transcriptomic and 

proteomic differences in comparison with the normal/healthy state of the cell and 

eventually leads to metabolic rewiring (Hsu & Sabatini 2008; Gaude & Frezza 2014; 

Cantor & Sabatini 2012). As this complex disease has always been thought of as a genetic 

disease, characterization of the genotype of the cancer cell in terms of somatic or germline 

mutations is very important especially to understand drug resistance (Auger et al. 2006; 

Turner & Reis-Filho 2012). This chapter comprises of the genetic characterization of the 

identified temozolomide resistant versus the sensitive population of cells from U87MG. In 

recent years, the impact of new DNA sequencing technologies on the detection, diagnosis, 

and treatment of cancer is becoming significant in many ways (Mardis 2008). U87MG is 

one of the commonly used cell lines to study Glioblastoma. This cell line is derived from 

grade IV glioblastoma patient and it has been addressed in more than 1800 publications till 

date (Pei et al. 2014; Bernhart et al. 2013; Vacas-Oleas, 2013; Immanuel et al. 2018). The 

genomic landscape of this cell line has already been of interest due to the criticality of 

genome-based transition in the disease prognosis (Frattini et al. 2013). In addition, the 

whole genome of this cell line has been completely sequenced (Clark et al. 2010) with 

higher sequence coverage. To characterize the complete genome, greater than 30x genomic 

sequence coverage has been used with a novel 50-base mate-paired strategy containing 

~1.4kb insert library (Clark et al. 2010). 

4.1.1. Next-generation sequencing 

Recent advances in sequencing technologies enable many researchers to delineate the 

genotype of the systems under study. Whole genome sequencing has become available in a 

very easy and affordable way because of the next generation sequencing (NGS) 

technologies (Metzker 2010). These technologies allow many worldwide collaborative 

efforts including the International Genome Consortium (ICGC) and The Cancer Genome 

Atlas (TCGA) project to easily catalog thousands of cancer genomes and also for many 

other diseases thereby supporting the detailed study on disease prognosis and diagnosis. 

These technologies will eventually contribute to the better understanding of the diseases to 

bridge the new era of molecular biology advances to personalized medicine (Meldrum et 

al. 2011). By the use of NGS, it is no longer the narrow-down approach to sequence genes 

one by one but to a higher extent of sequencing all genes in a single experiment and 
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correlate it to disease-causing variants. Instead of sequencing the targeted genes and 

comparing, the whole genome can be compared with the healthy human genome and the 

variants can be identified with high coverage score precisely. However, finding the causal 

variants from thousands of identified variant can be challenging. 

4.1.2. Exome sequencing 

Sanger et al in 1977 first described the dideoxy-nucleotide sequencing of DNA that has 

now improved and many such findings added the essence of sequencing then. This 

improved the technology to a fast, economic and large-scale sequencing of the human 

genome. The complete genome of human was published on 15th February 2001 in Nature 

journal. This covered only 90% of the euchromatic genome with 250,000 gaps and 

contained some errors in the nucleotide sequence. From then, the sequencing technologies 

have undergone a steady improvement and growth with the computer databases having 

specialized instrumentations.  

It is well known and established that the changes in the genome play a very important role 

in oncogenesis, disease progression and drug response of tumors to chemotherapy. The 

improvements and advances in next-generation sequencing technologies (NGS) would 

definitely provide capabilities to sequence the complete genomes for changes including 

single nucleotide polymorphisms (SNPs), point mutations, deletions, insertions and 

changes in chromosomal copy number. However, the amount of data generated in genome 

sequencing and the cost for whole genome sequencing still prevents the routine application 

of NGS in many types of research. On the other hand, the capturing and sequencing of only 

the coding regions of genes - exons constituting the ‘‘exome’’ can be a cost-effective and 

less-data generation approach for identifying changes in genes that result in alteration of 

protein sequences.  

Genomic alterations of coding regions in cancer cells change the normal functions and 

pathways of the cell including proliferation and apoptosis. These pathways are essential for 

tumor genesis, growth, and metastasis in the cancer cell. Also, the unique combination of 

mutations in its genome makes the cancer cell-specific and it can lead to heterogeneity in 

cancer prognosis and responses to therapy. Exome sequencing methods can be used for 

such analyses and can deliver sequencing information (SNPs and INDELs) for functionally 

relevant genome at increased coverage and reduced cost. Human cancer cell line models 

play a critical role in the understanding of cancer prognosis, identification, and validation 
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of causal genes and to screen for potential drug targets. Though these cell lines acquire 

some mutations during the cell line development and passage stages, these cell lines 

definitely carry the genetic and somatic mutations from their source. Hence, comparisons 

between cell lines that are sensitive to drugs to that of resistant cells, reveal any 

heterogeneity in genomic mutations and could help in identifying the causal pathways.  

4.1.3. Overall workflow of exome sequencing 

The term "Exome" is used to describe the complete set of exons (coding regions) in the 

genome. These regions are transcribed into mRNA (messenger RNA) thereby expressed as 

proteins. Exome sequencing technology captures the variants in the coding region of the 

genome that could possibly affect the protein function. The workflow (Figure 4.2) required 

to sequence and to analyze an exome using Ion Proton™ systems (Life technologies Pvt. 

Ltd., India) is as follows: 

1. Genomic DNA isolation from the sample (cells). 

2. Fragmentation of the genomic DNA for capture and short read using NGS.  

3. Construction of a library. 

4. Targeted capture of exons using biotinylated probes (Template). 

5. Amplify captured targets. 

6. Sequence using an instrument with a 2x100 or 2x150 read length. 

7. Analyze captured information, call variants using TorrentSuite and Ion Reporter 

software. 

 

Figure 4.2: Workflow for Exome sequencing using the Ion proton system. Source: Life 

technologies pvt.ltd. manual and website. 
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While there are ~180,000 exons in the human genome, that constitutes less than 2% of the 

total genome, the exome possibly contains ~80-90% of known disease-causing variants 

making it a cost-effective alternative to whole genome sequencing (WGS). 

4.1.4. Application of Exome sequencing in cancer research 

One of the major challenges facing the field of cancer genome sequencing is to identify 

and validate the mutations in cancer-associated genes that drive the cancer phenotype. The 

most effective way of identifying these causative mutations is through the NGS. Exome 

sequencing is a high-throughput technique that can be used to analyze a large number of 

samples simultaneously. Recent studies highlight the use of exome sequencing to profile 

the mutational impacts on NCI60 cell lines for systems pharmacology applications (Cheng 

et al. 2014; Abaan et al. 2013). Many types of research use exome sequencing as a tool to 

identify and characterize the disease state (Ng 2008; Ng et al. 2010; Wei et al. 2011; Ng et 

al. 2009; Chang et al. 2011; Liu et al. 2012; King et al. 2011). These technologies are 

revolutionizing medical diagnostics and help in improving our understanding of the basis 

behind every stage of cancer.  

4.2. Methods 

4.2.1. Genomic DNA extraction: The complete/genomic DNA extraction from cultured 

U87MG and NSP cells were performed using DNeasy Blood & Tissue Kits Spin-column 

protocol (Qiagen, India). A total of 4 x 106 each U87MG and NSP cells were centrifuged 

for 5 min at 300 x g and resuspended in 200 μl PBS each. 20 μl proteinase K was used in 

the initial step to lyse the cells. The manufacturer's protocol was closely followed. 4 μl 

RNase A (100 mg/ml) was used to remove any RNA contamination from the extracted 

DNA by incubating for 5 min at room temperature. ~15µg of genomic DNA was extracted 

from each sample. This extracted DNA (Figure 4.3) was used for the Exome sequencing.  

4.2.2. Exome sequencing: Exome workflow of Ion Proton™ systems (Life technologies 

Pvt. Ltd., India) was used to obtain the Exome sequences of U87MG and NSP cells. Ion 

TargetSeq™ Exome Kit and Ion Proton™ sequencer was used for acquiring the Exome 

data that was further processed through TorrentSuite and Ion Reporter software to identify 

the variants and for the coverage analysis.   

4.2.3. Functional annotations of Exome data: The variants of U87MG and NSP cells 

thus identified by Exome sequencing had been analyzed for its functional effect using 
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Oncotator web tool (https://portals.broadinstitute.org/oncotator/). Oncotator is a web-based 

application that is used for annotating human genomic point mutations including Single 

Nucleotide Polymorphisms (SNPs) and Insertions & Deletions (INDELS). 

 

Figure 4.3: Genomic DNA isolated from U87MG and Neurospheres (NSP). Quality of 

the DNA was checked by running on an agarose gel. 

This includes genomic annotations (Gene, transcript, and functional consequence 

annotations for the hg19 database), protein annotations (Site-specific protein annotations 

from UniProt, functional impact predictions from dbNSFP and cancer variant annotations), 

and common SNP annotations from the dbSNP database. The input file contained the 

details of the position in chromosomes, reference and its corresponding variants identified 

that was uploaded in the web tool for analysis. The output file had the results with details 

of the gene name, gene IDs, HUGO symbol, variant classifications (Silent, 5'-UTR, 3'-

UTR, Intron, Missense, Frameshift deletions), gene description, protein/amino acid change 

and its biological functions. These details were further used in the analysis and 

interpretations. 

4.3. Results 
4.3.1. Exome statistics 

Exome, the coding part of the genome consisting of the complete set of exons, was 

sequenced using next-generation sequencing platform to assess the genomic variability 

across the two cell types (U87MG and NSP). With exome sequencing, in addition to faster 

turnaround time and cost-effectiveness, data analysis and interpretation is less complex. In 

order to identify the DNA variants most possibly contributing to the heterogeneity and 

https://portals.broadinstitute.org/oncotator/�
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temozolomide resistance, within exome - 1% of the genome (protein coding sequence), the 

genomic DNA of both these cell types was pipelined in the exome sequencing workflow. 

The identified variants were considered form the targets with base coverage at 20x with 

92.22% recovery in U87MG exome and 95.00% recovery in NSP exome (Figure 4.4). 

Further, to account for the somatic variants (from dbSNP and COSMIC databases), the 

identified variants were first cross-checked with the known reference variants of the human 

genome (hg19 – NCBI build 37). The total number of variants identified from U87MG 

exome was 30,704 (SNPs - 97%; INDELs - 3%) and from NSP was 31,776 (SNPs - 96%; 

INDELs – 4%). Concordance between dbSNP and COSMIC databases entry identified 

1,804 variants as novel (uniquely from our study) in U87MG exome and 795 in NSP 

(Figure 4.4).   

4.3.2. Genomic variability across the sensitive and resistant cells 

A total of 11,733 genes from NSP and 11,571 genes from U87MG has the variants 

identified (SNPs and INDELs). 11,174 genes were found to be common between U87MG 

and NSP identifying 559 and 397 unique genes for NSP and U87MG respectively (Figure 

4.4).  The same analysis was extended to genes with only SNPs (Common – 11,002; 

Unique in U87MG – 292; Unique in NSP – 453), SNPs by position (Common – 27,784; 

Unique in U87MG – 1893; Unique in NSP – 2804), insertion by position (Common – 143; 

Unique in U87MG – 62; Unique in NSP – 395) and deletion by position (Common – 408; 

Unique in U87MG – 412; Unique in NSP – 230). Such analyses highlighted the differential 

exomic variants identified across the drug-sensitive (U87MG) and resistant (NSP) cells, 

characterizing these populations as different. 

4.3.3. Distribution of SNPs in chromosomes 

Overall distribution of variants was assessed by chromosome-wide analysis (Figure 4.5). 

The number of unique SNPs in NSP and U87MG was different indicating that these two 

cell types possibly share genomic variability. Variant span with variant frequency (data 

from variant calling) had been plotted to have an overall view of the effect of this genomic 

variability on the chromosome and to identify the highly altered chromosome (Figure 4.5). 

Chromosome 2 and 19 showed maximum variants profiled in both U87MG and NSP. 

4.3.4. Functional characterization of the identified exome variants 

Functional characterization of the variants was delineated using Oncotator web tool that 

further classified the SNPs as 3’UTR, 5’UTR, 5’Flank, IGR, intron, missense mutation, 
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nonsense mutation, nonstop mutation, RNA, silent, splice site, and translation start site.  

 
Figure 4.4: Exome variants statistics.   
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Figure 4.5: Chromosome-wise distribution of exome variants. 

These annotations also output the gene name associated with the variants based on their 
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position in the chromosomes and protein descriptions (Figure 4.6A). These genomic 

annotations are further classified for the effect on protein function using site-specific 

protein annotations from UniProt, druggable target data from DrugBank and functional 

impact predictions from PolyPhen-2 for all the identified variants. Cancer annotations also 

have been performed using Oncotator web tool to identify the known gene alterations that 

are present in the databases including COSMIC, Cancer Gene Census, Tumorscape, TCGA 

Copy Number Portal, Overlapping  Oncomap mutations from the Cancer Cell Line 

Encyclopedia and MutSig analyses. Of the variants classified, silent mutations (9819 - 

U87MG; 10344 - NSP) and missense mutations (9161 - U87MG; 9382 - NSP) form the 

majority of identified variants in U87MG and NSP (Figure 4.6 B and C).  

4.3.5. Homozygous and heterozygous variants 

A total of 11,733 genes from NSP and 11,571 genes from U87MG had the variants in the 

study, of which, 7055 genes from NSP and 6722 genes from U87MG has homozygous 

entries (>90% variant frequency calling). 6603 genes are common across these two 

populations wherein 452 and 119 genes are unique in NSP and U87MG respectively. 

Similarly, the same analyses have been performed for common and unique genes in 

heterozygous variants from Exome (Table 4.1 and 4.2). 

Table 4.1. Genes with homozygous variants in Exome of U87MG and NSP. 

U87MG 

 
Total Homozygous 

Total Genes 11571 6722 

Common 11174 6603 

Unique 397 119 

Neurospheres 

 
Total Homozygous 

Total Genes 11733 7055 

Common 11174 6603 

Unique 559 452 

4.3.6. Transversions and transitions 

Transversions are point mutations (SNPs) that changes a purine to pyrimidine (A to C; A to 

T; C to A; C to G; G to C; G to T; T to A and T to G) and transitions are SNPs that changes 

a purine to another purine (A to G; G to A; T to C; and C to T). The ratio between 

transition/transversion for U87MG= 24.99/12.49 = 2; and for NSP= 24.99/12.495 = 2. 

(Figure 4.7) 
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Figure 4.6: Functional characterization of exome variants. 

A 

B 

C 



                                                    Chapter 4 |Exome characterization  75 
 

 

 

Figure 4.7: Transversions and transitions. 

Table 4.2. Percentage of heterozygous and homozygous variants. 

Details U87MG Neurospheres 

Heterozygous (SNP) 16813 16730 

Homozygous (SNP) 12866 13858 

Total (SNP) 29679 30588 

% Heterozygous 56.64% 54.69% 

% Homozygous 43.35% 45.30% 

 

A 

B 

C 
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4.3.7. Metabolic genes with exome variants 

Metabolic genes were selected based on the Recon1 (Human metabolic reconstruction 

model) (Rolfsson et al. 2011) to understand the variant distribution across these two cell 

types. A total of 540 (NSP) and 511 (U87MG) genes were identified (with VarFreq >70) 

with variants, of which, 44 (NSP) 

and 15 (U87MG) were found to be 

unique (Figure 4.8). These unique 

genes in NSP included GPX1, ME1, 

GCLM, GCLC, PGK2, GSS, ADK, 

CYC1, NDUFS7 and SLC14A1 

(Urea transporter). U87MG cells 

have GK, SORD, NDUFA11, 

ABCC5, and SLC2A11 (Glucose 

transporter isoform C) among the 15 

unique genes. These unique genes 

potentially contribute to the 

rewiring of metabolism in NSP that 

supports resistance and growth. These predictions of functional analyses could thereby 

highlight the differences in the genetic makeup of resistant and sensitive cells in U87MG, 

suggesting further needs to access the functional impact of these alterations in vitro. 

4.4. Discussion 
4.4.1. Possible impact of homozygous variants on the metabolism of temozolomide-

sensitive and temozolomide-resistant cells 

The exome variants were further characterized and classified into homozygous 

synonymous and non-synonymous mutations. A synonymous substitution (also known as 

"silent substitution") is the substitution of one nucleotide base for another nucleotide base 

in the protein-coding part of the gene (exon), in such a way that the protein or the amino 

acid sequence is not modified due to the redundancy of the genetic code. Synonymous 

substitution usually occurs in the third position of the codon, changing the codon alone but 

not the amino acid. On the other hand, a nonsynonymous substitution is a nucleotide 

change that alters the amino acid sequence of a protein. Nonsynonymous substitutions 

differ from synonymous substitutions, in such a way that the substitutions occur in the first 

Figure 4.8: Metabolic gene variants in Exome. 
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and second position in the codon thereby leading to an amino acid change in the protein, 

eventually modifying the protein sequence. The homozygous (>90% of variant frequency 

in the variant calling) and nonsynonymous mutations are expected to have a protein change 

with an expectancy of more than 85%. Though these modifications need experimental 

confirmations, they can lead to a firm hypothesis as such, owing to its nature of decreased 

or blocked protein activity. By considering this fact, the possible impact of these 

homozygous nonsynonymous mutations is delineated in our study. 

The genes that are involved in the signaling pathways often contribute to metabolism 

(Yecies & Manning 2011; Ríos et al. 2013; Hardie 2013; Nieminen et al. 2013). By 

addressing the effect of these dysregulated pathways may have an insight into the altered 

metabolism. TSC1, one of the controllers of mTORC1 (Figure 4.9), has a unique deletion 

in U87MG in homozygous entries. The stimulation of the TSC1-TSC2 complex by 

oncogenic regulation by tumor suppressors and oncogenes may inhibit the activation of 

mTORC1. This hypothesis highlights the impact of mTORC1 on glucose uptake and 

glycolysis (Figure 4.9). U87MG is proposed to prefer glucose uptake over glutamine and 

prefers more glycolysis than TCA cycle as discussed in Chapter 2. These mutations from 

exome data also support this hypothesis that was based on the metabolite levels from LC-

MS/MS data in these cells, wherein the inhibition of mTORC1 is possibly prevented by the 

TSC1 mutation in U87MG.  

 

Figure 4.9: Signaling genes that majorly controls metabolism. Red cross indicates 
mutation in NSP and a blue cross indicates mutation in U87MG from the exome data. 
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Another potential impact is on the cellular levels of polyamines that would possibly help 

for the survival of cells, by “MYC" guided activation of ODC (Ornithine Decarboxylase) 

Enzyme. ODC Enzyme is well characterized in human. It is involved in polyamine 

biosynthesis. It is the key enzyme that controls the initial step of conversion of ornithine to 

putrescine. The polyamines such as putrescine, spermine and spermidine play an important 

role in cell cycle and proliferation (Gerner & Meyskens 2004).  

In the exome data, APC gene has seven mutations in both the cells. APC suppresses 

transcription of MYC. MYC is an activator of ornithine decarboxylase (ODC). ODC 

antizyme (OAZ) is a protein that regulates ODC activity by targeting it for degradation 

(Figure 4.10). 

 

Figure 4.10: Polyamines and cancer. The differences in the normal cell metabolism and 
cancer cell metabolism are shown based on Gerner & Meyskens 2004. Red cross indicates 
mutation in NSP and a blue cross indicates mutation in U87MG from the exome data. 

OAZ1 has mutations in U87MG alone. KRAS has 4 mutations in U87 and 5 mutations in 

NSP. KRAS leads to reduced proliferation, increased apoptosis, and reduced neoplasia. 

One of the tumor suppressors, peroxisome proliferator-activated receptor (PPAR), activates 

spermidine /spermine N1-acetyltransferase (SSAT) transcription and is repressed by active 
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KRAS in normal cells. This PPAR gene has mutations in both. Hence, there is a firm 

possibility that the regulation of MYC guided ODC activation can lead to the survival of 

neurospheres and that is different in the case of U87MG.  

Some of the other unique mutation profiles that could potentially shape metabolic response 

in U87MG include mutations in AMY2A that could modulate glucose availability through 

starch hydrolysis. The genetic variations in fucose pathways with a unique change in FUT8 

also indicate a disruption in the GDP-GTP pool. The redox balance through NADH/NADP 

synthesis could be potentially affected by unique mutations in AMT and HSD17B3 

respectively. This could be coupled to differential folate accumulation and steroid estradiol 

synthesis. So, U87MG could potentially have reducing equivalents in excess of that 

produced by NSP due to its varied mutational profile and thus possibly need to recycle 

more NAD than NSP. 

The unique mutation profile that shapes metabolic response in NSP included transporters 

SLC38A3, SLC38A4, SLC1A5 all involved in amino acid transport. These could 

potentially be responsible for the differential exo-metabolite profiles for amino acids and 

uptake rates as discussed in Chapter 2 and the following chapters. Also, Glutathione 

metabolism via unique mutational profiles of GCLM, GGT2, and GPX1 coupled with a 

compromised oxidative phosphorylation complex III and ATPase (ATP4A, CYC1 

mutations) is also identified. A dysfunctional ATPase may allow accumulation of ATP. 

CYC1 inhibition is known to prevent neuronal differentiation and could be why NSP cells 

remain spheroidal. The origins, however, cannot be commented on.  

Nucleotide metabolism and signaling (ADK mutations) could alter the ATP: AMP balance 

leading to increased ATP while guanylyl cyclase dysfunction may affect GTP 

accumulation. The only known receptor for Nitric Oxide (NO) is soluble guanylyl cyclase 

(sGC) leading to dysregulation of iNOS (Inducible nitric oxide synthase) and excess NO. 

NO-mediated cellular regulation may be responsible for some of the arginine related 

metabolic differences between the two cell types. NO could also bind to the binuclear 

center of complex IV, COX (cytochrome c oxidase) and potentially inhibit 

mitochondrial respiration. There may be a greater need for NADPH leading to NADPH 

oxidase inhibition. ROS generation triggers PI3K-Akt-mTORC1- dependent autophagy 

signaling pathway and significantly increases autophagic flux. These could be 

compromised through Phosphoinositol metabolism and the negative regulatory effect of 

PI3K, PTEN via mutations in PLCD3 and SYNJ1. Also, pyruvate metabolism could be 
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varied through mutations in ME1 leading to differential secretion profiles in presence of 

high concentrations of the drug. Heme Biosynthesis may also be affected by mutations in 

HMBS. All these identified mutations can thus form the base for more hypotheses. Further 

characterization by site-specific sequencing and site-directed mutagenesis would benefit in 

understanding the causal effects on metabolism. 

4.5. Conclusions 

The genetic landscape of tumors is continually evolving and can be an impediment to the 

clinical management of cancer patients with recurrent disease. Continuous genotypic 

characterization throughout the progression of the disease drives the identification of 

candidate mutations that are induced through microenvironment changes and the presence 

of the drug. Such mutations can be used as diagnostic tools for identification of the severity 

of the disease. Our study identified varied mutational profiles in temozolomide resistant 

(NSP) and sensitive (U87MG) population of cells. This leads to validations of established 

physiological phenotypes in resistance and also the development of hypothesis and 

biological discovery. Further validation of impact by specific gene silencing would help in 

developing novel strategies to control the drug resistance. 
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Chapter 5 
Phenotypic Plasticity of  
Growth and Respiration 

 
“When you cannot measure, your knowledge is meager and unsatisfactory” 

-Lord Kelvin 

“No Disease, including cancer can live in an alkaline environment” 
- Otto Warburg 

 

 

 

 

Figure 5.1: Graphical abstract of Chapter 5. 
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Abstract 

Two principal dimensions of life that define cell function are growth and energy 

generation. Metabolic networks potentially orchestrate this duality of cell function critical 

for survival and proliferation. The ability to utilize a nutrient by the cell is determined by 

their genetic and phenotypic background that potentially rewires the metabolism to support 

the growth and survival. Altered metabolism is known to support the anabolic growth of 

cancer cells during nutrient replete conditions and catabolic pathways to support the 

survival of cells during nutrient limitation or nutrient deplete conditions. These metabolic 

preferences may be driven by oncogene activation and gene mutational profiles. In this 

Chapter 5, the capability of temozolomide resistant (Neurospheres) cells and 

temozolomide sensitive (U87MG) cells to respire and grow on different substrates has been 

delineated using phenotypic microarrays. Nutrient preferences thus profiled, showed that 

U87MG could utilize mannose and pyruvate for maximal growth in comparison to 

glutamine and glutamate for NSP. Ions and hormones also showed differential responses. 

Of the 92 drugs tested, Neurospheres were sensitive to Rotenone (80% inhibition), 

Rifaximin, Berberine chloride, and Deguelin. Our study provides a new insight into the 

differential growth and respiration profiles and highlights the coupled respiration and 

growth in Neurospheres and decoupled respiration and growth in U87MG. These results 

thus suggest the existence of cell adaptive mechanisms towards nutrient preferences and 

would possibly contribute to drug resistance. 
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5.1. Introduction 

The heterogeneous composition of the cancer microenvironment plays a major role in 

defining the phenotype of cancer cells. Physical, biological and chemical regulators in the 

microenvironment potentially control and guide cell survival (Mathis et al. 2017; Persano 

et al. 2013; Calibasi Kocal et al. 2016; Cantor & Sabatini 2012). Microenvironment-driven 

dynamic heterogeneity causes phenotypic plasticity that drives the evolution of varied 

response and may cause resistance to therapy. In response to changing microenvironmental 

conditions, like hypoxia and nutrient starvation, proliferative cancer cells can switch to a 

more aggressive/invasive and metastatic state. Recent evidence also suggests the presence 

of sub-population of cells that undergo a phenotypic switch to a more stem-like state 

(Golebiewska et al. 2011; Persson & Weiss 2009; Broadley et al. 2011; Golebiewska et al. 

2013).  

In this chapter, a comprehensive analysis of the differential nutrient utilization that 

supports respiration and growth of both drug-resistant population (Neurospheres) and drug 

sensitive population (U87MG) is performed and discussed in the context. Also, this chapter 

summarizes the potential novel therapeutic strategies from the chemosensitivity analysis 

that can help to target these drug-resistant, Neurospheres.  

5.1.1. Phenotypic and metabolic plasticity in cancer 

Aerobic glycolysis is the dominant metabolic phenotype in cancer cells (Hsu & Sabatini 

2008). Mitochondrial energy pathways are reprogrammed although mitochondria in most 

tumors are capable of oxidative phosphorylation (OXPHOS) and are not defective. This 

increases the ability to compensate for high-energy demand, macromolecular synthesis and 

rapid cell division (Gaude & Frezza 2014). Retrograde signaling and post-translational 

modification of oncoproteins occur via energy reprogramming. Neoplastic mitochondria 

also engage in crosstalk with the micro-environment (Kim et al. 2015).  

A hybrid glycolysis/OXPHOS phenotype for energy and biomass synthesis can occur in 

cancer cells and facilitates metabolic plasticity associated with therapy-resistance. Further, 

tumor cells are capable of switching their metabolic phenotypes in response to external 

stimuli for survival (De Berardinis & Chandel 2016; Gaude & Frezza 2014; Kim et al. 

2015). Therapies targeting cancer metabolic dependency can be made more effective by 

taking into account this metabolic heterogeneity and plasticity. 
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5.1.2. Nutrient dependencies in cancer 

Cancer cells reprogram their pathways of nutrient acquisition and cell metabolism to meet 

the demands of bioenergetic, biosynthetic, and redox balance under nutrient replete and 

deprived conditions (Figure 5.2). Altered metabolism supports the cancer cells for its 

survival in nutrient replete and nutrient-deprived conditions (De Berardinis & Chandel 

2016). Metabolic dependencies can also be used as targets for therapies. Such 

dependencies other than glucose for survival in the presence of drug can also overcome 

resistance.  

 

Figure 5.2: Metabolic pathways under nutrient-replete and nutrient-deprived 
conditions. Figure adapted from R.J. DeBerardinis, N.S. Chandel, Fundamentals of cancer 
metabolism, Sci. Adv. 2 (2016) e1600200–e1600200. doi:10.1126/sciadv.1600200 
(DeBerardinis & Chandel 2016). 

In this chapter 5, the nutritional preferences of temozolomide sensitive (U87MG) versus 

temozolomide resistant (Neurospheres) cells that are profiled so far, are characterized 

based on their ability to respire and grow on 367 carbon and nitrogen (C/N) sources using 

BIOLOG phenotypic microarray plates (PMM1 to 4). Also, the selected ions and hormones 

(PMM5 to 8) are tested for these two populations. Chemo-sensitivity of drug sensitive and 

drug resistant cells has been assessed for 92 chemotherapy drugs in the PMM11 to 14 
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panels.  

5.2. Methods 

5.2.1. Cell culture: U87MG cell line (HTB-14; Human Glioblastoma Multiforme from 

ATCC) was cultured in DMEM (Dulbecco’s Modified Eagle’s Medium, Gibco) with 

Glucose (1 mg/mL) and L-glutamine (0.584 mg/ml). 10% fetal bovine serum (FBS, 

GibcoTM, ThermoFisher Scientific) and 1% non-essential amino acids (Sigma-Aldrich) was 

used additionally for growth. Cell lines were maintained at 37°C in a humidified 

atmosphere of 5% CO2/95% air. Neurospheres (NSP) were initially maintained in 

neurobasal medium (GibcoTM, ThermoFisher Scientific) supplemented with B27 

supplement (GibcoTM, ThermoFisher Scientific), 0.2 μg/mL of epidermal growth factor, 

EGF ( ThermoFisher Scientific) and 0.2 μg/mL of basic fibroblast growth factor, bFGF 

(ThermoFisher Scientific). Further sub-culturing and passaging of NSP was carried out 

using the similar medium as U87MG to avoid any contribution from different micro-

environments and delineating heterogeneity of molecular signatures. NSP were cultured as 

free-floating spheres in the appropriate low attachment T-75 flasks or 6 well/24 well plates 

(NuncTM, ThermoScientificTM) for the study. 

5.2.2. Phenotype microarray analysis: Biolog Phenotype MicroArrays™ (PM-M1 to 

PM-M14) from Biolog, Inc. USA (www.biolog.com) consist of panels of PMM screening 

assays - (i) Energy metabolism pathways; (ii) Ion and hormone effects on cells and (iii) 

Sensitivity to anti-cancer agents. These are based on an easy-to-use technology for 

measuring the energy metabolism pathways present in mammalian cell types from in vitro 

cultured cells to primary cells.  

In PM-M1 to PM-M4, the metabolic pathway activities were assayed by using the cell 

suspension (~20,000 cells/well) prepared in an inoculating fluid (IF-M1 or IF-M2) that 

lacks carbon and energy sources (provided with the BIOLOG plates). These cells adapt to 

their new environment of different carbon and energy sources in the various wells. Biolog 

Redox Dye Mix MA or Biolog Redox Dye Mix MB was added to all wells. This 

measurement employs a tetrazolium dye that can be reduced to a purple formazan that can 

be measured at 590nm with a microplate reader. The redox energy produced when a cell 

metabolizes a substrate is used to convert the color from yellow to purple formazan. The 

rate of formazan production is linear with time and corresponds to the number of viable 

cells. iMark™ Microplate Absorbance Reader (Bio-Rad), with a wavelength range of 400–
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750 nm, had been used in our study to measure the absorbance.  

PM-M5 to PM-M8 plates are coated with different ions, hormones, and other metabolic 

effectors; and PM-M11 to PM-M14 are coated with different anticancer agents. Cell 

suspension (~20,000 cells/well in a culture medium that is serum-free and containing D-

glucose and L-glutamine was used for PM-M 5 to 8 and PM-M 11 to 14. All plates were 

incubated at 37oC in CO2 incubator. The absorbance readings were measured after an 

initial incubation (48 hours) of cell growth, followed by adding the dye and reading for 24 

hours of study (with initial intervals at 15, 30, 45 and 60 min; 1hr intervals from 2 to 6 hrs; 

and final reading at 24 hours of incubation).  

5.3. Results 
5.3.1. Phenotypic plasticity defined by nutrient preferences for growth and 

respiration 

The cellular energetics and pathways involved in the metabolism of U87MG and NSP cells 

during the nutrient restriction state (only one source/nutrient preferences) were addressed 

by using Biolog Phenotype MicroArrays™ (PM-M1 to PM-M4) plates. PM-M1 to PM-M4 

uses different carbon and nitrogen sources to test for 367 potential metabolic sources and 

pathways simultaneously that contribute to the conversion of these substrates to energy. 

These could eventually form distinct profiles of metabolic activity that gives the cell-

specific metabolic fingerprints/phenotypic profiles. The data generated were analyzed for 

respiration and growth separately to understand whether the specific source/nutrient 

contribute by coupling or decoupling towards respiration (NADH generation) and growth 

(ATP synthesis).  

The respiration profiles were categorized, based on a threshold value into true respiration 

(includes respiration from initial time points and respiration after certain time gaps/lagged 

respiration) and no respiration. Of these categories, the source/nutrient that enhances 

respiration in a specific cell type may or may not result in measurable growth in that cell 

type. Hence, the same way of categorization was applied in case of growth profiles as well 

with a different threshold value identified from the cell counts.  

5.3.2. Euclidean clustering of growth and respiration rates 

73 carbon and nitrogen sources were primarily selected from the panel of PM-M1 to PM-

M4, based on their role in the core metabolic pathways and analyzed using Euclidean 
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clustering. These included glucose, glutamine, and all proteinogenic amino acids. 

Clustering according to the ability to grow on all 73 C/N sources was able to distinguish 

U87MG from NSP. Primary column cluster was between the respiration profiles (U87MG 

and NSP) and the further clusters were connected to this primary cluster in a series (NSP 

growth followed by U87MG growth) illustrating the correlation.  

Row-wise clustering with the tightest cluster first in tree ordering highlighted a primary 

cluster with all amino acids, all carboxylic acids, and all polysaccharides separately 

followed by interconnection. Dextrin, inosine, and sorbitol formed a separate cluster that 

was further connected to the primary clusters.  

Glutamate and Glutamine supported growth in NSP predominantly compared to D- glucose 

and D- mannose in U87MG. Pyruvate, AKG, and Succinate supported growth in U87MG 

but lower than in NSP suggestive of the divergent microenvironments as seen in the exo-

metabolite profile of these 3 metabolites (Figure 5.3).  

5.3.3. Differential growth and respiration rates across U87MG and Neurospheres 

The rate of respiration and growth was further analyzed for all panels of PM-M plates. PM-

M1 contains an array of carbon sources including simple sugars, polysaccharides, and 

carboxylic acids. Both the cell populations utilized glucose for respiration as well as 

growth along with 31 other metabolites. U87MG cells additionally metabolize 13 

metabolites  (L-Glucose, D-Salicin, Chondroitin-6-sulfate, D-Melezitose, Palatinose, L-

Sorbose, L-Rhamnose, D-Fucose, D-Arabinose, D-Malic acid, γ-Amino-N-butyric acid, α-

Keto-butyric acid, and Propionic acid) with no measurable growth. a-D-Glucose-1-

Phosphate, Ethanolamine, and D-Trehalose show unique profiles for U87MG for 

respiration as well as growth. NSP cells can utilize β-Gentiobiose as its source for 

respiration and growth.  

D-cellobiose was not utilized by both cell populations. Out of the 10 methylated substrates 

(PM-M1), U87MG showed respiration capability in all of them with no measurable growth 

except mono-methyl succinate. In addition to mono-methyl succinate, two more 

methylated substrates (α-Methyl-D-mannoside and β-Methyl-D-galactoside) were shown to 

support respiration as well as growth by NSP (Figure 5.4 and Appendix A). 
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Figure 5.3: PM-M1 to 4 analyses using growth (GR) and Respiration (Resp) rates, 
clustering using clustergram and identifying coupling and decoupling of growth and 
respiration. Lagged growth represents the delay in growth due to the carbon source getting 
converted to another secondary metabolite that can be used by the cells. 

G – Growth 
LG – Lagged growth 
NG – No growth 
R – Respiration 
LR – Lagged respiration 

NR – No respiration 
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Figure 5.4: PMM-1 analysis of respiration (A) and growth (B) profiles. Selected 
differential profiles of respiration and growth are shown for the sole carbon sources that 
are mentioned as title in the subplots. See Appendix A for the complete panel of plates. 

A 

B 
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PM-M2 to PM-M4 plates have lipids and protein-derived nutrients, primarily individual 

L-amino acids and dipeptide combinations. In the case of dipeptides, 57 substrates were 

utilized by both cell populations. Ala-Leu was metabolized for growth and respiration by 

both cell types but in a slower rate in case of NSP. 

Ala-Pro, Thr-Gln, Val-Glu, and Val-Gln were utilized for true respiration by both with no 

measurable growth in case of U87MG. Ala-Asp and His-Ser were also used for respiration 

with no measurable growth in U87 and very less growth in NSP. 38 dipeptides were not 

utilized by both. 114 dipeptides were used by U87MG (respiration but no growth). Leu-Ala 

is the only substrate (from 114 dipeptides) that resulted in respiration with some growth in 

U87MG. 35 dipeptides were utilized by NSP and not by U87MG. Thr-Ala was the only 

one utilized for true respiration and growth by NSP. 11 substrates other than dipeptides 

(like L-Homoserine) showed no response in both the cases. Other amino acids that not 

utilized by both cell populations include Glycine, L-Phenyl alanine, D-Alanine, D-Aspartic 

Acid, and D-Threonine (Appendix A).  

5.3.4. Nutrient preferences from 367 C/N sources 

Among 367 substrates, 123 substrates (other than dipeptides) which include various carbon 

and nitrogen sources, 43% i.e. 53 substrates have a common respiration profile in both the 

cell lines. One-third of all the substrates have a true respiration in both cell lines. This 

category consists of carbohydrates such as glucose, fructose, galactose; carboxylic acids 

such as pyruvate, lactate, citrate; sugar alcohols such as 2,3-butanediol sorbitol, maltitol; 

polysaccharides such as dextrin, glycogen and three methylated substrates - a-methyl 

mannoside, b-methyl galactoside, and mono methyl succinate. 12 substrates were not 

utilized for respiration.  

For the remaining 70 substrates, the two cell lines have different respiration profiles. With 

respect to U87MG respiration, more than 84% i.e. 59 substrates are utilized for respiration 

and more than 14% i.e. 10 substrates were utilized with a lag for respiration (NR in NSP). 

In contrast, NSP respired on only one substrate but not in U87MG and 60% i.e. 42 

substrates were not utilized for respiration by NSP and only 39% i.e. 27 substrates are 

utilized slowly for respiration by NSP. 
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5.3.5. Differential profile in ions and hormones 

PM-M5 to PM-M8 is designed to profile for effects of ions, hormones, and other metabolic 

effectors on the metabolism, via respiration and growth rate. In total, 67 different 

metabolites were screened, of which, 4 ions (Manganese chloride, Zinc chloride, Copper 

(II) chloride, and Sodium orthovanadate) were not utilized by both the cell populations. 14 

metabolites (Ammonium chloride, Sodium selenite, Potassium chloride, Cobalt chloride, 

Sodium sulfate, Potassium chromate, Sodium Nitrate, Sodium Nitrite, 3-Isobutyl-1-

methylxanthine, Thyroxine, IL-2, Prolactin, Calcitriol, 1α,25-Dihydroxyvitamin, TNF-α) 

were shown to be differential profiles in a way that  NSP could utilize them for growth but 

not U87MG. 2 of the metabolites (Magnesium chloride, (Arg8) –Vasopressin) cannot be 

utilized by NSP but can be utilized by U87MG. 48 substrates were utilized by both the cell 

populations with maximum growth for U87MG in IL-6 and Adrenocorticotropic hormone 

human (ACTH) in NSP (Appendix A). 

5.3.6. Chemo-sensitivity of U87MG and NSP to 92 drugs 

PM-M11 to PM-M14 is designed to profile for the sensitivity of cells to a diverse set of 

anti-cancer agents that can affect the cell growth by different modes of action. The anti-

cancer agents can target and alter cell metabolism, growth rate, or productivity. 92 

cytotoxic drugs in this panel were tested against the two cell types (U87MG and NSP) that 

showed the difference in their nutrient preferences. 78 drugs were non-cytotoxic to both the 

cell types (Figure 5.5, Appendix A and Figure 5.6).  

 

Figure 5.5: Analysis of chemo-sensitivity of U87MG and NSP. U87MG and NSP 
showed a differential profile in only 9 drugs. Growth in the presence of drugs is considered 
as “Y” and No growth as “N”.   
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Figure 5.6: Chemo-sensitivity profile for U87MG and Neurospheres. Out of 92 drugs, the differential inhibition profiles are shown. 
ETC inhibitors like Rotenone and Deguelin affect the NSP population specifically than the U87MG cells. 
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5 drugs were cytotoxic to both the cell types (Emetine, Sanguinarine, Acriflavinium, 

Neriifolin, and Puromycin. Differential profile was observed in the drugs listed in Table 

5.1. NSP was susceptible to Berberine, Rapamycin, Deguelin, and Rotenone. All these 

drugs target the complex I in the ETC. Hence, it is possible that the rewired survival 

strategy of NSP lies in the dependency of ETC, and it is been targeted by these drugs. In a 

combined therapy, by administering these 4 drugs along with temozolomide can be a most 

promising therapeutic regimen to target and kill the resistant population, Neurospheres. 

Table 5.1: Differential drug response for U87MG and NSP. 

No. Drug Name U87MG NSP Known mechanism / Target 

1 Cepharanthine - + 
It is an anti-inflammatory and 
antineoplastic compound isolated from 
Stephania 

2 Mitomycin C - + Mitomycin C is a potent DNA cross-linker. 

3 
Mitoxantrone 
Hydrochloride 

- + antibiotic with antineoplastic activity 

4 
Quinacrine 
Hydrochloride 

- + 
It is an antimalarial drug and also used as 
an antibiotic. 

5 Celastrol - + 

Celastrol, a plant-derived triterpene, has 
antioxidant and anti-inflammatory activity 
that may prevent neuronal degeneration in 
Alzheimer's disease (AD) 

1 Berberine Chloride + - 
A compound extracted from herbs for its 
anti-diabetic effects; targets complex I in 
ETC. 

2 Rapamycin + - 

Rapamycin is a macrolide compound 
obtained from Streptomyces hygroscopicus 
that acts by selectively blocking the 
transcriptional activation of cytokines. 

3 Deguelin(-) + - 

Deguelin is a derivative of rotenone. Both 
are compounds classified as rotenoids of 
the flavonoid family and are naturally 
occurring insecticides 

4 Rotenone + - 

Rotenone works by interfering with the 
ETC in mitochondria. It inhibits the 
transfer of electrons from iron-sulfur 
centers in complex I to ubiquinone.  

5.4. Discussion 

The phenotypic microarray results are based on the conversion of BIOLOG dye by the 

cellular oxidoreductases. These assays (Figure 5.10) reflect the production of NADH by 

the cells from various substrates. The fraction of NADH produced in mitochondria differs 

for different energy substrates when given as a sole carbon or nitrogen source. The ability 
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of a cell to use a particular nutrient as a source of energy is evitable; yet this does not 

support or sufficient to use the same source as a growth substrate.  

 

Figure 5.7: Phenotypic microarray panels (PMM 1 to 14). Source: Biolog website. 
http://www.biolog.com/products-static/phenotype_mammalian_cells_overview.php 

To be used as a growth substrate, the sole carbon or nitrogen source should be sufficient to 

drive metabolism and proliferation. The fraction of cytosolic and mitochondrial NADH 

produced by the conversion of substrates is measured as cell viability in these assays and 

hence it supports the cytosolic NADH theory (Figure 5.11). The function of mitochondrial 

energy metabolism is also dependent on the NADH/NAD+ ratios that are present in the 

mitochondria to support the electron transport chain. In a recent study (Titov et al. 2016), 

the role of electron transport has been dissected into two separate processes: 1) Proton 

motive force and 2) ATP synthesis. The process of electron transfer can be considered as 

cellular respiration and the ATP synthesis further drives the cell growth.  

In this chapter 5, the analysis of PMM data has been performed to characterize whether or 

not these two processes of cellular respiration and growth are coupled or decoupled in the 

given substrate by the cell. By such analyses, it is observed that U87MG respires in many 

substrates whereas NSP utilizes the substrates for both respiration and growth. This 

supports the hypothesis that NSP cells potentially couple their respiration to growth but 

U87MG cells although utilize many substrates for respiration, grows in fewer substrates 

(Figure 5.3D, E and F). Also, the metabolite profiling in Chapter 2, highlighted the 

glutamine preference for Neurospheres in the LC-MS/MS data. 
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Figure 5.8: NADH theory of cancer energy metabolism. A major source of the electron is 

considered as cytosolic NADH in cancer cells compared to normal cells. 

Herein, the profile for glutamine in the BIOLOG profile shows that NSP can utilize 

glutamine and glutamate for growth and respiration whereas U87MG can only respire with 

these with low growth. These datasets support the preferential utilization of glutamine by 

Neurospheres for their survival. 

In the chemo-sensitivity profile, it is observed that NSp cannot grow in the presence of 4 

drugs (Berberine, Rapamycin, Deguelin, and Rotenone). All these 4 drugs are known to 

target complex I in the electron transport chain (ETC). Since growth and respiration are 

coupled in NSP, the electron transport chain function is crucial for NSP survival. While, 

Rotenone being the most inhibiting (80% inhibition), other 3 drugs also show inhibition in 

the concentrations provided in the BIOLOG panel. Although further experiments are 

needed to study the combined effect of temozolomide and these drugs, it is evident that 

these drugs can be cytotoxic to NSP.  

5.5. Conclusions 
In this Chapter 5, the PMM analysis has highlighted the differences in growth 

requirements, nutrient utilization profiles and drug responses of U87MG (temozolomide-

sensitive) and NSP (temozolomide-resistant) cells. The use of phenotypic microarray 

technology delineated the metabolic phenotype profile of U87MG and NSP cells using 

their capability to utilize nutrients for growth and respiration (Glucose and Pyruvate for 
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U87MG; Glutamine and Glutamate for NSP). High-throughput screening of these cells on 

sole carbon and nitrogen sources helped in delineating the cell-specific preferential 

utilization of substrates. Also, the chemosensitivity panel helped in the identification of 4 

candidate drugs - Berberine, Rapamycin, Deguelin and Rotenone that can be cytotoxic to 

the resistant cells (NSP) with the highest inhibition for Rotenone.  
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Chapter 6 
Metabolic Dynamics and 

Reprogramming of the Cell 
 

“Genes load the gun, but environment pulls the trigger”. 
- Bruce Lipton 

 
“The way you understand and investigate time is by moving inward, into metabolism. The 
human body is a knot in time”. 

-Terence Mckenna 

 

 
Figure 6.1: Graphical abstract of Chapter 6. 
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Abstract 

The metabolic state of the cell determines how the cell responds to the environment or 

other stimuli. It is important to know the metabolic features of the cell in order to 

understand its impact on growth and survival. In this Chapter 6, the metabolite levels in the 

two cell types (U87MG and NSP) were analyzed and quantified using LC-MS/MS for 5 

samples (0 to 96 hours) from varied conditions (Without drug and three different 

concentrations of temozolomide as 10, 100 and 700 µM TMZ). 34 metabolites were 

selected based on their important role in central carbon and nitrogen metabolism. This data 

again indicated that the growth limiting substrates (Glucose, glutamine, serine, and 

tryptophan) were completely depleted by 96 hours by both the cell types except glucose 

and serine in U87MG at 700 µM TMZ. Glucose and Glutamine were utilized by both the 

cell types in the absence of the drug in a linear way but NSP has a slower glucose uptake. 

CORE (Consumption and Release) profile analysis and PCA (Principal Component 

Analysis) was performed. Euclidean clustering predicted relevant clusters for succinate-

ornithine; glycine-proline, alanine-lactate; arginine-citrulline; and aspartate-tryptophan 

throughout the varied TMZ concentrations. Most variation was predicted in the 10 µM 

TMZ and 700 µM TMZ. PCA1 versus PCA2 outlined the two-component spheres to 

converge, in contrast to PCA1 versus PCA5 which differentiated the 700 µM TMZ profile 

from others. CORE clustering of endo-metabolite profiling (concentration normalized to 

cell number) projected NSP-700 profile as a distinct column cluster among others. In 

conclusion, the differential metabolite profile identified the most variance in the metabolite 

profiles in the presence of TMZ than the samples in the absence of TMZ, indicating its 

impact on resistance.  
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6.1. Introduction 

Otto Warburg observed that proliferating mammalian tumor cells converted the majority of 

the glucose carbon to lactate even in oxygen-rich conditions. Warburg hypothesized that 

this altered metabolism was specific to cancer cells and attributed it to mitochondrial 

defects (Warburg et al. 1923; Warburg 1956). Thus mitochondrial dysfunction or its poor 

ability to oxidize glucose to CO2 was proposed to cause cancer (Koppenol et al., 2011). 

Warburg's seminal finding has been exploited extensively in clinical studies as 18F-

deoxyglucose positron emission tomography (FDG-PET) (Vlashi et al. 2011). However, it 

has now been identified that tumor mitochondria are not defective in oxidative 

phosphorylation, but metabolism in them is reprogrammed for macromolecular synthesis. 

Proliferating cells do not attempt to maximize ATP yield, but rather maximize the flux of 

carbon into macromolecular anabolic pathways. Metabolic rewiring has been regarded as a 

consequence of malignant transformation driven by aberrant signal transduction mediated 

by oncogenes and tumor suppressors. The identification of ‘‘oncometabolite’’ (R)-2-

hydroxyglutarate [(R)-2HG] in gliomas as a result of mutations in isocitrate dehydrogenase 

(IDH) has provided direct evidence linking altered metabolism and cancer (Losman & 

Kaelin 2013). 

A less studied but recently emerged concept is that information about a cell's metabolic 

state is also integrated into the regulation of epigenetics and transcription. The complexity 

and dynamics of epigenetic modifications in the presence of DNA methylating drugs like 

TMZ could provide a link between the extracellular environments. Substrate channeling, a 

common event in cellular metabolism suggests local concentration gradients of 

metabolites. Compartmentalized metabolic enzymes could provide a local supply of 

substrates/cofactors to the complexes like methionine adenosyltransferase IIα (MATIIα), 

which generates SAM. System biology approaches are needed to fully grasp the 

complexity of the connections between metabolism, signaling, transcription, and 

epigenetics. A deeper understanding of these connections may help to shed light on our 

understanding of the etiology and treatment of a multifactorial disease like glioblastoma. 

6.1.1. Metabolic phenotypes in cancer and regulation of epigenetics 

Cancer cells adapt, survive and proliferate on dynamically changing harsh 

microenvironments. They are less dependent on exogenous growth factors and cell-to-cell 
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interactions. Vigilant monitoring of intracellular metabolites through pathway regulation 

may allow them to work through this apparent paradox. Metabolism in cancer cells is 

influenced by internal stimuli such as oncogenic signal transduction and external cues such 

as nutrient and oxygen availability. Monitoring intracellular levels of metabolites are thus 

crucial for cells to appropriately gauge their nutritional resources. Evolutionarily conserved 

‘nutrient-sensing’ mechanisms like AMP-activated protein kinase (AMPK), related to 

varying AMP: ATP ratios, illustrate the ability of mammalian cells to switch to a more 

catabolic state when they perceive a nutrient stress. In contrast, mTOR signaling promotes 

growth and is active when cells sense a favorable, nutrient-replete environment.  

Enzymes responsible for adding or removing epigenetic modifications include but are not 

limited to histone acetyltransferases (HATs), histone deacetylases (HDACs), histone 

methyltransferases (HMTs), histone demethylases (HDMs), DNA methyltransferases 

(DNMTs) and DNA hydroxylases (DNHDs). Metabolic substrates or cofactor levels 

regulate activities of such chromatin-modifying enzymes by diffusion to deliver metabolic 

information to nuclear transcription. The interplay between the tumor microenvironment 

and cellular metabolism is thus not a simple cause-and-effect theory, because most of the 

secretory metabolites from biochemical reactions and conditions in the tumor constantly 

influence tumor microenvironment and hence the cellular metabolism (Figure 6.2).  

 
Figure 6.2: Determinants of the tumor metabolic phenotype. The metabolic phenotype 
of tumor cells is controlled by intrinsic genetic mutations and external responses to the 
tumor microenvironment.  
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Due to this dynamic nature of the tumor microenvironment, it is possible that the metabolic 

phenotype of tumor cells can vary across cell types to adapt to prevailing local 

conditions/microenvironment (Persano et al. 2013; Calibasi Kocal et al. 2016; 

Kucharzewska et al. 2015). By addressing these differences in the metabolic changes, the 

drug-resistant cells can be targeted and it can lead to the development of new therapeutic 

regimens. 

6.2. Methods 

6.2.1. Growth in different concentrations of Temozolomide: Growth of the cells 

(U87MG and NSP) were studied by monitoring their proliferation via cell count over a 

period of 5 days at different concentrations of TMZ. The initial seeding set has the starting 

population (No) at ~10000 cells per well. The growth profile was studied in a 24 well plate 

(Nunc tissue culture-treated) for ease of harvesting. Both U87MG and NSP cells were 

harvested every 24 hours and counted using hemocytometer based on trypan blue dye 

exclusion assay. Before counting, the NSP population was also disaggregated by 

trypsinization. For different concentration of drug experiments, cells were plated in 

replicate wells at ~20,000 cells per well in 24-well plates (NuncTM tissue culture treated, 

ThermoScientific™) in full growth medium for 24 h and then treated them with different 

doses of TMZ (10µM, 100µM, and 700µM). Three biological replicates were performed 

with two technical replicates in each biological replicate on a 24-well plate (NuncTM tissue 

culture treated, ThermoScientific™). Growth and temozolomide response curves were 

graphed with the number of cells on the Y-axis and time on the X-axis. The data were 

fitted using Gompertz function using GraphPad Prism software and the growth parameters 

calculated. 

6.2.2. Liquid chromatography-high resolution mass spectrometry (LC-HRMS): 

Sample extraction, dilution and internal standard spiking: The 8 samples from each 

experiment setup (Without drug, 10 µM TMZ, 100 µM TMZ and 700 µM TMZ) were 

harvested  every 24 hours over a period of seven days and used for the metabolic profiling 

to understand nutrient uptake and release kinetics. Sampling pooling strategy(Cheung et al. 

2005; Kline & Richmond 1981) was applied to reduce the number of samples and to make 

the analysis as a high-throughput quantification. Each replicate-pooled sample was 

prepared and stored at -80oC; thawed on an ice bath to aliquot 100µL of the sample for 

extraction. The aliquot was transferred into a fresh 1.5 mL centrifuge tube. 400 µL of 
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chilled methanol (previously stored at -80°C) was added. The solution was thoroughly 

mixed for 2 min followed by centrifugation for 15 min at 5000 rpm (4°C). The tubes were 

carefully removed, 300 µL of supernatant was withdrawn and transferred into a fresh tube 

(Dilution level: 5X). A two-step serial dilution of the supernatant was performed using 

50% acetonitrile in water. In the first step, 50 µL of supernatant was thoroughly mixed 

with 450 µL of diluent (Dilution level: 50X). This solution was further diluted by mixing 

100 µL of the sample solution with 400 µL of diluent (Dilution level: 250X). Before 

injection, 100 µL of the sample solution was mixed with an equal volume internal standard 

solution containing 4.4 µM verapamil in 50% acetonitrile in water with 0.2 % formic acid.  

6.2.3. Standard preparation: Standards of metabolites were prepared using chemically 

defined minimal essential media (MEM), and non-essential amino acid media (NEAA) 

from Sigma. Stock solutions were serially diluted to generate the various calibration levels 

for quantitative estimations.  

6.2.4. Metabolites profiling using LC-HRMS: Metabolic profiling of samples was 

carried out using Accela 1250 ultra-performance liquid chromatography (UPLC) in tandem 

with Thermo Q-exactive high-resolution mass spectrometer (HRMS) using heated 

electrospray ionization (HESI) interface. The UPLC and MS were operated using Xcalibur 

(Thermo, Version 2.0) software platform, whereas HESI source parameters were set using 

Tune module (Thermo, version 2.1).  Samples were stored in a temperature controlled 

Accela autosampler maintained at 4°C during LC-HRMS analysis. A reverse-phase C18 

hypersil GOLD column (10cm x 2.1mm x 3.0µm) was used for chromatography. The 

mobile phase consisted of 0.1% formic acid in deionized water (Mobile phase ‘A’) and 

0.1% formic acid in acetonitrile (Mobile phase ‘B’). The elution gradient was set as 70% of 

mobile phase A (0.0-2.5 min), 10% A (3.5-5.5 min), 70% A (5.5-8.0 min) with a constant 

flow rate at 1000 µL/min. The HESI source spray voltage was set at 3.7kV with capillary 

temperature - 300°C; sheath gas - 45 units; auxiliary gas - 10 units, heater temperature - 

390°C and S-lens RF at 50 units.  The mass spectrometer was set to m/z range of 60-900, 

resolution of 70,000 FWHM (Full width at half maximum) with automated gain control 

target 1e6 and maximum injection time of 50 ms. 5µL of the sample was injected for 

analysis using the auto-sampler unit. The data was acquired in both positive and negative 

ion mode in two separate batches. Metabolomics data analysis was carried out by the Qual 

and Quan browser modules of Xcalibur (Thermo Scientific). [M+H]+ and [M-H]- ions were 

used for all sets of data analysis in positive and negative ion mode respectively. A 
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Qual/Quan approach of data processing was employed. The initial step of analysis was the 

generation of accurate mass-extracted ion chromatogram (AM-XIC) of various metabolites 

using 20 ppm mass extraction window (MEW) and peaks were confirmed using MS/MS 

spectral peak matching. In the next step, the metabolites (confirmed in the qualitative 

analysis) were quantified in various intra and extracellular samples using the internal 

standard normalized linear regression models generated from standards.   

6.2.5. Selection of metabolites for profiling: The metabolomic characterization of 

temozolomide sensitive and temozolomide resistant cells was performed on a targeted way 

of estimation of concentrations. The central carbon and nitrogen metabolism was targeted 

in this study. 34 metabolites were selected based on their impact on the metabolism (Figure 

6.3). These metabolites include all amino acids, glucose, lactate, alpha-ketoglutarate, 

citrate, oxaloacetate, succinate, malate, and pyruvate.  

 
Figure 6.3: Metabolites selected for quantification using LC-MS/MS analysis. Pathway 

figure is adapted from Y. Zhao et al., BMC Med. 10, 153 (2012) (Zhao et al. 2012). 

The targeted analysis was performed in LC-MS/MS for absolute quantification using 

standards for all these metabolites. Both extracellular and intracellular samples from drug-

treated and drug-untreated groups were used for profiling for both U87MG and NSP. 
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Samples were extracted using the method mentioned in 6.2.2 section and were stored at -

80◦C until use. 

6.2.6. Consumption and Release (CORE) clustering and Principle component analysis 

(PCA): The concentrations for all 35 metabolites identified from LC-MS/MS analysis 

were further clustered using ClustVis web tool (http://biit.cs.ut.ee/clustvis/). Consumption 

and release concentrations were calculated by subtracting the concentration at 0 and 96 hrs. 

These values were used as inputs for generating heat maps and for PCA. Heat maps and 

clustering was performed with the criteria of unit variance scaling (applied to rows) where 

all 35 metabolites were the rows in the heat maps. Both rows and columns were clustered 

using correlation distance and average linkage with the tightest cluster first in tree order. 

PCA was carried out by using SVD with imputation algorithm specified in the ClustVis 

tool. In some specific cases, the Euclidean algorithm was used for clustering to interpret 

the data. 

6.2.7. Variable Importance in Projection (VIP) scores using Partial Least Square 

Discriminant Analysis (PLS-DA): MetaboAnalyst, a web-based statistical tool 

(MetaboAnalyst - statistical, functional and integrative analysis of metabolomics data) (Xia 

et al. 2009; Chong et al. 2018; Xia et al. 2015; Xia & David S Wishart 2011; Xia et al. 

2012; Xia & David S. Wishart 2011; Xia & Wishart 2016) was used for calculating the VIP 

scores and the PLS-DA components were plotted to interpret the variance across the cell 

types.  Pareto scaling (mean-centered and divided by the square root of the standard 

deviation of each variable) was used initially in order to normalize the LC-MS/MS data for 

the analysis. The 2D and 3D score plots from PLS-DA were generated in the online tool 

and the interpretations were made accordingly. 

6.3. Results 

6.3.1. Quantitative metabolite profiling identifies key differences in the metabolic 

states of the cell in the presence of TMZ 

The metabolite levels in the two cell types (U87MG and NSP) over a period of 96 hours of 

growth/inhibition were analyzed and quantified using LC-MS/MS in the presence of 

varying concentrations of temozolomide. This was compared to growth in the absence of 

TMZ. In the absence of TMZ, exo-metabolite profiling showed glucose uptake correlated 

with lactate secretion, consistent with the well-documented Warburg effect of cancer cells 

http://biit.cs.ut.ee/clustvis/�
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(Warburg 1956; Hsu & Sabatini 2008; Vander Heiden et al. 2009; Ward & Thompson 

2012; Warburg et al. 1923; Dang 2012). The growth limiting substrates (Glucose, 

glutamine, serine, and tryptophan) were completely depleted by 96 hours by both the cell 

types except glucose and serine in U87MG at 700 µM TMZ. Glucose and Glutamine were 

taken-up linearly by both the cell types in the absence of the drug but NSP showed some 

lagged uptake in case of glucose. NSP cells were observed to be glutamine-dependent for 

their survival and growth. Serine and tryptophan had dynamic changes in NSP in the 

presence of drug exo-metabolite profile compared to U87MG. This was significant at 72 

hrs in all concentrations of drug-treated samples (Figure 6.4A).  

6.3.2. CORE clustering and PCA  

CORE profile analysis and PCA was performed to understand the exo- and endo- 

metabolite state of both the cell types (U87MG and NSP). Unit variance scaling was 

applied to CORE (both exo and endo) clustering for the combined 4 experimental setups 

and 2 cell type analysis with all 35 metabolites in rows. Both rows and columns were 

clustered using correlation distance and average linkage with the tightest cluster first in tree 

order. Relevant clustering has been predicted in the combination of succinate-ornithine; 

glycine-proline, alanine-lactate; arginine-citrulline; and aspartate-tryptophan throughout 

the varied TMZ concentrations. Most variation was predicted in the 10 µM TMZ and 700 

µM TMZ (as seen by the color intensity across U87MG and NSP) (Figure 6.4 B and C).  

Exo-metabolite PCA output has 5 components where-in PC1, PC2 and PC5 were 

considered for correlation visualizations. PC1 to PC2 comparison outlined the two-

component spheres to converge. In contrast, comparing PC1 to PC5 differentiated the 700 

µM TMZ profile from others. CORE clustering of endo-metabolite profiling projected 

NSP-700 profile as a distinct column cluster among others. Most variance was observed in 

the profiles of cells in the presence of drug (highest in NSP-700, NSP-100, and U87MG-

10). Among the 5 PCA outputs of the endo-metabolite profile, PC1, PC2 and PC4 were 

selected for analysis. PC1 to PC2 component spheres clustered NSP and U87MG as 

separate identifying them as metabolically different intracellularly, yet PC1 to PC4 had 

some intersection with U87MG (Figure 6.4 D and E). 

6.3.3. Concentration profile across time 

Concentration was profiled over time to delineate the dynamics. Out of the 35 key 

metabolites selected for the study, 6 metabolites (Asparagine, citrulline, G3P, histidine,  
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Figure 6.4: Metabolite profiling in the absence and presence of drug (Temozolomide). A) Heat 
map of growth limiting substrates. Clustergram of Extracellular (B) and Intracellular (C) profiles. 
PCA analysis of Extracellular (D) and Intracellular (E). 
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Figure 6.5: Metabolite concentration profile of U87MG and Neurospheres in the 
absence of temozolomide. A) Extracellular B) Intracellular. The absolute concentrations 
are plotted with ‘Concentration’ in Y-axis vs ‘Time’ in X-axis. 

 

A 

B B 
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ornithine and proline) showed a differential exo-metabolite profile in the absence of drug 

(Figure 6.5). 

This suggests a possible change in nitrogen flux distribution across the two cell types to 

maintain their inherent metabolic capability. Alanine, lactate, and glutamate were released 

by these cells, thus confirming previously discovered glioblastoma signature profiles. 

Ornithine was found to be a distinct profile in NSP compared to U87MG in all the 

conditions (No drug, 10 µM TMZ, 100 µM TMZ and 700 µM TMZ). Pyruvate showed 

differences only in the presence of high concentrations of the drug (700 µM TMZ). 20 

metabolites (Alanine, ascorbic acid, citrate/isocitrate, citrulline, cysteine, glycine, histidine, 

lactate, leucine/isoleucine, methionine, ornithine, phenylalanine, proline, pyruvate, 

sorbitol, succinate, threonine, tyrosine and valine) showed difference in their extracellular 

profile at low concentration of TMZ (10 µM). The 10 µM TMZ growth profile was similar 

to without drug (no significant growth inhibition by TMZ), yet these 20 metabolites 

showed a concentration change with highest difference in ornithine (~20 fold increase in 

NSP for no drug profile - 72 hrs; no/least ornithine detection in U87MG in the presence of 

the drug) followed by pyruvate and alanine (Figure 6.6).  

Exo-metabolite profile in the presence of 100 µM TMZ highlighted 16 metabolites 

(Alanine, asparagine, citrulline, cysteine, glutamine, glycine, lysine, methionine, succinate, 

ornithine, phenylalanine, proline, pyruvate, sorbitol, threonine and tyrosine) as different in 

their concentrations (Figure 6.7). In the presence of 700 µM TMZ, where U87MG had a 

negative rate of growth (Appendix A, Table A2) and NSP survived up to 24 hrs in contrast 

to U87MG. 11 metabolites (Arginine, citrulline, glycine, histidine, lactate, lysine, 

ornithine, serine, threonine, tyrosine and valine) were different in their exo-metabolite 

profile in this state (Figure 6.8).  

Endo-metabolite concentration profiles and dynamics of 35 metabolites was assessed by 

normalizing the concentration by cell number to account for increasing cell number/mass at 

the specific time intervals. Glycine, threonine, and arginine varied similarly in their endo-

metabolite profile in the absence and presence of all concentrations of the drug. Six 

metabolites (Alanine, leucine/isoleucine, lysine, pyruvate, tyrosine, and valine) were 

differential in the absence of the drug. Pyruvate and alanine were among the 8 metabolites 

that differed in both 10 µM TMZ and 100 µM TMZ. Tyrosine and methionine were unique 

in the presence of 10 µM TMZ while Citrulline and D- malic acid unique in the presence of  
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Figure 6.6: Metabolite concentration profile of U87MG (blue) and Neurospheres (red) 
in the presence of 10 µM TMZ. A) Extracellular B) Intracellular. The absolute 
concentrations are plotted with ‘Concentration’ in Y-axis vs ‘Time’ in X-axis. 
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Figure 6.7: Metabolite concentration profile of U87MG (blue) and Neurospheres (red) 
in the presence of 100 µM TMZ. A) Extracellular B) Intracellular. The absolute 
concentrations are plotted with ‘Concentration’ in Y-axis vs ‘Time’ in X-axis. 
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Figure 6.8: Metabolite concentration profile of U87MG (blue) and Neurospheres (red) 
in the presence of 700 µM TMZ. A) Extracellular B) Intracellular. The absolute 
concentrations are plotted with ‘Concentration’ in Y-axis vs ‘Time’ in X-axis. 
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100 µM TMZ. A 60% change in overall concentration span change was observed in the 

presence of 700 µM TMZ for all metabolites (Figure 6.4 to 6.8 B sections). Succinate 

levels diverged significantly in the endo-metabolite profile in the presence of 700 µM 

TMZ. These analyses showed the demand for these metabolites may differ based on 

microenvironments. Local conditions may contribute towards choices related to 

quiescence, proliferation, differentiation or migration in NSP and U87MG. 

6.3.4. Key metabolites and their role in metabolic reprogramming 

To identify the importance of individual metabolite on the systems under study (U87MG 

and NSP), it is necessary to use the statistical analysis tools for analyzing the LC-MS/MS 

data acquired. Identification of the hierarchical importance of metabolites for the cell 

growth and proliferation of U87MG and NSP was performed in the analysis by calculating 

their Variable Importance in Projection (VIP) scores using Partial Least Square 

Discriminant Analysis (PLS-DA). This VIP score is often used to calculate the importance 

of individual metabolite features in spectra (Farrés et al. 2015).  

The extracellular samples from U87MG and NSP cells were analyzed using PLS-DA and 

their VIP scores were calculated using MetaboAnalyst, a web-based statistical tool 

(MetaboAnalyst - statistical, functional and integrative analysis of metabolomics data) (Xia 

et al. 2009; Chong et al. 2018; Xia et al. 2015; Xia & David S Wishart 2011; Xia et al. 

2012; Xia & David S. Wishart 2011; Xia & Wishart 2016). These results support the initial 

hypothesis of Chapter 2, that NSP prefers glutamine metabolism over glycolysis. 

Glutamine ranks highest during growth and proliferation of NSP cells while U87MG 

shows lactate (Figure 6.9). This signifies the importance of glutamine in the temozolomide 

resistant cells. 

In contrast, U87MG cells identified lactate as an important variable potentially due to the 

potential coupling of Warburg effect and Cori cycle that allows maximizing ATP yields in 

the absence of Oxidative phosphorylation.  

PLS-DA analysis also identified differences in the profiles of U87MG, NSP, and NDx 

(differentiated from NSP) cells. Pareto scaling (mean-centered and divided by the square 

root of the standard deviation of each variable) was used to normalize the data points 

before the PLS-DA analysis. This analysis clearly separated U87MG and NSP as separate 

clusters and NDx forming the intermediate profile. From this analysis, the metabolic state 

of NDx cells that are differentiated from NSP has been delineated to be partially between 
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U87MG and NSP cells (Figure 6.10). The same profile was reflected in the metabolite 

profile analysis in Chapter 2. 

 

 
Figure 6.9: VIP score for metabolites profiled using LC-MS/MS analysis for U87MG 

and NSP in the absence of temozolomide 

Differential glycolysis rate is reflected in the ratio between lactate and pyruvate (Figure 

6.11A) calculated from the exo-metabolite profile using LC-MS/MS. The ratio of succinate 

and alpha-ketoglutarate (AKG) in the quantification profiles in extracellular samples 

A B 

C 
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(Figure 6.11B) highlights a major role in regulating the DNA methylation. This ratio 

regulates the TETs and KDMs in DNA demethylation. NSP cells show a higher ratio and 

hence the DNA demethylation could potentially be higher in NSP than U87MG cells. This 

could be a possible reason why the activity of temozolomide i.e. the methylation of DNA 

does not affect NSP at the IC50 value of U87MG and it requires more dosage to reach the 

IC50. Our analysis from this thesis identified for the first time, the dependency of 

temozolomide resistant cells on glutamine and glutamate for its survival and resistance via 

increased DNA demethylation and repair. 

 

 
Figure 6.10: PLS-DA component analysis scores plot. A) 2D plot B) 3D plot 

Also, ornithine concentrations across U87MG and NSP were found to be differential both 

in the presence and absence of the drug (Figure 6.12A). This profile was distinct from 

other amino acids in a way that the difference is consistent in the presence and absence of 

temozolomide. The presence of a unique deletion in the ODC gene in the exome data from 

Chapter 4, in U87MG cells alone may drive this metabolic change. Also, change in the 

glutamine concentrations (from low - 0.2mM to high – 2mM) in the media allowed the 

U87MG cells to accumulate ornithine (Figure 6.12B). This experiment thus explains the 

reason for the increase in ornithine profile in NSP because of the preferential utilization of 

glutamine as discussed in Chapter 2. 

A 

B 
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Figure 6.11: Exo-metabolite profile of lactate, pyruvate, succinate, and AKG. A) Ratio 
of lactate/ pyruvate B) Ratio of succinate/AKG. 

 

Figure 6.12. Ornithine profiles from LC-MS/MS analysis. A) Exo-metabolite profiles 
from 4 different experimental conditions (No drug, 10 µM TMZ, 100 µM TMZ and 700 
µM TMZ) at different time points (0, 24, 48, 72 and 96 hrs). B) Ornithine profile in low 
glutamine (0.2mM) and high glutamine (2mM) in U87MG cells. 

The major metabolic reprogramming is potentially due to glutaminolysis and its 

contribution to ornithine via carbamoyl phosphate (Figure 6.13). Hence, the rewired 
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metabolism is due to the preferential utilization of glutamine as reported from our analysis 

(Immanuel et al. 2018) along with the potential contributions from genotypic changes in 

the signal and regulatory networks.  

6.4. Discussion 

Resistance developed by the cells can be linked to its metabolic state in the presence of the 

drug as the cell rewires its metabolism to survive in those conditions. Also, delineating the 

inherent capability of the cell in the absence of the drug would eventually lead to the 

understanding of rewired metabolism under the influence of the drug. In this Chapter 6, 

the metabolite levels of both temozolomide sensitive and resistant cells were profiled in the 

conditions where temozolomide is either present or absent in the microenvironment to 

understand the metabolic reprogramming. Sublethal concentrations (10 µM and 100 µM 

TMZ) of the drugs and one lethal concentration (700 µM TMZ) was chosen for the 

analysis. Differential levels of metabolites were identified during survival and death in the 

presence of temozolomide. This indicates the possible selection through adaptation of 

metabolites preferred by the cell in the presence of TMZ. By combining all the inferences 

from the analysis of extracellular and intracellular metabolite levels, the possible metabolic 

state of NSP that support its growth can be delineated (Figure 6.13).  

Glutamine uptake is preferred by NSP more than glucose uptake, highlighting a major 

contribution of glutamine in the rewired metabolism as also reported in our analysis 

(Immanuel et al. 2018) and stated in Chapter 2. Glutamine gets converted glutamate via 

glutaminolysis and can accumulate alpha-ketoglutarate into the TCA cycle. Other 

important findings are the levels of ornithine from extracellular profile both in the presence 

and absence of temozolomide that differ highly across U87MG and NSP. 

Ornithine levels are very high in NSP compared to U87MG that can possibly rewire the 

urea cycle to aid in increasing the levels of aspartate and fumarate towards TCA cycle 

(Figures 6.4 to 6.8 extracellular panels). These results strongly suggest a path towards TCA 

cycle and ETC for the generation of ATP in contrast to U87MG that depends on Warburg 

effect to generate ATP. Such analyses have never been performed before to understand the 

metabolism in the presence of drug to characterize resistance. Hence our study allows 

identification of a metabolic basis for drug response, susceptibility, and resistance. It 

provides key evidence for the role of metabolic pathways in the survival of resistant cells. 
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Figure 6.13: Predicted metabolic state of NSP cells. Pathway figure adapted from Geck, 
R. C., and Toker, A. Nonessential amino acid metabolism in breast cancer, Advances in 
Biological Regulation, 62, 11–17 (2016) (Geck & Toker 2016). Red arrows indicate the 
inferences from this study. 

6.5. Conclusions 
Absolute quantification of metabolites using LC-MS/MS analysis has always been a 

promising technique to identify the key metabolites that are responsible for cancer 

progression and drug resistance. In our study, we have used this technique to identify the 

potential rewired metabolism that is linked to drug resistance. Glutamine and ornithine 

were identified to be the most important differential profiles in comparison across U87MG 

and NSP in both the presence and absence of temozolomide.  

Overall profiles of all 34 metabolites were different in the 700 µM TMZ condition for NSP 

compared to all other profiles. Clustering and PCA analyses also indicated the metabolic 

phenotype differences across these two populations. From these, it is evident that the 

metabolite profiles dictate the cell state and can be used to identify causal metabolites. 

Further, a metabolite supplementation/depletion strategy could be developed to address and 

inhibit the uncontrolled growth of temozolomide resistant cells. 

*************** 
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Chapter 7 

An Integrative Paradigm for 
Temozolomide Resistance:  

A Systems Approach 
 

 
"The significant problems we have cannot be solved at the same level of thinking with 

which we created them". 

- Albert Einstein 

 

    

Figure 7.1: The experimental datasets and their key inferences from Chapters 2 to 6 that 
are used for the integrative analysis in this chapter 7. 

 

• Growth rate: U87MG: 0.021 hr-1 

and NSP: 0.0149 hr-1 Growth 

• IC50 for U87MG: 745 µM and 
NSP: 1036 µM Dose Response 

• Differential profile of AKT1, 
TP53, PTEN, EGFR and MET  

mRNA 
Abundances 

• A total of 540 (NSP) and 511 
(U87MG) metabolic genes 
mutated 

Exome variants 

• Neurospheres prefer glutamine; 
sensitive to Rotenone drug. 

Nutrient 
preferences 

• Glucose, glutamine, serine and 
tryptophan are growth limiting. 

Metabolite 
profiling 
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he so-called “War on Cancer” approaches the half-century mark and a new paradigm 

to guide cancer treatment may be needed for the 21st century. Current treatments for 

cancer include surgery, radiotherapy, cytotoxic chemotherapy, hormonal therapy, 

immunotherapy, and targeted therapies, however; the cure for cancer is still at bay due to 

acquired resistance and metastasis. For new paradigms based on reductionist and systems 

biology approaches established in the previous century, in vitro, in vivo, clinical models 

need to be established. The prior chapters of the thesis discussed multiple molecular 

approaches to probe drug resistant and susceptible glioblastoma cells. Data integration to 

understand the combinatorial effect and crosstalk among molecular hierarchies (as 

discussed in this chapter) would help develop strategies against resistant cells in the future. 

The results from the reductionist approaches applied and discussed in chapters 2 to 6 were 

unified to develop context-specific inferences. The outcome of this analysis is the 

development of an integrative paradigm that helps in understanding drug resistance to aid 

in systems-level characterization. In the next few sections, inferences from piece-wise 

molecular data integration will be discussed to answer some open questions. 

7.1. How does the expression of drug transporters impacts growth and susceptibility 

response to temozolomide? 

The gene expression of ATP-binding cassette (ABC) transporters delineated using real-

time PCR in Chapter 3. These transporters constitute an important superfamily of integral 

membrane proteins that involves the transport of drugs (Higgins 2001; Rees et al. 2009; 

Glavinas et al. 2008; Vasiliou et al. 2009; Chang 2003). The mRNA abundances could 

eventually contribute to drug efflux thereby contributing to drug resistance. Differential 

transcript levels were observed for all the 7 sub-family ABC transporters. ABCC5 showed 

a maximum of 10 fold variation in transcript levels. Network analysis predicted that 

ABCC5 is linked to four drugs (6-mercaptopurine, methotrexate, 6-thioguanine, and 5-

fluorouracil).  

These drugs tested on the BIOLOG panel (Chapter 5) showed differential efficacy on 

U87MG and NSP cell viability. Also, through exome analysis (Chapter 4) two novel 

missense mutations in ABCC5 were identified only in U87MG that could potentially be 

causal for lowered gene expression. Most transporters belonging to the ABCC sub-family 

were highly differential in expression. ABCG2 also linked to the transport of 12 drugs 

(represented on the BIOLOG panel) had increased gene expression in NSP cells though 

there was no genomic variability (Figure 7.2). 17 ABC transporter genes had increased 

T 
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gene expression in NSP cells that could account for the drug response in NSP cells. The 

same transporters were also linked to metabolite and small molecule transport as elucidated 

in the network analysis (Figure 7.2) from PathwayStudio™ tool.  

 

Figure 7.2: ABCG transporter family and its linked transport of molecules. Pathway 

StudioTM driven elucidation of activity of ABCG transporters. 

By complimenting drug efflux with the transport of specific metabolites, these ABC 

transporters could potentially modulate the microenvironment that would shape growth and 

proliferation of the cells. 

7.2. How does modulating CAN gene expression impacts the response to alkylating 

drug TMZ? 

CAN genes that include AKT, IDH1, IDH2, STAT3, MGMT, and PTEN showed 

differential mRNA abundances in the qPCR analyses (Chapter 3). These genes contribute 

to the control of nutrient uptake, metabolic rewiring and epigenetic control of other genes. 

Higher mRNA abundances of cytokine STAT3 in NSP potentially turn on the MYC 

transcriptional program and induces preferential consumption of glutamine as shown in the 

LC-MS/MS data  (Chapter 2/Chapter 6). The simultaneous negative regulation of ACL by 

AKT1 as shown in Chapter 3, potentially lowers the acetyl CoA pool and hence the acetate 

available for histone acetylation. A reduced aerobic glycolytic flux reflective of higher 

NAD levels potentially control SIRTUIN family transcriptional repressors and silence 
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chromatin via decreasing histone acetylation. This partially explains differential tryptophan 

metabolism (growth limiting for U87MG in Chapter 2) and suggests a role for picolinate 

carboxylase in the balance between NAD derived nucleotide synthesis and acetyl-CoA 

driven acetylation. Higher levels of AKG (TCA pool) also indicate epigenetic connections 

to the Jumonji family of histone de-methylases that could prevent methylation of histones 

(Figure 7.3).  

 

Figure 7.3: Possible resistance mechanism of NSP cells derived from the inferences on 
LC-MS/MS and mRNA abundances datasets. 

This may also explain the varied dose-response relations and increased IC50 for TMZ. The 

dependency on glucose and pyruvate; and not glutamine for growth/respiration also 

suggests normal levels of methylation in U87MG. Similar MGMT mRNA abundances 

suggest functional DNA repair in the absence of TMZ. Adaptive TMZ resistant GBM cells 

have been reported to show activation of JNK, up-regulation of metabolism related to 

citrate, and an increase in histone demethylase KDM5A gene expression (Banelli et al. 

2015). In line with this hypothesis (Figure 7.3), validated through metabolite profiling, 

NSP exhibited up to 2-fold resistance (indicated by higher IC50, Emax and AUC values) 
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during the studied chemotherapeutic response to TMZ in Chapter 2. 

7.3. How do genomic alterations contribute to temozolomide resistance?   

All genes that have alterations only in one cell type or have unique mutations from exome 

data have been classified as metabolic, signaling genes, regulatory genes and epigenetics 

related genes. The genes with homozygous and nonsynonymous mutations are known to 

affect protein function (85% confidence). Such unique changes (Chapter 4) in the genome 

potentially shape the reprogramming of metabolism (Chapter 2/6) in temozolomide 

resistant NSP cells. The number of variants identified in exome characterization for these 

key genes is listed in Table 7.1. These genes have an important role in shaping the 

metabolism as highlighted in Figure 7.8. 

Table 7.1. Exome variants of genes that control metabolism 

Gene 
Symbol Gene Description 

No. of variants 
U87MG NSP 

HIF1A Hypoxia-inducible factor 1, alpha subunit 1 1 

PTENP1 Phosphatase and tensin homolog 2 2 2 

TP53 Tumor protein p53 isoform a 1 1 

MTOR FK506 binding protein 12-rapamycin associated 3 3 

PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 2 1 

TSC1 Tuberous sclerosis 1 protein isoform 1 1 0 

TSC2 Tuberous sclerosis 2 isoform 1 2 2 

GPX1 Glutathione peroxidase 1 isoform 1 0 1 

APC Adenomatous polyposis coli 7 7 

OAZ1 Ornithine decarboxylase antizyme 1 1 0 

ODC1 Ornithine decarboxylase 1 1 0 

AMY2A Pancreatic amylase alpha 2A precursor 1 0 

SLC38A3 Solute carrier family 38, member 3 0 1 

SLC38A4 Solute carrier family 38, member 4 2 2 

SLC1A5 Solute carrier family 1 member 5 isoform 1 0 1 

GCLM Glutamate-cysteine ligase regulatory protein 0 1 

GGT2 Gamma-glutamyltransferase 2 1 2 

ATP4A Hydrogen/potassium-exchanging atpase 4A 1 1 

CYC1 Cytochrome c-1 1 2 

PLCD3 Phospholipase C delta 3 1 2 

SYNJ1 Synaptojanin 1 isoform a 5 7 

ME1 Cytosolic malic enzyme 1 0 1 

HMBS Hydroxymethylbilane synthase isoform 1 0 1 
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7.4. Combinatorial role of CAN genes, ABC transporters, related exome and 

metabolism on temozolomide resistance 

Since TMZ is a DNA methylating drug, the potential effects of regulating metabolism on 

epigenetics are critical in drug action and cell susceptibility. From the integrated analyses 

discussed in the previous sections, it is obvious that the emergent properties of these 

resistant cells are not only from their differential gene expression of drug transporters but a 

combined effect from CAN genes that drove metabolic reprogramming (Figure 7.4).  

Together, by interlinking these connections, one can identify the specific metabolic state of 

the resistant cells that can be targeted by the novel data-driven development of therapeutic 

regimens.  

 

Figure 7.4: An Integrative paradigm for Temozolomide resistance. Contributions in 
part by metabolism, mRNA abundances of ABC transporters and CAN genes to TMZ 
resistance in NSP are depicted. Representation of (A) the localization of ABC transporters 
in the cell (B) network analysis of 23 CAN genes using Pathway StudioTM and (C) 
potential metabolic rewiring indicated by red (NSP) and blue (U87MG) arrows. 
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Our study thus highlights the need for a new paradigm for research on drug resistance 

focusing on the global picture of the cell at the systems level. 

7.5. Predictive constraints-based metabolic modeling of U87MG and NSP cells 

Constraints-based approaches enable one to integrate multiple data-types (Figure 7.5A) in 

the context of a model to help predict emergent properties. These models have been 

reported to help understand cancer metabolism and predict phenotypes that are specific to 

the constraints. These models are also able to elucidate differential pathway wiring based 

on constraints. Metabolism is not just a hallmark of cancer but can cross-talk with most of 

the other hallmarks (Figure 7.5B).  

 

Figure 7.5: Constraints-based metabolic models (A) and their role in delineating 
cancer metabolism (B). Adapted from N. E. Lewis, A. M. Abdel-Haleem, The evolution 
of genome-scale models of cancer metabolism. Front. Physiol. 4, 237 (2013) (Lewis & 
Abdel-Haleem 2013). 

In this approach, we have integrated all the experimental data discussed so far into a core 

metabolic model to develop in silico representations of U87MG and NSP.  A previously 

published core model of human metabolism (Figure 7.6) consisting of 380 reactions 

(Zielinski et al. 2017) was contextualized using CORE data obtained in Chapter 2.  This 

core model includes reactions from all the central metabolic pathways including glycolysis, 

gluconeogenesis, pentose phosphate pathway, TCA cycle etc. The cell-specific models 

(Figure 7.6) were defined using experimental constraints from growth, uptake rates of 

different metabolites (LC-MS/MS data) and genomic variants from Exome data mentioned 
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in the Chapters 2 to 6 in this thesis. The prediction accuracy for growth rates of the in 

silico cells of u87MG and NSP was 94% for U87MG and 92% for NSP (Figure 7.7A). The 

oxygen uptake rate was fixed using legacy data for a grade III glioblastoma cell line, U251 

(Zielinski et al. 2017). 

 

Figure 7.6: Generation of constraints-based core metabolic model of U87MG and 
NSP cells. A) Base model reported. Figure adapted from Zielinski, D. C. et al. Systems 
biology analysis of drivers underlying hallmarks of cancer cell metabolism, Scientific 
Reports 7, 41241 (2017). B) Model structure C) Constraints used from in-house 
experimental datasets. 
 

 

Figure 7.7: Core model predictions. A) Biomass B) Flux variability analysis.  
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Table 7.2. Differential flux distribution across U87MG and NSP in Flux variability 
analysis. 

 
U87MG NSP 

Reaction Name Reaction Minimum Maximum Minimum Maximum 
ornithine carbamoyltransferase, 
irreversible 

OCBTm -4.4E-16 1.398211 4.42E-17 0.74598 

pyrroline-5-carboxylate reductase (m) P5CRm -5.9E-05 0.001356 0.00261 0.003223 
L-Tryptophan exchange EX_trp_L(e) -0.03063 -0.02659 -0.00121 -0.00121 
3-hydroxyanthranilate 3,4-
dioxygenase 

3HAO 0.024801 0.028847 0 0 

aminomuconate-semialdehyde 
dehydrogenase 

AM6SAD 0.024801 0.028847 0 0 

2-aminomuconate reductase AMCOXO 0.024801 0.028847 0 0 
formate dehydrogenase FDH 0.027221 0.031267 0.001646 0.001646 
N-Formyl-L-kynurenine 
amidohydrolase 

FKYNH 0.024801 0.028847 0 0 

3-Hydroxy-L-kynurenine hydrolase HKYNH 0.024801 0.028847 0 0 
kynurenine 3-monooxygenase KYN3OX 0.024801 0.028847 0 0 
picolinic acid decarboxylase PCLAD 0.024801 0.028847 0 0 
L-Tryptophan:oxygen 2,3-
oxidoreductase (decyclizing) 

TRPO2 0.024801 0.028847 0 0 

L-tryptophan transport in via sodium 
symport 

TRPt4 0.026587 0.030633 0.001214 0.001214 

argininosuccinate lyase ARGSL 1.74E-14 1.398211 -1.5E-15 0.74598 
L-glutamine transport via 
electroneutral transporter 

GLNtm 0 1.280819 -5.6E-16 0.72901 

3-Methyl-2-oxopentanoate 
mitochondrial transport via proton 
symport 

3MOPt2im 0 -4.6E-15 0.00422 0.004585 

acetyl-CoA C-acetyltransferase, 
mitochondrial 

ACACT10m 0 -4.6E-15 0.00422 0.004585 

acyl-CoA dehydrogenase (2-
methylbutanoyl-CoA), mitochondrial 

ACOAD10m 0 -4.6E-15 0.00422 0.004585 

2-Methylprop-2-enoyl-CoA (2-
Methylbut-2-enoyl-CoA), 
mitochondrial 

ECOAH9m 0 -4.6E-15 0.00422 0.004585 

3-hydroxyacyl-CoA dehydrogenase 
(2-Methylacetoacetyl-CoA), 
mitochondrial 

HACD9m 0 -4.6E-15 0.00422 0.004585 

L-isoleucine transport in via sodium 
symport 

ILEt4 0.014332 0.014332 0.013967 0.014332 

isoleucine transaminase ILETA 0 -4.6E-15 0.00422 0.004585 
2-oxoisovalerate dehydrogenase 
(acylating; 3-methyl-2-
oxopentanoate), mitochondrial 

OIVD3m 3.47E-18 -4.6E-15 0.00422 0.004585 

Propionyl-CoA carboxylase, 
mitochondrial 

PPCOACm 0 -4.6E-15 0.00422 0.004585 

L-Isoleucine exchange EX_ile_L(e) -0.01433 -0.01433 -0.01433 -0.01397 
methylmalonyl-CoA 
epimerase/racemase 

MMEm 4.57E-15 -5.6E-17 -0.00458 -0.00422 

Reversible reaction 

Only in the positive direction (forward) 

Only in the negative direction (backward) 

Rigid Reaction (Flux is fixed, does not vary) 
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NSP unique genes mutations (Homozygous) correlated to the model reactions based on GPR 

In silico model details 
Genes with 
alterations 

(Homozygous) 

Genes with 
alterations 

(Heterozygous) 

Unique genes 
(Homozygous) 

Unique Mutations in 
common genes 
(Homozygous) 

Gene Rxn ID RxnName Rxn Subsystem U87MG NSP U87MG NSP U87MG NSP U87MG NSP 

CYC1 CYOR_u10m CYOR u10m 
Oxidative 

Phosphorylation 
N Y Y Y N Y N N 

CYC1 CYOOm2 CYOOm2 
Oxidative 

phosphorylation 
N Y Y Y N Y N N 

ME1 ME2 malic enzyme (NADP) 
Pyruvate 

Metabolism 
N Y N N N Y N N 

NSDHL C3STDH1Pr 
C-3 sterol 
dehydrogenase (4-
methylzymosterol) 

Cholesterol 
Metabolism 

N Y N N N Y N N 

NSDHL C4STMO2Pr 
C-4 methyl sterol 
oxidase 

Cholesterol 
Metabolism 

N Y N N N Y N N 

SLC38A4 PHEt4 
L-phenylalanine 
transport in via sodium 
symport 

Transport, 
Extracellular 

N Y Y Y N Y N N 

SLC38A4 SERt4 
L-serine via sodium 
symport 

Transport, 
Extracellular 

N Y Y Y N Y N N 

SLC38A4 GLYt4 
glycine transport via 
sodium symport 

Transport, 
Extracellular 

N Y Y Y N Y N N 

SLC38A4 GLNt4 
L-glutamine reversible 
transport via sodium 
symport 

Transport, 
Extracellular 

N Y Y Y N Y N N 

SLC38A4 LEUt4 
L-leucine transport in 
via sodium symport 

Transport, 
Extracellular 

N Y Y Y N Y N N 

SLC38A4 PROt4 
Na+/Proline-L 
symporter 

Transport, 
Extracellular 

N Y Y Y N Y N N 

SLC38A4 ASNt4 
L-asparagine transport 
in via sodium symport 

Transport, 
Extracellular 

N Y Y Y N Y N N 

 

Table 7.3. Details of the exome variants used as constraints. 
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# Reaction (Rxn) IDs, Reaction (Rxn) names and subsystems are used as such from the model. Gene-protein relationship from the model is used 

to connect the genes to the reaction in the network. Exome variants from the Chapter 4 have been listed that are unique for each cell type. Y = 

Yes - Variants identified using Exome sequencing; N = No – No variants identified using Exome sequencing. 

U87MG unique genes mutations (Homozygous) correlated to the model reactions based on GPR 

In silico model details 
Genes with 
alterations 

(Homozygous) 

Genes with 
alterations 

(Heterozygous) 

Unique genes 
(Homozygous) 

Unique Mutations in 
common genes 
(Homozygous) 

Gene Rxn ID RxnName Rxn Subsystem U87MG NSP U87MG NSP U87MG NSP U87MG NSP 

AMT GCCam 
glycine-cleavage 
complex (lipoylprotein), 
mitochondrial 

Glycine, Serine, 
and Threonine 

Metabolism 
Y N N N Y N N N 

AMT GCCbim 

glycine-cleavage 
complex (lipoylprotein) 
irreversible, 
mitochondrial 

Glycine, Serine, 
and Threonine 

Metabolism 
Y N N N Y N N N 

AMT GCCcm 
glycine-cleavage 
complex (lipoylprotein), 
mitochondrial 

Glycine, Serine, 
and Threonine 

Metabolism 
Y N N N Y N N N 
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Flux variability analysis was performed on the constraints based representation of in silico 

U87MG and NSP using COBRA (Constraints based reconstruction and analysis) toolbox 

in MATLAB platform. This analysis identifies the minimum and maximum ranges of flux 

in each reaction in the network (Table 7.2 and Figure 7.7 B) and also identifies reactions 

that can hold unique flux. Differential flux distribution profiles for U87MG and NSP in 

reactions related to the valine, leucine, and isoleucine subsystem (Figure 7.7 B) was 

delineated. Also, flux distribution was varied in the urea cycle. 

Especially, the ornithine carbamoyl transferase reaction changes from irreversible to 

reversible in case of U87MG. This major change was validated from the Exome data 

wherein the ODC gene has a unique deletion profile in U87MG (Chapter 4). This FVA 

analysis predicts the genotypic variations from the phenotypic constraints provided in the 

model. Further, homozygous non-synonymous variants from Exome data have been used 

as constraints (Table 7.3), for the reactions involving genes with mutations, to make the 

model more cell-specific. This was performed to validate the genotype to phenotype 

relationship that can be predicted from the constraints based models. The complete details 

of the model and constraints are provided in Appendix B.  

7.6. Discussion 
The findings and inferences from this thesis identified the potential rewired central 

metabolism (Figure 7.8) and its contributors from signaling network that can form the 

potential survival strategy/adaptability mechanism of resistant cells using data-driven 

approaches and predictive modeling. The major metabolic reprogramming (highlighted in 

Figure 7.8) can be based on the glutaminolysis that takes place from glutamine and its 

contribution to ornithine via carbamoyl phosphate (Figure 7.3). Hence, the proposed 

rewired metabolism is highly due to the preferential utilization of glutamine (Chapter 2) 

and as reported in our analysis (Immanuel et al. 2018). This is also regulated by the 

potential contributions from genotypic changes in the signal and regulatory networks that 

includes mTOR, PTEN and other DNA methylating genes (highlighted in red boxes in 

Figure 7.8).  
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Figure 7.8: Metabolic reprogramming depicted based on the inferences from all the datasets in this thesis. 
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7.7. Conclusions 

High throughput data acquisition is revolutionizing research in almost all fields including 

cancer. The amount of data acquired in research is tremendously increasing. Hence it is 

very important to skill the level of expertise in handling big data sets, especially when 

working with human inferences. Though the data acquisition process by itself needs highly 

developed platforms, one of the crucial steps in any analysis is how to drive knowledge and 

inferences from the acquired data. Systems biology is one such platform where it offers 

many advantages in handling high throughput datasets of any data types. Herein, 

integrative systems approaches have been deployed to connect all the experimental data 

derived in this thesis from Chapter 2 to 6, starting from growth kinetics, differential dose 

response, metabolite profiling, exome sequencing to phenotypic characterization. Systems 

biology approaches in this chapter included pathway analysis using Pathway StudioTM, 

metabolite quantification profiles and mathematical models to analyze the flux 

distributions in each reaction in the network using constraints based models. All these 

“state of the art” approaches led to the identification and characterization of 

temozolomide resistant Neurospheres from U87MG, Glioblastoma cell line. This study 

also delineated the metabolic reprogramming in these resistant cells that could potentially 

contribute to the survival strategies of these resistant cells as differential glutamine 

preferences, changes in the exome variants in master controller genes and DNA repair 

genes. Such analyses broaden the scope of this thesis to a scalable pipeline that can be 

applied to other cancer types and can be translated to clinical findings, thus bridging the 

gap between data acquisition and deriving inferences. Such findings would also definitely 

ramify novel insights to the problem of drug resistance highlighting that it is just not the 

drug efflux or the drug inefficiency, but also the capability of the cell to adapt and resist 

such environments that makes the condition more complex to combat cancer resistance. 

Thus methods for data integration are critical to unify inferences that can drive hypothesis 

generation and discovery. 

 

*************** 
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“Scientists often have a naïve faith that if only they could discover enough facts about a 
problem, these facts would somehow arrange themselves in a compelling and true 
solution”. 

-Theodosius Dobzhansky 

“History repeats, but science reverberates.” 
- Siddhartha Mukherjee, The Emperor of All Maladies 

 

 

Figure 8.1: Integrative paradigm developed for cancer drug resistance from this study and 
its future scope on translational research. 
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he fundamental question in biology is to understand what defines the cells, the 

individuals and the populations as different from one another. The answer is that 

these are shaped by the genotype-phenotype relationship. The work described in 

this dissertation is a “systems biology approach” to delineate the molecular basis of 

differences between drug resistant and susceptible cells of glioblastoma.  

My doctoral research presents not only the elucidation of differential components of 

molecular hierarchies in glioblastoma cells that are susceptible and resistant to the 

chemotherapeutic drug TMZ but also an integrated analysis to unravel some of the 

mechanistic aspects of drug resistance. In this context, this thesis begins with the discovery 

and isolation of morphologically different cells in a glioblastoma cell line that were 

separated and banked for further characterization. The genotype (exome) was delineated 

and the unique variations in each cell type identified. Transcript levels were ascertained for 

selected CAN genes and ABC transporters generally implicated in resistance in cancer. 

Metabolism orchestrates cell function/growth and hence the intracellular metabolite level 

was dynamically fingerprinted. The contributing micro-environments were also quantitated 

in an attempt to understand the choices the cell makes to remain proliferative in the 

presence of a drug. Since biological systems are complex and their function is more than 

the sum of their parts, all the data was integrated to analyze the emergent properties 

resultant from the interaction. Reprogrammed metabolism as a consequence of varied 

genotypes was identified and the connections to the methylating action of the drug 

temozolomide were elucidated.  

Thus, in this thesis, I have advanced the current understanding of temozolomide resistance 

in a model glioblastoma cell line by developing an integrated paradigm that addresses 

many levels of molecular hierarchy in the cell. To our knowledge, this high-throughput 

poly-OMIC data integration has never before been performed to describe glioblastoma 

heterogeneity and to address the role of reprogrammed metabolism in TMZ resistance. 

8.1. Recapitulation 

A broad recap of some of the main concepts described and realized in this thesis is 

discussed here. 

• Temozolomide (TMZ) resistant Neurospheroids (NSP) were identified in the 

U87MG human glioblastoma cell line. 

• NSP shows varied dose-response, 40% higher IC50 and 30% lower growth rate. 

T 
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• Altered Glucose and Glutamine uptake in U87MG and NSP shaped metabolic 

dynamics; Glutamine is preferentially utilized by NSP. 

• Differential mRNA levels of CAN genes & ABC transporters drive respiration 

and growth. 

• Differential expression of ABC transporters not only affects the drug uptake but 

also potentially contributes to varied substrate uptake and reprogrammed 

metabolism. 

• 44 genes with metabolic ontology are mutated in NSP alone, while 15 are 

mutated in U87MG. 

• Many signaling, regulatory genes that control metabolism are mutated including 

mTORC1, PTEN, and cMyc. 

• Metabolism is programmed in the presence of temozolomide by oncogenic and 

micro-environmental signals. 

• AKG/Succinate ratios determine the methylating level of temozolomide. 

• Ornithine, pyrimidine metabolism, and urea cycle play a role in the survival of 

NSP even in the presence of the drug. 

• Rotenone and berberine, complex I inhibitors can inhibit the growth of NSP. 

• Constraints-based metabolic modeling using a core model of human metabolism 

predicted varied flux wiring patterns, pathway utilization, and NAD recycling. 

• Integrative paradigm identifies potential metabolic drivers for TMZ resistance.  

8.2. Unknown frontiers of chemotherapeutic resistance 

Some of the more global questions that are addressed in the thesis and yet need the final 

validations and answers are   

1) How do metabolic reprogramming and epigenetic alterations shape the cancer 

cell response to drugs? 

2) How do genetic variations and gene expression impact reprogrammed 

metabolism and resistance to alkylating drugs? 

3) Can one identify adjuvants in metabolism to supplement chemotherapy and 

tailor micro-environments for personalized medicine? 

The answers to these questions inadvertently lie in our ability to make measurements at the 

molecular level for heterogeneous cells in individuals, integrated models for further 

understanding and translation into the diagnosis for tailoring microenvironments. The 
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precision of tailoring specific microenvironments near the tumor cells would 

predominantly dictate the future of personalized medicine and individualized therapy in 

cancer. 

8.3. Future scope and directions 

The future scope of this study lies in its extension or translation to clinical samples from 

patients. The pipeline developed to study drug resistance in cancer is completely scalable 

to clinical data from patients thus can potentially transform research from bench to bedside 

(Figure 8.1). Moreover, intra-tumor heterogeneity is a complex problem that needs to be 

addressed through continuous monitoring and changing treatment strategies. The use of 

data-driven models and constraints based models hold the potential to design targeted and 

specific therapy for the patients either with primary tumors or relapse.  

8.4. Single cell analysis 

Rapid and inexpensive single-cell sequencing is driving new visualizations of cancer 

instability and evolution. Thus single cell analysis is critical in understanding intra-tumor 

heterogeneity. The study of clonal evolution can allow the tape of each cancer cell’s life to 

be deciphered, revealing the temporal order of genomic events and shedding light on 

constraints and contingencies to cancer evolutionary trajectories. All the methods explored 

in this thesis can be extended to single cell analysis and the heterogeneity of drug response 

be understood. Some of the advances in single cell analysis are seen in the preliminary 

data gathered at Manchester Institute of Biotechnology, UK using sphere fluidics.  

The droplets were generated using a droplet formation technique (Figure 8.2) and validated 

using fluorescence imaging (Figure 8.3).  

 

Figure 8.2: Encapsulation of samples with cells inside droplets. 1) Droplet creation- 
images were taken under a microscope. 2) Droplets are of ~300 picoM. 
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U87MG cells stained with Hoechst 33342 dye were encapsulated in oil by optimizing the 

flow rate that defines the size of the droplet that is formed. These droplets thus formed can 

be separated to get single cell encapsulation to further grow in the defined conditions. 

  
Figure 8.3: Fluorescence microscope image of droplets created for U87MG cells 
stained with Hoechst 33342 dye. 1) Bright field image of the droplets 2) Blue 
fluorescence image. 

The stability of the droplets to undergo qPCR assays has been tested by incubating the 

droplets placed on a slide to test their stability at different temperatures varying from 20°C 

to 70°C (Figure 8.4).  

 
Figure 8.4: Stability of droplets under varied temperature conditions. Droplets were 
heated at different temperatures and then the image is captured under a microscope. The 
irregularity in the shape of the droplets is shown at different temperatures. 

This thesis forms the base and the proliferation of such isolated single cells would give 

way for multiple measurements including gene expression and metabolite profiles that can 

drive precision medicine and thus holds promising future ramifications. 

********************** 

 

 
“No research is ever quite complete. It is the glory of a good bit of work that it opens the 

way for something still better, and this repeatedly leads to its own eclipse” 
-  Mervin Gordon 
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Appendices 

Appendix A: (All the supplementary data generated in this doctoral research have 

been listed in the form of tables and figures). 

U87MG cell line has recently in 2016 undergone some controversies in its characteristics 

due to the continuous passaging at ATCC according to the study mentioned in the Nature 

journal (Allen et al. 2016). This states that some batches of this cell line dispatched from 

ATCC lost its originality. In our study, I have performed the cell line authentication to 

check the authenticity of the U87MG cell line used for this complete doctoral research. 

This identified that this cell line matched 100% with the ATCC STR profiles as given 

in the Table A1. 

Table A1: Cell line authentication results for U87MG. 

U87MG cell line authentication (STR Profiling) 

% 
Matc

h 
>= 

80% 

Sampl
e 

Count 
Match Atcc 

No. Name D5S
818 

D13
S317 

D7S82
0 

D16
S539 

vW
A 

TH0
1 

AM
EL 

TPO
X 

CSF
1PO 

100 15 15 HTB-14 U-87 MG 11,1
2 

8,11 8,9 12 
15,1

7 
9.3 X,Y 8 

10,1
1 

81.82 11 9 HTB-183 NCI-H661 11 11 8,10 12 17 8 X,Y 8 10 

83.33 12 10 
CRL-
5842 

NCI-H774 11 8 9,11 12 
15,1

7 
6,9.3 X 8 10 

80 15 12 
SC-

RS01314
-MCB 

Asuragen 
RU03 

11,1
2 

8,11 9,12 12 
14,1

7 
8 X,Y 8 

10,1
1 

 

 

Table A2: Growth rates in the presence and absence of temozolomide. 

Gompertz 
growth 

parameters 

Nmax 
(cell numbers) 

µMax 
(hr-1) 

R squared 

NSP U87MG NSP U87MG NSP U87MG 

No Drug 1.304*106 1.383*106 0.01473 0.02316 0.9733 0.9690 

10µM TMZ 1.009*106 7.327*105 0.01102 0.02534 0.9421 0.9816 
100µM TMZ 1.301*106 1.283*106 0.03898 -0.009934 0.6795 0.9193 

700µM TMZ 1.739*106 1.927*106 -0.006475 -0.03191 0.9449 0.9932 

 

 



140 Appendices 
 

   

Figure A1: Intracellular profiles of U87MG and NSP in no drug experiment. 
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Figure A2: Intracellular profiles of U87MG and NSP in the presence of 10 µM TMZ. 
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Figure A3: Intracellular profiles of U87MG and NSP in the presence of 100 µM TMZ. 
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Figure A4: Intracellular profiles of U87MG and NSP in the presence of 700 µM TMZ. 
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Figure A5: Growth profiles from PMM-1 plate 
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Figure A6: Growth profiles from PMM-2 plate 



146 Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A7: Growth profiles from PMM-3 plate 
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Figure A8: Growth profiles from PMM-4 plate  



148 Appendices 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A9: Respiration profiles from PMM-1 plate 
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Figure A10: Respiration profiles from PMM-2 plate 
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Figure A11: Respiration profiles from PMM-3 plate 
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Figure A12: Respiration profiles from PMM-4 plate 
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Figure A13: Growth profiles from PMM-5 plate 
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Figure A14: Growth profiles from PMM-6 to 8 plate 
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Figure A15: Growth profiles from PMM-11 to 14 plate



 

Figure A16: Time dependent effect of Temozolomide on Neurospheres

Appendix B: (Additional soft data)

• Some of the high-throughput 

have been listed in the 

end of the hard copy of this thesis and also with the soft copy of the thesis. 

1) Data integration 1:

the drugs and their U87MG and NSP prof

2) Data integration 2:

the genes and their exome variants with functional annotations.

3) Exome characterization:

identified using 

4) LC-MS/MS data:

5) PathwayStudio analysis:

associated with each relation in the network.

6) Comparison of Exome data

• Complete data obtained via exome sequen

submitted in the open source database

and can be found at https://www.ncbi.nlm.nih.gov/sra

the author and can be shared on request for 
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(Additional soft data) 

throughput supplementary data generated in this doctoral

 form of excel sheets and provided in the CD

end of the hard copy of this thesis and also with the soft copy of the thesis. 

Data integration 1: mRNA abundances of ABC transporters were linked to 

the drugs and their U87MG and NSP profiles from BIOLOG panels.

Data integration 2: All the reactions from in silico model have been linked to 

the genes and their exome variants with functional annotations.

Exome characterization: The functional annotation of all the variants 

identified using exome sequencing in this study. 

MS/MS data: All the metabolic profiles from this study are provided.

PathwayStudio analysis: Output datasheet with number of references 

associated with each relation in the network. 

Exome data (this study) with patient data from literature

Complete data obtained via exome sequencing in this doctoral research has been 

submitted in the open source database from NCBI, Sequence Read Archive (SRA)

https://www.ncbi.nlm.nih.gov/sra. The details are available with 

the author and can be shared on request for reference. 

********* 
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supplementary data generated in this doctoral research 

provided in the CD attached at the 

end of the hard copy of this thesis and also with the soft copy of the thesis.  

mRNA abundances of ABC transporters were linked to 

iles from BIOLOG panels. 

model have been linked to 

the genes and their exome variants with functional annotations. 

The functional annotation of all the variants 

All the metabolic profiles from this study are provided. 

Output datasheet with number of references 

from literature. 

cing in this doctoral research has been 

from NCBI, Sequence Read Archive (SRA) 

are available with 
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Appendix C: (Contributions to other projects) 

Generation of tryptophan over producing knockout strains of 

Escherichia coli 

C.1. Background of the study 

Moving across cell hierarchies from genes to rewiring metabolic networks to host-cells 

expressing desired phenotypes can be investigated using metabolic engineering and 

genome editing. Such approach promises the development of strains that can be stable 

compared to the plasmid transformants. Tryptophan, one of the aromatic amino acids, is 

being attempted to be manufactured from bacterial strains in industry (Ikeda 2006; Zhao 

et al. 2011; Burgard et al. 2003). The synthesis of aromatic amino acids is challenging 

owing to the poor efficiency of strains. L- Tryptophan, in particular, is one of the difficult 

attempts by industrial processes because of its high production costs (Ikeda 2006; Qiang 

et al. 2012).  

Here-in, tryptophan pathway has been genome engineered in E. coli K12 host to improve 

the yields of tryptophan. Three genes were selected – pgi, pheA and trpR that are crucial 

and affect the levels of tryptophan through precursor accumulation, reduction in flux 

through phenylalanine synthesis and feedback inhibition (Figure 1) respectively (Patnaik 

& Liao 1994; Chhvez et al. 2005; Ahn et al. 2011; Zhao et al. 2011; Bongaerts et al. 

2001) were selected. These genes were deleted (knockout) in the base strain using 

homologous recombination strategies. The deletion strains of E. coli K12 (∆pgi, ∆pheA 

and ∆trpR) thus generated in this study increased the precursor tryptophan levels two-

fold.  

This study is further followed up for the biosynthesis violacein, an industrially important 

compound with antioxidant activities with great potential as a drug exhibiting 

antibacterial, antitumoral, antiviral, trypanocidal and antiprotozoan properties (Füller et 

al. 2016; Durán et al. 2016; Choi et al. 2015; Queiroz et al. 2012). The knockout strains 

increased the levels of tryptophan as estimated in MALDI-MS/MS analysis. Since 

tryptophan is the precursor for violacein (Sánchez et al. 2006; Fang et al. 2015), the use 

of these knockout strains increased the violacein biosynthesis by applying synthetic and 

systems biology approaches in addition to the genome editing.  
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Figure C1: Tryptophan operon regulation in E. coli. A) Feedback inhibition B) No 
inhibition 

C.2. Methods 

C.2.1. E. coli strains and culture conditions 

Escherichia coli K12 (E. coli K12) strain was used in this study for generation of 

knockout strains and E. coli DH10β as control for growth experiments. Luria-Bertani 

(LB) medium (HiMedia Laboratories) was used for all growth and transformation 

experiments. Luria–Bertani agar (LBA) was used for colony purification. Kanamycin at a 

final concentration of 15µg/ml was used for the selection of transformants in the 

knockout protocol. All experiments were performed in triplicates unless mentioned 

otherwise. 

C.2.2. Construction of E. coli knockout strains 

The knockout strains were created using the standard method of homologous 

recombination with the λ Red recombinase system (Datsenko & Wanner 2000). The 

Quick and Easy E. coli Gene Deletion Kit (Gene Bridges) was used for the construction 

of knockout strains (∆pgi, ∆trpR and ∆pheA strains) as per manufacturer's protocol. 

Briefly, FRT-flanked resistance cassette was used for the disruption or replacement of the 

targeted gene that allowed the subsequent removal of the selection marker by an FLP-

recombinase step. The initial step of gene deletion started with the generation of a PCR 

product with FRT cassette containing the flanking sequence from the gene of interest 

(pgi, pheA and trpR) using primers listed in Table C1. Transformation of pRED-ET 

plasmid into E. coli host was performed using electroporation. After the induction of 

pRED-ET protein synthesis, the transformation of PCR product containing FRT cassette 

was done using electroporation. Homologous recombination was performed at 30°C 
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incubation. An increase of the temperature to 37°C resulted in a loss of the expression 

plasmid after recombination. pFLP706 was used for removal of the antibiotic resistance 

marker from the E. coli genome. Selection of successful transformants was done using 

the culture conditions similar to that described earlier. 

C.3. Results 

C.3.1. Confirmation using gel electrophoresis  

Generation of knockout strains was based on the homologous recombination that flips the 

targeted sequence with the known non-coding FRT sequence. The PCR product thus 

amplified by using the primers (Table C1), were analyzed (Figure C2) before and after 

deletion to check the removal of gene sequence from the specific location in the genome 

of E. coli.  

Table C1: Primers used for the generation of knockout strains 

Gene Name  Primer  Primer Sequence  

∆pgi  
Primer 1  ACTAAAACCATCACATTTTTCTGTG  
Primer 4  ACAGACAAGGGGATTTATCTGATAAAA  

∆pheA  
Primer 1  AGAATGCGAAGACGAACAAT  
Primer 4  ATTGAGTTGCTGGAGCAGG  

∆trpR  
Primer 1  ATATGCTATCGTACTCTTTAGCG  
Primer 4  TGGCGCTGAGTCCGTTTCATAAT  

C.3.2. Growth of wild-type E. coli K12 and 

knockout strains 

Metabolic pathway engineering of E. coli K12 

through gene deletions identified genes, pgi and 

pheA that potentially increase tryptophan levels. 

The pgi gene diverts flux through the pentose 

phosphate shunt, increasing precursor for aromatic 

amino acid (AA) synthesis and cofactor NADPH 

levels; and pheA gene diverts flux from the other 

competing aromatic AA phenylalanine and tyrosine 

into tryptophan synthesis. Additionally, trpR gene was knocked out to de-regulate 

feedback inhibition of tryptophan synthesis. Growth rates (Table C2) and biomass yields 

of the deletion strains ∆pgi, ∆trpR and ∆pheA (Figure C3) in E. coli on Luria-Bertani 

(LB) media were similar to the wild-type strain E. coli K12 and the control DH10β. 

Figure C2: PCR profiles of pgi KOs. 
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Table C2: Growth rates of knockout strains in LB media. 

E. coli Strain  Growth rate in 
LB (hr-1) 

DH10B  0.5412 
K12    0.5251 
K12 :∆trpR   0.4725 
K12 :∆pgi   0.4987 
K12 :∆pheA   0.4858 

  
Figure C3: Growth profiles of E. coli K12 and deletion strains on LB media. 

C.3.3. Tryptophan levels in knockout strains 

The level of intracellular tryptophan has been estimated using relative quantification in 

MALDI-MS/MS analysis. All knockout strains showed a two-fold increase in tryptophan 

(Figure C4). 

 
Figure C4: Tryptophan levels from MALDI-Analysis 
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C.3.4. Applications of generated knockout strains 

The three knockout strains ∆pgi, ∆trpR and ∆pheA are being used in our lab as base 

strains in the design for violacein producing strains. This is possible by metabolic 

engineering them further with synthetic biology to add violacein pathway that has five 

consecutive genes, vioABCDE coded bu vio operon. 

 

Figure C5: Pathway engineering for increasing tryptophan yields and adding violacein 

operon by synthetic biology, will give increased violacein yields as a product. 
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Figure C6: Two molecules of tryptophan (greenish yellow) combine to form violacein 

(Purple).  

The genome engineered strains of E. coli thus has many applications and can be used as a 

host strain for different value-added products that involves tryptophan as a precursor or 

intermediate. In other applications, ∆pgi strain has also been used as a base strains for 

value-added products like poly-lactic acid (bioplastics) where the carbon source is 

tailored for increasing the yields. 

 

************** 
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a b s t r a c t

An authenticated U87MG clonal glioblastoma cell line was investigated to identify a sub-population of
neurospheroidal (NSP) cells within the main epithelial population (U87MG). The NSP cells sorted using
Fluorescence Assisted Cell Sorting (FACS) showed varied morphology, 30% lower growth rates, 40%
higher IC50 values for temozolomide drug and could differentiate into the glial cell type (NDx). Metab-
olite profiling using HR-LCMS identified glucose, glutamine and serine in both populations and trypto-
phan only in U87MG as growth limiting substrates. Glycine, alanine, glutamate and proline were secreted
by U87MG, however proline and glycine were re-utilized in NSP. Exo-metabolite profiling and pheno-
typic microarrays identified differential metabolism of primary carbon sources glucose and derived
pyruvate for U87MG; glutamine and derived glutamate metabolism in NSP. Differential mRNA abun-
dance of AKT1, PTEN, PIK3CA controlling metabolism, drug efflux, nutrient transport and epigenetic
control MDM2 are potentially critical in shaping DNA methylation effects of temozolomide. Our study
provides a new insight into the combined effect of these factors leading to temozolomide resistance in
NSP.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Temozolomide (TMZ), anti-cancer prodrug of Temodar, is an
imidazotetrazine that has increased the prognosis of highly
aggressive Glioblastoma Multiforme (GBM) [1]. The therapeutic
index is dependent on molecular markers like O6-methylguanine
methyltransferase (MGMT) and/or lack of DNA repair in GBM [2].
Other contributors include isocitrate dehydrogenase type 1 and
type 2 (IDH1/2) mutations that metabolically reprogram the cell to
form neo-metabolite 2-hydroxyglutarate [3] and the epigenetic
status controlling cytosine-phosphate-guanine (CpG) island
methylator phenotype (G-CIMP) [4]. U87MG, a completely
sequenced [5] and commonly studied grade IV glioma cell line [6] is
wildtype for IDH1/IDH2 is sensitive to temozolomide [1]. Cell line
model systems, indispensable tools in providing preclinical bio-
logical insight, are known to harbor minority populations of

putative stem-like cells, molecularly defined by dye extrusion
phenotypes that may cause resistance to chemotherapy [7,8]. With
increased discovery of gene and protein expression signatures [4]
and detailed molecular characterization to characterize the drug
sensitivity, rigorous phenotyping of these sub-populations, in
addition to morphology and drug efflux is critical to understand
resistance.

In this study, a sub-population of neurospheroidal cells (NSP)
morphologically distinct from epithelial cells were identified in
U87MG (Grade-IV GBM cell line) and sorted using Fluorescence
Assisted Cell Sorting (FACS). To our knowledge, this is the first study
addressing the functional characterization in terms of integrating
knowledge related to drug efflux, growth/proliferation, nutrient
preferences and metabolite profiling to drug dose response estab-
lishing an integrated resistance paradigm.

2. Materials and methods

Cell culture: An authenticated U87MG cell line (HTB-14; Hu-
man Glioblastoma Multiforme from ATCC; Supplementary File 2,3)
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A B S T R A C T

Strategies towards optimal violacein biosynthesis, a potential drug molecule, need systems level coordination of
enzymatic activities of individual genes in a multigene operon vioABCDE. Constraints-based ux balance ana-fl

lysis of an extended AF1260 model ( AF1260vio) with a reconstructed violacein module predicted growth andi i

violacein yields in accurately. Shadow price (SP) analysis identi ed tryptophan metabolism andEscherichia coli fi

NADPH as limiting. Increased tryptophan levels in & A were validated using gene deletionΔpgi Δphe in silico

analysis. Phenotypic phase plane (PhPP) analysis highlighted sensitivity between tryptophan and NADPH for
violacein synthesis at molar growth yields. A synthetic VioABCDE operon (SYNO) sequence was designed to
maximize Codon Adaptive Index (CAI: 0.9) and tune translation initiation rates (TIR: 2 50 fold higher) in .– E. coli

All pSYN transformants produced higher violacein, with a maximum six-fold increase in yields. TheE. coli

rational design SYN: gave the highest violacein titers (33.8 mg/l). Such integrated approachesE. coli: pheAΔ

targeting multiple molecular hierarchies in the cell can be extended further to increase violacein yields.

1. Introduction

The grand challenge of metabolic engineering lies in the complexity
and redundancy of cellular pathways and the evolutionary drive to
maximize growth/ tness rather than a forced bioengineering objective.fi

Constraints based ux balance analysis (FBA) of metabolic models hasfl

been used to design strains that simultaneously maximize t-in silico fi

ness and the desired product ( ; ;Burgard et al., 2003 Ruppin et al., 2010
Varma and Palsson, 1993 ). These models predict intracellular reaction
fluxes and identify strategies for substrate uptake, energy and cofactor
balance. Although, these models can drive rational strain design, the
predictions of such evolutionary optimality models are more in tune
with adapted strains ( ). Metabolic engineering ofIbarra et al., 2002
value added products through synthetic biology strategies to fast for-
ward the adaptive evolution process are becoming more rampant.

When complex pathways are introduced inside the cell, limitations
including intermediate toxicity, low enzyme activity, metabolic burden
(cofactor imbalance etc.) need to be overcome for high performance.
Such bottlenecks can be addressed using pathway engineering that
exploits the synergies of synthetic biology, metabolic engineering and
systems biology ( , ;Nielsen and Keasling, 2011 2016 Stephanopoulos,
2012 Wu et al., 2016 Yadav et al., 2012; ; ). Successful metabolic

engineering for platform cell factories to produce a wide range of fuels
and chemicals necessitates identifying the sensitivity of product/pro-
cess to nutrient precursors and cofactors Such complementationa priori.

supports coupling of cellular objectives of growth and energy to desired
bioengineering objectives. Comprehensive computational strain designs
for stoichiometric growth-coupling of desired products of central me-
tabolism have been identi ed through pathway analysis (fi Klamt and
Mahadevan, 2015 Von Kamp and Klamt, 2017; ).

Violacein is a bacterial bis-indole pigment of commercial interest
having antibacterial, antitumoral, antiviral, trypanocidal and anti-
protozoan properties ( ; ;Durán and Menck, 2001 Durán et al., 2007
Ferreira et al., 2004 Queiroz et al., 2012; ). It is formed by the con-
densation of two L-tryptophan molecules controlled by the enzymes of a
complex biosynthetic pathway ( ). The impact of the double bonds,Fig. 1
conjugation and hydroxyl groups potentially attribute chromophoric
properties ( B) to nal violet colored product violacein of theFig. 1 fi

pathway ( ). Violacein has been tested to show anti-bac-Hoshino, 2011
terial (gram positive), antineoplastic and antifungal properties (Durán
et al., 2016). Other tryptophan based small molecule therapeutics like
rebeccamycin and staurosporine have been reported as important an-
titumor molecules ( ).Howard-Jones and Walsh, 2006

The violacein biosynthetic pathway is complex due to a coordinated
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