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Preface

My doctoral research discussed in this thesis focuses on understanding
"Metabolic Reprogramming in Cancer": Identification and
characterization of drug-resistant cells from final stage Glioblastoma,

the most aggressive brain tumor, using a systems approach. I have

delineated multi-OMIC datasets slarting from Growth — Dose-response

—* DNA sequence variation (Exome) — mRNA abundances (gPCR) —»
metabolite levels (LC-MS/MS) —* energy metabolism (Phenotypic microarray). A comparative
analysis across drug-sensitive and drug-resistant cancer cells cventually led to the development
of an integrative combinatorial paradigm for addressing cancer drug resistance. This work holds
promising research findings that can become the basis for further development of novel treatment

regimens, to control cancer relapse/resistance, also towards personalized medicine in cancer.

Today, as I stand here and look back, the phase of my Ph.D. wasn't that simple and easy. Hence,
it’s my pleasure to add a few words about this experience. It was on 29th July 2011, | started my
Ph.D. Journey in Chemical Engineering and Process Development (CEPD) Division at CSIR-
National Chemical Laboratory, Pune, India with Dr. Anu Raghunathan. Having seen my own
brother’s suflerings due to blood cancer (AML), | have cancer research as my aspiration. Though
he, Selva Raj Jebadurai Immanuel, is not there with us now, the inspiration he left helped me to
face all the challenges. My beloved Father, Immanuel, was my biggest support for doing Ph.D. and
to reach another region (Maharashtra) from my native (Tamil Nadu), without knowing the regional
language (Ilindi). I have come across dejection and heartaches in losing my Father in 2012 and also
the sudden loss of Dr. APJ Kalam in 2015 who was also my inspiration. Though all this sounded
unfavorable and bleak, I began to get many opportunities. | was an awardee of Newton Bhabha
Ph.D. placement from British Council, UK, and DST-India. | worked for 6 months at the MIB,
University of Manchester, UK with Dr. Philip Day and Prof. Douglas Kell in 2015. This period
taught me how to face the world alone, and be much stronger. On my return to India, T was
diagnosed with Meningitis, I have survived this illness phase, coming back from my deathbed, yet
finished my work and Ph.DD. This phase of my life challenged me in every aspect from personal
losses, health to financial burden vet I could reach my project goals. Big achievements and
dreams don't just happen; they are gained through hard work, perseverance, and sclf-
confidence. | hope as a writer that this thesis inspires you both as a reader and a researcher!
I have no special talent, I am only passionately curious
S okl Kt
T foulBy et

Selva Rupa Christinal Immanuel




Dedicated to.....

My Beloved Father, Immanuel
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My Dearest Brother, Selva Raj Jebadurai
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Thesis Abstract

he field of cancer research is caught in a data deluge by the advent of inexpensive

genome-scale high throughput technologies. The complexity of a living system

justifies the need for data acquisition at al molecular levels of cell hierarchy
from DNA to metabolites. However, just listing candidate genes (From genomic/ exome
data), gene expression signatures (from transcriptomic data), or metabolites (from
metabolomics data) are not enough to understand a complex, multi-hit, multifactorial
emergent disease like cancer. Although there are many methods that exist to analyze
individual data types, no method exists to integrate heterogeneous data-types into a
platform or mathematical model and to let aone predict outcomes and cell behaviour.
Glioblastoma, the most severe form of brain cancer is even more complex due to its
inherent heterogeneity, as the only drug used to treat it is being rendered less useful due to
chemoresistance. To understand the difference between cells of glioblastoma that are
resistant or susceptible to temozolomide, we have isolated the resistant population of
neurospheroidal cells (NSP) from an authenticated model cell line US7TMG. These were
further characterized extensively using whole exome sequencing, limited gene expression
profiling, metabolite profiling, growth-resistance profiling and respiration phenotyping to
understand the genotype and the differential phenotypes of its molecular components.
Since biologica systems are complex and their function is more than the sum of their parts,
al the data were integrated to analyze the emergent properties resulting from the
interaction. Such integrated analysis unravelled some of the mechanistic aspects of drug
resistance to temozolomide, a methylating drug. To complement data-driven anaysis, a
predictive constraints-based flux balance model of human metabolism was used to develop
context-specific models for U87TMG and NSP. These models computed accurately the
growth phenotypes of each cell and also predicted the metabolic reprogramming through
varied flux distribution profiles. Such pipelines are scalable to other cancer types and can
be trandated to the clinical studies. The multidimensionality of probing such molecular
portraits in heterogeneous tumor cells of patients has spurred on personalized medicine

approaches and can lead the way to individualized therapy.
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Chapter 1

Introduction

“All cancers are alike but they are alike in a unique way.”

— Siddhartha Mukherjee, The Emperor of All Maladies: A Biography of Cancer
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he global understanding of metabolic reprogramming and its underpinnings in

molecular cell hierarchies is critical to unravel the duality of cell function.

Understanding the impact of growth and energy generation for surviva of
cancer necessitates a systems approach. On the one hand, drug resistance has become one
of the most challenging problems to address in cancer relapse. On the other, the presence
of stem-like cells that are drug resistant in most cancers, confound the analysis and
therapy. These minor subpopulations need to be characterized to overcome resistance
developed in the last stages of cancer. In this thesis, a systems biology approach has
been implemented to understand the emergent properties of chemotherapeutic
resistance in a Glioblastoma (brain tumor) cell line, U87M G, in vitro. This approach

is scalable to other cancer cell-types and can also be used for clinical translation.
1.1. Cancer - " Uncontrolled growth"

Cancer is a multi-factorial disease (Warburg et al. 1923; Warburg 1956; Hanahan &
Weinberg 2000; Hsu & Sabatini 2008; Kreeger & Lauffenburger 2009; Xue Xue 2012)
that potentially links metabolism to its progression (Feron 2009; Mufoz-Pinedo et al.
2012; Dang 2012; De Berardinis & Chandel 2016; Zielinski et al. 2017). Cancer cells
reprogram their energy metabolism in order to satisfy their requirement for biosynthesis
and growth (Ward & Thompson 2012; Daye & Wellen 2012; Hainaut & Plymoth 2012).
Increased aerobic glycolysis, fatty acid synthesis, and glutamine metabolism have been
already known in cancer metabolic reprogramming, yet the real importance have not yet
been addressed (Wise et al. 2011; Duckwall et a. 2013; Altman et a. 2016).

Metabolism in cancer is unique in a way that these cells consume more glucose
compared to normal cells (Warburg et al. 1923; Hsu & Sabatini 2008; Vander Heiden et
al. 2009) but use a small amount of it towards oxidative phosphorylation even in aerobic
conditions. Cancer cells proliferate rapidly with a higher growth rate. Therefore, there is
a need for more nutrients to drive the faster growth. This is supported by the oncogene-
directed metabolic reprogramming (Daye & Wellen 2012; Nieminen et a. 2013; Rios et
al. 2013). Recent findings suggest that metabolites themselves can be oncogenic (Losman
& Kadin 2013; Gaude & Frezza 2014) by altering cell signaling and blocking cellular
differentiation. Cancer-associated genomic and metabolomic alterations have a direct
impact on the cell growth and survival (Raméo et a. 2012). Thereby, the change in
metabolism plays a key role and could be a potential marker in cancer.
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1.2. Cancer Metabolism: An Emerging Cancer Hallmark

The metabolic properties of cancer cells diverge significantly from those of normal cells.
One of the emerging hallmarksin cancer is that altered metabolism and energy regulation
guides the cancer growth and progression (Figure 1.2) (Hanahan & Weinberg 2000;
Hanahan & Weinberg 2011).

Sustaining Evading
proliferative growth
signaling SUppressors

Avoiding
immune
destruction

Deregulating

cellular a Q
energetics

Hallmarks Enabling
= replacative
| death of Cancer immorality

Genome d Tumor-
instability & promoting
mutation inflammation
Ir!ducing . Activating
angiogenesis invasion &

metastasis

Figure 1.2: Hallmarks of Cancer. Source: Originally published in Hallmarks of Cancer:
The Next Generation, Cell, 646-674, © Elsevier, 2011 (Hanahan & Weinberg 2011).

This metabolic regulation of growth is dependent on the availability of nutrients. Also,
many of the oncogenes have an effect on the metabolism of cancer cells. Tumor cells, in
contrast to normal cells, display increased metabolic rates, increased uptake rates (taking
up nutrients) and metabolizing them in pathways that support growth and proliferation
(Warburg et al. 1923; Hsu & Sabatini 2008; Dang 2012).

To state, most of the previous work in tumor cell metabolism focused only on
bioenergetics, in particular, increased glycolysis and suppressed oxidative
phosphorylation (‘Warburg effect’). This atered energy metabolism is widespread in
cancer cells of any origin contributing to the traits that have been aready accepted as
hallmarks in cancer (Hanahan & Weinberg 2000). Hence, the changes in the regulation

of metabolism and energy generation (aerobic glycolysis) simply define another
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phenotype. The question whether the metabolism is a cause or effect can help with
further delineation of cancer mechanisms. This would enable path towards personalized

medicine through potential micro-environment tailoring.
1.3. Glioblastoma Multiforme

Glioblastoma multiforme (GBM), is the most common brain tumor (Zhang et al. 2011;
Sottoriva et al. 2013; Qazi et al. 2017), and generally shows aggressive characteristics
including a very high rapid growth rate (Broadley et al. 2011; Y. P. Ramirez et al. 2013;
Yeung et al. 2013; Yuan et al. 2015). It is a Grade 1V glioma (Kreth et al. 2010; Y. P.
Ramirez et al. 2013; Y. Ramirez et a. 2013), the most malignant and comprises more
than a half of all gliomas known so far (Figure 1.3). A lower grade glioma (such as grade
-1 tumor) is well differentiated with some celular anomalies. Grade Ill tumor is
anaplastic, with increased cell density and display differences in cellular morphology
(Maher 2001).

Glioblastoma is derived from astrocytes and shows a very poor prognosis than any other
tumors in brain. The main reason for this high morbidity is aways believed to be its
higher growth rate. The survival of GBM patient is approximately 1 year despite under
the treatments including chemotherapy, radiotherapy, and surgery (Zhang et al. 2011,
Zhao et a. 2013). Normally, the ATP production and neuronal activity in astrocytes are
determined and maintained by the metabolic energy flow from lipolysis and glycolysis.

Low grade Primary
Astrocytoma Glioblastoma
Features
5-10 years Features
* Low mitotic index y
i lt‘llgh ;ate Of[, “ Secondary * Rapid proliferation
ransformation * : :
Glioblastoma Angiogenesis

* Cellular necrosis

Figure 1.3: Typesand clinical features of Glioblastoma.
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In contrast to neurons, astrocytes support the lactate production by aerobic glycolysis
even in the oxygen replete conditions (Warburg effect), and ATP production by
mitochondrial respiration through electron transport chain (Pasteur effect). Lactate was
found to be involved in increasing growth by being an energy source (Lactate to Pyruvate
shuttle) and also supports the memory formation by getting shuttled between the neurons
and astrocytes. Hence, the inherent capability of astrocytes towards lactate secretion
could eventually lead to a high rate of tumor formation by supporting glycolytic fluxes
(Kim et al. 2015). Recent studies address the presence of a subset of cells with stem-like
properties that are found in the final stages of the tumor. This subset of cells was often
reported to show chemotherapy resistance and stated to be the key component for tumor
relapse (Hirschmann-Jax et al. 2004; Persson & Weiss 2009; Golebiewska et a. 2011;
Broadley et a. 2011; Bar 2011). The tumor microenvironment has been shown to be the
major determinant for the molecular and phenotypic abnormalities of such cell types and
in promoting the growth of resistant populations to sustain the treatment regimens.
Understanding the reprogrammed metabolism based on the microenvironmental
conditions and the interaction between different cell types within the tumor mass would
definitely help to answer the questions on how metabolism modulates the aggressiveness
and response to therapy. This would pave way for the innovative treatment regimens to

target primary glioblastoma or potentialy in cases of relapse.
1.4. Temozolomide - " DNA methylating drug"

Temozolomide (TMZ) is one of the akylating agents used for chemotherapy in GBM
(Friedman et a. 2000; Portnow et al. 2009; Wesolowski et al. 2010; Liu et a. 2012; Qian
et a. 2013). Most of the alkylating agents are active in the resting phase of the cell,
though they are considered to be cell cycle non-specific. TMZ is an orally administered
drug that crosses the Blood Brain Barrier (BBB). It shows good uptake, distribution and

tumor localization thus has the clinical approval.

It is a prodrug that undergoes hydrolysisin neutral pH to MTIC (monomethyl triazene 5-
(3-methyltriazen-1-yl)-imidazol e-4-carboxamide). This MTIC further reacts with water
and gives 5-aminoimidazole-4-carboxamide (AIC) and a highly reactive
methyldiazonium cation. This active form then methylates DNA (Figure 1.4).
Predominantly, DNA is methylated at N7 positions of guanine in guanine-rich regions
(70%), but TMZ dso methylates N3 adenine (9%) and O6 guanine residues (6%)
(Wesolowski et a. 2010; Zhang et a. 2011; Lee 2016).
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Figure 1.4: Mechanism of temozolomide action and its resistance.

The temozolomide concentration prescribed for patients is 150mg/m®. 75 mg/m? for 42
days followed by the initial maintenance dose of 150mg/m? once daily for Days 1-5 of a
28-day cycle of “Temodar” (the commercia name for temozolomide) is prescribed for
patients with Glioblastoma for 6 cycles of chemotherapy. The clinical trials for
confirming the activity of this drug was performed in the range starting from 300 uM to
1500 uM in model systems of Glioblastoma including U87MG cell line as well (Huang
et a. 2012; Johannessen et a. 2013).

The half-life of temozolomide is approximately 1.8 hours. Temozolomide (TMZ) gets
converted to MTIC and the active half-life of this metabolite (MTIC) is longer than
TMZ. Both the active and inactive forms of TMZ are excreted through kidneys. The
plasma levels of TMZ are monitored during the chemotherapy cycles. TMZ is prescribed
once daily to maintain the dosage in the plasma and the circulation time gets affected by
the food intake and the diet followed by the patients. Side effects include nausea and
vomiting which are common among the patients and are usually mild to moderate. A
limited number of patients (7%) have shown seizure and thrombocytopenia (Wesol owski
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et al. 2010).
1.5. Oncometabolites - Epigenetics and DNA methylation

DNA methylation is a major epigenetic modification that has implications for various
biological processes (Ulrey et a. 2005, Weisenberger 2014). This epigenetic
modification in DNA is considered stable compared to other epigenetic mechanisms.
DNA demethylation also has been studied and known to exist in certain stages of cellular
function and destabilizes the programmed gene silencing by DNA methylation (Holohan
et a. 2013). Many enzymes are proven to perform active DNA demethylation and

multiple mechanisms are being characterized to understand the effect of demethylation.

Most of the DNA modifying enzymes were shown to be dependent on metabolites such
as NAD+, FAD, ATP, S-adenosylmethionine (SAM), a- ketoglutarate and acetyl-
coenzyme A that can influence the epigenetic activities. IDH1 and IDH2 mutants convert
glutamine carbon to the oncometabolite 2-hydroxyglutarate to dysregulate epigenetics
and cell differentiation (Ward & Thompson 2012). Hence, the nutritiona state of the cell
might have an important role in maintaining these nuclear activities. The interconnection
between epigenetic dynamics and metabolism could contribute to the emergent properties
of the resistant cell in the presence of DNA methylating drugs (Ulrey et a. 2005; Hsu &
Sabatini 2008; Cantor & Sabatini 2012; Etchegaray & Mostoslavsky 2016).

Profiling the metabolite levels in different conditions (in the presence or absence of the
drug) would give us the clues to define whether or not the microenvironment controls the
resistance. Detailing how DNA methylation is regulated would eventually broaden our
understanding of epigenetic regulation, cell reprogramming and cancer resistance in case
of DNA methylating drugs. Taken together, the question whether the epigenetic
regulation by metabolism and downstream effects becomes the cause or effect will solve
the puzzle in unveiling the resistance development for the drugs that target DNA. One
such example for metabolites and their role in epigenetics can be addressed by the study
of Ten-eleven trandlocation (TET) pathway (Carey et a. 2014; Scourzic et a. 2015).

TET proteins are involved in DNA methylation or demethylation and are a-ketoglutarate-
dependent dioxygenases in the conversion of 5-methylcytosines (5-mC) to 5-
hydroxymethylcytosine (5-hmC), 5-formylcytosine and 5-carboxycytosine. Recently new
pathways have been elucidated in the cytosine methylation and demethylation process in
human. The a-ketoglutarate-dependent TET activity produces 5-hydroxymethylcytosine.

10 Introduction | Chapter 1



This can be an intermediate in either passive or active DNA demethylation. The
biological relevance of TET inhibition by 2HG (2-hydroxyglutarate) has a strong genetic
influence as well. Mutations of IDH1 or IDH2 are found to be responsible for the
generation of 2-hydroxyglutarate (Wise et a. 2011; Losman & Kaelin 2013).

1.6. Intra-tumor heter ogeneity and drug resistance

Tumor heterogeneity can be used to describe both inter-tumoral and intra-tumoral
variability, including differential mutational patterns, intratumoral histological variation
and intratumoral polyclonality (Furnari et al. 2015). GBM tumors display striking
histological variation within the same mass of the population of cells (Figure 1.5).
However, complete characterization has been not done yet. In GBM tumors, the compl ete
genome-scale mutational profiles of the major and minor populations present within, are
not yet known but, the overall mutational heterogeneity seems to be similar to those of
most other cancer types (Parker et al. 2016; Qazi et al. 2017).
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Figure 1.5: Mechanisms that regul ate the development, progression, and maintenance of

tumor heterogeneity.

Many reports exist about the presence of minority populations in the final stage cancer,
responsible for drug resistance and relapse. These sub-populations possess various

clinically important phenotypes such as the ability to metastasize and to resist and
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survive chemotherapy (Hirschmann-Jax et al. 2004; Persson & Weiss 2009; Golebiewska
et al. 2013). This phenotypic diversity can be a combined impact of both genetic and
non-genetic influences. Also, recent advances in novel technologies have advanced the
molecular understanding of main and sub-populations within and/or across cancers,
enabling the identification of targets for better combination therapies and interventions.
This is critical to diagnosis and treatment as the most abundant cell type might not
necessarily predict the properties of mixed populations (Inda et a. 2014; Mathis et al.
2017).

1.7. Glioblastoma Multiforme: Systems per spectives

Though Glioblastoma is known to be a highly aggressive and deadly brain tumor for
more than a decade, there are very few improvements in the treatment regimens due to
the complexity of the disease. This necessitates the development of a systems paradigm
to address the drug resistance and tumor relapse. A systems approach as developed in this
thesis, alow delineation of genotype to phenotype relationships fundamental to the
biology of a cancer cell. These include primary phenotypes like growth and drug
response that can be influenced by secondary phenotypes like respiration, metabolism,

and nutrient preferences (Figure 1.6).
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Figure 1.6: Systems approach for addressing temozolomide resistance.
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Some of the milestones in researches on Glioblastoma and cancer metabolism that
showed the present status of this disease until the work discussed in this thesis

commenced have been listed (Figure 1.7).
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Figure 1.7: Remarkable publications/reports that form the basis of this thesis (Warburg
et a. 1923; Drummond & Phillips 1977; Haga et al. 2001; Hirschmann-Jax et a. 2004;
Clark, Homer, O’Connor, Chen, Eskin, Lee, Merriman & Stanley F. Nelson 2010;
Altschuler & Wu 2010).

Also, how the systems approach benefits the understanding of drug (temozolomide)
resistance in Glioblastoma has been highlighted. This complete thesis is based on the
experimental and computational analysis of the cell line, UB7MG that is well known as a

model system of Glioblastomain vitro.
1.8. Human Glioblastoma Multiforme - UM G cell line

U87MG (HTB-14, Human Glioblastoma Multiforme from ATCC) has epithelia
morphology and grows as adherent population of cellsin vitro (Figure 1.8). This cell line
has been authenticated in our study for the confirmation of 9 STR (Short tandem repeats)
profile (Appendix A). Also, many reports highlight the use of US7MG as a model cell
line for Glioblastoma (Gunther et al. 2003; Clark, Homer, O’ Connor, Chen, Eskin, Lee,
Merriman & Stanley F Nelson 2010; Vacas-Oleas, 2013; Pei et al. 2014; Kim et a. 2015;
Zou et al. 2017).
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Figure 1.8: Morphology of U87MG cell line grown in DMEM. Microscopic image
captured using an EVOS® FLoid® system, ThermoFisher Scientific a a magnification
of 20X.

1.9. Cancer-associated metabolic changes and itslink to temozolomide resistance

The reasons for the failures of conventional cancer treatments like radiation therapy and
chemotherapy remain unanswered. Contributing factors include sub-optimal delivery of
drugs to necrotic regions are also potentially less sensitive to ionizing radiation. An ideal
response for treatment of cancer depends on the availability of the entire drug dosage at
the site of tumor and low-toxicity to nearby healthy tissues. Minimizing side effects
while maximizing tumor targeting is the need for current tumor therapeutic protocols.
Such improvements may be achieved by looking at reprogrammed metabolism that
contributes to drug response only in tumor cells. In the case of Glioblastoma, the
chemotherapy is by using Temozolomide (Temodar™). This drug belongs to the class of
alkylating drugs that target DNA and hence resistance is mostly related to resistance to
DNA methylation. Many intermediate metabolites play a key role in the interplay
between the epigenetic response (DNA methylation) and reprogrammed metabolism and
may relate to induced resistance (Etchegaray & Mostoslavsky 2016).

Acetyl-CoA, an intermediate in TCA (Tricarboxylic acid cycle/ Citric acid cycle), that is
utilized as an acetyl group donor during the histone acetyltransferase-dependent
acetylation of nucleosomal histones. NAD (Nicotinamide adenine dinucleotide) is
another central metabolite that can be synthesized de novo from the amino acid,
tryptophan. NAD" functions as a cofactor for SIRT1 and SIRT6 that eventually
deacetylate histones. This deacetylation of histone H3 modulates the expression of
metabolic genes, thereby causing aterations in the key metabolic pathways such as
glycolysis, gluconeogenesis, mitochondrial respiration, fatty acid oxidation, and
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lipogenesis (Etchegaray & Mostoslavsky 2016). S-adenosylmethionine (SAM) is the
third metabolite that is generated through the methionine biosynthesis pathway. It
transfers methyl groups to both histone methyltransferases (HMTs) and DNA
methyltransferases (DNMTS). S-adenosyl homocysteine (SAH), on the other hand,
functions as a repressor of both DNMTs and histone lysine demethylases (KDMS)
(Etchegaray & Mostoslavsky 2016). a-ketoglutarate (aaKG) is a key metabolite that is
generated through the TCA cycle. This aso functions as an obligatory cofactor for
KDMs and ten-eleven translocation (TETS) enzymes. TETs oxidize DNA by catalysis of
methylated cytosines into 5-hydroxymethylcytosine (5hmC) (Etchegaray &
Mostoslavsky 2016). The involvement of these metabolites in DNA methylation and
histone acetylation may play a key role in the temozolomide resistance. This highlights

the importance of understanding the reprogrammed metabolism.
1.10. Hypothesis and specific aims

The main hypothesis proposed is that metabolic reprogramming in glioblastoma shapes
the response to temozolomide and contributes to drug resistance/sensitivity. While doing

so the following unanswered questions may be sorted.

1. How does cancer-cell metabolism differ across drug sensitive and drug-resi stant
cells?

2. Ismetabolism a cause or effect in contributing to drug resistance?

3. Is dtered or preferentia nutrient uptake a strategy for cell surviva and
resistance?

4. Is drug resistance an emergent property of the cell or sef-driven by

microenvironment?

To address these questions and validate the above hypothesis, this thesis explores the use
of both reductionist and integrated approaches listed below to unravel differentia
phenotypes of the glioblastoma cell-line.

i. Morphology and physiological features (Fluorescence microscopy and FACS
profile)

ii. Growth and drug response,

iii. Genotyping (Exome sequencing),

iv. Primary and Secondary phenotype (Phenotypic microarray; gene expression of
CAN and ABC transporters genes using real-time qPCR),
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v. Metabolite profiling in the presence and absence of drug (LC-MS/MS analysis).

Metabolic Reprogramming

@ *as captured” @

Drug transporters Characterization of
and resistance heterogeneity in USTMG

Temozolomide

Transcriptomic study of Resistance
Candidate genes R

® Systems approach for- @

Phenotypic
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@ Metabolite profile Genetic basis behind @
using LCMS temozolomide resistance

Figure 1.9: Objectives and work plan.
1.11. Overview of thethesis

This work presents an integrated analysis of a glioblastoma cell line, U87MG, to explore
the inherent differential genotype-phenotype relationships in temozolomide sensitive
and resistant cells. The heterogeneity of drug response was investigated using
proliferation/growth kinetics, dose-response (Growth inhibition patterns), metabolite
analysis (LC-MS/MS profile of key exo-and endo-metabolites in the presence and
absence of drug), genotype anaysis (Exome sequencing) and connected to observed
differential cellular phenotypes (Phenotypic microarray and gene expression). To our
knowledge, such poly-OMIC data integration has never before been performed in this
way to describe GBM heterogeneity in addressing the reprogrammed metabolism

towards resistance.

Chapter 2 discusses the identification and characterization of intra-tumor
heter ogeneity and drug response. An authenticated U87MG glioblastoma cell line was
investigated to identify a sub-population of neurospheroidal (NSP) cells within the main
epithelial population (U87MG). The NSP cells sorted using Fluorescence Assisted Cell
Sorting (FACS) showed varied morphology, 30% lower growth rates, 40% higher 1Cs
values for temozolomide drug and could differentiate into the glial cell type (NDx).
Metabolite profiling using HR-LCMS identified glucose, glutamine and serine in both
populations and tryptophan only in U87MG as growth limiting substrates. Glycine,
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alanine, glutamate, and proline were secreted by U87MG; however, proline and glycine
were re-utilized in NSP. Exo-metabolite profiling identified differential metabolism of
primary carbon sources glucose and derived pyruvate for US7MG; glutamine and derived
glutamate metabolism in NSP.

Chapter 3 summarizes the candidate gene interaction networks in Glioblastoma.
The choice of genes for gqRT-PCR was based on Pathway Studio™ analysis. A network
was generated linking genes with selected functional biological processes to identify
cancer candidate (CAN) genes. Network analysis was also carried out to understand the
interactions between these CAN genes. Real-time qPCR was used to quantify and detect
changes in the mRNA for the selected CAN genes and ABC transporters relative to
housekeeping/ reference genes. The differential mMRNA abundances (17 higher and 2
lower for NSP) potentialy contribute to the efficiency of drug and nutrient metabolite
transport and efflux.

Chapter 4 investigates the differential exome characterization of temozolomide
sensitive and temozolomide resistant cells to delineate the genetic basis for
temozolomide resistance. In addition to the statistical analysis of exome variants, the
detailed functional analysis was done using the Oncotator web-tool. These were also
analyzed in the context of models of human metabolism to understand the impact of
identified mutations in signaling and regulatory regions in controlling metabolism.
Altered metabolism and epigenetic profiles that may be potentially genotype driven were
identified.

Chapter 5 details the differential nutrient preferences and discussed the phenotypic
plasticity of growth and respiration. The cellular energetics and pathways involved in
the metabolism of US7MG and NSP cells that eventually define cell-specific metabolic
fingerprints were delineated. Differential response to cytotoxic drugs, ions and hormones
were also tested against the two cell types (U87MG and NSP) that alowed validation of

the reprogrammed metabolism.

Chapter 6 elaborates the metabolic dynamics and reprogramming of the cell in the
presence of the drug, Temozolomide. The exo- and endo-metabolite levels in the two
cell types (US7TMG and NSP) were analyzed and quantified using LC-MS/MS in the
presence and absence of the drug at varying concentrations. NSP cells were most likely
glutamine-dependent for their survival and growth. CORE (Consumption and Release)
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profile analysis and PCA (Principa Component Analysis) was performed to understand
the exo- and endo- metabolite state of both the cell types (US7M G and NSP).

Chapter 7 investigates the integrative paradigm developed for understanding
temozolomide response, susceptibility vs resistance via a systems approach. In this
chapter, all the experimental data (components) obtained using reductionism has been
analyzed through integration to understand the drivers of drug resistance. Such analyses
across molecular hierarchies in the cell have been delineated that would potentially help
design combinatorial treatments by metabolite supplements to overcome drug resistance.

Chapter 8 reflects on the conclusions of the thesis and highlights the future scope of
this study. Although the existence of small minority populations with differential
histology and dye efflux properties within cancer cell lines has been known for decades,
the underlying biochemical physiology of how this shapes functional drug response is
still incompletely understood.

An integrative paradigm has been developed in this thesis to address temozolomide
resistance acquired due to the presence of such minority population of cells. This pipeline
thus developed is scalable and can be extended in single cell analysis and also helps in

tranglating the bench side research to bedside for clinical implications.

Taken together, the importance of characterizing drug-resistant sub-populations for
growth and gene expression analysis, exome characterization and nutrient
consumption/metabolism, is critical in understanding the differential dose-response
curves, potency and efficacy parameters that can eventually help in better therapeutic
response and drug regimens. The results strongly suggest the need for delineating
metabolic preferences of sub-populations in addition to drug efflux and histological
examination. Further, these datasets can be anayzed in the context of metabolic models
to predict the impact of therapeutic regimens. This would lead the way towards
overcoming drug resistance in cancer and drive the path towards personalized medicine

and improved combinatorial therapies.

kkkkkkkkkhkkkikk*k
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Chapter 2

Intra-Tumor Heterogeneity and Drug
Response: How Differences
Make Difference?

“Cancer's life is a recapitulation of the body's life, its existence a pathological mirror of our

77

own.

— Siddhartha Mukherjee, The Emperor of All Maladies: A Biography of Cancer
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Figure 2.1: Graphical abstract of Chapter 2.
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Abstract

The criticality of therapeutic impact arising from tumor heterogeneity is indisputable.
Clonal cell lines established as scalable cancer models are known to harbor cellular sub-
populations that mirror tumor heterogeneity. Functional characterization of heterogeneity
unravels phenotypic plasticity that can be leveraged for desired drug responses. U87MG, a
glioblastoma cell line, was investigated to identify side-populations of neurospheroidal
(NSP) cells within the main epithelial population (U87MG) with varied morphology and
sorted using Fluorescence Assisted Cell Sorting (FACS). The growth of NSP cells in the
presence of 1 mM temozolomide indicated 40% higher 1Csp values. The maximum growth
rate was 30% lower for NSP than U87MG cells. Metabolite profiling using HR-LCMS
identified growth limiting substrates glucose, glutamine and serine in both populations and
tryptophan only in U87MG. Glycine, alanine, glutamate, and proline were secreted by
U87MG; however, proline and glycine were re-utilized in the NSP side-population. NSP
cells could differentiate into the glial cell type (NDx) that had varied ICs, values and
metabolic dynamics. Reprogrammed metabolism in the side-population potentially shaped
epigenetics leading to temozolomide resistance in NSP cells. The highlights include: (i)
Temozolomide (TMZ) resistant Neurospheroids (NSP) identified in U87MG cell line (ii)
NSP shows varied dose response, 40% higher ICso and 30% lower growth rate. (iii) Altered

Glucose and Glutamine uptake in U87MG and NSP shape metabolic dynamics.

20 How differences make difference? | Chapter 2



2.1. Introduction

Origins and implications of heterogeneity in tumor manifest in vivo as multifactorial
responses. Intra-tumor heterogeneity shapes responses for personalized medicine
approaches and can limit therapeutic efficacy leading to resistance (Inda et al. 2014; Parker
et al. 2015). Resistance to chemotherapy and other targeted therapies are known to
dramatically reduce cancer remission rates (Hoey 2010). Evidence supports the presence of
a small population of therapy-resistant cells in many cancer types that can eventually result
in cancer recurrence (Turner & Reis-Filho 2012; Burrell et al. 2013). Therefore
heterogeneity of cancer not only affects the quality of data but may also mask the
interpretation of the cancer cell drug response (Sottoriva et al. 2013). More recently,
metabolic reprogramming has been recognized as a hallmark with certain neo-metabolites
including 2-hydroxyglutarate associated with a gain of function (Wise et al. 2011; Losman
& Kaelin 2013). Although, the clinical relevance of human cancer-derived cell lines as
model systems is highly debatable they are undoubtedly indispensable as preclinical tumor
models to test therapeutic strategies (Qian et al. 2013; Gaspar et al. 2010; Seznec et al.
2010; Angeles & Angeles 2010; Clark et al. 2010). The failure of cell culture models to
reflect clinical patterns may also be due to unaccounted tumor micro-environments and
dynamics of nutrients available (Persano et al. 2013; Cantor & Sabatini 2012). Researchers
have demonstrated that human cancer cell lines harbour minority populations of putative
stem-like cells (De Almeida Sassi et al. 2012; Broadley et al. 2011; Khan et al. 2013;
Sharma et al. 2011; Persano et al. 2013; Cruz et al. 2012), molecularly defined by dye
extrusion phenotypes (Goodell 2005; Med 1996; Bhattacharya et al. 2003). These cancer
stem cells (CSC) form integral parts of most tumors and have further advanced the concept
of intra-tumoral heterogeneity (De Almeida Sassi et al. 2012; Grasbon-Frodl et al. 2007).

Fundamentally, the CSC concept states that long-term tumor propagation, metastasis, and
relapse depend on small populations of phenotypically-distinct cancer cells endowed with
unique functional properties (Turner & Reis-Filho 2012; Burrell et al. 2013). These small
populations are highly conserved (Golebiewska et al. 2011; Hirschmann-Jax et al. 2004;
Golebiewska et al. 2013; Broadley et al. 2011) and have also been identified in human
cancer-derived cell lines. Both, the clonal evolution models and the CSC hypothesis
support the genesis and maintenance of side populations and their mechanistic role in
chemotherapeutic resistance (Safa et al. 2015). Despite their potentially controversial

origin, the presence of these cells (Figure 2.2) that form a sub-population is ratified. These
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populations have largely been characterized for morphology and drug/dye extrusion
properties, although detailed characterization of their dose-response relations does not exist
(Marjanovic et al. 2013; Furnari et al. 2015). There is a need to understand the underlying
biochemical, molecular and physiological signatures to tackle resistance. While these cell
lines continue to be the basis of substantial biological insight, experimental inferences

reflective of both the main and the side populations is inevitable.

Glioblastoma multiforme (GBM) the most malignant among astrocytic tumors arising from
the glia, is associated with poor prognosis (Brandes et al. 2008; Wrensch et al. 2002) and
high levels of both macroscopic and microscopic heterogeneity (Parker et al. 2015). Due to
phenotypic plasticity (Marjanovic et al. 2013) and potential switching between cell types
via epigenetic regulation (Persano et al. 2013), maintaining a dynamic equilibrium between
these differentiated and de-differentiated cell populations is critical. Glioblastoma has four
distinct subtypes: proneural, neural, classical and mesenchymal based on gene expression
patterns and correlates to clinical characteristics (Verhaak et al. 2010). High prevalence of
mutations in isocitrate dehydrogenase isozyme (IDH1/2) (Li et al. 2013), indicates not only
a key role in early gliomagenesis but also connections of altered metabolism and clinical
outcomes. Due to its highly aggressive and plastic nature and poor therapeutic responses
(Kohsaka et al. 2012; Wang et al. 2014), understanding the complex heterogeneity of GBM
is of great interest.

Temozolomide (TMZ) is an imidazotetrazine derivative of the alkylating agent dacarbazine
and an anti-cancer prodrug of Temodar™, the primary oral alkylating agent used to treat
GBM. The therapeutic index is dependent on molecular markers like O°-methylguanine
methyltransferase (MGMT) and/or lack of a DNA repair pathway in GBM cells, isocitrate
dehydrogenase type 1 and type 2 (IDH1/2) mutation (Megova et al. 2014) and glioma
cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP) (Noushmehr et
al. 2010; Ostrom et al. n.d.). UB7MG, a commonly studied (Angeles & Angeles 2010;
Vacas-Oleas, 2013) grade 1V glioma cell line, known to show sensitivity to temozolomide,
has been analyzed and subjected to molecular/functional characterization over the last four
decades (Pei et al. 2014; Bernhart et al. 2013). The whole genome sequence of U87MG has
been delineated (Clark et al. 2010) and the sequence analysis of U87MG provides an
unparallel level of mutational resolution compared to any cell line to date (Angeles &
Angeles 2010). UB7MG is wildtype for IDH1/IDH2 (Wise et al. 2011) in contrast to many

gliomas whose hallmark is the production of a neo-metabolite 2 hydroxyglutarate (Losman
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& Kaelin 2013; Wise et al. 2011). However, side-populations have not been identified and

characterized phenotypically or functionally.
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Figure 2.2: Schematic showing heterogeneity in Glioblastoma Multiforme. (A) Clonal
evolution theory: Epigenetic elements are conserved during evolution which results in
somatic clonal evolution. (B) Cancer stem cell theory: A sub-population of cells in the
intra-tumor region (which gains resistance to the drug) undergoes re-differentiation after
treatment to give rise to cancer, thus having stemness characteristics. (C) Genetic
heterogeneity: Any changes in the genetic makeup of the cells that give rise to two different
cell types within tumors. (D) Phenotypic heterogeneity: Accounting for the complete effect
of oncogenic mutations and tumor microenvironment on the morphology of the cells.

Chapter 2 |How differences make difference? 23



The Cancer Genome Atlas (TCGA) and Parsons et al. analyzed 20,661 protein-coding
genes in 22 human GBM samples by using Sanger sequencing (Parsons et al. 2010). These
Candidate Cancer Genes (CAN-Genes) included TP53, PTEN, CDKN2A, RB1, EGFR,
NF1, PIK3CA, and PIK3R, have been previously implicated in gliomas (Frattini et al.
2013; Marjanovic et al. 2013). The methylation status of the MGMT may be causal in
intra-tumoral chemotherapeutic heterogeneity observed in GBM and other cancers
(Snuderl et al. 2011; Little et al. 2012).

Receptor tyrosine kinases (RTKSs) including EGFR, MET and PDGFRA have been
identified with varying levels of amplification (Snuderl et al. 2011; Little et al. 2012;
Szerlip et al. 2012). Intra-tumoral variation was observed in single-cell RNA sequencing
and gene expression from five primary GBMs (Patel et al. 2014). There are many gene
expression studies for selected signaling pathways like PPARG, JAK-STAT, EGFR,
MGMT, and DNA repair enzymes and some metabolic genes like IDH1/IDH2, LDH, SDH
that have been reported in the literature (Yeung et al. 2013; Szerlip et al. 2012; Kohsaka et
al. 2012). However, none of these functional or molecular or physiological studies focuses
on the side-population that could potentially exist.

A side-population/ sub-population of neurospheroidal cells (NSP) that are morphologically
distinct from epithelial cells were identified in U87MG (Grade-IV GBM cell line) and
sorted using Fluorescence Assisted Cell Sorting (FACS). A detailed phenotypic and
functional characterization of the side-population’s heterogeneous phenotype vis-a-vis the

main tumor cell line population (U87MG) was performed.

To our knowledge, this is the first study addressing the functional characterization in
relation to growth/proliferation and metabolite profiling to understand nutrient uptake of
side-population cells within a cell line. The differential growth kinetics of the two
populations has also been delineated in addition to their differential response to the
chemotherapeutic drug, Temozolomide. The glucose/ amino acid utilization profiles and

differential metabolism is characterized using LC/MS.

2.2. Methods

2.2.1. Cell culture: US7MG cell line (HTB-14; Human Glioblastoma Multiforme) was
cultured in DMEM (Dulbecco’s Modified Eagle’s Medium). Glucose (1 mg/mL) and L-
glutamine (0.584 mg/ml) with added 10% fetal bovine serum (FBS, Gibco™,
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ThermoFisher Scientific) and 1% non-essential amino acids (Sigma-Aldrich) was used.
Cells lines were maintained at 37°C in a humidified atmosphere of 5% CO,/95% air. This
cell line has been authenticated by STR profiling (Appendix A) to ensure the ATCC STR
profiles (10 marker loci). Among 16 marker loci, 9 marker loci were used for the
confirmation of authentication (Appendix A). After separation using FACS, NSP was
initially maintained in neurobasal medium (Gibco™, ThermoFisher Scientific)
supplemented with B27 supplement (Gibco™, ThermoFisher Scientific), 0.2 pg/mL of
epidermal growth factor, EGF (ThermoFisher Scientific) and 0.2 pg/mL of basic fibroblast
growth factor, bFGF (ThermoFisher Scientific). Further sub-culturing and passaging of
NSP was carried out using the similar medium as U87MG to avoid any contribution from
different micro-environments and delineating heterogeneity of molecular signatures. NSP
were cultured as free-floating spheres in the appropriate low attachment T-75 flasks or 6

well/24 well plates (Nunc™, ThermoScientific™).

2.2.2. Fluorescence microscopy: Hoechst 33342 stain (ThermoFisher Scientific) at a
concentration of 1 mg/mL was used for all fluorescence studies on EVOS® FLoid® cell
imaging system (ThermoFisher Scientific). The side-population assay exploits the
excitation of Hoechst 33342 in the blue fluorescence range (351 to 364 nm with a 450/20
band-pass filter) and emission in the red fluorescence (675-nm long-pass edge filter). The
differential fluorescence intensity (390/40 nm excitation and 446/33 nm emission) reflected
the varied Hoechst dye uptake by cells.

2.2.3. Flow cytometry: The side-population assay as previously described (Goodell 2005)
was performed with cells at 70% to 80% confluency. Cells were trypsinized, washed and
resuspended in phosphate buffer saline (PBS) supplemented with 2% FBS to a final
concentration of 10° cells per milliliter. Cells were incubated at 37°C, with 5 pg/ml
Hoechst 33342, in dark, for 120 minutes, with regular mixing at 30-minute intervals
followed by incubation at 4°C. Propidium iodide (4 pM) was added for viability
assessment. Efflux of Hoechst 33342 was determined using flow cytometry with BD FACS
Avria Il machine (BD Biosciences Ltd). Intensity data using the appropriate channels were

collected in linear mode.

2.2.4. Sorting of cells by FACS and functional characterization using verapamil: Cells
with the ability to efflux Hoechst dye were characterized and sorted by their fluorescent
profile into Hoechst high (Hoechst positive) and Hoechst low (Hoechst negative) using BD

FACSAria 111. Cells were suspended to 2-4 x 10° cells per milliliters and sorted using
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FACS. A two-way sort yielded both the main population (Hoechst high/U87MG) and side-
population (Hoechst low/NSP). Hoechst low FACs profile of cells was confirmed using
Verapamil (a calcium channel blocker). All data were collected in linear mode and
analyzed using BD FACSDiva™ software v6.1.3. Cells were displayed on dot plots gated
on live cells, PI negative, and viewed in a Hoechst Blue versus Hoechst Red dot plot to

capture the effect of Verapamil and to confirm the dye efflux.

2.2.5. Growth/proliferation studies: Growth of the cells separated by FACS (U87MG and
NSP) and the heterogeneous population (Het U87MG) were studied by monitoring their
proliferation via cell count over a period of 216 hours (9 days). The initial seeding set the
starting population (No) at ~10000 cells per well. The growth profile was studied in a 24
well plate (Nunc tissue culture-treated) for ease of harvesting. Both U87MG and NSP cells
were harvested every 24 hours and counted using hemocytometer based on trypan blue dye
exclusion assay. Before counting, the NSP population was disaggregated by trypsinization.
The growth curve was graphed with the number of cells on the Y-axis and time on the X-
axis. The data were fitted using Gompertz function using GraphPad Prism software and the
growth parameters calculated. The same protocol was followed for the growth studies of
NDx cells.

2.2.6. Temozolomide dose-response curves: For dose-response experiments, we plated
cells in four replicates at 20,000 cells per well in 96-well plates (Nunc™ tissue culture
treated, ThermoScientific™) in full growth medium for 24 h and then treated them with
different doses of TMZ in serial dilutions (0.05M to 5M) and tested them for cell viability
using the MTT assay. Cell control (without TMZ treatment) in every individual replicate
was considered as 100% viable, and the ICsy value was calculated as the dosage at which
50% viable cells are present with respect to control cells in each representative replicate.
Three biological replicates were performed with three technical replicates in each

biological replicate on a 96-well plate (Nunc™ tissue culture treated, ThermoScientific™).

2.2.7. In vitro differentiation of NSP: NSP were grown initially in DMEM followed by
addition of N-2 supplement (Thermofischer Scientific Ltd). Growth factors, bFGF and
EGF were reconstituted with 0.1% BSA solution at a concentration of 100 pug/mL. 20 pL
from this working stock was added to 100 mL of complete medium. Unused portions were
frozen and kept in aliquots until further use. All other conditions were maintained the same
as used in the proliferation/growth study. The NDx cells were cultured separately by

following the same method of culture of U87MG cells and frozen in cryo-vials for further
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studies.

2.2.8. Sample extraction, dilution and internal standard spiking for LC-MS/MS: The
9 samples harvested during growth every 24 hours over a period of nine days were used for
the metabolic profiling to understand nutrient uptake and kinetics. Culture samples were
thawed in an ice bath to aliquot 100uL of the sample for extraction. The aliquot was
transferred into a fresh 1.5 mL centrifuge tube. 400 pL of chilled methanol (previously
stored at -80°C) was added. The solution was thoroughly mixed for 2 min followed by
centrifugation for 15 min at 5000 rpm (4°C). The tubes were carefully removed, 300 uL of
supernatant was withdrawn and transferred into a fresh tube (Dilution level: 5X). A two-
step serial dilution of the supernatant was performed using 50% acetonitrile in water. In the
first step, 50 pL of supernatant was thoroughly mixed with 450 uL of diluent (Dilution
level: 50X). This solution was further diluted by mixing 100 pL of the sample solution
with 400 pL of diluent (Dilution level: 250X). Before injection, 100 pL of the sample
solution was mixed with an equal volume internal standard solution containing 4.4 uM
verapamil in 50% acetonitrile in water with 0.2 % formic acid. Standard preparation:
Standards of metabolites were prepared using chemically defined minimal essential media
(MEM), non-essential amino acid media (NEAA). Stock solutions were serially diluted to

generate the various calibration levels for quantitative estimations (Appendix B).

2.2.9. Metabolomics profiling using liquid chromatography high-resolution mass
spectrometry (LC-HRMS): Metabolic profiling of samples was carried out by Accela
1250 ultra-performance liquid chromatography (UPLC) in tandem with Thermo Q-exactive
high-resolution mass spectrometer (HRMS) using heated electrospray ionization (HESI)
interface. The UPLC and MS were operated using Xcalibur (Thermo, Version 2.0)
software platform, whereas HESI source parameters were set using Tune module (Thermo,
version 2.1). Samples were stored in a temperature controlled Accela autosampler
maintained at 4°C during LC-HRMS analysis. A reverse-phase C18 hypersil gold column
(10cm x 2.1mm x 3.0um) was used for chromatography. The mobile phase consisted of
0.1% formic acid in deionized water (Mobile phase ‘A’) and 0.1% formic acid in
acetonitrile (Mobile phase ‘B’). The elution gradient was set as 70% of mobile phase A
(0.0-2.5 min), 10% A (3.5-5.5 min), 70% A (5.5-8.0 min) with a constant flow rate at 1000
pL/min.

The HESI source spray voltage was set at 3.7kV with capillary temperature 300°C, sheath
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gas 45 units, auxiliary gas 10 units, heater temperature 390°C and S-lens RF at 50 units.
The mass spectrometer was set to m/z range of 60-900, resolution of 70,000 FWHM with
automated gain control target 1e6 and maximum injection time of 50 ms. 5uL of samples
was injected for analysis using the auto-sampler unit. The data was acquired in both
positive and negative ion mode in two separate batches. Metabolomics data analysis was
carried out by the Qual and Quan browser modules of Xcalibur (Thermo). [M+H]+ and
[M-H]- ions were used for all sets of data analysis in positive and negative ion mode
respectively.

A Qual/Quan approach of data processing was employed. First, accurate mass-extracted
ion chromatogram (AM-XIC) of various metabolites using 20 ppm mass extraction
window (MEW) were generated and peaks were confirmed using MS/MS spectral peak
matching. As the latter part of the Qual/Quan approach, the metabolites confirmed through
the qualitative analysis were guantified in various intra- and extra-cellular samples using
internal standard normalized linear regression models generated from standards. The detail
of MS/MS confirmations, concentration ranges and regression fits of various metabolites is
provided in Appendix B.

2.3. Results

The glioblastoma cell line U87MG contained a side-population (0.1%) of Hoechst-
effluxing cells. The side-population cells were confirmed with Verapamil, an ABC
transporter L-type calcium channel blocker and inhibitor of Hoechst 33342 dye efflux. The
separated populations were tested for morphological and phenotypic heterogeneity.
Morphology was studied by microscopy for both cell types and also the ability of the
spheroid cells to differentiate back into the glial cell type. Phenotypic heterogeneity was
tested by comparing growth kinetics and the nutrient uptake from complex media in

addition to the response to Temozolomide (Temodar™) used to treat glioblastoma.

2.3.1. Microscopy reveals distinct cell morphology of each population. Under bright
field microscopy, cultures of the separated U87MG showed characteristics of glial cells
with epithelial cell morphology (Figure 2.3A). Neurospheres (NSP) were seen as small
rounded cells that form floating aggregates in culture (Figure 2.3B). Fluorescent
microscopy further suggested a difference in fluorescence intensity between the NSP and
U87MG cells in the heterogeneous population (Figures 2.3C and 2.3D). This is indicative

of potential efflux of the Hoechst dye by a small population of cells, the side-population
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within the major population.

Neurosphere from
heterogeneous population

Figure 2.3: Heterogeneous cell population in U87MG as seen using microscopy. (A)
U87MG cells grown in DMEM medium, forming epithelial morphology with adherent
profile (B) Separated NSP cells grown in low attachment surfaces as spheres (C)
Fluorescence microscopy of a neurosphere from heterogeneous population before sorting
using FACS; The difference in fluorescence intensity of dye uptake (Hoechst 33342
staining) is shown in the blue fluorescence image. (D) Bright-field light microscopy
merged image of C. All microscopic images were captured in an EVOS® FLoid® system,
ThermoFisher Scientific. Scale bar: (A) and (B) at 20X magnification; (C) and (D) was
captured with a scale of 100uM.

2.3.2. FACS profiling identifies differential dye efflux properties in U87MG cells. To
confirm differential dye uptake, flow cytometric analysis was performed and side-
population were identified, characterized as NSP. The side-population cells were detected
in parental GBM cells, at a frequency of 0.1%. The NSPs were confirmed by use of
Verapamil. The fluorescence profile (Figure 2.4A) of viable cell population allowed

identification of the side-population that can be sorted further.
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Figure 2.4: FACS profiling of heterogeneity within U87MG cells. (A) Initial screening for
viable cells of U87MG cells: Cells were distinguished from debris using FSC (Forward scatter,
related to cell size). (B) Propidium lodide (PI) profile of U87MG cells: Pl is mainly taken up by the
dead cells. Gated cells were representative of viable cells. (C) Hoechst profile of US7TMG cells:
Hoechst Red versus Hoechst Blue was compared for the dot plot where the side-population of cells
was gated. NSP cells were recognized as a small tail extending first on the left side of the GO/G1
phase cells towards the lower “Hoechst Blue” signal. (D) Hoechst profile of US87MG in the
presence of Verapamil: the cells were treated with Verapamil and analyzed for the blocking of dye
efflux as a confirmation of side-population profile. In the presence of Verapamil, the gated side-
population decreases to a few cells confirming the blocking of dye efflux and this confirmation
helped the sorting of NSP cells.

The multi-step gating strategy was critical for characterizing the side-population and
discriminating the main population. The flow-cytometric profile based on the forward
scatter (FSC, indicative of cell size) and side scatter (SSC, indicative of cell granularity)
allowed distinguishing viable cells from cell debris. To assure that a detected signal arose
from single cells, cell doublets and aggregates were gated-out based on their properties
displayed on the SSC area (SSC-A) versus FSC area (FSC-A) dot plot (Figure 2.4A). Dead
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cells were recognized for their strong positivity for the dead cell discrimination marker,
propidium iodide (Figure 2.4B). This gating strategy primarily allowed the definition of
Hoechst profile of viable populations. Sub-population cells were recognized as a dim tail
extending first on the left side towards the lower ‘‘Hoechst Blue’’ signal (Figure 2.4C).
The mechanism of Hoechst dye uptake depended on the activation of the ABCG2
transporter system and this can be inhibited by the use of the calcium channel blocker,
Verapamil hydrochloride. The side-population was confirmed based on Hoechst 33342
efflux through the Verapamil-sensitive ATP-binding cassette (ABC) transporter, ABCG2
(Figure 2.4D).

2.3.3. Differential growth kinetics of the side-population

The growth of cells with differential dye efflux capability was studied based on a ten-day
experiment monitoring their proliferation (Figure 2.5). Viable counts of the specific cell
type were graphed as a function of time and then fitted to the Gompertz model using
GraphPad PRISM V4.0 (GraphPad Software, San Diego, CA, USA) to determine

maximum specific growth rate (umax), and maximum population density (Nmax).

The Gompertz function used to model the growth kinetics of both the cell types was as

follows:
N(t) = No exp (In(N(t)/No) [1 - exp(-kt)]

where No defines the initial seeding density of the cells, Nt is the number of cells at time t,

and k is the maximum specific growth constant (Table 2.1).

The doubling times calculated from the growth rates (Table 2.1) were 35.12 and 47.05
hours for the U87TMG and the NSP populations respectively. This function unlike the
traditional exponential model gives a better fit (Figures 2.5B and 2.5C) by the three
parameters used and predicts decelerated growth towards the end by accounting for lack of
resources or space. Thus the fitted Gompertz function reaches its horizontal asymptote for
U87MG and NSP after 6.17 and 4.8 doublings respectively. The maximum specific growth
rates calculated were 0.014 and 0.02 hr* for NSP and U87MG respectively. The NSP
population growth rate is 30% lower than the main population and thus the maximum
population density reached at the end of 216 hours was higher for U87MG as compared to
NSP. The heterogeneous population had a growth rate of 0.02 hr! and a doubling time of
36 hours.
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Table 2.1: Growth parameters determined based on Gompertz growth fit in GraphPad Prism

software
-1
Gompertz growth Nmax pMax (hr) - R Squared
parameters (cell numbers) ~ Gompertz. Monod’s q
Neurospheres 1.304*10° 0.01473 0.0145 0.9733
U87MG 1.556*10° 0.01973 0.0219 0.9421
Heterogeneous U87MG 1.383*10° 0.02316 0.0186 0.9690
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Figure 2.5: Growth profile of the heterogeneous population in U87TMG. (A) Workflow
used to obtain a homogeneous population of cells by FACS that were growth profiled. (B)
The growth of the heterogeneous population of cells U87MG and (C) The growth profile
(mean of 3 biological replicates) over 9 days for the separated NSPs & U87MG seeded at
the same density and graphed using the cell count every 24 hours. The Gompertz growth
kinetic model was fitted using GraphPad Prism. A comparison of (A), (B) and (C) shows
differential lag times and U87MG was observed to have a higher growth rate as compared
to NSP as indicated in the summary of growth kinetic parameters (Table 2.1).
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2.3.4. Dose-response parameters vary across cells for temozolomide

The objective of determining the dose-response curves for TMZ (Temodar), was to detect
and analyze any potentially different growth inhibition patterns exhibited by the side-
population NSP. The dose-response of U87MG and NSP are varied as seen in the steepness
of the dose-response curve (Figure 2.6), differences in maximum effect and the more
classical drug potency measurements (ICso and Emax).
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Figure 2.6: Dose-response curve for temozolomide. The dose-response summary was
graphed as cell viability (reported as % compared to control) against the concentrations for
TMZ. (A) U87MG showed the ICso value of 745.6 uM while (B) and NSP ICs, was
calculated to be higher at 1,039 uM using a non-linear regression curve fit using GraphPad
Prism. A detailed summary of all dose-response parameters is given in Table 2.

The summary (Table 2.2) indicates ICsg values indicative of the potency of the drug, Emax
values a measure of efficacy, Hill Slopes (HS) indicating effect per unit of drug and area
under the curves (AUC) that reflect the overall response of the cell lines to the drug. All
measurements were based on the estimation of % cell viability (run in quadruplicates)
obtained from MTT assay after 24 hours incubation with TMZ. The incubation time was
determined as 24 hrs after testing the time dependent effect of TMZ on NSP (Appendix A).
A lower ICsq value for US7MG cells (745.6 pM) indicates the higher potency of TMZ
against these cells (Figure 2.6A). A higher 1Cso for NSP (1039 uM) indicates a potential
lower efficacy of the drug on these cells (Figure 2.6B). The fold resistance was calculated
to be 40%. The Emax values for NSP are almost three-fold higher than that of U87MG
indicating higher efficacy of TMZ on the main cell line as compared to the side-population
(Table 2.2). However, an HS value of near 1 for NSP indicates a potentially higher
efficacy, at least in culture. AUC combines potency and efficacy of a drug into a single
parameter. AUC values were compared across U87MG and NSP exposed to the same
range of TMZ concentrations indicate a higher impact of the drug on U87MG.
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Temozolomide is potentially also shown to be efficacious in controlling the side-
population growth but only at concentrations that are 40% higher (indicated by fold

resistance ratio 1.41).

Table 2.2: Summary of dose-response analysis for TMZ.

Dose response

Us7MG Neurospheres
summary
ICs0 (UM) 745.6 1039
Emax 25.53 45.28
Log 2 (Hill Slope) -1.95904 0
AUC 53039 276836

2.3.5. Quantitative exo-metabolite profiling identifies differential dynamics of
nutrient uptake in the side-population

LC-MS/MS was used to monitor the differential nutrient uptake of glucose and amino
acids required for growth (Figures 2.7A, B, and C). Consumption of major nutrient glucose
correlated with the release of by-product lactate consistent with the well-documented
Warburg effect in transformed cells (Vander Heiden et al. 2009; Feron 2009; Warburg et
al. 1923). The extent of the Warburg effect was also measured through estimation of the
lactate secreted in relation to the glucose consumed. Glucose was taken-up linearly during
growth of U87MG. The side-population NSP had a slight lag before glucose uptake and
was consumed exponentially. Glucose influx is also seen to be differential between NSP
and U87MG (Figure 2.7C). Among the amino acids, glutamine consumption (Figure 2.7D)
was quantitatively the highest and closely mirrored glutamate secretion in the media. The
nutrients that were completely depleted during the time frame growth as monitored in both
U87MG and NSP were glucose, glutamine and serine although with varied dynamics
(Figures 2.7D, E and F). Tryptophan was utilized completely by U87MG only indicating
potentially different functional roles in NSP (Figure 2.7G). The maximum uptake rates of
these amino acids in U87MG being highest in the first 24 hours decreasing several folds by
the end of 96 hours (Figures 2.7D-H). NSP, however, seems to show maximum uptake of
these amino acids in the 24-48hr time frame indicating a potential lag in the first 24 hours.
Interestingly, the patterns of utilization seem to indicate a linear decrease of these nutrients
for UB7MG while NSP growth is supported through the exponential decrease of the same
nutrients with a time delay of about 48 hours in their uptake corresponding to the end of
the first observed doubling (Figures 2.8A, B). Ala, Glu, Gly, and Pro were secreted by the
U87MG population as shown in a clade different from the rest of the metabolites that are
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Figure 2.7: Consumption and release profile for selected metabolites. Consumption and
excretion rates of glucose, lactate, and amino acids by U87MG and NSP cells. Amino acids
are ranked in descending order by absolute magnitude of their maximum uptake and
release fluxes in US7MG (A, B). Each bar represents the slope from a linear fit of n = 3
replicates = SE. Standard three-letter abbreviations are used for amino acids. (C) Maximum
uptake/release rate of GIn, Glc and Lac. Glc-glucose; Lac-lactate. Rapidly proliferating
cells of US7TMG/NSP in a culture consumed GIn (D) and (E) serine and (F) glucose in
excess of other nutrients while only U87MG consumed (G) tryptophan in excess. US7TMG
utilized GlIn at a faster rate compared to NSP cells. NSP cells were found not to utilize
tryptophan until 144 hrs (6 days) of growth. Uptake of glucose was faster in U87MG and
slower in NSPs. (H) Lactate release was found to be proportional to the utilized glucose

concentration and was stable from 120 hrs in NSP cells.
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Figure 2.8: Quantitative exo-metabolite profiling of separated U87MG and
neurospheres. Normalized dynamics of LCMS-based concentration profiles of amino
acids over time was plotted as a heat map for U87MG (A) and NSP (B). The heat map
indicates the consumption/release of the amino acids in the extracellular medium over
time. The profile varies across a scale of O to 1 wherein 1 corresponds to
release/accumulation and O corresponds to the least value/uptake. The clustergram of
U87MG (C) and NSP (D) shows the relative concentration of all amino acids in the
external environment over time.

all consumed (Figures 2.8C and D).

This phenomenon has been seen in previously studied glioblastoma cells. The NSP
population however only secreted alanine and glutamate. Glycine and glutamate were
secreted initially in fast dividing cells and then taken-up later suggesting a metabolic
functional role for them in the NSP (Figures 2.8A and B). Several amino acids including
Cys, Leu/lle, Lys, Gly, Met, Phy, Ser, Thr, Tyr, and Val were utilized linearly in the first
48 hours of growth only by U87MG (Figure 2.8A). NSP was observed to utilize these only
after the first doubling (Figure 2.8B). Another feature distinct from U87MG was the
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utilization of the amino acids Tyr, Trp, Val, Thr, Ser, Pro, Met, Phe, Lys, Leu/lle, His in
NSP cells somewhere between 120- 168 hours and continued until growth was monitored
at 216 hours (Figures 2.8A and B). This indicated that the demand for these nutrients at
that time may exceed the endogenous synthetic capacity in NSP and thus necessitate
uptake.

2.3.6. Side-population NSP has the capability of differentiation into a glial cell type
The ability of the side-population to undergo differentiation and form specialized cell types
was confirmed in an assay that provided growth factors for such differentiation (Figure
2.9). The differentiated neurospheroidal cells (NDx) exhibited glial morphology and were
adherent in contrast to the NSP (spheroidal) side-population. NDx cells showed a TMZ
dose response in between NSP and U87MG, exhibiting an 1Csy value of 817.5 uM and
growth rate of 0.01634 hr™ (Figures 2.10A, B and Tables 2.3 and 2.4).

A Neurospheres in 6 well plates
(Media +/- N2/B27 + EGF and bFGF)

Figure  2.9: Redifferentiation
capability of drug resistant side
population cells. (A) Experimental
setup for study: 6 well plate

containing the NSP in media

supplemented with or without growth
factors, bFGF and EGF. Column 1 in
the plate contains media without

growth factors as control for the

Control

experiment (B) Microscopic image of
one NSP on day 1 (24 hours after

C Day 1 Day 4

seeding) and day 4 supplemented
with media without EGF/bFGF; (C)

Microscopic image of NSP on day 1,

With supplements

differentiating into adherent cells on

day 4. (D) Microscopic image of
another  neurosphere (NSP  cell)

undergoing differentiation from day 1

With supplements

to day 4.

Differentiation
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Table 2.3: Growth parameters for NDx cells.

Growth parameters NDx cells
Growth rate (hr ™) 0.01634
Nmax (cell numbers) 2.826%10°
R square 0.9325

Table 2.4: Dose-response summary for NDx cells.

Dose-response summary NDx cells
IC50 (uM) 817.5
Emax 44.10
Log 2 (Hill Slope) ~-1.000
AUC 83256
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Figure 2.10: NDX cells show distinct growth, dose-response, and metabolic dynamics.
(A) The growth of NDx cells: Gompertz growth fit is used for calculating the growth
parameters. Growth rate = 0.01634 hr. (B) Dose-response of NDx cells to TMZ: ICsy is
found to be 817.5uM which is higher than U87MG and lesser than NSP. The complete
dose-response summary is given in Table S2. (C) Heatmap of max normalized values of
exo-metabolite concentration measured by LCMS analysis at every 24 hours of growth.
The consumption and release of different metabolite profile differ from that of U87MG and
NSP. (D) Clustergram of exo-metabolite concentration max normalized to time points to
highlight the presence of highly concentrated metabolite in each time point.
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The exo-metabolome analysis of growth samples also showed similarities to U87TMG
especially with respect to glucose and glutamine consumption. Serine, tryptophan and

glutamate profiles mimicked NSP cells (Figure 2.10C, and D).

2.4. Discussion

Although the existence of small minority populations with differential histology and dye
efflux properties within cancer cell lines has been known for decades (Golebiewska et al.
2011; Hirschmann-Jax et al. 2004; Golebiewska et al. 2013; Broadley et al. 2011), the
underlying biochemical physiology of how this shapes functional heterogeneity is still
incompletely understood. Here we report the functional characterization of differential
growth & proliferation of a cellular side-population isolated from the U87MG glioblastoma
cell line. The identification of differential dose response and resistance of the side-
population to TMZ, a clinically approved DNA methylating drug to treat glioblastoma,
highlights the need to unravel functional heterogeneity. The incredible genetic and
histological heterogeneity of tumors seems to involve the common induction of a finite set
of pathways to support core functions including anabolism, catabolism, and redox balance
(Ros et al. 2012). This study revealed novel heterogeneity in the context of varied growth-
limiting nutrients and uptake rates in addition to micro-environmental changes. To our
knowledge, such functional physiological responses have not been correlated to drug

response till date for the side-population (NSP) of GBM cells.

U87MG showed a high rate of glucose consumption indicated the flux via aerobic
glycolysis to satisfy the bioenergetics of ATP demand (Figure 2.11) depicted by using
LCMS metabolite profiles, resembled many cancer cell lines. The dynamic exo-metabolite
profiles show higher utilization rates for glucose in U87MG cells and changes in metabolic
fluxes occur in primary response to growth-factor signaling (AKT), independent of
changes in ATP. Proliferating cells are in much greater need of reduced carbon and
reduced nitrogen, as well as cytosolic NADPH for reductive biosynthetic reactions.

The reprogramming of cellular metabolism toward macromolecular synthesis is critical to
supplying enough nucleotides, proteins, and lipids for a cell to increase its total biomass
and then divide to produce two daughter cells. Glucose and glutamine are rapidly
consumed simultaneously by U87MG cells during proliferation suggesting the induction of

the MYC transcriptional program. Glutamine conversion to AKG by glutamate
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Figure 2.11: Predicted cellular metabolism of U87MG and NSP. The reprogramming of cellular metabolism towards macromolecular
biosynthesis is shown. U87MG predominantly uses glucose (highlighted in blue) and glutamine (highlighted in red) simultaneously thus
triggering aerobic glycolysis for bioenergetics demand and glutaminolysis for anaplerosis of TCA cycle. NSP cell population preferentially
utilizes glutamine and concomitantly increases AKG even in the presence of glucose. This reprograms the TCA cycle.
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dehydrogenase (GDH) or by transamination reactions, remove the oa-amino group from
glutamate transferring it to non-essential amino acids secreted from the cell, like; alanine,
glycine, and proline via transaminases (as seen in Figure 2.8A for U87MG). The majority
of acetyl-CoA in U87TMG cells is derived from glucose, while OAA is derived from

glutamine.

Consistent with this hypothesis (Figure 2.11), activation of the tumor suppressor p53
transcriptional program has been shown to be critical for cell survival following glucose
depletion (Jones et al. 2005) that could potentially turn on adenylate kinases to meet ATP
demand. This activity is required to maintain the TCA cycle under conditions when cells
use citrate as a biosynthetic precursor of lipids, cholesterol and fatty acids via the AKT
controlled ATP citrate lyase. Glutamine was utilized in excess of its nitrogen requirements
and potentially used as intermediates in NSP cells in the presence of minimal amounts of

glucose (Figure 2.11).

Differential tryptophan metabolism suggests the role of this carbon source for fatty acid
synthesis suggesting a source of NADPH (the electron donor for fatty acid synthesis) and
anapleurosis to replenish TCA cycle of picolinate carboxylase activity in maintaining a
balance between nicotinamide nucleotide synthesis and acetyl-CoA production that may
further affect acetylation (Figure 2.11). The differentiated population NDx from NSP was
closer to U87MG in its metabolite consumption patterns and growth profiles. Since TMZ is
a DNA methylating drug, the potential effects of metabolism on epigenetics are critical in
drug action and cell susceptibility. A reduction in flux through aerobic glycolysis reflective
of higher NAD levels could possibly control the SIRTUIN family transcriptional repressors

and silence chromatin via decreasing histone acetylation marks.

The non-dependency on glutamine also suggests normal levels of methylation marks in
U87MG. The high levels of AKG may potentially turn on high levels of the histone
demethylases that prevent the methylation and thus increase the amount of drug (ICs)
needed for cidal activity of the side- population. Further experiments are needed to be done
to explore the implication of AKG in the demethylation of DNA and its effect on drug
sensitivity. In line with this hypothesis, the side-population exhibited properties of 30-40%
fold resistance (indicated by higher 1Csy values) during the studied chemotherapeutic

response to the drug.
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2.5. Conclusions

The importance of characterizing sub-populations (NSP) within the main population
(UB7MG) is critical to understanding the contribution of each cell type to overall growth
and metabolism of tumor cells. The influence of the presence of sub-populations as those
discussed in this chapter on drug dose-response, potency and efficacy may eventually help
in better drug regimens and treatment strategies. Drug resistance of these side populations
of cells characterized as neurospheres (NSP) in this Chapter 2 is further studied for its
genotypic variations and also characterized for secondary phenotypes. The differential
genotype-phenotype relations compared to the main population (U87MG) are delineated
and discussed in subsequent chapters of this thesis. Moreover, the results strongly indicate
the role of altered metabolism in NSP in addition to drug efflux as a driver for

temozolomide resistance.
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Chapter 3

Candidate Gene Interaction
Networks in Glioblastoma

“Epigenetics doesn't change the genetic code, it changes how that's read”.

- Bruce Lipton

“DNA, like a tape recording, carries a message in which there are specific instructions for a
job to be done”.

-Arthur Kornberg
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Abstract

There is aneed to profile ABC transporters along with candidate cancer (CAN) genes for a
system-level understanding of drug resistance. This chapter 3 illustrates the use and
application of network anaysis guided real-time quantitative PCR (gQPCR) to discern
differential gene expression comparing drug-sensitive cells (U87MG) having the adherent
state of growth to cells that are drug resistant (NSP) and forms spheroids. Patterns of gene
expression by cells could yield the mRNA abundances of the key gene markers (CAN-
genes and ABC transporters) and help in characterizing drug resistance towards
understanding the metabolic rewiring in the resistant cells.

This chapter discusses our findings highlighting the variation in mRNA transcript
abundances and differential expression of genes AKT1, TP53, PTEN, EGFR and MET
across the populations identified from U87MG. Relative quantitation of gene expression
measurements of ABC transporters in NSP showed two to three-fold variations as
compared to U87MG. Differentidd mRNA abundance of AKT1, PTEN, PIK3CA
controlling substrate uptake, and metabolism, drug efflux through ABC transporters,
nutrient transport, and epigenetic control MDM2 are potentially critical in shaping DNA

methylation effects of temozol omide mechanism, causing resistance.

44 mRNA abundances of CAN genes | Chapter 3



3.1. Introduction

Glioblastoma has four distinct subtypes. proneural, neural, classica and mesenchymal
based on gene expression patterns and correlates to clinical characteristics (Verhaak et al.
2010). However, little is known about the distinct phenotype and possible activation of
genetic and cellular programs in the biology of minor populations, that distinguish them
from major cell types in the tumor environment (Hirschmann-Jax et al. 2004; Bleau et al.
2009). Microarray technology has proven to be very useful in the complete molecular
characterization of tumor grades, thus generating evidence of a transition that is unique in
every stage of cancer (Khodursky et al. 2000; Hoelzinger et a. 2005). Gene expression
analysis not only helps in histopathological diagnosis known so far but also in identifying
new signatures especially of non-characterized sub-population that causes drug resistance
(Immanuel et al. 2018; Hoelzinger et a. 2005).

It is aso expected that molecular characterization of drug-resistant cells would eventually
lead to the application of customized therapy to a particular tumor microenvironment.
Increasingly gene expression signatures and detailed molecular characterization are
routinely used in the clinic as prognostic markers to classify tumors and stratify patient
risk/treatment groups. Adaptive signature design through gene expression profiling is being
used to characterize the sensitivity of the patient to therapy. This association of gene
expression is highly dependent on the purity of the tissue sampled and identification of

genes with so-called static signatures.
3.1.1. Network analysis using PathwayStudio™

Information about gene to protein function and cellular pathways is central to the system-
level understanding of human disease. The knowledge about the key cancer candidate
(CAN) genes specific to each cancer type is routinely characterized and reported in
numerous scientific publications. There is a huge need to bring the relevant information
together using automated software systems to validate, organize and study pathway

implications from legacy data.

PathwayStudio™ is a web-based software and tool developed for analysis of molecular
networks by text-mining from databases that contain the cancer candidate gene information
(Nikitin et al. 2003). The choices of cancer candidate genes can be delineated by using this
web-based software to rank the genes that are linked to glioblastoma with the highest
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relevance to the published dataset. The unique feature of PathwayStudio is the inbuilt
natural language processing module MedScan (Nikitin et al. 2003) that can convert the
keywords of PubMed into pathway diagrams. Gene interaction networks also can be built
by using the known legacy data that can benefit from addressing the effect of these genes
on a network/pathway.

3.1.2. Cancer candidate (CAN) genesand their role

The Cancer Genome Atlas (TCGA) and Parsons et a. analyzed 20,661 protein-coding
genes, in 22 human GBM samples, by using Sanger sequencing. These candidate cancer
genes included TP53, PTEN, CDKN2A, RB1, EGFR, NF1, PIK3CA, and PIK3R, that
have been previously implicated in gliomas (Frattini et al. 2013). The methylation status of
the MGMT may be causal in intra-tumora chemotherapeutic heterogeneity observed in
GBM and other cancers (Little et al. 2012; Szerlip et al. 2012). Receptor tyrosine kinases
(RTKs) including EGFR, MET, and PDGFRA has been identified with varying levels of
amplification (Snuderl et al. 2011; Szerlip et a. 2012; Little et al. 2012). Intra-tumoral
variation was observed in single-cell RNA sequencing and gene expression from five
primary GBMs (Patel et a. 2014).

There are many gene expression studies for selected signaling pathways like PPARG,
JAK-STAT, EGFR, MGMT, and DNA repair enzymes and some metabolic genes like
IDH1/IDH2, LDH, SDH that have been reported in the literature (Yeung et a. 2013;
Szerlip et al. 2012; Kohsaka et al. 2012). With the increased discovery of gene and protein
expression signatures [4] and detailed molecular characterization to characterize the drug
sensitivity, rigorous phenotyping of the subpopulations (NSP), in addition to morphology
and drug efflux is critical to understand the resistance.

3.1.3. ABC transporters and drug resistance

One of the largest protein families is ABC (ATP-binding cassette) proteins and these
transporter families are present in al living organisms ranging from microbes to humans
(Higgins 2001; Stefkové et al. 2004). This kind of widespread presence of these proteins
suggests a fundamental role. Members of the ABC superfamily are involved in a broad
spectrum of functions, including detoxification (ABCBI/MDR1, ABCCL/MRP1, ABCG2)
(Chang 2003), defense mechanism against foreign substances and oxidative stress
(ABCCYMRPs), uptake and secretion processes (MDRs, MRPs), lipid metabolism
(ABCA1, MDRS3, ABCGs) and antigen presentation (ABCB2/TAP1 and ABCB3/TAP2)
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(Szakécs et a. 2008; Higgins 2001; Stefkova et a. 2004; Vasiliou et a. 2009). ABC
transporters  with multidrug transporter function (ABCBLMDR1, ABCCLUMRP1,
ABCG2) are present in amost al tissue types by showing a good expression profile,
proving their importance in cellular defense mechanism (Szakacs et a. 2008). 44 ABC
transporters are selected and profiled for mRNA abundances in this study that accounts for
most of the drug transportation related to cancer.

3.2. Methods

3.2.1. Selection of CAN genes using Pathway Studio™ (v11.0.5) analysis. Pathway
Studio 11.0.5 software from Elsevier (https.//product.pathwaystudio.com/mammal cedfx/)

was used to select specificaly for CAN genes in silico. Initia pathways/networks (legacy
data) implicated in GBM were reconstructed by specifying related key terms including
oncoproteins. This resulted in deciphering sub-networks and pathways that included inter-
relationships with a confidence score of 3. To further validate networks and infer causal
pathways filters were applied to include >25 references. This analysis resulted in a pathway
containing 23 genes (Table 3.1) and 1 miRNA. These 23 genes were then expression

profiled to quantitate relative mRNA abundance using gPCR.

3.2.2. RNA extraction and cDNA synthesis: Cultured cells were counted using a c-chip
hemocytometer (Labtech International Ltd, East Sussex, UK). Cells (10 x 10° cells) were
centrifuged at 8000xg for 10 minutes, the supernatant was discarded and the remaining cell
pellet was used for RNA extraction using the RNeasy mini-extraction kit (Qiagen,
Manchester, UK). In the final step of the protocol, the column was placed on to a nuclease-
free 1.5 mL tube and 50 puL of RNase-free water (Thermofisher Scientific Ltd) was added
to the membrane for RNA-elution. After 1 minute incubation at room temperature,
followed by centrifugation for 1 minute at 8000xg, the eluted RNA samples were stored at
-20°C for short-term storage and at -80°C for long-term storage. Quality of RNA was
checked using RIN value (Figure 3.2) determined using Bioanalyzer (Agilent Pvt. Ltd). To
remove any DNA contamination, a TURBO DNA-Free treatment (Ambion, Thermofisher
Scientific Ltd.) was performed before cDNA synthesis. RNA was reverse transcribed using
Superscript 111 (Thermofisher Scientific Ltd) using the manufacturer's protocol. The
synthesized cDNA was stored at -20°C for further use.
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Table 3.1: List of cancer candidate genes selected using Pathway Studio 11.0.5

Gene Human
Gene Name chromosome Cell Localization
Symbol ..
position
V-akt murine thymoma viral ] )
AKT1 oncogene homolog 1 14g32.32 Nucleus; Cytoplasm; Cell membrane
CDK4  Cyclin-dependent kinase 4 12q14 Membrane; Nucleus; Cytoplasm
CDKN2A Cyclin-dependent kinase inhibitor op21 Mitochondrion; Nucleoplasm; Nucleus;
2A Cytoplasm; Nucleolus
Plasma membrane; Cell junction; Lysosome;
CXCR4  Chemokine (C-X-C motif) receptor 4 2021 Early endosome; Late endosome; Cell
membrane
Endosome membrane; Plasma membrane;
. Endosome; Golgi apparatus membrane;
EGFR Epidermal growth factor receptor P12 Nucleus; Endoplasmic reticulum membrane;
Nucleus membrane; Secreted; Cell membrane
H3F3A  H3histone, family 3A 1g42.12 Chromosome; Nucleus
Hypoxiainducible factor 1, alpha
HIF1IA  subunit (basic helix-loop-helix 14g23.2 Nucleus; Cytoplasm
transcription factor)
| socitrate dehydrogenase 1 . : o .
IDH1 (NADP4), soluble 2033.3 Cytoplasm; Peroxisome; Mitochondria
| socitrate dehydrogenase 2 . L .
IDH2 (NADP+), mitochondrial 15¢26.1 Mitochondrion; Mitochondria
L1CAM L1 cell adhesion molecule Xq28 Cell membrane
MDM2 MDN.IZ anogene, E3 ubiquitin 12914.3-g15 Nucleoplasm; Nucleus; Cytoplasm; Nucleolus
protein ligase
MET Met proto-oncogene 7931 Plasma membrane; Membrane; Secreted
momt  O-&methylguanine-DNA 10926  Nucleus
methyltransferase
MIR21  MicroRNA 21 17g23.1 Cytoplasm
Nuclear factor of kappa light
NFKBIA  polypeptide gene enhancer in B-cells 14913 Nucleus; Cytoplasm
inhibitor, alpha
PDGFRA Platelet-derived growth factor 4912 Plasma membrane; Cell membrane
receptor, alpha polypeptide
Phosphatidylinositol-4,5-
PIK3CA  bisphosphate 3-kinase, catalytic 3026.3 Cytoplasm
subunit alpha
Phosphoinositide-3-kinase,
PIK3R1 regulatory subunit 1 (alpha) 5q13.1 Cytoplasm
PTEN Phosphatase and tensin homolog 10g23.3 Nucleus; PML body; Cytoplasm
Signal transducer and activator of
STAT3 transcription 3 (acute-phase response 17g21.31 Nucleus; Cytoplasm
factor)
. Chromosome; Telomere; Nucleoplasm;
TERT Telomerase reverse transcriptase 5p15.33 Nucleus; PML body: Cytoplasm:Nucleolus
TNFSF1g | Umor necrosisfactor (ligand) 3026 Membrane; Extracellular
superfamily, member 10
P53 Tumor protein p53 17p13.1 Mitochondrion matrix; Nucl gus; PML body;
Cytoplasm; Endoplasmic reticulum
VEGFA  Vascular endothelial growth factor A 6pl2 Secreted; Extracellular; Cell membrane
48 mRNA abundances of CAN genes | Chapter 3



[nt]

.E . - ™~
5 & £ = = US7MG-RNA-1
t £ 5 & & RS
33 3 & & RIN: 9.90
o [FU] ;
40 ‘ |
20~ - '
04—’ \
| | I 1
25 200 1000 4000 (nt
000 — W L B e B 28 S c
NSP-RNA-1
T f——— - 135 Ak 570
. [Fu) _
500 — m— | &
200 — —— o] | |;| ‘
25 — — 0 | - P !'.‘___ \
1 | L | 1 |
L 1. F 3 & 25 200 1000 4000 [nt]

Figure 3.22 RNA analysis using Agilent 2100 Bioanalyser. (A) Gel picture for RNA
samples run using RNA Nano-chip from Agilent. Electrophorograms of RNA from

Separated U87MG cells (B) and (C) NSP showing the predicted RIN values > 9.70.

Table 3.2: Primers and probes designed for gene expression studies of reference genes
(control genes) for GENORM-based normalization of gPCR data

Gene Gene Name Transcript Forward Primer Rever se Primer Probe
Symbol Number
GAPDH Glyceradehyde 3-Phosphate  NM_00204 AGCCACATCGCT GCCCAATACGACC 60
Dehydrogenase 6 CAGACAC AAATCC
. NM_00110 ATTGGCAATGAG GGATGCCACAGGA
ACTB Beta-Actin 1 CGGTTC CTCCAT 11
. . NM_00404 TTCTGGCCTGGA TCAGGAAATTTGA
B2M Beta-2 Microglobulin 8 GGCTATC CTTTCCATTC 42
HPRT1 Hypoxanthine NM_00019 TGACCTTGATTT CGAGCAAGACGTT 73
Phosphoribosyltransferasel 4 ATTTTGCATACC  CAGTCCT
RPL32 RPL 32 ribosomal protein NM_00099 GAAGTTCCTGGT GCGATCTCGGCAC 17
L32 4 CCACAACG AGTAAG
SDHA Succinate dehydrogenase NM_00416 AGAAGCCCTTTG CGATTACGGGTCT 69
complex, subunit A 8 AGGAGCA ATATTCCAGA
HMBS Hydroxymethylbilane NM_00019 AGCTATGAAGGA TTGTATGCTATCTG o5
Synthase 0 TGGGCAAC AGCCGTCTA
RPL13 RPL 13 ribosomal protein NM_01242 GAGGCCCCTACC TGTGGGGCAGCAT 28
A L13 3 ACTTCC ACCTC

3.2.3. GeNorm analysis for stable reference gene identification: Real-time gPCR was
initially carried out on all three cell types (Parental US7TMG, U87MG, and NSP) for 8
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reference genes (Table 3.2) selected based on a previous study (Vandesompele et al. 2002).
The primers designed for all these reference genes were based on the Primer3web solutions
(http://primer3.ut.ee/) and further validated for the primer-dimer formation and any non-
specificity using NCBI BLAST (Basic Loca Alignment Search Tool)
(http://www.nchi.nlm.nih.gov/BLAST), in order to reduce the chance of primers binding

non-specifically. The Cq values obtained from the gPCR were analyzed using the GeNorm
software (Vandesompele et a. 2002), to calculate the stability of transcripts. Based on this
data, GAPDH and RPL13A were selected as control genes (Figure 3.3) based on an
average expression stability (M) value of less than 0.4 (Vandesompele et a. 2002).

A B
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......

o Leatstabieganes Most stable genes <>

Figure 3.3: GeNorm analysis for stable reference gene identification. (a) Graph
showing the average expression stability value (M) for al the 8 reference genes selected
(Table 3.2). GAPDH and RPL13A were predicted to be highly stable among the selected
genes. (b) Determination of the optimal number of control genes for normalization was
carried out using GeNorm. These predictions showed that 2 reference genes, GAPDH and
RPL13A were sufficient for the optimal normalization as control genes.

3.2.4. Real-time PCR using SYBR green-1: Real-Time quantitative PCR (RT-gPCR) was
used to quantify gene expression of selected CAN genes. All primers designed for this
study were based on the Primer3web (http://primer3.ut.ee/) solutions and validated using
NCBI BLAST (http://www.nchi.nlm.nih.gov/BLAST), to reduce the chance of primers
binding non-specifically. SYBR Green | was used as areporter in the SYBR green assay to

increase the sensitivity of detection. gPCR was run on a Light Cycler 480 instrument from
Roche Applied Sciences. MIQE (Minimum Information for Publication of Quantitative
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Real-Time PCR Experiments) (Bustin et a. 2009) guidelines were complied-with for al

the protocols.

Table 3.3. Primers and probes designed for CAN genes

5;3;';%' Transcript Forward Primer Reverse Primer P,r\lc:)l?e gn;sl(lt():g)n
AKTL B 3l GGCTATTGTGAAGGAGGGTTG TCCTTGTAGCCAATGAAGGTG 69 108
CDK4 B Sl GTGCAGTCGGTGGTACCTG TTCGCTTGTGTGGGTTAAAA 25 82
CDKN2A  ENSLOO00030MNS - GTeeACCTGGCTGAGEAG TCTTTCAATCGGGGATGTCT % 133
CXCR4 B3 GGTGGTCTATGTTGGCGTCT ACTGACGTTGGCAAAGATGA 18 73
EGFR =N 22?&%%%1564632'.21% GCCTTGACTGAGGACAGCA TTTGGGAACGGACTGGTTTA 69 72
H3F3A =N 22%00%%%31%2%}151'? GCCATCTTTCAATTGTGTTCG GGTACAGAGACCTCCTTACTTACCC 19 124
HIFIA =N 22%%%%%?%5%% TTTTTCAAGCAGTAGGAATTGGA GTGATGTAGTAGCTGCATGATCG 66 66
IDH1 B 0 GGTGACATACCTGGTACATAACTTTG ~ GTGTGCAAAATCTTCAATTGACTT 77 1
IDH2 B 3 TGGCAGTTCATCAAGGAGAA CAGTCTGGTCACGGTTTGG &2 1
LICAM B 00000001l CGATGAAAGATGAGACCTTCG AAGGCCTTCTCCTCGTTGTC 80 64
MDM2 E%Ssgogggggszgéﬂs GACTCCAAGCGCGAAAAC GGTGGTTACAGCACCATCAGT 68 89
MET B CAGAGACTTGGCTGCAAGAA GGCAAGACCAAAATCAGCA &2 73
MGMT B/l GTGATTTCTTACCAGCAATTAGCA CTGCTGCAGACCACTCTGTG 52 125
NFKBIA £\ gg%%%%%%%%gg' GTCAAGGAGCTGCAGGAGAT ATGGCCAAGTGCAGGAAC 38 110
PDGFRA  CNSTO0000272903] A\ GGTGGTTGACCTTCAATGG TTTGATTTCTTCCAGCATTGTG 80 74
PK3CA  CNSTO0000X3%6T3| A GATCCTCTCTCTGAAATCAC GAATTTCGGGGATAGTTACACAA 2 85
PIK3R1 Emi%%%%%ﬁg%ﬂ) AATGAACGACAGCCTGCAC CCGTTGTTGGCTACAGTAGTAGG 16 68
PTEN =N 22%%%%%?%%22‘? TCCACAAACAGAACAAGATGCTA CGATTTCTTGATCACATAGACTTCC 6 129
STAT3 =N 22%00%%%21%‘:3%%‘3 GAGCAGAGATGTGGGAATGG CGGTCTCAAAGGTGATCAGG 17 88
TERT =N 22%%%%%?3%86;51& GCCTTCAAGAGCCACGTC CCACGAACTGTCGCATGT 19 61
TNFSFI0  ENSTO9900241250 2 CCTCAGAGAGTAGCAGCTCACA GGCCCAGAGCCTTTTCAT 6 1
P53 B O AGGCCTTGGAACTCAAGGAT CCCTTTTTGGACTTCAGGTG 12 85
VEGFA B 3l TTAAACGAACGTACTTGCAGATG GAGAGATCTGGTTCCCGAAA 12 93

3.2.5. Real-time PCR using hydrolysis probe assay: LNA hydrolysis probes were used

in the gPCR assay to increase specificity and reduce primer dimer formation and detection.

Probes were designed (Table 3.3) using the universal probe library assay design center

from Roche Applied Science, Ltd. (http://www.universalprobelibrary.com). gPCR was run
on aLight Cycler 480 and al the protocols followed MIQE guidelines similar to the SYBR

Green assays.

3.2.6. Gene expression of ABC transporters. Real-Time quantitative PCR (RT-gPCR)

was used to quantify gene expression of ABC transporter gene array (ThermoFisher

Scientific, TagMan Array Human ABC Transporter Panel). This 96 well plate array

consisted of duplicate wells with primers and hydrolysis probes for 44 ABC transporter
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genes having 4 housekeeping genes as control (primers and probes were optimized for its
high specificity feature by the manufacturer). TagMan probes were used as areporter in the
assay to increase the specificity in comparison to SYBR green dyes. 10 pl of reaction mix
containing the synthesized cDNA from U87MG and NSP cells with TagMan master mix
was used in each well of the plate for the study. Gene expression profiling was run on a
Light Cycler 480 instrument from Roche Applied Sciences. All the anayses were
performed in the LCS480 1.5.1.62 software.

3.3. Results

3.3.1. Network of cancer candidate (CAN) genes. PathwayStudio™ web-based software
was used that runs the in-built text-mining MedScan module to link the published data
from PubMed to correlate it with the key terms specified by the user. The choice of genes
for gRT-PCR was based on this Pathway Studio™ anaysis. A network was generated
linking genes with selected functional biological processes, regulatory networks and
glioblastomato identify CAN genes. References related to each selection were validated by
enrichment analysis by ranking the genes based on the maximum number of references.
The final prediction included 23 genes and 1 miRNA that are highly relevant to
gliomagenesis (Figure 3.4A). Network analysis was also carried out to understand the
interactions between these CAN genes (Figure 3.4A, B). 23 genes were selected (Table
3.1) based on high confidence scores. The interaction network highlighted maximum
interactions between AKT1, PTEN, TP53, VEGFA and STAT3 genes indicating the link to
cell metabolism and uptake of nutrients as discussed in Chapter 2.

3.3.2. Relative gene expression qPCR analysis of selected CAN genes: Real-time gPCR
was used to quantify and detect changes in the gene expression for the selected 23 CAN
genes relative to housekeeping/reference genes (Table 3.2). Of the workflows used, as
expected, higher sensitivity was observed for the SYBR Green | workflow while the
hydrolysis probe-based workflow demonstrated higher specificity. To compare across the
cell types, relative quantification was computed using the delta-delta Cq method (AACqQ)
and expression fold change represented as 2“““?. The gPCR assay results (Figures 3.5A,
C) were reported for two biologica replicates with three technical replicates within each
experiment. Statistically significant variation in gene expression was observed for genes
between the parental US7MG and NSP side-population (Figure 3.5A). Thus, heterogeneity

of MRNA expression was established through the significant distinct gene expression
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Figure 3.4: Network analysis of CAN genes. A) Prediction using Pathway Studio™ to
select the most relevant candidate genes on (confidence score of 3) for gene expression
analysis. 23 genes were selected as most critical to glioblastoma pathogenesis for
validation. B) Interaction network generated to understand the possible interaction between

the selected CAN genes.
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signatures observed between the heterogeneous population and separated populations
(Figure 3.5A). The differential mMRNA abundances of signaling pathway controllers,
histone deacetylases and methyl transferases potentially contribute to the varying dynamics
of nutrient uptake during proliferation and could dictate indirectly changes observed in

TMZ dose-response relation (increasing | Cso values and decreasing sensitivity).

It is well known that p53 and PTEN play a pivotal role in tumor suppression and are both
down-regulated (less MRNA level) in the U87MG cells with respect to NSP (Figure 3.5C).
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Figure 3.5: Relative gene expression analysis of CAN genes. A) Heatmap of relative
gene expression of CAN genes with respect to heterogeneous population (parental
U87MG) that shows the potential ramifications of expression signatures in side-
populations. (B) Network of interactions between the differentially expressed CAN genes:
To study the interactions between the differentially expressed genes, in silico enrichment
analysis were carried out and the pathway given. Highlighted entries are the genes showing
lesser expression in NSP cells with respect to U87MG cells. (C) Relative gene expression
of differentially expressed CAN genes between the separated population of UB7MG and
side-population NSP is shown.
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Up-regulation (higher mRNA level) of AKT1 in U87MG with respect to NSP is evident in
the differential glucose and amino acid uptake patterns as shown in Chapter 2. IDH1/IDH2
over-expression (higher mRNA level) in the NSP population in comparison with US7TMG
indicates potential reprogramming of the pathways around AKG that could eventually
cause downstream effects on the acetylation profiles. Increased PIK3CA (5 fold change) in
NSP could potentially dictate changes involving phosphorylation governing differentia
nutrient uptake. VEGFA and MDM?2 are also highly expressed (higher mRNA levels) in
the resistant population NSP compared to U87MG. The cyclin-dependent kinase CDK4 is
down-regulated as compared to U87MG indicating a potential cell cycle arrest that needs

to be overcome for NSP to proliferate.

Lowered H3F3A expression (lesser mRNA levels) in NSP indicates potential changes in
histone acetylation patterns. The interaction network (Figure 3.5B) with highlighted entries
shows the genes having more variations in their mRNA levels in NSP. These highlighted
genes (Figure 3.5B) included H3F3A, AKT1, HIF1A, CDK4, EGFR and MET indicating a
highly possible involvement of cell metabolism in defining the temozolomide resistance.
Although the dysregulation of the NSP population is reported here with reference to the
cancer cell line US7MG, it is plausible that such correlations may still hold when analyzed
in the context of a normal cell as well. The primary goal of this part of the study was to
highlight the potential of error due to the presence of sub-population of cells, in the
interpretation of the gene expression signatures based on varied sampling strategies and

also suggest contributing factors to the integrative analysis of the resistant phenotype.
3.3.3. Network analysisof ABC transporter genes.

To understand drug resistance, it is important to delineate the efficiency of drug
transporters that are known for drug transport across the cell membrane. For further
elucidation of the efficiency of drug transporters, primarily, the network interaction across
the transporters and the drug/molecules is studied using PathwayStudio™ web tool. Initial
network was generated to study the localization and distribution of the ABC transporters
inside the cell. This network (Figure 3.6) shows the distribution of ABC transportersin the
cell membrane, endoplasmic reticulum (ER), mitochondria and cytoplasm. This helps in
understanding the localization of these transporters and how they will eventually affect the
cell metabolism. Further, the interaction between these transporters and other molecules
(Drug/metabolites/small molecules) were studied through pathway anaysis.
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Interaction networks were generated for 5 out of 7 families of ABC transporters. ABCE
and ABCF have been identified recently and hence their entries are either less or not
present in the analysis. ABCA, ABCB, ABCC, ABCD, and ABCG contribute mgorly to
the transport of drugsin human. Amongst all the 7 sub-families of ABC transporters (Table
3.4), ABCB has the highest connectivity to the drugs and small molecules.
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Figure 3.6: Localization and distribution of ABC transporters in Human. ABC
transporters are found in the cell membrane, endoplasmic reticulum, mitochondria and
cytoplasm as shown in the network generated using PathwayStudio™.

ABCA1l and ABCB1 are the most connected transporters in the pathway analysis of
interaction networks (Figure 3.7). The molecules that are majorly connected to these
transporters are provided in Appendix B. This interaction network highlights that these
ABC transporters play an important role in the cell by mediating the transport of most of
the key metabolites and drugs. ABCG2, the transporter of Hoechst dye and Temozolomide

drug, aso found to be interacting with many compounds in the network.

3.3.4. mRNA abundances of ABC transporters genes. The gene expression of 19 out of
the 44 ATP-binding cassette (ABC) transporters profiled was varied between NSP and
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U87MG (Figure 3.8). Thedifferential mRNA abundances (17 higher and 2 lower for NSP)
potentially contribute to the efficiency of drug and nutrient metabolite transport and efflux.
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Figure 3.7: Interaction network generated using PathwayStudio™ highlighting the
potential transport of metabolites in addition to drugs. ABC transporters are involved in the
influx/efflux of drugs/metabolites.

Relative expression highlighted ABCB7 and ABCEL to be lower for NSP with respect to
U87MG. ABCCS5 had the highest variation and showed a 10-fold increase in mRNA
abundances. Maximum variation was seen in the ABCC subfamily. ABCG2, linked to
TMZ transport and Verapamil, showed a 20% increase in MRNA in NSP cells. The varied
abundance of transporters was aso linked to metabolite transport in the network analysis
and is provided in the table in Appendix B.
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Gene expression of ABC transporters
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Figure 3.8. Relative gene expression for ABC transporters. The fold change
(NSP/U87MG) has been plotted to show their differential mMRNA abundances.

Table 3.4: List of ABC transporter genes profiled in this study

Gene Symbol Approved Name Synonyms Chromosome
ATP-hinding cassette transporters, subfamily A :
ABCAL1l ATP binding cassette subfamily A member 1 TGD 9031
ABCA2 ATP binding cassette subfamily A member 2 9934
ABCA3 ATP binding cassette subfamily A member 3 f‘: I\C/I:_féOESTanS& 16p13.3
ABCA4 ATP binding cassette subfamily A member 4 FFM, ARMD2, CORD3 1p22
ABCA5 ATP binding cassette subfamily A member 5 EST90625 17g24.3
ABCAG6 ATP binding cassette subfamily A member 6 EST155051 17921
ABCA7 ATP binding cassette subfamily A member 7 ABCX 19p13.3
ABCAS8 ATP binding cassette subfamily A member 8 KIAA0822 17g24
ABCA9 ATP binding cassette subfamily A member 9 EST640918 17g24
ABCA10 ,i\(;rP binding cassette subfamily A member EST698739 17q24
ABCAllp TP binding cassette subfamily A Member o) 43050 1 14097 4p163
11, pseudogene
ABCA12 sz Pbinding cassette subfamily A member o o7 bsaco30 112 2034
ABCA13 g P binding cassette subfamily A member o 33676, Fi 133051 7p12.3
ABCA17P ATP binding cassette subfamily A member 17, pseudogene 16p13.3
ATP-binding cassette transporters, subfamily B :
ABCB1 ATP binding cassette subfamily B member 1 P-gp, CD243, GP170, ABC20 7921.12
TAPL transporter 1, ATP-binding cassette, sub- PSF1, RING4, D6S114E 6p21.3

family B (MDR/TAP)
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Gene Symbol  Approved Name Synonyms Chromosome
transporter 2, ATP-binding cassette, sub-
TAP2 family B (MDR/TAP) PSF2, RING11, D6S217E 6p21.3
ABCB4 ATP binding cassette subfamily B member 4 MDR2, PFIC-3, GBD1 7921
. , EST422562, ABCB5beta,
ABCB5 ATP binding cassette subfamily B member 5 ABCBSalpha 7pl4
ABCB6 ATP binding cassette subfamily B member 6 EST45597, umat, MTABC3 2036
ABCB7 ATP binding cassette subfamily B member 7 EST140535, Atmlp, ASAT Xq13.3
ABCBS ATP binding cassette subfamily B member 8 55152?28’ M-ABCL, 7936.1
ABCB9 ATP binding cassette subfamily B member 9  EST122234 12g24
ATP binding cassette subfamily B member EST20237, M-ABC2,
ABCB10 10 MTABC? 1932
ABCB11 flT Pbinding cassette subfamily B member g6 pop prIC2, PGYA 2024
ATP-binding cassette transporters, subfamily C:
ABCC1 ATP binding cassette subfamily C member 1 GS-X 16p13.1
ABCC2 ATP binding cassette subfamily C member 2 DJS, MRP2, cMRP 10g24
. . MRP3, cMOAT2, EST90757,
ABCC3 ATP binding cassette subfamily C member 3 MLP2, MOAT-D 17921
. , MRP4, EST170205, MOAT-
ABCC4 ATP binding cassette subfamily C member 4 B. MOATB 13931
ABCC5 ATP binding cassette subfamily C member 5 MRPS, SMRP, EST277145, 3927
MOAT-C
ABCC6 ATP binding cassette subfamily C member 6 EJARR (Zs EST 349056, MLPL, 16p13.11
cystic fibrosis transmembrane conductance MRP7, ABC35, TNR-CFTR,
CFTR regulator dJ760C5.1, CFTRIMRP 79312
. . HI, PHHI, SUR1, MRPS,
ABCC8 ATP binding cassette subfamily C member 8 ABC36, HHFL, TNDM2 11p15.1
ABCC9 ATP binding cassette subfamily C member 9 SUR2, CMD10 12p12.1
ABCC10 fOT Pbinding cassette subfamily Cmember . or o763 MRP7, SIMRP?  6p12.3
ABCCIL ﬁl’P binding cassette subfamily C member MRPS 1612
ABCCL2 ,:\ZTP binding cassette subfamily C member MRP9 16q12.1
ABCCI13 g P binding cassette subfamily C member — ooe e 510173 ABCCI3P  21q11.2
ATP-binding cassette transporters, subfamily D :
. , AMN, ALDP,
ABCD1 ATP binding cassette subfamily D member 1 adrenoleukodystrophy Xq28
ABCD2 ATP binding cassette subfamily D member 2 ALDR, ALDRP 12q12
ABCD3 ATP binding cassette subfamily D member 3  PMP70, ZWS2 1p21.3
ABCD4 ATP binding cassette subfamily D member 4 PMP69, P70R, EST 352188 14924
ATP-binding cassette transporters, subfamily E :
ABCE1 ATP binding cassette subfamily E member 1 RLI, OABP 4931
ATP-binding cassette transporters, subfamily F :
ABCF1 ATP binding cassette subfamily F member 1  EST123147 6p21.33
. , EST133090, ABC28, M-
ABCF2 ATP binding cassette subfamily F member 2 ABCL HUSSY-18 7936.1
ABCF3 ATP binding cassette subfamily F member 3  EST201864 3g27.1
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Gene Symbol  Approved Name Synonyms Chromosome

ATP-hinding cassette transporters, subfamily G :

ABCG1 ATP binding cassette subfamily G member 1  ABC8 21g22.3
ATP binding cassette subfamily G member 2 EST157481, MXR, BCRP,

ABCG2 (Junior blood group) ABCP, CD338 4q22.1

ABCG4 ATP binding cassette subfamily G member 4 WHITE2 11923

ABCG5 ATP binding cassette subfamily G member 5 STSL 2p21

ABCG8 ATP binding cassette subfamily G member 8 GBD4 2p21

3.4. Discussion

Chapter 3 provides key evidence for differences in measured gene expression within the
GBM heterogeneous cell line U87MG. Our study underscores the significance and
challenge of identifying heterogeneous populations as important to gene expression
analysis. The mRNA abundances in the NSP cells possibly reflect metabolism in a
microenvironment of low glucose and high glutamine (aso supported by the data from
Chapter 2). The differential growth factor signaling mediated by AKT1 that showed
differential mMRNA abundances is seen as a consequence of relatively low glucose levelsin
the microenvironment of NSP. The glutamine is converted to glutamate and AKG and the
TCA may operate in the opposite direction and provides anaplerotic AKG to make
glycolysis slower and reprogram it into ribose synthesis through PKM2 (Figure 3.9). AKG
was shuttled through reductive carboxylation to shuttle NADPH equivaents needed for
pyrimidine or fatty acid biosynthesis (Mazurek et al. 2005) events.

The increased expression (high mRNA abundances) of IDH1 and IDH2 are a means to
shuttle and derive more cytosolic NADPH needed to support pyrimidine/fatty acid
synthesis. The simultaneous negative regulation of ACL by AKT1 lowers the acetyl CoA
pool and hence the acetate potentialy available for histone acetylation (reflected in the
lower levels of histone acetylase H3F3A). The higher mRNA levels of cytokines STAT3
turn on the transcriptional program of MY C and induce consumption of glutamine in NSP
that is reflected in the metabolite profiles of the environment in Chapter 2. The MGMT
levels are similar in the absence of TMZ. HIF1A aso has differential mRNA abundances
across the heterogeneous populations in comparison to the parental population. This
highlights a differential regulation in the glycolysis of these two cell types that may
contribute to the differential glucose uptake in the metabolite profile in the LC-MS/MS
analysis of extracellular profiles. 19 out of the 44 ATP-binding cassette (ABC) transporters
profiled, were varied between NSP and U87MG. Relative gene expression highlighted
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ABCB7 and ABCEL to be lesser in the expression for NSP with respect to US7TMG.
ABCCS5 had the highest variation and showed a 10-fold increase in the gene expression.
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Figure 3.9: CAN genes and metabolism. Red arrows indicate the inferences from mRNA

abundances profiled using gPCR and its influence on metabolism.

In an overall comparison of MRNA abundances, the ABCC subfamily of ABC transporters
had the maximum variations. ABCG2 that is linked to the transport of temozolomide and
verapamil, showed 20% increased gene expression in NSP. Literature evidence for ABC
transporters to be responsible for the transport for other metabolites are also existing
(Sahoo et a. 2014). By complimenting to the transport of the key metabolites, ABC
transports not only help in the drug efflux but aso in the cell metabolism for the cell to
survive in the selection pressure, thereby eventually increase the chances of cancer relapse.

3.5. Conclusions

The work described herein provokes a new insight into the drug resistance problem and
highlights the potential role of cell metabolism aong with drug efflux mechanism of the
cells by profiling the CAN genes and ABC transporters. These results suggest that the
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MRNA abundances of CAN genes potentialy regulate the cell metabolism in addition to
the differential mMRNA abundances of ABC transporters. Also, these transporters that show
a differential expression profiles in NSP may potentially not only transport drugs but also
other metabolites like cholesterol critical for growth and proliferation. Hence, indicating
that the drug resistance in NSP might be a combined effect of CAN genes, drug

transporters, and metabolism.

kkhkkkkkkkkk*k
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Chapter 4

Exome Characterization: Towards
Genetic Basis for Temozolomide
Resistance

“It is not the strongest of the species that survives, nor the most intelligent that survives.
It is the one that is most adaptable to change”.
- Charles Darwin

“Only time and money stands between us and knowing the composition of every gene in

the human genome”.
-Francis Crick
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Figure4.1: Graphical abstract of Chapter 4.
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Abstract

Genomic aterations play avital role in oncogenesis, tumor progression and tumor response
to therapy. Single nucleotide polymorphisms specific to certain cancer types become
biomarkers that can drive precision medicine. The main focus of cancer systems biology is
on unraveling genome sequence variation in the context of SNP databases to identify the
heretofore unknown genetic basis of the multifactorial response. Targeted Exome (coding
regions ur uie genome) Capture, a recent advancement in Next-Generation Sequencing
(NGS), is cost effective and can be used to unveil these genomic aterations effectively
without any further validation. In this chapter, US7MG and Neurospheres are exome
characterized and the genetic alterations identified including the known SNPs in key
signaling genes such as PTEN, TP53, KRAS, and MTOR and other INDELS by aigning
the sequence to the human genome (hgl9, build 37). The total number of variants
identified from U87MG exome was 30,704 (SNPs - 97%; INDELs - 3%) and from NSP
was 31,776 (SNPs - 96%; INDELS — 4%). Functional effect of these mutations has been
analyzed using Oncotator (Oncotator v0.4.1.8) web-based tool which annotates point
mutations and INDELSs. This genomic and protein annotations include the identification of
gene names, functiona consequence (e.g. Missense, silent, Intron), PolyPhen-2 predictions,
common SNP annotation from dbSNP, and cancer-specific annotations from resources
such as COSMIC, Tumorscape, and published MutSig results. Further, the metabolic and
non-metabolic genes were analyzed using the gene set from Recon 1 (Human metabolic
reconstruction model). Thereby, this part of the thesis drives the way towards systems-level
characterization using Exome sequencing for the better understanding of the genomic basis

behind the temozolomide resistance.
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4.1. Introduction

Cancer is a complex disease, that involves genetic, epigenetic, transcriptomic and
proteomic differences in comparison with the normal/heathy state of the cell and
eventually leads to metabolic rewiring (Hsu & Sabatini 2008; Gaude & Frezza 2014,
Cantor & Sabatini 2012). As this complex disease has aways been thought of as a genetic
disease, characterization of the genotype of the cancer cell in terms of somatic or germline
mutations is very important especially to understand drug resistance (Auger et al. 2006;
Turner & Reis-Filho 2012). This chapter comprises of the genetic characterization of the
identified temozolomide resistant versus the sensitive population of cells from U7MG. In
recent years, the impact of new DNA sequencing technologies on the detection, diagnosis,
and treatment of cancer is becoming significant in many ways (Mardis 2008). US7TMG is
one of the commonly used cell lines to study Glioblastoma. This cell line is derived from
grade IV glioblastoma patient and it has been addressed in more than 1800 publications till
date (Pei et a. 2014; Bernhart et a. 2013; Vacas-Oleas, 2013; Immanuel et a. 2018). The
genomic landscape of this cell line has aready been of interest due to the criticality of
genome-based transition in the disease prognosis (Frattini et al. 2013). In addition, the
whole genome of this cell line has been completely sequenced (Clark et al. 2010) with
higher sequence coverage. To characterize the complete genome, greater than 30x genomic
sequence coverage has been used with a novel 50-base mate-paired strategy containing
~1.4kb insert library (Clark et al. 2010).

4.1.1. Next-generation sequencing

Recent advances in sequencing technologies enable many researchers to delineate the
genotype of the systems under study. Whole genome sequencing has become available in a
very easy and affordable way because of the next generation sequencing (NGS)
technologies (Metzker 2010). These technologies allow many worldwide collaborative
efforts including the International Genome Consortium (ICGC) and The Cancer Genome
Atlas (TCGA) project to easily catalog thousands of cancer genomes and also for many
other diseases thereby supporting the detailed study on disease prognosis and diagnosis.
These technologies will eventually contribute to the better understanding of the diseases to
bridge the new era of molecular biology advances to personalized medicine (Meldrum et
al. 2011). By the use of NGS, it is no longer the narrow-down approach to sequence genes

one by one but to a higher extent of sequencing all genes in a single experiment and
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correlate it to disease-causing variants. Instead of sequencing the targeted genes and
comparing, the whole genome can be compared with the healthy human genome and the
variants can be identified with high coverage score precisely. However, finding the causal
variants from thousands of identified variant can be challenging.

4.1.2. Exome sequencing

Sanger et a in 1977 first described the dideoxy-nucleotide sequencing of DNA that has
now improved and many such findings added the essence of sequencing then. This
improved the technology to a fast, economic and large-scale sequencing of the human
genome. The complete genome of human was published on 15th February 2001 in Nature
journal. This covered only 90% of the euchromatic genome with 250,000 gaps and
contained some errors in the nucleotide sequence. From then, the sequencing technologies
have undergone a steady improvement and growth with the computer databases having

specialized instrumentations.

It iswell known and established that the changes in the genome play a very important role
in oncogenesis, disease progression and drug response of tumors to chemotherapy. The
improvements and advances in next-generation sequencing technologies (NGS) would
definitely provide capabilities to sequence the complete genomes for changes including
single nucleotide polymorphisms (SNPs), point mutations, deletions, insertions and
changes in chromosomal copy number. However, the amount of data generated in genome
sequencing and the cost for whole genome sequencing still prevents the routine application
of NGS in many types of research. On the other hand, the capturing and sequencing of only
the coding regions of genes - exons constituting the ‘*exome’’ can be a cost-effective and
less-data generation approach for identifying changes in genes that result in alteration of

protein sequences.

Genomic alterations of coding regions in cancer cells change the normal functions and
pathways of the cell including proliferation and apoptosis. These pathways are essential for
tumor genesis, growth, and metastasis in the cancer cell. Also, the unique combination of
mutations in its genome makes the cancer cell-specific and it can lead to heterogeneity in
cancer prognosis and responses to therapy. Exome sequencing methods can be used for
such analyses and can deliver sequencing information (SNPs and INDELSs) for functionaly
relevant genome at increased coverage and reduced cost. Human cancer cell line models
play a critica role in the understanding of cancer prognosis, identification, and validation
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of causal genes and to screen for potential drug targets. Though these cell lines acquire
some mutations during the cell line development and passage stages, these cell lines
definitely carry the genetic and somatic mutations from their source. Hence, comparisons
between cell lines that are sensitive to drugs to that of resistant cells, revea any

heterogeneity in genomic mutations and could help in identifying the causal pathways.
4.1.3. Overall workflow of exome sequencing

The term "Exome" is used to describe the complete set of exons (coding regions) in the
genome. These regions are transcribed into mMRNA (messenger RNA) thereby expressed as
proteins. Exome sequencing technology captures the variants in the coding region of the
genome that could possibly affect the protein function. The workflow (Figure 4.2) required
to sequence and to analyze an exome using lon Proton™ systems (Life technologies Pvt.
Ltd., India) is asfollows:

1. Genomic DNA isolation from the sample (cells).
2. Fragmentation of the genomic DNA for capture and short read using NGS.
3. Construction of alibrary.
4. Targeted capture of exons using biotinylated probes (Template).
5. Amplify captured targets.
6. Seguence using an instrument with a 2x100 or 2x150 read length.
7. Anayze captured information, call variants using TorrentSuite and lon Reporter
software.
LIBRARY | TEMPLATE SEQUENCE DATA

lon Proton™ System

Exome workflow

=

lon TargetSeq™ lon Chef ™ System*® lon Proton™ Proton™ Terrent Server
Exome Kit or Sequencer and
lon OneTouch™ 2 System lon Reporter™ Software

Figure 4.2: Workflow for Exome sequencing using the lon proton system. Source: Life

technologies pvt.Itd. manual and website.
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While there are ~180,000 exons in the human genome, that constitutes less than 2% of the
total genome, the exome possibly contains ~80-90% of known disease-causing variants

making it a cost-effective aternative to whole genome sequencing (WGS).
4.1.4. Application of Exome sequencing in cancer research

One of the major challenges facing the field of cancer genome sequencing is to identify
and validate the mutations in cancer-associated genes that drive the cancer phenotype. The
most effective way of identifying these causative mutations is through the NGS. Exome
sequencing is a high-throughput technique that can be used to anayze a large number of
samples simultaneously. Recent studies highlight the use of exome sequencing to profile
the mutational impacts on NCI60 cell lines for systems pharmacology applications (Cheng
et a. 2014; Abaan et a. 2013). Many types of research use exome sequencing as a tool to
identify and characterize the disease state (Ng 2008; Ng et a. 2010; Wei et al. 2011; Ng et
al. 2009; Chang et al. 2011; Liu et a. 2012; King et a. 2011). These technologies are
revolutionizing medical diagnostics and help in improving our understanding of the basis

behind every stage of cancer.

4.2. Methods

4.2.1. Genomic DNA extraction: The complete/genomic DNA extraction from cultured
U87MG and NSP cells were performed using DNeasy Blood & Tissue Kits Spin-column
protocol (Qiagen, India). A total of 4 x 10° each US7MG and NSP cells were centrifuged
for 5 min at 300 x g and resuspended in 200 pl PBS each. 20 ul proteinase K was used in
the initial step to lyse the cells. The manufacturer's protocol was closely followed. 4 pl
RNase A (100 mg/ml) was used to remove any RNA contamination from the extracted
DNA by incubating for 5 min at room temperature. ~15ug of genomic DNA was extracted
from each sample. This extracted DNA (Figure 4.3) was used for the Exome sequencing.

4.2.2. Exome sequencing: Exome workflow of lon Proton™ systems (Life technologies
Pvt. Ltd., India) was used to obtain the Exome sequences of US7MG and NSP cells. lon
TargetSeq™ Exome Kit and lon Proton™ sequencer was used for acquiring the Exome
data that was further processed through TorrentSuite and lon Reporter software to identify
the variants and for the coverage analysis.

4.2.3. Functional annotations of Exome data: The variants of US7TMG and NSP cells

thus identified by Exome sequencing had been analyzed for its functional effect using
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Oncotator web tool (https://portals.broadinstitute.org/oncotator/). Oncotator is a web-based

application that is used for annotating human genomic point mutations including Single
Nucleotide Polymorphisms (SNPs) and Insertions & Deletions (INDELS).

GelPilot 1 kb
Plus Lodder (100

Figure 4.3: Genomic DNA isolated from U87M G and Neurospheres (NSP). Quality of
the DNA was checked by running on an agarose gel.

This includes genomic annotations (Gene, transcript, and functional consequence
annotations for the hgl9 database), protein annotations (Site-specific protein annotations
from UniProt, functional impact predictions from dobNSFP and cancer variant annotations),
and common SNP annotations from the dbSNP database. The input file contained the
details of the position in chromosomes, reference and its corresponding variants identified
that was uploaded in the web tool for analysis. The output file had the results with details
of the gene name, gene IDs, HUGO symbol, variant classifications (Silent, 5-UTR, 3
UTR, Intron, Missense, Frameshift deletions), gene description, protein/amino acid change
and its biological functions. These details were further used in the analysis and
interpretations.

4.3. Results

4.3.1. Exome statistics

Exome, the coding part of the genome consisting of the complete set of exons, was
sequenced using next-generation sequencing platform to assess the genomic variability
across the two cell types (U87MG and NSP). With exome sequencing, in addition to faster
turnaround time and cost-effectiveness, data analysis and interpretation is less complex. In
order to identify the DNA variants most possibly contributing to the heterogeneity and

Chapter 4 |Exome characterization 69


https://portals.broadinstitute.org/oncotator/�

temozolomide resistance, within exome - 1% of the genome (protein coding sequence), the
genomic DNA of both these cell types was pipelined in the exome sequencing workflow.
The identified variants were considered form the targets with base coverage at 20x with
92.22% recovery in UB7TMG exome and 95.00% recovery in NSP exome (Figure 4.4).
Further, to account for the somatic variants (from doSNP and COSMIC databases), the
identified variants were first cross-checked with the known reference variants of the human
genome (hgl9 — NCBI build 37). The total number of variants identified from U87TMG
exome was 30,704 (SNPs - 97%; INDELSs - 3%) and from NSP was 31,776 (SNPs - 96%;
INDELSs — 4%). Concordance between doSNP and COSMIC databases entry identified
1,804 variants as novel (uniquely from our study) in UB7MG exome and 795 in NSP
(Figure 4.4).

4.3.2. Genomic variability acrossthe sensitive and resistant cells

A tota of 11,733 genes from NSP and 11,571 genes from U87MG has the variants
identified (SNPs and INDELSs). 11,174 genes were found to be common between US7TMG
and NSP identifying 559 and 397 unique genes for NSP and U87M G respectively (Figure
4.4). The same anaysis was extended to genes with only SNPs (Common — 11,002;
Unigue in US7TMG — 292; Unique in NSP — 453), SNPs by position (Common — 27,784;
Unigue in U7MG — 1893; Unique in NSP — 2804), insertion by position (Common — 143;
Unique in US7TMG — 62; Unigque in NSP — 395) and deletion by position (Common — 408;
Uniquein US7TMG — 412; Unique in NSP — 230). Such analyses highlighted the differential
exomic variants identified across the drug-sensitive (U87MG) and resistant (NSP) cells,

characterizing these populations as different.
4.3.3. Distribution of SNPsin chromosomes

Overdl distribution of variants was assessed by chromosome-wide analysis (Figure 4.5).
The number of unique SNPs in NSP and U87MG was different indicating that these two
cell types possibly share genomic variability. Variant span with variant frequency (data
from variant calling) had been plotted to have an overal view of the effect of this genomic
variability on the chromosome and to identify the highly atered chromosome (Figure 4.5).
Chromosome 2 and 19 showed maximum variants profiled in both US7M G and NSP.

4.3.4. Functional characterization of theidentified exome variants

Functional characterization of the variants was delineated using Oncotator web tool that
further classified the SNPs as 3'UTR, 5'UTR, 5 Flank, IGR, intron, missense mutation,
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nonsense mutation, nonstop mutation, RNA, silent, splice site, and trandation start site.

A B
USTMG NSP US7MG-annotated variants
Features -
Exome Exome Total no. of variants 30704
0,
Targets with base coverage at Ix 98.80% 98.64% SNP (97%) 29668
INDELs (3%) 1036
Targets with base coverage at 20x 92.22% 95.00% (No MNPs)
Targets with base coverage at 100x 18.60% 27.08% C
Targets with base coverage at 300x 0.11% 0.16% Neurospheres-annotated variants
Targets with no strand bias 9288%  9491% Total no. of variants 31776
. SNP (96%) 30575
Targets with full coverage 96.95% 97.43%
INDELs (4%) 1201
Bases in target region 46208266 46208266 (including 12 MNPs)
D USTMG E Neurospheres

Both

dbSNP COSMIC dbSNP COSMIC
Novel in USTMG 1.804 Novel in Neurospheres 795
F Genes with overall alterations G Genes with SNPs

Insertion Deletion

YR

Figure 4.4: Exome variants statistics.
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Figure 4.5: Chromosome-wise distribution of exome variants.

These annotations also output the gene name associated with the variants based on their
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position in the chromosomes and protein descriptions (Figure 4.6A). These genomic
annotations are further classified for the effect on protein function using site-specific
protein annotations from UniProt, druggable target data from DrugBank and functiona
impact predictions from PolyPhen-2 for all the identified variants. Cancer annotations also
have been performed using Oncotator web tool to identify the known gene aterations that
are present in the databases including COSMIC, Cancer Gene Census, Tumorscape, TCGA
Copy Number Portal, Overlapping Oncomap mutations from the Cancer Cell Line
Encyclopedia and MutSig analyses. Of the variants classified, silent mutations (9819 -
U87MG; 10344 - NSP) and missense mutations (9161 - US7MG; 9382 - NSP) form the
majority of identified variantsin U87MG and NSP (Figure 4.6 B and C).

4.3.5. Homozygous and heter ozygous variants

A total of 11,733 genes from NSP and 11,571 genes from U87MG had the variants in the
study, of which, 7055 genes from NSP and 6722 genes from U87MG has homozygous
entries (>90% variant frequency calling). 6603 genes are common across these two
populations wherein 452 and 119 genes are unique in NSP and U87MG respectively.
Similarly, the same analyses have been performed for common and unigue genes in
heterozygous variants from Exome (Table 4.1 and 4.2).

Table4.1. Genes with homozygous variantsin Exome of US7M G and NSP.

us7MG

Tota Homozygous
| Total Genes | 11571 6722
Common 11174 6603
Unique 397 119

Neur ospheres

Tota Homozygous
Total Genes | 11733 7055
Common 11174 6603
Unique 559 452

4.3.6. Transversions and transitions

Transversions are point mutations (SNPs) that changes a purine to pyrimidine (A to C; A to
T,CtoA;CtoG; GtoC; GtoT; Tto A and T to G) and transitions are SNPs that changes
a purine to another purine (A to G; Gto A; T to C; and C to T). The ratio between
transition/transversion for US7TMG= 24.99/12.49 = 2; and for NSP= 24.99/12.495 = 2.
(Figure 4.7)
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Figure 4.6: Functional characterization of exome variants.
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Ao C 903 935
AtoG 5122 3362
AtoT 047 635
Cio A 1086 1062
CwG 1354 1394
CtoT 5519 5752
GitoA 5520 6018
Gl 1340 1387
GtoT 1t 1065
Tio A 656 635
Tt C S168 5391
Tto G U1 952

Transversions | US7MG | Neurospheres
AtoC 905 933
AtoT 047 635
Cto A 1096 1062
Cto G 1354 1394
Gto C 1340 1387
GtoT 1111 1065
Tto A 0656 635
Tto G 941 952

Transitions | US7TMG Neurospheres
AtoG 5122 5362
Gto A 5820 6018
Tto C 5168 5391
CtoT 5519 3752

Mutation Type

TtuG
mJBTMG
TtoC ® Neurospheres
TtoA
GtoT
GtoC
GtoA
CtoT
C loG
CtoA
AtoT
Ato G
AtoC

<IIIIII

15000

Number of Mutations

Tto G

L}

=
g
>

GtoT
GtoC
CtoG
Ctlo A

Mutation (Transversions)

AT
AwC

mUSTMG
® Neurospheres

\U(J 1000 l\O(] 20()0

Number of Mutations

CioT
TwC
Gto A
AtoG

Mutation (Transition)

3000

mUSTMG

® Neurospheres

ﬁlJﬂ() | U(Jﬂ()

Number of Mutations

Figure4.7: Transversionsand transitions.

15000

Table 4.2. Per centage of heter ozygous and homozygous variants.

Heterozygous (SNP)
Homozygous (SNP)
Tota (SNP)

% Heterozygous

% Homozygous

16813 16730

12866 13858

29679 30588

56.64% 54.69%
43.35% 45.30%
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4.3.7. Metabolic genes with exome variants

Metabolic genes were selected based on the Reconl (Human metabolic reconstruction
model) (Rolfsson et a. 2011) to understand the variant distribution across these two cell
types. A total of 540 (NSP) and 511 (U87MG) genes were identified (with VarFreq >70)
with variants, of which, 44 (NSP)
and 15 (U87MG) were found to be
511 unique (Figure 4.8). These unique

5401 genesin NSP included GPX1, MEL1,
GCLM, GCLC, PGK2, GSS, ADK,

Metabolic genes

Total

Unique CYC1, NDUFS7 and SLCl14A1
496 (Urea transporter). U8S7MG cells
Common 496 have GK, SORD, NDUFAL11,
ABCC5, and SLC2A11 (Glucose

1] 200 400 600 )
No. of genes transporter isoform C) among the 15

unigue genes. These unique genes
= USTMG NSP
potentially  contribute to the
Figure 4.8: Metabolic gene variantsin Exome. . o
rewiring of metabolism in NSP that
supports resistance and growth. These predictions of functional anayses could thereby
highlight the differences in the genetic makeup of resistant and sensitive cells in US7TMG,

suggesting further needs to access the functional impact of these alterations in vitro.

4.4. Discussion

4.4.1. Possible impact of homozygous variants on the metabolism of temozolomide-

sensitive and temozolomide-resistant cells

The exome variants were further characterized and classified into homozygous
synonymous and non-synonymous mutations. A synonymous substitution (also known as
"silent substitution") is the substitution of one nucleotide base for another nucleotide base
in the protein-coding part of the gene (exon), in such a way that the protein or the amino
acid sequence is not modified due to the redundancy of the genetic code. Synonymous
substitution usually occurs in the third position of the codon, changing the codon alone but
not the amino acid. On the other hand, a nonsynonymous substitution is a nucleotide
change that alters the amino acid sequence of a protein. Nonsynonymous substitutions

differ from synonymous substitutions, in such away that the substitutions occur in the first
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and second position in the codon thereby leading to an amino acid change in the protein,
eventually modifying the protein sequence. The homozygous (>90% of variant frequency
in the variant calling) and nonsynonymous mutations are expected to have a protein change
with an expectancy of more than 85%. Though these modifications need experimental
confirmations, they can lead to a firm hypothesis as such, owing to its nature of decreased
or blocked protein activity. By considering this fact, the possible impact of these

homozygous nonsynonymous mutations is delineated in our study.

The genes that are involved in the signaling pathways often contribute to metabolism
(Yecies & Manning 2011; Rios et a. 2013; Hardie 2013; Nieminen et a. 2013). By
addressing the effect of these dysregulated pathways may have an insight into the altered
metabolism. TSC1, one of the controllers of mMTORCL (Figure 4.9), has a unique deletion
in U87MG in homozygous entries. The stimulation of the TSC1-TSC2 complex by
oncogenic regulation by tumor suppressors and oncogenes may inhibit the activation of
MTORC1. This hypothesis highlights the impact of MTORC1 on glucose uptake and
glycolysis (Figure 4.9). U87MG is proposed to prefer glucose uptake over glutamine and
prefers more glycolysis than TCA cycle as discussed in Chapter 2. These mutations from
exome data also support this hypothesis that was based on the metabolite levels from LC-
MS/MS datain these cells, wherein the inhibition of mTORCL is possibly prevented by the
TSC1 mutation in US7TMG.

4 *® B
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Figure 4.9: Signaling genes that majorly controls metabolism. Red cross indicates
mutation in NSP and a blue cross indicates mutation in U87M G from the exome data.
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Another potential impact is on the cellular levels of polyamines that would possibly help
for the survival of cells, by “MYC" guided activation of ODC (Ornithine Decarboxylase)
Enzyme. ODC Enzyme is well characterized in human. It is involved in polyamine
biosynthesis. It is the key enzyme that controls the initial step of conversion of ornithine to
putrescine. The polyamines such as putrescine, spermine and spermidine play an important

rolein cell cycle and proliferation (Gerner & Meyskens 2004).

In the exome data, APC gene has seven mutations in both the cells. APC suppresses
transcription of MYC. MYC is an activator of ornithine decarboxylase (ODC). ODC
antizyme (OAZ) is a protein that regulates ODC activity by targeting it for degradation
(Figure 4.10).

Normal cell Cancer cell
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Figure 4.10: Polyamines and cancer. The differences in the normal cell metabolism and
cancer cell metabolism are shown based on Gerner & Meyskens 2004. Red cross indicates
mutation in NSP and a blue cross indicates mutation in U87M G from the exome data

OAZ1 has mutations in US7MG aone. KRAS has 4 mutations in U87 and 5 mutations in
NSP. KRAS leads to reduced proliferation, increased apoptosis, and reduced neoplasia.
One of the tumor suppressors, peroxisome proliferator-activated receptor (PPAR), activates

spermidine /spermine N1-acetyltransferase (SSAT) transcription and is repressed by active
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KRAS in norma cells. This PPAR gene has mutations in both. Hence, there is a firm
possibility that the regulation of MY C guided ODC activation can lead to the survival of
neurospheres and that is different in the case of US7TMG.

Some of the other unique mutation profiles that could potentially shape metabolic response
in U87MG include mutations in AMY 2A that could modulate glucose availability through
starch hydrolysis. The genetic variations in fucose pathways with a unique changein FUT8
also indicate a disruption in the GDP-GTP pool. The redox balance through NADH/NADP
synthesis could be potentially affected by unique mutations in AMT and HSD17B3
respectively. This could be coupled to differential folate accumulation and steroid estradiol
synthesis. So, US7TMG could potentially have reducing equivalents in excess of that
produced by NSP due to its varied mutational profile and thus possibly need to recycle
more NAD than NSP.

The unique mutation profile that shapes metabolic response in NSP included transporters
SLC38A3, SLC38A4, SLC1A5 dl involved in amino acid transport. These could
potentially be responsible for the differential exo-metabolite profiles for amino acids and
uptake rates as discussed in Chapter 2 and the following chapters. Also, Glutathione
metabolism via unique mutational profiles of GCLM, GGT2, and GPX1 coupled with a
compromised oxidative phosphorylation complex Il and ATPase (ATP4A, CYCl
mutations) is aso identified. A dysfunctiona ATPase may allow accumulation of ATP.
CYC1 inhibition is known to prevent neuronal differentiation and could be why NSP cells

remain spheroidal. The origins, however, cannot be commented on.

Nucleotide metabolism and signaling (ADK mutations) could ater the ATP: AMP balance
leading to increased ATP while guanylyl cyclase dysfunction may affect GTP
accumulation. The only known receptor for Nitric Oxide (NO) is soluble guanylyl cyclase
(sGC) leading to dysregulation of iNOS (Inducible nitric oxide synthase) and excess NO.
NO-mediated cellular regulation may be responsible for some of the arginine related
metabolic differences between the two cell types. NO could aso bind to the binuclear
center of complex 1V, COX (cytochrome c oxidase) and potentially inhibit
mitochondrial respiration. There may be a greater need for NADPH leading to NADPH
oxidase inhibition. ROS generation triggers PI3K-Akt-mTORC1- dependent autophagy
signaling pathway and significantly increases autophagic flux. These could be
compromised through Phosphoinositol metabolism and the negative regulatory effect of
PI3K, PTEN via mutations in PLCD3 and SYNJ1. Also, pyruvate metabolism could be
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varied through mutations in MEL leading to differential secretion profiles in presence of
high concentrations of the drug. Heme Biosynthesis may also be affected by mutations in
HMBS. All these identified mutations can thus form the base for more hypotheses. Further
characterization by site-specific sequencing and site-directed mutagenesis would benefit in

understanding the causal effects on metabolism.

4.5. Conclusions

The genetic landscape of tumors is continually evolving and can be an impediment to the
clinical management of cancer patients with recurrent disease. Continuous genotypic
characterization throughout the progression of the disease drives the identification of
candidate mutations that are induced through microenvironment changes and the presence
of the drug. Such mutations can be used as diagnostic tools for identification of the severity
of the disease. Our study identified varied mutationa profiles in temozolomide resistant
(NSP) and sensitive (U87MG) population of cells. This leads to validations of established
physiological phenotypes in resistance and also the development of hypothesis and
biological discovery. Further validation of impact by specific gene silencing would help in

developing novel strategiesto control the drug resistance.
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Chapter 5

Phenotypic Plasticity of
Growth and Respiration

“When you cannot measure, your knowledge is meager and unsatisfactory”

-Lord Kelvin

“No Disease, including cancer can live in an alkaline environment”

- Otto Warburg
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Figure5.1: Graphical abstract of Chapter 5.
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Abstract

Two principal dimensions of life that define cell function are growth and energy
generation. Metabolic networks potentialy orchestrate this duality of cell function critical
for survival and proliferation. The ability to utilize a nutrient by the cell is determined by
their genetic and phenotypic background that potentially rewires the metabolism to support
the growth and survival. Altered metabolism is known to support the anabolic growth of
cancer cells during nutrient replete conditions and catabolic pathways to support the
survival of cells during nutrient limitation or nutrient deplete conditions. These metabolic
preferences may be driven by oncogene activation and gene mutational profiles. In this
Chapter 5, the capability of temozolomide resistant (Neurospheres) cells and
temozolomide sensitive (UB7MG) cells to respire and grow on different substrates has been
delineated using phenotypic microarrays. Nutrient preferences thus profiled, showed that
U87MG could utilize mannose and pyruvate for maxima growth in comparison to
glutamine and glutamate for NSP. lons and hormones also showed differential responses.
Of the 92 drugs tested, Neurospheres were sensitive to Rotenone (80% inhibition),
Rifaximin, Berberine chloride, and Deguelin. Our study provides a new insight into the
differential growth and respiration profiles and highlights the coupled respiration and
growth in Neurospheres and decoupled respiration and growth in U87MG. These results
thus suggest the existence of cell adaptive mechanisms towards nutrient preferences and

would possibly contribute to drug resistance.
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5.1. Introduction

The heterogeneous composition of the cancer microenvironment plays a major role in
defining the phenotype of cancer cells. Physical, biological and chemical regulators in the
microenvironment potentially control and guide cell survival (Mathis et a. 2017; Persano
et a. 2013; Calibas Kocd et al. 2016; Cantor & Sabatini 2012). Microenvironment-driven
dynamic heterogeneity causes phenotypic plasticity that drives the evolution of varied
response and may cause resistance to therapy. In response to changing microenvironmental
conditions, like hypoxia and nutrient starvation, proliferative cancer cells can switch to a
more aggressive/invasive and metastatic state. Recent evidence also suggests the presence
of sub-population of cells that undergo a phenotypic switch to a more stem-like state
(Golebiewska et al. 2011; Persson & Weiss 2009; Broadley et a. 2011; Golebiewska et al.
2013).

In this chapter, a comprehensive analysis of the differential nutrient utilization that
supports respiration and growth of both drug-resistant population (Neurospheres) and drug
sensitive population (U87MG) is performed and discussed in the context. Also, this chapter
summarizes the potentia novel therapeutic strategies from the chemosensitivity analysis

that can help to target these drug-resistant, Neurospheres.
5.1.1. Phenotypic and metabolic plasticity in cancer

Aerobic glycolysis is the dominant metabolic phenotype in cancer cells (Hsu & Sabatini
2008). Mitochondrial energy pathways are reprogrammed athough mitochondria in most
tumors are capable of oxidative phosphorylation (OXPHOS) and are not defective. This
increases the ability to compensate for high-energy demand, macromolecular synthesis and
rapid cell division (Gaude & Frezza 2014). Retrograde signaling and post-translational
modification of oncoproteins occur via energy reprogramming. Neoplastic mitochondria

also engage in crosstalk with the micro-environment (Kim et al. 2015).

A hybrid glycolyssssOXPHOS phenotype for energy and biomass synthesis can occur in
cancer cells and facilitates metabolic plasticity associated with therapy-resistance. Further,
tumor cells are capable of switching their metabolic phenotypes in response to external
stimuli for survival (De Berardinis & Chandel 2016; Gaude & Frezza 2014; Kim et al.
2015). Therapies targeting cancer metabolic dependency can be made more effective by
taking into account this metabolic heterogeneity and plasticity.
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5.1.2. Nutrient dependenciesin cancer

Cancer cells reprogram their pathways of nutrient acquisition and cell metabolism to meet
the demands of bioenergetic, biosynthetic, and redox balance under nutrient replete and
deprived conditions (Figure 5.2). Altered metabolism supports the cancer cells for its
survival in nutrient replete and nutrient-deprived conditions (De Berardinis & Chandel
2016). Metabolic dependencies can aso be used as targets for therapies. Such

dependencies other than glucose for surviva in the presence of drug can aso overcome

resistance.
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Figure 5.2: Metabolic pathways under nutrient-replete and nutrient-deprived
conditions. Figure adapted from R.J. DeBerardinis, N.S. Chandel, Fundamentals of cancer
metabolism, Sci. Adv. 2 (2016) €1600200-€1600200. doi:10.1126/sciadv.1600200
(DeBerardinis & Chandel 2016).

In this chapter 5, the nutritional preferences of temozolomide sensitive (US7MG) versus
temozolomide resistant (Neurospheres) cells that are profiled so far, are characterized
based on their ability to respire and grow on 367 carbon and nitrogen (C/N) sources using
BIOLOG phenotypic microarray plates (PMM1 to 4). Also, the selected ions and hormones
(PMM5 to 8) are tested for these two populations. Chemo-sensitivity of drug sensitive and
drug resistant cells has been assessed for 92 chemotherapy drugs in the PMM11 to 14
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panels.
5.2. Methods

5.2.1. Céll culture: US7TMG cell line (HTB-14; Human Glioblastoma Multiforme from
ATCC) was cultured in DMEM (Dulbecco’'s Modified Eagle's Medium, Gibco) with
Glucose (1 mg/mL) and L-glutamine (0.584 mg/ml). 10% fetal bovine serum (FBS,
Gibco™, ThermoFisher Scientific) and 1% non-essential amino acids (Sigma-Aldrich) was
used additionally for growth. Cell lines were maintained a 37°C in a humidified
aimosphere of 5% CO,/95% air. Neurospheres (NSP) were initially maintained in
neurobasal medium (Gibco™, ThermoFisher Scientific) supplemented with B27
supplement (Gibco™, ThermoFisher Scientific), 0.2 pg/mL of epidermal growth factor,
EGF ( ThermoFisher Scientific) and 0.2 ug/mL of basic fibroblast growth factor, bFGF
(ThermoFisher Scientific). Further sub-culturing and passaging of NSP was carried out
using the similar medium as U87MG to avoid any contribution from different micro-
environments and delineating heterogeneity of molecular signatures. NSP were cultured as
free-floating spheres in the appropriate low attachment T-75 flasks or 6 well/24 well plates
(Nunc™, ThermoScientific™) for the study.

5.2.2. Phenotype microarray analysis. Biolog Phenotype MicroArrays™ (PM-M1 to

PM-M14) from Biolog, Inc. USA (www.biolog.com) consist of panels of PMM screening
assays - (i) Energy metabolism pathways; (ii) lon and hormone effects on cells and (iii)
Sensitivity to anti-cancer agents. These are based on an easy-to-use technology for
measuring the energy metabolism pathways present in mammalian cell types from in vitro
cultured cellsto primary cells.

In PM-M1 to PM-M4, the metabolic pathway activities were assayed by using the cell
suspension (~20,000 cells/well) prepared in an inoculating fluid (IF-M1 or IF-M2) that
lacks carbon and energy sources (provided with the BIOLOG plates). These cells adapt to
their new environment of different carbon and energy sources in the various wells. Biolog
Redox Dye Mix MA or Biolog Redox Dye Mix MB was added to al wells. This
measurement employs a tetrazolium dye that can be reduced to a purple formazan that can
be measured at 590nm with a microplate reader. The redox energy produced when a cell
metabolizes a substrate is used to convert the color from yellow to purple formazan. The
rate of formazan production is linear with time and corresponds to the number of viable
cells. iMark™ Microplate Absorbance Reader (Bio-Rad), with awavelength range of 400—
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750 nm, had been used in our study to measure the absorbance.

PM-M5 to PM-M8 plates are coated with different ions, hormones, and other metabolic
effectors;, and PM-M11 to PM-M14 are coated with different anticancer agents. Cell
suspension (~20,000 cells/well in a culture medium that is serum-free and containing D-
glucose and L-glutamine was used for PM-M 5 to 8 and PM-M 11 to 14. All plates were
incubated at 37°C in CO, incubator. The absorbance readings were measured after an
initial incubation (48 hours) of cell growth, followed by adding the dye and reading for 24
hours of study (with initial intervals at 15, 30, 45 and 60 min; 1hr intervals from 2 to 6 hrs;
and final reading at 24 hours of incubation).

5.3. Results

5.3.1. Phenotypic plasticity defined by nutrient preferences for growth and

respiration

The cellular energetics and pathways involved in the metabolism of U87MG and NSP cells
during the nutrient restriction state (only one source/nutrient preferences) were addressed
by using Biolog Phenotype MicroArrays™ (PM-M1 to PM-M4) plates. PM-M 1 to PM-M4
uses different carbon and nitrogen sources to test for 367 potential metabolic sources and
pathways simultaneously that contribute to the conversion of these substrates to energy.
These could eventualy form distinct profiles of metabolic activity that gives the cell-
specific metabolic fingerprints/phenotypic profiles. The data generated were analyzed for
respiration and growth separately to understand whether the specific source/nutrient
contribute by coupling or decoupling towards respiration (NADH generation) and growth
(ATP synthesis).

The respiration profiles were categorized, based on a threshold value into true respiration
(includes respiration from initial time points and respiration after certain time gaps/lagged
respiration) and no respiration. Of these categories, the source/nutrient that enhances
respiration in a specific cell type may or may not result in measurable growth in that cell
type. Hence, the same way of categorization was applied in case of growth profiles as well
with adifferent threshold value identified from the cell counts.

5.3.2. Euclidean clustering of growth and respiration rates

73 carbon and nitrogen sources were primarily selected from the panel of PM-M1 to PM-

M4, based on their role in the core metabolic pathways and anayzed using Euclidean
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clustering. These included glucose, glutamine, and al proteinogenic amino acids.
Clustering according to the ability to grow on al 73 C/N sources was able to distinguish
U87MG from NSP. Primary column cluster was between the respiration profiles (U87TMG
and NSP) and the further clusters were connected to this primary cluster in a series (NSP
growth followed by U87MG growth) illustrating the correlation.

Row-wise clustering with the tightest cluster first in tree ordering highlighted a primary
cluster with al amino acids, al carboxylic acids, and al polysaccharides separately
followed by interconnection. Dextrin, inosine, and sorbitol formed a separate cluster that

was further connected to the primary clusters.

Glutamate and Glutamine supported growth in NSP predominantly compared to D- glucose
and D- mannose in U87MG. Pyruvate, AKG, and Succinate supported growth in US7TMG
but lower than in NSP suggestive of the divergent microenvironments as seen in the exo-
metabolite profile of these 3 metabolites (Figure 5.3).

5.3.3. Differential growth and respiration rates across US7M G and Neurospheres

The rate of respiration and growth was further analyzed for al panels of PM-M plates. PM-
M1 contains an array of carbon sources including simple sugars, polysaccharides, and
carboxylic acids. Both the cell populations utilized glucose for respiration as well as
growth along with 31 other metabolites. US7MG cells additionally metabolize 13
metabolites (L-Glucose, D-Sdlicin, Chondroitin-6-sulfate, D-Melezitose, Palatinose, L-
Sorbose, L-Rhamnose, D-Fucose, D-Arabinose, D-Malic acid, y-Amino-N-butyric acid, a-
Keto-butyric acid, and Propionic acid) with no measurable growth. a-D-Glucose-1-
Phosphate, Ethanolamine, and D-Trehalose show unique profiles for U87MG for
respiration as well as growth. NSP cells can utilize B-Gentiobiose as its source for

respiration and growth.

D-cellobiose was not utilized by both cell populations. Out of the 10 methylated substrates
(PM-M1), UB7TMG showed respiration capability in all of them with no measurable growth
except mono-methyl succinate. In addition to mono-methyl succinate, two more
methylated substrates (a-Methyl-D-mannoside and -Methyl-D-gal actoside) were shown to
support respiration as well as growth by NSP (Figure 5.4 and Appendix A).
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Figure 5.3: PM-M1 to 4 analyses using growth (GR) and Respiration (Resp) rates,
clustering using clustergram and identifying coupling and decoupling of growth and
respiration. Lagged growth represents the delay in growth due to the carbon source getting
converted to another secondary metabolite that can be used by the cells.
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Figure 5.4: PMM-1 analysis of respiration (A) and growth (B) profiles. Selected
differential profiles of respiration and growth are shown for the sole carbon sources that
are mentioned astitle in the subplots. See Appendix A for the complete panel of plates.
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PM-M2 to PM-M4 plates have lipids and protein-derived nutrients, primarily individual
L-amino acids and dipeptide combinations. In the case of dipeptides, 57 substrates were
utilized by both cell populations. Ala-Leu was metabolized for growth and respiration by
both cell types but in aslower rate in case of NSP.

Ala-Pro, Thr-GIn, Va-Glu, and Va-GIn were utilized for true respiration by both with no
measurable growth in case of US7TMG. Ala-Asp and His-Ser were also used for respiration
with no measurable growth in U87 and very less growth in NSP. 38 dipeptides were not
utilized by both. 114 dipeptides were used by US87MG (respiration but no growth). Leu-Ala
is the only substrate (from 114 dipeptides) that resulted in respiration with some growth in
U87MG. 35 dipeptides were utilized by NSP and not by US7MG. Thr-Ala was the only
one utilized for true respiration and growth by NSP. 11 substrates other than dipeptides
(like L-Homoserine) showed no response in both the cases. Other amino acids that not
utilized by both cell populations include Glycine, L-Phenyl aanine, D-Alanine, D-Aspartic
Acid, and D-Threonine (Appendix A).

5.3.4. Nutrient preferencesfrom 367 C/N sources

Among 367 substrates, 123 substrates (other than dipeptides) which include various carbon
and nitrogen sources, 43% i.e. 53 substrates have a common respiration profile in both the
cell lines. One-third of al the substrates have a true respiration in both cell lines. This
category consists of carbohydrates such as glucose, fructose, galactose; carboxylic acids
such as pyruvate, lactate, citrate; sugar alcohols such as 2,3-butanediol sorbitol, maltitol;
polysaccharides such as dextrin, glycogen and three methylated substrates - a-methyl
mannoside, b-methyl galactoside, and mono methyl succinate. 12 substrates were not

utilized for respiration.

For the remaining 70 substrates, the two cell lines have different respiration profiles. With
respect to U87MG respiration, more than 84% i.e. 59 substrates are utilized for respiration
and more than 14% i.e. 10 substrates were utilized with a lag for respiration (NR in NSP).
In contrast, NSP respired on only one substrate but not in US7MG and 60% i.e. 42
substrates were not utilized for respiration by NSP and only 39% i.e. 27 substrates are
utilized slowly for respiration by NSP.

0 Phenotypic plasticity | Chapter 5



5.3.5. Differential profilein ionsand hormones

PM-M5 to PM-M8 is designed to profile for effects of ions, hormones, and other metabolic
effectors on the metabolism, via respiration and growth rate. In total, 67 different
metabolites were screened, of which, 4 ions (Manganese chloride, Zinc chloride, Copper
(I1) chloride, and Sodium orthovanadate) were not utilized by both the cell populations. 14
metabolites (Ammonium chloride, Sodium selenite, Potassium chloride, Cobalt chloride,
Sodium sulfate, Potassium chromate, Sodium Nitrate, Sodium Nitrite, 3-Isobutyl-1-
methylxanthine, Thyroxine, IL-2, Prolactin, Calcitriol, 1a,25-Dihydroxyvitamin, TNF-a)
were shown to be differential profilesin away that NSP could utilize them for growth but
not U7MG. 2 of the metabolites (Magnesium chloride, (Arg8) —Vasopressin) cannot be
utilized by NSP but can be utilized by US7M G. 48 substrates were utilized by both the cell
populations with maximum growth for U87MG in IL-6 and Adrenocorticotropic hormone
human (ACTH) in NSP (Appendix A).

5.3.6. Chemo-sensitivity of U87M G and NSP to 92 drugs

PM-M11 to PM-M14 is designed to profile for the sensitivity of cells to a diverse set of
anti-cancer agents that can affect the cell growth by different modes of action. The anti-
cancer agents can target and ater cell metabolism, growth rate, or productivity. 92
cytotoxic drugs in this panel were tested against the two cell types (U87M G and NSP) that
showed the difference in their nutrient preferences. 78 drugs were non-cytotoxic to both the

cell types (Figure 5.5, Appendix A and Figure 5.6).

Chemosensitivity of U87MG and NSP

Figure 5.5: Analysis of chemo-sensitivity of UB7MG and NSP. US87MG and NSP
showed a differentia profilein only 9 drugs. Growth in the presence of drugs is considered
as"Y” and No growth as“N”.
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Figure 5.6: Chemo-sensitivity profile for U87MG and Neurospheres. Out of 92 drugs, the differential inhibition profiles are shown.
ETC inhibitors like Rotenone and Deguelin affect the NSP population specifically than the US7MG cells.
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5 drugs were cytotoxic to both the cell types (Emetine, Sanguinarine, Acriflavinium,
Neriifolin, and Puromycin. Differential profile was observed in the drugs listed in Table
5.1. NSP was susceptible to Berberine, Rapamycin, Deguelin, and Rotenone. All these
drugs target the complex | in the ETC. Hence, it is possible that the rewired survival
strategy of NSP lies in the dependency of ETC, and it is been targeted by these drugs. In a
combined therapy, by administering these 4 drugs along with temozolomide can be a most

promising therapeutic regimen to target and kill the resistant population, Neurospheres.

Tableb5.1: Differential drug responsefor U87M G and NSP.

No. Drug Name U87TMG | NSP Known mechanism / Tar get
It is an anti-inflammatory and

1 Cepharanthine - + | antineoplastic compound isolated from
Stephania

2 Mitomycin C - + | Mitomycin Cis apotent DNA cross-linker.

3 M}'{g)r)éiﬂtg?ge - + | antibiotic with antineoplastic activity

4 Quinacrine i + It isan antimalarial drug and also used as

Hydrochloride an antibiotic.

Celastrol, a plant-derived triterpene, has

5 Calastrol i + antioxidant and anti-inflammatory a(_:tivi_ty
that may prevent neuronal degenerationin
Alzheimer's disease (AD)
A compound extracted from herbs for its

1 Berberine Chloride 4 - | anti-diabetic effects; targets complex | in
ETC.
Rapamycin is a macrolide compound

. obtained from Streptomyces hygroscopi cus

2 REZE M * " | that acts by selectively blocking the
transcriptional activation of cytokines.
Deguelin isaderivative of rotenone. Both

3 Deguelin(-) 4 _ | arecompounds classified as rotenoids of
the flavonoid family and are naturally
occurring insecticides
Rotenone works by interfering with the
ETC in mitochondria. It inhibits the

4 Rotenone + - .
transfer of eectrons from iron-sulfur
centersin complex | to ubiquinone.

5.4. Discussion

The phenotypic microarray results are based on the conversion of BIOLOG dye by the
cellular oxidoreductases. These assays (Figure 5.10) reflect the production of NADH by
the cells from various substrates. The fraction of NADH produced in mitochondria differs

for different energy substrates when given as a sole carbon or nitrogen source. The ability
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of a cell to use a particular nutrient as a source of energy is evitable; yet this does not

support or sufficient to use the same source as a growth substrate.
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Figure 5.7: Phenotypic microarray panels (PMM 1 to 14). Source: Biolog website.
http://www.biol og.com/products-static/phenotype_mammalian_cells_overview.php

To be used as a growth substrate, the sole carbon or nitrogen source should be sufficient to
drive metabolism and proliferation. The fraction of cytosolic and mitochondrial NADH
produced by the conversion of substrates is measured as cell viability in these assays and
hence it supports the cytosolic NADH theory (Figure 5.11). The function of mitochondrial
energy metabolism is aso dependent on the NADH/NAD+ ratios that are present in the
mitochondria to support the electron transport chain. In a recent study (Titov et a. 2016),
the role of electron transport has been dissected into two separate processes. 1) Proton
motive force and 2) ATP synthesis. The process of electron transfer can be considered as

cellular respiration and the ATP synthesis further drives the cell growth.

In this chapter 5, the analysis of PMM data has been performed to characterize whether or
not these two processes of cellular respiration and growth are coupled or decoupled in the
given substrate by the cell. By such analyses, it is observed that US7MG respires in many
substrates whereas NSP utilizes the substrates for both respiration and growth. This
supports the hypothesis that NSP cells potentially couple their respiration to growth but
U87MG cells athough utilize many substrates for respiration, grows in fewer substrates
(Figure 5.3D, E and F). Also, the metabolite profiling in Chapter 2, highlighted the
glutamine preference for Neurospheresin the LC-MS/M S data.
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Figure 5.8 NADH theory of cancer energy metabolism. A major source of the electron is

considered as cytosolic NADH in cancer cells compared to normal cells.

Herein, the profile for glutamine in the BIOLOG profile shows that NSP can utilize
glutamine and glutamate for growth and respiration whereas U87MG can only respire with
these with low growth. These datasets support the preferential utilization of glutamine by

Neurospheres for their survival.

In the chemo-sensitivity profile, it is observed that NSp cannot grow in the presence of 4
drugs (Berberine, Rapamycin, Deguelin, and Rotenone). All these 4 drugs are known to
target complex | in the electron transport chain (ETC). Since growth and respiration are
coupled in NSP, the electron transport chain function is crucial for NSP survival. While,
Rotenone being the most inhibiting (80% inhibition), other 3 drugs also show inhibition in
the concentrations provided in the BIOLOG panel. Although further experiments are
needed to study the combined effect of temozolomide and these drugs, it is evident that

these drugs can be cytotoxic to NSP.

5.5. Conclusions

In this Chapter 5, the PMM anaysis has highlighted the differences in growth
requirements, nutrient utilization profiles and drug responses of US7MG (temozolomide-
sensitive) and NSP (temozolomide-resistant) cells. The use of phenotypic microarray
technology delineated the metabolic phenotype profile of U87MG and NSP cells using
their capability to utilize nutrients for growth and respiration (Glucose and Pyruvate for
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U87MG,; Glutamine and Glutamate for NSP). High-throughput screening of these cells on
sole carbon and nitrogen sources helped in delineating the cell-specific preferential
utilization of substrates. Also, the chemosensitivity panel helped in the identification of 4
candidate drugs - Berberine, Rapamycin, Deguelin and Rotenone that can be cytotoxic to
the resistant cells (NSP) with the highest inhibition for Rotenone.

kkhkkkkkkhkhkkhkkkhkkx
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Chapter 6

Metabolic Dynamics and
Reprogramming of the Cell

“Genes load the gun, but environment pulls the trigger”.
- Bruce Lipton

“The way you understand and investigate time is by moving inward, into metabolism. The
human body is a knot in time”.
-Terence Mckenna
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Figure 6.1: Graphical abstract of Chapter 6.
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Abstract

The metabolic state of the cell determines how the cell responds to the environment or
other stimuli. It is important to know the metabolic features of the cell in order to
understand its impact on growth and survival. In this Chapter 6, the metabolite levelsin the
two cell types (US7TMG and NSP) were analyzed and quantified using LC-MS/MS for 5
samples (0 to 96 hours) from varied conditions (Without drug and three different
concentrations of temozolomide as 10, 100 and 700 uM TMZ). 34 metabolites were
selected based on their important role in central carbon and nitrogen metabolism. This data
again indicated that the growth limiting substrates (Glucose, glutamine, serine, and
tryptophan) were completely depleted by 96 hours by both the cell types except glucose
and serine in US7MG at 700 uM TMZ. Glucose and Glutamine were utilized by both the
cell types in the absence of the drug in a linear way but NSP has a slower glucose uptake.
CORE (Consumption and Release) profile anaysis and PCA (Principa Component
Anaysis) was performed. Euclidean clustering predicted relevant clusters for succinate-
ornithine; glycine-proline, aanine-lactate; arginine-citrulline; and aspartate-tryptophan
throughout the varied TMZ concentrations. Most variation was predicted in the 10 uM
TMZ and 700 uM TMZ. PCA1 versus PCA2 outlined the two-component spheres to
converge, in contrast to PCA1 versus PCA5 which differentiated the 700 uM TMZ profile
from others. CORE clustering of endo-metabolite profiling (concentration normalized to
cell number) projected NSP-700 profile as a distinct column cluster among others. In
conclusion, the differential metabolite profile identified the most variance in the metabolite
profiles in the presence of TMZ than the samples in the absence of TMZ, indicating its
impact on resistance.
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6.1. Introduction

Otto Warburg observed that proliferating mammalian tumor cells converted the majority of
the glucose carbon to lactate even in oxygen-rich conditions. Warburg hypothesized that
this altered metabolism was specific to cancer cells and attributed it to mitochondrial
defects (Warburg et al. 1923; Warburg 1956). Thus mitochondrial dysfunction or its poor
ability to oxidize glucose to CO, was proposed to cause cancer (Koppenol et a., 2011).
Warburg's seminal finding has been exploited extensively in clinical studies as 18F-
deoxyglucose positron emission tomography (FDG-PET) (Vlashi et a. 2011). However, it
has now been identified that tumor mitochondria are not defective in oxidative

phosphorylation, but metabolism in them is reprogrammed for macromolecular synthesis.

Proliferating cells do not attempt to maximize ATP yield, but rather maximize the flux of
carbon into macromolecular anabolic pathways. Metabolic rewiring has been regarded as a
consequence of malignant transformation driven by aberrant signal transduction mediated
by oncogenes and tumor suppressors. The identification of ‘‘oncometabolite’”’ (R)-2-
hydroxyglutarate [(R)-2HG] in gliomas as a result of mutations in isocitrate dehydrogenase
(IDH) has provided direct evidence linking altered metabolism and cancer (Losman &
Kaelin 2013).

A less studied but recently emerged concept is that information about a cell's metabolic
state is also integrated into the regulation of epigenetics and transcription. The complexity
and dynamics of epigenetic modifications in the presence of DNA methylating drugs like
TMZ could provide a link between the extracellular environments. Substrate channeling, a
common event in celular metabolism suggests local concentration gradients of
metabolites. Compartmentalized metabolic enzymes could provide a loca supply of
substrates/cofactors to the complexes like methionine adenosyltransferase lla (MATIIa),
which generates SAM. System biology approaches are needed to fully grasp the
complexity of the connections between metabolism, signaling, transcription, and
epigenetics. A deeper understanding of these connections may help to shed light on our

understanding of the etiology and treatment of a multifactorial disease like glioblastoma.
6.1.1. Metabolic phenotypesin cancer and regulation of epigenetics

Cancer cells adapt, survive and proliferate on dynamicaly changing harsh

microenvironments. They are less dependent on exogenous growth factors and cell-to-cell
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interactions. Vigilant monitoring of intracellular metabolites through pathway regulation
may alow them to work through this apparent paradox. Metabolism in cancer cells is
influenced by internal stimuli such as oncogenic signal transduction and external cues such
as nutrient and oxygen availability. Monitoring intracellular levels of metabolites are thus
crucia for cellsto appropriately gauge their nutritional resources. Evolutionarily conserved
‘nutrient-sensing’ mechanisms like AMP-activated protein kinase (AMPK), related to
varying AMP: ATP ratios, illustrate the ability of mammalian cells to switch to a more
catabolic state when they perceive a nutrient stress. In contrast, mTOR signaling promotes

growth and is active when cells sense a favorable, nutrient-replete environment.

Enzymes responsible for adding or removing epigenetic modifications include but are not
limited to histone acetyltransferases (HATS), histone deacetylases (HDACS), histone
methyltransferases (HMTs), histone demethylases (HDMs), DNA methyltransferases
(DNMTs) and DNA hydroxylases (DNHDs). Metabolic substrates or cofactor levels
regulate activities of such chromatin-modifying enzymes by diffusion to deliver metabolic
information to nuclear transcription. The interplay between the tumor microenvironment
and cellular metabolism is thus not a smple cause-and-effect theory, because most of the
secretory metabolites from biochemical reactions and conditions in the tumor constantly

influence tumor microenvironment and hence the cellular metabolism (Figure 6.2).

Genetic ~  Tumor
alterations Microenvironment
[p53,AMPK,MYC,PI3K,HIF-1] [Hypoxia,pH,nutrients]
K) Abnormal
metabolic
phenotype

Bioenergetics Redox Biosynthesis

Figure 6.2: Determinants of the tumor metabolic phenotype. The metabolic phenotype
of tumor cells is controlled by intrinsic genetic mutations and external responses to the
tumor microenvironment.
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Due to this dynamic nature of the tumor microenvironment, it is possible that the metabolic
phenotype of tumor cells can vary across cell types to adapt to prevailing loca
conditions/microenvironment (Persano et al. 2013; Cadibas Koca et a. 2016;
Kucharzewska et al. 2015). By addressing these differences in the metabolic changes, the
drug-resistant cells can be targeted and it can lead to the development of new therapeutic

regimens.

6.2. Methods

6.2.1. Growth in different concentrations of Temozolomide: Growth of the cells
(UB7TMG and NSP) were studied by monitoring their proliferation via cell count over a
period of 5 days at different concentrations of TMZ. The initial seeding set has the starting
population (N,) at ~10000 cells per well. The growth profile was studied in a 24 well plate
(Nunc tissue culture-treated) for ease of harvesting. Both U87MG and NSP cells were
harvested every 24 hours and counted using hemocytometer based on trypan blue dye
exclusion assay. Before counting, the NSP population was also disaggregated by
trypsinization. For different concentration of drug experiments, cells were plated in
replicate wells at ~20,000 cells per well in 24-well plates (Nunc™ tissue culture treated,
ThermoScientific™) in full growth medium for 24 h and then treated them with different
doses of TMZ (10uM, 100uM, and 700uM). Three biologica replicates were performed
with two technical replicates in each biological replicate on a 24-well plate (Nunc™ tissue
culture treated, ThermoScientific™). Growth and temozolomide response curves were
graphed with the number of cells on the Y-axis and time on the X-axis. The data were
fitted using Gompertz function using GraphPad Prism software and the growth parameters
calculated.

6.2.2. Liquid chromatography-high resolution mass spectrometry (LC-HRMY):
Sample extraction, dilution and internal standard spiking: The 8 samples from each
experiment setup (Without drug, 10 uM TMZ, 100 uM TMZ and 700 pM TMZ) were
harvested every 24 hours over a period of seven days and used for the metabolic profiling
to understand nutrient uptake and rel ease kinetics. Sampling pooling strategy(Cheung et al.
2005; Kline & Richmond 1981) was applied to reduce the number of samples and to make
the anaysis as a high-throughput quantification. Each replicate-pooled sample was
prepared and stored at -80°C; thawed on an ice bath to aliquot 100uL of the sample for
extraction. The aliquot was transferred into a fresh 1.5 mL centrifuge tube. 400 pL of
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chilled methanol (previously stored at -80°C) was added. The solution was thoroughly
mixed for 2 min followed by centrifugation for 15 min at 5000 rpm (4°C). The tubes were
carefully removed, 300 pL of supernatant was withdrawn and transferred into a fresh tube
(Dilution level: 5X). A two-step serial dilution of the supernatant was performed using
50% acetonitrile in water. In the first step, 50 pL of supernatant was thoroughly mixed
with 450 uL of diluent (Dilution level: 50X). This solution was further diluted by mixing
100 pL of the sample solution with 400 pL of diluent (Dilution level: 250X). Before
injection, 100 pL of the sample solution was mixed with an equal volume internal standard

solution containing 4.4 uM verapamil in 50% acetonitrile in water with 0.2 % formic acid.

6.2.3. Standard preparation: Standards of metabolites were prepared using chemically
defined minimal essential media (MEM), and non-essential amino acid media (NEAA)
from Sigma. Stock solutions were serialy diluted to generate the various calibration levels

for quantitative estimations.

6.2.4. Metabolites profiling usng LC-HRMS: Metabolic profiling of samples was
carried out using Accela 1250 ultra-performance liquid chromatography (UPLC) in tandem
with Thermo Q-exactive high-resolution mass spectrometer (HRMS) using heated
electrospray ionization (HESI) interface. The UPLC and M'S were operated using X calibur
(Thermo, Version 2.0) software platform, whereas HESI source parameters were set using
Tune module (Thermo, version 2.1). Samples were stored in a temperature controlled
Accela autosampler maintained at 4°C during LC-HRMS analysis. A reverse-phase C18
hypersil GOLD column (10cm x 2.1mm x 3.0um) was used for chromatography. The
mobile phase consisted of 0.1% formic acid in deionized water (Mobile phase ‘A’) and
0.1% formic acid in acetonitrile (Mobile phase ‘B’). The elution gradient was set as 70% of
mobile phase A (0.0-2.5 min), 10% A (3.5-5.5 min), 70% A (5.5-8.0 min) with a constant
flow rate at 1000 pL/min. The HESI source spray voltage was set at 3.7kV with capillary
temperature - 300°C; sheath gas - 45 units; auxiliary gas - 10 units, heater temperature -
390°C and S-lens RF at 50 units. The mass spectrometer was set to m/z range of 60-900,
resolution of 70,000 FWHM (Full width at half maximum) with automated gain control
target 1€® and maximum injection time of 50 ms. 5L of the sample was injected for
analysis using the auto-sampler unit. The data was acquired in both positive and negative
ion mode in two separate batches. Metabolomics data analysis was carried out by the Qual
and Quan browser modules of Xcalibur (Thermo Scientific). [M"H]" and [MH] ions were

used for all sets of data anaysis in positive and negative ion mode respectively. A
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Qual/Quan approach of data processing was employed. The initial step of analysis was the
generation of accurate mass-extracted ion chromatogram (AM-XIC) of various metabolites
using 20 ppm mass extraction window (MEW) and peaks were confirmed using MSMS
spectral peak matching. In the next step, the metabolites (confirmed in the qualitative
analysis) were quantified in various intra and extracellular samples using the internal

standard normalized linear regression models generated from standards.

6.2.5. Selection of metabolites for profiling: The metabolomic characterization of
temozolomide sensitive and temozolomide resistant cells was performed on a targeted way
of estimation of concentrations. The central carbon and nitrogen metabolism was targeted
in this study. 34 metabolites were selected based on their impact on the metabolism (Figure
6.3). These metabolites include al amino acids, glucose, lactate, apha-ketoglutarate,
citrate, oxal oacetate, succinate, malate, and pyruvate.
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Figure 6.3: Metabolites selected for quantification using L C-M S/M S analysis. Pathway
figureis adapted from Y. Zhao et a., BMC Med. 10, 153 (2012) (Zhao et al. 2012).

The targeted analysis was performed in LC-MS/MS for absolute quantification using
standards for all these metabolites. Both extracellular and intracellular samples from drug-
treated and drug-untreated groups were used for profiling for both U87MG and NSP.
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Samples were extracted using the method mentioned in 6.2.2 section and were stored at -
80°C until use.

6.2.6. Consumption and Release (CORE) clustering and Principle component analysis
(PCA): The concentrations for al 35 metabolites identified from LC-MS/MS analysis
were further clustered using ClustVis web tool (http://biit.cs.ut.ee/clustvis/). Consumption

and release concentrations were calculated by subtracting the concentration at 0 and 96 hrs.
These values were used as inputs for generating heat maps and for PCA. Heat maps and
clustering was performed with the criteria of unit variance scaling (applied to rows) where
all 35 metabolites were the rows in the heat maps. Both rows and columns were clustered
using correlation distance and average linkage with the tightest cluster first in tree order.
PCA was carried out by using SVD with imputation algorithm specified in the ClustVis
tool. In some specific cases, the Euclidean algorithm was used for clustering to interpret
the data.

6.2.7. Variable Importance in Projection (VIP) scores using Partial Least Square
Discriminant Analysis (PLS-DA): MetaboAnayst, a web-based statistica tool
(MetaboAnalyst - statistical, functional and integrative analysis of metabolomics data) (Xia
et a. 2009; Chong et a. 2018; Xia et a. 2015; Xia & David S Wishart 2011; Xia et a.
2012; Xia& David S. Wishart 2011; Xia & Wishart 2016) was used for calculating the VIP
scores and the PLS-DA components were plotted to interpret the variance across the cell
types. Pareto scaling (mean-centered and divided by the square root of the standard
deviation of each variable) was used initially in order to normalize the LC-MS/M S data for
the analysis. The 2D and 3D score plots from PLS-DA were generated in the online tool
and the interpretations were made accordingly.

6.3. Results

6.3.1. Quantitative metabolite profiling identifies key differences in the metabolic
states of thecell in the presenceof TMZ

The metabolite levels in the two cell types (U87MG and NSP) over a period of 96 hours of
growth/inhibition were analyzed and quantified using LC-MS/MS in the presence of
varying concentrations of temozolomide. This was compared to growth in the absence of
TMZ. In the absence of TMZ, exo-metabolite profiling showed glucose uptake correlated

with lactate secretion, consistent with the well-documented Warburg effect of cancer cells
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(Warburg 1956; Hsu & Sabatini 2008; Vander Heiden et al. 2009; Ward & Thompson
2012; Warburg et al. 1923; Dang 2012). The growth limiting substrates (Glucose,
glutamine, serine, and tryptophan) were completely depleted by 96 hours by both the cell
types except glucose and serinein U7MG at 700 uM TMZ. Glucose and Glutamine were
taken-up linearly by both the cell types in the absence of the drug but NSP showed some
lagged uptake in case of glucose. NSP cells were observed to be glutamine-dependent for
their survival and growth. Serine and tryptophan had dynamic changes in NSP in the
presence of drug exo-metabolite profile compared to US7MG. This was significant at 72
hrsin all concentrations of drug-treated samples (Figure 6.4A).

6.3.2. CORE clustering and PCA

CORE profile analysis and PCA was performed to understand the exo- and endo-
metabolite state of both the cell types (U87TMG and NSP). Unit variance scaling was
applied to CORE (both exo and endo) clustering for the combined 4 experimental setups
and 2 cell type analysis with al 35 metabolites in rows. Both rows and columns were
clustered using correlation distance and average linkage with the tightest cluster first in tree
order. Relevant clustering has been predicted in the combination of succinate-ornithine;
glycine-proline, alanine-lactate; arginine-citrulling; and aspartate-tryptophan throughout
the varied TMZ concentrations. Most variation was predicted in the 10 uM TMZ and 700
MM TMZ (as seen by the color intensity across US7M G and NSP) (Figure 6.4 B and C).

Exo-metabolite PCA output has 5 components where-in PC1, PC2 and PC5 were
considered for correlation visualizations. PC1 to PC2 comparison outlined the two-
component spheres to converge. In contrast, comparing PC1 to PC5 differentiated the 700
UM TMZ profile from others. CORE clustering of endo-metabolite profiling projected
NSP-700 profile as a distinct column cluster among others. Most variance was observed in
the profiles of cells in the presence of drug (highest in NSP-700, NSP-100, and U87MG-
10). Among the 5 PCA outputs of the endo-metabolite profile, PC1, PC2 and PC4 were
selected for anaysis. PC1 to PC2 component spheres clustered NSP and US7TMG as
separate identifying them as metabolically different intracellularly, yet PC1 to PC4 had
some intersection with US7MG (Figure 6.4 D and E).

6.3.3. Concentration profile acrosstime

Concentration was profiled over time to delineate the dynamics. Out of the 35 key
metabolites selected for the study, 6 metabolites (Asparagine, citrulline, G3P, histidine,
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Figure 6.4: Metabolite profiling in the absence and presence of drug (Temozolomide). A) Heat
map of growth limiting substrates. Clustergram of Extracellular (B) and Intracellular (C) profiles.
PCA analysis of Extracellular (D) and Intracellular (E).
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Figure 6.5: Metabolite concentration profile of UB7MG and Neurospheres in the
absence of temozolomide. A) Extracellular B) Intracellular. The absolute concentrations
are plotted with * Concentration’ in Y-axisvs ‘Time' in X-axis.
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ornithine and proline) showed a differential exo-metabolite profile in the absence of drug
(Figure 6.5).

This suggests a possible change in nitrogen flux distribution across the two cell types to
maintain their inherent metabolic capability. Alanine, lactate, and glutamate were released
by these cells, thus confirming previously discovered glioblastoma signature profiles.
Ornithine was found to be a distinct profile in NSP compared to U87MG in al the
conditions (No drug, 10 pM TMZ, 100 pM TMZ and 700 uM TMZ). Pyruvate showed
differences only in the presence of high concentrations of the drug (700 uM TMZ). 20
metabolites (Alanine, ascorbic acid, citrate/isocitrate, citrulline, cysteine, glycine, histidine,
lactate, leucine/isoleucine, methionine, ornithine, phenylalanine, proline, pyruvate,
sorbitol, succinate, threonine, tyrosine and valine) showed difference in their extracellular
profile a low concentration of TMZ (10 uM). The 10 uM TMZ growth profile was similar
to without drug (no significant growth inhibition by TMZ), yet these 20 metabolites
showed a concentration change with highest difference in ornithine (~20 fold increase in
NSP for no drug profile - 72 hrs; no/least ornithine detection in US7MG in the presence of
the drug) followed by pyruvate and alanine (Figure 6.6).

Exo-metabolite profile in the presence of 100 uM TMZ highlighted 16 metabolites
(Alanine, asparagine, citrulline, cysteine, glutamine, glycine, lysine, methionine, succinate,
ornithine, phenylalanine, proline, pyruvate, sorbitol, threonine and tyrosine) as different in
their concentrations (Figure 6.7). In the presence of 700 uM TMZ, where US7MG had a
negative rate of growth (Appendix A, Table A2) and NSP survived up to 24 hrsin contrast
to U87TMG. 11 metabolites (Arginine, citrulline, glycine, histidine, lactate, lysine,
ornithine, serine, threonine, tyrosine and valine) were different in their exo-metabolite
profilein this state (Figure 6.8).

Endo-metabolite concentration profiles and dynamics of 35 metabolites was assessed by
normalizing the concentration by cell number to account for increasing cell number/mass at
the specific time intervas. Glycine, threonine, and arginine varied similarly in their endo-
metabolite profile in the absence and presence of al concentrations of the drug. Six
metabolites (Alanine, leucine/isoleucine, lysine, pyruvate, tyrosine, and valine) were
differential in the absence of the drug. Pyruvate and alanine were among the 8 metabolites
that differed in both 10 uM TMZ and 100 uM TMZ. Tyrosine and methionine were unique
in the presence of 10 uM TMZ while Citrulline and D- malic acid unique in the presence of

108 Metabolic dynamics | Chapter 6



10uM TMZ Treatment
Aa Arg Asch Asn Asp

P - 1
; y i,

Time Hrs

B
10uM TMZ Treatment
Asch Asn Asp
g 4 2 1
H ] 3 3 g
; 0008 § 2 ;6. g (1) B
N ! [] o L L] n nn ] « L] L]
Trna-Hn Trets
: R ; . : . u\k Gin : . Glu ,
E O 0 -
e e : | At
“ 1] F L] L] L] 10 L] 2 WT [ ] N L] '.:m nn F L] L] L] 1w
Teeriy. TerwHes Trestt.
Bluc Gly His Kga Lae Leu
i:w.,. ilﬂ‘.‘ il i? iD: = _'_:_* a
e R qw gt | qu'_.rM e
L B v 0 1 1 v o v
] o

—4— UBTMG e Neurospheres |
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100 uM TMZ. A 60% change in overall concentration span change was observed in the
presence of 700 uM TMZ for al metabolites (Figure 6.4 to 6.8 B sections). Succinate
levels diverged significantly in the endo-metabolite profile in the presence of 700 uM
TMZ. These analyses showed the demand for these metabolites may differ based on
microenvironments. Local conditions may contribute towards choices related to

quiescence, proliferation, differentiation or migration in NSP and US7MG.
6.3.4. Key metabolites and their rolein metabolic reprogramming

To identify the importance of individual metabolite on the systems under study (US7TMG
and NSP), it is necessary to use the statistical analysis tools for analyzing the LC-MS/MS
data acquired. ldentification of the hierarchical importance of metabolites for the cell
growth and proliferation of U87MG and NSP was performed in the analysis by calculating
their Variable Importance in Projection (VIP) scores using Partia Least Square
Discriminant Analysis (PLS-DA). This VIP score is often used to calculate the importance
of individual metabolite featuresin spectra (Farrés et a. 2015).

The extracellular samples from U87MG and NSP cells were analyzed using PLS-DA and
their VIP scores were calculated using MetaboAnalyst, a web-based statistical tool
(MetaboAnalyst - statistical, functional and integrative analysis of metabolomics data) (Xia
et a. 2009; Chong et a. 2018; Xia et a. 2015; Xia & David S Wishart 2011; Xia et a.
2012; Xia & David S. Wishart 2011; Xia & Wishart 2016). These results support the initial
hypothesis of Chapter 2, that NSP prefers glutamine metabolism over glycolysis.
Glutamine ranks highest during growth and proliferation of NSP cells while US7TMG
shows lactate (Figure 6.9). This signifies the importance of glutamine in the temozolomide

resistant cells.

In contrast, UB7TMG cells identified lactate as an important variable potentially due to the
potential coupling of Warburg effect and Cori cycle that allows maximizing ATP yields in
the absence of Oxidative phosphorylation.

PLS-DA anaysis also identified differences in the profiles of US7MG, NSP, and NDx
(differentiated from NSP) cells. Pareto scaling (mean-centered and divided by the square
root of the standard deviation of each variable) was used to normalize the data points
before the PLS-DA analysis. This analysis clearly separated U87MG and NSP as separate
clusters and NDx forming the intermediate profile. From this anaysis, the metabolic state
of NDx cells that are differentiated from NSP has been delineated to be partially between
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U87MG and NSP cells (Figure 6.10). The same profile was reflected in the metabolite
profile analysisin Chapter 2.
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Figure 6.9: VIP score for metabolites profiled using LC-MSMS analysis for UB7TMG

and NSP in the absence of temozolomide

Differential glycolysis rate is reflected in the ratio between lactate and pyruvate (Figure
6.11A) calculated from the exo-metabolite profile using LC-MS/MS. The ratio of succinate
and aphaketoglutarate (AKG) in the quantification profiles in extracellular samples
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(Figure 6.11B) highlights a maor role in regulating the DNA methylation. This ratio
regulates the TETs and KDMs in DNA demethylation. NSP cells show a higher ratio and
hence the DNA demethylation could potentially be higher in NSP than US7MG cells. This
could be a possible reason why the activity of temozolomide i.e. the methylation of DNA
does not affect NSP at the ICso value of U87MG and it requires more dosage to reach the
ICs0. Our analysis from this thesis identified for the first time, the dependency of
temozolomide resistant cells on glutamine and glutamate for its survival and resistance via
increased DNA demethylation and repair.
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Figure 6.10: PLS-DA component analysis scoresplot. A) 2D plot B) 3D plot

Also, ornithine concentrations across U87MG and NSP were found to be differential both
in the presence and absence of the drug (Figure 6.12A). This profile was distinct from
other amino acids in away that the difference is consistent in the presence and absence of
temozolomide. The presence of a unique deletion in the ODC gene in the exome data from
Chapter 4, in UB7TMG cells alone may drive this metabolic change. Also, change in the
glutamine concentrations (from low - 0.2mM to high — 2mM) in the media allowed the
U87MG cells to accumulate ornithine (Figure 6.12B). This experiment thus explains the
reason for the increase in ornithine profile in NSP because of the preferential utilization of
glutamine as discussed in Chapter 2.
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Figure 6.12. Ornithine profiles from LC-MSMS analysis. A) Exo-metabolite profiles
from 4 different experimental conditions (No drug, 10 pM TMZ, 100 uM TMZ and 700
MM TMZ) at different time points (0, 24, 48, 72 and 96 hrs). B) Ornithine profile in low
glutamine (0.2mM) and high glutamine (2mM) in US7TMG cells.

The maor metabolic reprogramming is potentially due to glutaminolysis and its
contribution to ornithine via carbamoyl phosphate (Figure 6.13). Hence, the rewired
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metabolism is due to the preferential utilization of glutamine as reported from our analysis
(Immanuel et al. 2018) along with the potential contributions from genotypic changes in

the signal and regulatory networks.

6.4. Discussion

Resistance devel oped by the cells can be linked to its metabolic state in the presence of the
drug as the cell rewires its metabolism to survive in those conditions. Also, delineating the
inherent capability of the cell in the absence of the drug would eventually lead to the
understanding of rewired metabolism under the influence of the drug. In this Chapter 6,
the metabolite levels of both temozolomide sensitive and resistant cells were profiled in the
conditions where temozolomide is either present or absent in the microenvironment to
understand the metabolic reprogramming. Sublethal concentrations (10 uM and 100 uM
TMZ) of the drugs and one lethal concentration (700 uM TMZ) was chosen for the
analysis. Differential levels of metabolites were identified during survival and death in the
presence of temozolomide. This indicates the possible selection through adaptation of
metabolites preferred by the cell in the presence of TMZ. By combining all the inferences
from the analysis of extracellular and intracellular metabolite levels, the possible metabolic
state of NSP that support its growth can be delineated (Figure 6.13).

Glutamine uptake is preferred by NSP more than glucose uptake, highlighting a major
contribution of glutamine in the rewired metabolism as aso reported in our analysis
(Immanuel et a. 2018) and stated in Chapter 2. Glutamine gets converted glutamate via
glutaminolysis and can accumulate aphaketoglutarate into the TCA cycle. Other
important findings are the levels of ornithine from extracellular profile both in the presence
and absence of temozolomide that differ highly across UB7MG and NSP.

Ornithine levels are very high in NSP compared to US7MG that can possibly rewire the
urea cycle to aid in increasing the levels of aspartate and fumarate towards TCA cycle
(Figures 6.4 to 6.8 extracellular panels). These results strongly suggest a path towards TCA
cycle and ETC for the generation of ATP in contrast to U87MG that depends on Warburg
effect to generate ATP. Such analyses have never been performed before to understand the
metabolism in the presence of drug to characterize resistance. Hence our study allows
identification of a metabolic basis for drug response, susceptibility, and resistance. It

provides key evidence for the role of metabolic pathways in the survival of resistant cells.
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Figure 6.13: Predicted metabolic state of NSP cells. Pathway figure adapted from Geck,
R. C., and Toker, A. Nonessential amino acid metabolism in breast cancer, Advances in
Biological Regulation, 62, 11-17 (2016) (Geck & Toker 2016). Red arrows indicate the
inferences from this study.

6.5. Conclusions

Absolute quantification of metabolites using LC-MS/MS analysis has aways been a
promising technique to identify the key metabolites that are responsible for cancer
progression and drug resistance. In our study, we have used this technique to identify the
potential rewired metabolism that is linked to drug resistance. Glutamine and ornithine
were identified to be the most important differential profilesin comparison across US7TMG

and NSP in both the presence and absence of temozolomide.

Overdll profiles of all 34 metabolites were different in the 700 uM TMZ condition for NSP
compared to all other profiles. Clustering and PCA analyses also indicated the metabolic
phenotype differences across these two populations. From these, it is evident that the
metabolite profiles dictate the cell state and can be used to identify causal metabolites.
Further, a metabolite supplementation/depletion strategy could be devel oped to address and

inhibit the uncontrolled growth of temozolomide resistant cells.
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Chapter 7

An Integrative Paradigm for
Temozolomide Resistance:
A Systems Approach

"The significant problems we have cannot be solved at the same level of thinking with
which we created them".

- Albert Einstein
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Figure 7.1: The experimental datasets and their key inferences from Chapters 2 to 6 that
are used for the integrative analysisin this chapter 7.
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The so-called “War on Cancer” approaches the half-century mark and a new paradigm
to guide cancer treatment may be needed for the 21% century. Current treatments for
cancer include surgery, radiotherapy, cytotoxic chemotherapy, hormonal therapy,
immunotherapy, and targeted therapies, however; the cure for cancer is till at bay due to
acquired resistance and metastasis. For new paradigms based on reductionist and systems
biology approaches established in the previous century, in vitro, in vivo, clinical models
need to be established. The prior chapters of the thesis discussed multiple molecular
approaches to probe drug resistant and susceptible glioblastoma cells. Data integration to
understand the combinatorial effect and crosstak among molecular hierarchies (as
discussed in this chapter) would help develop strategies against resistant cells in the future.
The results from the reductionist approaches applied and discussed in chapters 2 to 6 were
unified to develop context-specific inferences. The outcome of this anaysis is the
development of an integrative paradigm that helps in understanding drug resistance to aid
in systems-level characterization. In the next few sections, inferences from piece-wise

molecular data integration will be discussed to answer some open questions.

7.1. How does the expression of drug transporters impacts growth and susceptibility

response to temozolomide?

The gene expression of ATP-binding cassette (ABC) transporters delineated using real-
time PCR in Chapter 3. These transporters constitute an important superfamily of integral
membrane proteins that involves the transport of drugs (Higgins 2001; Rees et al. 2009;
Glavinas et a. 2008; Vasiliou et a. 2009; Chang 2003). The mRNA abundances could
eventually contribute to drug efflux thereby contributing to drug resistance. Differential
transcript levels were observed for all the 7 sub-family ABC transporters. ABCC5 showed
a maximum of 10 fold variation in transcript levels. Network anaysis predicted that
ABCCS is linked to four drugs (6-mercaptopurine, methotrexate, 6-thioguanine, and 5-

fluorouracil).

These drugs tested on the BIOLOG panel (Chapter 5) showed differential efficacy on
U87MG and NSP cell viability. Also, through exome analysis (Chapter 4) two novel
missense mutations in ABCC5 were identified only in U87MG that could potentially be
causal for lowered gene expression. Most transporters belonging to the ABCC sub-family
were highly differential in expression. ABCG2 also linked to the transport of 12 drugs
(represented on the BIOLOG panel) had increased gene expression in NSP cells though
there was no genomic variability (Figure 7.2). 17 ABC transporter genes had increased
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gene expression in NSP cells that could account for the drug response in NSP cells. The
same transporters were aso linked to metabolite and small molecule transport as elucidated

in the network analysis (Figure 7.2) from PathwayStudio™ tool.
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Figure 7.2: ABCG transporter family and its linked transport of molecules. Pathway
Studio™ driven elucidation of activity of ABCG transporters.

By complimenting drug efflux with the transport of specific metabolites, these ABC
transporters could potentially modulate the microenvironment that would shape growth and
proliferation of the cells.

7.2. How does modulating CAN gene expression impacts the response to alkylating
drugTMZ?

CAN genes that include AKT, IDH1, IDH2, STAT3, MGMT, and PTEN showed
differential MRNA abundances in the gPCR analyses (Chapter 3). These genes contribute
to the control of nutrient uptake, metabolic rewiring and epigenetic control of other genes.
Higher mRNA abundances of cytokine STAT3 in NSP potentially turn on the MYC
transcriptional program and induces preferential consumption of glutamine as shown in the
LC-MS/MS data (Chapter 2/Chapter 6). The simultaneous negative regulation of ACL by
AKT1 as shown in Chapter 3, potentially lowers the acetyl CoA pool and hence the acetate
available for histone acetylation. A reduced aerobic glycolytic flux reflective of higher

NAD levels potentially control SIRTUIN family transcriptional repressors and silence
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chromatin via decreasing histone acetylation. This partially explains differential tryptophan
metabolism (growth limiting for U87MG in Chapter 2) and suggests a role for picolinate
carboxylase in the balance between NAD derived nucleotide synthesis and acetyl-CoA
driven acetylation. Higher levels of AKG (TCA pool) aso indicate epigenetic connections
to the Jumonji family of histone de-methylases that could prevent methylation of histones
(Figure 7.3).
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Figure 7.3: Possible resistance mechanism of NSP cells derived from the inferences on
LC-MS/MS and mRNA abundances datasets.

This may aso explain the varied dose-response relations and increased 1Csy for TMZ. The
dependency on glucose and pyruvate; and not glutamine for growth/respiration aso
suggests normal levels of methylation in US7MG. Similar MGMT mRNA abundances
suggest functional DNA repair in the absence of TMZ. Adaptive TMZ resistant GBM cells
have been reported to show activation of JNK, up-regulation of metabolism related to
citrate, and an increase in histone demethylase KDM5A gene expression (Banelli et a.
2015). In line with this hypothesis (Figure 7.3), validated through metabolite profiling,
NSP exhibited up to 2-fold resistance (indicated by higher 1Csp, Emax and AUC values)

122 Integrative paradigm - Bridging the gap | Chapter 7



during the studied chemotherapeutic response to TMZ in Chapter 2.
7.3. How do genomic alterations contribute to temozolomide r esistance?

All genes that have aterations only in one cell type or have unique mutations from exome
data have been classified as metabolic, signaling genes, regulatory genes and epigenetics
related genes. The genes with homozygous and nonsynonymous mutations are known to
affect protein function (85% confidence). Such unique changes (Chapter 4) in the genome
potentially shape the reprogramming of metabolism (Chapter 2/6) in temozolomide
resistant NSP cells. The number of variants identified in exome characterization for these
key genes is listed in Table 7.1. These genes have an important role in shaping the
metabolism as highlighted in Figure 7.8.

Table 7.1. Exome variants of genesthat control metabolism

Gene Gene Description No. of variants
Symbol U87MG NSP

HIF1A Hypoxia-inducible factor 1, alpha subunit 1 1
PTENP1 Phosphatase and tensin homolog 2 2 2
TP53 Tumor protein p53 isoform a 1 1
MTOR FK506 binding protein 12-rapamycin associated 3 3
PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 2 1
TSC1 Tuberous sclerosis 1 protein isoform 1 1 0
TSC2 Tuberous sclerosis 2 isoform 1 2 2
GPX1 Glutathione peroxidase 1 isoform 1 0 1
APC Adenomatous polyposis coli 7 7
OAZ1 Ornithine decarboxylase antizyme 1 1 0
ODC1 Ornithine decarboxylase 1 1 0
AMY2A Pancreatic amylase alpha 2A precursor 1 0
SLC38A3  Solute carrier family 38, member 3 0 1
SLC38A4  Solute carrier family 38, member 4 2 2
SLC1A5 Solute carrier family 1 member 5 isoform 1 0 1
GCLM Glutamate-cysteine ligase regulatory protein 0 1
GGT2 Gamma-glutamyltransferase 2 1 2
ATP4A Hydrogen/potassium-exchanging atpase 4A 1 1
CcyC1 Cytochrome c-1 1 2
PLCD3 Phospholipase C delta 3 1 2
SYNJ1L Synaptojanin 1 isoform a 5 7
ME1 Cytosolic malic enzyme 1 0 1
HMBS Hydroxymethylbilane synthase isoform 1 0 1
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7.4. Combinatorial role of CAN genes, ABC transporters, related exome and

metabolism on temozolomider esistance

Since TMZ is a DNA methylating drug, the potential effects of regulating metabolism on
epigenetics are critical in drug action and cell susceptibility. From the integrated analyses
discussed in the previous sections, it is obvious that the emergent properties of these
resistant cells are not only from their differential gene expression of drug transporters but a

combined effect from CAN genes that drove metabolic reprogramming (Figure 7.4).

Together, by interlinking these connections, one can identify the specific metabolic state of
the resistant cells that can be targeted by the novel data-driven development of therapeutic

regimens.

A ABC transporters B CAN genes

=
R o o~ @ e Metabolism
+ Metabolite

Drivers of [* Epigenetics
Transport
PO |e Drug \\\\ e Proliferation

el

e Preferred utilization e Uptake rate
c * Respiration/Growth limiting substrates

Metabolism

Figure 7.4: An Integrative paradigm for Temozolomide resistance. Contributions in
part by metabolism, mMRNA abundances of ABC transporters and CAN genes to TMZ
resistance in NSP are depicted. Representation of (A) the localization of ABC transporters
in the cell (B) network analysis of 23 CAN genes using Pathway Studio™ and (C)
potential metabolic rewiring indicated by red (NSP) and blue (U87MG) arrows.

124 Integrative paradigm - Bridging the gap | Chapter 7



Our study thus highlights the need for a new paradigm for research on drug resistance

focusing on the global picture of the cell at the systems level.
7.5. Predictive constraints-based metabolic modeling of U87M G and NSP cells

Constraints-based approaches enable one to integrate multiple data-types (Figure 7.5A) in
the context of a model to help predict emergent properties. These models have been
reported to help understand cancer metabolism and predict phenotypes that are specific to
the constraints. These models are also able to elucidate differentia pathway wiring based
on constraints. Metabolism is not just a hallmark of cancer but can cross-talk with most of
the other hallmarks (Figure 7.5B).
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Figure 7.5: Constraints-based metabolic models (A) and their role in delineating
cancer metabolism (B). Adapted from N. E. Lewis, A. M. Abdel-Haleem, The evolution
of genome-scale models of cancer metabolism. Front. Physiol. 4, 237 (2013) (Lewis &
Abdel-Haleem 2013).

In this approach, we have integrated al the experimental data discussed so far into a core
metabolic model to develop in silico representations of US7MG and NSP. A previously
published core model of human metabolism (Figure 7.6) consisting of 380 reactions
(Zielinski et a. 2017) was contextualized using CORE data obtained in Chapter 2. This
core model includes reactions from all the central metabolic pathways including glycolysis,
gluconeogenesis, pentose phosphate pathway, TCA cycle etc. The cell-specific models
(Figure 7.6) were defined using experimental constraints from growth, uptake rates of
different metabolites (LC-MS/M S data) and genomic variants from Exome data mentioned
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in the Chapters 2 to 6 in this thesis. The prediction accuracy for growth rates of the in
silico cells of u87MG and NSP was 94% for US7TMG and 92% for NSP (Figure 7.7A). The
oxygen uptake rate was fixed using legacy data for agrade |11 glioblastoma cell line, U251
(Zidlinski et a. 2017).

A Q-luman metabolism Recon 2) B Model structure
Extract Known active pathways No of reactions 381
h?:éZI Gene/ Protein Expression/ CNVs

(Core cancer model No of genes 2141
fetabolite exchange profiles No of metabolites 360

Cell sizes

Flux '
""'“"
Analysis g
i ! Rggcursor and energy demand

Cell growth rates
(NCI60 cell flux states
. T wracing Cl+ “In-house uptake rates of
\)r;:éfzé 2 FO? uptakes U87MG and NSP cells
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gnalysis *  Cell dry cell weight

*« Exome variants

Figure 7.6: Generation of constraints-based core metabolic model of U87MG and
NSP cells. A) Base model reported. Figure adapted from Zidlinski, D. C. et al. Systems
biology analysis of drivers underlying hallmarks of cancer cell metabolism, Scientific
Reports 7, 41241 (2017). B) Mode structure C) Constraints used from in-house
experimental datasets.
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Figure7.7: Core model predictions. A) Biomass B) Flux variability anaysis.
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Table 7.2. Differential flux distribution across U87MG and NSP in Flux variability

analysis.
U8BTMG NSP

Reaction Name Reaction Minimum | Maximum | Minimum M aximum
ornithine carbamoyltransferase,
irreversible OCBTm -44E-16 | 1.398211 | 4.42E-17 0.74598
pyrroline-5-carboxylate reductase (m) | PSCRm -5,9E-05 | 0.001356 | 0.00261 0.003223
L-Tryptophan exchange EX trp L(€) -0.03063 | -0.02659 | -0.00121 -0.00121
3-hydroxyanthranilate 3,4- 3HAO 0.024801 | 0.028847 0 0
dioxygenase
aminomuconate-semial dehyde AM6SAD 0.024801 | 0.028847 0 0
dehydrogenase
2-aminomuconate reductase AMCOXO 0.024801 | 0.028847 0 0
formate dehydrogenase FDH 0.027221 | 0.031267 | 0.001646 | 0.001646
N-Formyl-L-kynurenine FKYNH 0.024801 | 0.028847 0 0
amidohydrolase
3-Hydroxy-L -kynurenine hydrolase HKYNH 0.024801 | 0.028847 0 0
kynurenine 3-monooxygenase KYN30X 0.024801 | 0.028847 0 0
picolinic acid decarboxylase PCLAD 0.024801 | 0.028847 0 0
L-Tryptophan:oxygen 2,3- TRPO2 0.024801 | 0.028847 0 0
oxidoreductase (decyclizing)
'S-;%%trct’pha” transportin viasodium | oy 0.026587 | 0.030633 | 0.001214 | 0.001214
argininosuccinate lyase ARGSL 1.74E-14 | 1.398211 | -1.5E-15 0.74598
L -glutamine transport via GLNtm 0 1280819 | -56E-16 | 072901
electroneutral transporter
3-Methyl-2-oxopentanoate
mitochondrial transport via proton 3MOPt2im 0 -4.6E-15 0.00422 0.004585
symport
acetyl-CoA C-acetyltransferase, ACACT10m 0 46E-15 | 000422 | 0.004585
mitochondrial
acyl-CoA dehydrogenase (2- ) 3
methylbutanoyl-CoA), mitochondrial ACOAD10m 0 4.6E-15 | 0.00422 0.004585
2-Methylprop-2-enoyl-CoA (2-
Methylbut-2-enoyl-CoA), ECOAH9mM 0 -4.6E-15 | 0.00422 0.004585
mitochondrial
3-hydroxyacyl-CoA dehydrogenase
(2-Methylacetoacetyl-CoA), HACD9m 0 -4.6E-15 | 0.00422 0.004585
mitochondrial
Is_;;lrzzﬁl:c' netransportin viasodium | | &y 0014332 | 0014332 | 0013967 | 0.014332
isoleucine transaminase ILETA 0 -4.6E-15 0.00422 0.004585
2-oxoisovalerate dehydrogenase
(acylating; 3-methyl-2- OlVD3m 3.47E-18 | -4.6E-15 | 0.00422 0.004585
oxopentanoate), mitochondrial
Prapionyl-CoA carboxylase, PPCOACM 0 46E-15 | 000422 | 0.004585
mitochondrial
L -1soleucine exchange EX_ile L(e) -0.01433 | -0.01433 | -0.01433 -0.01397
methylmalonyl-CoA MMEm 457E-15 | -5.6E-17 | -0.00458 | -0.00422
epimerase/racemase
Reversible reaction
Only in the positive direction (forward)
Only in the negative direction (backward)
Rigid Reaction (Flux is fixed, does not vary)
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Table 7.3. Details of the exome variants used as constraints.

NSP unique genes mutations (Homozygous) correlated to the model reactions based on GPR

Geneswith Geneswith e . Unique M utationsin
In silico model details alterations alterations (H or?wz 9 ous) common genes
(Homozygous) (Heter ozygous) Y9 (Homozygous)
Gene Rxn ID RxnName Rxn Subsystem | U87TMG NSP U87M G NSP U87M G NSP U87M G NSP
CYC1 | CYOR ul0m | CYORulOm Oxidative N Y Y Y N Y N N
Phosphorylation
cyct | cvoom2 | cyoom2 Oxidative N v v Y N Y N N
phosphorylation
. Pyruvate
ME1 ME2 malic enzyme (NADP) Metabolism N Y N N N Y N N
C-3 sterol
NSDHL | C3STDH1Pr | dehydrogenase (4- Cholesterol N Y N N N Y N N
Metabolism
methylzymosterol)
C-4 methyl sterol Cholesterol
NSDHL C4STMO2Pr oxidase Metabolism N Y N N N Y N N
L-phenylalanine Transoort
SLC38A4 | PHEt4 transport in via sodium sport, N Y Y Y N Y N N
Extracellular
symport
SLC38A4 | SERt4 L -serine via sodium Transport, N Y Y Y N Y N N
symport Extracellular
SLC38A4 | GLYt4 glycine transport via Transport, N Y Y Y N Y N N
sodium symport Extracellular
L-glutamine reversible Transoort
SLC38A4 | GLNt4 transport via sodium sport, N Y Y Y N Y N N
Extracellular
symport
SLC38A4 | LEUt L.—Ieuu ne transport in Transport, N v Y v N v N N
via sodium symport Extracellular
SLC38A4 | PROM4 Nat/Proline-L Transport, N % Y Y N Y N N
symporter Extracellular
SLC38A4 | ASNt4 L -asparagine transport Transport, N Y Y Y N Y N N
in via sodium symport Extracellular
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U87M G unique genes mutations (Homozygous) correlated to the model reactions based on GPR

Geneswith Geneswith . Unique Mutationsin
In silico model details alterations alterations (Ldrgr?]léi gegl:ess) common genes
(Homozygous) (Heter ozygous) y9 (Homozygous)
Gene Rxn ID RxnName Rxn Subsystem | U87M G NSP Us8/M G NSP Us87/M G NSP U87/M G NSP
glycine-cleavage Glycine, Serine,
AMT GCCam complex (lipoylprotein), and Threonine Y N N N Y N N N
mitochondrial Metabolism
Complox (ipoytprotan) | GYcine Serine
AMT | GCChim | SomPex LIPoyip and Threonine Y N N N Y N N N
irreversible, ;
: ! Metabolism
mitochondrial
glycine-cleavage Glycine, Serine,
AMT GCCcm complex (lipoylprotein), and Threonine Y N N N Y N N N
mitochondrial Metabolism

# Reaction (Rxn) IDs, Reaction (Rxn) names and subsystems are used as such from the model. Gene-protein relationship from the model is used

to connect the genes to the reaction in the network. Exome variants from the Chapter 4 have been listed that are unique for each cell type. Y =

Yes - Variants identified using Exome sequencing; N = No — No variants identified using Exome sequencing.
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Flux variability analysis was performed on the constraints based representation of in silico
U87MG and NSP using COBRA (Constraints based reconstruction and analysis) toolbox
in MATLAB platform. This analysis identifies the minimum and maximum ranges of flux
in each reaction in the network (Table 7.2 and Figure 7.7 B) and aso identifies reactions
that can hold unique flux. Differential flux distribution profiles for U87MG and NSP in
reactions related to the valine, leucine, and isoleucine subsystem (Figure 7.7 B) was

delineated. Also, flux distribution was varied in the urea cycle.

Especialy, the ornithine carbamoyl transferase reaction changes from irreversible to
reversible in case of U87MG. This mgor change was validated from the Exome data
wherein the ODC gene has a unique deletion profile in UB7MG (Chapter 4). This FVA
analysis predicts the genotypic variations from the phenotypic constraints provided in the
model. Further, homozygous non-synonymous variants from Exome data have been used
as constraints (Table 7.3), for the reactions involving genes with mutations, to make the
model more cell-specific. This was performed to validate the genotype to phenotype
relationship that can be predicted from the constraints based models. The complete details
of the model and constraints are provided in Appendix B.

7.6. Discussion

The findings and inferences from this thesis identified the potential rewired central
metabolism (Figure 7.8) and its contributors from signaling network that can form the
potential survival strategy/adaptability mechanism of resistant cells using data-driven
approaches and predictive modeling. The major metabolic reprogramming (highlighted in
Figure 7.8) can be based on the glutaminolysis that takes place from glutamine and its
contribution to ornithine via carbamoyl phosphate (Figure 7.3). Hence, the proposed
rewired metabolism is highly due to the preferential utilization of glutamine (Chapter 2)
and as reported in our analysis (Immanuel et al. 2018). This is also regulated by the
potential contributions from genotypic changes in the signal and regulatory networks that
includes mTOR, PTEN and other DNA methylating genes (highlighted in red boxes in
Figure 7.8).
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Figure 7.8: Metabolic reprogramming depicted based on the inferences from all the datasets in thisthesis.
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7.7. Conclusions

High throughput data acquisition is revolutionizing research in aimost al fields including
cancer. The amount of data acquired in research is tremendously increasing. Hence it is
very important to skill the level of expertise in handling big data sets, especialy when
working with human inferences. Though the data acquisition process by itself needs highly
developed platforms, one of the crucial stepsin any analysisis how to drive knowledge and
inferences from the acquired data. Systems biology is one such platform where it offers
many advantages in handling high throughput datasets of any data types. Herein,
integr ative systems approaches have been deployed to connect all the experimental data
derived in this thesis from Chapter 2 to 6, starting from growth kinetics, differential dose
response, metabolite profiling, exome sequencing to phenotypic characterization. Systems
biology approaches in this chapter included pathway analysis using Pathway Studio™,
metabolite quantification profiles and mathematical models to analyze the flux
distributions in each reaction in the network using constraints based models. All these
“state of the art” approaches led to the identification and characterization of
temozolomide resistant Neurospheres from U87MG, Glioblastoma cell line. This study
also delineated the metabolic reprogramming in these resistant cells that could potentialy
contribute to the survival strategies of these resistant cells as differential glutamine
preferences, changes in the exome variants in master controller genes and DNA repair
genes. Such analyses broaden the scope of this thesis to a scalable pipeline that can be
applied to other cancer types and can be translated to clinical findings, thus bridging the
gap between data acquisition and deriving inferences. Such findings would aso definitely
ramify novel insights to the problem of drug resistance highlighting that it is just not the
drug efflux or the drug inefficiency, but also the capability of the cell to adapt and resist
such environments that makes the condition more complex to combat cancer resistance.
Thus methods for data integration are critical to unify inferences that can drive hypothesis

generation and discovery.

kkkkkkhkkkikkkkk*k
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Chapter 8

Conclusions and Future scope

“Scientists often have a naive faith that if only they could discover enough facts about a
problem, these facts would somehow arrange themselves in a compelling and true
solution”.

-Theodosius Dobzhansky

“History repeats, but science reverberates.”
- Siddhartha Mukherjee, The Emperor of All Maladies

From bench to bed-side: A Systems Approach
For Cancer Heterogeneity and Drug Resistance

New biologica

Present study insights Future Scope

Metabolic networks

Integrative paradigm for resistance

wom P ;
oy Dmp:' ABC v Aming atids
oot l tranporen]
PIEN T Lipids™, ./ Glucose
L] -

Vitamins

' Temozolomide

=

Upcs®

oo —
7

'ﬁ Drugs  apc % Amino acids
\ramsporters]

]
# Glucase

00000 U
Data integration to —0—

i Temozelomide | - . H i i
| Sensitive | ‘?QE&N | Resistant | metabolic model
lsesssssssssascannad m‘b&"! T
3542 hrs 47.05 hrs
y n ® ' o lie
| -]
- e.8.8 “3
Growth ) h (?Mh\\ ¢ @ Disease networks and b VA
3 & Metabolic reprogramming | gﬁ en
AL shndemcr
AT mh_nmol Cholesterol

2

Clinical data

(Patient specific)

Sl @ 3
e "':'-»x’

Figure 8.1: Integrative paradigm developed for cancer drug resistance from this study and
its future scope on translational research.
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he fundamental question in biology is to understand what defines the cells, the
individuals and the populations as different from one another. The answer is that
these are shaped by the genotype-phenotype relationship. The work described in
this dissertation is a “systems biology approach” to delineate the molecular basis of

differences between drug resistant and susceptible cells of glioblastoma.

My doctoral research presents not only the elucidation of differential components of
molecular hierarchies in glioblastoma cells that are susceptible and resistant to the
chemotherapeutic drug TMZ but also an integrated analysis to unravel some of the
mechanistic aspects of drug resistance. In this context, this thesis begins with the discovery
and isolation of morphologically different cells in a glioblastoma cell line that were
separated and banked for further characterization. The genotype (exome) was delineated
and the unique variations in each cell type identified. Transcript levels were ascertained for
selected CAN genes and ABC transporters generally implicated in resistance in cancer.
Metabolism orchestrates cell function/growth and hence the intracellular metabolite level
was dynamically fingerprinted. The contributing micro-environments were also quantitated
in an attempt to understand the choices the cell makes to remain proliferative in the
presence of a drug. Since biological systems are complex and their function is more than
the sum of their parts, all the data was integrated to analyze the emergent properties
resultant from the interaction. Reprogrammed metabolism as a consequence of varied
genotypes was identified and the connections to the methylating action of the drug

temozolomide were elucidated.

Thus, in thisthesis, | have advanced the current understanding of temozolomide resistance
in a modd glioblastoma cell line by developing an integrated paradigm that addresses
many levels of molecular hierarchy in the cell. To our knowledge, this high-throughput
poly-OMIC data integration has never before been performed to describe glioblastoma

heterogeneity and to address the role of reprogrammed metabolism in TMZ resistance.
8.1. Recapitulation

A broad recap of some of the main concepts described and realized in this thesis is
discussed here.

e Temozolomide (TMZ) resistant Neurospheroids (NSP) were identified in the
U87MG human glioblastomacell line.

e NSP shows varied dose-response, 40% higher 1Cso and 30% lower growth rate.
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Altered Glucose and Glutamine uptake in US7MG and NSP shaped metabolic
dynamics; Glutamine is preferentialy utilized by NSP.

Differential mMRNA levels of CAN genes & ABC transporters drive respiration
and growth.

Differential expression of ABC transporters not only affects the drug uptake but
also potentialy contributes to varied substrate uptake and reprogrammed
metabolism.

44 genes with metabolic ontology are mutated in NSP alone, while 15 are
mutated in US7TMG.

Many signaling, regulatory genes that control metabolism are mutated including
MTORC1, PTEN, and cMyc.

Metabolism is programmed in the presence of temozolomide by oncogenic and
micro-environmental signals.

AKG/Succinate ratios determine the methylating level of temozolomide.
Ornithine, pyrimidine metabolism, and urea cycle play arole in the survival of
NSP even in the presence of the drug.

Rotenone and berberine, complex | inhibitors can inhibit the growth of NSP.
Constraints-based metabolic modeling using a core model of human metabolism
predicted varied flux wiring patterns, pathway utilization, and NAD recycling.
Integrative paradigm identifies potential metabolic driversfor TMZ resistance.

8.2. Unknown frontiers of chemotherapeutic resistance

Some of the more global questions that are addressed in the thesis and yet need the final

vaidations and answers are

1) How do metabolic reprogramming and epigenetic alterations shape the cancer

cell response to drugs?

2) How do genetic variations and gene expression impact reprogrammed

metabolism and resistance to alkylating drugs?

3) Can one identify adjuvants in metabolism to supplement chemotherapy and

tailor micro-environments for personalized medicine?

The answers to these questions inadvertently lie in our ability to make measurements at the

molecular level for heterogeneous cells in individuals, integrated models for further

understanding and translation into the diagnosis for tailoring microenvironments. The
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precision of taloring specific microenvironments near the tumor cells would
predominantly dictate the future of personalized medicine and individualized therapy in
cancer.

8.3. Future scope and directions

The future scope of this study lies in its extension or tranglation to clinical samples from
patients. The pipeline developed to study drug resistance in cancer is completely scalable
to clinical data from patients thus can potentially transform research from bench to bedside
(Figure 8.1). Moreover, intra-tumor heterogeneity is a complex problem that needs to be
addressed through continuous monitoring and changing treatment strategies. The use of
data-driven models and constraints based models hold the potentia to design targeted and

specific therapy for the patients either with primary tumors or relapse.
8.4. Single cell analysis

Rapid and inexpensive single-cell sequencing is driving new visualizations of cancer
instability and evolution. Thus single cell analysis is critical in understanding intra-tumor
heterogeneity. The study of clonal evolution can alow the tape of each cancer cell’s lifeto
be deciphered, revealing the tempora order of genomic events and shedding light on
constraints and contingencies to cancer evolutionary trgjectories. All the methods explored
in this thesis can be extended to single cell analysis and the heterogeneity of drug response
be understood. Some of the advances in single cell analysis are seen in the preliminary
data gathered at Manchester Institute of Biotechnology, UK using sphere fluidics.

The droplets were generated using a droplet formation technique (Figure 8.2) and validated

using fluorescence imaging (Figure 8.3).

Figure 8.2: Encapsulation of samples with cells inside droplets. 1) Droplet creation-
images were taken under a microscope. 2) Droplets are of ~300 picoM.
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U87MG cells stained with Hoechst 33342 dye were encapsulated in oil by optimizing the
flow rate that defines the size of the droplet that is formed. These droplets thus formed can

be separated to get single cell encapsulation to further grow in the defined conditions.

stained with Hoechst 33342 dye. 1) Bright field image of the droplets 2) Blue
fluorescence image.

The stability of the droplets to undergo qPCR assays has been tested by incubating the
droplets placed on a dlide to test their stability at different temperatures varying from 20°C
to 70°C (Figure 8.4).

- - A
Figure 8.4: Stability of droplets under varied temperature conditions. Droplets were
heated at different temperatures and then the image is captured under a microscope. The

irregularity in the shape of the dropletsis shown at different temperatures.

This thesis forms the base and the proliferation of such isolated single cells would give
way for multiple measurements including gene expression and metabolite profiles that can
drive precision medicine and thus holds promising future ramifications.

kkkkhkkkkhkkkkhkkkkhkkkkhkkkkhkkk

“No research is ever quite complete. It is the glory of a good bit of work that it opens the
way for something still better, and this repeatedly leads to its own eclipse”
- Mervin Gordon
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Appendices

Appendix A: (All the supplementary data generated in this doctoral research have

been listed in the form of tables and figures).

U87MG cell line has recently in 2016 undergone some controversies in its characteristics
due to the continuous passaging at ATCC according to the study mentioned in the Nature
journal (Allen et al. 2016). This states that some batches of this cell line dispatched from
ATCC lost its originality. In our study, | have performed the cell line authentication to
check the authenticity of the US7MG cell line used for this complete doctoral research.
This identified that this cell line matched 100% with the ATCC STR profiles as given
inthe Table A1l.

Table Al: Cell line authentication results for US7TMG.

U87MG cell line authentication (STR Profiling)

%
Mﬁ‘tc Sa’;‘p' vaten | At Name | D5S | D13 | D7S82 | D16 | wW | THO | AM | TPO | CSF
i No. 818 | s317| o0 |ss30| A 1 | BL | x |1PO
>= Count
80%
100 15 15 | HTB-14 | U-87MG 112'1 81l | 89 | 12 15;'1 93 | Xy | 8 13'1
8182 | 11 9 | HTB183 | NCI-Hes1 | 11 | 11 | 810 | 12 | 17 | 8 |xYy | 8 | 10
CRL- 5.1
8333 | 12 10 s | NcrHrza | 1|8 | om | 12 | B 693 | x 8 | 10
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Table A2: Growth ratesin the presence and absence of temozolomide.

Gompertz Nmax pMax
growth (cell numbers) (hr'h) R squared
parameters NSP us87MG NSP u87TMG NSP Uu87MG
No Drug 1304°10° 1.383°10° 001473 002316 09733  0.9690

10pM TMZ 1.009*10° 7.327¢10° 0.01102 0.02534 09421  0.9816
100pM TMZ ~ 1.301*10° 1.283*10° 0.03898 -0.009934 0.6795  0.9193
700pM TMZ  1.739¥10° 1.92710° -0.006475 -0.03191 0.9449  0.9932
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Figure Al: Intracellular profiles of U87MG and NSP in no drug experiment.
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Figure A2: Intracellular profiles of U87MG and NSP in the presence of 10 uM TMZ.
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Figure A3: Intracellular profiles of US7MG and NSP in the presence of 100 uM TMZ.
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Figure A4: Intracellular profiles of US7MG and NSP in the presence of 700 uM TMZ.
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Figure A5: Growth profiles from PMM-1 plate
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Figure A6: Growth profiles from PMM-2 plate
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Figure A7: Growth profiles from PMM-3 plate
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Figure A8: Growth profiles from PMM-4 plate
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