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!ÂÓÔÒÁÃÔ 

We report here the extensive work carried out on two essential lysosomal enzymes 

acid ceramidase (AC, EC 3.5.1.23) from zebrafish (Danio rerio), Caenorhabditis elegans and 

acid ceramidase-like protein (N-acylethanolamine hydrolyzing acid amidase (NAAA) , EC 

3.5.1.4) from mouse (Mus musculus) and Micromonas commoda (strain RCC299) 

(Picoplanktonic green alga. These enzymes belong to the N-terminal nucleophile hydrolase 

superfamily, which is functionally identified as amidases. Based on the presence of N-

terminal residue Cys, which acts as a nucleophile, the superfamily classified into N-terminal 

cysteine nucleophile (NtCn) hydrolases. Being members of Ntn-hydrolase superfamily ACs 

and NAAAs share a common (ŬɓɓŬ) Ntn structural fold and similar catalytic mechanism. 

Both enzymes are heterodimers and form homodimer assemblies of heterodimer assemblies. 

AC catalyzes the degradation of ceramide by hydrolyzing the amide bond in ceramide into 

sphingosine and free fatty acid. NAAA catalyzes the degradation of N-Acylethanolamine 

(NAE) by hydrolyzing the amide bond in NAE into ethanolamine and free fatty acid. AC and 

NAAA are glycoprotein and undergo post-translational processing to mature as an active 

form. 

 

The detailed work presented in the thesis underpins the biochemical and structural 

characterization along with computational analysis of AC and NAAA. 

The thesis is organized into five chapters: 

 

Chapter 1: Introduction  

The general introduction and provides a review of the literature and present status of 

the work on AC and NAAA. This chapter also discusses the comparative account of AC and 

NAAA with respect to function and structure. It covers the biochemically and structurally 

characterized AC and NAAA from various sources. Their probable role in human physiology 

has also been emphasized.  

 

Chapter 2: Characterization of acid ceramidase (AC) 
Chapter 2 presents the cloning, expression, purification, biochemical and biophysical 

characterization of AC. Zebrafish asah1b and C. elegans. Asah1 gene was cloned in pPICZŬ-

A and heterologously expressed in Pichia pastoris. AC was purified through affinity and Size 
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exclusion chromatography. Glycosylation analysis was done by a very reliable prediction 

algorithm. The confirmation of glycosylation was based on glycoprotein staining and 

deglycosylation of AC. Demonstrated insights into the autocatalytic processing of AC. 

Zebrafish AC was found to be active towards the C12-NBD-Ceramide, another unique 

feature of enzyme reverse activity was also observed. The optimum pH, temperature, time 

and DTT concentration of zebrafish AC has been determined. Kinetic parameters of zebrafish 

AC catalyzed reaction were also determined. Site-directed mutagenesis of perceived 

mutations of SMA-PME has been designed to explore the important residues involved in 

stability and activity and autocatalytic processing of zebrafish AC. Biophysical techniques 

circular dichroism was used for the structural transitions studies of zebrafish AC by 

monitored by subjecting the enzyme to thermal denaturation. 

 

Chapter 3: Characterization of acid ceramidase-like protein (NAAA)  

Chapter 3 presents the cloning, expression, purification, biochemical and biophysical 

characterization of NAAA . Mouse and M. commoda NAAA gene was cloned in pPICZŬ-A 

and heterologously expressed in Pichia pastoris. The expression was confirmed by western 

blot. AC was purified through affinity, Size exclusion chromatography and Concanavalin A-

sepharose chromatography.  Glycosylation analysis was done by prediction and confirmation 

based on glycoprotein staining and deglycosylation of NAAA. Western blotting was also 

used to insights into the autocatalytic processing of NAAA. Mouse NAAA was found to be 

active towards the PEA, another unique feature of enzyme ceramidase hydrolase activity was 

also observed. The optimum pH, temperature, time and DTT concentration of mouse NAAA 

determined. Kinetic parameters of mouse NAAA catalyzed reaction were also determined. 

Biophysical techniques like fluorescence, differential scanning fluorimetry and circular 

dichroism were used for the studies. Through the enzyme thermal denaturation studies, the 

structural transition of zebrafish AC was studied. 

 

Chapter 4: In silico study of acid ceramidase (AC) and acid ceramidase-like protein 

(NAAA) 
In this chapter, the homology models of AC and NAAA generated and zebrafish AC 

docked with substrates ceramide. The prediction study was most damaging nsSNPs done by 

analysis deleterious and destabilizing nsSNPs. In silico mutagenesis were also generated to 

explore important of the structural effect of Farber and SMA-PME mutation on function. MD 

simulations studies of WT and disease mutant models were executed to understand the 
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molecular mechanism of Farber and SMA-PME disease. Based on the observations made 

from the above studies, 7 mutations (L182V, R226P, G235R, G235D, R254G, R333H  and 

P362R) were identified as highly deleterious from 30 disease causing nsSNPs. The four 

substrate binding pocket loops mapped on the structure of AC and NAAA. AC and NAAA 

separated based on the difference in length of loop1 by phylogenetic analysis of the 

sequences. 

 

Chapter 5: Summary and conclusions 

This chapter highlights the key findings from the present work and conclusions drawn 

from the data are discussed in this chapter.  
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#ÈÁÐÔÅÒ ρȡ )ÎÔÒÏÄÕÃÔÉÏÎ 

1.1 Enzyme and their importance for life 

Metabolism is a fundamental process of life in which organic compounds are synthesized 

(anabolism) and breakdown (catabolism) by stepwise reaction using the help of the enzymes. 

Many organisms break down carbohydrates, lipids and proteins to obtain energy and 

precursor for biosynthesis, while autotrophs satisfy their needs completely with inorganic 

materials. The catalysts of metabolism are enzymes and nearly all enzymes are proteins but 

some are nonprotein in nature (catalytic RNA). The discovery of the first enzyme amylase 

(Payen, A. & Persoz, 1833) triggered the development of fermentation technology in the 20
th
 

century. Enzyme urease isolated and crystallized proves that enzyme nature is protein 

(Sumner, 1926). During the 1960s, a series of experiments conducted by Anfinsen on 

ribonuclease shed light that the primary structure of the protein determines the final 

conformation of the protein. 

The function of the enzyme generally depends on the structure of the enzyme.  Proteins 

are macromolecules made up from standard 20 amino acids residues which are linked 

together by a peptide bond. Protein diversity arises from different compositions and 

arrangement of the 20 amino acids. The protein diversity information is stored in the genetic 

material in the form of nucleotides. The primary structure of the enzyme is linear sequences 

of amino acid. The regular periodic secondary structural element (Ŭ-helices, ɓ-sheet and loop) 

formation depends on the pattern of hydrogen bonds between the amino group and the 

carbonyl group of amino acid residues. The secondary structure further folds and form a 

three-dimension structure called a tertiary structure which is functionally active.  Sometimes 

enzymes are made up of more than one polypeptide chain, which assembles in the form of 

quaternary structure. 

Enzymes are highly specific and enhance the rate of reaction by the formation of the 

transition state (Pauling, 1946). Enzymes in fine quantities are adequate enough to convert 

the bulk amount of substrates to products. Some enzymes require the presences of cofactors 

for activity. Such cofactors can be metal ions, organic molecules (coenzymes). Endoenzymes 

are synthesized by living cells and remain inside the cells. On the other hand, exoenzymes 

leave the cells and function outside.  Every enzyme has a specific optimum pH and optimum 
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temperature. Any shift from optimum pH and temperature results in a decrease in enzyme 

activity because it denatures the enzyme molecule. 

Enzymes being large molecules consist of many hundreds of amino acids but the 

functional regions of an enzyme (generally the active site) consists about ten to twelve amino 

acids (Gutteridge and Thornton, 2005). The amino acids histidine, cysteine and aspartate are 

more frequently involved in catalytic activities, whereas aliphatic amino acids such as 

alanine, leucine and glycine are hardly ever involved (Holliday, Mitchell and Thornton, 

2009). The active site residues can identify by chemical labeling (Aktories, 1997) and site-

directed mutagenesis (Morrison and Weiss, 2001). In silico prediction of function of an 

enzyme from its sequence and structure, is possible with the help of structural genomics 

(Burley et al., 1999; Shapiro and Harris, 2000). The comparative study of sequences and 

structures of the enzyme are helpful to extract the evolutionary relationship between 

organisms (Gabaldón and Koonin, 2013). Sometimes function prediction from sequences 

fails due to the fact that even proteins with high sequence similarity have been seen to 

perform quite different functions (Karp, 1998). 

1.2 Ceramidase 

Ceramidase (EC 3.5.1.23, acylsphingosine deacylase, glycosphingolipid ceramide 

deacylase) are amidohydrolase enzyme that catalyzes the cleavage of ceramide into free fatty 

acids and sphingosine (SPH).  Ceramides are fatty acid derivatives that are amide-linked to a 

sphingosine moiety. They can differ in the lengths of their acyl chains and even in degree of 

unsaturation. Ceramidases are classified into three groups, acid (ASAH1), neutral (ASAH2, 

ASAH2B and ASAH2C) and alkaline (ACER1, ACER2 and ACER3) according to their 

optimum pH (Gangoiti et al., 2010). 

Acid ceramidases (AC; N-acylsphingosine deacylase, EC 3.5.1.23) are autoproteolytic 

heterodimeric glycoproteins which localizes in lysosomes. AC activity was first identified in 

rat brain (GATT, 1963), but was purified and characterized from human urine (Bernardo et 

al., 1995). The first antibody produced against AC using urine AC was further used for the 

study of sphingolipid metabolism in skin fibroblast (Chen, Moser and Moser, 1981). AC is a 

key enzyme in sphingolipid metabolism and degrades ceramide into sphingosine and free 

fatty acid (GATT, 1963; Zeidan and Hannun, 2007). Deficiency or imbalance of enzyme 

causes defects in levels of sphingolipid metabolite which interferes in the sphingolipid-

mediated signal transduction, responsible for diseases (Park and Schuchman, 2006). Since 
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AC is overexpressed in cancers, it is a potential target of treatment in cancer disease (Zeidan 

et al., 2008). AC is functionally similar to other ceramidases but structurally more similar to 

NAAA  (Figure 1.1). AC has different characteristic features compare to other ceramidases 

such as optimum pH, substrates preferences, primary structure and cellular location. 

 

Figure 1.1: Phylogenetic analysis of ceramidase. The red branches indicate acid 

ceramidases, blue branches indicate acid ceramidase-like proteins, green branches indicate 

neutral ceramidases, magenta, orangeand violet branches indicate alkaline ceramidases 

(ACER1, ACER2 and ACER3). The tree was prepared in MEGA 6 and plotted using iTOL. 

 

Acid ceramidase-like protein (N-acylethanolamine-hydrolyzing acid amidase; EC 

3.5.1.4) gene was first cloned from human placenta having homology (33-35% amino acid 

identity) to AC but showed no ceramidase activity (Hong et al., 1999). The term acid 
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ceramidase-like protein (ASAHL) was coined by Hong et al. because of the sequences 

similarity with AC. Later, a similar protein was purified from rat lung and it was found that 

similar genes were present in human and mouse having sequence similarity with ASAHL 

(Tsuboi et al., 2005). The naaa cloned from human megakaryoblastic (CMK) cells has 99.8% 

identity to the previously cloned acid ceramidase-like protein from human placenta. Tsuboi et 

al., changed the protein name to N-Acylethanolamine-hydrolyzing acid amidase (NAAA)  

because of its functional similarity with fatty acid amide hydrolase (FAAH; EC 3.5.1.99). 

Bioactive NAE is hydrolyzed to fatty acids and ethanolamine by the catalysis of FAAH 

(Ueda et al., 2000). NAEs are fatty acid derivatives that are acyl chains bound to 

ethanolamine by an amide bond. Variation is observed in acyl chain length and the 

occurrence of double bonds. FAAH is a member of the amidase signature superfamily 

constituting of a Ser-Ser-Lys triad at the catalytic site (Bracey, 2002). NAAA  catalyzes the 

hydrolysis of many NAE into ethanolamine and free fatty acid but has more activity against 

N-palmitoylethanolamine (PEA). NAAA catalyzes the hydrolysis of PEA into ethanolamine 

and palmitic acid. The NAAA is a potential target of treatment for inflammatory disorders 

due to the anti-inflammatory nature of its substrate, PEA. NAAA is functionally similar to 

FAAA but structurally more similar to AC. 

1.3 Ntn (N-terminal nucleophile) 

AC and NAAA sequences revealed high homology with the bile salt hydrolase (BSH) 

and penicillin V acylase (PVA), suggesting that AC and NAAA is a member of the 

chologlycin hydrolase family (CGH) (PFAM PF02275). The CGH is a part of the 

superfamily N-terminal nucleophile (Ntn) hydrolase. (Rossocha et al., 2005; Tsuboi, 

Takezaki and Ueda, 2007). Ntn hydrolases functionally belong to hydrolase class of enzymes 

but most of them are amidases (Brannigan et al., 1995). Ntn hydrolase superfamily shows 

insignificant homology in primary structure but shows high similarity in their ŬɓɓŬ sandwich 

structure (Ntn-hydrolase fold), as well as the cleavage of the amide bond and autoproteolytic 

processing. (Oinonen and Rouvinen, 2000). In Ntn-hydrolase fold, two central anti-parallel ɓ-

sheets are sandwiched between layers of Ŭ-helices on either side (Figure 1.2). All Ntn 

hydrolase have conserved active site topology and similar reaction mechanisms (Duggleby et 

al., 1995). Ntn hydrolase is active after autocatalytic processing which creates new N-

terminal residues (Cys/Thr/Ser), which is responsible for the hydrolysis of an amide bond in 

NtCn-hydrolase and NtTn-hydrolase and NtSn-hydrolase (Figure 1.3) (Ekici, Paetzel and 

Dalbey, 2008).The sulfhydryl (-SH) group of Cys and hydroxyl (-OH) group of Ser and Thr 
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act as a nucleophile in Ntn hydrolase. The zymogen of AC and NAAA  are autoproteolytically 

processed into Ŭ- and ɓ-subunit and this subunit forms an active heterodimer. N-terminal Cys 

residue of ɓ-subunit act as nucleophile and form a catalytic triad with Arg and Asp residues. 

 

Figure 1. 2: Members of the Ntn hydrolase superfamily. The conserved core Ntn-fold is 

highlighted in the structure of proteins.  
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Figure 1.3: Modes of autoprocessing in Ntn hydrolase. A: Ntn hydrolase fold. B: 

Autoprocessing in Ntn hydrolase. The signal peptide, Ŭ- and ɓ-subunit of AC and PGA 

showed in dark blue, red and light blue color, respectively. Spacer peptide of PGA and PVA 

showed in green color. M, initial methionine of BSH. 

 

Based on the N-terminal nucleophile residue, Ntn-hydrolase enzymes (Clan PB) are 

classified into NtCn-hydrolase (subclan PB(C)) and NtSn-hydrolase (subclan PB(S)) and 

NtTn-hydrolase (subclan PB(T)) in MEROPS database (Rawlings et al., 2014). One set of 

closely related Ntn hydrolases of interest here is AC and NAAA which belongs to the 

Cholylglycine hydrolase family or NtCn-hydrolases (subclan PB).  

1.3.1 Cysteine-Ntn (NtCn) Hydrolases (subclan PB) and Cholylglycine Hydrolase family  

This clan PB(C) includes six structurally and functionally characterized families of 

self-processing enzymes, family C59, C44, C45, C69, C89 and C95.  These family members 

are related to each other through structural homology, not sequence homology (Panigrahi et 

al., 2014). Family C89 comprises of the enzymes AC and NAAA. Other enzymes such as 

Cholylglycine hydrolase (BSH and PVA), Glutamine phosphoribosylpyrophosphate 

amidotransferase (GPATase), Glucosamine-fructose-6-phosphate aminotransferase (GFAT), 

Asparagine synthetase (AS), Glutamate synthase (GS), Dipeptidase DA, lysosomal 66.3 kDa 

protein and Acyl-CoA:isopenicillin N-acyltransferase (IPAT) also belong to NtTn-hydrolase 

family. 

1.3.2 Serine Ntn-Hydrolase family  

This clan PB(S) includes family S45 (cephalosporin acylase, AHL acylase and 

penicillin G acylase (PGA)). These enzymes are targeted to the periplasmic space by the 

signal peptide. They are synthesized as inactive premature precursor polypeptide (signal 
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peptide, Ŭ-chain, spacer peptide, ɓ-chain), which is subsequently processed into mature active 

heterodimer consisting of Ŭ- and ɓ-chains (Figure 1.3 and 1.6). 

1.3.3 Threonine-Ntn (NtTn) Hydrolase family  

This clan PB (T) includes four family T1, T2, T3 and T4. These enzymes differ with 

respect to their subunit composition and substrate specificity but the catalytic site and overall 

structural Ntn-fold remain similar. Enzymes such as Glycosylasparaginase (GA), Ornithine 

acetyltransferase (OA) and subunits of proteasome belong to NtTn-hydrolase family. 

1.4 Distribution (evolution) of AC and NAAA  

Distribution of AC and NAAA are found in bacteria, protozoa, animals and viruses but 

are absent in archaea and fungi (Rawlings et al., 2014). In bacterial and viral homologs, 

protein predicted to be AC and NAAA do not have consrvrd active site residues. In plants 

this protein is absent but Micromonas sp. Has NAAA protein predicated to be AC and NAAA 

do not have conserved active site residues. In plants this protein is absent but Micromonas sp. 

has NAAA protein. The reason behind the lack of both protein in plants may be due to the 

lack of lysosomes in most plants. The function of AC and NAAA in plants may be carried out 

by other ceramidase and FAAH, respectively. The homologous amino acid sequences of AC 

and NAAA could not be detected in Drosophila but neutral ceramidase was present; however, 

they were found to have activity in neutral pH as well as in acidic pH (Yoshimura et al., 

2002). NAAA has high homology (33-35% amino acid identity) to AC with respect to amino 

acid sequence; however, more similarity is found in ɓ-subunit amino acid sequences and both 

AC & NAAA have conserved active site residues (Figure 1.4 and 1.5). Similarities are also 

observed in their structure, cellular location, post-translation modification and autoproteolytic 

cleavage. AC and NAAA have. 

1.5 The molecular biology of AC and NAAA 

AC is encoded by the ASAH1 (N-acylsphingosine amidohydrolase) gene. Skin fibroblast 

and pituitary tissue cDNA was used to partially amplify the fragments and form the full 

length, human AC (hAC) (Koch et al., 1996). The cDNA encoding murine AC has also been 

cloned (Li et al., 1998). The locus of ASAH1 gene is on chromosome 8 (8p21.3-22) was 

confirmed by in situ hybridization and FISH analyses (Hong et al., 1999).  

 
































































































































































































































