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Synopsis 

 

Introduction 

Recently, policy makers of India (NITI Aayog) has decided to generate 175 GW of power from 

renewables by 2022, which is roughly 32-36% of the total electricity generation in India [1]. 

Remarkably, the cost of renewable energy (Rs/kW-hr) has also started approaching the cost of 

conventional electricity (from coal/ fossil fuels) [2, 3].  Thus, the renewable energy generation in 

synergy with energy storage technologies can drive humanity towards ‘energy sustainability’ and 

therefore is going to disrupt the energy business in near future. While electrochemical storage of 

renewable energy using battery technology is the most popular, chemical storage (eg: H2) of 

renewable energy using photo-electrochemical or thermochemical pathways is getting large 

attention in recent years. The chemical energy of H2 can then be converted into electricity using 

‘fuel cells’ as and when required. Fuel cells find multitude applications in transportation, stationary 

power-backup, strategic and industrial sectors because of their high efficiency, low/nil end-to-end 

emissions depending on the source of hydrogen, low noise, low vibrations, small footprint, 

compatibility of various fuels and complimentary opportunities with batteries. Of all the various 

types of fuel cells, Proton Exchange Membrane Fuel Cells (PEMFC) are the most popular, 

especially in the 1-100 kW power generation range. The present doctoral thesis focuses on Proton 

Exchange Membrane Fuel Cells (PEMFC) and attempts to provide a comprehensive analytical 

model of the complex physico-chemical processes that occur inside the device during power 

generation operation.  

PEMFC technology has great potential in transportation sector, particularly for heavy-duty 

vehicles (trucks, trailers (Toyota), forklifts (amazon), military vehicles (GM) etc.) wherein non-

sustainable fossil fuel based internal combustion-based energy conversion can be competitively 

replaced with PEMFC technology. PEMFCs also have enormous opportunities in stationary power 

back-up applications such as replacement of the ubiquitous diesel generator sets on telecom 

towers. However, current high capital cost of PEMFC is a major hurdle in deep penetration of 

PEMFC technology in these markets. Maximizing the power output of a PEMFC using appropriate 
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scientific innovations is one of the approaches to bring the capital cost down; the other being 

scaling up of manufacturing processes and taking advantage of economy of scale. Scientific 

innovations can be accelerated if correlations between the various design, operating and material 

parameters of a PEMFC device with its current-potential relationship (polarization curve) is 

rationalized. The highlight of the work presented in this thesis is the derivation of a 

comprehensive physics-based analytical equation of the polarization curve which is valid 

over the entire range of current density and provides the important correlations stated above. 

The model is also experimentally validated in the present work. 

 

Statement of Problem and Objectives 

While extensive modelling and simulation efforts have been made in the recent past towards 

establishing correlations between all the physicochemical processes involved in an operational 

PEMFC to its performance, there are important lacunae which have remained unaddressed. These 

are:  

i) Analytical solutions to the governing equations of one-dimensional model of the 

cathode catalyst layer (CCL) of a PEMFC for all possible regimes of CCL operation, 

especially in the current density regime that is relevant to actual operational conditions. 

ii) Two-dimensional analytical framework incorporating convection of reactant gases 

along the axis of the flow channel and simultaneous diffusion through GDL in the 

transverse direction coupled with consumption in the CCL for its various operating 

regimes. 

iii) Experimental validation of the developed analytical model. 

Thus, in this thesis, we have aimed to derive a comprehensive PEM fuel cell equation i.e., an 

analytical equation of the polarization curve of PEM fuel cells which is valid over entire range of 

current density. The specific research objectives of the thesis are: 

Research objectives: 

1. To derive generalized analytical solution to one dimensional model of the CCL incorporating 

the microstructural details of the CCL in the regime of simultaneous oxygen and proton 

transport limited reaction kinetics and therefore derive a comprehensive analytical current-

potential relationship that relates all the CCL parameters to the power output of a PEMFC. 
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2. To incorporate the laminar flow of reactant gas along the axis of the flow channel, transverse 

gas diffusion along the depth of the flow channel and gas diffusion layer (GDL) and 

consumption in the CCL as dictated by the regime of operation.  

3. To design and implement experimental methodologies to determine oxygen diffusion 

coefficient in the different domains of PEMFC. 

4. To validate the predictions of analytical model with real-time experimental results. 

 

Key findings of the research work 

A detailed analytical modelling of PEMFC supported by numerical simulations invoked in this 

work has provided the following key results [4-6]:-  

1) A comprehensive understanding of all the possible regimes of CCL operation 

This work provides generalized solution to the governing equations of 1-D macro-homogeneous 

(MH) model of the CCL. The derived analytical equations of the polarization curve in our study 

not only capture the limiting cases i.e. poor oxygen transport but ideal proton transport and poor 

proton transport but ideal oxygen transport but also captures a regime wherein neither oxygen 

transport nor proton transport can be neglected. While MH model describes the simultaneous 

reaction and protons and oxygen in the CCL, it doesn’t incorporate an additional resistance to 

oxygen transport in the ionomer phase of the CCL. The flooded agglomerate (FA) model captures 

the essential microstructural features of the CCL in a phenomenological sense and can be regarded 

as a correction to the MH model and is solved in this work.    

2) The PEM fuel cell equation  

We develop a two-dimensional framework that incorporates laminar flow along the axis of the 

flow channel and transverse oxygen diffusion along the channel depth and gas diffusion layer 

(GDL). The FA corrected MH model dictates the oxygen consumption source at the CCL-GDL 

boundary. Analytical solution to this 2-D problem leads to the ‘The PEM fuel cell equation’. This 

current-potential relationship relates all the material, operating and geometric parameters involved 

in an operational PEMFC with its power output and valid over entire range of current density i.e. 

zero to limiting current. 
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3) Development of physics-based experimental methodologies to determine the regime 

of CCL operation and to estimate oxygen diffusion coefficient in the different domains 

of PEMFC (CCL and GDL) and experimental validation of The PEM fuel cell 

equation 

We elucidate an experimental methodology to determine the regime of CCL operation which 

comprised of comparing experimental scaling laws with the scaling laws derived from the theory 

and provided a systematic approach to estimate the effective oxygen diffusion coefficient in the 

catalyst layer. This work also establishes a methodology to estimate the oxygen diffusion 

coefficient in the gas diffusion layer based on the limiting cases of our isothermal two-dimensional 

model of PEMFC. These transport parameters are then used for model predictions. Finally, we 

show that the analytical polarization curve predicted using these parameters shows excellent match 

with the experimental and numerically simulated polarization curves over the entire range of 

current density. 

The significance of this work is that the analytical model relates the performance of a PEMFC to 

all the operating and geometric parameters as well as the average transport and kinetic properties 

of the materials used in its different components, without the need for computationally expensive 

numerical simulations. The model can provide useful insights for enhancing the performance of 

PEMFC in different regimes of current density and therefore can be used as a design tool to 

maximize the power output of a PEMFC and can help in reducing its capital cost. 
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Chapter 1 

Introduction to PEMFC technology 

‘Energy affordability, accessibility and sustainability’ are going to be essential aspects of 

the society of 21st century [1]. This has driven a large part of scientific community to invest 

their efforts in the pursuit of ‘sustainable energy generation, storage and transmission’ [2]. It 

is remarkable that the scale of operation has already helped in bringing down the cost of 

renewable energy generation (solar and wind energy) closer to conventional (coal or fossil fuel 

based) electricity cost [3-4]. However, the inherent constraints on 24x7x365 continuous 

availability of renewable energy sources establishes the need for large scale energy storage. 

Chemical storage of renewable energy into hydrogen using electrochemical, photo-

electrochemical or thermochemical pathways is attracting large attention in recent years [5-7]. 

‘Fuel cells’ then convert the chemical energy of hydrogen into electricity as and when required. 

This thesis, in particular focuses on proton exchange membrane fuel cell (PEMFC) which is 

the most widely used fuel cell type because of its mild operating conditions (near room 

temperature and atmospheric pressure operation).  

PEMFCs are already introduced in the following markets:- 

1) Stationary back-up power 

Being second largest consumer of diesel in the country (excess of 500,000 cell towers), 

telecom industry in India consumes about 2.5 billion litres of diesel annually for DG sets used 

as a back-up power for cell towers. This leads to 6.6 MMT of CO2 emission and also results in 

a revenue loss of about INR 3600 Crore annually [8]. Therefore, DG set as a back-power for 
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the telecom industry is turning out to be an unattractive option economically as well as 

environmentally. The telecom regulatory authority of India has already indicated a need to shift 

from DG-set based back-power to the greener options [9]. PEMFC technology with its 

compelling attributes such as high efficiency, low end-to-end emissions depending on the 

source of hydrogen, low noise, low vibrations, small footprint, compatibility of various fuels 

and complimentary opportunities with batteries is proving to be one of the best alternatives to 

DG-sets. The exciting recent economic analysis of conversion of renewable power into 

hydrogen suggests that the hydrogen cost will reach 2.5 $/kg by 2030 i.e. equivalent of diesel 

cost (based on energy equivalence) [10]. Therefore, the replacement of DG with PEMFC is 

economically possible if the capital cost of PEMFC system becomes comparable with the DG-

set. Furthermore, given that there are in excess of 500,000 towers in India, a significant fraction 

of which require backup power in excess of 8 hours, therefore the replacement of diesel-based 

back-up power generators for telecom towers with PEMFC system can be expected to be a 

huge market and a significant business opportunity.  PEMFC systems have already been 

deployed by telecom companies in India [11-12]. 

 

2) Automotive sector 

The leading companies in the automotive sectors have already introduced their Fuel Cell 

Vehicles (cars) in the market for example, Mirai- Toyota, Clarity- Honda, Nexo- Hyundai and 

F cell- Mercedez. PEMFCs are thought to be better than battery electric vehicles for heavy-

duty transportation such as trucks, trailers, railway and ships. Toyota (Project Portal), Nikola 

Motor and Hyundai are introducing their heavy-duty truck proto-type in the market [13-15]. 

Longer time of operation and fast refueling of hydrogen tanks have attracted Walmart and 

Amazon to replace their conventional forklifts with PEMFC powered forklifts [16]. GM 
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defence has introduced its fuel cell based military grade based truck to move equipment and 

supplies around the battlefield more efficiently and safely [17].   

  Although as mentioned above, PEMFCs can cater to huge markets in the automotive sector 

as well as stationary applications, higher capital cost brings a hurdle in deep penetration of 

PEMFC technology in cost sensitive such as India markets. Therefore, it raises an important 

question: what innovations are required to be implemented immediately to bring down the 

capital cost of the PEMFC technology? Since the fuel cell stack is a large contributor to the 

overall cost of PEMFC system, therefore it becomes important to assess the contributions of 

the various factors influencing the PEMFC to increase its performance and thereby lower initial 

capital costs.  

Before we begin approaching this problem, we provide a brief account on the construction 

and working principle of PEMFC and key components involved.      

1.1) PEMFC: Construction and working principle 

When the positive and negative electrodes of a fuel cell on which counter-balancing 

spontaneous oxidation and reduction reactions occur are electrically connected in terms of 

providing a path for ions (electrolyte), it causes a flow of electrons through an external load 

thus producing the power to drive the load. Thus, in a PEM fuel cell, hydrogen oxidation 

reaction (HOR) takes place on the anode and the oxidized hydrogen ions i.e. protons migrate 

through a polymer electrolyte membrane to the cathode whereas the electrons are dragged 

through an external circuit to the cathode where they combine with oxygen to produce water 

and heat. The reaction on the cathode is called the oxygen reduction reaction (ORR). The 

electrochemical reactions in an operational PEM fuel cell are: 

2𝐻2 → 4𝐻+ + 4𝑒− (HOR on anode side) 
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4𝐻+ + 4𝑒− + 𝑂2 → 2𝐻2𝑂 (ORR on Cathode side) 

Figure 1.1 shows a schematic of a typical PEM fuel cell and illustrates different components 

such as flow field plate (FP), gas diffusion layer (GDL), catalyst layer and proton exchange 

membrane or polymer electrolyte membrane (PEM). As shown in the schematic, a single cell 

is arranged in series to build a fuel cell stack.  

 

Fig. 1.1 Fuel cell assembly and different components (image credits: [18-20]) 

We now elaborate on different components of a PEMFC: 

 Flow field plate 

The channels on the flow field plate allow the flow of reactant gases ensure their supply to 

the catalyst layer. The ribs on the flow field plate allow electrical contact with the GDL. The 

flow field plate can either be monopolar wherein one side of the plate is engraved with the 

channels (typically first and last cell of the stack) or bipolar, with channels on both sides. A 

monopolar plate can serve as either anode or cathode plate, whereas a bipolar plate serves as 

anode on one side and cathode on the other. Therefore, flow field plate should be electrically 

conducting and impermeable to reactant gases. Usually, flow field plates are graphite based 
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[21]. However, metallic bipolar plates coated with a thin layer of anti-corrosive agents are 

becoming more popular [22]. Figure 1.2 shows the typical flow field plates.  

 

Fig. 1.2 Schematic of flow field plate, a) Serpentine flow field plate, b) Interdigitated type flow field 

plate 

 

 Gas diffusion layer 

As mentioned above, although reactant gases are available in the channels, the area above 

the ribs is deficient of reactant gases. A gas diffusion layer (GDL), which is a porous layer 

sandwiched between the flow field plate and the catalyst layer, enables the reactant gases to 
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diffuse uniformly over the entire active area. Also, it allows electrons to be transported between 

the catalyst layer and the flow field plates at either electrodes. GDL is typically composed of 

nonwoven carbon fibres or woven carbon cloth which is electrically conducting as well as 

porous. The GDLs are coated with fluoropolymers to render them hydrophobic. This allows 

for easy removal of water formed during the reaction [23]. Figure 1.3 illustrates the gas 

diffusion layer and zoomed view (SEM image) along the thickness [24-25].    

 

Fig. 1.3 Typical gas diffusion layer and zoomed view along the thickness (image credits: [24-25]) 

 Catalyst layer 

A catalyst layer (CL) consists of a network of supported catalyst nanoparticles (usually Pt/C) 

that are coated with an ionomer phase (usually nafion). Typically, 3-5 nm platinum particles 
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are supported on ~50-80 nm carbon particles. The ionomer in the catalyst layer ensures a 

connected path for protons, while the voids between the carbon particles allow the transport of 

reactant gases from the GDL-CL interface to CL-membrane interface. Figure 1.4 depicts the 

catalyst layer and zoomed TEM image of the catalyst particles.  

 

Fig. 1.4 Typical cathode catalyst layer and zoomed view illustrating Pt/C catalyst particles (image 

credits: [25-26]) 

 

 Polymer electrolyte membrane 

Polymer electrolyte membrane or proton exchange membrane (PEM) separates anode 

compartment (flow field, GDL and anode catalyst layer) and cathode compartment (flow field, 

GDL and cathode catalyst layer). It is semipermeable in nature and allows only protons to pass 

through while restricting the reactant gases and electrons to permeate from anode to cathode or 

vice-a-versa. ‘Nafion membrane’ is a typical PEM used widely and requires enough hydration 

to allow transport of protons from anode to cathode [27]. Therefore, PEMFC is operated with 

humidified reactant gases i.e. the relative humidity of entering reactant gases is near 100%. 
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Structurally, Nafion consists of a hydrophobic teflon backbone and hydrophilic side-chains 

(SO3 groups). When hydrated, the hydrophilic side chains form nano-domains wherein protons 

either get molecularly transported across the percolated nano-domains or the rotation and re-

orientation of water molecules allow the hopping mechanism for proton transport. Figure 1.5 

depicts the nafion-microstructure and the proton transport mechanism [28-29].  

 

Fig. 1.5 Nafion microstructure and proton transport mechanism in the ionic domains (image 

credits: [28]) 

 

 Catalyst coated membrane (CCM) 

Catalyst coated membrane is fabricated by coating the PEM with catalyst on either side of 

the membrane. A popular method for the fabrication of CCM is ‘Decal transfer’. In this process, 

a slurry of catalyst particles (Pt/C), ionomer (nafion) and volatile solvents is coated on a teflon 

substrate by bar coating and is called as decal electrode. A sandwich of two such decal 

electrodes with the PEM (nafion) in between is then hot-pressed such that catalyst on the decal 
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electrode gets transferred onto the PEM. A direct coating of catalyst slurry on the membrane 

using spray coating is now emerging as a popular substitute for the decal process.   

 

 Membrane electrode assembly (MEA)                                                         

     The CCM fabricated by the process mentioned above is sandwiched between two GDLs 

and the assembly is typically hot pressed. Thus, five layers namely, cathode GDL, cathode 

catalyst layer (CCL), PEM, anode catalyst layer (ACL) and anode GDL come in intimate 

contact during hot pressing and this assembly is popularly known as membrane electrode 

assembly (MEA). These MEAs are arranged in series with bipolar plates in-between to 

assemble a fuel cell stack. 

A PEMFC works as follows. Hydrogen is convected through the channels on the anode 

flow field plate and simultaneously diffuses through anode GDL and ACL to reach to the active 

sites in the ACL. Here, the spontaneous oxidation of H2 produces protons (H+) and electrons 

(e-). Under a potential gradient, the protons get migrated through the PEM and electrons get 

migrated through the external circuit to the CCL. On the cathode side, the compressor or blower 

sets a pressure driven flow of air in the channels of the flow field plate and O2 from air 

simultaneously diffuses in the GDL and the CCL. This diffused O2, the electrons migrating 

through the external circuit and proton migrating through the PEM together combine to form 

water and heat. The migration of electrons through external circuit is the current, and the 

electrical power obtained from the PEMFC is the product of operating potential and the current 

drawn. Therefore, electrical power is dictated by various physicochemical rate processes 

occurring in an operational PEMFC. These are: 

 Pressure driven flow of H2 and air in the channels of the flow field plate 

 Diffusion of reactant gases in the GDL and CCL  

 Dissolution and diffusion of reactant gases in the ionomer phase of CL 
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 Proton conduction through membrane from the ACL to the CCL 

 Conduction of protons in the ionomer phase of CL 

 Conduction of electrons in the CL, GDL and bipolar plates 

 Consumption of reactant species in the catalyst layer due to reaction 

Moreover, these rate processes are dependent on one or more experimentally controllable 

parameters. We may therefore classify the parametric space in three categories: 

 Geometric parameters, 

 Operating parameters, and 

 MEA parameters 

We summarize below all the parameters involved in an operational PEMFC which can 

influence the electrical power output. 

Geometric parameters 

1 Width of channel 

2 Width of rib 

3 Depth of channel 

4 Number of channels 

5 Flow distributor 

6 Type of flow field 

Operating parameters 

7 Operating voltage 

8 Pressure 

9 Temperature 

10 Relative humidity 

11 Reactants stoichiometry 
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MEA parameters 

12 Platinum loading 

13 Ionomer to carbon ratio 

14 Agglomerate radius  

15 Porosity of the CCL 

16 Tortuosity for oxygen diffusion across the CCL/in the agglomerate  

17 Tortuosity for proton transport in ionomer phase of the CCL 

18 Intrinsic cathode exchange current density for the given catalyst 

19 Electrochemical active surface area (ECSA) 

20 Water content in the CCL 

21 Proton conductivity of the membrane 

22 Thickness of the membrane 

23 Electrical conductivity of the GDL and CCL (through-plane and in-plane) 

24 Porosity of the GDL 

25 Water content in the GDL 

 

1.2) Polarization curve: performance curve of a fuel cell 

Figure 1.6 illustrates a typical ‘design curve’ of a PEMFC. In electrochemistry parlance, 

this is the polarization curve of PEMFC. It entails a relationship between the operating cell 

voltage and operating current density. The curve starts at zero current density on the ‘𝑥’ axis 

where the cell voltage on the ‘𝑦’ axis is the open circuit voltage (OCV), which is slightly below 

the equilibrium voltage (𝐸𝑜).  The cell voltage decreases as current density is increased i.e., as 

the cell is taken away from equilibrium. The deviation from OCV is related to different losses 

involved in an operational PEMFC and will be discussed in detail in this thesis. While the 

useful electrical power of PEMFC is ‘𝑉 × 𝐽𝑡𝑜𝑡𝑎𝑙’ where ‘𝑉’ and ‘𝐽𝑡𝑜𝑡𝑎𝑙’ respectively are 
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operating voltage and current density, the losses in voltage leads to heat dissipation (𝑄 = (𝐸𝑜 −

𝑉) × 𝐽𝑡𝑜𝑡𝑎𝑙) and lower energy efficiency. Improving the energy efficiency thus amounts to 

shifting the polarization curve upwards.     

 

Fig.1.6 Typical polarization curve of PEMFC 

 

1.3) The design equation 

We reiterate that the question: ‘what innovations are required to be implemented 

immediately to bring down the capital cost of the PEMFC stack?’ can be rigorously answered 

only if we understand the repercussions of all the physicochemical processes occurring in an 

operational PEMFC on the electrical power output of the PEMFC. In other words, it becomes 

necessary to quantify how the 25 parameters listed above influence the polarization curve of 

the PEMFC and consequently its power density and efficiency. 

Therefore, for developing a better understanding of the PEMFC, a physics-based 

relationship between the physicochemical processes occurring in an operational PEMFC with 
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the current-potential relationship i.e. the polarization curve of the PEMFC is invaluable. This 

thesis reports work carried out towards formulation of an analytical equation that describes 

such a relationship and also its experimental validation.  
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Chapter 2 

Review of Analytical Modelling of PEMFC and 

thesis objectives and outline 

 

The content of this chapter is published in,  

“Chemical Engineering Science, volume no. 190, 23rd November 2018, pages: 333–344” [95] 

and, “Chemical Engineering Science, volume no. 196, 16th March 2019, pages: 166–175” [97]. 

 

In this chapter, we present a comprehensive review on the analytical modelling of PEMFCs 

till-date and describe the historical journey of advances in the understanding of the different 

physicochemical processes occurring in an operational PEMFC.  

Three-dimensional numerical simulations of PEMFC do predict the current-potential 

relationship. However, given the multi-parametric nature of the problem, there could be many 

different sets of parameters those may result in similar polarization curve. Thus, numerical 

simulation does not help in fault diagnosis of PEMFC. On the other hand, deriving analytical 

solutions to the governing equations of PEMFC can provide invaluable physical insights about 

the relationship between the physicochemical processes involved in an operational PEMFC 

with its power output. In fact, as will be discussed in the later chapters that the power output 

of PEMFC can be captured through seven current density scales corresponding to different rate 

processes. Therefore, we focus mainly on analytical models. 

We first provide a systematic review of the analytical theories of PEMFC developed so far 

and a brief account of three-dimensional numerical simulations of PEMFC. This is followed 
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by a summary of unexplored questions in the literature so far. You should have three main 

sections in this chapter: 

2.1: Analytical models 

2.2: A brief account on three-dimensional numerical simulation of PEMFC 

2.3: Summary of open questions in the literature 

2.4: Objectives of the thesis 

2.5: Outline of the thesis 

 

2.1) Analytical models 

The important starting point of all analytical models of PEMFC is the recognition that the 

HOR on the anode side is ~105 times faster than the ORR [30] on the cathode side. Therefore, 

even though transport of H2 in the channel, GDL and ACL may modulate the consumption rate 

of H2, the orders of magnitude faster HOR makes the contribution of anode side on the overall 

performance of PEMFC immaterial as long as sufficient H2 (𝜆𝐻2 >  1.2) is available at the inlet 

of the PEMFC. This allows for simplification of the modelling problem by focusing attention 

only on the physicochemical processes that occur on the cathode side [31-32]. It must be noted 

here that certain special cases for which neglecting anode side physicochemical processes may 

not be realistic, namely a) anode catalyst poisoning because of CO or NH3 which can severely 

affect the intrinsic kinetics of HOR and b) The case when ACL is completely flooded and 

transport modulated HOR can start competing with intrinsic ORR kinetics.  

Analytical models of ORR start with understanding the phenomena occurring in the CCL. 

Here, we look at models that are applicable separately in the ‘low current density regime’ and 

the ‘high current density regime’, where the regimes are essentially differentiated based on the 
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length scale over which oxygen diffusional gradient is set up in the CCL as explained in the 

sections below. 

2.1.1) The macro-homogeneous (MH) model of the CCL 

Even the simplified problem of focusing on the cathode side of a PEMFC is quite 

challenging because of the fact that ORR kinetics is coupled with transport of heat, mass and 

momentum associated with the reactant species and the enthalpy of the reaction.  Historically, 

this complex problem has been reformulated into a relatively simpler one-dimensional problem 

that focuses only on the reaction and transport processes occurring along the thickness of the 

CCL inside the MEA. This approach assumes a reasonably high reactant flow in the channel 

and fast oxygen diffusion in the GDL such that the oxygen concentration at the CCL-GDL 

boundary is uniform over the entire active area. The criticality of this assumption is discussed 

in the next section.  

In the one-dimensional formulation, [33-34] first proposed and discussed the macro-

homogeneous (MH) model of the CCL which essentially visualizes CCL as a homogeneous 

media wherein the transport properties are volume averaged. Neglecting the fine microstructure 

of the CCL is equivalent to stating that while the transport gradients for oxygen and protons 

are tracked across the CCL thickness (length scale is 7-8 microns), these gradients are assumed 

to be negligible at the microstructure level (length scale corresponding to ionomer phase of the 

CCL ~ 100 nm). However, this is not valid at high current density and will be explained in the 

next subsection.  

The schematic of the MH model of the CCL is shown in figure 2.1. The CCL can be 

visualized as a slab of thickness 𝑙𝑡 flanked by GDL of thickness 𝑙𝐺𝐷𝐿 on the one side and a 

membrane of thickness 𝑙𝑚 on the other. Proton flux enters the CCL at membrane-CCL interface 

and gets consumed in the CCL such that proton flux is zero at CCL-GDL interface since there 
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is no medium to transport protons beyond this interface. Oxygen flux enters the CCL at CCL-

GDL interface and goes to zero at CCL-membrane interface as membrane is impermeable for 

oxygen. The intrinsic reaction rate of ORR strongly depends on cathodic overpotential (휂𝑜,𝐶𝐶𝐿) 

and is captured accurately by the empirical Tafel equation.  

At steady state, the governing equations are:  

𝑑𝑗

𝑑𝑦
= −𝑖𝑜,𝑐𝐴 [exp (𝐴𝑐

)] ×
𝐶

𝐶𝑖𝑛
                                                                                                (2.1) 

𝜎
𝑑

𝑑𝑦
= −𝑗                    (2.2) 

𝐷𝐶𝐶𝐿
𝑑𝐶

𝑑𝑦
=

𝐽−𝑗

4𝐹
                                                                                                                            (2.3) 

Here, 𝑦 is the dimension along CCL thickness with 𝑦 = 0 being the CCL-membrane boundary 

and 𝑦 = 𝑙𝑡 being the CCL-GDL boundary; 𝑗 is the proton flux, 휂 is the overpotential across 

CCL, 𝐶 and 𝐶𝑖𝑛 are respectively the oxygen concentrations (mol/m3) at any point 𝑦 along the 

thickness of the CCL and at inlet of a PEMFC, 𝑖𝑜,𝑐𝐴  is the volumetric exchange current density 

(A/m3), 𝐴𝑐 is the Tafel slope, 𝜎 is the proton conductivity of CCL, 𝐷𝐶𝐶𝐿 is oxygen diffusion 

coefficient in the CCL, 𝐹 is Faraday’s constant and 𝐽 is the proton flux at CCL-membrane 

interface. 
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Fig. 2.1 Macro-homogeneous (MH) model of the cathode catalyst layer 

 

Equation (2.1) denotes the macroscopic charge conservation in the CCL and the right hand side 

of the equation (2.1) is the consumption rate of the protons and oxygen as described by Tafel 

kinetics. The proton flux 𝑗 in equation (2.1) is related to the gradient of overpotential 휂 by 

Ohm’s law as described by equation (2.2). Equation (2.3) describes the oxygen conservation 

law where left hand side of equation (2.3) is concentration gradient driven ‘Fickian’ diffusion 

and right hand side of equation is the consumption rate of oxygen.   

The boundary conditions are: 

𝑗 = 𝐽, 휂 = 휂𝑜,𝐶𝐶𝐿 ,
𝑑𝐶

𝑑𝑧
= 0 𝑎𝑡 𝑦 = 0 𝑎𝑛𝑑 𝐶 = 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 , 𝑗 = 0 𝑎𝑡 𝑦 = 𝑙𝑡                             (2.4)                                                                                 

Here, 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 is the oxygen concentration at CCL-GDL interface and 휂𝑜,𝐶𝐶𝐿 is the resulting 

cathodic overpotential to sustain the proton flux at CCL-membrane interface, 𝐽. The equation 

set (2.1)-(2.4) defines the MH model of the CCL and can be solved either numerically or 

analytically to get the profiles of ‘𝑗’, ‘휂’ and ‘𝐶’. Note that setting 𝑦 = 0 in the expressions of 

𝑗 and 휂 gives the current-potential relationship of the PEMFC. 
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The numerical solution was obtained by [35-36], who showed doubling of the apparent Tafel 

slope in the cases when the intrinsic ORR kinetics happens to be slower than oxygen transport 

rate across the CCL or proton transport rate across the CCL. The doubling of Tafel slope is 

shown experimentally as well [37-40]. As the experimental manifestation of doubling of Tafel 

slope turns out to be the same for poor transport rates of both reacting species, protons and 

oxygen, therefore, it is important to understand the physical laws which can distinguish 

between these two possible regimes. This problem was solved by Kulikovsky [41-42] by 

deriving analytical solutions to the governing equations of MH model in limiting cases. We 

now discuss these limiting regimes briefly.   

 Ideal oxygen transport as well as ideal proton transport in the CCL  

 It was shown that, in the very low current density regime when 𝐽 <

4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
 𝑎𝑛𝑑 

2𝜎𝐴𝑐

𝑙𝑡
, intrinsic ORR kinetics as described by ‘Tafel kinetics’ is slower than 

oxygen transport across the CCL as well as proton transport across the CCL [42]. Therefore, 

oxygen concentration and overpotential remains uniform in the CCL i.e. oxygen and protons 

are available everywhere in the CCL for the reaction. 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation in this 

particular regime is therefore solely dictated by intrinsic Tafel kinetics of ORR. Hence, 

𝐽 = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                                                                                            (2.5a) 

or equivalently, 

휂𝑜,𝐶𝐶𝐿 = 𝐴𝑐𝑙𝑛 {
𝐽

𝑖𝑜,𝑐𝐴𝑙𝑡(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)
}                                                                                                   (2.5b) 

The 𝑗, 휂 𝑎𝑛𝑑 𝐶 profiles in this particular regime are shown pictorially in figure 2.2. 
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Fig. 2.2 Profiles of proton flux, overpotential and oxygen concentration along the thickness of the 

CCL in the regime of ideal oxygen transport as well as ideal proton transport in the CCL 

 

 Ideal proton transport in the CCL 

At higher current density it is possible that although protons are available in the CCL 

everywhere i.e., overpotential is uniform everywhere in the CCL, oxygen flux may not be large 

enough to support the ORR as demanded by intrinsic Tafel kinetics. In this scenario, increasing 

amount of concentration polarization of oxygen happens in the CCL near the CCL-GDL 

interface, and the oxygen consumption rate decreases sharply away from the interface. 

Equations (2.1) and (2.3) can be solved together with an assumption of uniform ‘휂’ in the CCL. 

[42] showed that the profiles of oxygen concentration and proton flux in this limiting regime 

are given as, 

𝐶 =
𝐽𝐶𝑖𝑛

√
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝐶𝐶𝐿
𝐴𝑐

)]

cosh( 𝑜
𝑦

𝑙𝑡
)

sinh( 𝑜)
                                                                              (2.6) 

𝑗 = 𝐽 (1 −
sinh( 𝑜

𝑦

𝑙𝑡
)

sinh( 𝑜)
)                                                                                                             (2.7) 
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Here, 휁𝑜 = √
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝐶𝐶𝐿
𝐴𝑐

)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

. 

 

Fig. 2.3 Profiles of proton flux, overpotential and oxygen concentration along the thickness of the 

CCL in the regime of ideal proton transport but poor oxygen transport in the CCL (𝐽 >
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
) 

 

 

These profiles are illustrated schematically in figure 2.3. Substituting 𝐶 = 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 𝑎𝑡 𝑦 = 𝑙𝑡 

in equation (2.6) we get the current-potential relationship in this particular regime as, 

𝐽 =
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 × √

𝑖𝑜,𝑐𝐴𝑙𝑡[exp (
𝜂𝑜,𝐶𝐶𝐿
𝐴𝑐

)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

 tanh{√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝐶𝐶𝐿
𝐴𝑐

)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

}
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                         (2.8)                     

It can be noticed that when 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)] <

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
, tanh{√

𝑖𝑜,𝑐𝐴𝑙𝑡[exp (
𝜂𝑜,𝐶𝐶𝐿
𝐴𝑐

)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

} ≈

√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝐶𝐶𝐿
𝐴𝑐

)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

 and therefore, equation (2.8) becomes 𝐽 ≈ 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
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which is exactly same as equation (2.5) or intrinsic Tafel kinetics of ORR. However, for 

𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)] ≫

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
,  tanh{√

𝑖𝑜,𝑐𝐴𝑙𝑡[exp (
𝜂𝑜,𝐶𝐶𝐿
𝐴𝑐

)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

} ≈ 1 and therefore, equation 

(2.8) takes the form, 

𝐽 = √
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                                                                         (2.9a) 

or equivalently, 

휂𝑜,𝐶𝐶𝐿 = 𝐴𝑐𝑙𝑛 {
𝐽

𝑖𝑜,𝑐𝐴𝑙𝑡(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)
} + 𝐴𝑐𝑙𝑛 {

𝐽
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)
}                                                 (2.9b) 

The apparent doubling of Tafel slope due to high oxygen transport resistance is evident from 

equation (2.9) and the critical current density (𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡) above which oxygen transport 

resistance starts modulating the Tafel kinetics is the point of intersection of the curves given 

by equations (2.5) and (2.9). It is straightforward to show that, 

𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
                                                                                                (2.10) 

Therefore, for 𝐽 >
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
, intrinsic ORR kinetics gets modulated by oxygen transport 

resistance in the CCL and equation (2.9) gives the current-potential relationship whereas for 

𝐽 <
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
, intrinsic ORR kinetics i.e. equation (2.5) gives the current-potential 

relationship. 

As a final comment, we would like to point out here that the aforementioned formulation is 

valid only when ‘휂’ is uniform everywhere in the CCL which essentially implies that the proton 

transport resistance in the CCL is infinitesimally small. This, in fact may not be realistic as 

proton conductivity in the CCL (𝜎) is not infinitely large. Thus, the repercussion of finite proton 
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transport resistance for a case of 𝐽 >
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
 on current-potential relationship is not 

understood in the literature so far. As will be discussed in the next sub-section, the assumption 

of uniform overpotential is only valid for 𝐽 ≪
2𝜎𝐴𝑐

𝑙𝑡
. Substituting 𝜎 = 2

𝑆

𝑚
 [43-45], 𝐴𝑐 =

0.026 𝑉 and 𝑙𝑡 = 8 µ𝑚, we get 
2𝜎𝐴𝑐

𝑙𝑡
= 1.3

𝐴

𝑐𝑚2
 and therefore, the aforementioned formulation 

is inappropriate for 𝐽 >  0.2 
𝐴

𝑐𝑚2.   

 Ideal oxygen transport in the CCL 

If oxygen concentration is uniform everywhere in the CCL, the ORR kinetics may get 

modulated depending on whether the rate of proton transport in the CCL is greater or smaller 

than the intrinsic ORR kinetics. This regime deals with such a situation. For a case when proton 

transport rate is slower than intrinsic Tafel kinetics of ORR, the reaction rate is the highest at 

the CCL-membrane interface and it decreases rapidly away from the interface. Equations (2.1) 

and (2.2) are solved with ‘𝐶’ independent of ‘𝑦’ and the profiles of current density and 

overpotential turn out to be [41,42], 

𝑗
𝜎𝐴𝑐
𝑙𝑡

= 휁 tan {
2
(1 − 𝑦∗)}                                                                                                     (2.11) 

 
𝐴𝑐
= ln [

2

2

𝐶𝑖𝑛

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝜎𝐴𝑐/𝑙𝑡

𝑖𝑜,𝑐𝐴𝑙𝑡
{1 + (tan (

2
(1 − 𝑦∗)))

2

}]                                                       (2.12) 

The schematic representation of these profiles is shown in figure 2.4 for the case when proton 

transport rate is slower than intrinsic Tafel kinetics. 

For 𝑦 = 0 and 𝐽 <
𝜎𝐴𝑐

𝑙𝑡
, equation (2.11) suggests that 𝐽 ≈

𝜎𝐴𝑐

𝑙𝑡

2

2
 and substituting in equation 

(2.12), we get current-potential relationship as 𝐽 ≈ 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
, which is in 
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fact the intrinsic Tafel kinetics as suggested by equation (2.5). For 𝑦 = 0 and 𝐽 ≫
𝜎𝐴𝑐

𝑙𝑡
, tan(

2
) >

> 1 and therefore equation (2.12) takes the form, 

𝐽 = √
2𝜎𝐴𝑐

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                                                                                    (2.13a) 

or equivalently, 

휂𝑜,𝐶𝐶𝐿 = 𝐴𝑐 ln {
𝐽

𝑖𝑜,𝑐𝐴𝑙𝑡(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)
} + 𝐴𝑐𝑙𝑛 {

𝐽
2𝜎𝐴𝑐
𝑙𝑡

}                                                                       (2.13b) 

Equation (2.13) suggests an apparent doubling of Tafel slope when proton transport across the 

CCL is significantly limited, and the critical current density (𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡) above which 

this happens is the point of intersection of curves given by equations (2.5) and (2.13). It is 

straightforward to show that, 

𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =
2𝜎𝐴𝑐

𝑙𝑡
                                                                                                    (2.14) 

Thus, proton transport resistance is not significant for 𝐽 <
2𝜎𝐴𝑐

𝑙𝑡
 and current-potential 

relationship is governed by intrinsic ORR rate and given by equation (2.5) whereas it becomes 

significant for 𝐽 >
2𝜎𝐴𝑐

𝑙𝑡
 and the intrinsic ORR rate gets modulated by proton transport 

resistance in the CCL. Equation (2.13) gives the corresponding current-potential relationship 

in this particular regime of operation. 
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Fig. 2.4 Profiles of proton flux, overpotential and oxygen concentration along the thickness of the 

CCL in the regime of ideal oxygen transport but poor proton transport in the CCL (𝐽 >
2𝜎𝐴𝑐

𝑙𝑡
) 

 

It must be noted here that oxygen concentration is assumed to be uniform in this particular 

regime which suggests unrealistically high numerical value of oxygen diffusion coefficient in 

the CCL. Therefore, the impact of finite oxygen transport resistance with a realistic value of 

oxygen diffusion coefficient in the CCL on the current-potential relationship for the regime of 

𝐽 >
2𝜎𝐴𝑐

𝑙𝑡
 is not discussed in the literature so far. As will be discussed in the next sub-section, 

the assumption of uniform overpotential is only valid for 𝐽 ≪
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
. Substituting 

𝐷𝐶𝐶𝐿 = 10
−7 𝑚

2

𝑠
 (assuming oxygen diffusion in voids [46-47]), 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 = 8 

𝑚𝑜𝑙

𝑚3
 and 𝑙𝑡 =

8 µ𝑚, we get 
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
= 3.8

𝐴

𝑐𝑚2 and therefore, the aforementioned formulation is 

inappropriate for 𝐽 >  0.4 
𝐴

𝑐𝑚2. 

In summary, we would like to reiterate that the three limiting regimes of ideal oxygen 

transport as well as ideal proton transport in the CCL, ideal proton transport but poor oxygen 
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transport in the CCL and ideal oxygen transport but poor proton transport in the CCL have 

been understood thoroughly in the literature. However, more realistic regimes wherein both 

oxygen transport and proton transport in the CCL are simultaneously rate limiting are not 

discussed so far in the literature. The consequence is that there is no analytical solution of 

polarization curve available for the realistic operational current density range, 𝐽 >  0.2 −

0.4 
𝐴

𝑐𝑚2 (𝐽 >
2𝜎𝐴𝑐

𝑙𝑡
  or 𝐽 >

4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
).  

 

2.1.2) Flooded agglomerate (FA) model of the CCL 

The MH model of the CCL as discussed in the previous sub-section glosses over the 

microstructural details of the CCL and instead describes it using volume average transport 

properties. However, at any location 𝑦 along the CCL thickness the catalyst has a 

microstructure, which is depicted in Figure 2.5 along the lines of the so-called flooded 

agglomerate (FA) model [48-53]. Locally, the CCL microstructure comprises spherical 

agglomerates of size 𝑅𝑎𝑔𝑔 that are flooded with electrolyte in which supported catalyst particles 

are suspended. The electrolyte is typically similar to the ionomer that is used as the proton 

conducting membrane. It was shown that the diffusional resistance of oxygen in such 

agglomerates does become important at high current density [55]. This is mainly because the 

assumption of negligible transport gradients at the microstructure level as invoked in the MH 

model does not hold true at high current density and the overall consumption rate in fact gets 

modulated by transport resistances at the microstructure level as well.   



 Chapter 2 

 

27  

 

Fig. 2.5 Microstructure of cathode catalyst layer as idealized in the agglomerate modelling approach. 

Grey circles indicate ionomer-filled spherical agglomerates. Black circles with white dots indicate 

respectively carbon support particles decorated with nano-catalyst particles. Interstitial voids between 

agglomerates can be filled with liquid water denoted in blue. 

 

The proton flux balance along the thickness of the CCL in a FA corrected MH model can 

be written as [56], 

𝑑𝑗

𝑑𝑦
= −𝑖𝑜,𝑐𝐴 [exp (𝐴𝑐

)] × 𝐸(휂) ×
𝐶

𝐶𝑖𝑛
                                                                                        (2.15) 

𝐸(휂) is the effectiveness factor and is given by, 

𝐸 =
1

𝑀𝑇
(

1

tanh(3𝑀𝑇)
−

1

3𝑀𝑇
)                            (2.16)               

Where, 𝑀𝑇 =
𝑅𝑎𝑔𝑔

3
√
𝑖𝑜,𝑐[exp (

𝜂

𝐴𝑐
)]𝑎

4𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛
                                  (2.17)             

The Thiele modulus 𝑀𝑇  compares the intrinsic reaction rate to the diffusion rate of oxygen 

along the radius of the agglomerate. 𝐷𝑎𝑔𝑔 is the effective diffusion coefficient of oxygen in an 

agglomerate, 𝑎 is electrochemical active area of agglomerate per unit volume of the 

agglomerate. The overpotential gradient inside an agglomerate is neglected since the size of 
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agglomerate is typically 1-2 orders of magnitude smaller than the CCL thickness and the proton 

conductivity along the thickness of the CCL and inside the agglomerate is not much different 

(as the medium for proton conduction is the same i.e. ionomer). However, for oxygen transport, 

the effective oxygen diffusion coefficient inside the agglomerate (O2 diffusion in ionomer) is 

order of magnitude lower than effective oxygen diffusion coefficient along the CCL thickness 

(O2 diffusion in voids filled with water). Therefore, it is realistic to have oxygen concentration 

gradient inside the agglomerate while overpotential gradient inside the agglomerate is unlikely.  

It is to be noted that the Henri’s constant of dissolution of oxygen in the ionomer is incorporated 

in the value of the exchange current density. The other two governing equations are identical 

to that of MH model i.e. Ohm’s law for proton migration (2.2) and Fick’s law for oxygen 

transport (2.3) along the thickness of the CCL. 

Numerical solutions of governing equations for a FA model of CCL have been presented by 

several authors [56-62]. An approximate analytical solution for the MH model which 

incorporates FA description has been recently proposed [55] and showed that the oxygen 

transport resistance in the electrolyte phase i.e. in the agglomerates becomes increasingly 

dominant only at higher current densities. Therefore, it is crucial to couple MH model with FA 

model in the high current density regime. It should be particularly noted that in this regime 

neither oxygen transport resistance nor proton transport resistance across the CCL can be 

neglected. There is however no analytical model that rationally accounts for the regime of 

simultaneous oxygen transport as well as proton transport limited ORR kinetics along with a 

correction due to non-negligible oxygen transport resistance in the agglomerate. 

 

2.1.3) Two dimensional model formulation 

The assumption of uniform oxygen concentration over the entire active area at the CCL-

GDL boundary as invoked in the earlier one-dimensional models is not realistic under operating 
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conditions of PEMFC. For typical air stoichiometry between 2 and 4, oxygen depletes along 

the length of the cathode channel due to consumption in CCL. Thus, a more realistic model 

should invoke a two-dimensional problem defined by convection of gas along the axis of the 

flow channel and simultaneous diffusion through GDL in the transverse direction together with 

consumption in the CCL. Kulikovsky [63-64] derived an analytical solution to this two-

dimensional model and derived expression for polarization curve for the case when ORR 

kinetics is the rate determining step. In a subsequent paper, Kulikovsky [65] also derived 

analytical expressions of polarization curves for the regimes corresponding to slow proton 

transport and slow oxygen transport in the CCL. 

 

Fig. 2.6 Two-dimensional domain of a PEMFC with uniform oxygen concentration and velocity in 

the transverse direction (−𝑦) 

 

Figure 2.6 depicts the model geometry as idealized by [63] comprising a channel of length 

𝐿 and depth 2ℎ in which reactant gas flows along the axial (𝑥−) direction and has no 

momentum gradient along the channel depth. The channel wall is located at 𝑦 = ℎ and the 

channel-GDL interface at 𝑦 = −ℎ. Oxygen consumption at the channel-GDL interface due to 

ORR in the CCL sets an oxygen concentration gradient along 𝑥. The steady state oxygen 

balance in the channel can be written as, 

𝑈(2ℎ)
𝑑𝐶

𝑑𝑥
= −

𝐽

4𝐹
                                                                                                                  (2.17) 
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Here, 𝐶 is the local oxygen concentration in the channel and 𝑈 is the inlet velocity. 𝐽 is the 

local current density at point along ‘𝑥’. For the case of negligible transport losses of reactant 

species in a macro-homogeneous CCL, 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relationship is given by Tafel 

kinetics i.e. equation (2.5). The relation between 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 and oxygen concentration at 

channel-GDL interface (𝐶𝐶ℎ−𝐺𝐷𝐿) can be obtained by writing oxygen conservation equation 

across GDL as, 

4𝐹𝐷𝐺𝐷𝐿

𝑙𝐺𝐷𝐿
(𝐶𝐶ℎ−𝐺𝐷𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿) = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                                (2.18) 

Here, 𝐷𝐺𝐷𝐿 is the oxygen diffusion coefficient in GDL and 𝑙𝐺𝐷𝐿 is the GDL thickness. Defining 

𝐽1−𝐷 = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)], 𝐽𝐺𝐷𝐿 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
 , 𝛼 =

𝐽1−𝐷

𝐽𝐺𝐷𝐿
 and combining equations (2.5) and 

(2.18), we get 

 𝐽 =
𝐽1−𝐷

1+𝛼

𝐶𝐶ℎ−𝐺𝐷𝐿

𝐶𝑖𝑛
                 (2.19)               

Substituting equation (2.19) in equation (2.17) for 𝐽 and solving it with boundary condition 

𝐶 = 𝐶𝑖𝑛 𝑎𝑡 𝑥 = 0, we get, 

𝐶(𝑥) = 𝐶𝑖𝑛exp (−
𝛽 
𝑥

𝐿

1+𝛼
)                                                                       (2.20) 

Here, 𝛽 =
𝐽1−𝐷

𝐽𝑓𝑙𝑜𝑤
 and 𝐽𝑓𝑙𝑜𝑤 =

4𝐹𝑈(2ℎ)𝐶𝑖𝑛

𝐿
.  

This describes the oxygen concentration profile along the axis of the flow channel. Equations 

(2.17) and (2.20) further gives the current density profile along ‘𝑥’ as, 

𝐽 =
𝐽1−𝐷

1+𝛼
exp (−

𝛽 
𝑥

𝐿

1+𝛼
)                                                                       (2.21) 

Equation (2.21) is integrated over the channel length to yield current-potential relationship 

(polarization curve) for the entire active area:-  



 Chapter 2 

 

31  

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼
)}              (2.22) 

Equation (2.22) gives a current-potential relationship by considering intrinsic Tafel kinetics to 

be the consumption rate in the CCL and oxygen transport resistance across the GDL coupled 

with material balance equation along flow channel. 

However, it was assumed that flow in the channel was plug flow and oxygen concentration was 

allowed to vary only along the channel length but not along the channel depth. Under typical 

operating conditions of PEMFC, the flow in channels is laminar and therefore the assumption 

of plug flow is not realistic. Furthermore, as will be seen later, the resistances to oxygen 

diffusion in the GDL and in the channel are of the same order for a typical fuel cell construction. 

Hence, the assumption of uniform oxygen concentration along the channel depth is also not 

realistic. In particular, this assumption can lead to considerable deviations at high current 

density as will be shown later. Thus, it establishes a need to invoke a more realistic two-

dimensional analytical model that relaxes these two key assumptions and to derive current-

potential relationship under these conditions. Moreover, the new model should also take into 

consideration the other regimes of CCL operation in which overall oxygen consumption rate 

in the CCL is modulated by transport resistances in the CCL. 

2.1.4) Experimental validation of the analytical model 

In order to validate the analytical model with experimental data, it is necessary to first 

quantify oxygen diffusivities in the different domains of PEMFC namely, flow channel, GDL 

and CCL. In most of the earlier studies, the so-called limiting current method has been used to 

estimate oxygen transport resistance in these domains [66-70]. However, there are two 

limitations of this method:  

1. The method assumes that the oxygen concentration is linear in all domains. While this is true 

in the GDL, the assumption does not hold in the CCL. A rapid non-linear decay of oxygen 
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concentration in the CCL near the GDL-CCL interface is predicted when the rate of oxygen 

transport across the CCL is considerably slower compared to intrinsic ORR kinetics (discussed 

in previous section, 2.2). The experimental manifestation of this rapid decay is that the local 

slope of polarization curve (i.e., the local apparent Tafel slope) depends strongly on 

overpotential and eventually leads to apparent doubling of Tafel slope. Therefore, correlating 

oxygen transport resistance in the CCL to the limiting current density, which is independent of 

overpotential, is not appropriate.  

2. The influence of transverse oxygen diffusion along the channel depth is assumed to be 

negligible in these studies, which may not be realistic. To determine the effective oxygen 

diffusion coefficient in GDL, it is imperative to segregate the contribution of oxygen diffusion 

along the channel depth from the limiting current density.  

Therefore, there are at least two issues that must be addressed in the previous studies as far as 

experimental determination of oxygen diffusivities in the various domains of PEMFC is 

concerned. 

 

2.2) A brief account on three-dimensional numerical simulation of PEMFC 

Three-dimensional numerical simulations of PEMFC solve the fundamental conservation 

equations for mass, momentum, species and charge without invoking any simplification. Some 

of the earlier work in this area are by [71-80], while a comprehensive review of prior work in 

this area can be found in [81-85]. While there are numerous studies involving different types 

of flow fields (refer review papers [86-88]), we focus here on a representative flow field 

namely, a geometry comprised of a channel and a rib. Such a domain for numerical simulation 

is shown in figure 2.7. It includes a single flow channel each for H2 and air, GDLs and catalyst 

layers on the anode and cathode sides, and a central proton exchange membrane. Commercial 
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simulation packages are available to predict the polarization curve of PEMFC for a given set 

of input parameters [89].  

 

Fig. 2.7 Three-dimensional computational domain considered for simulation 

 

 

The key governing equations are:- 

 Conservation of mass 

𝛻. (𝜌𝑢) = 𝑄                                                                                                                        (2.23) 

Where, Q is the source term (kg/m3-s). 

𝑄 = ∑𝑅𝑖                                                                                                                             (2.24) 

𝑅𝑖 =
𝑣𝑖𝑀𝑖𝑆

𝑛𝐹
                                                                                                                           (2.25) 

𝑆 = 𝑖𝑜,𝑐𝐴 [exp (𝐴𝑐
)]

𝐶𝐶𝐶𝐿

𝐶𝑖𝑛
𝐸(휂)                                                                                           (2.26) 

Here, 𝑣𝑖 is stoichiometric coefficient of ith species (2 for H2 and 1 for O2 and 2 for H2O), 𝑛 is 

the number of electrons transferred (𝑛 = 4), 𝐶𝐶𝐶𝐿 is local oxygen concentration in the CCL and 

𝐸(휂) is given by equation (2.16). It must be noted that 𝑄 = 0 for GDL and flow channels. 

 Conservation of momentum 
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For gas flow in the channel, the momentum balance is given by 

𝜌[(𝑢. 𝛻)𝑢] =  𝛻. [−𝑝𝐼 +  µ{(𝛻𝑢) + (𝛻𝑢)𝑇} −
2µ

3
{(𝛻. 𝑢)𝐼}]                                              (2.27) 

For porous medium (GDL and catalyst layer), 

𝜌 [(
𝑢
. 𝛻)

𝑢
] =  𝛻. [−𝑝𝐼 + 

µ
{(𝛻𝑢) + (𝛻𝑢)𝑇} −

2µ

3
{(𝛻. 𝑢)𝐼}] − (

µ

𝑘𝑏𝑟
+

𝑄
2) 𝑢                    (2.28) 

where, 𝑢 is the velocity (m/s), 𝜌 is the density (kg/m3), 𝑝 is pressure (N/m2), µ is the viscosity 

(Pa-s) and 𝐼 is a unit tensor. The  
µ𝑢

𝑘𝑏𝑟
 term in the above equation is Darcy’s law for flow through 

porous medium. 

 Conservation of species 

Conservation of species over entire computation domain can be expressed in terms of mass 

fractions for ith species as follows:- 

𝛻. 𝑗𝑖 +  𝜌(𝑢. 𝛻)𝑤𝑖 = 𝑅𝑖                                                                                                      (2.29)                                                                                                                                                                                                                                   

where, the flux 𝑗𝑖 is given as, 

𝑗𝑖 = −(𝜌𝐷𝑖𝛻𝑤𝑖 + 𝜌𝐷𝑖𝑤𝑖
𝛻𝑖𝑀𝑛

𝑀𝑛
+)                                                                                      (2.30)                         

𝑀𝑛 = (∑
𝑤𝑖

𝑀𝑖
𝑖 )−1                                                                                                                   (2.31) 

Here 𝑤𝑖 is the mass fraction of ith species and 𝐷𝑖 is a diffusion coefficient. There is no reaction 

source term in GDL and thus, 𝑅𝑖 = 0 for GDL. For catalyst layer, 𝑅𝑖is given as equation (2.25).  

 Conservation of charge 

𝛻. (−𝜎𝑠𝛻.𝛷𝑠) = 𝑆𝑠                                                                                                             (2.32) 

𝛻. (−𝜎𝑚𝛻.𝛷𝑚) = 𝑆𝑚                                                                                                          (2.33) 
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휂 = 𝐸𝑒𝑞 + 𝛷𝑚 −𝛷𝑠                                                                                                            (2.34) 

Here, 𝑚 is electrolyte phase and 𝑠 is a solid phase and −𝑆𝑠 = 𝑆𝑚 = 𝑆. 𝑆 is given by equation 

(2.26). 𝐸𝑒𝑞 is equilibrium voltage or open circuit voltage, typically, 𝐸𝑒𝑞 ~ 0.92 𝑉 . Anode 

source term is modelled as a linearized Butler-Volmer equation and (𝑖𝑜𝐴) for anode is 107 

times higher than (𝑖𝑜,𝑐𝐴). 

These governing equations are solved with following constraints: 

 Inlet mass fractions of all species are specified. 

 Anode side and cathode side inlet velocities are specified. 

 Anode collector is set at 0 V and cathode collector is set at an operating voltage ‘V’. 

Polarization curve is obtained by varying voltage ‘V’ from ~0.9 V to ~0.3 V.  

 All the impermeable walls and surfaces are set to follow no slip and no flux conditions. 

 

In the present thesis, three-dimensional numerical simulations are used to verify the 

different approximations invoked while deriving comprehensive analytical model of PEMFC. 

We have used the in-built fuel cell module in COMSOL Multiphysics version 5.3 (a finite 

element solver) to perform numerical simulations. 

  

2.3) Summary of open questions in the literature 

As summarized above, substantial efforts have been made in the recent past to derive 

algebraic relations between all the physicochemical processes involved in an operational 

PEMFC to its performance. However, there are following important unanswered issues in the 

work reported so far:- 

a) Generalized solution to MH model of the CCL that encompasses all the possible 

regimes of CCL operation is missing in the literature. In particular, the regimes of 
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simultaneous oxygen transport and proton transport limited ORR kinetics in the CCL 

have not been understood. 

b) A correction to the generalized solution of MH model invoking the microstructural 

details of the CCL through FA model can provide a comprehensive current-potential 

relationship that captures all the physicochemical processes occurring in the CCL and 

relates it with power output of the fuel cell. Such a relationship has not been derived. 

c) Two-dimensional framework that incorporates laminar flow in the channel and non-

uniform oxygen concentration profile in the transverse direction of the channel and all 

the regimes of CCL operation can rationalize the repercussions of oxygen transport 

resistance in GDL and channel (transverse direction) and the depletion in the oxygen 

concentration along the length of the channel on the polarization curve of a PEMFC. 

There exists no such framework in the literature. 

d) Rigorous experimental validation of the analytical model is missing in the literature.  

The work presented in this thesis addresses all these lacunae and presents a comprehensive 

analytical model that predicts polarization behaviour of a PEMFC over the entire range of 

current density from zero to limiting values. Also, a methodology for rigorously comparing the 

model predictions against experimental data is presented. 

The specific objective of the thesis are as follows:  

2.4) Objectives of the thesis 

 To derive generalized analytical solutions to the MH model of the CCL in the regimes 

of simultaneous oxygen and proton transport limited ORR kinetics of the CCL. 

 To incorporate the microstructural details of the CCL through FA model of the CCL as 

a correction to MH model in the regime of simultaneous oxygen and proton transport 

limited ORR kinetics of the CCL. 
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 To relax the assumptions of plug flow and uniform oxygen concentration along the 

depth of the flow channel and derive analytical expressions of the polarization curve of 

the PEMFC by considering all the possible regimes of CCL operation as dictated by 

MH model. 

 To illustrate a methodology to estimate effective oxygen diffusion coefficients in the 

different domains of the PEMFC. 

 To validate the analytical model with experimental data. 

 

2.5) Outline of the thesis 

This thesis has been divided into following chapters: 

Chapter 1 introduces importance of energy sustainability and the role of fuel cell in this 

regard. We provide a brief account on the construction and working principle of a PEMFC.  

Chapter 2 illustrates the efforts made in the literature towards obtaining analytical solution 

of polarization curve of a PEMFC. Also, a brief summary of numerical work done in the 

literature to solve the governing equations of PEMFC is presented. This summarizes the 

foundations of mathematical modelling of the PEMFC. We then explicitly enlist the objectives 

of the thesis and the outline of the thesis.  

Chapter 3 presents a derivation of analytical solutions to the governing equations of MH 

model of the CCL in the regime of simultaneous oxygen and proton transport limited reaction 

kinetics. Oxygen transport resistance in the ionomer phase of the CCL is also captured as a 

correction described by FA model to the MH model.  

Chapter 4 develops two-dimensional isothermal model of a cathode flow channel and its 

analytical solution under reaction-controlled regime of CCL operation relaxing the 

assumptions of plug flow and uniform oxygen concentration along the channel depth. 
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Chapter 5 extends the two-dimensional isothermal model of a cathode flow channel 

developed in chapter 5 in the transport limited regimes of CCL operation namely, ideal proton 

transport but poor oxygen transport and ideal oxygen transport but poor proton transport.  

Chapter 6 derives ‘The PEM fuel cell equation’ i.e., the analytical expression for steady state 

polarization curve which is valid for the entire range of current density, from zero to limiting 

current.  

Chapter 7 summarizes the key scaling laws relating experimentally measurable current 

density and inlet oxygen concentration that are suggested by the model. We also elucidate in 

this chapter, a systematic experimental methodology to estimate the effective diffusion 

coefficients of oxygen in the CCL, GDL and channel which define a parametric space over 

which polarization curve described by The PEM fuel cell equation and experimental 

polarization curve are compared. 

Chapter 8 summarizes the main contribution of the work and elaborates a path forward in 

the PEMFC research. 
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Chapter 3 

Isothermal one-dimensional model for CCL: 

Derivation of current-potential relationship over 

wide range of current density 

 

The content of this chapter is published in,  

“Chemical Engineering Science, volume no. 206, 12th October 2019, pages: 96–117” [90].   

As described in detail in section 2.2 of chapter 2, the relationship between current density 

(𝐽)- cathodic overpotential (휂𝑜,𝐶𝐶𝐿) and- oxygen concentration at CCL-GDL interface 

(𝐶𝐶𝐶𝐿−𝐺𝐷𝐿) have been derived for three limiting cases viz., (a) ideal proton and ideal oxygen 

transports in CCL (overall ORR determined by intrinsic kinetics), (b) ideal proton transport in 

the CCL (ORR kinetics modulated by oxygen transport), and (c) ideal oxygen transport in the 

CCL (ORR kinetics modulated by proton transport). These limiting cases imply infinitely large 

values of proton conductivity and/or oxygen diffusivity in the CCL. Real CCLs will however 

have finite values of these transport coefficients. Thus, under realistic operating conditions of 

PEM fuel cells and at sufficiently high current density, both oxygen and proton transport 

resistances can simultaneously dictate 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation. Also, as mentioned in 

section 2.3 of chapter 2, oxygen transport resistance inside local catalyst agglomerates in the 

CCL can become significant at high current density. To the best of our knowledge, literature 

lacks an analytical expression for 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation in the regime where oxygen 

and proton transport resistances in the CCL are simultaneously effective and are coupled to the 

oxygen transport resistance inside local catalyst agglomerates. In this chapter we present the 
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derivation of such a comprehensive relation using one-dimensional model for CCL wherein it 

is assumed that oxygen concentration and cathodic overpotential vary only along the CCL 

thickness but are uniform over the active area. We also assume isothermal conditions 

throughout the CCL volume. 

While the FA-corrected-MH model of the CCL is discussed in detail in chapter 2, we 

reproduce here the key governing equations of the same: 

𝑑𝑗

𝑑𝑦
= −𝑖𝑜,𝑐𝐴 [exp (𝐴𝑐

)] × 𝐸(휂) ×
𝐶

𝐶𝑖𝑛
                                                                                        (3.1) 

𝜎
𝑑

𝑑𝑦
= −𝑗                    (3.2) 

4𝐹𝐷𝐶𝐶𝐿
𝑑𝐶

𝑑𝑦
= 𝐽 − 𝑗                   (3.3) 

Equation (3.1) describes the proton flux balance along the thickness of the CCL, equation (3.2) 

is Ohm’s law relating proton flux in the CCL to the gradient of overpotential across CCL, and 

equation (3.3) is the oxygen conservation law in the CCL. We again note the different symbols 

here: 𝑦 is the dimension along CCL thickness with 𝑦 = 0 being the CCL-membrane boundary 

and 𝑦 = 𝑙𝑡 being the CCL-GDL boundary; 𝑗 is the proton flux, 휂 is the overpotential across 

CCL, 𝐶 and 𝐶𝑖𝑛 are respectively the oxygen concentrations (mol/m3) at any point 𝑦 along the 

thickness of the CCL and at inlet of a PEMFC, 𝑖𝑜,𝑐𝐴  is the volumetric exchange current density 

(A/m3), 𝐴𝑐 is the Tafel slope, 𝜎 is the proton conductivity of CCL, 𝐷𝐶𝐶𝐿 is oxygen diffusion 

coefficient in the CCL, 𝐹 is Faraday’s constant and 𝐽 is the proton flux at CCL-membrane 

interface.𝐸(휂) is the effectiveness factor given by, 

𝐸 =
1

𝑀𝑇
(

1

tanh(3𝑀𝑇)
−

1

3𝑀𝑇
)                   (3.4) 

where, 𝑀𝑇 =
𝑅𝑎𝑔𝑔

3
√
𝑖𝑜,𝑐[exp (

𝜂

𝐴𝑐
)]𝑎

3𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛
                         (3.5) 
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 We first explore two limiting cases which are dictated by comparative rates of intrinsic 

kinetics and oxygen diffusion in agglomerates. This is followed by the general case. 

3.1) Limiting case 1: 𝑴𝑻 ≪ 𝟏   

This implies that the rate of diffusion of O2 in agglomerates is much faster than intrinsic 

ORR rate so that 𝐸(휂) ≈ 1 and consequently, the FA model simplifies to the MH model. 

Equations (3.1-3.3) can therefore be recast in non-dimensional form as, 

휀2𝐶𝑖𝑛
∗ 𝑑𝑗∗

𝑑𝑦∗
= −𝐶∗[exp (휂∗)]                  (3.6) 

𝑑 ∗

𝑑𝑦∗
= −𝑗∗                    (3.7) 

𝐷∗
𝑑𝐶∗

𝑑𝑦∗
= 𝐽∗ − 𝑗∗                   (3.8) 

The non-dimensional variables are defined as 

 𝑗∗ =
𝑗

𝜎𝐴𝑐
𝑙𝑡

, 𝐽∗ =
𝐽

𝜎𝐴𝑐
𝑙𝑡

, 휂∗ =
𝐴𝑐

, 휀2 =
𝜎𝐴𝑐

𝑖𝑜,𝑐𝐴𝑙𝑡
2, 𝐶∗ =

𝐶

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿
, 𝐶𝑖𝑛

∗ =
𝐶𝑖𝑛

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿
 and 𝐷∗ =

4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝜎𝐴𝑐
                    (3.9) 

The boundary conditions are given by 𝑗∗ = 0 and 𝐶∗ = 1 at 𝑦∗ = 1, and 𝑗∗ = 𝐽∗, 
𝑑𝐶∗

𝑑𝑦∗
= 0 and 

휂 = 휂𝑜,𝐶𝐶𝐿 at 𝑦∗ = 0, where 휂𝑜,𝐶𝐶𝐿 is the resulting overpotential at the CCL-membrane 

interface required to sustain current density 𝐽. We also note that the quantity 𝐷∗ defined in 

equation (3.9) is the ratio of 𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 and 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡.  

The solution to equations (3.6-3.9) describes the current-overpotential relation (polarization 

curve) of the PEM fuel cell. 
𝑑 ∗

𝑑𝑥∗
→ 0 and 

𝑑𝐶∗

𝑑𝑥∗
→ 0 respectively denote the regimes of ideal 

proton transport across the CCL and ideal oxygen transport across the CCL for which analytical 

solutions to equation set (3.6-3.8) have been derived in the literature (refer chapter 2). We now 
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explore generalized solution to (3.6-3.9) when neither 
𝑑 ∗

𝑑𝑥∗
→ 0 nor 

𝑑𝐶∗

𝑑𝑥∗
→ 0 holds true. Thus, 

both oxygen transport resistance and proton transport resistance will be simultaneously 

significant which results into two possible sub-regimes of operation namely, 

𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 < 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 i.e., 𝐷∗ < 1 and 𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 > 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 

i.e., 𝐷∗ > 1. 

 

 The regime of simultaneous oxygen and proton transport limited reaction kinetics in 

the CCL for the case of  
𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏

𝒍𝒕
≪

𝝈𝑨𝒄

𝒍𝒕
, i.e. 𝑫∗ ≪ 𝟏 

The solution to MH CCL model (equations 3.6-3.9) in the limiting case of ‘ideal proton 

transport’ was presented by Kulikovsky (2010) [42]. In this limiting case the overpotential 휂 is 

spatially uniform in the CCL (equivalent to having nearly infinite proton conductivity), and 

since 
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
<

𝜎𝐴𝑐

𝑙𝑡
, therefore oxygen concentration decreases rapidly near CCL-GDL 

interface and goes to zero (refer section 2.1.1 of chapter 2, ideal proton transport in the CCL). 

This regime is valid only when 𝐽𝑡𝑜𝑡𝑎𝑙 ≪ 
𝜎𝐴𝑐

𝑙𝑡
. In practical situations such as for humidified low 

temperature PEM fuel cells, 
𝜎𝐴𝑐

𝑙𝑡
~ 0.65 − 1

𝐴

𝑐𝑚2 and therefore the analytical expression derived 

by Kulikovsky is valid only till 𝐽𝑡𝑜𝑡𝑎𝑙 ≪  0.65
𝐴

𝑐𝑚2. This establishes a need to explore more 

realistic expression for polarization curve for higher current densities where both oxygen 

diffusion resistance and proton transport resistance will simultaneously influence the overall 

ORR rate. In this regime one can expect the oxygen concentration to again decrease rapidly 

near the CCL-GDL interface but 휂 will no longer remain uniform in the CCL. Indeed an 

overpotential gradient will be required to drive protons from the CCL-membrane interface to 

the CCL-GDL interface because of finite resistance to proton conduction. It should also be 

noted that once oxygen concentration reduces to zero in the CCL (say at 𝑦∗ = 𝛿), the 
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consumption rate becomes zero and consequently, 𝑗∗ becomes independent of 𝑦∗ (equation 7) 

while 휂 decreases linearly along 𝑦∗ (equation 8). These expected profiles are schematically 

shown in figure 3.1. 

 

Fig.3.1 Pictorial representation of profiles of current density, overpotential (휂 = 휂𝑜,𝐶𝐶𝐿 at 𝑦∗ = 0) and 

concentration for 𝐽 >
3𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 𝑎𝑛𝑑 

3𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
<

𝜎𝐴𝑐

𝑙𝑡
   

 

Since the boundary condition dictates that 
𝑑 ∗

𝑑𝑦∗
= 0 at 𝑦∗ = 1, therefore it is possible to 

expand exp (휂∗) around 휂𝐺𝐷𝐿
∗  over the region 𝛿 ≤ 𝑦∗ ≤ 1 as 

exp(휂∗) = exp(휂𝐺𝐷𝐿
∗ ){1 + 휂𝐺𝐷𝐿

∗ (휂̃ − 1)}                         (3.10) 

where, 휂̃ =
∗

𝐺𝐷𝐿
∗  and 휂𝐺𝐷𝐿

∗  is the overpotential at 𝑦∗ = 1. 

The length scale (1 − 𝛿) in figure A-1 can be estimated from equation (3.8) and equation 

(3.6) as,  

(1 − 𝛿)~
𝐷∗

𝐽∗
               (3.11(a)) 

(1 − 𝛿)~
𝐽∗

𝑝
              (3.11(b))         
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where, 𝑝 =
exp( 𝐺𝐷𝐿

∗ )
2𝐶𝑖𝑛

∗ . Equating these expressions gives the useful relation, 

𝐽∗2~𝐷∗𝑝              (3.11(c))        

Combining equations (3.7) and (3.8) by eliminating 𝑗∗ and integrating using the boundary 

condition, 𝑗∗ = 0 and 𝐶∗ = 1 at 𝑦∗ = 1 gives another useful relation, 

휂𝐺𝐷𝐿
∗ (휂̃ − 1) = 𝐶∗𝐷∗ + 𝐽∗(1 − 𝑦∗) − 𝐷∗            (3.12) 

We now seek a power series solution for equations (3.6)-(3.8). From the expected profiles 

shown in figure A-1, we will need higher order polynomials for 𝑗∗ and 𝐶∗. Here we specify a 

5th order polynomial for 𝑗∗. As will be shown later, the final solution is independent of the 

assumed order of the polynomial as long as it is sufficiently high. 

𝑗∗ = ∑ 𝑎𝑖(1 − 𝑦
∗)𝑖5

𝑖=1                                                                                                          (3.13) 

Substituting for 𝑗∗ in equation (3.8) and integrating the same gives the concentration profile 

𝐶∗ = 1 −
𝐽∗

𝐷∗
(1 − 𝑦∗) +

1

𝐷∗
(∑

𝑎𝑖−1

𝑖
(1 − 𝑦∗)𝑖6

𝑖=2 )                                                                 (3.14)                 

Substituting for 𝐶∗ in equation (3.12) gives the overpotential profile 

휂𝐺𝐷𝐿
∗ (휂̃ − 1) = ∑

𝑎𝑖−1

𝑖
(1 − 𝑦∗)𝑖6

𝑖=2                (3.15) 

We now substitute equations (3.10) and (3.13)-(3.15) in equation (3.6) for the particular case 

of 𝐷∗ ≪  1, which also implies 𝑝 ≫ 𝐽∗2 from equation (3.11(c)) and hence (1 − 𝛿) ≪ 1. This 

gives, 

𝑎1 = 𝑝;  𝑎2 = −
𝑝𝐽∗

2𝐷∗
 and  𝑎𝑛+2 ≈

𝑝

𝑛+2
[

𝑎𝑛

(𝑛+1)𝐷∗
] (for 𝑛 ≥ 1)            (3.16) 

Substituting equation (3.16) back into equations (3.13)-(3.15) gives profiles of 𝑗∗, 𝐶∗ and 

휂𝐺𝐷𝐿
∗ (휂̃ − 1) for 𝛿 ≤ 𝑦∗ ≤ 1 as follows 
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𝑗∗ = 𝑗𝑜
∗ +√𝑝𝐷∗ sinh(√

𝑝

𝐷∗
(1 − 𝑦∗)) − 𝑗𝑜

∗ cosh(√
𝑝

𝐷∗
(1 − 𝑦∗))                      (3.17) 

𝐶∗ = cosh(√
𝑝

𝐷∗
(1 − 𝑦∗)) −

𝑗𝑜
∗

√𝑝𝐷∗
sinh(√

𝑝

𝐷∗
(1 − 𝑦∗))            (3.18) 

휂∗ = 휂𝐺𝐷𝐿
∗ + 𝐷∗ cosh(√

𝑝

𝐷∗
(1 − 𝑦∗)) −

𝑗𝑜
∗

√
𝑝

𝐷∗

sinh (√
𝑝

𝐷∗
(1 − 𝑦∗)) + 𝑗𝑜

∗(1 − 𝑦∗) − 𝐷∗        (3.19)        

Substituting 𝑗∗ = 𝐽∗ and 𝐶∗ = 0 at 𝑦∗ = 𝛿 in equations (3.17) and (3.18) and solving them 

together gives 

𝐽∗ = √𝑝𝐷∗ = √
exp( 𝐺𝐷𝐿

∗ )

2𝐶𝑖𝑛
∗ 𝐷∗                            (3.20) 

Equation (3.12) at 𝑦∗ = 𝛿 gives 

(휂∗)𝛿 = 휂𝐺𝐷𝐿
∗ + 𝐽∗(1 − 𝛿) − 𝐷∗                          (3.21) 

Since 𝑗∗ ≈ 𝐽∗ is a constant over 0 < 𝑦∗ ≤ 𝛿 therefore equation (3.7) (Ohm’s law) dictates that 

휂∗ has to be linear in this domain. Thus, 

(휂∗)0−𝛿 = 휂𝑜,𝐶𝐶𝐿
∗ − 𝐽∗𝑦∗                (3.22) 

where, 휂∗ = 휂𝑜,𝐶𝐶𝐿
∗  at 𝑦∗ = 0 i.e., at membrane-CCL interface. At 𝑦∗ = 𝛿 the two solutions 

given by equations (3.21) and (3.22) must match. Equating them and substituting equation 

(3.20) for 휂𝐺𝐷𝐿
∗  we get for 𝐷∗ ≪ 1,  

    

                                                          

For the limiting case when proton transport resistance is negligible i.e. 𝐽∗ ≪ 1, equation (3.23) 

simplifies to  

휂𝑜,𝐶𝐶𝐿
∗ = 𝑙𝑛 {

2𝐶𝑖𝑛
∗ 𝐽∗

2

𝐷∗
}                           (3.24) 

𝜼𝒐,𝑪𝑪𝑳
∗ = 𝒍𝒏 {

𝜺𝟐𝑪𝒊𝒏
∗ 𝑱∗

𝟐

𝑫∗
} + 𝑱∗                             (3.23) 
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which is in fact the polarization curve for the case of ideal proton transport (
𝑑 ∗

𝑑𝑥∗
→ 0) but with 

considerable oxygen transport resistance across the CCL (Kulikovsky 2010, [42]). 

It is informative to write Equation (3.23) alternatively in dimensional form as 

 

The right side of equation (3.25) shows contributions of intrinsic kinetics (first term), mass 

transfer resistance for oxygen in the CCL (second term) and proton transport resistance in CCL 

(third term) to the overall cathode overpotential. In fact, the form of equation (3.25) can be 

intuitively expected. In the region 0 < 𝑦∗ < 𝛿 the proton flux experiences just the ‘DC’ 

resistance of (
𝛿

𝜎
~
𝑙𝑡

𝜎
) because in this region the consumption rate of protons is zero due to 

absence of oxygen. This gives the overpotential contribution due to proton transport as 

expressed by the third term of equation (3.25). This ‘DC’ resistance is in series with the 

resistance of oxygen transport modulated ORR kinetics in the region 𝛿 < 𝑦∗ < 1 where proton 

transport resistance (~
1−𝛿

𝜎
) is negligible. Thus, the oxygen transport modulation of ORR is 

given by equation (3.24), or equivalently, by the first two terms of equation (3.25). Hence the 

three terms are added to give the total overpotential.  

Equations (3.23) or (3.25) represents the iR-free polarization curve when both transport 

resistances across the CCL namely oxygen transport resistance and proton transport resistance 

simultaneously modulate the rate of oxygen reduction reaction for the case 𝐷∗ ≪ 1. Thus we 

expect these expressions to be valid for current densities greater than 𝐽𝑐𝑟𝑖𝑡,𝑂2 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡. 

We first compare the polarization curves predicted by equations (3.23) and (3.25) with the 

polarization curve predicted by three-dimensional numerical simulation in figure 3.2. The 

𝜼𝒐,𝑪𝑪𝑳 = 𝑨𝒄𝒍𝒏 {
𝑱

𝒊𝒐,𝒄𝑨𝒍𝒕(
𝑪𝑪𝑪𝑳−𝑮𝑫𝑳

𝑪𝒊𝒏
)
} + 𝑨𝒄𝒍𝒏 {

𝑱
𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏

𝒍𝒕
(
𝑪𝑪𝑪𝑳−𝑮𝑫𝑳

𝑪𝒊𝒏
)
} +

𝑱

𝝈/𝒍𝒕
                    (3.25) 
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details of the numerical simulation are provided in section 2.2 of chapter 2. The numerical 

values of oxygen diffusion coefficient (𝐷𝐶𝐶𝐿) and proton conductivity in the CCL are, 𝐷𝐶𝐶𝐿 =

5.06 × 10−9
𝑚2

𝑠
 (
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
= 0.2 

𝐴

𝑐𝑚2
) and 𝜎 = 2.8

𝑆

𝑚
 (
𝜎𝐴𝑐

𝑙𝑡
= 0.91 

𝐴

𝑐𝑚2
) ensuring that 𝐷∗ =

0.22 (< 1). The intrinsic volumetric exchange current density is taken to be 𝑖𝑜,𝑐𝐴 = ~ 0.5 ×

107
𝐴

𝑚3. The other model parameters were selected to ensure that there exist no limitations on 

mass transport of oxygen through the GDL and in the channel. Also, the stoichiometry selected 

was high enough to ensure that oxygen concentration at CCL-GDL interface remains equal to 

inlet oxygen concentration over entire active area (𝐷𝐺𝐷𝐿 = 1.79 × 10
−5 𝑚

2

𝑠
, 𝑈𝑖𝑛 = 1.3

𝑚

𝑠
, 𝐷 =

4 × 10−5
𝑚2

𝑠
). The numerical values of proton conductivity of the membrane and electrical 

conductivity of GDL are assigned to be high enough such that the resulted polarization curve 

in the three-dimensional numerical simulation is ‘iR-free’.   

As can be observed from figure 3.2, polarization curve predicted by equation (3.25) gives 

an excellent match with the polarization curve predicted by three-dimensional numerical 

simulation over entire range of current densities  𝐽 > 𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, whereas polarization 

curve predicted by equation (3.24) shows considerable deviation at high current density. Thus, 

equation (3.25) gives a comprehensive expression of polarization curve of PEMFC when 

oxygen transport and proton transport resistances are simultaneously modulating overall ORR 

kinetics with the condition 𝐷∗ < 1. 

That the improved predictive ability of equation (3.25) is indeed because of relaxing the 

assumption of uniform overpotential in the CCL is confirmed by comparing the profiles of 𝑗∗, 

𝐶∗ and 휂∗ along the thickness of the CCL (equations (3.17)-(3.19) and (3.22) respectively), 

with the profiles predicted by three-dimensional numerical simulation. Figure 3.3 illustrates 
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this comparison at the operating current density of 𝐽 = 0.98
𝐴

𝑐𝑚2. As can be noted, analytical 

predictions show excellent agreement with numerical simulation results.  

 

Fig.3.2 Comparison between the polarization curves predicted by analytical expressions and that 

obtained from three-dimensional numerical simulation for 𝐷∗ ≪ 1 and 𝑀𝑇 ≪ 1 

 

Fig.3.3 Comparison between the profiles of current density, oxygen concentration and overpotential 

obtained by analytical expressions (lines) and three-dimensional numerical simulation (circles: 

oxygen concentration, squares: current density, cross: overpotential) at 1.83 A/cm2 (cell voltage ~0.63 

V) for 𝐷∗ ≪ 1 
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 The regime of simultaneous oxygen and proton transport limited reaction kinetics in 

the CCL for the case of  
𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏

𝒍𝒕
≫

𝝈𝑨𝒄

𝒍𝒕
 i.e., 𝑫∗ ≫ 𝟏 

Kulikovsky (2010) [42] provided the equation of polarization curve in the regime of ideal 

oxygen transport wherein oxygen concentration is uniform in the CCL while overall ORR 

kinetics is modulated by resistance to proton conduction for 𝐽 > 𝐽𝑐𝑟𝑖𝑡,(𝐻+),𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 (refer 

section 2.1.1 of chapter 2, ideal oxygen transport). In this regime, the proton flux and 

consequently the reaction rate decays sharply from the CCL-membrane interface. While this 

regime implies very high values of 𝐷𝐶𝐶𝐿, in reality the finite value of diffusion coefficient will 

ensure that both proton conduction and oxygen diffusion resistances in the CCL will 

simultaneously modulate ORR kinetics. In this regime also, we can expect a thin reaction zone 

near the CCL-membrane interface. However, the absence of reaction and the non-negligible 

oxygen diffusion resistance in the region away from the interface will set up a linear gradient 

of oxygen concentration in the CCL in order to transport the oxygen to the reaction zone. In 

the reaction zone itself, the boundary condition 
𝑑𝐶∗

𝑑𝑦∗
= 0 at 𝑦∗ = 0 requires the oxygen 

concentration profile to become independent of 𝑦∗. Therefore, the expected profiles of oxygen 

concentration, current density and overpotential in the CCL for 𝐽 >
𝜎𝐴𝑐

𝑙𝑡
 𝑎𝑛𝑑 

𝜎𝐴𝑐

𝑙𝑡
<

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 

are schematically shown in figure 3.4.  

The linear oxygen concentration profile can be determined from equation (3.8) by invoking 

𝑗∗ = 0 in 𝛿 < 𝑦∗ < 1. Neglecting the flattening out of oxygen concentration in the reaction 

zone, the oxygen concentration profile in the CCL can be given by 

𝐶∗ = 1 −
𝐽∗

𝐷∗
(1 − 𝑦∗)                                                                                                             (3.26) 
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Fig3.4 Pictorial representation of profiles of current density, overpotential (휂 = 휂𝑜,𝐶𝐶𝐿 at 𝑥∗ = 0) and 

concentration for 𝐽 >
𝜎𝐴𝑐

𝑙𝑡
 𝑎𝑛𝑑 

𝜎𝐴𝑐

𝑙𝑡
<

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
. The dotted line is the uniform oxygen concentration 

as assumed in Kulikovsky (2010)  

 

Equations (3.6), (3.7) and (3.26) then simplify to, 

𝑑2𝑗∗

𝑑𝑦∗2
+
1

2

𝑑𝑗∗
2

𝑑𝑦∗
=

𝑑𝑗∗

𝑑𝑦∗

𝑑𝑙𝑛{1−
𝐽∗

𝐷∗
(1−𝑦∗)}

𝑑𝑦∗
                                                                                         (3.27) 

Given that we are exploring the case of 𝐷∗ ≫  1, 𝑙𝑛 {1 −
𝐽∗

𝐷∗
(1 − 𝑦∗)} ≈ −

𝐽∗

𝐷∗
(1 − 𝑦∗), 

therefore, equation (3.27) takes the form, 

𝑑2𝑗∗

𝑑𝑦∗2
+
1

2

𝑑𝑗∗
2

𝑑𝑦∗
=

𝐽∗

𝐷∗
𝑑𝑗∗

𝑑𝑦∗
                                                                                                               (3.28) 

Equation (3.28) can be integrated twice to give a profile of current density as, 

𝑗∗ = 휁 tan {
2
(1 − 𝑦∗ −

2𝐽∗

2𝐷∗
)}                                                                                             (3.29) 

Equations (3.6), (3.26) and (3.29) then give a profile of overpotential as, 

 휂∗ = ln [

𝜁2𝐶𝑖𝑛
∗ 𝜀2

2
{1+(tan(

𝜁

2
(1−𝑦∗−

2𝐽∗

𝜁2𝐷∗
)))

2

}

1−
𝐽∗

𝐷∗
(1−𝑦∗)

]                                                                             (3.30) 
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Here, 휁 is a constant and can be found by substituting 𝑦∗ = 0 and 𝑗∗ = 𝐽∗in equation (3.29). 

For 𝐽 ≫ 𝐽𝑐𝑟𝑖𝑡,(𝐻+),𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, we get tan {
2
(1 −

2𝐽∗

2𝐷∗
)} ≫ 1. Therefore, equation (3.30) gives, 

 

 

 

Equation (3.31) can be recast in a dimensional form as,  

 

For the limiting case when 𝐽 ≪
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
, equation (3.32) gets transformed to, 

휂𝑜,𝐶𝐶𝐿 = 2𝐴𝑐 ln {
𝐽

√
2𝜎𝐴𝑐
𝑙𝑡

𝑖𝑜,𝑐𝐴𝑙𝑡(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)
}                                                                                (3.33)          

Equation (3.33) is in fact is the same expression derived by Kulikovsky (2010) [42] for the 

case of ideal oxygen transport. An important difference between equation (3.32) and equation 

(3.33) is the presence of the second term on the right-hand side of equation (3.32), which arises 

as a repercussion of finite oxygen transport resistance. An interesting feature of equation (3.32) 

is that 휂 → ∞ when 𝐽 →
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
 i.e., the polarization curve will tend to show a limiting 

current. Interestingly, low humidity fuel cell operations do tend to show such limiting current 

behaviour in polarization curves (Chen et al. 2017, [91]). 

𝜼𝒐,𝑪𝑪𝑳
∗ = 𝐥𝐧 [

𝑱∗
𝟐
𝑪𝒊𝒏
∗ 𝜺𝟐

𝟐

𝟏−
𝑱∗

𝑫∗

]                                  (3.31) 

𝜼𝒐,𝑪𝑪𝑳 = 𝟐𝑨𝒄 𝐥𝐧 {
𝑱

√
𝟐𝝈𝑨𝒄
𝒍𝒕
𝒊𝒐,𝒄𝑨𝒍𝒕(

𝑪𝑪𝑪𝑳−𝑮𝑫𝑳
𝑪𝒊𝒏

)
} + 𝟐𝑨𝒄𝒍𝒏

{
 
 

 
 

𝟏

√
(𝟏−

𝑱
𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏

𝒍𝒕
(
𝑪𝑪𝑪𝑳−𝑮𝑫𝑳

𝑪𝒊𝒏
)
)

}
 
 

 
 

                   (3.32) 
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Figure 3.5 compares the polarization curve predicted by equation (3.32) and equation (3.33) 

with the polarization curve predicted by three-dimensional numerical simulation. In this 

simulation, we have assigned the following values of model parameters: 𝐷𝐶𝐶𝐿 = 1 × 10
−8 𝑚

2

𝑠
 

and 𝜎 = 0.026
𝑆

𝑚
, which respectively imply 𝐽𝑐𝑟𝑖𝑡,(𝑂2),𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 0.3 

𝐴

𝑐𝑚2 and 

𝐽𝑐𝑟𝑖𝑡,(𝐻+),𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 0.0083 
𝐴

𝑐𝑚2 so that 𝐷∗ = 48. The intrinsic volumetric exchange current 

density is taken to be 𝑖𝑜,𝑐𝐴 = ~ 0.5 × 10
7 𝐴

𝑚3
. We reiterate that the numerical values of other 

model parameters were selected to ensure that there exist no limitations on mass transport of 

oxygen through the GDL and in the channel. Also, the stoichiometry selected was high enough 

to ensure that oxygen concentration at CCL-GDL interface remains equal to inlet oxygen 

concentration over entire active area (𝐷𝐺𝐷𝐿 = 1.79 × 10
−5 𝑚

2

𝑠
, 𝑈𝑖𝑛 = 1.3

𝑚

𝑠
, 𝐷 = 4 ×

10−5
𝑚2

𝑠
) and the numerical values of proton conductivity of the membrane and electrical 

conductivity of GDL are assigned to be high enough such that the resulted polarization curve 

in the three-dimensional numerical simulation is ‘iR-free’. 

It can be noted from figure 3.5 that the polarization curve predicted by equation (3.32) is in 

close agreement with the polarization curve predicted by three-dimensional numerical 

simulation whereas polarization curve predicted by equation (3.33) shows considerable 

deviation. The feature of limiting current is evident from the polarization curve predicted by 

numerical simulation and is also captured in polarization curve predicted by equation (3.32). 

This is clearly absent in the polarization curve predicted by equation (3.33). Figure 3.6 

compares local profiles of 𝐶∗, 𝑗∗ and 휂∗ along the thickness of the CCL predicted by equations 

(3.26), (3.29) and (3.30) respectively, with those predicted by numerical simulation at the same 

current density of 𝐽 = 0.27
𝐴

𝑐𝑚2. It is evident that analytical predictions match reasonably well 

with the predictions of numerical simulation.  
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The deviation between the polarization curves predicted by equation (3.32) versus three-

dimensional numerical simulation is a consequence of assumption of linear profile of oxygen 

concentration in the reaction zone, whereas as mentioned earlier, the oxygen concentration 

should flatten out near CCL-membrane interface. Because of this, the reaction zone actually 

needs lower flux of oxygen than that assumed by the analytical model and hence the limiting 

current density predicted analytically is smaller than that predicted by simulations. 

Nonetheless, the analytical model does capture the limiting current behavior qualitatively 

whereas the same is clearly absent in the earlier work (Kulikovsky 2010 [42]).  

 

Fig.3.5 Comparison between the polarization curves obtained by analytical expressions and three-

dimensional numerical simulation for  𝐷∗ ≫ 1 and 𝑀𝑇 ≪ 1  
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Fig.3.6 Comparison between the profiles of current density, oxygen concentration and overpotential 

obtained by analytical expressions (lines) and three-dimensional numerical simulation (circles: 

oxygen concentration, squares: current density, cross: overpotential) at 0.31 A/cm2 (cell voltage ~ 0.7 

V) for  𝐷∗ ≫ 1 

 

We will show in 7 that for many realistic cases of PEM fuel cell operation such as a fully 

humidified low temperature PEM fuel cell, which is also experimentally investigated in this 

thesis, the sub-regime given by 𝐷∗ < 1 turns out to be more relevant. Thus, we will restrict the 

scope of the following derivation to the case 𝐷∗ < 1.  

In summary, equations (3.25) and (3.32) describe the 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relationships in 

the regime of simultaneous oxygen and proton transport modulated ORR kinetics and when 

the rate of diffusion of O2 in agglomerates is much faster than intrinsic ORR rate so that 𝑀𝑇 <

 < 1 and 𝐸(휂) ≈ 1. 
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3.2) Limiting case 2: 𝑴𝑻 ≫ 𝟏 

This represents the case when rate of diffusion of O2 in agglomerates is considerably slower 

than the intrinsic ORR rate, and consequently the effectiveness factor can be approximated as 

𝐸(휂) ≈
1

𝑀𝑡
. Therefore, equation (3.1) can be modified as, 

𝑑𝑗

𝑑𝑦
= −{√

𝑖𝑜,𝑐𝐴[exp (
𝜂

𝐴𝑐
)]36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛

𝑅𝑎𝑔𝑔
2 ×

𝐴

𝑎
} ×

𝐶

𝐶𝑖𝑛
                                                                               (3.34)      

Note that, 
𝐴

𝑎
= 1 − 휀𝐶𝐶𝐿 where, 휀𝐶𝐶𝐿 is the porosity of the CCL.  

Equation (3.34) can be re-cast in non-dimensional form as, 

휀′
2
휃𝐶𝑖𝑛

∗ 𝑑𝑗′

𝑑𝑦∗
= −𝐶∗[exp (휂′)]                (3.35) 

And equations (3.2) and (3.3) can be written in non-dimensional form as, 

𝑑 ′

𝑑𝑦∗
= −𝑗′                  (3.36) 

𝐷′
𝑑𝐶∗

𝑑𝑦∗
= 𝐽′ − 𝑗′                 (3.37) 

Here, 𝑗′ =
𝑗

2𝜎𝐴𝑐
𝑙𝑡

 , 𝐽′ =
𝐽

2𝜎𝐴𝑐
𝑙𝑡

, 휂′ =
2𝐴𝑐

, 휀′
2
=

2𝜎𝐴𝑐

𝑖𝑜,𝑐𝐴𝑙𝑡
2, 𝐷′ =

4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

2𝜎𝐴𝑐
 and 휃 =

√
𝑖𝑜,𝑐𝐴

36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)/𝑅𝑎𝑔𝑔
2                 (3.38) 

Noting the similarity between the equation sets (3.35-3.37) and (3.6-3.8), it is 

straightforward to show that the solution to the equations (3.35-3.37) is given by 

            

 

 

𝜼𝒐,𝑪𝑪𝑳
′ = 𝒍𝒏 {

𝜺′
𝟐
𝑪𝒊𝒏
∗ 𝜽𝑱′

𝟐

𝑫′
} + 𝑱′   (3.39) 
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Which, in dimensional form is given by 

                 

 

 

 

The first three terms on the right side of equation (3.40) have the same meaning as those in 

equation (3.25). The additional fourth term is the contribution of oxygen transport resistance 

in the ionomer phase inside the agglomerate. This contribution will become substantial when 

𝐽 ≫ 𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑛 𝐶𝐶𝐿 𝑎𝑛𝑑 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑒, where 

𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑛 𝐶𝐶𝐿 𝑎𝑛𝑑 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑒 = √(
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

𝑙𝑡

𝑅𝑎𝑔𝑔
)         (3.41) 

It is worth noting here that in equations (3.25) and (3.30), the third term on the right side can 

be identified as an ohmic contribution of the CCL to the cathode overpotential whereas all other 

terms contribute to iR-free cathode overpotential. In other words, we can visualize proton 

transport resistance in the CCL as a DC resistance, which is in series with the oxygen transport 

resistance in CCL. Hence, we can recast equations (3.25) and (3.40) in the form,  

휂𝑜,𝐶𝐶𝐿 = 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 + 
𝐽

𝜎/𝑙𝑡
                (3.42)           

Note that the first term in equation (3.42) is equivalent to the case where the overpotential 

across CCL is constant, while the second term entirely accounts for the gradient in 

overpotential in CCL for finite values of 𝜎. The iR-free overpotential in equation (3.42) takes 

the form 

휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 = 𝐴𝑐𝑙𝑛 {
𝐽

𝑖𝑜,𝑐𝐴𝑙𝑡(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)
} + 𝐴𝑐𝑙𝑛 {

𝐽
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)
}                      (3.43)            

𝜼𝒐,𝑪𝑪𝑳 = 𝑨𝒄𝒍𝒏 {
𝑱

𝒊𝒐,𝒄𝑨𝒍𝒕(
𝑪𝑪𝑪𝑳−𝑮𝑫𝑳

𝑪𝒊𝒏
)
} + 𝑨𝒄𝒍𝒏 {

𝑱
𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏

𝒍𝒕
(
𝑪𝑪𝑪𝑳−𝑮𝑫𝑳

𝑪𝒊𝒏
)
} +

𝑱

𝝈/𝒍𝒕
+

𝑨𝒄𝒍𝒏 {
𝑱𝟐

(
𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏

𝒍𝒕
)(
𝟑𝟔𝑭𝑫𝒂𝒈𝒈𝑪𝒊𝒏(𝟏−𝝐𝑪𝑪𝑳)

𝑹𝒂𝒈𝒈
×

𝒍𝒕
𝑹𝒂𝒈𝒈

)(
𝑪𝑪𝑪𝑳−𝑮𝑫𝑳

𝑪𝒊𝒏
)𝟐
}                                       (3.40)                                                               
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or equivalently, 

𝐽 = √
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
             (3.44) 

when  𝐽 ≪ 𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑛 𝐶𝐶𝐿 𝑎𝑛𝑑 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑒.  

Alternatively, the iR-free cathode overpotential takes the form 

휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 = 𝐴𝑐𝑙𝑛 {
𝐽

𝑖𝑜,𝑐𝐴𝑙𝑡(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)
} + 𝐴𝑐𝑙𝑛 {

𝐽
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)
} +

𝐴𝑐𝑙𝑛 {
𝐽2

(
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

𝑙𝑡
𝑅𝑎𝑔𝑔

)(
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)2
}              (3.45) 

or equivalently, 

𝐽 = √4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛√
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

1

𝑅𝑎𝑔𝑔
𝑖𝑜,𝑐𝐴 [exp (

𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
         (3.46)         

when 𝐽 ≫ 𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑛 𝐶𝐶𝐿 𝑎𝑛𝑑 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑒. 

3.3) General case: 
𝟏

𝑴𝑻
< 𝑬(𝜼) < 𝟏 

We derived the exact analytical solutions to equations (3.1-3.3) in the limiting cases of 

𝑀𝑇 ≪ 1 and 𝑀𝑇 ≫ 1. As noted earlier, both asymptotic solutions suggest that it is possible to 

find the  𝐽 − 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation by considering 휂 in equation (3.1) to be 

independent of 𝑦 and then separately adding the proton transport resistance in the CCL as a DC 

resistance to obtain 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation. We apply the same logic to the transition 

regime and first find the  𝐽 − 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation in this transition regime by 

assuming 휂 in equation (3.1) to be independent of 𝑦. This is identical to the regime of ideal 

proton transport (refer section 2.1.1 of chapter 2, ideal proton transport) and therefore, in the 

most general case, equation (2.9) from chapter 2 takes the form 
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To this  휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿, the overpotential contribution due to proton transport resistance in the 

CCL can be added linearly (see equation 3.42) and thus, 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation in the 

most generalized case is also, 

  

 

Here, 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 is given by equation (3.47a). 

Figure 3.7 compares the polarization curves predicted by i) equation (3.24), ii) equation 

(3.25), iii) equation (3.40), iv) equation (3.47) and v) three-dimensional numerical simulation. 

While 𝐷𝐶𝐶𝐿 = 5.06 × 10−9
𝑚2

𝑠
 (

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
= 0.2 

𝐴

𝑐𝑚2) and 𝜎 = 2.8
𝑆

𝑚
 (

𝜎𝐴𝑐

𝑙𝑡
= 0.91 

𝐴

𝑐𝑚2) 

ensuring that 𝐷∗ = 0.22 (< 1), the numerical value of oxygen diffusion coefficient in the 

agglomerate (𝐷𝑎𝑔𝑔 ~ 10
−11 𝑚

2

𝑠
), radius of the agglomerate (𝑅𝑎𝑔𝑔 ~ 100 𝑛𝑚) and porosity of 

the CCL (휀𝐶𝐶𝐿 ~ 0.3) leads to 
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

𝑙𝑡

𝑅𝑎𝑔𝑔
 ~ 10 

𝐴

𝑐𝑚2
 and therefore 

𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑛 𝐶𝐶𝐿 𝑎𝑛𝑑 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑒  ~ 1.5 
𝐴

𝑐𝑚2. The diffusion of oxygen in the ionomer 

phase of agglomerate can be estimated by Bruggeman correlation, 𝐷𝑎𝑔𝑔 = 휀𝑎𝑔𝑔
1.5 𝐷𝑂2−𝑖𝑜𝑛𝑜𝑚𝑒𝑟 

[92], where 휀𝑎𝑔𝑔 is the volume fraction of ionomer in the agglomerate (it is straight forward to 

show that 휀𝑎𝑔𝑔 =
𝑙 (𝑖𝑜𝑛𝑜𝑚𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝐶𝐶𝐿)

1− 𝐶𝐶𝐿
)) and 𝐷𝑂2−𝑖𝑜𝑛𝑜𝑚𝑒𝑟 is the bulk diffusion 

𝜼𝒐,𝑪𝑪𝑳 = 𝜼𝒐,𝒊𝑹−𝒇𝒓𝒆𝒆,𝑪𝑪𝑳 + 
𝑱

𝝈/𝒍𝒕
                             (3.47b) 

𝑱 =
𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏

𝒍𝒕
 ×

√
𝒊𝒐,𝒄𝑨𝒍𝒕[𝐞𝐱𝐩 (

𝜼𝒐,𝒊𝑹−𝒇𝒓𝒆𝒆,𝑪𝑪𝑳

𝑨𝒄
)]×𝑬(𝜼𝒐,𝒊𝑹−𝒇𝒓𝒆𝒆,𝑪𝑪𝑳)

𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏
𝒍𝒕

 𝐭𝐚𝐧𝐡{√
𝒊𝒐,𝒄𝑨𝒍𝒕[𝐞𝐱𝐩 (

𝜼𝒐,𝒊𝑹−𝒇𝒓𝒆𝒆,𝑪𝑪𝑳

𝑨𝒄
)]×𝑬(𝜼𝒐,𝒊𝑹−𝒇𝒓𝒆𝒆,𝑪𝑪𝑳)

𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏
𝒍𝒕

} ×

𝑪𝑪𝑪𝑳−𝑮𝑫𝑳

𝑪𝒊𝒏
                                                                                                              (3.47a) 
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coefficient of oxygen in ionomer. When nafion is used as the ionomer, 𝐷𝑂2−𝑛𝑎𝑓𝑖𝑜𝑛 ~ 10
−10 𝑚

2

𝑠
 

[93]. Therefore, for 휀𝑙  ~ 0.2 and 휀𝐶𝐶𝐿 ~ 0.4, the value of D_agg obtained from the Bruggeman 

correlation is 𝐷𝑎𝑔𝑔 ~ 10
−11  

𝑚2

𝑠
. The value of CCL porosity 𝜖𝐶𝐶𝐿 ~ 0.4 is representative of 

random close packing of spherical agglomerates. The value of 𝑅𝑎𝑔𝑔 was chosen to be ~100 

nm, which is within the range determined experimentally using nanometer scale x-ray 

computed tomography, TEM and mercury injection porosimetry techniques [94]. As stated 

earlier, the numerical values of other model parameters were selected to ensure that there exist 

no limitations on mass transport of oxygen through the GDL and in the channel. Also, the 

numerical values of proton conductivity of the membrane and electrical conductivity of GDL 

are assigned to be high enough such that the resulted polarization curve in the three-

dimensional numerical simulation is ‘iR-free’.  

Figure 3.7 clearly shows that the polarization curve predicted by equation (3.47) gives an 

excellent match with the polarization curve predicted by three-dimensional numerical 

simulation. As expected, the polarization curve predicted by equation (3.40) matches with the 

three-dimensional numerical simulation at only high current density (𝐽 ≫

𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑛 𝐶𝐶𝐿 𝑎𝑛𝑑 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑒  (~ 1.5 
𝐴

𝑐𝑚2
)) whereas polarization curve predicted by 

equation (3.25) which does not incorporate oxygen diffusion resistance in the agglomerates 

deviates at high current density. It must be noted here that equations (3.25) and (3.40) describe 

the iR-free polarization curves for the asymptotic cases 𝑀𝑇 ≪ 1  and 𝑀𝑇 ≫ 1 respectively. It 

is evident from the figure 3.7 that the polarization curve predicted by equation (3.47) (general 

case: 
1

𝑀𝑇
< 𝐸(휂) < 1) not only agrees with the asymptotic solutions but also connects them in 

the intermediate region. This suggests that the method of separating potential losses due to 

oxygen transport and proton transport in the CCL, which was rigorously derived for the 

asymptotic cases, does work for the general case also. 
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Fig.3.7 Comparison between the polarization curves obtained by analytical expressions and three-

dimensional numerical simulation for  𝐷∗ ≪ 1 

 

3.4) Conclusion 

In conclusion, we have derived 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relationships for all possible regimes 

of CCL operation; and these are summarized in table 3.1. The simplifications invoked while 

deriving analytical 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relationships are validated by comparing the 

predictions of analytical with the predictions of three-dimensional numerical simulations 

wherein no such simplifying assumption are made. While the analytical 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 

relationships were known in the limiting regimes of CCL operations (Regime 1-3) which 

demands unrealistic values of 𝐷𝐶𝐶𝐿 or 𝜎, the present work provides 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 

relationships in the regimes of CCL operation which are practically relevant (Regimes 4a, 4b 

and 5). This work also derives the most generalized 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relationship which 

is valid over entire range of current density that relates the cathodic overpotential 휂𝑜,𝐶𝐶𝐿 to the 

current density 𝐽 by accounting for simultaneous oxygen and proton transport resistances in the 

CCL coupled with oxygen transport resistance in the agglomerates.           
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We further note that the oxygen transport resistances in GDL and flow channel will affect 

only the iR-free part of the cathode overpotential (휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿) through modulation of 

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿. The repercussions of these resistances on the polarization curve of PEM will be the 

main focus of the three subsequent chapters: Chapter 4 couples the oxygen transport resistances 

in GDL and flow channel for the case of reaction controlled regime of CCL operation i.e. 

Regime 1 (Table 3.1), whereas chapters 5 and 6 focus respectively on Regimes 2,3 and Regimes 

4b,5. 

  

Table 3.1 Regimes of CCL operation and corresponding 𝐽 − 휂𝑜 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relations 

Regime 1 

Intrinsic kinetics 

control case 

𝐽 <
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
  

𝑎𝑛𝑑 𝐽 <
2𝜎𝐴𝑐

𝑙𝑡
  

𝐽 = 𝑖𝑜,𝑐𝐴𝑙𝑡 exp(
𝑜,𝐶𝐶𝐿

𝐴𝑐
)
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
  (Kulikovsky 2010, [42]) 

Regime 2 

Ideal proton 

transport case 

𝐽 >
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
  

𝑎𝑛𝑑 
2𝜎𝐴𝑐

𝑙𝑡
→ ∞  

𝐽 = √𝑖𝑜,𝑐𝐴𝑙𝑡
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
exp( 𝑜,𝐶𝐶𝐿

2𝐴𝑐
)
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
 (Kulikovsky 2010, [42]) 

Regime 3 

Ideal oxygen 

transport case 

𝐽 >
2𝜎𝐴𝑐

𝑙𝑡
 𝑎𝑛𝑑  

 
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
→

∞   

𝐽 = √𝑖𝑜,𝑐𝐴𝑙𝑡
2𝜎𝐴𝑐

𝑙𝑡

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
exp( 𝑜,𝐶𝐶𝐿

2𝐴𝑐
) (Kulikovsky 2010, [42]) 
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Regime 4a 

Simultaneous 

oxygen and 

proton transport 

limited case  

𝐽 >
2𝜎𝐴𝑐

𝑙𝑡
 𝑎𝑛𝑑 

(𝐷∗ > 1) 

(𝑀𝑇 ≪ 1) 

𝐽

√(1−
𝐽

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿
𝐶𝑖𝑛

)

= √𝑖𝑜,𝑐𝐴𝑙𝑡
2𝜎𝐴𝑐

𝑙𝑡

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
exp( 𝑜,𝐶𝐶𝐿

2𝐴𝑐
)   

(This work) 

Regime 4b 

Simultaneous 

oxygen and 

proton transport 

limited case  

𝐽 >
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
  

𝑎𝑛𝑑 (𝐷∗ < 1) 

(𝑀𝑇 ≪ 1) 

𝐽 = √𝑖𝑜,𝑐𝐴𝑙𝑡
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
exp(

𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

2𝐴𝑐
)
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
  

휂𝑜,𝐶𝐶𝐿 = 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 +
J

𝜎/𝑙𝑡
  

(This work)  

Regime 5 

Simultaneous 

oxygen and 

proton transport 

limited case with 

agglomerate 

resistance 

𝐽 >

√
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
×

  √
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
2 /𝑙𝑡

  

 𝑎𝑛𝑑 (𝐷∗ < 1) 

 

𝐽 = √
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
√𝑖𝑜,𝑐𝐴𝑙𝑡

36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

𝑙𝑡

𝑅𝑎𝑔𝑔
exp ( 𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

3𝐴𝑐
)
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
   

휂𝑜,𝐶𝐶𝐿 = 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 +
J

𝜎/𝑙𝑡
  

(This work) 

Most generalized polarization curve:  

𝐽 =

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 √

𝑖𝑜,𝑐𝐴𝑙𝑡[exp (
𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]𝐸( 𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿)

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

 tanh {√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]𝐸( 𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿)

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

}
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
   

휂𝑜,𝐶𝐶𝐿 = 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 + 
𝐽

𝜎/𝑙𝑡
 

(This work) 
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Chapter 4 

Isothermal two-dimensional model of a proton 

exchange membrane fuel cell: Analytical solution for 

reaction-controlled regime of CCL operation 

 

The content of this chapter is published in,  

“Chemical Engineering Science, volume no. 190, 23rd November 2018, pages: 333–344” [95]. 

The typical boundary condition of uniform oxygen concentration at CCL–GDL interface in 

one dimensional modelling of CCL, (as was assumed in chapter 3) is typically not true in 

practical situations. It is intuitively clear that consumption of oxygen in the ORR would reduce 

its concentration in the oxidant during its travel in the flow channels of the cathode plates. 

Therefore, oxygen concentration at the CCL-GDL interface should also reduce from inlet to 

the outlet. This non-uniformity of oxygen concentration gives rise to a current density profile 

along the channel. Three-dimensional numerical simulations of PEMFC rigorously account for 

the non-uniform oxygen concentration at the CCL-GDL interface over the entire active area. 

Some of the earlier work in this area are by [71-80], while a comprehensive review of prior 

work in this area can be found in [81-85]. However, analytical treatments of governing 

equations are sparse even in the limiting cases. The only exception is the work of Kulikovsky 

et al. (2004) [63] and Kulikovsky (2004) [64] who proposed a two-dimensional isothermal 

model comprising intrinsic Tafel kinetics in the CCL and oxygen transport resistance across 

the GDL coupled with material balance equation along flow channel, and provided analytical 

derivation of the current-potential relationship (refer section 2.1.3 of chapter 2). However, it 

was assumed that flow in the channel was plug flow and oxygen concentration was allowed to 
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vary only along the channel length but not along the channel depth. Under typical operating 

conditions of PEMFC, the flow in channels is laminar and therefore the assumption of plug 

flow is not realistic. Furthermore, as will be seen later, the resistances to oxygen diffusion in 

the GDL and in the channel are of the same order for a typical fuel cell construction. Hence, 

the assumption of uniform oxygen concentration along the channel depth is also not realistic. 

In particular, this assumption can lead to considerable deviations at high current density as will 

be shown later. A comparison between three-dimensional numerical simulation of governing 

equations and the two-dimensional analytical model proposed by Kulikovsky et al (2004) [63] 

should bring out the criticality of these assumptions and to the best of our knowledge, literature 

lacks such a comparison.  

This chapter relaxes the assumptions of laminar flow and uniform oxygen concentration 

along the channel depth and presents analytical solutions of the revised two-dimensional 

model. The effects of relaxing the two assumptions are highlighted by comparing the model 

predictions with those of Kulikovsky et al. (2004) [63] as well as with the results of full three-

dimensional numerical simulation of PEMFC under identical operating conditions. 

4.1) Mathematical model 

 

Fig.4.1 A typical two dimensional domain in PEMFC 
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Figure 4.1 depicts the two-dimensional domain of the model comprising a channel of length 

𝐿 and depth 2ℎ in which laminar flow of the reactant gas occurs along the axial (𝑥−) direction 

and flow gradient is along the transverse (𝑦−) direction. Channel wall is located at 𝑦 = ℎ and 

channel-GDL interface at 𝑦 = −ℎ. No-slip condition is assumed at both boundaries. Because 

of the reaction in the CCL and the consequent consumption of oxygen, the oxygen 

concentration in the reactant gas is expected to vary along both 𝑥 and 𝑦 directions in the flow 

channel. Oxygen flux at the channel wall is zero while that at the channel-GDL interface is 

related to the rate of consumption by ORR in the CCL.  

At steady state, transport equation for oxygen in channel can be written as, 

𝑢
𝜕𝐶

𝜕𝑥
= 𝐷(

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
)                                                                                                                (4.1) 

where 𝐶(𝑥, 𝑦) and 𝑢(𝑦) are respectively the local oxygen concentration and velocity at any 

point (𝑥, 𝑦) in the channel and 𝐷 is the oxygen diffusion coefficient in channel. It is assumed 

here that the volumetric flow rate in the channel does not change along the length. This is a 

reasonable assumption if the change in number of moles due to ORR is not substantial 

compared to the inert concentration (N2) in the flow for a given stoichiometry. This assumption 

is revisited later in this chapter.  

For typical commercial fixtures of closed cathode type such as 25 cm2 or 100 cm2 of Fuel Cell 

Technologies Inc., whose specifications given in Table 4.1, operating at 1 A/cm2 with air 

stoichiometry of 3 on the cathode side, the Reynolds numbers turn out to be ~ 440 and ~ 780 

for 25 cm2 and 100cm2, respectively. This suggests that the flow in the channels is in the 

laminar regime. Estimation of Reynolds number in flow fields of larger area cathode plates 

also suggests laminar regime of flow. Further, as will be verified later, it is appropriate to 
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neglect the term  
𝜕2𝐶

𝜕𝑥2
 when compared with the term  

𝜕2𝐶

𝜕𝑦2
 in equation (4.1). Thus, equation (4.1) 

can be written as 

3

2
𝑈𝑚𝑒𝑎𝑛 [1 − (

𝑦

ℎ
)
2

]
𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2𝐶

𝜕𝑦2
                                                                                                (4.2) 

where 𝑈𝑚𝑒𝑎𝑛 is the average inlet velocity. The boundary conditions are, 

At 𝑦 = ℎ,    
𝜕𝐶

𝜕𝑦
= 0                                                                                                                (4.3a) 

At 𝑦 = −ℎ,    4𝐹𝐷
𝜕𝐶

𝜕𝑦
= 𝐽                                                                                                      (4.3b) 

At 𝑥 = 0, 𝐶 = 𝐶𝑖𝑛(𝑦)                                                                                     (4.3c) 

Here 𝐽 is the local current density at any point ‘𝑥’ along the channel length and 𝐶𝑖𝑛 is inlet 

oxygen concentration. The boundary condition (4.3c) essentially neglects the entry effect and 

suggests that a steady state concentration profile is developed only along the channel depth. 

The consequences of this assumption are discussed later in the chapter.  

Table 4.1 Specifications of typical commercial fixtures (by Fuel Cell Technologies., inc) 

Parameter 25 cm2 100 cm2 

Flow field type Serpentine Serpentine 

Number of channels 3 4 

Width of the channel 0.8 mm 0.8 mm 

Depth of channel 1 mm 2 mm 

Volumetric flow rate of air 

according to stoichiometry of 3 

at 1 A/cm2 

1.24 lpm 4.97 lpm 

Reynolds number ~ 440 ~ 780 

 

It may be noted here that the governing equation (4.2) is similar to the classical Graetz problem 

of heat transfer albeit with a different boundary condition (Leal 2007 [96]). The classical Graetz 

problem has a constant temperature boundary condition (analogously, a constant oxygen 

concentration at the wall) whereas the boundary condition given by equation (4b) for the 
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problem of our interest involves a flux that varies in the axial (−𝑥) direction. Therefore, while 

the solution to Graetz problem is not applicable to our problem directly, nonetheless, we invoke 

a similar methodology of separation of variables followed by a power series approach to seek 

a solution to equation (4.2) and equations (4.3a-4.3c). 

We look for analytical solutions to equation (4.2) by invoking separation of variables such 

that 𝐶 = 𝐶𝑥(𝑥)𝐶𝑦(𝑦), where 𝐶𝑥(𝑥) has dimensions of concentration and scales with 𝐶𝑖𝑛 while 

𝐶𝑦 denotes the dimensionless concentration profile along the channel depth. Substituting in 

equation (4.2) gives 

1

𝐶𝑥

𝑑𝐶𝑥

𝑑𝑥
=

𝐷

3

2
𝑈𝑚𝑒𝑎𝑛(1−(

𝑦

ℎ
)
2
)

1

𝐶𝑦

𝑑2𝐶𝑦

𝑑𝑦2
= −𝑚2                                                                                   (4.4) 

Strictly speaking, there exists a finite length near the inlet over which the concentration profile 

develops with the flow and after which it becomes self-similar for any ‘𝑥’ thereafter. Neglecting 

this entry length (as reflected in equation (4.3c)), we propose a solution as, 

𝐶(𝑥, 𝑦) = 𝐶𝑖𝑛exp (−𝑚
2𝐿𝑥∗)𝐶𝑦                                                                                             (4.5) 

With 𝑥∗ =
𝑥

𝐿
, 𝐶𝑦

∗ = 𝐶𝑦, 𝑦∗ =
𝑦

ℎ
 and  𝑘2 =

3

2

𝑈𝑚𝑒𝑎𝑛ℎ
2𝑚2

𝐷
, equation (4.4) yields, 

𝑑2𝐶𝑦
∗

𝑑𝑦∗2
= −𝑘2(1 − 𝑦∗2)𝐶𝑦

∗                                                                                                         (4.6) 

We expect to have a monotonic decrease in oxygen concentration along the depth of the 

channel from a maximum value near channel wall equal to 𝐶𝑖𝑛 exp(−𝑚
2𝐿𝑥∗) to some 

minimum value at the channel-GDL interface. We, therefore explore a power series solution 

for 𝐶𝑦
∗ as follows 

𝐶𝑦
∗ = ∑ 𝑎𝑛(1 − 𝑦

∗)𝑛𝑛=0                                                                                                          (4.7) 

Substituting equation (4.7) in equation (4.6) and simplifying we get, 
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𝑎2 = 0, 𝑎3 = −
𝑎0𝑘

2

3
 and 𝑎𝑛+2 =

𝑘2(𝑎𝑛−2−𝑎𝑛−1)

(𝑛+2)(𝑛+1)
. 

The condition of maximum concentration near the channel wall suggests that 𝐶𝑦
∗ = 1 at  𝑦∗ =

1 and the boundary condition (4a) yield 𝑎0 = 1 and 𝑎1 = 0. Furthermore, the recursive formula 

for 𝑎𝑛+2 gives 𝑎4 =
𝑘2

12
, 𝑎4 = 0, 𝑎6, 𝑎7, 𝑎8 ~ 𝑂(𝑘

4) and so on. Restricting power series to 

𝑂(𝑘2), we get the approximate solution 

𝐶𝑦
∗ = 1 −

𝑘2

3
(1 − 𝑦∗)3 +

𝑘2

12
(1 − 𝑦∗)4                                                                                  (4.8) 

Thus, oxygen concentration profile in the channel is, 

𝐶 = 𝐶𝑖𝑛exp (−𝑚
2𝐿𝑥∗) {1 −

𝑘2

3
(1 − 𝑦∗)3 +

𝑘2

12
(1 − 𝑦∗)4}                                                      (4.9) 

The unknown 𝑘2 and therefore 𝑚2 can be estimated using the boundary condition (4.3b).   

In the reaction kinetics-controlled regime, the overall consumption of oxygen is governed 

by the intrinsic ORR kinetics while the oxygen concentration remains constant along the 

thickness of CCL. The current-overpotential-concentration relationship is then given by the 

Tafel equation as 

𝐽 = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                                                                                                  (4.10) 

Where, 𝑖𝑜,𝑐𝐴 is volumetric exchange current density (A/m3), 𝑙𝑡 is CCL thickness (m), 휂𝑜,𝐶𝐶𝐿 is 

cathodic overpotential which is assumed to be uniform along the length of the channel (V), 𝐴𝑐 

is Tafel slope (V) and 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 is oxygen concentration at the CCL-GDL interface (mol/m3). 

Here, local 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation at any point ‘𝑥’ along the length of the channel is 

assumed to be get dictated by one-dimensional MH model of the CCL (in reaction controlled 

regime of CCL operation) i.e. the gradients in ‘𝑥’ and ‘𝑧’ directions in the CCL are assumed 

to be negligible. This assumption is verified later in the sixth chapter. The relation between 
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𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 and oxygen concentration at channel-GDL interface (𝐶𝐶ℎ−𝐺𝐷𝐿 = 𝐶ǀ𝑥;𝑦=−ℎ =

𝐶𝑥𝐶𝑦ǀ𝑦=−ℎ) can be obtained by writing oxygen conservation equation across GDL as, 

4𝐹𝐷𝐺𝐷𝐿

𝑙𝐺𝐷𝐿
(𝐶𝐶ℎ−𝐺𝐷𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿) = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                                                    (4.11) 

Here, 𝐷𝐺𝐷𝐿 is the diffusion coefficient for oxygen in the GDL and 𝑙𝐺𝐷𝐿 is the GDL thickness. 

Defining 𝐽1−𝐷 = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)], 𝐽𝐺𝐷𝐿 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
 , 𝛼 =

𝐽1−𝐷

𝐽𝐺𝐷𝐿
 and combining equations 

(4.10) and (4.11), we get, 

 𝐽 =
𝐽1−𝐷

1+𝛼

𝐶𝑥𝐶𝑦ǀ𝑦=−ℎ

𝐶𝑖𝑛
                                                                                                                       (4.12) 

Note that 𝐽𝐺𝐷𝐿 is the limiting current density corresponding to the maximum flux of oxygen 

diffusion through the GDL. Substituting equation (4.12) in the boundary condition (4.3b), we 

get,  

𝑑𝐶𝑦

𝑑𝑦∗
=

𝜉

1+𝛼
𝐶𝑦 at 𝑦∗ = −1                                                                                                               (4.13) 

Here, 𝜉 =
𝐽1−𝐷

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
 and 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ =

4𝐹𝐷𝐶𝑖𝑛

ℎ
. Note that 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ is the limiting current density 

corresponding to the maximum flux of oxygen diffusing towards the channel-GDL interface in 

the channel.  

Now, equation (4.9) must satisfy equation (4.13) at  𝑦∗ = −1 and therefore,  

𝑘2 =
3

4

𝜉

1+𝛼+𝜉
                                                                                                                                (4.14) 

Since 𝛼, 𝜉 are positive numbers, it is clear from equation (4.14) that 𝑘2 < 1 thus confirming 

that the series solution equation (4.7) converges. Recalling that  𝑘2 =
3

2

𝑈𝑚𝑒𝑎𝑛ℎ
2𝑚2

𝐷
 gives,  

𝑚2𝐿 =
𝛽

1+𝛼+𝜉
                                                                                                                            (4.15) 
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Here  𝛽 =
𝐽1−𝐷

𝐽𝑓𝑙𝑜𝑤
 and 𝐽𝑓𝑙𝑜𝑤 =

8𝐹𝑈𝑚𝑒𝑎𝑛ℎ𝐶𝑖𝑛

𝐿
. Note that 𝐽𝑓𝑙𝑜𝑤 signifies the current density 

corresponding to the molar flux of oxygen that is convected in the channel. 𝐽𝑓𝑙𝑜𝑤 is proportional 

to the stoichiometry of oxidant. 

Now, combining equations (4.9), (4.14) and (4.15), we get, 

𝐶(𝑥, 𝑦) = 𝐶𝑖𝑛exp (−
𝛽𝑥∗

1+𝛼+𝜉
) {1 −

𝜉

4(1+𝛼+𝜉)
(1 − 𝑦∗)3 +

𝜉

16(1+𝛼+𝜉)
(1 − 𝑦∗)4}                       (4.16) 

Equation (4.16) defines the local oxygen concentration at any given point (𝑥, 𝑦). 

Correspondingly, the local current density at any point ‘𝑥’ along the channel is, 

𝐽 =
4𝐹𝐷𝐶𝑥

ℎ
{
𝜕𝐶𝑦

∗

𝜕𝑦∗
ǀ𝑦∗=−1} =

𝐽1−𝐷

1+𝛼+𝜉
exp (−

𝛽𝑥∗

1+𝛼+𝜉
)                                                                     (4.17) 

Equation (4.17) can be integrated over the channel length to yield the current-potential 

relationship (polarization curve) for the entire active area. Thus, we get, 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼+𝜉
)}                                                                                       (4.18) 

Note that, 

𝛼 =
𝐽1−𝐷

𝐽𝐺𝐷𝐿
                                                                                                                                 (4.19) 

𝛽 =
𝐽1−𝐷

𝐽𝑓𝑙𝑜𝑤
                                                                                                                                (4.20) 

𝜉 =
𝐽1−𝐷

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
                                                                                                                              (4.21) 

Where, 𝐽1−𝐷 = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)], 𝐽𝐺𝐷𝐿 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
, 𝐽𝑓𝑙𝑜𝑤 =

8𝐹𝑈𝑚𝑒𝑎𝑛ℎ𝐶𝑖𝑛

𝐿
 and 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ =

4𝐹𝐷𝐶𝑖𝑛

ℎ
. 

Equation (4.18) gives an analytical expression for the polarization curve in a single straight-

channel flow field for the case of reaction-controlled CCL regime. In deriving equation (4.18) 
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we have relaxed the assumptions of plug flow and uniform oxygen concentration along the 

channel depth, which were invoked in the earlier efforts of analytical modelling (Kulikovsky 

et al (2004) [63]). Before comparing the predictions of equation (4.18) with earlier work, we 

will briefly discuss the limiting cases of equation (4.18). 

Limiting cases 

a)  𝑱𝟏−𝑫 < <  𝑱𝒇𝒍𝒐𝒘, 𝑱𝒅𝒊𝒇𝒇,𝒄𝒉, 𝑱𝑮𝑫𝑳 or 𝜶, 𝝃, 𝜷 < < 𝟏. 

 This physically means that the consumption rate of oxygen by intrinsic ORR kinetics is the 

rate controlling step i.e., it is slower than the rates of oxygen transport across GDL, oxygen 

diffusion in channel and inlet oxygen molar flow rate. This typically happens at lower 

overpotentials. For 𝛼, 𝜉, 𝛽 < < 1, exp (−
𝛽

1+𝛼+𝜉
) ≈ 1 −

𝛽

1+𝛼+𝜉
. Also, neglecting 𝛼 and 𝜉 

relative to 1, equation (4.18) gives 𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽1−𝐷. Therefore, the power density is solely dictated 

by intrinsic ORR kinetics in the CCL, while the gradients of oxygen in the channel and in the 

GDL are negligible. 

b) 𝑱𝑮𝑫𝑳 < <  𝑱𝟏−𝑫, 𝑱𝒅𝒊𝒇𝒇,𝒄𝒉, 𝑱𝒇𝒍𝒐𝒘 or 𝜶 > > 𝟏 and 𝜶 > > 𝝃, 𝜷 . 

This regime implies that oxygen transport across GDL is the rate limiting step i.e., it is 

slower than intrinsic ORR kinetics, inlet oxygen molar flow rate and oxygen diffusion in 

channel. This possibility can become a reality at high current density if the GDL is over-

compressed or flooded, causing substantial loss of porosity. For 𝛼 > > 1 and 𝛼 > > 𝜉, 𝛽, , 

exp (−
𝛽

1+𝛼+𝜉
) ≈ 1 −

𝛽

𝛼
 and therefore equation (4.18) simplifies to 𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝐺𝐷𝐿. The power 

density is then limited by oxygen transport rate across the GDL.  

c) 𝑱𝒅𝒊𝒇𝒇,𝒄𝒉 < <  𝑱𝟏−𝑫, 𝒋𝑮𝑫𝑳, 𝑱𝒇𝒍𝒐𝒘 or 𝝃 > > 𝟏 and 𝝃 > > 𝜶, 𝜷 . 
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When the diffusion resistance for oxygen in channel is higher than diffusion resistance in 

the GDL, and when the diffusive flux of oxygen in the channel is less than the rate of 

consumption of oxygen by intrinsic ORR kinetics and molar flux of inlet oxygen, then equation 

(4.18) yields 𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ. This could be possible at higher current densities when the flow 

channels are deep and when the GDL is highly porous. 

d) 𝑱𝒇𝒍𝒐𝒘 < <  𝑱𝟏−𝑫, 𝑱𝑮𝑫𝑳, 𝑱𝒅𝒊𝒇𝒇,𝒄𝒉 or 𝜷 > > 𝟏 and 𝜷 > > 𝜶, 𝝃 . 

When the stoichiometry of the oxidant is limiting i.e., when inlet oxygen molar flux is lower 

than the rate of oxygen consumption in the CCL, the oxygen flux across GDL and the diffusive 

flux rate in the channel, then exp (−
𝛽

1+𝛼+𝜉
) may be neglected relative to 1 in equation (4.18), 

and consequently we get 𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤. 

The final limiting case is that of fast oxygen diffusion in the channel relative to diffusion 

through the GDL. In this case, 𝜉 < < 𝛼 and so equation (4.18) simplifies to 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼
)}                                                                                            (4.22) 

Equation (4.22) is in fact the expression derived by Kulikovsky et al. (2004) [63] (refer section 

2.4 of chapter 2). It is instructive to compare 𝜉 with 𝛼. For a given 𝐽1−𝐷, 
𝛼

𝜉
=

𝐷

𝐷𝐺𝐷𝐿

𝑙𝐺𝐷𝐿

ℎ
. For 

typical values of 𝐷 ~ 3 × 10−5 𝑚2/𝑠,  𝐷𝐺𝐷𝐿  ~ 6.67 × 10
−6 𝑚2/𝑠 (Pharoah et al. 2006 [92]), 

𝑙𝐺𝐷𝐿 ~ 3 × 10
−4 𝑚, and ℎ ~ 1 × 10−3 𝑚, we get 

𝛼

𝜉
 ~Ο(1). Thus, the diffusional resistances in 

the GDL and in the channel are of the same order of magnitude and consequently, the 

contribution of concentration gradient in the channel on the polarization curve cannot be 

neglected in a practical scenario. Thus, the polarization curve derived here (equation (4.18)) is 

an important correction to equation (4.22).  
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In the following section we will first compare the predictions of equation (4.18) and equation 

(4.22) with full three-dimensional simulations of governing equations for the same flow 

geometry and operating conditions. Next, the differences between these three predictions will 

be assessed based on the effects of entrance length. This will be followed by a discussion on 

the non-monotonic nature of local polarization curves predicted by equations (4.18) and (4.22). 

We then assess the effect of velocity profiles and concentration gradient in the channel on the 

polarization curve predicted by analytical models. We will also critically assess the validity of 

assumptions made while deriving equation 4.18 viz., 1) constant volumetric flow rate along the 

length of the channel and 2) neglecting 
𝜕2𝐶

𝜕𝑥2
 over  

𝜕2𝐶

𝜕𝑦2
 in equation 4.1.  

4.2) Results and Discussions 

Comparison between two-dimensional analytical solution and three-dimensional numerical 

simulation 

Figure 4.2 describes a single channel flow geometry invoked for simulation study. It 

includes single flow channels on the anode and cathode sides, GDLs and catalyst layers on the 

anode and cathode sides, and a membrane in between. Details about the numerical simulation 

are provided in section 2.6 of chapter 2. The numerical values of different parameters used in 

the simulation are listed in table 4.2. Identical values are used for predictions of the analytical 

model. It must be noted that the two-dimensional description assumes an infinitely small rib-

width. However, the three-dimensional simulation requires a finite rib-width since it is the path 

for electron transport. Therefore, in order to compare the analytical model predictions with the 

three-dimensional simulations, we purposefully invoked a geometry in the numerical 

simulations such that 𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙 >> 𝑤𝑟𝑖𝑏, where 𝑤 denotes width. The effect of realistic rib 

width is discussed in the subsequent chapter. 
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Table 4.2 Numerical values of different parameters 

𝐴𝑐 0.026 V 

𝐶𝑖𝑛 8.2 𝑚𝑜𝑙/𝑚3 

𝐷 3 × 10−5 𝑚2/𝑠 
𝐷𝐺𝐷𝐿 6.7 × 10−6 𝑚2/𝑠 
𝐷𝐶𝐶𝐿 1 × 10−5 𝑚2/𝑠 
𝐹 96500 𝐶/𝑚𝑜𝑙 
2ℎ 0.001 𝑚 

𝑖𝑜,𝑐𝐴 1000 𝐴/𝑚3 

𝐿 0.02 (𝑚) 

𝑙𝐺𝐷𝐿 300 µ𝑚 

𝑙𝑡 8 µ𝑚 

𝑈𝑚𝑒𝑎𝑛 0.195 𝑚/𝑠 

𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙 0.001 𝑚 

𝑤𝑟𝑖𝑏 0.00002 𝑚 

𝐽𝐺𝐷𝐿 6.9
𝐴

𝑐𝑚2
 

𝐽𝑓𝑙𝑜𝑤 3
𝐴

𝑐𝑚2
 

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ 18.4
𝐴

𝑐𝑚2
 

 

The numerical values of parameters shown in table 4.2 are purposely selected to ensure that 

oxygen consumption rate in CCL is governed by intrinsic ORR kinetics. This can be checked 

as follows. It was shown by Kulikovsky (2010) [42] that oxygen consumption rate in the CCL 

gets modulated due to oxygen transport resistance across CCL when  
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 < 𝐽1−𝐷. Here 

the value of gas phase diffusion coefficient of oxygen in the CCL is assigned as 

𝐷𝐶𝐶𝐿~10
−5 𝑚2/𝑠, which yields 

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 ~ 400

𝐴

𝑐𝑚2
. The maximum 𝐽1−𝐷 considered in our 

calculations is 𝐽1−𝐷,𝑚𝑎𝑥 = 38
𝐴

𝑐𝑚2
 at 휂𝑜,𝐶𝐶𝐿 = 0.46 𝑉. Thus, 𝐽1−𝐷 ≪

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
. Similarly, 

Kulikovski (2002, 2010) [41,42] has shown than the consumption rate in CCL gets modulated 

due to proton transport resistance across the CCL only when  
2𝜎𝐴𝑐

𝑙𝑡
 < 𝐽. Here, 𝜎 is the proton 

conductivity of membrane and it’s value is taken as 20 S/cm. Thus, the numerical value of 
2𝜎𝐴𝑐

𝑙𝑡
 

is ~ 1300 
𝐴

𝑐𝑚2
. Therefore, the aforementioned choice of parameter values ensures that the 

consumption rate in the CCL is dominated by intrinsic kinetics. Also, it is assumed in the 
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simulations that anode side exchange current density (𝑖𝑜,𝑎𝐴𝑙𝑡) is 107 times higher than the 

cathode side exchange current density and 𝐽𝐺𝐷𝐿 ≈ 400
𝐴

𝑐𝑚2
,  𝐽𝑓𝑙𝑜𝑤 ≈  30

𝐴

𝑐𝑚2
 on the anode side. 

These values ensure that the anode is not starved of fuel. The proton conductivity of membrane 

is assumed to be 10000 S/m and the electrical conductivity is assumed to be 100000 S/m. This 

therefore ensures that the polarization curve from the simulations is an iR corrected polarization 

curve (as overpotential caused due to ohmic resistance will be negligible).  

It is worth reiterating here that in this study the consumption rate in the CCL is assumed to 

be equal to the intrinsic Tafel’s kinetics, which essentially suggests a reaction controlled 

regime. The other regimes namely, regime of poor oxygen transport in the CCL and poor proto 

transport in the CCL will be dealt in the next chapter.      

 

Fig.4.2 Three dimensional computational domain considered for simulation 

Figure 4.3 shows comparison between polarization curves obtained from analytical theories 

equation (4.18), equation (4.22) and the three-dimensional simulation. It is evident that for 

overpotentials above 0.35 V the analytical model described by Kulikovsky et al (2004) [63], 

which assumes plug flow and uniform oxygen concentration along the channel depth, 

overpredicts the current density relative to the three-dimensional simulation. On the other hand, 

predictions of the analytical model developed in this work (equation (4.18)), in which these 

assumptions were relaxed, are in quantitative agreement with the simulated three-dimensional 

polarization curve. This underlines the importance of diffusional resistance along the depth of 

the channel, specifically at higher current densities.  
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Fig.4.3 Comparison between the polarization curves obtained by analytical theories versus a three-

dimensional numerical simulation  

 

While the oxidant (air) flow rate used in the above calculations corresponds to the 

stoichiometry of 3 for the current density of 1
𝐴

𝑐𝑚2 , the same trends can be seen for higher 

stoichiometries as long as the flow is in the laminar regime. 

The accuracy of the predicted local current density along channel length [equation (4.17)] 

and concentration profile along the channel depth [equation (4.8) and equation (4.14)], which 

were obtained from the approximate power series solution, was tested by comparing against 

numerical solution to the governing equation (4.2) obtained using COMSOL’s in-built PDE 

solver. For simplicity, we will call the analytical solution as 2Danalytical and numerical solution 

as 2D numerical henceforth in the paper. 

Figure 4.4 illustrates the local current density profiles along the axial (𝑥−) direction 

obtained by 2Danalytical, 2Dnumerical and the full three-dimensional simulation at 휂 = 0.46 𝑉.  The 

current density profile from the three-dimensional simulation is taken at the mid-plane of 
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membrane thickness and at middle of the channel width. It can be observed that except in the 

initial region along the axial (𝑥−) direction of the flow channel, the 2Danalytical current density 

profile matches well with the 2Dnumerical as well as with the current density profile predicted by 

three-dimensional simulation. The discrepancy in the initial region is related to the entrance 

length effect, and is discussed in the next sub-section. Figure 4.5 shows the comparison 

between concentration profiles along the transverse (y-) direction obtained by 2Danalytical, 

2Dnumerical and three dimensional simulation at 𝑥∗ = 0.5𝐿 and 휂𝑜,𝐶𝐶𝐿 = 0.46 𝑉. The 

concentration profile predicted by the 2Danalytical approach is similar to that predicted by the 

three-dimensional simulation. The comparisons shown in figure 4.4 and figure 4.5 validate the 

accuracy of the approximate analytical power series solution. 

 

Fig.4.4 Comparison between the local current density profiles along the axial (𝑥−) direction obtained 

by two dimensional analytical as well as numerical solution versus a three-dimensional numerical 

simulation at 휂𝑜,𝐶𝐶𝐿 = 0.46 𝑉 
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Fig.4.5 Comparison between the oxygen concentration profiles along the transverse (𝑦−) direction 

obtained by two dimensional analytical as well as numerical solution versus a three-dimensional 

numerical simulation at , 𝑥∗ = 0.5𝐿 and 휂𝑜,𝐶𝐶𝐿 = 0.46 𝑉 

 

Effect of finite ‘entrance length’ 

As explained in Section 4.1 (equation (4.3c)), we have assumed that concentration profile 

along the transverse (𝑦−) direction develops within an infinitesimal axial length. The three-

dimensional numerical simulation and the 2Dnumerical solution do not assume fully developed 

concentration profile at the inlet. The inlet boundary condition is taken as 𝐶 =  𝐶𝑖𝑛 for all 𝑦∗, 

and the concentration profile is allowed to develop over a finite entry length. The higher oxygen 

concentration near the GDL over the entry length relative to the fully developed concentration 

profile results in prediction of higher current density in the entry length by the 2Dnumerical and 

three dimensional simulation compared to the 2Danalytical prediction. This was seen in figure 4.4. 

The development of oxygen concentration profile along the transverse (𝑦−) direction for 

different 𝑥∗ as computed using the three-dimensional numerical simulation is elucidated in 

figure 4.6. It can be observed that after 𝑥∗ = 0.04, oxygen concentration profile becomes self-
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similar in 𝑥. Thus the entry length required for achieving fully developed oxygen concentration 

profile is only 4% of the total length or equivalently, it is 𝐿𝑒𝑛𝑡𝑟𝑦 = 0.8(2ℎ) i.e., about one 

channel depth. The effect of this small entry length does not have significant influence on 

polarization curve for the entire active area. 

 

Figure 4.6:- Development of oxygen concentration profile along the transverse (𝑦−) direction in a 

three dimensional simulation 

 

 

Locally non-monotonic nature of polarization curve 

Kulikovsky et al (2004) [63] showed that if the oxidant stoichiometry is low then depletion 

in oxygen concentration along the channel can cause a turning point in the local polarization 

curve making it non-monotonic. However, the total polarization curve was shown to be 

monotonic. The authors showed that 𝛼 ≥ 𝛽 is a sufficient condition to avoid the local non-

monotonicity in current-potential relationship. The expression for local current density 

(equation (4.17)) suggests that there exists a critical (𝑥∗)𝑐𝑟𝑖𝑡 at which 
𝜕𝑗

𝜕
= 0. Here, we explore 
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the effects of relaxing the assumptions of plug flow and uniform oxygen concentration along 

the channel depth on the local non-monotonicity in polarization curve. Figure 4.7 compares the 

local polarization curves at 𝑥∗ = 0.8 and 휂𝑜,𝐶𝐶𝐿 = 0.46 𝑉 obtained from: (i) equation (4.17), 

(ii) three-dimensional simulations, and (iii) the Kulikovsky (2004) model [63]. From equation 

(4.17), it can be shown that at the turning point, 
𝑑𝑗

𝑑 𝑜,𝐶𝐶𝐿
= 0 gives the condition 

1

𝐽1−𝐷
=

0.8

𝐽𝑓𝑙𝑜𝑤
−

(
1

𝐽𝐺𝐷𝐿
+

1

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
), which predicts a critical overpotential 휂𝑐𝑟𝑖𝑡 for incipient non-monotonicity. 

For the numerical values enlisted in table 4.2, we get 휂𝑐𝑟𝑖𝑡 = 0.434 𝑉. Note that for the 

Kulikovsky (2004) model [63], 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ → ∞ gives 
1

𝐽1−𝐷
=

0.8

𝐽𝑓𝑙𝑜𝑤
−

1

𝐽𝐺𝐷𝐿
 and correspondingly 

휂𝑐𝑟𝑖𝑡 = 0.42 𝑉. As can be seen from figure 4.7, the polarization curve predicted by the 

2Danalytical solution agrees well with the three-dimensional simulation in terms of its shape and 

value of 휂𝑐𝑟𝑖𝑡. The Kulikovsky model underpredicts the maximum current density and the 

critical overpotential.  

Also, the condition to avoid local non-monotonicity can be derived by equating 𝐽𝑚𝑎𝑥 and 

𝐽∞  where 𝐽𝑚𝑎𝑥 is the current density corresponding to 
𝑑𝑗

𝑑 𝑜,𝐶𝐶𝐿
= 0 and 𝐽∞ is the current density 

when 휂𝑜,𝐶𝐶𝐿 → ∞. Setting  
𝑑𝑗

𝑑
= 0 gives (𝑥∗)𝑐𝑟𝑖𝑡  =

1+𝛼+𝜉

𝛽
 and correspondingly 𝐽𝑚𝑎𝑥 =

𝐽1−𝐷

𝛽(𝑥∗)𝑐𝑟𝑖𝑡
exp (−1). Substituting 휂𝑜,𝐶𝐶𝐿 → ∞ in equation (4.17) gives 𝐽∞ =

𝐽1−𝐷

𝛼+𝜉
exp (−

𝛽𝑥∗

𝛼+𝜉
). 

Note here that 𝛼, 𝜉 >> 1 for 휂𝑜,𝐶𝐶𝐿 → ∞. Thus 𝐽𝑚𝑎𝑥 = 𝐽∞ leads to 
𝛽(𝑥∗)𝑐𝑟𝑖𝑡

𝛼+𝜉
= 1. Hence, 

relaxing the assumptions of plug flow and uniform oxygen concentration along the channel 

depth yields 𝛼 + 𝜉 ≥ 𝛽 (or, 
1

𝐽𝐺𝐷𝐿
+

1

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
>

1

𝐽𝑓𝑙𝑜𝑤
) to be a sufficient condition to avoid local 

non-monotonic nature of polarization curves. It can be observed that for a given overpotential 

and 𝐽𝑓𝑙𝑜𝑤, Kulikovsky’s formulation underpredicts (𝑥∗)𝑐𝑟𝑖𝑡. 
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Fig.4.7 Comparison between local polarization curves at 𝑥∗ = 0.8 and corresponding 휂𝑐𝑟𝑖𝑡 

 

 

Plug flow versus Laminar flow  

In order to understand the effects of velocity profile and oxygen concentration gradient in 

the channel independently, we explore the case of plug flow while still retaining oxygen 

concentration gradient along the depth of channel. The polarization curve predicted for this 

case can then be compared with equation (4.18) to understand the effect of velocity profile, and 

with equation (4.22) to understand the effect of concentration gradient.  

When flow in the channel is plug flow, equation (4.2) transforms to, 

𝑈𝑚𝑒𝑎𝑛
𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2𝐶

𝜕𝑦2
                                                                                                                 (4.23) 

Equation (4.23) along with the boundary conditions given by equations (4.3a-4.3c) can be 

solved in a straightforward manner using separation of variables to give 
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 𝐶(𝑥, 𝑦) = ∑ 𝐶𝑖𝑛exp (−
2𝑘𝑖

2𝛽𝑥∗

𝜉
) cos 𝑘𝑖(1 − 𝑦

∗)𝑖=∞
𝑖=0                                                               (4.24)                                         

where, 𝑘𝑖
2 =

𝑈𝑚𝑒𝑎𝑛ℎ
2𝑚𝑖

2

𝐷
 are the eigen values. The local current density is then given by 

𝐽 =
4𝐹𝐷𝐶𝑥

ℎ
{
𝜕𝐶𝑦

∗

𝜕𝑦∗
ǀ𝑦∗=−1} =

𝐽1−𝐷

𝜉
∑ exp (−

2𝑘𝑖
2𝛽𝑥∗

𝜉
)𝑘𝑖 sin 2𝑘𝑖

𝑖=∞
𝑖=0                                               (4.25) 

The boundary condition (4.3b) provides the eigen values  

𝑘𝑖 tan 2𝑘𝑖 =
𝜉

1+𝛼
                                                                                                                    (4.26) 

Numerical solution of equation (4.26) shows that 𝑘0 > > 𝑘1 >> >  𝑘2 and so on. Therefore, 

the first term in the series is sufficient to give the current density. Integration of the current 

density profile over the channel length leads to the polarization curve given by 

𝐽 = 𝐽𝑓𝑙𝑜𝑤
sin2𝑘0

2𝑘0
(1 − exp (−

𝛽

1+𝛼

2𝑘0

tan2𝑘0
))                                                                             (4.27) 

Figure 4.8 shows comparison between polarization curves given by equation (4.18), 

equation (4.22) and equation (4.27). The numerical values of different parameters are listed in 

table 4.2. Comparison between equations (4.18) and (4.27) shows the effect of velocity profile 

in the channel (note that oxygen concentration gradient in the channel is allowed in both cases). 

It can be observed that current density at a given overpotential is higher in case of laminar flow 

compared to plug flow. This is a consequence of dispersion due to laminar flow that helps in 

reducing the concentration gradient along the depth of channel and therefore improves 

transverse (𝑦−) direction oxygen transport. Similarly, comparison between equations (4.22) 

and (4.23) shows the effect of concentration profile in the channel (note that in both cases the 

velocity profile in the channel is assumed to be plug flow). It can be seen that concentration 

profile along the depth of the channel has a large effect on the polarization curve. The presence 

of concentration gradient reduces the current density for a given overpotential, as may be 
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expected. The polarization curve predicted by equation (4.22) would better represent the case 

of turbulent flow of oxidant in flow channels wherein turbulence removes gradients of velocity 

and concentration along the channel depth. The polarization curve predicted by equation (4.18) 

on the other hand, better represents the case of laminar flow of oxidant in flow channels 

wherein the gradient of velocity couples with the concentration gradient and improves current 

density. 

 

Fig.4.8 Comparison between polarization curves for the cases when the flow is laminar versus plug 

type 

 

Verifying the constant flow rate assumption 

Figure 4.9 shows variation of velocity at the center of the channel (𝑈𝑚𝑎𝑥) along axial length 

predicted by three-dimensional numerical simulations for two different overpotentials 휂𝑜,𝐶𝐶𝐿 =

0.33 𝑉 and 휂𝑜,𝐶𝐶𝐿 = 0.46 𝑉. The velocity was found to increase only by 11% (for 휂𝑜,𝐶𝐶𝐿 =

0.46 𝑉) and 1% (for 휂𝑜,𝐶𝐶𝐿 = 0.33 𝑉) over 0 < 𝑥∗ < 1. Thus, the assumption of a nearly 

constant axial velocity is a reasonable approximation.  
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Fig.4.9 𝑈𝑚𝑎𝑥 obtained numerically from the three-dimensional simulation at two different 

overpotentials 

 

Justification for neglecting 
𝜕2𝐶

𝜕𝑥2
 over 

𝜕2𝐶

𝜕𝑦2
 in equation (4.1) and validation of this assumption 

Following the treatment of the standard Graetz problem in heat transfer, equation (4.1) can 

be written in non-dimensionalized form as 

𝑃𝑒 휀 (1 − 𝑦∗2) 
𝜕𝐶∗

𝜕𝑥∗
= 휀2

𝜕2𝐶∗

𝜕𝑥∗2
+
𝜕2𝐶∗

𝜕𝑦∗2
                                     (4.28) 

Where, 𝑃𝑒 =
3

2

𝑈𝑚𝑒𝑎𝑛ℎ

𝐷
 is the Peclet number, 𝐶∗ =

𝐶

𝐶𝑖𝑛
 and 휀 =

ℎ

𝑙∗
. Here, 𝑙∗ is a characteristic 

length scale along axial direction, which can be estimated following the standard method 

suggested by (Leal 2007, [96]). The molar flux of oxygen consumption in a section of length 

∆𝑥 along the channel is 𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × ∫
𝐽

4𝐹

𝑥+∆𝑥

𝑥
𝑑𝑥. Substituting for 𝐽 from equation (4.17), we get 

consumption in the ∆𝑥 section = 𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙  
𝑗1−𝐷

4𝐹(1+𝛼+𝜉)
∫ exp (−

𝛽𝑥

(1+𝛼+𝜉)𝐿
)

𝑥+∆𝑥

𝑥
𝑑𝑥. 
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Now, the difference between the molar flux entering and leaving the section ∆𝑥 is, 

3

2
𝑈𝑚𝑒𝑎𝑛𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ∫ (𝐶ǀ𝑥 − 𝐶ǀ𝑥+∆𝑥)(1 − 𝑦

∗2)
ℎ

−ℎ
𝑑𝑦. At steady state, these two fluxes must 

balance out. Therefore, 

𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙  
𝑗1−𝐷

4𝐹(1+𝛼+𝜉)
∫ exp (−

𝛽𝑥

(1+𝛼+𝜉)𝐿
)

𝑥+∆𝑥

𝑥
𝑑𝑥 =

3

2
𝑈𝑚𝑒𝑎𝑛𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ∫ ∆𝐶(1− 𝑦∗2)

ℎ

−ℎ
𝑑𝑦         (4.29)                                                                                                                                     

Evaluating the integral on the LHS, equation (4.29) can be further simplified as, 

𝑗1−𝐷

4𝐹
exp (−

𝛽𝑥

(1+𝛼+𝜉)𝐿
)

∆𝑥

(1+𝛼+𝜉)
=

3

2
𝑈𝑚𝑒𝑎𝑛ℎ𝐶𝑖𝑛 ∫ ∆𝐶∗(1 − 𝑦∗2)

1

−1
𝑑𝑦∗                                   (4.30) 

Noting that 𝜉 =
𝑗1−𝐷

(4𝐹𝐷𝐶𝑖𝑛/ℎ)
 and 𝑘2 =

3

4

𝜉

1+𝛼+𝜉
, we get 

∆𝑥 =
ℎ 𝑃𝑒
4

3
𝑘2
exp (

𝛽𝑥

(1+𝛼+𝜉)𝐿
) ∫ ∆𝐶∗(1 − 𝑦∗2)

1

−1
𝑑𝑦∗                                                                (4.31) 

Thus, a change in scaled concentration by an amount of order one occurs over an axial length 

that is proportional to the right side of equation (4.31). This suggests that the characteristic 

axial length scale will be 𝑙∗~ℎ
𝑃𝑒

𝑘2
exp (

𝛽𝑥

(1+𝛼+𝜉)𝐿
). Note that for typical numerical values of 

parameters considered in the manuscript (𝑈𝑚𝑒𝑎𝑛 = 0.194
𝑚

𝑠
, 𝐷 = 3 × 10−5

𝑚2

𝑠
 and 2ℎ =

0.001 𝑚) we have 𝑃𝑒 > 1. Also, 𝑘2 < 1 as noted earlier. Further, the exponential term in 

equation (4.31) is due to the non-uniform consumption flux (1st order in concentration) at the 

boundary and its effect is to stretch 𝑙∗ more and more as the fluid travels downstream in the 

channel. It is therefore evident that 휀2 =
ℎ2

𝑙∗2
≪ 1 and hence the first term on RHS of equation 

(4.28) can be neglected. In other words, neglecting 
𝜕2𝐶

𝜕𝑥2
  over  

𝜕2𝐶

𝜕𝑦2
 is reasonable. 

This assumption is further validated by comparing the magnitudes of the two derivatives 

obtained from 3d-numerical simulations in which no such assumption was made. Figure 4.10 

below shows the comparison for the following typical case: 휂𝑜,𝐶𝐶𝐿 = 0.67 𝑉, 𝑦∗ = −0.6.  
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As can be seen, the magnitude of 
𝜕2𝐶

𝜕𝑥2
 is at least two orders magnitude smaller than 

𝜕2𝐶

𝜕𝑦2
. 

 

 

Fig.4.10 Spatial double derivatives of oxygen concentrations obtained numerically from the three-

dimensional simulation at 𝑦∗ = −0.6  and 휂 = 0.67 𝑉. 

 

4.3) Conclusion 

Analytical solutions of two-dimensional isothermal model for coupled reaction and 

transport phenomenon in a single cathode-side channel of PEMFC were derived by relaxing 

the assumptions of plug flow and uniform oxygen concentration along the channel depth. The 

analytical solutions derived here present a more comprehensive description of polarization 

curve and oxygen concentration profiles in the channel. Comparison of analytical solutions 

with three-dimensional numerical simulation highlights the importance of oxygen diffusion 

resistance and velocity profile along the channel depth. The local oxygen concentration 

profiles, total polarization curve and non-monotonic nature of local current density for low 

oxidant stoichiometry predicted by the two-dimensional analytical model show excellent match 

with three-dimensional simulation for similar geometry namely, one consisting of a channel 

and a narrow rib.
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Chapter 5 

Isothermal two-dimensional model of a proton 

exchange membrane fuel cell: Analytical solutions 

for transport limited regimes of CCL 

 

The content of this chapter is published in,  

“Chemical Engineering Science, volume no. 196, 16th March 2019, pages: 166–175” [97]. 

Our work presented in chapter 4 on developing a two-dimensional model for PEMFC under 

reaction-controlled regime of operation (regime 1 mentioned in table 3.1 of chapter 3) in which 

the two assumptions of plug flow and uniform oxygen concentration in the channel depth were 

specifically relaxed, showed better comparison between model predictions and the predictions 

of full three-dimensional simulations over the entire range of current density thereby 

suggesting the importance of diffusional resistance in the channel in the presence of a non-

uniform velocity field. 

In this chapter, we extend our two-dimensional model to other regimes of CCL operation in 

which overall oxygen consumption rate in the CCL is modulated by transport resistances. We 

begin by briefly summarizing the governing equations of the model for the case of reaction 

controlled regime as presented in chapter 4. Next, we present analytical expressions of 

polarization curve in the two transport limited regimes of CCL operation: (1) Ideal proton 

transport case 𝐽 >
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 𝑎𝑛𝑑 

2𝜎𝐴𝑐

𝑙𝑡
→ ∞ (regime 2 mentioned in table 3.1 of chapter 3), (2) 

Ideal oxygen transport case 𝐽 >
2𝜎𝐴𝑐

𝑙𝑡
 𝑎𝑛𝑑 

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
→ ∞ (regime 3 mentioned in table 3.1 of 
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chapter 3). The polarization curves predicted by analytical expressions derived in this work for 

both these regimes are compared with predictions of full three-dimensional numerical 

simulations carried out for identical geometric, operating and material parameters. 

The two-dimensional domain of PEMFC (see figure 4.1). and boundary conditions as 

presented in chapter 4 are: 

3

2
𝑈𝑚𝑒𝑎𝑛 [1 − (

𝑦

ℎ
)
2

]
𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2𝐶

𝜕𝑦2
                                                                                                (5.1) 

where 𝑈𝑚𝑒𝑎𝑛 is the average inlet velocity, 𝐶 is local oxygen concentration in channel and 𝐷 is 

the oxygen diffusion coefficient in channel. The boundary conditions are, 

At 𝑦 = ℎ,    
𝜕𝐶

𝜕𝑦
= 0                                                                                                               (5.2a) 

At 𝑦 = −ℎ,    4𝐹𝐷
𝜕𝐶

𝜕𝑦
= 𝐽                                                                                                    (5.2b) 

At 𝑥 = 0, 𝐶 = 𝐶𝑖𝑛(𝑦)                                                                                     (5.2c) 

 In equation (5.2b), 𝐽 is the local current density at any point ‘𝑥’ along the channel length and 

is related to the overall rate of consumption of the reactants at that point.  

For the case of negligible transport losses of reactant species in a macrohomogeneous CCL, 𝐽 

is given by Tafel kinetics as 

𝐽 = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                 (5.3) 

Where, 𝑖𝑜,𝑐𝐴 is volumetric exchange current density (A/m3), 𝑙𝑡 is CCL thickness (m), 휂𝑜,𝐶𝐶𝐿 is 

cathodic overpotential which is assumed to be uniform along the length of the channel (V), 𝐴𝑐 

is Tafel slope (V) and 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 and 𝐶𝑖𝑛 are respectively, the oxygen concentration at the CCL-

GDL interface and at the inlet (mol/m3). The relation between 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 and oxygen 
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concentration at channel-GDL interface (𝐶𝐶ℎ−𝐺𝐷𝐿 = 𝐶ǀ𝑥;𝑦=−ℎ = 𝐶𝑥𝐶𝑦ǀ𝑦=−ℎ) can be obtained 

by writing oxygen conservation equation across GDL as, 

4𝐹𝐷𝐺𝐷𝐿

𝑙𝐺𝐷𝐿
(𝐶𝐶ℎ−𝐺𝐷𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿) = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                                                      (5.4) 

Here, 𝐷𝐺𝐷𝐿 is the oxygen diffusion coefficient in GDL and 𝑙𝐺𝐷𝐿 is the GDL thickness. Defining 

𝐽1−𝐷 = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝐶𝐶𝐿

𝐴𝑐
)], 𝐽𝐺𝐷𝐿 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
 , 𝛼 =

𝐽1−𝐷

𝐽𝐺𝐷𝐿
 and combining equations (5.3) and 

(5.4), we get 

 𝐽 =
𝐽1−𝐷

1+𝛼

𝐶𝑐ℎ−𝐺𝐷𝐿

𝐶𝑖𝑛
                   (5.5) 

The solution to equations (5.1), (5.2) and (5.5) provided local oxygen concentration profile, 

local current density profile and total current density: 

𝐶(𝑥, 𝑦) = 𝐶𝑖𝑛exp (−
𝛽𝑥∗

1+𝛼+𝜉
) {1 −

𝜉

4(1+𝛼+𝜉)
(1 − 𝑦∗)3 +

𝜉

15(1+𝛼+𝜉)
(1 − 𝑦∗)4}         (5.6a) 

𝐽 =
4𝐹𝐷𝐶𝑥

ℎ
{
𝜕𝐶𝑦

∗

𝜕𝑦∗
ǀ𝑦∗=−1} =

𝐽1−𝐷

1+𝛼+𝜉
exp (−

𝛽𝑥∗

1+𝛼+𝜉
)             (5.6b) 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼+𝜉
)}               (5.6c) 

Here, 𝑥∗ =
𝑥

𝐿
 , 𝑦∗ =

𝑦

ℎ
, 𝛽 =

𝐽1−𝐷

𝐽𝑓𝑙𝑜𝑤
, 𝐽𝑓𝑙𝑜𝑤 =

8𝐹𝑈𝑚𝑒𝑎𝑛ℎ𝐶𝑖𝑛

𝐿
, 𝜉 =

𝐽1−𝐷

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
 and 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ =

4𝐹𝐷𝐶𝑖𝑛

ℎ
  

𝐽𝐺𝐷𝐿 is the limiting current density corresponding to the maximum molar flux of oxygen 

diffusion through the GDL, 𝐽𝑓𝑙𝑜𝑤 signifies the current density corresponding to the molar flux 

of oxygen that is convected in the channel and 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ is the limiting current density 

corresponding to the maximum flux of oxygen diffusing towards the channel-GDL interface in 

the channel. 
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The different limiting cases of equation (5.6c) were discussed in chapter 5. In particular, for 

the limiting case of fast diffusion rate in the channel relative to the diffusion through GDL, and 

correspondingly 𝜉 ≪ 𝛼, equation (5.6c) simplifies to 

 𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼
)}                 (5.7) 

Equation (5.7) is in fact the current-potential relationship derived by Kulikovsky et al (2004) 

[63] by assuming uniform oxygen concentration and uniform velocity (plug flow) across the 

channel. Thus, it may be noted that replacing 𝛼 in equation (5.7) by (𝛼 + 𝜉) gives equation 

(5.6c). This is intuitively expected since the diffusional resistances in the GDL and channel are 

in series.  

The current-potential relationship as given by equation (5.6c) is only valid when the transport 

losses of reacting species across the CCL are negligible. As indicated earlier, this may not 

always be true. Therefore, we now seek analytical expressions for polarization curves in the 

different regimes of CCL operation where overall oxygen consumption rate gets modulated 

due to transport resistances. We will also compare the predictions of the analytical model with 

three-dimensional numerical simulations in which no simplifying approximations are made. 

Details about the numerical simulation are provided in section 2.2 of chapter 2 and the details 

of model geometry is discussed in section 4.2 of chapter 4. It should be noted that the width of 

the ribs adjacent to the channel is purposefully kept small (𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙 > > 𝑤𝑟𝑖𝑏) so as to mimic 

the geometry solved in the analytical model. 

5.1) Ideal proton transport case 𝑱 >
𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏

𝒍𝒕
 𝒂𝒏𝒅 

𝟐𝝈𝑨𝒄

𝒍𝒕
→ ∞ (regime 2 mentioned in 

table 3.1 of chapter 3) 

As discussed earlier (see section 2.1.1 of chapter 2), 𝐽 <
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
 describes the regime 

where oxygen transport resistance is negligible. In this regime, intrinsic Tafel kinetics defines 
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the current-overpotential relationship and oxygen concentration remains uniform across the 

CCL thickness. As the current density increases beyond this limit, increasing amount of 

concentration polarization of oxygen happens in the CCL near the CCL-GDL interface, and 

the oxygen consumption rate decreases sharply away from the interface. The current-

overpotential relationship for this case was derived by Kulikosky (2010) [42] and is given by, 

𝐽 = √
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                           (5.8)         

This is the same as the equation for Regime 2 given in table 3.1 of chapter 3. The doubling of 

apparent Tafel slope, which is also observed experimentally, is evident from equation (5.8). 

The conservation equation for oxygen across the GDL can now be written as 

 
4𝐹𝐷𝐺𝐷𝐿

𝑙𝐺𝐷𝐿
(𝐶𝑐ℎ−𝐺𝐷𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿) =  √

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
           (5.9)          

Equations (5.8) and (5.9) can be combined to give 

𝐽 =
𝐽1−𝐷

1+𝛼

𝐶𝑐ℎ−𝐺𝐷𝐿

𝐶𝑖𝑛
                 (5.10) 

Here, 

 𝐽1−𝐷 = √
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)],  𝐽𝐺𝐷𝐿 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
, and 𝛼 =

𝐽1−𝐷

𝐽𝐺𝐷𝐿
           (5.11) 

Equation (5.11) is exactly the same as equation (5.5) except for the definition of 𝐽1−𝐷. This 

implies that the polarization curve in this regime remains 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼+𝜉
)}               (5.12) 

Except that, 𝛼, 𝛽 and 𝜉 are defined based on 𝐽1−𝐷 given by equation (5.11). 

In the limiting case when diffusion of oxygen in the channel is faster relative to diffusion in 

the GDL (𝑖. 𝑒., 𝜉 ≪ 𝛼), equation (5.12) simplifies to  
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𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼
)}               (5.13) 

We now compare the predictions of equations (5.12) and (5.13) with numerical simulations 

for the case when oxygen transport resistance in the CCL modulates ORR kinetics and proton 

transport is not rate limiting. Calculations were done using parametric values given in Table 

5.1. These values were chosen purposefully to ensure that the operational regime in CCL is 

that corresponding to slow oxygen transport. Thus, the diffusion coefficient of oxygen in CCL 

was chosen to be 𝐷𝐶𝐶𝐿 = 2.52 × 10−9𝑚2/𝑠 , which gives 𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 ~ 0.1

𝐴

𝑐𝑚2
. Similarly, a high (admittedly unrealistic) value of proton conductivity of 

𝜎 = 20 𝑆/𝑐𝑚 was chosen to ensure rapid proton transport (i.e., the critical current density at 

which proton transport limitation can be expected will be 
2𝜎𝐴𝑐

𝑙𝑡
 ~ 1300 

𝐴

𝑐𝑚2). In short, we 

expect the polarization curve to be determined by intrinsic kinetics for 𝐽 < 0.1
𝐴

𝑐𝑚2 and by 

oxygen transport in CCL for 𝐽 > 0.1
𝐴

𝑐𝑚2. 

Table 5.1 Numerical values of model parameters 

𝐴𝑐 0.025 V 

𝐶𝑖𝑛 8.2 𝑚𝑜𝑙/𝑚3 

𝐷 3 × 10−5 𝑚2/𝑠 
𝐷𝐺𝐷𝐿 6.7 × 10−6 𝑚2/𝑠 
𝐹 95500 𝐶/𝑚𝑜𝑙 
2ℎ 0.001 𝑚 

𝑖𝑜,𝑐𝐴 1000 𝐴/𝑚3 

𝐿 0.02 (𝑚) 

𝑙𝐺𝐷𝐿 300 µ𝑚 

𝑙𝑡 8 µ𝑚 

𝑈𝑚𝑒𝑎𝑛 0.195 𝑚/𝑠 

𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙 0.001 𝑚 

𝑤𝑟𝑖𝑏 0.00002 𝑚 

𝑗𝑙𝑖𝑚 6.9
𝐴

𝑐𝑚2
 

𝑗𝑓𝑙𝑜𝑤 3
𝐴

𝑐𝑚2
 

𝑗𝑑𝑖𝑓𝑓,𝑐ℎ 18.5
𝐴

𝑐𝑚2
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Figure 5.1 shows comparison between polarization curves predicted by equations (5.12) and 

(5.13) and the three-dimensional numerical simulations, which were performed for the same 

values of model parameters as listed in Table 5.1. It can be seen that the polarization curve 

predicted by equation (5.12) matches better with the simulated result compared to that 

predicted by equation (5.13) over the entire range of current density. The improved predictive 

ability of equation (5.12) is a consequence of oxygen concentration gradient along the 

transverse direction (−𝑦) in the flow channel. This is demonstrated in figure 5.2 where oxygen 

concentration profiles along the transverse direction (−𝑦) in the flow channel predicted by 

analytical theories and simulation are compared at 𝑥∗ = 0.5 and  휂𝑜,𝐶𝐶𝐿 = 0.58 𝑉. The 

simulated oxygen concentration profile (open circles in figure 4) matches well with that 

predicted by equation (5.6a) (with 𝐽1−𝐷 given by equation (5.11)) of the present work (solid 

line in figure 5.2). The earlier model (Kulikovsky 2011) [65] assumes uniform oxygen 

concentration across the channel depth (dashed lined in figure 5.2). Figure 5.3 illustrates the 

current density profiles along the channel length (−𝑥) at the mid-section of the membrane 

predicted by analytical model (equation (5.6b) with  𝐽1−𝐷 given by equation (5.11)) and by the 

three-dimensional simulation at 휂𝑜,𝐶𝐶𝐿 = 0.58 𝑉. The simulated current density profile is in 

good agreement with the analytical model. The discrepancy at lower 𝑥∗ is a result of entry 

length effect and has already been discussed in detail in chapter 5. 
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Fig.5.1 Comparison between the polarization curves obtained by analytical theories versus a three-

dimensional numerical simulation in the regime of poor oxygen transport across the CCL 

 

 

Fig.5.2 Comparison between the oxygen concentration profiles along the transverse (𝑦 −) direction in 

the flow channel (dotted line:- Assumption of uniform oxygen concentration along the channel depth, 

solid line:- with this assumption relaxed, circles:- three-dimensional numerical simulation) in the 

regime of poor oxygen transport across the CCL 
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Fig.5.3 Comparison between the current density profiles along the channel length (𝑥 −) at the mid-

of the membrane (solid line:- equation (5.6b), circles:- three-dimensional numerical simulation) in the 

regime of poor oxygen transport across the CCL 

 

5.2) Ideal oxygen transport case 𝑱 >
𝟐𝝈𝑨𝒄

𝒍𝒕
 𝒂𝒏𝒅 

𝟒𝑭𝑫𝑪𝑪𝑳𝑪𝒊𝒏

𝒍𝒕
→ ∞ (regime 3 mentioned in 

table 3.1 of chapter 3) 

Kulikovsky (2002, 2010) [41, 42] showed that proton transport resistance across the CCL 

can become significant for 𝐽 >
2𝜎𝐴𝑐

𝑙𝑡
. Under these conditions, oxygen consumption rate is the 

highest at the CCL-membrane interface and it decreases rapidly away from the interface. This 

gives rise to doubling of the apparent Tafel slope, and the current-overpotential relationship in 

the CCL is given by (see section 2.1.1 of chapter 2 and regime 3 in table 3.1) 

𝐽 = √
2𝜎𝐴𝑐

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
[exp ( 𝑜,𝐶𝐶𝐿

𝐴𝑐
)]                (5.14) 

The oxygen conservation equation across GDL is given by,  

4𝐹𝐷𝐺𝐷𝐿

𝑙𝐺𝐷𝐿
(𝐶𝑐ℎ−𝐺𝐷𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿) =  √

2𝜎𝐴𝑐

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
[exp ( 𝑜,𝐶𝐶𝐿

𝐴𝑐
)]           (5.15)           
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The main difference between equation (5.14) and equations (5.3) and (5.8) is the non-linear 

(square root) dependence of 𝐽 on oxygen concentration at the CCL-GDL interface. 

Equations (5.14) and (5.15) can be solved together to give 

𝐽 =
𝐽1−𝐷

2
(𝑝 − 𝛼)                 (5.16) 

Here, 

𝑝 = √4
𝐶𝑐ℎ−𝐺𝐷𝐿

𝐶𝑖𝑛
+ 𝛼2, 𝐽1−𝐷 = √

2𝜎𝐴𝑐

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
[exp ( 𝑜,𝐶𝐶𝐿

𝐴𝑐
)], 𝐽𝐺𝐷𝐿 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
, 𝛼 =

𝐽1−𝐷

𝐽𝐺𝐷𝐿
                                                                                                                                  (5.17) 

Equation (5.16) together with equation (5.17) is required to be substituted in equation (5.2b) in 

order to solve equation (5.1). The non-linear concentration dependence prevents derivation of 

analytical solution to equation (5.1). However, we will look for asymptotic solutions for the 

cases of low and high overpotentials followed by an approximate solution. 

 Limiting case of low overpotential 

 At low overpotentials within the proton transport limited regime, the consumption of 

oxygen in the CCL is low and hence 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 ≈ 𝐶𝑖𝑛. Consequently, we can linearize the 

concentration term under the square root as √
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
=

1

2
(1 +

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
), which allows for 

seeking solution to equation (5.2) by separation of variables. Substituting for √
𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
 in 

equation (5.14), the current-potential relationship at the CCL is transformed t 

𝐽 =
1

2
√
2𝜎𝐴𝑐

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)] (1 +

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)                                                                (5.18) 

Oxygen conservation across GDL gives,  
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4𝐹𝐷𝐺𝐷𝐿

𝑙𝐺𝐷𝐿
(𝐶𝑐ℎ−𝐺𝐷𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿) =  

1

2
√
2𝜎𝐴𝑐

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)] (1 +

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
)                  (5.19)               

Defining 𝐽1−𝐷 = √
2𝜎𝐴𝑐

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)], 𝐽𝐺𝐷𝐿 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
, 𝛼 =

𝐽1−𝐷

𝐽𝐺𝐷𝐿
 and combining 

equations (5.18) and (5.19), we get, 

𝐽 =
𝐽1−𝐷

2
(
1+𝐶𝑐ℎ−𝐺𝐷𝐿

∗

1+
𝛼

2

)                                                                                                              (5.20)                                                                                                                      

where, 𝐶𝑐ℎ−𝐺𝐷𝐿
∗ =

𝐶𝑐ℎ−𝐺𝐷𝐿

𝐶𝑖𝑛
. Note that 𝐶𝑐ℎ−𝐺𝐷𝐿

∗  denotes the concentration 𝐶∗ =
𝐶

𝐶𝑖𝑛
 at 𝑦 = −ℎ. 

Defining 𝜒 = 1 + 𝐶∗, equation (5.1) can be recast as, 

3

2
𝑈𝑚𝑒𝑎𝑛 [1 − (

𝑦

ℎ
)
2

]
𝜕𝜒

𝜕𝑥
= 𝐷

𝜕2𝜒

𝜕𝑦2
                                                                                            (5.21)                  

Equation (5.21) can be solved by the method of separation of variables wherein 𝜒(𝑥, 𝑦) =

𝜒𝑥𝜒𝑦. The solution yields 

𝜒(𝑥, 𝑦) = 2exp (−𝑚2𝐿𝑥∗)𝜒𝑦                                                                                               

Defining 𝜒𝑦
∗ = 𝜒𝑦, 𝑦∗ =

𝑦

ℎ
 and  𝑘2 =

3

2

𝑈𝑚𝑒𝑎𝑛ℎ
2𝑚2

𝐷
, we get, 

𝑑2𝜒𝑦
∗

𝑑𝑦∗2
= −𝑘2(1 − 𝑦∗2)𝜒𝑦

∗                                                                                                       (5.22)                 

Equation (5.22) can be solved using power series method (Chapter 5) and the solution is given 

by 

𝜒𝑦
∗ = 1 −

𝑘2

3
(1 − 𝑦∗)3 +

𝑘2

12
(1 − 𝑦∗)4                                                                                 (5.23)           

Now, the boundary condition equation (5.2b) can be transformed in terms of 𝜑 as 

𝑑𝜒𝑦
∗

𝑑𝑦∗
=

𝜉

2

1+(
𝛼

2
)
𝜒𝑦
∗  at 𝑦∗ = −1                                                                                                  (5.24)                

Equation (5.24) yields 𝑘2 =
3

4

𝜉

2+𝛼+𝜉
 and therefore 𝑚2𝐿 =

𝛽

2+𝛼+𝜉
. 
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Hence, the local current density at any point ‘𝑥’ along the channel can be written as 

𝐽 =
4𝐹𝐷𝐶𝑖𝑛

ℎ
(2 exp(−𝜆2𝐿𝑥∗)) {

𝜕𝜒𝑦
∗

𝜕𝑦∗
ǀ𝑦∗=−1} =

2𝐽1−𝐷

2+𝛼+𝜉
exp (−

𝛽𝑥∗

2+𝛼+𝜉
)                                     (5.25)                                                                                  

Correspondingly, the area averaged current density-potential relationship is given as, 

𝐽𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐽𝑑𝑥∗
1

0
= 2𝐽𝑓𝑙𝑜𝑤 {1 − exp (−

𝛽

2+𝛼+𝜉
)} ≈ 𝐽1−𝐷                                                                 (5.26)                        

For the regime of poor proton transport across the CCL, equation (5.26) describes the 

polarization curve when 𝛼, 𝛽, 𝜉 ≪ 1 (𝐽 >
2𝜎𝐴𝑐

𝑙𝑡
 and 𝐽1−𝐷 < 𝐽𝐺𝐷𝐿 , 𝐽𝑓𝑙𝑜𝑤, 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ). 

where 𝛼, 𝛽 and 𝜉 are defined based on 𝐽1−𝐷 given by equation (5.17). 

 Limiting case of high overpotential 

At higher overpotentials in the proton transport limited regime when 𝐽1−𝐷 > >  𝐽𝐺𝐷𝐿, or 

specifically when 𝛼 > 2, then 𝑝  in equation (5.17) can be linearized as, 

𝑝 ≈ 𝛼(1 +
2

𝛼2
𝐶𝑐ℎ−𝐺𝐷𝐿

𝐶𝑖𝑛
)                    (5.27) 

Combining equations (5.15) and (5.27), we get, 

 𝐽 =
𝐽1−𝐷

𝛼
(
𝐶𝑐ℎ−𝐺𝐷𝐿

𝐶𝑖𝑛
)                 (5.28) 

Equation (5.28) is similar to equation (5.5) except that 
𝐽1−𝐷

1+𝛼
 is replaced by 

𝐽1−𝐷

𝛼
 and 𝐽1−𝐷 is 

defined by equation (5.17). Therefore, the polarization curve becomes,  

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

𝛼+𝜉
)}                (5.29) 

Equation (5.29) shows that 𝐽𝑡𝑜𝑡𝑎𝑙 is independent of 휂𝑜,𝐶𝐶𝐿 and therefore this asymptotic solution 

corresponds to a vertical line in the polarization curve. Equation (5.25) and equation (5.29) 
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describe the polarization curve in the regime of poor proton transport across the CCL at low 

and high overpotentials, respectively. 

 Approximate solution 

We now explore an approximate solution which matches the two limiting cases discussed 

above. We begin by considering the simpler case of plug flow in the flow channel and uniform 

oxygen concentration across the channel depth. Under this condition, equation (5.1) takes the 

simpler form 

4𝐹𝑈𝑚𝑒𝑎𝑛(2ℎ)
𝜕𝐶𝑐ℎ−𝐺𝐷𝐿

𝜕𝑥
= −𝐽                (5.30) 

Substituting for 𝐽 from equation (5.16) into equation (5.30) and solving using the boundary 

condition 𝐶𝑐ℎ−𝐺𝐷𝐿 = 𝐶𝑖𝑛 at 𝑥 = 0, it is straightforward to derive the local current density 

profile at any axial position 𝑥∗ as 

2𝐽

𝐽1−𝐷
+ 𝛼 ln (

2𝐽

𝐽1−𝐷
) = (√4 + 𝛼2 − 𝛼) + 𝛼𝑙𝑛(√4 + 𝛼2 − 𝛼) − 𝛽𝑥∗           (5.31) 

The total current density can be obtained numerically from the integration ∫ 𝐽𝑑𝑥∗
1

0
.  

We now follow the same argument that can be used to derive equation (5.7) from equation 

(5.6c). Since diffusional resistances for oxygen in the channel and in the GDL are in series, 

therefore replacing 𝛼 in equation (5.31) by (𝛼 + 𝜉)  should yield the expression for polarization 

curve when the two assumptions of uniform oxygen concentration along channel depth and 

plug flow velocity profile are relaxed. Hence, we will examine the following approximate 

expression for local current density in the proton transport limited regime of operation: 

2𝐽

𝐽1−𝐷
+ (𝛼 + 𝜉) ln (

2𝐽

𝐽1−𝐷
) = (√4 + (𝛼 + 𝜉)2 − (𝛼 + 𝜉)) + (𝛼 + 𝜉)𝑙𝑛(√4 + (𝛼 + 𝜉)2 − (𝛼 +

𝜉)) − 𝛽𝑥∗                   (5.32) 
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And consequently, ∫ 𝐽𝑑𝑥∗
1

0
 gives the total current density. 

We now test the limiting cases discussed earlier. For the case 𝛼, 𝛽, 𝜉 < 1, equation (5.32)  

simplifies to 
2𝐽

𝐽1−𝐷
≈ 2 − 𝛽𝑥∗ ≈ 2, or equivalently, 𝐽𝑡𝑜𝑡𝑎𝑙 ≈ 𝐽1−𝐷. Note that equation (5.26) also 

simplifies to the same result.  

In the other limiting case of 𝛼 ≫ 2, equation (5.32) simplifies to, 

(𝛼 + 𝜉) ln(𝐽) = (𝛼 + 𝜉)𝑙𝑛 ((√4 + (𝛼 + 𝜉)2 − (𝛼 + 𝜉))
𝐽1−𝐷

2
) − 𝛽𝑥∗                                   (5.33) 

It can be shown that 𝑙𝑛 ((√4 + (𝛼 + 𝜉)2 − (𝛼 + 𝜉))
𝐽1−𝐷

2
) =  𝑙𝑛 (

4

(√4+(𝛼+𝜉)2+(𝛼+𝜉))

𝐽1−𝐷

2
)   ≈

𝑙𝑛(
𝐽1−𝐷

𝛼+𝜉
) for 𝛼 ≫ 2 and therefore, equation (5.32) transforms to 

𝐽 =
𝐽1−𝐷

𝛼+𝜉
exp (−

𝛽𝑥∗

𝛼+𝜉
)                  (5.34) 

Correspondingly, total current density is, 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

𝛼+𝜉
)}               (5.35) 

Equation (5.35) is identical to equation (5.29). Thus, the approximate local current density 

given by equation (5.32) satisfies the two limiting cases of low and high overpotentials. We 

now test its predictions against numerical simulations. 

Figure 5.4 shows comparison between polarization curves obtained from the two limiting 

cases (equation (5.25) and equation (5.29)), numerical integration of the approximate analytical 

solution given by equation (5.32) and the full three-dimensional simulation. To ensure that we 

are in the proton transport limited operating regime in CCL, we have purposefully assigned the 

values 𝜎 = 0.0015
𝑆

𝑐𝑚
 and 𝐷𝐶𝐶𝐿 =  1 × 10−5

𝑚2

𝑠
 so that 

2𝜎𝐴𝑐

𝑙𝑡
~ 0.1 

𝐴

𝑐𝑚2 << 

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 ~ 400

𝐴

𝑐𝑚2 thereby ensuring that there is no limitation from oxygen diffusion 
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resistance in the CCL. The numerical values of other parameters are mentioned in Table 5.1. It 

can be observed in figure 5.4 that the polarization curve obtained by the approximate solution 

is in close agreement with the asymptotic solutions and with the polarization curve obtained 

from three-dimensional simulations. In comparison, the polarization curve obtained by 

numerically integrating equation (5.31), which assumes plug flow and uniform oxygen 

concentration along the depth of the channel, shows deviation at higher current densities. The 

cause of deviation lies in the comparison of oxygen concentration profiles along the transverse 

direction (𝑦 −) of the flow channel. In figure 5.5, we compare oxygen concentration profiles 

of the analytical theories with numerical simulation results at 𝑥∗ = 0.5 and 휂𝑜,𝐶𝐶𝐿 = 0.68 𝑉. 

The earlier model corresponds to uniform oxygen concentration profile (dashed line in figure 

5.5), which is in disagreement with numerical simulations. The predicted oxygen concentration 

profile shown by the solid line in figure 5.5 gives an excellent match with three-dimensional 

simulations. Figure 5.6 compares the simulated current density profile (circles) with the 

analytical model prediction (solid line) along the channel length at the mid-of the membrane. 

As can be observed from figure 5.6, the analytical model prediction and simulated result are in 

excellent agreement. In the present model, oxygen concentration profile and current density 

profile for the limiting case of high overpotential are respectively given by equation (5.6a) and 

equation (5.6b) with (𝛼 + 𝜉) replacing (1 + 𝛼 + 𝜉) and 𝐽1−𝐷 is given by equation (5.17).  
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Fig.5.4 Comparison between the polarization curves obtained by analytical theories (dotted line:- 

obtained using equation (5.31), solid line:- obtained using equation (5.32)) versus a three-dimensional 

numerical simulation (circles) in the regime of poor proton transport across the CCL  

 

Fig.5.5 Comparison between the oxygen concentration profiles along the transverse (𝑦 −) direction in 

the flow channel (dotted line:- Assumption of uniform oxygen concentration along the channel depth, 

solid line:- with this assumption relaxed, circles:- three-dimensional numerical simulation) in the 

regime of poor proton transport across the CCL 
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Fig.5.6 Comparison between the current density profiles along the channel length (𝑥 −) at the mid-of 

the membrane (solid line:- equation (5.6b) with (α+ξ) replacing (1+α+ξ), circles:- three-dimensional 

numerical simulation) in the regime of poor proton transport across the CCL 

 

Figure 5.7 compares polarization curves obtained from the approximate analytical solution 

with the results of three-dimensional simulations for various values of 𝐽𝐺𝐷𝐿 , 𝐽𝑓𝑙𝑜𝑤, 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ and 

𝐽1−𝐷. The excellent matching of the results in all cases confirms that equation (5.32) describes 

the local current density profile in proton transport limited operating regime of the CCL over 

the entire range of current density above 
2𝜎𝐴𝑐

𝑙𝑡
. 
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Fig.5.7 Comparison between the polarization curves (overpotential in V on the y-axis and current 

density in A/cm2 on the x-axis) obtained by using equation (5.32) (solid lines) versus three-

dimensional numerical simulations (circle) in the regime of poor proton transport across the CCL for 

different values of  𝐽𝐺𝐷𝐿 , 𝐽𝑓𝑙𝑜𝑤, 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ and 𝐽1−𝐷 varied one at a time. 

 

 

5.3) Discussion 

We summarize below analytical expressions of polarization curve derived for the various 

regimes of CCL operation. For 𝐽𝑙𝑖𝑚 =
4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
,  𝐽𝑓𝑙𝑜𝑤 =

8𝐹𝑈𝑚𝑒𝑎𝑛ℎ𝐶𝑖𝑛

𝐿
, 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ =

4𝐹𝐷𝐶𝑖𝑛

ℎ
, 𝛼 =

𝐽1−𝐷

𝐽𝑙𝑖𝑚
, 𝛽 =

𝐽1−𝐷

𝐽𝑓𝑙𝑜𝑤
 and 𝜉 =

𝐽1−𝐷

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
, the polarization curves are given by 

A. Regime in which overall oxygen consumption rate is determined by intrinsic ORR 

kinetics: 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼+𝜉
)}  where 𝐽1−𝐷 = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (𝐴𝑐

)]             (S1) 
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B. Regime in which overall oxygen consumption rate is determined by slow oxygen 

transport modulated kinetics: 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼+𝜉
)} where  𝐽1−𝐷 = √4𝐹𝐷𝐶𝑖𝑛𝑖𝑜,𝑐𝐴 [exp (𝐴𝑐

)]            (S2) 

 

C. Regime in which overall oxygen consumption rate is determined by slow proton 

transport modulated kinetics:  

2𝐽

𝐽1−𝐷
+ (𝛼 + 𝜉) ln (

2𝐽

𝐽1−𝐷
) = (√4 + (𝛼 + 𝜉)2 − (𝛼 + 𝜉)) + (𝛼 + 𝜉)𝑙𝑛(√4 + (𝛼 + 𝜉)2 −

(𝛼 + 𝜉)) − 𝛽𝑥∗ and 𝐽𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐽𝑑𝑥∗
1

0
 where 𝐽1−𝐷 = √2𝑖𝑜,𝑐𝐴𝜎𝐴𝑐 [exp (𝐴𝑐

)]            (S3) 

 

Equation (S2) can be rearranged as shown below in equation (S4) to give overpotential 

explicitly in terms of current density. The contribution of ohmic cell resistance (second term) 

is purposely added on the right side of equation (S4). 

휂 = 𝐴𝑐𝑙𝑛 (
𝐽𝑡𝑜𝑡𝑎𝑙

𝑖𝑜,𝑐𝐴𝑙𝑡
) + 𝐽𝑡𝑜𝑡𝑎𝑙𝑅 + 𝐴𝑐𝑙𝑛 (

𝐽𝑡𝑜𝑡𝑎𝑙
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡

) + 2𝐴𝑐𝑙𝑛(

ln(
1

1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

)

𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

+ln(1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

){
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝐺𝐷𝐿

+
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑑𝑖𝑓𝑓,𝑐ℎ

}

)      (S4)    

Equation (S4) is equivalent to the popularly used empirical form of polarization equation 

(Larminie and Dicks, 2003 [98]) 

휂 = 𝐴𝑐𝑙𝑛 (
𝐽𝑡𝑜𝑡𝑎𝑙

𝑖𝑜,𝑐𝐴𝑙𝑡
) + 𝐽𝑡𝑜𝑡𝑎𝑙𝑅 +𝑚 𝑒𝑥𝑝(𝑛 × 𝐽𝑡𝑜𝑡𝑎𝑙)                (S5) 

where, 𝑚 and 𝑛 are empirical constants. 

The first and second terms on the right side of equation (S4) are respectively, the contribution 

of intrinsic ORR kinetics and cell resistance, and are identical to the first two terms on the right 

side of equation (S5). The third and fourth terms on the right side of equation (S4) give 

explicitly the contributions of the internal mass transfer resistance of the CCL and the external 
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mass transfer resistance arising from GDL and channel. Thus, the empirical description of mass 

transfer contribution in equation (S5) can now be calculated exactly. 

In Section 5.2 when comparing model predictions with simulations, we assumed some 

unrealistic values of material parameters in order to ensure that the operating regime of CCL 

was either only oxygen transport limited or only proton transport limited. As a final comment, 

we will consider here the case of a real representative MEA in a low-temperature PEM fuel 

cell operated at high air (oxidant) stoichiometry, and check if there exists clearly defined 

current density range for each of the different operating regimes. Table 5.2 summarizes 

numerical values of different parameters that constitute such a MEA. Table 2 also lists the 

important current density scales, from which it can be inferred that intrinsic ORR kinetics will 

determine the overall oxygen consumption rate for 𝐽 < 0.1 
𝐴

𝑐𝑚2, oxygen transport modulated 

ORR kinetics will determine the overall oxygen consumption rate for 0.1
𝐴

𝑐𝑚2 < 𝑗 < 0.3 −

0.4 
𝐴

𝑐𝑚2. Above 0.5 
𝐴

𝑐𝑚2 one may expect a regime where poor oxygen transport as well as poor 

proton transport across the CCL can simultaneously modulate the ORR kinetics. The analysis 

of this regime will be dealt in next chapter. Eventually at higher current densities, the power 

output of PEMFC may be severely limited by diffusional resistances in the GDL and channel. 

We will revisit these values in chapter 6 and 7. In fact, we will provide a systematic 

experimental methodology to estimate oxygen diffusion coefficient in CCL, GDL and channel.  

Table 5.2 Numerical values of MEA parameters of a typical low temperature PEM fuel cell 

Parameter Numerical Value Remarks 

𝐷𝐶𝐶𝐿 

𝑂 (10−9
𝑚2

𝑠
) 

𝐷𝐶𝐶𝐿 = 𝐷𝑂2−𝐻2𝑂(휀𝐶𝐶𝐿)
1.5 for a completely flooded CCL 

and 𝐷𝑂2−𝐻2𝑂 ~ 5 × 10
−9  

𝑚2

𝑠
 [99], 휀𝐶𝐶𝐿 is catalyst layer 

porosity.  For 40% porous CCL, 𝐷𝐶𝐶𝐿 ~ 1.25 × 10
−9  

𝑚2

𝑠
 . 

𝐷 3 × 10−5 𝑚2/𝑠 Oxygen diffusion coefficient in air [100] 

𝐷𝐺𝐷𝐿 

6.7 × 10−6 𝑚2/𝑠 𝐷𝐺𝐷𝐿 = 𝐷(휀𝐺𝐷𝐿)
1.5. 휀𝐺𝐷𝐿 is GDL porosity.  For 35% porous 

GDL [101], 𝐷𝐺𝐷𝐿 ~ 6 × 10
−6  

𝑚2

𝑠
 . This is for a GDL having 

no pore flooded with water. 

𝜎 2 𝑆/𝑚 [43-45] 
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2ℎ 0.001 𝑚 Channel depth 

𝑙𝐺𝐷𝐿 300 µ𝑚 GDL thickness 

𝑙𝑡 8 µ𝑚 CCL thickness 

𝐽𝐺𝐷𝐿 7
𝐴

𝑐𝑚2
 

Current density corresponding to maximum possible 

diffusive flux across the GDL (
4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
) 

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ 18
𝐴

𝑐𝑚2
 

Current density corresponding to maximum possible 

diffusive flux along the channel depth (
4𝐹𝐷𝐶𝑖𝑛

ℎ
) 

𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ~ 0.1 − 0.2
𝐴

𝑐𝑚2
 

Current density scale above which oxygen transport in the 

CCL modulates the intrinsic ORR rate (
4𝐹𝐷𝐶𝐶𝐿𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝑙𝑡
) 

𝐽𝑐𝑟𝑖𝑡,(𝐻+) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ~ 1 − 1.5
𝐴

𝑐𝑚2
 

Current density scale above which proton transport in the 

CCL modulates the intrinsic ORR rate (
2𝜎𝐴𝑐

𝑙𝑡
 ) 

𝐽𝑓𝑙𝑜𝑤 - Function of stoichiometry 

 

5.4) Conclusion 

An analytical isothermal two-dimensional model of a cathode flow channel in a PEM fuel 

cell is developed to capture coupled transport processes in CCL, GDL and flow channel along 

with reaction in CCL. The oxidant velocity profile in the flow channel is assumed to be 

parabolic and oxygen concentration is allowed to vary along the depth of the channel. 

Analytical current-potential relationships are derived from the model for transport limited 

operating regimes of CCL namely, restricted oxygen transport and restricted proton transport 

across a macrohomogenous CCL. Polarization curves predicted by the model in these operating 

regimes are found to be in excellent agreement with results of three-dimensional simulations. 

The polarization curves were also re-cast into a form that corresponds to the widely used 

empirical equation of polarization curve. This allows for estimation of internal and external 

mass transfer resistances for the CCL. 
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Chapter 6 

The PEM fuel cell equation 

The content of this chapter is published in,  

“Chemical Engineering Science, volume no. 206, 12th October 2019, pages: 96–117” [90].  

In chapters 4 and 5, we developed an isothermal two-dimensional model for a straight single 

cathode channel, which accounts for oxygen concentration gradient in the flow direction along 

the channel as well as transverse oxygen concentration gradients in the GDL and channel, while 

also accounting for non-uniform velocity profile inside the channel. We showed how this two-

dimensional model can be combined with the MH-CCL model for three limiting operating 

regimes viz., intrinsic kinetic controlled regime, ideal proton transport regime and ideal oxygen 

transport regime. In this chapter, we significantly extend our earlier work by combining the 

two-dimensional model of a single cathode flow channel with the comprehensive MH-CCL 

model described in chapter 3 that accounts for simultaneous oxygen diffusion and proton 

conduction resistances as well as the local resistance offered by oxygen diffusion inside catalyst 

agglomerates. Finally, we incorporate the ohmic cell resistance namely, the electrical resistance 

and protonic resistance of the PEMFC components. This leads us to the PEM fuel cell equation, 

which is an analytical expression for steady state polarization curve valid over the entire range 

of current density, from zero to limiting current. Such a comprehensive analytical expression 

of polarization curve has not been derived before. We show that the limiting cases of the PEM 

fuel cell equation have the same mathematical form as the well-known empirical polarization 

equation (Larminie and Dicks, 2003 [98]); however, unlike the fitting parameters of the 



 Chapter 6 

 

109  

empirical equation, the model parameters of the PEM fuel cell equation have definite physical 

meaning and are experimentally determinable. 

The governing equations are exactly identical to (5.1) and (5.2) and ‘𝐽’ in equation (5.2b) 

can be obtained by solving the MH-CCL model locally at any 𝑥. The limiting cases considered 

in the earlier chapters imply infinitely large values of proton conductivity and/or oxygen 

diffusivity in the CCL. Real CCLs will however have finite values of these transport 

coefficients. Thus, under realistic operating conditions of PEM fuel cells and at sufficiently 

high current density, both oxygen and proton transport resistances can simultaneously dictate 

𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation. Also, oxygen transport resistance inside local catalyst 

agglomerates in the CCL can become significant at high current density (see section 2.1.2 of 

chapter 2). Thus, depending on the comparative rates of oxygen diffusion and oxygen 

consumption in the agglomerate as captured by Thiele modulus (𝑀𝑇) and effectiveness factor 

[𝐸(휂)], three cases namely, (1)  𝑀𝑇 ≪ 1 and 𝐸(휂) ≈ 1, (2) 𝑀𝑇 ≫ 1 and 𝐸(휂) ≈
1

𝑀𝑇
 and (3) 

the general case 
1

𝑀𝑇
≤ 𝐸(휂) ≤ 1 are possible and are discussed below: 

6.1)  𝑴𝑻 ≪ 𝟏 and 𝑬(𝜼) ≈ 𝟏 

As discussed in chapter 3, there could be two possible sub-regimes of operation namely, 

𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 < 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 i.e., 𝐷∗ < 1 and 𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 > 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 

i.e., 𝐷∗ > 1. However, as will be discussed in chapter 7, for the operation of a fully humidified 

low temperature PEM fuel cell, which is also experimentally investigated in the present work, 

the sub-regime given by 𝐷∗ < 1 turns out to be more relevant. Thus, we will restrict the scope 

of the following sub-sections to the case 𝐷∗ < 1. 

While the detailed derivation is provided in chapter 4, we reproduce here 𝐽 − 휂𝑜,𝐶𝐶𝐿 −

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relationship (see Regime 4b in table 3.1): 
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𝐽 = √
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                                                         (6.1a) 

휂𝑜,𝐶𝐶𝐿 = 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 + 
𝐽

𝜎/𝑙𝑡
                (6.1b) 

It is to be noted from equations (5.2b) and (5.4) from chapter 5 that the oxygen transport 

resistances in GDL and flow channel will modulate 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿, which will affect only the iR-

free part of the CCL overpotential (휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿). Thus the equation set (5.1) and (5.2) can be 

solved to derive oxygen concentration profile and current density profile along the length of 

the channel for a given 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿. Upon integration over the domain area, the equation for 

iR-free polarization curve (𝐽𝑡𝑜𝑡𝑎𝑙 − 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿) relation can be derived. We can then add 

separately overpotential due to proton transport resistance in the CCL to the iR-free CCL 

overpotential, which leads to the total current – cathodic overpotential relationship, 

(𝐽𝑡𝑜𝑡𝑎𝑙 − 휂𝐶𝐶𝐿).  

Following the work presented in earlier chapters, we now solve for the regime of Simultaneous 

non-ideal oxygen transport and proton transport and 𝑀𝑇 ≪ 1 and 𝐸(휂) ≈ 1. The conservation 

equation for oxygen across the GDL can now be written as,   

4𝐹𝐷𝐺𝐷𝐿

𝑙𝐺𝐷𝐿
(𝐶𝑐ℎ−𝐺𝐷𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿) =  𝐽                                                                                  (6.2) 

Thus eliminating 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 from equations (6.1a) and (6.2), we get, 

𝐽 =
𝐽1−𝐷 

1+𝛼

𝐶𝑐ℎ−𝐺𝐷𝐿

𝐶𝑖𝑛
                 (6.3a) 

Here, 

 𝐽1−𝐷 = √
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)], 𝛼 =

𝐽1−𝐷

𝐽𝐺𝐷𝐿
, 𝐽𝐺𝐷𝐿 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
                   (6.3b)                
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Substituting equation (6.3) in equation (5.2b) and solving equation set (5.1) and (5.2) lead to 

profiles of local oxygen concentration and local current density along ‘𝑥’ as, 

𝐶(𝑥, 𝑦) = 𝐶𝑖𝑛exp (−
𝛽𝑥∗

1+𝛼+𝜉
) {1 −

𝜉

4(1+𝛼+𝜉)
(1 − 𝑦∗)3 +

𝜉

16(1+𝛼+𝜉)
(1 − 𝑦∗)4}                 (6.4a)   

𝐽 =
4𝐹𝐷𝐶𝑥

ℎ
{
𝜕𝐶𝑦

∗

𝜕𝑦∗
ǀ𝑦∗=−1} =

𝐽1−𝐷

1+𝛼+𝜉
exp (−

𝛽𝑥∗

1+𝛼+𝜉
)                                                                   (6.4b)         

Integrating equation (6.4b) gives the total current density across the channel active area as 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼+𝜉
)}               (6.4c)  

where, 𝐽𝑓𝑙𝑜𝑤 =
8𝐹𝑈𝑚𝑒𝑎𝑛ℎ𝐶𝑖𝑛

𝐿
, 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ =

4𝐹𝐷𝐶𝑖𝑛

ℎ
, 𝛽 =

𝐽1−𝐷

𝐽𝑓𝑙𝑜𝑤
 𝑎𝑛𝑑 𝜉 =

𝐽1−𝐷

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
 

Equation (6.4c) can be rearranged as 

휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 = 𝐴𝑐𝑙𝑛 (
𝐽𝑡𝑜𝑡𝑎𝑙

𝑖𝑜,𝑐𝐴𝑙𝑡
) + 𝐴𝑐𝑙𝑛(

𝐽𝑡𝑜𝑡𝑎𝑙
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡

) + 2𝐴𝑐𝑙𝑛(

ln(
1

1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝑗𝑓𝑙𝑜𝑤

)

𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

+ln(1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

){
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝐺𝐷𝐿

+
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑑𝑖𝑓𝑓,𝑐ℎ

}

)       (6.4d)                                          

The total current-cathodic overpotential is (note equation (6.1b)), 

휂𝑜,𝐶𝐶𝐿 = 𝐴𝑐𝑙𝑛 (
𝐽𝑡𝑜𝑡𝑎𝑙

𝑖𝑜,𝑐𝐴𝑙𝑡
) + 𝐴𝑐𝑙𝑛(

𝐽𝑡𝑜𝑡𝑎𝑙
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡

) + 2𝐴𝑐𝑙𝑛(

ln(
1

1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝑗𝑓𝑙𝑜𝑤

)

𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

+ln(1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

){
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝐺𝐷𝐿

+
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑑𝑖𝑓𝑓,𝑐ℎ

}

)+ 
𝐽𝑡𝑜𝑡𝑎𝑙

𝜎/𝑙𝑡
         (6.4e) 

Equation (6.4e), being valid for 𝑀𝑇 ≪ 1 provides a total current – cathodic overpotential 

relationship for the current density range, 
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
< 𝐽𝑡𝑜𝑡𝑎𝑙 <

√(
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔

𝑙𝑡

𝑅𝑎𝑔𝑔
). 
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6.2) 𝑴𝑻 ≫ 𝟏 and 𝑬(𝜼) ≈
𝟏

𝑴𝑻
  

The same solution procedure as outlined above can be used to find equations for iR-free 

polarization curves for 𝐽𝑡𝑜𝑡𝑎𝑙 > √(
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔

𝑙𝑡

𝑅𝑎𝑔𝑔
). 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 

relationship for this case is derived to be (see Regime 5 in table 3.1):  

𝐽 = √4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛√
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

1

𝑅𝑎𝑔𝑔
𝑖𝑜,𝑐𝐴 [exp (

𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
         (6.5a) 

휂𝑜,𝐶𝐶𝐿 = 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 + 
𝐽

𝜎/𝑙𝑡
                (6.5b) 

And the oxygen conservation law across the GDL can now be written as, 

4𝐹𝐷𝐺𝐷𝐿

𝑙𝐺𝐷𝐿
(𝐶𝑐ℎ−𝐺𝐷𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿) =  𝐽                                                                             (6.6) 

Similarity between equations (6.1) and (6.5) allows to follow a similar logic as stated above 

that that the oxygen transport resistances in GDL and flow channel will modulate 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿, 

which will affect only the iR-free part of the CCL overpotential (휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿).  Thus, we will 

first derive (𝐽𝑡𝑜𝑡𝑎𝑙 − 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿) relationship followed by addition of overpotential due to 

proton transport resistance in the CCL to the iR-free CCL overpotential, which leads to the 

total current – cathodic overpotential relationship, (𝐽𝑡𝑜𝑡𝑎𝑙 − 휂𝐶𝐶𝐿).  

Following similar process of eliminating 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 from equation (6.5a) and (6.6), we get, 

𝐽 =
𝐽1−𝐷

1+𝛼

𝐶𝑐ℎ−𝐺𝐷𝐿

𝐶𝑖𝑛
                 (6.7a) 

Here, 
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𝐽1−𝐷 = √4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛√
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

1

𝑅𝑎𝑔𝑔
𝑖𝑜,𝑐𝐴 [exp (

𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)],  𝐽𝐺𝐷𝐿 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿
 and 

𝛼 =
𝐽1−𝐷

𝑗𝐺𝐷𝐿
                  (6.7b)    

Equation (6.7a) is exactly the same as equation (6.3a) except for the definition of 𝐽1−𝐷 given in 

equations (6.7b) and (6.3b). Therefore, the total current–iR-free cathodic overpotential 

relationship in this regime is also given by  

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼+𝜉
)}               (6.8a) 

However, here 𝛼, 𝛽 and 𝜉 are defined based on 𝐽1−𝐷 given by equation (6.7b). 

Equation (6.8a) can also be recast as 

휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 = 𝐴𝑐𝑙𝑛 (
𝐽𝑡𝑜𝑡𝑎𝑙

𝑖𝑜,𝑐𝐴𝑙𝑡
) + 𝐴𝑐𝑙𝑛 (

𝐽𝑡𝑜𝑡𝑎𝑙
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡

) + 𝐴𝑐𝑙𝑛 {
𝐽𝑡𝑜𝑡𝑎𝑙
2

(
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

𝑙𝑡
𝑅𝑎𝑔𝑔

)
} +

4𝐴𝑐𝑙𝑛(

ln(
1

1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝑗𝑓𝑙𝑜𝑤

)

𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

+ln(1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

){
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝐺𝐷𝐿

+
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑑𝑖𝑓𝑓,𝑐ℎ

}

)                                                                              (6.8b) 

The total current-cathodic overpotential is (note equation (6.5b)),         

휂𝑜,𝐶𝐶𝐿 = 𝐴𝑐𝑙𝑛 (
𝐽𝑡𝑜𝑡𝑎𝑙

𝑖𝑜,𝑐𝐴𝑙𝑡
) + 𝐴𝑐𝑙𝑛 (

𝐽𝑡𝑜𝑡𝑎𝑙
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡

) + 𝐴𝑐𝑙𝑛 {
𝐽𝑡𝑜𝑡𝑎𝑙
2

(
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

𝑙𝑡
𝑅𝑎𝑔𝑔

)
} +

4𝐴𝑐𝑙𝑛(

ln(
1

1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝑗𝑓𝑙𝑜𝑤

)

𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

+ln(1−
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑓𝑙𝑜𝑤

){
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝐺𝐷𝐿

+
𝐽𝑡𝑜𝑡𝑎𝑙
𝐽𝑑𝑖𝑓𝑓,𝑐ℎ

}

)+
𝐽𝑡𝑜𝑡𝑎𝑙

𝜎/𝑙𝑡
                                                                            (6.8c) 

Equation (6.8c), being valid for 𝑀𝑇 ≫ 1 provides a total current – cathodic overpotential 

relationship for the current density range, 𝐽𝑡𝑜𝑡𝑎𝑙 > √(
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔

𝑙𝑡

𝑅𝑎𝑔𝑔
). 
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6.3) General case 
𝟏

𝑴𝑻
≤ 𝑬(𝜼) ≤ 𝟏 

𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relationship for this case is derived to be (see final equation in table 

3.1): 

𝐽 =
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 ×

√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]×𝐸( 𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿)

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

 tanh{√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]×𝐸( 𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿)

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

} ×

𝐶𝐶𝐶𝐿−𝐺𝐷𝐿

𝐶𝑖𝑛
                                                                                                                                   (6.9a)                                                                                                                              

휂𝑜,𝐶𝐶𝐿 = 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 + 
𝐽

𝜎/𝑙𝑡
                (6.9b) 

It is straightforward to show that by following a similar mathematical analysis as explained 

above, the current-potential relationship in this general case of 
1

𝑀𝑇
≤ 𝐸(휂) ≤ 1 can be given 

as, 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼+𝜉
)}                                                                                     (6.10a)        

Here,  

𝛼 =
𝐽1−𝐷

𝐽𝐺𝐷𝐿,𝑒𝑓𝑓
, 𝛽 =

𝐽1−𝐷

𝐽𝑓𝑙𝑜𝑤
, 𝜉 =

𝐽1−𝐷

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
, 𝐽𝐺𝐷𝐿,𝑒𝑓𝑓 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝑒𝑓𝑓,𝐺𝐷𝐿
, 𝐽𝑓𝑙𝑜𝑤 =

8𝐹𝑈𝑚𝑒𝑎𝑛ℎ𝐶𝑖𝑛

𝐿
, 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ =

4𝐹𝐷𝐶𝑖𝑛

ℎ
𝑎𝑛𝑑   

𝐽1−𝐷 =
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 ×

√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]×𝐸( 𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿)

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

 tanh {√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]×𝐸( 𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿)

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

}   

                                                                        (6.10b) 

Thus, equation (6.9b) and (6.10b) provide the most general total current – cathodic 

overpotential relationship which is valid over entire range of current density. Here, 𝑙𝑒𝑓𝑓,𝐺𝐷𝐿 is 
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the effective length scale for oxygen diffusion in the GDL and will be discussed in the section 

6.5. 

6.4) Overpotential contribution from net ohmic resistance  

In order to get total current – cell voltage relationship, we must now quantify the overpotential 

contribution of net ohmic resistance. As noted earlier, the net ohmic resistance will first have 

a contribution of proton resistance in the CCL. Next, we also add the overpotential 

contributions due to ohmic resistances in the other domains comprising: (a) protonic DC 

resistance in the membrane and (b) total electrical DC resistance (comprising that of GDL, 

flow field plate). Thus, the overpotential loss due to total ohmic resistance can be written as 

휂𝑜ℎ𝑚𝑖𝑐 = 𝐽𝑡𝑜𝑡𝑎𝑙 {
𝑙𝑡

𝜎
+

𝑙𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

𝜎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
+ 2 × [(1 − 𝜑)

𝑙𝐺𝐷𝐿

𝜎𝐺𝐷𝐿,𝑡𝑝
+ 𝜑 (

𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙
2

𝜎𝐺𝐷𝐿,𝑖𝑝
+

𝑙𝐺𝐷𝐿

𝜎𝐺𝐷𝐿,𝑡𝑝
)]}                 (6.10c)                                    

Here, 𝑙𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 is the thickness of the membrane, 𝜎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 is the proton conductivity of the 

membrane, 𝜎𝐺𝐷𝐿,𝑡𝑝 and 𝜎𝐺𝐷𝐿,𝑖𝑝 are respectively, electrical conductivities of the GDL in the 

through-plane and in-plane directions and 𝜑 =
𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙+𝑤𝑟𝑖𝑏
 is the ratio of flow area to the total 

area. The term in the curly bracket in equation (6.10c) is net ohmic resistance, 𝑅𝑜ℎ𝑚𝑖𝑐. 

Thus, the operating cell voltage (𝑉) of the PEM fuel cell is given by, 

𝑉 = 𝐸𝑒𝑞 − 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 − 휂𝑜ℎ𝑚𝑖𝑐                                                                                     (6.10d)         

Equations (6.10a-6.10d) give the final polarization curve, and we call this ‘The PEM fuel cell 

equation’. It relates the cell potential 𝑉 to the total current 𝐽𝑡𝑜𝑡𝑎𝑙 by accounting for 

simultaneous oxygen and proton transport resistances in the CCL coupled with oxygen 

transport resistance in the agglomerates. Additionally, the equation accounts for axial 

convection in the flow channel, transverse transport resistances for oxygen in the channel and 

GDL and the ohmic resistances of the cell. The procedure for calculating the polarization curve 
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is straight forward: 𝐽𝑡𝑜𝑡𝑎𝑙 is first calculated from equations (6.10a) and (6.10b) for a given 

휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿. This is then used to calculate 휂𝑜ℎ𝑚𝑖𝑐 from equation (6.10c) followed by 

calculating the cell voltage using equation (6.10d). 

We would like to point out that an intrinsic assumption made in writing equation (6.10c) is 

that the cathode overpotential across the entire active area is uniform. This allows us to multiply 

the 𝑅𝑜ℎ𝑚𝑖𝑐 with 𝐽𝑡𝑜𝑡𝑎𝑙 in order to calculate the ohmic contribution of overpotential. However, 

in reality, the profile of current density from inlet to the outlet leads to non-uniformity in the 

overpotential. Accounting for non-uniformity in overpotential over the active area results in 

significant coupling of governing equations, the solutions for which are beyond the scope of 

the present study. We therefore invoke here the simplified approach of using area-averaged 

current density (𝐽𝑡𝑜𝑡𝑎𝑙) to correct for the ohmic contribution of overpotential. We believe that 

this approximation is in fact not unreasonable because the change in overpotential along the 

length of the channel is much smaller compared to the change in current density itself except 

for the cases when the current density is close to limiting values. We will validate this 

assumption later in this chapter.  

6.5) Effect of rib-width 

It must also be noted that the domain of the analytical model as depicted in figure 4.1 

(chapter 4) does not incorporate a ‘rib’. In reality, flow field will include channels and ribs. 

The consequence of having a finite rib width is that oxygen from the channel has to diffuse 

across the rib width, which leads to non-uniform oxygen concentration across rib and hence 

non-uniform current density in ‘𝑥 − 𝑧’ plane. In our 1-D model for CCL, we have neglected 

gradients in this plane. In other words, we consider only average concentration and current 

density along ‘𝑥 − 𝑧’ plane. In the averaged sense, we can however account for the additional 
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resistance to oxygen transport under the rib using an effective length scale for oxygen diffusion 

in GDL. We propose that this effective length, 𝑙𝑒𝑓𝑓,𝐺𝐷𝐿, can be estimated as   

𝑙𝑒𝑓𝑓,𝐺𝐷𝐿 = 𝜑𝑙𝐺𝐷𝐿 + (1 − 𝜑) (
𝑤𝑟𝑖𝑏

2
+ 𝑙𝐺𝐷𝐿)                                                                            (6.11)     

Thus, we replace 𝐽𝐺𝐷𝐿 in the earlier expressions with 𝐽𝐺𝐷𝐿,𝑒𝑓𝑓 =
4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝐺𝐷𝐿,𝑒𝑓𝑓
.  All the model 

calculations illustrated in the subsequent sections are based on  𝐽𝐺𝐷𝐿,𝑒𝑓𝑓. That this 

approximation is indeed reasonable is shown later in the chapter. 

In summary, we provide below in Table 6.1 a set of analytical expressions that represent 

polarization curves spanning the entire range of current density. We note that the equations in 

Table 6.1 have the same mathematical form as the well-known empirical equation of 

polarization curve (Larminie and Dicks, 2003 [98]). However, there are no empirical or fit 

parameters in the equations listed in Table 6.1. 

Finally, we summarize below the assumptions made at various stages in deriving the PEM 

fuel cell equation: 

1) Local 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 relation at any point ‘𝑥’ along the length of the channel is 

assumed to be get dictated by one-dimensional FA-corrected MH model of the CCL 

i.e. the gradients in ‘𝑥’ and ‘𝑧’ directions in the CCL are assumed to be negligible (the 

quasi two-dimensional approach). 

2) The contribution of net ohmic resistance (protonic + electrical) in the total potential 

loss is assumed to be quantified based on area averaged current density (𝐽𝑡𝑜𝑡𝑎𝑙). 

3) Oxygen transport resistance below the rib is incorporated by introducing effective 

length scale for oxygen diffusion in the GDL, which simply allowed to replace 𝑙𝐺𝐷𝐿 by 

𝑙𝐺𝐷𝐿,𝑒𝑓𝑓 (equation 38) in all the equations. 
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In the following section, we will take a closer look at these approximations and check their 

validity. 

Table 6.1 Expressions of polarization curve spanning the entire range of current density 

Sr.no  Regime of CCL 

operation 
𝑱𝒕𝒐𝒕𝒂𝒍 − 𝜼𝒐 

1 

𝑱 𝒕
𝒐
𝒕𝒂
𝒍
<
𝟒
𝑭
𝑫
𝑪
𝑪
𝑳
𝑪
𝒊𝒏

𝒍 𝒕
 

휂
𝑜
=
𝐴
𝑐
𝑙𝑛
(
𝐽 𝑡
𝑜
𝑡𝑎
𝑙

𝑖 𝑜
,𝑐
𝐴
𝑙 𝑡
)

 

 

2 

𝟒
𝑭
𝑫
𝑪
𝑪
𝑳
𝑪
𝒊𝒏

𝒍 𝒕
<
𝑱 𝒕
𝒐
𝒕𝒂
𝒍
<
√
(𝟒
𝑭
𝑫
𝑪
𝑪
𝑳
𝑪
𝒊𝒏

𝒍 𝒕
)(
𝟑
𝟔
𝑭
𝑫
𝒂
𝒈
𝒈
𝑪
𝒊𝒏
(𝟏
−
𝝐
𝑪
𝑪
𝑳
)

𝑹
𝒂
𝒈
𝒈

𝒍 𝒕
𝑹
𝒂
𝒈
𝒈
) 

휂
𝑜
=
휂
𝑜
,𝑖
𝑅
−
𝑓
𝑟
𝑒
𝑒
,𝐶
𝐶
𝐿
+
휂
𝑜
ℎ
𝑚
𝑖𝑐

 

휂
𝑜
,𝑖
𝑅
−
𝑓
𝑟
𝑒
𝑒
,𝐶
𝐶
𝐿
=
𝐴
𝑐
𝑙𝑛
(
𝐽 𝑡
𝑜
𝑡𝑎
𝑙

𝑖 𝑜
,𝑐
𝐴
𝑙 𝑡
)
+
𝐴
𝑐
𝑙𝑛
(

𝐽 𝑡
𝑜
𝑡𝑎
𝑙

4
𝐹
𝐷
𝐶
𝐶
𝐿
𝐶
𝑖𝑛

𝑙 𝑡

)
+
2
𝐴
𝑐
𝑙𝑛
(

ln
(

1

1
−
𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝑗 𝑓
𝑙𝑜
𝑤

)

𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝐽
𝑓
𝑙𝑜
𝑤
+
ln
(1
−
𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝐽
𝑓
𝑙𝑜
𝑤
){

𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝐽
𝐺
𝐷
𝐿
,𝑒
𝑓
𝑓
+

𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝐽
𝑑
𝑖𝑓
𝑓
,𝑐
ℎ
})

  

휂
𝑜
ℎ
𝑚
𝑖𝑐
=
𝐽 𝑡
𝑜
𝑡𝑎
𝑙
{
𝑙 𝑡 𝜎
+
𝑙 𝑚

𝑒
𝑚
𝑏
𝑟
𝑎
𝑛
𝑒

𝜎
𝑚
𝑒
𝑚
𝑏
𝑟
𝑎
𝑛
𝑒
+
2
×
[(
1
−
𝜑
)
𝑙 𝐺
𝐷
𝐿

𝜎
𝐺
𝐷
𝐿
,𝑡
𝑝
+
𝜑
(

𝑤
𝑐
ℎ
𝑎
𝑛
𝑛
𝑒
𝑙

2
𝜎
𝐺
𝐷
𝐿
,𝑖
𝑝
+

𝑙 𝐺
𝐷
𝐿

𝜎
𝐺
𝐷
𝐿
,𝑡
𝑝
)
]}
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3 

𝑱 𝒕
𝒐
𝒕𝒂
𝒍 
>
√
(𝟒
𝑭
𝑫
𝑪
𝑪
𝑳
𝑪
𝒊𝒏

𝒍 𝒕
)(
𝟑
𝟔
𝑭
𝑫
𝒂
𝒈
𝒈
𝑪
𝒊𝒏
(𝟏
−
𝝐
𝑪
𝑪
𝑳
)

𝑹
𝒂
𝒈
𝒈

𝒍 𝒕
𝑹
𝒂
𝒈
𝒈
) 

휂
𝑜
=
휂
𝑜
,𝑖
𝑅
−
𝑓
𝑟
𝑒
𝑒
,𝐶
𝐶
𝐿
+
휂
𝑜
ℎ
𝑚
𝑖𝑐

 

휂
𝑜
,𝑖
𝑅
−
𝑓
𝑟
𝑒
𝑒
,𝐶
𝐶
𝐿
=
𝐴
𝑐
𝑙𝑛
(
𝐽 𝑡
𝑜
𝑡𝑎
𝑙

𝑖 𝑜
,𝑐
𝐴
𝑙 𝑡
)
+
𝐴
𝑐
𝑙𝑛
(

𝐽 𝑡
𝑜
𝑡𝑎
𝑙

4
𝐹
𝐷
𝐶
𝐶
𝐿
𝐶
𝑖𝑛

𝑙 𝑡

)
+
𝐴
𝑐
𝑙𝑛
{

𝐽 𝑡
𝑜
𝑡𝑎
𝑙

2

(4
𝐹
𝐷
𝐶
𝐶
𝐿
𝐶
𝑖𝑛

𝑙 𝑡
)(
3
6
𝐹
𝐷
𝑎
𝑔
𝑔
𝐶
𝑖𝑛
(1
−
𝜖
𝐶
𝐶
𝐿
)

𝑅
𝑎
𝑔
𝑔

×
𝑙 𝑡

𝑅
𝑎
𝑔
𝑔
)}
+

4
𝐴
𝑐
𝑙𝑛
(

ln
(

1

1
−
𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝑗 𝑓
𝑙𝑜
𝑤

)

𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝐽
𝑓
𝑙𝑜
𝑤
+
ln
(1
−
𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝐽
𝑓
𝑙𝑜
𝑤
){

𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝐽
𝐺
𝐷
𝐿
,𝑒
𝑓
𝑓
+

𝐽
𝑡𝑜
𝑡𝑎
𝑙

𝐽
𝑑
𝑖𝑓
𝑓
,𝑐
ℎ
})

  

휂
𝑜
ℎ
𝑚
𝑖𝑐
=
𝐽 𝑡
𝑜
𝑡𝑎
𝑙
{
𝑙 𝑡 𝜎
+
𝑙 𝑚

𝑒
𝑚
𝑏
𝑟
𝑎
𝑛
𝑒

𝜎
𝑚
𝑒
𝑚
𝑏
𝑟
𝑎
𝑛
𝑒
+
2
×
[(
1
−
𝜑
)
𝑙 𝐺
𝐷
𝐿

𝜎
𝐺
𝐷
𝐿
,𝑡
𝑝
+
𝜑
(

𝑤
𝑐
ℎ
𝑎
𝑛
𝑛
𝑒
𝑙

2
𝜎
𝐺
𝐷
𝐿
,𝑖
𝑝
+

𝑙 𝐺
𝐷
𝐿

𝜎
𝐺
𝐷
𝐿
,𝑡
𝑝
)
]}

 

 

6.6) Results and Discussions 

In this section we compare predictions of analytical model with three-dimensional 

numerical simulations in which none of the simplifying assumptions made during the 

derivation of the PEM fuel cell equation were made. This provides an independent way to 

assess the validity of the assumptions. The details about three-dimensional numerical 

simulations are provided in the section, 2.2 of chapter 2.  Identical values of geometric, material 

and operating parameters were used in the simulations as those used in the calculations of 

analytical model. The geometry invoked for simulations included a single flow channel each 
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for H2 and air, GDLs and catalyst layers on the anode and cathode sides, and a central proton 

exchange membrane (see Figure 6.1). As can be noted from figure 4.2 of chapter 4 and figure 

6.1 below, we have also relaxed the assumptions of 𝑊𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ≫ 𝑊𝑟𝑖𝑏. The mesh density was 

the finest in the catalyst layer and decreased from catalyst layer to channel. Mesh independence 

studies were performed leading to the choice of optimized mesh. All the results reported here 

are for fully converged and mesh independent simulations.  

 

Fig. 6.1 Three dimensional computational domain considered for simulation 

 

The numerical values of model parameters are listed in Table 6.2. As will be discussed in 

the next chapter, 𝑅𝑜ℎ𝑚𝑖𝑐 was determined from impedance spectroscopy to be 75 𝑚Ω − 𝑐𝑚2. 

The model parameter values in Table 6.2 give {
𝑙𝑡

𝜎
+

𝑙𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

𝜎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
+ 2 × [(1 − 𝜑)

𝑙𝐺𝐷𝐿

𝜎𝐺𝐷𝐿,𝑡𝑝
+

𝜑 (
𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙

2

𝜎𝐺𝐷𝐿,𝑖𝑝
+

𝑙𝐺𝐷𝐿

𝜎𝐺𝐷𝐿,𝑡𝑝
)]} = 75 𝑚Ω − 𝑐𝑚2. The numerical values of oxygen diffusion 

coefficients in the different domains (CCL, GDL and channel) are experimentally determined 

and will be discussed in detail in chapter 8. While all other values of numerical parameters are 

discussed in table 6.2, the values of two parameters related to the catalyst microstructure as 

implied in the flooded agglomerate model namely, oxygen diffusion coefficient in an 

agglomerate 𝐷𝑎𝑔𝑔, and porosity of CCL 𝜖𝐶𝐶𝐿, are also provided in Table 6.2. The diffusivity 

of oxygen in the ionomer phase of agglomerate can be estimated by the Bruggeman correlation, 

𝐷𝑎𝑔𝑔 = 휀𝑎𝑔𝑔
1.5 𝐷𝑂2−𝑖𝑜𝑛𝑜𝑚𝑒𝑟 [56], where 휀𝑎𝑔𝑔 is the volume fraction of ionomer in the 
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agglomerate (휀𝑎𝑔𝑔 =
𝑙

1− 𝐶𝐶𝐿
;  𝜖𝑙 being ionomer volume fraction in the CCL) and 𝐷𝑂2−𝑖𝑜𝑛𝑜𝑚𝑒𝑟 

is the bulk diffusion coefficient of oxygen in ionomer. For O2-nafion system, 

𝐷𝑂2−𝑛𝑎𝑓𝑖𝑜𝑛 ~ 10
−10 𝑚

2

𝑠
 [93]. For 휀𝑙 ~ 0.2 and 휀𝐶𝐶𝐿 ~ 0.4, 𝐷𝑎𝑔𝑔 ~ 10

−11  
𝑚2

𝑠
. The value of CCL 

porosity 𝜖𝐶𝐶𝐿 ~ 0.4 is representative of random close packing of spherical agglomerates. The 

value of 𝑅𝑎𝑔𝑔 was chosen to be ~100 nm, which is within the range determined experimentally 

using nanometer scale x-ray computed tomography, TEM and mercury injection porosimetry 

techniques [94]. 

Table 6.2 Numerical values of model parameters 

Parameter Value Remarks 

𝐴𝑐 0.026 V Tafel slope 

𝐹 96500 𝐶/𝑚𝑜𝑙 Faraday constant 

2ℎ 0.001 𝑚 Depth of the channel 

𝑖𝑜,𝑐𝐴 ~ 0.5 × 106
𝐴

𝑚3
 

This is calculated using 𝑖𝑜,𝑐~ 1 ×
10−4 𝐴/𝑐𝑚𝑃𝑡

2  [38], electrochemical 

surface area of 60 𝑚𝑃𝑡
2 /𝑔𝑃𝑡, catalyst 

loading of 0.25 𝑚𝑔𝑃𝑡/𝑐𝑚
2 and CCL 

thickness of 8 µ𝑚 

𝐿 0.02 𝑚 Length of the channel 

𝑙𝐺𝐷𝐿 300 µ𝑚 GDL thickness 

𝑙𝑡 8 µ𝑚 
Typical CCL thickness of a decal 

electrode 

𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙  0.001 𝑚 Width of the channel 

𝑤𝑟𝑖𝑏  0.001 𝑚 Rib Width 

2ℎ 0.001 𝑚 Depth of the channel 

𝑙𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒  25 µ𝑚 Membrane thickness 

𝜎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒  10 𝑆/𝑚 Membrane proton conductivity [102] 

𝜎 2.8 𝑆/𝑚 CCL proton conductivity [43-45] 

𝜎𝐺𝐷𝐿,𝑖𝑝 10000 𝑆/𝑚 
GDL In-plane electrical conductivity  

[101] 

𝜎𝐺𝐷𝐿,𝑡𝑝 300 𝑆/𝑚 
GDL through-plane electrical 

conductivity [101] 

𝐸𝑒𝑞  0.922 V Open circuit voltage 

𝑅𝑎𝑔𝑔  120 𝑛𝑚 Discussed in the text 

𝐷𝑎𝑔𝑔  ~10−11 𝑚2/𝑠 Discussed in the text 

𝐶𝑖𝑛 ~8 𝑚𝑜𝑙/𝑚3 Inlet oxygen concentration 

휀𝐶𝐶𝐿 0.4 Discussed in the text 

𝐷𝐶𝐶𝐿 ~5 × 10−9 𝑚2/𝑠 Chapter 7 

𝐷𝐺𝐷𝐿  ~6 × 10−6 𝑚2/𝑠 Chapter 7 

𝐷 ~3 × 10−5 𝑚2/𝑠 Chapter 7 

𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  ~0.2 𝐴/𝑐𝑚2 Equation (7.4) from chapter 7 

𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑛 𝐶𝐶𝐿 𝑎𝑛𝑑 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑒   ~1.4 𝐴/𝑐𝑚2 Equation (3.41) from chapter 3 

𝐽𝐺𝐷𝐿,𝑒𝑓𝑓   ~3.2 𝐴/𝑐𝑚2 Equation (6.10b) and (6.11) 

𝐽𝑓𝑙𝑜𝑤   5.5 × 𝐽𝑒𝑥𝑝𝑡  𝐴/𝑐𝑚
2 Experimentally set value 

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ  ~ 18 𝐴/𝑐𝑚2 Equation (6.10b) 

𝑅𝑜ℎ𝑚𝑖𝑐   75 𝑚Ω− 𝑐𝑚2 Equation (6.10c) 
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Fig. 6.2 Comparison of polarization curves predicted by analytical theory and full three-

dimensional numerical simulation  

 

Figure 6.2 shows comparison between polarization curves predicted by the PEM fuel cell 

equation (equation (6.10)) and the three-dimensional numerical simulations. An excellent 

match between analytical model and the simulation was observed over the entire range of 

current density, which gives the first confirmation that the analytical model adequately captures 

the coupled reaction-diffusion-convection phenomena in an operational PEMFC and relates all 

material, geometrical and operating parameters to its performance. This is further supported by 

a comparison of the profiles of variables 𝐶, 𝑗 and 휂 in the three physical domains: flow channel, 

GDL and CCL, as predicted by the analytical theory and by the three-dimensional numerical 

simulations. Figure 6.3 shows comparison of analytical model predictions and results of three-

dimensional numerical simulations at three representative axial positions (𝑥∗ = 0.2, 0.5 and 

0.8) and at one representative operating cell voltage of 0.44 V (휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 = 0.36 𝑉). The 

simulation results are reported for centre of channel width. The profiles are calculated from the 

analytical model as follows. The oxygen concentration profile at any 𝑥∗ in the channel depth 
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including at the channel-GDL interface is given by equation (6.4a) with 𝛼, 𝛽 and 𝜉 being 

defined based on 𝐽1−𝐷 given by equation (6.10b). The oxygen concentration at the CCL-GDL 

interface is calculated from equations (6.2) and (6.9a), and the profile in the GDL thickness 

linearly varies between 𝐶𝑐ℎ−𝐺𝐷𝐿 and 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿. Equations (3.16)-(3.19) (from chapter 3) 

respectively, give the profiles of current density, oxygen concentration and overpotential in the 

CCL for the case of 𝑀𝑇 ≪ 1. However, as discussed in chapter 3, the mathematical similarity 

between the equation sets (3.6)-(3.8) (from chapter 3) corresponding to the case of  𝑀𝑇 ≪ 1 

and equations (3.35)-(3.37) (from chapter 3) corresponding to the case of 𝑀𝑇 ≫ 1 suggests 

that the same equations (3.16)-(3.19) will also provide the profiles for the case of 𝑀𝑇 ≫ 1 with 

the only difference that 𝑗∗, 휂∗, 𝐽∗ 𝑎𝑛𝑑 휀2 (defined in equation (3.9)) must be replaced by 

𝑗′, 휂′, 𝐽′ 𝑎𝑛𝑑 휀′
2
휃 (defined in equation (3.38)). This procedure gives the required profiles of the 

variables 𝐶, 𝐽 and 휂  in the channel, GDL and CCL. As can be observed in figure 6.3, the 

profiles predicted by analytical model match reasonably well with the 3-D simulation results 

at all 𝑥∗s in all three domains. Furthermore, figure 6.4 compares the local current density profile 

along the channel length obtained from equation (6.4b) (where 𝛼, 𝛽 and 𝜉 are defined based 

on 𝐽1−𝐷 given by equation (6.10b)) at the operating cell voltage of 0.44 V (휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 =

0.36 𝑉) with that obtained from 3-D simulations (at the mid-plane of the membrane) at the 

same cell voltage. The simulations in fact give a profile of current density in ‘𝑥 − 𝑧’ plane (see 

figure 6.5). Since the analytical model only considers average values of variables in the ‘𝑥 −

𝑧’ plane, therefore the current density profile in the 3-D simulations was averaged out in ‘𝑧’ 

direction for a given ‘𝑥∗’, and the average values are compared with analytical results in figure 

6.4. It can be observed that analytical model predictions and three-dimensional numerical 

simulation predictions are in close agreement. Thus, figures 6.3 and 6.4 justify the adequacy 

of using the quasi two-dimensional approach to describe the local 𝐽 − 휂𝑜,𝐶𝐶𝐿 − 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 

relation as well as the axial oxygen concentration (and hence also current density). 
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Fig. 6.3 Transverse (−𝑦) profiles of current density, overpotential (휂 = 휂𝑜,𝐶𝐶𝐿 at membrane-CCL 

interface) and oxygen concentration in the different domains of the PEMFC for three different 𝑥∗ at 

the mid-of the channel width and operating cell voltage of 0.439 V (휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 = 0.363 𝑉). Lines 

represent analytical model predictions while the numerical simulation results are given by symbols 
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Fig. 6.4 Comparison between the local current density profiles along the axial (−𝑥) direction 

obtained from analytical model (line) versus 𝑧- averaged numerical simulation results (symbol) at 

operating cell voltage of 0.439 V (휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 = 0.363 𝑉). 

 

 

Fig. 6.5 Simulated ‘𝑥 − 𝑧’ plane current density (mid-of the membrane) and oxygen concentration 

(at CCL-GDL interface) profiles at operating cell voltage of 0.439 V (휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 = 0.363 𝑉). 
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We now check whether the approximation of effective length (equation 6.11) is adequate to 

capture average variable values in the ‘𝑥 − 𝑧’ direction especially for different rib widths. For 

this, we systematically varied rib-widths (1 mm, 1.2 mm and 1.4 mm) in the simulation and 

estimated the corresponding effective lengths (555 μm, 660 μm and 790 μm) using equation 

(6.11). The channel width was adjusted for each rib width to maintain the same total active area 

so that the air flow rate at the inlet of the channel remained identical for all three cases. All the 

other model parameters are listed in table 6.2. A reasonable agreement between polarization 

curves predicted by the PEM fuel cell equation and the simulated polarization curves (symbols) 

for all the three rib-widths can be seen in figure 6.6, which suggests that 𝑙𝑒𝑓𝑓,𝐺𝐷𝐿 can effectively 

capture average values of current density and oxygen concentration along ‘𝑥 − 𝑧’ plane. 

 

Fig. 6.6 Comparison between the polarization curve obtained by analytical model (dotted lines) 

versus there-dimensional numerical simulation for different rib-widths. 

 

We now check the assumption of using area-average current density 𝐽𝑡𝑜𝑡𝑎𝑙 (which is the 

same as assuming constant overpotential 휂𝑜 across active area) to calculate the ohmic 

overpotential loss in the analytical model by comparing it’s predictions with numerical 

simulations, which rigorously determine the ohmic loss by calculating gradient of overpotential 
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across the active area. Figure 6.7 compares the polarization curves predicted by analytical 

model and 3-D simulations for three different ohmic resistances, 75, 100 and 150  𝑚Ω− 𝑐𝑚2, 

achieved by varying the proton conductivity of the membrane (10 S/m, 5 S/m and 2.5 S/m). 

The polarization curves predicted by analytical model agree reasonably well with the simulated 

polarization curves, which confirms the reasonability of the assumption. 

 

Fig. 6.7 Comparison between the polarization curves obtained by analytical model (dotted lines) 

versus there-dimensional numerical simulation for different ohmic resistances. 

 

In the end, it is worth noting that in the PEM fuel cell equation the various geometrical, 

operational and material parameters which control the performance of PEM fuel cell get 

combined into seven physically meaningful and experimentally measurable current density 

scales and one ohmic resistance. These are summarized in table 6.3. The current density scales 

are: one exchange current density, which corresponds to the intrinsic ORR kinetics, three 

critical current densities, 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 and 

𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑛 𝐶𝐶𝐿 𝑎𝑛𝑑 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑒, which denote the current densities above which these 

respective transport processes start modulating the intrinsic ORR kinetics, and three limiting 
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current density scales, which respectively denote the maximum allowable diffusive flux of 

oxygen in the GDL(𝐽𝐺𝐷𝐿,𝑒𝑓𝑓), channel (𝐽𝑑𝑖𝑓𝑓,𝑐ℎ) and the input stoichiometry of oxygen (𝐽𝑓𝑙𝑜𝑤).  

Table 6.3 Important current density scales in the PEM fuel cell equation  

Sr. no Current density scale Expression 

1 Intrinsic exchange current density 𝑖𝑜,𝑐  

2 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  
2𝜎𝐴𝑐

𝑙𝑡
  

3 𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
  

4 𝐽𝑐𝑟𝑖𝑡,(𝑂2) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑛 𝐶𝐶𝐿 𝑎𝑛𝑑 𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑒  
√(

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

𝑙𝑡

𝑅𝑎𝑔𝑔
)  

5 𝐽𝐺𝐷𝐿,𝑒𝑓𝑓  4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝑒𝑓𝑓,𝐺𝐷𝐿
  

6 𝐽𝑓𝑙𝑜𝑤  𝜆 × 𝐽𝑒𝑥𝑝𝑡  

7 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ  4𝐹𝐷𝐶𝑖𝑛

ℎ
  

8 𝑅𝑜ℎ𝑚𝑖𝑐  
~{

𝑙𝑡
𝜎
+

𝑙𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
𝜎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

+ 2 × [(1 − 𝜑)
𝑙𝐺𝐷𝐿
𝜎𝐺𝐷𝐿,𝑡𝑝

+

𝜑(
𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙

2

𝜎𝐺𝐷𝐿,𝑖𝑝
+

𝑙𝐺𝐷𝐿
𝜎𝐺𝐷𝐿,𝑡𝑝

)]}  

 

6.7) Conclusion 

This chapter provides an account for all coupled reaction-diffusion-convection processes 

occurring inside the various components of the PEM fuel cell resulting finally into the ‘PEM 

fuel cell equation’ that relates the effects of all material, geometric and operating parameters 

of a PEM fuel cell to its performance in a compact manner. The various assumptions made 

during the derivation of the PEM fuel cell equation were validated by comparing model 

predictions with the results of full three-dimensional numerical simulations in which no 

simplifying approximations were made. The polarization curves predicted by the PEM fuel cell 
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equation, profiles of oxygen concentration, current density and overpotential showed 

quantitative match with the three-dimensional numerical simulations over a wide range of 

current density. 

The analytical model presented here has elaborated more on the specific case wherein the 

resistance to oxygen diffusion in CCL affected the ORR kinetics at lower current density than 

proton transport resistance in CCL (𝐷∗ < 1). This is because of its relevance to the 

experimental conditions used in this work. In the future, the analytical model can be extended 

to the case of 𝐷∗ > 1, which might be relevant to other types of fuel cells such as an open 

cathode design wherein low humidity conditions could cause higher resistance to proton 

conduction in the CCL. The analytical model can also be extended in the future to account for 

detailed two-phase water balance in the MEA. 

 

 

 

 

 

 

 

 

 

 



 Chapter 7 

 

130  

 

Chapter 7 

The PEM fuel cell equation: experimental validation 

The content of this chapter is published in,  

“Chemical Engineering Science, volume no. 206, 12th October 2019, pages: 96–117” [90]. 

As mentioned in earlier chapter, PEM fuel cell equation is valid for the case wherein oxygen 

transport resistance in the cathode catalyst layer (CCL) is encountered at lower current density 

than proton transport resistance in the CCL i.e., the first deviation from intrinsic Tafel kinetics 

on the polarization curve is a consequence of oxygen transport resistance across the CCL. This 

essentially suggests that 𝐷∗ < 1, where 𝐷∗ is the ratio of 𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 and 

𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =
2𝜎𝐴𝑐

𝑙𝑡
 (see table 6.3). To the best of our knowledge, no experimental 

methodology is available in the literature to decipher the regime of CCL operation. It should 

also be noted that while predicting the polarization curve using PEM fuel cell equation, we 

assumed certain numerical values of oxygen diffusion coefficients in the channel, GDL and 

CCL (see table 6.2). Thus, it is crucial to first experimentally estimate oxygen diffusivities in 

the different domains of PEMFC namely, flow channel, GDL and CCL. In most of the earlier 

studies, the so-called limiting current method has been used to estimate oxygen transport 

resistance in these domains [66-70]. However, there are two assumptions in this method. We 

have discussed these assumptions in detail in chapter 2. Here, we briefly summarize them:  

1. The method assumes that the oxygen concentration is linear in all domains. This 

especially does not hold in the CCL. A rapid non-linear decay of oxygen concentration in the 
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CCL near the GDL-CCL interface is predicted when the rate of oxygen transport across the 

CCL is considerably slower compared to intrinsic ORR kinetics (see chapter 2) which results 

in the strong dependence of local apparent Tafel slope on overpotential. Therefore, correlating 

oxygen transport resistance in the CCL to the limiting current density, which is independent of 

overpotential, is not appropriate.  

2. The influence of oxygen diffusion along the channel depth is assumed to be negligible in 

these studies, which may not be realistic. The isothermal two-dimensional model of PEMFC 

(chapter 4-6) clearly shows that the limiting current for high stoichiometric reactant flow rates 

is a function of oxygen diffusion in the GDL as well as oxygen diffusion along the channel 

depth. Therefore, to determine the effective oxygen diffusion coefficient in GDL it is 

imperative to segregate the contribution of oxygen diffusion along the channel depth from the 

limiting current density.  

Thus, there are at least two unrealistic assumptions made in the previous studies insofar as 

experimental determination of oxygen diffusivities in the various domains of PEMFC is 

concerned. By using the limiting cases of our PEM fuel cell equation, we elucidate here a 

systematic experimental methodology to estimate the effective diffusion coefficients of oxygen 

in the CCL, GDL and channel. Finally, we show that when the experimentally determined 

diffusion coefficients are used in the PEM fuel cell equation the predicted polarization curve 

shows excellent match with experimentally measured polarization curve. 

We begin by summarizing the key limiting cases of PEM fuel cell equation and the 

theoretical scaling laws that come out of the model. This is followed by the experimental details 

and an account of data analysis methods. We then discuss the salient results comparing 

analytical model with experimental data in the final subsection. 
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7.1) Limiting cases of PEM fuel cell equation 

We first reproduce here the PEM fuel cell equation: 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓𝑙𝑜𝑤 {1 − exp (−
𝛽

1+𝛼+𝜉
)}                                                                                     (7.1a)        

Here,  

𝛼 =
𝐽1−𝐷

𝐽𝐺𝐷𝐿,𝑒𝑓𝑓
, 𝛽 =

𝐽1−𝐷

𝐽𝑓𝑙𝑜𝑤
, 𝜉 =

𝐽1−𝐷

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
, 𝐽𝐺𝐷𝐿,𝑒𝑓𝑓 =

4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛

𝑙𝑒𝑓𝑓,𝐺𝐷𝐿
, 𝐽𝑓𝑙𝑜𝑤 =

7𝐹𝑈𝑚𝑒𝑎𝑛ℎ𝐶𝑖𝑛

𝐿
, 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ =

4𝐹𝐷𝐶𝑖𝑛

ℎ
𝑎𝑛𝑑   

𝐽1−𝐷 =
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 ×

√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]×𝐸( 𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿)

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

 tanh {√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]×𝐸( 𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿)

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

}   

                                                                          (7.1b) 

휂𝑜ℎ𝑚𝑖𝑐 = 𝐽𝑡𝑜𝑡𝑎𝑙 {
𝑙𝑡

𝜎
+

𝑙𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

𝜎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
+ 2 × [(1 − 𝜑)

𝑙𝐺𝐷𝐿

𝜎𝐺𝐷𝐿,𝑡𝑝
+ 𝜑 (

𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙
2

𝜎𝐺𝐷𝐿,𝑖𝑝
+

𝑙𝐺𝐷𝐿

𝜎𝐺𝐷𝐿,𝑡𝑝
)]}               (7.1c) 

𝑉 = 𝐸𝑒𝑞 − 휂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿 − 휂𝑜ℎ𝑚𝑖𝑐                                                                                       (7.1d) 

We now discuss two important experimentally achievable limiting cases of equation (7.1a) 

and (7.1b). 

a) 𝑱𝟏−𝑫 << 𝑱𝑮𝑫𝑳, 𝑱𝒇𝒍𝒐𝒘, 𝑱𝒅𝒊𝒇𝒇,𝒄𝒉 (𝜶,𝜷, 𝝃 << 𝟏)   

This is experimentally achievable at low overpotential (i.e. high operating cell voltage) and 

high oxidant stoichiometry. For 𝛼, 𝛽, 𝜉 << 1, it can be shown that {1 − exp (−
𝛽

1+𝛼+𝜉
)} ≈ 𝛽 

and therefore, 𝐽𝑡𝑜𝑡𝑎𝑙 ≈ 𝐽1−𝐷. This limiting case physically means that the mass transfer 

resistance for oxygen is negligible in the GDL and flow channel. Also, oxygen concentration 

at the CCL-GDL interface is the same as the inlet oxygen concentration 𝐶𝐶𝐶𝐿−𝐺𝐷𝐿 ≈ 𝐶𝑖𝑛 

because of high stoichiometry. Hence the current-potential relationship is dictated by the 
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physicochemical processes occurring only in the CCL. We can further sub-divide this limiting 

regime in the following sub-cases: 

 𝐽𝑡𝑜𝑡𝑎𝑙 ≪ 
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
, √(

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

𝑙𝑡

𝑅𝑎𝑔𝑔
) 

In this regime, 𝐸(휂𝑖𝑅−𝑓𝑟𝑒𝑒) ≈ 1, therefore equation (7.1b) transforms to  

𝐽𝑡𝑜𝑡𝑎𝑙
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡

= √
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

 tanh{√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

} ≪ 1, which suggests 

tanh{√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

} ≈ √
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

.  

Therefore, equation (7.1b) gives, 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽1−𝐷 = 𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (
𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]                           (7.2) 

Equation (7.2) is essentially intrinsic Tafel kinetics of ORR.  

 
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
≪ 𝐽𝑡𝑜𝑡𝑎𝑙 ≪ √(

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
)(
36𝐹𝐷𝑎𝑔𝑔𝐶𝑖𝑛(1−𝜖𝐶𝐶𝐿)

𝑅𝑎𝑔𝑔
×

𝑙𝑡

𝑅𝑎𝑔𝑔
) 

Here again 𝐸(휂𝑖𝑅−𝑓𝑟𝑒𝑒) ≈ 1. However, equation (7.1b) implies 

 
𝑗𝑡𝑜𝑡𝑎𝑙

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

= √
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

 tanh{√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

} ≫ 1, which suggests 

tanh{√
𝑖𝑜,𝑐𝐴𝑙𝑡[exp (

𝜂𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛
𝑙𝑡

} ≈ 1.  

Therefore, equation (7.1b) reduces to 

𝐽𝑡𝑜𝑡𝑎𝑙 = √
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝑖𝑅−𝑓𝑟𝑒𝑒,𝐶𝐶𝐿

𝐴𝑐
)]                                                                   (7.3)                
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Equation (7.3) is the current-potential relationship wherein oxygen transport resistance across 

the CCL modulates the intrinsic Tafel kinetics of ORR. Note that the critical current density 

above which the rate of oxygen transport process across CCL becomes comparable with 

intrinsic ORR kinetics i.e., the transition of current-potential relationship from equation (7.2) 

to equation (7.3) is, 

𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
                                                                                             (7.4)      

b) 𝑱𝑮𝑫𝑳, 𝑱𝒅𝒊𝒇𝒇,𝒄𝒉 ≪ 𝑱𝟏−𝑫, 𝑱𝒇𝒍𝒐𝒘 (𝜶, 𝝃 ≫ 𝟏) 

This limiting case is realizable at high overpotentials and at high stoichiometries. For 𝛼, 𝜉 ≫

1, it can be shown that  {1 − exp (−
𝛽

1+𝛼+𝜉
)} ≈

𝛽

𝛼+𝜉
 and hence, equation (7.1a) gives 

1

𝐽𝑡𝑜𝑡𝑎𝑙
=

1

𝐽𝐺𝐷𝐿
+

1

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
=

1
4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛
𝑙𝑒𝑓𝑓,𝐺𝐷𝐿

+
1

4𝐹𝐷𝐶𝑖𝑛
ℎ

                                                                       (7.5)                    

The total current density in equation (7.5) is independent of overpotential. Thus, this is a 

limiting current density value. The two cases (a) and (b) discussed above will be used in the 

following sections to pull out important scaling laws. 

7.2) Theoretical scaling laws 

In any experimental study that seeks to understand the factors governing fuel cell 

polarization, it is critical to first decipher which of the two important transport resistances viz., 

oxygen transport or proton transport resistances, are responsible for modulating the overall 

consumption rate of oxygen in CCL. We propose that this can be done by experimentally 

determining scaling laws between measured current density and inlet oxygen concentration 

under carefully chosen operating conditions, and comparing the same with theoretically 

predicted scaling laws. To do so, we first extract scaling laws relating measurable current 
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density 𝐽𝑡𝑜𝑡𝑎𝑙 and inlet oxygen concentration 𝐶𝑖𝑛 from the PEM fuel cell equation (7.1) under 

two experimentally achievable limiting cases: 

 Ideal proton transport across the CCL   

The limiting cases of equation (7.1) i.e.  equations (7.2), (7.3) and (7.5) suggest the following 

scaling laws relating 𝐽𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑖𝑛 at a given overpotential, 

𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
0 for 𝐽𝑡𝑜𝑡𝑎𝑙 <

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 and 𝛼, 𝛽, 𝜉 ≪ 1            (7.6a) 

𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
0.5 for 

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
< 𝐽𝑡𝑜𝑡𝑎𝑙  and 𝛼, 𝛽, 𝜉 ≪ 1            (7.6b) 

𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
1 for 

4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
< 𝐽𝑡𝑜𝑡𝑎𝑙 and 𝛼 and/or 𝜉 ≫ 1            (7.6c)        

As noted earlier and also from equations (7.2) and (7.3), with increasing 𝐽𝑡𝑜𝑡𝑎𝑙 the apparent 

Tafel slope changes from intrinsic Tafel slope of ~26 mV (equivalent to 60 mV when expressed 

in log10) to ~52 mV (equivalent to 120 mV when expressed in log10) and keeps increasing 

further until at limiting conditions the current density becomes independent of overpotential 

(equation 7.5; infinite apparent Tafel slope)). Further, equation (7.4) gives the scaling law 

relating 𝐽𝑐𝑟𝑖𝑡 to inlet oxygen concentration as, 

𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ~ (𝐶𝑖𝑛)
1                                                                                                     (7.7)      

 Ideal oxygen transport across the CCL 

At low current density given by 𝐽𝑡𝑜𝑡𝑎𝑙 ≪
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
,
2𝜎𝐴𝑐

𝑙𝑡
, 𝐽𝐺𝐷𝐿 , 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ, 𝐽𝑓𝑙𝑜𝑤, the current-

potential relationship is given by equation (7.2). At intermediate current density, if 
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
≫

𝐽𝑡𝑜𝑡𝑎𝑙 >
2𝜎𝐴𝑐

𝑙𝑡
, then proton transport resistance across the CCL becomes significant. The local 

current-potential relationship for this regime was given by (see chapter 5) 
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2𝐽

𝑗1−𝐷
+ (𝛼 + 𝜉) ln (

2𝐽

𝑗1−𝐷
) = (√4 + (𝛼 + 𝜉)2 − (𝛼 + 𝜉)) + (𝛼 + 𝜉)𝑙𝑛(√4 + (𝛼 + 𝜉)2 − (𝛼 +

𝜉)) − 𝛽𝑥∗                                                                                                                            (7.8)                  

Here, 𝛼, 𝛽 and 𝜉 are defined based on 𝐽1−𝐷 = √
2𝜎𝐴𝑐

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)]. The total current 

density can be obtained by integrating equation (7.8). It was shown (Thosar and Lele 2017) 

that for 𝛼, 𝛽, 𝜉 ≪ 1,  

 𝐽𝑡𝑜𝑡𝑎𝑙 = √
2𝜎𝐴𝑐

𝑙𝑡
𝑖𝑜,𝑐𝐴𝑙𝑡 [exp (

𝑜,𝐶𝐶𝐿

𝐴𝑐
)]                                                                                 (7.9)          

It was also shown that at high stoichiometry and high overpotential when 𝐽1−𝐷 > 𝐽𝐺𝐷𝐿 , 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ, 

then equation (7.8) simplifies to (Thosar and Lele 2017) 

1

𝐽𝑡𝑜𝑡𝑎𝑙
=

1

𝐽𝐺𝐷𝐿
+

1

𝐽𝑑𝑖𝑓𝑓,𝑐ℎ
=

1
4𝐹𝐷𝐺𝐷𝐿𝐶𝑖𝑛
𝑙𝑒𝑓𝑓,𝐺𝐷𝐿

+
1

4𝐹𝐷𝐶𝑖𝑛
ℎ

                                                                        (7.10)                  

Note that equation (7.10) is identical to equation (7.5). This physically means that irrespective 

of the regime of operation in the CCL, the overall limiting current density is dictated by oxygen 

diffusion rate in the channel and GDL. 

Equations (7.2), (7.9) and (7.10) suggest following scaling laws relating 𝐽𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑖𝑛 at a given 

overpotential, 

𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
0 for 𝐽𝑡𝑜𝑡𝑎𝑙 <

2𝜎𝐴𝑐

𝑙𝑡
                                                                                          (7.11a)                     

𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
0 for 

2𝜎𝐴𝑐

𝑙𝑡
< 𝐽𝑡𝑜𝑡𝑎𝑙 and 𝛼, 𝛽, 𝜉 ≪ 1                                                                (7.11b)              

𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
1 for 

2𝜎𝐴𝑐

𝑙𝑡
< 𝐽𝑡𝑜𝑡𝑎𝑙 and 𝛼 and/or 𝜉 ≫ 1                                                          (7.11c)                                                           

Also, the scaling law relating 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 to inlet oxygen concentration is given by  

𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ~ (𝐶𝑖𝑛)
0                                                                                                   (7.12)                                                                  



 Chapter 7 

 

137  

In the following sections we will use the limiting cases and the scaling laws extracted from 

the PEM fuel cell equation to analyse our experimental data. Specifically, we demonstrate three 

new methods to analyse the data: (1) a graphical method to determine 𝐽𝑐𝑟𝑖𝑡, (2) a method to 

determine the operating regime of CCL using theoretical scaling laws, and (3) a method to 

determine diffusion coefficients in channel, GDL and CCL. Using this information, we will 

then compare the experimentally determined polarization curve with predictions of the PEM 

fuel cell equation. 

7.3) Experimental details 

Nafion-XL grade membrane (27 µm thick) was hot-pressed between two 25 cm2 decal 

electrodes. The electrodes were fabricated by coating PTFE films with an aqueous slurry of 40 

wt% Pt/C catalyst and 5 wt% ionomer solution followed by drying the film. Decal transfer 

resulted in 7-7 micron thick catalyst layer on both anode and cathode sides covering the active 

area (25 cm2). Catalyst loading was approximately 0.3 mg/cm2 on anode as well as cathode. 

Gas diffusion layers (SGL 39 BC) of 25 cm2 area, ~300 micron thickness and having open 

porosity of 0.5 were used to prepare the membrane electrode assemblies (MEA). The 

membrane was extrapolated beyond the active area so that no sub-gaskets were required for 

MEA assembly. MEAs were prepared by hot compression; the compression strain being 

limited to within 12-15%, which resulted in an estimated porosity of GDL of ~ 0.35. Fiber 

reinforced teflon (FRT) flat sheets were used as gaskets to avoid peripheral leaks and cross-

flow. The MEAs were sandwiched between two graphite monopolar plates each containing 3-

channel serpentine flow field. The channels and ribs were both ~1 mm wide and the channels 

were 1 mm deep unless otherwise stated. The before and after assembly of the test-cell used in 

the experiments is shown below in figure 7.1. Figure 7.2 illustrates the above mentioned three-

channel serpentine flow field used in the experiments. 
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Fig. 7.1 Test-cell set-up (a) before assembly and (b) after assembly 

 

 

Fig. 7.2 Three-channel serpentine flow field (used in the experiments) 

The cell temperature was maintained at 60° C using external heaters. The temperatures of 

humidifiers were maintained constant at 60°C and 54 °C for anode and cathode respectively, 

in order to achieve 100% and 80-85% humidification on anode and cathode sides respectively. 



 Chapter 7 

 

139  

The MEAs were conditioned and tested using a fuel cell test station (Fuel Cell Technologies 

Inc., Model SFC-TS, USA). The key experimental conditions are described in table 7.1.  

Table 7.1 Experimental conditions and MEA details 

Parameters Values 

Operating temperature (OC) 60 (maintained using external heaters) 

Relative Humidity 80% at C and 100% at A 

Operating pressure (atm, absolute) 1 

Anode Stoichiometry (H2) 
5 (controlled using mass flow 

controller, MKS instruments) 

Cathode Stoichiometry  
5.5 (controlled using mass flow 

controller, MKS instruments) 

Active Area 25 cm2 

Membrane Nafion XL Membrane 

Sealing Gasket FRT Flat gasket 

 

Two different sets of experiments were planned to determine the controlling transport 

resistance in CCL and to quantify the effective diffusion coefficients of oxygen in CCL and 

GDL: 

1) Varying inlet oxygen concentration  

Calibrated gas cylinders of oxygen-nitrogen mixtures containing oxygen concentrations of 4%, 

6%, 8%, 10% and 21% (air) were used. Pre-conditioned MEAs were further conditioned using 

each of the calibrated O2-N2 mixtures at constant voltage of 0.6 V for 1 hour to ensure that 

steady-state current density was reached and then subjected to polarization curve. Pure H2 was 

used as fuel.  

2) Varying channel depth 

The cathode side flow field plate was customized to have different channel depths of 1 mm, 2 

mm, 3 mm and 4 mm. The channel depth on anode plate was always 1 mm. For each plate, a 

pre-conditioned MEA was re-conditioned at a constant voltage of 0.6 V for 1 hour so that 
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steady-state was confirmed and then subjected to polarization curve using 4% O2 as oxidant 

and pure H2 as fuel.  

All polarization experiments were performed at sufficiently high stoichiometries of 5 and 5.5 

respectively, for hydrogen and air in flow tracking mode. This ensures uniform hydrogen and 

oxygen concentration over the flow field at all current densities. For each MEA, its ohmic 

resistance was independently determined using electrochemical impedance spectroscopy. In 

particular, the high frequency resistance (HFR) of MEA was determined from Nyquist plot and 

was used as the value of ohmic resistance. HFR value of ~75 mΩ-cm2 (± 2-5 mΩ-cm2) was 

measured consistently for all MEAs. iR-free polarization data was obtained by adding the 

voltage loss due to ohmic resistance to the measured cell potential. 

 

7.4) Data analysis methods 

 

 Graphical method to determine 𝑱𝒄𝒓𝒊𝒕 from experimental polarization curve 

Figure 7.3 shows a typical iR-corrected experimental polarization curve on a semi-log scale. 

Plotted this way, the polarization curve is linear in the very low current density region with a 

slope equal to the intrinsic Tafel slope (𝐴𝑐 = 𝑅𝑇/𝐹) for ORR, and it deviates from this line as 

the current density is increased. At some intermediate current density, the local slope of the 

polarization curve doubles i.e., it asymptotically merges with a line having slope equal to 

doubled Tafel slope (2𝑅𝑇/𝐹). Figure 7.3 also shows the lines corresponding to local slopes 

equal to the Tafel slope and double-Tafel slope. The x-coordinate of the intersection point of 

these asymptotic lines is the critical current density (𝐽𝑐𝑟𝑖𝑡), (refer chapter 2), therefore this 

graphical method is used in the present work to determine 𝐽𝑐𝑟𝑖𝑡 for different oxidant 

concentrations. It should be noted that the transport resistance, which causes deviation and 
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eventual doubling of Tafel slope, starts influencing the polarization curve at a current density 

much lower than 𝐽𝑐𝑟𝑖𝑡. This is evident from figure 7.3. 

 Using scaling laws to discern the operating regime of CCL 

iR-free polarization curves were obtained for different oxidant concentrations under 

conditions of 𝐽𝑐𝑟𝑖𝑡 ≪ 𝐽𝐺𝐷𝐿 , 𝐽𝑑𝑖𝑓𝑓,𝑐ℎ, 𝐽𝑓𝑙𝑜𝑤. Current densities at a given overpotential were 

measured for each oxygen concentration from the respective iR-free polarization curves and 

plotted against oxygen concentration to give the experimentally measured scaling law. 

Similarly, the scaling law of  𝐽𝑐𝑟𝑖𝑡 versus oxygen concentration was determined. Comparison 

of these scaling laws with equation sets (7.6), (7.7) and (7.11), (7.12) is used to discern which 

of the two main transport resistances, oxygen transport or proton transport in CCL, is 

influencing the overall ORR.  

 Estimating effective oxygen diffusion coefficient in the CCL, GDL and channel 

If scaling law analysis suggests that oxygen transport in CCL governs the overall rate of 

ORR, then equation (7.4) suggests that the slope of experimentally determined 𝐽𝑐𝑟𝑖𝑡 versus 

oxygen concentration should yield the effective oxygen diffusion coefficient in the CCL. Note 

that the other parameters in equation (7.4) are known (𝐹 = 96500
𝐶

𝑚𝑜𝑙
 and 𝑙𝑡 = 8 𝜇𝑚).  

Equations (7.5) and (7.10) both suggest that if the channel depth (2ℎ) is varied 

systematically then a plot of reciprocal of limiting current density) versus channel depth should 

be a line whose slope will allow for estimation of the oxygen diffusion coefficient in air, and 

whose intercept on the 
1

𝐽𝑡𝑜𝑡𝑎𝑙
 axis will enable the estimation of effective oxygen diffusion 

coefficient in the GDL. These experiments were performed using low oxygen concentration 

and with high stoichiometric reactant gas flow rates to ensure that the limiting current density 

is because of oxygen diffusional resistances in the channel and GDL. Since the oxygen 
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diffusion coefficient in air is well known, this value can be used to validate the utility of the 

methodology. In the experiments, we were not able to reach high enough overpotential to reach 

limiting current density values because of limitation on the maximum current that could be 

drawn from the load box. Hence, we have taken the value of current density at highest measured 

overpotential as the limiting current value. The intrinsic assumption here is that the measured 

current density has the same dependence on Cin as the limiting current density. 

 

Fig. 7.3 iR-corrected polarization curve in semi-log scale with H2 as a fuel and air as an oxidant at 

𝑇 = 60°𝐶, H2 stoichiometry = 5, air stoichiometry = 5.5, outlet pressure=ambient pressure, 

anode side RH =  100% and cathode side RH =  70%. The lines have intrinsic Tafel slope and 

doubled Tafel slope. Their point of intersection is the critical current density. 

 

 

7.5) Results and discussions 

 Regime of CCL operation 

We begin by deciphering, for our MEAs, which of the two transport resistances, oxygen 

diffusion or proton conduction, will start modulating the Tafel kinetics first as the current 

density is increased. Figure 7.4 shows the polarization curves for different oxygen 

concentrations namely 4%, 6%, 8%, 10% and 21% (air). The critical current density (𝐽𝑐𝑟𝑖𝑡) was 

determined for each polarization curve using the aforementioned graphical method (see figure 
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7.5). A double logarithmic plot of 𝐽𝑐𝑟𝑖𝑡 versus 𝐶𝑖𝑛 is shown in figure 7.6a. The slope of the 

graph gives the scaling exponent of 0.84, which is close to 1 and therefore is suggestive of the 

scaling 𝐽𝑐𝑟𝑖𝑡 ~ (𝐶𝑖𝑛)
1. 

 

Fig. 7.4 Polarization curves for different inlet oxygen concentrations with H2 as a fuel at 𝑇 =  60°𝐶, 

𝐻2 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑦 =  5, 𝑜𝑥𝑖𝑑𝑎𝑛𝑡 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑦 =  5.5, 𝑜𝑢𝑡𝑙𝑒𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =  𝑎𝑚𝑏𝑖𝑒𝑛𝑡, 
𝑎𝑛𝑜𝑑𝑒 𝑠𝑖𝑑𝑒 𝑅𝐻 =  100% and 𝑐𝑎𝑡ℎ𝑜𝑑𝑒 𝑠𝑖𝑑𝑒 𝑅𝐻 =  70% 

 

Figure 7.8 shows double logarithmic plot of measured current density versus 𝐶𝑖𝑛 at three 

different overpotentials. The lower overpotential of 0.069 V corresponds to the regime of Tafel 

slope on the polarization curve, whereas the higher overpotential of 0.135 V corresponds to a 

regime of nearly doubled Tafel slope on the polarization curve for all the oxygen 

concentrations. The overpotential of 0.56 V corresponds to a high current density regime on 

the polarization curve where oxygen diffusion in GDL or channel is expected to be slower than 

oxygen consumption rate in the CCL i.e., 𝛼 and/or 𝜉 ≫ 1. From figure 7.8 it can be inferred 

that the experimentally observed scaling laws relating measured current density to inlet oxygen 

concentration for the three overpotentials are approximately, 𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
0@ 0.069 𝑉 →

𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
0.5@ 0.135 𝑉 → 𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)

1 @ 0.56 𝑉. Thus, we see a reasonable agreement 

between theoretical scaling laws (equations (7.6) and (7.7)) and experimentally established 



 Chapter 7 

 

144  

scaling laws, and this suggests that the first deviation from intrinsic Tafel kinetics on the 

polarization curve is a consequence of oxygen transport resistance across the CCL. In other 

words, 𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 < 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡. 

 

Fig. 7.5 iR-corrected polarization curves with asymptotic lines having intrinsic Tafel slope and 

doubled the intrinsic Tafel slope for different inlet oxygen concentrations 

 

The experimentally observed scaling law 𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
0.7 at high overpotential in figure 7.8 

shows deviation from the expected scaling of 𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
1. There could be two probable 

causes for the deviation:  
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a) The theoretical scaling law 𝐽𝑡𝑜𝑡𝑎𝑙  ~ (𝐶𝑖𝑛)
1 is strictly valid for limiting current density. 

However, it can be observed from figure 7.4 that except for 4% O2 and 6% O2 cases, we did 

not see limiting current density in our experimental data.  

b) The rate of water generation at higher overpotential increases for increasing 𝐶𝑖𝑛 due to higher 

current. This might result in varying water content in the GDL, which in turn would affect the 

effective oxygen diffusion coefficient in GDL. Thus, the assumption of the same 𝐷𝐺𝐷𝐿 for all 

𝐶𝑖𝑛 may not be strictly valid. Capturing the variation in 𝐷𝐺𝐷𝐿 due to variation in water content 

in the GDL is possible only in a non-isothermal, multiphase model of PEM fuel cell. This is 

out of scope of the present study.          

 

Fig. 7.6 a) Double logarithmic plot of critical current density (𝐽𝑐𝑟𝑖𝑡) versus inlet oxygen concentration, 

b) critical current density (𝐽𝑐𝑟𝑖𝑡) versus inlet oxygen concentration 
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Fig. 7.7 SEM image of the catalyst coated membrane (CCM) 

 

 

Fig. 7.8 Double logarithmic plot of total current density (𝐽𝑡𝑜𝑡𝑎𝑙) versus inlet oxygen concentration 

(𝐶𝑖𝑛) at different overpotentials 
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For the CCLs used in this work, our experimental polarization data for H2/air shows that 

𝐽𝑐𝑟𝑖𝑡,(𝑂2)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ~ 0.2 − 0.4 
𝐴

𝑐𝑚2
  over typical operating oxidant back-pressure range. In 

comparison, since the effective proton conductivity of such a CCL is estimated to be around 

~ 2 − 3 𝑆/𝑚 [43-45], we find that 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =
2𝜎𝐴𝑐

𝑙𝑡
 ~  1.2 − 2 

𝐴

𝑐𝑚2. However, as 

discussed earlier, the current density at which both oxygen and proton transport resistances will 

simultaneously start influencing the polarization curve will be lower than 𝐽𝑐𝑟𝑖𝑡,(𝐻+)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡. 

Therefore, for the MEAs similar to those used in this work and under humidified operating 

conditions, the operating regime of CCL is likely to shift from intrinsic Tafel kinetics at low 

current density to oxygen diffusion modulated ORR kinetics at intermediate current densities 

to simultaneous oxygen-proton transport resistance modulated ORR at higher current density 

and further to a regime in which agglomerate diffusion resistance coupled with oxygen-proton 

transport resistance will modulate ORR at even higher current density. At extreme values of 

current density one or more of the three limiting factors viz., stoichiometry, GDL diffusion or 

channel diffusion will determine a limiting current. 

 Determination of oxygen diffusion coefficients in CCL, GDL and channel 

We now determine the effective oxygen diffusion coefficient in the CCL. As can be seen in 

figure 7.6b, which shows the same data of figure 7.6a on a linear-linear scale, the slope of 𝐽𝑐𝑟𝑖𝑡 

versus 𝐶𝑖𝑛 turns out to be about ~237.5
𝐴−𝑚

𝑚𝑜𝑙
. From this and using equation (7.4), the effective 

oxygen diffusion coefficient in the CCL can be estimated to be ~4.9 × 10−9
𝑚2

𝑠
. That the 

thickness of the CCL is indeed ~ 8-10 µm is confirmed by the SEM image, as shown in figure 

7.7. Since the oxygen diffusion coefficient in water is known to be about ~5 × 10−9
𝑚2

𝑠
 [99], 

it implies that the CCL is flooded with liquid water. This is likely due to low operating 

temperature and high humidity conditions (70-75% RH on cathode side and 100% RH on anode 
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side) coupled with water generation due to reaction. It seems possible then that for the MEAs 

tested here, flooding of secondary pores in the CCL with water gives rise to oxygen diffusion 

resistance in the CCL. 

As mentioned in the Introduction, earlier attempts to estimate oxygen diffusion coefficient 

in the CCL by the so-called limiting current method assumed linear oxygen concentration 

profile in the CCL, which may not be always correct. In the methodology outlined in this work, 

no assumption whatsoever on the oxygen concentration profile in the CCL was invoked. 

We now use the methodology proposed in the section 7.4 to estimate the oxygen diffusion 

coefficients in GDL and channel. Figure 7.9 shows the polarization curves for different channel 

depths (1 mm, 2 mm, 3 mm and 4 mm) obtained with H2 as a fuel and 4% O2 as oxidant. The 

reciprocal of current densities at low operating cell voltage (0.3 V) are plotted as a function of 

half channel depth in figure 7.10. The slope of the line 
1

𝐽𝑡𝑜𝑡𝑎𝑙 (@ 0.3𝑉)
 versus ℎ obtained from this 

plot is about ~0.05 
1

𝐴/𝑚
 and from this, the oxygen diffusion coefficient in the channel (𝐷) can 

be estimated using equation (7.5) to be about ~3.5 × 10−5  
𝑚2

𝑠
, which is in agreement with the 

known numerical value of oxygen diffusion coefficient in air at 60°C (~3 × 10−5  
𝑚2

𝑠
) [100]. 

Further, the intercept of 
1

𝐽𝑡𝑜𝑡𝑎𝑙 (@ 0.3𝑉)
 versus ℎ line is ~0.00014 

1

𝐴/𝑚2 from which, as explained 

in earlier section, the value of 𝐷𝐺𝐷𝐿 can be estimated from equation (7.5) and by using estimated 

value of the effective length scale for oxygen diffusion in GDL, 𝑙𝑒𝑓𝑓,𝐺𝐷𝐿 = 𝜑𝑙𝐺𝐷𝐿 + (1 −

𝜑) (
𝑤𝑟𝑖𝑏

2
+ 𝑙𝐺𝐷𝐿) (see equation 6.11). Here, 𝜑 =

𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑤𝑐ℎ𝑎𝑛𝑛𝑒𝑙+𝑤𝑟𝑖𝑏
 (ratio of flow area to the total area). 

For the material parameters of our GDL (see experimental section) and for the rib width used 

in our flow field plate (𝑤𝑟𝑖𝑏 = 1𝑚𝑚), we estimated 𝑙𝑒𝑓𝑓,𝐺𝐷𝐿~ 550 micron. Using this value, 

the effective oxygen diffusion coefficient in the GDL (𝐷𝐺𝐷𝐿) was found to be ~7 × 10−6  
𝑚2

𝑠
. 
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We may compare this value with an independent estimate of 𝐷𝐺𝐷𝐿 using the popular 

Bruggeman correlation (𝐷𝐺𝐷𝐿 ~ 휀𝐺𝐷𝐿
1.5 𝐷), where 휀𝐺𝐷𝐿 is the porosity of GDL, the exponent 1.5 

refers to the tortuosity factor and 𝐷 is the bulk diffusion coefficient of oxygen in air. 

Substituting these known values gives 𝐷𝐺𝐷𝐿~6.2 × 10
−6 𝑚

2

𝑠
, which is in close agreement with 

the experimentally estimated value and is be used in model calculations. 

 

Fig. 7.9 Polarization curves for different channel depths with H2 as a fuel and 4% O2 as oxidant at 

𝑇 =  60°𝐶, 𝐻2 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑦 =  5, 𝑜𝑥𝑖𝑑𝑎𝑛𝑡 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑦 =  5.5, 𝑜𝑢𝑡𝑙𝑒𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
 𝑎𝑚𝑏𝑖𝑒𝑛𝑡, 𝑎𝑛𝑜𝑑𝑒 𝑠𝑖𝑑𝑒 𝑅𝐻 =  100% and 𝑐𝑎𝑡ℎ𝑜𝑑𝑒 𝑠𝑖𝑑𝑒 𝑅𝐻 =  70% 

 

 

Fig. 7.10 Plot of 
1

𝐽𝑡𝑜𝑡𝑎𝑙
 versus different channel depths at voltage of 0.3 V 
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Thus, we have demonstrated that the experimental methodology proposed in this chapter 

clarifies the operating regime of the CCL and also gives excellent estimates of the oxygen 

diffusion coefficients in the channel, GDL and CCL. We summarize the three oxygen diffusion 

coefficients obtained experimentally in table 7.2. 

Table 7.2 Numerical values of model parameters obtained from experiments 

Parameter Value 

𝐷𝐶𝐶𝐿 ~ 4.9 × 10−9
𝑚2

𝑠
 

𝐷𝐺𝐷𝐿 ~ 7 × 10−6  
𝑚2

𝑠
 

𝐷 ~ 3.5 × 10−5  
𝑚2

𝑠
 

 

 Comparison of analytical model, numerical simulations and experiments 

In this section we compare predictions of analytical model with experimental data as well 

as with three-dimensional numerical simulation. Table 7.2 provided the numerical values of 

model parameters. While all other values of numerical parameters were discussed earlier in 

chapter 7, the values of oxygen diffusivities in CCL, GDL and channel were also provided in 

the table 7.2. In fact, as discussed in the aforementioned sections, those values are experimental 

estimates. 

Figure 7.11 shows comparison between experimentally determined polarization curve, 

predictions of the PEM fuel cell equation given by equations (7.1) and predictions of the three-

dimensional numerical simulations. An excellent match between analytical model, simulations 

and experimental results was observed over the entire range of current density. Note that the 

various assumptions made during the derivation of the PEM fuel cell equation were already 

validated in chapter 6 by comparing model predictions with the results of full three-dimensional 

numerical simulations in which no simplifying approximations were made. Also, model 
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predictions match the experimental polarization curve without any ‘fitting parameter’. 

Therefore, this validates the ability of PEM fuel cell equation to capture the coupled reaction-

diffusion-convection phenomena in an operational PEMFC and to relate all material, 

geometrical and operating parameters to its performance. 

 

Fig. 7.11 Comparison of polarization curves predicted by analytical theory, full three-dimensional 

numerical simulation and an experiment 

 

7.6) Conclusions 

An experimental approach to quantify mass transport resistance in an operational PEMFC 

based on the developed analytical theory is presented. This chapter elucidates an approach of 

comparing theoretical scaling laws with the experimental scaling laws to assess whether the 

deviation in the polarization curve from intrinsic Tafel kinetics of ORR is because of oxygen 

transport resistance across the CCL. It allows to quantify effective oxygen diffusion coefficient 

in the CCL without invoking any restrictions on the oxygen concentration profile in the CCL. 

Furthermore, a method of segregating oxygen diffusional resistances in the channel and GDL 
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by varying channel depths is discussed and effective oxygen diffusion coefficient in the GDL 

is quantified. 

Given that a high current density PEMFC operation is common in automotive applications, 

it is imperative to understand the effect of oxygen transport resistance in the different domains 

of PEMFC. A simple experimental methodology to quantify oxygen transport resistance in all 

the domains of an operational PEMFC discussed in this study is an important step forward in 

this regard. 

Finally, we show that the polarization curve predicted by The PEM fuel cell equation and 

typical experimental polarization curve give an excellent match over the entire range of current 

density.   
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Chapter 8 

Conclusions and future scope 

This thesis has presented a comprehensive analytical model of PEM fuel cell and its 

validation using detailed numerical simulations as well as experimental analysis. The work 

presented in this thesis has led to the following new contributions over existing literature: 

8.1) Salient findings 

The effects of simultaneously active oxygen and proton transport resistances across the CCL 

thickness as well as oxygen transport resistance in the catalyst agglomerates is captured through 

one-dimensional FA-corrected-MH model of the CCL. The most generalized analytical 

solutions relating current density with CCL overpotential are obtained spanning all the possible 

regimes of CCL operation. 

Two-dimensional model capturing the non-uniformity of velocity and oxygen concentration 

along the depth of the flow channel along with oxygen transport resistance in the GDL is 

coupled with local FA-corrected-MH model of the CCL such that the consumption flux at the 

CCL-GDL boundary is dictated by the regime of CCL operation. Analytical solution to this 

two-dimensional problem resulted in ‘The PEM fuel cell equation’, a compact, closed-form 

algebraic expression that correlates all the geometric, operating and material parameters 

involved in an operational PEMFC with its power output. Different approximations invoked 

while deriving analytical solutions to the one-dimensional and two-dimensional models are 

validated by comparing analytical model predictions with three-dimensional numerical 

simulation results wherein no simplifying approximations are made. 
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While almost all the parameters in the analytical model are independently measurable, the 

determination of two important oxygen transport parameters namely, effective oxygen 

diffusion coefficient in the GDL and CCL, was non-trivial. A physics-based experimental 

methodology to determine these parameters is elucidated and therefore all model parameters 

can now be estimated independently. Finally, we show that the polarization curve predicted by 

The PEM fuel cell equation provides an excellent match with the experimentally determined 

polarization curve of an externally humidified low temperature PEM fuel cell over the entire 

range of current density. 

The PEM fuel cell equation captures the simultaneous convection-diffusion-reaction 

phenomena in PEM fuel cell through 7 different current density scales and the net ohmic 

resistance. Each current density scale is experimentally measurable and has definite physical 

meaning. Therefore, the PEM fuel cell equation provides deep physical insight into the 

physicochemical processes occurring in an operational PEM fuel cell and their repercussions 

on the power output. We believe that PEM fuel cell equation is extremely valuable because it 

can be used for diagnostic purposes as also for improving the performance of a fuel cell without 

the need for using expensive numerical simulations. Indeed, the simplicity of the PEM fuel cell 

equation can be gauged from the fact that it can be programmed in a simple Excel spreadsheet. 

Here, we provide a snapshot of this excel file (figure 8.1).  
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Fig.8.1 Snapshot of Polarization Calculator illustrating different input parameters and an output plot, 

‘polarization curve’ 

         

8.2) Future scope 

The work presented in this thesis leads to different opportunities for further investigations 

in the area of PEMFC technology: 

a) Incorporation of water-evaporation and condensation kinetics 

The mathematical model of PEMFC discussed in this thesis does not incorporate the physical 

processes on the cathode and anode sides which dictate the water balance in the cell. At best, 

the effective oxygen diffusion coefficients in the porous CCL and GDL may be thought to 

depend on a dimensionless quantity, 𝑠, which is the ratio of volume occupied by water to the 

open pore volume in the corresponding domain. While ‘𝑠’ would be an input parameter for the 

PEM fuel cell equation, however, in principle, it is a result of competition between following 
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rate processes: a) rate of water generation at cathode, b) rate of water condensation at anode 

and cathode, 3) rate of water evaporation at anode and cathode, 4) rate of water back-diffusion 

(from cathode-to-anode), 5) water flux due to electro-osmotic drag from anode-to-cathode. 

An improved model should incorporate the above five rate processes coupled with other 

transport processes to predict ‘𝑠’, which can then be used to estimate the effective oxygen 

diffusion coefficients in the CCL and GDL. Such an insight can allow us to design efficient 

water management protocol to maximize the power output of PEMFC. 

b) Engineering CCL microstructure to enhance oxygen diffusion in the CCL 

This thesis proves that for the realistic case of a fully humidified low temperature PEM fuel 

cell, the operating regime of CCL is likely to shift from intrinsic Tafel kinetics to oxygen 

diffusion modulated ORR kinetics under typical operating conditions. Thus, maximizing the 

current density scale 
4𝐹𝐷𝐶𝐶𝐿𝐶𝑖𝑛

𝑙𝑡
 can maximize the power output of PEMFC. Thus, increasing 

oxygen diffusion coefficient in the CCL and reducing the thickness of the CCL for the same 

catalyst loading can improve the PEMFC dramatically. 

The enhancement in the oxygen diffusion coefficient can be achieved by either lowering the 

tortuosity of the CCL (better pore connectivity) and/or by increasing the porosity of the CCL. 

The preliminary work by Kim et al. 2013 [103] discussed a novel method to fabricate highly 

porous and less tortuous CCL and demonstrated a great promise in achieving path-breaking 

power output. Li et al. 2019 [104] recently demonstrated a novel methodology to fabricate low 

tortuosity battery electrodes. The methodology can be replicated for CCL fabrication which 

may result in higher power output. This thesis has established a methodology to estimate 

oxygen diffusion coefficient in the CCL and therefore, we can characterize the fabricated CCLs 

in terms of 𝐷𝐶𝐶𝐿. 
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Lowering the thickness has been pursued in a fuel cell component development program by 

3M company which resulted in Nanostructured thin film (NSTF) catalyst layer with a thickness 

of less than a micron [105]. The analysis suggested that such a CCL follows intrinsic Tafel 

kinetics for a very large range of current density (up to ~ 1.2 A/cm2). Another report by Lee et 

al. 2015 [106], shows 30% increment in the power output of PEMFC when the thickness of the 

CCL is reduced to 2 microns from 7-8 microns. 

Therefore, an experimental program can be designed with an aim to develop thin, low 

tortuous and highly porous CCL by combining the ideas discussed in these reports which may 

result in impactful increment in the power output of the PEMFC.     
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